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Summary

This thesis is concerned with the problem of finding nontrivial solutions of nonlinear

equations.

Chapter one is an introduction to the concepts used through the thesis, including
the notion of topological degree, measure of noncompactness, fixed point index and

50 O1.

The work of chapter two builds a new definition of spectrum for nonlinear, finitely
continuous maps using the class of A-proper mappings. In this chapter we also in-
vestigate the properties of the new spectrum and we discuss advantages and disad-

vantages of such a finite-dimensional approach.

In chapter three, by using fixed point index theory, we establish new results
for some three point boundary value problems (BVPs) that have been previously
studied by various authors, for example by Gupta et al. in [13, 15]. For certain
values of a parameter « these particular BVPs can generate a continuous kernel
that changes sign, so that positive solutions may not exist. We obtain existence of

at least one or of multiple nonzero solutions.

In chapter four we extend the results of chapter three, allowing more general
functions f and discontinuous kernels. We focus on a particular BVP that leads
precisely to this situation, obtaining again, under suitable conditions, existence of

nonzero solutions.

Finally, in chapter five, we turn our attention to the problem of eigenvalues of
some three point BVPs. By using some results of chapter three and four together
with a well known theorem on eigenvalues, we prove the existence of positive (and

negative) eigenvalues.

iii




Introduction

This thesis is divided in two parts, and reflects the variety of interests and problems
that I came across in my journey through the kingdom of Nonlinear Analysis while

1 was studying for my Ph.D.

The first part is related to the problem of finding a new definition of spectrum of
Nonlinear Operators. Due to the importance of spectral theory for linear operators
it is not surprising that several attempts have been made to define and study a
spectrum for nonlinear operators. One of the first attempts is due to Kachurovskij
in 1969 [25]. Kachurovskij gave a definition of spectrum for continuous maps. His
idea of regularity involves the bijectivity of the function and imposes constraints on
the properties of the inverse as well. Later, in 1978 [11], Furi, Martelli and Vignoli
introduced a spectrum with interesting applications. This spectrum is defined for
continuous operators by using a number attached to the measure of noncompact-
ness and the concept of stably solvable maps. Other authors gave [3, 5, 8, 10, 36]
different definitions of spectrum of nonlinear operators and each of them focused on
a particular class of maps.

In chapter two we introduce a new definition of spectrum for finitely continuous
operators, which we call the A-spectrum. To do this we use the notion of approxi-
mate solvability (hence the concept of A-proper maps), a modification of the Furi-
Martelli-Vignoli spectrum for finite dimensional maps and the theory of {opological
degree. We investigate the topological properties of the A-spectrum, its closedness,
boundedness, nonemptiness and the relation with the linear spectrum. In section
2.5 attention is given to positively homogeneous operators, extending some known
results valid for eigenvalues for linear operators to the new spectrum. In particular
we show that if A € o4(f) and |A| > (), then there exists t € (0, 1] such that

A/(t) is an eigenvalue of f. This is used in section 2.9 to prove a result similar to
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the Birkhoff-Kellogg Theorem for finitely continuous maps. Finally in section 2.12
we show that in general eigenvalues are not contained in the A-spectrum and we

compare it with other spectra.

The second part of the thesis is concerned with the study of nonzero solutions
and eigenvalues of certain nonlocal boundary value problems (BVPs). In order to
solve these problems we do not use the topological degree directly but we use its
restriction to cones, the fized point index, extensively.

In chapter three we investigate two second order differential equations of the
form

W(8) + g(&) fu(t) =0, (0<t<1) (0.0.1)

under one of the boundary conditions (BCs)
u'(0) =0, au(n) =u(l), 0 <n <1, (0.0.2a)

u(0) =0, ou(n) =u(1), 0<n < L. (0.0.2b)

These so-called three-point BVPs, and more general m-point BVPs, have been well
studied in recent years, see for example Gupta et al. [13, 15| and the references
therein.

The idea we use to find nontrivial solutions is to write the BVP as an equivalent

Hammerstein Integral Equation

u(t) = /O (6, 5)g(s) f (u(s)) ds := Tu(?) (0.0.3)

and look for fixed points of the operator T on a cone of functions that are positive

on an interval, namely
K={ueC[0,1] : min{u(t) : a <t <b} > c|ju|l}-

The reason we use this particular cone rather than the cone of positive functions
commonly used in the literature is due to the fact that positive solutions may not
exist. For example for (0.0.2a) when o < 0, the kernel k(¢, ) is not positive for all
values of £, s, indeed k(1,s) < 0 for all s. Therefore, when g and f are positive, a
fixed point of the operator T cannot be positive on [0, 1].

The improvement with respect to the classical theory is that this new cone works

for a wider class of kernels, allowing kernels that change sign.
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In section 3.2 we show that the operator T sends the cone into itself. By means
of a well known result of fixed point index theory, we prove that, under suitable
conditions, the operator T has one or more fixed points. In sections 3.3 and 3.4 we
show how to apply the abstract theorems to our particular BVPs. In practice this
means finding upper and lower bounds for the kernel on a suitable interval [, b].
In chapter four we extend the results of chapter three by allowing more general

functions f and discontinuous kernels that change sign. The BVP
W)+ Fhul) =0, (0<t<1), (0.04)

with boundary condition
u(l) = au'(n), u(0) =0, 0<n < L (0.0.5)

leads precisely to this situation. The kernel of the associated integral equation has
a discontinuity on the line s = 7.
Again, using a technique similar to the one of chapter three we are able to prove
first existence of multiple fixed points of the associated integral equation and then
give results for our particular BVP.

Chapter five deals with the problem of finding eigenvalues of the Hammerstein

Integral Equation of the form

Nult) — /G K(t, 5) £ (5, u(s)) ds = Tut),

where we allow k& and f to be discontinuous and & to change sign. In this case
we use the results obtained in chapter three and four together with a well known
theorem on eigenvalues to show the existence of positive (and negative) eigenvalues.

We apply our results to the BVP
() + fEu{t) =0, (0<t<1), (0.0.6)
subject to the boundary condition:

u(0) =0, av'(n) =u(l), 0 <y < 1, (0.0.7)

and also to the other BCs seen above.
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Chapter 1

Preliminaries

Throughout this thesis we will be interested in the solvability of nonlinear functional
and differential equations. Depending on the nature of the problem we will use
different tools of Nonlinear Functional Analysis, for example topological degree and
fized point index theory, and use notions such as approzimation solvability.

In this chapter we give an introduction to these concepts.

1.1 Banach spaces, linear operators

In the sequel X and Y will denote Banach spaces. We say that a Banach space
is real if the scalar field (which we indicate by K) is R and complez if the field is
C. A Banach space X is said to be separable if it has a countable dense subset.

A sequence {e;} C X is a Schauder basis if every z € X has a unique convergent

r = E Z;€;q,

i>1

expansion

where z; € K. Given a map L: X — Y we say that L is a linear operator if
L{az + By) = aLz + Ly for every z,y € dom L and «, 5 € K.

The norm of a linear operator is given by the formula

2] = sup L0,
5 Tl

If || Z|| is finite we say that L is bounded.

The following Theorem links continuity and boundedness of a linear operator:

1
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Theorem 1.1.1. [26] Let L be a linear operator. Then
i) L s continuous if and only if L is bounded,

i) if L is continuous at a single point, it is continuous.

Note that, in the case of a finite dimensional space, we have the stronger result:

Theorem 1.1.2. [26] If a normed space is finite dimensional, then every linear

operator 15 bounded.

We say that a linear operator I, : X — Y is compact if I, maps bounded sets
into relatively compact sets in Y, that is, for every given bounded set M in X, the
closure T(M) is compact. A linear functional f is a linear operator with domain
X and range K. A bounded linear functional is a linear functional with finite norm.
The dual space X* of a Banach space X is the vector space of all bounded linear

functionals on X.

Example 1.1.3. An important example of a Banach space that will be used in the
thesis is the Banach space Cla,b] of continuous functions from [a, b] to K endowed

with the norm

[z]| = sup |2(t)].
t€fa,b]

Example 1.1.4. By definition the space 2 is the set of all sequences of numbers

(21,23, ...) such that
o
Z |$j|2 < 00,
J=1

endowed with the norm

-

el = (Y k)

A simple basis for 12 is {en} = {6 }iey where

1if i =n,
(51277. =
01if i # n.
The space |2 is very interesting (see for example [26]) and it is actually the prototype

of all infinite dimensional Hilbert spaces. In fact it can be shown that every infinite
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dimensional separable Hilbert space is isomorphic to /2, a good reference is Theorem

16.19 in [16).

1.2 Brouwer degree

In this section we define the Brouwer degree for continuous mapping and state some
results that we will use later, when dealing with finite-dimensional problems.

Let © be a bounded open set in R™. For each continuous map f : Q — R™ and
y ¢ f(02) we can define an integer deg( f, {2, ¥) which, roughly speaking, corresponds
to the number of solutions z € Q of the equation f{z) =y. If f is a smooth function

and y is not a critical value for f, the degree is given by the simple formula

deg(f, Q) Z Ji(x
x€f~1(y)
where J¢(z) = det f/(z). When v is a critical value we can define the degree by
approximation (see for example [33] for details). In general for continuous functions
the Brouwer degree is constructed via approximation with a smooth function g. Let
g € CY(€)) be such that

1/ () — g(=)|| < dist(y, f(O4)).
"We define the degree of f by setting
deg(f, 2, y) = deg(g,2,y).

It can be shown that this definition does not depend on the choice of the function
g, again [33] is a good reference.

We are now able to state some properties of the Brouwer degree.

Theorem 1.2.1. [6] Let Q be a open bounded set in R*, f € C(Q) and y & f(69).

Then the Brouwer degree has the following properties:
(d1) (Normalization) deg(l,Q,y) =1 fory € Q

(d2) (Additivity) deg(f,Q,y) = deg(f, Q,y) + deg(f, Q2,y) whenever Oy and (g
are disjoint open subsets of 0 such that y & f(Q\ (21 U Q)
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(d3) (Homotopy) deg(h(t,-), 2, y(t)) is independent of t whenever b : [0,1]xQ — R™
and y : [0,1] — R™ are continuous and y(t) & h(t,0Q) for every t € [0,1].
(d4) (Exzistence) deg(f,Q,y) # 0 implies f~'(y) # 0.

(db) deg(-, 2, y) is constant on {g € C(Q) : |lg— fll < v}, where r = dist(y, fF(O)).

(d6) deg(f,,-) is constant on B.(y) C R™. Furthermore, deg(f,$,+) is constant
on every component of R™\ f(68).

(d7) (Boundary dependence) deg(f,Q,y) = deg(g, §2,y) whenever f|asq = glaq.

(d8) (Ezcision property) deg(f,Q,y) = deg(f,1,y) for every open Q1 C Q such
that y ¢ f(Q\ ).

The following is the well-known Brouwer fized point theorem (see for example
Theorem 3.2 of [6]):

Theorem 1.2.2. Let D = B1(0) be the unit ball in R™ and f : D — D continuous.
Then f has o fized point.

We can prove this result by means of degree theory.

Proof. We assume that f(z) # x for & € 8D, otherwise there is nothing further to

prove. Consider the homotopy
h(t,z) =z —tf(z), t€[0,1] and z € D.
It is clear that, for ¢t € [0,1), tf(z) ¢ 8D and hence
h(t,z) 5 0 for z € D and t € [0, 1].
By the homotopy property of the degree we have
deg(! — f, B1(0),0) = deg(/, B:1(0), 0).

Since deg(I, B1(0),0) = 1, we obtain deg(! — f, B1(0),0) = 1. Hence there exists
x € By(0) such that f(z) = . ]
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Remark 1.2.3. Although we said that the degree is roughly a “count” of the number
of solutions of an equation f(z) = ¥, there are cases of maps with zero degree for

which the equation f(z) = y admit solutions, as we can see in the following simple

example:

Example 1.2.4. Take Q = (=1,1), y = 1 and f(z) = 2% Obviously —3 and 3

are solutions of the equation z? = i and they lie in ). Nevertheless, let g = 1 and
obtain deg(ga (_1: 1)) %) =0 by (d4) and deg(g: (_1= 1)3 '}{) = deg(f» ("]w 1)1 %) by
(d7). Hence deg(f, (~1,1),3) = 0.

In the case of odd maps this does not happen. We recall that €2 is said to be
symmetric with respect to the origin if Q@ = —Q. Amap f: Q C X — Y is odd on
Q if and only if for every z € Q we have f(—z) = —f(z). We can state Borsuk's

Theorem (see Theorem 4.1 of [6] for a quick proof).

Theorem 1.2.5. Let  C R™ be open bounded symmetric with 0 € Q. Let f € C(Q)
be odd and 0 ¢ f(0Q). Then deg(f,2,0) s odd.

1.3 Leray-Schauder degree

We recall that a nonlinear map f: X — Y is said to be compact if f maps bounded

sets into relatively compact sets in Y.

The Leray-Schauder degree is an extension of the Brouwer degree to the case of
infinite dimensional spaces, in the particular case of maps of the form 7" = [ — C|
where [ is the identity and C is a compact map. The key theorem used in order to

define the Leray-Schauder degree is the following:

Theorem 1.3.1. [35] Let Q C X be a bounded open set and C : Q — Y compact.
Given € > 0, there ezists a continuous map Cs : Q — Y, whose range C.(Q) is finite

dimensional such that, for every x € Q

IC(z) — Ce(2)]| <e.

By virtue of Theorem 1.3.1 we can define the Leray-Schauder degree for a map

of the type T = I — C by using Brouwer degree. Indeed let T = I — C,, where C:
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is a continuous map on £ with finite dimensional range such that

sup ||Cez — Cz|| < dist(y, dT(Q)) = ¢
Q

and € be the finite dimensional subspace of X which contains y and C;(£2). Then

we can set

degLS(TJ Qv y) = deg(T) Qa y)

In [33] it is shown that degys(T, Q,y) does not depend on the particular C, chosen
to approximate C.

We are ready to state the main properties of the Leray-Schauder degree (details
can be found in [6, 33]).

Theorem 1.3.2. Let Q be a open bounded set in X. LetT = I—C : Q — X be such
that C : Q — X is compact andy ¢ T(9S2). Then the Leray-Schauder deg,o(T, Q,7)
is well defined and inherits the properties (d1) — (d8) of the Brouwer degree.

In this thesis we will not use the Leray-Schauder degree directly, but we will

consider its restriction to cones, the fixed point index.

1.4 Fixed point index

The fized point index is, loosely speaking, an algebraic count of the number of fixed

points of a map in a closed convex set (usually a cone).

Definition 1.4.1. [6] We say that a set K is convez if tz + (1 — t)y € K for every
z,y € K and ¢ € [0,1]. We define the convez hull of a set D to be the set
coD = {Ztixi cx; € D, t; €10,1] and Zti = 1}.
i=1 i=1
The definition of the fixed point index for compact maps in infinite dimensional

spaces involves the Leray-Schauder degree and is given by the following:

Definition 1.4.2. {6] Let K be a closed convex set in a Banach space X and let D
be a bounded open set such that Dy = DN K £ 0. Let T : Dg — K be compact.
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Suppose that = # T'(z) for all © € 0k D, the boundary of D relative to K.
We define the fixed point index by the equation

ix(T, D) = degg(I — Tr,r ™ (Dg) N B,,0),
where r is a retraction from X onto K, B, D Dg.

Remark 1.4.3. Tr has the same fixed points as T' for if Trz = z then ¢z € K
because T : Dg — K, hence rz = z. So z # Tz for © € Ox D, implies z # T'rx for
z € 8(r~1(Dx) N B,) hence the Leray-Schauder degree deg({ — T'r,r~*(Dk) N B,,0)
is defined. It can be shown that the degree is independent of the choice of the

retraction 7 and the radius p. Hence, the index ix (T, D) is well defined.

Hence we can state the basic properties of the fixed point index.

Theorem 1.4.4. [6] Let K be a closed convez set in a Banach space X and let D be
a bounded open set such that Dy := DNK # 0. Let T : Dy — K be a compact map.
Suppose that © # T(x) for all x € OxD. The fized point index has the following

properties:
(Py) (Ezistence) If ig(T, Di) # 0, then T has a fized point in Dy
(P,) (Normalisation) If uw € Dk, then ix (i, Dg) = 1, where 4(z) = u forz € Dy.

(Ps) (Additivity) If V1, V? are disjoint relatively open subsets of Dy such that
z # T(z) for z € Dy \ (V*UV?), then

ix (T, Dic) = ixc (T, V) + i (T, V).

(Py) (Homotopy) Let h : [0,1] x D — K be compact such that = # h(t,z) for
@ € gD andt €[0,1]. Then

’i[{(h((}, .), D[{) = ’Z:K(h(l, .), DK).

As we said at the beginning of this section, the best candidate for a closed convex

set to work with, for example when dealing with integral equations, is a cone.
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Definition 1.4.5. A cone K C X is a closed convex set such that AKX C K for
every A > 0 and K N (—K) = {0}.

A key result in this area is Krasnosel’skii’s fized point theorem on cones. It is a
standard technique to use this theorem to prove the existence of solutions of some

integral equations (the proof is illustrated in Figure 1.1).

Theorem 1.4.6. [28] Let K C X be a cone, Oy and Qg be open subsets in X with
0, U CQand T : KN (Qy\ Q) — K be compact. Then T has a fired point
in K0 (Qy\ Q1) if either

i) |Tz| < ||z| for x € KNOQy and ||Tz|| > ||z|| for z € K NOQy

or

it) |Tz|| = ||zl for . € KN and ||Tz|| < ||z|| for x € K N Q.

Proof. If T has a fixed point on (K N ;) or (K N Q) we are done. Otherwise,
assume that ) is satisfied, obtaining ix (T, ;) = 1, see proof of (2) of Lemma 1.4.7.
The hypothesis ||Tz|| > ||z|| for z € K NIy implies ix (T, Q2) = 0, see for example
[12]. Using (3) of Lemma 1.4.7 we have that 7" has a fixed point in K 0 (2 \ Q1).

The case #7) is treated in a similar manner. O

[D index=0
£--{ index=1

Figure 1.1: Krasnosel’skil’s fixed point theorem
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The following lemma (see for example Theorem 12.3 in [1]) will be useful later in
the thesis since, replacing the common “cone expansion” assumption ||T'z|| > ||zl

with z # Tz + Ae, enables us to obtain different results:

Lemma 1.4.7. Let D be an open bounded set with Dy # 0 and Dy # K. Assume
that T : D — K is a compact map such that x # Tx for x € ODg. Then the fived

point index ik (T, Dg) has the following properties.

(1) If there exists e € K \ {0} such that x # Tz + e for all x € ODg and all
A >0, then ix (T, D}() =0.

(2) If \Tz|| < ||z|| for x € 8Dk, then ix(T, Dg) = 1.

(8) Let D' be open in X with DY C Dg. If ig(T,Dg) = 1 and ir(T, Dk) = 0,
then T' has a fized point in D \D—}( The same result holds if ix (T, D) =0
and ix (T, D}d = 1.

Proof. For (1), suppose ix (7T, Di) # 0 where D = B, and for arbitrary m > 0
consider h(t,z) = Tx+tme. By hypothesis « # h{t, x) so by the homotopy property
we obtain ix (T + me, Dk ) # 0. Hence, by the existence property, for each m € N
there is ©,,, € K with ||z] < p such that zp,, = T2y + me. As T maps bounded
sets to bounded sets this is impossible.

For (2), consider the homotopy h(t,z) := tTz. Then z = h(f,z) would imply
r=|z|| = ¢||Tz| <t||z]| and ¢ =1 is excluded by assumption.

(3) is just the Additivity property. O

1.5 Measure of noncompactness

As we have seen compactness does play a central role in functional analysis, therefore
is not surprising that tools there have been developed to measure, roughly speaking,

how far a map is from being compact. To be more precise:

Definition 1.5.1. Let B C X be bounded, we call the number

a(B) = inf{d > 0 such that B admits a finite cover by sets of diameter < d}
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the Kuratowsk: (set) measure of noncompactness and
B(B) = inf{r > 0 such that B can be covered by finitely many balls of radius r}

the Hausdorff (ball) measure of noncompactness.

The properties of @ and 3 can be found for example in [6].

Given a measure of noncompactness attached to sets it is natural to define an

analogue of this number for functions in the following manner:

a(f) = mf{k > 0 : a(f(B)
w(f) = sup{k = 0 a(f(B
B(f) =inf{k 2 0: B(f(B)
&(f) =supi{k > 0: B(f(B

) < ka(B) for every bounded B C X},
)) > ka(B) for every bounded B C X}
) < kB(B) for every bounded B C X},
)) > kB(B) for every bounded B ¢ X}

The main properties of a(f) and w(f) can be found in [11].

Remark 1.5.2. Recall that for every bounded set B C X we have the useful relation

between the two measures (see for example [40]):

A(B) < a(B) < 26(B).

One can also show that

1

Sa(f) < B(f) < 20(/)
and that

S9(f) < wlf) < 20(P)

Furthermore note that a function f : X — X is compact, i.e. f maps bounded

sets into sets with compact closure, if and only if a(f) = B(f) = 0.

Definition 1.5.3. We say that a map f : D ¢ X — Y is a (-contraction if
B(f(@)) < kB(G), for every bounded set G C D for some k& > 0. f is said to be ball
condensing if B{f(G)) < B(G), for every bounded set G C D with B(G) # 0.

We have the simple result:
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Lemma 1.5.4. Let f be a B-contraction with B(f) < k. Then there exists € > 0

such that ul + f is a B-contraction with B(ul + f) < k for all p € K with |u| <e.

Proof. We have that S(uf + f) < B(wl) + B(f) = |p| + B(f). Therefore pl 4 f is a
B-contraction. If we choose € = k — B(f) we have B(ul + f) < k. O

1.6 A-proper maps

The theory of A-proper maps was introduced by Petryshyn in [38], motivated by
the need of constructing a solution of an infinite dimensional equation f(z) =y by

a limit of finite dimensional approximations fn(z) = Yn.

X ! .Y
T B
X, Ly,

Definition 1.6.1. Let X and Y be Banach spaces, {X,} € X and {Y,} C Y,
be sequences of oriented finite dimensional subspaces, V, an injective map of X,
into X and @, a continuous linear map from Y to Y,,. We say that the projection
scheme T' = {X,, Va; Yn, @n} is admissible if dist(z, X,) — 0 for every z € X and
sup, |@x|l < 7. If furthermore dist(y,Y,) — 0 for every y € Y we say that the

projection scheme is complete (for further information on projection schemes see

[40]).

Definition 1.6.2. [40] Given a Banach space X and a map f : X — Y, we say
that the equation f(z) = y is approximation solvable (or simply A-solvable) with

respect to I' = { Xy, Vp; Yn, Qn} if there exists ng € N such that Q,f(z.) = Qny has

a solution z, € X, for every n > ng and z,, — T, for some subsequence {,} of

{zn} and f(z0) = y.
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Remark 1.6.3. Although we give the general definitions of A-solvability and A-
properness we will work, unless otherwise stated, with the special case of a particular
projection scheme for (X,X). Inthiscase Y, = X, and @, = P, : X — X, s a

linear projection with || P, || = 1 for every n. We indicate this particular scheme by
T = {X,, P.}.

Remark 1.6.4. A-solvability means that not only can we find a solution of the
infinite-dimensional equation, but we can construct a solution via a limit of finite-
dimensional approximations. Note that the A-solvability of an equation implies its

solvability, but the converse need not be true as the following example shows:

Example 1.6.5. Take {2(C) with 'y = {X,, P}, where X,, = span{ey,...,e.},
{e;} is the standard basis of {2, P, is the projection over the basis and f: 2 — [? is
defined by

f(:l?l, T, L, Ly, .- ) = (232,1121,.’174, T3, .. )

The equation f(z) =y is clearly solvable and f,(z) = P,(y) is solvable if n is even
but not if n is odd (take for example y = {%}) Therefore f(z) = y is not A-solvable
(in fact it is feebly A-solvable as defined in [40]).

Definition 1.6.6. [40] We recall that a map f : X — Y is demicontinuous at z if
{z;} € X and z; — z imply f(z;) = f(z), where the symbol “—" denotes weak
convergence. f is weakly continuous if {z;} € X and z; — = imply f(z;) — f(z);
[ is finitely continuous if for every finite dimensional subspace V of X and every

sequence {z;} € V, z; — x € V implies f(z;) = f(z).

Definition 1.6.7. [40] Given a map f: X — Y, we say that f is A-proper relative
to I'={X,, Va; Yo, @Qn} if

fo=Qnf  Xn— Y,

is continuous for each n € N and if {zn |zn; € Xn,} is a bounded sequence such that

|@nf (zn;) — Quyll = 0as j — 00, y €Y,
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there exists a subsequence {zn,,} of {2,;} and © € X such that z, , — = and

f(z)=yv.

Theorem 1.6.8. [40] Let f : X — Y be A-proper and C : X — Y be compact, then
[+ C is A-proper.

A similar property is valid for ball condensing maps (see Corollary 2.2 of {40})
Proposition 1.6.9. Let f: X — X be ball condensing. Then
Tiv=T+1f: X =X
is A-proper for every t € [—1,1] .
A concept closely related to A-properness is A-stability

Definition 1.6.10. [40] Given a function f : X — X, we say that f is A-stable if

there exists a continuous function A : R, — R, such that

|1 Pnf (z) = Pf ()l 2 hlllz — yll)
for all z,y € X,, with x # y and n > ny.
We have the following theorem (see Theorem 1.5 of [40])

Theorem 1.6.11. Let f: X — X be continuous and A-stable. Then the following

are equivalent:

(A1) f is A-proper,

(A2) f(x) =1y is uniquely A-solvable for every y € X,
(A8) f is surjective,

(A4) [ is pseudo-A-proper, that is if {Zy;|2,, € Xy} s a bounded sequence such
that

s (2n;) = Pojyll = 0 as j — 00, y € X,

there exists and v € X such that f(z) =y.




Chapter 2

A new definition of Spectrum

In this chapter we discuss a new definition of spectrum for nonlinear, finitely con-
tinuous maps, which we call the A-spectrum. The newly defined spectrum has, in
some cases, nice topological properties and reduces to the usual spectrum in the
case of linear compact maps. In particular positively homogeneous operators have
special spectral properties. We discuss the advantages and disadvantages of this
finite-dimensional approach to spectral theory. We also stress that, whereas the
spectra (8, 11] are defined only for continuous maps, the A-spectrum is defined for a
wider class of maps. Furthermore we obtain approximate-solvability results rather
than mere solvability. In section 2.9 we illustrate how to use A-spectral properties
to solve infinite-dimensional problems. Some parts of this chapter appear in [18, 20].

We begin with a quick look over the classical linear spectral theory.

2.1 Linear spectral theory

In the case of linear operators the spectrum is a well studied concept. Let L : X —» X

be a bounded linear operator (i.e. continuous) and I be the identity from X to X.

Definition 2.1.1. We define the resolvent of L to be the set
p(L) ={N€K: (A — L) is an isomorphism}
and the spectrum of L is defined as
o(L) =K\ o(L).

14
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Remark 2.1.2. We can split the spectrum into the following disjoint subsets:
1. A lack of injectivity: The point spectrum (eigenvalues)

op(L) = {A € K: A\ — L is not injective}
2. A lack of surjectivity:
(a) The continuous spectrum
0o(L) = {\ € K: X\ — L is injective, RQ\] — L) = X, R(\[ — L) # X}
(b) The residual spectrum
o.(L) = {A € K: Al — L is injective, R(\N — L) # X}

Remark 2.1.3. If dim X < oo we have o(L) = o,(L).

Topologically speaking, the spectrum of a linear operator is a nice {(compact)

subset of the Complex plane. In fact we have the Theorem:

Theorem 2.1.4. [26] The spectrum of a bounded linear operator has the following

properties:
i) The spectrum is non empty,
i) The spectrum is closed,
i) The spectrum is bounded.
Definition 2.1.5. We call the extended real number
ro (L) = sup{|A| : A € (L)}

the spectral radius of f.

We have an interesting result concerning this number:

Theorem 2.1.6. [26]. If L is a bounded linear operator then

Te(L) = h}zn VLM (Gel’fand formula,).
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2.2 Nonlinear spectra

The spectrum of linear operators plays a central role in functional analysis, in view of
the applications to the study of differential equations. Therefore it is not surprising
that several attempts have been made to define and study spectra for nonlinear
operators. Various definitions of spectra for nonlinear operators have been given,
for example [3, 5, 8, 10, 11, 25, 36], and each focused on a particular class of map,
for example continuous maps, Fréchet differentiable maps, linearly bounded maps,
k-epi maps.

For our purposes we will focus on some these spectra (for a recent survey on
nearly all the nonlinear spectra mentioned [4] is a good reference).

One of the first attempts is due to Kachurovskij in 1969:

Definition 2.2.1. [25] Let f: X — X be continuous. f is said to be Lz’p—regular if

f is bijective and f~1 is Lipschitz, that is there exists a constant k& € R such that

If 7 ) =l < &

z — y|| for every z,y € X.
The Lip-resolvent is defined by
orip(f) ={A € K: A\ — f is Lip-regular}

and the Lip-spectrum by
ULip(f) =K \ plip(f)'

Later, in 1978, Furi, Martelli and Vignoli introduced a spectrum with interesting

applications:

Definition 2.2.2. [11] Let f: X — X be a map. We define the numbers

d(f) = liminf 1f ()] and ¢(f) = limsup __“m_||f(sc)||

lzil—oo ] fel—too N2l
The main properties of d(f), q(f) can be found in [11]. A continuous function
f:X — X is said to be fmu-regular if @(f) and d(f) and are both positive and f
is stably solvable, i.e. if the equation f(z) = h(z) has a solution for every continuous

and compact map h: X — X with ¢(h) = 0. This leads to the fmu-resolvent

Pime(f) ={N €K : X — fis fmu-regular}
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and the fmu-spectrum

0 o (f) = K\ ppma([)-

Remark 2.2.3. Note that, roughly speaking, the stably solvable condition measures
the lack of surjectivity and d(f) measures the lack of injectivity. Furthermore note

that d(f) and ¢(f) depend on asymptotic properties of f.

We shall need the following finite dimensional version of Proposition 6.1.3 of [11].

Proposition 2.2.4. Let dim{X) < oo and f : X — X be fmv-regular and let
g: X — X be such that q(g) < d(f) then f+ g is fmov-regular.

More recently Feng (1997) gave a definition of nonlinear spectrum that involves

a different concept of solvability.
Definition 2.2.5. [8] Let f: X — X be a map. We define the number
e If @) I1f ()l
m(f) = inf =—= and M(f) = sup ~———.
)= BTl % el

Now, let f be continuous, for > 0 we denote by

vr(f,0) = inf{k > 0, there exists g : B, — X, with a(g) <k,

9=00n8B,: f(z)= g(z) has no solutions in B, },

where B, = {z € X : ||z|]| £ r} and 9B, denotes the boundary of B;.

We call the number
v(f) = inf{v.(f,0),r > 0}

the measure of solvability of f at 0. We say that f is Feng regular if
w(fy>0, m(f)>0and v(f) >0.
The Feng resolvent is defined by
pr(f) ={X € K: Al — f is Feng-regular}

and the Feng spectrum by

ar(f) =K\ ps(f).
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Remark 2.2.6. Note that (unlike d(f) and ¢(f)), m(f) and M(f) depend on global
conditions.

Also in 1997 another nonlinear spectrum appeared:

Definition 2.2.7. [3] Given a continuous function f : X — X we define the Dirfner

resolvent by
pp(f) ={X € K: I — f is bijective and M([\] — f]™") < oo}

and the Dorfner spectrum by

op(f) =K\ pp(f).

In some cases this is a larger than the fmu-spectrum:

Proposition 2.2.8. [4] Let f : X — X be a continuous map with M(f) < co. Then

o (f) € op(f).
Appell et al. in the paper [5] (2001) studied a nonlinear spectrum that uses a
modification of the concept of stably solvable maps.
Definition 2.2.9. [5] A continuous map f : X — Y is said to be (a,p)-stably
solvable if the equation f(z) = g(z) has a solution for every continuous map g :
X — Y with a(g) < a and g(g) < p. If the constants a, p are positive, then f is said

to be strictly stably solvable.

The next proposition links the notions of stably solvable and (a, p)-stably solv-
able.

Proposition 2.2.10. [5] Let f : X — Y be stably solvable with d(f) > 0. Then f
is (0,p)-stably solvable for every p < d(f). If also w(f) > 0, then f is (a,p)-stably

solvable for every a < w(f) and p < d(f).

Definition 2.2.11. [5] If f: X — X is strictly stably solvable and d(f) > 0 we
say that f is Appell-Giorgieri- Vdth regular. This leads to the Appell-Giorgieri- Vith

resolvent

Pago(f) = {A € K: X — f is Appell-Giorgieri-Vath regular}
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and the Appell-Giorgieri- Vith spectrum
Tagu(f) =K\ pagu([)-
In lieu of stably solvability, Santucci and Véath [43] use stably 0-epi maps.

Definition 2.2.12. [43] Let 2 C X be a open, bounded set. A continuous map
f: X — X is said to be stably 0-epi on Q if dist(0, f(0)) > 0 and there exists
k > 0 such that, for every continuous map g : X — X with glaq = 0 and wq(g) < k,

where
wa(f) =sup{k > 0: a(f(B)) > ka(B) for every bounded B C {1},

the equation f(z) = g(z) has a solution z € 2.
Given a closed and bounded set K C X, with 0 € K, following [43] we define the

Phantom of f to be the set
&{f) ={) € K: for every open Q2 C K, M — f fails to be 0-epi on 2}.
We have the useful spectral inclusion:
Proposition 2.2.13. [{4] Let f : X — X be continuous. Then

H(f) S Tagu(f) S Tpmo(f)-

In the case of a linear operator all these spectra coincide with the usual linear

spectrum.
Theorem 2.2.14. Let L : X — X be a bounded liner operator. Then
OLip(L) = O pmu(L) = 050(L) = op(L) = 0ugu(L) = ¢(f) = o(L).

Proof. The proof of this fact is a mere collection of results in [3, 8, 44]. i

2.3 The A-spectrum

The linear resolvent is stable under small perturbations of the identity. The A-
properness property instead is invariant under compact perturbations but it is not in
general invariant under small perturbations of the identity, as the following example

shows:
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Example 2.3.1. Consider the Hilbert space [ and take f : [? — [? defined by
f(z) = p(z)x where p(z) = eIl First of all note that f is a S-condensing map.
To see this we use a method analogous to the one in [37]. Let A be any set in 1%
Then f(A) C o {AU{0}} and B(f(A)) < B(AU{0}) = B(A). Suppose now that
A C 1> and B(A) = d > 0. We can choose r < £, and define A; = A N B,(0) and

Ay = AN (B,(0))¢, and consider f(A) = f(A1) U f(A42). We have

B(f(Ar)) < 2r < d = B(A).

As p is a strictly decreasing function and ||z|| > r for z € Ay,
flA2) S{tz | 0<t < p(r), = € Ay} CTo{p(r)AU {0}}
and B(f(43)) < p(r)B(A) < H(A). Thus

B(f(A)) = max{B(f(A1)), B(f(A2))} < B(A)

and f is a [f-condensing map. Hence I — f is A-proper by Proposition 1.6.9.
But I — f does not remain A-proper under small perturbations of the identity.
In fact for every fixed positive € we can give a bounded sequence {z,} such that
P,[(1—-¢)I — f](xzn) — 0 but {z,} has no convergent subsequence. Considering the
sequence {z,} = {—In(1 — €)e, }, where {e,} = {0in}icn, We have
Pal(1 = )T = fl(zn) = (1 = £) Pa(n) ~ e Wl Py (zn)
= (1= &) = eI P o,)
=0 for every n,
but ||z, — Zm|| = —v/2In(1 —¢) for every n # m. Hence (1—¢)I — f is not A-proper.
Therefore it is convenient to introduce the following definition:
Definition 2.3.2. We say that f: X — X is A-proper stable if there exists € > 0

such that f + ul is A-proper for all © € K with |u| < e.

We will also need the numbers
7(f) = sup{r € R : ul + f is A-proper for every u € K with |u| <7},

v(f) = inf{y € R : ul + f is A-proper for every p € K with |u| > v}.
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Proposition 2.3.3. Let f be A-proper stable. Then, for u # 0, pf is A-proper
stable with T(uf) = I,u,|7‘(f)

Proof. 1t is known from [40] that if f is A-proper then uf is A-proper. It follows
that el 4+ puf = ;L(ﬁ[ + f) is A-proper whenever li—l < 7(f). Then puf is A-proper
stable with 7(uf) = |u|7(f). O

The following theorem gives conditions for F-contractions to be A-proper stable.

Theorem 2.3.4. Suppose that D C X is closed and T : D — X is a continuous

map such that there exists po > 0 such that

B{PuTzn}) > pof({zn}) (2.3.1)

for each bounded sequence {z, | n € Dy =DNX,}. If f: D — X is a §- contrac-
tion such that B(f) < po, then Ty = T +tf : D — X s A-proper stable for each
te K with |¢| < 1.

Proof. First we note that 71, : D, C X,, — X, is continuous for each n € N. Now
let {Tn; | Tn; € Dn,} be a bounded sequence such that P, T1(zn,) — Pro,(g) — 0 as

J — oo for some g € X. Since F,;(g) — g in X, we see that
Gny = Po,T(2n,) + Poy f(5,) — g in X.
Since {gn,} is precompact and
P T(2n,) = gn; — P f(zn,) for all § €N, (2.3.2)
it follows from (2.3.1), (2.3.2), Lemma 1 of [45], and the condition on f that
toB({zn; }) < BULP T (wn,)}) = BU P, f(2n,)}) < BU)B{n, })-

Thus B({zs,;}) = 0, s0 {zy,} has a convergent subsequence {Zn,, } With T, — z
for some z € D. Hence, by continuity of 7" and f, we see that Tz + f(z) = g, that
is T1 is A-proper.

We note that, for each ¢ € K with || < 1, we have that T, =T +tf : D — X is also
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a map of the same kind with 8(¢tf) = |¢| B(f) < [¢| 1o < po, so that T3 is A-proper
for every fixed ¢ with |¢| < 1.

To prove the A-proper stability note that M\ + T, = M + T +tf =T + (M + tf)
and Al +tf is a f-contraction with S(A +1tf) < |Al + [¢| B(f). Therefore A +T; is

A-proper for every ) such that |\ < po — [¢|8(f), that is T} is A-proper stable. O

Corollary 2.3.5. When [ is a (-contraction with B(f) < 1, then
Ti=I—-tf:DCcX—-X

is A-proper stable for each t € K with |t] < 1.

Proof. Note that the condition (2.3.1) is satisfied with po = 1, so the corollary

follows directly from Theorem 2.3.4. O

Remark 2.3.6. It follows from Remark 1.5.2 that the same result holds when f

is a k-set contraction with a(f) < 3. From Theorem 2.3.4 it also follows that

Y(f) < B(f)-

Definition 2.3.7. We say that [ : X — X is A-stably solvable if there exists ng € N

such that, for all n > ng, fa(z) is stably solvable.

Definition 2.3.8. Let f: X — X be a map. We define the numbers:

e @
dr(f) = “_,J:ﬁgR T r(f) = h}}}}ggf dr(fn):
d(f) =liminf d(f,), m'(f)=liminfm(f,)

The following Lemma clarifies the usefulness of the condition di{f) > 0.

Lemma 2.3.9. Let f : X — X and suppose that there is R such that dx(f) > 0.
Fizy € X. If z, is a solution of the finite dimensional equation P,f(z,) = Py,
then {z,} is bounded.

Proof. Let liminf dg(f.) = { > 0, then there exists 7 such that for all n > 7,

IRl ]
drlfn) = inf N

o |
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If ||z,]| > R we have that ||y|| > [|[Payll = [|Paf(zn)|| > &llz.|l. Therefore if we set
2
K = max {R, M, ezl -y H:;cﬁ”}

then

|z || < K < oo for all n.

We can now give a definition of regularity as follows:

Definition 2.3.10. Let f : X — X be a finitely continuous map. [ is said to be

A-regular if the following conditions hold:

| i) fis A-stably solvable,

it) [ is A-proper stable,

i12) there exists R such that dg(f) > 0.
We define the A-resolvent by

pa(f) ={\ € K such that A\ — f is A-regular}

and the A-spectrum by
oalf) =K\ pa(f).

As in the linear spectral theory we define the A-spectral radius by

rea(f) = sup{IAl: A€ oulf)}.

From the definition of A-regularity and Lemma 2.3.9 we obtain the following:

Corollary 2.3.11. Let f : X — X be A-reqular. Then for all y € X the equation
f(z) =y is A-solvable.

Proof. Fix y € X and consider the equation P,f(z,) = P,y. Since f, is stably
solvable for n > ng, we can find a sequence of solutions {z,}, which is bounded by
Lemma 2.3.9. For this sequence we have that || P, f(z.) — Pnryl|| = 0 for all n > ny.
By A-properness there exists a subsequence {z,,} of {z,} such that z,, —z € X

and f(z) = y. O
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2.4 Some properties

In some cases the newly defined spectrum shares some of the familiar properties

with the usual spectrum of linear operators.

Lemma 2.4.1. Lei

_ up l5@I

qrlg) = -
l=i>r [zl

Then dp(f — g) > dr(f) — ar(g).

Proof. For each n we have

z||>R T T Nz|I>R T T
lell>? Ed| Iell>F Izl BE: [l

Pt — Py — it WPS@ = B@l o IPS@ B

= dR(Pnf) - QR(PTLQ)'

Now
P.glz T T
(P — sup VBN @l el
leg=r il kizr Izl 7 eizr ol
xeXy, zeX,, xeX
Therefore
dr(Pnf — Pog) = dr(Pnf) — qr(9)
and

dp(f —g) = dr(f) — qr(g)-

Theorem 2.4.2. The A-spectrum is a closed set.

Proof. We show that the resolvent is open. Let A € pa(f) and take p such that
A= p| < min{dx(M — f),7(A] — f)} and let § = o — \. By Lemma 2.4.1 we have

doul — f) = do(MT— f 4 01) > d(M — ) — [6] > 0
and with a simple sketch in the Complex plane one can see also that

T(ul — f) 2 7(A— f)—|u~ A > 0.
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It remains to show that ul — f is A-stably solvable, i.e. for n > ng and for every
continuous map h : X,, — X, with ¢(h) = 0 we can solve the finite dimensional

equation
BAl(ul - f)()] = h{z). (2.4.1)

But now note that we can apply Proposition 2.2.4, because we can rewrite (2.4.1)

Bul(M — f)(=)] + Pa[(01)(z)] = h(z),

where P,[(AI— f)(z)] is stably solvable and P, [(6I)(x)] plays the role of g. Therefore

we can find a solution z of (2.4.1). O

In general it is not clear if this spectrum is bounded or not. For some classes
of operators we can achieve boundedness of the spectrum. We use the following

Proposition due to Schéfer (the proof can be found in Corollary 8.1 of [6]).

Proposition 2.4.3. Let F': X — X be completely continuous. Then the following
alternative holds: Either v — tF'(x) = 0 has a solution for every t € [0, 1]
or S = {z such that x = tF'(z) for some t € (0,1)} is unbounded.

Theorem 2.4.4. We have the estimate:
7o (f) < max{M(f),v(f)}.
Proof. Let |A| > max{M(f),v(f)}, then by Lemma 2.4.1 we have
RN = ) 2 |\l = qr(f) > [\ — M(f) > 0.

If we choose |A| > 4(f), Al — f is A-proper stable. To complete the proof, we have

to show that the equation
ATy — Pof(zy) = h(z,) (2.4.2)

has a solution z, € X,, for every continuous map h : X, — X, with g(h) = 0. In

order to use Schifer’s result we will consider the equation

L p ) — %h(mn) —0.

Ty

A
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[1A(z)]]
[

Let £ < |A] — M(f). Since g(h) = 0 there exists ¥ € R such that

< &

whenever ||z,|| > 7. Then we have, for ||z,|| = R > 7,
R Y|z — U (Paf (@n) = h(za))) | 2 1= t(AIT M (f) + 1M 'e) > 0

for all £ € (0,1). Thus we can apply Proposition 2.4.3 to find a solution z,, of (2.4.2).
O

Corollary 2.4.5. If f is a B-contraction, we have the estimate:

roa(f) < max{M(f), ()}

Proof. To show the A-proper stability, by Proposition 2.3.3, it is sufficient to study
I —%f. If fis a f-contraction then I — ;f is A-proper stable by Corollary 2.3.5
when f(5f) < 1, where B(3f) = zB(f). So if we choose [A| > B(f), M — f is
A-proper stable. O

One may ask what is the relation between the A-spectrum and the fmuv-spectra

of the finite-dimensional projections. If we denote
S(f) = {\ € K: there exists a sequence {Ay;} C 0pmo(fr;) and Ay, — A}
we have the following inclusion:

Proposition 2.4.6. Let f: X — X be finitely continuous. Then

&(f) C aalf).

Proof. For A € &(f), we can find a sequence {An,} such that A,; — A If A € oa(f)
we are done. Otherwise we have A € pa(f) and there are two cases.

Case 1. Ay; € 04(f) for a subsequence. Since o4(f) is a closed set, we have that A
also lies in o 4(f), impossible.

Case 2. An; € pa(f) for all but finitely many j and A € pa(f). Then Al — f is
A-regular therefore A\I — f, is stably solvable for n > ng and dy(AM — f) =1 > 0.
Then d(Al — f,) > dr(M\ ~ f,) > é whenever n > 7. Notice that since A,, — A

there exists jo such that [A — A, | < % for all j > jo. Then, using Proposition 2.2.4,
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we have that A\, I — f,; is fmu-regular for j sufficiently large, contradicting the

hypothesis that An; € 0 pmu(fn;)- |

Remark 2.4.7. Are the o(f,) nested, that is o(f,) C o(fusv1) € ... C &(f)?

Example 2.6.4 will give an answer to this question.

We now show that the class of continuous A-regular maps is smaller than the

stably solvable one.

Proposition 2.4.8. Let f be continuous map. If f is A-regular then f is stably

solvable.

Proof. To see this we have to show that the equation f(z) - h(z) = 0 has a solution
z € X for every continuous and compact map h with ¢(h) = 0. First notice that
f 4+ his A-proper by Theorem 1.6.8. We can now use a similar argument to that of

Theorem 2.4.2 to solve, for n > ngp, the finite dimensional equation

PL[(f + h){(z)] = 0,

using Proposition 2.2.4 to find a solution z,. It suffices to show {z,} is bounded,
for then, by A-properness, there exists a subsequence {z,, } C {z.}, Zn, — = and
z is a solution of the equation f(z) + h(z) = 0. Suppose that {z,} is unbounded.
Then there exists a subsequence {z,, } of {z,} such that ||z, || — oo and fn(2n, ) =
ho(2n,) for every n. Since dip(f) > 0, there exist n; € N and 6 > 0 such that
dr(fn) = 0 for every n > n;. Since ||z, || — oo, there exists ny € N such that

|#n, || = R for every n > ny. Let fi > max{ng,ni,nz}. Then for every n > 7 we

have
5 < Wn@ndll _ hn(@all Bl
[[€n [[n | [l
a contradiction. Therefore {z,} is bounded and f is stably solvable. O

2.5 Positively homogeneous maps

Recall that a map f: X — X is said to be positively homogeneous if f{tz) = tf(x)

for every x € X and t € R,. For positively homogeneous operators more can be said
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about the A-spectrum. In particular, in the continuous case, it contains eigenvalues.
By eigenvalue of a function f : X — X, we mean a scalar A € K such that there
exists ¢ € X, z # 0 such that f(z) = Az. Note that this is not the only possible

definition for the term eigenvalue, see for example [42].
Lemma 2.5.1. Let f: X — X be a positively homogeneous map. Then

) du(f) = d(f) = m(f) = int [FW.

b) qr(f) = o{f) = M(f) = sup 1/ ()l

lyll=

c) dp(f) = d'(f) =m/(}).
Proof. a) Since f is positively homogeneous we have

20 “jlvl(xﬂ xsEOHf Im]\)” = vl £ @l

Similarly we have dgr(f) = infjyj=1 || f(¥)|| and

m(f) =

d(f) = lim inf @M _ = lim inf [f(y)]l = inf 1L/ )].

Roo iR || o lyli=t lyli=1
b) Similar to a).
¢c) d(fn) = dr(fn) = m(fn) for every n by a). ]

Proposition 2.5.2. Let f : X — X be a positively homogeneous, finitely continuous
map. If \I — f is A-proper and d'(\ — f) = 0, then X is an eigenvalue of f that

lies in the spectrum.

Proof. If d'(A — f) = 0 we have that

lim inf {" inf ||P Az, — f(a,n)]H} =0,z, € X,.

Since X, is finite dimensional and f is finitely continuous, there exists a sequence

{Yu 't Un € Xu, llunll = 1, such that

1P Do = £ @l = 0 1Po[aw = o)l

Therefore there exists a subsequence {yy;} of {yn} such that

Py [Nim; = ()] || — 0 85 § — o0,
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We can now use the A-properness to find a subsequence {yn,,,} of {yn;} such that

Ynsoy — Y € X, llyll = Land Ay — f(y) = 0, that is \ is an eigenvalue. O
One nice property of the new spectrum is that, in some cases, we can compute

the eigenvalues by an approximation process.

Corollary 2.5.3. Let f be a positively homogeneous, finitely continuous map, {\,} be

a sequence of eigenvalues for [, that is there exist ng € N and a nonzero sequence

{Z,} with T, € X, such that f,(Z,) = MTn for n > ng. Suppose there exists a

subsequence {An,;} of {\n} such that Ay, — X. Then X € ga(f) and either A is an

eigenvalue of f or Al — [ is not A-proper.

Proof. All we need to show is that m/(Al — f) = 0 and apply Proposition 2.5.2. This

is true since

- { g 1Pazn = Fa)]l } < liminf { [ \Zn — Pof(Za)]] }

noo |zl 2] n—oo 12|

>\_71 — 71—'"* 11m i i
{ﬂlnj.:__i\.'_x_”} :llll’llllf |}\ - /\nl S _].111'1 |A - /\nll = 0
- 0O J—c0

= lim inf

n—0oa

]

Example 2.5.4. As an application of the previous Corollary we can take the oper-

ator f: 1% — % defined by

f(Zl,ZQ,...,Zj,...):- <|21[,|2’:2—2l,...,|—§j—|,...)

f is a compact, positively homogeneous map. For A # 0 the map Al — f is A-
proper by Theorem 1.2 of [40] and we can compute some of the eigenvalues of f by
approximation. In fact if we take {y,} defined by y, = e; for all n € N, and 7 is
fixed, we have that

fulyn) = %(yn) for all n > j.
We can apply the Corollary to prove that 7! is an eigenvalue for every j € N.

Note that f is also a continuous map with d(f,) > 0 for all n but d(f) = 0. In fact

we have

z;|? “Lzlr 1
B> X B = L s
=1

T
“fn(ZI,ZQ,...,Zn)” = Z
j=1
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and
1£a(0,+, 0,1} = Z1(0,....,0, 1)L

Therefore, since f, is positively homogeneous map, we have d(f,) = % but d(f) = 0.
Moreover note that f is not A-proper since, given {y, } as above, || P.f(y.)l| =1 — 0
as n — oo and {y,} is a bounded sequence with no convergent subsequence. This
example suggests that a compact map may not be A-proper. We will prove this

later in Proposition 2.6.1.

Remark 2.5.5. When can we a priori bound the set {A,}? For example when M (f)

is finite. In fact if A, is an eigenvalue of f, we have

Azl = ([ fn(zn) | S NI ()| < NS ()l

for some z,, € X,,. Therefore, dividing by ||z,| we have

|An| _ “An@n” < ”f(mn)“ < ]\/[(f)-

lzall = lizall
Can we achieve all the eigenvalues by an approximation process? In the contin-

uous case we have the following:

Proposition 2.5.6. Let f : X — X be a positively homogeneous, continuous map.
If X is an eigenvalue then d'(\ — f) = 0. In particular the eigenvalues lie in the

spectrum.

Proof. Let A be an eigenvalue, let y be a corresponding eigenvector and since f is

positively homogeneous there is no restriction in letting ||y|| = 1. Set y, = !Iﬁzgll'

Note that {y,} is well defined since P,y — y # 0 implies P,y # 0 for n > ny. Note

also that ||y.|| =1, ¥n — v and P, f(yn) — f(y), by continuity. Thus

liminf inf X NP Az, — f(z)]|| < liminf || Ay, — fu(yn)|| = 0.

zall=

Therefore d' (A — f) = 0. a

It is known that for a linear operator L, if A € o(L) and |A| > «(L), then A is an

eigenvalue of L [35]. If f is positively homogeneous we have the following results.
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Theorem 2.5.7. Let f: X — X be a positively homogeneous, odd finitely continu-
ous map and let A € o4(f) and |\| > v(f). Then X is an eigenvalue of f.

Proof. Since |A| > v(f) then Al — f is A-proper stable. If d'(Al — f) = 0, then,
by Proposition 2.5.2, A is an eigenvalue of f and we are done. If d'(A — f) > 0,
we will show that AI — f is A-stably solvable and therefore |A| & oa(f). Since
d'(M — f) > 0 and f is odd, there exists 7 € N such that deg(\ — f,, B-(0),0) # 0
for all n > 7 and r € R'. Using degree theory we show that, given a continuous
map h: X, — X, with ¢(h) = 0 the equation Az, — P,f(z,) = h(z,) has a solution
Zn. Let € < dp(f,). Then there exists 7 € Ry such that gz(h) < e. Consider the
homotopy

H(t,xn) = Azp — Ppf(zn) — th(z,).

Then for ||z,|| = 7 we have
FHAZn = Pof(zn) — th(z,)|| = di(A\ = f,) — te > 0 for all £ € [0, 1].

Therefore, by degree theory, deg(Al — f,. — h, Bz(0),0) £ 0. O

When f is not odd a weaker conclusion can be drawn.

Theorem 2.5.8. Let A # 0 and let f : X — X be a positively homogeneous, finitely
continuous map such that A\l — tf is A-proper for all t € (0,1]. Then either \XI — f

is A-stably solvable or there exists t € (0, 1] such that A/t is an eigenvalue of f.

Proof. If d'(AM — £f) = 0 for some t € (0,1] then A/t is an eigenvalue of f by
Proposition 2.5.2 and we are done. Therefore suppose d'(AI—tf) > O forallt € (0, 1].

Consider the set
V, = {z, € X,, such that ||z,|| = 1 and Az, — t,f{z,) = 0 for some t, € (0,1]}.

If V, # 0 then there exist ¢, € (0,1] and &, € X, with ||Z,|| = 1 such that
ATy — I fn(Tr) = 0. If V,, 5 0 for infinitely many n then, since {¢,} is bounded, there
exists £ € (0, 1] and a subsequence {Zy,} of {Z,} such that [[£fn;(Zr;) — AZn,|| — O

as j — oo, contradicting the hypothesis that d'(Al —tf) > 0 for all ¢ € (0, 1]. Note
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that £ # 0, otherwise we would have [|AZ,,|| — 0 as j — oo, contradicting the fact
that ||AZ,,|| = |A| for all j.

If V,, = ), consider the homotopy
H(t,z,) = Az, — tP, f(z,).

Then deg(AI, B1(0),0) = deg(A — f,, B1(0),0) # 0 since X, is finite dimensional.
Note that, since f is positively homogeneous, this is true for all B,(0) with r € R,
Therefore A\I — f,, is stably solvable. If V,, = §) for all but finitely many n then \I — f
is A-stably solvable. d

Corollary 2.5.9. Let f: X — X be a positively homogeneous, finitely continuous

map and let X € oa(f) and |\ > y(f). Then there emists t € (0, 1] such that A/t is

an eigenvalue of f.

Proof. Follows directly from Theorem 2.5.8. U

As we have seen, for a continuous linear map L, the radius of the spectrum is

given by 7(L) = limp_q ||L" |%, where ||L|| = supygy— [|L(z)||. We also use this

notation when f is a positively homogeneous, nonlinear map, rather than M(f).
The following theorem gives an estimate for the radius of the A-spectrum in the

case of positively homogeneous operators, which is more precise than the result of
Theorem 2.4.4.

Theorem 2.5.10. Let X be a Banach space and f : X —+ X be a positively ho-

1
mogeneous, finitely continuous map with v(f) < co and liminf, . || f*||» < co. If

A e R, with
A > max{~y(f), liminf || f*][*},
then X € pa(f). If also lla|| = lwal] smplies |7 (z1)]| = |f(@2)ll, then

oa(f) < max{y(f), liminf | £}

Proof. Take |A| > max{vy(f),liminf, Hf”“%} Suppose that A € g4(f). Since

f is positively homogeneous, we can apply Corollary 2.5.9 to show that there exist
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€ (0,1] and Z € X, with & # 0, such that ¢f(Z) = A\Z. Without loss of generality

assume also that ||Z|| = 1. If A € Ry, then

IfI = Sup. 1@ = (@)1 =

Also
@ = (@) =[] = 5 2 o

By induction we obtain || f"||% > |Al. This contradicts the hypothesis
I\l > liminf || £ *.
n—co

Therefore A € pa(f). If also ||z1]|| = ||ze] implies || f(z1)|| = ||f(z2)l|, then for
A= pe |\| = p> 0 we have

Al

7=

= o) -G - ool = = =

Therelore if

=

—
31

-
Il
il
8

=+

and

1
11}
)

then A € pa(f). O

|A] > max{y(f), liminf || f*

2.6 Nonemptiness of the A-spectrum

It is known that in the case of linear operators the spectrum is always non-empty,

here we prove a nonlinear analogue for compact maps.

Proposition 2.6.1. Let dim(X)} = oo and f : X — X be a compact map. Then
oa(f) # 0.

Proof. 1t is sufficient to show that f is not A-proper and therefore 0 € o4(f). Since

dim(X) = oo, there exist a sequence {z,} with ||z,|| = 1 such that (see for example

Proposition 7.1 of [6])

| = Zm|l = 1 for n # m.
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Since f is compact, {f(z,)} is precompact. Then there exists y € X and a subse-

quence {xn, } of {z,} such that f(z,,) — y. Therefore

||P71f($"1j) = Pyl < ”Pn”“f(mn]) — |l < “f(mnj) —yll = 0asn; — oo

and {z,;} has no convergent subsequence. O

Open question: Is the A-spectrum always nonempty? The usual example of

nonlinear theories fails here, as we will see in example 2.6.4.
Definition 2.6.2. Following [11] we denote by
ox(f) = {X € 0mo(f) such that d(A] — f) = 0 or w(A — ) = 0}.
The following Proposition has been shown in ([11], Theorem 8.1.2).

Proposition 2.6.3. Let f: X — X be continuous. Then

00 tmu(f) C ox(f).

Example 2.6.4. Consider the space {*(C) with the standard basis and standard

projection and the map from [>(C) — [*(C) defined by
f(zlsz: 23,245 - ) = (52,i31,24,i53, . )

From the definition of f it follows that f(z +y) = f(z) + f(v) and f(\z) = A f(z)
for all z,y € [2(C) and X € C; in particular f is positively homogeneous. Since f is
positively homogeneous, Al — f,, is positively homogeneous and by Lemma 2.5.1 we

have

Jeali=

AN = )= g I = S|

It is convenient to split into two cases:

Clase 1. In the “even” case we have

()\I - fZTL)(zla 295+ 03 %201, an)

= {Az1 — Z2, Azp — 121, . .., Mo — Zan, Ao — 122-1).
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In [11] Furi et al. studied the function fo(z1,2) = (%9,1%;) and proved that
Ofmu(fa) = 0. We can extend their result to show that osmy(f2n) = @ for all n.
To verify this first notice that d(AI — fa,) > 0 for all A. Otherwise suppose that
d(M — fan) = 0 for some X in C . Since C?" is finite dimensional there exists y € C**

with ||y]| = 1 such that
1A = feal ()]l = 0. (2.6.1)

Rewriting (2.6.1) by components we have

)
AYy1 =Y =0

Ayg — 1y =0

AYon—1 — Yo, =0

\ Aan - igzn—l =0

Notice that A # 0 otherwise we would have y = 0. Since y is a solution of (2.6.1)
with ||y|| = 1 it has at least one nonzero component. Without loss of generality take

yor, # 0. Then we would have

NYok—1 = Yop,
Yok = Wap—1
and obtain
WPok—1Y2k-1 = YokYok
a contradiction. Therefore d(\ — fa,) > 0 for all A. Since 90 fmy(fon) C 0x(fon) by

Proposition 2.6.3, from the fact that C?* is finite dimensional and f3, continuous

implies that

or(fon) = {A € C: d(\ — fo,) = 0},

we have that 90 fmy(fon) = 0. This implies that o pm.(fon) is either C or empty.

Since

q(for) = lim sup [Z2” + 121 + . .. + [Z2n]® + [1Zon—a[* _
ST | P L P Sl L o

’
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we can apply Proposition 8.1.2 of [11] to show that AI — fo, is fmuv-regular when
|A| > 1. Therefore o fmy(fon) = 0.

Case 2. In the “odd” case we have

(/\I - f2n+1)(21, 22y vy X0, 22n+1)

= (A21 — %2, A2g — %1, - - -, Non — $Zan—1, AZ2nt1).

Take ¢ = (0,0,...,0,1) and note that

d(font1) = ||miil||f=1 | fon1 ()|l < W fonsr (O = 0.

Thus 0 € 0 fme(f2n+1) (incidentally note also that fa,41 is not surjective and therefore

not stably solvable).

Since 0 € 0 o (font1) for all n we have that 0 € &(f) and we can apply Proposition
2.4.6 to show that 0 € g4(f).

Therefore o 4(f) is not empty.

Remark 2.6.5. Example 2.6.4 shows that the finite dimensional spectra ¢ fmy(fn)

need not be nested since

O‘fm'u(an—i—l) QZ Ufnw(f2n+2)-

Furthermore it shows that Proposition 2.5.2 fails to be true when we drop the A-
properness hypothesis. In fact, since d(fonyy) = 0 for all n, we have d'(f) = 0, but
clearly 0 is not an eigenvalue. To see that f is not A-proper take {e;} the standard

basis of I2(C). We have ||e;|| = 1 for all 4,

| fon+1(e2nei)|| = 0 for all n

but {e;} does not have a convergent subsequence.

2.7 The linear case

One requirement one would expect for the new spectrum is that when the operator

is linear it reduces to the usual spectrum for linear operators. As finite dimensional
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projections are involved in this theory, in general this fails to occur. First note that

in the linear case the definition of A-stability [40] reduces to the following:

Definition 2.7.1. Let L be a bounded linear map. We say that L : X — X is
A-stable if there exists a constant ¢ > 0 and ng € N such that || L,(z)| > c|jz] for

all z € X,, and n > ny.

Recall that if a linear map L : X — X is a homeomorphism there exists h > 0
such that ||[L(z)|| > hllz||. So the requirement ||L,(z)| > c||z| is a natural one.
The following theorem (see Theorem 1.3 of [40] for example) is a characterization of

linear A-proper maps.

Theorem 2.7.2. Let L : X — Y be a linear bounded map and I' be a projection

scheme for L. Then the following assertions are equivalent:
1. L is injective and A-proper.
2. L 1is surjective and A-stable.
3. The equation L{z) =y is uniguely A-solvable.

Lemma 2.7.3. Let L : X — X be a linear A-proper isomorphism. Then L 1s

A-proper stable.

Proof. Since L is a linear isomorphism there exists # € Rt such that L + el is a
linear isomorphism for all € € C with || < 6. Note that L is A-stable by Theorem
2.7.2, that is, ||L.(z)|| = cliz| for all z € X,, and n > ng. Let |e| < min{f,c}. Then

| Ln(z) + ex|| > |Ln(2)]] — || l|z]] > (¢ — |e])||z]| for all z € X, and n > ny.

This proves that L + &l is an A-stable isomorphism and, by Theorem 2.7.2, L + &l
is A-proper. O

We have the following characterization:

Theorem 2.7.4. Let . X — X be a bounded linear map. Then

oa(L) = o(L) U {\ € C such that \XI — L is not A-proper}.
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Proof. Take A in pa(L). Then, by Corollary 2.3.11, A — L is surjective. Since
(Al — L) > 0 then Al — L is A-stable. We can apply Theorem 2.7.2 to show
the injectivity. Therefore \I — f is a A-proper isomorphism. Now take A such that
M — L is a A-proper isomorphism then, by Lemma 2.7.3, Al — L is A-proper stable.
By Theorem 2.7.2, Al — L is A-stable and therefore diz(AI — L) > 0. Theorem 2.7.2
shows that A\I — f is A-solvable and therefore P, (L) is fmuv-regular for n > . Thus
M — L is A-regular. O
Intuitively this means that the spectrum is made up by points where either the

operator is not a bijection or somehow the approximation process fails to occur. The

following example shows that o(L) C oa(L).

Example 2.7.5. Take f defined as in Example 1.6.5. Since f is a linear isomor-
phism, 0 & o(f). But f is not A-proper, therefore 0 & o4(f). To check that f is

not A-proper we proceed, mutatis mutandis, as in Example 2.6.4.

In the case of compact linear map we have the following:

Corollary 2.7.6. Let dim(X) = oo and L : X — X be a compact linear map. Then

Proof. Since L is compact, Al — L is A-proper when A # 0. Since L is compact we

have that 0 € o(L). By Theorem 2.7.4 we have o4(L) = o(L). O

Open question: In Theorem 2.7.4 we have shown that, given a linear map L and a
projection scheme I, o(L) C o4(L). Does there exists a suitable projection scheme
such that o4(L) = o(L)?

Note that if L : X — X is a linear isomorphism, by Lemma 2.2 of [41], one can
show that there exists an approximation scheme I';, such that L is A-proper with

respect to I'r. But in general this fails to be a I'; situation.

2.8 An interesting example

In the next example, rather than giving an estimate, we shall compute the A-

spectrum in detail. This will show that the A-resolvent in general is not a connected
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set.
Example 2.8.1. Consider the map from [*(C) — [*(C) defined by
f(Zl,ZQ, 23,24, - - ) = (32,21,34,33, “ )

First of all notice that, for |A| % 1, Al — f is a surjective operator with inverse

AL = f17 Y (wi, wa, w3, wa, ...) = (Aw; +We Awe + W1 Aws +Wy Aws + Ws )

AP=17 AP=17 PP=-17 PP—-1""
Let us now compute o(f). From the definition of f it follows that f(z +vy) =
f(@) + f(y) and f(Az) = Af(z) for all 2,y € I2(C) and X\ € C, in particular f is
positively homogeneous. Since f is positively homogeneous, AI — f, is positively
homogeneous.

It is convenient to split into two cases:

Case 1. In the “even” case we have

(A — fon)(21, 225+« s Zon—1, 22n) = (A21 — Z2, A20 — 21, . . ., A22n—1 — Zan, 220 — Z2n—1)

with inverse

Awy + Wy N w Nwar, -+ Wan—
[)\I_fzn]_1<w1,’£U2;-~:wzn)-—( w1 + Wy Awg + W Won, -+ Wa 1)

AP—17 AR-177 APt

We will show that o pmu(fon) = S*, where S' = {\ € C: |A\| = 1}. Note that if

|A| =1 then A is an eigenvalue of fs,. In fact

(L3 L XY (A1 X 1) 11X
2n 2’2,.“’27’?;,271, - 2,2,“.,271’271 - 2’2’”"272,,2??, .

Since fo, is positively homogeneous the eigenvalues of fa, lie in 0 gy (fan). Since

| fon (2)| 1Zo2 + 1212 + . . . + |Za2a]? + |Zon-1/?
M = sup ———— = gu =1
(fon) =0 Izl S| PP S PN PR S QR P

we can use Proposition 2.2.8 to show that ¢ fmy(fan) C op(fon). Since op(fon) = S

we have S1 C 0 pimy(fon) C 0p(fon) = S* and therefore

Ufmv(on) = Slv
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Case 2. In the “odd” case we have
()\I - f2n+1)(213 22,00y Z2m, Z2n+1) = (/\21 — Zo, AZg — Z1, ..., AZon — Zon-1, )\22n+1)-

with inverse

A — on]_1(w1> Wa, .. ., Wont1)

B Awy + Wy Nwy + g Aoy + Wap—1 Wan+1
[A2—17 [A\2—-1""7"" JA2—1 7 X '

We will show that ofmy(font1) = {0} U S'. Note that if [\| = 1 then A is an

eigenvalue of fo,41. In fact

1A I A DY 1 X
mn _)—)"'7__)“"-10 = A PRI MMO
f““l(zz 2n2n> (22 ’on’ 2n )
Also 0 is an eigenvalue of fo,,1 since
fone1(0,...,0,1) = (0,...,0).

Since fon1 is positively homogeneous the eigenvalues of fon41 lie i 0 fmy(fontt),
therefore {{0} U S'} C ofmu(font1) and d(A] — fonp1) > 0 for all n when \ ¢
{{0} U S'}. Since

| fanar( Zo|2+ 212 + ... + [Z2n]? + [Zon-a|?
M(on-l—l)_ ks |le2| | | I

= su =su
P || A + 12l 4. 4 [z 4 220 + 2201 ]

<sup |Z2]2 +|Z12 + ... + [Zon]? + |Z2n-1]? _
o 2540 |Z1|2‘|—|Z2[2+...+{Zgn_1|2+|Zzn|2 ’

we can use Proposition 2.2.8 to show that ¢ pme(font1) C op(fang1). Since

op(fani1) = {{0} U S}

we have

0 fno(fons1) = {{0} U S}

Therefore

T fma (f2n+1) §Z 0 fmu (f2n+2)-
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Is A — f A-proper? First note that A\I — f is surjective for all A ¢ S'. In fact, given

w € [2(C) where w = (wy, Wy, ws, Wy, . ..), we have

[)\I—f] wal-l—_'wg _sz +E1 _-X’LU:; + Wy _X'w4+ﬁg
T R e LY e PYER e P\

= (wl,wg,w;z,,w4, . )

When |A| # 1 and A # 0, we shall see that Al — f is a surjective A-stable map
and therefore, by Theorem 1.6.11, A-proper. To show the A-stability it is enough

to show that there exists o € Ry such that
1PN = flle — 1) 2 alle —yl| for all 2,y € C¥ 0 Ay, k€ N,

If |\l < 1 and A # 0 set o = min{(1 — |A]), |Al}.

When k& = 2n we have

1AL = fan)(z — y)]

2|l fenz = )l = Mz = yll = llz — yll = [Alllz - yll

=1 = ANz = yll = allz —ylI

When k& = 2n 4+ 1, we have

1AL = fania)(z = 9)|1?
= |Mz1— 1) —Ta+ T + .- + I A(Z2n — Yon) — Ton1 + Tan1|®
+ [ Mzans1 — Yan)
= 1A = fanl(Poalz = gD + AP |@2041 — Yona|”
> (1= D Ponle = 9N + [APlz2n0s1 — yansa |
> 0| Pan(z = 9) |1 + l@anss — yanpa|” = [z — g,
Then, for all &, ||[M — fil(z —9)|| = allz — y|.
If A > 1set a=|A -1

When k& = 2n we have

1AL = fanl(z = Il ZIMllz = yll = [ fon(z = )| = [Mllz — yll = Iz - v

=(Al = Dllz — |l = allz — .




CHAPTER 2. A NEW DEFINITION OF SPECTRUM 42

When k& = 2n + 1, we have

1M = fanpa](z = )|*
= [Mz1 —91) = Ta +Tol* + .- + | M@2n = Y2n) — Ton—1 + Fons|®
+ | A(@on41 — Yonr1)|?
= M = fonl(Pon(z — DI + AP |22n41 — Yania|”
> (1Al = D)2 Pon(e — )11 + A Pl22ns1 — Yonaa |

> o|| Pou( = 9)II? + & @ans1 — Yans|* = o®llz — |

Therefore, for all k, ||[A = fil(z —y)|| 2 allz — ]|
This shows that, when A ¢ {0} U S?, M — f is A-proper stable. It remains to show
that diy(AI — f) > 0. Notice that, since ||[\] — fi](z — y)|| = allz — y|| when © # ¥,

putting ¥ = 0 and dividing by ||z|| we have,

M = fel (=)l
llll

Therefore dp(A] — f) > > 0 when A ¢ {0} U S*.

dr(M — fi) = >« for all k € N.

Note that since {{0} U S'} C 0 pmo{fant1) for all n we have that

{{oyustt cs(f)

and we can apply Proposition 2.4.6 to show that {{0} U S'} C oa(f). Therefore

(see Figure 2.1)
aa(f)={0}us.

Note that, since d(fon41) = 0 for all n, we have d'(f) = 0. In view of Proposition
2.5.2 we can say that f is not A-proper because otherwise 0 would be an eigenvalue
of f, and clearly it is not. We can also show that f is not A-proper directly. In fact

given {e;} the standard basis of I2(C) we have |le;|| = 1 for all 4,

Il font1(E2ns1)]] = O for all n

but {e;} does not have a convergent subsequence.
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Figure 2.1: A non-connected resolvent
2.9 An application

As an application of the theory for example we can prove, using Proposition 2.4.6
and Corollary 2.5.9, a result similar to the Birkhoff-Kellogg Theorem for finitely con-
tinuous maps. First we state the Birkoff-Kellogg Theorem (see for example Theorem

10.1.5 of [11]):

Theorem 2.9.1. Let S = {z € X : ||z| = 1}, X be an infinite dimensional Banach

space and [ : 8 — X be compact such that

int || ()] > 0.
Then f has a positive eigenvalue.

Lemma 2.9.2. Let S = {& € X : ||z|| = 1}, X be an infinite dimensional Banach
space and f : S — X be a finitely continuous, bounded map. Let f:X — X be the

positively homogeneous operator defined as follows:

lolf () #2#0

0 ifr=0

fla) =

Then y(f) = ~(f).

Proof. Tt is sufficient to show that f is A-proper if and only if f is A-proper. Suppose

that f is A-proper and let {z,} be a bounded sequence such that

| Pof(z,) — Payll — 0 as n — oo,
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By boundedness, there exists a subsequence {xn,} of {zn} such that ||z, || — a. If

a # 0 we have

”O‘P”Jf(“ Tn, H) _P“fy{ -0

Since f is A-proper there exists a subsequence {Tn,,,} of {25;} and z € S such

that ('”)” — x and f(z) = ¥ Therefore f(z) = y. If @ = 0 we have z,, ~ 0,

fls ng

P,y — 0 and 0 is a solution of the equation F(z) = 0. To show that f is A-proper
if f is A-proper, simply note that f = f s O

Definition 2.9.3. Let f: X — X be a continuous map. A point A € K is said to
be a asymptotic bifurcation point (see [27]) if there exists a sequence {(An,z,)} in

K x X such that [|z,]l — 00, An — A and Az, = f(z,) for every n.

Theorem 2.9.4. Let S = {z € X : ||lz|| = 1}, X be an infinite dimensional real

Banach space and f: S — X be a finitely continuous, bounded map such that

hmmf mf | mf ||P flza)|l > ~(f).

n—

Then f has an eigenvalue.

Proof. Let f: X — X be the positively homogeneous operator defined as in Lemma

2.9.2, then
d(f) = inf |[f(@)]l, M(f) = sup ||f()]

flll=1 l=ll=1
and y( f) = v(f). Let B( fons1) be the set of all asymptotic bifurcation points of
fans1. By Theorem 11.1.3 of [11], there exists fipn41 € R such that pgny; € B f2n+1).
Since pan41 18 an asymptotic bifurcation point we have d(pon1l — fgn_;_l) = 0. So
fions1 € O pmu(fans1). Since, by our assumption, d'(f) > v(f), there exists o € Ry
such that d'(f) > Y(f) + ep and there exists 7 such that d(font1) > Y(f) + 2

whenever n > . Assume |poni1| < v(f) + 2. Then |pgnsa| < d( fans1) for every

n > fi. Therefore

d(pion1] — foni1) > d(fans1) — |H2ar1] > 0.
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This contradicts d{pign1] — fans1) = 0. Therefore |pgni1| > v(f) + 2. The sequence

{tiony1} is bounded since we have

TUfm,,(Jz:Qn-i-l) S (I(.};f%n-i—l) S 1FVI(J;)

Therefore there exists a subsequence {f;} of {ant1} such that p; — p with |u) >
v(f). Since p; € Ufmu(f:j) and p; — p, by Proposition 2.4.6, we have p € UA(JE). By
Corollary 2.5.9, it follows that there exists ¢ € (0, 1] such that p/t is an eigenvalue
of f. Let z € X with ||Z]] = 1 be such that f(z) = u/(Z). Then f(Z) = rZ where
7 = puft. O

The following example shows that there exists a map f to which Theorem 2.9.1

does not apply (since f is not compact) but Theorem 2.9.4 can be used.

Example 2.9.5. Consider the space [2(R) and let g be the radial retraction of I*(R)

onto the unit ball given by

Z
— if ||z|| > 1,
o) = ¢ Tar Ml
z if ||z < 1.

Note that 8(g) =1 (see [6]). Fix now y € [2(R) with

ng
Y= E €5,
i=1

{e;} being the standard basis of [2(R), a; € R and ||y|| > 2. Let f: 5 — [*(R) be
defined by
fz) =y +g(z).
Then
it Pl = it [Py + Paglan)]

2| Payll = sup [[Pag(zn)ll = llyll =1 > 1,

|en]=1

whenever n > ng. Now
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Therefore
lim inf | il}lf ) | Pr f ()| > BLS).

Furthermore we have

sup ||f(z)]| = sup ||y + g(z)l| < [lyll + 1.

|z|=1 z|=1

Hence f satisfies the conditions of Theorem 2.9.4. Therefore f has an eigenvalue.

2.10 On the growth properties

In this section we investigate the relation between the various growth conditions so

far encountered, we will also study

d(f) = liminf M

llzf—+eo |||

and show why it is not suitable as a “lack of injectivity” type of condition for the

spectrum.

Remark 2.10.1. Note that for all z, € X,, we have that

fiming WEn (@)l <12l "liminf [RACE] — G2}

loall—too  [|Zn]l auliotoo [zl T enlotoo (|2

Let n — oo and take the lim inf.

d(f) =liminf{ lim inf M} <limint limint 120l

nrboo | flanliotoo ([ nrtoo fieal=teo |||

If f is continuous, do we have d'(f) < d(f)? Does d'(f) > 0 imply d(f) > 07 We
do not know the answer to this questions, but Lemma 2.10.4 and 2.10.5 give partial

ansSwers.

Lemma 2.10.2. Let f : X — X withm/(f) > 0. Fizy € X and let z, be a solution

of the finite dimensional equation P, f(z,) = P,y. Then {z,} is bounded.

Proof. If z,, is a solution of B, f(z,) = P,y we have that

iyl 2 1 Payll = |Paf (wo)ll 2 mfo)llnll
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Since m/(f) = lin1i11f m(f,) = 1 > 0 there exists @ such that m(f,) > & for all

n > 7. Setting K = max {M, Wzl Hmﬁ”} then
liznl|| < K for all n.

(]

Remark 2.10.3. Can we have a similar result by replacing the condition m/(f) > 0
with d'(f) > 07 Probably not. It is true that d'(f) = [ > 0 implies that there exists
7 such that

d(fn) = liminf w

!
> — for all n > 7.
lenliotoo  |lZall 2

But the condition d(f,) > & implies that there exists R such that

(12 f ()]

>
[

for ||z,| > R.

Cof =~

The problem is that R can depend on n. This is the reason why we introduce the

condition di(f), similar to d'(f), but slightly stronger.

When do diy(f) and d'(f) coincide? For example when f is positively homoge-

neous (in particular when f is linear).

Lemma 2.10.4. Let f be a positively homogeneous, Lipschitz continuous map, with

Lipschitz constant k and d(f) = 0. Then d'(f) = 0.

Proof. By Lemma 2.5.1 we have that d(f) = “ilulfl £ (2)||. Since d(f) = 0 there
exists a sequence {z,} with ||z,|| = 1 and ||f{z.)|| < &n, where ¢, — 0. As
UX,, = X, there exists P,y such that v, = Py, satisfies ||y — 2|l < €n.

Then [|f (ym) — f(zn)|| < ken so

”f(ym)” S kEn + &

and
| P f () | < 1 ()| < (k + Ve with 1 —en < [Jyml] < 1.
Therefore
|| P f ()| En
—— < (k+1 .
A
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By Lemma 2.5.1 we have

A(Puf) < (k+1)s f“g .

This implies d'(f) = 0. O

Lemma 2.10.5. Let f be a positively homogeneous, finitely continuous A-proper

map with d'(f) = 0. Then d(f) = 0.

Proof. By Lemma 2.5.1 we have that

inf || By, f(n,)l| = 0 as j — 00,2, € X,

lom, ll=1
Since X, is finite dimensional we can build a sequence {yn;} with |[y,,[| = 1 such
that P, fyn;, — 0 as j — oco. By A-properness there exists a subsequence {ynj(k)}

of {yn;} such that y, . — vy and f(y) = 0. Therefore d(f) = 0. O

Remark 2.10.6. Lemma 2.10.5 does not hold when f is not A-proper. In fact take

f as in Example 1.6.5, by Lemma 2.5.1 we have

d(font1) = " iﬂf” Mfonr ()il = ([ f2n+1(e2n+1) || = O for every n.
Yoant1||—

Therefore d'(f) = 0, whereas d(f) = 1.

Lemma 2.10.7. Let f: X — X be a continuous map. Then

m'(f) < m(f).

Proof. Fix € > 0. Then there exists z. € X, z. 5 0, such that

m(f) < ————“{I(x""f L) e

Take now ey, = Ppt.. Since Z., — T and f(ze,) — f(z) we have

Ifa@)ll _ Ifalen)ll o [1F(@enll o |1f(ze)l

a0zl T @enll T |zenl [l |

+e<m(f)+2

whenever nn > 7i. Since ¢ is arbitrary we have

lim inf inf 1o () < inf I/ )l

nco w0 ||[Ta)| w0 |z
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A similar inequality holds also for d(f).
Lemma 2.10.8. Let f : X — X be a continuous map. Then di(f) < d(f).

Proof. Let R be fixed and take ¢ > 0. Then there exists . € X, ||zc|| > 2R, such
that

a(f)—e < W@ gy e

[l |

Take oW T, = Fpe. Since ze, — . and f(z.,) — f(z:) we have

dR(fn) = inf “fn(ﬂ:n)” < an(mg,n)u < “f(.’L‘E‘n)” < ||f(a;5)||

ez lzall - llzenll T lleenl el

T n

+e<d(f)+2

whenever n > 7i. Therefore

lim inf dr(f,) < d(f) + 2.

As ¢ is arbitrary this shows d(f) < d(f). a

What is the relation between the condition d(f) > 0 and the stably solvable
requirement? If X is a finite dimensional complex Banach space of dimension greater
than 1 with X* strictly convex and f : X — X with d(f) > 0 one can show that f
is stably solvable.

Lemma 2.10.9. Let S be the unit circle in the complex plane C. Let X be a finite
dimensional complex Banach space of dimension n greater than 1. Let Sp = {z €
X :||z|| = R} and let g : Sp — S* be continuous. Then g is homotopic to the
constant map 1, that is, there is a continuous map h : [0,1] x Sp — St such that

h(0,z) =1 and h(1,z) = g(z) for all z € Sg.

This is a consequence of the fact that Sk is homeomorphic to the real sphere

5?m=1 and the homotopy group m;(S) = 0 for j > 1.

Theorem 2.10.10. Let X be a finite dimensional complex Banach space of dimen-
sion greater than 1 with X* strictly convex and let T : X — X be continuous.

Suppose there exists R > 0 such that (T'z, Jx) # 0 for all x € Sp. Then there is

zo € Bp such that T'zg = 0.
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(Tz, Jx)
[(Tz, Jz)|
of z. As T and J are continuous and (T'z, Jz) # 0 for all z € Sp, g : S — Sl is

Proof. For ||z|| = R let g(z) = , where Z denotes the complex conjugate
continuous. By Lemma, 2.10.9, there is a continuous map h : [0,1] x Sg — S such
that h(0,z) = 1 and h(1,z) = g(z) for all z € Sg. Now define H(t,z) = h(t, z)Tx
for 0 <t <1andz € Sg. Then H(t, z) # 0 so by homotopy invariance the Brouwer
degrees d(T', Bg,0) and d(H1, Bg,0) are equal. [We take any continuous extension
of Hy to Br.] Consider the homotopy M(t,z) = tHi(z) + (1 — t)z for z € Bp,
0 <t <1 Weclaim that M(¢,z) # 0 for z € Sg and ¢ € [0, 1]. Indeed

(M(t,z), Jr) =t|(Tz, Jz)| + (1 — t)(z, Jz) > 0.

Therefore d(Hy, Br,0) = d(I, B,,0) = 1 and hence d(T, Bg,0) = 1 so there exists
xg € B, with T'zg = 0. d

Theorem 2.10.11. Let X be a finite dimensional complex Banach space of dimen-
sion greater than 1 with X* strictly convex and let f : X — X be continuous with
cz( f) > 0. Then f is stably solvable, that is, for every continuous map h: X — X

with q(h) = 0, there is a solution of the equation f(z) = h(z).

Proof. Let T'(z) = f{z) — h{z). Then

(T2, Jz)|  [(fz, Jz)| | Azl

22 = 2l el
S50
R
= >
R FE

and there is R > 0 such that (T'z, Jz) # 0 for ||z]| == R. Hence by Theorem 2.10.10

there exists zg € Br with Tz = 0. O

The converse is not true as the following example shows:

Example 2.10.12. Define f : C* — C? by f(z1,29) = (Z2, —Z1). First of all note

If =) — \/722?__?__21_? =1forall 250
||z|| 2121 + 2229

that since
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we have that d(f) = 1. We will now show that [f] = [I], where [f] is the homotopy
class associated with f (for further information on homotopy classes over the spheres
see for example [17]). Using proposition 6.2.2 of [11], this will make f fmuv-regular
and therefore stably solvable.

To see this, we define the homotopy H : S; x [0,1] — S; by

_tz4+(1=1)f(2)
Bt = om0 i@l

We claim that, for all ¢ € [0,1] and z with ||z|| = 1, H is a continuous map with
H(z,0) = f(z) and H(z,1) = 2. To check the continuity of H all we need to do is
to show that ||tz + (1 — ) f(2)|| # 0 when ||z|| = 1 and ¢ € [0, 1]. Therefore we can

study the system of equations
tzy + (1 - t)_z—g =0
tzg 4 (15 - 1)'21 =0

Setting 23 = a + ib and 23 = ¢ + id where a,b,¢,d € R and splitting the real and

imaginary parts this is equivalent to solve the system

.

ta+c—tc=0 a

th—d4td=0 b
A=< , say A(t) =0

tc+ta—a=0 c

td —th+b=0 d

\
Notice that the equation det A(t) = 0 has no real solution and therefore A has only
the trivial solution 0 ¢ S.
Then f is a stably solvable map with d(f) = 1, but in this case d(f) = 0 since
(f(z),2) =0 for all z € C2

Remark 2.10.13. In the previous example we provided an antilinear map with
cf( f) = 0 and d(f) > 0. One could ask what happens when f is a linear map
from a finite dimensional complex Banach space to itself. Are the two conditions

equivalent? The answer is no as the following shows:
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Example 2.10.14. Define f cC?2 — C? by f(zl,z2) = (—22, Zl)~ Note that d(f) = 1.
If we let {z,} = {(n,0)} we have that f(z;) = (0, k) and therefore (f(zx),zx) =0

for all £ € N and d(f) = 0.

2.11 Some continuation principles

Proposition 2.2.4 is a continuation principle that plays an important role in the

theory of fmw-regular maps. We can prove similar results for A-regular maps:

Proposition 2.11.1. Let f: X — X be a continuous, A-regular map and suppose

there exists p € Ry such that

B({Pafrn}) = pB({zn}) (2.11.1)

is satisfied for each bounded sequence {z, |z, € X,}. Ifg: X — X is a -
contraction such that B(g) < po and ¢,(g) < dx(f), then f + g is A-reqular.

Proof. By Theorem 2.3.4, f + g is A-proper stable. By Lemma 2.4.1

dp(f +9) = dp(f) — qr(g) > 0.

Since qr(g) < di(f), there exists &; > 0 such that gr(g) < dr(f) — &1 < dR(f)

Thus there exists ng € N such that

d(fn) > dR(fn) = d}l(f) —& > QR(Q) > QR(gn)

for every n > ng. Since d(f.) > ¢(gn), we can apply Proposition 2.2.4 to show that

fn + gn is stably solvable. O

Unfortunately, condition (2.11.1) is not easy to check. A stronger, but easier to

verify, requirement is given by the following.

Lemma 2.11.2. Let f: X — X be a continuous, surjective map with

150f (@n) = Pof (ya)ll 2 pllzn — ynll (2.11.2)
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for every zn,y, € X, andn > ng. Then

B({ fazn}) > pB({zn})
for each bounded sequence {z,|z, € X,} and n > ny.

Proof. For n > ng, let {z,|z, € X, } be any bounded sequence and suppose that
{fn(za)} is covered by finitely many balls B(y;,r) with {y1,...,y} C X. Since
[ is surjective there exist {uy,...,ux} C X such that f(u;) = y; for all j. Set

Ujn = Bouj. Obviously u;, — u; and, by continuity of f and F,,
fn(wjn) — f(u;) for every j

In particular, if we fix € > 0, there exists n; € N, n; > ng, such that, for n > ny,

we have

lu; — ujnll < € and || folusn) — fu;)|| < & for every j

and therefore, for those n such that { f.{z,)} belongs to B{y;,r) and exceeds n;, we

have

pllen = usll <pllen — ujnll + pllu; — wjnll
Sfa(@a) = falusn)ll + pe
S fa(@n) = faltsn) + 45 — y5ll + pe
Sfalzn) = ysll + [1falugn) — Flus)ll + pe < 7 +e(1+p).

It follows that the set {z,{n > n,} is covered by the balls B(uy;, (r +&(1 + p))p1).

As ¢ is arbitrary, we have shown that

B{fazn}) = pB({zn})
for n > ng as required. O

Note that Lemma 2.11.2, unlike Lemma 2.4 of [40], does not require the finite

dimensional subspaces {X,} to be nested.
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Corollary 2.11.3. Let f : X — X be a continuous, A-regular map such that (2.11.2)
holds, and let g : X — X be such that gr(g) < di(f) and B(g) < p. Then f -+ g is

A-regqular.

Proof. Note that f satisfies the hypothesis of Proposition 2.11.1 since, by Lemma
2.11.2, (2.11.1) holds. O

Corollary 2.11.4. If f satisfies the hypothesis of Proposition 2.11.1, then f is
strictly stably solvable.

Proof. Since f + g is A-regular it is surjective and in particular we can solve the
equation f(z) + g(z) = 0. In particular f is (a,p)-stably solvable for every a < g
and p < di(f) by Proposition 2.11.1. O

Remark 2.11.5. Note that condition (2.11.2) depends on A, i.e.

(f satisfies (2.11.2) #& f + I satisfies (2.11.2)).

In the case of a demicontinuous map we have the following:

Theorem 2.11.6. Let X be a reflexive Banach space with X* strictly conver and
suppose that D C X is closed and T : D — X is a demicontinuous map such that

there exists po > 0 with
B{Pufzn}) = moB{{zn})

for each bounded sequence {z, |z, € D,}. If f: D — X is a [-contraction such

that B(f) < wo, then Ty =T +tf : D — X 1is A-proper stable for each t € K with
|t] < 1.

Proof. First we note that T, : D, C X,, — X, is continuous for each n € N. Now
let {@n, | Tn; € Dn,} be a bounded sequence such that Py, T (n;)+ P, f (Tn;)—g — 0

as 7 — oo for some g € Y. Now

poB{an;} < B{Fn,T(wn;)} = B{g — Po; f(€n,)} = B{Pn; f (zn;)} < B(F)B{2n; },
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and therefore S{z,;} = 0. Then there exists a subsequence, {Zn,,,} such that

Tn;y — T- Since f is continuous we have P, (%) — f(z) and

Pnj(k)T(mnj(k)) —g- f(il,)

By demicontinuity of 7" we have T'(z,,,,) — T'(z). Let J : X — X* be a duality

map. Then for every y € |J X; we have
(Prjoy T( @y ) JY) = (T (@0 )5 Jy) for n > my.
Now
(P T(Engg): 9) = (9 — F(2), Ty) and (T(zng,), Ty) = (T(@), Ty).
Therefore
(T(z) + f(z) — g, Jy) =0 for every y € UXj.

Under our assumptions J is demicontinuous (see [6]) and therefore

(T'(z) + f(z) — g, Jy) =0 for every y € UXj = X.

Since J(X) is dense in X this is true for every z* € X*. Therefore T'(z)+ f(z) = g,
i.e. Ty is A-proper.

We note that, for each ¢t € K with [¢| < 1, we have that T, =T +tf : D - Y is
also a map of the same kind with B(tf) = [t| B(f) < |t| pon™* < pon™, so that Ty is
A-proper for every fixed ¢ with |¢] < 1.

To prove the A-proper stability note that A\l + T, = X + T +tf =T + (M + tf)
and AI + tf is a f-contraction with S(Al +tf) < || + |¢t| B(f), by Lemma 1.5.4.
Therefore Al -+ T} is A-proper for every A such that |\| < pon™ — |t| B(f) (Le. T is
A-proper stable). O

Proposition 2.11.7. Let X be a reflexive Banach space with X* strictly convex
and f + X — X be a demicontinuous, A-reqular map and suppose there exists
p € Ry such that (2.11.1) is satisfied for each bounded sequence {z, | z, € X,}. If

g:X — X is a B-contraction such that 5(g) < o and ¢.(g) < dr(f), then f+ g is

A-regular.
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Proof. The result follows from Theorem 2.11.6 and a similar argument as in Propo-

sition 2.11.1. i
In the case of compact perturbations weaker assumptions are needed.

Proposition 2.11.8. Let f : X — X be a demicontinuous, A-regular map and let

g: X — X be compact such that qr(g) < dix(f). Then f -+ g is A-regular.

Proof. Since A-proper maps are invariant under compact perturbations, f + ¢ is

A-proper stable. Note that, by Lemma 2.4.1,

dp(f +9) = dip(f) - qrlg) > 0.

Since qr(g) < dix(f), there exists € > 0 such that qr(9) < dx(f) — & < di(f). Thus

there exists ng € N such that

dR(fn) 2> le(f) —E€> QR(Q) > QR(g'n)

for every n > ng. Since d(f.) > ¢(g.), we can apply Proposition 2.2.4 to show that

fu + g is stably solvable. 0

2.12 A comparison
Theorem 2.12.1. Let f : X — X be a continuous, A-reqular map. Then [ is
agu-reqular.

Proof. Since f is A-proper, f is not compact by the proof of Lemma 2.6.1 and
therefore a(f) > 0. Since dix(f) > 0, by Lemma 2.10.8, we have that d(f) >
0. Furthermore we can use Theorem 2.4.8 to show that f is stably solvable. By

Proposition 2.2.10 we have that f is agv-regular. (|
Theorem 2.12.2. Let f: X — X be a continuous map. Then
¢(f) € oagu(f) € aa(f).

Proof. From Proposition 2.2.13 ¢(f) C 0agu(f). Theorem 2.12.1 gives the inclusion
Uagv(f) - O'A(f)' =
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The following example shows that the inclusion 44, (f) C oa(f) may be strict.

Example 2.12.3. Take f defined as in Example 1.6.5. Since f is a linear isomor-
phism, 044, (f) = o(f) by Proposition 11 of [5] and therefore 0 ¢ 0o (f). But f is

not A-proper, so that 0 € o4(f).

Proposition 2.12.4. Let dim X = oo and f : X — X be a compact map. Then

0 pma(f) G oalf)-

Proof. Take A € pa(f). By Lemma 2.6.1, A % 0 and therefore w(AI — f) = |\ > 0.
Furthermore f is stably solvable by Theorem 2.4.8 and d(A] — f) > 0, by Lemma
2.10.8. Then A € prmu(f). O

Example 2.12.5. A map that is A-regular but is not Feng-regular.
Take f; : R — R (see Figure 2.2) defined by

T if z € (—o0,§] U2, +00),
NE)=< —2+1 ifze 1)
% —2, ifwell?)

Let f:2(R) — [2(R) be defined by

[ BRI

Figure 2.2: fi(z)

f(ml, Ty, T3, .. ) = (f1<$1): T2,T3, .. )




CHAPTER 2. A NEW DEFINITION OF SPECTRUM 08

To show that f is A-regular, set

g(x],fﬂg,fﬂg, . ) = (gl(.?l?l), 0, 0, . .),

where
0 if z € (—o0, 3] U[2,+00),

alz) =< —2z+1 ifze (1),
z—2 ifzell,2).

Obviously f = I -+ ¢ and ¢ is compact. Furthermore

L@l 1
QR(Q)_—niusz el “E°

5 <dp() =1

whenever R > 2. Therefore, by Proposition 2.11.8, f g is A-regular and 0 € pa(f).
Note that, since 0 is an eigenvalue (with corresponding eigenvector (1,0,0,...)),

m(f) = 0 and therefore f is not Feng-regular and 0 € o, (f).

Remark 2.12.6. Note that the function f defined in Example 2.12.5 is an A-proper
map which is not A-stable. To check this, assume that if f is A-stable. Then there

exists a function o : Ry — R, with «(0) = 0 and «(r) > 0 when r > 0, such that

1fn(z) = @)l 2 ellz - yl)-

for every z,y € X, and n > ng. Set & = (0,0,...,0) and § = (1,0,...,0) then
0= ||fu(Z) — fu(@ll = a(|Z —Fll) = (1) > 0, a contradiction.

Example 2.12.5 also sheds light on the fact that in the linear case the A-regularity
of a map L implies unique A-solvability of the equation L(z) = y. In the nonlinear
case this is no longer true. In fact the equation f(z) = (0,...,0) has two solutions

z1 = (0,...,0) and zy = (1,0,...,0).

2.13 Conclusions

In this chapter we discussed an approach to nonlinear spectral theory via finite di-
mensional approximations. We have studied some properties of the A-spectrum,

partially investigating the relations between the A-spectrum, eigenvalues and some
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other nonlinear spectra. As a further development of the theory, it could be in-
teresting, for example, to study the applications of the A-spectrum to differential
equations. In particular this means checking whether it is possible to use these
techniques to obtain results not achievable by other methods. Furthermore we used
stable solvability as our concept of solvability for the finite dimensional approxima-

tions, but, as can be seen in section 2.2, this is not the only possible approach.




Chapter 3

Nonzero solutions of some
boundary value problems with

continuous kernels

In the second part of this thesis, chapters three to five, we study some nonlocal
boundary value problems (BVPs) for second order ordinary differential equations
(ODEs). Such type of problems have been studied by II'in and Moiseev [23]. Gupta
et al. in [13, 15] widely studied these BVPs, proving existence of solutions. Since
0 is often a possible solution, an existence theorem alone may be of little use, also
in applications positive solutions are often of importance. Ma in [34] studied the
existence of positive solutions of such problems under superlinear and sublinear
growth of the nonlinear term. We study problems where positive solutions need not
exist. We do not impose global growth assumptions on the nonlinearity and use the
theory of fixed point index to prove existence of one or more nonzero solutions under
conditions which strictly include the sublinear and superlinear cases.

The BVPs in chapter three generate a continuous kernel that changes sign. In
order to tackle these problems we introduce a cone of functions positive on an interval
[a, b] that enables us to prove the existence of nontrivial solutions.

The BVP in chapter four is different, since it generates a discontinuous kernel
and the theory of chapter three no longer applies. Thus we generalise the theory

of chapter three, in order to deal with such a discontinuity. We also allow a more
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general nonlinear term.
In chapter five we use the results of chapter three and four to prove existence

of positive (and negative) eigenvalues of a variety of nonlocal BVPs studied in the

previous chapters and a BVP of a new type.

3.1 Introduction

In this chapter we study the existence of nonzero solutions of second order differential

equations of the form

w(t)+gt)f(u() =0, (0<t<l) (3.1.1)

under one of the boundary conditions (BCs)
' (0) =0, au(n) =u(l), 0 <y <1, (3.1.2a)

u(0) =0, au(n) =u(1), 0 <n < 1. (3.1.2b)

These are the three-point boundary value problems for which existence has been
extensively studied by Gupta et al., often assuming f grows sublinearly.
One approach to finding positive solutions is to write the BVP as an equivalent

Hammerstein integral equation

u(t) = /0 k(t,8)g(s) f(u(s)) ds := Tu(t) (3.1.3)

and find a solution as a fixed point of the operator T' by using the classical theory
of fixed point index in cones to establish the existence of one or multiple positive
solutions.

Let P = {x € C[0,1] : z(t) > 0 fort¢ € [0,1}} be the cone of non-negative
continuous functions. In general, it can be hard to use the cone P to obtain existence
of nonzero fixed points. Some recent progress was made by Lan and Webb [32] who

used the cone
K={ueC0,1]:u>0, mn{u(t):a<t<b}>c|ul}

(which is of a type due to D.Guo, see for example [12]) to prove that at least one

positive solution existed for some boundary conditions of separated type. These
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results strictly included f being either sublinear or superlinear. These results have
been improved by Lan [29] to yield existence of multiple positive solutions under
suitable conditioné on f for the separated BCs.

Webb [46] used Lan’s results for the Hammerstein integral equation to establish
the existence of multiple positive solutions for the three point BCs above, when
0 <an<1for (3.1.2a) and 0 < @ < 1 for (3.1.2b). Webb’s results improved some
of Ma’s [34] who dealt with the sublinear and superlinear case only for (3.1.2b).

In this chapter we shall consider the other possible ranges for the parameter a.
For (3.1.2a) when a < 0, the kernel k(¢, s) is not positive for all values of ¢, s, indeed
k(1,s) < 0 for all s. Therefore, when g and f are positive, a fixed point of the
operator T' cannot be positive on {0, 1].

Nevertheless, as we intend to show in this chapter, it is possible to prove that
nonzero solutions exist which have the property that they are positive (or negative)
on some subinterval [a, b] of [0, 1].

We shall show that one or more nonzero solutions exists under conditions on f
exactly similar to those of Lan for each of the other possible range of parameter o
in each of the BCs above.

The methods we use are rather similar to those of Lan but we.seek solutions of
a different type, hence we employ a larger cone.

The conditions we impose on g are quite weak, for example we can allow g to be
a non-negative L' function which is positive on a set of positive measure.

We suppose f is positive; some of our other hypotheses involve
lim f(z)/z and lim f(z)/z.
z—0- Z—00

Our conditions strictly include the sublinear and superlinear cases.

The results of this chapter are based on [21].

3.2 Existence of nonzero solutions of Hammer-

stein integral equations

We begin by giving some results for the following Hammerstein integral equation.

u(t) = /0 k(t, 8)g(s) F(u(s)) ds = Tul?). (3.2.1)
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We shall make the following assumptions on f, g and the kernel k, throughout

the chapter, even if not mentioned explicitly.
(F) f:R — [0,00) is continuous.

(C) k& :[0,1] x [0,1] — R is continuous and there exist a measurable function

@ : [0,1] — [0,00) and a number ¢ € (0, 1] such that

(k(t, s)| < ®(s) for t,s € [0,1], and
c®(s) < k(t,s) for t € [a,b] and s € [0,1]

(G) ¢:[0,1] = [0,c0) is measurable and fol ®(s)g(s) ds < oco.

The hypothesis (C') means finding upper bounds for |k(t,-)| when ¢ € [0,1] and
lower bounds of the same form for k{t, ) with ¢ € [a,b]. In applications we have
some freedom of choice in determining a, b but we are constrained by needing k(t, s)
to be positive for all ¢ € [a,b] and s € [0, 1].

These hypotheses will allow us to work in the cone
K ={veC[0,1]: min{u(t) : a <t < b} > clul|}.

This is a larger cone than the one used by Lan [29]. Note that functions in K are

positive on the subinterval [a,b] but may change sign on [0, 1].

Remark 3.2.1. We check that K is a cone. Let u,v € K and aq, ay € [0, +00). We

have

: ; > mi . ;
trél[ﬂ}{alu( )+ au(t)} > tlg%ilz] azu(t) + min azv(t)

> cllayul| + cllogv]] 2 cllarw + azv]|.

Furthermore it is obvious that if w € K and —u € K then w = 0. Therefore K is a

cone.

In order to use the well-known fixed point index for compact maps, we need to

prove that 7" : K — K is compact, that is, T is continuous and T'(()) is compact for

each bounded subset () C K.
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Theorem 3.2.2. Assume that (F'), (G) and (C) hold. Then T maps K into K and

18 cOmpact.

Proof. Let T : C[0,1] — €0, 1] be defined by (Tz)( fo )z(s) ds. Then

the kernel has the properties:
) Jo [kt 8)lg(s)ds < [y ®(s)g(s)ds for all ¢ € [0,1].
(i) For each 7 € [0,1], lims ., fol |k(t, s)g(s) — k(T,s)g(s)| ds = 0.
To see (ii), note that if ¢, — 7, then |k(t,, s)g(s) — k(7, s)g(s)| — 0 and
1k (tn, 8)g(s) — k(7,8)g(s)] < 2®(s)g(s) for every n.

Therefore, by the dominated convergence theorem, (ii) holds. Since [0, 1] is compact,
the limit in (ii) is uniform in 7. Hence Proposition 3.4 (p.167) of [35] shows that
T : Cj0,1] — C0,1] is compact. As f is continuous, it follows that the operator
T: C[0,11 — €10, 1] is compact.

Furthermore we see that T : K — K. Indeed, we have
1
[Tu(®)] < [ 1k 9)ols)f(u(s)) ds so that
0

ITu) < / @ (s)g(s) f (u(s)) ds.

Also
1
min {Tu(t)} > c/ O(s)g(s) f(u(s)) ds.
a<t<b 0
Hence Tu € K for every u € K. O

We require some knowledge of the classical fixed point index for compact maps,
see for example [1] or [12] for further information.
Let K be a cone in a Banach space X. If € is a bounded open subset of K (in the
relative topology) we denote by € and 8 the closure and the boundary relative to

K. When D is an open bounded subset of X we write D = DN K, an open subset
of K.

Notation: Let ¢ : C[0, 1] — R denote the function

g(u) = min{u(t) : a <t < b}
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Proposition 3.2.3. Let X = C[0,1] and [a,b] C [0,1]. Then q is continuous on X.

Proof. Let u, — u in X. Then u,(t) — w(¢) uniformly on [a,b]. There exists
to € [a,b] such that g(u) = u(te), and t, € [a,b] such that g(un) = us(t,) for every
n. Since u,(to) — u(to) and u,(to) > g(u,) for every n we have u(ty) > limsup g(u,).
Also u(to) < ultn) < un(tn) + |un(ts) — ults)|, hence u(to) < qun) + [tn(tn) — u(ts)|
and so u(to) < liminf g(u,). This proves u(to) = lim q(uy,). 0

Following Lan [29], for p > 0, we shall use the set £, = {u € K : q(u) < cp}.
We write K, = {u € K : |ju| <7} and K, = {u € K : |ju|| < r}.

Lemma 3.2.4. ), defined above has the following properties.
(a) Q, is open relative to K.
(b) Kop CQ, C K,
(c) uw € 09, if and only if g(u) = cp.
(d) If u € 0Q2,, then cp < u(t) < p fort € [a,b)].

The proof is exactly similar to Lan’s [29], but we give the proof for completeness.
Proof. (a) holds since ¢ is continuous. (c) see 3.2.5-3.2.7. Let u € K,,. Then
oflull < q(u) < lull < cp

and u € 2. If u € Q,, then ¢||u|| < g(u) < cp. This implies ||lul} < p and u € K.
Hence, (b) holds. If u € 99, by (¢) we have c|ul| < g(u) = cp < u(t) for all
t € [a,b], so (d) holds. O

Remark 3.2.5. In general, given a Banach space X and a continuous function
g : X — R, we have that for p > 0, the set Q, = {z € X : ¢(z) < p} is open but in

general 99, # {z € X : ¢(z) = p}, as the following example shows:
Example 3.2.6. Let X be a Banach space and

=l if 0< |zl <1,
q(z} = 1 it 1<z <2,
|z}l —1 if llz]| > 2.
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Note that ¢ is continuous in X. For ||z|| < 1, ||z]| > 2 and 1 < |jz|| < 2 this is clear.

When ||zo|| = 1 we have

il

q(z) = for ||z — zo|| < 1
1
and
lol -1 i 0< ol <1,
a(z) — q(zo) =
0 if l|z|| > 1.
Hence [|g(z) — q(zo)l| < [llz]l — l|lzoll|llz — woll. When [lzof} = 2
1oif lzjl <2, |z —zol| < 1,
0 if |z >2
Thus
1-1=0
la(z) — a(zo)| =
Nl = 1= 1]
and |g(z) — q(zo)] < |[lzll = 2| < |lIzll = l|zoll| < ||z — @o||. Therefore g is continuous.

Note also that Q; = {z : ¢(z) < 1} = B(0,1), Qs = {z : ||z|| = 1} but
{z:q(z)=1}={z: 1< ||z|| €2} 2 0.
If ¢(z) satisfies some extra property we have the stronger result:

Lemma 3.2.7. Let ¢ : X — R be continuous and q(tz) be strictly increasing in t

for every x. Then

o, ={z e X : q(z) = p}.
Proof. Since the set {z € X : ¢(z) < p} is open we have
00, C{z € X : q(z) = p}.

If g(zo) = p we have, for ¢ < 1, ¢(tzy) < p and, for 7 > 1, q(vx0) > p. Hence a
neighborhood of z, contains points of {z € X : ¢(z) < p} and {z € X : ¢(z) > p},

that is, xo is a boundary point. O

-
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Notation: Let
feop =min{f(u)/p:u € [co,pl}, [P =max{f(u)/p:u € [-p 0]},

b -1 1 —1
w =(rmin, / (s, 9)g(s) ds)  andm = (max /0 Bt 9lo(s) ds)

We now prove two lemmas which give conditions when the fixed point index is either
Qorl.

Lemma 3.2.8. Suppose f: O(s)g(s)ds > 0 and that
(%) fepp = Mc and x # Tz for x € 0%,.
Then ix (T, Qp) = 0.

Proof. Let e(t) =1 for t € [0,1]. Then e € K. We prove that
z#Tx+ e forzed, and A > 0.

In fact, if not, there exist € 9, and A > 0 such that z = Tz 4+ Ae. By condition

(x) and (d) of Lemma 3.2.4, we have for ¢ € [a, b],

1 b
o(t) = / K(t, 5)a(s) F((s)) ds + A > / K(t, 5)g(s) £ (2(s)) ds + A
>cMp fb k(t,s)g(s)ds+ A > cp+ A

This implies that g(z) > ¢p + A > cp contradicting (c) of Lemma 3.2.4. Hence (1)
of Lemma. 1.4.7 gives tx (T, ,) = 0. O

Later, in Remark 4.2.5, we compare the assumption (1) of Lemma 1.4.7 with the

commonly used ||Tu|| > |lu|| for ||u]| = p.

Lemma 3.2.9. Suppose maxo<i<1 fol \k(t, s)|g(s) ds > 0 and that [ satisfies
(xx) f7P° <m and ¢ # Tz forz € 0K,.
Then ix(T, K,) = 1.

Proof. By (%), for u € 0K, and ¢ € [0, 1], we have

</

1
<mp / Ik(t, 5)| 9(s) ds < p = lull.
0

k(t,s)| g(s)f (u(s)) ds

(Tu(t)| = ' [ esists)saton as
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Therefore ||Tu|| < ||lul| for v € 0K,. By means of (2) of Lemma 1.4.7, we have
ir(T,K,) = 1. 0
We now give our new result which asserts that Eq. (3.2.1) has at least two

nonzero solutions which are positive on the subinterval [a, b] (the proof is illustrated

in Figures 3.1, 3.2).

Theorem 3.2.10. Assume that f: ®(s)g(s)ds > 0 and one of the following condi-

tions holds:

(S1) There exist py, p2, ps € (0,00) with py < cpa and pg < p3 such that

Fee <my fopppe = Me, z# Tz forz € 0Q,,, and [P <m.

(Sz) There exist p1, pa, p3 € (0,00) with p1 < pa < cps such that

feorpn = Mc, [P <m, x# Tz foraz € 0K, and fe,, = Mc.

Then Eq. (3.2.1) has two solutions in K each of which is positive on [a, b]. Moreover,
if in (Sy), f7P0P < m is replaced by [PV < m, then Eq. (3.2.1) has a third solution

Xy & I{Pl‘

Proof. Assume that (S;) holds. We show that either T" has a fixed point z; in 0K,
orin 0, \ K,,. If z # Tz for z € 0K, USK,,, by Lemmas 3.2.8 and 3.2.9, we have
i(T Kp,) =1, i (T, ;) = 0 and ig (T, K,,) = 1. By (b) of Lemma 3.2.4, we have
K, C K., C Q,, since p; < cpa. It follows from (3) of Lemma 1.4.7 that T has a
fixed point z; in Q,, \ K ,,. Similarly, 7" has a fixed point x5 in K, \ Q,,. The proof

is similar when (Ss) holds. O

Remark 3.2.11. Note that the third solution 2y € K, might be zero. The other
solutions are not because their norms are bounded away from zero. Although the
statement and proof is almost identical to the similar result in [29] which deals with
positive solutions, our new result allows solutions that are only positive on a subin-

terval and may change sign, and indeed this happens in the differential equations

we consider below.
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inqex=-1

index=0

index=1

index=1

Figure 3.1: One nonzero solution

Remark 3.2.12. It is possible to give results for more than two solutions by merely
adding more conditions of the same type to the list in (Si) or (S2)- We do not state
such results leaving them to the reader who may refer to [29] for the type of result

that may be stated.

Notation: Let

f = lim sup 1/, = liminf f/°° = limsup —
u—0 M «>0 lu u—o0 U u—00 u

As a special case of Theorem 3.2.10 we have the following result.

Corollary 3.2.13. Assume that  $(s)g(s) ds > 0 and there exists p > 0 such that
one of the following conditions holds.
(Ei) 0</°< 71, fdBp > Me, x » Tx forx GdUp, and 0 < /°° < m.

(E2) M < fo < o0, f~pp <771, x y£ Tx for x GdKp, and M < foo < 00.

and
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ex=-1|

index=1\1

index=0

index=1

,index=-11

index=0

Figure 3.2: Two nonzero solutions

Then Eq. (3.2.1) has two nonzero solutions in K.

Proof. We show that (E\) implies (Si). In fact, 0 < f° < m implies that there exists
Pi G (0, cp) such that f~pipt < m. Let r G (/°°,ra). Then there exists r > p such
that /(it) < ru for u G [r, 00) since 0 < /°° < m. Let 3 = max{/(it) : 0 < u < r}

and p3 > P/(m —t). Then we have
f(u) <ru +ft <rp3+p <mp3 foru G]JO0,p3]

This implies f- p3p3 < m, hence (Si) holds. Similarly, (f?2) implies (S2). i

By a similar argument to that of Theorem 3.2.10, we obtain the following new

results on existence of at least one nonzero solution of Eq. (3.2.1).

Theorem 3.2.14. Assum.e that  $(s)g(s) ds > 0 and one of the following condi-

tions holds.
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(Hy) There exist p1, p2 € (0,00) with p1 < cpe such that

f—-Pl.Pl <m and fcpg,pz > Mec.

(Hy) There exist p1, pa € (0,00) with p; < ps such that

fCth > Mc and f72 <m.

Then Eg. (3.2.1) has a nonzero solution in K.

Theorem 3.2.14 generalises Theorem 2.2 in [32] by allowing solutions that change

sign.

Remark 3.2.15. We shall see below that, for certain values of the parameter «, the
kernel k(t, ) is negative for ¢ in some interval [a, ], for all s. In this case, assuming
g and f are positive, we can show that nonzero solutions exist that are negative on

[@,b]. Indeed, u is a solution of
)= [ K, )9(6) o) s
if and only if v := —u is a solution of
o) = [ K ) )F(e(e) ds = Tofe)

where k = —k and f(v) = f(—v). Moreover v is positive on [a, ] if and only if u
is negative on [a, b]. Hence we can obtain results, exactly similar to ones above, for
the existence of solutions that are negative on [a,b]. We do not state the obvious

theorems thus obtained.

3.3 Multiple nonzero solutions of problem (3.1.2a)
We investigate the BVP

'+ g(t)f(u) =0, aeon|0,1], (3.3.1)
with boundary conditions

wW(0) =0, au(n) =u(1), 0<n < 1. (3.3.2)
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By a solution of this BVP we will mean a solution of the corresponding Hammerstein

Integral equation
1
u(t) = [ kit s)g(o)f(s) ds. (3:3.3)
0
The solution of v’ + y = 0 with the BCs (3.3.2) is (by routine integration)

)= 1 [ (= sw)ds - 12 [0 =sn)ds = [ G- o)

Thus the kernel [Green’s function] of (3.3.3) is

44

1 (n—s), s<n t—s, s<t
k(t,s):l—(l-s)— -« —

e 0, s>n 0, s>t

We shall study separately the cases @ < 0 and o > 1. The existence of positive
solutions when o = 0 has been studied in [32], and when 0 < & < 1 in [46]. a =1
is the resonance case and can not be dealt with by the methods here but existence

in this case was studied in [9].

The case o < 0.

To simplify the calculations we write —/3 in place of «, so that § > 0.

We have to exhibit ®(s), a subinterval [a,b] C [0,1] and a constant ¢ < 1 such that

|k(t, s)] <®(s) for everyt,s € [0,1],
k(t,s) 2c®(s) for every s € [0,1], t € [a,b].
We show that for these BCs we can take ®(s) = (1 — s).

Upper bounds
Case 1. s < 7. If s >t then k(¢,8) > 0 and

ki) = 15 o oty =) < A g
If s <t then

bit,5) = T+ ogn =) — (4= ) = LI
Iftgll%'lthen k(t,s) > 0 and

k(t’s):1+ﬁn—t(1+ﬂ) < L+Bn—s(1+P) <(1-3),

1+p - 1+ 0




CHAPTER 3. BVPS WITH CONTINUOUS KERNELS 73

Ift> %r%l then k(t,s) < 0 and

_k(t S):‘l“ﬁ”+t(1+ﬁ)<“1“5’7+(1+f5)__5(1—7?)<ﬁ(1—5)
’ L+p - 1+ T 148 T 148

Case 2. s > 1. If s > ¢ then

and we are done. If s <t then

_1+8s—t{1+6)

k(t,s) T8

If ¢t < :LIJ’Tﬁ; then k(t,s) > 0 and

. 1+p0s—s(1+0) (1—s)
bt < LA ()

Ift > 11—1% then k(t,s) <0 and

1—Bs+1(1+p0) < —-1-Fs+(1+p) B(l-s)
1+ = 1+ o145

—k(t, s) = —

Lower bounds
We show that we may take arbitrary [a, b] C [0, 7]
Case 1. s <. If s > ¢ then

1—s

k(t,s) = T

>
—
+lw
i
|
—_
_|_
=)

If s <t,since t < b <7 we have

1—s Jé] 1= _1-9.
5 T T == 2 (o)

Case 2. s > n. If s > ¢ then k(t,s) = (1 —s)/(1+ ) and we are done. Since we

k(t,s) =

take b < 7 the case s <t does not occur.

The conclusion is that we may take ¢ = (1 —7n)/(1 -+ 8).

Theorem 3.3.1. Let a,b € [0,7] and ¢ = (1 —n)/(1+ F). Let m, M be as defined
previously and suppose that f:g(s) ds > 0. Then for a < 0 the BVP (3.3.1), (3.3.2)

has at least one nonzero solution, positive on [a,b], if either

(h1) 0< fP<m and M < foo <00

or
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(hg) 0K f® <m and M < fy < o0,
and has twe nonzero solutions, positive on [a,b], if there is p > O such that either

(By) 0< fO<m, fo,=cM, x5 Tz for x € 0Q,, and 0 < f* <m,

ar

(Bo) M < fo <oo, f P <m,z#Tx forx € 0K,, and M < foo < 00.

We give a simple example to illustrate the theorem.

Example 3.3.2. Set ¢ =1 and f = 2, in this case f* = 0, fp = oc. The solution

of (3.3.1) with (3.3.2) is
(1+ On?)
(1+p) "

This is a solution that is positive on an interval containing (0,7n] but negative at

u(t) = —t* +

t = 1 (in Figure 3.3 we illustrate the special case 7 = % and # = 1, obtaining

uft) = —t* + 3).

5/8

Figure 3.3: A solution positive on an interval

As an application of Theorem 3.3.1 we consider the following eigenvalue problem:

() +g(t) flu(t) =0, (0<t<]) (3.3.4)

subject to BCs

' (0) =0, cu(n) =u(l), 0 <n < 1. (3.3.5)
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Theorem 3.3.3. Let [a,b] C [0,7], ¢ = (1 —n)/(1+ B) and o < 0. Suppose that
fj g(s)ds > 0. Let m,M be as defined previously. Then A is an eigenvalue of
the boundary value problem (3.3.4)-(3.3.5), with a corresponding eigenvector that is

positive on [a,b], if either

(P) fO/m <\ < foo/M

or
(B) f°/m <A< fo/M.

Proof. Take A € (f°/m, foo/M) and consider the equation

/() + g(t) Fu(t)) = 0 (3.36)

with BC (3.3.5), where f(u) = A" f(u). From (P}) it follows that f° < m and
M < fs. We can apply Theorem 3.3.1 to the BVP (3.3.6)-(3.3.5), hence obtaining
a nontrivial solution of the BVP (3.3.4)-(3.3.5). The case (P,) is treated in a similar

manner. |

Similar results are valid for the other BCs we consider below. We leave the

statements to the reader.

The case « > 1.

For these BCs the kernel & is negative on an interval so we apply remark 3.2.15 and
consider —% in place of k. Thus we have to find @ such that |k(t,s)] < ®(s) for
every t,s € [0,1] and show that there exists [a, b] C [0, 1] and a constant ¢ such that

—k(t,s) > c®(s) for every s € [0,1] and ¢ € [a, b]. In fact we show that we can take

(a4

B(s) = == (1-9).

O’.‘ —_—
Upper bounds

Case 1. s <n. If s > t then

1—s oY% l—s—an-+as
(n—s)= :

a—1 a-—1

—k(t, s) = o
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If s > =0 (this occurs in particular when am < 1) —k(t,s) > 0 and

k(ts) < l-s—ontoan _ (1—3)'
a—1 o1

If s < =21 then k(t,s) > 0 and

—1l+s+an—as < —l+s+a—as

k(t,s) = =(1—2s).
If s < ¢ then
1—s s l—an+at—t
—k(t,s) = — — -~ §) = .
(1) = =3~ S m—s) (1) = =
Ift> %1 then —k(t,s) > 0 and
1— _ —
k(t,s) < an + o 1Sa(1 5).
a—1 a—1
If t < =20 then k(t,s) > 0 and
-1l4+an—at+t  —-14+a—as+s
k(t,s) = < — (1 —
Case 2. s >n. If s > ¢ then
(1—s)
0< —k(t,s) =
< —h(t,s) oa—1
and we are done.
If s <t then
(1—3s) a(l —s)
0< —kft,s) =—+= -5 < ———,
< —k(t9) ozml—l_(t $) < a—1

Lower bounds

We will show that we may take a = n and b € (7, 1] which will yield a solution that
is negative on [n,b]. But, if also an < 1, we may take an arbitrary [a,b] C [0, 1].
In particular this means that there exists a solution which is negative on the whole
interval [0, 1] when @ > 1 and an < 1.

Case 1. s < 7. If s >t then

l—-s~an+as S l—s—an+ans

(1-s)

—k(t,s) = .
(75) C\{'—l

po— = (1 —an)

a—1
If an < 1 we may take an arbitrary a but if an > 1 we would have a problem.
However, if an > 1 we choose a > 7 so that this case does not occur.

If s <t and an < 1 then

l—an+as—s (1—s)
a—1

—k(t,s) >

> (1—an)

o —1
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If s <t and an > 1, as we choose a > n we have

(-s)

a—1"

_k(t,5) = 1—om+0ct—t> l—an+an-—-n >

1_
oa—1 - a—1 ( 77)

Case 2. s > n. If s > { then
(1-5)

a—1

—k(t,s) =
and we are done. If s <t then

_ltat-t-as lias—s—as_ (1—3s)

—k(t) S) a—1 el

a—1 a-—1"
The conclusion is that we may take either a = n, b € (n,1] and ¢ = (1 —n)/a or,

when an < 1, we may take a,b arbitrary and ¢ = (1 — an)/a. Thus we can state

the following results:

Theorem 3.3.4. Let o > 1, let a =1, b € (n,1] (or a,b arbitrarily chosen in [0,1]
if ap < 1). Suppose that f;g(s) ds > 0. Let c be as given above and let m, M be as
defined previously. Then the BVP (3.3.1), (3.3.2) has at least one nonzero solution,

negative on |a,b], if either

(h1) 0< fP<m and M < fo < 00

or
(he) 0 < f <m and M < fo < 00,
and has two nonzero solutions, positive on [a,b], if there is p > 0 such that either

(E1) 0< fo<m, feopp = cM, x# Tz for z € 0Q,, and 0 < f* <m,

or
(Ey) M < fo <00, f70P <m, & # Tz forz € 0K,, and M < foo < 00,
We illustrate the theorem with the following simple example.

Example 3.3.5. Let « > 1, and take g = 1, f = 2. The solution of the BVP
(3.3.1), (3.3.2) is

(an® — 1)
(a—1)

— 2,

w(t) =
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If an < 1 this solution is negative on all of [0,1]. When an? > 1 the solution
is negative on an interval, for example, when n = 1/2 and @ = 5 the solution is
u(t) = 1/16 — t? (we illustrate this in Figure 3.4). By taking o« very large, the
interval on which the solution is negative approaches (7, 1], hence our choice of [a, b]

is optimal in giving the largest interval on which the solution is negative.

Figure 3.4: A solution negative on an interval

3.4 Multiple nonzero solutions of problem (3.1.2b)

We now investigate the second BVP
u’ 4+ g(t) f(u) =0, a.e on {0,1], (3.4.1)
with boundary conditions
u(0) =0, au(n) =u(l), 0 <n < 1. (3.4.2)

The kernel in this case is

ot
(n—s), s<n |t—s, s<t
k(t,s) = 7——t(1—s) - 1—an -
“n 0, s> 0, s>t
The case a < 0.
Again we write § = —a > 0. We show that we may take
s(1—s)
®(s) = (1+ ) ———=.
() =1 +8 555
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Upper bounds
Case 1. s <7. If s >t then k(¢,s) > 0 and

e oyt =8)+PBtln—3s) _s(1—s)+Ps(1~s) s(1—s)
)= 1+ P = 1+ fn =075,
If s <,
k(t,s):t(l_s) ot (n—8) = (t—s) = —st~6ts+s+ﬁns’

1+p8n  1+0n 1+ 087

and k(s,t) is negative for ¢ > 8 and s # 0; note also that 282 > g,

1+8 i+
For k(t,s) > 0 we have

Kt s) = —st—,?ti—;ns—l—ﬁns < s(l—siig;(n—s) < (1+ﬁ)81(1+—ﬁf7)’
and for k(t,s) < 0 we have
k(ts) = st -+ fBts — s — fns < Bs(l—mn) Sﬁs(l—s)

1+ 07 ~ 1+ 0n 1+ f6n
Case 2. s > 7. If s > ¢ then k(t,s) > 0

) _t(l—=s) _ s(l-s)
Kb s) = Ry

If s <t then
—ts — Ot + s+ Bns

14 fBn
and k(s,t) is negative for ¢ > 5(514_;5;7) When k(t, s) > 0 we have

k(t,s) =

k(i s) = —ts — Bt + s + Pns < —s?—Pns+s+Pns _ s(l—s)
’ 1+ 07 = 1+ fny 1+pn’

and when k(t,s) < 0 we have

(¢, s) = ts+ fnt —s — PBns < fn(l —s) < ,5'5(1 — 5)

1+ fn = 1+4+p8n 1+06n°

Lower bounds
We show that we may take arbitrary [a, ] C (0,7].
Case 1. s <. If s > then

5 _t—st+pin—PFts _t(l—s) _a(l—s) s(1 — s)
bs) = =g 258 2 146 1 mn

fs<tandt<b<m,

k(t.5) > —sn—Pns+s+pPns  s(1—mn)

> Tt pn "1+[3n2(1_”)
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Case 2. s > n. If s >t then

) _t(l-s) _a(l —s) s(1—s)
e P

The case s <t does not occur since we take b < 1. Therefore we may take

¢ =min{a,1-n}/(1+F).

Theorem 3.4.1. Lei a,b € (0,n] and suppose that f:g(s) ds > 0. Let ¢ be as given
above. Let m, M be as defined previously. Then for an < 0 the BVP (3.4.1), (3.4.2)

has at least one nonzero solution, positive on [a, b], if either

() 0< fP<m and M < foo < 00

or
(he) 0 < f <m and M < fo < oo,
and has two nonzero solutions, positive on [a,b], if there is p > 0 such that either

(E1) 0 fo<m, fepp > cM, z# Tx forz € 0Q,, and 0 < f° <m,
or
(Bq) M < fy <oo, f70f <m, x# Tz forz € 0K,, and M < fo < 00.

The following simple example illustrates result.

Example 3.4.2. Set g = 1 and f = 2. The solution of (3.4.1) with (3.4.2) is

1 2
u(t) = 1_:_'%7; t— 12,

Thus u(t) is positive on [0,7] but u(1) < 0. (in Figure 3.4.2 we illustrate the special

case n = % and 8 = 1 obtaining u(t) = —{2 + %t)

The case an > 1.

For these BCs the kernel k& is negative on an interval so we apply remark 3.2.15. We

show that for this BCs we may take

D(s) = a%%m}?,
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0 172 ‘\:1
)
U

Upper bounds

Figure 3.5: A

Case 1. s < 7. If s > ¢ then

—k(t,s) =

tH1l—s—an+as) < t(1—3)

nontrivial solution

< s(1—s)

an—1 “an—1" an—1°
Also
k(t,s)zt(—l—l—s-kan——as)§t(—1+s+a—a5)£(a“1)
an—1 an—1

If s <t then

—k(t,s) =

When t > L%’il—)— then

—stt+ats—ans+s _ s(—t+at—an+1)

5(1—s)

an—1"

an—1

—k(s,t) > 0 and

an—1

Ift< %’—7}111 then k(s,t) > 0 and

s(s—14+af(n—s))

s(s—1+afl —s))

_k(t7 3) <

<
an—1 -

< —1
an—1 _(a )

Case 2. s > n. If s > ¢ then —k(¢,s) > 0 and

—k(t, s)

=t(1—s) <s(1-—s)

If s <t then —k(,s) > 0 and

—k(t,s)

an—1 " an—1"

—t5+a77t—ans+3< -5+ an—ans+s

an—1

_an(l-—s) ca

an—1
s(1—s)

an—1

an—1"

s(1—9)

an—1"

81
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Lower bounds
We show that we may take an arbitrary [a,b] C [n,1].

Cage 1. s < 7. Since we take a > 1 we only have the case s < ¢t and then

s(—t+at—an+1
—k(t,s) = ( ) )

Since 7 > 90—?;_—1-1- we have —k(t,s) > 0 and

s(=n+an—an+1)
an—1

: s(1—s)
—k(t,s) = > (1 _U)W—_l—’

Case 2. s > n. If s > t then

t(l —s) < a(l —s) S as(l —s)

—k(t,s) = .
(t5) an—1 " an—-1 ~ anp—1

If s <t then

Kt S)M—ts+ant—ans+s S ~s*+ans—ans+s _ s(1—s)
S an—1 - an—1 an—1"

Thus we may take ¢ = min{a,1 —n}/a.

Theorem 3.4.3. Let a,b € [,1] and suppose that f; g(s)ds > 0. Let m, M be as
defined previously and let ¢ = min{a,1 —n}/a. Then for a > 1 the BVP (3.4.1),

(3.4.2) has at least one nonzero solution, negative on [a,b], if either

(h) 0< fO<m and M < fo < 00

or
(hg) 0< f>*° <m and M < fy < oo,
and has two nonzero solutions, negative on [a,b), if there is p > O such that either

(B)) 0K fO<m, fopp>cM, z# Tz forz € 0Q,, and 0 < f < m,

or

(B3) M < fo<oo, f7PP <m, o # Tx forx € 0K,, and M < foo < 0.
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3.5 Radial solutions of elliptic PDEs

Consider the problem of existence of positive radial solutions in an annulus in

R"™, n > 2, for the equation
Au+ h(|z])f(u) =0, for ae. |z| € [Ry, Ro. (3.5.1)

with boundary condition:

% =0 for |z|]=Ry and u(R;)=au(R,). (3.5.2)

We assume
(1) 0 < Ry < Ry < Ry < 0.
| (2) f : R — [0, 00) is continuous.
(8) h € L*(Ry, Ry) and h(r) > 0 a.e..
For radial solutions v = u(r), r = |z| we can write (3.5.1) in the form

-1
W) + n

W' (ry +h(r)f(u{r)) =0 a.e. on [Ry, Ro. (3.5.3)
Eq.(3.5.3) can be transformed into the ODE
u’ +g(t)f(u) =0
by means of the following variables. Put u(t) = u(r(t)) where
r(t) = (v + (8- 7)t)"/D for t € [0, 1],
where v = R; ™™ and 8 = R{"?, and let
$(t) = (6 =)/ (n = 2))(y + (8 — 7)e) 2= 0/=2),
Then Eq. (3.5.3) becomes
u'(t) + ¢(&)h(r(t)) f(u(t)) =0, a.e. on [0,1]. (3.5.4)
subject to the boundary conditions
uw'(0) =0, au(n) =u(l), 0 <n <1, (3.5.5)

[In 2-dimensions we use r(t) = Ry "R} and ¢(t) = (Ro(1 — £) log(Ro/R1))?.]
Hence we can apply, for example, Theorem 3.3.1 to obtain at least one nonzero
radial solution of the BVP (3.5.1)-(3.5.2).

o
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Remark 3.5.1. Similar results are valid the problem
Au+ h(jz])f(u) =0, for ae. |z| € [R1, Rol, (3.5.6)
with boundary conditions
w(Ro) =0 and u(R;) = ou(R,). (3.5.7)

Radial solutions can be studied by transforming the BVP (3.5.6)-(3.5.7) into the
ODE

u(t) + g(t) fu(t) =0, (0<t<1) (3.5.8)

with boundary conditions

w(0) =0, cu(n) =u(l), 0<n < 1. (3.5.9)




Chapter 4

Nonzero solutions of some
boundary value problems with

discontinuous kernels

4.1 Introduction

In this chapter we extend the results of chapter three to allow for discontinuities in
the kernel and more general functions f. One motivation is that certain nonlocal
boundary value problems lead to precisely this situation. We shall study in detail
the problem

u' () + fltu(t) =0, (0<t<1), (4.1.1)

with boundary condition
u(l) = and(n), w(0) =0, 0<n < 1. (4.1.2)

In this case the kernel of the corresponding integral equation has a discontinuity.
We shall use our theory to show that multiple nonzero (but not necessarily positive)
solutions exist, under suitable conditions on f, when either 0 < a<1l—nora <0.

These results are completely new and have been submitted for publication in [22].

35
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4.2 Existence of nontrivial solutions of Hammer-

stein integral equations

We begin by giving some new results for the following Hammerstein integral equa-

tion.
u(t) = / k(t, 5) £ (5, u(s)) ds = Tu(t), (4.2.1)
G
where G is a compact set in R™ of positive measure. We will work in the space C(G)
of continuous functions endowed with the usual supremum norm. We shall make
the following assumptions on f, g and the kernel k. Recall that f is said to satisfy

the Carathéodory conditions if for each u, s — f(s,u) is measurable and for almost

every s, u — f(s,u) is continuous.

(C}) Suppose that for every r > 0, f : G x [—r,7] — [0, 00) satisfies Carathéodory
conditions on G x [—r, 7| and there exists a measurable function g, : G — [0, co)
such that

f(s,u) < g.(s) foralmost all s € G and all u € [—r,7].

(C2) k: G x G — R is measurable, and for every 7 € G we have

t—7

lim/ |k(t, s) — k(r,3)|g-(s)ds = 0.
¢

(C3) There exist a closed subset Go C G with meas(Gp) > 0, a measurable function

®: G — [0,00) and a constant ¢ € (0, 1] such that

|k(t, s)| < ®(s) for t € G and almost every s € G

c®(s) < k(t,s) for t € Gy and almost every s € G.
(C4) For each r there is M, < oo such that [, ®(s)g-(s)ds < M,.
These hypotheses allow us to work in the cone
K ={ue C(G): min{u(t) : t € Go} > c||ul}.

This is similar to but larger than the cone used by Lan [30]. In order to use the
well-known fixed point index for compact maps, we need to prove that 7': K — K

is compact.
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Theorem 4.2.1. Assume that (C1)-(C4) hold for some r > 0. Then T maps K,

into K and is compact.

Proof. The compactness of T follows from Proposition 3.1, p.164, of [35] since, as G
is compact, the limit in (Cy) is readily shown to be uniform in 7 € G. To see that

T:K, — K, forueC, and t € G, we have,

IﬂMNgémwﬂv@M@Ms

so that
Il < | 81 (s,u(e)) ds.
Also
pinTu(t)} = ¢ | B()f(u(s) ds.
Hence Tu € K for every u € K,. 0

Remark 4.2.2. In Theorem 4.2.1, if the hypotheses hold for each r >0, then T

maps K into K and is compact. We shall only consider this case.

Let ¢ : C(G@) — R denote the function g(u) = min{u(t) : t € Go}. The proof
of Proposition 3.2.3 shows that ¢ is continuous. As in chapter three, for p > 0, we

shall use the set Q, = {u € K : ¢(u) < ¢p}.

Lemma 4.2.3. Q, defined above has the following properties.
(a) Q, is open relative to K.
(b) K. C Qp C K,,.
(c) u € 992, if and only if g(u) = cp.
(d) If u € 9Q,, then cp < wu(t) < p fort € Go.

We omit the simple proof as it is exactly similar to the one in chapter three.

We now prove a lemma which implies the index is zero, this is a more general version

of Lemma 3.2.8

Lemma 4.2.4. Assume that there exists p > 0 such that w # Tu for v € 982, and

the following conditions hold.

O
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(HPZ) There exists a measurable function ¥, : Go — R, such that

f(s,u) > cpip,(s) for allu € [cp,p] and almost all s € Gy,
and infieq, fGD k(t, s)v,(s)ds > 1.
Then ix (T, Q,) = 0.
Proof. Let e(t) =1 for t € G. Then e € K. We prove that
u# Tu+ e forued, and A>0.

In fact, if not, there exist u € 90, and A > 0 such that w = Tu + Ae. By (H pz), we

have for t € Gy,

u(t) = /G Bt ) £ (5, u(s)) ds + \ > /G k(t, ) (s, uls)) ds + A

zep | k(t, s)(s)ds + A > cp+ A
Go

This implies g(u) > cp + A > cp, contradicting (¢) of Lemma 4.2.3. Hence (1) of
Lemma 1.4.7 implies ix (T, Q,) = 0. O

Note that if strict inequality holds in (HZ), taking A = 0 we see that u # T for
u € 9Q,.

Remark 4.2.5. A commonly used assumption in place of (1) of Lemma 1.4.7 is
| Tul| > |ju]| for ||u|| = p. We observe that this follows from a stronger version of
(sz) namely f(s,u) > pw,(s} for cp < u < p where inf;eq, fGD k(t, s),(s)ds > 1.

Indeed, for t € Gp and u € K with ||u|| = p we have

[Tu(t)] = [ k(t,s)f(s,u(s)ds = [ k(t,s)p,(s)ds > p = ||ul.
e} Go

This remark shows that using the open set €, and (1) of Lemma 1.4.7 gives a

stronger result.

We now give a more general version of Lemma 3.2.9, which implies the index is
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Lemma 4.2.6. Assume that there exists p > 0 such that u # Tu for v € 0K, and

f satisfies the following condition.

(Hy) There ezists a measurable function ¢, : G — Ry such that

f(s,u) < pdo(s) foralluel—p,p| andalmostallsec G

and SUPyeq fG |&(t, s)|¢p(s) ds < 1.

Then ig (T, K,) = 1.

Proof. By (H) we have for u € 0K, and t € G,

ITu(t)] = | /G E(t,5)f (s,u(s)) ds| < /G [k(t, 5)| £(s,u(s)) ds
| < [ 16(t,5)l0p()ds < p = [l

This implies ||Tu|| < |ju|| for u € 0K,. By means of (2) of Lemma 1.4.7, we obtain
ix(T, K,) = 1. O

Note that if strict inequality holds in (HPS), then u £ Ty for u € 0K,
We now give our new result which asserts that Eq. (4.2.1) has at least one or at

least two nonzero solutions which are positive on the subset Gg of G.

Theorem 4.2.7. The integral equation Eq. (4.2.1) has a nonzero solution in K if

either of the following conditions hold.

(Hy) There exist p1, pa € (0,00) with py < cpy such that
(H3), (HZ),u# Tu foru e 0Q,,.

(H3) There exist py, ps € (0,00) with py < pe such that
(HZ), (H3), u# Tu forue dK,,.

Eq. (4.2.1) has two nonzero solutions in K if one of the following conditions hold.

(S1) There exist pi, pe, p3 with py < cpa and py < p3 such that
(HS), (HZ),u#TuforuedQ, and(HS) hold.

o
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(S2) There exist py, pa, p3 With p1 < py < cps such that
(H2), (H,), u## Tu foru€ 8K, and(Hg) hold.

Moreover, if in (S1), strict inequality holds in (Hpsl), then Eq. (4.2.1) has a third

solution ug € K,,.

Proof. Assume that (S;) holds. We show that either 7" has a fixed point u; in
Qp, \ K,, or on its boundary. If u # T for u in the boundary, by Lemmas 4.2.4
and 4.2.6, we have ig (T, K,,) = 1, ix(T,Q,,) = 0. By (b) of Lemma 4.2.3, we have
K, C Kepy C Q,, since p; < cpy. It follows from (3) of Lemma 1.4.7 that T has a
fixed point uy in Q,, \ K,,. Similarly, T has a fixed point up in K, \ Q,, or on its
boundary. When strict inequality holds then u 7 T for u € 0K, so ix (T, K, ) =1

and T has a fixed point ug in K,,. The other assertions are proved similarly. O

Remark 4.2.8. Comments similar to Remarks 3.2.11- 3.2.11 also apply in this case.

In the particular case when f(¢,u) = g(¢)h(u) where ®g € L' and h is continuous

it is possible to give conditions that are more easily verified.

Definition 4.2.9. We define the following numbers:

m = max/ lk(t, s)|g(s) ds) and M= mm/ k(t,s)g(s) ds) -

h /
h™"? = sup M, h® = lim sup —= () h* = limsup —- Z(U)
uel-psl P w0 [u] ful—oo %]
h
hepp = inf i) . hg =liminf —= w) , heo = liminf ——@
u€lep,p] P u—0+ Y U—00 U

Lemma 4.2.10. We have the following implications.
1. h® < m implies h=P* < m for some p (small) and h="* < m implies (H).
2. h® < m implies h="* < m holds for some p (large).
3. ho > M implies hey, > cM for some p and he,, > cM implies (HZ).

P

4. heo > M implies he,, > cM holds for some p.
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Proof. (1) For € > 0 there is p, > 0 such that h{u)/[u| < h® + & for |u| < p. which
implies there is p > 0 such that h™"? < m when h® < m. Also h™"* < m implies
h(u)g(s) < mpg(s) so that (H5) holds with ¢,(s) = mg(s). (2) Let § > m. There
is 7 such that h(u)/|u| < @ for |u| > r. As h is continuous there exists v such that
h{u) < Bjul + v for all u. Let p = L, then i(u) < mp for [u[ < p. The proofs of
(3) and (4) are straightforward. O

We now give a more easily checked version of Theorem 4.2.7.

Theorem 4.2.11. Let f(t,u) = g(t)h(u) be as above and assume that
fG (s)g(s)ds > 0. Then Eq. (4.2.1) has a nonzero solution in K if one of the

following conditions hold:
(H{) There ezist py, pa € (0,00) with p1 < cpa such that

hoevet <m and  hepy p, = M

(Hj) There ezist p1, pa € (0,00) with p1 < py such that

Peprpn = M and  h™P2P2 <m,

Egq. (4.2.1) has two nonzero solutions in K if there is p > 0 such that either of the
following conditions hold:

(S) 0<hb<m, hepp,>cM,us#Tu foruedQ, and0<h™<m,

(S5) M <hyg<oo, h™P"<m,u#TuforuecdK, andM <hy <oo.

Theorem 4.2.11 generalises Theorem 2.9 of [21] by allowing discontinuous ker-
nels and generalises Theorem 2.2 of [30] by allowing kernels that are not positive

everywhere hence giving existence of solutions that change sign.

4.3 Multiple nonzero solutions of equation (4.1.1).
We now investigate the BVP

'+ f(t,u(t)) =0, ae on [0,1] (4.3.1)
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with boundary conditions
w(l) =au'(n), u(0)=0,0<n<l, a<l—n. (4.3.2)

By a solution of this BVP we will mean a solution of the corresponding Hammerstein

Integral equation

1
u(t) = f B(t, ) (5, u(s)) ds. (4.3.3)
0

The kernel [Green’s function] in (4.3.3) is

t
t =, s<y t—s, s<t

k(t,s)zwlwﬁﬁ(l—s)— l-a - :

- 0, s>n 0, s>t

Note that the kernel is discontinuous on the line s = n but does satisfy (Cy). We
shall study separately the cases & > 0 and « < 0. In the special case o = 0, existence
of one positive solution is covered by the results of [32]. The results we obtain are

new.

The case a > 0.

In this case we shall suppose that 0 < a < 1 — 7. This is necessary for our method
in order to obtain appropriate lower bounds. We have to exhibit ®(s), a subinterval

[a,b] € [0, 1] and a constant ¢ < 1 such that

|k(t, 8)| <®(s) for every ¢ € [0, 1] and almost every s € [0, 1],

k(t, s) >c®(s) for every ¢ € [a,b] and almost every s € [0, 1].

We show that we may take

ay s(l-s)
O(s) = 1, — .
SRR
Case 1. s > n. If t < s then k(¢,s) > 0 and
t s(1—s)
A —_ (1 <
k(t,s) 1_a(l s) < s
Ift > s then
) ot _s(l—a)+ta~s)
k(t,s)—lma(l s§)—(t—s)= - .
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The minimum/maximum occur when ¢ =1 or t =s. Thus & > 0. If s > « then

=s(1—a)+t(a—s) < s(l1—a)+s(a—s) s(l—s)

Kt s) 1- o = 1—o l—a

If s < @ then

) Csl-a)+tla—-s) _s(l-a)ta—s a(l-s) as(l-s)
Kt s) = 11—« = 11—«  l-a <77(1—o:)'

Case 2. s<n. Ift <s

at tH(l-s—a)

k(t,s) = 1—s)—
o) =750-8=73 I—a
When s < 1 — a we have k(¢,s) > 0 and
s(l—s—a) _s(l-—s)
k(t,s) < < .
(8,5) < l—-a = 1-a«

The case n > s > 1 — « cannot occur since we have 0 < < 1 — 7.
Ift > s then

ot s(l—t—a)

11—«

k(t,s) = (1—s)—

l—a

Ift <1— o then &(¢,s) > 0 and

. s(l—1t) _ s{l—s)
k(t,5) < 11—« = 1—-a

Ift>1— « then k(t,s) <0 and

s(—=1+t+ ) < 08 s(1—n) < s(1—s)

—k(t, ) = 1—a 11—« l—a — 1—-«

Lower bounds
We show that we may take an arbitrary [a,b] C (0,1 — «)

Case 1. s >n. If t < s then

t (1—29) s(1—s)
S = —8) > > .
k(i s) 1—0:(1 S)“al—a Tl
Ift>s
s+at —as— st (1-0) s(1—s)
¢(t,8) = > > (1 -
Bt s) l—a R >(1-8) -«
Case 2. s <. If t < s then
1-s—a - 1
k(t,s) =t LS (1=n a)z-_a(l-—?)—a')éls( °)

1 —« 11— 1l—a

93
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If t > s then

ot s—st—as
1 —

k(t, ) = T}t_—&u _5)—

The conclusion is that we may take

min{da(l —n—a),(1—b—a)}
c= .
max{1,

We state a result when f(t,u) = g(t)h(u), of course there is a more general result

analogous to Theorem 4.2.7.

Theorem 4.3.1. Let [a,b] C (0,1 — a) and suppose that ff@(s)g(s) ds > 0. Let c
be as giwen above. Let m, M be as defined previously. Then for 0 < a < 1—17 the

BVP (4.3.1), (4.3.2) has at least one nonzero solution, positive on [a,b], if either
(h) 0<h® <m and M < ho <00, or

(hy) 0 <A™ <m and M < hy < o0,

and has two nonzero solutions, positive on [a,b], if there is p > 0 such that either
(S)) 0< R <m, hep> M, ustTu forued, and0<h®<m, or

S M < hy<oo, h™PP <m,us#Tu foruedK, and M < hs < co.
2 o

We give a simple example to illustrate the theorem.

Example 4.3.2. Set f(t,u) = 2. In this case the solution is

u(s) = —s(s L 20477)

l—«

For 7 < 1/2 and n + a < 1, the solution is actually positive on all of [0, 1] For

n > 1/2 the solution is negative for ¢ >ty = 1224 but is positive on (0,1 — a).
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The case o < 0.

To simplify the calculations we write - in place of «, so that § > 0.

We show that for these BCs we can take

(1 n+ﬁ Bs(t—s)
O(s) = max{ T } 10
Upper bounds
Case 1. s > n. If t < s then k(¢,s) > 0 and
s(1 —s)
& = —(1 — < .
ko) =gl =9 <75

Ift > s then

smﬁt+ﬁsﬁst< s—fBs+Ps—st  s(1—1) < s(1-s)
1+8 . 1+ 148 T 148
Ift < 5(1+ﬁ) , k(t,5) > 0 and we are done.

Ift> Sgiﬁ ) we have

5 _ts+pt—s— 50 s+ﬁ—s—sﬁ' Bs ( s)
M=y ST s Sw 198

Case 2. s < 7. Note that in this case 8 Sg > 1. If t < s then k(t,s) > 0 and

(1-s) Bt _tl—s+/3

k(t,s) =

95

t
kts) =1~ 9+ 15 =T p
Lsl=s+p) S0 -s+BE) _ (1—n+0)s(1-s)
= 1+8 1+ - 1-7 1+8
If t > s then k(t,s) > 0 and
t —_
k(t,s) = 1+ﬁ(1—-s)+%——(t—) f—li%ff
s(l—s+ﬁ)<(1*n+ﬁ)s(1—s)
- 148 T 1-n 14

Lower bounds
We show that we may take an arbitrary [a,b] C (0, 7).
Case 1. s > n. If t < s then

] ot B (1—2s) s(1—s)
k(t,s)mm(l s)2a1+ﬁ >a 15

Since we take b < 7 the (awkward) case ¢ > s does not occur.
Case 2. s <n. Ift < s then
t—st+p0t 1—-s+p s(1—s)
=t >a
1+p 1+4 1+8

k(t,s) =
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If t > s then

s~—st+ﬁ52ﬁ s 2ﬁs(l—s)_
1+ 1+ 1+ 6
The conclusion is that we may take

k(t,s) =

min{a, 8}
max {(1 —-n+ ), %}

C =

Remark 4.3.3. In this case it is possible to take a somewhat larger b namely any

b < by, where
by = MLFP)
n+p "’

but the corresponding c is more complicated.

For the case when f(t,u) = ¢g(t)h(u) we have the following result.

Theorem 4.3.4. Let [a,b] C (0,7] and suppose that f: ®(s)g(s)ds > 0. Let ¢ be as
given above. Let m, M be as defined previously. Then for o < 0 the BVP (4.3.1),
(4.3.2) has at least one nonzero solution, positive on [a,b], if either (k) or (hy) of
Theorem 4.3.1 is satisfied. There are two nonzero solutions, positive on [a,b], if

there is p > 0 such that either (S1) or (S) of Theorem 4.8.1 holds.

The following example illustrates the result.

Example 4.3.5. Let g(t) = 1 and

2 if Jul €3/m,
h{u) =

uP  for u very large,

where p > 1. Then hy = co and Ay = co and choosing p with 2/m < p < 3/m we
have h™"* < m. Hence (S3) holds and the BVP has two nonzero solutions which

are positive on (0, 7], the ‘small’ solution being as written in Example 4.3.2.

Remark 4.3.6. As in section 3.5 it is possible to state results for the existence of

radial solutions of PDEs in an annulus. For example radial solutions of the BVP

Au+ h(lz))f(u) =0, for ae. |z| € [Ry, Rol. (4.3.4)
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with BC:
du

w(Ro) =0 and, for |z|=R,, u(Ri)=a—(z).

aor
can be studied by means of the ODE

u’(t) + f(tu(t) =0, (0<t<l),

with BC
u(l) = av/(n), u(0) =0, 0<n< 1.

97
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(4.3.6)

(4.3.7)




Chapter 5

Eigenvalues of some nonlocal

boundary value problems

5.1 Introduction

In this chapter we study the existence of eigenvalues for a Hammerstein Integral

Equation of the form

Mult) = fG k(t, ) F(s, u(s)) ds = Tu(t), (5.1.1)

where G is a compact set in R* with meas(G) > 0 and & and f are allowed to be
discontinuous. The tool we use is a well known result for compact maps in order to

establish existence of eigenvalues, working on the cone
K ={ue C(G) : min{u(t) : t € Go} > c||ul|},

where Gy is a closed subset of G. This type of cone was introduced in chapter three
and is a larger cone than the one used by Lan [31}.

Our results apply to second order differential equations of the form
A () + fu(t) =0, (0<t<l), (5.1.2)

subject to suitable boundary conditions (BCs). In this chapter we concentrate on

the following nonlocal boundary value problems:
w(0) =0, av'(n) =u(1), 0< <1, (5.1.3a)

98
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u(0) =0, c'(n) =u(l), 0<n <1, (5.1.3b)
4'(0) =0, au(n) =u(l), 0<n <1, (5.1.3¢c)
u(0) =0, au(n) =u(l), 0<n< L (5.1.3d)

The boundary condition (5.1.3a) is studied or the first time as far as we know. Condi-
tion (5.1.3b) has been studied in chapter four. The two conditions (5.1.3c),(5.1.3d)
have been widely studied by Gupta & co-authors, see for example {13], [14] and
the reference therein, and also by Webb [46]. The results are new and have been

submitted for publication in [19].

5.2 Existence of eigenvalues of Hammerstein in-
tegral equations

We begin by giving some results for the following Hammerstein integral equation.

Au(t) = [G}c(t, s)f(s,u(s)) ds == Tu(t), (5.2.1)

where G is a compact set in R™ of positive measure. Throughout the chapter, even
if not mentioned explicitly, we shall make the following assumptions on f, g and the
kernel k for a fixed 7 > 0 (the assumptions (C4) — (Cy) are the same as chapter four,

but we repeat them for convenience):

(Cy) f: G x[—r1] — [0,00) satisfies Carathéodory conditions on G x [—r, 7] and

there exists a measurable function g, : G — [0, 00) such that

flt,u) < g-(t) foralmost allt € G and all u € [—r,7].
(C2) k: G x G — R is measurable, and for every 7 € G we have

t—T

lim/G |k(t, s) — k(r,5)|g-(5)ds = 0.

(C3) There exist a closed subset Gy C G with meas(Go) > 0, a measurable function

®: G — [0,00) and a constant ¢ € (0, 1] such that

|k(t, s)| < ®(s) for t € G and almost every s € G

c®(s) < k(t,s) for t € Gy and almost every s € G.
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(C4) For each r there is M, < oo such that [, ®(s)g,(s) ds < M.

We use the following well known result (see for example Lemma, 1.1, Chapter 5
of [27]).

Lemma 5.2.1. Let T : K, — K be compact and suppose that
inf ||Tz| > 0.
2c8K,

Then there exist A\g > 0 and o9 € 0K, such that Aoz = T'zq.

The following theorem generalises Lan’s resulits, allowing operators with kernels

that may have both signs:
Theorem 5.2.2. Assume that there exists p € (0,r] such that:

(i) There exists a measurable function m, : Go — Ry such that

f(s,u) =2 mp(s) forallu € [cp,p| and almost all s € G,

(i) T = SuDseq, Jg, k(t, 8)mp(s)ds > 0.
Then there ezist Ao and ug € 0K, such that Agug = Tug.

Proof. Since T satisfies the hypotheses of Theorem 4.2.1, T : K, — K and is
compact. Let u € 3K, then we have, for every s € Gy, cp < u(s) < p. Fort € Gy
we have k(t,s) > 0 and

Tu(t)] > /

Go

k(t,s)f(s,u(s))dsk/ k(t, s)m,(s)ds

&)
Thus [|T'u|| = supsee |Tu(t)| > supeg, |Tu(t)] > 7 and infueor, [|Tul| > 0. By

Lemma 5.2.1 we obtain the existence of an eigenvalue A\ > 0. O

Remark 5.2.3. In the paper [31], due to the positive nature of the kernel, Lan is

able to take a larger 7, namely 7 = sup,.¢ [~ k(t,s)m,(s)ds > 0.
1S Go P

Remark 5.2.4. We shall see below that, for certain values of the parameter o, the

kernel k(t, s) is negative for ¢ in some interval Gy, for all s. In this case, assuming f
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is positive, we can show that a negative eigenvalue exists by studying the operator

—T. Indeed, X is an eigenvalue for

ult) = /G k(t, 8)F (s, u(s)) ds

if and only if X is an eigenvalue of

du(t) = sz(t, s)f(s,u(s)) ds = Tu(t)

where & = —k and A = —\. Hence we can obtain a result, exactly similar to one
above, for the existence of negative eigenvalues. We do not state the obvious theorem

thus obtained.

5.3 Eigenvalues of problem (5.1.3a).

As an application of the theory, we investigate in this section the existence of eigen-

values for equations of the form

M(t) + f(t,u(t)) =0, aeonl0,1], (5.3.1)
with boundary conditions

w'(0) =0, au'(n) =u(l), 0 <n < 1. (5.3.2)

By an eigenvalue of this problem we mean an eigenvalue of the related Hammerstein

integral equation
Au(t) = / k(t, s)f(s,u(s)) ds. (5.3.3)
G

The solution of #’ + y = 0 with these BCs is

1 7 i
ut) = / (1 —s)y(s)ds — a/ y(s)ds — / (t — s)y(s)ds
0 0 0
with Green’s function

—a, s < n t— S, S S t
k(t,s) = (1 —s)+ -
0, §>n 0, s>t
Note that, for o # 0, the kernel is discontinuous on the line s = 7. We shall study
separately the cases @ < 0 and a > 1. The case a = 0 is included in the results of

Lan [31], who studied separated BCs.
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The case o < 0.

To simplify the calculations we write — in place of «, so that 5 > 0.

We have to exhibit ®(s), a subinterval [a,b] C [0,1] and a constant ¢ < 1 such that
|k(t, s)| <@(s) for everyt,s € [0,1],
k(t,s) >c®(s) for every s € [0,1], t € [a,b].
We show that for these BCs we can take
o(s) = (1 —s)(l + %)

Upper bounds
Indeed

k(t,s)

IA
—
|
K
—
—
+
4~Q
~—

since i_;f] > 1fors <9

Lower bounds

We show that we may take arbitrary [a,b] C [0, 1).
Cagse 1. s <n. If s > ¢ then

kt,s)={1—s)+ 8> (1—3s).

If s <t then
k(t,s)=(1—-s8)+pB—(t—s)
which is a function decreasing in ¢ and therefore the minimum is achieved when
t=1. So
k(t,s) > B(1 —s).
Case 2. s >n. If s > ¢ then
k(t,s) =(1—s).

If s <1t then
k(t,s) =(1—s)—(t—8)=1=t>(1-0)(1—s)

Thus we can take
in{3,1—-5b
c= Wﬁ_};. (5.3.4)
1+:5)
We can now state the following result on the existence of eigenvalues of Equation

(5.3.1) with BC (5.3.2):




CHAPTER 5. EIGENVALUES OF SOME BVPS 103

Theorem 5.3.1. Let a < 0, [a,b] C [0,1), ¢ be as in (5.3.4) and assume that there

ezists p € (0,r] such that:

(i) There exists a measurable function m, : {a,b] — Ry such that

f(s,u) > my(s) for allu € [cp,p] and almost all s € [a,b),

(i1) SuDsepay [y k(L 8)mo(s)ds > 0.

Then the boundary value problem (5.3.1)-(5.3.2) has a positive eigenvalue and a

corresponding eigenfunction that is positive on [a, b].

The case O <a<1—mn.

When « > 0 note that £(1,s) = —a < 0 for every s € [0,7]. We have to find & such
that |k(t,s)| < ®(s) for every t,s € [0,1] and show that there exists [a,b] C [0, 1]
and a constant ¢ such that k(t,s) > c¢®(s) for every s € [0,1] and ¢ € [a,b]. In fact
we show that we can take

O(s) = (1 —s).

Upper bounds
Clearly k(t,s) < (1 —s) in all cases. k(t, s) is negative when s < n and ¢t > s and

1 —t—a < 0. In this case we have then
—k(t,s) =—1+t+a<a<l-n<(1l-23)

and we are done.

Lower bounds

We will show that we may take [a,b] C [0,7].
Case 1. s <n. If s >t then

k(t,s)=1—-s—a>(1-n—a)(l--s).
If s <, since we chose & < 1 — 1, we obtain
kt,s)=1—-t—a>1l-n—a>(1-n-a)l-s).

Case 2. s > n. If s > ¢ then
E(t,s)=(1—3s)
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and we are done. Since we take b < 1, the case s < t does not occur.

Therefore we may set ¢ = (1 — n — ).

Theorem 5.3.2. Let 0 < a<1~9, [a,b] C[0,7], c=(1—-n—a) and assume that

there exists p € (0, 7] such that:

(i) There exists a measurable function m, : [a,b] — Ry such that

f(s,u) = my(s) forallu€ lcp,p] and almost all s € [a,b],

(1) SUD,ea f:k(t, symy,(s)ds > 0.

Then the boundary wvalue problem (5.3.1)-(5.3.2) has a positive eigenvalue and a

corresponding eigenfunction that is positive on [a,b].

We illustrate the theorem with two simple examples.

Example 5.3.3. Let [a,b] = [0,7n] and f(s,u(s)) be defined as

|‘U.(S)l(?7 - ‘9)1 0 S § < UE
fls,u) =
0, n<s<1.

Take 0 < p <71 < +oco and g, = rn. In this case we have f(s,u) < g, for every
u € [—p, p] and f(s,u) > cp(n — s) for u € [cp, p] and s € [0,7]. Also

/Onk(t, s)ep(n — s)ds > c2p /On(l - 8)(n — s)ds > 0.

By Theorem 5.3.2 we obtain the existence of a positive eigenvalue for the BVP

(5.3.1)-(5.3.2).

Example 5.3.4. Let f(s,u) = 2. For every fixed p > 0, A = (1 —2an)/p is a
positive eigenvalue of the boundary value problem (5.3.1)-(5.3.2) with corresponding

eigenfunction
(1 — 2am) — t*

u(t) = 5

u(t) is positive on [0, 7] since o < 1 —n and u changes sign (u(1) < 0).
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5.4 Eigenvalues of problem (5.1.3b).
We now investigate the second BVP
A’ (6) + f(tu(t) =0, (0<t<1), (5.4.1)
with boundary conditions
w0) =0, av'(n) =u(l), 0<n<1, a<l—ny (5.4.2)

The kernel in this case is

We study separately the cases when o < 0 and @ < 1 — 7. The existence of positive

eigenvalues when « = ( is covered by the results of Lan [31].

The case a < 0.

In chapter four it has been shown that we can take

d-n-9 _E} s(l—s)

l—=n " nf 1l-«

H

®(s) = max {

la,b] € (0,7n] and ¢ = min{a, —a}/ max{(1 —n — «), —a/n}. Now it is clear that
a theorem exactly similar to Theorem 5.3.1 holds, we leave the statement to the

reader.

The case 0 <a<1-mn.

In chapter four it has been shown that we may take

el @180 —s)  minfa(l-n—a),(1-b-a)
O(s) =m {l,n}

1—a max{1, 2}

and [a,b] C (0,1— ). A result similar to Theorem 5.3.2 holds. We omit the obvious

statement.
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5.5 Eigenvalues of problem (5.1.3c).
We now investigate the BVP

AU () + f(tu(t) =0, (0<i<1), (5.5.1)
with boundary conditions

#'(0) =0, au(n) =u(l), 0 <n < 1, (5.5.2)

The kernel in this case is

1 (n—s), s<n t—s, s<t
k(t,S):T:—C;(l—S)-— -« —

0, §>1n 0, s>t

We shall study separately the cases @ < 0,0 < @ < 1 and o > 1. The case a =0
has given by Lan in [31].

The case a < 0.

In chapter three it has been shown that the kernel satisfies |k(t, s)| < (1—s) for every
s,t € [0,1] and k(t, s) > c(1—s) for every ¢ € [a,b] and s € [0, 1], where [a, b] C [0, 7]

and ¢ = (1 —n)/(1 — «). Therefore we can state the following theorem:

Theorem 5.5.1. Let o < 0, [a,b] C [0,7], ¢ = (1 —n)/(1 — a) and assume that

there ezists p € (0, 7] such that:

i) There exists a measurable function m, : a,b] — Ry such that
4 +
f(s,u) > my(s) forallu € [cp,p] and almost all s € [a,b],

(i) SuPyefa fab k(t, s)my(s)ds > 0.

Then the boundary value problem (5.5.1)-(5.5.2) has a positive eigenvalue and a

corresponding eigenfunction that is positive on [a, b].
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The case 0 < o < 1.

In [46] Webb proved that we can take

B 1—s
T 1l-a

b}

d(s)

la,b] C [0,1] and ¢ = (1 —n). Thus we can state a similar result to Theorem 5.5.1.

We omit the obvious statement.

The case o > 1.

For these BCs the kernel k is negative on an interval so we apply Remark 5.2.4 and

consider —% in place of k. In chapter three it has been shown that we may take

B(s) = (1 —3)

and then —k(t,s) > c®(s) for ¢ € [a,b] and s € [0,1], where @ = 7, b € (5,1] and
¢ = (1 —n)/a. Therefore we have the following result related to the existence of

negative eigenvalues:

Theorem 5.5.2. Let o > 1, [a,b] and ¢ be as above and assume that there exists

p € (0,7] such that:
(i) There ezists a measurable function m, : [a,b] — Ry such that

f(s,u) > m,(s) forallu€ [co,p] and akmost all s € [a, D),

(1) SUP;e[a) f: —k(t, s)m,(s)ds > 0.

Then the boundary value problem (5.5.1)-(5.5.2) has a negative eigenvalue and a

corresponding eigenfunction that is negative on [a,b].

We illustrate the theorem with the following example.

Example 5.5.3. Take [a,b] = [n,1], ¢ = (1 —n)/a and f(s,u(s)) be defined as

u(s)|(s — 1), <s<1,
Fou) = [u(s)l(s—m), n<s

1, 0<s<n.
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The function f is positive and discontinuous, but satisfies Carathéodory conditions,
f(s,u) < g», where g, = max{l,r}. Also f(s,u) > cp(s —n) for u € [cp, p| and
s € [n,1]. Clearly fﬂl —k(t,s)(s — n)ds > 0. By Theorem 5.5.2 the BVP (5.5.1)-

(5.5.2) has a negative eigenvalue.

5.6 Eigenvalues of problem (5.1.3d).

We now investigate the BVP

M)+ flu(®) =0, (0<t<1), (5.6.1)
with boundary conditions (BCs)

w(0) =0, au(n) =u(1), 0<n < 1. (5.6.2)

The kernel in this case is
ot

(n—s), s<n t—s, s<t
Hl—s)—¢ 1—om —

0, §>n 0, s>t

blt,s) = 1—an

We shall study separately the cases an < 0,0 < an < 1and an > 1. Thecase a =0

is covered by results of Lan [31].

The case an < 0.
In chapter three it has been shown that we can take
1—
B(s) = (1— a)s(_‘?l

1—an’
la,b] C (0,n] and ¢ = min{a,1 — n}/(1 — ). Now it is clear that a theorem exactly

similar to Theorem 5.5.1 holds, we leave the statement to the reader.

The case 0 < an < 1.

In [46] Webb proved that we can take
1-s
1—an’

®(s) = max{1, a}

[a,b] C (0,1] and that for o < 1 we may take ¢ = min{a, an,4a(l —n),a(l —n)}
and for a > 1 we may take ¢ = min{an, 4a(l — an)n,n{1 —an)}. A result similar to

Theorem 5.5.1 holds. We omit the obvious statement.
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The case an > 1.

For these BCs the kernel % is negative on an interval so we apply Remark 5.2.4 and
consider —k in place of k. In chapter three it has been shown that we may take

s(l—s)

(I)(s)-——ozam_l.

Indeed —k(¢,s) > ¢®(s) for ¢ € [a,b] and s € [0, 1], where [a,b] C [n,1] and
¢ = min{a,1 —n}/a. A theorem exactly similar to Theorem 5.5.2 holds, we leave

the statement to the reader.
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