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Summary

This thesis is concerned with the problem of finding nontrivial solutions of nonlinear 

equations.

Chapter one is an introduction to the concepts used through the thesis, including 

the notion of topological degree, measure of noncompactness, fixed point index and 

so on.

The work of chapter two builds a new definition of spectrum for nonlinear, finitely 

continuous maps using the class of A-proper mappings. In this chapter we also in­

vestigate the properties of the new spectrum and we discuss advantages and disad­

vantages of such a finite-dimensional approach.

In chapter three, by using fixed point index theory, we establish new results 

for some three point boundary value problems (BVPs) tha t have been previously 

studied by various authors, for example by Gupta et al. in [13, 15]. For certain 

values of a parameter a  these particular BVPs can generate a continuous kernel 

that changes sign, so tha t positive solutions may not exist. We obtain existence of 

at least one or of multiple nonzero solutions.

In chapter four we extend the results of chapter three, allowing more general 

functions /  and discontinuous kernels. We focus 011 a particular BVP that leads 

precisely to this situation, obtaining again, under suitable conditions, existence of 

nonzero solutions.

Finally, in chapter five, we turn our attention to the problem of eigenvalues of 

some three point BVPs. By using some results of chapter three and four together 

with a well known theorem on eigenvalues, we prove the existence of positive (and 

negative) eigenvalues.



Introduction

This thesis is divided in two parts, and reflects the variety of interests and problems 

that I came across in my journey through the kingdom of Nonlinear Analysis while 

I was studying for my Ph.D.

The first part is related to the problem of finding a new definition of spectrum of 

Nonlinear Operators. Due to the importance of spectral theory for linear operators 

it is not surprising tha t several attem pts have been made to define and study a 

spectrum for nonlinear operators. One of the first attem pts is due to Kachurovskij 

in 1969 [25], Kachurovskij gave a definition of spectrum for continuous maps. His 

idea of regularity involves the bijectivity of the function and imposes constraints on 

the properties of the inverse as well. Later, in 1978 [11], Puri, Martelli and Vignoli 

introduced a spectrum with interesting applications. This spectrum is defined for 

continuous operators by using a number attached to the measure of noncompact­

ness and the concept of stably solvable  maps. Other authors gave [3, 5, 8 , 10, 36] 

different definitions of spectrum of nonlinear operators and each of them focused on 

a particular class of maps.

In chapter two we introduce a new definition of spectrum for finitely continuous 

operators, which we call the A-spectrum. To do this we use the notion of approxi­

mate solvability (hence the concept of A-proper maps), a modification of the Furi- 

Martelli-Vignoli spectrum for finite dimensional maps and the theory of topological 

degree. We investigate the topological properties of the A-spectrum, its closedness, 

boundedness, nonemptiness and the relation with the linear spectrum. In section

2.5 attention is given to positively homogeneous operators, extending some known 

results valid for eigenvalues for linear operators to the new spectrum. In particular 

we show th a t if A € <Ja ( I )  and |A| > 7 ( /) , then there exists t  e (0 , 1] such that 

A/(£) is an eigenvalue of / .  This is used in section 2.9 to prove a result similar to



the Birkhoff-Kellogg Theorem for finitely continuous maps. Finally in section 2 .1 2  

we show tha t in general eigenvalues are not contained in the A-spectrum and we 

compare it with other spectra.

The second part of the thesis is concerned with the study of nonzero solutions

and eigenvalues of certain nonlocal boundary value problems (BVPs). In order to

solve these problems we do not use the topological degree directly but we use its 

restriction to cones, the fixed point index, extensively.

In chapter three we investigate two second order differential equations of the 

form

u"(t) +  g(t)f(u (t))  =  0 , (0  < t  < 1 ) (0 .0 .1 )

under one of the boundary conditions (BCs)

u '(0 ) — 0 , au(rj) = u (l), 0 < g < 1 , (0 .0 .2a)

u(0 ) =  0 , au(rj) =  u (l) , 0 < g < 1 . (0 .0 .2b)

These so-called three-point BVPs, and more general m-point BVPs, have been well

studied in recent years, see for example Gupta et al. [13, 15] and the references

therein.

The idea we use to find nontrivial solutions is to write the BVP as an equivalent 

Hamm or stein Integral Equation

u(t) — f  k(t, s)g (s)f(u (s)) ds := Tu(t)  (0.0.3)
Jo

and look for fixed points of the operator T  on a cone of functions tha t are positive 

on an interval, namely

K  =  {u £ C [0,1] : min{u(t) : a < t  <  b} > c||w||}.

The reason we use this particular cone rather than the cone of positive functions 

commonly used in the literature is due to the fact tha t positive solutions may not 

exist. For example for (0.0.2a) when o; < 0, the kernel k(t, s) is not positive for all 

values of £, s, indeed fc(’l ,s )  < 0 for all s. Therefore, when g and /  are positive, a 

fixed point of the operator T  cannot be positive on [0 , 1].

The improvement with respect to the classical theory is tha t this new cone works 

for a wider class of kernels, allowing kernels tha t change sign.
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In section 3.2 we show that the operator T  sends the cone into itself. By means 

of a well known result of fixed point index theory, we prove that, under suitable 

conditions, the operator T  has one or more fixed points. In sections 3.3 and 3.4 we 

show how to apply the abstract theorems to our particular BVPs. In practice this 

means finding upper and lower bounds for the kernel on a suitable interval [a, b\.

In chapter four we extend the results of chapter three by allowing more general 

functions /  and discontinuous  kernels tha t change sign. The BVP

ulf(t) +  / ( t , u(t)) =  0, (0 < t < 1), (0.0.4)

with boundary condition

u (l)  -  cm'fa), u(0) -  0, 0 < v < 1- (0.0.5)

leads precisely to this situation. The kernel of the associated integral equation has 

a discontinuity on the line s — r}.

Again, using a technique similar to the one of chapter three we are able to prove 

first existence of multiple fixed points of the associated integral equation and then 

give results for our particular BVP.

Chapter five deals with the problem of finding eigenvalues of the Hammerstein 

Integral Equation of the form

Au{t) — f  k(t, s ) f(s ,u (s ))  ds := T u(t),
Jg

where we allow k and /  to be discontinuous and k to change sign. In this case

we use the results obtained in chapter three and four together with a well known

theorem on eigenvalues to show the existence of positive (and negative) eigenvalues. 

We apply our results to the BVP

Au"(t) +  / ( t , u(t)) =  0 , (0  < t  < 1 ), (0 .0 .6 )

subject to the boundary condition:

v!{0 ) =  0 , — u( 1),  0 < 77 < 1 , (0.0.7)

and also to the other BCs seen above.
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Chapter 1

Prelim inaries

Throughout this thesis we will be interested in the solvability of nonlinear functional 

and differential equations. Depending on the nature of the problem we will use 

different tools of Nonlinear Functional Analysis, for example topological degree and 

fixed point index theory, and use notions such as approximation solvability.

In this chapter we give an introduction to these concepts.

1.1 Banach spaces, linear operators

In the sequel X  and Y  will denote Banach spaces. We say tha t a Banach space 

is real if the scalar field (which we indicate by K) is M and complex if the field is 

C. A Banach space X  is said to be separable if it has a countable dense subset. 

A sequence {e;} C X  is a Schauder basis if every x  G X  has a unique convergent 

expansion

»>i
where Xi <E K. Given a map L : X  —>Y we say that L  is a linear operator if 

L (ax  +  (5y) — aL x  +  pL y  for every x } y E dom L  and cq (3 E K. 

The norm  of a linear operator is given by the formula

If || £  11 is finite we say tha t L  is bounded.

The following Theorem links continuity and boundedness of a linear operator:

1
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T h eo rem  1 .1 .1 . [26] Let L be a linear operator. Then

i) L is continuous if  and only if L is bounded,

ii) if  L  is continuous at a single point, it is continuous.

Note that, in the case of a finite dimensional space, we have the stronger result:

T h eo rem  1.1.2. [26] I f  a normed space is finite dimensional, then every linear 

operator is bounded.

We say tha t a linear operator L  : X  —> Y  is compact if L  maps bounded sets 

into relatively compact sets in Y ,  tha t is, for every given bounded set M  in X , the 

closure T ( M)  is compact. A linear functional f  is a linear operator with domain 

X  and range K. A bounded linear functional is a linear functional with finite norm. 

The dual space X* of a Banach space X  is the vector space of all bounded linear 

functionals on X .

E x am p le  1.1.3. An important example of a Banach space th a t will be used in the 

thesis is the Banach space (7[a, b] of continuous functions from [a, b] to K endowed 

with the norm

of all infinite dimensional Hilbert spaces. In fact it can be shown tha t every infinite

IÎ H =  sup \x(t)\.
iG [a ,6]

E x am ple  1.1.4. By definition the space 12 is the set of all sequences of numbers

(a?i, a;2, -. -) such that oo

endowed with the norm
OO

A simple basis for 12 is {en} =  {<$in}ieiv where
/

The space I2 is very interesting (see for example [26]) and it is actually the prototype
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dimensional separable Hilbert space is isomorphic to Z2, a good reference is Theorem 

16.19 in [16].

1.2 Brouwer degree

In this section we define the Brouwer degree for continuous mapping and state some 

results tha t we will use later, when dealing with finite-dimensional problems.

Let Ll be a bounded open set in Mn. For each continuous map f  : Ll ~~> and 

y ^ f {df l )  we can define an integer deg(/, Ll, y) which, roughly speaking, corresponds 

to the number of solutions x E fl of the equation f ( x )  = y. If /  is a smooth function 

and y is not a critical value for / ,  the degree is given by the simple formula

deg(/, £2, i/) =

where J f ( x )  =  det f ' (x).  When y is a critical value we can define the degree by 

approximation (see for example [33] for details). In general for continuous functions 

the Brouwer degree is constructed via approximation with a smooth function g. Let 

g E C ^O ) be such that

\ \ f ( x ) ~  g(x)\\ < d is t ( yJ(dQ) ) .

'We define the degree of /  by setting

deg ( f , Q, y)  =  deg {g,£l,y).

It can be shown that this definition does not depend on the choice of the function 

g, again [33] is a good reference.

We are now able to state some properties of the Brouwer degree.

Theorem  1.2.1. [6] Let fl be a open bounded set in /  E C(Q) and y ^

Then the Brouwer degree has the following properties:

(dl) (Normalization) deg(/, Q) y) — 1 for y E Q

(d2 ) (Additivity)  deg(/, Ll>y) =  deg(/, f2]_,y) +  deg(/, y) whenever and

are disjoint open subsets ofLl such that y ^  f(Cl \  (f2i U 1)2))
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(d3) (Homotopy) deg (h(t, -), Ll, y{t)) is independent o ft whenever h : [0,1] xH —» Mn 

and y : [0,1] —> Mn are continuous and y (t) ^  h(t, dLl) for every t  G [0,1].

(dA) (Existence) deg(/, 0 ,y )  7  ̂ 0 implies / -1(?/) 7  ̂ 0.

(d5) deg(-,Q,y) is constant on {g G C'(fi) : ||y — / | |  < r}, where r — dist(y,f(dQ,)).

(d6 ) deg( / ,£ / • )  is constant on B r(y) C Mn. Furthermore, deg(/,£},•) is constant 

on every component of ML \  f ( d  Pi).

(d7) (Boundary dependence) deg(/, £2, y) — deg(y, £2, y) whenever / \ qq — q\qq.

(<28) (Excision property) deg(/, £2,y) =  deg(/, £2i,y) /o r  every open f2x C 0  such 

that y £ f(Cl \  Hi).

The following is the well-known Brouwer fixed point theorem (see for example 

Theorem 3.2 of [6]):

T h eo rem  1 .2 .2 . Let D — Bi(0) be the unit ball in Mn and f  : D  —» D continuous. 

Then f  has a fixed point.

We can prove this result by means of degree theory.

Proof We assume th a t f ( x )  7  ̂x  for x  G dD,  otherwise there is nothing further to

prove. Consider the homotopy

h(t, x) = x — t f ( x ), t G [0,1] and x  G D.

It is clear that, for t  G [0,1), t f ( x)  ^  dD  and hence

h(t, x) 7  ̂ 0 for x G 8D  and t G [0,1].

By the homotopy property of the degree we have

deg(/ -  / ,  .£?i(0 ), 0 ) -  deg(/, I?i(0 ), 0 ).

Since deg(/, £h(0), 0) =  1, we obtain deg (I — / ,  Hi( 0),0) =  1. Hence there exists

x  G Bi(0)  such tha t f ( x )  =  x. □
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R em ark  1.2.3. Although we said tha t the degree is roughly a “count” of the number 

of solutions of an equation f ( x )  = y, there are cases of maps with zero degree for 

which the equation f ( x )  — y  admit solutions, as we can see in the following simple 

example:

E xam ple  1.2.4. Take £2 =  (—1,1), y = - and f ( x )  — x 2. Obviously —|  and |  

are solutions of the equation x 2 — j  and they lie in £1. Nevertheless, let g =  1 and 

obtain deg(#, ( -1 ,1 ) , | )  -  0 by (d4) and deg(p, (-1 ,1 ) , | )  =  deg(/, (-1 ,1 ) , \ )  by 

(d7). Hence deg(/, ( - 1 , 1 ), ±) =  0.

In the case of odd maps this does not happen. We recall tha t £2 is said to be 

symmetric with respect to the origin if £2 — —0. A map /  : £2 C X  —> Y  is odd on 

£1 if and only if for every x  6  £1 we have f ( —x) — —f (x) .  We can state Borsuk’s 

Theorem (see Theorem 4.1 of [6] for a quick proof).

T h eo rem  1.2.5. Let £1 C Mn be open bounded symmetric with 0 G £1. Let f  £ C(£2) 

be odd and 0 £ /(<9£2). Then deg(/, £2, 0) is odd.

1.3 Leray-Schauder degree

We recall th a t a nonlinear map /  : X  —» Y  is said to be compact if /  maps bounded 

sets into relatively compact sets in Y .

The Leray-Schauder degree is an extension of the Brouwer degree to the case of 

infinite dimensional spaces, in the particular case of maps of the form T  = 1 — 0 , 

where I  is the identity and C  is a compact map. The key theorem used in order to 

define the Leray-Schauder degree is the following:

T h eo rem  1.3.1. [33] Let £2 C X  be a bounded open set and C  : Cl —» Y  compact. 

Given e > 0, there exists a continuous map Ce : Q, —* Y ,  whose range C£(Ll) is finite 

dimensional such that, for every x  € £2

||C(z) -  C6 (a;)|| < e.

By virtue of Theorem 1.3.1 we can define the Leray-Schauder degree for a map 

of the type T  =  I  — C by using Brouwer degree. Indeed let T  =  I  — Ce, where Ce
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is a continuous map on El with finite dimensional range such tha t

sup ||Cea: — Cic|| < dist(y, dT(Q)) = e 
n

and El be the finite dimensional subspace of X  which contains y and Ce(Q). Then 

we can set

degl s {T> ^  V) =  deg(T, El, y).

In [33] it is shown that degLS(T,El,y) does not depend on the particular Ce chosen 

to approximate C.

We are ready to state the main properties of the Leray-Schauder degree (details 

can be found in [6 , 33]).

T heorem  1.3.2. Let El he a open bounded set in X . Let T  — I  — C : El X  be such 

that C : El X  is compact and y e/i T(dEl). Then the Leray-Schauder degLS(T, El, y) 

is well defined and inherits the properties (dl) — (dS) of  the Brouwer degree.

In this thesis we will not use the Leray-Schauder degree directly, but we will 

consider its restriction to cones, the fixed point index.

1.4 Fixed point index

The fixed point index is, loosely speaking, an algebraic count of the number of fixed 

points of a map in a closed convex set (usually a cone).

D efinition 1.4.1. [6] We say that a set K  is convex if tx  +  (1 — t)y  E K  for every 

x ,y  E K  and t  E [0,1], We define the convex hull of a set D  to be the set

n n

co D  =  : Xi E jD, U E [0,1] and =  1 j .
1 i=l

The definition of the fixed point index for compact maps in infinite dimensional 

spaces involves the Leray-Schauder degree and is given by the following:

D efinition 1.4.2. [6] Let K  be a closed convex set in a Banach space X  and let D 

be a bounded open set such tha t D% =  D  n  K  ^  0. Let T  : Dj< —» K  be compact.
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Suppose th a t x  ^  T(x)  for all x E Or D, the boundary of D  relative to K .

We define the fixed point index by the equation

iK {T, Dk ) = degLS(I  — T r ,r~ l (Dj<) fl B p, 0),

where r is a retraction from X  onto K , Bp D D k .

Rem ark 1.4.3. T r  has the same fixed points as T  for if T rx  ~  x  then x E K  

because T  : D r  K , hence rx  — x. So x ^  T x  for x E OrD, implies x ^  T rx  for 

x E d(r~1(DR)  fl B p) hence the Leray-Schauder degree deg (I  — T r , r _1(D/f) n  B pi 0) 

is defined. It can be shown that the degree is independent of the choice of the 

retraction r  and the radius p. Hence, the index ^ ( T ,  D k ) is well defined.

Hence we can state the basic properties of the fixed point index.

Theorem  1.4.4. [6] Let K  be a closed convex set in a Banach space X  and let D be 

a bounded open set such that D k  •= D D K  ^  0. Let T  : D k  K  be a compact map. 

Suppose that x ^  T(:r) for all x E OrD. The fixed point index has the following 

properties:

(Pi )  (Existence) I f  D k ) ^  0, then T  has a fixed point in D r .

(P2) (Normalisation) I f  u E D k, then ij-ciu, D k) — 1, where u(x) — u for x E Dr.

(P3) (Additivity) I f V 1, V 2 are disjoint relatively open subsets of D k  such that

x  7  ̂T(x)  for x E D k  \  (171 U V 2), then

iK(T, Dk ) = i,<{T, V 1) + iK(T , V 2).

(P4) (Homotopy) Let h : [0,1] x D k  —► K  be compact such that x ^  h(t ,x) for

x E Or D and t E [0,1]. Then

ii<{h{0 , -)>Dr ) = ii<{h( 1,.), Dk )-

As we said at the beginning of this section, the best candidate for a closed convex 

set to work with, for example when dealing with integral equations, is a cone.
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D efinition 1.4.5. A cone K  C X  is a closed convex set such tha t AK  C K  for

every A >  0 and K  H ( - K )  = {0 }.

A key result in this area is KrasnoseV'skii’s fixed point theorem on cones. It is a 

standard technique to use this theorem to prove the existence of solutions of some 

integral equations (the proof is illustrated in Figure 1.1).

Theorem  1.4.6. [28] Let I (  C X  be a cone, and H2 be open subsets in X  with 

0 E fii, C fA &nd T  : K  fl (£72 \Ll i )  —> K  be compact. Then T  has a fixed point

in K  n  (f22 \  fA) if  either

i) ||Th;|| < ||ic|| for x  £ K  n  cAA and ||T:c|| >  ||a:|| for x  G K  fl d n 2

or

ii) ||Ta:|| >  ||a;|| for x  E K  fl dQi and ||Ta;|| <  ||x|| for x  G K  n  cA12.

Proof If T  has a fixed point on d(K  fl fA) or d(K  fl H2) we are done. Otherwise, 

assume th a t i) is satisfied, obtaining iic{T,Lli) — 1, see proof of (2) of Lemma 1.4.7. 

The hypothesis ||Ta;|| >  ||z|| for x € K  fl <9H2 implies «k(T, fi2) =  Cf, see for example 

[12]. Using (3) of Lemma 1.4.7 we have tha t T  has a fixed point in K  fl (Q2 \  £A)- 

The case ii) is treated in a similar manner. □

|~T1 index-G

7T] index=lindex=-l

Figure 1 .1 : Krasnosel’skii’s fixed point theorem
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The following lemma (see for example Theorem 12.3 in [1]) will be useful later in 

the thesis since, replacing the common “cone expansion” assumption \\Tx\\ > ||x|| 

with x A  T x  +  Ae, enables us to obtain different results:

L em m a 1.4.7. Let D be an open bounded set with D k  A 0 and D k  A K . Assume 

that T  : D k  K  is a compact map such that x A T x  for x  E QDk • Then the fixed 

point index ^ ( T ,  D k) has the following properties.

(1) I f  there exists e E K  \  {0} such that x A  T x  4- Ae for all x E ODk and all 

A > 0, then z/c(T, D k) = 0 .

(2) I f  ||T;c|| <  ||a;|| for x  E BD k, then i k { T , Dk )  =  1-

(3) Let D 1 be open in X  with D l C D k • I f  ii<{T, D k ) — 1 and D ^)  =  0, 

then T  has a fixed point in Dk  \  D j T h e  same result holds if  z/c(T, D k ) =  0 

and i k (T , D}{) — 1 .

Proof For (1), suppose i k [T, Dk ) A  0 where D =  B p and for arbitrary m > 0 

consider h(t, x) = T x P t me .  By hypothesis x A  so by the homotopy property

we obtain i k { T  +  me, Dk )  A 0- Hence, by the existence property, for each m  E N 

there is x m E K  with ||.Tm|| < p such tha t x m = T x m T  me.  As T  maps bounded 

sets to bounded sets this is impossible.

For (2), consider the homotopy h(t ,x)  := tTx. Then x  =  h(t ,x)  would imply 

r = ||z|| =  i||Ta;|| <  i||a;|| and t = 1 is excluded by assumption.

(3) is just the Additivity property. □

1.5 M easure of noncom pactness

As we have seen compactness does play a central role in functional analysis, therefore 

is not surprising tha t tools there have been developed to measure, roughly speaking, 

how far a map is from being compact. To be more precise:

D efinition 1.5.1. Let B c l b e  bounded, we call the number

a(B)  =  inf{<2 > 0 such tha t B  admits a finite cover by sets of diameter < d}
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the Kuratowski (set) measure of noncompactness and

0(B)  = inf{r > 0 such tha t B  can be covered by finitely many balls of radius r}

the Hausdorff (ball) measure of noncompactness.

The properties of a  and 0  can be found for example in [6 ].

Given a measure of noncompactness attached to sets it is natural to define an 

analogue of this number for functions in the following manner:

o.'(/) — inf {A; > 0 : a( f ( B) )  < ka(B)  for every bounded B  C X}, 

lu(f)  — sup{ft >  0 : a( f ( B) )  > ka(B)  for every bounded B  C X }

0( f )  — inf {A: > 0 : 0( f ( B) )  < k0(B)  for every bounded B  C X}, 

u ( / )  ™ sup{/c >  0 : 0( f ( B) )  > kp(B)  for every bounded B  C X}

The main properties of a( f )  and to(f)  can be found in [11].

R em ark  1.5.2. Recall tha t for every bounded set B  C X  we have the useful relation 

between the two measures (see for example [40]):

(3(B) < a(B)  < 2(3(B).

One can also show that

^ a ( f )  < P( f )  <  2 a( f )

and that

1(Z>(/) < w ( f )  < 2 Q ( f ) .

Furthermore note tha t a function /  : X  —> X  is compact, i.e. /  maps bounded 

sets into sets with compact closure, if and only if a ( f )  = (3(f) = 0 .

D efin ition  1.5.3. We say that a map /  : D  C X  —> V is a (3-contraction if 

(3(f(G)) <  k(3(G), for every bounded set G C D  for some A: >  0. /  is said to be ball 

condensing if p ( f ( G )) < 0(G),  for every bounded set G C D  with 0(G) ^  0.

We have the simple result:
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Lem ma 1.5.4. Let f  be a (3-contraction with fi( f)  < k. Then there exists e > 0 

such that f i l  +  f  is a (3-contraction with (3(fil +  / )  < k for all (i £ K  with \fi\ < e.

Proof. We have that P( pl  +  / )  <  (3(pl) +  /3(f) =  |/x| +  0(f ) -  Therefore f i l  +  /  is a 

/5-contraction. If we choose e = k — (3(f) we have 0(p,I + f )  < k. □

1.6 A-proper maps

The theory of A-proper maps was introduced by Petryshyn in [38], motivated by 

the need of constructing a solution of an infinite dimensional equation f ( x )  = y by 

a limit of finite dimensional approximations f n{x) — yn.

X

K, Qr

-> Y n

D efinition 1.6.1. Let X  and Y  be Banach spaces, {Xn} C X  and {Ŷ ,} C Y> 

be sequences of oriented finite dimensional subspaces, Vn an injective map of X Tl 

into X  and Qn a continuous linear map from 7  to 7n. We say th a t the projection 

scheme F =  { X n)Vn;Yn, Qn} is admissible  if dist(a:,X7l) —> 0 for every x £ X  and 

supn ||Qn || <  rj. If furthermore dist(t/, Y^) —> 0 for every y G Y  we say tha t the 

projection scheme is complete  (for further information on projection schemes see 

[40]).

D efinition 1.6,2. [40] Given a Banach space X  and a map f  : X  —* Y , we say 

that the equation f ( x )  — y is approximation solvable (or simply A-solvable) with 

respect to F — {Xn, Vn\ Yny Qn} if there exists n 0 6  N such th a t Qnf ( x n) — Qny has 

a solution x n £ X n for every n > n 0 and x nk —> x 0 for some subsequence {xnfc} of 

{rcn} and f ( x 0) =  y.
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R em ark  1.6.3. Although we give the general definitions of A-solvability and A- 

properness we will work, unless otherwise stated, with the special case of a particular 

projection scheme for (X, X ) . In this case Yn = X n and Qn =  Pn : X  —> X n is a 

linear projection with ||Pn || =  1 for every n. We indicate this particular scheme by

=  {A'n, Pn}-

R em ark  1.6.4. A-solvability means tha t not only can we find a solution of the 

infinite-dimensional equation, but we can construct a solution via a limit of finite­

dimensional approximations. Note tha t the A-solvability of an equation implies its 

solvability, but the converse need not be true as the following example shows:

E x am p le  1.6.5. Take /2(C) with Ti =  {Xn,P n}, where X n = span{ei,. . . ,  en}, 

{e*} is the standard basis of 12, Pn is the projection over the basis and f  : I2 —* I2 is 

defined by

f { x i , x 2, x 3, x A, .. .) =  {x2>xu x 4, x 3, .. .).

The equation f ( x )  — y  is clearly solvable and f n{x) — Pn(y) is solvable if n is even 

but not if n  is odd (take for example y — {^}). Therefore f ( x )  — y is not A-solvable 

(in fact it is feebly A-solvable as defined in [40]).

D efin ition  1 .6 .6 . [40] We recall tha t a map /  : X  —► Y  is demicontinuous at x if 

{aCj} E X  and Xj —► x imply f ( x j )  —̂ f (x) ,  where the symbol denotes weak 

convergence. /  is weakly continuous if {ar,-} E X  and Xj —̂ x  imply f (Xj) —*■ f (x)\  

f  is finitely continuous if for every finite dimensional subspace V  of X  and every 

sequence {ajj-} E V, xj —> x  E V  implies f(xfi) —*■ f (x) .

D efin ition  1.6.7. [40] Given a map f  : X  —* Y t we say th a t /  is A-proper relative 

to T =  { X n, Vn\yn, Qn} h

fn := Qnf  : X n - * Y n 

is continuous for each n  E N and if {x7lj \xn . E X n .} is a bounded sequence such that
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there exists a subsequence {xn } of {xn)} and x x X  such that xn —» x  and

f ( x)  =  2/.

Theorem  1.6.8. [40] Let f  : X  - ^ Y  be A-proper and C : X  —► Y" 6e compact, then 

f  + C is A-proper.

A similar property is valid for ball condensing maps (see Corollary 2 .2  of [40])

Proposition  1.6.9. Let f  : A  —> X  be ball condensing. Then

Tt : = I  +  t f : X - * X

is A-proper for every t  G [— 1,1] .

A concept closely related to A-properness is A-stability

D efinition 1.6.10. [40] Given a function /  : X  —» A , we say tha t /  is A-stable if

there exists a continuous function h : > IR+ such tha t

\\P„f(x) -  Pnf ( y )II > h(||x -  y||)

for all x, y  E X n with x ^  y  and n > tiq.

We have the following theorem (see Theorem 1.5 of [40])

Theorem  1.6.11. Let f  : X  —> X  be continuous and A-stable. Then the following 

are equivalent:

(Al )  f  is A-proper,

(A2) f ( x )  = y is uniquely A-solvable for every y G X ,

(AS) f  is surjective,

(A4) f  is pseudo-A-proper, that is i f  {xn .\xnj G X nj} is a bounded sequence such 

that

|| f nj(xnj) -  PnjV|| -* 0 as j  -> oo, y e X ,  

there exists and x  G X  such that f ( x )  = y.



Chapter 2 

A new definition of Spectrum

In this chapter we discuss a new definition of spectrum for nonlinear, finitely con­

tinuous maps, which we call the A-spectrum. The newly defined spectrum has, in 

some cases, nice topological properties and reduces to the usual spectrum in the 

case of linear compact maps. In particular positively homogeneous operators have 

special spectral properties. We discuss the advantages and disadvantages of this 

finite-dimensional approach to spectral theory. We also stress that, whereas the 

spectra [8 , 1 1 ] are defined only for continuous maps, the A-spectrum is defined for a 

wider class of maps. Furthermore we obtain approximate-solvability results rather 

than mere solvability. In section 2.9 we illustrate how to use A-spectral properties 

to solve infinite-dimensional problems. Some parts of this chapter appear in [18, 20]. 

We begin with a quick look over the classical linear spectral theory.

2.1 Linear spectral theory

In the case of linear operators the spectrum is a well studied concept. Let L  : X  —»• X  

be a bounded linear operator (i.e. continuous) and I  be the identity from X  to X.

D efinition 2.1.1. We define the resolvent of L to be the set

p(L) =  {A G K : (XI — L) is an isomorphism}

and the spectrum of L is defined as

a ( L )  =  K  \  p(L) .

14
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R em ark  2.1.2. We can split the spectrum into the following disjoint subsets:

1. A lack of injectivity: The point spectrum (eigenvalues)

ctp(L ) — {A G K : XI — L  is not injective}

2 . A lack of surjectivity:

(a) The continuous spectrum

crc(L) =  {A G K : XI -  L  is injective, R(XI -  L) = X , R{XI ~  L) ^  X )

(b) The residual spectrum

<jr{L) — {A E IK : XI — L  is injective, R (X I — L) X }

Rem ark 2.1.3. If d im X  < oo we have cr(L) — ap(L ).

Topologically speaking, the spectrum of a linear operator is a nice (compact) 

subset of the Complex plane. In fact we have the Theorem:

Theorem  2.1.4. [26] The spectrum of a bounded linear operator has the following 

properties:

i) The spectrum is non empty,

ii) The spectrum is closed,

Hi) The spectrum is bounded.

D efinition 2.1.5. We call the extended real number

?v(L) =  sup{|A| : A G cr(L)}

the spectral radius of / .

We have an interesting result concerning this number:

Theorem  2.1.6. [26]. I f  L is a bounded linear operator then 

ra(L) =  lim -\/||Ln|| (G e l f  and formula).
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2.2 Nonlinear spectra

16

The spectrum of linear operators plays a central role in functional analysis, in view of 

the applications to the study of differential equations. Therefore it is not surprising 

that several attem pts have been made to define and study spectra for nonlinear 

operators. Various definitions of spectra for nonlinear operators have been given, 

for example [3, 5, 8 , 10, 11, 25, 36], and each focused on a particular class of map, 

for example continuous maps, Frechet differentiable maps, linearly bounded maps, 

k-epi maps.

For our purposes we will focus on some these spectra (for a recent survey on 

nearly all the nonlinear spectra mentioned [4] is a good reference).

One of the first attem pts is due to Kachurovskij in 1969:

D efin ition  2,2.1. [25] Let /  : X  —> X  be continuous. /  is said to be Lip-regular if 

/  is bijective and / -1  is Lipschitz, tha t is there exists a constant f e e l  such that

| | / - 1(a;) -  / - 1y|| <  k\\x -  y\\ for every x ty € X.

The Lip-resolvent is defined by

p L ip ( f )  =  { A e K :  A/ — /  is Lip-regular}

and the Lip-spectrum  by

< W / )  =  K W / ) .

Later, in 1978, Furi, Martelli and Vignoli introduced a spectrum with interesting 

applications:

D efinition 2.2.2. [11] Let f  : X  —> X  be a map. We define the numbers

d{f)  =  lim inf and ?( /)  =  Umsup
||z|| | j * | |-H -o o  INI

The main properties of d (/) , q(f )  can be found in [11]. A continuous function

/  : X  —> X  is said to be fmv-regular if 0 ( f )  and d(f )  and are both positive and /  

is stably solvable, i.e. if the equation f ( x )  — h(x) has a solution for every continuous 

and compact map h : X  —» X  with q(h) — 0. This leads to the fm v-resolvent

PfmvU)  =  (A G IK : A/ -  /  is /mu-regular}
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and the fmv-spect rum

Vfmvif) = K \ p f mv{f).

R em ark  2.2.3. Note that, roughly speaking, the stably solvable condition measures 

the lack of surjectivity and d(f )  measures the lack of injectivity. Furthermore note 

that d(f )  and q(f)  depend on asymptotic properties of / .

We shall need the following finite dimensional version of Proposition 6.1.3 of [11].

P ro p o s itio n  2.2.4. Let dim(W) < oo and f  : X  —» X  be fmv-regular and let 

g ; X  —* X  be such that q(g) < d(f )  then f  +  g is fmv-regular.

More recently Feng (1997) gave a definition of nonlinear spectrum that involves 

a different concept of solvability.

D efin ition  2.2.5. [8 ] Let /  : X  —> X  be a map. We define the number

m (/) =  inf and M ( f )  =  sup
H  \\x\\

Now, let /  be continuous, for r > 0 we denote by

vr(fi 0) =  inf{/c > 0, there exists g : B r -» X , with a(g) < &,

g = 0 on d Br : f ( x )  = g(x) has no solutions in B r},

where Rr =  { a ;G X : | |a ; | |< r }  and dBr denotes the boundary of Br.

We call the number

i/(/) =  inf{z^r ( / , 0 ) , r  >  0 } 

the measure of solvability of f  at 0. We say tha t /  is Feng regular if

£>(/) > 0 ) m (f)  > 0  and v( f )  > 0 .

The Feng resolvent is defined by

Pf ( f )  = ( A e K :  XI — f  is Feng-regular}

and the Feng spectrum by

* / ( / )  =  K \  „,(/ ) .
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Rem ark 2.2.6. Note tha t (unlike d(f )  and ? (/)) , m-(/) and M ( f )  depend on global 

conditions.

Also in 1997 another nonlinear spectrum appeared:

D efinition 2.2.7. [3] Given a continuous function /  : X  —> X  we define the Dorfner 

resolvent by

Po{f )  — {A g K : A/ — /  is bijective and M([AJ — / ] _1) < oo} 

and the Dorfner spectrum by

M f )  =  K \ PD(f ) .

Iii some cases this is a larger than the /mu-spectrum:

Proposition  2.2.8. [4] Let f  : X  —► X  be a continuous map with M ( f )  < oo. Then

CTfravU) G aD(f).

Appell et al. in the paper [5] (2001) studied a nonlinear spectrum that uses a 

modification of the concept of stably solvable maps.

D efinition 2.2.9. [5] A continuous map /  : X  —> Y  is said to be (a,p)-stably 

solvable if the equation f ( x )  = g(x) has a solution for every continuous map g : 

X  —» Y  w ith a(g) < a and q(g) <  p. If the constants are positive, then /  is said 

to be strictly stably solvable.

The next proposition links the notions of stably solvable and (a,p)-stably solv­

able.

Proposition  2.2.10. [5] Let f  : X  —» Y  be stably solvable with d( f )  > 0. Then f  

is (0^p)-stably solvable for every p < d(f ) .  I f  also co(f) > 0, then f  is (a^p)-stably 

solvable for every a < uj(f) and p < d(f ) .

D efinition 2.2.11. [5] If /  : X  —> X  is strictly stably solvable and d(f )  > 0 we 

say that /  is Appell-Giorgieri-Vath regular. This leads to the Appell- Giorgieri-Vath 

resolvent

pagvif) =  {A G QC : AI  — f  is Appell-Giorgieri-Vath regular}
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and the Appell-Giorgieri-Vath spectrum

Vagv{f) = K  \pagv{f)-

In lieu of stably solvability, Santucci and Vath [43] use stably 0-epi maps.

D efinition 2.2.12. [43] Let C I  be a open, bounded set. A continuous map 

/  : X  —► X  is said to be stably 0-epi on fi if dist(0 , f(dCi)) > 0  and there exists

k > 0 such that, for every continuous map g : X  —> X  with g|an — 0  and ton(g) < k t

where

^ n ( f )  =  sup{& >  0 : a( f ( B) )  > ka(B)  for every bounded B  C Q},

the equation f ( x )  — g(x) has a solution x  G 0.

Given a closed and bounded set K  C A , with 0 G K,  following [43] we define the 

Phantom  of /  to be the set

</>(/) =  {A £ IK : for every open f i c  K, XI — f  fails to be 0 -epi on Q}.

We have the useful spectral inclusion:

Proposition  2.2.13. [44] Let f  : X  —> X  be continuous. Then

</>(/) C O’agv ( / )  C afmv(f).

In the case of a linear operator all these spectra coincide with the usual linear 

spectrum.

Theorem  2.2.14. Let L : X  —> X  be a bounded liner operator. Then

G'Lip(L')   O' f mV[L^ <J fyjî L̂ j — O'd (L') O’agy^L') <7 (JO).

Proof. The proof of this fact is a mere collection of results in [3 , 8 , 44]. □

2.3 The A sp ectru m

The linear resolvent is stable under small perturbations of the identity. The A- 

properness property instead is invariant under compact perturbations but it is not in 

general invariant under small perturbations of the identity, as the following example 

shows:
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Exam ple 2.3.1. Consider the Hilbert space 12 and take /  : I2 —» I2 defined by 

f (x)  = p(x)x  where p(x) — First of all note tha t /  is a /3-condensing map.

To see this we use a method analogous to the one in [37]. Let A  be any set in 12. 

Then f ( A)  C co{A U {0}} and j3(f(A))  <  ft (A U {0}) =  /3(A). Suppose now that

A  C I2 and /3(A) — d > 0. We can choose r < and define A i — A  n  Br (0) and

A 2 =  A  fl (Br(0))c, and consider f ( A)  — f (A{)  U /(A 2). We have

/3( f (A1) ) < 2 r < d  = p(A).

As p is a strictly decreasing function and ||a;|| > r for x  G A2}

/(A 2) C {tx  | 0 < t  < p(r), x G A2} C co {p(r)A U {0}}

and /3(/(A2)) <  p(r)/3(A) < /3(A). Thus

/3(/(A)) -  m ax{/3(/(A i)),/3(/(A 2))} < /3(A)

and /  is a /3-condensing map. Hence I  — f  is A-proper by Proposition 1.6.9.

But I  — f  does not remain A-proper under small perturbations of the identity. 

In fact for every fixed positive e we can give a bounded sequence {rcn.} such that 

Pn[(l — e )I  — / ] (a;n) —» 0 but {a;n} has no convergent subsequence. Considering the 

sequence {a;n} =  {— ln(l — e)en}, where {en} =  {5in}ie^ ,  we have

P„[(l -  e)J -  /](x„) =  (1 -  e )P J x n) -  e -M P n O O

— 0 for every n,

but ||a;n — xm|| =  — y/2 ln (l — e) for every n ^ m .  Hence (1  — e)I  — f  is not A-proper. 

Therefore it is convenient to introduce the following definition:

D efin ition  2.3.2. We say tha t /  : X  —» X  is A-proper stable if there exists e > 0 

such tha t f  + p i  is A-proper for all p  G K with \p\ <  e.

We will also need the numbers

r ( f )  = sup{r G M+ : p i  +  /  is A-proper for every p  G K  with \p\ < r},

'y(f) = inf{ 7  G M+ : p i  +  /  is A-proper for every p  G K with \p\ > 7 }.
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P ro p o s itio n  2.3.3. Let f  be A-proper stable. Then, for p  ^  0, p f  is A-proper 

stable with r ( p f ) =  |/ i |r ( / ) .

Proof It is known from [40] that if /  is A-proper then p f  is A-proper. It follows 

that e l  +  p f  — p { jJ  +  / )  is A-proper whenever |^ | <  r ( f ) .  Then p f  is A-proper 

stable with r ( p f )  =  \p\r(f).  □

The following theorem gives conditions for /^-contractions to be A-proper stable.

T h eo rem  2.3.4. Suppose that D  C X  is closed and T  : D  —> X  is a continuous 

map such that there exists pQ > 0 such that

P( {PnT x n} ) > p 0P({xn}) (2.3.1)

for each bounded sequence | xn G Dn — D ft Xn}. I f  f  : D  —» X  is a /3- contrac­

tion such that p( f )  < po, then Tt =  T  +  t f  : D —> X  is A-proper stable for each 

t g K  with |t| <  1 .

Proof First we note tha t T1ti : Dn c  X n —> X n is continuous for each n  G N. Now 

let {xnj | xnj G Dn .} be a bounded sequence such th a t PnjT\ (xnj) — Pnj{g) —> 0 as 

j  —> oo for some g G X .  Since Pnj(g) —* g in X, we see tha t

gnj =  PnjT( x nj) +  Pn . f ( xn .) c/ in X.

Since {,gnj} is precompact and

Pn .T (xnj) =  ,gni -  Pnjf { x nj) for all j  G N, (2.3.2)

it follows from (2.3.1), (2.3.2), Lemma 1 of [45], and the condition on /  that

poP({xnj}) < P{{PnjT{xnj)}) = p{{Pnjf { x nj)}) < P( f )P( {xnj}).

Thus P({xnj}) — 0 , so {xnj} has a convergent subsequence {a:nj.(fe)} with xnj(k) —> x 

for some x  G D.  Hence, by continuity of T  and / ,  we see th a t T x  +  f ( x )  — g> that 

is Ti is A-proper.

We note that, for each t  G K with \t\ < 1, we have tha t Tt =  T  +  t f  : D  —» X  is also
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a map of the same kind with P(t f )  =  \ t \P(f)  < \t\po <  Moi so tha t Tt is A-proper 

for every fixed t with \t\ < 1 ,

To prove the A-proper stability note tha t XI +  Tt ^  XI -1- T  +  t f  — T  -P (XI +  t f )  

and XI +  t f  is a /^-contraction with (3(XI  +  t f )  < |A| 4 - \t\(3(f)- Therefore XI  +  Tt is 

A-proper for every A such tha t |A| < /xq — \t\(3(f), tha t is Tt is A-proper stable. □

C o ro lla ry  2.3.5. When f  is a P-contraction with P( f )  <  1, then

Tt -  I  -  t f  : D C X  -> X

is A-proper stable for each t 6  IK with |i| <  1 .

Proof. Note tha t the condition (2.3.1) is satisfied with jj,q =  1, so the corollary

follows directly from Theorem 2.3.4. □

R em ark  2.3.6. It follows from Remark 1.5.2 tha t the same result holds when /  

is a fc-set contraction with a ( f )  < From Theorem 2.3.4 it also follows that 

7 ( /)  <  /?(/)-

D efin ition  2.3.7. We say tha t /  : X  —» X  is A-stably solvable if there exists no G N 

such that, for all n > n 0, f n(x) is stably solvable.

D efin ition  2.3.8. Let /  : X  —» X  be a map. We define the numbers:

dR( f ) =  inf , d'R(f )  -  lim inf dR(fn),
|M |> i?  \\x\\ n -»  oo

d' (f )  — lim inf d( fn), rri(f) = lim inf m ( f n)
n—>oo 71—-+ oo

The following Lemma clarifies the usefulness of the condition d'R(f )  > 0.

L em m a 2.3.9, Let f  : X  —> X  and suppose that there is R  such that d'R(f) > 0. 

Fix y € X .  I f  xn is a solution of the finite dimensional equation Pnf ( x n) ~  Pny , 

then {.rn} is bounded.

Proof. Let lim inf dR(fn) =  I > 0, then there exists n such th a t for all n >  n,
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If ||a3n || > R  we have tha t \\y\\ > ||Pn2/|| — ||-fn/(^n)|| > fll^U - Therefore if we set

K  =  max  j t f ,  . . . ,  | | ^ n | | |

then

| |^ n | |  < K  < oo for all n.

□

We can now give a definition of regularity as follows:

D efinition 2.3.10. Let f  : X  —> X  be a finitely continuous map. /  is said to be 

A-regular if the following conditions hold:

i) f  is A-stably solvable,

ii) f  is A-proper stable,

in) there exists R  such tha t d'R(f )  > 0 .

We define the A-resolvent by

Pa {I) = { A g I  such th a t XI ~~ f  is A-regular} 

and the A-spectrum  by

aA(f)  = K \ p A(f).

As in the linear spectral theory we define the A-spectral radius by

r vAU )  =  sup{|A| : A e  oa ( / ) } .

Prom the definition of A-regularity and Lemma 2.3.9 we obtain the following:

Corollary 2.3.11. Let f  : X  —> X  be A-regular. Then for all y  £ X  the equation 

f ( x )  — y is A-solvable.

Proof. Fix y E X  and consider the equation Pnf ( x n) =  Pny- Since f n is stably 

solvable for n > no, we can find a sequence of solutions {xn} } which is bounded by 

Lemma 2.3.9. For this sequence we have tha t \\Pnf ( x n) — Pny || — 0 for all n > no. 

By A-properness there exists a subsequence {a;nfc} of {zn} such tha t xnk —> x £ X  

and f ( x)  — y. □
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2.4 Some properties

In some cases the newly defined spectrum shares some of the familiar properties 

with the usual spectrum of linear operators.

Lemma 2.4.1. Let
lls(®)llqR(g) = sup

M > R  IFH

Then d'R( f  -  g) > d'R(f)  -  qR(g).

Proof. For each n we have

d (P f  P a )  inf ~  -  inf HP» /(z ) || ll^ffW IId a m  -  Png) -  ! m |R ,|s|| > |lxlnfB M  aupfl M
x£Xn xGXn xcXn

= dR(Pnf )  -  qR(Png)-

Now

tr,  ^  ^  I 1p O ) I I  ^  h{x)\\ ( ^qR{Pn9) = sup — rr-ji—  < sup , <  sup .. .. - =  qR(g).
iixii>i? \\x \\ imixr imi \\x\\>r ifii
xexn x<=xn xeX

Therefore

and

dR(Pnf  ~  Png) > dR(Pnf )  -  qR{g)

dR( f  ~ g )  > d'R( f )  - q R(g).

Theorem  2.4.2. The A-spectrum is a closed se t

Proof. We show that the resolvent is open. Let A G p/\{f) and take p such that 

|A -  p\ < min{d^(A/ — / ) ,  r(XI  -  /)}  and let 9 — p — A. By Lemma 2.4.1 we have

< 4 0 ^  -  / )  =  4 ( V  - f  +  m >  d’R{ \ i  -  f )  - 10| >  0

and with a simple sketch in the Complex plane one can see also that

r ( p l  ~ f ) >  t (XI -  f )  -  |p -  A| > 0.
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It remains to show that j i l  — f  is A-stably solvable, i.e. for n > no and for every 

continuous map h : X n —> X n with q(h) — 0 we can solve the finite dimensional 

equation

Pn[ ^ I - f ) ( x ) ]  = h(x).  (2.4.1)

But now note that we can apply Proposition 2.2.4, because we can rewrite (2.4.1) 

as

Pn[(A7 -  f)(x)} +  Pn[(9I)(x)} = h{x),

where P„,[(AJ—/)(z)] is stably solvable and Pn[(0/)(a:)] plays the role of g . Therefore 

we can find a solution a; of (2.4.1). □

In general it is not clear if this spectrum is bounded or not. For some classes 

of operators we can achieve boundedness of the spectrum. We use the following 

Proposition due to Schafer (the proof can be found in Corollary 8.1 of [6]).

P roposition  2.4.3. Let F  : X  —> X  be completely continuous. Then the following 

alternative holds: Either x  — tF(x)  =  0 has a solution for every t e  [0 , 1] 

or S  — {a; such that x  =  t F(x)  for some t  £ (0,1)} is unbounded.

Theorem  2.4.4. We have the estimate:

r<rA(f)  < m ax{M (/),7 (/)} .

Proof. Let |A| > m ax {M (/) ,7 (/)} , then by Lemma 2.4.1 we have

d!R(XI - f ) >  |A| -  gR(f)  > |A| -  M ( f )  > 0 .

If we choose |A| > 7 ( /) , XI  — /  is A-proper stable. To complete the proof, we have 

to show th a t the equation

Xxn ~  Pnf { x n) =  h(xn) (2.4.2)

has a solution xn £ X n, for every continuous map h : X n —> X n with q(h) — 0. In 

order to use Schafer’s result we will consider the equation
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Let e < |A| — M( f ) .  Since q(h) = 0 there exists f  such th a t  ̂ < £
||^n ||

whenever \\xn\\ > f .  Then we have, for ||:rn || =  R  > r,

R-'Wxn -  t ( X - \ P nf ( x n) -  h(x„)))\\ > 1 -  t(|A |_1M (/)  +  lA p ^) > 0

for all t E (0,1). Thus we can apply Proposition 2.4.3 to find a solution xn of (2.4.2).

□

C oro lla ry  2.4.5, I f  f  is a (3-contraction, we have the estimate:

r<rA{f) ^  m ax{M (/),/3 (/)} .

Proof. To show the A-proper stability, by Proposition 2.3.3, it is sufficient to study 

I  — I f .  If /  is a /3-contraction then I  — j f  is A-proper stable by Corollary 2.3.5 

when P ( j f )  < 1, where P ( j f )  = So if we choose |A| > /?(/), AI  — f  is

A-proper stable. □

One may ask what is the relation between the A-spectrum and the f m v -spectra 

of the finite-dimensional projections. If we denote

© (/) =  {A 6  K : there exists a sequence {Anj.} C <Jfmv(fnj) and Xnj —> A}

we have the following inclusion:

P ro p o s itio n  2.4.6. Let f  : X  —> X  be finitely continuous. Then

© (/) C crA(f).

Proof. For A E © (/), we can find a sequence {Anj.} such tha t Xnj —> A. If A € crA(f)  

we are done. Otherwise we have A E pA{f) and there are two cases.

Case 1. Xnj E v A{f) for a subsequence. Since aA(f)  is a closed set, we have that A 

also lies in crA(f),  impossible.

Case 2. Xnj E pA(f)  f°r ah but finitely many j  and A E pA{f)- Then XI  — f  is 

A-regular therefore XI — f n is stably solvable for n > no and d'Ra i  - / )  =  / >  o. 

Then d(XI  — f n) > c I r ( XI  — f n) > ~ whenever n > n. Notice th a t since Xnj —> A 

there exists jo such tha t |A — Anj.| < |  for all j  > jo. Then, using Proposition 2.2.4,
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we have th a t An .I — f n . is /mu-regular for j  sufficiently large, contradicting the 

hypothesis tha t \ nj E □

Rem ark 2.4.7. Are the u (/n) nested, that is a (/„) C <j(/n+i) C . . .  C © (/)? 

Example 2.6.4 will give an answer to this question.

We now show that the class of continuous A-regular maps is smaller than the 

stably solvable one.

Proposition  2.4.8. Let f  be continuous map. I f  f  is A-regular then f  is stably 

solvable.

Proof. To see this we have to show that the equation f ( x )  +  h(x) — 0 has a solution 

x e X  for every continuous and compact map h with q(h) = 0. First notice that 

f  p h i s  A-proper by Theorem 1.6.8. We can now use a similar argument to tha t of 

Theorem 2.4.2 to solve, for n > no, the finite dimensional equation

Pn[(f +  h)(x)]=  0 ,

using Proposition 2.2.4 to find a solution x n. It suffices to show {a;n} is bounded, 

for then, by A-properness, there exists a subsequence C {a;n}, xnk —> x and

x  is a solution of the equation f ( x )  +  h(x) — 0. Suppose tha t {xn} is unbounded. 

Then there exists a subsequence {a;nfc} of {aq} such tha t ||a;nJ | —> oo and f n{%nk) =  

hn(xnk) for every n. Since dfR(f )  > 0, there exist rq E N and 5 > 0 such that 

di?(/n) >  5 for every n > rq. Since ||ic„J| —> oo, there exists rq E N such that 

ll̂ rifcll >  R  f°r every n > rq. Let n  > max{no,Tq,7i2}. Then for every n > h we 

have
§ < II <- II } Q

| | ^ n j |  l l ^ n H

a contradiction. Therefore {rrn} is bounded and /  is stably solvable. □

2.5 P ositively  hom ogeneous maps

Recall tha t a map /  : X  —»■ X  is said to be positively homogeneous if f ( t x)  — t f ( x ) 

for every x E X  and t  E M+. For positively homogeneous operators more can be said
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about the A-spectrum. In particular, in the continuous case, it contains eigenvalues. 

By eigenvalue of a function /  : X  —> X ,  we mean a scalar A E K such that there 

exists x E X , x ^  0 such tha t f ( x)  — Ax. Note that this is not the only possible 

definition for the term eigenvalue, see for example [42].

Lem ma 2.5.1. Let f  : X  —* X  be a positively homogeneous map. Then

a) dR( f )  = d{f)  = m( f )  = inf \\f{%
Nl=i

b) qR( f )  =  q ( f )  =  M ( f )  -  sup \\f(y)\\.
I=i

Proof, a) Since /  is positively homogeneous we have

m ( / ) = i n f  u r n = in f  f ( j L \
||x|| V ||x||/

Similarly we have d R( f )  =  inf ||v |!=1 \ \f(y)\ \  and

inf 
ih/ll=l

d(f )  = lim inf  ̂ — lim inf ||/(y ) || — inf ||/(y ) ||.

b) Similar to  aj,

c) d( fn) =  dR(fn) =  m ( f n) for every n  by a). □

Proposition  2.5.2. Let f  : X  —> X  be a positively homogeneous, finitely continuous 

map. I f  XI — f  is A-proper and d'(XI — / )  — 0, then X is an eigenvalue of f  that 

lies in the spectrum.

Proof. If d*(XI — f )  = 0 we have that

liminf inf ||P^[Axn -  / ( x n)]|| } = 0, x n E X n.n->oo U|a:n|| = l J

Since X n is finite dimensional and /  is finitely continuous, there exists a sequence 

{Vnjujn E X n: ]|yn 11 =  1, such that

||Pn [Xyn -  f  (2/n)]|| =  |t inf ||Pn[Axn -  / ( x n)]||. 
iFnIN1

Therefore there exists a subsequence {yn .} of {yn} such tha t

47
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We can now use the A-properness to find a subsequence {ynjW} of { w ,} such that 

ynj{k) —*■ y G X ,  ||?/|| =  1 and Ay — f (y)  — 0, that is A is an eigenvalue. □

One nice property of the new spectrum is that, in some cases, we can compute 

the eigenvalues by an approximation process.

Corollary 2.5.3. Let f  be a positively homogeneous, finitely continuous map, {An} be 

a sequence of eigenvalues for f n, that is there exist no G N and a nonzero sequence 

with x n G X n such that f n(xn) ~  Anxn for n > uq. Suppose there exists a 

subsequence {Ani} of {Xn} such that Xnj —» A. Then X G cr^f/) and either X is an 

eigenvalue of f  or XI — f  is not A-proper.

Proof All we need to show is tha t m' (XI  — f )  =  0 and apply Proposition 2.5.2. This 

is true since

lim in f  (  inf ~  f i Xn^ \  <  lim in f (  l|A* "  ~  P " p " )
n—>oo [xn^0 ||a:n || J n-* oo ||a;n ||

=  liminf { ll̂ 1  ̂ ^n^nll 1 _ u m jnf _  \ | ~  q
n—>oo  ̂ ll^nll J n—*oo J—>00

□

Exam ple 2.5.4. As an application of the previous Corollary we can take the oper­

ator /  : I2 —> I2 defined by

/ O i ,  z 2i • • •, Zj , . . . )  =  ^ \ z i l  J y - , . . . ,  i y - , . . .

/  is a compact, positively homogeneous map. For A ^  0 the map XI — f  is A- 

proper by Theorem 1.2 of [40] and we can compute some of the eigenvalues of /  by 

approximation. In fact if we take {yn} defined by yn = ej for all n  G N, and j  is 

fixed, we have that

fniUn) = ~(ljn) for all U > j.
3

We can apply the Corollary to prove th a t j~ l is an eigenvalue for every j  G N. 

Note tha t /  is also a continuous map with d(fn) > 0 for all n  but d(f )  = 0. In fact
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and

| l / n ( 0 , . . . ,  0 , 1 ) | |  =  i | | ( 0 , . . .  , 0 , 1 ) || .
/ 1/

Therefore, since f n is positively homogeneous map, we have d( fn) = ~ but d(f )  = 0 . 

Moreover note tha t /  is not A-proper since, given {yn} as above, \\Pnf ( y n)\\ — ~ ~~* 0 

as n —» oo and {yn} is a bounded sequence with no convergent subsequence. This 

example suggests tha t a compact map may not be A-proper. We will prove this 

later in Proposition 2.6.1.

Rem ark 2.5.5. When can we a priori bound the set {An}? For example when M( f )  

is finite. In fact if An is an eigenvalue of f n we have

H A z J I  =  | | / n ( Z n ) | |  <  l l ^ n l l l l / W I I  <  | | / O n ) | |

for some x n € X n. Therefore, dividing by ||.Tn || we have

IVI =  ^
i F n l l  i F n l l

Can we achieve all the eigenvalues by an approximation process? In the contin­

uous case we have the following:

Proposition  2.5.6. Let f  : X  —» X  be a positively homogeneous, continuous map. 

I f  X is an eigenvalue then d'(XI — f )  = 0 . In particular the eigenvalues lie in the 

spectrum.

Proof. Let A be an eigenvalue, let y be a corresponding eigenvector and since /  is 

positively homogeneous there is no restriction in letting ||̂ /jj =  1. Set yn —

Note tha t {?/„} is well defined since Pny —► y /  0 implies Pny ^  0 for n > no. Note 

also tha t ||r/n || =  1 , yn -> y and Pnf {yn) f(y)> by continuity. Thus

lim inf inf 11 Pn [Aa;n -  f  (xn)] 11 <  lim inf 11 Xyn -  f n (yn) \ | =  0.n—>oo ||a;n|| = l ti—kx>

Therefore d'(XI — f )  = 0. □

It is known tha t for a linear operator L,  if A G tr(L) and |A| > a(L),  then A is an 

eigenvalue of L  [35]. If /  is positively homogeneous we have the following results.
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T h eo rem  2.5.7. Let f  : X  —> X  be a positively homogeneous, odd finitely continu­

ous map and let A G o a ( / )  and |A| > 7 ( /) .  Then X is an eigenvalue of f .

Proof. Since |A| > 7 ( /)  then XI — f  is A-proper stable. If d'(XI — f )  = 0, then, 

by Proposition 2.5.2, A is an eigenvalue of /  and we are done. If df(XI — / )  > 0 , 

we will show that XI  — /  is A-stably solvable and therefore |A| ^  ^ a (/)- Since 

d'(XI — / )  > 0 and /  is odd, there exists n  G N such tha t deg(A7 — / n, Br(0), 0) 7̂  0 

for all n > n  and r G M+. Using degree theory we show that, given a continuous 

map h : X n —> X n with q(h) = 0 the equation Aa;n — Pnf ( x n) =  h(xn) has a solution 

xn. Let e <  Then there exists r G 1R+ such tha t qr(h) < e. Consider the

homotopy

H(t ,  x n) Xxn Pnf ( x n) th(^xn).

Then for ||a;n || — r we have

?~_ 1 ||Aa;n -  Pnf ( x n) -  i/i(a;„)|| >  d f { \ I  -  f n) - t e >  0 for all t G [0,1].

Therefore, by degree theory, deg(AI — f n — h, B?(0), 0) 7̂  0. □

When /  is not odd a weaker conclusion can be drawn.

T h eo rem  2.5.8. Let A 7̂  0 and let f  : X  —» X  be a positively homogeneous, finitely 

continuous map such that XI ~  t f  is A-proper for all t  G (0,1]. Then either XI — f  

is A-stably solvable or there exists t G (0,1] such that X /t is an eigenvalue of f .

Proof. If d!(XI — t f )  = 0 for some t G (0,1] then X/ f  is an eigenvalue of /  by 

Proposition 2,5.2 and we are done. Therefore suppose d ' ( X I - t f )  > 0 for all t  G (0,1]. 

Consider the set

Vn =  {xn G X n such tha t ||a;n || =  1 and Xxn — tnf(x.n) =  0 for some tn G (0,1]}.

If Vn 7̂  0 then there exist tn G (0,1] and xn G X n with \\xn \\ — 1 such that 

Ax n — tnf n(Xn) — 0. If Vn 7̂  0 for infinitely many n  then, since {tn} is bounded, there 

exists t G (0,1] and a subsequence {xnj} of {a:n} such tha t \\tfnj (xnj) — Amnj.|[ -» 0 

as j  —> 0 0 , contradicting the hypothesis tha t d'(XI — t f )  >  0 for all t G (0,1]. Note
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that t 0, otherwise we would have ||Aa;n .|| —> 0 as j  —» oo, contradicting the fact 

that ||Aicn.|| =  |A| for all j.

If Vn — 0, consider the homotopy

H{t , xn) = Xxn ~ t P nf ( x n).

Then deg(AJ, j9i(0), 0) =  deg(AI — f niB i(0),0) ^  0 since X n is finite dimensional. 

Note that, since /  is positively homogeneous, this is true for all -Br (0) with r E M+. 

Therefore XI — f n is stably solvable. If Vn =  0 for all but finitely many n  then XI — f  

is A-stably solvable. □

Corollary 2.5.9. Let f  : X  —> X  be a positively homogeneous, finitely continuous 

map and let X E and |A| > 7 (/) . Then there exists t E (0,1] such that X /t is

an eigenvalue of f .

Proof. Follows directly from Theorem 2.5.8. □

As we have seen, for a continuous linear map L, the radius of the spectrum is 

given by ra(L) = lim ^oo ||Tn ||A where ||L|| =  sup ||!E||_ 1 ||L(;c)||. We also use this 

notation when /  is a positively homogeneous, nonlinear map, rather than M( f ) .  

The following theorem gives an estimate for the radius of the A-spectrum in the 

case of positively homogeneous operators, which is more precise than the result of 

Theorem 2.4.4.

Theorem  2.5.10. Let X  be a Banach space and f  : X  —> X  be a positively ho­

mogeneous, finitely continuous map with 7 ( /)  < 0 0  and lim infn_»oo H/71!!”- < 0 0 . If  

X E M+ with

A>max{7(/),liminf||/l"}.
n—KX)

then X E P a U ) -  I f  also H^H -  ||m2|| implies | |/O i) | | =  H /M II, then

raA{f) < max{7 (/) ,lim in f | | / n ||-} .
71—too

Proof. Take |A| > max{7 (/) ,lim in fn_>0O | | / n ||"}. Suppose th a t A E cr^f/). Since 

/  is positively homogeneous, we can apply Corollary 2.5.9 to show that there exist
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t  E (0,1] and x E X ,  with x ^  0, such tha t t f ( x)  — Xx. W ithout loss of generality 

assume also tha t \\x\\ = 1. If A E  M+, then

|A|s u p  | | / ( a : ) | |  >  | | / ( a : ) | |  =  -j- > |A|.
lU-tNl t

Also

/ 2 (z) =  / ( |® )  =  f / W  ^  S  |A|2.

By induction we obtain H/” !!" > |A|. This contradicts the hypothesis

W

|A| > liminf \ \ f

Therefore A € Pa(/)* If also \\c 

A =  peld, |A| =  p > 0 we have

H^ll implies ||/ (z i) || =  ll/fe )!!, then for

A _ 
—x
t

and
Pii/2(s)ii=||/(i®)|| = IKr)

Therefore if

|A| > max{7 ( /) , liminf | | / n ||” }>
n —>oo

then A E pA(f)-

f ( x )  = ^ > P 2 = |A|

□

2.6 N onem ptiness of the A-spectrum

It is known tha t in the case of linear operators the spectrum is always non-empty, 

here we prove a nonlinear analogue for compact maps.

Proposition  2.6.1. Let dim(X) =  oo and f  : X  —> X  be a compact map. Then 

&A{f) 7L 0 -

Proof. It is sufficient to show that /  is not A-proper and therefore 0 E oy^/). Since 

dim(X) =  oo, there exist a sequence with \\xn \\ — 1 such th a t (see for example 

Proposition 7.1 of [6 ])
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Since /  is compact, { /(x n)} is precompact. Then there exists y  E X  and a subse­

quence {xn .} {^n} such tha t f ( x n .) —> y. Therefore

IIP n f { x nj) -  P n y II <  | | P n | |  1 1 / O n , - )  ~  y\\ <  H / f a n , - )  “  y\\ 0  US Tlj - >  OO

and {xn .} has no convergent subsequence. □

O pen  q u estio n : Is the A-spectrum always nonempty? The usual example of 

nonlinear theories fails here, as we will see in example 2.6.4.

D efin ition  2.6.2. Following [11] we denote by

cbrCf) =  {A e crfmvif) such tha t d(XI — f )  = 0 or uj(XI -  / )  =  0}.

The following Proposition has been shown in ([11], Theorem 8.1.2). 

P ro p o s itio n  2.6.3. Let f  : X  —> X  be continuous. Then

d(Jfmv(f)  C cr7r(/).

E x am p le  2.6.4. Consider the space £2 (C) with the standard basis and standard

projection and the map from /2 (C) —> l2(C) defined by

f(zi,Z2,Z3,Z4,  ■ • •) =  (z2, iZi,ZAJ Z 3, . . .).

From the definition of /  it follows tha t f ( x  +  y) =  f ( x )  +  f ( y )  and /(Ax) =  Af ( x)  

for all a;, y  E £2 (C) and A E C; in particular /  is positively homogeneous. Since /  is 

positively homogeneous, XI — f n is positively homogeneous and by Lemma 2.5.1 we 

have

d{ XI  -  /„ )  =  inf || [A/ -  /„](a:„)||.

It is convenient to split into two cases:

Case 1. In the “even” case we have

(XI ~  f2n)(zi, Z2n-1, Z2n)

=  (Xzi -  z2, Xz2 -  i z i , . . . ,  Az2n-1 -  z 2n, Az2n -  iz2n-i)-
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In [11] Puri et al. studied the function f 2(zi , z2) — and proved that

<jfrnv{f2 ) = 0- We can extend their result to show tha t crfmv( f2n) =  0 for all n. 

To verify this first notice that d(XI  — f 2n) > 0 for all A. Otherwise suppose that 

d(XI — f 2n)  — 0 for some A in C . Since C2” is finite dimensional there exists y & C2ti 

with \\y\\ =  1 such that

| | [ A / - / 2 n t o ) | | - 0 .  (2.6.1)

Rewriting (2.6.1) by components we have

-  y 2 =  0 

- ^ 1  =  0

Xy2n- i  -  y2n =  0

Xy2n ~  W ln-l =  0

Notice th a t A ^  0 otherwise we would have y = 0. Since y is a solution of (2.6.1) 

with ||y\\ = 1 it has at least one nonzero component. W ithout loss of generality take 

y2k 7̂  0* Then we would have

Xy2k—i =  y2k 

Xy2k — iy2k-i

and obtain

W2k~lU2k~~l — U2kV2k

a contradiction. Therefore d(A/ — f 2n) > 0 for all A. Since d(Tfmv( f 2n) C o^/an ) by 

Proposition 2.6.3, from the fact that C2"' is finite dimensional and f 2n continuous 

implies tha t

4 W - { A 6 C : d ( A / - / 2n) - 0 },

we have tha t doymi)( /2n) =  0. This implies tha t (Jfmv{f2n) is either C or empty. 

Since _________________________________
x r  1 1-^212 T  | ^ l | 2 +  • ■ • +  | ^ 2 n |  +  | ^ 2 n - l | 2q{f 2n) =  lim sup W  n ----f2— j----fj- -  1 ,

|[z||-+oo V \ Z U  +  l ^ l  + - - -  +  | ^ 2 n - l |  +  F 2 n |
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we can apply Proposition 8 .1 .2  of [11] to show that XI  — / 2n is /mu-regular when 

|A| > 1. Therefore cTfmv( f2n) =  0- 

Case 2. In the “odd” case we have

(AI  — f2n+l){z 1) z2> • • • , z2n> z2n+l)

=  (AZi -  Z2, Xz2 -  iZi,  ■ ■ ■ , Xz2n -  Z ^ 2 n -1 >  Az2n+l). 

Take C =  (0, 0 , . . . ,  0,1) and note that

d(f2n+l) =  M inf H /^ + lW II < | | / 2n+l(C)|| =  0 .

Thus 0 E o'fmv{f2n+i) (incidentally note also tha t / 2n+i is not surjective and therefore 

not stably solvable).

Since 0 E crfm.v(f2n+i) for all n  we have tha t 0 E © (/) and we can apply Proposition 

2.4.6 to show that 0 E ctaH)- 

Therefore cta(/) is not empty.

R em ark  2.6.5. Example 2.6.4 shows tha t the finite dimensional spectra crfmv( fn) 

need not be nested since

° 7  mv ( i W i )  t  mv ( / 2 n + 2 ) -

Furthermore it shows tha t Proposition 2.5.2 fails to be true when we drop the A- 

properness hypothesis. In fact, since d( f 2n+i) — 0 for all n, we have d!(f) = 0, but 

clearly 0 is not an eigenvalue. To see th a t /  is not .A-proper take {e*} the standard 

basis of l2(C). We have ||ei|| =  1 for all i,

Wf2n+i{e2n+i)\\ = 0 for all n  

but {e*} does not have a convergent subsequence.

2.7 The linear case

One requirement one would expect for the new spectrum is tha t when the operator 

is linear it reduces to the usual spectrum for linear operators. As finite dimensional
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projections are involved in this theory, in general this fails to occur. First note that 

in the linear case the definition of A-stability [40] reduces to the following:

D efinition 2.7.1. Let L  be a bounded linear map. We say tha t L  : X  —> X  is 

A-stable if there exists a constant c > 0 and no € N such th a t ||Ln(ic)|| >  c||a;|| for 

all x  € X n and n > no.

Recall th a t if a linear map L : X  —> X  is a homeomorphism there exists h > 0 

such tha t ||L(a;)|| >  /i||ic||. So the requirement ||Ln(a;)|| >  c||as|| is a natural one. 

The following theorem (see Theorem 1.3 of [40] for example) is a characterization of 

linear A-proper maps.

Theorem  2.7.2. Let L : X  —* Y  be a linear bounded map and P be a projection 

scheme for L. Then the following assertions are equivalent:

1. L  is injective and A-proper.

2. L is surjective and A-stable.

3. The equation L (x )  — y is uniquely A-solvable.

Lem m a 2.7,3, Let L : X  —> X  be a linear A-proper isomorphism. Then L is 

A-proper stable.

Proof. Since L is a linear isomorphism there exists 9 6  M+ such tha t L  +  eI  is a 

linear isomorphism for all e £ C with |e| < 9, Note tha t L  is A-stable by Theorem 

2.7.2, tha t is, ||Ln(a:)|| > c|jm|| for all x  G X n and n >  no- Let |e| < min{0, c}. Then

||Ln(a;) +  sx\\ > ||Ln(a:)|| — |e| ||rc|| > (c — |e|)||a:|| for all x  E X n and n > n0.

This proves tha t L  +  e l  is an A-stable isomorphism and, by Theorem 2.7.2, L  +  e l  

is A-proper. □

We have the following characterization:

Theorem  2.7.4. Let L  : X  —> X  be a bounded linear map. Then

cta{L) =  cr(L) U {A G C such that XI — L is not A-proper}.
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Proof. Take A in Pa {L ) .  Then, by Corollary 2.3.11, XI — L  is surjective. Since 

d'R(XI — L) > 0 then XI — L  is A-stable. We can apply Theorem 2.7.2 to show 

the injectivity. Therefore XI — f  is a A-proper isomorphism. Now take A such that 

XI — L  is a A-proper isomorphism then, by Lemma 2.7.3, XI — L  is A-proper stable. 

By Theorem 2,7.2, XI — L  is A-stable and therefore dlR(XI — L) > 0 . Theorem 2.7.2 

shows tha t XI — f  is A-solvable and therefore Pn(L) is /m u-regular for n > h. Thus 

XI — L  is A-regular. □

Intuitively this means tha t the spectrum is made up by points where either the 

operator is not a bijection or somehow the approximation process fails to occur. The 

following example shows tha t cr(L) C cr^L).

Exam ple 2.7,5. Take /  defined as in Example 1.6.5. Since /  is a linear isomor­

phism, 0 0  0 (f).  But /  is not A-proper, therefore 0 G o a ( /) .  To check that /  is 

not A-proper we proceed, mutatis mutandis, as in Example 2.6.4.

In the case of compact linear map we have the following:

Corollary 2.7.6. Let dim(X) =  oo and L  : X  —> X  be a compact linear map. Then 

a a (L) =  a(L).

Proof. Since L  is compact, XI — L is A-proper when A ^  0 . Since L  is compact we 

have tha t 0 € <r(L). By Theorem 2.7.4 we have <j a (L) — <r(L). □

O pen question: In Theorem 2.7.4 we have shown that, given a linear map L  and a 

projection scheme T, a(L)  C oa(L). Does there exists a suitable projection scheme 

such th a t cta{L )  — cr(L)I

Note tha t if L  : X  —» X  is a linear isomorphism, by Lemma 2.2 of [41], one can 

show that there exists an approximation scheme Fl such th a t L  is A-proper with 

respect to Pl - But in general this fails to be a situation.

2.8 A n interesting exam ple

In the next example, rather than giving an estimate, we shall compute the A- 

spectrum in detail. This will show that the A-resolvent in general is not a connected
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set.

E x am p le  2.8.1. Consider the map from Z2 (C) —»■ Z2 (C) defined by

/ ( 2 i , 2 2, 23 , 24, . . . ) -  (22 , 2 1 , 2 4 , 2 3 , . . . ) .

First of all notice that, for |A| ^  1, XI — f  is a surjective operator with inverse

r. T . , 1 , x f \ w i + w 2 \ w 2 + Wi Xws + wi  Ara4 +  uJ3 A
[ a / - / ]  I a F T 1 I a F u - • ■ j '

Let us now compute <r(/). From the definition of /  it follows th a t f ( x  P y) —

f (x)  P  f ( y)  and /(Arc) — Af ( x )  for all x , y  G 2̂(C) and A G C, in particular /  is

positively homogeneous. Since /  is positively homogeneous, XI — f n is positively 

homogeneous.

It is convenient to split into two cases:

Case 1. In the “even” case we have

(AI  -  f2 n )(z u  Z2> • • • , Z2n—1, Z2n) — (A^i -  22, Az2 -  21 , . . . , A22n-1 “  2 2 n , AZ2n ~  Z 2n - l )  

with inverse

rx r £ i i / N (Xwx + w 2 Xw2 4- uJi Xw2n +  W2n—1
[Ai -  J2n\ (Wi, W2) . . . , W2n) =

|A|2 - 1  ’ |A|2 — 1 |A|2 — 1

We will show that afmv( f2n) — S 1, where S'1 =  {A G C : |A| =  1 }. Note that if

| A | =  1 then A is an eigenvalue of f 2n. In fact

/ 1 A  _1_ _ A \  _  f t  1 J_ _1_\  / 1  A J _  A
/2n V2 , 2 , ‘ ‘ - >2^ J 2^ J  “  “  \ 2 '  2 ' " ' ' 2 n 2 n

Since f 2n is positively homogeneous the eigenvalues of f 2n lie in <Jfmv( f2n). Since

nsf t  \ ll/2n(^)H / | 2 2|2 +  |2 i |2 +  . . . +  |22n|2 +  |22n -l |2M( h n )  =  sup ' 1 =  sup * /  x ;   y ;  ry =  1
z#0 \\z\\ z^O y \Zi\ +  \Z2\ + . . .  +  j22n_ i| +  |22n|

we can use Proposition 2.2.8 to show that o-fmv( f2n) C Since crn(f2n) — S 1

we have S'1 c  crfmv(f2n) c  crD( f2n) = S 1 and therefore

G’fmv(f2n) ~  ^  ’
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Case 2. In the “odd” case we have

( A /  -  / 2 n + l ) ( z i ,  2 2 , , Z2n, ^2n+1) =  ( A ^ i  -  Z 2 > A z 2 ~  2 l>  • • • , A Z2n ~~ 2 2n - l ,  Xz2n+i).

with inverse

[ A /  ~  f2n]~1(Wl, W2l. . . } W2n+l)

_  f  Aû i +  w2 Xw2 F u)i Xw2n F w2n- i  r u 2n + i \

”  v |A| 2 -  1 ’ |A|2 — 1 ’ ‘ ‘ ’ |A|2 — 1 ’ “ X - ;  ■

We will show that o /rmj( /2n+1) — {0} U S 1. Note tha t if |A| =  1 then A is an 

eigenvalue of f 2n+ In fact

f  1 A 1 A A / l  A 1 A
•'2n+1 \ 2 } 2 ’ "  ' ’ 2n ’ 2 n ’ )  = \ 2 ’ 2 1 ”  ’ ’ 2 n ’ 2n ’

Also 0 is an eigenvalue of / 2n+i since

f 2n+i ( 0 J. . . 10 >l) =  (0 >. . . , 0 ).

Since / 2n + i  is positively homogeneous the eigenvalues of / 2n+i he in o‘/mt,( /2n+i), 

therefore {{0} U 5 1} C crfmv( f2n+i) and d(XI — / 2n+i) > 0 for all n  when A $ 

{{0}U 5'1}. Since

n 4- f t   ̂ „ l l / 2 n + l ( 2 ) | |  /  | 2 2 | 2 +  1 ^ 1 12 +  • • ■ +  | 2 2 n | 2 +  | 2 2 n - l |M  {f2n+1) =  su p -ij—Ji =  sup
Ĥ ll z^O V IX 2 +  |22 j2 +  • • • +  |2 2n- l | 2 +  \z2n\2 F  |^2n+l|J

/ I2 2 I2 +  1̂ 112 +  • ■ • +  l2 2n |2 +  \z2n- l \ 2 _  1 

X P + h P + . - .  +  l^n-lP  + l^nl2 ’

we can use Proposition 2.2.8 to show that cr/mu( /2n+i) U cr£>(f2n+\).  Since

crD{f2n+i) =  { { 0 }  U  S '1 }

we have

&frrtv ( f  2rc.+ 1 ) ^  { { 0 }  U  S '1 } .

Therefore

&  f m . v  (/2n-|-l) ^  O’/ 777.TJ ( h n + 2 ) -
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Is XI — f  A-proper? First note that XI — f  is surjective for all A ^  S l , In fact, given 

w € £2(C) where w =  (wi, w2, W3, w4, ...) , we have

, , /  Xzui +  w2 Xw2 +  Wi Xwz +  w4 Xw4 +  u73 A
[ “  V 1 — |A|2 ’ “  1 — |A|2 ’ “  1 — |A|2 1 “  l - | A p  • ■ 7

-  (wUW2iW3,WAy . . .).

When |A| 7  ̂ 1 and A ^  0 , we shall see tha t XI — f  is a surjective A-stable map 

and therefore, by Theorem 1.6.11, A-proper. To show the A-st ability it is enough 

to show th a t there exists a  € M.+. such that

\\Pk[XI ~  f](x  - y ) |]  >  a \ \ x - y \ \  for all a;,y € Ch, x ^  y, k e  N.

If |A| < 1 and A 7  0 set a = min{(l — |A|), |A|}.

When k ~  2n we have

II [A I — /2 n ] ( *  — J/)ll > ll/2„(--c  — y ) | |  -  | A | | | a : - y | |  =  | | a ; - y | |  -  | A | | | a : - j / | |

= ( 1  -  |A|)||a: — y|| > a^x  — j/||.

When k — 2,71 T  1, we have 

\\[XI -  f 2n+1}{x -  y)\\2

— I A(mi — yi) — X2 P  y212 +  - . . +  |A(rC2n — V2 n) ~  %2n-l +  V2n-l\2

+  |A(a;2n+l — y2n+l) | 2

=  II ~  / 2 n K A n ( £  — y ))\\2 +  |A |2 | ^ 2 n + l  — y2n+l \2 

>  (1  -  |A | ) 2 | | P 2t i ( ^  -  y ) | | 2 +  |A |2 |o;2n+i ~  V ^ + i \2

> « 2 ||^ 2n(^ -  y ) | | 2 +  a 2\x2n+1 -  Vin+i? =  a 2||£ -  y ||2-

Then, for all k, ||[A7 -  fk](x -  y)|| >  -  y||.

If |A| > 1 set a — |A| — 1.

When k = 2n we have

||[AI  -  / 2n ] ( z - y ) | |  >|A|||m - y | |  -  \\f2n{x - y ) | |  =  |A|||m — y|| -  ||x - y | |

— (|A| -  l)||a: — y|| > a\\x -  y||.
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When k =  2n +  1 , we have

42

\\[\I -  f 2n+i]{x ~  y)\\2

=  | A ( z i  -  y i )  - x 2 +  y 212 +  . . .  +  |A (a;2„  -  y 2n) -  x 2n- i  +  2 / 2 ^ 1 12 

+  |A (a ;2n+ l —  V2n+l)\2 

-  II [A I  -  f2n]{P2n(x -  y ) )  | |2 +  |A |2 |Z2tH-1 -  2/2n+l |2 

>  ( | A| -  l ) 2i | P 2 n ( ^  -  y ) f  +  |A |2 |a;2 n + i  -  2/2n+ i | 2

>  CK2 | | P 2n ( ^  -  y)  ||2 +  Q!2 |a :2 n + 1  -  V 2 n + l \ 2  =  ® 2 \ \ x  ~  y f  •

Therefore, for all k, ||[AJ -  fk]{x -  y)|| > a\\x -  y\\.

This shows that, when A ^  {0} U S 1, XI — f  is A-proper stable. It remains to show 

that d'R( \ I  — / )  > 0. Notice that, since ||[AI — fk]{x — 2/)|| >  ce||a; — y|| when x j - y, 

putting y — 0 and dividing by ||jc|| we have,

dR{ \ I  -  fk) > lllA /:  j 1W 'l >  a  for all k  6  N.
If II

Therefore d'R(XI — f )  > a  > 0 when A £ {0} U S'1.

Note tha t since {{0} U S 1} C crfmv( f2n+1) for all n  we have th a t

{ { O j u s ^ c s t / )

and we can apply Proposition 2.4.6 to show that {{0} U S 1} C oa( / )■ Therefore 

(see Figure 2.1)

°A{f) =  { o j u s 1.

Note that, since d (f2n+1) =  0 for all n, we have d;( /)  =  0. In view of Proposition 

2.5.2 we can say tha t /  is not A-proper because otherwise 0 would be an eigenvalue 

of / ,  and clearly it is not. We can also show that /  is not A-proper directly. In fact 

given {e*} the standard basis of l2(C) we have ||e;|| =  1 for all i,

| | /2n+i(e2n+i)|| =  0 for all n 

but { }  does not have a convergent subsequence.
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Figure 2 .1 : A non connected resolvent

2.9 A n application

As an application of the theory for example we can prove, using Proposition 2.4.6 

and Corollary 2.5.9, a result similar to the Birkhoff-Kellogg Theorem for finitely con­

tinuous maps. First we state the Birkoff-Kellogg Theorem (see for example Theorem 

10.1.5 of [11]):

T h eo rem  2.9.1. Let S  = {x E X  : ||:c|| =  1}, X  be an infinite dimensional Banach 

space and f  : S  X  be compact such that

Then f  has a positive eigenvalue.

L em m a 2.9.2. Let S  — {x E X  : ||a;|| =  1}, X  be an infinite dimensional Banach 

space and f  : S  —* X  be a finitely continuous} bounded map. Let f  : X  X  be the 

positively homogeneous operator defined as follows:

Proof. It is sufficient to show that /  is A-proper if and only if /  is A-proper. Suppose 

that /  is A-proper and let {:cn} be a bounded sequence such tha t

Then 7 ( /)  = 7 ( /) .
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By boundedness, there exists a subsequence {xnj} of {£n} such tha t ||ccn i|| —► If

a ^ O  we have

a P n j f - P n . y J V br,, /  '
0 .

Since /  is A-proper there exists a subsequence {xnj.(fc)} of {£nj.} an-d x E S  such 

that [[a,"3w || —► x  and f ( x )  =  Therefore f ( x ) = y .  If a  =  0 we have xnj —» 0, 

Pnjy —► 0 and 0 is a solution of the equation f ( x )  =  0 . To show tha t /  is A-proper 

if /  is A-proper, simply note that f  — f\s- LI

D efinition 2.9.3. Let /  : X  —> X  be a continuous map. A point A G IK is said to 

be a asymptotic bifurcation point (see [27]) if there exists a sequence {(An,£n)} hi 

I x l  such th a t ||a;n || —» oo, Xn —» A and Xnx n =  f ( x n) for every n.

Theorem  2.9.4. Let S  =  {x E X  : ||ic|| =  1}; X  be an infinite dimensional real 

Banach space and f  : S  —> X  be a finitely continuous, bounded map such that

liminf inf ||Pn/(a;n)|| > j { f ) .n—KX> ||x n || =  l

Then f  has an eigenvalue.

Proof. Let /  : X  —> X  be the positively homogeneous operator defined as in Lemma

2.9.2, then

d { f ) =  inf \ \ f ( x ) l  M ( / ) =  sup ll/W H 
MM ||x||=i

and 'y(f) = j ( f ) .  Let B ( f 2n+i) be the set of all asymptotic bifurcation points of

f 2n+1- By Theorem 11.1.3 of [11], there exists y 2n+i G ® such tha t y 2n+i C B ( f 2n+i).

Since fi2n+i is an asymptotic bifurcation point we have d(f.L2n+1I  — f 2n+i) — 0- So

M2n+i G cff mv( f2n+i). Since, by our assumption, d' (f ) > 7 ( /) , there exists so € M+

such tha t d' (f ) > 7 ( /)  +  s0 an<f there exists n such th a t d (f2n+i) > 7 ( /)  4- y

whenever n > h. Assume \y2n+i\ < j { f )  +  Then \p2n+i\ < d ( f2n+i) for every

n >  n. Therefore

d(y2n+xI  -  f 2n+1 )  > d (f2n+1 ) -  | / i 2n + i |  >  0 .
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This contradicts d(p2n+il — hn+i) =  0- Therefore \p2n+i\ > +  The sequence

{H2n+i} is bounded since we have

r<rfmv( f 2n+l) < q{hn+l) < M{f ) .

Therefore there exists a subsequence {pj}  of {p2n+i} such th a t Pj —> p  with \p\ >

q (/) . Since pj G VfmV{fj) and Fj Pi by Proposition 2.4.6, we have p  G cm(/)- By

Corollary 2.5.9, it follows tha t there exists t G (0,1] such th a t p / i  is an eigenvalue 

of / .  Let x G X  with \\x\\ — 1 be such that f ( x )  — p / t ( x ). Then f ( x )  = rx  where 

r =  p/t.  □

The following example shows tha t there exists a map /  to  which Theorem 2.9.1 

does not apply (since /  is not compact) but Theorem 2.9.4 can be used.

E xam ple  2.9.5. Consider the space Z2(M) and let g be the radial retraction of /2(IR) 

onto the unit ball given by

f F T  i f  M >  -1, ff( x ) = {  11*11
I x  if ||z|| < 1 .

Note tha t j3{g) — 1 (see [6 ]). Fix now y G Z2 (R) with

no
V =

7=1

{e{} being the standard basis of /2 (M), Oi G M and \\y\\ > 2. Let /  : S  —> l2(M) be 

defined by

f ( x )  ^ y  + g(x).

Then

inf \\Pnf ( x n)\\ = Inf || Pny  +  Png(xn) \
I || = 1 ll®n|| = l

>\\Pny\\ ~  sup ||Pn0 (zn)|| =  ||2/|| -  1 > 1 ,
lbn||=i

whenever n > no. Now

P { f )  =  P ( y  +  9) ^  P{ g)  =  I-
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Therefore

liminf inf ||Pn/(a;n)|| > /3(f).
n—>oo | |x „ ||= l

Furthermore we have

sup \\f(x)\\ = sup ||y +  0 (2;)|| <  \\y\\ +  1 .
11x1=1 ll*|=i

Hence /  satisfies the conditions of Theorem 2.9.4. Therefore /  has an eigenvalue.

2.10 On the growth properties

In this section we investigate the relation between the various growth conditions so 

far encountered, we will also study

J ( /)  =  liminf
HH+oo ||a; | |2

and show why it is not suitable as a “lack of injectivity” type of condition for the 

spectrum.

R em ark  2.10.1. Note tha t for all x n G X n we have tha t

liminf l l a / (^ ) l l  <  ||Pn|| liminf lim inf ll/(:En)l1
| |^ ti | |—>+ o o  | | ^ n | |  ||.'c,l |H + o o  | p n | |  I b n l H + o o  | p n | |

Let n —»■ 0 0  and take the lim inf.

d ' ( f )  =  l im in f {  lim in f \  <  lim  inf lim in f
n — + 0 0  | p n | i  J  ™~»+oo |ja;n | |- f + o o  | | ^ tj, ||

If /  is continuous, do we have df(f) <  d(f)7 Does d' (f )  >  0 imply d(f )  > 0? We 

do not know the answer to this questions, but Lemma 2.10.4 and 2.10.5 give partial 

answers.

Lem ma 2,10.2. Let f  : X  —* X  with m' ( f )  > 0. F ixy  G X  and let x n be a solution 

of the finite dimensional equation Pnf ( x n) — Pny. Then {:rn} is bounded.

Proof. If x n is a solution of Pnf ( x n) =  Pny  we have tha t

IMi >  \\Pny\\ =  ||^n/(£n)|| >  m ( f n)\ \xn \\
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Since in! ( / )  =  l im in fm ( f n) =  I >  0 there  exists n  such th a t  m ( f n) >  4 for all
n—>+tx)

n > n. Setting K  =  max ||^ i||, • • ■, ||^ n ||| then

j|cCn|| <  K  for all n.

□

R em ark  2.10.3. Can we have a similar result by replacing the condition m' ( f )  > 0 

with dl( f )  > 0? Probably not. It is true th a t d'(f) — I > 0 implies tha t there exists 

n such tha t
j f t  \ v  • f  \\Pnf(Xn)\\  ̂ I c n  ^  -dlfn) — limmf — n— n—  > “  f°r all n > n -w ' lhn|H+oo ||a:„|| 2

But the condition d(fn) > |  implies tha t there exists R  such th a t

>  L for ||ar„|| >  R.
l l l I

The problem is that R  can depend on n. This is the reason why we introduce the 

condition dfR(f),  similar to d \ f ) ,  but slightly stronger.

When do d,'R(J) and d' (f)  coincide? For example when /  is positively homoge­

neous (in particular when /  is linear).

L em m a 2.10.4. Let f  be a positively homogeneous, Lipschitz continuous map, with 

Lipschitz constant k and d( f )  = 0. Then d' (f)  — 0.

Proof. By Lemma 2.5.1 we have tha t d(f )  =  inf ||/(zc)||- Since d(f )  = 0 there
1MI=1

exists a sequence {£„} with ||rcn || =  1 and ||/ (£ n)|| < where en —> 0. As

\ J X n — X , there exists Pm(n) such that ym = Pm(n)Xn satisfies \\ym -  xn\\ < £n. 

Then ||f ( y m) -  f { x n)\\ < ken so

ll./(l/7n) |j — ken “b £n

and

||-Pm/(ym)|| < ||/(2/m)|| < (& +  with 1 -  £n <  ||ym|| < 1-

Therefore
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By Lemma 2.5.1 we have

d(pm/ ) < ( f c + i ) - ^ - .
1 ~ £n

This implies d' (f)  =  0. □

Lem m a 2.10.5. Let f  be a positively homogeneous, finitely continuous A-proper 

map with d' (f )  — 0. Then d(f )  =  0.

Proof. By Lemma 2.5.1 we have that

inf \\Pnsf ( x nj)\\ —> 0  as j  oo, x n . G X nj.
\\xnj\\ = l

Since X flj is finite dimensional we can build a sequence {y7lj} with ||yn j|| =  1 such 

that Pnj f y nj —> 0 as j  —> oo. By A-proper ness there exists a subsequence { y njik)} 

of {ynj} such tha t ynj{k) —»■ y  and f (y)  =  0. Therefore d( f )  — 0. □

Rem ark 2.10.6. Lemma 2.10.5 does not hold when /  is not A-proper. In fact take 

/  as in Example 1.6.5, by Lemma 2.5.1 we have

d( f 2u+i) = inf ||/W i(y ) || <  | | /2n+i(e2n+i)|| =  0  for every n.
|j£/2n+l || —1

Therefore d' (f) — 0, whereas d(f )  =  1,

Lem ma 2.10.7. Let f  : X  —> X  be a continuous map. Then

m ‘(f )  < m( f ) .

Proof. Fix e > 0. Then there exists x e G X ,  xe ^  0, such tha t

m( f )  < < m( f )  +  £.
Ipell

Take now xe>n — Pnxe. Since x£iU —» x e and f ( x e,n) f i x e) we have

i n f  l l / n ( O I I  <  1 1 / n O O I I  <  l l / K O I I  <  l l / ( ^ ) l l  +  e <  +  2 £

||a:„|| H^enll ||^e,nil II^e!!

whenever n > h. Since £ is arbitrary we haveliminf inf id! < inf ii/wii
7?,—>oo x-n^o | |x n || .-c^o 11a;11

□
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A similar inequality holds also for d(f).

L em m a 2.10.8. Let f  : X  —> X  be a continuous map. Then d'R( f )  < d(f)-

Proof. Let R  be fixed and take e >  0. Then there exists x £ E X ) ||rce || > 2R, such 

that
^  _  11/(011  ̂ j ! j"\ , „
“ ( /)  ~  6 <  —n— i p  < “ ( /)  +  e- 

\ \ X e \ \

Take now x £,n = Pnx£. Since x£<n —> x £ and f { x £j7l) —> f ( x e) we have

dR( f n ) =  inf <  11̂ ^ ) II +  e < d (/) +  2 e
Tti, £

whenever n  >  fL Therefore

liminf dR(fn) < d(f )  +  2s.
n—>oo

As e is arbitrary this shows d'R(f)  < d(f).  □

W hat is the relation between the condition d(f )  >  0 and the stably solvable 

requirement? If X  is a finite dimensional complex Banach space of dimension greater 

than 1 with X*  strictly convex and /  : X  —» X  with d( f )  > 0 one can show that /  

is stably solvable.

L em m a 2.10.9. Let S 1 be the unit circle in the complex plane C. Let X  be a finite 

dimensional complex Banach space of dimension n greater than 1. Let S r  — {x E 

X  : ||2:|| =  i?} and let g : S r  —» S L be continuous. Then g is homotopic to the 

constant map 1, that is, there is a continuous map h : [0,1] x S r  —> S 1 such that 

h(0, x) — 1 and h(l, x) — g(x) for all x  E Sr.

This is a consequence of the fact tha t S r is homeomorplric to the real sphere 

5 2m_1 and the homotopy group ^ (A 1) =  0 for j  > 1 .

T h eo rem  2.10.10. Let X  be a finite dimensional complex Banach space of dimen­

sion greater than 1 with X * strictly convex and let T  : X  —»■ X  be continuous. 

Suppose ther'e exists R  > 0 such that (Tx,  Jx)  ^  0 for all x  E S r . Then there is 

xq E B r  such that T xq — 0.
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JL i v \ f  I » V/X I 1 lO II x v U U I %Aj  J  ' L i /  __ _ > ■ • VV XXwx v  <0 U.vJ.XV/ U vU  U I x v  VjVj 11J> k/ JtV<Ok \ j \ J JLk I LÂ v_4j y V>

J 11 " '  \ { T x , j x ) y  *  J 5
of z. As T  and J  are continuous and (Tx,  Jx)  ^  0 for all x  G Sr,  g : Sr  —> S 1 is

(T t/^ c )
Proof. For ||x|| =  A let g(x) =  ,, 1 , where 2 denotes the complex conjugate

continuous. By Lemma 2.10.9, there is a continuous map h : [0,1] x S r —> S'1 such

that h(0, cc) =  1 and h ( l , x )  — g(x)  for all x  G S r . Now define H ( t , x )  — h ( t , x ) T x  

for 0 < t  <  1 and x £ S r . Then H ( t ,  x)  ^  0 so by homotopy invariance the Brouwer 

degrees J ( T , B r , 0) and d ( H\ ,  B r , 0) are equal. [We take any continuous extension 

of H\  to B r .] Consider the homotopy M ( t , x )  =  t H \ ( x )  +  (1 — t ) x  for x  G B r , 

0 <  t  < 1. We claim tha t M ( t ,  x) ^  0 for 2; G S r  and t  G [0,1]. Indeed

(M( ty  x),  J x )  =  t \ ( T x , J® )| 4- (1 — t ) (x ,  J x )  >  0.

Therefore d(H\,  B r , 0) = d ( I , Br, 0) =  1 and hence cI(T ,B r , 0) =  1 so there exists 

£0 £ B r with T xq = 0. □

T h eo rem  2.10.11. Let X  be a finite dimensional complex Banach space of dimen­

sion greater than 1 with X * strictly convex and let f  : X  X  be continuous with 

d(f )  > 0. Then f  is stably solvable, that is, for every continuous map h : X  —> X  

with q(h) — 0, there is a solution of the equation f ( x)  = h(x).

and there is R  > 0 such tha t (Tx, Jx) =£ 0 for ||x|| — R. Hence by Theorem 2.10.10

E x am p le  2 .1 0 ,1 2 . Define /  : C2 —> C2 by / ( ^ i , ^ )  =  (^2) — zi)- First of all note

Proof. Let T(x)  — f ( x )  — h(x).  Then

INI2 " INI2 INI

so

lim inf
||x|i-HDO

there exists xq G B r  with T xq — 0. □

The converse is not true as the following example shows:

that since
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we have th a t d(f )  — 1. We will now show that [/] =  [/], where [/] is the homotopy 

class associated with /  (for further information on homotopy classes over the spheres 

see for example [17]). Using proposition 6 .2 .2  of [11], this will make /  /mu-regular 

and therefore stably solvable.

To see this, we define the homotopy H  : S i x [0,1] —> Si  by

t z  +  (1 -  t ) f ( z )  
l i t * + ( 1 - * ) / ( * ) II•

We claim that, for all t  G [0,1] and z with ||;z|| =  1, H  is a continuous map with 

H(z,  0) =  f ( z )  and H(z,  1) =  z. To check the continuity of H  all we need to do is 

to show th a t \\tz +  (1 — t)/(^ ) || ^  0 when ||jz|| =  1 and t  G [0,1]. Therefore we can 

study the system of equations

tzi +  (1 -  t)z2 =  0 

T (t — l)^ i =  0

Setting z\ =  a +  ib and z<i — c +  id where a, 6 , c, d G M and splitting the real and 

imaginary parts this is equivalent to solve the system

A = <

ta + c — tc = 0 

tb ~  d +  td =  0 

tc +  ta — a — 0 

td — tb +  b = 0

say A(t)

\ a J

Notice tha t the equation det A(t) — 0 has no real solution and therefore A  has only 

the trivial solution 0 ^ S'1.

Then /  is a stably solvable map with d(f )  — 1, but in this case d(f )  = 0 since 

(/(z), z) — 0 for all z  G C2.

R em ark  2.10.13. In the previous example we provided an antilinear map with 

d(f )  = 0 and d(f )  > 0 . One could ask what happens when /  is a linear map 

from a finite dimensional complex Banach space to itself. Are the two conditions 

equivalent? The answer is no as the following shows:
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E xam ple  2.10.14. Define /  : C2 —> C2 by f ( z i ,  zf) =  (—z<i, zf).  Note that d(f )  =  1. 

If we let { in} == {(n, 0)} we have tha t f (xk)  = (0,/c) and therefore ( f ( xk) t Xk) = 0 

for all k E N and d(f )  — 0.

2.11 Some continuation principles

Proposition 2.2.4 is a continuation principle tha t plays an important role in the 

theory of /m u-regular maps. We can prove similar results for A-regular maps:

P ro p o s itio n  2.11.1. Let f  : X  —»• X  be a continuous, A-regular map and suppose 

there exists p E M+ such that

P {{PnfXn}) > p(3({xn}) (2.11.1)

is satisfied for each bounded sequence | xn E -An}. I f  g '• X  —> X  is a (3- 

contraction such that (3(g) < pa and qr(g) < dfR(f),  then f  + g is A-regular.

Proof. By Theorem 2.3.4, /  +  g is A-proper stable. By Lemma 2.4.1

d'R( f  + g )>  d'R(f)  -  qR(g) > 0 .

Since qR(g) < d'R(f),  there exists £\ > 0 such tha t qR(g) < d'R(f )  — £\ < d’R(f). 

Thus there exists no E N such that

d(fn) > dR(fn) > d!R(f) - e 1 > qR(g) >  qR(gn)

for every n  >  n0. Since d(fn)  >  q(gn), we can apply Proposition 2.2.4 to show that 

fn +  gn is stably solvable. □

Unfortunately, condition (2 .1 1 .1) is not easy to check. A stronger, but easier to 

verify, requirement is given by the following.

L em m a 2.11.2. Let f  : X  X  be a continuous, surjective map with

IIP n f { x n ) -  P n f i V n )  || > p \ W  ~  V n (2 .11 .2)
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for every x n} yn G X n and n  > no- Then

P{{fn%n}) > pp({xn}) 

for each bounded sequence {:rn |£n G X n} and n > no-

Proof. For n  > n o, let {xn\xn G X n} be any bounded sequence and suppose that 

{fn{xn)} is covered by finitely many balls B(yj , r)  with {2 /1 , • •. ,2/jt} C X.  Since 

/  is surjective there exist { i q , . . . ,  Uk} C X  such tha t f ( u j )  — yj for all j .  Set 

Uj:n — PnUj, Obviously u^n —> Uj and, by continuity of /  and Pni

/n(wi,n) f {uj )  for every j

In particular, if we fix e > 0, there exists n\ G N> ni > no, such that, for n  > ni, 

we have

IIuj ~  uj,n\\ < ^ and || f n{Uj,n) ~  f(uj)\\ < £  for every j

and therefore, for those n  such tha t { f n{xn)}  belongs to B(yj ,  r) and exceeds n i, we

have

pll^n ^jll <P\\xn Ujin\\ "f" p||n? ,̂7,ti||

—  II fn(Xn) ' ) 11 ~P P&

— II f n (Xn) fnil ĵjTi} ”b Uj ~~ UjW 3” P&

— ||/n(^n) ~  Vj\\ T  || fn{'U'jin) ~  /(^ j)ll ~b P£ — r P)'

It follows tha t the set {.Tn|n > ni} is covered by the balls B(uj ,  (r +  e(l +  p))p~l ).

As € is arbitrary, we have shown that

P({ f nxn}) > P/3({xn})

for n > no as required. □

Note th a t Lemma 2.11.2, unlike Lemma 2.4 of [40], does not require the finite 

dimensional subspaces {Xn} to be nested.
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C o ro lla ry  2.11.3. Let f  : X  X  be a continuous, A-regularmap such that (2.11.2) 

holds, and let g : X  —» X  be such that gn(g) < d'R(f )  and p(g) < p. Then f  +  g is 

A-regular.

Proof. Note tha t /  satisfies the hypothesis of Proposition 2.11.1 since, by Lemma

2 .1 1 .2 , (2 .1 1 .1) holds. □

C oro lla ry  2.11.4. I f  f  satisfies the hypothesis of Proposition 2.11.1, then f  is 

strictly stably solvable.

Proof. Since /  +  g is A-regular it is surjective and in particular we can solve the 

equation f ( x )  -f g(x) — 0. In particular /  is (a,p)~stably solvable for every a <  ^ 

and p < d'R(f )  by Proposition 2.11.1. □

R em ark  2.11.5. Note tha t condition (2.11.2) depends on A, i.e.

( /  satisfies (2 .1 1 .2 ) /  +  AI satisfies (2 .1 1 .2 )).

In the case of a demicontinuous map we have the following:

T h eo rem  2.11.6. Let X  be a reflexive Banach space with X * strictly convex and 

suppose that D  C X  is closed and T  : D —> X  is a demicontinuous map such that 

there exists po >  0 with

P ({Pnf x n}) > p0p ({xn})

for each bounded sequence {a;n | x n £ Dn}. I f  f  \ D X  is a p-contraction such 

that p ( f )  < po, then Tt = T  -\- t f  : D X  is A-proper stable for each t £ K  with 

|t| < 1.

Proof. First we note tha t Tln : Dn C X n —> X n is continuous for each n  £ N. Now 

let | x nj £ Dnj} be a bounded sequence such tha t PrijT (x nj) -|-Pnj f  (xnj)—g —► 0 

as j  —► oo for some g £ Y. Now

PoP{xnj} < P{PnjT (x nj)} =  p{g -  Pnjf ( x nj)} -  P{Pnjf ( x nj)} < P( f )P{xnj},
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and therefore (3{xnjj  — 0. Then there exists a subsequence, {xnj[k)} such that 

xnj{k) -» x. Since /  is continuous we have Pnj{k)f(%nj{k)) —> f(%) and

9 ~  f ( x )

By demicontinuity of T  we have T ( x n.{k)) T(x).  Let J  : X  —> X*  be a duality

map. Then for every y G U Xj  we have

(pnj{k)T ix nj(k)), Jy)  =  (T(xn .{k)), Jy)  for n > n ±.

Now

(p nj m T{Xnm ), J y )  -»  (g -  f ( x ) , j y )  and ( T ( x n m ), J y )  -► (T ( x ) , J y ).

Therefore

(T(x)  +  f ( x )  -  g, Jy) = 0 for every y  G ( J  Xj .

Under our assumptions J  is demicontinuous (see [6]) and therefore

(T(x)  +  f ( x )  -  g} Jy)  =  0 for every y e  ( J  X j  = X.

Since J ( X )  is dense in X * this is true for every x* G X*.  Therefore T(x)  + f ( x)  =  g, 

i.e. Ti is A-proper.

We note that, for each £ G K with \t\ < 1, we have th a t Tt ^  T  +  t f  : D  —» Y  is 

also a map of the same kind with (3(tf) — \t\ (3(f) < |t| pog-1 < pog~l , so that Tt is 

A-proper for every fixed t  with \t\ <  1 .

To prove the A-proper stability note tha t XI +  Tt =  XI +  T  +  t f  — T  +  (XI +  t f )  

and XI +  t f  is a /^-contraction with (3(XI -f- t f )  <  |A| +  \t\ (3(f), by Lemma 1.5.4. 

Therefore XI  +  Tt is A-proper for every A such that |A| < pug~l — \t\(3(f) (i.e. Tt is 

A-proper stable). □

P ro p o s itio n  2.11.7. Let X  be a reflexive Banach space with X* strictly convex 

and f  : X  —> X  be a demicontinuous, A-regular map and suppose there exists 

p G M+ such that (2.11.1) is satisfied for each bounded sequence {xn \ xn G Xn}. If  

g : X  X  is a (3-contraction such that (3(g) <  p Q and qr (g) <  d'R(f),  then f  +  g is 

A-regular.
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Proof. The result follows from Theorem 2.11.6 and a similar argument as in Propo­

sition 2 .1 1 .1 . □

In the case of compact perturbations weaker assumptions are needed.

P ro p o s itio n  2 .1 1 .8 . Let f  : X  —» X  be a demicontinuous, A-regular map and let 

g : X  —¥ X  be compact such that qit(g) < dR(f).  Then f  -T g is A-regular.

Proof. Since A-proper maps are invariant under compact perturbations, /  +  g is 

A-proper stable. Note that, by Lemma 2.4.1,

dR{f  + g ) >  drR{f)  ~  qR(g) > 0 .

Since qR(g) < d'R(f),  there exists e > 0 such that qn(g) < d'R( f )  — e < d'R(f).  Thus 

there exists no E N such that

dR{fn) >  dR{f) -  £ >  qR(g) >  qR{gn)

for every n > no- Since d( fn) > q(gn), we can apply Proposition 2.2.4 to show that 

fn +  9n is stably solvable. □

2.12 A  com parison

T h eo rem  2 .1 2 .1 . Let f  : X  —» X  be a continuous, A-regular map. Then f  is 

agv-regular.

Proof. Since /  is A-proper, /  is not compact by the proof of Lemma 2.6.1 and 

therefore a( f )  > 0. Since d'R(f )  > 0, by Lemma 2.10.8, we have tha t d(f )  > 

0. Furthermore we can use Theorem 2.4.8 to show th a t /  is stably solvable. By 

Proposition 2.2.10 we have tha t /  is agv-regular. □

T h eo rem  2 .1 2 .2 . Let f  : X  —» X  be a continuous map. Then

T  C~agy ( / )  C  a A( f ) .

Proof. From Proposition 2.2.13 C aagv( f ) .  Theorem 2.12.1 gives the inclusion

CTagv(f) T  CTA{f ) .  □
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The following example shows tha t the inclusion <Tagv( f )  C crA(f )  may be strict.

E xam ple  2.12.3, Take /  defined as in Example 1.6.5. Since /  is a linear isomor­

phism, <Jagv{f) — c ( / )  by Proposition 11 of [5] and therefore 0 £ o’agv(f) .  But /  is 

not A-proper, so tha t 0 G <7a(/).

P ro p o s itio n  2.12.4. Let d im X  =  oo and f  : X  —> X  be a compact map. Then

C: CTa U)-

Proof. Take A G Pa(/)- By Lemma 2.6.1, A ^  0 and therefore u(XI  — f )  — |A| > 0.

Furthermore /  is stably solvable by Theorem 2.4.8 and d(XI — f )  > 0, by Lemma

2.10.8. Then A G pfmv(f)- □

E x am p le  2.12.5. A map that is A-regular but is not Feng-regular.

Take f \  : M —► K (see Figure 2.2) defined by

/

x if x G (-oo , |]  U [2, Too), 

f i (x)  =  i —a; -h 1 i f £ G ( | , l )

2x — 2, if x G [1, 2).

Let /  : Z2(M) —»■ l2(R) be defined by

Figure 2.2: f i (x)  

f ( x i, X2) x 3) . . . ) = ( f i ( x1) , x2) x 3, . . . ) .
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To show th a t /  is A-regular, set

g ( x u x 2, x 3, ■ • •) == (5 1 (^1) , 0 , 0 , . . . ) ,

58

where
0 if x  E (—0 0 , ~] U [2, + 0 0 ),

gi(x) — < —2x +  l  if a: 6 (^ ,1 ) ,

x — 2 if x E [1,2).

Obviously f  = I  ~V g and g is compact. Furthermore

qn{g) = sup <  1  <  \  < d'R{I) = 1
IMI>fl IMI r  2

whenever R  >  2. Therefore, by Proposition 2.11.8, /-t-p  is A-regular and 0 E Pa(/)-

Note that, since 0 is an eigenvalue (with corresponding eigenvector (1 ,0 ,0 ,...) ) ,

m( f )  — 0 and therefore /  is not Feng-regular and 0 E df w(f).

R em ark  2.12.6. Note tha t the function /  defined in Example 2.12.5 is an A-proper

map which is not A-stable. To check this, assume tha t if /  is A-stable. Then there 

exists a function a  : R+ M+, with a(0) — 0 and a(r)  >  0 when r > 0, such that

\\fn(x) -  f n{y)\\ >  a ( | | z - 2/||).

for every x, y E X n and n > n0. Set x = ( 0 ,0 , . . . ,  0) and y — ( 1 ,0 , . . . ,  0) then

o =  IIfn(x) -  fn(y)\\ > ck(||£ -  2/11) =  a ( l )  > 0, a contradiction.

Example 2.12.5 also sheds light on the fact tha t in the linear case the A-regularity 

of a map L  implies unique A-solvability of the equation L(x)  = y. In the nonlinear 

case this is no longer true. In fact the equation f ( x )  — ( 0 , . . . ,  0) has two solutions 

aq =  ( 0 , . . . ,  0) and X2 =  (1, 0 , . . . ,  0).

2.13 Conclusions

In this chapter we discussed an approach to nonlinear spectral theory via finite di­

mensional approximations. We have studied some properties of the A-spectrum, 

partially investigating the relations between the A-spectrum, eigenvalues and some
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other nonlinear spectra. As a further development of the theory, it could be in­

teresting, for example, to study the applications of the A-spectrum to differential 

equations. In particular this means checking whether it is possible to use these 

techniques to obtain results not achievable by other methods. Furthermore we used 

stable solvability as our concept of solvability for the finite dimensional approxima­

tions, but, as can be seen in section 2.2, this is not the only possible approach.



Chapter 3 

Nonzero solutions of som e 

boundary value problems w ith  

continuous kernels

In the second part of this thesis, chapters three to five, we study some nonlocal 

boundary value problems (BVPs) for second order ordinary differential equations 

(ODEs). Such type of problems have been studied by Il’in and Moiseev [23]. Gupta 

et al. in [13, 15] widely studied these BVPs, proving existence of solutions. Since 

0 is often a possible solution, an existence theorem alone may be of little use, also 

in applications positive solutions are often of importance. Ma in [34] studied the 

existence of positive solutions of such problems under super linear and sublinear 

growth of the nonlinear term. We study problems where positive solutions need not 

exist. We do not impose global growth assumptions on the nonlinearity and use the 

theory of fixed point index to prove existence of one or more nonzero solutions under 

conditions which strictly include the sublinear and superlinear cases.

The BVPs in chapter three generate a continuous kernel tha t changes sign. In 

order to tackle these problems we introduce a cone of functions positive on an interval 

[a, b] tha t enables us to prove the existence of nontrivial solutions.

The BVP in chapter four is different, since it generates a discontinuous kernel 

and the theory of chapter three no longer applies. Thus we generalise the theory 

of chapter three, in order to deal with such a discontinuity. We also allow a more

60
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general nonlinear term.

In chapter five we use the results of chapter three and four to prove existence 

of positive (and negative) eigenvalues of a variety of nonlocal BVPs studied in the 

previous chapters and a BVP of a new type.

3.1 Introduction

In this chapter we study the existence of nonzero solutions of second order differential 

equations of the form

u"{t) +  g(t)f(u(t)) — 0, (0 < t < 1) (3,1.1)

under one of the boundary conditions (BCs)

u'(0) =  0, au(r]) =  u (l), 0 < 77 < 1, (3.1.2a)

u(0) — 0, au(ri) =  u (l), 0 < 77 <  1. (3.1.2b)

These are the three-point boundary value problems for which existence has been 

extensively studied by Gupta et al.y often assuming /  grows sublinearly.

One approach to finding positive solutions is to write the BVP as an equivalent 

Hammerstein integral equation

u(t) — f  k]{t jS)g(s) f (u(s))ds:=Tu(t )  (3.1.3)
Jo

and find a solution as a fixed point of the operator T  by using the classical theory 

of fixed point index in cones to establish the existence of one or multiple positive 

solutions.

Let P  — {x G 0(0,1] : x(t) > 0 for t  G [0,1]} be the cone of non-negative

continuous functions. In general, it can be hard to use the cone P  to obtain existence

of nonzero fixed points. Some recent progress was made by Lan and Webb [32] who 

used the cone

K  =  {u  G (7[0,1] : u > 0, min{u(£) : a <  t  < b} > c||u||}

(which is of a type due to D.Guo, see for example [12]) to prove tha t at least one 

positive solution existed for some boundary conditions of separated type. These
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results strictly included /  being either sublinear or superlinear. These results have 

been improved by Lan [29] to yield existence of multiple positive solutions under 

suitable conditions on /  for the separated BCs.

Webb [46] used Lan’s results for the Hammerstein integral equation to establish 

the existence of multiple positive solutions for the three point BCs above, when 

0 < (XT] < 1 for (3.1.2a) and 0 < a  < 1 for (3.1.2b). Webb’s results improved some 

of Ma’s [34] who dealt with the sublinear and superlinear case only for (3.1.2b).

In this chapter we shall consider the other possible ranges for the parameter a. 

For (3.1.2a) when a  < 0, the kernel k(t, s) is not positive for all values of i, s, indeed 

Ar(l,s) < 0  for all s. Therefore, when g and /  are positive, a fixed point of the 

operator T  cannot be positive on [0,1].

Nevertheless, as we intend to show in this chapter, it is possible to prove that 

nonzero solutions exist which have the property tha t they are positive (or negative) 

on some subinterval [a, b] of [0 , 1].

We shall show tha t one or more nonzero solutions exists under conditions on /  

exactly similar to those of Lan for each of the other possible range of parameter a  

in each of the BCs above.

The methods we use are rather similar to those of Lan but we •■■seek solutions of 

a different type, hence we employ a larger cone.

The conditions we impose on g are quite weak, for example we can allow g to be 

a non-negative L l function which is positive on a set of positive measure.

We suppose /  is positive; some of our other hypotheses involve

lim f ( x ) / x  and lim f ( x ) / x .
x —>-0+ x—>oo

Our conditions strictly include the sublinear and superlinear cases.

The results of this chapter are based on [2 1 ].

3.2 E xistence of nonzero solutions o f Hammer­

stein  integral equations

We begin by giving some results for the following Hammerstein integral equation.

u(t) = f  k( t i s)g(s) f (u(s) )ds = Tu(t). (3.2.1)
Jo
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We shall make the following assumptions on / ,  <7 and the kernel /s, throughout 

the chapter, even if not mentioned explicitly.

(F) /  : R —» [0,oo) is continuous.

(C) k : [0 , 1] x [0 , 1] —> E  is continuous and there exist a measurable function 

$  : [0 , 1] —» [0 , oo) and a number c £ (0 , 1] such tha t

\k{t, 5)| < $ ( s) f°r t, s £ [0 , 1], and 

c<L(s) < k(t, s) for t £ [a, b] and s £ [0 , 1]

(G) g : [0 , 1] —>• [0 , oo) is measurable and f* <f>(s)g(s) ds <  oo.

The hypothesis (C) means finding upper bounds for [&(£,•) I when t £ [0 , 1] and 

lower bounds of the same form for k(t, ■) with t £ [a, b]. In applications we have 

some freedom of choice in determining a, b but we are constrained by needing k(t, s) 

to be positive for all t £ [a, b] and s £ [0 , 1].

These hypotheses will allow us to work in the cone

K  — {u £ C [0 ,1] : min{ii(t) : a < t < b} > c||u||}.

This is a larger cone than the one used by Lan [29]. Note tha t functions in K  are

positive on the subinterval [a, b] but may change sign on [0 , 1].

R em ark  3.2.1. We check tha t K  is a cone. Let it, v £ K  and £ [0, Too). We

have

m infaiitft) +  a.2u(t)} > min a\u(t) +  min a2v(t) 
t6 [a,&] i€[a,b]

> c|(aiit|| +  c)|a2 |̂| ^ c||aiit +  a2v\\.

Furthermore it is obvious tha t if u £ K  and —u £ K  then u = 0. Therefore K  is a 

cone.

In order to use the well-known fixed point index for compact maps, we need to 

prove tha t T  : K  —v K  is compact, that is, T  is continuous and T(Q)  is compact for 

each bounded subset Q C K.
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T h eo rem  3.2.2. Assume that (F), (G) and (C) hold. T h e n T  maps K  into K  and 

is compact.

Proof. Let T  : (7[0,1] —► C [0,1] be defined by (Tx)(t )  — /J" fe(t, s)g(s)x(s) ds. Then 

the kernel has the properties:

(i) £  |&(t, s)|^(s) ds < Jg1 ${s)g(s) ds for all t £ [0,1].

(ii) For each r  £ [0,1], limt_>r |fc(t, s)g(s) — k(r> s)g(s)| ds — 0.

To see (ii), note tha t if t n —> r, then \k(tn, s)g(s) — fc(r, s)g(s)| —*■ 0 and

\k{tn,s)g(s) -  k{r,s)g{s)\ < 2$(s)g(s)  for every n.

Therefore, by the dominated convergence theorem, (ii) holds. Since [0,1] is compact, 

the limit in (ii) is uniform in r . Hence Proposition 3.4 (p.167) of [35] shows that 

T  : (7[0,1] —+ (7[0,1] is compact. As /  is continuous, it follows tha t the operator 

T  : C [0,1] -* C [0,1] is compact.

Furthermore we see tha t T  : K  —> K.  Indeed, we have

|Tu(t)| < f  \k(t , s) \g(s)f (u(s))ds  so tha t 
J o

\\Tu\\ < f  $(s)g(s) f (u(s))ds.
J o

Also

min {Tu(£)} > c [  $(s)g(s) f (u(s))ds.
a < t < b  J 0

Hence T u  £ K  for every u £ K.  □

We require some knowledge of the classical fixed point index for compact maps, 

see for example [1] or [12] for further information.

Let K  be a cone in a Banach space X.  If Q is a bounded open subset of K  (in the 

relative topology) we denote by Ll and dLl the closure and the boundary relative to 

K.  When D is an open bounded subset of X  we write D k  = D n K ,  an open subset 

of I<.

N o ta tio n : Let q : C [0,1] —» JR. denote the function

q(u) =  min{u(t) : a < t < b}.
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P ro p o s itio n  3.2.3. Let X  — C[0,1] and [a, b] C [0,1]. Then q is continuous on X .

Proof. Let un —> u in X .  Then un(t) —»■ u(t) uniformly on [a, 6]. There exists 

to E [a, b] such tha t q(u) = it(to), and tn E [a, b] such tha t q(un) — un(tn) for every 

n. Since itn(io) —> it(to) and un(io) >  q(un) for every n  we have it (to) >  limsup q{un). 

Also it(i0) <  u(tn) < un{tn) +  \un(tn) ~ i t( tn)|, hence it(t0) <  g(itn) +  |itn(tn) -  u(t„)| 

and so it (to) <  liminf q(un). This proves it (to) =  limg(iin). □

Following Lan [29], for p > 0, we shall use the set Qp =  {w E K  : q(u) < cp}. 

We write K r = {it E K  : ||it|| <  r}  and K r = {it E K  : ||it|| <  r}.

L em m a 3.2.4. Op defined above has the following properties.

(a) Qp is open relative to K .

(ib) K cp c n p c  K p.

(c) u  E dLlp if and only if  q(u) — cp.

(d) I f  u  E dLlp) then cp < u(t) <  p for t  E [a, b\.

The proof is exactly similar to Lan’s [29], but we give the proof for completeness. 

Proof, (a) holds since q is continuous, (c) see 3.2.5-3.2.7. Let u E K cp. Then

cIMI < q{u ) ^  IMI < cp

and u E Jfy,. If u E Qp, then c||n|| <  q(u) < cp. This implies ||u|| < p and u E K p. 

Hence, (b) holds. If it E dQp, by (c) we have c||u|| <  q(u) = cp < u(t) for all 

t E [a, 6], so (d) holds. □

R em ark  3.2.5. In general, given a Banach space X  and a continuous function

q : X  —► M, we have tha t for p > 0, the set Op — {x E X  : q(x) < p} is open but in

general dOp ^  {x E X  : q(x) =  p]) as the following example shows:

E x am p le  3.2.6. Let X  be a Banach space and
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Note tha t q is continuous in X .  For INI < INI > 2 and 1 < ||a:|| < 2 this is clear. 

When J | :co|| =  1 we have

q(x) =  { for ||a: — aro|| <  1

and
( ILtII — 1 if 0 <  ||a;|l < 1 , 

q(x) -  q(x0) =  <
[ 0 if \\x\\ > 1 .

Hence \\q{x) -  g(zo)|[ < ||M | -  ||a?o||I||^c -  £0||. When ||a:o|| =  2

, 1 i f  H^ll <  2 ,  ||a; — xq \\ <  1 ,
q(x) =

v 0  i f  lladl >  2.

Thus
|1 -  1| =  0

q(x) -  g(a=o)| '
rrll — 1 — 1|

and \q{x) — q{xo)\ <  ||®||—2| <  11|̂ || — ||^o|| | <  ||a: — a:o||- Therefore q is continuous. 

Note also tha t — {a; : q(x) <  1} — B (0 ,1), =  {a; : ||a:|| =  1} but

{a; : q(x) =  1} =  {x : 1 <  ||a;|| <  2 }

If q(x) satisfies some extra property we have the stronger result:

L em m a 3.2.7. Let q : X  —* R be continuous and q(tx) be strictly increasing in t 

for every x. Then

dPtp — {a; E X  : q{x) — p}.

Proof Since the set {x € X  : q(x) < p] is open we have

dLlp C {a; E X  : q(x) — p}.

If q(xo) — p we have, for t  < 1 , q( t xo) <  p and, for r  > 1, q { r x o) > p. Hence a 

neighborhood of xq contains points of {a; E X  : q(x)  <  p} and {a; E X  : q(x ) > p}, 

that is, a?o is a boundary point. □
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Notation: Let

fcp,P =  m in{ /(u )/p  : u E [cp, p]}, f ~ p'p = m ax { /(u )/p  : u E [-p , p]},

f  k(t, s)g(s) ds) and m =  (m ax f  |fc(t, s)|p(s) ds]
\a<t<b J a /  \ 0 < t < l  J g /

We now prove two lemmas which give conditions when the fixed point index is either 

0 or 1 .

Lem ma 3.2.8. Suppose &(s)g(s) ds > 0 and that

( * )  fcP,p >  M e and x T x  for x E dQ,p.

Then zk (T , £lp) = 0 .

Proof. Let e(t) =  1 for t  E [0,1]. Then e E K.  We prove th a t

x T x  +  Ae for x  E dQp and A > 0.

In fact, if not, there exist x E dCip and A > 0 such tha t x = T x  P  Ae. By condition

(*) and (d) of Lemma 3.2.4, we have for t E [a, 5],

x{t) = [  k ( t i s )g (s)f(x(s))ds  + \ >  (  k ( t ,s )g ( s ) f ( x ( s ) )d s P  A 
Jo da

’6
>cMp f  k(t>s)g(s)ds P  A >  cp 4- A.

J a

This implies tha t #(;c) >  cp +  A > cp contradicting (c) of Lemma 3.2.4. Hence (1) 

of Lemma 1.4.7 gives z/<(T, Q,p) — 0. □

Later, in Remark 4.2.5, we compare the assumption (1) of Lemma 1.4.7 with the 

commonly used > ||u|| for ||u|| — p.

L em m a 3.2.9. Suppose maxo<t<i Jq \k(t,s)\g(s) ds > 0 and that f  satisfies 

(**) f ~ p,p <  m  and x ¥" T x  for x  E d K p.

Then ij<c(T, K p) — 1.

Proof By (**), for u E d K p and t E [0,1], we have

|3M t)| = / k(t, s)g{s)f(u{s)) ds 
'0

< [  \k (t ,s ) \g (s)f(u (s))ds  
do

< mp  / |k(t, s)| g(s) ds <  p — \\u\
do
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Therefore ||Tu|| <  J|it|| for u £ d K p. By means of (2 ) of Lemma 1.4.7, we have 

ii<(T,Kp) =  1. □

We now give our new result which asserts that Eq. (3.2.1) has at least two 

nonzero solutions which are positive on the subinterval [a, 6] (the proof is illustrated 

in Figures 3.1, 3 .2 ).

Theorem  3.2.10. Assume that f^<S>(s)g(s) ds > 0 and one of the following condi­

tions holds:

(51) There exist pi,P2 ->Pz £ (0, oo) with pi < cp2 and p2 < ps such that

j -pi ,pi  <  fcp2,P2 > Me, x  7^ T x  for x £  dClP2, and f  ~pz'pz <  m.

(52) There exist p i,p 2 ,p 3 £ (0 ,0 0 ) with Pi < P2 < cp3 such that

fcpun > Me, f-pz'p* < m , x ^ T x  for x £ 0 K P2, and f cp3tP3 > Me.

Then Eq. (3.2.1) has two solutions in K  each of which is positive on [a, b]. Moreover, 

if in (Si), f ~ pl,p 1 <  m  is replaced by f~P*'Pl < m, then Eq. (3.2.1) has a third solution 

£0 e  K P1.

Proof Assume that (Si) holds. We show that either T  has a fixed point x\ in dK pi 

or in 0 P2 \  K Pl. If x ^  T x  for x £ d K pi U d K P3, by Lemmas 3.2.8 and 3,2.9, we have 

ix iT ,  K pi) — 1 , ix (T , 0 P2) =  0 and ii{(T, K P3) — 1. By (b) of Lemma 3.2.4, we have 

K PJ C K cp2 C LlP2 since pi < cp2 . It follows from (3) of Lemma 1,4.7 that T  has a 

fixed point aq in 0 P2 \ K Pl. Similarly, T  has a fixed point aq in ICP3 \  CtP2. The proof 

is similar when (S2 ) holds. □

Rem ark 3.2.11. Note tha t the third solution xo £ K P1 might be zero. The other 

solutions are not because their norms are bounded away from zero. Although the 

statement and proof is almost identical to the similar result in [29] which deals with 

positive solutions, our new result allows solutions tha t are only positive on a subin­

terval and may change sign, and indeed this happens in the differential equations 

we consider below.
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inqex=-l

index=0

index=l

index=l

Figure 3.1: One nonzero solution

Remark 3.2.12. It is possible to give results for more than two solutions by merely 

adding more conditions of the same type to the list in (Si) or (S2)- We do not state 

such results leaving them to the reader who may refer to [29] for the type of result 

that may be stated.

Notation: Let

f  =  lim sup ] /„ =  lim inf Iff_ /°° =  lim sup —  and =  lira inf — .
u—*0 M  «->0  \u\ u—oo U u—00 u

As a special case of Theorem 3.2.10 we have the following result.

Corollary 3.2.13. Assume that $(s)g(s) ds > 0 and there exists p > 0 such that 

one of the following conditions holds.

(Ei)  0 < / ° <  771, f cPyp > Me, x  ^  T x  for x  G dUlp, and 0 <  / ° °  <  m.

(E2) M  < fo < 0 0 , f ~ p,p < 771, x y£ T x  for x  G d K p, and M  < foo <  00.
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ex=-l |

index=l\l

index=0

index=l

,index=-ll

index=0

Figure 3.2: Two nonzero solutions 

Then Eq. (3.2.1) has two nonzero solutions in K.

Proof. We show that (E\) implies (Si). In fact, 0 < f°  < m  implies that there exists 

Pi G (0, cp) such that f ~ p l 'pl < m. Let r  G (/°°,ra). Then there exists r  > p such 

that /(it) <  ru  for u  G [r, oo) since 0 <  /°° < m. Let (3 = m ax{/(it) : 0 < u < r} 

and p3 > P / ( m  — t ) .  Then we have

f (u )  < r u  + ft < r p3 +  p < mp3 for u G [0, p3].

This implies f - p3'p3 < m, hence (Si) holds. Similarly, (f?2) implies (S2). □

By a similar argument to that of Theorem 3.2.10, we obtain the following new 

results on existence of at least one nonzero solution of Eq. (3.2.1).

Theorem  3.2.14. Assum.e that $(s)g(s) ds > 0 and one of the following condi­

tions holds.



CHAPTER 3. BVPS W ITH  CONTINUOUS KERNELS  

(Hi) There exist p i ,p 2 £ (0, oo) with p\ < cp2 such that

f-pupi <  m  an(i f cp2̂p2 >  Me.

71

(H2 ) There exist p \ ,p 2 £ (0, oo) with p\ < P2 such that

fcpUpi > M e and f  p2’p2 < m.

Then Eq. (3.2.1) has a nonzero solution in K .

Theorem 3.2.14 generalises Theorem 2.2 in [32] by allowing solutions tha t change 

sign.

Rem ark 3.2.15. We shall see below that, for certain values of the parameter a, the 

kernel k(t,s )  is negative for t  in some interval [a, 6], for all s. In this case, assuming 

g and /  are positive, we can show tha t nonzero solutions exist th a t are negative on 

[a, b]. Indeed, u is a solution of

is negative on [a, b\. Hence we can obtain results, exactly similar to ones above, for 

the existence of solutions that are negative on [a, b}. We do not state the obvious 

theorems thus obtained.

3.3 M ultiple nonzero solutions of problem  ( 3 . 1 . 2 a )

We investigate the BVP

if and only if v := —u  is a solution of

where k =  —k and f (v )  =  / ( —v). Moreover v is positive on [a, b] if and only if u

u" +  g(t)f(u) = 0 , a.e on [0 , 1] (3.3.1)

with boundary conditions

w'(0) — 0, cm (77) =  u ( l ) ,  0 <  77 <  1. (3.3.2)
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By a solution of this BVP we will mean a solution of the corresponding Hammerstein 

Integral equation

u(t) =  [  k(t,s)g(s)f{u{s))ds.  (3.3.3)
J o

The solution of u" +  y = 0 with the BCs (3 .3 .2 ) is (by routine integration)

I f 1 a  P  P
u(t) =   -------  / (1  -  s)y(s) ds -  -------  / (?7 -  s)y(s) ds -  /  (t -  s)y{s) ds.

1 -  a  Jo I J o  Jo

Thus the kernel [Green’s function] of (3.3.3) is

1 L  a  i v - s ) ,  s <  y t - s ,  s < t

^ 0 , s > y y 0 , s > t.

We shall study separately the cases a  < 0 and a > 1 . The existence of positive 

solutions when a  =  0 has been studied in [32], and when 0 < a  < 1 in [46]. a — 1 

is the resonance case and can not be dealt with by the methods here but existence 

in this case was studied in [9].

The case a < 0.

To simplify the calculations we write —/3 in place of a , so tha t (3 >  0.

We have to exhibit 3?(s), a subinterval [a, b] C [0 , 1] and a constant c < 1 such that

\h(t, 5)| < $ (s) for every i, s E [0 , 1], 

k ( t} s) >c$(s) for every s G [0 , 1], t  6  [a, b\.

We show th a t for these BCs we can take <h(s) =  (1 — s).

Upp er bounds

Case 1 . s < y. If s > t then k(t, s) > 0 and

t/ \ 1 — s P , — 5 + PiP ~ s ) \
k^ s)- — p + I T - p - s)- ----T T ^  = (1- S)'

If s <  t then

j \ 1 - 5  , P i \ u   ̂ l  +  /3 r} - t{ l  +  P)K t ,s )  = — e  + T T ^ ( v - s ) - ( t - s ) ^ -------- — -------- .

If t < then fc(i, s) > 0 and

r fj. \ 1 + P v  ~  i(l + P)  ^  1 + P v  ~  ^(l 4- P)  ( ^
k(t ' s) =  — 1 + 7?—  -  — T+m— 5  (1 “ s)-
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If t > ^ ien 5) — ^ anc^

i f f  N ... - 1  -  Pv +  K 1 +  P) < - I  -  Py + {I + (3) (3(1 - r j )  (3(1 -  5)
1 , s >  1 +  0  -  1 +  0  1 + 0  ~  1 + 0  '

Case 2 . s > 77. If s > t then

and we are done. If s < t then

h(f  „\ 1 +  /?s -  t ( l  +  (3)
L^ S ) ~  1 + P '

If t <  then &(£, s) >  0 and

. . 1 +  ps  -  s (l +  (3) (1 — s)
k ( t , s ) < -------- — --------- = T W

If t > then k(t , s) <  0 and

— 1 — (3s +  i ( l  +  (3) — 1 — (3s +  (1  +  (3) (3(1 — s)
-fc(* ,.) =  — p  < -------- ^ ----------=  - T T r .

Lower b o u n d s

We show tha t we may take arbitrary [a, 6] C [0,77]

Case 1 . s < 77. If s > t then

t / \ 1 — s (3 , (1  — s)
k{t’ 's) =  T T p  + T T 0 {V- s) -  T W

If s < t, since t < b <  77 we have

1 — S B , , , . 1 —7 7 ^ 1  — 77,. .
s) * — 0  +  TTp{v ~s) ~{v ~s) =  TTp ~ TTp{1 “ s ) '

Case 2, s > 77. If s >  t  then k(t, s) =  (1 — s ) /( l  +  (3) and we are done. Since we 

take b <rj the case s < t does not occur.

The conclusion is tha t we may take c =  (1 — 77)/(!-{- /?).

T h eo rem  3.3.1. Let a,b £ [0 , 77] and c — (1 — 77)/(1 +  /?). Let m , M  be as defined 

‘previously and suppose that g(s) ds > 0 . Then for a  <  0 the BV P  (3.3.1), (3.3.2) 

has at least one nonzero solution, positive on [a, b]} i f  either

(h\) 0 <  f °  < m  and M  < /«, <  00 

or
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(/12) 0 <  f°° < m  and M  < / 0 <  oo,

and has two nonzero solutions, positive on [a,b], i f  there is p > 0  such that either

(Ei) 0 < f °  < m, f cPtP > cM, x T x  for x  G dPlp, and 0 <  f°° < m, 

or

(E2 ) M  < fo < 0 0 , f ~ p'p < m, x ■=£ T x  for x  G d K p, and M  < /oo < 0 0 .

We give a simple example to illustrate the theorem.

E xam ple  3.3.2. Set g = 1 and /  =  2, in this case f°° — 0 , / 0 =  0 0 . The solution 

of (3.3.1) with (3.3.2) is

u(t) = +,2 , (i + Pr)
(1 +  /5) '

This is a solution that is positive on an interval containing (0 ,77] but negative at 

t =  1 (in Figure 3.3 we illustrate the special case ?y =  ~ and p  = 1, obtaining 

u(t) = - P  + l).

5/8

1/2

Figure 3.3: A solution positive on an interval

As an application of Theorem 3.3.1 we consider the following eigenvalue problem: 

Au"(t) +  g(t)f(u(t))  =  0, (0 < t < 1) (3,3.4)

subject to BCs

7/ ( 0 ) =  0, au(g) — ti(l)> 0 < r/ < 1. (3.3.5)
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T h eo rem  3.3.3, Let [a,b] C [0,??], c =  (1 — rj)/(l-P0) and a  <  0. Suppose that 

J^g(s)ds  > 0. Let m ,M  be as defined previously. Then A is an eigenvalue of 

the boundary value problem (3.3.4)-(3.3.5), with a corresponding eigenvector that is 

positive on [a, b\, if  either

( P i )  f ° / m  <  A <  U M

or

(P2) f ° ° / m  < A < f o / M .

Proof Take A G ( f° /m ,  foo/M) and consider the equation

u"( t)+ g(t) f{u{ t))  = 0 (3.3.6)

with BC (3.3.5), where f(u )  — A“ 1/(u ) . From (Pi) it follows tha t f ° < m  and 

M  < /oo. We can apply Theorem 3.3.1 to the BVP (3.3.6)-(3.3.5), hence obtaining 

a nontrivial solution of the BVP (3.3.4)-(3.3.5). The case {Pf) is treated in a similar 

manner. □

Similar results are valid for the other BCs we consider below. We leave the 

statements to the reader.

The case a > 1.

For these BCs the kernel k is negative on an interval so we apply remark 3.2.15 and 

consider —k in place of k. Thus we have to find 4> such th a t \k(t, s)| <  <b(s) for 

every t, s E [0,1] and show that there exists [a, 6] C [0,1] and a constant c such that 

—k{t}s) > c<P(s) for every s G [0,1] and t  G [a, b\. In fact we show that we can take

*(a) =  - 2 L . ( i - s).
a  — 1

U pper bounds
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If s > (this occurs in particular when ar] < 1) —k(t, s) > 0 and

/ ^  ^  l - s - o e n  + ar) (1 -  s)
kyt, s) < ^  i — /t, i 'a  — i a  — i

I f  s <  ~ t̂ T 1 f f i e n  5 ) >  0 a n c f

T, v —1 +  5 +  ar] — as  — 1 +  s +  a — as  .
k(t, s) = -------------  < -------------- ---------= 1 - 5 ) .

a — 1 a  — 1

If s < t  then

1 — s a  . . , . 1 — a ?7 +  a t  — £
- k ( L  s) =  — —  -  -—— (7] -  s) +  (t -  5 ) = --------- H— ----.

a — l a  — 1 a —1

If t  > llien ~k(t, 5 ) > 0 and

un  „\ /  1 ~  ai7 +  a  ~  1 a (1 ”  s)k{t) s) <  — „ 1 ‘a; — 1 a  — 1

If £ < -l±g??. then /c(£, 5) > 0 and

, , , — 1 +  an — at  + £  — 1 +  a  — as  +  5 x
k(tl s) = ------------   < ------------------------=  (1 -  s)

a — i  a — 1

Case 2. s > 77. If s > t then

0 <  -fc(t.s) =  h u d
a  — 1

and we are done.

If s < t then
w (1 — s) . . a ( l  — s)

0 < —k (t , s) =  -------  h (£ — s) <  - .
a  — 1 cv — 1

Lower bounds

We will show that we may take a =  77 and 6 £ (77,1] which will yield a solution that

is negative on [77, 6]. But, if also ar] < 1, we may take an arbitrary [a, b] C [0,1].

In particular this means tha t there exists a solution which is negative on the whole

interval [0,1] when a > 1 and 0:77 <  1.

Case 1. s <  77. If s > t  then

T, . 1 — s — Q!?7 +  as  1 — s — 077 +  ar]s . . (1 — s)
-&(*> s) =    >    =  (1 -  ar])- ---------a — 1 a —1 ct — 1

If ar] < 1 we may take an arbitrary a but if 0:77 > 1 we would have a problem.

However, if at] > 1 we choose a > 77 so tha t this case does not occur.

If s < £ and ar] < 1 then

1 — a ?7 +  a s  — s . . (1 — s)
-k( t , s )  > ------- !— -- - - - - - - >  (1 - - a + ----- f .

a  — 1 a — 1
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If s < t  and ar] > 1, as we choose a > r) we have

_ 1 -  ar] +  a t -  £ 1 -  ar] +  ar] — 77 . (1  -  s)
—fc(t, s) — -  - >  -  - >  (1 — ?7)"" 7~-

a  — 1 a  — i a  — i

Case 2 . s >  r). If s > t  then
- fc ( t , s ) =  d z i l

a  — 1

and we are done. If 5 <  t  then

. 1 T  a t — t — as 1 -f as  — s — as (1 — s)
- k ( t t s)  ------------   >    = -

a  — 1 a — 1 a  — 1

The conclusion is tha t we may take either a =  77, b £ (77,1] and c =  (1 — r])/a or, 

when ar] < 1, we may take a,b arbitrary and c =  (1 — arj)/a. Thus we can state 

the following results:

T h eo rem  3.3.4. Let a  > 1, let a = r], b E (77,1] (or a, b arbitrarily chosen in [0,1] 

if  ar] < 1). Suppose that g (s) ds > 0. Let c be as given above and let m, M  be as 

defined previously. Then the BVP  (3.3.1), (3.3.2) has at least one nonzero solution, 

negative on [a, 6], if  either

(hi) 0 < f °  < m  and M  < f ^  < 00  

or

(/12) 0 <  f°° < m  and M  < fo < 0 0 ,

and has two nonzero solutions, positive on [a,b\, if  there is p > 0 such that either

(Ei) 0 <  f °  < m, f cP:P > cM, x ^ T x  for x  E dClp, and 0 <  /°° < m, 

or

(E2) M  < fo < 0 0 , f ~ Pip < m, x  7̂  T x  for x  E dK p, and M  < foo < 0 0 .

We illustrate the theorem with the following simple example.

E x am p le  3.3.5. Let a  > 1, and take g =  1, /  =  2. The solution of the BVP
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If ai] < 1 this solution is negative on all of [0,1]. W hen ar]2 > 1 the solution 

is negative on an interval, for example, when 77 =  1/2 and a  — 5 the solution is 

u(t) =  1/16 — t2 (we illustrate this in Figure 3.4). By taking a  very large, the 

interval on which the solution is negative approaches (77, 1], hence our choice of [a, b] 

is optimal in giving the largest interval on which the solution is negative.

7m

Figure 3.4: A solution negative on an interval

3.4 M ultiple nonzero solutions of problem  ( 3 . 1 . 2 b )

We now investigate the second BVP

u" +  g(t) f(u) — 0, a.e on [0,1], (3.4.1)

with boundary conditions

u(0) =  0, au{r]) =  u( 1), 0 < 77 <  1. (3.4.2)

The kernel in this case is

1  — - - (77 -  5 ), 5 <  77 ( i - s ,  s < t
k ( Ls )  =  — ------ t ( l - s ) ~  I 1 ar1 - <

aV |  0, s > 77 I  0, s > t.

The case a < 0.

Again we write (3 — —a > 0. We show that we may take

*“>-<1 + 0TTJ5r
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U p p er b o u n d s

Case 1. s < 77. If s > t then k(t, s) > 0 and

,.n t ( l  -  s) +  Pt(r] - s )  s ( l -  s) +  /3s(l -  s) s ( l  -  s)
l { t ' s) =  I T p v    T+Pv  ”  ( 0)~ T W

If S < t,

. , s t ( l  — s) Bt , , , \ — st — Bts +  s +  firis
k{t' s) = T T p i  + T T p v  - s) ~ {t - s) = ---- i T P v  '

and fc(s,t) is negative for t > and s /  0 ; note also tha t > 77.

For fc(t, s) >  0 we have

1U s - s t - p t s  + s + Prjs s{l -  s) + /3s{r) -  s) , ^ s ( l - s )
=  rrT v    i + J v —  -  (1+/J)t w

and for k(t,s)  < 0 we have

1fJ. > st T  pts -  s -  Pr]s ^  Ps ( l - 7] )  s ( l - s )
= -T T ^    T W  ~

Case 2 . s > 77. If s > t then k{t, s) > 0

1 ’ , 1 + /?J? -  l + Pv '
If s < t  then

, ., , - t s  -  Pr}t +  s +  /3?7s
/c(t, s) =  — — ..... ................

I P  Prj

and k(s t t) is negative for t > • When k(t, s) > 0 we have

—ts — prjt +  s +  prjs — s2 — /3?7S +  s +  Prjs _  s ( l — 5 )
1 +  Pi] ~  1 +  prj 1 +  Pi] 1

and when k(t, s) < 0 we have

u , n _  t s P P r j t - s -  Prjs Pr\{\ -  s) a s{l -  s) 
l  + firj “  1 + pri “ ^ 1 + / V

Lower b o u n d s

We show that we may take arbitrary [a, b] C (0 ,77].

Case 1 . s <  77. If s > t then

t  — s t p  pti7 — pts t( 1 — s) a ( l — s) s ( l — s)
l  + Prj ~  I p Pr )  ~  I p P r j  ~ a i p P r ]

If s < t and t < b < 77,

i f ,  , ^  —si] -  Pi]s P s P P r j s  s( l  -  77) ^  n ^ s ( l - s )
k ^ s ) -  1 + Py 1 + prj V ) l  + 0 r j ’
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Case 2. s > rj. If s > t then

k it  <a = t(1 ~ >  a(1 ~
I P  /3p 1 T  (dp 1 -h /3?7

The case s < t does not occur since we take b < p. Therefore we may take

c =  min{a, 1 — ? ? } / ( l  +  (d)-

T h eo rem  3.4.1. Let a,b G (0,77] and suppose that g(s) ds > 0. Let c be as given 

above. L e t m ,M  be as defined previously. Then for ap < 0 the BV P  (3.4.1), (3.4.2) 

has at least one nonzero solution, positive on [a, 6], if  either

(hi) 0 <  f °  < m  and M  < /«, <  00 

or

(h2) 0 <  f°° < m  and M  < fo < oo,

and has two nonzero solutions, positive on [a, 6], if  there is p > 0 such that either

(Ei) 0 < / ° <  m, f cP}P > cM, x ^  T x  for x  €E dQp, and 0 <  f°° < m, 

or

(jSy M  < fo < 0 0 , f ~ p,p < m, x ^  T x  for x  G 9 K P, and M  < foo < 0 0 .

The following simple example illustrates result.

E xam ple  3.4.2. Set g = 1 and /  =  2. The solution of (3.4.1) with (3.4.2) is

t N I T  (dp2 2

Thus u(t) is positive on [0 , p\ but u(l )  < 0 . (in Figure 3.4.2 we illustrate the special 

case 77 =  |  and j3 =  1 obtaining u(t) ~  —t2 T §f).

The case ap > 1.

For these BCs the kernel k is negative 011 an interval so we apply remark 3.2.15. We
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1/2

Figure 3.5: A nontrivial solution

Upper bounds

Case 1 . s < 77. If s > t then

. ,  x t i l  — s — ar] P as) t ( l  — s) s ( l  — s)
kit, s) =  - A — A —■at] — 1 ar] — 1 ar] — 1

Also

, ^  ^  t ( - l  P  s P  ar] -  as) ^  t ( - l  P s P a  -  as) ^  iNs ( l - s )
\ " 1 ^ ) ~i — H J i 1ar] — 1 ar] — 1 ar] — 1

If s < t then

—s t p a t s  — a n s p s  s(—t p a t  — a r ] p l )
—kit, s) —---------------   = ------------------   .

ar] — 1 ar] — I

When t > ^ Z p  then —k(s,t) > 0 and

s(a — ar]) s ( l — s)
- k t, s) <  f .  < a —-------A

ar] — 1 ar] — 1

If t < -̂ Cp" then &(s, t) >  0 and

^ - l + q f o - , ) )  a(a - l  + a ( l - fl)) ^
ar] — 1 o:?7 — 1 077 — 1

Case 2 . s > rj. If s > t  then —k(t, s) >  0 and

ar] — 1 077 — 1

If 5 <  t then —k{t,s) > 0 and

T . N —ts +  a??t — 077s +  s — s +  077 — ar]s +  s
k{t, s) =  - A ~

077 — 1 077 — 1
077(1 — s) s ( l — s)

= ---------------- —  <  o  — .

0:77 — 1 0:77 — 1
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Lower bounds

We show th a t we may take an arbitrary [a, b\ C [77,1].

Case 1. s < rj. Since we take a > rj we only have the case s < t  and then

. , ,  . s(—t +  a t — ar] +  1 )
k{t, s) — - .

0 :77— 1

Since rj > we have —k(t,s) > 0 and

s i - n  + a v - a y + l )  ^  s_0 - s )
077 — 1 077 — 1

Case 2 . 5 > 77. If s > t  then

_ * (t, s) =  > h t z h  > .
077 — 1 077 — 1 077 — 1

If s < t  then

. — ts +  arjt — arjs +  s — s2 +  arjs — 077s +  s s ( l — s)
/c(t, 5j =  - C : r“-

077 — 1 077 — 1 077 — 1

Thus we may take c =  min{a, 1 — rj}/a.

T h eo rem  3.4.3. Let a,b E [77,1] and suppose that j ^ g(s) ds > 0. Let m , M  be as 

defined previously and let c = min{a, 1 — ?7} /u . Then for  o  > 1 the BVP  (3.4.1), 

(3.4.2) has at least one nonzero solution, negative on [a, b], i f  either

(hi) 0 <  / °  < 771 and M  < /<*, <  00  

or

(h2) 0 <  /°° <  m  and M  < / 0 <  oo,

anh has two nonzero solutions, negative on [a, b\, if there is p > 0  such that either

(E\) 0 <  f °  < m, f cP)P > cM, x j£ T x  for x E dLlp, and 0 <  /°° < m, 

or

(E2 ) M  < fo <  0 0 , f  p,p < m, x ^  T x  for x  E dK p, and M  < /oo < 0 0 .
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3.5 Radial solutions of elliptic P D E s

Consider the problem of existence of positive radial solutions in an annulus in 

Mn, ft >  2, for the equation

A it +  h(\x\)f (u) =  0, for a.e. \x\ £ [R\) i?o].

with boundary condition: 

du
—  =  0 for |ic| — R q and u(R\) — au(Rrj).

We assume

(1) 0 < Ri < < R q < oo.

(2) /  : K —► [0, oo) is continuous.

(3) h £ L 1(Rq, R i ) and h(r) > 0 a.e..

For radial solutions u — ft(r), r =  |a;| we can write (3.5.1) in the form

+ K r ) S « r ) )  = 0 a.e. on [ * , * ] .  (3.5.3)

Eq.(3.5.3) can be transformed into the ODE

u "  + =  0

by means of the following variables. Put u(t) — u(r(t)) where 

r(t) =  ( 7  +  (/5 -  7 ) t ) -1/(n- 2> for t  e  [0 , 1],

where 7  =  R g *n_2' and [J = , and let

m  = (08 -  7)/(n -  2))2(7 + (fi-  7

Then Eq. (3.5.3) becomes

u”(t) +  <p(t)h(r(t))f(u(t)) =  0, a.e. on [0,1]. (3.5.4)

subject to the boundary conditions

ft'(0) =  0, au(rj) = n (l), 0 < rj < 1, (3.5.5)

[In 2-dimensions we use r(t) — and <j)(t) =  (Rq(1 — t) log(i?o/^ i))2-]

Hence we can apply, for example, Theorem 3.3.1 to obtain at least one nonzero

radial solution of the BVP (3.5.1)-(3.5.2).

(3.5.1)

(3.5.2)
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R em ark  3.5.1. Similar results are valid the problem

A u  + h(\x\)f (u) — 0 , for a.e. |a:| £ [Ri,i?o]> (3.5.6)

with boundary conditions

il(Rq) — 0 and u(R{) — a ^ R ^ ) .  (3.5.7)

Radial solutions can be studied by transforming the BVP (3.5.6)-(3.5.7) into the 

ODE

+  9(t)f(u{t))  =  0> (0 < t  < 1) (3.5.8)

with boundary conditions

'u(O) =  0, au(rj) — ft(l), 0 < 77 <  1. (3.5.9)



Chapter 4 

Nonzero solutions of som e 

boundary value problem s w ith  

discontinuous kernels

4.1 Introduction

In this chapter we extend the results of chapter three to allow for discontinuities in 

the kernel and more general functions / .  One motivation is tha t certain nonlocal 

boundary value problems lead to precisely this situation. We shall study in detail 

the problem

u"(t) +f ( t , u ( t ) )  = 0, (0 < £ < 1), (4-1.1)

with boundary condition

u( 1) =  cm7(77), u(0) =  0, 0 < 77 <  1. (4.1.2)

In this case the kernel of the corresponding integral equation has a discontinuity.

We shall use our theory to show that multiple nonzero (but not necessarily positive)

solutions exist, under suitable conditions on / ,  when either 0  <  a  < 1 — 77 or a  < 0 . 

These results are completely new and have been submitted for publication in [22].

85
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4.2 Existence of nontrivial solutions of Hammer-

stein  integral equations

We begin by giving some new results for the following Hammerstein integral equa­

tion.

= f  k( t1s ) f ( s iu ( s ) ) ds : =Tu( t ) ,  (4,2.1)
J g

where G is a compact set in M71 of positive measure. We will work in the space C(G) 

of continuous functions endowed with the usual supremum norm. We shall make 

the following assumptions on / ,  g and the kernel k. Recall th a t /  is said to satisfy 

the Caratheodory conditions if for each u, s w  /( s ,u )  is measurable and for almost 

every s, u i—» /( s ,  w) is continuous.

(Ci) Suppose tha t for every r > 0, /  : G x [—r, r] —► [0 , oo) satisfies Caratheodory

conditions on G x [—r, r\ and there exists a measurable function gT : G —> [0, oo)

such tha t

f ( s , u)  < gr{s) for almost all s E G and all u E [—r tr].

(C2) k : G x G —> E  is measurable, and for every r  E G we have

lim / |fc(i, s) — &(r, s)|pr (s) ds — 0 .
t~¥T J g

(C3) There exist a closed subset Co C G with meas(Go) > 0, a measurable function 

: C  —> [0,0 0 ) and a constant c E (0,1] such tha t

|A:(i, s)| <  $ ( 5 ) for t E G and almost every s E G 

c$(s) <  /c(i, s) for t E Co and almost every s E C.

(C 4) For each r  there is M r < 00  such tha t JG^(s)gr{s) ds < M r.

These hypotheses allow us to work in the cone

K  — {u e  C(G)  : min{it(£) : t E Co} >  c||u||}.

This is similar to but larger than the cone used by Lan [30]. In order to use the 

well-known fixed point index for compact maps, we need to prove th a t T  \ K  —> K  

is compact.
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T heorem  4.2.1, Assume that (Ci)-(Cf) hold for some r > 0. Then T  maps K r 

into K  and is compact.

Proof. The compactness of T  follows from Proposition 3.1, p. 164, of [35] since, as G 

is compact, the limit in (C2) is readily shown to be uniform in r  £ G. To see that 

T  : K r —» /<", for u E Cr and t € G, we have,

|Tw(£)| <  I \k(t , s) \ f (s,u(s))  ds 
J g

so that

\\Tu\\< [  $(s) f ( s , u{s) )ds .
J g

Also

min{Tu(i)} > c f  &(s) f (s ,u(s))ds.  
teG0 J G

Hence T u  G K  for every u P. K r. □

Rem ark 4.2.2. In Theorem 4.2.1, if the hypotheses hold for each r > 0, then T  

maps K  into K  and is compact. We shall only consider this case.

Let q : C(G)  —* M denote the function q(u) — min{tt(£) : t  G Go}. The proof 

of Proposition 3.2.3 shows tha t q is continuous. As in chapter three, for p > 0, we 

shall use the set Llp — {u G K  : q{u) < cp}.

Lem ma 4.2.3, defined above has the following properties.

(a) Lip is open relative to K .

{b) K cp C 0 P C K p.

('c) u G dLlp if and only if  q(u) =  cp.

(d) I f  u E dLlpj then cp < u(t) < p for t g G0.

We omit the simple proof as it is exactly similar to the one in chapter three.

We now prove a lemma which implies the index is zero, this is a more general version

of Lemma 3.2.8

Lem ma 4,2.4. Assume that there exists p > 0 such that u ^  T u  for u G dLlp and 

the following conditions hold,
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(Hjf) There exists a measurable function fip : Gq —> such that

f { s tu) > cp'ipp(s) for all u E [cp,p] and almost all s E Go, 

and inftgGo S g 0 fc(t, s)'ijjp(s) ds >  1.

Then iic(T, r2p) =  0.

Proof Let e(i) =  1 for t E G. Then e E K. We prove tha t

u ^ T u  + Ae for u E dPlp and A > 0.

In fact, if not, there exist u E dPlp and A > 0 such tha t u  =  T u  +  Ae. By (Hf ) ,  we 

have for t E Go,

u(t) =  /  k{ t , s ) f ( s i u(s))ds + A >  /  k(t, s ) f ( s , u(s ) )  ds T  A
JG JGq

>cp / &(£, s)if>p(s) ds +  A > cp +  A.
J gq

This implies 5 (14) > cp -f A > cp, contradicting (c) of Lemma 4.2.3. Hence (1) of 

Lemma 1.4.7 implies z^(T, Hp) =  0. □

Note th a t if strict inequality holds in taking A =  0 we see tha t u 7  ̂Tu  for

u  E dOp.

R em ark  4.2.5. A commonly used assumption in place of (1) of Lemma 1.4.7 is 

||Tw|| > |M | for ||u|| =  p. We observe tha t this follows from a stronger version of 

(Hjf) namely f ( s , u)  >  pifP(s) for cp < u < p where infteG0 Jg0 s )'0p(s ) ds > 1. 

Indeed, for t  E Go and u E K  with ||u|| =  p we have

\Tu(t) \=  /  A](ti s ) f ( s , u ( s ) d s >  /  &(t, s)pipp(s) ds > p — ||u||.
J g J gq

This remark shows tha t using the open set IIp and (1) of Lemma 1.4.7 gives a

stronger result.

We now give a more general version of Lemma 3.2.9, which implies the index is

1.
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L em m a 4 .2 .6 . Assume that there exists p > 0 such that u ^ T u  for u E d K p and 

f  satisfies the following condition.

(H^)  There exists a measurable function <j>p : G —*• M+ such that

f ( s , u)  < pcj)p(s) for all u  E [—p, p] and almost all s E G 

and supteG f G |&(£, s)|0p(s) ds < 1.

Then i k (T , K p) — 1.

Proof By (H^)  we have for u E d K p and t E G,

|T ii( i) |=  [  k ( t , s ) f ( s , u( s ) )ds  < [  \k(t, s)| f ( s iu(s)) ds 
J g  J g

< p / |&(t, s)\(fip(s) ds < p = ||u| 
Jg

This implies \\Tu\\ <  ||u|| for u E dK p. By means of (2) of Lemma 1.4.7, we obtain 

iK(TJ<p) ^  1. □

Note tha t if strict inequality holds in (H^),  then u ^  T u  for u  E dK p.

We now give our new result which asserts tha t Eq. (4.2.1) has at least one or at 

least two nonzero solutions which are positive on the subset Go of G.

T h eo rem  4.2.7. The integral equation Eq. (4.2.1) has a nonzero solution in K  if 

either of the following conditions hold.

(Hi) There exist p i,p 2 € (0, oo) with p\ < cp2 such that 

(#!i)» (Hf2) , u ^ T u f o r u e d O P2.

(H2 ) There exist p i,p 2 £ (0, 0 0 ) with pi < p2 such that 

( H * ) ,  ( H g ) ,  u ^ T u f o r u e  dICn .

Eq. (4.2.1) has two nonzero solutions in K  if one of the following conditions hold.

(Si) There exist p i,p 2 ,p 3  with pi < cp2 and p2 < p3 such that 

(HjfJ, (Hf2), u ^  T u  for u E dQP2 and (Hf3) hold.
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(,S'2) There exist pi ,P2 ,pz with pi < p% < cp$ such that

(tfpl), (H%), u ^ T u f o r u e  0K P2 and (H%) hold.

Moreover, i f  in (Sf), strict inequality holds in ( H ^ ) } then Eq. (4.2.1) has a third 

solution uo £ K P1.

Proof. Assume tha t (Si) holds. We show that either T  has a fixed point u\  in 

\  K Pl or on its boundary. If « /  T u  for u in the boundary, by Lemmas 4.2.4 

and 4.2.6, we have i k (T, K pi) — 1, £lP2) = 0. By (b) of Lemma 4.2.3, we have

K P1 C K cp2 C n p2 since pi < cp2 . It follows from (3) of Lemma 1.4.7 tha t T  has a 

fixed point u\ in SlP2 \  K PI. Similarly, T  has a fixed point u2 in K P3 \  Q,P2 or on its 

boundary. When strict inequality holds then u ^ f T u  for u  £ dK pi so ijciT, K PI) =  1 

and T  has a fixed point uq in K px. The other assertions are proved similarly, □

R em ark  4.2.8. Comments similar to Remarks 3.2.11- 3 .2 .1 1  also apply in this case.

In the particular case when /(£, u) =  g(t)h(u) where <&g £ L 1 and h is continuous 

it is possible to give conditions tha t are more easily verified.

m  =  ^max J  \k(t, s)\g(s) dŝ J and M  — J  h(t,s)g(s) ds ĵ

D efinition 4.2.9. We define the following numbers:

k(t , s)g(s)ds]
f Gq

h~p'p — sup frP — f im su p ^p p , h°° =  lim su p ” —
u 6 [—p,p] P u —>0 |^1  |*u|—̂ oo t^ l

, ■ r K U ) , r  . r h ( u )  j v  ■ r K U )hCpp — ml ------ , h0 =  lim m l-------, /loo =  h m m l------ .
’ ^^€:[cp,p] p u—*0+ y, û yoo U

Lem ma 4,2.10. We have the following implications.

1. h° < m  implies h~p,p < m  for some p (small) and h~p'p < m  implies (Hjf).

2. h°° < m  implies h~p,p < m  holds for some p (large).

3. ho > M  implies hcPtP > cM  for some p and hcPiP > cM  implies (Hjf).

4- /ioo > M  implies hcPtP > cM  holds for some p.
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Proof. (1) For e > 0 there is p£ >  0 such tha t h(u)/\u\ < h° +  e for |u| < p£ which 

implies there is p > 0 such tha t h~p,p < m  when h° < m. Also h~p,p < m  implies 

h(u)g(s) <  mpg(s)  so tha t (Hjf) holds with <fip{s) — mg(s).  (2) Let (3 > m. There 

is r such th a t h(u)/\u\ < (3 for \u\ > r .  As h is continuous there exists 7  such that 

h(u) < (3\u\ +  7  for all u. Let p =  then h(u) < mp  for |u[ <  p. The proofs of

(3) and (4) are straightforward. □

We now give a more easily checked version of Theorem 4.2.7.

T h eo rem  4.2.11. Let f ( t , u )  — g(t)h(u) be as above and assume that 

f Go$(s)g(s) ds > 0. Then Eq. (4.2.1) has a nonzero solution in K  if one of the 

following conditions hold:

(H[) There exist p i,p 2 G (0, 0 0 ) with pi < cp2 such that

h~px'p 1 < m  and hcp2tP2 > cM\

{H'2) There exist p i,p 2 ^  (0, 0 0 ) with pi < P2 such that

hCpltP1 >  cM  and h~ P2,p2 <  m.

Eq. (4.2.1) has two nonzero solutions in K  if  there is p > 0 such that either of the

following conditions hold:

(S[) 0 <  h° < m, hcPtP > cMj u ^  T u  for u e  dLlp and 0 <  h°° < m,

(Sf2) M  < ho < 0 0 , h~p,p < m , u ^ T u  for u E d K p and M  < h0Q < 0 0 .

Theorem 4.2.11 generalises Theorem 2.9 of [21] by allowing discontinuous ker­

nels and generalises Theorem 2 .2  of [30] by allowing kernels tha t are not positive 

everywhere hence giving existence of solutions tha t change sign.

4.3 M ultiple nonzero solutions of equation (4.1.1),

We now investigate the BVP

u" +  /( t ,n ( t) )  =  0, a.e. on [0,1] (4.3.1)
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with boundary conditions

u(l)  =  cm'(77), n(0) =  0, 0 < 77 < 1, a  < 1 — 77. (4.3.2)

By a solution of this BVP we will mean a solution of the corresponding Hammerstein 

Integral equation

u(t) — f  k ( t j s ) f ( s iu(s))ds.  (4.3.3)
Jo

The kernel [Green’s function] in (4,3.3) is

t  — s t s < t
k(t , s) ~

s > t

Note tha t the kernel is discontinuous on the line s — 77 but does satisfy (C'2). We 

shall study separately the cases a  > 0 and a  < 0. In the special case a = 0, existence 

of one positive solution is covered by the results of [32]. The results we obtain are 

new.

The case a > 0.

In this case we shall suppose tha t 0 < a < 1 -  77. This is necessary for our method 

in order to obtain appropriate lower bounds. We have to exhibit T(s), a subinterval 

[a, b} C [0,1] and a constant c < 1 such that

\k(t, s)j < $ ( 5) for every t £ [0 , 1] and almost every s £ [0 , 1], 

k{t^ s) >c4>(s) for every t £ [a, b] and almost every s £ [0 , 1].

We show that we may take

a 1 5 (1  — s )
<3?(s) — m a x |l ,  — j

77 J 1 — a

Case 1. s > 77. If t  < s then k(t, s) >  0 and

, / n t /_ \ s(l  — s )
k(t ,  s) =----  --- (1  -  5) <  —----1 — a  1 — a

l i t  > s  then

fc(M) =  ^ _ ( i  -  a) -  (* -  a) =  s ( l - a )  +  t ( a - S)
I — a  1 — ca
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The minimum/maximum occur when t = 1 or t  = s. Thus k > 0. If s >  a  then

. s ( l — a) +  t (a  — s) s ( l — a) +  s (a  — s) s ( l — s)
/c(t.s) = --------  <    =  —-------- .

1 — a  1 — a  1 — a

If s < a  then

. 5(1 — a) -f- t (a  — s) 5 (1  — a) +  a — s a ( l  — s) a s ( l  —s)
1 — a ~  I — a  1 — a  < r] (1 — a)

Case 2. s < 77. If t < s

is, \ t  \ t ( l  — s — a)
Kt ,  s) =  1— -  1 -  s -  t —  =  W  ■1 — a  1 — CK 1 — a:

When s <  1 — a  we have k(t ,s)  >  0  and

1 —a  1 —a

The case 77 >  s > 1 — a  cannot occur since we have 0 < a  < 1 — 77.

If t > s then

/ \ i /h \ cR f \ s ( l  — t — a)
fc(t.s) =  i  1 - S   ( t - s ) =  \

1 —a  1 —a  1 —a

If t < 1 — a  then k( t } s) > 0 and

,.U ^  S ( 1  ~  ^  “  s )k\t> s) ^  1 ^  , •
1 — a  i — a

If t > 1 — a  then /c(t, s) <  0 and

s ( —1 +  £ +  a) a s  s ( l  -  77) s ( l  -  s)
s ) = ----- -------------- <-------- < —--------  <  —--------•

1 —a  1 —a  1 —a  1 —a

Lower b o u n d s

We show that we may take an arbitrary [a, b] C (0,1 — a)

Case 1 . s > 77. If t < s then

t / v t , \ (! - s) s ( l - s )k ( t , s) = --------  1 -  s) > a \  - >  a~~-------
v ' 1 —a  ' “  1 —a  — 1 —a

If t > s

, s + at  — as  — st (1 — b) _ , . s ( l  — s)
&(t, s) = ------- -------------- >  - >  (1  -  b)- J

1 — a  1 — a  1 — a

Case 2 . s <  77. If t < s then

1 — s — a  (1 — 77 — a) , . s f l  —s)
/eft, s =  t —  >  a-   L > a (l -  77 -  a ) 4 ^ --------

K } 1 - a  ~ 1 —a  “  v ' 1 —a
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If t > s then

t  . at  , . s — st — as
55  =  r f 1  - » )  -  —  -  ( * ■ - * )  =

> s ( l - b - a ) > {1_ b _ a ) s ( l - s )
1 - a  J 1 - a

The conclusion is that we may take

min{4a(l — 77 — a ), (1 — b — a)}
C m ax{l, “ }

We state a result when f ( t , u )  = g(t)h(u), of course there is a more general result 

analogous to Theorem 4.2.7.

T h eo rem  4.3.1. Let [a, b] C (0,1 — a) and suppose that j * $(s)g(s) ds > 0. Let c 

be as given above. Let m, M  be as defined previously. Then for  0 < a  < 1 — 77 the 

BVP  (4.3.1), (4.3.2) has at least one nonzero solution, positive on [a, 6], i f  either

(hi) 0 < h° < m  and M  < hoo < 0 0 , or

(h2) 0 <  h°° < m  and M  < ho < 0 0 ,

and has two nonzero solutions, positive on [a, 6], if  there is p > 0 such that either

(S[) 0 <  h° < m, hCPtP > cM, u ^ T u  for u G dClp, and 0 < h°° < m, or

(,S'i) M  < ho < oo, h~p'p < m, u  ^  T u  for u  G d K p, and M  < h ^  < 0 0 .

We give a simple example to illustrate the theorem.

E x am ple  4.3.2. Set f ( t , u )  =  2. In this case the solution is

1 — 2ar]\^  f  1 -  Z a 7 ] \

U^  = - S{S - T Z V ) -

For 77 <  1 / 2  and 77 +  a  < 1, the solution is actually positive 011 all of [0,1] For 

77 > 1 /2  the solution is negative for t > t0 =  , but is positive on (0 , 1 — a).
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The case a  < 0.

To simplify the calculations we write —(3 in place of a, so th a t (3 > 0. 

We show tha t for these BCs we can take

-  7] ’ T] J 1 +  /?

U pper bounds

Case 1 , s > T]. If t < s then &(£, s) >  0 and

, /  ̂ t \ 5(1  — s)&(i, s) =   ---- - ( 1  — s) < —---- — .
v ' 1 +  /?v '  1 +  /?

If t > s  then

l u   ̂ s — (3t +  {3s — st ^  s — (3s +  ps  — st s ( l  — t) ^  5 ( 1  — s)
=  f+ 7 ?  -  1 + 7? =  1 + p ~  " T T T '

h  t s ) — 0 an<̂  we are done.
If /, > we have

ts 4- (3t — s — s(3 s 4- f3 — s — sfi (3 s ( l — s)
- k ( t , s )  = ------- — -------< ------- — ------- <  ~ ^ T F .

Case 2. s <  77. Note tha t in this case > 1 . If t < s then k(t, s) > 0 and 

, u  \ t  fit 1 - s + p
k^ = T T p (1- s) + TTp = t-T T T

s ( l  - S  +  P) s (! - s  +  fffr^y) ^  ( 1 - 1 )  +  p )  s (l -  s )

~ 14-13 ”  1 +  /3 ~  1 -? ?  1 +  /?

If t > s then k( t} s) >  0 and

, / v t  . N Bt . s s — st-L (3s

s(l - s  + P) <  (I -  Tj + P) s( l  -  s) 
l + ( 3  ~  I — 77 1 +  /3

Lower bounds

We show th a t we may take an arbitrary [a, b] C (0 ,77].

Case 1. s > ??. If it <  s then

, / \ i \ (1 — s) 5 (1  — s)
k(t , s)  =  ^ ( 1  - s ) >  aT W  >  O T T ^ .

Since we take b < 77 the (awkward) case t > s does not occur.

Case 2. s <  77. If t < s then

t - s £  +  /?t 1 s T  (3 s ( l ~ s )
 ̂ = ~T+]T~ = ~T+]T aTT/T
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If t > s then
k(t s) -  s ~ st + l3s >  > A 1 -

( , ) _  1 + /3 “ 1 +  /3 1 +  /3
The conclusion is that we may take

min {a, ft}Q — ------------------- ---------  #
max | ( 1  -  f) +  /?), ^ j

R em ark  4.3.3. In this case it is possible to take a somewhat larger b namely any 

b < where
T ??(1 H- /?)

V +  (3

but the corresponding c is more complicated.

For the case when f ( t ,  u) = g(t)h(u) we have the following result.

T h eo rem  4.3.4. Let [a, b\ C (0,??] and suppose that §(s)g(s) ds > 0. Let c be as 

given above. Let m ,M  be as defined previously. Then for a  < 0 the BVP  (4.3.1), 

(4.3.2) has at least one nonzero solution, positive on [a, 6], i f  either (h[) or (h'2) of 

Theorem f.3 .1  is satisfied. There are two nonzero solutions, positive on [a, b], if 

there is p > 0 such that either (S^) or (S'2) of Theorem 4.3.1 holds.

The following example illustrates the result.

E x am p le  4.3.5. Let g(t) = 1 and

1
2 if lul <  3/m ,

up for u  very large,

where p > 1 . Then hQ = oo and hoo =  oo and choosing p with 2 /m  < p < 3/m  we 

have h~p'p < m. Hence [Sf) holds and the BVP has two nonzero solutions which 

are positive on (0, g], the ‘small’ solution being as written in Example 4.3.2.

R em ark  4.3.6. As in section 3.5 it is possible to state results for the existence of 

radial solutions of PDEs in an annulus. For example radial solutions of the BVP
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with BC:
du

u(Rq) — 0 and, for |a;| — R u ( R i )  =  a — (x). (4.3.5)

can be studied by means of the ODE

u"{t) +  f ( t ,u( t ) )  — 0, (0 < t  < 1), (4.3.6)

with BC

u (1) =  <W(?7), u(0) = 0 , 0 < 77 < 1. (4.3.7)



Chapter 5 

Eigenvalues of some nonlocal 

boundary value problem s

5.1 Introduction

In this chapter we study the existence of eigenvalues for a Hammerstein Integral 

Equation of the form

Xu(t) — f  k(t, s) f (s ,u(s) )  ds := Tu(t) ,  (5.1.1)
Jg

where G is a compact set in Rn with meas(G) > 0 and k and /  are allowed to be

discontinuous. The tool we use is a well known result for compact maps in order to

establish existence of eigenvalues, working on the cone

K  =  { n 6  C(G)  : min{u(£) : t 6  Go} >  c||u||},

where Go is a closed subset of G. This type of cone was introduced in chapter three 

and is a larger cone than the one used by Lan [31].

Our results apply to second order differential equations of the form

Xun(t) +  /(£ ,u(t)) — 0, (0 < t <  1), (5 .1 .2 )

subject to suitable boundary conditions (BCs). In this chapter we concentrate on 

the following nonlocal boundary value problems:

ur(0) =  0, otu'(r}) = u( 1), 0 < 77 < 1, (5.1.3a)

98
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u(0) — 0, au'(rj) — u (l), 0 < 77 < 1, 

7/ ( 0 ) =  0, au(r/) — u (l) , 0 < 77 < 1 , 

u(0 ) =  0 , cm(r]) =  u(l), 0 < 77 < 1 .

(5.1.3b)

(5.1.3c)

(5.1.3d)

The boundary condition (5.1.3a) is studied or the first time as far as we know. Condi-

have been widely studied by Gupta & co-authors, see for example [13], [14] and 

the reference therein, and also by Webb [46]. The results are new and have been 

submitted for publication in [19].

5.2 E xistence of eigenvalues of H am m erstein in­

tegral equations

We begin by giving some results for the following Hammerstein integral equation.

where G is a compact set in Rn of positive measure. Throughout the chapter, even 

if not mentioned explicitly, we shall make the following assumptions on / ,  g and the 

kernel k for a fixed r > 0 (the assumptions (Ci) — (C 4) are the same as chapter four, 

but we repeat them for convenience):

( C i )  /  : G x [— r, 7’] — > [0 , 0 0 ) satisfies Caratheodory conditions on G x [— r, r] and 

there exists a measurable function gr : G —► [0,0 0 )  such tha t

(C2) k : G x G ^  R is measurable, and for every r  G C we have

lim / |fc(£, s ) — fc(r, s)|<7r (s) ds — 0 .
i- ^ J g

(C 3) There exist a closed subset Go C G with meas(Go) > 0 , a measurable function

: G —► [0, 0 0 ) and a constant c G (0,1] such tha t

\k(t,  s)| < 4>(s) for t  G G and almost every s G G

c$(s) <  k(t ,  s) for t G Co and almost every s G C.

tion (5.1.3b) has been studied in chapter four. The two conditions (5.1.3c),(5.1.3d)

(5.2.1)

f { t ,u)  < gr(t) for almost all t  G C and all u  E [—r, r].
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(C4) For each r there is M r < 0 0  such that f G <$(s)gr(s) ds <  Mr.

We use the following well known result (see for example Lemma 1.1, Chapter 5

Then there exist Xq > 0 and £0 £ dK r such that XqXq =  TTo-

The following theorem generalises Lan’s results, allowing operators with kernels 

that may have both signs:

T h eo rem  5.2.2. Assume that there exists p £ (0,r] such that:

(i) There exists a measurable function m p : Go M+ such that

(ii) r  := supteGo f Go k(t, s )mp{s)ds > 0 .

Then there exist Ao and Uq £ dK p such that AoUq =  T uq.

Proof Since T  satisfies the hypotheses of Theorem 4.2.1, T  : K r —> K  and is 

compact. Let u £ dK p% then we have, for every s £ Go, cp <  u(s) < p. For t £ Go 

we have k(t , s)  > 0 and

Thus ||Tu|| =  supteG|Tii(t)| > supteGo|Tu(t)| >  r  and m f uedKp \\Tu\\ > 0. By

R em ark  5.2.3. In the paper [31], due to the positive nature of the kernel, Lan is 

able to take a larger t ,  namely r  =  supi€G f G k( t , s )mp(s)ds > 0 .

R em ark  5.2.4. We shall see below that, for certain values of the parameter a , the 

kernel fc(t, s) is negative for t in some interval Go, for all s. In this case, assuming f

of [27]).

L em m a 5.2.1. Let T  : K r K  be compact and suppose that

f ( s , u)  > m p(s) for all u  £ [cp}p] and almost all s £ Go,

|Tu(£)| > k( t i s ) f ( s iu(s ) )ds> k(t, s )mp(s)ds

Lemma 5.2.1 we obtain the existence of an eigenvalue Aq > 0. □
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is positive, we can show that a negative eigenvalue exists by studying the operator 

—T. Indeed, A is an eigenvalue for

Au(t) = /  k(t, s ) f (s ,u(s))  ds 
Jg

if and only if A is an eigenvalue of

Au(t) — j k(t, s) f (s ,u(s) )  ds = Tu(t)
J g

where k — —k and A =  — A. Hence we can obtain a result, exactly similar to one 

above, for the existence of negative eigenvalues. We do not state the obvious theorem 

thus obtained.

5.3 Eigenvalues of problem ( 5 . 1 . 3 a ) ,

As an application of the theory, we investigate in this section the existence of eigen­

values for equations of the form

Au"(t) +  /(£, u(t)) =  0, a.e on [0,1], (5.3.1)

with boundary conditions

u'(0) — 0, oiu'(rj) = u( 1), 0 < rj < 1. (5.3.2)

By an eigenvalue of this problem we mean an eigenvalue of the related Hammerstein 

integral equation

Au(t) = f  k( t , s ) f ( s ,u(s) )ds .  (5.3.3)
J g

The solution of u" +  y — 0 with these BCs is
n l  rr) nt

u (t) = (1 — s)y(s)ds — a  y(s)ds — / (t — s)y(s)ds
J o  J o  J o

with Green’s function

1—a, s < ri £ — s, s < t

0 , s > ?7 I 0 , s > £.

Note that, for a ̂  0, the kernel is discontinuous on the line s — 7 7 . We shall study

separately the cases a  < 0 and a > 1. The case a  =  0 is included in the results of

Lan [31], who studied separated BCs.
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The case a < 0 .

To simplify the calculations we write —/? in place of <a, so tha t (3 > 0.

We have to exhibit $ (s), a subinterval [a, b] C [0,1] and a constant c < 1 such that

|&(B s)| < $ (s ) for every t ,s  £ [0 , 1], 

k(t)S) >c&(s) for every s £  [0 , 1], t  E [a, b].

We show that for these BCs we can take

which is a function decreasing in t and therefore the minimum is achieved when

We can now state the following result on the existence of eigenvalues of Equation

(5.3.1) with BC (5.3.2):

U pper bounds

Indeed

since t -1 >  1 for s < 77.1—77 — — '
Lower bounds

We show that we may take arbitrary [a, 6] C [0,1). 

Case 1 . s < 77. If s > t  then

k(t, s) = (1  — s) +  (3 > (1 — s).

If s < t then

k(t, s) = (1 — s) +  (3 — (t — s)

t = 1. So

k(t, s) > (3(1 — s).

Case 2 . s > r). If s > t then

k (t, s) — (1 — s).

If s < t then

k(t, s) — (1  — s) — (t — s) =  1 — t > (1 — 6 )(1  — s)

Thus we can take
min{/3,1 — 5}

(5.3.4)
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T h eo rem  5.3.1. Let a  < 0, [a, b] C [0,1), c be as in (5.3.4) and assume that there 

exists p E (0, r] such that:

(i) There exists a measurable function m p : [a, b] —> 1R+ such that

f ( s , u )  > m p(s) for all u E [cp,p] and almost all s E [a, 6],

(ii) supteM] / a6 k(t, s )mp(s)ds > 0 .

Then the boundary value problem (5.3.1)-(5.3.2) has a positive eigenvalue and a 

corresponding eigenfunction that is positive on [a,b\.

The case 0 < a < 1  — 7 7.

When a  > 0 note th a t fc(l, s) — —a  < 0 for every s E [0 ,77]. We have to find $  such 

that |fc(t, s)| <  $(s) for every t, s E [0,1] and show tha t there exists [a, 6 ] C [0,1] 

and a constant c such tha t k(t i s ) >  c<3?(s) for every s E [0 ,1] and t E [a, b). In fact 

we show th a t we can take

$(s) =  (1 -  s).

U p p e r b o u n d s

Clearly &(£, s) < (1 — s) in all cases. &(£, s) is negative when s < rj and t > s and

1  — t — a  < 0. In this case we have then

—k(t, s) — — 1 + 1 +  a < a  < 1 — 77 <  (1  — s)

and we are done.

Lower b o u n d s

We will show that we may take [a, b] C 

Case 1. s <  77. If s > t  then

k( t i s) — 1 — s — a >  (1 — rj — o r ) ( l  — s).

If s < t, since we chose a  < 1 — 77, we obtain

k( t} s) — 1 — t — a > l  — 77 — a  >  (1 — g — ck) (1  — s).

Case 2. s > 77. If s > t then

k(t, s) =  (1  — s)
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and we are done. Since we take b <  77, the case s < t does not occur.

Therefore we may set c =  (1 — r) — a).

T h eo rem  5.3.2. Let 0 < a  < 1 — p, [a, b] c  [0,77], c — (1 — 77 — a) and assume that

there exists p G (0, r] such that:

(i) There exists a measurable function m p : [a, b] —> such that

f { s tu) > m p(s) for all u G [cp,p] and almost all s G [a, b\7

(ii) supt6[Qib] f * k ( t 7s )mp(s)ds > 0 .

Then the boundary value problem (5.3.1)-(5.3.2) has a positive eigenvalue and a 

corresponding eigenfunction that is positive on [a, b].

We illustrate the theorem with two simple examples.

E xam ple  5.3.3, Let [a ,b] =  [0 , 77] and f ( s 7u(s)) be defined as

I\u(s)\(r] -  s)7 0  < s < r } 7

0 , 77 < s <  1 .

Take 0 < p < r < + 0 0  and gr = rp. In this case we have f ( s , u )  < gr for every

u G [—p,p] and f { s 7u) > cp(p — s) for u G [cp,p] and s G [0,77]. Also

rv rv
/ k(t, s)cp(?7 — s)ds > c2p j  (1 — s )(?7 — s)ds > 0 .

Jo Jo

By Theorem 5.3.2 we obtain the existence of a positive eigenvalue for the BVP

(5.3.1)-(5.3.2).

E x am ple  5.3.4. Let f ( s 7u) = 2. For every fixed p > 0, A — (l — 2ar))/p is a 

positive eigenvalue of the boundary value problem (5.3.1)-(5.3.2) with corresponding 

eigenfunction
, (1 — 2 0 :77) — t 2

 ■

u(t) is positive 011 [0 , 77] since o < 1 — 77 and u changes sign (u(l) < 0 ).
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5.4 Eigenvalues of problem  ( 5 . 1 . 3 b ) .

We now investigate the second BVP

Au"(t) +  f(t>u(t)) =  0, (0 < t < 1), (5.4.1)

with boundary conditions

u(Q) = 0, au'(i7) =  u (l) , 0 < 77 < 1, a  < 1 — 77 (5.4.2)

The kernel in this case is

I a t (
 -------, s < r] i  — s, s < t

0, s > 77 [ 6 > t

We study separately the cases when a  < 0 and a  <  1 — 77. The existence of positive 

eigenvalues when a = 0 is covered by the results of Lan [31].
The case a < 0.

In chapter four it  has been shown th a t  we can take

f ( 1  - 7 7  -  a )  a  \  s ( l  -  s)
$  s =  m ax   \   -W

[ 1 — 77 7 7 J 1 — a

[a ,6 ] C (0 , 77] and  c =  min{<z, —a } /m a x { ( l  — 77 — a ) , —a / 77}. Now it is clear th a t  

a  theorem  exactly  sim ilar to  T heorem  5.3.1 holds, we leave th e  sta tem en t to  the  

reader.

The case 0 < a < 1  — 7 7.

In chap ter four it has been  shown th a t  we m ay take

f a 'i  s ( l  — s) m in { a (l — 77 — a ) ,  ( 1  — 6  — a )}
$ ( 5 )  -  max< 1,  -   , c   r —— ---------------

L 77 J 1 — a  m a x j l , " }

and  [a, b] C (0 ,1 — a ) . A resu lt sim ilar to  Theorem  5.3.2 holds. We om it th e  obvious 

sta tem ent.
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5.5 Eigenvalues of problem  ( 5 . 1 . 3 c ) ,

We now investigate the BVP

Au"(t) +  f ( t ,u( t ) )  — 0 , (0  < t  < 1 ), (5.5.1)

with boundary conditions

u'(0) — 0 , au(rj) =  u(l), 0  < rj <  1 (5.5.2)

The kernel in this case is

t  — s, s < t

0 , s > t.

We shall study separately the cases q : < 0 , 0 < q : < 1  and a  > 1. The case a — 0 

has given by Ban in [31].

The case a < 0.

s , t  E [0 , 1] and k(t, s) > c(l — s) for every t E [a, b] and s G [0 , 1], where [a, b] C [0 , 77]

and c — (1 — 77)/ ( I  — a). Therefore we can state the following theorem:

T h eo rem  5.5.1. Let a  < 0, [a, b] C [0 , 77], c = (1 — 77)/(1  — a) and assume that

there exists p G (0, r] such that:

(i) There exists a measurable function m p : [a, b] —» M+ such that

Then the boundary value problem (5.5.1)-(5.5.2) has a positive eigenvalue and a 

corresponding eigenfunction that is positive on [a, 6].

In chapter three it has been shown that the kernel satisfies s)| <  (1 —s) for every

/( s ,u )  >  m p(s) for all u  G [cp,p] and almost all s G [a, b]

(ii) supte[aM / a6 s )mp(s)ds > 0 .



CHAPTER 5. EIGENVALUES OF SOME BVPS 107

The case 0 < a < 1.

In [46] Webb proved tha t we can take

[a, b] C [0,1] and c =  a '( l  — 77). Thus we can state a similar result to Theorem 5.5.1. 

We omit the obvious statement.

The case a > 1.

For these BCs the kernel k is negative on an interval so we apply Remark 5.2.4 and 

consider ~ k  in place of k. In chapter three it has been shown th a t we may take

*(«) — ^ ( i  -  *)a  — 1

and then ~~k(t,s) > c<F(s) for t  £ [a: 6] and s £  [0 , 1], where a = 77, b £ (7 7 , 1] and 

c =  (1 — r j ) / a .  Therefore we have the following result related to the existence of 

negative eigenvalues:

T h eo rem  5.5.2. Let a  > 1, [a, b] and c be as above and assume that there exists 

p £ (0 , r] such that:

(i) There exists a measurable function m p : [a, b] R+ such that

/ (S ju) ^  m p{s) for all u £ [cp, p] and almost all s £ [a, 5],

(ii) supt€[aib] / ab - k { t y s )mp(s)ds > 0 .

Then the boundary value problem (5.5.1)-(5.5.2) has a negative eigenvalue and a 

corresponding eigenfunction that is negative on [a,b}.

We illustrate the theorem with the following example.

E x am ple  5.5.3. Take [a, b] = [77,1], c =  (1 — rf)/oi and f ( s ,u(s ) )  be defined as

I |n(s)|(s — 77), 77 <  s <  1 ,
f { s , u)  = <

1 , 0  <  s <  77 .
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The function /  is positive and discontinuous, but satisfies Caratheodory conditions, 

/ ( s ,u )  <  grt where gr — m ax{l,r}. Also f ( s tu) > cp(s — p) for u € [cp,p\ and 

s G [77,1]. Clearly — p)ds > 0. By Theorem 5.5.2 the BVP (5.5.1)-

(5.5.2) has a negative eigenvalue.

5.6 Eigenvalues of problem  ( 5 . 1 . 3 d ) .

We now investigate the BVP

We shall study separately the cases ap < 0, 0 < 0 :7 7  < 1 and ap > 1 . The case a  — 0 

is covered by results of Lan [31].

The case arj < 0.

In chapter three it has been shown that we can take

[a, b] C (0 ,77] and c =  min{a, 1 — 7 7} / (1 — a). Now it is clear th a t a theorem exactly 

similar to Theorem 5.5.1 holds, we leave the statement to the reader.

The case 0 < a r j  <  1.

In [46] Webb proved tha t we can take

[a, 6 ] C (0,1] and that for a  < 1 we may take c — min{a, ap,  4a(l — 77), a ( l  — 77)}

Au"(t) -j- / ( t ,  u(t)) = 0 , (0  < t < 1 ), (5.6.1)

with boundary conditions (BCs)

7i(0 ) =  0 , au(p) — u( 1), 0 < p < 1 . (5.6.2)

The kernel in this case is

max-

and for a > 1 we may take c ~  min{a77,4 a (l — 0177)77, 77(1 — q;77)}. A result similar to 

Theorem 5.5.1 holds. We omit the obvious statement.



CHAPTER 5. EIGENVALUES OF SOME BVPS 109

The case a r j  >  1.

For these BCs the kernel k is negative on an interval so we apply Remark 5.2.4 and 

consider —k in place of k. In chapter three it has been shown tha t we may take

s ( l -  s)
$  s =  a ---------

a r ]  — 1

Indeed — fc(t, 5 ) > c<§(s) for t  E [a, b] and s E [0,1], where [a, 5] C [77,1] and 

c =  min{a, 1 — A theorem exactly similar to Theorem 5.5.2 holds, we leave

the statement to the reader.
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