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SUMMARY

This thesis is devoted to the study of the homological dimension,
homological homogeneity and injective homogeneity of the skew group
rings, crossed products, group graded rings and the Ore extensions; and
to the study of the Auslander-Gorenstein, the Auslander-regular and the
Macaulay properties of the injectively homogeneous rings and the
homologically homogeneous rings.

In chapter 2, we study the global dimension of skew group rings,
crossed products and group graded rings. About the global dimension of a
crossed product of a finite group over a right FBN and left coherent

ring, we obtain

THEOREM A. Suppose that R is a right FBN left coherent ring and that
r.gl.dim(R) < w. Let G be a finite group and let S = R¥G be a
crossed product. Suppose that for each maximal ideal M of R with
char(R/M) = p > 0, ( R/M)*GM is semisimple Artinian, where

Gy = (g G| ME = M)
Then r.gl.dim.(R¥G) = r.gl.dim.(R) < o.

Some necessary conditions and sufficient conditions for R¥G, a skew

group ring of a finite group over a local or semilocal right Noetherian
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ring, to have finite right global dimension are also given. In particular
if R is commutative Noetherian and G is finite, we obtain some
necessary and sufficient conditions for R¥G, a skew group ring, to have
finite global dimension. Then we further extend these results to larger

classes of groups and prove, for example, the following

THEOREM B. lLet R be a commutative Noetherian ring, let G be a
polycyclic-by-finite group acting on R and let RxG be the skew group
ring. Then the following statements are equivalent:

(i) gl.dim.(R*G) < o;

(ii) (a) gl.dim.(R) < w;

(b) for every maximal ideal M of R with char(R/M)=p >0
and for every finite subgroup T of G, (R/M)*TM is semisimple
Artinian, where

Ty=(geT | ME = M}
(iii) (a) gl.dimJ(R) < w;
(b) for every maximal ideal M of R with char(R/M) = p > 0,

G(M) contains no element of order p, where

GM) = {g € G | rg-r‘EM,foraI.l r e R}
In chapter 3 we first study the injective homogeneity of crossed
products, then use the smash products machinery to extend our results to
strongly group graded rings and obtain-

THEOREM C. lLet G be a finite group and let S = R(G) be a strongly

ii
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G-graded ring with coefficient ring R. Then S is right injectively
homogeneous (respectively right injectively smooth) FBN if and only if

so is R.

Then we study the injectively homogeneous Noetherian P. I. rings. It
is proved that such rings are always Auslander-Gorenstein. We also give
some necesgary and sufficient conditions to injective homogeneity and
homological homogeneity for a Noetherian P. 1. ring all of whose cliques
of maximal ideals are localizable.

In chapter 4, We come to study the Auslander-Gorenstein, the
Auslander-regular and the Macaulay properties of injectively homogeneous
and homologically homogeneocus Noetherian rings which are integral over

their centres. The main result in this aspect is

THEOREM D. Let R be a Noetherian ring integral over its centre.

(i) R is inj. hom. if and only if R is Auslander-Gorenstein and
locally Macaulay.

(ii) R is hom. hom. if and only if R is Auslander-regular and

locally Macaulay.

The final chapter, chapter 5, is devoted to the study of the
homological homogeneity and the injective homogeneity of the Ore
extensions. We show that in many cases the homological homogeneity and
the injective homogeneity of the coefficient rings can be passed to the

Ore extensions. The results can be summarized as

iii
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THEOREM E. let R be a ring, let ¢ be an automorphism of R and let
8 be a o-derivation of R. Let S be the ring Rlx; o, 81 or
Rlx, x—l; ol. Suppose that R is a finitely generated module over a
central subring K, which is (o, 8)-trivial, and suppose that S s
also a finitely generated module over its own centre.

(i) If R is inj. hom., then S is also inj. hom. and

inj.dim.(Ss) = inj.dim.(RR) + 1
(it) If R is hom. hom., then S is also hom. hom. and

gl.dim.(S) = gl.dim.(R) + 1,

iv




INTRODUCTION

In ring theory, the investigation of the variations of some ring
properties under different extensions and restrictions and the study of
the homological properties of rings are two classical and active research
directions. This thesis is mainly aimed at these two topics.
Specifically, here in our research, the ring extensions are skew group
rings, crossed products, group graded rings and the Ore extensions, and
the restrictions are to the coefficient rings of these rings. Those ring
properties which we are interested in are the global dimensions, the
homological homogeneity, the injective homogeneity, the
Auslander-Gorenstein property, the Auslander-regular property and the
Macaulay property.

From the very beginning of the development of homological algebra,
global dimension played a prominent role. It is a very useful invariant
attached to a ring. Especially, as demonstrated by many -classical
results, the finiteness of global dimension is a very important property
for a ring. For example, a commutative Noetherian local ring of finite
global dimension is a unique factorization domain, as a result of
celebrated work of M. Auslander and D. Buchsbaum [ABu2], and some

difficult problems about non-commutative Noetherian rings can be solved
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under the condition of finite global dimension; see [GW, p.287] for
example. Moreover, the study of (Noetherian) rings of finite global
dimension is a popular and active current area of research; see [AS],
[ATV1], [ATV2] and [SZ] for example.

About the study of the global dimension of group rings, we really
have to trace back to Maschke’s Theorem, as it characterizes the group
rings of global dimension 0. Then we have Serre’s Theorem (see [Pal,
Theorem 10.3.12]), which relates the global dimension of a group ring to
that of a subgroup ring. E. Aljadeff and S. Rosset studied the global
dimension of crossed products over commutative rings. They show that the
hierarchy of extensions, first group rings, then skew group rings and
then crossed products, corresponds to an increasing likelihood that the
global dimension will be finite; see [AR, 3.3 and 3.4]. So the moral is
that the more structure on an extension ring the more likely it will have
finite global dimension. In [Al2] Aljadeff proved a version of Serre’s
Theorem for crossed products over commutative rings. About the global
dimension of crossed products there are also a few results in [MR] and
[AllL].

In the study of global dimension (and some other properties) of
group rings, skew group rings, crossed products and group graded rings,
the case that the group is finite plays an essential role since the
elements of finite order (especially when the order divides the
characteristic of the coefficient ring) affect the structure quite a
lot. Serre’s Theorem mentioned above is a useful tool to transfer some of

the results from finite groups to larger classes of groups.
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Comparing with the profound study of the primeness, semiprimeness
and various quotient rings of skew group rings, crossed products and the
group graded rings, we know much less about the global dimensions of
these ring extensions. After briefly recalling the definitions and fixing
our notations in chapter 1, we start our own research on this topic in
chapter 2. Chapter 2 is mainly devoted to the study of the necessary
conditions and sufficient conditions under which the global dimensions of
the skew group rings, crossed products and group graded rings are finite.
We first give two general lemmas about the global dimensions of strongly
group graded rings. Then, as the first step of the study of the global
dimension of crossed products, we study their simplicity and
semisimplicity properties. It is shown that the semisimplicity of crossed
products can be reduced to the simplicity of crossed products over some
simple Artinian rings. (See the introduction of § 2.2 for the background
on this topic.)

In § 2.3 we prove that for a right FBN and left coherent ring R,
the global dimension of a crossed product over R is controlled by the
semisimplicity of some crossed products over some Artinian factor rings
of R. If the coefficient ring is local or semilocal, in § 2.4, some
necessary conditions and sufficient conditions about the finiteness of
the global dimension of crossed products or skew group rings are given.
When the coefficient ring is commutative Noetherian, in § 2.5, we obtain
some necessary and sufficient conditions for a skew group ring to have
finite global dimension. This result can be regarded as a considerable

generalization of the result of Maschke mentioned on the previous page.
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Then using the generalized Serre's Theorem [All, Theorem 0.3}, we can
extend our results to some larger classes of groups. Some examples of
rings are given in § 2.6. These examples are used to illustrate that the
conditions and results appearing in our main theorems are best possible.
In § 2.7 we describe some relationships between the trace maps and the
global dimension of skew group rings and strongly group graded rings.
Having investigated the finiteness of global dimensions of skew group
rings and crossed products to some extent, we then indicate that, in
§ 2.8, wunlike global dimension, the finitistic dimensions of strongly
group graded rings are always stable.

In chapter 3, we study the injective homogeneity and the
Auslander-Gorenstein property. This topic has two sources. The first one
is homologically homogeneous rings and injectively homogeneous rings,
which are introduced for Noetherian rings which are integral over their
centres by K. A. Brown and C. R. Hajarnavis in {BHi] and [BHZ2]. Recently
Stafford and Zhang [SZ] generalized the definition to all FBN rings.
The homologically homogeneous rings and the injectively homogeneous rings
are appropriate generalizations of commutative regular rings and the
commutative Gorenstein rings respectively. In [BH1l, [BH2] and [SZ] the
authors have shown that the homologically homogeneous rings and the
injectively homogeneous rings share many nice properties of the
commutative regular rings and the commutative Gorenstein rings
respectively. The second resource 1is the Auslander-Gorenstein, the
Auslander-regular, and the Macaulay properties; cf. [Ek], [Bjl, {Lev] and

{SZ]. The Auslander condition is a wuseful property to let one use
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homological methods effectively on noncommutative Noetherian rings. In
the introduction of chapter 3 we will give more details about the history
and background of the Auslander condition.

The recent research by Stafford and Zhang [SZ] shows that injective
homogeneity, homological homogeneity, the Auslander-Gorenstein property,
the Auslander-regular property and the Macaulay property are closely
related to one another. In [SZ] it is shown that the injectively smooth
Noetherian P. I. rings are Auslander-Gorenstein and Macaulay. We prove
that the converse is also true. We also generalize some results in [SZ]
to give an equivalent condition to injective homogeneity for a Noetherian
P. I. ring all of whose cliques of maximal ideals are localizable. Using
the tool of smash product, in this chapter, we prove that a strongly
group graded ring by a finite group is FBN and injectively homogeneous
if and only if so is its coefficient ring.

In chapter 4, we prove that for a Noetherian ring integral over its
centre, it is injectively homogeneous if and only if it is
Auslander-Gorenstein and locally Macaulay. This result is parallel to
that about the injectively homogeneous Noetherian P. I. rings given in
chapter 3; but the proof is different. We use localization at central
elements and the C-grade of ideals, which are developed in [BHM2].

In chapter 5, we first investigate the Artinian quotient rings and
the injective dimension of the Ore extensions. We prove that the Ore
extension has an Artinian quotient ring if its coefficient ring has. With
some natural hypothesis we prove that an Ore extension is injectively

homogeneous or homologically homogeneous if so is its coefficient ring.
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Particularly, it is shown that a large class of Weyl algebras are
injectively homogeneous or homologically homogeneous.

In the text most of our references are quoted from the original
authors. Only for simplicity and brevity reasons refer we sometimes to
the books [GW], [MR] and [Pa2] for some well-known results. The internal
references are given in such a way that, for example, 5.2 Theorem means
5.2 Theorem in the current chapter, whereas 2.5.2 Theorem indicates 5.2
Theorem in chapter 2.

Finally, we would like to remark that if not otherwise stated all
the results presented in this thesis are the author’s original work under
the direction of Professor K. A. Brown. As a convenient reference, a
short section named notes is placed at the end of each chapter to
indicate whether a result appearing in that chapter is well-known or is a
new one. Most parts of chapter 2 will soon appear in the Journal of
Algebra with the title Homological dimension of skew group rings and
crossed products; cf. [Yill; and chapter 3 has been organized into a
paper, (submitted for publication), with the title Injective homogeneity

and the Auslander-Gorenstein property; see [Yi2l.



CHAPTER 1

PRELIMINARIES

We would like to explain our terminology, fix our notation and state
a few well-known results in this preliminary chapter. These are the ones
most frequently used in this thesis. Some other terminology and notation
will be explained when they appear the first time in the text. Our main
references for the definitions, notation and well-known results are [GW],

[MR], [Rot}, [Pal] and [Pa2].

8 1.1 NOTATION AND CONVENTIONS

In this thesis all rings are associative rings with identity
elements (the identity element is usually denoted by 1). Usually, we use
the letter R to denote a ring. A subring of a ring R always contains

the identity element of R. A ring homomorphism from a ring RI to a
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ring R2 always maps the identity element of R1 to the identity
element of RZ‘ Modules (either right or left) are unitary modules.
Module homomorphisms will be written on the side opposite to that of the
ring action on the module. Suppose that R and S are rings. We use M R

(respectively RM and SMR) to denote that M is a right R-module
(respectively left R-module and (S, R)-bimodule). If we state a
concept, which has both a left hand side and a right hand side version,
without a prefix, we always mean it holds on both sides. For example, a
Noetherian ring means a left and right Noetherian ring, and an ideal
means a left and right ideal, etc. Suppose that R 1is a ring and n is
a positive integer. We use Mn(R) to denote the ring of all n x n
matrices with entries in R.

For a ring R and a (right or left) R-module M, the projective
dimension and injective dimension of M are denoted by pr.dim.R( M) and
in j.dim.R(M) respectively. If there is no ambiguity we may omit the ring
R and simply denote them by pr.dim.(M) and inj.dim.(M) respectively.
The right (respectively left) global dimension of R is denoted by
r.gl.dim.(R) {respectively l.gl.dim.(R)). If the right global dimension
and the left global dimension are equal, we simply denote the common
value by gl.dim.(R). For the definitions of these concepts, see [Rot,
p-233 and p.235]. The injective dimension of the ring R as a right
(respectively left) R-module is denoted by r.inj.dim.(R) (respectively
Linj.dim.(R)), and simply by injdim.(R) if the two values are the

same.
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§ 1.2 SKEW GROUP RINGS, CROSSED PRODUCTS AND

GROUP GRADED RINGS

Let G be a group and let R be a ring. It is well-known that we
can form the group ring of G over R, denoted by RIG]; see [Pall.
Suppose that N is a normal subgroup of G, then the group ring R[N] of
N over R is a subring of RI[G]. It turns out that RIN] and RI[G]
have some special relationships as described in the following more

general concept.

2.1 DEFINITION. Let R be a ring with identity and let G be a
multiplicative group. A crossed product of G over R, denoted by R*G,
is an associative ring which is a free right R-module with basis the set
G, a copy of G. Thus RxG = @geG‘éR' Addition in R¥G is the same as in
the module structure and multiplication is defined distributively by:

gh = gha(g, h), for all g, h € G,
where o: GxG —> U(R), the group of units of R; and

- t(g)

rg = gr , for all re€ R and all g € G,

where t: G —> Aut(R).

In order that the maps « and t define a crossed product, that is,
the multiplication defined above is associative, o and t need to

satisfy some special relationships. For example, we have the following
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2.2 LEMMA. [Pa2, Lemma 1.1] The associativity of R¥G is equivalent to
the assertions that for all x, y, z € G

t(z) = olx, yz)u(y, z);

(i)  olxy, z)alx, y)
(ii) ty)(z) = Hyz)n(y, z), where Wy, z) denotes the

automorphism of R induced by the unit oy, z). =

2.3 REMARKS. (i) Let R be a ring and let G be a group with a normal
subgroup N. It is easy to see that the group ring RI[G] is a crossed
product of the quotient group G/N over the group ring RIN]. (In most
cases both maps t and « are not trivial.)

(ii) In the definition of crossed product the map t is in general
not a group homomorphism. By 2.2 Lemma (ii) t is a group homomorphism

if and only if for all y, z € G, a(y, z) is in the centre of R.

In the definition of crossed product, if o is trivial, that is
a{g, h) = 1 for all g, h € G, the crossed product R¥G is called a
skew group ring. If t s trivial, that is t(g) is the identity map
for every g in G, R¥G is called a twisted group ring. If both «
and t are trivial, then the crossed product becomes the ordinary group
ring. Usually we write rt(g) simply as rg. We may write R*G as R‘:G
in case we need to point out the maps &« and t. For more details and
the basic properties of skew group rings and crossed products, see [Mol]
and [Pa2].

Let R be a ring and let ¢ be an automeorphism of R. We call ¢

an inner automorphism if there exists a unit u e R such that
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t(r) = u—lru for all r € R. An automorphism is called outer if it is
not inner. (See [Mol, p.1] for details.) Let R be a ring, let G be a
group and let RxG = R(:

Remarks (ii) the map ¢t is in general not a group homomorphism; but it

G be a crossed product. As pointed out in 2.3

is easy to see that t yields a group homomorphism G —> Aut(R)/Inn(R),
where Inn(R) is the group of inner automorphisms of R. This gives G
an action, in the proper sense, on the set of ideals of R.

Let R¥G be a crossed product and let I be an ideal of R. For
every element g € G, we define

18 = (af | a e I}

and

G =(geG|1%=1}
18

It is obvious that is an ideal of R and G is a subgroup of G.

I

We call GI the invariant group of I. If Ig =71 for all g e G,
that is GI = G, then I is said to be G-invariant. It is easy to see
that GI is the unique largest subgroup H of G such that I is
H-invariant. The ring R 1is said to be G-prime if the product of any
two non-zero G-invariant ideals is also non-zero.

In order to explain some other concepts, we give the following

2.4 PROPOSITION. [Pa2, Proposition 10.4] Let R be a prime ring. Then
there exists a ring QS( R) uniquely determined by the properties

(i) Qs( R) 2 R with the same identity element;

(ii) if qe QS(R) then there exist non-zero ideals A, B of R

such that Aq, gB € R;
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(iit) if q e QS(R) and I is a non-zero ideal of R, then either
Ig =0 or qI =0 implies q = 0;

(iv) let f: gA — gR and g Bp — RR be given, where A, B
are non-zero ideals of R. Suppose that for all a € A and all b &€ B

we have (af)b = a(gb). Then there exists q e QS(R) with af = aq and

gb = gb for all a € A, b e B. L]

Let R be a prime ring. The ring QS(R) determined in 2.4
Proposition is called the symmetric Martindale ring of quotients; see
[Pa2, section 10] for details.

Let R be a prime ring and let ¢ be an automorphism of R. Then
o is said to be X-inner if there exists a unit g € QS(R) with
ro = q_qu for all r e R, and ¢ is called X-outer if it is not
X-inner; see [Pa2, p.107]). Analogously, we can also define X-inner and
X-outer automorphisms for semiprime rings; see ([Mol, Chapter3] for
details. Suppose that R is a prime ring and R*¥G is a crossed product.
Define

Gipn = {g € G | g is X-inner on R}
Then Ginn is a normal subgroup of G; cf. [Pa2, Lemma 12.3 (iii)]. We
say G is X-inner on R if Ginn = G. Similarly, G is called
X-outer on R if Ginn = <I>. As shown in many works (see [PaZ,
gection 12] for example) Ginn plays an important role in the
determination of the structure of RXG.

In our study of crossed products two classes of groups will play key

roles. First, of course, there are the finite groups; next there are the
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polycyclic-by-finite groups as defined in the following

2.5 DEFINITION. A group G is called polycyclic-by~finite if G has a
series of subgroups

n n-1 " 0

with Gi+1 > Gi and each Gm G1 either infinite cyclic or finite,

0 =sic<n.

As the foundation of our research, there exists a version of

Hilbert’s Basis Theorem for crossed products.

2.6 PROPOSITION. [Pa2, Proposition 1.6] If R is a right Noetherian
ring and G is a polycyclic-by-finite group, then RXG, a crossed

product, is also right Noetherian. =

2.7 REMARKS. (i) It is still an open question whether the converse of
the above proposition is also true for group rings, that is whether
RIG], the group ring of G over R, Noetherian requires G
polycyclic-by-finite; cf. {MR, p.25].

(ii) The converse of the above proposition is not true for twisted

group rings, as shown by the following

2.8 EXAMPLE. Let k be a field, let G = <@, +> be the additive group
of all the rational numbers and let H = <Z, +> be the additive group of

all the integers. Thus H is a subgroup of G. It is obvious that G/H
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is an  infinite locally finite group, 50 G/H is  not
polycyclic-by-finite. It is clear that k[G] is a commutative domain.
Let & = k[H] \ {0}). Then € is a multiplicatively closed subset of
kIG], and it is easy to see that

k(c1e™" = kiHI6 RGrm),

which is the quotient field of  k[G]. Clearly, k[HJE %(G/H) is a

twisted group ring.

Many properties of crossed products are shared by a more general

class of ring extensions, the group-graded rings, which were first

introduced by E. C. Dade in [Dal.

2.9 DEFINITION. Let G be a multiplicative group with identity element
1 and let R be a ring with identity. We call R a G-graded ring if
there is a family of additive subgroups {Rg | g € G} of R, such that

R=e and Rth € R for all g, h € G. If further R R, = R

gh g h gh
for all g, h € G, then R is called strongly G-graded.

gecRg

It is clear that for a G-graded ring R, R the component

1 b

corresponding to the identity element of G, always contains the identity

element of R; see [Da, Proposition 1.4]; and that Rl is a subring of

R; see [Da, 1.3 (a)l. We call R] the coefficient ring of R. For

simplicity we may denote R as R = R1(G)’

Let G be a group and let R be a G-graded ring. Suppose S is a

subset of G. We denote RS = If S is a subgroup of G, then,

Egeng )
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obviously, RS is a subring of R and RS is an S-graded ring. (For
more details and the classical results about group graded rings, see
[NsV].)

We can easily to check that R is a strongly G-graded ring if and
only if IR € RgRy for all g € G, where y = g—I for typographical
reasons. It is obvious that every crossed product is a strongly group

graded ring; but the converse is not true in general as the following

example demonstrates.

2.10 EXAMPLE. [Pa2, Exercise 3 on p.18] Let k be a field, let
S = M3(k) and let G = {1, x} be a group of order 2. Then S is a

strongly G-graded ring by the decomposition S = SI@Sx , Where

) Kk
kK O ~ Kk
ok|] 3 S.= 1l kol

But this decomposition is not a crossed product since dim.k(SI) =5

o ® ®

SI=

while dLm.k(Sx) = 4,

In fact, about the relationships between group graded rings and

crossed products, we have the following

2.11 LEMMA. [Pa2, Exercise 2 on p.18] Let G be a group and let R be
a G-graded ring with decomposition R = @geGRg . Then R is a crossed
product of G over R1 with the same decomposition if and only if Rg

contains a unit of R for each g € G. ]
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§ 1.3 ORE EXTENSIONS

Let R be a ring and let o be an endomorphism of R. A (left)
o-derivation of R is an additive map 8 R —> R such that

8(rs) = o(r)é(s) + 8(r)s for all r, s € R.

3.1 PROPOSITION. [GW, Proposition 1.10] Let R be a ring, let o be

an endomorphism of R and let 8 be a o-derivation of R. Then there

exists a ring S, containing R as a subring, such that S is a free
2

left R-module with a basis of the form I, x, x, .. and

xr = o(r)x + 8(r) for all r € R. H

The ring S determined in the above proposition is denoted as
Rl[x; ¢, 8] and is called an Ore extension of R. Analogously, for a
ring R and an endomorphism o of R, we can also define a right
o-derivation, which is an additive map & of R satisfying the rule:
8(rs) = 8(r)e(s) + ré(s) for all r, s € R By using a right
oc-derivation &, we can also construct an Ore extension, which is a free
right R-module. Suppose that o¢ is an automorphism of R and & is an
additive map of R. Then it is clear that & is a left o-derivation if

and only if —60‘1 is a right wnl—derivation and the Ore extensions

-1

Rl[x; o, 8] and Rl[x; ¢ °, —60‘_1] coincide.

We would like to point out that (as discussed, for example, in

10
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[MR, § 1.2]) if a ring S is generated by a subring ring R and an
element Xx, and if

i) RS is a free left R-module with a basis {xi | i =z 0}, and

(ii) xR € Rx + R,
then there exist an endomorphism ¢ of R and a o¢-derivation & such
that S = Rlx; ¢, 8]. (Hence justifying the concept.)

We also have a version of Hilbert’s Basis Theorem for Ore

extensions.

3.2 THEOREM. [GW, Theorem 1.12] Let R be a ring, let o be an
automorphism of R and let 8 be a o-derivation of R. If R 1is right
(resp. left) Noetherian, then the Ore extension S = R[x; o, 8] is also

right (resp. left) Noetherian. n

3.3 REMARK. In order that the above theorem is true, ¢ must be an
automorphism. The following example shows that assuming o is a

monomorphism is not enough to ensure the truth of the theorem.

3.4 EXAMPLE. [GW, Exercise IN] Let R = k[x] be a polynomial ring over
a field k, and let o be the k-algebra endomorphism of R given by
the rule o(f) = f(xz). Then Rly; ol is neither right nor left

Noetherian.

11
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§ 1.4 NOTES

4.1 All the concepts and results appearing in this chapter are

well-known.

4.2 fRot] and [CE] are the main references for homological algebra

results and concepts.

4.3 [Pa2] and [Mol] are our main references for crossed products and
skew group rings. All the concepts and results appearing in section 1.2

can be found in [Pa2].

4.4 For Ore extensions, we use [GW] and [MR] as main references. All the

results and concepts appearing in section 1.3 can be found in [GW] or

[MR].

12




CHAPTER 2

FINITENESS OF GLOBAL DIMENSIONS OF
SKEW GROUP RINGS AND CROSSED PRODUCTS

Let R be a ring with finite global dimension, let G be a group
and let R¥G be a crossed product. It is well-known that the global
dimension of RXG may be infinite. For example the group ring K[Gp],
where K is a field of characteristic p > 0 and Gp is a cyclic group
of order p, has infinite global dimension (cf. 1.5 Lemma (i) below). In
this chapter we would like to study the necessary conditions and
sufficient conditions for a skew group ring and a crossed product to have
finite global dimension. The main purpose is to demonstrate that the
global dimension of certain skew group rings and crossed products are
controlled by the global dimension of certain skew group rings and
crossed products of finite groups over simple Artinian rings.

This chapter contains many of our main results of this thesis, In
§ 2.1 we give several general results about the global dimension of
strongly group graded rings. These results are useful in later sections
and chapters. In § 2.2, as the first step to study the finiteness of

global dimension of crossed products, we study the conditions under which

13
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the global dimension of a crossed product 1is zero, that is, the
conditions under which a crossed product is semisimple Artinian. Our 2.3
Theorem shows that the semisimplicity of crossed products can be reduced
to the simplicity of some crossed products over simple Artinian rings. We
also give a result to describe the semisimplicity of crossed products
over some factor rings of the coefficient rings; see 2.6 Proposition. In
§ 2.3 we show that for a crossed product of a finite group over a right
FBN and left coherent ring (see § 2.3 below for the definitions of FBN
rings and coherent rings), its global dimension is controlled by the
semisimplicity of some crossed products over the simple Artinian factors
of the coefficient ring; see 3.3 Theorem for details. In § 2.4 we study
the finiteness of global dimension of crossed products and skew group
rings when the coefficient rings are Noetherian with all their maximal
ideals right localizable or the coefficient rings are local or semilocal.
In these cases some necessary conditions and sufficient conditions for a
crossed product or a skew group ring to have finite global dimension are
obtained; see 4.6 Theorem, 4.10 Proposition and 4.12 Corollary for
details, In § 2.5 we apply our previous results to the case of
commutative coefficient rings and obtain some necessary and sufficient
conditions for a skew group ring of a finite group over a commutative
Noetherian ring to have finite global dimension; see 5.2 Theorem. Then we
use a version of Serre’s Theorem for crossed products, which was given by
Aljadeff in [Al2] (see 5.5 Theorem), to extend our results to larger
classes of groups. For example, for polycyclic-by-finite groups we obtain

5.7 Corollary. Then we give some examples in § 2.6 to show that the

14
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conditions in our main results are essential and the results are the best
possible. In § 2.7 we describe some relationships between the trace maps
(see § 2.7 for the definition) and the global dimension of strongly group
graded rings and skew group rings; see 7.2 Proposition for example. In
§ 2.8 we briefly describe the finitistic dimension of strongly group

graded rings; see 8.4 Theorem.

§ 2.1 GLOBAL DIMENSION OF STRONGLY GROUP GRADED RINGS

We would like to give two elementary lemmas concerning the global
dimension of strongly group graded rings in this section. They will be

frequently used later.

1.1 LEMMA. Let G be an arbitrary group and let R = @ be a

8‘='GRg
strongly G-graded ring. Suppose H is a subgroup of G.

(i) For any g € G, RgH = ®heHRgh

projective right RH—module. In particular R is a projective right

is a finitely generated

R H-—module.

(ii) r.gl.dim.(Rl] = r.gl.dim.(RH] =< r.gl.dim (R).

PROOF. Suppose that R, G and H are as stated.

(i) Let g € G and write y for g_l for typographical reasons.

15
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Obviously R gH is a right RH-module. Since RgRy = R, o 1, there exist

1
- n _
finitely many r, € R y and s; € Ry , such that Zi=1risi = 1. Then

fi : RgH'_)RH : r——:«sir, for all reRgH,
is an RH—-homomorphism. Therefore Zizlrifi(r) =r for all r e RgH ,
and by the dual basis lemma (see [MR, Lemma 3.5.21) RgH is a finitely
generated projective RH—module.
(ii) This follows directly from (i) and [MR, Theorem 7.2.8]. ]

1.2 REMARK. In the above lemma (ii) is a generalization of [MR,

Corollary 7.5.6 (i)].

Let G be a finite group and let R = be a strongly

®gecRg

G-graded ring. Then Rng = R1 for all g e G, where we write y for

g-z as before. Thus there exist a‘::” € Ry and bf € R, such that

ZI a’fb‘f = 1, where Ig is a finite set. Suppose M and N are right

R-modules. If f € HomR (M, N), we define a map from M to N by
1

Fm) =¥ seGLT (f(maf»bf , for all m e M. (*)
g

By direct calculation, we have the following

1.3 LEMMA. [Na, Lemma 2.1] Let G be a finite group, let R be a
strongly G-graded ring and let M and N be right R-modules. Suppose

that f & Homp (M, N). Then f, which is defined as in (%), is an
1

R-homomorphism.

16
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Suppose that G is a finite group and R is a strongly G-graded

ring. Let M be a right R-module. If there exists an f € HomR (M, M)
1

such that :f‘ = IM , then M is called R-regular (cf. [Na, Section 2]).

Suppose that |G| is invertible in R, . Let n = |G|. It is easy to see

that (17n) = 1 for any right R-module M. Thus all the right

M

R-modules are R-regular if |G| is invertible in R1 .
Before giving our next result, we state the following well-known

theorem. It is useful in later sections and chapters.

1.4 THEORFM. ([Na, Theorem 2.11 Let G be a finite group, let R be a

strongly G-graded ring with coefficient ring R let M be a right

1 r

R-module and let N = @ be a graded right R-module. Then for each

geG g
non-negative integer n and each g € G, we have
, n n
(i) ExtR(M, N) = ExtRI(M, Ng),

n

IR

(ii) Ext;;(N, M)

(iii) pr.dim.R (M) = pr.dim.R(M), and the equality holds if
1

im. < o
pr.dim R(M) 0;

(iv) inj.dim.R (M) = inj.dim.R(M), and the equality holds if
1

inj.dim.R(M) < o, m
Now we can prove the following

1.5 LEMMA. lLet G be a finite group, let R = ® be a strongly

geGRg
G-graded ring and let H be a subgroup of G.

17
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(i) If r.gldim(R) < o, then
r.gl.dim.(Rl) = r.gl.dim.(RH) = r.gl.dim.(R).

(ii) Suppose that |G| is invertible in R, . Then for every right

R-module P, P is projective (respectively injective) if and only if

Ry

PR is projective (respectively injective). Moreover, for every right
R-module M,

pr.dr.m.(MR) = pr.dLm.(MRl); LnJ.dLm.(MR) = mJ.dLm.(MRI).

(iii) If |G| is invertible in Rl , then

r.gl.dim(R) = r.gl.dim(Ry) = r.gl.dim.(R).

PROOF. (i) Suppose that r.gl.dim.(R) < o. Let M be a right R-module
such that pr.dim.(MR) = r.gl.dim.(R). By 1.4 Theorem (iii) we have

pr.dim.(MR) = pr.dim.(MR) = r.gl.dim.(R).
1

Therefore by 1.1 Lemma (ii), we have r.gl.dim.(RI) = r.gl.dim.(R).

Similarly, r.gl.dim.(Rl) = r.gl.dim.(RH).

(ii) Let n = |G| and suppose that n is invertible in R, . Let
P be a right R-module. If PR is projective, then PR is projective
1
since R R is projective by 1.1 Lemma (i), Suppose that P R is
1 1

projective. Let N be a right R-module and let

NI P _So 1)

be an exact sequence of R-modules and R-homomorphisms. Since PR is
1

projective, (1) splits as a sequence of R I—moduies and

RI—homomorphisms. Thus there exists an Rl—homomorphism g, say, from P

to N such that fg =1 By simple calculation, we have

p°
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f(n—lg) = IP , where g is defined as in (*). By 1.3 Lemma n_lg is an

R-homomorphism. Thus (1) splits as a sequence of R-modules and
R-homomorphisms and so PR is projective.
Let M be a right R-module. By 1.4 Theorem (iii),
pr.dim.R (M) = pr.dim.R(M). Now we prove that
1
pr.dtm.R(M) = pr.dv,m.R (M).

1

We may suppose that pr.dim.R (M) =t < w. Let
1

)
t~1 (2)
> P, P, M 0
be a projective resolution of MR . Since RR is projective by 1.1
1
Lemma (i), (2) is also a projective resolution of MR' Because
1
pr.dim.R (M) = t, ker(&t_z) is a projective right R1-modu1e by

1
[Rot, Theorem 9.5]. Since ker(at_z) is a right R-module, by our above

discussion, ker(ét_l) is a projective right R-module. Then
pr.dim.R(M) = t by [Rot, Theorem 9.5} again. Thus

pr.dLm.RI(M) = pr.dLm.R(M).

Analogously, we can prove the statements about the injective properties.

(iii) This follows directly from (ii) and 1.1 Lemma (ii). n

1.6 REMARKS. (i) In the above lemma (ii) and (iii) are generalizations
of [MR, Theorem 7.5.6 (ii)] and [MR, Theorem 7.5.6 (iii)] respectively.

(ii) In the setting of 1.5 Lemma, suppose that |G| is invertible
in RI . Then every right R-module is R-regular by our discussion above

1.4 Theorem. Thus 1.5 Lemma (ii) and (iii} can be obtained from 1.1 Lemma
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(ii) and the following well-known result. Here we have presented a

detailed and self-contained proof.

1.7 PROPOSITION. [Na, Corollary, 2.13] Let G be a finite group and
let R be a strongly G-graded ring with coefficient ring RI . Suppose
that M is a right R-module such that M is R-regular. Then

pr.dtm.R(M) = pr.dun.R (M) and mJ.dLm.R(M) = an.dlm.R (M). n

1 1

As shown by the above proposition, for a finite group G and a
strongly G-araded ring R, the behaviour of projective dimension and
injective dimension of R-regular modules is quite simple. We list the
following lemma, which indicates that there are plenty of R-regular

modules.

1.8 LEMMA. [Na, Lemma 2.4] Let G be a finite group and let R be a
strongly G-graded ring. Then every graded right R-module is

R-regular. [
Using [Da, Theorem 2.8], 1.7 Proposition and 1.8 Lemma, we obtain

1.9 COROLLARY. [Na, Corollary 2.7] Let G be a finite group and let R

be a strongly G-graded ring with coefficient ring R, . Suppose that

1

N = @geGNg is a graded right R-module. Then for each g € G

inj.dim.R(N) = inj.dim.R (Ng). [
1
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§ 2.2 SIMPLICITY AND SEMISIMPLICITY OF CROSSED PRODUCTS

it is well-known that the right global dimension of a ring is zero
if and only if the ring is semisimple Artinian. Let G be a finite group
and let R be a strongly G-graded ring. Suppose that R1 , the
coefficient ring, is semisimple Artinian. Then by 1.5 Lemma (i) R has
finite global dimension if and only if R is semisimple Artinian. Thus
as the first step in the study of finiteness of global dimension of
crossed products, we would like to study the semisimplicity of crossed
products in this section.

About the simplicity and semisimplicity of crossed products and skew
group rings, there are many well-known results. If R is a semisimple
Artinian ring and G is a finite group with |G| invertible in R,
Maschke’s Theorem says that R¥G, a crossed product, is also semisimple
Artinian; see [MR, Theorem 7.5.6]. Suppose that R is a simple ring, G
is a finite group and R¥G is a crossed product. If G is outer, (note
that here outer and X-outer are the same since R is simple), then R*G
is also simple. (This result is a special case of {Pa2, Corollary 12.6];
also see [Mol, Theorem 2.3]; but it is essentially due to Azumaya [Az].)
If R is semisimple Artinian and if G is finite and X-outer then RxG,
a skew group ring, is also semisimple Artinian. (This is a special case
of a result of Montgomery; see [Mo2, Theorem 3.1] or cf. [Mol, Corollary

3.18 (3)].) In [HLS] the simplicity of skew group rings is also studied
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and many conditions for R*G, a skew group ring, to be simple are given
there. In 2.3 Theorem below, we prove that the semisimplicity of crossed
products can be reduced to the simplicity of crossed products over simple
Artinian rings.

At first let us give a lemma.

2.1 LEMMA. [et R be a ring, let G be a group and let R?;G be a

crossed product. Suppose that R = TeS is a direct sum of two ideals S

and T such that for each g € G, T® € T and S8 < S. Then

R%e = hcesla
1 2
where tI and t‘2 are the restrictions of t to T and S
respectively and cx(gz , g2) = B(gl , gZ) + 7(g1 , gz) for all
g1 4 g2 € G‘

PROOF. Suppose that all the stated conditions are satisfied. Clearly,

there exist crossed products TB ¢ and SY G. It is obvious that the map

t1 t2
o R —> TP Ges¥ G; Ya.(t.+s.) — Ya.t. + Y55, ,
t t1 t2 DS AR 4 i ii
where g € G, ti € T and S; € S, is a ring isomorphism. |

Now we can prove
2.2 PROPOSITION. Let R be a ring, let G be a finite group and let

RX¥G be a crossed product.

(i) Suppose that R has a ring decomposition R = SI®...®Sn , as
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finite number of rings and suppose that G permutes the set
{81 pones Sn}. Let
= g = j =
Qj = {Sk | Sk SJ. for some g € G}, j=1,.., m,

be all the orbits of G on {S Sn}, and let m, = ¢ : 61,

1 ooy

where GS is defined as in § 1.2. Then
i
m

R*G 56;‘.:1

Mmi(Si*GSi),

where Mq(s) denotes the gqxq matrix ring over the ring S. Therefore

r.gl.dim.(R*G) = max'::I{r.gl.dim.(Si*Gs )}
i

(ii) Suppose that R is semisimple Artinian. Let R = SI®...®Sn ,

where each Si is simple Artinian. Then R¥G is semisimple Artiniun if

and only if Si*GS is semisimple Artinian for each i = 1,.., n.
i

PROOF. Suppose that R, G and R*G are as stated.

(i) Suppose that Si , omy i = ..., n, and Qj , J = L., m,

are as stated. Then by 2.1 Lemma R¥G is the direct sum of the crossed

products
T, = (®SeQ£S)*G'
m,
Let e, € S, ‘be the identity element of S, and write G =U .iG g,
i i i Jj=1 Si J
m, g,
(disjoint union). Then I = Zjilei.J is a decomposition of 1 € Ti into

orthogonal idempotents which are permuted transitively by the subgroup

U(e e QS)EJ of U(Ti)’ where U( ) denotes the group of units, and

1

S

eiTiei = Si*GS . Therefore it follows from [Pal, Lemma 6.1.6] that

i

m
R*G = @i

=1Mmi(si*cs').

l
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Thus we have
r.gl.dim.(R¥G) = max?=1{r.gl.dim.(si*cs ).
i

(ii) Suppose that R is semisimple Artinian, so R = 51@...®Sn ,

where each Si is simple Artinian. Then each Si is a minimal ideal of

R, so G permutes the set (S o Sn}. Then the result follows from

7

(i). n

Using 2.2 Proposition we can prove the following theorem, which is

one of our main results in this section.

2.3 THEOREM. et R = SI@"'@Sn , Where Si is simple Artinian for

i L., n. Let G be a finite group and let Rx¥G be a crossed
product. For each i, define
H ={gegG | S‘? =S, and g lis inner on Si}’

and let Ni be a Sylow pi-subgroup of Hi where p;, = char(si) if
this is positive, and Ni =1 if char(Si) = 0.

(i) R*G is semisimple Artinian if and only if Si*Ni is simple
Artinian for i = 1,.., n.

(it} RxG is semisimple Artinian if and only if Si*Pi is simple
Artinian for every elementary Abelian subgroup Pi of Ni. , for

i=1,.. n.

PROOF. Suppose that R, G, RxG, Ni and Hi are as stated.
(i) (=) Suppose that R*G is semisimple Artinian. From

1.1 Lemma (ii) and 2.1 Lemma we know that Si*Ni is semisimple Artinian.
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Then by [LP1, Corollary 3.10] Si*Ni must be simple Artinian.
(=) Suppose that Si*Ni, is simple Artinian for { = 1,.., n. By

[Pa2, Corollary 18.11 and Corollary 12.6] Si*GS is semisimple
i
Artinian. So by 2.2 Proposition (ii) R¥G is semisimple Artinian.
(ii) By 1.1 Lemma (ii), [Pa2, Theorem 18.10] and (LPl, Corollary
3.10] Si*Ni is simple Artinian if and only if Si*Pi is simple

Artinian for every elementary abelian subgroup Pi of Ni . Then the

result follows from (i). ]

From 2.3 Theorem, we see that the semisimplicity of R¥G has been
reduced to the simplicity of S¥P, for a simple Artinian ring S with
char(S) = p > 0 and an elementary Abelian p-subgroup P. Since P is

elementary Abelian, P has the form P = Pl@"'®Pn , where each Pi has

order p. Then S*P

114

((S*PI)*...*Pn_I)*Pn . Therefore S*P is semisimple
Artinian if and only if all ((S*Pz)*...*Pi_l)*Pi are simple Artinian
for i = 0,..., n, where PO = <D,

Therefore the problem one is left to consider is the simplicity of
S¥P with S simple Artinian of characteristic p > 0 and P a cyclic
group of order p. If P is outer on S, then S*P is a simple Artinian
ring by the above theorem or by [Pa2, Corollary 12.6]. (As pointed out
before, it is due to Azumaya [Az].) If P is inner on S, then S¥P may
fail to be simple (e.g if S*¥P = S[P] is the ordinary group ring), and,
on the other hand, may still be simple sometimes (see 2.5 Example below).
In the case of skew group rings, the following proposition throws some

light on this problem.
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2.4 PROPOSITION. Let S be a simple ring (not necessarily Artinian)
with char(S) = p > 0. Let P = <g> be a cyclic group of order p, with
P inner on S. Let S¥P be the skew group ring. Then the following are
equivalent:

(i) S¥P is a simple ring;

(ii) if v eS is such that s5 = vsv~1, for all s e S, then
vp # 1

(iii) S*¥P is not isomorphic to an ordinary group ring of S over a

cyclic group of order p.

PROOF. Let S, P and S*P be as stated.
(i) = (iii) = (ii) are obvious.
(ii) = (i) Suppose that (ii) holds. Since P is inner on S. We

can choose v € S with v invertible such that sg

= vsv_z, for all s €
S. By [HLS, Proposition 1.1 (b)] S¥P is simple if and only if c(S¥P),
the centre of S*P, is a field. Let K be the centre of S. By [HLS,
Proposition 1.6 (ii)] we have

c(S¥P) = Klvgl = Kl[zl/(zP-vP),
where =z is an indeterminate over K. Therefore c<(S*¥P) is a field if

p p

and only if z" - v is a maximal ideal of K[z], if and only if vP

is
not a pth power of an element of K [Jac, Lemma on p.225]. If vP s a
pth power of an element k € K, so vp = kp , then k # 0 and
( k«-lv)p =k PVP = 1. So sg = vsv_z = (k_lv)s(k—lv)-l, contradicting

(ii). =
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2.5 EXAMPLE. A cyclic group of order p acts on a division ring S
with char(S) = p > 0. The action is inner, but S*P, the skew group
ring, is simple Artinian.

Let R = AI(K) = Kixly, d/dx] be the first Weyl algebra over a
field K, where char(K) = p > 0. (See [GW, p.15] for example.) Let S be
the classical quotient ring of AI(K)' So S is a division ring. Let g
be the automorphism of S defined by the conjugation by x, that is

g = xsx_I for all s e S. Since xP is contained in the centre of S,

s
<g> is cyclic of order p. Let P = <g> and let S*P be the skew group
ring. By some direct calculations we know that C(R), the centre of R,
is KIxP, yp 1. Obviously, R is a finitely generated module over its
centre, so R is a P. I. ring. Let & = C(R) \ {0}. By [MR, Theorem
13.6.5] we know that Ri‘s’_l is a central simple algebra with centre
Z = C'(R)€—1. Since RYS_I is a finitely generated module over its centre,
we have § = RE’_Z and so the centre of S s K(xp R yp ), the quotient
field of K{xp , yp ]. Suppose that v € S is invertible and vP = 1, such
that B = xsx ! = vovL Then v e K(xP , vP). Let
v_lx = f(xP, yp)/h(xp, yp), where fF(xP, yp) and h(xP, yp) are elements
of K[xp, yp]. So x = v[f(xp, yp)/h(xp, yp)], and therefore
xP = VvPrF(xP, yp)/h(xp, yPOIP = [P, yp)/h(xp, yPOIP,
It is easy to see that this is impossible. By 2.4 Proposition, S¥P is a

simple Artinian ring.

Now we give an application of 2.2 Proposition to the semisimplicity

of certain factor rings of crossed products. This result is needed for

27




Global Dimensions of Skew Group Rings and Crossed Products

the proof of our main theorems in later sections.
Suppose that R is a ring, G 1is a group and RXG is a crossed
product. For any ideal M of R, denote ngeGMg by MO, so that MO is

the unique largest G-invariant ideal contained in M.

2.6 PROPOSITION. Suppose that R is an arbitrary ring, G is a finite
group and R*G is a crossed product. Let M be a maximal ideal of R.
Then
Overr =
(R/M)*G = M _((R/M)XG, ),
where n = [G : GM]. In particular (R/Mo)*G is semisimple Artinian if

and only if (R/M)*GM is semisimple Artinian.

PROOF. Suppose that R, G, M and n are as stated. Let G = Uril=1GMgi

(disjoint union) with g; = 1. Then

gI gn
where M ,.., M are different. By the Chinese remainder theorem, we
have

g g
R/MC = R/M lo..oR/M ".

g.
: as ideals of R/MO. Thus G permutes the set

Consider  R/M
g, &, g g .
{R/M, R/M “,.., R/M "} transitively and (R/M)® = R/M®, for all g € G.
By the proof of 2.2 Proposition (i), we have
0 ~
(R/M7)*G = M _((R/M¥G, ).
In particular (R/Mo)*G is semisimple Artinian if and only if (R/M)*GM

is semisimple Artinian. |
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& 2.3 RIGHT FBN LEFT COHERENT COEFFICIENT RINGS

A ring R is called right bounded if every essential right ideal
of R contains an ideal which is essential as a right ideal. A ring R
is right fully bounded if every prime factor ring of R is right
bounded. A right FBN ring is any right fully bounded right Noetherian
ring. For details about these rings refer to [GW, Chapter 8]. Obviously,
a commutative Noetherian ring is FBN. By [MR, 13.6.6 (iii)] we know that
Noetherian P. I. rings (and thus rings which are finitely generated
modules over commutative Noetherian rings) are all FBN. From [BHM2, 3.5
Lemma (i)] or by an argument similar to the proof of [GW, Proposition 8.1
(b)] we know that Noetherian rings which are integral over their centres
are also FBN.

A ring R is called left coherent if every direct product of flat
right R-modules is flat, cf. [AF, 19.20 Theorem]. It is obvious that
every left Noetherian ring is left coherent, see [Rot, p.1131, but the
converse is not true. Moreover there exist rings which are right FBN
and left coherent but not left Noetherian; see 3.5 Example below. In this
section, we discuss when a crossed product has finite right global
dimension if the coefficient ring is right FBN and left coherent. By
1.1 Lemma (ii) we may assume that the coefficient ring has finite right
global dimension.

The following well-known proposition gives a very useful property of
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right FBN rings.

3.1 PROPOSITION. [GW, Proposition 8.4] Let R be a right FBN ring.
If P is a right primitive ideal of R (in particular, if P is a

maximal ideal), then R/P is a simple Artinian ring. n

3.2 LEMMA. let R be a right FBN ring, let G be a finite group and
let S = R¥G be a crossed product. Then S is also a right FBN ring.
Let M" be a maximal ideal of S.Then M n R =nM® for a maximal
ideal M of R, so in particular R/(M*nR) is a semisimple Artinian

ring.

PROOF. Suppose that R, G and S are as stated. Since S = RXG is a
finitely generated right R-module, by {Let, Proposition 4.9] or [So,
Theorem 211, we know that S = R¥G is right FBN. Let M* be a maximal
ideal of S. By [Pa2, Lemma 14.2 (i)] we have M*nR = nGMg, where M is
a minimal prime over M* n R. Using [Pa2, Theorem 16.6}, it follows that
M is a maximal ideal of R. Since primitive factor rings of right FBN
rings are simple Artinian as shown in 3.1 Proposition, it is easy to see

*
that R/(M nR) is a semisimple Artinian ring. =
We can now prove one of our main results in this thesis.

3.3 THEOREM. Suppose that R is a right FBN left coherent ring and

that r.gl.dim(R) < ». Let G be a finite group and let S = R¥G be a
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crossed product. Suppose that for each maximal ideal M of R with
char(R/M) = p > 0, (R/M)*GM is semisimple Artinian, where
- g _
GM—{geG | M® = M}
Then r.gl.dim.(R¥G) = r.gl.dim.(R) < o,

PROOF. Suppose that S and G are as stated. By 3.2 Lemma we know that
S = R¥G is also right FBN. Since R¥G is a free left R-module of
finite rank, by [Row, p.266 Exercises 8 and 9’] for any set A we have
R ((R¥G) & (Re (R¥@))" = (RxG)"

as right R*G-modules. Since R is left coherent, by [AF, 19.20
Theorem], RJ‘:l is a flat right R-module. Therefore (R*G)A = RA®R( R¥*G) is
a flat right R¥G-module. By [AF, 19.20 Theoreml again, RX¥G is left
coherent.

Suppose that I is a right ideal of R. Since r.gl.dim.(R) < o,
there exists a finite projective resolution of (R/I )R . Let

> P > R/T — 0

0— P —P , —> .. 0
be such a resolution. Since RS is free,
0 — P @S —> .. — Py®pS — (R/I)@RS -—3 0

is a projective resolution of the right S-module (R/I)@RS z S/IS.
Therefore

pr.dim.S(S/IS) = pr.dim.R(R/I) = r.gl.dim.(R). (1)

Now we prove that for any simple right S-module VS , we always

have pr.dim.(l/s) = r.gldim(R). Let M* = annS(V). Since S is right

FBN by 3.2 Lemma, M* is a maximal ideal of S and S/M* is a simple

Artinian ring by 3.1 Proposition. Thus there exists a positive integer n
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(n)

such that V & S/M* as right S-modules. Therefore, we have

. _ (n)
pr.dtm.S(V) = pr.dim.S(V

) = prdim.(S/M"). (2)
By 3.2 Lemma R/( M*nR) is a semisimple Artinian ring and
M* n R = 0 ME = MO,
where M is a maximal ideal of R. If char(R/M) = 0, by 1.5 Lemma (iii)
we have
r.gldim.(R/M*)*G) = r.gl.aim(R/MC) = O.

Therefore (R/MO)*G is semisimple Artinian. If char(R/M) = p > 0, by
hypothesis ( R/M)*GM is semisimple Artinian, and so by 2.6 Proposition
(R/MO)*G is semisimple Artinian. Therefore we always have (R/MO)*G
semisimple Artinian. Since

/(M AR)S) = (RXG)/((M"nRIXG) = (R/(M"nR)I*G = (R/M°)xG,
it follows that S/(M*nR)S is a semisimple right S-module. Because

0 — M J((M"AR)S) —> S/((M"AR)S) —— S/M" —— 0 (3)
is an exact sequence of right S-modules and S/« M*nR)S) is a
semisimple S-module, the sequence (3) splits. Therefore

S/M™ARIS) = (S/Me(M™ /(M nR)S)) (4)
as right S-modules. Thus by (2), (4) and (1) we have
pr.dim.s(lf) = pr.dim.S(S/M*) = pr.dim.s(s/( (M*nR)S))
= pr.dim.R(R/(M*nR)) =< r.gl.dim.(R).
Then from {Ra, Theorem 8] we obtain
r.gl.dim.(S) = sup {pr.dim.S(V) | Vg is simple} s r.gl.dim.(R) < w.

By 1.5 Lemma (i) we have r.gl.dim.(R¥G) = r.gl.dim.(R) < w, w
3.4 REMARKS. (i) The converse of 3.3 Theorem is not true even in the
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case of R being commutative; see 6.4 Example. The converse of 3.3
Theorem is still not true even in the case of skew group rings and R
being a finite module over its centre; see 6.2 Example.

(ii) If R is commutative and R¥G 1is a skew group ring, then the
converse of 3.3 Theorem is true and we have more equivalent conditions;
see 5.2 Theorem.

(iii) In the proof of 3.3 Theorem, the fully bounded hypothesis is
used crucially in the following two ways:

(a) For a right FBN ring R every simple right R-module has
co—-Artinian annihilator; see 3.1 Proposition.

(b) For a right FBN and left coherent ring, the right global
dimension equals the supremum of the projective dimensions of its simple
right modules; see [Ra, Theorem 8].

It is still an open question whether (b) is valid for an arbitrary
Noetherian ring, that is whether the global dimension of a (two-sided)
Noetherian ring equals the supremum of the projective dimensions of its
simple right modules; see [GW, p.287]. (A counter example in the
one-sided Noetherian case was given by Fields [Fi, p.348]) If the answer
for this question is positive, then 3.3 Theorem can be extended to all
the (two-sided) Noetherian rings such that the simple right modules have

co-Artinian annihilators.

3.5 EXAMPLE. We give a ring which is right FBN and left coherent; but

it is not left Noetherian. Let R = (gz g], where @ and R are the field of

rational numbers and the field of real numbers respectively. Then R is
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a right Noetherian P. I. ring. Thus R is right FBN. Obviously, R is
not left Noetherian. By [MR, 7.5.1 Proposition] the left global dimension
of R is 1. Thus R is left hereditary and so every finitely generated
left ideal of R is projective. Therefore R is left coherent. (See

[Rot, p.128].)

§ 2.4 LOCAL COEFFICIENT RINGS

A semiprime ideal N in a right Noetherian ring R is called
right localizable provided ®(N), the set of elements which are regular
modulo N, is a right Ore set. A ring R is said to be semilocal if
the factor ring R/J(R) of R Dby its Jacobson radical J(R) s
semisimple Artinian. If R/J(R) is simple Artinian, then R is called
local. If R/J(R) is a division ring, then R is called scalar local.
In this section, we study the homological dimension of a crossed product
or a skew group ring when the coefficient ring is Noetherian with all the
maximal ideals right localizable or the coefficient ring is Noetherian

local or semilocal.
4.1 LEMMA. Let R be a local ring such that char(R/J(R)) = p > 0, let
G be a cyclic group of order p acting on R and let RXG be the skew

group ring. Then R¥G is a local ring, and either J(R*G) = J(R)*G, or
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(R/J(R)¥G is isomorphic to the ordinary group ring (R/J(R)IG], so

that (R*G)/J(R¥G) = R/J(R).

PROOF. Suppose that R and G are as stated. Then R/J(R) is simple
Artinian. By [Pa2, Theorem 4.2], we always have J(R)*G < J(R*G). If
(R/J(R))*G  is simple Artinian, then J(R*G) = J(R)*G and RX¥G s
local. Suppose that (R/J(R)¥G is not simple Artinian. Then by 2.4
Proposition (R/J(R)*G is isomorphic to the group ring of G over
R/J(R). Let w( ) denote the augmentation ideal of group rings. Then by
[Pal, Lemma 8.1.17] the Jacobson radical of (R/J(R)IG] is just its
augmentation ideal. Therefore we have
(RIJCRIXG/ J((RJI(RIMG) & (RJJ(RIGCD, W((R/F(RDIGD) = RJI(R).
Since J(R)*G € J(R*G) by [Pa2, Theorem 4.2] and
J(R¥G) [(J(RI*¥G) = J((R¥G)J(J(R*G)) = J((R/J(R))¥G),

the result follows. n

Recall that in a ring a right denominator set is a right Ore right
reversible set; see [GW, Chapter 9]. The quotient rings of group rings
have been studied be P. F. Smith in [Sm]. We give the following lemma,
which is about the quotient rings of crossed products. Its part (i) is a
generalization of [Sm, 2.6 Lemmal and part (ii) is well-known, see

[LP2, Lemma 1.5 (i)l.

4.2 LEMMA. Let R be a ring, let G be a group and let R¥G be a

crossed product.
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(i) Suppose that € is a right denominator set of R such that &
is G-invariant, that is B et for each ¢ € 6 and each g € G. Then
6 is a right denominator set of R*G and

(R¥c)E™! = RE IxG,
where G can be an arbitrary group.

(ii) Suppose that R is a semiprime right Goldie ring and G |is
Ffinite. Then RxG is a right order in an Artinian ring and

Q(R*G) = Q(R)*G, where Q( ) denotes the classical right quotient ring.

PROOF. (i) Suppose that R, G, R¥*G and € are as stated. At first we
check that © is a right Ore set of R¥G. Let c¢ € & and let ZJZ=1‘§£F1
be an element of R¥G. Then cg € & for each g € G because € |is
G-invariant. Since € is a right Ore set of R, for each & >
i = 1,.., n, there exists c; € G and r’i € R such that
r

—— n i —
=cr; By [GW, Lemma 9.2 (a}l €N (ni,=lciR) is non-empty.

.C.
1A 2

’

n
/ —
Choose c’ € € n (ni=ICiR) and suppose that ¢’ = ca; where each

ai € R. Then it is clear that

TP = ey iy
Therefore € is a right Ore set of Rx¥G. By some direct calculations we
can see that € is also a right reversible set of R¥G. (We omit the
details.) Therefore G is a right denominator set of RxG. By 1.2.2
Lemma ([Pa2, Lemma 1.1]) it is easy to see that there exists a crossed
product RE«T—I*G induced from the crossed product R¥G. Clearly,

(rxe)e ! = R xa.

(ii) This is [LP2, Lemma 1.5 (i)l =
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Let R be a ring. A nonzero right R-module U is called uniform
if the intersection of any two nonzero submodules of U is nonzero; see
[GW, p.71]. Let MR be a right R-module. Suppose that E(M), the

injective hull of MR , is a direct sum of n uniform submodules. Then

we say that the uniform rank, or just the rank of M R is n, and
denote it as rank(M) = n. If no such n exists, we say the rank of M
is infinite; cf. [GW, p.741.

From [Pa2, Theorem 31.6] and its proof we obtain the following

theorem; but the original result is due to Nakayama and Azumaya; see [NA,

Theorem 15}.

4.3 THEOREM. [Pa2, Theorem 31.6] Let R be a simple Artinian ring let
G be a finite group acting on R and let R¥G be the skew group ring.
Assume that R*G is simple. For example, this occurs if G is outer on

R. Then there exists a division ring D and an integer k  with

G o ot

R = Mk(D), R¥G = MleI(D) and klrank(RR). =
The above theorem plays a key role in the proof of the following

lemma.

4.4 LEMMA. Let R be a semiprime local right Noetherian ring with
char(R/J(R)) = p > 0, rank(R/J(R)) = m and p { m. Let G be a finite
elementary Abelian p-group acting on R. Suppose that the skew group
ring R*G has finite right global dimension. Then (R/J(R))*G is simple

Artinian.
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PROOF. Suppose that R, G and R*G are as stated and that the stated
conditions are satisfied. Since G is a finite elementary Abelian

p-group, G = P1><...xPn , where each Pi is a cyclic group of order p.

Clearly, RxG = ((R*PI)*'"*Pn—I)*Pn , where each * denotes a skew group

ring. For 0 = { = n, let R, = ((R*Pl)*...*Pi_I)*Pi and R, =

(«R/J(R))*Pl)*'"*Pi-I)*Pi , where R, = R and R, = R/J(R). Suppose

that (R/J(R))*G is not simple Artinian. Then there exists a q, 1= g =
n, such that }_Qi is simple Artinian for i < g, but I'éq is not simple
Artinian.

Let ﬁq“l = Mt(L)’ where L is a division ring. By 4.1 Lemma and

. . . _ x ) )
our choice of gq, Rq_1 is local with J(Rq-l) JORI*(P .. qu_I) and

R is local with R /J(R) = R___/J(R = R = M/L). Since
q TRy = Ry IRy = Rgg = M

Rq = R*(Plx...qu), by 4.2 Lemma (ii) Rq has an Artinian right quotient
ring. By 1.1 Lemma (ii) Rq has finite right global dimension. Then by

[BHM1, Corollary 3.3 and 3.4] we may suppose that

R

R
q

Therefore Rqr is a prime ring.

MS( D), where D is a local domain and s|t. (n

Since R = (R/J(R))*(Plx...xP ) is simple Artinian, by 4.3

q-1 q-1

Theorem, we have
= q‘“l =
t = p? "k, where k]rank((R/J(R))R/J(R)) m. (2)
By 4.2 Lemma Q(R)*(Plx...qu) = Q(R*(PIX...qu)) = Q(Rq), which is
simple Artinian because Rq is prime right Noetherian. Using 4.3 Theorem
again, we have

_ _ .9
rank((Rq)R ) = ra.nk((Q(Rq)) )=p'r, (3)

q
). But by (1) R
q

Q( Rq)

where r|rank(Q(R)

IR

Q(R) MS(D), therefore from (3) we
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have

s = rank((R ) ) = pr. (4)
g R
q .
Since s|t by (1), from (4) and (2) we have pqupq_lk. Therefore p|k.

But k|m by (2), thus p|m. This is a contradiction. So (R/J(R)*G s

simple Artinian. n

An ideal I in a ring R is said to have the right AR-property
if for every right ideal K of R, there is a positive integer n such

that K n I € KI; see [GW, p.190l.

4.5 LEMMA. Let R be a right Noetherian ring, let G be a finite group
and let R*G be a crossed product. If I is a G-invariant ideal of R

with the right AR-property, then IX¥G 1is an ideal of R*G and has the

right AR-property.

PROOF. Suppose that R, ¢ and I are as stated. Let K be a right
ideal of RxG. Since R is right Noetherian and G is finite, K is a
finitely generated right R-module. Because I has the right
AR-property, by [GW, Lemma 11.11] there exists a positive integer n

such that

K n (R¥G)I™ < KI. (1)

n

Because (Rx¥)I" = I''x¢ = (1*¢)" and KI ¢ K(I*G), from (1) we have

K n (I¥G)"™ < K(I*G). Therefore I¥G has the right AR-property. n

4.6 THEOREM. Let R be a right Noetherian ring and let G be a finite
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group.

(i) Let RxG be a crossed product. Suppose that R has finite
right global dimension and J(R) has the right AR-property. If
(R/J(R)*G is semisimple Artinian, then r.gl.dim.(R¥G) < w.

(it) Let R¥G be a skew group ring. Suppose that R is semiprime
local and char(R/J(R)) } rank(R/J(R)). If r.gl.dim(R¥G) < =, then

(R/J(R))*G is semisimple Artinian.

PROOF. Suppose that R and G are as stated.

(i) Suppose J(R) has the right AR-property and (R/J(R))*G is
semisimple Artinian. Since J(R)*G € J(R¥G) by [Pa2, Theorem 4.2], we
have J(R*G) = J(R)*G. So RxG is a semilocal ring. By 4.5 Lemma J(R*G)
has the right AR-property. Therefore by [Bo, Corollaryl, we have

r.gl.dim.(R¥G) = sup {pr.dim.(VR*G) | Vs 15 simple}. (1)
Because the primitive images of semilocal rings are Artinian, we can
deduce (i) from (1} by an argument similar to that used in proving 3.3
Theorem. We omit the details.

(ii} If char(R/J(R) = O, then by L5 Lemma (iii) (R/J(R)*G is
semisimple Artinian. Now we suppose that char(R/J(R)) = p > 0. Suppose
(R/J(R)*G is not semisimple Artinian. Then by [Pa2, Theorem 18.10]
there exists an elementary Abelian p-subgroup P of G  such that
(R/J(R)*P  is not semisimple Artinian. Since R¥G  has finite right
global dimension, from 1.1 Lemma (ii) it follows that R¥P has finite

right global dimension. Therefore by 4.4 Lemma ( R/J(R))*P must be simple

Artinian. This is a contradiction. n
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4.7 REMARKS. (i) It has long been an open question whether the Jacobscon
radical of every semilocal Noetherian ring has the AR-property; see
[GW, Exercise 120 (c)l; but there exist one-sided Noetherian counter
examples; see {GW, p.285] for details.

(ii) It is an open question whether every local Noetherian ring R
of finite global dimension is a matrix ring over a domain (and so in
particular is prime). By I[BHMI, Corollary 3.3] this is equivalent to
asking whether R must have an Artinian classical quotient ring. The
answer is positive if R is a finite module over its centre [BHMZ,
Theorem 6.7], or if gldim.(R) = 3 [Sn, Theorem]. By recent work of
Stafford and Zhang, see [Sz, Abstractl, it is also true if R satisfies
a polynomial identity.

(iii) The hypothesis that p } m in 4.6 Theorem (ii) cannot simply
be omitted; see 6.3 Example.

(iv) 4.6 Theorem (ii) is not true in the case of crossed products;

see 6.4 Example.

From 4.6 Theorem we obviously have
4.8 COROLLARY. Let R be a semiprime scalar local right Noetherian ring
and let G be a finite group acting on R. Let Rx*G be the skew group
ring. If R*¥G has finite right global dimension, then (R/J(R)*G is
semisimple Artinian. n

For want of a convenient reference, we include the following
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well-known result.

4.9 LEMMA. Let P be a right localizable prime ideal of a semiprime
right Noetherian ring R and let G(P) be the set of elements which are
regular module P. Then
{r e R| rx =0, for some x € G(P)}
= nfQ | @ is a minimal prime ideal of R and Q < P}

In particular, R is semiprime.

P
PROOF. Let I ={re R | rx =0 for some x € €(P)}. Since E([P) is a
right Ore set of R, it is easy to see that I is an ideal of R. Let
K = n{Q | Q is a minimal prime ideal of R and Q & P}. Suppose that Q
is a minimal prime ideal of R such that Q € P. If I is not contained
in Q, then (I + Q)/Q is a non-zero ideal of R/Q, so (I + Q)/Q is
essential as a right ideal of R/Q. By [GW, Proposition 5.9], there
exists d € I n 6(Q). Then dx = 0 € Q for some x € G(P). Since x ¢ Q,
this is a contradiction, sc I £ K.

Conversely, let J = n{Q | Q is a minimal prime ideal of R and @Q
is not contained in P}. By the same analysis which we used. in the above
paragraph there exists b e Jn B(P). Since R is semiprime,
Kb € KJ =0, so K € I. Therefore K = I. In particular, by I[GW,
Proposition 9.19 (b)] R, is semiprime. =

P

We globalise 4.6 Theorem (ii) as the following
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4.10 PROPOSITION. Let R be a semiprime right Noetherian ring and let
G be a finite group acting on R. Suppose that the skew group ring RXG
has finite right global dimension. Let M be a maximal ideal of R with
R/M  Artinian and char(R/M) = p > 0. Suppose that M s right
localizable and that p | rank(R/M). Then (R/M)*GM is semisimple

Artinian.

PROOF. Suppose that R, G, M and R¥G are as stated. By 1.1 Lemma (ii)

R*GM also has finite right global dimension. So we may suppose that M

is G-invariant. By 4.2 Lemma (i) we know that
6(M) = {x € R | x + M is regular in R/M}
i i i X = = *
is also a right Ore set in R¥G and (R G)i‘?(M) R‘G’(M)*G Ry *G. By

hypothesis R/M is simple Artinian. By [GW, Lemma 12.18] we know that
R,, is a local ring, J(R,) = MR, and RM/MRM ¢ R/M. Since R is

semiprime, R is semiprime by 4.9 Lemma. Then by [MR, Corollary 7.4.3]

M
we have

r.gl.dim.(RM*G) = r.gl.dim.((R¥G) ) = r.gl.dim.(RxG),

&(M)

which is finite by hypothesis. Since
char(RM/J(RM)) = char(R/M) | rank(R/M) = rank(RM/J(RM)),

by 4.6 Theorem (ii) (RM/J(RM))*G is semisimple Artinian, so (R/M)*G

is semisimple Artinian. ]

4,11 LEMMA. Let R be a Noetherian ring such that every maximal ideal
of R is right localizable.

(i) R is semiprime if and only if RM is semiprime for every
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maximal ideal M of R.
(ii) If R is a finite module over its cenlre and the global

dimension of R is finite, then R is semiprime.

PROOF. Suppose that R is as stated.

(i) (=) follows from 4.9 Lemma.

(e=) Suppose that for every maximal ideal M of R, RM is
semiprime. Let N be the nilpotent radical of R and let
I = r'.annR(N). Suppose N # 0. Then I # R, So there exists a maximal
ideal M of R such that I € M. If N is G(M)-torsion, where (M)

is the set of elements which are regular modulo M, then there exists a

¢ € G(M) such that Nc = 0. This contradicts to I € M. Thus N,, # O.

M
Suppose Nt = 0 for some positive integer 1. Since N M is an ideal of
RM by [GW, Theorem 9.20], it is easy to see that (NM)t = 0. This
contradicts the semiprimeness of RM . S N=0 and then R s
semiprime.

(ii) Suppose that R is a finite module over its centre. Let M be

an arbitrary maximal ideal of R. From [Mii, Section 3.1] it is easy to

deduce that RM is a finite module over its own centre. Because RM is
local and gl,.dim.(RM) < gl.dim(R) { o, by [BHM2, Theorem 6.7] RM is
prime. So R 1is semiprime by (i). n

4.12 COROLLARY. Let R be a Noetherian ring which is a finite module
over its centre and let the global dimension of R be finite. Suppose

that every maximal ideal of R is right localizable and that for every
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maximal ideal M of R with char(R/M) = p > 0, p } rank(R/M). Let G
be a finite group and let R*G be a skew group ring. Then gl.dim.(R¥G)
is finite if and only if (R/M)*GM is semisimple Artinian for every

maximal ideal M of R such that char(R/M) = p > 0.

PROOF. lLet R, G and R¥G be as stated. Then R is an FBN ring by
[GW, Proposition 8.1 (b)]l. So (<) follows directly from 3.3 Theorem.
(=) By 4.11 Lemma (ii) R is semiprime. The result therefore

follows from 4.10 Proposition. =

§ 2.0 COMMUTATIVE NOETHERIAN COEFFICIENT RINGS

Specializing the results of § 2.4 to commutative Noetherian
coefficient rings, we can obtain some equivalent conditions for RX*G, a
skew group ring, to have finite global dimension. For convenience of
statement, we give the following definition. Suppose that R is a ring
and G is a group acting on R. Let M be an ideal of R. We define

GM) ={geG|r®-reM, foral reR}
G(M) is wusually called the inertia group of M. By some direct

calculations we immediately obtain the following

5.1 LEMMA. Suppose that R is a ring, G is a group acting on R and
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M is an ideal of R.

(i) G(M) is the unique largest subgroup H of G such that M
is H-invariant and H acts trivially on R/M.

(ii) If N and M are ideals of R, such that N <€ M, then
G(N) <€ G(M).

(iit) If N € M are ideals of R such that N is G-invariant,

then G(M) = G(M/N). n

The following theorem is one of our main results in this chapter.

5.2 THEOREM. Let R be a commutative Noetherian ring, let G be a
finite group acting on R and let R*G be the skew group ring. Then the
following are equivalent:
(i) gldim(R*G) < w;
(it} a) gldim.(R) < w;
b) for every maximal ideal M of R with char(R/M) =p >0,
(R/M)*GM is semisimple Artinian;
(iii) a) gldim.(R) < w;
b) for every maximal ideal M of R with

char(R/M) = p > 0, G(M) contains no elements of order p.

PROOF. Suppose that R, G and R¥G are as stated. Since R is
commutatijve, it is easy to see that all the conditions in 4.12 Corollary

are satisfied. So (i) <= (ii) follows directly from 4.12 Corollary and

1.1 Lemma (ii).
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(ii) = (iii) It is obvious that G(M) < GM for every maximal
ideal M of R. By 5.1 Lemma (i), G(M) acts trivially on R/M. Suppose
that G(M) contains an element of order p. Then from [Pal, Corollary
10.3.7 (i)] we know that RxG(M) is not semisimple Artinian. Thus R*GM
is not semisimple Artinian by 1.1 Lemma (ii). This contradicts the
hypothesis (ii).

(iii) == (ii) Suppose that (iii) holds. Let M be a maximal ideal
of R such that char(R/M) = p > 0. Suppose that (R/M)*GM is not
semisimple Artinian. By [Pa2, Corollary 18.11], there exists a Sylow

p-subgroup P of G, ~such that (R/M)*P is not semisimple Artinian. By

M
[Mol, Theorem 2.3] P is not outer on R/M, and so there exists
g € P - {1} with g inner on R/M. We may suppose the order of g |is
p. Since R/M is commutative, it follows that g acts trivially on

R/M. By 5.1 Lemma (i), g € G(M), contradicting the hypothesis of (iii).

5.3 COROLLARY. Let R be a commutative Noetherian ring, let G be a
finite group acting on R and lel R¥G be the skew group ring. Then

gl.dim.(R¥G) = s;{ D fgl.dim.(RM*GM)},

where M ranges over all the maximal ideals of R.

PROOF. Suppose that R and G are as stated. By [MR, Corollary 7.4.31,
4.2 Lemma (i) and 1.1 Lemma (ii) we always have

gl.dim.(RxG) = s;p {gl.dim.(RM*GM)},

where M ranges over all the maximal ideals of R. Suppose that
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sup {gl.dim.(RM*GM)} < o,
M

where M ranges over all the maximal ideals of R. For each maximal
ideal M of R, by 5.2 Theorem (R/M)*G, = (R, /J(R,J))*G, is semisimple
Artinian. By 5.2 Theorem again gl.dim.(R¥G) < «. Then by 1.5 Lemma (i)
and [No, Theorem 9.2.10], we have

gl.dim.(R¥G) = gl.dim.(R) = sup {gl.dim.(RM) = sup {gl.dim.(R, *G, )},
M M M M

where M ranges over all the maximal ideals of R. ]

5.4 COROLLARY. Let R be a commutative Noetherian ring of finite global
dimension and let G be a finite group acting on R. Let S = R*¥G be
the skew group ring.

(i) gl.dim.(R¥G) < w if and only if, for all primes p which are
not units in R, gl.dim.( R*Gp) < w, where GP is any Sylow p-subgroup of
G.

(ii) gl.dim.(R¥G) < w if and only if, for all primes p which are
not units of R, gl.dim.(R¥P) < », where P is any elementary Abelian

p-subgroup of G.

PROOF. Suppose that R, G and RX¥G are as stated.

(i) {(==) This follows directly from 1.5 Lemma (i).

(<) Suppose that the condition is satisfied. Let M be a maximal
ideal of R. Suppose that char(R/M) = p >0 and there exists g € G(M)
with order p. Then there exists a Sylow p-subgroup Gp of G such
that g € Gp . By hypothesis gl.dim.(R*Gp) < o, so according to 5.2

Theorem Gp(M) =1 But g e Gp( M), a contradiction. Therefore G(M) has
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no elements of order p. By 5.2 Theorem gl.dim.(R¥G) < w.

(ii) The proof is similar to the proof of (i). ]

We can extend 5.2 Theorem to larger classes of groups by using a
result of Aljadeff [Al2, Theorem 0.31, which is a version of Serre's

Theorem for crossed products.

5.5 THEOREM. [Al2, Theorem 0.3] Let R be a commutative ring, let G
be a group and let R*G be a crossed product. Suppose that H is a
subgroup of G of finite index. Then the following conditions are
equivalent:

(i)  r.gl.dim(R*G) < «;

(ii) r.gldim(R¥H) < w, and for each finite subgroup T of G,
the crossed product RxT is R-semisimple; that is , for each right
RxT-module M, if M is projective as a right R-module then M s
projective as a right R¥T-module;

(iit) r.gldim(R¥H) < w and for each finite subgroup T of G,
r.gl.dim.(RxT) < w.

Moreover in this situation r.gl.dim.(R¥G) = r.gl.dim.(R*H). =

Using 5.5 Theorem and 5.2 Theorem, we immediately obtain the

following

5.6 PROPOSITION. Let R be a commutative Noetherian ring, let G be an

arbitrary group and let RX¥G be a skew group ring. Suppose that H is a
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subgroup of G of finite index. Then the following statements are
equivalent:

(1)  gl.dim.(R¥G) < w;

(it) (a) gl.dim.(R¥H) < w;

(b) for every maximal ideal M of R with
char(R/M) = p > 0 and for every finite subgroup T of G, (R/M)*TM is
semisimple Artinian;

(iit) (a) gl.dim.(R*H) < w;
(b) for every maximal ideal M of R with

char(R/M) = p > 0, G(M) contains no element of order p. n

PROOF. Suppose that R, G, H and R¥G are as stated.

(i) (==) (ii) Suppose that gl.dim.(R¥G) < w. Let M be a maximal
ideal of R with char(R/M) = p > 0 and let T be a finite subgroup of
G. Then by 11 Lemma (ii) we have gl.dim.(R*¥H) < o and
gl.dim.(R*T) < o, Using 5.2 Theorem, we obtain (ii).

(ii) (=) ) Suppose that (ii) is true. Using (ii) and 5.2
Theorem, we know that for each finite subgroup T of G,
gl.dim.(R¥T) < o. Then (i) follows from 5.5 Theorem.

The proof of the equivalence of (i) and (iii) is analogous to the

above argument. ]

Specializing 5.6 Proposition to polycyclic-by-finite groups, we

obtain
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5.7 COROLLARY. Let R be a commutative Noetherian ring, let G be a
polycyclic-by-finite group acting on R and let R*G be the skew group
ring. Then the following statements are equivalent:

(i gL.dim.(RxG) < w;

(il)  (a) gldim(R) < w;

(b) for every maximal ideal M of R with
char(R/M) = p > 0 and for every finite subgroup T of G, (R/M)*TM is
semisimple Artinian;

(iit) (a) gl.dim(R) < w;
(b) for every maximal ideal M of R with

char(R/M) = p > 0, G(M) contains no element of order p.

PROOF. Since G is polycyclic-by-finite, there exists a normal subgroup
H of G with finite index such that H is poly-infinite cyclic [Pal,
Lemma 10.2.5]. If R has finite global dimension, then R*H has finite

global dimension by [MR, Theorem 7.5.3 (ii)]. Thus the corollary follows

directly from 5.6 Proposition. ]

5.8 REMARKS. (i) In 5.2 Theorem, 5.6 Proposition and 5.7 Corollary, if
R is only a finite module over its centre rather than a commutative
ring, then their conditions (ii) and (iii) are no longer necessary

conditions for R¥G to have finite global dimension; see 6.1 Example and

6.2 Example.
(ii) In 5.2 Theorem, 5.6 Proposition and 5.7 Corollary, suppose

that RXG is a crossed product rather than a skew g