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SUMMARY

Throughout this thesis, S 1is a ring, G is a finite group of
automorphisms of S and R is the fixed ring SG. We are concerned here with

the correlation between properties of R and properties of S.

In Chapter 2, we discuss certain finiteness conditions for the ring R.
D.S. Passman has asked, "Is the fixed ring of kH, where k is a field and H
is a polycyclic-by-finite group, Noetherian for any finite group G ?" We
produce infinitely many examples for which the answer to this question is
"yes". The most substantial result in relation to this borrows from the

methods in [L-P1] and is:

2.2.8 COROLLARY Let H, be the nth Heisenberg group for some n e¢ N. Let
g € Aut(Hy) be an automorphism of order 2 such that x;9 = x;~1zu(1),
vi9 = yi‘7zV(i) and z9 = z for some u(i),v(i}) e Z (i=1,...,n). Let k be a
field and S the group algebra kH,. Now, G = <g> acts as k-automorphisms on

the ring S and SC is Noetherian.

The most important results of this thesis are contained in Chapter 3.
We develop the Morita prime correspondence of Chapter 1, §2, to produce
results relating SpectR := (p € SpecR: tr(S) € p} to
SpecgS := (P € SpecS: Lgeq g £ /(PP*G)} where PO*G is an ideal in the skew
group ring S*G. S. Montgomery has proved many of our results in [Mo2] for
the special case where 16i=! ¢ 5. First we establish the extent to which

members of SpecgS are determined by their intersections with R.

3.1.13 THEOREM Let S be a ring and G a finite group of automorphisms of S.
Suppose P e SpecgS and Q ¢ SpecS with /(P t R) = y(Q N R). Then P and Q are

G-conjugate, so that Q € SpecgS, and P R = Q A R,

(i)




We proceed to prove the next result which summarises the close

connection between SpecgS and SpeceR.

3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of S.
(i) Given P e SpecgS, there are a finite number of primes in SpecgR
minimal over P N R, {(py1, P2,..., Py} say, with m < 1G1. Also, (R;p;)tr(S)
is nilpotent modulo P N R.
(ii) Given p € SpecyR, there exists P e¢ SpecgS such that p is minimal

over P N R. Moreover, P is unique up to its G-orbit in SpecsS.

In Chapter 4, we restrict our attention to the case where S is a group
algebra. The following key lemma establishes precisely what the factor ring

R/tr(S) is in certain circumstances.

4.1.1 LEMMA Let U be a ring, M a semigroup and G a subgroup of AutM of
prime order, gq. Let G act as U-automorphisms on the semigroup ring S = UM.
Then

R / trg(S) & (U/qU).Cy(G).

As an application of this result, we establish bounds for rk(R), the

prime rank of R, in certain circumstances.

4.2.10 COROLLARY Let H be finitely generated torsionfree nilpotent group
and k a field of characteristic q. Suppose G 1Is a finite group of
automorphisms of H such that the Sylow g-subgroup of G, @, 1s normal of
order q. Then

h(H) < rk(R) < h(H) + h(Cy(G)).

We conjecture that rk(R) = h(H). As evidence to support this, Example

4.2.12 gives infinitely many such examples. Example 4.2.12 is also notable
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for showing that R need not satisfy the saturated chain condition even when

S does.

We conclude this thesis in Chapter 5 with some results on localisation
in the ring R. Many of these are inspired by the methods of Warfield in
[W1]. We find that, with the necessary hypotheses, Spec¢R has the strong

second layer condition.

5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer
condition and G be a finite subgroup of AutS such that R is Noetherian and
rS and Sp are finitely generated modules. Suppose p ¢ SpecyR. Then p has

SSLC.

Finally, we give a result which relates the link graph of R to that of

5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of
automorphisms of S. Suppose that R = SG is Noetherian and RS and Sp are
finitely generated. Let d be a symmetric dimension function on (R, S}. If
p1,p2 € Spec¢R with p; second layer linked to pp, then there exist primes
01,....0n of S with n » 2, such that Q; lies over pj;, Qn lies over pp and

such that Q; is second layer linked to Q;,; for 1 < i < n-1.

(iii)




INTRODUCTI

This thesis is devoted to the study of fixed rings and, in particular,
the prime ideals in fixed rings.

We deal with the following situation: S is an associative ring with an
identity element and G is a finite group of ring automorphisms of S. The
fixed ring is defined to be

R = (s e S: s9 =5 for all g ¢ GJ.
It is this ring R, sometimes denoted by SG: we study. Of particular
interest to us is the correllation between the properties of S5 and the
properties of R. We often make use of the following ideal of R:
tr(S) = { Lgeg s9: s € S).
Generally speaking, as we point out throughout the thesis, the relationship
between S and R is well understood when 1G1~7! ¢ S, principally because
tr(S) = R in this case. Our main aim 1is to generalise results which

hypothesise that 1617 ¢ S to allow for the possibility that 1G1-7 ¢ s.

We begin in Chapter 1 by giving some of the well established results on
fixed rings. We discuss the Morita context involving R and the skew group
ring S8*G, which results in a prime correspondence between certain subsets
of S8SpecR and Spec(S*G). This yields some basic results which provide the
foundation for much that follows in Chapter 3. We also feature the
Bergman-Isaacs Theorem as part of a survey on results establishing the
existence of fixed points. §4 is devoted to an examination of finiteness
conditions such as the finite generation of S as an R-module. We also quote
the well known result of Farkas and Snider that, if S is Noetherian and
161-1 ¢ S, then R is Noetherian. Chapter 1 concludes with a brief summary
of results on localisation and GK-dimension, both of which we use in

Chapter 5.

(iv)




In Chapter 2, we elaborate on the finiteness results of Chapter 1, §4.
In doing so, we attempt to answer the following question asked by D.S.

Passman:

2B QUESTION Suppose H is a polycyclic-by-finite group and G is a finite
group of automorphisms of H. Let k be a field and S be the group algebra

kH. Is the fixed ring S¢ Noetherian ?

It is rather easy to deduce from a classical result of E. Noether,
stated as Lemma 1.4.4, that if H is Abelian-by-finite, the answer to this
question is "yes", so interest centres on the more general
polycyclic-by-finite groups. In particular, the question is open for #H
nilpotent.

With Question 2B in mind, we prove the following corollary on the

finite generation of S as an R-module.

2.1.5 COROLLARY Let S be semiprime with no non-zero nilpotent elements and
G be a finite group of automorphisms of S. If R := S§C is left Noetherian,

then S is left Noetherian and is a finitely generated R-module.

As an application of Corollary 2.1.5, we show in Theorem 2.1.7 that, in
order to answer Question 2B, it is sufficient to consider only the cases
where H is poly-C,. Even with this reduction, we are unable to answer
Question 2B. What we are able to do is provide infinitely many groups 4,
nilpotent-by-finite but not abelian-by-finite, each with infinitely many
distinct finite automorphism groups G, such that (kH)G is Noetherian for

all fields k. The most substantial of these results is:

2.2.8 COROLLARY Let H, be the nth Heisenberg group for some n ¢ N. Let

g € Aut(H,) be an automorphism of order 2 such that xig=xi*7zu(i),

(v)




y;9 = y;~12¥(1) and z9 = z for some u(i),v(i) ¢ Z (i=1,...,n). Let k be a
field and S the group algebra kH,. Now, G = <g> acts as k-automorphisms on

the ring S and S® is Noetherian.

Corollary 2.2.8 is inspired by results of M. Lorenz and D.S. Passman in
{L-P1] and T. Hodges and J. Osterburg in {[H-0}. [L-P1] contains Theorem

2.2.3, a result that is very similar in substance to Corollary 2.2.8.

Chapter 3 embodies the main results of this thesis. Many of the results
here are generalisations of Montgomery‘s work in [Mo2] which required as a
hypothesis that 1e1-1 e s. Developing the Morita prime correspondence of
Chapter 1, 82, we prove, the following result. Here and below,
SpecgS := (P € SpecS: Lgegd £ /(PO*G)} and SpecyR := (p € SpecR: tr(S) € p}
are the open dense subsets of the prime spectra resulting from the Morita

correspondence.

3.1.13 THEOREM Let S be a ring and G a finite group of automorphisms of S.
Suppose P ¢ SpecgS and Q € SpecS with /(P N R) = /(Q N R). Then P and Q are

G-conjugate, so that Q e¢ SpecgS, and PN R = 0 N R.

The main result in Chapter 3, §1 shows that there is a nice

relationship between primes in S and primes in R.

3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of S.
(i) Given P € SpecgS, there are a finite number of primes in SpecgR
minimal over P 0N R, (p1, P2,..., Py} say, with m < 1Gl. Also, (Rip;)tr(s)
is nilpotent modulo P N R.
(i1) Given p ¢ SpecyR, there exists P ¢ SpecgS such that p is minimal

over P I R, Moreover, P is unique up to its G-orbit in SpecSs.

(vi)




As we have already seen noted, R is well understood when 16i-1 ¢ 5. In
Chapter 3, §2, we look at the other extreme, namely when S has prime
characteristic g and 1Gi = g8 for some a ¢ N. Proposition 1.2.12 is

essential in providing us with special cases of results in §1. We obtain:

3.2.13 THEOREM Let S be a ring of characteristic g and G a subgroup of
Aut S of order g2. Then

(i) Given P ¢ SpecrS, there exists p ¢ SpecygR such that p is the unique
prime minimal over P N R not containing the trace.

(i1) Given p € SpecgR, then there exists P e SpecrS such that p is minimal

over P N R, Moreover P is unique up to its G-orbit.

In the last section of Chapter 3, we exploit the relationships we have
established in the first two sections. We derive a number of applications.

For example, we have:

3.3.8 LEMMA Let S be a ring and G a finite group of automorphisms of S.

Suppose p,q € Spec¢R both lie under P e¢ SpecS, then ht(p) = ht(g) = ht(P).

Recall that a ring is said to be Jacobson if all its prime factors are

semiprimitive. We prove:

3.3.23 THEOREM Let S be a ring and G a finite group of ring automorphisms

of §. If S and R/trg(S) are both Jacobson rings, R is also Jacobson.

In Chapter 4 we study the prime ideals of R where S is a group ring. As
indicated by Theorem 3.3.23, the factor R/tr(S) plays an important rdle in
the study of R. Our key lemma shows that, in certain circumstances, we know

exactly what the ring R/tr(S) is. We prove:

(vii)




4.1.1 LEMMA. Let U be & ring, M a semigroup and G a subgroup of AutM of
prime order, g. Let G act as U-automorphisms on the semigroup ring S = UM.
Then

R / trg(S) & (U/qU).Cy(G).

We point out in Corollary 4.1.2 that, under the hypotheses of Lemma 4.1.1,
when M is a polcyclic-by-finite group, the factor R/tr(S) is also the group
ring of a polycyclic-by-finite group. Our main consequence of Corollary

4.1.2 is:

4.1.15 THEOREM Let K be a commutative Jacobson ring all of whose field
factors are absolute fields. Let H be a polycyclic-by-finite group and S
the group ring KH. Suppose G i1s a group of automorphisms of H of prime
order g so that G acts as K-automorphisms on S. Set R = SG. Then

(i) every maximal ideal M of R intersects K in a maximal ideal of K;

(ii) every primitive ideal of R is maximal;

(iii) for M above, R/M has finite dimension over the absolute field
K/(M N K).

In particular, every irreducible R-module is finite dimensional over a

field factor of K.

In Theorem 4.1.4, we combine Corollary 4.1.2 with Theorem 3.3.23 to

show that R is a Jacobscn ring when the necessary hypotheses are satisfied.

In Chapter 4, §2, we attempt to answer two questions, the first of

these concerns rk(R), the prime rank of R.

QUESTION 4B Suppose H is a nilpotent group, k is a field and S is the group
algebra kH. Let G act as k-automorphisms on S and set R = SG. Does

rk(R) = rk(S) ?

(viii)




Our best result on bounds for rk(R) for is given below:

4.2.10 COROLLARY Let H be finitely generated torsionfree nilpotent group
and k a field of characteristic gq. Suppose G is a finite group of
automorphisms of H such that the Sylow g-subgroup of G, @, is normal of
order q. Then

h(H) < rk(rR) < h(H) + h(cy(6)).

We do not find any examples for which the answer to Question 4B is "no". On
the contrary, Example 4.2.12 gives infinitely many examples for which the

answer to Question 4B is "yes". Example 4.2.12 is also notable for the

bearing it has on the next question.

QUESTION 4C Suppose H is a nilpotent group and k is a field. Let S denote
the group algebra kH. Suppose G acts as k-automorphisms on S. Does sG

satisfy the saturated chain condition?

In Example 4.2.12 we give an infinite number of examples which answer

Question 4C negatively.

Chapter 5 is joint work with K.A. Brown. In this final chapter, we
investigate some localisations of the ring R. §1 just gives some elementary
results concerning the inversion of central regular elements in R. The
remaining two sections are devoted to determining which semiprime ideals of
R we may localise at. In §2 we find that, with the necessary hypotheses,
certain members of SpecR satisfy the strong second layer condition of

Chapter 1, §5. We develop ideas of Warfield to prove:

(ix)




5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer
condition and G be a finite subgroup of AutS such that R is Noetherian and
rS and Sp are finitely generated modules. Suppose p € SpecyR. Then p has

SSLC.

Despite this, in Example 5.2.7, we find a ring, R, the fixed ring of a
group algebra of the second Heisenberg group, for which tr(S) is prime but
does not have even the second layer condition. Beyond this, we are unable

to say anything further about SSLC in R.

In Definition 1.5.2, we explain what we mean by the link graph of a
ring. It is the link graph of R in relation to that of S that we study in

§3. Again, building on Warfield'’'s ideas, we have:

5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of
automorphisms of S. Suppose that R = SG is Noetherian and rS and Sp are
finitely generated. Let d be a symmetric dimension function on (R, S}. If
"p;,pz ¢ SpectR with p; second layer linked to pp, then there exist primes
Q1,...,0p of § with n » 2, such that Q) lies over p;, Qp lies over pp and

such that Q; is second layer linked to Qj,¢ for 1 < 1 < n-1.

The above result is significant in that it allows us to understand
links inside SpeciR. Any links from SpeciR to SpecR\Spec{R remain unknown.
However, our final result is a very nice one which obviously has strong
implications for the link graph. It shows that a certain clique is a finite

subset of SpecR.

5.3.11 THEOREM Let S be a Noetherian ring with finite GK-dimension, G a
subgroup of AutS and R = SG. Suppose P ¢ SpecS such that CB(PO) is an Ore

set in 8, R/(P N R) is Noetherian and S/P is finitely generated on both

(%)




sides as R/(P N R)-modules. Suppose piy,...,pp are the primes of R minimal
over P N R. Suppose p; € SpecgR (i=1,...,n) or, egquivalently that
tr(S) N Cg(P°) # #. Then Cg(P°) N R = Cr(P N R) =: X, say and X is an Ore

set in S. In particular, N;p; is a localisable semiprime ideal of R.

Throughout the thesis, we give original references wherever this is
possible. Otherwise, we use the books {Mo1], [(P1], [P2], [G-W] and [McC-R]
for background reference.

Unless otherwise stated, the results contained herein are original

results obtained under the supervision of Professor K.A. Brown.
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CHAPTER 1

BASIC PROPERTIES OF FIXED RINGS AND SOME TECHNICALITIES

We deal with some basic questions concerning the following scenario.
Suppose S is an associative ring with an identity element, denoted by 1,
and G is a finite group acting as ring automorphisms on S. For g ¢ G and
s ¢ 8, we denote the action of g on s by s9. Define R to be the set

(r e $: r9 = r for all g ¢ GJ.
Trivially, R is a subring of S. It is called either the fixed ring or the
ring of invariants and is sometimes represented by SC.

As one would expect, there is a close relationship between § and S5G. we
will show in later chapters that certain properties of S are inherited by
SG. There are however, other properties for which the relationship between
S and SG is not so clear.

We begin in §1 by introducing some of the standard terminology used to
describe aspects of the theory of group actions on rings. In §2, we review
the main properties of the Morita context which relates the skew group ring
S*G to the fixed ring SC. 8§3 features the Bergman-Isaacs Theorem and
discusses other known results on the existence of fixed points. The next
section is devoted to established results on finiteness conditions such as
the inheritance of the Noetherian condition by the fixed ring.

The remaining two sections in this chapter review many of the
properties required in Chapter 5. 8§5 recalls some of the results on the
strong second layer condition and links needed for localising in the ring

SG. Finally, we summarise some of the properties of GK-dimension in §1.6.




1.1 Preliminari
To begin with we establish some basic terminology.

1.1.1 DEFINITIONS For X ¢ S and g ¢ G, define X9 := {x9: x ¢ X}. A subset ¥
of S is said to be G-invariant or, alternatively, G-stable if Y9 = Y for
all ge G. For X & §, we let X° denote "geG X9, the largest G-invariant
subset of S containing X. With the above definition, we see that R := SC is
just the set of G-invariant elements of S.

It is possible to manufacture members of R using the trace map. This is
defined to be tr: S - R such that tr(s) = Ig.g s9. For s ¢ Sand h € G,

(tr(s)) = (TgeG s9)h = dec(sg)h = Xgeq s9h = Lgeg s9 = tr(s)
since Gh = G. Thus ¢tr(S) S R. Moreover, ¢tr is easily seen to be an
(R-R)-bimodule homomorphism. Consider, for example, the left action: for
re Rand s € 5,
tr(rs) = Lgeqg(rs)9 = Lgeq 1959 = Lgeq 159 = rlgeg 59 = rtr(s).
Thus, tr(S} is a (two-sided) ideal of R.

While, in general tr(S) may be a proper ideal of R, when 161-" ¢ s,
tr(s) = R. We have tr(16171) = Xg.c (16177)9 = Igeg 16171 = 16116177 = 1.
Since tr(S) is an ideal of R, we have that tr(S) = R.

When there is a risk of confusion regarding the group acting, the trace
map is denoted by trg.

Suppose that I is a G-invariant ideal of S. We may define an induced
action of G on the ring S/I in the obvious way: for s e § and g € G, let
(s + I)9 = s9 + I. The fact that I is G-invariant ensures this action is
well-defined.

We denote the group of all ring automorphisms on S by AutS. An
automorphism ¢ ¢ AutS is said to be inner if there exists a unit u e § for
which s9 = u~'su for all s ¢ S. Otherwise g is said to be outer. If all the

members of ¢ are inner then G itself is described as inner. Similarly, if




all the non-identity elements of G are outer, then G is said to be outer.
For G, a subgroup of AutS, it’s easy to see that the set of inner
automorphisms in G form a normal subgroup of G.

Suppose N is a normal subgroup of G. Certainly, N acts on S. Moreover,
the factor group G/N acts on the ring SY¥ with the property that
SG = (sN)G/N, 1n particular, we may arrange that the action of G on S is
faithful. Thus, if we take N = {g ¢ G: 589 = s for all s ¢ S}, N is easily
seen to be a normal subgroup of G, and we may just consider the action of

G/N on S.

Inextricably related to R is the skew group ring S*G which we will
denote by T. This is defined to be a free right S-module with basis
{g: g € G}. Multiplication in T is defined as follows:

{(gsy).(hsp) = gh(s;)hsz for s4, s ¢ S, g, h e G,
For a G-invariant ideal A of S5, we define an ideal A*G of 5*G to be the set
of elements in S*G for which the coefficients lie in A. In this case,
T/(A*G) & (S/A)*G is also a skew group ring. Now, S*G contains all the
ingredients required in the formulation of the fixed ring SG, so it is not
surprising that there is a close connection between S*G and SG. This link
is manifested in the Morita context. There is one element of T that, as we
shall see, plays an important rfle in the Morita context. This element is
the sum of the basis elements of T, deG g, and is represented by f. Before
we give the details of the Morita context, we first give a generalisation

of the skew group ring, namely the crossed product.

1.1.2 DEFINITION Let S be a ring and G a finite group of automorphisms of
S. Let a; G x 6> S be a map with "nice" properties. The crossed product
D = (§,G,a) is defined to be the free right S-module with basis (g: g € GJ
with multiplication given by the two relationships:

g = gr9 and G.h = a(g, h)gn.




The so-called "nice" properties of a are those required to make the

multiplication in D associative; see, for example, [P2, pages 2-3].

Related to the concepts of a prime. and semiprime ideal, we have the
following definition. |
1.1.3 DEFINITION Suppose we have a ring S with a finite group G acting on
it, An ideal I of S is said to be G-prime if for two G-invariant ideals A
and Bof S, ABS I'» AS Ior BS I. The ring S is said to be G-prime if 0

is a G-prime ideal.

The next 1lemma, taken from [P2, Lemma 14.2], illustrates the
relationship between this new definition and those of prime and semiprime

ideals.

1.1.4 LEMMA Let S be a ring and G a finite group of automorphisms of 5. Let
I be a G-invariant ideal of 8. Then there is the following hierarchy for I:

prime G-prime » semiprime.

PROOF The first implication is obvious. The second is more substantial. By
passing to the factor ring S/I, we may assume that I = 0 so that 5§ is a
G-prime ring. By Zorn’s Lemma, we can find an ideal Q@ of S maximal with
respect to N, 0% = 0. We claim that Q is prime. Suppose this is not the
case so that there exist ideals A and B of § with A > Q .and B> Q but
AB € Q. Then (Ny qA%)(N4eeBX) S NyeQ* = 0. Since S is G-prime, either
NyegAX = 0 or NyeeBX = 0. If Ny A% = 0, the maximality of @ yields A = Q.
This contradiction shows that 0 is a prime ideal. We have therefore shown

that S is semiprime.




1.2 Mori ontex

Morita Theory provides us with a powerful tool for investigating the
relationship between certain pairs of rings. Most of the results in this
section are well known and are due.to S.A. Amitsur, W.K. Nicholson and J.F.
Watters. However, the detailed calculation of the prime correspondence for
the skew group ring / fixed ring pair is original. Much of the background

in this section comes from [McC-R, Chapter3].

The definition of Morita context we give here is more restrictive than
the general definition as in [McC-R, 1.1.6] but it will be sufficient for
our purposes.

1.2.1 DEFINITION Let U be any ring and M a right U-module. We define a

Morita context to be the 2x2 array

c - [ 7 M*]
My Vv

where M* = Hom(My, U) and V = End(My). With the following maps, we have
that the above array is a matrix ring:

(1) M x M > Uby (o, m) + a(n);

(ii) VX M- Mby (p, m) > p(m);

(iii) U x M > M by (u, a) Ay oo
where A, € End(Uy) denotes left multiplication by uj

(iv) M x M* 5> Vby (m, @) 5 A\ 0 «
where A\, e Hom(Uy, My) denotes left multiplication by m.

(v) M x V> M by (0, p) b a0 p.

It should also be noted that the dual of C,

C* _ [ 14 Mu]
M U
is also a Morita context because M is a right V-module,




*7)* = Hom(M*y, v) & My and End(M"y) & U.

(M
In these circumstances, we get a bijection between subsets of SpecU and

SpecV. We reproduce [McC-R, Theorem 3.6.2 ].

1.2.2 THEOREM Let
c = [ v M ]
My V
be a Morita context where U 1is a ring, M 1is a right U-module,
MY = Hom(My, U) and V = End(My). Then there is a bijection between the sets
of prime ideals {P ¢ SpecU: P Z M*M} and (P’ € Specv: P’ Z MM*} given by
P> {veV:MuMec pj.

PROOF [McC-R, Theorem 3.6.2].

Suppose P ¢ SpecU with P Z M*M and that P’ ¢ SpecV is the corresponding
prime. Then we say that U/P and V/P’ are context equivalent. Since the dual
¢* is also a Morita context, we see that context equivalence is symmetric.

Context equivalence preserves a number of properties. For example, as
the next proposition shows, it preserves primitivity.

First, we give a definition.

1.2.3 DEFINITION Let C be the Morita context described in 1.2.1. We say C
is a prime context if

(i) U is a prime ring;

(ii) M*m # 0 for all 0 # m ¢ M,

(iii) M*vM # 0 for all 0 # ve V.

Proposition 1.2.4 appears as [McC-R, Proposition 3.6.5].




1.2.4 PROPOSITION
(i) Prime rings U and V are context egquivalent if and only if they
belong to a prime context.

(ii) Context equivalence preserves primitivity.

PROOF (i) Suppose that R and S are context equivalent. Then, by definition,
there exist rings U and V with P ¢ SpectU and P’ ¢ SpecV such that U/P & R

and V/P’ & S with

[ o]
My V

a Morita context such that P and P’ are corresponding prime ideals. Then it

a
!

is easily verified that

NG
o ()

where N’ = {p ¢ M*: p(M) S P} and N = (m ¢ M: M'm € P} is a prime context.

Conversely, suppose that the prime rings U and V belong to a prime
context. Then, taking P = 0 and P’/ = 0, we see that U and V are context
equivalent.

(ii) Suppose now that U is a primitive ring in the prime context

o= [ v M ]
My v ).
Let X = xU be a faithful simple U~module and let N’ = (p € M*: xp(M) = 0].
We claim that M*/N’ is a faithful simple V-module. First we establish that
this module 1is faithful. Suppose we have v ¢ V with M*v € N’. Then
x.M*vM = 0. So we have 0 = X.M*vM. Since X is a faithful U-module, we must
have M*vM = 0. As C is a prime context, we must have v = 0, proving M /N’
is faithful.
Finally, choose any ¢ ¢ M*\N’. By definition of N’, xp(M) # 0. The fact
that X is simple then yields xp.M = X. Hence x = xp.m for some m ¢ M. Let
¥ ¢ M*. Then x.(¢ - p.m.y).M = 0 and so y — p.m.y € N’. Thus, oV + N’ = M",

proving that M*/N’ is simple.




We have established that Vv is also a primitive ring.

while, in a Morita context, we have this relationship between the two
rings, we get stronger results still if two further conditions are
fulfilled.

1.2.5 DEFINITION Consider the Morita context

*
u M
c‘[MUV]
where M" = Hom(My, U) and V = End(My). 1f MM* = vV and MM = U, we say that

U and V are Morita equivalent.

In these circumstances, we get a much closer correlation between

properties of U and V.

1.2.6 PROPOSITION The following properties are preserved by Morita
equivalence:

(i) being Artinian;

(ii) being Noetherian;

(i1i) being prime;

(iv) being semiprime;

(v) being semiprime right Goldie.
PROOF [McC-R, Propositon 3.5.10].

At this stage we apply the Morita Theory to our particular setting of
fixed rings. Now, T is the first ring in our context and we use S as our
T-module. In order to view S as a right T-module, we define the following
action:

s1.(9s2) = 5195
where s7,57 ¢ Sand g ¢ G. In fact, we may also regard S as a left T-module

using the 7T-module action defined below




g—x
(gsp).s1 = (sps¢)
where s¢,57 ¢ S and g ¢ G,
Thus, from 1.2.1, we have the following Morita Context:

[ T Hom(ST,T)}
Sp End{Sp)

The next proposition from [McC-R, Proposition 7.8.5) gives us a more
concrete view of the above Morita context. Recall from 1.1.1 that

f = deg g e T,

1.2.7 PROPOSITION Let S be any ring, let G be a finite group of
automorphisms of S and let T be the skew group ring S*G. Then

(i) Sp % f£S, as right T-modules.

(ii) Hom ( Sy, T ) ® Sf, as left T-modules, where we identify the
element sf (seS) with left multiplication by sf.

(iii) End(Sq) % S6 := R, as rings, where SO acts as left

multiplication on Sp.

PROOF For (i), note first that fS is a right ideal of T. For, if fsy ¢ £S
and gsp e T where 51,8 € 8, g e G, we have
fsy.gsy = fg(sy)9sy = f(51)95p € £S. Now observe that the map y: Sp - £S5
such. that ¢ (s) = fs is an isomorphism of T-modules.

Now we prove (ii). We show that the map A:pS — Hom(Sp,T) such that
A(s) = Ng where MAg(x) = sfx for all x ¢ § is an isomorphism. It is clear
that X is an injective T-module map and so we need only show that it is
surjective. Let a ¢ Hom( Sp, T ). Then aff) = ngg for some 5g ¢ S
(ge G ). Let h € G. Since 1.h-1 = 1,
£sq9 = a(l) = a(l.h~1) = a(1)n~! = (ngg)h" = ng(gh‘7). So we must have
that sy = s;. Since h was arbitrary, s4 = sy for all g ¢ G. Thus,

a(l) = s¢f = )\51(1). This proves A is an isomorphism. The left-handed




version of (i) completes the proof of (ii).

Now, for (iii), let ¢: S6 - End(Sp) such that ¢(r) = ¢, where
or(s) = rs for all s € S. As before, the only complication is in showing
that ¢ is onto. Let = ¢ End(Sp). So we have that »(7) = s for some s ¢ S.
Now, for all t ¢ S, x(t) = x(1.t) =x(1).t = st and so the map » is just
left multiplication by s. Let h e G. Then x(1.h) = n(1).h = s.h = sh but
s =x(1) =x(1") = x(1.h). Comparing these expressions we find that s is

fixed under the action of G and so s ¢ 5G. This proves that ¢ is onto.

Using the isomorphisms of Proposition 1.2.7, the Morita context of
1.2.1 relating to T becomes:
T Sf
[ & =]
with multiplications within the matrix ring (i) to (v) becoming:

(i) Sf x £S5 » T via ( s1f, fsp ) » syfsy because the pair (uf, fv) is
identified with (Ayf, v) € Hom(Sp, T) x Sp  which is mapped to
Ayf(v) = ufv e T.

(i) R x fS > f8 wvia (r, fv) - frv because the wpair (r, fv) is
identified with the wpair (M., fv) € End(Sp) ¥ Sy which 1is mapped to
Ap-(fv) = rfv = frv,

(iiil) T x Sf > Sf wvia (t, uf) » (t.u)f because the pair (t, uf) is
associated with the pair (t, Ayg) € T x Hom(Sy, T) which is mapped to &.A\;¢
and t.Ayr(1) = t(uf) = (t.u)f and so t.hyr = Mg y)f-

(iv) £fS x Sf » R via ( fsy, spf } » tr(s;sp) because the pair (fu, vf)
is identified with the pair (u, Ayg) € Sy x Hom(Sp, T) which is mapped to
U Ayg(-) € Hom(Sp) and u.hyg(1) = u.vf = (uv).f = Lgeg(uv)9 = tr(uv). Thus,
U.Myf = Ner(uv)-

(v) Sf xR-> Sf wvia (uf, r) -» urf because the pair (uf, r) 1is
identified with (N g, M) € Hom(Sp,T) x End(Sp) which is mapped to
Nuf © Nr = Myfr = Ayrf which is in turn associated with urf e Sf.

In addition, we have:
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(vi) £f8 x T > £S5 via (fu, t} -» f(u.t) since (fu, t} is identified with

(u, t) € Sp x T which is mapped to u.t.

Continuing with this translation of the Morita context, we find an
explicit statement of the prime correspondence of Theorem 1.2.2. We define
the relevant subsets of SpecR and SpecT first.

1.2.8 DEFINITION Let S be a ring and 6 a finite group of automorphisms of
S. Then we define SpectR to be (p ¢ SpecR: tr(S) € p} and SpecgT to be

(P ¢ SpecT: f ¢ PJ.

1.2.9 THEOREM Let S be a ring and G a finite subgroup of AutS. Let R
denote the ring SC and T denote the skew group ring S*G. Then there exists
a bijection B: SpecgT - SpectR given by
B(P) = {r ¢ R: rf ¢ PJ.
The inverse of this bijection is
B-T(p) = {t ¢ T: tr(5.t.5) S p}

where the dots denotes the T-module action on S.

PROOF We show that B described above is the Morita correspondence of

Theorem 1.2.2. We have that

C'—"[T Sf]
fS R

is a Morita context with the maps exhibited prior to the statement of this
theorem. Applying Theorem 1.2.2, we get a bijection between SpecgT and
SpeciR given by P> {reR:Sf.r.f5¢ P ). Again considering the above
map (v), we see that sf acts as left multiplication by sf and so
(Sf.r).fS = (Srf).fS. We are then left with the map (i) above which gives
that Srf.fS = SrfS and hence this bijection is indeed the map S.

We now show that the inverse of f is 6": SpectR » SpecgT where
B-T(p) = ( t e T: tr((5.t)S) S p }. It is routine to check that this
concurs with the definition of 6‘7 given in the statement of the theorem.
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Recall from 1.2.1 that

“ [ e )

is also a Morita context. According to Theorem 1.2.2, the Morita
formulation of the bijection p: Spec¢R » SpecgT is
e(p) = { t e T: £5.t.8f & p }. Map (vi) shows that the first dot signifies
the T-module action on S, giving £S5.t = f(S.t). Then, we have map (iv) to
give f£(S5.t).Sf = tr(¢(5.t)S). It remains to show that ¢ is actually the
inverse of B. Let P ¢ SpecsT and p = B(P) ¢ SpecsR. We claim that p(p) = P.
For r e R,
fr e p(p) & tr((S.fr).S) € p by definition of ¢

& tr((tr(S)r.5) € p since S.f = tr(S)

& tr(S)rtr(S) € p

& r ep since tr(s) € p.
We see that B(p(p}) =p = ﬁ(%) and, since f is a Dbijection,

B=1(p) = P = p(p).

The map B can be used to exploit information about the ring S*G and
relate it to SC. The skew group ring S*G is generally better understood
than SC. We give some results about the prime ideals in T.

The first lemma, combined from [P2, Lemmas 14.1(i) and 14.2(i)], gives

a connection between primes in S and primes in T.

1.2.10 LEMMA (i) Let P ¢ SpecT. Then P N S is a G-prime ideal of S.
(ii) An ideal P of S is G-prime if and only if P = Ng.c Q9 for

some Q € SpecS.

PROOF For (i), let Pe SpecT. We show that PN Sis a G-prime ideal of S.
Suppose A and B are G-stable ideals of S with AB & PN S. Then
(A*G) (B*G) S (AB)*G € (PNS)T € P. Since P is prime, we have either A*G & P
or B*G € P. Intersecting to S, these inclusions become A € PNnsS or

12




BS PN S, proving the first part.

We prove (ii) now. Suppose P is a G-prime ideal of S. Choose @ maximal
in § such that 0,.-0%¥ = P. We claim that @ is prime. To this end, suppose
C,D are ideals of S with C,D 2 Q0 and CD € Q. Then (NC¥)(NDX) & NQX = P n §.
Since P N S is G-prime, we have N¢cX g PN Sor NDX¢ Pn S. The maximality
of Q yields € =@ or D =@, proving the lemma. The converse to this

direction is easily seen to be true.

M.Lorenz and D.S.Passman have proved the following theorem in [L-P2].
Their paper is fundamental in describing the relationship between primes in

S and primes in S#%G.

1.2.11 THEdREM Let S be a ring and G be a finite group of automorphisms
acting on S. Denote the skew group ring S*G by T. Suppose S is a G-prime
ring. Then

(i) P e SpecT is minimal if and only 1if PNns=0.

(ii) There are finitely many minimal primes of T, say %,,...,Eh, and in

fact n < 1G1.
(iii) N = Py n ... n P, is the unique maximal nilpotent ideal of T and
NGl = 0,

(iv) If Q is a minimal prime of S, then {(Q¥: x ¢ G} 1s the set of all

minimal primes of S and NEX = 0.

PROOF [P2, Theorem 16.2 ].

As a non-trivial consequence of Theorem 1.2.11, Passman and Lorenz give

the next proposition.

1.2.12 PROPOSITION Let S be a ring and G a finite group of automorphisms of

S such that S is a G-prime ring. Suppose S has prime characteristic g and
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that G is a g-group. Then S*G has a unique minimal prime ideal P which is

necessarily nilpotent.

PROOF [P2, Proposition 16.4 ].

In Chapter 3, we look at the properties of the map f defined in 1.2.9

in greater detail.

§1.3 The Existence of Fixed Points

Here we consider in what circumstances a G-invariant subring, X, (not
necessarily with an identity element) of S contains a non-zero member of
SG. There are a number of partial results which answer this question to
some extent. The most celebrated of these is the Bergman-Isaacs Theorem
which we state as Theorem 1.3.2.

First we show that it is not always the case that such a non-zero
subring X contains a non-zero fixed element. The following example is due

to G.Bergman and may be found in [M1, Example 1.1 ].

EXAMPLE 1.3.1 There exists a ring S and a finite group of inner
automorphisms G such that S has a non-zero ideal which has no non-zero
fixed element.

Let F be a field of characteristic p # 0 with an element w # 0,7 of
finite multiplicative order, n, say.

Let S be My(F{x, y}), the ring of 2x2 matrices over the free algebra in
two non-commuting indeterminates.

befine 6 to be the subgroup of AutS generated by the inner

automorphisms induced by:

Al (VI A IV S O




Let K be the Abelian group generated by A and B. As |[Ki = pz and K is

normal in G, it is clear that 161 = npz. An easy calculation shows that

a f(x, y)
sK = { [ ] raeF, f(x, y) ¢ Fi(x,y)} }
0 a .

Since K is normal in G, we have that SG = (SK)G/K as in 1.1.1. Thus, we

find that:

a 0
SG = [[ ]:aeF] L F,
0 a

Take X to be the two-sided ideal of S consisting of those members of S

whose entries have zero constant term. Then XC = SG n X = 0.

We now give the Bergman-Isaacs Theorem which establishes the existence
of non-zero fixed points in a non-zero G-invariant right ideal. It was

originally proved by G.M. Bergman and I.M. Isaacs in [B-I].

1.3.2 THEOREM Let X be a semiprime ring (possibly without an identity
element) with G a finite group of automorphisms of X such that X has no
additive |Gl-torsion. Then

(i) X6 is semiprime;

(ii) if I 1s a non-zero G-invariant left (right) ideal of X, then

tr(1r) # 0.
PROOF [Mo1, Corollary 1.5].

The next definitions are given in [Mol].
1.3.3 DEFINITION Suppose X is a ring (possibly without an identity element)
and G is a finite group of automorphisms acting on X. Suppose the group
action has the following properties:

(i) xG is semiprime;
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(1i) If I is a non-zero G-invariant left (right) ideal of X, then
tr(I) # 0.
Then we say that G has a non-degenerate trace.

An associated concept is that of a partial trace function. A partial
trace function is an (XG-xG)-bimodule homomorphism of the form: tp: X - XC
such that tp(x) = Zgep x9 where A is a subset of G. Such a function is said

to be non-trivial on X if tr(x) # 0.

While the Bergman-Isaacs Theorem is the best known of the results
concerning the existence of fixed points, there are others which will also
be of use to us. We state three important results here. It’s worth

observing that the hypotheses of each of these theorems are wviolated by

Example 1.3.1.

The first of these was proved by V.K. Kharchenko in [K].
1.3.4 THEOREM Let S be a ring with an identity element and no non-zero
nilpotent elements. Let G be a finite group of automorphisms acting on S.
If L is a non-zero, G-stable (right or left) ideal of S, then LG # 0.
PROOF (P2, Theorem 27.4 ].

In [C-M], S.Montgomery and M. Cohen proved the following result.
1.3.5 THEOREM Let X be a ring (possibly without an identity element) and
let G be a finite group of automorphisms acting on X. If X has no non-zero

nilpotent elements then a non-trivial partial trace function exists.

PROOF [P2, Corollary 24.11]}.
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S. Montgomery established the final result here. It was first shown in

[Mo3].

1.3.6 THEOREM Let G be a finite group acting on a domain, S, with an
identity element. The following are equivalent:

(i) tr(s) #= 0;

(ii) tr(r) # 0 for all non-zero right ideals I of S;

(iii) the skew group ring S*G is semiprime.

PROOF [P2, Corollary 27.8 ]

§1.4 Finiteness Conditions

Of concern to us in this section are the circumstances in which the
Noetherian property passes down from S to SG. We also examine whether or
not S is a finitely generated SG-module.

We first show that S being Noetherian does not always guarantee that SG
is Noetherian. In the same example, due to C.L. Chuang and P.H. Lee, we

also show that S need not be a finitely generated SG-module.

1.4.1 EXAMPLE There is a commutative Noetherian domain of characteristic
zero with an automorphism of order 2, such that SG is not Noetherian and $
is not a finitely generated SG-module.

Let A = Z{ay,by,ap,by,...] be a polynomial ring in indeterminates aj, bj
over Z. Let K be the localisation of A at 2A. We take S to be the ring
K{[x, y]], the ring of formal power series in indeterminates x and y over
K. Since K is a principal ideal domain, S is a Noetherian domain. There is
an automorphism g on S, given by:

x9 = -x, y9 = -y, a;9 = -a; + pj.1y, bi9 = bj + pj.qx
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where p; = az;x + byy.
[Mo1, Example 5.5] shows that SG is not Noetherian and S is not a finitely

generated SC-module.

Despite this example, we can still answer the Noetherian question
positively in a number of cases. As we will see later, when 161-1 ¢ 5, 56
turns out to be a well behaved ring and, as the next lemma shows, it is
Noetherian if S is Noetherian. This result is well known; its earliest

occurrence in the literature appears to be [F-S].

1.4.2 LEMMA Let S be a right Noetherian ring and G a finite group of
automorphisms of S with the property that tr(S) = R. (This happens, for

example, when 161~" ¢ S as observed in 1.1.1.) Then SG is right Noetherian.

PROOF Consider the ascending chain
Ij €S Ip€I3C ... €IS ... -(1)

of right ideals of SG. This yields a chain

I1SC I8 6 I35 C ... CISE ... ~(2)
of right ideals of S. Since § is right Noetherian, the chain (2) must
terminate so that there exists j ¢ N such that I35 = Ij,45 for all u e N.
Applying the trace map to this equation yields tr(1;8) = tr(Ij,,8) for all
ueN. Since ¢r is a left SCP-module homomorphism, we have that
Ijtr(S) = Ij,,tr(S) for all u e N. By hypothesis tr(S) = SG, so Ij = I,y
for all u ¢ N. We have shown that the chain (7) does terminate. Thus SC is

right Noetherian.
Finite generation of S over the fixed ring is also well behaved when

the order of the group is invertible in the ring. D.R. Farkas and R.L.

Snider have proved the following result, again in [F~S].
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1.4.3 THEOREM Let S be a right WNoetherian ring and G be a group of
automorphisms of S such that 161=" ¢ 5. Then § is finitely generated as a

right SG-module.

PROOF {Mot1, Corollary 5.9].

Despite Example 1.4.1, there are some positive results known on the
preservation of the ascending chain condition in the absence of a
surjective trace map. The oldest and most well known of these was proved by
E. Noether in 1926 in response to Hilbert’s Fourteenth Problem. It can be

found as [H, Theorem 5.1].

1.4.4 THEOREM Let K be a commutative Noetherian ring and S a (commutative)
affine K-algebra. Then
(i) SG is an affine K-algebra and therefore Noetherian;

(ii) S is a finitely generated SC-module.

In a similar vein, we have a theorem of Azumaya and Nakayama in [A-N].
1.4.5 THEOREM Let S be a simple Artinian ring and G a finite group of outer
automorphisms of S. Then

(i) both SC and 5*G are simple Artinian;

(ii) S is a free SG-module of rank |GI.

PROOF [Mo1, Theorem 2.7].

The final result here gives us more information in the case where 5 is

simple.
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1.4.6 THEOREM Let S be a simple ring and G be a finite group of outer
automorphisms of S. Then

(i) trg(S) is the unique minimal non-zero ideal of R;

(ii) R is primitive;

(iii) (C(5))C = C(R);

(iv) S*G is simple.

PROOF [Mo1, Theorem 2.9) proves the first three parts. [Mol, Theorem 2.3]

proves (iv).

§1.5 Prime Links and The Second Layer Condition

In Chapter 5, we hope to localise SG at certain semiprime ideals. In
view of the correspondence exhibited in Chapter 1, §2, the localisations of
S itself are obviously relevant to this matter.

In order to examine the issue in any detail we need to look at the
notions of prime links and that of the (strong) second layer condition,.
This theory is extensive and we only provide a brief overview in this
section. For background see, for example, [G-W, Chapters 11 & 12] and

[McC-R, Chapter 4].

To begin with we consider inversion of a subset, X, of a ring 5. To do
this we form a quotient ring where members of the set X are units. It’s
well known that in order to do this, X must be an Ore set. We define such a
set here.

1.5.1. DEFINITION Let S be a ring and X be a non-empty multiplicatively
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¢losed subset of S. Then X is said to be a right Ore set if, for all x ¢ X,
r e R, xRh rXx # g. Similarly, we define a left Ore set. We say X is an Ore

set if it is both a left and right Ore set.

We now describe what we mean by localisation at a semiprime ideal of a
ring. Let § be a ring and N a semiprime ideal of S. By localisation at &,
we mean inversion of Cg(N), the set of elements of S that are regular
modulo N. As we see in Proposition 1.5.3, the prime ideals containing N
play an important part in the theory of localisation. With this in mind we
give the definition of a second layer link. This terminology is due to

Jategaonkar and Muller.

1.5.2 DEFINITION For a Noetherian ring § and P, Q € SpecS, we say that a
second layer link exists from P to Q or that P is second layer linked to @
if there is an ideal A of S containing PQ such that (P 0 Q)/A is non-zero
and is torsionfree as a right S/0-module and as a left S/P-module. The
bimodule (P N Q)/A is called a linking bimodule.

For example, let

Gl S ERE S DA R D EE e DA
0 0 0 Q o 0 0o 01
Then, P,Q € SpecsS, PN Qg=1I while PQ = 0. Consider the bimodule
(PN Q)/PQ. As a left S-module, it has annihilator P and, as a right

S-module, it has annihilator Q. Thus, we see that P is second layer linked

to ¢ and that P N Q is the linking bimodule.

There are generalisations of a linking bimodule which we use in Chapter
5. A non-zero Noetherian bimodule gBp is called a bond if R and S are prime
rings and both of the modules gB and Bg are torsionfree.

Suppose P ¢ SpecR and Q ¢ SpecS. If there exists a non-zero subfactor
B’ of B such that l.anngp(B’) = P and r.anng(B’) = Q and B’ is a torsionfree
((R/P)-(S/Q))-bimodule, then B’ is said to be a B-bond from R/P to 5/Q.
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A special case of a B-bond is described next. Let P,Q ¢ SpecS. If there
exists a R-bond from R/P to 5/Q, we say there is an ideal link from S/P to
S/Q. Such an ideal link from P to itself is said to be non-trivial if the
R-bond is a subfactor of gPg.

With the definition of a link, we may view SpecS as the vertex set in a
{(directed) graph, the edges being determined by the links. Such a graph is
called the link graph. For P e SpecS, the set of vertices in the connected
component of the link graph containing P is called the cligue of P and is

denoted by cl(P).

To give an appreciation of the relationship the definition of a link
has with 1localisation at semiprime ideals, we provide the following

proposition.

1.5.3 PROPOSITION Let S be a Noetherian ring which has a left and right
denominator set, C. Suppose P, Q ¢ SpecS and that P is linked to Q. Then

Cg(P) € C if and only if Cg(Q) < C.

PROOF [McC-Rob, Proposition 4.3.6]

This result shows that, for any P e SpecS, the largest subset of Cg(P)
at which it is feasible to 1localise is NCg(Q) as @ ranges through the
clique containing P. One further technical condition guarantees that we may
localise at such a subset. Before we give this condition, it is necessary
to give two definitions and state Jategaonkar’s Main Lemma which was

originally proved in [J2, Lemma 2.2].

1.5.4 DEFINITION Let M be a right S-module and let N be a submodule of M.
If N has a non-zero intersection with every non-zero submodule of M, then

we say that N is essential in M and write N <5 M.
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The second set of definitions was originally given in [St]. Let M be a
non-zero S-module. An affiliated submodule of M is any submodule of the
form anny(P) where P is an ideal of S maximal among the annihilators of
non-zero submodules of M. An affiliated series for M is a series of
submodules of the form

0 <« Mg < My ¢ ... < Myg =M
where, for each i=7,...,n, the module M;/M;_; is an affiliated submodule of
M/M;_¢. 1f P; = anng(M;/M;_;) then the series Py,...,P, is the series of
affiliated primes of M corresponding to the given affiliated series.

Recall the example used in 1.5.2. The right S-module Sg has an

affiliated series 0 ¢ P ¢ S with correseponding primes Q and P.

1.5.5 THEOREM Let S be a Noetherian ring and let M be a right S-module with
affiliated series 0 < U ¢« M and corresponding affiliated prime ideals P and
Q, such that U<y M. Let M’ be a submodule of M, properly containing U,
such that the ideal A = anng(M’) is maximal among annihilators of
submodules of M properly containing U. Then exactly one of the following
alternatives occur:

(i) Q€ P and M’Q = 0. In this case, M’ and M’/U are faithful torsion
S/Q-modules.

(ii) ¢ is linked to P and (Q N P)/A is a linking bimodule between Q and
P. In this case, if U is torsionfree as a right (S5/P)-module, then M’/U is

torsionfree as a right (8/Q)-module.

Jategaonkar has introduced the following definitions.

1.5.6 DEFINITION Suppose P is a prime ideal in a Noetherian ring S. Then P
is said to satisfy the right strong second layer condition (SSLC) if, given

the hypotheses of Theorem 1.5.5, the conclusion (i) never occurs.
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Similarly, P is said to satisfy the right second layer condition (SLC) if,
given the hypotheses of Theorem 1.5.5 and the additional hypothesis that U
is torsionfree as an (S/P)—modulé, the conclusion (1) never occurs.
Analogously defined are the left SSLC and the left SLC. The ring § is said
to satisfy right (left) SLC if all its primes have right (left) SLC. If S
has both right and left SLC, it is said to have SLC. Also, the ring S is
said to satisfy right (left) SSLC if all its primes have right (left) SSLC.

If $§ has both right and left SSLC, it is said to have SSLC.
This definition is used by Jategaonkar in [J1] for the next theorem.

1.5.7 THEOREM Let S be a Noetherian ring. Suppose N is a semiprime ideal of
S and that X is the set of primes of S minimal over N. Suppose X is closed
under the taking of links and satisfies SLC. Then S can be localised at

Cs(N).
PROOF [McC-R, Theorem 4.3.16].

The next proposition provides a useful test for determining whether or

not a prime has SLC or SSLC.

1.5.8 PROPOSITION Let P be a prime ideal in a Noetherian ring S.

(i) P satisfies the right SSLC if and only if there does not exist a
finitely generated uniform right S-module, M, with an affiliated series
0 < U <« M and corresponding affiliated primes P and @, such that M/U is
uniform, Q € P and MQ = 0.

(ii) P satisfies the right SLC if and only if there does not exist a
Finitely generated uniform right S-module, M, with an affiliated series
0 ¢ U ¢ M and corresponding affiliated prime ideals P and { such that U is

a torsionfree (S/P)-module, M/U is uniform, Q © P, and MQ = 0.
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PROOF [G-W, Proposition 11.3].

There is an easy corollary which shows that we may reduce to the case

where M is cyclic rather than just finitely generated.

1.5.9 COROLLARY Let P be a prime ideal in a Noetherian ring S. Then:

(i) P satisfies the right SSLC if and only if there does not exist a
cyclic right uniform S-module, M, with an affiliated series 0 < U ¢« M and
corresponding affiliated primes P and Q, such that M/U is uniform, Q € P
and MQ = 0.

(ii) P satisfies the right SLC if and only if there does not exist a
cyclic uniform right S-module, M, with an affiliated series 0 < U ¢ M and
corresponding affiliated prime ideals P and Q such that U is a torsionfree

(5/P)-module, M/U is uniform, Q € P and MQ = 0.

PROOF By Proposition 1.5.8, we only have to prove the "only if" direction.
For (i), suppose that P does not satisfy the SSLC. By Proposition
1.5.8, there exists a finitely generated right S-module, M, with an
affiliated series 0 ¢ U ¢ M and corresponding affiliated primes P and g,
such that M/U is uniform, Q0 € P and MQ = 0. Let 0 # m ¢ M\U. We claim that
0 ¢mSNU¢mS is an affiliated series for mS with corresponding
affiliated primes P and Q such that mS/(mS 0 U) is uniform, @ € P and
mSQ = 0. By definition, P is maximal among the annihilators of non-zero
submodules of M and so is certainly maximal among annihilators of non-zero
submodules of mS. Moreover, annyug{(P} = anny(P) Nt mS = U N mS. Since
mS/(mS N U) embeds in M/U, a similar argument will show that mS/(mS 0 U) is
the affiliated submodule of mS/(mS N U) with affiliated prime Q. Now, since
mS/(mS N U) is a submodule of the uniform module M/U, it too is uniform.

The last two statements of the claim are obviously true. This proves (i)
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For (ii), we need only show that if ¢ is in addition (S/P)-torsionfree,
then U N mS is (S/P)-torsionfree. This is trivial since U N mS is a

submodule of U.

Another adaptation of Proposition 1.5.8 will be useful in Chapter 5.

1.5.10 COROLLARY Let P be a prime ideal in a Noetherian ring S. Suppose X
15 an Ore set with X & Cg(P). Then
(1) P has SLC in S only if PX~! has SLC in sx~!;

(ii) P has SSLC in S only if px~1 has sSLc in sx—1.

PROOF We only give the proof for (i) here as the proof for (ii) is
contained therein.

Let A denote sx—!. Suppose px-! does not have SLC in A. By Corollary
1.5.9, there exists a cyclic right A-module, M, such that M is uniform, and
an A-submodule U of M such that 0 ¢ U ¢ M is an affiliated series with
corresponding primes Px-! and @’ such that U 1is a torsionfree
(A/Px-1)-module, aA/U is uniform, Q’ < px~! and MQ’ = 0.

QX" for some @ ¢ SpecS with Q < P,

By [G-W, Theorem 9.22], @

Let m € M be such that M = mA. We claim that 0 ¢« U N mS ¢ mS is an
affiliated series with corresponding primes P and Q. First, suppose that P
is not maximal among annihilators of non-zero submodules of mS. Then P is
strictly contained in such a prime ideal P; € SpecS with P; = annpg(Y) for
some @ # Y < mS. Since Y is contained in a right A-module, for x ¢ X,
Y = Y(xx~1) = (vx)x~! and so P;Nx=g. Then we find that vA is
annihilated by Pj;x-! > px~1. This contradiction shows that P is maximal
among annihilators of non-~zero submodules of mS. We now show that the
affiliated submodule is Un ms. Certainly, U N m8 S annpg(P). If
Yy € annpg(P), y(PX") = 0 and so y ¢ U N mS. Similar consideration shows

that mS/(mS N U) is the affiliated submodule of mS/(mS N U) with affiliated
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prime Q.

We claim that U N mS is a torsionfree (S/P)-module, Suppose this is not
the case. Then there exists 0# ue UN mS and x ¢ Cg(P) such that
u(x + P) = 0. However, u ¢ U and x + px-1 ¢ a/(Px-1). This contradicts the
fact that U is A/(Px~!)-torsionfree.

In addition, we claim that mS/(U N mS) is uniform. Suppose to the
contrary that there exist S-submodules C and D of mS, such that C 2 U N mS,
D2>2UnN ms but that cChps UN mS. Now,

(U h mS)A A mS

annpg(P) = U N mS, so that CA > (UN mS)A; similarly,

DA 2 (U N mS)A

U. Let y ¢ CAN DA. There exists c e ¢, de D and x ¢ X
such that y = ex=1 = dx-1. Postmultiplying the last eguality by x yields
that c=de CN DE UN aS, This gives that y e (UN mS)A = U and so
CA N DA S U, This contradicts mA/U being uniform. Thus, mS/(mS N U) is
uniform. Similarly, we prove that mS is a uniform S-module.

Since @< P and (mS)@ = 0, the "only if" direction of Corollary

1.5.9(ii) shows that P does not have SLC.

We shall make use of one further result about localisation. This is
known as Small’s Theorem. It was originally stated by L.W. Small in [Smal]
and [Smaz2].

1.5.11 THEOREM Let S be a right Noetherian ring and let N denote the prime
radical of §. Then S has a right Artinian right quotient ring if and only

if Cr(N) = CR(O)_

PROOF [McC-R, Corollary 4.1.41.
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1 lfand-Kirill im ion

A dimension fuﬁction on finitely generated algebras is defined in this
section. Throught this section k is a field and S is a k-algebra. The
function measures the growth of certain k-vector spaces and is known as
Gelfand-Kirillov dimension. It is named after I.M.Gelfand and A.A. Kirillov
who together published two influential papers in 1966. See [GK1] and [GK2].
For a detailed discussion of this dimension function, see [K-L].

As space is limited, our treatment will be fairly brief. Basically, it
is a well behaved dimension function and we list some of its nice
properties here. We use these properties when studying nilpotent group

algebras in Chapter 5.

1.6.1 DEFINITION Let k be a field and S a finitely generated k-algebra. Let
Vv be a finite dimensional generating subspace for S so that X;Zy vi = s,
Let dy(n) denote dimi(L;2; V). The Gelfand-Kirilov dimension of S 1is
defined as follows:
log dy(n)
GKdim(S) = lim
log n
It transpires in [K-L, Lemma 1.1] that this definition is independent of
the choice of V. While the above definition seems very abstract, it is in
fact equivalent to the following definition. There exist constants A,B and
¢ such that the inequalities An®€ < dy(n) < Bn€ hold for all but finitely

many n if and only if 8 has finite GK-dimension equal to ¢. The equivalence

of these definitions follows from [K-L, Lemma 2.1].

The following results give a more intuitive feel for the notion of

GK~dimension.

1.6.2 LEMMA Let k be a field and S a finitely generated k-algebra.

(i) If B is a subalgebra or a homomorphic image of S,
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GKdim(B) € GKdim(S).

(ii1) If B is a subalgebra of S so that S is finitely generated,
GKdim(S) = GKdim(B),

(iii) If Sy and S, are finitely generated k-algebras, then
GKdim(S; ® Sp) = max (GKdim(Sj;)).

(iv) GKdim(A/(Iy M Iy ... 0 Ip)) < max { GKdim(A/I)}.

PROOF The result (i) is clear from the definition. [K-L, Propositon 5.5]
proves (ii). [K-L, Proposition 3.2] gives (iii) and (iv) is just

[K-L, Corollary 3.3].

1.6.3 LEMMA Let k be a field and S a finitely generated k-algebra. If

P ¢ SpecS, then GKdim(S) » GKdim(S/P) + ht(P).

PROOF [K-L, Corollary 3.16].

So far we have only discussed the GK-dimension of a finitely generated
k-algebra S. We may also define the GK-dimension of a module over the ring

S.

1.6.4 DEFINITION Let k be a field and S a finitely generated k-algebra with
a finite dimensional generating subspace V with 7g ¢ V. Let M be a finitely
generated right S-module so that there exists a finite dimensional subspace
F which generates M as an S-module. Thus, we have M = U, 2, FV1. Let
dy, p(n) = dimp(FV). Define

log dV, F(n)

GKdim(Mg) = nig
log n

As before this definition is independent of the choice of V and F.

When M = S5, we see that GKdim(Sg) = GKdim(S) as defined in 1.6.1.
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This definition for modules also has some nice properties which we can

take advantage of.

1.6.5 LEMMA Let k be a field and S a finitely generated k-algebra. Let M be
a finitely generated S-module with o ¢ Endg(M) an injective map. Then

GKdim(M/o(M)) < GKdim(M) - 1,

PROOF [K-L, Proposition 5.1(e)l].

We see how the GK-dimensions of a bimodule on either side compare.
Lemma 1.6.6 was proved independently by W. Bohro in [Bo] and T.H. Lenagan

in [L].

1.6.6 LEMMA Let S and T be finitely generated k-algebras and gMp an
(5-T)-bimodule which is finitely generated on both sides. Then

GKdim(gM) = GKdim(Mg).

PROOF [K-L, Corollary 5.4).

1.6.7 DEFINITION Let S be a finitely generated k-algebra with M a finitely
generated right S-module. The module M is said to be GK-homogeneous if, for

all non-zero submodules N of M, GKdim(N) = GKdim(M}.

The next result, [K-L, Lemma 5.13], can in some ways be considered to
be a converse of Lemma 1.6.5. To prove it, observe that if NN A4 = 0 for

some non-zero submodule A of M, then A embeds isomorphically in M/N.

1.6.8 LEMMA Let 5 be a finitely generated k-algebra and M a finitely
generated right S-module which is GK-homogeneous. If GKdim(M/N) < GKdim(M)

for some submodule N of M, then N is essential in M.
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In Chapter 5, we are particularly interested in the GK-dimension of
group algebras. As the next theorem shows, such algebras have finite
GK-dimension only if the group in question is nilpotent-by-finite. It was

proved by Gromov in [G].

1.6.9 THEOREM Let H be a finitely generated group and k a field. Then
GKdim(kH) ¢ ©» if and only if H has a nilpotent normal subgroup N such that

H/N is finite.

H. Bass goes further and calculates the GK-dimension of a nilpotent

group algebra.

1.6.10 THEOREM Let H be a finitely generated nilpotent group and let
Hyp = {1} < Hy ¢ .... < H = H be the lower central series. Let k be a
field. Then

GKdim(kH) = 2151 iB(Hi/Hi_y)

where E(Hi/Hi_y) is the torsionfree rank of Hj/Hj_ 1.

PROOF [K-L, Theorem 11.14].

§1.7 Additional Remarks

7.1 K.Morita introduced the concepts discussed in §2 in connection with
category equivalences. S.A. Amitsur studied the more general Morita context
in [A]. W.K. Nicholson and J.F. Watters defined and studied prime contexts

in [N-W].

7.2 K. Nagarajan in [Na] gave an example similar to Example 1.4.1 in



non-zero characteristic. C.L. Chuang and P.H. Lee raised Nagarajan’s
example to characteristic zero. It is their version we give as Example

1.4.1

7.3 Theorem 1.4.6 is a complilation of results, each using the same
hypotheses. (i) to (iii) were proved by Osterburg in (0] while Miyashita

gave an earlier proof of (iii). Azumaya proved (iv) in [Az].

7.4 While one direction of Proposition 1.5.8 is just Theorem 1.5.5, the
other direction appears in the literature for the first time as [G-W,
Proposition 11.3]. Corollary 1.5.9 is well known but does not seem to be

stated explicitly in the literature. The same is true of Corollary 1.5.10.

7.5 I.N. Bernstein in [Be] first made Definition 1.6.4. In [J-S], A. Joseph

and L.W. Small studied the properties of GK-dimension when applied to a

module.
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CHAPTER 2

EINITENES ONDITI

This chapter is devoted to a detailed discussion of the finiteness
conditions of Chapter 1, 84.

In Chapter 2, §1, we investigate under what circumstances S is finitely
generated as an SG-module. We find a sufficient condition for this to
happen.

We have already seen in Example 1.4.1, that it is not always the case
that SC is Noetherian when S is. There are cases, however, where SC is
known to be Noetherian. For example, Lemma 1.4.2 shows that SG is
Noetherian when |G|‘7 € S. In Chapter 2, 8§2, there are two specific
questions we will examine. The first of these is a conjecture of S.
Montgomery. In [Mo4, Problem 6], Montgomery conjectured that if § is simple

and Noetherian, then SG is Noetherian. We thus ask the following gquestion.

2A QUESTION Suppose S is a simple Noetherian ring and G is a finite group

of automorphisms of S. Is the fixed ring SG Noetherian ?

Notice from Lemma 1.4.4 that if H is an Abelian-by-finite group with a
finite group of automorphisms G and k 1is any field, then (kH)G is
Noetherian. This fact led to the next question being asked by D.S. Passman
in [P2)]. He was concerned with the following scenario. Let H be a
polycyclic-by~-finite group, G a finite group of automorphisms of H, k a
field and kH the group algebra. By a variant of Hilbert’s Basis Theorem, kH

is Noetherian and Passman asked if the fixed ring (kH)G is always

Noetherian. We call this Question 2B.
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2B QUESTION Suppose H 1is a polycyclic-by-finite group and G is a finite
group of automorphisms of H. Let k be a field and S be the group algebra

kH. Is the fixed ring S® Noetherian ?

As already noted, if 1G1-1 ¢ k then Question 2B has a positive answer

and so we consider the case where 161 = 0 in k.

§2.1 Finite Generation of S as an S®module

It is of interest to know the circumstances in which S is a finitely
generated SC-module. The first case we investigate is that of S being a
division ring. We require to state the following definition and lemma. The

definition is given in [Mo1].

2.1.1 DEFINITION Let S be a simple ring and let ¢ € AutS be an inner
automorphism. Define the following subset of S:

pg = (x € S: 59 = x~!sx for all s ¢ S}.
Then if C denotes the centre of S, we have ¢4 = Cxq4, for any 0 # xq € pg.
Now, let G be a group of inner automorphisms of S. The algebra of the group

is B := Lgeg pg = Lgeg CXxg where 0 # x4 epg for all g ¢ G.

2.1.2 LEMMA Let S be a division ring and let G be a finite group of inner
automorphisms of S. Denote SC by R. Let C be the centre of S and B be the

algebra of the group. Then § & B ®~ Cg(B) = B ®- R.

PROOF [Mo1, proof of Lemma 2.12].
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The next lemma appears as [Mol, Lemma 2.18].

2.1.3 LEMMA Let D be a division ring, let G be any finite group of
automorphisms of D and let R = DC. Then the rank of D as a right R-module,

which we denote [D:R], is less than or equal to |G|.

PROOF Let D be a division ring. If G has a proper normal subgroup N, then
G/N acts on DN, By induction on 161, we would have
[(D:DG] = [D:DNJ[DN:DG] < INIIG/NI = 161, and we would be finished.
Henceforth, we assume that G is simple. Since inner automorphisms of G form
a normal subgroup of G by 1.1.1, G is either inner or outer. If G is outer,
we may apply Theorem 1.4.5 to give the result. Now we consider the case
where G is inner on D. Let B be the algebra of the group. Now, B is finite
dimensional over C, the centre of D, and so is a division ring. By the
previous lemma, D = B ®, Cp(B) = B ®- D¢, Thus, D is finite dimensional

over DG with [D:DC] = dimpB < 1GI.

We now aim to prove a similar result for S semiprime with no non-zero
nilpotent elements. The proof of the theorem is modelled on a result by
D.R. Farkas and R.L. Snider in [F-8]. Their result appears in the

literature as [P2, Theorem 26.16].

2.1.4 THEOREM Let S be a semiprime ring with no non-zero nilpotent elements
and let G be a finite group of automorphisms of S such that R:=SC is a left

Goldie ring. Then S can be embedded in a free R-module of finite rank.

PROOF By [Mol, Theorem 5.7], § is a Goldie ring with semi-simple Artinian
gquotient ring Q(S). Let e be a primitive central idempotent of Q(§8) so

that, in view of the hypotheses on S, eQ(S) is a division ring. We first
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show that S N eQ(S) can be embedded in a free R-module of finite rank. We
claim that S N eQ(S) is an Ore domain with Q(S N eQ(S)) = e@(S), the whole
division ring. For, choose z,s € § with 2z regular so that e = z-!s. Then
s =ze e SN eQ(S). For x ¢ e@(S), choose qg,w ¢ S, g regular, so that
gx = w. Then (sg)x = sw. Since sg 1is regular in eS, we have
x = (sq)~1(sw) ¢ Q(S N ep(s)).

Now let H = (g € G: €9 = e) so that H acts on S N eR(S). Let I be a
right transversal for H in G. Let a ¢ SN ep(S) and g ¢ G, then
(trp(a))9 = Lyer(a¥)9 = Zyera¥? = trr(a) since g permutes the elements of I’
up to elements of H. Thus, trp(a) e R for all a e S7 N eQ(S). Now G
permutes the primitive central idempotents of Q(S) and so, for g # h
elements of T, eh # e9 and eled = 0. Thus, if x = er ¢ SH n ep(s), then
try(x) = Lo re¥r¥, and so et (x) = Lyeree¥r¥ = er = x. Thus,
trr:(SH N eQ(S)) » R is an injective left R-homomorphism.

Since eQ(S) is a division ring, eQ(5) is finite dimensicnal over
(e0(S))H by Lemma 2.1.3. Let (xy,...,%xp} be a basis for eQ(S) over (eQ(s))H
so that eQ(S) = IL;.y, . pxi(eQ(5))H.  As  eQ(S) = 0(5 N e0(S)) each
Xy = t"si for some si,t € 50N e0(5) (i=1,...,n). Thus,
t(eQ(S)) = Lisy, .., nSi(eQ(S))H. since t=7 e e0(S), teQ(s) = eQ(S), and so
e0(S) = Xji=1, .., nSi(eQ(S))H. Thus, we may assume that x; = s; € SN eQ(S).

By Theorem 1.3.5, there exists A € H such that trp: eQ(S) » (eQ(S))¥ is
non-trivial. We may define p:(S N eQ(S)) » RP such that
p(a) = Lj-q, .. p®(trr(trp(ax;))). It is clear that ¢ is a left R-module
homomorphism and we claim that it is in fact a monomorphism. Suppose that,
for a ¢ SN eQ(S), p(a) = 0. Then (trp(trplax;)) = 0 for i=1,...,n. By the
preceding paragraph, ¢t is injective so we must have ¢tra(ax;) = 0 for
i=1,...,n. Thus, trp(ax;(eQ(s)f)) =0 for i=71,...,n and because
eQ(s) = 2131,__’nxi(eQ(S))H, we have that trp(aeQ(S)) = 0 which contradicts
the fact that ¢rp is non-trivial on eQ(S) unless a = 0. Thus, S Nl eQ(S) can

be embedded in a free R-module of finite rank.
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Now, let {ey,...,ep} be all the primitive central idempotents in Q(S).
By the above Eizf"_,n“(s N e;Q(S)) is contained in a free R-module of
finite rank. Since Q(S N e;Q(S)) = e;0(S), each S N e;Q(S) contains an
element d; which is invertible in e;Q(S). Thus, d = dy+...+dp is invertible
in Q(S). Now define f:S - Lj-y n(S0N e;Q(8)) by f(r) =rd. Since
d-1 e Q(s), f is injective. Thus, we’ve shown that S can be embedded in a

free R-module of finite rank. This completes the proof of the theorem.

| Notice that Example 1.3.1 shows that Theorem 2.1.4 must be close to the
L best possible. The ring S in 1.3.1 is prime, has no iGi-torsion and 5G is a
| field, yet S is certainly not a finitely generated SG-module.

Theorem 2.1.4 provides us with a partial converse to the general

question discussed in §2.

2.1.5 COROLLARY Let S be semiprime with no non-zero nilpotent elements and
G be a finite group of automorphisms of 5. If R := SG is left Noetherian,

then S is left Noetherian and is a finitely generated R-module.

PROOF Theorem 2.1.4 shows that S embeds in a free R-module of finite rank

and so S must be a Noetherian R-module. Hence S is a left Noetherian ring.

Now, we show that Corollary 2.1.5 enables us to make a reduction when

dealing with Question 2B. First, we state a well known Lemma.
2.1.6 LEMMA Let H be a polycyclic-by-finite group and let G be a finite
group of automorphisms of H. Then there exists a G-invariant poly-Ce,

subgroup L of H such that |H:Ll < o.

PROOF [P2, Lemma 21.4(i)] shows that there exists a normal subgroup, N of

H, such that N is poly-C, and has finite index in H. Taking L = flg.g NI
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gives the result.

2.1.7 THEOREM Let H be polycyclic-by-finite, G a finite subgroup of AutH
and k a field. Suppose L is a G-invariant poly-C, subgroup of finite index
in H. The group G acts on kL and, if (kL)® is Noetherian, then so too is

(kH)G.

PROOF If 161-! ¢ k, then the Theorem is true since, by Lemma 1.4.2, both
rings are Noetherian. Henceforth, we assume chark » 0 and 116Gl = 0 ¢ k.
Since L is torsion-free, [P1, Theorem 3.4.12] shows that kL is a domain.
(We assume chark > 0). So, by Corollary 2.1.5, kL is a finitely generated
(kL)G-module. As 1H:L|l < o, kH is a finitely generated kL-module and so, kH
is a finitely generated (kL)G-module. As (k)G is Noetherian, we must have
that (k#)G, a (kL)G-submodule of kH, is a Noetherian (kL)G-module. Hence

(kH)G is a Noetherian ring.

2.1.8 NOTE Suppose H is a pclycyclic-by-finite group. By Lemma 2.1.6, there
exists a G-invariant subgroup L of H such that L is poly-C, and H/L is
finite. Theorem 2.1.7 shows that if (kL)C is Noetherian, then so too is
(kH)G. Thus, the preceding theorem means we only have to consider the case

where H is poly-C, in Question 2B.

8§2.2 Does S Noetherian Imply R Noetherian ?
We return to Questions 2A and 2B stated in the introduction to this
chapter. Already, we have seen in Note 2.1.8 that Question 2B can be

reduced to the case where H is poly-Ce.

We look first at an example that will have bearing on both questions.




This example is interesting for a number of reasons: the first being that
it shows that if S is simple and G is a group of outer automorphisms (see
1.1.1}), then R is not necessarily simple. It was conceived by A.E.
zalesskii and O.M. Neroslavskii in [2Z-N] as an example of a simple

Noetherian ring with zero divisors but no non-trivial idempotents.

2.2.1 EXAMPLE Let k be a field of characteristic 2. Let Sy = k(z)[x, x~!]
where x and 2z are commuting indeterminates, and let y Dbe the
k(z)-automorphism of S; defined by x¥ = zx. Let J = ¢y> and let § = §;*J.
Now define g to be the k(z)-automorphism of § such that x9 = x~! and
yd = y-1. Let ¢ = <g>, let T = §*G and let R = SC.

We claim that S is simple and G is outer but that R is not simple. We
first show that S is simple. Let H = <x, y, z: [x,y] = 2, z central», the
first Heisenberg group (see Definition 2.2.6). Then X :!= k<z>\{0} is a
regular Ore set with kix~1 = 5. Let P e SpecS. By [G-W, Theorem 9.22],
PN kH is a prime ideal of kH with (P 0 kH) N X = 4. Since H is nilpotent,
the Zalesskii subgroup of H is just Z(H) = <z>. [P1, Theorem 9.1.17] shows
that if PN kH # 0, then (PN kH) N X # F. We conclude that PN k# = 0 and
S0, P = 0. Thus, S is simple.

Secondly, we claim that G is outer on S. Suppose this is not the case
and that there exists a unit wvu e 5, u-= Zi:—n,..,nSiYi where s; ¢ Sy
(i=-n,...,n), such that uw = w9u for all w e S. In particular, uy = y“’u.
By considering the degree in y of each side in the equation, we see u = 0,
a contradiction which proves the claim.

That 7T is simple is immediate from Theorem 1.4.6 (iv). It is this ring,
T, that is the subject of [Z-N]. Zalesskii and Neroslavskii show that T has
no non-trivial idempotents.

Finally, we show that R is not simple. Since trg(y) # 0, tr(S) is a
non-zero ideal of R. Suppose R is simple, so that trg(S) = R. Thus, there

exists 5 ¢ 8, say s = Ei:—t,...,tSiYir with s+ 89 = 1. Hence
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Li=t,..., tSi¥" + Ej=¢, ... tSiy 1 = 1 but the coefficient of y’ on the

left hand side is sp + sp = 0 because chark = 2. This contradiction shows

that R is not simple.

Although, as Example 2.2.1 shows, R is not always simple when S is
simple and G is outer, we can still give some detailed information about

the structure of R. For details see Theorem 1.4.6.

The ring S in Example 2.2.1 satisfies both hypotheses in Question 2a
and so it would be helpful to know if SG is Noetherian. In 1986, T. Hodges
and J. Osterburg proved that SG is Noetherian in [H-0], giving evidence for

an affirmative answer to Question 2A. We state their theorem below.

2.2.2 THEOREM Let S = k(z)[x, x~!)*cy> be the ring of Example 2.2.1 where x
and z are commuting indeterminates and y 1is a k(z)-automorphism such that
x¥Y = zx. Let G = ¢<g> be the same subgroup of AutS where g 1is a
k{z)-automorphism such that x9 = x~1 and y9 = y~!. Then the fixed ring, R,

is Noetherian.

In 1989, M. Lorenz and D.S. Passman generalised Theorem 2.2.2 in [L-P1]
using similar methods. We give their theorem here. (See Definition 1.1.2
for the definition of a crossed product). This result is the best we have

relating to Question 2A.

2.2.3 THEOREM Let S = D" be a crossed product between T = ZT for some
r e N and D a division ring., Let G = <0»> act on § so that D is centralised
and the action of ¢ on I' is inversion modulo D*; that is, for x e r,
x¢ = dx~! for some d ¢ D. Put R = SG. Suppose 1Gt = 2. Then S is right and

left Noetherian as an R-module and consequently R is Noetherian as a ring.
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PROOF We prove that pS is a Noetherian module.
Stepl We define an ordering on I'. (We consider T & ZI as an additive
group). Let x = (x4,...,x7) ¢ T, define 1x1 to be L;Ix;I.

For each s> 0, 1let T'g = (x = (x4,...,x7): 1x1 = 5} denote the
r~dimensional cube of diameter 2s centred at the origin with corners on the

axes. Then

r= l"s:ro Fs

and we can linearly order the set I'. To do this we utilise the
lexicographical ordering, <1/ on r. Suppose X = (X1,...,%2),
Y = (¥1,...,¥py} € T and that the first difference between x and y occurs at
the jth coordinate. Then, if X4 < yj, we say x <; y or, if ¥Yj ¢ X5, we say
that y <7 x.

We now define our linear ordering on I'. For x, y ¢ I', define

1x1 < 1y}
XSy & {
or I1xI = 1yl and x <3 Y.

Clearly, I contains no infinite decreasing sequence with respect to the
ordering <.

We define certain subsets, Q,, of I' as follows. For each multi-sign
€ = (e4,...,e,.) € {¢}T, put

Qc = {(x9,...,%2) €2 x; 2 01f €; =+, x; < 0 if ¢; = -}.
Define e(i) to be the element of I' with 7 in the ith coordinate and zeros
everywhere else. Then we let e(1),...,e(r) be the canonical Z-basis of T.
Claim Let # # M ST be a finite subset of I'. Let m = (my,...,mz) := max(M}
under the 1linear ordering definition given above. Suppose m ¢ Q. where
€ = (ey,...,€). Then
m + e;e(i) = max{ M + {e(i), -e(i)} }.

Proof Clearly, m + e¢je(i) < max{ M + (e(i), -e(i)} }. Moreover, for all
X = (x1,...,%xp) €, 1x £ (i)l e {1x1+1, Ix1-1}. In particular, if x ¢ M,

then 1x ¢+ e(i)1 < I1ml + 1. Now, since m ¢ Q,, Iml + 7 = |m + €;e(i)l. Also,
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for x e M, Ix t e(i)l = im + ! implies 1x1 = imi. But then we must have
% €7 m. Thus, if e; = +, then x t e(i) {3 m + e;e(i). So we may assume that
€ = —-. If x; <« my for some j ¢ i, then clearly, x * e(i) < m + e¢;e(i). On
the other hand, if X5 b m; for all j ¢ i, then Xj = my for all j ¢ i and
x; S m; < 0. Hence, |Ix + e(i)l = |xi-1 < 1mi+!, and x-e(i) 3 m + eze(1).

Thus, for all x ¢ M, we have x * e(i) < m + ¢;e(i}, as we have claimed.

Step 2 Leading terms.
For each 0 # s € S, put
MN(s) := max{ Supp(s) } ¢ T'
using the ordering of I' introduced in Step 1. For each non-zero R-submodule
I of S, put
N = AN(I\f0}) € T.
claim If I € J are non-zero R-submodules of gS, then NI &€ NJ, If I ¢ J,
then NI € M\J.
proof The first assertion is clear. Suppose I © J but that NI = AJ. Pick
s € J\I with A(s) as small as possible. By assumption, A(s) = N(t) =: x ¢ T’
for some t ¢ I. But then for some d e D¥, x ¢ Supp(s-dt) and so

A(s-dt) ¢ N(s). Since s-dt e J\I, this contradicts the minimality of s.

For each basis vector e(i) e I', put

by = e(1) + e(1)% = tr(e(i)) ¢ R.

Note that e(i)¢ = di;7;3§7 for some d; ¢ D* (i=1,...,r). (Here we
temporarily revert to the multiplicative notation of (). Thus,

Supp(b;s) € Supp(s) * {e(i)]}
holds for i=7,...,r and for any non-zero s ¢ S§. If \(s}) ¢ Q. where
€ = (e1,...,€), the claim in Step 1 easily implies that
A(bis) = N(s) + e;e(i) ¢ Q.. Therefore, if MN(s) ¢ Q., as above, then

N(Rs) 2 \(s) + O where Q. = (eNg,...,eNg). (Ng = (0,1,2,...1).
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Step3 Conclusion

Suppose 0 ¢ Iy € Ip € ... is an infinite strictly ascending chain of
left R-submodules of 8. Then the preceding claim shows that
NI; € NIp © N3¢ ... and so we can select elements a(i) e¢ NI[;\NI;_y. By
considering a suitable subchain if necessary, we may assume that all the

a(i) belong to the same Q, for some € = (ey,...,€p). By step 2, we have

that a(i) + @, € NI; whence a(t) £ a(i) + Q¢ for t » i. Write
a(i) = (egay,; .., €rar, i) with aj, i € Np and put
a(i)* = (ag, i ,..., ap, i) € Ng%.

Consider the (partial) product ordering of Nor given by the natural

ordering of Nj:
(x4,...,x) precedes (yy,...,¥y) & x; < y; for all 1.

Then the set {(a(i)*: for all i} & Ny¥ has finitely many minimal elements.
Again, by considering a suitable subchain, we may assume that these
elements are a(?}*,...,a(p)”' for some p ¢ N. By [D, Lemma 2.6.2], each
a(i)”* majorises at least one of a(7)%,...,a(p)*.

Finally, let t > p . Since a(t) £ a(i) + ﬁe for i = 1,...,p, we must
have ajei), t € aj(i), 1 for some j(i) ¢ (1,...,r}. Consequently, a(t)x
majorises none of a(i)*,...,a(p)*, contradicting the previous paragraph.

We have therefore proved the theorem.

Although these methods were conceived with a view to answering Question
2A, a minor adaptation gives a result applicable to the question on group
rings in Question 2B. This result will deal with one class of examples
where S is the group algebra of the nth Heisenberg group. For the remainder
of the chapter, we study fixed rings of group algebras of the nth
Heisenberg group. We define the Heisenberg groups below.

2.2.4 DEFINITION For n ¢ N, let H, denote the nth Heisenberg group. Then
Hy = <xj, ¥4, 2z (1<1i,j&n): for all 1,7

[x5,%5] = [y;,¥4] =1, [x5,y4] = 288, z central ».
J J J
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Note here that H, is nilpotent of c¢lass 2 since 2Z(H,) = <z> and
Hy/<z> & 220, we will give a positive answer to Question 2B for infinitely
many groups G, of order 2, acting on kH,. We first study some automorphisms

admitted by #Hpj.

2.2.5 NOTE Fix n ¢ N. Consider the 2n maps, for i=1,...,n:

6i: x5 b x328,  y;boy; . (=0 2z b oz

Bii X5 b Xy , yjre yjzﬁﬁ, (7j=1,..,n1}) z > Zz.
All these maps are automorphisms which commute and have infinite order so
that A := <0;, pj: i=1,...,n> & Z2n_ Any automorphism of H, not in A has a
non-trivial action on Hp/<z».

Consider 7 € Aut(Hp) such that 7(x;) = xi‘7, 7(y;) = Yi"1 and 7(z) = z
for i=7,...,n. Now, 7 has order 2 and 70;7 = 01‘7 and Tp;T = yi“7 for
i=1,...,n. Thus, we may form the semidirect product A; := <A, 7> =4 «<7>
which is Abelian-by-finite where 7 acts by inversion on A. If o ¢ A;\A,

then o = 1 and

]

x;% = x;=1zu(1) yoot =y =17v(1) and 20 = z
where u(i),v(i} ¢ Z for i=1,...,n -(1).

Conversely, all automorphisms of the form (7) lie in A;lA. We deal with

these automorphisms in Corollary 2.2.8.

Now fix J € (1,...,n} and define wy as follows:
Wyl Xy b X3 , Yi b yi‘f for i ¢ J,
x; b x;71, yi b y; for i f Jand z szl
Then w;y is an automorphism of Hp of order 2. Let Ay ;5 = <A, wy>. If o e Ap

has order 2, then

Wyl X3 B Xj S T yi‘7z”(i) where u(i) e¢ Z for i e J,
x; b x;71z2001), y sy where u(i) ¢ Z for 1 ¢ J
and z p» z~! -(2).
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We give the result for these automorphisms in Corollary 2.2.10.

with K & (1,...,n}), we define another set of automorphisms of H, as
follows. Define Mg such that:

Ng: X3 P Y; , ¥Yi b x; for i e K,
x; P %21, yi o y;* for i /K and z 1 2z,

Certainly, each Mg is an automorphism of order 2 and, with certain
provisos, we may combine them with automorphisms in (2} and those in A to
form more automorphisms of order 2. Elementary considerations show that any
such automorphism, g, must be of the following form. Let X,¥ and 2

partition the set {(7,...,n}. Then

I}

Xig = yiza(i)l Yig Xiza(i) for i e X

LH}

x;9 = x;28(1) y.9 = p,~1 for i € Y
x;9 = xi‘7 , ¥i9 = yiza(i) for i € Z
and z9 = z=! where a(i) ¢ Z for i=1,...,n -(3).
The fixed ring for an automorphism of the type (3} is studied in Corollary

2.2.10. Observe that any automorphism of type (2} is certainly of type (3)

also.

when considering the automorphisms (7} in 2.2.5, we make the following

definition in order to allow us to adapt Theorem 2.2.3.
2.2.6 DEFINITION Let k[z,z"] be a Laurent polynomial ring in a commuting
indeterminate z over a field k. For

£(z) = apzt + ap,qzt*! + .. rap,gzttS € kiz,z71),

with a; and ag,t non-zero, we define the length of f, 1(f) to be s.

We now base our proof of the next result on the proof of Theorem 2.2.3.
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2.2.7 PROPOSITION Let S be the crossed product klz, z=!] *T where k is a
field, '« 2T and, for x, y e ", X.y = a(x,y)xy  where a(x,y) € <z>.
Suppose G = <¢g> where g € AutS has order 2, the action of g on T & U(S5)/<¢z>

is inversion and z9 = z. Then S is a left and right Noetherian SG-module.

PROOF As usual, we let R denote SG. we prove RS is Noetherian.
Step_ 1 An ordering on a spanning set for §.

Now, S is a free k<¢zr>-module with basis I, and so every element is a
sum of terms in

B = {f(z)x: f(z) is a polynomial in k<z», x e T'}.

We place an ordering on the set B. We have a map 7.:B - Ng x I' where
r(f(z)}) =(n,x) e NO X T where n = 1(f) as defined above.

We impose an ordering on Nj x I' as follows:
x & y where < is the ordering of Theorem 2.2.3

(n,x) < (m,y) & [
or x =y and n < m.

Step 2 Leading Terms

We use the fact that S is a free k¢z>-module with basis [I'. For each
0# s € S, let Supp(s) = {f(z)x ¢ B: f(z) is the coefficient of x in sJ.
Put ¢(s) = max(r (Supp(s)}) € Ng x T'. For each non-zero R-submodule I of
RS, put oI = (I1\(0}) €S Np x T.
claim If I € J are non-zero R-submodules of pS, then eI € pJ. If I € J,
then ¢I < ¢J.
Proof The first assertion is clear. Suppose that I € J and that oI = pJ.
Choose s ¢ J\I with ¢(s) minimal. Then there exists t e¢ I with
p(s) = p(t) =: (n,x) e Ng x . So s has a term f(z)x and t has a term g(z)x
for some f(z),g(z) € k[z,z“’] where 1(f) = l(g) = n. Suppose now that
deg(f) - deg(g) = u ¢ Npg. Then 2zUg(z) ¢ k<z> has 1l(zUg(z)) = 1(f(z}) and
deg(f) = deg(zYg). Hence, there exists ¢ € k such that p(s - czUt) < (n,x).

Since cz! ¢ U(R), we have that s - czUt ¢ J\I. This contradicts the
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minimality of p(s) thereby establishing the claim.
Adopting the notation in the proof of Theorem 2.2.3 and reproducing the
argument there, gives that,if s € S with p(s) = (n,x) ¢ Np x I, then
@(Rs) 2 p(5) + (0, Qe)
where x ¢ Q.. Since (1+z)V ¢ R has length v, we also have that
p((1+2)Vs) = (n+m, x). Together with the above containment, this gives:

p(Rs) 2 p(s) + (Ng, Q¢).

Step 3 Conclusion

Suppose 0 ¢ Iy € Iy is a strictly ascending chain of R-submodules of
RS. Then Iy € pIp) C eIz <€ ... and so we can select elements
a(i) = (n(1), x(i)) € pIj\pI;_1. We write each a(i) as (ay,isvv-r8rs1,1i7-
Define a(i)® to be (n(i),x(i)*) where x(i)* is as defined in Step 3 of
Theorem 2.2.3. By choosing a suitable subchain if necessary, we may assume
that all the x(i) belong to the same Q.. The set {a(i)*: i=1,2,...)} has
finitely many minimal members., By the choice of a suitable subchain if
necessary, we may assume that these minimal members are a(7)*,...,a(p)* for
some p ¢ N, Thus each a(i)* majorises at least one of a(1)*,...,a(p)*.

Finally, let t » p. Since a(t) fa(i) + (No,bs), we must have
ajci), t < aj(i),i for some j(i) e {1,...,r+1}. Consequently, a(t)*

majorises none of a(f)*,...,a(p)*. This contradiction proves the theorem.

This Proposition answers Question 2B for cases (7) in 2.2.5 where S is

a group algebra of the nth Heisenberg group.

2.2.8 COROLLARY Let H, be the nth Heisenberg group for some n ¢ N. Let
g € Aut(Hp) be an automorphism of order 2 such that x;9 = x;~1zu(1),
y;9 = y;~12z¥(1) and 29 = z for some u(i),v(i) ¢ Z (i=1,...,n). Let k be a
field and S the group algebra kH,. Now, G acts as k-automorphisms on the

ring S and SG is Noetherian.
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PROOF Writing S as k/z, z=1] = (Hy/<z>), we see that the hypotheses of

Proposition 2.2.7 apply.

A more direct approach will answer Question 2B for the automorphisms
(2) in 2.2.5.
2.2.9 PROPOSITION Let H, be the nth Heisenberg group as defined in 2.2.4.
Let J S (1,...,n} and define g ¢ Aut(H,) as follows:

x;9 = x;24(1), y.9 = y;~1 for i € J

yizufi) for i £ J

and X_ig Xi"f, Y_ig

and 29 = z=! where u(1),...,u(n) ¢ 2.

Let k be any field and G = <g>. Then (kH,)® is Noetherian.

PROOF We adopt the notation of Definition 2.2.4. For i e J, put w; = y;
and, for i ¢ J, put w; = x;. Let L = <z,wy,...,wp>. Then L is an Abelian,

G-invariant subgroup of H,. Theorem 1.4.4 shows that (kL)G is Noetherian.

Let v; = xizz“(i) for i € J and vy inZU(i) for i ¢ J. Then,

for i € J, vi9 = x;2220(1)z-u(l) = x,2zu(l) = v,
and, for i ¢ J, v;9 = y;2z2uli)z-uli) < y;2zu(i) = y;
Thus, vi € (kdp)® for i=1,...,n. Let

Hp' = <vy,...,vpL> = <xiz, Yir Xj, yjz, z: 1 edJ, 7 ¢ J. We claim that
(kH,’)G is just the Laurent polynomial ring
(kL)G [v,,v7“7; 4] ... [VhrVn_7;Tn] —(*)
where 7; denotes conjugation by v; for 1 = 17,...,n. Certainly,
(kHy?)C 2 (KL)C [vy,vy~17 T4] L. [vp v liral.
Suppose now that r e (kH,’)% so that
r = Zj f-(z,v;,...,Vn_y,w1,...,wn)vnj -(1)

where £5(2,V1, ..., Vn_1/Wi,--.,Wn) € k<z,vy,...,Vp1,Wy,...,Wp>  because
kHp” is a free k<z,vy,...,Vp-1,W1, ..., Wp>-module with basis fvgl:i e Z).

Now, since r e (kdp’)C,
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r=r9 =Ly (fj(z,V;,...,vn_1,w;,...,wn))gvnj -(2).
A comparison of the expressions (7) and (2) shows that
(£5(2,V1, e, Vg, W1, oo Wn))9 = £5(2,V1, ..., V1, Wi, . Wp)
for all j. We’ve shown that
(kHp? )G = (K<Z, V1, oo Vpo 1, Wi eew, W2 )0V, v~
We may repeat this argument by expressing k<z,vy,...,Vp.1,W{,..-,Wp> 85 a
free k<z,v{,...,vp-2,Wy,...,Wp>-module. Continuing this way, we establish
the claim (*).

By {G-W, Theorem 1.171, (an’)G is then Noetherian. 8ince IHp:Ap‘l < o,

(an)G is itself Noetherian by Theorem 2.1.6.

A corollary to this proposition will answer Question 2B for the nth

Heisenberg group when an automorphism of type (3) in 2.2.5 is acting.

2.2.10 COROLLARY Let n ¢ N and let H, be the nth Heisenberg group as
defined in 2.2.4. Let X, Y and Z partition the set (1,...,n}). Define

g € Aut(Hp) as follows:

xiza(i) for i e X

H

Yiza(i)r .y_ig

x99

x;9 xiza(i), yi9 yi'” for 1 ¢ Y

x;9 = Xi"I . ¥i9 yiza(i) for i e 2
and z9 = z=! where a(i) ¢ Z for i=1,...,n.

Let k be a field and let G = <g>. Then (kHp)C is Noetherian.

PROOF Let u; = xiyi—7, vy = X1'2Yi2 for i e X, u; = xi4, v; = y; for i e ¥,
u; = X3, Vi = Y1'4 for i ¢ Z and let w = z%. Define H,’ to be the subgroup
of Hp generated by uy,...,up, vy, ...,V w. It’s easy to see that r:Hp’ » Hp
where 7(u;) = xj, 7(v;) = y; and 7(w) = z for i=1,...,n is an isomorphism.
Now, it’s routine to check that, for i e X, u;9 = u;~!, v;9 = vyw@(i)-1,
for ie ¥, u;9=uwd(l), v;9=v;=! and, for ie 2z, u;9=u;"" and

vi9 = viwa{i). By the previous lemma with J = ¥, we have that (an’)G is
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Noetherian. As |Hp:Hp’l ¢ ®, Theorem 2.1.7 shows that (kH,)G is Noetherian.

These results are the best we have for the nth Heisenberg group. They
do in fact cover all automorphisms of order 2 of the first Heisenberg group

as the next Corollary shows.

2.2.11 COROLLARY Let H = <x, y, z: [x, y] = z, z central> be the first
Helisenberg group, k any field and ¢ any automorphism of H of order 2. Let

G = <p>. Then (kH)C is Noetherian:

PROOF Note first that if k has characteristic other than 2, then (kH)G is
Noetherian by Lemma 1.4.2. Thus, we may assume that char k = 2.

The method of proof here is to describe all the auvtomorphisms of H of
order 2 and show that Corollary 2.2.8, Corollary 2.2.10 or Proposition
2.2.9 apply.

Let ¢ be such an automorphism. Then p is completely specified by its
action on x and y because these elements generate H. Suppose p(x)} = xrytzu
and ¢(y) = xlyMz0 for some I,m,n,r,s,t e 2. Since «<z> = Z(H) is a
characteristic subgroup, ¢ acts on H/¢z> = Z2 and so we may associate with
¢ a member of the set U :=(X e GLy(Z): detX = t1], dependant on its action
on Z<. Using additive notation for H/¢z> to identify xiyj + Z with
(i, 7) ¢ 22, we have w(xiyj + Z) = x8yP + 2 where (i j)X = (a b). Suppose
p(x + Z) = xTyt + z and  p(y + 2) = xlym 4+ Z, Then we find in this case
that:

x- [ 15,
Hence, for any such automorphism ¢ we may use a triple (X, u, n) where
X e U u neZ to specify ¢.
We now see what the possibilities for such a ¢ actually are. Since

@2 = id, it is the case that X2 = 1. According to [Ne, Pages 179-181], we

have that the possibilities for X, up to conjugation, are:
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-1 0 0 1 ! 0
[ 0 -1 ], [ 1 0 ] and [ o -1 ]
The automorphisms for which the first matrix is the associated matrix
are covered by Corollary 2.2.8. If p is associated with the second matrix,

we see that u = n because pz(x) = x, and so, Corollary 2.2.10 gives the

result. Finally, suppose that ¢ is associated with the third matrix. Now

vy = p2(y) = p(y~1zR) = yz~0z N = yz;‘zn and so n = 0. An application of

Proposition 2.2.9 completes the Corollary.
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CHAPTER 3

PRIME IDEALS IN THE RI F_INVARI

In this chapter, we are concerned with developing the Morita
lcorrespondence of Theorem 1.2.9 and showing how these results may be
applied. wWe adopt the notation of Theorem 1.2.9 so that S is any ring, G is
a finite group of automorphisms of S5, T denotes the skew group ring S*G and
R denotes the fixed ring SG.

The Morita correspondence between the appropriate subsets of the prime
spectra of R and T and its consequences are well understood when 161-1 e s.
S. Montgomery has collated the known results in this case in ([Mo2]. In
§3.1, we make no hypothesis on the order of the group and provide
generalisations for many of the results in [Mo2]. For example, we have, in

the terminology of Definition 3.1.1:

3.1.9 THEOREM Let S be a ring and G a finite group of automorphisms of S.

Suppose P ¢ SpecgT and P € SpecS. Then 6(?) is minimal over PN R if and

only if P is minimal over PO*G. In particular, B(?) is minimal over P N R.

Theorem 3.1.21 generalises what is perhaps the fundamental result in

Montgomery’s paper, namely [Mo2 Theorem 2.1].

3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of S.
(i) Given P e SpecgS, there are a finite number of primes in SpecgR
minimal over P 0N R, {(p¢, P2,.... Pp) Say, with m < 1G1. Also, (0h;p;}tr(s)
is nilpotent modulo P N R.
(ii) Given p e SpecgR, there exists P ¢ SpecgS such that p is minimal

over P N R. Moreover, P 1is unique up to its G-orbit in SpecS.
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Due to the similarity in content, we use [Mo2] as a model for our

results in §3.1.

While Montgomery deals with the special case where 1611 e S, we devote
the second section here to the other extreme case, namely where {Hl = 0 in
S for all non-trivial subgroups H of G. This usually involves the
characteristic of S being prime, g say, and G being a g-group. We can then
utilise, for example, Proposition 1.2.12. With
SpecrS = (P ¢ SpecS: SfS N S Z P}, we provide a special case of Theorem

3.1.21:

3.2.13 THEOREM Let S be a ring of characteristic g and G a subgroup of
Aut S of order g@. Then

(i) Given P e SpecrS, there exists p e¢ SpecgR such that p is the unique
prime minimal over P N R not containing the trace.

(ii) Given p € SpectR,lthere exists P ¢ SpecpS such that p is minimal over

P N R, Moreover P is unigue up to its G-orbit.

We close this chapter, in §3.3, with applications of the earlier
results. Some relate to the general case of §3.1 while others are in the
prime characteristic setting of §3.2. We state two of the more useful

applications.

3.3.8 LEMMA Let S be a ring and G a finite group of automorphisms of 5.

Suppose p,q € SpeciR both lie under P ¢ SpecS. Then ht(p) = ht(q) = ht(P).

3.3.24 COROLLARY. Let K be a commutative ring and let S be a K-algebra
acted on by G, a group of K-automorphisms. Suppose S satisfies the
Nullstellensatz over K. Suppose further that R/trg(S) also satisfies the

Nullstellensatz over K. Then R must also have this property.
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§3.1 General Situation

We begin this section with a series of definitions which will prove

helpful in the discussion.

3.1.1 DEFINITION Recall from 1.1.1 that f = deG ge T, I =7TFfFTN S and
for X & 5, X9 := ngeG X9. There are subsets of the various spectra which we

look at. These are:

SpeciR = (p ¢ SpecR : tr(S) € pl;
SpecyS = (P ¢ SpecS : I € P};
SpecgS = (P € SpecS : f [ J/(PP*G)};
SpecsT = {P ¢ SpecT : f f BJ.

We give an easy lemma to show that there is no distinction between

SpecgS and SpecS when 161~ ¢ 5.

3.1.2 LEMMA Let S be a ring and G a finite group of automorphisms of S with

the property that 161-! ¢ 5. Then SpecgS = SpecS.

PROOF Certainly, SpecgS & SpecS. Now, let P ¢ SpecS and suppose that
f € /(P°*G). By Theorem 1.2.11(iii), /(P°*G) is nilpotent modulo PP#*G and
so there exists n e N such that f7 e PO*G. Now,

£2 = (Lgego)f = Lgeg 9f = Lgeg £ = 1GIE.
S0 it’s easy to see that 17 = 1G17-1£. Since 161 is a unit in S, we have
that f € PO#*G, Comparing coefficients shows that 7 ¢ P®. This contradiction

proves the lemma.

The definitions in 3.1.1 are used in the next two definitions.
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3.1.3 DEFINITION There are three equivalence relations which we define on
certain spectra.
(i) We already have the notion of G-conjugate primes in SpecS.
(ii) For 3, b e SpecT we say that 2 P @ if and only if PNns = b n s,
(iii) For p, g € SpectR, we say that p ~ g if and only if p and g are

both minimal over P N R for some P & SpecSs.

We elaborate on each of these definitions in turn.
The first definition is already understood and is easily seen to be an
equivalence relation. For P e SpecS, we let [P] denote the class of all
3 G-conjugates of P. We may also define a partial ordering on SpecS/G as
follows. We say [P] € [Q] if there exists h e G such that ph ¢ Q. Of
course, we may refer to G-conjugacy on the subset SpecgS.

By inspection, the relation p on SpecT is an equivalence relation.
Lemma 1.2.10 and Theorem 1.2.11(i) show in fact that P p @ if and only if
there exists P e SpecS such that P and Q are both minimal over PO*G. We
denote the p-class containing P by [P]. We may also define a partial
ordering on SpecT/p as follows: [P] € [@] if there exists ?7 € [?} and
b, e [0] such that ?1 < b;. To see that this actually defines a partial
ordering, suppose [P] < [b} and that [P] 2 [0Q]. By definition, there exist
ﬁ,,?z e [P], b,,bz e [Q] with %1 < b, and %2 2 bz. Intersecting these
inequalities down to S, we find, by Lemma 1.2.10, that P° = Q0 where
P,Q € SpecS such that P; N §=P,N 5 =r° and 0y A S =0, N S = 0°. The
definition of p shows that [?] = [b]. Now, p 1is also an equivalence
relation on SpecgT. 1It’s worth noting that Theorem 1.2.11(1) and
Proposition 1.2.12 show that when char S = q and IGt = g@ ( g prime,
a e N) p collapses to the trivial relation.

At the moment it is only clear that ~ is a symmetric relation on
SpéctR. It is non-trivial to see that the reflexive and transitive

properties also hold. We establish these properties in Theorem 3.1.9.
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We examine certain topological properties of the spaces SpecR, SpecS

and SpecT with respect to the 2Zariski topologie&. These topdlogies are
defined as follows.
3.1.4 DEFINITION We define the Zariski topology on SpecS. The closed sets
of the Zariski topology on SpecS are defined as follows: let Y be a subset
of 8, then the closed sets are of the form v(Y) := { Pe SpecS : P2 Y }
where we may assume that Y is an intersection of primes.

We have a Zariski topolegy defined on SpecR with the closed sets
defined to be u(X) = { pe SpecR : p 2 X } where X is a subset of R which
we may assume to be an intersection of primés in SpecR.

Similarly, for T we have a Zariski topology on SpecT with closed sets
w(z) = {( Pe SpecT: Z & P ) where Z is a subset of T which we may assume to
be an intersection of primes of T.

0f interest are certain associated topologies. First, we have the
topologies on the open subsets SpeciR, SpecgS and SpecgT which are induced
by the zariski topologies on SpecR, SpecS and SpecT.

We also define some quotient Zariski topologies. A general explanation
of their construction is given here. Suppose ¢ is an equivalence relation
on Spec W for some ring ¥ and that r : SpecW -» (Spec W)/o is the projection
map. Then U § (SpecW)/0 is said to be closed if and only if ~1(u) is
closed in Spec W. Thus, we have quotient Zariski topologies on SpecS/G,
SpecgS/G, SpecT/p and SpecgT/p. Later, once we have established that ~ is
an equivalence relation on SpecgR, we will also have the quotient Zariski

topolgy on SpeciR/~.

The first result in this section is fundamental as it provides a basis
for all else that follows. It is essentially the prime correspondence of
the Morita context already stated in Theorem 1.2.9. We expand on that basic

result here.
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3.1.5 THEOREM Let S be a ring and G a finite subgroup of AutS. Let

A

it

(N <cT !N

h

NP;, P; ¢ SpeceT }

and {}

{J <R : J =Np;, p; € SpeC¢R }
and define a map E : A » () where B(nﬁi) = {reR:rfe n}i }. Let B be
the following restriction of B, B: SpecgT » SpecyR where B(%) = B(?}.
Then:

(i) 3 is an order preserving, intersection preserving map;

(ii) B is the prime correspondence of the Morita context;

(iii) the inverse of B is B“’(p) = {t e T: tr(s.t.S) € p) where the dot
denotes the T-module action on S;

(iv) B is a homeomorphism with respect to Zariski topologies on SpecgT
and Spec¢R.

Moreover, the restriction of B8 to primitive ideals,

Bpy: PrimSpeceT - PrimSpecyR, given by ﬁpv(?) = B(P) is also a bijection.

PROOF Since 6(%) = {r e R: rf ¢ ?}, properties (ii) and (iii) are immediate
from Theorem 1.2.9. The properties of B follow from those of B stated in
(ii) and (iii).

We now show that 8 is a homeomorphism. First, we recall the definitions
of closed sets in SpecyR and SpecgT. A closed set in SpecgR is of the form
ug(X) := {(p ¢ Spec¢R: p 2 X} where X is a subset of R. A closed set in
SpecgT is of the form wg(Z) := P e SpecgT: P 2 2z} where Z is a subset of
T. Suppose wg(Z) is such a subset. Clearly, we may assume that Z = ”keA(%k)
where the P, are all the primes in wg(Z). Now, B preserves intersections as
noted above and so 3(2) = nAﬁ(%x). with X = B(Z), it’s clear that
B(we(Z)) = ug(X), a closed set in SpecyR. Thus, # is a continuous map.

We now show that ﬁ‘7 is a continuous map. Let ug(X) be a closed set in
Spec¢R. As before, we may assume that X is an intersection of primes in

SpecgR in that X = "7eFPy for some Py ¢ SpectR. Let Z denote ﬂ75r6“7(p7),
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an intersection of  primes in SpecgT. It’s easy to see that
B"(ut(x)) = wg(Z2), a closed set in SpecgT. Thus, B-! is a continuous map.

Hence, we’ve shown that f is a homeomorphism.

Finally, Proposition 1.2.4 shows that B is a bijection between the

subsets of primitives.

It’s worth making an observation regarding f here.
3.1.6 NOTE Let P ¢ SpecgT. Then there are two cases:
either (i) P = (PN S)T - then, by definition of g,

B(P) =P NR

or (ii) P> (P n s)T - B(P) 2PN R.

The following lemma is critical in providing us with another

characterisation of the map .

3.1.7 LEMMA Let S be a ring and G a finite group of automorphisms of 5.
Suppose P ¢ SpecgS and let ?1,?2,...,§n be all the primes of T minimal over
PO*G, not containing f. Let p; € SpecyR such that 6(?1) =p; (i =1,...,n)
and let N = Njp;. Then (Ntrg(S))!G! ¢ P N R.

NOTE It follows from the definition of SpecgS that n 2 1. In addition,

n < 1G1 by Theorem 1.2.11(1i).

PROOF Let ?7,ﬁ2,...,§n,§n+1,...,§m be all the primes of 7T minimal over
PO*G with py,...,pp, and N as stated. By Theorem 1.2.11(i), m < 1Gt. By
construction, we have f € §n+1 n...n ﬁh while, by definition of @,
Nf € ?1 n %2 ft,..n ﬁn- Combining these two facts we have that
Nf & ﬁ, n ?2 n...n ﬁm so that NfsS & ﬁ, n ﬁz n...n ﬁm. Applying Theorem
1.2.11(iii) gives us that (N£S)1Gl ¢ pOx*G. Now, for s ¢ &S,

£sf = f5Lgeed = fLgeeSg = fLgecosd = fLgegsd = ftr(s)




and so fSf = ftr(S). Using this and the fact that R € Cp(f), we have that
(N£S)2 = NES.NFS = NFSENS = Nftr(S)NS = Ntr(S)NES.

Repeating this process, we find that (Ntr(s))!G!-Infs = (NfS)IGl ¢ pPO#G,

Thus, (Ntr($))IG\f = (Ntr(s))'\G\~-INESf & PO*G. Comparing coefficients,

(Ntr(s))\Gl ¢ po, Moreover NSR and tr(s) ¢ R giving that

(Ntr(S))1Gl ¢ P N R as claimed.

The above lemma enables us to distinguish between those primes in

SpecgS and those not in SpecfgsS.

3.1.8 LEMMA Let S be a ring, G a finite qgroup of automorphisms of S,
P ¢ SpecS. Then the following are equivalent:

(i) P £ SpecgS;

(ii) (tr(S))? € PN R for some n ¢ N;

(iii) (tr(s))'€l ¢ p n R.

PROOF First we prove (i) #» (iii). Suppose P ¢ SpecgS. Thus we have that
f e J(PO°*G) and so, by Theorem 1.2.11(iii), (£5)!6} ¢ PO*G. Now,
(tr(8))\Glf = (£S)1G1f as noted in the proof of Lemma 3.1.7. Comparing
coefficients we have (tr(S))}6! ¢ PO and so (tr(s))!¢l ¢ P n R.

That (iii)  (ii) is vacuous.

For (ii) = (i), suppose now that P e SpecgS. Then there exists
P e SpeceT minimal over PO%xG, Theorem 3.1.5 shows that 6(?} contains
PN R =PNR, Since tr(s}) & 6(@), tr(s) € /(P N R) and so, in particular,

(tr(s))? € pn R for all n ¢ N. This proves the lemma.

We now employ Lemma 3.1.7 to give an interpretation of the map § that

is more intuitive than Theorem 3.1.5.
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3.1.9 THEOREM Let S be a ring and G a finite group of automorphisms of S.

Suppose P € SpecgT and P ¢ SpecS. Then 6(@) is minimal over PN R if and

only if P is minimal over PO*G. In particular, B(P) is minimal over PN R.

PROOF By definition of 8, PN R & p =:8(P). Let Py,Py, ..., P, be all the

members of SpecgT minimal over (%ras)T. Let py,...,pp € SpecgR be the

corresponding primes under the Morita context so that 6(?1) = pj
(i=1,...,n) and let N = N;p;.
Suppose P is minimal over PP#*G. Then, by Theorem 1.2.11(i), Pns=po

~

and we may assume P = ﬁ;. Suppose that p is not minimal over ) R, so that
there exists q ¢ SpecR with PN R € g € p. Since tr(S) € p, tr(S) € q. By
Lemma 3.1.7, Ntr(S) € (PN R) = y(PN R) € q. Since tr(5) € g and g is
prime, we have that N € q. Thus, there exists j € (1,...,n} such that
pj € q. Thus, 6‘7(pj) < pT(q) < 6“7(p1) s0 that ﬁj c ?;. This
contradiction proves the reverse direction.

Suppose conversely that B(ﬁ) is minimal over P N R. By the above
Ntr(S8) € /(PN R) S B(P) and so, since tr(S) € B(P) and B(P) is prime,
there exists k ¢ (7,...,m} such that p; € 6{@). Since pg 2 P N R and 6(?)
is minimal over P Nt R, we have ﬁ(ﬁk) = pg = B(P). Thus, P = ﬁk is minimal
over PO*G,

For the last part, PN S = 00 for some @ ¢ SpecS by Lemma 1.2.10. Thus,

P is minimal over Q°#*G by Theorem 1.2.11(ii) and so, by the above, B(?) is

minimal over 0Q° " R = P N R.

This theorem enables us to show that the relation ~ on SpecyR, defined
in 3.1.3(iii) is in fact an equivalence relation. We first establish that ~
is reflexive. Let p e SpecgkR and use Theorem 3.1.5 to find
P = ﬁ"’(p) ¢ SpecgT. By Lemma 1.2.10, there exists P e SpecS such that P is
minimal over PP*G, Applying Theorem 3.1.9 yields that p is minimal over

P N R and we have established that p ~ p. Now we show that ~ is transitive.
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For, if p,q,a ¢ SpecyR with p ~ g and g ~ a then by definition of ~ there
exist P,Q ¢ SpecS with p and g both minimal over PN R and g and a both
minimal over ¢ N R. Theorem 3.1.9 shows that B"(p) and B"(q) are both
minimal over PO*G while 6‘7(q) and B-'(a) are minimal over Q9*G. Theorem
1.2.11(1) shows that P2 =8 T(p) n s =8-1(q) n s =B~ Tta) N § = g°. Thus p
and a are both minimal over PN R = QN R and so p ~ a. This shows that ~
is transitive and therefore an equivalence relation. It should be noted
that, when charS = g and G is a g-group, then ~ is the triwvial relation. In
this case, suppose p ~ g. Then Theorem 3.1.9 shows that ﬁ"’(p) e B8~ 1(q).
But, as already noted in 3.1.3, p is trivial in the g-case and so
B-"(p) = B~T(qg), proving that p = g. We may also define a partial ordering
on (SpecyR)/~ as follows: [p] & [g] if and only if there exists py e [p],

g; € [q] such that py € gy.

We can now prove the following theorem which generalises [MoZ2, Theorem

5.11.

3.1.10 THEOREM Let S be a ring and G a finite subgroup of Aut S. The
induced map E: (SpecgT)/p - (SpectR)/~ such that E([E’]) = [B(I’)] is a well
defined order preserving homeomorphism. Let
Epv-' (PrimSpecgT)/p - (PrimSpecyR)/~ be the restriction of (. Then Epv is

also an order preserving homeomorphism.

PROOF Suppose f’,b ¢ SpecegT such that P p ?2 Thus, by definition of p,
PNS=0NS5=PO for P e SpecgS, say. By Theorem 3.1.9, B(?) and 6(@) are
both minimal over P 1 R and so 6(15) ~ B(b). We’ve thus shown that _B is well
defined. Now suppose [P] € [Q] so that there exist fD; ¢ [P] and b; ¢ [D]
with P; € 0;. Since B preserves inclusions, @B(Py) € B(07) and so
B([Py]) = [B(Py)] € [B(Dy)] = B([Q7]).

We now show that f_3 is a homeomorphism., First, we show what the




respective closed sets are. A closed set in SpecgR is of the form
up(X) := {p € SpecgR: p 2 X} where X is a subset of R. We may assume X is
an intersection of primes in SpecyR. Let ¢:SpeciR - (SpecgR)/~ be the
projection map so that the closed sets of (SpecyR)/~ are precisely the sets
x such that ¢~7(x) = up(X) for some X € R. A closed set in SpecyT is of the
form wge(Z) := { P e SpecgT: P 2 z) where Z is a subset of T. As above, we
may assume that Z is an intersection of primes in SpecgT. Let
y¥:SpecgT > (SpecgT)/p be the projection map. Then the closed subsets of
(SpecgT)/p are sets z such that y~1(z) = wg(Z) for some Z S R.

We show that B is continuous. Let z be a closed set in (SpecgT)/p in
that 4~ '(z) = we(Z) for some subset Z S T. We may assume 2 is an
intersection of p-classes of primes in SpecgT so that Z = nl-%i where
{?i: i e I} S SpecegT is a union of p-classes. Observe that, by Theorem
3.1.9, P P bif and only if B(f’) ~ 6(@) and consequently, ﬁ{f’i) :1le I}
is a union of ~-classes. Let X = B(Z), which equals ﬂia(f’i) since f
preserves intersections. Let x = p(uy(X)), a closed set in (SpeciR)/~. We
claim that x = B(z). Let [p] € B(z) so that [p] = B([P]) for some
Pe SpecgT with 7‘7([}.3]) S w(Z) where we may assume p = B(f’). In
particular, P22z and so p = ﬁ(f’) 2 E(Z) = x. Thus, [p] e x and so
_é(z) € x. Conversely, suppose [p] € x¥ so that p 2 X and fg o= 6‘7(p) 2 Z,
Thus, [p] = B([Q]) € B(z), proving the equality.

We now show that 5"7 is also continuous. Let x be a closed set in
(Spec¢R)/~. By definition, w"’(x) = ug(X) for some semiprime ideal X of R
such that X is an intersection of primes in SpecgR. So we have that
X = Npp) where we may assume that (py: A ¢ A} is a union of ~-classes. As
noted in the preceding paragraph, for 3-", @ € SpeceT, P P Z_) if and only if
6(3’) = 6(@). Thus, the set {6"7(p)\): AN ¢ AJ] is a union of p-classes. Let
Z = a8~ T(py) and let 2z = y(w(Z)). We claim that B~7(x) = z. Let,
[f’] € E"(x) sO that [f’] = E‘f([p]) for some P ¢ SpectR with

cp‘1([p]) ¢ u(X) where may assume p = (3(25). In particular, p 2 X and so
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P = 6‘7(p) = nAﬁ"(px) = Z., Thus, [%] ¢ z. Conversely, suppose that [?] € Z
so that P2 2 and g := 8(P) 2 B(Z) = X. Thus, [P]) ¢ B~'(x), proving the
equality.

The restriction map Epv is well defined by Theorem 3.1.5 and its

properties follow immediately from those of B.

We now show to what extent members of SpecgT are distinguishable when

comparing their intersections with R.

3.1.11 COROLLARY Let S be a ring, G a finite group of automorphisms of S.
Suppose that ?,b e SpecgT and J(PNR) = y(0NR). Then [P] = [b], (and

~

hence PN R = b n R).

PROOF By Lemma 1.2.10, PN S=P°, 9N S = Q° for some P,Q ¢ SpecS. Let
P= %1,§2,...,§n be all the primes minimal over PO*G not containing f. ( n
is finite by Theorem 1.2.11(ii)). Let p; = 8(P;) (i=1,...,n) and let
N = Np;. Then Theorem 3.1.9 says that
Ntr(s) € /(P N R) = /(2 N R) € B(Q).

Since 6(@) is prime and doesn’t contain tr(S), there exists j such that
pj & B(0). By Theorem 3.1.9, B(0) is  minimal over Q N R. Since
/(0N R)= y(PNR)S pj, we have pj = B(0). Applying B~! this gives ﬁ3 = 0.
Intersecting these primes down into S gives that P = 09, Finally,

PANR=PPNR=0Q°NR=0NR.

The above result provides a similar corollary for determining primes in
S from their intersection in R. First we state a theorem, due to S.
Montgomery, which shows to what extent we c¢an do this in particular

situations.
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3.1.12 THEOREM Let S be a ring acted on by a finite group G. Suppose that
P,Q € SpecS and that PN R = Q N R, Then P and Q are in the same G~-orbit in
any of the following situations:

(i} § is commutative;

(ii) Every prime ideal of S is generated by its intersection with the
centre Z of S;

(iii) 16171 ¢ s;

(iv) 8§ is a semiprime PI-algebra and either P or Q has the property
that the polynomial identity of lowest degree satisfied by the factor ring

of S by that ideal is that satisfied by S.

PROOF [Mo2, Proposition 1.1].

It should be noted that the proof of (iii) above is heavily dependent
on the Bergman-Isaacs Theorem which we stated as Theorem 1.3.2. We now
provide a consequence of Corollary 3.1.11 and go on to show that it
provides a generalisation of (iii) without recourse to the Bergman-Isaacs

result.

3.1.13 THEOREM Let S be a ring and G a finite group of automorphisms of 5.
Suppose P € SpecgS and Q ¢ SpecS with (P N R) = /(Q N R). Then P and ¢ are

G-conjugate, so that Q € SpecgS, and PN R = ¢ N R.

PROOF If 0 ¢ SpecgS then Lemma 3.1.8 shows that (tr(S))? S QN R=PNOR
and then the reverse direction of Lemma 3.1.8 shows that P ¢ SpecgS. Thus,
we have Q e SpecgS also. By definition of SpecgS there exists ﬁ,b € SpecgT
with Pns=p  and gns = go. Since J(P O R) = /(0N R),

/(P 0 R) /(b N R) and so we apply Corollary 3.1.11, to find that P P @.

~

PN s = b N S =09 and so P and @ are G-conjugate.

Thus, P°




We now give our proof of Theorem 3.1.12(iii).

3.1.14 COROLLARY Let S be a ring acted on by a finite group of
automorphisms G with (Gi~! ¢ S. If P,Q ¢ SpecS with PN R = Q N R then P

and Q are in the same G-orbit.

PROOF Lemma 3.1.2 shows that SpecgS = SpecS and so we may apply Theorem

3.1.13 to give the result.

The following example, due to Passman, shows that the hypothesis
P,Q e SpeceT is in fact necessary in Corollary 3.1.11 and that it is
necessary toc insist that P ¢ SpecgS in Theorem 3.1.13. This example

appears as [Mo2, Exercise 1.2].

3.1.15 EXAMPLE There exists a prime PI-algebra S of characteristic g # 0
with an outer automorphism group G of order q, such that T contains two

A ~

primes P, Q0 ¢ SpecT with f ¢ PN O satisfying PN R = Q N R but that P and
@ are not p-equivalent. Also we can find P,Q ¢ SpecS, not G-conjugate with
PN R=0QNR.

Let A4 = k[x;,...,xqj be the commutative polénomial ring in g variables
over a field k of characteristic g# 0, and let M = (x1,...,xq), the
maximal ideal generated by all the x;. Let ¢ be the k-automorphism on A

such that o(x;) = x;,7y for i < g and o(xg) = xy. We use the following

notation:

S = [ A A ], p = [ M A ], 0 = [ A A ], = [ 1 1 ]
M A M A M M 0 1 .
The automorphism of A, ¢, becomes an automorphism of the ring S by letting
it act on each entry. Let r € AutS be conjugation by U. Then ¢r = 7r¢ is an
automorphism of S of order g. It is outer since it moves the centre of 5.
Let G = ¢ 07 »>. Since S/P % S/Q0 = k, P and ( are primes of 5. Moreover,

they are G-stable since r is inner and ¢ acts on entries. By Proposition
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1.2.12 there exists a unique prime ideal of 7, minimal over P*G, P say. It
is clear that, since T/(P*G) & kG, P/(P*G) % aug(kG) and so f e P.
Similarly, £ e b, the unique minimal ideal over @*G. We claim that

PNR=QNRand so PN R = QN R, If

x:[ a b ]’ thenxr‘fz[a»«c —a—c+b+d]l Xq=[ a’ b"]
¢ d c -c+d o . S

Thus, X

= X9 forces W = -a-c+b+d. Since ¢ fixes A/M, b = K (mod M) and
because c ¢ M, it follows that a = d (mod M). Thus, PN R & Q and
QNRG P It follows that PN R = Q N R.

That this example works is not reliant on the fact that (Gl = 0 in S,
only that 161 is not a unit in S. In fact R.Guralnick and C.L.Hung have

shown that the above example can be 1lifted to characteristic 0. See

[Mo2, Example 1.2] for details.

Theorem 3.1.9 provides us with an intuitive way of viewing the prime
correspondence of Theorem 3.1.5. The next lemma gives us a more concrete
way of viewing the map 8 and, in fact, when the trace map is onto, it shows

that p = ( P + YgecT(9 - 1)) N R.

3.1.16 LEMMA Let S be a ring, G a group of automorphisms of S. If

P e SpecgT and B(P) = p then ptrg(s) < ( P+ LgegT(9-1) ) M R S p.

PROOF Let x ¢ ( P + EgEgT(g—I) )N R Then x =y + t for some y ¢ %,
t e ZgEgT(g—1). So xf = yf + tf = yf ¢ P because (ZgE@T(g—f)).f = (0. By
Theorem 3.1.5, x € p. Suppose now r ¢ R. Then
re pée>rfe P
& rfs e P forall se S
> Lgegrsdg e P for all s ¢ S

3 EgGGrsg e ( P+ LgegT(9-1) ) N R for all s ¢ §
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» r.trg(S) S ( P + LgegTlg-1) ) N R
% r.trg(S) S p (by first part)
% r e p (since trg(S) € p, prime).
Thus, the above must be a chain of equivalences and so
r.trg(S) S pée>» r e ped» r.trp(s) < ( P+ EgeGT(g—U ) A R, proving the

lemma.

We now consider the connection between primes in S and those in T. The

following theorem encapsulates the connection between SpecS and SpecT.

?_;.1.17 THEOREM Let S be a ring, G a finite subgroup of Aut S. Define
a:SpecS » (Power set of SpecT) such that «(P) = [15 : P is minimal over
PO*G }. Then

(i) o is a closed map with respect to the Zariski topologies.

(ii) The induced map &:SpecS/G - SpecT/p is an order preserving map and
is a homeomorphism with respect to the guotient Zariski topologies.

(iii) The restricted maps a,:SpecgS - (Power set of SpecgT), where
ar-(P) = a(P) N SpecgT, and apV:PrimSpecS - (Power set of PrimSpecT), where
apy(P) = a(P) N PrimSpecT, are also closed.

(iv) Finally, their quotient maps Wp:SpecgS/G » SpecgT/p  and

'o’sz:PrimSpecS/G - PrimSpecT/p are homeomorphisms.

PROOF By [P2, Proposition 16.7] the results for op, and @p, follow
immediately from those for o and @&. Since «, concerns the induced
topologies of SpecS and SpecT with respect to the open sets SpecgS and
SpecgT, it again suffices to prove the result for a.

We prove (i) first. Let v(X) be a closed set in SpecS where X = Nj; rP;
for some primes P; € SpecS and let P e v(X) so that P2 X. Let
X = N; r(P;O%G). If P ¢ a(P) then P is minimal over PO*G. Since P;° S PO

for all i e I, P2 X and so a(P) & v(?(). Conversely, let b € V(3() so that
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Q2 N, 7(P;°%G) and N;, 7P;© S @° € Q where Q N S = Q° for Q e SpecS. This
shows that ngegxg S @ and since G is finite, we have h ¢ G such that
xh ¢ Q. Let h denote y"’. Then X & QY. We've shown @Y ¢ v(X) and since
a ¢ a(QY) we have that v(%) S a(v(X)). Thus, v(}) = a(v(X)), proving {(i).
Now we consider statement (ii) for the map &. First we show that & is
well defined and preserves order. Let P,Q € SpecS with P and Q G-conjugate.
since PO = Q°, W([P]) = [{P e SpecT: Pns =pPO0)] = &([0]). Now we show &
preserves inclusions. Suppose Q@ & P are primes in SpecS and let
[P] ¢ G([P]). Since Q°*G & PO*G & P, there exists Q e SpecT minimal over
00*G with O S P, by Theorem 1.2.11(i). Since Q ¢ @(Q), [a(Q)] € [G(P)].
} Secondly, we show @ is a homeomorphism. To do this we examine the
closed sets of SpecS/G and SpecT/p. Let y be a closed set of SpecS/G so
that ~~'(y) = v(¥) for some Y = N;,rP;. Since =~ !(y) is a collection of
G-orbits, we may assume Y = ;. rP;9. Conversely any such intersection of
G-prime ideals gives rise to a closed set in SpecS/G. Now, let z be a
closed set in SpecT/p so that +y~!(z) = w(Z) with Z = 0P, for some
%X € SpecT where v:SpecT » SpecT/p is the projection map. As before, we may
assume (ﬁk} is a collection of p-orbits. Thus, letting Ny = { P:Pis

minimal over PXO*G } where ﬁk N 3§ = PO for P, ¢ SpecS, we have Z = n%x.

Thus:
P22z
e P20 (N(P: P e N\JJ
& P2 (M {N(P: P e N\}J)IG! using P prime
o P2 Ny (P\C*G) by Theorem 3.1.14.
& P 2 NyPO

So we may assume that Z = M) P\°.

Here, we show that @ is a continuous map. Let y be a closed set in
SpecfS/G, so that w"(y) = v(Y) for some set Y & S where we may assume that
Y = N;P;9 for some P; € SpecS. Let Z = Y. With z = y(w(Z)}, we show that

G(y) = z. To this end, let [P] € y so that P e v(Y) and so, P 2 Y. Clearly,
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for P e a(P), Z S P and hence &([P]) ¢ z, proving &G(y) S z. Now, let
[&] ¢ z so that, without loss of generality, @ 2 Z. Now, b ns =09 for
some Q € SpecS. Since Z & P, P2 Y. Thus [Q] = @(l[Q]) ¢ ©(y}, proving the
opposite inclusion.

Finally, we show that &' is a continuous map. Let z be an arbitrary
closed set in SpecT/p so that 7‘7(2) = w(Z) for some subset Z of T where,
as above, we may assume that Z = N;P;© for some P; ¢ SpecS. Put Y = Z and
let y = x(v(Y)). We claim that a!(z) = y. For, let [P] € z where we may
assume that P 2 Z. With P 0 S = PO for some P ¢ SpecS, we have that P 2 Y.
Thus, &”7([%]) = [P] ¢ y. Now, let [Q] ¢ y for some Q ¢ SpecS with Y € 0.
Then, for @ ¢ SpecT, minimal over Q9*G, we have that Z ¢ b, [@] € z and

@([0]) = [Q]. Conseguently, [0Q] ¢ @ '(z) and this completes the proof that

a! is a homeomorphism.

We may now compose the maps @& and E in order to get a map from SpecgS/G

to SpeciR/~ as described below.

3.1.18 THEOREM Let S be a ring and G a finite group of automorphisms of S.

Then the map ¢: (SpecgS)/G » (SpeciR)/~ given by composing ® and f# as
shown:

(SpecgS) /G - BN (SpecfgT)/p B, (SpeciR)/~

[P] 1 > [P] 4 > [p]
so that o([P]}) = {(p : p 1is minimal over P N R, tr(S) € p})/~ is an order
preserving homeomorphism. Moreover If we restrict ¢ to the subsets
consisting of primitive ideals only, we get a bijection

ppv: (PrimSpecgS)/G » (PrimSpeceR)/~ such that ppy([P]) = ¢([P]).

PROOF This result is immediate from Theorem 3.1.10 and Theorem 3.1.17.

So far we have neglected to discuss the relationship between SpecyS and
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SpecgS. It’'s easy to see that SpecyS & SpecgS in general. For, if P is a
prime in S with P £ SpecgS then there exists P ¢ SpecT minimal over PO#*G
containing f. Thus, I = SfSN SS PN S =P°C P and so P f£SpecyS. We've
shown that SpecrS & SpecgS. In general, however, the containment is strict

as the following example shows.

3.1.19 EXAMPLE There is a ring § and a group acting on S for which SpecrS
is strictly contained in SpecgS.

Let S = 0, the field of rational numbers and G be a non-trivial finite '
group acting on § with the trivial action. Now SfS is a proper ideal of T

and so I = SfSN S =0. Thus, SpecsS = @. Lemma 3.1.2 shows that

SpecgS = SpecS and so SpecgS # f.

We now reach the climax of this section where we relate certain primes
of R to certain primes of S. When the order of the group is invertible in

the ring S, Montgomery has preoved the following theorem.

3.1.20 THEOREM Let S be a ring acted upon by a finite group of
automorphisms, G. Suppose that 161=7 € s.

(i) Given P ¢ SpecS, PN R =p;y N pp N ... N p,, where m < 1Gl and the
{p;} are the set of primes in R minimal over P N R.

(ii) Given p € SpecR, there exists P e SpecS such that p is minimal

over P N R. Moreover, P is unique up to its G-orbit in SpecS.

PROOF [Mo2, Theorem 2.1].

when 1617 ¢ S, tr(S) = R and so SpectR = SpecR. Lemma 3.1.2 shows that
SpecgS = SpecS. Thus, the following theorem is indeed a generalisation of
Montgomery’s Theorem. It has no hypothesis on the order of G other than

being finite.
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3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of 8.
(1) Given P ¢ SpecgS, there are a finite number of primes in SpectR
minimal over P N R, (py, P2, --., Py} say, with m < 1Gt. Also, (N;p;)tr(S)
is nilpotent modulo P N R.
(ii) Given p e SpecyR, there exists P ¢ SpecgS such that p is minimal

over P N R. Moreover, P is unique up to its G-orbit in SpecSs.

PROOF We prove (i) first. Let %1,52,“.,?n be all the primes in SpecgT
minimal over PO*G, The definition of SpecsgS shows that there must be at
least one of these and Theorem 1.2.11(ii) shows that n < 1G1. Let
g; = B(P;) (i =1,...n) and set N =0;g;. Lemma 3.1.7 shows that
Ntr(S) € /(P N R). By Theorem 3.1.9, g; is minimal over %i NR=PNAR
(i = 1,...,n). It remains to show that these are all the members of SpecyR
minimal over P ft R. Let g e¢ SpectR with PN R € g. As noted in the previous
part, Ntr(S) € s(P N R) € g. Since tr(S) € g, NS g and so there exists
j e (1,...,n} such that g; € q. This completes the proof of (i).

For (ii), let p = B(P) for some P ¢ SpecsT. By Lemma 1.2.10, P n § = pO
for P ¢ SpecgS. Then Theorem 1.2.11(i) shows that P is minimal over PO*G.
By Theorem 3.1.9, p is minimal over P N R. Suppose now that p is minimal
over QN R for some Q € SpecS. By the proof of (i), p = 6(@) for some
b € SpecyT minimal over Q9*G. Thus, since P = 6“7(g) = @, P ng-= b n S so

that P = @9 and P and @ are G-conjugate.

Letzter introduces the following definitions to explain the
relationship between primes in R and those in S.
3.1.22 DEFINITION Let U and V be rings with U € V. Suppose p ¢ SpecU is
minimal over P N U for P e SpecV. Then we say that p lies under P and that

P lies over p.

We use the above generalisation of (Mo2, Theorem 2.1} to improve on

71




[Mo2, Lemma 3.1]. This corollary will yield a number of applications in
Chapter3, 8§83. For example it is wused extensively in Lemma 3.3.8, a

satisfying result on the heights of prime ideals.

3.1.23 COROLLARY Let § be a ring and G a finite subgroup of Aut S.

(i) Given P; € P, in SpecgS and pp ¢ SpecyR lying under Py, there
exists py ¢ SpectR lying under Py with py € pp.

(ii) Given pj € py in SpectR and Py ¢ SpecS lying over py, there exists
Py ¢ SpecgS lying over pp with Py © Pp.

(iii) Given pj € pp in SpecgR and Py ¢ SpecS lying over pj, there
exists Py € SpecgS lying over pj; with Py € Py,

(iv) Given py € py iIn SpectR and gp € SpectR with pp ~ gy, there exists

gy € SpeciR with p; ~ gy and p; © qq.

PROOF In (i), Corollary 3.1.11 shows that Py N R C P, N R Let
q{,...,9 € Spec¢R be all the minimal primes over Py N R not containing
tr(s). Writing N = N;g;, Theorem 3.1.21(i), says Ntr(S) & /(Py; 1 R) € pp.
Since tr(sS) € pp, N & pp and so it follows that there exists j ¢ (7,..,n}
such that g; € py. Since py cannot lie under both P; and Py, we have
g; © po. Taking py = gy gives the required result.

For (ii) and (iii), we have p; = 3(3’1‘) for some I’i ¢ SpecgT and let
%i NS = 0;9 say, for some Q; € SpecS (i = 1,2). For (ii), it’s clear from
Theorem 3.1.21, that P; = 042 for some h ¢ G. Since 0/© € 0,0, there exists
x € G such that Py € 0,%. Taking Py = Qo* gives (ii).
Similarly for (iii), we have that Py = ng for some k e G. Since,
0:© € 0,9 € PQ,, there exists x € G such that Q4% € Pp. Taking P; = 0%
gives the result for (ii).

For (iv), we let 2’1’ € SpecgT be such that 6(2’1) = p; and P; ¢ SpecS
such that P;0 = P; N S (i = 1,2). Let ajaz...,a, in Spec¢R be all the

primes lying under P; not containing tr(S). Since Py N R € P, N R € gy, g7
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contains a prime of R minimal over Py N R and since ¢tr(S) & gy, there
exists j e (1,...,n}) such that aj € gy. Clearly, ay € g» and since aj and

p; are both minimal over P; N R, a; ~ py. Thus, we take g; = aj.
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§3.2 The g-casge

Here we are concerned with the special case where S has prime
characteristic g and G is a g-group. Occasionally, it is necessary to look
at the case where G has order g. In this section we find an explicit
formulation for the map # of Theorem 3.1.5 and we state corollaries to the

major theorems of Chapter 3, §1.

To provide another characterisation of @, we first require a technical

lemma.

3.2.1 LEMMA. Let C be a G-invariant right Ore set in S. Then C is a right

Ore set in T with TC-1 = sc-1#*G.

PROOF. By definition there exists a right ring of fractions of § with
respect to (¢, namely sc-1. To be precise, there is a ring homomorphism
¢ : S o SC! satisfying:

(i) ¢(x) is a unit for all x ¢ C

(ii) each elt. of sc-1 has form w(s)p(x‘7) for some s ¢ S, x € C.

(iii) kerp = {s € S: sc = 0 for some ¢ ¢ C}.

Now G acts on SC7 by: (p(r)p(x)=1)9 = p(r9)p(x9)-1 for all g e G. So we
may consider the skew group ring sc-1xg,

Wwe claim that Sc-7*G is a right ring of fractions for S*G with respect
to C. For, define y:S*G » sc-Txg: ngg [ Zp(sg)g. Then it is clear that ¥
is a ring homomorphism. We show that it satisfies the required properties
for SC-1#G to be a ring of fractions. Property (i) is trivial.

In order to show that (ii) holds we show that a given element is of the
required form. Let ¢t: = degw(sgjw(xg)“7gesch7*c where Sg € S, Xg € c

(g € G). Then
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T
[;

= Tgeap(sg)gp (xg9) 7"
Lgecp(sglop(rgle(y)=!

where w(ng)-f = ga(rg)go(y)‘7 for some rg ¢ S (g ¢ G), y ¢ C. Thus,

o+
I

-1
= [Zgegp(Sgle(ry’ Jglp(y)~!

. ~1
wzge(;sgrgg gl (y)-1 as required.

So S*G has a right ring of fractions with respect to C and [G-W, Lemma 9.1]

gives us that C is a right Ore set in S*G.

We consider now the case where 16l = ¢ (g prime}, S is a ring with
char § = g and
P> (PnS).T - (*).
Lemma 1.2.10 gives us that PN §= Ny 0% for some 0 ¢ SpecS. [P2,

1, then P = QO*G = (P N S)T.

L}

Proposition 14.10]} shows that, if Stabg(Q)
Thus, by (*), 0 = 09 where G = <g». Let S = S/0 and suppose it is right
Goldie. Let Q(S) denote the classical quotient ring of 5. By Proposition
1.2.12, 0(S)*G has a unique prime ideal with =zero intersection with the

coefficient ring. We now show that this prime ideal is derived from P.

3.2.2 LEMMA. Let S be a ring acted on by a finite group G. Suppose
Pe SpecgT has P0S = 0 for some G-invariant prime ideal Q with S/Q right

Goldie. Let S = §/0, T = T/(Q*G) so that T = S*G. Let X = Cg(0).1 € T,

write P/(Q*G) as P. Then PXx~! is a prime ideal of Tx~! and Px~! n 0(s) = 0.
PROOF. By Lemma 3.2.1, 0(S)*G is a right ring of fractions for 5*%G with
respect to X. We show that, as a right S-module, (5*%G)/P is X-torsion free.
Let I/P be the right X-torsion submodule of (S*G)/P.

Then I is a left ideal of S*G and, by the right Ore condition, I is a
right ideal of S*G. So I/P is a two sided ideal of the prime right Goldie

ring S*G/P and hence contains a regular element. This gives a contradiction
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which proves the objective. So by [G-W, Theorem 9.20(b)] Px~! is a prime

ideal in Q(S)*G. Moreover, since PN S = @, Bx~! n Q(38) = 0.

3.2.3 LEMMA Let S be a Noetherian ring of characteristic q and G a group of
automorphisms of S of order g. Let Pe SpecgT with P> (ﬁﬂS).T. Then there
exists a unit U e Q(S) such that B(P) = { r ¢ R : T.Lj-1,,  qVi = 0 } where

B is the map defined in Theorem 3.1.5.

PROOF When P 0 § = Ngeg Q9 where 0 # 09, by [P2, Theorem 14.7], (PN S)T is
a prime ideal. Moreover, this prime ideal has the same intersection with S
as P and s0, by Proposition 1.2.12, they are egual. So here we must have
PNS=0where 0 =09. So § = 8/0; G acts on this ring. In the case of
prime Noetherian rings, we have that G is inner on 0(S), the classical ring
of quotients, i1f and only if G is X-inner by [Mol, Example 3.7]. Since
o*G < P and Proposition 1.2.12 shows that P is the unique prime ideal of
S$*G with zero intersection with the coefficient ring, 5*G itself cannot be
prime. So, [Mol1, Theorem 3.17(2) ] tells us that G must be inner on 0(Ss).
Suppose there does not exist U e 0(S) of order g which induces the action
of g. Then by ([Yi, Proposition 2.5] Q(S)*G is prime and so by [ G&W 5.11 ]
P*G is prime and so P = (} N S)7T, giving a contradiction. So there must
exist U e 0(8) of order g which induces the action of g.

By observing that Q(E)*G = Q(§)<U‘7g>, the ordinary group ring, whose
unique prime ideal is its augmentation ideal, we have that

Bx~1 = aug(Q(S)cu1g>) = T4eq0(S) ((U7Tg)1-1).
The proof of [G-W, Theorem 9.22] gives us that Px-1 nT =P, Now let r e D
so that, by Theorem 3.1.5, If ¢ P. We may write

TE = Tioq . groivigh ¢ Bx-l.

Since U”igi

1 (mod P) by the above, we conclude that Ei:fl_.p; vt o= 0.

Conversely, let r e R with fZi=1’..qU“i=0. Then
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rf = iy, qarUivtigh e Px-!nT = P. Thus, rf ¢ P and so r ¢ p. This proves

the lemma.

Combining this with Theorem 3.1.5, we've thus shown the following

result.

3.2.4 THEOREM Let S be a Noetherian ring of characteristic g and 16l = gq,

prime. Suppose Pe SpecgT.

~

If (PN S).T = P then B(P)

1l
ng?
=
x

If (PN S).T < P then B(P)

(r e R:r%i.q, .gUl=0] for some

U e Q(S) as described above.

We return to the relationship between SpecyS and SpecgS originally
discussed at 3.1.17. There we saw that, in general, it is possible to have
SpecyS strictly contained in SpecgS. The following shows this cannot happen

when char 8§ = g and G is a g-group ( g prime ).

3.2.5 THEOREM Let G have order q@ ( a ¢ N ) and let S be a Noetherian ring
of characteristic q. Let P e SpecS and P be the unique prime of T minimal
over PO*G. Then the following are equivalent: ’
(i) I c p;

(ii) £ e P;

(iii) (tr(S))? € PN R for some n ¢ N.

When these occur, Stabg(P) # {1].

PROOF First note that‘ﬁ is unique by Proposition 1.2.12 and that Pn s =po
by Theorem 1.2.11(i). First we establish the equivalence of (i) and (ii).
Suppose (i) holds so that I € P. Let Q be a prime of 5 minimal over I,
contained in P and let @ be the prime of 5*G minimal over (P*G. Since S§//I

is a semiprime Noetherian ring, ([G-W, Exercise 9U] says that we may
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localize at @Q//I. First we have that C(Q°/s/I) is a G-invariant Ore set in

S := §//I. So C := C(Q°/sI).1 is an Ore set in T := § * G by Lemma 3.2.1.

Now TC-! = S¢c-! #* ¢ is a local ring because G = g2 and char § = g. This
is the case because J( SC-! )*G € J(TC-') by [McC~R, Corollary 10.2.10(v)]
and because SC-1#G/ J( Sc-! )*G = Q(S/Q°)*G is local by Proposition 1.2.12.
So either (i) 7TCc-!.f.7c-! = TC-!

or (ii) Tc-1.f.7c-! ¢ g(TC-1).
In case (i),there exist

c e C5(Q°/V1), 51,51 € S (i=1,..,n)

such that V= X;.q,..,nc 'sjfsjcl.

Therefore ¢ = L;.q, .  p S;ifs; € SfS N C5(Q0/4I) S (QP/41) N Cx(QP/41).

This contradiction shows that case (ii) is the only one that can arise. By
[G-W, Theorem 9.221, 0c~! ¢ Spec(rc=!). since (sc=! / goc-1) = (s/Q°)c1 is
semisimple Artinian, bC“’ is a maximal ideal of TC—!. Since 7Cc-! is local
oc-1 = g(rc1).

so fe (rc-1)f(rc=1) ¢ g(rc=1) = pc-!. Hence, by [G-W, Theorem 9.22],
f e b. Since P a prime T containing @°*G and b is the unique prime minimal
over Q9*G, we have that b < P. Thus, f e P and we have shown that (ii)
holds. Rather easier is the implication (ii) = (i). For, if f e P then
I =S5SfSNScPnsS=Pp0cPp

Next we show that (i) and (iii) are equivalent. Since the previous part
of the proof establishes that SpecyS = SpecgS, we have to show that
P ¢ SpecgS if and only if (tr(s))? < PN R for some n ¢ N. This is just
Lemma 3.1.8.

Finally, suppose that (i) to (iii) above hold. If Stabg(P) = {1} then

[P2, Corollary 14.10 ] gives that P = PO*G which does not contain f. Thus

Stabg(P) # (1].

We use this lemma to study the relationship between ¢r(S) and I still

further
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3.2.6 THEOREM Let S be a Noetherian ring of characteristic q and G a finite
group of automorphisms of S such that G is a g-group. Then there exists

t ¢ N such that (trg(s))t < I.

PROOF Let Py,Pp,...,Pp ( for some m ¢ N ) be the primes of § minimal over

I. By Corollary 3.2.5, there exist u; such that

(trg(S))ui SP; (1< icm). Let ube the maximum of the u;s. Then
(trg(s})¥ &« Nj_y pP; = vI. Also, Since S is Noetherian there exists

w ¢ N such that (/I)¥ € I and so (trg(S))u¥ < I.

We can say more when a = 7 in Theorem 3.2.5.

3.2.7 COROLLARY. Suppose S is & Noetherian ring with char S = g and G a
subgroup of AutS of order g. Let P e SpecS and let P be the unique prime of
T minimal over PO*G. Then the following are equivalent:

(i) I € P;

(ii) £ ¢ P

(iii) P = P9, the action of g on Q(S/P) is induced by a unit, U, of
0(S/P) with (U-1)9-1 = 0 and Q(S/P)*G = Q(S/P)<U~!g»>, the ordinary group

ring.

PROOF Note P is unique by Proposition 1.2.12. The equivalence of (i) and
(ii) is just Theorem 3.2.5. Let G = <g». Suppose that (i) and (ii) hold.
Then P =p9 from the theorem. Since P > (ﬁﬂS).T, we are in the same
situation as case (ii) of Theorem 3.2.4. Adopting the notation there, we
have that ¢ is induced by a unit, U, of @(S) with (U-1)9 = 0. Moreover
Q(S/P)*G = Q(S/P)<U~Tg>. Now,

e Px-! = aug(Q(5)cu-lg>) =Ly, ., q-10(S)(U"1gi-1).

Now, PXx~! is a free Q(S)-module with basis (U~ig=% - 1: i=1,...,g-1} and
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£ =Yg ¢ Px~1. Thus, the coefficient of U~ig=i-7 in the expression for
f must be Uf for i = 17,...,9-1. Hence, we have:

f = Ei__,’”,qUi(U_igi_r—-T) =F + U
where U = Zi=7!..qUi. So U = (u-1)3a-1 = o, Conversely, suppose (iii) holds,

p— p— S

Then f = F + U = I, qui(uigi=1-1) ¢ aug((s/P)<u~lg>) and so f ¢ P.

The next note shows that (iii) does not imply (i) in Corollary 3.2.7 if

we omit the hypothesis that (U - 1)9-7 = 0.

3.2.8 NOTE There is a ring S, a group of automorphisms G and P ¢ SpecS such
that P = P9, G is inner on 8/P and S*G is a group ring but that I € P.

Take § = My(Z/2L), P =0, G

o< [41]

Certainly, P = P9, g is inner on S/P and S*G is an ordinary group ring.

<g> where g is induced by

Also, 1g - U# 0 so that all the hypotheses of (iii) hold except
(U - 15)q"7 = 0. We now exhibit a non-zerc element of I to show that this
example does not contradict Corollary 3.2.7. Let
00
x=[70]

Now 0 # U = tr(X) = g"(fX - Xf) e I. This completes the example.

With the additional hypotheses that char S = ¢ (g prime) and 1GlI = g2
( a e N), we get a stronger version of Theorem 3.1.17. Since p is then the
trivial equivalence, we may now construct a bijection between (SpecS)/G and

SpecT.

3.2.9 COROLLARY Let S be a Noetherian ring of characteristic g, G a finite

group of automorphisms of S of order g8. Let

A= (NS :N-=0P; P; e SpecS }
and Q = { J < T :J = nﬁj, ﬁj e SpecT J.




Let & : A » Q where a(NP;)/( (NP;O) *G ) = N( T / ((0P;°) *G). We may also
define @:(SpecS)/G » SpecT by &([P]) = a(P) . Then

(i) @ is an order preserving, intersection preserving map;

(ii) @ is a homeomorphism with respect to the Zariski topologies.

(iii) The map opy: PrimSpecS/G -» PrimSpecT given by apV{[P]) = a([P])
1s a homecomorphism.

(iv} If we restrict the domain and codomain of ®, in order to define a

new function G,: (SpecyS)/G > SpeceT then all of the above properties are
preserved.
PROOF For (i), (ii) and (iii}, since @ coincides with the @ of Theorem
3.1.17, we only have to show that & preserves intersections. Let P; e SpecS
(ied, J finite). Define P; = a(P;). Certainly a(NP;) € NP;. Let
07 (1 ¢ L) be the minimal primes over (NP;©)#*G. So a(NP;) = NQ;. Now
0; N S = 0;° for some Q] ¢ SpecS by Lemma 1.2.10. So AP;© € Q). Thus, there
exists i e¢ J such that P; € Q;. Moreover, P;O*G & Q;9*G ¢ Q7 and so, since
E’i is the unique minimal prime over P;9%G, we have that @i ot @1. Thus,
we've shown N;. 7 151' = Njep bl so that N;. 7 a(P;) = &{ﬂier P;).

For (iv) it remains to show that @.([P])} is a member of SpecgT when
P ¢ SpecrS. Let P e SpecyS. By Corollary 3.2.7, SpecgS = SpecyS. By
definition of SpecgS, there exists P e SpecgT minimal over PO*G,
Proposition 1.2.12 yields that P is the unique prime of T minimal over

PO*G, Thus, @,.([P]) = P.

Now, we may compose @ and 3 to obtain a bijection between (Spec;S)/G

and Spec¢R.

3.2.10 THEOREM Let S be a Noetherian ring of characteristic g, 16l = g3.
Then the map p: SpecIS/G - SpectR given by v = o iIs an order preserving

map which may be extended to intersections. Also, ¢ 1is an inclusion

81




preserving homeomorphism. Moreover, if we restrict ¢ to primitive ideals,

we get a bijection between these subsets.

PROOF This comes from Theorem 3.1.17 and Theorem 3.1.5 since f# = B8 and

SpecrS = SpecgS by Corollary 3.2.9.

We now look at the special case of Theorem 3.1.9. As observed after
Theorem 3.1.9, ~ is trivial when charS = ¢ and G is a g-group. We use this
fact together with Theorem 3.1.9 to provide a unique identification of 6(3)

for any Pe SpecgeT.

3.2.11 COROLLARY Let S be a ring of characteristic g and G a group of
automorphisms of 8 of order g2 ( g prime, a ¢ N ). Suppose Pe SpecgT. Then

B(ﬁ) is the unique prime of R minimal over P N R not containing tr(s).

PROOF Theorem 3.1.9 shows that 6(?) is minimal over P N R. If g € SpectR is
minimal over P R R, then p~q but as noted above ~ is trivial on SpecyR in

this case, so g = 6(%).

We now take advantage of the fact that p is trivial on Spec? in the
g-case to see to how a prime in SpecgT is uniquely determined by its

intersection with R.

3.2.12 COROLLARY Let S be a ring with char S =g and G a group of
automorphisms of S with 161 = g2 (g prime, a e N ). Suppose that

P,0 € SpecT with f ¢ P satisfy J(P N R) = J(Q N R). Then P = Q. That is, P

is entirely determined by its intersection with R.

PROOF If f ¢ O, then Lemma 3.1.8 shows that (tr(s))? € 9N R =P N R and

the reverse direction of the lemma then shows that f ¢ P. This
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contradiction shows that b ¢ SpecgeT and so we may apply Corollary 3.1.11.
This shows that P and b are in the same p-class. The observation on p in

3.1.2 gives the final part of the result.

We conclude this section by giving the special version of Theorem

3.1.21.

3.2.13 THEOREM Let S be a Noetherian ring of characteristic q and G a
subgroup of Aut S of order g2. Then

(1) Given P e SpecrS, there exists p ¢ SpeciR such that p is the unigue
prime minimal over P N R not containing the trace.

(ii) Given p € SpecyR, there exists P ¢ SpecyS such that p is minimal over

P N R. Moreover P is unique up to its G-orbit.

PROOF Given that SpecyS = SpecgS by Theorem 3.2.5, this result is immediate

from Theorem 3.1.21 and Corollary 3.2.11.
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Here we exploit the results of the previous two sections in order to
relate the properties of corresponding primes. This section culminates with
certain ring theoretic properties which are retained when passing from one

ring to another.

The first properties we investigate are those of height and coheight of
prime ideals., First we define these concepts.
3.3.1 DEFINITION Let U be a ring. Consider a chain of prime ideals in U:

P, <€ Py < ... C Py Pje SpecU, (0 i< n).

We define the length of such a chain to be n. If P is a fixed prime, we
define the height of P, ht(P), to be the maximum length of any such chain
with P = P, . There may not be a chain of maximal length, in which case the
height of P is said to be infinite. We may also define the coheight of a
prime P, coht(P). This is just the maximal length of a chain above with
P = Pp. If there does not exist such a chain we say that P has infinite

coheight.

3.3.2 LEMMA Let S be a ring, G a finite subgroup of Aut(S), P e Spec¢gT and

p = B(P). Then ht(P) = ht(p).

PROOF Let Py € Py € Py, c...c Py =P (ne N) be a chain of primes in 7.
Since P ¢ Spec T, %i € SpeceT for all i. Then pp € p; € pp C...C py =p
where p; = B(P;) (i=1,...,n} is a chain of primes in R by Theorem 3.1.5. So

ht(P) < ht(p}. Similarly using B~!, we can prove the opposite inequality.

3.3.3 LEMMA Let S be a ring, G a finite subgroup of Aut(S) with the trace

map surjective. Suppose Pe SpecgT and p = B(%), then coht(p) < coht (P).
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PROOF Let P ¢ SpeceT and p = B(P). Suppose p has coheight at least n, with
P =pg € pP;CpyC...Cpp (p; € SpecR) a chain of primes in SpecR. Since
trg(S) = R, p; ¢ SpecyR for i =1,...,n. Thus, we may apply ﬁ" to the p; to

get a chain of primes in 7. This chain shows us that coht(P) » n.

It turns out that the hypothesis, tr:$ -» R surjective, in Lemma 3.3.3

is necessary as the following example shows.

3.3.4 EXAMPLE We now give an example where coht(%) ¢ coht(p).

Let H= < x,y,z : [x,y] = 2z, z central >, the first Heisenberg group, k a
field of characteristic 2 with an element N\ e¢ k such that N\ is not a root
of unity. Let g be the automorphism of order 2 such that x9 = x=1,
y9 = y-!, 29 = z. Let M := (z-\)S. Then T has a maximal ideal M*G in

SpecgT. However, B(M*G) is not maximal.

PROOF We show first that M is maximal. Now, S/M € k[x, x—f][y, y"; ol
where o(x) = \~'x. Note that 5/M is a free k [ x, x~! ] - module with basis
the powers of y. Consider J, a non-zero ideal of S/M. Let h be a non-zero
element of J such that all powers of y are positive and h is of minimal
degree in y. Then there exists neN such that
h = gg(x) + g1(x)y +...+gp(x)y" where g;(x) ¢ k [x, x~1] (i=1,...,n).
Now,
xhx~1 = go(x) + g1(x)Ny +...+gp(x)NOy,
So Nh - xhx~1 = (\-1)gp(x) + (\P=N)gy(x)y +...+(N\B=\=T)g ,(x) ¢ J has
degree less than h and is non-zero unless n = 0. So n = 0. By symmetry we
may do the same for x. This shows that a minimal element of J is in fact a
member of the field. Thus J = S/M. This proves the claim.
We now show that g acts as an outer automorphism on S/M. By considering
a degree argument, it’s clear that there does not exist u e¢ S/M such that

xu = ux—! and we can conclude that g acts as an outer automorphism on S/M.




Thus, by Theorem 1.4.6(iv), M*G is a maximal ideal of T. So, by Theorem
3.1.5, B(M*G) = M N R. Now, since x + x~! ¢ tr(s)\M, trg(S) ¥ M N R and so
(trg(8) + (M N R))/(M N R) is a non-zero ideal of R/(M N R). We show that
this is in fact a proper ideal. Suppose it is not a proper ideal. Now, G
acts on S/M and we may conclude that the map tr : S/M —— (S/M)C is onto.
Let Iy p kapx@yP € S/M. Then tr( L p kapx®yP) = Ly, p kap(x3yP * x~8y=D)
which clearly cannot equal 7. So M N R is strictly contained in a proper

ideal is therefore not maximal. Thus coht(M N R) >1 while coht(M*G)} = 0.

We have a corollary to Theorem 1.2.11 relating height and coheight of

primes in S to the height and coheight of the corresponding prime of T.

3.3.5 COROLLARY Let S be a ring and G a finite group of automorphisms of S.
Suppose P € SpecS and that P is minimal over PO*G. Then ht(P) = ht(P) and
coht (P) < coht(P). Furthermore, there exists 0 ¢ [P] such that

coht (P) = coht(Q).

PROOF Suppose Py © Py € ... € Pp = P is a chain of primes in 5. Now
P, 10*G € P,O*G ¢ P and since P A § = P,0, Theorem 1.2.11(i) shows that b
is not minimal over Pp_;9*G and that there exists }n—f minimal over Pp_19*G

with P,_7 € P,. Continuing in this manner we construct a chain of primes in

T of length n, proving ht(P) < ht(P). Conversely, let
ﬁ; c ?2 c... ¢ ﬁm =P be a chain of primes in T. Since, by Theorem
1.2.11(1), PjNnsScPjyns for j=0,...,m1, we have a chain
PP € P9 ¢ ... € P°® = PO where PO = ﬁj ns for j=20,...,m Since

Pp_1° € Pp® < P, there exists h e G such that Pm_7h S P. Continuing this
way, we construct a chain of primes in S of length m, proving
ht(P) < ht(P). Thus, ht(P) = ht(P).

Now we consider the coheight. Let P = %O c ﬁ, c... ¢ ?n be a chain in

T. As we did above we construct a chain of length n in S, starting with Pp
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and working down to PN for some h ¢ G where PO = P 0 S. Since S/P & S/pPh,
we have coht(P) < coht(Pl) = coht(P) as claimed. Suppose now that
P=PgpcPyc ... CP, is a chain of primes in S. As we did when
considering ht(P), we construct a chain ?0 c ?1'3... < ﬁn in T with %i
minimal over P;9*G. So coht(%o) # coht(Pp). The above inequality gives us
that coht(?o) = coht(Pp). Since P and ?0 are minimal over PpP*G they are

p-equivalent.

3.3.6 NOTE The triviality of the p-classes when charS = g, 16l = g@ ensures
that both height and coheight are preserved in the g-case. We exploit this

later in 3.3.10.

We use & to look at the corresponding result when we restrict to the

case where charS = g and G is a g-group.

3.3.7 COROLLARY Let S be a Noetherian ring of characteristic q, G a finite
group of automorphisms of S of order g® and @ as defined in 3.2.9. Let

P ¢ SpecS and P := @([P]). Then ht(P) = ht(P) and coht(P) = coht(P).
PROOF This is immediate from Corollary 3.3.5.

Finally, we look at the relationship between primes in S and those in

R, The next lemma shows that height is constant on ~-classes in SpecyR.

3.3.8 LEMMA Let S be a ring and G a finite group of automorphisms of S.

Suppose p,q € SpecyR both lie under P e SpecS. Then ht(p) = ht(g) = ht(P).

PROOF Let pg € p7; € ... S pyp =p ( p; € SpecR ) be a chain of primes in R.
Corollary 3.1.23(iv) shows that we can find gn 1 € SpecR with gn_ 1 ~ pp_1

and gn_7 € g. Repeating this process we find a chain of length n inside gq.
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So we’ve shown that ht(p) < ht(qf. By symmetry ht(p) = ht(g). For the same
chain in R, we use Corollary 3.1.23(iii) to find Pp_j; ¢SpecS lying over
Pn-1 with Py © P. Repeating the process gives a chain of length n in
SpecS inside P proving ht(p) < ht(P). Similarly, Corollary 3.1.23(1i) proves

the opposite inequality, giving ht(p) = ht(P).

3.3.9 EXAMPLE We give an example where S is a ring, G a finite group of
automorphisms of S and there exists P e¢ SpecgS lying over p ¢ SpeciR with
coht (P) # coht(p). In Example 3.3.4, we take P to be the maximal ideal M
and ol to be the non-maximal ideal of that example. So

0 = coht(P) < coht(p}.

We take advantage of the above relationships to look at a ring
theoretic property derived from height.
3.3.10 DEFINITION In a ring U, two primes, P < Q are said to be
neighbouring if there does not exist W ¢ SpecU with P © W © Q. The ring U
is said to satisfy the saturated chain condition (SCC) or be catenary if
neighbouring primes differ in height by 1. This is equivalent to the
property that all descending chains of neighbouring primes down from a

given prime have the same length,

The following lemma shows that SCC is inherited by R from T when the

trace map is onto.

3.3.11 LEMMA Let S be a ring and G a finite subgroup of AutS such that T
has the saturated chain condition. Suppose that the trace map 1is

surjective. Then R also has S5CC.

PROOF Let p; € py be neighbouring primes in SpecR. Since B-! preserves

order, 6‘7(p7) < ﬁ"(pz) are neighbouring primes in T, By hypothesis,
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ht(B-1(py)) = ht(B~"(pp)) -1 and Lemma 3.3.2 completes the proof.

Again we shall show that the hypothesis in Lemma 3.3.11 that the trace
map 1s onto is necessary. We show in Example 4.2.12 a ring S which has SCC,

the trace map is not surjective and R does not have SCC.

It is a well known open question whether T has SCC when S does and G is
finite. See [L, Remarks(ii)]. We prove an easy positive result here. When

charS = g and G is a g-group, we use @ to show that T has SCC if S has SCC.

3.3.12 COROLLARY Let S be a Noetherian ring of characteristic q, G a finite
group of automorphisms of 5 of order gqd. If S satisfies the saturated chain

condition, then so too does T.

PROOF Suppose Pc @ are neighbouring primes in T. There exist P,Q ¢ SpecS
such that P = PN § ané 09 = 0 0 S and since P € 0 we have PO € (O, Since
Q is prime, we have that Ph ¢ Q for some h ¢ H. Without loss of generality
we may assume that h = 7. Moreover, T([P]) = P and @([Q]) = b. Since P and
b are neighbouring primes and o« preserves inclusions, P and Q are

neighbouring in SpecS. By hypothesis, ht(P} = ht(Q) - 1. Lemma 3.3.7

completes the proof.

We now relate the Goldie dimension of corresponding primes. Initially,

we investigate the results yielded by the Morita correspondence.

3.3.13 PROPOSITION Let S be a ring and G a finite group of automorphisms of
S. Suppose Pe SpeceT with B(ﬁ) = {r ¢ R: rf ¢ P} =:p, say, and suppose
PN S = PO for P ¢ Specs.

(i) If T/P is right Goldie, then so too is R/p.

(ii) If S/P is right Goldie, then T/P is right Goldie and consequently,
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R/p is right Goldie.

In both of these cases, we have u.dimg(R/p) < u.dimp(T/P).

PROOF Suppose T/P is right Goldie. That R/p is right Goldie is a straight
application of [McC-R, Corollary 3.6.7].

Suppose now that S/P is right Goldie. Consider the ring T = T/(PO*G).
This ring has a right Artinian right gquotient ring, namely @(S/P°)*G. By
Theorem 1.2.11(i), P is minimal over PO*G and so, P := P/(PP*G) is a
minimal prime of T. [McC-R, Theorem 4.1.4) shows that the factor ring of T
by its prime radical is right Goldie. Applying [G-W, Proposition 6.1]
yields that T/P & T/P is right Goldie.

Finally, we prove the inequality regarding uniform dimensions. The

proof of Proposition 1.2.4, together with Proposition 1.2.7 shows that

T St

2 SEn P

£8 R
£Sn P p

is a prime context. The proof of [McC-R, Theorem 3.6.6] shows that
u.dimg(R/p) = u.dimp(£S/(£S N P)). Now, £S/(£fS N P) is isomorphic to the
cyclic right ideal of T/P, (£+P)T/P. Thus,

u.dimp(£S/(£S N P) < u.dimp(T/P). This proves the lemma.

3.3.14 NOTE In some special cases we can improve on Proposition 3.3.13.

A sharper calculation in Proposition 3.3.13 shows the following result.
Let S be any ring and G a finite group of automorphisms of S§. Let P ¢ Specs
such that PO*G ¢ SpecT. Then p = PN R is the unique prime lying under P
and u.dim(R/p) < 1Giu.dim(S/P°).

Using Theorem 3.2.4, we can produce a different inequality, involving

.dim(5/P°) in the g-case. Let S be a Noetherian ring of characteristic g,

=

G a finite group of automorphisms of S of order g. If P ¢ SpecgS and

vl

¢ SpecgT is the wunique prime of T minimal over PP*G, then
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u.dim(T/P) & gq(u.dim(S/P°)). (Note that by Proposition 1.2.12, P is unique

and, by definition of SpecgS, P ¢ SpecsT).

We now state our final result on uniform dimension.

3.3.15 PROPOSITION Let S be a ring of characteristic ¢, iGl = g, P e¢ SpecyS
and let p = ¢([P]) as defined in 3.1.18. If S/P is right Goldie, R/p is

right Goldie and u.dim(R/p) < u.dim(S/P°).

PROOF Let A be the right T-module (s €¢ S: fs ¢ P}. The proof of Proposition
3.3.13 gives us that u.dim(Sp/A) = u.dim(R/p). Thus,
u.dim(R/p) < u.dim(Sg/Ag).

Let P be the prime of T minimal over PO*G. If P = (P N S).T then A = PO
and we must have u.dim(R/p) < u.dim(Sg/P°). Henceforth, we assume
P> (PN S).T. We adopt the following notation: S :=5/P, P := I’/(PO*G),
C := Cg(0), Q :=38Cc! and T := 5%G. By Lemma 3.2.1, TC ! = Q*G. As in
Theorem 3.2.4, ¢ is induced by a unit, U, of @ of order g and Pc-! is the
augmentation ideal of Q<U"7g). Consequently, g = U (modulo pc-1). with
U=1+U+ ... +U9-1, we also have f = U (modulo PC').

Let s ¢ S. Then 5 ¢ A &> fs € P
& fs e P
& fs ¢ pc1 (€ is [G-W, Theorem 9.221])
& (F+pPcl).(s + PC71) = Opsp

& (U+pPcl)y.(s*pCc?) =0

& Us = 0p.
We consider the map ¢ of S/P-modules given by ¢ : S/P > 0 such that
p(S) = Us. This gives rise to the isomorphism: S/A = U(s/P), a submodule of
Qg/p- Thus, u.dim(R/p) < u.dim(Sg/Ag) < u.dim(Qg/p) = u.dim(S/P). Thus, the

inequality is satisfied in both cases.
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An easy observation will reap many results regarding the ring R/p.

3.3.16 NOTE Let S be a ring, let G a finite group of automorphisms of S,
let R = §6 and let T = S*G. Suppose D € Spec¢R and that
B-T(p) =: P ¢ SpecgT. By Lemma 1.2.10, Pns=p0 for some P e Specs.
Certainly, R/(P N R) embeds in both S/P and 7/P. By Theorem 3.1.9, p is
minimal over P N R. Using these facts, it’s easy to see that if P or P is
completely prime, then p is also completely prime. Similarly, if S/P or T/%

satisfy a polynomial identity, then so does R/p.

Now, we reach the main results of this section. We exploit the maps «
and B to emphasise the close relationship between ring theoretic properties
of R and S. The general strategy here is to use o« and f to understand
primes not containing the trace and to look at the factor R/trg(S)

separately.

3.3.17 DEFINITION Suppose K is a commutative ring. A ring U is said to be a
K~algebra if there exists a ring homomorphism, ¢, from K to the centre of
U. For a subset X of U, we define K N X to be ¢“7(X N p(K)).

Usually we may assume that K embeds in the ring W by factoring out
kerp. When this is not possible, for example in Theorem 3.3.20, we have to

consider the map ¢.

3.3.18 DEFINITION Let k be a field and ¥ a k-algebra. We say that W has the
endomorphism property over k if Endy(V) is algebraic over k for all

irreducible W-modules V.

3.3.19 DEFINITION Let K be a commutative ring. A K-algebra U is said to

have the primitive property over K if, whenever P is a primitive ideal of




U, PN K is a maximal ideal of K and U/P has the endomorphism property over

the field K/(P N K).

3.3.20 LEMMA Let K be a commutative ring and let § be a K-algebra. Suppose
that G is a finite group of K-automorphisms of S. If S has the primitive

property over K, then so too does T := S*G.

PROOF Let V be an irreducible T-module. By (P2, Proposition 4.10],
Vg = Vy@...eV, for some n ¢ N and irreducible S-modules, Vy,...,V,. By
rearranging if necessary, we take Vy,...,V; to be representatives of the t
homogeneous components in Vg. Since § has the primitive property over K, we
must have that for i=1,...,n, with P; = anng(V;), P; N K = M; for some
maximal ideals M; of K. If M; # M; for some i,j, then Anny(M;) would be a
nonzero proper T-submodule of V, which is impossible. Thus, each ¥; equals,
say, M. Let D; be the division ring Endg(V;) for i=1,...,n. By hypothesis,
Dy,...,Dp are algebraic over K/M. Now,

End(Vg) € Mn7(D7) ® ... ® Mnt(Dn)

for some ny,...,n; ¢ N. Thus, End(Vg) is algebraic over K/M. Since, End(Vyp)

embeds into End(Vg), we have that End(Vp) is algebraic over K/M.

3.3.21 THEOREM Let S be a K-algebra such that K embeds in S and G a finite
group of K-automorphisms of S. If S and R/trg(S) have the primitive

property over K then so too does R.

PROOF Note first that Lemma 3.3.20 shows that 7T has the primitive property
over K. Let p: K- C(R), where C(R) denotes the centre of R, and p be a
primitive ideal of R. Consider first the case where tr(S) € p. We have to
show that p N K is maximal. Now we have that p/tr(S) is a primitive ideal
of R/tr(S) and, since R/tr(S) has the primitive property,

o~ !(p/tr(S) n (K + tr(8))/tr(s)) = ¢~1(((p 0 K) + tr(5))/tr(s))
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is maximal in K. We c¢laim that this 1s Jjust p N K. For, 1if
o(x) € ((p N K) + tr(S))/tr(S), we have that x + tr(S) e¢ (p N K) + tr(S) so
that there exists s ¢ S, y e pN K such that x = y + tr(s). However,
tr(s) = x -y € KN tr(S) S KN p. Since tr(s) e KN p and y ¢ KN p, we
get x = y + tr(s) € KN p, proving the claim. Thus, K/(p N K) is a field
which we denote by k. Also, we have that (R/tr(S))/(p/tr(S)) & R/p has the
endomorphism property over k.

Henceforth, suppose trg(S) € p. Then 8-T(p) = P is primitive in T = S*G
by Theorem 3.1.5. Since T has the primitive property, P N K is maximal in X
and 77% has the endomorphism property over K/(% N K). By Theorem 3.1.5, we
see that PN K ¢ pNK#Rand so ph K = PN K is a maximal ideal. Again
we adopt the notation that k = K/(p N K). It remains to show that R/p has

the endomorphism property over k. Let M be an irreducible R/p-module. Now,

R

M e R/X for some maximal right ideal X of R. Fix 0 # m e M and set

Y

{ue S : mtrg(us) = 0 }. As in proof of Proposition 1.2.4(ii), Sp/Y
is an irreducible T/%—module. Taking m = 1 + X, Y= ({uedS : tr(usS) & X }.

We show that Yt R = X. Let u ¢ X. Then trg(uS) = utrg(S) € X. Hence,

n

X € YN R, Conversely, suppose y € Y N R. Now, ytrg(S) = trg(yS) X . If

My # 0, (My)R =M and so, Mtrg(S) = (MyR)trg(5) = Mytrg(S) € MX = 0. But

tr(S) € p and this contradiction shows that My = 0 so that y ¢ X.

The above shows that R/X embeds as an R/p-module into Sgp/Y. Let
¥ € Endp(R/X) and suppose y¥(! + X) = r +X for r ¢ R. We have that rx ¢ x
and so, for u e Y, trg(ruS) = rtrg(uS) € rX ¢ X. This shows that ru ¢ Y for
arbitrary y € ¥, so rY ¢ Y. Thus, we may define a map y' € End(Sp/Y) such
that ¢/(s+Y) = rs +Y. Since ¢’ restricted to M is Jjust ¢ and ¥’ is

algebraic over k, ¥ is algebraic over k.

3.3.22 DEFINITION A ring is said to be Jacobson if all its prime ideals are

semiprimitive.




We now prove an analogue of Theorem 3.3.21 for Jacobson rings. Warfield

proved this result for the case 161-! ¢ 5 in [W1, Corollary 1.4}.

3.3.23 THECOREM Let S be a ring and G a finite group of ring automorphisms

of §. If 8§ and R/trg(S) are both Jacobson rings, R is also Jacobson.

PROOF First note that, by (P2, Theorem 22.3], 7T is a Jacobson ring. Let
p ¢ SpecR. Then either (i) trg(S) € p or (ii) trg(s) g p. Suppose (i) is
the case. Then p/trgfs) is a prime ideal of R/trg{S). By hypothesis,
R/trg(S) is a Jacobson ring and so p/trg(S) is semiprimitive and so p is
semiprimitive. Henceforth assume we are in case (ii). We apply Theorem
3.1.5 and let P = g-V(p). Then £ ¢ P. Since T is a Jacobson ring, P is
semiprimitive so that P = n{b ¢ SpecT: 0 primitive in T, Ps 0).

Now let 4 = 0(Q eSpecT: Q primitive in T, P S Q,f ¢ 0} and let

~

B = Nn{ @ eSpecT: b primitive in T, PAS Q: £ e Q;. Then P = A N B. Noting

that AB S P and f e B, we must have A = P. So
p = B(?) = f(Aa) = NG{ b eSpecT: @ primitive in T, Pc @ ,E £ ?}, an
intersection of primitives by Theorem 3.1.5. Thus, in either case, p is

semiprimitive and, since p is arbitrary, R is a Jacobson ring.

In Chapter 4, Example 4.1.7, we give an example where 7 is Jacobson but
R is not Jacobson in order to show that the hypothesis that R/tr(S) is

Jacobson is in fact necessary.

We now combine the last two definitions in order to give a
non-commutative version of Hilbert’s Nullstellensatz.
3.3.24 DEFINITION. U, an algebra over a commutative ring K, is said to
satisfy the Nullstellensatz over K if U is a Jacobson ring and it has the

primitive property over K.
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3.3.24 COROLLARY. Let K be a commutative ring and let S be a K-algebra
acted on by G, a group of K-automorphisms. Suppose S satisfies the
Nullstellensatz over K. Suppose further that R/trg(S) also satisfies the

Nullstellensatz over K. Then R must also have this property.

PROOF This is immediate from Theorems 3.3.21 and 3.3.23.
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CHAPTER 4

PRIME _IDEALS IN GROUP RINGS

Here we consider the case where, for a commutative ring K and a group
H, S is the group ring KH. We take a finite group G of automorphisms of #H
and we extend the action of G to K-automorphisms of 8. Under these
hypotheses, we have that T = KH * G & K( HXG ) is itself a group ring,
this time of the semi-direct product of H by 6. In particular, we are
interested in the case where K is a field and H is polycyclic-by-finite.

Recall that, in Chapter 3, with hypotheses on S and R/tr(s), we
discovered that R inherits some of the properties of S. In 81, we prove the
following fundamental result that, in certain circumstances, shows exactly

what the factor ring R/tr(S) is.

4.1.2 COROLLARY. Let H be a polycyclic~by-finite group, K a commutative
ring, S the group ring KH and G an automorphism group of H of order g. Then
R/trg(S) is itself the group ring of a polycyclic-by-finite group over

(K/qK), namely (K/qK)Cy(G).

We go on to establish whether, when S is a group algebra of a
polycyclic-by-finite group, R inherits some of the well known properties of
the ring S. For example, J.E. Roseblade has shown that, when k is absolute,
the primitive ideals of kH are all maximal and have finite codimension. In
Theorem 4.1.15, we show that these properties pass down to R under the

hypotheses of Corollary 4.1.2. We go on to discuss the following question.
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QUESTION 4A Let S be the ring KH where K is a commutative Jacobson ring and
H is polycyclic-by-finite. Let G be a finite group of automorphisms of H so
that G acts as K-automorphisms on S. Is it the case that SG satisfies the

Nullstellensatz over K ?

Recall that, in Chapter 2, §2, we have already discussed whether or not
R is Noetherian when S is the group algebra of a polycyclic-by-finite group
and been unable to answer that question fully.

Section 2 is primarily devoted to the study of the prime rank of the
ring R but we do also address the following question and answer it

negatively.

QUESTION 4C Suppose H is a nilpotent group and k is a field. Let S denote
the group algebra kH. Suppose G acts as k-automorphisms on S. Does 5S¢ have

SCCc ?

§4.1 Key Lemma and Applications

We use Chapter 3 to get information regarding primes of R not
containing the trace ideal while in certain circumstances, the following
key lemma enables us to understand ©primes outside the Morita

correspondence.

4.1.1 LEMMA. Let U be a ring, M a semigroup and G a subgroup of AutM of
prime order, q. Let G act as U-automorphisms on the semigroup ring S = UM.
Then

R / trg(S) & (U/qU).Cy(G).
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PROOF Let r = cyhy + cohpy + ... + cghy € R (c; ¢ U, hy ¢ M), Since r = r9,
Supp(r) = (hy, hp ,..., h¢} is8 G-invariant and so we may divide it into
G-orbits. Let hy, hp, ...,hy be representatives of each G-orbit
( re—-ordering if necessary ). Each G-orbit has size 7 or g and we may
suppose that the first a orbits are singletons. In other words,
hy, ..., hyg € Cy(G). Now, because r =19, hz,19 ¢ Supp(r) and it has
coefficient cgz,¢ in r. Thus, cg,ytr(hy,¢) appears in r. In fact it follows
that r = cjhy , ... 4 Cghg + Cas1tr(hg,q) + ... + cptr(hy). Let  denote
images modulo gU in the ring U. We consider the map ¢: R > BCM(G) such that
Y(r) = cthy , . . Cahg. It is clear that ¢ is a well defined, surjective
map. We now show that ¢y is a ring homomorphism. Let r,s ¢ R. By the above,
r =cihy . 4 Cghg + Caer1trlhg,1) + ... + cptr(hy)
and
s =dqly + ... +dplp + dp,1trilp,g) + ... + dptr(lp)
for some hj, 15 ¢ M, ¢i, dj ¢ U. Then rs = Zi§7Zj91 c;jdjhily + z where
z = (Cgquttrihg,1) + ... + cptr(hp) ) (dp,1tri(lp,q) + ... + dptr(lp)).

Thus, z is a U-linear combination of terms of the form:

(x + ... + xgq—’) (y + ... + qu—f)
= Xy + xgyg .. * xngijQﬁj
+ xgy + ngyg LR X qu~1
+ .
R L X
= tr{xy) + tr(xgy) + oL, * tr(xgq—7y).

Thus, ¢(rs) = Zi§1ZjQ1 Eiajbilj = y(r)y(s), as required. Finally, we show
that kery = tr(S). That tr(S) € kery is clear. Suppose now that r ¢ kery.

Then

N
It

crhy + .. + Caha * Carqtrlhg,yq) + ... + cptr(hy)

1,..,a. Thus

Ll

where g C; 7

r = tri((cy/qlhy + .. + (ca/qlhg + Cartharr + ... + cphp) ¢ tr(S).
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This proves the lemma.

We consider the case where K is a commutative Noetherian Jacobson ring
and H is a polycyclic-by-finite group. When 161-1 ¢ kK, the fixed ring is
very well understood as explained in chapter 1. For example, it is
Noetherian by Lemma 1.4.2 and, by Corollary 3.3.27, satisfies the
Nullstellensatz. Thus, we study Question 4A in the case where |Gl is not a
unit in K. An extreme example of this is when 1G]l = 0 ¢ K. The following
corollary helps us to understand the simplest of these cases, namely when G

is cyclic of order gq.

4.1.2 COROLLARY. Let H be a polycyclic-by-finite group, K a commutative
ring, S the group ring KH and G be an automorphism group of H of order q.
Then R/trg(S) itself is the group ring of a polycyclic-by-finite group over

(K/gK), namely (K/qK)Cyx(G).

PROOF The proof is immediate from Lemma 4.1.1.

4.1.3 COROLLARY. Let H be a polycyclic-by-finite group and G a group of
automorphisms of H with 1Gl = q, prime. Let K be a commutative Noetherian

ring and S the group ring KH. Then all prime factors of R are right Goldie.

PROOF Let p € SpecR. If trg(S) S p, then p/trg(8) ¢ Spec(R/trg(S)). By
Corollary 4.1.2, R/(trg(S)) € (K/qK)H, a Noetherian ring and so R/p is
right Goldie. Otherwise p ¢ trg(S) and so 6"7(13} =P e SpecgT. Now,
T = (KH)*G is a Noetherian ring and so T/;f> is right Goldie. An application

of Lemma 3.3.11 shows that R/p is right Goldie.

We now exploit Corollary 4.1.2 in order to enhance our knowledge of the

fixed ring of a group ring. In particular, we show how important the
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primitive ideals are in the study of these fixed rings when the group, 4,
is polycyclic-by-finite and the coefficient ring is a Jacobson ring.
[McC-R, Corollary 9.4.22] give us that polycyclAic-by—finite group rings
over K satisfy the Nullstellensatz. Thus S = KH and T = K(H>AG) both
satisfy the Nullstellensatz. As stated prior to Corollary 4.1.2, when
1G1-! ¢ K, R also satisfies the Nullstellensatz. We now show that this
property carries over to R when G is a cycle of order g regardless of

whether 161 is a unit in K.

4.1.4 THEOREM. Let H be a polycyclic-by-finite group and K a commutative
Jacobson ring. Let S be the group ring KH. Suppose G 1s a group of -
automorphisms of H of prime order g. Then R satisfies the Nullstellensatz

over K and, in particular, is a Jacobson ring.

PROOF As explained above, the group ring (K/gK)Cyx(G} satisfies the
Nullstellensatz. By Corollary 4.1.2, R/tr(S) € (K/gK)Cy(G). Since S and
R/tr(S) satisfy the Nullstellensatz over K, Corollary 3.3.26 shows R

satisfies the Nullstellensatz over K.

Up until now, we have been considering the extreme cases where the
order of the group is a unit in the ring S or where the order of the group
is prime. With the following two exceptions, Question 4A in intermediate
cases remains open.

4.1.5 COROLLARY Let S be the group ring KH where H 1is a
polycyclic-by-finite group and K is a commutative Jacobson ring with
char K = q. Suppose that G is a finite subgroup of Aut H with a Sylow
g-subgroup, 0, of order g, normal in G such that 1G/01~! ¢ K. Then R

satisfies the Nullstellensatz. In particular, R is a Jacobson ring.
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PROOF We deal with the proof in two parts. First, the Sylow g-subgroup Q
acts on S. By Theorem 4.1.4, S@ satisfies the Nullstellensatz. Now
R = SG = (§92)G/Q, and so we consider the action of the g’-group G/Q on the
ring S2. As, 16/0i~1 ¢ 59, the trace map, trgsy: S¢ - SG is surjective and,

by Lemma 3.3.26, R satisfies the Nullstellensatz.

4.1.6 LEMMA Let H be a finitely generated abelian-by-finite group, k a
field and S the group algebra kH. Let G be a finite group of

k-automorphisms of S. Then (kH)G satisfies the Nullstellensatz over k.

PROOF By Lemma 2.5.1, there exists L, a characteristic torsionfree abelian
subgroup of finite index in H. Then, by Theorem 1.4.4, (kL)@ is an affine
k-algebra and kL is a finitely generated (kL)G-module. Hence, § is a
finitely generated (kL)G-module. So, R is an affine k-algebra. Moreover, as
R is contained in kH, it satisfies a polynomial identity. [McC~R, Theorem

13.10.3] shows R has the Nullstellensatz over k.

Given the above results, we conjecture that (kH)G always satisfies the
Nullstellensatz over k. This is not true, however, for an arbitrary ring S
which satisfies the Nullstellensatz over k. Recall that in Lemma 3.3.24, we
have that for any ring S and any finite subgroup G of AutS, R is Jacobson
when S and R/tr(S} are Jacobson. We now give an example to show that the

hypothesis that R/tr(S) is Jacobson is in fact necessary.

4.1.7 EXAMPLE We give an example of a Jacobson 'ring, S, which 1Is a
localisation of a group algebra and a group, G, acting on S where the fixed
ring is not Jacobson.

Let S; = kH where H = <x, y, z: [x, y] = 2; 2 central> is the first
Heisenberg group as in Example 3.3.4 and k is a field of characteristic 2.

Let G = <g» where x9 = x~7, y9 = y~1 and z9 = z. Let
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c={ zZe kZ : z £ (z-1)kZ }, a central, G-invariant set of regular
elements. Thus we may localize at C and G still acts on the ring § = S;C7.

We show that S is a Jacobson ring. Let 0 # P ¢ SpecS. By [G-W, Theorem
9.22], PN Sy is a non-zero prime of S; and so, by the 2aleskii
intersection theorem given in [P!, Theorem 9.1.17 ], P N kZ is a non-zero
prime of kZ. Since (€ is invertible, P N kZ must be (z-7)kZ. Thus,
P/((z-1)kH) is a prime of Sy/((z-1)kH) € k[ x, x“7; v, y”], a Jacobson
ring. Thus P is semiprimitive. Finally, we show that 0 is a semiprimitive
ideal. Let U; = (k2C')[ x, x~7 jyl (i eZ ) . We have that § is a
Z-graded ring in that § = £®,.7 U, and U;U; S U;,;. By [P2, Theorem 22.61,
J(8) is a graded ideal with J(S) N U, nilpotent for all 0 # n € Z. But S is
a domain and so J(S) N U, = 0 for all n # 0. Let t e J(S) 0 Up. Then
ty € J(S) N Uy = 0. Hence, J(§) = 0 and so 0 is semiprimitive. We’'ve thus
shown that S is a Jacobson ring.

However, we now show that R factored by the trace ideal is not Jacobson
so that R itself is not Jacobson. Simulating the argument in Lemma 4.1.1,
we find that R/trg(s) = kZC”’, a local, commutative ring which is not a

field and, therefore, not Jacobson. In particular, R is not Jacobson.

We have thus established that primitive ideals play an important role
in the structure of R, § and T. We can say more about the primitive ideals
in 8§ and 7. We first recall the following well-known results for group

rings. The first of these was proved by A.E. Zalesskii.

4.1.8 THEOREM Let H be a finitely generated nilpotent group and k any

field. Then every primitive ideal of kH is maximal.

PROOF This theorem is just [P1, 12.2.11].

when the order of the group 6 is invertible in S, we can provide a
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direct analogue of Theorem 4.1.8 for the fixed ring,

4.1.9 LEMMA Let S be the ring kH where k is a field and H is a finitely
generated nilpotent group. Let G be a finite group of automorphisms of H

such that 1G1~! ¢ k. Then every primitive ideal of (kH)C is maximal.

PROOF Let p be a primitive ideal of R := SG. Since tr(S) = R, p ¢ SpecR.
By Theorem 3.1.21(ii), p is minimal over P N R for some P ¢ SpecgS. By
Lemma 3.1.18, P is a primitive ideal and so, by Theorem 4.1.8, P is a
maximal ideal of S. Let P = 3"7(p). Theorem 3.1.9 shows that P is minimal
over PO*G. Now, coht(p) < coht(P) by Lemma 3.3.3 and coht(P) < coht(P) by
Corollary 3.3.5. Since coht(P) = 0, we have coht(p) = 0, so that p is

maximal.

However, as the following example shows, if we remove the hypothesis on
the order of the group,'we find that there is no analogue of Theorem 4.1.8

for R .

4.1.10 EXAMPLE There exists a field k, a finitely generated torsion-free
nilpotent group H and a finite subgroup of AutH such that R, the fixed ring
of kH, has a primitive ideal M which is not maximal.

See Example 3.3.4. The ideal M in S, being maximal, is certainly
primitive. By Theorem 3.2.10, (M) = M N R is primitive. However, as is

shown in Example 3.3.4, M N R is not maximal.

P. Hall has proved that, in certain circumstances, the irreducible
modules over a group algebra of a polycyclic-by-finite group are finite
dimensional. See [P1, Corollary 12.2.10]. We indicate in Theorem 4.1.12 how

to deduce the following well-known consequence of this result.




4.1.11 DEFINITION A field k is said to be absolute if it is algebraic over

some finite field.

4,1.12 THEOREM (J.E. Roseblade) Let H be a polycyclic-by~-finite group, k an
absolute field. Then all primitive ideals of kH are maximal and have finite

co-dimension over k.

PROOF Let S denote the group ring kH. Let P be a primitive ideal of S and
suppose that P = anng(M) for some irreducible right S-module M. Let L be
the kernel of the action of H on L so that H/L embeds in Endy(M). By [P1,
Corollary 12.2.10), dimy(M) = n for some n e N. Thus, H/L embeds in GLp(k).
But H and so H/L is a finitely generated group. Hence H/L embeds in GLp(kp)
where kp is a subfield of k finitely generated over the prime subfield of
k. Since k is absolute, kp is finite. Thus, H/L is a finite group. Now M is
a k(H/L)-module. Since k(H/L) € (kH)/(aug(kL)kH) and P 2 aug(kL)kH, P has
finite codimension over k. Thus, the factor S§/P is prime Artinian and

therefore simple. This shows that P is maximal in S.

Note that the hypothesis that the field k is absolute is necessary. In
Example 3.3.4, we have a maximal ideal M of the nilpotent group algebra S

such that S/M is infinite dimensional over k.

We now provide a generalisation of Theorem 4.1.12, again proved by
Roseblade, and extend it to the fixed ring setting. We make a definition

generalising the concept of an absolute field first.

4.1.13 DEFINITION Let K be a commutative Jacobson ring. By a capital of K,
we mean a factor K/M for some maximal ideal M of K. Now K is said to be

absolutely capital if all its capitals are absolute fields.
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Note that the ring of integers, and any absolute field, are absolutely

capital rings.

4.1.14 THEOREM Let K be a commutative Jacobson ring wh;ch is absolutely
capital. Let H be a polycyclic-by-finite group and S be the group ring KH.
Then

(1) every primitive ideal M of S Intersects K in a maximal ideal of K;

(ii) every primitive ideal of S is maximal;

(1ii) if M is a primitive ideal of 5 then M has finite codimension over
K/(M N K).

In particular, every irreducible S-module is finite dimensional over a

capital of K.

PROOF [R2, Corocllary C3] is (i). Suppcse now that P is a primitive ideal of
S. Now, P/(K N P) is a primitive ideal of (K/(P N K})}H and, by (i), KN P
is a maximal ideal of K. By hypothesis, K/(P N K) is an absolute field and
so we may apply Theorem 4.1.12. This proves (iii), and the final statement

follows immediately from (iii).
We now provide an analogue of Theorem 4.1.14 for the fixed ring.

4.1.15 THEOREM rLet K be a commutative Jacobson ring which is absolutely
capital. Let H be a polycyclic-by-finite group and S the group ring KH.
Suppose G is a group of automorphisms of H of prime order q so that G acts
as K-automorphisms on S. Set R = SG. Then

(i) every maximal ideal M of R intersects K in a maximal ideal of K;

(ii) every primitive ideal of R is maximal;

(iii) for M above, R/M has finite dimension over the absclute field
K/(M N K).

In particular, every irreducible R-module is finite dimensional over a
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capital of U.

PROOF Let m be a primitive ideal of R. Suppose tr(S) & m. Then m/tr(S) is a
primitive ideal of R/tr(S) which is isomorphic to (K/gK)Cy(g) by Lemma
4.1.2. The hypotheses of Theorem 4.1.12 apply to the ring (K/gK)Cyx(g) and
so the Theorem holds in this case.

Suppose now that tr(s) € m. So, by Theorem 3.1.5, m = 6(&) for some
primitive ideal M of T. Since T = S*G & K(E>9G), we may apply Theorem
4,.1.14 to the ring T. Thus, M N K is a maximal idéal of K. By definition of
B, mNKR2 M0k and, therefore, m N K = MN K is a maximal ideal of K.
Thus, we have established (i). By Theorem 4.1.14(iii), 7/M is finite
dimensional over the absolute field K/(K N M). Since R/m is a factor of
R/(M 0 R) and R/(M N R) embeds in T/M , R/m is finite dimensional over
K/(K N ﬁ), proving (iii). Hence R/m is a simple ring and m is a maximal
ideal of R. This proves (ii). The final statement is an immediate

consequence of (i), (ii) and (iii).

§4.2 The Prime Rank of a Nilpotent Group Algebra

We now investigate the prime rank of R in relation to that of S. First

we define the term prime rank.
4.2.1 DEFINITION Let U be a ring. The prime rank of U, rk(U), is defined to
be the upper bound ( if it exists ) for the height of a prime in U. If no

such bound exists, the prime rank is said to be infinite.

We may now state the question which will pre-occupy us in this section.
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QUESTION 4B Suppose H is a nilpotent group, % is a field and S is the group
algebra kH. Let G act as k-automorphisms on S and set R = SG. Does

rk(R) = rk(s) ?

while discussing Question 4B, another question naturally arises. Recall
the definition of the Saturated Chain Condition in 3.3.10. When § is the
group algebra of a nilpotent group, [R%i, §2.4 Theorem H3] shows that S

satisfies SCC. We ask the following question.

QUESTION 4C Suppose H is a nilpotent group and k is a field. Let S denote
the group algebra kH. Suppose G acts as k-automorphisms on S. Does SC have

scc ?

There is a result of P.F.Smith given in [P1, Theorem 11.4.9] which
states that when H is a finitely generated nilpotent group, the prime rank
of the group algebra, rk(kd), is the Hirsch length of 4, h(H). when H is
polycyclic-by-finite, rk(kH) < E(H), but in general this inequality can be
strict. See [Smi].

We give an easy consequence of Smith’s result which shows that, when
the order of the group is invertible in k, the fixed ring R also has prime

rank E(H), answering Question 4B positively.

4,2.2 LEMMA Let 5§ be any ring and G a finite group of automorphisms of S

with 1G61~! ¢ §. Letting R = SG, we have that rk(R) = rk(S).

PROOF Let p € SpecR. Since tr(S) = R, p € SpecygR and by Theorem 3.1.22(ii)
there exists P e¢ SpecS lying over p. By Corollary 3.3.4, ht(p) = ht(P) and
so rk(R) < rk(S).

Now, let P e SpecS. By Lemma 3.1.2, P e SpecgS. We apply Theorem

3.1.21(i) to find p € SpecgR lying under P. Corollary 3.3.8 gives
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ht(p) = ht(P) and so rk(S) < rk(R).

4.2.3 NOTE When H is a polycyclic-by-finite group, kH has prime rank less
than or equal to E(H), the Hirsch length of H by ([Smi]. [P1, Theorem

11.4.9] shows that we get equality when H is nilpotent.

Wwhen 1G1 = 0, the situation is not so clear. We concentrate on the
simplest case where chark = ¢ and G has prime order g. We can use the
correspondence of Theorem 3.2.10 to investigate the prime rank of R.

Consider p, g € SpecgR with g € p. Then w"’(p) = [P], say, and
w"(q) = [Q], say, for some P,Q € SpecrS. As p“’ preserves order,
P9 € pO c p and we may assume @ € P. Thus we must have rk(S/Q) » rk(s/p).
This observation enables us to place an upper bound on the length of a
chain of primes in R of the form

pp € pr € ... ©pg with p; € SpectR (0 < 1 < n).
For i = 0,...,n, let (Boa)~'(p;) = (P;] € (SpecyS)/G for some P; € SpecyS.
From the above,

rk(S) » rk(S/Pg) > rk(S/Py) > ... > rk(S/Pp) > 0.
Thus, n < rk(S) < h(H) as in Note 4.2.3.

Then, applying Smith’s result in [Smi] to R/tr(S), yields an upper
bound on the length of a chain of primes in R which contain trg(S). Using
the fact that R/trg(S) = kCy(G), we find that any such chain has length at
most h(Cy(G)).

We find an upper bound for rk(R). Suppose t = rk(R). Let

Pp € pP;r Cppc ... ¢ ptv p; € SpecR ( 1 € 1< t)
be a chain of maximal length in R. If p; e SpecyR for i=1,...,t, then the
above shows that t < h(H). Otherwise, there exists u ( 7 € u< t ) with

trg(S) € py and trg(S) & py_7. As noted earlier u-1 < h(H). Also, since

Ia]

trg(S) € py. t-u < h(Cy(G)). Thus,

t = (t u) + (u-1) + 1< E(Cy(G)) + h(H) + 1. So we have found an upper
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bound for rk(RrR).

We have proved the following result:
4.2.4 PROPOSITION Let H be a finitely generated polycyclic-by-finite group,
G a subgroup of AutH of order gq. Let k be a field with char k = g and S be
the group algebra kH. Then

rk(R) < 1 + h(H) + h(cy(6))

The following lemma which follows will allow us to refine this bound
for H nilpotent in Theorem 4.2.9. In order to prove this lemma, we first

require a series of definitions.

4,2.5 DEFINITION Let H be a finitely generated torsion-free nilpotent
group, k a field and I an ideal of kH.

{i) We define I* to be { h ¢ H: h-1 ¢ I}, a normal subgroup of H. It is
normal because, if h ¢ Hand x € I, then WX - 1 = x~T(h - 1)x ¢ I.

If in addition, I is prime, we have:

(ii)} The map p: kH » kH where H = H/I* is the canonical epimorphism.

(iii) The function A (1P} is defined as follows. Let A be the centre of
A(H) := {h ¢ H: h has finitely many H-conjugates], a characteristic
subgroup of H so that A is normal in H. By [R1, §4.1 Lemma 5 ],
IP 0 kA = Q° where 0° denotes the intersection of the (finite) H-conjugates

of Q0 ¢ Spec(kA). We define N(IP) to be htpa(0).

Theorem 4.1.12 shows that all maximal ideals of a nilpotent group
algebra over an absolute field have finite codimension. As was pointed out
after that theorem, the same is not always true of a nilpotent group
algebra over a non-absolute field. However, we can still show that maximal

ideals with maximal height in S do have finite codimension.
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4.2.6 LEMMA Let H be a finitely generated nilpotent group, k a field and S
the group algebra kH. Suppose P e¢ SpecS such that ht(P) = rk(S) = h(H).

Then dimy(S/P) < .

PROOF Let P ¢ SpecS with ht(P) = rk(S) = h(H). Recall the Definition
4.2.5. Clearly PP is a faithful prime of kH in the sense that
(FP)* 0N H = (1}. [RY, §2.4 ] gives us
ht(p) = N(PP) + h(P*).

So htya(Q) = ht(P) - h(p*) = h(H) - h(P*) = hea/p*). But,
E(A) > ht(Q) = 5(H/P*) > h(A) and so we must have equality. In particular,
1H:Al < =, Moreover, ht(Q) = E(A) and so @ is maximal in kA and, since A is
abelian, dimy(kA/Q) < ». Now, kH/P 1is isomorphic to a factor of

kH/( (PPOKA)KH) & kA/(PPOkA) * H/A which has finite dimension over k. Thus,

kH/P is finite dimensional over k.

We give a consequence of Lemma 4.2.6 which relates to the fixed ring

and will help us refine the upper bound for rk(R).

4.2.7 COROLLARY Let H be a finitely generated nilpotent group, G a subgroup
of AutH of order q, k a field of characteristic q and S the group algebra

kH. Suppose p € Spec¢R with ht(p) = h(H). Then p 1s maximal in R.

PROOF Let P ¢ SpecS lie over p. By Corollary 3.3.8, ht(P) = ht(p) = E(H)
so that P is maximal in S and ht(P) = rk(S). From Lemma 4.2.6,
dimp(S/P) ¢ ». Thus, R/( PN R ) is finite dimensional over k because it
embeds in S/P. Now, R/p is a factor of R/( P N R ) and is therefore finite
dimensional over k. Since R/p is a prime ring, it must be simple Artinian.

Hence, p is maximal in R.

We now give a lower bound for rk(Rr).




4.2.8 LEMMA Let H be a finitely generated nilpotent group, suppose that k
is a field and that S is the group algebra kH. Suppose that G is a finite

subgroup of AutH such that tr(S) # 0. Then rk(R) » h(H).

PROOF If 1G1~! ¢ k, then the result is true by Lemma 4.2.1 and Note 4.2.2.
Henceforth, assume char k = q, for some prime g. Let Y be the set (A A is
a normal, G-invariant subgroup of H with 1H/A1 ¢ « such that q [ 1H4/41]).
Since every normal subgroup of finite index contains a G-invariant subgroup
of finite index, [Rob, Theorem 9.38] gives:
N(aA: A e Y} =1 —(*)}.
Let A € Y. Then, clearly, A is a normal subgroup of H G and so, since
T = S*G = k{(H>4;), we may consider the factor ring
Ty := T/(aug(kA)T) & k((H/A)>AG) = k(H/A)*G.
Since g f IH/A1, Maschke’s Theorem asserts that k(H/A) is semiprime. Thus,
[P2, Theorem 4.2] shows that J(Tg)!Cl = 0. Let M be the set
{N ¢ SpecT: N is the inverse image in T of a maximal
ideal of Tp, for some A as abovel.
Let #w = N{N: N ¢ M}. We claim that # = 0. By the above W!G! € N,.y aug(ka)T
and so, by (*), witGl = 0. By Theorem 1.3.6, T is semiprime. Thus, W = 0,
proving the claim.
As a consequence of the fact that W = 0, we can choose N ¢ M such that
N e SpecgT. Since N ¢ M, M/N* is finite. Thus ht(aug(kN*)) = h(nt) = hed).
[R1, 8§8.4, Paragraph 5] shows that ht(N) = h(H). Now, by Lemma 3.3.2,

rk(R) » ht(B(N)) = h(H), proving the Theorenm.

We have thus established bounds for rk(R). We state these bounds in our

next theorem together with a refinement of the upper bound.
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4.2.9 THEOREM Let S be the group algebra kH where H is a finitely generated
torsionfree nilpotent group and k a field of characteristic gq. Suppose that
G 1Is a group of automorphisms of H of order q. Then

h(H) < rk(R) < h(H) + h(cy(6)).

PROOF Clearly, we may suppose that the action of G is non-trivial on S. In
this case, because 16l = g, we have that tr(s) # 0 and so Lemma 4.2.8 gives
a lower bound for rk(S). Now suppose rk(R) = ﬁ(H) + B(cy(a)) +1. Then,
there exists a chain:

Pg € P1€ ... € Pn © Pp+1 € Pp+2° -+ € Pnem+t
where n = h(H),m = h(Cy(G)) and p; ¢ SpecR (1< i < n+m+1). As noted in the
proof of Proposition 4.2.4, pp,...,pp ¢ SpecyR. By Corollary 4.2.5, p, is a

maximal ideal of S. This contradiction proves the theorem.

We may improve on the theorem by combining it with Lemma 4.2.2.

4.2.10 COROLLARY Let H be finitely generated torsionfree nilpotent group
and k a field of characteristic q. Suppose G 1is a finite group of
automorphisms of H having a normal Sylow g-subgroup Q of order q. Then

h(H) < rk(R) < h(H) + h(cy(G)).

PROOF By Theorem 4.2.9, h(H) < rk(sQ) < h(H) + h(Cy(G)). Lemma 4.2.2 shows

that rk(s9) = rk(sC®) because SC = (SQ)G/Q, proving the corollary.

Corollary 4.2.10 is our best result as far as Question 4B is concerned.
Example 4.2.12 will provide some examples for which this question is
answered positively. As a result we conjecture that the answer to Question

48 is in fact "yes".
Example 4.2.12 will settle Question 4C. We return to the saturated

chain condition of 3.3.10. It’s easy to see from Lemma 3.3.11 that if 7 has
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SCC then R has SCC when 1G1~! ¢ k. However, we give an example to show that
R need not have SCC even when S does. In Example 4.2.12, T may or may not

have SCC and I1Gl = 0 ¢ k.

First we require a lemma.

LEMMA 4.2.11 Let H be a finitely generated, torsion-free nilpotent group
and G a finite group of automorphisms of H of prime order q. Let k be a
field of characteristic g and S the group algebra kfH. If Z(H) is fixed by G

then the trace ideal is prime of height 1.

PROOF First, by Lemma 4.1.2, R/tr(S) = kCy(G), a domain, and so tr(S) is a
prime ideal. Suppose there exists p € SpecR with 0 € p € trg(S). Theorem
3.1.21(ii) shows that there exists P ¢ SpecgS such that P lies over p.
Since H is nilpotent, the Zalesskii subgroup 3(H) is just the centre, Z(H).
(See [P1, Chapter9, 8§1] for details of 3(H)). Now, [P1, Theorem 9.1.17 ]
guarantees that any non-zero prime ideal of S has non-zero intersection
with Z(H). Hence, trg(S) N kZ > p N kZ 2 PN kZ # 0 but as in the proof of
Lemma 4.1.1, trg(S) N kZ € trg(S) N kCy(G) = 0. This contradiction proves

the lemma.

EXAMPLE 4.2.12 There exists a countably infinite family of group algebras,
each with a finite group of k-automorphisms such that their fixed rings do
not have SCC.
Fix n ¢ N and let H, be the nth Heisenberg group of 2.2.4. Let k be a field
of characteristic 2 and let g be the automorphism of H, of order 2 such
that: x;9 = x;71; y;9 = y;=1; 29 = z.

We show that trg(S) is a prime ideal of R of height 7 and coheight 7.
For, by Corollary 4.1.2, R/trg(S) & k<z> and so trg(S) is a prime ideal of

R. Clearly trgf(S) has coheight 1. That the height of the trace is 1 is
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immediate from Lemma 4.2.11.

We now show rk(R) =2n + 1. For Theorem 4.2.9 gives us that
rk(R) = 2n + 1 or 2n + 2. Suppose it is the latter so that there is a chain
0 = pp©py Cppc... ¢ pén*z p; ¢ SpecR ( 0K i < 2n + 2).

By the considerations of Lemma 4.2.4, there exists jF ¢ (1,2,...,2n+2} such
that trg(s) € p; but that tr(s) 4 pj_1. Since the coheight of tr(s) is
equal to t , F#0,...,2n. Suppose j =2n + 1. If ¢tr(S) © pop.y. then
coht(tr(S)) » 2. Thus, we must have pop,1 = trg(S), contradicting
ht(trg(§)) = 1. So j = 2n + 2. Thus, we may apply Theorem 3.2.10 to ppn,s.
By Corollary 4.2.7, pop+; is maximal in R. This contradiction shows
rk(R) = 2n + 1.

Let M := aug(kH) N R. Then R/M € k and so M is a maximal ideal of R.

]

We now show that ht&(M) 2n + 1. For, let gp = (2-1)S N R,

g; = ((2-1}S + (x3-1)S + (yy4-1)8 + ... + (x;_¢~-1)8 + (yj_1~1)S + (x;-1)S) N R
and qi’ = ((2-1)S + (x1=1)8 + (y1=1)S + ... + (x4-1)8 + (y;-1)S) 0 R
(1<i<n). Now, xprxyl = (g = 1) + (21 - D)xg~1 € g1\qq,
Yi * Yi“7 = (y; - 1) + (y; ~ 7)yi‘7 e g;'\q; for i=1,...,n and

x; + x;71 = (x; - 1) + (x; - 1)x;7" € g;\g;_¢’ for i=2,...,n. Consequently,
we have a chain of primes
0€qgpcqgr gy’ Cqgp€ ... cqCqgp’ =M
of length 2n +7. Thus, ht(M) = 2n + 1.
Since G acts trivially on the factor kH/(aug(kH)), we have tr(S) € M.
Since coht(tr(S})) = 1, they are neighbouring primes.
Thus, we’ve shown that (an)G has neighbouring prime ideals, one of

height 2n + 7 and the other of height 7. Thus, (th)G does not have SCC and

we have answered Question 4C negatively.




CHAPTER 5

LOCALISATION IN FIXED RINGS

This chapter is joint work with K.A. Brown.

In this chapter, we examine the localisations of the fixed ring SG,
when compared to those of S. We use the preparatory results of Chapter 1,
§5 and §6. Some elementary results concerning the inversion of central
regular elements are given in §1.

Section 2 is modelled on [W1, 8§1] where Warfield studies the
inheritance of the SSLC in a ring U from a ring V with U € V. Warfield’s
results apply to the fixed ring situation when 1G1~! ¢ S and we extend
these results to cover the possibility that ¢tr(S) € R. Our best result in

§2 is:

5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer
condition and G be a finite subgroup of AutS such that R is Noetherian and
rS and Sp are finitely generated modules. Suppose p ¢ SpecyR. Then p has

SSLC.

Again, when dealing with the rings U and V, Warfield [W1, 8§6] examines
the 1link graph of SpecU in comparison to that of SpecV. As above,
Warfield’s results apply to the fixed ring case when 161=! ¢ S and we

extend them to allow for the possibility that ¢r is not surjective. We

obtain:




5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of
automorphisms of S. Suppose that R = SG is Noetherian and rS and Sp are
finitely generated. Let d be a symmetric dimension function on (R, 8). If
pP1,Py € SpectR with p; second layer linked to pp, then there exist primes
Q1,...,Qn of S with n » 2, such that Q; lies over pj, Qn lies over py and

such that Q; is second layer linked to Qj,¢ for 1< i € n-1.

As indicated above, Sections 2 and 3 require some strong hypotheses on
the ring SG. For example, we require that SC is Noetherian and that S is a
finitely generated SG-module. While these hypotheses seem quite strong,
they are satisfied when S is the group algebra of the nth Heisenberg group
and G is one of the automorphism groups in Corollary 2.2.7, Lemma 2.2.8 and
Corollary 2.2.9. In fact, if Question 2B has a positive answer, then any
polycyclic-by-finite group and any finite subgroup, G, of AutS has (kH)G
with the required hypotheses, in view of Corollary 2.1.4. Alternatively, if
S is a ring which is finitely generated over its affine k-algebra centre,
C; then Theorem 1.4.4 gives us that SG here satisfies the hypotheses.

Throughout §2 and §3, we assess the implications of our results for

S = kH where k is a field and H is a finitely generated nilpotent group.

§1_Elementary Results

We begin this chapter with some elementary results on localisation.
Initially, we concentrate on inverting central regular elements. We then
look at their relationship with the fixed ring of the localized ring. The
first lemma applies to any ring, not necessarily a group ring. It concerns

localising at regular elements in C(S), the centre of S.
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LEMMA 5.1.1 Let S be @ ring and G be a finite group of automorphisms of S.
Let C < C(S) N Cg(0) and suppose C is non-empty and is multiplicatively
closed. Then C is an Ore set in § and X := C® is an Ore set in both S and
R. Moreover,
sc-! = sx-1.
Consequently, with S =5c" and R = Rx~!, G still acts on 8 as C is
G-Invariant and so

(5)6 = R and trg(8) = trg(s)x-1.

PROOF Trivially € and X are Ore sets in S and we may localize at them.
Also, the elements of X are invertible in R. We show that any element of 3
may be expressed as sx~! for some s €S, xe X. Let tc~! ¢ 5 with
t ¢ S,c ¢ C. We may define x to be the "multiplicative trace" of ¢ so that
X =Tgeged. This is a well defined element of X because C is commutative.
Let u =Tgeg\(1) 9 S0 that uc = X. Thus
tc=! = (tu)(cu)-! = (tu)x=! € Sx~!. This establishes the first part.
Now let vy‘1 e S with vedSyelX. Thus,
trg(vy=1) = Sgeg(vy~1)9 = gea(v9)y~! ¢ trg(S)y~!. Hence, tr(3) < tr(s)x-1,
and the reverse inclusion is clear.

Suppose now vy“’ ¢ (5)6. Then for all geG, vy~! = (vy~1)9 = vIy=T and

~

so v = vJ. Thus v ¢ R and vy~! ¢ R.

Suppose now that A is a finitely generated torsion-free nilpotent group
and that $§ = kH is the group algebra over some field k. We now investigate
the consequences of localizing at the non-zero elements of the centre of
kHd, that is kZ \ {0} where Z = Z(H}. This is of interest because, as a
result of the fact that any ideal of S has non-zero intersection with the

centre, the localized ring is then simple.
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COROLLARY 5.1.2. Let S be the group ring of a finitely generated
torsion-free nilpotent group H over a field k and G be a finite group of
automorphisms of H. Let C = k& \ (0}, an Ore set in S, and X = ¢G, an oOre
set in R, then

sc-! = sx~1.

Consequently, with S = SC-! and R = Rx~1, G still acts on S since Z is

characteristic in H and

(8)6 = R and trg(8) = trg(S)x-1.
PROOF This is a straight application of Lemma 5.1.1.

We now give a lemma which shows that any finite group of

k-automorphisms of kH acts as outer automorphisms.

LEMMA 5.1.3. Let H be a finitely generated torsion-free nilpotent group, k

any field. Then every unit of finite order of kH(kz\0)~! is central.

PROOF Let u be a unit of kH(kz\0)~! such that u? = 7 for some n ¢ N. Since
H is nilpotent, we construct a chain of subgroups of H:
Z =:Hp < Hy < Hy < ... < Hy for some t ¢ N

where each H; is normal in H and H;/H;_ 1 & C» for i=71,...,t. Suppose u is
not central. Then there exists j»0 and s#0 such that u =%L;. 5 ¢ vixi
where v; € Q(kZ) * (Hj_1/Z) (i= -5,...,5 ), either vg # 0 or v_g # 0 and
<xHj_1> = Hj/Hj,,. Without loss of generality, we may suppose that vg # 0.
The expansion of u? has a term (vgxS)?. Now, a simple calculation shows

that

s -2s -{n-1)s
(ve)® T vt xS0,

(v_sxs)n = VS(VS)x
Since Hj_j; is normal in H, all the conjugates of vg belong to the domain
Q(kZ) * (H;_3/Z). Hence this term in non-zero. Since it is the only term in

the expansion of uf? of degree sn in x, we deduce that ul! is not equal to
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1. This contradiction proves the lemma.
We now exploit this lemma below.

5.1.4 LEMMA Let H be a finitely generated torsion-free nilpotent group, let
k be any field and G be a finite group of automorphisms of H. Let C = kz\0,
X = 6 and let § denote kH.C~! and R denote ($)G. Then

(1) S *Gis simple;

(ii) trg(S)X“7 is the unigque minimal non-zero ideal of ﬁ;

(iii) for every non-zero ideal J of R the factor (trg(S} + J)/J is

X-torsion.

PROOF From Lemma 5.1.3, G is outer on 3. As noted at the beginning of the
section, 5 is simple and we may apply Theorem 1.4.6(iv) to see that s *c
is simple, proving (i). For (ii), Theorem 1.4.6(i) shows that trg(3) is the
unique minimal non-zero ideal of R. Finally, suppose J is a non-zero ideal
of R. Then Jx~! is an ideal of 5 and so trg(S)x~! € Jx=1. Let t e trg(s).
Then there exists x ¢ X, j € J with t = jx"’ so that j = tx. This completes

the lemma.

We are now in a position to provide a corollary which gives sufficient

conditions for the fixed ring of a localized ring to be Noetherian.

5.1.5 COROLLARY Let H be a finitely generated torsion-free nilpotent
group, let k be any field and let G be a group of automorphisms of H of
prime order gq. Let C = kzZ\0, X = Cc¢ and suppose Cp(Z) # G. Write S for

kHC~! and R for (3)6. Then R is Noetherian.

PROOF By Lemma 5.1.4, G is outer on S and 5%G is simple. Let 2z ¢ Z be such

~

that 29 # z. Then since g is prime, tr(z) # 0 and so tr(z) is a unit in R,
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Lemma 1.4.2 shows that R is Noetherian

§5.2 The Strong Second Layer Condition in R

In this section, the objective is to discover which primes of the fixed
ring, R, inherit SSLC when the ring S has SSILC.

The results here are motivatgd by those of R.B. Warfield in [W1]. The
results in Warfield’'s paper relate to the following situation: U € V¥ is an
extension of Noetherian rings where V is finitely generated as a right
U-module. The right trace ideal of a right U-module M is defined to be the
sum in U of the images f(M) over all f e Hom(My, Uy). Warfield requires as
a hypothesis that the right trace ideal of Vy be equal to U. In (W1,
Corollary 5.6 ], we have that when V has SSLC and both the trace ideal of
gV and the trace ideal of Vy are equal to U, then U itself has SSLC.

We are concerned with the case where S is a ring satisfying SSLC and G
is a finite group of automorphisms of S. Suppose R is Noetherian and that
Sp and RS are finitely generated. Suppose in addition that the trace map
tr: S » R is surjective. All these occur for example when 161-7T e s by
Lemma 1.4.2 and Theorem 1.4.3. Since tr e Hom(gSg, grRr). we have that the
right trace ideal of Sk and left trace ideal of pS are equal to R. [W1,
Corollary 5.6] shows that in these circumstances, R has SSLC.

Consequently, we concentrate on the case where tr(S) € R. Our results

in this case reduce to Warfield’s when the trace map is onto.

First we guote two of Warfield’s results.

5.2.1 LEMMA Let U, V and W be Noetherian rings, such that U and W satisfy
the second layer condition. Suppose that pjAy and yBy are Noetherian

bimodules which are faithful on each side. Assume that V is prime and that
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Ay and yB are torsionfree. Then U and W possess Artinian classical quotient
rings, and pyA and By are torsionfree (that is, yA is Cy(0)-torsionfree and

By is Cy(0)-torsionfree).

PROOF [W1, Lemma 5.2]

Also, we have:
5.2.2 LEMMA lLet U and V be Noetherian rings, and suppose that B is a
Noetherian (U-V)-bimodule which is faithful on each side. Suppose also that
Vv has an Artinian classical quotient ring, and that B is torsion-free as a
right V-module. Let J be an ideal of V not contained in any minimal prime.
Then there exists an ideal K of U, not contained in any minimal prime, such

that KB & BJ.

PROOF [W1, Lemma 5.3].

The next theorem is inspired by the arguments contained in [W1, Lemma
5.4 and Theorem 5.5)]. As was pointed out in the introduction, the original
form of these results showed that R has SSLC when tr(S) = R. Our modified
version still gives this result but also handles the case where tr(S) <€ R.

First we give a definition required in the proof of the theorem.

5.2.3 DEFINITION Let U € V be rings. Let J be an ideal of U and define the
(U-V)-bimodule <«J>V as follows: «J»>V := N{kerf : f e Hom(yV,y(U/J))}.

Similarly, we make the definition that V¢J> := N{kerf: f e Hom{VU,{U/J)U)}.

We show that «J>V is a (U-V)-bimodule. Let u e U, v e <J>V and w ¢ V.
Suppose f ¢ Hom(gV, y(U/J)). Then f(uv) = uf(v) = u0 = 0. Since f was
arbitrary, we conclude that uv e «¢J>V. We now consider the element vw ¢ V.

pDefine a map g: V- (U/J) by g(x) = f{xw) for all x ¢ V. It is easily seen
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that g ¢ Hom(yV, y(U/J}) and so, by definition of «J>V, 0 = g(v) = £(vw).
Again, since f is arbitrary, we see that vw e «J>V. Thus, «J>V 1is a

(U-V)-bimodule. Similarly, V«J» is a (V-U)-bimodule.

We now give a lemma concerning Definition 5.2.3.

5.2.4 LEMMA Let U and V be Noetherian rings with U & V. Let P ¢ SpecU. Then

the (U-~V)-bimodule V/<P>V is torsionfree as a left U/P-module.

PROOF Let T/<P»>V be the torsion submodule of V/«P>V as a left U/P-module.
Since V/«¢P>V is Noetherian as a right V-module, T is finitely generated as
a right V-module by ty,...,t, say. By definition of T and because U/P is
prime Goldie, there exists a regular element y + P e U/P such that
(y + P)t; = 0 for i=1,...,n. Thus, (y + P).(T/<P>V) = 0 and so, yT S <P>T.
Let £ e Hom(yV, U(U/P)). Then f(yT) = 0. Thus, y£f(T}) = 0 and so,
(y + P)f(T) = 0. Since y + P is regular in U/P, f£(T) =0y/p- But f was

arbitrary, so T & <P»V. This proves the lemma.

We now give the main result of this section.

5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer
condition and G be a finite subgroup of AutS such that R is Noetherian and
rS and Sp are finitely generated modules. Suppose p ¢ SpecyR. Then p has

SSLC.

PROOF Suppose that p ¢ SpecgR and that p does not have SSLC. Then, by
Corollary 1.5.7, there exists a cyclic uniform R-module M such that
g = anng(M) is prime and p = ass(Mp) ® g. Consider the map T:S > R/g such
that T(s) = tr(s) + g. It is an (R-R)-bimodule homomorphism which is

non-zero since tr(S) € g. Since «¢g»>S and S<¢g> lie inside kert, they must be
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proper subbimodules of S. Equivalently, S5/(<g>S) and S/(S<g»>) are non-zero
(R-8)- and (S-R)-bimodules respectively.

Let D = r.anng(S/(<g>S)), E = l.anng(S/(S<g>)) and R = R/g. Henceforth,
we let ~ denote modulo g in R. Lemma 5.2.4 shows that S/(¢g>S5) is a
torsion-free left R/g-module. Since R is prime Noetherian, S/(¢g>S) is also
faithful as a left R-module. By definition it is a faithful right
(8/D)-module. Similarly, (S/S<g>) is a torsion-free, faithful right
R-module and a faithful left S/E-module.

By Lemma 5.2.1, S/(<g»S) is a torsion-free S/D-module and S/D has an
Artinian quotient ring. We denote S5/D by S and the (R-S)-bimodule S/(<g>8)
by B.

Since M is cyclic with annihilator q, we may assume that M = R/K for

some right ideal K of R with g € K. Suppose B = KB. Then

th
i

KS + «g»S

and so tr(s) tr{(kKs) + tr(<g»5)

i

[ia}

Ktr(s) + q by definition of «g»$s

in

Ktr(S) + K € K.
This shows that Mtr(s) = 0, contradicting the fact that ¢tr(S) € q.
THerefore KB € B - that is B/(KB) is a non-zero left S-module.

Let L be the right ideal of R with K € L such that L/K = annyg(p), the
first layer of M. Suppose LB = KB. Then LS + <g>S = KS + <g>S and so
LS € KS + «g>S. Taking the trace of this, we firnd Ltr(s) € Ktr(S) + g € K.
But this gives that tr(S) € p, a contradiction. Thus, we must have LB # KB.

Let J = ann(B/(pB)}E. By Lemma 5.2.2, J is not contained in a minimal prime

of 5. Note also that J annihilates the non-zero bimodule (LB)/(KB) on the
right.

We choose a right submodule C of B containing KB which is maximal such
that ¢ N LB = kKB. Then (B/C) as a right S-module is an essential extension

of (LB + C)/C = (LB)/(KB). Since S has an Artinian quotient ring, Theoren
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1.5.11 shows the prime radical of 5 is localisable. Hence, Proposition
1.5.2 shows the set of minimal prime ideals of S is closed with respect to
links. Since J annihilates (LB)/(XB), and since S5 satisfies SSLC, it
follows from [Jat, Theorem 9.1.12], that there exists an ideal N of S, not
contained in any minimal prime, such that (B/C)N = 0. { See also [G&Ww,
Theorem 11.4]).

Hence, BN N LB S KB. Letting H = annE(B/Bﬁ), we see from Lemma 5.2.2 that

H# 0, or equivalently, that:

H?>gq -(*).
Now,
(HNT)BS HBNLBS CN LBS KB
and hence (H N L)S + <g>8 &€ KS + <g>8S.

Equivalently, (H 0 L)S € kS + «g»8, and taking the trace we find

(H N L)tr(s) € Ktr(S) + tr(<«g>8) « K + g & K.
If HN L €K, then (HN L)+ K/K is a non-zero submodule of L/K and so
tr(s) € ann(L/K) = p. This contradiction shows that HN L € K. So
(H+K}/K N L/K = 0. By uniformity of R/K, (H+K)/K = 0, and S0
MH = (R/K)H = 0. This gontradicts (*) and the faithfulness of M(g/q) and so

proves the theorem.

The next lemma will enable us to show that not all prime ideals of such

fixed rings satisfy even the second layer condition.

5.2.6 LEMMA Let R be a prime Noetherian ring with a unigque minimal non-zero

ideal, J. Suppose that J is a prime ideal. Then J does not have the SLC.

PROOF Let U be a uniform right submodule of R/J and E the injective hull of
U in R. Since E is divisible and R is prime Noetherian, E is a faithful
R-module. In particular EJ # 0. Choose m € F such that mJs# 0 and let

M’ = mR and let U’ = anny,(J). Thus, U’ # 0 and M’/U’ # 0. Choose M such
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that M/U’ € M‘/U’ is uniform with prime annihilator B. By Theorem 1.5.3,
either B <€ J or B is second layer linked to J. Suppose the latter is the
case and that the link is given by (B 0 J)/I where BJ S I € B 1 J, Thus, by
minimality of J, BN J =J and BJ = J. This is a contradiction and so we

must have B ¢ J. Thus B = 0 and we’ve shown that J does not have SLC.

We now give an example of a fixed ring of a nilpotent group algebra not

satisfying the SLC.

5.2.7 EXAMPLE Let H = ¢ x,y,2: [x,y] = 2, z central >, the first Heisenberg
group, k a field of characteristic 2, and G = <¢g»>, the subgroup of AutS of
order 2 such that x9 = x~!, y9 = y=! and 29 = z. By Lemma 4.1.2,
R/tr(S) € kCy(G), a domain, and so tr(S) is a prime ideal of R. We aim to
show that tr(5) does not have SLC. Denote Z(H) by Z and kzZ\{0} by C. Since
kZ S kCy(G) and, by the proof of Lemma 4.1.1, tr(S) N kCy(g) = 0,
C & Cr(tr(S)) and so, by Corollary 1.5.8, it suffices to show that tr(s)c-1
does not have SLC in RC-!. We introduce the following notation: R = RC“’,
J = tr(s), J = Jc-1. By Theorem 1.4.6(1i), J is the unique minimal non-zero

ideal of R. Lemma 5.2.6 shows that J and hence J does not have SLC.

We now concentrate on the case where H is a finitely generated
torsionfree nilpotent group and S is the group algebra kH over some field
k. The following theorem shows all we need to know about localisation in
such a ring. It is the culmination of the work of many people, among them
Roseblade, P. Smith and M, Smith who proved [P1, Theorem 11.3.12}1, and

Nouaze and Gabriel who proved [P1, Theorem 11.2.8].

5.2.8 THEOREM Let H be a finitely generated nilpotent group and let G be a

finite group of automorphisms of H. Let S = kH so that G acts as
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k-automorphisms on S. Then SpecS has SSLC and all the cliques in SpecS are

singletons.

PROOF [P1, Theorem 11.3.12] shows that § is a polycentral ring. We then
apply [P1, Theorem 11.2.8] to see that S is in fact an AR ring. Finally,
[J, Theorem 8.1.9] shows that the S satisfies the strong second layer

condition and that the cliques of S are singletons .

5.2.9 NOTE Suppose (kH)C is Noetherian where H is a finitely generated
torsionfree nilpotent group and 6 is a finite subgroup of AutHd. By
Corollary 2.1.4, kH is a finitely generated (kH)G-module. The results of
this section leave a rather unclear impression as to which primes in the
fixed ring have SSLC. Theorem 5.3.4 shows that all primes in SpecyR have
SSLC but Example 5.2.6 shows that it is possible for tr(S) not to have even
SLC. One may be tempted to conjecture that certain primes of R, perhaps
those containing tr(S), say, do not have the SLC. Recall however, that when
H is an Abelian group, then R is a commutative ring and so all primes have
SSLC. It is in this rather unsatisfactory state that we are forced to leave

this question.

§5.3 The Link Graph in_SpecR

Again we consider the case where H is a finitely generated torsion-free
nilpotent group, k is a field and S is the group algebra kH. The group G
acts as k-automorphisms on S. Suppose R is Noetherian. Then Corollary 2.1.4
shows that S is a finitely generated R-module. We have seen in Note 5.2.9
that all primes in SpeciR satisfy SSLC. We now go on to show a necessary
condition for two primes in SpectR to be linked. Namely, p; is second layer

linked to py only if there exists P ¢ SpecgS lying over both p; and pp.
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This is a corollary to the more general result, Theorem 5.3.6.
In this section we borrow heavily from the methods of Wwarfield in
(w1, 8§6]. Often we quote directly from this paper but frequently we have to

adapt the results there to allow for the possibly that tr(S) ¢ R.

Here we give one of Warfield’'s results. Recall Definition 3.1.22 for

the definition of lying over.

5.3.1 LEMMA Let U and V be Noetherian rings such that U is a subring of V
and Vy is finitely generated. If Q is a minimal prime of U there exists a
prime of V which lies over Q. Moreover, if P is any prime of V which lies

over @, there exists an (yVy)-bond from V/P to U/Q.

PROOF [W1, Lemma 6.1]

Next, we adapt [W!1, Lemma 6.2].

5.3.2 LEMMA Let S be a Noetherian ring and G a finite group of
automorphisms of 5 such that R := S¢ is Noetherian and Sp and RS are
finitely generated. Let gi,qp ¢ SpectgR with Q4,0 ¢ SpecgS lying over qi
and g, respectively. Suppose g; is second layer linked to gy where I is an
ideal of R such that gigy S I € gy N gy and (gy N gy)/I is the link from qy
to gy. Then there exists an ideal K of S such that K< 049N 0,0 KN RCT
and if P ¢ SpecS is minimal over K, then there is a prime p of R containing

I with an (gSg)-bond from S/P to R/p.

PROOF Let S<I» = { 5 ¢ S: f(s) ¢ I for all f ¢ Hom(Sg,Rg) }. This coincides
with the definition in 5.2.3 and so S<I» is an (S-R)-subbimodule of S.

Clearly, SI & S<I». We may therefore regard S/(S<I>) as an

S—~(R/I)-bimodule.




Suppose &J & S<I» for some ideal J of R with J & I. Then
tr(S)J & tr(sJg) € I € g4 N gy. So that tr(S)J € g; and, since g; is prime
and doesn’t contain tr(S), we have that J < g; (i=7,2). Hence J € gy 0 gp
and (I+J)/I is a non-zero ideal «contained in (g7 N gp)/I and
tr(s8).((1+J)/I1) = 0. But tr(s) N Cr(qy) # # and (@ N gp)/I  is
R/qi-torsionfree as a left module. This contradiction establishes that
J S I and hence that

S/(8¢X>) is a faithful right (R/I)-module. - (1)
Now let K = annS(S/(S<I>)). Let a € K; then Sas & S¢r» and so,
tr(SaS) & I € q; N gy. Theorem 3.1.5 shows that a ¢ 8~ 7(gy) 0 B~ 7(gy) and
so a € 049N Q9 establishing K € 049 N 0,0, Note that K is the largest
two sided ideal of S contained within the left ideal S<¢I>. Hence,
S(K N R) § ScI> and therefore KN R S I, by (7). Now observe that S/(S<I>)
is an (S/K)-(R/I)-bimodule which is faithful and finitely generated on each
side. Denote S5/(S<I»>) by A and let P be a prime of S minimal over K. By
[G-W, Proposition 7.5], there exists a left affiliated series for a:

Apg = 0 < Ag < Ap < ... <Ay := A

for some subbimodules Ap,Ay,...,Ap where Py,...,P, are the corresponding
affiliated primes. We also have that each A;/A;_; is a torsionfree left
(S/Pj)-module. [G-W, Proposition 2.14 ] says that since P is minimal over
K = l.anng(A), there exists j ¢ (1,..,m} such that Pj = P,

Now consider a right affiliated series for the (S8/P-R/I)-bimodule

Aj/Aj-—1:

Bp = 0 < By < By ¢ ... < B = Aj/A; 1.
for some subbimodules B; of Aj/hj_1. By [G-W, Proposition 7.7], each factor
Bj/Bj_1 is a torsionfree left (5/P)-module. Consider the factor By/Bi_;: by
definition it is a faithful R/p-module for some p ¢ SpecR with I & p. Thus,

the (S/P-R/p)-bimodule By/Bj.; is faithful and torsionfree on both sides.

This time we use Warfield’s result in its original form.
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5.3.3 LEMMA Let U and V be Noetherian rings such that U is a subring of V.
Let Q4,0 be minimal prime ideals of U such that there is an ideal link
from Q¢ to Qy. Then there exist primes P; and Py of V such that P; lies
over Q; and P, lies over (, and such that there is an ideal link from P;

to Pp in S.

PROOF [wW1, Lemma 6.3(i)]

We now explain what is meant by a symmetric dimension function and
define such a function for R and S when R is a Noetherian subring of the

nilpotent group algebra § = kf.

5.3.4 DEFINITION A collection X of Noetherian rings is said to possess a
symmetric dimension function if there exists a function d assigning to each
prime factor ring of each ring R € X an element of a fixed totally ordered
set such that d satisfies the following conditions:

(i) If P and Q are prime ideals of a ring R ¢ X such that Q@ > P then
d(R/Q) < d(R/P).

(i1) If R and S are prime factors of rings in X, and if there exists a bond
from R to S, then d(R) = d(S).

We extend such a function d to arbitrary factor rings R of rings in X by
setting d(R) equal to the maximum of d(R/P) for P ranging over the minimal

primes of R.

Suppose X is a collection of algebras with finite GK-dimension over a
fixed field k. For each prime factor R of an algebra in X let d(R) denote
the GK-dimension of R. It follows from Lemma 1.6.3 that the dimension
fuction d satisfies property (i) above while Lemma 1.6.6 and [K-L,

Lemma 5.3] establish (ii). Hence X possesses a symmetric dimension
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function. Now extend d to arbitrary factors of algebras in X as in 5.3.4.
It is an open question whether this extension of d is equivalent to
GK-dimension for Noetherian rings. G.M. Bergman discusses this in [B] and

in fact produces an example of a non-Noetherian ring where this fails.

We use the above definition in the next lemma. Recall from 1.5.2 that
an ideal link from P ¢ SpecU to itself is non-trivial if the linking

module is a subfactor of yPy.

5.3.5 LEMMA Let U be a Noetherian ring possessing a symmetric dimension
function d. Let Py and P be minimal primes of U such that there is an
ideal link from P; to P,. Suppose further that d(U/Py) = d(U/Pp) = d(U). If
the ideal 1link from P; to Pp 1is nontrivial then there exist primes
01,...,0n of U with n » 2, such that Q; = Py and Q, = Pp, and such that Q;

is second layer linked to Q;,; for 1 € i € n-1.

PROOF [W1, Lemma 6.5]

The above results enable us to prove our main result on the link graph

in SpectR.

5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of
automorphisms of S. Suppose that R = SG is Noetherian and RS and Sp are
finitely generated. Let d be a symmetric dimension function on (R, S}. If
p1.,P2 € SpecyR with py second layer linked to pp, then there exist primes
Q1,...,0np of § with n » 2, such that Q; lies over py, Q, lies over py and

such that Q; is second layer linked to Qj,; for 1 < i < n-1.

PROOF By Theorem 3.1.19(ii), there exist primes Py,Py ¢ SpecgS lying over

py and pp respectively. Let the link between p; and p, be given by
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(py N pp)/I for some ideal I of R with psjpp & I € p; N py. Let d(R/py) = a,
say, then d(R/py) = a by 5.3.4(ii). We apply Lemma 5.3.2 to find an ideal K
of S, contained in P49 N Py°, with KN RS IC py N pp such that if
P ¢ SpecS is minimal over K, then there is a bond between S/P and a prime
factor of R/I. Since the minimal primes of R/I are py/I and py/I, it
follows from 5.3.4(ii) that d(S/P) € & for every prime P/K of S5/K and so
d(S/K) & a. From Lemma 5.3.1 and 5.3.4 we have that if p3/(K N R) is a
prime of R/(K N R), then d(R/pj3) < a. We therefore conclude, again using
5.3.4 that p; and pp, are primes minimal over R N K and that
d(R/(R N K)) = a. Moreover, there is a link form p;/(R f K) to py/(R N K)
so we work in S/K.

We are now in the situation where d(R/(K N R)) = a and d(S/K) < a. We

show that Py/K is a prime of S/K lying over pj/(K 0 R). This is the same as

showing that p1/(KNR) is minimal over
(Py/K) N (R/(K 0 R})) = (Py/K) 0 ((R + K)/K) = ((P; N R) + K)/K. But
((Py N R) +K)/K = (Py N R)/((Py M R) N K) = (Py N R)/(KNR) because

K € P;. Since py is minimal over P; N R, we've shown what we set out to. We
now apply Lemma 5.3.1 to see there is a bond from (S/K)/(P{/K) to
(R/KNR)/(p/KNR). Hence d((S/K)/(P;/K)) = d(R/p7) = a and Py/K is a minimal
prime of S/K. Thus, each prime of S/K lying over pq/(K N R) is a minimal
prime of codimension w«, and similarly for each prime of S/K lying over
po/(K N R).

By Lemma 5.3.3, there exist primes A;/K, Ap/K of S/K such that A;/K
lies over p;/(K N R) (i=1,2) and such that there is an ideal link from A;/K
to Ay/K in S/K. By Lemma 5.3.5 there exist Qy/K,...,Qp/K € Spec(S/K) such
that 0;/Kk is second layer linked to Q;,y/K (i=1,...,n-1) and Ay/K = Q¢/K

and Ay/K = Qp/K. This proves the theorem.

At this stage we make note of the results of P. Loustaunau and J.

Shapiro in {L-8}. They prove in [L-S, Theorem 3.3] that, when 161-1 ¢ S, R
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inherits SLC from the skew group ring T, and some structure on the links is
preserved when passing from T to R. It follows that, in the setting of
Theorem 5.3.6, if the cliques of S are finite, then the same is true of the
intersections of the cliques of R with SpectR.

when S is the group algebra of a nilpotent group, we know from Lemma
5.2.8 that the cliques in S are sgingletons. This fact, together with
Theorem 5.3.6, yields some strong information regarding the 1links in
SpectR. For example, it shows that when the link graph of SpecR is

intersected down to SpecyR, the cliques are subsets of the ~-classes.

5.3.7 COROLLARY Let S be the group algebra kH where H is a finitely
generated torsion-free nilpotent group and k is a field. Let G be a finite
subgroup of AutH such that R = SG is Noetherian. Suppose P1.p2 € SpecgR

with py second layer linked to pp, then p; ~ ps.

PROOF First observe that Sz and RS are finitely generated modules by
Corollary 2.1.4. Now, by Theorem 1.6.9, GKdim(S) < » and by Lemma
1.6.2(i1)GKdim(R) = GKdim(S). Thus, (R, S} has a symmetric dimension
function, namely d, as defined in 5.3.4 and so we may apply Theorem 5.3.6
to find primes Qy4,...,0Qp of S with n » 2, such that 0; lies over py, @Qp
lies over p, and such that @; is second layer linked to Q;,; for
1 € i € n-1. However, by Lemma 5.2.8, the cliques of S are singletons and
so @y = Q. Thus, p; and py are both minimal over Q; N R and so p; ~ pp,

proving the corollary.

We give the g-case as a special instance of Corcllary 5.3.7.

5.3.8 COROLLARY Let S be the group algebra kH where H is a finitely
generated torsion-free nilpotent group and k is a field of characteristic

g. Let G be a finite subgroup of AutH of prime order q such that R = SG is
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Noetherian. Suppose pi,pp € SpecgR with p; second layer linked to pp. Then

Py = p2.

PROOF From Corollary 5.3.7, py ~ pp. As observed prior to Theorem 3.1.7, ~

is the trivial relation in this case and so p; = pj.

Suppose H is a finitely generated torsionfree nilpotent group, k is a
field and that S5 is the group algebra kH. Let G be a finite group of
k-automorphisms acting on S. With R = SC and assuming that R is Noetherian,
the above results have given us some insight into the link graph of R. We
review this information here.

Suppose that p e SpecgR. Theorem 5.3.4 shows that p has SSLC. Suppose
now that p’ € SpecR is second layer linked to p. Corollary 5.3.7 shows that
two possibiiities arise. Either:

(1) p~ p’
or (ii) ¢tr(s) € p’.
If all the primes second layer linked to p fall into the category (i) above
and the same is true of all the primes linked to these primes and so on, we
find that the clique of p is a subset of its ~-class. By Theorem 3.1.18,
[p], and so the clique of p, is finite.

In certain circumstances, we find that this is indeed what happens.

First we need a lemma which exploits GK-dimension.

5.3.9 LEMMA Let S be a Noetherian k-algebra of finite GK-dimension. Let R
be a subalgebra of S, P ¢ SpecS and denote S/P by S and R/(P N R) by R.
Suppose R is Noetherian and that S is finitely generated on both sides as
an R-module. Then

(i) GK(Rs) = GK(R) = GK(S) for all 0 # s ¢ S. In particular,
R is GK-homogeneous;

(ii) R has an Artinian quotient ring;
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(1ii) qﬁfb) = 03(5) N R =:X, say, and 0(S) = Sx-'.

PROOF Let C = Q(S) which exists and is a simple Artinian ring by Goldie’s
Theorem. For the bimodule gCp form an (R-C)-bimodule composition series:
0 =CpCCrCCrc ... CCp=C (*)

where C;/C;_; are simple bimodules and @Q; := l.ann(C;/Cj_y) ¢ SpecR
(i=1,...,m). By [W2, Lemma 21, there exist (R-R)-bimodules
Lgp=58>Ly> ...3 Ly 2 QS such that the R/Qu-R/Q;-bimodules L;_;/L; are
torsion-free (i=7,...,m). In particular, they are faithful and we
immediately have GK(R/Qp) = GK(R/Q;) (i=1,...,m) by [K-L, Lemma 5.3] and
Lemma 1.6.6. Note also that Q405....0pC = 0 and since C is a faithful
R-module, 0705...0p =0. Thus, every minimal prime of R is one of the 0;s.

We now show that every annihilator prime of R is minimal. Let
Q0 = l.anng(Y) be an annihilator prime. Consider the R-C-bimodule series for
the bimodule C: 0 © YC © C where l.annp(YC) = Q. We may refine this to a
bimodule composition series of C as in (*). This gives a new series with
Cy & YC and so @y 2 Q. However, Q contains a minimal prime @4, say.

Although QU € Q< Qy, the argument of the first paragraph gives us that

GK(R/Qq) GK(R/Qj) and so Qy = @ = Q4. We’ve shown that ¢ is a minimal
prime of R.

We now prove (1) above. Let 0# s e S. Now,
GKg((Rs + P)/P) = GKg(RsS + P)/P) by Lemma 1.6.6 and S is GK-homogeneous by
[ K-L, Lemma 5.12] and so GKg((RsS + P)/P) = GK(S). We have established
(1).

[G&K, Theorem 2.7] shows that, as a consequence of the preceding claim,
R has an Artinian quotient ring, proving (ii).

Finally, we aim to prove (iii). To begin with we show that

GE(O) nNR= GE(O)' It is evident that CE(O) NREC QE(O). Now let d ¢ 05(0),

0 # s e S and suppose ds = 0. Now (Rs + P)/P & R/K where K = l.anngp(s + P).

Since d e 05(5) N K, Lemma 1.6.5 shows that GKp((Rs + P)/P) ¢« GK(R). However

as argued when proving (i), GKgr((Rs + P)/P) = GKg((RsS + P)/P) = GK(S). But
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GK(R) = GK(S), a contradiction which shows that ds # 0 and that d is
regular in 5.
Now, we show that X is Ore in S and that 0(3') = 8!, Let s ¢ E, X e X

and J = r.annﬁ(s + xS) so that R/J & (SR + x5)/x5. Now

GKR((SR + x5)/x5) & GKg(S/xS) < GKgp(S) = GKg(S5)
by Lemma 1.6.5. Thus by Lemma 1.6.2(ii), GK(R/J) < GK(R). By previous
claims, GK(R) = GK(R/N) where N = N(R). Moreover, by Lemma 1.6.8, R/N is
GK-homogeneous. Also GK((R/N)/((J + N)/NJ)) < GK(R/J) < GK(R) = GK(R/N). By
[K-Le, 5.13], (J + N)/N is an essential right ideal of R/N. Thus
J N C (N) # #. Since R has an Artinian quotient ring, Theorem 1.5.11 gives

CI—?(N) = C§(5) and so there exists y ¢ 05(5) such that sy = xt for some

t e 5.

This proves the lemma.
One further lemma is required before we give the main theorem.

5.3.10 LEMMA Let U be a prime Goldie. Suppose I is a right ideal of U with

l.annyg(I) = 0. Then I N Cy(0) # 4.

PROOF We show first that we may assume U is simple Artinian. Let @ denote

the simple Artinian ring Q(U). If o = ¢~'u e l.anng(IQ) for ¢ e Cy(0) and

ue U, then 0# u e l.anny(I). Therefore, l.aan(IQ) = 0. But there exists
e = e ¢ I0 such that IQ0 = eQ and so (71-e)IQ = 0. Thus, !-e = 0 and so
e = 1, giving IQ = Q and so I N Cy(0) # 4.

5.3.11 THEOREM Let S be a Noetherian ring with finite GK-dimension, G a
subgroup of AutS and R = SCG. Suppose P € SpecS such that Cg(PP) is an Ore
set in S8, R/(P N R) is Noetherian and S/P is finitely generated on both
sides as R/(P N R)-modules. Suppose pj,...,pp are the primes of R minimal

over P N R. Suppose pj; ¢ SpecgR (i=1,...,n) or, equivalently that
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tr(s) N Cg(P°) # #. Then Cg(P°) N R = CR(P N R) =: X, say and X 1s an Ore

set in S. In particular, N;p; is a localisable semiprime ideal of R.

PROOF We first prove the equivalence. By Lemma 5.3.9, R/(P N R) has an
Artinian quotient ring and so, by Theorem 1.5.11,
Cr(P N R) = Cp(Nyp;) = N;Cr(pj) -(1).

Suppose that p; ¢ SpecyR (i=1,...,n). Since tr(S) & p;, tr(S) N Cr(p;) # #
(i=1,...,n) and so tr(S) N Cr(h;p;) # #. Lemma 5.3.9 shows that
Cr(P N R) = Cg(P°) N R and we have that tr(s) n Cg(P9) # 4. Conversely,
suppose that ¢tr(S) N Cg(P°) # 4. This yields ¢tr(S) N Cr(P N R) # ¢ and
hence, since Cr(P N R) = N;Cr(p;), tr(S) N Cr(p;j) # 0 for each i so that
tr(s) € p; (i=1,...,n), proving the stated equivalence.

Now let J be a G-invariant right ideal of S with (J + P2)/PO essential
as a right ideal in S/P°. We show that

tr(J) 0 Cr(P N R) # ¢ -(2).

Since, Cgr(P N R) = Cr(Njp;) = N;C(p;) and ¢tr(J) is a right ideal in R,
Lemma 5.3.10 shows that it is enough to prove that
l.anng((tr(J) + p;)/p;) € p; for i=1,...,n. Fix 1, let p =p; and

P

B~T(p) ¢ SpecgT. Since (7 + PO)/PO is essential in S/PO,
J N Cg(PP) # 0. This gives that J R Cp(PO*G) # f because Cg(PP) € Cqp(PO*G).
But the Noetherian ring (T/(PP*G)} £ (S/P°)*G has an Artinian quotient
ring, namely Q(S/P°)*G as shown in Lemma 3.2.1 and so, by Theorem 1.5.11,
Cp(PO*G) = ﬂiCT(ﬁi) where %1,%2,...,§m are all the primes of 7 minimal over
PO*G. Since P equals one of @;,?2,...,§m, Cp(PO*G) € CT(ﬁ) so that
Jn CT(ﬁ) # fJ. Suppose I € l.anng((tr(J) + p)/p). Then rtr(J) & p. By
Theorem 3.1.5, rtr(J)f < P. Since frJf = frtr(J) as in the proof of Lemma
3.1.7, we have frJf € P. This yields (frJ)(fS) = (frJ)(fT)s P and, since

P ¢ SpecgT and frJ is a right ideal of T, we must have frJ ¢ P. Now, since,

JN CT(ﬁ) # f#, we have fr ¢ P and so, by Theorem 3.1.5, r e p. Thus, we

have proved (2).




We show that X is an Ore set in S. Let s ¢ S, x e X. Let
K= (veS:sve xS} Since Cg(P°) is an Ore set in § and X € Cg(P°), we
have that K0 Cg(PP) # f. Setting J = ﬂgeGKQ', we conclude that
J N Cg(P2) # g. Now, J is a G-invariant right ideal of § with (J + P9)/PO
essential in S/P°. We apply (2) above to find that there exists
y e tr(J) N Cp(P A R). So, sy = xt for some t ¢ S, proving the claim. The

rest of the theorem is immediate from this claim.

We provide two corollaries to this theorem. The first requires a
technical lemma. For this lemma, recall what is meant by the term

GK-homogeneous in Definition 1.6.7.

5.3.12 LEMMA Let U be a Noetherian, GK-homogeneous ring. Then there exists

m € N such that GKdim(U/P) = m for all minimal primes P of U.

PROOF Let Py,...,Py be the distinct maximal right annihilator ideals of U.
Then P; = r.ann(X;) for i = 1,...,t where Xy,...,X; are non-zero ideals of
U. Note that X := £;X; is in fact a direct sum. If X is not essential as a
right ideal in U, there exists an annihilator ideal of U not contained in
any P;. Thus, X &g Uy. Since U is GK-homogeneous, GKdim(X;) = m for
i=1,...,t where m = GKdim(U). Fix i € (1,...,t}. Let T be the torsion
submodule of X; as a right U/Pj-module. Now, since U is left Noetherian,
T =Xj-7,..,n Tty for some ty,...,tp ¢ T. Thus, there exists c ¢ U/Py,
regular, such that tjc = 0 for j=1,...,n. Hence, Tc = 0. Since X; is a
faithful U/Pl-—module, we conclude that 7 = 0 and so, X; is a torsionfree
right U/Pj;-module. By [G-W, Corollary 6.261], X;? contains an isomorphic
copy of U/P. We thus have that GKdim(U/P;) < GKdim(X;P) = GKdim(X;). By
virtue of the fact that X; is a right U/P;-module, we have that
GKdim(X;) < GKdim(U/P;). We’'ve thus shown that Gkdim(U/P;) = m for

i=1,...,¢t.
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Let Q0 be a minimal prime of U and suppose GKdim(U/Q} < m. Form an

affiliated series for Uy as follows:
0 ¢ X9 ¢ Xy®Xp < ... ¢ X ¢ Yy ¢ .... ¢ Yg =Uy

for some right ideals Yy,...,Y¥g of U with corresponding affiliated primes
Py,e..,Pg,Q9,...,Q5. Since QgQg_1...Q¢P¢...Py = 0 and @ is a minimal prime
with GKdim(U/Q) ¢ m, there exists 7 ¢ (1,...,s} such that Qj = 0. By [G-W,
Theorem 10.13(b)], all the above affiliated primes are minimal. Since X is
an essential right ideal of U, Theorem 1.5.3 shows that each @; is in the
clique of one of the P;s. By 5.3.4(ii), m = GKdim(U/Pj(;j)) = GKdim(U/Q;)

for i=1,...,s. In particular, GKdim(U/Q) = m. This contradiction proves the

lemma.

Thus, we have the following consequence of Theorem 5.3.11.

5.3.13 COROLLARY Let S be a Noetherian ring with finite GK-dimension, G a
subgroup of AutS and R = SG. Suppose P e¢ SpecS such that CS(PO) is an Ore
set in S, R/(P N R} is Noetherian and S/P is finitely generated on both
sides as R/(P N R)-modules. Suppose, also, that
GKdim(S/P) > GKdim(R/tr(S)). Then Cg(P°) N R = Cr(P N R) =: X, say and X is
an Ore set in 8. In particular, /(P © R} is a localisable semiprime ideal

of R.

PROOF Let p € Speck and suppose p is minimal over P N R. By Lemma 5.3.9(1i),
GKdim(R/(P N R))} = GKdim(8/P) and R/(P N R) is GK-homogeneous. Lemma 5.3.12
shows that Gkdim(R/p) = GKdim(R/(P N R)) which is equal to GKdim(S/P).
Thus, GKdim(R/p) > GKdim(R/tr(S)) and we conclude that tr(S) € p. Theorem

5.3.11 finishes the proof.

We conclude this section with one last consequence of Theorem 5.3.11.




5.3.14 COROLLARY Let S be a Noetherian ring with finite GK-dimension, G a
subgroup of AutS and R = s, Suppose P e SpecS such that Cg(P°) is an COre
set in 8, R/(P N R) is Noetherian and S/P is finitely generated on both
sides as R/(P N R)-modules. Suppose pi{,...,Pp are the primes of R minimal
over P N R. Suppose p; € SpecgR (i=1,...,n) or, equivalently that
tr(s) N Cg(P°) # @#. Then Cg(P°) t R = Cx(P N R) =: X, say, and X is an Ore

set in S. Moreover, Rx~1 = (8x~1)G and Rx~! is Noetherian.

PROOF All but the final sentence comes from Theorem 5.3.11, Certainly
Rx~1 ¢ (5x-1)6G. Suppose now that sx=1 ¢ (sx~1)G. Then
Csx~1 = (sx~1)9 = s9(x9)~! = s9x~1 for all g ¢ G. Thus, s = s9 for all g ¢ @
and so s € R, establishing the reqgired inclusion. Finally, tr: Sx—-! 5 rx—!
is surjective and, therefore, Lemma 1.4.2 completes the procf of the

corollary.

Theorem 5.3.11 shows that, when the hypotheses of the theorem apply, if
p € SpectR and all primes of R minimal over P i R are in SpeciR, then the
cligque of p is a subset of the ~-class of p. In particular, cl(p} is
finite. We conjecture here that, when the hypotheses of Theorem 5.3.11 are

fulfilled, p ¢ SpectR has cl(p) = [p] where [p] is the ~-class of p.
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