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SUMMARY

Throughout this thesis, 5 is a ring, G is a finite group of 

automorphisms of S and R is the fixed ring SG. We are concerned here with 

the correlation between properties of R and properties of S.

In Chapter 2, we discuss certain finiteness conditions for the ring R. 

D.S. Passman has asked, "Is the fixed ring of kH, where k is a field and H 

is a polycyclic-by-finite group, Noetherian for any finite group G ?" We 

produce infinitely many examples for which the answer to this question is 

"yes". The most substantial result in relation to this borrows from the 

methods in [L-P1] and is:

2.2.8 COROLLARY Let Hn be the nth Heisenberg group for some n e N. Let 

g e Aut(Hn) be an automorphism of order 2 such that Xj9 = x-[~1 zu( i ), 

yj9 = and z$ = z for some u(i),v(i) e Z (1 = 1,...,n). Let k be a

field and S the group algebra kHn. Now, G = <g> acts as k~automorphisms on 

the ring S and SG is Noetherian.

The most important results of this thesis are contained in Chapter 3. 

We develop the Morita prime correspondence of Chapter 1, §2, to produce 

results relating Specf-R : = {p e SpecR: tr(S) 0 p} to

SpecfS := (P e SpecS: -̂g€Q g / J(P°*G)} where P°*G is an ideal in the skew 

group ring S*G. S. Montgomery has proved many of our results in [Mo2] for 

the special case where \G\~1 e S. First we establish the extent to which 

members of SpecfS are determined by their intersections with R.

3.1.13 THEOREM Let S be a ring and G a finite group of automorphisms of S. 

Suppose P t SpecfS and Q e SpecS with J(P H R) = j(Q fl R). Then P and Q are 

G-conjugate/ so that Q e SpecfS, and P 0 R = Q 0 R.

(i)



We proceed to prove the next result which summarises the close 

connection between SpecfS and Specf-R.

3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of S.

(i) Given P e SpecfS, there are a finite number of primes in SpeCf-R 

minimal over P H R, {pj, P2 ,..., pm} say, with m < |G|. Also, (Dj[p^)tr(S) 

is nilpotent modulo P (\ R.

(ii) Given p e SpeCj-R, there exists P e SpecfS such that p is minimal 

over P (1 i?. Moreover, P is unique up to its G-orbit in SpecS.

In Chapter 4, we restrict our attention to the case where S is a group 

algebra. The following key lemma establishes precisely what the factor ring 

R/tr(S) is in certain circumstances.

4.1.1 LEMMA Let U be a ring, M a semigroup and G a subgroup of AutM of

prime order, q. Let G act as U-automorphisms on the semigroup ring S = UM.

Then

R / trG(S) £ (U/qU).Cm (G).

As an application of this result, we establish bounds for rk(R), the 

prime rank of R, in certain circumstances.

4.2.10 COROLLARY Let H be finitely generated torsionfree nilpotent group 

and k a field of characteristic q. Suppose G is a finite group of

automorphisms of H such that the Sylow q-subgroup of G, Q, is normal of 

order q. Then

h(H) < rk(R) <h(H) + h(CH (G)).

We conjecture that rk(R) = h(H). As evidence to support this, Example

4.2.12 gives infinitely many such examples. Example 4.2.12 is also notable
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for showing that R need not satisfy the saturated chain condition even when 

S does.

We conclude this thesis in Chapter 5 with some results on localisation 

in the ring R. Many of these are inspired by the methods of Warfield in 

[W1 ]. We find that, with the necessary hypotheses, Specf-R has the strong 

second layer condition.

5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer 

condition and G be a finite subgroup of AutS such that R is Noetherian and 

RS and SR are finitely generated modules. Suppose p e Specf-R. Then p has 

SSLC.

Finally, we give a result which relates the link graph of R to that of

S.

5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of 

automorphisms of S. Suppose that R - SG is Noetherian and RS and SR are 

finitely generated. Let d be a symmetric dimension function on {Rf S). If 

Pj,P2 * Spec^R with p; second layer linked to P2 , then there exist primes 

Q u - - ’'Qn °£ s with n > 2, such that Q-j lies over pj, Qn lies over P2 and 

such that is second layer linked to Qi + j for 1 < i < n-1.

(iii)



INTRODUCTION

This thesis is devoted to the study of fixed rings and, in particular, 

the prime ideals in fixed rings.

We deal with the following situation: S is an associative ring with an 

identity element and G is a finite group of ring automorphisms of S. The 

fixed ring is defined to be

R = {s e S: s& * s for all g e G}.

It is this ring R, sometimes denoted by S@> we study. Of particular 

interest to us is the correllation between the properties of S and the 

properties of R. We often make use of the following ideal of R:

tr(S) = { ZgfG s9: s e S}.

Generally speaking, as we point out throughout the thesis, the relationship 

between S and R is well understood when |G|"? e S, principally because 

tr(S) = R in this case. Our main aim is to generalise results which 

hypothesise that \G\~^ e S to allow for the possibility that lG\~^ / S.

We begin in Chapter 1 by giving some of the well established results on 

fixed rings. We discuss the Morita context involving R and the skew group 

ring S*G, which results in a prime correspondence between certain subsets 

of SpecR and Spec(S*G). This yields some basic results which provide the 

foundation for much that follows in Chapter 3. We also feature the 

Bergman-Isaacs Theorem as part of a survey on results establishing the 

existence of fixed points. §4 is devoted to an examination of finiteness 

conditions such as the finite generation of S as an i?-module. We also quote 

the well known result of Farkas and Snider that, if 5 is Noetherian and 

\G\~J € S, then R is Noetherian. Chapter 1 concludes with a brief summary 

of results on localisation and GiC-dimension, both of which we use in 

Chapter 5.

(iv)



In Chapter 2, we elaborate on the finiteness results of Chapter 1, §4. 

In doing so, we attempt to answer the following question asked by D.S. 

Passman:

2B QUESTION Suppose H is a polycyclic-by-finite group and G is a finite 

group of automorphisms of H. Let k be a field and S be the group algebra 

kH. is the fixed ring SG Noetherian ?

It is rather easy to deduce from a classical result of E. Noether, 

stated as Lemma 1.4.4, that if H is Abelian-by-finite, the answer to this 

question is "yes", so interest centres on the more general 

polycyclic-by-finite groups. In particular, the question is open for H 

nilpotent.

With Question 2B in mind, we prove the following corollary on the 

finite generation of S as an i?-module.

2.1.5 COROLLARY Let S be semiprime with no non-zero nilpotent elements and 

G be a finite group of automorphisms of S. If R SG is left Noetherian, 

then S is left Noetherian and is a finitely generated R-module.

As an application of Corollary 2.1.5, we show in Theorem 2.1.7 that, in 

order to answer Question 2B, it is sufficient to consider only the cases 

where H is poly-Co,. Even with this reduction, we are unable to answer 

Question 2B. What we are able to do is provide infinitely many groups H, 

nilpotent-by-finite but not abelian-by-finite, each with infinitely many 

distinct finite automorphism groups G, such that (kH)G is Noetherian for 

all fields k. The most substantial of these results is:

2.2.8 COROLLARY Let Hn be the nth Heisenberg group for some n e N. Let 

g e Aut(Hn) be an automorphism of order 2 such that x±9 = x£~^zud ) ,

(v)



y±9 - y±-1zv(i) and z9 = z for some u(i),v(i) € Z (i-1,... ,n). Let k be a

field and S the group algebra kHn. Now, G = <g> acts as k-automorphisms on

the ring S and SG is Noetherian.

Corollary 2.2.8 is inspired by results of M. Lorenz and D.S. Passman in 

[L-P1] and T. Hodges and J. Osterburg in [H-0]. [L-P1] contains Theorem

2.2.3, a result that is very similar in substance to Corollary 2.2.8.

Chapter 3 embodies the main results of this thesis. Many of the results 

here are generalisations of Montgomery's work in [Mo2] which required as a 

hypothesis that e S. Developing the Morita prime correspondence of

Chapter 1, §2, we prove, the following result. Here and below,

SpecfS := {P e SpecS: / J(P°*G)} and Spec^R := {p e SpecR: tr(S) £ p)

are the open dense subsets of the prime spectra resulting from the Morita 

correspondence.

3.1.13 THEOREM Let S be a ring and G a finite group of automorphisms of 5.

Suppose P e SpecfS and Q e SpecS with J(P fl R) - j(Q fl R). Then P and Q are

G-conjugate, so that Q e SpecfS, and P n i? = Q fl R.

The main result in Chapter 3, §1 shows that there is a nice

relationship between primes in S and primes in R.

3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of S.

(i) Given P e SpeCfS, there are a finite number of primes in Specf-R

minimal over P n R, {p-j, p2,..., pm} say, with m < |G|. Also, (^j^pi)tr(S)

is nilpotent modulo P fl R.

(ii) Given p e Specf-R, there exists P e SpecfS such that p is minimal 

over P (1 fl. Moreover, P is unique up to its G-orbit in SpecS.

(vi)



As we have already seen noted, R is well understood when c S. In

Chapter 3, §2, we look at the other extreme, namely when S has prime

characteristic q and IG\ = qa for some a f N. Proposition 1.2.12 is 

essential in providing us with special cases of results in §1. We obtain:

3.2.13 THEOREM Let S be a ring of characteristic q and G a subgroup of 

Aut S of order qa. Then

(i) Given P e Speeds, there exists p e Spec^R such that p is the unique 

prime minimal over P n R not containing the trace.

(ii) Given p e SpeCf-R, then there exists P e SpecjS such that p is minimal 

over P fl r. Moreover P is unique up to its G-orbit.

In the last section of Chapter 3, we exploit the relationships we have 

established in the first two sections. We derive a number of applications. 

For example, we have:

3.3.8 LEMMA Let S be a ring and G a finite group of automorphisms of S. 

Suppose p,q e Specf-R both lie under P e SpecS, then ht(p) = ht(q) = ht(P).

Recall that a ring is said to be Jacobson if all its prime factors are 

semiprimitive. We prove:

3.3.23 THEOREM Let S be a ring and G a finite group of ring automorphisms 

of S. If S and R/trG(S) are both Jacobson rings, R is also Jacobson.

In Chapter 4 we study the prime ideals of R where S is a group ring. As 

indicated by Theorem 3.3.23, the factor R/tr(S) plays an important role in 

the study of R. Our key lemma shows that, in certain circumstances, we know 

exactly what the ring R/tr(S) is. We prove:
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4.1.1 LEMMA. Let U be a ring, M a semigroup and G a subgroup of AutM of 

prime order, q. Let G act as U-automorpbisms on the semigroup ring S - UM. 

Then

R / trG(S) * (U/qU).CM(G).

We point out in Corollary 4.1.2 that, under the hypotheses of Lemma 4.1.1, 

when M is a polcyclic-by-finite group, the factor R/tr(S) is also the group 

ring of a polycyclic-by-finite group. Our main consequence of Corollary

4.1.2 is:

4.1.15 THEOREM Let K be a commutative Jacobson ring all of whose field 

factors are absolute fields. Let H be a polycyclic-by-f inite group and S

the group ring KH. Suppose G is a group of automorphisms of H of prime

order q so that G acts as K-automorphisms on S. Set R - SG. Then

(i) every maximal ideal M of R intersects K in a maximal ideal of K;

(ii) every primitive ideal of R is maximal;

(Hi) for M above, R/M has finite dimension over the absolute field 

K/(M PI K).

In particular, every irreducible R-module is finite dimensional over a 

field factor of K.

In Theorem 4.1.4, we combine Corollary 4.1.2 with Theorem 3.3.23 to

show that R is a Jacobson ring when the necessary hypotheses are satisfied.

In Chapter 4, §2, we attempt to answer two questions, the first of

these concerns rk(R), the prime rank of R.

QUESTION 4B Suppose H is a nilpotent group, k is a field and S is the group 

algebra kH. Let G act as k-automorphisms on S and set R ~ SG. Does 

rk(R) = rk(S) ?
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Our best result on bounds for rk(R) for is given below:

4.2.10 COROLLARY Let H be finitely generated torsionfree nilpotent group 

and k a field of characteristic q. Suppose G is a finite group of 

automorphisms of H such that the Sylow q-subgroup of G, Q, is normal of 

order q. Then

h(H) < rk(R) < h(H) + h(CH(G)).

We do not find any examples for which the answer to Question 4B is "no". On 

the contrary, Example 4.2.12 gives infinitely many examples for which the 

answer to Question 4B is "yes". Example 4.2.12 is also notable for the 

bearing it has on the next question.

QUESTION 4C Suppose H is a nilpotent group and k is a field. Let S denote 

the group algebra kH. Suppose G acts as ^-automorphisms on S. Does SG 

satisfy the saturated chain condition?

In Example 4.2.12 we give an infinite number of examples which answer 

Question 4C negatively.

Chapter 5 is joint work with K.A. Brown. In this final chapter, we 

investigate some localisations of the ring R. §1 just gives some elementary 

results concerning the inversion of central regular elements in R. The 

remaining two sections are devoted to determining which semiprime ideals of 

R we may localise at. In §2 we find that, with the necessary hypotheses, 

certain members of SpecR satisfy the strong second layer condition of 

Chapter 1, §5. We develop ideas of Warfield to prove:
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5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer 

condition and G be a finite subgroup of AutS such that R is Noetherian and 

RS and SR are finitely generated modules. Suppose p e Spec^R. Then p has 

SSLC.

Despite this, in Example 5.2.7, we find a ring, R, the fixed ring of a 

group algebra of the second Heisenberg group, for which tr(S) is prime but 

does not have even the second layer condition. Beyond this, we are unable 

to say anything further about SSLC in R.

In Definition 1.5.2, we explain what we mean by the link graph of a 

ring. It is the link graph of R in relation to that of S that we study in 

§3. Again, building on Warfields ideas, we have:

5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of 

automorphisms of S. Suppose that R = S& is Noetherian and RS and SR are 

finitely generated. Let d be a symmetric dimension function on (R/ S}. If 

P1,P2 * Specf-R with p; second layer linked to P2 , then there exist primes 

Qu-'-'Qn 5 with n > 2, such that Qf lies over pj, Qn lies over P2 and 

such that is second layer linked to Qi+i for 1 < i < n~1.

The above result is significant in that it allows us to understand 

links inside Specf-R. Any links from SpeCf-R to SpecR\Specf.R remain unknown. 

However, our final result is a very nice one which obviously has strong 

implications for the link graph. It shows that a certain clique is a finite 

subset of Specf-R.

5.3.11 THEOREM Let S be a Noetherian ring with finite GK-dimension, G a 

subgroup of AutS and R = S^. Suppose P e SpecS such that C^(P°) is an Ore 

set in S, R/(P n R) is Noetherian and S/P is finitely generated on both

U)



sides as R/(P H R)-modules. Suppose p/, .. . ,pn are the primes of R minimal 

over P n R. Suppose p± e Spec^R (i=1,...,n) or, equivalently that 

tr(S) H C§(P°) * 0. Then CR(P°) fl R = CR (P (1 R) -; X, say and X is an Ore 

set in S. In particular, is a localisable semiprime ideal of R.

Throughout the thesis, we give original references wherever this is 

possible. Otherwise, we use the books [Mo1], [P1], [P2], [G-W] and [McC-R] 

for background reference.

Unless otherwise stated, the results contained herein are original 

results obtained under the supervision of Professor K.A. Brown.

(xi)



CHAPTER 1

BASIC PROPERTIES OF FIXED RINGS AND SOME TECHNICALITIES

We deal with some basic questions concerning the following scenario. 

Suppose S is an associative ring with an identity element, denoted by 1,

and G is a finite group acting as ring automorphisms on S. For g e G and

s e S, we denote the action of g on s by s9. Define R to be the set

{r e S: r9 = r for all g e G).

Trivially, R is a subring of S. It is called either the fixed ring or the 

ring of invariants and is sometimes represented by SG.

As one would expect, there is a close relationship between S and SG. We 

will show in later chapters that certain properties of S are inherited by 

SG. There are however, other properties for which the relationship between 

S and SG is not so clear.

We begin in §1 by introducing some of the standard terminology used to 

describe aspects of the theory of group actions on rings. In §2, we review 

the main properties of the Morita context which relates the skew group ring 

S*G to the fixed ring SG. §3 features the Bergman-Isaacs Theorem and

discusses other known results on the existence of fixed points. The next 

section is devoted to established results on finiteness conditions such as 

the inheritance of the Noetherian condition by the fixed ring.

The remaining two sections in this chapter review many of the

properties required in Chapter 5. §5 recalls some of the results on the 

strong second layer condition and links needed for localising in the ring 

SG. Finally, we summarise some of the properties of GK-dimension in §1.6.
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To begin with we establish some basic terminology.

1.1.1 DEFINITIONS For X £ S and g e G, define x9 : = {x9: x e X}. A subset Y 

of S is said to be G-invariant or, alternatively, G-stable if y# - y for 

all g e G .  For X £ S, we let X° denote ^g(:G x9, the largest G-invariant

subset of S containing X. With the above definition, we see that R SG is

just the set of G-invariant elements of S.

It is possible to manufacture members of R using the trace map. This is 

defined to be tr: S -» R such that tr(s) = Zg€G s9. For s e S and h e G, 

(tr(s))h = <Tg(G s9)h = ZgcG(s9)h = zg(G s9h = ZgtG s9 = tr(s) 

since Gh = G. Thus tr(S) £ R. Moreover, tr is easily seen to be an

6R-i?j-bimodule homomorphism. Consider, for example, the left action: for

r e R and s e S,

tr(rs) = HgeG(rs)9 = ZgtG r9s9 = ZgeG rs9 = rZgeG s9 = rtr(s).

Thus, tr(S) is a (two-sided) ideal of R.

While, in general tr(S) may be a proper ideal of R, when \G\~^ e S,

tr(S) = R. We have tr(\ Gl “0  = EgeG (\G\~1 )9 = T.geG I Gi ~ ̂ = iGi.iGi-  ̂ = 1.

Since tr(S) is an ideal of R, we have that tr(S) = R.

When there is a risk of confusion regarding the group acting, the trace

map is denoted by trG.

Suppose that I is a G-invariant ideal of S. We may define an induced 

action of G on the ring S/I in the obvious way: for s e S and g e G ,  let 

(s + 1)9 = s9 + i. The fact that I is G-invariant ensures this action is 

well-defined.

We denote the group of all ring automorphisms on S by AutS. An

automorphism g e AutS is said to be inner if there exists a unit u e S for

which s9 = u~1su for all s e S. Otherwise g is said to be outer. If all the

members of G are inner then G itself is described as inner. Similarly, if
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all the non-identity elements of G are outer, then G is said to be outer. 

For G, a subgroup of AutS, it's easy to see that the set of inner

automorphisms in G form a normal subgroup of G.

Suppose N is a normal subgroup of G. Certainly, N acts on S. Moreover, 

the factor group G/N acts on the ring SN with the property that 

S& - (SN)G/Nm jn particular, we may arrange that the action of G on S is 

faithful. Thus, if we take N = {g e G: s9 = s for all s e S}, N is easily 

seen to be a normal subgroup of G, and we may just consider the action of 

G/N on S.

Inextricably related to R is the skew group ring S*G which we will 

denote by T. This is defined to be a free right 5-module with basis

{g: ge G ) .  Multiplication in T is defined as follows:

(gsj).(hs2 ) = gh(sj)hS2 for sj, f 5, g, h e G.

For a G-invariant ideal A of S, we define an ideal A*G of S*G to be the set 

of elements in S*G for which the coefficients lie in A. In this case, 

T/(A*G) a (S/A)*G is also a skew group ring. Now, S*G contains all the 

ingredients required in the formulation of the fixed ring SG, so it is not 

surprising that there is a close connection between S*G and SG. This link 

is manifested in the Morita context. There is one element of T that, as we 

shall see, plays an important rdle in the Morita context. This element is 

the sum of the basis elements of T, g, and is represented by f. Before

we give the details of the Morita context, we first give a generalisation

of the skew group ring, namely the crossed product.

1.1.2 DEFINITION Let S be a ring and G a finite group of automorphisms of 

5. Let ot: G x G -* S be a map with "nice" properties. The crossed product 

D = (S,G,ol) is defined to be the free right 5-module with basis fg: g e G }  

with multiplication given by the two relationships:

fg = ~gr9 and 'g. 75 = a(g,h)gTi.

3



The so-called "nice" properties of a are those required to make the

multiplication in D associative; see, for example, [P2, pages 2-3].

Related to the concepts of a prime, and semiprime ideal, we have the

following definition.

1.1.3 DEFINITION Suppose we have a ring fl with a finite group G acting on 
it. An ideal I of S is said to be G-prime if for two G-invariant ideals A

and fl of 5, AB £ I * A £ I or fl £ I. The ring S is said to be G-prime if 0

is a G-prime ideal.

The next lemma, taken from [P2, Lemma 14.2], illustrates the

relationship between this new definition and those of prime and semiprime 

ideals.

1.1.4 LEMMA Let S be a ring and G a finite group of automorphisms of 5. Let 

I be a G-invariant ideal of 5. Then there is the following hierarchy for I:

prime =» G-prime *► semiprime.

PROOF The first implication is obvious. The second is more substantial. By 

passing to the factor ring S/I, we may assume that 1 = 0 so that fl is a

G-prime ring. By Zorn's Lemma, we can find an ideal Q of fl maximal with

respect to = We c^a;>-m <2 is prime. Suppose this is not the

case so that there exist ideals A and 5 of 5 with A 3 Q and fl ^ Q but

AB £ Q. Then (,nxe£?flx; £ = 0. Since fl is G-prime, either

nxeGAX = 0 or ^xegBx = 0. If ^X€gAx = 0' maximality of Q yields A = Q.

This contradiction shows that 0 is a prime ideal. We have therefore shown 

that fl is semiprime.
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§1.2The.Marita Context

Morita Theory provides us with a powerful tool for investigating the 

relationship between certain pairs of rings. Most of the results in this 

section are well known and are due to S.A. Amitsur, W.K. Nicholson and J.F. 

Watters. However, the detailed calculation of the prime correspondence for 

the skew group ring / fixed ring pair is original. Much of the background 

in this section comes from [McC-R, Chapter3].

The definition of Morita context we give here is more restrictive than 

the general definition as in [McC-R, 1.1.6] but it will be sufficient for 

our purposes.

1-2.1 DEFINITION Let U be any ring and M a right [/-module. We define a 

Morita context to be the 2x2 array

I %  V

where M* = Hom(My, U) and V = End(My). With the following maps, we have 

that the above array is a matrix ring:

(i) M* x M U by (ct, m) ct(m);

(ii) V x M -» M by (<p, m) h* <p(m);

(iii) U x M* -» M* by (u/ ct) h-» \u o ct

where Xu e End(Uy) denotes left multiplication by u;

(iv) M x M* -» V by (m, ct) F* \m o ct

where \m e Hom(Uy,M(j) denotes left multiplication by m.

(v) M* x V M* by (ot, ip) ct o ip.

It should also be noted that the dual of C,

C* , ( v Mu 1 
I M* U J

is also a Morita context because M* is a right ^-module,
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(M*v)* = Hom(M*v, V) * %  and End(M*v) * U.

In these circumstances, we get a bijection between subsets of SpecU and

SpecV. We reproduce [McC-R, Theorem 3.6.2 ].

1.2.2 THEOREM Let

c =  r 0 M*\
I Mv V J

be a Morita context where U is a ring, M is a right U-modulef

M* = Hom(M{j, U) and V = End(Mu). Then there is a bijection between the sets

of prime ideals fP e SpecU: P % M*M} and (P' e SpecV: P' 2 MM*} given by

p (-» {v e V: M*vM £ P}.

PROOF [McC-R, Theorem 3.6.2].

Suppose P e SpecU with P ? M*M and that P' e SpecV is the corresponding 

prime. Then we say that U/P and V/P' are context equivalent. Since the dual

C* is also a Morita context, we see that context equivalence is symmetric.

Context equivalence preserves a number of properties. For example, as 

the next proposition shows, it preserves primitivity.

First, we give a definition.

1.2.3 DEFINITION Let C be the Morita context described in 1.2.1. We say C 

is a prime context if

(i) U is a prime ring;

(ii) M*m * 0 for all 0 * m e M;

{iii) M*vM * 0 for all 0 * ve V.

Proposition 1.2.4 appears as [McC-R, Proposition 3.6.5].

6



1.2.4 PROPOSITION

(i) Prime rings U and V are context equivalent if and only if they 

belong to a prime context.

(ii) Con text equiva1ence preserves primitivity.

PROOF (i) Suppose that R and S are context equivalent. Then, by definition, 

there exist rings U and V with P c SpecU and P' e SpecV such that U/P « R 

and V/P' * 5 with

I %  7

a Morita context such that P and P' are corresponding prime ideals. Then it 

is easily verified that

c, = r U/P M*/N' 1
I  % / A T  V/P' J

where N' = {ip e M*: <p(M) £ P} and N = {m e M: M*m £ P) is a prime context.

Conversely, suppose that the prime rings U and V belong to a prime 

context. Then, taking P = 0 and P' ~ 0, we see that U and V are context 

equivalent.

(ii) Suppose now that U is a primitive ring in the prime context

c - \ u * * 1I %  Vi.

Let X = xU be a faithful simple {/-module and let N' = {<p e M*: x<p(M) = 0). 

We claim that M*/N' is a faithful simple V-module. First we establish that 

this module is faithful. Suppose we have v e V with Af*v £ N'. Then 

x.M*vM = 0. So we have 0 ~ X.M*vM. Since X is a faithful 0-module, we must 

have M*vM = 0. As C is a prime context, we must have v = 0, proving M*/N' 

is faithful.

Finally, choose any ^ e M*\N'. By definition of N', Xip(M) * 0. The fact 

that X is simple then yields x<p.M = X. Hence x = xtp.m for some m e M. Let 

^ e M*. Then x. (\p - ip.m.\p).M = 0 and so \J/ - <p.m.\p e N'. Thus, <pV + N' - M*, 

proving that M*/N' is simple.
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We have established that V is also a primitive ring.

While, in a Morita context, we have this relationship between the two

rings, we get stronger results still if two further conditions are

fulfilled.

1.2.5 DEFINITION Consider the Morita context

C «  \ U "*1C I Mv V J
where M* = Horn (Mu, U) and V = End (Mu). If MM* - V and M*M ~ U, we say that

U and V are Morita equivalent.

In these circumstances, we get a much closer correlation between

properties of U and V.

1.2.6 PROPOSITION The following properties are preserved by Morita

equivalence:

(i) being Artinian;

(ii) being Noetherian;

(Hi) being prime;

(iv) being semiprime;

(v) being semiprime right Goldie.

PROOF [McC-R, Propositon 3.5.10].

At this stage we apply the Morita Theory to our particular setting of 

fixed rings. Now, T is the first ring in our context and we use S as our 

T-module. In order to view S as a right T-module, we define the following 

action:

sj.(gs2) = sfts2

where sj,s2 e S and g e G .  In fact, we may also regard S as a left T-module 

using the T-module action defined below
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(gs2).s1 * (s2si)g

where Sj,s2 e S and g e G.

Thus, from 1.2.1, we have the following Morita Context:

r T Horn (Sp, T) l 
I Sp End (Sp) J.

The next proposition from [McC-R, Proposition 7.8.5] gives us a more 

concrete view of the above Morita context. Recall from 1.1.1 that 

f = ZgeG 9 « T.

1.2.7 PROPOSITION Let S be any ring, let G be a finite group of 

automorphisms of S and let T be the skew group ring S*G. Then

(i) Sp « fS, as right T-modules.

(ii) Mom ( Sp, T ) * Sf, as left T-modules, where we identify the 

element sf (seS) with left multiplication by sf.

(Hi) End(Sp) « SG := R, as rings, where S^ acts as left

multiplication on Sp.

PROOF For (i), note first that fS is a right ideal of T. For, if fsj e fS

and gs2 e T where S U S2 c S, g e G, we have

fsf.gs2 = fg(sj)9s2 = f(s^)9s2 e fS. Now observe that the map S p — » fS

such that rp(s) = fs is an isomorphism of T-modules.

Now we prove (ii). We show that the map 'k:pS — » Hom(Sp,T) such that

X (s) = \s where \s(x) = sfx for all x 6 S is an isomorphism. It is clear

that X is an injective T-module map and so we need only show that it is

surjective. Let a c Hom( Sp, T ). Then ct(1) - 'Lsgg for some Sg t 5

( g e G ). Let h e G. Since 1 .h~1 - 1,

Lsgg = a(1) = ct(1.h~1) = a(1)h~1 = (ZSgg)h~1 = Zsg(gh~1). So we must have

that s/i = S;. Since h was arbitrary, sg = sj for all g e G. Thus,

a ( 1 ) = s i f = \  (1). This proves X is an isomorphism. The left-handed' S;
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version of (i) completes the proof of (ii).

Now, for (iii), let p: SG End(Sf) such that <p(r) = <pr where

<pr(s) = rs for all s e S. As before, the only complication is in showing 

that tp is onto. Let * e End(Sf). So we have that v(1) = s for some s e S. 

Now, for all t e S, r(t) = *(1.t) = ft (1).t = st and so the map r is just 

left multiplication by s. Let h e G. Then -x(1.h) = r (1).h = s.h - s*1 but

s = ic (1) = ft(1̂ ) = ft (1.h). Comparing these expressions we find that s is

fixed under the action of G and so s e SG. This proves that <p is onto.

Using the isomorphisms of Proposition 1.2.7, the Morita context of

1.2.1 relating to T becomes:

f T Sf 
[ fS R

with multiplications within the matrix ring (i) to (v) becoming:

(i) Sf x fS T via ( s^f, fS2 ) -* s/fs? because the pair (uf, fv) is

identified with (\uf, v) e Hom(Sf, T) x ST which is mapped to

Xuf(v) = ufv t T.

(ii) R x fS fS via (r, fv) -> frv because the pair (r, fv) is

identified with the pair (Xr, fv) e End(Sf) x Sf which is mapped to

\r(fv) = rfv = frv.

(iii) T x Sf -» Sf via (t, uf) (t.u)f because the pair (t, uf) is

associated with the pair (t, Xuf) e T x Hom(Sf, T) which is mapped to t.\uf 

and t.\uf(1) = t(uf) = (t.u)f and so t.\uf ~ ^(t.u)f-

(iv) fS x Sf R via ( fs/, s^f ) -* ) because the pair (fu, vf) 

is identified with the pair (u, Xvf) e Sf x Hom(Sf, T) which is mapped to

u.\vf(~) e Hom(Sf) and u.\vf(1) = u.vf = (uv).f = Igecfuvj^ = tr(uv). Thus,

u.\vf = Xtr(uv)‘

(v) Sf x R Sf via (uf, r) urf because the pair (uf, r) is

identified with (Xuf/ Xrj e Hom(Sf,T) x End(Sf) which is mapped to

\uf o Xr = Xufr = Xurf which is in turn associated with urf e Sf.

In addition, we have:
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(vi) fS x T -* fS via (fu, t) f(u.t) since (fu, t) is identified with

(u, t) t Sq> x T which is mapped to u.t.

Continuing with this translation of the Morita context, we find an 

explicit statement of the prime correspondence of Theorem 1.2.2. We define 

the relevant subsets of SpecR and SpecT first.

1.2.8 DEFINITION Let 5 be a ring and G a finite group of automorphisms of 

S. Then we define Specf-R to be (p t SpecR: tr(S) % p) and SpeCfT to be 

(P e SpecT: f / p).

1.2.9 THEOREM Let S be a ring and G a finite subgroup of AutS. Let R

denote the ring S& and T denote the skew group ring S*G. Then there exists

a bijection 0: SpecfT -» Specf-R given by

0(P) = {r e R: rf e P}.

The inverse of this bijection is

0~1(p) = (t t T: tr(S.t.S) S p) 

where the dots denotes the T-module action on S.

PROOF We show that 0 described above is the Morita correspondence of 

Theorem 1.2.2. We have that

c = \  T s f  1 
. fs R -

is a Morita context with the maps exhibited prior to the statement of this 

theorem. Applying Theorem 1.2.2, we get a bijection between SpecfT and 

Specf-R given by P -» { r e R : Sf.r.fS S P }. Again considering the above 

map (v), we see that sf acts as left multiplication by sf and so 

(Sf.r). fS - (Srf).fS. We are then left with the map (i) above which gives 

that Srf.fS = SrfS and hence this bijection is indeed the map 0.

We now show that the inverse of 0 is 0~^: Spec^R -» SpecfT where 

0-1 (p) = { t t T: tr((S.t)S) £ p }. It is routine to check that this

concurs with the definition of 0~1 given in the statement of the theorem.
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Recall from 1.2.1 that

gk _ r R fs
I Sf T

is also a Morita context. According to Theorem 1.2.2, the Morita

formulation of the bijection <p: Spec^R -» SpecfT is

<p(p) = ( t c T: fS.t.Sf S p J. Map (vi) shows that the first dot signifies 

the r-module action on fS, giving fS.t = f(S.t). Then, we have map (iv) to 

give f(S. t). Sf = tr( (S.t)S). It remains to show that <p is actually the

inverse of |3. Let P c SpecfT and p = 0(P) e SpeCf-R. We claim that <p(p) = P.

For r e R,

fr e <p(p) <==» tr( (S. fr) .S) £ p by definition of <p 

tr((tr(S)r.S) £ p since S.f = tr(S)

<=* tr(S)rtr(S) £ p

r € p since tr(S) % p.

We see that 0(tp(p)) = p = (3(P) and, since j3 is a bijection,

1 (p) = P = <p(p).

The map (S can be used to exploit information about the ring S*G and 

relate it to SG. The skew group ring S*G is generally better understood 

than SG. We give some results about the prime ideals in T.

The first lemma, combined from [P2, Lemmas 14.1(i) and 14.2(i)], gives 

a connection between primes in S and primes in T.

1.2.10 LEMMA (i) Let P e SpecT. Then P n S is a G-prime ideal of S.

(ii) An ideal P of S is G-prime if and only if P - Q$ for

some Q e SpecS.

PROOF For (i), let P e SpecT. We show that P H S is a G-prime ideal of S. 

Suppose A and B are G-stable ideals of S with AB £ P n s. Then 

(A*G) (B*G) £ (AB)*G £ (pnS)T £ P. Since P is prime, we have either A*G £ P

or B*G £ P. Intersecting to S, these inclusions become A £ P n S or
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B £ P H 5, proving the first part.

We prove (ii) now. Suppose P is a G-prime ideal of S. Choose Q maximal 

in S such that = P. We claim that Q is prime. To this end, suppose

C,D are ideals of S with C,D 2 C and CD £ Q. Then (flCX)(^DX) £ = p n s.

Since P fl S is G-prime, we have f\CX £ P ft S or flDx £ P n S. The maximality 

of Q yields C = Q or D - Q, proving the lemma. The converse to this 

direction is easily seen to be true.

M.Lorenz and D.S.Passman have proved the following theorem in [L-P2]. 

Their paper is fundamental in describing the relationship between primes in 

5 and primes in S*G.

1.2.11 THEOREM Let S be a ring and G be a finite group of automorphisms 
acting on S. Denote the skew group ring S*G by T. Suppose S is a G-prime 

ring. Then

(i) P e SpecT is minimal if and only if P fl S = 0.

(ii) There are finitely many minimal primes of T, say P ‘f,...,Pn, and in 

fact n < IGi .

(iii) N = Pj n ... n Pn is the unique maximal nilpotent ideal of T and 

N ]Gi = 0.

(iv) If Q is a minimal prime of S, then IQ*: x e G) is the set of all 

minimal primes of S and flQ* = 0.

PROOF [P2, Theorem 16.2 ].

As a non-trivial consequence of Theorem 1.2.11, Passman and Lorenz give 

the next proposition.

1.2.12 PROPOSITION Let S be a ring and G a finite group of automorphisms of 
S such that S is a G-prime ring. Suppose S has prime characteristic q and
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that G is a q-group. Then S*G has a unique minimal prime ideal P which is 

necessarily nilpotent.

PROOF [P2, Proposition 16.4 ].

In Chapter 3, we look at the properties of the map 0 defined in 1.2.9 

in greater detail.

§1.3 The Existence of Fixed Points

Here we consider in what circumstances a (^-invariant subring, X, (not 

necessarily with an identity element) of 5 contains a non-zero member of 

SG. There are a number of partial results which answer this question to 

some extent. The most celebrated of these is the Bergman-Isaacs Theorem 

which we state as Theorem 1 .3.2.

First we show that it is not always the case that such a non-zero 

subring X contains a non-zero fixed element. The following example is due

to G.Bergman and may be found in [M1, Example 1.1 ].

EXAMPLE 1.3.1 There exists a ring S and a finite group of inner

automorphisms G such that S has a non-zero ideal which has no non-zero 

fixed element.

Let F be a field of characteristic p * 0 with an element w * 0, 1 of 

finite multiplicative order, n, say.

Let S be M2 (F{x, yj), the ring of 2x2 matrices over the free algebra in 

two non-commuting indeterminates.

Define G to be the subgroup of AutS generated by the inner

automorphisms induced by:

1 y } c = f <*> o
0  1
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Let K be the Abelian group generated by A and B. As \K\ = p^ and K is 

normal in G, it is clear that iGi - np^, An easy calculation shows that

: a e F, f(x, y) t F(xfy}
a f(x, y)

0 a

Since K is normal in G, we have that SG = (SK)G//f̂  as in 1.1.1. Thus, we 

find that:

' a 0 ' -
.* a c F

. 0 a _

Take X to be the two-sided ideal of S consisting of those members of S 

whose entries have zero constant term. Then XG = SG n X = 0.

We now give the Bergman-Isaacs Theorem which establishes the existence 

of non-zero fixed points in a non-zero G-invariant right ideal. It was 

originally proved by G.M. Bergman and I.M. Isaacs in [B—I].

1.3.2 THEOREM Let X be a semiprime ring (possibly without an identity 

element) with G a finite group of automorphisms of X such that X has no 

additive IGI -torsi on. Then

(i) xG is semiprime;

(ii) if I is a non-zero G-invariant left (right) ideal of X, then 

tr(I) * 0.

PROOF [Mo1, Corollary 1.5].

The next definitions are given in [Mo1].

1.3.3 DEFINITION Suppose X is a ring (possibly without an identity element) 

and G is a finite group of automorphisms acting on X. Suppose the group 

action has the following properties:

(i) X° is semiprime;
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(ii) If I is a non-zero G-invariant left (right) ideal of X, then 

tr(I) * 0.

Then we say that G has a non-degenerate trace.

An associated concept is that of a partial trace function. A partial

trace function is an (Xp-X^ )-himodule homomorphism of the form: tj\: X xP

such that tj\(x) = x9 where A is a subset of G. Such a function is said

to be non-trivial on X if tr(X) * 0.

While the Bergman-Isaacs Theorem is the best known of the results 

concerning the existence of fixed points, there are others which will also 

be of use to us. We state three important results here. It's worth 

observing that the hypotheses of each of these theorems are violated by 

Example 1.3.1.

The first of these was proved by V.K. Kharchenko in [K].

1.3.4 THEOREM Let S be a ring with an identity element and no non-zero 

nilpotent elements. Let G be a finite group of automorphisms acting on S. 

If L is a non-zero, G-stable (right or left) ideal of S, then L& * 0.

PROOF [P2, Theorem 27.4 ].

In [C-M], S.Montgomery and M. Cohen proved the following result.

1.3.5 THEOREM Let X be a ring (possibly without an identity element) and 

let G be a finite group of automorphisms acting on X. If X has no non-zero 

nilpotent elements then a non-trivial partial trace function exists.

PROOF [P2, Corollary 24.11].
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S. Montgomery established the final result here. It was first shown in 

[Mo3].

1.3.6 THEOREM Let G be a finite group acting on a domain, S, with an 

identity element. The following are equivalent:

(i) tr(S) * 0;

(ii) tr(I) # 0 for all non-zero right ideals I of S;

(iii) the skew group ring S*G is semiprime.

PROOF [P2, Corollary 27.8 ]

§1.4 Finiteness Conditions

Of concern to us in this section are the circumstances in which the 

Noetherian property passes down from 5 to SG. We also examine whether or 

not 5 is a finitely generated S^-module.

We first show that S being Noetherian does not always guarantee that SG

is Noetherian. In the same example, due to C.L. Chuang and P.H. Lee, we

also show that S need not be a finitely generated 5^-module.

1.4.1 EXAMPLE There is a commutative Noetherian domain of characteristic 

zero with an automorphism of order 2, such that SG is not Noetherian and S 

is not a finitely generated SG-module.

Let A = Z[ai,bi,a2 ,b2 , * ■•1 be a polynomial ring in indeterminates 

over 2. Let K be the localisation of A at 2A. We take S to be the ring 

K[[x, y]], the ring of formal power series in indeterminates x and y over 

K. Since K is a principal ideal domain, S is a Noetherian domain. There is

an automorphism g on S, given by:

x9 = -x, y9 = -y, at9 = -ai + pi + 1y, b±9 = b± + pi + 1x
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where p^ = a±x + b^y.

[Mo1, Example 5,5] shows that SG is not Noetherian and S is not a finitely 

generated S^-module.

Despite this example, we can still answer the Noetherian question 

positively in a number of cases. As we will see later, when \G\~1 t S, 8s 

turns out to be a well behaved ring and, as the next lemma shows, it is 

Noetherian if S is Noetherian. This result is well known; its earliest 

occurrence in the literature appears to be [F-S],

1,4.2 LEMMA Let S be a right Noetherian ring and G a finite group of 

automorphisms of S with the property that tr(S) = R. (This happens, for 

example, when \G\~^ e S as observed in 1.1.1.) Then SG is right Noetherian.

PROOF Consider the ascending chain

I1 S i2 £ I3 £ ... £ It S ••• -d)
of right ideals of SG. This yields a chain

I/S c i2s c l3s Q ... c its c ... ~(2)

of right ideals of S. Since S is right Noetherian, the chain (2) must 

terminate so that there exists j e N such that IjS =  Ij+uS for all u e N .  

Applying the trace map to this equation yields tr(IjS) = tr(Ij+uS) for all 

u e N. Since tr is a left 5^-module homomorphism, we have that 

Ijtr(S) = I j +utr (S ) for all u e N. By hypothesis tr(S) =  SG, so Ij = fj+u 

for all u e N. We have shown that the chain (1) does terminate. Thus SG is 

right Noetherian.

Finite generation of S over the fixed ring is also well behaved when 

the order of the group is invertible in the ring. D.R, Farkas and R.L. 

Snider have proved the following result, again in [F-S].
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1.4.3 THEOREM Let S he a right Noetherian ring and G be a group of 

automorphisms of S such that iGi"^ e S. Then S is finitely generated as a 

right SG-module.

PROOF [Mo1, Corollary 5.9],

Despite Example 1.4.1, there are some positive results known on the 

preservation of the ascending chain condition in the absence of a 

surjective trace map. The oldest and most well known of these was proved by 

E. Noether in 1926 in response to Hilbert's Fourteenth Problem. It can be 

found as [H, Theorem 5.1].

1.4.4 THEOREM Let K be a commutative Noetherian ring and S a (commutative) 

affine K-algebra. Then

(i) SG is an affine K-algebra and therefore Noetherian;

(ii) S is a finitely generated SG-module.

In a similar vein, we have a theorem of Azumaya and Nakayama in [A-N].

1.4.5 THEOREM Let S be a simple Artinian ring and G a finite group of outer 

automorphisms of S. Then

(i) both SG and S*G are simple Artinian;

(ii) S is a free SG-module of rank \G\.

PROOF [Mo1, Theorem 2.7].

The final result here gives us more information in the case where S is 

simple.
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1.4.6 THEOREM Let S be a simple ring and G be a finite group of outer 

automorphisms of S. Then

(i) trgiS) is the unique minimal non-zero ideal of R;

(ii) R is primitive;

(iii) (C(S))G = C(R);

(iv) S*G is simple.

PROOF [Mo1, Theorem 2.9] proves the first three parts. [Mo1, Theorem 2.3] 

proves (iv).

§1.5 Prime Links and The Second Laver Condition

In Chapter 5, we hope to localise SG at certain semiprime ideals. In 

view of the correspondence exhibited in Chapter 1, §2, the localisations of 

S itself are obviously relevant to this matter.

In order to examine the issue in any detail we need to look at the 

notions of prime links and that of the (strong) second layer condition. 

This theory is extensive and we only provide a brief overview in this 

section. For background see, for example, [G-W, Chapters 11 & 12] and 

[McC-R, Chapter 4].

To begin with we consider inversion of a subset, X, of a ring S. To do 

this we form a quotient ring where members of the set X are units. It's 

well known that in order to do this, X must be an Ore set. We define such a 

set here.

1.5.1. DEFINITION Let 5 be a ring and X be a non-empty multiplicatively
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closed subset of 5. Then X is said to be a right Ore set if, for all x f X, 

r e R, xR H rX # 0. Similarly, we define a left Ore set. We say X is an Ore 

set if it is both a left and right Ore set.

We now describe what we mean by localisation at a semiprime ideal of a

ring. Let S be a ring and N a semiprime ideal of 5. By localisation at N, 

we mean inversion of Cg(N), the set of elements of 5 that are regular

modulo N. As we see in Proposition 1.5.3, the prime ideals containing N

play an important part in the theory of localisation. With this in mind we 

give the definition of a second layer link. This terminology is due to 

Jategaonkar and Muller.

1.5.2 DEFINITION For a Noetherian ring 5 and P, Q e SpecS, we say that a 

second layer link exists from P to Q or that P is second layer linked to Q 

if there is an ideal A of 5 containing PQ such that (P n Q)/A is non-zero 

and is torsionfree as a right 5/0-module and as a left S/P-module. The 

bimodule (P fl Q)/A is called a linking bimodule.

For example, let

5 =  [ Q  Q 1 , p =  \° Q L  fl - f Q  Q l, 1  =  f 0  Q 1I 0  q  J I 0  q  J I 0  0  J I 0 0 J .
Then, P,Q e SpecS, P n Q = I while PQ = 0. Consider the bimodule 

(P n Q)/PQ. As a left 5-module, it has annihilator P and, as a right 

5-module, it has annihilator Q. Thus, we see that P is second layer linked 

to Q and that P fl 0 is the linking bimodule.

There are generalisations of a linking bimodule which we use in Chapter

5. A non-zero Noetherian bimodule qBr is called a bond if R and 5 are prime

rings and both of the modules §B and B# are torsionfree.

Suppose P e SpecR and Q t SpecS. If there exists a non-zero subfactor 

B ' of B such that l.annR (B') = P and r.anns(B') ~ Q and B' is a torsionfree 

((R/P)~(S/Q))-bimodule, then B' is said to be a B-bond from R/P to S/Q.
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A special case of a B-bond is described next. Let P,Q t SpecS. If there 

exists a B-bond from R/P to S/Q, we say there is an ideal link from S/P to 

S/Q. Such an ideal link from P to itself is said to be non-trivial if the 

B-bond is a subfactor of rP#.

With the definition of a link, we may view SpecS as the vertex set in a

(directed) graph, the edges being determined by the links. Such a graph is

called the link graph. For P e SpecS, the set of vertices in the connected 

component of the link graph containing P is called the clique of P and is 

denoted by cl(P).

To give an appreciation of the relationship the definition of a link 

has with localisation at semiprime ideals, we provide the following 

proposition.

1.5.3 PROPOSITION Let S be a Noetherian ring which has a left and right 

denominator set, C. Suppose P, Q e SpecS and that P is linked to Q. Then 

Cg(P) £ C if and only if C$(Q) £ C.

PROOF [McC-Rob, Proposition 4.3.6]

This result shows that, for any P e SpecS, the largest subset of CS(P)

at which it is feasible to localise is ^C^(Q) as Q ranges through the 

clique containing P. One further technical condition guarantees that we may 

localise at such a subset. Before we give this condition, it is necessary 

to give two definitions and state Jategaonkar's Main Lemma which was 

originally proved in [J2, Lemma 2.2].

1.5.4 DEFINITION Let M be a right B-module and let N be a submodule of M. 

If N has a non-zero intersection with every non-zero submodule of M, then 

we say that N is essential in M and write N <e M.
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The second set of definitions was originally given in [St]. Let M be a 

non-zero 5-module. An affiliated submodule of M is any submodule of the 

form annM (P) where P is an ideal of 5 maximal among the annihilators of 

non-zero submodules of M. An affiliated series for M is a series of 

submodules of the form

0 < M0 < Mj < ... < Mn = M 

where, for each i=l,...,n, the module M^/M^^j is an affiliated submodule of 

M/M £ _ /. If Pi = anns(Mi/Mi_i) then the series Pj,...,Pn is the series of 

affiliated primes of M corresponding to the given affiliated series.

Recall the example used in 1.5.2. The right 5-module Scj has an 

affiliated series 0 < P < S with correseponding primes Q and P.

1.5.5 THEOREM Let S be a Noetherian ring and let M be a right S-module with 
affiliated series 0 < U < M and corresponding affiliated prime ideals P and 

Q, such that U <e M. Let M' be a submodule of M, properly containing U, 

such that the ideal A = anng(M') is maximal among annihilators of 

submodules of M properly containing U. Then exactly one of the following 

alternatives occur;

(i) Q c P and M'Q = 0. In this case, M ' and M'/(J are faithful torsion 

S/Q-modules.

(ii) Q is linked to P and (Q fl P)/A is a linking bimodule between Q and 

P. In this case, if U is torsionfree as a right (S/P)-module/ then M'/U is 

torsionfree as a right (S/Q)-module.

Jategaonkar has introduced the following definitions.

1.5.6 DEFINITION Suppose F is a prime ideal in a Noetherian ring 5. Then F 
is said to satisfy the right strong second layer condition (SSLC) if, given 

the hypotheses of Theorem 1.5.5, the conclusion (i) never occurs.
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Similarly, P is said to satisfy the right second layer condition (SLC) if, 

given the hypotheses of Theorem 1.5.5 and the additional hypothesis that U 

is torsionfree as an (S/P)-module, the conclusion (i) never occurs. 

Analogously defined are the left SSLC and the left SLC. The ring S is said 

to satisfy right (left) SLC if all its primes have right (left) SLC. If S 

has both right and left SLC, it is said to have SLC. Also, the ring S is 

said to satisfy right (left) SSLC if all its primes have right (left) SSLC. 

If S has both right and left SSLC, it is said to have SSLC.

This definition is used by Jategaonkar in [J1] for the next theorem.

1.5.7 THEOREM Let S be a Noetherian ring. Suppose N is a semiprime ideal of 

S and that X is the set of primes of S minimal over N. Suppose X is closed

under the taking of links and satisfies SLC. Then S can be localised at

CS(N).

PROOF [McC-R, Theorem 4.3.16].

The next proposition provides a useful test for determining whether or 

not a prime has SLC or SSLC.

1.5.8 PROPOSITION Let P be a prime ideal in a Noetherian ring S.

(i) P satisfies the right SSLC if and only if there does not exist a 

finitely generated uniform right S-module, M, with an affiliated series 

0 < U < M and corresponding affiliated primes P and Q, such that M/U is 

uniform, Q c P and MQ - 0.

(ii) P satisfies the right SLC if and only if there does not exist a 

finitely generated uniform right S-module, M, with an affiliated series 

0 < U < M and corresponding affiliated prime ideals P and Q such that U is

a torsionfree (S/P)-module, M/U is uniform, Q c P, and MQ - 0.
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PROOF [G-W, Proposition 11.3].

There is an easy corollary which shows that we may reduce to the case 

where M is cyclic rather than just finitely generated.

1.5.9 COROLLARY Let P be a prime ideal in a Noetherian ring S. Then:

(i) P satisfies the right SSLC if and only if there does not exist a 

cyclic right uniform S-module, M, with an affiliated series 0 < U < M and 

corresponding affiliated primes P and Q, such that M/U is uniform, Q c P 

and MQ = 0.

(ii) P satisfies the right SLC if and only if there does not exist a 

cyclic uniform right S-module, M, with an affiliated series 0 < U < M and 

corresponding affiliated prime ideals P and Q such that U is a torsionfree 

(S/P)-module, M/U is uniform, Q c P and MQ = 0.

PROOF By Proposition 1.5.8, we only have to prove the "only if" direction.

For (i), suppose that P does not satisfy the SSLC. By Proposition

1.5.8, there exists a finitely generated right 5-module, M, with an 

affiliated series 0 < U < M and corresponding affiliated primes P and Q, 

such that M/U is uniform, Q c P and MQ = 0. Let 0 m e M\U. We claim that 

0 < mS 0 u < mS is an affiliated series for mS with corresponding 

affiliated primes P and Q such that mS/(mS fl U) is uniform, Q c P and 

mSQ - 0. By definition, P is maximal among the annihilators of non-zero 

submodules of M and so is certainly maximal among annihilators of non-zero 

submodules of mS. Moreover, annm^(P) = ann^(P) fl mS - U fl mS. Since 

mS/(mS fl U) embeds in M/U, a similar argument will show that mS/(mS fl u) is 
the affiliated submodule of mS/(mS fl U) with affiliated prime Q. Now, since
mS/(mS (1 U) is a submodule of the uniform module M/U, it too is uniform.

The last two statements of the claim are obviously true. This proves (i)
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For (ii), we need only show that if U is in addition fS/P>-torsionfree, 

then U fl mS is ('S/P ,1-torsionfree. This is trivial since U fl mS is a 

submodule of U.

Another adaptation of Proposition 1.5.8 will be useful in Chapter 5.

1.5.10 COROLLARY Let P be a prime ideal in a Noetherian ring S. Suppose X

is an Ore set with X £ C^(P). Then

(i) P has SLC in S only if PX~1 has SLC in SX~J;

(ii) P has SSLC in S only if PXT1 has SSLC in SX~1.

PROOF We only give the proof for (i) here as the proof for (ii) is 

contained therein.

Let A denote SX~1' Suppose PX~* does not have SLC in A. By Corollary

1.5.9, there exists a cyclic right A-module, M, such that M is uniform, and 

an ^-submodule U of M such that 0 < U < M is an affiliated series with 

corresponding primes PX~^ and Q' such that U is a torsionfree 

(A/PX~ 1)-module, aA/U is uniform, Q' c PX~1 and MQ' - 0.

By [G-W, Theorem 9.22], Q' = QX~1 for some Q e SpecS with Q c P.

Let m e M be such that M = mA. We claim that 0 < U n mS < mS is an

affiliated series with corresponding primes P and Q. First, suppose that P 

is not maximal among annihilators of non-zero submodules of mS. Then P is 

strictly contained in such a prime ideal P/ e SpecS with P; = annm$(Y) for 

some 0 * Y < mS. Since Y is contained in a right ^-module, for x e X, 

Y - Y(xx~1) = (Yx)x~1 and so P/ H X = 0. Then we find that YA is 

annihilated by P;X“? => PX~K This contradiction shows that P is maximal 

among annihilators of non-zero submodules of mS. We now show that the 

affiliated submodule is U fl mS. Certainly, U 0 mS Q annm^(P). If

y  e annmS(P), y(PX~1) = 0 and so y e U fi mS. Similar consideration shows

that mS/(mS fl U) is the affiliated submodule of mS/(mS 0 U) with affiliated
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prime Q.

We claim that U n mS is a torsionfree (S/P)-module. Suppose this is not 

the case. Then there exists 0 * u e U ft mS and x e Cg(P) such that 

u(x + P) = 0. However, u t U and x + PX~^ e A/(PX~1). This contradicts the 

fact that U is A/(PX~1)-torsionfree.

In addition, we claim that mS/(U n mS) is uniform. Suppose to the 

contrary that there exist S-submodules C and D of mS, such that C 3 U n mS, 
D 3 U fl mS but that C 0 D £ U n mS. Now,

(U fl mS)A fl mS = annmS(P) = U n mS, so that Cfl 3 (U fl mS)A; similarly, 

DA 3 (U n mS)A = U. Let y c CA fl DA. There exists c e C, d e D and x e X

such that y = cx~^ = dx~K Postmultiplying the last equality by x yields

that c = d t C ( \ D Q U ( \  aS. This gives that y e  (U fl mS)A = U and so

CA H DA S U. This contradicts mA/U being uniform. Thus, mS/(mS fl u) is

uniform. Similarly, we prove that mS is a uniform S-module.

Since Q c P and (mS)Q = 0, the "only if" direction of Corollary 

1.5.9(ii) shows that P does not have SLC.

We shall make use of one further result about localisation. This is 

known as Small's Theorem. It was originally stated by L.W. Small in [Sma13 

and [Sma2].

1.5.11 THEOREM Let S be a right Noetherian ring and let N denote the prime 

radical of S. Then S has a right Artinian right quotient ring if and only 

if Cr (N) = CR (0)m

PROOF [McC-R, Corollary 4.1.4].
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§1.6 Gelfand-Kirlllov Dimension

A dimension function on finitely generated algebras is defined in this 

section. Throught this section k is a field and S is a k-algebra. The 

function measures the growth of certain k-vector spaces and is known as 

Gelfand-Kirillov dimension. It is named after I.M.Gelfand and A.A. Kirillov 

who together published two influential papers in 1966. See [GK1] and [GK2]. 

For a detailed discussion of this dimension function, see [K-L].

As space is limited, our treatment will be fairly brief. Basically, it 

is a well behaved dimension function and we list some of its nice 

properties here. We use these properties when studying nilpotent group 

algebras in Chapter 5.

1.6.1 DEFINITION Let k be a field and S a finitely generated k-algebra. Let 

V be a finite dimensional generating subspace for S so that £_£ = / V1 - S. 

Let dy(n) denote dim^fZ^j Vn), The Gelfand-Kirilov dimension of S is 

defined as follows:
log dv(n)

GKdim(S) = lim ----------n-**> ,• log n

It transpires in [K-L, Lemma 1.1] that this definition is independent of 

the choice of V. While the above definition seems very abstract, it is in 

fact equivalent to the following definition. There exist constants A,B and 

c such that the inequalities Anc < dy(n) < Bnc hold for all but finitely 

many n if and only if S has finite GK-dimension equal to c. The equivalence 

of these definitions follows from [K-L, Lemma 2.1].

The following results give a more intuitive feel for the notion of 

GK-dimension.

1.6.2 LEMMA Let k be a field and S a finitely generated k-algebra.

(i) If B is a subalgebra or a homomorphic image of S,
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GKdint(B) < GKdim(S).

(ii) If B is a subalgebra of S so that Sg is finitely generated, 

GKdim(S) * GKdim(B),

(iii) If 5/ and S2 are finitely generated k-algebras, then 

GKdim(Sf © S2 ) = max (GKdim(S^)}.

(iv) GKdim(A/(I j ft I2 ... ft In)) < max ( GKdim(A/lj)}.

PROOF The result (i) is clear from the definition. [K-L, Propositon 5.5] 

proves (ii). [K-L, Proposition 3.2] gives (iii) and (iv) is just

[K-L, Corollary 3.3].

1.6.3 LEMMA Let k be a field and S a finitely generated k-algebra. If 

P e SpecS, then GKdim(S) > GKdim(S/P) + ht(P).

PROOF [K-L, Corollary 3.16].

So far we have only discussed the GK-dimension of a finitely generated 

^-algebra S. We may also define the GK-dimension of a module over the ring 

5.

1.6.4 DEFINITION Let ^ be a field and S a finitely generated ^-algebra with 

a finite dimensional generating subspace V with 1$ e V. Let M be a finitely 

generated right 5-module so that there exists a finite dimensional subspace 

F which generates M as an 5-module. Thus, we have M = FVn. Let

d\/,F(n) = dimktFV11) • D e f i n e

log dV/F(n)
GKdim(Mg) = lim — -----------

log n

As before this definition is independent of the choice of V and F.

When M - 5, we see that GKdim(Sg) = GKdim(S) as defined in 1.6.1.
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This definition for modules also has some nice properties which we can 

take advantage of.

1.6.5 LEMMA Let k be a field and S a finitely generated k-algebra. Let M be 
a finitely generated S-module with a f End<j(M) an injective map. Then

GKdim (M/a. (M) ) < GKdim(M) - 1.

PROOF [K-L, Proposition 5.1(e)].

We see how the GK-dimensions of a bimodule on either side compare. 

Lemma 1.6.6 was proved independently by W. Bohro in [Bo] and T.H. Lenagan 

in [L].

1.6.6 LEMMA Let S and T be finitely generated k-algebras and SMT an 

(S-T)-bimodule which is finitely generated on both sides. Then

GKdi m(gM) = GKdi m(MT).

PROOF [K-L, Corollary 5.4].

1.6.7 DEFINITION Let S be a finitely generated k-algebra with M a finitely 
generated right 5-module. The module M is said to be GK-homogeneous if, for 

all non-zero submodules N of M, GKdim(N) = GKdim(M).

The next result, [K-L, Lemma 5.13], can in some ways be considered to 

be a converse of Lemma 1.6.5. To prove it, observe that if N fl a = 0 for 

some non-zero submodule A of M, then A embeds isomorphically in M/N.

1.6.8 LEMMA Let S be a finitely generated k-algebra and M a finitely 

generated right S-module which is GK-homogeneous. If GKdim(M/N) < GKdim(M) 

for some submodule N of M, then N is essential in M.
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In Chapter 5, we are particularly interested in the GK-dimension of 

group algebras. As the next theorem shows, such algebras have finite 

GK-dimension only if the group in question is nilpotent-by-finite. It was 

proved by Gromov in [G].

1.6.9 THEOREM Let H be a finitely generated group and k a field. Then 

GKdim(kH) <00 if and only if H has a nilpotent normal subgroup N such that 

H/N is finite.

H. Bass goes further and calculates the GK-dimension of a nilpotent 

group algebra.

1.6.10 THEOREM Let H be a finitely generated nilpotent group and let 

Hq = {1} < H] < .... < Hf- = H be the lower central series. Let k be a 

field. Then

GKdim (kH) = ZjiL1 ih(Hi/Hi_f) 

where h(H^/Hi_j) is the torsionfree rank of

PROOF [K-L, Theorem 11.14].

§1.7 Additional Remarks

7.1 K.Morita introduced the concepts discussed in §2 in connection with 

category equivalences. S.A. Amitsur studied the more general Morita context 

in [A]. W.K. Nicholson and J.F. Watters defined and studied prime contexts 

in [N-W],

7.2 K. Nagarajan in [Na] gave an example similar to Example 1.4.1 in
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non-zero characteristic. C.L. Chuang and P.H. Lee raised Nagarajan's 

example to characteristic zero. It is their version we give as Example

1.4.1

7.3 Theorem 1.4.6 is a complilation of results, each using the same 

hypotheses, (i) to (iii) were proved by Osterburg in [0] while Miyashita 

gave an earlier proof of (iii). Azumaya proved (iv) in [Az].

7.4 While one direction of Proposition 1.5.8 is just Theorem 1.5.5, the 

other direction appears in the literature for the first time as [G-W, 

Proposition 11.3]. Corollary 1.5.9 is well known but does not seem to be 

stated explicitly in the literature. The same is true of Corollary 1.5.10.

7.5 I.N. Bernstein in [Be] first made Definition 1.6.4. In [J-S], A. Joseph 

and L.W. Small studied the properties of GK-dimension when applied to a 

module.
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CHAPTER 2

FINITENESS CONDITIONS

This chapter is devoted to a detailed discussion of the finiteness

conditions of Chapter 1, §4.

In Chapter 2, §1, we investigate under what circumstances S is finitely

generated ss an S^-module. We find a sufficient condition for this to 

happen.

We have already seen in Example 1.4.1, that it is not always the case 

that SG is Noetherian when S is. There are cases, however, where SG is 

known to be Noetherian. For example, Lemma 1.4.2 shows that SG is 

Noetherian when \G\~* e S. In Chapter 2, §2, there are two specific

questions we will examine. The first of these is a conjecture of S.

Montgomery. In [Mo4, Problem 6], Montgomery conjectured that if S is simple 

and Noetherian, then SG is Noetherian. We thus ask the following question.

2A QUESTION Suppose S is a simple Noetherian ring and G is a finite group 

of automorphisms of S. Is the fixed ring SG Noetherian ?

Notice from Lemma 1.4.4 that if H is an Abelian-by-finite group with a 

finite group of automorphisms G and k is any field, then (kH)G is

Noetherian. This fact led to the next question being asked by D.S. Passman 

in [P2]. He was concerned with the following scenario. Let H be a

polycyclic-by-finite group, G a finite group of automorphisms of H, k a 

field and kH the group algebra. By a variant of Hilbert's Basis Theorem, kH 

is Noetherian and Passman asked if the fixed ring (kH)G is always

Noetherian. We call this Question 2B.
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2B QUESTION Suppose H is a polycyclic-by-finite group and G is a finite 

group of automorphisms of H. Let k be a field and S be the group algebra 

kH, Is the fixed ring SG Noetherian ?

As already noted, if iGl"* e k then Question 2B has a positive answer 

and so we consider the case where \G\ = 0 in k.

§2.1 Finite Generation of S as an S^-module

It is of interest to know the circumstances in which S is a finitely 

generated S^-module. The first case we investigate is that of S being a 

division ring. We require to state the following definition and lemma. The 

definition is given in [Mo1].

2.1.1 DEFINITION Let 5 be a simple ring and let g e AutS be an inner 

automorphism. Define the following subset of S:

<Pg = {x e S: s9 = x~^sx for all s e S}.

Then if C denotes the centre of S, we have ipg = CXg, for any 0 * Xg e <pg. 

Now, let G be a group of inner automorphisms of S. The algebra of the group 

is B := Egec <Pg = ^geG Cxg where 0 * Xg e<pg for all g e G.

2.1.2 LEMMA Let S be a division ring and let G be a finite group of inner 

automorphisms of S. Denote SG by R. Let C be the centre of S and B be the 

algebra of the group. Then S - B C$(B) = B r .

PROOF [Mo1, proof of Lemma 2.12].
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The next lemma appears as [Mo1, Lemma 2.18].

2.1.3 LEMMA Let D be a division ring, let G be any finite group of 

automorphisms of D and let R = DG. Then the rank of D as a right R-module,

which we denote [D:R], is less than or equal to [G\.

PROOF Let D be a division ring. If G has a proper normal subgroup N, then 

G/N acts on [fl. By induction on iGi, we would have 

[D:DG] = [D:DN][£̂ f:DG] < \N\\G/N\ = |G|, and we would be finished. 

Henceforth, we assume that G is simple. Since inner automorphisms of G form 

a normal subgroup of G by 1.1.1, G is either inner or outer. If G is outer, 

we may apply Theorem 1.4.5 to give the result. Now we consider the case 

where G is inner on D. Let B be the algebra of the group. Now, B is finite 

dimensional over C, the centre of D, and so is a division ring. By the

previous lemma, D — B CD(B) = B DG. Thus, D is finite dimensional

over Dg with [D:DG] = dim^B < |(7| .

We now aim to prove a similar result for 5 semiprime with no non-zero 

nilpotent elements. The proof of the theorem is modelled on a result by 

D.R. Farkas and R.L. Snider in [F-S]. Their result appears in the 

literature as [P2, Theorem 26.16].

2.1.4 THEOREM Let S be a semiprime ring with no non-zero nilpotent elements 

and let G be a finite group of automorphisms of S such that R:=SG is a left 

Goldie ring. Then S can be embedded in a free R-module of finite rank.

PROOF By [Mo1, Theorem 5.7], S is a Goldie ring with semi-simple Artinian 

quotient ring Q(S). Let e be a primitive central idempotent of Q(S) so 

that, in view of the hypotheses on S, eQ(S) is a division ring. We first
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show that S n eQ(S) can be embedded in a free ii-module of finite rank. We

claim that S fl eQ(S) is an Ore domain with Q(S n eQ(S)) = eQ(S), the whole

division ring. For, choose z,s e 5 with z regular so that e - z~^s. Then

s = ze e S fl eQ(S). For x e eQ(S), choose g,weS, q regular, so that

gx - w. Then (sg)x - sw. Since sg is regular in eS, we have

x ~ (sq)~1(sw) t Q(S H eQ(S)).

Now let H - {g e G: e9 - e} so that H acts on 5 fl eQ(S). Let F be a

right transversal for H in G. Let a e SH n eQ(S) and g e G, then

(trp(a))9 - Lyep(ay)9 = Hy€pa79 = trf(a) since g permutes the elements of T

up to elements of H. Thus, trp (a) t R for all a e fl eQ(S). Now G

permutes the primitive central idempotents of Q(S) and so, for g * h

elements of T, e?1 * e9 and e^e9 = 0. Thus, if x = er e SH fl eQ(S), then

trp(x) = Ly€pe7r7, and so etrp(x) = Ly6pee7rY - er = x. Thus, 

trp:(SH fl eQ(S)) R is an injective left i?-homomorphism.

Since eQ(S) is a division ring, eQ(S) is finite dimensional over 

(eQ(S))H by Lemma 2.1.3. Let {xj,...,xn) be a basis for eQ(S) over (eQ(S))H 

so that eQ(S) = = i , /D^i(eQ(S) . As eQ(S) = Q(S fl eQ(S)) each

x± = for some S£/t e S f1 eQ(S) = Thus,

t(eQ(S)) = 'E.i-i, m ./ns-[ (eQ(S))H. Since t~1 e eQ(S), teQ(S) = eQ(S), and so 

sQ(S) = ^i = i nSf(eQ(S))H. Thus, we may assume that x± = e S fl eQ(S).

By Theorem 1.3.5, there exists A £ H such that tr^: eQ(S) (eQ(S))H is 

non-trivial. We may define <p:(S fl eQ(S)) Rn such that 

<p(a) - = . . /T̂ (tr\'(tr^(axi))). It is clear that <p is a left J?-module

homomorphism and we claim that it is in fact a monomorphism. Suppose that, 

for a e 5 fl eQ(S), ip(a) = 0. Then (trp (tr^ (ax±)) = 0 for i = 1, . . . ,n. By the 

preceding paragraph, trp is injective so we must have tr^(ax^) = 0 for 

i=7,...,n. Thus, tr/̂ (axi(eQ(S)H)) = 0 for i = 1,...,n and because 

eQ(S) - £i = /, , nxi (eQ(s))H> we have that tr^(aeQ(S)) = 0 which contradicts

the fact that tr^ is non-trivial on eQ(S) unless a = 0. Thus, S fl eQ(S) can 

be embedded in a free i?-module of finite rank.
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Now, let (ef,...,em} be all the primitive central idempotents in Q(S). 

By the above 5-2 = /,.. ,rf(s n eiQ(S)) is contained in a free R-module of

finite rank. Since Q(S n e-[Q(S)) = e^QfS), each S H e.[Q(S) contains an

element d^ which is invertible in e-iQ(S). Thus, d = df+..,+dn is invertible

in Q(S). Now define f:S = jf,,/n(s ft ^iQ(S)) by f(r) = rd. Since

d~1 e Q(S), £ is injective. Thus, we've shown that 5 can be embedded in a

free R-module of finite rank. This completes the proof of the theorem.

Notice that Example 1.3.1 shows that Theorem 2.1.4 must be close to the 

best possible. The ring S in 1.3.1 is prime, has no I (71-torsion and SG is a 

field, yet 5 is certainly not a finitely generated S^-module.

Theorem 2.1.4 provides us with a partial converse to the general 

question discussed in §2.

2.1.5 COROLLARY Let S be semiprime with no non-zero nilpotent elements and 

G be a finite group of automorphisms of S. If R := SG is left Noetherian,

then S is left Noetherian and is a finitely generated R-module.

PROOF Theorem 2.1.4 shows that S embeds in a free R-module of finite rank 

and so S must be a Noetherian R-module. Hence S is a left Noetherian ring.

Now, we show that Corollary 2.1.5 enables us to make a reduction when 

dealing with Question 2B. First, we state a well known Lemma.

2.1.6 LEMMA Let H be a polycyclic-by-finite group and let G be a finite 

group of automorphisms of H. Then there exists a G-invariant poly-G'm 

subgroup L of H such that \H:L\ < <».

PROOF [P2, Lemma 21.4(1)] shows that there exists a normal subgroup, N of 

H/ such that N is poly-Ca, and has finite index in H. Taking L = ngeG ^
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gives the result.

2.1.7 THEOREM Let H be polycyclic-by-finite, G a finite subgroup of AutH 

and k a field. Suppose L is a G-invariant poly-Cm subgroup of finite index 

in H. The group G acts on kL and, if (kL)G is Noetherian, then so too is 

(kH)G.

PROOF If \G\~1 € k, then the Theorem is true since, by Lemma 1.4.2, both 

rings are Noetherian. Henceforth, we assume chark > 0 and iGt = 0 c k. 

Since L is torsion-free, [P1, Theorem 3.4.12] shows that kL is a domain. 

(We assume chark > 0). So, by Corollary 2.1.5, kL is a finitely generated 

(kL)^-module. As \H:L\ < <», kH is a finitely generated kL-module and so, kH 

is a finitely generated (kL^-module. As (kL)G is Noetherian, we must have 

that (kH)G, a (kL)^-submodule of kH, is a Noetherian f/cLJ^-module. Hence 

(kH)G is a Noetherian ring.

2.1.8 NOTE Suppose H is a polycyclic-by-finite group. By Lemma 2.1.6, there 

exists a G-invariant subgroup L of H such that L is poly-Co, and H/L is 

finite. Theorem 2.1.7 shows that if (kL)G is Noetherian, then so too is 

(kH)G. Thus, the preceding theorem means we only have to consider the case 

where H is poly-Co, in Question 2B.

§2.2 Does S Noetherian Imply R Noetherian ?

We return to Questions 2A and 2B stated in the introduction to this 

chapter. Already, we have seen in Note 2.1.8 that Question 2B can be 

reduced to the case where H is poly-Co,.

We look first at an example that will have bearing on both questions.
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This example is interesting for a number of reasons: the first being that 

it shows that if 5 is simple and G is a group of outer automorphisms (see

1.1.1), then R is not necessarily simple. It was conceived by A.E. 

Zalesskii and O.M. Neroslavskii in [Z-N] as an example of a simple 

Noetherian ring with zero divisors but no non-trivial idempotents.

2.2.1 EXAMPLE Let k be a field of characteristic 2. Let Sj = k(z)[x, x~1 ]

where x and z are commuting indeterminates, and let y be the

/cfzj-automorphism of Sj defined by xY ~ zx. Let J = <y> and let S = S^J.

Now define g to be the k(z)-automorphism of S such that x9 = x~ 1 and

y9 = y-1. Let G = <g>, let T = S*G and let R - SG.

We claim that S is simple and G is outer but that R is not simple. We 

first show that S is simple. Let H = <x, y, z: [x,y] = z, z central>, the 

first Heisenberg group (see Definition 2.2.6). Then X k<z>\{0} is a 

regular Ore set with kHX~* * S. Let P e SpecS. By [G-W, Theorem 9.22], 

P fl kH is a prime ideal of kH with (P (1 kH) n x = 0. Since H is nilpotent, 

the Zalesskii subgroup of H is just Z(H) = <z> . [P1, Theorem 9.1.17] shows 

that if P n kH * 0, then (P n kH) ft X # 0. We conclude that P ft kH = 0 and 

so, P - 0. Thus, S is simple.

Secondly, we claim that G is outer on S. Suppose this is not the case 

and that there exists a unit u e S, u = . . s^iy1 where Sj e 5;

(i=-/j,. . . ,n), such that uw = w9u for all w e S. In particular, uy = y~^u. 

By considering the degree in y of each side in the equation, we see u = 0, 

a contradiction which proves the claim.

That T is simple is immediate from Theorem 1.4.6 (iv). It is this ring, 

T, that is the subject of [Z-N]. Zalesskii and Neroslavskii show that T has 

no non-trivial idempotents.

Finally, we show that R is not simple. Since trG(y) # 0, tr(S) is a 

non-zero ideal of R. Suppose R is simple, so that trg(S) = R. Thus, there 

exists s € S, say s = , tsiy^' with s + s$ = 1. Hence
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■̂i=-t, . .., tsiy^ + ^i=-t, . . ., tsiy~* = ? but the coefficient of y® on the 
left hand side is Sq + Sq = 0 because chark = 2. This contradiction shows 

that R is not simple.

Although, as Example 2.2.1 shows, R is not always simple when S is 

simple and G is outer, we can still give some detailed information about 

the structure of R. For details see Theorem 1.4.6.

The ring S in Example 2.2.1 satisfies both hypotheses in Question 2A 

and so it would be helpful to know if SG is Noetherian. In 1986, T. Hodges 

and J. Osterburg proved that SG is Noetherian in [H-0], giving evidence for 

an affirmative answer to Question 2A. We state their theorem below.

2.2.2 THEOREM Let S - k(z)[x, x~1 ]*<y> be the ring of Example 2.2.1 where x 

and z are commuting indeterminates and y is a k(z)-automorphism such that 

xY = zx. Let G = <g> be the same subgroup of AutS where g is a

k(z)-automorphism such that x9 = x~^ and y9 - y~K Then the fixed ring, R,

is Noetherian.

In 1989, M. Lorenz and D.S. Passman generalised Theorem 2.2.2 in [L-P1j 

using similar methods. We give their theorem here. (See Definition 1.1.2 

for the definition of a crossed product). This result is the best we have 

relating to Question 2A.

2.2.3 THEOREM Let S - D*T be a crossed product between r ̂  Zr for some

r e N and D a division ring. Let G = «r> act on S so that D is centralised

and the action of cr on F is inversion modulo D*; that is, for x e T, 

x47 = dx~1 for some d c D. Put R = SG. Suppose l Gi =2. Then S is right and 

left Noetherian as an R-module and consequently R is Noetherian as a ring.
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PROOF We prove that RS is a Noetherian module.

Steol We define an ordering on T. (We consider T « Z r  as an additive

group). Let x - (xj,...,xr) e r, define |x| to be I^lXjl.
For each s > 0, let Fs = {x = (x-j,.,., xr): ixi = sj denote the

r-dimensional cube of diameter 2s centred at the origin with corners on the

axes. Then

and we can linearly order the set V. To do this we utilise the 

lexicographical ordering, on r. Suppose x = (xj,...,xr),

Y = O'7/ • • • e ^ anc* that the first difference between x and y occurs at 

the jth coordinate. Then, if xj < yj, we say x <ji y or, if yj < Xj, we say 

that y <1 x.

We now define our linear ordering on P. For x, y e F, define

Clearly, T contains no infinite decreasing sequence with respect to the 

ordering <.

We define certain subsets, Qe, of T as follows. For each multi-sign 

e = (ef,...,er) e {±}r, put

Define e(i) to be the element of T with 1 in the ith coordinate and zeros 

everywhere else. Then we let e(1),. . ., e(r) be the canonical Z - b a s is  of T. 

Claim Let 0 * M Q F be a finite subset of T. Let m = (mj,...,mr) := max{M} 

under the linear ordering definition given above. Suppose m e Qe where 

e = (e j, . . . ,er) . Then

Proof Clearly, m + < max{ M + {e(i), -e(i)} }. Moreover, for all

x = (X‘f/...,xr) e T, ix ± e(i) i e {lx\ +1, \x\-1}. in particular, if x e M, 

then |x ± e(i) I < l/ni + 1. Now, since m e Qe, \m\ + 1 = \m + e±e(i)\. Also,

Qe = {(Xj, . . . ,xr) e f; x^ > 0 if = +, x^ < 0 if = -}.

m + ŝ ed) = maxi M + {e(i), -e(i)} }.
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for x e M, \x ± e(i) I = \m\ + 1 implies ixi « imi. But then we must have 

x < 2 m. Thus, if ej = +, then x ± e(i) <j m + e^ed). So we may assume that 

6 jr = If Xj < nij for some j < i, then clearly, x ± e(i) < m + e^efi). On 

the other hand, if xj > mj for all j < i, then Xj = mj for all j < i and

Xj < m-i < 0. Hence, ix + e(i) \ ~ \x\~1 < imi + /, and x-e(i) m + e^e(i).

Thus, for all x e M, we have x ± e(i) < m + e^ed), as we have claimed.

Step 2 Leading terms.

For each 0 * s e S, put

\(s) := max{ Supp(s) } e r
using the ordering of r introduced in Step 1. For each non-zero 2?-submodule

I of S, put

XJ ;= \(I\{0}) e r.
claim If J £ J are non-zero /?-submodules of RS, then XJ Q XJ. If J c jt 

then XJ c XJ.

proof The first assertion is clear. Suppose J c J but that XJ = XJ. Pick 

s e J\I with \(s) as small as possible. By assumption, \(s) - \(t) =: x e r 

for some te l .  But then for some d e D*, x I Supp(s-dt) and so 

\(s-dt) < \(s). Since s-dt e J\l, this contradicts the minimality of s.

For each basis vector e(i) e F, put

b j  = e(i) + e(i)cr = tr(e(i)) e R.

Note that e(i)ff = d^e(i)±1 for some dj e D* (i=1,...,r). (Here we

temporarily revert to the multiplicative notation of C). Thus,

Supp(b-[s) £ Supp(s) ± (e(i)} 

holds for i = and for any non-zero s e S. If \(s) e Qe where

e = (e/, . .. ,er), the claim in Step 1 easily implies that 

\(b±s) = 'K(s) + eĵ e(i) e Qe. Therefore, if 'k(s) e Qe, as above, then 

\(Rs) 2 \(s) + Qe where Qe = (e .. ..SjH q). (Np = {0,1,2,...}).
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Steo3 Conclusion

Suppose 0 c ij c 1 2 c ... is an infinite strictly ascending chain of

left i?-submodules of S. Then the preceding claim shows that

X I ;  c c X I j  c . . . and so we can select elements afi) e Xlj; \xr_7_ 7. By 

considering a suitable subchain if necessary, we may assume that all the 

a(i) belong to the same Qe for some e = By step 2, we have

that a(i) + Qe £ whence aft) tf a(i) + Qe for t > i. Write

a(i) = i £rar/i) with aj,i € and put

a(i)* =  (af/i aTfi) e

Consider the (partial) product ordering of N#r given by the natural 

ordering of

fx], .. ,,xr) precedes (yj,... ,yr) <=> < /i f°r all i.

Then the set fa(i)*: for all i/ £ N^r has finitely many minimal elements. 

Again, by considering a suitable subchain, we may assume that these 

elements are a( 1 )*,..., a(p)* for some p e N. By [D, Lemma 2.6.2], each 

afi)* majorises at least one of a(1 ,a(p)*.

Finally, let t > p . Since aft) / afi) + Qe for i = 1,...,p, we must 

have K aj(i),i for some Jd) e (1, . . .,r). Consequently, aft)*

majorises none of a( 1 )*,..., afp)*, contradicting the previous paragraph.

We have therefore proved the theorem.

Although these methods were conceived with a view to answering Question 

2A, a minor adaptation gives a result applicable to the question on group 

rings in Question 2B. This result will deal with one class of examples 

where S is the group algebra of the nth Heisenberg group. For the remainder 

of the chapter, we study fixed rings of group algebras of the nth 

Heisenberg group. We define the Heisenberg groups below.

2.2.4 DEFINITION For n e N, let Hn denote the nth Heisenberg group. Then 

Hn = <xi' Yi* z (1<i,j<n): for all irj

[xifXj] = [Yi,Yj] = 1, 2  central >.
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Note here that Hn is nilpotent of class 2 since Z(Hn) = <z> and

Hn/<z> s Z2n. We will give a positive answer to Question 2B for infinitely 

many groups G, of order 2, acting on kHn. We first study some automorphisms 

admitted by Hn.

2.2.5 NOTE Fix n e N. Consider the 2n maps, for i-1,...,n:

°i: xj ■"* XjZ^t, yj |-» yj , (j=1,..,n) z h-» z;

p i X j  h* xj , yjh-> yjZS%, z i-» z.

All these maps are automorphisms which commute and have infinite order so 

that A := < Q /t j; i = 1,...,n> & Z2n. Any automorphism of Hn not in A has a 

non-trivial action on Hn/<z>.

Consider t e Aut(Hn) such that r (x±) = x{~^, T(y±) = y£~^ and r (z) = z 

for i = 1,...,n. Now, r has order 2 and t O±t = 0j_? and r/CjT = for

i = n. Thus, we may form the semidirect product A j := <A, r> = A <t >

which is Abelian-by~finite where r acts by inversion on A. If a e Af\A, 

then a2 = 1 and

xi0L = xi~^zu(i), y£a = yi~1zv(i) and za = z

where u(i),v(i) e Z for i=1,...,n -(1).

Conversely, all automorphisms of the form (1) lie in Aj\A. We deal with 

these automorphisms in Corollary 2.2.8.

Now fix J Q {1,...,n} and define oij as follows: 

o)j: x^ Xj , /j h  for i e J,

x j Xj;-1, y~i h-> yj for i / J and z z~1.

Then c«ij is an automorphism of Hn of order 2. Let A2 fj = <A, If a e Aj?

has order 2, then

o»j: Xj h* Xj , /j H  y{~1zud) where u(i) e 2 for i e J,

Xj Xj~^zu^^, yj h-» yj where u(i) e 2 for i / J

and z z~l -(2).
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We give the result for these automorphisms in Corollary 2.2.10.

With K £ {1,.. .,n}, we define another set of automorphisms of Hn as

follows. Define such that:

\K ‘. Xj h  /i , /j H  Xj for i € k,

xi Ki± '̂ Yi f°r i / K an<3 z z~K

Certainly, each \K is an automorphism of order 2 and, with certain 

provisos, we may combine them with automorphisms in (2) and those in A to 

form more automorphisms of order 2. Elementary considerations show that any 

such automorphism, g, must be of the following form. Let X, Y and z 

partition the set { } .  Then

Xj9 = y±za(i), Yj9 = X£Za(i) for i e X

= x-[Za(i), iiiN for i € Y

xi9 = xi~1 ' yj9 = y±za ) for i 6 Z

and z9 = z~1 where a(i) t Z for i=1,...,n -(3).

The fixed ring for an automorphism of the type (3) is studied in Corollary 

2.2.10. Observe that any automorphism of type (2) is certainly of type (3) 

also.

When considering the automorphisms (1) in 2.2.5, we make the following 

definition in order to allow us to adapt Theorem 2.2.3.

2.2.6 DEFINITION Let k[z,z~1] be a Laurent polynomial ring in a commuting 

indeterminate z over a field k. For

f(z) - atzt + at+izt+1 + ... +at+szt+s e k[z,z~1], 

with af- and as+£ non-zero, we define the length of f, 1(f) to be s.

We now base our proof oi the next result on the proof of Theorem 2.2.3.
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2.2.7 PROPOSITION Let S be the crossed product k[z, z~1 ] * T where k is a 

field/ r * Zr and, for xf y e T, x.y = ot(x,y)xy where cx(x,y) c

Suppose G = <g> where g e AutS has order 2, the action of g on T * U(S)/<z> 

is inversion and z9 = z. Then S is a left and right Noetherian SG-module.

PROOF As usual, we let R denote S5. We prove RS is Noetherian.

Step 1 An ordering on a spanning set for S.

Now, 5 is a free k<z>-module with basis T, and so every element is a 

sum of terms in

B = (f(z)x: f(z) is a polynomial in k<z>, x e V}.

We place an ordering on the set B. We have a map r :B -» x r where

r(f(z)x) =(n,x) f N(j x P where n = 1(f) as defined above.

We impose an ordering on x T as follows:

' x < y where < is the ordering of Theorem 2.2.3
(n,x) < (m,y)

.or x = y and n < m.

Step 2 Leading Terms

We use the fact that S is a free k<z>-module with basis P. For each

0 * s e 5, let Supp(s) = {f(z)x e B: f(z) is the coefficient of x in s}.

Put <p(s) = max(r (Supp(s)}) e No x T. For each non-zero R-submodule I of 

pS, put <pl = <p(l\{0}) £ No X r.
claim If I £ J are non-zero R-submodules of RS, then <pl £ <pJ. If I c jt 

then (pi c .

Proof The first assertion is clear. Suppose that I c J and that <pl = <pJ.

Choose s e J\l with ip(s) minimal. Then there exists t e l  with

<p(s) = <p(t) =: (n,x) £ No x T. So s has a term f(z)x and t has a term g(z)x

for some f(z),g(z) e k[z,z~1 J where 1(f) = 1(g) = n. Suppose now that

deg(f) - deg(g) = u e N#. Then zug(z) e k<z> has 1 (zug(z)) = l(f(z)) and

deg(f) = deg(zug). Hence, there exists c e k such that <p(s - czut) < (n,x).

Since czu e U(R), we have that s - czut e j\l. This contradicts the
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minimality of <p(s) thereby establishing the claim.

Adopting the notation in the proof of Theorem 2.2.3 and reproducing the 

argument there, gives that, if s e S with <p(s) = (nfx) e Np x T, then

<p(Rs) 2 <p(s) + (0, Qe) 

where x e Qe. Since (1+z)v e R has length v, we also have that

*p((1+z)vs) = (n+m, x). Together with the above containment, this gives:

<p(Rs) 2 ip(s) + (N#, Qe).

Step 3 Conclusion

Suppose 0 c I/ c 12 is a strictly ascending chain of i?-submodules of 

%S. Then <plj c <pl2 c <p̂ 3 c ••• and so we can select elements 

a(i) = (n(i), x(i)) e tpl j:\<pl 2-_/. We write each a(i) as (a ; ̂ j., . .. ,ar+ ; ±) . 

Define a(i)* to be (n(i), x(i)*) where x(i)* is as defined in Step 3 of 

Theorem 2.2.3. By choosing a suitable subchain if necessary, we may assume 

that all the x(i) belong to the same Qe. The set {a(i)*: i = 1,2,...} has 

finitely many minimal members. By the choice of a suitable subchain if 

necessary, we may assume that these minimal members are a( 1 ,a(p}* for 

some p £ N, Thus each a(i)* majorises at least one of a ( 1 , a ( p ) * .

Finally, let t > p. Since a(t) /a(i) + we must have

< aj(i),i for some j(i) e {1, ...,r+1}. Consequently, a(t)*

majorises none of a(1 ,a(p)*. This contradiction proves the theorem.

This Proposition answers Question 2B for cases (1) in 2.2.5 where 5 is 

a group algebra of the nth Heisenberg group.

2.2.8 COROLLARY Let Hn be the nth Heisenberg group for some n e N. Let 

g € Aut(Hn) be an automorphism of order 2 such that Xj9 ~ Xj~1zu(i), 

yi9 = and z9 = z for some u(i)/v(i) e Z (i = 1,...,n). Let k be a

field and S the group algebra kHn. Now, G acts as k-automorphisms on the

ring S and is Noetherian.
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PROOF Writing 5 as k[z, z~1 ] * (Hn/<z>), we see that the hypotheses of 

Proposition 2.2.7 apply.

A more direct approach will answer Question 2B for the automorphisms 

(2) in 2.2.5.

2.2.9 PROPOSITION Let Hn be the nth Heisenberg group as defined in 2.2.4.

Let J £ (1,...,n} and define g e Aut(Hn) as follows:

Xi9 = xizu^ K  yfl - yi~1 for i e J 

and Xj9 = , y±9 = y±zu(i) for i / J

and z9 = z~1 where u( 1),...,u(n) e Z.

Let k be any field and G = <g>. Then (kHn)G is Noetherian.

PROOF We adopt the notation of Definition 2.2.4. For i e J, put = y± 

and, for i / J , put w± - x^. Let L = <z, w/,. .., wn>. Then L is an Abelian, 

(^invariant subgroup of Hn . Theorem 1.4.4 shows that (kL)G is Noetherian. 

Let Vjf = x±2zu(i) for i e J and Vj_ = y±2zu(i) for i / J. Then,

for i e J, = x£2z2u(i)z~u(i) = x^2zu^^ =

and, for i / J, v$9 = yi222u(i)z-u(i) _ y^2zu(i) - <

Thus, Vi e (kHn)G for i=1,...,n. Let

Hn = <VU • * • / vn'L> = <xi2f Yi/ xj/ Yj2* z: i e J, j / J>- We claim that 
(kHn ')G is just the Laurent polynomial ring

(kL)G T /7 ... [vn, vn~1;Tn] -(*)

where T_j denotes conjugation by V£ for i = 1,...,n. Certainly, 

(kHn ')G 2 (kL)G [vu v1~1' T 1] ... [vn, vn-1;Tn]- 

Suppose now that r e (kHn ')G, so that

r = I j fj(z,v1f . .. ,vn_i,Wj, . .. ,wn)vnJ -(1)

where fj(z,vj,...,vn_i,wi,...,wn) e k<z, v^,.. ., vn-j, Wj, . . ., wn> because 

kHn ' is a free k<zfvi/...,vn_1/w1/...,wn>-module with basis (v^-.i eZ}. 

Now, since r e (kHn ')G,

48



r = r9 = Zj (fj(z,vi,...,vn_1,w1,...,wn))9vn3 -(2).

A comparison of the expressions (1) and (2) shows that

( f j (Z, V -J f , . . , ]tW]f...tVfft))9 — fj(z,Vf,..., V[j_ J f Wj f . . . f hfjj )

for all j. We've shown that

(kHn ')G = (k<z,vi, . . . ,vn_1,w1, . . . ,wn>)G[vn,vn-1 ;rn].

We may repeat this argument by expressing k<z, v;,..., w<j,..., wn> as a

free k<z/vj/... ,vn„2 'Wu - • • fWn>-module. Continuing this way, we establish 

the claim (*).

By [G-W, Theorem 1.17], (kHn ')G is then Noetherian. Since lHn:Hn '\ < <»,

(kHn)G is itself Noetherian by Theorem 2.1.6.

A corollary to this proposition will answer Question 2B for the nth 

Heisenberg group when an automorphism of type (3) in 2.2.5 is acting.

2.2.10 COROLLARY Let n e N and let Hn be the nth Heisenberg group as 

defined in 2.2.4. Let X, Y and Z partition the set {1,...,n}. Define

g e Aut(Hn) as follows:

Xj9 = yj;za (i), y±9 - Xj>za (i) for i e X

Xj9 = x±za (i), yj9 - y^~^ for i e Y

xig = xi~^ ' Vi9 ~ Yiza<r̂  for i e Z

and z9 = z~ ̂ where a(i) e Z for i = 1,.. . ,n.

Let k be a field and let G = <g>. Then (kHn)G is Noetherian.

PROOF Let u± = x±Yi~K v± = xi2Yi2 for i e X, = x±^f v± - y± for i e Y, 

ui = xi' vi ~ Yi* f°r i e z an(i iet w = z^. Define Hn ' to be the subgroup 

of Hn generated by U ‘j,...,un,vi,...,vn,w. It's easy to see that r :Hn ' Hn 

where r(u±) ~ x̂ , r (v^) = yi and r (w) = z for i = 1,...,n is an isomorphism. 

Now, it's routine to check that, for i e X, u^9 = u^-1, v±9 - v^ ( l ) - f r

for i e Y, Uj9 = u±wad ) , Vj? = v^~1 and, for i e Z, u±9 = U£~1 and 

vig ~ VjWa(iK  By the previous lemma with J = Y, we have that (kHn ')G is
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Noetherian. As \Hn :Hn '\ < », Theorem 2.1.7 shows that (kHn)G is Noetherian.

These results are the best we have for the nth Heisenberg group. They 

do in fact cover all automorphisms of order 2 of the first Heisenberg group 

as the next Corollary shows.

2.2.11 COROLLARY Let H = <x, y, z: [x, y] = z, z central> be the first 

Heisenberg group, k any field and p any automorphism of H of order 2. Let 

G = <p>. Then (kH)G is Noetherian:

PROOF Note first that if k has characteristic other than 2, then (kH)G is

Noetherian by Lemma 1.4.2. Thus, we may assume that char k = 2.

The method of proof here is to describe all the automorphisms of H of 

order 2 and show that Corollary 2.2.8, Corollary 2.2.10 or Proposition

2.2.9 apply.

Let p be such an automorphism. Then p is completely specified by its 

action on x and y because these elements generate H. Suppose p(x) = xry^zu

and p(y) = x^ymzn for some l,m,n,r,s, t e Z. Since <z> = Z(H) is a

characteristic subgroup, p acts on H/<z> £ and so we may associate with 

p a member of the set U : = {X e GL2 (Z-): detX = ±1}, dependant on its action

on Z^. Using additive notation for H/<z> to identify x̂ -yi + Z with

(i, j) e Z^, we have p(x^yi + Z) = xayb + Z where (i j)X = (a b). Suppose

p(x + Z) = xryt + Z and <p(y + Z) = x^ym + Z. Then we find in this case

that:

Hence, for any such automorphism <p we may use a triple (X, u, n) where 

X e U, u, n e Z to specify p.

We now see what the possibilities for such a <p actually are. Since 

<p2 = jdf it is the case that X^ = 1. According to [Ne, Pages 179-181], we 

have that the possibilities for X, up to conjugation, are:
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f ■ '  0 1 f 0 ' 1 \ ’ 0 1I 0 - 1  J ,  I » 0 J a n d  I 0 -t I .

The automorphisms for which the first matrix is the associated matrix

are covered by Corollary 2.2.8. If p is associated with the second matrix,

we see that u  =  n  because <p2 ( x )  = x, and so, Corollary 2.2.10 gives the 

result. Finally, suppose that <p is associated with the third matrix. Now 

Y - ip2 ( y )  - i p ( y ~ ^ z n ) = y z ~ n z ~ n  - yz~2n anc[ so n = 0.  An application of 

Proposition 2.2.9 completes the Corollary.

it
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CHAPTER 3

PRIME IDEALS IN THE RING OF INVARIANTS

In this chapter, we are concerned with developing the Morita 

correspondence of Theorem 1.2.9 and showing how these results may be

applied. We adopt the notation of Theorem 1.2.9 so that 5 is any ring, G is 

a finite group of automorphisms of S, T denotes the skew group ring S*G and 

R denotes the fixed ring SG.

The Morita correspondence between the appropriate subsets of the prime 

spectra of R and T and its consequences are well understood when \G\~^ e S. 

S. Montgomery has collated the known results in this case in [Mo2]. In

§3 .1 , we make no hypothesis on the order of the group and provide 

generalisations for many of the results in [Mo2]. For example, we have, in 

the terminology of Definition 3.1.1:

3.1.9 THEOREM Let S be a ring and G a finite group of automorphisms of S. 

Suppose P £ SpeCfT and P £ SpecS. Then @(P) is minimal over P fl R if and 

only if P is minimal over P°*G. In particular, @(P) is minimal over P fl R.

Theorem 3.1.21 generalises what is perhaps the fundamental result in 

Montgomery's paper, namely [Mo2 Theorem 2.1].

3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of S.

(i) Given P e SpecfS, there are a finite number of primes in SpeCf-R 

minimal over P n R, {p p £ ,  . .., pmJ say, with m < |G|. Also, (bjjpi)tr(S) 

is nilpotent modulo Pfli?.

(ii) Given p e Spec^R, there exists P £ SpecfS such that p is minimal

over P n R. Moreover, P is unique up to its G~orbit in SpecS.
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Due to the similarity in content, we use [Mo2] as a model for our 

results in §3.1.

While Montgomery deals with the special case where \G\~^ c S, we devote 

the second section here to the other extreme case, namely where lHi = 0 in 

S for all non-trivial subgroups H of G. This usually involves the 

characteristic of S being prime, q say, and G being a g-group. We can then 

utilise, for example, Proposition 1.2.12. With

SpecjS = {P € SpecS: SfS fl S % P}, we provide a special case of Theorem

3.1.21 :

3.2.13 THEOREM Let S be a ring of characteristic q and G a subgroup of 

Aut S of order qa. Then

(i) Given P e Speeds, there exists p e Spec^R such that p is the unique 

prime minimal over P n R not containing the trace.

(ii) Given p e Spec^R, there exists P e SpecjS such that p is minimal over 

P fl R. Moreover P is unique up to its G-orbit.

We close this chapter, in §3.3, with applications of the earlier 

results. Some relate to the general case of §3.1 while others are in the 

prime characteristic setting of §3.2. We state two of the more useful 

applications.

3.3.8 LEMMA Let S be a ring and G a finite group of automorphisms of S. 

Suppose p,q e Spec^R both lie under P f SpecS. Then ht(p) = ht(q) - ht(P).

3.3.24 COROLLARY. Let K be a commutative ring and let S be a K-algebra 

acted on by G, a group of K-automorphisms. Suppose S satisfies the 

Nullstellensatz over K. Suppose further that R/trg(S) also satisfies the 

Nullstellensatz over K. Then R must also have this property.
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Situation

We begin this section with a series of definitions which will prove 

helpful in the discussion.

3.1.1 DEFINITION Recall from 1.1.1 that f = ZgtG g e T, I = TfT n s and

for X £ S, X° ;= ftgtG X9. There are subsets of the various spectra which we

look at. These are:

SpeCf-R = {p € SpecR : tr(S) % p);

Speeds = {P e SpecS : I % P};

SpecfS = (P e SpecS : f / s(P°*G));

SpecfT = fP f SpecT : f / P}.

We give an easy lemma to show that there is no distinction between 

SpecfS and SpecS when \G\~1 e S.

3.1.2 LEMMA Let S be a ring and G a finite group of automorphisms of S with 

the property that \G]~^ e S. Then SpecfS - SpecS.

PROOF Certainly, SpecfS Q SpecS. Now, let P e SpecS and suppose that 

f e J(P°*G). By Theorem 1 .2.11(iii), J(P°*G) is nilpotent modulo P°*G and 

so there exists n e N such that fn e P°*G. Now,

f 2  = ( T g ^ g g i f  =  'f-gf-G 9 ^  ~ ^ g c G  ^  ~ i G l f .

So it's easy to see that fn = \G\n~^f. Since \G\ is a unit in S, we have

that f e P°*G. Comparing coefficients shows that 1 c P°. This contradiction 

proves the lemma.

The definitions in 3.1.1 are used in the next two definitions.
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3.1.3 DEFINITION There are three equivalence relations which we define on 

certain spectra.

(i) We already have the notion of G-conjugate primes in SpecS.

(ii) For P, Q e SpecT we say that P p Q if and only if P n S = Q 0 S.

(iii) For p, q e Spec^R, we say that p ~ q if and only if p and q are

both minimal over P O P  for some P e SpecS.

We elaborate on each of these definitions in turn.

The first definition is already understood and is easily seen to be an

equivalence relation. For P e SpecS, we let [P] denote the class of all 

(^-conjugates of P. We may also define a partial ordering on SpecS/G as
follows. We say [P] £ [Q] if there exists h e G such that P*1 £ Q. Of

course, we may refer to (?-conjugacy on the subset SpecfS.

By inspection, the relation p on SpecT is an equivalence relation.

Lemma 1.2.10 and Theorem 1.2.11 (i) show in fact that P p Q if and only if

there exists P e SpecS such that P and Q are both minimal over P°*G. We

denote the p-class containing P by [P]. We may also define a partial

ordering on SpecT/p as follows: [P] £ [Q] if there exists Pj e [P] and

Ql e [Q] such that P; £ £?;. To see that this actually defines a partial

ordering, suppose [P] £ [Q] and that [P] 2 [Q]. By definition, there exist

P /, P*2 € [Ph Q u Q2 e with P; £ Q-j and P^ 2 Intersecting these

inequalities down to S, we find, by Lemma 1.2.10, that P° = Q° where

P,Q € SpecS such that Pf(\S = P2 ^ S  = P° and Q ^ ( \ S - Q 2 ^ S ~  Q°. The 

definition of p shows that [P] = [Q]. Now, p is also an equivalence 

relation on SpeCfT. It's worth noting that Theorem 1.2 .11(i) and 

Proposition 1.2.12 show that when char S - q and \G\ = qa ( g prime, 

a e N ) p collapses to the trivial relation.

At the moment it is only clear that ~ is a symmetric relation on

SpeCf-R. It is non-trivial to see that the reflexive and transitive 

properties also hold. We establish these properties in Theorem 3.1.9.
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We examine certain topological properties of the spaces SpecR, SpecS 

and SpecT with respect to the Zariski topologies. These topologies are 

defined as follows.

3.1.4 DEFINITION We define the Zariski topology on SpecS. The closed sets 

of the Zariski topology on SpecS are defined as follows: let Y be a subset 

of S, then the closed sets are of the form v(Y) := { P e SpecS : P 2 Y } 

where we may assume that Y is an intersection of primes.

We have a Zariski topology defined on SpecR with the closed sets 

defined to be u(X) - { p € SpecR : p 2 x } where X is a subset of R which 
we may assume to be an intersection of primes in SpecR.

Similarly, for T we have a Zariski topology on SpecT with closed sets 
w(Z) = { P £ SpecT: Z £ P } where 2 is a subset of T which we may assume to 
be an intersection of primes of T.

Of interest are certain associated topologies. First, we have the 

topologies on the open subsets Spec^R, SpecfS and SpeCfT which are induced 

by the Zariski topologies on SpecR, SpecS and SpecT.
We also define some quotient Zariski topologies. A general explanation 

of their construction is given here. Suppose a is an equivalence relation 

on Spec W for some ring W and that t : SpecW (Spec W)/u is the projection 
map. Then U S (SpecW)/cr is said to be closed if and only if r~1 (U) is

closed in Spec W. Thus, we have quotient Zariski topologies on SpecS/G,

SpecfS/G, SpecT/p and SpecfT/p. Later, once we have established that ~ is 

an equivalence relation on Spec^R, we will also have the quotient Zariski 

topolgy on SpeCj-R/~.

The first result in this section is fundamental as it provides a basis 

for all else that follows. It is essentially the prime correspondence of

the Morita context already stated in Theorem 1.2.9. We expand on that basic

result here.
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3.1.5 THEOREM Let S be a ring and G a finite subgroup of AutS. Let

A ~ { N < T : N = flPjv Pi € SpeCfT }

and n = { J < R : J = np^, e SpeCf-R }

and define a map 0 : A -* fl where 0(ftPi) = { r e R : rf e Hp^ }. Let 0 be 

the following restriction of 0, 0: SpeCfT Specf-R where 0(P) = 0(P). 

Then:

(i) 0 is an order preserving, intersection preserving map;

(ii) 0 is the prime correspondence of the Morita context;

(iii) the inverse of 0 is 0~1 (p) - {t e T: tr(S.t.S) £ p) where the dot 

denotes the T-module action on S;

(iv) 0 is a homeomorphism with respect to Zariski topologies on SpeCfT 

and Spec^R.

Moreover, the restriction of 0 to primitive ideals,

0pV:PrimSpeCfT -» PrimSpec^R, given by 0pV(P) = 0(P) is also a bisection.

PROOF Since 0(P) = {r e R: rf e P), properties (ii) and (iii) are immediate 

from Theorem 1.2.9. The properties of 0 follow from those of 0 stated in

(ii) and (iii).

We now show that 0 is a homeomorphism. First, we recall the definitions 
of closed sets in Spec^R and SpeCfT. A closed set in Specf-R is of the form 
Uj-(X) := {p e Spec^R: p 2 X} where X is a subset of R. A closed set in 

SpecfT is of the form Wf(Z) := { P e SpecfT: P 2 Z} where Z is a subset of 
T, Suppose Wf(Z) is such a subset. Clearly, we may assume that Z = 
where the P  ̂are all the primes in Wf(Z). Now, 0 preserves intersections as 

noted above and so 0(Z) = fl̂/3 (P\). With X = 0(Z), it's clear that 

0(Wf(Z)) = ut(X), a closed set in SpeCf-R. Thus, 0 is a continuous map.
We now show that 0~* is a continuous map. Let Uf-(X) be a closed set in 

SpeCf-R. As before, we may assume that X is an intersection of primes in 

Specf-R in that X = flippy for some Py t Spec^R. Let Z denote ^yep0~1 (Py),
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an intersection of primes in SpecfT. It's easy to see that

(Uf.(X)) = Wf(Z), a closed set in SpecfT. Thus, 0~1 is a continuous map.

Hence, we've shown that 0 is a homeomorphism.

Finally, Proposition 1.2.4 shows that 0 is a bijection between the

subsets of primitives.

It's worth making an observation regarding 0 here.

3.1.6 NOTE Let P e SpecfT. Then there are two cases: 
either (i) P - (P fl S)T - then, by definition of 0,

13(P) = P n R

or (ii) P  ̂ (P fl S)T - 0(P) 2 P fl R.

The following lemma is critical in providing us with another

characterisation of the map (8 .

3.1.7 LEMMA Let S be a ring and G a finite group of automorphisms of S. 

Suppose P e SpecfS and let Pj/I>2 / • • • fPn t)e the primes of T minimal over

P°*Gf not containing f. Let p± e Spec^R such that 0(P-[) = P± (i = 1,...,n)

and let N = nipi. Then (NtrG(S))iG* £ P fl R.

NOTE It follows from the definition of SpecfS that n > 1. In addition,

n < 1G 1 by Theorem 1.2. 11 (i).

PROOF Let • * • 'Pn'Pn+ U • • • f^m the Primes of T minimal over

P°*G with pj,...,pn and N as stated. By Theorem 1 .2.11 (i), m < iGt. By

construction, we have f e Pn+j n ... fl while, by definition of 0, 

Nf Q P-i fl l>2 n . . . n  pn. Combining these two facts we have that

Nf Q Py fl p 2 fl. . . fl Pm so that NfS £ P; fl P2 H...n Pm . Applying Theorem

1.2.11 (iii) gives us that (NfS)*G\ g p°*G. Now, for s t S,

fsf - fsLgiGg = fZ-geGs<Z = ^ge G9s9 = ^ geGs9 = ftr(s)
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and so fSf = ftr(S). Using this and the fact that R G Cf(f), we have that 
(NfS)2 = NfS.NfS = NfSfNS = Nftr(S)NS = Ntr(S)NfS.

Repeating this process, we find that (Ntr(S)) • G* ” ̂ NfS = (NfS)*Gi G P°*G. 

Thus, (Ntr(S) )iG* f = (Ntr(S))1G^~1NfSf G P°*G. Comparing coefficients, 

(Ntr(S) )iGi G P°. Moreover N G R and tr(S) G R giving that

(Ntr(S))1G* G p fi R as claimed.

The above lemma enables us to distinguish between those primes in 

SpecfS and those not in SpeCfS.

3.1.8 LEMMA Let S be a ring, G a finite group of automorphisms of S, 

P e SpecS. Then the following are equivalent:

(i) P / SpecfS;

(ii) (tr(S))n G P n R for some n t N;

(Hi) (tr(S))*Gi G P fl R.

PROOF First we prove (i) =» (iii). Suppose P / SpecfS. Thus we have that 

f e J(P°*G) and so, by Theorem 1.2.11 (iii), (fS)iGi G P°*G. Now,

(tr(S))*G*f = (fS)\G*f as noted in the proof of Lemma 3.1.7. Comparing 

coefficients we have (tr(S))*Gi G P° and so (tr(S))iGi G P fl R.

That (iii) ^ (ii) is vacuous.

For (ii) (i), suppose now that P e SpecfS. Then there exists

P e SpecfT minimal over P°*G. Theorem 3.1.5 shows that 0(P) contains

P fl R ~ P fl R. Since tr(S) % 0(P), tr(S) % J(P n R) and so, in particular,

(tr(S))n % P H R for all n e N. This proves the lemma.

We now employ Lemma 3.1.7 to give an interpretation of the map 0 that 

is more intuitive than Theorem 3.1.5.
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3.1.9 THEOREM Let S be a ring and G a finite group of automorphisms of S. 

Suppose P € SpecfT and P e SpecS. Then (3(P) is minimal over P fl R if and

only if P is minimal over P°*G. In particular, $(P) is minimal over P 0 R.

PROOF By definition of 0, P fl R £ p =;/5(P). Let P U P2, • ■ - ,Pn be all the 

members of SpecfT minimal over (P fl S)T. Let pj,...,pn e Spec^R be the 

corresponding primes under the Morita context so that P(Pj;) = p± 

(i=1,...,n) and let N = ^iPj.

Suppose P is minimal over P°*G. Then, by Theorem 1.2.11{i), P (\ S - P°

and we may assume P = Pj. Suppose that p is not minimal over P 0 fl, so that
there exists q e SpecR with P fl R £ q c p. since tr(S) % p, tr(S) % q. By

Lemma 3.1.7, Ntr(S) £ j(p n R) = j(p fl R) £ g. Since tr(S) £ q and q is

prime, we have that N £ q. Thus, there exists j e {1,...,n} such that

pj £ g. Thus, (Pj) e (<j) c so that Pj c P-j. This

contradiction proves the reverse direction.

Suppose conversely that (3(P) is minimal over P fl fl. By the above

Ntr(S) £ j(P fl R) £ (3 (P) and so, since tr(S) % @(P) and &(P) is prime,

there exists k t such that p£ £ (3(P). Since p£ 2 P fl R and (3(P)

is minimal over P fl R, we have f3(P̂ ) ~ p% = (3(P). Thus, P - P^ is minimal 

over P°*G.

For the last part, P fl s = Q° for some Q e Specs by Lemma 1.2.10. Thus,

P is minimal over Q°*G by Theorem 1.2.11 (ii) and so, by the above, 0(P) is

minimal over Q° fl R = P fl R.

This theorem enables us to show that the relation ~ on Speĉ -R, defined 

in 3.1 - 3(iii) is in fact an equivalence relation. We first establish that ~ 

is reflexive. Let p e Specj-R and use Theorem 3.1.5 to find 

P = (p) e SpecfT. By Lemma 1.2.10, there exists P e SpecS such that P is

minimal over P°*G. Applying Theorem 3.1.9 yields that p is minimal over 

P fl R and we have established that p ~ p. Now we show that ~ is transitive.
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For, if p,g, a t Specf-R with p ~ q and q ~ a then by definition of ~ there 

exist P, Q e SpecS with p and q both minimal over P H J? and q and a both 

minimal over Q fl R. Theorem 3.1.9 shows that /3~1 (p) and (q) are both

minimal over P°*G while (3~1 (q) and (a) are minimal over Q°*G. Theorem 

1 .2.11 (i) shows that P° = 0~1 (p) n S = 0~1 (q) n S = $~1 (a) fl S = Q°. Thus p 

and a are both minimal over P fl R = Q n R and so p ~ a. This shows that ~ 

is transitive and therefore an equivalence relation. It should be noted 

that, when charS = q and G is a g-group, then ~ is the trivial relation. In 

this case, suppose p ~ g. Then Theorem 3.1.9 shows that @~1 (p) p p~1(q). 

But, as already noted in 3.1.3, p is trivial in the g-case and so 

j8~1 (p) - (3~1(q), proving that p = g. We may also define a partial ordering 

on (Specf-R)/~ as follows: [p] £ [q] if and only if there exists pj e [p],

gy c [q] such that p; £ g/.

We can now prove the following theorem which generalises [Mo2, Theorem

5.1 ].

3.1.10 THEOREM Let S be a ring and G a finite subgroup of Aut S. The 

induced map (3: (SpeCfT)/p -» (SpeC{-R)/~ such that (3([P]) ~ [&(P)] is a well 

defined order preserving homeomorphism. Let

(3pV: (PrimSpeCfT)/p -» (PrimSpecf-R)/~ be the restriction of /3. Then fipV is 

also an order preserving homeomorphism.

PROOF Suppose P, Q e SpecfT such that P p Q. Thus, by definition of p, 

p n s  = Q(\S = P° for P e SpecfS, say. By Theorem 3.1.9, $(P) and 0(Q) are 
both minimal over P n R and so (3(P) ~ j3(Q). We've thus shown that /3 is well 

defined. Now suppose [P] £ [Q] so that there exist P; € [PJ and j?; e [Q] 

with P; £ Q-j. Since /3 preserves inclusions, &(P-j) £ @(Qi) and so 

P ( [ P * [$(Pi)l £ [0(Qi)J =H([QiJ).

We now show that 0 is a homeomorphism. First, we show what the
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respective closed sets are. A closed set in SpeCf-R is of the form 

Uf-(X) {p e Spec^R: p 2 X) where X is a subset of R. We may assume X is

an intersection of primes in SpeCf-R. Let \p:Spec^R (Spec^R)/~ be the 

projection map so that the closed sets of (Specf-R)A  are precisely the sets 

x such that (x) = u^(X) for some X S fl. A closed set in SpecfT is of the 

form Wf(Z) := { P e SpecfT: P 2 Z} where 2 is a subset of T. As above, we 

may assume that Z is an intersection of primes in SpecfT. Let 

y :SpecfT -» (SpeCfT)/p be the projection map. Then the closed subsets of 

(SpecfT)/p are sets z such that y~1(z) - Wf(Z) for some Z £ R.

We show that 0 is continuous. Let z be a closed set in (SpecfT)/p in 
that (z) s Wf(Z) for some subset Z £ T. We may assume Z is an

intersection of p-classes of primes in SpecfT so that Z = n̂ p_̂  where

(P±: i e I) £ SpecfT is a union of p-classes. Observe that, by Theorem 

3.1.9, P p Q if and only if 0(P) ~ 0(Q) and consequently, ( (3(P̂ ) : i e I }

is a union of — classes. Let X = j3(Z), which equals n̂ jSfP̂ j since 0

preserves intersections. Let x = <p(Uf-(X)), a closed set in (Spec^R)/-. We 

claim that x = 0(z). Let [p] e 0(z) so that [p] - 0([PJ) for some 

P e SpecfT with y~^([P]) £ w(Z) where we may assume p = 0(P). In

particular, P 2 Z and so p - 0{P) 2 0(Z) = x. Thus, [p] e x and so

0(z) £ x. Conversely, suppose [p] t x so that p 2 X and Q := 0~1 (p) 2 Z.

Thus, [pi = 0([Q]) € 0(z), proving the equality.

We now show that 0~^ is also continuous. Let x be a closed set in

(Specf-R)/~. By definition, (x) = Uf-(X) for some semiprime ideal X of R

such that X is an intersection of primes in Spec^R. So we have that 

X = H^p^ where we may assume that {p \ e A} is a union of — classes. As 

noted in the preceding paragraph, for P, Q e SpecfT, P p Q if and only if 

0(P) - (3(Q). Thus, the set (0~1(P\):  ̂e A} is a union of p-classes. Let 

z = nXfA^~^PX^ anc* let z " y(v(Z))* We claim that 0~1 (x) = z. Let, 

[PJ € 0-J (x) so that [P] = 0~U[pl) for some p e Specf-R with 

<p~U[pl) £ u(X) where may assume p = 0 (P). In particular, p 2 x and so
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P = 0~1 (p) 2 f\A0~1 (P\) - Z. Thus, [P] e z. Conversely, suppose that [PJ e z 

so that P 2 Z and q : = 0(P) 2 0(Z) = X. Thus, [P] e 0~1(x), proving the 

equality.

The restriction map 0pv is well defined by Theorem 3,1.5 and its 

properties follow immediately from those of (8 .

We now show to what extent members of SpecfT are distinguishable when 
comparing their intersections with R.

3.1.11 COROLLARY Let S be a ring, G a finite group of automorphisms of S. 

Suppose that P,Q e SpecfT and J(P fl R) = j(Q fl R). Then [P] = [Q], (and 

hence P fl R = Q fl R).

PROOF By Lemma 1.2.10, P f\ S = P°, Q n S = Q° for some P,Q e SpecS. Let 

P = P;,£>2 ,. .. ,Pn be all the primes minimal over P°*G not containing f. ( n 

is finite by Theorem 1.2.11(ii)}. Let = $(Pi) (i=1,...,n) and let

N = npi. Then Theorem 3.1.9 says that

Ntr(S) £ J(P 0 R) = j(Q fl R) c p(Q).

Since 0 (Q) is prime and doesn't contain tr(S)f there exists j such that 

pj Q 0(Q). By Theorem 3.1.9, 0(Q) is minimal over Q fl R. Since

J(Q 0 R)= J(P H R) Q pj, we have pj = 0(Q). Applying this gives Pj = Q,

Intersecting these primes down into S gives that P° = Q°. Finally, 

p n p  = p ° n p  = i30 n p  = 5 n p .

The above result provides a similar corollary for determining primes in 

S from their intersection in R. First we state a theorem, due to S. 

Montgomery, which shows to what extent we can do this in particular 

situations.
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3.1.12 THEOREM Let S be a ring acted on by a finite group G. Suppose that 

P,Q c SpecS and that P H R - Q fl R. Then P and Q are in the same G-orbit in 

any of the following situations:

(i) S is commutative;

(ii) Every prime ideal of S is generated by its intersection with the 

centre Z of S;

(iii) \G\~1 e S;

(iv) S is a semiprime Pl-algebra and either P or Q has the property 

that the polynomial identity of lowest degree satisfied by the factor ring 

of S by that ideal is that satisfied by S.

PROOF [Mo2, Proposition 1.1].

It should be noted that the proof of (iii) above is heavily dependent 

on the Bergman-Isaacs Theorem which we stated as Theorem 1.3.2. We now 

provide a consequence of Corollary 3.1.11 and go on to show that it 

provides a generalisation of (iii) without recourse to the Bergman-Isaacs 

result.

3.1.13 THEOREM Let S be a ring and G a finite group of automorphisms of S. 

Suppose P e SpecfS and Q e SpecS with J(P fl Ft) = j(Q n R). Then P and Q are 
G-conjugate, so that Q e SpecfS, and P D R = Q fl R.

PROOF If Q / SpecfS then Lemma 3.1.8 shows that (tr(S))n Q Q f t R  = Pt\R 

and then the reverse direction of Lemma 3.1.8 shows that P / SpecfS. Thus, 

we have Q e SpecfS also. By definition of SpecfS there exists P,Q e SpecfT 

with P n S = P° and Q n s = Q°. Since J(P (>/?; = j(Q fl R), 

J(P fl R) = j(Q fl R) and so we apply Corollary 3.1.11, to find that P p Q. 

Thus, p° = p n s  = Q(\S = Q° and so P and Q are G-conjugate.
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We now give our proof of Theorem 3.1.12(111).

3.1.14 COROLLARY Let S be a ring acted on by a finite group of 

automorphisms G with \G\~1 e S. If P,Q e SpecS with P fl R =r Q fl R then P 

and Q are in the same G-orbit.

PROOF Lemma 3.1.2 shows that SpecfS = SpecS and so we may apply Theorem

3.1.13 to give the result.

The following example, due to Passman, shows that the hypothesis 

P,Q e SpecfT is in fact necessary in Corollary 3.1.11 and that it is 

necessary to insist that P e SpecfS in Theorem 3.1.13. This example

appears as [Mo2, Exercise 1.2].

3.1.15 EXAMPLE There exists a prime Pl-algebra S of characteristic q 0 

with an outer automorphism group G of order q, such that T contains two
A A A A A A A

primes P, Q e SpecT with f e P H  Q satisfying P n R = Q D R but that P and

Q are not p-equivalent. Also we can find P,Q e SpecS, not G-conjugate with

P n R = Q fl R.

Let A = k [ x X g ]  be the commutative polynomial ring in q variables 

over a field k of characteristic q * 0, and let M = (x-j,. . . ,Xg)f the 

maximal ideal generated by all the x^. Let a be the ^-automorphism on A 

such that g (x ±) = x^ + ; for i < q and cr(Xg) = x/. We use the following 

notation:

The automorphism of A, <r, becomes an automorphism of the ring 5 by letting 

it act on each entry. Let r e AutS be conjugation by U. Then <rr = ra is an 

automorphism of S of order q. It is outer since it moves the centre of 5. 

Let G = < <jt >. Since S/P - S/Q s k, P and Q are primes of S. Moreover, 

they are (7-stable since r is inner and u acts on entries. By Proposition

0
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1.2.12 there exists a unique prime ideal of T, minimal over P*G, P say. It 

is clear that, since T/(P*G) * kG, P/(P*G) « aug(kG) and so f e P. 

Similarly, f e Q, the unique minimal ideal over Q*G. We claim that 

P fl R = Q f) R and so P fl R * Q fl R. If

X =- f a b 1, then = f a+c 1, . ( *  *  1I  c d J  c -c+d J  I  cP dP J .

T-1Thus, X - X(J forces kP = -a-c+b+d. Since <r fixes a/m, b m kP (mod M) and 

because c e M, it follows that a * d (mod M). Thus, P fl R £ Q and 

Q n r  s p . it follows that P n r  = q  n r .

That this example works is not reliant on the fact that iGl = 0 in S, 

only that l<?l is not a unit in S. In fact R.Guralnick and C.L.Hung have 

shown that the above example can be lifted to characteristic 0. See 

[Mo2, Example 1.2] for details.

a0- kP

Theorem 3.1.9 provides us with an intuitive way of viewing the prime 

correspondence of Theorem 3.1.5. The next lemma gives us a more concrete 

way of viewing the map 0 and, in fact, when the trace map is onto, it shows 

that p = ( P + gT(g - 7 )) t\ R.

3.1.16 LEMMA Let S be a ring/ G a group of automorphisms of S. If 

P e SpecfT and fi(P) = p then ptrG(S) Q ( P + '£geGT(g-1) ) n R £ p.

PROOF Let x e ( P + f-geQT(g-1) j fl R. Then x = y + t for some y e P,

t € ZgeGT(g-l). So xf = yf + tf = yf e P because CLgeGT(g-1) ) . f = 0. By

Theorem 3.1.5, x e p. Suppose now r e R. Then

r e p 4=$ rf e P

«=» rfs e P for all s e S 

4=$ ^gtGrs^^ € ** f°r 5 e S

=» IgtGrs9 * ( ? + ^g€GT^ ~ 1) ) n R for a11 5 € S
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4 r.trG(S) £ ( P + ZgcGT(9-1) > n R 

4  r.trg(S) £ p (by first part)

4  r 6 p (since trG(S) % p, prime).

Thus, the above must be a chain of equivalences and so

r.trG(S) £ p H  r ( p 4 4  r. trG(S) £ ( P + Lge GT(g-1) ) n R , proving the

lemma.

We now consider the connection between primes in 5 and those in T. The

following theorem encapsulates the connection between SpecS and SpecT.

3.1.17 THEOREM Let S be a ring, G a finite subgroup of Aut S. Define 

a:SpecS -» (Power set of SpecT) such that ot(P) = { P : P is minimal over 

P°*G }. Then

(i) a is a closed map with respect to the Zariski topologies.

(ii) The induced map ci:SpecS/G SpecT/p is an order preserving map and 

is a homeomorphism with respect to the quotient Zariski topologies.

(iii) The restricted maps ocr:SpecfS -» (Power set of SpecfT), where 

otr(P) = ct(P) H specfT/ and otpV:PrimSpecS (Power set of PrimSpecT), where 

ctpV(P) = ct(P) fl PrimSpecT, are also closed.

(iv) Finally, their quotient maps ctr;SpeCfS/G -> SpeCfT/p and

oipV:PrimSpecS/G -» PrimSpecT/p are homeomorphisms.

PROOF By [P2, Proposition 16.7] the results for oipV and cipV follow

immediately from those for a and a. Since ar concerns the induced 

topologies of SpecS and SpecT with respect to the open sets SpecfS and
SpecfT, it again suffices to prove the result for a.

We prove (i) first. Let v(X) be a closed set in SpecS where X =

for some primes P± e SpecS and let P e v(X) so that P a X. Let 

X ~ j(p^°*G). If P e ot(P) then P is minimal over P°*G. Since Pj° £ P°

for all i e I, P 2 X and so ot(P) £ v(X). Conversely, let Q e v(X) so that
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Q 2 nieI(Pi°*G) and KiejPi0 £ Q° £ Q where Q n 5 = Q° for Q e SpecS. This 

shows that ^g^gX9 £ Q and since G is finite, we have h e G such that 

Xh £ Q. Let h denote y~1. Then X £ QY. We've shown QY e v(X) and since 

Q « ct(QY) we have that v(X) £ a(v(X)). Thus, v(X) = a(v(X)), proving (i).

Now we consider statement (ii) for the map a. First we show that a is 

well defined and preserves order. Let P,Qt SpecS with P and Q G-conjugate. 

Since P° = Qp, ct([P]) = [ {P e SpecT: P fl S = P°}J - a([Q]). Now we show cx 

preserves inclusions. Suppose Q S p are primes in SpecS and let 

[P] € a([P]). Since Q°*G £ P°*G £ P, there exists Q e SpecT minimal over 

Q°*G with Q £ P, by Theorem 1 .2,11 (i) - Since Q e a(Q), [a(Q)] £ [a(P)J.

Secondly, we show a is a homeomorphism. To do this we examine the 

closed sets of SpecS/G and SpecT/p. Let y be a closed set of SpecS/G so
that i r (y) - v(Y) for some Y = Since (y) is a collection of

G-orbits, we may assume Y = Conversely any such intersection of

G-prime ideals gives rise to a closed set in SpecS/G. Now, let z be a

closed set in SpecT/p so that y~1(z) - w(Z) with Z = HPX for some

Px e SpecT where y:SpecT -» SpecT/p is the projection map. As before, we may 
assume {P\} is a collection of p-orbits. Thus, letting - { P : P is 

minimal over PX°*G } where Px 0 S = P\° for Px c SpecS, we have Z = HPX. 

Thus:

P 2 z

4=4 P 2 nx rnfp; P e NXJJ

4=4 P 2 {P: p e N^J} using P prime

4=4 P 2 nx(\Px°*Gj by Theorem 3.1.14.

4=4 P 2 HXPX°

So we may assume that Z =

Here, we show that a is a continuous map. Let y be a closed set in

SpecfS/G, so that n ( y )  - v(Y) for some set Y £ S where we may assume that

y = fl̂ Pj° for some P^ e SpecS, Let Z = Y. With z = y(a)(Z))t we show that

a(y) = z. To this end, let [PJ e y so that P e v(Y) and so, P 2 Y. Clearly,

68



for P e a(P7, Z £ P and hence a([P]) e z, proving a(y7 £ z. Now, let 

/■&7 c z so that, without loss of generality, Q 2 2. Now, Q fl s  - Qp for 
some Q e SpecS. Since Z £ P, P 2 y. Thus [Q] - ot([Ql) e afy7, proving the 

opposite inclusion.

Finally, we show that a"1 is a continuous map. Let z be an arbitrary 

closed set in SpecT/p so that (z) ~ o>(Z) for some subset Z of T where, 
as above, we may assume that Z = ^jP[° for some Pj e SpecS. Put Y - Z and 
let y = ir (v(Y)). We claim that br^ (z) = y. For, let [P] e z where we may 
assume that P 2 Z. With P n S = P° for some P e SpecS, we have that P 2 Y. 

Thus, oi~1 ([P]) = /\P7 e y. Now, let [Q] e y for some 0 e SpecS with Y Q Q.
Then, for Q c SpecT, minimal over Q°*G, we have that Z £ Q, [Q] e z and
Tx([Q]) ~ [Q]. Consequently, [Q] e (z) and this completes the proof that 
a~1 is a homeomorphism.

We may now compose the maps a and |3 in order to get a map from SpecjS/G 

to Spec£R/~ as described below.

3-1.18 THEOREM Let S be a ring and G a finite group of automorphisms of S. 

Then the map <p: (SpeCfS)/G (Specf-R)/~ given by composing a and 0 as 

shown:

(SpecfS)/G --  — ---> (SpeCfT)/p  — ----» (SpectR)/~
[Pj j ----------- > [PJ i-------------- > [p]

so that <p([P]) - {p : p is minimal over P fl R, tr(S) % p}/~ is an order

preserving homeomorphism. Moreover if we restrict ip to the subsets

consisting of primitive ideals only, we get a bijection 

<PpV: (PrimSpecfS)/G -» (PrimSpeCf-R)/~ such that ppV([P]) = <p([PJ7.

PROOF This result is immediate from Theorem 3.1.10 and Theorem 3.1.17.

So far we have neglected to discuss the relationship between SpecjS and
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SpecfS. It's easy to see that Speeds £ SpecfS in general. For, if P is a 

prime in 5 with P i  SpecfS then there exists P e SpecT minimal over P°*G 

containing f. Thus, I = SfS n s S p n 5  = po G P and so P /SpecxS. We've

shown that SpecjS £ SpecfS. In general, however, the containment is strict

as the following example shows.

3.1.19 EXAMPLE There is a ring S and a group acting on S for which Speeds

is strictly contained in SpecfS.

Let S = Q, the field of rational numbers and C be a non-trivial finite

group acting on S with the trivial action. Now SfS is a proper ideal of T

and so I ~ SfS fl S = 0. Thus, SpecjS = 0. Lemma 3.1.2 shows that

SpecfS = SpecS and so SpecfS * 0.

We now reach the climax of this section where we relate certain primes 

of R to certain primes of S. When the order of the group is invertible in

the ring S, Montgomery has proved the following theorem.

3.1.20 THEOREM Let S be a ring acted upon by a finite group of 

automorphisms, G. Suppose that \Gl~J e S.

(i) Given P e SpecS, P H R = p ;  n p2 n . . .  fl pm, where m < | G\ and the

(Pi) are the set of primes in R minimal over P fl r .

(ii) Given p e SpecR, there exists P e SpecS such that p is minimal

over P fl R. Moreover, P is unique up to its G-orbit in SpecS.

PROOF [Mo2, Theorem 2.1].

When \G\~1 e S, tr(S) = R and so Spec^R = SpecR. Lemma 3.1.2 shows that 

SpecfS = SpecS. Thus, the following theorem is indeed a generalisation of

Montgomery's Theorem. It has no hypothesis on the order of G other than

being finite.
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3.1.21 THEOREM Let S be a ring and G a finite group of automorphisms of S.

(i) Given P e SpecfS, there are a finite number of primes in Specf-R 

minimal over P fl R, {p̂ , P2 , . .., pm} say, with m < \G\. Also, (0£p^)tr(S) 

is nilpotent modulo P 0 R.

(ii) Given p e SpeCf-R, there exists P e SpecfS such that p is minimal

over JP fl fl. Moreover, P is unique up to its G-orbit in SpecS.

PROOF We prove (i) first. Let P^P^, ...,Pn be all the primes in SpecfT 

minimal over P°*G. The definition of SpecfS shows that there must be at 

least one of these and Theorem 1.2.11(ii) shows that n < (Gi. Let

qi = @(Pi) (i = 1,...n) and set N - Lemma 3.1.7 shows that

Ntr(S) £ J(P fl R). By Theorem 3.1.9, q  ̂ is minimal over P^ fl R = p fi fl 

(i = 1,...,n). It remains to show that these are all the members of Specf-R 
minimal over P fl fl. Let q e Specj-R with P fl R £ q. As noted in the previous

part, Ntr(S) Q j(P ft R) £ q. Since tr(S) <£ q, N £ q and so there exists

j e {1,...,n} such that qj £ g. This completes the proof of (i).
For (ii), let p = @(P) for some P e SpecfT. By Lemma 1.2.10, Pfl5 = P°

for P e SpecfS. Then Theorem 1 .2.11 (i) shows that P is minimal over P°*G.

By Theorem 3.1.9, p is minimal over P fl R. Suppose now that p is minimal

over Q fl R for some Q e SpecS. By the proof of (i), p = &(Q) for some

Q £ SpecfT minimal over (P*G. Thus, since P = (q) = Q, P fl 5 = 0 fl S so

that P° = Q° and P and Q are £?-conjugate.

Letzter introduces the following definitions to explain the 

relationship between primes in R and those in S.

3.1.22 DEFINITION Let U and V be rings with U £ V. Suppose p e SpecU is

minimal over P fl u for P e SpecV. Then we say that p lies under P and that

P lies over p.

We use the above generalisation of [Mo2, Theorem 2.1] to improve on
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[Mo2, Lemma 3.1]. This corollary will yield a number of applications in 

Chapter3, §3. For example it is used extensively in Lemma 3,3.8, a

satisfying result on the heights of prime ideals.

3.1.23 COROLLARY Let S be a ring and G a finite subgroup of Aut S.

(i) Given Pf c p2 in SpecfS and p2 e SpeCf-R lying under P2, there

exists p; e Specf-R lying under Pf with pf c p2.
(ii) Given pf c p^ in SpeCf-R and Pf e SpecS lying over pf, there exists

P2 e SpecfS lying over p£ with Pf c P̂ .

(iii) Given p; c p2 in Specf-R and P2 f SpecS lying over P2, there 

exists P/ e SpecfS lying over p] with Pj c p2.
(iv) Given pf c p^ in Specf-R and q2 e SpeCf-R with P2 ~ g;?, there exists 

qj e Specf-R with pf ~ g; and pf c g/.

PROOF In (i), Corollary 3.1.11 shows that P-f n R c n P. Let 

g/,...,gn e Spec^R be all the minimal primes over Pj fl i? not containing 

tr(S). Writing N = Theorem 3.1.21 (i), says Ntr(S) £ yfP; fl R) £ p2.

Since tr(S) % p2 , N £ P2 and so it follows that there exists j e n)

such that qj £ p^. Since p^ cannot lie under both Pj and P2 , we have

Qj c P2- Taking p; = qj gives the required result.

For (ii) and (iii), we have pj - $(P±) for some Pj e SpecfT and let
Pj fl 5 = Qi°i say, for some £?j e SpecS (i = 1,2). For (ii), it's clear from

Theorem 3.1.21, that Pf = Qfh for some h c G. Since Qf° £ Q^P, there exists

x e G such that Pf £ . Taking P^ - Q2X gives (ii).

Similarly for (iii), we have that P^ = Q2^ i°r some k € G. Since,

Qf° £ Q2 0 £ PQ2 > there exists x t G such that Qfx £ Pg. Taking Pj = Qfx

gives the result for (ii).

For (iv), we let Pj e SpecfT be such that @(Pj) = pj and Pj e SpecS 

such that Pj° = Pj fl 5 (i = 1,2). Let a^a^,. ..,an in Spec^R be all the 

primes lying under Pf not containing tr(S). Since Pf H R £ P^ fl R £ ĝ , g^
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contains a prime of R minimal over Py fl R and since tr(S) % q2 , there 

exists j t such that aj £ ĝ . Clearly, aj c g^ and since aj and

Py are both minimal over Py fl R, aj - py. Thus, we take gy * aj.
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Here we are concerned with the special case where S has prime

characteristic g and G is a g-group. Occasionally, it is necessary to look 

at the case where G has order g. In this section we find an explicit

formulation for the map 0 of Theorem 3.1.5 and we state corollaries to the 

major theorems of Chapter 3, §1 .

To provide another characterisation of 0, we first require a technical 

lemma.

3.2.1 LEMMA. Let C be a G-invariant right Ore set in S. Then C is a right

Ore set in T with TC~1 & SC~^*G.

PROOF. By definition there exists a right ring of fractions of S with

respect to C, namely SC~̂  . To be precise, there is a ring homomorphism

<p : S -» SC~1 satisfying:

(i) <p(x) is a unit for all x e C

(ii) each elt. of SC-1 has form p(s)<p{x~1) for some s e Sf x t C.

(iii) kerp = {s e S: sc - 0 for some c e C}.

Now G acts on SC~1 by: {<p(r)<p(x)~1 )9 = <p(r9)<p(x9)~1 for all g e G. So we

may consider the skew group ring SC^*G.

We claim that SC~1*G is a right ring of fractions for S*G with respect

to C. For, define \j,:S*G S C 1*G: T.Sgg h-> T<p(Sg)g. Then it is clear that ^

is a ring homomorphism. We show that it satisfies the required properties

for S C 1*G to be a ring of fractions. Property (i) is trivial.

In order to show that (ii) holds we show that a given element is of the 

required form. Let t; = I.geQ<p(Sg)<p(xg)~1 geSC^ *G where Sg e S, Xg e C 

(g e G). Then
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t = ^geQP(sg)9p(^)~1 

s 'LgtGP(sg)W>(rg)'P(Y)~1 
where <p(x^)~1 - <p(rg)<p(y)~1 for some r? e S (g e G), y e  C. Thus,

Q~1 1
t  -  l^gtGf>(s g ^ ( r g )93<p(y)~1

a-1 f
s 'P&g€Gsgrg 9)'f'(Y)~1 as required.

So S*G has a right ring of fractions with respect to C and [G-W, Lemma 9.1] 

gives us that C is a right Ore set in S*G.

We consider now the case where IGI = g (q prime), S is a ring with

char S = q and

p ^ ( p n s ).t - (*).

Lemma 1.2.10 gives us that P fl S = f°r some Q e SpecS. [P2,

Proposition 14.10] shows that, if Stabg(Q) = 1, then P - Q°*G = fP (1 S)T.

Thus, by (*), Q - Q9 where G = <g>. Let S = S/Q and suppose it is right

Goldie. Let Q(S) denote the classical quotient ring of S. By Proposition 

1.2.12, Q(S)*G has a unique prime ideal with zero intersection with the 

coefficient ring. We now show that this prime ideal is derived from P.

3.2.2 LEMMA. Let S be a ring acted on by a finite group G. Suppose 

P e SpecfT has P ft S = Q for some G-invariant prime ideal Q with S/Q right 

Goldie. Let S = S/Q, T = T/(Q*G) so that T = S*G. Let X = Cs(0).l £ T. 

Write P/(Q*G) as P. Then PX~1 is a prime ideal of TX~1 and PX~1 fl Q(S) = 0.

PROOF. By Lemma 3.2.1, Q(S) *G is a right ring of fractions for S*G with 

respect to X. We show that, as a right 5-module, {S*G)/P is ^-torsion free. 

Let I/P be the right ^-torsion submodule of (S*G)/P.

Then I is a left ideal of S*G and, by the right Ore condition, J is a 

right ideal of S*G. So J/P is a two sided ideal of the prime right Goldie 

ring S*G/P and hence contains a regular element. This gives a contradiction
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which proves the objective. So by [G-W, Theorem 9.20(b)] PX~1 is a prime 

ideal in Q(S)*G. Moreover, since P fl S * Q, PX~1 n Q(S) - 0.

3.2.3 LEMMA Let S be a Noetherian ring of characteristic q and G a group of 

automorphisms of S of order q. Let P e SpecfT with P D (Pf\S).T. Then there 

exists a unit U e Q(S) such that $(P) - { r e R : = 0 } where

0 is the map defined in Theorem 3. 1.5.

PROOF When P n S = Q9 where Q * Q9, by [P2, Theorem 14.7], (P fl S)T is

a prime ideal. Moreover, this prime ideal has the same intersection with S 

as P and so, by Proposition 1.2.12, they are equal. So here we must have 

P fl S = Q where Q = Q9. So S = S/Q; G acts on this ring. In the case of 

prime Noetherian rings, we have that G is inner on Q(S), the classical ring 

of quotients, if and only if G is X-inner by [Mo1, Example 3.7]. Since 

Q*G c p and Proposition 1.2.12 shows that P is the unique prime ideal of 

S*G with zero intersection with the coefficient ring, S*G itself cannot be 

prime. So, [Mo1 , Theorem 3.17(2) ] tells us that G must be inner on Q(S). 

Suppose there does not exist U e Q(S) of order q which induces the action

of g. Then by [Yi, Proposition 2.5] Q(S)*G is prime and so by [ G&W 5.11 ]

Q*G is prime and so P = (P fl S)T, giving a contradiction. So there must 

exist U e Q(S) of order q which induces the action of g.

By observing that Q(~S)*G = Q(S) <U~1 g>, the ordinary group ring, whose

unique prime ideal is its augmentation ideal, we have that 

PX~1 = aug(Q(S) <U~ 1g> ) = XgfGQ(S) ((U~ 1g)i-1).

The proof of [G-W, Theorem 9.22] gives us that PX~* fl T = P. Now let r e p  

so that, by Theorem 3.1.5, rf e P. We may write 

r? = Li = if'mf<jrUitrigi e PX~1.

Since U~igi = 1 (mod P) by the above, we conclude that m mpT U1 = 0.

Conversely, let r e R with r£j_7 ^qU~^~0. Then
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rf - Ii = jf .cfirtjiirigi e PX~^(\T ~ P. Thus, rf e P and so r e p. This proves 

the lemma.

Combining this with Theorem 3.1.5, we've thus shown the following 

result.

3.2.4 THEOREM Let S be a Noetherian ring of characteristic q and iGl = q, 

prime. Suppose P e SpecfT.

If (P fl S) .T - P then 0(P) = P n R.

If (P fl S).T c P then j3(P) = {r e R : r ̂  = 0} for some

U e Q(S) as described above.

We return to the relationship between SpecjS and SpecfS originally

discussed at 3.1.17. There we saw that, in general, it is possible to have

SpecjS strictly contained in SpecfS. The following shows this cannot happen 

when char S - q and G is a g-group ( q prime ).

3.2.5 THEOREM Let G have order q3 ( a e H ) and let S be a Noetherian ring
A

of characteristic q. Let P e SpecS and P be the unique prime of T minimal 

over P°*G. Then the following are equivalent: *

(i) I £ P;

(ii) f e P;

(iii) (tr(S))n £ P n R for some n e N.

When these occur, Stabg(P) * {1}.

PROOF First note that P is unique by Proposition 1.2.12 and that P fl S = P° 

by Theorem 1 .2.11 (i). First we establish the equivalence of (i) and (ii). 

Suppose (i) holds so that J £ P. Let |? be a prime of S minimal over I, 

contained in P and let Q be the prime of S*G minimal over {P*G. Since S/ Jl 

is a semiprime Noetherian ring, [G-W, Exercise 9U] says that we may
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localize at Q/jI. First we have that C(Q°/jI) is a G-invariant Ore set in 

5 : S/jI. So C C(Q°/jI). 1 is an Ore set in T S * G by Lemma 3.2.1 .

Now TC~ 1 = SC~1 * G is a local ring because G = qa and char S = q. This

is the case because J( SC~ ̂ )*G £ J(TC~J) by [McC-R, Corollary 10.2.10 (v) ]

and because ~SC~1*G/ J( SC~1 )*G * Q(S/QP)*G is local by Proposition 1.2.12.

So either (i) TCT1 .f.TC~1 * TC~1

or fii) Tc~1 .f.Tcr1 s j(Tcr1).

In case (i),there exist

c e Cg(Q°/jI), Si,si e S ( i = 1,..,n )

such that 1 = = c~^SifSiC~K

Therefore c2 = = sifsi e SfS n ^(Q0/^1) s UP/rt) n C~(Q°/jl).

This contradiction shows that case (ii) is the only one that can arise. By 

[G-W, Theorem 9.22], QC~1 e Spec(TC~1). Since (SC~1 / Q°C~1) s (s/Q°)C~1 is

semisimple Artinian, QC~1 is a maximal ideal of TC~K Since TC~^ is local

QC~1 = J (TC~1) .

So f e (TC~1 )f(TC~1) £ J ( T C ~ = QC~K Hence, by [G-W, Theorem 9.22],

£ e Q. Since P a prime T containing Q°*G and ^ is the unique prime minimal

over Q°*G, we have that Q £ P. Thus, f e P and we have shown that (ii)

holds. Rather easier is the implication (ii) =» (i). For, if f f P then

J = SfS n 5 £ P n 5 = P° £ P.

Next we show that (i) and (iii) are equivalent. Since the previous part 

of the proof establishes that Speeds = SpecfS, we have to show that

P d SpecfS if and only if (tr (S) )n £ P fl Pf for some n t N. This is just

Lemma 3.1.8 .

Finally, suppose that (i) to (iii) above hold. If Stabg(P) = {1} then

[P2, Corollary 14.10 ] gives that P » P°*G which does not contain f. Thus

StabG (P) * {1}.

We use this lemma to study the relationship between tr(S) and J still 

further .
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3.2.6 THEOREM Let S be a Noetherian ring of characteristic q and G a finite 

group of automorphisms of S such that G is a q-group. Then there exists 

t e N such that (trG(S))t £ I.

PROOF Let P u p2' • • m fPm ( for some m € N ) be the primes of S minimal over 

I. By Corollary 3.2.5, there exist Uj such that

(trG(S))Ui £ Pj ( t < i < m ). Let u be the maximum of the UjS. Then 

(trG(S))u £ ni=l,..,mpi ~ Also* Since S is Noetherian there exists

w e N such that (JI)W £ I and so (trG(S))uw £ I.

We can say more when a = 1 in Theorem 3.2.5.

3.2.7 COROLLARY. Suppose S is a Noetherian ring with char S ~ q and G a
A

subgroup of AutS of order q. Let P t SpecS and let P be the unique prime of 

T minimal over P°*G. Then the following are equivalent:

(i) I £ p;

(ii) ft p

(iii) P = P9, the action of g on Q(S/P) is induced by a unit, U, of 

Q (S/P) with (U-1)Q~1 = 0 and Q(S/P)*G & Q(S/P) <U~'1 g>, the ordinary group 

ring.

PROOF Note P is unique by Proposition 1.2.12. The equivalence of (i) and

(ii) is just Theorem 3.2.5. Let G = <g>. Suppose that (i) and (ii) hold. 

Then P =p9 from the theorem. Since P 3 (pns;.!F, we are in the same 

situation as case (ii) of Theorem 3.2.4. Adopting the notation there, we 

have that g is induced by a unit, U, of Q(S) with (U-1)9 = 0. Moreover 

Q (S/P) *G s q  (S/P) <U~ !g>. Now,

f t PX~1 = aug(Q(S) <U~1 g> ) = . ./q~lQ(s) (^^9^-f) -

Now, PX~1 is a free (Pf'Sj-module with basis (U~ig~i - 1: i = 1,...,q-l) and
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f = "LgtQ g ( PX~J. Thus, the coefficient of U~ig~i-1 in the expression for

f must be U* for i - 1,...,q-1. Hence, we have:

f - *i.i,...cP1«rW-'-i) =1 *v 
where U = _gU1. So U = (U~1)Q~1 = 0. Conversely, suppose (iii) holds.

Then £ = f + U = Z^ = j/ m # (U~igi~1-1) c aug(Q(S/P) <ir1g>) and so f e P.

The next note shows that (iii) does not imply (i) in Corollary 3.2.7 if

we omit the hypothesis that (U - 1)^"^ = 0.

3.2.8 NOTE There is a ring S, a group of automorphisms G and P t SpecS such 

that P = P9, G is inner on S/P and S*G is a group ring but that I % P.

Take S = M2 (1/22), P = 0, G = <g> where g is induced by

*  - 1 ;  i ]
Certainly, P = P9, g is inner on S/P and S*G is an ordinary group ring. 

Also, 1 $ - U * 0 so that all the hypotheses of (iii) hold except 

(U - 1S)Q~1 = 0. We now exhibit a non-zero element of I to show that this 

example does not contradict Corollary 3.2.7. Let

'-[?$].
Now 0 * U = tr(X) = g~1 (fX - Xf) e I. This completes the example.

With the additional hypotheses that char S = q (g prime) and \G\ = q3

( a e N ), we get a stronger version of Theorem 3.1.17. Since p is then the

trivial equivalence, we may now construct a bijection between (SpecS)/G and 

SpecT.

3.2.9 COROLLARY Let S be a Noetherian ring of characteristic q, G a finite 

group of automorphisms of S of order q3. Let

A = { N < S : N = npit Pi e SpecS }

and 0 = { J < T : J = flPj/ Pj e SpecT }.
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Let a ; A fi where ol((\P±)/( (ftPi°) *G ) ~ N( T / (((\Pi°) *G). We may also 

define a; (SpecS)/G -* SpecT by a([PJ) = ot(P) . Then

(i) ct is an order preserving, intersection preserving map;

(ii) a is a homeomorphism with respect to the Zariski topologies.

(iii) The map apv: PrimSpecS/G -» PrimSpecT given by otpv([P]) = ot([P]) 

is a homeomorphism.

(iv) If we restrict the domain and codomain of a, in order to define a 

new function ar: (SpecjS)/G -> SpecfT then all of the above properties are 

preserved.

PROOF For (i), (ii) and (iii), since a coincides with the a of Theorem 

3.1.17, we only have to show that a preserves intersections. Let Pj e SpecS 

( i e J, J finite). Define Pj = a (P±). Certainly affl P1) £ flPj. Let 

Ql (1 e L) be the minimal primes over (Hp±°)*G. So afflPji = f l N o w  

Ql fl s = Qi° for some Qj e SpecS by Lemma 1.2.10. So flPj0 £ qj. Thus, there

exists i e J such that Pj £ £?j. Moreover, Pj0*(? £ Qi°*G £ Qi and so, since
/V A APj is the unique minimal prime over Pj°*G, we have that Pj £ £?j. Thus,

we've shown Hjcj Pj = nIeL Ql so that Hjej &(pi) = ^(^iel pî -

For (iv) it remains to show that ar ([P]) is a member of SpecfT when 
P e SpecjS. Let P e SpecjS. By Corollary 3.2.7, SpecfS = Speeds. By 

definition of SpecfS, there exists P e SpecfT minimal over P°*G. 

Proposition 1.2.12 yields that P is the unique prime of T minimal over 

P°*G. Thus, ar ([P]) = P.

Now, we may compose ci and 0 to obtain a bijection between (SpecfS)/G 

and Spec^R.

3.2.10 THEOREM Let S be a Noetherian ring of characteristic q, \G\ = q3. 

Then the map <p: SpecjS/G -> SpectR given by <p = 0odi is an order preserving 

map which may be extended to intersections. Also, <p is an inclusion
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preserving homeomorphism. Moreover, if we restrict <p to primitive ideals, 

we get a bijection between these subsets.

PROOF This comes from Theorem 3.1.17 and Theorem 3.1.5 since @ = and 

SpecjS = SpecfS by Corollary 3.2.9.

We now look at the special case of Theorem 3.1.9. As observed after 

Theorem 3.1.9, ~ is trivial when charS = q and G is a g-group. We use this

fact together with Theorem 3.1.9 to provide a unique identification of 0(P)

for any P e SpecfT.

3.2.11 COROLLARY Let S be a ring of characteristic q and G a group of 

automorphisms of S of order qa ( q prime, a e N ). Suppose P e SpecfT. Then 

(3(P) is the unique prime of R minimal over P fl R not containing tr(S).

PROOF Theorem 3.1.9 shows that f3(P) is minimal over P n R. If q e SpeCf-R is 

minimal over P n R, then p~q but as noted above ~ is trivial on Spec^R in
Athis case, so g = 0(P).

We now take advantage of the fact that p is trivial on SpecT in the 
g-case to see to how a prime in SpecfT is uniquely determined by its 

intersection with R.

3.2.12 COROLLARY Let S be a ring with char S = q and G a group of

automorphisms of S with \G\ = g*3 ( q prime, a e M ). Suppose that

P,Q e SpecT with f / P satisfy J(P fl R) = j(Q fl R). Then P = Q. That is, P

is entirely determined by its intersection with R.

PROOF If f e Q, then Lemma 3.1.8 shows that (tr(S))n £ Q n R = pfl R and
the reverse direction of the lemma then shows that f e P. This

82



contradiction shows that Q e SpecfT and so we may apply Corollary 3.1.11. 
This shows that P and Q are in the same p-class. The observation on p in

3.1.2 gives the final part of the result.

We conclude this section by giving the special version of Theorem 

3.1.21.

3.2.13 THEOREM Let S be a Noetherian ring of characteristic q and G a 

subgroup of Aut S of order qa. Then

(i) Given P e SpecfS, there exists p t Specf-R such that p is the unique 

prime minimal over P n r not containing the trace.
(ii) Given p e SpeCf-R, there exists P e SpecjS such that p is minimal over 

P fl r . Moreover P is unique up to its G-orbit.

PROOF Given that SpecjS = SpecfS by Theorem 3.2.5, this result is immediate 
from Theorem 3.1.21 and Corollary 3.2.11.
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§3,3 Applications

Here we exploit the results of the previous two sections in order to 

relate the properties of corresponding primes. This section culminates with 

certain ring theoretic properties which are retained when passing from one 

ring to another.

The first properties we investigate are those of height and coheight of 

prime ideals. First we define these concepts.

3.3.1 DEFINITION Let U be a ring. Consider a chain of prime ideals in U:

PQ c p 1 c ... c pn/ pi e specU, (0 < i < n).

We define the length of such a chain to be n. If P is a fixed prime/ we

define the height of P, ht(P), to be the maximum length of any such chain

with P = Pn . There may not be a chain of maximal length, in which case the

height of P is said to be infinite. We may also define the coheight of a 

prime P, coht(P). This is just the maximal length of a chain above with 

P - Pq . If there does not exist such a chain we say that P has infinite 

coheight.

3.3.2 LEMMA Let S be a ring, G a finite subgroup of Aut(S), P t SpecfT and 

p = f3(P). Then ht(P) = ht(p).

PROOF Let P0 c P; c P? c...c Pn = P (n e N; be a chain of primes in T.

Since P e SpecfT, P-i e SpecfT for all i. Then pg c p; c P2 c...c pn = p

where p± = (3 (Pj) (i = 1,. .. ,n) is a chain of primes in R by Theorem 3.1.5. So

ht(P) < ht(p). Similarly using /3~7, we can prove the opposite inequality.

3.3.3 LEMMA Let S be a ring, G a finite subgroup of Aut(S) with the trace 

map surjective. Suppose P e SpecfT and p = (3(P), then coht(p) < coht(P).
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PROOF Let P e SpecfT and p = (S(P). Suppose p has coheight at least n, with 

p - Pq c Pi c P2 c...c Pn (Pi * SpecR) a chain of primes in SpecR. Since 

trg(S) - R, p± e Specf-R for i = 1,...,n. Thus, we may apply  ̂to the p± to
Aget a chain of primes in T. This chain shows us that coht(P) > n.

It turns out that the hypothesis, tr:S -» R surjective, in Lemma 3.3.3 

is necessary as the following example shows.

3.3.4 EXAMPLE We now give an example where coht(P) < coht(p).

Let H = < x,yfz : [x,y] = z, z central >, the first Heisenberg group, k a

field of characteristic 2 with an element X e k such that X is not a root

of unity. Let g be the automorphism of order 2 such that x9 - x~1, 

y9 = y~1 f z9 = z. Let M := (z-\)S. Then T has a maximal ideal PftG in 

SpecfT. However, @(M*G) is not maximal.

PROOF We show first that M is maximal. Now, S/M s k[x, x~1 ][y, y~1; a] 

where <r(x) = \~^x. Note that S/M is a free k [ x, x~1 ] - module with basis

the powers of y. Consider J, a non-zero ideal of S/M. Let h be a non-zero

element of J such that all powers of y are positive and h is of minimal 

degree in y. Then there exists n t N such that 

h = 9o(x) + 9l(x)y • - +gn(x)yn Where g±(x) e k [x, x~1 ] (i = 1,...,n). 

Now,

xhx~1 = g0(x) + g-j(x)\y +. .. +gn(x)\nyn .

So \nh - xhx~1 - (\n-1)gQ(x) + (\n-k)g^(x)y +. .. + )gn_i (x) e J has

degree less than h and is non-zero unless n - 0. So n - 0. By symmetry we 

may do the same for x. This shows that a minimal element of J is in fact a 

member of the field. Thus J = S/M. This proves the claim.

We now show that g acts as an outer automorphism on S/M. By considering 

a degree argument, it's clear that there does not exist u e S/M such that 

xu = ux~1 and we can conclude that g acts as an outer automorphism on S/M.
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Thus, by Theorem 1.4.6(iv), M*G is a maximal ideal of T. So, by Theorem

3.1.5, 0(M*G) a M H R. Now, since x + x~1 c tr(S)\M, trg(S) $ M ft R and so

(trg(S) + fw (1 J?j)/(M fl R) is a non-zero ideal of R/(M fl R). We show that 
this is in fact a proper ideal. Suppose it is not a proper ideal. Now, G 

acts on S/M and we may conclude that the map tr : S/M -— » (S/M)g is onto. 

Let IS/b kabxayb € S/M. Then tr( Z3/b kabxayb) = Z3/b kab(xayb + x~ay~b) 

which clearly cannot equal 1. So M n R is strictly contained in a proper 

ideal is therefore not maximal. Thus coht(M (1 R) >1 while coht(M*G) - 0.

We have a corollary to Theorem 1.2.11 relating height and coheight of 

primes in 5 to the height and coheight of the corresponding prime of T.

3.3.5 COROLLARY Let S be a ring and G a finite group of automorphisms of S. 

Suppose P € SpecS and that P is minimal over P°*G. Then ht(P) - ht(P) and

coht(P) < coht(P). Furthermore, there exists Q e [P] such that

coht(P) = coht(Q).

PROOF Suppose P q c P j c ... c Pn = P is a chain of primes in S. Now

Pn-1°*G c Pn°*G e ^ and since P n S = Pn°, Theorem 1.2.11(i) shows that P
a

is not minimal over pn- 1°*G and that there exists Pn-f minimal over pn-1 G 

with Pn_] c Pn. Continuing in this manner we construct a chain of primes in 

T of length n, proving ht(P) < ht(P). Conversely, let 

Pj c p2 c ... c pm s p be a chain of primes in T. Since, by Theorem

1 .2.11 (i), Pj n S c Pj+1 n ^ for j = 0, ... ,m-1, we have a chain

Pq° c pjO c ... c pmo - po where Pj° = Pj ft S for j = Since

Pnt-1° c Pm° s there exists h e G such that pm~1^ s P‘ Continuing this

way, we construct a chain of primes in S of length m, proving

ht(P) < ht(P). Thus, ht(P) = ht(P).

Now we consider the coheight. Let P = P q c P; c ... c Pn be a chain in 

T. As we did above we construct a chain of length n in S, starting with pn
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and working down to P*1 for some h e G where P° - P n S. Since S/P * S/P^, 

we have coht(P) < coht(P^) = coht(P) as claimed. Suppose now that 

P = Pq c Pj c . . . c pn is a chain of primes in S. As we did when 

considering ht(P), we construct a chain Pq c p ? c ... c pn in T with P£ 

minimal over P£°*G. So coht(pQ) > coht(PQ). The above inequality gives us 

that coht(PQ) = coht(PQ). Since P and Pq are minimal over Pq°*G they are 
p-equivalent.

3.3.6 NOTE The triviality of the p-classes when charS = q, \G\ = q3 ensures

that both height and coheight are preserved in the g-case. We exploit this

later in 3.3.10.

We use a to look at the corresponding result when we restrict to the

case where charS = g and G is a g-group.

3.3.7 COROLLARY Let S be a Noetherian ring of characteristic q, G a finite 

group of automorphisms of S of order q3 and a. as defined in 3.2.9. Let 

P € SpecS and P := a([P]). Then ht(P) = ht(P) and coht(P) - coht(P).

PROOF This is immediate from Corollary 3.3.5.

Finally, we look at the relationship between primes in S and those in 

R. The next lemma shows that height is constant on — classes in Specf-R.

3.3.8 LEMMA Let S be a ring and G a finite group of automorphisms of S. 

Suppose p,q e Spec^-R both lie under P t SpecS. Then ht(p) = ht(q) = ht(P).

PROOF Let Pq c pi c ... c pn = p ( p± e SpecR J be a chain of primes in R. 

Corollary 3.1.23(iv) shows that we can find qn_*\ e SpecR with qn_i - pn_; 

and qn-i c q. Repeating this process we find a chain of length n inside q.
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So we've shown that ht(p) < ht(q). By symmetry ht(p) = ht(q). For the same

chain in R, we use Corollary 3.1.23(ill) to find Pn-j eSpecS lying over

Pn-1 with Pfi— / c JP. Repeating the process gives a chain of length n in

SpecS inside P proving ht(p) < ht(P). Similarly, Corollary 3.1.23(i) proves 

the opposite inequality, giving ht(p) = ht(P).

3.3.9 EXAMPLE We give an example where S is a ring, G a finite group of 

automorphisms of S and there exists P € SpecfS lying over p c Specf-R with 

coht(P) * coht(p). In Example 3.3.4, we take P to be the maximal ideal M 

and p to be the non-maximal ideal of that example. So

0 = coht(P) < coht(p).

We take advantage of the above relationships to look at a ring 

theoretic property derived from height.

3.3.10 DEFINITION In a ring U, two primes, P c Q are said to be 

neighbouring if there does not exist W e SpecU with P c w c Q. The ring U 

is said to satisfy the saturated chain condition (SCC) or be catenary if 

neighbouring primes differ in height by 1. This is equivalent to the 

property that all descending chains of neighbouring primes down from a 

given prime have the same length.

The following lemma shows that SCC is inherited by R from T when the 

trace map is onto.

3.3.11 LEMMA Let S be a ring and G a finite subgroup of AutS such that T 

has the saturated chain condition. Suppose that the trace map is 

surjective. Then R also has SCC.

PROOF Let pj  ̂p2 be neighbouring primes in SpecR. Since preserves

order, (3~1 (pi) c (P2 ) are neighbouring primes in T. By hypothesis,
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ht(&~Hpi)) ~ (P2 )) ~1 and Lemma 3.3.2 completes the proof.

Again we shall show that the hypothesis in Lemma 3.3.11 that the trace 

map is onto is necessary. We show in Example 4.2.12 a ring S which has SCC, 

the trace map is not surjective and R does not have SCC.

It is a well known open question whether T has SCC when S does and G is

finite. See [L, Remarks(ii)]. We prove an easy positive result here. When 

charS = q and G is a g-group, we use a to show that T has SCC if S has SCC.

3.3.12 COROLLARY Let S be a Noetherian ring of characteristic q, G a finite

group of automorphisms of S of order qa. If S satisfies the saturated chain 

condition, then so too does T.

PROOF Suppose P c Q are neighbouring primes in T. There exist P, Q e SpecS 

such that P° = P n s and Q° - Q n s and since P c q we have P° c Q°. Since 
Q is prime, we have that P*1 Q Q for some h e H. Without loss of generality 

we may assume that h = 1. Moreover, a([Pj) = P and cx([Q]) = Q. Since P and 

Q are neighbouring primes and a preserves inclusions, P and Q are 

neighbouring in SpecS. By hypothesis, ht(P) = ht(Q) - 1. Lemma 3.3.7 

completes the proof.

We now relate the Goldie dimension of corresponding primes. Initially, 

we investigate the results yielded by the Morita correspondence.

3.3.13 PROPOSITION Let S be a ring and G a finite group of automorphisms of 

S. Suppose P e SpecfT with (3 (P) = {re R: rf e P} =:p, say, and suppose 

P fl S = P° for P e SpecS.

(i) If T/P is right Goldie, then so too is R/p.

(ii) If S/P is right Goldie, then T/P is right Goldie and consequently,
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R/p is right Goldie.

In both of these cases, we have u.dimR (R/p) < u.dimT(T/p).

PROOF Suppose T/P is right Goldie. That R/p is right Goldie is a straight

application of [McC-R, Corollary 3.6.7].

Suppose now that S/P is right Goldie. Consider the ring T = T/(P°*G).

This ring has a right Artinian right quotient ring, namely Q(S/P°)*G. By

Theorem 1.2.11(1), P is minimal over P°*G and so, P := P/(P°*G) is a

minimal prime of T. [McC-R, Theorem 4.1.4] shows that the factor ring of T

by its prime radical is right Goldie. Applying [G-W, Proposition 6.1]

yields that T/P & T/P is right Goldie.

Finally, we prove the inequality regarding uniform dimensions. The

proof of Proposition 1.2.4, together with Proposition 1.2.7 shows that

T Sf '
P Sf 0 P
fS R

, f s n p P

is a prime context. The proof of [McC-R, Theorem 3.6.6] shows that

u.dimR (R/p) = u.dim7(fS/(fS fl P)). Now, fS/(fS n p) is isomorphic to the 

cyclic right ideal of T/P, (f+P)T/P. Thus,

u.dimT(fS/(fS 0 p) < u.dimT(T/P). This proves the lemma.

з.3.14 NOTE In some special cases we can improve on Proposition 3.3.13.

A sharper calculation in Proposition 3.3.13 shows the following result. 

Let S be any ring and G a finite group of automorphisms of S. Let P e SpecS 

such that P°*G e SpecT. Then p = P n R is the unique prime lying under P 

and u.dim(R/p) < \G\u.dim(S/P°).

Using Theorem 3.2.4, we can produce a different inequality, involving

и.dim(S/P°) in the g-case. Let S be a Noetherian ring of characteristic g/ 

G a finite group of automorphisms of 5 of order q. If P e SpecfS and
P e SpecfT is the unique prime of T minimal over P°*G, then

90



u.dim(T/P) < q(u.dim(S/P°)). (Note that by Proposition 1.2.12, P is unique 

and, by definition of SpecfS, P e SpecfT).

We now state our final result on uniform dimension.

3.3.15 PROPOSITION Let S be a ring of characteristic q, |<?I - qf P e SpeCjS 

and let p = <p([P]) as defined in 3.1.18. If S/P is right Goldie, R/p is 

right Goldie and u.dim(R/p) < u.dim(S/P°).

PROOF Let A be the right T-module {s e S: fstP}. The proof of Proposition

з.3.13 gives us that u.dim(S7/A) = u.dim(R/p). Thus,

и.dim(R/p) < u.dim(Sjg/A^) .

Let P be the prime of T minimal over P°*G. If P = CP fl S).T then A = P°

and we must have u.dim(R/p) < u.dim(Ss/P°). Henceforth, we assume

P ^ (P fl S) .T. We adopt the following notation: S S/P, P := P/ (P°*G),

C := Cs (0), Q := SCT1 and T :=~S*G. By Lemma 3.2.1, TCT1 = Q*G. As in 

Theorem 3.2.4, g is induced by a unit, U, of Q of order q and PC~1 is the 

augmentation ideal of Q<U~1g>. Consequently, g s U (modulo PC~1). With 

U = 1 + U + ... +£#”*, we also have f = U (modulo PC~1).

Let s e 5. Then s e A ^  fs e P

fs e P

fs € PC~~ 1 (4= is [G-W, Theorem 9.22])

(1 + per1). (s + per1) - oT/P

(u + pc~ 1). (s + pc~ 1) = o

4=4- Us - 0q .

We consider the map <p of S/P-modules given by <p : S/P -» Q such that
A

<pfs) = Us. This gives rise to the isomorphism: S/A - U(S/P), a submodule of 

Qs/p. Thus, u.dim(R/p) < u.dim(Ss/As) < u.dim(Qs/P) - u.dim(S/P). Thus, the 

inequality is satisfied in both cases.
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An easy observation will reap many results regarding the ring R/p.

3.3.16 NOTE Let 5 be a ring, let G a finite group of automorphisms of S, 

let R = SG and let T = S*G. Suppose p e Specf-R and that

ft"1 (p) =: P e SpecfT. By Lemma 1.2.10, P ft S = P° for some P e SpecS.

Certainly, R/(P n R) embeds in both S/P and t/p . By Theorem 3.1.9, p is 

minimal over P n R. Using these facts, it's easy to see that if P or P is 
completely prime, then p is also completely prime. Similarly, if S/P or t/p 

satisfy a polynomial identity, then so does R/p.

Now, we reach the main results of this section. We exploit the maps a

and 0 to emphasise the close relationship between ring theoretic properties 

of R and S. The general strategy here is to use a and 0 to understand

primes not containing the trace and to look at the factor R/trg(S)

separately.

3.3.17 DEFINITION Suppose K is a commutative ring. A ring U is said to be a 

if-algebra if there exists a ring homomorphism, <pt from K to the centre of 

U. For a subset X of U, we define A" fl X to he (X ft <p(K)).

Usually we may assume that K embeds in the ring W by factoring out

ker<p. When this is not possible, for example in Theorem 3.3.20, we have to

consider the map <p.

3.3.18 DEFINITION Let k be a field and W a k-algebra. We say that W has the 

endomorphism property over k if End^(V) is algebraic over k for all

irreducible fy-modules V.

3.3.19 DEFINITION Let if be a commutative ring. A if-algebra U is said to 

have the primitive property over K if, whenever P is a primitive ideal of

92



U, P n K is a maximal ideal of K and U/P has the endomorphism property over 

the field K/(P n K).

3.3.20 LEMMA Let K be a commutative ring and let S be a K-algebra. Suppose 

that G is a finite group of K-automorphisms of S. If S has the primitive 

property over K, then so too does T := S*G.

PROOF Let V be an irreducible T-module. By [P2, Proposition 4.10], 

Vs - . ,Q>Vn for some n e N and irreducible 5-modules, Vj,... , v n . By

rearranging if necessary, we take Vf,...,Vf. to be representatives of the t 

homogeneous components in V$. Since 5 has the primitive property over K, we 

must have that for i = 1,...,nf with P± = anng(V±), P± 0 K = M± for some

maximal ideals of K. If M± ^ Mj for some i,j, then Annv( M would be a 

nonzero proper T-submodule of V, which is impossible. Thus, each Mj_ equals, 

say, M . Let be the division ring End^(V^) for i=1,...,n. By hypothesis, 

Dj,...fDn are algebraic over K/M. Now,

End(Vs) S Mn ^(D1) ® ... ® Mnt(Dn>

for some nj, . . . fUf- e N. Thus, End(Vg) is algebraic over K/M. Since, End(Vj>) 

embeds into End(Vg), we have that End(VT) is algebraic over K/M.

3.3.21 THEOREM Let S be a K~algebra such that K embeds in S and G a finite 

group of K-automorphisms of S. If S and R/trg(S) have the primitive

property over K then so too does R.

PROOF Note first that Lemma 3.3.20 shows that I has the primitive property 

over K. Let <p: K -* C(R), where C(R) denotes the centre of R, and p be a

primitive ideal of R. Consider first the case where tr(S) Q p. We have to

show that p n K is maximal. Now we have that p/tr(S) is a primitive ideal 

of R/tr(S) and, since R/tr(S) has the primitive property,

<p~1(p/tr(S) fl (K + tr(S))/tr(S)) = <p~1 (((p n K) + tr(S))/tr(S))
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is maximal in K. We claim that this is just p fl K. For, if 

<p(x) e ((p fl K) + tr(S))/tr(S), we have that x + tr(S) e (p fl K) + tr(S) so 

that there exists s e S, y e p ft K such that x = y + tr(s). However,

tr(s) = x - y e K n tr(S) £ K fl p. Since tr(s) e K fl p and y e K n p, we

get x = y + tr(s) e K ft p, proving the claim. Thus, K/(p fl K) is a field

which we denote by k. Also, we have that (R/tr(S))/(p/tr(S)) & R/p has the 

endomorphism property over k.

Henceforth, suppose trG(S) % p. Then f3~* (p) - P is primitive in T - S*G 

by Theorem 3.1.5. Since T has the primitive property, P fl if is maximal in K 

and t/p has the endomorphism property over K/(P ft K). By Theorem 3.1.5, we 

see that jpnjfepnKi*/? and so p fl if = P (1 if is a maximal ideal. Again 

we adopt the notation that k = K/(p ft K). It remains to show that R/p has 

the endomorphism property over k. Let M be an irreducible fl/p-module. Now, 

M & R/X for some maximal right ideal X of R. Fix 0 * m e M and set 

Y - { u e S : m.trgCuS) = 0 }. As in proof of Proposition 1.2.4(ii), S^/Y 

is an irreducible T/P-module. Taking m = 1 + X, Y = { u e S : tr(uS) £ X }.

We show that Y fl R = X. Let u e X. Then trgfuS) = utrg(S) £ X. Hence, 

X £ Y fl R. Conversely, suppose y e  y fl fl. Now, ytrg(S) = trg(yS) £ X . If

My / 0, (My)R = M and so, MtrG(S) = (MyR)trG(S) = MytrG(S) £ MX = 0. But 

tr(S) % p and this contradiction shows that My = 0 so that y e X.

The above shows that R/X embeds as an fl/p-module into St/Y . Let 

e Endg(R/X) and suppose $(1 + X) - r +X for r e fl. We have that rX £ X

and so, for u e Y, trG(ruS) = rtrG(uS) £ rX £ X. This shows that ru e Y for

arbitrary y e  Y, so rY £ Y. Thus, we may define a map i/-' e End(ST/Y) such 

that ip'(s+Y) = rs *Y. Since restricted to M is just ^ and ŷ' is

algebraic over k, $ is algebraic over k.

3.3.22 DEFINITION A ring is said to be Jacobson if all its prime ideals are

semiprimitive.
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We now prove an analogue of Theorem 3.3.21 for Jacobson rings. Warfield 

proved this result for the case \G\~1 e S in [W1, Corollary 1.4].

3.3.23 THEOREM Let S be a ring and G a finite group of ring automorphisms 

of S. If S and R/trG(S) are both Jacobson rings, R is also Jacobson.

PROOF First note that, by [P2, Theorem 22.3], T is a Jacobson ring. Let 

p e SpecR. Then either {i) trG(S) £ p or (ii) trG(S) % p. Suppose (i) is

the case. Then p/trG(S) is a prime ideal of R/trG(S). By hypothesis,

R/trG(S) is a Jacobson ring and so p/trG(S) is semiprimitive and so p is 

semiprimitive. Henceforth assume we are in case (ii). We apply Theorem

3.1.5 and let P = 0~^(p). Then f / P. Since T is a Jacobson ring, P is 
semiprimitive so that P - ft (Q e SpecT: Q primitive in T, P S Q}.

Now let A - ft(Q € SpecT: Q primitive in T, P £ Q, f / Q} and let
A A A A

B = n { Q tSpecT: Q primitive in T, P £ Q, f e Q}. Then P = A ft B. Noting

that AB £ P and f e B, we must have A - P. So 

p = (3(P) = 0(A) - ft@{ Q eSpecT: Q primitive in T, P £ Q , f / P}, an

intersection of primitives by Theorem 3.1.5. Thus, in either case, p is

semiprimitive and, since p is arbitrary, J? is a Jacobson ring.

In Chapter 4, Example 4.1.7, we give an example where T is Jacobson but 

R is not Jacobson in order to show that the hypothesis that R/tr(S) is 

Jacobson is in fact necessary.

We now combine the last two definitions in order to give a 

non-commutative version of Hilbert's Nullstellensatz.

3.3.24 DEFINITION. U, an algebra over a commutative ring K, is said to 

satisfy the Nullstellensatz over K if U is a Jacobson ring and it has the 

primitive property over K.
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3.3.24 COROLLARY. Let K be a commutative ring and let S be a K-algebra 

acted on by Gf a group of K-automorphisms. Suppose S satisfies the 

Nullstellensatz over K. Suppose further that R/trg(S) also satisfies the 

Nullstellensatz over K. Then R must also have this property.

PROOF This is immediate from Theorems 3.3.21 and 3.3.23.
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CHAPTER 4

PRIME IDEALS IN GROUP RINGS

Here we consider the case where, for a commutative ring K and a group 

H, S is the group ring KH. We take a finite group G of automorphisms of H 

and we extend the action of G to tf-automorphisms of S. Under these 

hypotheses, we have that T = KH * G - K( H><IG ) is itself a group ring, 

this time of the semi-direct product of H by G. In particular, we are 

interested in the case where K is a field and H is polycyclic-by-finite.

Recall that, in Chapter 3, with hypotheses on S and R/tr(S), we 

discovered that R inherits some of the properties of 5. In §1, we prove the 

following fundamental result that, in certain circumstances, shows exactly 

what the factor ring R/tr(S) is.

4.1.2 COROLLARY. Let H be a polycyclic-by-f inite group, K a commutative 

ring, S the group ring KH and G an automorphism group of H of order q. Then 

R/trG(S) is itself the group ring of a polycyclic-by-f inite group over 

(K/qK), namely (K/qK)C^(G) .

We go on to establish whether, when S is a group algebra of a 

polycyclic-by-f inite group, R inherits some of the well known properties of 

the ring 5. For example, J.E. Roseblade has shown that, when k is absolute, 

the primitive ideals of kH are all maximal and have finite codimension. In 

Theorem 4.1.15, we show that these properties pass down to R under the 

hypotheses of Corollary 4.1.2. We go on to discuss the following question.

97



QUESTION 4A Let S be the ring KH where K is a commutative Jacobson ring and 

H is polycyclic-by-finite. Let G be a finite group of automorphisms of H so 

that G acts as A-automorphisms on S. Is it the case that S& satisfies the 

Nullstellensatz over K ?

Recall that, in Chapter 2, §2, we have already discussed whether or not 

R is Noetherian when S is the group algebra of a polycyclic-by-finite group 

and been unable to answer that question fully.

Section 2 is primarily devoted to the study of the prime rank of the 

ring R but we do also address the following question and answer it

negatively.

QUESTION 4C Suppose H is a nilpotent group and k is a field. Let S denote 

the group algebra kH. Suppose G acts as A-automorphisms on S. Does SG have 

SCC ?

§4.1 Kev Lemma and Applications

We use Chapter 3 to get information regarding primes of R not

containing the trace ideal while in certain circumstances, the following 

key lemma enables us to understand primes outside the Morita 

correspondence.

4.1.1 LEMMA. Let U be a ring, M a semigroup and G a subgroup of AutM of

prime order, q. Let G act as U-automorphisms on the semigroup ring S = UM.

Then

R / trG(S) « (U/qU).CM (G).
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PROOF Let r = cjhj + 02^2 + ... + ctht e R (ci 6 U' hi e M)- Since r » r9,

Supp(r) « {hj, h2 ,..., hf.) is G-invariant and so we may divide it into

G-orbits. Let h ...fhm be representatives of each G-orbit

( re-ordering if necessary ). Each G-orbit has size / or g and we may

suppose that the first a orbits are singletons. In other words, 

h], ..., ha « Ctf(G). Now, because r * r9, ha+j9 e Supp(r) and it has 

coefficient ca+; in r. Thus, ca+jtr(ha+i) appears in r. In fact it follows 

that r « c;h; + ... + caha + ca+/tr^ a + 7  ̂ + + cmi:r(ilm^ Let denote
images modulo qU in the ring U. We consider the map R -> UCM (G) such that 

\p(r) = Cjhj + + ca^a- clear that ^ is a well defined, surjective

map. We now show that ^ is a ring homomorphism. Let r,s e R. By the above,

Thus, rp(rs) = c^djh^lj = \f/(r)ip(s), as required. Finally, we show

that kerty = tr(S). That tr(S) £ kerty is clear. Suppose now that r e ker^. 

Then

where gj Cj j = 1,..,a. Thus

r a tr( (cj/q)h / + _  + (ca/q)ha + ca+1ha+1 + ... + e tr(S).
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Thus, z is a [/—linear combination of terms of the form

+ ....
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This proves the lemma.

We consider the case where K is a commutative Noetherian Jacobson ring

and H is a polycyclic-by-f inite group. When \G\~1 e K, the fixed ring is

very well understood as explained in chapter 1 . For example, it is 

Noetherian by Lemma 1.4.2 and, by Corollary 3.3.27, satisfies the 

Nullstellensatz. Thus, we study Question 4A in the case where i(7i is not a 

unit in K. An extreme example of this is when 1G1 = 0 e K. The following 

corollary helps us to understand the simplest of these cases, namely when G

is cyclic of order g.

4.1.2 COROLLARY. Let H be a polycyclic-by-f inite group, K a commutative 

ring, S the group ring KH and G be an automorphism group of H of order g. 

Then R/trG(S) itself is the group ring of a polycyclic-by-f inite group over 

(K/gK), namely (K/gK)C^(G).

PROOF The proof is immediate from Lemma 4.1.1.

4.1.3 COROLLARY. Let H be a polycyclic-by-f inite group and G a group of 

automorphisms of H with |G| - g, prime. Let K be a commutative Noetherian 

ring and S the group ring KH. Then a 11 prime factors of R are right Goldie.

PROOF Let p € SpecR. If trG(S) £ p, then p/trG(S) e Spec(R/trG(S)). By

Corollary 4.1.2, R/(trG(S)) * (K/gK)H, a Noetherian ring and so R/p is 

right Goldie. Otherwise p £ trG(S) and so (p) = P c SpecfT. Now,

T = (KH)*G is a Noetherian ring and so T/P is right Goldie. An application 

of Lemma 3.3.11 shows that R/p is right Goldie.

We now exploit Corollary 4.1.2 in order to enhance our knowledge of the 

fixed ring of a group ring. In particular, we show how important the
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primitive ideals are in the study of these fixed rings when the group, H, 

is polycyclic-by-finite and the coefficient ring is a Jacobson ring, 

[McC-R, Corollary 9.4.22] give us that polycyclic-by-finite group rings 

over K satisfy the Nullstellensatz. Thus S = KH and T - K(HXG) both 

satisfy the Nullstellensatz. As stated prior to Corollary 4.1.2, when 

\G\~1 e K, R also satisfies the Nullstellensatz. We now show that this 

property carries over to R when G is a cycle of order q regardless of 

whether |(?I is a unit in K.

4.1.4 THEOREM. Let H be a polycyclic-by-f inite group and K a commutative 

Jacobson ring. Let S be the group ring KH. Suppose G is a group of 

automorphisms of H of prime order q. Then R satisfies the Nullstellensatz 

over K and, in particular, is a Jacobson ring.

PROOF As explained above, the group ring (K/qK)Cfj(G) satisfies the 

Nullstellensatz. By Corollary 4.1.2, R/tr(S) « (K/qK)CH (G). Since S and 

R/tr(S) satisfy the Nullstellensatz over K, Corollary 3.3.26 shows R 

satisfies the Nullstellensatz over K.

Up until now, we have been considering the extreme cases where the

order of the group is a unit in the ring S or where the order of the group

is prime. With the following two exceptions, Question 4A in intermediate 

cases remains open.

4.1.5 COROLLARY Let S be the group ring KH where H is a

polycyclic-by-f inite group and K is a commutative Jacobson ring with

char K = q. Suppose that G is a finite subgroup of Aut H with a Sylow 

q-subgroup, Q, of order q, normal in G such that \G/Q\~^ e K. Then R 

satisfies the Nullstellensatz. In particular, R is a Jacobson ring.
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PROOF We deal with the proof in two parts. First, the Sylow g-subgroup Q 

acts on 5. By Theorem 4.1.4, S® satisfies the Nullstellensatz. Now

r = SG = (SQ)G/Q, and so we consider the action of the q'-group G/Q on the

ring S®. As, \G/Q\~^ e S®, the trace map, trg/g: S # SG is surjective and,

by Lemma 3.3.26, R satisfies the Nullstellensatz.

4.1.6 LEMMA Let H be a finitely generated abelian-by-finite group, k a 

field and 5 the group algebra kH. Let G be a finite group of 

k-automorphisms of S. Then (kH)G satisfies the Nullstellensatz over k.

PROOF By Lemma 2.5.1, there exists L, a characteristic torsionfree abelian 

subgroup of finite index in H. Then, by Theorem 1.4.4, (kL)G is an affine 

/c-algebra and kL is a finitely generated ('■fcLĵ -module. Hence, S is a 

finitely generated (kL^-module. So, R is an affine ic-algebra. Moreover, as 

R is contained in kH, it satisfies a polynomial identity. [McC-R, Theorem 

13.10.3] shows R has the Nullstellensatz over k.

Given the above results, we conjecture that (kH)G always satisfies the 

Nullstellensatz over k. This is not true, however, for an arbitrary ring S 

which satisfies the Nullstellensatz over k. Recall that in Lemma 3.3.24, we 

have that for any ring S and any finite subgroup G of AutS, R is Jacobson 

when S and R/tr(S) are Jacobson. We now give an example to show that the 

hypothesis that R/tr(S) is Jacobson is in fact necessary,

4.1.7 EXAMPLE We give an example of a Jacobson ring, S, which is a 

localisation of a group algebra and a group, G, acting on S where the fixed 

ring is not Jacobson.

Let Si = kH where H = <x, y, z: [x, y] = z; z central> is the first 

Heisenberg group as in Example 3.3.4 and k is a field of characteristic 2. 

Let G = <g> where x9 = x~^, y9 = y~1 and z9 = z. Let
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C - { z e kZ : z / (z-1 )kZ }, a central, G-invariant set of regular 

elements. Thus we may localize at C and G still acts on the ring S = S^crK

We show that S is a Jacobson ring. Let 0 / P t SpecS. By [G-W, Theorem 

9.22], P n 5; is a non-zero prime of 5/ and so, by the Zaleskii 

intersection theorem given in [P1, Theorem 9.1.17 ], P fl kz is a non-zero 

prime of kz. Since C is invertible, P ft kZ must be (z-1)kZ. Thus,

P/( (z-1 )kH) is a prime of Sf/( (z-1 )kH) « k[ xt x~1; y, y~1], a Jacobson

ring. Thus P is semiprimitive. Finally, we show that J is a semiprimitive 

ideal. Let U± = (kZC~1)[ x, x~1 ]yi ( i t l  ) . We have that S is a

Z-graded ring in that S = ^n anc* e By P̂2, Theorem 22.6],

J(S)  is a graded ideal with J(S) n un nilpotent for all 0 /  n e Z. But S is 

a domain and so J(S) n Un = 0 for all n / 0. Let t e J(S) fl Uq. Then 

ty e J(S) H Uj = 0. Hence, J(S) = 0 and so 0 is semiprimitive. We've thus 

shown that S is a Jacobson ring.

However, we now show that R factored by the trace ideal is not Jacobson 

so that R itself is not Jacobson. Simulating the argument in Lemma 4.1.1,

we find that R/trG(S) - kZC~^, a local, commutative ring which is not a

field and, therefore, not Jacobson. In particular, R is not Jacobson.

We have thus established that primitive ideals play an important role 

in the structure of R, S and T. We can say more about the primitive ideals 

in S and T. We first recall the following well-known results for group 

rings. The first of these was proved by A.E. Zalesskii.

4.1.8 THEOREM Let H be a finitely generated nilpotent group and k any 

field. Then every primitive ideal of kH is maximal.

PROOF This theorem is just [P1, 12.2.11].

When the order of the group G is invertible in S, we can provide a
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direct analogue of Theorem 4,1.8 for the fixed ring.

4.1.9 LEMMA Let S be the ring kH where k is a field and H is a finitely 

generated nilpotent group. Let G be a finite group of automorphisms of H 

such that \Gi~1 e k. Then every primitive ideal of (kH)G is maximal.

PROOF Let p be a primitive ideal of R := SG. Since tr(S) = R, p e Spec^R. 

By Theorem 3.1 .21 (ii), p is minimal over P (1 fl for some P e SpecfS. By 

Lemma 3.1.18, P is a primitive ideal and so, by Theorem 4.1.8, P is a 

maximal ideal of S. Let P - (l~1(p). Theorem 3.1.9 shows that P is minimal 

over P°*G. Now, coht(p) < coht(P) by Lemma 3.3.3 and coht(P) < coht(P) by 

Corollary 3.3.5. Since coht(P) = 0, we have coht(p) = 0, so that p is 

maximal.

However, as the following example shows, if we remove the hypothesis on 

the order of the group, we find that there is no analogue of Theorem 4.1.8 

for R .

4.1.10 EXAMPLE There exists a field k, a finitely generated torsion-free 

nilpotent group H and a finite subgroup of AutH such that R, the fixed ring 

of kH, has a primitive ideal M which is not maximal.

See Example 3.3.4. The ideal M in S, being maximal, is certainly 

primitive. By Theorem 3.2.10, <p(M) = M fl R is primitive. However, as is

shown in Example 3.3.4, M fl R is not maximal.

P. Hall has proved that, in certain circumstances, the irreducible 

modules over a group algebra of a polycyclic-by-finite group are finite 

dimensional. See [P1, Corollary 12.2.10]. We indicate in Theorem 4.1.12 how 

to deduce the following well-known consequence of this result.
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4.1.11 DEFINITION A field k is said to be absolute if it is algebraic over 

some finite field.

4.1.12 THEOREM (J.E. Roseblade) Let H be a polycyclic-by-finite group, k an 

absolute field. Then all primitive ideals of kH are maximal and have finite 

co-dimension over k.

PROOF Let S denote the group ring kH. Let P be a primitive ideal of S and 

suppose that P = anng(M) for some irreducible right 5-module M. Let L be 

the kernel of the action of H on L so that H/L embeds in End^(M). By [P1, 

Corollary 12.2.10], dim^(M) = n for some n e N. Thus, H/L embeds in GLn (k). 

But H and so H/L is a finitely generated group. Hence H/L embeds in GLn (kp) 

where kp is a subfield of k finitely generated over the prime subfield of 

k. Since k is absolute, kp is finite. Thus, H/L is a finite group. Now M is 

a k(H/L)-module. Since k(H/L) s* (kH)/(aug(kL)kH) and P 2 aug(kL)kH, P has 

finite codimension over k. Thus, the factor S/P is prime Artinian and 

therefore simple. This shows that P is maximal in 5.

Note that the hypothesis that the field k is absolute is necessary. In 

Example 3.3.4, we have a maximal ideal M of the nilpotent group algebra 5 

such that S/M is infinite dimensional over k.

We now provide a generalisation of Theorem 4.1.12, again proved by 

Roseblade, and extend it to the fixed ring setting. We make a definition 

generalising the concept of an absolute field first.

4.1.13 DEFINITION Let K be a commutative Jacobson ring. By a capital of K, 

we mean a factor K/M for some maximal ideal M of K. Now K is said to be 

absolutely capital if all its capitals are absolute fields.
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Note that the ring of integers., and any absolute field, are absolutely 

capital rings.

4.1.14 THEOREM Let K be a commutative Jacobson ring which is absolutely 

capital. Let H be a polycyclic-by-f inite group and S be the group ring KH. 

Then

(i) every primitive ideal M of S intersects K in a maximal ideal of K;

(ii) every primitive ideal of S is maximal;

(Hi) if M is a primitive ideal of S then M has finite codimension over 

K/(M 0 K).

In particular, every irreducible S-module is finite dimensional over a 

capital of K.

PROOF [R2, Corollary C3] is (i). Suppose now that P is a primitive ideal of 

S. Now, P/(K H P) is a primitive ideal of (K/(P fl K))H and, by (i), K ft P 

is a maximal ideal of K. By hypothesis, K/(P n K) is an absolute field and 

so we may apply Theorem 4.1.12. This proves (iii), and the final statement 

follows immediately from (iii).

We now provide an analogue of Theorem 4.1.14 for the fixed ring.

4.1.15 THEOREM Let K be a commutative Jacobson ring which is absolutely 

capital. Let H be a polycyclic-by-f inite group and S the group ring KH. 

Suppose G is a group of automorphisms of H of prime order g so that G acts 

as K-automorphisms on S. Set R = SG. Then

(i) every maximal ideal M of R intersects K in a maximal ideal of K;

(ii) every primitive ideal of R is maximal;

(iii) for M above, R/M has finite dimension over the absolute field 

K/(M n K).

In particular, every irreducible R-module is finite dimensional over a
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capital of U.

PROOF Let m be a primitive ideal of R. Suppose tr(S) Q m. Then m/tr(S) is a 

primitive ideal of R/tr(S) which is isomorphic to (K/qK)CH(g) by Lemma 

4.1.2. The hypotheses of Theorem 4.1.12 apply to the ring (K/qK)CH (g) and 

so the Theorem holds in this case.

Suppose now that tr(S) % m. So, by Theorem 3.1.5, m = &(M) for some

primitive ideal M of T, Since T - S*G « K(HP^G), we may apply Theorem

4.1.14 to the ring T. Thus, M fl K is a maximal ideal of K. By definition of 
(3, m fl K 2 M n K and, therefore, m fl K = M fl K is a maximal ideal of K. 

Thus, we have established (i). By Theorem 4.1.14(iii), T/M is finite 

dimensional over the absolute field K/(K n M). Since R/m is a factor of 

R/(M fl R) and R/(M n R) embeds in T/M , R/m is finite dimensional over

K/(K fl M), proving (iii). Hence R/m is a simple ring and m is a maximal
ideal of R, This proves (ii). The final statement is an immediate 

consequence of (i),(ii) and (iii).

§4.2 The Prime Rank of a Nilpotent Group Algebra

We now investigate the prime rank of R in relation to that of S. First

we define the term prime rank.

4.2.1 DEFINITION Let U be a ring. The prime rank of U, rk(U), is defined to 

be the upper bound ( if it exists ) for the height of a prime in U. If no 

such bound exists, the prime rank is said to be infinite.

We may now state the question which will pre-occupy us in this section.
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QUESTION 4B Suppose H is a nilpotent group, k is a field and S is the group 

algebra kH. Let G act as k-automorphisms on S and set R = SG. Does 

rk(R) = rk(S) ?

While discussing Question 4B, another question naturally arises. Recall 

the definition of the Saturated Chain Condition in 3.3.10. When S is the 

group algebra of a nilpotent group, [R1, §2.4 Theorem H3] shows that S

satisfies SCC. We ask the following question.

QUESTION 4C Suppose H is a nilpotent group and k is a field. Let S denote 

the group algebra kH. Suppose G acts as k-automorphisms on S. Does SG have 

SCC ?

There is a result of P.F.Smith given in [P1, Theorem 11.4.9] which 

states that when H is a finitely generated nilpotent group, the prime rank 

of the group algebra, rk(kH), is the Hirsch length of H, h(H). When H is 

polycyclic-by-f inite, rk(kH) < h(H), but in general this inequality can be 

strict. See [Smi].

We give an easy consequence of Smith's result which shows that, when 

the order of the group is invertible in k, the fixed ring R also has prime 

rank h(H), answering Question 4B positively.

4.2.2 LEMMA Let S be any ring and G a finite group of automorphisms of S 

with \G\~1 e S. Letting R = SG, we have that rk(R) = rk(S).

PROOF Let p c SpecR. Since tr(S) = R, p e Specf-R and by Theorem 3.1.22(ii) 

there exists P e SpecS lying over p. By Corollary 3.3.4, ht(p) = ht(P) and 

so rk(R) < rk(S).

Now, let P c SpecS. By Lemma 3.1.2, P e SpeCfS. We apply Theorem 

3.1.21(1) to find p e SpeCf-R lying under P. Corollary 3.3.8 gives
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ht(p) = ht(P) and so rk(S) < rk(R).

4.2.3 NOTE When H is a polycyclic-by-finite group, kH has prime rank less

than or equal to h{H), the Hirsch length of H by [Smi]. [P1, Theorem

11.4.9] shows that we get equality when H is nilpotent.

When |G\ = 0, the situation is not so clear. We concentrate on the 

simplest case where chark - q and G has prime order q. We can use the 

correspondence of Theorem 3.2.10 to investigate the prime rank of R.

Consider p, q t SpeCf-R with q c p. Then <p~1 (p) = [P], say, and 

ip-1 (q) = [Q]t say, for some P,Q e SpecjS. As <p~1 preserves order,

qo c po c p and we may assume Q c P. Thus we must have rk(S/Q) > rk(S/P).

This observation enables us to place an upper bound on the length of a

chain of primes in i? of the form

PO c Pi c *•* c Pn with pi t Specf-R (0 < i  < n).

For i = 0,...,nr let ((3oot)~1 (pi) = [Pi] e (SpecpS)/G for some Pi e SpecjS. 

From the above,

rk(S) > rk(S/P0) > rk(S/Pj) > ... > rk(S/Pn) > 0.

Thus, n < rk(S) < h(H) as in Note 4.2.3.

Then, applying Smith's result in [Smi] to R/tr(S), yields an upper 

bound on the length of a chain of primes in R which contain trG(S). Using

the fact that R/trG(S) s kCp(G), we find that any such chain has length at

most h(CH (G)).

We find an upper bound for rk(R). Suppose t = rk(R). Let

PO c Pi c P2 c *•* c Pt Pi € SpecR ( 1 < i < t )
be a chain of maximal length in R. If pi e SpeCf-R for i = t, then the

above shows that t < h(H). Otherwise, there exists u ( 1 < u < t ) with

trG(S) e pu and trG(S) % Pu-1 ■ As n°ted earlier u-1 < h(H). Also, since

trG(S) Q pw  t-u < h (Ctf(G)) . Thus,

t = ( t-u)  + (u - 1) + 1 < h(CH(G)) + h(H) + 1. So we have found an upper
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bound for rk(R).

We have proved the following result:

4.2.4 PROPOSITION Let H be a finitely generated polycyclic-by-finite group, 
G a subgroup of AutH of order q. Let k be a field with char k = q and S be 

the group algebra kH. Then

rk(R) < 1 + h(H) + h(CH(G))

The following lemma which follows will allow us to refine this bound

for H nilpotent in Theorem 4.2.9. In order to prove this lemma, we first

require a series of definitions.

4.2.5 DEFINITION Let H be a finitely generated torsion-free nilpotent 

group, k a field and I an ideal of kH.

(i) We define I+ to be { h e  H: h-1 e I), a normal subgroup of H. It is

normal because, if h e H and x e J, then hx - 1 = x~1(h - 1)x e I.

If in addition, I is prime, we have:

(ii) The map <p: kH kH where H = H/I+ is the canonical epimorphism.

(iii) The function \(TP) is defined as follows. Let A be the centre of 

A(H) := {h e H: h has finitely many H-conjugates^, a characteristic 

subgroup of H» so that A is normal in H. By [R1, §4.1 Lemma 5 ], 

TP n kA = fp where Q° denotes the intersection of the (finite) tf-conjugates 

of Q e Spec(kA). We define \ ( I ) to be ht^(Q).

Theorem 4.1.12 shows that all maximal ideals of a nilpotent group 

algebra over an absolute field have finite codimension. As was pointed out 

after that theorem, the same is not always true of a nilpotent group 

algebra over a non-absolute field. However, we can still show that maximal 

ideals with maximal height in S do have finite codimension.
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4.2.6 LEMMA Let H toe a finitely generated nilpotent group, k a field and S 
the group algebra kH. Suppose P e SpecS such that ht(P) - rk(S) - h(H). 

Then dim^(S/P) < <*>.

PROOF Let P 6 SpecS with ht(P) = rk(S) = h(H). Recall the Definition 

4.2.5. Clearly PP is a faithful prime of kH in the sense that 

(PP)+ fl H = {1}. [R1, §2.4 ] gives us

ht(P) = \(PP) + h(P+).

So htkA(Q) = ht(P) - h(P+) = h(H) - h(P+) = h(H/P+). But,

h(A) > ht(Q) = h(H/P+) > h(A) and so we must have equality. In particular,

IH:A| < oo. Moreover, ht(Q) = h(A) and so Q is maximal in kA and, since A is

abelian, dim^fkA/Q) < <*>. Now, kH/P is isomorphic to a factor of

kH/((FPftkA)kH) ® kA/(PPftkA) * H/A which has finite dimension over k. Thus, 

kH/P is finite dimensional over k.

We give a consequence of Lemma 4.2.6 which relates to the fixed ring 

and will help us refine the upper bound for rk(R).

4.2.7 COROLLARY Let H be a finitely generated nilpotent group, G a subgroup 

of AutH of order q, k a field of characteristic q and S the group algebra 

kH. Suppose p € SpeCf-R with ht(p) - h(H). Then p is maximal in R.

PROOF Let P ( SpecS lie over p. By Corollary 3.3.8, ht(P) = ht(p) = h(H)

so that P is maximal in S and ht(P) - rk(S). From Lemma 4.2.6,

dimfc(S/P) < oo. Thus, R/( P f) R ) is finite dimensional over k because it 

embeds in S/P. Now, R/p is a factor of R/( P n r ) and is therefore finite 

dimensional over k. Since R/p is a prime ring, it must be simple Artinian. 

Hence, p is maximal in R.

We now give a lower bound for rk(R).
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4.2.8 LEMMA Let H be a finitely generated nilpotent group, suppose that k 

is a field and that S is the group algebra kH. Suppose that G is a finite 

subgroup of AutH such that tr(S) * 0. Then rk(R) > h(H).

PROOF If \G\~1 e k, then the result is true by Lemma 4.2.1 and Note 4.2.2. 

Henceforth, assume char k = q, for some prime q. Let Y be the set (A :A is 

a normal, (^-invariant subgroup of H with \H/A\ < «> such that q \ \H/A\). 

Since every normal subgroup of finite index contains a (^-invariant subgroup 

of finite index, [Rob, Theorem 9.38] gives:

n{A: A e Y} = 1 -(*).

Let A e Y. Then, clearly, A is a normal subgroup of H G and so, since 

T = S*G £ k(HXG), we may consider the factor ring

Ta := T/(aug(kA)T) s k((H/AJ>^G) = k(H/A)*G.
Since q ff \h/a \, Maschke's Theorem asserts that k(H/A) is semiprime. Thus, 

[P2, Theorem 4.2] shows that J(TA)iGi = 0. Let M be the set

{N e SpecT: N is the inverse image in T of a maximal

ideal of TA, for some A as above./. 

Let W = ft{N: N  e M}. We claim that W = 0. By the above WiGi £ ̂ AeY au9(kA)T

and so, by (*), G* = 0. By Theorem 1.3.6, T is semiprime. Thus, W = 0,

proving the claim.

As a consequence of the fact that W = 0, we can choose N e M such that 

N e SpecfT. Since N e Mt M/N+ is finite. Thus ht(aug(kN+)) = h(N+) = h(H). 

[R1, §8.4, Paragraph 5] shows that ht(N) = h(H). Now, by Lemma 3.3.2,

rk(R) > ht((3(N)) = h(H), proving the Theorem.

We have thus established bounds for rk(R). We state these bounds in our 

next theorem together with a refinement of the upper bound.
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4.2.9 THEOREM Let S be the group algebra kH where H is a finitely generated 

torsion free nilpotent group and k a field of characteristic q. Suppose that 

G is a group of automorphisms of H of order q. Then

h(H) < rk(R) < h(H) + h(CH(G)).

PROOF Clearly, we may suppose that the action of G is non-trivial on S. In 

this case, because iGl = q, we have that tr(S) * 0 and so Lemma 4.2.8 gives 

a lower bound for rk(S), Now suppose rk(R) = h(H) + hCC^fG)) +1. Then, 

there exists a chain:

P O  c  P 1 C  • • •  c P n  c  P n + 1  c  P n * 2 c  • • •  c  P n + m + 1

where n = h(H),m = h(C^(G)) and e SpecR (/< i < n+m+1). As noted in the

proof of Proposition 4.2.4, Po,...,pn t Spec^R. By Corollary 4.2.5, pn is a 

maximal ideal of 5. This contradiction proves the theorem.

We may improve on the theorem by combining it with Lemma 4.2.2.

4.2.10 COROLLARY Let H be finitely generated torsionfree nilpotent group 

and k a field of characteristic q. Suppose G is a finite group of

automorphisms of H having a normal Sylow q-subgroup Q of order q. Then

h(H) < rk(R) < h(H) + h(CH (G)).

PROOF By Theorem 4.2.9, h(H) < rk(sQ) < h(H) + h(CH (G)). Lemma 4.2.2 shows 

that rk(S@) - rk(SG) because SG = (S@)G/Q, proving the corollary.

Corollary 4.2.10 is our best result as far as Question 4B is concerned. 

Example 4.2.12 will provide some examples for which this question is

answered positively. As a result we conjecture that the answer to Question 

4B is in fact "yes".

Example 4.2.12 will settle Question 4C. We return to the saturated 

chain condition of 3.3.10. It's easy to see from Lemma 3.3.11 that if T has
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SCC then R has SCC when \G\~1 e k. However, we give an example to show that 

R need not have SCC even when S does. In Example 4.2.12, T may or may not 

have SCC and \G\ = 0 e k.

First we require a lemma.

LEMMA 4.2.11 Let H be a finitely generated, torsion-free nilpotent group 

and G a finite group of automorphisms of H of prime order q. Let k be a 

field of characteristic q and S the group algebra kH. If Z(H) is fixed by G 

then the trace ideal is prime of height 1.

PROOF First, by Lemma 4.1.2, R/tr(S) s kC^(G), a domain, and so tr(S) is a 

prime ideal. Suppose there exists p e SpecR with 0 c p c trG(S). Theorem 

3.1 .21 (ii) shows that there exists P e SpeCfS such that P lies over p. 

Since H is nilpotent, the Zalesskii subgroup 3(H) is just the centre, Z(H). 

(See [PI, Chapter9, §1] for details of 3(H)). Now, [P1 , Theorem 9.1.17 ] 

guarantees that any non-zero prime ideal of S has non-zero intersection 

with Z(H). Hence, trG(S) ft k Z ^ p f t k Z 2 P f t k Z ^ 0  but as in the proof of 

Lemma 4.1.1, trG(S) ft kz Q trG(S) ft kCfj(G) = 0. This contradiction proves 

the lemma.

EXAMPLE 4.2.12 There exists a countably infinite family of group algebras, 

each with a finite group of k-automorphisms such that their fixed rings do 

not have SCC.

Fix n e N and let Hn be the nth Heisenberg group of 2.2.4. Let A be a field 

of characteristic 2 and let g be the automorphism of Hn of order 2 such 

that: Xj9 = x^~1; y±9 = y z < 3  = z.

We show that trG(S) is a prime ideal of R of height 1 and coheight 1. 

For, by Corollary 4.1.2, R/trG(S) s k<z> and so trG(S) is a prime ideal of 

R. Clearly trG(S) has coheight /. That the height of the trace is 1 is
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immediate from Lemma 4.2.11.

We now show rk(R) = 2 n  + 1. For Theorem 4.2.9 gives us that

rk(R) = 2 n  + 1 or 2 n  + 2 . Suppose it is the latter so that there is a chain

0 P o  c  P i  c  P 2  c  ■ • • c P 2 n + 2  P i  e SpecR ( 0 < i < 2 n  + 2 ) .

By the considerations of Lemma 4.2.4, there exists j e {1,2,.. ., 2n+2} such 

that trg(S) £ Pj but that tr(S) Jf Pj-1* Since the coheight of tr(S) is 

equal to 1 , j * 0,... ,2n. Suppose j = 2n + 1. If tr(S) c P2n+i, then

coht(tr(S)) > 2. Thus, we must have P2n+1 “ trg(S), contradicting 

ht(trg(S)) = 1. So j ~ 2n + 2. Thus, we may apply Theorem 3.2.10 to P2n+1‘

By Corollary 4.2.7, P 2 n + 1  maximal in R. This contradiction shows

rk(R) = 2n + 1.

Let M := aug(kH) n r . Then R/M & k and so M is a maximal ideal of R.

We now show that ht(M) = 2n + 7. For, let qp = (z~1)S H R,

q± = ((z-1)S + (xj-DS + ( y ^ D S  + ... + ( x ^ - D S  + ( y ^ - D S  + (x^DS) fl i? 

and q±' = ((z-1)S + (xj-1)S + (yj-1)S + ... + (Xj-1)S + (y^~1)S) n R

(1<i<n). Now, xi+xi~1 = (xj - 1) + (x; - 1)xi~1 e q-i\qp,

y± + yi~1 - (yi - 1) + (yi ~ 1)yi~1 e Qi'\<Ji for i = 1,...,n and

xi + xi~1 ~ (xi ~ 1) + (xi ~ e Qi^i-I' f°r i=2,...,n. Consequently,

we have a chain of primes

0 ^ q0 c qi c qi' c q2 c ... c qn c qn ' = m

of length 2n +1. Thus, ht(M) = 2n + 7.

Since G acts trivially on the factor kH/(aug(kH)), we have tr(S) £ M,

Since coht (tr(S)) = 1, they are neighbouring primes.

Thus, we've shown that (kHn)G has neighbouring prime ideals, one of 

height 2n + 1 and the other of height 7. Thus, (kHn)G does not have SCC and 

we have answered Question 4C negatively.
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CHAPTER 5

LOCALISATION IN FIXED RINGS

This chapter is joint work with K.A. Brown.

In this chapter, we examine the localisations of the fixed ring SG, 

when compared to those of S. We use the preparatory results of Chapter 1, 

§5 and §6. Some elementary results concerning the inversion of central 

regular elements are given in §1.

Section 2 is modelled on [W1, §1] where Warfield studies the

inheritance of the SSLC in a ring U from a ring V with U £ V. Warfields 

results apply to the fixed ring situation when \G\~1 e S and we extend

these results to cover the possibility that tr(S) c R. Our best result in

§2 is:

5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer

condition and G be a finite subgroup of AutS such that R is Noetherian and

RS and SR are finitely generated modules. Suppose p e SpeCf-R. Then p has 

SSLC.

Again, when dealing with the rings U and V, Warfield [W1, §6] examines 

the link graph of SpecU in comparison to that of SpecV. As above, 

Warfield's results apply to the fixed ring case when i G\~^ c S and we 

extend them to allow for the possibility that tr is not surjective. We 

obtain:
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5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of 

automorphisms of S. Suppose that R = SG is Noetherian and ^S and SR are 

finitely generated. Let d be a symmetric dimension function on {R, S). If 

P],P2 c SpeCf-R with p; second layer linked to P2 , then there exist primes 

Ql,...,Qn of S with n > 2, such that £?/ lies over p/, Qn lies over p£ and 

such that Q± is second layer linked to Qi+j for 1 < i < n-1.

As indicated above, Sections 2 and 3 require some strong hypotheses on 

the ring SG. For example, we require that SG is Noetherian and that 5 is a 

finitely generated S^-module. While these hypotheses seem quite strong, 

they are satisfied when S is the group algebra of the nth Heisenberg group 

and G is one of the automorphism groups in Corollary 2.2.7, Lemma 2.2.8 and 

Corollary 2.2.9. In fact, if Question 2B has a positive answer, then any 

polycyclic-by-finite group and any finite subgroup, G, of AutS has (kH)G 

with the required hypotheses, in view of Corollary 2.1.4. Alternatively, if 

S is a ring which is finitely generated over its affine ^-algebra centre, 

C, then Theorem 1.4.4 gives us that SG here satisfies the hypotheses.

Throughout §2 and §3, we assess the implications of our results for 

S = kH where k is a field and H is a finitely generated nilpotent group.

§1 Elementary Results

We begin this chapter with some elementary results on localisation. 

Initially, we concentrate on inverting central regular elements. We then 

look at their relationship with the fixed ring of the localized ring. The 

first lemma applies to any ring, not necessarily a group ring. It concerns 

localising at regular elements in C(S), the centre of S.
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LEMMA 5.1.1 Let S be a ring and G be a finite group of automorphisms of S. 

Let C £ C(S) H CG(0) and suppose C is non-empty and is multiplicatively 

closed. Then C is an Ore set in S and X := (& is an Ore set in both 5 and 

R . Moreover,

sc~1 = sx~1.

Consequently, with S = SC~1 and R = RX~1, G still acts on S as C is 

G-Invariant and so

(S)G = R and trG(S) = trG(S)X~ 1.

PROOF Trivially C and X are Ore sets in S and we may localize at them. 

Also, the elements of X are invertible in R. We show that any element of S 

may be expressed as sx~1 for some s e S, xe X. Let tc~1 e S with 

t € S,c e C. We may define x to be the "multiplicative trace" of c so that 

x = T\geGc9. This is a well defined element of X because C is commutative. 

Let u =t T\geG\{i} c*3 so that uc = x. Thus

tc~1 = (tu) (cu)~1 = (tu)x~1 e SX~K This establishes the first part.

Now let vy~1 e 5 with v e S,y e X. Thus,

trG(vy~1) - Zgec(vy~1 )g = ^geG(vg^ ~ 1 € trG(S)y~1. Hence, tr(S) £ tr(S)X~1, 

and the reverse inclusion is clear.

Suppose now vy~1 t (S)G. Then for all gtG, vy~^ - (vy~^)3 = v9y~1 and

so v = v9. Thus v e R and vy~^ e R.

Suppose now that H is a finitely generated torsion-free nilpotent group

and that S - kH is the group algebra over some field k. We now investigate

the consequences of localizing at the non-zero elements of the centre of 

kH, that is kz \ {0} where Z = Z(H). This is of interest because, as a 

result of the fact that any ideal of S has non-zero intersection with the 

centre, the localized ring is then simple.
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COROLLARY 5.1.2. Let S be the group ring of a finitely generated 

torsion-free nilpotent group H over a field k and G be a finite group of 

automorphisms of H. Let C = kz \ (0}, an Ore set in S, and X = (fi, an Ore 

set in R, then

s c r1 = sx~1.

Consequently, with S = SC~' and R = RX~1, G still acts on S since Z is 

characteristic in H and

(S)G - R and trG(S) = trG(S)X~1.

PROOF This is a straight application of Lemma 5.1.1.

We now give a lemma which shows that any finite group of 

A-automorphisms of kH acts as outer automorphisms.

LEMMA 5.1.3. Let H be a finitely generated torsion-free nilpotent group, k 
any field. Then every unit of finite order of kHfkzSO)”11 is central.

PROOF Let u be a unit of kH(kz\0)~* such that un = 1 for some n e N. Since

H is nilpotent, we construct a chain of subgroups of H:

Z =:Hq < Hf < H2 < .. . < Hf- for some t e N

where each H^ is normal in H and s c<*> for ■* = ?/•••/£• Suppose u is

not central. Then there exists j>0 and s*0 such that u = ^ = - 5  5

where v± e Q(kZ) * (Hj_j/Z) (i= -s,...,s ), either vs * 0 or v_s # 0 and 

<xHj_j> = Hj/Hj_j. Without loss of generality, we may suppose that vs * 0.

The expansion of un has a term (vsxs)n. Now, a simple calculation shows

that
fl V S y 2s y {n~~ 1 )s

(vsxs) = vs(vs) (vs) ---(vs) xsn.

Since Hj_j is normal in H, all the conjugates of vs belong to the domain

Q(kZ) * (Hj^f/Z). Hence this term in non-zero. Since it is the only term in

the expansion of u17 of degree sn in x, we deduce that un is not equal to
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1. This contradiction proves the lemma.

We now exploit this lemma below.

5.1.4 LEMMA Let H be a finitely generated torsion-free nilpotent group/ let 

k be any field and G be a finite group of automorphisms of H. Let C = kZ\0,

X = (P and let S denote kH.CT* and R denote (S)G. Then

(i) S * G is simple;

(ii) trG(S)X~1 is the unique minimal non-zero ideal of R;

(iii) for every non-zero ideal J of R the factor (trG(S) + J)/J is 

X-torsion.

PROOF From Lemma 5.1.3, G is outer on S. As noted at the beginning of the 

section, 5 is simple and we may apply Theorem 1.4.6(iv) to see that S * G 

is simple, proving (i). For (ii), Theorem 1.4.6 (i) shows that trG(S) is the 

unique minimal non-zero ideal of R. Finally, suppose J is a non-zero ideal 

of R. Then JX~1 is an ideal of S and so trG(S)X~1 £ jx~ 1 . Let t e trG(S). 

Then there exists x e X, j e J with t - jx~1 so that j = tx. This completes 

the lemma.

We are now in a position to provide a corollary which gives sufficient

conditions for the fixed ring of a localized ring to be Noetherian.

5.1.5 COROLLARY Let H be a finitely generated torsion-free nilpotent

group, let k be any field and let G be a group of automorphisms of H of

prime order q. Let C = kz\0, X = Cp and suppose CG(Z) * G. Write S for

kHC~1 and R for (S)G. Then R is Noetherian.

PROOF By Lemma 5.1.4, G is outer on S and is simple. Let z e Z be such 

that z9 * z. Then since q is prime, tr(z) * 0 and so tr(z) is a unit in R.
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Lemma 1.4.2 shows that R is Noetherian

§5.2 The Strong Second Laver Condition in R

In this section, the objective is to discover which primes of the fixed 

ring, R, inherit SSLC when the ring S has SSLC.

The results here are motivated by those of R.B. Warfield in [W1 ]. The 

results in Warfield's paper relate to the following situation: U £ V is an 

extension of Noetherian rings where V is finitely generated as a right 

tf-module. The right trace ideal of a right /7-module M  is defined to be the 

sum in U of the images f(M) over all f e Horn (My, Uy). Warfield requires as 

a hypothesis that the right trace ideal of Vy be equal to U. In [W1, 

Corollary 5.6 ], we have that when V has SSLC and both the trace ideal of 

yV and the trace ideal of Vy are equal to U, then U itself has SSLC.

We are concerned with the case where 5 is a ring satisfying SSLC and G

is a finite group of automorphisms of S. Suppose R is Noetherian and that 

SR and RS are finitely generated. Suppose in addition that the trace map 

tr: S R is surjective. All these occur for example when \G\~~1 e S by 

Lemma 1.4.2 and Theorem 1.4.3. Since tr e Hom(RSR/ RRR), we have that the 

right trace ideal of SR and left trace ideal of RS are equal to R. [W1, 

Corollary 5.6] shows that in these circumstances, R has SSLC.

Consequently, we concentrate on the case where tr(S) c r . Our results 

in this case reduce to Warfield's when the trace map is onto.

First we quote two of Warfield's results.

5.2.1 LEMMA Let U, V and W be Noetherian rings, such that U and W satisfy 

the second layer condition. Suppose that yAv and are Noetherian

bimodules which are faithful on each side. Assume that V is prime and that
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Ay and yB are torsionfree. Then U and W possess Artinian classical quotient 

rings, and yA and Bw are torsionfree (that is, yA is Cy(0)-torsionfree and 

By is Cy(0)-torsionfree).

PROOF [W1, Lemma 5.2]

Also, we have:

5.2.2 LEMMA Let U and V be Noetherian rings, and suppose that B is a 

Noetherian (U-V)-bimodule which is faithful on each side. Suppose also that 

V has an Artinian classical quotient ring, and that B is torsion-free as a 

right V-module. Let J be an ideal of V not contained in any minimal prime. 

Then there exists an ideal K of U, not contained in any minimal prime, such 

that KB £ BJ.

PROOF [W1, Lemma 5.3].

The next theorem is inspired by the arguments contained in [W1, Lemma 

5.4 and Theorem 5.5], As was pointed out in the introduction, the original 

form of these results showed that R has SSLC when tr(S) = R. Our modified 

version still gives this result but also handles the case where tr(S) c R. 

First we give a definition required in the proof of the theorem.

5.2.3 DEFINITION Let U £ V be rings. Let J be an ideal of U and define the

(U-V)-bi module <J>V as follows: <J>V := (\{kerf ; f e Hom( yV, y(U/J))}.

Similarly, we make the definition that V<J> := fl (kerf: f e Hom(Vy, (U/J) y)}.

We show that <J>V is a ('tf-V^-bimodule. Let u e U, v e <J>V and w e V.

Suppose f € Hom(yV, y(U/J)). Then f(uv) = uf(v) = uO - 0. Since f was 

arbitrary, we conclude that uv t <J>V. We now consider the element vw c V. 

Define a map g: V (U/J) by g(x) = f(xw) for all x e V. It is easily seen
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that g € Hom(ijV, y(U/J)) and so, by definition of <J>V, 0 = g(v) = f(vw). 

Again, since f is arbitrary, we see that vw t <J>V. Thus, <J>V is a 

(U-V)-bimodule. Similarly, V<J> is a (V-U)-bimodule.

We now give a lemma concerning Definition 5.2.3.

5.2.4 LEMMA Let U and V be Noetherian rings with U £ V. Let P e SpecU. Then 

the (U~V)-bimodule V/<P> V is torsionfree as a left U/P-module.

PROOF Let T/<P>V be the torsion submodule of V/<P>V as a left 17/P-module. 

Since V/<P>V is Noetherian as a right ^-module, T is finitely generated as 

a right ^-module by say. By definition of T and because U/P is

prime Goldie, there exists a regular element y + P e UlP such that 

(y + P)t£ = 0 for i=1,...,n. Thus, (y + P).(T/<P>V) = 0 and so, yT £ <P>T. 

Let f e Hom(uV/ g(U/P)). Then f(yT) = 0. Thus, yf(T) = 0 and so,

(y + P)f(T) - 0. Since y + P is regular in U/P, f(T) =0y/p. But f was

arbitrary, so T £ <P>V. This proves the lemma.

We now give the main result of this section.

5.2.5 THEOREM Let S be a Noetherian ring satisfying the strong second layer 
condition and G be a finite subgroup of AutS such that R is Noetherian and 

RS and Sp are finitely generated modules. Suppose p e Specf-R. Then p has 

SSLC.

PROOF Suppose that p e Speĉ -R and that p does not have SSLC. Then, by 

Corollary 1.5.7, there exists a cyclic uniform j?-module M such that

q = annR (M) is prime and p = ass(MR)  ̂q. Consider the map T:S R/q such

that ~Z(s) = tr(s) + q. It is an (R-R)-bimodule homomorphism which is 

non-zero since tr(S) S? q. Since <q>S and S<q> lie inside kerf, they must be
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proper subbimodules of 5. Equivalently, S/(<q>S) and S/(S<q>) are non-zero 

(R~S)~ and (5-i?;-bimodules respectively.

Let D ~ r.anns(S/(<q>S)), E - 1 ,anns(S/(S<q>)) and R = R/q. Henceforth, 

we let ~ denote modulo q in R. Lemma 5.2.4 shows that S/(<q>S) is a 

torsion-free left f?/g-module. Since R is prime Noetherian, S/(<q>S) is also 

faithful as a left i?-module. By definition it is a faithful right 

(S/D)-module. Similarly, (S/S<q>) is a torsion-free, faithful right 

i?-module and a faithful left S/E-module.

By Lemma 5.2.1, S/(<q>S) is a torsion-free 5/£>-module and S/D has an 

Artinian quotient ring. We denote S/D by S and the (R-S)-bimodule S/(<q>S) 

by B.

Since M  is cyclic with annihilator q, we may assume that M  - R/K for 

some right ideal K of R with q £ K. Suppose B = KB. Then

S = KS + <q>S 

and so tr(S) = tr(KS) + tr(<q>S)

£ Ktr(S) + q by definition of <q>S

£ Ktr(S) + K £ K.

This shows that Mtr(S) = 0, contradicting the fact that tr(S) % q. 

THerefore KB c b - that is B/(KB) is a non-zero left 5-module.

Let L be the right ideal of R with K £ L such that h/K - annM (p), the 

first layer of M. Suppose LB = KB. Then LS + <q>S = KS + <q>S and so 

LS £ KS + <q>S. Taking the trace of this, we find Ltr(S) £ Ktr(S) + q £ K. 

But this gives that tr(S) £ p, a contradiction. Thus, we must have LB * KB. 

Let J - ann(B/(pB))— . By Lemma 5.2.2, J is not contained in a minimal primeO

of 5. Note also that J annihilates the non-zero bimodule (LB)/(KB) on the 

right.

We choose a right submodule C of B containing KB which is maximal such 

that C fl LB = KB. Then (B/C) as a right 5-module is an essential extension 

of (LB + C)/C « (LB)/(KB). Since 5 has an Artinian quotient ring, Theorem
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1.5.11 shows the prime radical of S is localisable. Hence, Proposition

1.5.2 shows the set of minimal prime ideals of S is closed with respect to 

links. Since J annihilates (LB)/(KB), and since S satisfies SSLC, it 

follows from [Jat, Theorem 9.1.12], that there exists an ideal N of 5, not 

contained in any minimal prime, such that (B/C)N = 0. ( See also [G&W,

Theorem 11.4]).

Hence, BN ft LB Q KB. Letting H = ann-(B/BN), we see from Lemma 5.2.2 that 

H * 0, or equivalently, that:

H  ̂q -(*).

Now,

(H (1 L)B £ HB fl LB £ C fl LB £ KB 

and hence (H ft L)S + <q>S £ KS + <q>S.

Equivalently, (H fl L)S £ KS + <q>S, and taking the trace we find 

(H 0 L)tr(S) £ Ktr(S) + tr(<q>S) £ K + q £ K.

If H n L £ K, then (H ft L) + K/K is a non-zero submodule of L/K and so

tr(S) £ ann(L/K) = p. This contradiction shows that H n L £ K. So

(H+K)/K fl L/K - 0. By uniformity of R/K, (H+K)/K = 0, and so 

MH - (R/K)H = 0. This contradicts (*) and the faithfulness of and so

proves the theorem.

The next lemma will enable us to show that not all prime ideals of such 

fixed rings satisfy even the second layer condition.

5.2.6 LEMMA Let R be a prime Noetherian ring with a unique minimal non-zero 

ideal, J. Suppose that J is a prime ideal. Then J does not have the SLC.

PROOF Let U be a uniform right submodule of R/J and E the injective hull of

U in R. Since E is divisible and R is prime Noetherian, E is a faithful 

i?-module. In particular EJ * 0. Choose m e E such that mJ * 0 and let 

M' = mR and let U' = annM ,(J). Thus, U' * 0 and M'/U' * 0. Choose M such
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that M/U' £ M */£/' is uniform with prime annihilator fl. By Theorem 1.5.3,

either £ c J or fl is second layer linked to J. Suppose the latter is the

case and that the link is given by (B n J)/l where flJ £ J c  fl fi j .  Thus, by 

minimality of J, B fl j = j and BJ = J. This is a contradiction and so we 

must have f l c J. Thus B = 0 and we've shown that J  does not have SLC.

We now give an example of a fixed ring of a nilpotent group algebra not 

satisfying the SLC.

5.2.7 EXAMPLE Let H = < x,y,z: [x,y] - z, z central >, the first Heisenberg 

group, k a field of characteristic 2, and G = <g>, the subgroup of AutS of 

order 2 such that x9 = x~^, y9 = y~1 and z9 = z. By Lemma 4.1.2, 

R/tr(S) 32 kCfi(G), a domain, and so tr(S) is a prime ideal of fl. We aim to 

show that tr(S) does not have SLC. Denote Z(H) by Z and kz\{0} by C. Since 

kZ S kCH(G) and, by the proof of Lemma 4.1.1, tr(S) H kCfj(g) = 0, 

C £ CR (tr(S)) and so, by Corollary 1.5.8, it suffices to show that tr(S)C~^

does not have SLC in RC~K We introduce the following notation: fl = RC~^,

J = tr(S), J = JC~K By Theorem 1.4.6(1), J is the unique minimal non-zero 

ideal of fl. Lemma 5.2.6 shows that J and hence J does not have SLC.

We now concentrate on the case where fl is a finitely generated 

torsionfree nilpotent group and S is the group algebra kH over some field 

k. The following theorem shows all we need to know about localisation in 

such a ring. It is the culmination of the work of many people, among them 

Roseblade, P. Smith and M. Smith who proved [P1, Theorem 11.3.12], and 

Nouaze and Gabriel who proved [P1, Theorem 11.2.8].

5.2.8 THEOREM Let fl be a finitely generated nilpotent group and let G be a 

finite group of automorphisms of fl. Let S = kH so that G acts as
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k-automorphisms on S. Then SpecS has SSLC and all the cliques in SpecS are 

singletons.

PROOF [Pi, Theorem 11.3.12] shows that S is a polycentral ring. We then 

apply [P1, Theorem 11.2.8] to see that 5 is in fact an AR ring. Finally, 

[J, Theorem 8.1.9] shows that the S satisfies the strong second layer 

condition and that the cliques of S are singletons .

5.2.9 NOTE Suppose (kH)G is Noetherian where H is a finitely generated 

torsionfree nilpotent group and G is a finite subgroup of AutH. By 

Corollary 2.1.4, kH is a finitely generated (ktfj^-module. The results of 

this section leave a rather unclear impression as to which primes in the 

fixed ring have SSLC. Theorem 5.3.4 shows that all primes in Specf-R have 

SSLC but Example 5.2.6 shows that it is possible for tr(S) not to have even 

SLC. One may be tempted to conjecture that certain primes of R, perhaps 

those containing tr(S), say, do not have the SLC. Recall however, that when 

H is an Abelian group, then fl is a commutative ring and so all primes have 

SSLC. It is in this rather unsatisfactory state that we are forced to leave 

this question.

§5.3 The Link Graph in SoecR

Again we consider the case where fl is a finitely generated torsion-free 

nilpotent group, k is a field and 5 is the group algebra kH. The group G 

acts as k-automorphisms on S. Suppose R is Noetherian. Then Corollary 2.1.4 

shows that S is a finitely generated R-module. We have seen in Note 5.2.9 

that all primes in Specf-R satisfy SSLC. We now go on to show a necessary 

condition for two primes in Spec^R to be linked. Namely, pj is second layer 

linked to p2 only if there exists P e SpeCfS lying over both pj and .
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This is a corollary to the more general result, Theorem 5.3.6.

In this section we borrow heavily from the methods of Warfield in 

[W1, §6 ]. Often we quote directly from this paper but frequently we have to 

adapt the results there to allow for the possibly that tr(S) c R.

Here we give one of Warfield's results. Recall Definition 3.1.22 for 

the definition of lying over.

5.3.1 LEMMA Let U and V be Noetherian rings such that. U is a subring of V 

and Vfj is finitely generated. If Q is a minimal prime of U there exists a 

prime of V which lies over Q. Moreover, if P is any prime of V which lies 

over Q, there exists an (yVy)~bond from V/P to U/Q.

PROOF [W1, Lemma 6.1]

Next, we adapt [W1, Lemma 6.2].

5.3.2 LEMMA Let 5 be a Noetherian ring and G a finite group of 

automorphisms of S such that R S^ is Noetherian and SR and %S are 

finitely generated. Let q u cl2 e Specf-R with Qi,@2 e SpecfS lying over g; 

and q2 respectively. Suppose g; is second layer linked to q2 where I is an 

ideal of R such that q ^ 2 G 1 c qi n and (qi n (l2^1 the link from $1 

to q2 . Then there exists an ideal K of S such that K £ Qj° H Q2°t K f) R Q I 

and if P e SpecS is minimal over K/ then there is a prime p of R containing 

I with an (gS^)-bond from S/P to R/p.

PROOF Let S<I> = { s e S: f(s) t I for all f e Hom(SR,Rr) }. This coincides 

with the definition in 5.2.3 and so S<I> is an ^5-R^-subbimodule of S. 

Clearly, SI £ S<I>. We may therefore regard S/(S<I>) as an 

S-(R/l)-bimodule.
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Suppose SJ £ S<I> for some ideal J of P with J # I. Then

tr(S)J £ tr(SJ) £ I c g; n g^. So that tr(S)J £ q± and, since is prime

and doesn't contain tr(S), we have that J £ q± (1 = 1,2). Hence J £ gj n q2 

and (I+J)/I is a non-zero ideal contained in (q<j fl g^/T and 

tr(S). ((I+J)/I) = 0. But tr(S) fl CR (q/j * 0 and (g/ n q2)/l is 

R/qi-torsionfree as a left module. This contradiction establishes that 

J £ J and hence that

S/(S<I>) is a faithful right (R/I)-module. - (1)

Now let K = anns(S/(S<I>)). Let a e K; then SaS £ S<I> and so, 

tr(SaS) £ J £ g; fl q2. Theorem 3.1.5 shows that a e 0~1(qj) H (q£) and

so a e Qj° fl Q2°, establishing K £ Qf° fl Q2°. Note that K is the largest 

two sided ideal of S contained within the left ideal S<I>. Hence,

S(K fl R) £ S<I> and therefore K fl R £ I, by (1). Now observe that S/(S<I>) 

is an (S/K)-(R/l)~bimodule which is faithful and finitely generated on each 

side. Denote S/(S<I>) by A and let P be a prime of S minimal over K. By

[G-W, Proposition 7.5], there exists a left affiliated series for A:

Aq = 0 < Aj < A2 < ... <Am A

for some subbimodules Aq,A^,...,AII} where p 1.... pm are the corresponding

affiliated primes. We also have that each A^/A^j is a torsionfree left 

(S/P±)-module. [G-W, Proposition 2.14 ] says that since P is minimal over 

K = 1 .anns(A), there exists j e { }  such that Pj = P.

Now consider a right affiliated series for the (S/P-R/l) -bimodule 

Aj/Aj-1:
Bq - 0 < B] < B2 < ... < Bfc = Aj/Aj_j. 

for some subbimodules B± of Aj/Aj_}. By [G-W, Proposition 7.7], each factor 

Bj/Bj- / is a torsionfree left (S/P) -module. Consider the factor B^/B^_y. by 

definition it is a faithful R/p-module for some p e SpecR with I £ p. Thus, 

the (S/P-R/p)-bimodule is faithful and torsionfree on both sides.

This time we use Warfield's result in its original form.
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5.3.3 LEMMA Let U and V be Noetherian rings such that U is a subring of V. 

Let Qi,Q2 be minimal prime ideals of U such that there is an ideal link 

from Q; to Q2 > Then there exist primes P/ and P2 of V such that P 7 lies 

over Qi and P2 lies over Q2 , end such that there is an ideal link from P 7 

to P2 in S.

PROOF [W1, Lemma 6.3(1)]

We now explain what is meant by a symmetric dimension function and 

define such a function for R and 5 when R is a Noetherian subring of the 

nilpotent group algebra S = kH.

5.3.4 DEFINITION A collection X of Noetherian rings is said to possess a 

symmetric dimension function if there exists a function d assigning to each 

prime factor ring of each ring R e X an element of a fixed totally ordered 

set such that d satisfies the following conditions:

(i) If P and Q are prime ideals of a ring R e X such that Q  ̂P then 

d(R/Q) < d (R/P).

(ii) If R and 5 are prime factors of rings in X, and if there exists a bond

from R to S, then d(R) ~ d(S).

We extend such a function d to arbitrary factor rings R of rings in X by

setting d(R) equal to the maximum of d(R/P) for P ranging over the minimal 

primes of R.

Suppose X is a collection of algebras with finite GK-dimension over a 

fixed field k. For each prime factor R of an algebra in X let d(R) denote 

the GK-dimension of R. It follows from Lemma 1.6.3 that the dimension 

fuction d satisfies property (i) above while Lemma 1.6.6 and [K-L, 

Lemma 5.3] establish (ii). Hence X possesses a symmetric dimension
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function. Now extend d to arbitrary factors of algebras in X as in 5.3.4. 

It is an open question whether this extension of d is equivalent to 

GK-dimension for Noetherian rings. G.M. Bergman discusses this in [B] and 

in fact produces an example of a non-Noetherian ring where this fails.

We use the above definition in the next lemma. Recall from 1.5.2 that 

an ideal link from P 6 SpecU to itself is non-trivial if the linking 

module is a subfactor of U^U"

5.3.5 LEMMA Let U be a Noetherian ring possessing a symmetric dimension 

function d. Let Pf and P2 be minimal primes of U such that there is an 

ideal link from Pf to P2. Suppose further that d(u/Pf) = d(U/p2 ) = d(U). If 

the ideal link from Pf to P2 is nontrivial then there exist primes 

Qf,'.*,Qn u with n > 2, such that Qf = Pf and Qn = P2, and such that Q£ 

is second layer linked to Q̂  + f for 1 < i < n-1.

PROOF [W1, Lemma 6.5]

The above results enable us to prove our main result on the link graph 

in Specf-R.

5.3.6 THEOREM Let S be a ring with the SSLC and let G be a finite group of 

automorphisms of S. Suppose that R = S& is Noetherian and RS and SR are 

finitely generated. Let d be a symmetric dimension function on {R, S}. If 

Pf,P2 e Specf-R with pf second layer linked to P2 / then there exist primes 

Qff.--,Qn of s with n > 2, such that Qf lies over pf, Qn lies over P2 and 

such that Q± is second layer linked to Q±+f for 1 < i < n-1.

PROOF By Theorem 3.1.19(ii), there exist primes Pf,P2 c SpeCfS lying over 

pf and P2 respectively. Let the link between pf and be given by
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(Pi A ^or some ideal J of i? with pfp2 £ I c pj fl p2. bet d(R/p)) = a,

say, then d(R/p2 ) = o by 5.3.4(11). We apply Lemma 5.3.2 to find an ideal K 

of S, contained in Pj° (1 P2°, with fl i? £ I ^ pf n p2 such that if 

P € SpecS is minimal over K, then there is a bond between S/P and a prime 

factor of R/l. Since the minimal primes of R/l are Pf/I and P2/I, it 

follows from 5.3.4(11) that d(S/P) < ot for every prime P/K of S/K and so 

d(S/K) < a. From Lemma 5.3.1 and 5.3.4 we have that if pj/(K OR) is a 

prime of R/(K fl R), then d(R/pj) < ct. We therefore conclude, again using

5.3.4 that pf and p2 are primes minimal over R n K and that 

d(R/(R fl K)) = a. Moreover, there is a link form Pf/(R fl K) to p2/(R n k ) 

so we work in S/K.

We are now in the situation where d(R/(K OR)) - a and d(S/K) < a. We 

show that P-| /K is a prime of S/K lying over Pj/(K fl R). This is the same as 

showing that pf/(K0R) is minimal over

(Pf/K) fl (R/(K fl R)) = (Pj/K) fl ((R + K)/K) = ((P1 fl R) + K)/K. But

((P1 fl R) +K)/K s (P1 fl R)/((P1 fl R) fl K) = (Pj fl R)/(K fl R) because

K Q Pf. Since p/ is minimal over P; fl R, we've shown what we set out to. We 

now apply Lemma 5.3.1 to see there is a bond from (S/K)/(Pf/K) to 

(R/K0R)/(pf/K0R). Hence d( (S/K)/(Pf/K)) * d(R/pf) = a and Pf/K is a minimal 

prime of S/K. Thus, each prime of S/K lying over p<\/(K OR) is a minimal 

prime of codimension a, and similarly for each prime of S/K lying over 

p2/(K fl R).

By Lemma 5.3.3, there exist primes Af/K, A2/K of S/K such that A^/K 

lies over Pi/(K fl R) (i = 1,2) and such that there is an ideal link from Af/K 

to A2/K in S/K. By Lemma 5.3.5 there exist Qf/K,. . . ,Qm/K e Spec(S/K) such 
that Qi/K is second layer linked to Qi+f/K (i = 1, .. ., n-1) and Af/K = Qf/K 
and A2/K = Qm/K- This proves the theorem.

At this stage we make note of the results of P. Loustaunau and J. 

Shapiro in [L-S]. They prove in [L-S, Theorem 3.3] that, when \Gi~^ e S, R
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inherits SLC from the skew group ring T, and some structure on the links is 

preserved when passing from T to R. It follows that, in the setting of 

Theorem 5.3.6, if the cliques of S are finite, then the same is true of the 

intersections of the cliques of R with Spec^R.

When S is the group algebra of a nilpotent group, we know from Lemma

5.2.8 that the cliques in S are singletons. This fact, together with 

Theorem 5.3.6, yields some strong information regarding the links in 

SpeCfcR. For example, it shows that when the link graph of SpecR is 

intersected down to Spec^R, the cliques are subsets of the ~-classes.

5.3.7 COROLLARY Let S be the group algebra kH where H is a finitely

generated torsion-free nilpotent group and k is a field. Let G be a finite 

subgroup of AutH such that R = S& is Noetherian. Suppose pj,P2 € Spec^R 

with p/ second layer linked to p2 , then p; ~ p^.

PROOF First observe that SR and RS are finitely generated modules by

Corollary 2.1.4. Now, by Theorem 1.6.9, GKdim(S) < «° and by Lemma 

1.6 .2(ii)GKdim(R) = GKdim(S). Thus, {R, S} has a symmetric dimension 

function, namely d, as defined in 5.3.4 and so we may apply Theorem 5.3.6 

to find primes £?/,... of S with n > 2, such that Qj lies over p1, Qn 

lies over p^ and such that Q± is second layer linked to Qi + 1 for 

/ < i < n-1. However, by Lemma 5.2.8, the cliques of S are singletons and

so Qi = Qn. Thus, pi and p^ are both minimal over 0/ n R and so p/ ~ P2 ,

proving the corollary.

We give the g-case as a special instance of Corollary 5.3.7.

5.3.8 COROLLARY Let S be the group algebra kH where H is a finitely 

generated torsion-free nilpotent group and k is a field of characteristic 

q. Let G be a finite subgroup of AutH of prime order q such that R = SG is
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Noetherian. Suppose PuP2 € SpeCf-R with p; second layer linked to p2 . Then 

P i  =  P 2 •

PROOF From Corollary 5.3.7, p-j ~ p^. As observed prior to Theorem 3.1.7, ~ 

is the trivial relation in this case and so pj = p2 -

Suppose H is a finitely generated torsionfree nilpotent group, k is a 

field and that S is the group algebra kH. Let G be a finite group of

k-automorphisms acting on 5. With R = SG and assuming that R is Noetherian,

the above results have given us some insight into the link graph of R. We 

review this information here.

Suppose that p t SpeCj-R. Theorem 5.3.4 shows that p has SSLC. Suppose 
now that p' e SpecR is second layer linked to p. Corollary 5.3.7 shows that 
two possibilities arise. Either:

(i) p ~ p' 

or (ii) tr(S) £ p'.

If all the primes second layer linked to p fall into the category (i) above 

and the same is true of all the primes linked to these primes and so on, we 

find that the clique of p is a subset of its — class. By Theorem 3.1.18, 

[p], and so the clique of p, is finite.

In certain circumstances, we find that this is indeed what happens.

First we need a lemma which exploits GK-dimension.

5.3.9 LEMMA Let S be a Noetherian k-algebra of finite GK-dimension. Let R 

be a subalgebra of S, P t SpecS and denote S/P by S and R/(P H r ) by R. 

Suppose R is Noetherian and that S is finitely generated on both sides as 

an R-modul e. Then

(i) GK(Rs) = GK(R) = GK(S) for all 0 * s e S. In particular,

R is GK-homogeneous;

(ii) R has an Artinian quotient ring;
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(Hi) Oz(O) - C-(0) n R =: x, sayf and Q(S) « SX”1.n j

PROOF Let C = Q(S) which exists and is a simple Artinian ring by Goldie's 

Theorem. For the bimodule rCq form an (R-C)-bimodule composition series:

0 = C0 c C, c c ... c cm = C (*)

where are simple bimodules and := 1 .annfC-j/C^f) € SpecR

(i = 1,...,m). By [W2, Lemma 2], there exist fR-i?;-bimodules

L q - S 3 Lj ^ ... D Lyn 2 QflS such that the R/Gyu-R/G^-bimodules are

torsion-free (i-1r...,m). In particular, they are faithful and we 

immediately have GK(R/Qm) - GK(R/Qj) (i-/,...,m) by [K-L, Lemma 5.3] and 

Lemma 1.6.6. Note also that £?/C>2* • • • Qnf ~ 0 and since C is a faithful

R-module, QiQ2---Qm Thus/ every minimal prime of R is one of the Q±s.

We now show that every annihilator prime of R is minimal. Let 

Q = l.annR (Y) be an annihilator prime. Consider the i?-C-bimodule series for 
the bimodule C: 0 c YC c C where 1 .annR(YC) = Q. We may refine this to a 

bimodule composition series of C as in (*). This gives a new series with 

Cf £ YC and so 0/2 0. However, Q contains a minimal prime Qj, say. 

Although Qj £ Q £ £/, the argument of the first paragraph gives us that 

GK(R/Qj) = GK(R/Qj) and so £?; = Q = Qj. We've shown that Q is a minimal 
prime of R.

We now prove (i) above. Let 0 * s e S. Now, 

GKR ( (Rs + P)/P) = GKgfRsS + P)/P) by Lemma 1.6.6 and S is GK-homogeneous by 

[ K-L, Lemma 5.12] and so GKc*( (RsS + P)/P) = GK(S). We have established 

(i) .

[G&K, Theorem 2.7] shows that, as a consequence of the preceding claim,

R has an Artinian quotient ring, proving (ii).
Finally, we aim to prove (iii). To begin with we show that

C-(0) H R = C-(0). It is evident that C~(0) fl R £ C-(0). Now let d e C-z(O), o R b R ti

0 * s e S and suppose ds = 0. Now (Rs + P)/P s R/K where K = l.annR(s + P).

Since d e C— (0) fl K, Lemma 1.6.5 shows that GKR((Rs + P)/P) < GK(R). However

as argued when proving (i), GKR ( (Rs + P)/P) - GKq ( (RsS + P)/P) - GK(S). But
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GK(R) = GK(S), a contradiction which shows that ds * 0 and that d is 

regular in S.

Now, we show that X is Ore in S and that Q(S) - SC~K Let s e S, x c X

and J = r.annrifs + xS) so that R/J (sR + xS)/xS. NowA

GKr ((sR + xS)/xS) < < GKR (S) = GKS(S)

by Lemma 1.6.5. Thus by Lemma 1.6.2(ii), GK(R/J) < GK(R). By previous

claims, GK(R) = GK(R/N) where N - N(R). Moreover, by Lemma 1.6.8, R/N is

GK-homogeneous. Also GK( (R/N)/( (J + NJ/N)) < GK(R/J) < GK(R) = GK(R/N). By

[K-Le, 5.13], (J + N)/N is an essential right ideal of R/N. Thus

J ft c (N) * 0. Since R has an Artinian quotient ring, Theorem 1.5.11 gives

C— (N) = C~(0) and so there exists y e C~(0) such that sy - xt for someH R  R

t 6 S.

This proves the lemma.

One further lemma is required before we give the main theorem.

5.3.10 LEMMA Let U be a prime Goldie. Suppose I is a right ideal of U with

1. anny/I) — 0. Then I n Cy(0) & 0.

PROOF We show first that we may assume U is simple Artinian. Let Q denote 

the simple Artinian ring Q(U). If a = c“*u e 1.anng/IQ) for c e CR(0) and 

u e U, then 0 * u t l.anny(I). Therefore, 1 .anng(IQ) = 0. But there exists 

e - e IQ such that IQ = eQ and so (1-e)lQ = 0. Thus, 1-e - 0 and so 

e - /, giving IQ = Q and so J fl CR(0) * 0.

5.3.11 THEOREM Let S be a Noetherian ring with finite GK-dimension, G a

subgroup of AutS and R = SG. Suppose P c Specs such that C^(P°) is an Ore 

set in S, R/(P fl R) is Noetherian and S/P is finitely generated on both 

sides as R/(P fl R)-modules. Suppose pj,...,pn are the primes of R minimal 

over P fl R. Suppose p± t SpeCf-R (i = 1,...,n) or, equivalently that
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tr(S) fl CS (P°) * 0. Then CS(P°) fl R = cR (P fl R) =: x, say and X is an Ore 

set in S. In particular, f l ^ p ^  is a localisable semiprime ideal of R.

PROOF We first prove the equivalence. By Lemma 5.3.9, R/(P ft R) has an

Artinian quotient ring and so, by Theorem 1.5.11,

cr (p  ft R) = cR(t\iP i ) = niC R (P i ) - d ) .

Suppose that p± e Specf-R (i = 1,...,n). Since tr(S) 0 p£, tr(S) ft CR (p±) 0 

(i = 1,...,n) and so tr(S) ft CR ((\̂ p̂ ) * 0. Lemma 5.3.9 shows that

CR (P ft R) = CR(P°) ft R and we have that tr(S) ft CR(P°) * 0. Conversely,

suppose that tr(S) ft Cs(P°) * 0. This yields tr(S) fl CR (P fl R) * 0 and

hence, since CR(P ft R) = ftiCR (Pi), tr(S) fl CR (p£) * 0 for each i so that

tr(S) 0 Pjr {i = 1,...,n), proving the stated equivalence.

Now let J be a (J-invariant right ideal of S with (J + P°)/P° essential 

as a right ideal in S/P°. We show that

tr(J) ft CR (P fl R) * 0 -(2;.

Since, CR (P ft R) = CR (niPi) " ^iC(Pi) anc* tr(J) is a right ideal in R,

Lemma 5.3.10 shows that it is enough to prove that 

1 .annR ((tr(J) + Pi)/p±) £ P£ for i = 1,...,n. Fix i, let P = Pi and 

P = (p) e SpecfT. Since (J + P°)/P° is essential in S/P°,

J  fl CS (P°) *  0. This gives that J ft CT(P°*G) *  0 because CS(P°) £  CT(P°*G).

But the Noetherian ring (T/(P°*G)) & (S/P°)*G has an Artinian quotient 

ring, namely Q(S/P°)*G as shown in Lemma 3.2.1 and so, by Theorem 1.5.11, 

CT(P°*G) = fl̂Cjrf'Pj?̂  where P;, p£, • • • / ?m are a^i Primes T minimal over 

P°*G. Since P equals one of P;, P^,.. ., Pm, C<r(P°*G) £ CT(P) so that 

J fl CT(P) # 0. Suppose r e 1 ,annR ( (tr(J) + p)/p). Then rtr(J) £ p. By 

Theorem 3.1.5, rtr(J)f £ P. Since frJf = frtr(J) as in the proof of Lemma 

3.1.7, we have frJf £ P. This yields (frJ)(fS) = (frJ)(fT)£ P and, since 

P e SpecfT and frJ is a right ideal of T, we must have frJ £ P. Now, since, 

J fl Cji(P)  # 0, we have fr e P and so, by Theorem 3.1.5, r e p .  Thus, we 

have proved (2).
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We show that X is an Ore set in S. Let s c S, x e X. Let

K = fv e S: sv c xS}. Since C^(P°) is an Ore set in S and X £ C^(P°), we 

have that K fl Cg(P°) * 0. Setting J = ftgtQK$, we conclude that 

J fl Cq (P°) * 0. Now, J is a ^-invariant right ideal of S with (J + P°)/P° 

essential in S/P°. We apply (2) above to find that there exists 

y e tr(J) 0 CR (P n R). So, sy = xt for some t e S, proving the claim. The 

rest of the theorem is immediate from this claim.

We provide two corollaries to this theorem. The first requires a 

technical lemma. For this lemma, recall what is meant by the term

GK-homogeneous in Definition 1.6.7.

5.3.12 LEMMA Let U be a Noetherian, GK-homogeneous ring. Then there exists 

m e N such that GKdim(U/P) = m for all minimal primes P of U.

PROOF Let P], ... ,Pf. be the distinct maximal right annihilator ideals of U.

Then P^ = r.ann(Xj^) for i = t where X^,...,X^ are non-zero ideals of

U. Note that X ; = fact a direct sum. If X is not essential as a

right ideal in U, there exists an annihilator ideal of U not contained in 

any P±. Thus, X <e Ug. Since U is GK-homogeneous, GKdim(X±) = m for 

i = 7,...,t where m = GKdim(U). Fix i e {1,...,t}. Let T be the torsion 

submodule of X± as a right U/Pj-module. Now, since U is left Noetherian, 

T = ^j=l, ,,,n for some tj,...,tn e T. Thus, there exists c e U/P^r

regular, such that tjC = 0 for j = 1f..,,n. Hence, Tc = 0. Since X± is a 

faithful y/P^-module, we conclude that T = 0 and so, X± is a torsionfree 

right U/P±-module. By [G-W, Corollary 6.26], X^n contains an isomorphic 

copy of U/P. We thus have that GKdim(U/P-i) < GKdimfXj11) = GKdim(Xj_). By 

virtue of the fact that X  ̂ is a right tf/P_£-module, we have that 

GKdim(Xj^) < GKdim(U/Pi). We've thus shown that GKdim(U/P = m for 

i = 1, .. .,t.
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Let Q be a minimal prime of U and suppose GKdim(U/Q) < m. Form an 

affiliated series for Uy as follows:

0 < Xf < Xf®X2 < . . . < X < Yf < ___ < Ys ~ UU

for some right ideals Yj,...,Ys of U with corresponding affiliated primes

Since QSQS- /... G/Pfc. * • Pj = 0 an<3 j? is a minimal prime 

with GKdim(U/Q) < m, there exists j e such that Qj = Q. By [G-tf,

Theorem 10.13(b)], all the above affiliated primes are minimal. Since X is 

an essential right ideal of U, Theorem 1.5.3 shows that each Q± is in the 

clique of one of the PjS. By 5.3.4(ii), m = GKdim(U/Pj ffj) - GKdim(U/Q±) 

for i = 1,.,.,s> In particular, GKdim(U/Q) = m. This contradiction proves the 

lemma.

Thus, we have the following consequence of Theorem 5.3.11.

5.3.13 COROLLARY Let S be a Noetherian ring with finite GK-dimension, G a 

subgroup of AutS and R = SG. Suppose P e SpecS such that C^(P°) is an Ore 

set in S, R/(P n R) is Noetherian and S/P is finitely generated on both 

sides as R/(P 0 R)-modules. Suppose, also, that

GKdim(S/P) > GKdim(R/tr(S)). Then CgfP0) fl i? = CR (P fl R) =: X, say and X is 

an Ore set in S. In particular, J(P 0 R) is a localisable semiprime ideal 

of R.

PROOF Let p t SpecR and suppose p is minimal over P fl R. By Lemma 5.3.9(i), 

GKdim(R/(P fl R)) = GKdim(S/P) and Rf (P fl R) is GK-homogeneous. Lemma 5.3.12 

shows that GKdim(R/p) = GKdim(R/(P fl R)) which is equal to GKdim(S/P). 

Thus, GKdim(R/p) > GKdim(R/tr(S)) and we conclude that tr(S) % p. Theorem

5.3.11 finishes the proof.

We conclude this section with one last consequence of Theorem 5.3.11.
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5.3.14 COROLLARY Let S be a Noetherian ring with finite GK-dimension, G a 

subgroup of AutS and R - SG. Suppose P e SpecS such that Cq (P°) is an Ore 

set in S, R/(P n R) is Noetherian and S/P is finitely generated on both 

sides as R/(P n R)-modules. Suppose pi,...,pn are the primes of R minimal 

over P 0 R. Suppose p^ e SpeCf-R (i=l, ...,n) or, equivalently that 

tr(S) fl Cff(P°) * 0. Then Cq (P°) 0 i? = CR (P fl r ) x, say, and X is an Ore 

set in S. Moreover, RX~1 = (SX~1 )G and RX~1 is Noetherian.

PROOF All but the final sentence comes from Theorem 5.3.11. Certainly 

RX~1 £ (SX~1 )G. Suppose now that sx~1 e (SX~1 )G. Then

sx~1 - (sx~1 )9 = s$(x9)~1 = s9x~1 for all g e G. Thus, s = s9 for all g e G 

and so s c fl, establishing the reqired inclusion. Finally, tr: SX~1 -* RX~1 

is surjective and, therefore, Lemma 1.4.2 completes the proof of the 

corollary.

Theorem 5.3.11 shows that, when the hypotheses of the theorem apply, if 

p e Specj-R and all primes of fl minimal over fl fl fl are in SpeCf-R, then the 

clique of p is a subset of the — class of p. In particular, cl(p) is 

finite. We conjecture here that, when the hypotheses of Theorem 5.3.11 are 

fulfilled, p e SpeCf-R has cl(p) = [p] where [p] is the — class of p.
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