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SUMMARY

This dissertation reviews some results about rings of endomorphisms of
modules, mainly in the form "if a module has the property P then its

ring of endomorphisms has the property Q".

After an introductory Chapter 0, Chapter 1 is devoted to develop some
concepts that will be necessary later on; a detailed study of the
uniform {(Goldie) dimension of a module is carried out and, in this
vein, some original results of the author, which will appear

elsewhere, are included in Section 4.

In Chapter 2 we present the endomorphism ring of a module as well as a
general technique for its study (Sections 5 and 6). The modules whose

rings of endomorphisms have been reviewed are detailed next.

In Section 7, injective and quasi-injective modules are considered; it
is shown that the factor ring of their endemorphism ring modulo its

radical is a regular and (right) self-injective ring.

In Section 8, projective modules are discused; the Morita Theorem is
recollected and some properties of a ring which are inherited by the
endomorphism rings of its finitely generated projective modules are
stated; also, a study of the projective modules with local

endomorphism rings is done.

In Section 9, we consider finite dimensional modules. First they are
assumed to be also injective and, after dropping this hypothesis, we
study the nilpotency of the nil subrings of their rings of
endomorphisms; we also answer some questions about the quotient ring

of the endomorphism ring of a finite dimensional nonsingular module.

Finally, in Section 10, we look at what happens when the module is
assumed to satisfy some chain conditions, in general at a first stage
and under the hypothesis of quasi-injectivity or quasi-projectivity in

the final paragraph of the dissertation.
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PREFACE AND ACKNOWLEDGEMENTS

This dissertation consists of two quite different chapters. The first
of them intends to provide the basic tools of Module Theory that shall
be used in the second, and that are usually beyond the scope of a very
elementary course in Rings and Modules. There has been assumed some
knowledge about direct sums and products, homomorphisms, isomorphism
theorems, exact sequences, injectivity, projectivity and chain
conditions, while concepts like essential submodules and extensions,
complement submodules, singular and nonsingular modules, injective

hulls or quasi-injective modules are introduced in some detail.

Particular emphasis is made in the topic of finite (Goldie) dimension,
leading to a Section 4 in which the dimension of a sum of finite
dimensional modules is studied. This section should be viewed as an
Appendix to Chapter 1 and may be omitted without consequences for
Chapter 2.

The second chapter deals with the topic announced in the title: the
ring of endomorphisms (or endomorphism ring) of a module. It 1is
assumed that the reader is familiar with concepts such as local,
simple, semisimple, Artinian or Noetherian rings, Jacobson radical,
idempotent elements, nilpotent ideals and subrings, factor rings or
lifting of idempotents. Other ideas are introduced here although at
times, in order to keep our attention in the main subject of this
work, some strong results of Ring Theory are Jjust quoted, e.g. some
facts about perfect and semiperfect rings in Section 8, Goldie’s

theorems in Section 9 or the Hopkins-Levitzki Theorem in Section 10.

The rings of endomorphisms are introduced along with some easy results
which show how the structure of a module determines that of its ring
of endomorphisms. This is the central idea of this dissertation,
namely the search for theorems of the form "if a module has property P
then its endomorphism ring has property Q". In fact, what is done here
is a review of the results of that kind which already existed in the

literature in case the module 1is injective, dquasi-injective,




projective or finite dimensional, or satisfy some chain conditions.

A very general technique to find results of that type (the
"correspondence theorems") is then presented; some of the results here

will prove very helpful in the following sections.

Next, the endomorphism ring of a quasi-injective module, or rather its
factor ring modulo the radical, is studied. This is followed by a
quick review of the Morita Theorem, and some classes of projective
modules whose rings of endomorphisms have nice properties are briefly

introduced.

Injective modules are then revisited, now taking into account their
dimension; later, nil subrings and quotient rings of the endomorphism
ring of a finite dimensional module are studied. Finally, we state
some results about Artinian, Noetherian and finite-length modules, and
also about quasi-injective and quasi-projective modules with certain

chain conditions.

Throughout the dissertation, an effort to pay tribute to the parents
of the ideas which appear there has been made. The references do not
necessarily mean that we have followed the proofs given in the quoted
paper but that, to the best of the author’s knowledge, that is the
first time such a result appeared in the literature. Some papers which
are not referred to in the text, but contain material which aided in
the preparation of this work, have been included after the main text
under the common label of List of References. Also, an index with the

concepts assumed and defined through the dissertation is provided.

Finally, the author would like to express his gratitude to his
supervisor, Professor P.F.Smith, for his guidance and for suggesting
the topic of the dissertation, as well as to the British Council and
the Caja de Ahorros del Mediterraneo (Spain) for their efficient
collaboration in preparing and financially supporting him in this last

study’s year.

Alberto del Valle Robles. Glasgow, September of 1992.




CHAPTER O
NOTATION AND CONVENTIONS

Throughout this dissertation, by a ring R we will mean an associative
ring with identity 1r (or 1 if there is no risk of confusion about the
ring), and all modules will be unitary (i.e. the product of an element
x of the module by the identity of the ring equals x). The following

right-sided conventions will also stand in their left-sided form.

The category of all (unitary) right R-modules will be denoted by ModR
(RMod for left R-modules). M=MrR will mean that M is an object of ModR.
Given M=Mr and N=NRrR, the notation f:Mr—NR will imply that f is a
morphism in ModR (i.e., a right R-homomorphism), while f:M—N shall be
viewed as a set theoretical map, unless otherwise specified. All
morphisms in the categories ModR and RMod will be written in the side
opposite to the scalars (i.e., given f:Mr—NR and g:rRL—RK, the images
of xeM and yel will be f(x) and (y)g, or more often fx and yg). In the

same way, the image of a submodule PSMrR will be written f(P) or fP.

Given M=Mr and N=NR we will denote by HomR(M,N), or by Hom(Mr,NRr) if
we want to emphasize the side, the set of all right R-homomorphisms
from M into N. If f,geHmmJM,N) then the map f+g:M—N defined via
(f+g)x=fx+gx for all xeM, is actually in HomR(M,N), and this ‘sum of
homomorphisms’ provides HomR(M,N) with the structure of Abelian group
(with the zero map as zero element) which shall be assumed in the
sequel. In case M=N, we call an element of HomR(M,M) an endomorphism
of M, and write EndR(M) or End(Mr) for HomR(M,M).

Given two rings T,R, a (T,R)-bimodule is an Abelian group M which is
both a left T-module and a right R-module in such a way that, for all
teT, reR and xeM, the equality (tx)r=t(xr) is satisfied. We denote

this situation by M=1MR, and the category of (T,R})-bimodules by TModR.

For bimodules ¢MrR and TNR, it is well known that Hom(Mgr,NR) is an

object of TMon. Similarly, for rAQ and RBT, Hom(rA,RB) is in QModT.




A.del Valle; MSc, 1992; Rings of Endomorphisms; Chap.0 7

According to our notation, we will write THom(MR,NR)Q and
QHom(RA.RB)T. Note that every module Mr (RN) can be realized as a
bimodule =zMr (RNz), where Z 1is the ring of rational integers;

therefore, given e.g. 9MrR and Nr, we have HOm(MR,NR)Q, and so on.

The symbols € and < will mean inclusion and strict inclusion,
respectively. If M=Mr, the fact that N is an R-submodule of M will be
abbreviated as NEMr, while NEM shall be viewed as a set inclusion.
Therefore, a<RR will mean that a is a right ideal of R. By ‘a is an
ideal of R’ (without further specification) we will understand ‘a is a
two-sided ideal of R’.

For a module MR, the lattice of submodules of M ordered by inclusion
will be denoted by Lat(Mr). Then Lat(Br) (Lat(mrR)) will stand for the
lattice of right (left) ideals of R. Many times, we will speak about
chain conditions in a subset  of Lat(Mr) or Lat(Rr), as for example
when we say ‘MR has the descending chain condition (always abbreviated
DCC) on complements’; this will mean that the subset Q of Lat(Mr)
consisting of all complement submodules in MR satisfies the minimum
condition: i.e., every nonempty subset of Q contains a minimal element
or, equivalently, every strictly descending chain of elements of Q
must be finite. Of course, a similar convention stands for the

ascending chain condition, or ACC.

Recall that, for a module Mr, the lattice Lat(Mr) is modular, i.e.
N+(LnK) = (N+L)nK whenever N,L,K are submodules of MrR such that NcK.

This Modular Law will be used without further reference.

Given NeMr and a nonempty subset X of M, we write (N:X) for the right
ideal {reR: xreN for all xeX} of R. If X is a singleton X={x}, then we
write (N:x)}. If, for example, M is a bimodule sMr, we avoid any
confusion by writing (NﬁX) or (NéX). If N is the zero submodule then
(OﬁX) is usually called the (right) annihilator of X in R and written
rR(X); gimilarly, (OéX] is called the (left) annihilator of X in S,

and we write 1S(X).

If M=Rr then the annihilator ideals of nonempty subsets V of R will be
simply called the right annihilator ideals of R, and we shall write
R(V) for rR(V). Similarly £(V) will stand for the left annihilator
ideal lR(V).
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Also, for a bimodule sMr, the annihilators in M of nonempty subsets V
of R and W of S will be congidered, and our notation will be
IH(V)={meM: mr=0 for all reV} and rM(W)={meM: sm=0 for all seW}.

If NeMrR is a direct summand of M (i.e. if there exists L€MR such that
M=Nel.) then we write NSiM. If M can be decomposed as M=igIMi and jel
then f:igIMi—°>Mj wWill mean that f is the canonical projection of M on
M3 for the given decomposition (i.e., if x=i§in, for some finite
subset F of I and some anxieMi, is the unique expression of x in eMi,
then f(x)=xj if JjeF and fx)=0 otherwise). Similarly, if NcMr, then
p:M—5M/N should be read as ‘p is the natural epimorphism of M onto

M/N (i.e., pCO=x+N for all xeM).

Finally, a family {Mi:ieI} of submodules of a module MR will be said
to be independent 1f the sum 1§IM1 is direct, i.e. if, for any two

nonempty finite subsets J and K of I, we have (JéJMJ)n(kgka)r-&




CHAPTER 1
GOLDIE DIMENSION

SECTION 1:  ESSENTIAL EXTENSIONS AND COMPLEMENT SUBMODULES

In this first section, we introduce several concepts which will be
used throughout this dissertation, and establish their first
properties. The basic concepts are the essential extensions and

complement submodules of a module and the nonsingular modules.

Essential Submodules and Essential Extensions

The concept of essentiality was introduced by R.E.Johnson [26; p.891]
in the early fifties, although the terminology is due to B.Eckmann and
A.Schopf [12]. Given two right R-modules N&Mr, N is said to be an
essential submodule of M if N has nonzero intersection with each
nonzero submodule of M (A.W.Goldie's terminology [19] was N meets all
submodules of M). We denote this situation by NceM. If NSeM and NcM,
then we write NceM and say that N is a proper essential submodule of
M. If M=Rr we call an essential submodule of RR an essential right
ideal of R.

Clearly, if the zero submodule is an essential submodule of MR then M
itself must be zero. Also, if N is an essential direct summand of Mr
then N=M.

If N€eM then we also say that M is an essential extension of N though,
as C.Faith points out in [FA73; p.168], it might well be called an
inessential extension. In Section 3 we shall slightly generalize our
concept of essential extension, but for the other sections the

definition given here will suffice.

Next, we give the following useful characterization of essential

extensions:
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LEMMA 1.1 N is an essential submodule of M if and only if, for all
xeM\N, there exists reR such that O#xreN. In this case, for all xeM,
(N:X)SeRR.

PROOF: If N€eM and xeM\N then, in particular, x#0, whence xR#0 and
thus xRnN#0. Conversely, if there exists 0#LSMR such that NnL=0 then,
for any xeL\N#@m, xRnN=0.

Assume now that NceM, and let reR\(N:x); then xr¢N and hence there
exists seR such that O#(xr)seN; then O#rse(N:x) and thus, by the first
part, (N:x)SeRR.m

Then, for example, it is clear that Z<e@z (or, more generally, every

commutative domain is essential in its field of fractions).

The following lemma states, among some other useful properties of
essential extensions, that the set of essential submodules of Mr is a
filter in the lattice Lat(Mr).

PROPOSITION 1.2 Let MR be a module with submodules N,L; Ni,...,Nn;

Li1,...,Ln; and let f:Kr—MR be any homomorphism. Then

a) if N€L, then NceM if and only if Ncel and L&eM;

b) if N<SeN1 and Lgeli, then NnLSeN1nLi; in particular, if NEeM and
L&eM then NnLCeM.

c) if N€L and (L/N)Se(M/N), then L<eM;

d) if NSeM then £ (N)ceK;

e) if NiCeli for i=1,..,.,n and the sum INi is direct, then ZLi is also
direct and (eNi)Ce(oLi).

PROOF: a) Assume NEeM; then for all 0=#AcM, LnA2NnA#0, whence LgeM;
and for all O0#Agl, NnA#0, whence NSeL. Conversely, if Ncel.,, LSeM and
ASMr verifies AnN=0, then Nn(AnL)=0, whence AnL=0 and thus A=0;

therefore NEeM.

by Let O0#A<NinLi; since N<€eN1, O0#NnA and then, since L&eli, Ln(NnA)=
(LAN)NA#0; therefore LnNEeN1nLi1.

c) Assume (L/N)Se(M/N) and let O0#ASMr; if ASN then AnL=A#0; if A<&N

then é%l—biato, whence A—?—’n—t—ato, i.e. Nc(A+N)nL=(AnL)+N, and thus AnL#0;

therefore L&eM.

d) This is very easily proved using (1.1); however, in order to obtain
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a dual proof for the next result, we proceed as follows: Assume first

that £ is monic; then if A<KrR is such that fniNnA=0, we get
0= £(£f'NnA)= ££'NAfA= (NAfK)nFA= NnfA,

whence fA=0 and thus A=0, proving that f 'NSeK.

In general, since g: (K/Kerf)—M given by g(k+Kerf)=fk is monic, we get

-1
_f 'N_ K -1
_KEFFEGKEFf and hence, by c), f "Ncek.

g 'N
e) Since the case n=2 is easily extended to any finite number of
submodules, we prove that N&el, N’Cel.’ and NnN‘=0 implies LnL‘’=0 and
NeN’sel®l’; by b), O0=NnN’‘SeLnL’, whence LnL’=0; consider now the
projections m:lelL’—L and p:lel’—L’; by ), n_1N=N@L’SeL®L’ and

p 'N‘=LeN’CeLel’, and thus b) gives NeN’SeLoL’.m
REMARK: (1.2.e) also holds for infinite direct sums [G; Prop.1.4].

There 1is a dual concept for essentiality which 1is convenient to
introduce here, though it will not be used until the second chapter. A
submodule N of MR is said to be small or superfluous in M if the only
submodule L of M which verifies N+L=M is M itself. Our notation for

this situation is N«M. Dual to (1.2) we have:

PROPOSITION 1.3 Let MR be a module with submodules N,L; Ni,...,Nn;
Li,...,Ln; and let f:Mr——KR be any homomorphism. Then

a) if NSL then L«M if and only if N«M and (L/N)«{M/N);

b) if N«M and L«M then N+L«M;

c) If NEL. and N«L, then N«M;

d) if N«M then f(N)<«K;

e) If NigLi for i=1,...,n and the sum ZLi iIs direct then eNi«elLi.m

There are modules which possess submodules which are at the same time
essential and superfluous, for example any nontrivial subgroup of the
quasi-cyclic group Z(pm) (for any prime integer p), or the (two-sided)

maximal ideal of any local ring which is not a division ring.

On the other hand, some modules MR have no essential (resp.
superfluous} submodules other than M (resp. 0). These are precisely

the semisimple modules (resp. the modules with zero radical). This
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will follow immediately from Proposition 1.5, but before proving it we

need to introduce the concept of relative complement.

Complement Submodules

Given a module MR and a submodule N&Mr, the set Q={LcMRr:LnN=0} is
clearly inductive and nonempty (0eQ). Any maximal element of Q is said
to be a relative complement for N in M. This concept is reminiscent of
the set-theoretical concept of complement subset and has an obvious

generalization to arbitrary lattices.

Note that, if N,KEMr verify NnK=0, then Q’'={L&Mr: K<L and LAN=0} is
also inductive and nonempty, so that we can take a relative complement
for N which contains K. The following result implies the remarkable
fact, essentially proved by R.E.Johnson [26], that every submodule of

a module MrR is a direct summand of an essential submodule of MRr.

PROPOSITION 1.4 Let NeMm; if L is a relative complement for N in M

then NeL is an essential submodule of M.

PROOF: Since NnL=0, the sum N+L is direct. Suppose now that KeMr is
such that (NeL)nK=0; then (NeL)+K=NeLeK, whence Nn(LeK)=0 and then, by
maximality of L, we get LeK=lL, i.e. K=O.m

PROPOSITION 1.5 For any module MR, the socle of M 1is the

intersection of all essential submodules of M, and the radical of M is

the sum of the superfluous submodules of M.

PROOF: Write SocM and RadM for the socle and the radical of M, (i.e.
the sum of all simple submodules of M and the intersection of all

maximal submodules of M, respectively); and set
A=n{N: NceM} B=Z{N: N«M}.

For any simplé submodule S of M, and for any NceM, we have O0#NnScS,
whence NnS=S, i.e. SEN; therefore SocMcA. On the other hand, let LEAR,
and let L’ be a relative complement for L in M; then, by (1.4),
LoL’S€eM and hence ASlel’; by modularity, Le(AnL’)=An(Lel’)=A, which

proves that every submodule of A is a direct summand of A, i.e. A is
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semisimple and hence ASSocM. Therefore A=SocM, as desired.

For any maximal submodule L of M, and for any N«M, we have NEN+LcM,
whence N=N+L, i.e. LEN; therefore BcRadM. To see that RadM&B, we prove
that xR is superfluous for all xeRadM; if xR is not superfluous and
NcMr is such that N+xR=M, then clearly xeN and thus, by Zorn’s Lemma,
A={K<Mr: N<€K and x¢K} has a maximal element Ko, which is in turn a

maximal submodule of M, since
KoclLeM = Le¢A = xel. = M= N+xRE Ko+xRE L = L=M;

therefore, since xgKo, x¢RadM. This completes the proof.m

By a complement in M we will mean any submodule N of M which is a
relative complement in M for some submodule of M. In this case we
write N&cM. If M=RrR then we call a complement submodule of Rr a right
complement in R. For example, every direct summand N of M is a
complement in M (if M=Nel, then N is a relative complement for L in
M). There exists .a close relationship between the concepts of
complement and essentiality, as the next result shows (in fact, some
authors call complements closed or essentially closed submodules

because of the equivalence a)sh)).

PROPOSITION 1.6 Let N&MR. Then the following are equivalent:
a) N is a complement in M;

b) N does not admit proper essential extensions within M;

c) for any LEMR such that N<€LE€eM, (L/N)Se(M/N).

PROOF: a)=>b) Assume that N is a relative complement for some K&Mg,
and suppose NceLe€M. Since (LnK)nN=KnN=0, we get LnK=0 and then, by

maximality of N, it must be N=L; this proves b).

bi=c) Assume NELEeM, and suppose that K is such that NEKEMr and
(L/N)n(K/N)=0; then N=LrK<eMnK=K (1.2.b), whence N=K by b), 1i.e.
K/N=0; therefore (L/N)Se(M/N).

c)sa) Let K be a relative complement for N in M; we prove that N is a
relative complement for K in M. Since NnK=0, we can find a complement
N’ for K in M with N&N’; then, by modularity, (NeK)nN’=Ne(KnN’)=N;

since NSNeK<ceM by (1.4), the hypothesis gives E%Ese%,
argument gives Hggng—=0, so that N=N’'.m

but the previous
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COROLLARY 1.7 Let MR be any module, and let N be a complement in Mr.
Then, for any KSMrR such that N<K and (K/N)€c(M/N)}, we have K&cM.

PROOF: If KSel.eM then, by (1.6.c¢), ESeE, whence E=£, i.e. K=L.=

NN N N
From (1.6.b), it is clear that, if N&cM and Le€Mr is such that N<L,
then N&cl. On the other hand, we have the following ‘transitive’

property of complements.

PROPOSITION 1.8 Let LEN be submodules of MR such that LScN and N&cM.
Then L<cM.

PROOF [10;Theo.2.2]: By hypothesis, L is a relative complement in N
for some L’EN, and N is a relative complement in M for some N’SM. Then

Ln(L‘®N’)=0 since, for xeL, yelL’ and zeN’, we have
x=y+z = z=x-y eéNnN’'=0 = x=y eLnL’=0.

Then we can take a complement K for L‘eN’ in M such that L&K. Set
P=Nn(K+N’); then PnL’=(K+N’)nL‘=0; for, let keK, xeN’, yelL’, then

k+x=y = k=y-x eKn(L‘@eN’)=0 = x=y eN’nL’=0.

Now, since LEPSN, the maximality of L gives L=P=Nn(X+N’), and from
this we get (K+N)nN’=0; for, let keK, xeN, yeN’, then

y=k+x = x=y-k eNn(K+N’)}=L = y=k+x eN‘nK S(N‘+L‘)nK =0.

Therefore, by maximality of N, we have K+N=N, i.e. KE€N and thus, by
modularity, L= Nn(K+N’)= K+(NnN’)= K; hence LEcM.m

Given NSMR we can take first a relative complement K for N in M, and
then a relative complement N’ for K in M containing N. N' is then a
complement and also an essential extension of N. For, if L&N’ verifies
LAN=0 then we have K<KelL. and (Kel.)nN=0, since k+x=n (for keK, xeL,
neN) implies k=n-xeKnN’=0, so that n=xeNnL=0. Hence, by maximality of
K, K=KelL, i.e. L=0, proving the claim. We shall call an e-closure (for

essential closure) of N in M every complement in M that 1is an

essential extension of N. As we have Jjust seen, e-closures do exist
for any submodule of any module Mr, and by (1.6) and (1.2.a) the set
of e-closures of N in M coincide with #F={L&Mr: N&eL}. The next

proposition gives another description or the same set.
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PROPOSITION 1.9 Let NEMR. Then the e-closures of N in M are the

minimal elements of &={KSMr: K<cM and N<K}.

PROOF: If N’ is an e-closure for N in M then clearly N‘e&; if Ke& is
such that K<N’, then (1.2.a) K<eN’ and, since KccM, K=N’; therefore N’
is minimal in &.

On the other hand, if K is a minimal element of &, we have to prove
that N<eK; for, let N’ be an e-closure for N in K; then N’&cM (1,8)

and therefore N‘e&, whence K=N’ and thus NEeK.m

An e-closure for N in M need not be unique: For example, if R=Z and
M=(Z/2Z)®(Z/4Z), then N=(0,2)Z has two e-closures in M, namely (0,1)z
and (1,1)Z.

We close this paragraph with an application of the concept of
e-closure, which characterizes the essential extensions within a

module Mg.

PROPOSITION 1.10 Let N<L be submodules of MR. Then the following
conditions are equivalent
a) N&el;

b) N and L. have a common relative complement in M;

c) N and L have a common e-closure in M.

PROOF: a)sb). Let L’ be a relative complement for L in M; then
NnL/€LnL’=0, and if KeMr is such that L‘SK and NnK=0 then (1.2.b)
0=NnK<el.nK, i.e. O=LnK; by maximality of L‘, this gives K=L‘.

Therefore L’ is also a relative complement for N in M.

by=2c). If K is a common relative complement for N and L, take a
relative complement K’ for K containing L (and hence N)}; K’ is then

the desired common e-closure.

c)=a). This follows immediately from (1.2.a).m
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Nonsingular Modules

The concepts of singular ideal of a ring and nonsingular ring were
introduced by R.E.Johnson [26; p.894], and extended some years later
to modules by himself [27; p.537]. These concepts are closely related
to those of essential and complement submodules and have proved to be
very helpful in many different areas of Ring Theory, particularly in
the study of quotient rings. They will be used frequently throughout
this dissertation, and we shall compile here their definition and

first properties.

LEMMA 1.11 Let MR be any module. The set Z(MrR) = {xeM: PR(X)SeRR}=

{xeM: xa=0 for some aCeRR} is a submodule of Mg.

PROOF: First note that, with the help of (1.2.a), it is clear that
both sets in the statement of the lemma are actually equal.

Since rR(U)=RseRR, we have 0eZ(Mr). Let x,yeZ(Mmr) and write o=r_(x),
b=rh(y); then (x-y)(anb)=0 and anbSeRr, whence x-ye€Z(Mr). Finally, if
reR then, by (1.1), (a:r)ceRr and xr(a:r)cxa=0, whence xXreZ(Mr).

Therefore Z(Mr) is a submodule of MR.=

Z(Mr) is called the singular submodule of Mr. The module MR is called
nonsingular (resp. singular) if Z(Mr)=0 (resp. Z(Mr)=M). The right
singular ideal of a ring R is Zr(R)=Z(RR), and R 1is a right
nonsingular ring if Zr(R)=0. The left singular 1ideal and left
nonsingular rings are defined similarly. Since all our rings have an
identity, it is easy to show that Zr(R)#R for any ring R in which 1#0,

i.e. there do not exist ‘singular rings’.

PROPOSITION 1.12 Let MR be any module and let NEMR. Then
a) Z(NRr)=NnZ(Mr);

by Z(Mr) is a singular module;

c) if MR is singular (resp. nonsingular), then so is NRr;
d) if NrR is nonsingular and NSeM, then MR is nonsingular;
e) if N<eM then M/N is singular;

£y if M/N is nonsingular then N&cM.

PROOF: a) 1s clear from the definition.
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b) follows by applying a) to the case N=Z(Mr).

c) follows directly from a).

d) Since Nr is nonsingular, O0=Z(Nr)=NnZ(Mr), and since NSeM this
implies Z(Mr)=0, i.e., MR is nonsingular.

e) For any xeM, (N:x) is an essential right ideal of R such that
x(N:x)SN, i.e. (x+N)(N:x)=0 in M/N, and therefore x+NeZ(M/N), whence
Z(M/N)=M/N.

fy If M/N is nonsingular and NEeKeM, then K/N is singular by e) and
nonsingular by c¢), since K/NE€M/N. But obviously the only module which
is both singular and nonsingular is the zero module, so that K/N=0,

i.e. N=K, and hence N&cM.m

PROPOSITION 1.13 Let R be any ring and let MR be a nonsingular

module. Then

a) for any right ideal o of R, aSeRR @ R/a is singular as a right
R-module; in this case MaSeM;

b) for any NEMR, N<eM &« M/N is singular;

c) for any NEMrR, NEM &« M/N is nonsingular.

PROOF: a) If acRr and (R/a)R is singular, then there exists bCeRr
such that (1+a)b=0, i.e. bca, whence aSeRr; the converse follows from
(1.12.e); if aceRr then for all O#xeM we have, by nonsingularity of
MR, O#xa; thus there exists rea such that O#xreMa, and therefore
MacCeM.

b) Assume that Mr is nonsingular and M/N is singular; then, for all
xeM\N, (N:x)=rR(x+N) is an essential right ideal of R, and hence
x(N:x)#0; thus there exists reR such that O#xreN, and therefore NE&eM.

The converse is (1.12.e).

c) Assume that MR is nonsingular and N&cM; let K be such that N&EKeM
and K/N=Z(M/N); then, since K is nonsingular and K/N is singular, b)
gives NgeK and hence N=K, 1i.e. Z(M/N}=K/N=0. The converse Iis
(1.12.f).m




SECTION 2: THE UNIFORM DIMENSION OF A MODULE

A module MR is called finite dimensional (abbreviated f.d.) if all
direct sums of nonzero submodules of M have a finite number of
summands. Thus e.g. all Artinian or Noetherian modules are f.d. We
shall show that, if M is f.d., there is a least upper bound for the
set D(M)={neZ: there is a direct sum of nonzero submodules of M with n
summands}. This fact will allow us to define a ‘dimension’ for finite
dimensional modules which generalize the concept of dimension of a

vector space.

Both concepts, finite dimensional modules and the dimension of a
module, were introduced by A.W.Goldie. In [18] he concerned himself
with ideals of a ring, but most of the proofs given there go through
with minor changes when extending these concepts to modules, as Goldie
did in [19].

Next, we give a first characterization of finite dimensional modules
which sharpen our observation that either chain condition implies

finite dimensionality.

PROPOSITION 2.1 For any module MR, the following are equivalent:

a) MR is finite dimensional;
b) MR satisfies the ACC on complement submodules;

c) MR satisfies the DCC on complement submodules.

PROOF: a)=b) If NicNac--+ is an infinite chain of complements in M,
then we construct an infinite direct sum of nonzero submodules of M as

follows: since each extension NicNi+1 is not essential, choose

0#L1€Ni+1 such that LinNi=0; then NielLiel2e:-+ is the announced sum.

by=c) If NidNa2>--- is an infinite chain of complements in M, then set
Lo=0 and let Li (i=1,2,...) be a relative complement for Ni in M
containing Li-1; then Liclac--- is an infinite ascending chain of

complements in M in which the inclusions are strict by (1.10).

c)za). If M contains an infinite direct sum NieNa®::+« of nonzero

submodules and Ki is an e-closure for NieNi+te-:+ in Ki-1 (where




?
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Ko=M), then KidKz>::+ is an infinite chain of complements in M by
(1.8) and (1.10).m

Clearly, every submodule of a f.d. module is f.d. Some other

properties of stability for f.d. modules are listed below.

PROPOSITION 2.2 Let MrR be any module and 1let N,N1,...,Nr be
submodules of M. Then

a) if N is f.d. and N<eM, then M is r.d.;

by if M is f.d. and N&eM, then M/N is f.d.;

¢y if N and M/N are both f.d., then M is f.d.;

d) if each Ni is f.d. and the sum ZNi is direct, then eNi is f.d.

PROOF: a) Clearly, a direct sum ichMl of nonzero submodules of M
provides a direct sum ?Ni of nonzero submodules of N, where Ni=NnMi;

therefore the index set I must be finite and hence M is f.d.

by By (1.7), an infinite strictly ascending chain of complements in
M/N would provide an infinite strictly ascending of complements in M,
which is impossible by (2.1); thus, also by (2.1), M/N is f.d.

c) Assume that N and M/N are both f.d., and let MieM2e--- be an
infinite direct sum of submodules of M; set Tk=MkeMk+i@---; we claim
that NnTk=0 for some k.

Suppose not; since NnT1#0, there exists r1=1 such that
N1=Nn(M1®---®Mr1)¢0; but also NﬂTr1+1¢O and hence we have, for some
r>r, N2=Nn(Mr1+u3---@Mra)¢0. In this way, we produce an infinite
independent set {Ni1,N2,...} of nonzero submodules of N, which
contradicts the hypothesis and hence proves the claim.

Let now p:M—EeM/N; since KerpnTk=NnTk=0, we may view Tk as a submodule
of the f.d. module M/N, and then all but a finite number of the Mr
(for rzk) must be zero, proving that M is f.d.

d) By induction: If r=1 then there is nothing to prove; if r>1 then N1

and (?Ni)/N1 = éNi are f.d., and hence so is %Ni by c). =

Note that (2.2.b) fails if N is not a complement in M. For example,
consider @ as a Z-module; since any two nonzero elements of @ have a

common nonzero multiple, any two nonzero submodules of @ have nonzero
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intersection and then @ is finite dimensional; but Q/Z may be
expressed as the direct sum of all its p-primary components, which are
infinitely many and all nonzero, and thus it 1is not finite

dimensional.

The stated property about the submodules of @z is of interest in
itself, and will be key in order to define the dimension of a finite
dimensional module. A module UrR is uniform if U®0 and every two
nonzero submodules of U have nonzero intersection; or, equivalently,
if U#£0 and every nonzero submodule of U is essential in U. Note that
an essential extension of a uniform module is uniform. For a uniform

module U it is clear that the least upper bound of D(U) is 1.

LEMMA 2.3 Every nonzero finite dimensional module Mr contains a

uniform submodule.

PROOF [18;Lemma 1.2]: Suppose not. Then M itself is not uniform and
so there exist O0#Mi,L1€MrR with MinLi=0. But again L1 is not uniform,
and we can find O0#Mz,L2€lia with ManL2=0. This process leads to an
infinite direct sum MieM2e:-- of nonzero submodules of M, a

contradiction.m

PROPOSITION 2.4 If O#Mr Is finite dimensional, then there exist

uniform submodules Ui, +--,Un of M such that the sum Ui+:-++Un is

direct and Uie- - r®UnCeM.

PROOF': Let U1 be a uniform submodule of M, and let Ki be a
complement for U1 in M. If Ui is not essential in M then K1#0 and Ki
is f.d., so that K1 contains a uniform submodule Uz. If UleUz is not
essential in M then it has a nonzero complement Kz which contains a
uniform submodule Uz with (UieUz2)nUs £ (UieUz)rKz = O.

Since M is f.d., this process must stop at some step n, and then

Ui, «++,Un have the desired property.m

THEOREM 2.5 Let Mr be a module, and suppose that M contains an
essential submodule of the form Uie---eUn where the Ui’s are uniform.

Then any direct sum of nonzero submodules of M has at most n summands.
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PROOF [18;Theo.6]: Let V1,::+,Vk be an independent family of nonzerco
submodules of M and suppose k>n. Assume also nz2 (if n=1 then M is
uniform or zero, and thus the result is clear).

If NeMR is not essential in M, then N has zero intersection with some

Ui. For, suppose NnUiz0 (i=1,---n); then NnUiceUi, whence
%(N(\Ui) Ce (?Ui Ce M

by (1.2.e). Then, since @(NnUi)EN, we have NceM (1.2.a), a
contradiction.
* Let V1=Va®~--®\fk; V1 is not essential in M, and so we can assume e.g.
V1nU1=0. Therefore the sum UieVze-::eVk is direct.
Let Vz=UieVse---eVk which, as above, has zero intersection with some
Ui, and not actually with Ui, Assume then Van?.:D; therefore the sum
UteUzeV3e: « ceVk is direct.
Since n<k we can, by repeating this argument, give raise to a direct
sum (Ui@:: -+ @Un)®(Vn+1@:++@Vk) with the second parenthesis nonzero, but
this contradicts the essentiality of Uie@-:-:eUn. Therefore it must be

that k=n, as desired.=

COROLLARY 2.6 A module MR is finite dimensional if and only if it

contains a finite direct sum of uniform submodules which is an
essential submodule of M. In this case, the number of summands in such
a sum iIs an invariant n of M which equals the least upper bound of

D(M)={keZ: M contains k independent nonzero submodules}.

PROOF: The first statement follows immediately from (2.4) and (2.5).
If U1e'++@Un and Vie::-oVk are essential submodules of M with each Ui
and each Vi uniform, then apply (2.5) twice to obtain n=k and k=n,
whence n=k. A new application of the previous theorem proves the last

statement. m

If MR is finite dimensional then the integer n of Corollary 2.6 is
called the uniform or Goldie dimension of M. Our notation will be
u(M)=n. If M is not finite dimensional then we write u(M)=w. A ring R
is said to be right (left) finite dimensional if so is the regular
module RR (RR).

For example, a semisimple module M is f.d. if and only if it is
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finitely generated, if and only if it is of finite length, and in this
cagse u(M)=length(M), the composition length of M. In particular, this
shows that our concept of dimension generalizes the usual one for

vector spaces.

In (2.1) we showed that the finite dimensionality of MR depends on the
set of complement submodules of Mr; in fact, also the dimension of Mr
may be described in terms of its chains of complements. In the next
proposition, for an strict chain KocKlc:--cKn of complements in M,

call n the length of the chain.

PROPOSITION 2.7 Let MR be a finite dimensional module, and let

=u(Mr). Then n is the maximum of the lengths of all chains of
complements in M, Moreover, a chain 0=KocKic::+cKr=M of complements in

M has length r=n if and only if (Ki+1/Ki) is uniform for i=0,...,n-1.

PROOF [19;Lemma 1.41: The construction methods wused in (2.1) prove
the first part: if KocKic:--.cKr is a chain of complements, then we get
a direct sum of r nonzero submodules of MR as in ‘a)sb)’; also, if
Ni@---@Nr is a direct sum of nonzero submodules, then we get a chain
of complements with r strict inclusions as in ‘c)=sa)’.

Now, suppose that 0=KocKic:-:<Kn=M is a chain of complements and fix
an ie{0,...,n-1}. By the first part, we cannot insert any complement
between Ki and Ki+1; hence, for any NEMR with KicNcKi+#1, Ki+1 must be
an e-closure of N by (1.9) and thus, by (1.6.c), (N/Ki)Se(Ki1+1/Ki);
therefore Ki+1/Ki is uniform.

Conversely, let 0=KocKic-:-cKr=M be a chain of complements with each
Ki+1/Ki uniform. For i=2,...,r let Li(#0) be a relative complement of
Xi-1 in Ki; then clearly the sum KielLze---eLr 1is direct; moreover,
since each Li embeds in Ki/Ki-1, all the summands are uniform; also,

we have Ki-1eLiCeKi (1.4); then, repeated applications of (1.2.e) give
Kielzel3®e: * *olr Se K2ol3®:+<olr Se **+ Se Kr-1&Lr Se Kr=M,

and hence, by (2.6), n=r.m

As we have already remarked, Artinian modules are f.d.; more can be
said in this case since, if MR is Artinian and Ui,...,Un are uniform

submodules of M with eUiceM, then we can find a simple submodule Si
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inside each Ui, and we get ®SiSeM, whence Soc(M)SeM and then
u(M)=u(SocM)=length(SocM), as a consequence of part a) of the next

result,

PROPOSITION 2.8 Let MR be any module, and let N,Ni,...,Nr be

submodules of M. Then

a) iIf NceM then u(N)=u(M); if M is f.d. then the converse holds;
b) if N€cM then u(M)=u(N)+u(M/N);

c) if K is an e-closure for N in M then u(M)+u(K/N) = u(N)+u(M/N);
d) if N1,...,Nr are independent then u(eNi)=Zu(Ni).

PROOF: a) If u(N)=w then also u(M)=w; if u(N)=n and N&eM, then any
direct sum %Ui of uniform submodules of N which is essential in N is
also essential in M, whence u(M)=n. If u(M)=u(N)=n and Ui is as
before, then ®Ui must be essential in M, because otherwise it could be

extended to a direct sum with more than n terms, so that NceM (1.2.a).

b) Note first that, if some term is not finite, then the formula holds
by (2.2.b) and (2.2.c). Suppose then they are all finite; let
0=NocNic:++cNr=N be a chain of complements in N (and hence in M) with
each Ni+1/Ni uniform; and let O=(Ko/N)c(Ki/N)c::-c(Ks/N)=(M/N) be a
chain of complements in M/N (whence each KiS€cM by (1.7)) with each
(K1+1/N}/ (Ki/N) uniform (and then so is Ki+1/Ki). Thus

0=NocNic"- +  cNr=N=KocK1c" * + cKs=M

is a chain of complements in M with each factor uniform, so that, by
(2.7), u(M)= r+s= u(N)+u(M/N).

c) As in b), if some summand is not finite, then the formula holds.
Assume then they are all finite; by (1.2.c), (K/N)E€c(M/N)} and thus,
applying b) twice, we get

uM) = u(K)uVK) = u()+u (o) = u(K)ru/N)-u(K/N),

and since u(N)=u(K), the result follows.

d) This follows easily by induction from b) (recall that every direct

summand of M is a complement in M).m




SECTION 3: INJECTIVE HuLLS; FINITE DIMENSIONAL INJECTIVE MODULES

This section start with a proposition which shows how the injectivity
of a module depends on its essential extensions; this is one of the
ways in which the concept of injective hull of a module appears
naturally (as a maximal essential extension of the module). The fact
that every submodule of an injective module ErR admits an injective
hull within E will be used to characterize the finite dimensional
injective modules. This characterization will be used later when
studying the endomorphism ring of E. At the end of the section, we
define quasi-injective modules and prove some results which will be

used later.

Injective Hulls

In this paragraph we shall change slightly our concept of essential
extension. By a (proper) essential extension of Mr we shall henceforth
mean a monomorphism f from MR to any module NrR such that (f(M)#N and)
f (M) <eN.

Recall that an injective module is a direct summand of any module
containing it (in fact this is also a sufficient condition for the
module to be injective). Next, we give two more characterizations of

injective modules.

PRCOPOSITION 3.1 A module ER is injective if and only if it does not

admit proper essential extensions.

PROOF [12; 4.2]: If ErR 1is injective and f:ErR—NR 1is an essential
extension of E, then fE(=E) is injective and hence a direct summand of
N, but since fE€eN this implies fN and therefore f is not proper.

Conversely, if ER is not injective, then there exists a module Lr
containing E such that E is not a direct summand of L; for a relative
complement E/ of E in L, EeE’ is a proper essential submodule of L by

'
(1.4), and hence'Egg—Ce%T by (1.6.c); since EnE’=0, the natural map
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’

fiECSL—L/E’ is a monomorphism with image —ou

B and hence a proper

essential extension of E.m
Using (1.6), we get at once:

COROLLARY 3.2 A module is injective if and only if it is a complement

submodule in any module containing it.m

The following lemma states that an injective module ER containing Mr
also contains an isomorphic copy of each essential extension of MR, so
that ErR may be viewed as an ‘upper bound’ for the essential extensions
of Mr.

LEMMA 3.3 Let ER be injective and let f:M—E be a monomorphism. For
any essential extension g:Mr—NR of MR there exisls a monomorphism
h:N—E such that f=hg.

PROOF: By injectivity of E, there exists h:Nr—ER with f=hg, and we
have gMceN and gMnKerh=0 (since Kerf=0), so that Kerh=0.m

let McENR; if M is injective then M&dN, and if M&dN then MScN. When Nr

is injective we get both converses.

PROPOSITION 3.4 Let ErR be injective. For any MEER the following are

equivalent:
a) M is injective;
by M is a direct summand of E;

¢c) M is a complement in E.

PROOF: We need to prove c)=a). Assume c), let g:M—N be an essential
extension of Mr and consider the inclusion u:M—E; by (3.3) there
exists a monomorphism h:N—E with u=hg; then h:N—hN is an isomorphism
which carries gM onto hgM=uM=M, whence MSehNSE (1.2.d); by assumption,
we get M=hN and hence gM= h-lth= h_1M= N. Thus MR does not admit

proper essential extensions and then it is injective by (3.1).m

Recall that any module is a submodule of an injective module [A-F;

Prop.18.6]. We are now ready to prove the existence of minimal
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injective extensions and of maximal essential extensions for any
module, and also to show that both coincide. The first of these facts
was essentlially proved by R.Baer [3], and the rest is due to B.Eckmann
and A.Schopf [12].

THEOREM 3.5 Given any module Mr, there exists a module ErR containing

M such that

a) MceE and, for any essential extension g:M—N, there exists a
monomorphism h:N—E such that hg is the inclusion map;

b) E is injective and any monomorphism f:M—E’ with E’ injective

extends to a monomorphism h:E—E’.

PROOF [12; 4.1.4 & 4.31: Let FrR be an injective module containing M,
and let E be an e-closure of M in F. Then Er is injective by (3.4) and
MceE, so that we already have the first parts of a) and b).

Since E 1is injective, the second part of a) follows by taking f in
(3.3) as the inclusion map. Also the second part of b) follows from
(3.3), taking g as the inclusion M<—E.m

A module ERrR satisfying the conditions of (3.5) is called an injective
hull for Mr. The injective hull of a module is not unique; in fact,
(3.4) and the proof of (3.5) show that, if MSFr and FrR is injective,
the injective hulls of M inside F coincide with the e-closures of M in
F. However, we have the following unicity theorem, which will allow us
to speak about ‘the’ injective hull of MR when any of the (isomorphic)

injective hulls of Mr serves our purposes.

THEOREM 3.6 If E and E’ are injective hulls of Mr, then there exists

an isomorphism f:E—E’ which is the identity over M.

PROOF: Since ER is injective, the inclusion M¢—E extends to some
f:E—E’ which, by (3.3), 1is a monomorphism. Moreover, M=fMcfECE’
together with M<eE’ imply fESeE’, whence f is an essential extension

of E and hence, by (3.1), an isomorphism.m
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Finite Dimensional Injective Modules

Finite dimensional injective modules admit a well behaved
decomposition theory, which in turn serves to characterize all finite

dimensional modules, as follows.

PROPOSITION 3.7 A nonzero module is uniform if and only if ils

injective hull is indecomposable.

PROOF: Let O#MrR be any module, Er an injective hull for M. Since
MceE, if M is uniform then so is E, and every uniform module Iis
indecomposable. Conversely, if M is not uniform and 0#K,LEMr are such
that LnAK=0, then, taking e-closures L’ and K’ for L and K in E, we
know that L’ and K’ are injective (3.4) and that their sum is direct
(1.2.e), so that L‘eK’ is injective and hence a direct summand of E;

therefore E is not indecomposable.m

PROPOSITION 3.8 Let MR be a module which has a finite decomposition

M=1§1M1 and let E be an injective hull of M. Also, for each i=1,...,n,

let Ei1 be an injective hull of Mi within E; then E=eE1.

PROOF: By (1.2.e), the sum ZEi is direct, and hence it 1is an

essential injective submodule of E; then (3.1) gives the result.=

THEOREM 3.9 A module MR is finite dimensional if and only if its

injective hull E is a direct sum of finitely many nonzero

indecomposable modules Ei,...,En. In this case u(M)=n.
PROOF: If u(M)=n then there exist uniform submodules Ui,...,Un of M
with eUiceM (2.6). If Ei is an e-closure of Ui in E (for i=1,...,n)

then E=eEi1 by (3.8), and each Ei is indecomposable by (3.7). The
converse follows from (3.7), (2.6) and (2.8.a).m
Quasi-Injective Modules

Quasi-injective modules are a generalization of injective modules
introduced by R.E.Johnson and E.T.Wong [65; p.260]. Their endomorphism




A.del Valle; MSc, 1992; Rings of Endomorphisms; Sec.3 28

rings have some nice properties that we shall study in Section 7.

Here, we introduce them and prove their first properties.

A module MR is sald to be gquasi-injective if, for every submodule N of
Mr and every homomorphism f:NrR—MR, there exists g:Mr—->MR such that
g|N=f. Obviously, every injective and every semisimple module is
quasi-injective. Also, by Baer’s Criterion [A-F; p.205], the regular
module RR (for any ring R) is injective if and only if it is quasi-

injective. In this case R is called a right self-injective ring.

The following result characterizes quasi-injective modules in terms of

their relationship with their injective hull.

PROPOSITION 3.10 Let MR be a module and let ER be an injective hull

for Mr. Then MR 1is quasi~injective iIf and only if, for every

endomorphism f of ER, fMcM.

PROOF {65;Theo.1.11: Assume that MR is quasi-injective and let
f:Er——FER be an endomorphism. Then N=Mnf'%4 is a submodule of MrR such
that fN&M; thus there exists g:Mr—MrR with g|N=f|N. Let u:MrR—ER be
the inclusion map; then, by injectivity of ER, ug extends to some
h: ER—ER, for which we have hM=huM=ugM=gMcM, and hence
Mn(hwf)"IMgf—lM; on the other hand, since h, g and f coincide over N,

we have N<Ker(h-f) and therefore
MA(h-£)"'M € MAf™™ = N € Ker(h-f),

whence (h-f)MnM=0. Since MSeE, this implies (h-f)M=0 and hence h and f
coincide over M, whence fM=hMcM.

Conversely, if fMeM for all f:Er—ER and we are given a submodule
NeMR and a homomorphism g:Nr—MR then, by injectivity of Egr, ug
extends tc h:ErR—ER for which huM= hMc€ M, i.e. hu is an endomorphism

of Mr which extends g, and therefore MR is quasi-injective.m

COROLLARY 3.11 If MR is quasi-injective and ErR is an injective hull

of Mr, then any decomposition E=gEi yields a decomposition M=?(MnE1).

PROOF: For each jeI, let fj:?Eviéﬁj; since fj may be viewed as an
endomorphism of ER, fJMQM. Thus, if xeM is expressed in E=@Ei as x=’§xk
for some finite subset K of I and some xkeEk, then each xk=kaeMnEk;

hence MQ%(MnEi). That the sum is direct and contained in M is clear.m
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COROLLARY 3.12 Let Mr be quasi-injective with finite dimension n.

Then M is the direct sum of n uniform submodules.

PROOF': If an injective hull Er of M is written as E=i§1Et with each

Ei uniform (3.9), then M=i§1(MnEi) with each MnEi uniform.m
Analogously to (3.4), we have:

PROPOSITION 3.13 Let MR be quasi-injective. Then every complement

submodule of MR is a direct summand of MR, and every direct summand of

MR is quasi-injective.

PROOF [38;Prop.4.3]: Let KsSeM; let ErR be an injective hull of Mr and
let F be an e-closure of K in E (hence an injective hull of K); since
KeMnF<F and K<eF, we get KSeMnFEM, i.e. K=MnF; if G is such that E=FeG
then we get (3.11) M= (MnF)e(MnG)= Ke(MnG), whence K<dM.

Now, suppose that M=NeK; 1let E,F be as above, and let G be an
e~closure of N, so that E=FeG. Let h:GrR—GrR be any endomorphism; if
u: G--3E and p:E—G are the canonical injection and projection of E=FeG,
then uhp is an endomorphism of ER and therefore uhpMcM by (3.10);
hence hN= hpN= uhpNS uhpMc M and hN&G imply, by the modular law,
hNE MnG= (NeK)nG= N+(KnG)= N, i.e. hNeN for all endomorphism h of the

injective hull G of N, and therefore N is quasi-injective.m



SECTION 4:  THE DIMENSION FORMULA

Although the uniform dimension of a module is a generalization of the

dimension of a vector space, in general the formula
u(A+B) = u(A) + u(B) - u(AnB),

that we shall call the dimension formula (for A+B) does not hold for
submodules A and B of an arbitrary module Mr. Moreover, taking A,B of
dimension 1 (i.e. uniform), u(A+B) may be any positive integer k or

even ». The following are two easy examples, one of each case:

EXAMPLE 1: Consider the Z-module M=Ze&(Z/nZ) where n is a product of
(powers of) k-1 distinct primes (with n=1 if k=1), and let A=(1,0)Z,
B=(1,1+nZ)Z. Then A&B=Z, whence u{A)=u(B)=1, but u(A+B)=u(M)=k.

EXAMPLE 2: Consider the Z-module M=Qe(Q/Z). Let A={(q,0):qe@} and
B={(q,q+Z):qe@}. Now A=B=Q and M=A+B, whence u(A)=u(B)=1 and u(M)=w

[@/ZE@me, where the sum runs over all prime integers).

Our purpose in this Section, which contains several results of the
author [58], is to impose conditions on a module under which the
dimension formula holds for any pair of submodules, as well as to give
some alternative general formulae for u(A+B). Another task arises from
Example 2: that of characterizing the modules Mr such that the sum of
any two finite dimensional submodules of MR 1is still finite
dimensional; we shall give a partial answer to this in the last part

of the section.

A Characterization of Modules which Satisfy the Dimension Formula

We shall say that a module MR satisfies the dimension formula if any
sum of two submodules of MR does. It is obvious that the dimension
formula for A+B holds if either u(A)=w or u(B)=w, so that Mr satisfies
the dimension formula if any sum of two f.d. submodules does. Here, we

shall prove that this is equivalent to the apparently weaker condition
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that any sum of two (f.d.) complements in MR satisfies the dimension
formula, and this happens when and only when any finite dimensional

submodule of MR has a unique e-closure.

Modules with the property that all their submodules (not only the f.d.
ones) have a unique e-closure were studied by G.Rénault in his
doctoral thesis [R67; p.42], where they are shown to be exactly those
modules such that the intersection of any two complement submodules is
again a complement submodule. This will be proved in one of the

following preparatory lemmas for our Theorem 4.4.

LEMMA 4.1 For a module MR, the following statemenis are equivalent:
a) MR satisfies the dimension formula;

by if ASeA’, BEeB’ are f.d. submodules of MR then A+BSeA’ +B’.

PROOF': a)=b) By (1.2.b) we get AnBCeA’nB’, and hence, using (2.8.a),
u(A’+B’) = u(A’)+u(B’ )-u(A’nB’) = u(A)+u(B)-u(AnB) = u(A+B)

and all terms are finite, whence A+BgeA’+B’.

b)=2a) Assume b) and note first that if N and K are complements in M
then so is NnK. For, let NnK<elL.€M; then, by b), N+(NnK)ceN+L, 1i.e.
NS€eN+L, whence N=N+L, 1i.e. Lg&N; similarly LK and thus NnK=L.
Therefore NnK is a complement in M.

Now, let A and B be arbitrary finite dimensional submodules of Mg,
and take e-closures A’ and B’ for them in M; then we get AnBCeA’nB’,
A’ ScA’+B’ and A’nB’ ScM, whence A’nB’ScB’; thus, by (2.8.a & b)

u(A+B) = u(A’+B’} = u(A’ )+u((A’+B)’ /A’ ) = u(A’ )+u(B’/(A’nB’))
= u(A’)+u(B’ )-u(A’nB’) = u(A)+u(B)~u(AnB).

Therefore, by the remark preceding this lemma, MR satisfies the

dimension formula.m

We use now (4.1) to show that the dimension formula holds in all

nonsingular modules (more proofs of this fact will come later).

COROLLARY 4.2 If MR is nonsingular then it satisfies the dimension

formula.
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PROOF: Suppose ASeA’<M and B<SeB’<€M. Then A’/A and B’/B are singular
(1.12.e) and hence so is (A’+B’)/(A+B). For, let aeA’ and beB’; then
there exist essential right ideals e¢ and f of R such that aesA and
bfcB; thus enf is an essential right ideal of R with (a+b)(enf)SA+B.
This proves that (A’+B’')/(A+B) is singular. Since M is nonsingular,

this implies A+BSeA’+B’ (1.13.c) and therefore Lemma 4.1 applies.m

LEMMA 4.3 For a module Mr, the following staltemenlts are equivalent:
a) the dimension formula holds for all complements A,B in M;
b) if A,B are finite dimensional complements in M then so is AnB;

c) each f.d. submodule of M has a unique e-closure in M.
PROOF: a)eb): Let A,B be f.d. complements in M; then AScA+B, whence
u(A+B) = u(A)+u((A+B)/A) = u(A)+u(B/(AnB)).

Then the dimension formula holds if and only if u(B/AnB)=u(B)-u(AnB),
i.e. if and only if AnBScB (2.8.c), but since BScM this is equivalent

to saying that AnBScM.

by=sc) Let L be a f.d. submodule of M, and suppose that A and B are
e-closures of L in M; then b) implies that AnB is a complement in M

containing L. By minimality of A and B (1.9) one gets A=B.

c)=b) Let A,B be f.d. complements in M. Since AnB is f.d. we can take
its (unique) e-closure K in M but then, since A and B are complements
in M containing AnB, both must contain K (1.9), and hence AnB=K, which

is a complement in M. m

REMARK: The equivalence of b) and c) without the hypotheses of finite

dimension follows exactly in the same way as above.

THEOREM 4.4 The following statements about a module MR are equivalent
a) Mr satisfies the dimension formula;

b) the dimension formula holds for all complements A,B in M;

c) if ASeA’, BSeB’ are f.d. submodules of M then A+BSeA’+B’;

dy if A,B are f.d. complements in M then so is AnB;

e) each f.d. submodule of M has a unique e-closure in M.

PROOF  [58;Theo.41: In view of the previous lemmas, and since a)=b)
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is clear, it suffices to show that b),d) and e) together imply o).
Suppose then ASeA’<M, BgeB’SM with u(A)<w, u(B)<w, and let us prove
that A+BceA’+B’. First, it is clear that we can assume A’ and B’ to be
the e-closures of A and B in M (if not, take e-closures for them and
apply (1.2.a)); then b) ensures that A’+B’ is f.d. {(and thus so is
A+B); hence we can take their respective unique e-closures K’ and K.
Since K’ is a complement in M containing A+B, the uniqueness of K as
minimal complement over A+B (1.9) implies K<K’. The same argument
applied to the inclusions ASK and BSK give us A’'cK and B’€K, whence
A’+B’ <K and this implies K’¢K. Therefore K=K' and thus, by (1.10), we

get A+BCeA’+B’. This proves c).m

Since, 1in a nonsingular module Mg, every submodule N has a unique
e-closure N={xeM: xec<N for some eSeRrR} [FA6T; p.61]; and since every
submodule of a semisimple module is a complement, we infer that the

dimension formula helds in any nonsingular or semisimple module.

Next, we make use of (4.2) to determine which Abelian groups satlsfy
the dimension formula: Let M be an abelian group. If M contains an
element of infinite order and a nonzerc element of order n, then M
contains a copy of Ze(Z/nZ), and therefore it does not satisfy the
formula (see Example 1). If M is torsion and the primary component of
M for some prime p is neither semisimple nor uniform, then M contains
a copy of (Z/pZ)@(Z/pZZ). This copy does not satisfy the dimension
formula: let A=(0,1)Z, B=(1,1)Z.

Therefore a necessary condition for M to satisfy the dimension formula
is: M is either torsion-free, or torsion with each primary component

either semisimple or uniform.

This condition is also sufficient. For, if M is torsion-free then
(4.2) ensure that the dimension formula holds in M. On the other hand,
if M is torsion and Mp denotes the p-primary component of M, then, if
A,B are submodules of M, we have clearly (AnB)p=ApnBp, and we claim
that Ap+BpZe(A+B)p.

To prove it, let aeA, beB be such that o(a+b)= (the order of a+b)= pn
for some nzl; we have to prove that some nonzero multiple of a+b lies

in Ap+Bp. If ae€Ap, say o(a)=p’, then let m=max{n,r} and note that
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O=pm(a+b)=pmb, i.e. beBp and hence we are done. If a#Ap then be&Bp by
the previous argument; in this case let q,t,r,seN be such that
o(a)=gp’, olb)=tp®, @1, 1, pl, Pl
Since p 1is prime, pnlqt and hence qt(a+b)=qta+qtb is a nonzero

multiple of a+b with p"(qta)=0 and p°(qtb)=0, i.e. qtacAp and qtbeBp,

proving our claim.
Hence, if the dimension formula holds in each Mp, then we get
u(A+B) = Zu((A+B)p) = Zu(Ap+Bp) = Z(u(Ap)+u(Bp)=-u(ApnBp))
= Zul(Ap) + Zu(Bp) - Zu(ApnBp) = u(A)+u(B)-u{AnB)

(where the sums run over all prime integers p), and this proves that

the stated condition is also sufficient.

Some General Formulae for u(A+B)

Suppose we are given submodules A,B of an arbitrary module M. Take
e-closures A’ for A in A+B, and C’ for C=AnB in B. By (2.8.c¢),

u(A+B) + u(A’/A) = u(A) + u((A+B)/A) = u(A) + u(B/C)
= u{A) + u(B) - u(C) + u(C'/C).
Note that, by modularity, A+(A’nB} = A’ and therefore
A’ /A = [(A+(A’nB))/A] = (A’nB)/(ANB).

But ASeA’ implies AnBCeA’'nB and therefore, without loss of generality,
we could have taken C’ such that A'nBEeC’<cB, whence u(A’/A)=u(C’/C).

Thus we can restate our formula as
u(A+B) = u(A) + u(B) - u(AnB) + [u(C’/C)-u(A’/A)].
This shows at once that in general we have
u(A+B) = u(A)+u(B)-u(AnB), (1)

and as a consequence we get the implication b)=sa) of (4.4). For, given

A and B, take e-closures A',B’ for them; then b) implies
u(A+B) = u(A’+B’) = u(A’)+u(B’)-u(A’'nB’ ) = ul(A)+u(B)-ul(AnB) = u(A+B).

Therefore all terms are equal, so the dimension formula holds.
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B

Consider now the short exact sequence O—eAnB—EeA@B——+A+B—+O, where
a(x)=(x,%) and B(a,b)=a-b, and let C=Im(«a). If C’ is an e-closure for
C in AeB then by (2.8.c & d) we get

u(A+B) = u(A) + u(B) - u{AnB) + u(C’/C}.

In [8] Camillo and Zelmanowitz established, for submodules A,B of a

module M, the formula
u(A+B) = u(A) + u(B} - u(D) + u(b/C), (I1)

where C=AnB and D2C is a submodule of A maximal with respect to the
property of being the domain of a monic extension into B of the
identity in C. Note that (II) and (2.8.c) give (I).

We finally use (II) to give another proof of (4.2).

COROLLARY 4.2 If Mr is nonsingular then it satisfies the dimension

formula.

PROOF': Given A,BcM let C,D be as in (II) and let f:D—B be a monic
extension of the identity in C. We claim that D/C is nonsingular. For,
let deD and suppose there exists an essential right ideal ¢ of R such
that de<C; then for all ese, de=f(de)=f(d)e so that (d-f(d)l)e=0, but
gince M is nonsingular this implies d=f(d) and hence deC. That is,
d+C=0 in D/C, which proves that D/C is nonsingular. Thus (1.12.f) C&cD
and hence u(C)=u(D)-u(D/C). Therefore (II) takes the form of the

dimension formula for A+B, as desired.m

Finiteness of u(A+B).

We give now a partial answer to the following question: If A,B are
finite dimensional submodules of a module Mr, when is A+B also finite

dimensional?

Following [6], we say that a module MR is guotient finite dimensional
(or gq.f.d. for short) if M/N is f.d. for all submodules N of Mr. The

following lemma is straightforward:
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LEMMA 4.5 Let MR be any module and N any submodule of MrR. Then M is
g.f.d. if and only if both N and M/N are q.f.d. In particular, a

finite direct sum is q.f.d. if and only if each summand is q.f.d.m

LEMMA 4.6 For a ring R the following statements are equivalent:
a) A+B is f.d. for all f.d. submodules A,B of any right R-module N;
b) every f.d. right M-module is q.f.d.;

c) every f.d. injective right R-module is q.f.d.

PROOF: a)»b) Suppose there exist modules NeMrR such that u(M)=n<w but
u(M/N)=w. Then we can take submodules of Me(M/N) as in Example 2,
namely A={(x,0+N):xeM} and B={(x,x+N):xeN}, such that A and B are
f.d. (they are isomorphic to M) but A+B=Me(M/N) 1is not f.d.,

contradicting a).

b)=»a) Note that u(A)<e and u(B)<w imply u(AeB)<w (here A®B is an
‘external’ direct sum) and that A+B is a quotient of AeB. Since AeB is

q.f.d. by hypothesis, A+B is finite dimensional.

brec) This is clear since every finite dimensional module is contained
in a finite dimensional injective module (3.9} and every submodule of

aqf.d is q.f.d.m

Next we make use of (4.6) to study in some detail the commutative
case. Recall that a module MR is finitely embedded if its injective
hull is a finite direct sum of injective hulls of simple modules {see
[59]). The following proposition shows that examples in [7] cannot be

extended to the infinite case:

PROPOSITION 4.7 Let R be a commutative Artinian ring. Then every sum

of finite dimensional R-modules is finite dimensional.

PROOF [58;Prop. 81]: By (4.6), we Jjust have to prove that every f.d.
injective R-module is ¢.f.d. By [59; Theo.l1l], every f.d. injective
R-module ErR ig finitely embedded. Then [34; Prop.3] shows that Er is

Artinian and therefore it is gq.f.d.m

For the Noetherian case we have the following:
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PROPOSITION 4.8 Let R be a commutative integrally closed Noetherian

domain with field of fractions K. Then the following statements are

equivalent:

a) If A,B are f.d. submodules of an R-module M then A+B is f.d.;
b) every f.d. (injective) R~module is q.f.d.;

c) K/R is f.d.;

d) R is a semilocal principal ideal domain.

PROOF [58;Prop.9]1: a)eb) This is just (4.6).
by=c) Since R is a domain, KR is uniform and injective. Apply b).
cy»d) This is Jjust [52; Prop.4.7]. Note that there the hypothesis ‘K

has Krull dimension’ is only used to get ‘K/R is f.d.’

d)sb) Since R is commutative Noetherian, every f.d. injective R-module
E is a finite direct sum of injective hulls E(R/P) of R/P for some
prime ideals P of R [33; Theorem 2.5, Prop.3.1]. But d) implies that
each P is either 0 (in which case E(R/P)=K by [33; Theorem 3.4]) or
maximal (and then E(R/P) is Artinian by [34; Prop.3]1), and therefore E
takes the form E=Ke-::-9KeA where A is Artinian and thus q.f.d. Hence
by (4.5) it suffices to show that K is q.f.d. as R-module or, since R
is Noetherian, that K/R is gq.f.d.. In fact, we prove next that K/R is
Artinian.

Let P1=va...,Pn=an be the maximal ideals of R and denote by P?
the R-submodule of K generated by l/pi. Since Pi/R is annihilated by
Pi  and nonzero cyclic, 1t 1is simple. Moreover, every simple
R-submodule of K/R is one of the PT/R. For, let S/R be simple; then it
is annihilated by some Pi, 1i.e. SpiSR, whence RCSSPT and thus S=P;
Therefore the sum Z(PT/R) (which is indeed direct, see [52]) is the
socle of K/R. But every torsion module over a principal ideal domain
has essential socle, whence K/R is finitely embedded and thus Artinian
by (34; Prop.3]l.m




CHAPTER 2
THE RING OF ENDOMORPHISMS OF A MODULE

SecTioN 5:  ENDOMORPHISM RINGS; FIRST RESULTS.

Given a module M=Mr, call S=EndR(M)=HomR(M,M). We can view the binary
operation ‘composition of maps’ as a ‘product’ in S, and easy
computations show that the Abelian group S (see Chapter 0) becomes
then a ring with identity 1s=1x (the identity map in M). This ring S
is called the ring of endomorphisms of M or the endomorphism ring of
M.

For example, consider the regular module Rr. For each reR, the map
Ar:R—eR defined by Ar(t)=rt (‘left multiplication by r’) is an
endomerphism of Rgr, and Ar¢As whenever r#s, On the other hand, 1if
feEnd(Rr) and f(l)=r, then f(t)=f(1t)=Ff(1)t=rt for all teR, so that
f=AP. In fact, the map rk—ehr defines a ring isomorphism A:R—End(RRr)

with inverse given by fi—f(l).

In the general situation, M becomes a left S-module if we define the
product of an element x of M by an element f of S as fx=f(x) (and,
fortunately, this agrees with our convention about the notation). Then
M is clearly faithful as an S-module and it is an (S,R)~bimodule:
M=sMrR (see Chapter 0).

Given a submodule N of M and a nonempty subset W of S, we will write
WN for the product submodule T{tN: teW}.

An S-submodule N of M need not be an R-submodule. For example consider
the regular module RRr; by the previous example, the End(Rr)-submodules
of R are the left ideals of R, which need not be submodules of RR.

The (S,R)-submodules of M are wusually called fully invariant
submodules of M, since they are precisely the R-submodules N of M
whose image under any endomorphism of MrR remains inside N. Therefore,
if NeMr is fully invariant, we can define the "restriction map"

End (MrR)—End(NrR) in the obvious way, and it is easy to check that it
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is a ring homomorphism (and it is a ring epimorphism whenever
arbitrary endomorphisms of N can be extended to End(Mr), e.g. if NcaM

or if MR 1s quasi-injective).

For example, we can restate (3.10) as ‘A module MR is quasi-injective
if and only if it is a fully invariant submodule of its injective
hull’. Other examples of fully invariant submodules are the ideals of
R (when M=Rr); the annihilators in Mr of left ideals of R; the socle
of M (in fact, every sum of homogeneous components of Soc(M)); and the
radical of M [FA67; p.179]. Clearly, since Lat(sMr) is a sublattice of
Lat(Mr), arbitrary sums and intersections of fully invariant

submodules are still fully invariant.

The relationships between properties of M and properties of S have
been widely studied, and the next sections are devoted to a review of
the main results obtained in this area for certain classes of modules.
Sometimes we shall make use of the fact that End(Rr)=R and rewrite
these results in the specific case M=Rr, obtaining as corollaries some

well-known theorems about rings.

With no further background we can already get some easy properties of
the endomorphism rings of well-behaved modules, such as vector spaces,

simple, semisimple or free modules. S will always stand for EndR(M).

PROPOSITION 5.1 If MR is a simple module then S iIs a division ring.

PRoOF: If feS is not the zero homomorphism then Kerf<Mr and O#ImfEMr;
since M has no nontrivial submodules we have Ker(f)=0 and Im(f)=M,

whence f is invertible in S. Therefore S is a division ring.m

If MR admits a finite decomposition as M=%Mi and we write Mij for
HomR(MJ,Mx), then S may be identified with the ring of n-square
matrices [fij] with each fi} in Mij. Specifically, if uj:Mj—eM and
p1:M—eMx are the injections and projections (respectively) of the
coproduct eMi, then the map fr—»[fij], where f}}=pifuj, provides the

desired ring isomorphism.

In particular, if Mhﬂ represents the direct sum of n copies of M,
then End_ (M™

entries in S=EndR(M). Using this facts, we can prove the next result.

) 1s isomorphic to the full ring of n by n matrices with
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PROPOSITION 5.2 If MR is semisimple and finitely generated then S is

a finite product of matrix rings over division rings (and hence S is a

semisimple Artinian ring).

PROOF: We can write M=1§1M5 where the Mi’s are the homogeneous
components of M, each of which is a finite direct sum of copies of a
simple module, whence each EndR(Mi) is a matrix ring over a
division ring (5.1).

On the other hand, it is clear that any homomorphic image of a
semisimple homogeneous module is again homogeneous of the same type,
and then for the given decomposition of M we have HomR(MJ,M1)=O
whenever i#j. Therefore it is clear that S is the ring product of the

EndR(Mi)’s, which completes the proof.m

PROPOSITION 5.3 If MR is free then S is a row-finite malrix ring.

PROOF: Let {xi:ieI} be a basis for Mr. Denote by RFMI(R) the ring of
row-finite I-square matrices with entries in R. Then the map

¢:S——eRFMI(R) given by ¢(f)=[rij](hj)6hd where the T s are such

that f(x1)= Y x r, is a ring isomorphism.m
jeI

Idempotents

The behavior of the idempotent elements in a ring of endomorphisms is
very important, since they are closely related with the direct
summands of the module, as the following lemma shows. Before stating
it, we recall that a set {ti:iel} of idempotents of a ring is said to
be orthogonal if, for all i®j in I, we have titj=0. An idempotent t is
primitive if it cannot be expressed as t=t1+--°+tn, with {t1""'tn} a
family of orthogonal idempotents and n>1. Finally, a finite orthogonal

set {t1"“'tn} of idempotents is said to be complete if t1+---+tn=1.

LEMMA 5.4 Let MR be any module and let S=End(Mr). Then:
a) if N&Mr, then NSdM if and only if there exist an idempotent t of S
such that N=tM; in this case M=tMe(1-t)M, and N is indecomposable

if and only if t is primitive;
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b) M is indecomposable if and only if 0 and 1 are the unique
idempotents of S, if and only if 1 ig primitive in S;

c) if {tizieI} is a family of orthogonal idempotents of S then the sum
thiM is direct; if 1 is finite and §t1=1, then M=?Mi;

d) if M=121Mi then there exists a family {ti:ieI} of orthogonal
idempotents In S with M1=t1M and Ker(t1)=191Mj for each iel, If 1
is finite then %tx=1'

PROOF: a) If M=NeL then the canonical projection t:NeL—5N is the
desired idempotent. Conversely, it is clear that, for taztES, we have
M=tMe(1-t)M. Of course, this t is not unique in general.

If N is the direct sum N=NieN2 of two nonzero submodules and we define
ti:N1@N2®L—3+N1 for 1i=1,2, then t1’t2 are nonzero orthogonal
idempotents with t=t1+t2, and thus t is not primitive. Conversely, if
t=t1+t2 where t1 and t2 are nonzero orthogonal idempotents of S, then
it is easy to see that N=t1M®t2M, and hence N is not indecomposable.

b) is clear from a).

cy To see that the sum ZItﬁﬂ is direct, let §tjxj=0 for some finite
subset J of I and for some xJeM; then, for all keJ, we have
0= tk(gtjxj) = thk. Therefore Zth is direct. If I is finite and
£t =1 then, for all xeM, x= 10o= (Zt Jx= Zt x sztiM’ so that M=eMi.

d) If M=igIMi and we define tj:M=®M1—5»Mj then {tj:jel} is the desired
family of orthogonal idempotents.m

COROLLARY 5.5 MR admits a finite indecomposable decomposition if and

only if S possesses a complete family of primitive idempotents.m

COROLLARY 5.6 If S=End(Mr) is a local ring then MR is an

indecomposable module.

PROOF: Since in any ring the only invertible idempotent is the
identity, and since in a local ring the non-invertible elements form
an ideal, 1 is a primitive idempotent of S, and therefore Mr is

indecomposable by (5.4.b).m

PROPOSITION 5.7 Let MR be any module and let S=End(MRr); for every
idempotent t of S there is a ring isomorphism ¢ between tSt and
EndR(tM] given by ¢(tft)(tx)=tftx for all feS and xeM.
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PROOF: It is clear that the given map is a ring homomorphism and
that it is injective. If geEndR(tM) then it is easily checked that

=¢(tgt), and hence ¢ is a ring isomorphism.=m

The Dual Module and the Trace Ideal of a Module

Next, we introduce the concepts of the dual module of Mr and the trace
ideal of M in R, whose first properties we state here. These concepts

will be used in later sections.

For any module Mr, we already know that M is an (S,R)-bimodule, where
S=End(Mr). Moreover, for each module N=NrR, the Abelian group HomR(M,N)
is, in a natural way {(see Chapter 0}, a right S-module. In case N=RR,
we write M for Hom(MR,RR), and call it the dual module of Mr; since R
is an (R,R)-bimodule, M has a natural (R,S)-bimodule structure (see
again Chapter 0), M=rMs.

For a module N=Nr, it may be of interest to know which elements of N
appear as images of elements of M under an homomorphism of Hom(Mg, NRr).
The trace of MR in Nr, written tN(M), is the submodule of N generated

by these images, i.e.
tN(M) = Z{pM: gpeHom(Mr, NR)}.

In case N=Rr, the trace of M in R, i.e. tR(M)=Z{wM:¢eﬂ}, is usually
called the trace ideal of Mr; it is a two-sided ideal of R since M is
a left R-module.

Now, consider the bimodules sMr and RMs; the tensor products ﬁ@sM and
M®Rﬁ are, respectively, (R,R)- and (S,S)-bimodules. Given xeM and gel,
let (p,x) represent the image of x under ¢, i.e. (¢,xX)=px, and let
[x,¢] be the map M—M defined by [x,¢ly=x(e,y) for all yeM. It is
easy to check that [x,¢] is an endomorphism of MR and that the maps
(,):MxM—>R and [,]:MxM—S are bilinear, so that they extend to
Z-homomorphisms (,):ﬁ@steR and [,]:M@Rﬁ—+s. Easy computations show
that, in fact, (,) is an homomorphism of (R,R)-bimodules and [,] is an
homomorphism of (S,8)-bimodules. We rewrite here their action on

generators for easy reference:



A.del Valle; MSc, 1992; Rings of Endomorphisms; Sec.5 43

(,):ﬁ@SMww»R [.]:M@Rﬁ——es
pax— (@, x)=px x®p —>[x, ¢]1: M—M
yi—x, ply=x(p,y)
Note that the image of (,) is precisely tR(M), the trace ideal of Mgr.

Note also that, for any xeM, weﬁ, reR and feS, we have

[xr, @]

[x, rel r(g,x) = (re,x) (g, x)r = (¢, xr)

(pf ,x) = (¢, fx) fix, el [fx, ¢l [x,lf [%,ef].

All these relations will be assumed in the sequel, and we shall use

them without further reference.




SECTION B: GALOIS CONNECTIONS AND CORRESPONDENCE THEOREMS

A very natural approach to the study of the relationships between
properties of a module MR and properties of the ring S=End(MRr)
consists in seeking out bijections between the lattice &£=Lat(Mr) and

either of the lattices fi1=Lat(sS) or &r=Lat(Ss).

The concept of "Galois connection", that we shall introduce shortly,
provides a general source to get lattice (anti-) isomorphisms, and
some examples of these connections will fit perfectly our purposes.
For any module Mr we shall find, in a natural way, two Galois
connections: Gi between £ and £1 and Gz between £°° (the opposite
lattice of &) and &#r. For each one of these, we shall get the
corresponding sets of "closed" elements in &, &1 or &, as well as

lattice (anti-) isomorphisms between them.

This general setting seems to have been first introduced by Baer [4],
and has been widely employed (see K.Wolfson, G.Tsukerman, and S,Khuri
[63, 54, 28, 29, 30, 31]); most of the proofs in this section are to
be found in [30] and [31].

If we want to study a property of S which may be stated in terms of a
class € of, say, right ideals, our two tasks will be: First, to check
that the right ldeals in € are closed objects of & for G2 (or, if in
general they are not, to find conditions on Mr under which they
actually are}; and second, to identify the images of the elements of €
via the corresponding isomorphism. In this way, we obtain a bijection
involving the ideals we are interested in and a certain class of
submodules of MR (we shall call that a correspondence theorem)}, and
from this bijection we can deduce necessary and sufficient conditions

on M in order to get the desired property on S.

Fortunately, these bijections will not only preserve (or reverse) the
inclusions, but also we will be able to prove that every member of the
domain € is a direct summand of S if and only if every member of the
image is a direct summand of Mr (6.2), and this will enlarge the range

of the applications of our correspondence theorems.

Let us first introduce the concepts of closure operator in a lattice
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and Galois connection between two lattices, and state their first

properties (for details see e.g. [S; Chap.III, Sec.7 & 81).

Closure Operators and Galois Connections

Let (L,=) be a complete lattice. A closure operator in L is a map
c:L—L (we shall represent the image of acL under c by a®) which

satisfies:

asac, for all aeL;
asb = a°5b°, for all a,bel;

(a®)%=a®, for all aeL.

For example, if MR is a module in which every submodule has a unique
e-closure, e.g. a nonsingular module or a f.d. module in which the
‘dimension formula’ holds (see Section 4), then ‘taking e-closures’ is
a closure operator in Lat(Mr). In a ring R, the most common closure

operator acting on Lat{(Rr) is given by ar—sRZ(a).

An element a of L 1is said to be c-closed if a°=a; the c-closed
elements of L are precisely the images under c of elements of L; we
denote the set of c-closed elements in L by L°= {aeL:a®=a}= {a°:aeL}.
In the previous examples, the closed elements were, respectively, the
complement submodules of Mr and the right annihilator ideals of R. The
set L° with the order inherited from L forms a complete lattice,

(however, it is not in general a sublattice of L).

lLet L1 and L2 be complete lattices (since the risk of confusion is
small, we shall use the same symbol = for the partial orders in Li and
L2). A Galois connection between Li and L2 consists of a pair G={t,c}

of mappings T:L1—L2, c:L2—l1 satisfying

a=b » T(a)zt(b) for all a,beli;
Xsy = oxX)zo(y) for all x,yelz;

a=ct(a) and x=to(x) for all aelLi, xelz.

For example, if R 1is any ring, then the annihilator operators
£:Lat(Rr)—Lat(rR) and R:Lat(RR)—Lat(Rr) form a Galois connection.

If G={t,¢} is a Galols connection between L1 and Lz, then the
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composition maps ot:Li—L1 and to:L2—L2 are closure operators. Let f1
(resp. [2) represent the lattice of ot-closed (resp. Tto-closed)
elements of L1 (resp. L2). It is easy to prove that [i={c(x):xel2} and
f2={t(@):ael1}, and that the restrictions =:fa—f2 and o¢:f2—f{1 are
inverse lattice anti-isomorphisms. The elements of [i are often called

the Galois objects of Li (for i=1,2) with respect to G.

For a lattice L, let L°® stand for the opposite lattice of L, i.e. the
lattice consisting of the same underlying set with the opposite order.

A Galois connection G={t,c} between LI® and Lz must then verify

a=b > T(a)st(b) for all a,beli;
Xsy = ¢(X)sSc(y) for all x,yelz;

azotT(a) and xX=to(x) for all aelLi, xXeLz2;

(where = always denotes the order in the original lattices L1 and Lz2);
in this case the restrictions t:f1—sfl2 and ¢:f2—f1 are inverse

lattice isomorphisms.

The Galois Connections Gi1 and G2

Let Mr be any module and let S=End(Mr). Write &£=Lat(Mr), £i=Lat(sS)
and &£c=Lat(Ss). As always, let £ and R denote the annihilator
operators in S, and let 1S and ry denote the annihilators in S of
subsets of M and in M of subsets of S, respectively. Specifically, for

any nonempty subsets W of S and X of M,

£(W)={feS: fg=0 VgeW} ls(X)={feS: fx=0 VxeX}={feS: Xc<Kerf}
R(W)={feS: gf=0 VYgeW} rM(W)={xeM: gx=0 VgeW}=g2wKerg

Also let, for any subset W of S and any submodule N of Mr
rS(N)={feS: fMEN} oh(W)=Z{gM: geW}.

With the notation of Chapter 0, we could have written (NéM) for 1S(N);
note also that TS(N) may be identified with Hom(M,N) {(since N is a
submodule of M), and it is a right ideal of S. On the other hand,
GM(W) is just the f‘product’ WM, which is an R-submodule of M.

It is easy, although a bit tedious, to check that

1) the mappings 1s and r, form a Galois connection Gi between £ and
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£1; the closed elements of & and &1 for Gi will be called,
respectively, a-closed (annihilator-closed) submodules and a-closed
(left) ideals, and we shall write Ma and ¥a for the sets of a-closed
elements of £ and %1, i.e. Ma={rH(W):W§S} and $a={ls(N):N£MR}; if N is

a submodule of M, we shall sometimes write N® for rals(N)'

2) the mappings T and oy form a Galois connection Gz between £ and
£r; the closed elements of £ for G2 will be called, following
[30], M-cotorsionless submodules of M; the Galois objects of &r for G2
will be simply called To-closed (right) 1ideals. We shall write
M@T={0M(W):WSS} and yT¢={ts(N):NSM}.

3) the mappings R and £ (as we have already remarked) form a Galois
connection between £1 and &r, whose Galois objects are respectively 1
and #&r, where we write #1 (resp. #r) for the set of left (resp. right)
annihilator ideals of S. In particular, from the existence of a
lattice anti-isomorphism between 1 and & we infer the well known
fact that, for any ring, ACC (DCC) on right annihilators is equivalent
to DCC (ACC) on left annihilators.

We wish to notice here the importance in what follows of the sets ¥a
and yra’ since for any class € of ideals of S contained in either of

these sets we will get a correspondence theorem involving €.

Apart from the inclusion relations which are inherent to the fact that
the above are Galois connections, some other relations always occur,
as it is easily verified. They are listed below, and will be used

throughout this section without further reference.

LEMMA 6.1 With the above notation we have, for all nonemptly subsets
W of S, for all submodules N of M and for all f,teS with t2=t:

a) rSrM(W)=R(W); lsoM(W)=2(W);
b) R(sf)=R(f}; LS)=2L(f); R(t)=(1-t)S; #£(t)=S(1-t)
c) rM(Sf)=rH(f)=Kerf; rM(St)=(1—t)M;
ls(fM)=£(f); ls(tM)=S(1—t);
d) 0H(fS)=fM; ts(tM)=tS;
PROOF: We only prove the second half of d), since the rest of the

proofs are mechanical. So let t2=teS, then ters(tM) and hence

tSStS(tM); if gets(tM) then, for all xeM, there exists yeM with gx=ty,
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whence tgx=t2y=ty=gx, i.e. g=tgetS, which completes the proof.m

In particular, by (6.1.c¢,d), for each feS, Kerf is a-closed and fM is
M-cotorsionless. Then, using (5.4.a), we deduce that every direct

summand of MR is a-closed and M-cotorsionless.

We now intend to show some examples of situations in which these
Galois connections are particularly useful. For example, as a
consequence of (6.1.a), every member of #1 (resp. «r) is an a-closed
ideal (resp. a to-closed ideal), so that the ‘first step’ outlined at
the beginning of the section is already done, and this will be helpful
when studying conditions in S which depend on its annihilator ideals,
such as being a Baer ring or a ring with chain conditions on

annihilator ideals.

In the same way we shall study conditions in M under which the right
complements of S will be Galois objects of G2; we will make further

use of these conditions in Section 9.

We close this section with a brief study of the principal and finitely
generated left or right ideals of S. This study will be carried on in
Section 10, where we shall characterize the quasi- injective and
quasi-projective modules whose endomorphism rings are Noetherian,

semiprimary or Artinian.

In what follows, a bijection between two partially ordered sets which
is order-preserving (resp. order-reversing) will be called a
projectivity (resp. a duality). Note that, if ¢:L1—L2 is a
projectivity (e.g. a lattice isomorphism) and Ki is a subset of Li
(i=1,2), then ¢:Ki1—Kz is a projectivity if and only if ¢@(K1)=Ka, if
and only if ¢(Ki1)€K2 and ¢-1(K2)EK1. Of course, a similar remark holds
for dualities.

The following lemma, announced at the beginning of the section, will
be used in the proof of most applications of our correspondence

theorens:

LEMMA 6.2 a) Assume that ls and ry determine a duality between
certain subsets U of Ma and V of ¥a. Then every member of U is a

direct summand of MR if and only if every member of V is a direct

o
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summand of sS.
b) Assume that 1:S and Oy determine a projectivity between the subsets
U of Mﬂ and V of 3’1:0*' Then every member of U is a direct summand

of MR if and only if every member of V is a direct summand of Ss.

PROOF: a) Let U,V be as stated, and assume USD={NcMr:N<aM}; then, for
all AelV, there exists t?=teS such that ru(ﬂ)=tM; also, since Vc¥a, we
have %Izlsrn(ﬂ), whence &= IS(tM)= S(1-t), which is a direct summand of
sS. Conversely, if every member of ¥V is a direct summand of sS and
Nell, then there exists t°=teS with 1_(N)=St and hence, since NelSia,
N= rnls(N)= rH(St)= (1-t)M is a direct summand of Mg.

b) is proved similarly.m

Correspondence Theorems for Annihilators

As we have already remarked, the class 1 of left annihilator ideals
of S is included in Ma so that, in order to obtain a correspondence
theorem for left annihilators, all we have to do is to identify the

a-closed submodules of MR which correspond to the ideals in £1.

THEOREM 6.3 For any module Mr set Mi={NSMg: N=[0‘MTS(N)]a}. Then the

maps ls:M1—>541 and rM:sdl——»ﬂi are inverse dualities.

PROOF: Since every element of M1 is an a-closed submodule and every
element of #1 is an a-closed ideal, the only things we have to check
are that 15(/141)st11 and that rH(sdl)SML

If NeM1 then (6.1.a) gives ls(N)= lsoutS(N)= 2TS(N)E 41, i.e.
ls(Mi)Esdl. On the other hand, again using (6.1.a), if #A=¥R(A) then
rulso*nrs(ru(%{)) = r fR(A) = r (A), l.e. r (Heii.u

A Baer ring is a ring in which every left (or right) annihilator ideal

is generated by an idempotent. From (6.2) and (6.3) we get

COROLLARY 6.4 a) S has ACC (DCC) on left annihilators if and only if
M has DCC (ACC) on Mi1.

b) S is a Baer ring if and only every member of M1 is a direct summand
of MR.m
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A module MR is a self-generator 1if t“(M)=N for all NeMr (see Section §
and compare with the definition of generator in Section 8), i.e. if
all its submodules are M-cotorsionless. For a self-generator Mr it is
clear that Mi=Ma; however, there exist modules which are not self-
generators but verify Mi=Ma [30;p.395]. A module for which Mi=Ma, i.e.
a module MR such that, for each Ne#a, we have N=[¢MTS(N)]a, is called
an a-self-generator. In this case we get not only a duality between Ma

and #1, but also a projectivity between Ma and «r:

THEOREM 6.5 For a module Mr the following are equivalent:

a) MR is an a-self-generator;

b) the maps 1S:Ma-m»&1 and rn:#b-maMa are Iinverse lattice anti-
isomorphisms;

¢) the maps TS:Mame% and ﬁvmelah(ﬂ)]a from dAr to Ma are inverse

lattice isomorphisms.

PROOF: a)=b) Since Ma=M1 by hypothesis, (6.3) gives the result.

b)=c) Since rs(Ma)Esdr (6.1.a) and [O‘H(a)]aEJﬂa for all #HAedr, we Jjust
have to prove that both mappings in c) are inverse of each other:

If Hedr then ts[wn(ﬂ)]a= Trlc (A)= Re(A)=4 (6.1.a).

S HS M
If NeMa then, by b, lS(N)Eﬂl, i.e. 2RIS(N)=1S(N), and hence

a— a— — —
[oMrS(N)] = PulsoﬁTs(ruls(N)) = rKQRIS(N) = rnls(N) = N.

cya) This is clear from the definition of a-self-generator.=s

COROLLARY 6.6 Let MR be an a-self-generator. Then
a) S has ACC (DCC) on left annihilators if and only if MrR has DCC

(ACC) on a-closed submodules;
by S is a Baer ring if and only if every a-closed submodule of MR is a

direct summand of M.

PROOF: By Corollary 6.4.m

A module MR in which every complement submodule is a direct summand is
called a CS-module. For example, every quasi-injective module is a
CS-module (3.13). If MR is a module for which the a-closed submodules
coincide with the complements in M, then we can rewrite (6.6) in terms

of the module being a CS-module or finite dimensional.
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As we have remarked, for a nonsingular module Mr, ‘taking e-closures’
is a closure operator in Lat(Mr) and hence, for any NEMR, we can write
N® for the (unique) e-closure of N in M. For such a module (and by
abuse of language for all modules) we shall write Me for the set of

essentially closed (i.e. complement) submodules of Mgr.

PROPOSITION 6.7 a) If MR is nonsingular then MaSMHe.
by If MR is a CS-module then MeSMa.

PROOF: a) Assume that MR is nonsingular, and let NeMa. Let K=Ne; then

N€K and hence 1S(K)Sls(N); on the other hand, if fels(N) and xeK, then

(N:x)<€eRR and fx(N:x)SfN=0, whence fx=0 by nonsingularity; this means

that fel (K) and hence 1 (K)=1 (N). Therefore K& r 1 (K)=r 1 (N)= N
S s s M'S M's

and thus N=K, so that NeMe.

by If M is a CS-module then every element of Me is a direct summand of

Mr and hence is a-closed, whence McSHa.m

COROLLARY 6.8 Let MR be a nonsingular a-self-generator CS-module.
Then S is a Baer ring. If, in addition, MR is finite dimensional, then
S has ACC and DCC on left (and right) annihilator ideals.

PROOF: By (6.7), we have Ma=Me. Then (6.6.b) gives the first part,
while (6.6.a) and (2.1) yield the second.m

Correspondence Theorems for Right Complements

In the next lemma, we shall make use of the concepts of the trace
ideal T of a module MR and of the dual module M of Mr, as well as of
the maps (,):MeM—R and [, ]1:MeM—S, which were defined in Section 5.

LEMMA 6.9 Let MR be a module with trace ideal T. The following
statements are equivalent:

a) XT#0 for all O=xeM;

b) [x,M]1#0 for all O#xeM;

c) NTSeN for all NeMr.

PROOF: a)sb) If [x,M]=0 then O=[x,MIM=x(M,M)=xT and thus x=0.
b)=c) Let NeMr; if N=0 there is nothing to prove; otherwise, for each




A.del Valle; MSc, 1992; Rings of Endomorphlisms; Sec.6 52

O#xeN, we have [x,ﬂ]¢0, i.e. there exists ¢eﬁ such that [x,¢l#0; thus
there exists yeM with 0#[x,¢ply= x(¢,y)e xRnNT, what proves that NTSeN.

c)sa) Let O#xeM; thus we get xR#0 and xT=(xR)TSexR, whence xT#0.m

A module which satisfies the equivalent conditlons of (6.9) is called
a non-degenerate module. If MR is a generator of ModR {i.e. if tN(M)=N
for all N in ModR, see Section 8) then T=tR(M)=R and hence Mr is
non~degenerate (and, as we already remarked, self-generator). However,

none of these conditions implies that Mr is a generator [30; p.387].

Let ®r stand for the set of right complement ideals of S. Part d) of
the following proposition, namely that every right complement in S is
Tto-closed {i.e. ﬁrsytw) whenever MR is non-degenerate, suggests that
non~degeneracy is a suitable condition under which we will be able to

obtain correspondence theorems for right complements.

PROPOSITION 6.10 Let MR be non-degenerate. Then

a) for any 0#N&MrR we have tS(N)¢0;

b) if BB are right ideals of S then #ASeB o wx(ﬂ)ﬁeou(ﬁ);
¢) for any right ideal & of S, Hserswu(ﬂ);

d) every right complement in S is tTo-closed;
e) for all NEMR we have GhTS(N)SeN;
£y if NcK are submodules of MR then N<e&K ¢ TS{N)SeTs(K);

g) MR is an a-self-generator.

PROOF': a) Let O#N¢Mr; then (6.9) gives 0«[N,M] and hence 0¢rS(N),

since clearly [N,ﬂ]STS(N).

b) Assume first that #AceB (as right S-modules); for all 0#xe0h(5)
(which has the form x=§fix1 for some finite set I and some fieB,
xleM), we have 0z [x,M]= zlfi[xi,ﬂ] €8, and hence 0=An[x,M]; thus

0 = (Enlx,M1)M € AMA[x,MIM = AMAXT < EMAXR,

whence EM=¢H(ﬂ)se¢M(B).
Conversely, if oh(ﬂ)geoH(B) then, for all O=feB, fM is mnonzero, and

hence anGM(ﬂ)¢O whence, by non-degeneracy,
0 # [fMno, (&),M] < [fM,MInlEM, ] < fSnd.

Therefore #HceB, and this finishes the proof of ).
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¢) Since, for all #HSSs, we have #gt o (A) and o (A)=c Tt 0o (), b
S M M HS M

i <
gives Z{._e'csc'n(a).
d) If & is a complement then c¢) implies H=1:50‘H(ﬂ), as required.

e) Let O#NeMr and O#xeN; then, by a), 'L'S(xR)io, and for any Oatfe'ts(xR)
we have 0 = fM € XRmMTS(XR) < ano‘H'cs(N), whence c-*H'rS(N)seN. If N=0

then the result is obvious.

f) The cases N=0 or K=0 are trivial. Assume then 0#NSeK whence, by e),
o*HTS(N)So*MTS(K)SeK and o*M*rS(N)EeNSeK; thus (1.2.a) O‘HTS(N).C_eO‘MTS(K)
and hence, by b, TS(N)S;e'rS(K). Conversely, if 'cs(N)Se'cS(K) then, by
by and e), o*MTS(N)Seo‘M'cS(K)SeK; but o‘ﬂ‘rs(N)QNsK, and therefore NceK by
(1.2.a).

g) Let NeMa; we have to prove that N=[0'M1:S(N)]a, and for this it will

suffice to see that ls(N)=lso~H'cs(N), since then the action of r, on

both sides will yield the desired equality. Also, since O‘H“L'S(N).C.N, it

will suffice to prove that ISO’HTS(N)SIS(N).

Let then felSO‘MrS(NJ; thus f(O‘H'rs(N))=O, which clearly implies
| fr_(N)=0; now, since [N,ﬁ]s-ts(N), we get [fN,Ml= fIN,Mlg f7 (N)= 0

which, by non-degeneracy, implies fN=0, i.e. fels(N), as required.m
Now, we are ready to prove the following correspondence theorem:

THEOREM 6.11 Let MR be non-degenerate and let M2={NeMr: N is

M-cotorsionless and TS(N)et‘g’r}. Then ts:Mz——aﬁr and o Gr—M2 are

Iinverse projectivities.

PROOF: Since MzEMm._ by definition and &-QS"_W (6.10), we just have to
prove that TS(.MZ)Q@’r and that O‘M(i‘gr)SMZ. The first inclusion follows
directly from the definition of M2, and if #HeBGr then 92=1:50‘H(5§I) and

hence o*n(ﬁ)e.rﬂa.-
A ring R is a right (left) CS-ring if RrR (rRR) is a CS-module. And R is

said to be a right Goldie ring if it is a right finite dimensional

ring (i.e. Rr is f.d.) with ACC on right annihilators.

COROLLARY 6.12 Let MR be non-degenerate. Then
a) S is a right CS-ring if and only if every NeMz is a direct
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summnand of Mr;

b) if MR has ACC on ‘Mo"c then S is a right Goldie ring.

ProoF: a) follows from (6.11) and (6.2).

b) Assume that MR has ACC on M-cotorsionless submodules and let
R(W1)SR(W2)c--+- be an ascending chain in dr; then, by hypothesis,
@MR(W)EOMR(Wz)S--- gets stationary at some step n and then, for kzn,
we get  2£R(Wn)= lso*MfR(Wn)= ISO‘MR(Wk)= 2LR(Wx), and hence R(Wn)=R(Wk)
for all k=zn. Therefore S has ACC on right annihilator ideals (note
that we c¢an prove in the same way that DCC on M-cotorsionless
submodules implies DCC on right annihilators).

To see that S 1is right Goldie, it remains to show that it is right
f.d., but ACC on M~cotorsionless submodules implies ACC on M2, which
in turn implies ACC on 6r (6.11) and hence (2.1) S is right f.d.m

In the previous paragraph, we had to introduce the notion of
a-self-generator in order to get Ma=M1. Now, it would be of interest
to get conditions under which M2 coincides with the set of complement
submodules of Mr. Two of the concepts already introduced will suffice

to get Ma=Me, though in this case these conditions are not necessary.

THEOREM 6.13 Let MR be non-degenerate. If MR is a self-generator or

a CS-module, then TS:Me-—-%@r and o Gr—Me are inverse projectivities.

PROOF: By (6.11), it will suffice to prove that, under the stated
conditions, Maz=AMe.

Let NeMz and let K be an e-closure for N in M. Since N&ek,
TS(N)EeTS(K) by (6.10.f), but we have TS(N)G&-, whence 'rS(N)='cS(K)
and N=0-MTS(N)=0‘MTS(K). If MR is a self-generator then K is
M-cotorsionless, and if Mr is a CS-module then K&dM; in any case
K=0‘M1:S(K)=N and therefore N is a complement in M.

For the converse inclusion, let KXe&eM; then, as above, K is
M-cotorsionless, and hence it remains to show that TS(K)eﬁr. Let & be
an e-closure for 'ES(K) in Ss; then IS[K)SeH and, by (6.10.b),
K=0*M1:S(K)$eo~u(21), which implies K=o‘M(ZI) and therefore BSTSO"M(H)rcs(K),

i.e. rs(K)=%IE‘€r and hence Kedlz. m

o
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COROLLARY 6.14 Let MR be non-degenerate. Then

a) if MR is a self-generator or a CS-module, then u(Mr}=u(Ss);

by if MR iIs a self-generator then MR is a CS-module if and only if S
is a right CS-ring;
c) if MR is a CS-module then S is a right CS-ring.

PROOF: a) follows from (6.13) and (2.7); by and c¢) follow from
(6.12.a), using the fact that Me=Me.m

The conditions imposed on the non-degenerate module Mr in (6.13) are
not the only ones under which Me and ®r are isomorphic. The next
result makes further use of the uniqueness of the e-closures in a
nonsingular module to show that also nonsingularity of MR implies the
existence of such an isomorphism, although in this case we have to

change slightly the definition of our maps.

THEOREM 6. 15 Let MR be nonsingular and non-degenerate. Then the maps

TS:Me—eQr and Hhe[aﬁ(ﬂ)]e from €r to Me are inverse projectivities.

PROOF: First, we see that tS(Me)gﬁr; if K€M and & is an e-closure
for rS(K) in Ss, then (6.10.b) ohTS(K)seou(ﬂ); but (6.10.e) K is the
e-closure of GETS(K) and hence, by nonsingularity, also of oh(ﬂ), i.e.
K=[0M(ﬂ)]e; in particular, 0M(%)§K and hence HStswn(ﬁ)Srs(K), i.e.
rS(K)=ﬁe€r.

Since the image of A under Hb»[mn(ﬂ)]e is in Me, it only remains to
show that both maps are inverse of each other.

As we have mentioned above, K=[0‘HTS(K)]e for all KeMe; on the other

hand, if #eBr, then #=t o (&) by (6.10.d); since on(a)se[an(a)]e,
(6.10.f) yields Hsers([vn(ﬂ)]e) and hence ﬂ=rs([¢u(ﬂ)]e), showing that

both maps are inverse of each other.m

COROLLARY 6.16 Lel MR be nonsingular and non-degenerate. Then
a) u(Mr)}=u(Ss);
b) S is a right CS-ring if and only if MR is a CS-module.

PROOF: a) follows from (6.15) and (2.7), and b) follows from (6.15)
and (6.2).m
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Correspondence Theorems for Principal

and Finitely Generated Ideals

Write P1 and Pr for the sets of left and right principal ideals of S:
P1={Sf: feS} Pr={fS: feS}.

Also, let ¥F1 and Fr represent the sets of finitely generated left and
right ideals of S, that is

n n
Fi1={ =T Sf: £,...,f €S} Fr={ T fS: £,...,f €S}.
i=1 i 1 n i=1 1 1 n
Recall that rM(Sf)=Kerf and 0M(fS)=Imf for all feS; hence, if we write
K={Kerf; feS} F={Imf: feS},
then rn(?1)=7{ and 0M(?r)=3. Further, if we set
n
Kr={ A Kerf: f_,...,f €S} $r={ T £fM: £ ,...,f €S},
i=1 i 1 n 1=171 1 n
then rn($1)=KF and oh(ﬁr)=§F.

Since, on the other hand, K and Xr are always included in Ma, while &

and ¥F always lie in M@T, we get the following equivalences:

THEOREM 6.17 With the above notation,

a) ls,r

determine a duality between K and P1 & P1E¥a;

=

b) T ,0 determine a projectivity between ¥ and Pr & ?Psyfm;

=

¢) 1 ,r determine a duality between Kr and F1 ¢ F15¥a;

=

s
s
d) T O determine a projectivity between ¥r and ¥Fr o grgyrv"

=

Recall that a ring is regular if every principal (left or right) ideal
(equivalently, every f.g. left or right ideal) is generated by an
idempotent; and that a ring is letf (right) perfect if its principal
(equivalently, f.g.) right (left) ideals satisfy the DCC [5].
Therefore we get, from (6.17) and (6.2},

COROLLARY 6.18 With the above notation, and if D={NcMr: NcaM},
a) if Pi1€¥a then: S is regular e KcD;

a’y Iif Pi1c¥a then: S is right perfect ® M has ACC on K;

by if ?rgftw then: S is regular & $<D;

b’y if ?rgyro then: S is left perfect e M has DCC on ¥;
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c) if Fi1€¥a then: S is regular ¢ KreD;
c’) if F1€¥a then: S is right perfect ¢ M has ACC on Kr;
d) if ?rszU then: S is regular <« Jr<D;
d’) if ?rS?TG then: S is left perfect ¢ M has DCC on Jr.m

Now, it is of interest to seek for conditions on MR under which one of
the equivalent conditions of (6.17) holds. In fact, conditions a) and
c) (resp. b) and d)) hold in any quasi-injective module (resp. quasi-
projective module), but we shall postpone the proof of this until
Section 10 since then we will have introduced the concept of

T-nilpotency, which will be needed when applying these facts,

Nevertheless, we can prove now the following result, which gives as a
corollary the fact that S is regular if and only if K€D and #€D, with
the notation of (6.18).

PROPOSITION 6.19 a) If 3€D then Pis¥a; by if K&D then ?rS?TG.

PROOF: a) Assume J€D and let feS; we need to prove that Sf=ler(Sf)
or, equivalently, that ler(Sf)QSf. Let gelSrH(Sf); then Kerf<Kerg and
hence hlsz—agM given by hl(fx)=gx is a well-defined R-homomorphism.
Now, if M=fMeN and we define heS by h|fH=h1and h|N=O, then hf=g and

therefore geSf, as required.

b) Assume K€D and let feS; we have to prove that tgﬁJfS)SfS. Let
gerswn(fS), i.e. gMcfM, and let t,q be idempotents of S such that

For all xeM, there exists yeM with gx=fy; we claim that the map
h :gqM—tM given by hi(qx)=ty is well-defined {(and hence it is clearly
an R-homomorphism); for, if gx=qx’ then x-x’eKerg=Kerg, so that
gx=gx’, and similarly fy=fy’ implies ty=ty’.

Define then heS by }ﬂqn=h1 and hlxmq=0; we shall prove that g=hf,
which will finish the proof. First note that, for any zeM, z=tz+(1-t)z
with (1-t)zeKert=Kerf, so that fz=ftz. Now, for any xeM, x=qx+(1-q)x
and, if yeM is such that gx=fy, then hx= hgx= hqu= ty and hence
fhx= fty= fy= gx, so that g=fh.m

‘ Kerf=Kert and Kerg=Kerq (5.4.a).
COROLLARY 6.20 For any module MR, S is a regular ring if and only if

the kernel and the image of every endomorphism of MrR are direct

summands of MR.
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PROOF: Assume that S is regular; then for every feS there exist

idempotents t,q of S such that fS=tS and Sf=Sq, and hence we get
fM = fSM = tSM = tM €D and Kerf = rH(Sf) = rM(Sq) = Kerq €D.

Conversely, if K<D and $<D then either (6.19.a) and (6.18.a) or
(6.19.b) and (6.18.b) imply that S is regular.m

Finally, we prove a lemma which will allow us to apply our previous
results to nonsingular continuous modules. A module MR is said to be
continuous if it is a CS-module such that every submodule of Mr

isomorphic to a direct summand of MR is again a direct summand of Mr.

LEMMA 6.21 Let MR be a module for which K&D. Then 3D if and only

if, for all NeD and for every monomorphism h:N—M, we have hNeD.

PROOF: The ‘only if’ part does not need the hypothesis KcD: if J<D
and N, h:N--M are as stated, take K€Mr such that M=NeK and extend h to
feS by requiring f|K=0; then hN=fN which is in D by assumption.
Conversely, assume that K€D and that hNeD for all NedD and every
monomorphism h:N-—M, and let feS; thus M=KerfeK for some K&EMgr; hence
h=f ]K:K——eM is monic and thus fM=hKeD. Therefore ¥<D.m

COROLLARY 6.22 a) If MR is continuous then S is regular & KeD;

by if MR is a nonsingular CS-module then S is regular ¢ 3<D;

c) if MR is nonsingular and continuous then S is a regular ring.

prooF: a) The ‘only if’ part follows from (6.20). If MrR is continuous
and K€D then (6.21) implies ¥<D and hence S is regular by (6.20).

by If MR is nonsingular and CS then MacHle (6.7.a) and Me=D, whence
KcMacMe=D. Therefore S is regular if and only if <€D by (6.20).

c) If Mr is nonsingular and continuous then, as above, K&D and hence S

is regular by a).m




SECTION 7: THE ENDOMORPHISM RING OF A QUASI-INJECTIVE MODULE

Throughout this section we shall study the ring S of endomorphisms of
a quasi-injective module Mr. J=J(S) will denote the Jacobson radical
of S. The main results in this area concern, rather than S itself, the
factor ring S/J, which is sometimes called the associated ring of M.
They are due to B.Osofsky [41], J.Roos [45] and G.Rénault [R75 & 44],
among others, who followed techniques introduced by Y.Utumi [57],
E.Wong and R.Johnson [64] to show that S/J is a regular and right

self-injective ring (7.11).

Further results on the endomorphism ring of quasi-injective or
injective modules with some finiteness conditions (such as chain

conditions or finite dimension)} will be proved in Sections 9 and 10.

Let us denote the factor ring S/J by S and, for any feS, let f be its
image in S. The ideal I'=I'(S), introduced in the following lemma, will

be of key importance in what follows.

LEMMA 7.1 Let MR be any module and let S=End(Mr). Then the set
r(s)={feS:Kerf<ek} is an ideal of S.

PROOF: Let f,gel(S) and heS. Then KerfceM and KergSeM, whence
KerfnKergceM. Since KerfrKerg<Ker(f+g), we have f+gel'(S); and since
Kerf<Ker(hf), we get hfel(S). Note that Ker(fh)=h-1(Kerf); then
(1.2.d) gives Ker{fh)SeM, whence fhel'(S). Therefore T(S) is a
two-sided ideal of S.m

The next proposition was first proved, for MR injective, by Y.Utumi
[55; Lemma 8].

PROPOSITION 7.2 If MR is quasi-injective then J(S)=I'(S) and S is a

(von Neumann) regular ring.

PROOF [13; Theo.3.1.al: Write J=J(S) and I'=I'(S). First we prove that
reJ: Let fel; KerfrKer(1-f)=0 implies Ker(1-f)=0, whence
(1-f):M—>(1-f)M is an isomorphism whose inverse g: (1-f)M—M extends
to some heS, for which h(1-f)=1; thus every element of I' is left
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quasi-regular and hence I'cJ [A-F; Theo.15.3].

Next we see that S/I' is a regular fing: Given feS, set K=Kerf and take
a relative complement N for K in M; then f|N is monic with inverse
g:fN—N. Since M is quasi-injective, g can be lifted to heS, and then
KeNgKer (f-fhf): for, if keK and neN, then

fhf (k+n)= fhf(n)= fgf(n)= f(n)= f(k+n).

Now, since KeNceM, f-fhfel’, i.e. f and fhf have the same image in S/T,
and this shows that S/T is regular.

Finally, we show that J&I', which will complete the proof. If felJ,
choose heS such that g=f-fhfel'; since 1-fh has an inverse we get
f=(1—fh)—1gel". Therefore JCI'. m

Our purpose now is to show that S is a Tight self-injective ring. At a
first stage, we will prove this for the endomorphism ring of an
injective module, but at the end of the section we will see that the
result also holds for quasi-injectives. We need some technical lemmas
about the lifting of idempotents from S to S; the proofs given here
are due to G.Rénault [44 or R75].

PROPOSITION 7.3 If Er 1is injective and S=End(Er), then every
idempotent of S can be lifted to an idempotent of S.

PROOF [13]: Suppose f2=feS:; then h=fo-feJ. If fl:flxmm then it is
easy to see that Kerh=KerfeImf‘. Now, since KerhgeE (7.2), if Ei1 and
E2 are injective hullg in E of Kerf and Imf’, respectively, then
E=E10E2 (3.8). Let t:EieEa—»E2; then KerhcKer(t-f) for if xeKerh is

written as x=y+fz (with yeKerf, zeKerh) then

tx= fz= (f°-h)z= f'z= f(fz+y)= fx.
This shows that t-feJ (because heJ) and hence f=t with t°=teS.m
REMARK By [S; p.186-7], (7.3) shows that any countable family of
orthogonal idempotents of S 1lifts to a family of orthogonal

idempotents of S. The same remark applies to the following corollary.

COROLLARY 7.4 Let R be a right self-injective ring, and let J(R) be
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the Jacobson radical of R. Then J(R)=2Zr(R), R/J(R) is a regular ring
and idempotents can be lifted modulo J(R).

PROOF [57;Theo.4.6 & Cor.4.101: The last two statements are direct
consequences of (7.2) and (7.3), wusing the ring isomorphism
S=End(Rr)=R (see Section 5).

To see that J(R)=Zr(R), note that the ring isomorphism ¢:R—S carries
reR to the endomorphism "left multiplication by r", and then
Ker(@(r))=R(r) for all reR. Therefore

reJ(R) ¢ ¢p(r)eJ(S) & Ker(p(r))SeRR © R(rceR & rezr(R).

] Hence J(R)=Zr(R).m

LEMMA 7.5 Suppose ErR is injective and S=End(ER). Let {ti:ieI} be a
family of idempotents of S such that the sum ZItiS is direct. Then the
sum this is direct and, if 1 is finite, then there exists t®=teS such
that @ItiS=tS.

PROOF: Since in general a sum ZIAi is direct if and only if so lis
Z%Ai for every finite subset F of I, we can assume I to be finite, say
I={1,...,n}.

f Set E1=tiE for i=1,...,n. If we prove that the Ei1 are independent then
so are the tiS: for, suppose e.g. that t1f1=t2f2+---+tnfn is an

} element of (t13)“(%ti5)‘ then for all xeE we get

|

n

n
tifi(X)= %ttfi(X) € Eln(gEi) = 0;

hence t { =0.
171
n n
Let us now prove that §E1=§E1 by induction in n. Suppose the sum F=§E1
is direct and G=FnE1#0; let H be an injective hull of G contained in
E1 and let e2=eeS be such that H=eE. Then clearly e=t1e.

Since F is injective, the inclusion map G—F lifts to some h:E—F for
n n
which we have h=§tih. For, if xe€E then hx=§t1yi for some yieE, whence

n n n
— — 2 -~ —
( gtih)x - 21( jtltjyj) =gty =gty =
Now, since GEeH and E=HeKer(e), we get GeKer(e)SeE; but e and he
coincide in G (in fact they are both the identity in G), and thus so

do they in GeKer(e), whence e=he.
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n
Thus, we get tie= e= he= gtlhé with e=0 (Ker(e)nH=0 with H=0),

n
contradicting the hypothesis that the sum §tls is direct. Therefore
n
ZE is direct, and then so is thiS.
Now, each Ei is injective and thus so is <'«131>E1; hence there exists EoSER
such that E=<‘§E1; let qj:cE}Ei—c—an, so that, for i=1,...,n, we have

qi=tiq1, and call t=q1+~--+q . Then, for all feS, we get

=]

n n
tf = qlf = %tiqif € ?tiS,

v

n
and, for all f1"" ,fnes, we get (%tifi)E < %Ei and thus
n n
(§t1f1) = t(§tif1) € tS.

Therefore tS=§tis, which proves the last statement of the lemma.m

LEMMA 7.6 With the above notation, let {ti:ieI} be a family of
idempotents of S such that the sum EIE1§ is direct, and let B=<iat18.

Then every homomorphism ¢:Bs—Ss extends to an endomorphism of Ss.

PROOF: Consider the right R-module F=BE and define g:FrR—ER as
follows: If Z=2thfjxj for some finite set J (where, for all jeJ,
fJeS, xjeE and the tj’s are elements of {ti:ieI}, possibly repeated)
then set g(z)=ZJ¢(tjfj}xj.

If g is well-defined, then it is clearly an R-homomorphism. To see
that g is actually single-valued, suppose another expression of z is
given and let K be the (finite) set consisting of those members of
{tlzieI} which appear in any of these two expression. Then, by (7.5),
there exists an idempotent t of S such that cgtkS=tS, and then tj=t’cj

for all jeJ; hence
= Zo(tt f = Zp(t)t = t
g(z) J¢( | j)xJ J¢( ) &% o(t)z
independently of the representation of z.
Therefore g extends to some heS; now, if feB may be written as f=§:tkfk
for some finite subset K of I and some fkeS, then, for all xeE,
¢(f)x = ¢(§tkfk)x = %‘q&(tkfk)x = g(%tkka) = h(%tkka) = (hf)x.

Therefore ¢(f)=hf for all feB and thus ¢ can be extended to an

endomorphism of Ss.m
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In view of (7.6), the following characterization of regular self-

injective rings will clearly help us.

LEMMA 7.7 Let R be a regular ring. Then R is right self-injective if
and only if for every right ideal b of R of the form b=?tiR (where
{ti:ieI} is a family of idempotents of R), every homomorphism br—RR

can be extended to a endomorphism of RR.

PROOF: The necessity is clear. For the sufficiency let a be any
right ideal of R. By Zorn’s Lemma there exists a maximal element b in
the family of all direct sums ?tiRSa where the ti’s are idempotents of
R, and since R is regular this maximal element 1is an essential
submodule of a (recall that every principal right ideal of R is
generated by an idempotent).

Then for an arbitrary f:a—R let g=f|b and let heEnd(RR} be an
extension of g. Then, for all xea, &=(b:x) is an essential right ideal
of R (1.1) and (h-f)xd=0; since R is right nonsingular [S; p.244], we

get hx=fx and therefore h extends f, as desired.m

THEOREM 7.8 Let ER be an injective module, S its endomorphism ring
and J=J(8) the Jacobson radical of S. Then S/J is a regular right

self-injective ring.

—

PROOF [44;Theo.3.2] or [R75;p.851: By (7.2), 6=8/J 1is regular. Then,
by (7.7), it suffices to show that, for each right ideal of S of the
form B=?Ei§ (with {Eiziel} a family of idempotents of S which, by
(7.5), may be taken in such a way that every tf=t1 in S), and for each
homomorphism ¢:B5—S5, there exists a right S-endomorphism of S which
extends ¢.

Given ¢, let F =pE); then §1=¢(Ef3=¢<'t'i)€x=fi€i. By (7.5), the sum
ﬂ=2&tis is direct, so that the correspondence tik—apﬂﬂ)=f1ti defines
a right S-homomorphism ¢:#—S. By (7.6), there exists foeS with
qp(ti)=f°t1 for all i€l. Then the right endomorphism of S defined by
left multiplication by f0 extends ¢, and this completes the proof of

the theorem.m

Theorem 7.8 yields as a corollary the following result of Y.Utumi [57;
Theo. 81].
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COROLLARY 7.9 If R is a right self-injective ring then R/J(R) is

also right self-injective.m

The following proposition allows us to extend our results to quasi-

injective modules.

PROPOSITION 7.10 Let MR be a quasi-injective module, Er its injective
hull, S=End(MrR) and H=End(ErR). Then H/J(H) and S/J(S) are ring

isomorphic.

PROOF: Since MR is quasi-injective, (3.10) implies that the map
¢:H—S given by ¢(f)=f|H is well defined. Clearly, it is a ring

homomorphism and, since ErR is injective, ¢ 1is surjective. Composing
S . H

J(S) ~ Ker(mg¢)’
and then all we have to check 1is that J(H) coincides with

Ker (ng)= ¢ ' (Kerm)= ¢ 'J(S). For, let feH; then we have

with the natural ring epimorphism m:S—S/J(S) we get

fe¢“1J(S) o ¢(£f)eJ(S) e Ker(f|M)§eM & MnKerf<eM « KerfSeE & feJ(H),

whence effectively J(H)=¢—1J(S).l

Thus we get as a corollary the announced result of B.Osofsky [41;
Theo. 12], G.Rénault [44; Cor.3.5] and J.E.Roos [45; p.176].

THEOREM 7.11 If MR is a quasi-injective module, S its endomorphism
ring and J=J(S) the Jacobson radical of S, Then S/J is a regular right

self-injective ring.m

There is an important case, namely when MR is not only quasi-injective
but also nonsingular, in which case J(S)=0 and then we obtain a result
which, together with (7.4) and (7.9), was the motivation for the study
undertaken in this section. It appeared in the form given here in [64;
Theo.5], although the proof of the self-injectivity of S is attributed
to Y.Utumi.

THEOREM 7.12 If MR is a nonsingular quasi-injective module then

S=End(Mr) is a regular right self-injective ring.

PROOF: After (7.11) and (7.2) it suffices to see that I'=I'(S)=0. For,
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let feI' and K=Kerf<eM. For any xeM we have a=(K:x)SeRr (1.1) and xack;
then (fx)a=0, and the nonsingularity of M gives fx=0. Therefore f=0
and thus I'=0.m

REMARKS 1)} Nonsingularity is necessary in (7.12). For example,
consider the Abelian group me (the p-primary component of Q/Z, where
p is any prime integer), which is an injective Z-module, but its
endomorphism ring is the ring of p-adic integers [F; p.211], which is

not self-injective [41; p.897].

2) Any semisimple module is quasi-injective with I'(S)=0, so that the

endomorphism ring of a semisimple module is right self-injective.

3) B.Osofsky has investigated when S/J is also left self-injective. In
[41] she proves, for ER quasi-injective and using results of Utumi
[56] that S/J is left self-injective if, for every orthogonal set
{ti:ieI} of idempotents of S, the map ¢:E——>]‘[It1E given by
qb(m)=<tlm>1€I is onto. In particular, for a right vector space VD over
a division ring D, S=End(Vp) is always right self-injective by the
previous remark, but S is left self-injective if and only if V is
finitely generated (i.e. finite dimensional) [G; Prop.2.23]. This may

also be proved for free modules over QF-rings [S; p.278].




CHAPTER 8: THE ENDOMORPHISM RING OF A PROJECTIVE MODULE

Although there do not exist results for the endomorphism ring of an
arbitrary projective module as strong as those given for (quasi-)
injective modules in Section 7 (but see (8.5)), the literature about
the subject 1is fairly wide. In particular, Morita’s Theorem
characterizes finitely generated projective generators of ModR as
those modules Mr such that there exists a category equivalence between
ModR and Mods, where S=End(Mr). We begin this section by recalling

Morita’s Theorem and drawing some consequences.

Next, we study the Jacobson radical of S=End(Mr} when Mr is projective
and, as a consequence, we determine when S is a local ring. This
prompts us to a brief introductory discussion of the so-called local,
regular, perfect and semiperfect (projective) modules, with which we

close the section.

The Morita Theorem; Finitely Generated Projective Modules

In this paragraph we shall make use of the language of Category
Theory, with which the reader will be assumed to be familiar. For the

standard definitions we refer to [A-F].

Given two categories € and D, a functor F:6—D is said to be a
category equivalence if there exists a functor G:D—6 such that GF
(resp. FG) is naturally isomorphic to the identity functor in & (resp.
in D). This occurs if and only if F is full and faithful and, for
every object D of D, there exists an object C of € such that FC and D
are isomorphic., Therefore, a category equivalence between € and D
preserves and reflects most of the categorical properties of the

objects and the morphisms of € and D.

Two rings R and S are (Morita) equivalent if there exists a category
equivalence between ModR and ModS (it turns out that it happens if and
only if there exists a category equivalence between RMod and SMod).

Therefore, all the properties of a ring which may be stated in
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categorical terms are preserved by Morita equivalence. For example, if
R and S are equivalent rings, then each one of the properties listed
below hold in R if and only if it holds in S (such properties are

called Morita invariants; see [FA73; p.220] for an extended list):

- (right or left) Noetherian - prime

- (right or left)} Artinian - simple

- (von Neumann) regular - semiperfect

- (right or left) self-injective ~ semiprimitive
- (right or left) hereditary - semiprime

- {right or left) perfect - semisimple

- (right or left) primitive

A generator for ModR is a right R-module Mr such that, for any module
Nr, there exists a set I and an epimorphism M(It——eN, where M‘"
represent the direct sum of copies of M indexed by I. If we set
H=HomR(M,N) and define a map M N via n(xh)heﬂ=héﬂh(xh), then
clearly Imun=tN(M) (see Section 5), and from that it is easy to see
that MR is a generator of ModR if and only if tN(M)=N for all right

R-modules N.

A progenerator of ModR is Jjust a finitely generated projective
generator of ModR. A well known theorem of Morita [39] characterizes

the rings which are equivalent to a given ring R (see e.g. [A-F;§22]).

THEOREM For two rings R,S the following statements are equivalent:
a) R and S are Morita equivalent;
b) there exists a progenerator MR of ModR with S=End(MR);

c) there exists a progenerator RM of RMod with S=End(rM).m

Therefore, the endomorphism ring of a progenerator of ModR inherits
many of the properties of R (but not all, for example being a domain,

a field, a commutative ring or an indecomposable ring are not Morita
invariants [FA73; p.221]).

Sometimes, however, being a progenerator is too restrictive a
condition in Mr for S=End(MrR) to preserve some Morita invariants. In
fact, many times ‘finitely generated (f.g.) projective’ 1is a

sufficient condition for that.
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For example, note that a f.g. projective module MR is isomorphic to a
direct summand of some finite direct sum of copies of R and so, in
particular, MR is a direct summand of a progenerator PR of ModR. If we
write S=End(Mr), H=End(Pr), and if e is an idempotent of H such that
M=eP, then it is easily checked that the assignation fyefe defines a
ring isomorphism between S and eHe with inverse ehehéeh|u. Thus,
Morita invariants which do not vanish when one passes from a ring Q to
qQq (for some q2=qu) are preserved for the endomorphism ring of f.g.

projective modules. Specifically:

THEOREM 8.1 Let MR be a finitely generated projective module. If R
has one of the properties below, then so does S=End(Mr):

a) R is a regular ring;

b) R is a semiperfect ring;

¢c) R is a right perfect ring.

PROOF: All three properties are Morita invariants. We see that eRe is
regular whenever R is and e2=eeR: given reR, let xeR be such that
(ere)x(ere)=ere; then (ere)(exe)(ere)=ere, so that eRe is regular. The
same property for semiperfect rings follows from [A-F; Cor.27.7], and
for perfect rings from [A-F; Theo.28.4.b) and Lemma 28.18].m

In fact, we can add ‘R is right Noetherian’ and ‘R is right Artinian’
to the list in (8.1), and it will follow as a particular case of
Theorem 8.3. Before stating it, we need a result which is more easily

proved if we introduce the notion of smallness in ModR.

A module MR is said to be small in ModR [M; p.74] if, for any direct
sum ?Mi of right R-modules and for any homomorphism f:Mwﬂé?Mi, there
exist a finite subset J of I and a homomorphism f:M——e@MJ such that

f=uIJf, where uIJ is the canonical inclusion of ?MJ in ?Mi.

For example, every f.g. module MR is small in Modn, since the images
via f:M——e?Mi of a finite generating set of MR (and hence all of fM)
lie in only finitely many of the Mi’'s. In fact, for a projective

module, finite generation and smallness are equivalent conditiocns.
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PROPOSITION 8.2 If MR is a finitely generated projective module then,

for all right ideals A of S=End(MR), we have H=HomR(M,ﬂM) (i.e. every

right ideal is To-closed).

PROOF [23;Lemma 2.6]: Note that, from the definitions, for any right
right ideal # of S, we get tson(ﬂ)=Hom(M,aM) and Ac<Hom(M, AM}. On the

other hand, let f:M—#AM be any homomorphism and consider the coproduct

M(ﬂ) with canonical inclusions {uh:he%}; the maps {h:M——8M: he#}

induce a homomorphism n:M(g)~—+ﬂM such that nuh=h for all heH, and =
is clearly an epimorphism.

Then, by projectivity of Mg, there exists g:M——éM(g) such that f=ng,
and by smallness there exist a finite subset J of # and a homomorphism
é:M———)MJ such that (writing u for uaJ) g=ug.

J g

M «——=2 M
eh \u g fl
u
Mt N " oy

Then, if {eh:heJ} and {ph:heJ} are the injections and projections,

respectively, of the coproduct Mg, we get
f = ng = nug = nu(§ehph)g = §n(ueh)phg = §nuhphg = §h(phg) e &

since J is finite, hefl and, for each hel, phées.
Therefore ﬂ=HomR(M,8M).I

REMARK This proof may be slightly modified in order to obtain a
similar result in which finite generation is required not in MrR but in

A. This will be done in (10.11) in a more general situation.

THEOREM 8.3 a) If MR is projective and Noetherian then S=End(MR) is
right Noetherian. by If MR is finitely generated, projective and
Artinian then S is right Artinian

PROOF: Since in any case Mr is f.g., ﬂ=Homn(M,ﬂM) for every right
ideal & of S, and therefore for any two right ideals #,B of S we have
AM=BM if and only if A=B. Thus, assuming a) (resp. b)), for a nonempty
set Z={Hi;iel} in Lat(Ss}), the set {#AiM;iel} has a maximal (resp.

minimal) element #AiM, and then #H1i is maximal (resp. minimal) in Z.m
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REMARK: In fact, any projective Artinian module is f.g., so that the
condition ‘f.g.’ in (8.3.b) is redundant (see the proof of [22;
Theo.2.8]). Moreover, even the endomorphism ring of a ZXZ-quasi-

projective Artinian module is right Artinian [43; Theo.7].

The Jacobson Radical of the Endomorphism Ring

of a Projective Module; Local Endomorphism Rings.

The Jacobson radical of the endomorphism ring of a projective module
admits a description that is dual to that given for an injective
module, and that may be improved if, in addition, RadM (the radical of

M, see (1.5)) is a superfluous submodule of Mr.

It is known that, if MR is projective and J=J(R) is the Jacobson
radical of R, then RadM=MJcM [A-~F; Prop.17.10 & 17.14]. Also, if Mr is
f.g. then every proper submodule L of MR is included in a maximal

submodule K and thus L+RadM<KcM; therefore RadM«M.

The proof of the next lemma is dual to (7.1).

LEMMA 8.4 Let MR be any module and let S=End(Mr). Then the set
A(S)={feS: fM«M} is a two-sided ideal of S.m

PROPCSITION 8.5 Let Mr be a projective module, S=End(Mr) and N=RadM.

Then

a) J(S)=A(S)<Hom(M,N);

b) there exists a ring epimorphism S—End(M/N) with kernel Hom(M,N).

c) if N«M (e.g. if MR is finitely generated) then J(S)=Hom(M,N) and
hence S/J(S) is ring isomorphic to End(M/N).

PROOF: a) A(S)EJ(S): Let feA(S); since M=fM+(1-f)M and fM«M, we get
(1-f)M=M. Then the short exact sequence O-—Ker (1-f)—M—"sM—0 splits
(by projectivity of M) and hence Ker(1-f)<dM; but since Ker(1-f)&fM,
Ker(1-f) is a superfluous direct summand of M (1.3), i.e. Ker(1-f)=0.
Hence, 1-f is invertible for all feA(S), whence A(S)cJ(S).

J(S)SA(S): Let feJ(S) and suppose fM+N=M for some NEMR; let m:M——M/N,
thus for any xeM we have x=fy+z for some yeM, =zeN, whence x+N=fy+N;

therefore nf:M—M/N is epic and thus there exists geS such that nfg=n,
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i.e. w(1-fg)=0, which means that (1-fg)MeN; but (1-fg)M=M since
feJ(S), whence N=M. Therefore fM«M, i.e. feA(S).
J(S)cHom(M,N): if feJ(S) then fM«M and hence fM&N by (1.5).

by Define ¢:S—»EndR(M/N) as follows: Let fe€S; since N=RadM is a fully
invariant submodule of M we have fNEN and then f:x+N+—fx+N defines an
endomorphism of M/N. Let then ¢(f)=f; this clearly defines a ring
homomorphism, which is indeed an epimorphism by projectivity of Mr. It
is also clear that f=0 if and only if fMSN, so that Kerg=Hom(M,N).

c) If N«M and feHom(Mr,Nr) then (1.3.d) fM«M, whence feA(S). Then a)
and b) yield c).m

REMARKS 1) Further characterizations of J(S) may be found in [61].

2) A module MR is said to be quasi-projective if for any module N=Ng,
any epimorphism f:M—N and any homomorphism g:M--N, there exists an
endomorphism h of MR such that g=fh. A careful look at the proof of

(8.5) reveals that it may be proved for MR quasi-projective.

As a consequence of (8.5) we can characterize those projective modules
which have a local endomorphism ring. Recall that a ring R is said to
be local if its radical J(R) is a maximal right or left ideal or,

equivalently, if J{R)={reR: r is not invertible}.

Before stating the next theorem, a dual of which will be proved in
Section 9, we need to introduce the dual concept of the injective
hull, namely the projective cover: A projective cover for MR is a
projective module Pr, together with an epimorphism m:P—M, such that

Kerm is a superfluous submodule of Pr.

Unlike injective hulls, projective covers for arbitrary modules seldom
exist; e.g. if R is a ring with zero radical then only the projective
R-modules possess a projective cover [A-F; Ex.17.14]. In particular,
for R=Z, this implies that an Abelian group has a projective cover if
and only if it is free.In fact, the only rings R for which every right
R-module has a projective cover are the right perfect rings defined in
Section 6 (see [51, [A-F; §28] or [FA67; §221).
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THEOREM 8.6 Let MR be a projective module, N=RadM and S=End(Mr). The

following statemenlts are equivalent:

a) S is a local ring;

b) MR is the projective cover of a simple right R-module;

¢) MR contains a submodule which is both superfluous and maximal;

d) N is a superfluous and maximal submodule of Mg;

e) MR has a unique maximal submodule (necessarily equal to N) which

contains every proper submodule of Mr.

PROOF: a)=b) Assume that S is local. In particular, S#0 and hence M#0;
therefore Nc¢M, i.e. M contains a maximal submodule K. Thus M/K is a
simple module, and if we prove K«M then obviously MR will be a
projective cover for M/K, proving b).

Suppose then LeMrR is such that K+L=M; we have to prove L=M. Since KcM
and M/K = (K+L)/K
g:M—L/(KnL), and by projectivity of MR there exists f:Mr—LR such
that g=nf, where mw: L—sL/(KnL). Now, since g#0, fM is not included in
K, and hence K+fM=M by maximality of K; therefore fM 1is not
superfluous in M, 1i.e. feJ(S) (8.5). But, since S 1is local, this

IR

L/(KnL), there exists a nonzero homomorphism

implies that f is invertible, so that M=fMclL, i.e. L=M, as required.

b)=»c) Note that b) just means that MR contains a superfluous submedule

K such that M/K is simple, i.e. K is also a maximal submodule of Mr.
c)sd) Let KEMR be superfluous and maximal in Mr; then (1.5)

K € Z{LeMr: L«M} = N = n{LeMr: L is maximal in MR} € K,
i.e. N=K.

d)»e) Obviocusly, if N=RadM is maximal, then it is the only maximal
submodule of Mg; now, if LcMr then, since N«M, N&N+LcM and thus, by
maximality of N, N=N+L, i.e. LEN.

e)=»a) Clearly, if N contains every proper submodule of Mgr, then N«M
and hence (8.5) S/J(S]EEndR(M/N). Since N is maximal by hypothesis,

M/N is simple and hence S/J(S) is a division ring (5.1), i.e. S is a

local ring.m

REMARKS: 1) Since every proper submodule of MR, for MR satisfying the

conditions of (8.6), is superfluous in MR, we can add to these
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equivalences ‘MR is a projective cover for all its nonzero quotient

modules® (c.f. (9.2.c)).

2) In [60; 8§4], R.Ware remarks that the equivalence of the conditions
which define a local ring depend largely on the fact that any ring is
projective as a module over itself, and proves that most of these
conditions remain equivalent when translated to an arbitrary

projective module (e.g. by, c), d), e of (8.6)).

He calls a module local if it is a projective module which satisfies
these conditions, so that with this terminology (8.6) says that a
projective module is local if and only if it has a local endomorphism
ring [60; Theo.4.2].

3) Also, some of the conditions which define a regular, semiperfect or
perfect ring remain equivalent when extended to projective modules.
Thus, one can define, always within the classes of projective modules,
regular, semiperfect or perfect modules. We state here, without proof,

the properties of their endomorphism rings.

Regular modules are defined by R.Ware in [60; §§ 2 and 3], as those
projective modules MR with the property that every cyclic submodule of
MR is a direct summand of MR (definitions of arbitrary regular modules
which agree with this one in the projective case may be found in [14]
and [66]). For the given definition, f.g. regular modules have regular
endomorphism rings [60; Theo.3.6] and, over a commutative ring,
projective modules whose ring of endomorphism is regular are regular

[60; Theo.3.9] (finite generation and commutativity are necessary).

Perfect and semiperfect modules were introduced by E.Mares in [32]; a
projective module MR is semiperfect if every factor module of MR has a
projective cover or, equivalently, if RadM«M, M/RadM is semisimple and
decompositions of M/RadM can be lifted to M [32]. A projective module
has a semiperfect endomorphism ring if and only if it is finitely
generated and semiperfect ([32; Theo.6.1] and [60; Prop.1.51).

A projective module MR is perfect if, for every set I and every factor
module N of the direct sum M(”, N has a projective cover. A
projective module has a perfect endomorphism ring if and only if it is
finitely generated and perfect ([32; Theo.2.4 and Cor.7.5] and [60;
Prop.5.2]).




SECTION 9:  THE ENDOMORPHISM RING OF A FINITE DIMENSIONAL MODULE

We start this section by characterizing finite dimensional injective
modules in terms of their endomorphism rings. In fact, an injective
module Er will be f.d. if and only if S=End(ErR) is semiperfect
(Theorem 9.5). This will allow us to embed the factor ring S/T'(S) of
any f.d. module MR in a semisimple ring, and as a consequence we will
find conditions under which every nil subring of S is nilpotent

(Theorems 9.8 and 9.13). These latter results are due to R.Shock [50].

Later on, we shall look for situations in which not only finite
dimensionality, but also the dimension of Mr, 1is inherited by
S=End(Mr); this will be used, for example, to characterize some
modules which have Goldie rings of endomorphisms (J.Hutchinson and
J.Zelmanowitz [25]). In this area we will find some help in the

results and techniques of Section 6.

Before that, we prove an easy but interesting result, which should be
compared with (10.2).

PROPOSITION 9.1 Let MR be a finite dimensional module and let
feS=End(Mr). Then f is invertible if and only if it is left (or right)

invertible.

PROOF: We have to prove that, for all f,geS, fg=1 implies gf=1 (in
fact, this condition is equivalent to Mr being directly finite, i.e.
such that MR is not isomorphic to a proper direct summand of itself,
see [G; Lemma 6.9]).

First, note that a f.d. module cannot be isomorphic to a proper direct
summand of itself, because if M=NeL with N=M and L#0 then MaNeL" for
all nelN, which is impossible.

Now suppose that f,geS satisfy fg=1; then t=1-gf is an idempotent of S
such that tg=0, and thus M=gMetM: if gx=gyegMntM then ty=t2y=tgx=0,
whence gMntM=0; and for all xeM, x=gfx+(x-gfx)egM+tM.

Since g is monic (fg=1), we get, by the above remark, that gM=M, and
hence tM=t(1-gf)M=0, i.e. gf=1l.m
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Finite Dimensional Injective Modules

Here, the results of Section 3 will be used to show that an injective
module is finite dimensional if and only if its endomorphism ring S is
semiperfect (i.e. idempotents lift modulo J=J(S) and S/J is semisimple
[5)]). As a first step towards this result, we characterize those

injective modules which are uniform (compare with (8.6)).

PROPOSITION 9.2 Let ER be a nonzero injective module, and let

S=End (ER). The following conditions are equivalent.

a) Er is uniform;

b) ER is indecomposable;

¢) ErR is the injective hull of all its nonzero submodules;

d) S is a local ring.

PROOF: a)eb) follows directly from (3.7).

a)ec) since every nonzero submodule of E is essential in E.

c)=d). We show that the sum of any two noninvertible elements f,g of S
is noninvertible. For, note that Kerf#0, because otherwise fE would be
a nonzero injective submodule of E and thus, by c), E=fE, whence f
would be an isomorphism. Similarly, Kerg#0 and hence, by a),
0#KerfrKergsKer (f+g), whence f+g is not invertible.

d)=b) is (5.6).m

THEOREM 9.3 Let ER be an injective module, n a positive integer and

write S=End(ER). The following conditions are equivalent.

a) ER is finite dimensional and u(ER)=n;

b) ErR is a finite direct sum of indecomposable injective modules, and
any such decomposition of E consists of exactly n nonzero summands;

c) S contains no infinite family of orthogonal idempotenis, and n is
the maximum cardinality of all families of nonzero orthogonal

idempotents of S.

PROOF: a)eb) follows directly from (3.9).
b=sc). By (9.2) and by the Krull-Schmidt—-Azumaya Theorem, every direct

decomposition of E has at most n summands (and at least one of them

has exactly n); then apply (5.4.c).
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c)=a). Let ?Ml be any direct sum of nonzero submodules of ERrR; for each
ieIl, let Ei be an e-closure in E for Mi; now, for each JjeI, let
pj:?Ei—an and eJ:EJ—e?Ei be the canonical projection and injection,
and let u:?Ei—aE be the inclusion map.

By injectivity of Ej (3.4), there exists fj:E—eEj (which may be viewed
as an element of S} such that fju=pj; thus, for each xeE, fJXEEj and

hence fjx= pjfjx= upjfjx. Now let j,kel and xeE; we get

ffx=Ffupf x = fx=8 fx
K j P T PP RN

(where Bjk is the ‘Kroeneker delta’), and therefore {fj:jeI} is a
family of nonzero orthogonal idempotents of S.

Thus, for any direct sum of nonzero submodules of ErR we get a family
of nonzero orthogonal idempotents of S with the same cardinality, and

vice-versa (5.4.c), whence the implication c)sa) follows readily.m
The following lemma is the key to prove our Theorem 9.86.

LEMMA 9.4 Let R be a regular ring. Then R is semisimple of length n
(equivalently, of right or left dimension n) if and only if R contains
a family of n nonzero orthogonal idempotents, and no set of nonzero

orthogonal idempotents of R has more than n elements.

PROOF: We prove that a regular ring R such that R does not contain
infinite families of orthogonal idempotent elements is semisimple. The
lemma follows then easily from the well-behaved decomposition theory
of semisimple modules and rings.

From the hypothesis about the idempotents in R, it is easy to see that
1€R may be written as a finite sum of primitive orthogonal idempotents
of R, and therefore R is a finite direct sum of indecomposable right
(or left) ideals; but, in a regular ring, an indecomposable right
ideal o#0 must be simple: for any O#rea, there exists e’=eeR with
rR=eR, whence rR is a direct summand of Rr and hence of a; since rR#0
and a is indecomposable, we get rR=a, and thus a is simple. Therefore

R is semisimple.m

THEOREM 9.5 Let ER be injective. Then E is finite dimensional if and
only if S=End(ER) is semiperfect. In this case u(ErR)=u(S/J(S)).
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PROOF: Let J=J(S). Recall that S/J is regular (7.2) and idempotents
may be lifted modulo J (7.3). Now (9.3) and (9.4) give:

S is semiperfect with u(S/J)=n ¢ S/J is semisimple with u(S/J)=n e
the idempotents of S/J verify the conditions of (9.4) e

so do the idempotents of S ¢ u(ErR)=n.m

COROLLARY 9.6 Let R be a right self-injective ring. The following

conditions are equivalent.

a) R is semiperfect;

b) R has no infinite family of orthogonal idempotents;
c) R is right finite dimensional;

d) R is left finite dimensional.m

COROLLARY 9.7 The endomorphism ring of a f.d. injective nonsingular

module is semisimple.

PROOF: Such a ring is semiperfect by (9.5) and has zero radical by

{(7.2) and the proof of (7.12); hence it is semisimple.m

Nil Subrings of the Endomorphism Ring

of a Finite Dimensional Module

The fact that the injective hull ErR of a finite dimensional module Mr
has the same dimension as Mgr, together with the previous study of
finite dimensional injective modules and with the fact that S=End(Mr)
may be embedded in End(Fr), will allow us to study in some detail the
nilpotency of nil subrings of S. A sufficient condition for these to
be nilpotent will be found in terms of the rationally closed
submodules of Mr, which we shall shortly introduce. The main results

in this area are due to R.Shock [50].

THEOREM 9.8 Let MR be any module (resp. a f.d. module), and let
I'=I"(8). Then S/T' is ring isomorphic to a subring of a regular (resp.

semisimple) ring.

PROOF [50;Lemma 2]: Let ErR be an injective hull for Mr, and let
H=End (ER); then J(H)=I'(H) and H/J(H) is regular (semisimple if Mr is
f.d.), and thus it suffices to embed S/T" in H/T (H).
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Let S’={heH: hMcM} and T’‘={heS’: Kerh€eE} = I'(H)nS’. For feS, let
f’ be an extension to E of f; then it is easy to check that the
correspondence f+I'—f’+I" gives a ring isomorphism between S/I' and
s’/T’, and S’/I"’ may be embedded in H/J(H) via h+I +—h+I'(H). m

We now turn our attention to the study of the nil subrings of S. The

starting point is the next result.

PROPOSITION 9.9 Let MR be finite dimensional and S=End(Mr). Then
a) every nil subring of S/T'(S) is nilpotent;

b) if T'(S) is nilpotent then every nil subring of S is nilpotent;
¢y a nil subring Q of S is nilpotent if and only if QnlI'(S) is

nilpotent.

PROOF: a) From a result of I.Hernstein and L.Small [24], in a ring
with ACC on right and left annihilators every nil subring is nilpotent
(see also [C-H; Theo.1.34]1), so that, from (9.8) and by symmetry, it
suffices to see that, in general, a subring of a semisimple (Artinian)
ring has ACC on right annihilators.

Let B be a subring of the semisimple ring T. Write RB, 23 {resp. RT,
£T) for the annihilator operators in B (resp. T) and note that, for a
nonempty subset X of B, RB(X)=WT(X)nB. Now suppose X1’Xz"" are
nonempty subsets of B such that RB(Xi)QﬂB(Xa)S--- and set Yi=QBRB(X1)
for i=1,2,..., so that ﬂBuﬁ)=ﬂB(Yi) for all i. If ZB acts in that
chain then we get Y12Y22--- and hence RT(Yl)EﬂT(Yz)E-~-. By hypothesis

there exists neN such that, for all k=n, RT(YR)=RT(Yn) and hence
?B(Xk) = ?B(Yk) = RT(Yk]nB = ﬂT(Yn)nB = RB(Yn) = WB(XHL

proving that B has ACC on right annihilators, as desired.

b) This follows then easily from a).

c) If Q is a nil subring of S and we write I" for I'(S), then (Q+I')/T is

a nil subring of S/T" and then (Q+['}/T & Q/(QnI') is nilpotent; if QnI

is also nilpotent, then so is Q, and this proves c).m

COROLLARY 9.10 Let R be a right finite dimensional ring; then a nil
subring Q of R is nilpotent if and only if so is QnZr(R). If Zr(R) is

nilpotent then nil subrings of R are nilpotent.

PROOF: As we already remarked in the proof of (7.4), TI'(R)=Zr(R).m
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Now, we can look for f.d. modules Mr for which I'(S) is nilpotent, and
then use (9.9.b) to deduce that all nil subrings of S are nilpotent. A
sufficient condition both for MR to be f.d. and for TI(S) to be
nilpotent will depend on the concept of M-rationally closed submodules

of MR, which we define next.

Let LEN be submodules of MR; we say that N is an M-rational extension
of L provided HomR(K/L,M)=O for all KeMr such that L€KeN. If LEMr has
no proper M-rational extensions within M, we say that L 1is
M-rationally closed. A concept of rational closure (r-closure),
similar to that of e-closure developed in Section 1, may be defined in
termg of a class of right ideals of R called M-dense ideals: oa&RR is
M-dense if xa#0 for every nonzero element x in an injective hull of
MR, Now, for L&Mr, let L’={xeM: (L:x) is M-dense}; L’ is called the
r-closure of L in M, and it turns out that L is rationally closed in M
if and only if L=L‘ [50].

Before state the next theorem, we need two previous results. We shall

again make use of the notation and results of Section 6.

LEMMA 9.11 If S has DCC on a-closed ideals, then I'(S) is nilpotent.

PROOF [36]: We know from (6.1.a) that every left annihilator ideal
of S is a-closed, so that S has DCC on left annihilator ideals and
hence ACC on right annihilator ideals, whence the chain R(ICR(I?)g: -« -
n+1l

(where I'=T'(S)) stops, i.e. R(I™M)=R(T
prove that rsR(r"), which will imply F“ﬂ=0, proving the lemma.

) for some neN; now, wWe shall

Suppose there exists fe\R(I"); since FeR (™)

, there exists fleF
such that anifxo, i.e. flfeF\?(Fn); in this way, we can construct an
infinite sequence f’f1’f2"" of elements of I' such that gr=fr---f1f¢0
for all reN. Since gPM¢U and Ker(fr+1)SeM, ngnKer(fr+1)¢O, whence
Ker(gr)cKer(gr+1). Since the strictly ascending chain
Ker(gl)CKer(gz)c--- consists of right annihilators in M of subsets of
S, also 1S(Kerg1)bls(Kerg2):--- is strict, contradicting the

hypothesis of the lemma and hence proving our claim.m

LEMMA 9.12 Let LcN be submodules of MRr; then L‘cN’ if and only if

there exists xeN\L such that (L:x) is not M-dense.
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PROOF: Clearly, L‘=N’ if and only if NgL’, and by definition this
occurs if and only if (x:L) is M-dense for all xeN. Since (x:L)=R

(which is M-dense) for all xelL, the lemma follows.m

THEOREM 9.13 Let MR be a module with ACC on rationally closed
submodules, and let S=End{(Mr). Then

a) MR is finite dimensional;
b) S has DCC on a-closed left ideals;

c) every nil subring of S is nilpotent.

PROOF [50; Theo. 3,101: a) Let L,N be nonzero independent submodules
of Mr; for any O#xeN we have x(L:%)SNnl=0, so that (L:x) is not
M-dense and hence L‘c(NelL)’ by the preceding lemma. Therefore, any
infinite direct sum of nonzero submodules of MR would force a strictly
ascending chain of rationally closed submodules of M, a contradiction

which proves a).

by Let #,B be a-closed left ideals of S with #cB, and set E=ru(ﬁ),
F=rM(B); thus ls[E)=HcB=LS(F). Take then feS such that fF=0 and fE=0,
and pick zeE with fz#0; since fz(F:z)&fF=0, (F:z) is not M-dense and
thus F'cE’ by (9.12). Therefore, for each strictly descending chain
ls(F)DlS(E):--- of left annihilators in S of subsets of Mr, we find a
strictly increasing chain E‘cF’/c--+ of rationally closed submodules of

Mr, which must be finite by hypothesis.

c¢) This follows directly from a), b), (9.11) and (9.9.b).m

COROLLARY 9.14 If MR is injective with ACC on rationally closed

submodules, then S is semiprimary.

PROOF: By (9.13.a) and (9.5), S is semiperfect, and by (7.2),
(9.13.b) and (9.11), J(8S) is nilpotent. Thus S is semiprimary.m

Quotient Rings of the Endomorphism Ring

of a Finite Dimensional Nonsingular Module

In Section 6 we saw that, for a non-degenerate module Mr, we can
obtain a satisfactory correspondence theorem for right complements of

S=End(Mr). Next, we shall make use of this and other facts to get some
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information about the endomorphism ring of a non-degenerate finite
dimensional module. The results here are due to J.Hutchinson and
J.Zelmanowitz [25].

Our first two result are of key importance in what follows, and they
state that, for a non-degenerate module Mr, the dimension of Mr and
the right dimension of S coincide, generalizing (6.14.a) and (6.16.a),

and that MR is nonsingular if and only if S is right nonsingular.

THEOREM 9.15 If MR is a non-degenerate module and S=End(MrR), then
u{Mr)=u(Ss).

PROOF [1;Theo.2]: Let Ni®---eNr be a direct sum of nonzero submodules
of Mr; by hypothesis, the right ideals [Ni,M] (i=1,...,r) of S are
nonzero. We claim that they are independent, which will 1imply
u(Mr)=u(Ss).

Suppose that fle[Ni,ﬂ] (i=1,...,r) are such that Zf1=0; for all xeM we
get 0=(2f1)x=2(f1x) with each flxe fiMQ [Ni, M1M= NitR(M)E Ni, and
then, by assumption, fix=0 for each 1; this shows that fi=0 for each
1, so that the [Ni,M]’s are independent.

On the other hand, for each direct sum #Hie-:---®#ft of nonzero right
ideals of S, we claim that the nonzero submodules #HiM (i=1,...,t) of

MR are independent, whence u(Ss)=u(Mr) and hence the theorem is

proved.

Suppose then that xieﬂiM (i=1,...,t) are such that 2x1=0; then, for
any ¢eM, ~ yeM, we have (Z[Xi,w])y=(2xl)(¢,y)=0, whence 2[xi,¢]=0;
but, for each i=1,...,t, we have [x,ple [HiM,Ml= &1lM,M]c Fis= &

and thus, by assumption, [xi,¢]=0 ; therefore [xi,ﬁ]=0 and hence, by

hypothesis, X1=0' as required.m

THEOREM 9.16 Let MR be a non-degenerate module. Then Mr is

nonsingular if and only if S is right nonsingular.

PROOF  [25;Prop.2]: Assume first that MR is nonsingular, and let
feZr(S); then there exists #ASeSs such that f#=0. hence #AMgKerf and
thus, since #AMceM by (6.10.b), Kerf<eM. Now, for any O#xeM, we have
e=(Kerf:x)SeRrR (1.1) and fxe=0; by assumption, this implies £x=0,
whence £=0, i.e. Zr(S)=0.

Conversely, assume that Zr(S)=0 and suppose there exists O#2xeZ(MR). By
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hypothesis, we can find weﬂ such that f=[x,¢l#0, and we claim that
KerfceM.

To prove so, let yeM\Kerf; then O0=fy=x(p,y), whence (p,y)#0; now,
since e=rR(x)SeRR, we can choose reR such that O#(¢,yiree, i.e.
fyr=x(p,y)r=0; and then we have got O#yreKerf, proving the claim.
Thus, if we prove that [Kerf,M]ceSs, since clearly [Kerf,MISR(f), we
will get 02feZr(S), a contradiction which will imply Z(Mr)=0.

We prove in general that NSeM implies [N,M]CeSs: let O#geS; then gM#0
and hence NngM#0; thus, by hypothesis,

0 #= [NngM,M1 € [N,MInigM, 8] € [N,M]lngS;
therefore [N,M1CeSs.
With this information in hand, and making use of some results of
Section 6, it is straightforward to characterize those non-degenerate

modules which have a right Goldie endomorphism ring.

COROLLARY 9.17 Let MR be a non-degenerate module. Then S is a right

Goldie ring if and only if MR is finite dimensional with ACC on
a-closed submodules (and both conditions hold if MR has ACC on

M-cotorsionless submodules).

PROOF: By (9.15), S is right f.d. if and only if MR is f.d. By
(6.10.g), Mr is an a-self-generator and hence (6.6.a) S has ACC on
right annihilators if and only if MR has ACC on a-closed submodules.
Therefore the result follows, the statement in parenthesis being a

direct consequence of (6.12.b).m

COROLLARY 9.18 Let Mr be a non-degenerate nonsingular module. Then S

is a right Goldie ring if and only if Mr is f.d.

PROOF: Note that every a-closed submocdule of MR is a complement in M
(6.7.a), and therefore, if MR is f.d., then it has ACC on a-closed

submodules. Thus (9.17) gives the result.m

Now, we can study when S has a semisimple classical or maximal right
quotient ring. Rings with these properties may be characterized as

follows:
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(1) A ring R has a semisimple (simple) classical right quotient ring
if and only if R is a semiprime (prime) right Goldie ring [19]
(see e.g. [S; p.54] or [G; Theo.3.351).

(2) A semiprime (prime) ring R has a semisimple (simple) right
quotient ring if and only if R is a right nonsingular and right
f.d. ring [G; Cor.3.32].

(3) A ring R has a semisimple maximal right quotient ring if and only

if R is a right nonsingular and right f.d. ring [46; Theo.1.6].

Therefore we obtain at once, from (3), (9.15) and (9.16),

COROLLARY 9.19 Let MR be a non-degenerate module. Then S has a

semisimple maximal right quotient ring if and only if Mr is f.d. and

nonsingular.=m

For the ‘classical’ case, we need a lemma. Recall that a ring R is
prime if aRb is nonzero for any nonzero elements a,b of R; and that R

is semiprime if and only if aRa#0 for any O%acR.

LEMMA 9. 20 Let MR be a nonzero nondegenerate module. Then S is a
prime (semiprime) ring if and only if §=R/rR(M) is prime (semiprime)
and [M,M1x#0 for all O#xeM.

PROOF [25;Theo.11]: Assume that S is a prime ring and write unrRﬂﬂ.
To see that R is prime we have to show that, for r,seR\aq, rRsta. But
in this case we get Mr#0, Ms#0, whence [Mr,M]#0, [Ms,M1#0. Thus, since

S is prime,
0 = [Mr,}][Ms,M] = [[Mr,MIMs,®] = [Mr(¥,M)s, M,

whence Mr(ﬁ,M)s¢O and thus, in particular, MrRs#0, 1i.e. rRsta.
Now, if xeM is such that [M,M]x=0, then I[M,M][x,M] = [[M,ﬁ]x.ﬁ] =0
whence, by primeness of S and since [M,M]#0, [x,M]=0. Then, by

hypothesis, x=0.

Conversely, assume that R is prime and that [M,Mlx=0 for xeM implies
x=0. Let f,g be nonzero elements of S; then fM#0 and gM#0 imply
M(M, £M)=[M,M1fM#0 and M(M, gM)=[M,M]gM#0, i.e (M,fM)¢a and (M, gM)¢a
whence, by primeness of R, (M,fM) (M, gM)¢a. But
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(M, £M) (8, gM) = (M, £M(8, gM)) = (8, [£M,MIgM) = (1, £1M, HlgM),

whence (M, f[M,MlgM)¢ta and thus, in particular, f£[M,Mlg#0 and fSg#0.

Therefeore S is a prime ring.

The semiprime case follows by taking r=s and f=g.m

COROLLARY 9.21 Let MR be a nondegenerate module. Then the following

conditions are equivalent:

a) S has a simple (semisimple) classical right quotient ring;

b) MR is f.d. and nonsingular, ﬁ=R/rR(M) is a prime (semiprime) ring
and [M,M]x=20 for all O#xeM.

PrROOF: This follows from (1), (2), (9.15), (9.16) and (9.20).m

Finally, we go one step further in the study of the maximal quotient
ring of 8; if S 1is right nonsingular (i.e. if MrR is nonsingular,
always under the hypothesis of non-degeneracy) then it possesses a
maximal right quotient ring. We shall describe this maximal quotient

ring in the next proposition.

PROPOSITION 9.22 Let MR be a non-degenerate nonsingular module, let
ErR be an injective hull for MR and write S=End(Mr), H=End(Er). Then H

is the maximal right quotient ring of S.

PROOF [25;Prop. 4]: By injectivity of ER, we may view S as a subring
of H; by (1.1.d) and (7.12), H is a regular right self-injective ring,
and hence a right nonsingular ring by [G; Prop.1.27] or (9.16).
Suppose we prove that, for any O#heH, SnhS#0; this 1is clearly
equivalent to SCeHs, and then Hs is nonsingular (1.12.d), whence it is
a rational extension of Ss [G; Lemma 2.24], and thus H is a right
quotient ring of S. Now, HE is injective, and then it has no proper
rational extensions [G; Lemma 2.24], which implies that H is a maximal
right quotient ring of S [G; Prop.2.28].

Let us then prove that O#heH implies 0#SnhS. Since MceE, NﬂmﬂfdMseM
(1.2.a2 & d)} and hence hN#0, because TI'(H)=0 (7.12}. Therefore, by

non—-degeneracy of Mg,

0# [hN,M1= hIN,#]= h(M~h™*M,M]1€ hM,M]nh[h™'M, 1S hSNAS.m



SecTioN 10:  THE ENDOMORPHISM RING OF MODULES WITH CHAIN CONDITIONS

We start this section by proving the classical Fitting’'s Lemma, and
obtain as a consequence the fact that every indecomposable module of
finite length has a local endomorphism ring. Next, we prove a recent
result of Camps and Dicks, whose characterization of semilocal rings
in [9] gives as a corollary that the endomorphism ring of an Artinian

module is semilocal.

Later on we introduce the concept of T-nilpotency and use it to prove
that, in the endomorphism ring of a module which is either Noetherian
or Artinian, every nil subring is nilpotent; and that every module of
finite length has a semiprimary endomorphism ring. These results are
due to Fisher and Small [16].

We close Section 10 proving that the correspondence theorems for
finitely generated ideals of S studied in Section 6 work for quasi-
injective or quasi-projective modules, and under these hypothesis we
obtain necessary and sufficient conditions on MrR for S to be
Neoetherian, semiprimary, or Artinian. The main results in this area
are due to M.Harada and T.Ishii ([22] and [23]), though our proofs of

them make use of different techniques (those of Section 6).

Fitting’s Lemma and Consequences

LEMMA 10.1 (Fitting) If MR is a module of finite length n and f is an
endomorphism of M, then M=Imf eKerf".

PRooF: Let Ki=Kerfi; the chain 0<KicK2&::+ becomes stationary at some
step j, and for the least j with this property the inclusions Ki-1cKi
are strict for 1=i=j: Suppose not; then if xeKi+1, fxeKi=Ki-1 and thus
xeKi, i.e. Ki=Ki+1; by induction Ki-1=Kj, against the minimality of j.
This shows in particular that j=n, whence Kn=K2n. Then, if
xeKerf'nImf", we get x=f"y (yeM) and O=f"x=f2ny, i.e. yeKa2n=Kn and
thus x=0. Hence Kerf nImf"=0.

On the other hand, let Mi=Imfi; the chain MaMi2Mz22--- stops at some
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minimal j and then Mi-1cMi for 1=isxj: If not, for all xeMi we have
x=fly=ff'"ly (yeM), and £'"'yeMi-1=Mi, whence f'“ly=f'z (zeM) and then
x-—f‘“izeMiu; thus Mi=Mi+1 and by induction Mi-1=Mj, a contradiction.
Therefore jsn and thus Mn=M2n.

It remains to see that M=Kerf +Imf". For all xeM, y=f"xth=Ma1 and
then there exists zeM such that y=f2nz, whence x-f'zeKerf" and thus

x=(x~-f"z)+f "zeKerf +Inf" . This completes the proof.m

COROLLARY 10.2 Let MR be a Noetherian (resp. Artinian) module and let

feEnd(MRr), then f is an epimorphism (resp. a monomorphism) if and only

if it is an isomorphism.

PROOF: Assume that MR is Noetherian. From the first part of the
proof of Fitting’s Lemma we know that, for some n, Kerf'nImf =0; but
if £ is epic then so is fn, whence Kerf'=0 and thus Kerf=0.

The proof when Mr is Artinian follows by duality.=

LEMMA 10.3 Let R be a nonzero ring in which every element is either

invertible or nilpotent. Then R is a local ring.

PROOF': First note that if a€eR has no right inverse, then it has no
left inverse: if ba=1 and n is the least integer such that a”=0, then
O=ba"=(ba)a" '=a""', a contradiction. This remark and its right-left

symmetric show that, for all aeR,
a is invertible ¢ a is left invertible ¢ a is right invertible.

Take now two non-invertible elements a,b of R; to see that R is local
it suffices to show that a+b is non-invertible. Suppose then that
(a+b)c=1 for some ceR; since bec 1is not invertible (b would then be
right invertible), there exists nelN with (bc)n=0; then
(1—bc)(1+bc+-~-+(bcfk1)=1—(bc)n=1, but 1-bc=ac cannot have a right
inverse (a would also have one). This contradiction implies that a+b

is non-invertible, and hence that R is local.m

THEOREM 10.4 If MR is a nonzero indecomposable module of finite

length, then S=End(Mr) is a local ring.

PROOF [17;Satz 31: Let n be the composition 1length of Mr; then for

all feS we get M=Kerf' eImf" (10.1). But, since M is indecomposable, it
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must be that either Imf"=0 (whence f"=0), or Imf"=M, Kerf"=0 (whence
Imf=M, Kerf=0 and thus f is invertible). Therefore any element of S is

elther invertible or nilpotent and then (10.3) applies.=

REMARK H.Fitting [17; Satz 8] also proved that, in the above
situation, J(S) is nilpotent of index at most the length of MrR (see
[FA73; Theo.17.20]).

The Endomorphism Ring of an Artinian Module is Semilocal

In this paragraph we state one of the implications of a
characterization of semilocal rings given by Camps and Dicks in [9],
who used it to solve a conjecture made by their teacher P.Menal,
namely that the endomorphism ring of an Artinian module is semilocal
{i.e. semisimple modulo its radical). Let us first introduce the
concept of maximum condition with respect to summands in a set of

subgroups of an Abelian group.

Let Q be a set of subgroups of an Abelian group M. Given X,Y,Z2 in Q
with XeY=Z, we say that X and Y are Q-summands of Z; if Y¥#0 then X is
said to be a proper Q-summand of Z. The set Q satisfies the maximum
condition with respect to summands if every nonempty subset A of Q

contains an element which is a proper Q-summand of no member of A.

For example, given a module Mg, Q={1MUﬂ:reR} is a family of subsets
of the Abelian group Mz. Suppose further that there exists a ring Q
such that M=¢gMrR and oM is finite dimensional; since, for each reR,
lM(r) is a submodule of oM, an easy argument shows that, in this case,
Q satisfies the maximum condition with respect to summands. This fact

will be used in the proof of Theorem 10.6.

PROPOSITION 10.5 Let R be a ring such that there exists an R-module

MR satisfying the following two conditions:

1) the set Q={1Muﬁ: reR} satisfies the maximum condition with respect
to summands;
2) if reR is not invertible then IMUﬂ¢0.

Then R is a semilocal ring.
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PROOF [9;Theo.11: In what follows, let U(R) be the set of all units
in R, J=J(R), R=R/J and, for all reR, write r=r+J. We have to show
that R is a gsemisimple ring.

First, we give a partial ordering in R: For a,beR, write a>b if ln(a)
is a proper Q-summand of luﬂn; then the relation = (defined in the
obvious way) 1is a partial ordering in R which, by 1), satisfies the
minimum condition. Henceforth, by minimal we shall mean minimal with
respect to this ordering.

We recall that aeJ if and only if 1-ab (and 1-ba) belongs to U(R) for
all beR. This will be helpful after proving that

3) a, x€R, 1l-ax¢U(R) =» a>a-axa.

Since, by 2), 1H(1-ax)¢0, 3) will be proved if we show that
lH(a—axa)=1M(a)@1H(1—ax); clearly the sum ln(a)+1u(1-ax) is direct and
it is contained in ln(a—axa); on the other hand, if meln(a—axa), then
m=max+m(1-ax) with maxel (1-ax) and m(l~ax)elH(aL

Now let &={aeR: a°=a and (1-a)R is semisimple in Mod-}; since & is
nonempty (1€€), it contains a minimal element, say a; clearly, the
proposition will be proved if we show that aeJ.

Suppose then that ag¢J; thus aR\J is nonempty and hence there exists

beB such that ab is minimal in aR\J. We claim that
4) xeR, 1-abx¢U(R) = abxab=ab.

By 3) we have ab>ab-abxab, and since ab is minimal in aR\J, it follows

that (ab-abxab)el, proving 4). Now we can prove
5) abR is a simple right R-module.

We show that, for any xeR such that abx#0, abx generates abR; for,
since abxeJ, there exists yeR such that 1-abxy#U(R), whence abxyab=ab

and thus abxRS abR= abxyabR& abe hence abxR=abR.

Now, since abg¢lJ, there exists ceR with 1-abcEU(R)' for this ¢ we claim

(3-abca)? = a°-a°boa-abca +aboa boa = a-aboa-abcat+abca = a-abca.
It remains to check that (I-a+abca)R is semisimple; now, if (1-a)T=
abcas for some r,seR, then reaR and, since 5=5? this implies r=ar,

i.e. (1-a)r=0; thus the sum (1-3)ReabcaR is direct and clearly it
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contains (l-a+abca)R. Since ae& and abcaR=abR 1is simple (5),
(1-a+abca)R is a submodule of a semisimple module and hence is
semisimple itself, as required.

Finally, since 1-abceU(R), we can apply 3) to get a>a-abca, but
a—-abcaef& and a is minimal in &. This contradiction shows that aelJ, as

desired. m

THEOREM 10.6 If MR is an Artinian module then S=End(Mr) is a

semilocal ring.

PROOF [9;Theo.6]: Consider the left S-module sM; for any feS, rH(f)
is precisely Kerf, and thus (10.2) shows that rn(f)io for all
feS\U(S). On the other hand, Mr is finite dimensional and then the
remark preceding (10.5) shows that &={Kerf: feS} satisfies the maximum
condition with respect to summands. Now the left-right symmetric of

(10.5) applies and therefore S is semilocal.m

Modules of Finite Length

We intend to prove that an Artinian or Noetherian module has an
endomorphism ring in which every nil subring is nilpotent (here we do
not require that subrings contain the identity of the overring), and
as a consequence the endomorphism ring of a module of finite length is
semiprimary (i.e. semilocal with nilpotent radical). The first part
was first announced by A.Goldie and L.Small in [20] for Noetherian
modules. Later on, J.Fisher [16] gave a proof for the Artinian case
which was dualizable. The second part is here easily proved using our
Theorem 10.6.

At this point, we need to introduce the concept of T-nilpotency (for
transfinite nilpotency). A subset W of a ring R is said to be left
(resp. right) T-nilpotent if, for every infinite sequence WV, of
elements of W, there exists an integer k such that wi---wk=0 (resp.
wk---w1=0). Every nilpotent subring of R 1is left (resp. right)
T-nilpotent, and every T-nilpotent subset of R 1is nil. Counter-
examples for both converses do exist (see [A-F; Ex.15.8]); however,

T-nilpotency does imply nilpotency in the following particular case.
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LEMMA 10.7 Let R be a ring with ACC on left (right) annihilators, and
let B be a subring of R .Then B is nilpotent if and only if B is left
(right) T-nilpotent.

PROOF: As we have already remarked, if B is nilpotent then it is
{left and right) T-nilpotent. Assume then that B 1s not nilpotent; by
hypothesis, 2(B)cg(B*)g- -+ gets stationary at some neN, and by
assumption Bnuaeo; then there exists bieB with biBnabO, i.e.
b eB\£(B"). Since £(B")=£(B™), this implies ban“#rO; take then b B
such that blszn#EO, so that blbzéf(Bn) and in particular b1b2¢0. In
this way, we get a sequence bl’ba"' of elements of B with bl---bk#:O

for all keN, and hence B is not left T-nilpotent.=s

THEOREM 10.8 If MR is Artinian or Noetherian, then each nil subring
of S=End(Mr) is nilpotent.

PROOF [16;Theo.1.5] or [A-F;Theo.29.2]: We assume that MR 1is Artinian;
the proof if M is Noetherian may follow dually to this one, but in
fact is a direct consequence of (9.13).

Let B be a nil subring of S. By (6.4.a) S has ACC on left annihilator
ideals, so that it suffices to see that B is left T-nilpotent (10.7).

Let us first introduce the following two concepts: a sequence {bn} in
B is an w-chain if bi-wbn:&O for all n (all subscripts will belong to
N); clearly every tail {bn’bnn""} of an w-chain is an ow=-chain. An
element beB has an w~chain if there exists an w-chain {bn} with b1=b.
If {bn} is an w-chain and isj, then the product bibiﬂ---bJ has an
w—chain.

Suppose that B is not left T-nilpotent; then e#Qi={beB: b has an
w-chain} and thus, since MR is Artinian, there exists blem such that
b1M is minimal in {bM:beQi}. By induction, and using the previous
remarks, we can construct the nonempty set Qn={beB: blbz---bn_lb has
an w-chain} and find bneQn such that bM is minimal in {bM: ben}. It
is clear that {bn} is then an «o—-chain.

Moreover, for each 1isj, we have (bi---bJM)SbiM and (blu-bj)em

whence, by minimality of biM, we get

(1) (bi- . -bjM)=b1M.

Now, for each n, call fn=b1---bn(¢0). By the last remark, an—-'me
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(=b1M) for all m,n. In particular an=f£+1M and thus, for all n,
(2) M=(Kerf )+(b M).
n n+1

To see that, 1let xeM and take yeM such that fnx=fnﬂy; then
x=(x—bn+1y)+bn+1y with fn(x—bn+1y)=0.

Let us now prove that, for nzm, f;bm=0. Suppose nzm and fnbmio; for
any kzm we have (1) bM=b --+bM and thus f b :--b M=f b M#0, what

m m k nm k nm

means fnbm---bk¢0 for all k=zm, 1i.e. fnbm has an «-chain; but
fb=(b b J(b-++bb), whence (b -+ b b )etin; then, by
nm 1 m-1 m o m m nmn

minimality of me. we get
0O#bM = (b ++-b)bM= (b ++b)oM= ++-,
m m n m m n m

contrary to the nilpotency of bm---bneB.

This also proves that meQKerfn for all n=zm, and thus

<
(3) b MS o Kerf and Z‘j‘___leMQKerfn.

Next, we show by induction that, for any n,

n +1 -
(4) 0 Kerf + Z;‘=2bjM M.

The case n=1 is covered by (2). Assume now that (4) holds for n-1;

then using (2), (3) and the modular law we get

(krSIKerfk)-l-(Z';;bjM) = [(:@ZKerfk)nKerfnp({;‘j‘=2bJM +b M =
[[(:r;\iKerfk +(Z‘J‘=2bJM)]nKerfn] +b M = Kerf +b M = M.

- . . . n
Now, since M is Artinian, the sequence (kQ1Kerfk)neN stops at some n,
for which kalKerkaKerfn+f This, together with (3) and (4), shows
that M=Kerfn+v a contradiction since f1¢0 for all 1. This

contradiction proves the theorem.m

COROLLARY 10.9 If MR is Noetherian (resp. Artinian) then T'(S) (resp.
A(S)) is nilpotent.

PROOF: Suppose MR is Noetherian and recall that I'=T'(S)={feS:KerfceM}.
By (10.8), it suffices to show that I' is nil. Let fel and consider the
ascending chain KerfSKerfzs--- of submodules of Mr; by hypothesis
n+1__'

there exists neN such that Kerf'=Kerf
that £ "M~Kerf=0 and thus, since KerfceM, we get f*=0. Hence T' is nil.

*». Then it is easy to see

The result for A(S)={feS:fM«M} follows by duality.m
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THEOREM 10.10 If MR has finite length, then S=End(Mr) is semiprimary.

PROOF [A-F;Cor.29.3]: We have to prove that S/J(S) is semisimple and
J(S) is nilpotent. Since M has finite length, it is in particular
Artinian, and therefore (10.6) S is semilocal.

Then, by (10.8), it suffices to see that J=J(S) is nil. Let feJ; by
(10.1) M=Kerf oImf" for m=composition length of M. Then Imf"rKerf=0
and Imf"=Imf™! (see the proof of (10.1)); therefore f is an
automorphism of N=Imf"; its inverse g:N—N can be extended to some heS
since N&aM, and then fh is the identity on N, what implies
NcKer (1-fh). But feJ implies that 1-fh is invertible, so that N=0 and

thus fm=0, as required.m

REMARK This last theorem may be proved starting with a weaker
assumption on M, namely that Mr is Artinian with finite homogeneous
length, and the index of nilpotency of J(S) (i.e. the Loewy length of
S) may be bounded in terms of all simple submodules of Mr. For detéils
see [48, 49, 51].

Quasi-Injective and Quasi-Projective Modules with

Noetherian, Semiprimary and Artinian Endomorphism Rings

We extend now some of the results at the end of Section 6, and
characterize the quasi-injective (resp. quasi-projective) modules Mr
which have semiprimary or left (resp. right) Noetherian or Artinian
endomorphism rings in terms of chain conditions in their lattices of
annihilator-closed (resp. M-cotorsionless) submodules. We shall keep

the notation introduced in Section 6.

The key steps in what follows are the next two theorems:

THEOREM 10.11 If MR is quasi-injective then every finitely generated

left ideal of S is amnihilator-closed.

PROOF [23;Lemma 11: We prove that, if the left ideal & is a-closed
and feS then A+Sf is a-closed; thus, since the zero ideal is a-closed,
the result follows by induction.

Assume then lsru(a)=ﬂi and feS; our task is reduced to show that
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lsrn(ﬂ+Sf)§ﬂ+Sf. Note that, for arbitrary left ideals B, of S, we
have rM(B+€)=rM(B)nrH(G). Let then gelsru(ﬂ+Sf)=1s(rn(ﬂ)nrntf)); we
have at once rﬁ(g)an(ﬂ)nrH(f); consider the following diagram in
which the rows are exact (rndn=Kerh for any heS), i,j are inclusion

maps (so that the square on the left commutes) and r,=r:
0 — r(@ar) — r(@) s frE@) -0

1 j Ki

N
0 —— r@ > M g gM > 0

An easy exercise of diagram chasing shows that there exists
k:er(H)—egM such that the resulting diagram commutes. From the quasi-
injectivity of M, k extends to some heS and then hf and g coincide in

ru(ﬂ); therefore g*hfelsrn(ﬂ)=ﬂ, whence ge#A+Sf, proving the theorem.m

THEOREM 10.12 If MR 1is quasi-projective then every finitely

generated right ideal of S is To-closed.

PROOF [A-N;Prop.4.91: The proof is dual to that of (10.11), and
consists of showing that #A+fS is to-closed whenever the right ideal 4
of S is and feS.

So, assume E=TS¢H(%), feS, and let us prove that Tsou(g+fs)£ﬂ+fs. It

is clear that 0H(ﬂ+fS)S%M+fM, so that if gEtSoM(H+fS) then gMcAM+M;
write N=HM=@u(ﬂ), p:M—>M/N, f=pf and g=pg, and note that

gM = pgM = gM;N < fMgN = pfM = M.

Thus, by quasi-projectivity of M, there exists heS such that §=fh,
i.e. pg=pfh, or p(g-fh)=0, but that just means that g-fheN and hence
geN+fS=ak(H)+fS, as required.m

Thus we get the next two corollaries from (6.18):

COROLLARY 10.13 Let Mr be quasi-injective and consider the following
statements: '

a) S is a regular ring;

b) the kernel of every element of S is a direct summand of Mg;

c) finite intersections of kernels of elements of S are direct

summands of MR;
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a’) S is a right perfect ring;
b’y M has ACC on K={Kerf;feS};

c’) M has ACC on Kr={ A Kerf: f,...,f eS}.

1

Then we have a)sb)ec) and a’)eb’)ec’).m

COROLLARY 10.14 Let MR be guasi-projective and consider the following

statements:

a) S is a regular ring;

b) the image of every element of S is a direct summand of MRr;

¢) finite sums of images of elemenis of S are direct summands of Mg;
a’) S is a right perfect ring;

b’) M has DDC on ¥={Imf;feS};

n

c’) M has DCC on ¥r={ £ Imf : £ ,...,f €S}.
1=1 10 1 n

Then we have aj)eb)ec) and a’)eb’rec’/).m

The following theorems, proved here for quasi-injective and quasi-
projective modules, may be proved under the weaker assumptions FicHa
and ?rsMGT, respectively, and in fact the proofs given here use only

these hypothesis.

THEOREM 10.15 If MR is quasi-injective then the following assertions
are equivalent:

a) S is left Noetherian;

by M has DCC on Kr;

c) M has DCC on Ma.

PROOF [31;Theo.4.3]: Since $ 1is left Noetherian if and only if it
satisfies ACC on finitely generated left ideals, i.e. on ¥, the
equivalence a)eb) follows from (10.11) and (6.17.c).

The implications a)=c)»b) follow without requiring MR to be quasi-
injective: by definition, Kr&Ma, so that c¢) implies b). On the other
hand, 1let Ni2N22::-- be a chain of a-closed submodules of M and
consider 15(N1)215(N2)2--- ; if S is left Noetherian then there exits
neN such that ls(Nn)=ls(Nk) for all k=n and hence

Nn = erS(Nn) = rnls(Nk) = Nk

for all k=n, and this proves that a) implies c).m
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Dualizing the proof of (10.15) we get:

THEOREM 10.16 If MR is quasi-projective then the following statements
are equivalent:

a) S is right Noetherian;

by M has ACC on ¥r;

c) M has ACC on MGT'.

Now we turn to the question of when is S semiprimary; proofs of
Theorems 10.16 and 10.17 which use different techniques may be found
in [23; Theorem 1] and [22; Prop.2.4].

THEOREM 10.17 If MR is a quasi-injective module with ACC on a-closed

submodules then S is a semiprimary ring.

PROOF [31;Theo.4.5}: Since Mr is quasi-injective, (10.11) and
(6.18.c’) imply that S is a right perfect ring, i.e. S is semilocal
and its radical J(S) is right T-nilpotent. Now, from (6.4.a) and the
hypothesis, we know that S has DCC on left annihilators, i.e. ACC on
right annihilators, and hence J(S) is indeed nilpotent by (10.7).

Therefore S is semiprimary.m

Dually, we get

THEOREM 10.18 If MR is a quasi-projective module with DCC on

M-cotorsionless submodules then S is a semiprimary ring.m

Next, using the Hopkins-Levitzki Theorem (a ring is left Artinian if

and only if it is left Noetherian and semiprimary [S; p.1811), we get:

THEOREM 10.19 Let Mr be quasi-injective. Then S iIs left Artinian if
and only if M satisfies ACC and DCC on Ma.

PROOF [31;Theo.4.61: If M satisfies both chain conditions on Ma then
it is left Noetherian (10.15) and semiprimary (10.17), i.e. S is left
Artinian.

Conversely, if S is left Artinian then it is left Noetherian and hence

M has DCC on Ma (10.15); moreover, if Ni€Nac--- is a chain in Ma then
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the chain 1S(N1)Sls(N2)E-'~ stops by hypothesis and thus so does
Ni1€N2c-:+, whence M has ACC on Ma. Note that this ‘only if’ part may

be proved without requiring MR to be quasi-injective.m
Dually,

THEOREM 10.20 Let MR be quasi-projective. Then S is right Artinian
if and only if M satisfies ACC and DCC on MTU.I

REMARK Theorem 10.19 generalizes the well known fact that the
endomorphism ring of a quasi-injective module of finite length is left

Artinian (for an easy proof see [21]).

COROLLARY 10.21 Let MR be quasi-projective and quasi-injective; then
a) if MR is Noetherian, then S is right Artinian.

b) if MR is Artinian, then S is left Artinian.

PROOF: a) S 1is right Noetherian by (10.16) and semiprimary by
(10.17); thus S is right Artinian.
b) This follows similarly from (10.15) and (10.18)m
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