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SUMMARY

We have considered a variety of problems in the 

statistical analysis of quantitative data extracted from 
Single Photon Emission Computed Tomography (SPECT) and 
Positron Emission Tomography (PET) neuroimages. Many of 

the questions of interest to investigators in this area 

of research were described and illustrated with analysis 
of some SPECT datasets.

In chapter one we introduced the technique of 
tomograhic imaging, describing a common approach to 

extracting quantitative data from images and gave some 

background to Alzheimer’s disease. In chapter two we 

described a major research study into Alzheimer's 

disease, from which most of the datasets used in this 
thesis were obtained.

In chapter three we identified the broad categories 

of statistical problems into within and between group 

analysis of regional mean patterns and the 

interrelationships among regions. A SPECT dataset, 

consisting of Alzheimer and normal control subjects, was 

used to illustrate the use of univariate methods to study 

these problems. We saw from these analyses that it was 

difficult to extract clear biological interpretations 
with this approach due to certain features in the data 

extracted from the images. In particular, the presence of 

substantial random variation between subject data vectors 

meant that meaningful analysis could only be carried out 

after adjusting the regional data - to remove the between



subject variation - prior to the analysis. Different 
methods of adjustment were seen to give different results 
here. Although not particularly evident from these data, 

another feature of typical imaging datasets was the large 
number of regions to be analysed.

In chapter four we looked at the application of 

univariate and multivariate ANOVA type methods to compare 
regional mean profiles between groups and illustrated 

some approaches to follow-up analysis. Assumptions 

underlying these techniques, including normality and 

equality of covariance matrices were assessed as was the 

choice of scale for the analysis. The assumption of 

multivariate normality was reasonable on the square root 
scale in both groups, although equality of group 

covariance matrices was very strongly rejected. Even 

though many of the assumptions in the RM ANOVA may be 

violated for these datasets, the fact that global tests 
can be performed, even when the number of regions p 
exceeds the numbers of subject n, will make this the most 

viable approach. Adjusted F-tests will be appropriate in 

such circumstances.

In chapter five, we looked at some approaches to 

investigating inter-relationships among regions. The most 

common approach here is to use simple correlation 

analysis among regions after adjusting data vectors for 

the subject effect. As in the analysis of means, the 
results will be strongly influenced by the form of the 
adjustment. Ford (1986) has shown that inferences from 

the results of correlation analysis are made difficult;



with adjustment in the data resulting in confounding of 

parameters in a model of the correlation structure. Even 

so, between group comparisons may still provide valuable 
insight into a disease process. A testing scheme gave 

tentative evidence of differences in the correlation 

structure between the normal and Alzheimer groups. 

Multivariate exploratory techniques where used to study 

the interregional correlation structures. Principal 
components analysis demonstrated that just a few patterns 
accounted for most of the variation among subjects in 

each of the groups and that bilateral pairs of regions 

were very strongly correlated. Further canonical 

correlation analysis of the data suggested that regional 
profiles may be summarised into hemispheric sums and 
differences separately without too much loss of 

information. In studies with several regions being 

studied this would be a useful reduction of dimensions. 

Multi-Dimensional scaling highlighted a number of other 

features in our data including the measurement 

difficulties with smallish regions such as the basal- 

ganglia and some evidence of a spatial relationship 

between regional data. Formal analysis of the covariance 

structures using the spatial correlation model of Worsley 
et. al, (1992) gave some evidence for this feature in
SPECT data, albeit using an estimated distance matrix.

The analysis of repeat scan data, as arise in 

longitudinal studies, was considered in Chapter six. The 
univariate RM ANOVA approach of chapter 4 was used to 
analyse a dataset from the Alzheimer study. Evidence was



provided of significant changes over time in the average 
profiles.

In chapter seven we looked at approaches to 
correlating imaging data with other datasets studied in 
Alzheimer research including neuropsychological and post 

mortem plaque density data. As with simple correlation 

type analyses in interregional studies, the SPECT data 
had to be adjusted prior to calculation of correlation 

coefficients. As before this meant that different results 

were given with different forms of adjustment which did 

not necessarily give any clear biological insight into 

the data. Multivariate regression, canonical correlation 
analysis and an application of PC analysis were used to 

illustrate some alternative approaches. The within- 

subject approach taken to compare SPECT profiles with PM 

plaque density was a useful illustration of the sort of 

’clever1 approaches employed by researchers in brain 

research to analysing their data. The fact that it was 

statistically incorrect highlights a feature of much of 

the analysis of imaging datasets; lots of data amassed 

without any great insight into appropriate methods of 
analysis.

Further topics of interest were considered in 
chapter eight, including the use of these data in 

discrimination type analysis and problems of measurement. 

We also introduced the brain activation paradigm which is 

being increasingly used to study many of the problems 
covered in the thesis.



Finally, in chapter nine, we considered any 

conclusions that could be drawn and suggested areas 
analysis requiring further work.



CHAPTER 1
THE BRAIN: STUDY OF A COMPLEX HETEROGENEOUS ORGAN!

1.1 INTRODUCTION

In the last two decades, advances in medical 
scanning technology have led to the development of a 
number of imaging modalities capable of providing 

structural and/or functional insight into the living 
human body, and in particular the human brain. The main 

functional modalities of importance at the present time 

include positron emission tomography (PET) and single 

photon emission tomography (SPECT). These modalities and 

the various imaging methods used make it possible to 

obtain a picture of activity in the living brain from 

which large amounts of quantitative and qualitative data 
can be extracted, relating to a variety of biological 

processes, including blood flow, metabolic & 
physiological activity and brain receptor status.

Consequently, both PET and SPECT are being utilised 

in an increasingly wide variety of clinical applications 

as well as in fundamental scientific studies of the brain 

and brain disorders. Clinical applications are found in 
cardiology, oncology, neurosurgery and neurology where 

regions of low blood flow may be important indicators of 
tumour growth or ischaemic damage resulting from stroke 

and/or head injury. Experimental applications are found 

in the study of normal metabolic activity and changes 
rising from the impact of different diseases e.g.



2

Alzheimer's Disease, Parkinson's Disease, AIDS and 
cerebrovascular disease. Other applications of functional 

imaging include the study of higher mental function 

through brain activation through stimulation or after 
pharmacokinetic intervention.

A number of issues arise in handling the statistical 

analysis of datasets generated from these imaging 

studies. In this thesis we will address some of these 

issues, with reference to some of the important questions 

of interest to investigators and provide examples of the 

sorts of statisical approaches which are and can be taken 
to analyse images. Various SPECT datasets, obtained from 
a research study of Alzheimer's Disease, are used for 
this purpose.

1.2 TOMOGRAPHIC IMAGING OF THE LIVING BRAIN

Tomography is a branch of nuclear radiology that is 

concerned with the construction of an image of 

physiological activity or structural anatomy through a 
living body without the need for invasive surgery. 

Consequently, tomographic imaging has much appeal for 

studying a complex organ such as the human brain. The 

genesis of the current techniques used in tomographic 
imaging are based on a geometrical result, originally 

derived by the Austrian mathematician J. Radon. His 

thesis was that any function of two variables could be 

constructed if the infinite set of all its line integrals 
were known. A simple numerical example of the concept is
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given in the next section.

For the purposes of medical imaging, the study of 

cerebral function is mediated through the use of 
radioactive tracer isotopes and radiation detection 
technology. The radioactive isotope is biochemically 

engineered to bind to a compound which is introduced into 

the body usually through the bloodstream. The blood acts 

as a carrier (of the isotope) to the organ or site of 
interest. An example is the fluorodeoxyglucose technique 

used in PET studies. The decay of the isotope at this 

site can be traced using sophisticated camera equipment 

and mathematical/statistical techniques used to estimate 
the levels of acivity e.g. blood flow at this site. In 
imaging the brain, a ring of detectors is placed around 

the subject’s head providing full 3 60° coverage.

The radiation emissions are counted by each detector 

and processed through a statistical reconstruction 
algorithm to produce 2- and sometimes 3-dimensional 

image datasets (depending on the imaging system and 

reconstruction algorithm). These images are in the form 
of a matrix of pixel or voxel counts involving many 

thousands of data values; again, the number will depend 

on the resolution of the system used. In order to 

summarise these data, and to aid clinical evaluation, the 
.image is often thresholded to form a contour map of 

radiation intensity. By implication the intensity of 

radiation activity reflects the level of activity of the 

variable under study e.g. blood flow.

An example of an image obtained using SPECT is shown
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Figure 1.1 SPECT image of a normal subject.
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in Figure 1.1. This shows a transverse section of 
radiation activity through the brain of a healthy elderly 

man. The bright (orange and white) areas reflect relative 

high radioactivity and hence high blood flow, in contrast 

to the darker (blue) areas - reflecting relatively lower 

blood flow. If studied closely, individual pixel boxes 

can be seen in this image.

Although based on the same underlying principles,
PET and SPECT differ in a number of ways. For instance, 
each is based on different geometries of radiation 

detection. Briefly, SPECT involves detection of a single 

photon emission while PET involves coincident detection 

of a pair of photons emitted from a point source and at 
180° from each other. They also differ in the isotopes 

used. With PET a variety of positron emitting isotopes 

are available, allowing the mapping of a number of 

metabolic, physiological and receptor variables. An 
additional feature of PET imaging is that it is possible 
to model the tracer activity in terms of more immediately 

appreciable biological units, using compartmental 

modelling techniques (Phelps et al, 1979). This is 

because of the short half-lives of the isotopes used. By 
contrast, there are only a few isotopes with much longer 

half-lives available for SPECT imaging, although a number 

of new ones are under development (Ell, 1990).

1.3 IMAGING DATA, RECONSTRUCTION AND ROI EXTRACTION

The data used for statistical analysis is the result
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of a two phase process. The first phase involves image 
reconstruction; the second, image analysis.

Because of data limitations and methodological 

difficulties in reconstruction, the reconstructed image 

is only an estimate of the true picture of activity. 

Various sources of methodological and random error will 
affect the precision of a given image. In order to 

appreciate some of the statistical problems involved we 

consider the following simple example. Suppose we have a 
2x2 array of 4 pixels (Figure 1.2a) for which we wish to 
reconstruct the pixel counts. If the row, column and 

diagonal totals are known, representing the infinite set 

of line integral data, then a uniquely identifiable 

solution is available (Figure 1.2b).

(a) (b)

Figure 1.2a & b. Reconstruction in a 2x2

array of 4 pixels.
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However, if the diagonal totals are omitted, a 

number of solutions are possible. Alternatively, if 
independent noise were added to these marginal totals, no 
unique solution would be available. In these 
circumstances, reconstruction becomes a problem of 

statistical estimation. In real problems reconstruction 

will involve problems of singularity and random noise. 

These, and other statistical issues in image 

reconstruction have received a great deal of attention in 
a broad range of journals, with some of the statistical 
issues being considered by Vardi et al (19 85) and by 

Silverman et al, (1990).

In clinical applications, second phase analysis will 

often involve the qualitative study of an image for 
evidence of tumour growth, infarcts or low blood flow. 

However, in experimental studies it will be more 

appropriate to use the quantitative data to address 
biological questions of interest. Although some studies 

have carried out statistical analysis using pixel data 
(Fox et al, 1988; Friston et al, 1989, 1990, 1991), the 

dimensionality of the datasets make this a particularly 

difficult proposition. A modern PET system will 
facilitate the imaging of around 8-14 slices/subject, 
each slice generating around 128x128 data values/image 

slice. Since brains differ in size and shape, the 

discretised pixel image will not facilitate direct 

comparison of individual pixel data between subjects. For 

this reason, the standard approach has been to reexpress 

the pixel image in terms of larger anatomical regions of
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interest (ROI) - notionally, the smallest experimental 
units for comparison among subjects. These ROIs are 
identified on the image using a standardised reference 

brain atlas, sometimes with the assistance of matched CT 

or MRI images (Evans, 1991). Several, say p, ROIs may be 
identified in this way.

AUTHORS Imaging
Modality

Number of 
Regions

Control Disease

Clark et al, 19 85 PET 53 - 15 .

Haxby et al, 19 85 PET 59 26 10

Horwitz et al, 1987 PET 59 21 21

Worsley et al, 1991 PET 30 20

Perani et al, 19 88 SPECT 48 34 _

Burns et al, 19 89 SPECT 10 6 20

Montaldi et al, 1990 SPECT 14 10 26

Table 1.1 Dimensionality in some imaging studies.

Data is extracted from these ROI and usually 

summarised as a single standardised value for comparison 

among subjects in subsequent statistical analysis. In 

SPECT, we typically use mean counts/pixel. We thus obtain 
a vector X-̂ j ,
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Xj_j - ( X-[j2/  , xijp ) /

of p regional mean counts/pixel for each subject i, in 
disease or treatment group j .

Despite this reduction in data volume, studies can 

still result in many regions being measured in a 

relatively small group of subjects. Some datasets, found 
in the neuroimaging literature, are described in Table
1.1 in terms of their dimensionality. One simlpe reason 

for this situation is the basic cost of experimentation, 

which makes it important for investigators to extract as 

much data as possible from each subject's image.

1.4 ALZHEIMER* S DISEASE

Alzheimer's Disease, or as it is more correctly 

referred to, Dementia of The Alzheimer Type (DAT), is an 
illness of the brain which occurs in the elderly 
population. It is named after the German neurologist/ 

physician Alois Alzheimer who noted, in 1904, a 

characteristic form of cell degeneration from post-mortem 

study of brain tissue in people who had shown particular 

dementing symptoms in life. These included the presence 
of fibrillary tangles and granular plaques.

In life DAT is characterised by progressive 

degeneration of mental, cognitive and behavioural 

function. However, clinical DAT can be difficult to 
diagnose as its symptoms are similar in some respects to
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other dementias. An example is the similarity of between 

DAT and multi-infarct dementia (which can result from a 

stroke). In this case X-ray computed tomography is often 
used. Indeed clinical diagnostic criteria do exist, but 
they can appear quite vague:

"Dementia is the decline of memory and other 
cognitive function in comparison with the 

patient's previous level of function as 

determined by a history of decline in 

performance and by abnormalities noted from 

clinical examination and neuropsychological 

tests. A diagnosis cannot be made when 

consciousness is impaired by delirium, 

drowsiness, stupor or coma or when other 
clinical abnormalities prevent adequate 
evaluation of mental status...'.

US Dept of Health and Human Services, 19 84. 

Consequently, definitive diagnosis is generally made only 
after post-mortem examination of brain tissue for signs 
of tangles and plaques. Even so the criteria used often 
differ from laboratory to laboratory (Wiesziewsky, 1988).

Because of such diagnostic difficulties, reliable 

epidemiological study of this disease is also difficult 

(Schoenberg, 1986). Various estimates have been given for 
the incidence of DAT in the elderly population. See Table 

1.2. Mortality estimates are also suspect since clinical 

DAT is not normally given as the primary cause of death. 

Instead, DAT is commonly given as a secondary cause
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after, for example, Bronchopneumonia. Molsa et al (19 82) 

reported evidence of 70% of the patients in their study 

of DAT as dying of bronchopneumonia. Katzman (19 76) 
estimated DAT to be the fourth highest cause of mortality 
in the US.

US UK

>65 years 10% 5%
>80 years 47% 15%

Table 1.2 Age Related Incidence of DAT 
in UK and US.

Despite the amount of research carried out into this 

disease, it is surprising that few risk factors have been 
identified. Age and country are cited as contributing 

risk factors. No single cause has been identified either. 

One source is the genetic link (Jacob Huff et al, 1988; 

Martin et al, 1990). In the US the genetic link has been 
variously cited as accounting for 10-30% of cases. 

Environmental neuro-toxins have also been blamed - a 

popular example being aluminium. In past years this 

received a lot of media attention, notably through the 

probably incorrect idea that it was ingested through food 
cooked on everyday household utensils e.g. aluminium
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Figure 1.1 SPECT image of a DAT subject.
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frying pans. A recent update of this, is that the 

aluminium is absorbed into the brain through nasal 

inhalation (Perl, 1989). Needless to say, no cures exist.
The consequence of DAT, and other mental diseases, 

is the devastating impact they have had on the community 
and on health care resources. For family, friends and 

other caregivers, looking after a DAT sufferer can be a 

tremendous psychological strain. It has even been 
suggested that caregivers become more vulnerable to 
health problems themselves as a consequence. The burden 

on health care resources has also been great with the 

need for dedicated day centres and the use of ambulances 
to ferry cases to and from home.

As relatively little is known about the disease 

functional tomographic imaging is seen as a potentially 

valuable tool in the study of DAT and other mental 

illnesses. An example of a SPECT image of a subject with 
a clinical diagnosis of DAT is given in figure 1.3. This 
shows an image for an elderly woman, exhibiting the often 
reported classical picture of decreased cerebral blood 

flow in the posterior-temporal region (both left and 

right of the image). Comparison of this image with the 

relatively high perfusion of blood flow in the 

corresponding area in the normal picture in figure 1.1, 

shows the qualitative insight this technique offers.

1.5 SCOPE OF THESIS

Functional tomographic imaging is undoubtedly an
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exciting technique for the study of complex organs such 
as the living human brain. The aim of this thesis is to 

introduce the reader to this area of medical study, to 

identify the main questions of interest to investigators 

in functional tomographic brain studies and to illustrate 

the statistical issues through analysis of typical 
datasets extracted from images.

In chapter two an overview is given of the Glasgow 
Alzheimer project and of the different types of data 
collected. Chapter three introduces some of the general 

statistical issues in the analysis of regional means 

using traditional univariate approaches taken. In 
chapter four we look at the application of Repeated 

Measures ANOVA techniques to this dataset and in chapter 

five look at methods of investigating the inter­

relationships among regions. In chapter six we consider 
particular problems in analysing repeated scan data, as 
in longitudinal studies. In chapter seven we consider 

approaches for correlating imaging data with other 

datasets observed in the Alzheimer project. In chapter 

eight we take a brief look at the use of imaging data in 
discrimination problems and some of the sources of 

measurement error associated with imaging datasets.
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CHAPTER 2 
THE ALZHEIMER PROJECT

In 19 86 the Wellcome Neuroscience Group was formed 
at the University of Glasgow. The aim was to collect 
together a multidisciplinary research team to provide the 

basis for a long term study of Dementia of the Alzheimer 

Type (DAT) in the Glasgow area. The Alzheimer Project was 

funded principally from a grant awarded by The Wellcome 
Trust.

2.1 STUDY DESIGN

The core of the research programme is a 10 year 
longitudinal follow up study of subjects suffering from 

DAT. This involves six-monthly follow up evaluation of 

subjects until endpoint (i.e. death, withdrawal or 

project completion) occurs. Other related studies are 

also carried out, ultimately feeding into the core study. 

For example, small numbers of subjects in other dementia 

groups are studied. These include cases of a. multi- 

infarct dementia (MID) b. DAT & MID together and c. 

dementia secondary to other causes. A control group of 
age matched elderly normal subjects are also studied.

2.2 SUBJECT RECRUITMENT

Subjects are recruited from a variety of sources in 
the Glasgow area, as summarised in figure 2.1. In the
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early stages of the project, DAT subjects were recruited 
almost entirely from long stay psycho-geriatric wards in 
Glasgow hospitals (e.g. Gartnavel Royal Hospital), with 
some others coming from old people’s homes or as doctors' 

referrals. These were almost all cases with a well 

advanced, in terms of severity, form of the disease. In 
order to boost numbers and more importantly to obtain 

early stage dements, a memory clinic was set up. 

Advertising in local newspapers has been used for this 

purpose. This has proven to be a useful screening method 

for recruiting the sorts of dementing subjects required. 
Normal controls have come mainly from old peoples homes, 

although some are relatives of subjects in the DAT group.

Rej ected

t

DAT

Hospital

Homes

Referrals

Memory

Clinic

->> Psychiatrist <-

Longitudinal

NORMAL

Population

Relative

Figure 2.1 Subject Recruitment.
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Subjects with a putative diagnosis of DAT undergo an 

extensive psychiatric assessment in addition to physical 

examination, laboratory testing of blood samples, subject 

interview and X-ray computed tomography. Only if 

diagnosis is confirmed, are subjects finally recruited 
into the longitudinal study.

2.3 STUDY DATA

A useful classification of the data collected from 

these subjects is (1) Diagnostic (as described above),

(2) Neuropsychological test scores, (3) Functional 

Imaging using SPECT and (4) Post-Mortem quantitative 
study of Brain Tissue. These are described in more detail 
later.

STUDY
GROUP

DAT

Controls

Diag­
nosis

X

0

SPECT

X

0

Neuro-
Psych

X

0

PM

0

0

Table 2.1 Frequency of Data Acquisition. X - six 

monthly, 0 - once only.

The frequency with which each of these datasets is 

collected differs in some of the study groups, as shown
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in Table 2.1. While six-monthly review data is generated 

from the DAT group, the normal group is assessed once 
only. The frequency of data collection in other dementia 
groups noted above follow that of DAT.

2.4 ALZHEIMER DATABASE

Each of the different datasets generated in the 

project are collected together and stored in a central 

database on the University of Glasgow mainframe ICL 3980 
series computer. The Scientific Information Retrieval 

{SIR) database package was used to construct the 
Alzheimer database. SIR follows the relational model for 

data structures, with different datasets relating to the 

same entity (e.g. subject), stored in a number of 

separate tables and cross referenced across tables using 

a key identifier. A unique case identification number is 
used for this purpose in the Alzheimer Project, to relate 

the various data collected on any given subject across 
tables.

Study data is collected at three locations in 

Glasgow including Gartnavel Royal Hospital (GRH),

Southern General Hospital (SGH) and the Wellcome Surgical 

Institute (WSI). This is illustrated in figure 2.2. At 

each location the data is entered manually onto record 

forms which are sent to the database manager. This is 

checked, and queried if necessary, prior to entry into 
computer files. When the data is ’clean' it is loaded 

onto the Alzheimer project database.
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For the serial reassessments in the DAT group a 

second key identifier is used. The date on which the data 

was collected is used to distinguish these data. 
Contiguous data from different tables are matched 

according to these dates. For this, a time window is 

necessary, as data in different tables are not always 
collected on the same date.

S.G.H.

SPECT

CT

PM Study

W.S.I.

PM Diagnosis

Database Manager

G.R.H.

Clinical Diagnosis 

Neuropsychology

i

Alzheimer Database

Figure 2.2 Data Flow through Project.

2.5 FUNCTIONAL SPECT IMAGING

Imaging is carried out on a dedicated Novo 810 SPECT 

imager. A circular gantry of gamma cameras are placed 

around the subject's head. During the imaging session
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these cameras rotate so as to give full coverage of 

photon emission produced by the introduction of the 
radioactive isotope into the subject’s blood stream. The 
radioactive isotope used in the study is a technetium 

based compound known as Ceretec or 9 9M<rc - HMPAO.

The ceretec is administered intravenously under 

resting conditions 5-60 minutes prior to imaging with the 
imaging session usually lasting around 20-25 minutes. 

During this time five transverse slices (tomograms), 12 

mm thick, are obtained in a plane parallel to the 

orbital-meatal (OM) line and at positions approximately 
+30, +40, +50, +60 and +70mm superior to this line.
Figure 2,3 shows an illustration of two such slices. Each 

slice is scanned for three minutes. Two of the five 

images, obtained from the scanning, are then used for the 

purpose of ROI data extraction as outlined in section 

1.3. These are chosen on the basis of best alignment 

through a number of anatomical structures identified from 

a standardised stereotactic brain atlas. The lower of the 

images, referred to as the "'standard1 slice is 
approximately +40mm above the OM line (Figure 2.3). For 

the record this is defined by the presence of the 

putamen, thalamus and occipital cortex and by the absence 

of cerebellum. The second image, referred to as the 

"■upper1 slice, is usually +70mm above the OM line (figure 

2.3) and is identified as immediately superior to the 

corpus callosum.

Regions of interest are outlined manually on these 
images by an imaging technician, using a light-pen
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V5SS7.1 Frontal Lobe 

Parietal Lobe
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A

ill

'.+70
i1 i

■ +40 

OM

Temporal Lobe 

Occipital Lobe

Figure 2.3 Side view diagram of the brain.
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Figure 2.4 Images with ROI used in Alzheimer study 
superimposed. Regions in 'standard' slice are A. Frontal, 
B. Temporal, C. Posterior-Temporal, D. Occipital, E. 
Bassal-ganglia. Regions in 'upper' slice are F. Higher- 
Frontal & Parietal.
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REGION NO, REGION NAME ABBREVIATION

1 Right Frontal RF
2 Left Frontal LF
3 Right Higher-Frontal RHF
4 Left Higher-Frontal LHF
5 Right Temporal RT
6 Left Temporal LT
7 Right Parietal RP

8 Left Parietal LP
9 Right Posterior-Temporal RPT
10 Left Posterior-Temporal LPT
11 Right Basal-Ganglia RBG
12 Left Basal-Ganglia LBG
1-3 Right Occipital LO
14 Left Occipital RO

Table 2.2 Region of Interest Numbers, Names and 
Abbreviations for reference in statistical analysis.
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referencing the same stereotactic atlas mentioned 
previously. Figures 2.4 a-f show the approximate 
locations of the regions studied in the Alzheimer 

project. A measure of the activity is extracted from 
these regions. This is the mean counts/pixel. In 
addition, an outline of the whole image is taken.

The names of the regions and abbreviations (for 

reference in subsequent analysis) are given in Table 2.2.

2.6 NEUROPSYCHOLOGICAL STUDY OF CEREBRAL FUNCTION

Neuropsychology is the science concerned with the 

study of the organisation of cerebral function in the 
living human brain. As such, it is concerned with the 

nature of mental processing and it’s relationship to, for 

example, cognition and behaviour. In order to study 

aspects of dysfunction the subject sits a number of 

simple neuropsychological tests. The test illustrated in 
Figure 2.5 is used to assess language deficits resulting 

from the disease process. As can be seen this is an easy 
test for someone with little or no language problems. As 

a measure of the difficulties with language, the number 

of errors is used for evaluation and analysis. A further 

example is a test used to assess memory deficits. This 

involves the immediate recollection of a list of items 
having only seen them previously for a few seconds. Many 

such tests are used in the Alzheimer Project.
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GRADED NAMING TEST (McKENNA & WARRINGTON)
Timet 30 seconds per item

Discontinue after 5 consecutive failures.
WORD LATENCY ERROR DETAILS(vis./rel/other. ) SCORE
BED
CLOCK
TAP
KEY
PIANO
CIGARETTE
KANGAROO
SCARECROW
BUOY
THIMBLE
HANDCUFFS
TWEEZERS
CORKSCREW
SPORRAN
TASSEL
SUNDIAL
CHOPSTICKS
PERISCOPE
BOAR
BLINKERS
MONOCLE
TURTLE
TRAMPOLINE
BELLOWS
SHUTTLECOCK
ANTEATER
PAGODA
RADIUS
LEOTARD
MITRE
YASHMAK
SEXTANT
CENTAUR
COWL
TUTU
RETORT

"1 Jt KiTCT
J 60-61

62-64
-i
J 65-66

] 'Jssz.-i f? 
67-00

-l CrtjfitNTt, 7 
69-70

Figure 2.5 Neuropsychological test sheet for Graded
Naming Test.

TOTAL SCORE 

TOTAL TIME (SECS) 

ERRORS - Visual 

Re la t i ona1 

T o t a l

[] 
[] [ ] 

[ ] 
[] 
[ ]
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2.7 POST-MORTEM STUDY OF BRAIN TISSUE

As mentioned previously, neuritic plaques and 

neurofibrillary tangles are widely regarded as the main 

pathological markers of DAT. For this reason consent is 
routinely sought from relatives, to carry out post-mortem 
study of brain tissue. If permission is given, then at 

death the brain is removed and alternate slices stored at 

the Wellcome Surgical Institute and Southern General 

Hospital. These are stored for some time in order to 
eliminate any danger of contamination from contagious 

diseases, such as Kreutzfeld-Jacob syndrome, which can be 

contracted from handling brain tissue. Eventually, 

samples of tissue are removed for microscopic study and, 

from these quantitative estimates of the plaque density 
obtained.

BRAIN RQI_________________ 1 2  3

BLOCK 1 1 1 ....

SECTION 1 1 1 ....

REFERENCE POINT 1 - 6  1 - 6  1 - 6  ....

FIGURE 2.6 Sampling frame for plaque quantitation
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In the study a hierarchical sampling procedure is 

used to quantify plaque density in different areas of 
brain tissue. A brief summary of the procedure is given 
with the aid of the sampling frame in Figure 2.6.

Coronal slices (1cm thick) of brain tissue are cut.

Blocks are taken from these corresponding to the 
particular anatomical area of interest. A microscopic 
section is sliced from this and stained so as to 

highlight plaques from background features. A NOVO 810 

image analyser is linked to the microscope and used to 

place six small reference fields (0.645mm2), according to 

a specified protocol, in different areas of the slide. 

Within these fields the number of plaques is counted and 
the average used as an estimate of the density in the 
slice and hence the block and finally the ROI. 

Quantitative estimates of plaque density are obtained 

from a number of ROI in this way. Some of these regions 

correspond with those used in SPECT.

Confirmatory diagnosis of DAT can then be made using 

this data. For this, a common approach among 

neuropathologists (Wieszniewsky, 19 88) , is to use the 
Khatchaturian criteria (Khatchaturian, 1985).
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CHAPTER 3

STATISTICAL IMAGE ANALYSIS: ISSUES AND PROBLEMS OF 
INTEREST WITH APPLICATIONS TO A SPECT DATASET

Questions of interest posed of imaging datasets are 

broadly classified into problems of within group and 

between group analysis of patterns of regional activity* 

Typical within group problems include investigations of 

regional means for evidence of hemispheric asymmetry or 

more complex hemisphere x region interactions. At a 
biological level other analysis is involved in studies of 
inter-regional association. Between group problems are 

concerned with the comparison of mean profiles and 

correlation structures as well as problems of 
discrimination.

A large proportion of the work found in 

neuroscientific literature on these problems involves the 

use of univariate statistical methods. In this chapter we 

will illustrate some of the difficulties of 
interpretation that can occur with the univariate 
approach.

3.1 A SPECT DATASET AND SOME NOTATION

Mean counts/pixel data were recorded in 14 regions 

in a group 29 control subjects and 79 cases with a 

clinical diagnosis of dementia of the Alzheimer type. A 

description of the method of collecting these data and of 
ROI extraction is given in section 2.5. A sample of these
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data is given for four subjects in Table 3.1 below.

In the analyses that follow we will assume that 
these data arise from an unknown multivariate normal 
probability distribution with group mean vector jij =

E(Xij) and covariance matrix Ej, for the ith subject 

i=l,...,nj in j=l,..J groups . In ensuing sections, 

questions of interest will focus on aspects of jij and .
Distributional assumptions will be assessed at various 
stages.

SUBJECT 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 150 159 139 143 158 156 166 161 166 162 128 131 168 177

2 206 210 211 215 225 227 229 229 245 245 268 273 245 244

•3 173 180 176 176 197 201 212 211 205 205 154 170 198 193

4 82 82 92 89 89 97 104 111 98 99 84 82 109 102

Table 3.1 Listing of four subjects from the SPECT 

dataset.

3.2 SOME BACKGROUND TO SPECT DATA

A feature of quantitative ROI data is the presence 

of large 'random’ scalar differences in data vectors 

between subjects and even between scans on the same 

subject. This can be seen to some extent in the four data
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vectors shown in Table 3.1. There are indications of 
large differences in the magnitude of the counts across 

the individuals. On plotting the individual profiles 
(Figure 3.1) the global difference is quite clear.

There are a number of reasons for the presence of 
the scalar effect in imaging datasets. The external 

and/or internal stimulation of the subject during an 

imaging session will determine, to some extent, the level 

of activity in the subject's brain. Since the level of 

activity is linked to cerebral demand (Kuschinsky, 1981), 

this will have an impact on the amount of tracer 
transported to the brain. Any anxiety experienced by the 
subject during an imaging session can cause this 

stimulation. The increased demand may result in greater 

number of reconstructed cell counts. At the other 
extreme, if too little tracer is taken up into the organ 

of interest, few emissions may be detected. This may in 
turn lead to sparse data sets available for 

reconstruction.

3.3 NORMALISATION

In the analysis of these SPECT data there are two 

basic approaches taken to account for the scalar effect.
One is to factor in the scalar effect into a model 

of the data. Regression analysis where the subject mean, 
or some other global measure, is used as a covariate has 

been used. Another is to carry out a repeated measures
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Figure 3.1 SPECT profiles for four normal subjects.

MEAN COUNTS/PIXEL
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type analysis (see chapters 4). The other more common 
approach is somewhat cruder and simpler. In this approach 
the scalar effect is explicitly removed from the data 

prior to any statistical analysis.

This latter approach is referred to, in the 

literature, as normalisation. It involves a simple 

transformation of each ROI value into ratios or 

differences from some other value of the subject's 
vector. The two common forms of normalisation are as 

follows. The first is to normalise the ROI data to 

another regional value - putatively 'spared' from the 

disease process under study. For the data vector X^, for 
subject i, normalisation to region Xr , results in a new 

(p-1) vector data vector Yj_ of normalised regional 

activity of the form:

The other form of normalisation is to a global 

measure of activity (e.g. subject mean) or other global 
measure (e.g. the slice average) . A new (p} vector Yj_, of 

normalised activity is obtained of the form:

Yi-tXi/Xr, X2/Xr , /̂ r-l/^r)

Xi=(X1/X., x2/x., ,Xp/X.).

3.4 HEMISPHERIC ASYMMETRY

Functional symmetry in the human brain is aspect of 

interest to investigators studying neurological
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dysfunction (Engel, 1982; Rhodes, 1983; Perlmutter, 1985, 

1987). For regions, with both right and left 

measurements, the traditional approach to comparison of 
hemispheric mean levels of activity is to transform to 

bilateral ratios (or differences or percentage 
differences) and then to carry out a univariate (region 

by region) one-sample analysis (Perlmutter, 1985, 1987). 

Note there is no need to pre-normalise the data for this 

analysis, because the transformation has the effect of 
adjusting for the scalar effect between subjects.

This analysis is illustrated below for each of our 

study groups separately. Right/left ratios were 

calculated for each region. Means, standard deviations 
and 9 5% confidence intervals for these ratios were 

calculated (Table 3.2a,b). A test of the null hypothesis 

that regions are symmetric was carried out using a one 

sample t-test.

From table 3.2a we can detect evidence of asymmetry 
in four regions in the DAT group; there being greater 

activity in the right side than the left side on average. 

In contrast there is little evidence of any difference, 

apart from the occipital region, in the normal group.

3.5 FUNCTIONAL ASSOCIATION AMONG REGIONS

When studying the pattern of functional associations 
between regions of the brain many investigators have used 

correlation analysis (Clark et al, 19 84; Horwitz et al, 

1984; Metter et al, 1984a,b; Bartlett et al, 1988) .
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REGION MEAN STD.DEV. 95% C.I. P-VALUE
Frontal 1. 018 . 055 ( 1.006 , 1.031 ) .0040
Hi - Frontal 1.006 . 065 ( 0.992 , 1.021 ) ,38
Temporal 1.019 .070 ( 1.003 , 1.034 ) .020
Parietal 1.023 .086 ( 1.004 , 1.042 ) .020
Post-Temp 1.011 .084 ( 0.992 , 1.029 ) .26
Basal-Gang 0.994 .105 ( 0.970 , 1.017 ) .61
Occipital 1. 021 .068 ( 1.003 , 1.036 ) .0063

(a) DAT Group

REGION MEAN STD.DEV. 95% C.I. P-VALUE
Frontal 1 . 010 . 040 { 0.,995 , 1. 025 ) .20
Hi - Frontal 1 .002 . 033 ( 0.,992 , 1., 021 ) .79
Temporal 1 .007 . 057 ( 0..986 , 1..029 ) .50
Parietal 1 . 003 .066 ( 0,.978 , 1,.028 ) . 79
Post-Temp 1 . 010 . 068 ( 0..984 , 1,.035 ) .46
Basal-Gang 0 .990 . 087 ( 0 .957 , 1,. 023 ) .56
Occipital 1 . 012 .031 ( 1 .000 , 1 .023 ) . 053

(a) Normal Group

TABLE 3.2 Summary data and p-values from hypothesis 
H: within (a) DAT group and (b) normal group.
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HF .99
Temp .98 .99
Par .98 .97 .98
PT .96 .96 .94 .96

BG .95 .95 .94 .96

Occ .97 .96 .97 .99
Fr HF Temp Par BG

TABLE 3.3 Sample correlation matrix of hemispheric 
region sums.

The sample correlation matrix between regions in the 

normal group is given in Table 3.3. To simplify the 

presentation, only correlations between regions where the 

data was transformed to hemispheric sum counts (i.e. 

RHS+LHS) are presented. The correlation coefficients are 
large and positive, which would suggest very strong 
association between regions. However, we know already 

from section 3,2 that the raw data is characterised by 

large random variation between subject data vectors, 

which as we will see in chapter five, is really the 
dominant feature of these correlations.

As with the analysis of means, a common solution is 

to normalise the data. Correlation matrices for various 

forms of normalisation are presented in Table 3.4(a)-(c). 
These include (a) normalisation to a subject mean, (b) to 
the occipital region and (c) partial correlation approach
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HF .66
Temp .29 .49
Par - .42 - .47 .22
PT -.20 - .33 - .77 - .33
BG -.65 -.53 - . 68 - .16 .39
Occ - .44 -.60 - .05 .43 - .30

Fr HF Temp Par PT

HF .87
Temp .67 .79
Par .32 .37 .53
PT .46 .44 .08 .27
BG .08 .20 - .11 .09 .62

Fr HF Temp Par PT

HF .75
Temp .18 .38
Par - .41 - .39 .24
PT -.40 - .45 - . 61 - ,15
BG - .50 - .53 - .61 - .35 .41
Occ - .49 - .57 - .17 .30 - .15

Fr HF Temp Par PT

* 15
BG

.14
BG

TABLE 3.4 Correlation Matrices for data (a) normalised 
to subject mean, (b) normalised to occipital 
activity and (c) partial correlation coefficients.
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using the subject mean as a covariate. The third of these 

(table 3.4 (c)) illustrates an alternative form of 

adjustment which has been used frequently to study 
interregional correlations. This uses the subject mean as 
as a covariate for calculating partial correlation 

coefficients (Horwitz 1984, 1987/ 1990) between regions.

The differences between the correlation matrix in 

table 3.3 and those in tables 3.4 a-c are quite dramatic. 

Equally, the differences between some of the correlation 

matrices in table 3.4 are substantial. In particular 3.4 
(a) and (c) are very different in appearance to (b) with
3.4 (a) & (c) bring quite similar.

While each of the analses above are valid, it is 

clear that substantially different impressions of the 

relationship between regions can be drawn from the data 
using different approaches to remove the subject effect.

3.6 BETWEEN GROUP COMPARISONS

The comparison of regional mean profiles between 
groups figures very prominently in research papers, with 

the univariate approach being the most common approach 

for the analysis. This necessarily involves the removal 

scalar effect by normalisaton (Risberg, 1985; Burns et 
al, 1989; Montaldi et al, 1990) may differ from study to 
study, even if investigating the same disease groups. A 

comparison regional means between our normal and DAT 

groups was carried out using different forms of 
normalisation (Table 3.5).
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REGION (1) (2) (3) (4)

Frontal .44 .029 . 021 .26
H-Frontal .53 .04 . 035 .14
Temporal .37 .013 . 0045 .68
Parietal .28 .015 . 0000 .66
Post-Temp .40 .044 .0001 .36
Basal-Ganglia .70 - .81 . 0011
Occipital .76 .92 - .0000

TABLE 3.5 P-values from two-sided 2 - sample t-tests.
The '-' indicates that comparison does not apply. Columns 
are (1) Raw Counts data, (2) normalised to basal-ganglia
(3) normalised to occipital and (4) normalised to subject 
mean.

Analysis is carried out on raw mean counts/pixel 
data (1), after normalisation to occipital activity (2), 

basal-ganglia activity (3) & finally to a global subject 
mean (4). As in Section 3.5, regions with bilateral data 

were first transformed to hemispheric sums. For each 

region, the null hypothesis of zero mean difference 

between groups was tested using 2 sample t-tests. The 

results are summarised with p-values in Table 3.5.
There is no evidence of regional difference based on 

raw data (column 1). After normalisation a number of
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differences between groups are shown, especially in 
columns 2 & 3 and less so in column 4.

The results in column 1 are of course due to the 

large random variation contributing to large region 

variances. In Alzheimer's disease the occipital and 
perhaps basal-ganglia regions are putatively 'spared1.

Thus the conclusions from analysis of data normalised to 

these regions give similar conclusions when each 

comparison is made at the nominal 5% level of 
significance. However, given the large number of 
comparisons made however, some form of adjustment should 

generally be considered, to control overall error rates. 
After Bonferroni adjustment to the analysis in each 

column (e.g. with individual significance assessed at the 
nominal 0.05/6% level in columns 2 & 3), many of the 

comparisons are no longer statistically significant. Note 

especially the effect on results in the basal-ganglia 

normalised column. After normalisation, none of the 

regions are considered significant. For column 4, there 

is an understandable tendency to interpret the group 
differences as a property of the two significant regions. 
However, this would be a mistaken conclusion. Having 

noted these two regions to be spared, a subject mean in 

the disease group will be relatively speaking, lower (by 

comparison) than in the control group. Hence division by 
the subject mean in the DAT group will increase the 

regional ratios, causing big differences between group 

means resulting in the pattern of significant differences 
seen here.



3.7 FURTHER CONSIDERATIONS ABOUT ROI DATA

An aspect in imaging data which is worth considering 
before moving on to more complex approaches to the 

analysis is the scale of measurement or metric used in 

the analysis. Clark et al (1985) and Moeller et al (19 87) 

noted that the within-subject standard deviation among 
regional measurements on a given subject increased 
linearly with the within-subject regional mean. If 

regions were randomly related then this would clearly 

indicate the need for some transformation of the raw 

count data. However, since regions are structurally 
related, it is pot clear what this actually tells us. In 

our dataset the correlation coefficients between subject 

means and standard deviations is 0.62 in the normal group 
and 0.4 7 in the DAT group.

3.8 DISCUSSION

The analyses presented in this chapter are not 

dissimilar to those found in much of the experimental 
neuroimaging literature. In both the between group 
comparisons of means and in the correlation analysis of 

functional associations, we saw how easily different 

biological conclusions could be drawn from the same 

dataset. In addition, although these analyses used 

univariate statistical methods, the nature of the subject 

matter warranted a multivariate interpretation, which was
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attempted in terms of ratios of random variables. In 
problems involving several disease groups the 
normalisation approach may be even more complicated.

In our dataset the number of regions is, by the 

standards of the studies described in table 1.1 , very 

small, while the number of subjects in each group 
(especially the DAT group) is comparatively large. In 

studies with many regions the univariate analysis of 

means will involve many comparisons. Consequently, 
adjustments to comparison error rates will be required.
In this respect Bonferroni adjustment is common. This can 

result in conservative joint significance levels, and 

make meaningful differences between groups and regions 

difficult to detect. Alternative adjustments using the 
Sidak approach may be more appropriate (MacCormack, 1991)

Finally, it is worth noting some similarities 

between ROI data and other data types. Pixelated 
individual images have immediate parallels with datasets 

obtained in spatial problems (Diggle, 19 83) . The 
complication of the scalar effect in ROI data is 

analagous to the size factor in allometric data sets 

(Mardia, Kent & Bibby, 1979). In later chapters we will 
also see links with problems encountered in compositional 

data analysis (Aitchison, 1986) through the use of 

normalisation.



CHAPTER 4
ANOVA APPROACH TO ROI PATTERN ANALYSIS

While the univariate approach to the between group 
problem provides useful information about group 

differences, the results can be difficult to interpret.

In addition, this approach can involve a large number of 

comparisons which, after correcting for the family 

experimentwise error rate, can make significant 
differences very difficult to detect. Even with the 

relatively small number of regions in our study, the 

effect of Bonferroni adjusted significance levels had a 

big impact in the analysis of basal-ganglia normalised 
data. A further limitation of the univariate approach is 
that it took no account of the inter-regional correlation 

structure.

Let us reconsider this same data now. Regional 
unadjusted mean profiles of square root data are plotted 
for the two groups in figure 4.1. Justification for this 

transformation will be given in a later section. The two 

profiles are approximately parallel from regions 1 to 10 

with a crossover of profiles from regions 11 to 14. We 

are essentially interested here in testing the hypothesis 

H0 ; hi = h2 ' against the alternative f h2 and,
where applicable, follow-up analysis comparisons of 

regions.

Because of the nature of the data repeated measures 
ANOVA techniques have been used to study imaging datasets 

(Kelly et al, 1982; Tyler et al, 1988; Worsley et al,
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Figure 4.1 Group mean profiles based on square root 
counts.
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1991). We now describe two forms of the repeated 
measures ANOVA approach; the univariate approach and the 
multivariate approach.

4.1 UNIVARIATE REPEATED MEASURES ANOVA

Univariate repeated measures ANOVA techniques 

(Crowder & Hand, 1990) are commonly used to analyse 
observations which are measured in sequence in time or in 

space on the same experimental or observational unit e.g. 

subject or animal. The repeated measures ANOVA is 
essentially a split-plot analysis where time replaces 
treatment as the within main-plot (here subject) factor 

of interest. The basic difference between the two is that 

time is a fixed effect factor as opposed to a random 

factor in the traditional split-plot paradigm. It is 

probably no surprise then to see this technique used to 

investigate regional mean patterns in neuroimaging data 

in PET (Tyler et al, 1988; Worsley et al, 1991) and 

Autoradiographic studies (Kelly et al, 19 82).
We assume a model of the form

Xijk = ^jk + pi(j) + eijk

where |aĵ- represents the average response in the k ^  

region (k=l,..,p) of group j, P-̂  (j) denotes the random 

effect due to the ifĉ  subject in group j and £ijk 
represents residual error in the kth region. In addition 

it is assumed that the Pj_ {j) - N(0,a2) and Eijk ' N(0,x2).
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The (.ijk can be further decomposed, into for example 
region, group and region x group effects. The region 
effect is included to describe any differences in the 
mean levels of activity among regions while the region x 

group interaction represents any differences in the 

regional mean pattern across groups. We are primarily 

interested in the group x region interaction.

SOURCE D.F. F Unad-P GG HF

Group 1 0.28 0.5997

B-Subject Error 106

Region 13 39.13 0.0000 0.0000 0.0000

Region x Group 13 3.44 0,0000 0 .0048 0,0039
W-subject Error 1378

TABLE 4.1 : Repeated measures ANOVA analysis of profiles. 
Adjusted p-values are calculated using Greenhouse-Geisser 
(GG) and Huyn-Feldt (HF) methods.

A repeated measures analysis was carried out for the 
data in section 3.1, using the BMDP program P2V, 

including one grouping factor (Group) and one level 

factor (Region). The results are summarised in Table 4.1 
above.
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The overall group comparison uses between subject 

error which, because of the large subject effect, is not 

significant. On the other hand, the within subject part 
of the analysis is based on contrasts of the form 

Yijk=xijk~xij.• By subtracting the subject mean, the 
within-subject analysis is therefore analogous to 

analysis of normalised data.
Restricting interpretation to the column headed 

'Unad-P', the following conclusions can be drawn. The 

regional effect is very strong indicating statistically 

different levels of activity across regions. The group x 

region interaction test is also highly significant 

indicating differences between groups in the levels of 

activity in some of the regions. In effect, group mean 

profiles are not parallel.

A feature of this approach is that the validity of 

these univariate F-tests depends on restrictive 

assumptions about the form of the covariance structure of 
repeated measurements. For these unadjusted within- 

subject tests to be valid, it is necessary that group 

covariance matrices are similar £ ^ = £ 2 anĉ  that £
satisfies the sphericity, assumption. Here we assume that 

the variance of all pairwise differences between 
variables V(Xi-Xj), for (l<i<j<p) , are equal. A special 

case of this is known as compound symmetry. This is when 

the variances V(X^), (i=l,..p), of all variables are

equal and the covariances C(Xi,Xj) are equal. In this 
instance the repeated measurements will be 
equicorrelated. In these data the test of sphericity,
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based on the pooled sample covariance matrix, is strongly 
rejected (p=0.0000). Thus, the unadjusted F-tests are not 
strictly valid. However, this does not mean that the 

univariate analysis itself is invalid.

Adjusted univariate F-tests can still be made, using 

correction factors developed by Greenhouse-Geisser (1959) 

and Huyn-Feldt (1976). These correction factors involve a 
reduction to the numbers of degrees of freedom used to 
look up the tabulated F-values. This increases the F- 

value for comparison with the F-statistic and results in 

an increase to the observed p-value. These adjusted p- 

values are included in standard output for this type of 
analysis. In the analysis above the adjusted p-values are 
also given, in columns headed 'GG' and 'HH' of table 4.1. 

Even after adjustment, the p-values are much lower than 

the 5% levels. Hence, our conclusions remain unaltered.

Before moving on, it is worthwhile pausing to 
consider the relative size of the error terms generated 

from this analysis (not given in Table 4.1). The ratio of 

random between-subject error variation to total random 
error is 1.12614/(1.12614 + 0 . 00735)=0.993. Thus between 

subject variation accounts for 99.3% of the total 
variability in this data.

4.2 MULTIVARIATE REPEATED MEASURES ANOVA

An alternative approach is to view the regional 
measurements for any subject as a multivariate vector and 

to use multivariate analysis of variance (MANOVA)
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techniques (Crowder and Hand, 19 90). This is the 

multivariate repeated measures analysis of variance.

The multivariate model is written as

Xij = j±j +

where denotes the p-vector of regional activity in the 

jth group and ŝ j denotes the vector of residual error.

In addition it is assumed that the vector of errors E-̂ j=(s 

ij1 , . . . ,sijp) are MVN(0, £).
Hypotheses, under this model, are conveniently 

written in the form

H: CyM=0

where C represents the ((g-1) x g) matrix of group 

contrasts, ji is the p-vector of regional means and M 

represents the (p x (p-1)) matrix of contrasts among 

regions. With suitable choice of M, a wide variety of 

hypotheses can be addressed. The simplest case is when 

M=I - the identity matrix. In the event of a significant 

difference further comparisons can be used to assess the 

parallelism of profiles. For this we need to choose a 

form of difference matrix M, that compares regional 
contrast(s) among groups. There are many difference 
matrices that could be chosen here. A contrast of all 

variables with a single region can be expressed in matrix 

form as = [ Ip-i^-ip-i 1, which is the (p x (p-1)) 
identity matrix augmented by a (p x 1) column vector of -
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l's. In the two group case this simplifies to H:
2)=0 which can be tested using Hotelling's T2 test.

The equality of mean profiles in figure 4.1 was 
tested using this approach. The results are given in 

Table 4.2. We can conclude from these results that there 
is insufficient evidence to reject the null hypothesis. 

Using the averaged right and left occipital activity, 

regional data was differenced and groups compared once 
again (Table 4.2). Again there is no evidence of 

differences between groups.

This is surprising in view of the highly significant 

interaction effect in the RM ANOVA analysis. The reason 

for this is unclear at this stage. The sample sizes are 
very different and the number of dimensions is high. 

However, this will only be a problem if covariance 

matrices are unequal. We will come back to this later.

TEST D . F . T2 P-VALUE

Equality 14,93 20.36 0.2375
Parallelism 12,95 10.03 0.6998

TABLE 4.2 MANOVA comparison of mean profiles.

There is very little evidence of the use of MANOVA
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in the analysis of ROI data - understandable given the 
descriptions of the dimensions of typical study datasets 
given in chapter 1. A rare example can be found in 

Prohovnik (19 88), dealing with the analysis of Xenon 
washout data

4.3 HEMISPHERIC ASYMMETRY

In instances where measurements are available in 
both hemispheres for some or all brain regions it makes 

sense to incorporate this structural information into the 
analysis.

In a MANOVA analysis this can be achieved by 
transforming to hemispheric sums and differences and 

carrying out two separate analysis. For our data this 

involves comparisons of two seven dimensional mean 

vectors between groups - instead of a single 14 

dimensional comparison. The results of these tests for 
equality and parallelism are given in Table 4.3. While 

hemispheric sums are significantly different the 

hemispheric differences are not significant. The follow- 

up test of parallelism on the hemispheric sums was 
carried out using differences to occipital activity as 

in section 4.2. This is also significant giving evidence 

of a group x region interaction. This is surprising in 

view of the comparison of the full mean vectors.
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TEST D.F t2 P-VALUE

Equality
Sums 7,100 18.32 0.02
Differences 7,100 2.74 0.92

Parallelism

Sums 6,101 18 . 31 0 . 01

TABLE 4.4 MANOVA comparison of mean profiles.

In the univariate RM model, the hemisphere effect 

can be easily incorporated in to the analysis by 

including a within-subject factor for hemisphere. This 
produces an model with a within-subject factorial 
structure. This is illustrated for the data above. A full 
univariate analysis was carried out on our dataset with 

the within part of the analysis given in Table 4.4.

The region x group interaction is still very strong 
here, both with and without the adjustment. There is also 

some evidence of a region x hemisphere interaction 

although this is somewhat equivocal in these data, since 

the p-values are close to the nominal 5% level. Indeed 
the Greenhouse-Geisser correction takes the p-value to 
just over the 5% level. This illustrates a difficulty
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that can arise when the sphericity assumption is 

violated. The difficulty can be in choosing an 

appropriate p-value. The Huyn-Feldt adjustment is 
generally believed to be less conservative than the 
Greenhouse-Geisser approach. In this instance, the 

Greenhouse-Geisser p-value is so close to the nominal 

level as to warrant a common sense interpretation as a 
significant effect.

4.4 FOLLOW-UP ANALYSIS OF PROFILES

Following a significant overall test result e.g. 

region effect or group x region interaction, a follow-up 
analysis will often be desired, to determine the nature 

of differences between profiles. It clearly makes little 

sense to compare regions between groups individually, as 

this would involve between subject variation (Table 3.2, 
column 1). Alternative approaches are required, some of 
which are described below.

4.4.1 Multiple Comparisons

In the event of a significant group x region 

interaction, follow-up comparison of profiles might be 

carried out using multiple comparison procedures. Since 

it is pointless to compare regions individually, we need 

to look at contrasts among regions for comparison between 
groups.
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Let Yrs= (M-rx“M-s 1 > ~ (lIr2'!J's2) denote the contrast
between the rth and sth regional means in group 1 and

group 2. This can be estimated using the sample regional

means. Assuming that 2 satisfies the sphericity
assumption an unbiased estimate for the variance V(Yrs)

would involve the region x group x subject mean square

error term from the RM ANOVA table. Simultaneous

confidence intervals for the p(p-l)/2 contrasts could
A  a  A

then be constructed by Yrs ± CV x [VtY-j-g)]1/2 , where CV
is an appropriate critical value.

Variances
0. 040 0 .085 0 .118 0 .173 0 .245 0 .218

0 . 074 0 .076 0.110 0 .189 0.249 0 .254

0 . 125 0 .199 0 .102 0 .145 0.244 0 .208

0 .239 0 .313 0 .114 0 .075 0 .297 0 .118

0 . 049 0 .123 0.076 0 .190 0 .322 0.115

0 . 824 0.750 0 .949 1. 062 0 . 872 0 .350

0 . 748 

Means
0 . 674 0 . 873 0 .986 0 .796 0 .076

TABLE 4.7 Means and variances of contrast Yrs= {]Lir^-M-Si) - 

<^2-^82) •

However, as noted earlier, the sphericity assumption 

was rejected for these data. Hence the nominal confidence 

level for these comparisons will not be appropriate using
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the above variance estimate. In this case we could use

individual variance estimates V(Yrs)=2(sr2 + ss2 -

2srs)(1/ni + l/n2 ) for each of contrasts Yrs. Assuming
equal covariance matrices these would be obtained from
the pooled sample covariance matrix. For our data the 7

x 6/2=21 contrasts among regional hemispheric sum means
Aare summarised in table 4.7. Yrg values are given in the

lower triangle and corresponding variance estimates 
AV(Yrs) in the upper triangle.

For illustration and to assess statistical 

significance, a critical value was chosen from the t- 

distribution, with n^+ng-2=106 degrees of freedom. 
Because of the multiplicity of testing, Bonferroni 
adjusted significance levels at the = ,05/21 were 

used. Significance was assessed in cases where the ratio 

Yrg/[V(Yrs)l1/2 exceeded t(l-aB ;106)=3.1131. None of the 
contrasts in Table 4.7 exceed this value. This would 
suggest that some other contrast(s) among regions 

accounts for the difference between groups observed in 
Table 4.4.

4.4.2 Stepwise Variable Selection in Discriminant 
Analysis

An alternative approach might be based on stepwise 

variable selection procedures in discriminant analysis. 

This approach is illustrated for these data using BMDP 

program P7M. To illustrate some important aspects about 
the use of this approach with these data we picked out
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some steps in the selection process. Table 4.7 gives F- 
to-enter values for three steps in two different runs of 
the program. In the first run, selection was allowed to 

run freely with no constraints placed on selection other 

than to ensure all regions were forward selected before 
backward elimination. The initial and final F-to-enter 

values are given for each region in columns l & 2. In the 

second run the occipital region was forced into the model 

at step 1. The step 2 F-to-enter values for the remaining 
regions are given in column 3.

The initial values in run 1 are small because these 

are univariate F-tests using between subject variation. 

These results compare with those in column 1 in Table 
3.2. Backward selection was achieved by setting F-to- 

enter=Q. At the end of this run only the occipital and 

parietal regions F-to-enter values were large enough to 
be selected. In run 2, by forcing the occipital region 
into the model, we see that all regions other than the 

basal-ganglia now show some evidence of a difference 

between groups. That the parietal variable has the 

largest F-to-enter value means that it will be selected 

in the next step. Thereafter no variables would be 

selected - as seen in column 2. However, the F-to-enter 

values in column 3 are large enough to be selected, only 

just being smaller than for the parietal region. This
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Frontal

Hi-Frontal
Temporal

Parietal

Post-Temporal

Basal-Ganglia
Occipital
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F-TO-ENTER VALUES

RUN 1 .....  - RUN 2 -
INITIAL FINAL FORCED
VALUES VALUES OCCIPITAL

0.57 0.46 5.01
0.42 3.03 3.49
0.80 0.07 7.30

1.17 16.43 16.43

0.69 0.52 10.97

0.10 3.55 0.02
0.08 15.19

TABLE 4.7 F-To-Enter values from different runs of BMDP 

stepwise variable selection program P7M.
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implies that a number of regions may actually involved in 
the disease process - not just occipital and parietal 
regions.

4.5 CHECKS ON ASSUMPTIONS

4.5.1 Normality

An important assumption behind each of these 

analyses is that the data is normally distributed. In the 

MANOVA analysis, it is assumed that Xj_j - MVN(tij,£j). In 
order to check this assumption probability-plots of 

mahalanobis distances (Gnanadesikan, 19 77) were 

constructed for each group. These are shown in Figure 
4.2a,b.

The data in both groups appear to satisfy the 

assumption of multivariate normality reasonably well.

4.5.2 Equality of Covariance Matrices

Equality of covariance matrices is another 
assumption underlying both these analyses. Box’s M test 

(1949) is often used to test the hypothesis H: S1=X2 (=1). 

For the fourteen variable data, the test is very highly 

significant (M=196.1; P=0.001). Thus, there is evidence 

that covariance matrices differ. Likewise, the test for 

seven dimension matrices of hemispheric sums and 
differences are also highly significant (M=47.7; P=0.035) 
and (M= 78.7; P=0.000).
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The inequality of these matrices clearly complicates 
the results of all the preceding analysis. For one thing 

it goes some way to explain the non-significant result 

from the Hotelling’s T2 test applied to the 14 dimension 
mean vectors since it is known that the power of this 

test can be quite low when covariance matrices are not 

equal and group sample sizes differ (Davidson, 1972) - as 
is the case with our data.

4.5.3 Choice of Scale for Analysis

Thus far we have looked at square root transformed 

ROI data. The justification for this scale over others is 

now given. In the models presented thus far it was 

assumed that terms enter additively. This is based on the 

belief that a simple mathematical form can be used to 
describe the structure among regional means. In previous 

studies, the choice appears to be somewhat arbitrary, 

with some analysis based on raw data (Tyler et al, 1988) 

while others have used logged data (Worsley et al, 1991).
Suppose we reconsider the univariate model for the 

single group case. Thus, we assume a model of the form

■̂ij = Fj + Ff + eij

where jaj is the mean response in the jth region, P-j_ is a 

random effect due to subject i and e^j is the residual 

error term. We further assume that Pj_ - N(0,a2) and e^j - 
N(0,t2 ) . Now this is a basically very simple additive
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model. Consequently, it may be seen as too simple to 

describe data on such a complex organ as the brain. More 

complex models of these datasets have been proposed 
including the scaled subprofile model of Moeller et al 
(1990) .

For our datasets we studied the adequacy of this 

model by studying the effect of different transformations 
of the ROI data. In order to analytically identify the 
most suitable scale we used Tukey's 1 d.f. test for non­

additivity (Snedecor & Cochran, 1980), regarding our data 

as a row (subjects) and column (regions) design. We 

considered transformations of the form Y=X^ for 1 

=0.0,0.25,0.5,0.75, 1.0. This includes loge (1=0.0), 

square root (1=0.5) and raw untransformed mean counts 

data (1=1.0) . This was done for the normal and DAT groups 

separately. The results are summarised in table 4.5 in 

terms of the significance of the 1 d.f. F-test for non­
additivity .

The best transformation is taken to be the case 

where the F-test is not significant. This is apparent 

from the p-values in tables 4.5(i), (ii). In both groups 

a range of values seemed reasonable, with the square root 
(1=0.5) transformation the best of those considered. Both 

the raw untransformed and logged data indicated the 

presence of a significant non-additive component to 
error terms.

In order to assess whether this had a substantial 
effect on the region and region x group F-tests the RM 

ANOVA was carried out on log (1=0.0),
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Non-Additive Remaining

Error MS Error MS

F-Ratio I 

Non-

Additivity

0.0 
0.25 

0.5 

0.75 

1.0

0 .032 

0.005 

0 . 0001 
5 . 881 

464.638

0.0045 

0.0034 

0.1742 

5.0228 

116.1315

(i) Normals

7 .279 

1.467 

0.0008 
1.1709 

4.0009

X Non-Additive Remaining 
Error MS Error MS

F-Ratio I 
Non-

Additivity

0.0 
0 .25 

0 . 5 

0.75 

1.0

0.0724 

0.0092 

0.0700 

38.4697 

2699.384

0.0083 
0.0062 

0.3019 

8.5110 
193.8987

(ii) DAT

8 . 720 
1.489 
0 . 232 

4 . 519 
13.922

-Value

. 0073 

.22 66 

.9771 

.2799 

.0462

-Value

.0032

.2226

.6304

.0337

.0002

Table 4.5 Tukey's 1 d.f. test for additivity. Look-up 

degrees of freedom in normal group F {1,363) and in DAT 
group F(lr1013).
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square root (/U=0.5) and raw (X=1.0) data. The results of 
these analyses are given in Table 4.6. It would appear, 
from the similarity of F-ratios in each row, that the 
effect of scale is only marginal. Thus, at least for 

these data, the scale is relatively unimportant to the 
outcome of the tests. Whether this would be the case in 

other datasets i.e with smaller sample sizes and/or 

higher dimensional data sets, is unknown.

X
TEST 0.0 0.5 1.0

Region 37.7 39.1 37.9

(0 .0000) (0 .0000) (0 .0000)
Group

x Region 3.22 3.44 3.40

(0 .0001) (0 .0000) (0 .0000)

Table 4.6 Univariate F-Ratios (unadjusted P-Values) 
for transformed datasets.

4.6 DISCUSSION

In this chapter we have looked at the use of some 
repeated measures ANOVA techniques for comparing regional 
mean profiles. As imaging datasets are generally
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characterised by high dimensional/low sample sizes, it 
seems reasonable to assume that the univariate approach 

will be the most often used. Indeed, in some situations 

the univariate approach will be the only one possible 

because sample covariance matrices will be singular.
Even when there are more subjects than regions (as 

here) the MANOVA approach may lack the power of the 

univariate approach to detect differences. This is 

especially the case when covariance matrices are not 
equal and one group is larger or substantially larger 
than the other (Davidson, 1972). This possibly explains 

why the univariate ANOVA gives a significant difference 

between groups while the MANOVA does not. A further 

demonstration of the sensitivity of the univariate 
approach over the multivariate approach is obtained by 

carrying out the global tests for group x region 

interaction on hemispheric sums, this time excluding the 
occipital regions. In the univariate test the region x 
group test is still significant (F=3.50 ;UNAD-p=0.0040, 

GG-p=0.0160, HH-p-0.0146) while the MANOVA approach is 

not significantly different (T2=7.674 ;p=0.3030). One 

other aspect of the univariate RM approach is that other 

explanatory factors e.g.sex or disease subgroups can be 

easily included into the analysis.

For follow-up analysis the variable selection 
approach based was useful although several runs may be 

necessary to fully understand differences between groups. 

Other methods here include the subset selection 

procedures described by Lehmacher (199 0).
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In the the choice of scale analysis we used Tukey's 
test which is not strictly designed to be applied to 

related columns (regions) data. A plus with this 

approach, if it is valid, is that it may be used when 

there are more regions than subjects. In our example the 

different transformations did not materially affect the 

results of the F-tests. This would not necessarily be the 

case in samll studies where the data contains outliers. 

Here appropriate transformations may lessen the impact of 
the outliers .
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CHAPTER 5
INVESTIGATING THE INTERRELATIONSHIPS AMONG REGIONS

5.1 INTRODUCTION

The interest shown by brain researchers in imaging 
datasets is based on a biological model relating the 

status of the various cerebral processes to human 

behavioural and intellectual function. In these terms, it 

might seem reasonable to assume that the nature of this 
biological linkage would vary from the normal state to 

the diseased state; one manifestation in the diseased 

state being changes in behaviour or in the ability to 

perform simple intellectual tasks which could have been 
done before the onset of any disease. The effort of much 

of the research in this area is therefore an attempt to 

trace the clinical symptoms, characterising a disease, 

back to the functional source e.g. blood flow or glucose 

utilisation. It is no wonder then that investigators have 

used functional imaging datasets to study the functional 
association among brain regions in both normal and 

diseased states (Clark et al, 1984; Horwitz et al, 1984; 

Metter et al 1984a,b; Bartlett et al,1987; Worsley et al, 

1991) and between different cerebral variables e.g. 

glucose and blood flow in the same brain regions (Kelly 
et al, 19 82). The usual approach is to identify and scan 

a group of individuals with common clinical symptoms and 

then to study the correlation structure in their ROI 
data.
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In this chapter we will look at the use of 

correlation analysis to investigate the nature of 
functional association among regions. A testing 
procedure, which can be used to identify differences in 

correlation structures among disease groups, is 

described. Multivariate techniques for exploring the 

underlying structure of imaging datasets including an 
approach to dimension reduction are investigated. In the 
last two sections, patterned covariance structures of 

relevance to the study of these datasets are reviewed, 

one of which is described in some detail.

5.2 INTERPRETING CORRELATIONS

An obvious measure of association between the levels 

of cerebral activity in two regions, and by implication, 

functional association between them, is the sample 

correlation coefficient. We will start this section by 
reconsidering the correlation matrix in Table 3.3. This 

gives the sample correlation coefficients between 

regional measurements on the raw data (albeit hemispheric 

sums). In other contexts, the occurrence of such large 

positive values might be taken to imply strong 
association between the underlying variables. However, in 

this context, this simple view cannot be taken so 

readily. Recall from section 3.2 that SPECT imaging 

datasets are dominated by large scalar differences 
resulting in substantial between subject variation.
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5.2.1 Adjusted Data and Correlation Analysis

In common with the univariate analysis of means, the 

standard approach to studying possible functional 
associations is to adjust the data before calculating 

correlations. Tables 3.4(a)-(c) show the sample 

correlation coefficients following three such methods of 

adjustment. These involve normalisation to a single 

region 3.4(a), a subject mean 3.4(b) and through partial 

correlations 3.4(c) -adjusting for the subject mean. This 

last form of adjustment has been used most often (Horwitz 
et al, 1984, 1987; Soncrant et al, 1986). It is a more 
sophisticated attempt to study the relationships between 

regions by modelling the subject mean as a covariate.

Visual inspection of the correlation matrices in 

Table 3.4 suggest differences between the three 
approaches. It is noticeable, however, that the partial 

correlations are similar to those obtained by normalising 

to the subject mean.

5.2.2 Statistical Significance v's Functional 
Association

The statistical significance of these correlations 
might be formally tested using univariate methods as per 

Clark et al, (1984) Horwitz et al, (1984), Metter et al 

(1984a,b) and Bartlett et al, (1987). This would involve 

simultaneous testing of the hypothesis of zero 

correlation between all pairs of regions. This hypothesis
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was tested for each coefficient in the sample correlation 
matrices given in table 3.4a and b. In order to test the 

null hypothesis we need to refer to the t-distribution on 
n-2=27 degrees of freedom. For two-sided tests with 
individual 5% significance levels, the null hypothesis 
should be rejected for an observed correlation 

coefficient greater than +.311 or less than -.311. With 

so many tests it is of course often advisable to control 
the overall type I error. Thus, a Bonferroni correction 

for each individual test was applied. For the 

correlations in table 3.4, this meant using individual _ 

significance levels of 5/21% and 5/15% for table 3.4b.
Thus in 3.4a we reject the null hypothesis where the 
sample correlation coefficients are greater than +.542 or 

less than -.542 and in 3.4b where we have sample 

correlations greater than +.527 or less than -.527.

A method of displaying the results of these analysis 

is as a network of regions (with each region suitably 

identified) and with significant correlations identified 
by regions connected by lines (Bartlett et al, 1987; 

Horwitz et al, 1990). Thus, for these data the 

significant correlations (after Bonferroni adjustment) in 

each correlation matrix are illustrated in figure 5.1(a)
Sc (b) . Note, that the chosen arrangement of regions in 

these plots does not conform to any statistically derived 

configuration; it is merely a convenient graphical 

arrangement.
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P

PT

(b)

Fig 5.1 Representation of statistical significance of 
correlation coefficients between regions, based on (a) 
data normalised to subject mean and (b) data normalised 
to occipital activity.

The pattern of functional association among 

normalised regional variates seems are quite different in 

each of these figures. However, it should be remembered 
that the data are adjusted differently in each analysis. 

As mentioned previously, the interpretation must be made 

in terms of normalised variates and not in terms of the 

original regional variates. Such a mistake could easily
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lead the unsuspecting analyst to two very different 
biological interpretations about such functional 

association. As in the between group analysis of means in 

section 3.4, it would seem therefore that simple 
conclusions cannot be extracted from the analysis of 

adjusted data. This is a major problem associated with 

data from cross-sectional studies, where we only have one 

vector per subject. Attempts at a formal study of 
functional association are confused by the need to adjust 
the data. The bottom line is therefore, that it is 

difficult to infer biological conclusions about 

functional association from these simple correlation 

analysis.

This is not to say that correlations themselves are 
of no value. Valuable insight into diseases may still be 

gained in between group analysis of correlation 

structures.

5.2,3 Problems of Interpretation

It can be demonstrated mathematically how 

correlation analysis, of adjusted datasets, can induce 

spurious large correlations among variables and hence 
compromise subsequent interpretation of functional 

association between regions. Consider the data normalised 

to occipital activity, as in Table 3.4(b). Pearson 
(1897), provides a formula for the correlation of two 

variables X - ^  and X j  expressed as ratios to a (common) 
third variable X̂ -, in the form
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cvk 2

cor (X-l/X̂ . ,Xj/Xk)= ......... -........ -........
sqrt { (CVj_2 +CVk2) (CVj 2 +CVk2) )

where CV^ is the coefficient of variation for the 
variable Xj_.

This means that, in the case where, say,

CVi=CV2 =CV3 (=CV) and Xj_, Xj and Xk are independent, the 

correlation Cor(X-j_/Xk , Xj/Xk )=0.5. In effect, we obtain a 
positively biased estimate of the correlation between 

variables i & j simply from involving a third variable in 

this way in the calculations. Note however that in the 
case of our data the X-̂ ' s are strongly correlated.

Similar difficulties arise when regions are 

normalised to a global subject mean. This is because 

normalisation introduces a sum constraint into each 
subject's data vector, of the form 2Pj= 1 Y-̂ j = p. The 
normalised data is now of the compositional form 

{Aitchison, 1986). This introduces singularity into 

covariance and correlation matrices which as Aitchison 
pointed out leads to problems of interpretation. A 

further problem of interpretation, with this form of 

normalisation, could likewise arise if different subsets 

of regions were analysed. In the case of normalisation to 

a subject region vector mean, different inter-regional 

correlation matrices might result. This is similar to 
difficulties of interpretation found in partial 

subcomposition correlation analysis of compositional 

datasets {Aitchison, 1986).
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One way around this would be to normalise the data 

to a global subject mean i.e. the slice average.

However/ the sum of normalised data may still be close to 

a constant in all subjects since the global slice mean 
will be strongly correlated with the subject vector mean. 
Near singularity may still be a problem with covariance 

matrices. After all, the global mean is effectively the 

average of all p-dimensional ROI data and an unobserved 

variable Xp+  ̂ - the complement of X. And the problem of 
unclear interpretation would still exist.

Similar difficulties arising from the results of 

partial correlation analysis have been demonstrated. Ford 

(19 8 6 ) has shown that, where the true correlation 
structure exhibits regional clustering, the observed 
partial correlations may be quite different from the 

expected correlations.

5.3 COMPARING CORRELATIONS BETWEEN GROUPS

Commonly, if we wish to compare the sample 

correlation matrices between different groups, we resort 

to the use of Box's M-test (1949). This is a likelihood 
ratio test (LRT) (Anderson, 1958) assuming the data 

follow multivariate normal distribution. In the two group 
case this provides a test of the hypothesis H: S1 =X2 (=X) 
against the alternative of inequality.

For many statistical problems e.g. testing 

homogeneity of covariance assumptions in MANOVA and RM 

ANOVA, this is a useful test. However, the problem with
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the test per se, is that rejection of the null hypothesis 
does not automatically imply inequality in the 
corresponding correlation matrices. For example, in the 

situation where covariance matrices are proportional i.e. 

2^2 = the equality of correlations still holds even
though overall equality of covariances does not. Other 
situations can be imagined where correlations are similar 

even when differences in variances and covariances exist 
between groups.

If the LRT is applicable (n>p) and the null 

hypothesis of equality of covariance matrices is 
rejected, a useful follow-up analysis is given by Manly 
and Rayner (1987). This involves a hierarchical testing 

procedure which partitions the overall LRT test statistic 
into three chi-square nested sub-tests. Each of the null 

and alternative hypothesis are composite assuming a 
different form for the difference in covariance structure 

between groups. As with the overall LRT, each of the 

subtests are based on the assumption of multivariate 

normality. The null and alternative hypotheses in this 
testing scheme are given below. The hierarchical test 

procedure is as follows. Test 1 is carried out first. If 

the null hypothesis is rejected then we conclude that the 
covariance and correlation matrices are different. If we 
cannot reject the null hypothesis then there is 

insufficient evidence for differences in correlations 
between groups and proceed to Test 2. If the null 

hypothesis is rejected we conclude that correlations are 

not significantly different but some or all of the
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regional variances are different between groups. If we 
cannot reject this hypothesis then we perform Test 3.

This provides a test of the null hypothesis Hq: £3 ” 

against the alternative H]_; £2 = c£]_. Note, that the 
comparison of Hq in test 3 with in test 1 is just the 
overall likelihood ratio.

As we saw in section 4.4.2, the LRT strongly 

rejected the hypothesis of equality of covariance 
matrices both for hemispheric sums and differences. We 
will therefore use the approach described above to 
investigate these differences further. The maximised 

loglikelihoods (less the common constant term), test 

statistics and p-values for each sub-test on the sums and 

differences separately are given in Table 5.1(a), (b).

Since the overall LRT was assessed at the 5% level, the 

significance of each subtest is made at the 5/3=1.7% 

level - as recommended by Rayner et al (1990) .

Unfortunately, not all log likelihoods were found 
for the hemispheric sums (Table 5.1(a). The log 
likelihoods 1  ̂ and I2 are obtained by iteration using 

fixed point or one point approaches (Atkinson, 1978). 

Unfortunately, the method described by Manly and Rayner 

in their paper, doesn’t always converge in the Fortran 

program I have written to calculate the log likelihoods. 

Manly and Rayner suggest that in their.experience 1^ and 

12 always converge although they do not give any proof, 

or guidelines as to any special steps in their computer 
program.
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T e s t N u l l  H y p o t h e s i s A l t e r n a t i v e  H y p o t h e s e s

E q u a l  C o r r e l a t i o n s  

^ 2  = c ^ i C ' w h e r e  

C = d i a g ( c 1 1 ; . . . c l p )

U n e q u a l  C o v a r i a n c e  M a t r i c e s  

^2 ^1

P r o p o r t i o n a l  C o v a r i a n c e

M a t r i c e s

Z2 = cZ-l

P r o p o r t i o n a l  V a r i a n c e s

Z 2  = C Z ^ C , w h e r e  

C = d i a g ( c l l f . . . c l p )

E q u a l  M a t r i c e s P r o p o r t i o n a l  M a t r i c e s

v _ y ^2 - ^1 Z 0 = cZ»

Consequently, for these data, not all test 

statistics are given. See Table 5.1(a). This is 

unfortunate since T 3 is an important test for us. The 

comparison of I3 with 1  ̂gives a likelihood ratio 

statistic 2 (I3 -I1 )=37.82, which when compared to a chi- 

square distribution on 2 7 degrees of freedom gives a p- 

value of 0.0807. This is not significant at the 5 or 1.7% 

levels. Test 1 is highly significant. Hence, there is 

evidence that the elements in the group covariance 

matrices differ by a proportionality constant.

Happily, all log likelihoods were calculated for 

hemispheric differences. Hence test statistics were
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(a) Hemispheric Stuns

Model Cov. 
Form

Log
Likelihoods

Test Test
Statistics

D.F P-Value

s 2 / 2l 13 = -50.62
1 T3 = ? 21 7

S2 - C ^ C 1 2 = ?
2 T2 = ? 7 7

S2 = cEi lx = -69.53
3 Tx = 9.93 1 0.0016

E2 =S-] (=En) 10 = -74.50

(b) Hemispheric differences

Model Cov. Log Test Test D.F P-Value
Form Likelihoods Statistics ,
S2, Si 13 = 795.86

1 T3 = 35.8 21 0.0232S2 = CSjC 12 = 777.99
2 T2 = 15.0 7 0 .0357

S2 = cZi lx = 770.48
3 Ti = 14.1 1 0 . 0 0 0 2

1 0 = 763.42

Table 5.1 Hierarchical Tests on Equality of 

Covariance Matrices for (a) Hemispheric Sums 

and (b) Hemispheric Differences.



80

calculated and given in Table 5.1 (b). At the 1,7% 
level, we cannot reject the hypothesis of equal 
correlations although it is very close. Nor can we reject 
the hypothesis of proportional variances again very 
close. The only significant test is the one for 

proportionality of covariance matrices. Hence, the most 

plausible conclusion from comparison of covariance 

matrices is that they are proportional. In this case, the 
sample covariance for the DAT group is proportionately 
greater than for the normal group.

It should be noted that the tests described here can 

suffer from the same problems found in the overall LRT. 

Namely, the sensitivity of the tests to non-normality and 
the lack of power (Davidson, 1972) resulting from big 

differences in group sample sizes.

5.4 EXPLORATORY DATA ANALYSIS AND DIMENSION REDUCTION

5.4.1 Principal Components Analysis

Many investigators have studied inter-regional 
correlation structures using principal components type 

analysis (PCA) including the factor analytic approaches 

of Volkow et al (1986), Clark et al (1985a) and Moeller 
et al (1987).

Principal components analysis (PCA) is a technique 

for identifying the patterns in a multivariate dataset 

describing common sources of variation in a group of 
subject vectors. This involves taking an orthogonal
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linear transformation of the data Y=QTX such that 

Cov (Y) =QsQt=V, where Cov (X) =£, V is the diag (v^ , ̂ 2 • • • • • vp) 
of eigenvalues and Q has rows corresponding to 

eigenvectors 3—j , j=l,...,p. Each transformation yj-qj^x 
is termed a principal component (PC) and involves a 
linear combinations of the original data such that the 

variance Var(yj)=vj. The larger vj is, the larger is the 

variation in yj among subjects. Thus, the yj with the 

largest variance describes the single most common source 
of variation among subjects and is described by the 
eigenvector qj.

As an illustration of the use of this technique, a 

PCA was carried out on our normal group based on the 

sample covariance matrix of (unnormalised) square root 
data. All fourteen regions are used. Table 5.2a shows the 

first four eigenvalues and eigenvectors corresponding to 

the first four PCs. Not surprisingly, the coefficients of 

the first PC are all of the same sign and approximately 

the same magnitude. This amounts therefore to a subject 
average, of all regions, which accounts for 94.7% of the 

total variation. This reiterates the extent to which the 

large between subject scalar effect dominates these 

datasets. From the sign and magnitude of the coefficients 

of the second PC we see that this describes a contrast 
between a grouping of right and left occipital & parietal 

regions with right and left basal-ganglia. Although this 

accounts for only 2 .1 % of the overall variation, it is 

about 2.1/5.3 x 100=39.6% of variation in patterns among 

subjects. Interpreting the other PC’s in a similar
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fashion we see that PC3 accounts for a further 1.3/5.3 x 
100=24.5%.

For comparison, PCA was also carried out on the DAT 

group. Table 5.2b gives the first four eigenvalues and 

eigenvectors from PCA of the covariance matrix. Not 

surprisingly, PC^ again describes a subject average. PCg 

accounts for 2.8 /8 . 6 x 100=32.5% and describes a contrast 

between right and left parietal, posterior-temporal and 

occipital regions with right and left frontal, higher- 

frontal and basal-ganglia regions. Interestingly, the two 
groupings of regions, described by this contrast, 
correspond roughly to a comparison between levels of 
regional activity in the posterior area of the brain with 

the anterior area of the brain.

Since, in each of these analyses, PC2 appears to 

involve a different contrast among variables, we might 

tentatively conclude that the largest important source 
(described by each PC2) of variation, after PC^, among 
subjects is different in each of the groups. However, 

this is not entirely conclusive or based on exactly the 

same number of variables. Nor has it been subjected to 

any form of statistical test; rather, it is a judgemental 
interpretation.

One common feature which emerges in each of these 

PCA analyses has been the close link between bilateral 

regions (right and left). With few exceptions, the 
coefficients for right and left regional variables have 
been similar in sign and magnitude. Thus, the suggestion 

of working with hemispheric sums and differences, may not
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REGION PC! PC2 PC3 PC4

Right Frontal -0 .27 -0.05 0 .18 -0.34
Left Frontal -0.28 0 . 0 1 0 .16 -0 . 2 1
Right Hi-Frontal -0.26 0 .03 0.28 -0 .15
Left Hi-Frontal -0.27 0 . 02 0.15 -0.19

Right Temporal -0.27 -0.05 0.40 0.36
Left Temporal -0.29 0.06 0.23 0.29
Right Parietal -0.25 0.31 0 . 2 2 0. 03

Left Parietal -0.26 0.28 -0 . 05 -0.30

Right Post-Temporal -0.26 0.09 -0 .15 0.16

Left Post-Temporal -0,26 0.15 -0.44 -0.44

Right Basal-Ganglia -0.28 -0.63 0 . 02 0.06

Left Basal-Ganglia -0.29 -0.52 -0.38 0 . 0 2

Right Occipital -0 .24 0 .22 -0.32 0 .40

Left Occipital -0.25 0 .25 -0 .34 0.31

% Variance 9 4.7 2 , 1 1.3 0 . 6

Cumulative 94.7 96.8 98.1 98 . 7

T a b l e  5 . 2 a  PCA o f c o v a r i a n c e m a t r i x  f o r N o r m a l  G r o u p b a s e d  0 :

u n n o r m a l i s e d  d a t a .  C o m p o n e n t s  r o u g h l y  d e s c r i b e  c o n t r a s t s :  

P C I  - W e i g h t e d  a v e r a g e  o f  a l l  r e g i o n s .

P C 2 - ( R P ,  L P ,  RO, LO) v *  s  (R B G , IiBG)

PC3 - ( R F , L F , R H F , L H F , R T , L T , R P ) V s  ( L P T , L B G , R O , LO)

PC4 - ( R T ,  L T ,  RO, LO) v ' s  ( R F ,  L F ,  R H F ,  L H F ,  L P ,  L P T )
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REGION PCx PC2 PC3 PC4

Right Frontal -0.26 -0 . 15 -0.23 -0.23
Left Frontal -0.27 -0.18 -0.26 -0.30
Right Hi-Frontal -0 .27 -0 . 2 0 -0.29 -0 .05
Left Hi-Frontal -0.27 -0 . 2 2 -0.31 -0 . 1 1
Right Temporal -0.28 -0.04 -0 .18 0 .10
Left Temporal -0.27 -0.06 -0.18 0.26
Right Parietal -0 . 27 0 . 2 1 - 0 . 1 0 0 .10
Left Parietal -0 .26 0.19 - 0 . 0 0 0.06

Right Post-Temporal -0.26 0.38 -0.03 0.40
Left Post-Temporal -0 .25 0.30 0.07 0.36
Right Basal-Ganglia -0.29 -0 .32 0.49 0 .11
■Left Basal-Ganglia -0.30 -0.42 0.52 0.06

Right Occipital -0 ,25 0.34 0.24 -0.35
Left Occipital -0 .22 0.38 0 . 2 1 -0 .56

% Variance 91.4 2 . 8 2 . 2 0 , 8

Cumulative 91.4 94.3 96.5 97.3

T a b l e  5 . 2 b  PCA o n  s a m p l e c o v a r i a n c e m a t r i x  f o r DAT G r o u p b a s e d

o n  u n n o r m a l i s e d  d a t a .  C o m p o n e n t s  r o u g h l y  d e s c r i b e  c o n t r a s t s :

P C I  - W e i g h t e d  a v e r a g e  o f  a l l  r e g i o n s .

PC2 - ( R P ,  L P ,  R P T ,  L P T ,  R O , LO) v'S ( R F ,  L F ,  R H F , L H F ,  R B G , LBG)

PC3 - (RB G , L B G , RO, LO) v's ( R F ,  L F ,  RHF, L H F , R T ,  L T )

PC4 - ( L T ,  R P T ,  L P T )  v ' s  ( R F ,  L F ,  RO, LO)
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be unreasonable. This is investigated in a subsequent 
section.

5.4.2 Graphical Representations of Variation Among 

Subjects

As part of the exploration of any multivariate 

dataset it is common to seek useful graphical displays to 

highlight the outstanding features, for example extreme 

outlying cases, clustering of cases or variables. The 

profile plots at the beginning of chapters 3 and 4 were 
very useful in showing the hierarchical pattern in the 
levels of activity. A useful clisplay of the variation 

among individuals, in terms of common pattern of 

activity, may be provided by PC analysis. Since the PCs 

describe linear combinations of the original variables 
describing the greatest sources of variation, it follows 
then that a useful summary plot of the variation among 

individuals is in terms of the scores on the first couple 

of PCs. This approach is used later to select individuals 
in an analysis of the correlation of the imaging data 

with other imaging datasets.

5.4.3 Graphical Representations of Association

To study the association between variables, a low 

dimensional summary display is useful. We have already 

seen, in figures 5.1a,b, an attempt to give graphical 

expression to the association between regions found from 

significance testing. The problem, of course, was that
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the organisation of regions was totally arbitrary and 

gave no indication of the magnitude of correlations. In 
this section we will describe a statistical approach to 

the problem of representing association between regions 
in a non-arbitrary way.

First we will start by identifying a measure of 

similarity of some relevance in previous analyses. In 

section 4.4.1 we saw that the sphericity assumption was 

violated for the pooled sample covariance matrix, meaning 

that the variance of pairwise differences of variables

i.e. Var(Xi-Xj), was not constant for all pairs (i,j). In 

both groups, the sphericity assumption was very strongly 
rejected. We will now study the pattern in these 

variances further. The matrices of sample variances of 

all pairwise differences, in each group, are given in 

table 5.3. Since the variances are symmetric i.e. Var(X-j_- 

Xj}=Var(Xj-X^) only one half of the matrix is given for 

each group. The Normal data are shown in the lower 

triangle and the DAT group in the upper triangle. To 

investigate the structure in these variances, 
multidimensional scaling techniques were used. VartX^-Xj) 

is regarded as a dissimilarity measure between variables 

i & j and we attempt to fit a low dimensional model to 
describe the configuration of these dissimilarity 

measures. Nonmetric multidimensional scaling (MDS) 

(Kruskal, 19 64), as provided in the SPSSX ALSCAL program 

(SPSS inc), was used to provide 2-dimensional displays of 
the configuration of variances in each group. A Fortran 

program was used to construct the pairwise difference



H< m rH 04 Hi Hi ID Hi rH O' ID in
o 04 on in ' O' on 04 00 ID in rH on O' CO*-3 o- O' on on O' 00 LO HI in in rH on HrH i—i

O' o 04 on 04 on in o on o- in CO 04
o ID ID o- 04 in o o rH on Hi on H onPi ID O' O' CO in O' HI Hi on HI on rH

rH

0
rH ID 04 on ID H* rH Hi ID o H o O'

PQ Ol CTl O rH ID on on in on m on CO ot-q 00 00 CTl on 00 CO rH on on rH on ID O'rH rH H

0
on rH O' LO ID 04 on o CO on on on ID
U> ID on HI in O' on co on o O' rH IDpi O' CO O' CO o- CO CO CO o o CN CO 00rH rH

E-i on ID CO H* in 04 o CO CO ID co ID
Pi i—! 04 H oo H« Hi CO ID O' o- O Hi HIf-q in ID O' ID in in Hi 04 04 O' ID 04 04

E-i in oi on ID o- ID ID o- Hi CO in on H
Pi on HI hi on ID HI Hi CO CO co rH 04 O-Pi in O' ID O' Hi m 04 on rH in in H rH

o m 04 04 o on on O O' j"H m rH on
Pj on on O' O' O' rH ID O CO in rH 04 04t>q hi H< Hi ■511 on Hi OJ 04 rH CO O' 04 04

on in Hi in 04 ID ID on on H CO ID on
Pi vd no Hi o on O' Hi on 04 rH 04 ID o-Pi on in on in 04 Hi H 04 Hi on on 04 04

ID 00 H ID 04 ID 04 on on on CO O'
hi m ID H< ID 00 un o Hi ID CO on IDh-q on on on on rH 04 04 04 Hi in in on on

o- in •h rjl on 04 ID O' rH CO m on ID
Eh ID o rH in o CO O- Hi CO CO on 04 O'Pi 04 on 04 04 rH 04 on 04 in Hi ID Hi Hi

(jj
04 rH O O' Hi CO co Hi on on rH Hi O-

E 00 on rH 00 on on on CO o CO O' on on>-q rH rH H rH rH rH rH rH on Hi Hi 04 04

b
H* rH ID on O on 04 CO on CO O' Hi in
on O on ID O' HI O- on CO rH CO m HirH 04 H rH rH rH 04 on in in on m

CTl on h < o i—l o 04 CO on rH ID Hi coCu ao rH O' CO in ID 04 ID o co 04 Hi i—ihq rH rH rH 04 04 rH on Hi in on on

CO O on 04 H< in ID Hi 04 on 04 in Hi
Du Hi m rH rH Hi O' in rH 04 on in O' O'Pi rH rH 04 04 04 04 04 on Hi in m on

Du Du Eh Eh 0 0Pi Du B DC Eh Eh Pj Pi Pj Pj pq PQ o oPi i~q Pj j-Q Pi j-q Pi Pi q̂ 3 hq Pi kQ

Eh<Q
TJ
psa
a)rHtJlPiri-HUaJ

%O
i—Inj

o
©
rH

JH(0>
m<aus<D
®4H
(W*H
'd
<9
m

nJ
*4Ho
a)o
ci
-Hu
it)
>

<0rH
&njW tr

ia
n

g
le

)



FI
GU

RE
 

5.
2a

 
2-

Di
m

en
si

on
 

So
lu

tio
n 

Fo
r 

N
or

m
al

 G
ro

up

88

co
00

inCNCD

CN

in

U-

u_
u.-©1

in in
6

mo

in

o.

Q.

m



FI
GU

RE
 

5.
2b

 
2-

Di
m

en
si

on
 

So
lu

tio
n 

Fo
r 

DA
T 

G
ro

up

89

T 00

CD

LL

lO
oUL

U.

in in in

o .

CL

CLcc
in



90

variance matrix which was edited into an SPSSX command 
file. Two-dimensional solutions were fitted to each group 

and displayed in figures 5.2a,b. The most striking 
feature in both plots is the separation of the basal- 

ganglia region (right and left) from all other regions. 
This feature underlines an important fundamental 

difficulty in attempting to image some regions of the 

brain. The essential difficulty lies in the fact that the 

basal-ganglia is a smallish region - smaller anyway than 
the 13mm thickness of the slice (see section 2.5). 
Consequently this region can be difficult to identify 

reliably and hence associated data will be variable. In 

the figures all other variables appear roughly in 
alignment well separated from these regions.

Because of the sensitivity of MDS to individually 
large distances, regions close to each other will be less 

accurately fitted and hence some features of the observed 

configuration will be less reliably represented. In this 
example, there is little doubt that the basal-ganglia 

dominates figures 5.2a,b. In view of this the analysis 

was redone, excluding the basal-ganglia variable. The 

test of sphericity is still highly significant in each 
group even after excluding the basal-ganglia. The new MDS 

solutions are displayed in figure 5.3a,b. In both plots, 

most bilateral pairs are close indicating relatively 
small variances and probably larger correlations between 

regions. The exceptions are perhaps right and left 

parietal and posterior-temporal regions. In addition, 

each bilateral pair of regions are generally closer to
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each other than to other regions; with the exception of 

right and left parietal and posterior regions once again.
In the variance matrix (Table 5.3) it is clear that 

the larger pairwise variances are found in the DAT group. 

For example, the largest pairwise sample variance in the 

DAT group (after the basal-ganglia) is 0.972, between LO 

and LHF. This contrasts with the comparable sample 
variance in the normal group of 0.297. Since the the 

solutions are scaled differently it is not possible to 

compare the relative distances between any two regions 

between plots - only relative configurations.

It is interesting to note that, in each plot, the 
arrangement of regions along the x-axis correspond 

roughly with the positioning of regions along the 

anterior to posterior axis i.e. the long axis, of the 

brain. This tends to suggest that the variance of 

pairwise regional differences is related to the distance 
between regions.

Similar observations have been made by Worsley et al 
(1991) and Horwitz (1990). We will use this information 

as a basis for further study in a later section when an 

attempt is made to model the covariance structure.

5.3.4 Hemispheric Sums and Differences

As mentioned in section 1.3, the ROI approach 

performs a dual role. On the one hand it is a means of 
summarising the pixel image in terms of comparable 
anatomical structures between different subjects. It also
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helps reduce the dimensionality of the image dataset.
Even so, we saw in table 1.1 that experimental costs 

often, as not, result in quite a large number of regions 
being measured in relatively few subjects. That is, the 

number of variables (p) can be close to, if not greater 
than, the number of subjects (n). Consequently, further 
dimension reduction may be required.

Worsley (1991) has recommended a form of dimension 

reduction which uses the fact that, often as not, we 

obtain measurements from the same region in both 

hemispheres e.g. right frontal and left frontal. He 
proposes that we should always transform this bilateral 

ROI data to hemispheric sums (Right+Left) and differences 
(Right-Left) and analyse these separately. This of course 

presupposes that sums and differences are independent of 
each other. For each group we calculated the bilateral 

sums and differences and calculated the correlations 

between them. These are presented in shade matrix form in 

Figure 5.4 (i) & (ii) . As expected for sums, the 
correlations are large. For the differences the 

correlations are less strong. For the sums and 

differences, the pattern and magnitude of the 

correlations seems different in each group. In the DAT 
group, only the occipital and temporal regions register 
any substantial correlation. In contrast, the normal 

group exhibit numerous correlations between sums and 
differences.

In order to assess the significance of these 

correlations, one possibility would be to carry out
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Figure 5.4 Shade matrices for correlations between 
hemispheric sums and differences in (i) the DAT group and 
(ii) the normal group.
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multiple tests of the hypothesis of zero correlation for 
each of the 49 pairings of sums and differences. Instead, 

an overall test of the independence hypothesis is 

obtained using the technique of canonical correlation 

analysis. Here we are looking for the linear combination 

of differences and of sums exhibiting the largest 

correlation. For the correlations described for the 

normal group in figure 5.4 (i), the first canonical 

correlation is not significant at the 5% level 

(p=0,22 79). Compare this with the equivalent test applied 
to the data in the DAT group. In this group the first 
canonical correlation is significant (p=0.0143). These 

results are perhaps somewhat surprising, considering the 

pattern of intensity illustrated in each of the shade 

matrices. The fact that in the DAT group, the test was 
significant is probably due in part to the large number 

of subjects involved. In saying that, we can see from 

figure 5.4 (i), that the correlation is weak. Thus, little 

information will probably be lost by looking at sums and 
differences separately.

An interesting aside in this analysis is the effect 

of using different scales for the analysis. Here we have 

used square root data. If we carry out this analysis on 
the raw untransformed count data, almost identical 

results are obtained. For the normal group p=0.2600 and 

for the DAT group p=0.0143. However, if we use the log 

transformed data, the first canonical correlation is 

significant in the normal group at the 1 0 % level 
(p=0.0948) and there are two significant canonical
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correlations in the DAT group (p=0.0014, p=0.0205). The 

log scale suggests more association between sums and 

differences than the other two scales. Which result is 

correct is far from clear. However, the results earlier 
in section 4.5.3 would tend to suggest that square root 

data was the more appropriate scale for analysis of these 

data. Thus we might tentatively conclude that the log 

scale provides slightly less reliable conclusions about 
the association between sums and differences, than does 
the square root,

Another point worth noting about this analysis is 

due to the following result attributable to Pitman (1939) 
and Morgan (1939). The test of association between sums 
and differences between two variables is equivalent to a 

test of the equality of variances of the two correlated 

variables. We can see from the intensity of shading in 
figure 5.4(i) that only the occipital region has a 
sizeable correlation between sums and differences. By 

contrast figure 5.4(ii) shows a number of moderately 

large correlations between sums and differences - only 
basal ganglia being unshaded.

5.4 LINEAR SPATIAL CORRELATION MODEL

5.4.1 A Model Based on Distances Between Regions

As noted in section 5.3, there is some evidence to 
suggest that the variation in regional levels of activity 
is related to the distances between regions. Similar
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observations on the correlation structure were noted by 
Worsley et al (1991) which prompted them to propose a 

model for the covariance structure of the form

2 = a^ J + a2 D + a3 I

where J is the unit matrix, D = {d-j_j } is a matrix of 

distances between all regions and I is the identity 

matrix, D is assumed known. Hence, the parameters to be 

estimated are a^, a2 & a3 , where a^ corresponds to the 

between-subject variation, a2 is the distance effect and 

a3 the variation within regions. The number of unknowns 

in this model is three as compared to 1 / 2 x p x (p-1 ) in 
a full unpatterned covariance structure (see section 
5.5.1) .

The elements , of the covariance matrix are 
defined as

a! + a2dij , for i /f j
2 ■ ■ -ID “

a^ + a3 , for i = j .

Covariances are expressed as a linear combination of the 

subject effect and an effect due to the distance between 
ROls, while the variances involve a between subject and 
within region effect.
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5.4.2 A Distance Matrix for SPECT

It would be interesting to investigate the spatial 

pattern in our SPECT data, especially as we have noted 

already, in section 5.3.3, a hint of a spatial effect.
In the paper by Worsley, the distance matrix D was 

found by matching the regions used in the study for data 

extraction with the distances (cms) in a standardised 3- 

dimensional atlas of the brain. Unfortunately, we do not 

have corresponding distances for the regions used in our 
SPECT experiments. We can however, construct a crude 

alternative using a nearest neighbour set of distances. 

The following scheme has been used. Adjacent regions are 

defined by touching boundaries as illustrated in figures 

2 .4a,b.

1 . Different regions adjacent to each other and in the 

same hemisphere d=l.

2. Different regions adjacent to each other and in 

opposite hemispheres d=1.5.
3. Same region in different hemispheres d=0.5.
4. Regions with one region between them in same 

hemisphere d=2 .
5. Likewise for two regions between them in same 

hemisphere d=3.
6 . 4. And 5. above but in different hemispheres d=2.5 &

3.5.

The shortest notional distance between regions (using
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this scheme) is used in this case.

5.4.3 Parameter Estimation

Worsley used maximum likelihood methods {Mardia & 
Marshall, 19 84) to fit this model to data from a group of 

normal subjects, assuming regional variances (a3 ) 

constant for all regions. Unfortunately, we do not have 

access to suitable programs for fitting this model to our 
datasets. However, note that the variance of the 
difference between regional variables can be written

1/2 X  VtXi-Xj) = a3 + a2dij.

This is a simple linear regression equation involving two 

of the parameters of interest to us - excluding . A 

plot of the distances {given in the previous section) 

against sample variances of differences between variables 

(see table 5.3) in the normal group is given in Figure

5.5. There is visual evidence of association between 

these two measures and hence that the model may be quite 

reasonable.

Estimates of aj and a2 can be obtained using 

ordinary least squares. However, because of the 

correlation between the .V(X^-Xj)’ s, we cannot use simple 

least square standard errors. In order to obtain more 

approapriate estimates of standard errors I used a 

bootstrap approach (Efron, 1986). Random sampling was 

used to obtain bootstrap datasets X* from our n x p
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dataset X. For each X*, pairwise sample variances of 
differences between variables V(Xj_-Xj) were calculated. 
These were then regressed on the distance matrix D =
{d^j} described in section 5.4.2 to provide new estimates 

of a.2 and a3 , denoted by a2 * and a3 *. Two hundred such 
datasets were generated and from these bootstrap 

estimates were obtained. Standard errors, SE(a2 ) and 
SE(a3 ), were calculated from the sample variances among 

the bootstrapped a*2s and a*3 S. These estimated 

parameters, for the normal and DAT groups separately, are 
given in Table 5.4.

DAT Group

Parameter j

Distance 2

Region Variance 3

Normal Group

aj SE{a-;)
(xlCT2) (xlO-2)

4.152 1.404

5.103 1.836

(xlO-4) 

2.96 11.156

2.78 5.381

SE(aj) T
(xlO-4)

1.797 6.21

1.877 2.87

Table 5.4 Bootstrap estimates in normal and DAT groups.

5,4.4 Hypothesis Testing

The statistical significance of each parameter in 
the model can be assessed using the approximate t-
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statistic tj=aj/SE(aj), for j=2,3, This can be compared 

to a value of 2 for deciding on the significance of the 

parameter. The observed t-statistics are given in Table 
5.4. In both groups, both parameters are large enough to 
be considered significant. Thus there is evidence in 

support of a significant spatial effect.
As Worsley provided the data used in his research we 

may assess the reliability of the bootstrap approach used 

here. Bootstrap estimates of &2 an<̂  a3 an(3- test 
statistics are given along with Worsleyrs actual 

estimates in Table 5.5. Although the t-statistics were 

slightly smaller with the bootstrap approach, I would say 

that they compare satisfactorily with the corresponding 

statistics obtained using maximum likelihood.

Bootstrap Estimates Worsley Estimates Parameter

{xlO'2) (xlO *2)
SE(a-i) T 

4 ->.
aj SE(aj)

( x l O ) (xlO‘")
T

Distance 2 .6367 .2235 2.84 .4325 .1304 3 .32

Region Error 3 28.1 3 .2 8.92 27.48 2.71 10 .14

Table 5.5 Bootstrap estimates and actual parameter 

estimates using PET Data (Worsley, 1991).



5.5 COVARIANCE MATRICES RELEVANT TO IMAGING PROBLEMS

To follow on from the previous section we now review 
some models for covariance structures which have been 

considered in the literature, either to describe 

covariance patterns or to assess theoretically or by 

simulation the properties of statistical methods in this 
area.

5.5.1 An Unpatterned Covariance Model

We start with an unpatterned form proposed by Ford 
(1986) as a crude description of the covariance 

structure. Ford considered a model of the following form

S = c2 J + T (5.1)

where a2 represents between subject variation, J is the 

unit matrix 1 .1T and T={x^j} represents the matrix of 

intra-subject variances & covariances.
In this model the Tj_ j ' s represent the important 

parameters of interest for studying inter-regional 
coupling. In studying data with this structure we would 

be trying to estimate correlations of the form
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The presence of a random subject effect a2 means 
that what we estimate from the raw data is

Thus, correlations based on raw data are influenced, not 

just by inter-regional association, but also by between 

subject variation.

Correlation analysis of adjusted data is an attempt 

to recover the form of T and hence the true O-̂ j . It can 

be shown however, that this can present problems. In 

effect, important parameters remain confounded with 

nuisance parameters.

Using the following simple results (involving 

variables to X4 ) concerning variances and covariances

C(X1-X2fX3-X4) = C(XlfX3 )-C(X1 ,X4)-C{X2 ,X3)+C(X2 ,X4 ) 
& V(X4-X2) = V(xx)+V(X2 )-2*C(XlfX2),

simple formula can be derived for some forms of adjusted 
correlation.

For example, normalisation by subtraction of a 

subject mean of all regions in the data vector, results 

in correlations between regions i & j of the form
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Ti j “ Ti. " . + x_
RHOi j = -------------------------- ------- -----

{ (x-Li + m - 2xj_ ) (xj j + x _  - 2xj ̂ ) ) 1/2

where Xj_. - Z j ^ij/p and x..= Z x^j/p2 . Since a number 

of nuisance parameters are included in this formula, this 
demonstrates the confounding effect with covariance 

parameters of interest. Similar formula can be derived 
for other forms of adjustment. Ford (1986) derived a 

formula of this type for studying the partial correlation 

coefficients.

Some investigators (Worsley et al (1991), Horwitz 
(19 84)) have suggested that a full unrestricted 
covariance matrix overparameterises the true correlation 

structure and that there is a simpler form for the intra­

subject variances and covariance structure. Some of the 
models they propose are introduced in the proceeding 
sections.

5.5.2 Compound Symmetry and Sphericity

Compound symmetry represents one special form of 

covariance matrix. This can be expressed in the form

Z = o2 I + x2 J

where cr2 is the between subject variance, I is the 

identity matrix, x2 is the within-subject variance- 

covariance parameter and J is the unit matrix.
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This implies that the variance of all pairwise 

differences among variables, Var(Xi-Xj) (l<i<j<p), are 

equal. In addition, the repeated measurements are 

equicorrelated. A more general form is known as 
sphericity. This only requires that Var (X-̂ -Xj ) =constant.

Since the sphericity•assumption was rejected (see 
sections 4.1) we can presume that neither the compound 

symmetric or spherical models apply with these data and 

quite probably to imaging datasets in general.

5,5.3 Regional Clustering

A number of exploratory studies of the sample 

correlation structure have noted a degree of clustering 
among regions (Horwitz, 19 84). This can be expressed in 

terms of a partition of the overall covariance matrix 

into C submatrices

0 I
0

0 0 scc I •

In this case, variables within clusters will exhibit 

association, while variables in different clusters will 
be uncorrelated.



Three simple representations of this are illustrated 
in Figure 5.6. represents complete independence 
indicating 4 single region clusters. R2 shows two 

clusters of two regions, one with a coupling coefficient 

of r^, the other with r2 . R3 shows one cluster all 

equally coupled. Such clustering type structures have 
been shown to be useful in devising simulation studies 
(MacCormack ,1991) and in studying the theoretical effect 

on partial correlations (Ford, 1986),

Rx = {diag(1 ,1 ,1 ,1 )} R2 1 rl 0 0

rl 1 0 0

0 0 1 r 2

0 0 r 2 1

R3 = 1 r r r

r 1 r r

r r 1 r

r r r 1

Fig 5.6 Representations of regional clustering

5.5.3 Linear Covariance Models

The final model which has been used in the context 

of imaging data is the general linear covariance model. 

Here we express the pattern of variances and covariances 
in a covariance matrix as a linear combination of other 

known matrices. That is
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t
£ = 2 

i=l
A simple case of this is the compound symmetric 

model of the previous section. Another is the spatial 

model described in section 5.4.

5.7 DISCUSSION

The study of interrelationships among regions is 
clearly very important if biological understanding of 

the brain is to advance. However, it is clear from some 

of the analysis in this chapter, that arriving at 

reliable biological conclusions from the results is not 

straightforward using these datasets. It seems that any 

effort to determine functional association between 

regions using correlation analysis must be tempered with 

sober realisation of the inherent confounding introduced 

into the analysis by prior adjustment of data. It has 
been suggested (Metter et al, 1984a) that such inferences 
can only be made from the study of multiple scanning 

vectors per subject, obtained under ideal conditions, 

before we can truly study intra-subject correlations. At 

the end of day, however, it should be remembered that 
reconstruction algorithms involve a degree of smoothing. 

This can clearly impose inter-pixel correlations locally 

and even globally which may undermine our aims.

Of all the simplified covariance structures 
described in section 5.6, the linear spatial model,
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described in section 5 .5 , would appear most plausible.

This is backed up by the results of the exploratory 
analysis of real data carried out in section 5.4.
However, the adequacy of the three parameter model 

requires further study. From the data provided by Worsley 

we can investigate the adequacy of the model visually 

from a plot of ^/2 V(Xi-Xj) against dj_j (Figure 5.7) . It 
is apparent that there is still a great deal of 

unexplained variation around a best fitting line for 

these data. In practice other factors might be 

incorporated into the model. Indeed, we might replace the 

simple distance measures used by Worsley and with our 

SPECT data, by biological distance such as the lengths of 

neuronal pathways between regions.
A number of reasons could explain the presence of 

the spatial effect in imaging datasets. On the one hand, 
the variation might be genuinely due to underlying 

physiological reasons. Alternatively, it might in part be 
due to the measurement and/or reconstruction methodology 

used. It is entirely possible that the larger variance 

estimates for regional differences between distant 

regions over closer regions reflects some difficulty in 

matching the orientation through regions across a group 

of homogenous subjects - normal and diseased.

As a feature of imaging datasets, the spatial 

covariance form has important implications for the 

univariate analysis of regional means in within and 
between group problems - as illustrated in chapter 3,
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especially, if the data is normalised to a single 

'spared' region e.g. the occipital region. An implication 

of the spatial model is that, normalised regional 
variates {where the region is far from the normalising 

region) will have larger standard errors of mean than for 

closer regions. This will then make statistical 

significance between regions and between groups harder to 
detect. Similar problems arise with subject mean 
normalised data (Worsley, 1991).
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CHAPTER 6 

ANALYSIS OF LONGITUDINAL DATA

6 .1 INTRODUCTION

In DAT, the onset of the disease is usually unknown 

and difficult, if not impossible, to determine. Hence the 
length of time between onset and diagnosis is likewise 

difficult to determine. However, we do know that the 

illness progressively affects the individual in a number 

of different respects e.g. cognitive and behavioural 

function. This is illustrated figure 6.1 showing showing 

the decline in individual's CAMCOG (Roth et al, 19 8 6 ) 

scores, a neuropsychologica measure of general cognitive 

function, over time from entry to the study.
Assuming some correlation with cerebral activity, we 

might expect to see a related change in the SPECT 

profiles of an individual over time. Only a few studies 

have looked into this problem {Barclay et al, 19 84; 

Jagust et al, 1988) .

6.2 A LONGITUDINAL DATASET

Regional mean/counts pixel data was observed in p=14 
regions for n=17 subjects on t=4 different occasions - 
roughly six months apart. Table 6.1 contains regional 
subject means and standard deviations on each occasion. 

Just as between individuals, a feature of these data is 

the presence of large scalar difference between profile
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Figure 6.1 Plot of individual's CAMCOG scores against 
time in months from entry to the study.
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REGION

RF

LF

RHF

LHF

RT

LT

RP

LP

RPT

LPT

RBG

LBG

RO

LO

Table 6.1

TIME
1 2  3 4

12.182 
2 . 037 

12.074 
2 . 043 

11,993 
2 .106 

11.997 
2.166

12.464 
2 . 281 

12.339 
2 . 073 

12.609 
1. 972 

12.527 
1.974 

12.850 
2 . 027 

12.813 
2 . 047 

13.444 
2 . 664 

13.478 
2 . 508 

13 . 451 
2 . 082 

13.149 
1.902

12,603 
1,432

12.464 
1.504

12.390 
1.442 

12.408 
1.555 

13.039 
1.495 

12.707 
1.498 

13.065 
1.349

12.999
1.383 

13.453 
1.331 

13.298
1.320 

14.168
1.406 

14.222
1.315

14.095
1.188 

13.888
1.173

11.940 
1.441

11.748 
1 . 320

11.838 
1.455

11.875 
1.435

12.391 
1.296

11.999 
1.329 

12.427 
1.219

12 .406 
1.217

12.773
0.951

12.422
1.143 

13.215 
1.585

13 .424 
1.314

13 .460
1.095 

13 .286
1 . 100

12.198 
1.051 

12.136 
1.153 

12.073 
1.177 

12.145 
1.306 

12.629 
1.213

12.422 
1.222

12.749 
1.141 

12.669 
1.282 

13.197 
1.073 

12.885 
1.288 

13.439
1.383

13 . 457
1. 334

14 . 026 
1.382

13.782 
1.324

Regional means and standard deviations 
on each occasion.
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Figure 6 . 2 Plot of ROI profiles on four occasions for one 
individual
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data on each of the different occasions. This is 

illustrated in figure 6 .2 .

6.3 A RM ANOVA APPROACH TO ANALYSIS

Both Barclay et al (1984) and Jagust et al (1988) 

analysed their data by normalising to the subject mean on 

each occasion and comparing occasions for each region 

separately using paired t-tests. For data on more than 

two occasions this approach could result in a large 
number of tests and the interpretation could complicated 

for reasons similar to those in section 3.6. As a first 

step we analysed our dataset using the univariate RM 

ANOVA, including time, region and hemisphere as within 

subject factors. The results of this analysis are 

summarised in Table 6.2. We can see from the results that 

there is a very significant region effect and some 
evidence of region x time and region x hemisphere 
interactions. However, in both these latter two tests 
there is some doubt, as the Greenhouse-Geisser adjusted 

p-values just fail to reach significance at the 5% level.

6.4 SELECTED CONTRASTS IN TIME

Assuming the region x time interaction is 

significant, we would naturally like to carry out a 

follow-up analysis of these data. In the previous 

analysis of the single scan data we noted that, for this 
disease group, the overriding difference from the normal
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group was the contrast in activity between occipital and 

other regions. In order to see whether this feature was 

in any way correlated with time further analysis was 
carried out on the contrast

RF LF RHF LHF RT LT RP LP RPT L PT  RBG LBG RO LO

ZT = ( - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1  - 1 - 1  0 0 + 5  +5 )  .

A plot of the individual contrast values over time 

are given in figure 6.4, together with the means at each 

time. There is considerable variability at each time 
point and clearly not all subjects conform to a stable or 
even obvious trend. Nonetheless, there is some indication 
of a positive trend in the mean values over time. A

formal analysis of Z values was carried out using the rm
anova approach - including time as the only factor. The 

results are given in Table 6.3. The overall test is very 

clearly significant, even after adjusting for violation 

of the sphericity assumption in time. The 3 d.f. time 

effect was further broken down into orthogonal linear, 

quadratic and cubic components using the 'ORTHOGONAL' 

option in P2V of BMDP. The test for linear trend was the 

only significant effect in this data. Thus there was 

evidence to suggest that on average the contrast between 

occipital and other regions decreases in roughly equal 

amounts over the time period (approximately 18 months) 
studied here.
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Figure 6.4 Plot of Z contrast values against estimated 
time since onset of DAT.
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6.5 ADJUSTING FOR BASELINE STATE

In most cross-sectional studies we have little or no 

control over the sample of subjects who are recruited in 

each group. Thus we are likely to obtain a group of 
subjects who are at various stages of the disease. Now, 
it seems plausible that the latency period, between onset 

and diagnosis, could be an important factor in accounting 

for much of the between subject variability seen at time 
point 1 in figure 6.3. In cross-sectional studies an 
attempt is made to account for this, by categorising 

subjects in terms of the severity of the disease on the 

basis of presenting clinical and psychiatric symptoms.

The RM analysis of the previous section was 

augmented by inclusion of a categorical factor for the 

severity of the disease at the time of the first scan. In 

our dataset 3 cases were categorised as "minimal’, 7 as 

"milds1 and 7 as "moderate1 in severity. The results are 

given in Table 6.4. Only the time effect is significant.
Alternativel we could some measure of the latency 

period (i.e. onset - diagnosis) of the disease as a 

covariate in relation to the vector of ROI responses. In 

the Alzheimer study, an estimate of time since onset was 

obtained from a relative, close friend or someone who had 
been in contact with the subject over a period of time 

and had notionally observed the decline in their 

condition. We plotted the Z values at time 1 against this 

data in (Figure 6.4). There is no visual evidence to 

suggest that the relationship is anything but weak. There
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are obvious problems with the onset data. The estimates 

are highly subjective since they are prone to differing 
degrees of accuracy among individuals. The data point on 
the extreme right of figure 6.4 seems unrealistically 
high.

6.6 DISCUSSION

Compared to cross-sectional analysis, the analysis 
of serial data presents a set of additional statistical 

problems.

In situations where we have different numbers of 

scans/subject, the RM ANOVA approach may not be 

applicable since we would be dealing with unbalanced 

numbers of repeated measurements. The antedependance 

approach of Kenward (19 87) is useful in the single 

variable problem and might be of some use here also. If 

scans at each time point were reasonably strongly 

corrlated, a similar sort of analysis could be 
incorporated into the framework of the RM ANOVA by taking 

successive differences of the form Xj+ 1 - Xj. If no 

change had occurred in an individual or a group of 

individuals, the individual or group mean difference 
would be constant across regions. This approach might 

also be used as a way of adjusting for basline 

differences.
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CHAPTER 7 
CORRELATING DIFFERENT DATASETS

Many disciplines are involved in brain research 

which can result in the collection of a vast array of 

different types of data on any one individual. One of the 
concepts of using a multidisciplined team in the 
Alzheimer study was that we could study the disease both 

in-vivo and in-vitro and the correlation between data at 

distinct levels of biological resolution for the same 
subj ects.

In this chapter we will look at some examples of the 
approaches taken to correlate data collected in the study 

from the different disciplines . We will look at the 

correlation of ROI SPECT data with neuropsychological 
test scores and with senile plaque count data. In each of 
these problems we essentially are interested in comparing 

two multivariate datasets; a blood flow dataset X (n x p) 

and a neuropsychological or plaque density dataset Y (n x 

q), with p and q variables in each, observed in i=l,...n 
common individuals.

7.1 SPECT AND NEUROPSYCHOLOGICAL TEST SCORES

Four neuropsychological test scores were chosen from 

the Alzheimer database for this analysis and are 

described in Table 7.1. Only Alzheimer subjects were 

looked at in this analysis.
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VARIABLE DESCRIPTION

Measure of Praxis from CAMCOG.

Y2

y4

Graded Naming Test : Total errors on test. 
Verbal Fluency: composite of 6 subscores. 

Memory: composite score of visual/pictorial

memory.

TABLE 7.1s Neuropsychological Test Variables

One simple approach to study these data is to 

calculate correlation coefficients between each regional 
variable and each neuropsychological variables (Montaldi, 

1991). Because of the subject effect, this only makes 
sense if the SPECT data is adjusted prior to correlating 

the data. This can be done by normalisation as described 

in chapter 3. For this analysis the regional data had the 

subject region mean subtracted. Table 7.2 displays 

individual sample correlations between each normalised 
regional variable and each of the neuropsycholgical test 

scores in table 7.1. Initial scrutiny of the size of the 

correlation coefficients suggests that any association 

that exists is weak. Formal analysis the correlations was 

carried out by testing the hypothesis of zero 
correlation. Because of the multiplicity of testing 

involved, individual significance was assessed using 

Bonferroni adjusted alpha levels. A number of 

statistically significant correlations were identified.

As in the analysis of means, it is important to 
remember that other forms of normalisation will likely
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Yl y2 y 3 y 4

RF -0.06 0.16 0 .12 0.04

LF -0.01 0.14 0.13 0.06

RHF -0.02 0 . 03 0 .14 0.06

LHF -0.04 0.14 0.02 -0.02

RT 0.15 a*0o1 0.04 0.24'
LT 0 .14 0.27* 0.02 0 .12

RP 0.19 -0.18 -0.02 0.23

LP -0 . 01 -0.22* -0.09 -0.01
RPT 0 . 23* -0.01 0 .01 0.04
LPT 0 .17 -0.03 0.01 -0 .14

RO -0.31* -0 .12 -0 .14 -0.23

LO -0.28* -0.09 - 0.12 -0 .18

Table 7.2 Correlation coefficients between adjusted (to 
subject mean) imaging data and neuropsychological test 
scores. Asterisks denote significant correlations at the 
5/48% significance level.

give different results and therefore that interpretation 

of any results must be in terms of normalised data; not 

in terms of the original data.

We looked at other methods of correlating these 
data. Regression analysis was carried out relating each 

neuropsychological variable to the blood flow profile 

data. In the interest of simplifying the amount of
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analysis involved, we first reduced dimensions by first 

transforming to regional hemispheric sums and 

differences. In the analysis below hemispheric sum 

variables are prefixed by 'S' e.g. SO=occipital sum, and 
difference variables by 'D' e.g. DO=occipital difference. 

Multiple correlation coefficients between each 

neuropsychology variable and the set of regional sums and 
differences separately are shown in Table 7.3 together 

with a test of significance. In contrast to the previous 

analysis the hemispheric sum data were not adjusted prior 

to analysis, as the regression analysis accounted for the 

scalar effect in the interrelationships among region 
variables.

Neuropsych SUMS DIFFERENCES

-ological R2 Sig. R2 Sig.
Variable Level Lev*

Yi . 2 6 .001 .07 . 526

* 2 .09 .378 .20 . 015

y3 .04 . 851 .05 . 708

y4 . 13 . 161 .09 .366

Table 7.3 Multiple correlation coefficients and p-values 

between each neuropsychological variable and the vectors 

of right/left sums and differences.



(a)
R e g r e s s i o n  P a r a m e t e r  

C o e f f i c i e n t  E s t i m a t e  

C o n s t a n t  4 . 4 8 7

S F

SHF

S T

S P

S P T

SO

0 . 4 9 1  

- 1.022 

0 . 5 2 2  

0 . 4 1 2  

1 . 0 7 9  

- 1 . 3 4 2

S t a n d a r d  

E r r o r  

2 . 9 8 3  

0 . 5 8 3  

0 . 6 2 2  

0 . 4 5 8  

0 . 5 5 7  

0 . 4 2 6  

0 . 3 6 6

T - R a t i o  

1 . 6 3  

0 . 8 4  

- 1 .  6 4  

1 . 1 4  

0 . 7 4  

2 . 5 3  

- 3  . 6 7

( b )

R e g r e s s i o n  P a r a m e t e r  

C o e f f i c i e n t  E s t i m a t e  

C o n s t a n t  8 . 5 8 8

DF

DHF

DT

DP

DPT

DO

1 . 5 6 8  

- 2  . 3 3 8  

- 3  . 5 7 9  

1 . 3 7 6  

- 0 . 0 3 5  

0 . 1 8 1

S t a n d a r d  

E r r o r  

0 . 4 1 8  

1 . 6 5 7  

1 . 4 0 8  

0 . 9 7 1  

1 . 0 8 2  
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- 1.66 
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1 . 2 7  
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P - v a l u e

0 , 1 0 9  

0 . 4 0 3  
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0 .000

P - v a l u e  

0 .000 

0  . 3 4 7  

0 .101 

0 . 000 
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0  . 8 3 9

T a b l e  7 . 4 a ,  b  R e g r e s s i o n  p a r a m e t e r s  f o r  ( a )  p r a x i s  w i t h  h e m i s p h e r i c  

s u m s  a n d  ( b )  g r a d e d  n a m i n g  t e s t  w i t h  h e m i s p h e r i c  d i f f e r e n c e s .
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There is evidence from this analysis that the praxis 
variable is significantly (p=0 .0 0 1 ) related to some or 

all of the hemispheric sums and that the graded naming 

scores are related (p=0.015) to some or all of the 
hemispheric differences. The regression model relating 

the praxis variable to hemispheric sums is given Table 

7.4a and graded naming to hemispheric differences in 

Table 7.4b. From inspection of the t-ratios and p-values 
of each coefficient in these models, it would appear that 
only some of the variables were related to the 

neuropsychological variables. Further analysis of these 

data using a stepwise variable selection gave the 

following reduced model for praxis

Yx = 4.44 + 1.287 x SPT - 1.121 x SO

(2.89) (.294) (-317)

which had an R2=0.225, and for graded naming

Y2 = 8.87 - 3.14 x DT

(.380) (.904)

which had an R2=0.142.

The analysis would tend to suggest that praxis 
scores were related to a contrast between posterior- 

temporal and occipital regions, while graded naming 

scores were inversely related to the degree of asymmetry 

in the temporal region.
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An extension of this analysis was carried out using 
canonical correlation analysis, relating all 
neuropsychological variables to all imaging variables.

The first canonical variate between hemispheric sums & 

differences together and neuropsychological test scores 

is highly significant (p=0.0106). The same analysis 
repeated on sums and differences separately showed that 

sums were highly significant on the first canonical 

variable (p=0.0064) while differences were not 
(p=0.3610). This latter result is not totally consistent 

with Table 7.3. This may be accounted for by the fact 

that 5% significance levels were used in that analysis 

and that if Bonferroni significance levels were used in 

interpreting the results of table 7.2, the two would be 

more consistent.

In order to understand the nature of the 
relationship between these two datasets better, the 
canonical variate coefficients and the correlation of the 

canonical scores to original variables were studied 

(Table 7.5). From the coefficients it can be seen that 

the canonical variate for the neuropsychology variables 
is dominated by praxis (Yi[_) . The signs of the canonical 

variate coefficients for the bood flow data would 

indicate that this describes the contrast between 

occipital and posterior-temporal regions. This is similar 

to the results obtained from the multiple regression 

analysis taking the neuropsychological data one variable 

at a time.
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Neuropsych 
Variable Can.Coef. Corr.

Yl 1.294 (.92)
y2 0.058 (.08)

-0.188 (.19)
*4 -0 .446 (.36)

SPECT
Can.Coef. Corr. Variable

0.554 ( .60) Fr
-1.225 ( .60) HF
0.480 (.66) T
0.660 ( .67) P
2 .223 ( .74) PT
-2.097 (.47) Oc

TABLE 7.5 Coefficients of canonical variates and 
(correlation coefficients) between canonical variables 
and original right/left sum variables.

There is an inherent difficulty in interpreting the 
canonical coefficients in this way because the imaging 

variables are themselves so highly correlated. However, 

in a rerun of the analysis, excluding posterior-temporal 

and occipital regions, no relationship between the two 

groups of variables could be found (p=0.ll8l). This would 

tend to bach up the conclusions from analysis on the full 

set of regions

7.2 AN APPROACH BASED ON EXTREME SUB-GROUPS OF SUBJECTS

A more heuristic approach to the problem considered
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above was investigated in the Alzheimer study and is 

reported below. This involved identifying cases with 
extreme SPECT profiles and comparing these cases in terms 
of corresponding clinical and neuropsychological data. 

SPECT and neuropsychological data from 4 8 DAT cases were 

used in this investigation.

Variation in regional SPECT patterns was 
investigated using PCA based on the covariance matrix of 

normalised ROI data. The data was normalised to occipital 

activity prior to the analysis. A two dimensional summary 

of inter-subject variation was obtained from the PCA 
using the first two principal components. These accounted 

for 70.4% and 12.2% (total 82.6%) of the variation. The 

coefficients for these components are given in Table 7.6, 

arranged according to component 2. For component 1 the 
coefficients are of the same sign and roughly the same 

magnitude. Thus, this describes an overall regional 

average measure of relative activity. The second 

component corresponds to a contrast between a posterior- 

temporal/parietal grouping and a frontal/higher-frontal 

grouping of regions. PC scores are plotted in figure 7.1, 

with different symbols used to identify clinical 

severity. The moderate group, being the largest of these 

groups, tends to dominate. Nonetheless, it is perhaps 

possible to detect clustering of subjects in the minimal 

and severe groups on component 1 although it is clear 

that the numbers involved and degree of the differences 
are small.
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Figure 7.1 Plot of scores on first two principal 

conponents with four sub-groups highlighted. Clinical 
severity superimposed: A-'minimal', O- ’mild', X- 
'moderate', □- 'severe'.
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Number Regions
Component 

1 2

1 Posterior Temporal (Right) . 17 .50
2 Posterior Temporal (Left) .24 .51
3 Parietal (Right) .28 .29
4 Parietal (Left) .28 .38
5 Frontal (Right) ,31 - ,26
6 Frontal (Left) .32 - .24
7 Higher Frontal (Right) .38 - .26
8 Higher Frontal (Left) .36 - .22
9 Temporal (Right) .38 - .09
10 Temporal (Left) .38 -.06

% VARIABILITY 
EXPLAINED 70 .4 12 .2

TABLE 7.6 Coefficients from principal components 
analysis

On the basis of figure 7.1, four clusters of cases 
from the moderate group were selected for further study. 

These were chosen from extreme quadrants in the north, 

south, east and west areas and are labelled as A, B, C or 

D in figure 7.1. The individual unnormalised ROI profiles 

are displayed for these subjects in figure 7.2 a-d. On 

visual evidence these show broad similarity within sub­

groups and dissimilarity between sub-groups. Images for
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Figure 7.2 Profile plots for each of the subjects in 
each sub-group.
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Figure 7.3 Images for one subject in each of the sub­
groups of figure 7.1.

A
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one subject in each sub-group were selected for 
comparison. These are shown in the montage in Figure 

7.3a-d. From a clinical point of view there is little 
doubt surrounding the distinctions between them.

S U B -  CASE I D  AGE

GROUP ( y e a r s )

1 7 6

A  2 8 4

3 6 1

B 1 6 8

2 7 5

BLOCK D I G I T  WORD

D E S I G N  S P A N  FLUENCY

0 *  5 2 . 0

0 5 1 . 5

0*  0*  0*

0* 0* 0*
0 4  6 . 0

1  7 7

C 2 8 5

3 7 7

1 7 9

D 2 9 1

3 8 9

4 5 1

0  5  3 . 5

0* 0* 0*
0 5 3 . 5

0 5 3 . 5

0 *  5 2 . 0

0 4  6 . 5

8 5 0 *

TABLE 7.7 Neuropsychological test data for individual 
cases in each sub-group, indicates missing data or
test not completed. Zero imputed as most likely value on 
test.

The analysis proceeded by comparing the 

neuropsychological profiles of the four sub-groups. The 

neuropsychological variables chosen for this purpose

MMSE

5  

*

1

1
3

6 
8 
6

12
7

1 4

1 8
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included an index of overall cognitive function (the mini 
mental state examination (MMSE)) and three other 

variables reflecting more focally organised cognitive 

functions (verbal fluency, digit span and block design). 
Age was also considered. These data are given in Table 

7.7. From the range of the MMSE scores, we see that all 

patients were in the moderate to severely demented range 

of the index. Verbal fluency and Block Design, chosen to 
reflect predominantly anterior and predominantly 

posterior functioning (as indicated by component 2 ), 

showed no obvious differences between the four sub­
groups. On a measure of immediate memory (Digit Span) 
there were no obvious differences between the four 

groups. On all tests subjects scored low. Age did not 

appear to explain any differences between the sub-groups 

either.

Consequently, there is little evidence, on 

neuropsychological grounds, to distinguish between these 

four sub-groups. Thus, there little indication, from this 
analysis, to suggest correlation between SPECT data and 

neuropsychological data.

These results initially surprised the radiologists 

involved in the study since the differences between the 

images in the four groups would normally be associated 

with clinical differences. One of the reasons for this is 

that we studied a group of DAT subjects who were 

clinically advanced in terms of severity. It has been 
noted that neuropsychological tests are not always 

sensitive enough to study the cognitive profiles in
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subjects at advance stages of a disease; the scores often 
exhibiting floor effects - as is the case above. Another 

reason is that differences between the images reflect 

heterogeneous development of the disease which can no 

longer be linked to simple neuropsychological data. A 
third reason is a purely practical one. In figure 7.3, it 
is worth noting that the ventricles differ markedly in 

size from image to image. It is possible that the slices 
and orientation of the slices, from which the ROI data 
was extracted, did not strictly match for all subjects. 

This is a measurement problem using these techniques and 
is discussed further in chapter 8 .

7.3 SPECT Counts v's Plaque Counts

The previous analysis dealt with the comparison of 
two different in-vivo datasets. We will now compare in- 

vivo SPECT counts with in-vitro cell degeneration, as 

measured by plaque count density. Plaque data for twelve 

subjects, with clinical Alzheimer's Disease, who had also 
had SPECT images carried out close to death. Plaque data 

was obtained from right and left frontal, temporal and 

occipital regions corresponding to the same regions 

imaged with SPECT. We thus had 6 anatomically matched 

SPECT and plaque data values for each subject for 
analysis.

In comparing SPECT to neuropsychological test scores 
we carried out a between subject analysis. The main issue 
for this comparison was whether to adjust the SPECT
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and/or plaque data, as discussed previously, prior to 
analysis. There is some evidence of scalar differences in 
the plaque data similar, although to a lesser extent, to 

SPECT data. One feature of interest in relating these two 

datasets is the relationship between right and left 

measurements. Sample correlations are given in Table 7.8. 

These are all quite small, and on testing the null 
hypothesis of zero correlation, none were found to be 

significant.

Front
- - S P E C T ---

Sup. Temp Occ.

Front .37 - .03 .32

PLAQUE Sup.Temp. .20 .19 .21

Occ. - .13 .06 - .1 1

TABLE 7.8 Correlation coefficients of right/left 

ratios. Ratios analysed on the Log scale.

Thus, there was insufficient evidence available to 

suggest any quantitative and hence biological link 

between SPECT and plaque data. With this in mind it is 
interesting to note an alternative approach to .the 

analysis of datasets of this type (Dewar et al, 1991,
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SUBJECT CORRELATION P-VALUE

1 - .96 .003
2 - .92 . 0 1 0
3 - .78 . 069
4 - .76 .079
5 .54 .267
6 .54 .269
7 - .50 .316
8 - .39 . 441

9 - .26 . 623
10 - .19 . 723
1 1 - .12 .823
12 - .05 .925

Within- subject correlations for

individual

Duara et al, 1991). This involves the study of within- 

subject correlations; relating regional imaging data with 

plaque data for each subject separately across regions.

We will consider the merits of this approach by applying 

this analysis to the data above.

For one of the subjects in our dataset plaque counts 

were plotted against SPECT count data figure 7.4. On the 
face of it, the two variables appeared to correlate quite
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strongly (r=-0.96), with high ROI corresponding to low 

plaque numbers and vice-versa. Table 7.9 provides similar 
correlation estimates for the rest of the subjects. These 

are given in descending order of magnitude. The initial 

impression is that, for many of the subjects, the two 

variables appear strongly correlated, while for others 

the association is either very weak or negligible. In 
addition, in the majority of cases the correlations are 

negative - as in the example above.

In Dewar et al. (1991) and Duara et al. (1991), a t-

test was used to assess the statistical significance of 
the observed correlations. This has been done for these 
data and presented in table 7.9. In both cases we would 

conclude that only two cases show statistically 

significant association at the nominal 5% level.

A number of aspects make this approach highly 

dubious. For one thing, the regional data (for both SPECT 

and plaques) will probably be themselves correlated. They 

cannot be considered as having arisen from a random 
sampling scheme, as assumed in correlation analysis. In 
addition, the regional data are structured measurements 

analagous with fixed levels of a factor (Region). On this 

fact alone, it is likely that different signs and 

magnitudes of "correlations' could be found simply by 

choosing different regions for the analysis.

7.4 DISCUSSION

Apart from statistical considerations in these
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analyses there are als some important biological 

considerations. In certain neurological conditions, 

metabolic or blood flow deficits in one area may manifest 
themselves in a completely different area. An example is 
cross cerebellar diaschisis (Ell, 1990) . Although more 

commonly associated with stroke, this fact is worth 

bearing in mind before placing any biological 
interpretation on the results of this analysis.
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CHAPTER 8 

OTHER TOPICS OF INTEREST

8 .1 DISCRIMINATION PROBLEMS

An important and practical application of imaging 

techniques is in problems of discrimination where 

information extracted from images might be used for 

diagnosis e.g. between normal and diseased states, or for 

screening individuals for inclusion in an experimental 

study or for deciding on suitable courses of prognostic 
action e.g. surgery. CT and MRI imaging are already used 
in some diagnostic and prognostic applications where 

qualitative features in the image e.g. infarcts, can be 

identified. To date the use of functional inaging in 

these problems has been mostly studied in terms of 

qualitative features (Gemmell et al, 1987; Testa et al, 
1988; Jagust et al 1987; Smith et al, 1988), although 

some work has looked at the use of quantitative data 

(Clark et al, 1991; Ford et al, 1991).
We have investigated the use of SPECT data to 

address some of these problems in the Alzheimer study. 

Some of this work has been presentated as talks or 

posters at neuroscientific and general medical 

conferences and is presented below.

8.1.1 Discriminating Between Normal and Diseased Groups

McCrory and Ford (1990) studied the use of linear
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Figure 8.1 Plot of normalised temporal against 

normalised parietal activity. X - Normal', O - DAT 

subj ects.
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discriminant analysis in a SPECT dataset consisting of 

twenty normal and sixteen early dementing DAT subjects. A 

variable selection routine was applied to these data as a 

first step. Normalised right parietal and right temporal 

regions were selected as providing best best 

discrimination between these groups. A plot of the data 
for these two regions is shown in Figure 8.1 with the 

linear disccriminant rule superimposed . Four additional 

cases were added to the plot for use as a training set. 

These are labelled A-D in figure 8.1. On the basis of 

visual inspection alone these data suggests that there is 

reasonable separation between the groups.

True Group 

Normal DAT

Predicted Normal 15 1
Group

DAT 3 13

% Correct 83.3% 92.9%

Table 8.1 Forced classification table.

For classification purposes, a common approach is to 

assign cases to one of the design groups on the basis of 

the size of the estimated posterior probability. Using 

this approach, the misclassification rates for this data



150

are given in table 8.1. As expected from figure 8.1, the 

overall success of the classification rule for the desgn 

set is high, at 87.5%; with only one normal case being 

incorrectly assigned to the DAT group. For the training 

data, cases A, C & D would be assigned to the normal 
group while case B would be assigned to the DAT group.

In this example we assumed equal covariance matrices 

and prior probabilities. This latter assumption is 
probably given the incidence rates in table 1 .2 .

8.1.2 Uncertainty in assigning individuals to particular 

groups

A feature of this approach is that the predicted 

group membership involves forced classification to one or 

other of the groups, often using a value of 0.5 for the 

posterior probability as cut-off value.

There are a number of reasons why this is not a 
totally satisfactory approach for these data. In the 

first instance the sampling variability associated with 

the data means that there is some uncertainty about the 
true posterior probability for each individual. As we 

will see in the next section the ROI approach to data 

extraction suffers from inherent sources of measurement 

error. This is particularly important to remember in 

situations where an estimate is close to 0.5. Finally, it 

should be remembered that the diagnosis of DAT using 

clinical data is not totally reliable; only post-mortem 

data can confirm in-vivo diagnosis. Consequently, it is
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entirely possible that some cases may be wrongly included 
in the design dataset. This is a problem of an 
"incorrectly classified design set’ (Hand, 1981).

Recent research on quantifying the uncertainty in 

such situations includes the work of Schaafsma & Van Vark 

(19 79) and Ford & Critchley (19 82) and Rigby (19 82) . This 

involves constructing interval estimates for the 

posterior-probabilities (Rigby, 1982; Critchley and Ford, 
1985; Critchley et al, 1988), for each indiviudal, which 

can be taken into account in the classification 

decisions.

Subject Pr.(Normal|Data) Interval Estimate
A .59 ( .46 , .73 )
B .02 ( .01 , .41 )

C .86 { .66 , .97 )

D .69 ( .36 , .90 )

Table 8.2 Posterior probabilities and interval 
estimates

We used Rigby’s approach to construct interval 

estimates of the posterior probabilities for the cases in 

our training set. These are given in table 8.2. As 

mentioned already, the forced classification approach 

would mean that cases A, C and D were classified as 

normal while B would be classified into the DAT group.
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However inspection of the interval estimates suggests 

that the decison, in some cases, it is not so clear cut.

In particular, the interval estimates for cases A and D 

also include 0.5. Study of other medical information 
would be adviseable in these cases.

Although cases B and C seem more straightforward no 

decision would be wisely taken on the basis of the 

imaging data alone. Even so, these results suggest that 

functional data may well be a useful addition to other 
medical information when takinhg diagnostic decisions.

8.1.3 Discriminating between DAT and Other Dementias

As mentioned in chapter one, clinical diagnosis of 

different dementias can often be quite difficult. In some 
situations, part of the diagnosis may require short to 

long term monitoring of an individual before different 

dementias can be distinguished. Given the results of the 

previous section, it is interesting to investigate 
whether differences can be detected between different 

dementias using their blood flow data. For this purpose 

we will compare our group of N=79 DAT subjects and a 

group of N=5 subjects where the dementia characteristics 

are secondary to other symptoms e.g infarcts. This latter 

group corresponds to the secondary DAT group in the 

Alzheimer project. Unfortunately the small number of 

subjects in the secondary dementia group prohibits a full 

discriminant type analysis as section 8.1.1. However, a 

cursory analysis of this question may be carried using
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the fact that discrimination is just a means of analysing 
describing the multidimensional scatter of data between 

the groups. A useful measure of the scatter of data in 

multidimensional space is in terms of Mahalanobis 
distance. Distances, from the DAT group mean vector, were 

calculated for all subjects and displayed in a 

probability plot (figure 8 .2 ).

Almost all of the secondary cases (labelled ?) lie 

in or around the main body of the DAT cases (labelled ?). 

This tells us, at the very least, that there is evidence 

of greater scatter around the average DAT profile in the 

DAT group than the secondary group and, at the most, that 

the secodary group is very much like the DAT group. 

However, this is the extent of the information that can 

be taken from this analysis.

8.1.4 Screeening Individuals

A related problem to those above is that of 

screening individual's functional data for suspicious 
features which might preclude their inclusion in a brain 

study; as with CT in the Alzheimer study. An important 

assumption with functional data in this situation is that 

standard reference ranges can be identified, within which 

the large majority of normal profiles would be located. 

Any case not lying in reasonable proximity to this range 

might therefore be considered as a potentially non-normal 

case, although this would probably have to be judged in 

combination with other data.
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In terms of the data this is a problem of 
statistical outlier detection. One approach to outlier 

detection is through the use of probability-plots.

Suppose we took the group of MID subject's (N=8 ) data 

and, for the moment, assumed their diagnosis was unknown. 

A probability-plot of mahalanobis distances, including 
normals (N=29) and these cases together, is given in 

Figure 8.3. This suggests that the majority of the 
unknown cases are similar to the normal group, except 
possibly for the two cases at the upper extreme of the 
plot.

8.2 PROBLEMS OF MEASUREMENT

In any measurement process, the data may be subject 
to several sources of variation, such that repeated 
observations of the same variable(s) for a subject under 

similar conditions, may not necessarily yield identical 

data. This can be seen from ROI data observed in the 

Alzheimer study. In a small study of reproducibility ten 

DAT cases had images taken on two occasions one week 
apart. Figure 8.4 shows the ROI data for one of the cases 

showing the profiles to be reasonably similar. For 

various reasons this may not always be the case.

8,2.1 Error propagation in ROI data

As may be apparent from the description of the 

measurement process in chapter 1 , there several stages
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involved in ROI data acquisition. These are illustrated 

in Figure 8.5, The radition data is observed by each 

detector of the imaging modality at stage A. A 

tomographic algorithm is then applied to the count data 
to construct a 2 -dimensional or 3-dimensional dataset of 

pixel or voxel data at stage B. This is then converted 

into a map of radiation intensity by thresholding the 

data into grey levels (or an equivalent colour range) 
which results in the sort of images seen throughout this 
thesis. In PET imaging, the pixel dataset may undergo an 

additional transformation wherein pharmacokinetic models 

are used to translate the pixel data into estimates of 

the biological parameter of interest in meaningful 

biological units. The final stage is ROI data extraction. 
As we have seen this involves identification of regions 

of interest from the image (Stage C), In the Alzheimer 

project this is done manually, requiring the expertise of 
a trained technician to select the appropriate 

slice/image to use (i.e. ‘‘standard1 and ‘'upper') and then 
locate the appropriate anatomical ROI. Recent advances in 

PET imaging have made it possible to superimpose a 

structural MRI image onto the functional image (Evans, 

1991). This should help reduce any subjectivity and 
operator bias inherent in the completely manual approach.

A number of factors can be identified which 

contribute to the measurement error of the ROI data. Some 

of the factors affecting stage A include diffferences due 

to head position, head movement, the axial tilt of the 

image, the physics of radiation detection and the length
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figure 8.4 Plot of individuals ROI data taken from scans 
one week apart.
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of time of imaging session. Stage B factors include the 

type of reconstruction algorithm used, the attenuation 

(absorption of radiation in tissue) and the scatter 

corrections used. Finally, at stage C the identification 

of the anatomical location of the ROIs, the ROI size 

itself and the ROI summary measure are some factors 

affecting the reproducibility of the data. For an 
extensive overview see Mazziotta and Koslow (1987).

A large part of the anatomical location/alignment 

difficulties are due to the positioning of the head 

within the scanners. This obviously has an impact on the 

technicians ability match slices between individuals and 

in the same individual on different occasions. This may 

account for the differences between subjects found in 

section 7.2 - where the size of the posterior ventricles, 
relative to anterior ventricles was noticeably different 

between cases A & B and cases C & D.

8.2.2 Reprocubility of ROI data

Investigations into the effects of some of these 

factors have included the study of variation between 

constructed images (Hoffman et al, 1991; Thompson, 1991) 

and between reconstruction algorithmns (Strother et al, 

1991). A number of small studies have been carried out 

into the reproducibility of the SPECT ROI data used in 
the Alzheimer project, involving simple scan/rescan 

paradigms with and without movement between scan. One of 

these studies was referred to in section 8 . 2 and will be
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the subject of study in the rest of this section.

As a first step in the analysis of these data, the 

pairs of ROI data were differenced (Occasion 2-Occasion 
1). Figure 8 . 6 gives a plot of the ten differenced 
profiles. For some of the cases the patterns do not 

appear to have been particularly well reproduced; these 

cases exhibiting large peaks or troughs in some regions. 

In order to check whether there had been any systematic 

changes between scanning sessions a univariate repeated 
measures analysis was carried out on these data comparing 

regional (differenced) means. Region and hemisphere 

factors were included in this analysis. The results are 

shown in Table 8.3. None of the F-tests are significant 

at the 5% level and hence there is insufficent evidence 

of any systematic change in profiles between occasions. 
For each of the tests it was noted that the sphericity 

assumption (see section 5.5.2) was reasonable; for 

hemispheric sums p=0.1471 and for hemispheric difference 

p=0.2135. Thus, sample variance estimates of pairwise 

differences (of hemispheric sums and hemispheric 
differences separately) are similar. However, it is 

interesting to note that the sphericity assumption did 

not hold for the 14-dimensional data (p=0.0000). We 
investigated this visually by constructing a two 

dimensional summary plot using the MDS technique 

described in section 5.4.3. Pairwise sample variances of 

differences were calculated between all 14 regions and 

non-metric multidimensional scaling used to fit a two 
dimensional solution to the data. As previously, the
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Figure 8 . 6 Plot of (occasion 1-occasion 2) ROI for DAT 
subj ects.
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Figure 8.7 2-Dimensional solution for (occasion 1

occasion 2 ) reproducibility data.
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ALSCAL program in SPSS-X was used. The two dimensions are 
plotted in figure 8.7. We can see that the smaller 

distances are between right and left regions, while 

larger differences can be seen between different regions. 

This suggests that bilateral ROI data exhibits less 
variability between scans than variation between 
different regions in the same or in different 

hemispheres.

8.2.3 Further considerations on the use of ROI 

measurements

Throughout this thesis we concentrated entirely on 
the analysis of regional SPECT data in terms of the 
average counts/pixel. It is possible that in certain 

problems alternative measures of regional activity may 

more appropriately reflect the biological process under 

study. As mentioned in section 3.3, the ROI approach to 

data extraction is effectively the level of resolution at 

which we can reasonably compare image data across 

different subjects. However, within regions sub-strates 

of activity will be present. In order to measure or 

characterise this, the sample variance between pixel 

values within the region may be a useful measure. This 

could be considered as providing a measure of 'texture'. 

We might even consider using the within-subject rank 

regional activity for analysis. At the very least this 

should be robust to some of the factors discussed in this 
chapter.
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8.3 BRAIN ACTIVATION STUDIES

A special type of experimental study, which is 
becoming increasingly popular to study many of the 

problems described in this thesis, is the brain 

activation study. In such studies, the brain is activated 

or stimulated during the imaging session, so that the 

active functional state can be compared with the 
unactivated functional state. The contrast between pre- 

and post- stimulated images can be be used to identify 

local and/or global changes in functional profiles which 

can be considered as anatomical and functional correlates 

of the form of activation. Activation for these studies 
is mediated in a number of different ways. Simple 

cognitive or sensorimotor tasks are common examples 

(Friston et al 1991; Barker, 1990) . A Another form of 

stimulation includes the intervention of drugs during or 

prior to imaging, for studying drug/functional metabolism 

interactions (Heiss, 1988).

The motivation behind such an approach can readily 

be appreciated using as an example the study of 

correlation between different brain datasets in chapter 

seven. In the example comparing imaging data to 
neuropsychological data {section 7.1), it could be 

strongly argued that we weren't comparing like with like. 

The neuropsychological ability of the individuals was 

being compared to functional activity data in the resting 

condition. Kennedy (1988) has argued the point vigorously 

and has suggested that activation studies are the only
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worthwhile approach for correlating cognitive function 

with higher cortical activity.
In general, activation studies involve pre- and 

post-stimulation imaging of an individual, although there 

are examples of the use of activation studies for between 

group comparisons (Bartlett, 1987; Heiss, 1988) . The 
typical design of an activation study is shown in Figure 

8 .2 .

Head

Movement

S C A N ---------------> SCAN

Baseline Active

Figure 8.2 Design of a typical activation 

study.

Because of experimental design issues, e.g. order 

effects and reallignment difficulties between scans, 

variations on the basic design have been considered. 

Friston (1991 and Barker (1988) randomnly assigned the 

order of rest/stimulation scans. Hunter et al. (1990)

used a split-dose approach thus allowing the study of 

activation without movement between scans.

The data from such studies will consist of an 

unactivated vector of activity and an activated vector of 

activity. In the case of ROI data, a simple approach to
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analyse the data would be to use the approach to the 

analysis of paired data used in section 8.2.2. The test 

of equality of regional means on the differences would 
indicate whether any change in the ROI pattern had 

resulted from the form of stimulation. Another approach 

that may be worth considering here, for the ROI data, is 

the use of the 'textural' measure of section 8.2.3. This 
may be more sensitive to subtle substrate changes than 

the mean counts.

In most activation studies it is in fact the pixel 

data which is analysed. Friston and colleagues have 

developed a method of analysing the pixel images known as 

statistical parametric mapping. This involves subtracting 

inmages at the pixel level (by analogy with the ROI 

differences above) and carrying out an ANCOVA analysis, 

regressing each pixelated difference on the image mean, 

and using the test on the intercept to assess the 

significance of any change to the pixel activity 
resulting from activation. Visually, a pixel map of these 

p-values is constructed and converted to an image of 

statistical significicance (SPM). Obviously, with the 

number of pixels in an image, this approach involves a 

large number of tests of significance. Friston et al

(1990) applied a simple Bonferroni correction to the 

pixel images to account take account of this fact. 

However, the smoothing involved in this approach means 

that the correlation between pixels and hence test may 

make this approach too conservative. An alternatve 

testing scheme is described in Worsley et. al. (1992) .
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CHAPTER 9 
CONCLUSIONS AND FURTHER TOPICS

We have considered many of the statistical 

problems that arise in the analysis of imaging data, 

with illustrations using SPECT and PET datasets. The 

main categories of problems we have considered include 

the analysis of means on cross-sectional data (chapters 

3 and 4) & repeated data (chapter 6 ) and the study of 

correlation structures among regional levels of 
activity (chapter 5} Sc between different study datasets 
(chapter 7). We also looked at general discrimination 

type problems and sources of measurement error with 

imaging data (chapter 8 ).

The predominant issue in all the analyses has been 
the presence of large between and within subject 

variation in data vectors. Because of the need to 

normalise data prior to analysis, univariate techniques 

lead to difficulties when interpreting results. With 
ANOVA techniques we were able to make global 
comparisons among group mean profiles and use test for 

various interactions among regions. However, in many 

practical situations, the multivariate approach is 

unlikely to be of much value given that typical 
experiments often involve as many regions as subjects. 

The beauty of the univariate ANOVA approach is that we 

can still use it in circumstances; even if p>>n and the 

sphericity assumption is violated. This approach was 

also useful for analysing the repeated scan data. With
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sensible transformations of the time vectors we saw 

that useful hypotheses could easily be tested.

Given the potential use of these data for studying 
functional couplig it is little surprise that 
correlation type analyses has figured highly in 

scientific papers in brain research journals. However, 

the work of Ford (19 8 6 ) has shown that simple analysis 

e.g. pairwise correlation analysis of normalised data, 
is fraught with many pitfalls; the biological 

interpretation relating to functional anatomy, being 

complicated by the data transformation itself - which 

in some cases imposes artificial constraints on data 
vectors. This would seem to extend to analyses of 
correlations between imaging data and other medical 

datasets. Even with this caveat, statistical 

correlation analyses can be useful in studying overall 
patterns and in comparing groups. Formal models 

decribing the covariance structure should provide a 

useful framework for simulation studies. The work of 

Worsley et al (1992) has suggested that a spatial model 

of the covariance structure would be appropriate for 

imaging data. Correlating imaging data with datasets 

from different disciplines is another area where the 
imposition of a transformation to the ROI vectors may 
cause difficulties in interpretation.

Needless to say imaging data would be a great 

asset to the clinician or experimental worker in 

discrimination type problems. The examples in chapter 8 

illustrate that it might well be posible to use these
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data for these problems. However, this clearly requires 
further work and would only be viable if used in 
conjunction with other data.

There are a number of methodological issues which 
surround the use of imaging techniques. For one, not 
enough is probably known about the data issues in the 

measurement process itself, indicated by some of the 

problems described in chapter eight. Mazziotta & Koslow

(1986) discuss these issues at great length.
While at an early stage of development, brain 

activation techniques offer substantial opportunities 

for studying some of the problems described in this 
thesis, without some of the associated problems 

intimated above.
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