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SUMMARY

The electrocardiogram is a recording of the electrical activity of 

the heart. By convention, 12 separate leads are studied from which a 

diagnosis is made. This process of interpretation is a skill acquired by 

cardiologists over a period of years. During the past twenty-five years, 

computer assisted techniques have been developed to undertake such 

interpretations. It has been shown that if consecutive ECGs are 

recorded on a patient within several minutes, the computer diagnoses 

may differ because they are made independently of one another 

although all conditions remain unchanged. This discrepancy occurs 

when small changes in ECG measurements, from one recording to 

another, cause threshold values within the diagnostic program to be 

crossed, thereby producing conflicting diagnoses. The primary aim of 

the study described in this thesis was to develop techniques which 

would minimise such problems, thereby enhancing the repeatability 

of the ECG program developed in the Department of Medical 

Cardiology at the Royal Infirmary in Glasgow, whilst maintaining the 

heuristic framework of the diagnostic logic.

From a statistical perspective, the problem of lack of repeatability 

was tackled in the following ways. Firstly, a new approach to defining 

upper limits of normal ECG measurements was adopted. 

Conventionally, the Glasgow Royal Infirmary program categorises 

normal limits with respect to age and sex. These limits are 

discontinuous in nature and can contribute to a lack of repeatability in 

interpretation between consecutive recordings particularly when an 

individual's age-category has altered between visits.
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These limits have been replaced with continuous equations which 

were calculated on the basis of a sample of 1338 'normals' using 

simple linear regression techniques. It was thought that the use of 

such equations, which change smoothly and continuously throughout 

the age range, would alleviate the problem of subtle differences in 

ECG readings from recording to recording producing inconsistent 

diagnoses.

The second stage of the problem was to consider how to deal 

with discrete thresholds between normal and abnormal, whether such 

boundaries were continuous or not. Many of the diagnostic decisions 

throughout the program have, until now, been determined by 

whether the observed value of a particular ECG measurement has 

attained a specified discrete threshold. These decisions can be 

regarded as score functions for ECG measurements which take the 

value K if the threshold is attained, and 0 otherwise. No account has 

been taken of the proximity between the measurement and the 

boundary value. This 'all or nothing' strategy has meant that an 

individual whose observed ECG measurement lies very close to, but 

below, a threshold value on one occasion and equally close to, but 

above, the same threshold value on a subsequent visit may receive 

two conflicting diagnoses.

A method was developed to replace these discrete thresholds 

with continuous functions, which take into account the natural day-to- 

day variation occurring in each ECG measurement, and to assign a 

new smoothed diagnostic score accordingly. Using the discrete score 

function as a basis, a smooth alternative was developed which 

increased gradually from 0 to a maximum of K . This smooth version 

of the scoring function was based on the family of cumulative 

distribution functions of the logistic distribution, suitably scaled to give
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the desired maximum score. In addition, the steepness of the new 

smoothed step was dictated by the amount of day-to-day variation in 

the particular ECG measurement under consideration.

Often, more than one criterion needed to be satisfied before 

appropriate action could be taken, so an algebra which would take 

account of combinations of criteria was required. Some basic 

mathematical rules such as the intersection rule and the union rule 

were used as building blocks upon which to construct such a system.

A database of 590 ECG recordings obtained on consecutive days 

from 295 patients (using no standardising procedures) was collected 

in order to estimate the amount of 'normal' day-to-day variation in the 

relevant ECG variables.

Preliminary investigations were undertaken with the aid of some 

simple exploratory plots of the data. These plots indicated that two 

models for day-to-day variation were required, each accounting for 

the fact that the amount of variation may or may not be dependent 

on the magnitude of the ECG measurement of interest. In most 

cases, the simpler of the two models was adequate, although in 

certain situations a slightly more complex model was required. 

Estimates of day-to-day variation were obtained for all the relevant 

ECG variables and subsequently used in the calculation of the new 

smoothed scores.

The methods were then applied to examples from three major 

diagnostic sections of the program. The diagnosis of left ventricular 

hypertrophy (LVH) was used to represent the section of the program 

dealing with Hypertrophy, while the repeatability of the diagnosis of 

Myocardial Infarction (MI) was assessed on the basis of the agreement 

in the identification of inferior MI (IMI). Similarly, the diagnosis of

26



fk

inferior ST depression was used as an indicator of the repeatability of 

the section of the program dealing with ST changes.

Repeatability was assessed in three ways:

1) on the basis of 660 ECGs which were recorded on two 

consecutive days from 330 patients;

2) using ECGs which were recorded within the space of a 

few minutes (without removing and subsequently 

replacing the electrodes) from 249 patients; and

3) using an artificial method of splitting the 330 day 1 

ECG tracings into 2 digital representations.

In terms of overall repeatability, it was discovered that of the 330 

pairs of repeat ECGs, 266 (81%) interpretations were completely in 

agreement with respect to the three previously mentioned diagnoses 

when the conventional version of the program was used. The 

corresponding numbers for the 249 pairs of minute-to-minute ECGs 

and 330 split ECGs were 222 (89%) and 304 (92%) respectively. 

Adopting the smoothing techniques in the conventional program 

increased the number of pairs of ECGs which were entirely in 

agreement in all three cases. Of the 330 pairs of day-to-day ECGs, 

291 (88%) were in agreement, as were 236 (95%) and 315 (95%) of 

the minute-to-minute and split ECGs. There have therefore been 

substantial reductions in the percentages of pairs of ECGs exhibiting 

discrepancies. For example, the percentage of minute-to-minute ECG 

recordings producing inconsistent diagnoses has been reduced from 

11% to just 5% which represents a 55% overall reduction in error. 

There were similar improvements for both day-to-day and split ECG 

recordings (37% and 38% overall reductions in error respectively).

When considering Type A statements relating to LVH and IMI 

only (i.e. statements referring to clinical conditions which can be
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verified via non-electrocardiographic means such as 

echocardiography, serum enzyme levels etc.), it was demonstrated 

that the conventional Glasgow program was perfectly repeatable in 

295 of the 330 pairs of the day-to-day ECG recordings (89%), in 

232 of the 249 pairs of ECGs which were recorded within the space 

of a few minutes (93%) and in 96% of the artificially split ECGs (i.e. 

317 out of 330 tracings). Implementation of the smoothing 

techniques resulted in improved repeatability in ail three situations. 

For the day-to-day ECGs, the repeatability rose to 95% and the level 

of agreement from recording to recording was 98% for both the 

minute-to-minute ECGs and the artificially split ECGs, proving that 

the methods developed in this thesis are of benefit, even in situations 

when the level of agreement from recording to recording is 

reasonably acceptable.

The Glasgow program is long-established and has been 

associated with an acceptable diagnostic accuracy. In this respect, a 

study of the sensitivity and specificity of the new techniques 

compared to the old showed no significant difference in a group of 

84 patients with LVH diagnosed by M-mode echocardiography.

There has clearly been a significant and important increase in the 

reliability of the ECG program as a result of implementing the 

methods which have been developed. Therefore this thesis has 

demonstrated that the use of statistically based techniques for 

discriminating between normal and abnormal has enhanced the 

repeatability of computer assisted reporting of electrocardiograms.
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CHAPTER ONE: 
ELECTROCARDIOGRAPHY

1.1 INTRODUCTION.

Electrocardiography is the term used to describe the process 

which allows the electrical activity of the heart to be displayed in 

graphical form. The first human electrocardiogram (ECG) was 

recorded approximately one hundred years ago by Waller (1887) and 

since then, advances in modem technology have enhanced the field 

of electrocardiography and promoted its uses world-wide. Increasing 

popularity and demand for recordings of electrocardiograms led to 

research into the possible role of the digital computer as an analytic 

tool and the early 1960s saw initial automated analyses for both the 

3-orthogonal lead and the 12 lead ECG (Pipberger et. al. 1960, 

Caceres et. al., 1962; Caceres, 1963; Stallmann et. al, 1961; 

Klingeman and Pipberger, 1967). Many benefits were anticipated, 

notably:

(i) the ability of computers to deal with the rapidly 

expanding demand for ECG recordings,

(ii) increased accuracy in the measurement of wave 

magnitudes and durations, and

(iii) the probable reduction of intra-observer and 

inter-observer variation.
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1.2 ANATOMY

The heart is a muscular cone-shaped organ and is composed 

almost entirely of cardiac muscle (myocardium). It is divided into four 

chambers - the left atrium, the right atrium and the left and right 

ventricles. The upper chambers - the atria - receive blood from the 

veins, while the lower chambers - the ventricles - propel blood into 

the arteries (see Figure 1.1).

Aorta

Left Atriurr

Right Atrium'
Left Ventricle

Right Ventrick

Figure 1.1 The heart

There are three types of cell present which work together to 

create and conduct the impulses which result in the contraction of the 

heart. Electrical impulses originate from the pacemaker cells which 

are located in the sino-atrial node. Conducting cells then transmit 

these impulses to the atrio-ventricular node via atrial intemodal 

pathways and these impulses then travel to the ventricles via the

30



bundle of His and the left and right bundle branches. Conduction 

then spreads through the specialised tissue in the ventricles known as 

’Purkinje fibres' and into cardiac muscle itself. Stimulation of the 

muscle cells causes the mechanical contraction which is associated 

with each heart beat.

1.3 THE FIRST ECG RECORDING

Contraction of the heart is associated with changes in polarity of 

the electrical charges on the surface of the myocardial cells. In the 

resting state, the cells are positively charged and when the cells are 

excited they enter a state of physical activity. This state comprises the 

electrical process known as depolarisation which changes the positive 

charge to a negative charge. Subsequent repolarisation then returns 

the cells to their resting state.

The electrical forces produced during the processes of 

depolarisation and repolarisation initiate and maintain the beating of 

the heart and the resulting electrical signals are transferred to the skin 

through electrically conductive tissue. Thus, potential differences can 

be recorded in the form of an electrocardiogram by attaching 

electrodes to the body's surface. Much research which took place in 

the mid-nineteenth century helped pave the way for Waller (1887) 

who recorded the first known human ECG in 1887. Galvani probably 

set the scene by exploring current flow in frogs with the help of his 

galvanometer which was able to detect small electrical signals. This 

led the way for other researchers such as Marey (1876) who 

photographically recorded the electrical activity of a frog's heart using
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Lippmann’s electrometer and Burdon-Sanderson and Page (1878) 

who investigated the electrical activity of the tortoise heart.

Willem Einthoven developed a much more sensitive string 

galvanometer (Einthoven, 1901) which was designed with the 

purpose of recording the electrical activity of the heart. The electrical 

activity was detected by the quartz string in the galvanometer and the 

string's movement could be recorded photographically to make a 

tracing.

The ECG takes the shape of a waveform displaying characteristic 

peaks and troughs. Einthoven introduced the PQRST terminology to 

describe the deflections of the ECG waveform as illustrated below.

Figure 1.2 The ECG waveform

Each section of the waveform is produced by a different aspect of 

the electrical activity of the heart. The components may be 

summarised briefly as follows:
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P wave 

QRS complex 

ST segment

atrial depolarisation 

ventricular depolarisation 

ventricular repolarisation {phase 2) 

ventricular repolarisation (phase 3)i wave

The P wave is of a smaller magnitude than the QRS complex 

since the atrial mass is less than the ventricular mass and hence 

repolarisation of the atria produces a relatively small deflection which 

by virtue of its timing is normally overwhelmed by the larger QRS 

complex.

Several factors determine the magnitude and the direction of the 

deflections in the ECG, the most influential being the location of the 

electrodes on the body surface and the direction of the cardiac 

impulses in relation to the measuring system. By convention, if the 

depolarisation impulse travels towards the positive electrode an 

upward deflection will be recorded and vice versa.

There are two commonly used methods of displaying the 

electrical forces in the heart. Waller had first introduced a single 

dipole (1889) to represent the cardiac electrical activity and 

Einthoven and colleagues postulated that the mean electrical axis of 

the heart could be represented by a vector (Einthoven, Fahr, de 

Waart, 1913). The first attempt to form a vectorcardiogram (VCG), 

i.e. a loop that traced the direction of the resultant vector throughout 

the cardiac cycle, was published in an early paper by Williams (1914) 

who derived the cardiac vector from Einthoven's standard bipolar limb

1.4  LEAD SYSTEMS
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leads. Through the following years, vectorcardiography evolved and 

Frank (1956) developed a 'corrected orthogonal-lead system' which 

essentially recorded three leads X, Y and Z measuring the component 

of the resultant cardiac electrical force in three mutually perpendicular 

directions. This is the most popular lead system for 

vectorcardiography and is still in use in various centres today.

Bipolar leads were used by Einthoven et. al. (1913) to measure 

the potential difference between two limbs at points remote from the 

heart, hence the term bipolar limb lead. Electrodes were attached to 

the left and right wrists and to the left ankle to make the following 

connections :

Lead I Left Arm — > Right Arm

Lead II Left Leg Right Arm

Lead III Left Leg Left Arm

This may be represented mathematically as

I = El - E r

II -  EF - er

III =  Ep - E l

where EL, ER and EF signify the potential at the left arm, right arm 

and left leg, and I is the potential in lead I etc.

It follows that, at any instant in the cardiac cycle,

I + III = II

and this is known as Einthoveris Law (Einthoven et. al, 1913). In a 

practical sense this represents an important observation since it
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effectively renders one of the leads redundant, allowing it to be 

calculated from knowledge of the other two.

Assuming that the right arm, left arm and left leg are arranged 

symmetrically around the heart and that the thorax represents a 

homogeneous conductor, the limb leads denoted I, II and III form an 

equilateral triangle with the heart lying approximately at the centre. 

This is known as Einthoven's triangle (Einthoven et. al., 1913).

R

F

Figure 1.3 Einthoven's triangle

Investigation of the inhomogeneity of the thorax led Burger and 

an associate to redefine this triangle and to construct a scalene 

triangle - Burger’s triangle - of which Einthoven's triangle is a special 

case (Burger and van Milaan, 1946).

1908 saw the commercialisation of Einthoven's 

electrocardiograph by the Cambridge Instrument Company 

(Macfarlane, 1989a) and its potential value was rapidly recognised by 

the rest of Europe and the United States.
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Continuing research and collaboration resulted in Wilson's 

central terminal (Wilson et al, 1934). Electrodes were attached to the 

right arm, left arm and left leg as before and these were then 

averaged to form the reference or central terminal. This allowed an 

'exploring electrode' to be used to record potential variation at each 

of the limbs as follows:

VR = Er " Ewct

VL = El ‘ EWCt

VF - Ef '  Ewcr

^WCT = i ( E R+EL+E F)

where ER, EL and EF are as before, EWCT denotes the potential at the 

central terminal which is relatively constant and VR, VL and VF 

denote the potentials measured at each of the limbs (Macfarlane, 

1989b). Since the recorded potential effectively reflected potential 

variation at a single point because Ewcr is essentially constant, these 

leads were termed unipolar limb leads. When recorded in this way, 

the deflections were inconveniently small. However, slight 

modifications made by Goldberger (1942) to Wilson's central terminal 

produced augmented unipolar limb leads - denoted aVR, aVL and 

aVF - which essentially increase the voltages recorded by the unipolar 

limb leads by 50%, i.e.

aVR =
3
-V R
2

aVL = IV L
2

aVF =
3
-V F
2

(It can be shown that, at any instant, aVR + aVL+ aVF = 0).
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Wilson's central terminal allowed a further six leads which 

recorded potential variation at single points on the chest to be 

introduced. These leads were called unipolar chest leads for obvious 

reasons and were initially denoted V I, V2, V3, V4, V5 and VE. 

Leads V I to V5 were derived from electrodes placed at designated 

areas on the chest and lead VE was positioned at the tip of the 

ensiform process (Kossmann and Johnston, 1935). Later, a 

committee of the American Heart Association published 

recommendations which were agreed upon by the Cardiac Society of 

Great Britain and Ireland on the positioning of six precordial leads 

V I, V2, V3, V4, V5 and V6 (Committee of the American Heart 

Association, 1938).

The combination of I, II, III, aVR, aVL, aVF, V I, V2, V3, V4, 

V5 and V6 forms the conventional 12-lead ECG which is the 

standard method for recording electrocardiograms virtually world­

wide.

A version of the waveform described previously is found in each 

of the 12 leads and the resulting ECG may therefore contain a vast 

amount of information. The ECG is usually interpreted in conjunction 

with any historical and clinical data which may be available.

1.5  DIGITAL COMPUTERS

Electrocardiography has become one of the most popular clinical 

tests in hospital practice and the subsequent demand has resulted in 

research into the possible role of the digital computer as an analytic 

tool not only for obtaining and manipulating the ECG, but also for 

interpretative purposes (Macfarlane, 1974). Research into automated
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analysis of both the 12 lead and the 3-orthogonal lead ECG began in 

the late 1950s and rapid progress was being made by the early 

1960s (Pipberger e t  al, I960, Caceres et. al., 1962, Caceres, 1963; 

Stallman et. al. 1961; Klingeman and Pipberger, 1967). These 

advances provided a stimulus for several other research groups 

(Bonner et. al., 1972; Macfarlane, Lorimer and Lawrie, 1971) and by 

the early 1970s automated methods being used by several teams 

yielded results which were in reasonable agreement with 

interpretations made by physicians. Such methods were implemented 

with the proviso that each automated ECG report be checked by 

medical staff before distribution. However, concern as to the 

repeatability of automated methods meant that further research was 

required.

1.6  DIAGNOSTIC PROGRAMS

Since the inception of automated electrocardiography two 

distinct methods for interpretation have been followed, each 

appealing to separate groups of researchers and benefiting from 

further developments. These methods are the statistical and the 

deterministic approaches to ECG classification, each having its own 

advantages and disadvantages.

Statistical classification methods are largely based on 

multivariate analysis and the early work in this particular area was 

done by Cady, Kimura and others (Cady et. al., 1961; Kimura, 

Mibukura and Miura, 1963). Pipberger has for long been a strong 

advocate of such techniques on the basis that they are more stable
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and more accurate than their deterministic counterparts (e.g. 

Klingeman and Pipberger, 1967). Initial work was done to distinguish 

between two populations (Eddleman and Pipberger, 1971; Goldman 

and Pipberger, 1969). Eddlemann used linear discriminant-function 

analysis with 15 ECG variables to diagnose correctly 88% of an 

independent test set of autopsy cases of myocardial infarcts. Goldman 

and Pipberger (1969) applied statistical techniques to a group of 

patients with conduction defects.

Cornfield et. al. (1973) used the established methodology in the 

multi-group situation which considered seven possible diagnostic 

categories, namely normal, anterior myocardial infarction, posterior 

myocardial infarction, lateral myocardial infarction, left ventricular 

hypertrophy, right ventricular hypertrophy and pulmonary 

emphysema.

A Bayesian approach was adopted whereby the posterior 

probability P(/lx) of an individual with ECG vector x  belonging to 

diagnostic class i is calculated on the basis of the prior probability g, 

of belonging to that class, i.e.

£ /(a V )« ;
y=i

where

m -  the number of possible diagnostic categories

f(x\i) -  the conditional probability of x , given patient

belongs to i .

More recently, the use of logistic classification models has also 

been assessed (Willems et. al., 1986).
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Deterministic m ethods were initially established by Caceres 

(Caceres, 1963). Such methods are built largely on experience and 

expertise which has been accumulating over many years, resulting in 

a logical path of decision rules which imitate the role of the 

cardiologist.

The development of both deterministic and statistical methods 

requires a substantial amount of data from different populations since 

it is known that ECG parameters vary according to age, sex and race. 

For example, Pipberger's AVA program which has been based on a 

male and war-veteran population is unlikely to perform in the same 

way on a group of young women.

Small changes in measurements may alter diagnostic statements 

in deterministic programs since these techniques use measurements 

sequentially. Thus statistical techniques have been claimed by some 

to be more robust when compared with their deterministic 

counterparts. For example, Walston, Harley and Pipberger (1974) 

demonstrated that multivariate statistical techniques correctly 

identified mitral stenosis in 74% of the patients whom they studied, 

compared to 44% when a deterministic approach was used. Similar, 

though not so striking, results were provided by Brohet et. al. (1984) 

who obtained a correct classification rate of 85% for interpreting 

paediatric ECGs using a statistical program compared to 79% when a 

deterministic approach was used. In the late nineteen seventies, 

Willems (1977) demonstrated the higher accuracy of statistical 

programs by presenting results showing that the overall performance 

of the multivariate AVA program was 77.6% compared to 68.9% for 

version 7603 of the decision-logic based TNO system when 

attempting to diagnose myocardial infarction. Later, a program based 

on logistic classification models was shown to be more accurate than
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the AVA program and the HP78 program, with overall performances 

being 80.3%, 72.8% and 63.3% respectively when diagnosing a 

variety of abnormalities (Willems et. al, 1986).

However, since multivariate techniques are typically based on the 

assumption that the primary diagnostic categories are mutually 

exclusive, the training set required to develop a statistical program 

with the ability to distinguish combinations of disease is likely to 

exceed the number of well-documented cases since each combination 

must be considered as a separate category (van Bemmel et. al., 

1971). It is also apparent that the use of prior probabilities in 

statistical programs can influence the results. Indeed, the overall 

accuracy of the AVA program was decreased by 20% when prior 

probabilities were set equal for all possible categories (Pipberger et. 

al. 1975).

Deterministic methods appeal more to the end-user (i.e. the 

cardiologist) than statistical methods because they are more readily 

understood. Diagnostic criteria may also be selected on the basis of a 

knowledge of well-established electrophysiological processes. 

Deterministic methods are also reasonably flexible so that alterations 

to existing criteria can be implemented, and new diagnostic 

categories are easily added (Bailey and Horton, 1977; Kors and van 

Bemmel, 1990). Recently it has been demonstrated that, when 

cardiologist opinion is the gold standard deterministic methods have a 

higher accuracy than statistical techniques. However, when compared 

with the 'truth' (based on independent clinical evidence), statistical 

programs are more accurate (Willems et. al., 1991).

Fuzzy set theory has also been used in an attempt to interpret the 

ECG (Smets et. al, 1977, Degani and Bortolan, 1986). However,
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this approach has not been widely used by clinicians and is therefore 

difficult to assess.

1.7 THE CSE DIAGNOSTIC STUDY

As the number of commercially available interpretative ECG 

systems increased, so did the need for the development of evaluation 

methods which would serve to assess the diagnostic performances of 

the various ECG programs. Thus an international project was 

founded - the CSE Diagnostic Study - which aimed to establish 

common standards in quantitative electrocardiography. It was 

anticipated that, along with the assessment of diagnostic 

performance, exchange of information, improved co-operation 

between investigators, development of quantitative test procedures 

and improvements in measurement precision would also be achieved 

(van Bemmel, 1986).

The first stage of the CSE project was to develop standards for 

ECG measurements by evaluating measurement variability with 

respect to a reference based on results provided by referees. The 

second stage, the diagnostic study, aimed to assess the diagnostic 

performance of commonly used ECG interpretative programs by 

comparing their interpretations with those provided by cardiologists 

and with the 'truth' which was established on the basis of ECG- 

independent evidence such as catheterization, echocardiography and 

physical examinations (Willems et. al, 1991).

A pilot study was agreed upon comprising 250 well-documented 

ECG recordings (obtained in Glasgow and Dublin) which belonged to 

one of seven groups - normal, left ventricular hypertrophy, right
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ventricular hypertrophy, biventricular hypertrophy, anterior 

myocardial infarction, inferior myocardial infarction and combined 

infarction. Twelve different computer programs analysed the 

recordings - nine using the standard 12-lead ECG and three using the 

VCG. The recordings were also analysed independently by a panel of 

six cardiologists. The pilot study demonstrated several problems due 

to the different approaches used by the various programs (e.g. 

deterministic programs, statistical programs and programs based on 

fuzzy logic) and to the different terminology used by the centres. As a 

result, common CSE codes were introduced and each centre was 

required to apply a mapping scheme to produce the relevant code 

from the diagnostic statement. The performances of the diagnostic 

algorithms were compared using a statistical method outlined by 

Bailey et. al. (1988). Numerous preliminary results have been 

published (Willems et. al., 1987) but should be interpreted with 

caution given that they are based on a limited amount of data 

(Willems, 1988).

The final database consisted of 1220 well-documented and 

clinically validated ECGs representing the seven diagnostic categories 

previously mentioned. Individual program and cardiologist results 

were compared with the 'truth' and each program was also compared 

with the combined interpretations of eight cardiologists. Results have 

been published (Willems et. al., 1991) in conjunction with other 

relevant information which concludes that the CSE Diagnostic Study 

has been a valuable exercise and that improvements can still be made 

to further the field of computerised electrocardiography.
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1 .8  THE GLASGOW PROGRAM

Since developments made throughout this thesis will be based 

around the structure of the Glasgow Program it is of relevance to 

describe the Glasgow approach briefly. Full details have been 

published elsewhere (Macfarlane et. al., 1990), while there will be an 

expanded discussion on relevant diagnostic criteria in subsequent 

chapters of this thesis.

The current 12-lead ECG program originated in 1977 after 

several years of developing and applying techniques for analysis of 

the 3-orthogonal lead ECG. The reason for this change was that mini 

computers became faster in the late nineteen seventies and the 

availability of microprocessors meant that multiple leads could be 

recorded simultaneously. Macfarlane et. al. (1980) developed a hybrid 

system around that time which allowed information from the 3-lead 

and the 12-lead ECGs to be combined.

ECGs are recorded either by a locally designed and built 

electrocardiograph (Watts and Shoat, 1987) or a MINGOREC 4 

(Siemens-Elema), both acquiring ECG leads simultaneously and 

digitising them at 500 samples per second for input to a central 

computer. The Glasgow program is now implemented on a 

MICRO VAX computer which uses the operating system ULTRIX-32 

and broadband links allow the direct transfer of the ECGs from the 

. locally designed recording carts to the computer. The advent of 

microprocessor technology in the 1970s means that this central ECG 

- system is now more accessible to clinics, health centres and smaller 

hospitals since the ECG data can also be transferred from newer 

electrocardiographs via modems and telephone lines.
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The interpretative section of the program is deterministic in 

nature and considers all usual cardiac abnormalities. There are, for 

example, sections dealing with Conduction Defects, Ventricular 

Hypertrophy, Myocardial Infarction and ST-T abnormalities. The 

deterministic approach has been adopted largely on the basis of the 

disadvantages of the statistical approach previously described. 

Statistical programs are typically based on the assumption that the 

primary diagnostic categories are mutually exclusive and often this is 

not the case. Indeed, from over 30,000 ECGs which are recorded in 

Glasgow Royal Infirmary each year, there may be innumerable 

combinations of diagnostic statements. The training set for a 

statistical program which will allow identification of many 

combinations of cardiac abnormality is impractical since vast amounts 

of data representing each category will be required in addition to data 

representing each subdivision of the population (sex, age, race). 

Furthermore, manipulation of prior probabilities can often lead to 

misleading diagnostic results. Finally, clinical information may be used 

more easily in deterministic programs and the output from such 

programs is more acceptable to clinicians.

1 .9  SERIAL CHANGES

It is important to be able to examine the serial changes in an 

ECG over time since this will allow monitoring of the progression of a 

particular disease.

Methods for detecting serial changes in the 3-orthogonal lead 

ECG have been investigated and several different methods of 

comparing ECGs assessed (Macfarlane, Cawood and Lawrie, 1975).
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Selected measurements pertaining to the detection of sequential 

changes in myocardial injury were stored and criteria produced. The 

analysis of day-to-day and beat-to-beat variation in a group of normal 

serial ECGs (Cawood et. al., 1974) provided knowledge of the 

amount of variability which could be construed as 'normal' and the 

criteria for the detection of sequential changes were thus established.

Currently, in the Glasgow program, three ECGs are compared 

for an individual in any given year (Macfarlane, 1989c). The primary 

record is the first recording and the other two are those most recent 

prior to the current ECG. Where ECGs are compared with earlier 

recordings there will be some indication of whether there have been 

significant changes or not.

1 .1 0  DAY-TO-DAY VARIATION

Day-to-day variation of the ECG has been investigated by several 

groups. Cawood et. al. (1974) reported differences in QRS complex 

and ST-T segment data from day to day and from beat to beat which 

were then used as a guide for the detection of abnormal changes 

from one recording to the next using the Glasgow program. Willems 

and colleagues (Willems, Poblete and Pipberger, 1972) demonstrated 

significant repeat variation in many measurements which was 

subsequently reduced, but not eliminated, when electrode positions 

were marked with a coloured skin dye. The reproducibility of the IBM 

ECG program was examined (Tuinstra, 1986) and significant 

variation in diagnostic statements discovered. Machado et. al. (1991) 

investigated the repeatability of a commercial version of the Glasgow 

program by comparing consecutive ECGs which were obtained
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without replacing the electrodes. Of the 405 pairs of ECGs which 

were considered, type A statements (i.e. statements referring to 

conditions which can be verified via non-electrocardiographic sources 

such as echocardiography and physical examination) were 

reproduced in 93% of cases. This reproducibility is superior to that 

obtained by human readers.

In 1974, Bailey and his associates suggested a method of testing 

the reproducibility in ECG program performance which was 

independent of the clinical accuracy of the program (Bailey et. al., 

1974). Instead of using two consecutive recordings from each 

patient, two digital representations from the same tracing were 

obtained. Initially the analogue data sets were collected at 1000 

samples per second from which two data sets were extracted 

representing the same analogue data only this time digitised at 500 

samples per second and separated in time by one msec. The 

performance of four programs was assessed and results reported. 

The IBM (1971) program was superior both to version D of the PHS 

program and to the Mayo Clinic program of 1986 exhibiting identical 

diagnostic statements in 76% of tracings compared to 43.3% and 

60% for the PHS(D) and Mayo Clinic programs which were available 

at that time. Analogue filtering had the effect of increasing the 

percentages of identical statements to 79.7% and 49.8% for the IBM 

and PHS(D) programs respectively. The fourth program which was 

examined in this way was version 3,4 of Pipberger's automatic 

vectorcardiographic analysis (AVA) program (Bailey, Horton and 

Iscoitz, 1976). Identical readings were observed in 82.4% of 217 

filtered ECGs.

Lack of repeatability remains a cause for concern and there may 

be many contributory sources of such variation. Crucial to the
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reproducibility of any diagnostic program is the reproducibility of the 

ECG (Tuinstra, 1986) and noise and measurement errors may mean 

that deterministic programs may be more susceptible to repeat 

variation than their statistical counterparts (Willems, 1977). Bailey 

and his associates stressed the importance of reproducibility testing of 

ECG interpretative systems (Bailey et. al, 1976) and this remains a 

fundamental issue when assessing and evaluating diagnostic 

programs.

In the following chapter the possible sources of day-to-day 

variation will be considered whilst the subsequent two chapters will 

attempt to estimate the normal amount of day-to-day variability 

associated with ECG measurements. It is anticipated that once 

accurate and reliable estimates of normal variation have been 

provided for relevant ECG parameters, the extent to which a 

particular criterion allows for this variability may be assessed. To 

improve on this, smoothing techniques will be described in this thesis 

and applied to the deterministic program which is currently being 

used in Glasgow with the primary aim of improving repeatability.
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CHAPTER TWO:

DIFFERENCES IN ECG WAVEFORMS.

2.1  INTRODUCTION.

Despite the many advantages gained through automated 

interpretation of the electrocardiogram, there remains cause for 

concern about the lack of repeatability of such techniques. By 

adopting a computerised approach to the analysis of ECGs, certain 

sources of errors have been minimised or indeed eliminated. For 

example, human error is removed and accuracy in wave 

measurements increased (Macfarlane and Lawrie, 1974). However, it 

can happen that on two consecutive clinic visits two conflicting ECG 

diagnoses may occur when there has been no clinically significant 

change in the pattern of the ECG waveform. The reasons for this are 

plentiful.

Before considering possible causes of repeat variation it is 

perhaps of value to mention several factors which can influence the 

appearance of the ECG from one individual to another.

2 .2  DIFFERENCES IN ECG APPEARANCES.

Many ECG measurements have been found to vary with sex, race 

and age. Several other variables have also been found to correlate 

with ECG parameters but in the main, once these three important
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factors have been taken into consideration, measurements such as 

height and weight provide little additional information on variability.

2 .2 .1  Differences due to sex.

Young adulthood appears to be the period in which sex 

differences in the ECG become obvious, such differences perhaps 

being due to the higher fat content of females and the presence of 

breast tissue, resulting in lower voltage amplitudes (Macfarlane and 

Lawrie, 1989d). Differences in the SV2 amplitude between male and 

female Caucasians are illustrated in Figure 2.1.

SV2
(mV)
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i

1 II
18-29  80-89  4 0 -4 9  50  +

Age

□ Male

□ Female

Figure 2.1 Distribution of the mean SV2 amplitude vs. Age 
(based on 719  males and 5 8 4  females)
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2 .2 .2  Differences due to race.

Differences in the magnitude of ECG variables can also be 

observed when comparing races. The following histogram (Figure 

2.2) illustrates how the amplitude of the S wave in lead V2 varies 

between Caucasians and Chinese (Chen, Chiang and Macfarlane, 

1989).

SV2
(mV)

18-29 30-89 4 0 -4 9

Age

a Chinese 

a Caucasian

50  ♦

Figure 2.2 Distribution of the mean SV2 amplitude vs. Age
(Based on 719 male Caucasians and 205  male Chinese)

2 .2 .3  Differences due to age.

Age is certainly the most influential factor to consider when 

interpreting ECGs. While sex perhaps does not influence the ECG 

substantially in infancy and old age, the importance of age can be 

demonstrated from birth until death and it is for this reason that age 

is used in many areas of diagnostic programs. Figure 2.3 

demonstrates how the mean SV2 amplitude varies from young 

adulthood onwards for both males and females.
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Sex and race are used as categorical variables in deterministic 

programs. This means that they are separated into categories for 

diagnostic decision making, normally consisting of a small number of 

classes {i.e. two for sex and two for race when considering Caucasian 

and Chinese only). Age, however, is a continuous variable which until 

now has been categorised into several mutually exclusive groups by 

all deterministic programs, e.g.

18-29, 30-39, 40-49, 50+

Upper limits of normality for ECG variables are usually 

constructed for each age group, stratified by sex and race, resulting 

in several distinct categories into one of which a particular individual 

will belong.

The above categorisation of age may cause problems if, between 

consecutive recordings, an age threshold has been crossed. Different 

upper limits of normality apply to the magnitude of the S wave in 

lead V2 for adult males under 30 years than for those aged between 

30 and 40 so that if a particular individual's SV2 measurement has 

not changed from one clinic visit to the next but his 30th birthday

- a -  Male 
•■■*¥■■■ Female

18-29  30 -3 9  4 0 -4 9  5 0 +

Age

Mean SV2 amplitude vs. Age 
(based on 7X9 males and 5 8 4  females)

2

1

0
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has occurred in the interim, it is possible that his ECG may be 

considered as normal on one occasion and abnormal on the next. 

This is one contributory factor to the problem of repeat variation and 

arises as a result of the discontinuous nature of many boundaries.

It is clearly unlikely that an individual's ECG waveform will be 

completely identical from one recording to the next. There will 

typically be small, clinically insignificant changes in wave amplitudes 

and durations. Regardless of how minute such changes may be, 

conflicting computer diagnoses can occur if discrete boundaries are 

crossed and this phenomenon, combined with the age-related 

discontinuities, forms the crux of the problem of repeat variation.

2 .3  DAY-TO-DAY VARIATION.

Variation in the PQRST amplitudes and durations can potentially 

lead to a lack of repeatability in computer diagnoses from one ECG 

recording to another and this naturally gives cause for concern. 

Knowledge of the causes of day-to-day variation allows an 

experienced cardiologist to report no significant change between 

consecutive recordings although a method by which such variation 

may be quantified would prove appealing. On the other hand, 

cardiologists are not infallible. The CSE diagnostic study found that 

the median repeatability of cardiologists when given the same ECG 

on two separate occasions was 81.8% (Willems et, al., 1991).

Lewis recognised that many different ECG patterns could be 

observed in a group - of healthy individuals although he largely 

assumed that the ECG for any given individual remained constant 

(Lewis and Gilder, 1912).
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Simonson first addressed the question of day-to-day variation 

and emphasised the need for knowledge of such variation in order 

that serial electrocardiography be carried out (Simonson, Brozek and 

Keys, 1949). He suggested that eating a meal between recordings 

may alter the ECG significantly and provided measures of the amount 

of variation exhibited between eleven consecutive recordings taken 

over a period of two months on twelve normal young men.

Graybiel and colleagues demonstrated the effects of inhalation of 

tobacco smoke on the ECG (Graybiel, Starr and White, 1938). 

Drinking iced water between recordings has also been shown to alter 

ECG appearances (Sears and Manning, 1958).

Electrode placement is another cause of repeat variation since 

varying distances between the electrode and the heart will result in 

different ECG potentials and durations being recorded. It is therefore 

important that due care and attention is given to the placing of the 

electrodes when ECGs are being recorded.

Day-to-day variability can be reduced by the order of 25% when 

electrode positions are marked between recordings. Willems et. al. 

(1972) demonstrated such a reduction when comparing 3-orthogonal 

lead electrocardiograms which were recorded on individuals whose 

electrode positions were marked with a coloured skin marker and on 

those whose electrode positions were unmarked. Although repeat 

variation was reduced to a certain extent with such an approach, it 

was not eliminated.

Cawood et. al. (1974) provided estimates of day-to-day and beat- 

to-beat variation in normal 3-orthogonal lead ECGs and, given that 

the electrode positions were not marked, the variation proved quite 

substantial. Although such estimates may be reduced when electrode 

positions are marked, this is generally impractical in a busy hospital
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and there still remains sufficient concern as to the other factors 

contributing to repeat variation.

2 .4  SUMMARY.

The sources of variation in ECG appearances which have been 

described can be divided into two categories -

a) 'between-individual' variation and

b) 'within-individual' variation.

'Between-individual' variation will arise due to the fact that many 

ECG variables have been observed to vary with sex, race and age. 

Many ECG-analysis programs can deal with the former type of 

variation by stratifying by age, sex and race although using age as a 

discrete variable can give rise to a lack of repeatability.

'Within-individual' variation is more difficult to quantify since 

there are many different sources. Chapter 4 will attempt to provide, 

for each ECG variable of interest, an estimate of the day-to-day 

variation which will contain, as far as possible, all contributory 

factors. These estimates will then, in turn, be used in conjunction 

with a modification to the deterministic process currently in use in 

Glasgow (which will be outlined in a subsequent chapter) with a view 

to improving the repeatability of diagnoses.
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CHAPTER THREE:

SOURCES OF REPEAT VARIABILITY 
IN THE ECG:

Agc-catcgoriscd 'normal ranges'.

3 .1  INTRODUCTION.

In the previous chapter attention was given to the fact that upper 

limits of normal for selected ECG variables are stratified by age, sex 

and race. The reason for this is that many ECG measurements differ 

across sub-groups of the population and it would be inadvisable to 

make use of the same criteria for young male Caucasians as are used 

for older female Chinese.

Having been stratified by race and sex, many limits are usually 

categorised by age and the problems arising from such a procedure 

have already been discussed. While these limits will remain stratified 

by race and sex, it is appealing to make use of the continuous nature 

of age in providing smoothed age-related upper limits of normality 

where appropriate.

3 .2  BACKGROUND TO SAMPLE SELECTION.

The establishment of normal limits is made on the basis of a 

sample of assumed healthy individuals. Initially the target population 

(i.e. the population of interest) must be identified and from this, the 

study sample chosen. It is important that the study sample is 

representative of the target population since any inferences based on
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the smaller group (which will be more accessible than the target 

population) are to be extrapolated to the larger population.

Several approaches to population sampling have been identified. 

Macfarlane et al. (1985) opted to cover a variety of occupations in 

order that both sedentary and manual workers were included. To 

achieve this, volunteers from several departments in local government 

in the region of Strathclyde were sought. The distribution of the 

1338 subjects may be seen in Figure 3.1.

400

Frequency
300 

200 

100

0

Figure 3.1

It can be seen that there is a predominance of younger persons 

in this sample, presumably because they are more willing to volunteer 

for screening. This can be attributed to the fact that the probability of 

finding any abnormality of a cardiac nature will be lower in the 

younger age groups than for older people. It is also clear that there is 

a large difference in the number of males and females in the 30+ age

a  Males 

a  Females

18-29 30-39 4049  50+

Age Category

Distribution of 1338  apparently healthy 
individuals in the Glasgow Study.
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categories since many women opt to leave employment at this stage 

in order to start a family (Macfarlane, 1989d).

Any form of extrapolation from this sample must be questionable 

since the sample of individuals obtained is not entirely representative 

of the population in general. In particular, the subgroups specifically 

thought to be 'at risk', typically the older groups, are not as well 

represented as the younger subgroups. Therefore any inferences 

which may be made about such groups should be interpreted with 

caution although, hopefully, the smoothed age-related upper limits of 

normality that are produced from this data will not be biased, merely 

better estimated for the younger ages and for males.

3 .3  THE CURRENT SITUATION:

3 .3 .1  Basic Assumptions.

When considering a large number of observations of a variable of 

interest on a continuous scale, it is often the case that the resulting 

frequency distribution demonstrates a spread of values, the majority' 

being in the middle. In the situation where the spread is relatively 

even about the central value, it is common to assume that the 

underlying 'population1 of the variable will be well approximated by a 

Normal distribution. This assumption of normality is very important; 

since many statistical techniques are based on this premise. Under 

this assumption, the normal range, which is commonly taken to be. 

described by the middle 95% of values, can be obtained by calculating 

the mean and the standard deviation of the sample. Thus the 95% 

range can be defined as roughly



mean ± 2 standard deviations.

If the underlying distribution of a particular variable is non- 

Normal, then it may be possible to transform the variable to achieve 

approximate normality. As a last resort, certain situations may 

necessitate the use of nonparametric methods of inference to 

estimate 'normal' or 'healthy' ranges. Such methods do not require 

strong assumptions as to the underlying distribution which generated 

the data but are often inferior in providing strong inferences.

It has been established (Simonson, 1961) that the distribution of 

many ECG variables is skewed so that the normality assumption does 

not apply. For example, the unconditional distribution of the R wave 

amplitude in lead V5 is skewed to the right (see Figure 3.2).

Frequency

RV5 (mV)
Figure 3.2 Frequency Distribution of the R wave

amplitude in lead V5 (n -1 3 3 8 )

'Healthy' ranges for the raw age and sex categorised data 

collected in Glasgow should therefore not be presented as mean ± 2 

standard deviations. Instead, 2% of observations were excluded from 

either end of each group, thereby providing a 96% range. The 96

100-
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percentile range is used in many electrocardiographic studies instead 

of the standard 95% range and there is no special reason for opting 

to exclude 2% of values rather than 2.5% other than the preservation 

of continuity.

3 .3 .2  Discrete Upper Limits.

Upper limits of ’healthiness' for many parameters of interest have 

been constructed on the basis of the 96% range of the data 

{Macfarlane, 1989e) and an example of how this limit varies over age 

and sex for the R wave amplitude in lead V5 can be seen in Figure 

3.3.

5 0 0 0 n -----------------------------------------------------------------------------------------------------------------------------

RV5 400e“--------------[
(|xV)

3 0 0 0 -  1---------------------------- [

2000 -

I 00Q-

o4l 1--------------1--------------1-------------
2 0  3 0  4 0  5 0

Age in years

Figure 3.3 Discrete Upper limits of 'healthiness* for
the R wave amplitude in lead V5 (Males)

As mentioned briefly in the previous chapter, small measurement 

changes as well as age changes in the neighbourhood of threshold
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values are a potential source of lack of repeatability and it is therefore 

of interest to replace such discrete upper limits of normal with limits 

which change continuously and smoothly with' age.

3 .4  SMOOTHING OUT DISCRETE LIMITS:

The use of linear regression.

As an initial step in our main aim of predicting the upper limit of 

'healthiness' for a particular ECG variable x,  we specify a model to 

describe the dependence of * on age t . The simplest possible model 

is a linear regression where the conditional expected value of x  

depends linearly on t and the variability about such a linear 

relationship is constant. As in the previous section, the assumption of 

normality (in this case for the conditional distribution about the 

expected value) is questionable, so suitable transformations were 

investigated.

As an example, normality of the conditional distribution of the R 

wave amplitude in lead V5, given the age, will be assessed.

An initial plot of the amplitude against the age (for males 

only) indicates that the variance is not constant (see Figure 3.4) since 

there does seem to be a larger spread of RV5 values for the younger 

ages.
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Plot of RV5 Amplitude vs Age in months (Males)

After applying standard linear regression techniques it is possible 

to plot the residual values against the fitted values (see Figure 3.5) to 

assess the adequacy of the linear model.

Residual

3000-

2000-

1000”

-loocr

-2000

’* /- W'- V  V. ■
* '^ ..t'■ * *»*■ t v »s *j
•, '.s . 4

n i i i i i i i i
1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

Fitted Value (]xV)

Figure 3.5 Plot of the fitted value vs. residual 
for the raw RV5 Amplitude.

The difference between the true measurement *. and the fitted 

value for the i th observation x. defines the i th residual r. and 

essentially measures the vertical deviation of measurements from the
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fitted line which is defined by the estimated slope and intercept a  

(Kalbfleisch, 1979). Thus
r = xt -[&+&<). 

where r. is the explanatory variable for individual i .

If the model is satisfactory, a plot of the residuals r,. against the 

fitted values, «  + /&,. should demonstrate points lying in a band of 

constant width about zero exhibiting no patterns or trends. The 

wedge-shaped nature of Figure 3.5 suggests that there is evidence of 

increasing variance.

Furthermore, the expected value (ev.) of the i th observation in a

sample of N  from a N(0,1) distribution is approximated by

e v ,. = 0 - l { ( 3 i - l ) / ( 3 / V  +  l ) }

where d?-1 is the inverse Normal cdf.

If our sample had been taken from a Normal distribution, then the 

plot of observed residuals against these expected values from an 

N(0,1) distribution would be linear. A normal probability plot (see 

Figure 3.6) exhibits obvious curvature indicating that the conditional 

variability is not adequately described by the normality assumption.

Expected 4 ~
Normal 3 -
Value

2 -

1 -  
0 -

-1~
-2 -  

-3 —

-3000 -2000 -1000 0 1000 2000 3000

Residual
Figure 3 .6  Normal probability plot of the residuals 

for the raw RV5 Amplitude.
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The evidence of non-constant variance leads us to investigate 

whether a square root or a logarithmic transformation might be more 

appropriate to allow us to assume a linear model for the transformed 

variable.

A plot of the square root of the amplitude of the R wave in lead 

V5 vs. age for male Caucasians can be seen in Figure 3.7.

  70"

5 0 -  

4 0 -  

3 0 -  

20-  

10-  

0 -
0 100 200 300 400 500 600 700 800 900 1000

Age in months

Figure 3.7 Plot of "\/RV5 Amplitude vs. Age (Males)

There is possibly a slight suggestion of decreasing variance, but 

not to the extent that it exists for the raw data.

The residual plot for the transformed data has been provided in 

Figure 3.8. This demonstrates that the residuals lie in a horizontal 

band of constant width about zero with no apparent trend. 

Furthermore, a normal probability plot of the residuals (Figure 3.9) 

illustrates that the assumption of normality has been satisfied.
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Plot of the fitted value vs. residual
for the transformed data (i.e. yjRV5).
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Normal probability plot of the residuals 
for the transformed data (i.e. yjRV5).

Assuming the standard linear model, that \ lRV5 depends

linearly on age with constant variance and letting jcf and f(. denote

VRV5 and age respectively for the i th individual in our basic data 

set, then

E(*,| t ■) = a  + pt; Var(-t,| = cr2
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i

where x. = a  + pt. + g. , g. ~ N(0,cr2) and xiyx} are independent 

(for i * j).

The usual least squares estimates were obtained for the unknown 

parameters a, ft, cr and the upper 98 percentile of the distribution 

(since we are effectively excluding 2% of values from the upper end 

of the range) can therefore be estimated as:

ggs(0 =cc + pt + t(n-2;  0.02) a 2<7 i + i + t d L
n S„ (3.1)

2where5„ =
1=1

Upper limits of 'healthiness' were calculated on the basis of the 

1338 ECGs which were recorded from healthy adults from Glasgow 

(see 3.2).

Equation 3.1 can be approximated by

gJ ( t )  = a  + /fc + t(/i-2 ;0 .02)£  

since for our large samples n and St{ dominate and the terms

i (?~fY 
— and  -----  >>0,

For the \ jRV5 data, the parameter estimates for males and 

females are as follows:

dcj h «  + t(«.-2;0.02)o-;
Males 47.25 -0.01089 6.39 59.77

Females 37.40 -0.00273 5.23 47.65
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Thus, the equations describing the upper limits of normal for the 

square root of the R wave amplitude in lead V5 for males and 

females are approximately

VRV5 = (59.77-0.01089xAge)juV for males (3.2)

VRV5 = (47.65-0.00273 x Age)/A/ for females (3.3)

Figure 3.10 shows the close similarities between the exact and 

the approximate upper 98 percentile limits for males.

VRV5

Exact (Males)

Approximate

fOQQ0 20Q 400

Age in months

Figure 3 .1 0  Exact and Approximate upper 98  percentile 
limits for a/RV5 (Males)

Inferences can now be made about the upper limit of normal for 

VRV5, and hence RV5 simply by squaring the right hand sides of 

Equations 3.2 and 3.3, for different ages assuming that future
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measurements are independent realisations from the same model (i.e. 

the same population) and that the sample used to produce the 

equations is representative of a 'healthy' population.

3 .5  SMOOTHING OUT DISCRETE LIMITS:

An alternative approach - Nonparametric 

Regression.

If, even after transformation, we are still not satisfied with the 

linearity assumption for the conditional expected value in our model 

then a nonparametric regression model which imposes no linear 

structure can be fitted. However, the assumptions of conditional 

normality and non-constant variance in this case are not dropped. 

Again, let x{ and f. denote the ECG variable of interest and age

respectively for the i th individual in our data set and assume that 

inferences about the relationship between x. and t. are to be made

(for i = We aim to find a smooth function /  which represents

the upper limit of 'healthiness' for our data. Using a nonparametric 

approach we can write

E(*.| *,.) = /(*.) and Var(*f| = cr2 

where x. and x} are independent (for i #  j) and the only basic 

requirement of /  is that it is 'smooth' (Silverman, 1985).

One immediate and intuitive approach to estimating /  is to 

minimise the sum of squares function: - 

i.e. :
minimise

overall - / ( / . ) ' )

possible/
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where X. are observations taken at points ti (i = 1,.

This expression may, however, achieve the value zero when /  is 

allowed to interpolate the data in the situation where there are no 

replicated values of t . Clearly this is undesirable and in order to 

obtain a more realistic estimate of the function / ,  a 'roughness

penalty' incorporating a smoothing parameter <5 can be introduced. 

The smoothing parameter essentially determines the width of the 

window covering the observations which are currently being used to 

determine the smoothed curve at any particular choice of t . The 

more observations contained in the window, the smoother the plot. 

The sum of squares function is penalised in the following way:

X ( X , - - / ( f , . ) ) 2 + 5 j / " ( f ) 2*
i=t a

b

where <5 dictates the amount of smoothing to be used, J f  is a
a

convenient form of 'roughness penalty' (Silverman, 1986) and [a,b]

is the range of the explanatory variable t .

Effectively, as 8 —>0, /  interpolates the data and as 8 —

f( t)  -» x .

For our particular set of data where ^ is the square root of the R 

amplitude in lead V5 and t is the age, Figure 3.11 shows upper 98- 

percentile curves which have been based on nonparametric 

regression methods and have been produced for two different values 

of 8.
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Figure 3 .11 Upper 98-percentile Curves for 5 -5 0  and 5 -5 0 0  
based on Nonparametric Regression.

The larger value of <5 produces the smoother curve. Cross- 

validation is a popular technique for choosing the 'best' value of 5 and 

works on the principle that each data point is omitted in turn and 

predicted on the basis of the remaining data. The optimal value of § 

is that value which predicts the remaining data points most 

accurately.

The 'smooth' function will be estimated as follows:

/W  = t w W
i'=l

where | w ((() = l, w,(f)>0 and

i.e. a 'simple' weighted average of the \ jRV5 values where the 

weights depend on the age under consideration.

A variety of techniques for producing nonparametric estimates is 

available ranging through splines, kernels, etc. We have chosen a
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kernel method because of its simplicity and hence its easy 

application.

Here K denotes a kernel function which is symmetric and 

centred on the origin, satisfying the condition J K(z)6z = l. A

Gaussian (or Normal) kernel has been used to construct an estimate 

for f ( t ) . Thus we choose
-i ('-'■)*

2 > 2 51

X * 2 *
i»l

as a suitable nonparametric regression of x on t with smoothing 

parameter 5 .

s  Linear 
Regression

0 '00 500 500 400 800

Figure 3 .12  A comparison of the upper limits of 'healthiness' 
calculated using a nonparametric regression 
technique and a simple linear regression technique.

Figure 3.12 demonstrates the similarity between the 

nonparametric curve and the linear regression curve obtained for the 

square root of the R wave amplitude in lead V5 (for male
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Caucasians), clearly suggesting that the parametric linear regression 

previously described is effective over most of the age range and is 

certainly a simpler alternative. This also applies to many other ECG 

measurements (see examples in Figures 3.13 to 3.15). Thus the 

nonparametric approach has been a beneficial exploratory exercise.

3 .6  THE EFFECT OF SMOOTHING IN PRACTICE.

Figures 3.13 to 3.15 demonstrate how the continuous equations 

describing the upper limit of 'healthiness' of three voltage 

measurements compare with the discrete limits. The points of 

discontinuity which exist for the discrete limits can give rise to a lack 

of repeatability if, for example, a patient's age group changes from 

one recording to the next. The use of continuous equations 

eliminates this discontinuity by providing a method of describing the 

behaviour of the measurement of interest (or a transformation 

thereof) smoothly over the age range.

80

%/RV5 70
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Figure 3 .13  The smooth upper limit of 'healthiness' for the 
square root of the R wave amplitude in lead V5 
compared to the original discrete upper limit (Males).
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Figure 3 .1 4  The smooth upper limit of 'healthiness' for the 
square root of the R wave amplitude in lead aVL 
compared to the original discrete upper limit (Males).
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Figure 3 .15  The smooth upper limit of 'healthiness' for the 

square root of the S wave amplitude in lead VI 
compared to the original discrete upper limit (Males).

Equally, these newly established continuous upper limits of 

'healthiness' may be applied to other ECG measurements. In general, 

limits for wave amplitudes are based on the square root of the 

measurement whereas limits for durations can be constructed using 

the raw data without first transforming. Figure 3.16 illustrates that
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the unconditional distribution of the QRS duration in lead V5 is 

approximately Normal.

Frequency

450

400
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160
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QRS Duration in lead V5 (msecs) 
Figure 3 .16  Frequency Distribution of the QRS Duration 

in lead V5

Figure 3.17 demonstrates that the variation in the QRS duration 

in lead V5 is reasonably constant throughout the age range and 

Figures 3.18 and 3.19 further verify the assumption of normality.

Duration 
lead V5 
(msecs)

B0

0
0 100 300 300 400 600 000 700 000 900 10C

Age in months

Figure 3 .17 Plot of QRS Duration in lead V5
vs. Age in months (Males)
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Figure 3 .18  Plot of the fitted value vs. residual for QRS 
Duration in lead V5
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Figure 3 .19  Normal probability plot of the residuals for QRS 
Duration in lead V5

3 .7  SUMMARY.

For many ECG variables, notably the amplitudes of the 

waveforms, it was found that by taking square roots a simple linear

75:



model to relate the transformed ECG variable to age was adequate. In 

the case of wave durations, no transformations were required. Thus 

continuous upper limits of 'healthiness* using age as the explanatory 

variable were easily achieved. These limits can help to minimise the 

lack of consistency between recordings due to their smooth behaviour 

throughout the age range and help to form the basis of a more 

repeatable approach to ECG interpretation.
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CHAPTER FOUR:

SOURCES OF REPEAT VARIABILITY 
IN THE ECG:

Day-to-day variation.

4 .1  INTRODUCTION.

Lack of consistency between diagnoses based on successive ECG 

recordings can arise as a result of many sources of variation. Day-to- 

day variation which has been mentioned briefly in Chapter 2 can 

result in conflicting diagnoses if small ECG measurement changes 

cause the thresholds which distinguish 'healthy' from 'unhealthy' to be 

crossed between consecutive recordings. This repeat variation may be 

the direct result of many contributory factors which have been 

described previously. However, it would be unrealistic and impractical 

to attempt to collect data on all such sources of variability since a 

model incorporating separate estimates of variation due to respiratory 

stage, the effect of smoking, level of anxiety of the patient etc. would 

be too complicated to be of any practical use. A much simpler option 

is to concentrate on estimating overall day-to-day variation which will 

include factors such as electrode positioning, recording technique and 

anxiety level of the patient from one day to the next in a single 

estimate.

: Here, we will consider how to model day-to-day variation and

describe methods for the estimation of the amount of variability 

which exists from one recording to the next in our particular set of
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data comprising replicate ECGs which were recorded at least 24 

hours apart.

4 .2  THE DATA USED TO ESTIMATE DAY-TO- 
DAY VARIATION.

To obtain estimates of the day-to-day variability (crt) for a

particular measurement of an ECG variable j c , an adequately sized 

database of ECG recordings representing a variety of cardiac 

pathologies is required. Furthermore, the patients must be regarded 

as being 'ECG-stable', i.e. recordings are to be taken from such 

individuals whose clinical condition is such that there is no medical 

reason for their ECGs to change from one day to the next.

ECGs were recorded at least 24 hours apart from non-acute 

cardiac patients admitted to Glasgow Royal Infirmary between August 

1988 and December 1991. To represent real day-to-day variation, 

no standardising procedures were used, i.e. electrode positions were 

not marked nor were there any conditions placed on the recording 

technicians (i.e. the technician recording the ECG on day 2 need not 

necessarily be the same as the one who recorded the initial ECG). In 

this way, an estimate of day-to-day variability included components of 

variability due to recording technique, electrode positioning, 

respiratory phase, posture and anxiety level.

No. Mean Age Min. Age Max. Age
Male 234 56 23 80

Female 61 58 29 76

Table 4.1 Mean, maximum and minimum ages of the 
295  patients used to construct estimates of 
day-to-day variation
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There is a predominance of males in this database as can be 

clearly seen in Table 4.1. This is attributable to the fact that it is 

mainly men who are admitted to the University Department of 

Medical Cardiology at Glasgow Royal Infirmary suffering from non­

acute cardiac conditions, predominantly ischaemic heart disease.

4 .3  INITIAL INVESTIGATION OF THE DAY-TO- 
DAY VARIABILITY.

It is unlikely that an observed value of a day 1 ECG measurement 

will always be identical to the observed value of the day 2 reading of 

the same variable. We would like to be able to estimate the amount of 

variation between such readings in a normal population. It is 

reasonable to assume that the day-to-day variation may depend on 

the magnitude of the measurement being considered with large values 

being associated with greater day-to-day variability than small values.

To investigate how the day-to-day variability behaved in terms of 

any dependence on the magnitude of a particular ECG variable, some 

simple plots were considered. The initial step was to take differences 

of the day 1 and day 2 readings in order to remove any patient effect 

leaving the differences reflecting only measurement error. Plotting the 

day 1 measurement of a particular variable against the difference 

between day 1 and day 2 provided an initial impression of whether 

there was any relationship between variability and magnitude present. 

In some cases, the difference in the measurements between 

recordings was constant over the entire range of the day 1 readings 

(see Figure 4.1).
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Figure 4.1 QRS V5 Duration (msecs)
D ayl vs. difference between D ayl and Day2

In this scenario, a possible model for the differences d between 

day 1 and day 2 measurements xx and x2 respectively for patient i

could be constructed as follows:

DAY 1 xx-  ji + £x

DAY 2 x2 = /i + e 2

where jj, is the average 'patient i ' value (i = l,...,/i) and ex and e2 are 

independent daily measurement errors {€j ~ N(0,<x,2)).

The difference between the day 1 and day 2 measurements may be 

calculated as:

d - x x- x  2

= (M + e ,)-(M + «2)
—  £ x —  £ 2

where d ~ N(0,2crt2).

However, certain other variables demonstrated a trend whereby 

the larger the day 1 measurement, or indeed the magnitude of the 

ECG variables (as measured by the average of the two readings), the 

greater the likely variability between measurements (see Figure 4.2).
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Figure 4.2 RI Duration (msecs) 
(D ayl+D ay2)/2 vs. D ayl-Day2

It is more appropriate to plot the average of the two readings 

against the difference, since there may be a spurious correlation 

between the day 1 value and the difference.

In this situation, a possible model for the difference d between 

day 1 and day 2 observations xx and x2 respectively is of the form:

DAY 1 +
DAY 2 x2 = jj,+e2

where e t and e2 ~ N (0,< t(2 + t x2ju), d ~ N (o ,2 (< 7 Jt2+ T Jt2ju )), and |x is

the mean of the day 1 and the day 2 readings. .

It is therefore reasonable to assume that there may be some form 

of relationship present between <j x and the ECG variable of interest

{x). For this reason, the relationship between variability and 
magnitude must be considered when attempting to estimate
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4 .4  A PROPOSED MODEL FOR DAY-TO-DAY 

VARIABILITY

4 .4 .1  The Basic Model.

When modelling the observations in our data set, it is often

appropriate to assume that the underlying distribution of the

measurements of interest is approximately Normal. Many sets of

experimental data exhibit properties of a random sample which has

been taken from a Normal distribution, often after a suitable

transformation.

Suppose we have data available for the ith  patient

with reading xn on day 1 and reading xn on day 2, Since day-to-day 

variability appears to be related to the magnitude of the variable in 

certain cases, we propose the following model:

DAY 1 ;cn = fx. + £ ;i
DAY 2 xi2 = Li.+ei2

where s i} ~N(o,(cr2 + r 2-uf)) for i = ; 7 = 1,2; and }ii is the true

value of patient i at that time. Here, a 2 measures the baseline 

variability while t 2 measures the rate of increase of the variance with 

the magnitude of the ECG variable x . This model will apply to both 

of the situations which have previously been mentioned (i.e. when the 

difference between the day 1 and day 2 measurements depends on 

the day 1 value or not) simply by specifying t  = 0 or t  > 0 as 

appropriate.
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(Note that the proposed model is of the form c r/  =s<j2 + r 2/ix 

although other models, such as <7^= <7 + 1:fxxt might be equally 

sensible).

All of the pL. (i.e. the true values of each of the n patients) are

nuisance parameters since interest lies in estimates of a  and T , not 

in the particular patients. If in fact t - 0  then a simple way of 

removing the dependence of the model on these superfluous 

parameters is to take differences, i.e.

dt=*i i - * «

and d. -  N (0,2cr2) ( fo r r  = 0).

So if we extend this to the case of r  * 0 , taking differences will 

remove part of the dependence on the filt

i.e.
d; — — xa

~~ £il Si2

and d. -  N^0 ,2(<72+'T2(uj.))

Basing our inferences on the differences, a convenient log- 

likelihood function can be written as

and the parameter values (<3\ t) which maximise Equation 4.1 are the 

joint maximum likelihood estimates (MLEs) of cr and T. These

estimates together will correspond to the most plausible values of 

(o-.T).
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One approach to eliminating the remaining nuisance parameters 

/z f , is to maximise the above log-likelihood function 1(<t , t , j j .; ;x ) over

fi; to yield a function of o \ t  only. The values of jj.. as functions of cr

and T which maximise the above expression will provide the Profile 

Likelihood for cr, T (Kaibfleisch, 1979) which can then be used for

inferences on <7 and T and hence maximum (profile) likelihood 

estimates (<7,r), i.e.

p i  (<7,t;x) I

1{<J,7 , ^ ( 0 *,t );x ) .

However, trying to achieve this by maximising Equation 4.1 for

dlfixed cr and T , we find that the appropriate equation - — = 0 cannot
f a

be solved analytically. We would therefore have to use a numerical 

method of evaluating each for every pair of values of cr and

T and this would be computationally extensive.

To avoid this, one appealing approach is to obtain an 

approximation to the Profile Likelihood by estimating //..(cr,?) from

( X ‘ 4“ X-  ^
the data simply as the sample average, i.e. by m. * 2 '

Thus by replacing p. by m. in Equation 4.1 above, the 

approximate profile likelihood can be written:

p/(o\?;.r) = l(&t?fm.;x) where m. = +
z

where d ,= (x :i- x , 2).
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If indeed this form of profile likelihood is a reasonable 

approximation we can then proceed to base our inferences on o* and 

T on this computationally much simpler function.

4 .4 .2  Comparing the Approximate and Exact profile 

log-likeiihoods.

Before proceeding, we first consider how well this approximation 

to the profile log-likelihood compares to the exact method, 

i.e. compare
A . .

pl = /(cr,ir,m.;x)

with

p l ( c T , T ; x )  =

w h e r e  all t h e  p. (i—1 , . . . ,  n) a r e  m a x im is e d  a t  e a c h  of all th e  p o s s ib le  

p a i r s  of v a lu e s  of ( c t , t ) .

The performance of the approximation can be assessed by 

plotting the exact Profile Likelihood (which requires considerable 

computation) over a plausible range of <7, T and examining the

discrepancies between it and the approximate Profile Likelihood 

derived by replacing £ .(ct,t) by

If the maximum percentage difference between the exact log 

likelihood and the approximate log likelihood over a sensible range of 

(ct,t) is less than about 1% then it seems reasonable to assume that

the approximation is adequate,

i.e. if max P ^ x) - p K o ,t ,x ) k 0 Q1
( o \ T )  p l ( G , T , x )

then the approximation is assumed adequate.
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4 .4 .3  Illustration 1 :

The R wave duration in lead V I.

The approximate log-likelihood function has been calculated for 

the R wave duration in lead VI. The surface plot which has been 

constructed over a suitable range of (o \r) can be seen in Figure 4.3. 

In addition, curves of p/(<r,r;x) = h for certain values of h may be

provided, thereby producing a contour map of the approximate log- 

likelihood. The MLE together with approximate 99% and 95% 

confidence intervals for the approximate log-likelihood for the RV1 

duration can be seen in Figure 4.4.

Figure 4 .3

(Note that log-likelihood values of less than -390 have been set 

constant at this value in order to give a clearer picture of the values of 

cr,r surrounding the maximised log-likelihood).

Surface plot of the Approximate log-likelihood 
function for the RV1 duration.
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Figure 4 .4  Approximate 99% and 95% Confidence
Regions for (<T,T) (RV1 duration)

At the 5% significance level we may reject the hypothesis that 

r  = 0 since the value lies outside the approximate 95% Confidence 

region in Figure 4.4.

The approximate log-likelihood function for the R wave duration 

in lead VI is maximised at

(<t ,t ) = (0.01,0.56).

Using the exact log-likelihood function, the MLE is (0.02,0.56). 

The resulting surface and contour plots can be seen in Figures 4.5 

and 4.6.

p l { ( J , r ,x )

Figure 4 .5  Surface plot of the Exact log-likelihood 
function for the RV1 duration.
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Figure 4 .6  Exact 99% and 95% Confidence 
Regions for (RV1 duration)

From the diagrams there appears to be very little difference 

between the approximate and the exact maximum likelihood 

estimates of (cr,t) for the R wave duration in lead VI. Since the

maximum percentage difference between the exact and the 

approximate log-likelihood values is around 0.41% it is therefore 

reasonable to use the approximation as an alternative without any 

significant loss of accuracy.

4 .4 .4  Illustration 2 :

The R wave amplitude in lead V5.

The approximate log-likelihood function has been calculated for 

the R wave amplitude in lead V5. The surface plot which has been 

constructed over a suitable range of ( c t , t )  is shown in Figure 4.7.

The MLE together with 99% and 95% confidence intervals for the 

approximate log-likelihood for RV5 can be seen in Figure 4.8.
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Figure 4.7  Surface plot of the Approximate log-likelihood
function for RV5 Amplitude

0 10 20 30 5040 60 70 30 90 100

Figure 4 .8  Approximate 99% and 95% Confidence
Regions for (<3,T) (RV5 Amplitude)

There is evidence that t  > 0 since the value r = 0 lies well outside 

the approximate 95% confidence interval in Figure 4.8. Although we 

cannot conclusively reject at the 5% significance level that cr = 0 since 

the 95% contour intersects the line cr = 0 , there is still evidence that 

cr > 0 since the value cr = 0 only just lies inside the approximate 95% 

confidence interval in Figure 4.8.
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The approximate log-likelihood function for RV5 is maximised at 

(6\ t) = (28.0,5.0), whereas the exact log-likelihood is maximised at

(<7 ,^) = (21.0,4.8). The maximum percentage difference between the

log-likeiihoods calculated by the two methods is 0.7%, again proving 

that the approximate method is adequate.

4 .4 .5  When there is a trend from Day 1 to  Day 2: 

An Alternative Model.

In general, for most ECG variables, the model defined in 4.4.1 

proved adequate when applied to the database with either t = 0 or 

? > 0 as appropriate. However, perhaps contrary to our expectations, 

we detected that for several variables there was the possibility of a 

trend from the day 1 to day 2 recordings. For example, the difference 

observed between day 1 and day 2 measurements from the ST-T 

segment and from the P wave did not appear to depend on the initial 

value in the way described in 4.4.1 (i.e. with the expected value of 

the difference equal to 0 consistently across the.magnitude of the 

measurement). Instead, 'high values' on day 1 tended to produce 'low 

values' on day 2 and vice versa.

A plot of the differences between recordings versus the day 1 

value of the duration of the negative P wave in lead V I demonstrates 

a trend which may be interpreted as a 'regression to the mean' (see 

Figure 4.9). However, we do not observe this phenomenon when we 

plot the average of the day 1 and day 2 values against their 

difference. This provides evidence that a spurious correlation does 

exist for this parameter.

90



100

so

eq>»mQ

-so

-100

0 40 SO

D ayl

Figure 4 .9  Negative P wave duration (msecs) in lead VI
Day 1 vs. Difference between Day 1 and Day 2.

However, since the 'regression to the mean' phenomenon 

appears to happen in practice when considering the ST segment, we 

must allow for such a dependence in estimating the day-to-day 

variability and so an alternative model must be investigated. Again, 

assuming that the underlying distribution of the measurement of 

interest is approximately Normal, the following may be considered an 

appropriate model where the mean of each day 2 observation is 

reduced if the day 1 reading for that patient is above the population 

average (i.e. jj,) and increased if the day 1 reading is below average. 

DAY1 Xn =jLLi +8il

DAY2 xi2 = n, -  A(fi, -  m) + ei2

where s,y -  N(0,(<72 h-tV ,)) f°r < = 1 n \ j  = 1,2 and A >0 is a

measure of the rate of 'regression to the mean'. If A = 0, then the 

phenomenon does not exist.

Nuisance parameters again cause problems, complicated by the 

fact that there is the extra nuisance parameter A. Again, the exact 

profile likelihood for (cr,r) could be evaluated numerically but would

be even more computationally intensive because of the additional
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presence of X which also cannot be estimated in analytic form. 

Therefore we proceed to derive an approximation that can be dealt 

with in a reasonably simple manner as before.

Taking differences as before eliminates these nuisance 

parameters to a certain extent so that

Further manipulation is required to eliminate the presence of X 

and the \xt in the distribution of the dj . The first step in achieving this

is to subtract an amount A(iu/ - /d) from d. above since, if indeed the

parameters were known, this would eliminate the nuisance 

parameters from the means of the d..

So we will construct d* where

However, in practice we must find some form of estimators for X 

and jLii and hence construct d* such that

i.e. replacing X , jj. . , i i  by appropriate estimators in the definition 

above.

and

d,‘ = d, -  -  /j.)

= *{n, -Jj)+(en - e n )~X(n,  -Ji)
=  8  n — Si 2

~ N(o,2(cr2 + tV , . ) )
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The parameter A will be estimated by fitting a regression of the 

d . on the -  Adi) without any intercept) where xn are the day

1 measurements for each patient and fiDl is the average of all the day 

1 measurements. A plot of these transformed differences vs. the day 

1 measurement of the duration of the negative component of the P 

wave in lead VI is provided in Figure 4.10. This is merely for 

illustrative purposes, since the methods described will be applied to 

the ST segment only, and not to the P wave duration in lead VI.

100

so

d ;*

-100

0 40 80

Day 1 x  fl

Figure 4 .1 0  Transformed d. vs. Day 1
(Negative P wave Duration V I in msecs).

If we compare Figure 4.9 with Figure 4.10 it is clear that we 

have effectively removed the trend and indeed it appears that we may 

also be in the situation where T = 0.

The adapted model is now of the form

d,:  ~ N(0,2(cr2 +T2m.))

so that inferences about a  and r  can now be made in the manner of 

the previous sections.
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Figure 4.11 provides approximate 99% and 95% confidence 

regions for the estimated values of a  and t  for the negative P wave 

duration in lead V I which are based on the adapted model. The 

maximum likelihood estimates are (14.0, 0.04). In fact, there is 

evidence to suggest that t - 0  is not all that implausible since this 

value lies inside the 95% confidence region in Figure 4.11.

o 122 4 6 3 10 14 16 18 20

Figure 4 .11  Approximate 99% and 95%
Confidence Regions for (cr,T)

(Negative P wave Duration in lead VI)

4 .4 .6  Predicting the Day-to-day Variation.

Having obtained the maximum likelihood estimates for cr and t, 

we may now proceed to predict the amount of variation which is 

likely to be present in a given dayl ECG measurement because this is 

typical of a one-off measurement.

Knowledge of the standard deviation of the differences between 

day 1 and day 2 measurements of various ECG parameters provides 

us with a method of assessing the amount of normal fluctuation
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present in a single recorded value since all the natural variability is 

contained in ct, t  and ji. for any patient i in the form

^/Var(ECG Measurement) = ^ja2 + t  1{ii

The MLE for the R wave duration in lead V I is (0.01, 0.56). 

Therefore the estimated standard deviation of a second measurement 

of the R wave duration from an individual whose initial reading is 

around 30 msecs can be calculated as follows:

Std. dev (RV1)=^(0.012 +0.562 x30)

= 3.07 msecs.

An approximate prediction interval for the day 2 RV1 duration given 

that the day 1 reading was 30 msecs may be calculated as

30 ± 1.96 x 3.07=(24,36)

This would suggest that, for a day 1 RV1 duration of 30 msecs, we 

could expect a day 2 value of between 24 and 36 msecs. Any value 

outside this region is therefore likely to be viewed as significantly 

different from the day 1 reading. Figure 4.12 shows the range of 

values for the R wave duration in lead VI which could be expected 

for typical one-off estimates of the measurement. In particular, it 

illustrates the prediction interval of (24, 36) msecs obtained for a 

recorded value of 30 msecs. The width of this prediction interval 

reflects the magnitude of the problem with which we are dealing.
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Figure 4 .12  Illustration of the range of plausible values 
for an observed RV1 Duration of 30  msecs.

Similarly, prediction for the range of likely day 2 values for a 

given day 1 reading of the R wave amplitude in lead V5 is possible. 

For example, the standard deviation of the a second RV5 amplitude 

measurement given that the initial recorded value was 2500 |o.V can 

be constructed as follows:

i.e. Std. dev (RV5)=.J(282+52 x2500)

= 252 piV.
The corresponding range of plausible day 2 values can be calculated 
as

2500 ± 1.96 x 252=(2006,2994)

The way in which the range of plausible day 2 values varies over 

the range of day 1 measurements is illustrated in Figure 4.13. Since 

day-to-day variation depends on the magnitude of the ECG variable 

under consideration (in this particular case, RV5), the standard 

deviation of the differences for high day 1 measurements will be 

greater than the standard deviation for lower values. This will in turn 

result in wider prediction bands for high day 1 readings.
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Figure 4 .13
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Illustration of the range of plausible values 
for an observed RV5 Amplitude of 2500|xV.

4 .5  THE EFFECTS OF STRANGE’ 

OBSERVATIONS.

4 .5 .1  The Presence and Detection of Outliers.

Any moderately sized sample taken from a general population is 

likely to contain a few values which are surprisingly far away from the 

main group. Reasons for this might be natural variability within the 

sample or some form of technical malfunction leading to an aberrant 

value. The problem here lies in deciding whether to disregard these 

values completely or to include them together with the remaining 

observations when interpreting the data since any analysis might be 

sensitive to the presence of these possible outliers.

A simple plot of the square root of the day 1 measurement of the 

R wave amplitude in lead II versus the difference of the square root of

97



II

the day 1 and the day 2 measurements has been provided (Fig 4.14). 

Clearly there is one extreme observation where the difference 

appears to be much larger than would have been anticipated given 

the initial measurement. However, the difference may be a true one 

so that information might be lost if this reading were excluded from 

the analysis.
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N
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T—4>.
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- 200-
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-600-

-800-f
0

/
Extreme Observation

1000 2000 3000

D ay l

Figure 4 .14 RII Amplitude ( D ayl vs. D ayl-D ay2 )

This extreme observation may have arisen from random 

measurement error or from other sources that are of no particular 

relevance to the study (Barnett and Lewis, 1977). The effect however 

on the parameter estimates of cr and T may be out of all proportion 

so one solution is to dampen the effect of the possible outlier on the 

estimates using the idea of an influence function. The main aim of 

this is to reduce the effect of the possible outlier on the likelihood 

function (Hampel, 1974).
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4 .5 .2  The Use of Influence Functions to  dampen 

the effects of potential outliers.

Complete rejection of possible outliers is unsatisfactory since this 

may contribute to underestimation of the parameters of interest. 

Alternatively, treating extreme observations in the same way as the 

rest of the sample may provide overestimates of the parameters out 

of proportion to that merited by one or two 'wild observations'.

One solution is to introduce an influence function which 

dampens the effect of observations which are 'far from the rest' so 

that they do not distort parameter estimates too much. In this way, all 

available and relevant data will be included when making inferences 

about <7 and T although observations which appear to be exerting 

undue influence on the underlying model will be considered with 

caution.

The influence function measures the effect that a single 

observation may have on the criterion (i.e. likelihood) function which 

has been used to estimate the value(s) of the parameter(s) which 

maximise the likelihood or profile likelihood function. Naturally, 

outliers which offer 'substantial contributions' to parameter estimates 

will significantly impair the performance of the model unless a 

suitable influence function is used.

Consider a sample of real-valued observations x x,...,xn. Two 

obvious estimators of the population 'centre' 0 are the sample mean 

0A(x) and the sample median &B(x).
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0fl(x) = sample median of (jq,..., x„) =

y  ..j_ y

(i) ( H .

W

/ 2 if n is even

if n is odd

Note that x( } denote order statistics.

An additional observation x will alter these estimates in the 

following ways:

6 A' ( i ) =  -T 7  0a (*) + ~ 7 7  X' n + 1 n + 1

A

0 B. (x) -  sample median of (xt,..., xn, x) =

(rO
if n were even

/ 2 if n were

odd
in the (new) order statistic 
of the (n+1) observations.

Consider now the effect of the magnitude of x on the value of 

the parameter estimate. Here we plot x vs. the difference in the 

estimate of the sample mean (or median) observed when the 

additional observation x is introduced, i.e.

§A,(x ) -0 A(x) vs. x or 0B.(x)~0B(x) vs. x

In the situation where the location of a particular population is 

estimated by its sample mean 0A(x), the influence that an additional

observation x will have on the estimate can be seen in Figure 4.15.

100



Diff in 
estimators

0-

0A{xj Value of new 
observation x

Figure 4 .15  Influence that * has on the sample mean.

If ;c = 0A(*), then the influence on the estimate is zero, but as x 

increases, the difference between the estimates increases producing 

an unbounded influence function.

However, using the sample median as an estimate will produce a 

bounded influence function which can be seen in Figure 4.16.

Diff in 
estimators

0

("2) ("j+i) Value of new
observation x

Figure 4 .1 6  Influence that x has on the sample median in the 
case where n is even.
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Estimating the location of the population mean by the sample 

median is therefore more robust than using the sample mean, 

offering more protection against outliers. This is largely due to the 

fact that the inclusion of an extra observation will influence the 

sample median only slightly whereas the sample mean may be altered 

quite dramatically depending on the magnitude of the new

observation relative to the rest of the sample.

Due to our approximate Profile Likelihood approach, interest lies 

primarily in the recorded differences between day 1 and day 2 

observations. Therefore a method of coping with 'large' or 'influential' 

values is required since extreme differences will tend to result in the 

over-estimation of a  and T in the model for day-to-day variation.

If we consider the form of the profile likelihood (i.e.
A . \

pl(<yft;x)  = each of the data points contributes a

d.2
function of —=— —  which is clearly unbounded as a function of d ..

<7 + T  Wlj

Plotting the  r  =  against their squared value for RV5
-yjcr2 +T2m.

illustrates several observations which are far away from the majority 

of the data (see Figure 4.17).
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Figure 4 .17  Plot of the unbounded influence function
for RV5 Amplitude

The observations which are far away from the majority of the

data will have a greater influence on the maximum likelihood 
estimates (<7,r) than is reasonable and will tend to overestimate a

and t .

One way to remove the 'unboundedness' is simply to cut off the 

function at a (rather arbitrary) point and restrict the influence of any 

larger observation to this cut-off value.

Consider

J ( a 2 + T 2m :.) .

This is an example of a bounded influence function based on the 

differences d . although a somewhat arbitrary choice for k is

required.
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_ d 2
Since  -—■■■■„—  appears in the Profile Likelihood (i.e. the

cr + t  "mi

d 2criterion function), —-  ' - — will be replaced by &(d;). Values of
O" “I“ T fTt;

d,
■\J(T2 +T2mi

which are of a greater magnitude than \k I will be

'brought in' towards the bulk of the sample otherwise they will have 

the usual 'least squares influence' on the likelihood.

The obvious problem of the somewhat arbitrary choice of k 

might be solved by a robust estimate for k such as

IQR
\

d;
/̂(<72 +T2m,.)

. The reasons for this choice are that the IQR

(Inter-Quartile Range) will not itself be influenced by one or two 

outliers and the multiple ^ times the IQR might roughly correspond

to two standard deviations of the population. Hence only 

observations which are further than approximately two standard 

deviations from zero (the assumed mean of the dt ) will be reduced in

influence.

The approximate profile likelihood will therefore become

pi  {<?, 1; x)' = log(<72 + r 2m.) -  j r
1=1 ( = 1  4

where m. = Xn-^ Xi2 and d. -  (xn - xn).

dPlotting the - — =!==== against their squared value for RV5 
y<T2+T2m; I

illustrates several observations far away from the majority of the data 

(see Figure 4.17). Figure 4,18 demonstrates how consecutive
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recordings which exhibit differences in ECG measurements lying 

outside the range ( - k , k ) will be 'brought in' towards the remainder of

the sample so that the estimated values of cr and T will not be 

influenced unduly.

2 0 -

16- •

14-

-10

for RV5

Figure 4 .18  Example of a bounded influence function
for RV5 Amplitude

The surface plot and the contour plot of the approximate log- 

likelihood for the RV5 amplitude when influential observations are 

treated in the way described can be seen in Figures 4.19 and 4.20.
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t.u 0
Figure 4 .19  Surface plot of the Approximate log-likelihood 

function for RV5 Amplitude (taking account of 
influential observations) (cf. Figure 4.7)

1007050 6030 400 10 20

Figure 4 .2 0  Approximate 99% and 95% Confidence Regions 
for (o\T) (RV5 Amplitude) (taking account of 
influential observations) (cf. Figure 4.8)

Using this modification, the MLE for (o \r)  is now (32, 3.7) for

RV5 compared to the previous estimate of (28, 5.0). Thus, for an 

RV5 reading of 2500 fiV, the standard deviation of the day-to-day 

variation will be estimated at around 189 |i.V for RV5 using the 

robust procedure compared with a value of 252 jxV estimated from

106



II

the full data set including any potential outliers. The resulting 

prediction range for the RV5 amplitude will be (2X30, 2870) 

compared to (2006, 2994). Treating the outliers as normal 

observations caused an increased estimate of t  and hence an inflated 

estimate of the standard deviation. In turn, this produces a wider 

range of plausible values for RV5. Using the robust procedure 

described has therefore solved the problem of deciding what rules to 

apply when attempting to recognise and perhaps discard potential 

outliers. Instead, all observations are included when inferences are 

being made about (<t , t ) although 'strange' observations will have only

a limited influence on the estimates.

4 .6  ESTIMATES OF DAY-TO-DAY VARIABILITY 

FOR THE COMPLETE SET OF ECG 

VARIABLES.

The methods which have been described in this chapter were 

applied to the complete set of ECG variables. Due to limitations of 

space, the findings for two subsets of amplitudes and durations (R 

wave and ST segment) will be presented.

Section 4.6.1 provides the results for the R wave amplitudes and 

Section 4.6.2 examines the R wave durations. In both cases the 

model described in section 4.4.1 has been used. Results relating to 

the ST amplitudes and the ST durations (Sections 4.6.3 and 4.6.4 

respectively) are based on the alternative model which has been 

described in Section 4.4.5.
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4 .6 .1  Results for the R wave amplitudes.

The following inferences about the R wave amplitudes have been 

based on the model described in section 4.4.1. This model was based 

on the assumption that there was no unusual trend in the day 1 and 

day 2 recordings and that the observed difference between the 

measurements may or may not depend on the day 1 reading, 

i.e.
DAY 1 xl = p x+el
DAY 2 x2 = fi2+e2

where ~ N(0,(j2 + t2/u), -  N(0,cr2 +T2̂ ) and

d ~ N(o,2(<t2 V )), where jx is the mean of the day 1 and the day

2 readings and r  = 0 or t > 0 as appropriate. All the ECG variables in 

this subset are adequately described by this model.

The maximum likelihood estimates for a  and r  are provided in 

Table 4.2. In addition are the results of two likelihood ratio tests, the 

first examining the null hypothesis that <7 = 0 and the second looking 

at the possibility of t  = 0. Non-significant results respectively suggest 

that cr = 0 or t  = 0 are reasonable. The test of t  =  0 vs r  > 0 is of 

greater interest than the test of cr = 0 vs <7 > 0 since if there is 

insufficient evidence to reject the null hypothesis that t  = 0 then the 

computation becomes less awkward due to the elimination of 

nuisance parameters jn.. On the other hand, if we can assume that

(7 = 0 then we are eliminating only the baseline variability which does

not necessarily simplify subsequent calculations to any great extent. 
The median value for each day 1 amplitude has been given (x,J

along with the ratio of the estimated standard deviation calculated at 
the sample median, to the sample median (crm* / x m) multiplied by
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100. This provides a method of comparing the relative amounts of

day-to-day variability in the different leads. The final column provides

the 95% prediction range of measurements likely to be seen at a 

typical value of the amplitude (in this case, the sample median x j

Lead (<7,r)
Is

(7 > 0?
Is

T > 0?
Sample
Median

% Relative 
s.d. at xmm

*
^ - x l 0 0
**

Prediction 
Range at

I (35.2,1.68) yes yes 812 7.3 (696,928)
II (24.0,1.92) yes yes 721 7.9 (610,832)
III (1.6,2.50) no yes 238 16.2 (162,314)

aVR (0.8,1.20) no yes 74 14.0 (54,94)
aVL (12.8,2.16) yes yes 585 9.2 (480,690)
aVF (1.2,2.48) no yes 499 11.1 (390,607)
VI (0.4,1.52) no yes 191 11.0 (150,232)
V2 (0.4,2.64) no yes 448 12.5 (338,558)
V3 (0.8,3.92) no yes 810 13.8 (591,1029)
V4 (0.8,4.20) no yes 1368 11.4 (1063,1672)
V5 (32.0,3.72) yes yes 1466 10.0 (1180,1752)
V6 (0.8,3.72) no yes 1270 10.4 (1010,1530)

Table 4 .2  Table of results for the amplitude of the R wave (|iV) 
based on 295  patients

Day-to-day variation in all twelve leads does appear to depend on 

the magnitude of the ECG measurement since in each case t is 

significantly greater than zero.

A plot of the difference in the day 1 and day 2 readings of RV2 

can be seen in Figure 4.21. From Table 4.2 it has been shown that 

the day-to-day variation in the R wave amplitude in lead V2 depends 

on the day 1 reading. The data points in Figure 4.21 give a slight 

impression of a 'wedge-shape' and demonstrate that the difference 

between day 1 and day 2 measurements increases as the initial
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reading increases, i.e. t > 0  in our model for day-to-day variation. 

The percentage relative standard deviation at a typical day 1 

measurement of RV2 is 12.5%. The lines which have been 

superimposed on top of the data points in Figure 4.21 represent the 

expected mean value of the d. plus or minus two times the estimated

standard deviation ^i.e. 0±2^2(< r2 If the differences are

Normally distributed (and we expect that they are since much of the 

variation between patients has been removed, leaving only day-to-day 

variability) then we expect that 95% of the differences will lie between 

these limits.

Difference
d;

Figure 4 .21

There appears to be a larger amount of baseline variability in 

day-to-day readings of the R wave amplitude in lead I. The MLE for 

RI is (35.2, 1.68) compared to (0.4, 2.64) for RV2. This results in 

larger amounts of day-to-day variability for low day 1 readings and 

proportionately smaller amounts of day-to-day variability for higher 

day 1 measurements (see Figure 4.22). Correspondingly, the

Plot of Day 1 vs. Dayl-Day2 (RV2 Amplitude)
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percentage relative standard deviation for a typical day 1 value is 

7.3%.

Difference

3 N >

20ft

100

-40#

-5081

Figure 4 .22  Plot of Day 1 vs. Dayl-D ay2 { RI Amplitude)

4 .6 .2  Results for the R wave durations.

Results for the R wave durations in each of the twelve leads are 

provided in Table 4.3. Again, the estimates of crand t  are based on 

the model described in section 4.4.1. It is interesting to note that in 

each lead except one (lead VI), t  > 0 indicating that the day-to-day 

variation in the duration of the R wave in the majority of the twelve 

leads depends, at least to some extent, on the magnitude of the 

particular duration of interest. Furthermore, in leads II, aVR, aVL, 

V2, V4 and V6 the day-to-day variation may be expressed solely as a 

multiple of the magnitude since a  can be ignored. The ratio of the 

estimated standard deviation at the sample median to the sample 

median itself is provided as a means of determining the relative 

amount of variability in each lead.

E)ay lx
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Lead (*.*)
Is

<T >0?
Is 

T >0?

Sample
median

%Relative 
s.d. a tx m

a  mxl00 
xm

Prediction 
Range at x,n

I (1.4,0.3) yes yes 59 4.2 (54,64)
II (0.1,0.3) no yes 57 4.2 (52,62)
III (1.9,0.4) yes yes 36 8.0 (30,42)

aVR (0.1,0.8) no yes 21 17.0 (14,28)
aVL (0.1,0.4) no yes 54 5.2 (49,59)
aVF (1.0,0.4) yes yes 47 "1 5.9 (42,52)
VI (1.7,01) yes no 27 6.3 (24,30)
V2 (0.6,0.3) no yes 33 5.6 (29,37)
V3 (1.0,0.3) yes yes 42 5.5 (37,47)
V4 (01,0.3) no yes 46 4.2 (42,50)
V5 (1.0,0.2) yes yes 48 4.0 (44,52)
V6 (0.2,0.3) no yes 58 3.7 (54,62)

Table 4 .3  Table of results for the duration of the R wave (msecs) 
based on 295  patients.

Although day-to-day variation depends on the magnitude of the 

ECG measurement of interest for most of the R wave durations, there 

are some differences observed in the ratios of a'm to xm* For

example, the percentage relative standard deviation at the sample 

median of the R wave duration in lead I is around 4.2% (Figure 4.23) 

whereas it is four times this amount (17%) in lead aVR (Figure 4.24).
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Difference

d,

Day 1

Figure 4 .2 3  Plot of Day 1 vs. Dayl-Day2 (RI Duration)

Difference

d ;

Day X

Figure 4 .2 4  Plot of Day 1 vs. Dayl-Day2 (RaVR Duration)

Generally, the day-to-day variation appears to be lower for the R 

wave durations than for the R wave amplitudes. The percentage 

relative standard deviations range from 7.3% (RI) to 16.2% (RIII) for 

the R wave amplitudes. Ignoring the duration of the R wave in lead 

aVR, the corresponding range for the R wave durations is 3.7% (lead
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V6) to 8% (lead III). Day-to-day measurements of the R wave 

amplitudes are therefore liable to more variation than day-to-day 

readings of the R wave durations.

4 .6 .3  Results for the ST segm ent amplitudes.

In general for the ST segment data the 'regression to the mean' 

phenomenon was found to appear in all leads. Thus the alternative 

model which takes into account any evidence of a trend between the 

day 1 and day 2 observations was used to produce maximum 

likelihood estimates of cr and t for the ST segment amplitudes (see 

section 4.4.5), i.e.

DAYl Xn = n ,+ en 

DAY2 X,, = (i, -  A(/i, -  Ji) + el2

where s tj ~ N(o,(<r2 + t 2̂ ,.)) for i = l,...,n; y' = l,2 and A > 0  is a

measure of the rate of 'regression to the mean'.

Lead X
Is

A >0?
(d .f)

Is
<y > 0?

Is 
r >0?

Sample
median

Xm

%Relative 
s.d. a txm

JL^xlOO
Xn,

Prediction 
Range at x m

I 0.20 yes (8.0,0.28) yes yes 18 45 (2,33)
II 0.16 yes (9.6,0.18) yes yes 23 42 (4,41)
m 0.20 yes (8.0,0.16) yes yes 20 40 (4,35)

aVR 0.17 yes (6.4,0.5) yes yes 20 34 (7,33)
aVL 0.23 yes (4.8,0.52) yes yes 14 37 (4,24)
aVF 0.21 yes (4.2,0.45) yes yes 16 29 (7,25)
VI 0.15 yes (6.4,1.0) yes yes 52 18 (33,71)
V2 0.12 yes (5.6,0.96) yes yes 90 12 (69,111)
V3 0.22 yes (11.2,0.64) yes yes 66 19 (42,90)
V4 0.30 yes (8.0,0.52) yes yes 37 23 (21,54)
V5 0.29 yes (7.2,0.4) yes yes 29 26 (14,43)
V6 0.31 yes (10.4,0.06) yes no 26 43 (4,44)

Tabic 4 .4  Table of results for the amplitude of the ST segment (jj.V) 
based on 295  patients.
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In Table 4.4 the value A is an estimate of the rate of 'regression 

to the mean' and in each case it is significantly different from zero.

In eleven of the twelve leads, day-to-day variation depends on the 

magnitude of the ST amplitude. In the remaining lead (V6) the 

variability may be expressed as a constant since x is effectively zero. 

Figure 4.25 illustrates that the amount of day-to-day variation in the

standardised differences of lead V6 is reasonably constant whereas 

Figure 4.26 demonstrates that the variation in the d* of lead VI 

increases as the day 1 magnitude xm increases.

Standardised
Difference

d-

Day 1 x  i
•m

Figure 4 .25  Plot of Day 1 vs. (ST Amplitude Lead V6)
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Standardised
Difference

d?

Figure 4 .26  Plot of Day 1 vs. d. (ST Amplitude Lead VI)

Approximately 95% of the differences d* lie within the boundary

lines which have been superimposed on the plots. These boundaries 

are straight lines in Figure 4.25 since t = 0 and increase as |jc|

increases in Figure 4.26 due to the fact that t > 0.

The percentage relative standard deviations at the sample 

median values for the ST amplitudes ranged from 12% (lead V2) to 

45% (lead I). In four of the leads (I, II, III and V6) these relative 

standard deviations are in excess of 40% which gives considerable 

cause for concern with the reliability of these measurements.

4 .6 .4  Results for the ST segm ent durations.

The alternative model which takes account of a trend from the 

day 1 to the day 2 recordings was also used to provide maximum 

likelihood estimates of c? and x for the ST segment durations (see 

Table 4.5). It should be noted that the ST segment duration is a
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somewhat arbitrary interval which is not used clinically, but serves to 

illustrate the methods which have been used.

Lead X Is
A >0?

(6r,r)
Is 

a  >0?
b

T >0?

Sample
median

% Relative 
s.d at*,,

—  X100 
xm

Prediction 
Range at x m

I 0.56 yes (19.2,0.0) yes no 120 16 (82,158)
n 0.59 yes (18.0,0.0) yes no 120 15 (85,155)
m 0.57 yes (19.2,0.0) yes no 122 16 (84,160)

aVR 0.56 yes (18.4,0.2) yes no 120 15 (84,156)
aVL 0.62 yes (19.6,0.0) yes no 120 16 (82,158)
aVF 0.58 yes (18.0,0.0) yes no 126 14 (91,161)
VI 0.46 yes (16.8,0.2) yes no 115 15 (82,148)
V2 0.37 yes (12.4,0.0) yes no 110 11 (86,134)
V3 0.43 yes (12.6,0.0) yes no 108 12 (83,133)
V4 0.45 yes (12.6,0.0) yes no 114 11 (89,139)
V5 0.43 yes (14.0,0.0) yes no 116 12 (89,143)
V6 0.45 yes (14.8,0.2) yes no 120 13 (91,149)

Table 4 .5  Table of results for the duration of the ST segment (msecs) 
based on 295  patients.

For the ST durations, the estimated standard deviation at a 

typical value, xm, of each of the leads I to aVF appears reasonably

constant (i.e. between 18 and 19.6). A plot of the day 1 ST duration 

in lead I vs. the standardised difference d* can be seen in Figure

4.27.
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Standardised
Difference

d*

Figure 4 .27

Day 1

Plot of Day 1 vs. di (ST Duration Lead I)

There appears to be slightly less variability in the d* of the

durations of the ST segment in the chest leads V I to V6. The 

estimated standard deviation of d* at the sample median ranges from

12.3 for lead V2 to 16.9 for lead V I (see Table 4.5). Figure 4.28 

illustrates that most of the d* for lead V4 lie in a narrower region

than that for lead I.

Standardised
Difference

A *d.

Figure 4 .28

Day 1

Plot of Day 1 vs. ds (ST Duration Lead V4)
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4 .7  SUMMARY.

The behaviour of ECG measurements which have been taken 

from replicate recordings has been investigated. It has been 

demonstrated that the observed differences between consecutive 

recordings (often only 24 hours apart) in many ECG variables are by 

no means negligible and such discrepancies contribute to lack of 

repeatability in the diagnostic process.

The standard model suggested for the day-to-day variation in any 

ECG measurement was based on the assumption that the differences 

between day 1 and day 2 readings of selected ECG variables 

demonstrated no apparent trend apart from a possible dependence 

on the day 1 measurement. However, such a model appeared to be 

inadequate in certain cases (notably when the P wave and the ST 

segment were considered) and hence two models for day-to-day 

variation were investigated.

The initial model was based on the assumption that the expected 

difference between day 1 and day 2 observations of the ECG 

measurement of interest may or may not depend, in some simple 

way, on the ECG variable. The second model allowed for a trend 

between the day 1 and day 2 measurements which was suggested 

when the data were explored. Both models considered whether the 

amount of day-to-day variation was dependent on the magnitude of 

the particular ECG measurement of interest by introducing two 

unknown parameters, G which measures any baseline variability and 

t  which assesses the relative increase of the variance with the 

magnitude of the ECG variable.
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The application of these techniques to particular cases permitted 

the estimation of the amount of day-to-day variation in many ECG 

variables and some of these estimates have been presented. 

Likelihood ratio tests were performed in each case to determine if the 

variability depended on the magnitude of the ECG measurement, i.e. 

whether r  = 0 was reasonable.

Tables of results for the R wave amplitudes and durations have 

been provided and the estimates (&,t) are based on the initial model

which is described in 4.4.1. The percentage relative standard 

deviation at the sample median ranged from 7.3% (in lead I) to 

17.2% (in lead III) in the case of the R wave amplitudes and from 

3.7% (lead V6) to 17% (lead aVR) for the R wave durations. With the 

exception of lead aVR, the duration of the R wave seems to vary less 

from day to day than do the amplitudes.

Inferences about the ST segment amplitudes and durations have 

been based on the model described in section 4.4.5 and these results 

are also provided. The percentage relative standard deviations for the 

ST segment amplitudes are substantial, ranging from 12% (lead V2) 

to 45% (lead I). In contrast, these percentages are smaller for the ST 

segment durations, the maximum being 16% for leads I, III and aVL.

In general, the percentage differences in the day to day readings 

of the ST segment (i.e. the ST amplitude and the ST duration) are of 

a greater magnitude than the day-to-day differences observed in the R 

wave measurements although in both cases there is less variability in 

the day to day measurement of the durations.

In conclusion, the relationship between day-to-day variation and 

the magnitude of the ECG variable of interest must be considered 

when taking into account the repeatability of the ECG process.
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CHAPTER FIVE:

SOURCES OF REPEAT VARIABILITY 
IN THE ECG:

Diagnostic Thresholds.

5.1  THE STATUS QUO.

At present, the Glasgow Program relies on a deterministic 

approach in order to diagnose ECG abnormalities. The reasons for 

adopting such an approach have been outlined in Chapter One. 

However, certain problems have been encountered when examining 

the repeatability of the procedure. Such problems have undoubtedly 

arisen

1) as a result of the presence of discrete thresholds in the 

diagnostic program which are often crossed between 

successive recordings on the same patient and

2) from the natural variability in ECG measurements which exists 

from day to day or indeed from recording to recording.

Methods of minimising the effects of this lack of repeatability on 

the diagnostic decisions are required and the following chapters 

examine various techniques which will attempt to achieve this.
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5 .2  INTRODUCTION.

Replacing the discrete age and sex categorised upper limits of 

'healthiness' for various ECG variables with continuous analogues to 

some extent ameliorates the problem of small measurement changes 

contributing to conflicting diagnoses when, for instance, age category 

alters between successive recordings. However, there remains the 

much more common problem of the ability to cope with small 

measurement changes which cause a discrete threshold to be crossed 

between two consecutive recordings even though there is no 

considerable change in overall ECG appearance. For example, if a 

Caucasian male aged 30 has an RV5 amplitude of 3.1mV on a first 

recording and 3.2mV on a subsequent recording these values lie on 

either side of the continuous upper limit of 'healthiness' previously 

derived for RV5. It is reasonable to assume that there is no clinically 

significant difference between these readings although, in practice, 

the first recording would have scored 0 points on the 'diagnostic 

index', while the second would score 2 points, the latter contributing 

to a possible final diagnosis of Left Ventricular Hypertrophy (see 

later).

It is therefore important to be able to control the extent to which 

a measurement is to be considered abnormal. One approach is to 

develop a smoothing function where the number of points allocated 

to the 'diagnostic index' in a certain situation gradually increases from 

zero to a maximum which occurs a little above the discrete threshold 

value. In this way, a differential spectrum of abnormality may be 

obtained..

122



5 .3  DISCRETE THRESHOLDS:

The Present Use of Score Functions.

Diagnostic interpretation in the Glasgow program is built on a set 

of rule-based criteria. These criteria make some use of age, sex, 

clinical classification, drug therapy and race of the patient but the 

main criteria are based on whether or not particular ECG 

measurements attain discrete thresholds. A points scoring system is 

based on how far an ECG measurement lies above a discrete 

threshold. These scores can then be added up to give one total index 

for diagnostic decision making.

In mathematical terms the discrete threshold and subsequent 

allocation of points can be expressed in terms of a score function 

S(x) for a measurement x  of an ECG variable of interest with a score

of K  allocated as follows:

so that no matter how close to the threshold value b a measurement 

x  is, K  points are allocated if it is greater or equal to b and no points 

are allocated if it is less than b. Figure 5.1 illustrates this discrete 

score function diagrammatically.

if x > b 
if* < b
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S( X) A

Score
Function

Figure 5.1
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0  b  ECG Measurement x
Threshold

Discrete Score Function (Single threshold)

An example of the current use of such a score function is in the 

diagnosis of Left Ventricular Hypertrophy when 2 points are scored if 

the Lewis Index (which is a criterion based on the sum of the 

amplitudes of the R wave in lead I and the S wave in lead III minus 

the sum of the R wave amplitudes in lead I and the S wave in lead III) 

is greater than a previously defined threshold value, i.e. if

(RIII+SI) - (RI+SIII) > age and sex-dependent limit.

Another contributory factor to the final diagnosis of LVH is 

evidence of a high R wave amplitude in either lead V5 or V6. Again, 

2 points are allocated if the measurement is greater than a specified 

threshold value and additional increments of 1 are added for every 

O.SmV that the voltage exceeds the limit. Figure 5.2 shows the 

general situation for a voltage measurement x  scoring K  points when 

the threshold value b is reached with additional points of 1 being 

added if x exceeds b by fixed increments c .
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b  +c b  +2c
ECG Measurement x

Figure 5 .2  Discrete Score Function (Multiple thresholds)

5 .4  CONTINUOUS THRESHOLDS:

Smoothing a Score Function.

To overcome this discrete threshold problem we will replace the 

above form of score function with a smoothed version. One 

appealing form of this is a continuous function for every step. Each 

step could be replaced by a suitably scaled multiple of a cumulative 

distribution function (cdf) chosen simply for convenience since any cdf 

ranges from 0 to 1. We can use the notion of a mean to centre the 

new function at or close to the old threshold value while the use of a 

standard deviation, based in our case on the estimate of the day-to- 

day variability, allows us to dictate the steepness of the; new 

'smoothed' step.

In all our illustrations we have chosen to use the family of 

cumulative distribution functions of the logistic distribution simply out 

of numerical convenience but all of the work could be repeated using 

any family of cdfs. It would be very surprising if any substantial
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differences in the results from our techniques arose from a different 

choice of underlying family of cdfs. No other version that we have 

tried has proved to have any substantial effect on our score functions.

The methods which are about to be described should not be 

interpreted from a probabilistic viewpoint since they are, in the first 

order, devices based on practical convenience to smooth out discrete 

boundaries, and we only exploit any probability properties en route to 

developing smoothed diagnostic indices.

In the single threshold case, a score will be calculated which will 

depend smoothly on the magnitude of the variable of interest x, 

increasing from zero to K as x increases. To assess how sharply the 

’score’ will increase in the vicinity of the thresholds, estimates of the 

repeat variability as described in 4.4 will be used to dictate an 

appropriate 'standard deviation’ for the probability distribution which 

is being used as the smooth function. In this case the repeat variation 

will be represented in the form of day-to-day variability since data is 

available to estimate this. Incorporating an estimate of the day-to-day 

variability in the function allows a score to be calculated which takes 

account of random fluctuation in the measurement jc. Thus the bulk 

of each point will only be allocated if we are sure that the true value 

x is beyond the old threshold value (accounting for any error).

In this way, an observed value of x  which lies some way from the

critical value b, but is from an ECG measurement associated with 

quite a substantial standard deviation <jv, may be allocated a

significant proportion of the score K . In another case it might be that 

value of x  which lies numerically a little nearer to b but with much 

smaller recording-to-recording variation may score less.

Our chosen smooth score function therefore has the following 

form :
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S',„(x) ~ K x F{a%g x\ b -  G x } 

ea*= £  —----
l + ea*

where a , = ^ 1 ^ 1 .
°x

K -  maximum no. of points to be allocated,

b = old threshold value

x -  observed value of the ECG variable of interest

g x = estimate of day-to-day variability associated with

the observation x .

In a somewhat arbitrary manner the distribution has been 

'centred' at (b -c tx) rather than at b in order to give a score of 0.1K

at the old threshold value b. The value ( b - a x) represents a level

which is one standard deviation below the old threshold value and 

ensures that observations falling less than one standard deviation 

below b will all receive contributions of at least 0.5K  to the diagnostic 

index which we feel is a reasonable criterion to adopt.

Figure 5.3 shows the smoothed score function «S/;i+(a) for the

single threshold case while Figure 5.4 demonstrates how this can be 

extended to the multiple threshold situation simply by summing a 

series of cdfs, i.e.

Sm\ x )  = K
a, a ,  a3e x e x e 1H--------- + ----------h

1 + *"- l + e"2* l + e

where a.
CF
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Score
Function

ECG Measurement x
(old threshold)

Figure 5 .3 The smoothed score function (Single threshold)

Score
Function

b + c

ECG Measurement x

Figure 5 .4 The smoothed score function (Multiple thresholds)

As a specific example, Figure 5.5 illustrates the smoothed score 

function specific to the portion of the final LV score associated with 

the Lewis Index, taking into account the estimated day-to-day 

variability. This score function will replace the 'old' discrete rule (also 

represented in Figure 5.5) which was:
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S(x) = 0
if Lewis Index >age and sex - dependent limit 
otherwise

Score

S„'(x)
2

0
1000 2000 3000 4000

Lewis Index

Old Threshold (at Age=30) for Lewis Index (Males)

Figure 5 .5 Smoothed score function for Lewis Index

Similarly, the 'old' discrete rule for RV5 or RV6 which works as 

follows:

S(x)

has been replaced by a suitably smoothed version which takes 

account of the multiple steps. A comparison of the two approaches 

can;be seen in Figure 5.6.

'2 if RV5 or RV6 > age anc sex-dependent limit
3 if RV5 or RV6 > limit + 0.5 mV
4 if RV5 or RV6 > limit + 1.0 mV
5 if RV5 or RV6 > limit + 1.5 mV
0 otherwise
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Figure 5.6  Smoothed score function for RV5

5 .5  RULES FOR A SMOOTHED COMBINATION 
OF DIAGNOSTIC CRITERIA

5 .5 .1  Introduction.

Often, the diagnostic decision is based on a collection of criteria. 

For example, the deterministic ECG diagnosis of a particular 

condition may depend on a logical structure involving the union or 

intersection of various criteria or on a process which relies on the 

maximum or minimum of several ECG variables being above a 

specified threshold.

The previously described method which 'smooths over' discrete 

thresholds in the one-variable case can be used to cater for more 

complex logical structures by invoking a set of logical combination 

rules which will now be established.
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5 .5 .2  Two Criteria to be met : 

The Intersection Rule.

One contributory factor to a final diagnosis of Left Ventricular 

Hypertrophy in the Glasgow Program is the presence of a negative P 

terminal force in lead VI. Identification of this condition relies on two 

separate criteria being satisfied. Two points are scored if this is so 

while zero points are scored if neither or only one criterion is met.

where xx -  negative amplitude of the negative P wave component 

in lead VI and

x2 -  duration of the negative P wave component in lead VI. 

The Intersection rule arises as a parallel to a fundamental result 

of probability theory and may be applied if using the conjunction 'and'

when examining two or more criteria. In the general situation, 

consider variable x. which is currently associated with threshold value 

b. (i = 1,2). The original discrete approach was to assign K points if 

xx is greater than bx a n d  x2 is greater than b2, i.e.

Diagrammatically, it can be seen that minute measurement 

changes in either xx or x2 could result in a major change in the 

score 5(.rt,x2) from 0 to AT or vice versa.

S(xx,x 2
if xx < -100 juV and x2 >0.04secs 
otherwise

i S ( - T i , X 2
if xx > bx and x2 > b2 
otherwise
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Figure 5.7 Diagrammatic representation of the 
Intersection Rule

A smoothed representation of the score may be based on the 

one-variable case (see 5.4) with Sm*(xxtx2) increasing from 0 to K as

both xx and x2 increase simultaneously.

Using basic rules of probability as an analogue, the smooth score 

function can be calculated separately for each of the two variables. 

The overall score is then taken to be the multiple of each 

contribution, i.e. in the probabilistic analogue

P r [A n ^ ]  = Pr(A)xPr(/y 

where A. = Pr(X. >bi). We are effectively adopting the convention of

treating the variables xx and x2 as statistically independent although 

in practice this is almost certainly untrue. The rationalisation for such 

a move is simple practical convenience.

Translating this principle to the situation described, we can write

Sn,*{^^2) = K x F xxF2

r 1 e * *  x i - ( b i - < J x )
where Ft = F \x . ,ax:tb. - a  } = -----7- ,  a = ----------------- , x( is the

L ' ,J 1 + e"  ' CF
xi

observed value of the ECG variable of interest, bt the threshold value
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and <7 1 the estimated day-to-day variability associated with the 

observation xi .

As before, the distribution has been 'centred' at \bt - o \ )  to

ensure individual scores of approximately 0.7/C when each of the 

discrete threshold values are met. Figure 5.9 illustrates the smooth 

representation of the Intersection Rule.

Figure 5 .8

5 .5 .2  One or other Criterion to be met:

The Union Rule.

The second basic combination rule occurs when a contribution to 

the score is made if e i th e r  one o r  other of two threshold criteria are 

met. An example of this can be found once again in the diagnosis of 

LVH when one point is added to the LVH diagnostic index if the 

intrinsicoid deflection in either of leads V5 or V6 is greater than 60 

msecs, i.e.

Smooth representation of the Intersection Rule
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0

if xx > 60 msecs or 
x2 > 60 msecs 

otherwise

In the general situation the Union Rule is applied when 

considering a combination of two criteria, although this time interest 

is in the use of the conjunction 'or' . Consider the situation where K 

points are to be allocated if xx is greater than bx or x2 is greater than 

b2, i.e.

f K if xt > bx or x2 > b2
S{x\’xz) |  q otherwise

S(x\ >xi)

Figure 5 .9  Diagrammatic representation of the Union Rule

Again, differences in the score may occur if there is a small 

measurement change in either jc, or x2

The following simple rule of probability theory may be used as an 

analogue to this situation:
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Pr[A u  A*] = Pr(A,) + Pr(Aj) - Pr(/i, n \ )

= Pr(A) + Pr(A ,)-Pr(A )xPr(A 2)

again exploiting an 'assumption' of independence. When this is 

applied to the diagnostic criteria context we have:

Sm' ( x „ x 2)

where F are defined as before. Figure 5.11 shows the smooth 

representation of the Union Rule.

K

Sm'(x ,,x2)

Figure 5 .1 0

5 .5 .4  More than two Criteria to be met:

A) The Minimum Rule.

Certain stages of the deterministic process of ECG diagnosis rely 

on the maximum or minimum of a number of variables achieving a 

specified threshold.

This approach can also be treated by extending the basic ideas 

used in the union and intersection rules in order to smooth out any 

discrete thresholds encountered.

Smooth representation of the Union Rule
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For example, if all of a certain combination of ECG variables 

must be beyond a specified threshold value, i.e.

Six)
K if min(,x1,x2,x3)> b
0 otherwise

then we can write
K  if all (xltx2,x3) >b
0 otherwise

(K if X) > b and x2 > b and x3 > b
[0 otherwise

Applying the same argument as for the intersection rule it is natural 

to write this as

This can obviously be extended to any number of variables.

B) The Maximum Rule.

If the overall criterion is that at least one of a certain combination 

of ECG variables has to be greater than a specified threshold then we 

have

where Fi = —

Sm -  K xF {xF2xF3

K if max(x1,x2,x3) > b
0 otherwise

Consider the equivalent probability result

Pr[max(,r,,x2,x3)> £>]

which can be rewritten as

I -  Pr[max(,v,, x2, x3) < fr]

I, ? -̂ 3
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By the previous 'independence' analogy, it seems reasonable to write 

this as

1 -  Pr[max(xx, x2, jc3 ) < b\ = 1 — Pr(xx <b) Pr(x2 < b) Pr(x3 < b)

= l - ( l - ^ x ( i - F a)x ( l -F 3) ,

where F{ is in the same form of the previous section.

Hence the equivalent formulation of the score function is

where clearly for 2 variables this reduces to the form used in section 

5.5.2. Again, we can extend the idea to any number of variables.

5 .5 .5  Combinations of Criteria.

Since most diagnostic criteria involve combinations of unions, 

intersections, maxima and minima we can now handle these by 

using the basic logical building blocks developed already in this 

chapter. We now illustrate this process through several examples.

EXAMPLE 1

Consider the score function
fK if max(^t ,x2) > bx and min(A*3,,r+) > b2

S(xl ,x2,x3>xt) = V  .

[0 otherwise

which can be written in a smoothed form as

S,n*(xu x2,x2,Xt) = i f x [ l - ( l - F n ) x ( l - F 21)]xF32xF42

Xi-{b;~Gx )
where F., = ----- —  and a = ----- --------- —.

/  l + e ’1’ * <?.<,
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EXAMPLE 2

Here, consider the score function

fK  if min(x1 ,x2)>bx or max(,r3,xi )>b2
[0 otherwise

which can be written in the smoothed form as

s m * ( x i ’x 2>x 3’x i )  = K x [Fn Fu + { l - F32)x {1- F‘u ) -

FuFa x { l - F „ ) x ( l - F a )] 

where the F;j are in the same form as in Example 1.

Having organised the logical structure of smoothing 

combinations of discrete threshold-based criteria, we now illustrate its 

effects on the diagnosis of ST-T changes.

5 .6  AN ILLUSTRATION OF A SMOOTHED 
DIAGNOSTIC INDEX:
ST-T Changes.

One area of the diagnostic program which assesses the severity 

of a particular condition is in the identification of ST-T changes.

This area is notorious as one of the most difficult aspects of 

electrocardiography not least because the line dividing normal from 

abnormal is not sharp and normal ranges for components of the ST 

segment and T wave are wide (Macfarlane and Lawrie, 1989d). 

Clinically, there may be many possible causes of changes in the ST-T 

segment which further complicates any diagnosis.

This area will be discussed in a little more detail in Chapter 7 

although reference will now be made to the interpretation of ST

SLr,,*2,*3,Jt4)
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depression and ST elevation since this is accomplished on the basis of 

the magnitude of two variables, namely ST amplitude and ST slope. 

Abnormalities of the ST segment are defined on the basis of the ST 

amplitude and slope, a clearly negative segment indicating marked ST 

depression and an obviously positive segment indicating significant 

ST elevation. Both ST depression and ST elevation are rather 

arbitrarily defined as moderate, marked or severe depending on the 

amplitude and slope, thereby providing a spectrum of the response. 

In this situation the response takes the form of a score which ranges 

from -3 to +3 describing the transition from marked ST depression 

through to significant ST elevation, i.e. there is a score function 

S(x^,x2) defined by the rule:-

Xi < -100 fjSJ andx2 <0° then

CO111jT

A 1 O and x2 < 0° then S(xl,x2) = -2

o(NIV and x2 < 0° then S(xlfx2) = ~l

xx > 6QjuV and x2 > 0° then S(xltx2) = 1

tioooA and x2 > 0° then S(xx, x2) — 2

r"ioA then S(xt,x2) = 3

otherwise 5(x1,x2) = 0

where x, -  ST Amplitude and x2 = ST slope. This is illustrated 

diagrammatically in Figure 5.11.
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Figure 5 .11
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These criteria apply to lateral and inferior leads (I, II, III, aVL, 

aVF, V5 and V6) only. Slightly different threshold values for the 

amplitudes are used when considering leads V I, V2, V3 and V4.

Clearly there is potential for changes in the score due to small 

measurement changes especially the sudden jump from 0 to 3 in the 

lower right quadrant (see Figure 5.11). The methods which have been 

described earlier in this chapter can be used to form a smooth 

representation of namely 5*,«(x1,x2).

The negative contribution to 5*m(x,,x2) is calculated on the basis

of the magnitude of the negative ST amplitude and the slope of the

ST segment in the appropriate lead. This part of the score can range

from 0 to -3 and may be expressed as follows :
S V * , ,* , )  = - l x { ( l - F u)+ ( l -F „ )  + ( l - F ls) } x ( l - * „ )

The positive contribution can be represented in a similar way.

S m3 (Ti»xz) ~ {^i4 FJ5 + Fjg} x F2j
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where xx = ST Amplitude in lead of interest;
<jX) = estimated day - to-day variability in ST Ampl.;

x2 = ST Slope in lead of interest;
crt = estimated day - to-day variability in ST Slope.

F = 61‘ . ’l + e n

©o1II II-cT

bx = 60; ii-C)

<2, =0.

» 2̂1 ~ a .  * 1̂ “
l  +  e 1x1

The overall smoothed score can now be calculated as the sum of the 

separate components (jcp j:2) and S*mt ( x l9x 2) since neither of

these will contribute substantially to the other in the appropriate 

ranges, i.e.

S m  ( X j  , X 2  )  =  S m, , X 2  j + 5  nij , X 2  ^

Figures 5.12 and 5.13 illustrate the surface plots of the score 

functions based on the discrete and on the new smoothed methods 

respectively. Figure 5.13 demonstrates the advantage that Smm(xx,x2) 

has over S(x{,x2) ( see Figure 5.12) in terms of continuity.

5(^1 ,x2)

100

ST Slope 80 ST Amplitude

Figure 5 .12 Surface plot of S ( . v 1 , a :2 )
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Figure 5 .13 Surface plot of Sm*(x:,x2)

5.7  SUMMARY.

This chapter has introduced the concept of 'smoothing out' 

discrete thresholds by replacing them with continuous functions. 

These functions, which are based on cumulative distribution functions 

for computational convenience rather than on any principle of 

probability theory, are used to provide smoothed versions of 

previously discrete diagnostic indices in both the single and multiple 

threshold situations. They have an additional advantage of taking into 

account the natural day-to-day variability occurring in each ECG 

measurement which dictates the amount of 'steepness' associated 

with each new smoothed diagnostic index. !

Since many diagnostic decisions are based on collections of 

combined criteria we have also evolved a methodology for the



!
\

treatment of such combinations. The union rule can be used to 

smooth out the diagnostic index in the situation where a certain 

action is to be taken when e i th e r  one of two conditions is met. 

Similarly, the intersection rule may be implemented if b o th  criteria 

are to be satisfied simultaneously before an action is taken. 

Combinations of the m a x im a  and m i n i m a  rules may be 

manipulated to cater for situations when more than two conditions 

are being considered.

Basing an algebra of score construction on these criteria allows 

us to smooth out many complicated forms of 'discrete' rules which are 

encountered throughout the diagnostic process.
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CHAPTER SIX:

LEFT VENTRICULAR HYPERTROPHY.

6.1  INTRODUCTION

In this Chapter, the term hypertrophy will be used to cover 

increased ventricular wall thickness and/or increased volume. 

Ventricular hypertrophy arises as a result of pressure or volume 

overload on the heart and may produce significant changes in the 

ECG. Each ventricle may be affected independently of the other, 

causing either left or right ventricular hypertrophy. Biventricular 

hypertrophy arises if both ventricles are enlarged simultaneously.

6 .2  LEFT VENTRICULAR HYPERTROPHY - 
EVOLUTION OF ECG CRITERIA

6 .2 .1  Voltage Criteria

Left ventricular hypertrophy is normally characterised by 

increased QRS voltages in the left ventricular leads (I, aVL, V5 and 

V6) and in V I and V2.

Evolution of voltage criteria for the detection of Left Ventricular 

Hypertrophy (LVH) began in the early 20th century when Lewis 

(1914) established an index of R and S voltages in the limb leads I 

and III, i.e.

( RI + SIII) - ( RIII + S I).

He observed that an index of 1.7mV or more was indicative of 

LVH (with a sensitivity of 18% and a specificity of 98%) and later 

research substantiated this claim (Hermann and Wilson, 1922).
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Later, Wilson introduced a voltage criterion suggesting that an S 

wave amplitude of greater than 2.4mV in lead V I was consistent with 

a hypertrophied left ventricle {Wilson, 1944).

Sokolow and Lyon (1949) defined several additional voltage 

criteria specific to the precordial leads, the most extensively used 

being the Sokolow-Lyon Index, namely

SV1 + RV5 > 3.5mV

6 .2 .2  Non-voltage Criteria

One of the first non-voltage criteria for the diagnosis of ECG 

LVH was the presence of left axis deviation demonstrated by Gubner 

and Ungerleider (1943). The cardiac axis represents the average 

spread of the depolarisation wave through the ventricles and if the 

left ventricle is hypertrophied this may cause the axis to rotate 

towards the left.

It was also observed that a delay in the onset of the intrinsicoid 

deflection in the left ventricular leads may also be indicative of LVH 

(Noth, Myers and Klein 1947). Intrinsicoid deflection represents the 

time taken for the electrical impulse to spread through the ventricles 

to the area beneath the electrode so that any increase in the 

ventricular mass is likely to prolong this interval.

Any increase in the duration of the QRS complexes in the left 

ventricular leads may also be used as a contributory criterion because 

the QRS duration represents ventricular depolarisation which will 

take longer if the ventricular mass is greater.
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6 .3  EVOLUTION OF ST CONTOUR CRITERIA

Occasionally, LVH can be accompanied by structural and 

metabolic changes in the heart muscle which result in distortion of 

the ST-T segment. Such changes are often seen as depression of the 

ST segment and inversion of the T wave and although these 

manifestations may not solely relate to an increase in mass of the left 

ventricle, when found in the presence of other LVH-related criteria, 

they suggest a poorer prognosis (Milliken, Macfarlane and Lawrie, 

1989). Therefore it is of the utmost importance to be able to 

diagnose LVH with evidence of ST-T changes (known as LV strain) 

accurately.

6 .4  THE GLASGOW SCORING SYSTEM FOR LVH

Romhilt and Estes developed a system which relied on both 

voltage and non-voltage criteria for ECG diagnosis of LVH (Romhilt 

and Estes, 1968). This point scoring system has been incorporated 

into some computer programs and has been modified for use in the 

Glasgow laboratory (Huwez, 1991) see Table 6.1.
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Criterion No. of Points

Increased QRS Voltage >2 points

ST-T changes 1 - 4  points

Increased P terminal force 2 points

Left Axis Deviation 2 points

Prolonged QRS Duration 1 point

1 Delayed Intrinsicoid Deflection 1 point
Tabic 6.1 Brief outline of the Glasgow scoring 

system for the detection of LVH

The final LVH score is calculated by summing the points 

recorded by the six individual components and the diagnosis made in 

the following way:

If LVH Score < 3  then "No LVH”
* 4 then "Possible LVH"
-  5 then "Probable LVH"
> 6 then "Definite LVH".

The presence of discrete threshold values throughout the 

Glasgow scoring system for LVH has, as previously outlined, 

contributed to a lack of repeatability between consecutive recordings 

which may have arisen as a result of small measurement changes in 

the neighbourhood of these boundaries.

Certain areas of the process for the diagnosis of LVH are 

somewhat complex. In the main, the smoothing techniques already 

described have been implemented in order to minimise the effects of 

small day-to-day and repeat variation on the overall diagnostic 

criteria.
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6 .4 .1  Smoothing the Voltage Score

In the LVH scoring system, points are allocated if a particular 

voltage measurement lies above a threshold value and in the Glasgow 

program these limits of 'healthiness' are age and sex-dependent. 

Chapter 3 described a method of replacing these discrete upper limits 

of normal with continuous equations and this now forms the basis of 

the new approach. The level of day-to-day variability in each voltage 

has also been estimated and used towards providing stability in the 

construction of the new 'smooth' LVH score.

An example of the new method for calculating the portion of the 

LVH score Sm*(x) attributable to any increase in QRS voltage is

given, in this case the contribution made by the RV5 voltage for 

Caucasian males aged 18 years and upwards.

S*m (x) = 2 x [F{x, a x \b-<jx} + F{xycrx; (b + 0.5) -  a x} +

F{^,c7.,;(6 + 1.0)-<Tj + F{^crx;(£>+1.5)-crj]

using the notation introduced in Chapter 5 (section 5.4). The value x 

denotes the R amplitude in lead V5, b is the continuous equation 

describing the upper limit of 'healthiness' for this measurement and 

a  2 is the estimated amount of day-to-day variability in measurement

x ,  i.e.
b = (59.77-0.01089xAge)2; 
x = R V 5 ;

a x =J(322+3.72z xx).

A similar smoothed version of this part of the scoring function 

may be calculated for female Caucasians and for other races by 

replacing b by the relevant upper limit of 'healthiness'. A comparison
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of the old and new methods of assigning scores to the magnitude of 

the R wave in lead V5 for male Caucasians of 40 years of age can be 

seen in Figure 5.6.

Identification of a negative P terminal force in lead V I (the third 

of the criteria listed in Table 6.1) and its subsequent contribution to 

the LVH score relies on two criteria being satisfied simultaneously. 

Thus the techniques described in Chapter 5 can be used to smooth 

out the two discrete boundaries.

An abnormal P terminal force in lead V I is recognised if the 

amplitude of the P wave is more negative than -110 |iiV and the 

duration is greater than 40 msecs. Since 2 points are allocated if such 

a combination of criteria is met (see Table 6.1), the discrete approach 

can be described as follows:

,x2"j
0

if ^ c - l l O j u V  and 
x2 >40 msecs 

otherwise

where xx -  negative of the amplitude of the negative P wave

component in lead VI 

and x2 = duration of the negative P wave component in

lead VI.

This is illustrated diagramatically in Figure 6.1.
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Figure 6.1 Diagrammatic representation of the discrete score
function associated with P terminal force in lead V I.

Using the smoothing techniques, this becomes

—2 x ^1  ,(TXj,bXi (TX t x

where bXx = -110 ; jq = -P negAmp. Vx;

CT«t = a/( 0-60z +0.182 x|*,|) ; 
bH =40; xj = P^Dum. V,;

<7(i = 10.8z+0.082 x^j)

and this new smooth form of scoring can be seen in Figure 6.2.
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Figure 6.2 Diagrammatic representation of the smooth score 
function associated with P terminal force in lead VI.

6 .4 .2  Smoothing the Non-voltage Score

As mentioned previously, any prolongation in the Intrinsicoid 

Deflection in the left ventricular leads can be suggestive of LVH and 

the current program adopts the following strategy for contributing 

points to the final LVH score (see Figure 6.3).

1 if > 60 msecs or x2 > 60 msecs
0 otherwise

where x. intrinsicoid deflection in lead V5 and

intrinsicoid deflection in lead V6.
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Figure 6 .3  Diagrammatic Representation of the discrete score 
function associated with Intrinsicoid Deflection.

The equivalent smooth version (which is illustrated in Figure 6.4) is

Sm (xt,x2) = F{;q,<7 ;̂& — (7^} + f | x 2,GH;b — <jx%} -

F{.v,, ; b -  <7ti} x f {x2 , <7 Xt\ b - a H)

where b =' 60 msecs, xl -  Int. Deflection in V5 (msecs), x2 -  Int. 

Deflection in V6 (msecs) and a a H2 denote the estimated amount

of day-to-day variability observed in the Int. Deflection in V5 and V6 

respectively, i.e.

a,k = a/(16.0 + 0.22j x.v1) ; a H =^/(27.04 + 0.162xx ,).
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Figure 6 .4  Diagrammatic representation of the smooth score 

function associated with Intrinsicoid Deflection.

6 .4 .3  Smoothing the LV Strain Score

In the Glasgow program the presence of secondary ST-T changes 

(or left ventricular strain) contributes significantly to the LVH scoring 

system. The six criteria involved are listed below, 4 points being 

scored if parts (i) to (vi) all hold and 2 points if all but part (iv) are 

satisfied. These points are then added to the LVH score.

(i) STj < -0.02mV and ST slope < -5° OR 

STj < -0.05mV and ST slope < 0°

(ii) I STj - Tneg I > 0.10 mV

(iii) Tneg < 0.20mV AND Tmorph < 0 with Tpos < 0 .15mV

(iv) R (or R') > l.OmV

(v) No Q waves in lateral leads

(vi) QRSdur < 120msecs
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where ST;. is the amplitude of the ST segment in the lead j , j  = I, aVL, 

V5 and V6,

Tpos and Tneg are the amplitudes of the maximum positive and

negative parts of the T wave respectively and 
Tmorph Is the morphology of the T wave.

Diagnosis of LV Strain as a contribution to LVH also requires a 

smooth technique which has the ability to cope with the complexities 

of the outlined criteria. The nature of the criteria relating to the 

identification of LV Strain is such that small measurement changes in 

the neighbourhood of threshold values may alter the final diagnosis of 

secondary ST-T changes and hence LVH. The simplest way to 

observe this is to assume that parts(i), (ii), (iii), (v) and (vi) hold from 

one recording to another but that the R amplitude in any of the leads

I, aVL, V5 or V6 is l.OmV on day 1 and l.lm V  on day 2. Two

points would be added to the LV score for the first recording and four 

points for the second. In the worst scenario this difference of two 

points could result in an individual being diagnosed as normal on one 

occasion and as having possible LVH on the next.

Assigning a score to each of the six criteria independently will 

form the basis on which to develop a smoothed representation of LV 

strain. This may be done arbitrarily as follows:

S core  2 if ( STj < -0.02mV and ST slope < -5° OR

STj < -O.OSmV and ST slope < 0° )

AND ' I STj - Tneg I > 0.10 mV 

S co re  1 |  if Tneg<0.20mV AND Tmorph < 0 with

TpOS<0.15mV 

AND R (or R’) > l.OmV 

S core  \  if Q R S ^  < 120msecs
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( N.B. No score will be recorded for LV Strain if significant Q waves 

exist in any of the leads I, aVL, V5 or V6 ). This will effectively 

provide a "smoothed version" of parts (i) to (vi) described earlier.

Once again the combination of ST slope and ST amplitude forms 

the basis of part of the score function and the techniques outlined in 

Chapter 5 may be used.

Smoothing of the separate stages of the score function is done in 

the usual way and the results combined using the union and 

intersection rules which have been described in Chapter 5.

6 .5  PERFORMANCE OF THE SMOOTH 
TECHNIQUE

The new approach described above has been developed with the 

aim of minimising the effect of day-to-day variation on the diagnostic 

criteria. It is not expected to enhance the diagnostic accuracy of the 

existing deterministic program to any great extent but nevertheless it 

needs to perform comparably with respect to sensitivity and 

specificity.

It was necessary to write the logic for the calculation of the new 

smoothed LVH index in Fortran. This proved to be a lengthy 

procedure which involved extensive restructuring of certain sections 

of the existing Glasgow program. A small section of the new 

diagnostic coding can be seen in part A) of the Appendix.

Once accomplished, it was then possible to make a formal 

comparison between both versions of the Glasgow program. Each 

version has been used to analyse a database of ECGs comprising 84 

clinically documented LVH cases and 136 non-LVH cases.
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II

Figure 6.5 illustrates the separation obtained between LVH and 

non-LVH patients when the existing program is used. The discrete 

LVH score is calculated by summing the six separate contributions 

received which were summarised in Table 6.1.

SS No LVH 
a  LVH

0 1 2 3 4+

D i s c r e t e  L V H  S c o r e

Figure 6 .5  Frequency Distribution of the Discrete LV Score
(based on 136 Non LVH and 8 4  LVH cases)
(See Table 6.1 for definition of Discrete Score).

The scores obtained using the smooth technique are of a 

continuous nature, thus requiring selection of an optimal cutpoint. 

Receiver Operating Characteristic (ROC) curves were used to 

determine the 'best' value in terms of separating 'normals' from LVH 

cases, the value closest to the origin being chosen as corresponding 

to the cutpoint which minimises the sum of the number of false 

positives and the number of false negatives (Macfarlane. 1989d).

The ROC curve produced for different cutpoints of the smooth 

score suggests that the optimal cutpoint which will produce the best 

results is approximately 3.5 (see Figure 6.6).
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Receiver Operating Characteristic Curve 
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Figure 6.7 illustrates the separation of the two groups based on 

such a cutpoint.

DISCRETE SCORE < 3

NOLVH + ------------------- + ------------------- + ------------------- + ------------------- + --------------------+ ------ >

( n - 1 3  6) SMOOTH SCORE

DISCRETE SCORE > 4

LVH + --------------------+ ------------------- + --------------------+ ------------------- + --------------------+ ------->
( N - 8 4 )  0 . 0  2 . 5  5 . 0  7 . 5  1 0 . 0  1 2 . 5

SMOOTH SCORE

Figure 6.7 Frequency Distribution of the smoothed LV Score
(based on 136 Non LVH and 8 4  LVH cases)
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This value produces a sensitivity of 57.14% (48/84) and a 

specificity of 93.4% (127/136) compared with 60.7% and 94.9% 

when using the conventional program on the same set of data.

A comparison of the discrete and smoothed methods will largely 

depend on the difference of the sensitivities and the specificities and 

on the number of ECGs in the population. However, further 

consideration must be given to the level of agreement between each 

method on the numbers of true positives (TP), false negatives (FN), 

true negatives (TN) and false positives (FP) thus assessing the 

correlation of the two methods (Bailey et. al., 1988).

For any comparison of two distinct methods on each of N 

individuals a table showing the agreement of classification can be 

constructed as follows:-

M ETH O D 2

TP FN TOTAL

TP A B Ni

M ETH O D 1 FN C D N-Ni

TOTAL n 2 n -n 2 N
Tabic 6 .2 Comparison of sensitivity 

between two methods.

where A -  number of TP for both method 1 and method 2

B = number of TP for method 1 and FN for method 2 

C = number of FN for method 1 and TP for method 2 

D = number of FN for method 1 and method 2.

The sensitivities (and specificities) of method 1 and method 2 {S1 

and S2) may be compared using McNemar’s test based on the
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'disagreements' between the two methods, i.e. based on the values of 

B and C. McNemar (1947) states that, under the null hypothesis that 

the sensitivities of each method are equal (i.e. ST = S2), the test 

statistic X2 is approximated by a X2 distribution with one degree of

freedom where
x i = (B -C )2 

B + C

and B and C are as defined above.

At the 5% level it can therefore be deduced that Sa and S2 will 

differ significantly if X2 > 3.84.

Table 6.3 demonstrates the level of agreement in terms of true 

positives and false negatives between the conventional 'discrete' 

program (method 1) and the modified 'smoothed' program (method 

2).

Smoothed Method

TP FN TOTAL

Discrete TP 46 5 51

Method FN 2 31 33

TOTAL 48 36 84
Table 6 .3 Comparison of the sensitivities of the 

Discrete and Smoothed programs.

In this case X2 =1.28. Therefore there is no evidence to suggest 

that there is a significant difference in sensitivity between the 

conventional method and the new smooth approach.

Similarly, agreement between true negatives and false positives 

can be tabulated and a comparison of the specificity of each method 

made.
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Smoothed Method

Table 6 .4

TN TOTAL

Discrete TN 125 4 129

Method FP 2 5 7

TOTAL 127 9 136
Comparison of the specificities of the 
Discrete and Smoothed programs

In this case, X2 =0.667. Again, there is no evidence to suggest 

that there is a significant difference in specificity between the two 

methods.

6 .6  COMPARING REPEATABILITY OF THE
EXISTING PROGRAM AND THE MODIFIED 
PROGRAM

6 .6 .1  Day-to-day ECG Recordings

Since there is no difference in the diagnostic performance of the 

existing program and the smoothed version we can now proceed to 

the key question of interest and compare the repeatability of both 

methods. Diagnostic interpretations for consecutive ECG recordings 

using the smoothed version of the program are expected to be in 

closer agreement than those obtained using the existing method. This 

is largely due to the fact that diagnostic indices will be- assigned 

continuously instead of on a discrete basis. This means that small 

measurement changes (even in the vicinity of threshold values) should 

result only in small differences in the scores produced. Thus, 

comparable measurements which previously crossed threshold values 

from one day to the next resulting in different scores using the
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existing program should now receive similar diagnostic indices 

depending on their proximity to the critical value and on the 

estimated amount of day-to-day variability in that particular 

measurement.

The indices associated with Left Ventricular Hypertrophy (LVH 

scores) were obtained using both the existing and the modified 

versions of the program on a group of 330 patients who were 

admitted to Glasgow Royal Infirmary between August 1988 and 

December 1991 and were not suffering from any acute cardiac 

illness. The exact diagnosis does not matter in stable patients given 

that it is the repeatability of the method that is being tested. 

Subsequent ECGs were recorded at least 24 hours later to enable the 

repeatability of the techniques to be assessed. The Glasgow program 

classifies individuals as having no LVH if the resulting diagnostic 

index (LVH Score) is 3 or less and as having LVH of one form or 

another if it is greater than or equal to 4, 

i.e.
If LVH Score < 3 then ' No LVH'

> 4 then ’ LVH ’

Using the discrete’ version of the Glasgow program applied 

separately to each patient on each of the 2 days produced the results 

in Table 6.5.

DISCRETE CASE

DAY2 NOLVH

LVH

Tabic 6 .5  Repeatability of existing method.
(Day-to-day ECG recordings)

DAY1

NOLVH LVH

; 273 17

40
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Seventeen individuals therefore have inconsistent LVH diagnoses 

from one day to the next when using the discrete version of the 

Glasgow program. Note that the number in the top right hand cell in 

Table 6.5 corresponds to the sum of the off-diagonal elements since 

day 1 and day 2 are essentially interchangeable. In the tables that 

follow, the same approach has been adopted.

Applying the new smoothed program with a cutpoint of 3.5 

previously suggested to be 'optimal1 produces Table 6.6 which 

reduces the number of inconsistent diagnoses to 9 - an almost 50% 

decrease on the discrete version.

SMOOTHED CASE

DAY 2 NO LVH

LVH 

Table 6 .6

Since the smoothed version produces a continuous score rather 

than a discrete score it is of interest to compare the close agreement 

between the smooth day 1 LVH scores and the smooth day 2 LVH 

scores as illustrated in Figure 6.8. All of the points appear to lie along 

a line with approximately unit slope. It can be seen that of the nine 

day-to-day recordings which were inconsistent in the diagnosis of 

LVH, most of the LVH scores were located near to the boundary. 

However, there is one point which exhibits a substantial difference in 

LVH score from day to day. On day 1 the smooth LVH score is 6.1 

and on day 2 the score is 3.2. The corresponding discrete scores are 

6 and 3.

DAY 1

NO LVH LVH

277 9

44
Repeatability of smoothed method. 
(Day-to-day ECG recordings)

162



II

u
10

9
s

7

a

4

a

'Outlier1a

l
o

0 a 71 t a a »94 10

D*r i

Figure 6 .8  Plot of D ayl scores vs. Day2 scores

On closer inspection it appears that the individual in question 

has an abnormally high Lewis Index on day 1 but not on day 2.

As an extension to merely detecting the presence or absence of 

LVH, the Glasgow program allows the degree of LVH to be assessed. 

The degree to which a patient exhibits LVH is assessed on the basis 

of the magnitude of the LVH Score in the following way:

If LVH Score < 3 then ' No LVH *
= 4 then ' Possible LVH '
-  5 then ' Probable LVH '
> 6 then ' Definite LVH ’

It is of substantive interest to assess the severity of the 

inconsistent interpretations given that a day 1 diagnosis of ’No LVH' 

followed by a day 2 diagnosis of 'Definite LVH' is less acceptable than 

'No LVH' followed by 'Possible LVH’. In order to do this, cutpoints 

separating Possible from Probable LVH and Probable from Definite 

LVH for the modified program need to be selected.

Table 6.7 illustrates the repeatability of the existing program 

when the diagnosis of LVH is grouped into the four possible 

categories (No LVH, Possible, Probable and Definite LVH).
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DISCRETE CASE

NOLVH

DAY 2 p o s s

PROB 

DEF

Table 6.7  Repeatability of existing method when 
comparing the severity of LVH 
(Day-to-day ECG recordings)

A simple way of assessing how ’repeatable' the program is can be 

achieved by assigning a 'Repeatability Index1 as follows :

Score 0

Score 1

Score 2

Score 3

One way of

technique is to calculate this ’Repeatability Index1 (RI) over all 

individuals and use the sum of such values as an overall criterion of 

performance.

Using the above scoring technique, the existing program has an 

overall 'Repeatability Index’ of 48

(i.e. 0x(273+4 + 2 + 18) + lx (8  + 5 + 9)+2x(5 + 2)+3x(4))

based on the 330 patients.

for each pair of ECGs where the diagnosis 

is the same on both occasions 

if the diagnosis changes by one category only 

(i.e. No LVH —» Poss., Prob —> Def. etc.) 

if the diagnosis changes by two categories 

( i.e. No LVH Prob., Poss —» Def.) 

if the diagnosis changes by three categories 

(i.e. No LVH -» Def.) 

evaluating the performance of the smoothing

DAYl

NO LVH___________ PO SS_____________PROB_____________ DEF

273 8 5 4

4 5 2

2 9

18
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In order that a comparison could be made between the existing 

and modified programs, cutpoints separating the different categories 

of hypertrophy for the smooth scoring system were required. Initially 

it was thought that the relationship between smooth LVH score and 

left ventricular mass for the 84 clinically documented LVH cases 

could be explored as a method of selecting optimal cutpoints. 

However, problems arose due to the fact that left ventricular mass 

and subsequent identification of LVH is sex-dependent. Instead, a 

method based on the smooth LVH scores from the day 1 ECG 

recordings was devised. In Figure 6.9 the four various discrete 

classifications of LVH for the day 1 ECG recordings have been used 

to produce four similar frequency distributions for the smooth score.

DISCRETE SCORE < 3

NOLVH - + -

DISCRETE SCORE = 4

POSS

DISCRETE SCORE -  5

PROB

DISCRETE SCORE > 6

DEF - + -------------------+ --------------------+ ------------------- + ------------------- + --------------------+ ------ >
0 . 0  2 . 0  4 . 0  6 . 0  8 . 0  1 0 . 0

SMOOTH SCORE

Figure 6 .9  Frequency Distribution of the smoothed LV score
(Day 1 recordings)
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Values of 3.5, 4.7 and 6.0 were selected as being the cutpoints 

which best separate out the four categories of LVH as described by 

the corresponding day 1 discrete values. These values produce the 

following table which results in a 'Repeatability Index' of 23.

SMOOTHED CASE

DAYl

NOLVH PO SS PROB DEF

NOLVH 277 8 0 1

DAY 2 p o s s 10 4 0

PROB 6 8

DEF 16
Tabic 6 .8  Repeatability of smoothed method when 

comparing the severity of LVH 
(Day-to-day ECG recordings)

Of the 22 diagnoses which were inconsistent by one category 

using the existing program, 16 are now in agreement using the 

modified program and 6 remain the same (see Table 6.9). Similarly, 

5 of the 7 slightly more serious inconsistent classifications are now in 

agreement while the remaining 2 are inconsistent by one category 

only. Of the 4 most serious discrepancies (i.e. normal on one 

occasion with definite LVH on the other), 2 now are in agreement, 

the degree of inconsistency has decreased in one and the last one 

remains the same.
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No. of Discrepancies (Discrete Method)

0  1 2  3

No. of 0 286 16 5 2

Discrepancies 1 11 6 2 1

(Smooth 2 0 0 0 0

Method) 3 0 0 0 1

Table 6 .9  Comparing the inconsistent diagnoses of 
the existing and the smoothed methods. 
(Day-to-day ECG recordings)

Interestingly, 11 pairs of ECG recordings which displayed no 

differences in terms of the diagnosis of LVH using the discrete 

method now appear as inconsistent (i.e. normal —» possible LVH or 

vice versa) using the modified version of the program. However, in all 

eleven replicates there is one recording which produces an LVH 

score which is close to one of the arbitrary boundaries described 

previously. Slight alteration of the boundary values 3.5, 4.7 and 6.0 

may improve the repeatability of these 11 pairs of ECGs. However, 

this would probably produce a further set of inconsistent ECGs with 

LVH scores close to the new boundary values.

In general, the smooth method appears to be far superior to the 

conventional method in terms of repeatability of the day-to-day 

diagnosis of LVH. It has been demonstrated that 23 of the cases 

which displayed some form of change with the discrete method were 

in agreement when the smooth techniques were applied. Of these 23 

cases, 2 originally displayed serious discrepancies (normal —» definite 

LVH or vice versa) and 5 showed moderate changes. In contrast, 

only 11 of the 297 pairs of ECGs which were totally in agreement 

when the conventional method was used displayed changes when the
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smooth method was used, all of these changes being of a relatively 

minor importance (i.e. normal -» possible LVH or vice versa).

6 .6 .2  Minute-to-minute ECG Recordings.

It is also of interest to establish whether there was a significant 

lack of repeatability in terms of LVH diagnosis between 249 pairs of 

ECGs which had been recorded one minute apart. Any 

inconsistencies arising could not be caused by misplaced electrodes or 

by between-technician variation and would therefore be attributed to 

other sources of variability, mainly computer processing techniques.

Using the conventional method, only 8 pairs of ECGs produced 

incompatible LVH/No LVH diagnoses (Table 6.10) compared with 

one set of ECGs when the modified version was used (Table 6.11). 

This is clearly a significant improvement, showing that the new 

approach virtually abolishes repeat changes with respect to LVH/No 

LVH.

DISCRETE CASE

MIN 1

NOLVH LVH

MIN 2  NO LVH

LVH

Tabic 6 .1 0  Repeatability of the existing method 
(Minute-to-minute ECG recordings)

211 8

30
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SMOOTHED CASE

MIN 1

NO LVH LVH

210 1

38
Table 6 .11  Repeatability of the smooth method 

(Minute-to-minute ECG recordings)

Figure 6.10 demonstrates the close agreement between the 

minute 1 LVH scores and the minute 2 LVH scores. The plot also 

illustrates that the scores corresponding to the single pair of minute- 

to-minute ECG recordings which produced an inconsistent diagnosis 

are situated close to the boundary value of 3.5.

ii
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Figure 6 .10  Plot of Minute 1 scores vs. Minute 2 scores

Figure 6.11 illustrates the separation of the four different 

classifications of LVH on the basis of the existing diagnosis for the 

day 1 recording.
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Table 6.12 indicates that, when using the conventional version of 

the Glasgow program, there are 13 discrepancies compared to only 

6 when the modified version (Table 6.13) is used.

DISCRETE SCORE <; 3

NOLVH - + -

DISCRETE SCORE - 4

POSS

DISCRETE SCORE =5

PROB

DISCRETE SCORE > 6

DEF - + -------------------+ --------------------+ ------------------- + --------  + --------------------+ ____ ~ >
0 . 0  2 . 0  4 . 0  6 . 0  8 . 0  1 0 . 0

SMOOTH SCORE

Figure 6.11 Frequency Distribution of smoothed LV score 
(Minute 1 ECGs)
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DISCRETE CASE

MINI

NOLVH PO SS PROB DEF

NOLVH 2 1 1 6 2 0

MIN 2 p o s s 9 1 1

PROB 2 3

DBF 14
Table 6 .1 2  Repeatability of the existing method when 

comparing the severity of LVH 
(Minute-to-minute ECG recordings)

SMOOTHED CASE

MINI

NOLVH PO SS PROB DEF

NO LVH 210 1 0 0

MIN 2 p o s s 11 3 0

PROB 6 2

DEF 16
Table 6 .1 3  Repeatability of smoothed method when 

comparing the severity of LVH 
(Minute-to-minute ECG recordings)

The Repeatability index drops from 16 to 6 when the modified 

version of the program is used.

Table 6.14 illustrates the relationship between the discrepancies 

for each method. There are 4 pairs of ECG recordings which 

produced the same diagnoses using the discrete method but 

demonstrate inconsistencies when the smoothed version is used. 

Again this is attributable to the fact that the LVH scores lie close to 

the previously suggested cutpoints.



No. of Discrepancies (Discrete Method)

0  1 2  3

No. of 0 232 8 3 0

Discrepancies 1 4 2 0 0

(Smooth 2 0 0 0 0

Method) 3 0 0 0 0

Table 6 .1 4  Comparing the inconsistent diagnoses of 
the existing and the smoothed methods. 
(Minute-to-minute ECG recordings)

6 .6 .3  Split ECG Recordings.

A method for testing the repeatability of computer programs for 

ECG interpretation was established by Bailey and his colleagues 

(Bailey et. al., 1974). Instead of examining two ECGs for each 

individual, two digital representations of the same tracing were 

obtained, each being separated by one millisecond in time. In this 

classic publication, initial ECGs were recorded with a sampling rate of 

1000 samples per second. Extraction of the odd and the even 

samples then provided two separate tracings, each representing the 

digital data at 500 samples per second.

In a similar way, two tracings were obtained from each of the 

330 day 1 recordings which have been described in section 6.9. 

These tracings represent the digital data at 250 samples per second 

since the initial ECGs were digitised at a sampling rate of 500. The 

tracings were then interpolated back to a sampling rate of 500 for 

the purpose of analysis. The repeatability of the diagnosis of LVH 

was then assessed for both the existing method and the smooth 

method.
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Tables 6.15 and 6.16 demonstrate that the agreement between 

two representations of the same ECG is superior to the agreement 

between ECGs recorded either one day apart or within one minute of 

each other. When the existing method is used there are 4 

inconsistent diagnoses compared to 2 when the smooth method is 

used.

DISCRETE CASE

ECG 1 

NO LVH LVH

ECG 2 NO LVH

LVH

Table 6 .1 5  Repeatability of the existing method 
(Split ECG recordings)

SMOOTHED CASE

ECG 2 NO LVH

LVH

Table 6 .1 6  Repeatability of the smooth method 
(Split ECG recordings)

However, when considering the subtleties of the diagnostic 

statements in terms of Possible, Probable and Definite LVH there is 

still a slight reduction in the Repeatability Index from 9 using the 

existing method (Table 6.17) to 5 when the smooth method is used 

(Table 6.18).

ECG 1

NO LVH LVH

283 2

45

283 4

43
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DISCRETE CASE

ECGl

NOLVH PO SS PROB DEF

NOLVH 283 2 2 0

ECG 2 p o s s 9 0 0

PROB 8 3

DEF 23
Table 6 .1 7  Repeatability of the existing method when 

comparing the severity of LVH 
(Split ECG recordings)

SMOOTHED CASE

ECGl

NO LVH PO SS PROB DEF

NO LVH 283 2 0 0

ECG 2 p o s s 13 1 0

PROB 8 2

DEF 21
Table 6 .1 8  Repeatability of the smooth method when 

comparing the severity of LVH 
(Split ECG recordings).

6 .7  SUMMARY

In an attempt to improve the repeatability of the section of the 

diagnostic program associated with Left Ventricular Hypertrophy in 

use in the Glasgow laboratory, discrete upper values of 'healthiness' 

were replaced with continuously changing limits where appropriate. 

This to a considerable extent alleviated the problem of inconsistent 

interpretations occurring as a result of, for example, a patient's age
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group changing from one recording to the next or a slight change in 

a particular ECG measurement. Furthermore, the discrete index 

initially associated with the final diagnosis of LVH was replaced by a 

smoothed Version. This allowed measurements which lay close to (but 

below) threshold values to receive a proportion of the relevant 

contribution to the final score, this proportion depending on the 

amount of day-to-day variation inherent in that particular 

measurement.

The new smoothed diagnostic indices were calculated for a group 

of 84 clinically documented LVH cases and 136 non-LVH cases in 

order to compare the sensitivity and specificity of the new smoothed 

version with the existing method. No significant differences were 

found indicating that the diagnostic accuracy for each method was 

comparable.

However, examination of the repeatability of each method 

revealed that the smoothed version was far superior. Based on a 

sample of 330 pairs of ECGs which were recorded at least 24 hours 

apart, 33 pairs produced inconsistent diagnoses of LVH using the 

existing method. This number dropped to 21 when the smoothed 

version was used. The greatest improvement in repeatability was in 

terms of the severity of the inconsistencies. Using the existing 

method 22 discrepancies were of a mild nature, 7 were moderate 

and 4 were severe whereas the smoothed version produced 20, 0 

and 1 respectively.

Similar results were seen when examining the repeatability of the 

minute-to-minute ECG recordings. Of 249 pairs of ECGs which were- 

recorded only one minute apart (without removing and subsequently 

replacing the electrodes), 13 pairs produced inconsistent diagnoses 

using the existing method compared to only 6 with the smoothed
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version. Again the inconsistencies using the existing method were 

more severe - 10 mild and 3 moderate compared to only 6 mild using 

the smoothed method.

Further examination of the repeatability of both the existing and 

the smooth methods for diagnosing LVH was possible by making use 

of a technique established by Bailey et. al. (1974). This approach 

involved splitting one digital representation of an ECG tracing 

recorded at 500 samples per second into two separate tracings, one 

representing the 250 odd samples, the other representing the 250 

even samples. Of the 330 day 1 ECG recordings which were split in 

this way there were 7 inconsistent diagnoses using the existing 

method, 5 of which were mild, and 2 moderate, compared to only 5 

mild discrepancies using the smooth method.

There will be situations when differences in ECG measurements 

from one recording to the next will be so large that no amount of 

smoothing will solve the problem of lack of repeatability. However, it 

is clear that the application of smoothing techniques vastly improves 

the repeatability of the diagnosis of LVH in the Glasgow program 

whilst preserving its diagnostic accuracy.
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CHAPTER SEVEN: 

ST-T CHANGES.

7.1 INTRODUCTION

Some of the difficulties encountered when attempting to 

diagnose abnormalities of the ST-T segment were outlined in Chapter 

5 while Chapter 6 examined some of the complexities involved when 

diagnosing left ventricular strain in the presence of left ventricular 

hypertrophy.

Routinely, diagnoses relating to abnormalities of the ST segment 

are made on the basis of both the magnitude of the ST amplitude and 

the slope of the ST segment. There are potentially many 

opportunities for discrete thresholds to be crossed from one recording 

to the next which in turn may result in changes in diagnoses from 

one recording to the next. By applying the smoothing techniques 

which have already been described, we hope to improve the 

repeatability of the section of the Glasgow program which deals with 

ST abnormalities.

The techniques which have been described in previous chapters 

can be used in one-dimensional and multi-dimensional situations and 

have been extended to cater for the situation where several steps are 

used to assess the severity of a certain condition.

Since diagnosis of ST changes in the inferior leads is seldom 

reported in isolation and is usually found in combination with other 

conditions such as T wave abnormalities accompanying LVH and 

myocardial infarction, we will direct attention to the level of
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agreement in the actual recording-to-recording indices of ST 

depression in the inferior leads instead of the diagnostic statements.

7 .2  COMPARISON OF DISCRETE AND 
SMOOTHED DIAGNOSTIC INDICES

(ST Depression).

7 .2 .1  Day-to-day ECG Recordings.

In the Glasgow program, depression of the ST segment is

described as being 'Equivocal', ’Moderate', or Marked' depending on 

the magnitude of a discrete ST score S(xx,x2). This score is calculated

on the basis of two measurements, namely the negative of the ST 

amplitude xx and the ST slope x2, in the following way:

^  <-100^V and x2 <0° then 5(xt,x2) = -3

< -5 0 jj\/ and x2 < 0° then iS( xx, x2) = —2

o(N1V and x2 < 0° then 5(x1,x2) = - i

xx > 60 jJM and x2 > 0° then S(xlfx2)= 1

xx > 80,uV and x2 > 0° then

<NIINHjT

xx > IOOjUV then iS(jCj, x2 ĵ — 3

otherwise S(xxtx2)= 0

The statements are then assigned as follows:
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= 0 then ' No ST Depression'
= -1 then ' Equivocal ST Depression'
-  -2 then ' Moderate ST Depression'
= -3 then ’ Marked ST Depression'

Initially, although the 'true' amount of ST depression remains 

unknown, a comparison was made between the smooth scores and 

the discrete scores which were obtained for the index of ST 

depression in lead II from the initial recordings of our sample of 330 

day 1 and day 2 ECGs. These new smooth scores were based on the 

smoothed ST scores in the appropriate leads and a small section of 

the relevant Fortran code can be seen in part B) of the Appendix. 

Although we are primarily interested in the amount of day-to-day 

variability in the diagnoses of ST abnormalities, we first wish to 

establish that there are no fundamental differences between the 

smooth and conventional methods of assigning ST indices. Since the 

smooth method of diagnosing abnormalities of the ST segment has 

been devised in an attempt to improve repeatability from recording to 

recording, we do not expect this smoothed approach to differ 

dramatically from the existing method when applied to a set of single 

ECG recordings.

The smoothed version of the diagnostic index for ST depression 

is now continuous in nature (see Chapter 5) so that acceptable values 

for outpoints which separate the various categories of ST depression 

are now required. A dot plot of the smoothed scores for each of the 

4 values of the discrete scores for a training set of 151 of the day 1 

ECGs is presented in Figure 7.1.
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DISCRETE SCORE-O (Each dot raprsaanta at moat 18 patients )

DISCRETE SC O R E -1

DISCRETE SC O R E -2

DISCRETE SC O R E -3

- 3 . 0 0  - 2 . 4 0  - 1 . 8 0  - 1 . 2 0  - 0 . 6 0  0 . 0 0  SCORE

Figure 7 .1  Frequency Distribution of the smoothed ST 
Depression Index (Day 1 recordings)

In order to compare the repeatability of the smooth approach of 

diagnosing abnormalities of the ST segment with the conventional 

method we must provide a continuous analogue of the discrete 

categorisation. Cutpoint values of -0.9, -1.8 and -2.7 were chosen in 

order to separate the four categories of ST depression on the basis of 

the smoothed scores. The categorisation was achieved in the 

following way:

If -0.9< 5m'K(x1,,r2) < 0 then ' No ST Depression’

-18  < x2) <-0.9 then ’ Equivocal ST Depression'

-2.7< Sm*(,rt ,x2) < -18  then ’ Moderate ST Depression'

-3.0 < Sm* (xx, „y2 ) < -2.7 then ’ Marked ST Depression'

Table 7.1 illustrates the level of agreement between the smooth 

and the discrete approaches on the basis of these outpoints.
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STDEP DAY1 (II)

NONE________ EQUIV________ MOD MARK

SMOOTH NONE 286 2 0 0

STDEP EQUIV 4 ' 20 1 0

DAY1 MOD 0 3 10 0

(n> MARK 0 0 0 4
Tabic 7.1 A comparison of the existing and the smooth 

methods of diagnosing ST Depression in lead 
II (Day-to-day ECG recordings).

In order to make a comparison of the repeatability of the two 

methods of detecting ST changes, ST scores were obtained for 

consecutive recordings taken at least 24 hours apart from the same 

individuals. For presentation purposes, only the ST scores in the 

inferior leads (II and aVF) are tabulated although it should be noted 

that comparisons may be made for all twelve leads.

Table 7.2 illustrates the level of agreement of the ST depression 

indices between day 1 and day 2 recordings for the existing program 

for lead II.

DISCRETE CASE

STDEP

NONE

DAYl

EQUIV

(H)

MOD MARK

STDEP NONE 274 19 3 0

DAY2 EQUIV 13 8 0

( II) MOD 8 2

MARK 3
Table 7 .2  Repeatability of the existing method when 

comparing the severity of ST Depression in 
lead II (Day-to-day ECG recordings).
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There are 274+13+ 8+3-298 of the 330 repeat ECGs 

exhibiting no change from day 1 to day 2, 19+ 8+ 2-29  cases having 

a 'mild' discrepancy and 3 cases with 'moderate' discrepancies from 

recording to recording. The corresponding 'Repeatability Index' (RI) is 

35.

In contrast, the Table 7.3 shows the results obtained when using 

the modified program.

SMOOTHED CASE

STDEP

NONE

DAYl

EQUIV

(H )

MOD MARK

STDEP NONE 286 11 1 0

DAY2 EQUIV 14 4 0

(II) MOD 9 2

MARK 3
Table 7.3  Repeatability of the smooth method when 

comparing the severity of ST Depression in 
lead II (Day-to-day ECG recordings).

By comparison, there are 286+14+ 9+3-312  cases with no 

change from day 1 to day 2, 11+4+2=17 cases with 'mild' 

discrepancies and 1 case with a 'moderate' discrepancy. The 

'Repeatability Index' has been reduced from 35 to 19, demonstrating 

a considerable improvement in terms of repeatability.

It is interesting to discover whether the 17 cases showing a mild 

discrepancy with the modified program are themselves a subset of the 

29 obtained when using the existing program. To achieve this, Table 

7.4 has been constructed. From this Table it is easy to see that of 

these 29 cases, 14 remain in the same category while the remaining 

15 cases show no form of discrepancy in ST Depression Index from
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one day to the next. Thus, for this category, inconsistencies have 

been halved in number using the new approach.

No. of Discrepancies (Discrete Method)

No. of

Discrepancies 0

(Smooth 1

Method) 2
Table 7 .4  Comparing the inconsistent diagnoses of 

the existing and smoothed methods for 
the day-to-day ECG recordings (lead II).

Table 7,4 also draws attention to the fact that one of the cases is 

worse in terms of repeatability when the modified program is used. 

This is an unexpected occurrence. On closer examination however, it 

turns out that the smooth day 1 score of ST depression in lead II is 

-1.49 and the day 2 score is -0.82. This second value is very close to 

the cutpoint of -0.9 which has been suggested for separating those 

with no ST depression from those with equivocal ST depression.

Similar tables were constructed for the ST depression indices in 

lead aVF. Comparisons between the day 1 and day 2 indices can be 

seen in Tables 7.5 and 7.6.

DISCRETE CASE

NONE

DAY2 EQUIV

( aVF ) MOD

MARK

Table 7 .5  Repeatability of the existing method when 
comparing the severity of ST Depression in 
lead aVF (Day-to-day ECG recordings).

STDEP DAY1 { aVF )

NONE________EQUIV_________ MOD_________ MARK

276 21 1 0

20 4 0

6 -  1

1

0 1 2

297 15 0

1 14 2

0 0 1
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SMOOTHED CASE

STDEP DAY! {aVF )

NONE EQUIV MOD MARK

STDEP NONE 288 14 0 0

DAY2 EQUIV 15 4 0

(aVF) MOD 8 0

MARK 1
Table 7.6 Repeatability of the smooth method when 

comparing the severity of ST Depression in 
lead aVF (Day-to-day ECG recordings).

The number of 'mild' discrepancies has dropped from 26 to 18 

and the 'moderate' discrepancy has been eliminated.

No. of Discrepancies (Discrete Method)

No. of 0 1 2

Discrepancies 0 300 12 0

(Smooth 1 3 14 1

Method) 2 0 0 0
Table 7.7 Comparing the inconsistent diagnoses of 

the existing and smoothed methods for 
day-to-day ECG recordings (lead aVF).

From Table 7.7 it can be seen that three of the cases are worse 

in terms of repeatability when the modified program is used. 

However, it appears that at least one of the recordings from each 

pair of ECGs produces an ST depression index which is close to a 

threshold value.

The repeatability indices for Tables 7.5 and 7.6 are 28 and 18 

respectively, again showing an improvement in terms of day to day
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agreement between ST scores for the inferior lead aVF when the new 

approach is used.

7 .2 .2  Minute-to-minute ECG Recordings.

It was also of interest to discover whether there was a significant 

improvement in the minute-to-minute repeatability of the calculation 

of Inferior ST Depression indices. To investigate this, two recordings 

were taken from individuals without removing and subsequently 

replacing the electrodes. It was expected that inconsistencies in 

interpretations obtained from these minute-to-minute recordings 

would be of a less severe nature than those observed from day to day 

since variation due to electrode positioning is being eliminated.

Table 7.8 demonstrates that 9 pairs of 249 ECGs which were 

recorded a minute apart produce inconsistent ST indices in lead II, 

resulting in a 'Repeatability Index’ of 12. The modified version of the 

program eliminates one of these inconsistencies, the 'Repeatability 

Index' dropping to 11 {see Table 7.9).

DISCRETE CASE

STDEP

NONE

DAYl

EQUIV

(H )

MOD MARK

STDEP NONE 224 5 1 1

DAY2 EQUIV 1 0 2 0

(n) MOD 4 0

MARK - 2

Table 7 .8  Repeatability of the existing method when 
comparing the severity of ST Depression in 
lead II (Minute-to-minute ECG recordings).
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SMOOTHED CASE

STDEP DAY1 {II)

NONE EQUIV MOD MARK

STDEP NONE 230 5 1 1

DAY2 EQUIV 6 0 0

<n> MOD 4 1

MARK 0
Table 7 .9  Repeatability of the smooth method when 

comparing the severity of ST Depression in 
lead II (Minute-to-minute ECG recordings).

Tables 7.10 and 7.11 demonstrate that the 'Repeatability Index’ 

is reduced from 13 to 6 when the smoothed techniques are used to 

calculate the ST Depression indices from minute to minute recordings 

in lead aVF which certainly represents a substantial improvement.

DISCRETE CASE

STDEP

NONE

MINI

EQUIV

( aVF ) 

MOD MARK

STDEP NONE 225 10 0 0

MIN2 EQUIV 8 3 0

( aVF ) MOD 3 0

MARK 0
Table 7 .1 0  Repeatability of the existing method when 

comparing the severity of ST Depression in 
lead aVF (Minute-to-minute ECG recordings).
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SMOOTHED CASE

STDEP MINI (aVF)

NONE EQUIV MOD MARK

STDEP NONE 231 5 0 0

MIN2 EQUIV 9 1 0

{ aVF ) MOD 3 0

MARK 0
Table 7 .11  Repeatability of the smooth method when 

comparing the severity of ST Depression in 
lead aVF (Minute-to-minute ECG recordings).

7 .2 .3  Split ECG Recordings

A third method of assessing the repeatability of the diagnosis of 

ST-T changes of both the existing and the smooth methods is 

possible if we split the day 1 ECGs which have been sampled at a 

rate of 500 samples per second into two tracings which represent the 

data sampled at a rate of 250. ST indices derived using both the 

discrete and the smooth methods were obtained from the 330 day 1 

ECG tracings in this way. Table 7.12 demonstrates that the 

'Repeatability Index' for the existing method applied to lead II is 9. 

When the smooth method is used, the RI increases slightly to 11 (see 

Table 7.13). This observed increase in ’Repeatability Index' is 

inconsistent with our previous findings. Although there are a further 

two pairs of ECGs which exhibit discrepant ST indices in lead II when 

the smooth method is used the indices which are calculated are very 

similar. Unfortunately, in the first case, the indices are -0.89 and 

-0.91 which lie on either side of the cutpoint of -0.9 which is used to 

separate 'No ST depression' from 'Equivocal ST depression'. 

Similarly, the second pair of ECGs produces indices of -1.81 and
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-1.79. Again these are very close to a outpoint, this time the value of 

-1.8 which is used to separate 'Equivocal ST depression' from 

'Moderate ST depression'.

DISCRETE CASE

STDEP

NONE

MINI

EQUIV

(ii)

MOD MARK

STDEP NONE 284 6 0 0

MIN2 EQUIV 22 3 0

<n) MOD 12 0

MARK 3
Table 7 .1 2  Repeatability of the existing method when 

comparing the severity of ST Depression in 
lead II (Split ECG recordings).

SMOOTHED CASE

STDEP

NONE

MINI

EQUIV

(U)

MOD MARK

STDEP NONE 287 6 0 0

MIN2 EQUIV 18 5 0

(11) MOD 11 0

MARK 3
Table 7 .13  Repeatability of the smooth method when 

comparing the severity of ST Depression in 
lead II (Split ECG recordings).

However, the improvement due to smoothing returns in lead 

aVF. In this case, the 'Repeatability Index' drops from 14 to 9 when 

the discrete method is replaced by the smooth method (see Tables 

7.14 and 7.15).
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DISCRETE CASE

STDEP

NONE

MINI

EQUIV

( aVF ) 

MOD MARK

STDEP NONE 285 1 2 1 0

MIN2 EQUIV 2 1 0 0

( aVF ) MOD 1 0 0

MARK 1

Tabic 7 .1 4  Repeatability of the existing method when 
comparing the severity of ST Depression in 
lead aVF (Split ECG recordings).

SMOOTHED CASE

STDEP

NONE

MINI

EQUIV

<aVF)

MOD MARK

STDEP NONE 294 7 0 0

MIN2 EQUIV 14 2 0

( aVF ) MOD 12 0

MARK 1
Table 7 .1 5  Repeatability of the smooth method when 

comparing the severity of ST Depression in 
lead aVF (Split ECG recordings).

7 .3  RE DEFINING ST DEPRESSION AND ST 
ELEVATION IN THE INFERIOR LEADS

Once the ST indices described in Chapter 5 have been calculated 

for each lead individually, these scores are examined for evidence of 

ST elevation or ST depression. Instead of providing a measure of 

depression or elevation for every lead, leads II and aVF are grouped 

to supply an index relating to the inferior leads and similarly for the 

lateral, anterior, anteroseptal and septal leads.
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7 .3 .1  ST Depression

We may now combine the smooth ST indices which have been 

calculated for leads II and aVF separately in an attempt to enhance 

the repeatability of the diagnosis of inferior ST depression. Currently, 

ST depression in the inferior leads is diagnosed if the minimum of the 

indices in leads II and aVF is a certain value. The lower this value the 

more marked the depression, 

i.e. In either lead

where STDPIN denotes the index of ST depression in the Inferior 

leads II and aVF. This scheme is represented diagramatically in Figure

if 5(.rt ,x2) = -1 then STDPIN = -1

if S(xr,x2) = -2 then STDPIN = -2

if S(xx,x2) = -3 then STDPIN = -3

7.2.

STDPIN -1

-2

-3
0

0

-3 -3
Lead aVFLead II

Figure 7.2 Diagrammatic representation of discrete score 
function for Inferior ST Depression.
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Table 7.16 compares the level of agreement of the Inferior ST 

Depression statements for pairs of ECGs which have been recorded 

on consecutive days. There are 40 mild and 3 moderate 

inconsistencies, producing a 'Repeatability Index' of 46.

DISCRETE CASE

STDPIN NONE

DAY2 EQUIV

MOD 

MARK

Table 7 .1 6  Repeatability of the existing method when 
comparing the Inferior ST Depression 
Index (Day-to-day ECG recordings).

Using the maxima, minima and multiple steps techniques 

outlined in Chapter 5 it is possible to replace the ST 'score’ with a 

smoothed alternative which should provide a greater resistance to 

fluctuations in any of the measurements which contribute to the 

score.
STDPINm* = -  lx|Pr[m in(,r1,x2) < - l]  + Pr[min(x1 ,x2) < -2] +

+Pr[min(jc1,jc2) < -3 ]j 

= - l x  {(1 -  Fn x  Fa )+ (1 -Fa xF a ) + (1- F„ x Fa )}

ga<i x ■ — b-
where F, = -----—; a u   L; b, = threshold value (i = 1,2,3),

y l + e v J 0.05
jc, =ST Ampl. {lead II), x2 = ST Ampl. (lead aVF).

STDPINm* denotes the new smooth index of ST depression in the 

inferior leads.

STDPIN DAY1

NONE___________EQUIV________ M O P___________MARK

258 31 3 0

16 7 0

10 2

3
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Figure 7.3 illustrates the smooth representation of the Inferior 

ST depression index STDPINm* which has been calculated from the 

corresponding smooth indices of ST depression for leads II and aVF.

STDPIN'

Figure 7 .3  Diagrammatic representation of smooth score
function for Inferior ST Depression.

Table 7.17 illustrates that the smoothing techniques have the 

advantage of eliminating many of the inconsistencies which have 

arisen using the established program. The 'Repeatability Index' has 

dropped from 46 to 25.
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SMOOTHED CASE

s td p in  D A Y!

STDPIN NONE

DAY2 EQUIV

MOD 

MARK

Table 7 .17  Repeatability of the smooth method when 
comparing the Inferior ST Depression 
Index (Day-to-day ECG recordings).

The repeatability of the minute-to-minute ECG recordings was 

assessed using each method. Table 7.18 illustrates that there are 11 

mild discrepancies and one of a severe nature when the existing 

method for identification of inferior ST depression is used. The 

corresponding 'Repeatability Index' is 14.

DISCRETE CASE

STDPIN NONE

MIN2 EQUIV

MOD 

MARK

Table 7 .1 8  Repeatability of the existing method when 
comparing the Inferior ST Depression 
Index (Minute-to-minute ECG recordings).

Surprisingly, when the smooth method is adopted, the total 

numbers of mild and severe discrepancies do not change (although

STDPIN MINI

NONE________ EQUIV__________ MOD___________MARK

215 9 0 1

15 2 0

5 0

2

NONE_________ EQUIV_________ MOD___________MARK

282 15 1 0

12 6 0

9 2

3

193



there is some change in the pattern) and the 'Repeatability Index' 

remains at 14 {Table 7.19).

SMOOTHED CASE

STDPIN MINI

NONE EQUIV MOD MARK

s t d p in  NONE

M IN2 EQUIV

MOD 

MARK

Table 7 .1 9  Repeatability of the smooth method when 
comparing the Inferior ST Depression 
Index (Minute-to-minute ECG recordings).

It is also possible to assess the repeatability of each method using 

the split ECGs. Table 7.20 illustrates that the 'Repeatability Index' is 

17 when the conventional method is used, and drops to 13 when the 

smooth techniques are applied {Table 7.21).

DISCRETE CASE

ECGl

NONE EQUIV MOD MARK

NONE

ECG 2  EQUIV

MOD 

MARK

Table 7 .20  Repeatability of the existing method when 
comparing the Inferior ST Depression 
Index (Split ECG recordings).

271 12 1 0

26 3 0

14 0

3

224 6 0 1

9 3 0

3 2

1

194



SMOOTHED CASE

ECGl

NONE EQUIV MOD MARK

NONE 286 8 0 0

ECG 2  EQUIV 18 5 0

MOD 1 1 0

MARK 2

Table 7 .21 Repeatability of the smooth method when 
comparing the Inferior ST Depression 
Index (Split ECG recordings).

7 .3 .2  ST Elevation

Similarly, ST elevation is recorded if the maximum of the ST 

indices in either leads II or aVF is of a certain value although the 

diagnostic criteria is further complicated by the fact that an ST 

elevation index of 1 will only be recorded if the smaller of the ST 

indices in leads II and aVF is at least 1, i.e.

if 5(x!,^2) = 1 in both leads then STELIN = 1

if S(xltx2) -  2 in either lead then STELIN = 2

if 5(x!,x2) = 3 in either lead then STELIN = 3

where STELIN denotes the index of ST elevation in the Inferior 

leads. Figure 7.4 shows this diagramatically.
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Lead II 0 o Lead aVF

Figure 7 .4  Diagrammatic representation of discrete score
function for Inferior ST Elevation.

A smooth representation of STELIN may be calculated as 

follows:

STELINm = lx  {Pr[min(.r,, x2) > 1 or max(.r,,.v2) > 2] + Pr[max(;t,,.r2) >

+Pr[max(jt1,jc2) > 3]}

— lx  |F U x F2l +Fl2 x F22 — F], x F2l x Fl2 x F22 +

^12  X  ^ 2 2  ■*" ^13  X  ^ 2 3  }

STELINm* is the smooth index of ST elevation in the inferior leads 

(see Figure 7.5).
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Figure 7 .5  Diagrammatic representation of smooth score
function for Inferior ST Elevation.

Comparisons of the indices of ST elevation for day-to-day, 

minute-to-minute and split ECGs may also be made using the 

methods which have been described. However, in the population 

studied, there were too few instances of ST elevation recorded for 

any realistic comparisons to be made. This is attributable to the fact 

that elevation of the ST segment is generally due to an acute 

condition not readily observed in our sample of patients who were 

selected because they were in a stable condition.

7 .4  SUMMARY

In this chapter, many of the techniques that have previously been 

described were implemented in an attempt to improve the 

repeatability of the section of the Glasgow program which diagnoses 

abnormalities of the ST segment.
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New smooth indices for ST depression were calculated for leads 

II and aVF and were subsequently combined to produce an overall 

index of ST depression for the inferior leads. These indices were then 

compared to the corresponding indices obtained when the 

conventional discrete method was used.

In terms of repeatability, the performance of the smooth method 

was considerably better than that of the discrete method when 330 

day-to-day ECGs were assessed. The RI for the diagnosis of ST 

depression in lead II dropped from 35 to 19 (a reduction of 46%) 

when the discrete method was replaced by the smooth method. A 

36% reduction in RI (from 28 to 18) was observed when comparing 

the repeatability of each method in identifying ST depression in lead 

aVF. The overall ST depression index for the inferior leads also 

benefited from an improvement in the level of agreement from day to 

day when the smooth method was used. The discrete method 

produced 40 mild and 3 moderate conflicting interpretations 

compared to only 23 and 1 respectively when the smooth method 

was used, representing a significant reduction in RI in the order of 

46%.

Similar findings were reported when the repeatability of 249 

minute-to-minute ECGs was assessed although the improvement 

gained was not as substantial. Although the repeatability of the 

smooth method was superior to that of the discrete method when the 

indices of ST depression in leads II and aVF were compared 

separately (with an 8% and a 50% improvement respectively), there 

was no noticeable improvement between the two methods when the 

overall index of ST depression in the inferior leads was considered.

One unexpected finding was that the repeatability of the smooth 

method was marginally worse than that of the discrete method when
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the indices of ST depression in lead II from the split ECGs were 

compared. However, 3 of the mild discrepancies and the only 

moderate discrepancy observed in lead aVF when the split ECGs 

were considered were eliminated when the smooth version of the 

program was used. The smoothed version of the overall ST 

depression index for the inferior leads produced 13 minor 

discrepancies compared to 15 minor and one moderate discrepancy 

when the discrete version was used. This represents a 23% reduction 

in RI (from 17 to 13).

Proportionately fewer discrepant ECGs arise from the minute-to- 

minute and the split ECGs than from the day-to-day ECG recordings. 

For example, 32 of the 330 (9.7%) day-to-day ECGs produce 

inconsistent diagnoses for ST depression in lead II on the discrete 

method compared to 9 out of 249 (3.6%) for minute-to-minute ECGs 

and 9 out of 330 (2.7%) for split ECGs. Therefore there is less scope 

for improving on the 'Repeatability Index' for minute-to-minute and 

split ECGs which perhaps explains why it is more difficult to 

demonstrate any enhancement of repeatability consistently for the 

minute-to-minute and split ECGs.
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CHAPTER EIGHT: 

MYOCARDIAL INFARCTION

8 .1  INTRODUCTION.

A reduction in the coronary blood supply to the heart muscle can 

result in myocardial ischaemia, injury or infarction which can seriously 

impair the normal working process of the heart. A decrease in the 

flow of blood to the heart muscle can arise from inadequacies of the 

coronary circulation due to inflamed or blocked arteries and coronary 

spasm.

Myocardial ischaemia produces characteristic changes in the ECG 

in the form of inverted T waves and/or tall T waves in the 

appropriate lead or leads whereas myocardial injury is manifested in 

the ECG by elevation or depression of the ST segment depending on 

whether the injury is subepicardial or subendocardial. Necrotic areas 

of the heart are electrically silent so that in the presence of 

myocardial infarction electrodes placed over the infarcted area will 

record initially negative QRS complexes. The resultant of the 

electrical forces generated from the myocardium during ventricular 

depolarisation will tend to point away from the necrotic area 

producing abnormal Q waves in a lead overlying the area. The ECG 

is a useful tool in determining the extent and location of infarction 

and the detection of Q waves forms an integral part of the diagnostic 

process for myocardial infarction.
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8 .2  THE GLASGOW APPROACH.

The Glasgow Program diagnoses myocardial infarction in specific 

locations as a result of detecting Q waves with or without ST and T 

wave changes.

Pathological Q waves are identified if the amplitude and duration 

are of sufficient magnitude and/or the ratio of the Q wave amplitude 

to the R wave amplitude is large. Certain other criteria such as the 

magnitudes of the ST segment and the T wave are also considered in 

the diagnosis of myocardial infarction.

The repeatability of the section of the Glasgow program which is 

associated with the detection of myocardial infarction will be assessed 

by comparing the identification of inferior Q waves (i.e. pathological 

Q waves in any of the inferior leads II, III or aVF) in ECGs which have 

been recorded on two consecutive occasions.

8 .3  IDENTIFICATION OF Q WAVES.

In the normal depolarisation process, the septum is depolarised 

from the left to the right side resulting in small Q waves being found 

in the lateral leads I, aVL, V5 and V6. It is necessary to be able to 

distinguish these insignificant findings from more substantial Q waves 

which would suggest that lateral myocardial infarction was present.

The Glasgow program uses a series of discrete criteria in order to 

identify whether there are pathological Q waves present in the 

various leads. This information is then used to make statements about 

the likelihood of myocardial infarction having taken place.
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An example of a section of the diagnostic process for identifying 

the presence of Q waves on the basis of certain logical variables 

( Q l, Q2, Q3, Q4 e tc .) is given in Table 8.1 below.

Q1 '• a) i) QdUR >0.035secs AND |Q/R| AMP >1 /5
OR ii) Qdur >0.040 secs

AND b) C W  <-0.09m V  AND
peak - peak QRS >0.15mV

Q2 : a) i) QdUR >0.035secs AND |Q/R| AMP >1 /5
OR ii) QdUR >0.030secs AND |Q/R| amp > 1/3

AND b) Qamp < -0.20mV

Q3 : a) Qdur >0.026secs AND |Q/R| AMP >1/5
AND b) Qamp < “ 0.14mV AND

peak - peak QRS > 0.15mV

Q4 : a) i) QDUR >0.020secs AND |Q/R| AMP >1 /3
OR ii) Qdur >0.030secs AND Tneg<-0 .10m V

AND b) Tneg<-0.05m V OR S T ^  > 0.06mV

AND c) Qamp < -0.075mV AND
peak-peak QRS > 0.20mV

Table 8 .1  Diagnostic criteria in the Glasgow program for the 
identification of Q waves in the inferior and lateral 
leads (as of April 1990).

The logical process outlined above is essentially graded in that 

Q 1 defines the most pronounced Q waves whereas Q4 acknowledges 

shorter and shallower but nevertheless abnormal Q waves. 

Information is collected for all relevant leads and an overall decision 

as to whether pathological Q waves are present or absent in a 

particular set of leads is made. For example, abnormal Q waves in
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the inferior leads (II, III and aVF) are identified if the following 

diagnostic statement is satisfied:

2 or more Q waves, including Q1 or Q2 
OR A Q3 and 1 ( Q3 or QE3 ) all with |Q/R| > 1/4
OR One Q1 in II or aVF

(Note: In the above and Table 8.1, QE1 to QE4 are equivalent to Q1 

to Q4 when Q waves are replaced by S waves and R amplitudes by R' 

amplitudes but with the proviso that the initial

r < 40ixV).

Again, owing to the nature of such criteria, there exists further 

potential for a lack of repeatability from one recording to the next. 

For example, if parts b) and c) of Q4 were satisfied and a Q wave of 

0.019 secs in duration and -0.075mV in amplitude were recorded in 

any of the inferior leads, then none of the above conditions Q1 to 

Q4 would be satisfied whereas a Q wave of the same amplitude but 

0.020 secs in duration would record a Q4.

8 .4  SMOOTHING THE Q WAVE INDEX FOR THE 
INFERIOR LEADS.

One way of minimising repeat variation is to apply the 

techniques which have been introduced and used in earlier chapters. 

Discrete threshold values can be smoothed out by making use of the 

methods described in Chapter 5 so that Q l, Q2, Q3 and Q4 defined 

above as being present or absent may be represented by indices 

which can assess the degree to which a particular condition is 

satisfied.
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The conditions outlined in Table 8.1 for Q1 can be rewritten in 

the following way:

Ql

if (QDUR > 0.035secs AND |Q/R| > 1/5 

OR Qdur > 0.040 secs)
AND Qamp <-0.09m V  AND

peak-peak QRS > 0.15mV

31

0 otherwise 

Similar structures apply for Q2, Q3, Q4 etc.

The smoothed version of Q l will then become

or. =
u =. e“'"'where f;, = ------— ; a, = ----- *-------- ^ ;

1+e

F e&“ b 
21 1 + e 6*1 ’ *! <yH

F  -  - c ^ - ( c - g J31 ~ i c„ ’ x3 — »
1 +  e ** cr(xi

F =  - £ - ■  A
41 l  +  edt4 ’ t4 <TX*4.

ax -  0.035msecs; a2 = 0.040msecs;6 -  -0 .09mV

c = 0.15mV;J = —.
5

and xx denotes the Q wave duration 
x2 denotes the Q wave amplitude 
x3 denotes the peak- peak QRS, 
x4 denotes the Q/R ratio in the lead of interest 

As before, crv denotes the estimated amount of day to day variation 
associated with ECG variable v. The appropriate Fortran coding can be

seen in section C) of the Appendix.

Using rules of probability as analogues (see Chapter 5, section 

5.5), a smoothed version which describes the extent to which Q
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waves are present in the inferior leads can be calculated. Multi­

parameter involvement coupled with the complexities of the 

diagnostic criteria and the requirement to consider three leads (II, HI, 

aVF) instead of just one, results in a nontrivial equation which, for 

simplicity, will be split into three sections.

Thus

" 2 or more Q waves including Q l or Q2 "

becomes

Pr[At n ^ ] u  Pr[ A, r\ A4]

where Al is the event of a Q l being present in either II, III or aVF,

Aj is the event of at least one Q wave (excluding Q l) being

present in leads II, III or aVF,

As is the event of a Q2 being present in either II, in or aVF 

and A4 is the event of at least one Q wave (excluding Q2) being 

present in leads II, III or aVF.

Similarly,

" A Q3 and 1(Q3 or QE3) all with IQ/RI > 1 /4  "

becomes

Pr [Bxn B 2n B 3]

where

Bl is the event that there is at least one Q3 in II, III, aVF,

B2 is the event that there is at least one Q3 or QE3 in II, III or 

aVF

and B3 is the event that 1 Q /R I > 1 /4  in the lead where Q3 is 

true.

Lastly,

" Q l in II or aVF " 

becomes

Pr[C ,uC2]
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where

Cj is the event that there is a Q l in II and 

C2 is the event that there is a Q l in aVF.

The new smooth Q wave index for the inferior leads will now 

range from 0 to 1 and will contain relevant information from all three 

inferior leads in a single estimate.

8 .5  COMPARING THE REPEATABILITY OF THE 
EXISTING PROGRAM AND THE MODIFIED 
PROGRAM

8 .5 .1  Day-to-day ECG recordings.

Two ECGs were recorded on consecutive days for each of 330 

inpatients in the Dept, of Medical Cardiology at the Royal Infirmary 

in Glasgow. These patients were considered to be in a stable 

condition. ECGs exhibiting evidence of conduction defects such as 

LBBB and RBBB were excluded from any analysis.

The discrete Q wave indices for the 330 day 1 and day 2 ECG 

recordings are tabulated in Table 8.2.

DISCRETE CASE

DAY 1

NO Q WAVES Q WAVES

DAY 2 NO Q WAVES

Q WAVES

Table 8 .2  Repeatability of existing method.
(Day-to-day ECG recordings)

256 20

54
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There are 20 pairs of consecutive ECGs which produce 

inconsistent diagnoses in terms of Inferior Q waves from day 1 to day 

2 and the resulting Repeatability Index is 20.

In order to assess the repeatability of the smooth method, a 

cutpoint distinguishing significant and insignificant Q waves must be 

chosen.

A dotplot of the smoothed Q wave indices both for Q wave 

indices which have been assigned the value 0 using the existing 

discrete method and for those which have been assigned the value 1 

is provided in Figure 8.1. These indices come from 330 day 1 ECG 

recordings and although we do not know if these discrete indices are 

correct, we make use of them in order to provide a means of 

obtaining a sensible cutpoint for the smooth representations.

No Inferior Q waves ( E a c h  d o t  r e p r e s e n t s  a t  m o s t  1 8  p a t i e n t s )

-*-f——— — — — — — —*f——. — ——f.——- — — _ — ---

Inferior Q waves ( E a c h  d o t  r e p r e s e n t s  a t  m o s t  3 p a t i e n t s )

—I---------- i I I ---------------- . —  - - - - H ------- — >
0 . 0 0  0 . 2 0  0 . 4 0  0 . 6 0  0 . 8 0  1 . 0 0

SMOOTH INDEX

Figure 8.1 Frequency Distribution of the smoothed 
Q wave index (Day 1 recordings).
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The cutpoint of 0.7 for separating those with inferior Q waves 

using the smooth method from those without produces the following 

table (Table 8.3) and has a repeatability index of 9.

SMOOTHED CASE

DAY 1

NO Q WAVES

DAY 2 NO Q WAVES 

Q WAVES

Table 8.3

Q WAVES

272 9

49
Repeatability of smoothed method. 
(Day-to-day ECG recordings)

The day 1 and day 2 smoothed Q wave indices have been 

plotted against each other in Figure 8.2.

0}a

1.0

0 .9

0 .8

0 .7

0.0

0 .5

0 .4

0 .3  -—£•

0.2

0.1

0.0

0 .0  0 .1  0 .2  0 .3  0 .4  0 .5  0 .0  0 .7  0 .8  0 .9  1.0

Day 1

Figure 8 .2  Plot of Day 1 Q wave index vs. Day 2 Q wave index.

From the plot it can be seen that some of the indices which are 

not in agreement from day 1 to day 2 lie close to the cutpoint of 0.7 

while some are quite different from each other. However, there has
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been a substantial improvement of around 55% in the repeatability of 

the program by adopting the smooth procedure.

8 .5 .2  Minute-to-minute ECG recordings.

The repeatability of the 249 pairs of ECGs which were recorded 

within the space of a few minutes was also assessed. Table 8.4 

demonstrates that there were 9 inconsistent interpretations when the 

discrete method was used.

DISCRETE CASE

MIN 2 NO Q WAVES

Q WAVES 

Table 8 .4

Using the smoothing technique eliminates approximately half of 

this repeatability. Table 8.5 demonstrates that there are now only 5 

cases of inconsistent reporting of Q waves from minute to minute. 

Compared to 9 cases using the conventional program, this represents 

an improvement of 44% in terms of the repeatability index. 

SMOOTHED CASE

MIN 2 NO Q WAVES

Q WAVES

Table 8 .5  Repeatability of smoothed method.
(Minute-Minute ECG recordings)

MIN 1

NO Q WAVES__________ Q WAVES

205 5

39

MIN 1

NO Q WAVES__________ Q WAVES

196 9

44
Repeatability of existing method. 
(Minute-Minute ECG recordings)
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8 .5 .3  Split ECG recordings.

Finally, the repeatability of the diagnosis of Q waves for both the 

existing and the smooth methods can be assessed in another way if 

we split the day 1 ECGs into two tracings as described earlier. Q 

wave indices using both the discrete and the smooth methods were 

obtained from the day 1 ECG tracings in this way. Table 8.6 

demonstrates that there are 9 pairs of ECGs which produce 

inconsistent Q wave interpretations when the tracings are split in this 

way, compared to 6 when the smoothing techniques are adopted 

(Table 8.7).

DISCRETE CASE

ECG 2 NO Q WAVES

Q WAVES 

Table 8 .6

SMOOTHED CASE

ECG 2 NO Q WAVES

Q WAVES

Table 8 .7  Repeatability of smoothed method. 
(Split ECG recordings)

ECG 1

NO Q WAVES__________Q WAVES

270 6

54

ECG 1

NO Q WAVES__________Q WAVES

261 9

60
Repeatability of existing method. 
(Split ECG recordings)
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8 .6  DISCUSSION.

This chapter has examined the effects that the smoothing 

techniques have on the detection of Q waves in the inferior leads. It 

must be stressed that these methods will also affect the subsequent 

diagnosis of inferior myocardial infarction which itself is suggested by 

the presence of Q waves. Unlike Chapter 7 where the identification 

of ST changes in the inferior leads may be buried within other 

diagnoses such as left ventricular hypertrophy and myocardial 

ischaemia, it is possible to assess the repeatability of inferior 

myocardial infarction statements which are produced by the 

diagnostic program developed in Glasgow.

These established techniques may also be applied to the 

detection of Q waves in the anteroseptal, lateral and anterior leads 

and hence to the diagnosis of anteroseptal, lateral and anterior 

infarction. However, inferior Q waves were most prevalent in the 

database of day-to-day ECGs, providing a sufficient study group size.

As an additional exercise, an experienced electrocardiologist was 

given some pairs of ECGs from the database of day-to-day repeat 

ECGs to report. Some of the pairs were selected at random, although 

the ECGs which were particularly problematic with regard to day-to- 

day agreement were added to the final selection in order to assess the 

relative merits of the electrocardiologist and both the conventional 

and the modified versions of the Glasgow program. The day 1 ECGs 

were examined first, and the presence or absence of inferior Q waves 

(and hence inferior myocardial infarction) recorded. Several days 

elapsed before the corresponding day 2 ECGs were assessed to 

eliminate any possible learning effect.
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Of the 34 pairs of ECGs which were examined in this way, 12 

were given inconsistent diagnoses by the electrocardiologist 

compared to 19 and 9 by the conventional and the smoothed 

versions respectively. Since many of the pairs of ECGs for this small 

study were selected due to their initial incompatibility in terms of the 

identification of Q waves from day 1 to day 2 it was decided that 

further analysis was required to establish whether true changes in the 

ECG waveform did exist from day to day.

Instead of examining each of the ECGs separately, the reviewer 

scrutinised ECGs in pairs to look for any evidence of significant 

changes from one day to the next. His opinion was that 9 of the 34 

pairs of ECGs did exhibit changes which could conceivably alter the 

diagnosis of inferior myocardial infarction. However, of these 9 pairs, 

only 4 were themselves a subset of the 12 incompatible diagnoses 

initially produced by the electrocardiologist when each ECG was 

examined individually. It was also discovered that 4 and 2 were 

subsets of the 9 and 19 discrepant ECG diagnoses produced by the 

smooth and the conventional methods respectively.

Figures 8.3 and 8.4 show 2 ECG recordings which were 

obtained from a 54 year old male patient on two consecutive days. 

On the second day (Figure 8.4), the conventional version of the 

diagnostic program reported evidence of inferior myocardial 

infarction whereas this statement was omitted for the initial recording 

(Figure 8.3). Both the modified version of the program and the 

experienced electrocardiologist reported inferior myocardial infarction 

on both occasions.

212



° ~ . l  \ J  , J  -----  ̂ i 1 i J  L,; 1 l[
T  1 :  1 ;  ;  ; j " [ ■ i r -  1

— 1— i— i— i—
VI-

— \ f ^ -------
H h ---------- \  ■ ; >--------------------- : f  - : - - f - f 1 4 — H r  . — -  r -  . . . . . .

T wave changes in inferior leads
APPEARANCES ARE ABNORMAL AND MAY BE DUE TO 
MYOCARDIAL ISCHAEMIA

Figure 8 .3  Day 1 ECG for a 54  year old male together with the
interpretation obtained with the conventional program.

n —

Q waves in inferior leads
T wave inversion also present 

POSSIBLE INFERIOR INFARCTION - ? AGE

Figure 8 .4  Day 2 ECG for the same 54  year old male as in Fig 8.3  
together with the interpretation obtained with the 
conventional program.

A similar situation can also be seen in Figures 8.5 and 8.6. The 

two ECGs have again been recorded on consecutive days, this time 

from a 44 year old male patient. While the human expert and the 

modified version of the program found no evidence of the presence
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of an inferior infarct on either occasion, the conventional program 

reported inferior myocardial infarction on the second day (Figure 

8 .6).
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ST changes in the inferior leads 
THESE MINOR CHANGES ARE OF EQUIVOCAL 
SIGNIFICANCE ONLY

Figure 8 .5  Day 1 ECG for a 44  year old male together with the
interpretation obtained with the conventional program.

^ jL /n---

Q wave in inferior leads 
T wave inversion also present 

PROBABLE INFERIOR INFARCT - ? AGE

Figure 8 .6  Day 2 ECG for the same 44  year old male as in Fig 8 .5  
together with the interpretation obtained with the 
conventional program.
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In these two situations, the improvement in repeatability of the 

diagnostic program obtained when smoothing techniques have been 

implemented are in agreement with the findings of the 

electrocardiologist. However, this might not have been the case if the 

ECGs were examined independently by another clinician.

It should be noted that the repeatability of the determination of 

age of infarction was not investigated. This was not an issue of the 

current study although the methods which have been developed may 

be used to address this problem in the future. It was not feasible to 

obtain ECGs on line from acutely ill patients in the coronary care unit 

which is situated in the older part of Glasgow Royal Infirmary (GRI) 

and access was therefore limited to those in a stable condition in the 

cardiology wards in the new section of GRI. However, since ST and 

T wave changes are associated with the age and severity of infarction, 

the techniques outlined in Chapter 7 can be combined with the 

methods developed in the current chapter to assist in increasing the 

level of agreement between consecutive diagnoses of, for example, 

acute and/or old infarction in the future.

8 .7  SUMMARY.

The repeatability of the section of the diagnostic program 

dedicated to the identification of inferior Q waves was investigated. 

The existing discrete method was compared to the smooth method 

and comparisons between day-to-day, minute-to-minute and split 

ECGs were made.

The smooth method produced more compatible diagnoses (with 

respect to Inferior Q waves) than the conventional method. Of the
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330 day-to-day ECGs for which Q wave indices were provided, 20 

exhibited inconsistencies when the existing method was used. This 

compared to only 9 inconsistencies {a reduction of around 55%) 

when the smooth method was used.

Of the 249 minute-to-minute ECGs which were assessed, there 

were 9 pairs exhibiting inconsistent diagnoses when the existing 

method was used, compared to only 5 when the smooth method was 

implemented. This represents an improvement of around 40% in 

terms of repeatability.

Lastly, the technique established by Bailey and his colleagues 

(Bailey et. al., 1974) allowed a further investigation of the 

repeatability of each method by splitting the day 1 ECGs which were 

initially sampled at 500 samples per second into odd and even 

samples at 250 samples/sec. Of the 330 day 1 ECG recordings 

which were split in this way, there were 9 inconsistent diagnoses 

using the existing method compared to 6 when the smooth method 

was used.

The diagnostic program currently in use in the Glasgow 

laboratory appears to be reasonably repeatable in terms of minute-to- 

minute and split ECG recordings. Although this means that it should 

be more difficult to improve the repeatability performance of the 

program, the new approach results in a reduction in the number of 

discrepant ECG interpretations.

In order to put the matter into perspective it is necessary to 

return to the results obtained by the reviewer of the repeated ECGs 

and to the corresponding results produced by both versions of the 

diagnostic program. Clearly, it is impossible to eliminate repeat 

variation completely. Human error will always prevail in the recording 

situation and in the interpretation of the ECG. In this attempt to
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improve the repeated detection of inferior myocardial infarction using 

computer techniques it has become clear that although lack of 

repeatability may remain, its severity can be alleviated with the 

implementation of smoothing techniques.
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CHAPTER NINE: 
CONCLUSIONS.

The principal objective of this study has been to develop a 

methodology for improving the repeatability of computer assisted 

interpretation of electrocardiograms. The following important 

conclusions can be drawn.

9 .1  OVERALL REPEATABILITY.

In the various individual chapters, results were presented which 

showed that a definite improvement in the repeatability of certain 

individual diagnoses could be obtained. In other words, computer 

assisted ECG interpretation can be enhanced by the methods 

developed in this study.

It is of interest to consider the cumulative effect of improving the 

diagnosis of left ventricular hypertrophy (LVH), ST depression in the 

inferior leads and inferior myocardial infarction (IMI). Overall 

repeatability of the Glasgow program was assessed on the basis of 

the level of agreement between consecutive ECG recordings obtained

a) one day apart,

b) within the space of a few minutes, and

c) using a method of artificially splitting one ECG 

into two digital representations

with respect to the presence or absence of the three previously 

mentioned conditions. Of the 330 pairs of ECGs which were
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recorded one day apart, 266 were in total agreement for all the 

conditions mentioned when the conventional version of the program 

was used, representing an overall repeatability of 81%. In 

comparison, the repeatability of the modified version of the program 

(using the same set of day-to-day ECGs) was 88% (i.e. 291 of the 

330 pairs of ECGs produced consistent diagnoses).

Due to the elimination of various external sources of variation 

such as electrode positioning and recording technique, it was 

expected that the ECGs which were recorded within the space of 

several minutes and the ECGs which were split into two digital 

representations would demonstrate a higher level of agreement. 

Indeed, this was the case, with 222 of the 249 (89%) pairs of minute- 

to-minute ECGs and 304 of the 330 (92%) pairs of split ECG 

recordings producing consistent diagnoses using the conventional 

method. However, smoothing techniques continue to enhance the 

repeatability of both sets of ECGs, with both the percentages of 

minute-to-minute ECGs and split ECGs demonstrating agreement in 

the three areas mentioned of approximately 95%, representing 

overall reductions in error of 55% and 38% respectively.

9 .2  ENHANCED PERFORMANCE.

The level of agreement from ECG to ECG is significantly 

superior when the smoothing methods are used. When considering 

the ECGs which were repeated on consecutive days it can be shown 

that the approximate 95% confidence interval for the difference in 

the proportion of pairs of ECGs which are not in agreement from 

day to day is (4%, 12%). This means that, at worst, the modified
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version of the Glasgow program is 4% more repeatable and at best 

12% more repeatable than the conventional program. The 

corresponding confidence intervals for the ECGs which were 

repeated from one minute to the next and for the ECGs which were 

split into odd and even samples are (1%, 10%) and (0%, 7%) which 

demonstrate that in general the smoothing techniques are having the 

desired effect of enhancing the repeatability of the Glasgow program.

9 .3  COMPARATIVE RESULTS.

It is of interest to contrast the degree of consistency of the 

modified version of the Glasgow program with the levels of 

agreement obtained in diagnostic statements from previous studies.

Having established an artificial method of enabling developers 

and users of a particular automated system to assess its repeatability, 

Bailey et. al. (1974) used this technique on various programs. 

Reproducibility of the ECG interpretations was poor, with the 

percentages of 'identical readings1 ranging from 49.8% for version D 

of the PHS program to 82.4% for the AVA (3.4) program. When 

these results are compared to the repeatability of 92% for the 

conventional Glasgow program and 95% for the modified version, it 

is clear that improvements have been obtained.

Machado et. al. (1991) investigated the minute-to-minute 

repeatability of the 1988 release of the unmodified Glasgow program 

on a sample of 410 pairs of ECGs which were recorded, without 

removal, of the electrodes, using commercially available equipment. 

Identical type A statements, i.e. those that can be verified using non-
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ECG methods, were produced in 93% of cases. Of the 249 pairs of 

minute-to-minute ECGs examined in the current study, repeatability 

was also of the order of 93% for the conventional Glasgow program 

when considering Type A statements relating to LVH and IMI only. 

The modified version of the Glasgow program displayed an improved 

(and near perfect) repeatability of approximately 98% and would 

almost certainly have had the effect of increasing the reproducibility 

of the type A statements in the 410 patients previously investigated 

by Machado.

M ethod 2 4  hrs apart 1 min apart Artificially split

n
[330 Day 1 

66Ck
[330 Day 2

f249 Min 1 
[249 Min 2

f330 odd samples 
660^

[330 even samples
Repeat­

a b ility ^ ) OLD NEW OLD NEW OLD NEW

Overall 81 8 8 89 95 92 95

Type A 89 95 93 98 96 98

Table 9.1  Summary of results

A brief summary of results can be seen in Table 9.1. 

Throughout, the percentage of ECGs which were in agreement from 

day to day was lower than that observed in ECGs which were 

recorded in the space of several minutes and in ECG recordings 

which were artificially split into two. This was to be expected given 

that there was more potential for external sources of variation, such 

as the removal and replacement of electrodes, to contribute to lack of 

repeatability. The repeatability of statements relating to Type A 

conditions, in this case LVH and IMI only, was greater in all three
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cases than that observed when ST changes were also considered. 

This would suggest that the agreement in diagnoses relating to ST 

abnormalities is a particularly problematic area requiring further 

research.

9 .4  FUTURE DEVELOPMENTS.

There is still scope for further developments in the repeatability 

of computer assisted interpretation of the electrocardiogram.

This study has dealt with only three diagnostic categories of the 

Glasgow ECG Analysis program and has not, for example, 

considered the repeatability in the diagnosis of anterior myocardial 

infarction. Also, many of the 5% of pairs of minute-to-minute ECGs 

which demonstrated inconsistencies did so as a result of LVH scores, 

Q wave indices or indices of Inferior ST depression lying close to the 

boundary values. Increasing the size of the database of ECGs over a 

period of time may result in alternative cutpoints being suggested 

which could have the effect of improving repeatability even more. 

However, it is important to note that the selection of optimal 

cutpoints will always remain problematic, with training datasets 

suggesting values which may not work as effectively in subsequent 

test sets.

The computer assisted interpretation of the ECG is clearly an 

invaluable diagnostic tool. However, this study has demonstrated that 

the technique is not perfect, especially in terms of repeatability. 

Methods have been developed in order to address the problem of lack 

of repeatability and the results are encouraging. It only remains to 

point out that similar techniques ought to be applied to other areas of
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the Glasgow program and it is likely that overall repeatability will be 

further enhanced.
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APPENDIX

In order to implement the smoothing techniques which have been 

developed in this thesis, it was necessary to re-write sections of the 

diagnostic Fortran code. This task required several thousand new lines of 

code and the following small examples serve as illustrations for the three 

sections of the program which have already been adapted.

A) The following section of Fortran code calculates the contribution 

to the new smooth LVH index made by the amplitude of the R wave in 

lead V5 or lead V6.

estld=(la(l l).and.la(12))
rmaxv5=max(iabs(meas(jra, 1 l)),iabs{meas(jrda, 11))) 
rmaxv6==max(iabs(meas(jra, 12)),iabs(meas(jrda, 12))) 
sd5=sqrt(1024.0+(13.8*rmaxv5)) 
sd6=sqrt(0.64+( 13.8*rmaxv6)) 

c***» set Up fae continuous limits for RV5/RV6 **** 
lvhlim{l,agep,4)l)==(59.77-0.01089*age)**2 
lvhiim{2,agep,4,l)=(47.654-0.00273*age)**2 
lvhlim(l,agep,4,2)=(47.664-0.000315*ager*2 
lvhiim(2,agep,4,2)=(37.115-0.00904*age)**2 
if{.not.estld.or.agep.le.5) goto 140 
vara=exp((rmaxv5-{lvhlim(sexp,agep,4,racep)-sd5))/sd5) 
varb~exp((rmaxv5-(lvhlim(sexp,agep,4,racep)+500-sd5))/sd5) 
varc=exp((rmaxv5-{lvhlim(sexp, agep, 4, racep)+1000-sd5))/sd5) 
vard=exp((rmaxv5-(lvhlim(sexp,agep,4,racep)+1500-sd5))/sd5) 
vare=exp((rmaxv6-(lvhlim(sexp,agep,4,racep)-sd6))/sd6) 
varf-exp((rmaxv6-(lvhlim(sexp, agep, 4, racep)+500-sd6))/sd6) 
varg=exp((rmaxv6-{lvhlim(sexp,agep,4,racep)+ 1000-sd6))/sd6) 
varh=exp((rmaxv6-(lvhlim(sexp,agep,4,racep)+1500-sd6))/sd6)
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c**** calculate the new smooth idscore ****

305 idscor 1 -  2*(vara/( 1 +vara))+(varb/( 1 +varb))+(varc/( 1 +varc))-t-
(vard/(l+vard))

306 idscor2=2*(vare/(l+vare))+(varf/( 1+varf))+(varg/( 1 +varg))+
(varh/(l+varh))

B) The relevant Fortran coding for the calculation of the new 

smoothed ST index can be seen. This new ST index is subsequently used 

in the identification of ST changes.

c**** initialise and calculate ST Index for I,II,III,AVL,AVF,V5,V6 **** 
do 10 i= l,7  

stscor(i) = 0 
varvl(i) = 1
varv2(i) = sqrt(sig(i)-+-taw(i)*abs{meas(jsta, 1(1)))) 
vara(i) = exp{{-100+varv2(i)-meas(jsta!(i)))/varv2(i)) 
varb(i) -  exp((-50+varv2(i)-meas(jsta,I(i)))/varv2(i)) 
varc(i) = exp((0+varv2(i)-meas(jsta,l(i)))/varv2{i)) 
vard(i) = exp((0-meas(jsts,l(i)))/varvl(i)) 
vare(i) -  exp((meas(jsta,l(i))-(60-varv2(i)))/varv2(i)) 
varf(i) = exp((meas(jsta,l(i))-(80-varv2(i)))/varv2(i)) 
varg(i) = exp((meas(jsta,l(i))-(100-varv2(i)))/varv2{i)) 
varh(i) * exp((meas(jsts,l(i))-0}/varvl(i)) 
vari{i)=3*(exp((meas(jsta,l(i))-(100-varv2(i)))/varv2(i)) 
partl(i) = -((vara{i)/( 1 +vara(i)))+(varb(i)/{ 1 +varb(i)))+

(varc(i)/( 1 +varc(i))))*(vard(i)/( 1 +vard{i))) 
part2(i) -  ((vare(i)/(l+vare(i)))+{varf(i)/(l+varf(i)))+

(varg(i)/{ 1 +varg(i))))*(varh(i)/( 1 +varh(i))) 
part3(i) = (vari(i)/{ 1 +vari(i)))*(vard(i)/( 1 + vard(i))) 
stscor(i) = (partl(i)+part2(i)+part3(i))

10 continue
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C) Finally, a small section of the new Fortran coding for the 

identification of inferior myocardial infarction is given.

660

Set up the new smooth Q1 to QE4 ****

do 660 i-1 ,7
qql(i) « ((pta5(i)*ptjl{i))+pta6(iHpta5(i)*ptjl(i)*pta6(i)))*

(ptb3(i)*ptil(i))
qq2(i) * ((pta5(i)*ptjl(i))+{pta4(i)*ptj3(i)Hpta5{i)*ptjl(i)*

pta4{i)*ptj3(i)))*{ptb5(i)*ptil(i)>
qq3(i) = (pta3(i)*ptj l(i)*ptb4(i)*pti 1 (i))
qq4(i) = ((pta2(i)*ptj3(i))+(pta4(i)*pth2(i)Mpta2(i)*ptj3(i)*

pta4(i)*pth2(i))*(pth 1 (i)+ptg 1 (i)-(pth 1 (i)*
ptg I(i)))*(ptb2(i)*pti2(i))

qqel(i) = (ptc5(i)*ptkl(i))+{ptil(i)*(l-pte2(i)))*ptd2(i)*
(ptgl(i)+pth2(i)-ptg l(i)*pth2(i))

qqe2(i) = ((ptc5(i)*ptkl(i))+(ptc4(i)*ptk3(i))-(ptc5{i)*ptkl(i)*
ptc4(i)*ptk3(i)))*(pti l(i)*( l-pte2(i)))*ptd4(i)*

(ptg l(i)+pth2(i)-(ptg l(i)*pth2(i)))
qqe3(i) = (ptc3(i)*ptkl(i))*ptil(i)*(l-pte2(i))*ptd3(i)*

(ptg l(i)+pth2(i)-(ptg l(i)*pth2(i)))
qqe4(i) = ((ptc2(i)’*,ptk3(i))+(ptc4(i)*pth2(i))-(ptc2(i)*ptk3(i)"

ptc4(i)*pth2(i)))*pti2(i)*( l-pte2(i))*ptd l(i)*
(ptg l(i)+pth2(i)-(ptg l(i)*pth2(i))) 

continue
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