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SUMMARY

The aim of this thesis is to explore algorithms for solving the following

constrained optimisation problems :
Problem(a):

J
" Maximise a criterion ¢ (p) subject to the constraints > p, =1; 0 < p, < 1."
i=1

In particular we consider cases in which ¢(p) =% {M(p)} where ¥ { e} is a

standard design criterion (e.g. ¢- or D-optimality) and M(p)=V PV’

J
= 3 pvi, Vis kxJ design matrix and P = Diag(p,, Py, Psses ) -
i=1

We also consider the following non-standard design problems:
Problem(b):

[aM*(pb ]

"Maximise ¢,(p) =~ a'M™(p)b] or 9,(p =T e T e k]

J
subject to the constraints Y p, =1,0< p, < 1" wherea,be % *.

i=1

We call these two criteria the covariance and the correlation criterion

respectively.

Problem(c):

"Maximise a standard design criterion, ¢(p), subject to a zero covariance

J
conditionand Y p,=1,0< p, < 1"
i=1




Summary i1

Chapter 1 provides an introduction to the area of optimum experimental
design for the linear regression design problem with parameter vector 6. This
problem seeks to obtain a best inference for all or some of the components of 6
by making the dispersion matrix of their estimates small in some sense. In this

chapter we summarise the main criteria used for this purpose.

Chapter 2 studies a class of multiplicétive algorithms of the form
J

p =pPrd.8)! 3 plfd;,8), indexed by a function f(d,6) which
J=1

depends on the derivatives of the criterion ¢(p) and a free parameter & for
solving problem(a). The performance of the algorithm is investigated in
constructing D-optimal designs under optimal choices of the parameter J , and in
constructing c-optimal designs starting from difficult initial designs, using an
optimal and fixed value of the parameter & . The work for this chapter has

appeared in Torsney and Alahmadi (1992).

Chapter 3 considers the covariance and correlation criterion of
problem(b). The only property we know of these criteria is homogeneity in the
weights p of degree -2 and zero respectively. This type of criterion differs from
the standard optimality criteria such as c-, D- and A-optimality criteria . It may
have negative first partial derivatives. An explicit solution has been found for the
optimal weights and the optimal value for the covariance criterion when the
number of design points equals the number of parameters i.e J = k, while in the
case when J >k we have explored a new version of the above algorithm for

dealing with this type of problem .

Chapters 4 and 5 are concerned with the solution of problem (c).




Summary iv

In Chapter 4 we consider the case when the number of design points

equals the number of the unknown parameters € . In this case we find a class of
designs which guarantees zero covariance. Zero covariance is guaranteed under a
transformation of the design weights p to two or three sets of variables each of
which forms a probability vector. We wish to maximise standard design criteria
with respect to these weights . This yields an extension of problem (a) of
Chapter 2 to that of maximising a criterion with respect to two probability
vectors and we use a natural extension of the algorithm used for that problem .
For the above mentioned results the efficiencies of the restricted optimal design
under the zero covariance constraint relevant to the unrestricted optimal design

has been calculated .

Chapter 5 considers the case when the number of design points exceeds
the number of the parameters. Using a Lagrangian approach, the problem is
transformed to one of simultaneous maximisation of two functions of the same
probability vector each of which is maximised at the same value of this vector

and have a common maximum of zero. This yields another extension of

problem(a).

Chapter 6 summarises the results obtained in the preceding chapters as

well as giving an indication of future work that could be done.

L
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CHAPTER ONE
MOTIVATION

1.1 Optimum Linear Regression Design

The concept of optimum regression design arises when an observable

univariate variable y has probability model p(y/u(x), 6, ) which depends on:

(1) A column vector 8=(6,6,,...,6,)' of parameters which are fixed but

unknown to the experimenter. The true value of 8 is known to belong to a

set @ € R,

(2)  The quantity x represents a vector of control variables. It can be chosen
by the experimenter, its value being restricted to the space y, where ¥
will be often a closed compact set of Euclidean space of some dimension

called the design space. Typically it will be continuous but can be

discrete.

(3) o is a nuisance parameter; this also is fixed and unknown but is not of

primary interest.

(4)  The vector u=u(x)={f(x).f,(2),..../;(x) }" where the functions

f(x), i=12,... .k are of known bounded form.

no
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The regression is linear when the model is linear in the unknown
parameters § but not necessarily linear in x. So the linear model will be of the

form:

E(ylu60 )=u'8 (1.1.1)

Now our aim is to select, say n, values of x from the design space y to
obtain as good an inference as possible for all or some of the parameters 6. The

basic problem is: at what x-values should these observations be taken?.

Such a selection of x-values from the design spacey is termed a design or

regression design. We wish to choose them optimally i.e. use an optimal design.

Suppose the model (1.1.1) is true. Let y, denote the observation obtained

at x, so that

Ep)=u'0 . w={fG) L&)} .i=L2..,n

and suppose the observations y,y,,...,», are taken to be uncorrelated and of

n

equal variance . The y,s then satisfy the standard linear model:
E(Y)=X8 , D(Y)=06’l (1.1.2)

where ¥ =(y,,....7, ), Xisthe nxk matrix whose (i, )tk element is f,(x,),

I, is the n xn identity matrix and D(Y) denotes the dispersion matrix of Y.

The least squares normal equations for the model (1.1.2) are of the form:

(X'X)8 = X'Y (1.1.3)
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So if the full parameter system 6 € © is of interest, then the selection of

X must at least insure that the matrix (X‘ X ) is non-singular, in which case the

unique solution for (1.1.3) is given by:

6=(xx)"xv (1.1.4)

with E(Q)=9 and D(é)=0‘2(X’X)_I, where E(é) , D(é) are the expectation

vector and the dispersion matrix of 8 respectively.

Clearly the dispersion matrix of 6 does not depend on 8 and only depends
proportionately on the parameter ¢°. We have to select x which makes the
matrix D(Q) as small as possible, namely an x which makes the kxk matrix

(x*X ) large in some sense.
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1.2 Discretizing The Design Space

Recall from the previous section that the linear model of formula (1.1.1) is
E(y/u8o)=u'0 (1.2.1)

where u = { f,(x), £,(x),..., £, (x) }'. Clearly choosing a vector x in the design

space yx is equivalent to choosing a k-vector v in the closed bounded & -

dimensional space V=/f(x), where f is the vector valued function
(s forees fo )'. Thus there is no loss of generality and considerable notational

convenience in replacing (1.2.1) by
E(ylv60 )=v0 (1.2.2)

where veV={vyv=[f(x), £,(z).... fi(x) J.xex }. So from now on we will

refer to V as the design space. Typically this design space is continuous but we

can assume that V is discrete. An explanation for this will be given later on in

this section.

Suppose now that the discrete design space V consists of J distinct

vectors v, v,,..., ¥,. Then the basic linear model is
E(ylv00)=v'0 .yeV={v,v,..p, } (1.2.3)
Suppose we can take n observations. We must decide how many of these,

J
say n; (non negative integer ), to take at v,, Zn]. =n. Given these choices the
j=I

matrix (X‘X ) can be expressed in the form

X'X=M(n) (1.2.4)
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J
where M(n)= Y nyv, =VNV' (1.2.5)

and V = (21 Iy_2 ... |y,) , N =diag(n,,n,,...n, )

We now want to choose n to make the matrix M(n) big in some sense.

Given that the #;s must be integer this is an integer programming problem and in

the design context is described as an exact design problem.

However
M(n) =nM(p) (1.2.6)
J
where M(p) = ) p,v,¥, (1.2.7)
=1

=V PV (1.2.8)

’ J
and P = diag (p,, ps-.. 0, ) pj-—-n%.Notethatpjzo, ij. =1
j=1

Our problem becomes that of choosing p to make the matrix M(p) large

J
subject to p; = n% . Relaxing the latter to p;, 20 and Z p; =1 yields an
J=1
approximate design problem.
Note we can view p as defining a probability distribution on V to yield

M(p)=E,[vy' ] (1.2.9)

where P(v=v, )=p,.
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Definition (1.2.1) Design Measure:

The collection of variables of the form

[21 2 Yo s ¥y ]
Pr Pz seees Dy
is called a design, while p is called the design measure, in that it assigns weight

or probability p; to the vector v; € V, where

J
Yp,=1,0sp S1, j=12.,J.
i=!

Definition (1.2.2) Support Of A Design Measure:

The support of the design measure p in the design space V is defined to

be those vertices y; with non-zero weighting under p. We denote it by Supp(p ).
Often there will be an optimal design, say p* such that Supp( p* ) is a strict

subset of V. Notationally
Supp(p)={v;eV:p;>0} ,j=12..J
Properties Of The Matrix M(p):

(a)  The matrix M(p) is a non negative definite symmetric matrix. The

symmetry of this matrix follows from its definition (1.2.6), and the

nonnegativeness of the appropriate quadratic form is easy to verify:

xM(p)x=xE[ vy Jx= E[x'vv'x ]

=E[ (x'v)'] 20
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(b) Let M = {M(p):p is any probability measure on V }. The set M is the

convex hull of the set { v ¥' - veV }. Note that if p, is the probability

measure that puts unit weight at the point ve V, then M ( p,) =vy see

Silvey (1980).
The third property is given by the following theorem.
Theorem (1.2.1) ( Caratheodory's Theorem ) :(see Fedorov 1972)

Each point M of the convex hull M * of any subset (4 of n-dimensional

space can be represented in the form:

n+l n+l

M= Yau , Yo,=1,0,20,u€l,j=12..,n+1

Jj=1 j=I
. . *
If M is a boundary point of the set M  then «,,, can be set to zero.

To see the importance of the above theorem we note that each M e M has

at least one representation of the form:

1=

where v, eV ,I=12...L and L < {[k(k+1 )/2 ]+1 }. Also by the same

theorem if M is a boundary point of M, the inequality involving L can be
strengthened to £ < {[k(k+7 )/27] }.

Thus we have that any continuous design measure and in particular any
continuous optimal design measure can be replaced by at least one finite discrete
probability distribution, and so we have an explanation for having initially

assumed V discrete.
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1.3 Design Criteria And Their Properties

As we have seen, it may be possible to obtain a best inference for all or

some of the unknown parameters 6 € © by making the matrix M (p) large in

some sense. So we consider various ways in which we might wish to make the

matrix M (p) large, namely by maximizing some real valued function
¢(p)=@{M(p)}. Note that the function ¢ is called the criterion function,

and in turn, the criterion defined by the function ¢ is usually called ¢-optimality.

A design maximizing ¢(p) is called a ¢-optimal design.
1.3.1 case(1):

In this section we consider the case when we are interested in all the
unknown parameters 6 € @ of the linear model (1.1.1); that is all the parameters
68,,0,,...,6, are important. We want to make the matrix M (p) large in some

sense. The matrix M (p) must therefore be non-singular and hence positive

definite. We shall consider four criteria.
(I) The D-optimality Criterion
The D-optimality criterion is defined by the criterion function:

0,(p) =log{ det[ M(p) 1 } =—log{ det[ M(p)]" } (1.3.1)

If we assume normality of the errors in the linear model (1.1.1), then the

general form of the joint confidence region for the vector of unknown parameters

0 € @ is described by an ellipsoid of the form :

{ (-8 )M(p)(8-8) < constant },
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where 8 is the least squares estimate or the maximum likelihood estimate of €.

The D-optimality criterion chooses M (p) to make the volume of the above

ellipsoid as small as possible because it is the case that this volume is

proportional to {det[ M(p) ] }"”. The value of log{det/{ M(p) ] } is finite if and
only if M(p) is non-singular i.e. when all the unknown parameters are

estimatable. This is the celebrated criterion of D-optimality, the most extensively
studied of all design criteria; see Ford(1976), Shah and Sinha(1989), Atkinson
and Donev(1992).

Properties of ¢,(p) = ¢,{M(p)}:

(@) ¢, is an increasing function over the set of positive definite symmetric

matrices. That is for M, M,e M then ¢,(M,+M, )>¢,(M,) where M

is the set of all non negative definite symmetric matrices.

(b) ¢, is a concave function of the positive definite symmetric matrices. That

is for every € (0,1) and M, , M, e M
oL oM+ (I-a)M, ]2 ae,(M,)+(I-a)e,(M,), 0Sa<1.

Note that: if M, M,e M then we can say that ¢, is strictly concave,

where M+ ={MeM:det(M) # 0 }; see Ford(1976).

(c) ¢, is differentiable whenever it is finite, and the first derivative is:

9% _

viM ™ (p)y, (1.3.2)
p, 0

(d) ¢, is invariant under non-singular linear transformation of ve V.
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The invariance property of this criterion can be easily seen to

follow from formula (1.2.6) for M(p). Suppose V={v,v,...v, } is
transformed to @ = {w,w,,...,w, } under the linear transformation
w,=Hv, , where H is a &~k matrix. Then a design assigning weight

p,; to w; has design matrix
M,(p)=W PW' =H V P V'H'

where V, W are respectively &k xJ matrices whose j# column is v, w,.

Then o, M, (p) J=1log{ det{ M, (p) ] }
=log{ det{ HV PV H 7]}

=log{ det(V P V') xdet(H)’ }

=log{ det] M(p) ] }+log{[:det(H)]2}

=¢,[ M(p) ]+ constant
(II) The A-optimality Criterion:
The criterion of A-optimality is defined by the criterion function:

9,(p) =~Trace[ M7 (p)] (1.3.3)

Hence an A-optimum design seeks to minimise the sum of the variances
of the least squares estimators or their average variance (A for average ) but does
not take correlations between these estimates into account. This criterion was

considered by Elfving (1952) and Chernoff(1953).
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Properties of ¢,(p) = ¢, {M(p))}:

(a) @, is an increasing function over the set of positive definite symmetric

matrices.

(b)  ¢,isaconcave on M and strictly concave on M _; ( see Ford(1976)).

(c) ¢, is differentiable whenever it is finite, and the first derivative is

9%, _
P,

viMZ (p)y, (1.3.4)
(III) The G-optimality Criterion:
The G-optimality criterion is defined by the criterion function:

9;(p) =—Maxy'M™ (p)y (1.3.5)

This criterion seeks to minimise the maximum of v'M~(p)v which is
proportional to the variance of V0. Kiefer and Wolfowitz(1960) prove the

equivalence of this criterion and the D-optimality criterion.
Properties of ¢,(p) = ¢,{M(p)}:

(@) ¢, is an increasing function over the set of positive definite symmetric

matrices.

(b) o, isconcave on M and strictly concave on M . ( see Ford (1976)).
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() @, is invariant under a non-singular transformation ofy e V. To see this

consider the same linear transformation mentioned in this section for D-

optimality. Then

05(M, (p)) = —Max w'M,™ (p)w,

=—Max(Hv) (HVPV'H')" (Hy),

Hyso

= —Moxy'H' (') (Vv P V)" HHy,

yeH o

=—Maxy'M(p)” v,

=0; (M (P))

(d)  Suppose that uniquely viM™(p)y, = Maxy,M™(p)y,, then ¢, has unique

partial derivatives corresponding to positive weights, namely

% =[um (p)v,]

Otherwise ¢, is not differentiable.
(IV) The E-optimality Criterion:
The E-optimality criterion is defined by the criterion function:
0,(p) =~ [ M(P)]" =1, (1.3.6)

where A, [ M( p):]_l denotes the largest eigenvalue of M7 (p) (see Kiefer

(1974)).
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Properties of ¢,(p) = ¢ {M(p)}:

(@) ¢, is an increasing function over the set of positive definite symmetric

matrices.

(b} ¢, is a concave function over M and strictly concave on M _ .

() Let (A4,4,...4 ), 4,, denote the eigenvalues and the maximum
eigenvalue of M(p) respectively. If A is unique then ¢, has unique
partial derivatives corresponding to positive weights. Otherwise ¢, is not

differentiable.

1.3.2 case(2):

In this case we shall assume that the experimenter is interested only in
some of the unknown parameters or some linear combinations of the parameters

of the linear model (1.1.1).

Suppose we are interested in s linear combinations of the parameters

6,,6,,...,6,, namely those s linear combinations which are elements of the

vector A'Q, where A’ is an sxk matrix of rank s<k. In particular when

A=[1:0] where I, is the s xs identity matrix and 0 is the s x (k —s) zero matrix,

then in this case we are interested only in estimating the first s parameters
6,.6,....,6, of 6 O,

Now if M(p)e M_ then the variance matrix of the least-squares
estimator of A'6 is proportional to the matrix A'M™(p)A. But if M(p)eM .,

i.e. if M(p) is singular, then the basic requirement for estimating the vector A'8

is that the range space (column space ) of A is in the range space of M(p) which
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results in the invariance of the matrix A'’M~(p)A to the choice of generalised

inverse M~ (p) of M(p) (see Graybill (1983), Theorem(6.6.9)).

Note that a generalised inverse of a matrix M is defined as any matrix M~

satisfying the condition M M~ M =M. This generalised inverse exists for each

matrix M, but it is not unique except when M(p) is a square non-singular
matrix, in which case M~ =M~ uniquely. A particular example is when
M~ =M"*, where M* is the Moore-Penrose generalised inverse [some authors
call it the pseudo inverse of the p-inverse (see Seber(1977)) ] which satisfies

three more conditions, namely: M'M M*=M" and symmetry of
(M*M) and (M M*).

So a good design will be one which makes the matrix A‘’M~(p)A as small
as possible among M(p), since the variance matrix of the least-squares estimator
of A'@ is proportional to A‘'M~(p)A. For this purpose we will consider three

alternative criteria.
(1) The D,-optimality criterion :

Sibson(1974) defined the Dj-optimality criterion by the criterion

function:
9s(p) = —logdef A'M™ (p)A] (1.3.7)
Properties of ¢,(p) = ¢, {M(p)}:

(@) ¢, is an increasing function over the set of positive definite symmetric

matrices.

(b) @, is concave on M and strictly concave on M, .
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() ¢, has unique partial derivatives corresponding to positive weights,

namely

%Qizij' (p)A[A‘M“ (p)A:I_]A’M” (p)y;, .p, > 0.(see Appendix 1).
p.

/

These derivatives are invariant for any generalised inverse M~ (p) of

M(p) if v,, j=12..7 and A are in the column space of M(p) (see

Graybill(1983), Theorem(6.6.9) and corollaries(6.6.9.1) ,(6.6.9.2) ).

‘_, Note that if A =[1.:07] and we partition the matrix M (p) as follows:

M M S
M | M 12
(P) |:sz M,, |k-s
s k-s

then the matrix (A’M‘ ( p)A) can be expressed of the form:
(M, ,—M, ,M; ,M.,)" see Rhode(1965) ,Torsney(1981).
So maximizing ¢, in this particular case is equivalent to maximizing
0, (p) = logdet(M, , —M, ,M; ,M ,)

which is known as the Dg-optimality criterion (see Karlin and Studden (1966),

Atwoo0d(1969), Silvey and Titterington(1973), Silvey(1980)).
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(II) The Linear Optimality Criterion :

The linear optimality criterion is defined by the criterion function :

9,(p) =—Trace[ A'M™ (p)A] (1.3.8)
Properties of ¢,(p) = ¢, {M(p)}:

(@ ¢, is an increasing function of the set of positive definite symmetric

matrices.

(b) ¢, is a concave on M and strictly concave on M 4

() ¢, has unique partial derivatives corresponding to positive weighis,

namely

%q;-M-(p)AA'M-(p)z,, p, > 0.

J

Note that ¢, is the particular case of ¢, corresponding to A=7 and also
the case A=c, where ¢ is a kxI vector, corresponds to another standard

criterion known in the literature as the c-optimality criterion. This is of the form
9s(p) =—c'M"(p)e. (1.3.9)
(ITI) The E ,-optimality criterion :
The criterion of E,-optimality is defined by the criterion function:

95 () = Ay A'M™(p)A] (1.3.10)
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where 2, denotes the largest eigenvalue of the matrix A'M™(p)A; (see

Pazman(1986).
Properties of ¢,(p) = ¢, {M(p)}:

(@ @, is an increasing function over the set of positive definite symmetric

matrices.

(b) @, is concave on M and strictly concave on M .+ (see Ford(1976).

(c)  The differentiability properties of this criterion are similar to those of E-

optimality; see section (1.3.1),




CHAPTER TWO

Further Development of Algorithms for Constructing
Optimizing Distributions

2.1 Introduction

2.2 Optimality Conditions

2.3 A class of Algorithm

2.4 Properties of Proposed Algorithm

2.5 Construction of Optimal Designs:Empirical Results

on Convergence

2.6 Tables




CHAPTER TWO

Further Development of Algorithms for Constructing
Optimizing Distributions

2.1 Introduction

In Chapter (1) we introduced the design problem which seeks to maximise

J
one of the criteria ¢,(p) subject to the constraint 3 p, =1, 0 < p, < 1.
i=1

For some design problems it may be possible to obtain an explicit solution
for the optimal weights. But in general this will not be possible and iterative

numerical methods of solving design problems are necessary.

In this chapter we are going to study a class of algorithms, indexed by a
function which depends on derivatives and a free parameter (say ¢ ) for a
constrained maximisation problem which requires the calculation of an

optimizing probability distribution.

The performance of the algorithm is investigated in conmstructing D-
optimal designs under optimal choices of the parameter,d , and in constructing c-
optimal designs starting from difficult initial designs ,using an optimal and fixed

value of the parameterd.

First we must establish conditions of optimality .It helps to consider the

following general problems ,of which the design problem is an example .
20
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Problem (P1):

J
" Maximise a criterion ¢(p) subject to the constrainis  p, =1; p, = 0."
(=1

Problem (P2):
" Maximise W (X) over the polygon whose vertices are the points

G(v,),G(vz),...,G(vJ), where G(e) is a given one to one function and

V={v,v,.,v,} is a known set of vector (or matrix ) vertices of fixed

dimension. That is solve (P1) for:

o) =w{E[6WT, x=E[6()] = Zp, ()"
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2.2 Optimality Conditions:

We concentrate on Problem (P2) and define optimality conditions in terms

of point to point directional derivatives.

2.2.1 Directional Derivatives :
Let Fx Y, =w{(1-&)x+&v}

af(X,Y,&)

E;,(X,Y)= ag

=§i5r;-é~[w{(1—€)X+<§Y}—w(X)]

&=0"

I°f(X,Y,£)

F(Z)(X Y)— 852

£=0t

F,(X,Y) is known as the directional derivative of Y(e) at X in the

direction of Y ; see Whittle (1973). This derivative may well exist in the absence

of differentiability of ¥(e) but we will in general wish to assume such

differentiability which implies that

E (X,Y)= (Y—X)'%U=Trace|:(Y X)" %} (2.2.1)

We call F a vertex directional derivative of ¥(e) at X where

F =F{X G(v,)}. It ¥(e) is differentiable, then so is the function ¢(p) =

w{£[G(v)]} and

¢
F=2T_
J @Uj

s do
— (2.2.2)
27
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2.2.2 Condition for Local Optimality :

If ¥(e) is differentiable at X' =Ep.{G(v)}, then ¥(X") is a local

maximum of ¥ (e) in the feasible region of problem (P2) if

=0 if p;>0
E =E{x,6(v,)} W
<O p;=0
F;(z):__EI{Z){X*’G(Vj)} <0 if p; >0 (ii)

(2.2.3)

See Whittle (1973) for a proof. If ¥ (e) is concave on its feasible region then the

first order stationarity condition (2.2.3) (i) is both necessary and sufficient for a

solution to problem (P2). This of course recovers the General Equivalence

Theorem.




Chapter 2 Further Development of Algorithms for Constructing ... 24

2.3 A Class of Algorithm:

Problems (P1) and (P2) have a well defined set of constraints, which are

that the variables p,, p,, ..., p, must be positive and sum to 1. An iteration

which preserves these and has respectable properties is

Py = pf(d, 8)1 ép.-""f (d, ) (23.1)

d¢
OP; | pept?

where now d; =

; , while f(d, d) satisfies the following conditions:

@ f(d8)>0.
(b)  f(d,0) = constant= 0.

¢)  f(d,8) is strictly increasing in d for some set of §-values, say § > 0.
(d)  The variable 0 is a free parameter.

This type of algorithm was first proposed by Torsney (1977), taking
f(d, 8)=d 9 with 8>0. Subsequent empirical studies include Silvey et al
(1978), which is a study of the choice of § when f(d,8) =d°, and Torsney
(1988), which mainly considers f(d,8) = ¢®? in a variety of applications,
including estimation and image processing problems. We continue these

investigations exploring other choices of f (d,8) for which an approximate

optimal finite 6 can be determined.

Of course other iterations for problems like (P2) have been proposed.

Vertex direction algorithms which perturb one p, and change the others
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proportionately were first proposed by Fedorov (1972) and Wynn (1972). These

are useful when many of the p, are zero at the optimum as happens in design

problems . At the other extreme, when all p; are positive at the optimum or when

it has been established which are positive, constrained steepest ascent or Newton
type iterations may be appropriate. See Wu (1978) and Atwood (1976,1980) on
these respectively. It is in a context intermediate to these, when only a few
optimal weights might be zero that iteration (2.3.1) is to be recommended in its

raw form. See Torsney (1983) for further discussion of this.
2.4 Properties Of Proposed Algorithm:

2.4.1 General Properties:

Under the conditions impose on f(d, §), iterations under (2.3.1) possess

the following properties:

(@)  p"is always feasible, since p”are normalized.

(b) F;( pY, p*) >0 with equality when d, corresponding to nonzero p,

are equal, in which case

(r+l) __ pf('r)f(dj’a) _ p}")f(dj,a) e 7))
pj Y (r) - e (r) R
>ps(d,8) f(2,8)Lp

then ﬂ(p(”) ) p(rn)) =F¢(p(”,p")) -0 .

The property of this inequality can be seen by letting a positive random

variable Z take the value d¢ / op; with probability p; ( p; = p}" ) Then
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(©)

Ep(}’m* p(r+1)) _ (E(rm ) E(r))' d (2.4.1)

ipff(df’ 5) d’i J
- = - 3¥p d, (2.4.2)
fépjf(dj’ §) o

(£p,(d,8)d) - (Sp, 4) ($p,/(d,8)
3 p,/(d,5)

(2.4.3)

E(p", p™) = coZ f(2,8)1/ELf(2,6)].

If 7(Z, &) is increasing in Z it must have nonnegative covariance with Z.

This result implies that an increase in the criterion can be obtained by

stepping from p® to p“*’ though it does not guarantee that

o(p) = o(p").
Under the above iteration Supp(p**) < Supp(p®).

An iterate p"is a fixed point of the iteration (2.3.1) if the derivatives
op/ @9}” corresponding to nonzero p}” share a common value, This is a
necessary but not a sufficient condition for p*” to solve (P1) or (P2). Thus

in view of the conditions for (local) optimality, a solution to (P2) is a
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fixed point of the iteration but so also are the solutions to (P2) for any

subset of V, see Torsney(1988).

) Let g(8) = F(p(”, p"*). Then from (2.4.2)

é;lp,f(d}., 8)d,
g(5)= =7 -2 d
jgjpjf(d,-ﬁ) 7=

and then

(50,0, )(50,174)~(50,4,4)(5,17)
g/(5) — = j=1 . j=12 j=1
( ,):1 r,f)

where f; =£,(8,d) and f/ =9f;(8,d)/03

(ép,ﬁ)(épjj;dj-f{)—(gm )(ijfj:
) ( é P, )’

(zp,f,di (59,1, 4)(En,1; & L)
_ 5 7

(gpfﬂ) (gp,-ﬁ)‘?

J f7 J J Nt
= (39, 4,2~ (5q, d)(3q, L)

j=zq /; f=1q jzﬂq f;
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o g'(8) = Cov(D,G) (2.4.4)
where
G- (D, 8) /(D) _ 9 f(D,8)]
do ’ ad

and D is a random variable taking the value d, with probability g,

_nfld,8)
5p.f(d, )

i=1

J

2.4.2 Properties Of Specific Cases:

2.4.2.1

To begin with we consider the two choices of the functions f (d,8)=d°

and f(d, 8) = e*® together. These share two properties, namely :

. : , o % .
(a)  If there is a unique maximum derivative at p, say d, = X then in

s | p=p™

the case of f(d, &) =¢*’:

&d,

= lim-——
) J

—eo Zp‘ eﬂd(

i=l

lim p“*?

Freo
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e
.pj ed,) ] {f s =J
e J ed,» . .
Z §2 (eds) 0 if s#]
i=1

So p"*? —e, as & -» oo, where e, is the s” unit vector.

And similarly for the function f(d, §) =d°.

(b)

g(8) = F ( P, p“*”) is nondecreasing in 8. The first property is trivial.
In respect of the second we note that the function G(D) of section 2.4.1
(e) is given by G(D,8)=In(D) and G(D,8)=D in the two cases

respectively. Both are increasing functions and  therefore
g’(8) =Cov[D,G(D,8)] 20.

Note care must be taken in interpreting the latter . In the optimal design

context the vector e, corresponds o a single point design. For a number of

optimal design criteria qb(es) = —oo, The implication is that for such criteria

iteration (2.3.1) is unlikely to be monotonic and possibly not convergent if § is

large. In fact non-convergence occurs under the following combinations:

(p;(p) = li]}pf , f(d,5)=d6, S =2;
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6(p) = X p S8 =d, 5=2/(t+1);

~

¢ (P) = ij 1n(]9,-) , f(d,5)=e'sd, 6 =2

Jj=1
In each case iterations oscillate between two values unless the initial value is the

optimizing p°, whichis p° =-§— for each ¢ (p)

In contrast this optimum is attained in one step from any initial p if
8= 1, 1/(¢t+1), 1 respectively in the three examples. An implication would
seem to be that iteration (2.3.1) would be convergent if not monotonic at least for
§<1,8<1/(t+1), § <1 in the three examples respectively. For large & we
recall that property (b) in section 2.4.1 only guarantees an increase in the
criterion if we take a small enough step from p’ to what we have defined to be
p*. This would mean a different formula from (2.3.1) for the next iterate. If
we adopt such a method, property (b) suggests taking 6 = e . The revised

iterative rule would then be a vertex direction one but not a steepest ascent

method since F,(X,Y) depends on the distance between X and Y. Constrained

steepest ascent techniques choose directions which maximise normalised

directional derivatives .
4,2.2

We again consider two cases of /(d, 8); namely f(d,8) = In(e+8d)
and f(d,8) = F(8d) where F(x) is increasing in x and bounded above so that

it must have asymptote as x —eo. Examples include cumulative distribution

functions. In these examples the following is true:
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@@ p = p" as § o eo;
() g(&) is maximised by some finite & , say &° .

The first is again trivial. It implies that g(ee)=g(0)=0 since F(p, p)=20.
Given that g(5) 2 0 from 2.4.1 (b), property (b) follows.

It is a possibility then that convergence, if not monotonicity are obtained

for any &. An optimal choice might be the 6" of (b). In general there is no

9

explicit formula for 6" in terms of p*’ and d = =~ , {terms on which it must

P p=p"

depend ), but we. can suggest an approximation to it in the case of

f(d,8)=F(3d). Recall that g’(8) is a covariance between a random variable D
and G(D,8) where G(D,8)=dIn[ f(D,5)]/95. Thus g’(8) is likely to be
zero if 8 is such that G(D, § ) has a turning point in the range of d, , d,, ... , d,.

Now

36(d,5) _ I {ar(a.8)198}11(8)] 321 /(d, ]

= — L (2.4.5)
and for f(d, 6) = F(&d)

O _ a5 LI

&= d F(8d) and 36/f—dF (8d)/ f (2.4.6)

Then from (2.4.6) the derivatives (2.4.5) will be of the form

36(d,8) F(8d){d8F(d 8)+F (8d)}-{8d [F'(8d)]}
od [F(8d)]
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7 224 4 2
_F (6d)+5dF (64) 8d[F (5d2)] (2.47)
F(5d) F(5d) [F(8d)]
Now
w ]
le¢ x=6d and H(x) =M
od
then (2.4.7) will be of the form
’ a4 / 2
H(x):_F(x)+xF (x) x[F'(x)] (2.48)

F(x) F(x) [F(x)J?

Let H(x") = 0. A possibly simplistic suggestion is to approximate 6" by

J
& =x"1 ( b d,.) or by corresponding terms based on other moments of the
i=]

d's .

t

We focus attention on this choice of § in the next section .
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(2.5) Construction of Optimal Designs: Empirical Results on

Convergence:
(2.5.1) Construction of Optimal Designs:

We report the performance of iteration (2.3.1) in calculating D-optimal

designs when f(d,8) satisfies the conditions of section (2.4.2.2) and

525 i $p.a)

=1
Optimal regression design problems are examples of (P2) in which
(1) V c%* andis called the (induced ) design space.
@ G =w'
(3) X is a symmetric k xk matrix.

(4 A variety of criteria ¥(e) have been considered including

¥ (X ) = In[ der(X )] which is the D-optimality criterion.

We calculate D-optimal designs for five examples considered by Silvey et

al (1978) and Wu (1978). The examples are defined by their design space:

xample (1); V=V ={(1-1-1),(4-11),(L1-1),(122)}
Emmﬂ-&;— V= 1/2 = {(]’ —]’ _])f, (], _]’ 1)1’ (Ir _Z, _'])l’ (]’2’ 3)‘}

Example };  V=V,={(1-1-2).(L-11).(11-1),(122)'}
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Example @):; V=V, ={(11-1-1), (-1 1-1), (L -1 -1-1), (1,22 -1)
(1,22-1),(L1-11),(L-L511),(L-1-12)" }
Example G): V =V, =V, U{(11151)'}.

In Tables (2.1) -(2.3) we report the number of iterations needed to
achieve max F, <107,n=1234 under three choices of f (d,8) namely,

f(d,8)=1nle+8d); f(d,6)=¢"/ (1+¢%) (Logistic Distribution Function)
and f(d,8) =c—e?, ¢>1. Forc closeto 1 the last choice of 7(d,8) is close
to an exponential cumulative distribution function. It is clear that on the whole
convergence is slow in terms of number of iterations. However arguably it is fast
to begin with. It must be remembered too that at each iteration only first

derivatives are required. One marginally positive result is that convergence is

faster under the case f(d,8) = c—e™* with ¢ = 1.0001.

Convergence was slower for large values of ¢ . Interestingly if c =1 and & is

small then f (d,6 ) = 8d. Tterations are then approximately those under
F(d,6)=d. This suggest that f(d,0)=d is an efficient choice for D-

optimality criterion. Certainly it is known to be monotonic for this criterion.

(2.5.2) The convergence of The Algorithm

We have not addressed the topic of convergence of iteration (2.3.1). So far
only isolated results have been established in the literature, and mainly on

monotonicity. Titterington (1976) describes a proof of monotonicity of

7(d,8) =d in the case of D-optimality, while Torsney (1983) establishes a
sufficient condition for monotonicity of f(d,6)=d°,8=8,=1/(t+1)
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when the criterion ¢(p) is a homogeneous function of degree —¢ , r >0 with
positive derivatives. He further shows this condition is satisfied by linear design
criteria such as the c-optimal and A-optimal criteria. For these ¢ =1 so that
6, =1/2. Also the case f (d,8 ) =d sometimes proves to yield EM iterations
which are therefore monotonic and convergent. See Dempster et al (1977). The
EM algorithm is known to have notoriously slow convergence. This also seems
to be the case with iteration (2.3.1). Silverman et al (1990) proposed a smoothed
version of the EM algorithm to improve convergence in stereology and emission
r tomography problems, but convergence per se has not been proved. This too is
} the case with iteration (2.3.1). The extent of the difficulty is emphasised by the
fact that Gaffke and Mather (1990) prove convergence of a wide class of

algorithms for design problems but they cannot fit iteration (2.3.1) into their
class. Of course convergence results depend on properties of the criterion ¢(p),

on the function (4,8 ) andon c.

We believe that if ¢ is sufficiently small convergence and probably monotonicity
will be assured in a wide range of problems. Certainly this happened in many

examples .

In the absence of analytic progress we report some empirical results

obtained when f(d,8) =d"? for constructing c-optimal designs under fairly
testing conditions. The form of this criterion is —¢'X ¢ for a given vector ¢.
Pukelsheim and Torsney (1990) report that there always exists a c-optimal design
with a linearly independent support and given the support points there is an

explicit solution for the optimal weights i.e.




J 2
and optimal value for the criterion ¢'X ¢ = (Z |17,.|] (5.2.1)

i=1

where n=(XX')"X c.

This combines results of Feliman (1974) and Kitsos et al (1988). Moreover
iteration (2.3.1) with 7 (d,8 ) = d"? will find this optimum in one step, starting

from a design which assigns weights only to the optimal support points. More

generally if an initial design }_7('” has a linearly independent support, this

particular case of iteration (2.3.1) will identify the c-optimal design on this

support in one step.

Consider ¢ =(1,2,3)" in examples 1,2 and 3. In each case V contains
four points, say v,, v,, v,, v,.If v,, v,, v,, v, represent the four design points
of example (1), then the support of the c-optimal design is {v,, v,, v,} with
optimal weights p* = {0.072, 0.214, 0.714} . In example (2) the fourth point
is the only optimal support point. Finally if v,, v,, v,, v, represent the four
design points of example (3), the optimal support is {v,, v,, v,} with optimal

weights p* ={0.2, 0.2, 0.6 }.

We started iteration (2.3.1) with f(d,8)=d"? from various initial
designs E(‘” , which put small weights on at least one of these support points.
These included permutations p = (e, &, a, B), p© =(a, @, B, B) and
P = (e, B, B, B) with B<107. At the first iteration the algorithm
irresistibly moves immediately towards the optimal design on the subset of
points receiving weights o. However the algorithm slowly moves away from this

and converges to the optimum. The numbers of iterations needed to achieve
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max F, <10™",n=1234 are recorded in Tables (2.4)-(2.8) for these three

examples. Similar results were found in the other two examples.




Chapter 2

Further Development of Algoritluns for Constructing ...

38

(2.6) Tables :

In the following three tables we report results when using three choices of

f(d,8) with §=8" =x*/(:\jp,. di) (see section (2.4)) in examples 1-5 to
i=1

calculate D-optimal designs. In particular we record the number of iterations
needed to achieve max F, < 10™,n=1,2 3,4 for all j=12,...,J whereF, are

the vertex directional derivatives. We note that 6 = 8" =x" /( i )22 d,.) =x"/k
i=1

,(see Appendix 1 ), for D-optimality criterion when V < %" .

TABLE (2.1)

f(d,0)=1Inle+4dd)

Example n=1 n= n= n=4
1 6 25 50 75
2 6 41 89 141
3 6 24 45 66
4 18 121 339 714
5 13 190 488 880
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TABLE (2.2)

F@,8)y=e%/(1+¢%)

Example n=1 n= n= n=4
1 7 29 57 86
2 7 48 101 161
3 6 28 52 76
4 20 139 388 815
5 15 217 557 1004

TABLE (2.3)
fd,8)=c—-e%, c=1000!

Example n=1 n= n= n=
1 1 7 14 22
2 3 13 27 43
3 2 7 13 19
4 6 39 109 229
5 5 61 157 283
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Chapter 2

In the following five tables we recorded the number of iterations needed

to achieve max F, <10™,7=1,2,3,4,5,6 for different initial designs 2 in the

case of f(8,d)=d®,d8=1/2 .
TABLE (2.4)

P(0)=(0(., o, B! B) , |3=10—12

n=1 n=2 n= n= n= n=6
Example(1) 16 19 23 26 29 33
Example(2) 4 6 7 8 9 11
Example(3) 4 14 23 32 41 51

TABLE (2.5)
P =(a,B, B, o), p=10""

n=1 =2 n= n= n= n=
Example(1) 8 11 15 18 21 25
Example(2) 2 2 2 3 3 3
Example(3) 11 21 30 39 49 58
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TABLE (2.6)
P=B,0,o,p),p=10"

n=1 n= n= n= n= n=6
Example(1) 30 33 36 40 43 46
Example(2) 4 5 6 8 9 10
Example(3) 3 6 13 24 33 43
TABLE (2.7)
P"=B,B,a,qa),p=10"
n=1 n= n= n= n= n=06
Example(1) 3 4 5 9 12 15
Example(2) 2 2 2 2 2 2
Example(3) 26 36 45 54 63 72
TABLE (2.8)
PO=(a.B.a.B) . p=10"
n=1 =2 n= n=4 n= n=6
Example(1) 13 17 20 23 27 30
Example(2) 4 5 7 8 9 10
Example(3) 5 15 24 33 43 52
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CHAPTER THREE
Covariance and Correlation Criteria

3.1 Introduction:

* In chapter one we introduced the main criteria in an optimal design

; problem ie. ¢,(p), i=12,..,9. These criteria have the following common

properties:
(@) ¢ is a concave function on the set of positive definite symmetric matrices.

(b) ¢ is an increasing function over the set of positive definite symmetric

matrices.

The choice of the criterion depends on the aim of the experimenter. If the
experimenter is interested in all the unknown parameters § € @ € RY, he or she
can choose one of the criteria ¢,(p),i =1,...,4, but if the experimenter is
interested in s ( linear combinations } of the unknown parameters , then criteria

¢.(p),i = 5,..,9 serve this purpose.

In this chapter we are going to study two new criteria (first discussed by
Torsney (1988) ) with the aim of estimating one or more of the unknown
parameters as independently of the others as possible. Thus we wish to make
numerical covariances or correlations between the relevant parameter estimates

as small as possible e.g.
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J
maximize ¢,(p)=-[a'M (p)b] subjectto 0<p <1, ¥ p.=1 (.1.1)
i=1

where gand b are given vectors in %, and

M(p)=VPV', V kxJ design matrix, P=diag(p,,p2,...,pj), and M~ is any
generalised inverse of M. For estimation of a'8, b'6 (which seems desirable in

this context ) we require that the range space (column space ) of the vectors

aand b are in the range space of M. This guaraniees invariance of a'M~(p)b

to the choice of M~ .See Graybill (1983) corollary (6.6.9.2) ;

or maximize

laM (p)b]
a'M(p)a][p'M (p)b]

J
¢, (p) = T subjectto 0<p, <1, Y p,=1. (3.1.2)
i=1

We call ¢,(p) and ¢,(p) the covariance and the correlation criteria
respectively. These seem to be new criteria except if @ < b, when the covariance

criterion is equivalent to a c-optimal criterion and the correlation criterion is
constant. The covariance and c-optimal criterion are likely to have similar

properties. One difference is that its derivatives can be negative. These are

%fi =2(a'Mb)(@M v, )(v\Mb) (3.13)

and also in the case of the correlation criterion the derivatives will be of the form
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(a'M ) (e'm )  (aM a)

i‘;p—¢P(p){2(Q’M—B")(E"'M_Q) ay,) (QIM_B"’)} (3.1.4)

3.2 Simplifying the Covariance Criterion in the Case of kxk
Design Matrix:

Suppose that M (p) is non-singular. Then the covariance criterion will be

of the form:
0.(p) =-[a'M” ()b

={a(v Pv)"b] since M=V PV

=[av Py p]={(va) P (v7B)]
={ePd]

wherec=V7g and d=V"'b

Then ¢c<p>=—[ e o} 321

=1 P

k
where ¢*(p) = Z%

i=1 i
Clearly from (3.2.1) when the number of design points is equal to the
number of unknown parameters we can write the covariance criterion as a square

of a linear combination of the reciprocals of the weights. Also the value of the
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criterion depends on the sign of cd, , i = 1,2,...,k. There are two different cases

i 2

to distinguish :

(@) Whenallcd, , i =1,2,...,k have the same sign an explicit solution can be
found for the optimal weights p,, i =1,2,...,k as we shall see in the next

section.

(b)  When cd, , i =1,2,...,k have differing signs the criterion ¢, (»)can be

set to zero. We will discus this case in detail later on in Chapter four.
3.2.1 Explicit Solution

Suppose cd, >0, i =1,2,...,k ,hen in this case we can get an explicit

solution for the optimal weights (p,, i =1,2,...,k ) as follows :

i=1 P,

From (3.2.1) ¢.(p)= _[EE&} ,

then by taking the first derivatives for ¢ (p) with respect to the weights
p;» i=1,2,...,k we find:

a¢ ( k cd.jc.d.
e = g ‘ (3.2.2)
P, Zz p)p

But from the optimality conditions we know that at the optimum:
9. _ v, 99 |
@J’ %‘ ! @ J

See Whittle (1973).
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Then from (3.2.2) and (3.2.3) we get

ij ”5;},— _ i{p}(#c}dj 5 p”

J=1 i=]

= —2(5_: ﬁj(i‘ C—‘dLJ and then

J=1 Pj =1 P;
cd, cd, cd, (k cd.J
-2 A A it =41 = i
(Z; )2 ] »; [2; ?; j(Z; »; ] P; 2 ,.
Thus ‘=cd, /2( ], i=12,..,k (3.2.4)
Py

and by taking the square-root of (3.2.4) we get

k
But since p, >0 for i=12,...k and ) p, =1, then

i=l

pi={Jle.al/ ;\j[l J /i Je al/ Z[ ’ JJ =12,k
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L L S RN (3.2.5)

So p" are the optimal weights for the criterion ¢, (p) and by substituting

from (3.2.5) in (3.2.1) we get

2 2
: d. - 4 C-d. k
c*( *)=""‘ C'* —— Ihad] d
¢, (p { = p } {:’:1 Ic,d,-l X é; IC] Jl}

=_{ ¥ |C,_d,.|} (3.2.6)

i=1

which is the maximum value for ¢ (p ).

A similar explicit result would be possible if the support consists of s

linearly independent points, s < & , as happens for the c-optimality criterion. See

Pukelsheim and Torsney (1991) .

Note that when all cd, <o, i =1,2,...,k the optimal weights p* and the

maximum value for ¢_( p) are similar to that in (3.2.4) and (3.2.5) respectively.
As an example for this case, consider the quadratic regression model
E(p)=6,+8,x+0x" , 1sx<2 .

and suppose we are interested to estimate the unknown parameter O, as

independently of 6, as possible. Thus we want to maximize the criterion

0.(p) =-[a'M (p)b] witha=(1,0,0) b= (0,0.1) .
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Suppose the optimal support points are {/, x,, 2} ,I1<x, <2, then the

design matrix will be of the form

1 1 1 ; 2x,(2-x,) xi-4 2-x,
V=1 x, 2| = V‘1=( ] -2 3 —1
1 xt 4 x,(x,-1) I1-x2 x,-1

det(V)

where det(V)=3x,-x.-2 .

1 1
h —_— —_— —_— —_— = — — a—
then ¢ det(V)[2x0(2 x),=2x,(x,-1)] . d det(v)[(z x,),=1,(x, = 1)]
and then
1Y )
Qd:(det(V)) [Zxa @2-x,)°,2,x,(x,-1) ] (3.2.7)

Clearly from (3.2.7) all the cd, , i =1,2,...,k are greater than zero, then

by substituting from (3.2.7) in (3.2.5) we find the optimal weights and their

support point which are recorded in the following table:

Support points 1 Xy 2

(x, —D4fx,

Optimal Weights / 2%,(2-1x,)
W

=[S

where w = (2—x,)\[x, +4/2+(x, - D)/x, .
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In order to find the third support point x,,by applying Newton-Raphson

method (see Nielsen 1964), we have to find the first derivative of the criterion

¢.(p") = { [24x, 2=x,) + V2 + x, ( 1)]} (3.2.8)

det(V)

such that = (; the optimal value is found to be x, = 1.5 .

g, (p")
&

a

Similarly , for the same model we can find another example for which all

the cd, , i =1,2,...,k are less than zero by taking ¢ = (0,1,0)" and b = (0,0,1)".

This means we are interested in making the numerical covariance between

6, and 0, as small as possible. Using the same procedure for the above example

we find

Support points 1 Xy 2

Optimal Weights (2—x,) W ﬁ (x,~ 1) \/m
W W W

where w = (2—x,)yJ2+x, +4/3+(x, +1)\/x,+1 and the third optimal support
point is x, = 1.5.

In fact we can deduce what the optimal designs are for design intervals of

the form [ ¢,2c],¢ > 0 in view of the following result .
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3.3 The invariance of the Covariance and Correlation
Criteria Under Specific Choices of ¢ and b:

Suppose each of the vectors gand b have exactly one non-zero
component, say, a,and b, respectively; ij=1,2,...k, and suppose the design
space V = {vl s Vyseens ¥, } is transformed to (D = {w, , W, ,...,w, } under the
transformation W =D V,where D =diag(d,.d,,...,d,). Then the design

assigning weights p, to w, has the design matrix
M, (p)=WPW'=DVPV'D

and M (p)=(DVPV'D)” =D (VPV')"D” = DM (p)D~, where V,W

are respectively k x.J matrices whose jt4 column is v,,w,. Then
¢.(p,) = -[a' M (p)b] =-[aD"M} (p)D"'b]
=—|:(d,.‘1d;’ )a' M (p)lg]z since @'D™ =d;*a',b'D” =d;'p’,
= ~(a7d7) x[a' M (pb]
=¢_(p) xconstant .

Similarly, for the correlation criterion we find

{a M} (pb]
a' M; (pa)lb' M (p)b)
(a7a) [a' M7 (pp]
—_— > x d
(a7 @) " (a M7 (p)a)(b' M7 (p)b)

¢p(pw)=(

=¢,(p)
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3.4 Algorithm:

To find optimal designs we will use a version of algorithm (2.3.1) i.e.

P = pf(d,8)
i - J
> py 1(d,.5)
Jj=

, i=12,...,J (3.4.1)

Since the covariance and the correlation criteria can have negative

derivatives we need a choice of /(d,8 ) which is defined for negative d. Indeed

this was the main reason why Torsney (1988) considered choices of f (d,8)

such as ¢?“. In its conception algorithm (2.3.1) was evolved for standard optimal
design criteria which have positive derivatives and f (d,8) =d® proved to be a
natural choice for particular values of &; in particular =1 for D-optimality and &

=1/2 for c-optimality yield monotonic iterations .See Torsney (1983).

Since the covariance and correlation criteria are design criteria we have

explored the use of

(1+d)" if d >0 3
f(8.d,) = where d, = 9 (3.4.2)
(‘Z"di)—a if d <o @ji ee”

in finding designs which optimise them.
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3.5 Examples and Discussion

In this section we consider some examples with the aim of maximising the

J
covariance or the correlation criteria subject to Z p,=1and 0 < p, <1 by using

i=]

the algorithm (3.4.1) under the choice of f(d,0) defined in (3.4.2).
Example (1):

This an example for the covariance criterion in the case of the quadratic

regression model:
E(p)=0,+0x+0x° , x €[12].

we are interested to make three numerical covariances between the
parameters 6 = (6,, 9,, 8,)" as small as possible i.e. by using different choices
of the vector a, namely, a=(1,0,0)

b = (0,0,1) always.

, a=1(0,1,0) and g = (-1,1,0)" while

In all these cases we find the optimal support points, namely

supp(p') ={1, 15, 2} and corresponding optimal weights which are recorded

in the following Table:

Table(3.1) optimal weights (p" ) aM(p)p | 9,
a=(1,00) 0.2994 0.4889 0.2117 133.875 -0.9392
a=(0,1,0) 0.2705 0.5009 0.2286 -191.326 -0.986
a=(-1,1,0) 0.2826 0.4957 0.2217 -325.56 -0.970
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In the following tables ( 3.2 to 3.4) we record for different choices of

a and b the value of delta () which attained max F; </ 0~ in the smallest

number of iterations when p” assigns equal weight to J equally spaced points in
[1,2] for J =21, 11, 3 respectively. Also recorded the number of iterations

needed to achieve max F, <10™,n=12,3,4.

Table(3.2) a = (1,0,0)' and b =(0,0,1)' a'M”(p")b=133.875

S p(") n=1 n=2 n=3 n=4
.95 1/21 265 374 384 444
.9 1/11 77 92 107 122
%) 1/3 2 2 2 2

Table(3.3) a=(0,1,0) and b=(0,0,1)) a'M™*(p")b=-191.328

S p“” n=1 n=2 n=3 n=4
.95 1/21 285 345 405 465

.9 1/11 82 98 113 128

%) 1/3 2 2 2 2

Table(3.4) a = (~1,1,0)" and b= (0,0,1)" a'M™(p")b=-325.56

S p n=1 n=2 n=3 n=4
95 1/21 312 371 431 491
9 1/11 89 104 120 135
) 1/3 2 2 2 2

See figures (3.1 to 3.9) for plots of number of iterations needed to achieve

max F, < 10~ against 6 ,0<86<1.
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Example(2)

This is another example for the covariance criterion in the case of the

model E(y) =0,x +8,x"? +6,x* which describes the relationship between the

viscosity y and the concentration x, 0 <x <.2, of a chemical solution. This

stems from a practical problem reported by Torsney (1981). Interest was in the

same choices of @ and b as in the last example.

We find that the optimal support points in all these cases are the same for

each choice of gand &,

corresponding optimal weights are as follows:

namely, supp(p’)={.02, .12, .2} and the

Table(3.5) optimal weights (p" ) aM(p )b | 90
a=(1,0,0) 0.4233 0.4050 0.1717 -38565.6 -0.889
a=1(0,10) 0.5089 0.3468 0.1443 6909.34 -0.650
a=(-1,1,0) 0.4365 0.3959 0.1675 45649.5 -0.857

In the following Tables (3.6 to 3.8 ) we report the same information as in
tables ( 3.2 - 3.4 ) for J equally spaced points in [0.02,0.2] for J = 19,10, 3.

Table(3.6) a = (1,0,0) and b=(0,0,1) a'M™(p")b=-38565.6

S p(") n=1 n=2 n=3 n=4
95 1/19 637 747 821 889
.9 1/10 131 145 158 170
5 1/3 2 2 2 2
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Table(3.7) a =(0,1,0) and b=1(0,0,1) a'M™(p*)b=6909.34

S p¥ n=1 n=2 n=3 n=4
95 1/19 313 353 393 433

.9 1/10 88 98 110 120
] 1/3 2 2 2 2

Table(3.8) a=(-1,1,0) and b=(0,0,1) a'M™(p")b=45649.51
S Y n=1 n=2 |n=3 n=4
95 1/19 603 668 734 809

.9 1/10 128 141 154 168
] 1/3 2 2 2 2

See figures (3.10 to 3.18) for plots of number of iterations needed to achieve
max F, <10~ against 6 ,0<d<1.

Example(3):

Finally, we consider the cubic regression model E(y) = 6, +6,x +6,x° +0,x°,
x € [1 27] as an example for the covariance criterion under different choices of
the vector a, namely, a =(1,0,0,0) , a=(0,1,0,0) a=(~I,1,0,0)" while
b =(0,0,0,1) always.

In this example the algorithm converges to the same four support points

for each choice of gand b , namely , supp(p')={1, 1.2, 1.8, 2} and the .

corresponding optimal weights are as follows :

Table(3.9) optimal weights (p" ) am(p e | )
a=(1,0,0,0) 0.2237 | 0.3403 | 0.2778 | 0.1582 | -3373.012 | -0.9320
a=(0,1,0,0) 0.2099 | 0.3332 | 0.2899 | 0.1670 | 7231.389 | -0.9689

0.2144 | 0.3354 | 0.2860 | 0.1642 | 10609.01 | -0.9586

a=(-1,1,00)
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In the following Tables (3.10 - 3.11) we again report the same information

as in Tables (3.2 -3.4) for two choices of J .

Table(3.10) @ = (1,0,0,0)' and b= (0,0,0,1) a'M™(p*)b =-3373.011

S p“’) n=1 n=2 n=3 n=4

95

1/11

927

1.40

1152

1258

5

113

2

2

2

2

Table(3.11) a =(0,1,0,0)' and b =(0,0,0,1) a'M™(p")b =7231.38
V4

S p(‘” n=1 n=2 n=3 n=4
.95 1/11 959 2195 | 2409 2634
%) 1/3 2 2 2 2

Table(3.12) a =(-1,1,0,0)" and b= (0,0,0,1) a'M™(p")b=10609.01

S p(") n=1 n=2 n=3 n=4
95 1/11 1608 1787 {1960 2228
%) 113 2 2 2 5

See figures (3.19 to 3.24) for plots of number of iterations needed to achieve
max F, <70~ against § ,0<8<1..

Example (4)

This is an example for the correlation criterion for the same model and

same choices of vectors ¢ and » mentioned in Example (2).

The optimal support points and corresponding optimal weights are

recorded in the following table:
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Table(3.13) 7, 0, 0)

I
I

(0, 1,0) a=(1,1, 0)

1N
]

supp(p*) | 0.02 | 012 | 02 [ 002 | 014 | 02 | 002 ] 012 | 02

P 0133 | .9845].0022 | .0158 | .9810 | .0032 | .0132 | .9849 | .0019

9, ( »") -0.8155 -0.5537 -0.7755

Clearly from Table(3.13) algorithm (3.4.1) converges to three design
points under the three choices of g and b. These designs have the unusual
feature of one large weight corresponding to the middle support point and small
weights for the other end points. Also the convergence is slow in terms of the
number of iterations. This would seem to be due to a combination of small
weights and zero homogeneity of the correlation criterion. The latter implying
zero partial derivatives at the optimum corresponding to the positive optimal
weights. This is because the partial derivatives and the directional derivatives are

equal under zero homogeneity.

o, 99
In general F=—f_Np—L  i=12.J
=, 2,

But since ¢, (p) is homogeneous of degree zero in the weights p then

Y

D p—=L=0x¢,(p)=0,i=12..J,
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Thus when the algorithm approaches what appears to be the optimum in this case
both derivatives and some weights will be small. Accordingly, proceeding from
p(?‘ ) IO p

improve the convergence in such cases, we might use /(d,8) = (I+s ad)*®

“* will only slightly change criterion and weight values .In order to

instead of f(d,8) = (1+sd)*’, for appropriate & .For example ,if the initial
weights are p,” =1/3,i =1,2,3 which puts equal weights to the support points,

then in this case convergence improves under the choice of

f(d,8)=(1+sad)”’ for ¢ =10" if max F,<10™n=12,3 compared to
the case of f(d,8) = (I1+sd)®; see Table(3.14).

For this criterion a common value of § =/ attained ,in all these examples,

maxFJ‘. < 107 in the smallest number of iterations, but the value of & which

attained maxF, <1 07 wvaried between examples. These are recorded in

Table(3.14) and Table(3.15).

Table(3.14) This table illustrates the number of iterations needed to achieve

max ¥, <I10™ in the case of f(d,6)=(I+sad)® for a=1 and
a=10"n=123.

=1 a=]02",n=1,2,3
a\ n 5 n=1 | n= n=3 o) n=1l | n=2 =3
a=00 | o7 | o 405 | o0 | 008 | o | 36 | =
=(0,1,0)
a=(0L0) 1 o | o |sa3|1as| 007 | o | 38 | s
6__1_"_“(_]!]!0)‘

.05 0 548 | 1222 | .007 0 42 59
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Table(3.15) This table illustrates the number of iterations needed to

achieve maij'. <107 ,n=12 for different value of & in the case

off(d,8) = (I+sad)*’ for a=1

a=(1,0,0) a=(0,1,0) a=(-1,10)
o\ n n=] n=2 n=1 n=2 n=1 n=2
0.1 0 284 0 272 0 274
0.2 0 142 0 136 0 138
0.3 0 95 0 91 0 92
0.4 0 72 0 68 0 69
0.5 0 57 0 55 0 56
0.6 0 48 0 46 0 46
0.7 0 41 0 39 0 40
0.8 0 36 0 34 0 35
0.9 0 32 0 31 0 >35
1.0 0 29 0 >31 0 >35
1.1 0 27 0 >31 0 >35

(3.6) The convergence of the algorithm :

From these results we note that for the covariance criterion algorithm

(3.4.1) with £(d,8) = (I+sd)’°, s=sign(d) converges to three design points
in the case of the quadratic model and the model mentioned in example(2) ,

while in the case of the cubic regression model it converges to four design points.
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Also  the number of  iterations  needed to  achieve
max F, <107™",n =1,2,3,4 depends on the number of points in the initial design
and on the value of §. For instance, if the initial design consists only of the
supporting points of the optimal design and if é =.5 then the optimal design may
be obtained in two steps. In contrast,when the initial design consists of J points
for J=11 or 21, higher values of &, namely, & =.9 or .95 respectively, attain
max F, <107 in the smallest number of iterations. In terms of the number of
iterations the convergence is slow especially in the case of the cubic regression
model when J =11, but it can be improved by setting weights to zero when
p; <€, and F <—-¢, forsomesmall €,€, or just when p, goes below a

fixed value € (=0.00001). Moreover f(d,8)=|d|"” would also attain the

optimum on one step in such circumstances in the case of our examples since
derivatives corresponding to positive weights share a common sign (see section

3.2).

Similar results have been obtained by Fellman (1989) for the c-optimality
criterion when f(d,8)=d’. In particular as noted by Torsney (1983)
f(d,8)=d" attains the optimum in one step for the c-optimality criterion
when the support points form a linearly independent set of vectors. Clearly

fd,8)=(1+sd)*°, s=sign(d) has similar effects .
1

We note finally that it would be unwise to take J to be too large a value in

(r+1)

view of the following the result that p"*’ — e as § — o where e, is the m"

99,

m p=pm

unit vector, assuming that d_= is a unique maximum derivative at

(r}

14
Proof:



-
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1+sd, st
s Pi\T+sd

. (I+sd. .
Iimpj"“’=hm Jp’( sd;) =lim ~— , s=sign(d)
0o G300 Zp‘ (]+Sd‘)35 Fdeo i _I+Sdl

=1 Pt P\ T+s d,
&

1+d, 1+d.
but L1 —0 as § >0, j#m since 0< L<lif all d >0

1+4d, 1+d,
and

1-d,\"°
( "J — 0 as § — oo, j #m since 0<

~< 1 ifall d, <0 ,and
1-4d, .

J

also

(1-4,)" ( 1

')
= —0 as d oo, j&m
(1+4,)° (1+dm)(1—dj)J /

since 0< ( < 1 if the derivatives have a mixture of signs.

1-d )(1+d,)

Then

» (1+sdj
: . Ni1+sd
lim p,"*" =lm > %n

S—roo

s
] 1 if j=m

o L (14sd )’ o '
pj-l-Zpi[ Sd‘) 0 if j#m

l.'l.#j ]+ S dm
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F; < 70~ against delta (0 <8 < 1) in the case of the

quadratic regression model when a = (1,0,0)" and b = (0,0,1)" .

Figure (3.1) p9=1/21
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F, < 70~ against delta (0 <6 <1 ) in the case of the

quadratic regression model when @ = (0,1,0)" and b = (0,0,1)" .

Figure (3.4) po=1/21
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F, <10~ against delia (0<8 <1 ) in case of the

quadratic regression model when @ = (-1,1,0)" and b =(0,0,1)" .

Figure (3.7) po=1/21
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F, <10~ against delta (0 <8 <1 ) in case of the

model E(y) = 8,x +0.x"* +0,x° when a = (1,0,0) and b =(0,0,1)" .

Figure (3.10) po=1/19
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F, <70~ against delta (0<86<1 ) in case of the

model E(y) =6,x +0,x"* +0,x* when a = (0,1,0)" and b = (0,0,1)" .

Figure (3.13) pP=1/19
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F, <70~ against delta (0 <8 <7 ) in case of the

model E(y) = 6,x +6,x" +0,x* when g =(~1,1,0) and b =(0,0,1)" .

Figure (3.16) po=1/19
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F, < 70~ against delta (0 < 8§ < 1) in case of the cubic

regression model .

Figure (3.19)
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The following figures illustrate a plot of the number of iterations (in log scale)

needed to achieve max F; <70~ against delta (0 <8 < 1) in case of the cubic

regression model .

Figure (3.22 pP=1/4 a=(1,0,0,0) and b=(0,0,0,1)
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CHAPTER FOUR

Maximize A Concave Criterion Subject To Zero
Covariance

4.1 Introduction

As was seen in chapter (3) the covariance criterion depends on the signs

of c¢,d, Vi, i=12.., k where the covariance criterion is of the form:

¢,(p) =—(aM"(p)b)° @4.1.1)

- _( jﬁ_‘?_) _ (4.1.2)

i=1 ]7 i

This cannot be zero if cd, >0 Vi or cd, <0 Vi ,i=12..,k, in
which case an explicit solution for the optimal weights p* and the maximum

value of the criterion can be found,

In this chapter we study the case in which zero covariance can be
attained. So we concentrate on the maximization of a concave criterion (e.g.

d., ¢, or ¢,) subject to zero covariance. We consider the case when the number

of the design points equal the number of the unknown parameters.
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4.2 Study Different Cases for Design Satisfying Zero
Covariance

4.2.1 Case (1):

A simple case which attains zero covariance is when one of cd,, say c,d,,
is greater than zero, one is less than zero, say c.d,, and the others are equal to

zero. So equating (4.1.2) to zero implies:

cd _ady
P P
= = (dek ]XPJ{
cd,
= p,=oap, where a=ckd/cld1 4.2.1)

Then there are many designs guaranteeing zero covariance. So we iry to find an
optimal choice for p,, p,,..., p, by maximizing another criterion (e.g. ¢,, ¢, or ¢)

with the aim of a good estimation of '@ and b'6

One possibility is ¢, with A =[aib]. Our aim in this case is to

maximize ¢, subject to zero covariance ie. when p, =ap, and

0<p, 1, Y p,=1,i=12,. k. Butsince ¢, is of the form
9, (p)=—Trace|:AM‘l (p)A’] , A'=[a: b]

= ~Trace[ A(vPV*) 4] | since M(p) = VPV"




-
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= —Trace[A((V')—1P']V")A‘:|

—-Trace[P“lV‘lA‘A(V’ )_l]
vy
L—ZI Pi

where n? is the diagonal elements of the matrix V'A‘A(V*)

substituting from (4.2.1) in (4.2.2) we find:

¢,(p) = —(LZIE?— + i)

pl Cg)l

k
Butsince ) 'p, =1, 0<p, <1 then
i=1

k-1 k=1
ap, +Zpi =1 = (I+a)p, +2P:’ =1

i=1 =2

k-1

(4.2.2)

~. Then by

Ifwelet g, = (I+0o)p, and q,=p, ,j=2,....,k—1,then } g, =1and
i=1

+Zn—‘

q, =2 4;

¢7(p)={(1+a)(nf+[nf/al) ?]




o
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-y (4.2.3)

where 717 =(]+a)[nf+(n,f/a)] , n}z =n7 ,j=12..k-1. Hence (4.2.3)

leads to the explicit solution for the optimal weights :

qg; =

n;|/ ( ZI,‘ | n; I) (4.2.4)

and the maximum value for ¢,(p) subject to zero covariance is:

o,(q") = w{‘ﬁ n }2 (4.2.5)

i=1
A second possibility might be to maximize ¢, 1.e.
maximize ¢,(p)=-cM™(p)c' withc=a+b subject to zero covariance and

k
Y p,=1,05p, <1.Following the same procedure as for the criterion ¢, we
i=1

again find that an explicit solution for the optimal weights exist and is of the

form:

g; =

/[f)j n;‘] , (4.2.6)

i=l

m

and the maximum value for ¢, is

0s(g°) = —{:\f ni} : (4.2.7)




where n = (]+a)|:nf+(nf/a):| = =12 k=1 and

=) j=12..,k

J
4.2.2 Equivalence of ¢, and ¢,:

In fact subject to zero covariance our two choices of ¢, and ¢, are
equivalent. A direct proof of this derives from the fact that if Cov(g‘é, ljé) =0

then (V~'¢) = diag(V*A'AV*) which leads to:

¢,(p) = ——Trace[AM" (p )A‘:I

= Zk,' Z—"=—Q‘M" (Pe = ¢5(p) (4.2.8)

where n°= (V"Q)g =a’z'ag(V"’A‘AV’) ,andc=a+b,A = [g_fl)_:l .

4.2.3 Case(2):

In this case we study the covariance criterion (4.1.1) when some of cd,

are greater than zero and the others are less than zero. So without loss of

generality suppose:

cd, >0 for i=12,...,n ;cd <0 fori=n,+1,...,k and let

eu‘ = Cfdz‘ . .
if i=12..,n
q{' = pi
Ji = =Copsj@uss
Wy = Puj

} if j=1,2,....,n, , n,+n,=k

So we can rewrite (4.1.2) as follows:
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n; ny f 2
0.(qw) =—(Z S Z—’—) (4.2.9)
- s=1 4 =1 W,
nl ny
where  g,w,>0 and Y g+ > w;=1.
i=1 =1
Clearly (4.2.9) can be zero if
Z‘&:Zf_J 4.2.10)

4 W

So there are many designs which will guarantee zero covariance i.e.

o, (Q,m) =(, and we try to choose g, w optimally for good estimation of

class of such designs is given by the following transformation:

eS
8 ‘g_

g, =—=tes | i=12..,n

(g w)—(gn) A 1
i

; L:'— , j=12..,n,

(4.2.11)

(a'6,b'8) by maximising another design criterion(e.g. ¢s, ¢, or ¢;). The complete
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4.2.4 Properties of the Transformation (4.2.11):

(1)  That transformation satisfies zero covariance, is clear by substituting from

(4.2.10) in (4.2.9) when we obtain:

i=l 1 i=] s=1 &8s

_ e /(n, &Hz i 4.2.12)
{(E)(32)F <

1z

LHS = "Zlﬁ= (Ze /Hg‘.‘i‘?)/zD

Similarly the RHS = 4.2.13)

El>
tl\lz

1

i

7

So (4.2.12) and (4.2.13) show that @(g, w) =0 .

n a2
(2)  The transformation satisfies the constraint Zq,. + Z w, =1, because:
i=1 J=1

i=1 s5=18s 1=

él:q,. +§wj = i[[giie—slu}#i[(lx}. 3 -“}é‘—)/z} =1

B) ¥ Y = ) h; =1 the transformation is injective (one-one). To see this

=1 j=1

recall from (4.2.11):

n

q,-=( Zf—J/z =g =(z q.-)/(z,'ﬂ

s=1 gs se=1 gs
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"

But since ) g, =1, then
f=1

2 ={(z Wi E )}/{[2 QJ’(ZEJ}

eS
— f‘]z x 2= 8 "‘L' ’ (4.2.14)
1 e ! 1
(Z wi) 24 24
=1 &5 J=1 J=1
and also similarly
B o= (4.2.15)

So (4.2.14) and (4.2.15) show that this transformation is one-one.

(4)  The criterion 4)[1 (5, h ) m(_, &):l under this transformation is homogeneous

of degree zero, since each ofg, and w; are homogeneous of degree zero in

both g and 4 i.e.

o glrgrn) w(rgin)]= 2" o[q(g 1) wlgh)] =9[glgt)wlgn)] for
any A > 0.

ny ny
This is the reason for invoking the constraints Z g = Z h=1.

i=1 j=1
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4.2.5 Case(3):

A final case which attains zero covariance is when some of the ¢, d; are

greater than zero, some less than zero and the others are equal to zero. This case
is similar to case(2) in this chapter but with extra weights r, corresponding to

zero ¢, d,. Without loss of generality suppose

c;d, >0 for i=12,.,n, ; ¢, d,,<0for j=12.

ny iyt

and ¢ d =0form=12,...,n,

nytratm nytnptm

Then the covariance criterion in this case will be of the form

n e ny f
o.| ¢ w.r P Mt s (4.2.16)
[q ] ‘1 ql j=1 W mZ- rm
e, =cd, c==Cp
where = } if i=12..,n ;f’ e } if j=12..,n,
i=pi Wj =pn1+j
0,=0 "3
and _p } if m=12..,n Zq,+2w +Zr =1 ,n,+n,+n, =k .
m — My tugtm =1 F;

As in case(2) a complete class of designs which guarantee zero covariance

is given by the following transformation:
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gizz_s
q, un3+l —s=los ) i=1,2,...,n1
Z
(gw.r)— (g hu) P "Zzi - (4.217)
W, =1 S h i=12...n
N ngtl z H J" 2 &y ey by
b, = U, m=12,..,n,

n n
where u, =Yg+ 3w, .
i1 i=1

This transformation has similar properties to the transformation mentioned

in case(2). In addition it is homogeneous of degree -1 for the criterion

¢[g (g_, b, . ) w(g, b, . ) r(u ):| with respect to .

Now after using the transformations (4.2.11) and (4.2.17), the original

problem changes to:

mn

Either: maximize ¢[Q(g,g), m(_, Q)] subject to .g, = ihj =1, or to
=1

J=m+l

"y ny nzt+!
maximize ¢[Q_(5_J_w,.j“ ),m(é_’:f_l,un,ﬂ ),c(z)] subject to 3¢, = Yk, = Yu, =1,
=1 Jj=1 m=1

gnh;and u, are greater than zero for i=12,...,n, j=12,.,n, and

m=12..n,+1.

Where ¢[g(<g, 1) wlg &)] and ¢[Q(&M,,3+,),w(&i_ﬂ,un;“ ),z:(z)] are one of the

criterions ¢, ¢, or ¢, under these transformations.
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Note that to distinguish between the optimality criteria ¢,, ¢, or ¢, and

these criterion under the above transformations we will use v, y, or y, instead

of ¢, ¢, or ¢,.
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4.3 Algorithm:

In Chapter 3 we described and subsequently used algorithm (3.4.1) for

maximising a criterion with respect to one set of weights p,, p,,....p,. That

algorithm was of the form
p}r+1) < pl” f(dj, 5) (4.3.1)

Where f (d .0 ) satisfied certain properties. In this problem we have two sets of
weights g,, i=12..,n, andh,, j=1..,n, and possibly a third set u,,

m=1,...,n,. A natural extension of this algorithm is:

. nlg"(r)fl~(d“’6) =121, |
Y8/ (d,.6)
s=1 ,n1+n2=k (432)(3)
W nzhf”fz(dﬂ"s)  j=12mm,
$407,(d8) (4:3:2)(0

and if necessary

u(r+1) —- u;(nr)fs (d3m,5)

m T ngH!

Zus(nr)fs' (d.?v ’ 5)
v=1

m=12,....n;+1

where f£,(d,.5) ,fz(dzj,S) and f,(d,, 8) satisfy similar properties to the

function f (dj, 8),and d, = v , dy = %—;—f—— andd, = oV . These derivatives
J

g, du

m

are of course given by:
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-l
& =\9q, N\dg )] = [\9w N9
, (4.3.3)
v _ w(dw) 24 )|, ¥|(2v ) Im
a hj s=1 aqs a hj t=1 a Wl (9 hj
where
oy I dy _ 9
—_——, :1,2 R, — = t:],Z IUTYS
&, " "M, B !
e boe te \dz
” R, R < |- . Rl e
99, [g'[ fJ = g’l [g'g,:gs) & for i=1,2,..,n
agi 22 o o
. g(_e_f) _[g e_sji_z_ |
54. : gf = s agf .
L= > Jor j#i
28, z

and

and also
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“e |\ dz
_gl_ 3 -
aH’i =[ &-Zlgs)[ahjj

where
84 Ny f n, f
= } N B S i
oh, (Z,: ‘J( hf] 2
and finally
%ﬂ’_ if m=12...,n,
v £
du )
m i e M, e
n gi Z — hl —+
\ s=1 g a "U < s=1 h, l{/
X + X if m=n,+1
2| a4, g; 9wm‘f ’
L
aw;, dw, aw,

The partial derivatives

i

similarly defined.

s and L-l=12..,n;5Lj=12..n, are
on an O ag 1 :
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4.4 Examples and Discussion:

This section will be devoted to a set of examples and we derive the
solution to some optimal design problems which can be calculated either

explicitly for case(1) or by using algorithm (4.3.1) for case(2) and case(3).

Example (1)

An example of case(1) is EX(1) considered by Silvey et al (1978) and
Wu (1978). The design space for this example is:

v={(t-1-1), (41 1). (1 1,-1), (1,2 2) }

We consider a=(1, 0, 0) ,b=(0, 0, 1). Then a subset of the

design space which satisfies case(1) is v, = {(], —-11Y.(1,1-1),(1,22) }

Values which emerge are:

cd=0(0.0625, 0.0, -0.1875 )"
_0.1875

o= =
0.0625
n° = (0.2656, 0.3906,0.0625)'

(4.4.1)

Then substituting from (4.4.1) into (4.2.4) and (4.2.5) we obtain a maximum
value for Y, of 2.2750 and for the optimal weights:

g’ =(0.83425, 0.16575 ), é)_‘ =(0.2086, 0.6257, 0.1657 )'.

Note that we get the same result for the criterion Y, in this example

since ¥, and v are equivalent (see section (4.2.2)).
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Example (2)

This is an example of case(2) for the criterion y,. We consider the

quadratic regression model:
E(y)=6,+0x+0x", xe[-B,B] .B=12345
and we choose A’ =[a, b] where a=(1, 0, 0) andb=(0, 0, I)".

We determined v ,-optimal design on (-, §) from among those designs
with three support points, two of them being the endpoints.
Weights and support points are recorded in TABLE (4.1). These designs

are not unique as can be seen from FIGURE (4.1) and (4.2), which are a plot

against x of the W, -criterion value of the optimal design on {8, x, B}.
Alternative designs are got by exchanging the weights on £ and changing the
sign of the third support point, as the following confirms:

From (1.2.8) the design matrix is of the form

1 1 1
M, (p)=V P V' ,where V=|x, x, x;
xi xl X2
Changing the sign of x-values is equivalent to using the design matrix
M,(p)=W P W'; W=DV, D=diag(1,-11)
Then M, (p)=(DV P V'D)” =DM, (p) D" .So in the case of criterion ¢,
Trace (A' M (p) A) = Trace (A' D™ M} (p) D™ A)==Trace( A' M (p) A).
since A'D?=A, D"A=Awhen q,=a,=0 whereA= {ag }
si=1,2and j=1,2,3.
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Corresponding results for the y-criterion are reported in TABLE(4.2).
Clearly from TABLE(4.1) and TABLE(4.2) these designs have the
unusual feature of one large weight and two small weights. In part this is due to

constraints imposed on them by the zero-covariance requirement e.g. in the case
B = I limits on these weights are: 0.001 < p, < 0.0199, 0.0028 < p, £ 0.7135

and 0.2666 < p, < 0.9997.

' Also from these tables, when f3 increases the value for the y -optimality
| criterion (v, , ¥, and v, ) is increased (see Figures (4.3) and (4.4)). A proof
" for this will be given later on in this section in the case of criterion ¥ ,. So the
optimal design whose support includes #f is optimal among all possible
symmetric designs on the interval [-B B]. Moreover, these designs seems
globally optimal since they have a higher criterion value than the best three point
designs on the interval [-o,y] subject to the endpoints being support points,

where [~a, y] <[-B, B]. See TABLE (4.4) and TABLE(4.5) .

There is no particular relationship between the middle support point and

the endpoints in the case of criteria ¥, but in the case of Y, if x is the middle
support point on [/, /] then Bx is the middle support point on [-f, ]. To see

( this recall from (1.2.8) that;

M,(p)=VPV' =DV ,PV/D=DM,(p)D

1 1 1 1 1 1
where V = |-8x, B V== (x,/1B) 1 ,
'Bz sz ﬁz 1 (sz /BZ) 1

D=diag(1, B, B°) and P=diag(p , p,, p).
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Then M, (p)=[DM, (p) D]" =D M, (p) D™
So Det[A' M, (p) A] = Det[A' D" M, (p) D™ A]

= Det[E A'M;! (p) AE], where EA' = A' D, E = Diag| 1,(1/ °) ]

=Det(E?) x Det[ A" M (p) A] =(#)xDet[A‘ M (p) AJ. (4.4.2)

Clearly there is an equivalence between V  -optimal designs on

{-B,x,, B} and {-1, (x,/B), 1} in that the points in these sets have

respectively the same optimal weights.

*
x.l

Moreover, x" = = x; =x B wherex",x, are the middle support

points on [7, 7] and [—f, B] respectively .

We note finally that the optimal values of gand & were determined by

algorithm (4.3.2)(a) with

8
(1+a,)° if dy20 (1+a,) if d,;20
d,,8)= AP and f,\d,,8)= NP
/4 ) {(l—dﬁ) *if dy<0 7:{ds9) (1-d,)" ¥ dz <0

and initial starting weights g'” =i, 2 =L where n,+n,=k; for
n

i=12..,n, and j=n,+1..,k.




During the iterative process the value of § was kept fixed. The program

was homemade and written in FORTRAN. The program has the possibility of

choosing the criteria ¥/ ,,y, or Y, .

The number of iterations needed to achieve
max F,<107";n=1234,5 andj=1,2,3 are recorded in Table (4.3) when finding

the optimal weights for the optimal support points in case of the criterion
v, and y, for those values of 6 which attain max F; < / 07 in the smallest

number of iterations. The number of iterations in the case of the criterion Y, are
4,5, 6, 6, 8 (when §=.32) which are the same for various . See Figures

(4.5),(4.6) and (4.11) for different values of §.

Example (3):

This is another example of case (2) for the criteria y,,y, and y,. We

consider the cubic regression model:
E(y)=6,+0x+0,x’+0,x°; xe[-B, 8], B=1234and 5.

and we choose A=[g b|wherea =(1,0,0,0) and b=(0,0,0,1)".

As in example (2) by using the same algorithm (4.3.2)(a), we determined

the ¥ ,-optimal design on the intervals [ -, ] from among those designs with

four support points two of them being the end points.

Clearly from TABLE (4.7) the y,-optimal design has symmetric support

points which puts small weights to the end points and large weights fo the middle

points. Explanation for the unusual feature of these optimal weights were given
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in example(2). The optimal design with symmetric support points seems to be

global since at the optimal the partial derivatives for the ¥, -optimal criterion are

equal i.e.
¢, «. 90, ..
o yp, S L j=12334.
op; ‘: p,
The number of iterations needed to achieve

max F,<10™;n=12345andj=12,3,4 are recorded in Table (4.9) when

finding the optimal weights of these particular optimal support points for those

values of & which attain max Fj' < 107 in the smallest number of iterations.

Figures (4.7) and (4.8) show the number of iterations for different values of §.

In the case of Y -optimality criterion we determined the optimal value for
the criterion ¥, of -33.97197 when J = 7 with support points -1, -0.35, 0.35, 1
and optimal weights 0.09806, 0.40194, 0.40194 and 0.09806. So from these
result we can get the optimal support points on the intervals [—f, ] for f8
=2,3,4,5 i.e. —f8, -0.35xp, 0.35x B , B and optimal value of (-33.97197/3° )
The proof for this is similar to that of example (2). The number of iterations

needed to achieve max F,<10™";n=12345andj=12,3,4 are 3, 4, 4, 6, 6

(when & =.63). See Figure (4.12) for different value of 8.

We note that these designs are symmetric. In fact this might have been

anticipated. To see this consider the symmetric four support points
{-B, —x, x, B}. Then the design matrix will be of the form:
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1 1 1 1

-8B —x x B )
|% B v i B , O<x<fB,B=123435.

_ﬁ3 _xj x3 ﬁ3
Hence
g=V"a=(De:(v))[—'?fﬁ(ﬁz—xz),Zxﬁj(ﬁz—xz),ZxW(ﬁ‘"~x"’),~2x3ﬁ(ﬁ“’"x2)]
and

-y _ 1 _ 2 _y? 2_y2) 2_42) 2y (B2 — 42
4=V p = s 2l =), 285 -2). 2B -°).25(p -27)]

and then

£4=( 1 )[4x"[3(,32—x2),4x,64(52—xz),

Det (v)? (4.4.3)
~4xf? (7 —x?),~x'B(B? - x* )]

Clearly from (4.4.3} the number of positive c,d, equals the number of the
negative ¢ d, i.e. n, = n, = 2, Moreover, ¢, = f,, e, = f,. For simplicity suppose
we reassign labels such that e, =/, for i=1,2. Tt therefore follows that a
symmetric design will gurantee zero covariance i.e. g, =w, , ¢, =w,. Hence the
transformation to g and A is strictly unnecessary. Our optimisation problem
reduces to one with the constraint ¢, +¢g, =1/2 ortog,+g,=1, q, =g, /2. In
fact if we do transform to g and h  but then argue that g =4, the

transformation (4.2.11) reduces to ¢, =g,/2, w, =h, /2. It must follow that if
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¢(g,y)=¢(g) is concave then so is w{g(g),m(&)]=w[g(£)]. We can be

assured that the designs listed in Table(4.7) are optimal for their supports. Of

course there may be asymmetric optimal designs. To discover these we would

want to transform to g and 4.

Example (4):

In this example we consider again the cubic regression model as in
example (3) in this chapter but with a =(7,0,0,0) and b = (0,0,1,0)" for the

criteria Y, ¥, and Y, .

In Table (4.6) we report the optimal four point designs for the criteria

v, and ¥, on [-f, ] subject to the endpoints being support points for
B=12,..5. In Table (4.8) we report the number of iterations needed to achieve
max F <10™ forn=1,2,3,4,5 for those values of 6 which attain max F, < 1 0°
in the smallest numder of iterations, by algorithm (4.3.2)(a), when finding the

optimal weighis of these particular support points. Figures (4.9) and (4.10) show

the number of iterations for different values of &.

The two middle points were found by a search through the supports

{-B, x,, x,, B} where x,<x, and x,, x,<0orx,, x,>0 (Note that we
exclude the case when x, and x, have opposite signs because the ¢,d, are either

all negative or all positive. In this case no design satisfies zero covariance),

algorithms (4.3.2)(a) or (4.3.2)(b) being used for each pair x, and x,.
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Hidden in these calculations are examples of case(3) which arise when

x, +x, =£f3. To see this consider the four point support {1, a, (I-a), 1} .

The design matrix will be of the form

1 1 1 1
-1 o (1-a) 1

=l | o2 (-o)f 1) O<a<l.
-1 o (-0) 1

Then if ¢ =(1,0,0,0)" and b =(0,0,1,0)° we get

d=V'a= (D;(V))[of(oc—1)2(2oc-—1),—20t(oc2 ~1),20(1 - o)(c~ 2),

—ol—a)(20 ~ 307 — 30+ 2)]"

and

c=V7'p= ( Detl( V))[Za(l—a)(Za ~1),20(1-0?), 202 - 0)(1 - ), 0]

and then

cd = (Dettv)?‘ )[—2&3 (-1 Qo-1)?,~40*(1-0* ), —4a(l- o) (o - 2)7, 0]r

So in this case we have one positive c¢d,, two negatives and one zero thus

satisfying case(3).



4.5 Efficiencies Of Constrained Optimal Designs:

In the previous examples we calculated the optimal design on intervals

[-B,B] for the criteria y,, ¥, and y, subject to zero covariance under three
choices of gand b, namely, a=(7,0,0),b=(0,0,1)' for the quadratic
regression model and a=(10,0,0), b=(0,0,0,1); a=(1000),
b =(0,0,1,0)" for the cubic regression model.

We wish to calculate efficiencies of these designs. For this purpose we

calculated the unrestricted optimal design on the intervals [— B, ,B:I for the criteria

¢.,9, and ¢, under the above choices of g and & by using the algorithm (2.3.1)
when f(8,d) =d® taking 8 to be 8= I, (1/2), (1/2) respectively, thereby

guaranteeing monotonicity; see Torsney (1983). Results are recorded in Tables

(4.10) -(4.15).

We now define efficiencies. Suppose ¢; denotes the optimal value for the
criterion ¢,, where ¢, is one of the criteria D-optimality, A-optimality or c-
optimality for i = 5, 7, & respectively. And suppose y, denotes the optimal

value for these criteria under the zero covariance constraint.

The efficiencies for ¢, relative to y; are defined as follows:

(a) In the case of the D-optimality criterion :

Eff (¢; . w;)=(${) (4.5.1)

5




f
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where s is the number of linear combinations of the parameters of interest. The
scaling with the st4 root makes the criterion homogeneous of degree -1. See

Atkinson and Donev (1992) and Pukelsheim and Rosenberger (1993).

(b} In the case of the A-optimality and c-optimality criteria:

¢'; for i=7,8. (4.5.2)

i

Ef(¢;, wi)=

In Tables (4.16) to (4.18) we list the efficiencies for ¢; relative to v, on
the intervals [, for =123 4 in the case of the quadratic and cubic
regression models listed above. Clearly in the case of D-optimality efficiencies
are equal for any f3 under each choice of @ and /. This is because the criterion is
invariant under these particular choices of @ and b given the models considered.
However in the case of the other two criteria the efficiencies are increased when
B increases. Moreover, under the choice of a = (1,0,0,0) and b =(0,0,0,1)
for the cubic regression model efficiencies are unity for the case of the A and D-
optimality criteria. For these criteria the designs which maximize ¢, fori =5, 7
are identical with the designs which maximize y, subject to zero covariance. In
the case of c-optimality for the same model and same choice of ¢ and b the

design achieves efficiencies ranging from .85 t0.95 for =123 4.

In general the constrained optimal designs only have good efficiencies for

large f3in the case of the linear criteria.



TABLE (4.1)

This table shows the optimal support points in the intervals (-8, B )for the

criteria ¥/, or Y, where B takes the values 1, 2, 3, 4 and 5. The value of § was

kept fixed during the iterative process with value equal 0.05.

B =1 ﬁ =2 ﬁ =3 ﬁ = ﬁ =
The No. of points 199 399 599 799 999
in the design space
The maximum -13.5004 -2.4268 -1.52333 -1.2743 -1.1699
value
fory, or y,
Weights 1 1 1 1 1
g and i 0.7280 0.8521 0.9192 0.9518 0.9682
0.2719 0.1478 0.0807 0.0481 0.0317
Weights 0.0199 .0166 0.0112 0.0071 0.0049
g" and w' 0.7135 0.8379 0.9089 0.9450 | 0.9634
0.2665 0.1454 0.0798 0.0477 0.0316
Corresponding -1 -2 -3 -4 -5
design points
0.26 0.26 0.21 0.16 0.15
1 2 3 4 5
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TABLE (4.2)

This table shows the optimal support points in the intervals (-f, B) for the

criterion ¥, where f§ takes the values 1,2 ,3 ,4 and 5. The value of6 was kept

fixed during the iterative process with value equal 0.05.

B =1 B =2 B =3 B = B =
The No. of points 199 399 599 799 999
in the design space
The maximum -21.8661 -1.3666 -0.2699 | -0.08546 | -0.03498
value fory
Weights 1 1 1 1 1
g and &' 0.82003 0.82003 0.82003 | 0.82003 | 0.82003
0.17996 0.17996 0.17996 0.17996 | 0.17996
Weights 0.0182 0.0182 0.0182 0.0182 0.0182
g" and y’ 0.8051 0.8051 0.8051 0.8051 0.8051
0.1767 0.1767 0.1767 0.1767 0.1767
Corresponding -1 -2 -3 -4 -5
design points
0.16 0.32 0.48 0.64 0.80
1 2 3 4 5
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TABLE (4.3)

This table shows the number of iterations needed to achieve
max F,S10™ ;n=1,2345andj=123 in the intervals (B B) for the

criterion ¥, or Y, where B takes the values 1,2,3,4 and 5.

S B \n n=1 n=2 n=3 n= n=>5
6=0.046 B =1 8 8 9 11 13
6=0.24 B = 5 6 6 8 10
o= 0.37 B = 5 7 7 7 9
6=056 | B =4 4 6 6 6 8
6= 0.63 B = 4 6 6 8 10




TABLE(4.4)

This table shows the best three points design on [ -, y] subject to the endpoints

being support points in the case of y, -optimality criterion.

[—a, 7] The Maximum Value Support Points
For vy,
SESSn. L8
[-1.9 , 1.1] -3.06868 -1.9,-0.35, 1.1
[[1.8 , 1.2] -3.27932 -1.8,-0.33,1.2
| [-1.7 , 1.3] -3.53473 -1.7,-031,1.3
[[1.6 , 1.4] -3.84751 -1.6,-0.30, 1.4
15, 1.5] -4.23605 -1.5,-0.28,1.5
[-2, 2] -2.42680 -2, -0.26,2
“ -2, 1.9] -2.45866 -2,-0.27,1.9
[-2 , 1.7] -2.52945 -2,-0.28,1.8
[-2_, 1.5] -2.61108 -2,-0.30,1.5
[-2 , 1.3] -2.70754 -2,-0.33,1.3
[-2 , 1.1] -2.82455 -2,-0.36,1.1
" [-2, 0.9] -2.97193 -2,-0.39,0.9
[-2 , 0.7] -3.16889 -2,-0.45,0.7
P -2, 0.5] -3.46195 -2,-0.53, 0.5
[2, 03] -4.00542 -2,-0.66, 0.3




TABLE(4.5)

This table shows the best three points design on [-c, y] subject to the endpoints
being support points in the case of Y, -optimality criterion.

— e ===
[-a, 7] The Maximum Value Support Points
qu L4 =
[-0.5 , 0.01] -2130.96 -0.5,-0.31, 0.01
[-0.7 , 0.01] -703.750 -0.7,-0.45, 0.01
[-0.9 , 0.2] -46.5821 -0.9,-0.34, 0.2
" [-1.1, 04] -17.0152 -1.1,-0.36 ,0.4
[-[1.3, 0.6] -8.69952 -1.3,-0.37 ,0.6
[-1.5 , 0.8] -5.42187 -1.5,-0.37,0.8
[-1.7 , 1.0] -3.85344 -1.7,-0.35, 1.0
(1.9, 1.1} -3.06868 -1.9,-0.35,1.1
[-2.1 , 1.3] -2.52181 -2.1,0.33,1.3
[-2.3 , 1.5] -2.17053 -2.3,-031,1.5
[-25, 1.7] -1.93106 -2.5,-0.29,1.7
[-2.7 , 1.9] -1.76012 -2.7,-027,1.9
[-2.9 , 2.0] -1.64381 -2.9,-0.26, 2.0
[-3.1 , 2.2] -1.54465 -3.1,-0.25,2.2
Il [-3.3, 24] ____-1.46743 -3.3,-0.23 2.4
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TABLE(4.6)

This table shows the optimal support points when a=(10,0,0) and

b=1(0,010) onthe intervals (-3, 8 )for the criterion v, or Y, where B takes

the values 1,2 ,3 ,4 and 5. The value of 6§ was kept fixed during the iterative
process with value equal 0.1 when B =1,2 and 6=5 when B =345 .

B =1 B =2 B =3 =4 | B=5
The maximum -9.45062 -2.29000 -1.53441 | -1.29294 | -1.17614
value
fory, or y,
Weights 0.16440 0.21991 0.24656 0.25422 | 0.25034
. . 0.14852 0.07006 0.04216 0.02631 | 0.01529
g and k
0.85148 0.92994 0.95784 0.97369 | 0.98471
0.83560 0.78009 0.75344 0.74578 | 0.74966
Weights 0.03166 0.02300 0.01422 0.00900 | 0.00600
g  and w' 0.11992 0.06273 0.03973 0.02538 | 0.01492
0.68751 0.83269 0.90261 0.93923 | 0.96110
0.16091 0.08158 0.04344 0.02639 | 0.01798
Corresponding -1 -2 -3 -4 -5
design points -.97 -1.93 -2.74 -3.65 -4.64
-0.01 -0.01 -0.02 -0.02 -0.01
1 2 3 4 5




TABLE (4.7)

This table shows the optimal support points when a=(70,00) and

b=(0,0,0,1) on the intervals (-, B )for the criterion ¥, or W, where  takes
the values 1,2 ,3 ,4 and 5.

g =1 B = B =3 B =4 B =5
The maximum -18.7627 -1.8000 -1.20506 | -1.08341 | -1.04215
value
fory, or v,
Weights 0.29932 0.11112 0.03940 0.01685 | 0.00910
. . 0.70069 (0.88888 0.96060 0.98315 | 0.99090
g and A
0.70069 0.88888 0.96060 0.98315 | 0.99090
0.29932 0.11112 0.03940 0.01685 | 0.00910
Weights 0.14965 0.05556 0.01970 0.00842 | 0.00455
q" and w’ 0.35035 0.44444 0.48030 0.49158 | 0.49545
0.35035 0.44444 0.48030 0.49158 | 0.49545
0.14965 0.05556 0.01970 0.00842 | 0.00455
Corresponding -1 -2 -3 -4 -5
design points -0.46 -0.5 -0.43 -0.35 -0.34
0.46 0.5 0.43 0.35 0.34
1 2 3 4 5
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TABLE 4.8) a=(1000),b=(0010)

5 B \n n=1 n= n= n=4 =5
§=072] p~=l1 3 4 4 6 6
0=0.33 B =2 <) 6 8 11 13
6 =0.6 B =3 4 8 12 18 24
6 =0.7 B =4 3 10 20 29 39
6=0.8 B =5 3 13 25 37 49

TABLE (4.9) a=(1,0,00),6=(0,0,0,1)

| S B \n n=1 n= n= n=4 n=>5
5 =.06 B =1 7 7 8 9 10
l 5=06| B= 4 5 7 7 9
| 5=09| B= 3 6 7 9 9
I 5=1 B = 3 7 9 9 9
=13 B= 2 6 7 9 11

These tables show the number of iterations needed to achieve
max F; S10™ ;n=1,2 34,5 andj = 1,2, 3 on the intervals (-, B) for the

criterion Y/, or /.
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TABLE(4.10) D-Optimality criterion @ = (1,0,0),b = (0,0,1)

B=1 p=2 B=3 B=4
Supportpoints} -1 0 1 2 0 2 -3 0 3 -4 0 4
p 25 5 25| .25 5 25| 25 .5 25 | 25 .5 .25
¢,* -4 -.25 -0.04938 -0.01562

TABLE(4.11) c-Optimality criterion a = (1,0,0)',b=(0,0,1)

p=1 p=2 p=3 p=4
Support points -1 1 2 0 2 -3 0 3 -4 0 4
r 5 5 125 .75 .125 | .056 .889 .056 | .031.938 .031
0, -1 -1 -1 -1
TABLE(4.12) A-Optimality criterion a = (1,0,0)',b = (0,0,1)
p=1 p=2 p=3 p=4
Supportpoints| -1 0 1 2 0 2 |3 0 3| -4 0 4
P 207 596 .207 | .098 .805.098 | .05 .9 .05 |.029.942.029
Oy -5.8284477 -1.640388 -1.24828 -1.133056

These tables illustrate the optimal value for the criteria
¢s,¢, and ¢, and the support points with theire optimal

weights for the quadratic regression model.
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TABLE(4.13) D-Optimality criterion @ = (1,0,0,0),b=(0,0,0,1)

p=1 p=2 B=3 p=4
Supp(p*)| 1 -3535 1 2 -7 7 2 [-3 -1.05105 3 4 -1414 4
p .098 402 .402 .098 | .098 .402 402 .098 | .098 .402 .402.098 | .098 .402 .402 .098
; -33.97197 -.5123248 -.0466007 -.0082939

TABLE(4.14) c-Optimality criterion a =(2,0,0,0),b=(0,0,0,1)

p=1 B= p=3 p=4

Supp(p)] 1 5 5 1 2 -3 -2 2|3 -2 13| -4-100 4
p 208 .5 .167 .125 | .063 .447 442 .048 | .019.107 .857.171 | .008 .615.369 .007
o -16 -1.3082 -1.07866 -1.0323

TABLE(4.15) A-Optimality criterion @ =(10,0,0),b=(0,0,0,1 )

B=1 p=2 p=3 =4
Supp(p) | -1 -46 .46 1 2 -5.5 2 -3 -43 43 3 -4 -35 .35 4
p 15 .35 .35.15 06 .44 .44 .06 .02 48 48 .02 | .009.491 .491 .009
o; -18.7627 -1.8000 -1.20506 -1.08341

These tables illustrate the optimal value for the criteria ¢,,¢, and ¢, and the

support points with theire optimal weights for the cubic regression model.
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TABLE(4.16) a =(1,0,0)',b=(0,0,1)" Quadratic regression Model

iN[-B,8] p=1 B=2 B=3 B=4
i=8 0.43 .68 0.82 0.89
i=7 0.07 0.41 0.66 0.78
i=5 0.42 0.42 0.42 0.42

TABLE@4.17) ¢ =(1,0,0,0)',b=1(0,0,0,1) Cubic Regression Model

iN[-B.5] p=1 p=2 p=3 p=4
(=8 1 1 1 1
i=7 0.85 0.73 0.89 0.95
i=5 1 1 1 1

TABLE(4.18) a =(1,0,0,0),b=(0,0,1,0) Cubic Regression Model

iN[-8.8] p=1 p=2 p=3 p=4
i=8 0.62 0.72 0.81 0.92
i=7 0.11 0.44 0.65 0.77
i=5 0.48 0.48 0.48 0.48

These tables illustrate the efficiencies for ¢; relative to y;

fori=5, 7,8, and for various vectors a , b.
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FIGURE (4.1)

This figure illustrates the optimal support points on the interval (-, 7 }where the

y-axes represent the maximum value for the criteria Y/, or y, and the x-axes

represent the design points x, x € (—1,1).
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FIGURE (4.2)

This figure illustrates the optimal support points on the interval (-2, 2)where the
y-axes represent the maximum value for the criteria ¥, or ¥, and the x-axes

represent the design points x, x € (=2,2).
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FIGURE (4.3)

This figure illustrates the value for the y, -optimality criterion against the weight

h, on the intervals [ -8, §] for f=1,2,3,4 and 5 .
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FIGURE (4.4)

This figure illustrates the value for the Y, -optimality criterion against the weight

h, on the intervals [-f, ] for f=1,2,3,4and 5 .
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These figures illustrate a plots of the number of iterations needed to achieve

max F, = 107 for different value of delta in the case of the criterion y,.
FIGURE(4.5)

Quadratic regression model x e[—1,/] and a = (1,0,0)", b =(0,0,1)'
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FIGURE(4.6)
Quadratic regression model x e[=2,2] and @ = (1,0,0)" , b =(0,0,1)'
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These figures illustrate a plots of the number of iterations needed to achieve

max F = 107 for different value of delia in the case of the criterion y,.
FIGURE(4.7)

Cubic regression model x e[—7,7] and a = (1,0,0,0)" , b= (0,0,0,1)
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FIGURE(4.8)

Cubic regression model x € [-2,2] and a = (1,0,0,0)", b =(0,0,0,1)
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These figures illustrate a plots of the number of iterations needed to achieve

max F, = 107 for different value of delta in the case of the criterion .
FIGURE(4.9)

Cubic regression model x €[~1,7] and g = (1,0,0,0)' , b =(0,0,1,0)
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Cubic regression model x € [-2,2] and a = (1,0,0,0) , b=(0,0,1,0)
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These figures illustrate a plots of the number of iterations needed to achieve

max F, = 107 for different value of delta in the case of the criterion .
FIGURE(4.11)

Quadratic regression model x e[~1,7] and a = (1,0,0)" , b=1(0,0,1)'
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Cubic regression model x € [-1,1] and a = (1,0,0,0)" , b= (0,0,0,1)
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CHAPTER FIVE
Optimal Design Subject To Zero Covariance
(General Case )
5.1 Introduction

In the previous Chapter we maximised a concave criterion subject to zero
covariance by using a transformation of the weights which guaranteed zero
covariance. This has been done just for the case when the number of design

points equals the number of the unknown parameters ¢ .

In this Chapter we attempt to generalise the above problem by considering
the case when the number of design points greater than the number of the

unknown parameters 8 . This can be done by applying a Lagrangian approach,see
Bertsekas(1982), as we shall see in section (5.3). In the following section we

consider a special case for the quadratic regression model.
5.2 Quadratic Regression Model

As a simple case we consider the quadratic regression model

E(p)=06,+0x+0x’ , xe[-11]

1
J
Suppose M(p)=V PV’ =} p, | x, (1 x, x2), (5.2.1)
i=1 N
Xi

|
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where P =diag(p, Py..., p,) and V is the design matrix .

Suppose we are interested in estimating the parameter 6, independently
from 6, i.e. by making the covariance between these two parameters equal to

zero. Now Cov(6,,0,) = Det(M,,) [ Det(M(p)) where M,, isthe 2x 2 matrix

J xi
M, =) p'{x ) (1 x,),amatrix element of a partition of M (p) such that

M, M
M(p) = l:MII MI?]
21 22

Thus the covariance is equal to zero if Det(M,;)=0.
J 1

Now M, = in Pr(x) (1 x)
i=1 i

“th ( J (1 xi) , where g, = x; p; (5.2.2)

i=l

So from (5.2.2) Det(M,,) is a polynomial of degree 2 in the weights p , namely

1 17
Det(M,)= Y g, qv(Det[ D Y aq, g, (x, -x,)

ISu<vsJ ISu<vsJ

Z A'"x -pﬂp" x x)2 Z pupv uv? (5'23)

ISu<vsJ Isu<vsd

where ¢, =xx,(x,—x,)°.

u u-v
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Clearly from (5.2.3) the covariance can be zero if the values of the terms

c,, =xx,(x,—x,)° have a mixture of signs i.e. when some of the x's are

w-v

positive and the others are negative.

As an example of this, consider the case when J =4 and suppose the

support points are {x,,x,,x,, x,} with x,=-I/<x,<0< x;<x,=1. Then

C;»» €5 >0 and the others are negative. Letting d,; = —c,,

t7

when c; < 0, the

determinant of the matrix M,, can be zero if

CooliDs+ CoibsPy = AP s+ A, pyp, +dospsPs + Ao PP, - (5.2.4)

4
Since Y p=1= p,=1-(p,+p,+p,), (5.2.5)

i1
then by substituting for p, in (5.2.4) we get

ap;+Bp,+y =0, (5.2.6)
where ¢ =—c,, , B=(c,U-p,—p,)+d,p,—-d.p +d,;p,—d,p,) and

Y= (Cjzpzpz _dzspz (] — P "pz) "'dzs 2(1 — P ”'pz)) .

Also in the case when the support points are {x,,x,x, x,} with

x,=-I<x,<x,<0<x,=1 Det(M,,)=0 implies (5.2.6) with
a=-d, , P=(Epecy—cyp,—d.p,-dup,—d,,(I-p,—p,)) and

Y =(cppps—Cp3p,(I=p,—p)—cup,\I—p,—p,)) .

where in this case ¢,,¢;; andc,; >0 and d;; = —c,, whenc; < 0 .

So in these two cases we find

p,=(=B B ~4ay)/2a (5.2.6)
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In (5.2.5) and (5.2.7) we have equations which enable us to substitute for

p, and p, in terms of p, and p, in a standard criterion (e.g. D-optimality , A-
optimality or c-optimality) to yield a function of p, and p, say
6. (pp.).9, (p,p,) or @, (p,,p,) which we wish to maximize.

We explored this approach maximizing 6. (p,.0,).0,(pp,)

or ¢, ( P, P,) by a search method (which ensured that all constraints on the

4
weights were respected ie O0<p < Li=1234and Y p,=1) in
i=]

Example(2) of Chapter 4 in the case of the quadratic regression model for the

above three criteria. We obtained the same solution as in that example.

5.3 General Problem (GP)

The general problem (GP) which we will consider is

J
Maximize ¢,(p) subject to the constraints g(p) =0,p, 20, > p,=1, where
j=1

¢.(p) is one of the criteria A, ¢ or D-optimality (i.e.fori =578 respectively)

and g(p) =a'M™b for appropriate a and b .

So by applying Lagrangian Theory(see Winston(1987)) we get
L(g.p,A) = ¢(p) + Ag(p) (5.3.1)

Then

JdL d¢ g
ar=22_9%9 ;398 —g40+)4¢ 5.3.2
" dp, 9p, ! ap, TG 5:32)

and also the vertex directional derivatives are
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J
Er=d" - Z pjdjL (5.3.3)
=1
J
=d° - Z p;al+A (d,.g - Z P djg]
=1 =i
=F* + AF* (5.3.4)
Clearly from (5.3.4) the vertex derivatives can be zero if
Ft A= -F*. (5.3.5)

Now suppose A=F¢, b=-F?%and A =2 ,then we can rewrite (5.3.5)

in the form

AL= b

(5.3.6)

According to Graybill (1969) the set of solutions to the system of equations

(5.3.6) ,if solutions exist , is given by:
A=Ab+(I-4A)z for any z,
which is unique if and only if

AAb=b.

Now let A” = (4'4)" 4 = (" )’EST (F*)", then

—(E°)

| (&)

tme ~
Ab= ,E¢ =1 and AAb=A1A=AF"
F

7 b w

So we need

(5.3.7)

(5.3.8)
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AF¢=-F" ie AFf-F°*=0 (5.3.8)

and then substituting by A in (5.3.8) we get

- F¢+ F* =0 (5.3.9)
(E*)'Fe

oo h=[(E)E [ (E)E ] E =0 (5.3.10)

ie Ah=20 (5.3.11)

Now we try to simplify z‘% as follows:

wa={[(Eye e[ ey ] e Y[ (e e e [ (e e e )

[y e ey e+ (B )R [ () E -
[y e () e ]-[ (e E ][ (B E ]
(e e T (e e J-[ (e e T(E) E]
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=[(Eg){Egjg[(E¢)‘E‘°:| {1-R} (5.3.12)

where R = 1 (5.3.13).

S =[(E)’E’] V&= () Fand & = (FF)'F.

Clearly from (5.3.13) 0 < R < 1. Thus from (5.3.12) 4'h is minimised

when R is maximisedie #’'h=0 & R=1.

We need to be clear about what we have done here . We have replaced the

first order conditions of a solution to problem (GP) by an optimisation problem ,

namely, maximisation of R (or any increasing function Q(R) of R ) by a p
J

which must satisfy the constraints 0 < p, < I1,i=1,2,...,J and Z p:=1 and
i=1

there is still g(p)=0 to insure. We note that the latter is equivalent to

maximising G(p) = —g*(p) = —(@'M™ (p)b)* (assuming there exist p such that

gp)=0).

If there is a solution to problem (GP), then the implication is that

G(p) and Q(R) are simultancously maximised by the same p" subject to

J
0<p < li=12..Jand Y p,=1.
i=1
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Further consider the case Q,(R)=-(I—R)’ . Then G,(p) and Q,(R)
have a common maximum of zero and hence so does G,(p) + Q,(R), at p*. Of
course determination of p* will require numerical techniques.We discuss

approaches in the following section .

5.4 Proposed Algorithm

In the previous section we transformed the solution of problem (GP) to
maximisation of two functions simultaneously. So for this type of problem we

suggest the following algorithm:

(r) Q G
P - Ef(5 d%d®) ] 54

3oL r(8.a2.a) ]

i=1

[1+ (a2+a?) ] if d@+df =0
where  f(d%,df,0)= (5.4.2)

[1-(ag+ag) ]’ if d?+df<0

and d?, d’ are the first partial derivatives for the two functions which we want

to maximise. These of course are given by

d¢ = g_a =2(a'M* (p)b)(aM? (p)v,) (v:M™ (p)b) and

i

029 _on R)[ (aézlt?p,v)_(952/3pf)_(3€3/5pz)],
ap; €, ¢, &
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and finally

a_Fi__a_g(,b__[a_(b_’_ips (92¢ ]_ azq) _I:aq) +(h¢_])_(2qu|-_~_§_2£_h¢ a¢

b, dp P | dr |op >, | b b

if ¢ is homogeneous of degree A*.

Similarly
a FE 2 J 2 2
—L = _8_g_[3_g+ Db, '8 :|= I8 —hgﬁ, if g is homogeneous of
api apj i @i s=1 ‘3}75 i ‘%71' i ‘2’7,'
degree #°.
2 2
where Jg 99 J°8 and i are the first partial derivatives and the second

Ip, Op, Ipp;  Ipw;
derivatives for the covariance function and the design criterion which we want to

maximise.

The motivation for algorithm (5.4.1) is that it is algorithm (3.4.1) for
maximisation of ¢(p) = G,(p)+Q,(p). However since there are two sets of
derivatives each of which must satisfy first order conditions (the d7 must share a
common value and the d; must share a common value ), the variations of (5.4.1)
obtained by replacing f(@°d’,8) by f(d%8)+f,d%8) or
£,(d®,8) x f,(d°,8) were considered, where
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[1+d,]" ¥ d 20
./;'(d'i’5): ,j=1,2.
[7-d, " if d,<0

5.5 Examples and Discussion

In this section we will consider three examples which were considered by
Silvey et al (1978), with the aim of maximising the functions Q(R) = — (- R )*
and G(p)=— (Q’M" (p)b )2 simultaneously, under the choice of a = (1,0,0)'

and b = (0,0,1)". The examples are defined by their design space as follows:

Example(l) V=V,={(1,-1,-1)",(1,-1,1)",(1,1,~1)",(1,2,2)" }
Example?) V=V,={(1,-1,-1),(1,-1,1)" (1,1-1)",(1,2,3)"}
Example(3 V=V,={(1,-1,-2)",(1,1,1)",(1,1,-1)",(1,2,2)" }

In Table (5.1) we report the optimal weights and the optimal support

points for all these examples in the case of the A-optimality criterion .

In Table (5.2) to Table (5.4) we report respectively for the

algorithm(5.4.1) (modified in one instance)and its two variations the number of

iterations needed to achieve F.%? = max (F°+F°) < 10" forn=12..5
when 6 =6, = 4§, is taken to be the value which achieves F'&® < 10° in the
smallest number of iterations. Initial weights were p” =1/J, where J is the

number of design points.

Clearly from these tables there are widely varying values of § which

attain F.*¥ < 10” in the smallest number of iterations. This may be due to the

nonhomogeneity of the function Q(R) = — (- R ). Also from the same table, in
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terms of the number of iterations convergence is slow. One possible reason for
this is that at the optimum p;, partial derivatives corresponding to positive

)

weights must be zero for both functions. Hence if p* is close to p* proceeding

(3] (r+1)

from p" to p"*" will only slightly change the functions and weight values. We

encountered this situation in chapter 3 with the correlation criterion. As in that

case we can gain improvement by using the function f(d,8) =I+s ad)®,

s=sign(d), for some suitably chosen value of « instead of the function
f(d,8)=WU+s d)*°. It was necessary to apply this modification to the basic
algorithm(5.4.1) when considering Example(2). The result reported in Table(5.2)
for this example were obtained when « =15 (with 0 =.08 attaining faster

convergence for this value of o).

Table(5.1) This table illustrate the optimal weights and corresponding support
points for the above three examples .

Example (1) Example (2) Example (3)

12 2371.2701.330].163].259|.230|.359 | .152].255| .355|.215| .175
supp(P) Vo | Ve | Vs | Ve b Ve | Ve | Vas | Var | Ve | Ve | Vs | Vi
o(p*) -1.7130 -1.5251 -1.49607

A 0.2406 0.3494 -0.0841

Table(5.2) This table shows the number of iterations needed to achieve

F%% < 10™ for n=1,2,...,

max

choice of the function f(d?,

1

df?,8), (with a = 15 for Example(2)).

5 in the case of the A-optimality criterion under the

n=1 n=2 n=3 n=4 n= 5
Example(1) 12 28 34 69 233 0.3
Example(2) 30 38 40 62 163 0.08
Example(3) 12 273 288 313 426 0.2
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Table(5.3) This table shows the number of iterations needed to achieve

F¢ < 10™ for n=1,2,....5 in the case of the A-optimality criterion under the

max

choice of the function f,(d°,8)+ f,(d°,8).

n=] n= n=3 n= n=5 S
Example(1) 20 23 27 35 82 0.8
Example(2) 25 35 48 84 247 1.0
Example(3) 24 55 59 65 107 0.8

Table(5.4) This table shows the number of iterations needed to achieve

F%% < 10™ for n=1,2,...,5 in the case of the A-optimality criterion under the

max

choice of the function f,(d%,8) x f,(d°,8).

n= n=2 n=3 n= . n=5 S
Example(l) 84 91 98 148 394 0.2
Example(2) 23 32 43 73 208 0.6
Example(3) 24 252 274 305 486 0.1
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CHAPTER SIX

Conclusion and Further Work

6.1 Conclusion

The aim of the work which has been described in the previous chapters
was to explore algorithms for solving the constrained optimisation problems

mentioned early on in this thesis.
In chapter 2 for solving preblem(a) we studied a class of multiplicative
J
algorithms of the form p!™ = p" f(d,,6)/ Y. p"f (@ ) ), indexed by a function
J=1

f (d ,0 ) which depends on the derivatives of the criterion ¢(p) and a free

parameter 6 .

In the case of the D-optimality criterion, the algorithm has been

investigated under three choices of the function [ (a’ ,0 ) namely

d,8)=Inle+&), e¥/(I+e¥) andc—e® with optimal choices of
P

J
§=68"=x"/Y pd, (see section 2.4). Under the choice of f(d,&)=c-e® and

=1
forc=1.001  the convergence of the algorithm is faster than that of the

algorithm under the other two choices of f (d ,0 ) Moreover, if ¢ =1 and 0

small then f(d,6) = 6d . lterations are then approximately those under

130
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f(d,8) = d . This suggests that f(d,8) = d is an efficient choice for the D-

optimality criterion. Certainly it is known to be monotonic for this criterion (see

Titterington (1976)).

In the case of the c-optimality criterion the algorithm also has been

investigated under the choice of f(d,8) = d''? using various initial designs,

p, which put small weights on at least one of the support points. These

, pP=(,a,B,B) and
p?=(a,B,B8,B) with B <107, At the first iteration the algorithm

included permutations p? = (x,a,c, )

irresistibly moves immediately towards the optimal design on the subset of
points receiving weights ¢. However the algorithm slowly moves away from this

point and converges to the optimum.

In chapter 3, we first study the covariance and correlation criteria of
problem(b) with the intention of estimating one or more of the unknown
parameters as independently of the others as possible. Thus we wish to make the
numerical covariance or correlation between the relevant parameter estimates as
small as possible. In the case, when the number of design points exceeds the
number of parameters, we explore a new version of the above algorithm by
taking f(d,8) = (I+sd)°°, s = sign(d) which is defined for negative &, where
d is the vector of first partial derivatives of the covariance criterion ¢,(p). From
the empirical results described in this chapter we found that the convergence of

this algorithm is similar to that obtained by Fellman(1989) for the c-optimality
criterion when f(d,8)=d’. In particular as noted by Torsney(1983)

f(d,6 ) =d" attains the optimum in one step for the c-optimality criterion

when the support points form a linearly independent set of vectors.

However, in the case when the number of design points equals the number

of parameters , the covariance criterion can be simplified by the formula :
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0.(p)=—[aM (b ] = -{i ——} : 6.1.1)

where M(p) =V PV', ¢=V7'a and d=V"p.

Clearly from (6.1.1) the value of the covariance criterion depends on the

sign of ¢d,,i = 1,2,...,k. There are two cases to distinguish :
case(l): ¢, (p) cannot be zero if all ¢ d,,i = ,...,k have the same sign.

case(2): ¢, (p) can be zero if the cd,,i = 1,2,...,k have differing signs.

[l &4

For case(1) the optimal weights has been found explicitly to be:

7 =AJledl/ 2 Jea| i=12.k
<

o4

k
and the maximum value for the covariance criterion is ¢,(p*) = {Z 1/|c,.a!‘.|}
i=1

Chapters 4 and 5 are concerned with the solution of problem(c).

In chapter 4 , we concentrated on case(2). For this case we identify a class

of designs which guarantee zero covariance . This class of design has been found

by using a transformation for the weights p to two or three sets of variables each
of which forms a probability vector. Under this transformation, problem(c)
changes to a problem of maximising a criterion with respect to two probability

vectors which yields an extension of problem(a) and in finding the optimal

weights p* and the optimal value for the criterion ¢(p) under the zero covariance

condition we use a natural extension of the algorithm used for that problem.
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The performance of the algorithm in the case of the quadratic and cubic
regression models has been investigated under three choices of the design criteria
¢(p) namely, D4-, c- and the Linear optimality criterion for ¢ =a+/ and

=[a: b ], when the design space ye[-B,B7], B=12..5 We
observed that, the optimal value tends to increase as [ increases for all these
criteria. This has been proved in the case of the Dj-optimality criterion. The
equivalence of the c- and the Linear optimality criteria also has been proven

under the zero covariance condition.

Finally in this chapter, the calculation of the efficiencies for the restricted
optimal design under the zero covariance constraint relative to the unrestricted
optimal design suggested that these designs have good efficiencies for large f in

the case of the c- and the Linear optimality criteria.

In chapter 5, we generalised case(2) by considering the case when the
number of design points exceeds the number of parameters. Using a Lagrangian
approach, the problem is transformed to one of simultaneous maximisation of
two functions of the same probability vector each of which is maximised at the
same value of this vector and have a common maximum of zero. For the purpose

of finding the optimal value for these two functions we suggested the algorithm
pr =plf(d?,de,8)/ Z rf (dQ d;, 8), where d%,d° are the first partial
derivatives for the two functions we want to maximise.

This algorithm is investigated under three choices of the function
f(d®,d?,8), namely f(d%,d’,8)=f(d®%,8), f,d?,8)+f,(d?,8) and
£,d2,8)x f,(d?,8) where d¥° =d?+df and f,(d,6)=Q1+sd)’’,j=123
,s =sign(d).Various examples were considered and we noted for ail these

examples, under the three choices of the function f (df’,df,&), that the above




Chapter 6 Conclusion and Further Work, 134

algorithm often converges to the optimal solution but in terms of the number of

iterations this convergence was slow . One possible reason for this, is that at the
optimum p;f , partial derivatives corresponding to positive weights must be zero

" will

for both functions. Hence if p* is close to p* proceeding from p*’ to p
only slightly change the functions and weight values. But we suggested an

improvement for this algorithm by  considering the  function

f;d ,8)=(+asd)’,j=1223 for some suitably chosen value of « instead of
fid,8)=Q1+s d)?.

6.2 Further Work

The following list sets out several ways in which the work of this thesis

may be extended:

(1) Continue our investigation of the algorithms(2.3.1) in constructing
optimal experimental designs with respect to other criteria namely, c- , A-

optimality and other optimality criteria. Note that in these cases the
J

optimal value of § =8 =x"/Y, pd, will have non-fixed values at each
i=1

iteration. For example consider the case of c-optimality which is defined

by the function ¢,(p)=-cM™(p)c. This criterion is homogenous of
k

degree -1 and then the value of ) pd, =—¢,(p) (see Appendix 1) which
i=l

yields a non-fixed value of § * during the iterative processing.

(2)  Extend problem(b) to one of maximising a convex combination of two or

more covariances or correlations e.g.

"Maximise y_(p) = — {OC (aM™ (p)é)z +(1-o)(cM™ (}7)12)2 } or
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i (aM™ (p)b)’
v, (p) = {0‘ (aM™ (p)a) (bM7 (p)b)

+{I~-a) (M (p)b) }

S (pic) (b (k)

for 0 < o < 1 subject to the constraint ZL: pi=10< p < 1"
i=1

(3) In chapter 3, we suggested for improving the convergence of the
algorithm(3.4.1) the choice of the function f(d,8) = (I+as d)*® instead
of f(d,8)=(1+sd)*® and we recommended & = 10* if maxF, < 107",
n=12,..,5, where FJ' , j =1,...,J are the vertex directional derivatives of
the function we want to maximise. Presumably we could gain faster
convergence of this algorithm by choosing the value of ¢ optimally. One

possible way of doing this would be to choose ¢ to maximise the
directional derivative of the criterion at p in the direction of p*" i.e.

by maximising the function F{p",p"*" ) with respect to ¢.
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Appendix 1
Differentiation Of Matrices:

(1) Suppose A,B are nxn matrices whose elements are functions of a scalar

variable z and a € R"is a constant vector, then :

. oA
E(l A] b_;

P 9 P
b) —Q;EA+B]—$(A)+—£(B).
O g ? 2
(c) aZI:ABj—aZ(A)B+A aZ(B).

[Trace(A)] Trace[ 5 (A):I

(2) Suppose A is non-singular and C' is k x n constant matrix, then :

d -1 -1 (9 -1
(@ ——[ 4 ]=-4 [E(A)}A .

& -1 it - a - 1
b) ——[ca’c]=-CAa 1[$(A)]A C

(© %[ln(Det{ A }:I = Trace[A gz( A )]

< d

a ] -1 ot
) E[ln(Det{CA‘ C }:|=Trace[(CA ct) 37

(CA4Cﬁ]
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So in the case of the D,-optimality criterion defined by the function

¢s(p) = —log detl:A’M"A] , the first partial derivatives with respect to the

weights p, will be of the form :

9 _ 9 M
op (9}7‘-[ log det{A'M (p)A}:I,

- d_
ap

i

=— Trace[ (A'M(p)A) (AM™ (p)A )} by using (2)-(d),

=—Trace[ (AM*(p)a)™ {—A‘M‘I (p)aip[M(p)}M"’ (p)AH,by (2)-(b)

but since the JxJ matrix M(p)=VP V' ,where V is a J xk design matrix
which does not depend on the weights p and P = diag(p,,p,,Pss.--»P:) » then

o 1 ‘
S =~ Trace (4M7 (p)A) =AM (Pl (AY]

=Trace|:gﬁ.M‘f (PA(A'M™ (p)A)” AM™ (p)g‘.:l,since Trace(AB)=Trace(BA),
=M™ (P A(AM (P)A)" AM (p)y, .

Note that ,the first partial derivatives for the D-optimality criterion can be

derived from the above derivatives by taking A=I; where /; is the kxk identity

matrix. Moreover for this criterion, the value of Z D= 9%, _

= o,

number of the unknown parameters .This can be shown as follows:

= k,where k is the

ip,%f:" iﬁ.[l’ M p)v:| smcea&g =viM™(p) v,,

i= i=
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=Trace{é p‘[zi. M-I(p) Bi]}:Trace{M—r (p)i' PiE:- Bi}’

=1

=Trace {M™*(p) M(p) } =Trace{I,} = k.

Similarly ,we can derive the first partial derivatives for the other

9

K
optimality criteria. We note that Y p,=—="h’¢ (p) if the criterion is a
i=1

(‘%i
homogeneous function of degree h*. For example, in the case of the c-optimality
criterion which is defined by the function ¢, (p) = —c'M™(p)c ,this criterion is

homogeneous of degree -1 and then

~

f pi% = Y p[eM (v T, since %‘f’—% [cm (v, T

=

k
—eM ) { 3 pat M) ¢
i=1

=c'M*(p) M(p)M™ (p) c=c'M™*(p) c = —¢5(p).
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