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Sum m ary

In this thesis we consider a number of problems aimed towards gaining a bet

ter understanding of the processes deep in the E arth’s core which act to maintain 

the E arth ’s magnetic field against ohmic decay.

Firstly, as a model for the Earth’s core, we consider a rapidly rotating elec

trically conducting fluid sphere with a solid concentric inner core. We impose 

an azimuthal magnetic field, an azimuthal shear flow and a temperature distri

bution appropriate to a uniform distribution of heat sources through the core, 

and investigate numerically the linear stability of this basic state. We consider 

the effect of inner core radius, magnetic field strength and differential rotation on 

thermal convection, comparing our results with the work of Fearn and Proctor 

(1983a) who considered a similar model without an inner core. Later we alter 

our temperature distribution, attempting to model thermally the effects of com

positional convection, the process believed to be the primary power source for 

the geodynamo.

Continuing with the same model, we next study the effect of introducing 

a stably stratified layer adjacent to the core-mantle boundary. We consider a 

wide range of magnetic field strengths, and compare our results with work done 

previously in simpler geometries.

Finally, we look at a 2D numerical model of the expulsion of magnetic field 

from the E arth ’s core into a conducting mantle, driven by a prescribed upwelling 

fluid motion. We consider a variety of types of conductivity profile for the mantle 

and compare with the fully insulating mantle solution as studied by Bloxham 

(1986). Motivated by the recent work on lower mantle conductivity, we look at a 

conductivity profile with large lateral heterogeneity in conductivity.

All our calculations were performed on the University of Glasgow’s IBM



3090-150E/VF mainframe. All our graphs and contour plots were produced with 

the aid of the UNIRAS graphics package. The results included in the following 

chapters can also be found in Drew 1991;1992a,b.



C hapter 1 

In troduction

1.1 INTRODUCTION

The primary motivation for the work studied here, is towards gaining a 

greater understanding of the processes deep in the E arth ’s interior which act to 

maintain the E arth’s magnetic field against ohmic decay. The origin and structure 

of the E arth ’s magnetic field have been studied for centuries, and we are still no 

little way from a full understanding of its properties. The cause of many of the 

difficulties of the subject lie in our lack of knowledge of the constituent materials 

and their physical properties in the E arth ’s core and mantle, although our picture 

of the E arth’s interior continues to improve as high-pressure high-temperature 

experiments are performed and more data is accumulated.

Direct measurements of the E arth’s magnetic field go back several centuries. 

The problem of ship navigation provided a great motivation for early studies and 

measurements of the magnetic field, but nowadays more accurate measurements 

are made at observatories throughout the world and from satellites. This col

lected data has resulted in the production of charts of the external magnetic field 

at different points in time (Bloxham and Gubbins 1985; Bloxham, Gubbins and 

Jackson 1989). These show that some parts of the field vary little over time, 

but there is also what is known as the geomagnetic secular variation which in

corporates the observed westward drift of some of the field features. Also the 

declination angle (the angle between true north and magnetic north) varies no

ticeably with time. As useful as these direct observations are, the period of 

time they encompass is very short compared with the geological timescales of the 

Earth and its magnetic field. Evidence obtained from paleomagnetism however,
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provides much information about the behaviour of the E arth ’s field going back 

some three billion years. During the formation of rock (e.g. from lava cooling or 

from sedimentation at the bottom of lakes), a “magnetic record” of the magnetic 

field at the time of solidification is frozen into the rock. Paleomagnetists can 

analyse these rocks and calculate the magnitude and direction of this frozen-in 

field, and this has provided information about the occurrence and regularity of 

field reversals. In addition by comparing the magnetic field strengths from these 

records, it can be seen that the average magnetic field strength has remained rela

tively constant. If we compare this with the ohmic decay timescale [O(105 years)] 

for the E arth ’s field, then the longevity of the E arth ’s field, together with other 

features such as reversals and the secular variation, means that the field cannot 

be a fossil field, but must be being maintained by a dynamo process. The only 

feasible location for the generation region is the electrically conducting fluid core. 

Here we have a conducting fluid moving through a magnetic field, and such a 

motion induces the flow of electrical currents, which can in the right conditions 

produce a magnetic field which reinforces the original field. The Earth’s core 

extends outwards from the centre to a radius of 3480km  (Dziewonsld and Ander

son 1981). It consists mainly of iron, with the remainder made up from lighter 

elements. There has been considerable argument over the identity of the lighter 

constituents (see e.g., Fearn 1989b; Jeanloz 1990), with Silicon, Oxygen and Sul

phur among the main contenders. As the Earth has cooled, a solid inner core 

has formed (radius 1221.5&m, Dziewonski and Anderson 1981) as the liquid iron 

alloy in the core has solidified. When an alloy such as the iron-lighter constituent 

mixture freezes, most of the lighter constituent remains in the fluid, which is 

why the inner core is almost pure iron. This freezing process produces latent 

heat and also provides a source of compositionally buoyant light material at the 

inner core boundary which rises upwards through the core. This composition

ally driven convection could thus provide the power for the geodynamo. Other 

energy sources have been considered for the geodynamo, as is discussed further 

in Chapter 2, but the primary source of energy is believed to be compositional
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convection (see e.g., Gubbins 1977; Gubbins and Masters 1979; Gubbins, Masters 

and Jacobs 1979; Loper 1989).

The task of modelling the geodynamo is immensely difficult. Not only does 

the complicated interaction of conducting fluid and magnetic field mean that the 

governing equations are highly non-linear, but any model is required to explain 

observed features of the field such as the secular variation, and most importantly 

the field reversals. To make matters worse, it has been shown through Cowling’s 

theorem and its later extensions (see e.g., Soward 1991; Roberts and Soward 1992) 

that an axisymmetric magnetic field cannot be maintained by dynamo action, 

so that any working dynamo model must necessarily contain non-axisymmetry. 

Although a fully three dimensional numerical simulation of the geodynamo is 

becoming more feasible with the advent of modern super-computing facilities, in 

the past it has been necessary to consider simpler models in more basic geometries, 

focusing in on small parts of the problem, and hoping to gradually build up an 

overall picture of the actual behaviour. Indeed, much useful information can still 

be gained from such an approach.

There are many different points of attack for the problem. From the charts 

of the magnetic field at the E arth’s surface mentioned above, by extrapolating 

these through the mantle, maps of the magnetic field at the core-mantle boundary 

can be obtained. From these, constraints on the flow at the top of the core 

can be determined (see e.g., Gubbins 1982, 1991; Gire, Le Mouel and Madden 

1986; Voorhies 1986; Bloxham and Jackson 1991). This is particularly useful, as 

although seismologists can provide us with estimates of quantities such as the 

core radii, conductivities and densities, we have little knowledge concerning the 

nature of the flow in the core. This is important, as clearly the efficiency of the 

geo dynamo is strongly dependent on the form of the flow.

A simpler approach to modelling the geodynamo is to consider the kinematic 

dynamo problem. Here we impose a flow Uo on a magnetic field B and ignore 

the back-reaction of the magnetic field on the flow. We thus have only to solve 

the magnetic induction equation
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V x (i?(V x B) -  Uo X B) +  =  0 (1.1)

ignoring the equations of motion. We adopt a kinematic approach in Chapter 4.

Another approach to the problem is to study the linear stability of some 

basic state (see e.g., Gubbins and Roberts 1987; Fearn, Roberts and Soward 

1988). This is the approach we adopt in Chapters 2 and 3. Starting from a 

plane layer geometry (e.g, Soward 1979; Eltayeb and Kumar 1977; Fearn and 

Proctor 1983b) and working through intermediate cylindrical models (e.g, Ache- 

son 1978; Fearn 1983a,b, 1984, 1985, 1988, 1989; Fearn and Weiglhofer 1992a) 

to finally considering the spherical case, (e.g, Fearn 1979a,b; Fearn and Proctor 

1983a; Fearn and Weiglhofer 1991a,b, 1992b) which is of course the most relevant 

geometry for the Earth, the use of linear stability analysis has enabled a picture 

to be built up of the different possible instability mechanisms: thermal instabil

ities (e.g., Eltayeb and Kumar 1977; Fearn 1979a,b; Fearn and Proctor 1983a), 

which are studied here in Chapters 2 and 3, the buoyancy catalysed instability 

(Soward 1979; Roberts and Loper 1979; Acheson 1983), the ideal (field gradient) 

instability (Acheson 1983, Fearn and Weiglhofer 1991a,b), resistive instabilities 

(Fearn and Weiglhofer 1991b, 1992a), the exceptional instability (Roberts and 

Loper 1979) and the dynamic instability (Malkus 1967), although the last two 

mechanisms require magnetic field strengths much higher than those believed to 

exist in the E arth ’s core. We are interested here only in the thermal instabilities. 

A more detailed description of the other magnetic instabilities can be found for 

example in Fearn, Roberts and Soward (1988).

In Chapter 2 we consider the linear stability of a basic state

Ro(r,0)l^,, ?70(r ,^ ) l^ ,T 0(r) (1.2)

where (r, <f) are spherical polar coordinates, in a rapidly rotating spherical

shell, as a model for the E arth’s core. In our model we include a solid inner
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core, and we investigate the effect of varying the inner core radius on thermal 

convection. Although, as we mentioned above, compositional convection is the 

process believed to be the main source of energy for the geodynamo, our model 

uses thermal energy as would be appropriate for a uniform distribution of heat 

sources throughout the core. The reason that we do this is because the thermally 

driven convection is much simpler to model mathematically, and is qualitatively 

similar to compositional convection. Also, the nature of the rise of the buoyant 

light material from the inner core boundary, and its interaction with rotation 

and magnetic field is a problem which is only now beginning to be investigated 

(see e.g., Loper 1989), so it makes sense to use the better understood thermal 

convection. This is the process used in almost all other studies (e.g., Roberts 

1968; Eltayeb and Kumar 1977, Fearn and Proctor 1983a), so for comparative 

purposes it makes sense to do so here. Later on in Chapter 2, we do alter 

our tem perature distribution and thermal boundary conditions in an attempt to 

model compositionally driven convection more closely.

Although individually the addition of either a magnetic field or rotation has 

the effect of inhibiting thermal convection, initially when a magnetic field is added 

to a rotating system there is the opposite effect, this proving beneficial to convec

tion (see e.g., Fearn, Roberts and Soward 1988). Increasing the strength of the 

magnetic field continues to provide this effect until the Lorentz force balances the 

Coriolis force after which point a further increase in the magnetic field strength 

acts to inhibit convection once again. We investigate this behaviour for different 

inner core radii, and also look at the effects of magnetic field strength and dif

ferential rotation on thermal convection, and compare our results with those of 

Fearn and Proctor (1983a), who studied a similar model, but without an inner 

core.

In Chapter 3, we consider a slightly different problem. Here we investigate 

the effect on thermal convection of the existence of a stably stratified layer at 

the core-mantle boundary. Motivation for such a study comes from two sources. 

Firstly, Whaler (1980) presented geomagnetic results which supported the ex
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istence of a stably stratified layer at the core-mantle boundary, and secondly, 

this was followed by theoretical analyses by Fearn and Loper (1981) and Gub

bins, Thomson and Whaler (1982) which supported this. The next step was to 

construct models of convection in rapidly rotating electrically conducting fluid 

containing a stably stratified region. Boda (1988) and Sevcfk (1989) studied a 

plane layer model with the upper part of the fluid stably stratified, and Fearn 

and Richardson (1991) looked at a cylindrical model with a stable layer adja

cent to the outer boundary. In Chapter 3 we extend these results, moving to the 

spherical case. We use essentially the same model as in Chapter 2, but we modify 

the temperature distribution to allow a stably stratified layer to exist below the 

core-mantle boundary. We study the effect of adding this layer in three regimes 

of magnetic field strength: with weak, moderate and strong fields, and compare 

our findings with the results from previous models.

For our final results in Chapter 4, we turn to a different problem, although 

one still of interest towards understanding the Earth’s magnetic field. We broaden 

our approach, now looking to the Earth’s mantle as well as the core considering 

a subject currently of great interest, namely the electrical conductivity of the 

mantle. The E arth ’s solid mantle extends from its boundary with the core at 

a radius of 3480km virtually to the surface at radius 6371km (Dziewonski and 

Anderson 1981). The electrical conductivity of the mantle is not known with any 

accuracy, and previous models have either assumed that the mantle is electrically 

insulating, or adopted simple profiles for the conductivity. In recent years how

ever, experiments performed at temperatures and pressures close to those found 

deep in the mantle have begun to produce estimates for the conductivity of deep 

mantle constituents (see e.g., Li and Jeanloz 1987, Peyronneau and Poirier 1989). 

These have produced conflicting values for the magnitude of mantle conductivity, 

but it is now more strongly accepted that the D n layer which occupies the bottom 

200-300km of the mantle (Young and Lay 1987), may have an appreciably higher 

conductivity than the rest of the mantle. This is because it is believed that in 

the D" layer there may be appreciable amounts of iron from the core present

6



which results in a higher conductivity there. The presence of pockets of iron in 

D" suggests that there may be a large lateral lateral heterogeneity in conduc

tivity over a very short lengthscale (Jeanloz 1990), with a range of conductivity 

varying from metallic conductivity to virtual insulation. We attem pt to model 

this heterogeneity as part of Chapter 4.

Our study of the effects of mantle conductivity takes the form of an extension 

of the work of Bloxham (1986). He considered a plane layer model where a 

uniform horizontal magnetic field was expelled into an insulating mantle by an 

upwelling fluid flow in the core. We look at the same problem here, but allow the 

mantle to have an arbitrary conductivity which can vary laterally and with height. 

We consider various profiles for the conductivity in the mantle, in particular trying 

to model the possible large lateral variation in conductivity in the D" layer.
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C hapter 2 

T herm al convection  in a spherical shell 

w ith  a variable radius ratio

2,1 INTRODUCTION

In this chapter we consider, as a model for the E arth’s core, an electri

cally conducting fluid sphere with a solid concentric inner core. We impose an 

azimuthal magnetic field Bo(r, 0)1^, azimuthal shear flow Uo(r, 0)1$ and tem

perature distribution To(r), where (r, 0,0) are spherical polar coordinates, and 

consider the linear stability of this basic state. We investigate the effect of inner 

core radius, magnetic field strength, and differential rotation on thermal convec

tion.

The E arth’s magnetic field has been maintained against ohmic losses for the 

past few billion years by the action of a dynamo mechanism in the outer core. 

The complicated interaction of the fluid velocity and the magnetic field acts to 

maintain the field against ohmic decay. The high non-linearity inherent in the 

full set of equations for the problem ensures that any numerical calculations 

performed are extremely demanding on storage and CPU time. It is common, 

therefore, to study simpler problems such as kinematic dynamo models, where the 

back reaction of the magnetic field on the flow is neglected, or, as here, convection 

in the presence of a prescribed magnetic field.

Much study has been made concerning the suitability of possible energy 

sources for the dynamo. Sources such as precession and thermal convection have 

been considered, but current thinking favours compositional convection, where 

the energy comes from the rise of buoyant light material released by freezing 

at the inner core boundary (Fearn 1989b, Loper 1989). Because of its being



mathematically simpler, thermal convection is the process used here, although we 

later modify the temperature distribution to model the effects of compositional 

buoyancy.

Thermal convection in a sphere has been studied by many authors (e.g., 

Roberts 1968, Eltayeb and Kumar 1977, Fearn 1979, Fearn and Proctor 1983a). 

They used a uniform distribution of radioactive heat sources in the core to provide 

a temperature distribution, and this is the mechanism we study to begin with, 

in order to have some check for our results. This method of heating, however, 

is no longer considered to be the primary source of energy for the dynamo as 

it is doubtful that there is enough radioactive material to provide the necessary 

amount of heating.

One addition to the models referred to above, is that of an inner core. The 

inner core has grown gradually outwards through the core as the earth has cooled, 

and we investigate the effect on convection of this growth. We find that there 

is a noticeable effect on core convection, particularly when the inner core radius 

becomes large and the restriction in space becomes important.

It is well known that, although separately the addition of differential rota

tion or a magnetic field acts to inhibit convection, introducing a magnetic field 

to a rapidly rotating system initially reduces the critical Rayleigh number, R c 

(the non-dimensional parameter which marks the point of onset of convection). 

Increasing the magnetic field strength continues to provide this beneficial effect 

until the Lorentz force balances the Coriolis force, after which increasing the 

field results in convection becoming inhibited. For values of the Roberts number 

q — k/ tj < 0(1) which we study here, the minimum value of R c is reached when 

the Elsasser number, A, a non-dimensional measure of the magnetic field strength, 

is 0(1) (see Fearn, Roberts and Soward 1988). For q > 0(1) the minimum is at 

A =  0(g) (Acheson 1979; Fearn 1989a). The position of this minimum, as will 

be seen, is altered by a change in inner core radius.

Differential rotation also plays an important role in the convection process. 

When the strength of the shear (as measured by the magnetic Reynolds num
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ber R m) is increased to 0 (q )y convection becomes inhibited. Further increasing 

R m results in convection becoming increasingly localised in some region. This is 

apparent for all perturbation variables for q =  1, but only in the temperature per

turbation for q — 10-6 (Fearn and Proctor 1983a,b, Fearn 1989a). The findings 

for our model are completely in agreement with these earlier results.

2.2 M ODEL

2.2.1 G overning Equations

The model considered here is an electrically conducting fluid sphere con

tained within a rigid electrically insulating boundary, with a solid concentric inner 

sphere which is a perfect electrical conductor. For the first part of this study we 

choose a system internally heated by a uniform distribution, i?, of heat sources. 

W ith this temperature distribution we consider both the core-mantle boundary 

and the inner core to be perfect thermal conductors. The system rotates with 

angular velocity fio =  where I* is the unit vector in the direction of the

rotation axis. In the rotating frame of reference, and with spherical polar coor

dinates (r, 9, (f)) the equations describing the fluid velocity U, the magnetic field 

B, the temperature T  and the pressure, p1 are, in the Boussinesq approximation

^  +  (U  • V )U  +  2 n 0 x U  =  - — Vp +  I/V2U  +  — (V x B) x B +  — g, (2.1) 
dt pa p.po pa

3D
=  V x (U x B) +  t;V2B, (2.2)

FIT
+  (U • V)T =  reV T +  H, (2.3)

ot

V -U  =  V -B  =  0.

10
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where g — — g0r / r 0l r is the gravitational acceleration and /i, pa, p, ft, r0 denote 

the kinematic viscosity, magnetic permeability, mean fluid density, magnetic dif- 

fusivity, thermal diffusivity and outer core radius, all of which are assumed con

stant. To complete the system we use the equation of state

p =  Po ( l - a ( T - T 0)) (2 .6)

where p is the fluid density, To is a mean temperature and a  is the coefficient of 

volume expansion.

We perform a linear stability analysis on the equations, perturbing the basic 

fields

B =  B 0 +  b, U =  U 0 +  u, T =  T0 + tf  (2.7)

where,

Bo =  J?0(r, 9)1+, U 0 =  U0(r, 0)1*, T0 =  T0(r) (2.8)

are the basic fields to be prescribed, and b, u, d are the perturbation variables.

The mean field variables Bo, Uo and To are normalised using Bm  — max|jE?o |, 

Um — max|Z7o| and j3r0 where j3 — max|VTo|. We non-dimensionalise the equa

tions using the magnetic diffusion timescale — rQ2/rj, lengthscale r 0, temper

ature /9r0, magnetic field strength Bm  velocity r}/r0. We also make the 

“magnetostrophic approximation” (see Fearn, Roberts and Soward 1988), omit

ting inertial and diffusive terms from the momentum equation, (2.1), since, for 

parameter values appropriate to the Earth, their contribution is negligible. The 

linearised equations can thus be written

l z x u =  —Vp +  A((V x B 0) x b +  (V x b) x B 0) -f qR'dr, (2.9)

11



— - =  V x (u x Bo) +  x (U 0 X b) +  V 2b, (2.10)
ot

■ -̂ +  (u-V )T oH -flm(U o -V )t9 =  ?V 2tf) (2.11)

V • u =  V • b =  0. (2.12,13)

The non-dimensional parameters here are the Elsasser number A, the Roberts 

number q) the magnetic Reynolds number R m and a modified Rayleigh number 

R  which are defined by

A = . B m  q =  &.
2 Q Q f j , p Q 7 j ’  71 ‘

p  _  Um To p  _  ga f i ro 2
JXrti - * £  —

(2.14)

2Q,q k

2,2.2 M e th o d  of Solu tion

The system of equations (2.9)-(2.13) together with the boundary conditions 

which we employ (see Section 2.2.3) is separable in (f> and t so we make the modal 

expansion

[u, b,p,i9] =  [u(r, 0) ,b (r, #),p(r, 0) ,$ (r, 0)] exp (at) e x p (2.15)

We are left with a system of coupled two-dimensional partial differential equations 

in r and 6. We split b, u  into components, writing

b — (6r , be, u  =  (ur ,U0,it^).

12
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Equation (2.13) is not independent of the magnetic induction equation (2.10), 

but we use this divergence relation in preference to the ^-component of the in

duction equation which is more complicated. Using (2.12), (2.13) and l^-(2.9) 

we eliminate b<j> and the pressure p respectively. There is no boundary condi

tion on uq, so we remove the term occuring in the r-component of (2.10) by 

using -^[l#  * (2.9)]. We can further simplify the system, by eliminating u q  using 

the 0-component of (2.9), which leaves us with four coupled partial differential 

equations in tir , 6r , b$ and ■$.

We then discretise the equations replacing the differential operators with 

second-order finite-difference approximations. We have N  grid points in the 

r-direction and L  in the 0-direction. The system of equations has now been 

transformed to a matrix eigenvalue problem of the form

A x =  pBx (2.17)

where A, B are the matrices formed from the finite difference equations, and

x =  (v1’1, . . . ,  v 1,1, 1, . . . , v iv 1,1, . . . , v JV 1,L 1), (2.18)

where

v*'* = (u\;3 j ) (2.19)

The eigenvalue problem was solved by two methods. Firstly the LR algo

rithm  [Peters and Wilkinson (1971a)] was used on the system with the variable 

ur eliminated. This reduces the system to a problem of the form C y =  py. 

The LR algorithm finds all the eigenvalues of the system, but requires a large 

amount of storage and CPU time so is limited to a low numerical resolution. To 

determine the eigenvalues at higher resolution we then use the method of inverse 

iteration [Peters and Wilkinson (1971b), Fearn (1991)], This method requires an 

initial estimate for the eigenvalue, and we use the eigenvalue corresponding to
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the most unstable mode found at low resolution by LR. Inverse iteration outputs 

the eigenvalue closest to the input guess and its corresponding eigenvector. Our 

finite-difference matrices are banded in structure, and the method of inverse it- 

eration can take advantage of this to reduce storage and CPU time, and allow a 

much higher numerical resolution.

2.2.3 Boundary conditions

If we assume that the basic magnetic field is either symmetric, (B  =  0), or 

antisymmetric, (B  =  1), then the problem splits into two parities of solution, 

namely Dipole (br antisymmetric, b$ symmetric, u rBo and OBq antisymmetric), 

and Quadrupole (br symmetric, be antisymmetric, u rBo and OBq symmetric). 

We need only to solve the problem then in the region rn  < r < 1, 0 < 9 < 7r/2,

provided that we satisfy the following boundary conditions.

(a) e
IX

DIPOLE

QUADRUPOLE

d h
d0

dbr
bn =0

dur _ d 0 
dO dO

=0 (B  = 0)

Ur =  0  = 0

1? = 0

dur d0
I do do

=0

(B = 1) 

( B = 0 )

(B =  1)

(2 .20)

We also require the following boundary conditions at 0 — 0, r — rn  and r =  1.

(b) 0 =  0

K  =  ^  =  ur — d — 0 (m  =  1)

br =  be =  ur = 0 =  0 (m  > 1)

(2.21)
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(c) r  =  1

b =  b ex, u • l r — 0, $ =  0. (2.22)

where b ex is an external potential field.

(d ) r  — rib

(i) ra  =  0 

m  > 1 :

br — bg — ur =  $ =  0 (2.23)

m  =  1 :

=  0 (both parities), (2.24)

D IPO L E : br = bs = Q

' u r constant (B = 0)

QUADRUPOLE : &r , bo constant

ur =  0 (B  =  1)

u r — 0 (B — 0)

u r constant (B  = 1)
(2.25)

(ii) rib > 0

br = u r = {) = 0, §^(rhe) =  0. (2.26)
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2.2.4 Choice o f tem perature distribution

Our choice of temperature distribution must satisfy the heat conduction 

equation

V - +  (U ■ V)T =  kV2T +  H
Ot

(2.27)

If we choose U  =  Z7(r, 6) 1^, T  =  T(r) then this equation has solution

(2.28)

where A  and B  are arbitrary constants to be determined by the boundary con

ditions. To allow rjb = 0, we require that A — 0, and by specifying T at r — 1 

we determine B. We produce a temperature gradient

and this represents a temperature distribution as would be produced by a uniform 

distribution of heat sources for a full sphere (ra = 0).

If we have a non-zero inner boundary radius, then to allow comparison with 

the rib =  0 case we want to have the same temperature gradient. In addition 

to the uniform heating IT, we require differential heating between the inner and 

outer core boundaries. By doing this we can make A  =  0 and keep the same 

gradient as before.

2.3 N U M E R IC A L RESULTS

2.3.1 Finding unstable m odes.

In the course of this chapter we are mainly interested in finding the most 

unstable mode of solution (i.e., the mode with the lowest critical Rayleigh number 

R c), for particular choices of the parameters, but we also look at the higher modes 

when required, as we find that the order of modes can be altered as we change

16



the parameters. In order to find these modes, we first use the LR algorithm with 

a specified Rayleigh number R. This finds all the eigenvalues, although limited 

in resolution to a maximum of IV — L = 16 grid points. If an eigenvalue is found 

with a positive growth rate, then this corresponds to a mode which is unstable 

for the chosen value of R. If none are found then R  is increased and we repeat 

the process. When we have found the eigenvalue corresponding to the most 

unstable mode according to LR, we then input this value as the required initial 

estimate for the Inverse Iteration method, which produces one eigenvalue and its 

corresponding eigenvector at a higher numerical truncation. Having found the 

most unstable mode at the specified Rayleigh number R, we then iterate from 

this to find the point of marginal stability where the growth rate is zero, and 

obtain the critical Rayleigh number for the mode.

2.3.2 Initialisation

In order to solve our problem we must prescribe the basic field and flow, and 

values for some of the parameters. Initially we choose

B q =  8r2( l  — r2) sin0 cos^l^, Uo =  0. (2.30)

This choice allows us to make comparisons with previous work of Fearn and 

Proctor (1983a) on a model without an inner sphere, and this provides an essential 

check for the numerical code used here, as we can compare our calculations for a 

zero inner boundary radius, (r t-& =  0), with their results. In this section we choose 

our basic temperature distribution to be that of a uniform distribution of heat 

sources in the core (see Section 2.2.4), the distribution used in previous studies 

of convection in a sphere ( Fearn and Proctor 1983a, Roberts 1968, Eltayeb and 

Kumar 1977).

We initially choose q =  10“ 6 since this is a good approximation for the 

molecular diffusivity ratio of the Earth, and consider only the case when the 

azimuthal wave number m  =  2. For the domain of magnetic field strengths that 

we are interested in [A =  0(1-10)], the most unstable mode occurs for azimuthal

17



wave number m  = 1. However wlien m =  1, there can be interference from 

magnetically driven instabilities (Fearn and Weiglhofer 1991a,b). These magnetic 

instabilities occur for magnetic field strengths above a certain critical value Ac, 

which is dependent on the azimuthal wave number m. By choosing m  = 2, we 

find that Ac becomes higher than the values of A considered here, and so we 

can avoid the magnetically driven instabilities and concentrate on the thermal 

instabilities which are the subject of this study.

2.3.3 P lo ttin g  the eigenfunctions

Our model produces the eigenfunctions of the perturbation variables, namely 

6r , bfft ur ,U0 and $. These variables are normalised such that &r (r =  l ,0  =  “ ) =  l 

with quadrupole parity of solution, or be{r — 1,0 =  ~) — 1 with dipole parity, 

and then split into real and imaginary parts. This normalisation can occasionally 

lead to problems as we follow the same mode of solution while changing the 

parameters, in that the sign of the variables can be reversed from one picture to 

the next. This is not a common problem though, and is easily dealt with. The 

eigenfunction solutions that we obtain are with respect to an r, #-grid. We must 

first interpolate into a regular rectangular grid, before plotting the eigenfunctions 

as contour maps.

2.3.4 Com parison w ith Fearn and Proctor (1983a)

We can check our numerical code by comparing our results from our model 

with an inner boundary radius m  =  0 with the calculations of Fearn and Proctor 

(1983a) who considered the same problem but without an inner core. As an 

example we illustrate the eigenfunctions for the most unstable mode with field

(2.30), q = 1Q“ 6, azimuthal wave number m  =  2, magnetic field strength A =  1 

and with the quadrupole parity of solution (see Section 2.2.3), in Figure 2.1. This 

corresponds to Figure 3 of Fearn and Proctor (1983a). We find good agreement 

between the two models.

18



Figure 2.1: Contour plots of the eigenfunctions of the most unstable mode with 

zero inner boundary radius, q =  10-6 ,m  =  2, A =  1, basic state (2.30) and 

quadrupole parity of solution. The truncation here is N  =  L =  20. These 

eigenfunctions are from left to right 6r , 6$, i9, u r , and ue with real parts on the 

top row and imaginary parts on the bottom. R c here is 316.711.

19



2.3.5 Convergence o f Solutions

To check that the modes that we find are well resolved, we check the conver

gence with increasing truncation. We show graphs of the convergence of critical 

Rayleigh number and critical frequency with increasing number of grid points for 

basic state (2.30), rn, =  0, A =  1, q =  10-6 , m =  2 in Figure 2.2 (with dipole 

parity of solution) and Figure 2.3 (with quadrupole parity). These show that for 

a truncation of N  = L = 20 the solution is well resolved. This together with the 

clarity of the eigenfunctions, gives us confidence in our results at this resolution. 

Hence for all results in this chapter, we use a truncation of N  = L  =  20.

2.3.6 Variation o f R c w ith ru

The first case that we consider is the effect on the solution of varying the 

inner boundary radius. We initially choose a magnetic field strength, A =  1 with 

the quadrupole parity of solution . We then look for the onset of convection for a 

zero inner boundary radius. The three most unstable modes were found and their 

progress followed as the inner boundary radius, rn , was gradually increased. The 

effect of this increase on the critical Rayleigh number, Rc, is shown in Figure 

2.4. At first, increasing rn  reduces R c very slightly, but after a minimum is 

reached there is a continual increase which, after ru  reaches ~  0.5, becomes very 

rapid. The behaviour of the three modes is very similar, although mode 1, which 

is initially the most unstable mode, becomes strongly inhibited well before the 

other two modes do. Indeed the most unstable mode for r ,z, > 0.5 is mode 2.

The eigenfunctions of 6r , the radial component of b, for the three modes 

are shown in Figure 2.5. These are characteristic of the eigenfunctions of the 

other perturbation variables. The eigenfunctions for each mode show differing 

behaviours as rn  is increased. Mode 1 shows a tendency for convection to move 

towards 0 =  tt/2, whereas mode 2 shows a preference towards 9 =  0 at higher m  

values. Clearly mode 1 is becoming quite restricted by the inner boundary growth 

when Vii, — 0.3, whereas mode 2 is still relatively uninhibited by this point. This 

is a likely reason why mode 2 becomes the preferred mode at ~  0.5.
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Figure 2.5: Eigenfunctions of the real part of br for the three modes of Figure 2.4.

MODE 1 MODE 2 MODE 3
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The third mode is a shorter lengthscale mode. It, too, is not very restricted at 

m  — 0.3 and it also becomes more unstable than mode 1, but remains more 

stable than mode 2.

Repeating the above with a higher magnetic field strength, A — 10, produced 

similar results. As before the three most unstable modes were found and followed 

as ra  was increased from zero. The relationship between R c and r̂ b is shown, 

for this case, in Figure 2.6. This picture is very similar to Figure 1. Again there 

is a small initial decrease in R c followed by an increase which becomes marked 

after m  reaches 0.5. The third mode shows a kink which is probably due to a 

change to another mode. This was investigated by trying to separate the two, 

but it was not possible to resolve. The decrease in R c is much more noticeable 

for the higher magnetic field strength, and this is explained in Section 2.3.7. The 

eigenfunctions (Figure 2.7) also exhibit the behaviour seen before, and mode 1 is 

again superseded by the other two modes, although at a higher value of r ^  than 

before (~  0.6 as compared with ~  0.5).

The magnetic field strengths A =  1,10 used in these calculations were chosen 

because they may be representative of the Earth’s field. Field strengths higher 

than these were not considered because we would then be entering the domain of 

magnetic instabilities which could confuse the picture.

2.3.7 V aria tio n  o f R c w ith  A

Using the three modes found for A — 1, quadrupole parity in Section 2.3.6 as 

a starting point, A was increased gradually from 1 to 10 for constant values of ru 

of 0 ,0 .1 ,.. . ,  0.5. The variation of R c with A is shown, for mode 1, in Figure 2.S. 

This picture shows some interesting behaviour. The general tendency observed 

is for R c to fall to a minimum and then increase, which is consistent with the 

expected minimum for A — 0(1) (see Fearn, Roberts and Soward 1988). However, 

it is the variation of this behaviour with ru  which is of most interest. Initially, 

when A — 1, it is the lower ru  values which are preferred, with R c increasing as 

ru  increases. As we increase A, though, higher values of ru  become optimal, as
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shown in Figure 2.9. This explains why the initial decrease in R c in Figure 2.6 is 

more evident than in Figure 1, as with higher field strength A =  10, ru  can be 

increased to a greater extent before convection is inhibited.

The eigenfuntions, in this case, show a tendency to move away from the 

rotation axis 6 = 0 as A is increased. This can be seen by comparing the respective 

eigenfunctions in Figures 2.5 and 2.7. This also allows ru  to be increased more 

before inhibiting convection, further explaining the stronger initial decrease of R c 

with ru  for A =  10.

2.3.8 D ipole parity

If we repeat the calculations performed previously, but with dipole parity 

we find similar behaviour, although at slightly higher magnetic field strength. 

Here we consider A values between 10' and 30. As earlier we look for the onset of 

convection for a zero inner boundary radius, and follow the modes as the inner 

boundary radius, ru  is gradually increased. The variation of R c with A for the 

most unstable modes for A =  10 and A =  30 is shown in Figure 2.10. As for the 

quadrupole parity case, we first see a slight decrease in R c as r,*f, is increased, 

with this decrease being more noticeable for higher A. When r t{, becomes large 

(~  0,5-0.6), R c increases rapidly with any further increase in Figure 2.11 

shows eigenfunctions of the real part of br for A =  10 and A =  30. The behaviour 

of the other eigenfunctions is similar. Initially, as is increased there is little 

effect on the eigenfunctions, but when ru becomes large the modes are becoming 

quite restricted, which explains (as with the quadrupole parity) why R c increases 

rapidly with ru  here. Comparing the A =  10 and A =  30 eigenfunctions, we see 

that increasing the magnetic field strength has caused the eigenfunctions to move 

away from 6 = 0 and towards 6 = —. As we suggested for the quadrupole case, 

this means ru  can be increased to greater values before convection is restricted, 

explaining why the initial decrease of R c with ru  is more pronounced at higher 

A.

The main reason why we are looking at higher A values here than for the
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Figure 2.11: Eigenfunctions of the real part of br for the modes of Figure 2.10.
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quadrupole parity, is that the minimum turning point in the graph of R c versus 

A occurs here for A — 0(20) as opposed to A =  0(2) in the quadrupole case. As 

in Figure 2.8, we find that the position of this minimum changes with r ,•&. Figure 

2.12 shows the variation of R c with A for different constant values of ru. When 

A =  10 we find that the lowest ru  values have the lowest R c, with R c increasing 

with rib. As A is increased, however, higher values of ru  become preferred as is 

shown in Figure 2.13. This is the same behaviour we found with the quadrupole 

parity.

With dipole parity, the higher modes were sometimes found to be slightly 

erratic and difficult to follow, but they were never found to become the preferred 

mode. All the results in this section were for the most unstable mode which 

behaved as expected.

2.3.9 Effect of changing basic state Bo

Although a good choice for comparison with previous work, the basic field,

(2.30), considered thus far does not satisfy the boundary condition

—  (r B -  0 (r =  rib). (2.31)

when rib ^  0, which is the appropriate boundary condition to apply at the bound

ary between the outer core and a perfectly conducting inner core. In order to 

determine whether or not this was affecting the results, a similar field was chosen 

which does satisfy the boundary condition,

Bo “  ~ ( r  — r^ )2(l — r 2) sin 9 cos 9l<f>.
o

where

C = {(rib +  ( r^ 2 +  S)1/2) ^  -  r,-&) 2(l -  (rih +  (rib2 +  8)1/2) 2/16), (2.33)

(2.32)
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was chosen to normalise the field to have maximum value 1. This field reduces 

to (2.30) when — 0.

Calculations were performed as before and the results obtained with this 

field exhibited the same trends as the original field (2.30). We looked for the 

three most unstable modes with a non-zero inner boundary radius for m  =  2, 

q = 10-G and quadrupole parity. The effect of increasing ru  on R c is graphed 

in Figure 2.14 for A =  1 and Figure 2.15 for A — 10. On increasing ru  there is 

an initial drop in R c followed by a sharp increase at higher r»&. We also see a 

changeover between modes 2 and 3 in Figure 2.14, although the preferred mode 

remains so here. For A =  10, the initial decrease of R c with ru  is much more 

marked, the stronger field allowing ru  to be increased to higher values before 

convection becomes inhibited. This also is what we found for the field (2.30). 

Eigenfunctions of the real part of br for both A =  1 and A =  10 are shown in 

Figure 2.16. These are similar to those with the original field, and indeed we 

see that for a higher magnetic field strength the eigenfunctions have moved away 

from the rotation axis 6 =  0. This further echos the results with the original 

field.

Since the results for fields (2.30) and (2.32) are qualitatively the same, it was 

decided to continue with the original field (2.30).

2.4 EFFECT OF DIFFERENTIAL ROTATION

We now consider the effect of differential rotation on the problem by in

creasing the magnetic Reynolds number, Jim, from zero. We choose as our basic 

flow

Uo =  64?’3(1 — r 2)2 cos2 9 sin 01^ (2.34)

This choice of Uq is such that Uo/s =  (B q/ s)2, and this flow was also con

sidered in Fearn and Proctor (1983a). It provides a fairly typical differential 

rotation, with both r and 9 dependence, in addition to being a check for our 

results. We look at the case A =  1, m — 2, and choose ru, =  0.35, which is
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close to the ratio of the radii of the Earth’s inner and outer cores. We consider 

q — 10“ 6 as before and also look at the case q =  1 where the effects of thermal 

and magnetic diffusion are comparable.

2.4.1 q =  10~6

Using the three modes found in Section 2.2.5 for A =  1, r,-& =  0.35 and 

quadrupole parity we gradually increase R m. Figure 2.17 shows the effect on 

R c of this increase. At first there is a very small decrease in i2c, but when R m 

becomes 0(g) there is a sharp rise. This is in accordance with Fearn and Proctor 

(1983a) and with work done in plane layer and cylindrical geometries (Fearn and 

Proctor 1983b, Fearn 1989a).

As the effect of the differential rotation becomes stronger, we see that con

vection becomes increasingly localised. The temperature perturbation in par

ticular becomes very concentrated at the place where the shear is minimum for 

Rm »  0(g). For our choice of flow (2.34), the minimum for r is at r ~  0.58 

and we see concentration at about this radius, but the ^-minimum is at the edges 

9 =  0, f  so the concentration can take place at any latitude 9, as we see later 

with other parameter choices. This behaviour is also in agreement with Fearn 

and Proctor (1983a). This concentration of convection occurs because the insta

bility tends to be carried along with the flow. The competing effects of shear 

and diffusion determine the width of the region of concentration. For the case 

studied here of g =  10-6 , the thermal diffusion timescale is much longer than the 

magnetic diffusion timescale. The magnetic field is thus more able to diffuse, and 

so there is no concentration of the perturbed magnetic field. Because thermal 

diffusion is much weaker, the temperature perturbation is localised in the region 

where it can match the effects of the shear. Eigenfunctions of d and br are shown 

in Figure 2.18. The concentration of the perturbations suggest that in such a 

case the presence of an inner boundary would have little effect. This is seen to be 

true if we hold R m fixed at 10-3 , and iterate back to 0. The eigenfunctions 

are found to be very similar, and the critical Rayleigh numbers are quite close
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(R c — 8892.07 for rn = 0 and R c — 8709.29 for ra  =  0.35).

If we repeat these calculations with dipole parity of solution we find similar 

behaviour. Figure 2.19 shows the relationship between R c and i?.m for the most 

unstable mode with both A =  1 and A =  10, and eigenfunctions of rd and br are 

shown in Figure 2.20. Again we see that the d perturbations become concen

trated for R m »  0 (q ), while the other perturbations do not. This is the same 

behaviour as was noted with quadrupole parity.

2.4.2 q = 1

We considered in Section 2.4.1 the diffusivity ratio q — 10~6 which is a 

relevant value for the Earth if we take molecular values for the diffusivities. If, 

however, thermal and magnetic diffusivity are of the same order, i.e. if q =  1, 

then we find slightly different behaviour. The graph of R c against R m is shown in 

Figure 2.21 for the most unstable mode with m ~  2, rn = 0.35 and quadrupole 

parity for A — 1 and A — 10. For the case when A =  1, the most unstable mode 

at first shows familiar behaviour. After an initial decrease in i7c, convection 

becomes inhibited when R m =  0(1). This decrease is more evident for A =  10. 

If we continue to increase R mi we find the picture complicated by instabilities 

due to the shear itself (see e.g., Fearn 1989; Fearn and Weiglhofer 1992b), but we 

do not concern ourselves with these in this study.

The eigenfunctions for the A =  1 case are shown in Figure 2.22. Here all the 

perturbation variables become concentrated for R m »  O(q). This mirrors for a 

spherical shell what was found in other geometries (Fearn, Roberts and Soward 

1988; Fearn 1989a). In this case of q — 1, thermal and magnetic diffusivity are 

comparable, and this is why all the perturbation variables become concentrated 

here.

Repeating the above but with dipole symmetry again results in similar find

ings. The graph of R c against R m for the most unstable modes with A =  1 and 

A =  10 is shown in Figure 2.23. Here we see that as R m is increased there is a drop 

in R c initially, although for A =  1 there is a sharp dip when R m = 0(5). After
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Figure 2.21: As Figure 2.19 but with q — 1 and quadrupole parity.
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Figure 2.22: As Figure 2.18 but for the most unstable A =  1 mode of Figure 2.21.
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Figure 2.23: As Figure 2.19 but with q — 1.
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Figure 2.24: As Figure 2.18 but for the most unstable A =  1 mode of Figure 2.23.
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this though we find convection becoming strongly inhibited as before. Eigen

functions of d and br for the A — 1 case are shown in Figure 2.24. As for the 

quadrupole parity, we see that all the perturbation variables become concentrated 

for R m »  0(q).

2.4.3 In itia l decrease of R c w ith  R m

We have noted above that in many cases, increasing R m initially results in a 

decrease in R c. This behaviour was not seen by Fearn and Proctor (1983a) who 

studied the rn = 0 case with the same flow and parameters. This was felt to be 

worthy of further investigation, so we considered three other flows, namely

OK
U 0 =  v / 5 r ( l - r 2)2 sin01*, (2.35)

which was also studied in Fearn and Proctor (1983a),

U 0 =  -  rih)A(l  -  r 2)2 cos2 ^ s in ^ l^ , (2.36)
G v

and,

Uo = ~ 2 S & (r “ ril)*(1 -  r2)2 3in<?V (2'37)

Flow (2.35) was used in conjunction with basic magnetic field (2.30), but the 

other two flows were used with the basic magnetic field (2.32) used in Section 

2.3.9, which included the parameter C used above, defined by (2.33). The same 

parameters were used as with our first flow, i.e., m  =  0.35, m  =  2, g =  10-6 

and A =  1, and we considered quadrupole parity. W ith each of the three flows 

(2.35)-(2.37) no decrease in R c was seen on increasing R m. Increasing the field 

strength to A =  10 resulted in similar findings - a slight initial decrease in R c 

with flow (2.34) but not with any of the other three flows (2.35)-(2.37). We 

then looked at a case where the initial decrease in R c was more marked, namely
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the rn> = 0.35, A =  10, m = 2 ,g =  1 and quadrupole parity case which was 

graphed in Figure 2.21. Again, only flow (2.34) resulted in the initial decrease 

in R c. Although we are unable to explain the decrease seen with this choice of 

flow (2.34), it does seem to be characteristic of that flow, and does not otherwise 

affect the behaviour seen due to the addition of differential rotation.

2.5 VARYING THE TEM PERATURE DISTRIBUTION

Up to now we have considered a temperature distribution appropriate to a 

uniform distribution of radioactive heat sources in the core. This enabled us to 

make comparison with other work, but this mechanism is no longer believed to 

be the primary energy source for the dynamo. Instead it is the latent heat and 

compositiona.lly buoyant material released by the freezing process at the inner 

core boundary that is the primary source of outer core convection (Fearn 1989b). 

We now consider a temperature distribution appropriate to a source of buoyancy 

at the inner core boundary.

2.5.1 C om positional Convection type distribution

In order to simulate compositional convection, we require a source of buoy

ancy at the inner core boundary, and since no light material passes into the 

mantle there must be a sink throughout the core. We choose a uniform sink, and 

produce a temperature gradient

This gradient is an admissible solution of the heat conduction equation (see Sec

tion 2.2.4). Clearly this is only a reasonable choice if we have a non-zero inner 

boundary radius, and so we consider rn  ”  0.35 as in Section 2.4. We further 

require the boundary condition

dd
dr

= 0 (r =  1)
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since no light material flows out into the mantle. Thus thermally we can model 

this essentially compositionally driven process, albeit in a somewhat crude man- 

ner.

As before we look for the onset of convection. We choose as parameters 

in — 2, rib — 0.35, q — 10-6 and quadrupole parity. The three most unstable 

modes were found and followed as the magnetic field strength A was increased 

(Figure 2.25). The eigenfunctions found with our new distribution are very similar 

to those found for the heat source distribution (see Figure 2.26). Although the 

convection patterns may be similar, by averaging the temperature gradients over 

the region, taking

1 dT
r2~~-dr (2.40)

drt o

we find that, with the same mean amount of driving, the compositional type 

distribution is more efficient, with a much lower critical Rayleigh number than 

for a distribution of heat sources. This is not really surprising, for when we look at 

the eigenfunctions (Figure 2.26), we see that convection is located more towards 

r  =  rib where the driving is strongest for our compositional type distribution and 

weakest for heat sources, with less convective motion at r =  1 where most of the 

driving for the distribution of heat sources is located.

If we replace the r ~  1 thermal boundary condition, (2.39) with that used 

earlier ($ =  0), as would be appropriate for convection driven thermally by the 

release of latent heat at the inner boundary, then there is very little change in 

the calculations. Figure 2.27 shows the relationship between R c and A with this 

distribution. This is very similar to Figure 2.25, the main difference being that 

the R c values are ~  20 higher in this case. The eigenfunctions are similar to those 

of both the heat sources, and compositional type tem perature distributions, and 

are also shown in Figure 2.26.

If we consider the dipole parity of solution, then we find similar results. The 

graph of R c against A for the three most unstable modes with the latent
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Figure 2.25: Variation of R c with A for the three most unstable modes with 

compositional convection type heat distribution, =  0.35, q = 10-6 ,m  — 2 and 

quadrupole parity.
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(a) (b) (c)

0

r

e

Figure 2.26: Eigenfunctions of the real parts of br,be ,ur,ue and $ for (a) heat 

source, (b) latent heat, (c) compositional type distributions, for the most unstable 

modes with A — 1, 7̂  =  0.35, m  — 2>q — 10~6 and quadrupole parity. R c for 

these modes are (a) 508.450 (b) 141.365 (c) 111.905.
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Figure 2.27: As Figure 2.25 but with latent heat distribution.



heat distribution is shown in Figure 2.28, and the eigenfunctions for all three 

distributions are shown in Figure 2.29. Again the eigenfunctions are very similar 

for all distributions, but the compositional type modes have much lower critical 

Rayleigh numbers than the heat sources distribution ones. This is what we found 

with the quadrupole parity results.

2.6 D ISC U SSIO N  A N D  CONCLUSIONS

We have seen that the growth of an inner core can have a marked effect 

on convection. One might expect that an increase in inner boundary radius 

would inhibit convection since the space available for convection is being reduced. 

This constriction clearly does have an important effect, particularly at higher ru. 

Initially, however, we see a slight decrease in R c as rn  increases from zero. As 

we so increase though, we are introducing an inner core into a region where 

the temperature gradient is very small. In this region the main influence on the 

motion of the fluid here is the motion of the fluid at larger radius, which is driven 

by strong temperature gradient. By increasing rn  here, we effectively remove 

this weakly driven fluid, and the available driving can concentrate solely on the 

remaining fluid, thus aiding convection. This process would explain the observed 

initial decrease in R c. After this decrease, we do however see the expected increase 

in I7C, and, once rib reaches ~  0.5, convection is strongly inhibited.

The above mechanism may also be behind the observed behaviour when A 

is increased. We have seen from Figures 2.5 and 2.7 for quadrupole symmetry of 

solution, and Figure 2.11 for dipole, that an increase in A moves convection away 

from the rotation axis. This allows rn  to be increased to a greater extent before 

inhibiting convection, and this explains why the optimal r^  value increases with 

A. Clearly there must be a limit to the maximum value of rn  which can become 

optimal as eventually the constriction in space will become dominant. However, 

Figure 2.9 shows that this limit must be for rn  >0.35, which is about the present 

inner core radius. Thus, given a strong enough magnetic field, the growth of the 

inner core may not yet be seriously inhibiting convection.
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Figure 2.28: As Figure 2.25 but with latent heat distribution and dipole parity.
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(b) (c)

Figure *2.29: As Figure 2.26 but with dipole parity. R c values are (a) 179.625 (b) 

33.8148 (c) 18.3277
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Overall we have seen that a growing inner core plays an important part in the 

development of convection in the outer core. Clearly, though, the extent to which 

it does affect the convective process is very much dependent on the strength of 

the toroidal magnetic field. Unfortunately this strength is not known with any 

great certainty for the Earth.

When we introduce differential rotation into the problem we see results for 

our spherical model which are qualitatively the same as in other geometries. We 

find that convection becomes increasingly localised as the strength of the shear 

is increased, this localisation occurring in the region of minimum shear. In this 

regime of concentrated convection it would certainly seem that convection is 

insensitive to inner core radius.

The results obtained here are strongly influenced by our choice of temper

ature distribution. The choice of that of a uniform distribution of heat sources 

allows us, as we said earlier, to make a comparison with other work, but is per

haps not an ideal choice. We have seen that a compositional type distribution 

is a more efficient driving agent for convection, although producing similar con

vection patterns. Apart from being a less energetic mechanism, there is no other 

obvious difference between the two.
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C hapter 3

T he effect o f a stab le layer at th e  

core-m antle boundary on  

therm al convection

3.1 IN T R O D U C T IO N

As in Chapter 2, in this chapter we study, as a model for convection in 

the E arth’s core, the linear stability of a rapidly rotating electrically conducting 

spherical fluid shell, permeated by a toroidal magnetic field B. We now look at the 

effect of introducing a stably stratified layer into the fluid adjacent to the core

mantle boundary (CMB). We investigate three regimes of magnetic field strength. 

Firstly the weak field case A < <  0(1), then the case A =  0(1) and finally we 

consider the case of A > >  1, comparing our work with that done previously in 

simpler geometries.

The question of whether or not some of the E arth ’s outer core is stably 

stratified has been studied in much detail. Evidence for the existence of a sta

bly stratified layer adjacent to the core-mantle boundary (CMB), was found by 

Whaler (1980), and this was supported theoretically by the analyses of Fearn and 

Loper (1981) and Gubbins, Thomson, and Whaler (1982). This led to studies of 

convection in a rapidly rotating electrically conducting fluid with a stably strati

fied region. Boda (1988) and Sevcik (1989) studied convection in a horizontal fluid 

layer with the upper part stably stratified. Fearn and Richardson (1991) studied 

the problem using a cylindrical annulus model, with a stable region next to the 

outer boundary. We extend these results here to the more relevant geometry of 

a sphere.
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The results found by these authors are dependent on the strength of the 

magnetic field, measured by the Elsasser number A. Boda studied the limit q —> 0. 

He found that for A < 1 thermal instabilities could penetrate significantly into the 

stably stratified layer. As A is increased, however, convection becomes suppressed 

in the stable layer, and concentrates more in the unstably stratified region. Sevcfk 

considered q < 1 and found the same behaviour, Fearn and Richardson found 

that convection became concentrated in the unstable layer for both A < 0(1) and 

A > >  1, with a significant penetration into the stable region only for A =  O(l). 

This difference with Boda and Sevci'k’s results for A < 0(1) was explained by 

the limitations on the azimuthal wave number values considered by Boda and 

Sevclk; they considered only m  < 5, For A < 0(1) the most unstable modes 

correspond to higher m. For example, Fearn and Richardson found m c ~  27 

for A =  0.1. They suggested that had Boda and Sevcik considered higher m  

then they too might have seen a suppression of convection in the stable layer. 

The results presented here, although finding the most unstable modes over all 

wavenumbers m, do not show this behaviour for A < 0(1). For A =  0.01,0.1 and 

1, there is significant penetration of convection into the stable layer. Only when 

A > 0(1) do we find convection concentrating in the unstably stratified layer. 

We discuss this further in Section 3.4.

3.2 M O D E L

The model considered here is that used in Chapter 2. We have an electrically 

conducting fluid outer sphere with a solid perfectly conducting inner core. The 

system is rapidly rotating with angular velocity Qq — fiolzj and the fluid is 

permeated by a toroidal magnetic field B =  B(r, The outer boundary is

taken to be electrically insulating. The linear stability analysis that we employ 

is identical to that of Section 2.2, and so we do not repeat the details here, but 

simply refer to equations in Chapter 2 when necessary.

The one change to the model of the previous chapter is to allow a stably 

stratified layer to exist adjacent to the CMB, We achieve this by modifying our
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temperature gradient (2.38) to

where 7  is an arbitrary constant. The choice of 7  determines the size of the 

stable layer. Our default value 7  =  1 corresponds to no stable layer. Increasing 

7  from 1 introduces a stable layer increasing in size with 7 . In this chapter we 

consider further values of 7  of 2, 3 and 4 which correspond to stable layers from 

the core-mantle boundary down to r  ^  0.8,0.7 and 0.63 respectively. This choice 

of temperature gradient is an admissible solution of the heat conduction equation 

(see Section 2.2.4), and is produced by having an appropriate differential heating 

with a uniform heat sink throughout the fluid. We apply thermal boundary 

conditions appropriate to this type of heating, namely

49 =  0, (r =  r;&, 1) (3.2)

3.3 RESULTS

In all our calculations we use an inner boundary radius, 77& =  0.35, where we 

have non-dimensionalised the outer core radius to be 1. This is representative of 

the actual inner core radius. We choose q — 10-6 , which is representative of the 

diffusivity ratio of the Earth. We are always looking for the most unstable mode 

of solution for a particular field strength, i.e. the mode with the lowest critical 

Rayleigh number R c. When this corresponds to an azimuthal wave number m =  

1, there can be interference from magnetically driven instabilities (see Section 

2.3.2). If we choose m > 2 then for the values of A considered here, these 

magnetic instabilities are no longer present, and we observe only the thermal 

instabilities which are the subject of this study.

As our basic state we use that of (2.30), namely

Bo =  87’2(1 — r 2) sin# cos 01^, Uo =  0 
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3.3.1 A < <  1

We first consider the case of small magnetic field strength, A < <  1. For our 

results in Chapter 2 we used a numerical resolution of 20 x 20 grid points, and this 

gave us well resolved modes. In the low magnetic field strength regime, though, we 

expect to find a shortening in the lengthscales in both r  and <j) directions (Fearn; 

1979a). To ensure that we still have good resolution we increase truncation to 

32 x32 grid points. Figure 3.1 shows the graph of the critical Rayleigh number and 

frequency as the number of grid points is increased for field strength A =  0.01. 

Comparison of the eigenfunctions for different truncations also shows that our 

solutions are reasonably well resolved.

We first consider the quadrupole parity of solution, and we consider here 

A =  0,1 and A =  0.01, and note the effect on convection as a stable layer is 

introduced. As A is decreased, convection becomes increasingly columnar in 

structure. Also, the value of the azimuthal number, m, corresponding to the 

most unstable mode increases as A decreases. The value of m c also depends on 

7 ; for A =  0.1, m c is 9 or 10, and for A =  0.01, m c is between 29 and 31, We 

introduce a stably stratified layer by increasing the parameter 7  in (3.1) above 1. 

We choose values of 7  of 1,2,3 and 4. We show contour plots of the eigenfunctions 

of some of the perturbation variables, and also graph the kinetic energy of radial 

flow, u2 as a function of radius. We obtain these graphs by first averaging u2r 

over 9 at different values of r, and then normalising this to have maximum value 

unity. In Figure 3.2 we illustrate for A =  0.1 and increasing stable layer size, 

the radial component of the perturbation of magnetic field b, the temperature 

perturbation 9 and the induced e.m.f. which is defined by

Etf, “ < u x b > -1^, (3.4)

where < .. > denotes the azimuthal average, and in Figure 3.3 we graph the 

kinetic energy of radial flow. Similarly Figure 3.4 shows 6r , u r and 9 for A =  0.01, 

and Figure 3.5 graphs u2 against r. In each case the behaviour of the other
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Figure 3.1: Graph of the convergence of R c and critical frequency with the number 

of grid points for A =  0.01, m c =  29, rn — 0.35, q = 10-6 and quadrupole parity.
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7=1 7=2 7=3

br

0

Figure 3.2: Eigenfunctions of the real part of br , the imaginary part of d and 

E'j, for A =  0.1, quadrupole parity and for 7  =  1,2 and 3, corresponding to 

increasing stable layer size. The critical Rayleigh numbers for these modes are 

260.261, 347.744 and 490.733 and the critical wave numbers are 9, 9 and 10 for 

7 =  1,2  and 3 respectively.
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Figure 3.3: Graphs of the kinetic, energy of radial flow, u \ as a function of radius 

for the cases 7 =  1 (full line), 2 (short dashed line) and 3 (long dashed line) of 

Figure 3.2.
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7=1 y = 2  7 = 3

Figure 3.4: As Figure 3.2 but with dipole parity. R c values here are 31.9196, 

39.8086 and 52.0811 for 7 =  1,2 and 3 respectively. m c =  7 in each case.
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Figure 3.5: As Figure 3.3 but. for the cases 7 =  1,2 ancl 3 of Figure 3.4 .
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perturbation variables is the same as for br. We see that introducing a stable 

layer has very little effect on convection, except for the $ perturbation which 

does concentrate in the unstable layer. This is not surprising as by introducing 

the stable layer we are removing the thermal driving from the upper part of 

the fluid, and increasing the heating in the stable layer. Looking at the other 

perturbations we find that as the size of the layer is increased there is only a very 

small movement towards the unstable layer, with a significant amount of the 

perturbations remaining in the stable part. This is not what was found in the 

cylindrical problem. In the cylindrical case, Fearn and Richardson investigated 

the competing roles of temperature gradient and magnetic field strength. For our 

choice of B, not only is the fluid stable at the CMB, but B is relatively weak. 

Both of these effects act to inhibit convection near the CMB in the cylinder, but 

for the sphere, the effect of the Taylor-Proudman theorem overcomes both (see 

discussion in Section 3.4).

If we repeat the above but with dipole symmetry, we find similar results. We 

show eigenfunctions and graphs of against r for A =  0.1 in Figures 3.6 and 3.7, 

and for A =  0.01 in Figures 3.8 and 3.9. Again we see that as A becomes small, 

convection becomes columnar in structure, and that the addition of a stable layer 

has little effect on the perturbation variables. It is difficult to see any difference 

in the $ perturbation in this case, but this is due to it being concentrated well 

away from the core-mantle boundary and hence also from any stable layer. The 

most unstable modes were found for azimuthal wave numbers m c =  7 for A =  0,1 

and m c — 23 or 24 for A =  0.01, which is also consistent with the quadrupole 

parity results.

3.3.2 A =  0(1)

We now consider a field strength A =  1, and find the most unstable mode 

as before. This mode occurs for m — 1, but to avoid magnetic instabilities we 

consider the case m — 2. Eigenfunctions of br and the temperature perturbation 

$ together with graphs of the kinetic energy of radial flow are shown in Figures
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7=1 7=2  7=3  7=4

r

r

Figure 3.6: Eigenfunctions of br, ur and d for A =  0.01 and quadrupole parity, as 

in Figure 3.2 but including a yet larger stable layer, 7 =  4 (dot-dashed line). R c 

values in this case are 1646.22, 2133.26, 2900.76 and 4157.01, corresponding to 

7 =  1,2,3 and 4. The critical wave numbers here are 29, 29, 30 and 31.
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Figure 3.7: As Figure 3.3 but for the cases 7 =  1,2,3 and 4 of Figure 3.6.
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y — 1 7 = 2  7 = 3  7 = 4

Fi gure 3.S: As Figure 3.6 but with clipole parity. 72c values here are 139.955, 

171.S4S, 21S.5S7 and 2S9.564, with m c =23, 23, 24 and 24 for 7 =  1,2,3 and 4 

respectively.
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Figure 3.9: As Figure 3.3 but for the cases 7  =  1,2,3 and 4 of Figure 3.S.
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3.10 and 3.11 (quadrupole parity), and Figures 3.12 and 3.13 (dipole). As in 

Section 3.3.1 the perturbation variables are not affected by the introduction of a 

stable layer, except for the 9 perturbation, which does concentrate in the unstable 

region for the same reasons as in Section 3.3,1.

3.3.3 A > >  1

We now consider the large magnetic field case, taking values of A of 10, 20 and 

50. In this regime we find that magnetic instabilities become more dominant, and 

indeed it was not possible to consider field strengths higher than A =  50 because 

of this. The most unstable modes occur for m ~  1, but with a strong magnetic 

field we found m = 1 and m =  2 instabilities to be magnetic in origin. We wish 

to study only thermal instabilities here, and we were able to do this by choosing 

m  =  3. We show in Figures 3.14 and 3.15 (quadrupole) and Figures 3.16 and 

3.17 (dipole), eigenfunctions of br and t9, for 7  =  1 and 7 =  3 corresponding 

to the model without and with a stable layer, and graphs of against r. For 

all values of A the addition of a stable layer causes convection to concentrate in 

the unstably stratified part as we expected. As A is increased, we find that this 

localisation of convection in the unstable layer becomes increasingly associated 

with a compression in the 9 direction. We comment further on this in Section 

3.4,

3.4 D ISC U SSIO N

We have studied the effect on thermal convection of adding a stably stratified 

layer adjacent to the core-mantle boundary. On the whole our results agree with 

the work of previous authors. Where using a spherical geometry has produced 

different results, though, is in the case of a small magnetic field strength. For 

A < <  1, the primary force balance is between the Coriolis force and the pressure 

gradient. By the Taylor-Proudman theorem, convective motions will try to be in

dependent of the ^-direction, where the 2-axis is the axis of rotation. This results 

in a tendency for convection to become elongated in 2, leading towards a Taylor 

column structure (Busse 1978), as can be seen in Figures 3.6 and 3.8. Introduc-
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7=1 y = 2  7 = 3

Figure 3.10: Eigenfunctions of br and d for A — 1, ???. — 2 and quadrupole parity, 

and with 7 =  1,2  and 3 for which R c =  131.506,183.720 and 297.551 respectively.
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Figure 3.11: As Figure 3.3 but for the cases 7  =  1,2 and 3 of Figure 3.10.
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7=1 y=2  7 = 3

Figure 3.12: As Figure 3.10 but with dipole parity. R c values here are 36.5689, 

45.8098 and 61.9000 for 7 =  1,2 and 3 respectively.
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Figure 3.13: As Figure 3.3 but for the cases 7 =  1,2 and 3 of Figure 3.12.
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Figure 3.14: Eigenfunctions of br and d with 7 =  1 (full line) and 7  =  3 (dashed 

line), for magnetic field strengths A =  10,20 and 50, m =  3 and quadrupole parity. 

These have R c values of 206.683, 273.304 and 405.855 (7 =  1 and increasing A), 

and 35S.550, 440.309 and 586.344 (7 — 3 and increasing A),
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Figure 3.15: Gra.phs of uf. against r for from top to bottom A — 10,20 a.nd 50 

respectively, for the modes of Figure 3.14.
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A=10 A=20 A=50

r s \ M0 :

Figure 3.16: As Figure 3.14 but with dipole parity. R c values here are 4*2.5965, 

46.4757 and 40.0365 (7 — 1 and increasing A), and 98.0094, 118.052 and 151.365 

(7 =  3 and increasing A).
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Figure 3.17: As Figure. 3.15 but for the modes of Figure 3.16.
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ing a stably stratified layer lias tlie effect of trying to suppress convection in the 

stable layer. This acts to force a ^-dependence on the motion, which conflicts 

with the Taylor-Proudman theorem. As a result we find in the case of a sphere 

that convection continues to penetrate into the stable region. The reason why 

this behaviour was not seen for a cylindrical geometry is that in that case there 

was no conflict between the introduction of a stable layer and the constraints of 

the Taylor-Proudman theorem. Since the stable layer is parallel to the 2-axis 

in the cylinder, with the driving perpendicular to the rotation axis, convection, 

although suppressed in the stable part, can still maintain a 2-independent struc

ture. In the plane layer models of Boda and Sevcflc, there is, as in the sphere, 

a conflict between the constraints of the stable layer and the Taylor-Proudman 

theorem, since the stable layer is perpendicular to the axis of rotation, with the 

thermal driving in this case being parallel to the rotation axis. We would expect 

therefore that the results for a plane layer geometry would be the same as those 

found for a sphere,,and in particular that for A < <  1, Boda and Sevcfk, who only 

considered m < 5, would have found no suppression of convection in the stable 

layer, even if they had considered m c.

When we have a magnetic field strength that is no longer small, A > 0(1), 

our findings are in agreement with past results. For A =  1 we find that a stable 

layer has very little effect on convection, but when A > >  1, convection con

centrates in the unstably stratified fluid. Fearn and Richardson observed that 

localisation is associated with a short lengthscale perpendicular to the tempera

ture gradient, and this is also the case here. They found that for A <  0(1), the 

azimuthal wave number m »  1, and for A > >  1, there was a shortening of the 

lengthscale in the other perpendicular direction (the 2-direction). In the spher

ical problem, the “other perpendicular direction” is the 9 direction, and indeed 

we find a shortening in the 9 lengthscale as A is increased (see Figures 3.14 and 

3.16).

As far as the Earth’s magnetic field is concerned, the presence of a stably 

stratified layer at the CMB does not preclude convection from that region unless
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the field, is strong. If the Earth’s field is not too strong, A < 0(1), then the 

presence of, or lack of convective motion at the CMB gives us no information as 

to whether or not such a stable region exists.
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C hapter 4 

M agn etic  field expu lsion  

into a 

conducting m antle

4.1 IN T R O D U C T IO N

In this chapter we consider a different problem. We look at a 2D numerical 

model of the expulsion of magnetic field from the E arth ’s core into a conducting 

mantle, driven by a prescribed upwelling fluid motion. We consider different pos

sible conductivity profiles for the mantle, and compare with the fully insulating 

mantle solution as studied by Bloxham (1986). Motivated by recent work on the 

conductivity of the lower mantle, we later look at a conductivity profile with large 

lateral heterogeneity in conductivity.

Most studies of the Earth’s core have in the past assumed that the mantle 

is electrically insulating. This has been a reasonable assumption, and a sim

ple one to apply mathematically, but as models have become more complex, 

and our knowledge of the internal structure, composition and dynamics of the 

E arth’s deep interior have increased, it becomes possible, and indeed necessary, 

to consider a more realistic conductivity for the mantle. There have been many 

studies which have considered a conducting mantle, and suggested profiles for the 

conductivity (e.g., Braginsky and Fishman 1976; Alldredge 1977; Ducruix, Cour- 

tillot and Le Mouel 1980; Benton and Whaler 1983; Fearn and Proctor 1992). 

The main approaches have been to either divide the mantle into layers of uniform 

conductivity, or to assume a radial power law of decreasing conductivity. The
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conductivity of the mantle is not well known, and because of this it is necessary 

to choose simple representative models.

There has been considerable argument over the magnitude of mantle conduc

tivity. Ducruix et al (1980) reported that mantle conductivity could not exceed 

100 5 m ” 1 over any appreciable thickness, from an analysis of the secular variation 

impulse in the late 1960’s. High pressure - high temperature experiments have 

been performed, testing the conductivity of the materials thought to be present 

in the lower mantle, under conditions simulating as close as possible those in 

the mantle. These have given conflicting estimates:- Li and Jeanloz (1987) put 

an upper bound of 10” 2 5 m ” 1 on mantle conductivity between depths of 700 

and 1900km, whereas Peyronneau and Poirier (1989) found conductivity to be 

~  15m ” 1 at a depth of 1000km, and obtained a lower bound of ~  705m” 1 at the 

core-mantle boundary. Despite the lack of agreement over conductivity values, 

it is more generally agreed that in the Dn layer at the bottom of the mantle 

200 — 300km thick (Young and Lay 1987)], there may be appreciable amounts 

of iron from the core present, resulting in a much higher conductivity in that 

layer [O(1045?n_1) Li and Jeanloz 1987]. Indeed, recent evidence (Jeanloz 1990) 

suggests that there could be large lateral heterogeneity in conductivity in this 

layer, with changes from metallic conductivity to virtually insulating material 

over a very short lengthscale. In our later results (Section 4.4,3) we attem pt to 

model this lateral variation.

Our main aim here is to model the effects of mantle conductivity. To do 

this we extend the model of Bloxham (1986) to consider a conducting mantle. 

Bloxham solved the magnetic induction equation

-—  =  V x (U 0 x B) +  i,V2B (4.1)

for the magnetic field B with a prescribed flow Uo. He studied the expulsion of a 

uniform horizontal magnetic field from the core into the mantle, citing this process 

as a possible mechanism for an observed feature of the E arth ’s magnetic field,
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namely a reversed flux patch over Southern Africa (see Bloxham and Gubbins 

1985), We consider the same problem here, but instead of the mantle taken to be 

insulating, we consider a conducting layer of variable thickness and conductivity. 

Above this conducting layer the rest of the mantle is taken to be insulating.

4.2 M ODEL

We consider a 2D kinematic model for the expulsion of magnetic field from 

the core into the mantle. We use Cartesian coordinates with x horizontal and 

z vertical, taking the system to be independent of y for simplicity. We have a 

plane layer model, unbounded horizontally, and split vertically into two layers. 

At the bottom we have a layer of height L  representing the outer core. In this 

layer we have a prescribed flow U 0, and a magnetic diffusivity rjc which is taken 

to be constant. Above this we have a layer representing the lower part of the 

mantle, which is not to be confused with the common definition of lower mantle, 

understood to be the part of the mantle below 670km. This layer is of height 

eL, where we can choose e arbitrarily, and we prescribe the magnetic diffusivity 

here arbitrarily as ?/m — /( .t , 2). There is no flow in the mantle layer. Above this 

conducting layer, the upper mantle is taken to be insulating.

4.2.1 Governing equations

We solve numerically the magnetic induction equation in each layer.

® = V x ( U 0 x B )  + ?7cV 2B (core)

Q'Q
V x (?7mV x B) (lower mantle)

d t

If we write B =  V x A where

(4.2)

A — A(a:, z ,  t ) l y (4-2)

then on “uncurling” (4.2) we obtain
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dA
dt

dA
dt

U 0 • VA +  r]cV 2A  (core)

(lower mantle)=  r}mV ' A

(4.4)

Expressing XJ0 in terms of a streamfunction ip

(4.5)

(4.4) then gives ns

dA  2 __ dA dip dA dip 
~dt ^ ~~ lfe"a7  ~  a J  &T

dA
dt

7ymV2A

(core)

(lower mantle)

(4.6)

We non-dimensionalise this using the timescale of magnetic diffusion rv — T? fr\c, 

lengthscale L  and velocity U giving

dA
dt

dA dip dA dip
dx dz dz dx

dA
dt

(core)

(lower mantle)

(4.7)

where our magnetic Reynolds number R m is defined as

R 7
UL
l c

(4.8)

and 77 ~  Timfric is a diffusivity ratio.

In our non-dimensional coordinates, our rectangular region representing the 

core and lower mantle goes from 2: =  — 1 at the base, through z — 0 at the core

mantle boundary up to 2 =  e at the top, and with x  ranging from 0 to 2a where



a  is a width to height ratio of a convection roll. We solve numerically with a 

spectral collocation method in x (see e.g, Orszag 1972; Wengle, Van den Bosch 

and Seinfeld 1978; Gottlieb and Orszag 1981), and we use second-order finite 

differences in 2 with semi-implicit timestepping. We use N  collocation points in 

x, namely

2  rv
* i =  ^ 0 '  -  1) (! < } <  N ) (4-9)

where we are insisting that the equations be satisfied exactly at these points. We 

also have L  and M  grid points in z in the lower and upper layers respectively, 

namely

k
zb ——1 - b y  (1 < k < L) (core layer)

(4.10)

ZL+k (1 < k < M)  (conducting layer)

This scheme differs from that used in Bloxham (1986), in that he used Fourier 

transforms in x where we have used collocation.

We expand our magnetic potential A  as

A ( x j , z k , t )  = A n (z*,i)exp (4.11)
n = l  ^  *

and substitute this into (4.7) together with the appropriate second order finite- 

difference approximations



dA ^  ^ n ,H l ~  -^n, l—l 
dz 26 z

(4,14)

(only from V 2A term)

A (4.15)

A lny, (otherwise)

where

i — A n(zi, t {)

(4.16)

ti =  time after i timesteps

and where we are using semi-implicit timestepping; treating the V2 term implic

itly and the rest explicitly.

4.2.2 Boundary conditions

Above our conducting layer, the upper mantle is taken to be electrically in

sulating so we impose an insulating boundary condition at z = e. The inner core 

is assumed to be a perfect electrical conductor, and so we impose a perfectly con

ducting boundary condition at 2 =  — 1. We impose periodic boundary conditions 

at the sides. The boundary conditions at the perfectly conducting lower bound

ary and at the sides are easily obtained, but the condition at the top boundary 

requires further explanation. At the top we have an insulating upper mantle. In 

this insulating region, z >  e, we have a potential field, and the equation for the 

magnetic potential A  is simply

V 2A =  0 (4.17)

We can solve (4.17) explicitly for the solution in the insulating part of the 

mantle which we find to be
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, )  =  £  exp exp (4.18)

whereas in the conducting layer the magnetic potential has form

A con( x , z )  =  £  A “ " (* , i )e x p  ( ? l l l = _ i > Z )  (4.19)
n = l  ^  '

In equations (4.18) and (4.19) above, the use of ins  and con as a superscript, 

relates to the solution being in the insulating and conducting regions respectively.

The condition at the boundary is that we make B continuous. Matching B x 

components above and below the boundary gives

d A ^ _  =  —( » - l ) T Am. ( i  <  n < N )  (4.20)
dz a  v /

and similarly matching B z components gives us

A cnon = A™* (1 < n <  N )  (4.21)

From (4.20) and (4.21) we obtain the boundary condition for the magnetic po

tential A  of the conducting layer at the top insulating boundary, namely

dz a

which is the expression we employ.

In finite-difference form, the boundary conditions can be written as

Top:

7T
An, L + M + i  =  A nt L + M - i  — 26z(n — L+M (I < n < N )  (4.23)

91



B o tto m :

An, i = 0  (1 < n < N )  (4.24)

Sides:

A N+1,, = A h l ( l < l < L  + M)  (4.25)

These apply at all U.

4.2.3 M atch in g  th e  so lu tion  be tw een  th e  layers

At the boundary between the core and the mantle we must match the solu

tions from each layer. To do this we must make B continuous at the boundary, 

which is equivalent to making both |A  and ^  continuous there. Since in both 

layers we have chosen a spectral representation in x of form (4.11), by making 

A  continuous at the boundary we automatically satisfy continuity. For the 

derivative we have

d A core dAmantie
(z -  0) (4.26)

dz dz

We substitute the standard second order backward difference approximation for 
a a
dz4A in the core layer,

dA core   3Ara, jj 4An, L—i -t~ An, j ,—2 ✓ ̂
dz 26zi

and similarly substitute a second order forward difference approximation to 

in the mantle layer



and hence obtain a matching condition

48z1Arl)L+i + 4<5z2AniL~i ~ 6 ziAn,L+ 2  ~ 8 z2 An j L - 2  (A
A-  L = ---------------------------- 3 ^ 7 T m “  (4 -29)

where 5z\, Sz2 are our ^r-gridding intervals in core and mantle layers respectively.

4.2.4 M e th o d  of so lu tion

When in matrix form our problem is

C A*=; =  D A <=i+i (4.30)

where C and D are [N x (L-fM )] x [N x (L-\-M)] matrices formed from our finite 

difference equations. They are banded in structure, and this was used to save 

on storage. A t=i is the column vector of the magnetic potential in its spectral 

representation. We initialise A*=o from our initial field by calculating the spectral 

coefficients from equation (4.11). We choose an initial field which is uniform and 

horizontal. In terms of the magnetic potential A, our choice is given by

A =  1 -  * (4.31)

To calculate the spectral representation of this field, we have to solve a linear 

system of equations [formed from equation (4.11)] of form

A field — E A spectral (4.32)

where A f i e id is a column vector of the actual magnetic potential, and A 3pe.ctral ( =  

Ai=o) is the column vector of its spectral representation, E  is an [N x (L-\-M)] x 

[N x (L +  M)] matrix of complex exponentials which is also banded in structure. 

The same numerical routines used later in the solving of (4.30) were used to solve
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(4.32). We solve (4.30) by firstly multiplying through the left hand side, and 

then solving the resulting linear system of equations for A  at the next timestep. 

At any point we can output the vector A, and after reconstructing the magnetic 

potential from the spectral coefficients we can plot the magnetic field lines as 

contours of A.

4.2.5 N u m erica l s tab ility  o f th e  m odel

The numerical system we employ is stable, as long as the timestep is suffi

ciently small and the diffusivity ratio 77 is not too large . As 77 is increased the 

local magnetic diffusion timescale in the conducting layer becomes smaller, and 

if 77 becomes too large then the solution fails in the conducting layer because of 

this, unless the timestep is decreased accordingly. The timestep that we used of 

5 x 10“ 5 sufficed for 77 < 105, and since when 77 — 103 we find that behaviour is 

similar to the fully insulating case (see Section 4.4), there is no need to increase 

77 far beyond that.

4.2.6 M an tle  field

It is of further interest to us to observe the magnetic field lines when they en

ter the insulating part of the mantle. In the insulating region we have a potential 

field, and in Section 4.2.2 we found the explicit solution to be

A (xh  z k) =  £  A n exp ( A i — exp ^ (n (4 .3 3 )

The coefficients A n can be determined by matching to the solution in the lower 

(conducting part of the) mantle. We can then use (4.33) to determine the field in 

the upper (insulating part of the) mantle. We include this in our solution plots.

4.3 C H E C K IN G  CA SES

Before proceeding to a full investigation of our model, it is necessary to 

check our numerical code with simpler checking cases. Firstly we consider the
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case where we simply allow the field to decay with no flow in the core. We also 

can compare with the work of Bloxham (1986) by looking at the fully insulating 

mantle case.

4.3.1 D ecay tim e

If we have a zero flow in the core, obtained by setting R m = 0, and prescribe 

an initial field B =  B ( z , t ) l x that is purely horizontal, then we can solve for the 

magnetic field analytically and compare the numerical decay time for the field 

with the theoretically calculated value. For example, if we consider the simple 

model which will be used in Section 4.3.2 below, where we have a purely insulating 

mantle, then the equation for the magnetic field in the core simplifies to

dB d2B=  — r  (4.34)
dt dz2 v ;

with boundary conditions

1: f  =  ° ^ 35)

* =  o : B  = 0 (4.36)

We assume B  decays exponentially as exp(—p£), and hence find the solution to 

be

B = C cos (s/p(z  +  1)) ex p (-p f) (4.37)

where C is an arbitrary constant chosen to be 1, and also

V p  =
(2 n +  1)7r

n =  0,1,2, (4.38)
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If we choose the fundamental mode of solution, corresponding to n = 0, and 

assign our initial field with this accordingly,

B  — cos ( ^ ( z +  ■*■)) (4.39)

2
then we expect this field to decay as ex p (-^ -t) .

The analysis for the model with a conducting layer of constant diffusivity 

77 is more complicated but can be done in a similar way. The equations for the 

magnetic field in this case are

dB_
dt

dB
dt

d2B_
d2B  

V dz*

(core)

(lower mantle)

(4.40)

with boundary conditions

* =  - 1  ;
dB
dz

(4.41)

z = e: B  = 0 (4.42)

At z = 0 we must match the solutions from each layer. We require 2 conti

nuity conditions. We obtain the first by matching B x at the boundary, and this 

takes the form

Bcore — -Bmantle (4.43)

The second condition at 2 =  0 is obtained by matching the tangential com

ponent of the electric field at the boundary. This yields

96



dB c o re  ^  ■*-' m a n t l e
V’dz dz

(4.44)

Again we assume that B  decays exponentially as exp (—pi), and hence we 

find the solution to be

B  = Ci cos(y/pz + Si)

B  =  (72 cos ( A/ - z  62 
V

(core)

(lower mantle)

(4.45)

where C i ,C 2, 8i and £2 are constants to be determined from the boundary con- 

ditions. Applying (4.41) tells us that

81 = y/p (4.46)

and from (4.42) we deduce that

52 =  - , / -  +  (2n + l ) £  n = 0 ,1 ,2 ...
77 2

(4.47)

Again we choose the most basic mode of solution corresponding to n =  0. 

From equation (4.43) we get

Ci cos a/p =  c 2 cos ^

and similarly (4.44) gives us

(4.48)

Cl sin = C i \ / t} sin ( ^  -  d ^ e ) (4.49)

and combining (4.48) and (4.49) provides us with the following equation for ^/p
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A simple application of the bisection method was used to find y/p for given e and 

V-
Having found ^/p we use equation (4.47) to obtain 62. We have freedom to 

choose one of the constants C\ or C2 since the problem is linear in B.  We choose 

Ci to be 1, and calculate C2 from either (4.48) or (4.49). We then choose as 

initial field

B  =  cos(v/p(z +  l))  (core)

B  — C2 cos ( d ^ h  g ) )  (lower mantle)

(4.51)

This field should then decay exponentially as exp(— pt).

To obtain the decay rate from our model, we must calculate the horizontal 

magnetic field strength B x, and see how this changes over time. Since B x = 

— we obtain B x from our magnetic potential A  by approximating the 2- 

derivative. The decay rate can then be calculated from a graph of B x against 

time. We calculate the decay rate at the midpoints of both the core and mantle 

layers. The numerical decay rates we find in each layer are almost identical, the 

slight differences being due to numerical inaccuracies. We show comparisons of 

theoretical and numerical decay rates for several layer sizes and diffusivities in 

Table 4.1. We find that there is excellent agreement between the predicted and 

actual decay rates for our model over the full range of parameters used for our 

results. This gives us confidence in the model to proceed to the full problem.

4.3.2 C o m p ariso n  w ith  B loxham ’s resu lts

We can check much of the numerical code by considering the case of a fully 

insulating mantle. This problem was studied by Bloxham (1986), and we can 

compare our results with his. To do this we remove the conducting layer from



€ V y/p (theoretical) y/p core y/p mantle
0 oo 1.5708 1.5704 -

0.1 1 1.4280 1.4281 1.4284
0.1 10 1.5552 1.5550 1.5561
0.5 10 1.4948 1.4947 1.4957
0.5 100 1.5630 1.5627 1.5626
1.0 100 1.5551 1.5549 1.5550
1.0 1000 1.5692 1.5690 1.5695

Table 4.1: Values of the theoretical and numerical decay rates for a variety of 

layer sizes and diffusivity ratios. Numerical values were obtained by calculating 

the horizontal magnetic field strength in the middle of both the core and mantle 

layers.
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our model, solving in the core as described in Section 4.2, but applying the 

insulating boundary condition (4.22) at the core-mantle boundary. Again we 

add on top the explicit solution in the insulating region as in Section 4.2.6. On 

running this program over a range of parameters we find good agreement with 

Bloxham’s results. As an illustration, if we choose the same parameters as in 

Figure 5 of Bloxham (1986), an initially uniform horizontal field, R m — 50 and 

streamfunction

ip =  — sin —  sin7T2: (4.52)
7r a

then the behaviour that we see (Figure 4.1) is consistent with Bloxham’s results.

In this figure, the first four contour plots are taken at the same times as the

four in Figure 5 of Bloxham (1986). The field evolves in the same way as in

Bloxham’s results, although our solution takes slightly longer to reach the same 

state. This could be due to the differences between our two numerical schemes or 

the truncations used, but apart from this discrepancy the behaviour is the same 

for both models. Having recreated these results we can move on to encompass 

the main interest of this work, namely a finitely conducting mantle.

4.4 RESULTS

We consider various models of conductivity for our conducting layer. We do 

this by defining different profiles for the diffusivity ratio 77. These fall into three 

categories.

(a) 77= const ant,

(b) 77 =  f ( z ),

(c) 77 =  g(x),

All our results here are with R m =  50, a timestep of 5 x 10“ 5 and streamfunction 

(4.52). This choice of streamfunction represents an upwelling motion up the 

middle of the layer which drives the expulsion process. Our choice of R m = 5 0
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Figure 4.1: A plot of the evolution of the magnetic field, as a contour map of 

the magnetic potential .4, with a fully insulating mantle, with N  = L = M  = 

20, R n, =  50 and streamfunction (4.52). The timestep here is 5 x 10-5 and 

a picture is taken every 100 timesteps. The upper part is the extrapolation 

through the mantle of the solution obtained analytically for the insulating region 

as explained in Section 4.2.6.
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is somewhat arbitrary, but we are looking at a variety of conductivities here, so 

feel justified in choosing a particular value of R m as it is not possible to consider 

too many varying parameters. The choice of timestep is one which gives stable 

solutions for values of 77 considered here, and also allows us to obtain results in a 

relatively short amount of CPU time. We impose an initially uniform horizontal 

magnetic field. Unless otherwise stated our results are for a numerical truncation 

of N  =  L  =  M  = 20, and with this, the solution appears well resolved. The 

results were checked over a range of timesteps, and at higher truncation for various 

diffusivity ratios 77 and layer sizes, with no appreciable change in the observed 

behaviour.

4.4.1 ?7= c o n s ta n t

We first consider the simplest case which is to make our upper layer uniformly 

conducting. We look at 77 =  1,10,100 and 1000 for different layer thicknesses 

e — 0.1 (Figure 4.2), e =  0.5 (Figure 4.3)and e =  1 (Figure 4.4), and compare 

with the fully insulating case (see Figure 4.1). For low values of 77 the field in the 

core evolves more slowly and the flux expulsion is suppressed making the field 

lines more horizontal at the core-mantle boundary. This is true even for a thin 

layer (e =  0.1). As we increase 77 the expulsion process becomes more pronounced 

with the field lines diffusing more quickly, and we see that the field behaviour 

gradually evolves to that of the insulating case. For 77 =  1000 the field picture 

resembles very closely that of the fully insulating mantle case. This being the 

case we do not pursue higher values of 77. The size of the layer is not important 

here.

4.4.2 77 =  f ( z )

We now consider a dependence on 77. We want to model a rapid increase in 

diffusivity with height, so we look at two types, a linear dependence and a power 

law relationship.
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Figure 4.2: Time evolution of the magnetic field with diffusivity ratios rj = 

1,10,100 and 1000. and with a conducting layer of thickness e =  0.1, R m = 

50, N  = L — M  =  50 and streamfunction (4.52). The timestep is 5 x 10-5  and 

the pictures are taken every 250 timestcps.
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7? =  1

7̂ = 10

>  /"

mm
77=100

77 = 1000

Figure 4.3: As Figure 4.2 but with e = 0.5.
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77 =  1 0

Figure 4.4: As Figure 4.2 but with e =  1.
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(1) T) “  1 +  Z  X 10n

We look at the cases n = 1,2 and 3. We show the field evolution for e =

0.1,0.5 and 1 in Figures 4.5, 4.6 and 4.7 respectively. When n — 1 we find, not 

surprisingly, that the behaviour is somewhere between the cases rj = 1 and 77 =  10 

of Section 4.4.1. We see the slow expulsion of nearly horizontal field lines and 

diffusion of the field upwards. When n = 2 we see the field lines becoming more 

drawn out as £ increases, and when n — 3 the field picture resembles the fully 

insulating case. Again, even with a thin conducting layer e =  0.1, the expulsion 

process can be inhibited.

(2) v  =  (1 + z ) n

We display results for n =  3,6,9 and 12 with layer sizes e = 0.1, 0.5 and 1 

in Figures 4.8, 4.9 and 4.10 respectively. For low n , behaviour is similar to the 

77 =  10 case of Section 4.4.1, As n is increased, the field lines rise faster with 

increasing with a bell shaped pattern eventually emerging. The field pattern 

in the core develops more slowly than in the insulating case, even with a thin 

layer and when n  is large.

4.4.3 77 =  g(x)

It is believed (Jeanloz 1990) that the bottom of the mantle (the D"  layer) 

can have large lateral heterogeneity in its conductivity, with variations of several 

orders of magnitude over a short lengthscale. We attem pt to model this here, the 

simplest method of doing so being to use trigonometric functions for 77. We show 

results for four choices

(1) 77 =  1000 +  999 sin ( ^ f )

(2) 77 =  1000 +  999 cos ( ^ f )

(3) 77 =  1000 +  999 sin ( ^ f )

(4) 77 =  1000 +  999 cos ( ^ f )

These choices vary 77 from 1, where conductivity is the same as in the core,

to 1000, which we have seen produces results similar to the fully insulating case,
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Figure 4.5: As Figure 4.2, but with a linear ^-dependence for 77, 77 =  1 -f- 2 x 10n 

and e = 0 .1.
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Figure 4.6: As Figure 4.5 but with e =  0.5.
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n = 1

n = 2

n = 3

Figure 4.7: As Figure 4.5 but with e =  1.
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Figure 4.S: As Figure 4.2, but with a power law ^-dependence, 7/ = (1 + z)n and 

c =  0.1.
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Figure 4.10: As Figure 4.S but with e =  1.

112



and give two different lengthscales for the lateral variation. We display the field 

evolution with time for a layer size e =  0.1 in Figure 4.11, and for e =  0.5 in 

Figure 4.12. We can see that the heterogeneity has a very noticeable effect on 

the field lines. In the conducting layer there can be much distortion. This is 

most evident with a larger layer size, but even with e small the field lines are 

noticeably affected by the variation in conductivity. In such a case though, the 

field pattern is only really altered inside the conducting layer, with the solution 

out with the layer almost completely unaffected by the layer. When the layer 

is thicker however, we also see differences in the core and upper mantle. In 

the core evolution is more restricted than in the fully insulating case, and the 

expulsion slower, similar to what we have seen in Sections 4.4.1 and 4.4.2. In the 

upper mantle, we can see that the “pinning” of field lines in regions of higher 

conductivity in the conducting layer, can lead to the shifting of the expelled field 

lines (e.g., Figure 4.12 top row) or the inhibition of the expulsion into the upper 

region (e.g., Figure 4.12 second row). We especially notice that the structure of 

the field in the mantle is representative of the conductivity in the mantle, and 

not of the structure of the core field in this case.

Because we are looking at large variation over a short lengthscale, we increase 

our numerical truncation in x to N  = 4 0  to check that our solution is well resolved. 

We find though, that the behaviour is essentially the same as for N  — 20.

4.4.4 L ong te rm  b eh av io u r

In the results we have displayed so far, we have only considered the solution 

up until about t =  0.05. It is of interest to see what happens to the solution over a 

longer period of time. We find that for all the cases considered above, the solution 

eventually reaches a steady form whose amplitude gradually decreases. Figures 

4.13 and 4.14 show the behaviour of the horizontal magnetic field strength B x 

with time for a variety of parameters in the core and mantle respectively. B x was 

calculated as in Section 4.3.1 from the solution in the centre of each layer. After 

undergoing the evolution pictured above the solution eventually settles down to
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Figure 4.11: As previously, but now considering the rr-depenclence for 77 respec

tively from top to bottom ?/ =  1000 + 999sin ( ^ ) ,  >7 =  1000 + 999 cos ( ^ r ) ,  

77 =  1000 + 999sin ( 5 s ) and 77 =  1000 + 999cos ( 5 s ) ,  and with e =  0.1.
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Figure 4.12: As Figure 4.11 but with e = 0.5.
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Figure 4.13: Gra.ph of horizontal magnetic field. B x against time calculated at 

the centre of the core layer. The curves shown are for e =  0.5,?/ =  1 (full line), 

e =  0.5,?/ — 10 (short dashed line), e =  0.1,?/ =  10 (long dashed line) and 

e =  0.5, 7/ =  (1 +  ^)12 (dohclash line).

116



* 10"3

X
CD 
21 
LlJ C£ I— 00
Q
_ J
LxJ

oN
cc
O
X

100
80
60

40

20

10
8
6 W

4

2

0.10  0 .15  0 .20  0 .25  0 .30  0 .35  0 .40  0 .45
T I M E
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steady state, and we find in all cases that the field then just decays exponentially 

with time.

4.4.5 Effect o f changing  in itia l m agnetic  field

Although a natural choice as initial field, and for making comparison with 

Bloxham’s results, an initially uniform horizontal field does not satisfy the bound

ary conditions at the upper insulating boundary [see equation (4.23)]. In the 

insulating region, if one component of the field is zero, then the other component 

must necessarily be zero also, so our non-zero, purely horizontal field cannot be 

sustained. To determine whether or not this is a problem, we consider an initial 

field which satisfies all the boundary conditions, namely

A = (z -  e)2(z +  1) (4.53)

which is horizontal still, but non-uniform. Running our program with this field, 

we find that although field evolution is different at first, we eventually see the 

same behaviour emerging as for our uniform field. We illustrate this for 77 == 10 

in Figure 4.15, and we can compare the final contour plot, with the final plot of 

Figure 4.3 (second row). Since our results are qualitatively the same with both 

fields, we conclude that the use of an initially uniform field is not a problem.

4.5 D IS C U S S IO N

We have produced a 2D numerical model for the expulsion of magnetic flux 

from the core into a conducting mantle. We have looked at different distributions 

of conductivity for the mantle, making comparison with the work of Bloxham 

(1986), who studied the same problem with an insulating mantle. We have seen 

that making the lower mantle conducting can have a noticeable effect on the 

solution. Even a thin layer with a conductivity close to that of the core can slow 

the expulsion rate and restrict the development of the core field. This can be 

further seen in Figures 4.5, 4.6 and 4.7 where we have conductivity falling off 

rapidly with increasing z. Perhaps the most interesting case is where we try to
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Figure 4.15: Time evolution of magnetic field with initial field chosen to satisfy 

top boundary condition, A = (z — e)2(z +  1), and for e =  0.5 and ij = 10. The 

timestep here is 5 x 10“ 5 and pictures are taken every 500 timesteps.
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model the lateral heterogeneity in conductivity believed to occur in the bottom 

D " layer of the mantle. Modelling this can have a strong effect on the field lines 

in the conducting layer. If this layer is thin, then the overall effect on the field 

evolution is minimal, but a thicker layer can affect the field pattern considerably. 

From a geophysical viewpoint, what we would expect to see would depend on the 

nature of the flow in the outer core. If the fluid motion was taking place through 

the whole outer core region, then the thin conducting layer regime would be 

appropriate, since the outer core thickness is ~  2270k m  (Gubbins and Roberts, 

1987) so this is roughly equivalent to e =  0.1 in our model. However if the 

flow is a more local one, in relation to the core-mantle boundary, then a thicker 

layer would be relevant, and our more interesting results would then apply. In 

particular, with a thicker conducting layer we have seen that the structure of the 

field emerging from the mantle is largely due to the conductivity of the mantle, 

and is not representative of the field in the core.

Overall then, the presence of even a thin layer of appreciable conductivity 

at the base of the mantle, can affect the expulsion of magnetic field from the 

core. It would be worthwhile therefore, in future models, to include the finite 

conductivity in the mantle.
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