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ABSTRACT

Ever since Hailey (1686) superimposed onto a map of land forms, the direction of trade 
winds and monsoons between and near the tropics and attempted to assign them a 
physical cause, homo-sapiens has attempted to develop procedures which quantify the 
level of change in a spatial process, or assess the relationship between associated 
spatially measured variables.

Most spatial data, whether it be originally point, linear or areal in nature, can be 
converted by a suitable procedure into a continuous form and plotted as an isarithmic 
map i.e. points of equal height are joined. Once in that form it may be regarded as a 
statistical surface in which height varies over area in much the same way as the terrain 
varies on topographic maps. Particularly in environmental statistics, the underlying shape 
of the surface is unknown, and hence the use of non-parametric techniques is wholly 
appropriate. For most applications, the location of data points is beyond the control of 
the map-maker hence the analyst must cope with irregularly spaced data points. A variety 
of possible techniques for describing a surface are given in chapter two, with attention 
focusing on the methodology surrounding kernel density estimation.

Once a surface has been produced to describe a set of data, a decision concerning the 
number of contours and how they should be selected has to be taken. When comparing 
two sets of data, it is imperative that the contours selected are chosen using the same 
criteria. A data based procedure is developed in chapter three which ensures 
comparability of the surfaces and hence spurious conclusions are not reached as a result 
of inconsistencies between surfaces. Contained within this chapter is a discussion of 
issues which relate to other aspects of how a contour should be drawn to minimise the 
potential for inaccuracies in the surface fitting methodology.

Chapter four focuses on a whole wealth of techniques which are currently available for 
comparing surfaces. These range from the simplest method of overlaying two maps and 
visually comparing them to more involved techniques which require intensive numerical 
computation. It is the formalisation of the former of these techniques which forms the 
basis of the methodology developed in the following two chapters to discern whether 
change/association has materialised between variables.



One means of quantifying change between two surfaces, represented as a contoured 
surface, is in terms of the transformation which would be required for the two surfaces to 
be matched. Mathematically, transformations are described in terms of rotation, 
translation and scalar change.

Chapter five provides a geometrical interpretation of the three transformations in terms 
of area, perimeter, orientation and the centre of gravity of the contour of interest and 
their associated properties. Although grid resolution is fundamentally a secondary level 
of smoothing, this aspect of surface fitting has generally been ignored. However to 
ensure consistency across surfaces, it is necessary to decide firstly, whether data sets of 
different sizes should be depicted using different mesh resolutions and secondly, how 
fine a resolution provides optimal results, both in terms of execution time and inherent 
surface variability. This aspect is examined with particular reference to the geometric 
descriptors used to quantify change.

The question of random noise contained within a measurement process has been ignored 
in the analysis to this point. However in practice, some form of noise will always be 
contained within a process. Quantifying the level of noise attributable to a process can 
prove difficult since the scientist may be over optimistic in his evaluation of the noise 
level. In developing a suitable set of test statistics, four situations were examined, firstly 
when no noise was present and then for three levels of noise, the upper bounds of which 
were 5,15 and 25%.

Based on these statistics, a series of hypothesis tests were developed to look at the 
question of change for individual contour levels i.e. local analysis, or alternatively for a 
whole surface by combining the statistics and effectively performing a multivariate test. 
A number of problems are associated with the methodology. These difficulties are 
discussed and various remedial measures are proposed.

The theoretical derivation of the test statistic, both in the absence and presence of 
random noise, has proved mathematically to be extremely complex, with a number of 
stringent assumptions required to enable the theoretical distribution to be derived. A 
major simulation study was subsequently undertaken to develop the empirical probability 
distribution function for the various statistics defining change for the four levels of noise. 
Also for each of the statistics, the resultant power of the test was examined.



The remaining chapter explicitly examines two case studies and how the methodology 
developed in the preceding two chapters may be implemented. The first example cited 
raises the question, 'Has a seasonal temperature change resulted during the fifty year 
span, 1930 to 1980, within the contiguous United States of America?' The data base was 
provided by the United States Historical Climatology Network (HCN) Serial 
Temperature and Precipitation Data, Quinlan et al (1987).

The second problem examines whether there is an association between background 
radiation levels, within three regions of the south-west England, and the location of 
various forms of leukaemia or whether case location is a product of the population 
distribution. Differences between this example and the previous illustration materialise in 
terms of the spatial resolution of the data; the leukaemia data are defined as punctual data 
points and are extremely sparse; the population distribution is defined as areal regions; 
with the radiation data being of a more continuous format. The methodology developed 
required modification, but aside of this a preliminary set of conclusions were reached.
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CHAPTER 1

SPATIAL DATA ANALYSTS - ITS APPLICATION

§1.1 Introduction Statistics and Spatial Data

The first manifestation of statistics for spatial data appears to have arisen in the form of 
data maps, Hailey (1686) superimposed onto a map of land forms the direction of trade 
winds and monsoons between and near the tropics, and attempted to assign them a 
physical cause.

Spatial models appeared much later. Student (1907) examined the distribution of 
particles throughout a liquid and instead of analysing their spatial positions, he 
aggregated the data into counts of particles per unit area and found they followed a 
Poisson distribution. Fisher (1935) during the 1920's and 1930‘s established the 
principles of randomisation, blocking and replication. Although these control for bias 
and randomisation neutralises the effect of spatial correlation, they do not neutralise the 
spatial correlation at spatial scales larger or smaller than the plot dimension.

More recently nearest neighbour techniques for analysing agricultural field trials have 
attempted to take spatial dependence into account by using residuals from neighbouring 
plots as covariates or by differencing, Besag and Kempton (1986).

In areas such as geology, ecology and environmental science, it is not often possible (or 
appropriate) to randomise, block and replicate the data. There is therefore a need for new 
statistical methods and approaches that address new questions arising from old and new 
techniques. Many of the resulting problems such as resource assessment, environmental 
monitoring and medical imaging are spatial in nature.

The development of statistical procedures to quantify the level of change in an 
environmental process or assess the relationship between associated spatially measured 
variables is an area of considerable statistical and practical interest. Much of the analysis 
of spatially collected data is concerned with the identification and explanation of spatial 
structure, and with the analysis and explanation of possible links between two spatial 
processes e.g. humans and the environment.
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The form of a spatial analysis undertaken is in part conditioned by the dimensionality of 
the data, Unwin (1981) recognised four separate classes; point, line, area and surface. 
Within each category techniques both descriptive and analytical exist, table 1.1 collates 
some of these methods.

Points Lines
mean centre/standard distance random walk

standard deviational ellipse vectors
gradient analysis graph theory

nodality 
connectivity 
flow analysis 
dispersion

nearest neighbour analysis
variance/mean ratio test

quadrant analysis
space clustering

Area Surfaces
location quotients isolines
space clustering trend surface analysis

power series polynomials 
fourier series

poisson probability
hierarchial clustering

Table 1.1 Spatial analysis techniques

Methodological problems stem from the fact that spatial patterns are frequently intricate 
and complex, and to date many investigators have grossly simplified these patterns.

An additional problem of applying statistics to spatial data concerns the problem of scale. 
Often spatial patterns or variable associations show striking differences at different scales 
of analysis. It can be argued that scale should be used creatively, Cleek (1979). For one 
thing, replication of findings at different scales tends to confirm hypothesis. 
Furthermore, White (1972) stated that one can try to identify the scale at which a certain 
process is most effective: this in itself may provide clues as to how the process works. As 
in all forms of analysis the reliability and validity of the data will potentially limit the 
value of sophisticated statistical models and techniques. Methods which account for 
random error in a spatial variable may help to extend the feasibility and power of the 
technique.
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In different areas of application, various specialised difficulties will arise, each separate 
analysis must take account of these localised difficulties e.g. in medical geography, the 
spatial position of an individual at the time of diagnosis is taken to be the current place of 
residence. For chronic diseases such as cancer, which have a long latent period, the place 
of diagnosis may have little aetological significance.

All the problems discussed are confined to individual sets of spatial data. Effectively 
performing a comparison of spatial variables increases the number of potential pitfalls. 
The development of a method which invokes only automatic procedures will reduce the 
possibility of attaining spurious conclusions regarding associations/differences.

The first step in developing such a framework is to convert the data, of whatever 
dimensionality, to a continuous form, by one of the available interpolation techniques. 
Once in this format it may then be presented as a contoured surface, the question of 
contour selection and fitting is an essential stage of the analysis since incompatible 
selection may result in inaccurate statements.

Once both these stages have been successfully implemented, the question of comparison 
may be examined. Intuitively, the most appealing means of comparison is to superimpose 
the surfaces and describe the change in terms of various geometric properties of the 
contour. Based on this notion, a series of statistical tests were constructed to look at 
change/association between variables.

§1.2 Surface Mapping

The definition of a map is given to be a representation of (part of) the earth's surface, 
showing physical and political features. In mathematics, a mapping is described as a 
translation from one vector space to another. For the practitioner, the first vector space is 
the real multidimensional world and the second is the face of a sheet of paper on which 
the map is drawn, From this definition, a map and surface are one and the same since a 
surface is described as having length and breadth but no thickness. The paper 
accordingly restricts a map to a three dimensional vector space where the length and 
breadth represent the spatial co-ordinates and the z-variable, the phenomenon being 
mapped, is defined in terms of lines or symbols.
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Representing spatial information in terms of surfaces/maps has four advantages:-

1. They provide a synoptic expression of the information represented.

2. They enable a number of important spatial properties that were not initially measured 
to be isolated e.g. orientation, shape and relative location. Maps/surfaces therefore 
contain spatial structure.

3. They are models of the real world.

4. Finally, they are communication devices which may be used to express ideas or 
generate hypothesis.

However, maps/surfaces contain three theoretical difficulties as models of the real 
world:-

1. They are static and cannot be drawn to include a time dimension.

2. They are the result of a spatial process which theoretically may be defined as:-

Zj = f (Xi,yj)

The z-values above result from a deterministic process but in practice they are the result 
of a stochastic process in which chance variation, £*, is unquantifiable:-

zi =f(xi,y,)+e1

3. Maps/surfaces are constrained by humans and may be used to display information 
inadequately or alternatively the data used in their construction may be of poor 
quality.

The level of measurement of a spatially distributed variable is a basic control on the 
choice of map type, method of analysis and ultimately on the nature of the inferences 
that can be drawn from a study of a variable’s statistical structure.
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Stevens (1946) identified four basic levels; nominal, ordinal, interval and ratio. The 
properties of which are discussed by Siegel (1956). Nominal data serve merely as 
symbols and cannot be manipulated mathematically, the simplest form are dichotomous 
variables e.g. yes/no. Statistical and cartographic operations are limited, but a number of 
primary operations may be executed. The second form of data, ordinal, assumes 
relationships are both transitive and asymmetric. Statistically the remaining two levels, 
ratio and interval, may be treated in a similar manner since both allow the distance 
between categories to be defined for equivalents units of measurement.

Apart from the hierarchical property of level of data, measurement has the characteristic 
of dimensionality. Non-dimensional variables play an important role where comparisons 
between sets of numbers are to be performed. Dimensional analysis is more restrictive in 
practice but is possibly more valuable in applied work.

In theory there is almost no limit to the choice of units of measurement and dimensions 
of data which may fall into any one of the four categories. However locational data is 
restricted to one of four types of geographical data; point, line, area or surface. Table 1.2 
summarises the various types of maps which may be produced using such information, 
Unwin (1981).

Dimension

Level Point Line Area Surface

Nominal Dot maps Network map Coloured area 
map

Freely coloured 
map

Ordinal Symbol map Ordered 
network map

Ordered 
coloured map

Ordered
chorochromatic

map
Interval and 

Ratio
Graduated 

symbol map
Flow map Choropleth

map
Contour type 

map

Table 1.2 : Various combinations of map types
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Nowadays a surface is a starting point of an analysis. The next stage is to summarise and 
describe the distribution prior to examining whether or not a recognisable pattern exists. 
For each of the twelve possible map forms, various types of analysis can be undertaken. 
Unwin (1981) examines some of these procedures. Dimension is the strongest single 
influence on the type of statistical inference which may be undertaken.

A further feature which determines the type of analysis which is appropriate relates to 
whether or not the data is isotropic or anisotropic. The former describes a data set in 
which the properties are the same in any direction whilst for the later, these vary with 
direction. Analysis of an anisotropic surface is more complex since the direction of 
variability is not always known.

Particularly in environmental statistics, the underlying shape of the surface is unknown 
hence the use of non-parametric techniques is wholly appropriate. For most applications, 
the location of data points is beyond the control of the map-maker and does not 
correspond to a geometric pattern. In these cases, the analyst must cope with irregularly 
spaced data points. The mapped surface need not necessarily pass through the points 
exactly hence the irregular location of points is not a complication. Other techniques 
necessarily pass through all the points. A more detailed discussion of possible techniques 
for describing a surface are given in chapter two with attention focusing on the 
methodology surrounding kernel density estimation.

Density estimation provides a natural and intuitive means for describing the data, and the 
technique does not differ vastly from some of the more traditional approaches for 
representing spatial data such as nearest-neighbour and kriging. It is this technique which 
has been used in the development of surfaces for subsequent analysis.

§1.3 Surface Representation

Viewing locational data as a statistical surface Robinson (1961) suggested that much of 
morphometric analysis may be applicable to the ’topography’ of isarithmic surfaces. 
Although isarithmic maps are three-dimensional in the sense that a distribution varies 
continuously over an area, they are commonly referred to as single component maps 
since only one component, the z-variable, is being mapped. The most common method 
of showing variation in the z-dimension is through the use of isolines or perspective 
plots. A wide variety of terms have been used to describe surfaces of this form, the most



general being, isoline and isarithm. Table 1.3 summarises some of the more specialised 
terminology.

Isoline Quantity
represented

Isoline Quantity
represented

Contour Equal heights Isotherms Equal temperatures

Isovels Equal speed Isohevts Equal rainfall

Isonoets Equal intelligence Isohels Equal sunshine

Isotachs Equal wind speed Isobar Equal pressure

Isophers Equal freight rate Isochrone Equal time/distance

Table 1.3 Various specialised forms of isolines/isarithms.

Clearly such illustrative procedures are based on the assumption that the distribution is 
continuous. Wamtz (1959) demonstrated that considerable theoretical and operational 
gains were to be had by regarding such variations as continuous.

Two types of isolines exist, the first refers to the more conventional form where the 
surface exists at all points. The second variant describes maps in which the isolines 
display spatial variation in derived quantities, that are themselves related to some area 
e.g. population density. These are more commonly referred to as isopleths. Problems 
associated with such maps are, unlike isolines, the spaces between the isopleths do not 
have any values related to them. Secondly the form of the isoline is dependent on

1. The shape of the areal units.

2. The location of the control points

In the 1950’s a number of authors advocated their use particularly Mackay (1951), 
Schmid and MacCannell (1955), and Porter (1958) whilst more recently Nordbeck and 
Rystedt (1970) and Tobler and Lau (1970) have also supported their application. There 
are however situations where it is prudent to retain the data in their discontinuous form. 
The non-overlapping cells are mapped as choropleth maps with appropriate values 
assigned to each cell. Analysis should then proceed by area-based methods.
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Figure 1.1 summarises the relationship between measured point data, networks and 
contours in surface mapping.

Measured regular 
grid point data

Regular grid network

Measured randomly 
located point data

\ s
Triangular network

Perspective plots 
Contour plots

Figure 1.1 Relationship between point data and plot types.

A perspective plot takes a point, P, in three-dimensional space and transforms it to a 
point in two-dimensions, Q, its two-dimensional image. The general isometric projection 
is the simplest type. To evaluate Q from P, P is multiplied by;-

rcosa -cosP 0̂
sin a sinp 1

, 0 0 0,

The standard isometric projection sets a  -  p = 30°.

Once an isarithmic surface has been produced to describe a set of data, a decision 
concerning the number of contours and how they should be selected has to be taken. 
When comparing two sets of data, it is imperative that the contours selected are chosen 
using the same criteria. A data based procedure is developed in chapter three which 
ensures comparability of the surfaces of interest, and hence avoids spurious conclusions 
being reached, as a result of inconsistencies between surfaces. Contained within this 
chapter are other issues which relate to how a contour should be drawn to minimise the 
potential for inaccuracies in the surface fitting methodology.
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§1.4 Surface Comparison

A great deal of interest has focused on the detection of common or differing features 
between two or more distinct variables in various fields of application e.g. image 
processing, geology, medical geography etc. Invariably we are attempting to make some 
objective comments concerning the existence of an ’areal' association between variables, 
or alternatively, trying to discern the type of change which may have resulted due to 
some, possibly unknown, underlying process.

However caution should be displayed when interpreting the findings. Where a similarity 
is seen to exist between two variables, a causal link may not necessarily hold. Similar 
forms can be generated by markedly different processes and only seldom will any single 
analysis be able to discriminate between them. Although this observation suggests that 
this mode of analysis is of little value, in many situations it is an important step to 
identifying the possible processes which may be responsible for the change.

Surface comparison is further complicated by the surfaces themselves, like must be 
compared with like, or the association may be a by-product of the technique and not the 
processes hence the emphasis on surface construction in chapter three.

The number of types of comparisons which can be made is enormous. Restricting 
ourselves to the four basic types of data, Table 1.4 shows that there are at least ten 
different types of comparisons.

DISTRIBUTION A DISTRIBlUTION B
point line area surface

point 1 2 3 4
line 5 6 7
area 8 9
surface 10

Table 1.4 Types of comparison involving the four basic data types.

Comparisons between similar distributions is the most obvious e.g. area distribution of 
woodland and soil type (8). Nevertheless comparisons of distributions of differing spatial
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dimensions may be undertaken e.g. point location of leukaemia sufferers and the spatial 
dispersion of a specific radionuclide (4) but potentially different types of analysis will be 
required. (This problem is dealt with more fully in Chapter 7).

Before attempting to compare surfaces, the analyst must first define their objectives and 
determine what is to be compared. Also, consideration must be given to the difference 
between a single-valued comparison function, that gives an overall comparison, and a 
spatial comparison or function which produces a map of areal goodness-of-fit that 
permits a two-dimensional similarity interpretation. Chapter four focuses on a whole 
wealth of techniques, currently available. These range from the simplest method of 
overlaying two maps and visually comparing them, to more involved techniques which 
require intensive numerical computation. It is the formalisation of the former of these 
techniques, which forms the basis of the methodology developed in chapters five and six 
to discern whether change/association has materialised between variables, or over time.

One means of quantifying change between two surfaces, represented as contoured 
surfaces, is in terms of the effective transformation which would be required for the two 
surfaces to be matched. The most usual mathematical definition of transformation is in 
terms of quantities relating to rotation, translation and scalar changes.

This approach has previously been used to collate two sets of images i.e. image 
registration. In both medical and satellite imagery, these transformation measures are 
generally considered to be nuisance parameters and the data is accordingly transformed 
to remove these factors. The technique for isolating these change parameters is based on 
the movement of easily identifiable points on a surface, landmark data. These points are 
not anticipated to deviate in locality over time or between variables. Once the two 
surfaces have been 'matched1, change is invariably described in a subjective rather than 
quantitative manner, Coombes et al. (1991).

In environmental applications, two problems are associated with such an approach, firstly 
it is unusual to have data of this format, since in field studies it is extremely difficult to 
return to the same site where the initial measurement was recorded after time, t, 
primarily because of practical difficulties and secondly, the type of transformation 
causing the change is of considerable importance to the earth scientist since it may give 
them a handle on the underlying process contributing to the change.
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Both the validity and the properties of the four measures area, perimeter, orientation and 
centre of gravity are assessed in chapter five as to their feasibility for forming the basis 
of measures used to quantify the three transformations, rotation, translation and scalar 
change. The question of grid resolution is examined specifically in terms of these 
descriptors. This aspect of surface fitting acts as a secondary level of smoothing, the finer 
the mesh, the more smooth the resultant picture. In terms of a comparison it is essential 
that compatibility across surfaces is achieved. First, we must decide whether mesh 
resolution should vary with data set size and secondly what an optimal resolution is in 
terms of time and resultant surface variability.

The question of random noise contained within a measurement process has been ignored 
in the analysis to this point, in practice, some form of noise will always be contained 
within a process. Quantifying the level of noise attributable to a process can prove 
difficult since the scientist may be over optimistic in their evaluation of the noise level. 
In developing a suitable set of test statistics, four situations were examined, firstly when 
no noise was present and then for three levels of noise, the upper bounds of which were 
5,15 and 25%.

Based on these statistics, a series of hypothesis tests were developed, both to assess 
change at a local level i.e. change between individual contour levels, and on a global 
scale. A number of problems are discussed and various remedial measures are proposed.

The theoretical derivation of the test statistic, both in the absence and presence of 
random noise, has proved mathematically, extremely complex. A number of stringent 
assumptions would be required to enable the theoretical distribution to be derived. A 
major simulation study was subsequently undertaken to develop the empirical probability 
distribution function for each of the various statistics defining change for the four leveis 
of noise. Also for each of the statistics, the resultant power of the test was examined.

The remaining chapter explicitly examines two data sets. They illustrate how the 
methodology developed in the preceding chapters may be transposed to real problems 
and the problems which materialise when implementing the technique.

The first data set deals with potentially the simplest situation, the comparison of two sets 
of similar measurements recorded at the same locality. The example is concerned with 
the topical subject of climate change and the notion of global warming. It examines the
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question of whether there has been a change in the seasonal temperature during the 50 
year period 1930 to 1980 within the contiguous United States of America. The data base 
was provided by the United States Historical Climatology Network (HCN) Serial 
Temperature and Precipitation Data, Quinlan et al (1987).

The second example deals with a more complex situation in which the spatial resolution 
of the variables of interest differ, the questions of interest are therefore formulated in a 
different way and the methodology was modified accordingly. The problem examines 
whether there is an association between the level of background radiation, within three 
separate regions of the south-west of England, and the location of various forms of 
leukaemia, or whether the cases are purely a product of the population distribution. 
Differences between this example and the previous illustration, materialise primarily in 
terms of the composition of the data; the leukaemia data is defined in terms of punctual 
data points and is extremely sparse in quantity, the population distribution is defined in 
terms of areal regions i.e. civil parishes and finally, the radiation data is of a more 
continuous format.

The latter example highlights the difficulties surrounding analysis of data varying in 
spatial resolution and quantity, but it also emphasis the potential applicability of the 
method to problems where the spatial resolution does differ between variables. Although 
the sparsity of the leukaemia data serves as a restriction to any formal analysis, 
alternative quantitative methods and subjective techniques founded on the methodology 
were implemented to answer the question of interest.
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CHAPTER 2 

SURFACE MAPPING

§2.1 Interpolation Methods

Most locational data, whether it be originally point, linear or areal in nature, can be 
converted into a continuous form and plotted as a contour map by one of the many 
available interpolation methods. Once in that form, it may be regarded as a statistical 
surface in which height varies over area, in much the same way, as terrain varies on a 
topographic map.

If an investigator has control over the location of data points, they would be arranged in 
a regular lattice or grid with uniform spacing between points. In this case interpolation 
could be accomplished by fitting a hyperbolic paraboloid to every four data points by 
double linear interpolation, Switzer et al. (1964), fitting a polynomial to, up to 25 
surrounding data points, by Newton’s divided difference formula, Steffensen (1927), 
Berezin and Zhidkov (1965), or bicubic spline interpolation, de Boor (1962).

For most applications, the location of data points is beyond the control of the map maker 
and does not correspond to a geometric pattern. In these cases, the analysist must cope 
with irregularly spaced data points. Sometimes the surface to be mapped need not fit the 
data points exactly, i.e, the mapped surface need not attain the value of the dependent 
variable specified at the data point. Subsequently the irregular location of data points will 
not present a serious complication. An example of such is a trend surface (i.e. a 
polynomial of specified order) which can be fitted to the data by regression, Krumbein 
(1959).

For the surface to fit the data points exactly, Bengtsson and Nordbeck (1964) grouped 
data points into triangles or quadrilaterals. Shepard (1968 a,b) developed an interpolation 
algorithm, SYMAP, which produced a smooth, continuously differentiable surface which 
passed through all data points, the method being based on the idea of moving averages.
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Table 2.1, although not exhaustive, lists three groups of interpolation techniques with 
examples of each type:-

Non-parametric density 
estimation

Trend surfaces Distance related

Naive estimator Polynomial Moving averages
Kernel density estimation Fourier series Moving median

Nearest neighbour 
(balloon density)

Spatial filtering Varying Quantile Method

Adaptive kernel method Linear programming Kriging
Maximum penalised method Newton's statistical prediction 

technique
Orthogonal Series estimator The polygonal method
Reflection and Replication 

Techniques
Thiessen polygon

Transformation technique

Table 2.1 Summary of various interpolation techniques.

A resume of four of the above techniques is presented focusing on the theory but also 
incorporating a number of practical illustrations

1. Moving averages
2. Kriging
3. Polynomial trend surface
4. Kernel density estimation

The first three methods are more commonly associated with geological mapping, 
however more recently the ideas of density estimation has been used to produce surfaces 
for analysing geographical data, especially in terms of disease mapping and clustering, 
Bithell (1990).
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§2.2 Moving Averages

In the interpolation or girding of spatial data, one of the simplest methods is that of 
moving averages. A ’true value’, Zp} at point P is estimated by taking the average of all 
surrounding points within a certain limiting radius. This average, Zp, is a linear estimator 
with weights 1/n on the n points lying within the radius and zero on all other 
observations. Clarke (1979) showed the resulting estimate of Zp̂  does not necessarily 
minimise the sum of squared deviation where no attempt has been made to optimise 
these weights.

The reason why this estimator is poor is because the value at the centre of the search 
circle is estimated from observations that lie between the two extremes, i.e. from 
observations which lie close to the limiting distance and also, from those points which lie 
close to the centre of the circle, all the points are equally weighted. A modification of 
this approach that corrects for this failing is to allocate weights, dependent on their 
distances, from the critical point P, by using a monotone decreasing function e.g. an 
inverse weighting function i.e.

where z; = value of the i^1 dependent variable to be mapped 
p. = distance from P to data point i

If the point P is very near data point i, then pj is small, the further away we move, the 
larger p. becomes, so the weight accordingly decreases.

Therefore as the distance p, -> o the value at P is the limit of:-
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Thus for points near data point i, the computed value is near to value z..

It may be shown that by computing such a value z p for every point P over the map area, 
a 'smooth* surface is obtained. This method has several shortcomings

1. As the number of data points becomes large this method for calculating Zp becomes 
long and inefficient,

2. Direction from data points to the point P is not considered giving interpolated 
values that are implausible in some situations. Under this simple method, the
computed value at P depends only on the distances to the data points 1,2, n but
not on their location relative to P. For example, assuming pj and p2 are held fixed 
in length, the following configuration of data points give identical values at P:-

+ + + + + +

1 P 2 P 2 1

3. In practice we can alter the weighting. In the above example of inverse distance 
weighting, use was made of the actual distance pt, more generally, we could weight

using p.b, in which the exponent b is set to some value other than unity. Values 

greater than this will decrease the relative effect of distant points whilst, for values 
less than one, the importance of distant points will be increased. Many commercial 
computer programs use this method with b=2, giving an inverse distance squared 
weighting. With inverse square weighting, the surface is level at every data point 
(i.e. the derivative is zero) regardless of the location of that data point or its data 
value.

A number of embellishments were made to this technique to compensate for the above 
deficiencies, Shepherd (1968 a,b).

This idea is extended further in the description of kriging which takes into account both 
the variation in the measurements and distances between the measurement points
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§2.3 Kriging

Many geological surfaces, both real and conceptual, can be regarded as regionalised 
variables which have properties intermediate between a truly random variable and one 
completely deterministic. Typically, regionalised variables are functions describing 
natural phenomena that have geographic distributions such as the elevation of the ground 
surface, or changes in grade within an ore body. Unlike random variables, regionalised 
variables have continuity from point to point but the changes in the variable are so 
complex that they cannot be described by any tractable deterministic function.

Even though a regionalised variable is spatially continuous, it is not usually possible to 
know its value everywhere. Instead its values are known only through samples taken at 
specific locations.

Geostatistics was originally developed by Georges Matheron of the Centre de 
Morphologic Mathematique in Fontainebleau, France. It involves estimating the form of 
a regionalised variable in one, two and three dimensions. One of the basic statistical 
measures of geostatistics is the semi-variance which is used to express the ratio of change 
of a regionalised variable along a specific orientation i.e. the semi-variance is a measure 
of the degree of spatial dependence between samples along a specific support.

§2.3.1 Semi-variogram

For simplicity assuming the samples are point measurements and the support is regular, 
the semi-variance, yh, is defined as:-

1 /  \2 
Yh=^ 5 (z(xi)~z(Xi+h))

where
z(xj) = measurement of a regionalised variable taken at location i.

z(x. + h) = measurement taken h intervals away.
n(h) = number of pairs of samples at distance h apart.

If we evaluate the semi-variances for different values of h, the results may be plotted in 
the form of a semi-variogram. For small h, the points tend to be similar and the semi­
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variance will be small, increasing h, the points being compared are less and less closely 
related and their distances become larger, resulting in a large value of yh. At some 
distance the points being compared are so far apart that they are unrelated and then- 
squared difference becomes equal in magnitude to the variance around the average value. 
The semi-variogram consequently develops a flat region, the sill. The distance at which 
the sill is attained is termed the span or range. Figure 2.1 illustrates a hypothetical semi- 
variogram. The nugget effect i.e. the value of the semi-variogram at h=0, corresponds to 
the mean squared sampling and assaying error.

..-.Sill____

A
Nugg'et
Effect

*

<£ . Span, .y 
*

h

Figure 2 . 1 Example of an hypothetical semi-variogram.

In principle the experimental semi-variogram is known only at discrete points 
representing distances h, whilst in practice the semi-variance may be required for any 
distance. For this reason the discrete experimental semi-variogram is modelled by a 
continuous function that can be evaluated for any desired distance.

Fitting a model equation to an experimental semi-variogram is a trial-and-error process, 
usually done by eye. Clark (1979) describes and gives examples of the manual process 
whilst Olea (1977) provides a program that computes a linear semi-variogram having the 
same slope at the origin as the experimental semi-variogram, he illustrates the technique 
on a set of geological data.

If the regionalised variable has been sampled at a sufficient density relative to the range, 
there will be no significant difference between estimates assuming a linear semi- 
variogram model and other semi-variogram models.
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When the form of the semi-variogram is known, it is possible to estimate the value of the 
surface at any unsampled location, this estimation procedure is termed kriging. The term 
kriging is derived from the name of D. G. Krige, a South African mining geologist and 
statistician, who first introduced the idea to avoid systematic overestimation of reserves 
in the field of mining.

Unlike convential contouring algorithms, this method provides a measure of the error or 
uncertainty of the contoured surface. Kriging uses the information from the semi- 
variogram to find an optimal set of weights which are then used to estimate the surface at 
unsampled locations.

§2.3.2 Various forms of kriging

Six types of kriging are
1. Punctual
2. Block
3. Lognormal
4. Disjunctive
5. Universal
6. Generalised covariances

Table 2.2 describes the situation where each of the forms is most applicable.

Distribution 
of data

Stationarity

Stationary Simple drift Local trends Severe
anistropy

Normal Simple kriging 
(point or block)

Universal
kriging

Generalised
covariance

?

Simple
(known

distribution)

Lognormal
kriging

?» ? ?•

Complex Disjunctive
kriging

? ?« ?

Table 2.2 Situations in which the various types of kriging are applicable.
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Punctual kriging is the simplest form of kriging. The data consists of measurements 
taken at dimensionless points and the estimates are made at other dimensionless points.

For simplicity, we will assume the variable to be mapped is statistically stationary i.e. 
free from drift, for a regionalised variable z(x)

E[z(x)] = m constant

E[z(x) -  m][z(x) -  m] = cov(x -  x )

i.e. the covariance between two points x and x' does not depend separately on x and x', 
but only on the vector (x-x).

The value at an unsampled location may be estimated as a weighted average of the 
known observations, with the resultant value at point P given by

A n n

XP -  XwiXi where ^  w; = 1
i= i i= i

A

The estimate Xp will differ from the true, unknown value Xp by an amount termed the 

estimate error, ep

ep = (xp-xAp)

There are an infinite number of possible weight combinations that can be selected, each 
gives a different estimate and estimation error, however only one combination produces 
a minimum estimation error, it is this unique combination of weights that kriging aims to 
find,

A complete derivation of the kriging equations is provided by Olea (1975) for punctual 
kriging, optimum values for the weights are found by solving a set of simultaneous 
equations which include values from a semi-variogram of the variable being estimated. 
The weights are evaluated such that the resulting estimates are unbiased and have 
minimum estimated variance.
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For n data points we have (n+1) equations with only n unknowns. Since we have more 
equations than unknowns, the additional degree of freedom may be used to ensure the 
solution has the minimum possible estimation error. This is accomplished by including a 
Lagrange multiplier, X. The complete set of equations have the following form in matrix 
notation: -

y fa i)  Y (h J y(0  -  y ( h j  i ' w r yK )
y ( h j  y(h22) y(h23) “ ■ y(h2n) i w2 y(h2p)

. 1

y ( 0  y(Kz)  y(hn3) y ( 0  i Wn y(hnp)
1 1 1 ••• 1 0 _X_ i

In general we solve the equation

[A][W] = [B]

for a vector of unknown coefficients [W]. The terms in matrix [A] and vector [B] are 
taken directly from the semi-variogram or the mathematical function describing it. Once 
the unknown weights have been determined, the variable at location P is given by:-

x P = X w iXi
i=i

For block kriging the same form of equations as given in (1) are valid, but the y values 
are replaced by y. y is the semi-variogram which expresses the variance between the 
observation and the block to be estimated.

Where the distribution of the variable of interest is not even approximately normal but 
strongly skewed, it is possible to fit a lognormal distribution. Krige (1978) considers this 
method of kriging. The data are first transformed using an appropriate transformation

y, =l°g(xi+a)
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where a is an arbitrary constant to optimise the fit to a normal distribution. These values 
are then used to compute the semi-variogram and generate the ordinary kriging 
estimates. Link and Koch (1975) have shown various problems are associated with this 
type of kriging.

Theoretically, the best possible estimator of xp is some function of the data x1,x2,...,xn

and is defined to be the conditional expectation of xp given the n observations. In order

to obtain this estimator we need to know the precise distribution of the (n+1) variables. 
For the simplest case of a normal distribution and stationarity, the conditional 
expectation can be defined and is identical with the best linear estimator.

In disjunctive kriging, a 'best-fit* appropriate transformation is used, consisting of a set of 
Hermite polynomial functions, Journal and Huijbregts (1978). By using such 
transformations, it is possible to convert the data into a form which will approximate to a 
univariate normal distribution for the x[ values and bivariate normal distribution for 
every pair of values xj, xj. The class of possible functions is restricted to those which are 
linear combinations of univariate functions of the data. The estimator obtained is non­
linear and many of the desirable properties of simple linear kriging are discarded e.g. 
unbiasedness.

A study of the sea-floor by Journal (1969) provoked Matheron's interest in the problems 
of non-stationarity and the development of universal kriging. The approach parallels that 
of trend surfaces where the phenomena is split into two components, a deterministic 
trend (or drift) plus a random error (or fluctuation), section 2.4. The difference between 
the two approaches is that the fluctuations used in geostatistics are not assumed to be 
independent, as in trend surfaces. Instead of assuming the drift is a constant, it is allowed 
to follow a trend which may be expressed in terms of a simple polynomial.

Although the idea is a step away from the rarely adhered to requirement of stationarity, 
major problems exist with this technique, Armstrong (1984). These are primarily 
associated with obtaining a valid estimation of the semi-variogram and secondly the 
indeterminacy of the drift.

Finally generalised covariances rely on the theoretical fact that lowest order differences 
are the strongest forms of stationarity. These differences are termed generalised
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increments. The concept of generalised increments leads directly to that of generalised 
covariances, using this notion the kriging equations may be rewritten in terms of 
generalised covariances. The result of this is to relax the stationarity requirements but the 
cost is measured in terms of the complexity of the theory and the resultant computations.

Generally the ideas of geostatistics have advantages over other more conventional 
techniques for analysing spatial data. They have a sound theoretical basis, they allow 
some estimate of the quality of estimation procedures and finally they have some claim 
to statistical properties such as unbiasedness, linearity and minimum variance. However 
they require some fairly stringent assumptions to be made which in practice can rarely be 
adhered to.

Regionalised variable theory is not valid under conditions where its defined form of 
stationarity does not hold. However, although unproved, most users of the method 
suggest that departures from stationarity are not of practical significance since local 
stationarity may be assumed.

A second assumption is that of normality. The majority of data sets are not strictly 
normal, transforming them to achieve normality and then applying the kriging equations 
results in the estimate being sub-optimal, non-linear and biased.

Finally the major problem lies with the corner-stone of parametric geostatistics, the semi- 
variogram. Whatever data set is used the semi-variogram will often depart significantly 
from all the theoretical models, skilful interpretation is required to fit one or more 
models to the empirical curve.

§2.4 Trend Surface Analysis

Trend surface analysis was first drawn to the attention of earth scientists in the mid 
1950's by Oldham and Sutherland (1955), Miller (1956), Krumbein (1956), Grant (1957) 
and Whitten (1957). These authors used the techniques for the analysis of gravity maps, 
stratigraphic maps, isopach maps and maps representing specific attributes of 
sedimentary and igneous rocks, respectively.

In the course of time, the number of applications has increased significantly and the 
method has been refined and generalised. More recent studies in which trend surface
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analysis was used as a primary tool for arriving at conclusions include Anderson (1970), 
Bradley (1970) and Haining (1987).

A trend is any large scale systematic change that extends smoothly and predictably from 
one map-edge to the other. Examples of such systematic trends might be the dome of 
atmospheric pollution over a city, the steady rise in cirque floor levels noted across many 
mountain ranges and so on. The detection and separation of such trends is the object of 
trend surface analysis.

Once again thinking of a surface mapping as a scalar field:-

Zi=f(Xi,yi)

A trend surface simply specifies a precise mathematical form for the function, f, and fits 
it to the observed data by least squares regression.

In practice no simple function will fit the observed data. Firstly, even when the 
underlying surface is simple, measurement errors will have been introduced into the 
observed data. Secondly, in practice it is exceedingly unlikely that only one trend- 
producing process will be in operation. It follows that as well as trend represented by a 
simple mathematical function of the x and y co-ordinates, there will also be local 
departure from this i.e. residuals:-

zi = f K yi)+Ei

The main problem in trend surface analysis is to decide upon a particular function for the 
trend part of the function. Although there is an enormous range of possible functions, the 
simplest trend surface is an inclined plane i.e. a linear trend surface:-

z i = P o o + P i o x i + fW !+ ei £i ' N(O,02) (2)

For the general case of a polynomial of degree m:-

z. = i l M y " +e.
j=0 k=0

(3)
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In specific applications, p + q < m where m denotes the degree of the trend surface. A 

trend surface of degree m has r = (m+l)(m + 2) coefficients pjk These are calculable

only if the number of observations satisfies the condition n > m . Where n=m a special 
type of surface is fitted with no residuals.

Returning to the simplest case of a linear trend surface, (2), the constants have a simple 
physical interpretation, the first /200 represents the height of the plane surface at the map 
origin where (x.,ys) = (0,0). The second /310 is the surface slope in the x-direction and 
/?01 gives its slope in the y-direction. For interpretation of quadratic and cubic 

coefficients see Cliff et al, (1975).

The theory of least squares estimation is used to fit a surface to the data i.e. the sum of 
the squares of the residuals at all data points is minimised for all possible surfaces of that 
degree, determining uniquely the coefficients, Pjk, in equation (3) i.e.

z(u) = f(u)Tp + e(u)

"l yi 4 y? •

1cr
—

*

0
-T

-»
X

where S = f (u) = 1 x2 y2 4 yi ■
P -

_1 yn 4 y I ■

Thus P satisfies:-

P = (STS)“1STZ. (4)

In general equation (4) is valid, however (sT s) may in practice be singular hence its

inverse does not exist. Various methods have been developed to circumvent this 
particular problem e.g. Whitten (1970) developed a method using orthogonal 
polynomials for irregularly spaced data.



Various degrees of polynomial for a trend surface have been cited in the literature e.g. 
Krumbein (1959) illustrated the use of both a linear and quadratic surface to describe the 
trend in the lithologic composition (classic ratio) of Pennsylvanian rocks in parts of 
Kansas and Oklahoma. Whitten (1970) employed octic surfaces in his description of the 
sub-surface elevation on top of the Devonian Dundee Limestone in a 900 square-mile 
area of Central Michigan. Coons et al. (1967) examined the Mid-Continent gravity high 
to assess the relation between basement and Paleoxoic structures using surfaces of up to a 
complex 15^ order polynomial.

The method of trend surfaces works quite well with surfaces that are of a simple form 
but it is very sensitive to data point distribution and aberrant values. Gray (1972) and 
Robinson (1972) illustrate the validity of such a statement, whilst Davies (1973) 
demonstrates the pattern of the data is unimportant as long as the area of interest is 
covered, the clustering of points within an area does not influence the final surface. A 
further problem is that the number of data points should be restricted in order that rather 
extensive interpolations are based on relatively few data.

A further cautionary note to the usage of this technique is that care should be taken in not 
relying too heavily on the statistical significance tests which have been developed to 
decide the degree of a trend surface (analysis of variance), or to check residuals for 
’outliers’ (t-tests), or on confidence belts which can be calculated for the trend surfaces. 
These statistical tests produce exact results only if the residuals are stochastically 
independent. In reality the residuals from a trend surface are frequently subject to 
significant spatial auto-correlations. In that situation, the test statistics based on the 
model of uncorrelated residuals may be severely biased, Agterberg (1964), Watson
(1971).

Various other techniques have been advocated to eliminate this problem. Instead of 
postulating a trend-residual model, a trend-signal-noise model may be defined. The trend 
signal denotes a continuous random function with noise describing a stochastically 
independent component. Haining (1987) considers alternative ways of fitting trend- 
surface models which have been modified to include a random process model to 
accommodate spatial autocorrelation. Haining considered two cases, firstly where the 
order of the trend was assumed known and secondly when the order is unknown. For the 
former the method of parameter estimation used was the Cochrane-Orcutt time series 
procedure, Ripley (1981). In case of the order of trend being unknown, a first order



model is estimated and the residuals are tested for autocorrelation using the generalised 
Moran coefficient (GMC), Ripley (1981) for autocorrelation. If autocorrelation is 
present, an iterative scheme is performed to estimate the model parameters, otherwise 
they may be estimated using ordinary least squares. This procedure is repeated for a 
second order model. If none of the second order coefficients are significant or, the 
increase in is not significant, the first-order model is retained; otherwise the third- 
order model is estimated and the procedure repeated.

Trend surface analysis is probably most useful when trend and residuals can be linked to 
separate spatial processes which were operative on a regional and local scale.

§2.5 Density Estimation

Density estimation is possibly the most important topic in applied statistics since unless

the density f (x) is known its characteristics must be inferred from a sample x1,x2,.,.,xn.

Two possible approaches to density estimation are parametric and non-parametric. The 
former assumes the data are drawn from one of the known parametric family of 
distributions. The density, f, underlying the data is then estimated by finding estimates of 
the unknown parameters from the data and substituting these estimates into the formula 
for the function, f.

The second approach, non-parametric, is less rigid in its assumptions concerning the 
distribution of the observed data. The data determines an estimate of the probability 
density, f. Density estimation was first proposed by Fix and Hodges (1951) as a method 
for relaxing the rigid distributional assumptions inherent to discriminant analysis.

For the remainder of the section, attention will focus on the second form of density 
estimators, in particular those applicable to multivariate data since the ensuing work is 
spatial in nature. Additional problems arise when estimating a density function in a 
multi-dimensional setting. These primarily relate to regions of the sample space which 
are devoid of observations, this is referred to as the ’empty space phenomena’ by Scott 
and Thompson (1983).

A variety of non-parametric probability density estimators have been proposed and 
studied since the pioneering work on kernel methods by Rosenblatt (1956) and Parzen
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(1962). The types of estimators fall into four categories kernel, histogram-type, 
orthogonal series and splines, some overlap does exist. Only the first two forms of 
estimators will be discussed, Fryer (1977) reviews all four methods, not only with 
reference to their theoretical properties but also to their applicability to real life 
problems. Most density estimation research has dealt with the one-dimensional case and 
applications to relatively small data sets. Multivariate extensions of histograms, kernel 
and nearest neighbour estimators have been studied theoretically and are usually applied 
to bivariate data sets.

§2,5,1 Histogram based estimators

The histogram is extremely efficient computationally compared to kernel methods, but 
statistically it is quite inefficient. Relative sample sizes required for histograms to have 
errors comparable to kernel estimators increases rapidly with increasing sample size and 
dimension. Scott (1985a) studied the frequency polygon which is formed by the linear 
interpolation of adjacent mid-bin values of a histogram, statistically it has the same order 
of efficiency as the kernel estimator but still has the computational efficiency of the 
histogram. Problems exist with such an approach, the achievement of the same order of 
efficiency requires greater sampling density and secondly, the bins of the optimal 
frequency polygon are wider than those for the optimal histogram. With large bins, bin 
edge effects become more pronounced.

Scott (1985b) proposed two other variants, the average shifted histogram and a frequency 
polygon of the average shifted histogram. With the latter it can be shown to be 
functionally identical to a related interpolated kernel estimator of binned data.

§2.5,2 Kernel estimators

Moving away from the idea of mapping based on binned data and its related problems to 
the kernel method of density estimation. The definition of a kernel estimator as a sum of 
'bumps' centred at the observation is easily generalised to the multivariate case. 
Rosenblatt's results for the naive estimator were extended to the bivariate case by Maniya 
(1961), with Cacoullos (1964,1966) obtaining the p-dimensional multivariate equivalent 
of Parzen’s work, particularly with reference to the evaluation of optimal mean square 
error and other invariance properties.
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§2.5.3 Fixed kernel estimators

The simplest form of the multivariate kernel density estimator is the fixed kernel. Let 
Xi>x2,...,xn be an independent, identically distributed random sample from a
multivariate distribution with density f. The kernel density estimate of f based on these 
data is:-

f (x) = n-1h“d 2  K{h_1 (x- x.)}
i=l

where K{  } is the kernel function defined for d-dimensional x satisfying

Jic(x)dx = l
Rd

and h is the smoothing parameter, assumed to tend to zero as n tends to infinity.

For mathematical reasons, the kernel selected is a radially symmetric, unimodal 
probability function. Within this family of functions, it has been demonstrated that in 
terms of efficiency, the choice of kernel is not critical. The selection should be 
conditioned by the intended use to which the methodology is being applied. Various 
examples of kernel functions are:-

1. Epanechnikov Kernel

K (x) = { ^ Ĉ ^d + 2^<1_- T- )
[ 0 otherwise

where cd = volume of the unit d-dimensional sphere

2. Standard multivariate normal density function

k(x) = (2n)~% exp[-^2XTx]

3. 5 V 1
0 otherwise
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4. Kj L ) = ]4 jt-1( l - x Tx)3 ?T? <:1
0 otherwise

The last two apply solely to the two-dimensional situation. 

§2.5.3.1 Smoothing parameter selection

The smoothing parameter, or alternatively the window width, is important for its role in 
determining the resultant shape of the density estimate.

Figure 2.2 displays pictorially the consequences of varying the smoothing parameter. 
The estimates are based on a set of fifty data points simulated from a bivariate normal 
distribution using the NAG (1984) random number generator subroutine, G05EAF.

Figure 2.2(a) displays the optimal surface as determined by one of the automatic 
procedures, least squares cross-validation, described later. Selecting too small a value for 
the smoothing parameter results in a more spiked representation of the surface 2.2(b), by 
selecting a larger value of smoothing parameter than deemed 'optimal' by one of the 
automatic procedures, results in the density estimate being oversmoothed and hence 
causing any detail to be obliterated, figure 2.2(c).

•a -« • i > -J .1 » i t

Figure 2.2 (a)Optimal  procedure for Figure 2.2 (b) Under-estimation of h.
selection of h.
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-3
-3 -1 0 1 3

Figure 2.2 (c) Over-estimation of h.

Figure 2.2 Surfaces produced for varying levels of smoothing parameter.

A variety of techniques have been developed to overcome the subjectivity of selecting h. 
Where the kernel is purely for illustrative purposes, selecting the window width in this 
manner is fairly standard. Five techniques for selecting h automatically or semi- 
automatically are suggested in the literature:-

1. Likelihood cross-validation
2. Least squares cross-validation
3. Test-graph method
4. Bootstrap method
5. Selecting h assuming the data arises from a standard distribution

The first two methods use the concept of cross-validation. The idea of cross-validation 
was developed by Mosteller and Wallace (1963) for use in discriminant analysis. In the 
context of smoothing parameter selection, the cross-validation criterion is the sub­
division of a sample size, n, into a 'construction' subsample, size (n-1), and a validation 
subsample, size 1, in all n possible ways. Stone (1974) provides a detailed description of 
cross-validation in various areas of application.
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§2.5.3.1.1 Likelihood cross-validation

This method as its name suggests uses the ideas of likelihood to assess the adequacy of 
fit for different smoothing parameters.

A score function CV(h) is evaluated based on the log-likelihood averaged over each 
choice of omitted x{. The value of smoothing parameter for which the function is
optimised is selected as the ’optimal' value;-

Scott and Factor (1981) adjudged the behaviour of CV(h) to be unduly sensitive to 
outliers and as a result tended to oversmooth the function. The problem is potentially 
more worrisome with multivariate data, due to the difficulties of detecting outliers.

One of the requirements of a statistical procedure is that it should be consistent i.e. good 
estimates of the quantity of interest should be obtained if very large samples are 
available. If one of the tails is monotonic and dies off at an exponential rate, the use of 
likelihood cross-validation leads to inconsistent estimates of the density, Schuster and 
Gregory (1981).

Although simple to implement and computationally not excessive in terms of time, the 
method is not ideally suited for use in real data sets

§2.5.3.1.2 Least squares cross-validation

The idea suggested by Rudemo (1982) and Bowman (1984) is based on minimising a 
suitably well behaved loss function, the integrated squared error:-

c v o o - ^ i t o g t ^ )

I.S.E.= j f f - f f d x  = J f 2 - 2  jf  f+ J f2
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The basic principle of least-squares cross-validation is to construct an estimate of R|^f J

from the data themselves and minimise this estimator over h to give the choice of 
window width. Silverman (1986) demonstrates how a score function may be evaluated 
from the data to allow this value of h to be calculated. Defining

f -I (x) = (n - 1)~‘ h”d £  K{h_1 (x- Xj)}

Let M0(h) = J f 2 -2n"1̂ L J(x.) (4)
i=l

M0 depends on the data. The idea of least squares cross-validation is to minimise the 
score M0 over h. Equation 4 is not in a form suitable for computation. Letting K(2) be 
the convolution of the kernel with itself. It may be shown that:-

jf (x)2dx = n_2h“d ^ K (2){h-1 (xj - xj)}
i j

and

(x, - X j }  - ( n - l ) “'h -dK(o)
i i j

The resultant score function is

M,(h) = n V X X K ’I r 'f x j  - x j)}+2n-1h-dK(0)
i J

where K*(t) = K2(t)-2K(t)

K2 (t) is the convolution of the kernel with itself.

Stone (1984) provides a strong large sample justification of least squares cross- 
validation. Stone’s theorem states that the score function M^(h) says asymptotically, just
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as much about the optimal smoothing parameter, from the integrated squared error point 
of view, as if we actually knew the underlying density, f.

§2.5.3.1.3 Test Graph Method

The third of the methods may be described as semi-automatic. For a set of independent, 
identically distributed observations from a d-dimensional density, f, the
estimator function is given by

f« (x) = j*X 'h~dK{h-'1 (x- Xj)}
j=l

The test graph method is then:-

n(x) = i  n-‘h-d-2 V2K{h-‘ (x- Xj)}
j=l

The window width is chosen to give the best estimate of the density such that the random 
fluctuations, in the second derivative, V2, of the estimate, will be asymptotically of

maximum size irSsup|/" |, where 8 is a calculable constant and the value of sup|V2f| can

be estimated from the test graph.

The subjectivity of the method arises since test graphs are drawn of the second derivative 
of the estimator for various band widths, to assess which gives the 'right size' of 
fluctuations. The problem with this technique is the difficulty in assessing the graphs. In 
two-dimensions, contour plots may be used, but in higher dimensions difficulties of 
presentation are encountered. The second problem is the time required to produce each 
graph. Finally to achieve reasonably accurate results, a fairly sizeable data set is 
recommended.

Despite these problems, Silverman (1978) demonstrated the acceptability of the results in 
general. In conclusion it is felt that this method is most useful as an aid to checking a 
pre-selected window width.
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§2.5.3,1.4 Bootstrap method

The selection of bandwidths for density estimation based on the bootstrap, once again 
involves the idea of minimising the integrated squared error over various values of the 
smoothing parameter, h, Faraway and Jhun (1990).

The integrated mean squared error may be decomposed into a bias and variance 
component Direct application of the bootstrap fails since it is incapable of estimating the 
bias term in this context. To overcome this problem, an initial estimate of the density, 
with the bandwidth chosen by one of the other methods, is calculated and resampling is 
subsequently done from this. The bias term is then calculable.

A by-product of this technique is the construction of a confidence band for the 
smoothing parameter.

Overall this method is shown to perform comparatively better than cross-validation in 
terms of the integrated mean squared error. The bandwidths are generally larger than for 
cross-validation resulting in smaller variation. The negative factor of this approach is the 
time taken to evaluate the smoothing parameter.

§2.5.3.1.5 Estimating 'h' from a standard distribution

The final method for selecting bandwidths to be discussed is to assume the underlying 
density is standard e.g. multivariate normal. Based on the ideas of bias and variance the 
window width can be shown to be

variate normal density. For specific kernels A(K) has been calculated, Silverman (1986).

h ,,= A (K )n ''>'lM (5)

where depends on the kernel and 0 is the d-

The window width may then be evaluated directly from (5) if the Fukunaga estimate
(1972) is used
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£(x) = (detS— k {it2 (x -  X; )T S_1 (x -  Xj)}
nh £1

where K (xT x) = K (x)
S = covariance matrix

If the kernel is radially symmetric and the data untransformed, a single scale parameter, 
g , for the data is evaluated from:-

o*=d-*5>.
i

and the value oh0pt is the resultant window width.

This method gives a 'quick and dirty' estimate for the smoothing parameter simplifying 
the task of finding the optimal value for the other techniques.

§2.5,3.1.6 Summary

The importance of selecting the smoothing parameter was summarised in figure 2.2. 
However a whole wealth of techniques are available for selecting h. Biasing the 
conclusions towards the requirements of the proceeding work, eliminates three of the 
methods, firstly the test graph method is not fully automated, secondly estimating the 
smoothing parameter from a standard distribution requires the assumption that the data 
arose from a standard distribution, the use of a non-parametric mode of analysis was 
selected to avoid such a restriction. Finally the use of likelihood cross-validation is 
restricted by its sensitivity to outliers, which is especially problematical for multivariate 
data.

Finally, of the remaining two methods, the bootstrap technique requires the smoothing 
parameter to be selected initially by some existing technique. The overall reduction in 
integrated mean squared error over that of the least squares cross-validation method does 
not necessarily warrant the additional increase in computational time. In light of this, 
least squares cross-validation was used for smoothing parameter selection.
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§2.5.4 Alternative Kernel Estimators

Although the kernel estimator can be shown to exhibit a series of desirable properties, in 
terms of practicalities the main drawback of the method is its inability to deal 
satisfactorily with the tails of the distribution, without oversmoothing the main part. Two 
possible adaptive approaches are the nearest neighbour and adaptive kernel methods.

§2.5.4.1 Nearest neighbour method

This approach described by Loftsgaarden and Quesenberry (1965) has also been termed 
the balloon density by Tukey and Tukey (1981). The estimator in d-dimensions is 
defined in the following manner:-

For a sample size, n, one expects nf (t)vk (t) observations to lie within the sphere radius 

rk (t), centre t .

The overall estimates obtained by the nearest neighbour approach are not satisfactory for 
a number of reasons:-

where rk (t) - Euclidean distance from t to the k^1 nearest data point

- d-dimensional volume of the d-dimensional sphere of radius

volume of the unit sphere in d-dimensions

1. They are prone to local noise.
2. The tails of the estimator are unduly heavy.
3. It is discontinuous and its integral over all space is infinite.
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As a technique it is not the most suitable method due to the above limitations. The 
adaptive kernel method overcomes these difficulties while still being adaptive to the 
local density.

§2.5.4,2 Adaptive kernel estimators

This method offers a combination of the desirable smoothness properties of the Parzen- 
type estimators with the data-adaptive characteristics of the k-nearest neighbour 
approach.

A kernel is placed at each of the observed data points but the window width is allowed to 
vary according to the underlying density. Intuitively the smoothing parameter h(xj) 
should vary inversely with the true density, f, i.e. in regions of low density a broader 
kernel should be used and vice-versa.

Theoretical work of Abramson (1982) showed that ^f~^(Xi) is a good choice.

The density f~ ^ (x j is unknown but may be replaced with an appropriate estimate. This

estimate makes use of one of the alternative methods, the choice of which is not crucial, 
since the adaptive method is insensitive to the fine detail of the pilot study.

Breiman et al. (1977) describe the technique and compare it to the Parzen estimator. 
Overall, they found it was superior to the best Parzen estimate.

Silverman (1986) feels the technique has advantages over the ordinary fixed kernel in 
some situations, but each case should be treated separately.

§2.6 Summary

Within this chapter four methods of surface fitting have been discussed. Each of the 
techniques requires some unknown parameter to be defined:-

1. Moving average - weighting method.
2. Trend surface - order of polynomial.
3. Kriging - form of semi-variogram.
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4. Kernel density estimation - smoothing parameter, h.

The unknown parameters are all basically controls on the smoothness of the resultant 
surface. Of the four techniques, only the fixed kernel may be defined to be fully 
automatic. Currently no automatic selection procedure is available for selecting the 
'optimal' order of polynomial or weighting method. In terms of kriging, the model for the 
semi-variogram requires considerable skill to fit it to the empirical data.

Potential drawbacks of the fixed kernel as mentioned previously relates to their inability 
to deal with long tailed distributions. However this apart, it was decided that since least 
human intervention was required it was the most suitable for fitting a surface. However 
any of the other methods are feasible and the ensuing work is wholly applicable using the 
other techniques.
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CHAPTER 3 

SURFACE REPRESENTATION

§3,1 Contour Selection

Before proceeding to investigate the various aspects of contour selection and fitting, it 
is necessary to describe the two types of question which may arise when comparing 
surfaces since they condition the form of contour selection. The most common form of 
questions arising are:-

1, Are the underlying statistical distributions of the surfaces similar?

2. For a specific level of contour, does the spatial pattern differ between surfaces?

A subtle difference exists between the selection procedures for the two questions, the 
latter does not require a formal selection method since the levels will be the same for 
each surface. In terms of the former question, the two surfaces may not necessarily 
describe the same variable, therefore a procedure which ensures contour selection is 
consistent is essential to avoid reaching spurious conclusions. Motivation for a quasi­
automatic technique which allows the spacing and the number of class intervals to be 
selected was prompted by the first of these questions. Later within the chapter the 
question of contour accuracy is examined with its role in influencing various geometric 
properties of a contour being discussed.

§3.2 Contour Notation

Before proceeding to examine specific topics relating to the description of a surface in 
terms of a set of contours, various definitions and notation are introduced.

A closet  ̂ contour is defined to be a closed plane figure bounded by three or more 
straight line segments that terminate in pairs at the same number of vertices, and do not 
intersect other than at their vertices. The sum of the interior angles is (n-2)*1800> where 
n is the number of sides; the sum of the exterior angles is always 360°- The polygon is
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approximated by a set of N points, the first is arbitrary but the sequence is delineated in 
an anticlockwise direction, figure 3.1 (a).

An open contour, is a contour which has two or more of its ordinates defined to be end­
points on the boundary of the region. For analysis, if the region is defined a-priori, an 
open contour is considered equivalent to a closed contour, figure 3.1 (b), although the 
conditions of a closed contour are not necessarily satisfied.

A disjoint contour is one which comprises more than one element, these may be either 
open or closed, figure 3.1 (c).

Figure 3.1 (a) Closed 
contour.

Figure 3.1 (b) open 
contour

Figure 3.1 (c) Disjoint 
contour

Figure 3 . 1 Definition of various contour forms.

A summary of the contour notation used subsequently is given below

Cjj contour j, in surface i, i = 1, Ns , j = 1 , Nc

Ns total number of surfaces

Nc

N total number of point describing contour j ,

where Cjj = (xfllJyfll),(x^,yfl2),...,(xaN,yflN)

xjjk k^1 x-ordinate of contour j , in surface i 
yijk kth y-ordinate of contour j, in surface i

<c total number of contours

ti
A
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§3.3 Number of Class Intervals

There is no definitive answer to the number of contours which might be used for 
constructing a map. A finely contoured map based on a few control points gives an 
impression of accuracy unwarranted by the primary information, conversely it is 
wasteful to use very few contours when in practice much is known about the inflexion 
points in the surface under investigation.

Dobson (1973) stated that in absolute terms the human eye can confidently identify 
only a small number of shadings or symbols i.e. between four and ten. This view was 
supported by Monmonier (1973), Robinson and Sale (1969) and Jenks and Caspell 
(1971).

One guide as to the choice of the number of contours was given by Brooks and 
Carruthers (1953) who advocated the number of classes in a histogram should satisfy:-

number of classes < 5*logio (member of observations)

In terms of a contour map based on n observations, the surface should not consist of 
more than (51ogio(n)-l) contours, table 3.1.

Number of 
observations

50 100 150 200 500

Maximum 
number of 
contours

7 9 9 10 12

Table 3 . 1 Brooks and Carruthers (1953) contour selection procedure. 

§3.4 Selection of Class Intervals

A second question pertaining to the display of spatial data in terms of isolines concerns 
the selection of class intervals. Numerous class interval selection methods have been 
proposed, Evans (1976) categorised these on the basis of four groups:-
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1. Exogenous
2, Arbitrary
3, Idiographic
4. Serial

The first of these groups, exogenous, selects the intervals on some meaningful baseline 
level which relates to, but is not derived from the data to be mapped e.g. a critical 
population density threshold. As its name suggests, those methods categorised under the 
arbitrary heading are founded on a series of numbers of no particular significance. 
Usage of this method is indefensible and should never be implemented.

§3.4.1 Idiographic group

More specific to the details of the data set to be mapped, the idiographic group may be 
divided into three sub-groups:-

§3.4.1.1 Natural break methods

Two groups fall under this heading multi-modal and multi-step. Intervals for the former 
are based on 'natural breaks' in regions where the frequency is low. Jenks and Coulson 
(1963) found that clear natural break classes do not occur and subjective judgements 
vary greatly between people. It is usually possible to find apparent breaks but these are 
often the result of small sample size and their significance should not be exaggerated.

In a similar way the multi-step methodology divides the cumulative distribution into a 
series of 'treads' and 'rises’. The same set of problems exist as for multi-modal plus 
double the number of contours are required.

Neither of these methods should be utilised in quantitative mapping unless significant 
multimodality has been demonstrated statistically,

§.3.4,1.2 Percentiles

The percentile system of subdividing the frequency distribution is very useful in 
ensuring equal representation of classes. It is invariant to scalar, rotational and 
translational changes. The main disadvantage is that class intervals vary irregularly in
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different parts of the measurement scale and between maps of the same variable, for 
different areas or times. Furthermore a percentile based map provides no information 
on the underlying frequency distribution. It is therefore incumbent that a histogram is 
positioned alongside the map with the class boundaries accordingly marked. This 
facilitates interpretation in relation to the measurement scale but Schultz (1961) still 
advocates very careful reading of the scale. In terms of map comparisons it is not 
advisable unless the underlying statistical distribution is uniform.

§3.4.1.3 Nested means class limits

Two classes are formed about the mean with each class then being subdivided at its 
own mean, Scriptor (1970). This method balances the desirable properties of equal 
numbers per class against that of equal class widths. Class intervals are narrow in the 
modal parts of the frequency distribution and broad in the tails. Extreme values 
influence the positions of the means of various orders so that the less closely spaced the 
values are in a given magnitude range, the broader the class.

For a rectangular frequency distribution, nested means approximate the equal interval 
or percentile solutions. For a normal distribution, it will approximate a standard 
deviation based method and finally for a 'j* shaped distribution, a geometric 
progression, see section 3,4.2.2 and section 3.4.2.4, respectively.

Nested means provide a generally applicable, replicable yet highly inflexible interval 
system. They do not form a numerical series independent of the data and do not allow 
numbers of classes other than 2m, where m is an integer.

§3.4.2 Serial class

The serial class encompasses all methods with limits which are mathematically derived 
and fixed in relation to some statistical descriptor e.g. mean, median, range or standard 
deviation. Once again there are a number of techniques specific to this category, many 
of which are variants of a theme.
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§3.4.2.1 Normal percentiles

This method of standardised class intervals based on the normal probability distribution 
was developed by Armstrong (1969). For normal data this method is preferable to true 
percentiles in being uninfluenced by minor details of the frequency distribution. Evans 
et al. (1975) mention the desirability of transforming the data to achieve normality and 
then applying this method. The same set of problems arise with the implementation of 
this method as for true percentiles.

§3.4.2.2 Standard deviation

The class width is defined as a proportion, Ks, of the standard deviation. Class intervals 
are centred on the mean, which is a class mid-point if the number of classes is odd and 
a class boundary if the number is even; the highest and lowest classes are necessarily 
open-ended.

This method is particularly suited to data sets which display approximate normality or 
are fairly symmetric with a pronounced mode near the mean. The internal intervals are 
equal and for skewed unimodal distributions a transformation may be applied to 
achieve approximate normality

Use of a standard deviation basis does not imply a class interval of one standard 
deviation which is too coarse if more than four contours are employed. Selecting a 
proportion too large results in the tail classes being under-utilised, alternatively too 
small a value reverts the method to that of a percentile based solution.

§3.4,2,3 Equal arithmetic intervals

Contour maps constructed by dividing the range into the desired number of levels fall 
under the serial group heading. The contours are selected as for topographic maps, but 
this is rarely feasible for statistical maps due to the structure of the data set and the 
possible existence of outliers.

An extreme example is cited in Jenks and Coulson (1963). They studied an area in 
Central Kansas where the population ranged from 1.6 to 103.4 persons per square mile.
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On a map with seven equal intervals only four classes were represented with over 90% 
of the map lying within a single band.

§3,4.2,4 Geometric progression

This method has been developed to deal with 'j' shaped distributions. The geometric 
progression is set to pivot about some measure of central tendency e.g. median. The 
median is then made the geometric mid-point of the class, if an odd number of classes 
is desired, or the boundary between two central classes if an even number are required.

The sequence of class widths are delineated as:-

a ax ax^ ax3 ........... ax(N_1)

where a = size of first term
X = base of the geometric progression

N = number of classes

The major drawback of this technique is its severe limitations of use. The base, x,
requires trial and error to determine its ideal value for each data set, hence data sets 
contoured using this method are not easily automated.

§3.4.3 Dlustration of four contouring techniques

Figures 3.2 to 3.5 provide illustrative examples of four of the contouring methods 
described above. The surface, based on 3432 points, describes the distribution of 
potassium 40 in the south-west of England around the towns of Yeovil, Taunton and 
Illminster.

Table 3.2 summarises the contour levels for the four methods of contouring. The 
original data set, although not reproduced, is characterised by fairly long tails, taking 
logs of the data draws the tails in slightly.
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Contouring
technique

Contour Level 
1 2 3 4 5 6

7
Equal range 32.85 65.70 98.55 131.4 164.2 197.1 229.9

Nested
means

33.05 59.02 82.02 94.88 106.7 129.4 177.8

Percentile 39.96 63.33 85.67 95.40 103.1 111.0 146.2

Standard
deviation

7.11 36.37 65.24 94.88 124.1 153.4 182.6

Table 3.2 Contour levels for the various methods.

12900

12000
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3 0000  5 0500  3 1000  31500 33000 33500 33000 33500 34000  34500  35000 3 5500  56000

Figure 3.2 Surface contoured using the equal range technique.
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5 0 0 0 0  3 0500  3 1000  31500  33000 33500  33000 33500 34000  3 4500  35000  35 5 0 0  36000

Figure 3.3 Surface contoured using the nested-means methodology.

5 0000  5 0500  3 )0 0 0  31500 33000 52500 33000 33500 34000 34500  35000 35500  36000

Figure 3.4 Surface contoured using the percentile methodology.
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Figure 3.5 Surface contoured using the standard deviation technique.

The contour levels for percentile and nested means methods are similar, this was 
reflected in the resultant surfaces. The problem as mentioned previously with the nested 
means method is the restriction on the number of classes selected whilst for the 
percentile technique comparability between surfaces is not necessarily assured.

For this example, the equal range method and standard deviation techniques produce 
similar results. The major drawback of the former of these methods concerns the 
distortion of results if an outlier is present. The levels selected may then be severely 
biased towards one of the extremes. Furthermore the equal range method does not 
guarantee comparability of surfaces. The standard deviation method is a more robust 
method which works equally well for data which is originally near normal in 
distribution, or alternatively, which requires to be transformed to achieve normality. 
One drawback of the standard deviation and equal range methods is that for 
distributions with long tails, one or both of the extreme levels may not be represented in 
the final surface due to a lack of information in these regions. This problem does not 
affect the comparison of surfaces since comparability is achieved between the 
remaining levels.

This problem apart, it was decided that in view of the versatility of the standard 
deviation method and the knowledge that comparability is assured between surfaces of 
approximately normal data, contour selection should be based on this method.

A word of caution at this point is that many commercially available contouring routines 
use the equal range or percentile technique for automatic contouring. Comparisons 
using this form of contour production should be treated with caution.
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§3.5 A Semi-Automatic Contour Selection Procedure

A simulation study was carried out to investigate whether it was possible to create an 
empirical rule which allowed the number of levels, and the standard deviation 
proportion to be selected on a consistent, and automatic basis, rather than from 
examining the resultant distribution for various permutations of the two variables, until 
a satisfactory solution was derived. The study was based on how well the spatial 
distribution of various data sets were reproduced for different numbers of contours and 
standard deviation proportions.

Initially a sequence of 50, 100 and 200 points were simulated from a standard normal 
distribution using the random number generator from within Minitab, release 7.1. The 
response of the standard normal distribution was examined for a range of standard 
deviation proportions, Ks, 0.3 - 1.4, and number of classes, Nc, 4 to 10. The response 
of each data set was gauged in terms of a series of histograms, figures 3.6 - 3.12, 
constructed from the percentage number of points contained within each band for the 
various proportions, and how well the known underlying distribution was reproduced. 
If the resultant histogram satisfied the following criteria the combination of the two 
factors was deemed satisfactory to represent the spatial distribution of the data:-

1. No excessive pooling in the open-ended classes.

2. No under-utilisation of the open-ended classes.

3. The resultant histogram mirrored the underlying distribution of the data i.e. normal.

From these diagrams, an ad-hoc selection rule, similar to that developed by Brooks and 
Carruthers (1953) was formulated to initially select the desired number of contours for 
the size of the data set. A second rule was constructed to select an appropriate value for 
the standard deviation procedure based on the number of contour levels selected.
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Figure 3.6 (a) Kg -  0.3 Figye 3.6 (c) Kg = 0.5Figmre 3.6 (b) Kg = 0.4

Figure 3.6 (d) K« = 0.6—tig---------- ------- -------- Figure 3.6 (e) Kg = 0.7 Figye 3.6 (f) Kq = 0.8

■—i

Figye 3.6 (g) Kg = 0.9 Figye 3.6 ( h ) K g = 1.0

Figure 3.6 (j) Kg = 1.2 Figure 3.6 ( k ) K g = 1.3 Figure 3.6 (1) Kg = 1.4
Key -------------  50 points   100 points   150 points
Figure 3.6 Histogram of the % number of points for four contour levels.
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Figure 3.7 (g) Kg = 0.9 Figure 3.7 ( h ) K g = 1.0 Figure 3.7 (j) Kg = 1.1

Key -------------  50 points   100 points   150 points

Figure 3.7 Histogram of the % number of points for five contour levels.
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Figure 3.8 (a) Kg = 0.3 Figure 3.8 (b) Kg = 0.4 Figure 3.8 (c) Kg = 0.5

Figure 3.8 (d) Kg = 0.6 Figure 3.8 (e) Kg = 0.7 Figye 3.8 (f) Kg = 0.8

Figure 3.8 (g) Kg = 0.9 Figure 3,8 (h) Kg = 1.0 Figure 3.8 (i) Kg = 1.1

Key -------------  50 points    100 points   150 points

Figure 3.8 Histogram of the % number of points for six contour levels.
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Figure 3.9 (a) Kg = 0.3
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Key -------------  50 points   100 points   150 points

Figure 3.9 Histogram of the % number of points for seven contour levels.
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Figure 3.10 (a) Kg = 0.3
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Figure 3.10 (g) Kg = 0,9 Figure 3.10 (h) Kg = 1.0 Figure 3,10 (i) Kg = 1.1

Key -------------  50 points   100 points   150 points

Figure 3.10 Histogram of the % number of points for eight contour levels.
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Figure 3 . 1 1 Histogram of the % number of points for nine contour levels.
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Figure 3.12 (g) Kg = 0.9 Figure 3.12 (h) Kg = 1.0 Figure 3.12 (i) Kg = 1.1
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Figure 3.12 Histogram of the % number of points for ten contour levels.
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The result of the study was the formulation of the following two very simple rules 

1- {loge(N)<C0S21og„(N)}

2- i  W 5 K . S  1 ^
log,(Cc) s loge(C„/2)J

where Cc = number of contour classes
Ks = standard deviation proportion 
N = number of data points

These are displayed graphically in figure 3.13.
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<2 U0 2 a to* 6

NUMBER OF CONTOUR CLASSES

Figure 3.13 (a) Selection of number of 
contour classes.

Figure 3.13 (b) Selection of standard 
deviation proportion._________________

Figure 3.13 Graphical representation of the two rules for selecting number of 
contours and standard deviation proportion.

The above rules were validated on three different data sets, a N(4,10), a Un(7,4) and a 
Ga(l,0,4), solely for those values of standard deviation proportion and number of 
contours, determined from the rules. Table 3.3 summarises the relevant combinations of
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interest e,g, for six contours, standard deviation proportions of 0.6-0.9 were examined 
in steps of 0.1 for 50,100 and 200 points.

Number of 
contours

4 5 6 7 8 9 10

Standard
deviation 0.8-1.4 0.7-1.0 0.6-0.9 0.6-0.7 0.5-0.7 0.5-0.6 0.5-0.6

proportion (Ks)

Number 50 yes yes yes yes no no no
of data 100 no yes yes yes yes yes no
points 200 no no ....yes yes yes yes yes

Table 3.3 Summary of the standard deviation proportions and number of contours.

From the histograms of the results, figures 3.14 - 3.20, a well defined rule of thumb 
materialised as to how the standard deviation proportion should be selected from within 
an interval. The greater the tendency for the original data to emulate an uniform 
distribution the closer to the lower bound Ks should be selected; the more peaked the 
data set becomes, the nearer to the upper bound the ideal value lies. Applying these 
directives ensures the three criteria mentioned earlier are satisfied.

The rules are not binding and values lying outwith the recommended ranges should still 
produce satisfactory results. The main advantage of using the above empirical rules is 
that for data sets differing in size, a number of classes appropriate to all the data sets 
may be selected. Secondly, the rules are easily implemented with values being defined 
a-priori, this dispenses with the previous time absorbing trial-and-error method .

No matter what means of contouring interval selection is used, the same technique 
should be implemented for all surfaces and any parameters required as input defined on 
the same criteria where a comparison is to be undertaken.
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Figure 3.14 Histograms describing the results for four contours and the relevant 
standard deviation proportions.
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Figure 3.15 (e)
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Figure 3.15 (f)
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Figure 3.15 (g)
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Figure 3.15 (h) 
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Figure 3.15 Histograms describing the results for five contours and the relevant 
standard deviation proportions.
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Figure 3.16 Histograms describing the results for six contours and the relevant 
standard deviation proportions.
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Figure 3.17 Histograms describing the results for seven contours and the 
relevant standard deviation proportions.__________
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Figure 3.18 (d)
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Figure 3.18 Histograms describing the results for eight contours and the relevant 
standard deviation proportions.
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Figure 3.19 ( b ) K s = 0.6 
Number of points = 100

Figure 3.19 (c) Ks = 0.5 
Number of points = 200

Figure 3.19 (d) Ks = 0.6 
Number of points = 200

Key N(4,10) Un(7,4) --------------  Ga(l,0.4)
Figure 3.19 Histograms describing the results for nine contours and the 
relevant standard deviation proportions.
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Figure 3.20 (a) Ks = 0.5 
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Figure 3.20 Histograms describing the results for ten contours and the relevant 
standard deviation proportions.



63

§3.6 Locating and Tracing The Contour

The next step in producing a pictorial representation of the underlying spatial distribution 
is to physically draw the contours using the a-priori criteria. The form of the data 
determines the most plausible method for contouring. Routines which contour data on a 
rectangular grid are the simplest and many algorithms exist. Alternative methods use the 
ideas of triangulation.

§3.6.1 Contouring by gridding

Gridding is the process of determining values of the surface at a set of locations that are 
arranged in a regular pattern which completely covers the mapped area. In general, 
values of the surface are not known at these uniformly spaced points and so they must be 
estimated from the irregularly located control points where the values are known. The 
locations where estimates are made are referred to as ‘grid points' or 'grid nodes'. The 
methods discussed in sections 2,3 to 2.5 enable a regular grid to be evaluated e.g. kernel 
density estimation, trend surface analysis, kriging.

A contour of a given height may be produced in two ways. First each rectangle of the 
grid is examined in turn and the sections of the contour within that rectangle drawn. 
Alternatively, once part of a contour has been located within a grid rectangle, the rest of 
the contour may be traced through the whole grid. Further contours are then sought and 
when found, they too are traced through the grid.

Broadly speaking, a contour of height h, crosses one of the grid lines (lines between two 
adjacent grid points, ht(A),ht(B) if:-

ht(A) < h < ht(B)

The exact point of intersection of the contour with the gridline must be calculated. If the 
grid points are sufficiently close that a contour does not cross the line joining them more 
than once, then a good approximation to the point of intersection may be made using 
inverse linear interpolation. Having found a starting point, the next point must be found 
and in a similar manner further points, so the contour may be traced through the grid.
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In the 1960's Dayhoff (1963) and Cottafava and le Moli (1969) developed various 
contouring algorithms. The embryonic ideas of Cottafava and le Moli were brought to 
maturity in conjunction with those of Dayhoff by Heap and Pink (1969).

Heap and Pink realised that all contours must either cross the boundary or a horizontal 
grid line hence it was only necessary to record the intersections of the contour with 
horizontal lines i.e.

ht(A) < h < ht(B) (1)

where A is immediately to the left of B is sufficient

All such interval lines are marked during a preliminary scan. The grid points on the 
boundary are then examined to see whether they satisfy (1). Each time one is found, the 
contour is traced through the grid. This accounts for all open contours. When all open 
contours are drawn, the closed contours are sought. A search is first made for a marked 
grid line, when found it serves as the starting point, the contour is traced removing the 
appropriate marks, until the starting point is reached. This process is repeated until no 
marks remain.

Two forms of degeneracy are present in contouring, the first which is not applicable in 
the case of Heap's and Pink's routine, refers to the case where the grid point has the same 
height as the contour of interest. Cottafava and le Moli (1969) encountered this problem 
but by 'virtually' altering the value of the height at the grid point by a small amount this 
problem is eradicated. Rothwell (1971) and Crane (1972) adopted a similar approach.

Secondly if we consider a rectangle where the height bears the relationship to the contour 
height as shown, figure 3.21(a). Given entry on a particular side, all three sides appear to 
be the exit side. This suggests that another contour passes through the rectangle hence 
three solutions are plausible, figure 3.21 (b) - 3.21 (d)
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Figure 3.21 (a) Illustration of a situation Figure 3.21 (b) Solution A. 
where a degeneracy may arise.

Figure 3.21 (c) Solution B. Figure 3.21 (d) Solution C.

Figure 3 , 2 1 Illustration of contour degeneracy.

Heap and Pink used the idea of Dayhoff to circumvent this problem. They approximated 
the height at the centre of the rectangle by averaging the height at the four grid points. 
The rectangle was then divided into four triangles which cannot be degenerate.

Cottafava and le Moli (1969) argue the situation only occurs rarely and select either 
solutions B or C depending on how the rectangle is encountered. Rothwell (1971) adopts 
a more complex solution involving directions.

§3.6.2 Contouring Bv Triangulation

This method avoids the necessity for initially interpolating the grid points onto a regular 
grid. Control points are assumed to be located without any particular regularity, these are 
initially connected by straight lines. This forms a mesh of triangles that covers the
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surface. By interpolating down the sides of the triangles, locations can be found where 
the elevation is a constant, specified value.

It is apparent that if the control points are connected in a different manner, a different set 
of triangular plates will be defined and a different sequence could result in conspicuously 
different-appearing contour lines. A set of unique, 'optimal' triangles are therefore 
required. Gold et al. (1977) suggested possible solutions, the individual triangles should 
be as near equilateral as possible, they should have the minimum possible height or 
alternatively the longest leg of each triangle should be the shortest possible.

This problem impeded the development of triangulation based contouring algorithms 
since an iterative process was required to obtain the optimal configuration. Using a 
network referred to as Delaunay triangulation Gold et al. (1977) and McCullagh and 
Ross (1980), developed an algorithm which produced almost optimal networks on the 
first pass. Delaunay triangles are defined uniquely for a given set of data points. The 
triangles formed being as nearly equiangular as possible with the longest sides of the 
triangles being as short as possible.

Figure 3.22 (a) Illustration of Thiessen 
polygon.___________________________

Figure 3.22 (b) Delauney triangulation 
network.

Figure 3.22 Illustration of contouring by triangulation.

The idea behind a Delaunay triangular network is as follows; in a field of scattered 
points, each point is surrounded by an irregular polygon such that every location within a 
polygon is closer to the enclosed part than it is to any other, figure 3.22 (a). Conversely, 
every location outside a specific polygon is closer to some other point than it is to the 
point within the polygon. This is the most compact division of space. These are 
commonly referred to as Thiessen, Dirichlet or Voronoi polygons. Immediately
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surrounding the Thiessen polygon enclosing a specific point A, are other Thiessen 
polygons, each of which encloses a single point. If these points are connected by a 
straight line, the result is a Delaunay triangular network, figure 3.22 (b).

The assumption that the triangles represent tilted flat plates is a very crude 
approximation of a surface. A better approximation can be achieved using curved or bent 
triangular plates, particularly if these can be made to join smoothly across the edges of 
the triangles. Tipper (1979) described how the three-dimensional equivalent of the spline 
function may be used to ensure that abrupt changes in direction where contour lines cross 
from one plate to another are avoided. McCullagh (1983) uses a tricubic polynomial to 
avoid this problem, the details are given by Birkhoff and Mansfield (1974).

The finished map, contoured by triangulation is very similar to a map produced using a 
gridding algorithm. The main difference arises where the surface slope changes abruptly, 
the triangulation method makes the surface look sharper than it is in reality. Along the 
margins of maps this problem may be corrected by the judicious insertion of pseudo­
points, but these cannot be inserted into the body of the map.

§3.7 Alternative Contouring Techniques

Other forms of contouring are available. Powell (1973) divided each rectangle into eight 
triangles and approximated the surface by piecewise quadratic functions. A contour line 
may then be approximated as a sequence of pieces of conic sections which can be drawn 
easily, since conic sections have a convenient parametric form.

McLain (1974) describes a method for arbitrary data points, but advocates a two-stage 
process, first interpolating heights to a regular mesh and then contouring the rectangular 
mesh. The method suggested was that of bicubic splines. Once the intersection of a 
contour with a grid line has been located, the contour is traced through the rectangle by a 
series of short steps in one of eight directions, N, NE, E, SE, etc. The direction of the 
next step is selected from one of three directions which depend on the previous step i.e. 
one in the same direction and two at 45 degrees to either side of the previous step. The 
step selected is that which is closest in value to the contour height.

Many other techniques are available, but the methodology of Heap and Pink (1969) is 
simple to understand and has stood the test of time. Coding has been made available,
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Heap and Pink (1969), and after minor modifications and conversion to Fortran 77, this 
method was used to produce all contours.

A further advantage of implementing this sub-routine and not using one of the 
commercially available packages for producing contours e.g. Ghost 80, UNIRAS, S-Plus 
etc. was the extra feature that contour co-ordinates were accessible to the user. This is 
not a feature of the majority of graphical packages.

§3.8 Accuracy of Statistical Maps

Within the previous sections, methodology was developed for selecting the number and 
bounds of class intervals and a number of techniques were described as to how a contour 
may be drawn. However a question fundamental to the construction of a statistical map is 
how accurate is the resultant surface.

The question of accuracy arises when an isarithmic map has been constructed from data 
which do not cover the entire domain of the mapped area, these data points are subject to 
observational and/or location errors and finally to errors generated by the method of 
interpolation between punctual sample points. In such instances the map is referred to as 
an estimated map as opposed to the underlying error free map.

Accuracy is then a measure of the displacement between the estimated and true map, the 
latter which is rarely, if ever, available. Various attempts have been made within the 
literature to quantify the accuracy of maps.

Blumenstock (1953) discussed the problem of assessing reliability of isarithmic maps for 
meteorological maps but his analysis is of wider significance for all maps of 
geographical phenomena. The method he initiated was to first take the basic data and 
estimate the magnitude of all the sources of unreliability. The data was then corrected for 
bias and thirdly, the standard error was computed in terms of the observational and 
sampling error. The final step required the determination of the chance that any one 
particular plotted value will be in error by x units, solely on the basis of the unreliability 
of the data. This final step enabled an estimate to be obtained as to how many of the 
plotted values lie outside their correct isarithmic intervals.
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The method is constrained in its usefulness since it is reliant on the person implementing 
the technique to define levels of reliability of their data and secondly it assumes the 
errors are normally distributed.

Switzer (1975) examined the question of error induced as a result of interpolating 
between punctual sample data. He considered a map to be a partition of a domain, R, into 
k sub-domains, k being the number of colours used in a map. The sub-domains are

A A A

denoted R^, R2,...Rk in the true map and are denoted Ri, R2, . . Rk. in the true map. The 
n data points underlying the estimated map are at locations sj, S2, S3, sn, which may 
or may not be at the centres of basic sampling cells, S^, S2, S3, ...., Sn. The estimated

A.
map is constructed by assigning a cell to the F 1 sub-domain Ri if the data point inside 
that cell is observed to fall in Rj, the n basic sampling cells being a relatively fine 
partition of the domain, R.

As an index of precision, Switzer examined the discrepancy between the true and 
estimated maps as measured by the mismatch areas :-

i.e. Lu -  \x Ri Rj

\x = area

Where Lqj, the precision index, can be expressed in terms of Lebesgue integrals:-

Ly = X S j(sh) j 5 i(s)d|a(s)
h-l St,

where Ly = area of that region which belongs to true subdomain i but is 
represented as subdomain i on the estimated map.

8 . = indicator function for the true subdomain i
Sh = sampling cells 
sh = data points

Problems with such a technique relate to the difficulty of modelling the form of the 
location error, differences in the index will materialise depending on the model selected, 
e.g. spherical, square, hexagonal, etc.
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Other techniques although developed for choropleth maps may be extended to contour 
maps, Jenks and Caspall (1971). Problems with attempting to evaluate an accuracy index 
are that the indices themselves require the estimation of various quantities, or 
alternatively, certain assumptions require to be satisfied for the index to be applicable, so 
far no method has been developed to circumvent these problems.

Mackay (1953) showed problems in accuracy may not necessarily originate from the 
original data but from the locational pattern of the recording points or 'control' points. 
Where choropleth maps of discrete counties are concerned, the framework of control 
points is fixed; where isarithmic maps are being developed from point observations, the 
framework problem may be more complex. The implementation of Heap and Pink's 
triangulation method for contouring takes account of this possible error source.

Hsu and Robinson (1970) and Morrison (1971) illustrate that both sample size and the 
method of areal sub-division affect the quality of data and hence of isopleth maps.

A further source of error is attributable to how the points on a contour are joined. They 
may be joined as straight lines or by a curve fitting algorithm. Although the latter 
produces aesthetically pleasing contours, they are not necessarily accurate. Too often the 
contours produced by this method reflect the curve fitting algorithm used rather than the 
data being contoured, especially if local curve fitting algorithms are used. As a 
consequence, when a curve fitting algorithm is used there is no guarantee that contours 
of different heights will not cross, the situation is consequently totally unacceptable.

In practice to avoid this problem straight lines should be used to join the points on a 
contour. Not only does it have the advantage of simplicity of implementation but it also 
gives the viewer of the resultant map a good appreciation of how coarse or fine the map 
really is.

The utilisation of straight lines to join points of equal heights is of less consequence 
when the grid over which we interpolate is extremely fine. Neither the shape of the 
contour nor various geometric attributes associated with it, such as area, perimeter, will 
be unduly affected. For a coarse grid differences will arise in the measures and possibly 
shape. A very simple example illustrates this point.
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For a simple construct, the circle, the question of what kind of accuracy is achievable 
with x-data points was examined. A circle of unit radius, centre the origin was depicted 
using 4, 8, 16, 32 and 64 data points. Table 3.4 evaluates the accuracy of the result by 
taking the ratio of the grid value to the true value for area and perimeter.

Number of 
points

Angle subtended 
between 

successive data 
points

Ratio of grid 
area to true area

Ratio of grid 
perimeter to true 

perimeter

4 90 0.6366 0.90031

8 45 0.9003 0.97449

16 22.5 0.9745 0.99358

32 11.25 0.9936 0.99839

64 5.625 0.9984 0.99960

Table 3.4 Accuracy of evaluation of a unit circle for x-data points.

The results of the table show that changing the number of points to specify the area of 
interest has less effect on perimeter than area. For both measures 99% accuracy was 
achieved using 32 points, specifying additional points served only to increase the 
computational time for minimal gain in accuracy. By increasing the number of points a 
more aesthetically satisfactory picture results.

The question of grid resolution is of considerable interest since it may inadvertently have 
an effect on the outcome of the analysis. This is examined in detail in chapter 4.

In reality, it is extremely difficult to place any sort of numerical bounds on the accuracy 
of the resultant statistical map since the true surface is never known.

§3.9 Summary

The construction of a contour plot from a set of spatially referenced data follows a 
sequence of clearly defined steps:-
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1. If the data are irregularly spaced, an interpolation technique which enables a regular 
grid to be estimated is implemented. The methodology used was that of kernel density 
estimation with smoothing parameter selection undertaken using least-squares cross 
validation.

2. Select number and bounds of class intervals using the following empirical rules and 
by studying the histogram of the data to decide whether the variables should be selected 
closer to the upper/lower bound:-

3. Using Heap's and Pink's contouring methodology construct the contour plot using 
straight lines to join the contour nodes.

By implementing the three steps described on a consistent basis, the error attributable to 
the procedure should be of the same order for all surfaces.

!• {loge(N)<C0S21oge(N)}

2.

where Cc -  number of contour classes

Ks = standard deviation proportion 

N = number of data points
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CHAPTER 4

DIFFERENT METHODS OF SURFACE COMPARISON

§4.1 Introduction

Many methods are available for effecting a comparison between two or more spatially 
referenced data sets, these range from the very simple to the more complex and 
computationally intensive approaches. The form of the analysis depends primarily on 
four factors:-

1. The manner in which the data is presented e.g. point, line, areal or surface.
2. Whether variables to be compared relate to the same measurement.
3. Whether the comparison is inter-regional.
4. Whether the observations are recorded at the same locality.

A simple way of categorising the various methods available for performing a comparison 
is to group them according to their mode of interpretation:-

1. Subjective comparison.
2. Comparison technique for a global analysis.
3. Comparison technique relevant to a local analysis,

§4.2 Subjective Analysis

The simplest and oldest method of comparison is to overlay the maps of interest and 
describe how their distributions differ.

Where information has been recorded on variables at the same locality i.e. a repeated 
measures format, an isopach/residual map may be constructed to describe the spatial 
arrangement of the differences between the surfaces.

Other subjective approaches include plotting dependent versus independent variables and 
making a visual assessment of the strength of the relationship. McGlashen (1972) 
conducted a survey in Central Africa of fifty five diseases and twenty environmental
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factors that might be associated with the diseases. Data came from patient records at 84 
hospitals. From visual examination of these disease and factor plots, McGlashen was 
subsequently able to perform a contingency table analyses. For example, he compared 
the number of annual cases of diabetes mellitus with whether or not cassava was the 
staple food eaten by hospital patients. In a similar manner Prentice et al. (1991) 
subjectively assessed the goodness of fit between observed and simulated isopall maps
i.e. maps of equal pollen count, by plotting the observed levels of pollen count against 
those values simulated from a response surface model.

These three techniques of subjective comparison, superposition of maps, isopach maps 
and dependent versus independent variables are illustrated in figure 4.1. They examine 
the relationship between the dispersion of two measures of ambient radioactivity, beta 
and gamma radionuclides, within the south-west of England. The majority of external 
radiation dose to the population originates from radionuclides in two of the three natural 
radioactive decay series i.e. 238jj an(j 2 3 2 ^  The decay of these sources of gamma 
radiation causes the emission of both alpha and beta particles into the atmosphere. It is 
therefore anticipated that a strong association will exist between the two radiation 
variables.

4 .0
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Figure 4.1(a) Plot of Gamma (mgy/a) versus Beta (mgy/a) for the south-west of 
England.
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Figure 4.1(b) Spatial distribution of beta and gamma radiation variables within the 
south-west of England.
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Figure 4.1(c) Residual/isopach map of the two radiation variables, beta and gamma, 
in the south-west of England.
Figure 4.1. Various forms of subjective analysis.
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Subjectively, all three methods suggest the existence of a strong areal dependence 
between the two radiation fields, the information imparted by each diagram is different. 
The first diagram ignores the spatial dimension of the data. A simple graphical 
presentation of the relationship between the beta value at station i and the gamma value 
at station i is illustrated in figure 4,1 (a). This plot is only applicable when the 
measurements are recorded at the same locality, thus restricting its usefulness in 
presenting comparative information.

The remaining two methods incorporate the spatial dimension of the data. Figure 4.1 (b) 
illustrates the superposition of the two surfaces representing the spatial distribution of the 
variables, A strong spatial association is apparent between the two variables, as indicated 
from the preliminary discussion. Where differences do materialise between the variables, 
this mode of presentation enables those areas of greatest change/similarity to be both 
located and also, a description given as to the structure of the change. One method of 
describing change is in terms of various mathematical descriptors e.g. change in 
orientation, location and/or size between a set of comparable contours. This idea forms 
the basis of the methodology developed in the following two chapters to describe and 
quantify change. For this example, differences between the two data sets are minimal, it 
primarily arises in terms of the size of the contours; contours relating to the gamma 
radiation field extend over a smaller area than those depicting beta radiation, particularly 
in the west, the converse is true in the east.

The specialised nature of the data i.e. observations recorded at the same locality, enables 
a residual map to be constructed. Before the residual map could be produced, it was first 
necessary to normalise the two data sets. Interpretation of a residual map of this form is 
not as intuitive to non-statisticians, however it localises those areas of greatest change in 
both a positive and negative direction. In the west, the beta values tend to be higher than 
those of the gamma radiation field. In the east, with the exception of the south-east 
comer, the reverse is true.

The overlaying of the surfaces is the most versatile of the methods since it firstly, 
incorporates the spatial dimension of the data and secondly, variables recorded at 
different locations may be examined using this method, this is not plausible for the other 
two methods.
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A fundamental drawback to all the above methods lies in their subjectivity. Confronted 
with the same two maps, not everyone will agree that an areal association exists, or will 
assess the degree of association as the same.

§4.3 Global Analysis

In terms of an overall analysis, a number of numerical measures have been proposed 
which attempt to eliminate the uncertainty attributable to subjective techniques.

§4.3.1 Lorenz curves

The Lorenz (1905) curve is a diagrammatic tool which allows for the visual and 
quantitative comparison of the cumulative relationship between two variables. The 
Lorenz curve may be defined mathematically as the curve whose ordinate and abscissa 
are O and F, respectively, such that:-

where v  is the population mean of x. Convexity to the F-axis is a necessary condition for 
all Lorenz curves.

The commonest equality measure is the Gini (1913-1914) coefficient which is a direct 
function of the Lorenz curve. It can be shown, Kendall and Stuart (1958), that the Gini

x

F(x) = jf(x)dx

coefficient is equal to twice the area between the line F = O and hence the Lorenz curve 
is defined to be

G=odi = ^  j  J|x-y|dF(x)dF(y)

A Lorenz curve is an area-by-area plot of the ratios of the two variables made in order to 

indicate similarities of the distribution. The calculations involved for two variables 

are:-
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1. evaluate -  z, where Zy -  variable i for region j

= ratio for region j 

i = 1,2 j = 1„..,N

2. rank z^, smallest proportion given rank one.

3. evaluate

where sz.. = standardised variable i for region j

4. Maintaining z^, the szy are accumulated, %zy, i.e. cumulative percentages 

for variable i, region j

Where the distributions are proportionally identical in each area, the resultant plot is a 
straight line through the origin with slope one, with completely separate distributions 
resulting in a line which would follow the z3 axis. In a real world situation the curve will
lie between the two extremes.

The difference between the plotted curve and the theoretical optimal is a measure of the 
dissimilarity of the distributions. Various indices are available for quantifying the level 
of dissimilarity

5. plot % Z j j  against % z 2 j

1.. Dm = m a x | % Z j .  -% z2j

area between the curves 
area below diagonal
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The latter index appears in the literature in a variety of guises and has been given 
different names according to the nature of the two variables. In population studies where 
Zj is the population and z2 the land area, it is termed the index of population 
concentration. For the same z2, but zp the land area under a particular use, it is described 
as the coefficient of areal localisation.

An example of a Lorenz curve is given in figure 4.2. The curve examines the relationship 
between the area of civil parish districts within the south-west of England, around the 
towns of Illminster and Yeovil, and the population contained within each of these 
parishes.

IUU
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UJ

o
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CUMULATIVE PERCENTAGE OF PO PU LA T IO N

Figure 4.2 Lorenz curve for civil parish data within the south-west of England.

Dm Di Df
Dissimilarity results 51.10 51.10 71.04

Table 4.1 :- Dissimilarity levels for the Lorenz curve

Table 4,1 reports the results for the various measures of dissimilarity. Df is numerically 
greater than the other two but it makes use of all the available information; in all three 
cases the level of dissimilarity indicates that the distributions do not correspond very 
closely. Generally small civil parishes are associated with high populations and vice- 
versa. The small parishes tend to be located in urban areas with the geographically much 
larger parishes within rural areas.
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The Lorenz curve is a useful graphical and numerical tool for making comparisons, but it 
suffers from a number of disadvantages:-

1. Its use is constrained to choropleth maps,
2. It should not be used with negative numbers or density ratios.
3. It will not discriminate between different arrangements of the areal units.

§4.3.2 Coefficient of areal correspondence

Minnick (1964) constructed a cartostatistical method for determining areal 
correspondence that was simple, meaningful and clearly interpretable. In terms of basic 
algebra:-

_ A n B  
A u B

~ area °ver which phenomena are located together 
total area covered by the two phenomena

Completely separate distributions give a value of zero whilst for exactly coincident 
distributions, a value of one is reported for the coefficient of areal correspondence, Ca.

Returning to the example cited on the relationship between the two radiation fields, 
section 4.2, a value for the coefficient of areal correspondence was calculated to be
0.974, when the two fields were compared at their respective median values. 
Interpretation of this value confirms analytically what had been expressed in terms of our 
subjective beliefs i.e. the two radiation variables display a strong association.

An equivalent measure, the proportion of total area of the observed map categorised 
correctly by a simulated map, PCC, was used by Webb et al. (1987) to quantify the level 
of association between observed and simulated fossil-pollen maps. They acknowledged 
that the significance of measures of association is difficult to assess analytically since the 
map patterns are spatially highly-correlated, Cliff and Ord (1981). In an attempt to 
compensate for this drawback, an empirical reference distribution for each of the 
measures was computed for all possible comparisons among the observed maps for all 
pollen types and times, but those comparisons within each type at different times were 
excluded. This reference distribution gave an indication of how large PCC could be when
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no association between maps was expected. For a specific comparison of an observed 
and simulated map, a large value for one of the measures relative to the values in the 
reference distribution, indicates a stronger association between the simulated and 
observed map than that expected for the comparison of two observed maps for different 
pollen types.

A further modification and development of the method was introduced by Court (1970). 
For the simplest case of one isopleth, representing the median value of the distribution, 
areally weighted, the two surfaces were superimposed and the resultant diagram 
described four regions, table 4.2

REGION A
above median below median

REGION B above median (+  » + ) ( - ,  + )
below median ( + , - )

Table 4.2 A 2 x 2  resemblance matrix.

For such a 2 X  2 resemblance matrix, the coefficient of medial correlation qm is defined 
to be:-

(like area) -  ^  (unlike area)qm “ v2,area

This coefficient has three advantages over Ca, the coefficient of areal correspondence, 
first its limits are -1 to +1, with a perfect negative areal correspondence, giving a value 
of -1. Secondly, the method may be extended to deal with an even number of classes. 
According to Court (1970) the sampling distribution of this coefficient is roughly normal 
hence statistical significance may be tested, although care should be taken due to the 
presence of spatial auto-correlation.

Hugg (1979) used this method to compare the geographic distribution of work disability 
and poverty status for persons aged 18-64 using the fifty states of the United States as 
units of observations.
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§4,3.3 Correlation coefficient

An approach suggested by Robinson and Bryson (1957) and Mirchink and Bukhartsev 
(1959) was the use of Pearson's product moment correlation coefficient: -

r = —
XtZu-s^Mza-Zfe)

where s . = sqrt

nSziSZ2

I v v \2

n

This coefficient is equally applicable for interval or ratio scattered data. Pyle (1973) 
compared census tract maps of measles incidence in Akron, Ohio for 1970-1971 against 
various demographic and socio-economic variables. Ecological correlation was also used 
by Gesler et al, (1980) to compare maps of community characteristics to disease 
reporting and hospital use by census tract in Central Harlem Health District, New York 
City.

A non-parametric form of the correlation coefficient, Goodman and Kruskal's gamma, 
Goodman and Kruskal (1954), was also used by Webb et al. (1987) to assess the 
association between the pollen-fossil maps. The level of agreement or disagreement 
between the observed and simulated fossil-pollen maps was assessed by mapping the 
results on a large spatial scale. The authors agreed that although some spatial smoothing 
was introduced and the pollen counts were recorded for only four levels, the resultant 
effect was desirable since it reduced palynological noise, i.e. small scale spatial and 
temporal variability and secondly it reduced the scale discrepancy between the coarse 
spatial scale of the model and the generally finer scale of the data. An ordered 
contingency table based on these levels was constructed using the interpolated values 
from the contouring step. The coefficient values were calculated:-

Y = - 2 ^  0 < y ^ 1p + q
where p = number of concordant pairs of observations 

q = number of discordant pairs of observations
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This coefficient has the advantage of having a direct probabilistic interpretation, it is the 
difference in probability of like rather than unlike orders for the two variables when two 
individuals are selected at random, y takes the value one when the data are concentrated
in the upper-left to lower-right diagonal and the value zero in the case of independence, 
however zero need not imply independence. This coefficient has similar 
drawbacks/limitations in its use and interpretation as the PCC described earlier. A 
procedure for formal testing also requires a reference distribution.

Tests of statistical significance may be performed to test whether the correlation 
coefficient is significant, these are fundamentally incorrect since various assumptions 
inherent to such a test cannot be satisfied in such a situation, i.e. data points are rarely 
independently distributed, and distributions to be compared will invariably demonstrate 
significant spatial autocorrelation. The correlation coefficient as a measure of similarity 
is appropriate as it stands but further inferential analysis should be avoided.

In many situations, subtle changes in the distribution of a variable will occur over a time 
span, a correlation analysis will potentially report a high level of correspondence, but in 
reality it imparts no information on the complexities of these changes.

§4.3,4 Comparison analysis of trend maps

Merriam and Sneath (1966) developed a very simple procedure which allowed trend 
surfaces to be compared. Data points which represent a surface are not independent 
hence they believed it may be more prudent to estimate the similarity between surfaces in 
terms of the coefficients of the trend.

A model for surface i, assuming a linear trend is given by

z ij = P o o + Pi»x ij +  PoiyIJ+eiJ F.i r N (°,a2)

where zjj -  value of dependent variable at point j, for surface i.
(xij >yij) = spatial location of dependent variable j , for surface i.
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The values of the coefficients of the fitted surface may then be used as mathematical 
descriptors of the observed surface. In practice the base is excluded. The similarity 
between the surfaces may be expressed in one of two ways :~

1. A correlation coefficient 

•v/varpi varpt

where
covp ik = covariance between the coefficients for surface i and k. 

varpi = variance of the coefficients for surface i.

Instead of comparing observations xl andx2, the coefficients (/31 s) of the equations for 

trend surface i and trend surface k are compared.

2. The taxonomic distance 

d ik “ f y k )

where j = 1, s where s = order of the trend surface 
i, k s  surface of interest

This measure is the square root of the mean of the squared differences between 
equivalent coefficients for the same order surfaces to be compared. The taxonomic 
distance is no more efficient than the correlation coefficient, it may be easier to interpret 
since it is always positive and is not constrained to values less than one. Identical trend 
surfaces give taxonomic distances of zero, with increasingly dissimilar trend surfaces 
having increasingly greater taxonomic distances between them.

For trend surfaces of order s, the higher order polynomial terms will generally take small 
values, to use the values as they stand amounts to estimating the variance of the 
differences corrected for height. In order to ensure all the terms make an equal 
contribution to the overall similarity measure, the coefficients are normalised prior to
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calculating either of the measures. The implementation of this method requires that the 
surfaces to be compared are of the same order.

Classification or comparison of regional trend surfaces by grouping on the basis of the 
calculated coefficients of the polynomial terms is restricted by two factors. First, the 
trend surface parameters are not invariant under certain changes of scale and orientation 
of the co-ordinate system and secondly, the estimators are still correlated. Miesch and 
Conner (1967) showed that shifting the origin of the co-ordinate system changed both the 
values of the estimated coefficients and the percentage explanation of individual terms, 
the overall percentage explanation by terms for a given order remains unchanged. The 
absolute values of the regression coefficients, will occasionally be subject to extreme 
fluctuations in the higher powers as a result of machine rounding and truncation. 
Variation will also arise within the data due to measurement error.

These factors all serve to restrict the applicability of this method of comparison to those 
situations where a comparison is to be effected between quadrat systems of similar size 
and shape. An example of its implementation is given in chapter 7 where the surface 
temperature for two years are compared for the contiguous United States of America.

§4.3.5 Difference maps

The idea of an isopach/residual map has been extended and formalised to situations 
where the observations have not necessarily been recorded at the same locality. In such 
cases an intermediate grid is required to be evaluated before the difference between the 
two matrices of grid values is taken, the resultant matrix is then contoured.

The most complicated scenario is where interest is in two different variables each of 
which has been recorded at differing locations. Davies (1973) believes that to directly 
compare two maps under these conditions, one must be expressed in terms of units of the 
other or alternatively, both converted to standardised unitless forms.

Expressing one variable in terms of the other allows the user to perceive where the 
mapped variable is 'greater/smaller’ than predicted on the basis of the other variable. The 
ideas of least squares regression, Seber (1977), enables the implementation of this 
procedure. For the vector of grid values for variables X and Y, we compute;
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Yi-Po+PA

Typically linear regression is used, but low order polynomial regression is equally
A A

applicable. The result of the above is a vector of predicted values of Y. The Y's are 
based solely on values of the second variable X, hence a residual surface (Y. -  Y.) may 
be regarded as a map of the differences between X and Y. No statistical assessment of 
the regression of Y on X is possible where the two variables were not measured at the 
same control points, since the regression is based on the estimates of X and Y at the grid 
points. The difference/residual surface may be displayed in terms of positive and 
negative residuals.

Problems with the methodology exist:-

A

1. The estimates Y account for only a part of the variation in Y. Unless the 
correlation of X and Y is ’high' serious errors will be introduced by the substitution of the

A

estimate Y for X.

2, It may not be possible to decide which variable should be used as the 
estimator. If the correlation between X and Y is 'high' the two regression lines will nearly 
coincide. If the correlation is not pronounced, the two lines may produce radically 
different results, Mills (1955). In practice, it may be argued that in the absence of a high 
correlation, it is pointless to compare the two by a predictive model.

The problems inherent to difference maps based on estimated or predicted variables can 
be avoided if the original two maps are converted to a standardised format. After the data 
on each map have been standardised, they may be contoured in the conventional manner. 
However the contour values will be in units of standard deviation above or below the 
mean. The resultant contour map is liable to contain ambiguous areas, i.e. an expected 
positive difference can result from subtracting a low positive area from a high positive 
area, however it is also achievable by subtracting a large negative area from a low 
positive area. Similar ambiguous cases result for negative differences.



87

§4.3.6 Pattern of differences

Cliff (1970) pioneered a method based on the analysis of the pattern of differences 
between two maps. The criteria for executing such a technique was that the variables of 
interest were measured in the same units and related to the same areas. Cliff then 
constructed a three-colour map, coloured according to the relation between the variables. 
The fundamental proposition in Cliff's method was that if the two maps did not differ 
significantly, in a spatial sense, then the distribution of the three colours will not be 
significantly different from random. On the other hand, any spatial pattern in the colours 
is indicative of some unknown spatial process. The test statistic is a simple joins-count 
approach: -

_ observed number of joins - expected number given by a random process 
standard deviation of the expected values

Expressions for the expected number and standard deviation of joins of both the same 
color and different colors can be found in Cliff's (1970) work.

§4.4 Local Analysis

The final category of surface comparison techniques relate to those methods which fall 
under the heading of local analysis. The term local analysis refers to those techniques 
where specific aspects of the spatial distribution are examined, in terms of a contoured 
map, this may be the 75th percentile, for example.

One feature of many of these methods is that invariably it is convenient to regard the 
underlying qualitative variation as a multi-colour pattern or, where appropriate as a two- 
colour black-white pattern. In general the techniques in this group are computationally 
more intensive and specialised.

§4.4.1 Complexity index

Complex spatial geologic patterns may be regarded as realisations of random processes, 
Dacey (1964), Watson (1971), Matem (1960). The estimated parameters of such 
processes serve as convenient summary characteristics of the observed spatial patterns
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e.g. patchiness and prevalence and provide a basis for their classification and 
comparison, Switzer (1973).

These ideas formed the basis of an approach which attempts to describe the level of 
pattern complexity of a map. By complexity, Switzer meant the spatial scale of variation. 
A pattern that has a self-contained area is less complex than the same proportion of area 
distributed in many scattered smaller areas. This notion of complexity as a scale 
measurement may also be viewed as a measure of patchiness of the pattern. One intuitive 
index cited was

v  _ total length of boundariesx  _  ------------------------------------------------------------------------_ ---------------

(area of region)72

The larger the value of X, the more complex the pattern. X is also invariant to the choice 
of measurement unit. We shall need some convention on how to measure boundary 
length, which is assumed to be finite, section 3.8.

It can be shown, Matem (1960), that if the pattern is regarded as a realisation of a 
random process, then

mean of X = — 7t(area of region)^ Q' (0)
2

Q’ (0) = derivative of Q(d) at d=0
Q(d) = probability that two colours distance d apart are of different

colours.

Because we are concerned here about the estimation of 'pattern properties', from 
discretely spaced data, we may wish to know how the complexity parameter, X, might be 
estimated from a square grid, say. Basically we require to estimate Q'(0). Switzer 
proposes one method for evaluating Q'(0) for a square grid, By altering the sample space 
and shape of the grid and the sampling density, the complexity index, X, will be 
changed.
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§4,4.2 Image registration

In image-analysis where the analysis of two or more images of the same scene is to be 
undertaken, registration is required. Image registration is the process of determining the 
position of corresponding points in two images of the same scene. If the difference 
between the images is any combination of translation, rotation and scaling then by 
determining the positions of a minimum of two corresponding points, control points, in 
the image, the images may be registered.

Extraction of control points is an almost impossible task. If it is possible to find straight 
lines within the image, the intersection of the lines produce control points, Stockman et 
al. (1982), alternatively the image can be segmented and closed-boundary regions 
defined within the image, the centre of gravity of these regions will then produce control 
points. Goshtasby et al (1986) used the idea of centres of gravity of closed boundary 
regions as control points. Various segmentation techniques are available, the main 
objective of these is to produce a desirable number of closed boundary regions within 
the image.

A point pattern matching technique is required to establish correspondence between 
control points in an image. One method is to match point patterns by a clustering 
approach, Stockman et al (1982). Using the clustering technique, matching is carried out 
between all possible pairs of points in the two sets, When matching point pairs, the 
translational, rotational and scaling differences between them are determined and a point 
entered into a parameter space showing the parameter values. Correct matches tend to 
make a cluster whilst mismatches randomly fill the parameter space. The parameter 
values corresponding to the most dense cluster are used to map one set to another and 
determine the correspondence between the two sets of points.

By knowing corresponding control points in the images, corresponding regions may be 
identified. For comparison of two regions in image analysis, it is desirable to refine the 
regions to become as similar as possible. If two corresponding regions are more similar, 
it is anticipated their centres of gravity correspond to each other more closely. Region 
similarity is then obtained by comparing the shapes of the segmented regions. Since the 
images have translational, rotational and scaling differences, the shape measures must be 
invariant to these transformations.
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Some of the techniques suggested by Goshtasby et al. for defining shape similarity are 
Fourier descriptors, shape signatures, centroidal profiles, invariant moments and shape 
matrices. In terms of the latter, the shape is transformed into a binary matrix by polar 
quantization of the shape. The zeros and ones in the matrix show points that belong to 
the outside and inside of the shape respectively. The dimensions of the matrix that 
determine the quantization steps are determined by the user. The fewer the number of 
ones in the obtained matrix, the more similar the shapes. By choosing differing 
dimensions the results will not necessarily exhibit robustness.

In reality we are not always interested in removing the scaling difference, rotational and 
translational changes since it is these factors which give us a handle on the possible 
sources of the underlying processes which are responsible for the change.

§4.4.3. Image restoration

A further set of spatial comparison techniques contained within the image processing 
literature have arisen through the assessment of image processing algorithms for the 
restoration of images. A number of numerical measures are available for quantifying the 
discrepancy or 'distance' between two images: -

1. The distance between two grey scale images x and y, measured by the root mean 
squared difference between corresponding pixel values is given by :-

i

i S ( x ( t )  - y(t))2]2
_ teT

where x(t) denotes the brightness value of image x at pixel t. This is an example of an L2 
metric. It has many mathematical advantages and is the basis of the optimal linear 
(Wiener) filtering theory, Hamming (1983). A further example using distance between 
corresponding pixel values is that of:-

lX |x ( t )  - y(t)|
I N  t e T
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2. In classification problems, where the pixel values are class labels, image distances 
can be measured by the pixel disagreement rate i.e. the proportion of pixels given 
conflicting class labels:-

—number{tsT: x(t) ^ y(t)}

These two measures involve a pixel by pixel comparison, although widely used, these 
measures are generally recognised as unsatisfactory, Besag (1986), since they ignore the 
spatial context and are inadequate in expressing human perceptions of similarity.

Baddeley (1987) has suggested a modification which attempts to combine the ideas of 
the L2 metric with those of the Hausdorff metric. The Hausdorff distance between two 
sets of pixels X , Y c T  is:-

V I V  v \  I  SaP d(t>Y) ’ SUP d(t-XhH(X,Y) = max^ ^
[t s  X te Y  J

where d(t,X) is the shortest distance from a pixel t e T to a subset X c T

inf d (s,t)
d(t,X) =

s e X

i.e. H(X,Y) is the largest distance from a point in one set to the nearest point in the other 
set.

A major drawback of the Hausdorff metric is its susceptibility to outliers and its lack of 
robustness. The metric is equal to the distance from one white pixel, say, to the
remaining white pixels hence the alteration to the value of a single pixel can markedly
affect the value of the metric.

For X>0, the X metric between images x,y, defined by Baddeley, is denoted as 

A^x.y) = sup max{8w (t);8Xiyj[(t)}
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where for each te T

5Uy(t) = inf{a>0:3 seT ,dT(s,t) < aX,dv(x(t),y(s)) <a}

In other words, two images are closer than a units in the metric if, for every pixel in the 
x-image, there is a pixel in the y-image less than aX units away, with a brightness value 
differing by less than a and vice versa. Intuitively X is the 'rate of exchange' between 
errors in pixel brightness and errors in pixel distance.

The LP metrics compare the image brightness values of x and y at the same pixel 
position, t, i.e. a 'vertical' comparison whilst the Generalised Hausdorff metric basically 
performs a lateral comparison since H(X,Y) equals the maximum distance from a pixel 
in one image to the nearest pixel with the same value in the other image. Finally the X- 
metric equals the maximum height of a rectangle needed to touch the graph of y from 
any point on the graph of x and vice-versa and is effectively a trade-off between vertical 
and lateral comparisons.

§4.4.3 Shape change

Scientists and philosophers in many disciplines have long recognised the potential for 
gaining insight into spatial processes by studying spatial form. Study of the distinctive 
shape of a distribution occupied distinguished biologists like Thomson (1917), who saw 
in changing forms clues to biological growth and evolution. Scholars in all disciplines 
who have attempted to formalise process-form arguments have found it necessary to 
devise adequate methods for describing shape.

If shape is stable through time the effect of the conflicting forces has been resolved and 
an equilibrium state has been achieved. However continued growth or atrophy is 
indicative that such a state has not yet been obtained; the forces operative on the object 
still remain unresolved. If one considers processes to be a collective term for all the 
unresolved forces continuing to shape the object in question, studies of form and process 
are legitimate.

Generally shape is defined to be the set of properties possessed by any closed figure of at 
least two-dimensions which has a planar representation, and which possesses precise 
boundaries i.e. form with size removed.
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The statistical analysis of shape data has a vast range of applications in biology,
archaeology, geography and chemistry for example. Two main classes of shape analysis
exist, those relating to outline data and secondly, those methods based on landmark data.

§4.4.4.1 Outline data

Shape factors are very simple to derive computationally and require only basic 
information about the shape. In trying to measure shape, two questions must be asked:-

1. What characteristics do we measure?
2. How do we combine them into an effective index?

In addressing the first, we assume that the shape of each spatially discrete area is being 
studied separately. The attributes most commonly measured are area, perimeter, major 
axis, radii of internal and external enclosing circles, figure 4.3. In order of increasing 
dimensional scale these are

1. Points within the closed figure e.g. centre of gravity.
2. Lines within the closed figure e.g. perimeter.
3. Area of the closed figure.

KEY
A Area
P Perimeter
L Longest axis

Ri Radii of internal enclosing
circle.

Re Radii of external enclosing
circle.

Figure 4.3:- Commonly measured shape descriptors.

For all three situations, many different 'shapes' will share similar numerical values. The 
number of indices based on these primary measures is very large, Boots and Lamoureaux 
(1972). Table 4.3 describes some of the more commonly cited measures for describing 
shape, particularly in geographic applications.
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Measure M athematical

formulation

Reference

Elongation ratio L/L1 L'- length minor axis Werrity (1969)

Form ratio A/L2 Horton (1932)

Circularity ratio (4A)P2 Miller (1953)

Compactness ratio (2-7 JtA) / P

A/A' A' - area of smallest 

enclosing circle 

1.273A/L2

Richardson (1961) 

Cole (1964)

Gibbs (1961)

Ellipticity index L /2{A /[ti(L/2)]} Stoddart (1965)

Radial shape index
XUOOd^Xd.MlOO/n)
i=l i=l

di = radial distance from a 

point to the circumference 

of the circle.

Boyce and Clarke (1964)

Table 4.3. Elementary measures for measuring the shape of geographic areas.

An interesting shape measure was described by Young et al. (1974), to circumvent some 
of the potential problems associated with the above indices i.e. lack of robustness and to 
a lesser extent, the possibility that some of the properties may be altered in the transition 
from analysis of shapes of a continuous form to analysis on a discrete grid.

The measure described by Young et al, was based on the notion of bending energy. They 
suggested a two-dimensional outline made out of a homogeneous material, if allowed to 
adopt its 'free form', would assume the shape of a circle since a circle minimises stored 
energy. More convoluted outlines require additional work in the form of bending energy. 
The curvature calculation is simple. The shape is divided into n small regions and the 
curvature Kn js defined to be
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The total ’bending energy' is given by ^ K j2 over the whole region. The measure is
i*i

invariant to position and rotation but is affected by size as well as shape differences.

Other techniques based on the definition of the curvature at sample points on an outline, 
or within a surface, have been used to compare biological forms. One method is to 
describe the continuous curvature at sample points on the outline. The outline can then 
be considered to be a continuous curve. Implicit in this function, describing the curve, 
are the actual Euclidean locations of any sample points that are required, (each sample 
point can be described by its tangent angle and arc-length from an arbitrary start point).

The local curvature at any point on the outline of a shape can be calculated from the 
'chain-code' directions from pixel to pixel, of an outline. By repeated averaging of 
adjacent curvatures, a smooth graph can be drawn. Graphs of different forms may then 
be compared.

Bookstein has suggested it is possible to compare forms by sampling the tangent angle 
function, arc-length and tangent angle at landmarks and analysing these values by a 
multivariate statistical technique.

A mathematical technique used to describe the entire facial surface shape and the 
changes occurring in the face has been developed based on a classification system 
inaugurated by Besel and Jain (1988). By decomposing the surface into fundamental 
shape patches, an objective, quantitative and qualitative description of the face can be 
produced. Each surface point on the face is classified as belonging to one of eight surface 
types by computing values of the Gaussian and mean curvature, Coombes et al (1991). 
Gaussian curvature is a measure of the curvature at a point on the space surface, given as 
a ratio of the discriminant of the two fundamental forms of the surface, the first describes 
the metric and the arc length and the second, defines the direction cosine of the normal to 
the surface. Points on the surface may then be classified as flat, elliptic, parabolic or 
hyperbolic. The mean curvature is the sum of the principal curvatures. These two 
curvatures are independent and both are needed to describe a surface unambiguously.
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The advantage of this method of describing the surface is that it is independent of 
orientation, rotation and displacement. Thus the description of the face will be the same 
from any viewpoint.

In order to produce a classification, the signs of the Gaussian and mean curvatures are 
used. These are computed by passing a local neighbourhood operator over a depth map. 
The points on the face may then be colour-coded according to the surface type to which 
they belong and a 'surface type1 image may be produced. As all data has some random 
variation, it is necessary to set thresholds on the curvatures, below which the surface is 
classified as flat.

For the clinician, the advantage of such a method lies in the fact that the facial surface is 
described quantitatively but at the same time, retains a reasonable amount of 
descriptiveness, allowing rapid appreciation of the differences between surfaces.

§4.4.4.2 Landmark data

Morphometries, the study of geometrical form of organisms, combines themes from 
biology, geometry and statistics. Data for morphometric studies usually include 
geometric locations of landmarks i.e. points that correspond biologically from form to 
form.

There are two general methods for characterising landmarks, firstly those which locate 
landmarks by the juxtaposition of different identifiable structures e.g. in fish, the 
'anterior fin base' and 'posterior fin base' delimit the body outline. Secondly, those 
located using geometric properties e.g. the tip of a tooth may be taken at the point where 
the curvature of the edge is greatest. Landmark locations may be augmented by 
information about the curving of external or internal boundaries between landmarks.

Two approaches to the investigation of group differences/associations in size and/or 
shape or between size change and/or shape change are

1. Multivariate morphometries.
2, Deformation analysis.
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In multivariate morphometries, configurations of landmarks are measured one at a time 
in collections of 'morphometric variables'. Some of these measures are size variables e.g. 
distances between landmarks, whilst other variables have a value independent of 
geometric scale, such as ratios of distances or other shape variables, as well as functional 
transforms of these ratios.

Generally, Bookstein (1986) concluded that although ’size1 and ’shape’ are verbally 
orthogonal, computationally and conceptually they are inextricably entangled.

The second morphometric tradition concentrated on the theme of deformation. This was 
introduced into descriptive biology by Thompson (1961) under the heading of 'Cartesian 
Transformation'. A deformation is a mapping which takes neighbouring points to 
neighbouring points and which alters lengths of short segments by factors which never 
get too large or too small. The notion is an informal version of what mathematicians call 
a diffeomorphism: e.g. the reals and the interval (0,<») are diffeomorphically equivalent, 
since the diffeomorphism

f: > (O.oo) : f(x) = ex
g: (0,°o) -> 9? : g(x) = logx

i.e. a one-to-one transformation which, along with its inverse has a derivative at every 
point of a region and its image.

Most techniques for the geometric study of mappings, choose to model the configuration 
of landmarks by a map from some algebraic simple family, and then interpret either the 
coefficients of the fitted map or else, its distributed 'error of fit'.

Sneath (1967) expresses the Cartesian co-ordinates of the landmarks of one form by a 
cubic bivariate polynomial in the x and y ordinates of the same landmarks in another 
form. The resultant coefficients are impossible to interpret directly. Sneath’s purpose was 
instead to summarise them in a single net measure of dissimilarity between forms.

In general these analysis suffer from the dependence on landmarks being readily and 
unambiguously identifiable. On gently curving surfaces such as the human back or face 
this is not the case, hence it serves as a constraint on the accuracy of the technique.
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Many papers have since suggested methods for the analyses of shape in two-dimensions 
and almost all have been based on the movement of homologous landmarks, Bookstein 
(1978,1984 a,b,1986), Siegel and Benson (1982).

A whole wealth of other techniques for describing shape and hence allowing 
comparisons to be effected are summarised in O'Higgens and Johnson (1985) and include 
medial transforms Blum (1973), and fourier analysis, Erlich et al. (1983).

§4.5 Summary

The advancement of technology has enabled spatial comparisons to move in leaps and 
bounds over the past two decades. Prior to this time, techniques available were simplistic 
and the numerical measures defined were invariably difficult to interpret and information 
was ignored.

Major strides have since taken place especially within the field of image analysis with 
research initially focusing on the development of good restoration algorithms. A by­
product has been an attempt to develop statistics which express the deviance from the 
’true' picture and hence allow the performance of algorithms to be assessed and 
compared. Ideas based on distance metrics have been the main contributors in this area.

Within the field of medical imagery, particularly reconstructive surgery, interest has 
focused on change through surgery or growth. The use of landmarks has been paramount 
in this field but the question of selection of such points has raised a number of questions 
as to the suitability and robustness of this approach. Other methods such as the idea of 
curvature have been suggested to describe a surface, however "for comparison a 
subjective-based ordering mechanism is used to discriminate between images.

Much work has been done in the field of shape analysis to describe surfaces as diverse as 
drainage basins, central business districts and human faces. These measures have been 
used to assess similarities/differences between the variables of interest. The major feature 
common to all these methods is that they are invariant to translational, rotational and 
scaling differences. In the field of environmental sciences this aspect of change 
potentially enables the scientist to diagnose the process which is responsible for the 
change. The next two chapters will concentrate on the development of test statistics
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based on these three modes of transformation to examine the question of change or 
similarity.
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CHAPTER 5

THE CHAR ACTERTSATTON OF SPAT!AT, CHANGE

§5.1 Introduction

Within this chapter, the framework of the methodology used to describe change between 
two spatial processes represented as contoured surfaces, is developed. The contoured 
surface being produced as described in chapter 3.9. Although the procedure is explicitly 
formulated in terms of expressing change, it is equally applicable for investigating 
associations between spatial processes.

Subjectively change may be described by evaluating those features of the contoured 
surface which the eye perceives as having changed when the two surfaces are 
superimposed. These changes will invariably be summarised in terms of one or all of the 
three transformations: -

1. Scalar
2. Translation
3. Rotation

Figure 5.1 illustrates five simulated examples of two contours where various 
transformations have been imposed. The first shows two identical contours i.e. the shape, 
size and spatial location are coincident. Figure 5.1(b) is an example of two contours 
relating in spatial locality but differing in size. A change in the orientation of one of the 
contours has occurred due to some external process in figure 5.1(c). The penultimate 
diagram describes the situation where contour A has been displaced with respect to 
contour B. Finally figure 5.1(e), illustrates the most complicated scenario where 
translational, rotational, scalar and shape change have all resulted. The value of 
undertaking a statistical procedure to assess change of this magnitude is questionable due 
the primary differences which exist between the two surfaces.
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Figure 51(a) No change. Figure 5.1(b) Scalar change.
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Figure 5.1(c) Angular change.
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Figure 5.1(d)Location shift.

Figure 5.1 (e) Complex change.

KEY

------------  SURFACE A
-------------  SURFACE B

Figure 5.1 Illustration of the three transformations.
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Three stages were required for the formalisation of a set of test statistics which would 
allow the various transformations to be quantified in terms of potential change statistics

1. The definition of various geometric properties of a contour i.e. area, perimeter, centre 
of gravity and orientation, A simulation study was performed to examine how the 
variability of these measures was affected by changing the fineness of the underlying 
mesh.

2. Based on these quantities, potential statistics were examined to assess which enabled 
the three transformations, scalar change, rotation and translation to be quantified 
satisfactorily. A whole series of plausible test statistics can be listed, ranging from those 
involving ratios or differences to those which are specific to a particular area of 
application. The method of assessment for each of the proposed test statistics was based 
on the following criteria

1. Comparability of results.
2. Bounds of -°° and +00 are unattainable in practice,
3. Robustness, i.e. ordering of the surfaces is irrelevant.

The first and third conditions are of particular relevance in constructing a statistical 
distribution since the resultant distribution should be globally applicable.

3, Those measures deemed to describe most satisfactorily the three transformations 
from part 2 were then formalised. These provided the basis of the test statistics for 
describing change and their distributions are derived in chapter 6.

§5.2. Various Contour Descriptors For Characterising Transformation 
Parameters

§5.2.1 Scale

The most common form of transformation liable to be found in the environment is scalar 
change i.e. expansion/shrinkage of a process. Examples include the decay of a 
radionuclide and the deforestation of an area.
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The simplest criteria for describing scale is in terms of the relative size of the contour. 
Two measures which describe the specific size of an object are area and perimeter. 
These two measures quantify different aspects of size; area refers to the part of a two- 
dimensional surface enclosed within a specified boundary or geometric measure, whilst 
perimeter relates to the length of a 'curve' enclosing a region of a space. For simple 
surfaces, such as a circle or rectangle, the two measures are related, figure 5.2.
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Figure 5.2 (a) Circle Figure 5.2 (b) Rectangle

Figure 5.2 Relationship between area and perimeter for simple constructs.

In practice surfaces will be more complex hence a simple relationship as illustrated 
above is unlikely to arise, although the assumption of independence may potentially still 
be violated. This question is investigated further in chapter 6 in terms of a global 
approach for detecting change.

§5.2.1.1 Area

The evaluation of an areal quantity is simply achieved.

Let Ay = area of contour j, in surface i
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where Ajj = JJdxdy Cjj - region of interest
cij

The analytical evaluation of the region of interest will invariably prove to be impossible 
to achieve apart from for simple regions. A numerical procedure was therefore required 
for quantifying area.

The area of any polygon represented as a vertex list may be calculated by summing the 
areas of the trapezia under each side, down to the axis. The direction of the sides must be 
taken into account, so that sides on the bottom of the polygon are subtracted from the 
total, figure 5.3. Care must be taken to ensure the polygon is stored in an anti-clockwise 
direction, if stored in a clockwise direction, the absolute value should be taken.

Figure 5.3 Evaluation of the area of a polygon based on the trapezia rule.

A- = |[(xijiyij2 + W ip  + -  + x<i(N-»y«N + w J  - 

(xpy,! + xpyp + ••• + V i m  + xsiy«N>3 

j  | T n - i  r

= ,1 - (x»+i>yijk)} + [(wiii - xiiiyijN)]
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The major problem with this approach is that if the polygon is sited a long way from the 
x-axis, the area of the trapezia will be much larger than the area of the polygon and 
accuracy will be lost. Temporarily making one vertex the origin will avoid this problem.

§5.2.1.2 Perimeter

A similar formulation for perimeter is possible.

Let Py = perimeter of contour j, in surface i,

where Pjj = X {(x ijk-xwit+1))2 + (yijk- y u(k+]))2} + {(x^ - Xijl)2 + (y,N- y J 2p
k-1

§5.2.2 Orientation

One possible definition to be used in assessing rotation is the orientation of a contour i.e 
the angle subtended by the major axis and the x’-axis. The origin being defined by the 
ordinates of the contour's centre of gravity, C(XCGjj,YCGjj). The principal axis, PP', is 
delineated by the line which describes the maximum distance between two points on the 
contour's boundary, which lie on a straight line, pass through the centre of gravity and is 
wholly contained within the bounds of the contour, figure 5.4

The theoretical derivation of the angle of orientation is simply a function of the distances 
PC and AC. Empirically it is not so straightforward. The crucial step is to identify the 
principal axis. To simplify the calculations the contour of interest should first be 
translated so that the centroid becomes (0,0). The orientation of the figure will 
accordingly be preserved.
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Figure 5.4 Definition of the angle of orientation.

One method for locating the principal axis is

1. Ascertain whether the mesh points, A, B where A^B, comprising part of the contour 
boundary are in diagonally opposite quadrants. Simply checking the following truth 
statement enables verification of the above statement:-

2. If step 1 is true, then the angles subtended by points A and B with the x-axis are 
calculated, 0ijA, 0ijB, respectively, where:-

3. if e1JA = ep, then the two points lie at the extremes of a straight line which passes 

through the origin and the distance djjg may be calculated.

J(sn(xljk).NE.sn(x2j.k)). AND.(sn(yljk).NE,sn(y2jk))j => TRUTH where sn = sign

modulus*; tan' S = A, B.

4, Steps 1 to 3 are repeated for S=1,N 
contour points.

where N = Number of interpolated
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5. The angle of orientation is the angle which subtends the maximal distance between 
two end points:-

ORj = {8ijs/max(dijs)}

A number of problems arise with this technique. Theoretically the test 0ijA = 0ijB is 

valid, but in practice is unworkable. Two reasons for this are:-

1. Inaccuracies due to rounding errors. When working in real space it is seldom possible 
to evaluate two numbers which coincide to more than two or three decimal points.

2. Theoretically a closed contour is defined to be continuous, in practice the ordinates of 
a contour's boundary are only known at discrete points, the mesh intersections. The finer 
the mesh, the more valid the assumption of continuity. This feature complicates the 
location of the principal axis, figure 5.5. The 'theoretical true' principal axis may not 
necessarily be described by the defined mesh points, hence physically it will be 
impossible to locate the true principal axis.

A

CA-0
J «

----------  True principal axis
  Empirical principal axis

Figure 5.5 Problem concerning the Figure 5.6. Definition of orientation
theoretical and empirical definition of bounds, 
principal axis.
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The points which lie closest to the 'true' empirical principal axis may not always be 
strictly diametrically opposite. The simplest method to account for these discrepancies, 
due to the discretisation of the contour's boundary, is to define bounds for the angle of 
orientation, figure 5.6

0 (e*A-«2)eijA—iT — q  . A  ^ i jA

ijA T ~

where -  mod ulusJ tan"1
V X ij(A+l) J

= modulus tan-i
r \  

y  ij(A-l)

V X ij(A-l) J

By defining the angle of interest in terms of a closed interval, we are theoretically 
eliminating the problem of discretisation by defining the contour boundary in terms of 
'continuous' segments.

Inherent within the definition of the principal axis was the assumption that the axis was 
contained wholly within the bounds of the contour. The simplest way of verifying this 
assumption is not violated is to perform the ray test i.e. only one value of djjg is 
calculated for each mesh point; where more than one value results, the ray test will be 
negative and the combination of points do not define the major axis. Computationally, 
time is increased since it is not possible to stop the procedure once a diametrically point 
is located, (N-S) calculations have to be performed, for S=l, N.

A final problem is where the contour of interest is almost cyclic in definition. Definition 
of the angle of orientation will then present problems, unless the cyclic property is 
recognised at the subjective stage.

§5.2.3. Centre of gravity

One possible measure which may form the basis of translational movement is that of the 
displacement of the centre of gravity.
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Analytically the centre of gravity may be found by:-

XCGy = ~:JJxf(x,y)dxdy
M c

YCG5 = ^:jjyf(x,y)cixciy
M c

where M = JJf(x,y)dxdy
Cij

Cy - the region of interest.
XCGy - x-ordinate of the centre of gravity 
YCGy - y-ordinate of the centre of gravity

As for area, it is seldom feasible to define the region Cjj mathematically, however a 
simple numerical procedure will enable the critical point to be located.

XCGii = f

YCG« = i f f * * " ]

where

x v  = X [ (V  -XijkKy-ok—Vijn)+ (xijk - x ijN)(yiik - y liN)]{(xiik +xiJ(k. 1)-)}
k-2

N

YV = I [ ( x ijN - x ijk)(yijk- y ijN) + (xijfc - x ijN)(yijk - y ijN)]{(y1Jk + yl)(t.„)}
k-2

Ay = area for contour j in surface i (§5.2.1.1)

§5.3 Variability Of The Contour Descriptors

Section 3.8 mentioned the importance of mesh resolution in influencing the results for 
area and perimeter for a very simple example. In this section, the level of variation
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attributable to different levels of grid resolution, in each of the four primary statistics is 
examined. The reason for such an investigation is that for comparative work it is

where data sets differ in size, the noise contributions should be of a similar order. A 
simulation study was undertaken to examine the level of grid resolution which both 
minimised the error due to the surface fitting technique and secondly did not increase the 
computational time for minimal gain in accuracy.

§5.3.1 Simulation study

A study was performed on three sizes of data set 50, 100 and 150 points, these were 
believed to be representative of sizes likely to be encountered in environmental 
applications. Each set of observations were generated by simulating a bivariate normal 
distribution, using the NAG (1984) subroutine G05EAF:-

The fixed kernel method of density estimation was used for surface evaluation, the kernel 
function was defined to be that of the standard multivariate normal density function and 
the smoothing parameter was evaluated using least squares cross-validation.

The measure used to define the levels of variability introduced into the contour 
descriptors as a result of the mesh resolution was the coefficient of variation

essential the level of noise resulting from the surface fitting procedure is minimised, and

f (x) = (27t)"1| l |  2 e x p |- i ( x - f ;i)TS~1(x -p ;)J

where \i = (0,0)T

standard deviation
mean

The coefficient of variation is dimensionless hence it enables the relative variability 
between the data sets to be compared.

The effect of mesh resolution on the contour descriptors was investigated by examining 
the effect of changing the number of grid points over which the raw data was
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interpolated to produce the surface. Based on a square grid, nine sizes of grids were
investigated; (222), (322), (392), (452), (502), (552), (632), (672) and (712). The
theoretical distribution of each of the primary measures was unknown, hence the 
standard bootstrap, Efron (1979), was used to evaluate the coefficient of variation. The 
bootstrap is an easily implemented although computationally intensive device which 
allows the sampling distribution of some statistic to be estimated; this parametric statistic 
frequently being a parameter estimate.

Suppose for a sample of N independent observations x1,x2,x3,---,xN, we are required to

estimate a parameter 0. The underlying distribution, F, of the observations is unknown

probability distribution of F, having mass 1/N at each observed x[ (i = 1,.... ,N). A
random sample, herewith known as a bootstrap sample is drawn with replacement from

A

but it is assumed to be both unimodal and well behaved. Let Fn be the empirical

and the characteristic of interest 0 * is calculated;

(1)

where (2)

Steps (1) and (2) are repeated S times to give:-

The mean and standard deviation of this sample can then be evaluated;

where

The more re-samples performed the closer the parameter of interest tends to its true 
value. In reality the process has to be terminated at some stage, hence a compromise
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between time and accuracy has to be reached. The number of replicates performed for 
this study was 250 since initial results indicated reasonable stability at this level.

The simulation study took the following form:-

1. Simulate data set x1Jx2,x3,-*-,xN from a standard bivariate normal distribution.

2. Generate bootstrap sample ..,xN*.

3. Calculate the smoothing parameter using least squares cross validation.

4. Construct surface from bootstrap sample.

5. Evaluate area, perimeter, centre of gravity and orientation for the contour depicting 
the upper quartile.

6. Repeat steps (2) to (5) 250 times.

The usage of the standard bootstrap in step 2 resulted in the contour breaking down into 
subsidiary components for some combinations of data. The problem was traced to one of 
the bootstraps peculiar properties. Every value within a bootstrap sample is drawn from 
the original data with replacement, some values will be repeated several times causing 
the sample to become over-discretised. In addition the surface constructed using the 
standard bootstrap appeared to deviate from the original data, especially for 50 data 
points.

The simplest remedial action was to replace the standard bootstrap by its smoothed 
counterpart, samples generated using this technique do not possess this property. Instead
of resampling with replacement from the original observations, x1,x2,x3,---,xN, a non-

A
parametric estimate fh of the underlying density is evaluated and resampling is

A

performed from fh, the smoothed version. Effectively each point in the new sample is a 
perturbation of the original data point randomly selected as before i.e. the bootstrap

A

sample is obtained by independently sampling the distribution f h with density:-
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1111 W lhbs J

The function K is assumed to be a bounded density function symmetric about zero and 
with unit variance. The density is a kernel estimator of density, f, of the population F, 
with smoothing parameter h^g.

The following procedure may then be used for evaluation of a smoothed bootstrap:-

1. Choose I uniformly with replacement from i = l . ,N.

2. Generate e to have probability density function K.

3. Let Y = XI+he

If realisations Y are required to have the same first and second moment properties as 
those of the observed sample then, by using the following transformation which scales 
the kernel to have the same variance matrix as the data, this requirement will be satisfied

_  (x -X + h^ e)  
Y = X+ ~ y

Hall et al (1989) demonstrated that the benefits to be derived from smoothing will 
diminish with increasing sample size, as N hte —> 0. This theoretical statement
confirms the behaviour witnessed in terms of the over discretisation problem which was 
most noticeable for 50 data points. For 150 points, this problem was less serious.

The effect of using the smoothed version of the bootstrap as opposed to the standard 
form is expressed diagramatically in figure 5.7. Once again a set of 50 data points were 
simulated from a bivariate normal distribution, the resultant density being expressed in 
figure 5.7(a). Figure 5.7(b) is an example of a resample using the standard bootstrap, 
whilst the third diagram illustrates the smoothed bootstrap.
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Figure 5.7(a) Original data._________  Figure 5.7(b) Standard bootstrap.

Figure 5.7 (c) Smoothed bootstrap.

Figure 5.7 Illustration of the use of the bootstrap.

The question of what value of bootstrap smoothing parameter should be used is a 
research topic in its own right. Within the simulation study a series of values were 
examined. The sequence for the study was as before but with step two now reading:-

2. Generate smoothed bootstrap data set with smoothing parameter, h^s

An additional step was added at the end to examine the question of the smoothing 
parameter for the smoothed bootstrap.
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7. Repeat steps (2) to (6) for the range of h^g under consideration.

The range of bootstrap smoothing parameters considered was determined by simulating 
200 bivariate normal distributions and evaluating the smoothing parameters for each 
separate distribution. Based on the evidence of Hall et al (1989), the range for the 
smoothed bootstrap parameter was taken to be slightly wider than that of the smoothing 
parameter for the original data. Increments of 0.1 were examined for the smoothed 
bootstrap parameter. Table 5.1 collates these results.

Smoothing parameter for 
the original data

Bootstrap smoothing 
parameter

No. of points h (lower) h (upper) hbs (lower) hbs (upper)
50 0.20 0.65 0.15 0.80
100 0.21 0.57 0.15 0.8
150 0.22 0.55 0.15 0.8

Table 5 . 1 Range of smoothed bootstrap parameters investigated.

§5.3.2 Simulation results 

§5.3.2.1. Area

Increasing the size of the data set has negligible effect on the coefficient of variability at 
each level of grid resolution. However across levels a trend is evident; increasing the grid 
fineness, the level of variability decreases, figure 5.8. Table 5.2 summarises the results 
from figure 5.8 for the mean level of the original smoothing parameter, calculated from 
the original 200 simulations used to produce the ranges for the smoothing parameter in 
table 5.1.



116

No. of 
points

Grid Size

222 322 392 452 502 552 592 632 672 7 i2

Coefficient of varialtion
50 1.340 0.742 0.561 0.461 0.398 0.340 0.300 0.250 0.278 0.235

100 1,340 0.801 0.616 0.465 0.398 0.324 0.313 0.275 0.250 0.241

150 1.279 0.789 0.545 0.465 0.385 0.335 0.328 0.283 0.275 0.220

Table 5.2:- Results for coefficient of variation for area.

The table indicates the presence of a strong exponential trend with a tailing off of 
variability occurring for grid levels of 63 and upwards. In terms of related data sets size, 
this corresponds to 80,40 and 26 times the original sizes for 50,100 and 150 data points, 
respectively. In real terms variation of the order of approximately 0.3% is introduced 
when interpolating over a grid of 4000 mesh points.

For 50 data points, a bootstrap smoothing parameter of less than 0.2 produced fairly 
unstable results, this behaviour was explained by the findings of Hall et al. (1989) who 
advocated a suitable value for the smoothed bootstrap should be calculated using the 
original data set, the lower bound for 50 data points, from our simulations, table 5.1, 
being 0.2 hence the instability. For values greater than 0.2, a remarkable degree of 
consistency was established across all values of h^s.

If interest is solely in area, then a mesh of 4000 points and a value for h^s selected equal 
to that calculated for the original data will produce a high degree of accord across 
surfaces, Variability of the 0.3% will be introduced into any ensuing analysis. This will 
invariably be masked by the other forms of error.
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§5.3.2.2 Perimeter

The pattern of the levels of variability due to the surface fitting regime for perimeter 
differ to those of area, figure 5.9. In terms of the original data set size, a considerable 
difference is expressed between the results for 50, and 100 and 150 points. Table 5.3 
reports the results for the mean value of the original smoothing parameter:-

No.of
points

Grid Size

222 322 392 452 502 552 592 632 672 712

Coefficient of variation
50 1.87 2.54 1.84 2.02 2.05 1.90 1.56 1.78 2.42 2.53

100 1.53 1.76 1.49 1.46 1.33 1.36 1.49 1.56 1.73 1.61

150 1.60 1.64 1.53 1,44 1.47 1.32 1.47 1.64 1.51 1.64

Table 5.3 Results for the coefficient of variation for perimeter.

Firstly, across grid resolutions differences of 20% and upwards are reported between the 
results for 50 data points and the other two data sets. Secondly, a trend emerges in terms 
of the smoothed bootstrap parameter, the results do appear to stabilise from the apparent 
mean value of the smoothing parameter upwards. This levelling off of variability is 
masked by fluctuations in the results, particularity for the coarser grids. Increasing the 
number of simulations may smooth out of some of these fluctuatiuons.

A final feature of these results is the consistency of the results for all the values of mesh 
resolution considered, the range being slightly tighter for 150 points than for 100 points. 
In terms of selection of grid size, the variability in the perimeter results indicates that the 
effect on perimeter need not be considered, as long as the value of bootstrap smoothing 
parameter selected, lies close to the value of smoothing parameter determined from the 
original data.
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In terms of the overall variability, approximately 1.5% variation is seen in the results, 
five times that for area. The reason for this five-fold increase may be explained by 
considering fractals.

Figure 5 . 1 0 Variation in perimeter for a given area.

Figure 5.10 displays two shapes which have the same resultant area but whose perimeters 
differ considerably. These two shapes may easily be the result of two simulation runs. It 
is this feature of fractals which contributes to the differences in levels of variability for 
area and perimeter,

§5.3.2.3 Orientation

For the remaining geometric measurements, orientation and centroid displacement, the 
variability introduced into the results due to the surface fitting procedure was examined 
for each of the grid resolutions, but the various levels of bootstrap smoothing parameter 
were not examined. Computationally this procedure was extremely intensive. Utilising 
the results for the earlier measures, area and perimeter, the evidence strongly supported 
the case for choosing the smoothing parameter, h^s, to take the same value as evaluated 
for the original data.

Figure 5.11 illustrates the results for orientation. Orientation appears to react in a similar 
manner to that of perimeter. Changes in grid resolution have a minimal effect on the 
level of variability introduced into the system for 100 and 150 points and for grids above 
32x32 for 50 points. Increasing the sample size sees a marked reduction in the coefficient 
of variation between data sets of 100 and 150 points and 50 points.
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Figure 5.11 Coefficient of variation results for orientation.

One possible explanation is that for larger data sets, the contour shape is more clearly 
defined hence less variation will be introduced. Approximately half of the variability is 
seen in 100 points compared to that for 50 points, with a further reduction of a sixth for 
150 points.

Although not reported, increasing the correlation from 0.5 to 0.9 resulted in a marked 
decrease in the coefficient of variation, particularly for 50 points. This raises the question 
of whether orientation should be used as a descriptor particularity for small data sets 
where orientation may be ill-defined. Generally there will be little change in the angular 
direction but where it does occur, the two contours to be compared will possibly be 
analogous in shape hence changes will be easily identifiable. There will be situations 
where the definition of orientation is questionable, as mentioned previously e.g. cyclic 
contours.

For orientation to be a satisfactory descriptor, the analysis of large data sets is required to 
ensure variation introduced as a result of the surface fitting technique is minimised, so 
that it can be separated from change due to some unknown underlying process.
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§5.3.2.4 Centroid Displacement

The effect of mesh resolution on centroid displacement is shown in figure 5,12, 
effectively it is similar to that of area. Changes in grid resolution affect the level of 
variability, whilst changes in the size of the data set has no real effect.
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Figure 5.12 Coefficient of variation results for centroid displacement.

As for orientation, considerable variation is seen in the results. Potentially this may be a 
result of the variability introduced from evaluating the centre of gravity, since for the 
evaluation of both orientation and centroid displacement it is required to be evaluated.

§5.3,2.5 Smoothing Parameter

Although not strictly a geometric measurement of interest, it was decided for 
completeness to examine the level of variability introduced into the selection of the 
smoothing parameter when the bootstrap smoothing parameter and data set size were 
varied, the results are presented in table 5.4 and figure 5.13.

50 points 100 points 150 points
Coefficient of Variation 0.100 0.087 0.072

Table 5.4 Coefficient of variation in the estimated smoothing parameter, h.
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As for orientation, considerable variation is seen in the results. Potentially this may be a 
result of the variability introduced from evaluating the centre of gravity, since for the 
evaluation of both orientation and centroid displacement it is required to be evaluated.

§5.3.2.5 Smoothing Parameter

Although not strictly a geometric measurement of interest, it was decided for 
completeness to examine the level of variability introduced into the selection of the 
smoothing parameter when the bootstrap smoothing parameter and data set size were 
varied, the results are presented in table 5.4 and figure 5.13.

50 points 100 points 150 points
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Figure 5.13 Results for coefficient of variation for the smoothing parameter.

When evaluating a surface, it is the original localities of the points which are of 
importance for selecting the smoothing parameter, when using least squares cross- 
validation, hence the superposition of the results for different levels of mesh resolution. 
In terms of different values for the smoothed bootstrap, a similar pattern emerges to that 
of before. For the range of values which were defined for the original 200 simulations, 
the results were extremely consistent, particularily for the lower quartile upwards. This 
explains the sharp increase in the coefficient of variation for 50 points for values of the
smoothed bootstrap less than 0.47, the lower quartile, and 0.39 for 100 points and 0.35
for 150 points.

§5.3.2.6 Summary

Returning to the original very simple example, section 3.8, which illustrated the 
importance of grid resolution, the results obtained in terms of the strong dependence of 
the areal results on grid size and the minor role it plays in influencing perimeter 
variability was confirmed.

The size of the data set was of crucial importance in terms of variability introduced into 
the perimeter results. In practice comparability of data set of 100 points and upwards of 
varying or equal size poses no problems. However for smaller data sets, comparisons 
between these and large data sets will display a lack of concordiality in variability due to 
the surface fitting mechanism. It is physically impossible to reduce the level of
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When evaluating a surface, it is the original localities of the points which are of 
importance for selecting the smoothing parameter, when using least squares cross- 
validation, hence the superposition of the results for different levels of mesh resolution. 
In terms of different values for the smoothed bootstrap, a similar pattern emerges to that 
of before. For the range of values which were defined for the original 200 simulations, 
the results were extremely consistent, particularily for the lower quartile upwards. This 
explains the sharp increase in the coefficient of variation for 50 points for values of the 
smoothed bootstrap less than 0.47, the lower quartile, and 0.39 for 100 points and 0.35 
for 150 points.

§5.3.2.6 Summary

Returning to the original very simple example, section 3.8, which illustrated the 
importance of grid resolution, the results obtained in terms of the strong dependence of 
the areal results on grid size and the minor role it plays in influencing perimeter 
variability was confirmed.

The size of the data set was of crucial importance in terms of variability introduced into 
the perimeter results. In practice comparability of data set of 100 points and upwards of 
varying or equal size poses no problems. However for smaller data sets, comparisons 
between these and large data sets will display a lack of concordiality in variability due to 
the surface fitting mechanism. It is physically impossible to reduce the level of
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variability for 50 points to that for 100 points. Realistically we are talking of variation of 
the level 1% to 2% in the results, this will generally be of lesser importance than 
variability due to physical measurements.

Returning to the areal measurement, it is this one measure which controls the level of 
grid over which to interpolate. A grid comprising 4000 points appears to minimise the 
levels of variability and hence ensure comparability.

For orientation and centroid displacement, the bootstrap smoothing parameter was 
selected to be equal to that for the original data. Orientation responded in a similar 
manner to that of perimeter i.e. data set size was the most influential factor in 
determining the level of variation due to the surface fitting technique whilst for centroid 
displacement, grid resolution was the controlling factor.

The other aspect which emerged during the examination of grid resolution concerned the 
choice of smoothing parameter when executing the smoothed bootstrap. An interval for 
the range of smoothing parameters calculated using least square cross-validation was 
constructed by a simulation study. By selecting any value which was contained within 
the interval which has as its lower bound the lower quartile, consistency was achieved.

In practice, a simulation study may be performed on the data sets of interest and the 
mean value taken for the smoothing parameter for the smoothed bootstrap. 
Computationally this is not excessive, unless the data set of interest is very large. 
Selecting the same value as for the original data set will be satisfactory, unless a high 
degree of accuracy is necessitated.

§5.4 Simple Statistics For Describing Change

The previous section examined the effect of grid resolution on various geometric 
descriptors and secondly, the level of bootstrap smoothing parameter required to 
minimise variability from the surface fitting procedure to ensure comparability was 
achieved across surfaces, generated from data sets of possibly differing size. We now 
move on to consider the comparison of two surfaces, constructed using the methods 
described in chapter 3.8.
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§5.4.1 Scalar comparators

Three of the more intuitive comparators based on area, perimeter and area/perimeter 
combined are described in table 5.5.

Area Perimeter Area/perimeter
Ratio

i u . p ii A y / P y

A 2j A 2 j / P 2j

Difference A y  ” A 2j V P2,
A y P s j  “ A 2]P y

A 2j-

Proportion
^ l i A y  ( P y  + P 2 j )  

P y  ( A y  + A 2 j )
A y  4 - A 2 j

Figure 5.5 Operators based on area and perimeter for performing a scalar comparison.

Similar comments are applicable to area, perimeter and area/perimeter, only those 
properties relating to area will be discussed in detail.

§5.4.1.1 Ratio

The first of the statistics was that of the ratio of the two areas of interest. In terms of a 
good comparator, ratio concurs with the three definitions

1. For differing areal sizes, the results are scalar independent. :

2. V C{j} such that Ay > 0, where Cy is the region of interest, then

if A. = A~
*} A

AP = —> + »  if A  ̂»  A2j where AR = —
0 ifAlj« A 2j Asj

From the definition of Ay 0 and 00 are unattainable in practice.
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§5.4.1 Scalar comparators

Three of the more intuitive comparators based on area, perimeter and area/perimeter 
combined are described in table 5.5.

Area Perimeter Area/perimeter
Ratio

A j . A i j / P ij

A 2j P 2, A 2 j / P 2j

Difference A lj ”  A 2j P U ~ P 2i A  P  — A P1 j 2j 2j lj 

A 2j

Proportion
A li P U A lj (P lj  +  f*2j )

P lj ( A lj A 2j )
A l j + A 2j P l i + P 2j

Figure 5.5 Operators based on area and perimeter for performing a scalar comparison.

Similar comments are applicable to area, perimeter and area/perimeter, only those 
properties relating to area will be discussed in detail.

§5.4.1.1 Ratio

The first of the statistics was that of the ratio of the two areas of interest. In terms of a 
good comparator, ratio concurs with the three definitions

1. For differing areal sizes, the results are scalar independent.

2. V Cy  ̂such that Ay > 0, where Cy is the region of interest, then

Ar —
if A., = A,"j £

-»  +oo if A„ » A „ i
AJ *=0

if A„ «  A2j

A,,where AR = — - 
A.,

From the definition of Ay 0 and 00 are unattainable in practice.
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Ay 1
3. — - = -------—  => ordering is irrelevant to the outcome, since the reciprocal

A Jj A 2 j / A lj

enables the same result to be achieved, when the two surfaces are transposed.

§5.4.1.2 Differences

For the difference operator all three conditions are not satisfied.

1. A very simple example illustrates the failure of the first property

Aj = 200 units A2 = 100 units
A} = 2 units A2 = 1 unit

In terms of areal differences, there is a lack of consistency between the sizes of the
differences hence comparability is impaired i.e. it is scale dependent.

2, V Cy such that Ay > 0

a D =

0 if Ay = A2j
—> +oc i f A y » A 2j where AD= A lj” A2j
—> -00 i f A y « A 2j

In reality no surface is infinitely large or small hence the bounds are unattainable.

3. Ay -  A2J = jA2j -  Ajjj => ordering of the surface is irrelevant, if the absolute value is 

taken.

§5.4.1.3 Proportion

The idea of using proportion to assess the level of change has its foundation in
probability. The conditions are satisfied as follows



1 2 6

Ai} l
3. — - ~ ---------------  ordering is irrelevant to the outcome, since the reciprocal

A-2j
enables the same result to be achieved, when the two surfaces are transposed.

§5.4.1.2 Differences

For the difference operator all three conditions are not satisfied.

1. A very simple example illustrates the failure of the first property

Aj = 200 units A2 = 100 units
Aj = 2 units A2 = 1 unit

In terms of areal differences, there is a lack of consistency between the sizes of the
differences hence comparability is impaired i.e. it is scale dependent.

2. V Cy such that Ay > 0

Ad  =
0 ifA ij= A 2j
—> + 0 0  i f A i j » A 2j where AD=A lj - A 2J
— > - 0 0  i f A ] j « A 2 j

In reality no surface is infinitely large or small hence the bounds are unattainable.

3. |Ajj -  A2j| = |a 2J -  Ay| => ordering of the surface is irrelevant, if the absolute value is 

taken.

§5.4.1.3 Proportion

The idea of using proportion to assess the level of change has its foundation in
probability. The conditions are satisfied as follows
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An1.  -—  satisfies the assumption of comparability.
+ A2.

2. V Cy such that Ay > 0

1
2

if Ay
Ap = < i if Alj

—̂ 0 ifA l;

L2j A
A2j where Ap=-------

L2j
A u+A 3j

Although unattainable, the limits are more acceptable to field scientists.

A . A
3.  -—  = 1---------—  => since the measure is based on a probabilistic definition,

Aij + A2J Ay + Ajj

the problem of ordering is avoided by subtracting one from one of the measures.

§5.4.1.4 Scalar summary

Both ratio and proportion measures are applicable for describing scalar changes, since 
both satisfy the three conditions described in section 5.1. Returning to the two simple 
areal regions described earlier, the circle and the rectangle, it can be shown that there is a 
strong association between the two operators. By defining the original dimensions to be a 
and b and r for the rectangle and the circle respectively and ka, lb and kr for the 
dimension of the new surface, where k and 1 are real in definition, the relationship 
between the measures are given in table 5.6.

Ratio Proportion
Rectangle 1 1

kl (1+kl)

Circle _1_ 1
k2 ( l+ k 2)

Figure 5.6 Relationship between scalar comparators for two surfaces.
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1. — — —  satisfies the assumption of comparability.
A l j + A 2j

2. V Cy such that Ajj > 0

A p  —-

1
2

if A Xj -  A 2 -

—> 1 if A ^  »  A 2j where
—» 0 A A > to

AP=— ^ —
Alj+A 2j
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Both ratio and proportion measures are applicable for describing scalar changes, since 
both satisfy the three conditions described in section 5.1. Returning to the two simple 
areal regions described earlier, the circle and the rectangle, it can be shown that there is a 
strong association between the two operators. By defining the original dimensions to be a 
and b and r for the rectangle and the circle respectively and ka, lb and kr for the 
dimension of the new surface, where k and 1 are real in definition, the relationship 
between the measures are given in table 5.6.

Ratio Proportion
Rectangle 1 1

kl (1+kl)

Circle 1 1
k2 (l+ k 2)

Figure 5.6 Relationship between scalar comparators for two surfaces.
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Realistically the numerical results for the ratio and proportion between two surfaces 
differ only by a constant. Although, the surfaces of interest will tend to be more complex 
in nature and associations between the operators may not be as straight forward as those 
displayed in table 5.6, it was decided only to investigate the test statistics relating to 
ratio. Similar comments apply to the test statistics when applied to the measure of 
perimeter,

§5.4.2 Rotation

The simplest means to describe the change in the orientation of a contour after a time 
period, t, or between two variables is in terms of an angular metric.

15.4.2.1 Ratio

The metric describing angular change as a ratio is

0,. fO < 0 .. < 2n
ORr = —- where <02. \0< O R r < ~

Although the form of the operator is dimensionless, the inclusion of infinity as one of its 
bounds is undesirable. Unlike previous situations this bound is attainable in practice i.e. 
when the contour relating to surface two is parallel to the x-axis. Although ordering of 
the surfaces does not affect the results since the reciprocal provides an equivalent result, 
when the two surfaces are transposed, in practice the concept of ratio is unworkable.

§5.4,2,2 Differences

The second form is that of differences

-271 < ORd < 271 non - symmetric contour 
ORd = 02j -  02. where < -n  < ORD < 7t symmetric contour

0  <  0 j j  <  2k
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The three properties relating to ordering, dimensionality and the bound conditions are all 
satisfied for angular differences.
Although unrealistic in practice, the bounds of the operator ORq have been split 
according to whether the contour is symmetric.

For all work on angular change, measurements will be made in terms of radians as 
opposed to degrees. The major difficulty in orientation lies in the problems incurred in 
defining the principal axis, once these have been overcome the choice of operator is 
unquestionable i.e. differences.

§5.4.3 Translation Descriptors

The final transformation is that of translation. Two possible statistics will be examined

1. The distance between two uniquely identifiable points in the area of interest i.e. 
centroid displacement.

2. The area of overlap.

A shift in location is liable to arise in many different situations e.g. in the marine 
environment, the transfer of oil slicks, saline or debris by the prevailing wind and tidal 
conditions.

§5.4.3.1 Centroid displacement

Three possible means of evaluating displacement are

1. Standard displacement

2. Percentage displacement

3. Standard deviation displacement

Before evaluating displacement, rotating the contour of interest such that its major and 
minor axis lie parallel to the x and y axis respectively, simplifies the ensuing analysis. 
Displacement may be defined more simply for an isotropic surface i.e. one in which the
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variation is approximately constant over the surface compared to an anisotropic surface, 
where variability is dependent on direction and therefore interest is in analysing the 
directions separately. The two directional components are defined to be in the x and y 
directions. Prior knowledge of a process may enable the true directions of variability to 
be determined and displacement analysed accordingly. Table 5.7 identifies the form for 
each of the descriptors based on the centre of gravity for each surface.

Standard
Displacement

Percentage
Displacement

Standard
Deviation

Displacement
Isotropic Surface Dro<T Undefined SDcog
Anisotropic 
Surface 
X- Direction

XCG-n - XCG2i
XCGtj -XCG2j 

major axis
XCG13-XCG2j 

SD .

Y- Direction YCGu-YCGa
YCGjj -  YCG2j YCGjj -YCG2j

minor axis SDyj

where DC0G = ^(xCGy -XCG 2j)2 +(YCGlj -  YCG2j):

SDC O G  “

t/(xCGh -XCG2i)2 +(YCGlj -  Y C o J

SDxyj = pooled standard deviation in x and y direction, for contour level j.
SDxj = pooled standard deviation in x-direction, for contour level j.
SDyj = pooled standard deviation in y direction, for contour level j.

Table 5.7 Descriptors for the various forms of centroid displacement.

§5.4.3.2 Standard displacement

The first of the comparators suggested was standard displacement. Advantages associated 
with this measure are

1. Ease of definition in x and y directions and if necessary x-y direction.
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2. Intuitively, it is easily interpreted.

3. The ordering of the surfaces is not a criterion which has to be considered since by 
taking the absolute value the same result is obtained. The sign of the difference is an 
indicator as to the direction of the change, this is not an issue at this juncture.

4. The achievable bounds are contained within the limits of and +°°.

The major problem with such a metric is that the measure is dimension dependent. For 
some surfaces interest may be in small measures e.g. millimetres, whilst in other 
examples, particularly geographical applications, we may be working in terms of 
kilometres. This disadvantage unfortunately negates the usefulness of the metric as a 
comparator unless some form of standardisation is performed.

§5.4.3.3 Percentage Displacement

A number of difficulties are encountered when defining percentage displacement:-

1. For isotropic surfaces, the definition of a combined measure is not intuitive. This 
feature is not necessarily a major drawback, there are many situations where the analyst 
is more concerned with examining the separate components of location shift.

2. The condition of robustness is violated, the major and minor axis are defined to be 
expressions of one of the surfaces. Changing the baseline surface is liable to affect the 
percentage displacement, unless the two surfaces are coincident in shape. Where interest 
is in change across time periods then a natural ordering is imposed, however for 
associations between variables, an ordering is much harder to implement.

3. A final problem associated with percentage displacement is concerned with the more 
fundamental interpretation of the resultant value. A 50% shift in the x-direction may 
relate to two units, whilst a displacement of 50% in the y-direction may be of the order 
of ten units, depending on the size of the contour under question. In reality the two unit 
shift may not be capable of being detected over and above the inherent natural variability 
attributable to random noise in the spatial measurements, see chapter 6.
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Linked to this problem is that of the size of the contour i.e. a displacement of 50%, say, 
in one of the lower order contour levels is much less likely to be achieved due to the 
bounds imposed by the region of interest than for a higher order level when the area 
covered will be correspondingly less.

Although subjectively, we may state contour A has been displaced by 50%, 
mathematically this presents a number of subtle complications. A way round this 
problem is to measure location shift as a proportion of the standard deviation of the 
contour.

§5.4.3.4 Standard deviation displacement

The last of the descriptors for translational change is standard deviation displacement. 
The idea behind this potential test statistic is to express the level of change as a 
proportion of the standard deviation of the data points defining the contour of interest. 
Invariably, we will be comparing two contours which may be matched in terms of shape 
or location, hence it is feasible to assume the standard deviation of the two contours are 
similar so that pooling the variances is a valid assumption. It is under this premise that 
the definition of standard deviation displacement is made. For an isotropic surface, the 
variances in the x and y directions are pooled satisfying the property of robustness.

Using this formulation, it is hoped that consistency can be achieved in terms of 
describing displacement between surfaces with differing dimensions. Further to the 
definition of a good test statistic, the metric described is both dimensionless and the 
achievement of infinite bounds is impossible, where the two surfaces exist.

§5.4.3.5 Overlap

The second translation statistic is the overlap function, kj, between two contours for 
surfaces, i and i \ t say,at level, j, kj, can be expressed as

kJ = Cli 0 ufr‘i Where j = 1,NC
i,il = 1, Ns i ^ i  

where Nq = number of contours 
Ng = number of surfaces
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Computationally, the method for evaluating kj is as follows

1. Define those points of Qj which are contained entirely within or make contact with

2. Repeat step 1, transcribing Cy with Qj.

3. Combine the two data sets.

4. Order the co-ordinates sequentially in an anti-clockwise direction.

5. Evaluate the overlap area.

Two alternative forms exist for describing overlap, the coefficient of areal association, 
Ca, and standardised overlap, Cs.

q -  area over wk*ch the two phenomena are located together 
a total area covered by the two phenomena

A
0 < C  <1

A l j + A 2 j ~ A c

Co =
_ area over which the two phenomena are located together

s baseline area

A
= 0<C <1

Ali

Both descriptors range from zero to one with completely separate distributions giving a 
value of zero whilst exactly coincident surfaces are described by a value of unity.

§5.4.3.6 Standardised overlap

The applicability of standardised overlap is restricted to situations where a natural 
ordering may be imposed on the surfaces so that the definition of a baseline surface is not
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arbitrary. The other two conditions of, comparability of units and finite bounds are both 
satisfied.

§5,4,3.7 Coefficient of areal correspondence

As for standardised overlap, the two properties concerning bounds and dimensions are 
satisfied.

The main restriction of this descriptor relates to the special case of surface A being 
contained entirely within surface B. The measure then reduces to the ratio of the areas of 
the two surfaces and as a consequence imparts no information on the level of shift which 
has been incurred.

This situation will not always arise and in instances where a shift is not wholly contained 
within one of the contours, the metric Ca, reveals as much information about the level of 
displacement as measures founded on centroid displacement and no prior assumptions 
concerning the variance of the contour need be stated.

§5.4.3.8 Translation summary

Translation may be described in terms of the displacement of the centre of gravity or 
alternatively by the amount of overlap. Of the three metrics described to analyse the 
question of translation, only one turns out to be practically viable, standard deviation 
displacement. Intuitively the concept of standard displacement is the most satisfactory 
but the property of dimension dependence nullifies its global applicability.

Percentage displacement relies heavily on the natural ordering of surfaces to enable the 
metric to be evaluated, this feature is not satisfactory especially where comparisons are 
between different variables e.g. beta and gamma radiation levels.

The usage of standardised overlap as a possible test statistic is restricted by its reliance 
on ordering, hence the coefficient of areal correspondence will be used for quantifying 
overlap.
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§5.4.4 Summary

Development of any statistical procedures to assess the level of change between two 
spatial processes will invariably necessitate some form of subjective pre-analysis. By 
examining a simple overlay of the two surfaces, a judicious choice of comparators may 
be selected.

Although this may be believed to bias the results since it is effectively performing a 
comparison based on prior information, it may be stated that in all situations a test of 
translation, scaling and rotation will be performed, it is only the format of the test which 
is under consideration, all tests should produce equivalent results. The main question 
which arises concerns the duplication of the test for scale by using the coefficient of areal 
correspondence for testing for translation, where surface A is enclosed by surface B. In 
this instance standard deviation displacement is a more appropriate measure. In all other 
instances, the overlap metric is possibly more valid as prior assumptions concerning the 
variability of the contour need not be made.

In terms of rotation, the choice of comparator is unambiguous i.e. differences in 
orientation of the two contours of interest, whilst for scalar change, interest will focus on 
the ratio of both area and perimeter.
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CHAPTER 6

A N  H Y P O T H E S IS  T E S T IN G  A P P R O A C H  T O  S U R F A C E

C O M P A R IS O N

§6.1 Introduction

Within the previous chapter attention focused on a possible approach to describing 
change. The motivation for this approach arose from the mathematical description of 
those features which man perceives when assessing subjectively whether change has 
occurred between surfaces represented as contours, which have been overlain. The 
factors considered were area, perimeter, centre of gravity and orientation. Various 
combinations of the above factors allowed different aspects of change to be quantified in 
terms of rotational, translational and scalar change.

In terms of a scalar change, ratios, proportions and differences of area, perimeter and 
area/ perimeter combined were discussed. Theoretically, the three measures, area, 
perimeter and area/perimeter, are related hence the selection of potential test-statistic is 
not clear-cut. From the ensuing work on mesh resolution, the behaviour of the 
area/perimeter measure mirrored that of perimeter, hence only area and perimeter 
formulations were used as the basis of the subsequent test statistics. The test statistics 
selected for quantifying scalar change were based on the ratio of area and perimeter. 
Differences between the areas or perimeters of comparable contours are inappropriate 
since they lack global applicability, whilst measures formulated from proportions were 
shown to differ from ratio, only by a constant.

For rotation, only one plausible descriptor was suggested, namely angular change i.e. the 
difference between the angles of orientation for the contours of interest. Finally for 
translation, overlap and centroid displacement were shown to be applicable in different 
situations. Overlap generally being the better all round descriptor since no prior 
assumptions are made concerning its usage, unlike centroid displacement where various 
assumptions concerning the equality of the variances of the contours are made. Where 
contour A is contained entirely within contour B overlap reduces to the ratio of the two 
areas, hence to avoid the problem of correlation between this measure and that of areal
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ratio, centroid displacement should be used. Table 6.1 summarises the descriptors which 
will be used as the basis of the test statistics.

Transformation (1) (2) (3) (4)

Translation Ŝ COO
X C G jj  -  X C G 2j Y C G lj- Y C G 2 j overlap

kj
SDXj S D y j

Scalar
Ay.
A 2j

Jdi
p2j

Rotation 0 lj “  %

Table 6.1:- Summary of descriptors.

A series of hypothesis tests based on these descriptors are developed within this chapter 
to examine the question of change between spatial processes. Interest will mainly focus 
on a local form of analysis, by local we refer to specific contour levels.

It is well known that one of the main problems associated with environmental research 
concerns the large amount of variation encountered in the measurements, whether it be 
attributable to field measurements or alternatively, measurements taken in the laboratory. 
In some cases, it is recognised that the level of variation in a measurement may result in 
the available analytical capacity being exceeded. It also follows that if data are to be used 
in a modelling exercise, realistic estimates of overall error must be given if a situation is 
not to arise where the errors so compound one another that totally unrealistic results are 
obtained.

Initially in this chapter we examine the simplest situation possible, no random noise is 
present in the system. For this situation, the question 'Does contour A of surface 1, differ 
from that of contour A of surface 2, according to characteristic x?' is examined.

Investigation of this question takes the form of a series of hypothesis tests using the 
descriptors summarised in table 6.1 as the basis for the test statistics. The distribution of 
the test statistics under the null hypothesis will be developed analytically, by way of a
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simulation study, since the theoretical derivation of the distribution of the characteristics 
of interest is extremely complex with a large number of assumptions being required.

Following on from this, the distribution of the test statistic under various alternative 
hypothesis is examined and from the results, a set of power curves are constructed.

The second part of the chapter will follow the same procedure but this time varying 
levels of random noise will be introduced into the data, the levels of noise having upper 
bounds of 5%, 15% and 25%. These three values being selected as representative of 
noise levels which may arise in practice. Attention will focus on the ability of various 
test statistics to distinguish between change due to some underlying process and that due 
to inherent random noise.

Finally the results will be drawn together and a global approach to the analysis of change 
will be proposed. Problems concerned with the implementation of both the local and 
global approaches will be discussed and the limitations of the technique described.

§6.2 Simulation Study

A major simulation study was undertaken to derive the empirical probability distribution 
function for the test statistics of interest, table 6.1. The null hypothesis, HO, takes the 
form of a simple hypothesis and effectively describes the situation of no change, 
Translating this to the parameters the null hypothesis are:-

1. Scalar HO : A^j = A2j
2. Rotation HO : Oy = 02j
3. Centroid displacement HO : = 0
4. Overlap HO : area of overlap =100%

Before the power of the statistics under various alternative hypothesis could be assessed,
it was necessary to introduce various levels of known change into the analysis. The form 
of the alternative hypothesis, HI, is composite and depending on the definition is either 
one or two-sided, this is discussed in detail in section 6.3.2.
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§6.2.1 Scalar Change

For both area and perimeter, a similar procedure was implemented to introduce varying 
levels of change into the statistic of interest. The scale of a contour may be changed by 
multiplying each of the points by a constant, k, figure 6.1.

Key

k = constant > 1 

x’p= kxp

y'P = kyP

Figure 6 , 1 Scalar increase/decrease

When changing the scale of a pattern of points by a factor k, the points move k times as 
far away from the origin, unless the origin is (0,0). Although theoretically this is not 
undesirable, as it is the area and perimeter which are of interest, a number of practical 
considerations arise. Firstly, the contour of interest may be shifted outwith the region of 
investigation, resulting in a different contour being depicted as the i^1 quartile, which 
would not necessarily be k times larger than the original contour as intended. The 
simplest means of avoiding this situation is to first translate the centre of the original data 
set to the origin (0,0) and then apply the transformation. The area/perimeter of the region 
should then be transformed by the corresponding factor. Running, a test program to 
validate this procedure confirmed its appropriateness.

A further simplification implemented was to describe contours circular in shape since 
changes in areas and perimeters are simple to implement. This should not affect the 
resultant distribution under the null hypothesis which is shape independent.

§6.2.2 Orientation

In terms of the metric involving orientation change was introduced and controlled by the 
following process.
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Suppose P is a point with co-ordinates (xp,yp) and that it is rotated about the origin of 

the co-ordinates through an angle 0. The resultant position of P, P* is given by:-

p *  -
fcos0 -s in 0Y xn̂

sin 0 cos 0

When rotating a pattern of points through an angle 0, the rotation swings about the origin 
so that the pattern is moved elsewhere in space, as well as being rotated. This 
displacement may be avoided by initially translating the pattern so its centroid is at the 
origin (0,0) and then applying the rotation. As for the scalar metric, the assessment of the 
test statistic was carried out via a simulated example whose initial orientation was 
known.

§6.2.3 Centroid Displacement

A very simple transformation is required to achieve a known locational change:-

X* = X + cG x  (X,Y) original data point
Y* = Y + cGy (X*,Y*) new data point

where c = constant of proportion
g . = standard deviation of the original data set in direction i, i=x,y

The only minor modification required was to shift the region of interest by the same 
amount as the simulated data to ensure comparability of the contours of interest. By 
neglecting to make this translation, the shifted contour potentially failed to correspond in 
definition to the original contour unless coincident in size and shape.

§6.2.4 Overlap

Utilising the properties of a circle, the following method was devised to allow varying 
levels of change in overlap to be evaluated. Changes in overlap when dealing with two 
similar circles can be equated in terms of the difference between the sector area and the 
segment area, $A, figure‘6.2.
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KEY

ZAOA' = ZAO'A' = 0 = overlap angle 
AOA’B' = AO’A'B = SA = sector area
AB'A’C = ABA'C = $A = segment area 
ABA'B' = Aov = overlap area

Figure 6.2:- Definition of angles and areas used to evaluate overlap. 

The above definitions may be described mathematically as follows

SA= ^A 2

$A = Sa-AAOA’

0r2 I f  . 0 0=  2rsin—rcos—
2 2 l  2 2

= i r 2(0-sin0)
2

Aqy — 2$A 

Aov = r2(0-sin0)

From figure 6.2 the critical parameter for varying the overlap is the overlap angle, 0. For 
a specific level of overlap, the angle required to achieve this change for the coefficient of 
areal correspondance is as follows:-

C„ =
ACi + ACj Aov

r2(0 -s in 0)
7tr2 + 7ir2 -  r2 (0 -  sin 0)
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C, _ 9 -sin9  0<C„<1
1+C, “  2jt 0<9<2tc

Figure 6.3 expresses the above relationship diagramatically.

100

110
120X

to 130

MO

150

170

ISO
100 90 00 70 00 50 4 0 30 20 10 0

OVERLAP P R O P O R T IO N

Figure 6.3 Values of angular displacement, 0, to achieve required level of overlap for 
the coefficient of areal correspondence.

A very simple angular transformation applied to the original co-ordinates allows the new 
set of co-ordinates of the displaced circle to be evaluated.

^new ~ ^old + -̂ shift
^new =

where Xshift = 2 |r c o s | |

An additional check was included in the program to ensure the radii of the two contours 
did not vary considerably and hence destroy the property of symmetry enjoyed when the 
two radii are equal and on which the whole argument for controlling overlap was 
founded.
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§6.2.5 Summary

The investigation of the various test statistics postulated in the preceding sections was 
undertaken via a major simulation study. The form of the study was similar for the 
various measures with the two situations of no random noise and random noise being 
analysed separately.

The following sequence of steps were implemented to examine the effect of change on 
the various test statistics.

1. Simulate data points xltx2,..., xN, where N = 50,100,150, using the NAG subroutine 
G05EAF with

"0.0" "1.0 k '
_0.0_

1  =
_ k 1.0_

where k =

0.0 area
0.0 perimeter
0.9 orientation
0.5 centroid displacement
0.0 overlap

2. Generate a smoothed bootstrap sample Xj* x2* ...,x N*, where the smoothing
parameter is taken to be the value evaluated by least squares cross validation for the 
original data set xly x2,...,xN.

3. Apply the appropriate transformations to the bootstrap sample, table 6.2. Consider a 
point P(xp,yp):-
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x-transformation y-transformation Conditions 
H0 H i

Area/
Perimeter

kxp kyP k=l k>l

Orientation xncos0 - y nsin0P J P xpsin0 + ypcos0 0=0 O<0<2tc

Centroid
Displacement

Xp+ca, Tp c=o c>0

Overlap x„+2jrcos—1
P 1 2 j yP 0=71 O<0<Jt

Table 6.2 Transformations to point P(x ,y ).

4. Calculate the smoothing parameter for the bootstrap sample using least squares 
cross-validation.

5. Construct the surface from the bootstrap sample using kernel density estimation and a 
grid resolution of 63 X  63.

6. Evaluate area ratio, perimeter ratio, location shift, orientation and overlap for the 
contour depicting the upper quartile.

7. Repeat steps (2)-(6) 250 times for the derivation of the empirical probability 
distribution function under the null hypothesis of no change. For the alternative 
hypothesis, 100 simulations were performed and the observed values for the appropriate 
test statistics calculated.

The reduction in the number of simulations under the alternative hypothesis was forced 
by the CPU time required to obtain the desired information. The resultant loss in 
accuracy was not critical since it was the general shape that was of interest, the power 
curves were possibly less smooth than might have been expected as a result.
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§6.3 Simulation Results

§6.3.1 Distribution of the test statistic under the null hypothesis

The form of the null hypothesis for all the transformations is simple and in accordance 
with many applications is the hypothesis of no change.

§6.3.1.1 Area

The unsmoothed empirical probability distribution function for the test statistic relating 
to the ratio of two areas is given in figure 6.4.
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Figure 6.4 Empirical probability distribution for areal change under the null hypothesis 
of no change.

The most apparent feature is the consistency across the results for differing sizes of data 
set. This was anticipated from the earlier work concerning the investigation of the level 
of variability introduced as a result of the surface fitting procedure. In this case, data set 
size did not appear to unduly influence the variability of the results.

A numerical summary of the empirical probability distribution function in the form of 
the percentage points, q = 60, 80, 90, 97.5 and 99, is given in table 6.3, i.e.
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P(Aj>Aj(n;q))=q/100. The points tabulated correspond to area A2j > area A2j where the

A,,test statistic is defined to be A. = —L.
1 A,.

q 50 points 100 points 150 points

60 1.00316 1.00353 1.00385
80 1.00584 1.00485 1.00654
90 1.00691 1.00646 1.00839
95 1.00889 1.00803 1.00904

97.5 1.009815 1.01000 1.00979
Table 6.3 Percentage points for the empirical probability distribution function relating 
to areal change.

§6.3.1.2 Perimeter

Figure 6.5 illustrates the empirical probability distribution of the following test statistic 
for perimeter: -

0 < Pj <  «»
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-----------------100 points

----------------- 150 points

i—

04 t. 05

Figure 6.5 Empirical probability distribution for perimeter change under the null 
hypothesis of no change.
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q 50 points 100 points 150 points

60 1.00551 1.00478 1.00398
80 1.01002 1.00704 1.00624
90 1.01623 1.00963 1.01138
95 1.02099 1.01607 1.01337

97.5 1.02929 1.01889 1.01412
Table 6.4 Percentage points for the empirical probability distribution function relating 
to perimeter change.

Table 6.4 summarises the numerical values obtained for the percentage points described 
for perimeter change based on the same criteria as for area i.e. 
perimeter P̂  > perimeter P2j. Increasing the sample size sees a corresponding reduction

in the range of the distribution function, with the tails of the distribution being shorter for 
the larger data sets. The shape of the distribution remains constant for all three data sets.

§6 .3.1.3 Orientation

Under the null hypothesis of no change, the distribution of the test statistic is as 
described in figure 6.6 ..
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Figure 6.6 Empirical probability distribution for orientation under the null hypothesis 
of no change.
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q 50 points 100 points 150 points

60 0.04786 0.03877 0.02690
80 0.06770 0.07449 0.04333
90 0.08780 0.09621 0.05465
95 0.10333 0.09966 0.06046

97.5 0.12561 0.10580 0.06777
Table 6.5 Percentage points for the empirical probability distribution function relating 
to the test statistic describing orientation.
The distributions for orientation are similar for various sizes of data set, however for 50 
data points, an occasional more diverse result is recorded. From the plot, there appears to 
be minimal bias in the overall distribution with the mode centred approximately at zero. 
As for the earlier test statistics, the percentage points for the empirical probability 
distribution function are defined in table 6.5.

§6.3.1.4 Centroid Displacement

The empirical probability distribution function for centroid displacement is illustrated for 
the positive set of values, figure 6.7. We are only interested in the distance between two 
points, not the displacements, the direction vector being analysed in terms of the 
orientation of the contour. Although the value zero is plausible within the definition of 
centroid displacement, within the numerical accuracy of the procedure it is never 
achieved.
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Figure 6.7 Empirical probability distribution for centroid displacement under the null 
hypothesis of no change.
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The distribution illustrated is equally applicable to the x, y and x-y distances since the 
assumption of equality of variances has to be satisfied before the x and y distances can be 
combined.

A difference exists between the distributions for 50, and 100 and 150 points. For the 
former the results recorded are more diverse, with a shift of approximately 0.6 standard 
deviations being recorded under the null hypothesis, at a percentage level of 97.5 and the 
mode of the distribution occurring at 0.2 standard deviations, the maximum displacement 
for 100 and 150 points is approximately one third less with the distribution peaking at 
approximately 0,1 standard deviation. A numerical summary of the empirical probability 
distribution, in the form of a set of percentage points is given in table 6.6. The table 
being symmetric about zero.

q 50 points 100 points 150 points

60 0.35560 0.23950 0.19566
80 0.42299 0.29472 0.22753
90 0.45234 0.34955 0.27755
95 0.53601 0.35761 0.30000

97.5 0.60862 0.38940 0.34023
Table 6.7 Percentage points for the empirical probability distribution function 
describing centroid displacement.

§6.3.1.5 Overlap

The empirical probability distribution function of the test statistic under the null 
hypothesis of no change is described in figure 6.8, with the salient percentage points 
tabulated in table 6.7.

The results reported display greater diversity for 50 points, than for 100 and 150 points, 
suggesting that the measures of interest are more concisely defined for larger data sets. A 
lateral shift in the distributions away from the optimal value of one results with 
decreasing sample size.
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q 50 points 100 points 150 points

60 0.87185 0.90219 0.91391
80 0.91106 0.92295 0.93814
90 0.94053 0.93507 0.95754
95 0.95742 0.95045 0.96398

97.5 0.96436 0.96339 0.97271

Table 6.7 Percentage points for the empirical probability distribution function relating 
to the test statistic describing overlap.
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Figure 6.8 Empirical probability distribution for overlap under the null hypothesis of 
no change.

§6.3.2 Distribution under the alternative hypothesis

The alternative hypothesis, HI, can either be of a simple or composite form depending 
on the nature of the analysis. Typically it will be of a composite form and will refer to 
there either being change of any form i.e, a two-sided test or alternatively, the analyst 
may believe that a specific type of change is most probable hence a one-sided test is 
applicable.
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The standard situations of both one and two-sided tests are relevant for test statistics 
pertaining to scalar and angular change. However for the test statistics describing 
translation i.e. overlap and centroid displacement, only one form of the alternative 
hypothesis is applicable i.e. one sided tests, since the statistics have one finite bound.

Once the alternative hypothesis have been stated, the relevant rejection regions, table 6.8 
may be described.

H0 Hi Rejection region

A,  = A2j Aj. < A2.
jAr A j < a(N,max(rn):q )|

Alj = A2j A,  > A2j. {AjiA. > A(N,max(rn):q)}

II > to Alj * A2j
|Aj:nniax

} A < Aj,
> A(N,max(iJ:q)j

OR, -  OR2j OR, < OR2j {oRjiORj < ~OR(N,max(i;);q)}

o Jp II o & to OR, > OR2. {OR^OR. > OR(N,max(i^);q)}

o II o & CO O R,*O R2j {OR/.IORJ > OR(N,max(rn);q)}

Plj “ Plj < P2j
| P3’P] < p(N,max(i;);q)}

Plj= Plj > P2j {pj:Pj < p (N>maxW ;q)}

Plj = P2j Plj * P2j
jp/.max f p . i l >P(N,max(r0);q)J

OVj = l o v ,< o v 2j {oVpOVj < OV(N,max(i;);q)}

oII8

OD, * CD2j {cD.ilCDj > CD(N,max(rn);q)}

where N = number of points
max(rn) = maximum level of random noise incorporated into the system 

Table 6.8 Various forms of the alternative hypothesis.
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By tabulating the numerical values of the empirical probability distribution function for 
the percentage points 60, 80, 90, 95 and 97.5, the critical values of the distribution for 
various significance levels are easily interpreted from tables 6.3 - 6.7.

§6.3.3 Power of the tests

The ability of the test statistic to correctly reject the null hypothesis for various values is 
described in terms of the power function of the test procedure.

Suitable choices for the alternative hypothesis were defined by initially testing a coarse 
grid of values and on the basis of these results, the critical regions were examined more 
closely. This was especially critical for assessing the test statistics based on area and 
perimeter.

Small changes in the area or perimeter ratios are seen to have a major effect on the 
resultant distribution. This extreme sensitivity of the test statistic may be shown to be a 
result of the underlying distribution of the test statistic.

Asymptotically, it may be assumed that both area and perimeter have an approximate 
normal distribution. On this premise and the assumption of independence between the 
two measures, Geary (1930) showed the ratio of two independent normal variables,

v = —, has frequency function:-
y

f(v) = 1 | i A ! +H ,o,2v
V2K (<Jx2 + crV)2

exp< 1 (m -H yv)2
2 c l 2 + o,V

For constant variance and small changes in the mean of the two distributions i.e. small 
scalar changes, major shifts in the resultant distribution function occur for the ratio of the 
two normal distributions. Figure 6.9 illustrates the empirical distributions for the ratio of 
two normal distributions for 50 data points, whose variances are constant but means 
differ by 2 and 4% respectively. This illustration confirms the apparent sensitivity of the 
statistics to change. Using this information, an appropriate set of scalar changes were 
investigated.
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 i i i i h ----  (a) No change

 +-------- +-------- +---------+---------+--------- (b) 2% mean change

 +---------+-------- +-------- +---------+------------ (c) 4% mean change
0.960 0.970 0.980 0.990 1.000 1.010

Figure 6.9 : Sensitivity of the scalar metrics.

For the remaining three statistics, the levels of change were constrained by their natural, 
numerical bounds, i.e. for orientation (0,rc], centroid displacement (0,2a] and overlap, 
(0,100%), where 0% is total separation and for 100%, contour A encompasses contour B. 
For each of these ranges an initial coarse set of values was investigated; for overlap, 
90%, 70%, 50%, 30%. Once the critical zones were located, additional points were 
selected in that region.

§6.3.3.1 Area

Figure 6.10 describes the power curve for area. The areal constant, k, relates to areal 
change in the following mannen-

( l+ (k x 0.002))2 where k> 0

In real terms, the range of change examined was up to 2.4%.

An areal expansion/shrinkage of greater than 2%, for a 95% level of confidence, will be 
discerned to be attributable to some physical process and not simply a by-product of the 
surface fitting technique. The results for 50,100 and 150 points are of a similar order.
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Figure 6.10 Power curve for area with no random noise.

§6.3.3.2 Perimeter

A similar procedure to that for area was performed. In this instance, k effectively 
introduces changes of the order 0 to 3% i.e.

(1 + (k x 0.002)) where k>0
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Figure 6 . 1 1 Power curve for perimeter with no random noise.

From the diagram of the power curves, figure 6.11, the results for 100 and 150 points are 
reasonably similar, however the power function, for 50 points, shows that greater
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changes are required for change to be defined as statistically significant and not to be 
solely a facet of the surface fitting procedure.

§6.3.3.3 Orientation

Throughout the chapter, examination of the various test statistics has been based on the 
bivariate normal distribution. Depicting the distribution as a contour plot, the contours 
are theoretically symmetric about the major and minor axis when no random noise is 
present in the system. On this assumption the change in orientation should be assessed

7tbetween (0,—) radians.
2

The response of the statistic for orientation is similar to that for area, angular change of 
between 20° and 25° is attributable to the surface fitting procedure, for a power of 0.05. 
Changes outside this range may be considered to be a result of external factors, figure 
6.12
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Figure 6.12 Power curve for the change in orientation with no random noise.

§6.3.3.4 Centroid Displacement

The resultant power curves are shown in figure 6.13. The measurement of centroid 
displacement along the x-axis is defined in terms of standard deviations i.e. k=l, 
describes a shift of one standard deviation.
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In terms of the metric describing centroid displacement, it is apparent that the larger the 
data set, the more precise the results i.e. less variability is introduced due to the surface 
fitting methodology. A marked drop in the power for 50 data points from that recorded 
for 100 and 150 points is seen from figure 6.13.
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Figure 6.13:- Power curve for centroid displacement with no random noise.

§6.3.3.5 Overlap

For overlap, the power curves illustrated in figure 6.14, display differing behavioural 
patterns with 50 points having the weakest power, as expected.
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Figure 6.14 Power curve for overlap proportion with no random noise.
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For the null hypothesis to be rejected, at the 95% confidence level, an overlap of the 
order of at most 50% is required for 50 data points and 60% and 75% for 100 and 150 
points respectively.

It appears that problems may arise with the introduction of random noise, particularly for 
50 points, resulting in situations where noise attributable to the surface fitting procedure 
will dominate the result, hence noise introduced from the surface fitting procedure will 
be inseparable from changes due to physical processes.

§6.3.4 Summary of no random noise

The initial part of the chapter has examined the simplest situation where no noise is 
present in the measurements. Even for this simple scenario, there are indications that the 
statistics describing orientation and overlap, may only be applicable where noise levels 
are firstly minimised and secondly, the original data set is as large as practically viable, 
both in terms of the economics and further, the experimental effort required.

Even where noise is absent and no ambiguity arises in defining the angle of orientation 
or the area of overlap, changes of the order of 20° and an overlap of 50% are required 
before we can be certain that change is a result of some underlying process, for 50 data 
points.

For the two scalar measures area and perimeter and a mesh network comprising 
approximately 4000 points, the level of change which signifies external processes are 
acting is surprisingly small e.g. for a contour of area 100 units, an increase to 102 units 
leads to the rejection of the null hypothesis for a significance level of 0.05. The 
introduction of noise into the system is liable to result in a much greater change being 
required before the null hypothesis is rejected.

Finally centroid displacement responds in a fairly stable manner with values of over 0.4 
standard deviations being significant in the case of 100 and 150 points and 0.8 standard 
deviations for 50 points.
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§6.4 Random Noise

Section 6.3 examined the simplest scenario where the measurements were not subject to 
random noise. In practice this is an unrealistic situation as measurements will always 
contain some form of inaccuracy.

This may be due to measurement error, bias or human error. Bias or persistent error is 
outwith the control of the statistician. The operator should recognise the symptoms when 
recording the measurements. Failure to do this will lead to an over/under estimation of 
results. The overall shape of the contour surface should be unaffected, other than be 
raised or lowered by a constant factor, metaphorically speaking. The worst scenario is 
the case where the operator recognises the occurrence of bias, recalibrates the instrument, 
continues making measurements but fails to correct the earlier results for bias. The 
surface is then a mis-match of results and worthless.

The only form of error in which we are interested is that due to measurement error, 
which is controlled by the accuracy of the instrument and human limitations, typically 
this form of error will be quantifiable, although over or under estimation may 
occasionally result. Typically in field measurements, the level of inaccuracy will be of a 
higher order than that pertaining to measurements recorded in the laboratory.

The noise levels which were believed to be most typical are those of 5, 15 and 25%. In 
this section, the analysis described in section 6.3 will be repeated but for the three levels 
of noise.

Two possible forms of noise may be introduced into a spatial system, either in terms of:

1. z-ordinate
2. x, y-ordinate.

Interest is specifically in the former of these error forms. A similar procedure to that 
described in section 6.2.5 was undertaken, step 1 was replaced by
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1. Simulate data points Xir,X2r>*-->^nr f°r N = 50, 100 and 150 points using the NAG 
subroutine G05EAF

2iR - n (o,x ) + n (o,e ,)

where
1.0 k ' 
k 1.0 S i =

s 0 
0 s

where k =

0.0 area
0.0 perimeter
0.9 orientation
0.5 centroid displacement
0.0 overlap

s =
0.05
0.15
0.25

§6.4.1 Distribution of the test statistic under the null hypothesis

As for the case of the null hypothesis where no random noise is present, the statement for 
the null hypothesis is the same i.e. no change.

§6.4.1.1 Area

The underlying empirical probability distribution function for the areal ratio is given in 
figure 6.15 with the relevant percentage points being tabulated in 6.9.
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Figure 6.15 (c) 25% random noise
Figure 6.15 Empirical probability distribution for areal change under the null 
hypothesis of no change.

q rn 50 points 100 points 150 points

60 5% 1.00432 1.00361 1.00365
80 5% 1.00718 1.00554 1.00556
90 5% 1.00896 1.00781 1.00708
95 5% 1.01126 1.00945 1.00781

97.5 5% 1.01191 1.01177 1.00947

©



60 15% 1.00451 1.00451 1.00422
80 15% 1.00704 1.00660 1.00598
90 15% 1.00933 1.00835 1.00814
95 15% 1.01198 1.00923 1.00923

97.5 15% 1.01301 1.01006 1.01162

60 25% 1.00446 1.00452 1.00419
80 25% 1.00840 1.00742 1.00667
90 25% 1.01290 1.00972 1.00829
95 25% 1.58624 1.01202 1.01163

97.5 25% 2.88234 1.15785 1.06788
Table 6.9 : Percentage points for areal change under the null hypothesis.

A strong similarity is displayed between the results for 50, 100 and 150 points. 
Increasing the level of random noise, results in an elongation of the tails of the 
distribution. This is particularly prevalent for noise levels of the order 25%. For the case 
of 50 points, aberrant values are noted, the 97.5 percentage point for 50 points is almost 
double that for 95%. Increasing the number of simulations will possibly draw the value 
in slightly, but it will still be some distance away from the 95% point, since the 
distribution is naturally long tailed.

§6.4.1.2 Perimeter

The distribution under the null hypothesis in the presence of noise responds in a similar 
manner to that under the hypothesis of no change in the absence of no noise, figure 6.16.

The difference again materialises in the length of the tails of the distributions between 
data sets of differing sizes. Much closer accord is displayed between 100 and 150 points 
than for 50 points for 15% and 25% random noise. As for the case of areal change, we 
see that particularly for 50 data points, the distribution is elongated, this is accordingly 
reflected in the values of the percentage points, table 6.10. The results reported for 5% 
noise levels correspond closely to those evaluated for the case of no random noise in 
section 6.3.1.1. For 25% noise, the percentage points display a greater level of contrast 
between 100 and 150 points than for either 5% or 15%, in the tails of the distribution.
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The introduction of noise into the system does not appear to bias the results, the mode of 
the distribution, for all permutations of size and noise, is still in the vicinity of one.

The shapes of the distributions remain constant for all permutations of noise level and 
data set size.
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Figure 6.16 Empirical probability distribution for the perimeter ratio under the null 
hypothesis of no change.
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q % 50 points 100 points 150 points

60 5% 1.00669 1.00789 1.00404
80 5% 1.01354 1.01191 1.00722
90 5% 1.01793 1.01563 1.01025
95 5% 1.02031 1.02303 1.01316

97.5 5% 1.02677 1.02663 1.01774

60 15% 1.01346 1.00972 1,00912
80 15% 1.03051 1.02123 1.01897
90 15% 1.04924 1.03320 1.02340
95 15% 1.07506 1.05203 1.02880

97.5 15% 1.15606 1.06293 1.05491

60 25% 1.06922 1.02781 1.02380
80 25% 1.17126 1.05261 1.05058
90 25% 1.24585 1.07865 1.06834
95 25% 1.58095 1.24007 1.08585

97.5 25% 1.65233 1.34295 1.17154
Table 6.10 : Percentage points for perimeter change under the null hypothesis.

§6.4.1.3 Orientation

The empirical probability distribution functions for orientation are presented in figure 
6.17 with the analytical values given in table 6.11 for various percentage points.

Once again the main contrast between different sizes of data set is in the tails of the 
distribution. For increasing sizes of data set, the tails are terminated more sharply. This 
feature extends over all levels of noise. The mode of the distribution occurs at 
approximately zero for all the distributions, indicating that bias has not been introduced 
into the system.

The distribution of the test statistic for 25% noise is wider than for either of the other two 
levels and the tails are generally fatter.
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Figure 6.17 Empirical probability distribution function for orientation change under 
the null hypothesis of no change.
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q % 50 points 100 points 150 points

60 5% 0.063614 0.055197 0.040060
80 5% 0.082298 0,078591 0,056560
90 5% 0.102002 0.097638 0.066350
95 5% 0.108241 0.117996 0.071623

97.5 5% 0.235798 0.124846 0.096091

60 15% 0.113325 0.051748 0.050417
80 15% 0.210964 0.833154 0.076049
90 15% 0.281352 0.105859 0.091681
95 15% 0.348310 0,119322 0.109681

97.5 15% 0.503490 0.155222 0.112509

60 . 25% 0.225310 0.059556 0.080961
80 25% 0.303834 0.093346 0.103648
90 25% 0.450519 0.145384 0.133834
95 25% 0.550824 0.169104 0.143449

97.5 25% 0.689743 0.205192 0.161665

Table 6.11 Percentage points for orientation change under the null hypothesis. 

§6.4,1,4 Centroid Displacement

Once again for 5% and 15% random noise, a strong similarity in behaviour to that of 
the case for no random noise emerges. The results for 50 points being more diverse, 
figure 6.18.
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Figure 6.18 Empirical probability distribution for centroid displacement under the 
null hypothesis of no change.

By the time, the noise level attributable to the data is of the order of 25%, differences 
emerge between the three sizes of data set. The percentage points, table 6.12, confirm 
this behaviour. The tails are accordingly long for 50 data points. Although the 
distributions are long-tailed, the percentage points are contained within the limits of 
two standard deviations for all levels of random noise.
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q % 50 points 100 points 150 points

60 5% 0.38080 0.20772 0.20296
80 5% 0.48054 0.25640 0.25621
90 5% 0.51861 0.27862 0.30236
95 5% 0.53936 0.32125 0.34702

97.5 5% 0.61929 0.36598 0.39409

60 15% 0.35560 0.23949 0.19566
80 15% 0.42299 0.29472 0.22753
90 15% 0.45234 0.34955 0.27755
95 15% 0.53601 0.35761 0.30000

97.5 15% 0.60862 0.38940 0.34024

60 25% 0.78525 0.67000 0.52101
80 25% 0.94089 0.75300 0.62418
90 25% 1.02929 0.90167 0.73855
95 25% 1.20269 0.94069 0.79367

97.5 25% 1.33353 1.07630 0.85094
Table 6.12 Percentage points for centroid displacement under the null hypothesis.

§6.4.1.5 Overlap

In terms of the overlap function, the empirical probability distribution function is 
marginally different for each size of data set, figure 6.16. The saliant values being 
recorded in table 6.19.

The tails of the distribution are longer and fatter with increasing levels of noise. The 
mode of the distribution does not lie at 1.0 , the expected value, if no change has 
resulted. The underlying reason for this potential form of bias is because one is the 
upper bound of the distribution and with the introduction of noise, it would be 
anticipated that the two contours could be entirely contained within each other. For 5% 
noise and all three data sets, the mode lies at 75%, similarily for 100 and 150 points for 
15% noise. For both 15% and 25% noise, for 50 data points, the mode is more difficult 
to select as the distribution is much flatter in shape, but it lies approximately at 40%.
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Figure 6.19 Empirical probability distribution for overlap under the null hypothesis 
of no change.
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q % 50 points 100 points 150 points

60 5% 0.833994 0.883402 0.898660
80 5% 0.887435 0.914999 0.922489
90 5% 0.921110 0.932646 0.940530
95 5% 0.938217 0.948872 0.956583

97.5 5% 0.950966 0.960851 0.962937

60 15% 0.714501 0.789122 0.826559
80 15% 0.821925 0.854482 0.869114
90 15% 0.869977 0.887272 0.886470
95 15% 0.905789 0.899752 0.912062

97.5 15% 0.924986 0.920836 0.925357

60 25% 0.672920 0.723764 0.732612
80 25% 0.742420 0.800562 0.787022
90 25% 0,798821 0.854832 0.818849
95 25% 0.834341 0.892620 0.843812

97.5 25% 0.862852 0.909092 0.863835

Table 6.13 Percentage points for overlap under the null hypothesis.

§6.4.2 Power Curves 

§6.4,2.1 Area

For areal change, the power curves, figure 6.20, illustrate a strong similarity between 
the results for 100 and 150 points for 5% and 15% random noise, whilst for 25%, 
differences materialise between all three data sets. The results for 50 points in particular 
are indicative of weaker power. Increasing the noise level results in a falling off of the 
overall power i.e. a lateral shift in the curves has resulted, hence greater areal changes 
are required for differences, between contour areas, to be defined as statistically 
significant and not simply a result of the surface fitting procedure.
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Figure 6.20 Power curves for area in presence of random noise.

§6.4.2.2 Perimeter

A strong pattern emerges in the power curves for perimeter, figure 6.21. The curves for 
50 points consistently display a weaker level of power than either 100 or 150 points, 
whilst only marginal differences emerge between the results for 100 and 150 points.
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Increasing the noise level, results in a sharp decrease in the power. For noise levels of 
25% compared to those of 15% an approximate doubling of the perimeter ratio is 
recorded for a power of 95%.
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Figure 6 . 2 1 Power curves for perimeter in presence of random noise.
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§6.4,2,3 Orientation

The power curves for orientation change are given in figure 6.22 for all three levels of 
noise. The behaviour for 5% differs to that for both 15% and 25%. A fairly strong 
accord exists between the results for 0% and 5% random noise. Generally, a slightly 
greater shift is required for change to be recognised as the result of external influences 
for 5%. The trends across the data sets are similar.

For 15% and 25% noise a different pattern emerges, the behaviour of the results for 100 
and 150 points being similar, whilst for 50 data points, a reduction in the power occurs. 
Rotations of the order of 90  ̂ and 45°' for 50 and 100 and 150 points respectively, are 
required, for a power of 0.05, before It is safe to say that change is not solely a facett of 
the surface fitting procedure.
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Figure 6.22:- Power curves for orientation change in presence of random noise.

§6.4.2.4 Centroid displacement

The ability of the test statistic to reject the null hypothesis was examined for various 
alternative hypotheses, the resultant power curves are given in figure 6.23.

Noise levels of 5% resulted in power curves which display little difference to those for 
the situation of no noise; the results for 100 and 150 points display strong accord whilst 
for 50 points, a much greater shift is required before the null hypothesis is rejected.

Increasing the noise level to 15% and 25% confirms the earlier suspicions that 
complications may arise in separating change attributable to the surface fitting 
procedure from that due to 'real' change, especially for the latter case where 
displacement of the order of two standard deviations is required before we can 
categorically state that an external process has been acting in effecting a change.
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Figure 6.23 Power curves for centroid displacement in presence of random noise. 

§6.4.2.5 .Overlap

The behaviour of the power curves given in figure 6.24 is much less well defined than 
for any of the previous examples. For 5% noise, the results for 100 and 150 points are 
well defined, with an overlap percentage of the order of 60%, for a confidence level of 
95%, required to ensure Hq is rejected, whilst for 50 points, a value of the test statistic 
in the region of 40% would result in the rejection of the null hypothesis.
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Noise levels of 15% and 25%, give much less smooth pictures, the results for 100 and 
150 points still respond in a similar manner, but the power falls away considerably. For 
50 points, the two contours have to be virtually disjoint before we can be certain that 
change is not solely indicative of variability attributable to the surface fitting procedure.
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Figure 6.24 Power curves for overlap in the presence of random noise.
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§6.4.2.6 Summary

Overall the introduction of random noise resulted in the underlying probability 
distribution function of the test statistic behaving as anticipated, increasing the level of 
random noise resulted in longer-tailed distributions and hence greater changes were 
required before change due to the external process could be separated from those due to 
noise in the variable of interest.

In terms of the power curves, the behaviour of the data sets for 5% random noise, 
responded in a similar fashion to those of no random noise i.e. where the data set size 
was influential in controlling the probability distribution function for no noise, a similar 
pattern was reported in the presence of low levels of noise. Also the percentage points 
recorded were similar in value.

This generalisation does not carry through for 15% and 25% noise. With increasing 
noise, the power curves for 50 points generally divest themselves from those for 100 
and 150 points. The main exception to this was for the test statistic describing centroid 
displacement where a collation of the curves appeared to result.

One observation to emerge from the preceding analysis was the question of the validity 
of defining a translation statistic, particularily for 50 points where the level of noise was 
of the order of 25%. The variability due to the level of measurement noise was liable to 
dominate any measure of change recorded.

§6.5 Multivariate Hypothesis Testing Procedure

Univariate techniques may be utilised to analyse changes between single contours but 
we may wish to consider several test statistics simultaneously or to evaluate the same 
test statistic on a number of different contours. A univariate analysis effectively 
assumes the parameters are mutually independent between contours or that inter­
relationships are unimportant. In the case of overlap and areal ratio, there are situations 
where the two are identical, hence correlation exists between the measures, unless the 
analyst is aware of the situation at the subjective stage and substitutes the statistic based 
on the centre of gravity.
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Generally the measures described will display only weak correlation because of the 
complex nature of the contours. Table 6.14 describes the correlations between the 
various statistics, for the three levels of noise. On this premise, the assumption of 
independence is not unrealistic except possibly between the scalar measures area and 
perimeter and location shift and orientation..

Area Perimeter Orientation Location
shift

Perimeter 0.949

Orientation -0.027 -0.049

Location shift -0.066 -0.077 0.585

Overlap -0.010 -0,014 -0.114 -0.061
Table 6.14 (a) Correlations for the various test statistics for 5% noise.

Area Perimeter Orientation Location
shift

Perimeter 0.960

Orientation -0.239 -0.224

Location shift -0.078 -0.041 0.500

Overlap 0.346 0.349 -0.274 -0.121
Table 6.14 (b):- Correlations for the various test statistics for 15% noise.

Area Perimeter Orientation - Location 
shift

Perimeter 0.951

Orientation -0.060 -0.025

Location shift -0.144 -0.174 0.078

Overlap 0.161 0.210 0.074 0.033
Table 6.14 (c) Correlations for the various test statistics for 25% noise.

Table 6.14 :- Correlation between the various test statistics for all levels of noise.
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The strength of the relationship between location shift and orientation may be 
attributable in part to the evaluation of the centre of gravity for each of the measures, 
hence a mathematical relationship exists between the two. Area and perimeter are 
known to be strongly related for simple structures and in the simulation study, the 
contours are always defined to be pseudo- elliptical or circular hence the resultant, 
possibly misleading, strength of the relationship.

A multivariate test may effectively be performed by evaluating for each level of 
interest, the appropriate measure of overlap, centroid displacement, scalar change and 
angular change for each set of comparable contours. Each individual contour in surface 
A being assessed against the 'corresponding' contour from surface B. An order of 
subjectivity is introduced at this stage, interest only being in those contours which are 
recognisably comparable in some form size, shape or position.

For a global analysis, the parameter values are not necessarily assumed to be 
independent. An analysis of this form will be based on a multivariate technique which 
explicitly models the covariance structure of the data. Theoretically the results are more 
powerful, but a number of restrictions limit the potential power of the test, section 6.6. 
A parametric form of analysis for a global test of change is Hotelling's one sample T^- 
test, where we are testing

HO : p. = m

HI : |i,X unconstrained

The vector of fixed constants will depend on the form of investigation. Generally we 
will be concerned with comparing all aspects of the structure of the two surfaces, 
hence:-

rno change in area >
1 no change in perimeter
0 ie. no change in orientation ,say
0 100%overlap

,0 , vno change in centroid displacement^



179

Where interest is only in specific, pre-defined aspects of a surface, m can be 
accordingly modified. An illustration of the implementation of a global test is given in 
chapter 7.

§6.6 The Technique

1. Interpolate grid points on a regular grid comprising 4000 nodes.
2. Select number and bounds of class intervals using empirical rules described earlier.
3. Construct contour plot.
4. Calculate the basic geometric quantities area, perimeter, centroid ordinates and 
orientation.
5. Evaluate the required test statistics.
6. (a) For a local analysis carry out the corresponding hypothesis test.

(b) For a global approach collate the required information and perform a 
Hotelling's one - sample T^.
7. Interpret the results.

§6.6 Limitations of the Technique

A number of problems are currently associated with both the univariate and 
multivariate forms of the analysis described in this chapter,which may bias the results.

Restriction 1 How should the test statistics be defined for a contour which was whole 
for surface 1 and becomes disjoint for surface 2 and vice-versa.

Solution 1 For area and overlap the total area for each level of interest may be 
summed for the subsequent analysis, for both the univariate and multivariate 
approaches.

One plausible method for dealing with the statistic for centroid displacement is to 
evaluate the statistic for each separate contour and then take a global average. This is 
particularity suited to the situation given in figure 6.25 (a).

In terms of orientation, the angular change may be equated for each of the disjoint sets 
of contours and hence compared. Realistically, for perimeter, there is no valid 
alternative which enables a valid perimeter ratio to be evaluated; combining the
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perimeters will result in an over-estimation of the ratio whilst evaluating the ratio 
separately for each of the areas, tends to cause an under-estimation in both cases. The 
complexity of the shapes of the contours hinders any proportional combination being 
undertaken. However as described in the introduction to the section, area and perimeter 
may be strongly related, hence the inclusion of perimeter as a measure may not be 
essential.

Figure 6.25 (a) Disjoint contour Figure 6.25 (b) Split contours

Figure 6.25 Problematical contour shapes.

Restriction 2 :- The second restriction arises where an additional disjoint contour 
appears in one of the surfaces, figure 6.25 (b).

Solution 2 For the univariate approach it may be included in the total area whilst for 
the multivariate case, unless interest is solely in the entire contour level and not 
individually comparable contours, it should be omitted from the analysis, hence 
potentially biasing the result.

Restriction 3 :- A further limitation with the methodology is linked to the general 
criticism of hypothesis testing, it only answers the question, 'Has there been a change?' 
or 'Is there an association between variables A and B?'. No account is taken of the size 
of the difference or asssociation.

Solution 3 For practical problems, alternative approaches may enable these questions 
to be answered, once we have assessed whether an association/change either exists or
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has occurred. Secondly, having established a hypothesis testing procedure, the close 
links between it and interval estimation will enable a confidence interval to be placed 
on the level of change.

Restriction 4 A further limitation of the technique is in terms of the size of the data 
set and the level of random noise present within the system, these factors apparently 
control how small a change may be detected over and above that of ’natural' variability.

Solution 4 The only viable solution is for the practitioner to collect more data, or 
alternatively ensure the data collected is of a high quality and errors are minimised.

Restriction 5 Related to the previous limitation of noise level is that of the incorrect 
assessment of the level of noise within a series of measurement. Over or under­
estimation of the noise factor may inadvertantly alter the result.

Solution 5 One possible method to eliminate this potential error source is instead of 
defining a p-value or other appropriate value, the maximum level of noise at which the 
statistic is significant may be quoted, for a particular significance level. Although 
unorthodox, it eliminates the potential for incorrectly defining the noise level.

§6.7 Advantages of the Technique

The main advantages of the methodology are

1. Its versatility and intuitiveness. The technique may be applied to a whole wealth of 
situations ranging from detecting changes in pollen levels, to assessing the relationship 
between the geology of an area and its background radiation levels.
2. The non-reliance on dimensionality ensures that two or more non-similar measures 
may be examined for changes.
3. It is simple to implement and the test statistics are easily calculable, once the 
surfaces have been constructed.
4. The lack of restriction placed on the methodology required to develop the surfaces, 
bar that of consistency, widens its appeal.
5. In terms of a local approach it enables the internal spatial complexities to be 
investigated more specifically.
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CHAPTER 7

T H E  A P P L IC A T IO N  O F  T H E  M E T H O D O L O G Y  T O  T W O

E N V IR O N M E N T A L  C A S E  S T U D IE S  

§7.1 Whv The Studies Were Selected

Within this chapter, two examples have been selected to illustrate the potential diversity 
and complexity of the applications to which the methodology developed in chapters five 
and six may be applied.

The first example deals with one of the simplest situations; the investigation of climatic 
change given the results from a monitoring network. The observations were recorded at 
fixed localities and different time points, t. The example addresses the question of 
whether a seasonal temperature change has resulted within the contiguous United States 
of America during the fifty year span, 1930 to 1980. Interest has been expressed in such 
a question due to the high public profile of global warming and its possible 
consequences. Attention will focus on the implementation of the hypothesis method, on 
both a local and global scale, with the results of the global test being compared to those 
of other global techniques, described in sections 4.3.

The second example was primarily selected to illustrate that the methodology was not 
only applicable to simple problems, but also to others where the level of spatial 
variability differed between variables. The motivating question was whether background 
radiation is a causative factor in the induction of leukaemia. A pilot study, commissioned 
by the Leukaemia Research Fund, examined this question for a region of south-west 
England. In addressing this problem, a secondary issue was examined; ‘Was the 
underlying population the sole factor in controlling the distribution of cases?' The data 
comprised leukaemia cases, population figures and radiation values which all differed in 
spatial resolution and quantity. The sparsity of the leukaemia data served to curtail the 
implementation of the methodology directly but it provided the motivation for the 
implementation of alternative forms of analysis.
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§7.2 Case Study 1 The Investigation of Climatic Change

In recent years there have been numerous press releases and technical articles concerned 
with the ideas of climatic change and potential global warming, including Woodward 
and Gray (1992), Karl et al. (1991), Tsonis and Eisner (1989). Of central focus has been 
the phenomenon called the 'greenhouse effect’.

The planet is made habitable by the presence of certain gases. These gases trap long­
wave radiation emitted from the Earth’s surface and result in a global mean temperature 
of 15°C, as opposed to -18°C, in the absence of an atmosphere. By far the most 
important greenhouse gas is water vapour. However there is a substantial contribution 
from carbon dioxide and smaller contributions from ozone, methane and nitrous oxide.

The concentrations of carbon dioxide, methane and nitrous oxide are believed to be 
increasing and in recent years other greenhouse gases, principally chlorofluorocarbons 
(CFC's), have been added in significant quantities to the atmosphere. There are many 
uncertainties in deducing the consequential climatic effects. Typically it is estimated that 
increased concentrations of these gases since 1860, may have raised global mean surface 
temperatures by O.S^C or so, and the projected concentrations could produce a warming 
of about 1.5°C over the next 40 years.

Numerical climate models indicate that other changes in climate would accompany the 
increase in globally averaged temperatures with potentially serious effects on many 
social and economic activities.

Much of the evidence for a global warming effect has been based on large-scale Global 
Circulation Models (GCM's). Table 7.1 summarises the results from five of the most 
commonly cited methods.

Within these studies the global and annual average warming varies from 2.8K to 5.2K. 
The warming is accompanied by an increase in evaporation and precipitation. The 
enhanced radiative heating of the surface due to increases in carbon dioxide and water 
vapour is balanced by increased cooling due to evaporation, producing a more intensive 
globally averaged hydrological cycle. The change in temperature is not uniformly 
distributed in time or space. A concise review of how these changes may be effected is 
given by Mitchell (1989).
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Study Source Surface 
Temperature 
Change (K)

Precipitation
Change

(%)
GISS Hansen et al. 

(1984)
4.2 11.0

NCAR Washington and 
Meehl (1984)

4,0 7.1

GFDL Wetherald and 
Manabe (1986)

4.0 8.7

MO Wilson and Mitchel 
(1987)

5.2 15.0

OSU Schlesinger and 
Zhao (1987)

2.8 7.8

Table 7 . 1 Global mean changes in five carbon dioxide doubling studies.

The GCM's are all based on multi-level mathematical representations of the atmosphere. 
Given the complexity of the environment and the relative simplicity of the models there 
is much controvorsy concerning their validity.

Other numerical studies have focused on the idea of climate change and long-term 
patterns in temperature and precipitation, (Karl, Heim and Quayle (1991), Jones et al.
(1986), Diaz and Quayle (1980)).The critical question of climate variability has also 
been addressed, (Karl et al. (1984), Agee (1982)).

A more recent study by Woodward and Gray (1992) raises the question of whether trend 
based analysis is valid for temperature data since for data of this form, it is common to 
observe trends that increase over one time span and then decrease over the next, more 
than likely because of the correlation imposed on the data by the physical phenomena 
that drive them. Although all the preceeding analysis invoking the use of a trend based 
procedure produce statistically significant results, the authors ask, 'If conditions remain 
the same, should we predict the temperature to increase in the future for an extended 
period of time?'
None of these studies have incorporated the spatial aspects of the temperature or 
precipitation field. Early papers which focused on the spatial-temporal change of
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temperature and precipitation over the U.S.A. were either regional in nature, Sellers 
(1968), or restricted to relatively short time periods of the order of a decade or two, 
Skaggs (1975).

More recently Handcock and Wallis (1990) developed a comprehensive model for the 
spatial dimension in conjunction with the temporal component. Since the model was for 
the meteorological field as a whole, this facilitated its direct comparison with GCM's and 
allowed prediction of derived quantities throughout the region and over time.

For a gradual increase of 5°C over 50 years, it has been suggested that it will take 
between 20 and 30 years before the change is discemable above the natural variation in 
temperature.

The quality of all these studies depends on the climatic records being both reliable and 
accurate. Many of the data bases used in the past were not believed to be either free of 
bias and error or suitable for long term climate studies.

Some of the more recent studies have made use of what is believed to be an accurate, 
unbiased, modem historical climate record set up by the Carbon Dioxide Research 
Program of the United States Department of Energy and the National Climatic Data 
Centre (NCDC) of the National Oceanic and Atmospheric Administration (NCAA), 
Quinlan et al. (1987).

Utilising the above data set, investigation of a very simple question was undertaken to 
illustrate the applicability of the methodology developed. The question of interest 
examined the seasonal changes in temperature during the 50 year span 1930 to 1980 and 
was 'Has a change occurred in temperatures between 1930 and 1980?'. The results 
obtained were compared to those evaluated on the basis of a number of other existing 
techniques. The seasons were defined as spring:- March, April and May; summer.- June, 
July and August; autumn:- September and November; and finally winter- December and 
January and February of the next/ upcoming year.

§7.3 United States Historical Climatology Network

A network of 1219 stations (HCN network) within the contiguous United States of 
America was set up for the specific purpose of compiling an accurate, serially complete,
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modem historical climate data set suitable for detecting and monitoring climate change 
over the past two centuries. The data base comprises station histories, monthly 
temperature (maximum, minimum and mean) data and total monthly precipitation. 
Potentially it is the most reliable and continuous sequence to have been collected in 
recent times, a whole wealth of sources gave rise to the final data set including 
climatological publications, universities, federal agencies, individuals and data archives.

All stations were quality controlled by NCDC with the use of outlier and areal edits, each 
station being corrected for time of observation differences, instrument changes and 
moves, station relocation and urbanisation effects, Karl et al (1986), Karl and Williams
(1987), Karl et al (1988). A number of features associated with the data are

1. Confidence factors for each adjusted estimate.

2. Only a small portion of the data is missing with some missing values being estimated 
from neighbouring stations.

3. The data is constantly being updated and enhanced and hence provides a unique 
source for the evaluation of greenhouse effects.

§7.4 Subjective Impression

Before proceeding to the subjective analysis of comparison, a few basic summary 
statistics are cited in table 7.2 for the four seasons and the two years in question.

The first tool for assessing subjectively the question of change was based on an 
univariate form of analysis, the box-and-whisker plot. Specifically the plot examines the 
differences between the 1980 and 1930 temperatures, figure 7.1. Spring and winter 
display a similar trend across the results, the mean temperature generally being cooler in 
1980 than 1930 whilst the reverse is true in summer and autumn. In terms of range 
greatest variability amongst stations is demonstrated in the winter months where 
considerable differences are displayed for the two years in question.
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Year Season Number Number

(missing)

Mean Stdev. Min. Max.

1930 Spring 1174 25 51.400 8,380 30.29 75.74

1980 Spring 1184 15 50.862 7.956 21.24 77.81

1930 Summer 1170 29 71.994 6.612 50.05 97.72

1980 Summer 1172 27 72.563 7,830 48.81 96.87

1930 Autumn 1169 30 53.294 8.187 33.76 78.78

1980 Autumn 1161 38 53.895 7.970 35.83 80.22

1930 Winter 1170 29 34.141 9.959 10.74 67.30

1980 Winter 1191 8 34.028 10.572 5.790 65.98

Table 7.2 Summary statistics for the four seasons.

O * * I + 1------** Figure 7,1 (a) Spring

I +1------** Figure 7.1 (b) Summer

*** i *** Figure 7.1 (c) Autumn

------------1 + i------------****** * * o  O Figure 7.1 (d) Winter

—I----------h---------- h-------- +---------+-------- +—  Temperature change
-12.0 -6.0 0.0 6.0 12.0 18.0 (°C)

Figure 7.1 Box-and whisker difference plots (1980-1930).

The major problem is as for all univariate approaches to spatial statistics, the spatial 
context of the data is ignored and no feel is attained for how these differences are 
distributed over the United States of America.
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Bivariate plots are an alternative means for describing the data. These enable a better 
assessment of the relationship between the two data sets to be made. For spring and 
summer a fairly narrow ellipse encloses all the results, whilst for autumn the points are 
less well confined especially at the lower range of temperatures. Finally for winter, a 
separation of the enclosing ellipse occurs at the cooler end of the scale, indicating a 
greater diversity of results between the two years in question, this confirms the maximal 
change of 18°C reported in the box-and-whisker plot for the differences.

However, although the bivariate plot is slightly more satisfactory than the univariate 
approach, the spatial dimension is still ignored.
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Figure 7.2 Bivariate plots of temperature for the contiguous U.S.A. for 1980 and 1930.
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We will now consider two of the spatial techniques which formed the cornerstone of the 
methodology developed in the preceding chapters, to test whether change has resulted 
between the two variables of interest. Figures 7.3 to 7.6 illustrate the superposition of 
the two surfaces of interest and the differences between the two data sets i.e. isopach 
maps, for a selected set of contours for each of the four seasons. The selection of the 
contours was based on a set of pre-defined temperature levels since interest was in 
whether change, in the form of an increase or decrease, had resulted during the two 
years in question, not whether changes had occurred in the spatial distribution of the 
two surfaces, i.e. we are comparing the same temperature contours and assessing by eye 
any apparent differences over time. For clarity only five contours have been depicted 
for each surface.

Based on a recommended grid of 4000 points, the surfaces were plotted using kernel 
density estimation, with selection of the smoothing parameter undertaken using least- 
squares cross validation.
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4------ 55°F  5------ 60°F

Figure 7.3(a) Superposition of temperature surfaces for spring.
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Figure 7.3(b) Isopach map for Spring (1980 -1930)

Figure 7.3 Spatial subjective analysis for spring.

For temperatures up to 50°F almost total accord is expressed between the isotherms, 
above this level indications are that 1980 tended to be slightly cooler, this is indicated 
by the contours depicting higher levels of temperature generally being smaller in areal 
dimension for 1980 than 1930.

Moving to the residual map, a difference in the geographical dispersion of temperature 
change is suggested. A region in the south-west of the United States appeared to 
experience an overall increase in temperature levels during the 50 year span whilst the 
rest of the continent was undergoing a reversal of this apparent trend. The situation is 
relatively more complex to analyse than suggested from the superposition of the two 
surfaces.

The two techniques describe change in a different way, the first specifically examines a 
temperature level x°F, for the whole of an area, whilst the isopach map ignores the 
underlying level of temperature and considers differences at each specific station.
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Figure 7.4 (a) Superposition of temperature surfaces for summer.
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Figure 7.4 (b) Isopach map for summer (1980 - 1930)

Figure 7.4 Spatial subjective analysis for summer.
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Once again greater concordance is displayed between the temperature contours at the 
cooler end of the range whilst at the upper end the area covered by the contours is 
correspondingly greater for 1980 than 1930, indicative of the climate becoming warmer 
over time.

Moving to the isopach map for summer, an approximate north/south divide is indicated. 
Generally for the more southerly latitudes the temperatures recorded are higher in 1980, 
whilst the reverse is true for the northerly latitudes. Anomalies do appear to dispel the 
overall validity of such generalisations, however, this general trend is in accord with 
other papers in this field.
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 4----  60°F  5- 65°F

Figure 7.5 (a) :-Superposition of temperature surfaces for autumn.
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Figure 7.5 Spatial subjective analysis for autumn

Examining figure 7.5 (a) closely, it can be seen that no clear pattern emerges, with 
trends being less apparent than for either spring or summer. For some contours with 
temperature level x^C, the areal range is greater for 1980 than 1930, whilst for others, 
the reverse is true. This extremely complex set of changes is borne out by the isopach 
map, figure 7.5 (b).
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Figure 7.6 (a) Superposition of temperature surfaces for winter
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 fp  0°F  5 ----- 1°F  b----- 2®F
7.5 (b) Isopach map for autumn (1980-1930)
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Figure 7.6 (b) Isopach map for winter.

Figure 7.6 Spatial subjective analysis for winter

Of all the seasons the greatest temperature changes are apparent during winter for the 
two years in question. There appears to be a strong indication that temperatures have 
become more extreme during this time. This is particularily apparent from the isopach 
map. The north-west appearing cooler during 1980, whilst the south-east has witnessed 
a slight increase in the temperatures during the 50 year span.

§7.3.1 Summary of subjective analysis

From the various forms of subjective analysis, temperature change may be summarised 
as follows:-

1. Temperatures appear to have risen during the 50 year span for summer and autumn 
but the cause of the change is unknown i.e. whether it is due to climatic changes or 
variability in the data.
2. For spring and winter, in general, a drop in the overall temperature has been 
recorded with the latter season recording the greatest fall of all the seasons.
3. For autumn, an extremely complex set of changes have occurred over time.



195

In terms of a subjective analysis, a contoured map illustrates the underlying reality of the 
complexities of change whilst the univariate or bivariate approach mask many of the 
interesting features and fails to provide the analyst with a feel for possible causative 
factors,

§7.5 Local Hypothesis Testing Procedure

Many of the techniques described in chapter 4.4 for performing a local analysis are 
highly convoluted and unsuitable for this type of analysis, the main thrust of this 
example is to illustrate the apparent simplicity of the hypothesis technique and how it 
circumvents the problem of pre-defining the inherent level of random noise within the 
data.

The basis of the local hypothesis testing procedure are the diagrams illustrating the 
superposition of the temperature surfaces for the two years in question, figures 7.4(a), 
7.4(b), 7.4(c) and 7.4(d), for spring, summer, autumn and winter, respectively. For each 
of the diagrams, the various geometric properties for quantifying the test statistics were 
evaluated i.e. area, perimeter, orientation and centroid displacement. The last of which 
was broken down into latitude and longitude displacement. Appendix 1 details the 
individual results for each contour. The test statistics evaluated using these values are 
given in table 7.3.

The disparity in the number of entries for each of the temperature levels is solely a 
feature of the overall contour structure which for some levels is more disjoint than for 
others. In terms of the test statistics, only those contours within each level which were 
recognisably comparable were included. For this particular problem, only a couple of 
small contours were omitted from the analysis.

Season/
temp.

Area Perimeter Orientation Standard deviation 
displacement
X y

Spring
40°F

1.0019 1.00218 -5.8xl0-4 -3.635x10-3 0.04086

0.93136 0.97296 0.0355 0.13955 -5.2071
45°C 0.9780 1.11360 -1.8X10-3 0.30704 0.25152

1.0284 1.02239 -0.0621 -0.70175 0.28630
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50°F 0.94278 0.96553 0.3292 0.06645 0.26064
0.81413 0.96790 8.33x10-3 0.37520 0.416832

55°F 1.0757 0.91162 -0.0405 -0.64094 -0.63024
0.82558 0.58925 -0.0261 0.51950 3.0044
1.93404 1.2025 1.30525 -0.1060 -0.22030

60°F 0.9524 0.95500 0.14496 0.21021 7.6538
0.6826 0.81996 -0.28203 2.5099 2.0117

Summer 
65 °F

0.6316 0.79948 0.02231 4.88674 27.3777

0.9710 0.99610 -0.626x10-3 0.01747 0.29005
70°F 0.9054 0.77191 0.41104 -2.97786 1.34336
75°F 1.1460 1.04100 -5.70x10-3 -0.28812 -0.43094

0.4004 0.96455 -0.0205 0.25537 0.99326
1.0830 0.61902 -0.3170 3.92562 -4.40771

80°F 1.9531 1.54463 -0.0670 -3.9866 0.393133
85 °F 2.205 1.49793 -0.0645 -13.213 -9.72238

Autumn 
45 °F

2.0384 1.4272 2.1746 -19.988 -30.0176

1.10813 1.0375 -0.03423 -0.7295 -2,95231
0.97157 1.00264 -6.82X10-3 -2.20x10"4 0.04103

50°F 1.01993 1.00522 0.34103 -0.08018 -0.07099
1.1015 1.05752 0.07033 -0.35134 -1.6495
1.2139 1.07564 0.02168 -0.36916 -8.3451

55°F 0.9679 1.07260 -0.29228 -6.02269' -20.1170
0.96135 0.89430 -9.28x10-3 0.51844 0.33500
1.53413 1.2233 0.02482 1.17628 -3.86028

60°F 1.02073 1.0220 -0.05399 -0.94467 -1.78106
0.71339 0,79512 0.39070 -0.13559 3.3182

65°F 0.97220 0.98311 -0.02078 -11.4984 -36.5372
1.08070 1.04255 0.02806 -1.13102 -1.47291
1.2358 1.04862 -0.07368 -7.8949 -1.81121
1.9770 1.53175 0.09076 -27.65119 -39.220
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0.74826 0.826653 0.06799 2.6625 7.2238
0.79049 0.89743 -3.257x10-3 2.73579 3.09780

Winter 
25 °F

0.97678 0.93888 -3.02x10-3 -0.04095 -0.20802

0.66336 0.74910 -2.32220 3.36146 10.6727
0.03390 0.19516 -0.22166 137.29 471.32

30°F 1.25450 1.8898 -0.02368 0.50791 -1.176
35 °F 0.93717 1.00449 0.0486 0.36145 -2.29x10-3

1.21001 1.02836 -0.02758 -0.65218 -7.0473
57.7506 6.69628 -0.02585 -86.3656 -15.8296

40°F 0.92218 0.9789 -0.01228 0.21380 -0.03105
3.0485 1.85556 -0.95204 -8.52874 -137.92
1.1272 1.2917 0.05763 -2.51320 -17.1397

1.00273 0.97947 0.11944 0.54803 -1.58112
45 °F 0.34335 0.44868 -0.51460 15.8644 19.2410

1.10012 0.94118 0.30433 10.93002 -10.9958
1.1510 0.9855 -0.0714 -0.4002 -5.2148
1.6535 1.51163 0.2633 -20.1513 -7.8087
11.000 2.6401 -0.5273 -55.131 -956.13

Table 7.3 Observed test statistics describing the various forms of change for the 
contours of interest.

For the local analysis, the null hypothesis for each test statistic describing the situation of 
no change in the geometric quantity, whilst the alternative was that change of some form 
had occurred.

The results of these hypotheses tests, table 7.4. were reported in terms of the upper 
bound of the random noise at which the observed value of the test statistic was 
significant for a 5% significance test i.e. N.S. (non-significant), 0%, 5%, 15% and 25%
i.e. for a reported value of x%, say, the null hypothesis may be rejected in favour of the 
alternative if the upper bound of noise in the original data is less than or equal to x%. 
Alternatively if the data has an inherent noise level greater than x%, then change maybe 
due to random noise and not some underlying physical process.
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Season Tempera
ture

Area Perimeter Orienta­
tion

Centroid
Displacement

X y
Spring 40°F NS NS NS NS NS

15% 15% NS NS 25%
45 °F 15% 5% NS NS NS

15% 5% NS 15% NS
50 °F 15% 5% 25% NS NS

25% 5% NS 5% 15%
55°F 25% 15% NS 15% 15%

25% 25% NS 15% 25%
25% 25% 25% NS NS

60°F 15% 15% 15% NS 25%
25% 25% 25% 25% 25%

Summer 65 °F 25% 25% NS 25% 25%
15% 5% NS NS NS

70°F 25% 25% 25% 25% 25%
75°F 25% 5% NS NS 15%

25% 15% NS NS 25%
25% 25% 25% 25% 25%

80°F 25% 25% NS 25% 15%
85°F 25% 25% NS 25% 15%

25% 25% NS 25%. 25%

Autumn 45 °F 25% 25% 25% 25% 25%
25% 5% NS 15% 25%
15% NS NS NS NS

50°F 15% NS 25% NS NS
25% 15% NS NS 25%
25% 15% NS 25% 25%

55°F 15% 15% 25% 15% NS
15% 25% NS 25% 25%
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25% 25% NS 25% 25%
60°F 15% 5% NS NS 25%

25% 25% 25% 25% 25%
65°F 15% 5% NS 25% 25%

25% 5% NS 25% 25%
25% 5% NS 25% 25%
25% 25% NS 25% 25%
25% 25% NS 25% 25%
25% 15% NS 25% 25%

Winter 25°F 15% 15% NS 25% 25%
25% 25% 25% 25% 25%
25% 25% 25% 25% 25%

30°F 15% 25% NS 25% 25%
35 °F 15% NS NS 5% NS

25% 5% NS 15% 25%
25% 25% NS 25% 25%

40°F 25% 5% NS NS NS
25% 25% 25% 25% 25%
25% 25% NS 25% 25%
NS 5% 15% 15% 25%

45 °F 25% 25% 25% 25% 25%
25% 15% 25 15% 25%
25% 5% NS 15% 25%.
25% 25% 25% 25%- 25%
25% 25% 25% 25% 25%

Table 7.4 Results for local hypothesis testing procedure.
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§7.5.1 Summary of local results

The following general comments may be drawn from the results of the local analysis. For 
the separate test statistics, greatest change is witnessed in those statistics expressing 
scalar change i.e. area and perimeter.

The orientation of the contours appear fairly static for all seasons and temperature levels, 
although a number of anomalous results are recorded. Referring to table 7.3, these 
changes appear to be linked to those situations where either, the areal dimension of the 
contour is small, the contour is near cyclic in shape or finally, more seriously, where the 
contour describing a specific temperature level has become disjoint over time between 
1980 and 1930 or vice-versa. This observation is potentially worrisome and an 
alternative method for collating contours may be required.

Finally in terms of centroid displacement, although not geographically universal, the 
results indicate a general cooling which is most pronounced in the east and a general 
warming in a southerly direction, this bears out the findings of Diaz and Quayle (1980).

More specifically, examining each of the seasons in turn

Spring The changes in the scalar statistic may be succinctly summarised by noting the 
more disjoint appearance of the contour structure at higher temperature levels for 1980. 
In accordance with the previous findings this suggests that a drop in temperature has 
resulted. In general a higher level of agreement is observed at cooler temperatures where 
the areal dimension of the contours is greater than for physically smaller contours at the 
same level.

Overall the changes reported in the other statistics are not of great interest with no trends 
evident. The changes in spring are not very strong and this confirms the subjective 
impressions.

Summer The scalar trends for summer are similar to those for spring with warmer 
temperatures once again being the source for greatest change. For both area and 
perimeter the changes are significant for noise levels of 25% and possibly greater.
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The centroid displacement results appear to suggest the possibility of a north/south shift 
in temperature level. Referring specifically to the test statistics, the indications are that an 
increase in temperature has occurred for the north between 1930 and 1980. In a similar 
vein, an increase in temperature is more liable to have been reported in the west during 
this time span, this is less apparent than for the latitude results.

Autumn Greater changes are evident during the autumnal period than for the previous 
seasons. In terms of scalar change no pattern emerges, an areal increase is indicated for 
some contours during the 50 year span whilst, for the same temperature level, the reverse 
is true.

A semblance of a trend in terms of directional change is indicated. Once again the south 
and west both appear to have witnessed a warming of the temperatures during the fifty 
years of the study.

Winter Overall the changes are the most diverse for all of the seasons. In terms of the 
scalar changes a very complex structure emerges and generalisations are not plausible. 
The north/south, east/west divide once again appears to materialise as described for the 
preceeding seasons.

§7.6 Global Analysis 

§7.6.1 Existing Techniques

Some of the more common methods cited in the literature for comparing two sets of 
spatial data on a global basis were used to examine the question of change between the 
two data sets

1. Correlation analysis
2. Paired t-interval
3. Trend-surface analysis
4. Regression analysis

Before proceeding to execute any of the above techniques, the assumption of normality 
was verified for all permutations of season and year. The second assumption of equality
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of variances across temperatures for each season was checked using the standard F-test, 
the results indicated pooling of variances was valid for the data.

Each of the above methods may be implemented using one of the standard statistical 
packages e.g. Minitab, hence their wide appeal to users in other areas.

§7.6.1.1 Correlation analysis

The first method used the ideas of correlation to examine the strength of the relationship 
between the variables. The question of independence between the two data sets was 
examined by the standard hypothesis procedure. ^ 7  & ch. ',

HO: p = 0 
H I: p * 0

and secondly, a confidence interval was derived for the correlation coefficient using the 
following result:-

zW - z (p) n(o  1)

IKn - 3

The implementation of the above two procedures enables the analyst to formulate an 
opinion as to the strength of the relationship. Table 7.5 collates the results :-

Season Correlation

(P)

Hypothesis
test

(p-value)

Confidence Interval for ( p)

Spring 0.975 0.00 0.9721 0.9776
Summer 0.969 0.00 0.9654 0.9721
Autumn 0.963 0.00 0.9587 0.9667
Winter 0.926 0.00 0.9170 0.9381

Table 7.5 Results for correlation based analysis.
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The results display a strong association between the two variables. The presence of a 
strong physical connection reduces the potential for a weak association between the two 
variables.
§7.6.1.2 Paired t-interval

With the underlying assumptions of normality and the pooling of the variances having 
been checked, paired t-intervals were calculated for the four seasons. The hypothesis of 
interest being :-

HO : M-d = 0 
HI : p-d * 0

i.e. under the null hypothesis, no change occurs in the mean value of the differences for 
the two data sets whilst under the alternative, some form of change has taken place over 
time. Table 7.6 summarises the results.

Season Paired t- interval
Spring (-0.792, -0.574)

Summer (0.264, 0.512)
Autumn (0.310, 0.571)
Winter (-0.575, -0.115)

Table 7.6 Results for the paired t-interval.

From the results it is apparent that overall the temperatures in 1980 are cooler than for 
1930 for spring and winter, the greater changes being in the mean value for spring. A 
reversal of the pattern is seen for the other two seasons, with little disparity between the 
mean changes.

§7.6.1.3 Trend surface analysis

The penultimate technique compared the trend surface for the two sets of data using the 
correlation coefficient basis for comparison, section 4.3.4. The most appropriate form of 
trend surface was that of a quadratic i.e. of order two
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Y j =  P 0 +  P ix i +  PzYi +  P s ^ Y i +  P<x i +  PsY i

i.e. temperature is equal to the sum of a constant term related to the means of the 
geographic co-ordinates, plus a polynomial expansion of degree two of the geographic 
co-ordinates, plus a randomly distributed measurement error.

The same criteria as described in the section on correlation analysis allows the analyst to 
judge the strength of the relationship between the two surfaces. A large value of p is 
indicative of a low level of change and vice-versa, the results are given in table 7,7.

Season Correlation value
Spring 0.977

Summer 0.891
Autumn 0.999
Winter 0.981

Table 7.7 :-Results derived for the correlation between the two trend surfaces.

A higher level of accord is suggested by the results of the trend surface analysis than for 
the standard correlation analysis. This is a manifestation of the type of analysis, the two 
surfaces will inevitably have similar trends due to the underlying physical phenomena 
which intrinsically control the temperature levels e.g. altitude, latitude, longitude etc. and 
these are constant for the two data sets.

§7.6.1.4 Regression analysis

In terms of a regression, two approaches are possible. Both methods are based on the 
model for simple linear regression :-

temPi9so = a + Ptempi930 +Ei £j - N (0, a2) (1)

Method 1 On the assumption that no temperature change has resulted if the slope (3, of 
the fitted regression line equates to one, when a, the intercept, is forced to equal zero, a 
standard interval for P was constructed, table 7.8.
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i.e. temp1980 = Ptemp1930 + Ei ej _ N(0,a2)

The point estimates for the slope confirm the similarity of the trends for spring and 
winter, and summer and autumn, i.e. for the former, the temperatures have fallen during 
the fifty year span, the reverse is true for the latter. However in terms of the confidence 
interval for the slope, the results for both summer and winter are indicative of no change 
over the time period of 50 years.

Season Slope (3) Interval estimate for 3
Spring 0.9850 0.9829 0.9871

Summer 1.0065 0.9997 1.0133
Autumn 1.0064 1.0023 1.0106
Winter 0.9890 0.9712 1.0067

Figure 7.8 : Results for regression slope analysis.

Method 2 The second technique fits regression equation (1) and from the fitted values,
A

y , a surface is produced which superimposes these values against the actual values of y. 
Alternatively, a residual map may be used to describe the results, figure 7.7 describes the 
surface for spring.
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Figure 7.7 Residual map for spring
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This approach combines a theoretical and subjective based analysis for assessing change. 
The advantage of this technique is that the residual surface attempts to incorporate the 
spatial dimension which is ignored in the preceding methods. The plot underlines the 
simplifications imposed by utilising such techniques and that change cannot be truly 
expressed in terms of one parameter.

§7.6.2 Summary of the existing techniques

Correlation based methods provide a measure of the association/change between data sets 
but are generally uninformative. For data of this form a strong natural association exists 
due to the physical conditions which intrinsically control temperature. In terms of the 
trend surface analysis, the resultant measure suffers from the same drawbacks as for a 
standard correlation analysis.

The paired t-interval provides greater insight into the mean change particularly in terms 
of the direction of change. A potential problem related to ignoring the spatial dimension 
is that of auto-correlation and the possibility that the results are more extreme than in 
reality. The overall findings confirm the observations postulated in the subjective 
analysis: 1980 temperatures have fallen in spring and winter whilst the reverse has 
occurred during the other two seasons.

The final method based on the notion of regression saw two possible modes of analysis; 
the first gauged change as a function of the slope of the regression line. A slope of one, 
indicative of no change when the intercept was forced to equal zero. Once again the same 
reservations expressed for a correlation approach hold here. The second of the regression 
methods, although not providing a finite solution for change does consider the spatial 
dimension, although only subjectively.

Attempting to produce a 'true1 global value for change is liable to be difficult using the 
standard statistical methods. Utilising the methodology developed in chapters four and 
five, to produce a global test goes part of the way to accounting for the spatial 
complexities of change, illustrated so clearly in figure 7.7.
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§7,6.3 Global Hypothesis Testing: Approach

The global hypothesis testing procedure used the test statistics describing angular, 
translational and scalar change namely angular change, latitude and longitude 
displacement and areal change respectively. The minimal number of contours of interest 
was five because of the condition imposed when implementing a Hotelling's One-Sample 
T^ test, n > p, where n is the number of contour levels and p, the number of variables of 
interest. The number of temperature levels examined for each season was five. Within 
each temperature level, the surface was represented by more than a single contour.

In terms of the structure of the hypothesis testing procedure, the null hypothesis related 
to the situation of no change in all the measures described. The alternative was expressed 
in general terms of change.

As mentioned in the previous chapter (§6.7), a number of complications arise when 
implementing the multivariate testing procedure. These relate mainly to the definition of 
the various descriptors, where contour A has become disjoint over time or alternatively 
where two contours have amalgamated. A consistent approach to this problem was 
adopted:-

(a) For area, for the specific contour level of interest, the sum was taken.

(b) A global mean was taken for the centroid displacement.

(c) In terms of orientation, a mean difference was effectively used. The whole contour 
being split into its two component parts and the orientation for each segment evaluated, 
the differences with the original disjoint contour were then taken and'finally, the mean 
calculated.

A collation of the necessary mathematical quantities are given in appendix 1, for all the 
contours depicting the various temperature levels of interest for each season with table 
7.9 describing the results of the global analysis.
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Season Hotelling's One 
Sample Test 

Statistic

P-value

Spring 0.93476 0.465
Summer 0.31140 0.820
Autumn 1.04009 0.400
Winter 1.16014 0.360

Table 7,9 Results of global hypothesis testing procedure.

For all seasons, the null hypothesis cannot be rejected in favour of the alternative. 
Differences in the results therefore appear to be solely attributable to natural variability. 
This statement should be tempered due to a number of drawbacks of the methodology 
cited i.e. only those contours which are visually comparable are incorporated and 
secondly, restraints are imposed by the selection of the contour level. Selecting contours 
in the zone of greatest change i.e. the upper range for each of the seasons may cause a 
reversal of the results. Selection based on a pre-defined criteria eliminates this 
methodological drawback and area of potential bias.

§7.7 Conclusions

The local approach provides a more detailed insight into the changes which have resulted 
over time than the global analysis. However in general it may be stated that some form of 
change has occurred for all four seasons. This change is most apparent for winter and 
then on a sliding scale, autumn, summer and finally spring. This generalisation glosses 
over many of the intricacies of change and how regional differences are evident, the 
question of micro-climate possibly influencing the results.

The changes are primarily of a scalar nature and to a lesser extent, translational. In terms 
of orientation, it may be reported that almost no change has occurred.

This example has illustrated the simplicity of implementing both approaches and how the 
results generally conform to what has been postulated in the subjective impression. The 
main point of interest is in terms of the centroid displacement, where some of the test 
statistics are highly inflated. This primarily occurs when dealing with areally small
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contours where the standard deviation is less than one, as a result, the statistic describing 
centroid displacement is considerably inflated. The resultant conclusions are unaffected 
since if the two standard deviations are comparable then this problem is eliminated in the 
ensuing test statistic, whilst if the two contours differ considerably, the results confirm 
the anticipated behaviour.

The drawback as indicated earlier is that we have no estimate of the size of the 
difference. This is a problem with all hypothesis based tests. Overall on a local scale, 
change of some form is indicated, even if the level of noise, inherent to the data set is 
fairly large. On this premise, it is essential that further investigations should be carried 
out to see whether this change may be linked to a physical process. Although Handcock 
and Wallis (1989) concluded 'It will be 20 to 30 years before change is discernible from 
the natural variability in temperatures', the use of methodology of this form shows that 
change can potentially be detected before this duration in a good quality data set.

The other factor to emerge from this example relates to the ability of the global test to 
take account of the spatial dimension, which to date the majority of techniques have 
ignored. Figure 7.7 illustrates the consequences of ignoring this factor. By adopting a 
consistent approach to the problematical contours, the global analysis should be a good 
indicator of change.
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§7.8 Case Study 2 The Investigation Of A Possible Link Between 
Leukaemia And The Underlying Radiation Fields

For some years there has been considerable public concern about radiation in general 
and man-made radioactivity in particular. Public awareness of the impact of 
radionuclides in the environment has been heightened even more by the Chernobyl 
reactor accident.

Radiation of natural origin is widespread in the environment. The earth itself is 
radioactive and naturally occurring radionuclides are present in the air we breathe, in 
the food we eat and in our own bodies. Everyone is exposed to natural radiation and for 
most people it is the highest contributor to total dose. Table 7.10 provides an estimate 
of the breakdown of the total radiation dose received by the people of Thurso provided 
by the NRPB, Dionian (1986),

Source Percentage of Total Dose
Natural Radiation 79.0

Fallout 12.0
Medical 7.5

Dounreay discharges 1.2
Sellafield discharges 0.3

Table 7.10 Summary of breakdown of total radiation dose received by the people of 
Thurso, Dionian (1986).

Man-made radionuclides have been distributed throughout the world as a result of 
nuclear weapons testing in the atmosphere. These radionuclides are inhaled, deposited 
on the ground giving rise to external exposure, and they can also be transferred through 
food-chains to our diet. Even though the period of intensive weapon testing occurred 
more than twenty years ago, residual activity from these tests and from occasional more 
recent explosions, still give rise to some small exposure of the population.

Radioactive materials are discharged from nuclear installations, some industrial 
premises and from medical and research institutes. Accidental releases of radionuclides
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may also occur and, as Chernobyl has shown, a severe accident at a nuclear power 
station can lead to widespread contamination of the environment.

Radionuclides are subject to all the physical, chemical and biological processes of 
environmental transfer. No matter how complex the pathway by which the activity may 
reach man, the actual routes of human exposure are limited to: external irradiation; 
inhalation of airborne material; ingestion of activity in food or water. Measurements are 
related to these mechanisms of exposure. Thus, in the environment we measure external 
dose rates and activity concentrations in air, food and water.

In this section we are specifically interested in whether background radiation is a 
causative factor in the induction of various forms of lukaemia. To date, the spatial 
analysis of disease patterns has been used by investigators as one tool with which to 
address problems of disease causation. Four main approaches to this type of analysis 
have been taken

1. Ecological analysis
2. Mapping and estimation patterns of disease
3. Clustering
4. Regression/correlation analysis

An ecological study is one in which the unit of analysis is a group of individuals, often 
defined geographically, and their relationship between the incidence of a disease in 
spatial units and other covariates is examined. Making aetiological inferences about 
individuals from data on groups is potentially hazardous. However where data on 
individuals is unavailable it is useful to express group relationships between areas. The 
role of ecological studies in epidemiological research is discussed by Morgenstem 
(1982).

The second group, estimating and mapping disease rates, have generally been 
concerned with the production of rates relating to the incidence of cancer with the end- 
product being a cancer atlas. The rates are usually computed using mortality or 
morbidity data as the numerator, with census data providing the denominator. Walter 
and Bimie (1991) have reviewed the techniques of analysis, presentation and 
interpretation of atlases from various countries.
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A more limited approach to the problem of spatial analysis of disease patterns is that of 
disease clustering. Hills and Alexander (1989) examine some of the approaches taken 
and the associated problems. Generally testing for clustering is aimed at tackling two 
issues. First, is there a tendency for clustering to occur and, if so, where? Second, do 
clusters occur in specific areas e.g. near suspected environmental hazards.

Finally the use of correlation and regression have featured strongly in testing whether 
natural radiation, radon in particular, is a causitive factor in the induction of particular 
forms of leukaemia. This has generated two schools of thought, firstly, those who 
advocate that ecologically low levels of ionising radiation is harmful to human beings. 
Henshaw et al (1990) suggested that in the United Kingdom, 6-12% of myeloid 
leukaemias may be attributed to radon. In Cornwall where radon levels are higher, this 
increases to 23-43%. This view supported the findings of Kneale and Stewart (1987) 
who demonstrated the existence of a correlation between childhood cancer and 
background indoor gamma radiation. The second school advocate the hormesis effect,
i.e. low levels of radiation are beneficial. This has been substantiated by both animal 
and biological experimentation and to a lesser extent in a number of studies on humans 
in Japan, Ujeno (1983), the U.S.A., Hickey et al (1983) and more recently in a larger 
study in India, Nambi and Soman (1987,1990).

§7.9 Description Of The Problem And How It Differs To the Previous 
Example

The effects of pollution, industrialisation, social deprivation and so forth are 
increasingly perceived as the causes of geographical anomalies in health. Within this 
section we examine the effect of background radiation on man i.e. 'Is there a link 
between the disease pattern of certain forms of leukaemia and the underlying radiation 
fields?’

In 1989 the Leukaemia Research Fund commissioned a pilot study to investigate the 
feasibility of aerial radiometric survey for generating information on background 
radiation levels. The information garnered was to be used in juxtaposition with the 
epidemiological data to examine the pre-stated hypothesis. This problem differs from 
the previous climatic illustration in the following ways:-
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1. It seeks to establish whether an association exists between two sets of differing 
spatial variables, cases and population and secondly, radiation levels and cases.

2. The spatial variables of interest differ in spatial resolution. This point is expanded 
upon in section 7.10.

Furthermore it differs in form to the more theoretical types of problem which 
underwrote the methodological development i.e. the comparison of two sets of punctual 
data points. This apart, the analysis addresses two separate issues, firstly the 
relationship of the case locations to the underlying population and secondly, the 
relationship between the case locations and the radiation fields. Before proceeding to 
the analysis stage a general overview of the pilot study is given with a short description 
of the three data sources

1. epidemiological data
2. population data
3. radiation data.

§7.10 Pilot study

The pilot study commissioned by the Leukaemia Research Fund in July 1989 required 
an aerial survey to be flown over three disjoint regions in South-West England covering 
approximately 2 2 5 0 k m 2  in total. In September of that same year the survey was 
undertaken. The location of the three grids are shown in figure 7.8.

Figure 7.8 Location of the three grids.
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Grid one encompasses approximately 900km^. The main population centres being 
Yeovil, Wellington, Illminster and the southern edge of Taunton. The remainder of the 
area consists of small hamlets with the Black Down Hills forming the main 
geographical feature.

The second grid lies to the north of grid one and is approximately 20kmxl5km. Part of 
the north section lies in Bridgewater Bay. The area is predominately rural with two 
main towns, Bridgewater and Bumham-on-Sea. Crossing this region is part of the 
Sedgemoor Drain system.

Finally grid three which is located to the south-west of grids one and two and west of 
Plymouth has Liskeard, Saltash, Torpoint and Launceston as its principal towns. The 
southern fringes of Bodmin Moor encroach into this grid as does the estuary of the 
River Tamar.

§7.10.1 Radiation Data

The first primary source of information was that of the radiation data. Aerial radiation 
survey methods are based on the ability of gamma radiation to propagate up to a few 
hundred metres in air from the originating source of radioactivity. It is possible to 
monitor the flux of gamma radiation above ground or sea level using highly sensitive 
gamma ray spectrometry equipment mounted in aircraft flown close to the ground. 
Environmental radioactivity measurements using portable field based spectrometers 
may take from 15 minutes to 30 minutes per sampling site, or environmental soil cores 
extracted from single sites may take several days each to analyse. High volume aerial 
survey equipment can make sensitive readings every few seconds while moving on 
preset paths above the land surface.

The survey was conducted with 1km line spacing and 500m resolution along each flight 
line using an aerospatiale squirrel helicopter flown at 120km/hr. Raising a detector 
above ground opens the detection geometry so that the area on the ground being 
sampled increases very rapidly. Typical areas of investigation are such as to give 90% 
of the detected signal from a circle diameter 4-5 times the height above the ground. 
Thus each observation at a survey height of 100m is averaged over a circle of diameter 
of 500m. Details of how the analysis of the data set proceeds to produce values for the
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various, radiation fields is given in Sanderson et al (1990). A summary of the set of 
steps undertaken are as follows: -

1. Generation of summary files which involves collation of individual readings and 
their corresponding positions and altitudes along each flight line. Checks are 
incorporated at this stage for any anomalies.

2. Detector background rates are subtracted from the readings.

3. The counts are stripped i.e. the spectral interferences between adjacent channels is 
removed.

4. Altitude corrections are made to the stripped count rates.

5. The stripped counts are converted to calibrated data - so that for each location, 
equivalent uranium, eU, and thorium, eTh, and potassium, in kBq/kg, and alpha, 
beta and gamma dose rates in mGy/a are calculated - using linear equations derived by 
regression analysis of ground level concentrations against aerial observations.

§7.10.2 Epidemiological Data

The epidemiological data provided by the Leukaemia Research Fund, (L.R.F.) 
comprised a set of all the recorded incidences of leukaemia during the five year period 
1984 to 1988 for the three grids surveyed. The case locations were identified by the 
Ordinance Survey co-ordinates of the postal code area in which the person resided at 
the time of diagnosis. Additional information available on these people included age, 
diagnostic code and date of diagnosis.

The diagnostic codes of which there are ninety, serve as identifiers for the type of 
leukaemia contracted. Early in 1990, a Leukaemia and Lymphoma Atlas was launched 
by the L.R.F. for selected regions of England and Wales. The Atlas was based on ten 
medically defined categories of leukaemia of which the diagnostic codes formed the 
basis. These ten groups can be split into two broader categories, all lymphoproliferative 
diseases and all myeloproliferative disorders. The first group, all lymphoproliferative 
diseases contains six of the ten categories whilst the remaining four fall into the 
category of all myeloproliferative diseases, table 7.11.
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All Lymphoproliferative Diseases All Myeloproliferative Diseases

Acute lymphoblastic leukaemia Acute myeloid leukaemia
Chronic lymphocytic leukaemia Chronic myeloid leukaemia

Hodgkin's disease Myeloid dysplasia
Low-grade non-Hodgkin's lymphoma Other myeloproliferative disorders
High-grade non-Hodgkin's lymphoma

Multiple Myeloma

Table 7.11 L.R,F,'s diagnostic breakdown of the various forms of leukaemia.

A total of 377 cases were reported for the three grids. The breakdown of the cases for 
the ten diagnostic groupings is given in table 7.12, Neither cases of multiple myeloma 
nor myeloid dysplasia were extracted by the L.R.F. from their original records for 
analysis.

Diagnostic Group Gridl Grid 2 Grid 3
All lymphoproliferative diseases 155 33 74
Acute lymphoblastic leukaemia 3 ‘ 3 5
Chronic lymphocytic leukaemia 53 15 22

Hodgkin's disease 22 5 13
Low-grade non-Hodgkin's 

lymphoma
46 5 19

High-grade non-Hodgkin's 
lymphoma

29 5 10

Multiple Myeloma 0 0 0
Acute myeloid leukaemia 31 10 19

Chronic myeloid leukaemia 8 2 5
Myeloid dysplasia 0 0 0

Other myeloproliferative disorders 18 6 13
All myeloproliferative disorders 57 18 37

Table 7,12 Breakdown of leukaemia cases into diagnostic groups.
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By means of a chi-squared test of homogeneity there was no apparent significant 
difference between the grids as to the frequency of occurrence for each disease type.
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Figure 7.9 :- Age distribution for the three grids.
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For the three grids, the distribution of age was similar with over 70% of the cases aged 
fifty plus. In all three instances the distribution was strongly skewed, figure 7.9. This is 
a facet of leukaemia since in general the risk for the majority of leukaemia types 
increases with age and for some strains, only those persons in their late middle and old 
age are afflicted e.g. chronic lymphoblastic leukaemia.

On the basis of previous experience within the L.R.F. particular interest was centred on 
three of these disease groupings namely,

1. all lymphoproliferative diseases
2. all myeloproliferative disorders
3. acute myeloid leukaemia.

The main reason for opting for these three categories was firstly that, high dose studies 
have tended to identify myeloid leukaemia as one consequence of exposure. Other 
reasons for the separation into lymphoproliferative and myeloproliferative groups is 
because, aeteologically, they are easily separable. The extraction of acute myeloid 
leukaemia is because it is a well recognised group which is highly malignant. Further 
breakdown was avoided since some of the categories were already very small.

For the latter two disease categories, a set of controls were supplied by the Leukaemia 
Research Fund. The all lymphoproliferative disease category was not supplied with a 
distinct control set but it was suggested, (F. Alexander, per comms.), the all 
myeloproliferative and acute myeloid leukaemia controls should be combined and serve 
as the controls. For categories two and three, controls were produced using a matching 
ratio of 3:1 for each grid and a multinomial allocation was used to assign the 
appropriate number to the available post-codes with probabilities proportional to

X v(i)n(i)
i

where i - age stratum 0-14,15-64, 65-79
v(i) - overall L.R.F. age-specific incidence
n(i) - estimated stratum population for the post codes
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§7.10.3 Population Data

Although the occurrence of the leukaemia cases of interest spanned the five years 1984- 
1989, the most readily available population data was from the 1981 small area statistics 
(SAS).

A wide range of different areas are available for describing the population base of 
interest including enumeration districts, electoral wards, local government districts, 
counties and civil parishes. Optimally the unit selected should be small enough to reveal 
patterns of interest and yet large enough to present reasonably stable data. Table 7.13 
illustrates the difference in size between three areal divisions

Districts Wards Enumeration
Districts

Cornwall 7 130 1109
Devon 10 256 2334

Somerset 5 153 1046

Table 7.13 Comparison of the sizes of population areas for three regions.

Civil parishes as defined at the local government reorganisation in 1974 are either 
single enumeration districts or the amalgamation of two or more. An enumeration 
district, the smallest areal descriptor covers approximately 150 households. Finally a 
ward describes a local government district electoral ward as existed at census day (5^ 
April 1981).

The nature of the ensuing analysis prompted the utilisation of both civil parishes and 
enumeration district data. The enumeration district data gave access to the centroids of 
each district, hence it was more suitable for the generation of a population surface. In 
rural regions, enumeration districts are much larger than in an urban environment, 
however this apart, they enabled a better defined surface to be produced due to the 
larger number of districts within the area of interest as opposed to either wards or civil 
parishes.



2 2 0

§7.10.4 Data Summary

The proceeding three sections have described various aspects of the data. The most 
apparent feature being the difference in the spatial resolution for each of the data sets 
and the contrast in the sizes of the data sets, table 7.14.

Data Source Spatial
Resolution

Data Quantity

Grid 1 Grid 2 Grid 3
Radiation

data
1km x 1km 3240 1116 2867

Leukaemia
data

point location 212 51 101

Population
data

civil parishes 60 32 47

Table 7.14 Summary of the spatial resolution and quantity of the three data sources.

The epidemiological data is extremely sparse by nature and concentrated in urban areas, 
depicting it as a continuous surface is liable to introduce large amounts of inherent 
error. The use of enumeration districts rather than the more sparse civil parish data 
enables a plausible surface to be constructed. Finally the radiation surface is generated 
using transect data and is near continuous in description.

These differences cause problems in the ensuing analysis since the methodology 
developed earlier requires the data to be not too sparse and preferably depicted as a 
series of point values rather than areal regions as in the case of the population data. 
However certain aspects of the methodology developed earlier provide possible 
directions of investigation.
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§7.11 Analysis 

§7.11.1 Introduction

As mentioned previously two basic comparisons were of interest, firstly the relationship 
of the case locations and the overall population and secondly, the relationship between 
the radiation fields and case locations.

The format of the data as summarised in the preceeding section required that in addition 
to spatial techniques, i.e. the mapping of case locations on the radiation fields and the 
population surface to assess their comparability, other approaches were required, 
namely,

1. Histograms of the number of cases and controls in the different radiation field 
levels.

2. Kolmogorov-Smimov tests to compare the cumulative distribution functions for 
both cases and controls.

3. Description of various summary statistics for the different radiation variables for 
both cases and controls.

4. Basic statistical analysis of 'risk' against radiation level.

§7.11.2 Analysis of case locations and population data

Before proceeding to examine the main hypothesis of interest, 'Is there an association 
between the spatial dispersion of background radiation fields and the location of 
leukaemia cases?', it was essential to examine whether any anomalies existed between 
the location of leukaemia cases and the underlying population for the three regions of 
interest. The interpretation of areas of 'high' radiation levels where a large number of 
cases are located depends on the underlying population density of the area. The 
following graphical procedures examined this preliminary question:-
1. Lorenz curves.
2. A map of the population density with cases superimposed.
3. A weighted difference histogram.
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Graphical results are presented for grid one for each of the three leukaemia groups. For 
the remaining two grids the results will be briefly summarised. Full details of the pilot 
study and the statistical analysis are given in Sanderson et al. (1992).

The first technique was that of the Lorenz curve, figure 7.10, described in section 
4.3.1. There appears to be some disparity between the case population and the 
underlying general population. This increases from disease categories one to three. 
However caution should be expressed in the interpretation of these results. The major 
difficulty when implementing this and subsequent techniques stem from working with a 
grid whose bounds are clearly defined by straight lines. How should areal regions 
which are only partially contained within the grid be dealt with? Three plausible 
approaches are:-

1. Only include those parishes which are wholly contained within the grid.

2. Estimate the proportion of the population which falls within the grid.

3. Incorporate all civil parishes but display caution in the interpretation of the results.

The plots have all been presented with all the parishes contained within the bounds, 
either partially or entirely.

>00 ,

in
LJ
in
o  eo ■
Lu
a
UJ
u
-<  60 ■

JZ
LU
CJor
at 40 ■
LU
>*

j  20 ■
s:
U

0

100
in
UJ
in

u  80
tu
o
LU
13
-C  60 
t—
3T
LU
£
o ’ CO ■
UJ
>*

j  20 ■

3:
3
CJ

0 ■ 

00 20 CO 60 00 100

c u m u l a t iv e  p e r c e n t a g e  o f  p o p u l a t io n
20 CD 60 80 100

EM U LATIV E PERCENTAGE OF POPULATION

Figure 7.10 (a) All lymphoproliferative 
cases.

Figure 7.10 (b) All myeloproliferative 
cases.



223

cn
ft
(5  80

ft
ft
-<  60
•3T

f t  40
U J>■
*—

ft 20
CJ

o

0 20 40 60 00 100

CUMULATIVE PERCENTAGE OF POPULATION
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Figure 7.10 Lorenz curves for the three diagnostic categories of interest for grid 1.

The three measures cited in chapter 4.3.1 for quantifying the apparent level of 
dissimilarity within a Lorenz curve are summarised in table 7.15. As anticipated from 
the preceeding discussion, the levels of dissimilarity are fairly high with acute myeloid 
leukaemia displaying the weakest association between cases and population.

Dissimilarity
measure.

All
lymphoproliferative

diseases.

All
myeloproliferative

diseases

Acute myeloid 
leukaemia

^m 32.2668 46.2941 57.0049
Dl 32.2671 46.2942 57.0051
Df 44.3800 61.6900 73.8960

Table 7.15 Results for various dissimilarity indices for Lorenz curves.

Figure 7.11 illustrates a histogram based approach to describe the potential 
association/differences between the relative frequency of cases and population for the 
civil parishes contained within the region. A second histogram explicitly depicts the 
differences in the two frequencies which are shown superimposed in the first diagram. 
The problem of incorporating parishes only partially enclosed in terms of the number of 
cases still materialises, but unlike for Lorenz curves, it is possible to identify those 
parishes where the greatest disparity occurs and check their location. Any anomalies are
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easily identifiable using this mode of presentation. A similar set of conclusions are 
reached as for Lorenz curves.
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Figure 7.11 Comparison of civil parish population and number of cases for various 
disease types.

The preceeding two approaches were applicable due to the choropleth style of the 
population data. The availability of centroid data for enumeration districts enabled a 
spatial based approach to the problem to be adopted. The population surface was 
constructed using the a-priori criteria of section 3.9. The sparsity and local 
concentration of cases in a small number of regions restricts the feasibility of fitting a 
surface through these points. Representing the cases as points conveys a good 
impression of the spatial dispersion of the cases in relation to the underlying population, 
figure 7.12, but curtails the implementation of the local hypothesis testing procedure.

Once again there do not appear to be any anomalous results, the majority of the cases 
being located in towns, suburbs or for the single cases in some of the smaller rural 
villages which typify this area.
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Figure 7.12 :- Location of leukaemia cases in relation to population surface.
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Unsurprisingly for all three methods, the preliminary analysis of case and population 
densities in the main is controlled by the population density. A similar set of general 
trends are apparent for grids two and three hence it may be concluded, that the 
behaviour for all the grids is similar in terms of case locations and population with no 
obvious differences apparent.

§7.11.3 Analysis of radiation fields and case locations

The previous section highlighted the difficulty of separating the case and population 
distributions. The next step was to examine whether background radiation is 
instrumental in determining the location of leukaemia cases i.e. are the cases of 
leukaemia primarily located in areas corresponding to high/low radiation levels.

One of the major drawbacks of an analysis of this type is the paucity of the case data set 
and secondly the matching of the cases and controls to a radiation grid cell. Due to the 
shortcomings of the epidemiological data, the grid cell is the one in which the case was 
located at the time of diagnosis, it may not represent the value of the radiation field at 
the time of conception when the cells are most sensitive nor will it describe the total 
radiation life history of the case.

In terms of the restricted size of the data set and the breakdown into three separate 
grids, major differences would be required between the case and control radiation levels 
for any change to be detected.

40r Gamma

Difference cases controls Difference cases controls
(kBqm‘2) (ni) (n?) (mGy/a) (ni) (n?)

5 12383 37149 0.01 530 1590
10 3096 9287 0.015 236 708
15 1376 4128 0.02 133 399
20 744 2322 0.05 22 66
25 496 1488 0.07 11 33
30 344 1032 0.10 5 15

Table 7.16 Sample sizes to detect change of specific size.
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Table 7.16 summarises the approximate sample sizes which would be required to detect 
a change in the radiation level between a group of cases and controls for a 5% 
significance level, assuming both normality and a value for the standard deviation.

In terms of typical values for natural variability over Britain, a change of O.OlmGy/a in 
the background level of gamma radiation corresponds to an increase/decrease of 3% in 
the natural variability, whilst the detection of a change of O.lmGy/a equates to a 30% 
change in the natural levels over Britain.

Within this section the underlying population is represented by a set of control locations 
selected as described in section 7.10.1. Each case and control location, identified by its 
ordinance survey co-ordinate, was matched using a nearest neighbour technique to the 
appropriate radiation field.

Figure 7.13 displays the raw histograms of the radiation features, for the nuclide ^Or , 
for the three disease categories for grid one. The bins were selected in accordance with 
a scheme implemented by Sanderson et al (1990). For the case and, to a lesser extent, 
the control distribution, two features were apparent, bimodality and skewness.

For the remaining five radiation fields similar trends were reported. Also for grids two 
and three the range of radiation values was comparable between the cases and controls. 
Bimodality is weaker in grid two than for either of the other two grids, however the 
lack of symmetry property is present in both grids.
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Figure 7.13 (a) All lymphoproliferative 
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Figure 7.13 (b) All myeloproliferative 
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Figure 7.13 Histogram of cases and controls for grid one for the three diagnostic 
categories of interest.

For both sets of information there is evidence of bimodality and lack-of-symmetry, 
hence performing the standard parametric statistical tests for comparing univariate data
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sets would be inappropriate, due to the violation of the basic assumptions. On this 
premise, table 7,17 collates a set of summary statistics for grid one for the three 
conditions of interest and the six radiation fields.

All Ivmphonroliferative diseases
N Summary

statistic
40k eTh eU Alpha Beta Gamma

Cases 154 median 529.1 39.98 49.78 18.225 2.260 0.400
minimum 174.6 18.88 25.64 8.96 1.10 0.200
maximum 1243.3 60.70 68.5 24,7 4.30 0.660

Controls 300 median 514.1 38.87 49.46 17.99 2.230 0.395
minimum 195.0 18.44 23.11 8.74 0/930 0.190
maximum 1422.2 66.61 72.23 25.04 4.68 0.670

N Summary
statistic

40K eTh eU Alpha Beta Gamma

Cases 57 median 517.1 39.17 48.5 17.60 2.20 0.400
minimum 184.2 23.74 28.61 12.03 1.31 0.270
maximum 1223.4 52.47 62.47 22,68 4.21 0.640

Controls 216 median 516.2 38.81 49.13 17.86 2.23 0.395
minimum 195.0 19.63 23.11 8.92 0.95 0.200
maximun 1422.4 66.61 72.23 24.70 4.68 0.670

Acute Mveloid Leukaemia
N Summary

statistic
40k eTh eU Alpha Beta Gamma

Cases 31 median 517.1 38.7 48.0 17.60 2.160 0.380
minimum 331.0 23.74 35.7 12.03 1.470 0.290
maximum 1190.3 52.28 61.3 21.96 4.210 0.640

Controls median 503.6 39.06 50.66 18.42 2.225 0.395
minimum 198.6 18.44 25.3 8.74 0.930 0.190
maximum 1192.0 56.62 69.81 25.04 4.230 0.640

Table 7.17 Summary statistics for grid one.
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For both all lymphoproliferative diseases and acute myeloid leukaemia the median 
value for 4^K is noticeably lower for the controls. For the other radiation fields, 
differences are less noticeable although, in general, for all lymphoproliferative 
diseases, the median values for the controls are lower. One potentially interesting 
feature arises for acute myeloid leukaemia where, with the exception of 4^K, the cases 
all have a lower radiation value than the controls.

These results indicate that the collation of the data for all three grids would possibly 
mask some interesting features, however as emphasised earlier to detect significant 
differences, the changes are required to be fairly large.
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Figure 7.14 Cumulative distribution function for the three disease categories.



The third technique implemented was to compare the case and control figures using the 
Kolmogorov-Smirnov test, the cumulative distribution functions are given in figure 
7.14. For all three grids and disease characteristics none of the results are significant, 
table 7.18.

Once again the bimodality feature described earlier is apparent from the diagrams.

Disease Group Value of Test Statistic Critical Value for a 5%  

significance level
All lymphoproliferative 

diseases
0.60526 1.36

All myeloproliferative 
diseases

0.67155 1.36

Acute myeloid leukaemia 0.47585 1.36

Table 7.18 Results of Kolmogorov-Smimov test.

The preceeding techniques in this section have all ignored the spatial context of the 
radiation data and as seen from the previous example on climatic change, this may 
result in some of the underlying complexities being smoothed over. Within the 
remainder of the section, a spatial based approach will be adopted to assess the cause of 
the bimodality.

Initially, the generation of a radiation surface was hindered due to a problem in the 
selection of a suitable smoothing parameter, h, since minimisation of the score function 
was not possible. The source of the problem was traced to the near repeatability of 
points within the data set. Silverman (1978) stated that real data are nearly always 
rounded or discretised to a greater or lesser degree. For a discretised data set 
x1,x2,...,xn, let m be the number of pairs i < j for which = xr  If a data set of size n

is discretized to a grid of k points, no matter how the data points fall, it can be shown 
by Jensen's inequality, Feller (1966);-
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If the data are all nonuniform, m will generally be much larger than the minimum value

given by (1). If — is larger than some theoretical value p, depending on the kernel k, 
n

then the least squares cross validation score function tends to minus infinity as h —» 0 
and hence least squares cross validation as it stands will choose the degenerate value 
h=0 for the window width.

Not only is it dangerous to use least squares cross validation on discretised or repeated 
data but Silverman (1978) emphasises that the behaviour of the score function for small 
h is highly sensitive to a very fine small scale effect in the data.

One approach to avoid this problem is to perturb the data points by a small amount. The 
data points were gradually perturbed by an increasing amount until a realistic estimate 
of the smoothing parameter was achieved. This amount is individual to each data set. In 
practice the aim is to perturb the data set sufficiently that a value of h is selected which 
is non-infinite. For the case of the radiation surface, it was decided to ensure that by 
perturbing the data, the point did not encroach into a neighbouring grid cell, i.e. the 
limits of perturbation were 1km X  0.5km, the spatial resolution of the data.

In an attempt to locate the cause of the bimodality, the information garnered from the 
histograms and cumulative distribution functions was used. The case data was split into
two groups at the point where the two distributions appear to split. For 40K this was
taken as 500kBqm_2- Figure 7.15 (a) describes the radiation surface for grid one, with 
the location of the acute myeloid leukaemia cases superimposed, whose levels were less 
than SOOkBqnr^- Figure 7.15 (b) describes the scenario for cases with levels greater 
than SOOkBqnr^.
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Figure 7.15 (a) radiation surface with cases whose levels < SOOkBqm"^
superimposed.
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Figure 7.15(b) radiation surface with cases whose levels > 500kBqm'2
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Figure 7.15 radiation surface with cases superimposed.

A fairly-conclusive explanation of the bimodality emerges. The first set of cases (^ K  < 
500kBqm"2) were centred around Yeovil, where the radiation levels are generally 
lower than those in the Taunton region and the second group were focused in the 
Wellington region, where levels were higher. A number of anomalies are apparent but it 
appears the geology of the area is a major factor in causing the bimodality. Although 
not so pronounced the same pattern was repeated for the controls.

A similar diagnosis may be placed on the bimodality for grid three, but it is less 
striking. The cases with lower levels of occur in the Torpoint, Saltash area, whilst 
the cases with higher levels are scattered in the north of the region.

§7.11.5 Analysis Based On A Leukaemia Rate

Preliminary investigation of whether there is a link between the location of the cases 
and the radiation field has been graphical in nature to this point. For a more formal 
approach to the investigation of the hypothesis of interest, a leukaemia rate was 
defined

y . . Number of cases in region xLeukaemia rate = ---------------------------------
Population in region x

As mentioned previously, three sources of information are available:-
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1. Case data for the three grids surveyed, identified by the ordnance survey co­
ordinates of the postal district for that case.

2. Radiation data, in integrated form, typically corresponding to a spatial resolution of 
500m x 1000m. Each radiation value was associated uniquely with the ordnance survey 
co-ordinates of the centroid of the grid cell.

3. Population data from the 1981 census, for each of the enumeration districts 
contained within the grids.

For this problem, the region of interest was sub-divided into grid cells of size 500m x 
500m. For each cell a value was calculated for :-

1. number of cases
2. radiation level in region x
3. population in region x

The number of cases was easily derived for each cell by simply checking whether a 
point lay within the cells bounds. The radiation levels were also simple to evaluate 
since from the aerial survey values had been calculated for a resolution of 1km x
0.5km, by using a nearest neighbour technique, an appropriate value was calculated for 
the centroid of the cell.

For the population in region, x, a more complicated approach was required since an 
enumeration district spanned both complete and segments of grid cells. As an initial 
solution to the problem, a surface produced using kernel density estimation was fitted to 
the data and the population for a given small area was evaluated by numerically 
integrating under the estimated surface.

For the analysis based on a leukaemia rate, the radiation data was categorised into eight 
groups defined a-priori. For these groups, the population and case figures for all grid 
cells of a particular radiation level were summed. The leukaemia rate was then 
estimated. The resultant data was of of the form, (Xj,^): where xi is the leukaemia 
rate, t i the radiation value (mid-value) in category i. For some of the analysis, it was 
necessary to collapse the eight cells down to four due to the sparsity of the leukaemia
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data, table 7.19 describes the results for grid one for 40k, for all lymphoproliferative 
diseases, (ALL).

Radiation
value

(kBqm_2)

Population
total

No. of cases 
(ALL)

Rate
(xi)

Combined
rate

100 13.77 1 72.60 x lO'3
300 3518 18 5.117x10-3 5.380 x lO'3
500 18813 84 4.465 x lO'3 4.465 x lO'3
700 995 5 5.025 x lO’3 5.025 x lO'3
900 5041 16 3.174 x lO'3 3.174x10-3
1100 4187 24 5.732 x 10-3 5.732 x lO'3
1300 712.7 3 4.209 x lO'3 3.854 x lO'3
1500 65.8 0 0

Table 7.19 Example of leukaemia rates for grid one.

Performing any statistical test on a maximum of eight data points does not provide 
conclusive evidence of an association, but it may indicate that an analysis of this type is 
plausible for data sets of this form, or alternatively, there may be preliminary 
indications of an association, which may advocate the implementation of a larger study.

A regression analysis leukaemia rate against radiation level displayed a general lack of 
consistency between both grids and leukaemia types. For some situations a quadratic fit 
was the best, whereas a linear trend sufficed for others. The major problem lies in 
attempting to summarise a complex and variable situation in a simplistic manner. The 
error rate on the variables are known to be large especially for the case data, where 
error rates follow a Poisson distribution i.e. Vn. The use of Poisson regression may be 
more applicable in this instance and it has been used in the study of cancer incidence, 
Gail (1978).

The second analysis of rate performed was an analysis of variance. For each of the six 
different radiation variables (eU, eTh, K^O, a, P and y), the factors examined were grid, 
leukaemia type and level of radiation value. The response variable was leukaemia rate.
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Model:- Xljk = n + a i+Pj +yk+(aP)lj (1)

X “ i= 0  X P i = 0  2 v k =0 K a p ^ O  Vi X («P )9 = ° VJ
i j k i j

where Xijk = leukaemia rate for grid i, leukaemia type j, and 

radiation level k.

By adopting model (1), we are attempting to assess which factors are important in 
influencing the rate. Table 7.20 reports the results.

Radiation
Field

Leukaemia
type

Grid Radiation
Level

Leuk.
type/grid

r 40 Significant Non-
Significant

Significant Non-
Significant

eU Significant Significant Significant Non-
Significant

eTh Significant Non-
Significant

Non-
Significant

Non-
Significant

a Significant Significant Non-
Significant

Significant

B Significant Significant Non-
Significant

Significant

V Significant Significant Significant Significant

Table 7.20 Results of performing an analysis of variance on grid (1,2,3), radiation 
level (1-8) and leukaemia type (1,2,3,4).

From table 7.20, differences exist between the leukaemia types, but also between the 
grids for some of the radiation fields. The first of these results is unsurprising since it is 
well known that the rates for the three types of leukaemia differ, table 7.21, but the 
second result suggests that the rates differ between grids, this may indicate contrasting 
environmental reasons. The radiation variable was found to be significant for total 
gamma, and eU the last two being of likely geological origin, this again indicates 
differences between the grids. The confounding nature of the analysis clearly makes it
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difficult to disentangle the individual effects, and the apparent differences amongst 
grids argue against increasing the sensitivity of the analysis by pooling the data from 
the three grids.

Disease Type Relative risk for Cornwall
All lymphoproliferative diseases 102.5 -110.0
All myeloproliferative diseases 97.5 -102.5

Acute myeloid leukaemia 90.0 - 97.5

Table 7 . 2 1 Differences in rates between the three leukaemia types for Cornwall.

§7.12 Summary

The study and its analysis has demonstrated the potential for linking epidemiological 
data and radiation fields. The interpretation of the results is not however clear-cut, the 
three geographical regions demonstrate interesting differences, with grid two showing 
anomalous features, not least an indication that cases appear to be associated with lower 
radiation levels than controls.

Difficulties encountered include the paucity of the leukaemia data which serves as a 
restriction to the implementation of the hypothesis methodology and other forms of 
statistical analysis. The usage of three grids as oppoosed to one, dimished the potential 
power of the study, hence only tentative conclusions could be reached. The spatial 
framework of the analysis which supported many of the ideas in the preceeding sections 
would be plausible for diseases which are more common. By utilising a spatial analysis, 
a clearer picture of what is going on is obtainable. Addressing the problem, by ignoring 
the spatial dimension leaves many questions unanswered, as demonstrated by the 
location of the apparent source of bimodality using a spatial approach.

Appropriate developments for further work would be to

1. select two regions with very different radiation features 
and/or
2. increase the number of cases.



239

§7.13 General Conclusions

The two case studies have demonstrated the pros-and-cons of the methodology 
developed. The climatic example has shown the simplicity of implementing the 
hypothesis transformation technique at both a local and global level. It also emphasises 
the need for a spatial framework on which to base an analysis. Many of the analyses 
carried out ignored the spatial dimension, illustrated a strong relationship between the 
two sets of data, but on closer examination, it was only to be anticipated from the 
nature of the data. The local hypothesis testing procedure enabled a much more detailed 
resume of the changes to be portrayed with some interesting features concerning 
differences between regions being highlighted.

Although for the second example no formal analysis was undertaken to establish 
whether a link exists between radiation levels and case locations in the south-west of 
England, this was primarily a result of the design of the pilot study, however various 
graphical and semi-quantitative approaches were undertaken. Firstly the analysis of 
three disjoint regions resulted in the already limited number of cases being reduced to 
sizes less than desirable for any formal statistical analysis. The selection of one 
complete grid would have increased the power of the study and the problem of 
bimodality would possibly not have manifested itself. This apart, the methodology of 
hypothesis testing prompted the form of the subjective spatial analysis undertaken.

In general, from the examples examined, it appears that the local hypothesis testing 
procedure is a step in the right direction when comparing two sets of data which may or - 
may not be compatible in terms of spatial resolution. It addresses the complexity of the 
data introduced by the spatial dimension and may also give the analyst a pointer as to 
the cause of the change, if they are unaware of the form of the change i.e. scalar, 
rotational or translational, A number of problems, especially in terms of disjoint 
contours, still exist with the method but hopefully these can be resolved .
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APPENDIX

Year Season Temp.
level

Area Perime
-ter

Orient­
ation

Centroid displacement

X y
1930 Spring 40°C

(a)
728.5 127.2 1,827 97.95

(232.0)
39.07

(51.39)
( b ) 19.23 19.55 0.525 115.9

(2.607)
115.9

(4.753)

45°C
(a)

627.1 142.9 1.828 97.40
(184.4)

38.73
(37.89)

(b) 38.83 24.50 0.6215 116.1
(5.260)

39.33
(7.663)

(c) 8.604 10.77 6.229 107.9
(1.787)

35.59
(1.196)

50<>C
(a)

337.7 89.08 1.669 88.24
(95.42)

37.83
(29.16)

( b ) 28.59 33.83 2.867 118.5
(3.894)

44.37
(13.95)

55°C
(a)

231.0 88.63 1.757 86.68
(64.71)

37.56
(16.38)

(b) 8,062 11.84 1.040 89.38
(1.384)

49.36
(0.068)

(c) 4.915 11.53 1.009 118.8
(2.045)

46.33
(0.432)

60°C
(a)

30.87 24.16 3,065 96.22
(5.223)

38.11
(6.820)

( b ) 135.5 72.73 2.093 82.79
(13.91)

37.74
(30.98)
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1980 Spring 40°C
(a)

728.5 127.2 1.826 97.94
(229.1)

39.06
(51.39)

(b) 17.91 19.02 0.561 115.9
(2.527)

39.07
(4.666)

45°C
(a)

613.3 159,1 1.829 97.13
(171.2)

38.80
(34.57)

(b) 39.93 25.05 0,559 116,1
(5.203)

39.34
(8.487)

50°C
(a)

318.4 86.00 1.998 87.87
(89.40)

37.75
(28.50)

(b) 23.27 32.74 2.875 118.6
(3.437)

44.63
(13.26)

(c) 24.29 12.985 2.985 110.8
(2.302)

40.72
(7.074)

55°C
(a)

248.5 80.80 1.716 86.98
(73.51)

37.74
(19,08)

(b) 6.656 6.979 1.014 89.35
(1.280)

49.36
(0.068)

(c) 9.507 13.87 2.314 118.6
(2.851)

46.23
(1.172)

(d) 4.847 8.224 2.792 110.9
(0.810)

40.00
(0.940)

60<>C 29.41 23.07 3.206 96.33
(3.779)

37.98
(6.584)

(b) 92.50 59.20 1.812 81.18
(23.11)

38.37
(23.11)

(c) 14.48 14.26 2.796 89.60
(2.410)

32.56
(2.530)
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1930 Summer 65°C
(a)

805.0 128.4 1.8388 98.38
(280.1)

39.40
(55.40)

(b) 9.583 11.84 0.069 116.1
(1.489)

38.10
(1.730)

70°C 576.5 189.4 1.483 87.03 38.61
(a) (216.8) (15.05)

75°C
(a)

339.5 86.40 1.654 88.39
(94.01)

38.41
(29.60)

(b) 17.28 30.53 0.2782 119.4
(4.040)

45.59
(12.87)

(c) 6.156 16.25 0.144 111.5
(2.276)

40.32
(2.276)

80°C
(a)

96.00 62.56 1.793 86.52
(63.98)

37.26
(7.490)

(b) 13.43 23.58 2.685 96.64
(2.811)

38.96
(5.841)

(c) 1.531 3.368 0.001 90.26
(0.314)

31.94
(0.298)

(d) 0.2812 4.163 2.356 82.63
(0.013)

37.75
(0.023)

85°C
(a)

6.844 9.748 2.469 75.62
(1.959)

40.89
(1.029)

(b) 1.727 4.866 1.213 97.41
(0.435)

41.00
(0.192)

1980 Summer 65°C
(a)

782.0 128.3 1.833 98.33
(254.1)

39.38
(54.98)

(b) 9.583 11.84 0.069 116.1
(1.489)

38.10
(1.730)
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70°C 522.0 146.2 1.895 93.21
(163.2)

38.65
(30.71)

(b) 28.37 41.28 0.042 105.3
(0.613)

38.97
(0.523)

(c) 0.646 0.537 0.075 106.4
(0.078)

38.23
(0.078)

75°C
(a)

339.5 86.40 1.654 88.39
(94.01)

38.41
(29.60)

(b) 19.81 31.65 0.284 119.4
(3.910)

45.05
(12.07)

(c) 6.156 16.25 0.1444 111.5
(2.276)

40.32
(3.861)

(d) 2.969 5.240 0.001 97.91
(0.590)

30.64
(0.511)

80°C
(a)

216.7 96.63 1.725 87.05
(60.31)

38.26
(15.80)

(b) 1.793 5.079 6.242 111.6
(0,356)

40.14
(0.371)

(c) 0.2320 0.273 0,012 93.16
(0.238)

40.10
(0.264)

(d) 0.2812 4.164 2.356 82.63
(0.012)

37.75
(0.123)

85°C
(a)

15.09 14.60 2.404 75.67
(2.918)

40.90
(2.280)

(b) 3.875 11.78 0.001 86.76
(2.731)

39.55
(1.064)

(c) 2.125 9.064 0.003 97.21
(0.049)

36.15
(0.536)

(d) 0.2186 4.853 1.198 97.35
(0.312)

40.84
(0.296)

(e) 1.250 3.014 0.0012 81.47
(2.731)

34.52
(1.075)
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1930 Autumn 45°C
(a)

678.1 141.7 4.975 97.58
(192.3)

38.86
(41.19)

(b) 30.21 21.90 0,5008 116.0
(4.134)

39.50
(6.215)

(c) 3.133 6.522 0.9559 107.9
(0.7244)

35.39
(0.4139)

50°C
(a)

387.0 100.2 1.633 89.10
(112.9)

38.03
(31.23)

(b) 37,87 39.59 3.277 118.5
(3.091)

43.21
(21.93)

(c) 46.36 34.52 3,070 110.9
(3.142)

39.49
(17.54)

55°C
(a)

281.7 79.32 5.140 87.27
(79.77)

37.91
(23.22)

(b) 29.03 12.99 2.914 118.9
(2.655)

44.82
(13.37)

(c) 5.654 8.921 2.873 110.9
(0.9479)

39.96
(1.095)

60°C
(a)

195.5 93.95 1.732 86.10
(55.25)

37,97
(14.25)

(b) 45.32 24.98 3.105 95.99
(5.989)

37.91
(6.831)

65<>C
(a)

96.82 9.718 2.513 89.71
(0,580)

31.14
(0.536)

(b) 14.39 13.83 2,174 34.60
(1.830)

34.60
(1.830)

(c) 7.249 10.93 2.310 95.99
(1.976)

37.27
(1.063)

(d) 3.312 6.075 0,813 97.23
(0.6398)

40.57
(0.328)
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(e) 23.76 18.97 1.778 86.37
(6.723)

39.46
(2.280)

(f) 28.38 20.71 5.443 76.02
(4.985)

40.44
(4.111)

1980 Autumn 45°C
(a)

658.9 142.1 4.969 97.57
(190.0)

38.82
(41.09)

(b) 33.48 22.64 0.4665 116.1
(4.605)

39.42
(6.844)

(c) 6.386 9.308 6.273 108.1
(1.246)

35.28
(1.015)

50°C
(a)

394.7 100.7 5.114 89.32
(115.4)

38.01
(31.96)

(b) 41.70 41.88 3.347 118.4
(3.241)

42.91
(23.36)

(c) 56.28 37.13 6.232 111.0
(4.196)

39.54
(19.04)

55°C
(a)

272.6 85.08 4.848 87.26
(74.57)

37.79
(20.30)

(b) 8.659 10.91 2.898 110.8
(1.399)

39.94
(1.542)

(c) 27.91 11.62 2.905 118.9
(2.956)

45.14
(11,29)

60°C
(a)

139.5 74.70 5.262 82.90
(30.95)

37.54
(14.32)

(b) 46.26 25.53 3.051 96.47
(6.639)

38.30
(7.975)

65°C
(a)

6,634 9.555 2.492 89.82
(1.222)

32.16
(1.073)

(b) 15.55 14.42 2.203 81.23
(3.371)

34.62
(2.006)
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(c) 8.956 11.46 2.236 96.58
(2.111)

36.31
(1.771)

(d) 6.548 9.306 0.9040 96.72
(1.379)

40.39(0.
(0.760)

(e) 17.77 15.68 1.846 86,02
(4.566)

39.24
(1.857)

(f) 22.43 18.58 5.440 75.88
(4.174)

40.41
(3.317)

1930 Winter 40°C
(a)

658.4 134.5 4.958 98.13
(213.8)

38.25
(37.96)

(b) 37.16 27.15 5.968 115.5
(4.866)

40.45
(8.513)

(c) 5.616 8.710 0.2913 107.7
(1.153)

35.73
(0.870)

45°C
(a)

379.3 96.55 1.666 89.19
(118.0)

37.61
(28.56)

(b) 86.02 69.51 3.690 115.5
(13.70)

39,33
(21.51)

(c) 5.216 8.764 0.7221 110.4
(1.215)

45.38
(0.8052)

50°C
(a)

283.7 84.33 4.883 87.52
(87.12)

37.29
(23.37)

(b) 20.43 32.62 3.156 119.1
(2.292)

45.57
(15.18)

(c) 0.1778 1.819 6.107 111.5
(0.022)

34.07
(0.912)

55°C
(a)

160.0 57.80 5.225 83.48
(41.96)

36.88
(17.84)

(b) 3.156 8.067 3.478 120.0
(0.3220)

46.27
(1.040)
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(c) 7.222 2.259 3.335 120.2
(0.1364)

38.63
(1.035)

(d) 50.02 26.58 6.236 96.24
(7.335)

37.93
(7.335)

60°C
(a)

54.20 35.24 5.383 79.01
(13.16)

37.13
(11.30)

(b) 44.91 35.70 2.626 87.63
(6.893)

36.70
(12.66)

(c) 27.96 23.17 3.286 96.14
(3.642)

37.60
(5.783)

(d) 3.156 3.038 2.975 120.5
(0.004)

38.70
(0.2783)

(e) 0.4062 2.584 3.359 120.5
(0.0096)

46.38
(0,1920)

1980 40°C
(a)

643.1 134.5 4.958 97.79
(199.8)

38.54
(38.02)

(b) 24.65 20.34 0.5066 115.9
(3.383)

39.55
(5.273)

(c) 0.1904 1.700 0.070 108.0
(0.036)

35.68
(0.041)

45°C 475.9 182.5 1.643 95.51 37.74
(a) (184.4) (25.01)

50°C
(a)

265.9 84.7 4.932 87.68
(87.49)

36.83
(20.80)

(b) 24.72 33.55 6.268 118.9
(2.755)

43.82
(15.74)

(c) 10.26 12,18 2.939 110.9
(1.410)

39.54
(2.235)

55°C 147.6 56.58 5.213 83.53 36.45
(a) (42.22) (16.59)
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(b) 9.623 14.97 2.526 118.9
(2,611)

46.15
(1.569)

(c) 8.141 2.919 3.393 120.1
(0.1518)

38.64
(1.879)

(d) 50.16 26.03 3.214 96.61
(8.097)

37.48
(7,802)

60°C
(a)

18,61 15.81 1.728 86.68
(4.465)

38.95
(2.095)

(b) 49.40 33.60 2.930 79.29
(12.55)

36.68
(10.64)

(c) 32.19 22.84 3.215 96.58
(4.573)

37.18
(5.916)

(d) 5.218 4.593 3.242 120.4
(0.031)

38.69
(0.529)

(e) 4.469 6.824 2.832 120.1
(0.1937)

46.19
(0.8290)

(f) 20.38 16.79 5.988 89.52
(3.464)

32.64
(3.317)
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