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SUMMARY

The main aim of this thesis is to review and augment the theory and 

methods of optimal experimental designs for non-linear problems with a single 

variable using geometric and other arguments. It represents a continuation of the 

work on locally optimal designs for binary response experiments, which has been 

studied by Ford, Torsney, and Wu (1992) among others.

Chapter 1 serves as an introduction to the non-linear design problem. The 

main point of difference between the non-linear case is emphasised and 

contrasted with the linear case.

Chapter 2 presents a review of the general theory and the appropriate 

notation needed for the development of this thesis. Also the canonical 

transformation of a design problem is discussed. A necessary and sufficient 

condition for D-optimality of a design measure is given.

Chapters 3 and 4 are devoted to the problem of constructing locally D- 

optimal and c-optimal designs for two parameter models respectively. In 

addition, the geometrical characterisation of designs optimising these criteria is 

discussed. Explicit solutions to compute the optimal weights of such designs are 

derived. Several examples of optimal designs which may be found analytically 

are given in chapter 3.

In chapter 5 attention is focused on the problem of determining D-optimal 

designs for three parameter models, including those for weighted quadratic 

regression and generalised linear models.

Chapter 6, considering the situations and problems for future work, gives 

a list of possible ways in which the work of this thesis may be extended.
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CHAPTER ONE 

INTRODUCTION

The problem of optimal experimental design has paid more attention to 

linear experimental design (LED) than to non-linear experimental design 

(NLED) in the statistical literature. In their review work Steinberg and Hunter 

(1985) devoted only one paragraph to non-linear models. John and Draper (1975) 

did the same seventeen years earlier.

Work on linear models led to the development of a powerful body of 

theory and methodology. Ford (1976) provided a critical review of optimal static 

and sequential design. Titterington (1980) reviewed the geometric approach to 

(LED). Pazman (1980) contributed on a theoretical level. Pukelshiem and 

Titterington (1983) offered a general approach to optimal (LED) and Torsney 

(1981,1983,1988) viewed the optimum linear design problem as a more general 

optimisation problem. Fedorov (1972) and Silvey (1980) contributed excellent 

monographs on linear experimental design. Recently Wynn and Logothetis 

(1989) published a comprehensive book on linear experimental design.

Non-linear problems, including non-linear regression, quantal response 

models and linear problems where interest is in a non-linear function of the 

parameters have the feature that either the information matrix or some concave 

function of the information matrix is a function of the unknown parameters. In 

order to emphasise this fact the design is called locally optimal. It is the 

dependence of the design on the unknown parameters which leads to the term 

"Locally Optimal".



This dependence on the unknown parameters is the main point of 

difference between linear experimental design, which originated in Smith (1918) 

and the non-linear case, originating in Fisher (1922). What is also very 

important, and we would like to put special emphasis on it, is that linear 

experimental design is usually concerned with design for a normal linear model, 

where as non-linear experimental design techniques are needed in the case of a 

non-linear model.

In contrast the linear problem is, relatively speaking, straightforward 

because the information matrix does not depend on any unknown parameters in 

the model, it depends proportionately on o2 and the choice of design can usually 

be reduced to the mathematical problem of finding a design to maximize some 

concave function of the Fisher information matrix.

The aim of this thesis is to consider locally optimal designs for binary 

response experiments, namely experiments of which the outcomes are either 

'occurrence’ or 'non-occurrence' of some event of interest.

This type of problem has been studied by several authors. See Abdelbasit 

and Plackett (1983) and its references, Wu (1985,1988) has worked on binary 

response problems. Salomin Minkin (1987) obtained some results on optimal 

designs for the binary data, including those on likelihood-based regions and 

global D-optimality. Ford, Torsney, and Wu (1992) study D-optimal and c- 

optimal designs for generalised linear models, including models for binary 

responses. We propose to extend the results of the latter authors.
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CHAPTER TWO 

MOTIVATION

2.1 MODELS UNDER CONSIDERATION

Consider the non-linear experimental design in which the scalar response 

variable, y  , say, is distributed as a member of the exponential family p{y,rj).

In particular assume that

E{y/x) = r\(xt&). (2.1.1)

Where x is a scalar variable called the explanatory, independent, or 

control variable because it can be chosen by the experimenter, x<=%^Rl and 

0 e © c  Rm. The set % *s the design space and the set © is the parameter space, 

the set where the m- vector of unknown parameters of interest 0 = (01502,..,,0CT)r

takes their values.

Let us assume that we have obtained a set of N independent observations 
y  = (y1,y2>-->yNy from the probability distribution p(y/x,Q), where these have

been obtained only at the distinct points XpX,,...,*,. in %. Suppose that

r
N = JT n., where nt denotes the number of observations which were taken at the

point xt , so that pt = ny ^  is the proportion of observations taken at xt , and r 

is the number of distinct *f's which were chosen.

Definition (2.L I):  We shall call the set of points Suppip*) = = 1,2,.

the support of the experimental design.
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Definition (2A .2): The pair £ = ;/ = l,2,...,/4 will be called the design

measure, where the variables p( can take any value between and including 0 

and 1. i.e.

More generally, a design will be characterized by some probability 

measure £0c), given on the design space % and satisfying the conditions

For the response variable, y , we further assume that y  e {0,1}, namely 

we have a binary response experiment. In this case the outcome is either 

’occurrence’ or ’non-occurrence* of some event and is linked with the 

explanatory variables and the parameters through a distribution function ' F ' 

with

£ p , =  1 , Q<p,<l. (2.1.2)

(2.1.3)

pfyj =1) = /7[«(j;y,g)] , p{yJ = 0) = \-F \u (x J,fff\. (2.1.4)

Where Xj is the value of x at which the observation yj is obtained.

Hence

E{yj)=F(u*). 

Var{yj) =F(«*)[l-F(«*)].

4



2.2 EXISTENCE OF ESTIMATORS

After collection of the data the question arises as to whether it is possible 

to get estimates for the unknown parameters of interest. For the binary response 

problem Silvapulle (1981) provided conditions under which the likelihood 

function L, where

can provide maximum likelihood estimators (Appendix AI.3). Roughly speaking 

that occurs when the intersection of the sets of values taken by the explanatory 

variables corresponding to l's and to 0's is not a null set. This happens to be a 

necessary and sufficient condition for the logit and probit models.

Now, having ensured that the likelihood equation can provide MLE's 

0 of 0, and denoting by £(Q) the log-likelihood, then for N large enough a 

log-likelihood confidence region for 0 is given by

(2.2.1)

R(® = {q.‘£(Q)-£(& ^ constant}. (2.2.2)

Next, we define the matrix

to be called the sample information matrix.

5



2.3 FISHER INFORMATION MATRIX

For the exponential family of models the Fisher information matrix for 

0, given an observation at design point x, is defined to be

7(0, x) = [a^x )]"1 rje IJq 

Where r|0 denotes the vector of partial derivatives

(2.3.1)

3rt 9r| dr\
ae1,de2*""3e,

(2.3.2)

And a(Qsx) = var(y/x) for the exponential family.

Consider the case of non-linear problems in which the explanatory 

variable x and the parameter 0 appear together linearly as follows

V -  Tli&s) = > s' = thx1) , z =0‘s (2.3.3)

Then

dr} dz dT]
n° =^ d e = ^ s-

(2.3.4)

Hence

fdr\
&

ss

Therefore, the Fisher information matrix is equal to

7(£,x) = w(z) [W ]-

(2.3.5)

(2.3.6)

6



Where w(z) -  “ *1 /var{y/x), and for the binary data problems

w(z)= . We will further assume that the weight function w() is

measurable.

The concept of the expected information matrix per-observation will play 

an important role in our setting for the non-linear experimental design problem. 

For the design of definition 2.1.2 it is defined to be

We now define the basic properties of the Fisher information matrix, as 

has been noted by Fedorov (1972), in the following theorem.

Theorem : (Fedorov 1972, p  66)

1- For any design £ the information matrix M(§,® is a symmetric 

positive-semidefinite matrix,

2- The matrix M(^,0) is singular [i,e |M(£0)| =■ 0], if the support points of 

the design contains less than m points (m is the number of unknown 

parameters).

r
M{6£) = (2.3.7)

For the continuous case

(2.3.8)

7
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3- The family of matrices corresponding to all possible

normalised designs is convex.

4- Given 2.3.6 the matrix M(£,£) can be represented in the form of

n
M(%,0)= £P iW fst s ' ,

Where
n

2 i=l

2.4 THE CANONICAL PROBLEM

Let % be the design space to which we are constrained in selecting design 

points x .

Let % be a design measure on %, hence

The design problem usually involves seeking a design which maximises 

some concave criterion, <|), say of the expected information matrix M =

Since M depends on 6 so will the optimal design. We cope with this as 

follows.

Suppose the criterion is invariant under transformations of the form 

s —>t_ = Bsy where B is a non-singular m x  m. If further B is chosen such that 

its first row is (1,0,...,0)' and its last row is £', (so that tx = 1, tm = &s ) we

shall see that this can lead to a canonical version of the design problem, which 

can be solved independently of 0 and for which

(2.4.1)

8



i) the design variables are images of x under the mapping namely z , 

where t -  (l,z')';

ii) the design space Z is the image of % under the mapping;

iii) the expected information matrix is

Mz = t t ( %{dz)
zeZ

= Jw(v-i) i t  4 W -
zsZ

The importance of the transformation from x to z is that the dependence of 

the optimal design on the true value 0 for given design space % is replaced, in 

the transformed problem, by a design space which varies with 9. Hence, if we 

can solve the transformed problem for arbitrary Z, we have implicitly solved the 

optimal design problem for arbitrary % and 0.

We note that for the above to be useful we have to be able to construct the 

optimal design for any canonical design space Z which might arise from the 

canonical transformation. A further induced design space, which is given below 

by the set G, plays a role in constructing optimal designs.

G = [g 6 Rm:g = [w(fm)]V2£, t = (1 zez} . (2.4.2)

It has been established (Silvey (1980), chapter 6 ) that the structure of 

optimal designs, in particular their supports, depends critically on the geometry 

of this space.

9



2.5 DESIGN CRITERIA

In the previous section we have formulated a very general experimental

design problem, namely to optimise some concave function of
, M(£,0) e p 9, where p0 represents the set of all Fisher information

matrices that experimental conditions permit. We now consider possible 

candidates for the function <|>.

2JJL

In this paragraph we shall assume that the experimenter is interested in all 

of the parameters jointly or in some linear combination of them. We shall 

consider two optimality criteria.

i) (jjj = log det[M(£,0)]

Suppose that £ is the M.L estimator of £ obtained from data arising under 

a design £ chosen on the provisional assumption that £ -  £. Then from equation

(2.2.2) log-likelihood confidence regions for £ can be closely approximated by 

ellipsoids of the form

{o_: (0-0)' M(£,0) (0-0) < constant}.

The contents of these ellipsoids will represent regions of equal 'confidence'. The 

volume of the above ellipsoids is proportional to {det(M(£,0))} , so

maximising log det |lM(%,0)] would be equivalent to minimising the volume of

all confidence ellipsoids for 0 of the above form. That is, we are making our 

confidence regions, in some sense, as small as possible. We take <J>i as log det for 

nice mathematical ease later on. The criterion ^  is the celebrated D-optimality,

10



the most intensively studied of all design criteria, and has by far dominated the 

literature of optimal designs (See Fedorov (1972); Silvey (1980)).

Properties o f  ^

a) (|>1 is an increasing function of the positive definite symmetric matrices.

That is, for Ml positive definite symmetric and M2 positive semi-definite 

symmetric matrices

b) <{>! is a strictly concave function of the positive definite symmetric 

matrices. That is, for M1, M2 positive definite symmetric matrices

<j>l{(xMl + (l-a)M2}>a(j)l{M1} + (l-a)(j}l{M2} , 0 < a < l

c) (j>2 remains ' invariant' under non-singular linear transformations of the 

design variable x , and thus we can transform to a canonical problem as outlined 

in section 2.4.

Let t = Bs> where first row of B equals el , and last row equals 0* , so 

that x~>z where s - ( W ) S  £-(W )S tm =zm_l = 0!s. Then the expected

information matrix in terms of the induced design variable Z is

= E { w(9's)B s s'B'}

= S £’{w(e's) ss '}b'

, say

11



Thus, criterion (j): can be written as follows

0! = log det M, = log[det B~f + log det Mx

Where log[detZ?]2 is constant for linear transformation. Hence maximizing, 

log det Mz is the same as that of maximizing log det Mx.

ii) <j>2 = -  c'M(£,0)-1c

Typically, this criterion deals with the case where the interest of the 

experimenter is centred upon some linear combination of the unknown parameter 

0, say dO. Arguments similar to those motivating (f)1 confirm that maximising <j>2 

is proportional to minus the asymptotic variance of dO. The criterion <{)2 has been 

termed c-optimality, see for instance, Elfving (1952).

Properties o f  <|>2

a) (J)2 is an increasing function over the set of positive definite symmetric 

matrices.

b) 4>2 is a concave function over the set of positive definite symmetric 

matrices.

c) <|>2 is ' invariant' under linear transformations of the design variable x , 

and thus we can transform to a canonical version of the problem.

For the matrix B as above we have

MZ=BMXB‘

12



m :' =b 'm^ bX z

Therefore, criterion <j)2 can be written as

- c?M~lc = wO W ] c

-  w (•)£*■£/] B~lBc

= -(Be)' {m'()[Bs,][B,sJ }’’ (Be)

-  -c ‘zM;lcz , with cz = Be.

Thus the original c-optimality criterion is transformed to another but with terms 

depending on the unknown parameters.

2.6 EQUIVALENCE THEOREM

The equivalence of various types of optimality criteria has been

investigated and proved by several authors. Define the mean of the response

surface by

E{y/z*) = yjw(z*)f(z*)9. (2.6.1)

And the variance of the estimated response surface by

d{z*>£) = = w{z*)f {z*)M~l f{z*). (2.6,2)

Where Mz is equal's to particular design matrix.

Kiefer and Wolfowitz (1960) establish the equivalence of the following three 

conditions.

13



i) maximizes |M(|,0)| ^minimizes [M"1 (§,©[];

ii) minimizes maxz, eZ d(z* £);

iii) max *6Zd(z*&*) = m [ m is the number of unknown parameters in the 

model].

Thus the theorem establishes a characterisation of D-optimal designs. In 

particular it is sufficient to verify that the estimated variance d{z* &) does not 

exceed m . In this case it is very useful to obtain the following corollary of the 

theorem.

Corollary ( l k

At the support points of the optimal design the estimated variance of the

response surface d{z* ,£*) takes its maximum value m.

Corollary (1) is particularly useful in that it gives us a test to verify the D- 

optimality of a design on a given support; namely we must have

= (2.6.3)

for all the support points z* of the design.

We note that equality (2.6.3) holds at the support points of the D-optimal 

design is a necessary condition but is not sufficient. A design measure *s D-

optimal if and only if the inequality

d{z*£*) <m, (2.6.4)

holds for all z* e Z.

14



CHAPTER THREE 

LOCALLY D-OPTIMAL DESIGNS

3.1 INTRODUCTION

In this chapter we concentrate on two parameter models and assume that 

there is interest in estimating both parameters, so that we consider the D- 

optimal criterion.

3.2 MODEL

Specifically we consider the case

i )  T i - T | ( < x  +  pai:).

ii) The design variable x is a scalar,

iii) The design space % is a line segment, say % = [c,d\.

Hence 0 = (a,P)',

and the matrix B of chapter 2 is

( I  0\
B ~ (a  p }

leading to canonical problem for which

iv) The design variable z -  a + pbc.

v) The design space Z is a line segment Z = [a,b].

vi) The expected information matrix is

15



Mz =E^w{z) ^j(l z)

We aim to solve this problem for all line segments Z. A two-step 

approach is used. Firstly we identify or characterise the support points of an 

optimal design, that is z-values with positive weight. Then we determine these 

optimal weights. First we consider some results on the calculation of weights.

3,3 SOME RESULTS ON OPTIMAL WEIGHTS

We consider the case of the widest choice of Z for the binary models, 
namely Zw = {-<*=,°°), In the two parameter case a result of caratheodory's

theorem is that there exists a D-optimal design with a support of two or three 

points (Appendix AI.2). When the support consists of two points, the optimal 

1 1weights are —, We show this below. Also in our examples we encounter two
2 2

symmetric models with symmetric D-optimal designs on zw = (-»,«>) supported 

on three points (-z,0,z) with weights {p,l- 2p,p), namely the double 

exponential and the double reciprocal models. The optimal value of p can be 

determined explicitly. We consider each case in turn.

Firstly, suppose that a design £ assigns weights p1, p 2 to two points 
z1, z2 such that gizj , g(z2) <eR2 are linearly independent. Then the information

matrix of this design ,A/Z, is given by

A/ = Mt = }

J  p,w(z1)+p2w(z2) p ^ iwUl)+p2ztw(z2)"\ 
p lzlw{zl)+p2zi w(z2) + p,iz\w(zz)\

16



The determinant of M is equal to

M  =/»1p2wU1)w(*2)U1 - z 2)2

=jt71(l-/>1)w'(.r1)w(.32)(,z1 - ^ 2)2 (3.3.2)

since p1+p2~ 1> which implies that p2 = 1 -p1.

The determinant above is proportional to the simple function 

f (p l) = PiQ-Pi) of pv Thus an elementary one variable optimisation technique

shows that (3.3.2) is maximised at pt = p2 = — (which verifies a standard result).
2

Secondly, consider the case of symmetric three point design (~z,0,z) with

1
weights (p,l-2p,p) and p subject to 0 <p < —. Then the information matrix for

2

this design is given by

M = + (1- 2/?)g(0)g(0)' + pg(z)g(zY } (3.3.3)

~w(-z) 0 w(0) 0~ w(z) 0
0 (-z)2w(-z)_

+ (1-2p)
0 °.

+p 0 z2w(z)

2pw(z) + (l-2/>)w(0) 0
0 2pz2w(z)

(3.3.5)

since for symmetric models w(-z)=w(z). The determinant of M is equal to

\M\={ 2z2w(z)} {2p2w(z)-2p2w(0)+pw(0)} , (3.3.6)

and the criterion is

17



<)>! = ]n{2z2w(z)} + ]n{2p2w{z)-2p2w(0)+pw(0)}. (3.3.7)

If the optimal p  lies strictly within 

Hence

0,- it will be a stationary value of <j>r

— 0 , i.e 4pw(z)-4pw(Q) + w(Q) = 0. (3.3.8)

Which implies that jf){4[w(0) -  w(z)]} = w(0). (3.3.9)

**• P =
w(0)

4[w(0)-w(z)]

Substituting the value of p in equation (3.3.6), yields

(3.3.10)

\M\ = 2z2w(z) -2{w(0)-w(z)} w(0)
4[w(0)-w(z)]

+ w(0)- w(0)
4[w(0)“ w(z)]

-  2z2w(z) -f-- w(0):
8[w(0)-wfe)] 4[vt>(0)-w(z)]

(3.3.11)

(3.3.12)

= 2 z2w(z) w(0);
8[w(0) — w(z)]

(3.3.13)

If w(0)=l as is the case for the double exponential and the double reciprocal 

models, then the determinant of the matrix becomes

\M \ =
z2w(z) 

4[1- w(z)]
(3.3.14)

18



Allowing for the possibility that (3.3.10) is outside
° ' i

the complete solution

is

p = mini—,  ----- 1. (3.3.15)

With \M\ given by (3.3.2) or (3.3.14) as appropriate.

We note in conclusion that explicit formulae like these are the exception. 

Numerical techniques are usually needed to determine optimal weights, if, in a 

two parameter model, a D-optimal design has three support points.

3.4 GEOMETRIC APPROACH

The set G introduced in section 2.4 is given here by

G = G{z) = {g(z) =  ig^gzf'.gi = {w(z)}ll2,g2 = zgvz e  Z -  [a,b]}. (3.4.1)

A geometrical procedure for potentially identifying the support points of a 

D-optimal design is available. These are the points of contact between G and the 

smallest ellipsoid centred on the origin containing G. See Sibson (1972); Silvey 

and Titterington (1973) ; Silvey (1980) . This is the reason for considering G. It's 

shape is crucial.

f 2 (z)We are primarily interested in the case w(z) =     ............. . For given
F ( z ) [ l” F (z )j

w(z) the G corresponding to any Z of interest will be a contiguous section of a 

trajectory in R?\  Note r\ = F(z), the probability of a response at z , is

19



nondecreasing, F(-«0 = 0 and F{o°) = 1, and f(z) is the associated density 

function.

For most choices of f, F the widest choice of Z is Zw = and the set

G is a closed convex curve beginning and ending at the origin as z ranges from

—°°  to 00.

For the sake of completeness we consider three other weight functions 

from the literature on weighted linear regression, since their induced G's are also 
of this form, though their widest choice Zw can differ from (-<*>,<*>). They also

yield explicit solutions, see Fedorov (1972); Karlin and Studden (1966).

Plots of G are similar in all nine binary models (see Table 3.1) and the

three weight functions, except that G is asymmetric when F  is asymmetric

(which includes the skewed logistic distributions and the complementary log-log 

distribution and w^z) (a ^ p) and w2(z)). Also G is non differentiable at z = 0 in 

the symmetric two binary models, namely the double exponential and the double 

reciprocal. See figures (3.1) to (3.9) for the plots of G for all models mentioned 

above.

3.5 EXPLICIT SOL UTIONS

We will find explicit formulae for the D-optimal designs for the three 

following weight functions in turn, namely

i) w1(z) = ( l - z r 1(l+z)^1 , Z c Z w = (-1,1) , a>p>~l

ii) w2(z) = za+1e~z , Z c Z w = (0,*o) t a > -1

iii) w3(z) = e~z , Z e Zw = (-0 0 ,0 0 )

20



Fedorov (1972), Karlin and Studden (1966) prove that there are only two 
D-optimal support points on Zw. Denote these by, say zx and z2. As already

The optimal pair (zlsz2) must maximise (3.5.1).

A check that these two-point designs are globally D-optimal is provided 

by the equivalence theorem of section 2 .6 ; namely we must have

If for an arbitrary w(-) equation (3.5.2) is violated by the best two-point

design, then the implication is that three points are needed. We now proceed to 
determine the values of zx and z2 for Z = Zw and other choices of Z for both

wx{z) and w2(z). The problem of identifying the support of optimal designs for

w3 (z) will be considered later.

i
1- a) Case w(z) = wl(z) t Z = Zw = (-1,1): f

The best two-point designs for all a  and (3 are achieved by maximizing 

the determinant in (3.5.1) with respect to both variables z1 and z2; that is 

maximise

shown in section 3.3 the optimal design £ assigns weights of — and Thus

the determinant of the information matrix M from (3.3.2) is given by

\M\ = ̂ -w(z1)w(z2)(zl - z 2)2, (3.5.1)

(3.5.2)

=]nw(zl) + hiw(z2) + 2ln(z!—zz) .
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Note that neither z1 nor z2  can assume the values 1 or -1, since w(-l)=w(l)=0, 

so z1 and z2  are given by first order conditions, namely

=  (1)
dzt wizj z1- z 2

94>, w'Qit) 2 Q (2j
dz2 w(z2) zx- z 2

Which implies that

, 2 w ( ^ )  m
Z 2 ~  Z^~i  ~  ~  (1 )

2  w(z2) 
w'{z2)

Zl=z2+ - i p f  (2 )

Equations (1) and (2) simplify to

_ 2+(p-q)z 1 -(a+p+4)z 
{{J — cx) — ((X "f* P +  2 )Z j

(IV

2+(p — (x)z2 — (a + p + 4)z2 ^ y
(P-a)-(ot + p + 2)z2

Substituting the value of z2 in equation (2 )', a tedious algebraic manipulation 

reveals that, as a function of z, equations (1 )' and ( 2 )' reduce to

f(z) = az4 - 2bzs - 4cz2 + 2dz - e  = 0.

Where

a = (oc-f p+3)(ot+p+ 4),
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b -  (P-a)(oc-f p+3). 
c = (ap-f 2a-f 2P+4). 
d = (p-a)(a+p+3). 
e = (a2 + p2-2ap-a~p-4). 

Two of the roots are z= ±l , hence

Therefore, the support points (i.e. the other two roots) of the best two-point 

designs are given by

_ (P-a)(a+p+3) ± 2̂ /(a+2)(p+2)(a-f p-f 3) tt 5
(a+P+3)(a+P+4) '

For example, if we let a = 1 and p = 2 in (3.5.3), then the support of the

sufficient condition of the equivalence theorem; that is they satisfy equation

(3.5.2). Fedorov (1972), Karlin and Studden (1966) proved this; see figure 

(3.10). Note if (a = p = y), then the weight function w1 (z) is symmetric about the 

origin, which implies symmetry of the best two-point designs, and equation

(3.5.3) simplifies to

/  (z ) = (z 2 - 1) (az2 -  2bz + e) -  0.

best two-point design on Zw = (-1,1) are 1-2V2 I+ 2J2
7 ’ 7 with optimal weights

These are globally D-optimal because they satisfy the necessary and

z = (3.5.4)
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For instance, if we let y = 3 in equation (3.5.4), then the support of the 

best two-point design on Zw = (-1,1) are with optimal weights

These symmetric best two-points design are globally D-optimal as well for the 

same reason, namely they satisfy equation (3.5.2), see figure (3.11).

1-b) Case w(z) = w2(z) ,Z  = Zw = (0 ,«>):

In the case of w2 (z), let

u = z - z max , u > -(a-f 1 )

where £max -  (a-f 1) is the value of z which maximizes w2 (z). Then

w(u) = [u+ (a-f l)]a+1 e- t “ + (a + 1 > 1 , (i.e. w(u) maximized at u=0 ).

Now, the best two-point designs for all a, can be determined by 

maximizing the criterion function ^  for both variables iq and u2, where

<j>i = 21n(w2  — u±) -f {(X -f 1) 1h[mj -f (ex -f l)]-f (oc -f 1) ln.[w2 -f (cc + 1)]— (z/j -f u2).

Again ux and u2 must be internal to Uw and are given by

3(1)! (a-fl) 2

3 ux Kj -/-(a-fl) u2-u x
- 1  = 0 (1)

—(a+l)—+—2 — . _ 1  = 0  (2)
u2 u2+( a+l) u2~ux

Equations (1) and (2) simplify to
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_«12— 2u1-2{a+l)

 ̂ _ ^ 2  ^ 2  2 (cx+l) (2 )/

Substituting the value of u2 in equation (2 )', a little algebraic manipulation 

reveals that, as a function of u, equations (1 )/ and (2 )' reduce to

f(u) = u3 +u2 (a-1) -3u(a+l) -  (a+l)2 = 0.

One root of the equation is u -  -(a-f 1 ), hence

f(u) = [u + (a+l)][u2 ~2u-(a+l)] = 0 .

Therefore, the support points ( i.e. the other two roots ) of the best two-point 

design are given by

u = l± J (a  + 2) f a > - l

Transforming back to the variable z, we get

z = ( a + 2)+J(a + 2). (3.5.5)

For instance, if we let a = 2 in equation (3.5.5), the resulting support is 

{2,6} with optimal weight Again the necessary and sufficient condition

of the equivalence theorem in equation (3.5.2) is satisfied on Zw = (0,<*>) by this 

design. Thus it is globally D-optimal; see figure (3.12).
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2) A rbitrary Z:

It is also of interest to find D-optimal designs on arbitrary intervals 

Z=[d,c] for any particular weight function iv(-). If Z contains the support points 

of the optimal design onZw then that design is still optimal. Otherwise inspection 

of the plot of G suggests that the optimal support consists of two points at least 

one of which is an end point of Z. Assuming that is c, the other point, say z, can 

be identified by maximizing the determinant, namely

\M\ = (z — c)2 w(*), (3.5.6)

over Z. This follows easily from (3.5.1). We can now cover two cases 

simultaneously; namely Z=[d,c] and Z=[c,e] ,d<c<e.

Assuming the conjecture to be true, supports of D-optimal designs on 

these sets are respectively U,c} and {c,u} where i  denotes the value of z which 

maximizes the determinant over Z=[d,c], and u denotes the value of z which 

maximizes the determinant over Z=[c,e]. Note the solutions on Z=[d,c] and on 

Z=[c,e] may be internal to Z=[d,c] or to Z=[c,e] or may be z=d or z=e.

Such designs do appear to be D-optimal designs. Plots suggest that the 

equivalence theorem is satisfied. We proceed to determine the values of I and u 
for both weight functions wl {z) and w2 (z) .

2-a) case w{z) = wl(z) , Z = [-l,c] and Z = [c,l]:

For the weight function wx (z) the criterion function ^  from (3.5.6) is

0 ! =2\n(z-c) + (a + l)ki(l-z) + (p + l)ln(l-f z).

26



Since -1 and 1 can't ever be support points, t  and u must satisfy first order 

conditions and are given by the roots of the following equation

f{z) = z2(a+ p + 4 ) - z (p ~ a  + ac+ pc+2c)~ (ae- pc+2) = 0.

Thus

_ (p - a  + ac+ Pc + 2c) ± -y](p - a  + ae+ pc + 2c)2 + 4(a + p + 4)(ac-  pc + 2)
2{pt -f- P + 4)

In particular, if c = zmax where zmax is the value of z which maximizes the 

weight function wY (z), namely

‘~ - < £ 0 r y  ,3-5-8>

then the support onZ  = [-l,^max] and on Z = [~l,zmax] can be identified by setting 

c = zmax in equation (3.5.7) to get

(p -a )± 2  
z =-------

(3a + 3p + 2ap+4)
( a + p + 2)------  (3 .5 .9)

(a+p+4)

Note that if (a = P = y), then zmax = 0 , and the support on Z=[-1,0] and on 

Z=[0,1] can be determined from equation (3.5.7) by setting c=0 to get

z = ± - r = .  (3.5.10)
^/r + 2

For instance, if we let y ~ 2  , then the conjectured optimal support on Z=[-1,0]
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is j - i , o j  and on Z=[0,1] is | o , i |  with optimal weights These two

designs satisfy the necessary and sufficient condition of the equivalence theorem. 

Thus they are globally D-optimal, see figure (3.13) and (3.14).

2-b) case w(z) = w2(z), Z -  [0,c] andZ = [ct«>):

For the weight functions, (z) the criterion function <j>y from (3.5,6) is given by

= 2 1 n(z-c)-f(a + l)h iz-z  .

Again for the above choices of z, t  and u must satisfy first order 

conditions. An elementary one variable optimisation technique for z shows that 

the values of I and u are the solutions of the following equation, namely

f(z) = z2-z (a  + 3+c) + c(a + l) = 0.

Thus

(ia + 3+c)± <J(a + 3+c)2 -4c{a + l)z = (3.5.11)

In particular, if c = zmax where zmax is the value of z which maximises the 

weight function w2 (z) , that is

*max = (a + l), (3.5.12)

then the support on Z = [CUmaJ  and on Z -  [zmax,°°) can be identified by setting 

c = zmax in equation (3.5.11) to get

z = (a+2)±J(2a + 3) , a > - 1 (3.5.13)
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For example, if we let a = 3, then zmax = 4 and the support on Z=[0,4] is 

{2,4} and o n Z -  [4,«>) is {4,8} with optimal weights

3) case w(z) -w M ) t Z = Z = (-°o,oo), z  = (-« ,c], Z -  [c,«>):

Fedorov (1972), Karlin and Studden (1966) show that the D-optimal 
design on Zw = (-00,00) has two supports which must be say ±z* since w3 (z) is

symmetric about zero. In fact in view of (3.5.1) z* solves the following problem 

for d=0 , k=l; namely for fixed d, k

maxzez (z-dYw^iz). (3.5.14)

Suppose that Z = (- 0 0 , c] or Z = [c,«>) excludes at least one of the support 

points of this latter design. Then inspection of G suggests that their respective D- 

optimal design have two support points one of which is c. The other say z* solves

(3.5.14) for d=c, k=2. That is, the two supports are {l,c} and {c,u} where t , u

are ’lower' and 'upper' solutions to (3.5.14); they maximize (3.5.14) over 

Z = (- 0 0 , c] and over Z = [c,^) respectively. The values of £ and u must be 

internal to their respective Z's , since w(-<*>) -  w(«>) = 0 . Thus they satisfy first 

order conditions. Hence

f(z) = 2z2~2dz-k =  0 .

* d±  ^Sd1 + 2k r ir \z = --------------- . (3.5.15)

In particular, if we set d-0, k=l in equation (3.5.15), then the support of 

the best two-point design on the widest choice Zw = (-00,00) is with
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optimal weight Q -,ij.Thc necessary and sufficient condition of the equivalence

theorem as stated earlier is satisfied by this best symmetric two point design. 

Thus it is globally D-optimal, see figure (3.15).

Taking d=0, k=2 in (3.5.15) suggest a support onZ = (-~>,0] of {-1,0} and

a support on Z = [(),<») of {0,1} with optimal weights Since these

designs satisfy equation (3.5.2) as well, they are D-optimal designs, see figure 

(3.16).
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3.6 BINARY MODELS SOME NUMERICAL RESULTS

3.6.1: Consider the problem of finding the support points of the D-optimal

designs for the binary response models, with weight functions of the form

f 2 (z)w(z) = , /r v ' , x„. In general when Z  = (—co)co ) , i.e. the widest choice of Z, it
F(z)[l-F(z)] 5 1V

is not possible to identify support points for a given F from visual inspection of

G and the smallest ellipsoid containing it.

To find the best two-point design we must maximise the determinant in
(3.5.1) with respect to both variables z1 and z2, This exercise simplifies when F is

symmetric, that is F(-z)=l-F(z), which in turn guarantees symmetry of w() and 

symmetry of D-optimal designs about the origin. Thus zx= -z2 , z2 > 0, and z2 

must, from (3.5.1), maximise z2w(z)2 over Z = (0,«>).

We list the zx and z2 values of the nine choices of F in Table (3.1) as 

reported by Ford, Torsney, and Wu (1992). For seven of them the necessary and 

sufficient condition of the equivalence theorem in (3.5.2) is satisfied and 

therefore the D-optimal two-point designs are globally D-optimal. However for 

the double exponential and the double reciprocal models, (3.5.2) is violated.

The global D-optimal design on Zw = (—oofoo ) for both these symmetric 

models, namely the double exponential and the double reciprocal, must be 

symmetric about the origin by the same arguments mentioned above. So if it is a 

three-point design, its support must be of the form {-z*,0,z*} with optimal 

weights (ps\~2p)p ) . z* and p must maximize the determinant of the information 

matrix. In fact the optimal weight p can be determined explicitly for given z* 

from equation (3.3.10), and z* must maximize the determinant of equation

(3.3.14).
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We now list the support points and the optimal weights for both models in Table

(3.2).

Table (3.2); Global D-optimal designs on Zw = (-0 0 ,0 0 ) .

Model Support points Optimal Weights

1) Double Exponential. (-1.5936,0,1.5936) (0.2819,0.4362,0.2819)

2) Double Reciprocal. (0.2617,0.4766,0.2617)

In both models the necessary and sufficient condition of the equivalence 

theorem (see section 2 .6 ), namely equation (3 ,5 .2 ) is satisfied and therefore these 

designs are globally D-optimal, see figures (3.17) and (3.18).

3.6.2:

In this section the support points of the D-optimal designs on symmetric 
intervals Zk =[-k,k] Vk, for four symmetric binary models, and the weight 

functions (z) (with a  = p) and (z) of section 3.5, will be determined and 

characterized.

For the logistic and the probit models and the weight functions (z) and 

w3 (z), denote the global support points by ± z* (z* > 0 ) (See Table 3.1 and

equation 3.5.15 with d=0 , k=l). Then for k < z \ the D-optimal designs are 

supported on {-k,k} with equal optimal weights and for k > z \  the D-

optimal design is that for Zw.
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For the double exponential and the double reciprocal, when Zk = [~~k,k] in 

general, there exists a critical value k* such that Vk < k*, the D-optimal designs

are supported on {-k,k} with equal optimal weights The value of k* can

be determined by solving the equation

1  1 (3.6.1)

For k* < k < z \  the D-optimal designs are three-point designs supported 

on {-k,0 ,k} with optimal weights (p* ,l~2p* ,p*), where the optimal value of p* 

can be obtained for given k from

1  (3.6.2)
4[l-w(k)]

For k > k*, the optimal design is that for Zw.

We now record the values of k* for both models.

1) For the double exponential model the exact value of k* is determined by 

solving equation (3.6.1) algebraically, to get

k* =-ln(2/3).

2) For the double reciprocal model a numerical value for k* is k* = 0.1974.

3.6.3:

Now consider the two cases Z = (-c»,c] and Z = [c,<»). Reiterating the 

arguments of section 3.5, if these contain global supports then that design is still 

optimal. Otherwise inspection of the graphs of G of our nine distributions
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suggests, with some possible restrictions on c in the case of the double 

exponential and the double reciprocal models, that for both choices of Z the 

optimal support consists of two-points one of which is c. Thus the respective 

conjectured supports are U,c} and {u,c} where as in section 3.5 £ and u 

maximise the determinant

\M\ = (z—c)2 w(*), 

over Z = (—<x>,c] and over Z -  [c,«>) respectively.

For the binary weight functions w(z) = ----------------, £ and u must be6 F(z)[l-F(z)]’
calculated numerically. We tabulate such values of £ and u .

Table (3.3) gives values of £ and u for the asymmetric complementary 

log-log distribution for c ranging from -1.3 to 0.9, which are approximately the 

two global support points; see Table (3.1).

Table (3.4) gives the value zmax and £ , u for c - z max for nine choices of 

the weight function w(z), where zmax is the value of z which maximises v̂(z)̂ ) • 

The first four are symmetric, so that zmax = 0  and £ = -u .

3.6.4:

Consider the problem of finding D-optimal designs for general Z=[a,b]. 

For the seven choices of the distribution function F in Table (3.1), excluding the 

double exponential and the double reciprocal distributions, and for the three 

weight functions considered in section 3.5 the D-optimal designs ( appear to ) 

have two support points which are categorised by a common form of solution.
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Denote the support points of the best two-point design on the widest choice of Z, 

i.e. Zw, by a and b* and on Z by z1, z2i where a* <b* , z1 < z2.

1) case b > b* and a< a*:

If the two-point design on a* and b* is D-optimal for Zw = (-oosoo), then it 

is D-optimal for Z=[a,b]. Otherwise, it is only guaranteed to be D-optimal among 

two-point designs. We conclude that this design is globally D-optimal for seven 

of the nine choices of F in Table (3.1), and the three weight functions studied in 

section 3.5, see Ford, Torsney, and Wu (1992).

2) Case Z = [-b,b], b <b*:

For a symmetric distribution function F, if the function w(z)z is non 
decreasing over Z=[0,b], then zx = -b and z2=b. This follows from the

discussion of D-optimal designs in section (3.6.1). The first two symmetric 

distributions in Table (3.1), and in addition the symmetric weight functions of 
section 3.5, namely wx(z) [for a -  j$], w3(z) satisfy this condition on w(z).

3) Case bsb*:

If the function w(z)(z-£1)2 is non-decreasing in z over Z = [f.1,b'\ for any 

i x > a , then z2=b and z1 -  zb (a) , where zb {a) = max{<2 ,£(b)}, £(b) being the value 

which maximises w(z)(z~b)2 over Z=[a,b]. For any F such that w(z) is log 

concave and differentiable over Z = [a*,b*], w{z){z-£1)2 is non-decreasing over 

Z = [i^b*] for any £1>a*. Wu (1988) shows such log concavity in respect of the 

logistic and skewed logistic distributions and the complementary log-log 

distribution. The property is also enjoyed by the three weight functions of section 

3.5 .
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4) Case a > a :

If the function w(z)(z ~u2)2 is non-increasing in z over Z = [a,u2] for any 

u2<b, then zx= a and z2- z a{b), where za{b) = mm{b,u{a)}> u(a) being the 

value which maximises w(z)(z-a)2 over Z=[a,b]. It can be shown that for the 

examples cited in case 3iw(z)(z-u2) 2 is non-increasing over Z = [a*su2] for any 

u2<b\

5) case a > a ,b < b * \

If w(z) is log-concave and differentiable over Z = [a ,b*’\, then zx = a 

and z2 = b . This follows from combining the results in cases (3) and (4) above.

We summarise the above statements in Table (3.5). The values z{, z2 are 

only guaranteed to be D-optimal among two-point designs on the appropriate Z. 

However extensive numerical and empirical results show that for all w(z) 

considered except those corresponding to the double exponential and the double 

reciprocal models these best two point designs satisfy the necessary and 

sufficient condition of the equivalence theorem. Thus they are globally D- 

optimal. See figures (3.19) and (3.20).
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3.7 DEXP AND DREC MODELS

This section will be devoted to the problem of finding D-optimal designs 

for an arbitrary interval Z=[a,b], for two symmetric binary models, namely the 

double exponential and the double reciprocal. In some cases the designs have 

three support points. However in a two parameter context an explicit solution is 

available for the weights given three support points. We now derive this.

So, suppose that a design assigns weights pv p2, p3 to three points 

zltz2,z3 such that any two of g(z1),g(z2),g{z3) e R2 are linearly independent of

each other. Then the information matrix of this design is given by 

M =  l A g ( * l ) £ t e l ) '  +Pig^2)g^i)‘ + / ’3 l ( % ) g ( Z3 ) ' }

= . V, = £ .  (3.7.1)
1=1

Let VtJ = (v.:Vj) , so that is a 2 x 2  matrix, and denote its determinant by

Dfj = |v |̂. Then the determinant of M is given by

(p = \M\ —P1P2Q 2 ̂ ~PiPiP\z P2P 1P 2Z * (3.7.2)

where

A22 = w(z1)w(z2)(z1 - z 2)2,

Dn = w(z1)w{z3)(zl -z 3)2,

D23 = w{z2)w{z3) (z2- z 3)2.
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To find the optimal weights we must maximise (3.7.2) with respect to the 
variables p1>p2>p̂  subject to ^ P j  =1 . First order conditions are

| £ = i / ’- | L= 2 <p> <3-7-3>dp, "  dft

which yield three linear equations in pvp2ipv Solving this linear system by the 

well established elimination method gives the optimal value of pi as

A — s3 - .  (3-7.4)

where

D^D ^iD ^+D ^-D l,), 

D,=Dl(tf2+Dl2-D 2Yi), 

£ > 3 = A 22 ( A 3 + A 23 - A 2 ) .  

Substituting the optimal value of pt in equation (3.7.2), we get

<V = \M\ = D'2- faI%\ (3.7.5)
I A
i=l

Consider the case when the interval Z=[a,b] does not contain zero. In this 

case we believe that the D-optimal designs have two support points at least one 

of which is an end point of Z ( a if a > 0 , b if b < 0). That is
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{<2 ,min} , <2>0 
{max,#} , Z?<0

where min = mm{b,b*{a)},b*(a) being the value which maximises w{z){z~a)'

over Z -  [a,°°) for any a > 0, and max = max{a,a*(b)},a*(b) being the value which 

maximises w(z){z -b)2 over Z = (-«*,£] for any b < 0.

In particular, if Z = [0 ,°o) then the D-optimal design is a two-point design

(3.5.1), maximise z2w(z) over Z = [0,<~). By symmetry {—w15 0} are the support 

points of the D-optimal design on Z = (-°a, 0],

We now consider the case when the interval Z=[a,b] contains zero , i.e. 

a < 0 and b > 0. In this case the D-optimal designs are supported on either two

given by equation (3.7.4). These designs are categorised by a general form of 

solution. Define the following terms

i) Let ~u{ denote the negative support point of the global D-optimal design 

on z  = (—°°, 0 ]. Thus -Wj = -1,841 for the double exponential distribution and 

-ux = -1.618 for the double reciprocal distribution.

ii) Let -h 2 denote the negative support point of the global D-optimal 

design on the widest choice of Z , i.e. Zw = (-<»,oo). Thus -u2 = -1.5936 for the 

double exponential distribution and ~u2 = -42  for the double reciprocal 

distribution.

supported on {0 ,/zJ with optimal equal weights where % must, from

or three-points with optimal weightspoints with optimal equal weights
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iii) Let -u3 be the smallest value of a such that the D-optimal design on 

the set {a* ,0} is optimal on Z = [a*,0] but it is not optimal on Z = [a\y] for any 

positive y. ( We note that -w3 is obtained by solving the equation Fy(0 ) = 0 ) and 

that the function F denotes the variance function. Thus -u3 -  -1 for the double 

exponential distribution and -u 3 = -0.5 for the double reciprocal distribution.

iv) Let -uA denote the critical value of -k  at which the D-optimal design 

on Zk -  [~k,k] V k changes from a 3-point to a 2-point design (see section 3.6.2). 

Thus -u4 -  -0.4055 for the double exponential distribution and -u4 ~ -0.1974 for 

the double reciprocal distribution.

v) Consider the D-optimal design on Z = (-<», 0] with support points 

{—Wj, 0} (see(i)). Let i(^ ) be the smallest positive value of z such that F[z] -  2 . 

Thus z(Ui) -  0.3528 for the double exponential distribution and z{ux) = 0.5062 for 

the double reciprocal distribution.

U Case a < ~u2 and b > u2:

Obviously, from section 3.6.1, the D-optimal design for both models in 
this case is that for Zv . So it is a three-point design supported on

Suppip*) ={-uz> 0,z/2}f

with optimal weights {p.l-Zp.p) , see Table (3.2).

We now assume b <u2 and b<\a\ , then

2) Case a <

Here the support points of the D-optimal design are classified as follows
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Suppip*) =

where a(b) is the value of a which maximises the determinant of M , where M 

is the design matrix under the design {«*,0 ,£} with optimal weights given by 

equation (3.7.4), We note that always a{b)>ux as empirical results suggest.

3) Case -ux < a < -u2\

The support points of the D-optimal design in this case are either two 

points or three points classified as follows

(i) max = max{a,a (&)},a{b) being the value of a* which maximises the 

determinant of M, whereM is as in case 2 .

(ii) and z(a) is the value of z such that F[z] = 2 under the design on {«,0}.

4) Case -u2 <a< -«3:

The support points of the D-optimal design in this case are classified as 

follows

where
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where if (a) is as in case (3) above.

5) Case - u3<a<~u4:

The support points of the D-optimal designs in this case are classified as 

follows

where z+(a) is the (unique) value of b such that F(0) = 2  under the D-optimal 

design on the set {a,b}.

dV Case a >

Finally, the D-optimal designs in this case are supported on two points. 

Namely

Suppip*) = {a,b } , b <|a|



Table (3.1); Supports zvz2 of two-point D-optimal designs on Zw = (-oo,oo). 

(Note s=sign(z)).

Name / (w FM) Z2

1) Logit (l+e“*)~2 (1+e'T 1 -1.543 1.543

2) Probit 1 (-*»«) 
■Jin

3>U) -1.138 1.138

3) Double 

Exponential
i e-H
2

(1 +s) s 
2 2

-0.768 0.768

4) Double 

Reciprocal
f d + k r (1+s) s (i+W)-> 

2 2  1 1

-0.390 0.390

5) Complementary 

Log-Log

Exp(z—ez) -1.338 0.980

6-9) Skewed Logit

% ii •  •  • •  •  • -4.409 0.552

7) m=2/3 •  * • •  •  • -2.284 1.191

8) m=3/2 •  •  • •  •  • -0.939 1.898

9) m = 3 •  •  * •  •  • -0.060 2.525



Table (3.3); Supports of two-point D-optimal designs for the asymmetric 
complementary log-log model on Z = (—OO } c] ({^,c}) and on Z = [c,«>) ({c,«}).

The value 

o f  c

The value 

o f  i

The value 

o f  u

The value 

o f  c

The value 

o f  i

The value 

o f  u

-1.3 -3.337 0.985 -0 . 1 -2.127 1 . 2 2 2

-1 . 2 -3.240 0.999 0 . 0 -2.129 1.250

-1 . 1 -3.144 1.015 0 . 1 -2.042 1.279

-1 . 0 -3.049 1.031 0 . 2 -1.956 1,310

-0.9 -2.954 1.048 0.3 -1.871 1.343

-0 . 8 -2.860 1.066 0.4 -1.788 1.378

-0.7 -2.766 1.085 0.5 -1.706 1.415

-0 . 6 -2.672 1.105 0 . 6 -1.626 1.454

-0,5 -2.580 1.126 0.7 -1.548 1.496

-0.4 -2.488 1.148 0 . 8 -1.471 1.539

-0,3 -2.397 1.171 0.9 -1.396 1.585

-0 . 2 -2.307 1.196
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Table (3.4); Supports of two-point D-optimal designs on Z = (—0 0 , “̂niax

and on Z = Umax,<*>) (Note s=sign(z)).

Name ft(z) Ft(z) ■̂max £ u

1) logit e~*(l+e~z)~2 (l+e~*)~l 0 . 0 -2.399 2.399

2) Probit 1  A~zzJ2)
42k

0 . 0 -1.575 1.575

3) Double 

Exponential
1  -|*| — e ™ 
2

(1 +s) s g„w 
2  2

0 . 0 -1.841 1.841

4) Double 

Reciprocal
i  (l-/-|z| ) ~ 2

2  ~2  I 1

0 . 0 -1.618 1.618

5) Complementary 

Log-Log

1K4,
I l-Expi—e1) 0.466 -1.734 1.402

6-9) Skewed 

Logit

(l + e‘*)'"

6) m = 1/3 • * • • I t -0.519 -5.736 1.983

7) m = 2/3 • • • • • • -0.228 -3.305 2 . 2 1 2

8) m = 3/2 • • • I I I 0.269 -1.671 2.628

3 li • • • * • • 0.807 -0.653 3.105
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Table (3.5); Supports of two-point D-optimal designs on a general Z=[a,b].

Z = [a,b] *2

1 ) a < a* , b > b* a* b*

2) a = - b  , b < b* -b b

3) a > , b < b* zb (a) = max{a ,.<?(&)} b

4) a >&*, b < °° a za (b) = min[b,u(a)}

5) a > a* , b < b* a b

Notes on Table (3.5) :

i) The designs with a support consisting of the two points zx and z2 

(and equal weights of 1/2) are only guaranteed to be D-optimal among two-point 

designs in cases 1 to 5. However they are globally D-optimal in case 1 for seven 

of the nine choices of F in Table (3.1) and the three weight functions considered 

in section 3.5.

ii) a , b* are such that zx=a*f z2=b* when Zw = (- 0 0 , 0 0 ); see Table (3.1).

iii) 1(b) maximises w(z)(z-b)2 over Z=[a,b] and u(a) maximises 

w(z)(z-a)2 over Z=[a,b].
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Figure (3.1)

Plot of the set G = {{gltg2Y'gi = Jw(z), g2 -zgx, z e /?}, for the symmetric logistic 

distribution.
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Figure (3.2)

Plot of the set G = {(£i,£2)*:£i = ̂ jMzj, g2 =zglt z e #}, for the symmetric probit

distribution.
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Figure (3.3)

Plot of the set G = = ■Jwiz), g2 - z g v z e l l } ,  for the symmetric double

exponential distribution.
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Figure (3.4)

Plot of the set G^{{g 1}g2y:g1 = -Jwiz), g2 = zglf z e r } ,  for the symmetric double

reciprocal distribution.
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Figure (3.5)

Plot of the set G = {ig^,g2)t:gl -^fw(z), g2 =zgv z e r } ,  for the asymmetric

complementary log-log distribution.
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Figure (3.6)

Plot of the set G = {{gl,g2)i:g1 = <Jw(z), g2 ~zgls z e r \, for the asymmetric 

skewed logistic distribution with m -3.
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Figure (3.7)

Plot of the set G-lig^gzYigi-^wiz),  g2 ~zgx, z c Z )v = (-1,1)}* for the 

asymmetric weight function wx{z) with (a=l,p=2).
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Figure (3.8)

Plot of the set G = {ig^Y'^gi = g2 = zgi> z<^Zw= (0,°°)}, for the

asymmetric weight function w2(z) with (a=2).
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Figure (3.9)

Plot of the set G = {fe,^2)' = ■yjwiz), g2 -  zgv z e tf}, for the symmetric weight

function w3(z).
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Figure (3.10)

Plot of the variance function for the global D-optimal two-point design on Zw for

the weight function w1 (z) with ( a - 1 , p = 2).
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Figure (3.11)

Plot of the variance function for the global symmetric D-optimal two-point
design on Zw for the weight function \\\(z) with (a ~ (3 =3).
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Figure (3.12)

Plot of the variance function for the global D-optimal two-point design on Zw for

the weight function w2 (z) with ( a - 2) ,
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Figure (3.13)

Plot of the variance function for the global D-optimal two-point design on

Z=[-1}0] for the weight function wx(z) with (a = p  = 2).
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Figure (3.14)

Plot of the variance function for the global D-optimal two-piont design on

Z=[0,1] for the weight function Wj (z) with (a = = 2).
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Figure (3.15)

Plot of the variance function for the global symmetric D-optimal two-point

design on Zw for the weight function w3(z).
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Figure (3.16)

Plot of the variance function for the global D-optimal two-point design on
Z = [0,°°) for the weight function w3 (z) .
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Figure (3.17)

Plot of the variance function for the Global symmetric D-optimal three-point

design on Zw for the double exponential distribution.
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Figure (3.18)

Plot of the variance function for the Global symmetric D-optimal three-point
design on Zw for the double reciprocal distribution.
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Figure (3.19)

Plot of the variance function for the D-optimal two-point design on Z=[-1.3,0.9] 

for the case (3) of section 3.6.4 for the complementary log-log distribution.
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Figure (3.20)

Plot of the variance function for the D-optimal two-point design on Z=[-4,0.5]

for the case (4) of section 3,6.4 for the skewed logistic distribution with

(m -  If 3).
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Figure (3.21)

Combined plots of the set G = {(g1,g2)‘:gl -  yjwiz), g2 = zglt z and the

ellipsoid Q = {igi&Y'.(gxigi)*M** Sl = 2 ! for the double exponentialL \g*j )
distribution and the case a<~u2 and b>u2, where M* is the global D-optimal 
design matrix on Zw = (-<*>, °°), whose support points are {-u2,0,u2} (w2=1.5936) 
and weights {0.2819,0.4362,0.2819}.
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Figure (3.22)

Combined plots of the set G = {(glfg2)i:gl = Jw(z), g2 = zgt, z e/?} and the

ellipsoid Q = { (g^Yiig^gzYM*~ = 2 > for the double exponential

distribution and the case a < ~uv where M* is the global D-optimal design matrix 
on Z zz (—oô 0], whose support points are {—̂,0}, b<z{uY) (% =1.841).
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Figure (3.23)

Combined plots of the set G = {(gug2y ̂  ^-Jwiz), g2 = zglt z ^ r \  and the

ellipsoid Q = \ ig1,g2)t:{g1,g2YM* rgi' = 2\ for the double exponential

distribution and the case a <-uv where M* is the global D-optimal design matrix 
on Z=[a,b], whose support points are {a{b),0,b}, z{ux) <b<u2 with b=0.5, and 
<2 * (#) =-1.7862
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Figure (2.24)

Combined plots of the set G = {(g1,g2Y:g1 -  <Jw(z), g2 = zgu and the

ellipsoid Q = < (gl,g2) '(gvg2)tM f8 ^  
&  J

= 2 for the double exponential

distribution and the ease -u1<a< -uz , where M* is the global D-optimal design 
matrix on Z=[a,b], whose support points are {a,0}, b <z{a) , with a=-1.7211.
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Figure (3.25)

Combined plots of the set G - \ { g l,g2)t\gx=4w{z)) g2 =zgx> and the

ellipsoid Q - \ i g 1>g2)t:igi>g2y M*~ =2> for the double exponential
I \£2) )

distribution and the case -u1<a< -u2 , where M* is the global D-optimal design 
matrix on Z=[a,b], whose support points are {a,0,b|, z{a)<b<z{u1) with a=- 
1.25, z(a)=0.1167 andb=0.2.
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Figure (3.26)

Combined plots of the set G = {{g1,g2)t:g1 = ̂ w(z), g2 ~zgx, and the

ellipsoid Q = \ (gvgzY'tgvgzYM*1 ^  =%\ f°r the double exponential

distribution and the case ~ux < a < ~u? , where M* is the global D-optimal design 
matrix on Z=[a,b], whose support points are {max,0,b}, ziu^ <b <u2 where 
max = max{a,«*(^)}-{-!,7,-1.6708} and b=0.9.
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Figure (3.27)

Combined plots of the set G = {(gl,gzY'gl = -Jw(z), g2=zgl, z e  /?} and the

ellipsoid Q = \(gug2Y:(g1,g2Y M*
2

= 2 for the double exponential

distribution and the case -u2 <a<-u2t where M* is the global D-optimal design 
matrix on Z=[a,b], whose support points are {a,0}, b<z(a) with a=-1.25 and 
z{a) =0.1167.
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Figure (3.28)

Combined plots of the set G = {(g1,g2)‘;g1- J w ( z ) , g 2 =zg1,z<=R\  and the

ellipsoid Q = \(g,,g2)'-(gl,g2Y M' = 2 for the double exponential

distribution and the case ~u2<a< -u3, where M* is the global D-optimal design 
matrix on Z=[a,b], whose support points are {a,0,b}, z{a) <b <\a\ with a=-1.5, 
z (a) =0.2297 andb=0.2.
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Figure (3.29)

Combined plots of the set G = { ^ l,gz)t:gl =y[w&), g2 =zgli and the

ellipsoid Q = \ ^  = 2} for the double exponential
I  V<§2)  J

distribution and the case -u3 <a< -uA, where M* is the global D-optimal design 
matrix on Z=[a,b], whose support points are {a,b}, b <z+ (a) with a=-0.6, 
z+(a)=0.24 and b=0.2.
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Figure (3.30)

Combined plots of the set G = {(g1,g2y:g1= Jw U ) ,g2 ==zg1,z<ER} and the

ellipsoid Q = \ (gugiYiiSi&YM* r8i^
\$2J

= 2 \ for the double exponential

distribution and the case -u3<a< -uA, where M* is the global D-optimal design 
matrix on Z=[a,b], whose support points are {a,0,b}, z+{a) <b <\a\ with a=-0.6, 
z+(a)=0,24 and b=0.3.
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Figure (3.31)

Combined plots of the set G = {igl>g2)t:g1=-Jw{z), g2=zgu z &r } and the

ellipsoid Q H  (&,&)':(&, f8 i' 
\§ 2

- 2 \  for the double exponential

distribution and the case a > -u4, where M* is the global D-optimal design matrix 
on Z=[a,b], whose support points are {a,b}, b <\a\ with a=-0.4 and b=0.2.
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Figure (3.32)

Combined plots of the set G = {(g1>g2)t:g1 = Jw{z), g2 =zgx, zei?) and the

ellipsoid Q -  for the double reciprocal distribution

and the case a < ~u2 and b > u2, where M* is the global D-optimal design matrix 
on Zw — (—00 ( oo) t whose support points are {-u2,0,u2} (m2 =V 2 ) and weights 
{0.2617,0,4766,0.2617}.
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Figure (3.33)

Combined plots of the set G -{{g1,g2)t:g1 = -Jwiz), g2 = zglt ze/?} and the

ellipsoid Q = |(^ ls<̂ 2) ': {glig2)tM*'l J = 2 j  for the double reciprocal distribution

and the case a < -uv where M* is the global D-optimal design matrix on 
Z = (-oo,0], whose support points are {-%,()}, b <2 (11̂  (hj=1.618).
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Figure (3.34)

Combined plots of the set G = {(g1,g2)t;gi =‘Jw(z), g2=zg1} z g r ] and the

ellipsoid Q = j(gi,#2)*: (gugzYM*'* jj* j  = 2 | for the double reciprocal distribution

and the case a <-uv where M* is the global D-optimal design matrix on Z=[a,b],
whose support points are {a*(b),0,b} <b <u2, with b=0.8, and a{b)-~ 
1.4978.
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Figure (3.35)

Combined plots of the set G- {(gvgzY:gi =ylw(z),g2=zgv z<ER} and the 

ellipsoid <? = j (gltg2y*(gi>gzyM*~l ^  = 2 I for the double reciprocal distribution
[ \&2j J

and the case -ux<a< -u2, where M* is the global D-optimal design matrix on 

Z=[a,b], whose support points are {a,0}, b <z{a), with a=-1.5.
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Figure (3.36)

Combined plots of the set G = {(g1,g2)t:gl = Jw(zj, g2 ~zg\, and the

ellipsoid Q -  j  ^  = 21 f°r the double reciprocal distribution
[ v§W J

and the case -u1<a< -u2, where M* is the global D-optimal design matrix on 

Z=[a,b], whose support points are {a,0,b}, z{a) <b <z(u{), with a=-1.3105,

z (a) =0.4113 and b=0.4.
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Figure (3.37)

Combined plots of the set G = {(gv g2y:gx =Jw(z), g2 =zgv  zei?} and the

ellipsoid Q = j igltg2Y: ^  = 2 I for the double reciprocal distribution
I w J  J

and the case -ux < a < -u2, where M* is the global D-optimal design matrix on 
Z=[a,b], whose support points are {max,0,b}, z(ux) <b <u2 where 
max = m ax {a, a *(/;)}-{ -1.2, -1.5 316} and b=0.7.
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Figure (3.38)

Combined plots of the set G = {ig1,g2)t:g1 = jw(z) , g2 = zgls z <=#} and the

Si
VS 2 J

ellipsoid Q -  \ igltg2)im.(gvg2YM*~ f°r the double reciprocal distribution

and the case -u2<a< -w3, where M* is the global D-optimal design matrix on 
Z=[a,b], whose support points are {a,0}, b<z{a) with a=-0.9 and z(a) =0.2146.
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Figure (3.39)

Combined plots of the set G = {igl,g2y\g1=^fwiz), g2 =zgv z e R \  and the

K8 2 J
ellipsoid Q -  < (g^gzY• (gi>g2YM*~ = 2 r f°r Ihe double reciprocal distribution

and the case -u2 <a<-it3, where M* is the global D-optimal design matrix on
Z=[a,b], whose support points are {a,0,b}, z(a)<b<\a\ with a=-0.7, z(a) =0.1040 
and b=0.3.
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Figure (3.40)

Combined plots of the set G - { i g 1)g2)t:g1=^fw{z), g2=zgv z ^ r } and the

f -*(gA 1ellipsoid Q = < (gi,gz)t'(gvg2)tM* =2\ for the double reciprocal distribution
[ \g2j J

and the case ~u3< a < -u v where M* is the global D-optimal design matrix on
Z=[a,b]5 whose support points are {a,b}, b<z+(a) with a=-0.3, z^{a)~0.12, and 
b=0.1.
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Figure (3.41)

Combined plots of the set G = g2 - z g x, z g r \  and the

r n \
81

K8 2 )
ellipsoid Q = <! (g1,g2)1 \(gvg2)!M* =2> for the double reciprocal distribution

and the case -u3 <a<-uA, where M* is the global D-optimal design matrix on
Z=[a,b], whose support points are {a,0,bh z+(a) <b <\a\ with a=-0.4, z+(«)=0.05, 
and b=0.3.
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Figure (3.42)

Combined plots of the set G = {{g1,g2)':g1 = g2 - z g Xi z e r } and the

ellipsoid Q = < (ĝ  ,g2 Y: ,g2 Y M* = 2 \ for the double reciprocal distribution
I V#2) J

and the case a>-uA, where M* is the global D-optimal design matrix on Z=[a,b], 
whose support points are {a,b}, b<\a\ with a=-0.3, and b=0.2.
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CHAPTER FOUR

LOCALLY c-OPTIMAL DESIGNS 

4.1 INTRODUCTION

As in the previous chapter we will continue to focus on two parameter 

models and assume that there is interest in estimating a particular linear 

combination of both parameters, so that we consider the c-optimal criterion.

4.2 MODEL

Recall the model employed in section 3.2. Using the same notation, we 

specifically consider the following case in which

1) r| = r|(a + fk).

2) The design variable x is a scalar.

3) The design space % is a line segment, say % = [csd].

That is 0 = (oc,p)' ,

and the matrix B of section 2.4 is

( i  (h
B~U pJ *

leading to a canonical version of the design problem for which

4) The design variable z = a  + (k, and hence the dependence of the 

solution on a  and pis only through the transformation z to x = (z-a)/p.
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5) The design space Z is also a line segment, say Z = [a,b].

6) The expected information matrix is

M,=£jw(.z)Q(l z)J.

7) As noted in section 2.5, c cz , with cz -  Be.

In this case we try to solve this problem for all possible line segments. A 

two-stage approach is employed. Firstly we identify or distinguish the support 

points of an optimal design, that is z-values with positive weight. Then we 

determine these optimal weights. First we derive an explicit formula to calculate 

the c-optimal weights.

4.3 c-OPTIMAL WEIGHTS

Recently Kitsos, Titterington and Torsney (1988, section 6.1) established 

an explicit formula to compute c-optimal design weights provided the regression 

vectors that support the design are linearly independent, but the result first 

appeared in Torsney (1981). We consider the two parameter context. A 

consequence of caratheodory's theorem is that there exists a c-optimal design 

with a support of at most two points, say zx, z2 with positive weights p1, p2

(Appendix AI.2). We now derive an explicit expression to calculate these 

optimal weights.

Let us suppose that a design £ assigns weights px, p2 to two points 

zx, z2 such that g[zx) , g(z2)<=R2 are linearly independent. Then the information

matrix of this design from section 3.3 is given by
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M =
' />1w(*1) + (l-/;1)w(z2) (z1) + (1 - p1)z2w(z2)
p^wiz^ + (1 -p^)z2w(z2) p^fwizj + (1 - p l)zlw(z2)_

since px + p2 = 1, which implies that p2 = 1- pv

The criterion function <|>2 with c = (cv c2y can be written in a more general form, 

namely

<j>2 = -c‘ M~ c,

where M“ is any generalised inverse ( g-inverse ) of the information 

matrix M , that is any matrix such that MM'M  = M (Appendix AII.l). We permit 

M to be singular because, as it turns out, the optimal design is often a one-point 

design with a singular M. Thus

H f *  <£>• R 3 ' u

where K  = u - z  ) v l ) ’ andv^ = { ww>V2-

Straightforward differentiation of equation (4.3.1) shows that the optimal 

value of p{ is given by

/>• = ,. M  . (4.3.2)
\K + \Kzl\ z2

Which is equivalent to

Pi =
( < y 2  - c 2) v (z 2 )

(qz2-c2)v(z2) + (c/j -c 2)v(z1)
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Substituting the value of p\  in equation (4.3.1), yields

2̂ + 0  • (4.3.3)

4.4 GEOMETRICAL CONSTRUCTION

We rely on a construction of Elfving (1952) to deduce the c-optimal 

designs, which can be obtained by the following remarkable method; see also 

Chemoff (1979).

Let us assume that the induced design space G is closed and bounded, i.e. 

the set G defined in equation (3.4.1) is compact. Let G~ be the reflection of G 

about the origin and G* be the boundary of the convex hull generated by G and 

G~. Consider the vector c . Let this define a ray from the origin and let it stretch 

out, if necessary, to intersect G\ When GeR2 this intersection can be expressed

as a convex combination of at most two points taken from G and/or G~. If it is a 
one point design then the support point is zc where c^g(zc) . In the case of two

points let z* and zj be the related points in Z. Then the c-optimal design has 

support at Zj and z\ with optimal weights p\ and pi = 1 -  p \ , where p[ given by 

equation (4.3.2).

We now use Elfving's method, to derive c-optimal designs for all induced 

design spaces G's considered in chapter 3, including those gleaned from the 

literature on weighted linear regression.
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4,4.1 Determination o f  G*

(a) a = —0 0 ,2 ; = oo;

f  (.z)For binary weight functions w{z) = —- f r , G depends on theF(z)[l-F(z)] V

distribution function F, Realistically we must impose some restrictions on the 
latter. A key assumption is that F e  3C, where 3C denotes the set of F  such that 

the curve G = {v(z) (1,*), ~°° < z < 00} satisfies

i) G is closed and bounded,

ii) G is convex. (4.4.1) 

Let the slope of the curve G at z be denoted by r{z) or by s(zvz2), namely

r(z) = ■^-{v{z)z}
.dz

j -M z )}
.dz

= z + ^ r .  (4.4.2)
v (z)

While

s(zvz2) = [v(z1)z1 + v(z2)z2] [v(^) + v(z2)]_1. (4.4.3)

The condition (4.4.1) on G is crucial for the previous development of c- 

optimal designs. The convexity of G can be established by showing that the 
slope r(z) of G, is nondecreasing over each of the two intervals Z = (-°°,£maJ  

and Z = Lmax,oo), where zmax is the value of z which maximises v{z) over the 

widest choice Zw = (-oo,oo). If v(z) is symmetric about the origin (so that 

zmax = 0), this property needs to be verified only for one of the two intervals
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Z -  (—°°, 0] or Z = [0,oo). A sufficient condition for this is that — [log v(z)l is non
dz

increasing, i.e. v(z) is log-concave. See Ford, Torsney and Wu (1992) for the 

proof.

The second method has the additional advantage that it automatically 

ensures condition (4.4.1) (ii). This follows because w(z) is assumed to be 

measurable and v(z) is integrable as the following confirms.

Jv{z)dz,

= ]{F(z)[l-F(z)}}if(z)dz

1
= d u = B ( y 2) y2) = K < o o t 

0

where u = F{z) and B{a,b) denote the beta function with parameters a,b.

When the condition (4.4.1) is satisfied, G* decomposes into two arcs and 

two line segments. Thus there exists two values zv z2t such that the boundary G* 

consists of the arc A -  {v{z){l,z),zx <z <z2j, its reflection A~ about the origin, the 

line segment L which connects -vC^Ml,^) and v(z2)(l,z2) and its reflection 17 

about the origin. For the widest choice Zw = (- 0 0 ,0 0 ), zv z2 are the solutions to

r(^)=s(z1}z2), (4.4.4a)

and r(z2) =s(z1,z2), (4.4.4b)

where r(z) and s(zv z2) are given in equations (4.4.2) and (4.4.3).
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The problem is simplified when F is symmetric, that is F{-z) = l~F{z), 

F(z)> 0. The solution of (4.4.4) is zt = ~z2i z2> 0 satisfying r(z2) = 0. Ford, 

Torsney and Wu (1992) list the values of z1 ,z2 for all the binary models.

(b) a > -oo,Z? <oo:

Here G* again consists of two arcs and two line segments, but with 

potentially different zvz2. Denote the z1 and z2 values for the widest choice Zw

by a ,b* respectively. There are four cases which depend on the relationship of 

a,b to a ,b \  The following results are direct consequences of Elfving's approach.

(i) a < a and b > b* : z1 -  a* and z2 = b*;

(ii) a>a*and b<b* : z1=a and z2 -b \

(iii) a<a and b <b* : zx = max ĵZ ,̂) and z2=b,

where zb solves (4.4.4a), with z2 =b. It is clear that zb<a\

(iv) a > ct and b>b* : z1= a and z2 = rnm(b,za), 

where za solves (4.4.4b), with zx-a .  obviously za>b*.

We summarise the above statements in Table (4.1) and report calculations 
in Table (4.2) for Z = Zx = (-oo)̂ max] and Z = Z2 = l>max,« ) , where zmax is the value

of z which maximises v(z).

We note that if two supports are needed on these spaces then one of them 
is zmax, i.e. if Z = Zlfz2 =zmsx; if Z = Z2 ,zx =zmax. Denote by ux the value of z1 on 

Zx and by u2 the value of z2 on Z2. The values of uvzmax,u2 are listed in Table

(4.2).
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(c) <? = <?,(/= 1,2,3):

Under (4.4.1), the previous decomposition of G* for all the binary models, 

into two arcs and two line segments, holds with one major difference. Here z1 <z2 

are in Zw = (-1,1) and in Zw = (0,°°) for the asymmetric weight functions wx{z) 

and w2(z) (symmetric if (a = p)) of chapter 3 respectively, and are the solutions 

to equation (4.4.4). The widest choice Zw of the symmetric weight function w3(z) 

is the same as that for the binary models. We tabulate the values of z1 and z2 for 

the three weight functions considered in chapter 3 in particular cases in Table

(4.3).

Table (4.4) records for these weight functions the same information as is 

recorded in Table (4.2) for the binary models.

4.4.2 Determination of optimal designs:

For all G's satisfying (4.4.1) we may summarise the results in the following two 

main steps.

(i) If c is proportional to g ( z j , where zc is such that z1<zc<z2, then the 

c-optimal design is a one point design concentrated at zc;

(ii) for other c , the c-optimal design is a two point-design concentrating 

on z1 with weight p1 and on z2 with weight (1 - p x), where zx and z2 are 

determined by (4.4.4a) and (4.4.4b) and the optimal value of p1 can be obtained 

explicitly from equation (4,3.2).

Finally we note, in respect of the binary models, that optimal designs for 

estimating percentiles are c-optimal designs. Wu (1988) shows that for given p 

the optimal design for estimating Lp, where F{Lp) =p, is the c-optimal design for
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c = {l,LpY . It follows that the c-optimal design for any c with cx* 0 is 

equivalent to the optimal design for estimating Lp = %  for some p when the 

distribution function F{z) > 0 for all z e R. Wu (1988) derives Lp -optimal designs 

for a range of values of p  for all the binary models considered in the previous 

chapter.
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Table (4.1); Supports of two-point c-optimal designs on a general interval 

Z=[a,b].

Z = [a,b] *2

1) a < a* , b > b* a* b*

2) a > a*, b < b* a b

3) a < a*, b < b* max.{a,zb) b

4) a > a *, b >b* a min {b,za}

Notes on Table (4.2) :

i) a*,b* are such that z1=a and z2=b* when Zw = (-oo)t>o); see Table (4.2) 

for particular cases.

ii) za solves equation (4.4.4b) with z1=a while zb solves equation (4.4.4a) 

withz2 = b .
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Table (4.2); Support of two-point c-optimal designs on Zx = {z:z <zmax}

({«i>*nuJ) and on z 2 = s (Rix.aj})- ( Note s=sign(z)).

Name m ■̂max u2

1) Logit e~z (1-f e~z)~2 (l+ e -'r1 -3.087 0.0 3.087

2) Probit 1 {-^n) 
4 ln  6

-1.895 0.0 1.895

3) Double 

Exponential

1 -Id— e Fl
2

<1+s) Se-M 
2 2

-2.333 0.0 2.333

4) Double 

Reciprocal
|ft+ N )-2

(1+S) S /,^ 1 1 ^ - 1  

2 “ 2 (1+W)

-2.414 0.0 2.414

5) Complementary 

Log-Log

Exp(z-ez) l-iSjK -e') -2.398 0.466 1.564

6-9) Skewed Logit (1+eT"

6) m=1/3 • • • • • • -7.672 -.519 2.677

7) m=2/3 • • • • • • -4.306 -.228 2.903

8) m=3/2 • • * • • • -2.166 0.269 3.311

9) m = 3 • • • • • • -0.971 0.807 3.783
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Table (4.3); Supports zvz2 of two-point c-optimal designs of the three weight 
functions of chapter 3 on Zw,

Weight function a P Z2

w1(z) = (l-z )“+1(l+z)iH1 0.0 0.0 -0.707
\

0.707

tl (I 0.0 1.0 -0.447 0.789

II II 1.0 0.0 -0.789 0.447

II 11 1.0 1.0 -0.577 0.577

II II 1.0 2.0 -0.400 0.657

II II 1.0 3.0 -0.255 0.711

II II 2.0 3.0 -0.366 0.571

*v2(z)=z“+1e'z 0.0 0.386 4.255

II II 1.0 0.926 5.725

II II 2.0 1.542 7.114

II II 3.0 2.204 8.454

II II 4.0 2.899 9.760

II II 5.0 3.620 11.04

w3(z) = e~z2,Zw = (-oo.oo) -1.0 1.0
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Table(4.4); Supports of two-point c-optimal designs on Zj ={z:z <zmax}

and on Z2 = {z:z >/,„„} for the three weight functions of
chapter 3.

Weight function a P ux ^max u2

= (l-^)“+1(l+z)|i+1 — — Uy G  ( - l . - O (p-a)/(oc+P + 2) «2 6 [ W D

II II 0.0 0.0 -0.786 0.0 0.786

I t  II 0.0 1.0 -0.527 1/3 0.862

II I t 1.0 1.0 -0.662 0.0 0.662

I t  II 1.0 2.0 -0.483 1/5 0.737

II II 2.0 1.0 -0.737 -1/5 0.483

I t  II 2.0 2.0 -0.582 0,0 0.582

II 11 3.0 1.0 -0.784 -1/3 0.333

w2 {z) = za+le~z — — «t e (0,zm J (a+1) «2 S

n  ii 0.0 0.195 1.0 4.512

i i  H 1.0 0.605 2.0 6.126

i i  i t 2.0 1.118 3.0 7.622

w3(z)=e~z\ Z w = ( - o o ,o o ) -1.216 0.0 1.216
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CHAPTER FIVE 

WEIGHTED REGRESSION MODELS

5.1 INTRODUCTION

The preceding two chapters have been concerned with the development 

and the establishment of the D-optimal and the c-optimal designs for two 

parameter models. In the present chapter we turn our attention to the problem of 

constructing D-optimal designs for three parameter models, including those for 

weighted quadratic regression and generalised linear models. We assume that 

there is interest in estimating all parameters.

5.2 OPTIMAL WEIGHTS

In the three parameter case a result of caratheodory's theorem is that there 

exists a D-optimal design with a support of between three and six points 

(Appendix AI.2). If the support has three points, then the optimal weights are 

(%,%>%)• We now derive this.

Suppose that a design £ assigns weights pvp2lp3 to three points z1)z2,z3 

such that any two of g(z1),g(z2))g(z3) e R3 are linearly independent of each other.

Then the information matrix of this design is given by

M = {pigteligtel)1 +P2g^2)g(^y +Pig{Zi)g(h)‘}-

"1 1 1>
Let F = Z2 3̂

2 2 2{*1 2 h )
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so that V is a 3x3 matrix, and denote its determinant by det(V). Then the 

determinant of M is given by

= \M\ = pj>2(l~pl - jp2)wU1)wC?2)w(z3)[det(V')]2> (5.2.1)

where det(T) = (z3 “ Zj)(z3 - z 2)(z2 - z x) and pl+p2 +p3 =1* which implies that

To find the optimal weights we must maximise (5.2.1) with respect to 

both variables p1,p2. Thus px and p2 are given by first order conditions, namely

^2- = -    = 0 (1)
3 f t  P i 1 ~ P i ~ P 2

^ L  = i ---------1-----= 0 (2)
dp2 p2 1 ~p1- p 2

Equations (1) and (2) simplify to

(1)

(2)

Substituting the value of p2 in equation (1) yields

A = A = A = V  3- (5.2.2)

We note that as far as the supports of the D-optimal designs are

concerned, numerical techniques are usually needed to determine the optimal

weights, if, in a three parameter model, a D-optimal design has more than three 

support points; see Torsney (1983,1988), Torsney and Alahmadi (1992).
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5.3 WEIGHTED QUADRATIC REGRESSION

In this section we consider models which we simply view as weighted 

quadratic regressions using the same weight functions as in chapter 3. Namely

E{y) -oc + p-z+yz2,

Variy)-(52 / w(z),
with information matrix M of the form

M  =  ■

We note that g, belongs to the induced design space

G = = (gi'gi&Y&  = {Mz)}y\g 2 = zgug3 ~ z2gi,z e z}.

We also note that for all our weight functions except the double 

reciprocal, the case of G corresponding to the widest choice Zw of Z is bounded. 

In the case of the double reciprocal as z ± 0 0  glfg2 —> 0  but g3^+°°. So we 

need to restrict attention to bounded intervals Z . e.g. Zk = [-k,k] k<^=.

jU A i

Here we consider the problem of finding the support points of the D- 

optimal designs on the widest choice Zw for all the weight functions excluding

the double reciprocal one which will be considered later in subsection 5.3.2. In 
general when Z = Zwi it is not possible to identify support points for any given

weight function w() from visual inspection of G and the smallest ellipsoid

containing it.
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The best three-point design must be obtained by maximising the 

determinant of the information matrix in (5.2.1) with respect to all variables zltz2 

and z3. This problem simplifies when the weight function is symmetric about the 

origin, that is w(z) = w(-z), which in turn implies symmetry of D-optimal designs 

about the origin. Thus z1=-z3, z2 = 0 and z3>0, and z3=z, say, must, from

(5.2.1), maximise the resultant determinant z6w(z)2 over Z -  (0,~).

The main tool for checking if these best three-point designs are globally 

D-optimal is provided by the necessary and sufficient condition of the variance 

function of the equivalence theorem of chapter 2; that is we must have

Jt * s*\ / \t .y-1 t J = 3 / or Z ^z ltz2and z3
*<*•5 > = * « " . « ( * ) {<3 f o r z m Z

If for an arbitrary weight function equation (5.3.1) is violated by the best 

three-point design; then the implication is that more than three support points are 

needed.

For all the binary weight functions except the double reciprocal, the D- 

optimal designs on Zw are three point ones. We report the values of zv z2 and z3

in Table (5.1). These best three point designs satisfy the necessary and sufficient 

condition of the variance function as stated in (5.3.1). Thus they are globally D- 

optimal. See figures (5.1) to (5.5).

We note that Fedorov (1972), Karlin and Studden (1966) proved that the 

D-optimal designs on 7W had minimal supports of three points for the weight 

functions w1(z),w2(z) and w3(z) as is confirmed by figures (5.5) to (5.8). We 

tabulate such values of zltz2 and z3 in Tables (5.2) and (5.3).
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5,3,3 ;

Now the support points of the D-optimal designs on symmetric intervals 
Zk = [-k,k] Vk, for the four symmetric binary weight functions, and in addition 

for the symmetric weight functions w1 (z) (a = (3 = p) and w3 (z) will be discussed 

and determined.

For the logistic and the probit and the double exponential models and the 
weight functions {z) and w3(z), denote the global support points by {~z*,0,z*) 

(z* > 0) (see Tables 5.1, 5.2 and 5.3). Then for k < z\  the D-optimal designs are 

supported on three-points {-£,(),£} (i.e. the two end points and zero) with equal 

optimal weights (K,K,^), and for k > z \  the D-optimal design is the same as that 

for the global one Zw.

For the double reciprocal we noted that we must restrict attention to 

bounded Z. Extensive numerical calculations suggest that, the support points of 

the D-optimal designs on the bounded symmetric design space Zk = [~k,,k] k < <*>,

consists of either three points (i.e. the two end points and zero), or five points 

(i.e. the two end points and two other symmetric points within the interval and 

zero), depending on some critical value k* and are classified as follows

where

(i) k* -  7.4819 on the basis of a numerical search;
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(ii) the optimal weights in the case of three-points are and in the

case of five-points are (p2,pi,PQ,pl,p2) ipQ -  l~2(p1+p2)}i where the 

optimal values of pltp2 and of k must be calculated numerically for given 

k .

We list the support points and the optimal weights of the D-optimal 

designs for some particular intervals in Table (5.4).

5>3t3;

Consider now the problem of determining the support points of the D- 

optimal designs on arbitrary intervals Z=[d,c] and Z=[c,e], d<c<e for all the 

weight functions except the double reciprocal one. If these contain the support 
points of the D-optimal design on the widest choice Zw (i.e. the global design),

then that design is still optimal. Otherwise numerical studies suggest that for both 

choices of Z, the optimal support consists of three points one of which is an end 
point of Z. Assuming that c = zlf say, the other two points, say, z2 and z3 must for

given c maximise the determinant

\M\ = w(c)w{z2)w(z3)[(z3 ~c)(z2-c)(z3 ~z2) f  (5.3.2)

over z 2 , z 3 g Z  ( z 2 < z 3 ) .  Denote the optimising values by z \ > z \ .  Assuming the

conjecture to be true, supports of D-optimal designs on the interval Z=[d,c] are 
{z2,zj,c} and the supports on the interval Z=[c,e] are {c,z*2,zl) with equal optimal

weights of (KXK>-

In Table (5.5) we list the points which emerge as the support of the D- 

optimal designs on the two particular intervals Z = (-<*>,0] and Z = [0,°°) for all
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the binary models and the weight function w3 (z) excluding the double reciprocal 

model.

Table (5.6) gives the support points of D-optimal designs on the two 

intervals Z=(-1,0] and Z=[0,1) for the weight function w1 (z) .

Such designs do appear to be D-optimal designs. Plots suggest that the 

necessary and sufficient condition of the variance function in (5.3.1) is satisfied. 

For example see figures (5.9) and (5.10) for both the double exponential and the 

complementary log-log models respectively on Z = [0,<>°).

Finally we consider the problem of identifying the support points of D- 

optimal designs on the bounded interval Z = [0tk] k < <», for the double reciprocal 

model. Numerical calculations suggest that these supports consist of three-points, 

namely the two end points 0 and k and one other point z*, say, where z* is the 

value of z which, from (5,2.1), maximises the resultant determinant

\M\=z2w(z)(z-k)2,

over Z=[0,k] for given k.

We report the support points {0,z\k} of the D-optimal designs for some 

particular intervals in Table (5.7).
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5.4 GENERALISED LINEAR MODELS

This section is more properly the generalisation of the previous section 

5.3. We consider generalised linear models with a quadratic deterministic 

function, i.e.

E iy  / x) = ri(a + Ik + yc2),

where x  is a scalar to be selected from a design space % = [^,e], and 

0 = (a,p,Y)' e R3 . Taking the matrix B of chapter 2 to be

this transforms to a canonical design problem with the following ingredients

ri =  T\{sz2 +c), s=sign(y).

1 0 0

%  SY

, z g Z  = [a,b].

Mz =E<w*(z) z (l z z2) >, where w*(z) = w(sz2 + c), and in general

the weight function w*(z) is symmetric even for asymmetric w(z).
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Our goal is to find optimal designs for particular line segments Z=[a,b] for 

all given values of c e R.

In this subsection we consider the problem of finding the support points of 

the D-optimal designs on the widest choice Zw = (-<»,<») for all the binary weight

and Zw are symmetric about zero all D-optimal designs must be symmetric about 

zero. Further, if the original weight function w(z) is symmetric, then the supports 

of D-optimal designs in the case of w*{z) = w(z2 +c) , are equal to the supports 

when w* (z) = w(-z2 - c ) .

For all the binary weight functions except those corresponding to the 

double exponential and the double reciprocal models, the D-optimal designs on 

Zw prove to have either three points or four points, depending on some critical

value of c, say c*, three points if c < c*. In view of the above symmetry a general 

result is that

M is the design matrix of the D-optimal design with support {-z+, 0,z+}; i.e. z+ 

maximises z6w*(z)2 over Z = (0,o°).

functions of the form w*(z) =w(sz2 +c) = f 2{sz2 +c) Since w*{z)
F ( s z 2 + c ) [ 1 - F ( s z 2 + c ) ] *

Suppip*)

where:

(i) z+ is the optimal value of z which for given ce R  maximises det(M) where
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(ii) The critical value c* when the D-optimal designs change from three points to 

four points can be obtained by solving the following two equations 

simultaneously, namely

where det(M) is as in (i) above, and F(z) =g(zY AT1 g(z)t i.e. F(z) is the variance 

function defined in (5.3.1).

(iii) z\ and z\ are the optimal values of z1 and (zx < z2) which for

This is because det(M) as given by (5.4.2) is the determinant of M the 

design matrix with support {-zz>-z1,z1>z2j and respective weights 

(p>2 ~P>i-p>p) * which is symmetric as we require in its support points and in its 

weights. For given zuz2 (5.4.2) can be maximised explicitly with respect to p the 

solution being given in (5.4.1).

— lndet(M) = 0
dz a )

F"(0) = 0 (2)

( 2 B - A ) - - J a 2 - A B + B (5.4.1)

maximise

det(M) = 4p2{l-2p)A + 2p(l~2p)2B, (5.4.2)

where A = [z±w* (z1 )2w*(z2)~ 2zxz%w* {zx)2 w* (z2) +zfz2w* (zx)2 w* (z2)], 

B = [z2w*(z^w*(z2)2 - 2 z 2z 2 w *( z x) w * ( z 2 ) 2 +ZjZ2w*(zjw*(z2)2].
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For both the double exponential and the double reciprocal models, the D- 

optimal designs on the widest choice Zw turn out to be three points for all

positive values of c (i.e. three points if c > 0), and four points or five points or 

six points for all values of c < 0, relying on two critical negative values of c , say 

Cj and c*2. These designs are categorised by a common form of solution, namely

Supp(p') =

{~~z+,0,z+} ,c> 0

{-zx,-yl$,0,j\c\,zx} ,C2 <C<C* 
{ Zg, M  >̂ — ̂ 2

where:

(1) z+ is the value of z which maximises the determinant in (i) above for given 

c > 0.

(2) z* is the value of z which maximises the determinant in (5,4.2) for given c 

and p  under the design { ~ z , - t] \ c \ , tJ\c \ , z }  with optimal weights { p , \ - p , \ - p , p ) .  

In fact the optimal value p is given explicitly by equation (5,4,1). Note that for 

both models w*(7R) and that the quantities A and B appearing in (5.4.2) in 

this case are

A -  |>6w*{z)2 - 2|c|2 V  (z)2 +|c|2z2w* (z)2],

B -  [|c|z4w* (z) -  2\cf z V  (z) + |c|3w* (z)].

The critical value cj when the D-optimal designs change from four points 

to five points can be determined by solving the following two equations 

simultaneously with respect to z and c , that is
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—lndet(M) = 0
dz (1)

F(0) = 3 (2)

where as in (ii) above F{z) =g(z)*M lg(z) is the variance function.

(3) In the case of five points { - z , - ^ \ tQ,yj\c\,z} with weights (p2,p1»PQ>pvp2) 

{/?0 = 1 -  2(p1 +p2)}> the determinant of M is given by

det(M) = 4{p1p2 - 2p\p2 ~2ptfl)w*(P>)w*{z)A + 4(pl-2pl -2p lp2)w* {G)\cf

+4(pl~2pj?l -2/?|)zV*(0)w*tz)2 +8p2p2w*(z)B+8p1p2w* (z)zD ,

where A = [|c|z4+|c|2z2],

B = [\c\z4 -2\c\2z2 +|c|3],

D = [z6 -  2|c|z4 + |c|2z2],

and the optimal value z* of z and p*>p2 of p1,p2 niust be calculated numerically 

for given c .

The critical value of c* when the D-optimal designs change from five 

points to six points can be obtained by solving the following four equations 

simultaneously with respect to all the variables z,p1)p2 and c , namely

lndet(M) = 0, u=z>p1,p2 (1-3)
du

F"{ 0)=0 (4)

where again F(z) is as in (2) above.
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(4) In the case of six points {-z2,-*j\c\,-'z1,z1, ]̂\c\,z2} (z1 < ĵ\c\ <z2) with weights 

•̂P2 * Pi ’ Po *Poi Pi * Pz ) l^o = (2 — ^ 1  —̂ 2 »» the determinant of M is given by 

det(M) = (AD-B2)B with

A = [2p̂ w* (zj) + 2p2 + (1 ~2px - 2p2)w* (z2)],

B = [2p^w *  (Zj) + 2p2\c\ + (1-2px -2jE?2 ) z 2 w * ( z 2 ) ]  ,

D = [2p ^ w * (Zj) + 2p2\c\2 + (1 -  2px -2 p 2)z2w*(z2)].

The optimal values z[,z2 of zltz2 and p\,p\ of pltp2 must be determined 

numerically for given c .

In Tables (5.8) to (5.20) we list the resultant support points and the 

optimal weights (i.e. in the case of five and six points) and the critical values of 

c's of the D-optimal designs on the widest choice Zw for some particular values

of c for all the binary models. These designs satisfy the necessary and the 

sufficient condition of the variance function of the equivalence theorem in

(5.3.1). Thus they are globally D-optimal. See figures (5.11) to (5.20).

Now the support points of the D-optimal designs on the two particular 

intervals Z = (-<*>,0] and Z = [0,°°) for all the binary models will be obtained and 

characterized. Reiterating the same arguments of subsection 5.3.3, if these 

contain global supports then that design is still optimal. Otherwise empirical 

results show that for both choices of Z, the optimal support consists of either 

three points or four points one of which is the end point zero.

For the logistic and the probit and the complementary log-log and the 

skewed logistic models, the D-optimal designs are supported only on the three
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points (0,zx,z2} with equal optimal weights where zlsz2 denotes the

optimal values of zx,z2 which for given c must maximise the following 

determinant

det(M) = w*(0)w*(z1)w*(z2)zxzl(z2- zl)21 (5.4.3)

over zltz2 eZ  = [0,<~) (zx <z2). This follows easily from (5.2.1).

For the double exponential and the double reciprocal models, the D- 

optimal designs on the two intervals prove to change at some critical negative 
value c1 from the three points {0,zx,z2} to the three points {0JA/jcf,£} and at a

further critical negative value c2 (c2 < c1) from the latter three points to the four 

points {Q,zvyl\c\,zz} with optimal weights (px,pl>pl>pA) {p\ =l~Pi ~p\ -p\)* 

Definitions and values are now outlined.

(1) The defining characteristic of c1 is that it is the value of c such that z} = <J\c\. 

Thus cl =-0.2540 and c2 =-0.1617 for the double exponential and the double 

reciprocal respectively.

(2) The defining characteristic of c2 is it is the value of c such that zx = 7R • Thus 

cx = —3.722 for the double exponential model and c2 =-9.310 for the double 

reciprocal model. We note that cv c2 have to be obtained by search methods as a 

calculus approach fails because the variance function F(z) is not differentiable at 

z = -Jjcf under any design.

(3) zltz2 as defined above denote the optimal values of zx and z2 {z} <z2) which 

maximise the determinant of M in (5.4.3).
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(4) z is the optimal value of z which from (5.4.3), must maximise the resultant 

determinant for given c under the design with support {0,̂ /j~c\,z) and weights 

(%,%*%); that is

det(M) = w* (0)w* (7M) w* (z)|c|z2[z -  ̂ /jcfj .

(5) z1,z2 and pl>p*2,pl are the optimising values of zx and z2 and of pl,p2,p2 

which must maximise the determinant of M under the four point design with 

support {0,z1,'J\c\,z2} and respective weights {p x,P2>Ps>Pa) (Pa = l~Pi ~Pz “ ^ 3 ) 1  

namely

det(M) = A(DF- E2) - B{BF- DE) + D{BE- D2) , 

with A  = [pxw* (0) + p2w*(zx) +p3 + (1 - p x - p 2 - p 3)w*(z2)],

B = [p2z y { z x)+p3̂ f \  + { l-px - p 2 - p 3)z2w*(z2)],

D = ip2z2xw*(zx) +p3\c\ + (1 ~px - p 2 -pjzlw*(z2)],

E = [p2z\w*(zx) +p3\cf + ( l-p 1 - p 2 - p3)z\w*(z2) l  

F = [p2zfw*(zx) +p3\cf + (1 ~px - p 2 - p3)zA2w*{z2)].

We report the support points and the optimal weights of the D-optimal 

designs for all the binary models on the interval Z = [0,<*>) for all given values of 

c in Tables (5.21) to (5.32). Such designs do appear to D-optimal designs. Plots 

suggest that the necessary and the sufficient condition of the variance function is 

satisfied. For instance see figures (5.21) to (5.28).
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Table (5.1); Supports zlfz2,z3 of the best three-point D-optimal designs on the

widest choice Zw = ( —oo} oo). ( Note s=sign(z)).

Name fM) Ft(z) *1 *2 3̂

1) Logit e~‘ (l+e-')-2 (l+e"')”1 -3.244 0.0 3.244

2) Probit 1 > * '2) 
■J27C

OU) -1.898 0.0 1.898

3) Double 

Exponential
l e-H 2

(1+s) _ s  
2 2

-2.919 0.0 2.919

4) Complementary 

Log-Log

Exp{z-ez) Exp(-er) -3.776 -0.392 1.254

5-8) Skewed Logit w[^(z)J'“1/i(z) (1+e~‘)-m

3 ll • • * • » * -12.42 -2.151 1.482

6) m=2/3 • • • • • • -5.437 -0.704 2.543

7) m=3/2 • * * • • • -1.966 0.580 3.858

'SS 3 II • • • • • • -0.635 1.404 4.731
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Table (5.2); Supports zvz2tz3 of the best three-point D-optimal designs for the 
asymmetric weight function w1 (z) (symmetric if a  = p = p) of chapter 3 on the 
widest choice Zw = (-1,1).

Weight function a P zi *2 *3

w,Cj) = (1—z)“+1(l+ z /+1 M- M- —y/X2H+5) 0.0 "I” /̂ 2̂1+S)

11 II 0.0 1.0 -0.575 0.181 0.823

II II 0.0 2.0 -0.410 0.306 0.854

II II 0.0 3.0 -0.273 0.398 0.876

It II 0.0 4.0 -0.160 0.468 0.892

11 II 0.0 5.0 -0.064 0.523 0.904

II 11 1.0 0.0 -0.823 -0.181 0.575

II II 1.0 2.0 -0.508 0.132 0.709

II II 1.0 3.0 -0.382 0.233 0.748

II II 1.0 4.0 -0.273 0.313 0.778

II II 1.0 5.0 -0.180 0.378 0.802

II II 2.0 3.0 -0.461 0.104 0.630

11 II 2.0 4.0 -0.359 0.189 0.670
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Table(5.3); Supports zv z2)z3 of the best three-point D-optimal designs on the
widest choice Zw for the asymmetric weight function w2 (z) and the symmetric
weight function w3(z) of chapter 3,

Weight function a *i *2 *3

w2(z)=za+le~\Zw =  (0,°o) 0 .0 0 .4 1 5 8 2 .2 9 4 3 6 .2 8 9 9

11 ii 1 .0 0 .9 3 5 8 3 .3 0 5 4 7 .7 5 8 8

it it 2 .0 1 .5 1 7 4 4 .3 1 1 6 9 .1 7 1 0

ii ii 3 .0 2 .1 4 1 2 5 .3 1 5 5 1 0 .54 3

ii ii 4 .0 2 .7 96 5 6 .3 1 8 2 1 1 .8 8 5

ti ii 5 .0 3 .4 7 6 4 7 .3 2 0 3 1 3 .2 0 3

ii ii 6 ,0 4 .1 7 6 3 8 .3 2 1 8 1 4 .5 0 2

it <i 7 .0 4 .8 9 2 8 9 .3 2 3 0 1 5 .7 8 4

ii ti 8 .0 5 .6 2 3 4 1 0 .3 2 4 1 7 .0 5 3

ii ii 9 .0 6 .3 6 6 2 1 1 .3 2 5 1 8 .3 0 9

ii ii 10.0 7 .1 1 9 7 1 2 .3 2 5 1 9 .5 5 5

M’3(z)=e~z2,Zw = ( - 00, 00) —

- M 0 .0
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Table (5.4); Support points and optimal weights for the D-optimal designs on 
the bounded symmetric intervalZ* = [-k,k]k < , for the double reciprocal model.

Interval

Zt =l-k,k] -k

Support points

-k  0 k k P2

Optimal weights

Pi Po Pi Pi

[-7.4819,7.4819] or 

less

The two end points and 

zero

Equal optimal weights 

/>.= 1/3, (/ = !,2,3)

i.e.

[-8,8] -8 -1.7 0 1.7 8 .318 .016 .332 .016 .318

[-10,10] -10 -1.6 0 1.6 10 .278 .057 .330 .057 .278

[-15,15] -15 -1.6 0 1.6 15 .233 .104 .326 .104 .233

[-20,20] -20 -1.5 0 1.5 20 .214 .124 .324 .124 .214

[-25,25] -25 -1.5 0 1.5 25 .204 .135 .322 .135 .204

[-30,30] -30 1.5 0 1.5 30 .197 .142 .322 .142 .197

[-35,35] -35 -1.45 0 1.45 35 .193 .147 .320 .147 .193

[-40,40] -40 -1.45 0 1.45 40 .189 .151 .320 .151 .189

[-45,45] -45 -1.45 0 1.45 45 .186 .154 .320 .154 .186

[-50,50] -50 -1.45 0 1.45 50 .184 .156 .320 .156 .184
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Table(5.5); Supports of D-optimal designs for all the binary models except the

double reciprocal model and the weight function w3(z) on the appropriate

intervals shown.

Model Interval Z -°°, 0] Interval Z = [0,o=>)

1) Logit -5.005 -1.599 0.0 0.0 1.599 5.005

2) Probit -2.459 -0.965 0.0 0.0 0.965 2.459

3) Double exponential -4.626 -1.134 0.0 0.0 1.134 4.626

4) Complementary log-log -4.821 -1.379 0.0 0.0 0.764 1.678

5-8) Skewed logistic • • * » • •

Ul 5 ll -13.78 -3.335 0.0 0.0 1.545 4.962

6) m -  ^ -7.207 -2.114 0.0 0.0 1.572 4.984

7) m = y 2 -3.554 -1,192 0.0 0.0 1.639 5.038

8) m = 3 -2.059 -0,695 0.0 0.0 1.759 5.133

9) Weight function w3(z) -1.618 -0.618 0.0 0.0 0.618 1.618
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Table (5.6); Supports of D-optimal designs for the weight function w^z) on the

two intervals Z=(-1,0] and Z=[0,1).

Weight

function
a P Interval Z = (-1,0] Interval Z = [0,1)

wt(z) 0.0 0.0 -0.859 -0.388 0.0 0.0 0.388 0.859

it ti 0.0 1.0 -0.743 -0.302 0.0 0.0 0.421 0.872

n it 0.0 2.0 -0.652 -0.246 0.0 0.0 0.453 0.883

ii it 0.0 3.0 -0.578 -0.208 0.0 0.0 0.484 0.892

it it 0.0 4.0 -0.519 -0.180 0.0 0.0 0.512 0.900

it tt 0.0 5.0 -0.470 -0.158 0.0 0.0 0.539 0.907

tt it 1.0 0.0 -0.872 -0.421 0.0 0.0 0.302 0.743

it ti 1.0 1.0 -0.761 -0.328 0.0 0.0 0.328 0.761

it it 1.0 2.0 -0.671 -0.268 0.0 0.0 0.355 0.778

it it 1.0 3.0 -0.598 -0.225 0.0 0.0 0.383 0.792

it it 1.0 4.0 -0.538 -0.194 0.0 0.0 0.409 0.806

it it 1.0 5.0 -0.488 -0.169 0.0 0.0 0.435 0.818
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Table (5.7);Supports {0,z*,£} of D-optimal designs for the double reciprocal

model on the bounded interval Z = [0,£] k < <*>.

0.0 *z k

0.0 0.3489 1.0

0.0 0.5525 2.0

0.0 0.6929 3.0

0.0 0.7975 4.0

0.0 0.8793 5.0

0.0 0.9453 6.0

0.0 1.000 7.0

0,0 1.046 8.0

0.0 1.086 9.0

0.0 1.120 10.0

0.0 1.313 20.0

0.0 1.397 30.0

0.0 1.445 40.0
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Table (5.8); Supports {-z*,§tz +} of three point D-optimal designs on the widest

choice Zw —  (— CO } OO ) for some particular values of c for the logistic model with

w*(z) = w(z2 + c).

c r + c z+

0.0 1.4073 -0.1 1.4203

0.1 1.3948 -0.2 1.4338

0.2 1.3830 -0.3 1.4480

0.3 1.3717 -0.4 1.4626

0.4 1.3611 -0.5 1.4778

0.5 1.3510 -0.6 1.4935

0.6 1.3415 -0.7 1.5097

0.7 1.3325 -0.8 1.5263

0.8 1.3241 -0.9 1.5434

0.9 1.3162 -1.0 1.5608

1.0 1.3089 -2.0 1.7518
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Table (5.9); Supports {-z+,Q,z+} of three point D-optimal designs on the widest

choice Zw -  (-«», 00) for some particular values of c for the probit model with

w*(z) = w(z2 -fc).

c c z+

0.0 1.1737 -0.1 1.1965

0.1 1.1512 -0.2 1.2196

0.2 1.1289 -0.3 1.2429

0.3 1.1070 -0.4 1.2664

0.4 1.0854 -0.5 1.2901

0.5 1.0643 -0.6 1.3139

0.6 1,0434 -0.7 1.3379

0.7 1.0230 -0.8 1.3620

0.8 1.0030 -0.9 1.3862

0.9 0.9835 -1.0 1.4105

1.0 0.9644 -2.0 1.6536
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Table (5.10); Supports {-z+, 0,z*} of three point D-optimal designs on the

widest choice Zw = (-00,00) for some particular values of c for the complementary

log-log model with w* (z) = w(z2 +c).

c z+ c z+

0.0 1.0731 -0.1 1.1063

0.1 1.0397 -0.2 1.1393

0.2 1.0061 -0.3 1.1721

0.3 0.9725 -0.4 1.2045

0.4 0.9387 -0.5 1.2367

0.5 0.9051 -0.6 1.2686

0.6 0.8715 -0.7 1.3001

0.7 0.8381 -0.8 1.3313

0.8 0.8049 -0,9 1.3621

0.9 0.7721 -1.0 1.3927

1.0 0.7397 -2.0 1.6793
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Table (5.11); Supports {-z+,0,z'f} of three point D-optimal designs on the

widest choice Zw = (—oOj oo ) for some particular values of c for the complementary

log-log model with w* (z) = w(-z2 +c) .

c *+ c z+

0.0 1.2894 -0.1 1.2836

0.1 1.2958 -0.2 1.2783

0.2 1.3027 -0.3 1.2734

0.3 1.3102 -0.4 1.2690

0.4 1,3183 -0.5 1.2649

0.5 1.3271 -0.6 1.2612

0.6 1.3366 -0.7 1.2578

0.7 1.3468 -0.8 1.2548

0.8 1.3578 -0.9 1.2520

0.9 1.3696 -1.0 1.2494

1.0 1.3821 -2.0 1.2339
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Table (5.12); Supports {-z+,0,z+} of three point D-optimal designs on the

widest choice Zw = (-oo5oo) for some particular values of c between -0.5 and 0.5

for the skewed logistic model with w* (z) = w(z2+c).

c m z+ m z+ m z * m z+

-0.5 1/3 1.4443 2/3 1.4614 3/2 1.5013 3 1.5636

-0.4 ii 1.4307 ii 1.4469 ii 1.4851 ii 1.5452

-0.3 it 1.4175 ii 1.4330 ii 1.4694 it 1.5273

-0.2 it 1.4050 it 1.4196 ii 1.4543 it 1.5098

-0.1 ii 1.3929 it 1.4068 ii 1.4397 H 1.4929

0.0 ii 1.3814 it 1.3945 H 1.4257 ii 1.4765

0.1 ii 1.3705 H 1.3828 ii 1,4123 ii 1.4606

0.2 it 1.3601 it 1.3717 ii 1.3995 it 1.4454

0.3 ii 1.3502 ii 1.3611 ii 1.3873 n 1.4307

0.4 ii 1.3409 it 1.3511 ii 1.3757 H 1.4167

0.5 ii 1.3321 it 1.3416 ii 1.3646 ii 1.4033
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Table (5.13); Supports {-z+,0,z+} of three point D-optimal designs on the

widest choice Zw = (-©0,00) for some particular values of c between -0.5 and 0.5

for the skewed logistic model with w* (z) = w(-z2 +c) .

c m z + m z + m z + m

-0 .5 1/3 1 .9 2 2 9 2/3 1 .5 44 1 3/2 1 .1 6 8 8 3 0 .8 8 0 8

-0 .4 it 1 .9 2 0 2 11 1 .5 5 0 6 it 1 .1 8 1 4 n 0 .8 9 5 0

-0 .3 11 1 .9 1 8 0 n 1 .5 5 7 7 ti 1 .1 9 4 7 11 0 .9 1 0 1

-0 .2 11 1 .9 1 6 2 11 1 .5 653 ti 1 .2 0 8 5 n 0 .9 2 5 9

-0 .1 11 1 .9 1 5 0 n 1 .5 7 3 4 11 1 .2 23 1 11 0 .9 4 2 6

0 .0 11 1 .9 1 4 4 it 1 .5 8 2 2 11 1 .2 3 8 2 ti 0 .9 6 0 0

0.1 11 1 .9 1 4 3 tt 1 .5 91 5 it 1 .2 5 4 0 tt 0 .9 7 8 3

0 .2 it 1 .9 1 4 9 it 1 .6 0 1 4 11 1 .2 7 0 3 11 0 .9 9 7 3

0 .3 it 1 .9 1 6 2 11 1 .6 1 1 9 11 1 .2 8 7 3 11 1 .0 1 7 0

0 .4 11 1 .9 1 8 2 11 1 .6 230 11 1 .3 0 4 7 ti 1 .0 3 7 4

0 .5 11 1 .9 2 1 0 it 1 .6 34 6 11 1 .3 2 2 7 11 1 .0 5 8 5
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Table (5.14); Critical values of c &z+ when the D-optimal designs on the 

widest choice Zw changes from three points to four points for all the binary

models except the double exponential and the double reciprocal.

Model w*(r)

*c

= w(z2+c) 

z+

w*{z)

*c

= w(-z2 +c) 

z+

1) Logistic -1.3068 1.6166 1.3068 1.6166

2) Probit -0.9920 1.4085 0.9920 1.4085

3) Comp Log-Log -1.1925 1.4505 0.8266 1.3609

4-7) Skewed Logistic •  * * •  •  • •  •  • •  •  •

4) m =1/3 -4.0000 2.0948 0.1045 1.9143

5) w = 2/3 -2.0138 1.7288 0.9125 1.6881

6)m = 3/2 -0.7260 1.5396 1.6895 1.5665

7) m~3 0.1263 1.4566 2.3456 1.5121
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Table (5.15); Supports {-z+,0,z+} of three point D-optimal designs on the
widest choice Zw =  (— OOs o o  ) for some particular values of c>0 for the double

exponential and the double reciprocal models with >/ (z) -  w(z2 +c).

The double exponential model The double reciprocal model

c z+ c z+

0.0 1.1378 0.0 0.8918

0.1 1.1482 0.1 0.9487

0.2 1.1572 0.2 1.0018

0.3 1.1649 0.3 1.0519

0.4 1.1716 0.4 1.0995

0.5 1.1774 0.5 1.1450

0.6 1.1825 0.6 1.1885

0.7 1.1870 0.7 1.2305

0.8 1.1910 0.8 1.2710

0.9 1.1945 0.9 1.3101

1.0 1.1976 1.0 1.3481
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Table (5.16); Supports {~z\-^\c\,^j\c\,z*} of four point D-optimal designs on

the widest choice Zw = (-<*>,<») for some particular values of c<0 for the double

exponential and the double reciprocal models with w*{z) = w(z2+c).

The double exponential model The double reciprocal model

c *z c *z

-0.1 1.1994 -0.1 1.0367

-0.2 1.2682 -0,2 1.1748

-0.3 1.3322 -0.3 1,2594

-0.4 1.3875 -0.4 1.3206

-0.5 1.4358 -0.5 1.3711

-0.6 1.4792 -0.6 1.4156

-0.7 1.5192 -0.7 1,4565

-0.8 1.5567 -0.8 1.4948

-0.9 1.5923 -0.9 1.5312

-1.0 1.6265 -1.0 1.5661
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Table (5.17); Supports {-zx)- A/jcf,0,A/[cf,zx} and optimal weights p\,p\ of five 

point D-optimal designs on the widest choice Zw = (-«>,<») for some particular

values of c<0 for the double exponential and the double reciprocal models with 

w*(z) =  w(z2 + c ) .

The double exponential model The double reciprocal model

c *x *
Pi

*
Pz *x *

Pi
%

Pz

-1.1 1.6530 0.3073 0.1815 1.5918 0.3237 0.1591

-1.2 1.6788 0.3067 0.1707 1.6196 0.3238 0.1472

-1.3 1.7051 0.3068 0.1610 1.6482 0.3241 0.1380

-1.4 1.7319 0.3074 0.1527 1.6776 0.3245 0.1316

-1.5 1.7593 0.3083 0.1458 1.7075 0.3249 0.1279

-1.6 1.7871 0.3093 0.1407 1.7378 0.3253 0.1270

133



Table (5.18); Supports and optimal weights p\ ,p \  of

six point D-optimal designs on the widest choice Zw -  (-00,00) for some particular

values of c<0 for the double exponential model with w* {z) = w(z2 + c).

c z ' *2
*

Pi
*

P2

-1 ,7 0 .3 2 6 2 1 .8 148 0 .1 3 8 1 0 .3 0 9 6

-1 .8 0 .4 5 4 3 1 .8 4 2 2 0 .1 3 5 7 0 .3 0 9 8

-1 .9 0 .5 5 3 5 1.8691 0 .1 3 3 5 0 .3 1 0 1

-2 .0 0 .6 3 7 5 1 .8 9 5 7 0 .1 3 1 6 0 .3 1 0 3

-2 .1 0 .7 1 1 6 1 .9 21 9 0 .1 2 9 8 0 .3 1 0 4

-2 .2 0 .7 7 8 7 1 .9 47 7 0 .1 2 8 2 0 .3 1 0 6

-2 .3 0 .8 4 0 5 1 .9 73 2 0 .1 2 6 7 0 .3 1 0 7

-2 .4 0 .8 9 8 0 1 .9 9 8 4 0 .1 2 5 4 0 .3 1 0 8

-2 .5 0 .9 5 2 0 2 .0 2 3 3 0 .1 2 4 1 0 .3 1 0 9

-3 .0 1 .1 8 5 9 2 .1 4 3 3 0 .1 1 9 1 0 .3 1 1 3

-4 .0 1 .5 5 1 3 2 .3 65 1 0 .1 1 2 8 0 .3 1 1 6

-5 .0 1 .8 4 5 6 2 .5 6 7 8 0 .1 0 9 0 0 .3 1 1 8
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Table (5.19); Supports {~z'2,-z[,-yj\c\ , } an<̂  optimal weights p*,p*2 of

six point D-optimal designs on the widest choice Zw = (-00,00) for some particular

values of c<0 for the double reciprocal model with w* (z) = w(z2 +c).

c A 4
%

Pi
*

P 2

-1 .5 0 .2 9 2 9 1.7071 0 .1 2 8 4 0 ,3 2 4 6

-1 .6 0 .4 3 1 0 1 .7 3 6 2 0 .1 2 5 9 0 .3 2 4 7

-1 .7 0 .5 3 4 6 1 .7647 0 .1 2 3 6 0 .3 2 4 8

-1 .8 0 .6 2 1 1 1 .7 9 2 8 0 .1 2 1 6 0 .3 2 4 9

-1 .9 0 .6 9 7 0 1 .8 20 5 0 .1 1 9 8 0 .3 2 4 9

-2 .0 0 .7 6 5 4 1 .8478 0 .1 1 8 2 0 .3 2 5 0

-2 .1 0 .8 2 8 1 1 .8 74 6 0 .1 1 6 7 0 .3 2 5 0

-2 .2 0 .8 8 6 5 1.9011 0 .1 1 5 4 0 .3 2 5 1

-2 .3 0 .9 4 1 7 1 .9 2 7 2 0 .1 1 4 1 0 .3 2 5 1

-2 .4 0 .9 9 2 9 1 .9 5 3 0 0 .1 1 3 0 0 .3 2 5 2

-3 .0 1 .2 5 9 3 2 .1 0 1 0 0 .1 0 7 9 0 .3 2 5 3

-4 .0 1 .6 0 8 0 2 .3 2 6 9 0 .1 0 2 7 0 .3 2 5 4

-5 .0 1 .8 9 3 6 2 .5 3 2 6 0 .0 9 9 6 0 .3 2 5 4
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Table (5.20); Critical values of c*,c*2 ,z*,z* and p,p\,p *2 when the D-optimal 

designs on the widest choice Zw changes from four points to five points and five

points to six points for the double exponential and the double reciprocal models.

Model Four to five points

* fcCl z  p

Five to six points

* X * *2̂ * Pi P2

1) DEXP -1.017 1.632 0.191 -1.594 1.785 0.309 0.141

2) DREC -0.988 1.562 0.176 -1.414 1.682 0.325 0.131
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Table (5.21); Supports {0,f5,z2} of three point D-optimal designs on the interval

Z - [ 0,oo) for some particular values of c for the logistic model with

w*(z) = w(z2 +c).

c
A

*1
A

*2 c
A

*1
A

Z 2

0.0 0.7877 1.7560 -0.1 0.8013 1.7665

0.1 0.7749 1.7461 -0.2 0.8156 1.7775

0.2 0.7629 1.7367 -0.3 0.8308 1.7890

0.3 0.7516 1.7278 -0.4 0.8468 1.8011

0.4 0.7410 1.7195 -0.5 0.8636 1.8138

0.5 0.7312 1.7116 -0.6 0.8811 1.8269

0.6 0.7220 1.7043 -0.7 0.8995 1.8405

0.7 0.7134 1.6974 -0.8 0.9187 1.8547

0.8 0.7055 1.6910 -0.9 0.9386 1.8693

0.9 0.6981 1.6850 -1.0 0.9592 1.8843

1.0 0.6913 1.6795 -2.0 1.1940 2.0547
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Table (5.22); Supports (0,zv z2} of three point D-optimal designs on the interval

Z = [0,°o) for some particular values of c for the probit model with

w*(z) = w(z2 + c).

c
A

*1
A

c
A A

*2

0 .0 0 .6 3 8 1 1 .3 64 6 -0 .1 0 .6 5 5 4 1 .3 86 5

0 .1 0 .6 2 1 6 1 .3 4 3 0 -0 .2 0 .6 7 3 5 1 .4 0 8 6

0 .2 0 .6 0 5 8 1 .3 2 1 7 -0 .3 0 .6 9 2 4 1 .4 3 1 0

0 .3 0 .5 9 0 6 1 .3 0 0 6 -0 .4 0 .7 1 2 2 1 .4 5 3 6

0 .4 0 .5 7 6 1 1 .2 7 9 9 -0 .5 0 .7 3 2 9 1 .4 7 6 5

0 .5 0 .5 6 2 2 1 .2 5 9 4 -0 .6 0 .7 5 4 5 1 .4 99 6

0 .6 0 .5 4 8 8 1 .2 39 3

oi 0 .7 7 7 2 1 .5 2 2 9

0 .7 0 .5 3 5 9 1 .2 195 -0 .8 0 .8 0 0 8 1 .5 4 6 4

0 .8 0 .5 2 3 6 1.2001 -0 .9 0 .8 2 5 5 1 .5 701

0 .9 0 .5 1 1 7 1 .1 810 -1 .0 0 .8 5 1 1 1 .5 9 4 0

1.0 0 .5 0 0 3 1 .1 6 2 2 -2 .0 1 .1 4 8 7 1 .8 3 7 2
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Table (5.23); Supports {0 J ltz2} of three point D-optimal designs on the interval

Z = [0,oo) for some particular values of c for the complementary log-log model

with w* (z) = w(z2 +c).

c
A

*1
A

*2 c
A

*1
A

*2

0,0 0.6052 1.1868 -0.1 0.6303 1.2185

0,1 0.5807 1.1548 -0.2 0.6559 1.2500

0.2 0.5567 1.1227 -0.3 0.6821 1.2813

0.3 0.5332 1.0905 -0.4 0.7087 1.3124

0.4 0.5104 1.0581 -0.5 0.7357 1.3432

0.5 0.4881 1.0257 -0.6 0.7633 1.3738

0.6 0.4664 0.9933 -0.7 0.7912 1.4041

0.7 0.4454 0.9609 -0.8 0.8155 1.4341

0.8 0.4249 0.9286 -0.9 0.8482 1.4638

0.9 0.4052 0.8964 -1.0 0.8772 1.4932

1.0 0.3860 0.8644 -2.0 1.1765 1.7717
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Table (5.24); Supports {0,zv z2} of three point D-optimal designs on the interval

Z - [ 0,°o) for some particular values of c for the complementary log-log model

with w* (z) = w{-z2 +c).

c
A

*1
A

c
A

*1
A

*2

0.0 0.6835 1.6678 -0.1 0.6765 1.6629

0.1 0.6914 1.6732 -0.2 0.6703 1.6586

0.2 0.7004 1.6791 -0.3 0.6648 1.6546

0.3 0.7105 1.6858 -0.4 0.6599 1,6511

0.4 0.7219 1.6931 -0.5 0.6556 1.6479

0.5 0.7348 1.7013 -0.6 0.6517 1.6450

0.6 0.7494 1.7103 -0.7 0.6482 1.6424

0.7 0.7657 1.7203 -0.8 0.6452 1.6400

0.8 0,7840 1.7313 -0.9 0.6424 1.6379

0.9 0.8044 1.7433 -1.0 0.6400 1.6360

1.0 0.8268 1.7565 -2.0 0.6258 1.6246
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Table (5.25); Supports {0,zv z2} of three point D-optimal designs on the interval

Z = [0,oo) for some particular values of c between -0.5 and 0.5 for the skewed

logistic model with w* (z) = w(z2+ c) for m = 1 / 3 and m = 2 / 3.

c m A A

*2 m
A

*1
A

Z 2

-0.5 1/3 0.8102 1.7817 2/3 0.8361 1.7976

-0.4 it 0.7977 1.7711 it 0.8215 1.7860

-0.3 ii 0.7857 1.7609 it 0.8076 1.7749

-0.2 ii 0.7743 1.7512 ii 0.7943 1.7643

-0.1 ii 0.7634 1.7420 n 0.7818 1.7542

0.0 ii 0.7530 1.7333 it 0.7699 1.7446

0.1 H 0.7432 1.7250 it 0.7586 1.7354

0.2 it 0.7340 1.7171 it 0.7480 1.7268

0.3 ii 0.7252 1.7097 it 0.7381 1.7187

0.4 H 0.7170 1.7027 it 0.7287 1.7110

0.5 ii 0.7093 1.6961 it 0.7200 1.7038
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Table (5.26); Supports {0,f1,z2} of three point D-optimal designs on the interval

Z = [0,<x>) for some particular values of c between -0.5 and 0.5 for the skewed

logistic model with w*(z) = w(z2+c) for m = 3/2 and m -  3.

c m A
*1

A

*2 m
A

*1
A

*2

-0.5 3/2 0.9071 1.8383 3.0 1.0395 1.9101

-0.4 u 0.8869 1.8242 ii 1.0112 1.8922

-0.3 ii 0.8677 1,8106 ii 0.9839 1.8748

-0.2 ii 0.8495 1.7976 ii 0.9575 1.8580

-0.1 ii 0.8323 1.7852 n 0.9322 1.8419

0.0 it 0.8160 1.7734 M 0.9081 1.8264

0.1 n 0.8007 1.7622 it 0.8852 1.8115

0.2 ii 0.7864 1,7517 it 0.8636 1.7975

0.3 ii 0.7730 1.7417 h 0.8434 1.7841

0.4 ii 0.7604 1.7323 ii 0.8244 1.7715

0.5 ii 0.7488 1.7234 it 0.8068 1.7596
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Table (5.27); Supports {0tzltz2} °f three point D-optimal designs on the interval

Z = [0,<») for some particular values of c between -0.5 and 0.5 for the skewed

logistic model with w* (z) = w(-z2 +c) for m = 1/3 and m = 2 / 3.

c m
a A

*2 m
A

*1
A

*2

-0.5 1/3 1.0802 2.7240 2/3 0.8528 2.0166

-0.4 ii 1.0901 2.7259 H 0.8629 2.0216

-0.3 ii 1.1008 2.7282 H 0.8736 2.0270

-0.2 ii 1.1124 2.7308 ii 0.8851 2.0329

-0.1 ii 1.1248 2.7338 ii 0.8974 2.0393

0.0 ii 1.1380 2.7373 ii 0.9105 2.0461

0.1 ii 1.1521 2.7412 ii 0.9244 2.0535

0.2 h 1.1670 2.7455 ii 0.9391 2.0614

0.3 it 1.1826 2.7502 ii 0.9546 2.0697

0.4 it 1.1991 2.7554 it 0.9710 2.0786

0.5 it 1.2162 2.7611 ii 0.9881 2.0881
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Table (5.28); Supports of three point D-optimal designs on the interval

Z = [0,oo) for some particular values of c between -0.5 and 0.5 for the skewed

logistic model with w* {z) = w(-z2 +c) for m -  3 / 2 and m -  3.

c m
A

*1
A

*2 m
A

*1
A

*2

-0.5 3/2 0.6201 1.4581 3.0 0.4546 1.0987

-0.4 ii 0.6297 1.4685 it 0.4632 1.1118

-0.3 it 0.6399 1.4795 ii 0.4723 1.1255

-0.2 ii 0.6508 1.4911 ii 0.4821 1.1400

-0.1 ii 0.6625 1.5033 ii 0.4925 1.1552

0.0 ii 0.6748 1.5160 ii 0.5036 1.1711

0.1 ii 0.6879 1.5293 H 0.5153 1.1877

0.2 ii 0.7018 1.5432 ii 0.5278 1.2050

0.3 ii 0.7164 1.5576 n 0.5409 1,2229

0.4 ii 0.7318 1.5726 ii 0.5548 1.2414

0.5 ii 0.7480 1.5881 ii 0.5694 1.2605
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Table (5.29); Supports {0,z1}z2} of three point D-optimal designs on the interval

Z  = [0,°°) for some particular values of c for the double exponential and the

double reciprocal models with w* {z) = w(z2+c).

The double exponential model The double reciprocal model

c
A

*1
A

Z 2 c
A

*1
A

*2

-0.25 0.5048 1.5292 -0.16 0.4028 1.5428

-0.2 0.5138 1.5357 -0.15 0.4065 1.5556

-0.1 0.5289 1.5467 -0.1 0.4245 1.6179

0.0 0.5410 1.5558 0.0 0.4576 1.7343

0.1 0.5510 1.5634 0.1 0.4879 1.8422

0.2 0.5593 1.5699 0.2 0.5159 1.9434

0.3 0.5664 1.5754 0.3 0.5423 2.0391

0.4 0.5724 1.5802 0.4 0.5672 2.1302

0.5 0.5776 1.5844 0.5 0.5910 2.2173

0.6 0.5822 1.5881 0.6 0.6138 2.3009

0.7 0.5861 1.5913 0.7 0.6356 2.3814

0.8 0.5895 1.5941 0.8 0.6567 2.4592
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Table (5.30); Supports {0,^J\c\,z} of three point D-optimal designs on the

interval Z = [0,°o) for some particular values of c for the double exponential and

the double reciprocal models with w* (z) = w(z2 +c).

The double exponential model The double reciprocal model

c AZ c Az

-0.3 1.5463 -0.2 1.5667

-0.4 1.5822 -0.3 1.6228

-0.5 1.6155 ■ o 4̂ 1.6682

-0.6 1.6472 t O In 1.7071

-0.7 1.6776 -0.6 1.7416

-0.8 1.7069 -0.7 1.7729

-0.9 1.7355 -0.8 1.8018

-1.0 1.7633 -0.9 1.8289

-1.5 1.8950 -1.0 1.8546

-2.0 2.0175 -2.0 2.0753

-3.0 2.2436 -3.0 2.2734
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Table (5.31); Supports {0tzv ^\c\tz2} and optimal weights pl,p*2,pl of four point

D-optimal designs on the interval Z = [0,°o) for some particular values of c for

the double exponential model with w* (z) = w(z2 + c).

c *2
*

Pi
*

Pz
*

Pz

-3 .8 1 .6 4 1 6 2 .4 0 9 7 0 .3 331 0 .0 0 4 7 0 .3 3 1 5

-3 .9 1 .6 671 2 .4 2 8 8 0 .3 3 2 9 0 .0 1 0 3 0 .3 2 9 4

-4 .0 1 .6 92 3 2 .4 4 7 8 0 .3 3 2 6 0 .0 1 5 7 0 .3 2 7 4

-4 .1 1 .7 1 7 3 2 .4 6 6 7 0 .3 3 2 4 0 .0 2 0 8 0 .3 2 5 6

-4 .2 1 .7 4 2 0 2 .4 8 5 6 0 .3 3 2 2 0 .0 2 5 7 0 ,3 2 3 9

-4 .3 1 .7 6 6 5 2 .5 0 4 3 0 .3 3 1 9 0 .0 3 0 4 0 .3 2 2 3

-4 .4 1 .7 9 0 8 2 .5 2 3 0 0 .3 3 1 7 0 .0 3 4 9 0 .3 2 0 8

-4 .5 1 .8 1 4 7 2 .5 4 1 5 0 .3 3 1 5 0 .0 3 9 2 0 .3 1 9 4

-4 .6 1 .8 3 8 5 2 .5 6 0 0 0 .3 3 1 2 0 .0 4 3 3 0 .3 1 8 2

-4 .7 1 .8 6 2 0 2 .5 7 8 4 0 .3 3 1 0 0 .0 4 7 3 0 .3 1 7 0

-4 .8 1 ,8 8 5 3 2 .5 9 6 7 0 .3 3 0 7 0 .0 5 1 2 0 .3 1 5 9

-4 ,9 1 .9 08 3 2 .6 1 4 9 0 .3 3 0 5 0 .0 5 4 9 0 .3 1 4 8

-5 .0 1 .9 31 1 2 .6 3 3 0 0 .3 3 0 2 0 .0 5 8 5 0 .3 1 3 8

147



Table (5.32); Supports {0,zlt>j\c\,z2} and optimal weights pl*pl,pl  of four point

D-optimal designs on the interval Z - [ 0,°°) for some particular values of c for

the double reciprocal model with w* (z) = w{z2 + c).

c *i Pi
*

P2
*

Pz

-9 .4 2 .8 8 2 7 3 .3 5 0 0 0 .3 33 3 0 .0 0 4 1 0 .3 3 2 6

-9 .5 2 .8 9 9 6 3 .3 6 4 3 0 .3 3 3 3 0 .0 0 5 8 0 .3 3 2 4

-9 .6 2 .9 1 6 3 3 .3 7 8 5 0 .3 3 3 3 0 .0 0 7 4 0 .3 3 2 1

-9 .7 2 .9 3 2 9 3 .3 9 2 7 0 .3 3 3 2 0 .0 0 9 0 0 .3 3 1 8

-9 .8 2 .9 4 9 5 3 .4 0 6 9 0 .3 3 3 2 0 .0 1 0 6 0 .3 3 1 6

-9 .9 2 .9 6 5 9 3 .4 2 1 0 0 .3 3 3 2 0 .0 1 2 2 0 .3 3 1 3

-1 0 .0 2 .9 8 2 3 3 .4 3 5 0 0 .3 3 3 2 0 .0 1 3 7 0 .3 3 1 1

-1 0 .1 2 .9 9 8 6 3 .4 4 9 0 0 .3 3 3 2 0 .0 1 5 2 0 .3 3 0 8

-1 0 .2 3 .0 1 4 8 3 .4 6 3 0 0 .3 3 3 2 0 .0 1 6 6 0 .3 3 0 6
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Figure (5.1)

Plot of the variance function for the global symmetric D-optimal three-point
design on the widest choice Zw for logistic model.
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Figure (5.2)

Plot of the variance function for the global symmetric D-optimal three-point
design on the widest choice Zw for the probit model.
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Figure (5.3)

Plot of the variance function for the global symmetric D-optimal three-point

design on the widest choice Zw for the symmetric double exponential model.

7.0 

2.8 

2.6

2.4 

2.2

2.0 

1 . 8  

1 . 6

1.4 

1.2  

1 . 0  

0.8  

0.6 

0.4 

0.2 

0.0

-10 -8 -6 -4 -2 0 2 4 6 8 10

Z

151



Figure (5.4)

Plot of the variance function for the global asymmetric D-optimal three-point
design on the widest choice Zw for the asymmetric complementary log-log

model.
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Figure (5.5)

Plot of the variance function for the global asymmetric D-optimal three-point
design on the widest choice Zw for the asymmetric skewed logistic model with

m = 3/2.
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Figure (5.6)

Plot of the variance function for the global asymmetric D-optimal three-point
design on the widest choice Zw = (-1,1) for the asymmetric weight function w1 iz)

with (a = 0.0,p = 1.0).
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Figure (5.7)

Plot of the variance function for the global asymmetric D-optimal three-point
design on the widest choice Zw = (0}°°) for the asymmetric weight function w2 Cz)

with (a = 1.0).
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Figure (5.8)

Plot of the variance function for the global symmetric D-optimal three-point
design on the widest choice Zw = (-°°>°°) for the symmetric weight function

w3{z).
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Figure (5.9)

Plot of the variance function for the global D-optimal three-point design on the

interval Z -  [0,°°) for the symmetric double exponential model.
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Figure (5.10)

Plot of the variance function for the global D-optimal three-point design on the

interval Z  = [0,°°)for the asymmetric complementary log-log model.
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Figure (5.11)

Plot of the variance function for the global D-optimal three-point design on the
widest choice Zw for the complementary log-log model with w*(z2 +c) for

c = 0.5.
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Figure (5.12)

Plot of the variance function for the global D-optimal three-point design on the
widest choice Zw for the complementary log-log model with w*{-z2+c) for

c =  - 1 .0 .
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Figure (5.13)

Plot of the variance function for the global D-optimal three-point design on the
widest choice Zw for the double exponential model with w* (z2 + c) for c = 1.0.

3.0

2.8 r.8 --

2.6--2. 6--

2.2 -

2 .0 - - 2.0

1.8 - -

1.4 --

1.2 - - 1 . 2  - -

1.0-- 1.0--

0.8-- 0.8--

0.6 - - 0.6 - -

0.4 --

0.2-- 0 .2 --

0.0
■3 3■2 2 40

z

161



Figure (5.14)

Plot of the variance function for the global D-optimal three-point design on the
widest choice Z,(, for the double reciprocal model with w* (z 2+c) for c = 0.5.
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Figure (5.15)

Plot of the variance function for the global D-optimal four-point design on the

widest choice Zw for the double exponential model with w* (z2 + c) for c -  -1.0.
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Figure (5.16)

Plot of the variance function for the global D-optimal four-point design on the
widest choice Zw for the double reciprocal model with w*(z2 +c) for c = -0.5.
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Figure (5.17)

Plot of the variance function for the global D-optimal five-point design on the

widest choice Zw for the double exponential model with w*{z2 +c) for c = -1.5.
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Figure (5.18)

Plot of the variance function for the global D-optimal five-point design on the

widest choice Zw for the double reciprocal model with w* (z2 +c) for c = -1.2.
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Figure (5.19)

Plot of the variance function for the global D-optimal six-point design on the
widest choice Zw for the double exponential model with w* (z2 + c) for c = -4.0.
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Figure (5.20)

Plot of the variance function for the global D-optimal six-point design on the
widest choice Zw for the double reciprocal model with w* (z2 +c) for c = -4.0,
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Figure (5.21)

Plot of the variance function for the global D-optimal three-point design on the

interval Z = [0,°°) for the logistic model with w* (z2 +c) for c = 0.
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Figure (5.22)

Plot of the variance function for the global D-optimal three-point design on the

interval Z = [0,~>) for the probit model with w* (z2 +c) for c = -1.0.
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Figure (5.23)

Plot of the variance function for the global D-optimal three-point design {Otzltz2}

on the interval Z = [ f o r  the double exponential model with w*(z2+c) for

c = -0.2.
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Figure (5.24)

Plot of the variance function for the global D-optimal three-point design {0,zlsz2}

on the interval Z-[0,oo) for the double reciprocal model with w*(z2 +c) for

c = 0.5.
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Figure (5.25)

Plot of the variance function for the global D-optimal three-point design
on the interval Z = [0,°o) for the double exponential model with

w*(z2 +c) for c = -1.0.
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Figure (5.26)

Plot of the variance function for the global D-optimal three-point design
{0,-N/jc|,f} on the interval Z =  [(),«>) for the double reciprocal model with

w*(z2+c) fore = -1.0.
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Figure (5.27)

Plot of the variance function for the global D-optimal four-point design

{0,z1stJ\c\,z2} on the interval Z = [0,«>) for the double exponential model with

w*(z2 + c) for c = ”4.0.
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Figure (5.28)

Plot of the variance function for the global D-optimal four-point design
on the interval Z = [0,<») for the double reciprocal model with

w*(z2 +c) fore = -9.5.
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CHAPTER SIX 

FURTHER WORK

The main target of this thesis was to gain knowledge, by means of 

theoretical and applied work, on optimal non-linear experimental design with 

application to binary response and to weighted regression models. The two 

different routes of inquiry, theoretical argument and laboratory experimentation, 

throughout this thesis were followed.

Ironically optimal designs for non-linear problems require knowledge of 

the unknown parameters. Some static designs are based on initial point estimates 

for the unknown parameters while others require specification of a range of 

plausible values or a prior distribution for the unknown parameters. More 

experience is needed on the application of these approaches to practical 

problems.

We have derived locally c-optimal and D-optimal designs for a variety of 

simple non-linear problems. We hope that this work will excite interest in this 

area and lead to further work on the construction of designs for more complex 

cases, particularly in the important but more difficult situations where there is 

more than one explanatory variable. It would be of interest to study more 

complex problems with more parameters. Such problems will, generally 

speaking, be difficult to solve although work in progress by Torsney and Sitter 

has proved promising. Also some interesting special cases do exist. For example 

as Ford, Torsney, and Wu (1992) noted in the case of uncensored exponentially 

distributed survival data with r\ = exp (0's;), the optimal design will not depend on 

the unknown parameters at all ( see Cox and Oakes (1984)).
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APPENDIX I

AL1 Convex sets.

Definition 1: The set S is called convex if any point s = ois1 + ( l-a )s2, where 

sx,s2 g S, and 0 < a  < 1, belongs to this set.

k
Definition 2: The set of points, S* say, with elements s* = ^ a isii where

j=i
k

]T,af. =1, a, £ 0 , s ( eS  (* = 1 , 2 , . =  1,2,...), is a convex set
(=i

Definition 3: The set S* is called the convex hull of the set S.

Definition 4 _L_If X is a convex set, then a numerical function defined on S is 

called convex if for slts2 e S and all a  satisfying the condition 0 < a  < 1,

/[asj + (1 -  a )s2 ] < af(s1) + (1- a )f(s2),

and is called concave if

/ [  as1 + (1- a)s2] > a fis j + (1-a )f(s2) .

If these inequalities are strict for s1 *s2i 0<oc<l, then the function /  is 

called, respectively, strictly convex or strictly concave.

AI.2 Caratheodory fs theorem.

Theorem: Each point s* in the convex hull S* of any subset S, of the n~ 

dimensional space, can be represented in the form

n+1

s — ^  j 
1=1
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rt+1
where [Li > 0, = 1, st e S. If 5 * is a boundary point of the set S*, then pn+1 can

/= 1

be set equal to zero. See Fedorov (1972); Silvey (1980).

At. 3 Silvapulle's theorem.

Silvapulle (1981) stated and proved the conditions under which the 

existence of the MLE in binary problems is guaranteed.

Let uv u2 ,...,ur be the design points corresponding to responses y t - 1, 

(i = l,2,...,r) and ur+1 corresponding to responses ys = 1, ( / =r+l,...,«).

Consider the convex cones S - oj and T = kjUj, kj > o | . Then 

the following theorem holds.

Theorem: Let the condition (L) be defined by

(L) SflTV 0  or one of 51 or T is Rm 3  0.

Then for the binomial response model Pr = (y. = 1) = F(und)

(i) The MLE 0 of 9 exists and the minimum set {0} is bounded only when L is 

satisfied.

(ii) Suppose that I (0) = In F{ut, 0) -  ̂  ln[l -  F{ui, 0)], is a proper closed

convex function on Rm. Then the MLE 0 exists and the minimum set {0} is 

bounded if and only if (L) is satisfied.

(iii) Suppose that -In F  and ln(l-F) are convex and uu =1 for every i. Then 0

exists and the minimum set {0} is bounded if and only if Sfl T ̂  0 .  Let us further 
assume that F  is strictly increasing at every t satisfying 0 <F{t) <1. Then 9 is 
uniquely defined if and only if S fi T -  0.
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APPENDIX II

A IL l Generalised inverse.

Definition : Let AeM(m,n), with M(m,n) the set of mxn  matrices then A~ is 
the Moore-Penrose generalised inverse iff:

(i) AA and A~ A are symmetric.

(ii) A~AA~ = A~ and AA~ A ~ A~,

Properties:

(1) When A~ exists it is of size n x m and it is unique.

(2) ( A ~ r = A .

(3) (AT = {A~Y.

(4) rank (A) = rank (A- ) = rank (AA") = rank {A~ A) = rank (AA~A)= rank 
(A~AA~).

(5) If A = A1 then A~ -  (A“)'.

(6) If A = A1 + A2+'-+Ak and A(AJ = 0 for all i,j=l,2, ,k i& j then

A~ = Af + • *+A*.

(7) If a is a non zero vector then a~ = (a* a)~a‘ = ||a||”2̂ .

AIL2 Newton-Raphson method.

Let /  be a function f :Rn ->Rn with a root £ i.e. /(e) = 0. Iterative 

techniques are considered to evaluate such as £. When n=l the iteration, known 

as Newton-Raphson is

*/+i=*f-/(*,■)//'(*/) » * = 0,1,2,...

When n>l the above scheme is generalised to
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x m) = x (i) ~{H[x(i)]}~\l[x(i)] , i = 0,1,2,...

where / l l (<)] is the gradient vector and H[xU)] is the nxn  jacobian matrix with 

elements dj] / dxj, i,j = 1, 2, . . . , / / .  We assume that is non-singular.

Newton provides conditions under which the Newton-Raphson method 

converges, provided that the initial guess lies in the neighbourhood of the 

solution e .

The method is very rapidly converging scheme. Its convergence is of 

quadratic order i.e.

|x<i+1) - e||<£||xw - , p > 2 

where k being a constant and || || the t?2-nonn.
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