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INTRODUGTION

The main subject of this thesis can be defined as combinatorial
semigroup theory; that is, the study of the structure and properties
of free objects and presentations in varieties whose elements are
semigroups. Most of the results of this type have similar formulations
for semigroups and monoids, and for each of them we tried to give the
version that involves the higher degree of generality, wusually the
monoid version.

Our work is mainly about inverse monoids, .and so it 1is not
surprising that Chapter I is essentially devoted to the introduction
of concepts in this area. Most of the results in this chapter are not
original, references being given in the text. Some definitions and
results are formulated in terms of varieties of inverse monoids, which
play an important role later on.

We give particular importance to the structure of the free inverse
monoid on a nonempty set X, denoted by FIM(X). Since we introduce
languages and automata in Chapter VI, which involve the use of the
free monoid, we opted to define FIM(X) to be the quotient (XuX~1)¥*/p,
where X' denotes a set of formal inverses of X, disjoint from X, and
p 1s the Vagner congruence on (XuX~1)¥* (the free monoid on XuX~1).
This congruence was introduced by Vagner in 1957 {41]. Since there is
no natural canonical form for (XuX~')*/p, the direct use of this
quotient was not very fruitful until 1973, when W.D.Munn solved the
corresponding word problem [26]. W.D.Munn also provided a geometrical

description of FIM(X), using labelled trees. Previously, in 1972, and
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independently, H.Scheiblich produced an algebraic description, using
left closed subsets of the free group on X {38].

In Chapter II we discuss the intersection of two free inverse
submonoids A and B of a free inverse monoid FIM(X). In contrast with
analogous results for groups and monoids [40], the intersection AnB is -
not necessarily free, However, we can classify all the possibilities,
in the case where A and B both have vank 1 [8§II.2 and 3], and tbié@?ﬁ
discussion 1s further simplified when FIM(X) has rank 1 itselé
[8II.4].

A related problem is whether the finitely generated property is
preserved by the intersection of free inverse submonocids of a free
inverse monoid. A counterexample is provided in Sectiom II.S5.

The subject of Chapter III is the semilattice of idempotents Eof
a free inverse monoid. We introduce some new concepts in semilattice
theory, in particular that of a unique factorization semilattice (UFS)
[§IIT.1]. Some general properties are proved for this class of
semilattices, and these results are used to give mnecessary and
sufficient conditions for two principal ideals of EF to be isomorphic
[§I11.2]. This enables us to obtain some properties of Tp, the Munn
semigroup of E, such as being E-unitary [8§III.3].

In Section III.4 we discuss the embedding of semilattices in a
free inverse monoid and some general results are obtained, involving
finite semilattices and UFSs. We also provide an example of a
countable semilattice S such that the subsemilattices (f e S: f » e)
are finite for every e ¢ $§ and ;et S is not embeddable in any free
inverse monoid.

In Section III.5 we show that the semilattice of idempotents of a
free inverse monoid never is hopfian, in contrast with the situation
for FIM(X) itself, which is hopfian if and only if X is finite [26].

One of the key concerns in our work is the word problem, which can
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be defined in its most general form as follows. Let S be a semigroup
and let R € S x S be a relation on S. Let R¥ denote the congruence on
S generated by R. Is there an algorithm which determines, for every
u,v ¢ S, whether or not ur# = vR#? If such an algorithm exists, the
problem is said to be decidable.

In Chapter IV we define the concept of normal-convex embeddingukppa

semigroups, which is naturally related to word problems. In fact, “let /'

p:S — T be a normal-convex embedding of semigroups and let R g;'av
relation on S. Let Rp denote the relation on T induced by R and .
Then the word problem for R is decidable if the word problem for Rp is
decidable [§1IV.1].

In 1974, McAlister introduced the triples (G,K,L), later known as
McAlister triples, and the corresponding semigroups P(G,K,L), called
P-semigroups [20]. When K is a semilattice, we refer to (G,K,L) as a
strong McAlister triple. In Section IV.2 we show that if (G,K,L) is a
strong McAlister triple, then P(G,K,L) admits a mnormal-convex
embedding into a semidirect product of a semilattice by a group.

This result is generalized in Section IV.3, where it is shown that
every E-unitary inverse semigroup admits a mnormal-convex embedding
into a semidirect product of a semilattice by a group, a stronger
version of a result by 0'Carroll [30].

McAlister proved that every inverse semigroup is the
idempotent-separating image of a E-unitary inverse semigroup {20]. In
Section 1IV.4 we show that every inverse semigroup admits a
normal-convex embedding into ag idempotent—separating image of a
semidirect product of a semilattice by a free group.

Now let V be a variety of inverse monoids. We define a
presentation in V to be an expression of the form V<X;R>, where X is a
nonempty set and R is a relation on the free monoid (XuX~1)*, Assuming

that the free object of V on X is a quotient of the form (XuX“)*/T,
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we define the word problem for V<X;R> to be the word problem for the
relation 7uR on (XuX~")¥*. The idempotent word problem for V<X;R> is
the restriction of the word problem to the words u e (XuX~1)¥ such
that up = u?p. The inverse monoid defined by a presentation V<X;R> is
the quotient (XuX~1)¥/(7uR)#. The presentation V<X;R> is said to be
finitely generated (respectively finitely related) if X (respectiyély
R) 1is finite. A presentation is said to be finite if it 1is both
finitgly generated and finitely related.

Chapter V is essentially devoted to the study of decidability
problems for presentations in the variety of Clifford monoids.

In Section V.1 we show that every finitely presented Clifford
monoid can be finitely presented as an inverse monoid, thus
establishing a bridge between presentations in the two varieties,

In Section V.2 we solve the word problem for finitely related

presentations in the variety of semilattices with unity and we prove '

that the word problem for a finitely related Clifford monoid
presentation 1Is equivalent to the word problems for finitely many
group presentations.

In Section V.3 we solve the E-unitary problem for one-relator
Clifford presentations, that is, we give an algorithm which
determines, for any such presentation, whether or not the
corresponding Clifford monoid is E-unitary. A counterexample is given
to a conjecture by Margolis and Meakin [19] on the E-unitary problem
for one-relator inverse monoid presentations. It is also proved that
the E-unitary problem is undeci;:lable for the class of all finite
Clifford monoid presentations, and this result is extended to the
class of all finite inverse monoid presentations.

Some more decidability results are obtained in Section V.4,
concerning triviality, finiteness, freeness and others.

Finally, the results of Section V.2 are applied in Section V.5 to




simplify the word problem for finite inverse monoid presentations
which define E-reflexive inverse monoids.

Chapter VI is essentially about the idempotent word problem for
inverse monoid presentations, Using the techniques of Stephen [39],;in
the form developed by Margolis and Meakin [18], we obtain a positive
decidability result involving any finite presentation and any ratic;al

language (§VI.2).

This result can be used to provide an alternative proof to
Margolis and Meakin's solution [18] of the word problem for finite
idempotent-pure presentations (§VI.3). A generalization of this result
is obtained in Section VI.4,

In Section VI.5 we solve the idempotent word problem for the class
of finite f -pure presentations, still using the results of Section
VI.2.

The bounds of application of rational languages as a technique for
solving idempotent word problems are discussed in Section VI.6, where
some results are obtained for one-relator presentations.

In Section VI.7 we produce an example of a finite inverse monoid
presentation with undecidable idempotent word problem.

Chapter VII presents some results on primeness of semigroup rings.
In Section VII.2 we introduce a certain Gondition C on semigroups
which is proved to be a sufficient condition for primeness of the
corresponding semigroup rings.

Condition ¢ is applied in Section VII.3 to prove primeness for
semigroup rings of free products of semigroups, and in Section VII.4,
for one-relator semigroup presentations (if the generating set has
more than two elements).

Finally, Section VII.5 gives a simple generalization of a result
by W.D.Munn [27] concerning semigroup rings of inverse semigroups with

pseudofinite semilattice of idempotents (which include free inverse
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semigroup of finite rank). Moreover, Condition C is applied to prove

primeness for semigroup rings of free inverse semigroups of infinite

rank.




CHAPTER 1

GENERAL CONCEPTS

1. Semigroups and monoids

In this section we introduce elementary concepts and terminology
of general semigroup theory. The details can be found in Howie [11].
Let S be a nonempty set and let + denote an associative binary
operation on S§. Then (S,:) is said to be a semigroup. In general, we
omit the operation symbol. The element u ¢ S is said to be a unity if
us = su = s for every s ¢ S. It 1s immediate that every semigroup has
at most one unity. A semigroup with unity is said to be a monoid, the
unity being usually denoted by 1.

To every semigroup S, we assoclate a monoid S' as follows. If S
has a unity, we take S! = §, If not, we define S§' = Su{l} to be the
monoid obtained by adjoining the unity 1 to S.

For the remainder of this section, we assume that § and T are
semigroups.

For all subsets A,B of S, we write 4B = (ab: a ¢ A, b ¢ B}.

Let A be a nonempty subset oé S. We say that A is a subsemigroup
of § if A2 ¢ A,

Let ¢:5 — T be a map. We say that ¢ 1is a homomorphism of
semigroups 1f (ab)p = (ap)(bp) for every a,b ¢ S. We shall also use
the following terminology. If ¢ is injective, p is said to be an

embedding. If ¢ is bijective, ¢ is said to be an isomorphism. If




§ =T, ¢ is sald to be an endomorphism. If § = T and ¢ is bijective, ¢
is said to be an automorphism.

Let A be a nonempty subset of S. We say that A is an ideal of § if
S1AS' € A, We denote that fact by A S§. If A = S'aS" for some a ¢ §,
A is said to be a principal ideal.

Let X be a mnonempty set, A subset R § X x X is said to be a
relation on X, For all relations R,R' on X, we define the composite

relation RoR' on X by
(a,b) € RoR' ¢» HUc € X: (a,¢) ¢ R and (c,b) ¢ R'.

Let R be a relation on X. We say that R is an equivalence relation

on X if the conditions below hold:

Va e X, (a,a) € R;
(a,b) ¢ R » (b,a) € R;

RoR ¢ R.

Let R be an equivalence relation on X. For every a ¢ X, we write
aR = {b ¢ X: {(a,b) ¢ R}, and X/R = (aR: a ¢ X}.

Now we define the following relations on the semigroup S.

(a,b) ¢ & & aS' = bS1;
(a,b) ¢, & S'a= S'b;
(a,b) €} ¢ S'as! = S'DbST;
A = 8nl;

D =4Rol.

These relations are equivalence relations and are called Green's
relations on S. We note that Rof = Yo4. If § = § x S, we say that S is
bisimple.

Let 7 be an equivalence relation on S. We say that 7 is a

congruence on S if, for every ¢ ¢ S,

(a,b) e 7 =» (ac,be),(ca,ch) € 7.




If r 1s a congruence on S, then (ar)(br) = (ab)r defines an
associative operation on S/r. Moreover, the map 7%:5 — S/7r: s | s71
is a surjective homomorphism of semigroups.

Let ¢:S —» T be a homomorphism. The relation Kerp on S defined 5§

(a,b) e Kerp & ap = bp

is a congruence. We have

LEMMA 1.1 [11,81.5). Let S and T be semigroups, let ¢:S — T be a
homomorphism and let t be a congruence on § with v € Kerp. Then the

map 9:S/t — T: st b Sp is a homomorphism and the diagram

§ ———>T

sl

S/t

commutes. Moreover, if 1 = Kerp, then p is injective and Sp = 8/Kerp.

LEMMA 1.2 [11,81.5]. lLet S be a semigroup and let r7,r be
congruences on S with r € »v. Let v/t denote the relation on S/t

defined by
(ar,br) € v/ & (a,b) € »,

Then v/T is a congruence on S/t and the map

(S/1)/(»/1) —> S/v: (s1)(v/1) 1> sv is an isomorphism.

Let R be a relation on S. We define a relation R¥ on S as follows.
For every a,b ¢ S, (a,b) ¢ R* if and only if there exist w,,...,w, € S

such that




Vi e {(1,...,n) Hpy,q; € S (uz,vy) ¢ R:

{wi_, wi) = {pjuiq;,piviqsl.

It follows easily that R¥ 1is the smallest congruence on S
containing the relation R and so it is said to be the congruence
generated by R. Suppose that p:S — T 1s a homomorphism. Then the
relation Rp = ((ap,bp): (a,b) ¢ R) on T is said to be the relation

induced by R and p. It follows easily that

Ry ¢ (Rp)¥. (1.1)

If we are working inside the class of monoids, it is useful to
strengthen some definitions.

Let ¥ be a monoid and let A be a nonempty subset of M. Then A is a
submonoid of M if A2u{l) ¢ A,

let M,N be monoids and let ¢p:M — N be a map. Then p is a
homomorphism of monoids 1f (ab)p = (ap)(bp) for every a,b ¢ M and
lp = 1. Throughout this work, we shall refer to a homomorphism of
monoids simply as a homomorphism.

Everything said before for semigroups holds for monoids with these
stronger definitions. In particular, for every congruence r on a
monoid M, the map 74:M — M/t a8 b ar is a surjective homomorphism.

Now let X denote a nonempty set. We define a word on X to be a
finite sequence of elements of X; including the empty sequence. Each
term of a word is then said to be a letter. A nonempty word will be
usually written in the form x,...x,;, x; ¢ X, and we identify each
x € X with the word x, The empty word is denoted by 1.

The set of all words on X is denoted by X*, We define an operation
on X as follows. For all nonempty words x,...X,,¥,...¥yp on X, we

define




(.o )Yy ¥Ym) = Xy XpYy. . Yne

For every w ¢ X*, we define 1w = wl = w, With this operation, X¥

is a monoid and the subset X* = X*\(1} is a subsemigroup of X*.

LEMMA 1.3 {34,81.10]. Let X be a nonempty set and let i stand for
inclusion map.

(i) Let S be a semigroup and let p:X — S be a map. Then there
exists a unique homomorphism of semigroups ¢:X* — S such that the

diagram

commutes .
(ii) Let M be a monoid and let ¢:X -—» M be a map. Then there

exists a unique homomorphism ®:X* — M such that the diagram

commutes.

With this property, Xt (respectively X*) is said to be the free
semigroup (respectively free monoid) on X.

We define the following partial orders on X*.




a<b & be x¥ax®;
a<;jb & be aX*;

a<;b & be X*a,

If a < b (respectively a <3 b, a <, b) we say that a is a factor
(respectively prefix, suffix) of b.

For every w e X*, we define the length |wi of w as follows. If

w=1, let \w§ ~0. If w=x,...X,, X; ¢ X, let 1w] = n.

2, Inverse monoids

In this section we introduce terminology and notation related to
inverse monoids, which constitute the main subject of our work. As in
the previous section, every notion has a similar counterpart in the
context of inverse semigroups. For further details, see Howie [11] and
Petrich [34].

Let M be a monoid. We say that M is inverse if
Va ¢ M 3!'b ¢ M: aba = a and bab = b.

The element b is said to be the inverse of a and is denoted by
a'. If M is an inverse monoid and N is a submonoid of M, we say that

N is an inverse submonoid of M if
Va ¢ N, a=' ¢ N.

LEMMA 2.1 [11,8V.1]. Let M,N be monoids and let p:M — N be a

homomorphism. Suppose that M is inverse. Then Mp is inverse.

Let M be a monoid and let a ¢ M. We say that a is idempotent if
a? = g, The subset of all idempotents of M is denoted by E(M). Since

1 e E(M), E(M) is always nonempty. Now we have




ey m  —— -

LEMMA 2.2 [11,§V.1]. Let M be a monoid. Then M is inverse if and

only if

Va ¢e Md3b € M: aba =~ a and Ve,f ¢ E(M), ef = fe.

We define a semilattice to be a commutative semigroup whose
elements are idempotents. By Lemma 2.2, every semilattice is inverse.
Let M be an inverse monoid., It follows easily from Lemmé‘é.2 that E(M)
is an inverse submonoid of M. We refer to E(M) as the semilattice of
idempotents of M. Now we define a partial order on M as follows. For

every a,b ¢ M,
a<b & a=eb for some e ¢ E(M).

We say that < is the natural partial order of M. We note that, if
a,b ¢ E(M), then a < b 1s equivalent to a = ab. It follows easily
that, for every a,b e¢ E(M), ab is the greatest lower bound of a and b
for the natural partial order of M.

Now suppose that a,b ¢ M are such that b < a and
bgec<a 3 b=c

for every ¢ ¢ M. Then we say that a covers b and we denote this fact
by b4 a. We write Cov(a) = {b ¢ M: b < a}).

Let ¢ be the relation on M defined by
(a,b) ¢ ¢ & ea = eb for some e ¢ E(HM).

Then ¢ is a congruence and M/c is a group. Moreover, if M/r is a
group for some congruence 7 on M, then ¢ € 7. Therefore ¢ is said to
be the least group congruence on M. It is immediate that E(M) € lo. We
say that M is E-unitary if lo ¢ E(HM).

We note that the equivalence
(a,b) ¢ 0 & ae = be for some e ¢ E(M)

holds for every a,b e M.




Let Inv denote the class of all inverse monoids.
Let X be a nonempty set. We definme X7' = (x™': x ¢ X} to be a set

such that

XnX™V = @;

=1 - xT? -
Vx,,x, € X, x} x3' 9 x, =X,.

Moreover, we define (x7')™' = x for every x ¢ X. Under these
conditions, X~ 1 is said to be a set of formal inverses of X. For every
w e (XuX"1)*, we define a formal inverse w™! ¢ (XuX~')* as follows, If
w=1, letw ! =1 Ifw=ux,...x5, X; € XuX~1, let w7 = xp1. . .x7.

For every w € (XuX~')*, we define the content {(w) of w to be
{x e Xt x < wor x ' w}.

Let Y be a mnonempty set. A pair (u,v) e (YuY 1% x (YuYy " M)* is
said to be an identity of inverse monoids. We often write it in the
form u = v. Let M be an inverse monoid and let ¢:Y — M be a map. We
define a homomorphism p:(YuY~")* — M as follows: for every y e Y,

let

yo = yp and y7lp = (yp) . (2.1

We say that M satisfies the identity u = v 1f, for every map
¢:Y — M, we have up = vp. Let L be a system of identities. We say
that M satisfies ¥ if M satisfies every identity in X. We denote by
Inv[¥] the class of all inverse monoids that satisfy X. The class
Inv[I] is said to be a variety of inverse monoids. In particular,
considering X empty, we have that Inv is a variety of inverse monoids.
Let X be a nonempty set, arlad let u = v be an identity, with
u,v € (Yo "")*. For every map ¢:Y — (XoX~")*, we define a

homomorphism @: (Yu¥~1)* 5 (XuX~1)* as in (2.1). Let
H(u = v) = {(up,vp): ¢:¥ — (XuX~ M) ¥ is a map).
We define the Vagner congruence on (XuX~1)* to be

p = [H(xx"'x = x)uH(xx'yy™t = yy txx ) 1¥,




that 1s, p = ({({(ww ™ lw,w): w ¢ (XuX”"‘)*]

u{(uu~ vy Jvv"lauT 1) u,v € (XuX_‘)*))#.

LEMMA 2.3 [41]. ILet X be a nonempty set. Then (XuX~V)*/p is
inverse. Let y:X — (XX ")*/p: x > xp. Let M be an inverse monoid
and let ¢:X -5 M be a map. Then there exists a unique homomorphism

d: (XX~ ")¥/p —> M such that the diagram

(Xux—1)y*/p
commutes.

We define FIM(X) = (XuX“‘)*/p to be the free inverse monoid on X.

Let ¥ be a system of identities. We define

7(X) = (pul v H(a)D¥.
oel

LEMMA 2.4 [34,8X11.1}. Let X be a nonempty set and let ¥ be a
system of identities, Then (XuX~1)*/7(X) € Inv[L]. Let
yiX — XX D)¥/r(X): x b x[7(X)]. Let M ¢ V = Inv(L] and let
w:X — M be a map. Then there exists a unique homomorphism

d):(XuX”“)*/T(E) — M such that the diagram

X__._p___éﬂ
Y -
4

(XuX™1)*/7 (%)

&
1,




T, R, e

10

commutes.

Let V = Inv[I]. We say that (XuX~')*/r(I) is the free object of V
on X and we denote it by FV(X).

Let A be a nonempty subset of FV(X). Let Y be a set such that
there exists a bijection ¢:¥Y - B. Let ¢:FV(Y) —> FV(X) be the
homomorphism induced by p. Then A is said to be a basis 1if ¢ 1is
injective.

The class of all groups, denoted by 6p, 1is a variety of inverse
monoids, since Gp = Inv{xx™! = 1], We write » = r(xx"1' = 1)
= [puH(xx™" = 1)]# = (pul(uu=1,1): u e (XX VD*N¥. It is immediate
that P < {(uu=1,1): u € (XuX“')*}# and so
= {((uu"",1): u e (XuX~")*)¥. It follows easily that
x = ((xx"%,1): x e XuX""}¥. The quotient FG(X) = (XuX~V)*/x is the
free group on X and we define Dy = {u ¢ (Xux~1)*: (u,1) ¢ x) to be the
set of all Dyck words on X.

Let V = Inv[EI] be a variety of inverse monoids. We define a
presentation in V to be an expression of the form V<X;R>, where X is a
nonempty set and R is a relation on (XuX ')*. The inverse monoid
defined by this presentation is the quotient M = (XuX")*/[-r(E)uR]#.
If X is finite, we say that the presentation is finitely generated. If
R is finite, we say that the presentation is finitely related. If both
X and R are finite, we say that the presentation is finite. Two
presentations V<X;R> and V<Y;S> .are said to be equivalent if they
define isomorphic inverse monoids.

The next result is easy to obtain,
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LEMMA  2.5. Let Inv<X;R> be a presentation and let
M= (XuX~")*/(puR)#. Then the map
p:M — (XuX_‘)*/(ruR)#: w(puR)# [ 39 w(qu)# is a sur jective

homomorphism and Kerp = o, the least group congruence on M.

Proof. Since p € x, we have (puR)¥ ¢ (xuR)¥ and so ¢ is defined.
It is immediate that ¢ is a surjective homomorphism. Since xS (vuR) ¥,
it follows that (XuX"‘)*/(qu)# satisfies the identity xx~' = 1 and so
is a group. Hence ¢ <€ Kerp. Now we prove that Kerp £ o. Suppose that
[a(puR)#]¢ = {b(puR)#]¢ for some a,b ¢ (XuX~')*. Then there exist

Wo,...Wy € (XuX~1)* such that

a=w,;

b = wy;

Vi e {l,...,n) dsj,t; ¢ (XuX~1)¥
HA(uj,vi) e {((xx71,1): x ¢ XuX"1)uR:

wi—,,wi) = (sjujtj,sjvjit;l.

let Z = (x e X: x e E(uplui(vy), i ¢ {(1,...,n)) and let
n
z =1 xx'.x"'x., Let y = Il t7'zt;. We show that
x€eZ =1
(wj_,y)(puR)# - (wjy)(puR)# for every j ¢ {L,...,n}. Let
joe(1,...,n).

Suppose first that (uj,vj) € R. Then (sjujtj)(puR)#
= (sjvje)(puR)¥ and so wi (puR)¥ = wi(euR)*. Thus (wj-,y)(puR)¥
= w7 (puR)¥,

Now suppose that (U',Vj) = {xx~1',1) for some x ¢ XuX~'. Since
ti'zt; € Dy for every i ¢ (1,...,n), we have yp = [(tj‘ztj)y]p and so
(sjujty) (puR)* = [spoxrej(e7 2 )y) (puR)¥ = (sjtjtj‘xx_‘ztjy)(puR)#

= (sjtjtj‘ztjy)(puR)# = (sjtjy)(puR)# = (sjvjtjy)(puR)#. Hence
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(W j17) (puRY¥ = (w;7) (puR)¥.
It follows that (ay)(puR)¥ = (by)(puR)¥. Since y(puR)* ¢ E(M),
this yields [a(puR)¥]o = [b(puR)¥#]¢ and so Kerp ¢ 0. Thus Kerp = ¢ and

the lemma is proved.

We say that (XuX”')*/(qu)# is the maximal group homomorphic image
of M. In particular, FG(X) is the maximal group homomorphic image of
FIM(X).

We can give a simple description of the free product in a variety

using presentations.

LEMMA 2.6. Let V = Inv[X] be a variety of inverse monoids and let
V<X,R>, V<Y, S> be presentations, with XaY = g. Let
A = (XuX N)¥/[r(D)uR]H#, B = (oY 1)*/[1(X)uS]¥# and

A%pB = [(XoY)u(XuY) ™' ]*/[7 (Z)uRuS]¥.

Let ig:A — A%yB: wir(D)uRI¥ 1> w[r(Z)uRuS]#* and
ig:B — A%pB: w[7(X)uS]¥ b w[r(Z)uRuS1¥. Then

(i) for every C ¢ V and homomorphisms pp:A — C, pp:B — C, there

exists a unique homomorphism ®:A%yB — C such that the diagram

xS
&S

commutes,;

(ii) the homomorphisms ip and ig are injective;
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Proof. (1) Let C € V and let pyq:4 — €, ¢pg:B - C be
homomorphisms. Clearly, the elements z[r(Z)uRuS]#, z ¢ XuY, generate
A*yB. Suppose that ¢ exists. Let x e X. Then (x[r(Z)uRusS]¥e

= (x[r(DuRPige = (x[r(D)RI¥)py.  similarly, (y[r(D)uRuS]H

= (y[f(Z)uS]#)pB for every y ¢ Y. Therefore ¢ is uniquely determined

on a set of generators of A*yB. Hence, if & exists, then ¢ is uniqu

Let 6:(XuYuX"'uY~1)* — C be the homomorphism defined by
X0 = (x[r(Z)uR]#)¢A for x € XuX™;
yo = (y[r(X)uS1¥)pp for y e YY1,

By Lemma 2.4, we have 7(X) € Kerf. Since RuS € Kerf as well, we

know, by Lemma 1.2, that there exists a homomorphism $:A*yB —s C such

that the diagram

(XuYuX—toYy—1)* 0 >C
Y
$
A*VB

commutes, where wy = w[r(Z)uRuS]# for every w ¢ (XoYuX " tuy 1)*,
Let x ¢ X. Then (x[r(X)uR1¥)(ig®) = (x[r(Z)uRuS]H)d = (xy)® = x0
/ = (x[T(Z)uR]#)pA. Hence isd = p4. Similarly, we obtain igd = pp and so
® satisfies the required conditions.
(ii) Let € = A and let p4 = 1y, ¢p trivial. Then, by (i), there
exists &:A%yB — A such that iz = 14. Hence iy is injective.

Similarly, we prove that ig is injective and so the lemma is proved.

It follows easily from the lemma that A*yB is, up to isomorphism,
independent of the presentations of A and B. We say that A*yB is the

free product in V of A and B,

} The concept of algorithm has been used for a long time in

.
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mathematics; however there is no agreement yet for a basic, simple
definition. For precise discussions on the subject, see [10,§86.4],
[17,8V.2] or [23,8I.4). We mention a rather intuitive approach. An
algorithm is an explicit effective set of instructions for a comput‘:{ng
procedure (not necessarily numerical) which may be used to find 't;he
answers to any of a given class of questions [9,§7.1]. )

A problem that consists of finding an algorithm for a céfég.‘m
class of questions is said to be a decision problem, If sucbi an
algorithm exists, the problem is said to be decidable. Other;vise.. we
say it is undecidable.

If there exists an algorithm for computing a certain structure
explicitly, we say that it is effectively constructible (or that it

can be effectively determined). !

!

i

We shall be particularly interested in the following problems.

Let V = Inv(X) be a variety of inverse monoids. Let I' be a class
of presentations in V and let C be a subclass of V. We define t‘:he
C-problem for I' as follows. Is there an algorithm which determines,
for every P ¢ I', whether or not P defines an element of C?7

Now let V<X;R> be a presentation. We define the word problem for
V<X;R> as follows. Is there an algorithm which determines, for every
u,v e (XuX~1)¥*, whether or not u[T(Z)uR]# = V[T(Z)UR]#?

Finally, the idempotent word problem for V<X;R>. Is there an
algorithm which determines, for every e,f € Dy, whether or not
e[r(D)uR)¥ = flr(D)uR)H#?

Note that, by Lallement's Le;nma [11,811.4), every idempotent of
(XuX“)*/[T(Z)uR]# can be written in the form e[T(Z)uR]# for some

e € Dy,
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3. Free inverse monoids

The problem of finding a convenient canonical form for FIM(X)
remained unsolved until the early seventies, when Scheiblich [38] and
Munn [26] published independent works on the subject.

Let X be a nonempty set. We define

- * * - *
Ry (XuX™1) \£5X3X’$XUX_1) xx"V(XuX—1)7].

We say that Ry is the set of all reduced words of (XuX 1)¥. We
define a map i (Xux ¥ S Ry as follows: for every w ¢ (XuX“‘)*, wi
is the reduced word obtained from w by successively cancelling all
factors of the form xx™', x ¢ XuX~'. This operation is confluent, that
is, the final result 1s independent of the order by which we perform
the cancellations [16,81.4]. Therefore : is well-defined. Since

= {{(xx"1,1): x ¢ XuX“)#, we have
ur = ve & (u,v) e«

for every u,v ¢ (XuX~1)¥.

It follows easily that Ry with the operation (u,v) P (uv): is
isomorphic to FG(X) [16,81.4]. A reduced word is said to be cyclically
reduced if its first and last letters are not mutually inverse.

For every u ¢ (XX~ V)%, let

Q(u) = {vi: v £ u).

It follows easily that Q(u) is left closed for every u e (XuX~1)*,
that is,

a e QQuy and a' <7 a = a' e Q(u).

The following result also follows from the definition.
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LEMMA 3.1. For every u,v ¢ (XuX" )% and e ¢ Dy, we have
(1) Q(uv) = Q(w)u[u.Q(v)]1¢;
(ii) Q(u™") = [u™'Q(u)]¢;

(£11) Q(uu™') = Q(u);

(iv) Q(ueu™') = Q(u)u[u.Q(e)]:. Bt

For every u ¢ (XuX"1)*, we define a birooted tree
MT(u) = (Q(u), {1}, (uc),E(u)u[E(u)]™")
as follows, The set Q(u) is the set of vertices of MT(u), 1 and u: are
the two roots, and E(u)u[E(u)]™ ' is the respective set of edges, with
E(u) = {((w,x,w') € Q(u) x (XuX"1) x Q(u): w' = wx}.
and
[EQu)I™Y = ((w',x YV, w): (w,x,w') e E(u)).

By [26], MT(u) is a well-defined birooted tree and is said to be

the Munn tree of u. Now we have

THEOREM 3.2 [26]. For every u,v ¢ (XuX~ )%, the following
conditions are equivalent.
(i) up = vp;
(ii) MT(u) = MT'(v);

(iii) Q(u) = Q(v) and ui = v¢.

For every u e (XuX~")¥, we define jupl to be 1Q(u)1.

The next results follow easily.

LEMMA 3.3. For every e e Dy,

ep (vw"p.

= 1
veQ(e)
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LEMMA 3.4. Let u,v ¢ (XuX"')*. Then
(i) up £ vp & Q(u) 2 Q(v) and ut = v

(ii) up{ vp & Q(u) 2 Q(v), 1Qu)1I = 1Q(V)I1+1 and ur = v¢.

LEMMA 3.5. For every u e (XuX~1)¥,

up ¢ E[FIM(X)] & u e Dy.

LEMMA 3.6. Let X be a nonempty set. Then FIM(X) is E-unitary.

Proof. Let ¢ denote the least group congruence on FIM(X). Let
u e (XX V)* and suppose that (up,lp) € ¢. Then (u,l) € x and so
u ¢ Dy. By Lemma 3.5, up ¢ E[FIM(X)] and so (lp)o € E[FIM(X)]. Thus

FIM(X) is E—unitary.

The Green's relations on FIM(X) are easy to describe.

LEMMA 3.7 [26],[38]. Let X be a nonempty set and let
u,v ¢ (XuX~1)*, Then
(1) (up,vp) € & Q(u) = Q(v);

(11) (up,vp) € Q(u™') = Q(v71);

(iii) (up,vp) € ¥ up = vp;

1 T 1 ¢

(iv) (up,vp) €9 Fw e (XX~ 1) Q(v) = [w.Q(u)]¢;

W) } =9

We also have

LEMMA 3.8 [26]. Let X and Y be nonempty sets. Then

FIM(X) = FIM(Y) & 1X1I = 1Y].

Therefore we can define the rank of FIM(X) to be X},
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The above results will be used frequently in this work and so we
shall omit further reference.
Now let M be an inverse monoid and let r be a congruence on M. We

say that r is idempotent-pure if, for every a ¢ M and e ¢ E(M),

(a,e) et » ae EM.
We say that 7 is idempotent—-separating if, for every e,f ¢ Et&??:i

(e,f) er » e=*fF.

We say that a homomorphism ¢ of inverse monoids is idempotent-pure

(respectively idempotent-separating) 1if Kerp 1is idempotent-pure
(respectively idempotent—separating).

An inverse monoid M is sald to be quasi-free if M = [FIM(X)]/v for
some nonempty set X and some idempotent—pure congruence ».

Let R be a relation on (XuX ")*. We define a relation Rp on

(XX~ 1)* by
Rp = {(aea™',beb™'): (a,b) ¢ R and e ¢ Dy).

The following result was proved by Munn and Reilly [28] and we

give a new proof using presentations.

LEMMA 3.9. Let Inv<X;R> be a presentation. Then

p < (puRD)# c (puR)# and the canonical diagram

(XX~ 1)*/p ‘(XuX_‘)*/(PukD)#
J&

(XuX~1)*/(puR)#

commutes. Moreover, o is idempotent—pure, f§ is idempotent—separating

and (XuX~1)*/(puRp)¥ is quasi-free.




19

Proof. It is immediate that p & (puRD)# < (puR)# and that the
diagram commutes, Now we prove that o 1s idempotent-pure,
Let a' e (XuX ")¥ and let e ¢ Dy. Suppose that a(puRD)# - e(puRD)#.

Then there exist w,,...w, € (Xux~1)¥* such that .7

Vi e (1,...,n) Hcj,dj ¢ (XoX~")* H(uy,v;) € puRp: y
{wij_,,w;j)} = {cjujdj,cjv;idj}.

For every i ¢ {1,...,n), we have ujx = v;ir and so wj_,x = wjx.

Hence ar = wyx = wpr = ex = lx and so a € Dy. Thus, by (4.1)‘,

ap ¢ E[FIM(X)] and sc¢ o 1s 1dempotent-pure. By Lemma 1.2, we have
(XX~ 1)*/(puRp)# = [(XuX"1)*/p)/[(puRp)¥/p] = [FIM(X)]/Kera and so
(XuX“‘)*/(puRD)# is quasi-free.

Now we prove that @ is idempotent-separating. Suppose that

e,f ¢ Dy and e(puR)# - f(puR)#. Then there exist z.,,...,zp ¢ (Xux—1H)*

such that

Vj e (1,...,m) Hgj,hj ¢ (Xux—1)* H(aj,bj) € puR:
t2ja2j) = tgjazhj g0y

Then we have

z,z,1 = ee™ 1,
ZmZn' = f£1,
Vie (1,...,m),

(zj,251,,2525") = (gjajh by af gyt . gbjh;h bylgst).

Since (ajhjhj‘aj‘,bjhjhj‘bj’) e puRp for every j e (1,...,m}, we

have e(puRp)¥ = (ee”)(puRp)* = (z 25N (puRPI¥ = (zpzp") (puRp)¥

= (ff71)(puR )# = f(puR y# and so is idempotent—separating.
D D P g
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CHAPTER 11

INTERSECTIONS OF FREE INVERSE SUBMONOIDS OF FIM(X)

1. Preliminaries

Let M be a monoid and let A be a nonempty subset of M. Let A(*) be

the submonoid of M defined by
AC*) = (1)u(a,...a,: a; ¢ A),

We say that A{*) is the submonoid of M generated by A.

Let N be an inverse moncid and let B be a nonempty subset of N. We
say that (BuB~1')(*) is the inverse submonoid of N generated by B and
we denote it by <B>. We remark that this notation is not standard.

A monoid (inverse monoid) that is generated by a finite subset is
sald to be finitely generated. A monoid (inverse monoid) that is
generated by a single element is said to be monogenic.

Let X be a nonempty set and let A be a submonoid of X*. We say
that A is a free submonoid of i* if A = Y* for some nonempty set Y.
Similarly, we define a free inverse submonoid of FIM(X) and a free
subgroup of FG(X).

In this chapter, we discuss the following problems. Let X be a
nonempty set and let A,B be two free inverse submonoids of FIM(X).

(1) Is AnB free?

(2) If A and B are both finitely generated, is AnB finitely
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generated?
It is interesting to observe how the corresponding problems are
answered 1in the context of groups and monoids. Throughout this

chapter, we assume that the trivial group (1) is the free group (ffee

monoid) on the empty set. It is well-known that every subgroup of a

free group is free [16,§82.3] and so we have

Tt

LEMMA 1.1, Let X be a set and let A,B be free subgroups of FG(X).

Then AnB is free.
Tilson proved an identical result for monoids.

LEMMA 1.2 [40). Let X be a set and let A,B be free submonoids of

X*. Then AnB is free.
However, the second problem reveals different behaviours.

LEMMA 1.3 [13,81.3). Let X be a set and let A,B be free finitely

generated subgroups of FG(X). Then AnB is finitely generated.

LEMMA 1.4. Let X = (x,y) and let A = {x,xy}{(*), B = {x,yx)(*) be
submonoids of X*. Then A and B are free but AnB is not finitely

generated.

Proof. Let Y = {z,t) and let ¢:Y*¥ — A be the homomorphism
defined by zy = x and tp = xy. Obviously, ¢ 1is surjective. Suppose
that u,,...,up,v,,...,vy € Y and (u,...uplp = (v,...vp)p. Then

Up. . .Upp = V,p...Vp and it follows easily that n = m and ujp = Vjp

for every i ¢ {1,...,n}. Hence u; = v; for every i and so ¢ is

injective. Thus A is free. Similarly, we prove that B is free.

.
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Let € = {(xy)?x: n ¢ N). Obviously, C € AnB. Since every element
in (A~B)\(1l) must have x as both first and last letter, no element of
C can be written as the product of two elements of (AnB)\(1}.
Therefore every generating set of AnB must contain C and so AnB is not

finitely generated.

It is well-known [16,§2.2] that, for all nonempty sets X and Y,
FG(X) = FG(Y) e 1X1I = {Y).

We define rank(FG(X)) to be 1X|. Now we have

LEMMA 1.5. Let u,v ¢ (XuX~*)*. Then (ux,vx) is a basis in FG(X)
if and only if there exist no w,z ¢ Ry and r,s €¢ Z such that

ur = wzfw™' and vi = wzSw™).

Proof. Suppose that there exist w,z ¢ Ry and r,s ¢ Z such that
ur = wzfw™1 and vi = wzS+w 1. Then ur = (wzfw 1)x and vr = (wzSw"1)x.

If r=0o0r s =0, then 1 ¢ {ux,vx} and so {ur,vx} is not a basis,

If r # 0 and s # 0, then the nontrivial identity (ux)S = (vr)T
holds and it follows that {ux,vx} is not a basis either.

Conversely, suppose that {ur,vx} 1is not a basis. Let G = <ux,vx>.
Since G is a subgroup of FG(X), G is free. If ¢ 1is trivial, we take
w=2z =1, so we assume that ¢ is nontrivial. Since 6 1s generated by
a two—element set, we have rank(G) < 2, and since every two—element
set generating a free group of rank 2 is a basis [13,§I.2], we have
rank(G) = 1. Therefore G = <g> for some g ¢ FG(X)\{1l). Thus there
exist r,s ¢ Z such that uxr = g¥ and vr = g%. Let g' ¢ Ry be such that
g'x = g. We can write g' = wzw ! for some w,z ¢ Ry with z cyclically
reduced. Hence ut = (g'¥)t = [(wzw™1)T]: = wzIw™l. Similarly, we

obtain vi = wzSw™ ' and so the lemma is proved.
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Now we turn our attention to free inverse momoilds, particularly
the free inverse monoid of rank 1.

Reilly provided a criterion for determining whether a subset of a

3
;
E

free inverse monoid 1s a basis or not.. We shall use it in ;:he

following modified versiom.

LEMMA 1.6 {37]. Let X be a nonempty set and let K be a noneméty
subset of (XuX“)*. Then Kp is a basis in FIM(X) if and only if:

(1) (Kp)n(K"1p) = @;

(ii) for every u ¢ KuK™' there exists ¢ ¢ Q(u) such that: if
c e Q(w,...wp), with wj ¢ KuK™' for i € {1,...,,n) and Wi P # w}‘p

for j e (1,...,n-1}, then up = w,p.

The next result is an easy consequence of the previous lemma.

LEMMA 1.7 [37]. Let X be a nonempty set and let u ¢ (Xux—1)*.

Then (up} is a basis in FIM(X) if and only if u ¢ Dyx.

The free inverse monoid of ranmk 1 was studied by Gluskin in 1957,
who produced its first normal form [8]. The normal form that we shall
use throughout this chapter follows naturally from the general normal
form for a free inverse monoid considered in Theorem I.3.2. By
convention, an expression of the form v? always denotes the unity 1.

We define X, = {x}.

LEMMA 1.8 [34,8IX.1]. Let u ¢ FIM(X,). Then there exist unique
a,b ¢ N® and p ¢ Z such that -a < p < b and u = (x 8xatbx=bxD)p.

Moreover, p = 0 if and only if u ¢ E[FIM(X,)].

For such a,b and p, we denote x—axatby—byp by =x(-a,p,b). 1In

L
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particular, we have x(0,0,0) = 1. It is easy to verify [34,8IX.1]

that

[%x(-a,p,D)]p.[x(-c,q,d)]p = [x(-max{a,c-p},p+q,max(b,d+p})]p, :

([x(_aspsb)]p)_1 - [X(_a"P-"Psb"P)]P- (1°1)

We shall be interested in some particular inverse submonoids ' of

FIM(X,), which we now define. For every k ¢ N, let
Ip = (Llu{[x(-a,p,b)]p € FIM(X,): a+b > k).

Note, in particular, that I, = FIM(X,).

LEMMA 1.9, Let k ¢ N. Then
(1) Iy is an inverse submonoid of FIM(X,),

(ii) Iy = <h,p,...,hgp>, where h; = x(0,i,k) for all i ¢ {1,...,k}.

Proof. (i) Let [x(-a,p,b)]p,[x(-¢c,q,d)]p € Iy. We can assume that
[x(-a,p,b)]p # 1, so a+b » k. Then [x(-a,p,b)lp.{x(~c,q,d)]p
= [x(-max{a,c-p},p+q,max(b,d+p))]p and max{a,c—p)+max{b,d+p) > a+b
» k. Hence I is a submonoid of FIM(X,). Since
([x(-a,p,b)]p)" ' = [x(-a-p,-p,b—p)]lp and (a+p)+(b-p) = a+h » k, it
follows that Iy is inverse.

(ii) It is trivial that <h,p,...,hgpe> € Ip. Now let
[x(-a,p,D)]e € I}p\{1}. Then it is easy to see that ([x(-a,p,b)]p
= [x(~a,-a,b)]p.[x(0,atp,a+b)]p = ([x(0,a,a+b)]p) '.[x(0,atp,a+b)]p.
Therefore all we need is to show that for every n » k and every
me¢ {0,...,n) we have [x(0,m,n)]p ; <h,p, ..., hgp>.

Since [x(0,0,k)]p = (h,h7')p, this is true for n = k. Suppose that
it is true for some n » k and let m ¢ {0,...,n+l).

If m = 0, we have [x(0,m,n+1)]p
= [x(0,1,n)]p.[x(0,0,n)]p.[x(-1,-1,n-1)]p

= [x(0,1,n)]p.[x(0,0,n)]p.([x(0,1,n)]p)".

e
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If m > 0, we have [x(0,m,n+l)}p = [x(0,1,n)]p.[x(0,m1,n)]p.
In any case, we obtain [x(0,m,n+l)]p € <h,p,...,hgp> and so the

lemma is proved.

Our next lemma is about a certain type of endomorphism of FIM(X,).

LEMMA 1.10, Let a_,b e N° and let X € N. ‘Let

0’~ o0

®:FIM(X,) — FIM(X,) be the map defined by ([x(—a,p,b)1p)d

= [x(-a,—Na,\p,b,+\b)]p. Then & is an injective homomorphism.

Proof, The injectivity is obvious. Now let
[x(-a,p,b)]p, [x(~c,q,d)]p € FIM(X,). We have
([x(-a,p,b)]p.[x(-¢c,q,d)]p)® = ([x(-max(a,c-p},pt+q,max{b,p+d})]}p)d

[x(-a,~M\max{a,c—p},\(ptq),b +Amax({b,p+d})]p

]

[x(-max{aj+)a,a +he—Np}, \p+rg,max(b +\b,b +AptAd}) ]p

1

[x(-ay—ha,\p,D +Ab) ]p. [X(~a,~\c,Aq, b +Nd) ]p

([x(~a,p,B)]p)P.{[x(-c,q,d)]p)P. Hence ¢ is a homomorphism and the

lemma is proved.

Finally, we need some facts about diophantine equations. For every
a e Z\(0), b ¢ Z, we denote by aib the relation “a divides b". For
every a,b ¢ N, we denote by (a,b) the greatest common divisor of a and

b.

LEMMA 1.11 [24,85.1]. Let a,é e N, let ¢ ¢ Z and let 4 denote the
diophantine equation ax-by = ¢ in the integer variables x,y. Thena
(i) v has solutions if and only if (a,b)ic;
(ii) if (x,4,y,) is a solution of vy, then the set of solutions of v

is {(xy+kb(a,b)” 1,y +ka(a,b)”"): k ¢ FAR
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2., Classification by isomorphism classes

In this section, we show that intersections of monogenic. free
inverse submonoids of a free inverse monoid must necessaril&*ibe
isomorphic to some particular inverse monoids and we produceﬁ;qg’si
algorithm to determine the respective isomorphism class. (

We need some preliminary results, the next lemma following from

Lemmas 1.7 and 1.8.

LEMMA 2.1. Let u e (XuX "\)™Dy and let v ¢ (XuX™')* be such that
vp € <up>. Then there exist unique a,b e¢ N° and p ¢ Z such that
—a< p<b and vp = (u~aud*by-byP)p. Moreover, p = 0 if and only if

v € Dy.

For all such u,a,b and p, we will denote u~@u2*by~bypP by

u{-a,p,b). It follows from (1.1) and Lemma 1.7 that

[u(-a,p,b)]p.[u(-a',p",b")]p
= [u(-max{a,a'-p},pt+p',max{b,b'+p})]p,

([u(-a,p,b)]p)~" = [u(-a-p,-p,b-p)lp.

-1
By convention, we assume that an expression of the form u 4;
i=p
denotes the empty set.

Now we have

LEMMA 2.2. Let u ¢ (XuX“‘)*\DX and let v ¢ (XuX“)*. Then
vp € <up> if and only if there exist a,b ¢ N® and p ¢ Z such that:
(i) -a < p < b;
b-1 .
(1) Q(v) = (L)u( v [ul.Qu)]e);
i=—a

(iii) vi = uP..

Moreover, such a,b and p are unique.
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Proof. First we prove that, for every n e N9,
n-y
Q(u?) = (1}U(iu fulQ(u)]e).
el 1]

We use induction on n. By our previous convention, the case n -‘0
is trivial. Now suppose that it holds for n = k. Then Q(ukt1) = Q(ukiu)
= Qukyoluk. Q)] = um(’E;{ui.Q(u)]t)u[uk.o(unz
= {1}u(i§0[ui.Q(u)]c), which proves our assertion. Since
Q(u™7) = {u™'.Q(u)]t, we have that, for every n ¢ N,

Q™) = Q((™HM = (1uCu [wE.ew )10 = (WeCu i 0w 1)
» = (Lol o [ui.Q)]e).
i=-n

By Lemma 2.1, we have vp ¢ <up> if and only if vp = [u(-a,p,b)lp
for some a,b ¢ N° and p ¢ Z such that -a { p < b. Moreover, such a,b
and p are unique. Also, we have vp = [u(-a,p,b)]p if and only if
Q(v) = Q(u(-a,p,b)) and vi = [u(-a,p,b)]:. But Q(u(-a,p,b))
= Q(u~2ufuPu~buP) = Q(u~2u2)uQ(uPu=P)uQ(uP) = Q(u ) uQ(ub)
- (l}u(ii:;[ui.Q(u)]t) and [u(-a,p,b)]t = uP¢, so the lemma is proved.

Note that, for every u ¢ (XuX”‘)*\DX and a,b ¢ N°, we have either
a=>b =0 or Q(u) Qib;‘[ui.Q(u)]z or Q(u™') ¢ b:1[ui.Q(u)]1. Since

=—a i=-g
u#1l, we have [Q(u)l > 1 and it follows from Lemma 2.2 that

LEMMA 2.3, Let u,v ¢ (XuX"1)™Dy. Let a,b,c,d e N° and Ilet
p,q € Z be such that —a  p < b and —¢c € q < d. Then
(1) Q(u(-a,p,b)) = Q(v(-c,q,d)) if and only if
b—+ d-1 .
v (vl o)]e = o [W.Q(W) ]
J==c

i=—a
(ii1) fu(-a,p,b)]t = [v(-c,q,d)]t if and only if uPi = v9.,

The following result is a mere computation.
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LEMMA 2.4. Let u ¢ (XuX~")™Dy and let v = u(-a,p,b) for some
a,b ¢ N® and p ¢ N such that ~a < p < b. Let w = v(-c,q,d) for some i

¢,d ¢ N° and q ¢ Z such that —c € ¢ < d and ¢ or d is nonzero. Then

wp = [u(-pc-a,pq,pd-p+h)]p.

Proof. Since p € N, we have v / Dy and so <vp> is free bymiﬁﬂg
1.7. Let ¢' = pc+a and d' = pd-pt+b. By Lemma 2.3, we only needﬁﬁb

prove that
L.

d— 1 .
\ Cu [vEQ(W]e = v [uJ.Q(u)}t and vd9: = uP9:.. The second equality is
J=—c

1=—C

obvious. Since p ¢ N, we have -a € b-1 and so we obtain

‘ d-1 d—1 . b—1
" Lo vhomle = o Pl (v [ukD e
i=-c k=-a

i=—c
d-1 b=
= u( u [uPi+k.Q(u)])z. We must show that
i=—c k=-a

{pitk: —¢ € i € d-1 and —a € k < b-1} = {j: ~pc—-a € j € pd-p+b-1}.

Suppose that —¢ € i € d-1 and —-a € k < b-1. Since p > 0, we have

~pc & pl € pd-p and so -pc-a < pitk < pd-p+b-1.

Conversely, suppose that -pc-a < j < pd-p+b-1. Suppose first that
J < -pe. Since -¢ & d-1, we can take i = —¢ and k = j+pc to satisfy
the required conditions. The case j > pd-p is dealt similarly, with
i =d-1 and k = j-pd+p. Finally, suppose that -pc < j < pd-p. There
exist i,k ¢ Z such that j = pi+k and 0 < k < p. Since -pc € pit+k, we
have p(c+i) » —-k. Since k < p, this yields p(ec+i) » 0. Hence i » -c.
Similarly, pi+k & pd-p yields i € d-1. Since -a < 0 < k € p~-1 < b-1,

the lemma follows.

Now we fix u,v ¢ (XuX“‘)*\DX. The discussion of the intersection

<up>n<vp> will require a split into two main cases.
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Case A. ({ux,vx) is not a basis.
By Lemma 1.5, there exist w,z ¢ Ry, with z cyclically reduced, and

r,s ¢ Z such that ui = wzfw™' and vi = wzSw™'. Since ut,vi # 1, we

have r,s # 0. Since <yp> = <y~ 'p> for every y ¢ (XuX~")¥*, we can

assume that r,s e N,

We consider the following as an equation in the nommegative - "%

P S

integer variables (a,b,c,d).

. d-r
P et T = v (250wt ). (2.1)
i=—a J=—c

By Lemma 2.3, (a,b,c,d) is a solution of (2.1) if and only if
[u(-a,0,b)])p = [v(-c,0,d)]p. It is clear that the trivial solution
(0,0,0,0) always satisfies (2.1), since both sides of the equation
become the empty set. Moreover, a and b are both zero if and only if ¢
and d are both zero. If the equation (2.1) has no nontrivial
solutions, it follows from Lemma 2.3 that <up>n<vp> = (1},

Now assume that (2.1) has nontrivial solutions. The following
lemma shows how such nontrivial solutions must relate ome to each

other.

LEMMA 2.5. Let (a,,b,,e,,d,) and (a,,b,,c,,d,) be nontrivial
solutions of (2.1). Then there exist \,p ¢ Z such that (a,,b,,c,,d,)
= (a,+rs(r,s) ' ,b,+us(r,s)7 1, ¢+ r(r,s)71,d,tpr(r,s)7 ).

Proof. For every t e (XuX ")*, let Ky = (k € Z: wzk ¢ Q(t)).
Whenever K, # @, we define My = max(K;) and my = min(Kg).

Suppose that (a,b,c,d) is a nontrivial solution of (2.1). Thus =z
and b are mnot both =zero. By Lemma 2.3, we have [u(-a,0,b)]p
= [v(-¢,0,d)]p. Let e = u{(~a,0,b). Then

u [wzriw“‘.Q(u)]L. Since w € Q(u), we certainly have K, # §.
=—a

Q(e) =
i
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It is immediate that wzr (k-1)+W*A f QO(e) and so

r(b-1)+Mu < Me. 2 .2)

Suppose that wz** - (wzr*w~'t)i for some 1 e (-a,...,b-1) and

t £ Q). We have [wzr (*“1)w-11] t - [wzr (k-i~-Ov-1lwzr*v 11]t
- Wzr (b“1 i)+w«. By maximality of Me, we must have I - b-1. Hence vz’e
- [vzr (k-1 )w-11]t and so we have z"e-r ("“O - (v-1t)i. By (2.2), and
since Mu > r > 0, we have > r(b-1) and so the first letter of

zMe-r (b-1) fs t"e firstletter of z. Since wz « Jfy, the first letter

of w~1 is not the firstletter of z and so we have t - wt' for some
t' eltyMoreover, t' - z%e~r (b 0 and so Me-r(b-1l) <Wu Therefore,
by (2.2), Me - r(b-1)+Mu Similarly, Me - s(d-1)+Mv and me - -rat+mu
- -sc+mv.

Hence (a,c) is a solution of the diophantine equation

rx-sy - mu-mv (2.3)

and (b,d) 1is a solution of the diophantine equation

rx-sy - Mv-Mu+r-s. (2.4)

Since (apC,) and (a2,c2) are both solutions of (2.3), we know by
Lemma 1.11(id) that there exists some X c 4 such that
a2 - al+Xs(r,s)~1 and c2 - c¢,+Xr(r,s) 1.

Similarly, since (b",d}) and (b2,d2) are both solutions of (2.4),

we have b2 - b, +fis(r,s)-1 and d2 - d,+/xr(r,s)-1 for some A c Z and so

the lemma is proved.

Now let aQ be the minimum a c N° such that there is a nontrivial
solution (a,b,c,d) of (2.1) and let bQbe the minimum be N° such that
there is a nontrivial solution (aQ,b,c,d) of (2.1). Thus aQ and b0 are
not both zero. By Lemma 2.5, there exist unique cQ,dQ e N° such that
(@Q,b0tc0,d0) is a nontrivial solution of (2.1). We define

successively
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= (k ¢ N: (ay,b,+ks(r,s)™1,c,,d +kr(r,s)”') is a solution
of (2.1)};
Tu{0) if s(r,s)”' € Po and r(r,s)"' < d,,
{ r otherwise.
min(A) if A # @,
‘{ 0 if A=4¢,

@ = max(1l e N°: (1-9)s(r,s)”' < b, and (I-p)r(r,s)”' < d,).

We show that
w=0 & A=290. (2.5)

Suppose that w = 0. Since w » 3 » 0, it follows that 5 = 0.
Suppose that 0 e¢ A. Then s(r,s)”!' < b, and r(r,s)”!' < d,. Hence w > 1,
a contradiction. Therefore 0 / A and so, by definition of %, we must
have A = @,

Conversely, suppose that A = @#. Then 5 = 0. Moreover, since 0 £ A,
we have s(r,s)™' > b, or r(r,s)”' > d,. Hence v = 0 and (2.5) holds.

Finally, we define g, = u(-a,,0,b,), and if o > 0, Ilet

gk = u(—ao,ks(r,s)“,bu+ns(r,s)"1) for every k ¢ (1,...,w).
LEMMA 2.6. <up>a<vp> = <g.p,...,L,0>.

Proof. Since (a,,by,c,,d,) is a solution of (2.1), it is clear
that gop = [v(-¢,,0,d,)]p and so g,p ¢ <up>n<vp>. Suppose that w > 0.
By (2.5), A # @ and so (ay,bgtns(r,s) Y, cq,dtnr(r,s)” ') is a solution
of (2.1). Hence gyp = [v(-cgy,kr(r,s) ', dgtyqr(r,s)"")]p and so
gkp € <up>n<vp> for every k. Therefore <g p,...,gu0> € <up>n<vp>.

Conversely, let y ¢ <up>n<vp>. We can assume that y # 1. By Lemma
2.3, we have y = [u(-a,p,b)lp = [v(-e,q,d)]p for some nontrivial
solution (a,b,e,d) of (2.1) and some p,q ¢ Z such that -a < p < b,

-¢ € ¢ < d and uPt = v9:. By Lemma 2.5, there exist A,p ¢ Z such that
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(a,b,c,d) = (ap+rs(r,s) ', by+us(r,s) 'V, egtrr(r,s)™ ', d +pur(r,s)™1).
Moreover, uPt = v9: is equivalent to wzfPw™ ' = wzS9w~1, that is, to

rp = sq. By Lemma 1.11, we have p = ts(r,s)™' and q = tr(r,s)~' for

Ceeonie

some t ¢ Z. Thus y = fp, where
£ = u(-ag-\s(r,s)™ ', ts(r,s)7,b+us(r,s)™ ).

Since <yp> = <y~ lp>, we can assume that t > 0. By the minimaliffjl

of a,, we have \ 3 0 as well. Let
£f' = u(~a,-rs(r,s)™ ', -As(r,s)"1,btus(r,s)"1).

It follows easily that f'p
= [v(-a,~\r(r,s)7',-Ar(r,s) ' ,b tur(r,s)"')]p and so f'p e <up>n<vp>.

Hence (f'p)~ ' e <up>n<vp>, We have
(£'p)7" = [u(-ay,As(xr,s) 1, by+t(Mtu)s(r,s)" ") ]p. (2.6)
By the minimality of b,, we must have

Ap > 0. 2.7

Now we must consider several different cases and subcases,

according to the following diagram.

w=290
_{ Mp < g
m>0{ t—p+n € 1
Mp 2 oq «{

t—p+n > 1

Suppose that w = 0. By (2.5),*we have A = @ and so Ap < 0. Hence

p = -\, by (2.7), and so (f'p)7' = [u(-a,,As(r,s) 7 ',by)]p, by (2.6).
If XN >0, then, since (£f'p)™' ¢ <up>a<vp>, we would have
s(r,s)"' < b,, r(r,s)™' < d, and so 0 ¢ A, a contradiction. Hence

A =0 and so f = u(-a,,ts(r,s)”',b;). Similarly, we obtain ¢ = 0 and

so y = fp = gop-

Now assume that w > 0. Suppose first that Mu < 5. Then, by (2.7),
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n > 0, and by the minimality of %, we must have \+g ¢ I'. However, by |

(2.6), (ag,byr(Mp)s(r,s) V,c,,dg+(Mp)r(r,s)”') 1is a solution of

(2.1). Hence Mpu < 0. It follows that Mp = 0, by (2.7). Hence, by

(2.6), we have (f'p)™' = [u(-ag,As(r,5)™",bg)]p. Suppose that A 0.

Since (f'p)™' € <up>a<vp>, we have 0 ¢ A and 80 g =

contradiction. Hence N = 0. Similarly, we obtain t = 0. Thus y = ggp

Now we assume that
Mp 3oy, (2.8)

Since ts(r,s)™' = p < b = b +pus(r,s)”', then (t—u)s(r,s)”' < b,.

Similarly, we obtain (t-p)r(r,s)™' < d,, so

t-ptn € w. (2.9)

Suppose that t-uty < 1. Then p+l-y > t > 0 and by Lemma 2.4, we
have y = fp - [u(-a,~As(r,s)™ 1, ts(r,5) ™, bytus(r,s) ") 1p
= (g, (=N, t,p+l-9)]p.

Now assume that
t—pin > 1, (2.10)
Suppose that
g2 . (2.11)
If N\ = pn = 0, then (2.9) and (2.10) yield 1 < t  w and so
f = u(-a,, ts(r,s)7",b+ys(r,s)” ') = g¢. Hence y = gpp. Assume that X\
or p-7y 1is mnonzero. Then, by (2.11) and Lemma 2.4, we have
[g1 (_)\»ﬂ"ﬂ,!’-“ﬂ)]ﬁ) = [u(—)\s(r,s)"‘—ao, (,u-'r,)s(r,s)"‘ ’ (”—l)s(rss)_1+b0)]p'
Hence (gfxg}+ﬂ_ﬂgt_p+n)p
= [u(=As(r,s) " V-a,,(pn)s(r,s)7, (p-1)s(r,s)"+by) ]p
(ul-ay, (t-ptn)s(r,s) 7, b +ys(r,s)"")]p = fp = y. Thus
Y € <BgPy-. 8wl

Finally, suppose that

g < 7. (2.12)
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By (2.8) and (2.12), we have 0 < rjo < X and so we can write
X - *(»?-f0+6, with k € N and 0 < 6 < rmp. By (2.9), we have
rjp < t-p+t) < o, and so we can define h - 8"-pgb'Sbgrf-pgt-ptri- We
claim that hp - fp - y. In fact,

#5)' " 1 (ol)s@*.*r!U (/4 1)s(x,s)H ]t - ut’0W)'7l»

- fi. Since Q(gf /i?) - Q(gn-A) . we have Q(h) - Qig” pJdgVg~-p)
- QCgrj—pgfil) « By Lemma 2.4, we have ["-"(-K ,=k,0) Ip
- [u(-k (rj-p)s(r,s)-1-aQ,-K(rj-p)s(r,s)~* ,ps(r,s)~1+bQ)]p. By (2.8), we
obtain (g~K)p - ["IM(-K,-K,0).g51]P

- [u(-K(rj-/x)s(r,s)~1-a0,-K(rj-/i)s(r,s)-1 ,ps (r,s)~"+bQ) Ip

.[u(-a0-6s(r,s)_1 ,-6s(r,s)_1 ,b0+(i)-6)s(r,s)-") 1p
" [u(-a0-Xs(r,s) 1,-Xs(r,s)_ 1,bQ+tps(r,s)~")]lp - f'p. Hence
Q(th) - Q(f') - Q(f) and so hp - fp - y. Thus y c <g0p,...,90fi> and the

lemma is proved.

Now we analyse the structure of the inverse monoid <gQOp go>p> !
For every inverse monoid M, we define /f(") tobe the inverse

monoid obtained by adjoining a new unity to M.

LEMMA 2.7. 10) if a) > o and - 0,

KgoP*eee o8(JB> ~ au>() if o9 >0 and v > 0,

(1)<") ifa)- 0.

Proof. Suppose that 9 - 0. Then <gQp> - (1,g0p) - {1) *1).

Now assume that t© > 0. We prove that <g,p.. &> ~ Since
p < b and (0o)-rj)s(r,s)-1 < bQ, we have ps(r,s)-1 < bo+(b+7+0)s(r,s)-1
and SO we can define a map $:<up> — > <up> by
([u(-a,p,b) IP4 - [u(-a0-as(r,s)_1 ,ps(r,s)_1 ,b0o+(trj-cj)s(r,s)-1)lp.
By Lemmas 1.7 and 1.10, with bQ replaced by bo0+(Tj-G))s(r,s)-1, € is an

injective homomorphism. For every k e {!,...,0)}, let - u(0,k,o0>).
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Since (h*p)* - gkp, we have <h,p hop> - <g,p g, But, by
Lemmas 1.7 and 1.9, we have <h"p, ...,hfi» = and so <g,p,...,9fi3
* v

Suppose that T - 0. Then g 0o - giPtetP)”1 and SO
80P « <"1iP g0P :>= Therefore <gOp, ... ,g0p> « !,.

Now suppose that @ >0. Then 1Q(g0)l < 1Q("i>1 for every
i< {1,...,22} and sogOp / <g,P,....g"». Let k c We

certainly have gOp.gkp - gkp. Supppose that o > 77. Then sCr.s)”1 < bo

and r(r,s)_ 1 < dQ. Thus 0 e A and so T - 0, a contradiction. Hence
9 < g and so gkp.gOp - g*"p. Therefore <gQp g~ - <g,p,...,90p> (1>
toCcl,)<n).

Now we produce an algorithm which determines the wvalues of 7 and o
9
for every u,v e (Xu-T-1)*\D" in case A.

Let 0 - max{|fl: £ c Q(uuQ(v)} and let t - 4/3(r,s)-1 |z| 1.

LEMMA 2.8. If (2.1) has nontrivial solutions, then ao0+bQ < ff£ or

cott*xo ©

Proof. Suppose that ao+bQ > and c0+dQ > . Since wzr t Q(u), we
have r|z| < 0. Hence 2r(r,s)-1 < . Similarly, 2s(r,s)-1 < t. We prove

that either

s(r,s)_1 < a0 and r(r,s)_1 < cQ
or (2.13)

s(r,s)-1 < bQ and r(r,s)-1 < dQ.

Suppose that (2.13) is false. Since aQ+tbo > > 2s(r,s)-1, we can
assume, without loss of generality, that s(r,s)-1 > aQ and
r(r,s)_1 > dQ. Since (aQ,bQ,cQ,dQ) is a solution of (2.1) and
w 6 Q(u), we have zr (kO~O - (zsdw~y')i for some jF e {-cQ,...,dQ-1)

and v' ¢ Q(v). Hence zr (ko-i)-sj — (w-1w')t and so |z].]|r(bQO-1)-sJ]|
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< 28. But r(b,-1)-sj > r(t-a,)-sd, > r-rs{r,s) V-rs(r,s)"1

= rith-2s(r,s) 1] = r(r,s) V[(r,s)h-2s] » (r,s)h-2s and 50

Pk

|Z|(r,s)ﬁ;2|zls < 1z1.1r(by-1)-sj1 < 28. Therefore 1z1{xr,s)*

< 28+21z1s € 48 and so k < #, a contradiction. Thus (2.13) holds.

Now we will assume that s(r,s)”! € b, and r(r,s)~' < d,, the b;ﬁ

case being completely similar. Let b, - bo—s(r,s)“.l;gnd

d, = dy-r(r,s)”'. We shall prove that (a,,b,,c,,d,) is a solution ofﬁ

(2.1).

Let i ¢ (-a,,...,b,-1} and let u' ¢ Q(u). We want to show that
(z¥ig—1ury, e?l:;[zsjw‘TQ(v)]t. Since b, < b, (z¥iy—1u').
- (zsjw”v')tjfo;isome J e {-¢y,...,dy-1) and v' € Q(v). If j < d,,

there is nothing else to prove, so we suppose that j > d,. But there
exist g € P e 3 and v € Q(v) such that
(zr[i+s(r,sf4]w—1uu)1 = (z5J'w vy,

Suppose that J' < ~c tr(r,s)7t. It follows that
[zrs(r,sf4+sjw—1vnll - [er(r,sfq+riw—1u-}, = (25J'w"'v") ¢ and so
zrs(r,sf”+sj~sj' = (wlv"v'"1w) (. Therefore
1zi.1rs(r,s) "+sj-sj'| < jwi+38. But rs(r,s) '+sj-sj'
> rs(r,s)  '+sd—rs(r,s)  '+sc~-rs(r,s)™! = s(do+c0)—rs(r,s)'1
> sh-rs(r,s) ? - (r,s)t-r, S0 we obtain 1zt[(r,s)h-r]

< |1Z).1rs(r,s) +sj~sj'1 < |wi+3B3. Hence 1z1(r,s)h < izlr+1wI+38 < 4f

and so # < #, a contradiction.
Thus j' 3 —cg+r(r,s)™'. Let j" = j'-r(r,s)”'. Then
J* e {-eg,...,d -1} and (zfiw 1u'), = [sz'—rs(r,STﬂW—1u']L

u b,—1 ' d,—1 .
= (25J"w"1v™)i., Thus ‘v [2Flw™'Q(u)]e € 'u [25JwT1Q(v)]i. The
i=-g, J=-c,
converse inclusion is proved similarly and so (a,,b,,c,,d;) is a
solution of (2.1). Since agtb, > % > 2s(r,s)”', we have a +b, > 0 and

so (a,,b,,c,,d,) is nontrivial. This contradicts the minimality of b,

and so we must have a +b, < % or co+d0 < k.
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We can now establish an algorithm for effectively determining the
nature of the intersection <up>r*<vp>. By Lemma 2.8, we only need to
test a finite number of values (a,5,c,d) in order to determine whether
(2.1) has nontrivial solutions or not and, 1f the answer is positive,
which one is the minimal (a0,b0,c0,d0). Now we will show how we can
compute 1j.

Suppose that « > 0. Moreover, suppose that a@tbO+rjs(r,s)~* > h and
c0+d0+ijr(r,s)-t > t. Since fHY > O, s(r,s)_1 < bQtijs(r,s)~' and
r(r,s)-1 < do+7r(r,s)-1 . Now we can proceed as in the proof of Lemma
2 .8, replacing respectively bQ by bot+trjs(r,s)-1 and dQ by dO+rjr(r,s)~"'.
It follows that (aQ,bOt(if-1)s(r,s)~"' ,c0,d0+(rj-1)r(xr,s)-1) is a
solution of (2.1). If x > 1, this implies 1ij-1 c¢ A, contradiction.
Hence g - 1.

Therefore, for every u,v e (XuX~*)*\Dj *n Case A, we have that one

of the following conditions is satisfied:

VYo
V-1
aO+b0O+ifs(r,s)-"' < *,

c0+do+TH (r,s) -1 < *.

Whatever the case, this means that we only need to evaluate a
finite set of wvalues (a,b,c,d) in order to obtain rj. Now W follows by

a simple computation and so we can determine the isomorphism class of

<up>«<vp>.
Case B. (ur ,vTt) is a basis.
LEMMA 2.9. |<up>n<vp>| < 2.
Proof. Consider the following as an equation on the nonnegative

integer variables (a,b,c,d).



38

b-v d-1
o [ulQ(u)]e = u [WQ(V) ], (2.14)
i=—a Jj=-c

Since {ux,vx} is a basis in FG(X), we have <ux>n<vx> = (1} and so
<up>n<vp> must be a semilattice. By Lemma 2.2, we only need to show

that

b‘_ N - 3
l{i uj[uiq(u)]c: (a,b,c,d) is a solution of (2.14))1 < 2. (2.15)
—— WEe,

Clearly, (0,0,0,0) is always a solution of (2.14). Suppose that:

(ag,bgy,cq,dg) is a solution of (2.14) with a,+tby > 1 and cotdy > 1.
We define a sequence (eg)p on {-1,+1} as follows.

Let &, be such that (ut)% eiZ;;[uiQ(u)]t. There exist w ¢ Q(v) and
k € {-cy,...,dy;—1} such that (ui)é : [VkW]l. Thus [v‘k(un)ﬁilt e Q(v).

Since ¢, +d, > 1, there exists ¢, ¢ {(-1,+1l) such that (v& .u®1).

do=v ¢ do—v .
e u [wvT¥(u)&r]e € v [vJQ(v)]e. Similarly, since aj+b, > 1, we
J=—C =—

° ° b,—v .
can find e, ¢ (-1,1) with (u®s .vé ,u% ) e_nu [ulQ(u)]t. Continuing
j=—g
bo-1 . °
this process, since .ou [ulQ(u) ]t is finite we must find some odd

i=—a
<]
m,n ¢ N such that m < n and (ufm.vEm-1 ., .u€t ) = (ubn vena ., . ult),

Hence (ufn,, . vEm+1)y = 1 and so (ux)®n...(vx)ém+ta = 1, Since {ux,vr)
is a basis, this 1s impossible and so any mnontrivial solution

(a,b,c,d) of (2.14) must satisfy either atb = 1 or c+d = 1.

Suppose that (2.14) has two nontrivial solutions (a,,b,,c,,d;)
and (a,,b,,c,,d,) such that

b,-1
(%]

. bo-1 .
[uiQ(u)]e # % [uiQ(u)]e. (2.16)
l=_ad 1

:.—ao
Let a' = max{ao,a1}, bt = max[bo,b,}, ¢' = max{c,,c,) and
d' = max{d;,d,). It follows easily that (a',b',c',d') is a nontrivial

solution of (2.14).

Suppose that a'+b' = 1, Then a, = a, and b, = b,, which
contradicts (2.16). Suppose that a'+h' > 1., Then e¢'+d' = 1 and so
¢, = ¢, and d; = d,. Clearly, this also leads to the same

contradiction. Hence (2.15) holds and the lemma is pxoved.
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Obviously, we can always compute <up>r*<vp> for all u,v in this
case.

From Lemmas 2.6, 2.7 and 2.9 we now obtain

THEOREM 2.10. Let u,v e (XoJd-1)*\Dj. Then <up>r»<vp> is Isomorphic
to one of the following:
f Ifc, k eN, VAyfr

(Ik)c>), k «N,

3. A few examples

In this section we will prove the existence ofintersections

<up>n<vp> belonging to all isomorphism classes considered in Theorem

2 .10.

LEMMA  3.1. Let X - {x,y}. Let k e N and letu, vt(.Xu*-1)* be
such thatQ(u) - {1,x, ...,x*41 ,xy,x"+1ly) , ui - x, Q(v) - (1,%x,xy) and
Vi - xX. Then <up>r»<vp> - 17,

Proof. Consider the equation

b-" d-i .
u [xzQ(u)]i - u [xJQ(v]]lt (3.1)
I- a j— ¢
on the nonnegative integer variables (a,b,c,d). It is easy to see that

(0,/c,0,2k) 1is a solution of (3.1); in fact,

k-1 2/-1

u [XZ.Q(U)]t - {1,x%, ...,X2’k,xy,x2_y X2]’<y) - u [xJQ(v)]t. Hence

i-o j-o

aQ - 0 and bQ < k. Suppose that bQ < k. Since aQ - 0 and u / Dy, we
b0-1 bo-i

have bQ > 0. We have that xky / u [x10(u)]t and xk+}y c u [x1Q(u)]i.

do-i . . do-i
‘u [xJQ(v) ]t implies dQ > k and so x*y t u [xdQ(v)]t.
j-o J7e

14
However, x*ct,y e
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This is a contradiction, so we must have bQ - k. Sinces(r,s)_1 - 1
< bQ and r(r,s)_1 - 1 < dQ, we have 0 eA. Hence j - 0 anda - k. By

Lemmas 2.6 and 2.7, we have <up>n<vp> = I".

LEMMA 3.2. Let J - [x,y). Let k e N and let u,v < (XoX~1)*'be
such that Q(U) - Q(V) v n
- {x1: i e {0,...,6k+t4)} u [x2Ty:J e {0,...,3k+2)) u (xy,x6k+3y),

ut - x2 and vt - x3. Then <up>n<vp>* (Ifc)”"l).

Proof. Consider the equation

5-1 d-1
u [x2iQ(u)]i - u [x3Jg(v)]i (3.2)
i— a j— ¢
on the nonnegative integer variables (a,b,c,d). Since Q(u) - Q(v) ,
(0,1,0,1) 4is a solution, so aQ - 0 and bQ - 1. Since s(r,s)~'" - 3 > b0,

we have 0 / A.
We show that (0,1+3k,0,1+2k) 1is a solution of (3.2). In fact,
u [x2*Q(u)lt - (1,x X12"+4 ,V,XY. ... xX12"+4y) - u [x3JQ(v)]i.

i-o j-o
Hence k e A. Let k' ¢ (1,...,k-1) and suppose that (0,1+3k’,0,1+2k') is

a solution of (3.2). Since x3x6"-2y - x6"+1ly, we have
2/C* 3 L*

xGk+"y ¢ w [x3J*Q(v)]t. Hence x6"+ly c u [x2-*Q(u)]t and this clearly
j-o i-o

implies k' > k, contradiction. Hence 7 - k. Now
o - max{l 6 N°:3 (1-k) < 1 and2 (I-k) < 1} - k. ByLemmas 2.6and2.7,

we have <up>r»<vp> - (I7) (1).

Just for the sake of completeness, we mention the following
trivial examples, where X - {x,vy}.

Let u,v € (XuX-1)* be such that O(u) - {1,x}, ut - x, Q) - {1,vy}
and vt - y. Then <up>r»<vp> - {1}.

Now let u,ve (XuX-1)* be such that Q(u) - QO(v) -{l1,x,v), ut - x

and vt - y.Then <up>o<vp> - {1, (uu-1)p} = {1}"1).
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Therefore, none of the isomorphism classes mentioned in Theorem
2.10 is superfluous. In contrast with Lemmas 1.1 and 1.2, we can now

state the following result.

COROLLARY 3.3, The intersection of two monogenic free inverse -

ot

submonoids of a free inverse monoid is not necessarily free.

4. The rank 1 case

In this section we consider a particular case of the situation
discussed in section 2, ylelding simple necessary and sufficient
conditions for the occurrence of each possible isomorphism class.

We suppose that u,v ¢ (XhX")*\DX are such that up,vp ¢ <wp> for
some W ¢ (XuX“‘)*\DX. Consistently with the notation of Lemma 2.5, we
assume that u = w(m,,r,M;) and v = w(my,s,M,). As in previous casés,
we can restrict ourselves to the case r,s > 0. Moreover, by Lemma 1{7,
we can assume that w = x ¢ X. Since utr = x¥ and vi = x5, we are
necessarily in case A. Further, we have Q(u) = (xBu,...,xMu) and
Q(v) = {va,...,XMV}. Hence (2.1) is equivalent to

:1{xri(xmu,...,xﬁu)]¢ - d:‘[xsj{xmv,...,xHV}}L. Now it is clear that

i=—g Jj=—c
the nontrivial solutions of (2.1) are exactly the solutions of

—ra+mu - —SC'HIIV
(4.1)
r(b-1)+M, = s(d-1)+M,,

where a,b,c,d € N0 and atb, ctd > 0.

This 1is a system of diophantine equations and so, by
Lemma 1.11(i), (4.1) has solutions if and only if (r,s)i(my-my) and
(r,s) 1 (M—-My+s-r).

Now assume that (4.1) has solutions. Let (a,,b,,c,,d,) be defined

as in section 2. By Lemma 1.11(ii), (a,,b +ks(r,s)”',c,,d +kr(r,s)™")
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i1s a solution of (4.1) for every k ¢ N. Hence A # @, and so, by (2.5),
w > 0.

Suppose that 7 > 1. By Lemma 1.11(1i)£

(29, bg+(n-1)s(r,s)"",cq,d +(y-1)r(r,s)"?) is a solution of (4.1), :

since g > 1, this implies 5-1 ¢ A, contradiction. Thus 5 < 1.

Since A # @, we have & » 1, by (2.5). Suppose that w > 1. W;:Egg?
(w-9)s(r,s)”' < by, and (w-n)r(r,s)”! € d,. But w9 > w1 > 1, so 615'A
and 7 =0. Since W > 1, it follows that
(ag,by-s(r,s)™V,cy,dy~r(r,s)"') 1is a sgolution of (4.1), which
contradicts the minimality of b,. Thus w = 1.

When does 5 = 0. occur? Suppose that n = 0. Then s(r,s)”!' < b, and
r(r,s)™' <& d,. Considering (4.1) as an equation on (N9)4,
(ay,by-s(r,s) ', ¢,,d-r(r,s)™") would be a solution, by
Lemma 1.11(ii). However, by the minimality of by, this is mnot a
solution of (4.1) and so a +b,~s(r,s)”' € 0 or c +d,~r(r,s)"' < 0. The
other éase being dual, we can assume that a tb-s(r,s)7' € 0. Siﬁce
a,, by-s(r,s)™ 5> 0, this is equivalent to a, =0 and b, = s(r,s)™!

and therefore to

sc, = my—my,
s[d,—r(r,s)" '] = My-Myt+s-r.
But this is equivalent to si(my—m,;) > 0 and s|(MMy+s-r) > O.

Considering also the dual case, Lemmas 2.6 and 2.7 yield

THEOREM &4.1. Let w e (XuX~')®\Dy and let my,r,M,,my,s,M, ¢ Z with
m; K\ 0<r <« My and m, < 0 < s ¢ My,. Let u = w(my,r,M,;) and
v = w(my,s,M,). Then <up>n<vp> is isomorphic to
{1} if (r,s)f(my-my) or (r,s)f(My-My+s-r),

1 I, if si(my—my) » 0 and si|(M,~My+s-r) > 0, or dual,

(I,)(’) otherwise.
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5. The finitely generated problem

In this section we discuss the second of the problems statéﬁ%i%wg?

o e

Section 1. The following result follows from Theorem 2.10.

THEOREM 5.1. Let u,v ¢ (XuX"")*. Then <up>n<vp> 'is fini

generated.

This theorem cannot be generalized to the case of non-monogenic
free inverse submonoids of a free inverse monoid, as we show next.
Let X = {x,y,z} and let u,,u,,v,,v, ¢ (XuX~1)* be such that
Q(u,) = (1,2}, u,L = z;
Q(u,) = {1,x,xy,xyx,xyxy), u,t = Xyxy;
Q(v,) = {l,x,xy,xyx,z" '), v, = Xyx;
Q(vy) = {1,y,yX,yXy,yXyX,yXyXy}, V,i = yXyX.

Then we have

Quy') = {1,271}, ujlt = z71;

Q(uz") = {1,y7 1,y x™,y xT1y", y T ixT iy xT ),
uzle = yoixTlyTixl,

Q(vi1) = (1,x 1V, x"ly™1, x 1y ix™1, x 1y ix"1z70),
Vil = xTlyTix;

Qvy") = (l,y,x ', x 'y 1, x 'y 'x ', x 'y 'x7 1y},
vyl = X“’y“x"}".

LEMMA 5.2,

(i) {u,p,u,p) is a basis;

(ii) (v,p,v,p) is a basis.
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Proof. (i) We show that u,p and u,p satisfy the conditions of
Lemma 1.6. Obviously, {u,p,upla{ulp,u;'p) - a. Let
u e (u,,uyt,u,,u;t) and suppose that ur ¢ Q(w,...wp), with
wi € (u,,u7',u,,u3'} and wi,,p # wi'p for every i. -

Suppose that ut ¢ Q(w,). Then we have ut ¢ [w,...wiQ(wi+,)]¢vfot
some {31 and so (wi'...wy'u)t € Q(wjy,). Since u # w, ;ﬁé
Wis, # wi', 1t follows that (wj'...wj'u)t = (wz‘t)...(#zft)(uc),*§nd>
so (wile)...(wi'e)(u) € Q(wiy,). Since i > 1, thisj is clea;ly
impossible. Hence ut ¢ Q(w,). But this implies w, = u and so, by
Lemma 1.6, {u,p,u,p} is a basis.

(i) Again, we use Lemma 1.6. We clearly have
(vip,vypln{vilp,vylp) = @, By Lemma 1.5, we have that {v,r,v,x} is a
basis.

We have 2z7' € Q(v,). Suppose that z7' e Q(w,...wp), with
wi e {v,,vi',v,,v;'} and wj.,p # wij'p for every i. We prove that
v, = w,. Suppose that 27! / Q(w,). Then z7' ¢ [w,...w;jQ(w;j;,)]t for
some i » 1. Suppose that wj,, = v,. Since z ¢ {((w,...wj)¢), then we
have (w,...wj)t = 1 and so (w,x)...(wjx) = 1. Since i > 1 and
{v,r,v,xr] is a basis, this 1s a contradiction. Hence Wity # Vo, but
then we must have wj;,, = v7! and z7' = (w,...w;x" 'y 'x7'27")(1. Hence
(wy...wjdt = xyx = v, and so (w,x)...(wjxr) = v,x. Since (v x,v,x} is

a basis, this yields i = 1 and w, = v a contradiction. Hence

1
z7' ¢ Q(w,) and so v, = w,.

We have x Wy ixTizT € Q(vi"). Supposing that
xT'yTIxTIZzTY e Q(w,...wy), Wwe pr;ve that vj;! =w, by a completely
similar argument.

Now let p = xyx and g = yxyx. For j ¢ (1,2} and ¢ ¢ {-1,+1}, let

Q‘(Vf) = {g ¢ Q(Vﬁ): gx € <px,gx>). A simple computation leads to

Q' (vy) = (1,p},

Q'(vi") = {1,p "},
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Q*(v2) - {1,9,9p0 1,920 1},

Q'cv"l) - {1,p~},q~",qp~").

We have g e Q(v.). Supposethat g ¢ Q(w....wn). We show tha%
w, — V.. Suppose that w. * v.. Then < e [v,...v<Q(Vf..) 11 for somg
i > 1. It follows easilythat we must have g (v,.. .w"g)1 Xjgor sbme
g c Q, wi+l)- Hence g - (vjl...W7lg)l. Since we are assuming that

wtt * q, and {pr,qgv} is a basis, we have that g, when expressedas a
reduced word on {p,p-1,9,9-1), must have length superior to 1 and have
q as its final letter. But no such word exists in Q(vj+1l), whatever
wi+l is, so wl - v2.

We take g-1 e Q(v~1l) and the case g-1 € Q(w,...wn) is developed in

a similar way.

Thus, by Lemma 1.6, {Vjp.Vip} is a basis.

Now we prove

LEMMA 5.3. <ulp,u2p>n<vilp,v2p>1is not finitely generated.

Proof. For every n e N, let wn - u7’ulu®+l and tn - v,v". Since
Q(vn) - Q(u71ul)uQ(u”+1l) - {1l.r'M _uo [ul.Qu2)]1()
i-
- (1,z 1h{l,x,xy,Xyx (xy) n+1x, (xy) 212+2}
- {1,z 1,x,xy,XyX,..., (Xy)2n+1x, (xy)2n+2)
- {1,2-1 ,x XY, XyXU{XYX,XYXY, ..., (Xy) 2n+1x, (xy) 2%2+2}
2-1

- Q(V,)u(ku [viv*.Q(v2)]1 - Q(tn) #we have (wnwn’)p - (tn"nMp-
-0

Let n e N. We show that

c (Xu*-1)*\Dy: gp c <ulp,u2p>n<v,p,v2p> (5.1)

and Q(g) £ Q(wn).

Suppose that there exists such g. Let gp = (PL-—*Pm)P» with

Pi ¢ [v*,v~',v2,v~') for all i. Suppose that Pi 6 {Vj.v*1l} for all 1.

> 2
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Then gr ¢ <(yxyx)x>. Further, since gp ¢ <u,p,u,p>, we have
gr € <zx,(xyxy)x>. It is immediate that <(yxyx)x>a<zx,(xyxy)x> = {1},

so gr = 1 and g ¢ Dy, a contradiction. Therefore we can define

have [p,...pk—Q(PR)1t & Q(wy).

Suppose first that pp = v,. Then z7' ¢ Q(pg)
(Py...Pk-y)t = 1. Now suppose that pg = vi'. Then x7'y~'x7'z7" e Q(5 )
and S0 (Py...Pg-y)t = XyX. - o T

Whatever case arises, we have gx = (py...Pp~*
= (Py++P—y)¥(Pg...PR)* € (1,(xyx)x}.<(yxyx)x>. Since gp € <u,p,u,p>,
we have g € <zx, (Xyxy) x> as well. But
<zx, (xyxy)«>n ({1, (xyx)}x).<(yxyx)x>) = (1} and so we have reached a
contradiction. Thus (5.1) holds.

Now suppose that <u,p,u,p>n<v,p,v,p> = <f,p,...,fgp> for some
E,,...fg ¢ (XuX~1)*. Let n ¢ N and suppose that (wnw;‘)p = (h,...h)p,
wheré every h; is either fji or sz for some j; e {1,...,s}). Suppése
that hj ¢ Dy for some i ¢ (1,...,r)}. Let i, be the minimum of such i.
Then Q(hio) € Q(wp), which contradicts (5.1). Denoting
{fjp: j e {l,...,s} and fj ¢ Dy} by K, we obtain
{(wpwp')p: n e N) € <K>, Since <K> is finite, this is impossible and

S0 <U,p,U,p>n<v,p,Vv,o> is not finitely generated.

Thus we obtain the following result.

-

THEOREM 5.4. There exist finitely generated free inverse

submonoids of a free inverse monoid whose intersection is not finitely

generated.
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CHAPTER III

THE SEMILATTICE E[FIM(X)]

1, Preliminaries

In this section we introduce some concepts in semilattice theory
and we relate them to E[FIM(X)].
Let E be a semilattice. Let e ¢ E. We say that e is irreducible

if, for every f,g ¢ E,
e=fg » e=fore=g.

The set of all irreducibles of E is denoted by Irr(E).

We say that e is prime if, for every f,g ¢ E,

epfg » ep foreyg.

LEMMA 1.1. Let E be a semilattice and let e e¢ E. Then

e prime =» e irreducible.

Proof. Suppose that e is prime and suppose that e = fg for some
f,g ¢ E. Then e < f and e < g. Further, e » fg and so, since e is
prime, we have e » f or e » g. Hence e = f or e = g. Thus e is

irreducible.

The semilattice E is sald to be a unique factorization semilattice
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(UFS) if
(i) E is generated by Irr(E);

(ii) every irreducible is prime.

All these concepts are inspired by well-known concepts
integral domains [2,§5.3].

We need some results on UFSs.

LEMMA 1.2. Let E denote a UFS. Let e,,.. .en,f,,. .. ,fm € Irr(E) be
such that e,...en - f£,...fm. Then, for every 1 e {1l,...,n), there

exists 7 e {1l,...,m} such that et > fj.

Proof. et 1 ¢ (1,...,n). Clearly, et > fy...fm. Since E 1is a
UFS, et 1is prime and an elementary induction yields e* > fj for some

j e [1 m) .

LEMMA 1.3. Let E denote a UFS and let e c E. Then
(1) Irr(Ee) - e.Ilrr(E);

(ii) FEe 1is a UFS.

Proof. (i) Let £ e Irr(Ee). Since E is a UFS, there exist
S\ »eee#*8n ¢ Irr(E) such that f - gy...gn. Let I be minimal among the

nonempty subsets of (1,...,n) with respect to f - e II g#. Suppose that

id
IIT > 1. Since eg” > f for every i e I and f - II eg”, we obtain
id
f / Irr(Ee), a contradiction. Hence |I| - 1 and so ft e.Irr(E).
Conversely, let g c¢ Irr(E) and suppose that eg - ff' for some

f,f' f Ee. We have e > f > eg and e > f' > eg. But g > ff' and since E
is a UFS, g is prime, so g > £ or g > f£'. We can assume that g > f.

Hence eg > £ and so eg - f£. Thus eg c Irr(Ee).

(ii) Let £ 6 Ee. Since E is a UFS, there exist glf...,gn e Irr(E)

such that f = g,...gn. Therefore f « ef - eg, ...gn = (eqg,) ...(egn) . By
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(i), egi e Irr(Ee) for every 1 e Thus Ee 1is generated by
Irr(Ee) .

Now let h e Irr(Ee) and let a,b e Ee. Suppose that h > ab. By (i),
we have h -eg for some g e Irr(E). Hence g >ab andso,sinceqg is

prime, g > a or g > b. Ve can assume that g > a. Since e > a, we have

h - eg > a. Thus h is prime and the lemma is proved. o
* |
We say that a semilattice E is upper finite if the sets
{f e E: f >e) are finite for all e e E.
The next lemma states some properties of £[FI/f(X)].
LEMMA 1.4. Let X be a nonempty set and let E - E[FIM(X)]. Then
(1) Irr(E) - {(w_1)p: w e Rx);
(Ii) E is a UFS;
(Hi) E 1is upper finite.
Proof. Let ep e Irr(E). Suppose that Q(e) - {ul,...,udd} £ Rx. We
can write ep - (uw~1)p...(unu”)p. Since ep e Irr(E), we have
ep - (utuj')p for some i e (L,...,n). Therefore

Irr(E) £ {(ww_1)p: w e ify).

Now suppose that w e Rx. We prove that (wv_1)p is prime. Suppose

that (ww_1)p > ep. fp for some e, f e Dj. Then
Q(w) - Q(ww=1) £ Q(ef) - Q(e)uQ(f). Hence w e Q(e)uQ(f) . We can assume
that w t Q(e). But Q(e) 1is left closed and QO(w) - {w' € w' <2 »

therefore Q(w) £ Q(e) and (ww-1)p > ep. Hence (ww_1)p is prime.

By Lemma 1.1, this implies (wv-1)p irreducible and so (i) is
proved. Moreover, it follows that every irreducible of E is prime. By
(i), Irr(E) generates E and so E is a UFS.

Since fp > ep implies Q(f) £ Q(e) for every e,f e Dx, it follows

easily that E is upper finite.



50

The next result is immediate.

LEMMA 1.5. Let X be a nonempty set and let w e Fy\(l). Then
{e 6 E[FIM(X)]: e}- (ww 1)p} - [(wwQ')p), where wQ Is the maximal

proper prefix of w.

2. Principal Ideals

In this section we shall obtain necessary and sufficient

conditions for two principal ideals of E[FIM(X)] to be isomorphic.

LEMMA 2.1. Let X be a nonempty set and let E — E[FIM(X)]. Let

e c Dy. Then

210(e) | (IXI-1)+2 if X is finite

\Cov (ep) |
ixXi if X is infinite.
Proof. We assume that X is finite, the other case being obvious.
We use induction on 1Q(e)].
Suppose that 10 (e) | - 1. Then e - 1 and SO
Cov(ep) - {(xx-1)p: x c XuX-1}.Hence |[Cov(e) | - 2\X\ and the lemma

holds.

Now suppose thatthe lemma holdsfor every f e Dy such that
[Q(f)l < n, with n eN. Tet e e Dy be such that 1Q(e)| - n+l. Since
10(e) | > 1, there exists somev c Q(e)\(l) such that v is an extremal
vertex of MT(e) . Let ye JluX-1 denote the last letter of v. Let
e' e Dy and suppose that e'p 6 Cov(ep). Since 1Q(e')\Q(e)| - 1, we can
define teip to be the single element of Q(e')\Q(e). Moreover, there

exist unique ie«p ¢ Q(e) andxe> e X*-1 such that (ie'p»xe'p»te'p)
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is an edge of MT(e'). We define A - {e'p c Cov(ep) : ieip - vVv) and
B - [Cov(ep)]\A.

Since v 1is extremal in MT(e) and 7 is the last letter of v, we
have A - {e'p: e' € Zty and Q(e') - Q(e)ufvx), x c (Xud-1)
Hence |Al - 2|J|-1.

Since v 1is extremal in KT(e) and v * 1, there exists e0 t

that Q(e0) - Q(e)\(v). We define a map 0:B —* Cov(eQp) as follows
Suppose that e'p e B. Then v is still an extremal vertex of MT(e') and
so there exists €], e D7 with Q(J,) - Q(e')\{v). It 1is clear that
elp e Cov(elp) and so we can define (e'p)f3 - eoP- Moreover,0 1is
injective and [Cov(eOp)]\BO - {ep}. Hence |B] - |[<Tov(eOp) |-1. Using
the induction hypothesis, we obtain Bl = 210(e0) | (|]7]-1)+2-1
- 2n(|71-1)+1. Thus |Cov (ep) | - |A|+]|B] - 2 |71-1+2n(|7]1-1)+1
- 2(n+l)y @7]-1)+2 - 21]0Q0(e)1(|J|-1)+2 and the result follows Dby
induction.

We must introduce some new concepts and notation.

let e c E - £[EIM(7)] and let m - |e|. For all k e No, we define
Irr""CFe) - {u c Irr(fe): |ul - m+k). Surely, Irr(Ee) - u Irr"~"Ee).
Fo
Moreover, Irrm (Ee) - {e} and Irr"+"Ee) - Cov(e).
For every & c No, we define a map
6e,Jctl :Irrrotlct (Ee> — ¢ IrrnH-k(fe) as follows. Let g c (Ee) . By

Lemmas 1.3 (i) and 1.5, there exists a unique h e Irr""iEe) such that

g * h. We define - h.
Obviously, we have a bijection
fe,/c:Irrm+k (Ee) — > [Irrm+k+i <f%) ] Aer (5e,k+i> defined by

8%e,k ™ £5e]lk+ti- Tt: *s easY to see that, for every g e Irr*"Ee), we
have
2171-1 1f 7 is finite

(2.1)
|71 if 7 is infinite.
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Now we obtain a criterion for isomorphism.

LEMMA 2.2. Let X be a nonempty set and let E - E[FIM(X)]. Let

e,f e E. Then

Ee ~ Ef 4-4 [Covi(e)|] - |Cov(f)].

Proof. Suppose that #:Ee —» Ef is an isomorphism. We certainly
have «>- f. Let e' e Cov(e). Since $ is injective, we have e'4d> < f.
Suppose that e<P> < £f* < f for some f' e Ef. Let e" - f'<©-1. It follows
easily that e' < e" < e, in contradiction with e* ¢ Cov(e). Hence no

such f1 exists and so e'4d> e Cov(f). Thus [Cov(e)]<t> £ Cov(f).

Similarly, we obtain [<7ov(f)®»1 £ Cov(e). Hence [Cov(e)]<l> - Cov(f)
and so \Cov(e)| - |[Cov(f)]|. .

Conversely, suppose that |[Cov(e)| - |[Cov(f) |. Suppose that m - |e]
and n - |f|. For every k t N°, we define a bijection

PkiIrrm+iciEe) — > Irrnt+fc(Ef) as follows.

Consider k - 0. Since Irrm (Ee) - {e} and Irrn (Ef) - (f), we define
ey>0 .

Now  suppose that is defined for some k e N°. Let
h e IrrnH.”"(Ee) . Suppose that k - 0. We have 17e.k* Y |Cov(e) |
- [Cov(f)| - Suppose now that k > 0. Then, by (2.1), we
obtain 1lh'le - \hp~"f as well. Whatever the case, we can define a

bijection "“h:*e ,k —*h<Pk"f k £°r every "~ f “rrm+k("e)*

We define ~ V IrrnH-k+i (fe> —> Irrn+k+1(Ef) by gyk+l - gyfth, where
h - g6e,k+ti- Next, we define <p:Irr(Ee) —W Irr(Ef) by gp - g/, wiere
k - Jgl-m. It is immediate that y is a bijection.

We prove that, for every g,h ¢ Irr(Ee),

A

g<(h 4 gp " hp. (2 .2)

Suppose that g * h. We have h ¢ Irr*"iEe) , g e “rrm+k+l (Ee) and

h - gSe,k+ti f°r some k e N°. Therefore hy? - hp” and gp - gpk+"* ™
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Since gyp ¢ hpple k = (hpp)dF g+, we have (gp)éf k4, = hpg = hp and
so gp £ hp.
Conversely, suppose that gp{ hp and suppose that h ¢ Irrp, p(Ee)

for some k ¢ NO. Then hp = hpp and gp € Irrpipe,(Ef). Therefore

g € Irrpypy (Ee) and gp = gpp4,. Hence (8pp+y)dof kv = hog and so

8oker € (Bop)dFlpey = (hppdie g = (Mo KI¥n- But gopy, = 8¢gﬁgx*mjby
definition and so Im(yp) n Imw‘gbe,nu) # §. Therefore yp = 1’85:,”4 ‘and
so h = gég [+, Thus g4 h and (2.2) is proved.

Since E 1s upper finite, we have that, for every a,b e¢ E with
a < b, there exist ¢ ,...,cg € E such that a - €g{ .4 e - b. It

follows immediately from (2.2) that, for every g,h ¢ Irr(Ee),
g<h & gp < hp. (2.3)

Suppose that g,...g, = h,...hg, with

i1+ 18prihy,...,hg € Irr(Ee). Let i ¢ {1,...,r). By Lemmas 1.2 and
1.3(ii), there exists j ¢ (1,...,s) such that g; >hj. By (2.3), -we
have gjp > hjp and so g,p...8rp » hyp...hgp. Similarly, we obtain
hyp...hgp > g.p.. .82 and so g.p...8p = hyp...hgp. Also by (2.3),
g9 . 8¢ = h,p...hgp implies g,...gp = h,...hg and so we can define
an injective map ®:EFe — Ef as follows, lLet g ¢ Ee. By Lemma 1.3, we
can write g = g,...g, for some g,,...,g, € Irr(Ee). Then we define
8¢ = g,p-..8rp-

We show that & is an isomorphism.

Let g ¢ Ef. By Lemma 1.3(ii), there exist g,,...,8, ¢ Irr(Ef) such
that E=8&, 8- Since v is bijective, there exist
hy,...,hp ¢ Irr(Ee) such that g; = hjp for every i e {1,...,r). Thus

g =8,.--8r = hyp...hpp = (h,...h)d and so ¢ is surjective.
Let g,h ¢ FEe. Suppose that g = g,...g, and h = h,...hg for some
gys---18r:hy,...,hg € Irr(Ee). Then gb.hd - (gy-.-8r)®.(h,...hg)d

= g,p.--8rehyp...hgp = (g,...871,...hg)d = (gh)d. Thus ¢ 1is a

homomorphism and the lemma is proved.
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We note that every Isomorphism <b:Ee — > Ef must induce bijections
between Irr”~"Ee) and Irrn+"(Ef) and satisfy (2.2).
For every a e D%, we have iap| - [Q(a)|l and so Lemmas 2.1 and 2.2

yield

THEOREM 2.3. Let 1 be a nonempty set and let E - E[FIM(X)]. Let
e, f e E.
(1) If X is infinite or |X| - 1, then Ee = Ef.

(ii) If X is finite and [j?| > 1, then

Ee - Ef lel - [£].

A semilattice in which all the principal ideals are isomorphic is
said to be uniform. It follows from Theorem 2.3 that, if X is infinite

or |X| - 1, then E[EIM(JO] is uniform.

3. The Munn semigroup

We can use the results obtained in Section 2 to get information
about the Munn semigroup [25] of the semilattice E[FIM(X)].

Let £ be a semilattice and let U - {(e,f) e E x E: Ee - Ef). For
every (e,f) e U, let Ie,f denote the set of all isomorphisms from Ee
onto Ef. The Munn semigroup of E is defined to be Ip - u T~ £,

(e, £f)tU e,Z2
with the usual composition of relations. This is an inverse semigroup
and E(Tg) - "“"Ee: e € E) is isomorphic to E. It follows easily from

the definition that, for every e,f e E,- 1Ef'V if and only if

(e, f) e V.
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THEOREM 3.1. Let X be a nonempty set and let E = E[FIM(X)]. Then i

Tp is E-unitary,

Proof. Llet e,f,g ¢ E and let &:Ee — Ef be an isomorphism.

Suppose that 1Eg-¢ € E(Tg). We want to prove that ¢ ¢ E(Tg). We have -

that lgg.® is the restriction of ¢ to the semilattice (Eg)n(Ee), that

must - show tﬁpt'”“

is, Ege. Therefore™ efihaﬁéf“Q‘Egé = lpge and.

® = lge.

Suppose that ¢ # lg,. We show that
dh ¢ Irr(E) such that h ¥ e and (eh)® # fh. (3.1)

Assume first that e = f. Since ¢ # lg,, there exists a ¢ Ee such
that ad # a. Since ed =~ f = e, we have a # e and so we can write
a = eh,...h, for some h; ¢ Irr(E) with h; ¥ e, i ¢ {1,.?,n). It
follows that hjp # h; for some i and so (3.1) holds.

Now assume that e # f. Since Cov(e) ¢ Irr(Ee),’ and by Lemma
1.3(1), there exist (h;: i € I) § Irr(E) such that ‘ ‘
Cov(e) = {ehy: i ¢ I)}. Suppose that (eh;)d = fh; for e?gﬁy i e I,
Since [Cov(e)]d = Cov(f), we have Cov(f) = (fh;: i ¢ I).

Suppose that Q(e) % Q(f). Let u e Q(e)\Q(f). Let u' denote the
maximum prefix of u contained in Q(f) and suppose that u = u'xu", with
X € XuX™' and u" € Ry. Then f.(u'xx"'wu'"')p e Cov(f) and so
f.(u'xx 'u'"Y)p = fh; for some i ¢ I. Since (u'xx"'u'"Vp,h; e Irr(E),
we show easily that (u'xx"'u'"')p = hj. In fact, h; » f.(u'xx"'u'7")p
and h; ¥ f together dimply- h; 5 (u'xx"'u'""1')p. Similarly,
(u'xx"'u'")p > hj and 80 (u'xx™'u""%)p = hj. However,
(u'xx"'u'"1)p » e, a contradiction. Thus Q(e) € Q(f). Similarly, we
obtain Q(f) € Q(e) and so e = f, a contradiction. Therefore (3.1)
holds.

Now suppose that h ¢ Irr(E) is such that h # e and (eh)d # fh, Let

h' € Irr(E) be such that h'4{ h. By Lemma 1.3(i), eh ¢ Irr(Ee). Hence
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(eh)d € Irr(Ef) and so, by Lemma 1.3(i), (eh)® = fu for some

u € Irr(E). Since h # e, we have u # f and also h' J# e. Hence eh'< eh

and so (eh')® { (eh)®. Similarly, (eh')d = fu' for some u' ¢ Irr(E).
Since u is prime, fu'{ fu and u ¥ £, we have u' < u, If u' K3
for some u" ¢ E, then u" ¢ Irr(E), u" » f and it follows easily

fu' < fu" < fu, a contradiction. Hence u'J u. Now suppose

Y

¢

fu' = fh', Since u' h' ¢ Irr(E) and u' ¥ f.i‘té-‘-‘"'fa1lows ‘easily th

u' = h'. But u'< u and h'{ h, so, by Lemma ]{..Sl‘,wwe Pix;;e u'::h, a
contradiction.tlience fu' # fh', that is, (eth‘;)d) # fh' and sor (3l.1-)
holds for h e Irr(E) with arbitrary large length. In particular, we
can assume that ih) > (efgl. Suppose that (eh)d = fu, with u ¢ Irr(E).
Then geh = (geh)d = (ge)d(eh)® = gefu. Therefore h » gefu. Since
thi > |gef), we have h J gef. Then, since h is prime, we get h > u.
Hence (ul » i1hi > |efgl » i1gel and so u ¥ ge. But u » geh and so,

since u 1s prime, u » h. Therefore u = h, a contradiction. Hence

$ = lpo and so Tp is E-unitary.

An Inverse monoid M is said to be completely semisimple if

Ve,f ¢ E(M), =10 3 e £f.

THEOREM 3.2. Let X be a nonempty set and let E = E[FIM(X)]. Then
(i) Tg is bisimple if and only if X is infinite or 1X| = 1;
(i1) Tp is completely semisimple if and only if X is finite and

1X1 > 1.

Proof. (i) Since every@«:lass of an inverse monoid M contains an
idempotent, it follows that an inverse monoid M is b‘isimple if and

only if
Ve,f ¢ E(M), D = D,

Let e,f ¢ E. Since 1Ee® = lEf@ is equivalent to Ee = Ef, we have
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that Tg is bisimple if and only if E is wuniform, and Theorem 2.3
yields the result.

(ii) Suppose that X is infinite or [X| - 1. Let e,f e E be such
that e > f. We have 1lfe2) - 1lgf& and lge > 1f£fe so "E *s not completely
semisimple.

Now suppose that X is finite and |[X| > 1. Let e,f e E be such that
lEe& ~ 1E S and Ife < *Efe Since 1lgf) - 17fS), we have Ee * Ef, and by
Theorem 2.3, |e|l - |f|. Since 1lge < 1gf, we have e < f. Clearly, e < f
and |e| - |f| together imply e - f, so Tg is completely semisimple and

the lemma is proved.

4. Subsemilattices of E[FIM(X)]

The problem of finding necessary and sufficient conditions for a
semilattice to be embeddable in E[FIM(X)] is still open. In this
section, we obtain some results concerning some particular classes of
semilattices.

Since the free inverse monoid of countable rank is itself
embeddable in any free inverse monoid of rank greater than 1 [37], we

will fix X - {xn: n eN) and E - E[FIM(X)] throughout this section.

THEOREM 4.1. Let L be a finite semilattice. Then L 1is embeddable

in E.

Proof. We consider E to be the set of all finite nonempty left
closed subsets of ity, with the union operation.

Let <p:L —» X be an injective map. We define a map <L —»E by
a* - {l}u(L\Lla)"™>.

We show that 4> is a homomorphism. let ab e L. Since
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- {1)u(L\[ (L1a) r»(L1b)]) ~> - {1yu[(L\L'a) u (L\Lyb) Jp
- [{1)ij(L\L'a)v)'j[{1)ij (L\L'b)v] - (a<t)o(zx1>). Therefore & is a
homomorphism.

Now suppose that a& - M>. Then (l)o (L\L'a)ip -{1}u(L\L1b)™> and so
Lla - L'’b. Hence a - cb for some c e L1, thatis, a < b. Similarly,

b < a, hence a - b. Thus 4 is injective and thetheorem is proved.

THEOREM 4.2. Let L be a countable UFS. Then L 1is embeddable in E

if and only if L is upper finite.

Proof. Suppose that L is embeddable in E. Clearly,
subsemilattices of upper finite semilattices are upper finite. Since E
is upper finite, it follows that L is upper finite.

Conversely, suppose that L is upper finite.

We prove that the elements of L can be written as a sequence

(fn) ncN such that
fn < fm * n > m- (4.1)

Suppose that L - (en: n e N) . We definea sequence (“n”ncN
subsets of L as follows. Assuming that A0 - ff, we define

An ™ IS € L: 8 > en)\ (Ao°-+-uAn-i) f°r every n 6 N. Since L is upper
finite, every An is finite, possibly empty. Moreover, L - uNAn . Now
nc

we define the sequence (fn)nelq

Clearly, A, * ff. Let fy be maximal in A, for the natural partial
order of L.

Suppose that £ fk are defined for some k e N and suppose that
fk e An . If An\{f,,...,fk) * ff, we choose fk+} to be a maximal element
of An\{f,,...,fk). If An\[f1,...,fk) - ff, we choose to be a

maximal element of An+m, where m - min{l e N: An+i * ff). Note that

(I ¢ N: An+j * 0} 1s nonempty, since L 1is countable and Atu...uAn is
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finite.
It is immediate that L - {fn: n e N) and (fn)ncN satisfies (4.1).

We define a map "™>:L —> £ as follows. Since (4.1) holds, we have

fy e Irr(L). Let k e N. The set - [i e N: fj c¢ Irr(L) and fj > £%)
is clearly finite. Since Irr(L) generates L, there exists some

I’ Hk
fl e Irr(L) such that and so B” is nonempty. Since L is a UFS,
it is clear that - n fj. We define - I (x*x3j1)p.

We prove that p is a homomorphism. Let m,n t N and suppose that

ffljim - f/c. We want to show that that 1is, B"BR - B".
Since and ffc< fn, it follows that B”"BrR £ B". Now suppose
that 1 ¢ B*. Then fj e Irr(L) and f+ > - “m*n- s*nce L is a UFS, fj
is prime and so we have > fm or > fn. Hence 1 e B"BR and so

B/c C BauBrR . Thus BmuBn - B” and ~ Is a homomorphism.

Now suppose that f* - fno for some m,n c N. Then Bm - Bn and so
ITf| @ T f| B fn. Therefore is injective and the theorem is
icBm icBn
proved.

We note that these results only yield sufficient conditions for a
semilattice to be embeddable in £. We can provide a trivial example of
a subsemilattice of E which is not a UFS. In fact, let u,v,v,z t D% be
such that Q(u) - {1,x,,x2}, Q(v) - {1,x1,x3}, QO(w) - (1,x2,x3} and
O(z) - {1,x, ,x2,x3}. Let N - [up,vp,wp,zp) . Obviously, N is a
subsemilattice of £. However, N 1is not a UFS, since up e Irr(N),

up > vp.wp, up ? vp and up ? wp.

THEOREM 4.3. There exists a countable upper finite semilattice

which is not embeddable in E.

Proof. Let M - {(m,n) t N° x N°: m > n), with multiplication

described by
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(m,min{n,n'}) if m = m'
(m,n)(m',n') =
(max{m,m'},0) if m # m'.

It follows from the definition that the groupold M is commitative

and every element of M is idempotent. We mnot

My = {((m,0): m e N°) satisfies (M Myu(MM) < &n
(m,n),(m',n'),(@",n") ¢ ¥. If m = ' = m*, then [(m.n)(m',?‘)
= (mmin{n,n',n"}) = (m,n)[(a' .h'l)@"',n"')]. Otherwise, it follows £
the remark on M, that [(m,n)(m',n')](m",n") = (max{m,m',n"},0)
= (m,n)[(m",n*"){(m",n")]. Hence M is associative and so a semilattice.

Let (m,n),(m',n') ¢ M. It should be clear that (m',n') » (m,n)
implies m' < m. Since n' < m', there exist only finitely many
(m',n') ¢ M such that (m',n') » (m,n). Hence M is upper finite.

Now suppose that ¢p:M — E is an embedding. Let k = 1(0,0)p1. Since
(k,k) > (k,k-1) > ... > (k,0), we have (k,k)p > ... > (k,0)p. Hence
1k, Bpl < ... < 1(k,0)p1 and so 1(k,0)pl-1(k,k)p1 > k. Since
1efl < 1el1+i1fi-1 for every e,f ¢ E, we have 1(k,0)p1 = 1(0,0)p.(k,k)pi
< 1(0,0)p1+1(k,k)pi-1. Hence (0,0)p1 > 1(k,0)pl-1(k,K)p1+l > k+l, a

contradiction. Therefore no such embedding exists,

5. The Hopf property

An algebra A is said to be hopfian if the only surjective
endomorphisms of A are the automorphisms.
It is known that FIM(X) is hopfian if and only if X is finite

[26]. However, E[FIM(X)] shows different behaviour.

THEOREM 5.1. Let X be a nonempty set and let E = E{FIM(X)]. Then

E is not hopfian.
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Proof. We consider E to be the set of all finite nonempty left
closed subsets of R with the union operation.

Let x e X and let

Y- {u e R%: x2<2 u).

Let A e E. We define A' - (A\Y)u[x-1 (AnY) ]i. Obviously, A' ~is
finite and nonempty. We show that A' 1is left closed. Let v cA' and
vV v 32
let v' c with w' W.
Suppose first that v e A\Y. Since A isleft closed, we have w' « A
and it is clear that w / Y implies w* / Y. Hencew' «A'.

Now suppose that v ¢ [x-1 (AnY) ]t. Since 1 e A\Y, we canassume

that w' * 1. Then there exists some v e R$% such that x2r ¢ A and

w - xv. Since V' w and w'* 1, there exists v' e R% such that
v'<2 v and w' - xv' . Since A is left closed, x2v' e A. Hence
w' - xv' - [x 1(x2v')]t e [x-1(AnY)]c £ A'. Thus A' is left closed.

We define a map <p:E—>E by Ap - A', A e £, and we show that is

a noninjective surjective homomorphism.

(1) o is not injective.

It follows from the definition that (1,x,x2k? - {1,x} - {l,x)y?t

hence f is not injective.

(ii) < is surjective.

Lete e E. Suppose that AnY - 0.Then it is immediate that Af - A.
Now suppose that Any * ft. Then X,X2 C A. Let
B - (A\Y)u{x2}u[x(Ar»Y)]. Obviously, B is finite and nonempty. We show

that B is left closed. Let w e B and let w' e R% be such that w' <2 w.

We have seen before that al\vy s left closed, so we can assume that
w / A\Y. Suppose that w -x2. Since Any Z0 and A is left closed, we
have x2 e A and so w' c A\y ¢ B. Now suppose that w - x3u for some
u 6 R% such that x2u e A. We can assume that w' = x3u' and u' <2 u for

some ul e R%. Since x2u' <| x2u and A is left closed, we have x2u' e A
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and so w' = x3u' ¢ [x(AnY)] & B. Thus B is left closed and so B ¢ E,

It is immediate that Bp = A and so ¢ Is surjective.

(iii) ¢ is a homomorphism.

let AB ¢ E. Then (AuB)p = [(ABN\Y]u(x™'{(AuB

= (A\DU(B\Du[x 1 (4nY) JLu[x 1 (BaY) ]t = (4p)u(Bp) and so ¢ .

homomorphism and the theorem is proved.

W
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CHAPTER IV

NORMAL-CONVEX mmnnnmc:s_ ‘

1. Preliminaries

In this chapter we introduce the concept of mnormal-convex
embedding for inverse semigroups and we obtain two new embedding
theorems. Normal-convex subgroups of a group were iIntroduced by
Papakyriakopoulos [32} and our definition is the natufal
generalization, All homomorphisms are supposed to be semigroup
homomorphisms.

Let ¢:S — T be an embedding of inverse semigroups. We say that p

is normal-convex if and only if, for every relation R on S,
(Rp)* n (5 x S)p € R,

Note that the inclusion R#¢ s (R¢)# n (8§ x S)p is always true. By
Lemma I.1.1, we know that ¢ induces, for every relation R on S5, a

unique homomorphism WR:S/R# — T/(Rp)# such that the canonical diagram

S§e————»T (1.1)

(@ Ty

v W
S/R¥ —— 5 T/(Rp)#
%




commutes. Now we have

LEMMA 1.1. Let <p:S —> T be an embedding of 1inverse semigroups.
Then p 1s normal-convex 1f and only 1if pp 1s 1indJdective for every

relation R on S.

Proof. Suppose that ¢ is normal-convex and let ISbe a relation on
S. Let a,b t S be such that (aR*)pp - (bR*)pp. Since (1.1) commutes,
we have (ap) (Rp)* - (bp) (Rp)*. Hence (ap,bp) ¢ (Rip)* « (S x S)p. Since
w 1s normal-convex, this yields @pbP) t R<p. Thus aR* - bR* and so
pp is injective.

Conversely, suppose that pp is injective for every relation R on
S. Suppose that (ap,bp) e ®Rp)* for some a,b ¢ S. Since (1.1)
commutes, we have (aR*)pp - (bRr)pp, and since pp 1s injective,

aR* - bi?. Therefore (ap,bp) e R*p and so ¥ is normal-convex.

The following result shows that the class of normal-convex

embeddings is closed under composition.

LEMMA 1.2. Let p:S —» T and \},:;T —> U be normal-convex embeddings

of inverse semigroups. Then pf, is a normal-convex embedding.

Proof. It is trivial that pP¥ is an embedding. Now let R be a
relation on S. Since (pS)p 1is uniquely defined, we certainly have
P\J7)p = 'R'1'R anc* so @EW)p 1is injective. Thus, by Lemma 1.1, pJ/ is

normal-convex.

The next result shows an application of the concept of

normal-convex embedding.



THEOREM 1.3. Let p:S —> T be a normal-convex embedding of inverse
semigroups and let R be a relation on S. Then the word problem for R

is decidable if the word problem for Rip is decidable.

Proof. Suppose that the word problem for Rip is decidable. Let
a,b e S. By Lemma 1.1, pp is injective and O
— bp# (aR")pp - (bR*)pp. Since (11) commutes, we have
(aR")pp - (bR*)pp <«* (ap) (Rp)* - (bp) (Rp)*. But this latter equality
is decidable, hence the word problem for R 1is decidable and the

theorem is proved.

Let M denote an inverse monoid with least group congruence a. Then
M is said to be F-inverse if every cr-class of M has a maximal element
under the natural partial order. It is well-known that every F-inverse
monoid is E-unitary [34,SVII.5].

Let G be a group and let IT be a semilattice. An action of G on K
by left automorphisms is a map G x K —>K: (g,A4) gA such that, for

every g,h e G and A,B e K,

g(hA) - (gh)A,
g(AB) - (gA) (gB),

IA - A.
It follows easily that, for every g e G and A,B e K, we have
A< B + gA < gB.

The semidirect product of K by G induced by this action 1is the
inverse semigroup K b4 G with the operation given by
(A,9) (B,h) - (A(9gB),gh). When no ambiguity arises about the action, we
shall denote this semigroup by K x G.

Now suppose that L is an ideal of K such that GL - K. Then we say

that (G,K,L) is a strong McAlister triple and
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P(G,K,L) - {(A,9) ¢cL x G: g yA e L) 1is an 1inverse subsemigroup of
Kx G [21].
LEMMA 1.4 [21].Let M be an Inverse monoid. Then M is F-inverse

if and only if M - P(G,K,L) for some strong McAlister triple (G,K,L)

such that L has a unity. ey

LEMMA 1.5 [28]. Let S be a quasi-free inverse semigroup. Then

S - P(G,K,L) for some strong McAlister triple (G,K,L) with (7 free.

2. Strong McAlister triples

THEOREM 2.1. Let (G,K,L) be a strong McAlister triple. Then the

inclusion map <p:P(G,K,L) —» K x G 1s normal-convex.
Proof. et S - P(G,K,L) andlet T - K x G. Let £ be a relation on
S, say R - {((A+,g”"),(®" ,h")): i £ I). Without loss of generality, we

can assume that R is symmetric. Let (U,u),(V,v) c S be such that
(U,u) Rip*™* - (V,v) (Rip)**. We want to prove that (t/,u)R" - (V,v)R".
Since R is symmetric, we know that there exist (WQ,wQ),..., (Wn,wn) t T

such that

(WOIWQ) - (U/U)

Wn>wn> "
vy £ {1 n) 3(Pj,pj),(Qj,qj) e T 3ij e I:
wi=") VY (J*Pj') (Aiy8ij) (Qj><1j') and
W3i» ) 7 (Pj»Pj) (*Jj *1i*) @ i%)

Now we show that, for every m c {0,...,n},
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3Pi.QA.ffi* L' (2 .1)
("ni»vni) * S,
- (]-/lu)J?#r
("1.Wrn) - (Pi.l1X".WaXQi.l).
We use induction on a. Defining BRJ, - U, < “ u-1t/ and W, - I/, we

see that (2.1) holds form - 0.
Now suppose that (2.1) holds for a - J-1, with J e {1 n) . Then
(W3i~.wj.,) - (Wj_1,1)(Vj-1,wj 1) (wjIlWwj 1,1)

- (ff) 1,1) (P9-1,1) (ffJ-1,irj-1) (Q3-1,1) (wJilff)-1.1)

- (ff)-1.1) (PJ-1,1) (P3.p3) (A1] ,g9i]) (QJ,gj) (QF-1.1) (wjiil/j 1,1). It is
clear that

ff)-, < PJ-,Pj (2 .2)
and so (Wj ,,1)(Pj ,,1) (Pj,pj) - (£ff)-,,Pj). Similarly,
£ , < (pjgij Qj) (-Pjgij ) and 80

sljipj'V)-, < 03jdjQ)-,)- (2-3>

Hence (Qj ,qj) (Qj_, ,1) 1) - (g3!pi' (/3 , ,qi) . Thus
("~ _,,wi=,) - PjX"iySijUgJdjipJd

Since Wj , < PjAij » we have pj'Wj., < Aj. e L. But L * K and so

A

pj'Wj., e L. Since "j-i € L, we obtain (ffj-, »Pj) 6 S. Similarly, we

have gijPj'w)-y < 8ijPj' (PjAi;) ™ f L’ and
<1j'8ijPj'wj-i “ wj-\WJ-y € L+ Hence (gVPj'wj-y »3]> cC s-

Let PJ - W ,, Q - vjlwj 1 and Wj - W'j-y(PjBi-) (wjwjl,Wwj ,).
Obviously, Pj, Qj (L and since L * K, we have Wj c L as well. We have
Wi>w7j) ~ (ff4 .PjXPij .*1j X*"IjP3"j-1,93). that is» ("j»vj) 1is a
product of elements of S. Therefore(Wj,w.) ¢ S.Moreover, Wj,wj)R*
- [(Wj_,,PJ) (Bi. hi.) (gdIpJ'Wj_,,qj) ]R<*

- 1(wi-,.pj) (Al..gl.) (9J!pJd'W]_,,qj) }Ii# - (Wy,,wj_,)R* - (U,u)S*.
It follows from (2.2) that (wj_t,pj- (E&5-*1,1) (Pj.pj) * Similarly,

(2.3) yields (gddpj 'wWj., ,qj) - (QF ,qj) (wjl,w] ,,1) . Hence (VJ.v3)
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- *1) (Pj *Pj) (AL . ) (QJ,qf) (wIl,t£3_1£1) -

and so (2.1) holds for m - J.

Thus (2.1) holds for every m e (0,...,n). In particular, we have
(1™~.v) *# - <W*,vn)F*4t/,u) *# and (tfi.v) - (A, 1)<tIn .vn) «%, 1)
- (PA.1) (V,v) ((?1.1). Therefore fj, < and so (W*.v) - (W/plXP.v). It
follows that (1/,u)R* - (fcr,,l)i2#(V,v)1f* and so 2 < (V,v)i?*.

Similarly, we obtain (V,v)R* < (U,u)R* and so (U,u)R* - (V,v)R#. Thus

y? is normal-convex.

Now, Lemma 1.5 and Theorem 2.1 immediately yield

COROLLARY 2.2. Every quasi-free 1inverse semigroup admits a
normal-convex embedding into a semidirect product of a semilattice by

a free group.

Since every free inverse semigroup 1is quasi-free, we also obtain

COROLLARY 2.3. Every  free inverse semigroup  admits a
normal-convex embedding into a semidirect product of a semilattice by

a free group.

3. E-unitary inverse semigroups

In this section we prove that every E-unitary inverse semigroup
admits a normal-convex embedding into a semidirect ©product of a
semilattice by a group.

Let S be a E-unitary inverse semigroup. Let

M(s) - {0 A QS: E(S) .AQ A £ ar for some a ¢ S) with the operation
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described by AB = {(ab: a ¢ A and b ¢ B). The following result is due

to 0'Carroll.

LEMMA 3.1 [30]). Let S be a E-unitary inverse semigroup. Then M(S)

is an F-inverse monoid and the map p:§ — M(S): s . {t € 8: £ &
an embedding. Moreover, if og and opy(g) denote respectivélyrfﬁ

group congruences of S and M(S), then ay(g) n (S X S)p = ogp.
We prove that this embedding is in fact norﬁal~convex.

LEMMA 3.2. Let S be a E-unitary inverse semigroup. Then the

embedding ¢:8 — M(S): s » (t ¢ §: t < 8} is normal-convex.

Proof. Let R be a relation on S. Without loss of generality, we
can assume that R 1is symmetric. Let a,b ¢ 8§ be such that

(ap,bp) ¢ (R¢)#. We want to prove that (a,b) ¢ R,

Since (ap,bp) € (Rp)¥, there exist W,,...,W, € M(S) such that
Wo = ap,
Wn = bp;
Vi e (1,...,n) 8P;,Q; € M(S) H(uj,v;) € R:

Wiy = Pj(ujp)Q; and Wy = P;(v;ip)Q;.
We prove the following result. Let z ¢ S§ and €,D ¢ M(S) be such
that C(zp)D e Sp. Then
Hc,d € S: cp € C, dp € D and (czd)p = C(zp)D. (3.1)

Since C(zp)D ¢ Sp, there exists some w ¢ S such that C(zp)D = wp.
Since w € wp, there exist ¢ ¢ C, 2' ¢ 2zp and d ¢ D such that cz'd = w.
Since cp € C, z'¢ € zp and dp S D, we obtain wp = (cz'd)p

= (cp) (z'p) (dp) = (cp) (zp) (dp) €  C(zp)D = wp. Therefore

(czd)p = C(zp)D and (3.1) holds.
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Since S is E-unitary, it is clear that

VA c tf(S), AA~y f£la £ E(S). (3.2)

Now we show that, for every J t (0,...,n)
J
3wl e S: wjp £ Wjand (a,v]) e P*. (3.3)

Let wQ - a. It follows that (3.3)holds for J - 0.

Now suppose that (3.3) holds for J - i-1, with i >0. Then
WL-\V c and so» since S is inverse, vi-yp C
(3.2), we also have (~i-1V7) c Hence

. Now we can apply (3.1)

with z - [, ¢ - Pi and D - (vi-,”>) * Hence there exist P£,qi t S
such that pip £ Pit £ QiWJ-1i (wi-iv>) and (Piui<H)<P
- Pi(uivp)Qitii(w"-") - W| ,y>. We define wj - Pivi9i* ©Now v"*>
Y (PIVS) (iVS) (<7i%) S Pi(vit)QifI-i wi-i") ¢

and so, by (3.2), we have w'p £ W .£(S). For every s ¢ S and e € E(S),
we have ae - aea-1a, and hence W*.£(S) £ E(S) .Wt. Therefore wSp
£ Wi.E(S) £ E(S).wi £ . Moreover, w"P# - (Pivi<7i)P* “ (Piui<?i)P*
- wi yE* - aP# and so (3.3) holds for J - i. Thus (3.3) holds for
every j € {0,...,n).

In particular, wvn”® £ Wn - bp and (a,wn) c P#. Hence vn < b and
aP# - wnP# < bP". Similarly, we prove that bP® < aP”. Thus (a,b) € P*

and the lemma is proved.

Now we obtain

THEOREM 3.3. Every E-unitary inverse semigroup admits a

normal-convex embedding into a semidirect product of a semilattice by

a group.
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Proof. Let S be a E-unitary inverse semigroup. By Lemma 3.2, the
embedding <p:s —» M(S): s \=> {t ¢ s: t < s) is normal-convex. By Lemma
3.1, M(S) is F-inverse and so, by Lemma 1.4 and Theorem 2.1, there
exists a normal-convex embedding “:M(S) —>F, where P is a semidirect
product of a semilattice by a group. By Lemma 1.2, the composition

—» P is a normal-convex embedding and the theorem is proved.

B ' v

4. Inverse semigroups

The results of Section 2 can be used to obtain an embedding result

concerning general inverse semigroups.

THEOREM 4.1. Every 1inverse semigroup admits a normal-convex
embedding into an idempotent-separating homomorphic image of a

semidirect product of a semilattice by a free group.

Proof. Let s be an inverse semigroup. By Lemma 1.3.9, every
inverse semigroup 1is an idempotent-separating homomorphic image of a
quasi-free inverse semigroup, sSo we can assume that s - F/r, with F
quasi-free and r idempotent-separating. By Lemma 1.5, we can assume
that F - P(G,K,L) for some strong McAlister triple (G,K,L), with G
free. By Theorem 2.1, the inclusion ip:F —> K x G 1s normal-convex.
Therefore, by Lemma 1.1, the induced map ":F/r —> (K x G)/(r<p
defined by (ar)v® - a(ry?)” 1s 1injective. We must prove that ¥ is
normal-convex and (ry?)" is idempotent-separating.

A

First we prove that is normal-convex. Let T - (K x G)/(ry?)"- Let
R be a relation on S. We want to show that ®@" " » (S x S)\p £
Let p be the congruence on F such that p/r « R". It follows that,

for every a,b e F, (a,5 e p if and only if (ar.br) 6 R We prove
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that

(ty)# C (/™) #/ (7o)# . (4.1)

Since r £ /f we have rp £ pp and so (r™>)* £ (/gp)*. Hence
(pp) */(rp) * 1s a congruence on T and we only need to show that
Joy £ (pp)%/(rp)%. a,b « F Dbesuch that (ar.br) c f. Then
(ar.br) e F* and so, by definition of A we have (a.b) c p. Hence

(@ap,bp) e pp £ (pp)*.Therefore (ay>(r")*,by>(xy>)*) € (pp)*/(rp)*t that

is, , br)}1/) c (pp)*/(rp)*. Hence (4.1) holds.
Now suppose that a,b ( F and ((ar)”, (br)”) € R®\(,)*. Then, Dby
(4.1), we have (@) \£, (br)\> € (pp) */ (rp) *. Hence

(ap (rp) *,bp (rp) *) e (pp)*/(rp)* and so (ap,bp) c (oup)*. Since p is
normal-convex and r is a congruence on F, we have
(ep)* » (F x B)™> £ pp. Hence (ap,bp)e /Ay and so (a,b) t p and
(ar.br) c¢ F*. Therefore ((ar)”, (br)”) c Ffy and so ~ is normal-convex.
Now we ©prove that (rp)* 1is idempotent-separating. Obviously,
F(Kx G - {(A,1): A € . Suppose that A,B e F are such that
(A, L) (xry>)™ - (B,1) (Ty»)*. Since GL - X, there exists g e G and C t L
such that gC - A. Hence g-1A - Ce L and we have (g™"M, 1) (rp)*
- [(g-'A,g-"') (A,1) (A,g)](Tv)# - P#
- ((g-M) (g=-'B),1) (rv)# . Since (g-M) (g-'B) < g~M € and L<lg, we

have (g—-17) (g_1B) 6 L. Hence (g 14, 1), ((g_17) (g_1B),1) c F. But

[(g-M,1)r]” - (g~M, 1) (.rip)*= <(g-M) (g='B), 1) (r,>) #

- [((g1A) (g-1B) ,1)r and So, since " is injective,
(g-1A,1)r - ((g_1A) (g _1B),l)r. Since r 1is idempotent-separating, we
obtain (g 1a,1) - ((g-17) (g-1B) ,1) , that is, g-1A - (g~'A) (g~'B) .

Hence A - AB and A < B. Similarly, we obtain B < Aand so A - B. Thus

(A,1) - (B,1l) and (rp)* is idempotent-separating.
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CHAPTER V

CLIFFORD MONOID PRESENTATIONS

1. Preliminaries

In this chapter we establish several decidability results for the
variety of Clifford monoids.

Let M be an inverse monoid. We say that Mis a Clifford monoid if

Va e MVe c E(M) , ae - ea.

Let C be aclass of inverse semigroups. The inverse monoid M is
said to be a semilattice of elements of C 1f there exists a
semilattice E and a homomorphism <p:M —>E such that eyfl € C for every

e e E.

LEMMA 1.1. Let M be an inverse monoid. Then the following
propositions are equivalent.
(1) M is a Clifford monoid;
(ii) M is a semilattice of groups;

(iii) Va € M, aa-1 - a-1a.

Proof. Suppose that (i) holds. Let <o:M —» E(M) be the map defined
by a? = aa_1 . For every a,b e M, we have (ab)yj - abb-1a_1 - aa-1bb-1
*= (ay?) (by?). Hence y» 1is a homomorphism. Let e e E(M). Since is a

homomorphism, e?21 is a semigroup. Now suppose that a ¢ e?-1. Then
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a 9— aya - a yaa~rya — a 'aaa 1 - aa laa 1 - aa-1 - &j - e. Hence
ep 1 is inverse. Let f e E(ep 1). Then f - ff 1 - fi» - e and so g>-1
has a single idempotent. Thus &1 is a group and so (ii) holds.

Now suppose that (ii) holds. Let £ be a semilattice and let
<p:M —* E be a homomorphism such that e*”1 is agroup for every a « E.
Let a e M. Then -1 e a”“~-1 and so “(aa—l)A— Lay> = (a”l*)'t. H‘%L?rce
aa ' ,a ya e E(ey>”1). Since g>1 "is a grou;ﬁ, we ha\lfv;e; aa”l - a-la and so
(1iii) holds.

Finally, suppose that (iii) holds. Let ac M ar;d let e e £(*¥).

Then ae — aea-la — (ae) (ea-1l)a — ea-laea — e(a—,a)a - eaa”la — ea.

Thus (i) holds and the lemma is proved.

Let CI1f denote theclass of all Cliffordmonoids. Itfollows from
Lemmal.l that Clf - Inv[xx-1 - x-1x] and soClf 1is avariety of
inverse monoids. Similarly, Su - Inv[x2- x] 1is the variety of

semilattices with unity. Let X be a nonempty set. We define

ve r(xx1 - x 1x) - (pu{ (uu”1,u ,u): u e (Xud”1)*})**,
g- t(x2 - x) - (puf{(u2,u): u e (XuX-1)*})#.
The quotients FCM(X) - (XuX~')*/r and FSU(X) - (XuxX-1)*/I? are

respectively the free Clifford monoid on X and the free semilattice
with unity on X.
It is not difficultto prove [34,8§VIII.2] that, for every

u,v € Xrx~1)%*,

(u,v) ed 4=AHu) - S(v). (1.1)

Moreover, we have that, for every u,v e (Xux~1)¥*,

(u,v) ev 4=4Hu) - Hv) and ut - vt, (1.2)

by [12] (see also [34,SVIII.2]).

It is clear that v c x and f ¢ 7Jj The next result is immediate.
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LEMMA 1.2. Let u,v t (XuX~')*. Then

w) - g *  (uu-")r - (w-,)r.

The following lemma establishes strong connections between Inv,

* JfegiB
Clf and Gp.
—* V. e
[ | ! 1 >\
LEMMA 1.3. (1) Every finitely presented Clifford monoid has a

finite inverse monoid presentation.
(ii) Every finitely presented group has a finite Clifford monoid

presentation.

Proof. (i) We define

SI- {(xx 1,x-Ix):x tX),

S7 - {(xyy~1x—-1,xx“1yy~1): x,y e XuJ-1}.

We want to prove that v - (poSiwuS2)”. It 1is immediate that
pus, £ r. Let x,y ¢ XuX-1. Then (xyy—1x~,)d» - (xyy-1lyy~1x 1)r
— (yyv-Ix 1xyy-1l)v - (yy 1xx 1)r - (xx-1lyy-1l)r and so S2 £ r. Hence

(pusS”sSj)” £ r.
Every u ¢ (XuX-1)* is of the form u - x,...x", with xj £ XuX-1 for
i e {1 k). Using induction on k, we will prove that, if

u - %, ...x/J, then
(uu-1) (puSjuSjy)# - (x"Y1...XfX"1) (poS1uS2)# .
This is clearly true for k - 1# Suppose that it is true for k - n,
and let u - x, ...xn+l1 . Then (uu-1) (puSiusS2)”
— [(xt...xn—1) xnxn+1lxnl-ixn 1) (xn—iee,xil)) (puS,uS2

— [x,..%n-" (xnxnl) (xn+ixnii )xn-i e**x1i1] (puStus2)”

- [X,..xn_,(xnlt...x,1) (xt...xn_ ,)Xjpmnlxn+l xnY !xn- \eeexil) (Pu~1i 27

Y [xiee xn-1 xXnxnl>xn-i ee-x71xieeesxn-1xn+,xnilxn-1¢+" T 11 (puS,uS2)#

- (%,.. xnx-'"...x71) (puS1uS2)# (x1...xn Ixn+1x541x"il...xY1l) (puS,usS2)#
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(x,x?‘...xhxﬁ‘)(pus,usz)#(xle‘...xh_,xal,xn+,xgl1)(puSluSI)#

(x‘xT‘...xn+,X511)(puS,u32)#. Hence the equality above holds for
k = n+l and so for every k ¢ N.

Let u = x,...xg. Then (u“u)(puS,uSz)#

(XR'Xg. . .x71x,) (puS,uS,)¥ - (x,x77. . X3 xR ) (puS,uS ) ¥

(uu=1) (puS,uS,)¥. Thus » € (puS,usS,)¥# and so » = (pus,us,)¥.

Now let M denote the Clifford monoid defined by the fin?te
presentation ClE<X:R>. Then M - (Xux—V)*/(puR)¥
- (XUX_‘)*/(puS]uszuR)# and so M is finitely presented as an inverse
monoid by Inv<X;S,uS,uR>.

(ii) Let G denote the group defined by the finite presentation
Gp<X;R>. Since » € x, we have G = (XuX~")*/(xuR)* = (XuX~1)*/(vuruR)#
and so G 1s finitely presented as a Clifford monoid by CIf<X;TuR>,

with T = {(xx71,1): x ¢ XuX ).

Let X be a nonempty set and let Y be a subset of X. By Lemma

I.1.3(ii), we can define a homomorphism By:(XuX“’)* — (YuY"1)¥* by

x 1f x e YuY!
X0y =

1 if x e (XuX"P)\(YuY ™).
2. The word problem

In this section we will show how word problems in CIf can be

related to word problems in Su and Gp.

LEMMA 2.1. In Su, every finitely related presentation has

decidable word problem.

Proof. Let R denote a finite relation on (XuX“‘)*. Let

Y=(x ¢ X: x or x7' occurs in R}. Since R 1s finite, Y is finite
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also. We prove that, for every u,v ¢ (XuX~1)*, we have

u(nuR)¥ = v(qur)¥# (2.1)

&> uey(nuR)# - vey(un)# and ¢ (u)\Y = E(v)\Y.

Suppose that U(ﬂuR)# - V(un)#. Then there exist

Wosoow-2Wp € (XuX~1)* such that
Wp = U, \
Wp =V,
Vie (1,...,n) Hsg,t5 e (XX~ H(az,b;) e nuRk:

wi—y.wi) = (sjajtj,sibjt;il.
Since a;0y = a; and b;jfy = b; for evexry i, it follows that

wyby = ufy,
wnpby = véy,

Vi e {1,...,n}, {wj_,0y,wify) = {s10y.a;(t;0y),sjly.Dj(Li0y)}.

Hence u0y(17uR)# = Vﬂy(?)uR)#. Similarly, we obtain

WDBX\Y - UBX\Y’
whax\y = viny:
Vie {1,...,n}, wi_ 0p\y.wifx\y) = ((sit1)ony}.

Therefore UBX\Y = V@X\Y, in particular {(u)\Y = £(v)\Y.

Conversely, suppose that u0Y(nuR)# = vﬂy(nuR)# and
E(u\Y = §(v)\Y. Let w € (XuX~1)* be such that §(w) = §(u)\Y. Then, by
(1.1}, we have u(nuR)# = (uey.w)(nuR)# = uﬂy(nuR)#.w(un)#
= voy(quR)* . w(nuR)¥ = (voy.w) (quR)* = v(nuR)¥ and so (2.1) holds.

It follows easily that the wo;d problem for Su<X;R> is equivalent
to the word problem for Su<Y;R>. By (1.1), we have
IFSU(Y)1 = 21¥1 ¢ N. Hence the word problem for Su<X;R> is certainly

decidable and so the lemma is proved.

Let CIf<X;R> be a Clifford monoid presentation. For every

lf
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u e (XuX~1)¥*, we define a relation R(u) on (Xux—1)* by
R(u) = {(a,b) € R: u(quR)¥ = (ua) (quR)¥).

It follows from the definition that

E(u) € E(v) » R(u) € R(v), (2.2)
u(‘un)# - v(nug)# » R(u) = R(v). :;
Finally, we note that, if R 1is  finite, ‘say
R = {(a,,b;),...,(an,bp)), there exists w ¢ (XuXx~M)* such ﬁﬁat'
R(w) = R, namely w = a,...ap.

LEMMA 2.2. Let Clf<X;R> be a presentation and let u,v ¢ (XuX“)*.

Then

u(ruR)# = v(puR)#

= u(nuR)# - v(nuR)# and u[qu(u)]# -~ v[qu(u)]#.

Proof. Suppose that u(ruR)¥ = v(yuR)¥. Then there exist

Wor-euaWp € (XbX“)* such that
w, = u,
Wp =V,
Vk ¢ {(1,...,n) Hsp,tp ¢ (XuX—1)* H(ag,bg) € ruR:

(Wie—y s WE) = (Spapty, Spbpty) -
Since » < 7, we have u(quR)¥ = v(quR)¥. Since u(ruR)¥ = wi(ruR)¥

and £(ap) € E£(wg), we have (uap)(quR)* = (wpap) (uR)¥* = wi(quR)¥

= u(un)# and so (ap,bp) e vuR(u)’for every k ¢ {0,...,n). Therefore
u[vuR(u)]# = V[vuR(u)]# and since v c T, we obtain
u[xuR(u) ¥ = v[xuR(u)*.

Conversely, suppose that u(nuR)# = v(nuR)# and
u[qu(u)]# = v[qu(u)]#. By Lemma 1.2, we have (uu_‘)(puR)# = (VV“‘)(VuR)#.

Since u[qu(u)]# = v[qu(u)]#, there exist z ,...,zp € (XuX~M)* such

that
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VI e (1,...,m) 3s7,t7 € (XuX~1)*
H(ajz,b3) € {(xx71,1): x ¢ XuX"V)uR(u):

(z1_,,21) = {sjajt;,sibjit]).

Suppose that ((ay,by), ..., (ag,by) 101\3(u)
- {(314'b14)""'(81x'blx)}' let p = uvaj, b14 cee81, blx . We ﬁave
S(u),i(v),t(ali),E(bli) S §(p) for every l;. Let Z = {(p) and let
§ = ((ag,,b1,),...,(a1,,b1,)). By Lemma I.2.6, (2uZ”")*/(7u$)¥ embeds
in (XuX")*/(xuS)# and s0 we can assume that
£(ap),E(by),((s1),8(t1) € Z for every 1.

since  u(puR¥ = vOuRY¥,  u(uR)¥ = (uaz)(quR)*  and
ajz. (nuR)# - bIL(ﬂ”R)# for every i, we have u(nuR)# - p(quR)¥. Hence,
by Lemma 1.2, (uu')(ruR)¥ = (pp~")(vuR)¥. It follows that
(vv= 1) (»uR)¥ = (pp~1) (»uR)¥ as well.

Now we prove that (pp“zl_.,)(vuR)# - (pp"‘zl)(mR)# for every

1ef(l,...,m). If (aj,bj) € R, then zl_,(s»uR)# - Zl(PuR)# and so
(pp“zl__,)(vuR)# - (pp“zl)(ruR)#. Suppose now that
(az,by) = (xx71',1), with x ¢ 2ZuZ™', Since x or x ' occurs in p, we

have pr = (xx"1p)» and so (pp~'sjajti)e = (pp7'syxx" 't
= (xx"'ppT syt = (pp~'sity)v. Hence
(PP '21-,) (»uR)* = (pp1z7) (ruR)¥.

In particular, we obtain (pp-‘u)(vuR)# = (pp= W) (»oR)¥. Thus
viroR)¥ = (I GuRF = (ppm e = (ppThu) (ruR)#

= (uu“u)(wR)# = u(vuR)# and the lemma is proved.

Now suppose that R = {(aj,b;): i ¢ (1,...,n}} is a finite relation
on (XuX“)*. Let Y be defined as in the proof of Lemma 2.1. We define

K(R) to be (R(u): u e (YoY~1)¥).
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THEOREM 2.3. Let Clf<X;R> be a finitely related presentation,
with R = {(aj,b3): i ¢ {1,...,n}). Then
(i) K(R) can be effectively determined;
(ii) the word problem for Clf<X;R> is decidable if and only if the

word problem for Gp<X;K> is decidable for every K ¢ K(R).

Proof. (i) Let u e (Yu¥Y 1)* By Lemma 2.1,. we can, for é'i're‘_
ie(1,...,n), determine whether or not u(.'I)uR)# - (uai)(m.u‘Rsﬁi
Therefore we can effectively compute R(u). By (2.2), and since Y is
finite, we only have to compute finitely many R(u) and so K(R) can be
effectively determined.

(ii) Suppose that the word problem for Clf<X;R> is decidable. Let
K ¢ K(R). Then K = R(u) for some u e (YuY™')¥. Since Y is finite and
we can compute R(u) for every possible {(u), we can assume that §(u)
is maximal with respect to inclusion, Let Z = {(u).

Suppose that (a;,b;) e R(u). Then (uai)(nuR)# - u('un)# and so
R(u) = R(uaj). By the maximality of Z, we have f{(a;) ¢ Z. Similarly,
we have (ubi)('un)# = u(nuR)# and so R(u) = R(ub;) and £(b;) < 2. .

Thus, by [5,89.3], the word problem for Gp<X;K> is decidable if
and only if the word problem for Gp<Z;K> is decidable.

Let w,w' ¢ (ZuZ"’)*. Since f(uu™lw) = Z = E(uu~'w'), it follows

from Lemma 2.2 that
wirok)# = v (xul)¥ o (uuw) uR)F = (uu W) (ruR)H.

Hence the word problem for Gp<Z;K> is decidable and so the word
problem for Gp<X;K> is decidable.

Conversely, suppose that the word problem for Gp<X;K> is decidable
for every K ¢ K(R). Let u,v ¢ (XuX"W)*, By Lemma 2.2,
u(l’uR)# = V(PUR)# is equivalent to u(v;uR)# = V(‘r’uR)# and
u[vruR(u)]# = V[vruR(u)]#. By Lemma 2.1, we can decide whether or not

u(nuR)# = V(')]UR)# and so we only need to show that we can decide
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whether or not u[xuR(u))# = v[ruR(u)]¥.
We prove that R(u) = R(ufy). Since f(udy) < §(u), we have

R(uby) & R(u), by (2.2). Now suppose that i ¢ (1,...,n) and

(uag) (quRY* = u(quR)¥, Then, by  (2.1),

(uag)0y(quR)¥ = uoy(quR)*. But £(aj) € Y and so
= (uaj)oy(quR)¥ = udy(nuR)¥. Thus R(u) € R(udy) and so R(u) = R(uﬁg

Hence R(u) e K(R) and, by hypothesis, we can decide whether or
ufroR(u)]* = v[suR(u)]¥. Thus the word problem for CIf<X;R>. is

decidable.
Now the case |R| = 1 follows easily.

COROLLARY 2.4. One-relator Clifford presentations have decidable

word problem.

Proof. This is a consequence of Theorem 2.3 and the fact that

one-relator group presentations have decidable word problem [15].

3. The E-unitary problem

In this section we study the E-unitary problem for the class of
one~relator Clifford monoid presentations and the class of finite

Clifford monoid presentations,

We need preliminary results relating the E-unitary property to the

concepts with which we have been working.

LEMMA 3.1, Let M denote the Clifford monoid defined by the

presentation CIlf<X;R>. Then M is E-unitary if and only if
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Vue (XX~ 1)+, (3.1)

u(xuR)¥ = 1(xuR)#* & u[xoR(u)]# = 1[xuR(u)¥.

Proof. Suppose that M is E-unitary. Let u e (XuX~")* and sﬁﬁPase
that u(ruR)¥ = 1(suR)¥, By Lemma 1.2.5, we have [u(vuR)¥]o = 1. Since

M is E-unitary, we have u(vuR)# ¢ E(M) and so u(vuR)# - (uu"‘)(vuks#h@ﬁ

By Lemma 2.2, we must have u[xuR(u)]¥ = (uu™')[auR(u)]# éﬁ&liégi
ulruR()1* = 1[xoR(w) ¥,

Now suppose conversely that the condition
u(ruR)# = 1(qu)# 3> u[qu(u)]# = l[qu(u)]# is satisfied for every
u e (XuX~")*, Let u ¢ (XuX~Y)* be such that [u(ruR)#}a = 1. We want to
prove that U(VUR)# ¢ E(M). The case u = 1 is trivial, so we assume
u#1l, By Lemma I.2.5, we have u(qu)# - l(qu)# and so, by
hypothesis, u[xuR(u) |# = 1[xuR(u)]¥. Hence, by Lemma 2.2,

u(ruR)¥* = (uu=1) (vuR)¥. Thus u(ruR)¥ ¢ E(M) and the lemma is proved.

We can provide a very simple algorithm which solves completely the
one-relator case, but first we need some definitions.

For every u ¢ Ry, there exist unique a(u),B(u) e Ry such that
u = au).@(u).[a(u)]™' and g(u) is cyclically reduced. We define £ .(u)
to be §{[B(u)]. For every v e (XX~ ¥, we define B(v) = B(ve) and

Ec(v) = Ec(VL)-

THEOREM 3.2, Let M denote the Clifford monoid defined by the
one-relator presentation le<X;R;, with R = ((a,b)}. Then M Iis
E-unitary if and only if one of the following conditions is satisfied:

(i) at = bi;
(ii) &(a) € Eo(ab™);

(iii) &(b) € £, (ab™ ).




83

Proof. Suppose that at = bi. Then (xuR)¥ = x and (3.1) is
trivially satisfied. Hence, by Lemma 3.1, M is E-unitary.

Now assume that at # bit. We prove that
M is E-unitary > B(ab™V)(quR)¥ = [B(ab™").a](uR)¥. (3.2)

Suppose that M is E-unitary. Since a(xuR)# = b(xuR)¥, we h'a_ﬁéu

g

B(ab™") (roR)¥ = 1(suR)¥. Since f(ab™') # 1, by Lemma 3.1, we hav
B(ab~1) [xuR(B(ab~1))]# = 1[xuR(B(ab~1))]¥. Hence-R(B(ab“‘)) 20 sat;d
since IRl = 1, R(B(ab™1)) = R, By definition, we obtain
BCab™1) (nuR)¥ = [B(ab™*).a] (nuR)¥.

Conversely, suppose that ﬁ(ab“)(nuR)# - [B(ab“).a](quk)#. Then
R(B(ab™1)) = R. Let u e (XuX~')* be such that u(xuR)¥ = 1(xuR)¥. The
Freiheitssatz [14] states that £ (ab™") c  E(u). Therefore
R(B(ab™')) & R(u) and so R(u) = R and (3.1) holds. By Lemma 3.1, M is
E—unitary. Hence (3.2) holds.

Suppose that (ii) or (iii) holds. Then it is clear that
B(ab= 1) (quR)¥ = [B(ab™').a] (quR)¥ and so, by (3.2), M is E-unitary.

Now suppose that neither (ii) mnor (iii) holds. Then the
(nuR)#—class and the 1n-class of g(ab™?) coincide and so
B(ab*‘)(nUR)# # [6(ab“).a](nuR)#. By (3.2), M is not E-unitary and

the theorem is proved.
The next corollary is immediate.

COROLLARY 3.3. Let M denote-the Clifford monoid defined by the
one-relator presentation CIlf<X;R>, with R = ((a,1)). Then M is

E-unitary.

The E-unitary problem for one-relator inverse moneoid presentations
is still open. Margolis and Meakin [19] formulated a conjecture on the

subject. The conjecture stated that, for every u ¢ Ry and R = {(u,l)},
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(X\7X~')*/(puR)~ 1is E-unitary if and only if u is cyclically reduced.
We can provide a counterexample.

Let X - {x,vy}, let u - xyx~7%xyx~1 and let R - {(u,l)}. We prove
that (XuxX-1 ) */(pvR)* is a group. It is <clear that, for every

w,z € (XuX"1l)x*,

WV e

(wzw) (puR)* - 1(puR)* + (ww_1) (puf)# - l(puf)* - (v-1v) (pudo*.

Let v - xyx-1. Since u - vx-lyv, we have (v-'v) (puR)* - 1l(puf)*.

Therefore [x 1 (yvxy)x-1] (puf)# - (x*yv2) (pul?)* - (v_lvx-lyv2) (puR)#
- (v-,uv) (pud?)* - (V\'v) (puf)#* - 1(puK)* and so (x-1x) (puR)* - 1(pu.R)*
- (xx-1) (puR)*. Hence [y(x-2yx)y] (PuR)* - (x Ixyx-2yxyx-1x) (pvR)**
- (x-1ux) (puf)# " (x—1x) (Eoi)# - 1l(puf)# and so (yy~') (puf)# ™ 1(puf)#

“ (v 1y) (p") #. Thus {(zz-1,1) : z € XuX~') C (puf)# and so M is
certainly a group, in particular E-unitary.
The question of whether or not (XuX-1)*/(pu/?)* 1is E-unitary when

- {(u,1l)}, for u cyclically reduced, is still open.

Now we consider a more general class of presentations.

THEOREM 3.4. The E-unitary problem for finite Clifford monoid

presentations 1is undecidable.

Proof. It is well-known that there exists a finite group
presentation with undecidable word problem [3],[29]. Let Gp<Z\T> Dbe
such a presentation, with 7 - {(h*.1): 1 c {1 n) }, and let a be a
new element, distinct from the 'elements of Z. Let hn+l - a2. Let
X - Zu{al] and I - {1,...,ntl}. Let g e (ZuZz-1)* andlet w - ag. Let y
denote a new element, distinct from the elements of X. Let V- Xuly)
Let p,g e (WuWl)* be such that $() ™ X and £K7) “ V.

We define a finite relation R on (Vul"-1)* by

R ™ {(PP_1"1,PP 1): i eI) u {(gqg~',xx-1): X e X)

u Ugg-1y»9<rlv)).
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There are three (rjuR) "—-classes in (Vuv-1) *: {1},
fu e (KjFi)*: £(u) - 7) and {u c X«*(u) * 0). It is clear
from the definitions that R(1l) - R(y) - 37 and k(u) - £ for every

u e (VuVl)* such that Xnf (u) * £
s > "; ~

Hence (3.1) is trivially satisfied by every u e (Vuv~1l)+ except M

possibly when {(u) - (y). Since y*x # 1lx for every k e Z\{O),

(Vuv~"') */(ruR) * is E-unitary if and only if
Vk eA(0). yk (*uR)* * 1 (xuK)#. (3.3)

Since (qgg~w ,qg~'w) e R, the presentation Gp<V\R> is clearly
equivalent (by a Tietze transformation) to the presentation Gp<X;S>,

where S - {(h",1): 1 el). Moreover, (3.3) is equivalent to
Vk ¢ Z\{0), vfic(xuS)# * 1(xuS)#. (3.4)

We prove that (3.4) 1is equivalent to g(ruT)* W 1(xuT)*.

Suppose that g(xuT)# - 1(xuT)#. Then g(xuS)# - 1(xuS)# and so
W (TuS)# - a(xuS)*. But a(xuS)# has order 2, so (3.4) does not hold.

Now suppose that g (xuT) # * 1 (xuT)". By Lemma 1.2.6,
(JuT-1)*/(tuS)* 1is the free product (in Gp) of (ZuZ-1)*/(xur)* and
{a,a-1}*/(tu{(a2,1)))*. Moreover, (Zuz-1) */ (tuT)”~ embeds canonically
in  (TuX-1)*/(*\jS)* and so g(rvS)* * 1(xuS)#. Similarly, we have
a(xuS)”™ * 1 (tuS)” and so w(xuS)* 1is a nonhomogeneous element of a free
product of two groups, that is, w(xuS)” is not contained in either of
the factor groups. Therefore v (iuS)” has infinite order and so (3.4)
holds.

Thus, decidability of the E-unitary problem for all finite
Clifford monoid presentations would imply decidability of the word

problem for Gp<Z\T>. The result follows.
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COROLLARY 3.5. The E-unitary problem for finite inverse monoid

presentations is undecidable.

Proof, This follows from Theorem 3.4 and Lemma 1.3(i).?

4, Other decidability results

The results of Section 2 provide some general positive answers. In
contrast, other prcoblems turn out to be undecidable, as a consequence
of analogous results on group presentations.

The following result is a corollary of Lemmas 2.1 and 2.2.

THEOREM 4.1. The idempotent word problem is decidable for every

finitely related Clifford monoid presentation.

This enables us to decide whether or not a finitely presented

Clifford monoid is a group.

COROLLARY 4.2. The group problem for finite Clifford monoid

presentations is decidable.

Proof. Let M be the Clifford monoid defined by the finite

presentation CIf<X;R>. Then M is a group if and only if
Vx e XuX7', (xx~)(vuR)¥ = 1(puR)¥,

Since X is finite, all we need is to apply Theorem 4.1 finitely

many times.

It is known to be undecidable whether or not finitely presented

groups are trivial (or finite) ([1],[35]. This yields some analogous
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results:

THEOREM 4.3. It is undecidable whether or not finitely presented
Clifford monoids are
(i) trivial,
(ii) finite,
(iii) semilattices,

(iv) free.

Proof. (i) and (ii) follow from Lemma 1.3(ii).

Since a group is a semilattice if and only if it is trivial, the
same applies to (iii).

Now we prove (iv). Let G be a group, defined as a Clifford monoid
by a finite presentation C1lf<X;R>. Let Y be a finite nonempty set,
disjoint from X, and let Z = XuY. The group of wunits of a free
Clifford monoid is always trivial: in fact, if (uu™')p = 1y, then, by
(1.2), £(uu™') = @, that is, u = 1. We prove that (ZuvZ=")*/(vuR)¥ is
free if and only if G is trivial.

Suppose that (ZuZ“’)*/(VUR)# is free. By Lemma 1.2.6,
G = (XuX_‘)*/(puR)# embeds canonically in (ZuZ%‘)*/(puR)#. Hence G
embeds in the group of units of (ZuZ")*/(vuR)#, which is trivial.
Therefore G is trivial.

Conversely, suppose that G 1is trivial. Then, by Lemma I.2.6,
(2vZ=Y*/(»uR)¥ is isomorphic to (YuY~')*/» and so it is free.

Since it is not decidable whether or not G is trivial, the theorem

follows.
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5. E-reflexive inverse monoids

In this section we discuss the word problem for inverse monoid
presentations which define E-reflexive inverse moncids.

Let M be an inverse monoid. We say that M is E-reflexive if
Va,b e M Ve ¢ E(M), aeb ¢ E(M) =» bea ¢ E(M).

This concept was introduced by O0'Carroll ({31}, who used the
expression strongly E-reflexive.

Let 7 be a congruence on the inverse monoid M. We say that 7 is a
Clifford congruence if M/r is a Clifford monoid. It is easy to see
that the intersection of all Clifford congruences on M is still a
Clifford congruence on M. We denote it by »y and we say it is the

least Clifford congruence on M.

LEMMA 5.1 [34,8111.8]. Let M be an inverse monoid. Then the
following propositions are equivalent.
(i) M is E-reflexive;
(ii) M is a semilattice of E-unitary inverse semigroups,

(iii) »yM is idempotent-pure.

In order to apply Lemma 5.1, we need a description of vy in terms

of presentations.

LEMMA 5.2. Let X be a nonempty set and let R be a relation on
(XuX~1)%. Let M = (XoX~1)¥/(poR)¥ and let o:M — (XX 1)*/(ruR)#* be

defined by [w(puR)¥)p = w(yuR)*. Then Kerp = »vy.

Proof. By definition, Kerp = (roR)#/(puR)#. By Lemma 1.1.1,
M/Kerp = (XuX“)*/(VuR)# and so Kerp is a Clifford congruence.

Let 7 be a Clifford congruence on (XuX*‘)*/(puR)#. Let 7 be the
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congruence on (XuX~')* defined by
(u,v) e 7 (u(puR)#,v(puR)#) € 7.

It is immediate that R € 7. Since 7 is a Clifford congruence, we
have [(uu“‘)(puR)#]f = [(u“‘u)(puR)#]T for every u e (XuX"')*. Hence
(uu',u"'u) e T for every u ¢ (Xux~')* and so » € 7. Thus (vuR)¥ g 7

and so Kerp = (vUR)#/(puR)# s ?/(puR)# = r. Therefore Kerp = »y.

Using the notation of Section 2, we obtain

LEMMA 5.3. Let Inv<X;R> be a presentation such that
(XuX"‘)*/(puR)# is E-reflexive. Let u,v € (XuX_‘)*. Then
u(puR)¥ = v(puR)* if and only if

(1) (@ u) (puR)¥ = (v 1v) (puR)¥;
(ii) () (puR)¥* = (vu=ruv1) (puR)¥;

(111) (vu~ 1) [xuR(vu"1) ¥ = 1[xuR(vu1) ¥,

Proof. Consider the condition
(iii)' (vu™ 1) (puR)¥ = (vu='uv—1) (puR)¥.

We prove that u(puR)¥ = v(puR)¥ holds if and only if (i),(ii) and
(iii)' hold. It is immediate that u(puR)# = V(puR)# implies (i), (ii)
and (iii)'. Conversely, suppose that (i),(ii) and (iii)' hold. Then
u(puR)# = (uu_‘u)(puR)# = (vu"uv“u)(puR)# = (Vu"‘u)(puR)#
= (W) (puR)¥ = v(puR)H,

Thus we only need to prove tha; (iii)' is equivalent to (iii).

Suppose that (iii)' holds. Since (puR)# c (ruR)#, it follows that
(vu“‘)(vuR)# = (vu“uv“)(vuR)#. Now, by Lemma 2.2, we have
(vu™) [wuR(vu~1)]# = (vutuv™ 1) [ruR(vu~1) ¥, Since
(XuX“‘)*/[ruR(Vu“)]# is a group, we have (Vu_‘uv”‘)[qu(vu“‘)}#

= 1[{7uR(vu"")1# and so (iii) holds.
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Conversely, suppose that (iii) holds. Then (vu™1')[ruR(vu 1')]¥
= (vu"uv")[qu(vu"‘)]#. Since (XuX“')*/(nuR)# is a semilattice, we
have (vu”‘)(nuR)# = (Vu_‘uv_‘)(nuR)# as well., By Lemma 2.2, it follows
that (vu“)(VUR)# - (vu"‘uv"’)(vuR)#. Hence
[ru D) (euR)¥F) [ R #/(puR)®] = [(vumtuv™ 1) (puR)¥] [ (ruR)#/ (0uR)#]
Since (XuX“’)*/(puR)# is E-reflexive, we have that (VUR)#/(puR)# is
idempotent-pure, by Lemmas 5.1 and 5.2. Therefore (vu~')(puR)¥ is
idempotent and so (iii)' holds. Thus (iii) is equivalent to (iii)' and

the lemma is proved.

THEOREM 5.4. Let Inv<X;R> be a finite presentation such that
(XuX“)*/(puR)# is E-reflexive. Then K(R) can be effectively
determined and the word problem for Inv<X;R> is decidable if

(i) the idempotent word problem for Inv<X,R> is decidable;

(ii) the word problem for Gp<X;K> is decidable for every K ¢ K(R).
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CHAPTER VI

INVERSE MONOID PRESENTATIONS

1. Preliminaries

* is said to be

Let ¥ denote a finite nonempty set. A subset L € X
a X-language.

The quadruple A = (Q,I,T,E) is said to be a Y—automaton if @ is a
nonempty set, I and I are subsets of @, and £ ¢ @ X L x Q. We say that

A is finite if Q is finite. We say that A is deterministic if 1I1 =1

and

(¢,0,9"),(q,0,9") ¢ E 3 q' = qg".

We can describe A graphically: each element of Q labels a vertex;
each (gq,0,9') ¢ E corresponds to an edge oriented from g to g¢' and
labelled by o¢; the vertices corresponding to the elements of I
(respectively T) are identified by an input sign (respectively output
sign). Two ZL-automata are said to be isomorphic if their pgraphical
description coincides, up to labelling of vertices.

A nontrivial path in A is a finite nonempty sequence on E of the
form (q4,0,,9,),(4,,0,,9,),...,(4p—1,6n,49n). The label of such a path
is 0,...0n. A trivial path in A is a triple (q,l,q), with g ¢ Q. The
label of such a path is 1. The above nontrivial (respectively trivial)

path is said to be successful if ¢, ¢ I and g, ¢ T (respectively

q € IaT).
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The language accepted by A is
L(A) = {w e¢ £¥:; w labels a successful path in A).

We say that a I-language L is rational if L = L(A) for some finite
Y-automaton A. Clearly, all finite XI-languages are rational, as well
as Y¥ or ¢,

We say that A is trim if every q € @ lies iIn some successful path

of A. . '

LEMMA 1.1 [7,8II1.2]). Let L be a rational Y-language. Then there
exists a finite trim deterministic Y-automaton A = (Q,{(i},T,E) such

that L = L(A).

Now let A = (@,{i},T,E) be a trim deterministic YI—automaton. For
every gq ¢ Q, we define Aq = (Q,{i},(q),E) and A(q) = (Q,{q},T,E).
Consider the equivalence relation » on Q given by (q,q') € » if and
only if L[A(g)] = L{A(q')]. We define Ap;p = (Q/v,{iv),Tv,Ev), where

Ty = {tv: t € T} and Ev = {(qv,0,q9'v): (q,0,9') € E).

LEMMA 1.2 [7,8111.5]. Let A = (Q,{i),T,E) be a trim deterministic
Y—automaton. Then
(1) Apjp is a trim deterministic IT-automaton;
(ii) L(A) = L(Apin);
(iii) if B is a trim deterministic Y-automaton such that

L(B) = L(A), then Ayj, and Bp;, are isomorphic.

The automaton Ap;,, is said to be the minimal automaton of L(A).

We now state some well-known results on finite I-automata.
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LEMMA 1.3 [10,89.2]). Let A, and A, be finite T-automata. Then we
can produce finite X-automata accepting the languages L(A)nL(A)),

L(A,).L(4,) and L(A,)\L(4,).

LEMMA 1.4 [10,§14.7). Given two finite Y-automata A, and A,, it

is decidable whether or not L(A,) & L(4,).

Now we intreduce a more general class of X-languages.

The gquintuple B = (Q,i,I',s,E) is said to be a pushdown X-automaton
if: Q@ and I' are finite nonempty sets; i € @Q; s € T,
EcQx (Zu{l)) x ' x Q x I'* 1s finite.

Let ¢q,q' € Q. Let z ¢ I'' and z' e I'*. Let y denote the first
letter of =z and suppose that z = yc. Let ¢ € ZXu{l). If
(q9,0,y,9",2"') ¢ E, we write ¢: (q,2) + (q',2'¢c).

Suppose that o,,...,0p € Zu{l}; g4, ....qn € Qi Zg,...,2p-, € 'Y
z, € r*: for every j ¢ {1,...,n}, we have oj:(QJ_1,Zj_,) — (qj,zj).
Then we say that o,...045:(q,,2,) F (gp.2n). We define the language

accepted by B as
L(B) = {w ¢ I*: w:(i,s) +¥ (q,1) for some ¢ € Q).

A Y-language L is said to be context-free if L L(B) for some
pushdown X~automaton B. It is well-known that rational languages are

context-free [10,§2.3].

LEMMA 1.5 [10,89.2]. Let A,-and A, be pushdown I-automata. Then

we can produce a pushdown I-automaton accepting L(A,)uL(A,).

LEMMA 1.6 [10,89.2]. Let A and B be respectively a pushdown

Y-automaton and a finite Y—automaton. Then we can produce a pushdown

Y-automaton accepting L(A)nL(B).
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LEMMA 1.7 [10,89.3). Let A be a pushdown L-automaton. Let A be a
finite nonempty set and let p:Z* — A% be a monoid homomorphism. Then

we can produce a pushdown A-automaton accepting Le.

LEMMA 1.8 [10,84.1]. Given a pushdown X-automaton B, it is

decidable whether or not L(B) is empty.

Now let X denote a nonempty set. For the remainder of this
chapter, we assume that X is finite. Let L be an (XuX™')-language.
Then L is said to be reduced if and only if L & Ry.

Since Ry = (XuX~W)*/[ u ‘(XUX"')*XX'1(XuX_1)*], Lemma 1.3

xeXuX™
yields

LEMMA 1.9. If X is finite, then Ry is a rational

(XuX~1')-language.

For every n ¢ N?, we define
Fp = {u e Ry: 1ul =n), Fp) = {u ¢ Ry: 1ul < n}.

Now let A = (Q,I,T,E) be a trim deterministic (XuX~1)-automaton.
Let E71' = {(q',x"',q): (q,x,q') ¢ E}. Then A is said to be inverse if
and only if It = |Tt = 1 and E = E7'. If A is inverse and the graph
of A is a tree, we say that A is an inverse tree automaton.

Let Ay denote the class of all inverse tree (XuX ')-automata of
the form A = (Q,{i},{i),E). Let Sy denote the set of all nonempty left

closed subsets of Ry. We define a map T:Ay — Sy by

T(A) = (u e Ry: uu™' ¢ L(A)}.

LEMMA 1.10. Let A ¢ Ay. Then

L(A) = {u € Dy: vt € T(A) for every v <1 u}.
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Proof. let A = (Q,{i),{i},E). Let u ¢ L(A). Since A is inverse,
we have ut ¢ L(A), and so, since 4 is a tree automaton, we must have
ut = 1. Hence u ¢ Dy. Suppose that v <; u. Then v labels a path in A
beginning at i and since A is inverse, so does vi. Hence vi ¢ T(A)'.

Conversely, suppose that u ¢ Dy is such that vi e T(A) for every
vy u. We can assume that u # 1. Suppose that u = Xx,...xp,
Xj ¢ XuX~', We prove that, for every j ¢ (1,...,n}, Xyo..Xj labels a
path in A, beginning at i.

Since x, ¢ T(A), this is certainly true for j = 1. Suppose that it
is true for j, with 1 € j < n. Then Xy Xj labels a path from i to

¢ Ry. Then

some ¢ ¢ Q, and so does v = (X‘...XJ)L. Suppose that VX iy,

VK4, = (x,...xj+1)¢ e T(A). Now suppose that VX 4 £ Ry. Then
(vxj+,)z <3 v € T(A). In either case, it follows that VX jyq labels a
path in 4, beginning at i, and so does Xyeo o XX gy By induction, it
follows that u labels a path o in A, beginning at 1. Since u: labels a

trivial path at i, it follows that the terminal point of « must be i

as well. Hence u ¢ L(A).

LEMMA 1.11.
(i) T is surjective;

(ii) for every A,B e Ay,

T(A) = T(B) ¢ A and B are isomorphic.

Proof. (i) Let W ¢ Syx. We define A = (W,{1},{1}),EvE™"), with

E={(w,x,w') e Wx (XuX"') xW: w' = wx}. It follows easily that

A e Ay and T(4) W.
(ii) Let A,B ¢ Ayx. Suppose that T(A) = T(B). Let u e L(4). By
Lemma 1.10, we have u € Dy and vi ¢ T(A) for every v <; u. Since

T(A) = T(B), we have u ¢ L(B) and so L(A) € L(B). Similarly,
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L(B) € L(A) and so L(A) = L(B).
It is immediate that 4 = Ap;, and B = Bg;,. Therefore, by Lemma
1.2, we have that A and B are isomorphic,

The converse implication is trivial.

Considering the operation (W,W') i» WUWN' on Sy, we can now define
a multiplication on Ay, up to isomorphism. For every A,B ¢ Ay, we
define AB by T(AB) = T(A)uT(B).

For every u ¢ (XuX“‘)*, we can consider
MT(u) = (Q(u), {1}, (ut),E)u[E)]™")

as an inverse tree automaton. It follows easily that

LEMMA 1.12 [26]. For every u e (XuX~1)¥,

LIMT(u)] = {v ¢ (XoX~1)*: vp » up).

Now assume that P is a finite relation on (XuX ')* and let e ¢ Dy.
Following the construction of Stephen [39], adapted by Meakin and
Margolis [18], we define a sequenée of finite inverse tree automata
Ap k(e), k ¢ N. We denote T[Ap k(e)] by Wp k(e).

Let Ap ,(e) = MI'(e). Suppose that Ap p(e) is defined for some k ¢ N.
We can give the following intuitive description of AP’k+1(e), from a
geometric point of view.

We consider all the instances of vertices ¢q of AP,k(e):
(a,b) ¢ PuP7' and f ¢ Dy such ‘that the tree MT(afa=1) embeds in
Ap r(e) at gq. Then we define AP,k+1(e) to be the inverse tree
automaton obtained by adjoining the tree MI'(bfb™') to Ap p(e) at q for
all such instances.

In a more algebraic perspective, we define
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Wp k+q(€) = Wp g(e)ul[q.Q(bf)]1: q e Wp g(e), £ e Dy,

(2,b) € PuP™' and [q.Q(af)]:t € Wp y(e))

and we define Ap py,(e) by T[Ap ki (€)] = Wp g4, (€).
Finally, we define Wp(e) Hk; WP,k(e) and we define Ap(e) by
1
T[Ap(e)] = Wp(e). It follows from Lemma 1.10 that
L[Ap(e)] = u L{Ap g(e)].
[4p()) =g, HlAp 1))

For every e,f ¢ Dy, we have

e(puP)* = £(puP) o e(puPp)¥ = £(puPp)¥, (1.1)

by Lemma I.3.9. The next result follows easily from [18] and [39], but

we give a proof for completeness.

LEMMA 1.13. Let P be a finite relation on (XuX~1)* and let

e ¢ Dy. Then

Wp(e) = (u e Ry: (Llu—1)(puPD)# 2 e(puPD)#}.

Proof. We prove that, for every j ¢ N,
Vu e Wp j(e), (uu')(puPp)¥ > e(puPp)¥. (1.2)

Let u ¢ WP’,(e). Since WP,1(e) = Q(e), we have (uu™')p » ep, by
Lemma 1.12. Hence (uu"‘)(puPD)# b e(puPD)# and so (1.2) holds for
j =1

Now suppose that (1.2) holds for j = k, with k ¢ N. Let
u e WP’k+,(e). We can assume that u ¢ Wp’k(e). Then there exist
q € Wp’k(e), (a,b) ¢ PuP™' and f-e Dy such that [q.Q(af)]: € Wp,k(e)
and u € [q.Q(bf)]t. Since Q(gafa 'q ') = Q(gaf) = Q@(q)u[qg.Q(af)]t, we

have Q(qafa™'q™') & Wp (e).

By Lemma I.3.3, we have (gafa lq ')p = n (vv~1}p and so
veQ(qaf)
(qafa_‘q_‘)(puPD)# = n (VV“)(puPD)#. By hypothesis, we have
veQ(qaf)

(VV"‘)(puPD)# > e(puPD)# for every v ¢ Q(gaf) and so

(qafa“‘q“‘)(puPD)# b e(puPD)#. Moreover,
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(qafa™'q™') (puPp)¥ = (gbfb~'q ") (puPp)¥  and  u e [q.Q(DD)]
€ Q(gbfb™'q7')., By Lemma 1.12, we obtain (uu™')p > (gbfb~'q !')p and so
(uu=1) (puPp)* > (gbfb™1q 1) (puPp)# = (gafaT1q™V) (puPp)# > e(puPp)¥.
Hence (1.2) holds for j = k+l and so for every j ¢ N. Thus
Wp(e) € (u e Ry: (uu~)(puPp)¥ > e(puPp)¥#).

Conversely, suppose that u ¢ Ry and (uu"‘)(puPD)# ] e(puPD)#. Then

uu“e(puPD)# = e(puPD)# and so there exist wg,...,w, ¢ (XuX~1)* such
that

w, = uule;

Wy = e;

Vjoe(l,...,n) Hrj,s; ¢ (XoXx—1)¥ d(aj,bj) ¢ puPp:

{Wj_1,wj} = [rjajbj,rijSJ).
By Lemma I.3.9, Pp is idempotent-pure and so wj e Dy for every

Jj € {0,...,n). We prove that, for every j ¢ {0,...,n},

u € WP,j+1(Wj)- (1.3)

Since WP’I(WO) = Q(uu~'e), (1.3) holds for j = 0.

Assume that (1.3) holds for j = k, with 0 < k < n. Suppose first
that (ag4;:bg+,) € p. Then wyp, ,p = wrpe and so WP,1(Wk+1) = WP,1(Wk)'
Hence  Wp oy (Wisy) = Wp ke (W) Therefore u € Wp pvq (Wiety)
€ Wp k+2(Wksy) and (1.3) holds for j = k+l,

Now suppose that (apy,,bg+,) ¢ Pp. Then there exist (a,b) ¢ P and
f € Dy such that ap,, = afa™' and by, = bfb~'. Without loss of

generality, we can  assume that Wi =  Iky.afaml'spy, and

-

Wity = Tk bED7Vspy . Since [rp,,.Q(bf))¢ € Q(wgy,) = Wp (Wiey), we

have {Tpyq,.Q(af) ] € WP’Z(Wk+1). We have Q(wg)

]

Qlrgy,afa™ulrp,afa™ . Q(sge,) )t

I

Q(rk+1 )U[rk+1 'Q(afa_.I ) ] lu[rki-] -Q(Sk+1)]l-
= Qrpyy)ulrpy, . .Qaf)leulrgy, . Q(spy )]t Similarly,

QWi ) = Qg4 u[Ty, - QBE) Jeu gy, . Q(Spy ) ]t and S0
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WP,I(Wk) = Q(wy) & Wp’z(wk+1). Hence WP,k+x(Wk) c WP,k+z(Wk+1) and so,
by the induction hypothesis, we have u ¢ Wp p4,(Wigy,). Therefore (1.3)
holds for j = k+l and so for every j e {0,...,n). In particular,

u e WP,n+1(Wh) € Wp(e) and so the lemma is proved.

LEMMA 1.14. Let P be a finite relation on (XuX~1)* and let

e,f ¢ Dy. Then

e(ouPp)¥* = fpuPp)* & Wp(e) = Wp(£f).

Proof. The direct implication follows immediately from Lemma

1.13.
Now suppose that Wp(e) = Wp(f). Since ep = I (uu™')p and
ueQ(e)
Q(e) € Wp(e) = Wp(f), we have, by Lemma 1.13,
eCpuPp)# = T (uumt) (puPp)¥ > F(puPp)¥. Similarly,
ueQ(e)
f(puPD)# > e(puPD)#. Hence e(puPD)# = f(puPD)# and the lemma is proved.

The next result follows from the definition of Wp(e).

LEMMA 1.15. Let P be a finite relation on (XuX“)* and let e € Dy.

Then Wp(e) is the smallest (XuX~')-language W such that

(1) W € Ry;
(2) W is left closed;
(3) Q(e) € W;

(4) Vw ¢ W V(a,b) ¢ PuP™' ¥f ¢ Dy,

[[a]
B

[w.Qaf)]t €W =3 [w.Q(bf)]:t

We can replace condition (4) by a pair of conditions each with

fewer quantifiers. Let 4(X,P,e) be the set of all (XuX"')-languages

satisfying
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(1) W € Ry;

(i1) ¥ is left closed;

N

(1ii) Q(e) W;
(iv) Vw ¢ W V(a,b) ¢ PuP™', [w.Q(a)]t S W =» [w.Q(b)]t cW;

(v) Vw ¢ W V(a,b) ¢ PuP™', [w.Q(a)]lt S W o (wba 'w" W) ¢ W.
LEMMA 1.16. Wp(e) = n{W: W € y(X,P,e)}.

Proof. By Lemma 1.15, it is enough to show that conditions
(1)-(v) are equivalent to conditions (1)-(4). Let W be an
(XuX~')-language satisfying (i)-(iii). We must prove that W satisfies
(4) if and only if W satisfies (iv) and (v).

Assume that W satisfies (4). Suppose that [w.Q(a)]: € W for some
w e W and (a,b) ¢ PuP™', Let w' ¢ W and let f = a~'w 'w'w' " 'wa. Then
we have Q(af) = Q(aa™'w Ww'w' lwa) = Q(a)u[w 'Q(w)]tu[w™1Q@(w')]t and
so [w.Q(af)]: = [w.Q(a)]liuwQ(w)uQ(w') < W. Thus, by (4), we have
[w.Q(bf)]t € W. But Q(bf) 2 Q(b)u{(ba™ W lw')(} and so
[w.Q(b))iu{{wba™'w™'w')1} € W. Hence W satisfies (iv) and (v).

Now suppose that W satisfies (iv) and (v). Let w e W, let
(a,b) € PuP7' and let f ¢ Dy. Suppose that [w.Q(af)]t & W. We want to
prove that [w.Q(bf)]: € W and we have Q(bf) = Q(b)u[b.Q(f)]:. Since
Q(a) € Q(af), we have [w.Q(a)]t € W and so [w.Q(b)]t € W, by (iv).
Since [a.Q(f)]t € Q(af), we have [wa.Q(f)]:t € W. Let v ¢ Q(f). Then
(wbv)t = (wha 'w lwav)i. Since (wav)t € W, we have (wbv)i. ¢ W, by (v).

-

Hence [wb.Q(f)]: € W and so [w.Q(bf)]: € W. Thus W satisfies (4) and

the lemma is proved.
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2. A result on rational languages

In this section we will prove that it is decidable whether or not
a rational (XuX7')-language W belongs to 4(X,P,e).

We need a few more preliminary results,

LEMMA 2.1 [18]. Let A be a finite (X¥uX ')-automaton. Then we can

produce a finite (XuX™1)-automaton accepting [L{(A)]t.

LEMMA 2.2, Let A be a finite (XuX ')—automaton. Let:

[L(AY]7Y = {(wT1: w ¢ L(A)). Then we can produce a finite

(XuX™1)—automaton accepting [L(A)]™".

Proof. let A = (Q,I,T,E). Let A™' = (Q,T,I,E7')., 1t follows

easily that L(A™') = [L(4)]7".

LEMMA 2.3, Let A be a finite (XuX 1')-automaton and let
c e (XuX"')*. Let L = (wew': w ¢ L(A)). Then we can produce a

pushdown (XuX~')-automaton accepting L.

Proof. Let y / XuX"'. Let ¢:(XuX 'uly))® — (XX ")* be the
monoid homomorphism defined by yp = ¢ and xp = x, x ¢ XuX~'. By Lemma
1.7, we only have to produce a pushdown (XuX~1)—automaten accepting
L' = (wyw ': w e L(A)).

Suppose that A4 = (Q,(i),T,E). Let p be a symbol nmot in Q and let s
be a symbol not in XuX~'. We define a pushdown (XuX~'u{y))—automaton
B = (Qui{p},i,XuX 'u(s),s,E'), where
E' = {(gq,x,2,9",2x): (¢,%x,9') ¢ E, X € XoX~' and z ¢ XuX ‘uls)}

ul{(t,y,2,p,2): t e T, z ¢ XoX 'u{s))u{(p,x1,x,p,1): x € XuX 1)}

ul(p,1,s,p,1)}.
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It is easy to see that L' ¢ L(B). Conversely, suppose that

u ¢ L(B). Then there exist x,,...,xp; ¢ XuX 'ull,y); Ggr+-+2dn € Q;
Zoayeso42p € (XuX~'u(s))¥ such that

X, Xy = U;

da = 1,

z2, = s,

zp, = 1;

Vie {(1,...,n}, Xj:(Qj—1vzj—l) Lt (QJ',Zj)-

It follows easily that we must have ¢, = p. Let

k = min(j ¢ {1,...,n): qj = p}. Then it is mnot difficult to see

successively that

Qp—y € T
Xy Xpey € W

Xk =¥

Hence u € L' and the lemma is proved.

LEMMA 2.4. Let A = (Q,{1},T,E) be a finite (XuX~')-automaton. Let
c, € (XuX~N)*. Let L = {(wegw™')1: w ¢ L(A)}. Then we can produce a

pushdown (XuX~')-automaton accepting L.

Proof. 1Let W = L(A). By Lem;a 2.1, we can assume that both L(A)
and ¢, are vreduced. Moreover, we can assume that c; is cyclically
reduced. In fact, suppose that c, = uvu™', with v cyclically reduced.
Then, by Lemmas 1.3 and 2.1, we can produce a finite (XuX~')-automaton
accepting the language W' = (Wu):, and L = {(w'vw' " ¥)¢: w' ¢ W'}.

Let u,v ¢ Ry be such that ¢, = uv. Then vu is said to be a cyclic
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conjugate of c¢,. Let C denote the set of all cyclic conjugates of Cq.

We prove that, for every w ¢ W,
Ve ¢ € 3w' €3 w He* € C: (wew V)¢ = w'e'w' ™1, (2.1)

We use induction on the length of w. The case |wiI = 0 is trivial,
Suppose that (2.1) holds for every w ¢ W with 1wl = n ¢ NO. Let v ¢ W
with jvi = n+l. If vev™! ¢ Ry, we take v' = v and ¢' = ¢. Now suppose
that vev™' ¢ Ry. Then we have either ve ¢ Ry or cv™! / Ry. Suppose
that ve ¢ Ry. Then there exist x € XuX~'! and u,a ¢ Ry such that
v =ux"' and ¢ = xa. Obviously, (vev ')t = (ux™'xaxu™'); = (uaxu™')t.
Since W 1s left closed, we have u ¢ W. Moreover, |u] = n and ax ¢ C.
By induction hypothesis, we have (uaxu™'):t = v'c'v'~! for some v' <7 u
and ¢' € €. Thus (vev ')y = v'c'v'™! and v' <3 v. The case e¢v™' ¢ Ry
is similar. Thus (2.1) holds for v and so for every w e W.

In particular, for every w ¢ W, we have (wew™ ')t = w'cw'™' for
some w' <3 W and ¢, ¢ C. It is immediate that such w' and ¢, are
unique.

For every d ¢ €, we define Q4 = (w': w ¢ W and ¢, = d}. Our next
step 1is to prove that, for every d ¢ C, Q4 is a rational

(XuX—1)~language., lLet

V = L{A,). 11a009),
[(q’;)d (Ag) -xJu({1}nlg)

with I = {(g,x) € @ x (XuX"1): [L(Aq).x1nﬂd # @). We claim that {5 = V.
We certainly have {}y € V. Now suppose that [L(Aq).x]nﬂd # § for some
g e Q and x ¢ XuX!'. Hence there exists some u ¢ L(Aq) such that

ux ¢ Q4. Let u' ¢ L(Aq). Since ux e {3, there exists w e¢ W such that

(wegw™ 1)1 = uxdx 'u”'. We have w = uxp for some p ¢ Ry and it follows
that (xpc,p~'x" 7)1 = xdx~'. Since u,u' e L(Aq), we have u'xp ¢ W and
(u'xpegp™'x7Tu'"1)1 = (u'xdx"'u'"1):1. But u'x labels a path in A and
so u'x € Ry. Therefore u'xdx 'u'”' ¢ Ry. Hence L(Ag).x & (g and so

Qg = V.
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Now we give an algorithm to produce a finite (XuX~1)-automaton
accepting Q4.

Suppose that [L(Aq).x]nQd # @ for some q € Q, x ¢ XX~ and d ¢ C.
Let w ¢ W be such that ¢, = d and w' ¢ L(Aq).x. Then, as shown above,
L(Aq).x € {}g. Moreover, there exists u ¢ L(Aq) with jul < Q] and»so
we can assume that |w') < |1Q|. Let 2 = {(z ¢ W: z' = w' and ¢, = d}. We

can assume too that w has minimal length among all the elements of Z.

Suppose that w = w'x,...Xp, X; € XuX™'. Suppose that there exist
j.k e {1,...,n) and p ¢ Q such that j < k and
Xj = XL,
w'x,...XJ_‘, WIX, o X € L(Ap);
(Xj...xpeoxp' X510 = (Xg. .. XpeoXp'. . Xg1) L € C.

Note that, by our previous construction of w' and ¢, we can

assume that (xj...xpc xp'...x7')t ¢ C for every 1 e (1,...,n).

let v = W‘x,...xj_‘xk...xn. Since W= W'X,...Xp and
W'Xx---xj—1- WX, Xp—, € L(AP), we have v ¢ W. Hence (ve v i)
= (W'Xy . Xj X XpCoXp' . XEXGL, L xTTW T
= (W'X,...xpexpt. XTW' T = (wewT ) = whdw!' Tt

Since |1vl < wl, this contradicts the minimality of w and so we
must have n < 1Q1.1XuX7'|.I1C). Hence |wl = IW'X,...Xul < 1Q14n
< 1Q1+21Q1.1X1.1¢41. Thus, to determine whether or not [L(Aq).x]aﬂd is
empty, we only have to compute w' and ¢, for every w ¢ W with length
not exceeding 1Q1+21Q1.1X1.1c .

Similarly, if 1 e {4, then we-can find some w ¢ W with length not

exceeding 21Q1.1X}.1¢c,1 such that w' = 1 and ¢, = d.
Let H = (w ¢ W: 1wl < 1Q1+21Q1.1X1.1c,t). For every w e H, we
compute w' and ¢,. Suppose that ¢, = d. If w' =1, then 1 ¢ Q4. If

w' # 1, then we can write w' e L(Aq).x for some ¢ ¢ Q and x € XuX 1,
yielding (g,x) € I. Since H is finite, we can perform these

computations for all such w. As shown above, this is enough to
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determine completely I and {1l)}~ly. Now we can apply Lemma 1.3 and
produce a finite (XuX™')-automaton accepting (4.
Finally, we have L = u (wdw™': w ¢ Q4) and the lemma follows from

deC
Lemmas 1.5 and 2.3,

Let W be a reduced rational (XuX ')-language and let a ¢ W, We

define the language W, to be {(w ¢ W: [w.Q(a)]t € W).

LEMMA 2.5. Let A = (Q,{(i),T,E) be a finite (XuX~1)-automaton with
L(A) reduced. Let W = L(A) and let a ¢ (XuX~\)¥*. Then we can produce a

finite (XuX™')-automaton accepting Wg,.

Proof. Let n = |al+l. For every q ¢ Q, let
Vq = (v ¢ (L[A(q)])nFn: [v.Q(a)]t € L[A(q)]].

let V = [WanF<n)]u(q¥Q[L(Aq)'Vq])' The languages Vq and WanF(py are
finite and so, by Lemma 1.3, we can produce a finite (XuX~')-—automaton
accepting V. We prove that W, =V,

Let g € Q. Suppose that u ¢ L(Aq) and Vv e Vq. Since
L(Aq).L[A(q)} € W, we have wuv € W. Since vl > tal, we have
[uv.Q(a)]t = (u.{v.Q(a)])t = u([v.Q{a)]t) € L(Aq).L[A(q)] €W and so
uv ¢ Wy. Hence V € Wy,

Conversely, let w ¢ Wy. If 1wl < n, then w e WanF(p) € V, so we
assume that iw] > n. Let w = uv, with (vl = n. Then u labels a path in
A going from the state i to somé state q ¢ Q. Hence u ¢ L(Aq) and
v o€ L[A(q)]. Since 1v| > 1al, we have [w.Q(a)]t = u([v.Q(a)]t). Since
w e Wy, then u([v.Q(a)]t) e W and so {v.Q(a)]:t ¢ L[A(q)}. Hence v ¢ Vq

and W, € V. Thus Wy = V and the lemma is proved,
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THEOREM 2.6. Let X be a finite nonempty set, let P be a finite
relation on (XuX™')* and let e Dy. Let A = (Q,{i),T,E) be a finite
(XuX1)-automaton. Then it is decidable whether or not

L(A) e yv(X,P,e).

Proof. Let W = L(A). Without loss of generality, we can assume
that A is minimal. We will consider the five conditions defining

v(X,P,e) successively.
(i) W is reduced.

This is equivalent to W € Ry, and this is decidable by Lemmas 1.4

and 1.9.
(ii) W is left closed.

We prove that this is equivalent to having T = Q. Suppose that W
is left closed and let ¢ ¢ Q. Since A is minimal, A is trim and so ¢
lies in some successful path of A. Since W is left closed, this
implies that there exists a path in A, beginning at i and ending at g,
labelled by some w ¢ W. Since A is deterministic, this implies q e T.
The converse implication is immediate,

Thus it is decidable whether or not W is left closed.
(iii) Q(e) € W,
This is decidable, since Q(e) is finite.

(iv) V(a,b) € PuP™' Vw ¢ W, [w.Q(a)]t S W = [w.Q(b)]t €W.

This is equivalent to having W, = Wp for every (a,b) ¢ P. Assuming
that W satisfies (i), and since P is finite, this is decidable by
Lemmas 1.4 and 2.5,

(v) V(a,b) € PuP™' Vw ¢ W, [w.Q(a)]t €W =2 (wba 'w™ W) € VW.

The fifth and final condition is by far the hardest to deal with,

We shall assume that W satisfies all four previous conditions.
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Moreover, we can assume that (ba~'): # 1, otherwise the condition