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INTRODUCTION

The main subject of this thesis can be defined as combinatorial 

semigroup theory; that is, the study of the structure and properties 

of free objects and presentations in varieties whose elements are 

semigroups. Most of the results of this type have similar formulations 

for semigroups and monoids, and for each of them we tried to give the 

version that involves the higher degree of generality, usually the 

monoid version.

Our work is mainly about inverse monoids, and so it is not 

surprising that Chapter I is essentially devoted to the introduction 

of concepts in this area. Most of the results in this chapter are not 

original, references being given in the text. Some definitions and 

results are formulated in terms of varieties of inverse monoids, which 

play an important role later on.

We give particular importance to the structure of the free inverse 

monoid on a nonempty set X, denoted by FIM(X). Since we introduce 

languages and automata in Chapter VI, which involve the use of the 

free monoid, we opted to define FIM(X) to be the quotient (XuX“1)*/p, 

where TT"1 denotes a set of formal inverses of X, disjoint from X, and 

p is the Vagner congruence on (.Xu-ST-1)* (the free monoid on 

This congruence was introduced by Vagner in 1957 [41], Since there is 

no natural canonical form for (Xu X~'l)*/p, the direct use of this 

quotient was not very fruitful until 1973, when W.D.Munn solved the 

corresponding word problem [26]. W.D.Munn also provided a geometrical 

description of FIM(X), using labelled trees. Previously, in 1972, and
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independently, H.Scheiblich produced an algebraic description, using 

left closed subsets of the free group on X [38].

In Chapter II we discuss the intersection of two free inverse 

submonoids A and B of a free inverse monoid FIH(X). In contrast with 

analogous results for groups and monoids [40], the intersection Ar»B is 

not necessarily free. However, we can classify all the possibilities 

in the case where A and B both have rank 1 [§II,2 and 3], and this 

discussion is further simplified when FIM(X) has rank 1 itself

[§II.4].

A related problem is whether the finitely generated property is 

preserved by the intersection of free inverse submonoids of a free 

inverse monoid. A counterexample is provided in Section II.5.

The subject of Chapter III is the semilattice of idempotents E of 

a free inverse monoid. We introduce some new concepts in semilattice 

theory, in particular that of a unique factorization semilattice (UFS) 

[§III.l], Some general properties are proved for this class of

semilattices, and these results are used to give necessary and 

sufficient conditions for two principal ideals of E to be isomorphic

[§III.2], This enables us to obtain some properties of Tgt the Munn

semigroup of E, such as being E-unitary [§III.3],

In Section 111,4 we discuss the embedding of semilattices in a 

free inverse monoid and some general results are obtained, involving 

finite semilattices and UFSs. We also provide an example of a 

countable semilattice S such that the subsemilattices [f e S: f > e} 

are finite for every e e S and yet S is not embeddable in any free 

inverse monoid.

In Section III.5 we show that the semilattice of idempotents of a 

free inverse monoid never is hopfian, in contrast with the situation 

for FIM(X) itself, which is hopfian if and only if X is finite [26].

One of the key concerns in our work is the word problem, which can
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be defined in its most general form as follows. Let S be a semigroup 

and let R £ S x S be a relation on S. Let R& denote the congruence on 

S generated by R . Is there an algorithm which determines, for every 

u,v e S, whether or not uR& « vR$? If such an algorithm exists, the 

problem is said to be decidable.

In Chapter IV we define the concept of normal-convex embedding for 

semigroups, which is naturally related to word problems. In fact, "let 

ip:S — T be a normal-convex embedding of semigroups and let £ be a 

relation on S. Let Rip denote the relation on T induced by R and {p. 

Then the word problem for R is decidable if the word problem for Rip is 

decidable [§IV.l].

In 1974, McAlister introduced the triples (G,K,L), later known as 

McAlister triples, and the corresponding semigroups P(GtK,L), called 

P-semigroups [20]. When K is a semilattice, we refer to (G,JC,L) as a 

strong McAlister triple. In Section IV. 2 we show that if (G,K,L) is a 

strong McAlister triple, then P(G,K,L) admits a normal-convex 

embedding into a semidirect product of a semilattice by a group.

This result is generalized in Section IV.3, where it is shown that 

every E-unitary inverse semigroup admits a normal-convex embedding 

into a semidirect product of a semilattice by a group, a stronger 

version of a result by O'Garroll [30].

McAlister proved that every inverse semigroup is the 

idempotent-separating image of a E-unitary inverse semigroup [20]. In 

Section IV. 4 we show that every inverse semigroup admits a 

normal-convex embedding into an idempotent-separating image of a 

semidirect product of a semilattice by a free group.

Now let V be a variety of inverse monoids. We define a 

presentation in V to be an expression of the form V<X\R>, where X is a 

nonempty set and £ is a relation on the free monoid (XuX~1)*. Assuming 

that the free object of V on X is a quotient of the form (XuX-1)*/t,
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we define the word problem for V<X\R> to be the word problem for the 

relation tuR on (Xu-JT"1)*. The idempotent word problem for V<X',R> is 

the restriction of the word problem to the words u e (XuJT*1)* such 

that up = u2p. The inverse monoid defined by a presentation V<X;R> is 

the quotient (XuX™ 1 )*/(tuJ?)̂ . The presentation V<y;jR> is said to be 

finitely generated (respectively finitely related) if X (respectively 

R) is finite. A presentation is said to be finite if it is both

finitely generated and finitely related.

Chapter V is essentially devoted to the study of decidability 

problems for presentations in the variety of Clifford monoids.

In Section V.l we show that every finitely presented Clifford

monoid can be finitely presented as an inverse monoid, thus 

establishing a bridge between presentations in the two varieties.

In Section V.2 we solve the word problem for finitely related

presentations in the variety of semilattices with unity and we prove 

that the word problem for a finitely related Clifford monoid 

presentation is equivalent to the word problems for finitely many 

group presentations.

In Section V.3 we solve the E-unitary problem for one-relator

Clifford presentations, that is, we give an algorithm which 

determines, for any such presentation, whether or not the 

corresponding Clifford monoid is E-unitary. A counterexample is given 

to a conjecture by Margolis and Meakin [19] on the E-unitary problem 

for one-relator inverse monoid presentations. It is also proved that 

the E-unitary problem is undecidable for the class of all finite 

Clifford monoid presentations, and this result is extended to the 

class of all finite inverse monoid presentations.

Some more decidability results are obtained in Section V.4, 

concerning triviality, finiteness, freeness and others.

Finally, the results of Section V.2 are applied in Section V.5 to
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simplify the word problem for finite inverse monoid presentations 

which define E-reflexive inverse monoids.

Chapter VI is essentially about the idempotent word problem for 

inverse monoid presentations. Using the techniques of Stephen [39], in 

the form developed by Margolis and Meakin [18], we obtain a positive 

decidability result involving any finite presentation and any rational 

language (§VI.2). "%*■ f'-'

This result can be used to provide an alternative proof to 

Margolis and Meakin* s solution [18] of the word problem for finite 

idempotent-pure presentations (§VI,3). A generalization of this result 

is obtained in Section VI.4.

In Section VI. 5 we solve the idempotent word problem for the class 

of finite $-pure presentations, still using the results of Section 

VI, 2.

The bounds of application of rational languages as a technique for 

solving idempotent word problems are discussed in Section VI.6 , where 

some results are obtained for one-relator presentations.

In Section VI.7 we produce an example of a finite inverse monoid 

presentation with undecidable idempotent word problem.

Chapter VII presents some results on primeness of semigroup rings. 

In Section VII.2 we introduce a certain Condition C on semigroups 

which is proved to be a sufficient condition for primeness of the 

corresponding semigroup rings.

Condition C is applied in Section VII.3 to prove primeness for 

semigroup rings of free products of semigroups, and in Section VII.4, 

for one-relator semigroup presentations (if the generating set has 

more than two elements).

Finally, Section VII.5 gives a simple generalization of a result 

by W.D.Munn [27] concerning semigroup rings of inverse semigroups with 

pseudofinite semilattice of idempotents (which include free inverse
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semigroup of finite rank). Moreover, Condition C is applied to prove 

primeness for semigroup rings of free inverse semigroups of infinite 

rank.
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CHAPTER I 

GENERAL CONCEPTS

1. Semigroups and monoids

In this section we introduce elementary concepts and terminology 

of general semigroup theory. The details can be found in Howie [11].

Let S be a nonempty set and let • denote an associative binary

operation on S. Then (S,*) is said to be a semigroup. In general, we

omit the operation symbol. The element u e S is said to be a unity if 

us - su « s for every s e S. It is immediate that every semigroup has 

at most one unity. A semigroup with unity is said to be a monoid, the 

unity being usually denoted by 1 .

To every semigroup S, we associate a monoid S1 as follows. If S

has a unity, we take S1 *= S. If not, we define S1 — Su{l) to be the

monoid obtained by adjoining the unity 1 to S.

For the remainder of this section, we assume that S and T are 

semigroups.

For all subsets A,B of S, we write AB = {ab: a € A, b e B).

Let A be a nonempty subset of S. We say that A is a subsemigroup 

of 5 if A 2 £ A.

Let tp:S — > T be a map. We say that <p is a homomorphism of 

semigroups if (ab)ip = (a<p) (b<p) for every a,b e S. We shall also use 

the following terminology. If <p is injective, p is said to be an 

embedding. If ip is bijective, ip is said to be an isomorphism. If
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S - Tt <p is said to be an endomorphism. If S - T and <p is bijective, <p 

is said to be an automorphism.

Let A be a nonempty subset of S. We say that A is an ideal of S if 
S'AS} £ A. We denote that fact by A ̂  S. If A - S'aS* for some a e S t 
A is said to be a principal ideal.

Let X be a nonempty set. A subset R £ X x X is said to be a

relation on X. For all relations JR,JR* on X, we define the composite

relation RoR' on X by

(a,b) e JRoiR' «=> 3c e Jf: (a,c) e JR and (c,b) e 12*.

Let JR be a relation on X. We say that R is an equivalence relation

on X if the conditions below hold:

Va e X, (a,a) c JR;

(a,b) £ JR * (b,a) e JR;

JRoJR £ JR.

Let JR be an equivalence relation on X. For every a e X, we write

aJR - {b £ I: (a,b) e JR), and X/R - (aiR: a c X).

Now we define the following relations on the semigroup S.

(a,b) e 5J, aS1 - bS1 ;

(a,b) £ X «=► S’a - S'b;

(a,b) c J <=* S’aS1 - S’bS’ ;

X “
£> -

These relations are equivalence relations and are called Green's 

relations on S. We note that &oX = .£o&. If J)“ S x S, we say that S is 

bisimple.

Let r be an equivalence relation on S. We say that t is a

congruence on S if, for every c e S,

(a,b) e t =» (ac,bc) , (ca.cb) £ t .
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If r is a congruence on S, then (ar)(br) - (ab)r defines an 

associative operation on S/ t . Moreover, the map rH :S — » S/ t : s s t  

is a surjective homomorphism of semigroups.

Let p:S — ) T be a homomorphism. The relation Ker<p on S defined by

(a,b) e Kerp 4=̂  ap ™ bp ' .

is a congruence. We have v. ■O-.V"’'

LEMMA 1.1 [11,§1.5}. Let S and T be semigroups, let p:S — » T be a 

homomorphism and let r be a congruence on S with t £ Kerp. Then the 

map p:S/r — > T: s t sp is a homomorphism and the diagram

S

S / t

commutes. Moreover, if r = Kerp, then p is injective and Sp ^ S/Kerp.

LEMMA 1.2 [11,§1.5}. Let S be a semigroup and let t , v be

congruences on S with r £ v. Let v/ t denote the relation on S/ t

defined by

(ar ,bT) e v/t (<2tb) e v.

Then v/ t is a congruence on S / t and the map

(S/t)/ ( v / t ) — > S/v : (s t ) ( v/ t ) h  sp is an isomorphism.

Let R be a relation on S. We define a relation on S as follows.

For every a,b e S, (a,b) e R$ if and only if there exist w Q)...,wn e S

such that
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w0 - a; 

vn - *>;
Vi € {1, . . . pn) 3Pi,Qi € S 3(uj.vj) € £:

It follows easily that is the smallest congruence on S

containing the relation R and so it is said to be the congruence 
generated by R. Suppose that <p:S — > T is a homomorphism. Then the 
relation Rip - l(a<p,b<p): (a,b) e R) on T is said to be the relation
induced by R and <p. It follows easily that

R#<p S (Rip)# . (1.1)

If we are working inside the class of monoids, it is useful to 

strengthen some definitions.

Let M be a monoid and let A be a nonempty subset of H. Then A is a 
submonoid of M if A 2u{l} £ A.

Let M,N be monoids and let ip:M — » N be a map. Then <p is a 

homomorphism of monoids if (ab)<p - (a<p)(b<p) for every a,b e M and 

l<p *■ 1. Throughout this work, we shall refer to a homomorphism of 

monoids simply as a homomorphism.

Everything said before for semigroups holds for monoids with these 

stronger definitions. In particular, for every congruence r on a

monoid M, the map :M — » M / t : a h  ar is a surjective homomorphism.

Now let X denote a nonempty set. We define a word on X to be a 

finite sequence of elements of X; including the empty sequence. Each 

term of a word is then said to be a letter. A nonempty word will be 

usually written in the form x 1 . . ,xn, x± e X, and we identify each 

x € X with the word x. The empty word is denoted by 1.

The set of all words on X is denoted by X*. We define an operation

on X as follows. For all nonempty words x, . . ,xn ,ŷ  . . .ym on X, we

define
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(x^...xn )(,y%...ym) -  x^.,.xny ^ . . y m .

For every w e X*, we define lw - wl - w. With this operation, X* 

is a monoid and the subset X+ - Jf*\{l} is a subsemigroup of X*.

LEMMA 1.3 [34,§1.10]. Let X be a nonempty set and let i stand for 

Inclusion map.

(1) Let S be a semigroup and let ip'.X — > S be a map. Then there 

exists a unique homomorphism of semigroups $:X+ — > S such that the 

diagram

X+

commutes.

(ii) Let M be a monoid and let <p:X — » M be a map. Then there 

exists a unique homomorphism — » M such that the diagram

commutes.

With this property, X+ (respectively X*) is said to be the free 

semigroup (respectively free monoid) on X.

We define the following partial orders on X*.



6

a < b 4=$ b e  X^aX*;

a <i b 4=4 b e  aX*;

a <r b 4=* b e  X*a,

If a < b (respectively a <| b, a <r b) we say that a is a factor 

(respectively prefix, suffix) of b.

For every v e IT*, we define the length |w| of w as follows. If 

w - 1, let iw| - 0. If w - x,.. .xn , e Jf, let l w| - n.

2. Inverse monoids

In this section we introduce terminology and notation related to 

inverse monoids, which constitute the main subject of our work. As in 

the previous section, every notion has a similar counterpart in the 

context of inverse semigroups. For further details, see Howie [11] and 

Petrich [34].

Let W be a monoid. We say that M is inverse if

Va e M H!b e M: aba = a and bab = b.

The element b is said to be the inverse of a and is denoted by

a”1. If M is an inverse monoid and N is a submonoid of M, we say that 

N is an inverse submonoid of N if

Va e N, a-1 e N.

LEMMA 2.1 [11,§V.1]. Let M,N be monoids and let (p:M — > N be a 

homomorphism. Suppose that M is inverse. Then M<p is inverse.

Let M be a monoid and let a e M. We say that a is idempotent if

a2 = a. The subset of all idempotents of M is denoted by E(M) . Since

1 e E(M) , E(M) is always nonempty. Now we have
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LEMMA 2.2 [11,§V.1]. Let M be a monoid. Then M is inverse if and 

only if

Va € M H5 e M: aba - a and We,f e £(M) , ef - fe.

We define a semilattice to be a commutative semigroup whose 

elements are idempotents. By Lemma 2.2, every semilattice is inverse. 

Let M be an inverse monoid. It follows easily from Lemma 2.2 that E(M)

is an inverse submonoid of M. We refer to E(M) as the semilattice of

idempotents of M. Now we define a partial order on M as follows. For 

every a}b e M,

a < b 4=» a == eb for some e e E(M) .

We say that < is the natural partial order of M. We note that, if

a,b e E(M) , then a < b is equivalent to a =* ab. It follows easily 

that, for every a,b e E(M) , ab is the greatest lower bound of a and b 

for the natural partial order of M.

Now suppose that a,b e M are such that b < a and

b < c < a 4 5 “ C

for every c e M. Then we say that a covers b and we denote this fact 

by b «( a. We write Cov(a) = {b e M: b ̂  a) .

Let <j be the relation on M defined by

(a,b) e (T 4=£ ea ~ eb for some e e E(M) .

Then a is a congruence and M/a is a group. Moreover, if M / t is a

group for some congruence t on M, then a £ t . Therefore or is said to

be the least group congruence on M. It is immediate that E(M) £ l(j. We

say that M is E-unitary if lor £ E(M) .

We note that the equivalence

(a,b) e <t 4# ae - be for some e c E(M)

holds for every a,b e M.
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Let Inv denote the class of all inverse monoids.

Let X be a nonempty set. We define X-1 - {x”1; x e JO to be a set

such that

XnX~' - 0;

Vx, ,X2 € X, X7 1 - x^ 1 * x% - x2.

Moreover, we define (x-1)” 1 - x for every x e X, Under these

conditions, JT"1 is said to be a set of formal inverses of X . For every
w e we define a formal inverse v” 1 € (XvX~')* as follows. If

w - 1, let v” 1 - I. If w — xt . . .xn , xi c XuJf” 1 , let w-1 — x^ 1 . . .xy1.

For every w e (.FuX-1)*, we define the content $ (v) of w to be

{x £ X: x < w or x-1 < w}.

Let Y be a nonempty set. A pair (u,v) € (FuF-1)* x (FuF*"1)* is 

said to be an identity of inverse monoids. We often write it in the

form u - v. Let M be an inverse monoid and let <p:Y — > M be a map. We

define a homomorphism ^(FuF-1) * — > H as follows: for every y e Y,

let

- y<p and y-i£ - (y<f>)~\ (2,1)

We say that M satisfies the identity u - v if, for every map 

<p:Y — > M, we have u\p - v£. Let I be a system of identities. We say 

that M satisfies I if M satisfies every identity in L  We denote by

Inv[E] the class of all inverse monoids that satisfy L. The class

Inv[E] is said to be a variety of inverse monoids. In particular, 

considering E empty, we have that Inv is a variety of inverse monoids.

Let X be a nonempty set, and let u “ v be an identity, with 

u,v € (FuF-1)*. For every map ip:Y — » (XuX-1)*, we define a

homomorphism ^:(FuF-1) * — » (.XuF-1)* as in (2.1). Let

H(u =• v) = {(u^vjp): <p:Y — > (JFuF-1)* is a map).

We define the Vagner congruence on (XuF-1)* to be

p =* [tf(xx-1x = x)utf(xx-1yy-1 = yy“ 1 xx~1) ] ̂ ,
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that is, p - ({(w 1w,w): w e (.YuX-1 )*} 

u{ (uu-1 vv-1 , viT^mi-1): u, v € (XuX~y )*) )̂ ,

LEMMA 2.3 [41]. Let X be a nonempty set. Then (XuX~')*/p Is

inverse. Let y:X — > (X\jX~')*/p: x \-+ xp. Let M be an inverse monoid 

and let <p:X — > M be a map. Then there exists a unique homomorphism 

<l>: (XkjX~ 1)*/p — » M such that the diagram

(Xuri )*/p

commutes.

We define FIM(X) = (XuX~J)*/p to be the free inverse monoid on X.

Let E be a system of identities. We define

7(1) - (pu[ u fl(<7)])# .
oel

LEMMA 2.4 [34,§XII.l]. Let X be a nonempty set and let E be a

system of identities. Then (-XLX-1 )*/t(E) e Inv[I] . Let

y:X (XuX-')*/t (£): x H>x[t(I)]. Let H e V = Inv[I] and let

VP: — » M be a map. Then thqre exists a unique homomorphism

(ZuZ-1)*/t(L) — > Af such that the diagram

Y
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commutes.

Let V " Inv[E]. We say that (JTuX“1)*/t(I!) is the free object of V 
on X and we denote it by fV(X).

Let A be a nonempty subset of FV(X). Let Y be a set such that

there exists a bijection <p:Y — > J3. Let $:FV(Y) — » FV(X) be the

homomorphism induced by y?. Then A is said to be a basis if $ is 

injective.

The class of all groups, denoted by Gpt is a variety of inverse 

monoids, since Gp -  Invfxx" 1 -  1 ] ,  We write x -  r(xx-1 -  1)

-  [pujFf(xx~ 1 =■ 1 ) ] ^  -  (pu l (uu~’, 1 ) :  u c (XuX-1 ) * }  )^ .  It is immediate

that p £ {(uu-1,l): u e (XuX- 1 ) * } *  and so

x - {(uu-1 , 1 ) : u e (XuX- 1 ) * } ^ .  It follows easily that 

x - ((xx~\l): x € XuX“ M # . The quotient FG(X) - (XuX- 1 ) * / *  is the 

free group on X and we define Dy - {u e (XuX” 1) * :  (u,l) £ x) to be the 

set of all Dyck words on X.

Let V - Inv[L] be a variety of inverse monoids. We define a

presentation in V to be an expression of the form V<X]R>, where X is a 
nonempty set and £ is a relation on (XuX- 1 ) * .  The inverse monoid 

defined by this presentation is the quotient M - (XoX-1 )*/[r (L)uJ2]̂ . 

If X is finite, we say that the presentation is finitely generated. If 

R is finite, we say that the presentation is finitely related. If both 

X and R are finite, we say that the presentation is finite. Two 

presentations V<X;R> and V<y;S> are said to be equivalent if they 

define isomorphic inverse monoids.

The next result is easy to obtain.
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LEMMA 2.5. Let Inv<X;R> be a presentation and let

M - (XuX~')*/(puR)#. Then the map

<p:M — » (XuX-1 )*/(tuR)^: v(puR)^ h* w(xuR)& is a surjective

homomorphism and Kerp « cr, the least group congruence on M.

Proof. Since p £ *, we have (puR)# £ (xuR)^ and so p is defined. 

It is immediate that ip is a  surjective homomorphism. Since *  £  (tuR)$, 

it follows that (XuX-1 )*/(tuR)& satisfies the identity xx"*1 - 1 and so 

is a group. Hence <r £ Kerp. Now we prove that Ker<p £ a. Suppose that 

[a(puR)̂ ]y? - [b(puR)^]y? for some a,b e (XuX~1)*. Then there exist

w0, . ..wn e (XuX"1)* such that

a - w0; 

b - wn ;
Vi € {1,... ,n) c (XuX"1)*

HCui.Vi) e {(xx-i,l): x f XuX~')uR:

- [SiUiti^iVlti) .

Let Z - {x 6 X: x e fj (ujl)v£ (vj) , i e (l,...,n)) and let
n

z - FI xx” 1 .x ’x. Let y - II tl'ztj. We show that xcZ i-i
(wj_^y) (puR)# - (wjy)(puR)# for every J e {l,,..,n}. Let 

j e {!,...,n}.

Suppose first that (uJ»vj) 6 Then (sjUjtj)(puR)^

- (sjVjtj)(puR)& and so Wj_A(p\jR)$ - wj(puR)^. Thus (wj„ty)(pvR)& 

“ (wjy) (puR )# .

Now suppose that (uJ«vj) ” (xx“ 1 ,1) for some x e XuX-1 . Since 

tj12^1 c f°r every i e ll,...,n}t we have yp = [(tj*ztj)y]p and so 
( s j U j t j y )  (puR) #  - [sjxx-11j i t j ' z t ^ y ]  (puR)#  =  ( sjtjtJ1xx-1ztjy) ( puR)#

- (sjtjtj'ztjy)(puR)# - (sjtjy)(puR)# « (sjvjtjy)(puR)# . Hence
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(vj-,7) (pu£)# - (Wj7)(pui2)#.
It follows that (ay)(puR)& - (by)(pvR)#. Since y(puR)& c E(M), 

this yields [a(pui2)̂ ]cr = [b(puR)̂ ](r and so Kerp £ <r. Thus Kerp - <r and 

the lemma is proved.

We say that (YuX~ 1 )*/(iruR)^ is the maximal group homomorphic image 

of Af. In particular, FG(X) is the maximal group homomorphic image of 

FIM(X).

We can give a simple description of the free product in a variety 

using presentations.

LEMMA 2.6. Let V = Inv[L] be a variety of inverse monoids and let 

V<X;R>, V<Y;S> be presentations, with XnY =» fH. Let 

A - (YuX~i)*/[t(E)uR]#, B - (YuY-^)*/[t(I.)oS}^ and

A*VB - [(XuY)utfuY)“» ]*/[t (T.)uRuS]#.

Let i-A:A — * A*yB: w[r(T.)uR]& h-» v[t(L)ujRuS]# and

iB :B — > A*VB: w[t(I)uS]# h-> w[r(I)ui?uS]#. Then

(i) for every C e V and homomorphisms pĵ '.A — » C, pB :B — » G, there 

exists a unique homomorphism $:A*yB — » C such that the diagram

c o m m u t e s ;

(ii) the homomorphisms i^ and iB are injective;
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Proof. (i) Let C e V and let <p a'.A — > C, :B — » C be 

homomorphisms. Clearly, the elements z [t (Z)uRuS]#, z e XuY, generate 

A*yB. Suppose that $ exists. Let x e X. Then (x[r(E)ujRuS]#)4>

- (x[r(E)ui2]#)iA4» - ( x [ t (E)u.R]#)̂ a . Similarly, (y[r (E)u£uS]#)<t

- (y[T(E)uS]#)*>B for every y e Y. Therefore 4> is uniquely determined 

on a set of generators of A*yB. Hence, if exists, then 4» is unique.

Let 6: (XuYuX~'luY~'i )* — * C be the homomorphism defined by

x$ “ (x[r(E)uJ2]̂ )y?̂  for x £

yO - (y[r(Z)uS]#)<pB for y e YuY~'.

By Lemma 2.4, we have r (E) £ Kerd. Since RuS £ Ker6 as well, we 

know, by Lemma 1.2, that there exists a homomorphism $:A*p8 — > C such 

that the diagram

&auTuX-Tur*1) *    >c

Y

A*VB

commutes, where wy = w[r (E)ui?uS]̂  for every w e (Xu YuX~*uY~' )*.

Let x e X, Then (x[r (E)u£]#) (iAi>) = ( x [ t (E)u£uS]#)$ = (xy)$ = xd 

= (x[r (E)ui?]^)^. Hence ijfi — <p£. Similarly, we obtain = <pB and so 

$ satisfies the required conditions.

(ii) Let C *** A and let <pj± = 1̂ , y>jg trivial. Then, by (i), there 

exists <$>:A*yB — » A such that djft = 1̂ . Hence is injective.

Similarly, we prove that iB is injective and so the lemma is proved.

It follows easily from the lemma that A*yB is, up to isomorphism, 

independent of the presentations of A and B . We say that A*yB is the 

free product in V of A and B.

The concept of algorithm has been used for a long time in
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mathematics; however there is no agreement yet for a basic, simple 

definition. For precise discussions on the subject, see [10,§6 .4], 

[17,§V.2] or [23,§1.4], We mention a rather intuitive approach. An 

algorithm is an explicit effective set of instructions for a computing

procedure (not necessarily numerical) which may be used to find the

answers to any of a given class of questions [9,§7.1], ■V--',

A problem that consists of finding an algorithm for a certain 

class of questions is said to be a decision problem. If such an 

algorithm exists, the problem is said to be decidable. Otherwise, we 

say it is undecidable.

If there exists an algorithm for computing a certain structure 

explicitly, we say that it is effectively constructible (or that it 

can be effectively determined), j

We shall be particularly interested in the following problems.

Let V - Inv(L) be a variety of inverse monoids. Let r be a class 

of presentations in V and let C be a subclass of V. We define the 

C-problem for T as follows. Is there an algorithm which determines,

for every P e T, whether or not P defines an element of C?

Wow let V<X;R> be a presentation. We define the word problem for 

V<X;R> as follows. Is there an algorithm which determines, for every 

u,v e (luF1)*, whether or not u[r(I)ui?]^ = v[r(L)ui?]^?

Finally, the idempotent word problem for V<X;R>. Is there an 

algorithm which determines, for every e,f e Dy, whether or not 

e[r(I)u£]# = f[r(i:)uW]#?

Note that, by Lallement’s Lemma [11,§11.4], every idempotent of 

(XuX-1 )*/[r (L)ujR]̂  can be written in the form e[T(I)uJ?]^ for some 

e e DX .
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3. Free inverse monoids

The problem of finding a convenient canonical form for FIM(X) 

remained unsolved until the early seventies, when Scheiblich [38] and 

Munn [26] published independent works on the subject.

Let X be a nonempty set. We define

Rx - (XuX"' )*\[ u QTuJr 1 )*xx-1 (XuX~' )*]. xelTuJT*1
We say that Rx is the set of all reduced words of (^uX-1)*. We 

define a map i: (Xu^-1)* — » Rx as follows: for every w e (XuX”1)*, wt 

is the reduced word obtained from w by successively cancelling all 

factors of the form xx_1, x e . This operation is confluent, that

is, the final result is independent of the order by which we perform 

the cancellations [16,§1.4]. Therefore t is well-defined. Since 

t = {(xx_1,l): x e we have

ui = vt (u,v) e it

for every u,v e (.XuX-1 )*•

It follows easily that Rx with the operation (u,v) (uv)i is

isomorphic to FG(X) [16,§1.4]. A reduced word is said to be cyclically 

reduced if its first and last letters are not mutually inverse.

For every u e (XuX-1)*, let

Q(u) = {vt: v u).

It follows easily that Q(u) is left closed for every u e (ZuJ?-1)*, 

that is,

a e Q(u) and a* <2 a ^ a' t Q(u).

The following result also follows from the definition.
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LEMMA 3.1. For every u, v e (XuX~~1) * and e e Dy, we have 

(1) Q(uv) - Q(u)o[u.Q(v)]t;

(ii) Q(u-1) - [u“iQ(u)]i;

(ill) Q(uu-1) - Q(u);

(Iv) Q(ueu-1) - Q(u)u[u.Q(e)]i.

For every u e (XuJT~ 1 )*, we define a birooted tree

MT(u) - (Q(u),{1},{ui},F(u)u[F(u)]-1)

as follows. The set Q(u) is the set of vertices of MT(u), 1 and ui are 

the two roots, and F(u)u[£(u)J" 1 is the respective set of edges, with

E(u) = {(w,x,v') c Q(u) x (JfuX”1) x Q(u): w* = wx).

and

[F(u)3-1 - ((w*,x-1,w): (w,x ,w 1) e E(u)}.

[26] , MT(u) is a well-defined birooted tree and is said to be 

the Munn tree of u. Now we have

THEOREM 3.2 [26], For every u,v e (XuX~')*t the following 

conditions are equivalent.

(i) up = vp;

(ii) MT(u) - MT(v);

(Hi) Q(u) - Q(v) and ut = vt .

For every u e we define |up] to be |Q(u)i.

The next results follow easily.

LEMMA 3.3. For every e e Dy,

ep = IT ( w _ 1)p. 
veQ(e)
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LEMMA 3.4. Let u,v e (XuX-1)*. Then

(i) up < vp «=» Q(u) 2 Q(v) and ui - vt;
(ii) up •( vp «=* Q(u)  ̂Q(v), lQ(u)| - lQ(v)|+l and ui - vt.

LEMMA 3.5. For every u c (XuX-1 )*, 

up € E[FIM(X) ] «=* u e Dx .

LEMMA 3.6. Let X he a nonempty set. Then FIM(X) is E-unitary.

Proof. Let cr denote the least group congruence on FIM(X). Let

u c (XuX-1)* and suppose that (up,lp) e (T. Then (u,l) e * and so

u € Dx . By Lemma 3.5, up c F[FIM(X) ] and so (1 p)a £ F[FJM(Z)]. Thus

FIM(X) is E-unitary.

The Green's relations on FIM(X) are easy to describe.

LEMMA 3.7 [26], [38]. Let X be a nonempty set and let

u,v e (XuX~1)*. Then

(i) (up,vp) e £ 4=̂ Q(u) - Q(v);

(ii) (up,vp) Q(u"') - Q(v""1);

(iii) (up.vp) up - vp;

(iv) (up,vp) 6 5)  ̂■ X 3w € ( M ”’)*: Q(v) - [w.Q(u)]i

(v) * - © ■

We also have

LEMMA 3.8 [26]. Let and Y be nonempty sets. Then 

FIM(X) a FIM(Y) ^  \X\ = |T|.

Therefore we can define the rank of FIM(X) to be |X|.
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The above results will be used frequently in this work and so we 

shall omit further reference.

Now let M be an inverse monoid and let r be a congruence on M. We

say that r is idempotent-pure if, for every a e M and e e E(M),

(a,e) e t + a e E(M).

We say that t is idempotent-separating if, for every e,f e

<e,f) e t + e ™ f.

We say that a homomorphism <p of inverse monoids is idempotent-pure 

(respectively idempotent-separating) if Ker<p is idempotent-pure 

(respectively idempotent-separating).

An inverse monoid M is said to be quasi-free if M - [FIM(X)]/v for 

some nonempty set X and some idempotent-pure congruence v .

Let R be a relation on (XujT'1) *, We define a relation Rq on 

(XuX"')* by

Rj) = {(aea-1 ,beb~1): (a,Z>) e R and e 6 D%} .

The following result was proved by Munn and Reilly [28] and we

give a new proof using presentations.

LEMMA 3.9. Let Inv<X;R> be a presentation. Then

p S (puJ?D)# S (p uiO# and the canonical diagram

(XuX-' ) * / p  ------------   >  (XuX-1 )*/(puRj))#

P

(XuX-1) * / ^ ) #

commutes. Moreover, a is idempotent-pure, |3 is idempotent-separating 

and (XuX*1)*/(puRq )& is quasi-free.
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Proof. It is immediate that p £ (puJfyj)̂  £ (puR)& and that the 

diagram commutes. Now we prove that a is idempotent-pure.

Let a' e (XuX-1)* and let e e 2)jf. Suppose that a(pu#£))# - e(puJ?p)#, 

Then there exist w 0,..,wn e (XuX-1)* such that

v o - 
wn - e,

Vi € {1.....n) Hci.di e (XuX"1)* a^.vi) e pu%:
- {ciuidj^^ividi).

For every i e {l,,..,n}, we have u_pr ~ v^x and so Wi-jT “ wjx. 
Hence ax — w Qx — wnx = ex = lx and so a c Dj. Thus, by (4.1), 

ap € i?[FI/f(X)] and so a is idempotent-pure. By Lemma 1.2, we have 

(XuX~')*/(puRD)# = [ (XuX- 1)*/p]/[ (puFp)#/p] - [FIW(X)]/Xera and so

(XuX-1 )*/(puiJ|))̂  is quasi-free.

Now we prove that § is idempotent-separating. Suppose that 

e,f e Djf and e(puF)# - f(puR)&. Then there exist z0,,,,,zm c (XuX-1)* 

such that

z0 - e, 

zm “
Vj e {1 m) 3gjthj e (XuX-1)* 3(aj.bj) e puF:

{zj_,,zj} - {gjSjhj,gjbjhj}.

Then we have

ZqZq1 - ee'

zmzm 1 " ff 1 - 
Vj e {1 la},

U J-t2Ji" zjzJ,) “ (S j a j h j h - j ' a j ' g j ' , S j b j h j h J1 bj'gj').

Since (ajhjhJ1aJ1 ,5jhjhJ1bJ1) 6 P^F# for every j e {l,...,m}, we 

have e(puFD)# - (ee-1) (puFD)# = (zQz-1)(puFD)# = (2# ^ )  (puFp)# 

= (ff-1) (pvRj))̂  = f(p\jRj})$ and so 0 is idempotent-separating.
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CHAPTER II

INTERSECTIONS OF FREE INVERSE SUBMONOIDS OF FIH(X)

1. Preliminaries

Let M be a monoid and let A be a nonempty subset of M. Let A^*) be 

the submonoid of M defined by

a(*) - {ljuta,...an : a^ e A).

We say that A^*) is the submonoid of M generated by A.

Let N  be an inverse monoid and let B be a nonempty subset of N. We

say that (BuB-1)(*) is the inverse submonoid of N  generated by B and

we denote it by <B>. We remark that this notation is not standard.

A monoid (inverse monoid) that is generated by a finite subset is 

said to be finitely generated. A monoid (inverse monoid) that is 

generated by a single element is said to be monogenic.

Let X be a nonempty set and let A be a submonoid of X*. We say 

that A is a free submonoid of X* if A ^ Y* for some nonempty set Y. 

Similarly, we define a free inverse submonoid of FIM(X) and a free 

subgroup of FG(X).

In this chapter, we discuss the following problems. Let I be a 

nonempty set and let A,B be two free inverse submonoids of FIH(X).

(1) Is AnB free?

(2) If A and J3 are both finitely generated, is AnB finitely
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It is interesting to observe how the corresponding problems are 

answered in the context of groups and monoids. Throughout this 

chapter, we assume that the trivial group {1} is the free group (free 

monoid) on the empty set. It is well-known that every subgroup of a 

free group is free [16,§2.3] and so we have

LEMMA 1.1. Let X be a set and let A,B be free subgroups of FG(X) . 

Then AnB is free.

Tilson proved an identical result for monoids.

LEMMA 1.2 [40]. Let X be a set and let A,B be free submonoids of 

X*. Then AnB is free.

However, the second problem reveals different behaviours.

LEMMA 1.3 [13,§1.3]. Let X be a set and let A fB be free finitely 

generated subgroups of FG(X) . Then AnB is finitely generated.

LEMMA 1.4. Let X = {x,y} and let A  = (x,xy}(*), B = (x,yx) (*) be 

submonoids of X*. Then A and B are free but AnB is not finitely 

generated.

Proof. Let Y — {z,t} and let <p:Y* — » A  be the homomorphism

defined by z<p = x and t<p — xy. Obviously, y? is surjective. Suppose

that u, un ,v, e Y and (u1...un)^ = Then

u^p. . .unip — vy<p. . .Vjrfp and it follows easily that n = m and u^p = Vjip 

for every i e {l,...,n}. Hence Uj_ = for every i and so <p is 

injective. Thus A  is free. Similarly, we prove that B is free.
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Let C - {(xy)nx: n t N). Obviously, C £ A-vB. Since every element 

in (A-*5)\(l) must have x as both first and last letter, no element of 

C can be written as the product of two elements of (AnB)\[ 1}. 

Therefore every generating set of AnB must contain C  and so AnB is not 

finitely generated.

It is well-known [16,§2.2] that, for all nonempty sets X and f, 

FG(X) - FG(Y) 4* iXl - |Y|.

We define rank(FG(X)) to be |X| . Now we have

LEMMA 1.5. Let u,v e (XuX-1)*, Then [ux,vx] is a basis in FG(X) 

if and only if there exist no w,z e Ry and r,s c Z such that 

ui — vzrw-1 and vi - wzsw-1.

Proof. Suppose that there exist v,z e Ry and r,s e Z such that 
ui - wzrw-1 and vi - wzsw~"i . Then ux - (wzrw-1)x and vx - (vz^w”1)!.

If r - 0 or s - 0, then 1 e {ux,vx} and so {ux,vx} is not a basis.

If r * 0 and s * 0, then the nontrivial identity (ux)s - (vx)r 

holds and it follows that {ux,vx} is not a basis either.

Conversely, suppose that (ux.vx) is not a basis. Let G — <ux,vx>. 

Since G is a subgroup of F£?(X) , G is free. If G is trivial, we take 

w - z — 1, so we assume that G is nontrivial. Since G is generated by 

a two-element set, we have rank(G) < 2 , and since every two-element 

set generating a free group of rank 2 is a basis [13,§1 .2 ], we have 

rank(G) =- 1. Therefore G - <g> for some g e FG(X)\{ 1). Thus there 

exist r,s e Z such that ux “ gr and vx - gs. Let g' t Ry be such that 

g'x - g. We can write g' - wzw-1 for some w,z e Ry with z cyclically 

reduced. Hence ui - (g'r)i ” [(wzw-1)r]i = wzrw-1, Similarly, we

obtain vi — wzsw-1 and so the lemma is proved.
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Now we turn our attention to free inverse monoids, particularly 

the free inverse monoid of rank 1 .

Reilly provided a criterion for determining whether a subset of a 

free inverse monoid is a basis or not. We shall use it in the 

following modified version.

LEMMA 1.6 [37]. Let X be a nonempty set and let X be a nonempty 

subset of (XuX~1)*. Then Kp is a basis in FIM(X) if and only if:

(i) (JpMJT’p) - 0 ;

(ii) for every u e XuX-1 there exists c e Q(u) such that: if

c e Q(w1...wn), with w± e XuX"' for i e (l,...,,n) and ^j+1p * 

for j e {l,...,n-l}, then up = w^p.

The next result is an easy consequence of the previous lemma.

LEMMA 1.7 [37]. Let X be a nonempty set and let u c (ZuJT'"1)*.

Then {up} is a basis in FIM(X) if and only if u £ Dy.

The free inverse monoid of rank 1 was studied by Gluskin in 1957, 

who produced its first normal form [8]. The normal form that we shall 

use throughout this chapter follows naturally from the general normal 

form for a free inverse monoid considered in Theorem 1.3.2. By 

convention, an expression of the form v° always denotes the unity 1 . 

We define X, = {x}.

LEMMA 1.8 [34,§IX.l]. Let u e FIM(X}). Then there exist unique

a,b e N° and p e Z such that -a < p < b and u = (x~axa+^x~^xP) p.

Moreover, p *= 0 if and only if u e

For such a,b and p, we denote x axa+^x ^xP by x(-a,p,b). In
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particular, we have x(0,0,0) - 1. It is easy to verify [34,§IX.l] 

that

(x(-a,p,b) ]p. [x(-c,q,d) ]p - [x(-max{a, c-p) ,p+q ,max{b ,d+p)) ]p,

([x(-a,p,b)]p)-1 - [x(-a-p,-p,b-p)]p. (1 .1)

We shall be interested in some particular inverse submonoids lof 

FIM(X^), which we now define. For every k e N, let

Ik - (l}u{[x(-a,p,b)]p c FI/fQT,): a+b > k).

Note, in particular, that I1 - FIM(X1).

LEMMA 1.9. Let k e N. Then

(i) Ik is an inverse submonoid of FIMiX^),

(ii) Ik » <htp, . . . ,hkp>, where hi - x(0,i,k) for all i e {1 ,. . . ,Jc}.

Proof. (i) Let [x(-a,p,5) ]p, [x(-c,q,d) ]p e Ik. We can assume that 

[x(-a,p,b)]p Z 1, so a+b > k. Then [x(-a,p,b) ]p. (x(-c,q,d) ]p 

= [x(-max{a,c-p} ,p+q,max(b ,d+p)) ]p and max{a,c-p)+max{b,d+p) > a+b 

> k. Hence Ik is a submonoid of FIM(X^). Since 

([x(-a,p,b) ]p)“’ - [x(-a-p,-p,b-p)]p and (a+p)+(b-p) - a+b > k, it

follows that Ik is inverse.

(ii) It is trivial that <h^p,...,hkp> Q Ik. Now let

[x(-a,p,b)]p e Ijj-Xd). Then it is easy to see that [x(-a,p,b)]p

= [x(-a,-a,b)]p.[x(0 ,a+p,a+b)]p = ([x(0 ,a,a+b)]p)-1.[x(0 ,a+p,a+b)]p. 

Therefore all we need is to show that for every n > k and every

m e {0 , . . . ,n) we have [x(0 ,m,n)]p e <b1p, . . . ,hjfcp>.

Since [x(0,0,k)]p = (h}h~')p, this is true for n = k. Suppose that

it is true for some n > k and let m e  {0 ,...,n+l).

If m = 0, we have [x(0,m,n+i)]p 

= [x(0 ,l,n)]p.[x(0 ,0 ,n)]p.[x(-l,-l,n-l>]p 

- [x(0 ,l,n)]p.[x(0 ,0 ,n)]p.([x(0 ,1 ,n)]p)-1.
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If m > 0, we have [x(0,m,n+l)]p - [x(0,l,n)]p,[x(0,m-l,n))p.

In any case, we obtain [x(0,m,n+l)]p e <b,p, . , , ,hjcp> and so the 

lemma is proved.

Our next lemma is about a certain type of endomorphism of FIM(Xr).

LEMMA 1.10. Let aQ,b0 e N° and let X e N. Let

$:FIM(X^) — » FIM(X^) be the map defined by ([x(-a,p,b) ]p)$

“ [x(-a0-\a,Xp,bQ+Xb)]p. Then $ is an injective homomorphism.

Proof. The injectivity is obvious. Now let

[x(-a,p,b) ] p, [x(-c,q,d) ]p € FIM(X^). We have

([x(-a,p,b)]p. [x(-c,q,d) ]p)4> - ([x(-max(a,c-p) ,p+q,max{b,p+d}) ]p)<t>

- [x(-a0-Xmax{a,c-p} ,X(p+q) fb0+\max{b,p+d})]p

=■ [x(-max{a0+Xa,a0+Xc-Xp) , \p+\q,max{b Q+\b,b Q+\p+\d)) ]p 

" [x(-a0-Xa,Xp,b0+Xb)]p. [x(-~aQ~\c ,\q,bQ+\d)]p

- ([x(-a,p,b) ]p)3>, ( [x(-c, g,d) ]p)3>. Hence <$ is a homomorphism and the 

lemma is proved.

Finally, we need some facts about diophantine equations. For every 

a e Z\{0}, b e  Z, we denote by a|b the relation *'a divides b". For 

every a,b e N, we denote by (a,b) the greatest common divisor of a and 

b.

LEMMA 1.11 [24,§5,1], Let a,b e N, let c e Z and let y denote the 

diophantine equation ax-by = c in the integer variables x,y. Then

(i) y has solutions if and only if (a,b)tc;

(ii) if (x0,y0) is a solution of y, then the set of solutions of y 

is {(x0+/eb(a,b)_1 ,y0+Jca(a, b)-1) : k e 2).
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2. Classification by isomorphism classes

In this section, we show that intersections of monogenic free 

inverse submonoids of a free inverse monoid must necessarily be 

isomorphic to some particular inverse monoids and we produce %an 

algorithm to determine the respective isomorphism class.

We need some preliminary results, the next lemma following from 

Lemmas 1.7 and 1.8.

LEMMA 2.1. Let u e (XuX" 1 )*\DX and let v e (XuX-1)* be such that 

vp € <up>. Then there exist unique a,b c N° and p e Z such that 

-a < p < b and vp ■= (u~aua+^u~^uP)p. Moreover, p — 0 if and only if 

v e Dx .

For all such u,a,E> and p, we will denote u~aua+^u~^uP by 

u(-a,p,b). It follows from (1.1) and Lemma 1.7 that

[u(-a,p,b)]p.[u(-a',p',b')]p

= [u(-max(a,a1-p},p+p',max{b,b'+p})]p,

([u(-a,p,b)]p)“ 1 = [u(-a~p,-p,b-p)]p.
- 1

By convention, we assume that an expression of the form u Ai
i= o

denotes the empty set.

Now we have

LEMMA 2.2. Let u e (XuX-1)*\D^ and let v e (XuX-1)*. Then 

vp e <up> if and only if there exist a,b e N° and p € Z such that:

(i) -a < p < b;
b-1

(ii) Q(v) = {l)u( u [u1 .Q(u)]i); 
i— a.

(iii) vt = uPi.

Moreover, such a,b and p are unique.
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Proof. First we prove that, for every n e N°,

Q(un) - (Du^u'luiQCu)]!).
i— o

We use induction on n. By our previous convention, the case n - 0

is trivial. Now suppose that it holds for n - k. Then Q(u^+1) - Q(u^.u)

- Q(ufc)u[ufc.Q(u) ] i - {l}u( u [u*.Q(u)]t)u[u&.Q(u)]t
k , I“°- (l}u( u [u1 .Q(u)]i), which proves our assertion. Since

X“ 0
Q(u-1) - [u-1.Q(u)]i, we have that, for every n e N,

Q(u-n) - (?((u-')n) - (l}u(n3'fu-i.Q(u-i)]i) - (l}u(n3 1[u-i-’.Q(u)]t)
_ 1— 0 i— 0

- {l}u( u [u-̂ .QCu)]!).
i— n

By Lemma 2.1, we have vp e <up> if and only if vp - [u(-a,p,b)Jp 

for some a,fa e N° and p e l  such that -a < p < fa. Moreover, such a,fa 

and p are unique. Also, we have vp *= [u(-a,p,fa)]p if and only if

Q(v) - Q(u(-a,p,fa)) and vi - [u(-atp tb)] i . But Q(u(-a,p,b))

- Q(u~auauPu~^uP) — Q(u~aua)uQ(u^u~^)uQ(uP) - Q(u~a)uQ(u^)
f a - i- {l}u( u [u1 .Q(u)]i) and [u(-a,p,b)]i - uPi, so the lemma is proved.
i=*-a

Note that, for every u e (XuX~’t)*\Dy and a,fa e N°, we have either
f a - i  f a - 1a = 6 = 0 or Q(u) £ u [u1 .Q(u)]( or Q(u T) £ u [û -.Q̂ u)]!. Since
i=-a i=-a

u £ 1, we have |Q(u)| > 1 and it follows from Lemma 2.2 that

LEMMA 2.3. Let u,v e (XuX~1)*\Dy. Let a,b,c,d e N° and let 

p,q e Z be such that -a < p < fa and -c < q < <2. Then

(I) Q(u(~a ,p ,b)) - Q(v(-c ,q ,d)) if and only if
fa-i <2-iu [uA.Q(u)]i * u [vJ.Q(v)]t.i=-a J=-c

(ii) [u(-a,p,b)]i = [v(-c,q,d)]t if and only if uPi = v^t.

The following result is a mere computation.
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LEMMA 2.4. Let u e (XuX_1)*\Z)̂  and let v - u(-a,p,b) for some 

a,b e N° and p e N such that -a < p < b, Let w - v(-c,q,d) for some 

c,d e N° and q e 7 such that -c < q < d and c or d is nonzero. Then

wp - [u(-pc-a,pq,pd-p+&)]p.

Proof. Since p € N, we have v /t D% and so <vp> is free by Î inma

1.7. Let c1 - pc+a and d' - pd-p+b. By Lemma 2.3, we only need to

prove that
d-i . d'-i .u [vx.Q(v)]i = u [uJ.Q(u)]t and v?t = uPQi, The second equality is
i—-c J——c
obvious. Since p c N, we have -a < b-1 and so we obtain

u [vx.Q(v)]i - u [uPx.( u [uk.Q(u)})]i 
i^-c i=—c k=-a

d-i b-1 ,
= u ( u [uP1+ic.Q(u) ] ) t. We must show that 

i=-c k=-a
(pi+k: -c < i < d-1 and -a < k < b-1) - {J: -pc-a < J < pd-p+b-1}.

Suppose that -c < i < d-1 and -a < k < b-1. Since p > 0, we have 

-pc < pi < pd-p and so -pc-a < pi+k < pd-p+b-1 .

Conversely, suppose that -pc-a < j < pd-p+b-1. Suppose first that 

j < -pc. Since -c < d-1, we can take i — -c and k — J+pc to satisfy 

the required conditions. The case j > pd-p is dealt similarly, with 

i = d-1 and k * J-pd+p. Finally, suppose that -pc < j < pd-p. There 

exist i,k e Z such that j = pi+k and 0 < k < p. Since -pc < pi+k, we 

have p(c+i) > -k. Since k < p, this yields p(c+i) > 0. Hence i > -c. 

Similarly, pi+k < pd-p yields i < d-1. Since -a < 0 < k < p-1 < b-1, 

the lemma follows.

Now we fix u,v e (ZuZ-1 The discussion of the intersection

<up>n<vp> will require a split into two main cases.
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Case A. (u t.v t) is not a basis.

By Lemma 1.5, there exist w,z e Rx, with z cyclically reduced, and 

r,s € Z such that ut — wzrw-1 and vt — wzsw~*. Since ut.vt * 1 , we 

have r,s * 0. Since <yp> - <7-1P> every y e (XuX"1)*, we can

assume that r,s e N. ■
We consider the following as an equation in the nonnegative 

integer variables (a,b,c,d).

b-i d-i
u [zriw T.Q(u)]t - u [zsJw (2.1)

i— a J— c

By Lemma 2.3, (a,b,c,d) is a solution of (2.1) if and only if

[u(-a,0,b)]p = [v(-c,0,d)]p. It is clear that the trivial solution 

(0 ,0 ,0 ,0) always satisfies (2 .1), since both sides of the equation 

become the empty set. Moreover, a and b are both zero if and only if c 

and d are both zero. If the equation (2.1) has no nontrivial 

solutions, it follows from Lemma 2.3 that <up>o<vp> - (1),

Now assume that (2.1) has nontrivial solutions. The following 

lemma shows how such nontrivial solutions must relate one to each 

other.

LEMMA 2.5. Let (a,,b1,ct,d̂ ) and (a2,b2,c2,d2) be nontrivial 

solutions of (2.1). Then there exist X,p e 2 such that (a 2,b 2,c 2,d 2) 

- (a%+'Ks(r,s)~'i ,b1+jts(r,s)“ 1 ,c1+Xr(r,s)_1 ,d1+/ir(r,s)“1) .

Proof. For every t t (7u7“1)*, let Kt - tic e 2: wz^ e Q(t)}. 

Whenever * JJ, we define =* max(Kf-) and — min(iTt) .

Suppose that (atb,c,d) is a nontrivial solution of (2.1). Thus a

and b are not both zero. By Lemma 2.3, we have [u(-a,0,b)]p

= [v(-c,0,d)]p. Let e = u(-a,0,b). Then 
b-i

Q(e) = u [wzriw  1.Q(u)]t. Since w e Q(u) , we certainly have Ke * 
i=-a
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It is immediate that wzr(k-i)+W*A f Q(e) and so

r(b-l)+Mu < Me. (2.2)
Suppose that wz^* - (wzr*-w~'t)i for some 1 e (-a,..., b-1) and 

t f Q(u). We have [wzr (^“ 1 )w-11] t - [wzr(k-i~-Ov-1wzr*v_11] t

- Wzr(b“1_i)+w«. By maximality of Me, we must have I - b-1. Hence vz^e

- [vzr(k-1 )w-11] t and so we have z^e-r(^“O  - (v-1t)i. By (2.2), and 

since Mu > r > 0 , we have > r(b-l) and so the first letter of

zMe-r(b-i) fs t̂ e first letter of z. Since wz « Jfy, the first letter

of w~ 1 is not the first letter of z and so we have t - wt' for some

t' e Ity. Moreover, t' - z^e~r(b_0  and so Me-r(b-l) < Wu. Therefore,

by (2.2), Me - r(b-l)+Mu. Similarly, Me - s(d-l)+Mv and me - -ra+mu

- -sc+mv.

Hence (a,c) is a solution of the diophantine equation

rx-sy - mu-mv (2.3)

and (b,d) is a solution of the diophantine equation

rx-sy - Mv-Mu+r-s. (2.4)

Since (apC,) and (a2,c2) are both solutions of (2.3), we know by 

Lemma l.ll(ii) that there exists some X c Z such that 

a2 - a1+Xs(r,s)~1 and c2 - c,+Xr(r,s)_1.

Similarly, since (b^,d}) and (b2,d2) are both solutions of (2.4), 

we have b2 - b, +fis(r,s)-1 and d2 - d,+/xr(r, s)-1 for some /x c Z and so 

the lemma is proved.

Now let aQ be the minimum a c N° such that there is a nontrivial 

solution (a,b,c,d) of (2.1) and let bQ be the minimum b e  N° such that 

there is a nontrivial solution (aQ,b,c,d) of (2.1). Thus aQ and b 0 are 

not both zero. By Lemma 2.5, there exist unique cQ,dQ e N° such that 

(aQ,bQtc0,d0) is a nontrivial solution of (2.1). We define 

successively
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T *» [k e N: (aQ,bQ+ks(r,s) 1,cQ,dQ+kr(r,s) i) is a solution 

of (2 .1)};

f F\j{0 } if s(r,s)-1 < bQ and r(r,s)_1 < dQ,
A -  iL r otherwise.

f rain(A) if A * 0,
V “ iL 0 if A - 0 .

o) - max(I e N°: (l-ij)s(r,s)~~1 < b0 and (l-r))r(r,s)~% < d0).

We show that

Ci) = 0 4=̂  A “ (2.5)

Suppose that w — 0. Since 6> > ?/ > 0, it follows that tj - 0. 

Suppose that 0 € A. Then s(r,s)~1 < b0 and r(r,s)-1 < dQ. Hence o) > 1, 

a contradiction. Therefore 0 / A and so, by definition of 77, we must 

have A * p.

Conversely, suppose that A - {S. Then tj - 0. Moreover, since 0 / A, 

we have s(r,s)-1 > bQ or r(r,s)_1 > dQ, Hence od - 0 and (2.5) holds.

Finally, we define gQ - u(-ao,0,bo), and if o> > 0, let

gy. - u(-aQ ,/cs(rts)_1 ,b0+Tjs(r,s)”1) for every fc e (l,...,o)}.

LEMMA 2.6. <up>n<vp> - <gQp, . . . ,gCt)p>.

Proof. Since (a0,b0,cQ,dQ) is a solution of (2.1), it is clear 

that gQp = [v(-c0,0,d0) ]p and so gQp e <up>n<vp>. Suppose that o> > 0. 

By (2.5), A * J3 and so (a0,b0+77s(r,s)-1 ,c0,d0+>jr(r,s)-1) is a solution 

of (2.1). Hence g^p = [v(-c0,/cr(r,s)~1 ,d0+?jr(r,s)-1) ]p and so 

gkP e <up>n<vp> for every k. Therefore <gQp, . . . ,g(t)P> £ <up>n<vp>.

Conversely, let y e <up>n<vp>. We can assume that y * 1. By Lemma 

2.3, we have y - [u(-a,p,b)]p - [v(-c,q,d)]p for some nontrivial

solution (a tb ,c ,d) of (2 .1) and some p,q e Z such that -a < p < b, 

-c < q < d and uPt = v9t . By Lemma 2.5, there exist X,p c Z such that
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(a,b,c,cf) - (a0+Xs(r,s) 1 ,b0+fis(rts) 1 ,cQ+Xr(r,s) 1 ,d0+pr(r,s)"1) . 

Moreover, uPi —  v*7i is equivalent to wzrPw-1 •» wzS(7w-1 , that is, to 

rp - sq. By Lemma 1.11, we have p - fcs(r,s)-1 and q — trCr.s)"1 for 

some t e 2. Thus y - fp, where

f - u(-a0-Xs(r,s)"1,ts(r,s)_1l50+^s(r,s)_1).

Since <yp> - <y ~ %P>, we can assume that t > 0. By the minimality 
of a0, we have X > 0 as well. Let

fi - u(-aQ-Xs(r,s)”1,-Xs(r,s)~1,b0+^s(r,s)“1).

It follows easily that f p  

= [vC-aQ-XrCr.s)-"1 ,~Xr(r,s)-1 ,b0+pr(r,s)"1)]p and so f’p c <up>n<vp>. 

Hence (f1p)~1 c <up>n<vp>, We have

(f'p)-i « [u(-a0,Xs(r,s)_1,&0+(X+/t)s(r,s)-1)]p. (2.6)

By the minimality of b0, we must have

X+p, > 0. (2.7)

Now we must consider several different cases and subcases, 

according to the following diagram.

0) = 0 

to > 0
X+p < 7}

X+p > 7]
t~H+7) < 1 

t-p+7} >  1
fl > 7)

H < 7)

Suppose that to = 0. By (2.5),*we have A = 0 and so X+p < 0. Hence 

ft = -X, by (2.7), and so (f’p)"1 - [u(-a0,Xs(r,s)_1 ,bQ)]p, by (2.6). 

If X > 0, then, since (f'p)-1 e <up>n<vp>, we would have 

s(r,s)"1 < 50, r(r,s)-1 < d0 and so 0 e A, a contradiction. Hence

X = 0 and so f — u(-aQ, ts(r, s)-1 , bQ) . Similarly, we obtain t = 0 and 

so y  = fp  = g 0p.

Now assume that to > 0. Suppose first that X+p, < 17. Then, by (2.7),
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(2.6), (a0,b0+(X+/i)s(r,s)-1,c0,d0+(X+p)r(r,s)~i) is a solution of

(2.1). Hence X+p < 0, It follows that \+p “ 0, by (2.7). Hence, by

(2.6), we have (f'p)-1 - [u(-a„,Xs(r,s)“ 1 ,bQ) ]p. Suppose that X >;0.

Since (fp )""1 e <up>n<vp>, we have 0 c A and so ij - 0, a

contradiction. Hence X - 0. Similarly, we obtain t *■* 0. Thus y - g^p.

Now we assume that % ;

X+/i > if. (2.8)

Since t s ^ s )-1 “ p < b * b0+/is(r, s)-1, then (t-p)s(r,s)“* < bQ. 

Similarly, we obtain (t-p)r(r,s)_1 < dQ, so

t~p+if  < a). (2.9)

Suppose that t-p+if < 1. Then /i+l-yj > t > 0 and by Lemma 2.4, we 

have y = fp ~ [u(-a0-Xs(r,s)“i, ts(r,s)_1 ,b0+ps(r,s)_1) ]p

= [St (-X,t,/i+l-ij)]p.

Now assume that

t -p + i f  > 1. (2.10)

Suppose that

p > if. ( 2 . 1 1 )

If X = p-if = 0, then (2.9) and (2.10) yield 1 < t < « and so

f = u(-a0,ts(r,s)~'1 ,bQ+ifs(r,s)~'t) = gt. Hence y = gtp. Assume that X

or p- 7j is nonzero. Then, by (2.11) and Lemma 2.4, we have 

[ĝ  ( ~ X ] p  “ Eu(->̂ s(-J'»<s)“1"a0, (p-if)s(r,s)~i , (p-l)s(r,s)-1+b0) ]p. 

Hence (g^g^+Wgt-p+if) P

= [u(-Xs(r,s)_1-a0 , (p~ij)s(r, s)-1 , (p-l)s(r,s)-1+b0) ]p 

. [u(-a0, (t-p+ij)s(r,s)-1 ,b0+rjs(r,s)-'1) ]p = fp = y. Thus

y e <£0P SuP>'

Finally, suppose that
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By (2.8) and (2.12), we have 0 < rj-p < X and so we can write 

X - *(»?-f0+6, with k € N and 0 < 6 < rj-p. By (2.9), we have 

rj-p < t-p+t) < o), and so we can define h - 8^-pgb'Sbgrf-pgt-p+ri- We 

claim that hp - fp - y. In fact,

x+»j)‘ " [u(r»l)s(i*.*r!U(t-/‘+’l)s(r,s)H ]t - ut®0%®)'71 »
- f i . Since Q(gf-_/i+t?) - Q(gn-/t). we have Q(h) - Qig^pJgVg^-p)

- QCgrj-pgfi1) • By Lemma 2.4, we have [^-^(-K ,-#c ,0) ]p

- [u(-k (rj-p)s(r ,s)-1-aQ ,-K(rj-p)s(r ,s)~* ,ps(r,s)~1+bQ)]p. By (2.8), we 

obtain ( g ~ K ) p  - [^T?_M(-K,-K,0).g51]P

- [u(-K(rj-/x)s(r,s)~1-a0,-K(rj-/i)s(r,s)-1 ,ps(r,s)~'+bQ) ]p 

. [u(-a0-6s(r,s)_1 ,-6s(r,s)_1 ,b 0+(i)-6)s(r ,s)-' ) ]p

“ [u(-a0-Xs(r,s)_1,-Xs(r,s)_1,bQ+ps(r,s)~')]p - f'p. Hence

Q(h) - Q(f') - Q(f) and so hp - fp - y. Thus y c <g0p, . . . ,g0fi> and the 

lemma is proved.

Now we analyse the structure of the inverse monoid <g0p go>P>‘

For every inverse monoid M, we define /f(’) to be the inverse

monoid obtained by adjoining a new unity to M.

if a) > 0  and rj - 0, 

if o) > 0 and 17 > 0 , 

if a) -  0 .

Proof. Suppose that o) - 0. Then <gQp> - (l,g0p) - {1) ̂ 1) .

Now assume that to > 0. We prove that <g,p.. g<J>P> ~ Since

p < b and (o)-rj)s(r,s)-1 < bQ, we have ps(r,s)-1 < b0+(b+77-o)s(r,s)-1 

and so we can define a map $:<up> — > <up> by 

( [u(-a,p,b) ]p)4> - [u(-a0-as(r,s)_1 ,ps(r,s)_1 ,b0+(b+rj-cj)s(r,s)-1) ]p .

By Lemmas 1.7 and 1.10, with bQ replaced by b0+(Tj-G))s(r,s)-1 , <t> is an 

injective homomorphism. For every k e {!,...,0)}, let - u(0,k,o>).

LEMMA 2.7.

Kg qP * • • • • 8(J)P> ~

L0)

a u>(,)

(!)<')
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Since (h^p)* - gkp, we have <h,p h0)p> - <g,p g ^ .  But, by

Lemmas 1.7 and 1.9, we have <h^p, . . . ,h(j»  = and so <g,p, . . . ,g(j3>

* V
Suppose that 17 - 0. Then g 0p - giPtetP)” 1 and so

80P « <^iP g0)P:>- Therefore <g0p,... ,g0)p> « !„.

Now suppose that 17 > 0. Then lQ(g0)l < lQ(^i> I for every

i < {l,...,a>} and so g0p / <g,P,... .g^». Let k c We

certainly have g0p.gkp - gkp. Supppose that o> > 77. Then sCr.s)” 1 < b0 

and r(r,s)_1 < dQ. Thus 0 e A and so 17 - 0, a contradiction. Hence 

o) < rj and so gkp.g0p - g^p. Therefore <g0p g ^  - <g,p, . . . ,g0)p> ( 1 >

“ C!„)<’).

Now we produce an algorithm which determines the values of 17 and o>
9

for every u,v e (Xu-T-1 )*\D^ in case A.

Let 0 - max{ |f | : f c Q(u)uQ(v)} and let t - 4/3(r,s)-1 |z|_1 .

LEMMA 2.8. If (2.1) has nontrivial solutions, then a0+bQ < ft or 

co+£*o ^

Proof. Suppose that a0+bQ > and c0+dQ > . Since wzr t Q(u), we

have r|z| < 0. Hence 2r(r,s)-1 < . Similarly, 2s(r,s)-1 < t. We prove

that either

s(r,s)_1 < a0 and r(r,s)_1 < cQ 

or (2.13)

s(r,s)-1 < bQ and r(r,s)-1 < dQ.

Suppose that (2.13) is false. Since aQ+b0 > > 2s(r,s)-1, we can

assume, without loss of generality, that s(r,s)-1 > aQ and 

r(r,s)_1 > dQ. Since (aQ,bQ,cQ,dQ) is a solution of (2.1) and 

w 6 Q(u), we have zr(k0~ O  - (zsJw~yv')i for some j e {-cQ, . . . ,dQ-l) 

and v' c Q(v). Hence zr(k0-i)-sj — (w-1v')t and so |z|.|r(bQ-i)-sJ|
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< 2/3. But r(bQ-i)-sj > r(fi-a0)-sd0 > rj}-rs(r,s)~1-rs(r,s)~1 

» r[fi-2s(r,s)-1] - r(r.s)"1[(r,s)fc-2s] > (r,s)fi-2s and so

\z\(r,s)fi-2|z|s < \z\. |r(b0"l)”sj| < 2/8. Therefore lz\(r,s)1i
-A’':',

< 2/3+2|zis < 4|3 and so 1> < t, a contradiction. Thus (2.13) holds.

Now we will assume that s(r,s)” 1 < bQ and r(r,s)“ 1 < d0, the other 

case being completely similar. Let b̂  - b0-s(rfs)-1 . and

d1 - dQ-rCr.s)”1. We shall prove that (a^b, .Cp.d,) is a solution of

(2 .1).

Let i c {-aQ,...,5,-1} and let u’ e Q(u). We want to show that 
d,-i

(zrxw 1u*)i c u [zsJw 1Q(v)]i. Since 5, < bQ, (zriû "lu*)i
J=~co

= (zsJw~'lvi ) i for some j e {-cQt . , , ,dQ-1 } and v’ e Q(v). If j < d, ,

there is nothing else to prove, so we suppose that j > d,. But there

exist jf c {~c0, , , , ,dp-1} and vtt e Q(v) such that

(zr[i+s(r,s) ]v~1u')t ™ (z5J 1 w—1v")i.

Suppose that J 1 < -c0+r(r, s)”1. It follows that

[zrs(ris)^+sjfir-V  ] i “ [zrs(r»s) 1+r^w-1 u' ] i — (zsJ,w~~1vn)i and so 

zrs(r, s) /i+sj~-sj1 „ v"v,-1w) t. Therefore

\z\,|rs(r,s)-1+sj-sj1| < |w|+30. But rs(rts)~'+sj-sj'

> rs(r,s)~1+sd0-rs(r,s)-1+sc0*~rs(rts)_1 = s(d0+cQ)-rs(r,s)-1

> sfi-rs(r,s)-1 > (r,s)t~r, so we obtain Iz|[(r,s)1i-r]

< | z | . |rs(r ,s)~ 1 +sj—sj1 | < |w|+3(0. Hence |zi(r,s)fi < jz|r+|w|+3/3 < 4/3 

and so ii < 1}, a contradiction.

Thus j' > -cQ+r(r,s)-1 . Let j" -=■ J'-r(r,s)~1 . Then

J" e {~c ....d,-1} and (zr-*w-1u')i = [zsJ’_rs(r»s) ] i

= (zsJMw-1 v")i . Thus 'u [zr^w_1Q(u)]t £ [zsJw-1Q(v)]i. The
i— a* J=~co

converse inclusion is proved similarly and so (a0,b,,c0,d,) is a 

solution of (2.1). Since &0+bQ >  ̂> 2s(r,s)~1, we have a0+b, > 0 and 

so (a0>b, ,c0,d,) is nontrivial. This contradicts the minimality of b0 

and so we must have a0+50 <  ̂or cQ+dQ < Ii.
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We can now establish an algorithm for effectively determining the 

nature of the intersection <up>r*<vp>. By Lemma 2.8, we only need to 

test a finite number of values (a,5,c,d) in order to determine whether

(2 .1) has nontrivial solutions or not and, if the answer is positive, 

which one is the minimal (a0,b0,c0,d0). Now we will show how we can 

compute ij.

Suppose that vf > 0. Moreover, suppose that aQ+b 0+rjs(r,s)~* > h and 

c 0+d0+ijr(r, s)-t > t. Since tj > 0, s(r,s)_1 < b Q+ijs(r ,s)~' and

r(r,s)-1 < d0+7jr(r,s)-1 . Now we can proceed as in the proof of Lemma

2 .8 , replacing respectively bQ by b0+rjs(r,s)-1 and dQ by d 0+r]r(r ,s)~'. 

It follows that (aQ,bQ+(if-l)s(r,s)~' ,c0,d0+(rj-l)r(r,s)-1) is a 

solution of (2.1). If r; > 1, this implies ij-l c A, contradiction. 

Hence tj - 1.

Therefore, for every u,v e (XuX~*)*\Dj *n Case A, we have that one 

of the following conditions is satisfied:

V “ o.
V - 1.
a0+b0+ifs(r,s)-' < *,

c0+d0+T7r(r,s)-1 < *.

Whatever the case, this means that we only need to evaluate a 

finite set of values (a ,b ,c ,d) in order to obtain rj. Now u> follows by 

a simple computation and so we can determine the isomorphism class of

<up>«<vp>.

Case B. (u t ,v t ) is a basis.

LEMMA 2.9. |<up>n<vp>| < 2.

Proof. Consider the following as an equation on the nonnegative 

integer variables (a ,b,c,d).
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b-i d-t
u [u1Q(u> ] i - u [vJQ(v)]i, (2.14)i=-a j— c

Since (uir.vx) is a basis in FG(X), we have <ux>n<vx> « 11) and so 

<up>n<vp> must be a semilattice. By Lemma 2.2, we only need to show 

that
b-1 •

|{ u [u-^QCu)]^ (atb,c,d) is a solution of (2.14) }| < 2. (2.15)
i— a

Clearly, (0,0,0,0) is always a solution 6f (2.14). Suppose that

(a0,b0,c0,d0) is a solution of (2.14) with a0+b0 > 1 and c0+d0 >1.

We define a sequence (fî )̂  on {-1,+1} as follows.
b0-iLet e1 be such that (ui)e4 t u [uAQ(u)]i. There exist w € Q(v) and
i~-a0

k e (—co.... d0"l) such that (ui)e* “ [v^wji. Thus [v-^(ut)e4 ]i e Q(v) .

Since c0+d0 > 1, there exists e2 t. {-1,+1} such that (vea .ue-f )t
^ q™ 1 . I d0-i .
e u [vJv~K(ut )e4 ] i £ u [vJQ(v)]i. Similarly, since a0+b0 > 1, we

J- c° b0-, .can find e3 e {-1,1} with (u€s . ve* ,ue4 ) i o [u1Q(u)]i. Continuing
b0-i .this process, since u [uAQ(u)]i is finite we must find some odd
i—

m,n € N such that m < n and (u^.v6™-* , ,.ue4)i - (ue«.vEn-i .,.ue4)i. 

Hence (ue«. . .v^h )t * 1 and so (u t ) 6" . . . (vx)6*"̂  - 1. Since {ux,vx} 

is a basis, this is impossible and so any nontrivial solution 

(a,b,c,d) of (2.14) must satisfy either a+b - 1 or c+d * 1.

Suppose that (2.14) has two nontrivial solutions (aQ,bQ,cQ,dQ) 

and (a1,bt,c1, d s u c h  that
b1--i . b0- 1u [uAQ(u)]t # u [u1Q(u)]i. (2.16)i=-a„ i=~ac

Let a1 = maxtSp.a,}, b* = maxtbg,^}, c' - maxICojC,] and 

d' = max{dQtdy). It follows easily that (a'tb',c',d') is a nontrivial 

solution of (2.14).

Suppose that a'+b* = 1. Then a 0 = at and bQ — b1 , which

contradicts (2.16). Suppose that a'+b1 > 1. Then c'+d' = 1 and so

c0 = c, and dQ = d1 . Clearly, this also leads to the same 

contradiction. Hence (2.15) holds and the lemma is proved.
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Obviously, we can always compute <up>r*<vp> for all u,v in this 

case.

From Lemmas 2.6, 2.7 and 2.9 we now obtain

THEOREM 2.10. Let u,v e (XoJ-1 )*\Dj. Then <up>r»<vp> is Isomorphic 

to one of the following: 

f  Ifc, k e N,
(Ik)C>), k « N,
(1),

(!)(').

tA- M iVAyfr 1

3. A few examples

In this section we will prove the existence of intersections

<up>n<vp> belonging to all isomorphism classes considered in Theorem 

2 .10.

LEMMA 3.1. Let X - {x,y}. Let k e N and let u,v t (.Xu*-1)* be

such that Q(u) - {1 ,x, . . . ,x^+1 ,xy,x^+1y) , ui - x, Q(v) - (l,x,xy) and

vi - x. Then <up>r»<vp> - 1̂ .

Proof. Consider the equation
b-^ d-i .u [xzQ(u)]i - u [xJQ(vj]t (3.1)
1— a j— c

on the nonnegative integer variables (a,b,c,d). It is easy to see that

(0,/c,0,2k) is a solution of (3.1); in fact,
k-i . , , 2 /c— 1u [xzQ(u)]t - {1 ,x, . . . ,x2k,xy,x2y  x2ky) - u [xJQ(v)]t. Hence
i-o j-o
aQ - 0 and bQ < k. Suppose that bQ < k. Since aQ - 0 and u / Dy, we

, b0-i . , bQ-i
have bQ > 0. We have that xky / u [x1Q(u)]t and xk+}y c u [x1Q(u)]i.

, d0-i . . dQ-iHowever, x*c+,y e u [xJQ(v)]t implies dQ > k and so x*y t u [xdQ(v)]t.
j-o j-o
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This is a contradiction, so we must have bQ - k. Since s(r,s)_1 - 1

< bQ and r(r,s)_1 - 1 < dQ, we have 0 e A. Hence ij - 0 and a> - k. By

Lemmas 2.6 and 2.7, we have <up>n<vp> == Î .

LEMMA 3.2. Let J - [x,y). Let k e N and let u,v < (XoX~ 1)*'be 

such that Q(u) - Q(v) V ' ‘
Vft-'r ^

- {x1: i e {0 ,..., 6k+4)} u [x2Jy: J e {0 ,... ,3k+2)) u (xy,x6k+3y),

ut - x 2 and vt - x3. Then <up>n<vp> * (Ifc)̂ 1).

Proof. Consider the equation
5-i d-1
u [x2iQ(u)]i - u [x3Jq(v)]i (3.2)i— a j— c

on the nonnegative integer variables (a,b,c,d). Since Q(u) - Q(v) ,

(0,1,0,1) is a solution, so aQ - 0 and bQ - 1. Since s(r,s)~' - 3 > b0, 

we have 0 / A.

We show that (0,l+3k,0,l+2k) is a solution of (3.2). In fact,

u [x2*Q(u)]t - (l,x x 12^+4,y,xy....x12^+4y) - u [x3JQ(v)]i.
i-o j-o
Hence k e A. Let k' c (l,...,k-l) and suppose that (0,l+3k’,0,l+2k') is

a solution of (3.2). Since x 3x6̂ -2y - x6^+1y, we have
2/C * 3/C *

xGk+^y c w [x3J*Q(v)]t. Hence x 6̂ +1y c u [x2-*Q(u)]t and this clearly 
j-o i-o

implies k' > k, contradiction. Hence rj - k. Now

o) - max{l 6 N°: 3(1-k) < 1 and 2(I-k) < 1} - k. By Lemmas 2.6 and 2.7,

we have <up>r»<vp> - (I^)(1).

Just for the sake of completeness, we mention the following 

trivial examples, where X - {x,y}.

Let u,v € (XuX-1)* be such that Q(u) - {l,x}, ut - x, Q(v) - {l,y} 

and vt - y. Then <up>r»<vp> - {1}.

Now let u,v e (XuX-1)* be such that Q(u) - Q(v) - {l,x,y), ut - x

and vt - y. Then <up>o<vp> - {l,(uu-1)p} = {l}^1).
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Therefore, none of the isomorphism classes mentioned in Theorem 

2,10 is superfluous. In contrast with Lemmas 1.1 and 1.2, we can now 

state the following result.

COROLLARY 3.3. The intersection of two monogenic free inverse 

submonoids of a free inverse monoid is not necessarily free.

In this section we consider a particular case of the situation 

discussed in section 2 , yielding simple necessary and sufficient 

conditions for the occurrence of each possible isomorphism class.

We suppose that u,v c (XuX-1 )*V?j are such that up,vp e <wp> for 
some w e (XuX~')*\Dx* Consistently with the notation of Lemma 2.5, we 
assume that u - w(mu,r,Mu) and v - w(mv,s,Mv). As in previous cases, 
we can restrict ourselves to the case r,s > 0. Moreover, by Lemma 1.7,
we can assume that w - x e X. Since ut - xr and vt - xst we are
necessarily in case A. Further, we have Q(u) — (x®^, . . . ,x^} and
Q(v) - {x®v,...,x^v}. Hence (2.1) is equivalent to
u [xri{xmu , . . . ,x^l) ] i - u [xsJ{xPv ,.. . ,x^v} ] i. Now it is clear that 

i— a j— c
the nontrivial solutions of (2 .1) are exactly the solutions of

where a,b,c,d e N° and a+b, c+d > 0 .

This is a system of diophantine equations and so, by

Lemma l.ll(i), (4.1) has solutions if and only if (r,s) | (Enu“mv) and 

(r,s)|(Mu-Mv+s~r),

Now assume that (4.1) has solutions. Let (aQ ,bQ ,cQ ,dQ) be defined 

as in section 2. By Lemma l.ll(ii), (aQ,bQ+ks(r,s)~1,c0,dQ+fcr(r,s)-1)

4. The rank 1 case

(4.1)
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is a solution of (4,1) for every k e N. Hence A ^ 0, and so, by (2.5), 

0) > 0 .

Suppose that 77 > 1. By Lemma 1.11(11),

(a0,50+(ij-l)s(r(s)"1 ,c0,d0+(^-l)r(r,s)-’,) is a solution of (4 .1), end 

since 17 > 1, this implies tj-1 e A, contradiction. Thus y < 1.

Since A * 0, we have a > 1, by (2.5). Suppose that 0 > 1. We have 

(w-^)s(r,s)“ 1 < b0 and (cJ”^)r(r,s)“ 1 < dQ. But <*>-17 > «-l > 1, so O'* A 

and 17 - 0. Since 0 > 1, it follows that

(a0 ,&0-s(r,s)_1 >c0,d0-“r(r,s)~1) is a solution of (4.1), which

contradicts the minimality of bQ, Thus « - 1.

When does 17 - 0. occur? Suppose that 17- 0 . Then s(r,s)“ 1 < bQ and

r(r,s)-1 < dQ. Considering (4.1) as an equation on (N0)4,

(a0,b0-s(r,s)"_1 ,c0,d0-r(r,s)_1) would be a solution, by 

Lemma l.ll(ii). However, by the minimality of bQ, this is not a 

solution of (4.1) and so a 0+b0-s(r,s)-1 < 0 or c 0+d0-r(r,s)” 1 < 0. The 

other case being dual, we can assume that a 0+b0-s(r,s)-1 < 0. Since 

aQ, Z>0-s(r,s)-1 > 0, this is equivalent to a0 — 0 and bQ - s(r,s)” 1 

and therefore to

f  sc 0 ”  mv~mu

\ s[d0-r(r,s)_1] - Mu-Wv+s-r.

But this is equivalent to s 1 (mv-mu) > 0 and s 1 (Mu-/fv+s-r) > 0.

Considering also the dual case, Lemmas 2.6 and 2.7 yield

THEOREM 4.1. Let w e (XuX~1) *\J>y and let mu,r ,Mu,mv,s ,MV e Z with 

mu < 0 < r < Mu and mv < 0 < s < Mv, Let u - w(mu,r,Mu) and

v - w(mv,s ,MV) . Then <up>n<vp> is isomorphic to

f (1 ) If (r,s)/(rav-inu) or (r, s)f (Mu-Mv+s-r),

^ if si(mv-mu) > 0 and s | (/fu~Mv+s-r) > 0 , or dual,

I (1 ^ ( 0  otherwise.



43

5. The finitely generated problem

In this section we discuss the second of the problems stated in 

Section 1. The following result follows from Theorem 2.10. v

THEOREM 5.1. Let u,v e (J?uX“1)*. Then <up>n<vp> is finitely 

generated.

This theorem cannot be generalized to the case of non-monogenic 

free inverse submonoids of a free inverse monoid, as we show next.

Let X = {x,y,z} and let u1>u2,v1,v2 e (XuX-1 )* be such that

QCu,) “ {1 ,z), Uji - z]

Q(u2) - {1 ,x ,xy,xyx,xyxy}, u2i - xyxy;

Q(vt) - {l,x,xy,xyx,z_1}, v,i » xyx;

Q(v2) - {l,y,yx,yxy,yxyx,yxyxy}, v2i - yxyx.

Then we have

Q(u~') - {l,z“1}, - z~1;

QCu^1) = d ,/"1 ,y~1x“i ,y"ix-iy~^ .y-^-’y-’x-^}, 

u~ 1i = y-1x-1y-1x- 1,

Q(vY1) = 11 tX” 1 ̂ " ’y" 1 ,x-1y_1x” 1 ,x”1y"1x'_1z“1},

V7 1l = x-1y~1x_1;

QCV7 1) - (1 1yix- 1 ,x~ 1 y- 1 ,x~1y~1x~ 1 ,x“ 1 y~ 1 x“ 1 y- 1 } , 

v^1t = x-1y~1x“1y“1.

LEMMA 5.2.

(i) {UjpjUjp} is a basis;

(ii) {v1p,v2p} is a basis.
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Proof. (i) We show that i^p and u2p satisfy the conditions of 

Lemma 1,6. Obviously, {u1p,u2p)n{uYlp.u'21P) " 0. Let

u € (u, .û 1 ,u2 jU"1} and suppose that ut e Q(w-t.. -ŵ ) , with 

wi c (u,,u^1,u2.u"1} and tf£+1p * wj'p for every i.

Suppose that ut / Q(v,). Then we have ut € [w1,. ,w^Q(w^+1) ] i for 

some i > 1 and so (wj1.. .v^u) t e Q(w£+1). Since u * w 1 and 

wi+\ 54 WI1 * it: follows that (wj1.. .Vpu) t - (wj1 e) ... (vj1t) <ut) , and 

so (wj1t)...(w^1t)(ut) c Q(wi+1). Since i > 1, this is clearly

impossible. Hence ut e QCWj). But this implies w, — u and so, by 

Lemma 1.6, {u1p,u2p} is a basis.

(ii) Again, we use Lemma 1.6. We clearly have

{v1p,v2p}n{v^pp,v^np) “ P* By Lemma 1.5, we have that {v,ir,v2ir} is a

basis.

We have z~y e Q(vf). Suppose that z” 1 e Q(w1...wn), with 

wi € (vi »V7 1 *v 2 »v21 ̂ anc* wi+-tP 54 vi1P f°r every i. We prove that 
v, - wt. Suppose that z~ 1 / QCw,). Then z" 1 e [w1. . .w^Q(wi+1) ] t for 

some i > 1. Suppose that V £+1 - vx . Since z / £ ((w, . . .vj;) t) , then we 

have (w,...*^)! - 1 and so (w,*-) . . . (w^x) - 1. Since i > 1 and

{v1T,v2r} is a basis, this is a contradiction. Hence w^+1 2 vt, but 

then we must have w^+1 - v^ 1 and z" 1 - (w,. . .wj;x~1y“1x“1z-1) t . Hence 

(wt...Wj;)t » xyx - v,t and so (w1 r). . . (w^x) - v,*-. Since is

a basis, this yields i - 1 and w, - v1 , a contradiction. Hence

z~ 1 e Q(vt) and so vt - w1.

We have x-ly-1x-1z-1 € <?(v71)- Supposing that

x“1y"1x"1z“ 1 € <?(Wj . . .wn), we prove that v^ 1 >= v, by a completely 

s imilar argument.

Now let p = xyx and q = yxyx. For j e (1,2} and e e {-1,+1}, let

Q 1 (vj) = {g e Q(vJ): gx e <pr,qir>). A simple computation leads to

Q'(v,) - {l,p},

Q'(v7') = (l,p-1),
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Q*(v2) - {1 ,q,qp 1,q2p 1},

Q'Cv"1) - {1 ,p~},q~',qp~').

We have q e Q(v.). Suppose that q c Q(w....wn). We show that
A > '2̂  . •w, - v.. Suppose that w. * v_. Then <7 e [v,.. .v<Q(Vf..) 11 for some

Xr
i > 1. It follows easily that we must have q - (v,.. .w^g) 1 for sbme

g c Q,(vi+1)- Hence g - (vj1...W7 1q)1. Since we are assuming that

wt t * q, and {pr,qv} is a basis, we have that g, when expressed as a

reduced word on {p,p-1 ,q,q-1), must have length superior to 1 and have

q as its final letter. But no such word exists in Q(vj+1), whatever

wi+1 is, so w1 - v2.

We take q-1 e Q(v~1) and the case q-1 € Q(w,...wn) is developed in 

a similar way.

Thus, by Lemma 1.6, {Vjp.Vjp} is a basis.

Now we prove

LEMMA 5.3. <u1p,u2p>n<v1p,v2p> is not finitely generated.

Proof. For every n e N, let wn - u7 ’u1u*2+1 and tn - v,v^. Since

Q(vn) - Q(u7 1u1 )uQ(u”+1) - {l.r’M  u [u|.Q(u2)]()i- 0
- (1 ,z_1} u {1 , x , xy, xyx (xy) 2n+1x, (xy) 212+2}

- {l,z_1,x ,xy,xyx,...,(xy)2n+1x,(xy)2n+2)

- {l,z-1 ,x ,xy,xyx}u{xyx,xyxy, . . . , (xy) 2n+1x, (xy) 2*2+2}
*2-1- Q(v,)u( u [v1v^.Q(v2) ] 1 - Q(tn) ,♦ we have (wnwn’)p - (tn^nMp-
k-o

Let n e N. We show that

c (Xu*-1)*\Dy: gp c <u1p,u2p>n<v,p,v2p> (5.1)

and Q(g) £ Q(wn).

Suppose that there exists such g. Let gp = (P1--*Pm)P» with 

Pi c [v^,v~',v2,v~') for all i. Suppose that Pi 6 {Vj.v^1} for all i.
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Then gr c <(yxyx)ir>. Further, since gp e <u%p,u2p>, we have 

gr e <zr, (xyxy) r>. It is immediate that <(yxyx)v>r%<zr, (xyxy)r> — (1J, 

so gr — 1 and g e By, a contradiction. Therefore we can define

k « max(i e {1 m): pi - v, or pi - V7 1}. Since Q(g) £ Q(vn) , Jwe

have [p, . . .Pk-tQ(pic)]i £Q(vn).

Suppose first that p^ - v,. Then z“1 e Q(p&) and . so 

(Pi • • *Pk-t) * “ 1. Now suppose that p^ - V 71. Then x~1y~,x'_1z“1 e QCp/c) 

and so (p, . . .pjc_1) t - xyx. - -

Whatever case arises, we have gr — (p, . . >pm)r

" (Pi • • -P/c-iMPfc* • -Pm)* e {1, (xyx)*} .<(yxyx)*->. Since gp e <u^p,u2p>, 

we have gir € <zx, (xyxy)*> as well. But

<z*,(xyxy)*>n({l,(xyx)*}.<(yxyx)*>) = {1} and so we have reached a 

contradiction. Thus (5.1) holds.

Now suppose that <u1p,u2p>n<v1p,v2p> - <f,p,...,fsp> for some

fr1 , . . ,fs e (XuX~})*. Let n e N and suppose that (^nwn^^P “ ••■hr)P»

where every hj; is either fj^ or fj} for some j_£ e {l,...,s). Suppose 

that hi £ Dy for some i e {l,...,r}. Let i0 be the minimum of such i. 

Then Q(hj^) £ Q(vn), which contradicts (5.1). Denoting 

{fjp: j e {1,...,s) and fj e Dy) by K t we obtain

{(wnw^’)p: n e N) £ <K>. Since <K> is finite, this is impossible and 

so <u1p,u2p>n<v1p,v2p> is not finitely generated.

Thus we obtain the following result.

THEOREM 5.4. There exist finitely generated free inverse 

submonoids of a free inverse monoid whose intersection is not finitely 

generated.
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CHAPTER III

THE SEMILATTICE E[FIM(X)]

1. Preliminaries

In this section we introduce some concepts in semilattice theory 

and we relate them to E[FIM(X)].

Let £ be a semilattice. Let e e E, We say that e is irreducible 

if, for every f,g e E,

e «* fg # e — f or e — g.

The set of all irreducibles of E is denoted by Irr(E).

We say that e is prime if, for every f,g e E ,

e > fg ^ e > f or e > g.

LEMMA 1.1. Let E be a semilattice and let e € E. Then 

e prime ^ e irreducible.

Proof. Suppose that e is prime and suppose that e = fg for some 

f,g e E. Then e < f and e < g. Further, e > fg and so, since e is 

prime, we have e > f or e > g. Hence e = f or e = g. Thus e is 

irreducible.

The semilattice E is said to be a unique factorization semilattice
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(UFS) if

(i) E is generated by Irr(E);

(ii) every irreducible is prime.

All these concepts are inspired by well-known concepts

integral domains [2,§5.3].

We need some results on UFSs.

LEMMA 1.2. Let E denote a UFS. Let e,,.. .en,f,,. .. ,fm € Irr(E) be 

such that e,...en - f,...fm. Then, for every i e {1,. . . ,n), there 

exists j e {l,...,m} such that e± > fj.

Proof. Let i c (l,...,n). Clearly, e± > f y...fm. Since E is a 

UFS, e± is prime and an elementary induction yields e^ > fj for some 

j e [ 1  m ) .

LEMMA 1.3. Let E denote a UFS and let e c E. Then

(i) Irr(Ee) - e.Irr(E);

(ii) Ee is a UFS.

Proof. (i) Let f e Irr(Ee). Since E is a UFS, there exist 

S\ »•••*8n c Irr(E) such that f - gy...gn . Let I be minimal among the 

nonempty subsets of (l,...,n) with respect to f - e IT g±. Suppose that

f / Irr(Ee), a contradiction. Hence |I| - 1 and so f t  e.Irr(E).

Conversely, let g c Irr(E) and suppose that eg - ff' for some 

f,f' f Ee. We have e > f > eg and e > f' > eg. But g > ff' and since E 

is a UFS, g is prime, so g > f or g > f' . We can assume that g > f. 

Hence eg > f and so eg - f. Thus eg c Irr(Ee).

(ii) Let f 6 Ee. Since E is a UFS, there exist g lf...,gn e Irr(E) 

such that f = g,...gn. Therefore f « ef - eg, . . .gn = (eg,) . . . (egn) . By

i d
III > 1. Since eg^ > f for every i e I and f - II eg^, we obtain

i d
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(i), egi e Irr(Ee) for every i e Thus Ee is generated by

Irr(Ee).

Now let h e Irr(Ee) and let a,b e Ee. Suppose that h > ab. By (i), 

we have h - eg for some g e Irr(E). Hence g > ab and so, since g is

prime, g > a or g > b. Ve can assume that g > a. Since e > a, we have

h - eg > a. Thus h is prime and the lemma is proved.
’ 0*“ \

* ' ■

We say that a semilattice E is upper finite if the sets

{f e E: f > e) are finite for all e e E.

The next lemma states some properties of £[FI/f(X)].

LEMMA 1.4. Let X be a nonempty set and let E - E[FIM(X)]. Then

(i) Irr(E) - {(w_1)p: w e Rx );

(Ii) E is a UFS;

(Hi) E is upper finite.

Proof. Let ep e Irr(E). Suppose that Q(e) - {u1,...,uJJ} £ Rx. We 

can write ep - (uyu~’l)p. . . (unu^)p. Since ep e Irr(E), we have

ep - (u^uj')p for some i e (l,...,n). Therefore

Irr(E) £ {(ww_1)p: w e ify).

Now suppose that w e Rx . We prove that (wv_1)p is prime. Suppose 

that (ww_1)p > ep.fp for some e,f e Dj. Then

Q(w) - Q(ww-1) £ Q(ef) - Q(e)uQ(f). Hence w e Q(e)uQ(f). We can assume 

that w t Q(e). But Q(e) is left closed and Q(w) - {w' € w' <2 »

therefore Q(w) £ Q(e) and (ww-1)p > ep. Hence (ww_1)p is prime.

By Lemma 1.1, this implies (wv-1)p irreducible and so (i) is 

proved. Moreover, it follows that every irreducible of E is prime. By

(i), Irr(E) generates E and so E is a UFS.

Since fp > ep implies Q(f) £ Q(e) for every e,f e Dx , it follows 

easily that E is upper finite.
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The next result is immediate.

LEMMA 1.5. Let X be a nonempty set and let w e Fy\(l). Then

In this section we shall obtain necessary and sufficient 

conditions for two principal ideals of E[FIM(X)] to be isomorphic.

LEMMA 2.1. Let X be a nonempty set and let E — E[FIM(X)]. Let 

e c Dy. Then

Proof. We assume that X is finite, the other case being obvious. 

We use induction on lQ(e)|.

Suppose that lQ(e)| - 1. Then e - 1 and so

Cov(ep) - {(xx-1)p: x c XuX-1}. Hence |Cov(e) | - 2\X\ and the lemma

holds.

Now suppose that the lemma holds for every f e Dy such that

|Q(f)l < n, with n e N. Let e e Dy be such that lQ(e) | - n+1. Since

lQ(e) | > 1 , there exists some v c Q(e)\(l) such that v is an extremal

vertex of MT(e) . Let y e JTuX-1 denote the last letter of v. Let

e' e Dy and suppose that e'p 6 Cov(ep). Since lQ(e')\Q(e)| - 1, we can 

define teip to be the single element of Q(e')\Q(e). Moreover, there

exist unique ie«p c Q(e) and xe> p e .Xu*-1 such that (ie'p »xe'p»te'p)

{e 6 E[FIM(X)]: e}- (ww 1)p} - [(wQwQ')p), where w Q Is the maximal

proper prefix of w.

2. Principal Ideals

\Cov(ep)|
2|Q(e)|(|X|-l)+2 if X is finite

iXi if X is infinite.
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is an edge of MT(e'). We define A - {e'p c Cov(ep) : ieip - v) and 

B - [Cov(ep)]\A.

Since v is extremal in MT(e) and 7 is the last letter of v, we 

have A - {e'p: e' € Zty and Q(e') - Q(e)u{vx), x c (XuJ-1)

Hence |A| - 2|J|-1.

Since v is extremal in KT(e) and v * 1, there exists e0 t 

that Q(e0) - Q(e)\(v). We define a map 0:B — * Cov(eQp) as 

Suppose that e'p e B. Then v is still an extremal vertex of MT(e') and 

so there exists ej, e D7 with Q(eJ,) - Q(e')\{v). It is clear that 

e’0p e Cov(e0p) and so we can define (e'p)f3 - eoP- Moreover,0 is

injective and [Cov(e0p)]\B0 - {ep}. Hence |B| - |<7ov(e0p)|-1. Using

the induction hypothesis, we obtain |B| - 2|Q(e0)|(|7|-l)+2-l

- 2n(|7|-1)+1. Thus |Cov(ep)| - |A|+|B| - 2|7|-l+2n(|7|-1)+1

- 2(n+l)(1 7|-l)+2 - 2|Q(e)1(|J|-l)+2 and the result follows by

induction.

We must introduce some new concepts and notation.

Let e c E - £[EIM(7)] and let m - |e|. For all k  e N°, we define
Irr^^CFe) - {u c Irr(£e): |u| - m + k ). Surely, Irr(Ee) - u Irr^^Ee).Je>o
Moreover, Irrm(Ee) - {e} and Irr^+^Ee) - Cov(e).

For every Jc c N°, we define a map

6e,Jc+i :Irrro+lc+i (£e> — ♦ IrrnH-k(fe) as follows. Let g c (Ee) . By
Lemmas 1.3 (i) and 1.5, there exists a unique h e Irr^^iEe) such that 

g ̂  h. We define - h.

Obviously, we have a bijection

fe,/c:Irrm+k(Ee) — > [Irrm+k+i <£’e)]Aer(5e,k+i> defined by

8^e,k “ £5e]k+i- It: *s easY to see that, for every g e Irr^^Ee), we 

have

2|7|-1 if 7 is finite
(2.1)

|7| if 7 is infinite.

follows
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Now we obtain a criterion for isomorphism.

LEMMA 2.2. Let X be a nonempty set and let E - E[FIM(X)]. Let 

e,f e E. Then

have e<l> - f . Let e' e Cov(e). Since $ is injective, we have e'4> < f. 

Suppose that e'<J> < f* < f for some f' e Ef. Let e" - f'<t>-1. It follows 

easily that e' < e" < e, in contradiction with e* c Cov(e). Hence no 

such f 1 exists and so e'4> e Cov(f). Thus [Cov(e)]<t> £ Cov(f).

Similarly, we obtain [<7ov(f) ]<J>_1 £ Cov(e). Hence [Cov(e)]<l> - Cov(f) 

and so \Cov(e)| - |Cov(f)|. .

Conversely, suppose that |Cov(e)| - |Cov(f)|. Suppose that m - |e| 

and n - |f|. For every k t N°, we define a bijection 

PkiIrrm+iciEe) — > Irrn+fc(Ef) as follows.

Consider k - 0. Since Irrm(Ee) - {e} and Irrn(Ef) - (f), we define
ey>0 “ •

Now suppose that is defined for some k e N°. Let

h e IrrnH.̂ (Ee) . Suppose that k - 0. We have l^e.k* “ |Cov(e) |

- |Cov(f)| - Suppose now that k > 0. Then, by (2.1), we

obtain lh!e - \hp^f as well. Whatever the case, we can define a 

bijection ^h :̂ e  ,k — * h<Pk̂ f k f°r every ^ f ^rrm+k(^e)*

We define ^ V IrrnH-k+i (£e> — > Irrn+k+1(Ef) by gy>k+1 - gy£h , where 

h - g6e,k+i- Next, we define <p:Irr(Ee) — ■> Irr(Ef) by gp - gy?/c, w^ere 

k - |g|-m. It is immediate that y? is a bijection.

We prove that, for every g,h c Irr(Ee),

Suppose that g ̂  h. We have h c Irr^^iEe) , g e ^rrm+k+1 (Ee) and 

h - g$e,k+i f°r some k e N°. Therefore hy? - hp^ and gp - gpk+^ “

Ee ^ Ef 4-4 |Cov(e)| - |Cov(f)|.

Proof. Suppose that #:Ee — » Ef is an isomorphism. We certainly

g <( h 4=» gp  ̂hp. (2.2)
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Since g^h £ “ W k W f ) k + w® hav® (§V>)̂ f,k+\ " h<Pk " and
SO gy3 «( fy?.

Conversely, suppose that gp ̂  hip and suppose that h e IrZjg+ĵ Ee) 

for some k £ N°. Then h<p - and gp e Irrn+k+ 1 (Ef ). Therefore

g £ Irrm+ic+1 (Ee) and g^ - gpk + Hence (gpfc+,)5f ,fc+i - and 30

OTc+i € " (h<Pk)*£,k " We,kWh- But gy>*+1 - by

definition and so Im(̂ /,) n Iffl̂ g 6eic+̂  ̂* T*1®1̂ 0*® $h " ^gS^*^ and
so h - ]fc+i • Thus g ̂  h and (2.2) is proved.

Since E is upper finite, we have that, for every a,b e E with 

a < b, there exist cQ,...,ck £ E such that a - cQ -( ... ^ — b. It

follows immediately from (2 .2) that, for every g,h e Irr(Ee),

g < h gtp < hip. (2.3)

Suppose that g t.. ,gr - h,.. ,hs, with

g, »• • • £ Irr(Ee). Let i € {l,...,r}. By Lemmas 1.2 and

1.3(ii), there exists J £ (l,...,s} such that g± > hj. By (2.3), we

have gi<p > hĵ > and so g t̂>. . .g^ > . *hsip. Similarly, we obtain

h^ip...hsip > ĝ ip. . .gj-yu and so g ^ . . .g^ - h x<p...hgp. Also by (2.3),

B\*P- - -8]fP “ <P- • -hsP iropH©s g t. . ,gr - ht.. .hs and so we can define

an injective map 4>:£e — » Ef as follows. Let g t Ee. By Lemma 1.3, we

can write g - g, . . .gr for some g, , . . . ,gr £ Irr(Ee) . Then we define

“ gy<P- ■ •SiY’-
We show that 4> is an isomorphism.

Let g £ Ef. By Lemma 1.3(ii), there exist g 1t...,gr € Irr(£f) such

that g “ g, , . .gr . Since is bijective, there exist

, . . . ,hr e Irr(Ee) such that g^ - for every i € {l,...,r). Thus

g — g, . . .gr *= . .hjMp ™ (h, . . .hr)<f> and so tf> is surjective.

Let g,h e Ee. Suppose that g = g^.-gj;. and h — h^...hs for some

Et.... £r>h i.... hs e Irr(Ee). Then g$.h4> - (g, . . .gr)4>. (h, . .

“ • -Sr<Ph y,P- - -hs<P " (^1 • * -£2*1 • *-hs W  ™ 11:1113 ^ is a
homomorphism and the lemma is proved.
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We note that every Isomorphism <b:Ee — > Ef must induce bijections 

between Irr^^Ee) and Irrn+^(Ef) and satisfy (2.2).
.For every a e D%, we have iap| - |Q(a)| and so Lemmas 2.1 and 2.2

yield

THEOREM 2.3. Let 1 be a nonempty set and let E - E[FIM(X)]. Let

e,f e E.

(i) If X is infinite or |Jf| - 1, then Ee = Ef.

(ii) If X is finite and |j?| > 1, then

Ee - Ef |e| - |f | .

A semilattice in which all the principal ideals are isomorphic is 

said to be uniform. It follows from Theorem 2.3 that, if X is infinite 

or |X| - 1, then E[EIM(JO] is uniform.

3. The Munn semigroup

We can use the results obtained in Section 2 to get information

about the Munn semigroup [25] of the semilattice E[FIM(X)].

Let £ be a semilattice and let U - {(e,f) e E x E: Ee - Ef). For

every (e,f) e U, let Ie,f denote the set of all isomorphisms from Ee

onto Ef. The Munn semigroup of E is defined to be Ip - u T~ f,
(e,f)tU e,Z

with the usual composition of relations. This is an inverse semigroup 

and E(Tg) - ^ E e : e € E) is isomorphic to E. It follows easily from 

the definition that, for every e,f e E, - 1 Ef'V if and only if

(e,f) e V.
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Tg is E-unitary.

Proof. Let e,f,g e E and let <b:Ee — » Ef be an isomorphism.

Suppose that l££.$ £ . We want to prove that <f> € E(Tg)* We have

that lgg.$ is the restriction of to the semilattice (Eg)n(Ee), that, 

is, Ege. Therefore we have " ^Ege arM* we must show that

$ - lEe.

Suppose that $ * lge* We show that

3h e Irr(E) such that h ^ e and (eh)$ * £h. (3.1)

Assume first that e - f. Since $ * 1 Ee, there exists a e Ee such 

that a<$> # a. Since e$ - f - e, we have a * e and so we can write 

a *=* eh}...hn for some hi e Irr(E) with hi ? e, i e {l,...,n}. It

follows that hi<p * for some i and so (3.1) holds.

Now assume that e f. Since Cov(e) £ Irr(2?e), and by Lemma

1.3(i), there exist {ĥ : i e I) £ Irr(E) such that

Cov(e) “ te^i: i e I). Suppose that (eh_£)$ *■ fhjr for every i c I. 

Since [<7ov(e)]$ = Cov(f), we have Cov(f) *  (fbj?: i £ J ) .

Suppose that Q(e) J2 Q(f) . Let u e Q(e)\Q(f). Let u1 denote the 

maximum prefix of u contained in Q(f) and suppose that u »» u'xu", with 

x e XuX~1 and u" e Ry. Then f, (u'xx- ^ 1 -1 )p t Cov(f) and so 

f. (u'xx-1 u'-1 )p = fhi for some i e I. Since (u'xx~*u’~l)p,hi e Irr(E), 

we show easily that (u,xx-1u* -1 )p ™ h^. In fact, hi > f , (u'xx”^' -1)p 

and hi ^ f together imply* > (u’xx-'u1 “ 1 )p. Similarly,

(u'xx-1u'-1)p > hi and so (u'xx-,u'-1 )p = hi. However, 

(u'xx-1u'-1 )p > e, a contradiction. Thus Q(e) £ Q(f). Similarly, we 

obtain Q(f) £ Q(e) and so e = f, a contradiction. Therefore (3.1) 

holds.

Now suppose that h e Irr(E) is such that h ? e and (eh)«J> * fh. Let 

h' e Irr(E) be such that h' ^ h. By Lemma 1.3(i), eh e Irr(Ee) . Hence
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(eft)$ e Irr(Ef) and so, by Lemma 1.3(1), (eh)$ - fu for some

u € Irr(E) . Since ft ^ e, we have u ? f and also ft' ^ e. Hence eft' eft 

and so (eft*)ct> (eft)4>. Similarly, (eft')$ — fu* for some u* e Irr(E). 

Since u is prime, fu'^ fu and u ^ f, we have u' < u. If u' < u" < u 
for some u” € E, then u" e Irr(E), un > f and it follows easily that 

fu* < fu*1 < fu, a contradiction. Hence u* u. Now suppose that

fu* - fft* . Since u* ,ft* e Irr(E) and u* ^ f ,it follows easily that

u' -ft*. But u*-̂  u and ft* ̂  ft, so, by Lemma 1.5, we have u - ft, a

contradiction. Hence fu* * fft', that is, (eft*)cj> * fft' and so (3.1) 

holds for ft e Irr(E) with arbitrary large length. In particular, we 

can assume that ift| > |efg|. Suppose that (eft)$ = fu, with u e Irr(E). 

Then geh “ (geft)<l> «= (ge)$(eft)4> «* gefu. Therefore ft > gefu. Since

iftl > igef | , we have ft ? gef. Then, since ft is prime, we get ft > u. 

Hence iu| > |ft| > lefgi > (get and so u ^ ge. But u > geh and so, 

since u is prime, u > ft. Therefore u - ft, a contradiction. Hence 

$ “ l£e and so Tg is E-unitary.

An inverse monoid M is said to be completely semisimple if 

Ve, f e E(M) , e© = f£> * e ^ f.

THEOREM 3.2. Let X be a nonempty set and let E = E[FIM(X)] . Then

(i) is bisimple if and only if X is infinite or |X| — 1;

(ii) Te is completely semisimple if and only if X is finite and 

IX) > 1.

Proof. (i) Since every©-class of an inverse monoid M contains an 

idempotent, it follows that an inverse monoid H is bisimple if and 

only if

Ve,f € E(M) , eSD - f&

Let e,f e E. Since l^e0 = is equivalent to Ee - Ef, we have
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that Tg is bisimple if and only if E is uniform, and Theorem 2.3 

yields the result.

(ii) Suppose that X is infinite or |X| - 1. Let e,f e E be such 

that e > f . We have l£e2) - 1gf&  and lge > l£f • so ^E *s not completely 

semisimple.

Now suppose that X is finite and |X| > 1. Let e,f e E be such that 

1 Ee& ~ 1 E $  and Ife < *Ef • Since 1 g£) - l̂ fS), we have Ee * Ef, and by 

Theorem 2.3, |e| - |f|. Since 1ge < lgf, we have e < f . Clearly, e < f 

and |e| - |f| together imply e - f, so Tg is completely semisimple and

the lemma is proved.

4. Subsemilattices of E[FIM(X)]

The problem of finding necessary and sufficient conditions for a 

semilattice to be embeddable in E[FIM(X)] is still open. In this 

section, we obtain some results concerning some particular classes of 

semilattices.

Since the free inverse monoid of countable rank is itself 

embeddable in any free inverse monoid of rank greater than 1 [37], we 

will fix X - {xn : n e N) and E - E[FIM(X)] throughout this section.

THEOREM 4.1. Let L be a finite semilattice. Then L is embeddable

in E.

Proof. We consider E to be the set of all finite nonempty left 

closed subsets of ity, with the union operation.

Let <p:L — » X be an injective map. We define a map <t>:L — » E by 

a* - {l}u(L\L1a)̂ >.

We show that 4> is a homomorphism. Let a, b e L. Since
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- {l)u(L\[(L1a)r»(L1b)])̂ > - {1 }u [ (L\L'a) u (L\Ly b) ]<p

- [{l)ij(L\L'a)v)'j[{l)ij(L\L'b)v] - (a<t)o(Zxl>). Therefore d> is a

homomorphism.

Now suppose that a<J> - M>. Then (l)o(L\L'a)ip - {1 }u(L\L1b)̂ > and so

L1a - L’b. Hence a - cb for some c e L1, that is, a < b. Similarly,

b < a, hence a - b. Thus 4> is injective and the theorem is proved.

THEOREM 4.2. Let L be a countable UFS. Then L is embeddable in E

if and only if L is upper finite.

Proof. Suppose that L is embeddable in E. Clearly,

subsemilattices of upper finite semilattices are upper finite. Since E 

is upper finite, it follows that L is upper finite.

Conversely, suppose that L is upper finite.

We prove that the elements of L can be written as a sequence

(fn)ncN such that

fn < fm * n > m - (4.1)

Suppose that L - (en : n e N) . We define a sequence (^n^ncN

subsets of L as follows. Assuming that A 0 - ff, we define

An “ IS € L: 8 > en)\(Ao°-•-uAn-i) f°r every n 6 N. Since L is upper
finite, every An is finite, possibly empty. Moreover, L - u An . Now

ncN
we define the sequence (fn)ne|q.

Clearly, A, * ff. Let fy be maximal in A, for the natural partial 

order of L.

Suppose that f  fk are defined for some k e N and suppose that

fk e An . If An\{f,,...,fk) * ff, we choose fk+} to be a maximal element 

of An\{f, , . . . ,fk) . If An\[f 1 , . . . ,fk) - ff, we choose to be a

maximal element of An+m, where m - min{l e N: An+i * ff) . Note that 

(1 c N: An+j * 0 } is nonempty, since L is countable and A tu...uAn is
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finite.

It is immediate that L - {fn: n e N) and (fn)ncN satisfies (4.1).

We define a map >̂:L — > £ as follows. Since (4.1) holds, we have 

fy e Irr(L). Let k e N. The set - [i e N: fj c Irr(L) and fj > f^) 
is clearly finite. Since Irr(L) generates L, there exists some

r' **
fl e Irr(L) such that and so B^ is nonempty. Since L is a UFS,
it is clear that - n fj. We define - II (x^xj1)p.

We prove that p is a homomorphism. Let m,n t N and suppose that

ffljfn - f/c. We want to show that that is, B^B r - B^.

Since and ffc < fn, it follows that B^B r £ B^. Now suppose

that i c B^. Then fj e Irr(L) and f± > - ^m^n- s*nce L is a UFS, fj

is prime and so we have > fm or > fn. Hence 1 e B ^ B r and so

B/c C BjjjuBr . Thus BmuBn - B^ and ^ Is a homomorphism.

Now suppose that f^  - fn<p for some m,n c N. Then Bm - Bn and so

II f| ■ II f| ■ fn . Therefore is injective and the theorem is icBm icBn
proved.

We note that these results only yield sufficient conditions for a

semilattice to be embeddable in £. We can provide a trivial example of 

a subsemilattice of E which is not a UFS. In fact, let u,v,v,z t D% be 

such that Q(u) - {l,x,,x2}, Q(v) - {l,x1,x3}, Q(w) - (l,x2,x3} and

Q(z) - {1 ,x, ,x2 ,x3} . Let N - [up,vp,wp,zp). Obviously, N is a

subsemilattice of £. However, N is not a UFS, since up e Irr(N),

up > vp.wp, up ? vp and up ? wp.

THEOREM 4.3. There exists a countable upper finite semilattice 

which is not embeddable in E.

Proof. Let M - {(m,n) t N° x N°: m > n), with multiplication

described by
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f (m^intn.n* }) if m - m*
(m,n)(m',n') - 1

I (maxim,m'} ,0) if m # m* .

It follows from the definition that the groupoid M is commutative

and every element of M is idempotent. We note that 

M0 - {(m,0): m 6 N0} satisfies (MQM)u(MM0) £ ^0' Let

(m,n),(m',n*)»(®".n") 6 tf. If in - m' - ra", then [(ni,nXm* ,nT)](m*fn") 

- ,n"}) ■* (m,n) [ (m1 ,n* )(m" ,n”) ]. Otherwise, it follows from

the remark on M0 that [ (m,n) (m* ,n*) ] (mH ,nM) - (maxim,m* ,ia"} ,0)

“ (jn,n) [ (in’ ,n' ) (m” ,nn) ] . Hence H is associative and so a semilattice.

Let (m,n), (m* ,n') e H. It should be clear that (m* ,n') > (m,n)

implies m* < m. Since n' < m' , there exist only finitely many

(ffl',n‘) e M such that (m1,n') > (m,n). Hence M is upper finite.

Now suppose that <p:M — » E is an embedding. Let k “ |(0,0)p|. Since

(k,k) > (k,k~ 1) > ... > (k,0), we have (k,k)<p > ... > (k,Q)<p. Hence

l(k,k)^| < ... < |(fc,0)p| and so | (k,0)^|-| (k,k)<pi > k. Since

I ef | < |e| + |f|-l for every e,f e E, we have |(k,0)y>| - t (0,0)y>. (fc,k)y>l

< | (0,0)p| + | (k,k)̂ >|-l. Hence |(0,0)p| > I (k,0)p|-| (k,k)y?i+l > k+1 , a

contradiction. Therefore no such embedding exists.

5. The Hopf property

An algebra A is said to be hopfian if the only surjective 

endomorph isms of A are the automorphisms.

It is known that FIM(X) is hopfian if and only if X is finite

[26], However, F[FIM(.Jr)] shows different behaviour.

THEOREM 5.1. Let X be a nonempty set and let E = F[FIM(X)]. Then 

E is not hopfian.
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Proof. We consider E to be the set of all finite nonempty left 

closed subsets of R with the union operation.

Let x e X and let

Y - {u e R%: x2 <2 u).

Let A e E. We define A' - (A\Y)u[x-1 (AnY) ] i. Obviously, A'  ̂is

finite and nonempty. We show that A' is left closed. Let v c A' and
V  v 3?

let v' c with w' w.

Suppose first that v e A\Y. Since A is left closed, we have w' « A

and it is clear that w / Y implies w* / Y. Hence w' « A'.

Now suppose that v c [x-1 (AnY) ] t . Since 1 e A\Y, we can assume

that w' * 1. Then there exists some v e R% such that x 2v c A and 

w - xv. Since v' w and w' * 1, there exists v' e R% such that

v' <2 v and w' - xv' . Since A is left closed, x 2v' e A. Hence

w' - xv' - [x_1(x2v')]t e [x-1(AnY)]c £ A'. Thus A' is left closed.

We define a map <p:E — > E by A»p - A' , A e £, and we show that is 

a noninjective surjective homomorphism.

(i) ip is not injective.

It follows from the definition that (l,x,x2}y? - {l,x} - {l,x)y?t 

hence f is not injective.

(ii) <f is surjective.

Let e e E. Suppose that AnY - 0. Then it is immediate that Af - A.

Now suppose that AnY * ft. Then x,x2 c A. Let

B - (A\Y)u{x2}u[x(Ar»Y)]. Obviously, B is finite and nonempty. We show 

that B is left closed. Let w e B and let w' e R% be such that w' <2 w. 

We have seen before that A\Y is left closed, so we can assume that

w / A\Y. Suppose that w - x2. Since AnY Z 0 and A  is left closed, we

have x2 e A and so w' c A\Y £  B. Now suppose that w - x 3u for some 

u 6 R% such that x2u e A. We can assume that w' = x 3u' and u' <2 u for 

some u1 e R%. Since x 2u' <| x2u and A is left closed, we have x 2u' e A
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and so w' *= x 3u' e [xCAnT)j £ B. Thus B is left closed and so B e E, 

It is immediate that B<p = A and so <p is surjective.

(iii) <p is a homomorphism. = ■

Let A,B e E. Then (AuB)<p - [ (AuB)\Y]u(x~' [ (AuB)AY]|) i 

- (A\Y)u(B\Y)u[x~'(Ar>Y))iu[x-HBnY)]i -OV)u(Bp) and so y> is' a 

homomorphism and the theorem is proved.



NORMAL-CONVEX EMBEDDINGS

CHAPTER IV

1. Preliminaries

In this chapter we introduce the concept of normal-convex 

embedding for inverse semigroups and we obtain two new embedding 

theorems. Normal-convex subgroups of a group were introduced by 

Papakyriakopoulos [32] and our definition is the natural 

generalization. All homomorphisms are supposed to be semigroup 

homomorphisms.

Let tp’.S — > T be an embedding of inverse semigroups. We say that ^ 

is normal-convex if and only if, for every relation R on S,

o (S x S)<p £

Note that the inclusion £ (R*p)̂  n (S x S)<p is always true. By

Lemma 1.1.1, we know that <p induces, for every relation R on S, a 

unique homomorphism tpg:S/R& — » T/(Rtp)$ such that the canonical diagram

S (1.1)

S/R#



commutes. Now we have

LEMMA 1.1. Let <p:S — > T be an embedding of inverse semigroups. 

Then p is normal-convex if and only if pp is inJective for every 

relation R on S.

-

Proof. Suppose that <p is normal-convex and let IS be a relation on
S. Let a,b t S be such that (aR*)pp - (bR*)pp. Since (1.1) commutes, 

we have (ap) (Rp)* - (bp) (Rp)*. Hence (ap,bp) c (Rip)* « (S x S)p. Since 

yo is normal-convex, this yields (a<p,b<p) t R*<p. Thus aR* - bR* and so 

pp is injective.

Conversely, suppose that pp is injective for every relation R on

S. Suppose that (ap,bp) e (Rp)* for some a,b c S. Since (1.1) 

commutes, we have (aR*)pp - (bRr)pp, and since pp is injective, 

aR* - bi?#. Therefore (ap,bp) e R*p and so <p is normal-convex.

The following result shows that the class of normal-convex 

embeddings is closed under composition.

LEMMA 1.2. Let p:S — » T and \},:T — > U be normal-convex embeddings 

of inverse semigroups. Then p\f, is a normal-convex embedding.

Proof. It is trivial that p\f/ is an embedding. Now let R be a 

relation on S. Since (p$)p is uniquely defined, we certainly have 

(p\J/)p = 'PR'l'Rp anc* so (p\J/) p is injective. Thus, by Lemma 1.1, p\]/ is 

normal-convex.

The next result shows an application of the concept of 

normal-convex embedding.



THEOREM 1.3. Let p:S — > T be a normal-convex embedding of inverse 

semigroups and let R be a relation on S. Then the word problem for R 

is decidable if the word problem for Rip is decidable.

Proof. Suppose that the word problem for Rip is decidable. Let 

a,b e S. By Lemma 1.1, pp is injective and so
— bp# ^  (aR^)pp - (bR*)pp. Since (1.1) commutes, we have 

(aR^)pp - (bR*)pp «-* (ap)(Rp)* - (bp)(Rp)*. But this latter equality 
is decidable, hence the word problem for R is decidable and the 
theorem is proved.

Let M denote an inverse monoid with least group congruence a. Then 

M is said to be F-inverse if every cr-class of M has a maximal element 

under the natural partial order. It is well-known that every F-inverse 

monoid is E-unitary [34,§VII.5].

Let G be a group and let IT be a semilattice. An action of G on K 
by left automorphisms is a map G x K — > K: (g,A) gA such that, for 
every g,h e G and A,B e K,

g(hA) - (gh)A, 

g(AB) - (gA)(gB),

IA - A.

It follows easily that, for every g e G and A,B e K, we have 

A < B + gA < gB.

The semidirect product of K by G induced by this action is the 

inverse semigroup K x G with the operation given by 

(A,g)(B,h) - (A(gB),gh). When no ambiguity arises about the action, we 

shall denote this semigroup by K x G.

Now suppose that L is an ideal of K such that GL - K . Then we say 

that (G,K,L) is a strong McAlister triple and
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P(G,K,L) - {(A,g) c L x G: g yA e L) is an inverse subsemigroup of

K x  G [21].

LEMMA 1.4 [21]. Let M be an Inverse monoid. Then M is F-inverse

if and only if M - P(G,K,L) for some strong McAlister triple (G,K,L)

such that L has a unity. v.- ; >Jfc’

LEMMA 1.5 [28]. Let S be a quasi-free inverse semigroup. Then 

S - P(G,K,L) for some strong McAlister triple (G,K,L) with (7 free.

2. Strong McAlister triples

THEOREM 2.1. Let (G,K,L) be a strong McAlister triple. Then the 

inclusion map <p:P(G,K,L) — » K x G is normal-convex.

Proof. Let S - P(G,K,L) and let T - K x G. Let £ be a relation on

S, say R - {((A±, g^), (B^ ,h^)) : i f I). Without loss of generality, we

can assume that R is symmetric. Let (U,u),(V,v) c S be such that 

(U,u) (Rip)** - (V,v) (Rip)**. We want to prove that (t/,u)R̂  - (V,v)R^.

Since R is symmetric, we know that there exist (WQ,wQ),...,(Wn,wn) t T 

such that

(W0,wQ) - (U,u)

(Wn>wn> "
Vj f {1 n) 3(Pj,pj),(Qj,qj) e T 3ij e I:

>wj-^) “ (pJ*Pj')(Aiy8ij)(Qj><lj') and 

(Wj» )  ” (Pj»Pj) (̂  jj * ̂ i *) (Qj i <7 j) •

Now we show that, for every m c {0,...,n},
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3Pi.QA.ffi* L' (2 .1)

(̂ ni»vni) * S,

- (l/,u)J?#,
(̂ i.Wrn) - (Pi.lX^.WaXQi.l).

We use induction on a. Defining PJ, - U, <?{, “ u-1t7 and WJ, - I/,, we 
see that (2 .1) holds for m - 0 .

Now suppose that (2.1) holds for a - J-l, with J e {1 n). Then

(Wj^.wj.,) - (Wj_1,l)(Vj-1,wj_1)(wjI1Wj_1,l)

- (ff)_1,l)(P<)-1,l)(ffj-1,irj-1)(Q<)-1,l)(wJi1ff)-l.l)

- (ff)-1.l)(PJ-1,l)(Pj.pj)(A1j ,gij)(Qj,qj)(Qj-1.l)(wji1l/j_1,l). It is 

clear that

ff)-, < PJ-,Pj (2 .2)

and so (Wj_,,1)(Pj_,,1)(Pj,pj) - (ff)-,,Pj). Similarly, 

ffj_, < (pjgij Qj) (.Pjgij ) and 80

sljpj'V)-, < QjdjQ)-,)- (2-3>

Hence (Qj ,qj) (Qj_, ,1) ,1) - (gj!pj'(/j_, ,qj) . Thus

((^_,,wj-,) - PjX^iySijUgJjpJ

Since Wj_, < PjAij » we have pj’Wj., < Aj. e L. But L ̂  K and so 

pj’Wj., e L. Since ^j-i € L, we obtain (ffj-, »Pj) 6 S. Similarly, we 

have gijPj'w)-y < 8ijPj' (PjAi; ) “ f L ’ and

<lj'8ijPj'wj-i “ wj-\WJ-y € L • Hence (gVPj'wj-y »9j> c s -
Let Pj - Wj_,, Qj - vjl1Wj_l and Wj - W'j-y(PjBi - ) (wjwjl,Wj_,). 

Obviously, Pj, Qj ( L and since L ̂  K, we have Wj c L as well. We have

(Wj>wj) ~ (ffjf-i .PjXPij .*lj X^IjPj^j-i ,9j). that is» (^j»vj) is a
product of elements of S. Therefore (Wj,w.) c S. Moreover, (Wj,wj)R*

- [(Wj_,,Pj)(Bi. ,hi .)(gJJpJ'Wj_,,qj)]R<*

- l(W]-,.pj)(A1..g1.)(gJ!pJ'W]_,,qj)}Ii# - (Wy,,wj_,)R* - (U,u)S*.

It follows from (2.2) that (Wj_t,pj - (tf j-*1,1) (Pj.pj) • Similarly,

(2.3) yields (gJJpj'Wj., ,qj) - (Q j, q j) (wjl,W]_,, 1) . Hence (VJ.vj)
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- *1) (Pj *Pj) ,hL. )(Qj,qj)(wJl,tfj_1fl) -

and so (2.1) holds for m - J.

Thus (2.1) holds for every m e (0,...,n). In particular, we have 
(l^.v)*# - <.Ŵ ,vn)F* -(t/,u )*# and (tfi.v) - (i>A,l)<tIn .vn)«%,l)

- (PA.l)(V,v)((?i.l). Therefore fcrjl, < and so (W^.v) - (W/plXP.v). It 

follows that (l/,u)R* - (fcr„,l)i2#(V,v)lf* and so 2* < (V,v)i?*.
Similarly, we obtain (V,v)R* < (U,u)R* and so (U,u)R* - (V,v)R#. Thus 
y? is normal-convex.

Now, Lemma 1.5 and Theorem 2.1 immediately yield

COROLLARY 2.2. Every quasi-free inverse semigroup admits a 

normal-convex embedding into a semidirect product of a semilattice by 

a free group.

Since every free inverse semigroup is quasi-free, we also obtain

COROLLARY 2.3. Every free inverse semigroup admits a

normal-convex embedding into a semidirect product of a semilattice by 

a free group.

3. E-unitary inverse semigroups

In this section we prove that every E-unitary inverse semigroup 

admits a normal-convex embedding into a semidirect product of a 

semilattice by a group.

Let S be a E-unitary inverse semigroup. Let 

M(S) - {0 * A Q S: E(S) .A Q A £ acr for some a c S) with the operation
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described by AB - {ab: a e A and b e £} . The following result is due 

to O'Carroll.

LEMMA 3.1 [30], Let S be a E-unitary inverse semigroup. Then M(S) 

is an F-inverse monoid and the map p:S — > M(S): s hv {t e S; t < s) is * 

an embedding. Moreover, if erg and denote respectively the least

group congruences of S and M(S), then n (S x S)p - cr&P'

We prove that this embedding is in fact normal-convex.

LEMMA 3.2. Let S be a E-unitary inverse semigroup. Then the 

embedding p:S — » M(S): s h [t e S: t < s} is normal-convex.

Proof. Let jR be a relation on S. Without loss of generality, we

can assume that R is symmetric. Let a,b e S be such that

(ap,bp) € (Rip)**, We want to prove that (a,6) (

Since (ap,bp) e (Rp)$, there exist W 0,,,.,Wn e M(S) such that

WQ - a<p;

Wn - bp]

Vi e {1, . . . ,n} 3Pi,Qi e M(S) e R :

“ *̂i (̂ i<p)Qi “ P_£ (^ivOQi ■

We prove the following result. Let z e S and C,D e M(S) be such 

that C(zp)D e Sip. Then

3c,d e S: ctp Q C, dip Q D and (czd)p ™ C(zp)D. (3.1)

Since C(zp)D e Sip, there exists some w e S such that C(zp)D = w<p. 

Since w e wp, there exist c e C, z1 e zp and d e D such that cz'cf *= w. 

Since cp Q C, z'p Q zp and dp Q D, we obtain wp - (cz1 d)p 

- (cp)(z'p)(dp) Q (cp)(zp)(dp) £ C(zp)J) = wp. Therefore 

(czd)p = C(zp)D and (3.1) holds.
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Since S is E-unitary, it is clear that

VA c tf(S), AA~y £ la £ E(S). (3.2)

Now we show that, for every J t (0,...,n)
.Jl-

3wj e S: wj<p £ Wj and (a,vj) e P*. (3.3)

Let wQ - a. It follows that (3.3) holds for J - 0.

Now suppose that (3.3) holds for J - i-1, with i > 0 .  Then 

WL-\V c and so» since S is inverse, vi-y<p C

(3.2), we also have (^i-iV’) c Hence

. Now we can apply (3.1) 

with z - Uj[, C - Pi and D - (vi-,̂ >) • Hence there exist P£,qi t S

such that pi<p £ Pit £ QiWJ-i (wi-iV>) and (Piui<H)<P

- Pi(uivp)Qi^i1 (w^-^) - W|_,y>. We define wj - Pivi9i* Now v^> 

“ (PiV>) (viV>) (<7î ) S Pi(vi^)Qi^I-i (vi-î ») c
and so, by (3.2), we have w^p £ W^.£(S). For every s c S and e € E(S), 

we have ae - aea-1a, and hence W^.£(S) £ E(S) .W£. Therefore w$p 

£ Wi.E(S) £ E(S).Wi £ . Moreover, w^P# - (Pivi<7i)P* “ (Piui<?i)P*

- wi_yE^ - aP# and so (3.3) holds for J - i. Thus (3.3) holds for 

every j € {0 ,...,n).

In particular, vn^ £ Wn - bp and (a,wn) c P#. Hence vn < b and 

aP# - wnP# < bP^. Similarly, we prove that bP^ < aP^. Thus (a,b) € P* 

and the lemma is proved.

Now we obtain

THEOREM 3.3. Every E-unitary inverse semigroup admits a

normal-convex embedding into a semidirect product of a semilattice by 

a group.
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Proof. Let S be a E-unitary inverse semigroup. By Lemma 3.2, the 
embedding <p:S — » M(S): s \-> {t c S: t < s) is normal-convex. By Lemma 
3.1, M(S) is F-inverse and so, by Lemma 1.4 and Theorem 2.1, there 
exists a normal-convex embedding ^:M(S) — > F, where P is a semidirect 
product of a semilattice by a group. By Lemma 1.2, the composition 

— » P is a normal-convex embedding and the theorem is proved.
V5 ' * ' * V

4. Inverse semigroups

The results of Section 2 can be used to obtain an embedding result 

concerning general inverse semigroups.

THEOREM 4.1. Every inverse semigroup admits a normal-convex 

embedding into an idempotent-separating homomorphic image of a 

semidirect product of a semilattice by a free group.

Proof. Let S be an inverse semigroup. By Lemma 1.3.9, every
inverse semigroup is an idempotent-separating homomorphic image of a 

quasi-free inverse semigroup, so we can assume that S - F / t , with F  

quasi-free and r idempotent-separating. By Lemma 1.5, we can assume 

that F - P(G,K,L) for some strong McAlister triple (G,K,L), with G 

free. By Theorem 2.1, the inclusion ip:F — > K x G is normal-convex. 

Therefore, by Lemma 1.1, the induced map ^:F/r — > (K x G)/(r<p

defined by (ar)v̂  - a(ry?)̂  is injective. We must prove that \f/ is 

normal-convex and (ry?)̂  is idempotent-separating.

First we prove that ^ is normal-convex. Let T - (K x G)/(ry?)̂ - Let 

R be a relation on S. We want to show that (Ryfr)̂ r» (S x S)\p £

Let p be the congruence on F such that p/r « R^. It follows that, 

for every a,b e F, (a,5) e p if and only if (ar.br) 6 R We prove
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that

(ity)# C (/^)#/(t*>)#. (4.1)

Since r £ /*, we have rp £ pp and so (r̂ >)* £ (/ty>)*. Hence
'

(pp)*/(rp)* is a congruence on T and we only need to show that 
a aJty £ (pp)w/(rp)w . a,b « F be such that (ar.br) c £. Then

(ar.br) e F* and so, by definition of /t, we have (a.b) c p. Hence 

(ap,bp) e pp £ (pp)*. Therefore (ay>(r̂ )*,by>(ry>)*) € (pp)*/(rp)*t that

is, , (br)}l/) c (pp)*/(rp)*. Hence (4.1) holds.

Now suppose that a,b ( F and ((ar)^, (br )̂ ) € (R\(,)*. Then, by

(4.1), we have ((ar)\£, (br )\̂> € (pp)*/(rp)*. Hence

(ap(rp)*, bp(rp)*) e (pp)*/(rp)* and so (ap,bp) c (pup)*. Since p is 

normal-convex and p. is a congruence on F, we have 

(pp)* r» (F x F)̂ > £ pp. Hence (ap,bp) e /iy> and so (a,b) t p and

(ar.br) c F^. Therefore ((ar)^,(br)^) c Ffy and so ^ is normal-convex.

Now we prove that (rp)* is idempotent-separating. Obviously,

F(K x G) - {(A,l): A € . Suppose that A,B e F are such that

(A,l)(ry>)^ - (B,l)(Ty>)*. Since GL - X, there exists g e G and C t L 

such that gC - A. Hence g-1A - C e L and we have (g^M, 1) (rp)*

- [(g-'A,g-')(A,l)(A,g)](Tv)# - [(g-'A,g-')*>)#
- ((g-M)(g-'B),l)(rv)# . Since (g-M)(g-'B) < g ~ M  € and L<lg, we 

have (g-1A) (g_1B) 6 L. Hence (g_1A, 1), ((g_1A) (g_1B), 1) c F. But 

[(g-M,l)r]^ - (g~M, 1) (.rip)* - <(g-M)(g-'B),l)(r„>)#

- [ ( (g_1 A) (g-1B) , l)r and so, since ^ is injective,

(g-1A,l)r - ((g_1A)(g_1B),l)r. Since r is idempotent-separating, we 

obtain (g_1A,l) - ( (g-1A) (g-1B) , 1) , that is, g-1A - (g~'A)(g~'B).

Hence A - AB and A < B. Similarly, we obtain B < A and so A - B. Thus

(A,l) - (B,l) and (rp)* is idempotent-separating.
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CHAPTER V 

CLIFFORD MONOID PRESENTATIONS

1. Preliminaries

In this chapter we establish several decidability results for the 

variety of Clifford monoids.

Let M be an inverse monoid. We say that M is a Clifford monoid if

Va e M Ve c E(M) , ae - ea.

Let C be a class of inverse semigroups. The inverse monoid M is

said to be a semilattice of elements of C if there exists a

semilattice E and a homomorphism <p:M — > E such that eyf1 € C for every

e e E.

LEMMA 1.1. Let M be an inverse monoid. Then the following 

propositions are equivalent.

(i) M is a Clifford monoid;

( i i )  M is a semilattice of groups;

( i i i )  Va € M, a a -1 - a - 1 a .

Proof. Suppose that (i) holds. Let <p:M — » E(M) be the map defined 

by ay? = a a _1 . For every a ,b  e M, we have (ab)yj -  abb- 1 a _1 - aa- 1 bb-1  

*= (ay?) ( b y ? ) .  Hence y? is a homomorphism. Let e e E(M). Since is a 

homomorphism, ey?_1 is a semigroup. Now suppose that a c ey?-1. Then



a

74

<p — a ya - a yaa~ya — a ' aaa 1 - aa 1aa 1 - aa-1 - ayj - e. Hence

e<p 1 is inverse. Let f e E(e<p 1). Then f - ff 1 - fy> - e and so ey>-1 
has a single idempotent. Thus ê >-1 is a group and so (ii) holds.

Now suppose that (ii) holds. Let £ be a semilattice and let
<p:M — * E be a homomorphism such that e^”1 is a group for every a « E.
Let a e M. Then a -1 e a ^ -1 and so ( a a - 1 ) ^  —  ay> — (a”1*)^. Hence

# * - - “ ''jLr'r
_ _ _ . « V ; ;

a a  ’ ,a ya e E(ey>”1). Since ey>-1 is a group, we have aa”1 - a-1a and so
(iii) holds.

• ; V  "f-'jpl-

Finally, suppose that (iii) holds. Let a c M and let e e £(**).
Then ae — aea-1a — (ae)(ea-1)a — ea-1aea — e(a-,a)a - eaa”1a — ea. 

Thus (i) holds and the lemma is proved.

Let Clf denote the class of all Clifford monoids. It follows from

Lemma 1.1 that Clf - Inv[xx-1 - x-1x] and so Clf is a variety of

inverse monoids. Similarly, Su - Inv[x2 - x] is the variety of

semilattices with unity. Let X be a nonempty set. We define

v -  r(xx_1 - x_1x) - (pu{ (uu” 1 ,u_,u): u e (.XuJ” 1 ) * } ) * * ,  

tj - t(x2 - x) - (pu{(u2,u): u e (XuX-1 )*})#.

The quotients FCM(X) - (XuX~')*/r and FSU(X) - (XuX-1)*/1? are

respectively the free Clifford monoid on X and the free semilattice 

with unity on X.

It is not difficult to prove [34,§VIII.2] that, for every

u,v € (XkjX~1)*,

(u,v) e r] 4=4 Hu) - S(v). (1.1)

Moreover, we have that, for every u,v e (XuX~1)*,

(u, v) e v 4=4 Hu) - Hv) and ut - vt , (1 .2)

by [12] (see also [34,§VIII.2]).

It is clear that v c x and f c jj, The next result is immediate.
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LEMMA 1.2. Let u,v t (XuX~')*. Then 

ur) - v-q * (uu-')r - ( w -,)r.

The following lemma establishes strong connections between Inv,
• jfegjB 

Clf and Gp.
-* y. v.

■ ' I .»’ :it \
LEMMA 1.3. (i) Every finitely presented Clifford monoid has a

finite inverse monoid presentation.

(ii) Every finitely presented group has a finite Clifford monoid

presentation.

Proof. (i) We define

S1 - {(xx_1,x-1x): x t X),

S7 - {(xyy~1x-1,xx“1yy~1): x,y e XuJ-1}.

We want to prove that v - (poS1uS2)̂ . It is immediate that

puS, £ r. Let x,y c XuX-1 . Then (xyy-1x~,)i» - (xyy- 1 yy~ 1 x_ 1) r

— (yy-1x_1xyy-1) v - (yy_1xx_1) r - (xx-1yy-1) r and so S2 £ r. Hence 

(puS^Sj)^ £ r.

Every u c (XuX-1)* is of the form u - x,...x^, with xj £ XuX-1 for

i e {1 k). Using induction on k, we will prove that, if

u - x, . . .x/j, then

(uu-1 ) (puSjuSj)# - (x^Y1 . . .XfcX^1)(poS1uS2)# .

This is clearly true for k - 1#. Suppose that it is true for k - n, 

and let u - x, . . .xn+1 . Then (uu-1) (puS1uS2)̂

— [ (xt . . .xn— i ) (xnxn+1xn-l-ixn1) (xn— i••,xi1)) (puS,uS2

— [x,. . ̂xn-^ (xnxn1) (xn+ixnii )xn-i • • *xi 1 ] (puStuS2)^

— [ x, . . . xn_, (xnl t . . . x,1) (xt. . . xn_,)Xjpcn 1 xn+1 xnY! xn- \ • • •xi1 ) (Pu^ i 2 ̂

“ [x i • • xn-i <xnxn1 >xn-i • • -x7 1xi • • • xn-1xn+,xni1xn- 1 • • ̂ T 1 1 (puS,uS2)#
— (x,.. .xnx-’ . . .x71)(puS1uS2)#(x1 . . .xn_1xn+1x541x^i1 . . .xY1)(puS,uS2)#
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- <x,xti...x„x^)(puS1u52)^(xlx“1...xn.1x5i,xn+1xn|1)(PuS1uS2)#

- (XjX" 1 . . .xn+1x̂ 4-t) (puS1uS2)̂ . Hence the equality above holds for 

k - n+1 and so for every k e N.

Let u - Xj . . ,X£. Then (puS1uS2)&

" Cxic1xk- * .x7tx 1)(puS1oS2)# - • ■ .XfcX^KpuS^Sj)#

" (uu-1) (pu^uSj)^, Thus v £ (puS^Sj)^ and so v ■* (puS|uS2)̂ .

Now let AT denote the Clifford monoid defined by the finite 

presentation Clf<X\R>, Then M - (JTu7f“1)*/(*'^)#

“ )*/(puS1 kjS and so M is finitely presented as an inverse

monoid by Inv<X\S^uS2uR>.

(ii) Let G denote the group defined by the finite presentation 

Gp<X;R>. Since v c we have G - (XuX~')*/(*uR)# - (XuX~')*/(vuruR)# 

and so G is finitely presented as a Clifford monoid by Clf<X;TuR> , 

with T - {(xx- 1,l): x e JTuJT-1).

Let X be a nonempty set and let Y be a subset of X. By Lemma 

I.1.3(ii), we can define a homomorphism By:(Xu F 1)* — » (yuY-1)* by

f x if x e Yuf-1 
xdY -  <

I 1 if x f (XuX-')\(YuY~').

2. The word problem

In this section we will show how word problems in Clf can be 

related to word problems in Su and Gp.

LEMMA 2.1. In Su, every finitely related presentation has 

decidable word problem.

Proof. Let R denote a finite relation on (XuX-1)*. Let 

Y -= {x e X: x or x“ 1 occurs in . Since R is finite, Y is finite



77

also. We prove that, for every u,v £ (•YuJT'1)*, we have

u(qu£)# - v(r]uR)# (2.1)
4** u 0y (tjuR)# - v0Y (rjuK)# and £(u)\Y - ^(v)\Y.

Suppose that u(rjuR)̂  - v(ijuR)̂ . Then there exist

w0 wn e (XulT'1)* such that

vo “ u» - v
wn - v(
Vi £ {l,...,n) Hsx.tx e (XuX~')* 3(ai,b1) e rjutf:

{wx_t,wx} “ •

Since a^^y — a^ and bx<?y — b^ for every i, it follows that

WQ0y - uOy,

Wn0y - V0y,

Vi € {wx_t0ytw^0Y ) - {sx0y.a|(tx^Y^»si®Y*^i(ti^y))*

Hence u0y(rjuR)& - vOyirjuR)^. Similarly, we obtain

wn6X\Y " v0A y’

Vi 6 {l,...,n}, {wx_t ®x\Y»wi ^ A ^  ”

Therefore u0jf\y = V^X\Y* particular £(u)\Y = $(v)\Y,

Conversely, suppose that u0y(^ui2)# = v0y(^uJO^ and

£(u)\Y *= £(v)\Y. Let w e (.YuX-1)* be such that $ (w) = £(u)\Y. Then, by

(1.1), we have u(rjuR)̂  = (u0y.w) (tju-R)̂  = u0y(i}uR)&.w (tjuR)^ 

= vOyCrjuR)̂ .w(r)uR)tt — (v0Y.w) (rjuR)̂  = v(rjuR)̂  and so (2 .1) holds.

It follows easily that the word problem for Su<X;R> is equivalent 

to the word problem for Su<Y;R>. By (1.1), we have 

|FSU(Y) l = 2 1̂ 1 e N. Hence the word problem for Su<X;R> is certainly 

decidable and so the lemma is proved.

Let Clf<X;R> be a Clifford monoid presentation. For every
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u e (Yu-Sf-1 )*, we define a relation k(u) on (XuX-1)* by

i?(u) - {(a,b) £ R\ u(rjuR)& - (ua) (rjuR)̂ } .

It follows from the definition that

$(u) S *(v) * R(u)SR(v), (2.2)

u(t)uR)& - v(i}uR)̂  * i?(u) - i?(v). " ■

Finally, we note that, if R is finite, ‘say 

R - {(a^,b1),...,(an ,bn)), there exists w £ (Xu£-1)* such that

i?(w) “ R, namely w — a,. . .an .

LEMMA 2,2. Let Clf<X;R> be a presentation and let u,v e (.XuX-1)*.

Then

u(i>uk)# - v(vuR)#

u(ijuR)& “ v(rjuR)# and u[irui?(u) J# ** v[*u.R(ii) ]#.

Proof. Suppose that u(vuR)& - v(vuR)#. Then there exist 

w 0 wn £ (XuX-1)* such that

wo “ u- 
wn  - V,

Vk e {1,...,n} 3sk,tk e ( M T 1)* E(aktbk) £ yuk:

^ k —  i >wk} “  ŝkak^k*sk̂ >kt:k̂  •

Since p c we have u(r}uR)̂  = v(t/ujR)̂ . Since u(vuR)^ = wk(vuR)^

and f; (â ) £ £ (wk) » we ^ave (uajc)(^uk)^ = (w^a^) (r̂ ui?)̂  = wk(ijuR)^

= u(rjuR)̂  and so (ak,bk) £ »»uk(u) for every k £ {0,...,n}. Therefore

u[;>uJi(u) = v[yuJ?(u)]^ and since p c we obtain

u[wi?(u)]# - v[7ruk(u)]# .

Conversely, suppose that u(r)uR)̂  = v(i)uR)$ and 

u[7ruk(u)]^ = v[7ruk(u) ]̂ . By Lemma 1.2, we have (uu-1)(pui?)̂  ~ (vv“1) (vuk)^.

Since u[?ruk(u)]^ = v[iruk(u)]^, there exist z 0 zffl £ (XuX-1)* such

that
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VI c {1, —  ,m) 3s2 .fc2 € a uX"i)*

3(32,52) e {(xx-1,1): x c M ”1}uP(u):

(«2-i»*l) " ts2aItl»slbltll•

Suppose that ((a,, 51) ,..., iam , bm) )nK(u)

“ (<«24 *bÎ  )>•••» CaIK>bIK)> ■ Let p - uval4 biA • ••a2JC&IK . We have

$<u),?(v)l$(a2i),£(52i) C £(p) for every 22* Let z " £(p) and let

S “ { (32  ̂, 52h ),..., (alK * ̂ IK) ) * Lemma 1.2.6, (ZuZ"1 )*/(*»jS)^ embeds

in (XuX~* )*/(tcuS)& and so we can assume that 

£(32) ,£(52) ,Hsi) ,Htl) £ Z for every 1.

Since u(ijuR)& - v(ijuR)^, u(i]\jR)̂  - (uaj^) (tjuR)& and

ai-(r)uR)$ - bĵ (t)uR)tt for every i, we have u(tjuP)^ - p(t?uP)̂ . Hence,

by Lemma 1.2, (uu*"1) (vuiO* - (pp”1) (puR)&. It follows that

(w~ 1)(yuR)& — (PP”1) (i,ufi)̂  as well.

Now we prove that (pp-,z2_1) (puP)^ *■ (pp*"1Z2) f°r every

2 e (l,...fm). If (3 2,52) € P, then Z2_1(»'uP)̂  - zjCruR)** and so

(pp-1Z2~i ) " (PP-1^2) (ruX)**' Suppose now that

(3 2,52) “ (xx”1,!), with x e ZuZ~1 . Since x or x_1 occurs in p, we

have pv ■» (xx“1p)i» and so (pp~' siait f) v - (pp~'sixx~'ti)p

“ (xx- 1pp-1S2t2)r - (pp-1S2t2)r. Hence

(pp_1Z2-i ) (»-ui?)# * (pp-1Z2) (rvdO# *

In particular, we obtain (pp-1u) (*>uP)̂  ■= (pp” 1 v) (»*uP)̂ . Thus

v(yuP)^ - ( w “1v) (»»uP)# “ ' (pp” 1 v) (puR)tt — (pp-1u) (puR)&

= (uu- 1u) (pu£)# = u(*>uP)^ and the lemma is proved.

Now suppose that P = {(ai,bi): i c {1....n}} is a finite relation

on (Ju-ST-1 )*. Let Y be defined as in the proof of Lemma 2.1. We define 

K(R) to be (P(u): u e (YuY"1)*}.
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THEOREM 2.3. Let Clf<X]R> be a finitely related presentation, 

with R " i e {l,...,n}}. Then

(i) K(R) can be effectively determined;

(ii) the word problem for Clf<X;R> is decidable if and only if the 

word problem for Gp<X;K> is decidable for every K e K(R) .

Proof. (i) Let u e (YuY-1)*. By Lemma 2.1, we can, for every

i € {l,...,n}, determine whether or not u(ijuR)^ - (ua^) (ijuR)#.

Therefore we can effectively compute JS(u). By (2.2), and since Y is 

finite, we only have to compute finitely many R(u) and so K(R) can be 

effectively determined.

(ii) Suppose that the word problem for Clf<X;R> is decidable. Let 

K € K(R). Then K “ R(u) for some u e (YuY-1)*. Since Y is finite and 

we can compute R(u) for every possible £(u), we can assume that £(u) 

is maximal with respect to inclusion. Let Z » £(u).

Suppose that (a£,bj_) e R(u). Then (ua_£) (i]uR)& - u(rjuR)$ and so 

R(u) = R(ua^). By the maximality of Z, we have S(aj) £ Z . Similarly, 

we have (ubj_) (rjuR)̂  - u(rjuR)# and so R(u) - R(ubi) and £(Z>j) £ Z.

Thus, by [5, §9.3], the word problem for Gp<X;K> is decidable if 

and only if the word problem for Gp<Z]K> is decidable.

Let w , w' e (ZuZ-1)*. Since £(uu“V) « Z «* £(uu-1w')i it follows

from Lemma 2.2 that

w (ttuK)^ *= w 1 (iruJC)# <=» (tiu-1w) (t>uR)& = (uu"V ) (vuR)&.

Hence the word problem for Gp<Z;K> is decidable and so the word 

problem for Gp<X;K> is decidable.

Conversely, suppose that the word problem for Gp<X',K> is decidable 

for every K e K(R)- Let u,v e (XuX-1)*. By Lemma 2.2,

u(ruR)^ = v(i>u R)^ is equivalent to u(rjuR)̂  = v(rjuR)& and

u[ttuR(u)]^ = v[xuR(u)]^. By Lemma 2.1, we can decide whether or not 

u(r;ui?)̂  = v(rjuR)̂  and so we only need to show that we can decide
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whether or not u[irui?(u) - v[irui?(u) ]̂ .

We prove that i?(u) - R(uOy). Since £ (u0y) £ £ (u), we have

R(u$y) £ R(u), by (2.2). Now suppose that 1 e and

(ua^) (rjuR)̂  — u(rjuR)tt. Then, by (2.1), we have

(ua^) 0y(rjui2)̂  “ u6y(t}uR)^. But £(a^> £ Y and so (ufly.aj) (ijuR)#
> a ’5

— (uai)6y(riuR)8 « udy(r}\jR)$. Thus £(u) £ R(u$y) and so R(u) - JR(u0y).

Hence £(u) c K(R) and, by hypothesis, we can decide whether or not 

u[tujR(u)]# - v[tuJ2(u)]^. Thus the word problem for Clf<X;R> . is

decidable.

Now the case \R\ * 1 follows easily.

COROLLARY 2.4. One-relator Clifford presentations have decidable 

word problem.

Proof. This is a consequence of Theorem 2.3 and the fact that 

one-relator group presentations have decidable word problem [15].

3. The E-unitary problem

In this section we study the E-unitary problem for the class of 

one-relator Clifford monoid presentations and the class of finite 

Clifford monoid presentations.

We need preliminary results relating the E-unitary property to the 

concepts with which we have been working.

LEMMA 3.1. Let M denote the Clifford monoid defined by the 

presentation Clf<X]R>. Then M is E-unitary if and only if
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Vue (XuX~')+, (3.1)

u(tujR)̂  — l(iruii)̂  u [ tujR(u) ] ̂  “ 1 [irui2(u) ]̂ .

Proof. Suppose that M is E-unitary. Let u e (Jfu-X-1)+ and suppose 

that u(-ruR)̂  - 1( tuR)&, By Lemma 1.2.5, we have [u(yuJ2)̂ ]fr — 1. Since 

M is E-unitary, we have u(vui2)̂  e E(M) and so u(fuJ2)^ — (uu“1)(vuR)&* t 

By Lemma 2.2, we must have u[tuU(u)]^ - (uu”1) [iruJ2(u)andv'"'so 

u[iruJ2(u)]^ - l[iroJ2(u) ]̂ .

Now suppose conversely that the condition

u (ttuR)^ = l(Tui2)^ =* u[xuĴ (u) ]# - 1 [ttliR(u) ]̂  is satisfied for every 

u e (̂ uJT_1) + . Let u e (XuX~*)* be such that [u(ruJ?)̂ 3<r — 1. We want to 

prove that u(yuR)^ e E(M). The case u - 1 is trivial, so we assume 

u # 1. By Lemma 1.2.5, we have u(*uR)& - 1(tu2?)^ and so, by 

hypothesis, u[Tui2(u)]^ - 1[tu.R(u) ]#. Hence, by Lemma 2.2, 

u(wR)tt “ (uu-1) (vuR)^. Thus u(vuR)& e E(M) and the lemma is proved.

We can provide a very simple algorithm which solves completely the 

one-relator case, but first we need some definitions.

For every u e Ry, there exist unique a(u) ,/3(u) e Rx such that

u = a(u) . |S(u) . [a(u) ]_1 and (9(u) is cyclically reduced. We define £c(u) 

to be £[0(u)]. For every v e (JTû ~1)*, we define j3(v) « /3(vi) and

Sc(v> = 5c(vi>*

THEOREM 3.2. Let M denote the Clifford monoid defined by the

one-relator presentation Clf<X;R>, with R = {(a,b)}. Then M is

E-unitary if and only if one of the following conditions is satisfied:

(i) ai = bi ;

(ii) £(a) £ 5C(air1);
(iii) £(b) £ £e(alri).



Proof. Suppose that at «- bi , Then (wtjR)̂  - ir and (3.1) is

trivially satisfied. Hence, by Lemma 3.1, M is E-unitary.

Now assume that at # bi. We prove that

M is E-unitary <■=» j3(ab~x) (ijuR)# “ [£(ab-1) .a] (ijuR)#. (3.2)

Suppose that M is E-unitary. Since a(ruR)$ - b(*ujR)̂ , we have

(̂ab"*1) (irui2)̂  - l(iruR)̂ . Since ^(ab”1) * 1, by Lemma 3.1, we have

^(ab-1)[iruR(j3(ab“0)]# - l[iruR(j3(ab~i))]#. Hence R(0(ab~i)) * 0 and 

since |R| — 1, ^(^(ab*"1)) " R- By definition, we obtain

0 (ab"i)(i7uR)# - [/3(ab-M.a](i?uR)#.

Conversely, suppose that {3(ab~1) (ijuR)# - [(3(ab~x) .a] (tjuR)&. Then

R(j9(ab-1)) - R. Let u e (XuX~')+ be such that u(tuR)& =. 1(ttuR)&. The 

Freiheitssatz [14] states that £c(ab~1) £ £(u). Therefore

R(jS(ab“1)) S R(u) and so R(u) - R and (3.1) holds. By Lemma 3.1, M is 

E-unitary. Hence (3.2) holds.

Suppose that (ii) or (iii) holds. Then it is clear that 

(S(ab_1) (ijuR)$ - [0(ab-1) .a] (tjuR)̂  and so, by (3.2), M is E-unitary.

Now suppose that neither (ii) nor (iii) holds. Then the 

(r)uR)^-class and the 17-class of f3(ab~x) coincide and so

j3(ab_1) (i)uR)tt # [(3(ab~'1 ) .a] (rjuR)̂ . By (3.2), M is not E-unitary and 

the theorem is proved.

The next corollary is immediate.

COROLLARY 3.3. Let M denote • the Clifford monoid defined by the 

one-relator presentation Clf<X\R>, with R == {(a,l)}. Then M is

E-unitary.

The E-unitary problem for one-relator inverse monoid presentations 

is still open. Margolis and Meakin [19] formulated a conjecture on the 

subject. The conjecture stated that, for every u e Ry and R — {(u,l)},
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(X\jX~')*/(puR)^ is E-unitary if and only if u is cyclically reduced.

We can provide a counterexample.

Let X - {x,y}, let u - xyx~7yxyx~1 and let R - {(u,l)}. We prove 
that (XuX-1 )*/(pvR)* is a group. It is clear that, for every 

w,z € (XuX"1)*,
• _ . •‘■n - V  j||£* •- *

(wzw) (puR)* - l(puR)* + (ww_1)(pu£)# - l(pu£)* - (v-1v)(puJO*.

Let v - xyx-1. Since u - vx-1yv, we have (v-'v)(puR)* - l(pu£)*. 
Therefore [x_1 (yvxy)x-1 ] (pu£)# - (x^yv2) (pul?)* - (v_1vx-1yv2) (puR)#
- (v-,uv)(puJ?)* - (v“’v) (pu£)# - l(puK)* and so (x-1x) (puR)* - l(pu.R)*
- (xx- 1)(puR)^. Hence [y(x-2yx)y](puR)* - (x_1xyx-2yxyx-1x)(pvR)**

- (x-1ux)(pu£)# " (x—1x) (poi?)# - l(pu£)# and so (yy~’) (pu£)# “ l(pu£)#

“ (y_1y)(p^)#. Thus {(zz-1 ,1) : z € XuX~') C (pu£)# and so M is

certainly a group, in particular E-unitary.

The question of whether or not (XuX-1 )*/(pu/?)* is E-unitary when 
J? - {(u,l)}, for u cyclically reduced, is still open.

Now we consider a more general class of presentations.

THEOREM 3.4. The E-unitary problem for finite Clifford monoid 

presentations is undecidable.

Proof. It is well-known that there exists a finite group

presentation with undecidable word problem [3],[29]. Let Gp<Z\T> be

such a presentation, with T - {(h^.l): i c {1 n) }, and let a be a

new element, distinct from the 'elements of Z. Let hn+1 - a2. Let 

X - Zu{a] and I - {l,...,n+l}. Let g e (ZuZ-1)* and let w - ag. Let y

denote a new element, distinct from the elements of X. Let V - Xu[y) .

Let p,q e (WuW1)* be such that $ (p) “ X and £(<7) “ V.

We define a finite relation R on (Vul̂ -1)* by

R “ {(PP_ 1̂ i,PP_1): i e I) u {(qq~',xx-1): x e X) 

u Uqq-1y»9<r1v)).



85

M

There are three (rjuR) ̂-classes in (VuV-1)*: {1},

{u e (VkjV-i)*: £(u) - 7) and {u c X«*(u) * 0). It is clear
from the definitions that R( 1) - R(y) - j? and k(u) - £ for every
u e (VuV1)* such that Xn£(u) * ff.

: i '-f ■ *> ■. "; ~
Hence (3.1) is trivially satisfied by every u e (VuV~1)+ except

. ..■* ■■   ____

possibly when {(u) - (y). Since y*x # lx for every k e Z\{0),
(VuV~')*/(ruR)* is E-unitary if and only if

Vk e A(0). yk(*uR)* * l(xuK)#. (3.3)

Since (qq~yy ,qq~'w) e R, the presentation Gp<V\R> is clearly 

equivalent (by a Tietze transformation) to the presentation Gp<X;S>, 

where S - {(h^,l): i el). Moreover, (3.3) is equivalent to

Vk c Z\{0), vfc(xuS)# * l(xuS)#. (3.4)

We prove that (3.4) is equivalent to g(ruT)* *■ l(xuT)*.

Suppose that g(xuT)# - l(xuT)#. Then g(xuS)# - l(xuS)# and so 

w (tuS)# - a(xuS)*. But a(xuS)# has order 2, so (3.4) does not hold.

Now suppose that g(xuT)# * l(xuT)^. By Lemma 1.2.6, 

(JuT-1 )*/(tuS)* is the free product (in Gp) of (ZuZ-1)*/(xur)* and 

{a,a-1}*/(tu{(a2,1)))*. Moreover, (ZuZ-1)*/(tuT)^ embeds canonically 

in (TuX-1)*/(*\jS)* and so g(rvS)* * l(xuS)#. Similarly, we have 

a(xuS)^ * 1(tuS)^ and so w(xuS)* is a nonhomogeneous element of a free 

product of two groups, that is, w(xuS)^ is not contained in either of 

the factor groups. Therefore v(iuS)^ has infinite order and so (3.4) 

holds.

Thus, decidability of the E-unitary problem for all finite 

Clifford monoid presentations would imply decidability of the word 

problem for Gp<Z\T>. The result follows.



86

COROLLARY 3.5. The E—unitary problem for finite inverse monoid 

presentations is undecidable.

Proof. This follows from Theorem 3.4 and Lemma 1.3(i),

The results of Section 2 provide some general positive answers. In 

contrast, other problems turn out to be undecidable, as a consequence 

of analogous results on group presentations.

The following result is a corollary of Lemmas 2.1 and 2.2.

THEOREM 4.1. The idempotent word problem is decidable for every 

finitely related Clifford monoid presentation.

This enables us to decide whether or not a finitely presented 

Clifford monoid is a group.

COROLLARY 4.2. The group problem for finite Clifford monoid 

presentations is decidable.

Proof. Let M be the Clifford monoid defined by the finite 

presentation Clf<X;R>. Then M is a group if and only if

Vx e XuX~' , (xx-’Xf'uR)# - 1(FU£)#.

Since X is finite, all we need is to apply Theorem 4.1 finitely 

many times.

4. Other decidability results

It is known to be undecidable whether or not finitely presented 

groups are trivial (or finite) [1],[35]. This yields some analogous
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results:

THEOREM 4.3. It is undecidable whether or not finitely presented 

Clifford monoids are 

(1) trivial,

(ii) finite,

(Hi) semilattices,

(iv) free.

Proof. (i) and (ii) follow from Lemma 1.3(ii).

Since a group is a semilattice if and only if it is trivial, the

same applies to (iii).

Now we prove (iv). Let G be a group, defined as a Clifford monoid 

by a finite presentation Clf<X;R>. Let Y be a finite nonempty set, 

disjoint from X, and let Z = XuY. The group of units of a free 

Clifford monoid is always trivial: in fact, if (uu-1)p = lp, then, by

(1.2), £(uu-1) ™ 0, that is, u - 1. We prove that (ZuZ~')*/(vuR)tt is 

free if and only if G is trivial.

Suppose that (ZuZ~' )*/(t>uR)^ is free. By Lemma 1.2.6, 

G — (XuX~i )*/(i>uR)& embeds canonically in (ZuZ~^ )*/( puR)^ . Hence G

embeds in the group of units of (ZuZ~1)^/(r'uR)^t which is trivial.

Therefore G is trivial.

Conversely, suppose that G is trivial. Then, by Lemma 1.2.6, 

(Zl»Z-1 )*/(I’uR)^ is isomorphic to (Tuf-1)*/}' ar*d so it is free.

Since it is not decidable whether or not G is trivial, the theorem 

follows.



88

5, E-reflexive inverse monoids

In this section we discuss the word problem for inverse monoid 

presentations which define E-reflexive inverse monoids.

Let M be an inverse monoid. We say that M is E-reflexive if

Va,b e M Ve e E(M), aeb e E(M) + bea e E(M) .

This concept was introduced by O'Carroll [31], who used the 

expression strongly E-reflexive.

Let t be a congruence on the inverse monoid M. We say that r is a 

Clifford congruence if M/t is a Clifford monoid. It is easy to see 

that the intersection of all Clifford congruences on M is still a 

Clifford congruence on M. We denote it by and we say it is the 

least Clifford congruence on M.

LEMMA 5.1 [34, §111.8]. Let M be an inverse monoid. Then the

following propositions are equivalent.

(i) M is E-reflexive;

(ii) M is a semilattice of E-unitary inverse semigroups;

(Hi) vpi is idempotent-pure.

In order to apply Lemma 5.1, we need a description of in terms 

of presentations.

LEMMA 5.2. Let X be a nonempty set and let R be a relation on 

(XuX-i)*. Let M - (XuX~')*/(puR)# and let <p:M — » (XuX^ 1 )*/(»'̂ ) # he 

defined by [w(pui?)̂ ]y3 = w (vvjR)$. Then Ker<p =

Proof. By definition, Ker<p = (vuR)$/ (puR)$. By Lemma 1.1.1,

M/Ker<p ^ (XuX-1 )*/(i>uR)^ and so Ker<p is a Clifford congruence.

Let t be a Clifford congruence on (XuX~i )*/(puR)&. Let T be the
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congruence on (XuX-1)* defined by

(u,v) e 7 (u(puR)$, v(puR)tt) e r.

It is immediate that R Q 7. Since t is a Clifford congruence, we

have [ (uu-1) (puJ?)̂ ]r " [ (u”1u) (pui?)̂ ]r for every u e (XuX~1)*. Hence 

(uu- 1,u-1u) e 7 for every u e (XuX-1)* and so p £ 7. Thus (vuR)& £ 7 

and so Ker<p ~ (vuR)^/(puR)% £ 7/(puR)^ - r. Therefore Ker<p —

Using the notation of Section 2, we obtain

LEMMA 5.3. Let Inv<X\R> be a presentation such that

(XuX~: )*/(puR)$ is E-reflexive. Let u,v e (XuX-1)*. Then 

u(puR)& = v(puR)& if and only if

(i) (u_1u)(puR)& = (v“1v)(puR)&;

(ii) (uu_1) (pui?)# - (vu-’u V ’XpuJZ)#;

(Hi) (vu-1) [xuR(vu~')]# = llruRCvu-1)]#.

Proof. Consider the condition

(iii)' (vu~1)(pui?)# = (vu“ 1 uv"1) (pujR)̂ .

We prove that u(puR)^ = v(puR)& holds if and only if (i),(ii) and

(iii) 1 hold. It is immediate that u(puR)^ = v(puR)^ implies (i),(ii)

and (iii)'. Conversely, suppose that (i),(ii) and (iii) 1 hold. Then 

u(puR)# - (uu_1u)(puR)^ = (vu_1uv_1u)(puR)tt = (vu_1u)(puR)^

= (vv"1v)(puR)$ = v(puR)&,

Thus we only need to prove that (iii)' is equivalent to (iii).

Suppose that (iii)' holds. Since (puR)& £ (i'uR)&, it follows that 

(vu-1) (puR)tt = (vu- 1uv-1 ) ( i - u j R ) # . Now, by Lemma 2.2, we have

(vu-1) [ttuJ:2(vu“ 1 ) ]$ = (vu-1 uv“1) [iruJR(vu“1) . Since

(XuX“ 1 )*/[ttuR(vu~’1 ) is a group, we have (vu- 1uv-1) [xui?(vu_1)

= 1 [ttu-R(vu_1 ) and so (iii) holds.
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Conversely, suppose that (iii) holds. Then (vu"1) [-irui^vu-1) ]# 

= (vu"1uv_1) [xu.R(vu"1 ) ]#. Since (XuX"1 )*/(rjuR)^ is a semilattice, we 

have (vu"1) (tjuR )& = (vu-1 uv~1) (rjuR)^ as well. By Lemma 2.2, it follows 

that (vu-1) (p>uR)tt » (vu"1uv~1) (vuR)&. Hence

[ (vu"1) (pu£)# ] [ (^ui?)#/(puJ?)# ] - [ (vu"1 uv"1) (pu£)# ] [ 0'ui0#/(pu£)# ] .

Since (XuX"1 )*/(puR)^ is E-reflexive, we have that (yuR)^/(puR)^ is 
idempotent-pure, by Lemmas 5.1 and 5.2. Therefore (vu"1) (pui?)^ is 

idempotent and so (iii)’ holds. Thus (iii) is equivalent to (iii)* and 

the lemma is proved.

THEOREM 5.4. Let Inv<X;R> be a finite presentation such that 

(XuX-1 )*/(pui?)^ is E-reflexive. Then K(R) can be effectively- 

determined and the word problem for Inv<X;R> is decidable if

( i )  the idempotent word problem for Inv<X;R> is decidable;

(ii) the word problem for Gp<X;K> is decidable for every K  € X ( R ) .
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CHAPTER VI 

INVERSE MONOID PRESENTATIONS

1, Preliminaries

Let I denote a finite nonempty set. A subset L Q H* is said to be 

a E-language.

The quadruple A — (Q tI,T,E) is said to be a ^-automaton  if Q is a 

nonempty set, I and T  are subsets of Q, and E S Q x Z x Q .  We say that 

A is finite  if Q is finite. We say that A  is deterministic  if |J| = 1 

and

( q , < r , q') , ( q, <f , q" ) e E 4 g' - g".

We can describe A  graphically: each element of Q labels a vertex; 

each (<7,0", q') e 2? corresponds to an edge oriented from q to q* and 

labelled by the vertices corresponding to the elements of I

(respectively T) are identified by an input sign (respectively output 

sign). Two E-automata are said to be isomorphic  if their graphical 

description coincides, up to labelling of vertices.

A nontrivial path  in A is a finite nonempty sequence on E  of the 

form (g0 , 0-, , g,) , (q, , a 2 , g2), . . . , (gn_t , an , gn) . The label  of such a path 

is <t, . . ,<rn . A trivial path  in A is a triple (g,l,g), with q e Q. The 

label  of such a path is 1. The above nontrivial (respectively trivial) 

path is said to be successful  if g0 e I and qn  e T  (respectively 

q 6 Ini’) .
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The language  accepted by A is

L(A) “ {we E*: w labels a successful path in A}.

We say that a I-language L is rational  if L = L(A) for some finite 

^-automaton A. Clearly, all finite ^-languages are rational, as well 

as E*  or 0,

We say that A is trim if every q e Q lies in some successful path 

of A.

LEMMA 1.1 [7,§111.2]. Let L be a rational E-language. Then there 

exists a finite trim deterministic E-automaton  A “ (Q,{i),T,E) such 

that L  = L(A).

Now let A == (Q,{i},T,E) be a trim deterministic ^-automaton. For 

every q e Q, we define Aq = ( Q , {i},{q},£) and A(q) - (Q,{q},T,£).

Consider the equivalence relation c on (J given by (q,q') e  ̂ if and 

only if L[A(q)] = L[A(qi)]. We define Amin == (Q/f*, {i? } ,Tv ,£V) , where 

Tv = {tp: t e T} and Er = { (qv ,<7, ql v) : (q,<J,q') € £} .

LEMMA 1.2 [7,§111.5]. Let A — (Q,{i},r,l?) be a trim deterministic 

E-automaton . Then

(i) Amj_n is a trim deterministic E-automaton;

(ii) L(A) = L(Amin);

(iii) if B is a trim deterministic E-automaton such that 

L{B) = L(A), then Am±n and Bmin are isomorphic.

The automaton Am±n is said to be the minimal automaton  of L(A).

We now state some well-known results on finite Jl-automata.
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LEMMA 1.3 [10,§9.2]. Let A, and A 2 be finite Z-automata. Then we 

can produce finite Z-automata accepting the languages L(A1)nL(A2),

L(At).L(A2) and L(A1)\L(A2).

LEMMA 1.4 [10,§14.7]. Given two finite Z-automata A y and A 2, it 

is decidable whether or not L(Ay) £ L(A2).

Now we introduce a more general class of E-languages.

The quintuple B - (Q,i,r,s,E) is said to be a pushdown Z-automaton 

if: Q and V are finite nonempty sets; i e Q; s e T;

E £ Q x (Eu[l}) X r x Q x r* is finite.

Let q,q' e Q. Let z e F4- and z1 c T*. Let y denote the first 

letter of z and suppose that z — yc. Let cr e Eu{l). If

(q, 0 ,y,q' ,z') e E, we write cr: (q,z) h- (q',z'c).

Suppose that cr1...... cr̂  e Eu[l}; q0,...,q„ e Q; € r+;

zn 6 T*; for every j e {1,...,n), we have < (qj,zj) . 

Then we say that cr1...crn:(q0lz0) (ln>zn)- define the language

accepted by B as

L(B) **{we I*: w:(i,s) (q, 1) for some q e Q).

A E-language L is said to be context-free if L - L(B) for some 

pushdown E-automaton B. It is well-known that rational languages are 

context-free [10,§ 2.3].

LEMMA 1.5 [10,§9.2]. Let A, fand A 2 be pushdown Z-automata. Then 

we can produce a pushdown Z-automaton accepting L(A1)uL(A2).

LEMMA 1.6 [10,§9,2]. Let A and B be respectively a pushdown

Z-automaton and a finite Z-automaton. Then we can produce a pushdown 

Z-automaton accepting L(A)nL(B ) .
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LEMMA 1.7 [10,§9.3]. Let A be a pushdown I-automaton. Let A be a 

finite nonempty set and let <p:T* — » A* be a monoid homomorphism. Then 

we can produce a pushdown A-automaton accepting bp.

LEMMA 1.8 [10, §4.1], Given a pushdown E-automaton B, it is

decidable whether or not L(B) is empty.

Now let X denote a nonempty set. For the remainder of this

chapter, we assume that X is finite. Let L be an (XuX~')-language.

Then L is said to be reduced if and only if L £

Since Rx — (X\jX~')*/[ u (̂ TuX”1 )*xx-1 (ZuX-1 )*] , Lemma 1.3
xcXuX~'

yields

LEMMA 1.9. If X is finite, then Rx is a rational

(XuX~1)-language.

For every n e N°, we define

Fn = {u e Rx : Iu| - n ), F(n) ~ [u e Rx : |u| < n).

Now let A = (Q,I,T,E) be a trim deterministic (XuX~1)-automaton.

Let ii""1 = ((q',x“1,q): (qtx,q') e E) . Then A is said to be inverse if 

and only if |I| = lT| = 1 and E = E~ } . If A is inverse and the graph

of A is a tree, we say that A is an inverse tree automaton.

Let Ax denote the class of all inverse tree (XuX~1)-automata of

the form A = (Q,{i},{i},E). Let Sx denote the set of all nonempty left 

closed subsets of Rx . We define a map T :AX — » Sx by

T(A) = {u e Rx : uu-1 e L(A)}.

LEMMA 1.10. Let A e Ax . Then

L(A) = [u e Dx : vl e T(A) for every v u).
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Proof. Let A “ (Q, {i) , {i} ,E) . Let u £ L(A) . Since A is inverse, 

we have ut e L(A), and so, since A is a tree automaton, we must have 

ui - 1. Hence u e Dy. Suppose that v <2 u. Then v labels a path in A 

beginning at i and since A is inverse, so does vi. Hence vi e T(A).

Conversely, suppose that u e Dy is such that vi e T(A) for every 

v <2 u. We can assume that u * 1. Suppose that u - x.,...xn ,

xj e XuX~i . We prove that, for every j e {l,...,n}, x t. . .xj labels a

path in A, beginning at i.

Since xt e T(A), this is certainly true for j = 1. Suppose that it 

is true for J, with 1 < j < n. Then x y...xj labels a path from i to 

some q £ Q, and so does v = (x1...xj)t. Suppose that vxj+1 e Ry. Then 

vxj+, = (x^.-xj+^i e T(A). Now suppose that vxj+^ i &x- 

(vxj+1) 1 <1 v £ T(A). In either case, it follows that vxj+1 labels a 

path in A, beginning at i, and so does x A...xjxj+ .̂ By induction, it 

follows that u labels a path a in A, beginning at i. Since ui labels a

trivial path at i, it follows that the terminal point of a must be i

as well. Hence u e L(A) .

LEMMA 1.11.

(i) T is surjective;

(ii) for every A,B £ Ay,

T(A) = T(£) 4=̂  A and B are isomorphic.

Proof. (i) Let W e Sx . We define A = (W,{1},{1} ,EuE”1), with

E = {(w,x,w') £ W x  (XuX~A) x  W: w ’ = wx) . It follows easily that

A e Ay and T(A) = W.

(ii) Let A,B e Ay. Suppose that T(A) ** T(B) . Let u e L(A) , By 

Lemma 1.10, we have u £ Dy and vt e T(A) for every v <2 u * Since

T(A) = T(J3), we have u c L(B) and so L(A) £ L(B) . Similarly,
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L(B) £ l (A) and so L(A) = L(B).

It is immediate that A - Amin and B - Bm£n. Therefore, by Lemma 

1.2, we have that A and B are isomorphic.

The converse implication is trivial.

Considering the operation (W,W*) h-» Wul?1 on Sy, we can now define

a multiplication on Ax, up to isomorphism. For every A,B e Ajf, we 

define AB by T(AB) - T(A)uT(B).

For every u e (XuX-'')*, we can consider

MT(u) - (Q(u),{1),{ui),E(u)u[E(u)]~') 

as an inverse tree automaton. It follows easily that

LEMMA 1.12 [26]. For every u e (XuX~')*,

L[MT(u)] - (v e (XuX~')*: vp > up}.

Now assume that P is a finite relation on (Xu-X-1)* and let e e Dy. 

Following the construction of Stephen [39], adapted by Meakin and 

Margolis [18], we define a sequence of finite inverse tree automata 

Ap ^(e), k e N. We denote TJAp^Ce)] by Wp^(e).

Let Ap(1(e) = MT(e). Suppose that Ap^(e) is defined for some It e N, 

We can give the following intuitive description of Ap k+^(e), from a 

geometric point of view.

We consider all the instances of vertices q of Ap ^(e), 

(a,b) e P u P and f e Dy such that the tree MT(afa~') embeds in 

Apjc(e) at q. Then we define Ap £+1(e) to be the inverse tree 

automaton obtained by adjoining the tree MT(bfb~') to Ap^(e) at q for 

all such instances.

In a more algebraic perspective, we define
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^P,ic+i(e) “ q €, Wp ffc(e) , f € Dx ,

(a,b) e PuP-1 and [q.Q(af)]i Q W p tk(e)}

and we define Ap^+^e) by T[Ap ^+1(e)] - ^p,k+,(e).

Finally, we define Wp(e) - u Wp ^(e) and we define Ap(e) by
/c>i ’

T[Ap(e)] = Wp(e). It follows from Lemma 1.10 that

L[Ap(e)] =■ u L[Ap fr(e)]./c> 1
For every e,f e Dx , we have

e(puP)# - f<puP)# ^  e(puPD)# - f(puPc)#, (1.1)

by Lemma 1.3.9. The next result follows easily from [18] and [39], but

we give a proof for completeness.

LEMMA 1.13. Let P be a finite relation on (XuX-1)* and let

e e Dx . Then

Wp(e) - [u e %: (uu-i)(puPp)# > e(puPp)#).

Proof. We prove that, for every J € N,

Yu e Wpj(e), (uu-1) (puPp)# > e(puPp)# . (1.2)

Let u e Wp(1(e). Since Wpt1(e) = Q(e) , we have (uu-1)p > ep, by 

Lemma 1.12. Hence (uu-1)(puPp)^ > e(puPp)^ and so (1.2) holds for

j  “  I -

Now suppose that (1.2) holds for J = k, with k e N. Let 

u c WP)fc+1(e). We can assume that u / P̂,ie(e)- Then there exist

q e Wp^e), (a,b) £ PuP-1 and f '€ such that [q.Q(a£)]t £ Wp (̂e)

and u e [q.Q(b£)]t• Since Q (qaf a- 1 q~ 1 ) = Q(qaf) = Q(q)u[q,Q(af)]i, we 

have Qiqafa-' q-1) £ Wp ^(e) .

By Lemma 1.3.3, we have (qafa~'iq~'{)p = n (vv-1)p and so
v e Q ( q a f )

(qafa-1q-1)(puPp)# = n (vv i)(puPD)#. By hypothesis, we have
veQ(qaf)

( v v - 1 ) ( p u P p ) ^  >  e ( p u P p ) ^  f o r  e v e r y  v  e Q ( q a f )  a n d  s o  

( q a f a - 1 q - 1 ) ( p u P p ) ^  > e ( p u P p ) ^ .  M o r e o v e r ,
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(qafa-’q-1)(puPp)# - (qb£b~'q~')(puPD)$ and u e [q.Q(bf)]i 

Q Q(qbfb~1q""1). By Lemma 1.12, we obtain (uu-1)p > (qbfb_1q“1)p and so 

(uu“ 1 ) (puPp)# > (qbfb~~1 q-"1) (puPp ) ̂ - (qafa-1 q”1) (puPp)# > e(puPp)#.

Hence (1.2) holds for j = Jc+1 and so for every j e N. Thus 

Wp(e) S {u e (uu-’)(puPp)# > e(puPp)#}.

Conversely, suppose that u e and (uu-1) (puPp)^ > e(puPp)#. Then

uu-1e(puPp)# - e(puPp)^ and so there exist w 0,...,wn c (JTuA--1)* such 

that

wQ = uu-1e;

wn = e;

Vj e 3rj,Sj e (XuX-')* H(aj,6j) 6 puPg:

= [rjajbj,rjbj8j).

By Lemma 1.3.9, Pp is idempotent-pure and so wj e D% for every 

j € {0.... n}. We prove that, for every j e {0,...,n),

u e Wpj+i (vj). (1.3)

Since Wp^^o) “ Q(ulJ-'1e). (1.3) holds for j = 0.

Assume that (1.3) holds for j = ie, with 0 < k < n. Suppose first 

that (ak+1,bk+1) e p. Then wk+1p - wkp and so WPf1(w}c+1) = WPf}(wk). 

Hence Wpf k+, (wk+1) = ^p,/c+i <w/c> • Therefore u e ^ )]c+1( % 1)

- wP,k + 2  (vic+i) anc* (1-3) holds for j = k+1.

Now suppose that (ak+1,bk+1) c Pp. Then there exist (a,b) e P and 

f e D%  such that ak+1 = a£a“ 1 and bk+1 = bfb-1 . Without loss of 

generality, we can assume that wk - rk+1afa”1sk+1 and

wk+, = rk+^bfh~'sk+^• since [rk+i .Q(bf)] t S (̂wfc+i) “ ^P, i (wlc+i>* we 

have [rk+1.Q(af)]i £ , 2(wic+i) • We have QĈ fc)

= Q(rk+1aPa~1)u[rk+1afa“1.Q(sk+1)]i

- Q(ric+1 M r/c+i .Q(afa-1) ] iu[rk+1 .Q(fifc+i) ] t

- Q(^k+1)^[rk+1,Q(af)]tu[rk+1.Q(sk+1)]t- Similarly,

Q(wk+i) = Q(rk+i)u[rk+1.Q(bf)]iu[rk+i.Q(sk+1)]t and so
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wP,i(wk'> ” Q(w 0  - WP , 2 (wk+1) ■ Hence Wp k  +1(wfc) £ Wpk+2(wk+ )̂ and so, 

by the induction hypothesis, we have u e W p }k + 2(w k +i)* Therefore (1.3) 

holds for j = fc+1 and so for every j e {0,...,n}. In particular,

u e ̂P,n+\(wn) ^p(e) an(i so ^He lemma is proved.

LEMMA 1.14. Let P be a finite relation on (XuX-1)* and let

e,f e D%. Then

e(puPc)# - £ (puPD)# +* WP(.e) - Wp(f) .

Proof.  The direct implication follows immediately from Lemma

1.13.

Now suppose that Wp(e) = Wp(f). Since ep — II (uu-1)p and
ueQ(e)

Q(e) £ Wp(e) = W p ( f ), we have, by Lemma 1.13,

eipuPp))̂  = f| (uu-1 ) ( p u P z?) #  > f(puPp)^. Similarly,
tieQ(e)

f(puPp)& > e(p\jPp)#. Hence e(p uPp)^ =* Jf(pup£))̂  and the lemma is proved.

The next result follows from the definition of Wp(e).

LEMMA 1.15. Let P be a finite relation on  (XuX-1)* and let e e D%.

Then Wp(e) is the smallest  (XuX-1)-language W such that

( 1 )  W  £ RX ;

( 2 )  W is left closed ;

(3) Q(e) £

(4) Vw e 1/ V(a,b) e PuP-1 Vf €'Dj,

[ w . Q ( a j f )  ] l Q w  * [w,Q(bf)]i Q W .

We can replace condition (4) by a pair of conditions each with 

fewer quantifiers. Let y(X,P,e)  be the set of all (XuX-1)-languages 

satisfying
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(i) W £ Rx ;

(ii) W is left closed;

(iii) Q(e) £ W;

(iv) Vw e W V(a,b) e PuP-1, [w.Q(a)]e £1/ 4 [w.Q(b) ] c £ W;

(v) Vw e I? V(a,b) 6 PuP-1, [w.Q(a)]t £ W 4 (wba_1v"W)t 5 W .

LEMMA 1.16. tfp(e) - n{tf: W e 7 (X,P,e)}.

P r o o f, By Lemma 1.15, it is enough to show that conditions

(i)-(v) are equivalent to conditions (l)-(4). Let I? be an 

(XuX-1)-language satisfying (i)-(iii). We must prove that W satisfies

(4) if and only if W satisfies (iv) and (v).

Assume that W satisfies (4). Suppose that [w.Q(a)]t £ jy for some

w e W and (a,b) e PuP-1. Let w' e W and let f — a- 1w ~ V w ' -1va. Then

we have Q(af) = Q(aa-1w-W * -1wa) = Q(a)u[w- 1Q(w) ] tu[w-1Q(w') ] t and

so [w.Q(af)]i = [w.Q(a) ] tuQ(w)uQ(w*) £ W. Thus, by (4), we have

[w.Q(b.f)]i £ W. But Q(bf) 2 Q(b)u{ (ba-1w-1w' ) 1} and so

[w.Q(b)]tu{(wba-1w- 1v' )t} £ W, Hence W satisfies (iv) and (v).

Now s u p p o s e  t h a t  W  s a t i s f i e s  ( i v )  a n d  ( v )  . L e t  w e W, l e t  

( a , 5 )  e P u P - 1  a n d  l e t  f e Dx . S u p p o s e  t h a t  [w.Q(af)]i £ W. We w a n t  t o  

p r o v e  t h a t  [w.Q(bf)]i  £ W  a n d  we h a v e  Q ( b f ) =  Q ( b ) u  [b .Q(f) ] £ . S i n c e  

Q ( a )  £  Q ( a f ) ,  we h a v e  [ w . Q ( a ) ] t  £ W a n d  s o  [ w . Q ( b ) ] i  £  W, b y  ( i v )  .

S i n c e  [a.Q(f)]i  £  Q ( a f ) , we h a v e  [ w a . Q ( f ) ] {  £ W. L e t  v  e Q ( f )  . T h e n  

(wbv)t =  (wba~''w~'wa.v) 1 . S i n c e  (wav) 1 e W, we h a v e  (wbv) 1 e W, b y  ( v )  , 

H e n c e  [wb.Q(f)]i  £  a n d  s o  [w.Q(bf)]i £ W. T h u s  W  s a t i s f i e s  ( 4 )  a n d  

t h e  le m m a  i s  p r o v e d .
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2. A result on rational languages

In this section we will prove that it is decidable whether or not 

a rational (XuX-1)-language belongs to y(X,F,e).

We need a few more preliminary results.

LEMMA 2.1 [18]. Let A be a finite (XuX~*)-automaton. Then we can 

produce a finite (XuX~')-automaton accepting [L(A)]i,

LEMMA 2.2. Let A be a finite (XuX"1) -automaton. Let

[L(A)]-1 = {w-1 : w e L(A) ] , Then we can produce a finite 

(XuX~1)-automaton accepting [L(A)]-1.

Proof. Let A - (Q,I,T,E). Let A-1 = (Q,!,!,#”1) . It follows

easily that L(A_1) = [L(A)]-1.

LEMMA 2.3. Let A be a finite (Xu X~'1)-automaton and let

c e (XuX"1)*. Let L = (wcw" 1 : w e L(A)}. Then we can produce a

pushdown (XuXT"1)-automaton accepting L.

Proof. Let y / XuX"1. Let <p: (XuX"1u{y) )* — > (XuX-1)* be the 

monoid homomorphism defined by y<p — c and xtp — x, x e XuX-1. By Lemma 

1.7, we only have to produce a pushdown (XuX-1)-automaton accepting 

L' = {wyw-1: w e L(A)}.

Suppose that A = (Q,[i),TtE). Let p be a symbol not in Q and let s

be a symbol not in XuX-1. We define a pushdown (XuX-1u{y})-automaton

B = (Qu{p),i,XuX-1u{s),s,E'), where

E' = { ( q , x , z , q' ,zx): (q, x , q' ) e E , x e XuX- 1 and z e XuX"1u(s}} 

u{ (t,y,z,p,z): t e T, z e XuX-1u{s}}u{(p,x-1,x,p,1): x e XuX-1} 

u{ (p,l,s,p,l)} .
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It is easy to see that L 1 £ L(B) . Conversely, suppose that

u e L(B). Then there exist x, .e XuX~'u[l,y); qQ.............. qn e Q;

z0,...,zn e (XuX'-’uts) )* such that

x,..,xn - u;

= s'>
Zn » 1;

Vj e {1,. .. ,n) , Xj i (qj— i »zj— i > **”

It follows easily that we must have qn = p. Let

k = min(j e {l,,..,n}: qj = p} . Then it is not difficult to see

successively that

9k- 1 e r;
x, . . .xk_., e ;

xk = y;

zk-i = zk = 6Xi • • • xk- 1 J

xk+i••,xn-i ” xk-i■•*xi 1 •
xn - 1 .

Hence u e L 1 and the lemma is proved.

LEMMA 2.4. Let A - (Q,{i),T,E) be a finite (XuX-1)-automaton. Let 

cQ 6 (XuX-1)*. Let L = {(wcQw-1)t: w e L(A)} . Then we can produce a 

pushdown (XuX-1)-automaton accepting L.

Proof, Let IV = L(A) . By Lemma 2.1, we can assume that both L(A) 

and cQ are reduced. Moreover, we can assume that cQ is cyclically 

reduced. In fact, suppose that c0 = uvu”1, with v cyclically reduced. 
Then, by Lemmas 1.3 and 2.1, we can produce a finite (XuX-1)-automaton 

accepting the language = (^u)i, and L = {(w'vw,-1)i: w' e W'}.
Let u,v e R% be such that cQ = uv. Then vu is said to be a cyclic
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conjugate of cQ. Let C denote the set of all cyclic conjugates of cQ. 

We prove that, for every w e W,

Vc € C 3v' <] v 3c' e C: (wcw-1)i - w'c’v'-1. (2.1)

We use induction on the length of w, The case |w| - 0 is trivial. 

Suppose that (2.1) holds for every w € W with |w| - n e N°. Let v e W 

with |v| — n+1. If vcv— 1 c Rx, we take v1 - v and c' - c. Now suppose

that vcv"*1 / Rx. Then we have either vc / Rx or cv” 1 / Rx- Suppose

that vc / Rx. Then there exist x c XuX~1 and u,a c Rx such that

v = ux“ 1 and c = xa. Obviously, (vcv-1)i “ (ux~ 1 xaxu~1) t — (uaxu“,)t.

Since W is left closed, we have u e W. Moreover, |u| = n and ax € C. 

By induction hypothesis, we have (uaxu_1)i =* v'c’v 1-1 for some v' u 

and c' e £. Thus (vcv~1)i <* v'c'v’" 1 and v* <| v. The case cv-1 / Rx 

is similar. Thus (2.1) holds for v and so for every w € W.

In particular, for every v e W, we have (wc0w~1)t => w'c^w’-1 for

some w 1 <2 w and cw t. C. It is immediate that such w' and cw are

unique.

For every d e £7, we define * {w* : w e V and cw - d) , Our next 

step is to prove that, for every d e C, fij is a rational

( X u X ~ 1 ) -1anguage. Le t

V - [ u L(Aa).x]u({l)nnd),
(q,x)el

w i t h  I  «  { ( g , x )  e Q x  ( X u X " 1) :  [ L ( A g ) *  0 }  . We c l a i m  t h a t  Q d  -  W. 

We c e r t a i n l y  h a v e  £ V .  Now s u p p o s e  t h a t  [L(Aq),x]nnd  *  0  f o r  some 

q e Q a n d  x  e X u X - 1  . H e n c e  t h e r e  e x i s t s  som e u  e L(Aq)  s u c h  t h a t  

u x  e Q ^ .  L e t  u '  e L(Aq ) . S i n c e  u x  € f l j ,  t h e r e  e x i s t s  w e W s u c h  t h a t  

( w c 0w- 1 ) t  =  u x d x “ 1u ~ 1 . We h a v e  w =  u x p  f o r  som e p  e a n d  i t  f o l l o w s  

t h a t  ( x p c ^ ^ x " 1 ) i  -  x d x - 1 . S i n c e  u , u '  e L(Aq)  , we h a v e  u ' x p  e W  a n d  

( u ' x p C p p ” ^ ” 1 u ' - 1 ) i - (u'xdx~1ut- 1 ) l . B u t  u ' x  l a b e l s  a  p a t h  i n  A a n d  

s o  u'x e Rx• T h e r e f o r e  u , x d x “ 1u , ~ 1 e Rx. H e n c e  L(Aq)  , x  £ 0^ a n d  s o

n d ~ v .
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Now we give an algorithm to produce a finite (XuX-1)-automaton 

accepting 17̂ .

Suppose that [L(Aq) ^ 0 for some q e Q, x e XuX-1 and d e <7.

Let w e I? be such that cw - d and w' d L(Ag).x. Then, as shown above, 

L(Ag) ,x £ 0^. Moreover, there exists u e L(Aq) with |u| < |Q| and so

we can assume that |w' | < |Q| . Let Z ~ {z e W: z1 — w* and cz *» d). We

can assume too that w has minimal length among all the elements of Z.

Suppose that w = wrlx 1 . . ,xn , x± e XuX-1, Suppose that there exist 

j ,k e (1,.,.,n} and p e Q such that j < k and

xj * xk>
w 1x,,..xj__,, W'x1,..x^_1 e L(Ap);

(xj . . . xnc Qxn 1 . . . xj1 ) i — (x£. . . xnc Qxn 1 . , . x^1) t e C.

Note that, by our previous construction of w 1 and cw> we can

assume that (x^...Xĵ CqX̂ 1..,xj1)t e C for every 1 e {l,...,n}.

Let v = w,x 1 . . .xj_tX£. . ,xn . Since w = w1x 1 . . ,xn and 

w'x1...Xj_1, w'x, . . ,X]C_ 1 c L(Ap), we have v e W. Hence (vcQv-1)i 

= (w'x,..,xj_lXk...xnc0x-1. . ...x7 1w ‘-1)i 

= (w'x, . , ,xnc0x^ 1 . . .x'pv'-1) i = (wc0w“1)i = w 'dw1~ 1 .

Since |v| < |w| , this contradicts the minimality of w and so we

must have n < | Q | , |XuX-1 | . | C\ . Hence |wj = iw'x, . . .xn | < iQl+n

< lQl+2|Q|.|Xi.|c0(. Thus, to determine whether or not [L(Ag).x]nis 

empty, we only have to compute w ’ and for every w e W with length 

not exceeding |Qi+2|Q|.|X|.|c0|.

Similarly, if 1 £ then we-can find some w e W with length not

exceeding 2|Qj.|X|.|cq| such that w* = 1  and cw = d.

Let H - {w e W : |w| < |Q|+2iQ|.|X|.|c0i). For every w e H , we

compute w' and cw . Suppose that cw = d. If w' =1, then 1 e If

w 1 A 1, then we can write w' e L(Ag) .x for some q e Q and x c XuX-1, 

yielding (q,x) e I. Since ff is finite, we can perform these 

computations for all such w. As shown above, this is enough to
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determine completely I and {ljnfî . Now we can apply Lemma 1,3 and 

produce a finite (XuX-1) -automaton accepting

Finally, we have L =* u {wdw-1 : w e Qa) and the lemma follows from
deC

Lemmas 1.5 and 2.3.

Let W be a reduced rational (XuX-1)-language and let a e W, We 

define the language to be {w e W: [w.Q(a)]i £ 17} ,

LEMMA 2.5. Let A « (Q,{i},T,L) be a finite (XuX-1)-automaton with 

L(A) reduced. Let W - L(A) and let a € (XuX-1)*. Then we can produce a 

finite (XuX-1)-automaton accepting Wa.

Proof. Let n = |a|+l. For every q e Qt let

Vq = {v e (L[A(q)])r,Fn : [ v.Q(a) ] i £ L[A(q)]}.

Let 17 = ] <-»( u [L(Aq) . ) . The languages VQ and WanF/n\ are
qeQ H H H

finite and so, by Lemma 1.3, we can produce a finite (XuX-1)-automaton

accepting V. We prove that Wa = V.

Let q e Q. Suppose that u e L(Aq) and v e Vq. Since 

L(Aq).L[A(qy] Q W t we have uv e W, Since iv| > |a| , we have 

[uv.Q(a)]i = (u. [v.Q(a)]) t = u( [v.Q(a) ] t) £ L(Aq) .L[A(q) ] Q W  and so 

uv e Wa. Hence V £ Wa.

Conversely, let w e Wa. If iw| < n, then w e WanF^n  ̂ £ F, so we 

assume that |vi > n. Let w - uv, with ivi = n. Then u labels a path in 

A going from the state i to somd state q e Q. Hence u e L(Aq) and 

v e L[A(q)], Since iv| > \a\, we have [w.Q(a)]i = u( [ v. Q(a) ] t) . Since 

w £ Wa> then u([v.Q(a)]i) e W and so [v.Q(a)]i e L[A(q)], Hence v e Vq 

and Wa £ V. Thus Wa = V and the lemma is proved.
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THEOREM 2.6. Let X be a finite nonempty set, let P be a finite 

relation on (XuX"')* and let e e Dy. Let A = (Q,{i),T,E) be a finite 

(XuX-1)-automaton. Then it is decidable whether or not 

L(A) e y(X,P,e).

Proof. Let I? » L(A) . Without loss of generality, we can assume 

that A is minimal. We will consider the five conditions defining 

y(X,P,e) successively.

(i) W is reduced.

This is equivalent to W £ and this is decidable by Lemmas 1.4

and 1.9.

(ii) W is left closed.

We prove that this is equivalent to having T = Q. Suppose that W 

is left closed and let q e Q. Since A is minimal, A is trim and so q 

lies in some successful path of A. Since W is left closed, this 

implies that there exists a path in A, beginning at i and ending at q, 

labelled by some w e W. Since A is deterministic, this implies q e T. 

The converse implication is immediate.

Thus it is decidable whether or not W is left closed.

(iii) Q(e) £ W.

This is decidable, since Q(e) is finite.

(iv) V(a,b) e PuP-1 W  e W, [w.Q(a)]i £ 17 =* [w.Q(b)]i £ W.

This is equivalent to having Wa — for every (a,b) e P. Assuming 

that W satisfies (i) , and since P is finite, this is decidable by 

Lemmas 1.4 and 2.5.

(v) Y(a,b) e PuP-1 Vw e W, [w.Q(a)]i £ W ^ (wba-1w“1W)i £ W.

The fifth and final condition is by far the hardest to deal with. 

We shall assume that W satisfies all four previous conditions.
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Moreover, we can assume that (ba“1)i * 1, otherwise the condition is 

trivially satisfied.

Since 17 is left closed, lei/. Therefore a necessary condition for 

W to satisfy (v) is

V(a,b) e PuP-1 Vw e W, [v.Q(a)]i £ W =* (wba-1 w"1) t e I/.

This is the same as

V(a,b) e PuP-1 Vw e I7a, (wba~'w~')i e I/. (2.2)

Let P(a,b) = {(wba~ V 1) i: w e l/a}. Then (2.2) is clearly 

equivalent to

V(a,b) e PuP” 1 , N(a,b) CRT. (2.3)

Let (a,b) e PuP-1. Then, by Lemmas 2.4 and 2.5, we can produce a 

pushdown (XuX-1)-automaton accepting N(a,b) . Moreover, N(a,b) Q W is 

equivalent to N(a,b)n[ (XuX-1 )*\t/] - 0. By Lemmas 1.3 and 1.6, we can 

produce a pushdown (XuX-1)-automaton accepting this intersection and 

so, by Lemma 1.8, we can decide whether or not it is empty. Hence it 

is decidable whether 17 satisfies (2.3) or not.

If we verify that 17 does not satisfy (2.3), then 17 cannot satisfy

(v) either. If 17 satisfies (2.3), then the algorithm must continue as 

follows.

As a preliminary step, we must discuss the condition

(ut/) i c w, (2.4)

where u e 17. We can assume that u ^ 1, say u = x 1 . . .xn. Let

m = max({j e {l,..,,n}: x^ 1 . . e 17}u(0}), We partition 17 into

iTi+l disjoint subsets as follows.

Let I/0 = t/XCx^Pj) . For every j e (1....m-1} , let

Wj = [I7n(xn 1 . . .Xjjlj+i-̂ x) ]\(xn1 • * -Xn-j^x) • = ^n(xn1 ■ • *xn—m+r^X^ *
Let J = (j 6 {0.... m}: 17j ? $) . Of course, (2.4) is equivalent to

Vj e J, (uWj )l c I/. (2.5)
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Since u e I/, there exist unique q0 qn e Q such that

<7o =
Vk c {1,...,n), (qk_^,xk,qk) e E.

Similarly, there exist unique qj,. . . e Q such that

<?o “ i>
VI e {l,...,m}, (q)-!,x“l2+,,qi) e E.

Now we define xQ - 1. For every x e XuX~*, let P(x) - We

also define P(l) to be p. We prove that (2.5) is equivalent to

VJ e J , L(A% r )(L[A(q])]\P(xn_j)) £ W . (2.6)
J J

For every k < 0, we assume that a word of the form x xx 2...xk is 

the empty word. This and other similar conventions will be used 

without further comment.

Suppose that (2,5) holds. Let J e J, let c e L(Aa . ) and let
J

d e L[A^gt ̂ ]\P(xn-j) . We want to prove that cd e 17. Since 

d e L[A(qi)], we have xĵ 1 . . ,x^ij+1d e W, Moreover, since d / P(xn_j), 

we have x^1...x^lj+1d e F7 j . Hence, by (2.5), [u(x^ 1 . . .x^lj+1 d) ] i e W.

Therefore x t . . .xn_jd e W. But x, . . .xn_j e MAg .) and so cd f W holds 

as well. Thus (2.6) holds.

Conversely, suppose that (2.6) holds. Let J e J and let c e Wj. 

Then c = x^ 1 . . .x^lj+1c' for some c' e L[A(g_> ) ]\P(xn_j) and so

(uc) i = x, . . .xn_jC' e L(Ag . ) (L[A(gi j]\P(xn_j)) . Hence, by (2.6),
p") j

(uc)i e W. Therefore (2.5) holds and so (2.6) is equivalent to (2.5).

We define

5 ( u) — { ( J , q̂j , xn_̂j ) : J e d} .

Now we consider the set

9= { ( q , q ’,x) e Q x Q x ( M ~ 1 u (1) ) : (L(Aq) (L[A(g. ) ]\P(x) ) 0 17} .

The set 9 is finite and can be effectively determined, by Lemmas 

1.3 and 1.4.
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Since (2.4) is equivalent to (2.6), it follows that W satisfies

(v) if and only if

V(a,b) e PuP" 1 Vw e Wa, (6 [ (wba~'w~' ) i ] )«0 - J3, (2.7)

or equivalently,

V(a,Z>) e PuP"’, S[tf(a,b)]n0 - 0. (2.8)

Let (g,q',x) e 0 . We prove that

(q,q’,x) e S[N(a,b)] (2.9)

4=* [N(a,b) ]n[L(Ag)n%x] [L(Ag. ) ]~1 * 0 and L[A(gi)] % P(x) .

Suppose that (g,q',x) e 5[N(a,b)]. Then there exists u e N(a,b) 

such that (g,q’,x) 6 S(u). Suppose that u = x 1 . . .xn xj[ e XuX”1. With 

the notation of (2.6), there exists j € J such that qn-j = q, q'j “ q' 

and xn_j = x. Hence u = x, . . .xn = (x, . . .xn_j) (xn_j+1 . . .xn)

e CL^q n ,)n% xn“j] ) ]_1 “ [LUg)n%x] {L(Aq, ) J" 1 and so
 ̂ J

[N(a,b) ]n[L(Ag)nP^x] [L(Ag« ) j-1 * J?. Moreover, since j e J, we have

LiA(qp] £ P(xn-j) and so L[A(g.)] % P(x) .

Conversely, suppose that there exists some

u e [N(a,b)]n[L(Aq)r>Rxx][L(Aqt)]-' and L[^(g«)] % P(x). Let

u = x 1 . . ,xn , x± e XuX-1 . Then there exists j e {0, . . , ,n) such that

x,...xn„j e L(Ag)nRxx and xn_j+1..,xn e [L(Ag*)]_1. Hence 

xn } ' ’ -xn-j+ 1 e L(Aq0  and since L[A(gi)] % P(x), we must have j e J, 

with the notation of (2.6). It is immediate that 

(q,q' ,x) - (<hj-j*9;>xn-j) e 5(u) - 6[N(atb>] and so (2.9) holds.

Now, by Lemmas 1.3 and 1.4, we can decide whether or not

L[A(gt)] £ ?(x) . By Lemmas 1.3 and 2.2, we can produce a finite 

(■XuX-1)-automaton accepting the language [L(Ag)nPjfx] (L(Ag i) ]-1 . By 

Lemma 1.6, we can produce a pushdown (XuX“1) -automaton accepting the 

language [N(a,b) ]n[L(Aq)nRxx] [L(Agi ) ]-1 and so, by Lemma 1.8, we can 

decide whether or not this language is empty. Since 0 is finite, we 

only need to perform finitely many such computations and so it is
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decidable whether or not W satisfies (v).

3. Idempotent-pure presentations

In this section we will give an alternative solution to the word 

problem for finite idempotent-pure presentations, solved by Meakin and 

Margolis [18].

A presentation Inv<X;P> is said to be idempotent-pure if 

P £ Dy x Dy.

LEMMA 3.1 [28]. The inverse monoid defined by an idempotent-pure

presentation is E-unitary.

Throughout this section, assume that P £ Dy x Dy is finite.

LEMMA 3.2. Let u,v e (XuX~’)*. Then

u(puP)^ « v(puP)# «=# ui = vi and (uu~1)(puP)^ = ( w -1) (puP)#.

Proof. Suppose that u(puP)^ = v(puP)^. We certainly have 

(uu-1)(puP)^ = (vv“1)(puP)# . Moreover, we have

[u(puP)^](r = [v(puP)^]cr , that is, u(iruP)^ = v(ttuP)^. Since P £ tt, we

obtain utt = vtt and so ui — vi .

Now suppose that ut = vi and, (uu_1)(puP)^ = ( w -1) (puP)^. Since 

up = (uu~1)p(utp) and vp = (vv-1 )p(vip) , we have

u(puP)# - (uu"1)(puP)# .ui(puP)# = (w"')(puP)#.vt(PuP)# = v(puP)#.

We obviously have (puF)^ = (p u P j a n d  so, by Lemmas 1.14 and 3.2, 

the word problem for Inv<X]P> will be decidable if we can determine 

whether or not Wp(e) = Wp(f) for every e,f e Dy. The next result is
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essential in our solution. In [18], it is proved by using second-order 

monadic logic and Rabin's Tree Theorem [36]. We give a new proof.

LEMMA 3.3 [18]. Let e e Dj{. Then we can produce a finite

(XuX”1)-automaton accepting the language Wp(e).

Proof. Let Q - Wp(e) and Ap(e) « (Q, {1}, {1} ,E) . Let

E+ = ((q,x,q') e E: tqi < iq'l). We define a trim deterministic

(XuX~1)-automaton A - (Q,{1},Q,E+). It follows easily that

L(A) = Wp(e) . By Lemma 1.2, Wp(e) is rational if and only if Amin is 

finite.

Let v be the equivalence on Q defined by qr = q' t> if and only if

L[A(g)] = L[A(qt)]. Let N = raax({2|ai: (a,b) e PuP-1}u{|e|}). We prove

that

Vq,q' e Q, L [ A ^ ] n F ^  - L[A(qt )]nF^  * qv - q'y . (3.1)

Suppose that L[A(g)]nF(^ = L[A(qi ) ]nF(jy) for some q,q' e Q. We

can write Q as a sequence (̂ xî neN that successively enumerates all the 

elements of Wp(1(e), then all the elements of Wp?2(e)\Wpf1(e), then 

the elements of Wpj3(e)\Wp 2(e), and so on. We want to prove that

l'[A(g)] £ L[A(qi)]. In fact, we will show that for every j e N,

qu - qj u e L[A(q.)]. (3.2)

We use induction on j. Suppose that qu = q,. Then q1 e ^pf1(e) 

= Q(e) and so iq^ < \e\ < N. Hence |u| < N and so u e L[A(g)]nF(^). 

Therefore u e L[A(qt^] and (3.2) holds for j = 1.

Suppose that (3.2) holds for every j < n. If qn+i ^ 9-̂ X* then

(3.2) holds for j = n+1. Now assume that qn+̂  = qu. If |u( < N, then

(3.2) holds for J = n+1. Hence assume that |u| > N. Note that

qn+1 / ^P,i(e)» since otherwise l^n+i1 < lel < Thus

qn+1 e ^p^+i (e) W p >ic(e) f°r some k e N. Hence there exists some



112

P e wP,k(e) and some (a,b) e PuP-1 such that [p.Q(a)]t £ tfp (̂e) and

gn+1 e [p.Q(b)]i. Let v e Q(b) be such that qn+1 - (pv) i . Therefore

qu = (pv) i and so there exist p 1 ,g,v' e such that p - p'g.

v t, g-iv' and qu »  p'v' . Since |v* l < |v| < N/2 and | U|  >  N, we must

have p 1 - qh for some h e Rx with |h| > N/2. Hence we have p - qs, for

some s1 e su°h that is, | > N/2. Since I a I < N/2, then

[p.Q(a)]i £ qRx , Assume that [p,Q(a)]i - Iqs,,..,,qsi). Since p - qs 

we obtain [s1.Q(a)]i — {s $2)• Moreover, for every i e {1,...,!}, 

we have qs± e ^P,k(e)* Hence qs i - qj, for some < n and we can 

apply the induction hypothesis, obtaining (s1,...,S2 ) £ ^[^(q1)]*

Therefore [ q ' s q ' s }} £ L(A) = Wp(e) and so £ Wp(e) .

Thus [q,s1.Q(b)]t £ Wp(e). In particular, (q’s1v)i e Q. But 15,1 > |v|

and so (q’s ^ t  = q'[(sxv)i]. Hence (s,v)i e L[A(q»)]. But 

qu - (pv) i = (qs,v)i = q[(s1v)t], so (s,v)i = u and u e L[A(q.)].

Hence (3.2) holds for j = n+1 and so holds for every j e N. Thus

L[A(q ]̂ £ L[A(qi)]. Similarly, we obtain L[A(qij] £ L[A(q)]. Hence 

qi> = q'v and (3.1) is proved.

For every k e N, let denote the set of all nonempty left closed 

subsets of P ^ f ’(/C) anc* het ^k = • From (3.1) it follows that

IQ/v\ < X̂ . Now we give an algorithm to compute X^ inductively.

For every k e N and every x e XuX- 1, let

P/t(x) = {L £ RXnxRXnF^y. Lu{l) is left closed).

Since iP^(x)| is independent of x, we denote it by yfc. It is

immediate that -y, — 2. Let x e XuX" 1 and let Z = (XuX-1)\(x_1). It is
not difficult to see that, for every k e N, the map

rk+1 (x)\{0) — > n Tjc(7): (Wr'yB-x̂ yeZ a hijection. Hence
y 6 Z

Yk+i = l+(7k)!Z| " 1+(7k)2 1̂ 1” 1 ■ It: is also easy to verify that the map

Ak — » n _ T/C(x): W h+ (^nXĵ x)xeXuX-"1 -̂s a hijection and so
xeXuX 1

Xk = (7k)2 l̂ 1 f°r every k e N. This completes the algorithm.

Since the number of (minimal) (XuX-1)-automata with at most Xjy
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states is bounded, it is decidable, by Theorem 2.6, which of those 

automata accept languages belonging to y(X,P,e). By Lemma 1.4, we can 

then determine the smallest of all such languages and so we can 

produce a finite (XuX”1)-automaton accepting Wp(e).

We remark that, in this particular case, condition (v) in the 

definition of y(X,P,e) is trivial and so the proof of Theorem 2.6 is 

very much simplified.

Now, Lemmas 1.14, 3,2 and 3.3 yield

THEOREM 3,4 [18] . The word problem for a finite idempotent-pure 

presentation is decidable.

4. A natural generalization

Let Y £ x . We define a homomorphism 0y:(7u7-1)* — » (TuX-1)* as 

follows. For every y e 7, let ydy =» y_10y = 77-1 ; for every x e X\Yt 

let x9y = x and let x^tfy = x~1 .

It is easy to see that pdy £ p. This follows from the fact that 

[(uu-1u ) u # y ] ,[(uu_1vv“1)6y,(vv-1uu-1)0y] e p for every 

u,v c (7u7~i)*.

LEMMA 4.1. Let Y £ X and let 

T = {(y,yy_1): 7 e 7}u{(y"1,yy-1): y e  7}. Then Ker(8y) =■ T$ and

(8y)z = 8y.

Proof. It is trivial that T £ Ker(dy) and so T& £ Ker(8y) .

Conversely, suppose that (u,v) e Ker(8y). It follows from the

definition that (w,w0y) e T& for every w e (XuX-1)*. Hence uT&
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« (udy)T# - (vdy)T# - vT& . Thus Ker(0y) - T#. But then we have

(w,w6y) e £er(0y) for every v e (Xu-X™1)* and so (0y)2 — 0y.

We can now generalize Theorem 3.4.

THEOREM 4.2. Let P £ (JDĵ uXû -1) x Dy be finite. Then the word 

problem for Inv<X;P> is decidable.

Proof. Since (pu{ (x-1 , e)} )& — (p u((x,e)))^ for every x e X and 

e e Dy, we can assume that P £ (D%uX) x Dy. Let 

Y = {x e X: ({x} x Py) * J2f) . We prove that, for every

u,v e (JCuJTi)*, we have

u(puP)# = V(pu?)# <-> (u0y)[pu(P0y)]# * (v0y)[pu(P0y)]# . (4.1)

Suppose that u(puP)^ - v(puP)^.  Then

( u 0 y )[(puP)#0yj  = ( v 0 y ) [ ( p u P ) ^ 0 y ] . By (1.1.1), we have (puP)^0y

£ [ ( p u P ) 0 y ] # . Hence (puP)# 0y £ [ (p u P )0 y ]# - [ ( p 0 y ) u ( P 0 y ) } #

£ [ p u (P 0 y ) }^  and so (u0y)  [pu(P0y)  ]** =° ( v 0 y ) [ p u ( P 0 y ) ]̂ .

To prove the converse implication, we begin by showing that 

Ker(6y) £ (puP)^. Using the notation of Lemma 4.1, we prove that 

T £ (puP)# . Let y e Y. Then there exists some e e Dy such that 

(y,e) e P. Hence y(puP)^ = e(puP)^ = (ee“1)(puP)^ = (yy-1)(puP)^.

Moreover, we have y-1(puP)^ = (yy-1 )-1 (puP)^ = (yy~1) (puP)^. Thus

T £ (puP)# and so, by Lemma 4.1, Ker(6y) £ (puP)^.

Now we prove that [pu(P0y)]^'£ (puP)^. Let (e,b) € P. Then, by

Lemma 4.1, we have (a,ady) , (5 ,b0y) e Ker(dy) £ (puP)^ and so 

(a0y)(puP)# = a(puP)^ = b(puP)^ = (b6y)(puP)^. Hence 

[pu(P0y)]^ £ (puP)#.

Finally, suppose that ( u 0 y ) [ p u ( P 0 y ) = ( v 0 y ) [ p u ( P 0 y ) ]̂ . Since

[p u (P 0 y ) ]^  £ (puP)# , we have (u0y) (puP)^ = (v0y)  (p u P )^. Since

Ker(8y) £ (puP)^,  we obtain u(puP)^ = (u0y) (puP)& = (v 0y ) (p u P )^
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= v(puP)# and (4.1) Is proved.

But P8y S &x x Dx anti so> by Theorem 3.4, it is decidable whether 

(udy) [pu(P0y) ]# - (v0y) [pu(P0y) or not. Thus the word problem for 

Inv<X;P> is decidable.

5. £-pure presentations

We say that a relation P on (Xu-JT"1)* is *Z-pure if Pp^ £

LEMMA 5.1. Let P be a finite jl-pure relation on (XuX-1)*. Let

e e D%. Then we can produce a finite (XuX-1)-automaton accepting the

language Wp(e).

Proof. As in the proof of Lemma 3.3, let Q = Wp(e) , 

Ap(e) = (Q, (1} , (1) ,E) and A = (Q, {1} ,Q,E+) . Further, let

A' = (Q, (1) ,Q,E) . We have L(A) = Wp(e) . Let v and i>' be the

equivalences on Q defined by

qv - q'v <=$ L[A(<?)] - L[A(g.)];

qv' = q' v' 4^ - L[AJq.)].

For every q e Q, let x(<?) " lx c XuX-1: {q,x,(qx)i] e E\E+) . We

have x(l) = P and 1XC<5) i = 1 for every q e Q\{1}. It is not difficult

to see that, for every q e Q, M^(g)] = ]r.%)\[x(g)Px] • Ifc

follows that if qp' = q'p' and x (q) = xC*?1)* then qp = q* v. Hence

|Q/r| < IQ/p' | (2 |X| +1) . Now we will prove that \Q/v'\ < lQ(e)i. This

will ensure that \Q/p \ < IQ(e)|(2|Xi+1) and so, by Theorem 2.6 and 

Lemma 1.4, we can produce a finite (XuJT-1)-automaton accepting Wp(e).

Let Q — (q^neN a sequence which enumerates successively the 

elements of Wp^e), then those of Wp 2(e)\Wp , (e) and so on. It is 

enough to show that
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Vn > I Q(e) I 3m < n: qmi>' - qni>' . (5.1)

Suppose that n > lQ(e) | . Then qn t P̂,ic+i (e)\wP,fc(e) for some 

ic e N. Hence there exists p e Q, (a,b) € PuP” 1 and f e Dx such that 

[p,Q(af)]i S Wptfc(e) and qn € [p.Q(bf)]i. Since

Q(bf) - Q(b)u[b.Q(f)]i, we have either qn e [p.Q(b)]i or 

qn £ [pb.Q(f) ] i . Suppose that qn e [p.Q(b)]i. Since P is £~pure, we 

have Q(b) - Q(a) and so qn e [p-Q(a)]i. Since 

[p.Q(a)]i £ [p.Q(af)]i £ ^ptfc(e) * we obtain qn e Wp k(e) , which is a 

contradiction. Hence qn e [pb.Q(f)]i. Let v e Q(f) be such that 

qn = (pbv) l . Since [p.Q(af)]i £ Wp j^e) , we have (pav) i e Wpfk(e)’ bet

qm = (pav) i . Since qffi e p̂,ic(e)» we bave m < n. We now prove that

Qn1’' ” Sm*'' •
Suppose that u c L[AJ-g )]. Suppose that u1 <2 u- Thou q̂ fi' e L(A' ) 

and it follows easily that (qnjU')t e L(A*) as well. Hence 

(qmu') l e Wp(e) and so [<?qj-Q(u)]i £ Wp(e). Now we show that

[p. Q(avuu’~'i v”1) ] 1 £ Wp(e). Since v e Q(f), we have [p.Q(av)]t

£ [p.Q(a/)]t £ Wp ^(e). Hence [p.Q(avuu-1v-1)]1

" [p.Q(av)]iu[pav.Q(u)]i = [p.Q(av)]tutq^.Qtu)]1 £ Wp(e). Since

vuu-1v-1 6 Djf, this yields [p.Q(£miu~1v~1) ] 1 £ Wp(e). Hence [<?n.Q(u)]i 

■= [pbv.Q(u)]t £ [p.Q(bvuu-1 v-1) ] t £ Wp(e) and so u e L[A[g )]. Hence

L[A£g^)] £ Similarly, we obtain L[AJ-g )] £ M-^q )]• Hence

qnp' = qmv'. Thus (5.1) is proved and so is the lemma.

Now, by (1.1) and Lemmas 1.14 and 5.1, we obtain

THEOREM 5.2. Let P be a finite £-pure relation on (XuX~~1 )*. Then 

the idempotent word problem for Inv<X‘,P> is decidable.
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6. One-relator presentations

A natural question to ask is which are the instances of

one-relator presentations lnv<X',P> that yield rational languages 

Wp(e), Perhaps it is not possible to find clear necessary and

sufficient conditions for this to happen in general, but we can do so 

for J/p(l). This particular language is intimately connected with the 

group problem. By Lemma 1.13, we have

ffp(l) - (u e Rx : (uu-1,1) e (puPD )#}. (6.1)

The next result follows immediately.

LEMMA 6.1. Let P be a relation on (XuX*1)*. Then (XuX~')*/(puP)&

is a group if and only if Wp(l) = Ry.

Let P = { (u , v) } be a relation on (ZuX“1)*. If u,v * 1, then it is

obvious that Wp(l) = {1). Hence we will assume that P = {(u,l)}.

THEOREM 6.2. Let P = ((u,l)} and let Y = [x e X: x or x~1 occurs 

in u) . Let p denote the Vagner congruence on (YuY-1)*. Then Wp( 1) is 

rational if and only if u e Dy or (YuY~1 )*/(puP)^ i-s a group.

Proof. Suppose that u e Dy. Then, by Lemma 3.3, Wp(l) is

rational.

Suppose that (YuY_1)*/(puP)# is a group. Then, by (6.1), we have 

Wp(l) = Ry, which is rational, by Lemma 1.9.
Now suppose that u / Dy and (YuY-1)*/(puP)^ is not a group. Then 

there exists some u e Ry such that (uu“1,l) / (puP)^ and so

3y e YuY-1: (y-iy,l) / (pu?)# . (6.2)

We claim that
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3y e YuY~' : (y'V.1) / (puP)# and (6.3)

(yy-\l) e (puP)#.

Suppose that u - y, . . ,ym . Then (y^V1) (puP)#

= (y^yTVi • • *7ni) (PuJJ)# " l(puP)#. If (yY^XpuP)# * l(puP)#, then 

(6.3) holds. If not, then (y2. . ,yBy %) (puP)# - (y71y,y 2. . .y^y,) (puP)# 

“ (yT’yiXpwP)# - l(puP)#. Now we continue the procedure and, by

(6.2), we know that (6.3) must hold for y - yj for some J e {1 m}.

Let y be such an element. By (6.1), we have yn e Wp( 1) for every 

n e N. Since u / Dy, we have ut * 1. Since u(puP)^ - l(puP)^ and 

[uu~'(ui)]p = up, we have (ut)(puP)#= (uu_1)(puP)#(ut)(puP)#

== u(puP)^ = l(puP)# . Suppose that the first letter of ut is y-1 . Then 

(y“1y) (puP)# - [y_1y(uO  ] (puP)# = (ut)(puP)# = i(puP)# , in 

contradiction with (6.3). Hence the first letter of ut is not y-1 . 

Similarly, the last letter of ut is not y and so yn(ut)y-n e £y f°r 

every n e N. Since (ut)(puP)& = l(puP)^, we have 

[ (ut )y“nyn (ui)“’ ] (puPj))# = (y“nyn) (puPp)# . Hence

[yn (ui)y-nyn (ut)_1y“n] (puPD)# = (yny~n) (puPp)# = l(puPp)# and so, by

(6.1), yn (ut)y~n £ Wp(1). Suppose that Ap(l) - (Q,{1},(1),E) and

A — (Q, (1) ,Q,£+) . As in the previous sections, we have L(A) = Wp(l) 

= Q. Let v be defined for A as in Lemma 1.2. We will prove that for

every m,n e N, m ? n, we have ymv / ynv.

Let m,n e N, m < n. Since yn(ut )y_n e Wp(l), we have 

(ut)y~n e L[A^n^]. Suppose that (ut)y~n e L[A^yin^) , Then ym (ut)y~n 

e Wp( 1) and so, by (6.1), we have (yID(ui)y~nyn(ui)-ty-m1l) e (puP)^. 

But then, since (ut)(puP)^ = l(puP)^, we must have 

(ymy~nyny~m , 1) e (puP)#. Since m < n, and by (6.3), we have 

[ y“ (n-m) yn-m ] (pup ) # = [ ymy~my~ (n-w) yH-nyjy-m ](puP)#

= (yiny-nyUy-m-) (pup)# = l(puP)^. Therefore (y_1yX) f (puP)^, in 

contradiction with (6.3). Hence (ym)v & (yn) , which shows that 

is not finite. Thus Wp(l) is not rational and the theorem is proved.
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7. Undecidability of the idempotent word problem

In this section we will prove the existence of finitely presented 

inverse monoids with undecidable idempotent word problem.

LEMMA 7.1. Let P be a finite relation on (XuX~1)* such that 

(XuX~1)*/(puP)^ is a group. Let z / JTuJ-1 and let X' « Xv{z). Consider 

P as a relation on X' and let j e N. Then, for every

u, , . . . ,un e i?y\{l) , z Q e R{z ) and z y,...,zn e 1 >, we have

z Qu^z,,,,unzn e W p u^(puP)^ = l(puP)^ for every i.

Proof. We prove the lemma by induction on J. Since Wp zz~1)

= Q(zz~A) = (l,z), the result holds trivially for J ~ 1. Now suppose

that it holds for j ~ k. We will use a secondary induction on n, 

proving that

zouizi • ■ -unzn e wP tk + (7-1) 

4 uj_(puP)^ = l(puP)# for every i

holds for every n e N°. Obviously, (7.1) holds trivially for n = 0.

Suppose that (7.1) holds for n = t-1, with t e N. Suppose that

w = z Du 1z1 . . . uczt e W p ^ ( z z ~ r) for some u,.ut e Ry\(l} ,

z Q e R{z ) and z, zt e P^zj\{1). We can assume that w / Wp ^(zz_1).

Hence there exists some q e Wp ̂ (zz-1) , (a,b) e PuP"1 and £ e Dyi such

that [<j.Q(af)]i c Wp^^zz-1) and w e [q.Q(bf)]t. Since

Q(bf) — Q(b)u[bQ(f)]i, we have either w e [q.Q(b)]i or w t [qb.Q(f)]i.

Suppose that w e [<?.Q(b)]i. Since Q(b) £ and the last letter of 

w is either 2 or z"1, w must then be a prefix of q. But Wp ĵ£(zz_1) is

left closed, hence w e Wp ̂ (zz_1) and so we reach a contradiction.

Therefore w e [qb.Q(jf)]t. Let v e Q(f) be such that w ■= (qbv) i . Let
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w' = (qav)t. Since Wp ̂ £+1 (zz"1) is left closed, we have 

ZqUjZ, . . e Wp^ (zz-1) . Therefore, by induction hypothesis,

we must have u^(puP)^ = l(puP)# for every i € {l,..,,t-l}.

Suppose that the last letter of v is neither z nor z ~K Since 

Q(b) Q R%, the same applies to (bv)i. Since w - [q.(bv)i]l and the 

last letter of w is either z or z-1 , w must be a prefix of q, which we 

know to be impossible. Therefore the last letter of v is either z or 

z-1 and so the last letter of (av)i must be either z or z-1 . Now two 

cases may occur.

Suppose that the last letter of w 1 is either z or z~1 . Then we can

write v' = z'Qu\z\. . .u^z^. Applying the induction hypothesis on k, we

get (u;...u^)(puP)# - u;(puP)# ...u^(puP)# = l(puP)# ,

Suppose that the last letter of w 1 is neither z nor z-1. Since the 

last letter of (av)t is either z or z-1, we have that either w'z or 

w'z-1 must be a prefix of q. Without loss of generality, we can assume 

that w ’z is a prefix of q. We can apply induction again to 

w ’z = z'Qu\z\ . . .ufcz e Wptfc(zz“1) and get (u\...u^)(puP)# - l(puP)# .

Let (X'uX'-1)* — > (XuX"1)* be the homomorphism defined by

f y if y e XuX-1 

[ 1 if y € [z,z 1}.

Let p' denote the Vagner congruence on (X'uX'~1)*. It is easy to 

see that (p'uP)^ Q (puP)^. Therefore, for every g,h e (X'uX'-1)*,

g(p'uP)# - h(p’uP># + g\KpoP)# - ht(puP)# . (7.2)

It follows easily that

Vg e U'uX’-i)*, g*i - gtih ■

Since (XuX-1)*/(PuP) is a group, we have tt £ (puP)^ and so

Vg £ (XuX->)*, (gi,g) e T S (poP)# .

Since (qbv)(p'uP)^ = (qav)(p'uF)^, we have (qbv)^(puP)^
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■=* (qav)\P(puP)$, by (7.2). By induction hypothesis, we have 

(u, . . •u(r_1) (puP)# - l(puP)# and so ut(puP)#

“ (u,...ut_,)(puP)#ut(puP)# - (u,...Ut)(pup)# - V^(puP)#

= (qbv)i^(puP)# - (qbv)(puP)& =» (qbv)0i(puP)# = (qbv)^(puP)# 

- (qav)^(puP)# “ (qav)ifri (pvP)# -* (qav) (puP)# - (qav) t\j/(puP)# 

=■ w'^(puP)# “ (u^. . .û j) (puP)^ - l(pu?)# . Therefore (7.1) holds for 

n “ t and so for every n e N°. Thus the lemma holds for J — Jc+1 and so 

for every j e N.

THEOREM 7.2. There exists a finitely presented inverse monoid 

with an undecidable idempotent word problem.

Proof. Let Gp<X^;T> denote a finite group presentation with 

undecidable word problem [3], [29]. Let y / X ^ X ^ 1 and let X 2 = X,u(y}. 

Let z / X 2uX]p and let X 3 =■ X 2u(z). For every i e (1,2,3), we denote 

by pi the Vagner congruence on (X^uXJ1)* and we write 

71-j; = {(XX_1,1): X £ XjfuXJ1}̂ .

Now we define P = Tu{ (y2,1) }u{ (xx“ 1 ,1) : x e X^X"]"1 } . Let G be the 

group defined by the presentation Gp<X2',P>. We prove that

Vu e ( X , ^ ) * ,  (uy)=(p2uP)# - l(p2uP)# (7.3)

utTr^r)^ = ltTr^r)^.

Let u e (X^X^1)*. Suppose that u(7r1uP)^ = l(x1uT)^. Since

(tt̂ uT)tt c (p2uP)#t then u(p2uP)^ = l(p2oP)^ and so (uy)2(p2uP)^ 

= y 2(p2uP)# - l(pauP)#.

Now suppose that u(tt1uT)^ # l(irtur)^. As we see in [16,§4.1], G is 

the free product in the category of groups of (X^X^1 )*/(■*}uT)^ and 

{y,7_1}*/{(xy-1-1).(y~1y>l).(y2*l)}# - Hence (XlUX71)*/(r,uT)# embeds 

canonically in G and so u (tt2uP)^ * 1(tt2uP)^. Similarly, we have

7 (tt2uP)^ # 1(7t2uP)# and so (uy)(?r2uP)^ is a nonhomogeneous element of 

a free product of two groups, that is, (uy) (ir 2uP)^ is not contained in
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either of the factor groups. It follows that (uy)(*-2uP)^ has infinite 

order. Since (ir2uP)# = (p2uP)#, it follows that

(uy)2(p2uP)# * l(p2uP)# . Thus (7.3) holds.

Now let M be the inverse monoid defined by Inv<X3\P>.

Let u e (X^uX~*)* and consider uyzz~1y'~1u~1, y~1u~1zz~1uy e Dy . 

We prove that

(uyzz_1y"1u-1)(p3uP)^ “ (y~1u“1zz“1uy)(p3uP)# (7.4)

«=» u (t 1uT)# - l(r1ur)# ,

which implies that the idempotent word problem for Inv<X 3)P> is 

undecidable.

S u p p o s e  t h a t  (uyzz~'iy~‘i u - 1 ) ( p 3u P ) #  =  ( y - 1 u - 1 z z - 1 u y ) ( p 3u P ) # .  T h e n

w e  h a v e  [ ( u y ) 2(zz~1)( y - 1 u - 1 )2]( p 3u P ) #  =  ( z z " 1) ( p 3u P ) # .  B y  (1.1) a n d  

Lemma 1.14, we o b t a i n  W p [ ( u y ) 2 ( z z - 1 ) ( y - 1 u “ 1) 2 ] =  W p ( z z - 1 ) .  H e n c e

(ui.y)2z = [ ( u y ) 2z]i e Q[( u y ) 2 ( z z - 1 ) ( y _ 1 u _ 1 ) 2]

=  Wp^ 1 [ ( u y )  2 ( z z - 1 ) ( y ^ u - 1  ) 2 ] £ W p[ ( u y )  2 ( z z - 1 ) ( y - 1  u - 1 ) 2 ] «* W p ( z z _ 1 ) a n d  

s o ,  b y  Lemma 7.1, we m u s t  h a v e  ( u t  . y )  2 ( p 2u P ) ^  =  l ( p 2u P ) ^ .  B u t  n o w ,  b y

(7.3), we h a v e  u i (tt^u T)#  »  1 ( t 1u T ) # . T h u s  u ( t 1u T ) #  -  l ( i r 1u r ) # .

Conversely, suppose that u(x,uT)^ = l(x1uT)^. It follows easily 

that u(p3uP)^ = l(p3uP)# . Moreover, y 2(p3uP)^ = l(p3uP)^ yields

y(p3uP)^ = y_1 (p3oP)^ and so we have (uyzz~'ly~',u~'i) (p3uP)^ 

= (y-1u~1zz™1uy)(p3uP)^. Thus (7.4) holds and the theorem is proved.



CHAPTER VII

SEMIGROUP RINGS

1. Preliminaries

Let R be a nonempty set and let + and • denote two binary

operations on 5, We say that (£,+,•) is a ring if:

(i) (R,+) is an abelian group;

(ii) (R ,0 is a semigroup;

(iii) Va,b,c e R, (a+b)■c = (a-c)+(b-c) and a-(b+c) = (a• jb) + (a■ c) . 

We will refer to (£,+,*) simply as R. The unity of (i?,+) is said 

to be the zero of R and is denoted by 0. Whenever (R ,■) has a unity, 

we denote it by 1 and we say it is the unity of R.

The ring R is said to be prime if aRb ^ 0 for every a,b e R\{0).

Let R be a ring and let 5 be a semigroup. The semigroup ring R[S]

is the ring consisting of all finite formal sums Z X̂ s_£ (X^ e R,
i

Sj_ e S) with the natural addition and multiplication defined by

Z Xis1 . Z /Ujs'j = Z (\1gj)(sis ’j).
i j J i,J

n
Let w e R[S] . If w £ 0, say w = Z Xj_ŝ , where s1 , . . . ,sn are

i = i

distinct elements of S and X X n are nonzero elements of R, we

define supp(w) to be (s,,...,sn}. If w = 0, we define supp(w) to be 0.

Suppose that J? is a ring with a unity. Then, for every s e S, we
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denote Is e i?[S] simply by s.

The problem of finding necessary and sufficient conditions on S 

for R[S] to be prime is not solved yet. However, a famous result was 

obtained by Gonnell in the case of groups.

THEOREM 1.1 [6 ]. Let R be a nontrivial ring with unity and let G 

he a group. Then R[G] is prime if and only if R is prime and G has no 

nonidentity finite normal subgroups.

2. The Condition C

Consider the following condition on a semigroup S.

CONDITION C. For any pair A,B of finite nonempty subsets of S 

there exist c,d t S such that \d<p~y\ = 1, where <p:A x B — » S is the 

map defined by (a,b)<p = acb.

We note that if, for any pair A,B of finite nonempty subsets of S, 

there exists c e S such that <p is injective, then the condition is 

satisfied.

Condition C may be regarded as a weakening of the u.p, property 

[33 ,§13.1] for semigroups. A semigroup S is said to have the u.p. 

property if and only if, for any pair A tB of finite nonempty subsets 

of S, there exists d e S such that | dp” 1 | = 1, where <p\A x B — > S is 

the map defined by (a,b)<p = a b . We prove that a semigroup with the 

u.p. property satisfies Condition C.

Suppose that S has the u.p. property. Let A and B be finite 

nonempty subsets of S. Let c e S. Since S has the u.p. property, there
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exists d e S such that |d^-1| = 1, where \f:A x (cB) — > S is the map 

defined by (a,cb)^ = acb. Consider the map <p: A x B — » S defined by 

(a,b)y? = acb. We show that | 1 | “ 1. Since |d^_1| — 1, we certainly

have i dy?“ 1 i > 1 .

Suppose that (a,b)<p *= (a',b*)<p. If a # a* or cb * cb', then

Idî -'1 | >1, which is impossible. Hence a - a' and cb - cb' . But, by

the u.p. property, we must have |(cb)ij-1| - 1 , where

17: {o} x (b,b’} — > S is the map defined by (c,x) = ex. Hence b - b* .

Thus idi/?”1! = 1 and S satisfies Condition C.

Now we have

THEOREM 2.1. Let R be a ring and let S be a semigroup satisfying 

Condition C. Then

2?[S] is prime ^  R is prime.

Proof. Assume that R is not prime. Then there exist a,# e i?\{0)
n

such that cd2/3 = 0. Let s e S. Then if w e jR[S]\{0), say w = I X_£Sj, we
i=in

have that cts.w.fis = I! (aX^0) (ss^s) = 0. Thus as..R[S].0s a 0 and i?[S]
i=i

is not prime.

Now assume that £[S] is not prime, Then there exist

u,v e jR[S]\{0} such that u.J?[S].v = 0, By Condition C, there exist

c,d e S such that ldy?-1i = 1, where tp:supp(u) x supp(v) — > S is

defined by (a,b)tp = acb. Let y e R. Then we have u.yc.v — 0. 
n m

Writing u = Z X£a± and v = I Pfti, where a, an are the elements
i=i j-i J J

of supp(u) and b^,...tbm are the elements of supp(v), we obtain
n m

-Ijj (XiYjitj) (<2j_cbj) = 0. There exist unique i and j such that 

a^cbj = d and so Xpypj = 0. Hence XpRpj = 0. Thus, since and fij are 

nonzero, R is not prime.
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3. Free products of semigroups

Let S and T be semigroups. Assume that SnT = J2f. We define an 

equivalence \ on SuT by

aX = ^  a >b e s or a,b e T.

The free product of S and T in the category of semigroups 

[4,§9.4], denoted by S*SgpT, is defined as the set of all nonempty

sequences (w, vn) on SuT such that wix # wi+iX f°r every i, with

the following operation:

f (u1 ,.,.,un ,v,, . . . if unX * v^x
(ui un>(v i » ■ • ■ . V  “ <

I (u, , . . . .UjjV, , . . . ,vm) if unx » vlX.

For every w = (w1 , . . . ,wn) e S*SgpT, we define the length |w| of v 

to be n. It is a simple fact that tuv| < |u|+|v| for every

u,v e S*sgpT.

As a very important example, we note that every free semigroup of 

rank n > 1 is the free product of free semigroups of rank n-1 and 1 .

LEMMA 3.1. Let S and T be semigroups. Then S*sgpT satisfies 

Condition C.

Proof. Assume that SnT =

Let A and B be finite nonempty subsets of S*SgpT. Let a, and b t be 

elements with maximal length in A and B , respectively. Fix s e S, 

t e T. Let u and v denote respectively the last component of a 1 and 

the first component of £>,. We define

r(t,s) if (u,v) t S x T

J (s,t) if (u,v) e T x S
c - <

(s) if (u,v) € T x T

(t) if (u,v) e S x S.
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Let <p:A x B — » S*sgpT defined by (a,b)<p = acb. Suppose that 

(a2,b2)<p - (a^b,)^ for some (a2,b2) e A x B. Since |a, j and lb,! are 

maximal, we have |a2cb2l < |a2i + jcl + |b2i < ja^ + id + ib^. By choice of 

c, we have |a,i+|c|+|b,| = isjcb,!. Since ^cb, = a 2cb2, this yields 

la2i + |c| + |b2i «• 13,1 + lci + ib^. Hence a, “ a 2 and b, " b2. Therefore 

\ (a^cb^ | •= 1 and S*SgpT satisfies Condition C.

Lemma 3.1 and Theorem 2.1 immediately yield

THEOREM 3,2, Let R be a ring and let S,T be semigroups. Then 

R[S*SgpT] is prime <=> R is prime.

4. One-relator semigroup presentations

Let X denote a nonempty set. Let F = X*. For every k e Z, we

define Fy. = {v € F : |w| = k) . Note, in particular, that Fy. = 0 if

k < 0 .

Let a,b e X+ . Let n = |a|—1. We define

0(a,b) = (Ic e N ° :  b e Fy&F) ,

I(a,b) = {ic e Z: (FnbFn)rt(Fk+naF) * 0} .

Note that 0(a,b) c I(a,b) £ {-|a|+1,...,|b|-1}.

When 0(a,b) ^ 0, we say that a occurs in b. Each element of 0(a,b)

is then said to be an occurrence of a in b.

When I(a,b) ^ 0, we say that a intersects b. Each element of 

I(a,b) is then said to be an intersection of b by a.

We apply these concepts to the study of one—relator semigroup 

presentations. A semigroup presentation is an expression of the form 

Sgp<X]T>, where X is a nonempty set and T is a relation on £+ . The

semigroup defined by this presentation is the quotient X*/T$.
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LEMMA 4.1. Let S be the semigroup defined by the presentation 

Sgp<X',T>, where T - {(u,v)} is a relation on X*. Suppose that, for 

every m e N such that m > max[ |u|,|v|), there exists cm € X* such that
(i) I(u,cm) - I(v,ca) - 

( I i )  I o m i >  02;

(lii) I(Cjjj,ĉ j)n{—in, ,m) - {0 }.

Then S satisfies Condition C.

Proof, Let A,B be finite nonempty subsets of X+ and let m e N be 

such that 02 > max({ I p I l p e AuB}u{|u|,)v|}). Let a,a1 e A, let 

b,b' e B and suppose that (acmb)T& - (a'cmb,)r#. Then there exist 

w 0 ,...,wn e X+ such that

wn “ *'cmb'>
Vic e {1 n} 3rk,sk e X+: [wk„, ,wk) = {rkusk ,rkvsk) .

For w e X+ , denote | by y(w) and define 7 (1) *» 0. Let

w - puq, v' “ pvq for some p,q e F. By (i) , 7 (w) - y(p)+y(q) “ 7 (w") 

and so 7 is invariant on each T&-class of X+.

Now we want to show that 7 (w0) = 1. Suppose that cm has a second 

occurrence in acffl. By (ii), we know that cm does not occur in a, hence 

I(cm ,cm) has a nonzero element. By (iii), this would imply that 

ia| > 02, which is impossible. Hence cm has a unique occurrence in acm . 

Similarly, we prove that cm has a unique occurrence in cmb , so 

7 (^0) = !• Therefore, for every ic, 7 (wk) = 1. Thus, for every k , we 

can write wk = akcmbk unambiguously and it is clear that ak_^T^ = BkT# 

and bk_^T& = bkT^. Hence aT% = a ' T b T & = b'T&, and so the map 

^:(AT^) x (BT&) — > S defined by (aT^,bT^){p = (aCjjp)T^ is injective. 

Therefore S satisfies Condition C.
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LEMMA 4.2. Let S be the semigroup defined by the presentation 

Sgp<X;T>, where T = !(u,v)) is a relation on X+. Suppose that, for 

every m e  N such that m > max{ \ u \ , | v|} , there exist cm,dm e X+ such 

that

(1) il(u,cmudm)| - \I(v,cmvdm) | - 1 , I(u,c ^ d ^  - I(v,cmudm) - 0 ; 

(li) lCj221 , ldra| > m.

Then S satisfies Condition C.

Proof. Let A,B be finite nonempty subsets of X+ and let m e N be

such that m > max(  { ipi : p e AuB}u{ |u| , |v| }) . Let a,a1 e A, let

b,b' e B and suppose that (acmudmb)r^ = (s' c^ud^h’ )T#, Then there 

exist w fl, ...,wn e X+ such that

w Q = acmudmb, 

wn = a'cmudmb ',

Vk e {1,...,n} 3rk ,sk e X+ : {wk_ % ,wk ) - {rkusk ,rkvsk).

Consider an occurrence of cmudm (respectively cmvdm) in acjjfidm . By

(ii), the corresponding factor u (respectively v) must occur in Cj îdm . 

But, by (i) , there is exactly one (respectively none) such occurrence 

in cmudm . The case cmudmb runs similarly, so 

lO(cmudm ,wQ) \ + \O(cmvdm ,w0) | = 1. For w e X+ , denote

\0(cmudm ,w') \ + \0(cmvdnl,w) | by 5 (w) and define 6(1) = 0.

Let w = puq, w' = pv q, for some p,q e F. If cm <r p and dm q, 

let e = 1. Otherwise, let e = 0. Then, by (i),

6(w) = 6(p)+e+6(q) = 5(w') and so 6̂ must be invariant on each T^-class 

of X+ . Hence S(wk) = 1 for every k. Therefore we can write

wk = akcmqkdmbk unambiguously for every k, with qk e (u,v). As in the 

proof of Lemma 5,1, we can now obtain aT$ = a'T^ and bT$ = b ' T so 

the map <p:(AT#) x (BT#) — * S defined by (aT# ,bT#)^ = (sc^ud^)!* is 

injective and S satisfies Condition C.
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LEMMA 4,3. Let S be the semigroup defined by the presentation

Sgp<X;T>, where fJfi > 3 and T = {(u,v)} is a relation on X+. Then S

satisfies Condition C.

Proof, Let and u2 denote respectively the first and last

letters of u and let v1 and v2 denote respectively the first and last 

letters of v.

First, we will consider three particular cases.

(i) Iu| =1, 0(u1,v) = 0.

In this case we have S - (.Jf^u^)4 and so, by Lemma 3.1, S 

satisfies Condition C.

(ii) j{u,,u2,v1,v2)| < 2, Iu| > 1.

Let x e 2T\{u1,u2,vt,v2} and let y e r\{x,v,}. For every m e N such

that m > max{|u|,|V|}, let cm = x^yx®. It is easy to see that the

conditions of Lemma 4.1 are satisfied, so S satisfies Condition C.

(iii) u = xJyk, v = x̂ -z (or v = zyn) , where x,y,z are distinct 

letters of X and e N.

For every m e N such that m > max{ |u| , 1 v\} , let cm = x®41 ,

dm = yra+1. It is not difficult to see that the conditions of Lemma 4.2 

are fulfilled, so S satisfies Condition C.

Now consider the general case. Let x e y\(u2,v2).

Suppose that X = {u1tv1tx}. Then | {u1 ,u2,v1,v2)l = 2. If

|u| - |v| - 1, then we are in case (i) . If not, then we can assume, 

without loss of generality, that |u| > 1 and so we are in case (ii).

Hence we can assume that J\{u1 ,v1 ,x) ^ J3. Let y e , v1 ,x) .

Suppose first that neither u nor v is of the form xJy^, j ,k e N.

Then, for every m c N such that m > max{ | u \ , | v| } , we define cm = xmym

and we apply Lemma 4.1.

Finally, suppose that u = xJy& (the case v = xJy^ being
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identical) . Let z e X\{x,y) and for every m e N such that

m > max{ |u| , |v\} , define cm = xmzym . Clearly, I(u,cm) = p.

Suppose that I(v,cm) * p. Since |v| < m, v2 * x and v, y, we

have I(v,cra) - 0(v,cm). This yields the following possibilities:

v » z (dual of case (i));

v =» x-̂ z (case (iii));

v ■= zyn (case (iii));

v ™ x^zyn (case (ii)).

Now suppose that I(v,cm) = p. Then the conditions of Lemma 4.1 are 

clearly fulfilled, so S satisfies Condition C and the lemma is proved.

From Lemma 4,3 and Theorem 2.1, we obtain

THEOREM 4.4. Let R be a ring and let S be the semigroup defined

by the presentation Sgp<X\T>, where |X| > 3  and T = ((u,v)} is a

relation on X+. Then

R[S] is prime <=4 i? is prime.

This result cannot be extended to the case l X l = 2, as the

following example shows.

Let X = {x,y} and let S be the semigroup defined by the

presentation Sgp<X;T>, where T = { (xy,x)} . It is easy to see that

xT% = {x}u{xyn : n e N) . Let J? be a nontrivial ring. Let r e £\{0) .

Then r(xT#)-r[(yx)T# ] is a nonzero element of £[S] and it is not

difficult to verify that r(xT^) .J?[5] . [r(xT^)-r[ (yx)T^] ] = 0. Hence

i?[S] is not prime.

The case |X| = 1 is much simpler. Suppose that X = {x} and

T = ((u,v)) is a relation on X+. Let S be the semigroup defined by the 

presentation Sgp<X]T>. In the trivial cases u = v and (u,v) = {x,x2}, 

Condition C is satisfied; but the other cases yield finite nontrivial
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monogenic semigroups and produce semigroup rings which are noc prime, 

as we show.

Suppose that u = xn and v ■=> xn+ ,̂ with n,k e N and n+k > 2. Let R 

be a nontrivial ring with unity. If n “ 1, then S is the cyclic group 

of order k > 1 and so £[S] is not prime, by Theorem 1.1. Now suppose 

that n > 1. Let r e Ĵ \{0 > and let w - rxn~ 1 -rxn+^-1. Then w ^ 0 and 

w.i?[S] = 0, hence R[S] is not prime.

Let £ be a semilattice. We say that E is pseudofinite if E 

satisfies the following conditions:

(i) for every e,f e E with e > f , there exists g e Cov(e) such 

that g > f]

(ii) for every e e £, Cov(e) is finite.

Let S be an inverse semigroup with E(S) pseudofinite. Let F be a 

ring with unity. For every e e E(S), let

For every e e E(S) , it is clear that e e supp[a(e)], hence 

a(e) ^ 0. Now we have

LEMMA 5.1 [27]. Let S be a non-bisimple inverse semigroup with

E(S) pseudofinite. Let F be a ring with unity. Let e,f e E(S) with 

e9 * f£). Then a(e) .F[S] .<r(f) = 0.

Our purpose is to generalize this result to the case of arbitrary 

nontrivial rings. Of course, in the definition of c(e) we are using

5, Free inverse monoids

if Cov(e) * 0,
(5.1)



the fact that F has a unity, but we can write

o-(e) - e + Z (-1)IX|( n g)
^ l Q C o v ( e )  gel

for every e e E(S).

Let £ be a nontrivial ring and let r e F\{0}. For all e e E(S),we 

define

<rr(e) = re + I (-l)lllr( II g).
0*iccov(e) gel

Glearly, ar(e) # 0. Now we have

LEMMA 5.2. Let S be a non-bisimple inverse semigroup with E(S) 

pseudofinite. Let R be a nontrivial ring and let r e F\{0}. Let 

e,f e E(S) with e§) * fS). Then <rr(e) .£[5] .err(f) = 0.

Proof. Let F = R x Z and consider the operations on Z defined by

(r  ̂1p^) + (r2ip2) - (r^r^, .Pt+Pj) and

(ri.Pt)(r2 = (rir2+Pir2+P 2ri*£1̂ 2)• Ic is well-known [22,§1.2]
that F is a ring with unity (0,1) and that the map 6:R — > F defined by

xd = (x,0) is a ring embedding.

We can extend S to a ring embedding 9: F[S] — » E[S], defined by

(ErjrSjr)9 = I(r^0)s^. For every h e F(S) , we define cr(h) e F[S] as in
i i
(5.1). Now, we have [<rr(h)]8 = (r,0)h + I ((-1) ,l |r,0) ( II g)

$#IQCov(h) gel
- (r,0)h.[h + I (-1) <x> ( n g)] - (r,0)h.<j(h) . By Lemma 5.1, we 

$£lZCov(h) gel
have tr(e) .F[S] . er(f) = 0. Therefore [crr(e) .F[S] .<Tr(f) ]8 

= [ffr(e)]0.(lJ[S])0.[ffr(f)]e - (r,0)e.cr(e) . <F[S])0, (r, O)f.a(f)

S (r,0)e.o-(e) .F[5] ,a(f) - 0. Thus err (e) ,R[S] .ar(f) = 0.

Since free inverse semigroup (monoid) S of finite rank satisfies 

the conditions of Lemma 5.2, we obtain the next result, proved by Munn

[27] for rings with unity.
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THEOREM 5.3. Let X be a finite nonempty set and let R be a 

nontrivial ring. Then J?[FIS(Z)] and R[FIM(J)] are not prime.

The infinite rank case provides us with opposite results.

LEMMA 5.4. A free inverse monoid (semigroup) of infinite rank 

satisfies Condition C.

Proof. Let X be an infinite set and let A,B be finite nonempty 

subsets of (XuX-1)*. Since X is infinite, there exists 

x e X\[ u £(c)]■ We claim that the mapping 
ceAuB

<p:(Ap) x (Bp) — » FIM(X) defined by (ap,bp)<p *= (axb)p is injective. 

Suppose that (axb)p = (a’xb')p for some a,a' e A and b,b* e B. Since 

Q(axb) = Q(a)u[ax.Q(b)]t, we have that

{u e Q(axb): x / £(u)} - Q(a).

Similarly,

{u e Q(a'xb'): x / £(u)} - Q(a').

But Q(axb) = Q(a'xb') and so Q(a) = Q(a'). Moreover, we have

(u e Q(axb): x <r u} = (ai.x), {u e Q(a'xb'): x <r u) = {a'i.x).

Hence at = a'i and so ap = a'p, We also have

{u e Q(axb): x e £(u)} =* ai.x.Q(b),

(u e Q(a’xb’): x e £(u)) = a' t .x.Q(b');
therefore Q(b) = Q(b'). Further, since (axb)p = (a'xb')p, we have

ai.x.bi = a't.x.b'i,

and so bi = b't. Hence bp = b'p. Thus is injective and Condition C 

is satisfied.

The proof for the free inverse semigroup is identical.

From Lemma 5.4 and Theorem 2.1, we now have
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THEOREM 5.5. Let R be a ring and let S be a free inverse monoid 

[semigroup] of infinite rank, Then

R[S] is prime 4=4 R is prime.
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