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Summary

Repeated Measures data arises when a response variable is 

measured on the same experimental units on two or more occasions. 

Due to the dependence between observations on the same unit, 

special statistical methods may be required.

This thesis contains a review of experimental designs, models 

and methods of analysis which may be appropriate when handling 

data of this type. These methods are illustrated using three 

practical problems having different types of repeated measures 

structure.

Chapter one examines the structure of repeated measures data. 

Balanced and unbalanced designs of varying complexity are 

described with several examples. Split-plot designs and designs 

resulting in growth curve data are identified as special cases.

Chapter two contains some models which may be applied in the 

analysis of repeated measures data. The univariate and 

multivariate analysis of variance, the general growth curve and 

the two stage random effects models are outlined for the analysis 

of balanced repeated measures data. A generalisation of the 

general growth curve model is outlined for the analysis of 

unbalanced data and we note that the two stage random effects 

model may also be used.

Chapter three .reviews some of the approaches and methods 

which may be used in the analysis of balanced and unbalanced 

repeated measures data, covering those models contained in 

chapter two. The methodology discussed includes univariate 

analysis of variance, approximate and conservative univariate 

tests, multivariate analysis of variance and some special 

techniques for the analysis of growth curves. These techniques



involve the modelling of the data and the application of either 

multivariate analysis of variance or covariance.

Chapter four illustrates some of the models and methods 

discussed in earlier chapters using three practical problems. 

The first problem entails the analysis of a balanced two factor 

repeated measures design with two trial factors. The second

involves the analysis of a balanced three factor design with two 

grouping factors and one trial factor. Finally the third problem 

is an example of an extremely unstructured set of growth curve 

data where the underlying problem is discrimination.
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Chapter 1

The Structure of Repeated Measures Data

Section Content

1.1 Repeated Measures Data

1.2 Balanced Repeated Measures Designs

1.3 Unbalanced Repeated Measures Designs
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1.1: Repeated Meaures Data

Repeated Meaures (R.M.) data arises when a response variable 

is measured on the same experimental units on two or more 

occasions.

There may be one or more response variables measured on each 

occasion. The experimental units may be grouped according to 

some grouping factor(s). (For example: sex, age category,

treatment type).

The occasions on which the response, variable(s) are measured 

for each experimental unit may be classified according to some 

trial factor(s). Examples of some trial factors are:-

a) Time - Each experimental unit has measurements taken on the 

same p occasions. (See Growth Curves later).

b) Location - Each experimental unit may have measurements taken 

at p different locations on the body.

c) Treatment - Each experimental unit has measurements taken at 

different levels of some form of treatment or combinations of 

different forms of treatment.

Sometimes the levels of the trial factor can be randomly 

assigned to experimental units, say over time. Obviously if time 

itself is a trial factor there can be no random assignment. The 

randomisation processes used in any experiment are important 

since they affect the assumptions underlying, and hence analysis 

of, the resulting data.

1.2: Balanced Repeated Measures Designs

In studies the design can be broken down into two parts. 

Namely the design on the trial factor(s) and the design on the 

grouping factor(s).
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A simple form of repeated measures design would have the 

measurements taken on two occasions, corresponding possibly to a 

pretest and posttest, with one experimental intervention. In 

more complex designs there may be multiple measures and multiple 

treatments or treatment combinations. This trial factor design 

is sometimes called the design on occasions (Bock, 1975 p.448) or 

the within-subject design (Huynh and Mandeville, 1979).

There may also be a design on the experimental units or 

subjects. A simple example would be a single random sample of

subjects. In more complex cases there may be m groups of

subjects. These groups could arise from any factorial design

based on treatment factors or factors related to qualitative 

categorisations of the subjects (for example, age, sex). The

design on the experimental units is sometimes known as the design 

on the sample (Bock, 1975 p.448) or the across-subject design 

(Huynh and Mandeville, 1979).

Figures 1 to 4 illustrate various possible balanced repeated 

measures designs involving progressive degrees of complexity.
C,Figure 1 - Single Factor R.M. Design

1
subject 2 

N

The above figure illustrates a simple repeated measures 

design with one trial factor and no grouping factor. Data of 

this type are contained in Winer (1971), Bock (1975) and 

Goldstein (1979).

Treatment

Ti T2   Tp

X u X x 2 X ipX 2 t X 2 2 • x 2p

xNi XNz . .. xNd
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For example Winer (1971) examines data from an experiment to 

study the effects of four drugs upon reaction time to a series of 

standardised tasks. A random sample of five subjects was taken, 

where each subject was observed under each of the drugs; the 

order in which a subject was administered a given drug was 

randomised.

Figure 2 - Two Factor R.M. Design with R.M. on One Factor

T,

Treatment 

T z ... TP

1 X m ^112 x i ip2 X i 2 i X x 2 2 x lzp

n i Xtnxi x int2 * • x m ! p

1 ^2 11 X2 1 2 x21p
2 ^221 X2 2 2 * * X22p

n 2 X 2n2 i X 2nz2 ••* x 2nzp

1 xmi i xmi 2 •• xmip2 xm21 xm2 2 y• • Am2p

nm xmnm i xmnm 2 •* * Xmnmp

The above figure illustrates a two factor R.M. design with 

one trial factor and one grouping factor. The grouping factor 

has m levels with n^ subjects in the k^*1 group (k=l.,.m). Winer
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(1971), Bock (1975) and Goldstein (1979) give examples of data 

of the above form.

Example: A certain measurement in a dental study was made on

each of 11 girls and 16 boys at ages 8, 10, 12 and 14. Obviously 

sex is our grouping factor with two levels and age is our trial 

factor with four levels.

Figure 3 - Three Factor R.M. Design with R.M. on one factor.

Treatment

t 2 •... Tp

* 1 1 1 1
X1 1 2 1

Xi 1 1 2 
X1 1 2 2

* * * X 1 1 ip 
•■• x iizp

x n n la i x i m, ,z * • • x nn, ip

bs

bi

bs

The above figure illustrates a three factor R.M. design with 

two grouping factors (number of levels = m and S) and one trial 

factor. So the 'across-subject1 design is, slightly more 

complicated than that in figure 2. Bock (1975) and Winer (1973 

Ch.7) examine data of the above type. Winer considers the 

following example:
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An experimenter is interested in evaluating the effect of anxiety 

(factor A) and muscular tension (factor B) on a learning task. 

Subjects are assigned to either level a t or level az of the first 

grouping factor depending on whether they score high or low on a 

scale measuring manifest anxiety. One half of the subjects in 

group a t are assigned at random to tension condition b x; the 

other half are assigned to level b 2. The subjects in group a2 

are divided in a similar manner. Subjects are given four blocks 

of trials and the number of errors in each is recorded.

Figure 4 - Three factor R.M. Design with R.M. on the last two 

factors.

Treatment Combinations

V2 ... Vq
T t Tp ... T x ... T,

1
2 i iqp

1
2

az
n 2

J.

1
2

The above figure illustrates a three factor R.M. design with 

two trial factors and one grouping factor. This set up has a
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more complicated 'within-subject' design than any of the previous 

designs. Bach subject is measured under one level of the 

grouping factor and under all pxq combinations of the two trial 

factors. Designs of the above complexity are discussed by Horton 

(1978, Ch.5) and Winer (1971, Ch.7) with illustrations.

Example: An experiment was carried out to investigate the

effectiveness of four drugs in the treatment of hypertension. 

Three groups of subjects were taken and classified according to 

age (young, medium and old). Each subject was administered one 

of the drugs and their blood pressure was taken on four occasions 

after taking the drug. After a suitable period of time, to 

eliminate carry-over effects, one of the other drugs was given

and again blood pressure was measured on four occasions. This

procedure was carried out until all subjects had been examined 

under each of the four drugs. Drugs were randomly allocated to 

subjects.

Useful texts describing repeated measures design structures 

are Winer (1971) and Bock (1975). Kowalski and Guire (1974) and

Goldstein (1979) discuss repeated measures designs as applied to

a particular type of data, namely longitudinal data.

The construction of minimal size designs i.e. those designs 

which are balanced and require the minimum possible number of 

experimental units is discussed in Hedayat and Afsarinejad 

(1975). These authors in a later paper (1978) also examine the 

optimality of R.M. designs as compared to a large class of 

competing designs.

Split-Plot Designs

Split-plot designs and certain forms of repeated measures 

designs have much in common. In particular, they may share the
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same analysis under certain circumstances. The term 'split-plot' 

comes from agricultural experimentation in which a single level 

of one treatment is applied to a relatively large plot of ground 

(the whole plot) but all levels of a second treatment are applied 

to sub-plots within the whole plot. For example, consider the 

following design (figure 5), in which the levels of factor A are 

applied to the whole plots and the levels of factor B are applied 

to the sub-plots (Winer, 1971).

- Split-Plot Design

Plot 1 
a,

Plot 2 
a.

Plot 3 
a,

Plot 4 
a.

bi

bi

bi

Note: Levels of factor A are first randomly allocated to the

whole plots and then the levels of factor B are randomly 

allocated to the sub-plots. So the randomisation procedure is a 

two-stage one, Steel and Torrie (1980).

For the special case in which A and B are fixed factors and 

the plots are a random sample from a specified population of 

plots, the analysis would proceed in the same manner as a two

factor R.M. design with R.M. on one factor (Winer, 1971).

Factor A being a grouping factor and factor B being a trial

factor.

Although the analysis proceeds in the same manner for these 

two designs, there are obvious differences in the experimental 

set-up of both designs. One of the obvious differences being

that experimental units are literally divided into sub-units and
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it is these sub-units that are observed under each level of the 

trial factor for the split-plot design. In R.M. experiments no 

such sub-division occurs (Monlezun et al, 1984). Another

distinction is that in R.M. designs generally (but not always)

all except one of the factors are modes of classifying the

experimental units rather than treatments which may be randomly 

allocated to the units by the experimenter (Winer 1971).

Winer (1971), Frane (1980) and Steel and Torrie (1980) 

discuss split-plot designs and their analysis. A numerical 

example is given by Steel and Torrie (1980, p .383). Monlezun et al 

(1984) compare split-plot and R.M. experiments and their 

analyses. Jennrich (1977) also contrasts R.M. and split-plot 

designs with respect to randomisation theory.

Growth Curves (Longitudinal Data)

Growth curve or longitudinal data is a special type of R.M. 

data where time is usually one of the trial factors. Each

experimental unit has measurements taken on the same p occasions
C,

where p is greater than one. The occasions are defined by a

common time scale, for example, historical time or chronological

age, Goldstein (1979).

Example 1 : The following is an outline of a longitudinal data

set discussed by Elston and Grizzle (1962) and Goldstein (1979). 

The measurements consist of the height of the mandibular ramus 

bone in a sample of 20 boys taken at four half-yearly intervals 

from 8.0 years to 9.5 years.
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Age (years)

Individual 8.0 8.5 9.0 9.5

1 47.8 48.8 49.0 49.7

2 46.4 47.3 47.7 48.4

20 46.3 47.6 51 .3 51.8

As in the usual R.M. designs there may be one or more 

grouping factors.

Example 2 : The following is an outline of a longitudinal data

set discussed by Potthoff and Roy (1964) and Morrison (1976). 

The data consists of the distance in millimetres from the centre 

of the pituitary to the pterygomaxillary fissure on each of 11 

girls and 16 boys at ages 8, 10, 12 and 14 years.

Age (years)

Sex Indiv. 8 10 12 14

1 21 20 21.5 23

Girls

11 24.5 25 28 28

1 26 25 29 31

Boys

16 22 21,5 23.5 25

Very often longitudinal data may be referred to as R.M. data 

with no distinction being made. Sometimes the distinction only 

becomes apparent at the analysis stage, (see later)
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Types of longitudinal data and their analyses are examined by 

Kowalski and Guire (1974), Goldstein (1979) and Woolson and 

Leeper (1980).

In particular, Kowalski and Guire (1974) discuss six 

distinct types of longitudinal data.

1.3: Unbalanced R.M. Designs

Quite frequently experiments or studies which involve 

repeated measurement of the same experimental units result in 

incomplete data or unstructured data. This is especially true 

when the repeated measurements are taken over time as in 

longitudinal studies.

The incompleteness of the data may be due to measurements 

missing at random or by design, Kleinbaum (1973), Srivastava and 

McDonald (1974), Machin (1975) and Goldstein (1979).

Some studies might result in one or more of the experimental 

units having all of their information missing or just some of the 

observations missing. Reasons for the missing observations could 

Include:

a. Individuals (Exp. Units) leaving before the end of the 

study e.g. moving house.

b. Individuals not appearing on the set times e.g. 

inconvenient time.

Woolson, Leeper- and Clarke (1978) and Woolson and Leeper 

(1980) examine the design of longitudinal and mixed longitudinal 

studies and the analysis of incomplete data arising from these 

types of study.

Goldstein (1979) discusses the problem of unstructured data 

where:
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a. Individuals come before or after the specified 

occasions.

b. Measurements are not taken on set occasions but may be 

taken at quite different times (for example, 'random' time

points).

Example of an Incomplete Longitudinal Data Set

Zerbe and Walker (1977) and McCammon (1970) discuss the 

following example where the Child Research Council (CRC) 

collected data in a longitudinal study of human growth and 

development continuously from 1927 to 1969. Fifty-five girl 

participants were selected for settling a question posed by CRC 

investigators: whether or not girls heavy at birth differ in

average weight from girls light at birth over the age interval 10 

to 14 years.

The weights of the sample of 55 girls were recorded during 

the age interval 9 to 19 years. Examinations were regularly 

scheduled over this interval, but participants occasionally came 

early, or late, or missed an appointment altogether. Thus the 

number of weight measurements per child ranged from 10 to 19.
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2.1: Introduction

There are various methods for handling repeated measures 

data. These could be categorised in terms of; 

i) Analysis of Variance, Regression, 

ii) Frequentist, Bayesian, 

iii) Parametric, Nonparametric.

The approach taken will of course depend on various aspects 

of the problem in hand. These might include:

i) The structure of the repeated measures data, 

ii) The randomisation procedures used in the design, 

iii) The assumptions which the investigator is willing to make 

(especially those concerning variances and independence).

and

iv) Where our interest lies. For example, testing effects or 

modelling over time.

This chapter outlines some of the models which can be used in 

the analysis of repeated measures data.

One implicit assumption being made in all of the models 

outlined here is that of Normality.

Section 2.2 outlines those models which may be used with 

balanced repeated measures data which includes the analysis of 

variance model, the general growth curve model and the two stage 

random effects model.

Section 2.3 outlines those models which may be appropriate 

when handling unbalanced repeated measures data. This includes 

Kleinbaum's general growth curve model and again the two stage 

random effects model.
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2.2: Models Cor Balanced Data

The Multivariate Analysis of Varance Model

The Multivariate Analysis of Variance (Manova) model is the 

most general one which can be used to explain repeated measures 

data. It is the most general in that it requires no assumptions 

about the mean vector or more importantly about the covariance 

matrix E (Rogan et al, 1979r Arnold, 1981, Morrison, 1976).

Unfortunately the Manova model can only be used when 

sufficient data is available. The amount of data required, 

depends on the design on the occasions and hence the number of 

levels of the trial factor(s) (Greenhouse and Geisser, 1959, 

Horton, 1978).

Quite frequently, however, we do not have enough individuals 

in the sample to get a good estimator for the covariance matrix 

and thus the multivariate procedures are not very powerful 

(Davidson, 1972, Morrison, 1976, Stevens, 1980, Arnold, 1981).

If certain assumptions about the covariance matrix hold then

the Manova model reduces to a univariate analysis of variance
C-

model and we get more powerful procedures. The necessary and 

sufficient condition for the validity of the univariate 

procedures being 'Circularity' (Rogan et al. 1979, Winer, 1971, 

Arnold, 1981).

The usual Manova model as given by Morrison (1976), Woolson &

Leepert (1980)f Arnold (1981) and Seber (1984) is,

E (X) A
(nxp) (nxm) (mxp)

where the different rows of X are distributed mutually

independently and the p elements in any row follow a multivariate

normal distribution with unknown covariance matrix E (pxp and

positive definite).
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A is a (nxm) design matrix of known constants.

« is a (mxp) matrix of unknown parameters.

The above is a full model since the number of parameters is 

equal to the number of responses, p.

Arnold (1981) refers to the above as the generalised repeated 

measures model.

The univariate anova model is obtained by making stronger 

assumptions about the covariance matrix E . Namely,

Figure 2.1

That is, that all the measurements have the same variance and all 

the pairs of measurements on the same individual have the same 

covariance, see Arnold (1981) and Winer (1971). The above form 

of the covariance matrix satisfies the property of compound 

symmetry. This is a sufficient but not a necessary condition for 

the validity of the F-ratios in univariate analysis of variance 

(Winer 1971).

Example 1: Using the MANOVA Model

A study was carried out to investigate the strength of 

children in four different age groups. The measurements were 

obtained using a Cybex Isokinetic Dynamometer at four different 

velocity settings. The layout of the data can be seen in figure 

2 .2 :

Tip
E = o2 pi

P
P

.PP ... 1
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30

Velocity (Vs) 

120 210 300

Age 

Group 

(Years) 11

14

nl
1

L n2 
1

n3
1

n4

Using the terminology introduced in chapter one, the above is 

a two factor repeated measures design with one grouping factor 

and one trial factor.

An explicit analysis of variance model for the above, 

letting Xjĵ  represent the j 1 th measurement for the i'th 

individual in the k'th age group would be,

“ u + ak + ni (k) + Bj + ^ k j  + ^nji(k) + € (uk)
with i=l ... ,

j=l ... p,

k=l ... m,

with conditions:
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Where

m is the overall population mean 

oĉ  is the k'th group effect 

Bj is the j'th velocity effect

ITi(k ) is a constant associated with the i 1th subject in the k'th 

group

is the interaction between the k'th group and j'th velocity 

Bn ii(k ) *s the interaction of velocity j and subject i within 

treatment group k

and

is the random error component.

In general, when the multivariate model is presented, it is 

not as fully structured as the model given above. It is 

sometimes written as follows:

Letting Xj^ be the (pxl) vector of observations for the i ' th 

subject in the k'th group.

Xfk = w + Ik + ~ik i=1 ••■ nk
k=l ... m

where

u is the overall mean vector, are the specific (fixed) effects 

of the groups. The other random effects, unit effects and

interactions given in the previous model are submerged in the

errors which are assumed to be Np(0, z ) in each of the

groups, Bock (1975) and Davidson (1980).

The General Growth Curve Model

Potthoff and Roy (1964) proposed a generalisation of the

usual Manova model for analysing growth curve data. In the

General Growth Curve Model of Potthoff and Roy, a second design 

matrix is included. The addition of this second design matrix
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allows the model to be used to describe growth curve situations.

One of the design matrices contains information on the design

on the sample and the other, information on the design on the

repeated measures.

This model like the Manova model, makes no assumption about

the structure of the covariance matrix.

Several authors examine this model and appropriate methods of

analysis including Khatri (1966), Rao (1966), Grizzle and Allen

(1969), Lee (1974), Tubbs, Lewis and Duran (1975) and Baksalary,

Corsten and Kala (1978).

In particular a Bayesian treatment is developed by Geisser

(1970, 1971), Lee and Geisser (1972) and Fearn (1975).

The general growth curve model as given by Potthoff and Roy

(1964) and Woo^on and Leeper (1980) is,

E (X) = A S> B
(nxp) (nxm) (mxq) (qxp)

where

the rows of X are distributed independently and the p elements in 

any row follow a multivariate normal distribution with unknown 

variance matrix E0 (pxp and positive definite).

A is an n x m matrix of known constants 

B is a q x p matrix of known constants 

<t> is an m x q matrix of unknown parameters.

In this model, q the number of parameters may be less than or 

equal to p, the number of responses. If p=q then B is a square 

matrix of full rank.

Example 2: Using the General Growth Curve Model

An illustration is now given to show how the model is

constructed for a given set of data where the measurements are

taken on some continuum, e.g. time.
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We will use the data given in example one where we are 

interested in the force generated by subjects at four different 

settings of a Cybex Isokinetic Dynamometer,

The four observations on each subject are not independent, 

but rather are assumed to be multivariate normal with unknown 

variance matrix E0 which is the same for all four age groups.

From plots of the average of the logarithm of the force at 

each velocity, for the four different groups, we can assume that 

the growth curve is linear, i.e. q=2.

Data: Velocity (Vs)

30 120 210 300

5 0.44 0.69 0.87 1.10

Age Group 8 0.72 0.94 1.17 1.43

(years) 11 1.00 1.20 1.42 1.72

14 1.30 1.50 1.70 1 .92

Each point is the average of the logarithm of the force

generated at that velocity.

For our example, p=4, m=4, n 1=26, n2=28, n3=31 and n4=29. So 

for the i'th subject at the j'th velocity in the k'th group we 

have,

E(Xuk) = «k + Vj where i=l ... nk

j-1 ... 4 

k=l ... 4

Using vector notation and letting X^k be the p component 

(p=4) vector of the responses for the i'th subject in the k'th 

group we have

^ik = (xiikj xizk» ^iak’ î*k) 
and the model above may be rewritten as,



21

E(xik) = t«k ®ki r i 1 1 ii
. v i v 2 v 3 v j

= *k B
If we now let Xk be the (nk X p) matrix of responses for the nk

subjects in group k we can write the above as.

E(Xk ) = [«k 3 k ] r i 
I v l V.

1

V A J

L 1 

= Ink^k ® 

where Xk = [Xlk, X2k ... Xnkk]T

Reformulating this last model into a general framework we 

have.

E (X) A $ B
(nxp) (nxm) (mxq) (qxp)

where

X is the (nxp) matrix of observations and X = [X* X2 X 3 X4]T

A is the (nxm) matrix describing the design on the sample.
C

It contains nj rows consisting of [1, 0. 0, 0], n2 rows

consisting of [0. 1, 0, 0], n3 rows consisting of [0f 0, 1. 0] 

and n4 rows consisting of [0. 0. 0, 1].

$ is the (mxq) matrix of unknown parameters and

*  = ■<x1

<x2 /3?

<X:3 B

B*_
B is the (qxp) matrix describing the design on the repeated 

measures, and is given above.
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The Conditional Model

Rao (1965, 1966, 1967) gives an alternative reduction of the

general growth curve model leading to a conditional model which

he examines using an analysis of covariance approach. This

alternative format of the general growth curve model and methods 

of analysis have been studied by Khatri (1966), Grizzle and Allen

(1969), Bowden and Steinhorst (1973), Lee (1974), Baksalary, 

Corsten and Kala (1978) and Seber (1984).

The reduction of the General Growth Curve Model to the

Conditional model proceeds as follows:

The first step is to choose a pxq matrix K 1 of rank q such 

that BKj = Iq and a p x (p-q) matrix K2 of rank p-q such that BKZ 

= 0.

K = (Klf K 2) is a pXp nonsingular matrix.

Using the above transformation we can now decompose the 

general growth curve model into two parts.

Let Y = XK = (Ylt Y z) where

E(YJ = A4>BK 1 = A<t>

E(YZ) = A4>BKZ = 0

Thus, E(Y) = [A*: 0]

with the rows of Y mutually independently normal with covariance 

matrix,

"KjTeK, K,t EK2'
K,tEK,.

Further, Grizzle & Allen (1969) show that the expected value of

Yj given Y2 is:

E(Y1[Y2) = [A : Y 2] j- * j

= D a
where the rows of Y t conditionally on Y 2 are mutually 

independently normally distributed with covariance (BE"'1BT )-1.
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Thus the conditional covariance matrix does not depend on the 

particular choices of K t and Kz . As noted by Rao (1966) the 

matrix K is not unique but the estimates of parametric functions 

and test criteria will be the same for all choices of K, 

satisfying the stated conditions.

When the rank of B is q, K may be chosen such that 

K j = G‘1BT(BG~1BT)~1 

and K z is chosen such that 

BKZ = 0

The Two Stage Random Effects Model

The explicit feature of this model is its consideration of 

the individual growth curves as well as the overall one for a 

given data set, Fearn (1977).

Many authors (Elston and Grizzle (1962), Rao (1965), Fearn 

(1975, 1977), Darby and Fearn (1979), Laird and Ware (1982),

Reinsel (1982, 1984) and Seber (1984)) have examined models of

this type where the parameters of the separate growth curve for 

each individual are assumed to come from a multivariate normal 

distribution.

In particular, Fearn (1975, 1977) gives a Bayesian analysis

of growth curves using the two stage model. Darby and Fearn 

(1979) utilise this model from a Bayesian viewpoint, in the 

analysis of a longitudinal study of blood pressure in children.

Rosenberg (1973) considered models of this type in a more 

general context using maximum likelihood and Bayesian techniques 

whereas Joreskog (1970, 1973, 1978) investigates a similar model 

with a more general covariance structure.

Laird and Ware (1982) outline several advantages of two stage 

models which include the explicit modelling and analysis of
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between and within individual variation and discuss the 

interpretation of the individual parameters.

Unfortunately the special structure assumed for the 

covariance matrix makes it more limited in its use than for 

example the general multivariate model where no structure is 

imposed on the covariance matrix.

The model is presented in two stages. The first stage 

relates to the individual growth curves. For example, suppose

that each of n individuals has a separate growth curve with 

independent normal observations, that is

« Np(BTri, °Z*p) where X| is the p-dimensional vector of 

observations on the i'th individual.

Now the second stage assumes that the parameters given above 

are a random sample from another multivariate normal 

distribution. For the example given above,

Z i ~ Nq(5, A)

Combining these two stages then gives the marginal

distribution of the observations, which is multivariate normal 

with a special covariance structure, see Laird and Ware (1982) 

and Seber (1984).

For the above this is,

X A » Np(BT$, BtAB + o2Ip)

It is this covariance structure that is ignored by Potthoff 

and Roy (1984) which the two stage model exploits, Fearn (1975). 

Example 3: Using The Two Stage Random Effects Model

Again we will use the data given in example one concerning

the force generated by subjects at four different settings of a

Cybex Isokinetic Dynamameter. For simplicity we will assume we 

have one random sample of n individuals.
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As shown previously the log of the force is linear with 

respect to velocity.

Hence our first stage is to suppose that each of the n 

individuals has a separate growth curve with independent normal 

observations.

x u = «i + 6i vj + eu i=l ... n
j=l ... 4

where Xu is the force generated at the j 'th velocity for the i'th 

individual and the are independently normally distributed with 

variance o2.

We may write the above in vector form as.

X* = B^Vi + e for i=l ... n

where

is the p-dimensional vector of observations on the i'th 

individual (p=4).

is a q-dimensional vector of unknown parameters. In the above

q=2 and % l = (ai » ^i)T -
is a known pxq design matrix of the form,

1 V,
1 

1

L i  v. _

and e is multivariate normal with expectation zero and variance 

o 2Ip .

We have n separate linear regressions with independent normal 

errors.

Now we add a second stage by assuming that the regression 

coefficients are a random sample from another normal distribution 

with mean $ and covariance matrix A.

That is ~ xz(*’ A )
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Combining the above two stages gives:

Xj_ - Np (BT*, BtAB + o2Ip )

or

Xj_ ~ Np(BT* f Epp) where Epp = BTAB + °2Ip

for i=l ... n .

2.3: Models for Unbalanced Data

When several responses are obtained from each individual in a 

study, at different times and possibly under changing 

experimental conditions it is extremely difficult to control the 

circumstances under which the measurements are taken and there 

may be considerable variation among individuals in the number and 

timing of observations, Goldstein (1979), Woolson et al (1978). 

The resulting unbalanced data sets are not amenable to analysis 

using the general multivariate model with unrestricted covariance 

structure discussed in section 2.2.

Two possible methods of handling this unbalanced data are:

a) To use a model which explicitly takes account of the pattern 

of the data. Two appropriate models outlined in this chapter 

are:

(i) A two stage random effects model

and

(ii) A generalised multivariate growth curve model.

Kleinbaum (1973), Woolson et al (1978).

b) To try to estimate the measurements which are missing by 

using the information from the measurements available, Beale 

and Little (1975), Dempster et al (1977).

One of the explicit features of the two stage random effects 

model is its consideration of individual growth curves which 

means that this model can quite easily be used when handling
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unbalanced repeated measures data. This model is of particular 

use when the repeated measures are obtained at arbitrary or 

unique times, Laird and Ware (1982). See section 2.2.

When in fact we have observations missing' at random, the full 

multivariate model can be applied by use of multivariate methods 

for missing observations, Orchard and Woodbury (1972), Laird and 

Ware (1982).

The Generalised Multivariate Growth Curve Model

Kleinbaum (1973) presented a generalisation of Potthoff and 

Roy's growth curve model which allows for data which is missing 

either by chance or by design. Unfortunately this model is 

limited in its application and may only be used when the data

falls into a small number of reasonably large groups.

The model assumes that there are N experimental units and q 

time points t1( tz ... tq at which measurements are taken. For 

simplicity we assume only one variable is measured on each 

occasion. The N experimental units are divided into u disjoint 

sets of experimental units , S2, . . . , Su where Sj has nj units'.

No two different sets Sj and Sj can have measurements at the

same qj time points (although two sets can have the same number 

of measurements).

Xj and Xj i are independent if j*j1 and the rows of Xj are 

independent and multinormally distributed for each j.

The model may be written,

E(Xj) = Aj $ C Bj

and

V(Xj) = Inj® Bj E Bj 

where
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® denotes the right Kronecker product.

Xj is an nj x qj matrix of responses.

Aj is a known nj x m design matrix.

Bj is a known q x qj incidence matrix of 0's and I's.

<t> is an m x p matrix of unknown parameters.

C is a p x q known design matrix.

Essentially this is just separating out the sample into sets 

where the individuals within each set have measurements taken on 

the same qj occasions.
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Chapter 3

Some Possible Methods of Analysing Repeated Measures Data

Section Content

3.1 Introduction

3.2 Analysis of Variance Approach

3.3 Modelling Approach

3.4 Other Approaches

3.5 Analysis of Unbalanced Repeated Measures

Data
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3.1: Introduction

In this chapter we will outline some of the approaches and 

methods which may be used in the analysis of repeated measures 

data, covering the models outlined in chapter two.

The following three sections are concerned with the analysis 

of balanced repeated measures data whereas the final section 

contains some discussion on how one might handle unbalanced 

repeated measures data where some of the observations may be 

missing either by design or at random.

The two main approaches to analysing repeated measures data 

are the ’Analysis of Variance' approach and the 'Modelling' 

approach.

The methodology used in the 'Analysis of Variance' approach 

will be explained first, followed by the 'Modelling' approach.

Finally there will be a brief discussion on Bayesian and 

Non-parametric approaches.
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3.2: The Analysis of Variance Approach

Analysis of Variance is so called because it tests for 

certain given effects in a set of data by decomposing the total 

variability in the data into its component parts. This 

decomposition depends, of course, on the experimental design. In 

experiments involving repeated measures the total variation is 

divided into two parts: One part may be called the

between-groups component and the other the within-groups 

component (Winer 1971, Ch.4).

The manner in which the total variation is partitioned in a 

factorial experiment in which there are no repeated measures is 

similar to the above. In fact the decomposition into the 

between-groups component is the same in both cases and the main 

difference is in the decomposition of the within-groups component 

(Winer 1971, Ch.7).

A comparison of the two decompositions (one design with 

repeated measures and one without) will be shown using a specific 

example of a two factor design. We will consider the case with 

no repeated measures first.

Example 3.1: Two Factor Design With No Repeated Measures

Random samples of male and female school-children have been 

drawn from four age groups to investigate alternative methods of 

measuring strength and power in children. Strength is measured 

on a Cybex Isokinetic Dynamometer as the Peak Torque 

(Newton-metres) developed during a maximal concentric 

contraction. The average peak torque for each sample at a 

particular velocity setting (300 deg.s"1) of the Cybex is shown 

in table 3.1.
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Table 3.1:

Age (Years)

5 8 11 14

T-i

CO 4.7 10.3 22.4

2.5 5.8 9.6 17.4

Sex:

Male 

Female

The total variability in this design would be partitioned as 

follows:

Total Var.

Within- 

Group Var.

Between-Group Within-Group-

Var, Var.

"Var. Due Var. Due Var. Due To
+ +

To Sex To Age Sex x Age

Letting X j ^  be the peak torque for the i'th individual (i=l...n) 

of the k'th (k=l..,m) sex in the j'th (j=l...i) age group, a 

summary of the analysis of variance appropriate for this design 

is given in table 3.2.

Mean squares are obtained from corresponding sums of squares 

by dividing the latter by their respective degrees of freedom.

Table 3.2:

f Source of VarT Peg. Free Sum of Squ.

Between Subjects mi-1 E(X,j^-X. _ _ ) 2

- Sex (m-1) E(X4 k -X,_ . ) z

- Age (i-1) E ( X j t- X _ ()z

- Sex x Age (m-1)(i-1) E (X j^-X ^-X j +X )

Within Subjects mi(n-l) E (xijk “ x .jk)2

Total min-1 E (xijk ~ x ...)z
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Each effect is tested for significance by comparing its mean 

square to the mean square for within groups which is also known 

as the Residual mean square for fixed effects designs.

Under specific assumptions about the underlying sources of 

variation the ratio of these mean squares follows an 

F-distribution with the degrees of freedom corresponding to those 

mean squares which constitute the ratio. These tests will be 

exact under the following assumptions {Lindman 1974, Ch.6): 

i) The observations are obtained under independent 

conditions. 

ii) The data are normally distributed.

and

iii) Each group has the same underlying variance.

Lindman (1974, Ch.6) discusses the robustness of the above 

tests when some of the assumptions may be violated. It is the 

assumption of independence which is violated when analysing 

repeated measures data and although we may still apply analysis

of variance, the necessary assumptions and decomposition of the
Cvariability in the data will be different.

Univariate Analysis of Variance for Repeated Measures

Repeated measures analysis of variance is essentially a mixed 

model analysis of variance, that is, containing both fixed 

factors and random factors. Usually but not always, for repeated 

measures designs the levels of the grouping factors and the trial 

factors are assumed to consist of fixed sets and the subjects are 

assumed to be a random sample from some larger population. The 

subjects being crossed with the levels of the trial factors.
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Let us first consider the simplest case where we have a 

random sample of n individuals with p correlated measurements on 

each (See figure 1 of chapter 1).

The analysis is based on a linear model of the following form 

(Winer, 1971, Horton, 1978):

Xij = U + TTJ + CCj + + eij

where X^j is the measurement on the i'th (i=l...n) subject at the

j'th (j=l...p) occasion and

a is the grand mean

is the main effect for occasion j .

if2 is a constant associated with subject i.

7r«j!j is the interaction between subject i and occasion j.

e-[j is the experimental error associated with X^j.

We assume that the correspond to a fixed factor with

Ectj = 0 and Eirocy = 0 
3 j

and the terms and are random effects which are

independent and normally distributed with expected values,

E(tTj) = EtfrajLj) = E(ei:j-) = 0 

The appropriate analysis of variance table would be:

Table 3.3:

Source of Var. Deg. Free. Sum of Squ.

Between Subjects (n-1) E(Xit-Xt,)z

Within Subjects n(p-l) EtXij-Xj , )z

- occasions (P-1) Mx.j-X. .)*

- occas X subj. (p-1)(n-1) c <Xij-Xi-x. j+ic.. )2

Total (np-1) E(Xi r X ..)2



35

In this analysis of variance for a single factor repeated 

measures design, there is only one error term denoted by the mean 

square for the (occasions x subjects) interaction. Hence each 

effect is tested by constructing an F-ratio using this error term 

as the denominator. Depending on the repeated measures design 

the analysis of variance table may contain more than one error 

term.

Though tables 3.2 and 3.3 are not directly comparable, since 

they correspond to different experimental designs, it can be seen 

that in the repeated measures design the within subjects 

variability is broken down into several component parts. This 

decomposition of the within-subjects component is specific to 

repeated measures designs.

For these within-subject F-ratios to follow exact F 

distributions certain covariance assumptions must be met. 

Confusion exists regarding these validity conditions. It was 

originally thought that 'Compound Symmetry' (see figure 2.1) was 

the necessary and sufficient condition but Huynh & Feldt (1970) 

and Rouanet & Lepine (1970) have shown that compound symmetry is 

only a sufficient condition. Therefore for the single factor 

design the (pxp) covariance matrix E may have some other pattern 

and the within-subject F-ratios will still have the necessary 

F-distribution.

Huynh & Feldt (1970) proved that for the usual F-ratios to be 

valid in repeated measures designs the covariance matrix had to 

have a special form called a type H matrix.

i.e. If E has a pattern such that the variance of the difference 

between all possible pairs of treatment means is constant 

then the F-ratios will be exactly distributed as F-variates.
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A matrix with compound symmetry always posseses this 

property.

Although the F-ratios will be valid for a broader class of 

matrices than those having compound symmetry, it is difficult to 

imagine problems which will generate covariance matrices having 

this exact structure other than those with compound symmetry.

Let us now look at a slightly more complicated situation 

where we have a two factor repeated measures design with one 

grouping factor. The grouping factor has m levels and the trial 

factor has p levels with n^ (k=l,...,m) subjects in each group 

(see figure 2).

The linear model on which the analysis is based takes the 

following form (Winer 1971, Ch.7, Horton 1978, Ch.5):

x ijk = u + «j + ^i(k) + 7k + a7jk + ^ijfk) + eij(k) 
where' the above is just an extension of the single factor

repeated measures design discussed previously with the additions:

x ijk ~ measurement on the i ’th subject (1=1..n^) in the k'th

group (k=l...m) at the j'th occasion (j=l...p).

7ri(k) = constant associated with the i'th subject in the k'th

group.

7^ = main effect of group k.

«7jk = the interaction between occasion j and the k'th group 

effect.

Enk = N

We assume that the 7k correspond to a fixed factor with

E 7k = 0 and E «7jk = 0. k k

As before the terms ĵ_(k )* ffCCij(k) anc* e ij(k) are random effects 
which are independent and normally distributed with expected 

values

E <,ri(k)) = E ^ i j t k ) )  = E (eij(k)) =
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The corresponding analysis of variance table would be: 

Table 3.4:

Source of Var. Deg. Free. E (Mean Square)

Between Subjects (N-1)

- Groups (m—1) + po£ + npo£

- Subj. W. Groups m(n-l) + P°v
Within Subjects N(p-l)

- Occasions ( P - 1 ) + °7TOC + No£
- Occ. X. Groups (p-1)(m-1) + + no£y

- Occ. X. Subj. W. Gps. m(p-l)(n-1) °I + °7TCC
Total

Note: Assuming n^ = n = 

The above table may

N/m, for k=l,..,,m. 

be compared with table 3. 2 which -is for e

two factor design with no repeated measures. The tests for 

effects which can be classified as part of the between subject 

variation in the repeated measures case will be the same as in 

the non repeated measures situation as these tests do not involve 

any of the repeated measures factors.

However, in the repeated measures case only, there is a 

breakdown of the within subjects variation into several 

orthogonal parts. The mean square for the occasions x subjects 

within groups is sometimes called the mean square error - within 

i.e. MS (error-within) since it forms the denominator of F ratios 

used in testing effects which can be classified as part of the 

within subject variation.

In general, the breakdown of the within-subject variation 

into several orthogonal parts depends upon the repeated measures 

design.
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If there is more than one trial factor then there will be 

more than one error term and hence more than one denominator for 

constructing appropriate F-ratios as shown in Winer (1971).

Validity Conditions

Hence for these F ratios to have exact F distributions 

further assumptions than those given previously for a one factor 

repeated measures design must hold.

One further assumption required in order that the F-ratios 

actually follow an F distribution is that the covariance matrices 

be homogeneous over the levels of the grouping factor (Winer 

1971, Ch.7, Horton 1978 Ch.5).

This assumption is required because the covariance matrix for 

each group must be pooled over the levels of the grouping factor 

(Huynh & Feldt 1970).

Huynh & Feldt (1970) and Frane (1980) show that, strictly 

speaking, it is unnecessary to assume exact equality of

covariance matrices for the repeated measures across the levels

of the grouping factors and that the necessary conditions involve 

only the covariance matrices of the orthonormal variables for 

each test being carried out in the repeated measures analysis of 

variance. Each cluster of within-subject mean square ratios 

based on the same error term have an associated set of

orthonormal variables. For instance they show that the validity 

conditions required by the F ratios in a two factor (one grouping

factor and one trial factor) design are:-
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(i) The covariance matrices associated with each level of the

grouping factor, rlt...,r2>■•■*Em satisfy the relationship: 

c ^ c  = cte2c = ... = cTrmc
Where C may be taken as any matrix which defines the (p-1)

orthonormal contrasts among the p variates. C is a

p x (p-1) matrix, 

and

(ii) The common matrix in (i) is of the form XIp_i where X is a 

scalar and x > 0.

Mendoza, Toothaker and Crain (1976) derive necessary and

sufficient conditions for the validity of each F ratio in a three 

factor design with repeated measures on two factors.

The above conditions are referred to as 'Circularity' by 

Rogan, Kesselman and Mendoza (1979).

Huynh (1978) and Huynh & Mandeville (1979) give the most

general version of the validity conditions required by the F

ratios regarding the within subjects effects:

(a) The covariance matrices for the associated set of orthonormal
C

variables are identical across all levels of the grouping

factors

and

(b) The common covariance matrix outlined in (a) has a sphericity 

pattern i.e. Equal variances and zero covariances,

Testing the Validity Conditions

For repeated measures designs that contain no grouping 

factors, only the Mauchly W criterion (1940) is needed to assess 

the validity of the conditions associated with testing the 

within-subject effects. Details of this sphericity test are 

given by Mauchly (1940), Huynh & Feldt (1970), Huynh & Mandeville
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(1979), Anderson (1984) and Morrison (1976).

For repeated measures designs that contain one or more 

grouping factors, the validity of the necessary conditions may be 

tested in two stages (Huynh & Feldt (1970), Rogan et al (1979), 

Huynh & Mandeville (1979) and Kesselman et al (1980)).

First Box's (1949) modified criterion M is used to determine 

whether the covariance matrices of suitably chosen sets of 

orthonormal variables are equal across the levels of the grouping 

factors.

i.e. cTEjC = Ct E2C = ... = CTEmC 

where

is the covariance matrix of the orthonormal variables for the 

i'th group and C is a p x (p-1) matrix which defines the (p-1) 

orthonormal variables (Rogan et al (1979)).

Details of the Box test for equality of covariance matrices 

are given by Winer (1971 Ch.7), Morrison (1976) and Huynh & 

Mandeville (1979). Box's test is just a multivariate

generalisation of Bartletts test for homogeneity of variance 

(1937). Secondly if Box’s test indicates that equality of the 

covariance matrices across the levels of the grouping factors is

tenable, then Mauchlys (1940) W criterion is used to test for

sphericity in the pooled covariance matrix.

If equality of the covariance matrices across the levels of 

the grouping factors holds and sphericity is tenable for the 

pooled covariance matrix then Rogan et al (1979) say that the

conditions required for 'circularity' are satisfied. If either 

of these two elements are rejected then the required condition of 

'circularity' is violated.



41

Huynh & Mandeville (1979) examine the appropriateness of 

using the Mauchly W criterion when the variates are not normally 

distributed. The W criterion was shown to provide a conservative 

testing procedure for light-tailed distributions and to produce 

more than the nominal percentage of type I errors for 

heavy-tailed distributions. Morrison (1976) points out that the 

Box criterion depends strongly on the assumption of multivariate

normality and is thus likely to be sensitive to departures from

it (Hopkins & Clay (1963), Korin (1972) and Olson (1974)).

Davidson (1972) shows that for small samples, one cannot depend 

on Box's test to detect serious departures from homogeneity.

Kesselman et al (1980) say that there is no point in trying 

to assess the validity conditions using the above procedures and 

suggest alternative steps. Their results indicate that even when 

data is obtained from normally distributed populations, the tests 

for circularity are sensitive to all but the most minute 

departures from the null hypothesis and consequently the 

circularity hypothesis is not likely to be found tenable.

If the necessary assumptions regarding the covariance

matrices in a repeated measures data set are violated then the 

significance levels associated with the F tests will be too 

'liberal' (Box 1954). As alternatives to the univariate analysis 

of variance the researcher has the option of using a modified 

(approximate or conservative) univariate test which has a more 

conservative significance level than that in the usual mixed 

model analysis or if sufficient data is available the option of 

using multivariate analysis of variance methods.
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Modified Univariate Anova Tests

In this section we discuss some modified tests which may be 

used when the necessary covariance assumptions for univariate 

repeated measures analysis of variance tests are violated.

Essentially these modified tests adjust the degrees of 

freedom in the usual F tests to correct for the lack of the 

specified form of the covariance matrix. The extent of this 

correction to the degrees of freedom depends on the extent to

which the covariance matrix of the orthonormal variables deviates 

from the necessary pattern.

Let e be a parameter that measures the extent to which the 

sample covariance matrix deviates from the necessary form. Then 

when 0 = 1 ,  the covariance matrix either has compound symmetry or 

some other pattern for which the F-ratio has an F-distribution. 

Hence the upper bound for e is 1 (Winer 1971).

Several authors have proposed estimators for e, Huynh & Feldt

(1970) and Geisser & Greenhouse (1958) being the authors whose 

estimators are most well known and applied.

Box (1954) gave an approximate test for a one factor repeated 

measures design where the degrees of freedom of the F ratio are 

adjusted by a constant e (figure 3.1) which is estimated, e,

using the covariance matrix of the orthonormal variables obtained 

from the data.

If we let n denote the size of the sample and p the number of

levels of the trial factor then Box (1954) suggests that an

approximate test may be made through the use of the usual F 

ratio, but the degrees of freedom are taken to be,

(p-l)e and (p-l)(n-l)e instead of (p-1) and (p-1)(n-1).
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When the necessary covariance assumptions for the orthonormal 

variables are met, e will equal its upper bound of unity. As the 

covariance matrix departs from the necessary form, the value of e 

will decrease from one and the F ratio will be distributed with a 

reduced number of degrees of freedom.

Figure 3.1:

p2 (oii - o )2
e  = ------------------------  — ----

(p-l)(EEo2j - 2pE©2 + p2o2 )

where

= mean of entries on main diagonal of E. 

a = mean of all entries in E.

oi = mean of entries in row i of E .

Cjj = entry in row i, column j of I,

E = (pxp) covariance matrix for orthonormal variables

obtained from data.

Geisser and Greenhouse (1958) extended the work of Box (1954) 

to the two factor repeated measures design with one trial factor 

and one grouping factor. They showed that the F-ratios for the 

within-subject effects could be tested by using Box's proposed 

adjustment to the degrees of freedom. They also showed that for 

designs with only one trial factor the lower bound of e is 

l/(p-l). Hence 1 /(p—1) £ e ^ 1. But the lower bound of e does 

depend in general on the repeated measures design.

Note: For tests involving only between group effects the

F-ratios are exactly distributed as F-variates, as in a 

non-repeated measures factorial design, provided the 

necessary assumptions about the variances are met. 

Therefore no adjustment to the degrees of freedom is 

needed for these tests.



44

The preceeding approximate tests do require the computation 

of e from the elements of the variance-covariance matrix. 

Usually though, the variances and covariances are unknown and e 

must be estimated using the sample variances and covariances. 

However at the time the effect of using a sample estimated e was 

unknown and Greenhouse & Geisser (1959) suggested the use of the 

following conservative test.

They suggested setting the value of e at its lower limit, 

hence using the maximum reduction in degrees of freedom.

For the two factor design with one trial factor we would have 

€ = 1/(P-1).

Using this lower bound of e has several advantages including 

ease of computation and independence from the sample 

variance-covariance matrix. Unfortunately it does result in the 

maximum possible reduction in the degrees of freedom which may 

not always be appropriate. Consequently it can result in a loss 

of power (Rogan et al 1979).

One important application of these conservative tests 

identified by Greenhouse & Geisser (1959) is for the situation 

where we cannot assume the equality of the variance-covariance 

matrices across the levels of the grouping factor.

As a possible means of handling the problems of the 

sensitivity of the Box and Mauchly tests for the validity 

conditions, the estimation of e from unknown population 

variance-covariance matrices and the over conservativeness of the 

'conservative' tests, Greenhouse & Geisser (1959) suggest the 

following three step approach to testing significance of the 

F-ratios in the univariate analysis of repeated measures:

After constructing the traditional analysis of variance 

F-ratio we test it using the full i.e. unreduced degrees of
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freedom. If the F-ratio is smaller than the critical value, one 

can stop here, for the null hypothesis will not be rejected by 

reducing the degrees of freedom.

If the observed F-ratio is significant, then one proceeds to 

the conservative test where the degrees of freedom are reduced by 

the maximum amount i.e. by the lower bound of e.

If this second test leads to significance, one can at this 

point reject the null hypothesis without further testing. 

However, if the conservative test is not significant then it is 

suggested that e be estimated from the sample variance-covariance 

matrix and the approximate test be carried out (see Figure 3.2 

for summary). If enough data are available exact procedures may 

be carried out using multivariate methods.

Figure 3.2

Traditional F-Test Carried Out

STOP If Non Sig. If Sig.

V
Conservative F-Test Carried Out

If Non Sig. — If Sig. — >  Decide

Significant

v
Approximate F-Test Carried Out

or

Exact Test Procedures Used if Possible
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The effect of using a sample-estimated value of e, e on the 

approximate F distribution has been investigated by Collier et al 

(1967). As noted by Huynh & Feldt (1976) Collier et al's data 

suggests that when the size of the sample is less than twice the 

number of levels of the trial factor, e may be seriously biased 

if e is near or a little above .75. The estimate then tends to 

over correct the degrees of freedom and produces a more stringent 

significance level than the nominal level being used.

Thus Huynh & Feldt (1976) suggested adjusting the degrees of 

freedom of the approximate F-tests by an alternative estimator w. 

They show using Monte Carlo methods that their estimator to is 

less biased and less dependent on large sample size when the 

variance-covariance matrix deviates only moderately from the 

necessary form. They consider the single factor repeated 

measures design first and then generalise to the two factor 

design with one trial factor. Formulas for to in both situations 

are given in figure 3.3. It is possible for to to exceed 1.0 but 

if it does it is equated to 1.0. Some of the other results given 

by Huynh & Feldt (1976) are that to is always as large as e (to *  e  

for any sample size and number of levels in the trial factor), 

to = e  when e = l/(p-l), the difference between to and e decreases 

with increasing sample size and the use of to results in a less 

conservative test than the use of e .

Figure 3.3;

„ „ . , N(p-1)e-2For a one factor design, to =  _________  _____________
(p-l)(N-l-(p-l)e)

~ „ . , N(p-l)e-2For a two factor design, to =  _____________
(p-1)(N-M-(p-l)e)
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Huynh & Feldt (1976) also examine the power gained by the 

test from the use of w as opposed to e. Frane (1980) examines 

the sensitivity of w and e.

Huynh (1978) extended the work by Huynh & Feldt (1976) on the 

w approximate test to cover the case where we cannot assume 

equality of the covariance matrices across all levels of the 

grouping factor. For the two factor design they propose two 

additional approximate tests for assessing the significance of 

within-subject effects. Both tests make use of a theorem by Box 

(1954). He first proposes the General Approximate (GA) test for 

arbitrary covariance matrices and secondly the Improved General 

Approximate (IGA) test which is more sensitive than the GA test 

for situations which nearly display the required sphericity.
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Multivariate Analysis of Repeated Measures

The previous procedures present approximate and conservative 

tests of significance for repeated measures data, when the 

necessary assumptions required for univariate analysis of 

variance are suspect. There are exact procedures available 

through the use of multivariate analysis of variance. 

Unfortunately these exact procedures do require a certain amount 

of data and as Greenhouse & Geisser (1959) noted a lot more 

computation, but with the facilities available today the 

computation can be coped with fairly easily.

Cole & Grizzle (1966) assert that repeated measures data is 

essentially multivariate and should be analysed as such. Bock 

(1963) exploits this fact when discussing the analysis of 

repeated measures data and points out that this is a special 

class of multivariate data in which the observations on each 

occasion are assumed to be measurements on the same scale with 

the same origin and unit, that is commensurable.

Both the univariate and the multivariate procedures rest on 

the assumption that the population random error components are 

normally distributed. However unlike the univariate procedures 

which stipulate a particular form for the population covariance 

matrix E , the multivariate approach makes no such specification 

as to the form of £ (Rogan et al 1979).

One disadvantage of the multivariate approach is its 

potential lack of sensitivity when compared to the univariate 

approach. If the necessary assumptions required by the 

univariate analysis are tenable then the univariate tests will be 

more powerful than the tests in the multivariate analysis of 

variance. Comparison of the power of the two approaches is 

discussed by Mendoza et al (1974), Davidson (1972), Rogan et al
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(1979) and Stevens (1980).

As said previously one other disadvantage which makes the

multivariate analysis less applicable, is the need for a 

reasonable amount of data. For example, in a one-way

multivariate analysis of variance context, the estimated

variance-covariance matrix will be singular unless the total 

sample size minus the number of groups is greater than the number 

of levels in the trial factor. Hence if this requirement is not 

met, the multivariate analysis cannot be used.

The exact procedures in multivariate analysais of variance 

for testing hypotheses depend on the repeated measures design.

For example, in a two factor design with one trial factor and one 

grouping factor we might be interested in testing for,

(i) the existence of a group-response interaction.

(ii) the existence of a group effect.

(iii) the existence of a response effect.

The multivariate approach to the analysis of repeated 

measures when the measurements are taken on some continuum is 

often referred to as 'Profile Analysis' Mager (1973), Kowalski & 

Guire (1974), Morrison (1976). This is because the data may be 

presented graphically by plotting the average response of each 

group at each level of the trial factor on a graph. The adjacent 

means for each group can then be joined to form profiles for each 

group. The above hypotheses are concerned with these profiles. 

The methodology for the analysis of repeated measures using 

multivariate analysis of variance will now be outlined for a two 

factor design with one grouping factor which has m levels. For 

further details see Greenhouse & Geisser (1959), Morrison (1976) 

and Seber (1984).
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Multivariate Analysis for a Two Factor Design

Suppose that we have m independent random samples of 

individuals or some other experimental unit with p correlated 

measurements on each subject. There are n^ (k=l,...,m) subjects 

in the k'th group.

For example, consider the following data layout;

Velocity Setting (Units)

300 210 120 30

5

Age Group 8

(years) 1 1

14

Letting represent the j'th response on the i'th

individual in the k'th group for i=l...n^

j=l...p 

k=l...m
m

where E ni, = N k=l K
and letting X-ĵ  represent the (pxl) vector of observations for 

the i'th subject (i=l...nj<) from the k'th group (k=l...m) we can 

write,

^ik = Hk + £ik 
where the e ^  are independently Np(0, e ).

Then we have,
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where A is the appropriate design matrix

and 4> is the matrix of unknown parameters. (See section 2.2).
TNote: ln^ = [1 ... 1] contains n^ ones for K=1 ... m.

Now for the two factor design under this model, the 

hypothesis of parallelism may be written.

H 0 1 : K ^ l  = ̂ 2  = •*• = ^ « m
or in matrix form

H01: J $ M = 0

where

J is a (m-1) x m matrix and M is a px(p-l) matrix given below.

'1 - 1 0 . . O' " 1 0 . O'

0 1 - 1  . . 0 - 1 1 . . 0
J = M =

0 0 0 . * -1. _ 0 . -1.
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Now assuming that the above hypothesis is not rejected and 

parallelism is tenable then the hypothesis of no group effect can 

be expressed as:

H02: J<t V = 0

where J is as given above and

VT = [1....1] contains p ones.

Finally the test for the hypothesis of equal response effects 

assuming that parallelism is tenable may be expressed as:

H 0 3 : bT4>M = 0

where b^ - [1,...,1] contains m ones and M is the px(p-l) matrix 

given above.

Note: In H0 1 the matrix J allows the generation of hypotheses

on the between-group effects whereas the matrix M allows 

the generation of hypotheses on the within-subject 

effects.

We will first discuss tests of the hypthesis H0  ̂ and then Hq2 

and H03.

The test of Hqi amounts to a one-way multivariate analysis of 

variance on the p- 1 differences of the observations of the 

adjacent responses from each subject. Several procedures have 

been developed for testing Hqj under the multivariate analysis of 

variance model. Unfortunately these different procedures result 

in different forms for the test statistic. We will sketch the 

derivation of the union-intersectIon test of Roy.

The multivariate hypothesis H0 1 is true if and only if the 

univariate hypotheses

H0 : J $ M a = 0

for all non-null (p-1 ) component vectors a.

The test statistic for any one of these univariate hypotheses 

is given by
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F(a) = (N-m)aTMTXTA(ATA)“1 JT [J(ATA)~1 JT l"1 J{ATA)":LATXMa 
(m -1) arfMTXT [ I - A (ATA }~ *AT] XMa

For a univariate test at significance level f5 we accept

H0 : J$Ma = 0

if F(a) £ F (15; m-l,N-m)

and accept the original multivariate hypothesis 

Hqx: = 0 at some other level <x if

Q. [F (a) ^ F(B; m-l,N-m)]

for all non-null a.

This acceptance region is equivalent to that defined by

max F(a) £ F(/3; m-l,N-m) 
a

for if the greatest F-ratio falls in the acceptance region, so 

must those of all other compounding vectors.

This maximum value of F(a) can be shown to be proportional to 

the greatest root of the determinantal equation 

1H - XE | = 0

where H = MTXTA (ATA )"1 JT [J(ATA)-1 J1 ]"1 J(ATA)_1 ATXM

E = MTXT [I-A(ATA)_1 AT ]XM C
Let Cs = greatest root of IH—XE(=0 where s = min(m-l,p-l) or the

smaller of the parameters (m-1 ) and (p-1 ).

To use available tables we must use the test statistic.

1 + Cs
where the parameters for the distribution of es under the null

hypothesis are

s = min (m-l, p-1 )

f = |m-p|- 1  
2

N-m-p
g = ____ 1

2
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and for a significance level, a, the acceptance region is 

es ^ R(«; s,f,g)

where

R(«; s,f,g) is obtained from appropriate tables. For details see 

Morrison (1976, Ch.5).

Note: The nonzero roots of |H-XEj=0 are equal to the nonzero

characteristic roots of HE"1, and in practice it is

usually more efficient to extract the roots from this 

matrix.

Two common alternative procedures to the Union-intersion

approach (Roy (1953) are the Wilks A Criterion and the

Lawley-Hotelling Trace statistic which will be outlined. All

three of the test procedures mentioned so far use as their test 

criteria some function of the roots of the determinantal equation 

f H-XE J =0,

The Wilks A Criterion

Wilks (1932) developed test criteria through the generalised 

likelihood ratio principle. This approach led to the test 

statistic

A -  'E|
|H + E |

1
|HE 1 + I|

A is the reciprocal of the product of all the characteristic 

roots of HE-1+I. When the null hypothesis is true, the large- 

sample distribution theory of likelihood statistics implies that 

x 2 = -[N - m - J6 (p - m + 1)] In a 

is distributed as a chi-squared variate with (p-1 )(m-1 ) degrees 

of freedom as N tends to infinity.
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The Lawley-Hotelling Trace Statistic

Lawley (1938) and Hotelling (1947, 1951) proposed the sum of 

the roots of HE- 1  as a test criterion.

The exact distribution of 

T0 2 = trace (HE"1) 

is complicated, but when the null hypothesis is true, NT0 2 tends 

to a chi-squared variate with (m-1 )(p-1 ) degrees of freedom as 

the number of independent sampling units N becomes large.

Other test criteria have been proposed by Pillai (1955) and

others. For further details on the tests mentioned see Mardia, 

Kent and Bibby (1979 Ch.12), Morrison (1976, Ch.5), Seber (1984, 

Ch.8 ) and Anderson (1984, Ch.8 ).

We note here that when we have only two groups (m=2) then all 

four of the test statistics mentioned for testing Hqj are 

equivalent to Hotellings T0 2 test for comparing two means. For 

further details on the two sample case see Seber (1984) and 

Morrison (1976) .

Power comparisons of the different test criteria and

discussion of the use of the tests may be found in Mardia, Kent &

Bibby (1979, Ch.5), Morrison (1976, Ch.5), Seber (1984, Ch.9) and 

Anderson (1984, Ch.8 ).

The hypothesis test, Hq2 of no group effect or identical 

profile heights, may be carried out by a one-way univariate 

analysis of variance on the sums of the responses for each 

subject across the m groups. Although the matrices H and E could 

be computed for V, Morrison (1976) notes that it may be more 

efficient to transform the data.

R = XV

and carry out the test as an analysis of variance on the response 

totals.
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Finally the test for the hypothesis of equal response effects 

may be carried out using,

T0 2 = N XT M(MtSM)"1 Mt X

where

X is the grand mean vector 

and

S is the usual pooled estimator of the covariance matrix E. 

s -
N-m

When Hq3 is true,

F = N ~ m ~ P + 2  T0 2 - F(p-1, N-m-p+2)
(N-m)(p-1)

If the hypothesis of parallelism is rejected, it will be 

necessary to test the equality of the group effects separately 

for each response by p univariate analyses of variance.
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3.3: The Modelling Approach

Apart from using the better known methods for analysing 

repeated measures data which fall under the heading of 'Analysis 

of Variance', there are alternatives which make use of patterns 

or relationships that exist within the data.

For these alternative methods to be appropriate the 

measurements have to be taken over some continuous scale such as 

time, dose or age. Since the development of these methods has 

been motivated by modelling time series of the sizes or weights 

of an organism they are said to fall under the heading of 

'Analysis of Growth Curves' (Morrison 1976). In this thesis we 

refer to this as the 'Modelling' approach.

Morrison (1976) noted that a natural sequel to hypothesis 

testing, in the Analysis of Variance approach, might be the 

fitting of some simple polynomial function to sample means. The 

modelling of repeated measures data using orthogonal polynomials 

originated in the work of Wishart (1938) who as Rao (1972) noted 

was the forerunner in this approach. Wishart (1938) used 

orthogonal polynomials to transform raw data into unweighted 

least square estimates of parameters of a linear model. Having 

reduced the dimension of the data from seventeen to a few 

parameters, he then analysed these parameters separately using 

univariate analysis of variance, looking for mean differences 

between groups. Thus, one of the advantages of using this 

modelling approach is that a large number of repeated measures 

may be reduced to a few fitted coefficients of a polynomial 

model. However, Goldstein (1979) noted that Wishart's (1938) 

methodology was lacking in several aspects including a procedure 

for testing whether a low-order polynomial fitted the data well, 

or whether higher order terms were needed to provide a completely
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adequate description. Kowalski & Guire (1974) and Woolson & 

Leeper (1980) have reviewed extensions and developments to the 

Wishart approach. Some of these developments being as follows:

(i) Box (1950) examined the general growth curve problem for 

data vectors arising from a multivariate normal 

distribution with a uniform covariance structure and 

provided appropriate significance tests,

(ii) Rao (1958) gave a method of estimating a transformation 

for the time scale, so that growth with respect to the 

new time scale was linear. He then showed that a 

Wishart-type analysis remains valid when polynomials in 

the estimated time metameter are fitted and that 

comparison between treatment groups could be reduced to 

examining differences in linear growth rates with 

respect to this transformed time. Goldstein (1979) 

identifies several difficulties with this approach 

including the existence of a common transformation and 

the interpretation of differences using this form of 

transformation.

(iii) Rao (1965, 1966) developed multivariate methods for 

analysing growth curve data using analysis of 

covariance. These will be considered in detail later, 

(iv) Elston & Grizzle (1962) compared three methods of 

analysis under different assumptions (including a 

univariate analysis of the problems considered by 

Rao (1959)).

(v) Hoel (1964) studied the effect of ignoring the

dependence of observations taken at different time 

points on the validity of the statistical inference.
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(vi) Further developments have also been made by Potthoff & 

Roy (1964) and Grizzle & Allen (1969).

We now examine some of the methodology for the General Growth 

Curve model developed by Potthoff & Roy (1964) ineluding 

hypothesis testing, estimation and construction of confidence 

bounds. These methods and some alternatives are also discussed 

in Grizzle & Allen (1969) and Roy, Gnanadesikan & Srivastava 

(1971).

These methods are derived from the theory of multivariate 

normal analysis of variance and are based on polynomial models 

for the growth curves.

We will first examine the problem of testing hypotheses, of 

the following form, under the growth curve model (see section 

2.2) :

Hq : J<l>V - 0 against H^: J4>V * 0

where

J is a known (sxm) matrix of rank s and 

V is a known (qxu) matrix of rank u.
C

Potthoff & Roy's (1964) solution is to reduce the general 

model to the usual multivariate analysis of variance model and 

hence make use of the standard results already outlined for that 

model (section 3.2) .

Assuming q^p and that B is of full rank q, Potthoff & Roy 

use the following transformation which introduces an arbitrary 

non-singular matrix G.

Transform X to X0 where XQ = XKj and 

K1 = G_1Bt (BG_1Bt )"1 

This gives,

X0 * XG“1Bt (BG_:1Bt )“1 

It then follows that X q conforms to the usual MANOVA model,
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E(X0) = A4>
The matrix X q (nxq) will be such that the different rows of 

X q will be distributed mutually independently and the q elements 

in any row will follow a multivariate normal distribution with 

(unknown) positive definite covariance matrix,

E0 = [B(Gt )-1 Bt ]-1 B(Gt )“ 1 EG“1 Bt (BG~1 Bt ) “ 1 

As long as G is non-singular and as long as BG-1 BT is non­

singular, the above procedure is valid for any choice of the 

matrix G (Potthoff & Roy 1964).

From the theory of multivariate analysis of variance outlined 

in section 3.2 the appropriate sums of squares and cross products 

matrices are,

H2 = (J4>1 V)T [J(ATA)~1 JT]“1 (ji1 V)
and

Ex = VTX0 T [In - AlATAJ-iATlXoV

where

= (ATA)"1 ATX0

= (ATA)”1AT X G_1BT (BG“1BT ) " 1 

From the general theory, and E-̂ are independently

distributed as WU(S, VTE 0V) and .Wu (n-m, VTE 0V) respectively when

Hq is true. To test the hypothesis H0 we may use one of the test

statistics and procedures described in section 3.2.

Some methodological problems with the above analysis were 

discussed by Rao (1966). The main problem being the choice of 

the arbitrary matrix G. If q=p, then B is non-singular and we 

simply make the transformation 

X 0 = XB_ 1

but for q<p there are several choices. The simplest choice is

G = Ip as noted by Seber (1984) so that,

X0 = XBTfBB1 )- 1
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This is equivalent to using the estimated regression 

coefficients of the associated polynomials instead of the 

original data. The calculations will be simplified if normalised 

orthogonal polynomials are used in B. We then have

BBt = Iq and XQ = XB.

This is essentially the method adopted in the earlier papers 

of Wishart (1938) and Leech & Healy (1959).

G may also be chosen on the basis of prior information or 

estimated from previous data.

Using a minimum variance criterion, Potthoff & Roy (1964) 

showed that the optimal choice of G is G=E, so that the variances 

increase as G moves away from E . However E is unknown and most 

estimates of E are statistically dependent on X. A natural 

choice is G=S where

S - xT R x
n - m

. = XT [In - A(ATA ) _ 1 At]X
n - m

However S depends on X so that the theory of multivariate 

analysis of variance is no longer applicable. Rao (1966) 

criticises Potthoff & Roy's procedures on two points. One is the 

arbitrariness of the matrix G and the other is the loss of 

information as a result of reducing the matrix of observations X 

of order nxp to Xq of order nxq where q<p. However, if the 

covariance matrix ,E is known and G is chosen to be this known 

matrix then there will be no loss of information.

Rao (1966) showed further that the additional information 

that is not used in Potthoff & Roy's approach could be used by 

incorporating it into the model in the form of concomitant 

information.



62

Hence Rao (1965-67) and Kbatri (1966) independently proposed 

an alternative reduction of the general growth curve model which 

leads to a conditional model. Tests of hypotheses, estimators 

and confidence bounds may then be obtained for this conditional 

model using analysis of covariance. Grizzle & Allen (1969) 

develop further some of the procedures suggested by Rao (1966). 

For the alternative reduction of the general growth curve model 

see chapter 2. Grizzle & Allen (1969) define a general growth 

curve model as

the rows of conditionally on Y 2 are mutually independently 

normally distributed with covariance matrix (BE~1 BT )~1 .

Potthoff & Roy's methodology just involves the use of the 

marginal distribution of Y^ and completely ignores any 

information in Y2 whereas Rao and Khatri's involves the use of 

some or all of Y 2 as covariates as can be seen above.

Some of the general results using the theory of analysis of 

covariance are now given (Grizzle & Allen, 1969; Morrison, 1976; 

Seber, 1984).

The least squares (and maximum likelihood) estimates of and 

r for the conditional model are:

f = (Y2t R Y2)-l Y2T R Yt

= (K2T XT R XK2 )“1K 2 TXt R X K 1

= (K2T SK2 )- 1 K2T SKi

where R = In - A(A^A)_1AT

and S = XT R X

DO

where
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$ = <ATA)-1 At { Y 1 - Y 2 f)

= ( A ^ r 1 at (xk2 - xk2 r)

= (aTa) " 1 ATX (Kx - K 2 (K2 TSK2 ) _ 1 K2T SKx 

Since BK2 = 0 and BK^ = Iq then

K2 (K2t SK2 )_ 1 K2t = S_ 1 - S^ 1 B ^ B S - 1 BT )- 1  BS_ 1  

* * (AtA ) _ 1 At X S _ 1 B ^ B S - 1 Bt ) “ 1 

To test the general hypothesis given by:

H0: J$V = 0

where

J is a known (sxm) matrix of rank $ 

and

V is a known (qxu) matrix of rank u,

we need to obtain the error and hypothesis matrices given by,

E = (n-m) VT (BS- 1 Bt )_ 1 V

and

H * (J$V)T [J(AtA )_ 1 Jt + J R Jt ]~1 (JSV)

where

R = 1 (AtA)_ 1AtX[S"1 -S~1 Bt (BS_:1Bt )“;1BS"1 ]XtA(AtA )“ 1
n - m

To test H0 we may use one of the test criteria discussed

previously. Both the union-intersection approach and the Wilks 

A test criteria are functions of the characteristic roots of

HE- 1 .

Note: <*>, E, R and H do not depend on K, so that the above test

of Hq does not depend on K. Therefore if the

transformation suggested by Potthoff & Roy is used,

K 1 = G ” 1 Bt(BG_ 1 B1 ) ' 1 

then the above test is independent of G and we can set 

G=Ip. This would give us 

Kx = B ^ B B 1" ) ' 1

and choosing K2 such that BTK2 - 0 implies that
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k 1TK2 = Therefore K2T may be chosen to be the

linearly independent rows of the projection matrix,

Ip - Bt (BBt ) _ 1 B 

For example, if normalised orthogonal polynomials are used 

then BBt = Iq, = BT . So we could choose to be the matrix 

of normalised orthogonal polynomials of degrees 0 to q-1, and K 2

to be a similar matrix for degrees q to p-1 .

The above method uses all the p-q concomitant variables in 

Y2 . In the context of the single growth curve example, Rao

(1965) suggests that a better procedure might be to select only a 

subset of the concomitant variables, particularly if the 

correlations between any of the columns of Y^ and Y 2 are small.

If the covariance of each column of Y2 with each of Y^ is zero,

then Y2 provides no information about Y^ and Y2 should be

discarded. In this case the method suggested by Potthoff & Roy 

with G = Ip is appropriate, Rao (1967) and Grizzle & Allen 

(1969) discuss the issue of selection of covariates in the 

conditional model and in particular discuss the possibility of

using fewer then p-q covariables. As these authors note, for 

certain patterned covariance matrices, a certain subset of the 

set of (p-q) covariates contains all of the concomitant 

information. An example by Grizzle & Allen (1969) illustrates 

the effect of using the entire set of covariables versus a 

subset.

Grizzle & Allen (1969) also discuss estimators employed by 

Potthoff & Roy (1964), Khatri (1966) and Rao (1965-67) and they 

note that,

Rao1s (1966) estimator Potthoff & Roy's Khatri's 

with p-q covariables = estimator with = estimator 

used G = S
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This was also noted independently by Lee (1974) and extended 

by Baksalary et al (1978) to the case when not all the covariates 

are used.

The set of simultaneous confidence intervals corresponding to 

the union-intersection test of Hq : J4>V = 0 with probability 1-a
is now given.

aTJ&Vb is contained in the interval.

aTJ$Vb ± f(r/(l-y)). a^Fa . b^ Eb]^

for all a and b where,

F = J(AtA )_ 1  Jt + JRJt 

and y is obtained from tables for Roy's Maximum Root Statistic. 

(Union-intersection approach of Roy).

When only a few specific linear contrasts are of interest, 

shorter intervals can be obtained by using the Bonferroni 

intervals.

Gafarian (1978) develops two methods for constructing
Cconfidence bands for growth curve data assuming that there is a 

polynomial trend of known degree. Tolerance bands for the 

population growth curve are derived by Bowden & Steinhorst 

(1973).

Tubbs, Lewis & Duran (1975) generalise the general growth 

curve model by relaxing the assumption of independence of the 

rows of X and consider a general covariance matrix, r © nr, for 

the vector x (pn x 1 ) , a vector composed of the transposed rows 

of X stacked on top of each other. The (nxn) matrix * is assumed 

to be positive definite. They derive directly the maximum 

likelihood estimator for «t> under the general growth curve model , 

for this general covariance structure. Estimators are derived
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under the restriction J*V = Q (a fixed matrix) and under no 

linear constraints on 4>. Aspects of testing Hq : J4>V = 0 are

discussed and the results are applied to a problem initially 

analysed by Beauchamp & Hoel (1974).

Note: © denotes the Kronecker product.

There is an alternative procedure that considers the 

individual growth curves as well as the overall one for a given 

data set. Essentially this means making use of the two-stage 

model outlined in section 2 .

Letting X-̂  be the p-dimensional vector of observations on the 

i'th individual then,

X-[ ~ Np(B^ B^ A B + o 2 Ip) for i=l...n

This model is similar to the general growth curve model but 

it has a more structured covariance matrix as can be seen above.

Inference can be based either on Least Squares and Maximum 

Likelihood or on empirical Bayes methodology.

For this model, the minimum variance unbiased estimate of & 

is (BBT)-* b X where

X = 1/n lnT
Xn

If we choose = BT (BB^) 1 which we can do since the

analysis of covariance method does not depend on the choice of K, 

then, we will have a special case of the situation where the 

covariances between corresponding rows of and Y 2 are zero as 

shown by Seber (1984). As mentioned previously, Y2 may then be 

discarded since it provides no concomitant information. Hence we 

can therefore proceed, using the methods suggested by Potthoff & 

Roy (1964).

The two-stage model can also be written in the form of a 

regression model with stochastic coefficients which arise
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naturally in random effects analysis of variance models. Bowden 

& Steinhorst (1973) use the two-stage model to construct a 

tolerance band so that a given proportion of individuals have 

their (conditional) expected growth curves (1 , t,t2 ,...) y lying 

in the band for all t, with an overall probability of 

approximately 1 -a.

Joreskog (1970) investigates a model similar to the two-stage 

model but with a more general covariance structure.

The main problem Joreskog considers is the estimation of 

parameters of his general model. He also considers hypothesis 

testing and gives a number of examples including growth curves 

with serially correlated errors. Laird & Ware (1982) discuss a 

general family of random-effects models which includes both 

growth models and repeated measures models as special cases. The 

family of two-stage models for repeated measurements which they 

introduce is based on the work of Harville (1977). They describe 

a unified approach to inference using these models discussing 

both maximum likelihood and empirical Bayes estimation.

Fearn (1975, 1977) gives a Bayesian analysis for the

two-stage model. In his 1975 paper he also considers the 

prediction problem and compares several Bayesian predictors with 

those given by Lee and Geisser (1972). The model as given by 

Fearn (1975) takes the following form.

Xj/i, o2i; A -  N(Bj:T*, Bi7  A Bj_ + o x 2 Ip)

for i=l...n.

Fearn gives the posterior distributions of the first stage 

parameters y.i given XT = (X}T ...XnT ) for known variances. They 

were found to be normal with, mean vectors

and covariance matrices



where

Wj = ( o j f 2 B i B i T  + A - l ) - l  O j“2 ( B j [ B j T ) 

£i - (BjBiT)-! BjXi

As noted by Fearn, the estimation of the second stage 

parameter $ was considered by Smith (1973) who derived the 

posterior distribution of 4> given X, again for known variances, 

to be normal with mean vector

For the case when we have equal Bj; 1 s , oj^'s an(̂  W| ’ s , the 

above expressions reduce to,

For the situation where the variances o -̂ 2 and the covariance 

matrix A are unknown Fearn approximates the posterior 

distributions of $ and the y's by substituting estimates of the 

unknown variances in the appropriate expressions given 

previously. This procedure will give reasonable estimates for 

the posterior means, so long as the estimates of variance are 

reasonable, but will underestimate the posterior variances, 

except when the Bj_ 1 s and o -^1 s are equal. Further results and 

applications of these results may be found in Fearn (1975, 1977).

Darby & Fearn (1979) utilise the Bayesian analysis of the 

two-stage model in a longitudinal study of blood pressure in

and covariance matrix

y < *  = W yi + (I~W)n~^ e y,j = 1 — J

V*(zi) = [W + n " 1 (I—w )1 o2 (BB1 ) " 1

Si 1 ̂4> = n -1 E 9* i=l
V*($) = n- 1 [o2 (BBt )_ 1 + A]
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children. Dunsmore (1981) compares two different approaches to 

the analysis of repeated measurements two-period change-over 

designs. One of these approaches being Fearns (1975) Bayesian 

approach using the two-stage model.
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3.4: Other Approaches

There are several alternative approaches for analysing 

repeated measures data but these are less frequently applied and 

hence less occurent in the literature. Two approaches that we 

mention here are the Bayesian and non-parametric.

A Bayesian treatment of the generalised growth curve model is 

developed by Geisser (1970, 1971) and Lee & Geisser (1972). The 

problem of prediction of individual growth curves is addressed by 

these authors in addition to their discussion of the Bayes1 

estimators. Geisser (1970) provides a Bayesian justification for 

Rao's (1967) covariance adjusted estimator.

Gosh, Grizzle & Sen (1973) present generally applicable rank 

based statistical methods for repeated measurements, appropriate 

either when multivariate normality does not hold or when the 

measurements take on discrete values from some nominal scale.

Goldstein (1979) illustrates Gosh et al's (1973) results 

using some artificial data. Univariate and multivariate 

nonparametric techniques are used to test for differences among 

the observed growth patterns. The rank sum test given by Gosh et 

al (1973) is in fact an adaption of that developed by Chatterjee 

& Sen (1966) to the problem of comparing mean growth curves.

For the special case of a completely randomised design, Zerbe 

& Walker (1977) introduce a randomisation test for comparing mean 

growth curves over an interval of time specified by the 

investigator. The order of the polynomial does not have to be 

the same in each group. Further work on this randomisation test 

is done by Zerbe (1979).

The analysis of longitudinal categorical data is examined by 

Koch et al (1977) and Plewis (1981).
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Koziol et al (1981) present a distribution-free test for 

tumour-growth curve analyses.

Finally, Koch et al (1980) review some general approaches to 

the analysis of repeated measures data and present some views on 

parametric and non-parametric methods.



72

3.5: Analysis of Unbalanced Repeated Measures Data

As said in Chapter 2, the two-stage random effects model (see 

section 2.2 and 3.3) may be used to handle unbalanced repeated 

measures data because of its consideration of individual growth 

curves.

Most of the literature however, is concerned with the model 

given by Kleinbaum (1973) and Schwertman et al (1981). Kleinbaum 

(1973) gives a generalisation of the growth curve model that 

allows for data which is missing, either by accident or by design 

(see section 2.3).

Several authors have examined this model including Woolson, 

Leeper and Clarke (1978) and Woolson and Leeper (1980). For this 

model Kleinbaum (1973) presents a BAN (Best Asymptotically 

Normal) estimator of an estimable linear function M-̂ b, a 

straightforward and consistent estimator of the covariance matrix 

L, an asymptotic Wald test of the hypothesis Hq: M 1!) = 0 and a 

competing test statistic. He derives these by first rewriting 

the data in the form of a univariate linear model. Following 

Kleinbaum, the columns of Xj are stacked on top of each other 

into the njqj vector zj. Then setting Z = (z^7 ,...,zuT ) it

follows that

2 = D b + 6

where

b is a (mpxl) vector consisting of the columns of <t stacked on 

top of each other and

‘B^t Pt © Ai
D

(n x mp) ~ I
„BuT PT ® Au.



uThe vector 6 follows a E n-jq-j
j = l J J ~ variate normal distribution

with mean 0 and covariance matrix 0  where:

O = diagtB^EBi © Ini   But EBu © Inu]

Letting © J then M^b contains the same linear

compounds as J$V in a re-arranged fashion. Kleinbaum then 

applies a theory by Wald (1943) and derives the following results 

as outlined by Woolson & Leeper (1980);

(i) A best asymptotic normal estimator of MTb is given by 

MTb = Mt (Dt6 “1 D )_ 1 Dt ft- 1 Z

where

0  is an estimator of 0  obtained by substituting any 

consistent estimator for E in the equation for Cl 

given previously.

(ii) The asymptotic covariance matrix of MTb is estimated by 

T = Mt (Dt n-1 D)“1M 

(iii) Under the null hypothesis H0 : J^V = 0 the statistic,

(MTb)T T _ 1 (MTb) 

follows a chisquare distribution with sc degrees of

freedom as n ™ where s - rank(J) and c = rank(V).

(iv) If the data are all complete then the statistic in

(iii) reduces algebraically to n times the trace of

where

H* = ( j £ v )T [J (ATA)_1 JT 3_ 1 (J4>V)

E* = VT ( B S ^ B ^ V

= (ATA )“ 2 AT X S_ 1 BT (BS_1 BT ) _ 1

nS = XT [I - A(ATa )- 1 At3 x
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Further details and discussion may be obtained from Kleinbaum 

(1973).

Other workers have also investigated the incomplete growth 

curve problem.

Srivastava & McDonald (1974) study the hierarchical growth 

curve model and develop methods which utilise a procedure similar 

to Roy's (1958) step down procedure for all sample sizes. The 

application of their results is limited primarily by the 

restricted pattern of missing data required.

Machin (1975) discusses a situation rather less general than 

those covered by Kieinbaum (1973) in which certain observations 

are omitted by design but compensated for by the introduction of 

new subjects so that the total number of observations remain 

constant.

In growth curves, it is usually assumed that subjects are 

measured at identical times, modelled with polynomials of 

identical degree and multivariate normality of the measurements 

can be assumed. A method which may be used when these 

assumptions are relaxed is given by Zerbe & Walker (1977).

Koziol et al (1981) describe a distribution-free procedure 

for the comparison of growth curves which may be used with 

incomplete data.
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4.1: Introduction

Having examined the structure of repeated measures data, 

outlined some repeated measures designs, presented some models 

and possible methods of analysis, we will now illustrate some of 

this methodology using three different sets of data.

The repeated measures designs from which these data sets 

arise vary in their complexity. We first examine a two factor 

repeated measures design with two trial factors and then a three 

factor design with two grouping factors and one trial factor. 

The last data set that we examine arises from a discrimination 

problem where no design was used in the collection of the data. 

Hence this resulted in an extremely unbalanced set of growth 

curve data.

It should be noted that these examples are being used to 

illustrate the methodology given in earlier chapters and hence 

the analysis reported here may not necessarily be a full analysis 

of the problem. Indeed some of the problems may be analysed 

using several methods, only some of which may be appropriate.
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4.2: The Role of Prostaglandin I?

4.2.1: Introduction to the Problem

Prostaglandin I2 (PGIZ) is known to be synthesised in the 

blood vessels and in the kidney. Its action is to cause 

vasodilation and hence decrease systemic blood pressure. In the 

kidney it increases renal blood flow and causes sodium excretion. 

Several disease states (e.g. hypertension) are thought to be 

partly due to insufficient synthesis of PGI2 and it has been 

suggested that PGI2 acts as a circulating hormone to control 

blood pressure and renal function.

More recent evidence, however, indicates that this may be an 

exaggeration and that PGIZ may be no more than a local modulator 

akin to histamine.

The elucidation of the role of PGI2 is complicated by its 

short half-life, making measurement of this compound impossible. 

The stable metabolite of PGI2, 6 -Keto-Pgf is therefore routinely 

measured as an indicator of PGI2 production. However, previous 

to this study no information was available as to the precise 

relationship between PGI2 and its metabolite. C

Therefore a study was carried out to investigate the 

relationship between PGIZ and its metabolite and to examine the 

effects of intravenous infusion of PGI2 on systemic and renal 

haemodynamics and electrolyte excretion to evaluate the 

possibility of PGIZ acting as a circulating hormone.

In the study eight male dogs were used and each animal 

received four intravenous infusions. One of these infusions was 

a control and the other three were different concentrations of 

PGIZ . The concentrations of PGIZ used were
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7.5 ng/kg/min,

15.0 ng/kg/min,

30.0 ng/kg/min.

Each animal received only one infusion per day and each infusion 

took place over four hours. Several variables were measured at 

thirty minute intervals over the infusion period. The first time 

point at which measurements were taken was thirty minutes into

the infusion period. For ease of presentation we will use

Ti.Tz Ta to represent the time points during the infusion

period when measurements were taken.

Ti represents 30 minutes into infusion

T2 " 60

Ta " 240 " " "

Measurements were taken at each time point on the following 

variables,

6-Keto-Pgf,

Sodium Excretion,

Renal Blood Flow, 

and Systemic Blood Pressure.

Figure 4.2.1 shows the repeated measures design and hence the 

format of the measurements obtained. This format is the same for 

each of the above variables.
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Figure 4.2,1: Repeated Measures Design

Solution (PGI2 )

Control (7.5) (15) (30)
Ti ,Tz Ts Ti,Tz,...,Ts T i ,Tz ,...Tb T i .Tz  Te

1

Animal 2

N

Using the terminology introduced in chapter one we can see that 

the above is a two factor experiment with two trial factors. 

These being dose and time with four and eight levels

respectively.

From the background information given previously we summarise 

the following points about the action of PGIz:

We will now examine the data obtained for these variables and the 

relationship (if any) between PGIz and its metabolite.

4.2.2: Analysis of the Data

For 6-Keto-Pgf measurements were available on only six out of 

the eight animals and for sodium excretion, renal blood flow and 

systemic blood pressure measurements were available on seven of 

the animals.

In general there was a lot of between animal variability and 

to keep diagrams clear and uncluttered only the means are plotted 

against time for each dose of PGI2 .

(i) Systemic blood pressure should decrease

(ii) Renal blood flow should increase

and (iii) Sodium should be excreted.
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For each of the variables mentioned above, a univariate 

repeated measures analysis of variance was carried out using the 

BMDP (1983) program P2V. Included in the output from this 

program are results from applying the Greenhouse & Geisser and 

Huynh & Feldt approximate tests (section 3,2) as well as the 

standard univariate F-tests.

Since there were no grouping factors in this repeated 

measures design only the Mauchly W criterion was needed to assess 

the validity conditions required by the within-subject F-tests. 

It is interesting to note that although the doses of PGI2 were 

not randomly allocated, the covariance matrix for this effect did 

not differ significantly from the necessary form for each of the 

four variables. This could be partly due to a lack of power in 

the test due to extremely small sample sizes. However the 

covariance matrix for the time effect did differ significantly 

from the necessary form. It seems more likely that this 

covariance matrix would exhibit some serial correlation.

Hence for those within-subject effects concerning time (main 

effect and dose by time interaction) we must use the results from 

either the Greenhouse & Geisser or the Huynh & Feldt approximate 

tests.

For details of the univariate analysis of variance model and 

methodology see sections 2.2 and 3.2 respectively.

In the following section the results obtained from applying 

univariate analysis of variance are presented for each of the

four variables. In the tables containing these results

abbreviated headings are given where,

F-Value represents the value of the univariate F test statistic

obtained by the ratio of the appropriate mean squares.
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P-Value represents the probability of obtaining a value greater 

than the observed value of the F test statistic under the null 

hypothesis of no difference, 

and

G-G and H-F represent the probability of obtaining a value 

greater than the observed value of the test statistic when the 

Greenhouse & Geisser and Huynh & Feldt approximate tests are 

being used respectively.

4.2.3: Results

The Effect of PGIz on Sodium Excretion

A graph of the average sodium excretion against time for each 

of the four doses (control = dose zero) is contained in figure 

4.2.2, Given the large variability between individual animals 

there would seem to be no clear difference between the sodium 

excreted at different levels of PGIz. However there may be a 

slight time effect.

The results from carrying out a univariate repeated measures 

analysis of variance can be seen in table 4.2.1.

Table 4.2.1: Univariate Anova-Sodium Excretion

Source F-value P-Value G-G H-F

Between Subjects 14.46 0.0089““

Within Subjects

- Dose 1.06 0.3918 0.3820 0.3918

- Time 5.19 0.0003““ 0.0389* 0.0269*

- Dose by Time 1.56 0.0691 0.2193 0.1274

Note: ““indicates significance for cc=0.05



82

S
E

ISO ....
l i e "
IBB “■
98
ce :...

■?e
60 o..
50 :r □-■ *"'*3-
40 r □-...
30 - _t...

B

S O D I U M  E X C R E T I O NQ  P G K 7 . 5 )

0

&r- X

P-:?

V P G I ( 3 0 >

£>

COHTROl.
P..

2

■— ...

£i___4 6
T I M E

8 I B

Figure H.2.2.



83

As can be seen from table 4.2.1 time is the only significant 

effect. The orthogonal polynomial breakdown of the total 

variation due to time indicated significant linear and quadratic 

components.

The Effect of PGI, on Renal Blood Flow

Figure 4.2.3 shows the average renal blood flow against time 

for each of the four doses of PGIZ (control = dose zero). Given 

the large variability between the animals there would seem to be 

no clear differences between the renal blood flow over time or 

dose.

The results from carrying out a univariate repeated measures 

analysis of variance can be seen in table 4.2.2.

Table 4.2.2: Univariate Anova-Renal Blood Flow

Source F-value P-value G-G H-F

Between Subjects 66.62 0.0002*

Within Subjects

- Dose 1.67 0.2099 0.2178 0.2099

- Time 1.36 0.2465 0.2916 0.2788

- Dose by Time 0.82 0.6872 0.5337 0.6798

Note: ^indicates significance for a: = 0 . 05

From table 4.2.2 we can see that there are no significant

effects.
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The Effect of PGI? on Systemic Blood Pressure

Figure 4.2.4 shows the average systemic blood pressure over 

time for each of the four doses of PGI2 (control = dose zero) . 

As can be seen from this graph there does appear to be some 

evidence of a general linear trend over time as well as some dose 

effect. The lines for doses 15 and 30 never overlap on the graph 

with the lines for the control and dose 7.5.

The results from the univariate repeated measures analysis of 

variance can be seen in table 4.2.3.

Table 4.2.3: Univariate Anova-Systemic Blood Pressure

Source F-value P-value G-G H-F

Between Subjects 1484.62 0.0000*

Within Subjects

- Dose 10.95 0.0003* 0.0026* 0.0005*

- Time 15.77 0.0000* 0.0001* 0.0000*

Dose by Time 1.99 0.0105* 0.1237 0.0238*

Note: * indicates significance for oc = 0.05

Here we are faced with an interesting dilemma. Looking at

table 4.2.3 the interaction term, dose by time, is significant

for the Huynh & Feldt approximate test but not for the Greenhouse 

& Geisser. The conclusion to draw from the results in this 

instance is uncertain. Here we have to remember that our sample 

size is quite small (n=7) and that the tests being used are 

approximate.
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If we assume that the Greenhouse & Geisser approximate test 

is appropriate then since the interaction term is not significant 

we can go on to test the main effects for dose and time. From 

table 4.2.3 we can see that both of these main effects are 

significant.

From the orthogonal polynomial breakdown of the total 

variation due to time only the linear component was found to be 

significant.

The orthogonal decomposition for the unequally spaced dose 

factor was also examined and only the linear component was found 

to be significant.

If we were to assume that the Huynh & Feldt approximate test 

was appropriate then we would have a significant dose by time 

interaction. This significant interaction term makes it 

difficult to interpret any of the other dose and time main 

effects. Further analyses would have to be done to examine these 

effects jointly. For example examining the time effect for each 

of the four doses individually using a one factor repeated 

measures analysis of variance.

PGI, and its metabolite 6-Keto-Pgf

Figure 4.2.5 shows the average of 6-Keto-Pgf over time for 

the four doses (control = dose zero). Even taking into 

consideration the large variability between animals from this 

graph there would appear to be some evidence of a dose effect but 

the time effect is less clear.

Table 4.2.4 summarises the results obtained from applying 

univariate repeated measures analysis of variance.
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Table 4.2.4: Univariate Anova - 6-Keto-Pgf

Source F-value P-value G-G H-F

Between Subjects 50.89 0.0008*

Within Subjects

Dose 23.52 0.0000* 0.0016* 0.0006*

Time 6.21 0.0001* 0.0095* 0.0004*

Dose by time 2.22 0.0043* 0.1138 0.0177*

Note: * indicates significance for <x = 0.05.

Again we are faced with a dilemma. For 6-Keto-Pgf the Huynh 

& Feldt approximate test shows a significant result for the dose

by time interaction and the Greenhouse & Geisser does not. As

before the situation is unclear. Some of this confusion may 

possibly be caused by having a very small sample (n=6) and using 

approximate tests.

If we assume that the Greenhouse & Geisser approximate test 

is apropriate then we have a non-significant interaction and two 

significant main effects. From the orthogonal polynomial 

breakdown of the total variation due to time both the linear and

quadratic components were found to be significant.

The orthogonal decomposition for the unequally spaced dose 

effect showed only a significant linear component.

If we assume that the Huynh & Feldt approximate test is 

appropriate then we would have a significant dose by time 

interaction effect and hence our main effects for dose and time 

would have to be examined jointly in a further analysis since 

their interpretation from table 4.2.4 is difficult.
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Given that our interest here lies in the relationship between 

PGIz and its metabolite 6-Keto-Pgf a univariate analysis of 

variance was also carried out on the data using only the three 

doses of PGI2 and eliminating the results obtained for the 

control. These results are given in table 4.2.5.

Table 4.2.5:

Source F-value P-value G-G H-F

Between Subjects 45.95 0.0011*

Within Subjects

- Dose 18.11 0.0005* 0.0025* 0.0008*

- Time 6.18 0.0001* 0.0107* 0.0007*

- Dose by Time 1,75 0.0651 0.1902 0.0775

Note: * indicates significance for a = 0.05

Having removed the control we can see that the dose by time

interaction term is no longer significant although it is
C

borderline according to the Huynh & Feldt approximate test. 

Assuming that there is no significant interaction we can go on to 

examine the main effects which are both significant on looking at 

our two approximate tests.

Both the linear and quadratic components for the orthogonal 

breakdown of the total variation due to time are significant, but 

only the linear component is significant for dose (orthogonal 

polynomial breakdown for unequally spaced factor).
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4.2.4: Summary

Univariate repeated measures analysis of variance was used to 

analyse the measurements obtained for the four different 

variables. Each variable being examined separately. When 

assessing the validity conditions for this analysis, the 

covariance matrix associated with the dose effect did not differ 

significantly from the necessary form, whereas the covariance 

matrix for the time effect did. It seems more likely that for 

this effect, observations closer together in time would be more 

highly correlated than observations further apart. Hence the 

covariance matrix may exhibit some serial correlation.

Unfortunately the sample sizes obtained were quite small. 

For 6-Keto-pgf only six animals had a full set of measurements 

and only seven animals for the other three variables. This has 

to be noted since small sample sizes affect the power of the 

symmetry test used in assessing the validity conditions. Also 

from examining plots of the measurements over time for the 

individual animals there appeared to be a large amount of between 

animal variation. This again can affect the power of the 

symmetry test and the tests of the effects in the analysis of 

variance.

Due to the lack of the required form of the covariance matrix 

for the time effect, the Greenhouse & Geisser and Huynh & Feldt 

approximate tests were used to determine the significance of the 

dose by time interaction and the main effect for time. 

Unfortunately these two approximate tests did not always agree in 

the final conclusions. For two of the variables, namely systemic 

blood pressure and 6-Keto-pgf there was some confusion over the 

significance of the dose by time interaction. In both cases the 

Huynh & Feldt approximate test found the interaction term to be
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significant, while the Greehnouse & Geisser did not.

Using the results obtained from applying the Greenhouse & 

Geisser approximate test we would conclude that PGI2 has only had 

a significant effect on systemic blood pressure and the 

production of 6-Keto-pgf.

Alternative methods of analysing this data could have been 

used. Since both of the trial factors have levels taken over a 

continuous scale, the modelling approach could have been 

applied. This is reinforced by the orthogonal polynomial 

breakdown for the variation due to time which showed significant 

linear and quadratic terms for sodium excretion and 6-Keto-pgf 

and a significant linear term for systemic blood pressure. The 

breakdown for the variation due to dose (unequally spaced) showed 

a significant linear trend for both systemic blood pressure and 

6-Keto-pgf.

Due to the small sample sizes the multivariate approach could 

not be used.
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4.3. : Strength in Children

4.3.1,: Introduction

At present, development of strength and power in children Is 

monitored using various isometric tests such as grip strength. A 

study was carried out to investigate the strength of children in 

four different age bands using measurements obtained from a Cybex 

Isokinetic Dynamometer. The four age bands being 5-5J£, 8-8J£,

11 — 1156 and 14-14J* years. Samples of male and female children in 

each age band were obtained from local schools.

Strength is usually measured on a Cybex as the Peak Torque 

(Newton-metres) developed during a maximal concentric 

contraction. In this study the peak torque obtained through knee 

extension contractions of the left leg was measured at four 

different velocity settings of the Cybex. Since the peak torque 

varies through the range of movement, a recorder was attached to 

the Cybex from which a graph of the strength curve could be 

obtained. The actual peak torque was then read from this graph.

To reduce variation in positioning which could affect the 

readings obtained, each subject was strapped in to the Cybex with 

the lever of the Cybex strapped to their left leg (see figure 

4.3.1) .

Figure 4.3.1: Cybex Isokinetic Dynamometer

Knee joint 

held in 

position
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Measurements were obtained at four different velocity

settings of the Cybex. Namely 300, 210, 120 and 30 deg.s-1.

Each subject had three warm up tries at each velocity followed by 

four maximal test contractions where they were encouraged to kick 

their leg as quickly and as strongly as possible. Appropriate 

rest periods were given between contractions.

This procedure was repeated one week later with the same

subject and the maximum peak torque out of the eight measured was 

taken at each velocity.

Subjects all started at the fastest velocity namely 300

deg.s-1 which gives the greatest peak torque and progressed down 

to the slowest velocity, 30 deg.s-1 which is the more difficult 

for knee extensions. This procedure was used to try and minimise 

any carryover effects. For further information on the use of the 

Cybex see MacDougall, Wenge and Green (1982).

It was not possible to obtain an equal number of subjects in 

each group and hence table 4.3.1 outlines the sample sizes 

obtained.

Table 4.3.1: Sample Sizes

Age Group (Years)

5-5J6 asCO1CO 11-11^ 14-14J6

Sex Male 14 15 16 14

Female 12 13 15 15

Table 4.3.2 shows the structure of the repeated measures 

design and contains the average peak torque at each velocity 

setting for each of the groups.
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Table 4.3.2: Average peak torque

Sex Age

300

Velocity

210

(deg.S 1) 

120 30

Male 5-5*6 3.1 5.0 7.3 12.6

8-8*6 4.7 8.0 13.2 24.5

1 1 - 1 1 % 10,3 16.8 28.0 57.0

14-14*6 22.4 35.3 53.5 85.7

Female 5-5*6 2.5 4.9 7.4 12.4

8-8*6 5.8 9.5 16.1 29.5

11-11*6 9.6 15.3 25.3 47.8

14-14*6 17.4 27.8 46.4 79.6

To examine the relationship between the peak torque and 

velocity for different groups figure 4.3.1 was constructed. As 

can be seen from this graph the relationship between these two 

variables is not linear but curved slightly. To simplify this 

relationship and hence the handling of the data, a log 

transformation of the peak torque was used. Figure 4.3.2 shows 

the average log of the peak torque against velocity for each 

group. From examining this graph, there appears to be a fairly 

strong linear relationship between the log of the average peak 

torque and velocity. This relationship was also found to exist 

for the individuals data.

The profiles in figure 4.3.2 suggest that this linear 

relationship is not the same for the four age groups and possibly 

not the same for males and females but the difference between the 

sexes is less pronounced.
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4.3.2: Analysis

Using the terminology introduced in chapter one, we have a 

three factor repeated measures design with two grouping factors 

(sex and age) and one trial factor (velocity). All three factors 

being fixed factors. The trial factor having levels taken over a 

continuous scale.

Our interest here is in investigating the effects of 

velocity, age, sex and their interactions on the peak torque. In 

our investigation of these effects we may make use of the linear 

relationship between the log of the peak torque and velocity. 

Hence several of the approaches discussed in chapter three may be 

applied. In total four different methods of analysis have been 

used to analyse this data and the results are presented below.

The following methods have been applied:

(i) Univariate repeated measures analysis of variance, 

(ii) Multivariate analysis of variance

(iii) The modelling approach using the two-stage model 

outlined in section 2.2.

(iv) The modelling approach using the conditional ^

model given by Rao (1965-67) as outlined in 

section 2.2.

Comparison of the results from using these different methods 

will be made in a later section.

Having discovered a strong linear relationship between the 

log of the peak torque and velocity, all analyses were carried 

out using the log of the peak torques and the appropriate 

programs in the BMDP (1983) statistics package. The program P2V 

was used to carry out the univariate repeated measures analysis 

of variance and the program P4V for the other three methods. For 

further information on the use of these two BMDP programs in
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univariate and multivariate repeated measures analysis of 

variance see Davidson (1980) and Frane (1980).

4.3.3: Results

Univariate Repeated Measures Analysis of Variance

The univariate analysis of variance model for this three 

factor design is written out below where we let represent

the observation on the i ' th (i=l, . .. fn̂ j}) individual for the j 1 th

(j = l, . . . , 4) velocity in the k'th (k=l,2) sex and J?'th (i=l 4)

age group.

x ijk* = u + + Pjj + + ^i(k«) + Yj + a7kj + + ^ k f j

+ *ffji(kf) + *ji(kJ?)
Before carrying out the univariate repeated measures analysis

of variance the required validity conditions for this analysis

were assessed. Since this design contains two grouping factors

both the Box (1940) M criterion and the Mauchly (1940) W

criterion are needed to assess the validity conditions (see

section 3.2).

Unfortunately the necessary and sufficient conditions for the 

univariate analysis of variance do not hold and we must use 

either the Greenhouse & Geisser or the Huynh & Feldt approximate 

test. The results from this analysis are outlined in table

4,3.3.
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Table 4.3.3: Univariate Repeated Measures Anova

Source F-value P-value
G-G
P-value

H-F
P-value

Between Subjects 15442.07 0.0000*

- Sex 0.51 0.4766

- Age 345.02 0.0000*

- Sex by Age 4.07 0.0088*

Within Subjects

- Velocity 3754.54 0.0000* 0.0000* 0.0000*

- Velocity by Sex 2.77 0.0419* 0.0661 0,0613

- Velocity by Age 6.84 0.0000* 0.0000* 0.0000*

- Velocity by Sex

and by Age 2.31 0.0159* 0.0361* 0.0315*

Note: * indicates significance for sig. level = 0.05

In table 4.3.3 F-value represents the value of the test 

statistic calculated from the ratio of the appropriate mean 

squares. There are three columns in this table headed P-value, 

G-G P-value and H-F P-value which represent the probability of 

obtaining a more extreme value of the test statistic than that 

observed, when the null hypothesis is true, for the standard 

univariate F test, the Greenhouse & Geisser and the Huynh & Feldt 

approximate tests respectively.

From table 4.3.3 we can see that the velocity by sex by age 

interaction term is just significant which makes it difficult to 

interpret any of the other within subject effects.
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Looking at the between-subjects results there is a 

significant sex by age interaction term which means again we 

cannot interpet the main effects without examining them jointly 

in a further analysis. For example examining the age effect for 

each level of the sex effect.

Multivariate Analysis of Variance

Since we have a reasonable amount of data we can make use of 

the multivariate approach to the analysis of repeated measures. 

For details of multivariate analysis of variance for repeated 

measures see section 3.2.

When carrying out this analysis using the BMDP program P4V 

several multivariate test statistics are calculated but only 

Roy's largest root statistic and Wilk's likelihood ratio 

statistic will be reported to ease the interpretation of the 

results. The results are outlined in table 4.3.4.

fable 4.3.4: Multivariate Analysis of Variance

Source Test Statistic P-value

Velocity - Hotellings T z 0.0000*

Velocity by Sex - Hotellings T z 0.0663

Velocity by Age - Wilks L. Ratio 0.0000*

Roy Max. Root 0.0000*

Velocity by Sex

and by Age - Wilks L. Ratio 0.0625

Roy Max. Root 0.1618

Note: * indicates significance for sig. level = 0.05
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Note that the Between-subjects tests on the grouping factors 

and their interactions are essentially univariate tests and hence 

the results will be the same as in table 4.3.3 so we have not

reported them in table 4.3.4. Only the within subjects tests are

reported here.

In table 4.3.4 for testing the velocity and the velocity by 

sex effects, the Hotellings T z test was carried out. This is 

because when we have either one or two groups, all the

multivariate test statistics mentioned in section 3.2 are

equivalent to the Hotelling's T z. Under the heading 'Test 

Statistic' in table 4.3.4 we have identified which test 

statistics were calculated where

Wilks L. Ratio represents Wilks Likelihood ratio statistic,

Lambda

and

Roy Max. Root represents Roy's maximum root statistic derived

using the union intersection approach

discussed in section 3.2.

The probability of obtaining a more extreme value than that 

observed for the test statistic is given in the last column i.e. 

the P-value.

From the results we can see that the velocity by sex by age 

interaction term is non-significant as is the velocity by sex 

interaction but the velocity by age term is very significant.

The Modelling Approach Using The Two-Stage Model

Since the measurements were taken on successively decreasing

velocities and from figure 4.3.2 and individual graphs there 

appears to be a very strong linear relationship between the log 

of the peak torque and velocity, the modelling approach discussed
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in section 3,3 may be applied. Here we use the two-stage model 

as outlined by Rao (1965-67) which is equivalent in this 

application, to the Potthoff & Roy model with G=Ip (see section 

3,3), We will use the same notation, X-jjkJj as was introduced at 

the beginning of this section for the univariate repeated 

measures analysis of variance.

The first stage of this approach involved obtaining the least 

squares regression coefficients for each subject where we assumed 

a linear relationship existed for each individual.

E <x ijkJi) = ^ik* + p iki vj 
where Vj represents the j'th (j=l 4) velocity setting.

Letting Xikf = (xilk*. x i2k*. xi3k*. x i4la) we may write

E (£ikfi) (aik*> ^ik$)

= ©ikJ?D
V-

1
v 2

1 1
V3 v4j

for i = 1,...,nki 

k = 1,2 

J? = 1,2,3,4.

The mean and standard deviation (S.D.) of the slopes and 

intercepts for each group are given in table 4.3.5. The 

regression coefficients for each subject were calculated using 

the statistics package Minitab.
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Table 4.3.5: Descriptive Statistics for the Regression

Coefficients

Sex Age Intercept Slope

Mean S.D. Mean S.D.

Males 5-5)6 1.1464 0.0890 -0.00226 0.00048

8-8)6 1.4279 0.1676 -0.00261 0.00038

11-1156 1.7999 0.0938 -0.00271 0.00023

14-1456 1.9878 0.0811 -0.00216 0.00021

Females 5-556 1.1664 0.1247 -0.00252 0.00048

8-856 1.5280 0.0877 -0.00263 0.00038

11-11)6 1.7301 0.0810 -0.00260 0.00030

14-1456 1.9637 0.0593 -0.00248 0.00031

The assumptions required by this approach are that each

individual has a separate regression line and that for each 

individual, the errors about the regression line a^e 

independently distributed.

The second stage of the two stage model then assumes that for 

each individual the regression coefficients come from underlying 

normal distributions.

Essentially the analysis for this two-stage model {see

section 2.2 and 3.3) consists of replacing the four peak torque

measurements for each individual by their least squares 

regression coefficients and then applying multivariate analysis 

of variance to test for group effects and interactions. Table

4.3.6 contains the results from applying multivariate analysis of 

variance on the obtained regression coefficients.



10 5

Table 4.3.6: Two-Stage Model Results

Effect Test Statistic P-value

Slope Univariate F 0.0000*

Intercept Univariate F 0.0000*

Sex Hotellings T2 0.1875

- Slope Univariate F 0.0689

- Intercept Univariate F 0.4766

Age Wilks L. Ratio 0.0000*

Roy Max. Root 0.0000*

- Slope Univariate F 0.0005*

- Intercept Univariate F 0.0000*

Sex by Age Wilks L. Ratio 0.0056*

Roy Max. Root 0.0373*

- Slope Univariate F 0.0717

- Intercept Univariate F 0.0088*

Note: * indicates significance for sig. level = 0,05

There are three columns in this table where the first column 

headed 'effects' just identifies which effect is being tested* 

the third column represents the p-value as defined earlier and 

the second column identifies which test statistic is being used 

to test each effect where,

'Univariate F' represents the F-ratio obtained in applying 

univariate analysis of variance.

'Wilks L. Ratio1 represents Wilks likelihood ratio test statistic 

and

'Roy Max. Root' represents Roy's maximum root test statistic.
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We first examine the results obtained from the multivariate 

tests given in table 4.3.6 to get an overall view of any 

significant effects and then if appropriate, examine the results 

from the univariate tests to try and simplify the interpretation.

From table 4.3.6 we can see that there is a significant sex 

by age interaction term. On looking at the univariate results 

which are essentially treating the slope and intercept as two 

univariate measurements, we see that for the intercept the 

interaction effect is significant but for the slope it is 

borderline. The significance of the interaction term makes it

difficult to interpret the main effects for age and sex from this 

table. Further analysis would have to be done, although the age 

effect from table 4.3,6 would appear to be very significant.

The Modelling Approach Using The Conditional Model

In the previous analysis we replaced each subjects four 

measurements with two regression coefficients obtained from 

fitting individual linear models. As noted by Rao (1965-67) this 

could result in the throwing away of useful information. 

Possibly, some of the information being thrown away may be of 

use, not necessarily all of it. Hence we have applied the 

conditional model and its analysis as proposed by Rao (1965-67) 

(see sections 2.2 and 3.3).

This approach involves taking each individual's slope and 

intercept as before and two other othogonal linear combinations 

of the four observations on each individual. Multivariate 

analysis of covariance is then applied on the subjects regression 

coefficients using the two other orthogonal linear combinations 

as covariates.
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These covariates may be easily obtained from two orthogonal 

linear combinations of the residuals for each individual. An 

alternative method for obtaining them if orthogonal polynomials 

were being used, would be to use the cubic and quadratic 

orthogonal polynomials as covariates.

Since we were not using orthogonal polynomials the two other 

orthogonal linear combinations were derived from the residual 

space. Multivariate analysis of covariance was then applied 

using the two regression coefficients and covariates. The 

results are presented in table 4.3.7. The format of this table 

i.e. the headings and abbreviations are the same as for table 

4.3.6.
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Table 4.3.7: The Conditional Model Resuits

Source Test P-value

Covariates Wilks L. Ratio 0.0582

Roy Max. Root 0.0642

- Slope Univariate F 0.5005

- Intercept Univariate F 0.0179*

Grand Mean Hotellings T 2 0.0000*

- Slope Univariate F 0.0000*

- Intercept Univariate F 0.0000*

Sex Hotellings T z 0.1353

- Slope Univariate F 0.0480*

- Intercept Univariate F 0.4017

Age Wilks L. Ratio 0.0000*

Roy Max. Root 0.0000*

- Slope Univariate F 0.0030*

- Intercept Univariate F 0.0000*

Sex x Age Wilks L. Ratio 0.0041*

Roy Max. Root 0.0279*

- Slope Univariate F 0.0750

- Intercept Univariate F 0.0066*

* indicates significance for a = 0.05

As with table 4.3.6 we examine the results from the 

multivariate tests first.
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From table 4.3.7 the sex by age interaction term is

significant. Examining the slope and intercept separately using

univariate analysis of covariance, we see a significant 

interaction effect for the intercepts but borderline for the 

slopes.

Due to the significant interaction term it is again difficult 

to interpret the main effects for age and sex, although there 

does seem to be a very significant result for the age effect.

It is worthwhile noting that the test on the need for the 

covariates is not significant when the two variables are looked 

at jointly but that the univariate test when considering 

intercept alone is significant.

4.3.3: Summary

For this problem four different methods of analysis were

used. The results obtained from these different methods being 

very similar with only a few contrasting results. We will

compare the univariate and multivariate procedures first, then 

the two-stage model analysis against the conditional model and 

finally all four procedures.

Comparing the univariate analysis to the multivariate, the 

main discrepancy lay in whether the sex by age interaction term 

for the within subjects effects was significant. This 

interaction term was found to be significant for both of the

approximate tests used in the univariate analysis but not for the 

multivariate analysis. All other results were comparable. It

should be noted here that the tests used in the univariate 

analysis are approximate, and the multivariate analysis will give 

more exact results and is more powerful when the univariate

assumptions do not hold. In contrast, of course, it will be less
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powerful when the univariate assumptions do hold.

Comparing the two-stage model analysis with that for the 

conditional model the results were comparable. Since in both 

cases, the sex by age interaction term was found to be 

significant and in looking at the univariate analysis for the 

slopes and intercepts separately, only the interaction term for 

the intercepts was found to be significant. Further conclusions 

are more difficult to arrive at due to the difficulties in 

interpretation arising from the significance of the interaction 

term. This may indicate that the two covariates included in the 

analysis using the conditional model provide little useful 

additional information since the results are similar (though see 

the note in the previous section). Hence the two-stage model 

which is equivalent to the Potthoff & Roy method with G=Ip 

appears to be a reasonable approach although we might have some 

misgivings about the need for a covariate for the slope.

Comparing all four procedures the only discrepancy is in the

significance of the sex by age interaction term for the within
«■>

subjects effects. Given that this effect requires different 

assumptions depending on the procedure used this might be 

expected unless there is a very clear cut effect. For this 

problem, there does not appear to be any obvious advantage to 

using either the analysis of variance approach or the modelling 

approach except in the practicalities of carrying out the 

analysis and interpretation of the results for non-statisticians, 

though it would seem inefficient not to use any relationships 

that existed in the data.
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4.4: Fundal Height and Growth Retardation

4.4.1: Introduction

The accurate identification of the growth retarded foetus 

remains a problem in spite of a wide range of clinical, 

biochemical and ultrasonographic techniques now available.

Ultrasonographic measurements including serial cephalometry, 

the crown-rump length and trunk area are the most sensitive

techniques for diagnosing IUGR (Intra Uterine Growth Retardation) 

available, but the expertise involved in their application 

precludes their use as a widespread screening test outside of 

teaching centres.

The need remains for a sensitive screening procedure for 

growth retardation which can be applied easily and at low cost in 

the course of routine ante-natal care.

A study was carried out to examine the efficacy of the formal 

measurement of fundal height in the identification of growth

retardation.

During 1978 and 1979 measurements of fundal height were made 

routinely from twenty weeks gestation until delivery on all women 

attending one of Bellshill Maternity Hospital's peripheral 

antenatal clinics. The method of measuring the fundal height was 

taught to junior medical staff and midwives.

Since the data was being collected routinely it was not 

possible to have the same person recording a patient's 

measurements throughout the pregnancy and hence patients were 

likely to have their fundal height measured by a different person

at each visit. The case notes of all women attending the clinic

during 1978 and 1979 were examined retrospectively. Women whose 

gestation was known with certainty, either on the basis of a 

careful menstrual history or an early scan (less than 26 weeks)
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were selected for the study sample. Women with uncertain 

gestation were excluded from the study, as were all cases of 

multiple pregnancy. For further details see Rosenberg et al

(1982).

In total there were 761 women included in the study. The 

values of fundal height, as well as basic information such as 

age, height, parity, smoking habits and previous obstetric 

history were recorded for these women. In the sample of 761 

women, 51 babies were born who were growth retarded. The 

definition of growth retardation used being a weight less than 

the tenth centile for gestation according to the standards of 

Thomson et al (1968).

Unfortunately the number of visits to the clinic and hence 

the number of fundal height measurements were not the same for 

all of the women in the sample. Table 4.4.1 shows the number of 

visits to the clinic for the two groups (Growth-retarded and 

Normal). Only the measurements obtained up to 36 weeks into the 

pregnancy are used since this was identified as a gestation at 

which suspicion of growth-retardation would permit effective 

clinical surveillance and allow for necessary intervention.

Table 4.4.1: Number of visits up to 36'th week

Number of Vis its to Cl inic

0 1 2 3 4 5 6 7 8 9 10 11 12 13 All

G.R. 0 0 3 5 5 13 14 6 3 1 0 0 0 1 51

Norm 1 2 29 56 120 150 150 117 55 20 6 4 0 0 710

All 1 2 32 61 125 163 164 123 58 21 6 4 0 1 761
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4.4.2: Analysis of the Data

Essentially this is a discrimination problem where using the 

available information - fun<\oL height( age, smoking habits etc. we 

are trying to correctly identify a woman who is likely to have a 

growth-retarded baby. Obviously in identifying these women 

correctly we may misclassify some women who are likely to have a 

normal weight baby. A high number of misclassified normals may 

be expensive in costs to the hospital and hence must be 

minimised.

One of the main objectives of this study was to examine the 

usefulness of fundal height measurements in the identification of 

growth-retarded babies. Hence for each mother we have a set of 

growth curve data ie. the fundal height measurements at various 

time points during the pregnancy. Unfortunately the data is 

extremely unstructured since the mothers do not all have the same 

number of visits and the timing of the visits could not be 

controlled.

There are several other difficulties with this problem 

including the crudeness of the measurement of fundal height and 

the variability in the measurements caused by different examiners 

in the clinic.

Since we had a very complex set of growth curve data plots of 

fundal height against gestation (weeks into pregnancy) were 

obtained for a large sample of the subjects. The reasoning 

behind this was to see if there was any relationship between 

fundal height and gestation which would allow us to model the 

data and hence simplify the structure. From the plots it 

appeared that a roughly linear relationship existed. Hence the 

least squares regression line for each individual was obtained 

and the complex set of measurements was replaced by the intercept
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and slope for each regression line.

The means and standard deviations of the intercept and slope 

for the two groups are given in table 4.4.2.

Table 4.4.2: Descriptive Statistics for the Intercept and Slope

Mean ± St. Dev.

Intercept Slope

GR. 4.973 ± 6.820 0.741 ± 0.235
(N = 47)

Norm. 1.964 ± 9.570 0.908 ± 0.306
(N - 671)

Having simplified the complexity of the fundal height 

measurements we then used the values for the intercept and slope 

and the other covariates for each individual in a linear 

discriminant analysis using the stepwise linear discriminant 

program P7M of BMDP (1983). The covariates included measurements 

on the mothers such as age, height, number of cigarettes smoked 

per day and number of previous growth retarded babies. The 

results are given in table 4.4.3.

In carrying out this linear discriminant analysis equal prior 

probabilities were used. The reason for this was that when one 

used the natural prior probabilities 0.1 and 0.9 there was an 

unacceptably high number of growth retardeds classified as 

normals. Indeed very few of the growth retardeds were correctly 

identified. Prior probabilities of 0.5 and 0.5 gave a more 

acceptable balance of correctly identified growth retardeds and 

normals. When running this program, P7M in stepwise mode, all 

other parameters to control the stepping and selecting of 

variables were left at the default values. The obtained 

jack-knifed classifications are presented in table 4.4.3 for 

several fitted models. The features used and the order in which
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they were entered in the program is given in tabie 4.4.3 under 

the heading 'features used'.

Table 4.4.3: Results Using Linear Discriminant Analysis

Prior Probabilities : 0.5, 0.5

: Jack-knifed Classifications

Features Used % Growth Retarded 
Correctly Identified

% Normal 
Correctly Identified

Least squares 
slope and 
intercept. 70.5 (31) 73.3 (462)

Height 68.2 (30) 62.9 (396)

Smoking Habits 68.2 (30) 64.6 (407)

Height, smoking 72.7 (32) 68.3 (430)

Height, least 
squares slope 
and intercept. 70.5 (31) 76.2 (480)

Least squares 
slope, intercept 
and smoking 
habits. 72.7 (32) 75.7 (477)

Height, least 
squares slope, 
intercept and 
smoking 72.7 (32) 76.7 (483)

GOR, height, 
least squares 
slope, intercept 
and age. 68.2 (30) 80.2 (505)

Notes: The figures in brackets represent the number of cases
correctly identified.
GOR represents the number of previous growth retarded 
babies.



116

4.4.3: Discussion

As can be seen from table 4.3.3 the group of variables which 

best discriminated between growth retarded and normal weight 

babies were the height of the mother, the fundal height slope and 

intercept and the number of cigarettes smoked per day by the 

mother. This group of variables correctly identifying 32/44 

growth retardeds and 483/630 normals.

It is worthy of note that all of the models provide similar 

results in the number of growth retardeds correctly identified 

irrespective of whether the fundal height slope and intercept are 

used. Although height and smoking do quite well on their own, 

there does seem some advantage in using the slope and intercept 

as well.

The above approach to this problem consists of a simple 

procedure for using a very complex set of growth curve data in a 

discrimination problem. This procedure involved a potentially 

inefficient use of the two-stage model (see section 2.3). This

was because all of the parameter estimates were treated equally,
C

irrespective of the number of visits and the timing of these 

visits which affects the accuracy of estimation of parameters for 

different individuals. Thus the assumption for the second stage 

of the model where we assume the parameters arise from the same 

distribution is strictly speaking not tenable.

A more complex approach and hence analysis may have given an 

improved discrimination between the two groups but this would 

seem unlikely. In practice the use of the fundal height slope 

and intercept in a simple discriminant function would provide a 

practically useful technique which can be applied by junior 

medics and other staff.
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CHAPTER 5

RECENT DEVELOPMENTS



118

Chapter 5; Recent Developments

In this chapter we summarise, briefly, some additional 

developments and more recent contributions to the design and

analysis of studies involving repeated measures data. Some of 

these references may not necessarily have been mentioned

previously.

Kunert (1983, 1984, 1985) presents further findings on the

optimality of balanced uniform repeated measurement designs which 

was previously examined by Hedayat and Afsarinejad (1978), Cheng 

and Wu (1980) and Afsarinejad (1983).

Hearne et al (1983) examine the robustness of univariate 

analysis of variance when the covariance matrices for the data 

have serial correlation. They also present a likelihood ratio 

test for testing for patterns in the covariance matrices as have 

Chinchilli and Carter (1984). Kenny and Judd (1986) have very 

recently presented a comprehensive discussion of the consequences 

of violating the assumptions required in univariate analysis of 

variance.

Mitzel and Games (1981) examined the assumptions required in 

carrying out multiple comparison tests in repeated measures 

designs. Foutz (1985) using the results of Zerbe & Walker (1977) 

and Zerbe (1979) also examines multiple comparison procedures,

in the randomisation analysis of growth curve responses.

Verbyla (1986) and Kenward (1985) continue examination of the 

use of covariates in the growth curve model as previously 

discussed by Rao (1965-67). In particular Kenward (1985) 

examines the use of fitted higher-order polynomial coefficients 

as covariates.



119

Liang and Zeger (3986) and Ware (1985) contribute further 

work on the analysis of repeated measures data using generalised 

linear models.

Both Hui et al (1983) and Strenio et al (1983) use empirical 

Bayes estimation techniques, Hui et al (1983) in the estimation 

of rates of change in longitudinal studies and Strenio et al

(1983) in the estimation of growth-curve parameters. Hui

follows the same approach as Fearn (1975) and Laird & Ware 

(1982).

Katz and McSweeney (1983) develop some non-parametric tests 

for analysing ranked data in repeated measures designs and Gasser 

et al (1984) compare parametric and non-parametric regression 

analysis of growth curves.

Woolson and Clark (1984), Wei and Johnson (1985) and Crdpeau 

et al (1985) discuss methods of analysing incomplete data from 

repeated measurements experiments. Woolson and Clark (1984) 

examine categorical incomplete longitudinal data and use a simple 

modification of Grizzle et al (1969)'s methodology. Crepeau et 

al (1985) discuss incomplete data where the missing observations 

always arise at the end of the data. Hui (1984) discusses curve 

fitting for repeated measurements made at irregular time-points.

Zeger et al (1985) examine the analysis of binary 

longitudinal data with time-independent covariates.

Various models and methods of analysis for repeated measures 

data are also discussed in Plewis (1985). In particular Plewis 

discusses models for categorical repeated measures data.
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