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INTRODUCTION

The object of this thesis is to review the existing work on
surface waves in pre-stressed elastic materials. In particular
we shall be concerned with Rayleigh waves and Love waves,

In Chapter 1 we summarize the main results of non-linear
elasticity which will bé required in éubsequent chépters. In
particular, we consider +the general forms of strain-energy
functions for both incompressible and compressible isotropic
elastic materials. In section 5 of this Chapter we establish the
equations of motion for both incompressible and compressible
materials which are used in our discussion of surface waves.
Also, the relevant boundary conditions are noted. In the last
part of this Chapter we consider plane waves 1n an infinite
medium. The work in this Chapter is based on, for example, Ogden
(1984) and Truesdell and Noll (1963).

Chapter 2 is concerned with Rayleigh waves. We start with
the analysis for incompressible materials with particular
attention paid to propagation along a principal axis. For a
general form of strain-energy function the secular equation for
Rayleigh waves in a pre-strained incompressible elastic material
is obtained. This generalizes results given by Willson (1973a).
Next, we consider some special deformations and obtain some new
results along with the well known results for Rayleigh waves in
the linear theory. Also, for some particular strain energy

functions we obtain explicit solutions of the secular equation.




Rayleigh waves propagating in a general direction in the
(x1,%x3)-plane are also considered. Because, in general, the
equation involve complicated algebra, we confine attention to the
neo-Hookean material and deduce results equivalent to those given
by Flavin (1963).

Corresponding analysis is given for compressible materials.

In Chapter 3, we discuss Love waves in a pre-strained laver
on a pre-strained half-space. As for Rayleigh waves we consider
both incompressible and compressible materials. We obtain the
dispersion equation for waves propagating along a principal axis
of the underlying deformation in respect of a general
strain-energy function. For illustration we then consider a
neo-Hookean material and obtain some numerical results for this

case.




1
CHAPTER 1

Basic equations of non-linear elasticity:

1.1 Kinematics and mass conservation

Here we introduce the notation required for the description
of the deformation of an elastic body. We consider a continuous
body which occupies the region B, in some natural (i.e.
unstressed) configuration. Let a typical point of B,, P say,
have position vector X relative to some (arbitrarily chosen)
origin 0.

The motion of the body, in which the body occupies the region

By at time t, is described by the one-parameter mapping

Xt: BP -»> Bt,
with x = x¢(X) = x(X, t) (1.1.1)
being the position occupied by P in B{. In Cartesian components

equation (1.1.1) may be expressed

X1 = x1(X1,X3,X3,t),
Xg = XZ(Xl,Xa,Xs,t), (1.1.2)
Xq = xs(xl,X2,X3,t).

We require x{ to have a unique inverse 5{1 such that

X = xgl(x) X € By (1.1.3)
We also assume that x is twice-continuously differentiable
when this degree of regularity is required.
The velocity and acceleration of the material particle P are

given by

_ & (X, t) e o ¥x (X, t)

— — (1.1.4)
at at

respectively, where 3/3t here denotes differentiation with

respect to t at fixed X.




The deformation gradient tensor, the gradient of (1.1.1), is

given by

A = Grad x(X, t), (1.1.5)

where Grad denotes the gradient operator with respect to X.

It follows from (1.1.4) and (1.1.5) that

A=r A, (1.1.5)

where the superposed dot denotes 3/at at fixed X and

I' = grad v (1.1.7)
is the velocity gradient tensor. Note that in (1.1.7) grad
denotes the gradient operator with respect to x.

In Cartesian components, we have

A, = F4ox, 0 = (1.1.8)

an BXj

r, = Vi (1.1.9)

BXj
We write

J = det A (1.1.10)
and impose the usual constraint

J > 0, (1.1.11)

which ensures that the deformation is locally invertible, i.e.

that A™! exists. We use the notation

B = (a7 (1.1.12)
where ! denotes the transpose a second-order tensor.

In components

aX 5 (1.1.13)

K

B“=




We shall make use of the following polar decompositions for

i

A=RUS=VR, (1.1.14)
where R is proper orthogonal and U and V are positive definite
and symmetric, the right and left stretch tensors respectively.

Each of U and V may be expressed in spectral form

=
]
e
N
Iz
=
®
=
=

(1.1.15)

v x§ E(i) e E(i)!

]
e

where x;(>0), i e {1,2,3}, are the principal stretches of the
deformation, and g(i) and g(i) respectively are the  unit
eigenvectors of U and V. We shall refer to g(i) and g(i),
ie {1,2,3}, as the Lagrangian and Eulerian Principal axes
respectively.

The right Cauchy-Green deformation tensor C is given by

3 . :
c=aTa=-02= 3% 2§ u(i) g y(i) (1.1.16)

For future reference we note that principal invariants of C.

denoted Iy, I, I, are given by

Il = tr(_C_),
Ip = %13 - ®tr(c?), (1.1.17)
Ig = det C.

Let p, denote the mass density of the material in B, and p
the corresponding density in By, Conservation of mass 1is

expressed by means of the equation

pp/p = J = det A (1.1.18)
For an isochoric (volume preserving) deformation J = 1 and

P=Pp. An incompressible material 1is one for which every




deformation is necessarily isochoric, i.e.

pp/p = J =1 X e Bp (1.1.19)
In view of (1.1.14) and (1.1.15) equation (1.1.18) may also

be written

pr/p = detg = Xlkzka, (1.1.20)

with

Airorg = 1 (1.1.21)
for an isochoric deformation.

We shall also require the rate form of (1.1.18), namely

ar

EE + pdiv v = 0, (1.1.22)
which yields

tr(r) = div v = 0 (1.1.23)

when the motion is isochoric.

Let N denote the unit outward normal to the boundary 3B, of
Br and n the corresponding unit normal to the boundary 3By of Bi.
Then, according to Nanson's formula, aréa elements da, and da of

3B, and 3By are related by

nda = JB N daj. (1.1.24)

1.2 Stress and the equations of motion

The traction (load) on the area element da of the deformed

surface 3B is expressible in the form

oln da = sT N da,, (1.2.1)
where oTis the Cauchy stress tensor (independent of n) and S the
nominal stress tensor. In view of (1.1.24) equation (1.2.1)

yields




s =JBT o

(1.2.2)
and we shall use this connection later.
In this thesis wé shall make use of the equations of motion

expressed in terms of nominal stress. Thus

Div § = p,f, (1.2.3)
where f is the acceleration given by (1.1.4), Div denotes the
divergence operator with respect to X and body forces are
disregarded.

The rate form of (1.2.8) is obtained by differentiating with

respect to t at fixed X to give, on use of {(1.1.4),

Div § = ppu, (1.2.4)
where the dot indicates the differentiation in question.
Furthermore, if the reference configuration is updated from

Bp to the current configuration By then (1.2.4) is replaced by

div Sy = o v, (1.2.5)
where div denotes the divergence operator with respect to x and
go represents S evaluated in By after differentiation with
respect to t.

The equations of rotational balance are satisfied when the

Cauchy stress tensor ¢ is symmetric, or, equivalently,

As=sTal (1.2.6)
The rate counterpart of (1.2.6) is obtained by
differentiating with respect to t and updating the reference

configuration to By to give

So * L o=28+arT, (1.2.7)

where I is defined in (1.1.7}.




1.3 Constitutive laws for elastic materials

We consider an elastic material for which there is a strain
energy W(A) per unit reference volume, so that the nominal stress

tensor is given by

S =__ (1.3.1)
or, in components,

aw
A

S§yi = (1.3.2)

It is assumed that the material is homogeq§us so that W has
no explicit dependence on X (i.e. it depends on X only through
A).

For the function W to be objective (i.e. unaffected by a
superposed rigid-body rotation after deformation), it must depend
on A only through the right stretch tensor U occurring in

{(1.1.14): thus

W(A) = W(U). (1.3.3)
With U, analogously to (1.3.1), we associate the so-called

Biot stress tensor T defined by

7= W (1.8.4)

au
1f the material is isotropic relative to B, then W must also
be unaffected by an arbitrary rigid-body rotation before

deformation. Coupled with the objectivity requirment (1.3.3)

this leads to the standard restriction on W, namely

W(Q U o) = w(u) (1.3.5)

for all orthogonal Q,
Because of (1.1.15) this ensures that W depends only on the

principal stretches xl; A, Mg and is indifferent to any pairwise




interchange of X\i, A2, Ag. Without changing notation, we express

this as

W(Xl,kz,ks} = W(Xl,ks,kz) = W(X3,k1,12), {(1.3.6)
It then follows that T is coaxial with U and, from (1.3.4), we

obtain

3
T-3 M
i=1 axg

uli) ¢ (i), (1.8.7)
analogously to (1.1.15).

It is convenient to introduce the notation t;, i e {1,2,3},

for the principal values of T. Then

t; =M 16 q1,2,8) (1.3.8)

ar

for an (unconstrained) isotropic material, and hence

3 . .
IT= 5 t;uli)eygli) (1.3.9)

The corresponding expression for the Cauchy stress tensor o

is

oj v(1) & (i) (1.3.10)

neiio

g;

i=1

(coaxial with V), with

W
o = J-Inity = J71 ay 205, (1.3.11)
i iti 13y
For completeness, we note that
3 s .
s = ¢ty ull) ¢ (1), (1.3.12)
S jEyt 2
which is analogous to the decomposition
3 . s
A= T v(1) ¢ uli) (1.8.13)

for the deformation gradient (the latter being obtained from

(1.1.14) ‘and (1.1.15) on noting v(1) = R u{1), i e (1,2,3}).




1.3.1 Incompressible elastic materials

For an incompressible material it follows from (1.1.18) -

{(1.1.21) that the constraint

J = det _A_ = det H = )\1)\2)\3 =1 (1.314—)
must be satisfied at each point X € B,. Then equations (1.3.1) -

(1.3.4) are replaced by

s = W _ gt (1.3.15)
JA
and
T =W gyt (1.8.16)
3

respectively, where p is an arbitrary function of X and acts as a
Lagrange multiplier in respect of the constraint (1.3.14).
If the material is isotropic then I, o and § are given by

(1.8.9), (1.8.10) and (1.3.12) respectively, but t; and oj become

e = M ol ie (1,2,8) (1.8.17)

ANy

(corresponding to the principal values of (1.3.16)) and

o = MM - p ie{1,2,3) (1.3.18)

aXj

respectively.

1.4 Strain-energy functions for isotropic materials

We noted in (1.83.6) that for an isotropic elastic mater%al
the strain energy may be regarded as a symmetric function of D
A3, Xg. Equivalently, it may be considered as a function of the
principal invariants I4, Iy, Ig defined in (1.1.17); in terms of

A+ A, Ag these are




Is = 22 28 + 2222 + 2252, (1.4.1)

and when the material is incompressible Iz = 1, and the remaining

independent invariants are

2 2 2
I1 xl + xz + RS,

(1.4.2)

= y—2 -2 -2
1o bN T + N 5 + A 3

For future reference we now record some specific forms of W
for both incompressibie and compressible isotropic elastic

materials.

1.4.1 Incompressible materials

With W now regarded as a function of 14 and Iy, as given in

{1.4.2), equations (1.3.17) and (1.3.18) give

W W
ity = oy = 8 - 22 o (1,2,9) (1.4.3)

alq aly

and, on elimination of p, we obtain

2)

Aty - 2jty =04 - 05 = 2(k§ - XJ

[aw + A2 32 aw ] (1.4.4)
al, TP

The Mooney (or_ Mooney-Rivlin) strain-energy function is

defined as

W=2=0Cy (I -3) + Cy (Ig - 3), (1.4.5)
where C; and C, are physical constants, and the special case of
this corresponding to Cs = 0 yields the neo-Hookean form of

strain energy, namely

W=20Cy (Il - 3) (1.4.6)
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The strain-energy function (1.4.5) is a particular member of
the class of strain-energy functions proposed by Ogden (1972a).

For these

N
W= Ioug (N0 + 230+ w§0 - 3)/«g, (1.4.7)
n=

where upp and «p, n e {1,2,...,N}, are material constants, and
{1.3.17) and (1.3.18) vield

N
Mtp = o = Tagpnit - p 1 {1,2,3) (1.4.8)

Comparison of (1.4.5) and {1.4.7) shows that for the Mooney

strain-energy function

th = 2, 0C2 = "2,

1]

My aCqy, uo = -2C3, #p =0 n e {3,4,...,N}. (1.4.9)
A useful generalization of (1.4.7) is the Valanis Landel

strain energy, for which

W = W()\l) + W()\z) + W(Xs) (1.4.10)

and hence

Nty = o3 = Mw'(Xx;) - p, (1.4.11)

where w is any suitably well-behaved function.

1.4.2 Compressible materials

For a compressible material use of the invariants (1.4.1) in

{(1.8.11) vields

Joi = Xiti = 2k§aw + 2%%(11 - XE)EE_ + 2138w y (1.4.12)
aIl 812 alg
and hence
s~ os) = Nits — Nats = 2 _ 2y [3W 2 oW
J(og = o5) = Mty - ajty = 2(x2 xj)[___ + 2g ,(1.4.13)
811_ 812
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where (i,j.k) is a permutation of (1,2,3).

For the strain-energy function

W = Cl(Il - 3) + C2(I2 - 3) + F(Is),
a modification of (1.4.5), where F(Ig) is a suitably well-behaved

function, equation (1.4.13) simplifies to

Jlog = 03) = Aitj = Ajtj = 2(x% - x%)(cl + CA2).  (1.4.14)

Finally, we consider a similar modification of (1.4.7),

namely

N X (o4 <
W= Elnn (Xln + in + Xsn - 3) + g(X1X2k3), (1.4.15)
n=

where g is a function of J = Aqrprg. From (1.3.11) we obtain

N
Joj = N\jtj =n§1unx§n + Jg'(J). (1.4.16)

1.4.3 Isotropic linear elasticity

For infinitesimal strains we use the variables

ej = 3\ - 1 ie{1,2,8) (1.4.17)

and linearize the stress-strain equations to obtain

ti = o0y = 2uej + N(e; + ey +eg), i e {1,2,3} (1.4.18)
where X and u are the Lame elastic moduli, correct to first order

in ey, ey, eg. The bulk modulus x is defined by

ko= N+ § u (1.4.19)

For incompressible materials (1.4.18) is replaced by

ty = o5 = 2uey - p ie {1,2,3} (1.4.20)
subject to
ey + eo0 + g = 0, (1.4.21)

with p having the same interpretation as in (1.3.16).
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Comparison of (1.4.20) with the linearized form of (1.4.8)

shows that

N
T Up&, = 2u. (1.4.22)
n=1 >0

In particular, for the Mooney strain-energy function (1.4.5)

we have

Hy = g = 2 (€1 + Co) = p. (1.4.23)
The corresponding linearization of (1.4.16) again yields

{1.4.22), and, in addition,

N
g'(1) +n§1un = 0, g"(l) = \. (1.4.24)

1.5 Elastic moduli

For use in the rate forms of the equations of motion (1.2.4)
or (1.2.5) we shall require rate forms of the constitutive laws.
First, for compressible materials, differentiation of (1.3.1)

with respect to t at fixed X yields.

s =Aa,

whereuzLis the fourth-order tensor given by

—
[a
]

1)

A= W (1.5.2)

T 3AaA

or, in components,

éji =u4dilk Ak1 {(1.5.8)
with
2
W
ilk = d _ (1.5.4)
aAuaAkl

We refer tD\é& as the tensor of first-order elastic moduli

associated with the variables (S, A) relative to B..
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If the reference configuration is now updated to coincide

with the current configuration B¢, (1.5.1) becomes

8o = Ao Ao- (1.5.5)

where the subscript zero indicates evaluation in By. From
(1.1.6) we deduce that A, = L. The tensorAA;) is called the
tensor of first-order instantaneous elastic moduli associated
with (S, A).

For compressible isotropic materials the components of %4@
referred to the Eulerian principal axes of the underlying
deformation are derived in Ogden (1984), and we refer to this
book for full details. Here it suffices to state that the only

non-zero components ofqéb are

do;
iiii = M__2
arg
3o . .
J£01ijj = Xj__1+o0; i=x j,
axj
(1.5.6)
c; - 05 2 . .
\fLoijij 1 J Ay =13,
2 2
)\i—)\j
o; — o5 2 . .
Jinijji =Aojiij = 1IN -5 1=#3],
2 2
)\i—)\j
where 1,j ¢ {1,2,3}, and
Joj = kiiﬁ . (1.5.7)
ang
In components equation (1.5.5) reads
. G
So51 =Aojiktkl =Hojiik E‘E (1.5.8)
X}

on noting (1.1.9).
For incompreésible materials, differentiation of (1.3.15)

with respect to t at fixed X and use of {1.1.6) and (1.1.12),
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followed by an update of the reference configuration to By,

vields the counterpart of (1.5.5), namely

So =“_4_0£ + pr - pI, (1.5.9)
where I dis the identity tensor. This is coupled with the rate

form of the incompressibility condition:

tr(r) = divwv =0, (1.5.10)
as in (1.1.23).
In components
3 3 PSD
: v Vg .
5031 2 ojik 2K + p 23 - by, (1.5.11)
9x1 axj

with

Vi - o, (1.5.12)
X3

For incompressible isotropic materials the components of gﬁé

differ slightly from (1.5.6), and are given by

atw
ﬂoiijj = NN,

axian]
oy — o5 .2 _
v‘Zoijij =2 J g 1o d, (1.5.13)
2 g
ki - Ny
aw
f%oijji ﬁfzojiij =Aloijij - Mol 1% 3,
Ny
where
o] = kify_ - p (1.5.14)
3Ny

and i, j € {1,2,3}.
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For the special case in which \j = Aj for i#j the formulae
(1.5.6) and (1.5.13) still hold except that in the limit ST RS

Apijij is replaced by

uqoiiij = ’é(ﬂoiiii ‘Jqoiijj + 0j) (1.5.15)

for compressible materials, and

W
vLZoijij = KQ/Zoiiii ;lzoiijj + N ) (1.5.16)
:ENY
for incompressible materials.

The equations of motion (1.2.5) have components form

8 éoji = Pui ie {1,2,3}

an
so, for compressible and incompressible materials respectively,

equations (1.5.8), (1.5.11) and (1.5.12) yield

a a -
Z (ojik k) = ovy (1.5.17)
and
2 Mojiak k) + 2v3 @ L@ G, (1.5.18)
axjy 8x3 dxj 3Xj Xy

the latter being coupled with (1.5.12).
When the underlying deformation from B. » B¢ is homogeneous

VQO and p are independent of x and (1.5.17) and (1.5.18) simplify

to

2 .
Aojite K = ovy, (1.5.19)
anaXl

Aojine 2k - 3P - oh; (1.5.20)
anaxl ax{

2y

respectively.
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Finally in this section we note that the traction rate $Jn on

a surface with unit normal n in the current configuration B; has

components
Sojing = (ﬂojilk k) nj (1.5.21)
ax]
and
Sojing = (ojilk + PojK811) K ny - pn; (1.5.22)
3x]

for compressible and incompressible materials respectively.

1.6 Plane waves in an infinite medium

As a prelude to our discussion of surface waves, we consider
the propagation of plane waves in an unbounded medium. For a
plane wave propagating in the direction of the unit vector n with

speed ¢ we may write

v = mf(t -gf) (1.6.1)

c

and, additionally, for an incompressible material,

p=Jr (¢-2F

Cc C

), (1.6.2)

where q is a constant and m a constant unit vector. We refer to
m as the unit amplitude vector.
For an incompressible material substitution of (1.6.1) into

{1.5.10) yields the constraint

m.n = 0. (1.6.3)
Substitution of (1.6.1) and (1.6.2) into (1.5.19) and

{(1.5.20) yields

i=

)

" n'x A1)
Aejilknymy £7(t - Z°7) me = pc®my £7(t -
C

O
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and

! n.x u n.x
\/QDjilknjﬂl £t - = " 7)) me + aqny £U(t -2 %)

[ c

n.x

- pgmy £r(t - 2 %)
C

respectively. On the assumption that f is a twice continuously

differentiable function we deduce that

Hojilk pjnime = pcm; (1.6.4)

and

VLZOjilk njnyme + qnj = pczmi, ms;ng =0 (1.6.5)
for compressible and incompressible materials respectively.

It is convenient to introduce the notation Q(n) for the

second-order tensor (dependent on n) with components defined by

Qik(n) =bqoji1k njn (1.6.6)

Then (1.6.4) may be written compactly in the form

Q(n)m = pcm, (1.6.7)

where, in view of the definitions (1.5.4) and (1.6.8), Q(n) is
symmetric for each n.

This guarantees that the secular equation
det[Q(n) - pc2I] = 0 (1.6.8)

yields real eigen values pcfor {(1.6.7). However, for the
existence of plane waves pclmust be positive. - This follows if

the strong ellipticity condition

tr{[Aomen)] (men)} = [Q(m)m] . m > 0 all mén # 0 (1.6.9)

holds.
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From (1.6.7) the wave speed c¢ associated with the direction

of propagation n and the amplitude m is given by

ec? = [0(n)n] ‘m ﬁ/tojilknjnl mjMyc - (1.6.10)
Equation (1.6.10) applies for compressible materials. For
incompressible materials, using the notation (1.6.6), equation

(1.6.5) yields

Q(n)m + an = pcem, m.n = 0. (1.6.11)
Taking the dot product of this with n we deduce that
g = ~[Q(n)m].n, |
so that (1.6.11) can be rewritten, analogously to (1.6.7), in the

form

m, m.n =0, (1.6.12)

where g*(g) is defined by

9%(n) = 9(n) - ne [9T(n)n]. (1.6.13)

In this case the wave speed is given by

ec? = [Q*(n)ml.m = [Q(n)m}.m. (1.6.14)
which is the same expression as (1.6.10) except that the
constraint m.n = 0 must be satisfied.

An important distinction between Q(n) and g*(g) is that,
whereas Q{(n) is symmetric, g*(g) is not in general symmetric.

Plane waves for which m.n = 0 are said to be transverse
waves, and the unit amplitude vector is then referred to as the
polarization vector. Plane waves for which m=n (in a
compressible material) are called 1longitudinal waves, Iin
general, there 1is no guarantee that either longitudinal or
transverse waves will exist for particular choices of the
direction of propagation. However, if n is along a principal

axis of the underlying deformation then some simple results
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follow if m is also along such a principal direction. For future
reference we now record these results.

First, for a compressible material, if p = g(i) and m = g(j),
where v(1), v(2), 4(8) denote the Eulerian principal axes, and c,
denotes the associated wave speed, then from (1.5.8), (1.5.7) and

(1.6.10) we obtain

chi ﬁ/ioiiii = Xqu;i ie {1,2,3} (1.6.15)
A3

or, equivalently,

2
orci = 2% f_g ie {1.2,3) (1.6.16)
aki
and also
2 i — 05,2 .
PC1ij ﬁ/Loijij = 21 7 93§ isj. (1.6.17)

xi—x§
Equation (1.6.17) is also valid for incompressible materials.
We shall make use of the notation defined in (1.6.15) -~ (1.6.17)
in later sections of this thesis.
Finally, for waves propagating in an unstrained material we
note that longitudinal and transverse waves exist for every
direction of propagation. This follows from the fact that the

components of\ﬁo reduce to

V4Oijkl = “{5ik6jl + 6116jk) + kbijékl {1.6.18)
in Bp, where X and u are the Lamé moduli introduced in (1.4.18),

and, for an incompressible material, to

u4oijk1 = u(85K84) + 63165k)- (1.6.19)
If €, and Cp denote the speeds of propagation of

longitudinal and transverse waves respectively in this special
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PC?i = PCE = M2u i€ {1,2,8}, (1.6.20)
2 2
pcijj = pcr =6 1+ ] e {(1,2,3}. (1.6.21)

Basic references to work on plane waves in deformed elastic
materials are the paper by Hayves and Rivlin (1961a), which is
concerned with isotropic materials possessing a strain-energy
function, and the monograph by Truesdell and Noll (1965), which
generalizes this to the case where the existence of a

strain-energy function is not required.
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CHAPTER 2

Rayleigh waves on a pre-strained elastic half-space

On the surface of an elastic body it is possible to have
waves which are confined to near the surface of the body. Lord
Rayleigh (1885) was first to investigate such waves, which now
take his name.

Rayleigh's theory related to surface waves on the free
surface of a semi-infinite elastic solid; he proved that the
motion becomes negligible at a distance of a few wave lengths
from the surface.

In this chapter, we shall discuss Rayleigh waves on a
pre-strained elastic half-space for both incompressible and
compressible materials. Our work is based on the equations
derived in Chapter 1, and we recover certain results obtained by
Hayes and Rivlin (1961b), who used a different approach, and
generalize other results given by Flavin (1963) and Willson
(1973a, 1974a,b) for incompressible materials and Willson (1972,

1973hb) for compressible materials.

2.1 Analysis for incompressible materials

Consider the large homogeneous pure strain defined by

Xy = klxl, Xg = )\2)(2. Xg = )\3}(3 (2.1.1)

Upon this deformation we superpose a small displacement u, such

that

X1 = ZjXy + Uy, Xg = NgXg + ug, X3 = )\3X3 + Uug (2.1.2)
where uj, up, ug (which, in general depend on xy, Xp, X3 and t)

are the components of u. The velocity components are given by
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- duj
at|X

.

Vi (2.1.3)

From equation (1.83.18), we have the principal components of
the Cauchy stress tensor associated with the homogeneous

deformation, namely

oj = xiaw -p ie{1,2,3}.

g
By using the incremental equations (1.5.11) and (1.5.12), we

deduce that

: _ av av av av -
So11 = Ao11110°1 +U/101122__§ v Ho11332"3 + o1 - b,

axq axp ax3 )
: av av av av .
So22 =04L022115_5 A 0222022 + Aozzsa3 + p22 - 5,
X1 )8 3x3 axgo
: av av av v .
Soas = A oss11’1 +A 03322272 +\/463333__§ +p2 8 - p,
8x4 axXop 3xXg JIXg
: av av 3v
Sp12 =u‘Zo12123_§ +v#zo1221__1 +p° 1,
X1 X2 9x2
: v av av
So21 =b/102112__3 +VLL02121__E +p’ 2, (2.1.4)
aXl axq ax1
. v av av
S013 =U/Z01313,_§ +u/Z61331whi +p_ 1,
ax 1 3X3 3xg
. av av v
So31 =u/{03113__3 +V4Z03131__1 +p-_3,
axl BXS ax1
. a'V ‘ﬂ av av
So2a = Ao232s3 + 02332272 + p2¥2,
3X2 BXS 6X3
N v av aov
Sos2 = Aloszszs @ 7 A 0322523 + 28,
3X3 ax2 6X2

subject to the incompressibility condition (1.5.12).

2.1.1, Plape incremental motion

Next, we take vy = 0 and assume that vy, vg depend only on

X1, Xg. Then equation (1.5.12) reduces to
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avy . dv3 . o,
aXq1 9Xg

Hence there exists a function,d)(xl, X3, t) such that

”1=i&= ¢£~ %;ﬁg*=”ml- (2.1.35)
9Xg oX4

Equations (2.1.4) reduce to

So11 =b/101111 vi,1 +U/Zo1133 vg,3 + bvi,1 - D,

Soz2 = A o2211 v1,1 *Hozass va,z -

S033 =V4Z03311 vi,1 +u‘l03333 v3,3 + pPvg 3 -~ D, (2.1.8)
5013 =b/Z01313 va,1 +Ao13s1 vi,8 * PV1,3.

5031 =L/Z03131 V1,3 +n/Z03113 v3,1 *+ DYz, 1.

From {(1.2.5), the incremental motion is governed by

éoji,j = p;i. (2.1.7)

Thus, from the incremental equations (1.5.11) we obtain

I

Soji,j U&ojilk vk,1j — P,j = p;i. (2.1.8)

In equation (2.1.7), if we take i=1 and i=3, we deduce that

S'011,1 + S.031,3 = pvy, (2.1.9)
Sp13,1 * Sp33,3 = fv3.

From (2.1.5) and (2.1.6) we then obtain

S011,1 = (J451111 ‘d4101133 * p) Lb,113 - P, 1
So31,3 =\/103131 Ll),333 - (Aosr1s + P q",113v (2.1.10)
So13,1 =6/Z01313 qﬂlll * Q/{61331 + p) ‘b,331s
50333 = (Apsars - ossas - 0 U 1g3 - b 5.
Now substitute (2.1.10) into (2.1.9) to get
94£3~—p 1*&401111 \/{01133 \/%03113 ,113 E/Zoszal (P 333,
U 1=-p, 3+ Ho1as1 +Aoss11 Jstsss) QJ133 Aois1s ¢’111

To eliminate p we need to differentiate equations (2.1.11)

1.11)

with respect to xg and xq respectively and obtain the partial
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differential equation governing(b , namely

-p( q),u + Lb,as) +L/4_o1313 $y111 +
(/701111 *\/[03333 - 2 fo1ss1 - zﬂossn) Y 1132

+-/4/03131 {3333 = 0. (2.1.12)

Suppose the elastic medium occupies the half-space defined by
Xg 2 0. In the basic homogeneous configuration the normal stress
on the surface xg = 0 is og. We assume that this is unaffected
by the perturbed deformation, so that the incremental boundary

tractions vanish. This means that

3031 =0, é033 =0 on xXg = G,

that is

AOSIS.‘L vy,3 + (ﬂ01331 +p) vg 1 =0,

on Xxg = 0 (2.1.13)

( fo1133 ‘\/[03333 ~P) vy, -p=0.

or, in terms of(p ,

/[D3131 Lp,ss + (/[01331 + p)(- Lp,ll) = 0,

on xg = 0 (2.1.14)

(Ao1133 ‘A 03333 ~ D) ¢,13 -p = 0.

2.1.2 Propagation along a principal direction

We now assume that QJ(xl, Xg, t) has the form

iw{t - i{_l_)
¢;= f(xg)e c/ (2.1.15)

This represents a wave propagating with (constant) wave speed ¢
in the xq-direction, which is a principal direction of the
underlying homogeneous deformation. The frequency of the wave is
w, also a constant.

We also assume that the spatial variation of QJ is of the

(-ikxy - sxg)
form e , wWhere k = w/c is the wave number. Then
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equation (2.1.12) demands that

V%Z03131 s - Q/Zb1111 +u4{03333 - 2,4?01331 - 2¢/Z01133)k232
+ﬂ01313 k4 + pw2 (52 - ka) = 0. (2.1.186)
This is a quadratic equation for s2. Suppose it has roots

s% and sg. Then

sPrsd = (Aor111 +A 03sas - 2flo13s1 - 24o1183)k2-pu?

2
03131

(2.1.17)

s3s3 = (Ao131s K2 - pw?) K2 .
03131

X
. iw(t—*i) -sXg
Assume p has also form of e c e .

Then, from (2.1.11), we obtain

. 2
ikp = Iﬂf{o1111 *u/(01133 1/1 03113) fz - pw?] Qh3-+
C

q453131 QKsss- (2.1.18)

so, from (2.1.14) and (2.1.18), we obtain the boundary conditions

in the form

\/103131 G a5 + Q/Z01331 +p) KB =0,

on Xg = 0 (2.1.19)
V%Z03131 ‘P,Sas * [9161111 1/503333"%J461133;fZO3113+D)k2
- pwg] 4{3 = 0.

For surface waves we must have a solution for{p in equation
(2.1.12) which decays when xg»+» and which satisfies the boundary
conditions in (2.1.19) at the surface xg = 0. Hence in (2.1.186)
and (2.1.17), if a solution of this type is to exist, we should
be able to find numbers s; and sp, with positive real parts, and

the solution fo:QJ may then be written

X1
-89 X. -SoX iw(t-—
4’= (Aq e 18y Az e 2 3) e C), (2.1.20)
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where A; and Ag are chosen to satisfy (2.1.19).

Substitution of (2.1.20) into (2.1.19) leads to

a/los1s: S§+k2$A61331+P)]+A35453131 5§+k2&491331+p)]=0’(2 1.21)

A18157103131 S§+Nk2~pm2]+A352Ey403131 s§+Nk2—pm2} = 0,

where

N =u/101111 +u/603383 - 2u401133 -v/[03113 + D.

For equations (2.1.21) in Ay and Az to have a non-trivial

solution we must have

2 2
v403131 S1+h/£o1331+9)k2 Aos1at Sz+ﬂ/i01331+P)k2

2 2
s1(~Aoa1a1 s5+Nk2-pu?) so(-Aogiar so+Nk2-pw?)

On use of equations (2.1.17) this becomes

2 >
Aosisz S1+@/zo1331+9)k2 w403131 so+(Ag1a1a+p)K2

2 2
v403131 s1 (s5+k%)-o3k2s; L/L03131 sa (s1+k?)-ogk?s

A

Since, from (1.5.13),‘/401331 =b/L03131 - kaaw » and hence
: T

J{01313 +p =l/{03131 - o3, We may rewrite A as

2 2
J(03131 31+(V403131-°3)k2 u403131 Sa+0/103131‘°3)k2

2 2
J103131 sy (sz+k?)-ogk2sg u403131 sa(s7+k2)-o3k2s,

2 2
So a = E/403131 S1+(J403131*°33k2][J103131 sp(s1+k?)-ogk2sy]

2 2
-t Ao3131 Sz+&/{03131—°31k21[J403131 s1(s2+k?)-ogk?s1]=0.
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i.e.

A 3 ‘%.03131)2{3132(81—82)(S§—3152+S§)+(31—Sz)(—k4+281$2k2)]
- 203k%03131[*(81—82)1(24-3182(81—32)]—051(4(81—82) = 0.

Therefore, the secular equation is

(31—52)5%153131(S§+S152+S§)S132+28182k2‘k4)“203f{b3131k2
(s1sg-k2)-ofk4]= 0. (2.1.22)

Assuming that sy # sy, the secular equation becomes

(J%03131)2[S152(S§+S132+S§)+23132k2‘k4]-2°3k%/103131

(s1sp-k2) -o08k? = 0, (2.1.23)
where s; and s, are given by (2.1.17).

Equation (2.1.23) generalizes the formula given by Willson
(1973a) for the special case o3=0, Willson also took Xj=Xp
throughout his calculation.

Of particular interest is the case when og=0. Then equation

(2.1.23) reduces to

s§58 ~ k% * Sis,(sy + sf + 2,2) = 0. (2.1.24)
Next, substitute for s% and s§ from (2.1.17) into (2.1.24) to

obtain

2 2
(/) w 2412
- - 15} =
Hosia1 — [(Ao1313 -/ 03131) — ]

2 2
w aw w
Q/%01313—— - p0?) [ (lo11111Ho3s35+28a° - 2/ 01133)". - pw2]2,
Cz g Cz

To obtain the corresponding equation for the wave speed ¢, we
must eliminate w by multiplying this equation by c? and dividing

it by «®. Thus




28

(f453131 {Flo1313 1/‘[03131 - pc)2 =

aw
Qon1313"pcz)QFZ011113/103333+2*35§_‘%/zo1133-902)2- (2.1.25)
3

Equation (2.1.25) 1is the secular equation for Rayleigh
surface waves in a pre-strained incompressible isotropic elastic
medium with a traction-free surface., 1In different notation this
is equivalent to an equation given by Willson {(1973a), although
Willson restricted attention to the special case Ai=Xxp from the
beginning.

In the above we have assumed that sy#s;. We now consider the
following special case in which sy=sy=s, say, so that the
solution (2.1.20) is replaced by

‘P = (A + Bxg) e e c

From this equation we have

4) -sX3 io(t-1)
'3 =[B - 6(A +Bx3)] e e c .,

~sxq l0(t-71)
Al 33 =[—2sB + s2 (A + Bxg)le e ¢,

$

X
5 3 ~SXg iw(t"_i)
) 4%333 = [3s~B-s A—SSBXS]E e c .

Substitution into the boundary conditiong(2.1.19) leads to

(k% + s2) A - 2SB = 0,

[kzN - SE/IOSlsl - pwz] sA + [383%{63131 + pmz - Nka]B = 0,

where N is given by
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N =94101111 +Lf103333 - %/{01133 “u/(03311 + D,

i.e.

N =u‘L01111 +VAL03333 - %/101133 -u4{03131 + 2p. (2.1.26)

For these equations to have non-trivial solutions for A and B

we must have
k2 + s2 -2s

(2N-524, 3131 -002) s 352/ 03131 +ow? -Ni?

which reduces to

V/Los131 (3k2+s2)s2 + (s2-k2)(NKk2-pw?) = 0. (2.1.27)

Since it is assumed that $1=85=8, equation (2.1.16) must give

[ow2-(Ao1111 *Aossss - 2Ap1ss1 - 2 Ao1133)k%12 =

1403131 [Ao1318Kk4-pw2k2],

and equations {2.1.17) become

22 = (J451111t/lDSSSS_%/ZOISSI-%/ZOI133)k2—0w2

A 03131

t

(2.1.28)

¢4 - Ao1313K2 - puw?) k2

A 03131

From (2.1.27) we have

P

F_os131 s+ s2[3k3A4 93131 +NK2-p?] - k2 (Nk2-pw?) = 0.

Therefore, the sum of roots for this case is

2
22 - ~[3k8pg1ay * Nkz =~ pu”]

V@03131

Using (2.1.26) and (2.1.28} yields

s = k2,
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That is, s is purely imaginary, there i1s no decay when x3
approaches infinity, so this case cannot arise and we conclude
that A = B = '0! This result appears to be new, although a
corresponding result for the compressible case has been found by

Hayes and Riviin (1961b).

2.1.3. Results for some special deformations

(a) The case 2g = Ay

Consider the special case of (2.1.25) in which N{ = A3, SO we

obtain

V/101111 =U4Z03333- b%101313 i/q,03131’
0/101133 i/% 03311 u/Z01331 =V%Z03113’

and recall from (1.5.16) that

(2.1.29)

aw
u4103131 = %Qon1111 ‘d4f01133 ). (2.1.30)

ang
Using equation (2.1.29) the secular equation (2.1.25) simplifies

to

3w
pzC4u/4/03131 = Qf{o1313—pcz)(%f153333+2x151—%/zo1133_902)2_
1

Also, by using equation (2.1.30), we may rewrite this equation as

u4£3131 p2ct = (/{03131 - 902)(%/763131 - pc?)2,

On setting x = pczﬁ/zo3131 this becomes

x2 = (1-x)(4-x)2, (2.1.81)
The only positive real solution of (2.1.31) is X=Xp=0.9126
approximately. Thus there exists a Rayleigh wave with speed ¢

given by

pc? = xQ/ZOSlSl
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providedelg3131 > 0 (this inequality is often referred to as the

Baker~Ericksen inequality). This puts no restriction on the

admissible set of wvalues of X3 = X\; (subject to the

incompressibility constraint X{XoXg 1).

(b) The limiting case A\N{ = Xo = hq =1

In the particularly simple case in which the primary stress

is zero and Xy = Xg = Xp = 1 we have

U/Zb1313 = Aoaiar = u.

where u is modulus of rigidity in the classical linear theory.

Then pc? = uXs5. This special case was noted by Willson (1973a).

(c) The case Ay = %o = Xq = 1 in the presence of hvdrostatic

pre-stress
If the undeformed configuration is subject to a hydrostatic

pre-stress oy = oy = og then we have from (1.6.19)

¢4£1111 =V/Z03333 = 2u\/£[o1313 ﬁ/4Z03131 =¢4203113 7/6f01331 = u
b/%21133 = 0.

So, (2.1.17) gives

2
(s + s2)/k2 = 2 - P
13
2
s?s%/k"4 =1 -°C
23

and we need the secular equation in the form (2.1.28), which

yields

2 2
u2[1—p° v [1-PC [2~p° ]~1 + 2 [1-PC }—203[ 1-PC wl] - o5 = 0.
[ 13 23 i u
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On rearranging this and setting

c = og/u, X =

we obtain

o2 + 20 (Y1-x - 1) - /1-x (4-x) + x = 0.

We note that values of x must be restricted to the range
0 £ x £ 1. When x = 0, this equation yields o2 - 4 = 0,
i.e. o = £2, while when x = 1 it yields (0—1)2 = 0 i.e. o =1.

What we require to find is the range of values of o for which the

In

above yvields solutions for x in the stated interval (0 x £ 1).

We therefore re-cast the above equation in form

(4-x-20) V/1-x = x+02 - 20

and, on squaring and rearranging this is written

f(x) = x3+4(o—2)x2 + 6(o0-2)2x + (c+2)(o—2)3 = 0,

Then, at the end-points of the interval 0 £ x £ 1, we have

£(0) = (o+2)(0-2)3, £(1) = (o-1)%
Clearly f(0) < 0 for -2 < 0 < 2
while £(1) > 0 in the same interval except at x=1.

Also, we have

f'(x) = 3x2+8(0-2)x + 6(0-2)2
and this is strictly positive except for o=2, x=0.
Thus, f(x) is monotonically increasing for 0 £ x £ 1 and changes
sign once in this interval provided -2 < 0 < 2 and o # 1.

Thus, for each o in the interval (-2,2) there is a unique
value of x satisfying the secular eguation (o=1 corresponding to

x=1).
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=2 <0 < 2 (o#l)

Figure 1
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A Rayleigh wave will therefore propagate in a hydrostatically

pre-stressed half-space provided the pre-stress satisfies

-2 < (o=S§) < 2. The limiting cases o = +2 correspond to
[

situations in which the wunderlying homogeneous deformation
becomes neutrally stable. (The stability of such configurations
has been discussed in detail in the book by Ogden, 1984, for
example).

The form of the function f(x) is illustrated in Figure 1 for

different values of o.

(d} The .case of uniaxial stress: oo = gq = 0, Ao = Aq

Since Xp = XAg and XN{Aphg = 1 we may write

Ao = Xg = N
and define

N ~% -4
W(kl) = W(Xl.kl,kl ).

Thus, we have

df _ aW  axy . aW ang | AW axg

dkl akl akl akz akl aks akl

and hence

Also

25 ? 2 2 2
2 %, AW 2 2w, AW 2 At W, 0 oW

2
dkl dkl ANy ang dng drg dx1dng
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and hence

2 42w awW
Mo =U/Z01111 +¢4C03333 - 2401133 * 223 ~__.
dng g

Substituting into the secular equation (2.1.25), we have

~ 4 ~ 1
AW ~ b -
(W - pc?)2 = { L pc2](x§w" - pc2)2,
3 3
Ay-1 A -1

This is a cubic for n, (n=p02), it can be written

~ 1
MW [k%W‘2~ 2nk1ﬁ' + nz] = X%W' -n [k%ﬁna - 2nk§ﬁn + n2]
N3 ' 3
1 Xl—l
an@a Bartan
8 ~ ~
= )\1 W SW _ [)\%W 2+ gxlw W :l + nz x?w' +2>\§W" _ n3’
- 3_
A1 A~¥-1 X?—l
l.e.
4°I ~ b 6~n«| 2«[
ns_nz [le + 2X§W"} . {Xlw ]ﬂ2+n X%W“2+ lew W -2 Xlw
A3-1 A3-1 x3-1 n3-1
3~I3 a-|r2.~|
+ Xlw - X? W = 0
3 3,

This can be reduced to

n8-n2 [X1W' +.2x?ﬁ"] * ﬂ[k§(k?—l)ﬁ"2+2x§ﬁ"ﬁ'—2ﬁ'2]x%/(x?—l)

3~
N SURICIERIN YL

3
-1
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f(n) = n3 - an? + Bn - » = 0,

where «, B, y are given by

Banay 2~|2
« = 2k§ﬁ" + klﬁl, B = X%ﬁ 2 + 2k1w W _ ZRIW ,
3. L
3a
a a1 ~
y = 1w (X?W 2 _ W’2)-
3
-1

Recall from (2.1.17) that

2

S? + 85 = (Aor111 * qussss ~ 2flp1331 - 2A01133)K2 - pu?

. A03131

5252 = (Ho1313 k2 - ow?) K2 i

J€03131

Since s; and sy are to have positive real parts, and s?, s%

are complex conjugates it follows, assuminguﬁboslsl > 0, that

s?s% must be positive, We therefore require

pw? <u£L01313 k2,

i.e,
4~
AW
PCZ =N <A01313 = pc13 = 1
A$-1
Thus
4
0<n<ng =V (2.1.82)
ap-1
Then,
o 1 2an St 0
f(o) = - », f(ﬂo) = Xlw (Xlw - Xlw )

f'(n) = 8n2 - 2an + B.
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If » > 0 (<0) then f changes sign on the interval 0 < n < ng

provided »{# =# W' > 0 (<0).

This will ensure the existence of at least one solution of
f(n) = 0, and hence the existence of a Rayleigh wave. We do not
investigate here the circumstances in which more than one such

wave may exist.

2.1.4 Results for particular strain-energy functions

{(a) The neo-Hookean material

We begin by considering the neo-Hookean material, for which

W = mu(xi + x% + xg - 3).

From eguations (1.5.13) we obtain

ﬂ03131 =L/403333 = ukgi
ﬂ01111 =ﬂo1313 = M? (2.1.83)

and

ﬂ01331 =ﬂ/oa113 =ﬂ/01133 = 0.

Next, substitute these into the secular equation (2.1.16); we

obtain

2

2
ungsd - (und + ind) k2s2 + njk4 + pwl(s2-k2) = 0,

+

uk§s4 + (pw? - uX§k2 - uxgka)sa + ux§k4 - pw2k = 0.

The roots s> = s? and s* = s% of this quadratic equation are
given by
22 _ o2
s% = k2 and sg - uhik o
2

Uxg
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Alternatively, since k = the second of these may be

ole

written

s% - uX%-pCa
k2 ukg

Since .sp must have positive real part and cannot be pure

imaginary and ec? must be positive the constraint

0 < pc? < ur
must be satisfied. This could be obtained directly by
specializing (2.1.32).
Next, using also (2.1.33) in the secular equation (2.1.25),

we have

2, .2 2 2 2 2
uxg(uX] - urg - pc?)2 = (uxy - pcz)[uxl + Bung - pc2]2,

- 2
By putting n = ec , we reduce this equation to

43
2. 2 2 - 2 - 2 2 -
Ag(xy - Ag - T\)2 = (7\1 - n)(xy + dNg - T\)z,
subject to
0 < n < A5,
This is a cubic equation for ;. which may be rewritten as

ndin2 (\Gaf-ani-623) + ni0Ead)z « 220dand) + 220249

+ xg(xﬁ—xg)z - x%(x%+3x§)2 =0

and simplified to

£(m)=nd-n2(ana+ong)n1ngeant 1002128522 1138208 < 0.
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Consider the sign of f(n) for different values of (M1, Xg) to

determine how many roots, subject to Q¢ < n < x?.

f(0) = xg - 11x%x% - sxgx% - x?.

£(x2) =28 > 0.

£'(n) = 3n2 - 2n(3] + 23) + [11x5 + an] + 1035x2).

It is not difficult to show that f'(n) > O for all n, so in
particular f(ﬁ} is monotonic increasing for 0 < n < k?.

Therefore, for there to exist a real root n we must have

£(0) = xg - 11xg0F - 53] - 28 < 0.

Let us now consider x = x%/x% and find values of x for which

g(x) = x3 - 11x2 - 5x - 1 < 0,

bearing in mind that x > 0.

We have
g(0) = -1
and
g'(x) = 8x2 - 22x - 5, g'(0) = -5.
'r
It follows that g{x) = 0 has a unigue positive solution, x'
say, and hence g(x) < 0 for 0 < X < x'. The approximate value
of x' is calculated to be x' = 11.44.

Thus, (2.1.33) possesses a positive real root n provided
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The limiting case X3 = X\yvx' yields the solution n = 0. This

corresponds to the boundary of stability of the underlying
homogeneous deformation.

Finally, in the particular case Mg = Xy, equation (2.1.31)

gives

2 2
n = XDXS, or ng = HXDX3,

and the restriction xg < Xy/x' is automatically satisfied.

(b) The Mooney-Rivlin material

For the Mooney-Rivlin material, the strain-energy function is

given by

2 - - -
W= %ul(xg + XS + X3 - 3) - %Uz(k12+ k22+ X32 - 3),

where uy > 0 and ug < o. The shear modulus u is given by

un o= u1 - Ha.

From (1.5.13) we obtain

2 -2
01111 = #3131 — 3uphy,

2 -2
Vltossss = M1X3 ~ 3ughg ,

4 2.2 —22
1 (Ag=A1rg3) + woll-X1"N3) _ 2 =2
J4g3131 - _1'787M173 217 71 M87 = ugng - upnys

Aa - A5
(2.1.34)
4 2.2 2 -2
1 (nNi=A{Rq) + auso(1-A{rg") _ 2 -2
L/101313 = 117177 32 2 173 1 = uxJ-ugrg®,
AT A3

2 -2
Hotast = -u2007% + 235,

“/é21133 = 0.

Substituting (2.1.34) into the secular equation (2.1.16), we

obtain




ul

(u1N§-1201%) s8-{ugnE-8upny Brug g -supngreuy 012 003%) Yk2s2
+ (u1k§-u2h§)k4 + pwz(sz—kz) = 0,
i.e.
(nn5-uan12) s4-{ug (NFenB)K2-ug (N P +n52 ) k2+ow2) 82+ (g no-ughge ) k2
- pw2k2 = Q.

This equation has roots

2 -2,. 0 2
sf = k2, s2 = (m™ - madg )k® - pw®

2 -2
HiXg -~ H2M

Alternatively, we may rewrite the second root, since

2 -2
- 1M - eaNg” - ec?

M S

2 -
H1rg - “2*12
Recalling the notation (1.6.17), we may reduce the above

root to

2 2 2
S2 - €13 - ¢ |
K2 2

C31

Since s% must have positive real part and cannot be pure
imaginary the constraint pc2 < u1k§ - uzxgz = pc§3 must be
satisfied.

Also, substitute (2.1.34) into (2.1.25), to obtain pc2, we get
2 -2 2 2 -2 -2
(4331 = max") [ug(2g3) + mp (07 - 2g") - oc?)? =

2 -2 2 .2 -2 -2
(1A -toNg —pcz)[u(x1+3x3)—u2(3x1 +xg ) - oc2]2,

Since

2 -2 2
Mlkl - uzka = PC13:

NG _ pony? pcgl,




n2
we may reduce this equation to

2 .2 2 2.2 2 2 2 2 2.2
ciglegs - c33 - €17 = (cyz3 - ¢”) [cyg +3c33 - ¢ 17,
. 2 2 2 2
subject to 0 < pc® < pcyg or 0 < c® < cy3.
i.e.
2 2 2 2 2 2 4 2 2 4 4
¢® + c(cig-2ci3-6c31-c1g) + c?(2cy3ca1+2c]3+6CTaC31~2C1a%Cg
+ GC§3C§1+QC§1)
6 2 4 4 2 4 2 2 4 6
+ C13+C13C31-2C13C31-6C13C31-9c13C31~C13 = 0.
This equation reduces to
2 6 4 2 2 4 2 4 4 2
cb - c4(2cig+6egy) + 02(013+14013C31+9331) - 8(cigctg1*+Cy13Cg1}=0.

2
By using the ratio ¢ = ¢ /c23' where 0 < ¢ < 1, and
1

a = °31/C§3, we get h(£) © ¢3-¢2(2+6a) + £(9a2+14a+1) - 8(al+a)=o.

Next, consider the sign of h(¢) subject to 0 < ¢ < 1:
h(0) = -8(a?+a)
h(1) = a2,
Thus, h changes sign on 0 < £ < 1 so there exists at least one

solution. We omit further details here.

2.2 Propagation in a general direption in the (x4, %X-) plane
So far we have considered Rayleigh waves on a pre-strained
half-space of incompressible material with propagation along a
principal axis. In this section we shall obtain equations for
the propagation in a general direction in the (xy, Xs)-plane.
The direction of propagation has direction cosines (cos®e, sine).
From (1.5.20) for an incompressible material the motion is

governed by
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ﬂpjuk Vk,j2 — P,i = PVj,
(2.2.1)
With Ui’i = 0'

Now let v and ﬁ be given by

{t _ XqC086 + xzsine]
iw '
v “—‘_4_)(?(3) e ¢
(2.2.2)
t — X1C0s8Ot+xpsine
. iw c '
p = Q(XS) e
so that the components of v are
[t _ Xjco0s6 + x2sin9}
iw , 2.2,
=‘Pi(x3) e € (i=1,2,3). ( 3)
From (2.2.1) we then obtain
iwcos® iwsine
‘Pl(x3) [—__~_~H] +{b2(xs) [ w ] 413 (x3) = (2.2.4)
C

and

u/lojlﬂl "l'j9+ﬂ0j122 ”&jk*‘ﬂojus Vs,jg-i),fp%)l.
ﬂojzn Vi,jsz*-/{ojzpa Uz,j2+ﬂoj293 vs,j9+b,g=pi52, (2.2.5)
LAOJ‘SRI ”l.jﬁ/[/ojuz Vz,jrﬂfojsns Va,jrb,3=p‘ﬁ3.

By differentiating (2.2.8) and substituting into {2.2.5) we

obtain

4)1 "’“‘/LOSlSl (’pl

C

+ (Aor1ze *Aoz112)¥ 2 [ __m_.,;_off]
Cc

+ €f101133 ﬂ/lL03113) 4, [ 1wcose]_[_iwcoseJ0 _ —Apl,

[

2 2gip2
POS 1) wesin“o
(/Loun[ ]4) +Hoz121 [“




Iyl

200526
Q/z U/Z )(b [ 31necose] [ w=Cos ]
02211 */flo1221) Y1 ﬂomlz\pz —
2 2 t
Aoazaz g, [-oTsin e] *3493232‘@ 2

C

+&/z02233 +V/€53223)¢f3{_iwsin9]_(“iwsine]m . ¢}, (2.2.6)

. C C

%3311&!)'1 ["iw_c‘i?]tﬂowsl qJ'1{"iwczse]+%03322f/402332) ¢z
C

iwsineJ V/Z Q) wlcosle Q) wesinle
- t /Lo1313 3{*_“?_]+ 02323 3[*__?4* 3333
[ C [od [ %
" []
KP 3-¢ =- ‘P 3

Suppose now that

q”l = A &°%8, (Pa = B &°%3, ('PS =Ce°™3, o =D a°%3,

Equations (2.2.6) and (2.2.4) beconme
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2 2 in2

WSC0S40 ws1n<e

(p + 52 03131 ~ 01111 — ___zw_J402121) A
A ) .

2 .
wesindcoso ¢40
- — (Ao1122 +#Ao2112) B
c

iswcoso iwcose
- (/Conss *t/(josns)c +_~ " _Db=o,
C C

2g1 2c0s2
w 31necoset}Z wicos euéé
- (Hoz2211+/] 012214+ (0+s24 03232~ 1212

Y- g
(2.2.7)
20112 . .
wesin<o iwssine iwsine
- B - ( % C + D =0,
___rwfgoaazz) S ™ (Ao2east{oszes)c + 103100

C C o4

iswcose iswsin®
T (Aot florast)A ¢ __ﬁ,_(ﬂosszz* 02332)B
C c

2 el 2502

wWeCOs®o wesin<oe

+(P+S%03333 "_Tﬂ01313 ‘_z_q/lozazs)c + 8D = 0,
C Cc

. wCcoso wsine
isC = A + B.

C [

On eliminating C, equations (2.2.7) become
202 24in2
weCcos“e wesin<e
to+s2 o511+ +Aostrs-Hor111)- 1A
03131 ..__62_0401133 031187/lo1111 ___CZ__AOEIEI

24 .

wes1nocoso iwcose

+__2.__(/401133 %03113;/4011227402112 B+~ D=0,
C c

2 N
w“sinGcoso U/Z
-———2————(%&)2233%03223%02211%01221)A+[P+32 08232
C

(2.2.8)

2.0s2 2¢in2 Co

wecos“e wesinceo lwsin®

" pp— %ozzsa%oszas"ﬂozaaz)]ﬁ» +_ "7 D=0,
C2 Ca c
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2 \/l w0020 w2sinde
[p+s 033337,/1033117 '01331)_ {01313~ 2323]
Cc c

2]
wCOSs A+

o
v/{ozsasl “51%B+is2 D=0.

For equations (2.2.8) to vield a non-trivial solution

we

Cc

must have

P(32+82C2A 03131
+w2c0329(/Z01133

+Aos115-Ao1111)

- w?sin?e [o2121

wzsinecoseﬁ/£02233

ﬁ/1032232/102211
‘9401221)

wcose[pcg+8202(J%03333

C
1/Z033111;101331)

_wgsin29A01313—wzsin29

d462323]

wzsinecose (A01133
t/403113:/101122

7/402112)

902+520%/£03232
~w?cos?e /1212
+wzsin29(¢102233
+¢403223‘¢102222)

wsine[pcz+szczgx03333
C
1/1033221/702332)

—w20052%/Z01313

“szinz%/Cozszs]

2 /4 ¢/Z JAZ mgcoszevéé wesin2e
(p+s=( 1033337/ [ 033227/ 02332) —_ ___ Ap1318——
o2 o2

for A, B, D

iwccos®

iwcsine

is2c2




K7

+ & = wisin2ecos2e( /o233t foszas 4022117 Ao1221) [ecB+s2c2

Q/%63333;/253322:/Q52332)‘wzCOS2%/{61313"”281n2%fZ02323)
"w200829[902+5202&FZosasst/?£3311;/go1331)
‘w200323%201313—w281n29 023231 [pc2+s2c24) h3ag2-wicos2e
u%?g1212+w251n29Q/%622333%2032233%102222)J*MZSinze
{902+82ﬁ3‘Z03131+w260829&/{61133t/203113;/Z01111)'wzsinze
J4g2121][pcz+3202(/Iossss;/Zﬁsszaa/Zozssz)-w20052€/€51313

~w2sine 002323]+w45102900529( 01133t/¥631131/121132

5/102112)[902+3202{/4@3333:/4%3311:/%%1331)‘w200529
uﬁ%1313"“281n28/102323]+Szc2[pcz+s2c3fzg3131+w3cosz
3/{01133t/1531131/4€1111)*wZSinze-02121][pcz+32c2
L/Zo3232-w200829/251212+w25in2@(/q;zzsst/2032231/Z62222)]
““4Sin2900329L/q§11331/4;3113;%461122" ~ 2112)L/{62233
t/ggzaa;/Zoza11;/60§azz)8202=0~ (2.2.9)

This is a cubic equation for s2. Let s;, sy, sg be the three

values of s with positive real part. Then we may write the

solution in the form

Py = agE5158 4 4,5%2%8 4 py5®8%g

©
n

w
1

g = B1e°1%3 4 B,e%2%3 4 B,E°3%3,

Csqx —Sox Sax (2.2.10)
= Cye 123 &+ Cge 243 4 Cae 323,

D1681X3 + D2682x3 + D3693x3.
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Each ratio Aj: Bj: Cj: Dj (i=1,2,3) is obtained from (2.2.7).
For Aj: Ap: Az to be non-trivial the boundary conditions yield
the secular equation. Because of complicated algebra involved we
do not give the details of the general case here, but concentrate

on the application to the neo-Hookean material.

2.2.1 Propagation in anv direction for a neo-Hookean material

For a neo-Hookean material we have

W= %u(k? + xg + xg - 3},

and hence, from (1.5.13), we obtain

2
v/L01111f/(01313f/[01212=ﬂkl'

2
b/{ozzzzi/202121:/102323=“*2:
(2.2.11)
_ _ 2
033337 /{03131 £{0333274A3 »
u/L013313/4031131/1011333;(02233151032231/102211ﬁ/403311=0-

Substituting (2.2.11) into (2.2.9) we obtain

—m200529(p02+ux§s202~ux?wzcosze—uxgwgsin29}a—mzsinze
228202 N 2w2ens 2 2 251n20) 245202
(pCetungsece-urjwecos“0-urowssin®e) +s4c

(pcz+ux§szca*ux§mzcos2e~ux§mzsin29)2 = 0,

(pca+uk§s2C2~uxiwzcosze—ux%wasinae)2(5202—w2)=0 {(2.2.12)

Equation (2.2.12) vyields two district values of s with

positive real part, s; and s, say, where
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2.2
S%C2=w2 or _“..zuslc =1
/)
and (2.2.183)
2.2
Sa2C™ _ (uxgcosze + ukgsinze - Pczl/ukg.
wz

this requiring

0 < pc2 < u(k%cosze + x%sinze).

From (2.2.13), we see that é% is a repeated root, that is

Sp = sg, S0 equations (2.2.10) become

= A1e°1%8 & (Ap+Agxg)E2¥8,

Ll

€ <
l

s}

B18°1%3 + (B,+Bgxg)e 2%
(2.2.14)

=
%
]

= Cléslxs + (C2+CaX3)ésax3,

Dye°1%3

i

® + (D2+DSX3)ESZX3.
Next, the incremental boundary conditions for propagation in

any direction are
éoai = 0 on X3 = 0
é031 =0, éosz =0, 3033 =0 on xg = 0.

On use of equations (2.1.4), (2.2.2) and (2.2.3) with the

above boundary conditions, we obtain
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(Aos11a + D){-.ifi;ﬂJ Vs + Aos1as ¢ =

I
o

0, (2.2.15)

(Aos22s *+ D)["i_ws_if] G3 + Aoszse P2
C

%331 [ 1mcose] t}) 1* Aps3a2 [ imsme] &P 2+(,ﬁ;3333+p) q) 3-0=0

on x3 = 0.

. aW
Since, from (1.5.13) ,‘/403113 =L/403131 - XS
X3

ﬂosus +p =ﬂ03131 - og and similarly, ﬂo:azzs tp =

u4£g3232 ~ 0g. Also with the case when oz = 0, equations

(2.2.15) become

]
()

[nimCOSG] q) g + q)vl
(¥
[,1”31“9](p g + qya
c
/[03113[‘5@] wﬁ/lossaz [‘i_wilf} q"z+(ﬂ03333+p) ¢'3*¢=o.
c c

0, (2.2.16)

on xg = 0.

For the neo-Hookean material the third of (2.2.16) reduces

to

(2032 P'g -0 = 0 (2.2.17)

since o4 = 0 implies p = ukg, and the first two of (2.2.16) are

unchanged.

Next, using equations (2.2.14), (2.2.16) and (2.2.17), we

have
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[_iwCOSS] {C1+C2) - 81Ay + Ag - 89Ap = 0,

C

[_1wsine] (C4+Cp) - s1By + Bg — sgBp = 0, (2.2.18)
C

2
(2uxg+p) (-89C; - soCg + Cg) - (Dy + Dy) = 0.

Now, we want to determine the ratio Aj: Bj: Cj: Dj from
(2.2.8) and (2.2.7). For the neo-Hookean case the first two

equations of (2.2.8) reduce to

[pca+ux§casz—uxfwzcosze*ukngsinze]A+iwccose D=0,

(2.2.19)
[p02+ux§czsa—uximzcosa—uxgmzsinae]B+iwcsine D=0.
For s=sy these give
Dy _ —[pc2+ux§c2s§—ux§wzcos29—ux§wasin291
XI iwccose
Dy _ —[pc2+uk%c28§—ux§wzcos2e—uk§wzsin29]
EI iwcsine
so that
B1 < tane.
Aq
For s = sy we have to consider
Q%.= (Az + A3X3)582X3,
qg = (Bz + B3X3)Eszx3,
{2.2.20)

-
@
I

(Cz + C3X3)Eszx3.

(Dz + D3X3)Eszx3.

2
]

Substitution of {(2.2.20) into {(2.2.6) shows that

Ag=Bg=C3=D3=0 and hence (2.2.19) applies with s=s,, giving




p02+ux§czs§—uk?wzcosze-uxngsinae
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Ds - _[
K; iweccose
Dy _ "[pcz+uxgc2s§—uk§w2cos29—ux§w23in29
55 iwcsine
and
EE = tane,
Ag
From (2.2.7)4 we also have

isyCq = 2 cose Ay + f sin® By
c
ispCy = f cos® Ay + f sin® Bs.

c

Thus, the boundary conditions (2.2.18) become

i
[_f COSG} (C1+C2) + SIAI + Splg = 0
C
iw
[__ sine] (C1#Cg) + 4By + SBy = 0 (2.2.21)

Cc

2ux§(slcl + 8202) + D1+D2 = 0.

Substitution for Cy, Cp, By, Bp, Dj, Dy in terms of Ay, Ay

gives

1

¢ A
C

Yoy
C

15101 iSzCz

4

coso

cose

Hence

wAl wA2

f cose [

] + $iAq{ + Sply = O,
c

slccose SBCCOSG

2

2uhg Ay

{w + wA2 =9,
C c0s0

] + iDy + iDy
ccose

(2.2.22),
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and
2ux§w (Aq+Ag) + iccoseDy + iccoséDy = 0,
and hence

2uk§w2 (A1+A2)—[pca+ux§czs§—ux§wzcos29~uxngsin29]A1
2 un20262 i 2wlros 2 22ain2
-[oce+urgcesy—prjwecos<o-ursw=sin“ela, = 0. (2.2.22)2

For Ay, Ap in (2.2.22); 5 to be non-trivial solution we require

w? we
T 8y + 83
C*sq 0282
2 2
A = pc2+nx§c251_2ux3w2 pc2+ux§czs§—2ux§m2 =0,
~ux§w2cosze—ux§mgsin29 —uxgmzcosae—uxngsinze

Hence

b
m

2
[82 32 + s?sz](pc2w2+uxgczsg—zuxgwa—uxgmzcosze—uxngsinze)
c

2
[31 f? + slsg](pc2m2+ux§c25%—2ux§w2~ux§wzcos2e—ux§masin26):0
C

and, on rearrangement, this becomes

pH
(pc2w2—2uk§m2—uxiwzcosze—uxngsinze) {22(32‘31)+S132(51“32)}
c
+ uxng(sg—s§)+ux§czs§s§(32~sl) = 0. (2.2.23)

Assuming s, ¢ sp, the secular equation (2.2.23) reduces to

02

(pczwz—2ux§m2~ukiw2cosze—uxngsinze){ - slsz] + uxgczsisg

C
+ (s§+slsg+sg) uxgwa = 0. _ (2.2.24)

This is the secular equation for the propagation of Rayleigh
waves 1in any direction for a neo-Hookean material. (As in the
case of incompressible materials, sy=s; gives only the trivial

result Aj=A5=0 etc.)




oS4

But, from (2.2.13)

(7Y
81 = _
c
2082 2ein2 2%
sp = w [uxlcos © + pXgsin®d - pc ]
c
2
so,
2 £2oos2 in2 2
2+ 62 - we [y . MAJCOS®® + u\psin©e - pc
cé 2
HArg
Hence
wd 2,2 ox e N2 0826 -un 2w 2
— (pclwe-2uweng—urjwecos 6-uXow sin29)~slszw2(pca—3uk3
c
PN 2 . 2
uklcosze—ux2s1n29)+ux3czs§s§+ux§m2(s%+s§)=0,
i.e.

2 0520+un2s in2o-pc21 ¥
(902"2uk§~ux§cos2e—ux§sin29)~ #A1C0S°0+uNrp8in“6-pc

N

2 2 2,
(pcz—Buk3~ux1coszemuxzslnze)+(uk%cosze+uxgsin29—pcz)+ux§

+uh§cosze+ux§sinze—pc2 =0

and hence

2 c0s20+unlsin®a-pc21%
(uX§00s29+uxgsinze_ukg“pcz) = [#r1008T0rirzsinTe-pc

2
“)\3
2
(pcz—3ux3~ux§cosze—uxgsinze).
2 2
. 2 A 29+unssinde
By putting x = pc2/ung, n = ZT1C0STETHRASINTE Cihe secular

ux§
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equation simplifies to

(n-x-1) = (n - x)%(x - n - 3),

it

(n-x)2 + 1 - 2(n-x) = (n-x) [(x-n)2 + 6(n-x) + 9]

"

(n-x)3 + 6(n-x)2 + 9(n-x).
Thus, the secular equation becomes
(n-x)8 + 5(n-x)2 + 11(n-x) - 1 = 0. (2.2.25)

Equation (2.2.25) gives only one solution for n-x, n, sav,

80

u(x?cosze+x%sin29) - pcé = n uxg.
0

Hence
pc? = u(kgcosze+x§sin20)—noux§.

This result is equivalent te an equation given by Flavin

(1963).
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2.3 Rayleigh waves on a pre-strained elastic half-space

2.3.1

Analysis for compressible materials

For compressible materials the components

{1.5.8). In full the components of § are

4 av Jv

S011 “ﬂonn 1 s Aorr22 22 + A o11ss
3x4y ax2 .

: av Jv

Sozz =A 02211 2L A 02222 22 +,H 02283
90X aXo

- Jav av

S0sa = oaz11 1 + /] 03s22 22 + A ossss
axl 3X2

4 av av

So12 =L/[01212 2 +c/4,o1221 o1,
aX1 aX2

4 av v

So21 =ﬂ02112 °2 ‘&/402121 o1,
ax4q aX

2

. Jqv v

So13 = Alo1siz 28 +ﬂ01331 °1
0X1 aX3

. vV av

Soa1 = Hos113 23 + Aosisr L.
x4y X3

: v av

Sozs =/ Aozses o8 + Aozssz 22,
3X2 BX3

l v av

So32 =./£Zoszzs 3 + Hoszse 22,
ax2 aX3

(a) Plane incremental motion

of § are given by

dvg

3X3

av3
BXS

dvg
3X3

(2.8.1)

We take vgo=0 and assume that vy and vg depend on Xy and xg.

Equations (2.3.1) then

simplify to
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So11 = Ao1111 1,1 *Ao1133 3,3

S22 :u4602211 vi,1 +V/202233 V3,3

Soss =708811 ¥1,1 +0/Z03333 vg,3, (2.3.2)
5013 =/4101313 v3,1 +u4Z01331 vi,3:

So31 =UA€03113 v3,1 +uﬁZ03131 v1,3-

By using the incremental equation of motion for a

compressible material (1.5.19) with equation (2.1..7) we get

\

Soji, EuAZDjiik Vkigj = PVi. (2.3.3)

From this equation, when we take i=1 and i=3, we obtain

Sp11,1 * So31,3 = fvy.

(2.3.4)

Sp13,1 * Sp33,3 = Pvg.

Next, from equations (2.3.2) we have

So11,1 =w/Z01111 Vi, 11 +U%Z01133 v3,31;
Sos1,3 =4 03131 1,33 +v/Z03113 v3, 13,
So13,1 =u/lo1313 v3, 11 +J4101331 V1,31 (2.8.5)

S033,3 =ﬂ 03311 V1,13 +ﬂ03333 v3,633-

Substituting (2.3.5) into (2.3.4) we have the required

equations of plane incremental motion, namely

pvi=Llo1111v1, 111 4(01133v3, 31% A4 03131v1,33% 4/ 03113v3,13-

9”3§¢4§1313V3,11:%Z01331”1,31t/203311”1,13+ 03333v3,33- (2.3.6)

(b) Propagation along a principal axis

We now assume that vy and vg are given by

- [e-X1]
vy = Alésx3+lw L cl,
(2.3.7)
(t—xli
vg = A3ésx3+iw. =,
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where A; and A3 are constants.

Substitution of (2.3.7) into (2.3.6) yields

2
w
- w
~pu?A; = (\.40313182 ‘gé’ﬂonn) Ai“f‘ﬂonsa 1+ A 03113) Ag,
(2.3.8)

2
(O] [

i s( t/éz ) Ap+(s@ - Ag.
- (Ao1331 03311) A1+(s24 03333 ﬂo:ls:ts?z) 3

It

—pm2A3

For a non-trivial solution for Ay, Az we must have

2,2
8 w (7
‘%1)3131 -.,g‘/lonn’fpwz 1,5%011333403113)
C [¥]

N/ 2 wz 2
is %01331%03311) Sﬂosass*_z 01313*+PY
c C

Therefore,

2 2 2
w (] [N)
a = (fos131 Sa*gzﬂonnmwg)(sz 02222‘52‘401313”“2)%282

%01133 + A 0a113)2 = 0,

2
[

%3333.403131 84”_232%0111%03333 +ﬂ03131ﬂ01313 -
C

4
[

%01133 +ﬂ03113)21 + ..;Iﬂonnﬂmsm + pw?
C

L2 2

[ w
(ew?+ foa131 $2+Aoasss S2:%01111 _.27%1313 )= 0 (2.3.10)
[ C

This is a quadratic equation for s2. Suppose it has roots s? and

sg. Then
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2 2 _
S1 + 82 =

w? {L[ZOI113{3033333{%3133401313_&/]01133‘}403113)2] -f,foslsi;?f{'ossss ) pto?

c2
i /]
/L03333;603131
(2.8.11)
4 4
w pw /
0111%01313 - %01111%01313)]
22 |l = |
/[0333%03131
The incremental boundary conditions are
3031 = 0, éoss = 0 on X3=0,
so from equations (2.3.2) we obtain
,J&Lo:nsl V1,3 +\A03113 vg,1 = 0,
A oss11 vi,1 +Aosass va,3 = 0. on xg = 0 (2f3'12}

For Rayleigh surface waves we seek a solution for vy and vg
in equation (2.3.7) which vanishes when Xg»+o and which also
satisfies the boundary conditions in equation (2.3.12).

The general solutions for vy and vg are given by

X
=§1X =S 5X iw[t—mi]
(Ale 193 + Ble 2 3) (3] cl,

[}

vi
(2.3.13)

- - 1w —
vg (A3881X3 + B3eszx3) cl,

where s, apnd s, should have positive real part.
Next, substitute equations (2.3.13) into the boundary

conditions (2.3.12) to obtain
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] iw iw =
~Aosis1 1Ay - m_J4£3113 A3 - A osia1 By - ¥ fls11a Ba=0
c c

(2.3.14)

s iw
- 11/253311 A1 o4, 03333 s1Ag - __J4%3311 By -J4533335233=0-
Cc Cc

From equations (2.3.8) we obtain

iAs (k¢4301111 81J4%3131 pw?

Ay k§15/201133t/703113>
and similarly {2.3.15)
2
iBg _ (k3/101111‘52J4%3131*9w2)
By ksz (/0113374 03113)

Now, substitute (2.3.15) into (2.3.14). This vields

{;/203131 81+UAZ°3113(RE/[OI111‘5§J4$3131-szl}aAl +
s1{/01138%/403113)

{/103131Sz+ v/203113‘k§/101111 Sdebs131 sz)}B o,
s2{ fo1133* 403113

{ —J403311+V%703333‘ku/Z01111‘31V/263131 ow )} .

ik(701183" 4 03113)

{ bf203311 +u£Z03333(ku/201111 Sz¢1§3131 pw?) }51 - 0.
1k( Ao1133* fo3113)

We may rewrite equation (2.3.16) as
2 . 2 2 2
sa{ 5;/{03131&4{01133* 03113)3/{p3113(k —'01111"3%/z63131“9w )}Ay
2 2 2)\B, =
ts1{ 55493131yqp11333453113)+~03113(E§101111“Sg/f63131‘0w )1B1=0
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2
'{kﬁ/z03311£/f;11333/{63113):/463333(k34201111‘85/203131"9w2)}Al
2
+{k34g3311(d4%1133t/433113);463333(kB/Z01111“Sg/263131‘9”2)}Bl=0‘

For these equations to have non-trivial solutions for Ay and

By, we must have

2 2
S1Sg/{63131£/io1133+ 528%463131£451133+
¢4531133+5g/{os113 v423113)+51¢4g3113

2 2
(k3/101111"93/(03131‘°w2) (53461111‘5%/103131-pw2)

A= =0
35453311£/101133t/103113} k%/{03311&4£11333493113)
2 2
:/{03333(R§/101111“51 :fqoasss(kg/101111“sz
¢403131'Pw2) U/Losisl-sz)
and hence

AE[S§S§45313}£/101133f/103113)t%(0311332(k%461111-8§J403131"0w2)]
[R€/403311Q/{Gllsst/403113):/103333(k54,01111—52/463131—9w23]

“[838%/103131{/{011333/{03113)+S;Z@3113(k§%(01111—s§463131—pw2)]
[kE/(03311R/(011333/Los113):/{osass(kz 01111-S§/403131—pw2)1=o.

Thus
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Sz[kazQ/{01133t/403113)%/10313;/403311+k2(/101133ﬁ/463113)
(k%/t01111“S§/453131-9w2l/Qos:lq/{03311‘S§§/101133t/(03113)
(ki/{01111"52/{03131‘9w2)¢4p3131¢4p3333;%10311%/103333
(k%/101111—52v403131—pw2)(k%/101111"sfv493131-9w2)1“31[S§k2
ﬁ/401133+ 03113)%/{031310403311'(gﬁ/401111“sgd403131‘9w2)
(k%/101111~8§/4;3131“0w2l/(03113/403333+k2Q/{o1133t/{03113)
(k%/101111-524£3131'0“2)u403311 03113"52(k%/401111"55/403131‘9w2)
H(/101133t/{03}131{403131/493333] = 0.

Gathering togethe? Iike.terms, we obtain
k2Q/101133ﬁd403113)%/403131J4o1133 sysalsy-sp)+(s1-sp)
(kf/(01111—S§u403131“9“2)(k%/(01111*S§¢4;3131—9w2L%ﬁd13§/1§113
+k2(¢401133t/{03113X/{03113¢4;1133[Sz(k%/401111"Si/(03131“0w2)
‘31(k§/{01111‘52/103131‘9w2)1+{(kglz01111—3?¢4;3131—°w2)5133

2 2 V45 ,
“(k%/{01111*5%/{03131‘°m2)8152](w401133+ 031130/ 3131h/é3333=0

(31"32)1k231324403131j(01133(J401133+ 03113)2f/401133¢403113
3/4 2¢4

(k%/401111—51 03131'0w2)(k%/{01111—32 03131-09%)

+k§/(03113¢401133(v401133+ 03113){sz*kz5101111-5152v4;3131}

2 2
+u403131¢403333(¢401133+ 03113){Pw23132-s152V403131“k28152

U’401111}] = 0.
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As for incompressible materials the case s1 = s2 does not

lead to the existence of Rayleigh waves. We therefore assume

that sy#sp, and hence

k2813a/4031354b1133&451133t/103113)23451139493113(k%/{01111-9w2)2
+¢401133¢403113/433131Sisg—(S§+S§L/Z03131(ki%(01111-9w2)
u401133J403113+k%/403113,401133(J401133ﬁ/403113)(pwz*k%/lo1111)
-kzs132¢403113¢401133u403131(/101133+ 03113)+818g/{os13x/103333
(J401133+ 03113)(sz'k%/401111)-S§S§a4o§131/403333

(J401133+ 03113) = 0,

22 /2
8182¢403131 {u4o1133/403113ﬁ/403333(v401133ﬁ/{03113)}
+k28152¢4031354bl133{Q/{o1133+ 03113)23453113(/101133t/403113)}
+sq59./] Aor1sstA 212 4 253
s182./03131.4 03333 (Ao11332 A 03113) (Pw@-Kk2 Ag1111) - (sT+s3)
u403131u40113§/{03113(k2 01111"0w2)1/40113§/403113
(k%/L01111‘9w2){(k%/i01111‘9w2)+k2LJBIlSSﬁ/4O3113)}50» (2.8.17)

where, from (2.3.11},

2 2 2
c (Sl + Sz) =
w

u40111;493333t/{03131/£1313“£401133t/403113)2*(¢403131+ 03333)0¢%

Aoz131 403333

(2.3.18)

c s2s2 - x/{0}111u4o1313 - OCQ(VZE1111 +¢{o1313)_

wl ¢/{03131¢403333
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Equation (2.3.17) is the secular equation for Rayleigh surface
waves propagating along a principal axis in &a pre-strained

compressible elastic medium.

2.3.2 Results for some particular deformations

(a) The case Ai=X\a

Consider the special case of (2.8.17) in which xg=xy, so we

have

t/401111i/<03333, v401313ﬁ/{031311
Ao1133=Aoss11. Aoiss1=Aos11s- (2.3.19)

Recall from (1.5.6) that

Lf/(()3113= 01313 ~ ©3» (2.3.20)

and from (1.5.15) that

Ao1s1s = (A o1111=4 01133%+03) -

Thus,

»/{01133ﬁf401111-%/401313+°3 (2.8.21)

For convenience we write “T/i 01111 55/4 01313- Then use of

(2.3.19) in equations (2.3.11) leads to

(2.3.22)

sas2 «+B
182 o 4 - { ]pcz
xB

Also, by using (2.3.19), (2.3.20), (2.3.21) in the secular

equation (2.3.17), we have
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s%sgﬁz{(a~2ﬁ+03)(B—03)—a(«—ﬁ)+k281525(«~2B+03){(m—B)a—(B—os)
(«—B)}+slszﬁm(«—5)(pwz—kaa)~(s§+sg)B(m~ZB+03)(5—03)(k2«—pw2)

+(x-2B+0g) (B-03) (kZx-pw?2) { (k2x—pw?)+k?(x-B) }=0.

Thus,

k4[1—[fif}pc2]52 {(x-28+03) (B-03) ~x(x-B) }
3

—[2~[«+B]pc2]5k2(m~25+03)(ﬁ~03)(kzm—pmz)
B3

+(m—25+03)(5—c3)(kga—pwz){kz(Za—ﬁ)—pwz}
*53132{«(«-5)(pwz—kzm)+k2(«—2a+03)(«—5)(«—25+03)}=o_
i.e.

Bkz[l—{iiEJpcz]{(Bkg—«k2+pw2)(«—25+03)(ﬁ—cS)—«Bkz(«—B)}
B

+(x~2B+03) (B-03) (k2x-pw?) (k2 (20-28) -pw? }

+B81 8 («-B) {«(pw? -kEx) +k2 («-2B+04)2}=0,

and after further rearrangement this can be expressed as

(pc?)2B(B-0g) (x-2B+0g)
-pc?(x-B){(x-2B+0g) (B-03) (B-2c) +«B (x+B) }
+(«=B) { (B-x) (x-2B+03 ) (B-0g ) x+aP B2}

o3

—«B(“*B){l‘[aa

] 02}%{«(902—«)+«~25+03)2}=0. (2.3.23)
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Equation (2.3.23) is the secular equation for Rayleigh waves
in pre-strained compressible isotropic elastic medium, for the
case xg=\y. For the case og=0 the existence of surface waves has
been discussed from a general standpoint by Chadwick and Jarvis
{(1979) using a different approach; also, for the case o3=0 an
equivalent result, but in different notation, was given by Hayes
and Rivlin (1961b). For the special case Xj=xs and o03=0
corresponding results can be found in Willson (1972, 1973b).

(b) The case Aj=ho=Xg

Here «=x+2u and B=y, as from equation (1.6.18) where X and u
are the classical Lame moduli.
If, in particular,  o03=0 then (2.8.23) reduces to the

corresponding result of the linear theory, namely
(pc2)2u2n—pc2u (Mt ) { (A+20) (A+8u) -\ (2X+3u) }

+ (t) (vr2e) (s (020X (h+) )

A+3u

—u(x+zu)<x+u){1~[
w(x+2u)

%
]pca} { (x+2u)pc@+4p@-4u (r+2u) }=0,

This is equivalent to the results derived using the linear

theory from beginning, namely

T o el ] -

(see, for example, Eringen and Suhubi (1975)).

(c) The case of uniaxial stress: o, = oq = 0,

This special case has been considered by Willson (1972) using
a special form of strain-energy function. Because of the

cumbersome algebra involved we omit details here.
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2.4 Propagation in a general direction in the (xq,Xo) plane

In this final section of chapter two, we shall deduce the
equation for propagation in a general direction in the (xy,Xx3)
plane.

From (1.5.19), the motion for compressible material is

governed by

qujiﬂk Vk,jg = PVi- (2.4.1)

Now suppose v is given by

_ X1C0s0+Xx5s8ing

[t
v =Sle3) & ¢ (2.4.2)

i.e. the components of v are

[t _ xlcose+xzsine]

Cc

vi =P, (xq) & (2.4.3)

From (2.4.1) we deduce

Aoim V1,52 v(ojuz v2,je +.A03123 V3, je = PV1.
u4f0J2f2 v1,]2 ﬁ/{ojzfz Vo,ije tj4;j293 Vg, j2 = Pva, (2.4.4)

L}(ojsns V1,38 +u4bj312 vy je +u4;j323 v3,je = Pvg.

Differentiating equation (2.4.3) and substituting into eguations

(2.4.4) we get
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20052 251in2 "
\/(01111[}_02;.?] 9"1 “/402121[-32%;_3] ‘p1 "1/(03'131 P

2 .
ﬂ/{onaz*/[oznz)q)z [‘imf_z_cie] + (4 01133+/{03113) }'s

[_iwcose} - “P(pl-

c

—

sinOcoso w?cos2e
(/102211“‘ 01221)q) [ ___g_.,] /(mzlztpz[ } ./(02222

‘Pa{ sin® ] /Ioszszw 2+(J(02233t/«{03223)(p [msme] >,
(2.4.5)

Aoss1a P [ wcose} ,/101331(4) [ “"mse]ﬂjtoaszz\u%ozasz) $',

iwsine w2cose w2sine "
{‘___~*_] VABlBlS‘PS[ ]L/102323q} [ ] u403333(P 3
c
= P ¢3

Suppose ‘Pl,{p 2 and {P3 have the same form as in the

incompressible case, namely

¢

1 = A8%%8, Iwg = pe°*8, qjs = ce°%8

Equations (2.4.5) then become

(pcz+5203/(03131—w2c052%/401111—wzsinaq/402121)A—wzsinecose
(./{01;122+ 02112)B + 1080039(A01133%03113)C =0,
““2Sin90059(/(02211*/{01221)14 + (902“‘5202/1 03232-02c0s26 1212
-wzsinae\Aogzzz)B + dcssine (4 2233t Aogans)C = 0, (2.4.6)
iCSC"Se(/‘403311“&(01331)A*‘iCSSine(\/(03322+ 02332)B

¢ +lec?+sBel 03333'w200829/(01313"w23inze\/{ozszs)C =0
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For A, B and C are a non-trivial solution, we must have

pcz+820%ﬁ101313‘ ~w?sin6cose iCSCUSeﬁ/{OllSS
w2cos?e fp1111 (Ao1122 +Hos113)
—wzsinzq/loglgl ﬁ/102112)
a =|-w?sinecose (2211 pcl+s2c2 tcssine(f]ozz33|=0.
+flo1221) Hoszsz-w?cos?e +Hoszes)

Ho1212-w?sine

V402222

icscose(Hoss11 icssineQ%(03322 pc2+s2c2
+Alo1ss1) +Ho23s2) Hosazz-w?cos?

SHo1313-w?sin?e

Hozses

So, A gives a cubic equation for s2, which is similar to

equation (2.2.9).
We also must have three values of s, s$1, Sg, S3, say, with

positive real parts. We then write the solution in the form,

4)1 = Algslxs + Ape°2%8 4 p,g38%3,

v,
¥

The ratio Aj: Bj: Ciy (i=1,2,3}) is deduced from (2.4.8), for

B1§SIX3 + B2582X3 + BSESSXS,

[}

C1531x3 + Czésaxa + CSESSXS.

Ajq: Ag: Ag to be non-trivial solution gives determinat as =zero
to provide equations involves sy, sy, sg for c2. Because of
complicated algebra involved we do not give any details of this
general case. We refer to Chadwick and Jarvis (1979) for an

alternative approach to this problem.
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CHAPTER 3

Surface waves with horizontally polarized displacement do not
exist on a half-space, but if there is a layer they do. The
explanation of this phenomenon was first given by Love (1911),
who showed that such waves are essentially horizontally polarized
shear waves trapped in a superficial layer and propagated with
multiple total reflections between the boundaries of the laver.

In this chapter we shall discuss Love waves in a pre-strained
layer and half-space of different material. In particular, we
consider pre-strained half-space with a pre-strained laver of
different material. We assume that the pre-strains are coaxial
and, in particular, we consider propagation along a principal

axis for both incompressible and compressible elastic materials.

3.1. Results for incompressible materials

3.1.1 Propagation along a princgipal axis

We consider a pre-strained half-space defined by x340 on
which there is a laver of different pre-strained material of
uniform thickness h with boundaries x3=0 and xg=h. The axes of
Cartesian coqrdinates correspond to the principal axes of
homogeneous pure strain in both half-space and laver.

We are seeking to find waves such that the traction and the
displacement are continuous across x3=0 and the traction is zero
on xg=h.

Let (Xy,xg,Xg) and (xl*,xa*.x3*) be the stretches of the
deformation in the half-space and layer respectively and let W
and W* be the corresponding strain—-energy functions:

We wish to solve the equations of motion for incompressible

material, {1.5.20) with the following boundaryv conditions.
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*
Spai = 0 on xg=h,

(3.1.1)
* ; K
Y=y, Sp3i= v Oa%=0.

®
The asterisk refers to quantities in the layer. Thus,\fi and\Zi
are the elastic modulus tensors in the half-space and layer
respectively. We assume that
iw{t—f}]

v = (0, v53,0) = (0, Ae X3¢ c

iw[t—xl}
" -

, 0). (3.1.2)

v* = (0, v5,0) = (0, f(x3) e €, 0, (3.1.3)
where f(xg) is given by
f(x3) = (A'cos s*x3 + A'sin s*X3). (3.1.4)

Substitution of (8.1.2) into equations of motion (1.5.20) gives

p,l = 05
b/{ 01212 v2,11 +VJZ03232 V2,33 = PV, (3.1.5)
15,3’—'0.

and substituting (3.1.3) into (1.5.20), we deduce

‘*

p,1 =0,
V/(01212 v2,11 +x/i03232 v2,33 = PY2, (3.1.6)
_*

P,3 = 0.

On use of (3.1.2) in (3.1.5)g we obtain

2

_uz101212[‘22] *vlﬁoszsz s2 = pw? (3.1.7)

and hence
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o2 - 2(Mo1212 - pc?)

03/493232

(3.1.8)

similarly

(3.1.9)

£
s*e w? 9021J401212 _
c2
Aoszsz

Next, on introducing the notation (1.6.17), we have

2 2
b/{o1z1z = PC12. J493232 = pC32,
&
b/i 01212

So, we may write equations {3.1.8) and (3.1.10) as

[t}

* %2 * _ ok %2
L ¥ 03282 = PC 32-

2
Sz - wz(Clz - Cz)'
2.2
C Cap
(3.1.10)

%2
8*2 - wz(cz—clg).

*2
c2egz

Let us now substitute these solutions into the boundary

conditions (8.1.1). We have

Sosa = &ﬁiosazs * P) va,2 tﬁ(oszsz va,5 = os2s2 V2,3

¥
The boundary condition (3.1.1); then gives vy 3=0 on xgz=h

and hence from (3.1.3)
A'sin s*h - A"cos s*h = 0. (3.1.11)
From (3.1.1), we obtain

A=A (3.1.12)

and
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® " *®
sA flogase = s Au/qoszsz (3.1.13)

Next, using (3.1.11}, (3.1.12) and (3.1.13), we obtain the

secular equation

* £
su/203232 = cot s'h. (3.1.14)

s Z 03232

On use of equation (3.1.10) in equation (3.1.14), the

secular equation becomes

%) ]
tans*h = SPt32 (3.1.15)
T % ¥
s p 032
where
*2
c12 < c2 < cia (3.1.16)

Also, by using (3.1.10), the secular equation can be written as

®2
/o2 /% ,-c2
tan fE cé-cya| _ ﬁ* Cgz2 ¥ Ci2-C . (3.1.17)
® *

We want to solve equation (3.1.17) for the wave speed ¢ when
p/e™, wh, Cia, Cgo, 0?2 and 022 are specified. That is we want
to solve equation (3.1.17) for ¢ as a function of wh for fixed
p/o%, Ci12. €39, C?z and cgg. Note that., unlike Rayleigh waves,

Love waves with speed c¢ given by (3.1.17) are dispersive.

For illustration we consider neo-Hookean material so that

2 2 * %2 % %2
pcij=“)‘iv pcij‘—'u)\i.

and hence (3.1.16) becomes

*
o o
® 2
— A7 < c2 < -5
P o
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Equation (3.1.17) then becomes

{3.1.18)

W
where k = _.
C

. * *
Next, specify p/u, p*/u*, A1, Mg, Xy, A3 and u/u*, subject

to

* 2
TR uo 2
Xl < _ Xl. (3.1.19)
e e

Now, when we take the following value for the physical comnstants

*
Xa=1, Aq=0.75, u*=1, u=2, p=p*=3 then we may write equations
3 3

(3.1.18) as follows:

3 ¥ E c?
/ *2 1~
tan{kh 3c2—x1 } =3 2 (3.1.20)
/ *2
302 - )\1
and (3.1.19) reduces to
#2 2
Kl < le. (3.1.21)

By choosing Ai=Xp and using the incompressibility conditions

we deduce that

8
Ny <3 = 2.66. (3.1.22)




*
We choose A = 1.2 so that (3.1.20) becomes

tan{kh v 3c2—1.44]
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\/4/3 - 3/2 02

v 3c2 - 1.44

(3.1.23)

Next, we want to obtain some numerical results, that is, we

wish to solve equation (3.1.23) to find kh as a function of ¢ or

conversely. Subject to the constraints 0.48 < c2 < 8/9 we choose

the following values for ¢ to obtain the corresponding values of

‘ kh, as shown in the table below

c kh
0.70 5.145
0.71 3.834
0.74 2.313
0.77 1.656
0.81 1.149
0.84 0.884
0.89 0.531
0.93 0.232

Figure 3 shows kh plotted as a function of c.

vertical asymptote at c2 = 0.48,.

There is a
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b N2

n
wiw
0
1

-2 c = Q.48

-3 L

4-

Figure 3 Solution of equation (3,1,23)
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3.1.2 Results for the linear theory

Consider the special case of (3.1.18) in which Ag=A1=ho=1

* k%
and Ag-A;=Ao=1. Equation (3.1.18) gives

c12 1y & o0- (g2
tan{ {“;— -1{ kh} - =« = 0, (3.1.24)
Ly K c, Fya_q1%
[(C/cqp)é-1]
where
2 *®
2k R
o)

Equation (3.1.24) is the well known dispersion relation for
Love waves in the 1linear theory; see, for example, Achenbach

(1984). The inequality (3.1.16) requires that

¥*
Cp < € < Cp.
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3.2 Results for compressible materials

Let us assume, as in the incompressible case, that
*® * %
X1, Ag, Ag and Xy, Xo, Ag be the stretches of the deformation in
the half-space and layer respectively and let W and w* be the
corresponding strain-energy functions. Also, we assume that

the elastic modulus tensor in the layer is\/Qf and in the half-

space gfz
For a compressible elastic material, we want to solve the

equations of motion {(1.5.19) with the boundary condition

é03i = 0 on K3=h
(3.2.1)

* . L
Y =v., So3i = Spzi on x3=0,

where ¥ and y* are given by (3.1.2) and (3.1.3).

The equations of motion are

L/%1212 v2,11 t/ﬁloszsz V2,33 T Pv2,

* * * * LR
v401212 V2,11 +V/Z03232 V2,33 = ova,

in the half-space and layer respectively.

(3.2.2)

Also, using (3.1.2) in (3.2.2)4, we deduce

2
W

SE/Zoszsz - _EU/Z01212 = - pw? (3.2.3)
Cc

- oc2
522 {/461212 ec }, (3.2.4)

o232

where

OI.\J EN
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Similarly
*® *
%2 2[9 c? :/%01212}
s k = .
Hoszaz

Next, on introducing the notation {(1.6.17), we have

(3.2.5)

2 2
u401212 = PCia; uﬂﬁosz32 = PC32,
*®
L/ZOI212
*

So, we write (3.2.4) and (3.2.5), in terms of cy3, €33, Cysp.
*

]
)

= %2 * *2
pC 12 Lf103232 pPC 32-

C32 as
kz(ciz - 02)
S = 2 ,
€32
(3.2.6)
*2
<2 k2(c2 - ci2)

=TT w2
€32

Let us now substitute these solutions into the boundary

conditions (3.2.1). We have

Sosz = (foszzs + ©) vs 2 * A os2sz v2,3 = Aos2a2 va,s-
®
The boundary condition (3.2.1) then gives vp 3=0 on xg=h and
hence from (3.1.3), we get the same results as in the

incompressible case.

That is, the secular equation (3.1.17) is the same as in the

incompressible case namely,




81

This result, but not the corresponding result for
incompressible materials, was given by Hayes and Rivlin (1961b),

but expressed in different notation.

3.3 Further Problems

The case of propagation in a general direction is worth
considering, but this is left for future work.

Also, Rayleigh-type waves propagating in a half-space with a
superficial layer have not been considered here. Those will also

be examined in future work.
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