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INTRODUCTION

The object of this thesis is to review the existing work on 

surface waves in pre-stressed elastic materials. In particular 

we shall be concerned with Rayleigh waves and Love waves.

In Chapter 1 we summarize the main results of non-linear 

elasticity which will be required in subsequent chapters. In 

particular, we consider the general forms of strain-energy 

functions for both incompressible and compressible isotropic 

elastic materials. In section 5 of this Chapter we establish the 

equations of motion for both incompressible and compressible 

materials which are used in our discussion of surface waves. 

Also, the relevant boundary conditions are noted. In the last 

part of this Chapter we consider plane waves in an infinite 

medium. The work in this Chapter is based on, for example, Ogden 

(1984) and Truesdell and Noll (1965).

Chapter 2 is concerned with Rayleigh waves. We start with 

the analysis for incompressible materials with particular 

attention paid to propagation along a principal axis. For a 

general form of strain-energy function the secular equation for 

Rayleigh waves in a pre-strained incompressible elastic material 

is obtained. This generalizes results given by Willson (1973a). 

Next, we consider some special deformations and obtain some new 

results along with the well known results for Rayleigh waves in 

the linear theory. Also, for some particular strain energy 

functions we obtain explicit solutions of the secular equation.



Rayleigh waves propagating in a general direction in the 

(x-̂  ,x2 )-plane are also considered. Because, in general, the 

equation involve complicated algebra, we confine attention to the 

neo-Hookean material and deduce results equivalent to those given 

by Flavin (1963).

Corresponding analysis is given for compressible materials.

In Chapter 3, we discuss Love waves in a pre-strained layer 

on a pre-strained half-space. As for Rayleigh waves we consider 

both incompressible and compressible materials. We obtain the 

dispersion equation for waves propagating along a principal axis 

of the underlying deformation in respect of a general 

strain-energy function. For illustration we then consider a 

neo-Hookean material and obtain some numerical results for this 

case.
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CHAPTER 1

Basic equations of non-linear elasticity:

1.1 Kinematics and mass conservation

Here we introduce the notation required for the description 

of the deformation of an elastic body. We consider a continuous 

body which occupies the region Br in some natural (i.e. 

unstressed) configuration. Let a typical point of Br , P say, 

have position vector X relative to some (arbitrarily chosen) 

origin 0 .

The motion of the body, in which the body occupies the region 

Bt at time t, is described by the one-parameter mapping

being the position occupied by P in B-j-. In Cartesian components 

equation (1 .1 .1 ) may be expressed

Xl = x 1 (X1 ,X2 ,X3 ,t),

x 2 = x 2 (XltX 2 ,X3 ,t), (1,1.2)

x 3 = x 3 (Xl!X 2 ,X3 ,t).

We require x̂ . to have a unique inverse x ^  such that

X = x ^ ( x )  x e B t (1.1.3)

We also assume that x is twice-continuously differentiable 

when this degree of regularity is required.

The velocity and acceleration of the material particle P are 

given by

respectively, where 8 /3t here denotes differentiation with 

respect to t at fixed X.

x t : ®r ® t f
with x = x t (X) a x ( X , t) (1 .1 .1 )

3x (X, t)
at

a2x (x, t) (1.1.4)



The deformation gradient tensor, the gradient of (1.1.1 

given by

A = Grad x ( X , t ), (1 .

where Grad denotes the gradient operator with respect to X.

It follows from (1.1.4) and (1.1.5) that

A = r A, (i.

where the superposed dot denotes 3 /at at fixed X and

r = grad y  (l .

is the velocity gradient tensor. Note that in (1.1.7) 

denotes the gradient operator with respect to x.

In Cartesian components, we have

aU - (X. t) = f T  (1aXj axj
= (i.

3 X j

We write

J = det A (1.1

and impose the usual constraint

J > 0, (l.i

which ensures that the deformation is locally invertible, 

that A -1 exists. We use the notation

B = (A" 1 )1 (l.i

where T denotes the transpose a second-order tensor.

In components

L), is

1.5)

1 . 6 )

1.7)

grad

1 .8 )

1.9)

.10)

.11)

i.e.

.12)
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We shall make use of the following polar decompositions for

A:

A = R U = V R, (1.1.14)

where R is proper orthogonal and U and V are positive definite 

and symmetric, the right and left stretch tensors respectively. 

Each of U and V may be expressed in spectral form

3
U = E Xj ® u(i) ,i=l

(1.1.15)3
V - £ X,- u U )  ® v(i) ,i=l 1 “

where X^(>0), i e (1,2,3), are the principal stretches of the 

deformation, and and v(^) respectively are the unit

eigenvectors of U and V. We shall refer to u(^) and 

i e (1,2,3), as the Lagrangian and Eulerian Principal axes 

respectively.

The right Cauchy-Green deformation tensor C is given by

C = A tA = U 2 = £ X ? u ( i ) ® u ( i) (1.1.16)  1 = 1 i -

For future reference we note that principal invariants of C. 

denoted , I2 , I3 , are given by

11 = tr(C),

12 = KI? - &tr(C2 ) , (1.1.17)

13 = det C.

Let p r denote the mass density of the material in B r and p 

the corresponding density in B̂ -. Conservation of mass is 

expressed by means of the equation

p r/p = J s det A (1.1.18)

For an isochoric (volume preserving) deformation J = 1 and 

p=pr . An incompressible material is one for which every
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deformation is necessarily isochoric, i.e.

p r/p = J = 1 X e B r (1.1.19)

In view of (1.1.14) and (1.1.15) equation (1.1.18) may also 

be written

pr/p = detU - X^gXg, (1.1.20)

with

XiX2 X3 = 1 (1 .1 .2 1 )

for an isochoric deformation.

We shall also require the rate form of (1.1.18), namely

ap
”  + pdiv v = 0 , (1 .1 .2 2 )

which yields

tr(r) = div v = 0 (1,1.23)

when the motion is isochoric.

Let N denote the unit outward normal to the boundary 0B r of 

Br and n the corresponding unit normal to the boundary aBt of Bt . 

Then, according to Nanson's formula, area elements dar and da of 

8Br and aB-j- are related by

nda = JB N dar . (1.1.24)

1.2 Stress and the equations of motion

The traction (load) on the area element da of the deformed 

surface 3B t is expressible in the form

oTn da = ST N dar , (1.2.1)

where oT is the Cauchy stress tensor (independent of n) and S the 

nominal stress tensor. In view of (1.1.24) equation (1.2.1) 

yields



S = J fiT o (1.2.2)

and we shall use this connection later.

In this thesis we shall make use of the equations of motion 

expressed in terms of nominal stress. Thus

Div S = prf , (1.2.3)

where f is the acceleration given by (1.1.4), Div denotes the 

divergence operator with respect to X and body forces are 

disregarded.

The rate form of (1.2.3) is obtained by differentiating with 

respect to t at fixed X to give, on use of (1.1.4),

Div S = p rv, (1.2.4)

where the dot indicates the differentiation in question.

Furthermore, if the reference configuration is updated from 

Br to the current configuration B t then (1.2.4) is replaced by

div SQ - p v, (1 .2 .5 )

where div denotes the divergence operator with respect to x and

S 0 represents S evaluated in B̂ - after differentiation with

respect to t .

The equations of rotational balance are satisfied when the 

Cauchy stress tensor o is symmetric, or, equivalently,

A S = ST A t . (1.2.6)

The rate counterpart of (1.2.6) is obtained by

differentiating with respect to t and updating the reference

configuration to to give

s0 + L 2  = sj + O rT , (1.2.7)

where r is defined in (1.1.7).
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1.3 Constitutive laws for elastic materials

We consider an elastic material for which there is a strain 

energy W(A) per unit reference volume, so that the nominal stress 

tensor is given by

S = f!! (1.3.1)
3A

or, in components,

Sji = li. (1.3.2)
3AU

eIt is assumed that the material is homogeneous so that W has 

no explicit dependence on X (i.e. it depends on X only through 

A) •

For the function W to be objective (i.e. unaffected by a 

superposed rigid-body rotation after deformation), it must depend 

on A only through the right stretch tensor U occurring in

(1.1.14); thus

W(A) ~ W(U) . (1.3.3)

With U, analogously to (1.3.1), we associate the so-called 

Blot stress tensor T defined by

T = . (1.3.4)
311

If the material is isotropic relative to B r then W must also 

be unaffected by an arbitrary rigid-body rotation before 

deformation. Coupled with the objectivity requirment (1.3.3) 

this leads to the standard restriction on W, namely

W(Q U QT ) = W(U) (1.3.5)

for all orthogonal 0.

Because of (1.1.15) this ensures that W depends only on the 

principal stretches , X g , \ 3 and is indifferent to any pairwise



interchange of X^, X2 , X3 . Without changing notation, we express 

this as

W(X^,X2 ,X3 ) = W(X^,X3,X2) = W(Xg,Xi,X2 ). (1.3.6)

It then follows that T is coaxial with U and, from (1.3.4), we 

obtain

g
T = E ® u(i)» (1.3.7)

1 3X-̂

analogously to (1.1.15).

It is convenient to introduce the notation tj, i e (1,2,3>, 

for the principal values of T. Then

3W
ti - _  i e {1,2,3} (1.3.8)

for an (unconstrained) isotropic material, and hence

3

I = (1.3.9)

The corresponding expression for the Cauchy stress tensor o

is

9 ~ ^ °i ® (1.3.10)i=l
(coaxial with V), with

°i = J lxit i = J 1 xi f^T- (1.3.11)

For completeness, we note that

3
S = ..E^i ® (1.3,12)

which is analogous to the decomposition

3
A = E X| v U )  ® u (i) (1.3.13)i=l “

for the deformation gradient (the latter being obtained from

(1.1.14) and (1.1.15) on noting = R u ^ ) ,  i e {1,2,3}).
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1.3.1 Incompressible elastic materials

For an incompressible material it follows from (1.1.18) -

(1 .1 .2 1 ) that the constraint

J s det A = det U = XjXgXg = 1 (1.3.14)

must be satisfied at each point X e B r . Then equations (1.3.1) -

(1.3.4) are replaced by

S = ^  - PBT (1.3.15)
3A

and

I - - PH-1 (1.3.16)

respectively, where p is an arbitrary function of X and acts as a

Lagrange multiplier in respect of the constraint (1.3.14).

If the material is isotropic then I, o and S are given by

(1.3.9), (1.3.10) and (1.3.12) respectively, but t^ and oj become

t i = ^  ~ P ^ 1 i e {1,2,3} (1.3.17)
3Xi

(corresponding to the principal values of (1.3.16)) and 

aw°i = Xj_  - p i e {1,2,3} (1,3.18)
3Xj

respectively.

1.4 Strain-energy functions for isotropic materials

We noted in (1.3.6) that for an isotropic elastic material 

the strain energy may be regarded as a symmetric function of Xj_, 

X2 , X3 . Equivalently, it may be considered as a function of the 

principal invariants Ilf I2 , I3 defined in (1.1.17); in terms of 

Xj , x2 , X3 these are
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and when the material is incompressible I3 = 1 , and the remaining 

independent invariants are

For future reference we now record some specific forms of W 

for both incompressible and compressible isotropic elastic 

materials.

1.4.1 Incompressible materials

With W now regarded as a function of and I2 , as given in

(1.4.2), equations (1.3.17) and (1.3.18) give

The Mooney (or Mooney-Rivlin) strain-energy function is 

defined as

where and C 2 are physical constants, and the special case of 

this corresponding to C 2 = 0 yields the neo-Hookean form of 

strain energy, namely

r i  ■ xf + xi + H i
(1.4.2)

3Ii 3I2
(1.4.3)

and, on elimination of p, we obtain

312-

W = C x (Ix - 3) + C 2 (I2 - 3), (1.4.5)

W = C X (li - 3) (1.4.6)
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The strain-energy function (1.4.5) is a particular member of 

the class of strain-energy functions proposed by Ogden (1972a). 

For these

" 'ill" 11 <X^" + + X3n - 3)/«n . (1-4.7)

where p n and otni n e {1,2,...,N}, are material constants, and 

(1.3.17) and (1.3.18) yield

N a
x it i = °i = E ^nx in “ P 1 e {1,2,3} (1.4.8)n=l

Comparison of (1.4.5) and (1.4.7) shows that for the Mooney 

strain-energy function

«1 « 2 , « 2 = -2 , 2

= 2 C lt n 2 = ~2 C 2 - = 0 n e (3,4..... N}, J(1.4,9)

A useful generalization of (1.4.7) is the Valanis Landel 

strain energy, for which

W = wfXj) + w(x2 ) + w(X3 ) (1.4.10)

and hence

x it i = °i = xi W ( X i) - p, (1.4.11)

where w is any suitably well-behaved function.

1.4.2 Compressible materials

For a compressible material use of the invariants (1.4.1) in 

(1.3.11) yields

Joi = xit i = 2 xf 3W + 2x2(1! - X f ) f _  + 2I38W , (1.4.12)
ail ai2 3 I3

and hence

J(Qi - oj) = Xj^ti - Xjtj = 2(X? - X ? ) P L  + x£ 8W 1 , (1.4.13)
laii ai2 -
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where (i,j,k) is a permutation of (1,2,3).

For the strain-energy function

W = C j d i  - 3) + C2 (I2 - 3) + F(I3 ) , 

a modification of (1.4.5), where F(I3 ) is a suitably well-behaved 

function, equation (1.4.13) simplifies to

J(oi - oj) = Xiti - Xjtj = 2(\2 - x2)(Ci + C2 x2). (1.4.14)

Finally, we consider a similar modification of (1.4.7), 
namely

where g is a function of J = ^ix2x3- From (1.3.11) we obtain

N
W ( M n + x2n + x3n ~ 3) + g(Xi\2X3 ) , (1.4.15)

n=l (1.4.16)

1.4.3 Isotropic linear elasticity

For infinitesimal strains we use the variables

i e (1,2,3) (1.4.17)

and linearize the stress-strain equations to obtain

ti = °i = 2wei + x (el + e2 + e3)> * e (1.2,3) (1.4.18)

where X and y are the Lame elastic moduli, correct to first order

in e ^ , e2 , e3 . The bulk modulus k is defined by

(1.4.19)

For incompressible materials (1.4.18) is replaced by

ti = oi = 2juej - p i e {1,2,3} (1.4.20)

subject to

e x + e 2 + e3 = 0 , (1 .4 .2 1 )

with p having the same interpretation as in (1.3.16).
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Comparison of (1.4.20) with the linearized form of (1.4.8) 

shows that

N
£ Mnan = 2u. (1.4.22)n=l

In particular, for the Mooney strain-energy function (1.4.5) 

we have

Ul - u 2 = 2 {C1 + C2) = u. (1.4.23)

The corresponding linearization of (1.4.16) again yields 

(1.4.22), and, in addition,

N
g'(l) + I Hn = 0, g"(l) = X. (1.4.24)n=l -

1.5 Elastic moduli

For use in the rate forms of the equations of motion (1.2.4) 

or (1.2.5) we shall require rate forms of the constitutive laws. 

First, for compressible materials, differentiation of (1.3.1) 

with respect to t at fixed X yields.

S = u/C A , (1.5.1)

where the fourth-order tensor given by

a2 w (1.5.2)
aAaA

or, in components,

Sji tyijilk A kl (1.5.3)
with

iXjilk = -------- • (1.5.4)
aAu3Akl

We refer to A  as the tensor of f irst~order elastic moduli 

associated with the variables (S, A) relative to Br .
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If the reference configuration is now updated to coincide 

with the current configuration Bt , (1.5.1) becomes

§o = M  ko- (1.5.5)

where the subscript zero indicates evaluation in B t . From

(1.1.6) we deduce that A 0 = r. The tensor ,Ajn is called the 

tensor of first-order instantaneous elastic moduli associated 

with (S, A ) .

For compressible isotropic materials the components of i/Lq 

referred to the Eulerian principal axes of the underlying 

deformation are derived in Ogden (1984), and we refer to this 

book for full details. Here it suffices to state that the only 

non-zero components of^X^, are

o4oiiii ~ xî __i'3\ĵ

X j i i j j  = xj—  + °i i ± J.axj

vi'oijij = i M  1 * j.
(1.5.6)

2 2 
xi - xj

J L  ijji “i/toji

where i,j e (1,2,3), and 

AW
Joi = x i__ • (1.5.7)

axi

In components equation (1.5.5) reads

®oji =\/lojilkrkl s /"(pi ilk (1.5.8)
J %xi

on noting (1.1.9).

For incompressible materials, differentiation of (1.3.15) 

with respect to t at fixed X and use of (1.1.6) and (1.1.12),
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followed by an update of the reference configuration to Bt, 

yields the counterpart of (1.5.5), namely

S0 = A 0r + pr - pi, (1.5.9)

where 1 is the identity tensor. This is coupled with the rate 

form of the incompressibility condition:

tr(r) = div v = 0, (1.5.10)

as in (1.1.23).

In components

p
®oji =J^L ojilk — - + P — ~ ~ P$u (1.5.11)

axj axi

with

8V* = 0. (1.5.12)
axi

For incompressible isotropic materials the components of \AQ 

differ slightly from (1.5.6), and are given by

y^oiijj “ x ixj a*w
3xi9\J

2
oijij = — __ j. x i i * j > (1.5.13)

xi - xy

i/Zoijji =,/Zo;jiij T/loijij ~ xi~—  i *
axi

where

awOj. = x i  - P (1.5.14)

and i, j e {1,2,3}.
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For the special case in which = Xj for is*j the formulae

(1.5.6) and (1.5.13) still hold except that in the limit X^ -» Xj 

Aoijij replaced by

v/£oijij = + °i) (1.5.15)
for compressible materials t and

= ^(/^oiiii [/^oiijj + xi ) (1.5.16)
axf

for incompressible m a t e rials.

The equations of motion (1.2.5) have components form

SQji - i e {1,2,3}axj
so, for compressible and incompressible materials respectively, 

equations (1.5.8), (1.5.11) and (1.5.12) yield

—  </Z°jilk m p'vi (1.5.17)
aXj 3xl

and

- L  (1.5.18)
axj ox1 ax} axj axi

the latter being coupled with (1.5.12).

When the underlying deformation from Br B t is homogeneous

v/lo and p are independent of x and (1.5.17) and (1.5.18) simplify

to

L/tojilk—  ~ Pv ir (1.5.19)
3 x j 3 x l

/ [ o j i l k  a2vk - iEL - p^l (1.5.20)
axjaxj ax^

respectively.
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Finally in this section we note that the traction rate s£n on 

a surface with unit normal n in the current configuration Bt has 

components

for compressible and incompressible materials respectively.

1.6 Plane waves in an infinite medium

As a prelude to our discussion of surface waves, we consider 

the propagation of plane waves in an unbounded medium. For a 

plane wave propagating in the direction of the unit vector n with 

speed c we may write

where q is a constant and m a constant unit vector. We refer to 

m as the unit amplitude ve c t o r .

For an incompressible material substitution of (1.6.1) into

(1.5.10) yields the constraint

Substitution of (1.6.1) and (1.6.2) into (1.5.19) and

(1.5.20) yields

axj
(1.5.21)

and

®ojin j s (/£ojilk + P6 jk6 il)
3xj

„,. n.x.v = mf(t  --- ) (1.6.1)
c

and, additionally, for an incompressible material,

p = ? f  <t - (1.6.2)
c c

m.n = 0 . (1.6.3)

^^ojilknjnl "  ) mk “ PCzm2 f"(t - ____)
c c
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and

ylojllknjnl ’ ~ ) %  + qnA f"(t - lL_‘_ j )
c c

2 -„/4_ n . x.= pcm^ f (t - 2 ___“ )
c

respectively. On the assumption that f is a twice continuously 

differentiable function we deduce that

</£ojilk Pjn lm k = PC2mi (1.6.4)

and

i/£ojilk njnlmk + 3ni = PC2 mif n^ni = 0 (1.6.5)

for compressible and incompressible materials respectively.

It is convenient to introduce the notation Q(n) for the 

second-order tensor (dependent on n) with components defined by

Qik^SJ =v^tojilk n jn l (1 .6 .6 )

Then (1.6.4) may be written compactly in the form

Q(n)m - pc2m, (1 .6 .7 )

where, in view of the definitions (1.5.4) and (1.6.6), ^(n) is 

symmetric for each n.

This guarantees that the secular equation

det:[Q(n ) - pc2]J = 0 (1 .6 .8 )

yields real eigen values pc2for (1.6.7). However, for the

existence of plane waves pc2must be positive. This follows if 

the strong ellipticity condition

tr{ iv40 (m®n)1 (m®n)} s [Q(n)m] . m > 0 all m®n * 0 (1.6.9)

holds.
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From (1.6.7) the wave speed c associated with the direction 

of propagation n and the amplitude m is given by

pc2 = [0 (n)m] -m =^G0 jilkn jn l m i % -  (1 .6 .1 0 )

Equation (1.6.10) applies for compressible materials. For 

incompressible materials, using the notation (1 .6 .6 ), equation

(1.6.5) yields

Q(n)m + qn = pc2m, m.n = 0 . (1 .6 .1 1 )

Taking the dot product of this with n we deduce that

q = -[Q(n)m].n,

so that (1 .6 .1 1 ) can be rewritten, analogously to (1 .6 .7 ), in the 

form

Q* (n) ffi = PC2m, m.n = 0, (1.6.12)

where Q*(n) is defined by

S*(S) = Q(fi) " H 0 [QT (G)n]. (1.6.13)

In this case the wave speed is given by

pc2 - [Q*(n)m],m = tQ(n)m].m. (1.6.14)

which is the same expression as (1 .6 .1 0 ) except that the 

constraint m.n = 0 must be satisfied.

An important distinction between Q(n) and Q*(n) is that, 

whereas Q(n) is symmetric, ()*(n) is not in general symmetric.

Plane waves for which m.n = 0 are said to be transverse

waves, and the unit amplitude vector is then referred to as the 

polarization v e c t o r. Plane waves for which m=n (in a 

compressible material) are called longitudinal waves. In 

general, there is no guarantee that either longitudinal or 

transverse waves will exist for particular choices of the 

direction of propagation. However, if n is along a principal 

axis of the underlying deformation then some simple results
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follow If m is also along such a principal direction. For future 

reference we now record these results.

First, for a compressible material, if n = v(*) and m = v U ), 

where y (2)f y(3) denote the Eulerian principal axes, and c^

denotes the associated wave speed, then from (1.5.6), (1.5.7) and

(1 .6 .1 0 ) we obtain

pcii i/toiiii “ xi * i e (1>2,3) (1.6.15)
3X4

or, equivalently,

prcii = x i 1 e (1,2,3) (1.6.16)
3Xi

and also

pcj[j =yLoijij “ — i 2 xi i* j . (1.6.17)
2 2 

xi - xj
Equation (1.6.17) is also valid for incompressible materials. 

We shall make use of the notation defined in (1.6.15) - (1.6.17) 

in later sections of this thesis.

Finally, for waves propagating in an unstrained material we 

note that longitudinal and transverse waves exist for every 

direction of propagation. This follows from the fact that the 

components of \j40 reduce to

'ŷ oijkl = p ^6 iksjl + ^il^jk) + x5 ij^kl (1.6.18)
in Br , where X and ju are the Lame moduli introduced in (1.4.18), 

and, for an incompressible material, to

iXoijkl = p (5 ik^jl + sil6 jk)• (1.6.19)

If and denote the speeds of propagation of

longitudinal and transverse waves respectively in this special
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pcfj_ = p c l  = ^+2ju i e {1,2,3}, (1.6.20)

2 2pc-jj = pcx = U 1 * j e {1,2,3}. (1.6.21)

Basic references to work on plane waves in deformed elastic 

materials are the paper by Hayes and Rivlin (1961a), which is 

concerned with isotropic materials possessing a strain-energy 

function, and the monograph by Truesdell and Noll (1965), which 

generalizes this to the case where the existence of a 

strain-energy function is not required.
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CHAPTER 2

Rayleigh waves on a pre-strained elastic half-space

On the surface of an elastic body it is possible to have 

waves which are confined to near the surface of the body. Lord 

Rayleigh (1885) was first to investigate such waves, which now 

take his name.

Rayleigh's theory related to surface waves on the free 

surface of a semi-infinite elastic solid; he proved that the 

motion becomes negligible at a distance of a few wave lengths 

from the surface.

In this chapter, we shall discuss Rayleigh waves on a 

pre-strained elastic half-space for both incompressible and 

compressible materials. Our work is based on the equations 

derived in Chapter 1, and we recover certain results obtained by 

Hayes and Rivlin (1961b), who used a different approach, and 

generalize other results given by Flavin (1963) and Willson 

(1973a, 1974a,b) for incompressible materials and Willson (1972, 

1973b) for compressible materials.

2.1 Analysis for incompressible materials

Consider the large homogeneous pure strain defined by

Xj = XjXi, x 2 = X 2X 2 , x 3 = \3X 3 (2.1.1)

Upon this deformation we superpose a small displacement u, such 

that

X 1 = x lx l * u l ’ x 2 = X2X 2 + u2 > x 3 = X3 X3 + u 3 (2 .1 .2 )

where u lt u 2 , u 3 (which, in general depend on x^, x 2 , x 3 and t) 

are the components of u. The velocity components are given by
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= 3uivi =
3t X. (2.1.3)

From equation (1.3.18), we have the principal components of 

the Cauchy stress tensor associated with the homogeneous 

deformation, namely

aW
°i = M   ~ P ie {1, 2 , 3 } .

3Xi

By using the incremental equations (1.5.11) and (1.5.12), we 

deduce that

Soil =l/toilllf~i +l/toil22^  -**1/ 101133^  + pf^l “ P*
3x^ 3X2 3x^

S022 =y i  0 2 2 1 1 +i/l 02222^1 + v/^02233^2 + P ^ i  " P>
3X^ 3X2 SXg 3X2

S033 =i/to3311^1 v 4 03322^1? + jlo3333^1 + P ^ 2  “ P>
3x^ 3X3 3X3 3X3

Sq12 = i/^0 1 2 1 2 ^ ?  + ̂ 0 1 2 2 lfli + P ^ l *
3X^ 3X 3 3X 3

®021 =l/^02112^_? +l/{s0212lt-L + P^Jl> (2.1.4)3Xj 3Xj 3x^

®013 =J%Q1313d̂ l  + </?0133lf— t + P^i>
3xl 3x 3 3x 3

®031 = y l o 3 1 1 3 —  +y t o 3 1 3 1 —  + P-?^2*3x-̂  3x3 8X 2
A  3v3 /f 0^2

s023 =J"l02323— _ -\/to2332__= + P Z>3X3 3X3 3X3

S032 =1x/ L o 3 2 3 Z ~  + ^ 0 3 2 2 3  *—  + P ^ >8X3 3x3 3X3

subject to the incompressibility condition (1 .5 .1 2 ).

2.1.1. Plane incremental motion

Next, we take V2 s 0 and assume that V 2 , depend only on 

x lt X 3 .  Then equation (1.5.12) reduces to
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*V1 + £^3 « o. 
axjL ax3

Hence there exists a function (jj (xlf x3 , t) such that

V1 = “ 4̂ , 3 ’ (2.1.5)
ax3 ax^

Equations (2,1.4) reduce to

Soil =v/toilll vl,1 +t/foil33 u3 ,3 + Pvl,l * P»

S022 =\/t 02211 vl,l + l/^02233 v3 ,3 “ P ’

®033 = y/lo3311 v l fl + '~/~to3333 v3 ,3 + Pv3 , 3 ~ P* (2 .1 .6 )

3013 = j l 01313 v3,l + <Aj01331 V1 ,3 + PV 1 , 3 '
S031 = i/Lo3131 v1,3 + J l  03113 v3,l + Pv3,l*
From (1.2.5), the incremental motion is governed by

Soji.j * p"i- (2.1.7)
Thus, from the incremental equations (1.5.11) we obtain

Soji,j ~ ^ o j i l k  vk,lj ~ P,j = pvi- (2.1.8)

In equation (2.1.7), if we take i=l and i=3, we deduce that

3011,1 + ®031,3 = pvl- (2.1.9)

s013,1 + s033,3 = pv3 ■
From (2.1.5) and (2.1,6) we then obtain

Soil.l = o4oilll ~ j l 01133 + P) ^,113 ~ P,l>

^031,3 = ^ 0 3 1 3 1  ^»333 “ (t/^03113 + P) ^,113' (2.1.10)

®013,1 ~tĴ L 01313 ^>111 + <«/Coi331 + P) ^,331*

®033,3 = (Jl03311 “(/£ 03333 “ P) ^,133 “ P,3*
Now substitute (2.1.10) into (2.1.9) to get

P^»3=“P , 1+(Ad  1111 -A 01133 l/to3113) ^,113 t/Zo3131
- p  ^,i=-p( 3+^01331 03311 vCo3333) ^,133 ~Jtoi3l3 ^,111-

To eliminate p we need to differentiate equations (2.1.11)

with respect to x3 and x-̂  respectively and obtain the partial

333» 
( 2 . 1 . 1 1 )
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differential equation governing: 4 1 r namely

^ , 1 1  + ^, 3 3 ) 01313 4^,1111 +

11 +y l  03333 “ 2 \JIq 1331 - 03311^ 4 >,1133

+ 4 L  03131 4 ,̂ 3 3 3 3 = °- (2 .1 .1 2 )

Suppose the elastic medium occupies the half-space defined by 

x3 ^ 0. In the basic homogeneous configuration the normal stress 

on the surface X 3 = 0 is 0 3 . We assume that this is unaffected 

by the perturbed deformation, so that the incremental boundary 

tractions vanish. This means that

®031 = °» ®033 = 0 on x3 = 0 ,
that is

y t 03131 V 1 ,3 + (/^01331 + P) v3 ,1 = °»
on X 3 = 0 (2 .1.13)

(/£oil33 ~v/to3333 " P ) vl tl - P = 0 .  

o r , in terms of ,

J^$3l3l 4^,33 + f/^01331 + P H "  ^ , 1 1 ) = °»

on x 3 = 0 (2 .1.14)

ytoil33 l/l 03333 “ P) ^ 13 - P = 0.

2.1.2 Propagation along a principal direction

We now assume that 4 M x i> x 3 , t) has the form

Xiiw(t - — )
(Jj = f(x3 )e c . (2.1.15)

This represents a wave propagating with (constant) wave speed c 

in the x^-direction, which is a principal direction of the 

underlying homogeneous deformation. The frequency of the wave is 

o>, also a constant.

We also assume that the spatial variation of 4^ is of the 

(-ikxi - sx3 )
form e , where k = w /c is the wave number. Then



equation (2 .1 .1 2 ) demands that

^ 0 3 1 3 1  s4 “ (/foilll 03333 _ 01331 " 2 / £ o i l 33 )r 2 s 2

k 4 + Pw 2  (s 2 “ k 2 ) = (2.1.16)

This is a quadratic equation for s2 . Suppose it has roots 

s2 and s2 . Then

si+sf = (jljOllll V C  03333 ~ ^ 0 1 3 3 1  ~ 2j[j01133 )k2 ~pfa>2
03131 (2.1.17)

sfsl * ^4-01313 k 2  ~ P^2 ) k 2
03131

X 1iw(t-— ) “SX3
Assume p has also form of e c e

Then, from (2.1.11), we obtain

Akp = K / l o m i  - ^ 0 1 1 3 3  03113^ ™ ~ Pw 2 ] +
c

v/[o3131 ^ , 3 3 3 - (2.1.18)

so, from (2.1.14) and (2.1.18), we obtain the boundary conditions 

in the form

03131 ^,33 * (/4oi331 + P) k2 lj) = 0 ,

on X 3 - 0 (2.1.19)

J~l 03131 ^,333 + £(/foilll +/ I q 3333~2J I q 1133~/Iq 3113+^)k2

- pw2] = 0 .

For surface waves we must have a solution for (j) in equation 

(2 .1 .1 2 ) which decays when x 3-»+w and which satisfies the boundary 

conditions in (2.1.19) at the surface X 3 = 0. Hence in (2.1.16) 

and (2.1.17), if a solution of this type is to exist, we should 

be able to find numbers Si and s2 , with positive real parts, and 

the solution fori)) may then be written
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(2.1.21)

where and A3 are chosen to satisfy (2.1.19).

Substitution of (2.1.20) into (2.1.19) leads to

Alpto 3131 s5+k2X l 3 3 1 +P) ]+A 3 [ ^ 3131 sjjj+k2 (^01331+p)]=0,

^lS]_ [~cAj)313l s?+Nk2-Pw 2 ]+A 3 s2 [;Xo3i3i sg+Nk2-pw2] = 0. 

where

N = X o i l l l  +\AjQ3333 ~ 2X o i l 3 3  “^03113  + P*
For equations (2.1.21) in Aj and A 3 to have a non-trivial 

solution we must have

X o 3 1 3 1  Sl + ( ^ 0 1 3 3 1 +P ) k2 X o 3 1 3 1  S2+ ( ^ 0 1 3 3 1 +P )k2

sl("^to3131 s2 +Nk2 -ptd2 ) s 2 (-tX 0 3 1 3 1 s|+Nk2-pw2)
= 0

On use of equations (2.1.17) this becomes

X o  3131 sl + X 0 i3 3 i+p)k2 X 0 3 1 3 1 s2 + ( X 01313+p )k2

X 03131 S1 (s|+k2 )-o3 k2 s1 X o 3 1 3 1  s2 (sf+k2 )-o3 k 2 s2
= 0

Since, from (1.5.13), X o  1331 - A

A - A

3W
03131 “ x 3 » and hence

3X3

A 3

01313 + P = ̂ 0 3 1 3 1  “ °3' we may rewrite A as

X-03131 Sl+ X 03i3i-O3)k2 X o 3 1 3 1  s2 + (^03131 “°3 )r2

X q 3 1 3 1  S1 (s|+k2 )-03^52  X o 3 1 3 1  s2 (sf+k2 )-o3 k 2 s2
= 0

S° A = X o 3 1 3 1  sl + ( X o 3 1 3 1 “°3)k 2 HvXo3i3i s2 (s2 +k2 )-o3 k2 s2 ] 

" X o 3 1 3 1  s 2 + X o 3 1 3 1 ~ ° 3 ) k 2 n X o 3 l 3 l  Sj (s2 +k2 )- o ^ S } ] =0 .
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i.e.

A 3 yZ/0313l)2 £sls2(sl_s2)(s?"sls2+si)+ (sl"s2)(“k4 +2 sis2 k2 )]

- 2 a 3 k 2 ^ 0 3 13 1 [-(s1-s2 )k2+s1S2(s1-S2)]-ogk4 (s1-s2 ) = 0 .

Therefore, the secular equation is

(si-s2 ) i/i §3131(sf+s1s2+s§)s1s2+2s1s2k 2-k4)-2o3y ^ 0313 1k 2

(s1s 2-k2 )-o§k4]= 0 . (2 .1 .22)
Assuming that s^ * s2 , the secular equation becomes

(/lo313l)2 Csls2(s?+sls2+si)+2sls2k2"k43"2o3k2/ [  
(sjs2-k^) -o<jk4 = 0 ,

03131
(2.1.23)

where s-l and s2 are given by (2.1.17).

Equation (2.1.23) generalizes the formula given by Willson 

(1973a) for the special case o3 =0. Willson also took X2 =X2 

throughout his calculation.

Of particular interest is the case when o 3 =0. Then equation 

(2.1.23) reduces to

Next, substitute for sf and s§ from (2.1.17) into (2.1.24) to 

obtain

To obtain the corresponding equation for the wave speed c, we 

must eliminate w by multiplying this equation by c4 and dividing 

it by w6 . Thus

sfs§ k4 + sis2 (sf + s§ + 2^2 ) = 0 . (2.1.24)

t(/[oi313 03131).03131

o4(01313. P^2 ) [(y4oilllt/?03333+2X3^!_” ?/£oil33)!L“ P"2]2 *
3X3 c
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3131 (/[oi313 ~jt 03131 " PC2 )2 =

{/loi313~Pc2) {/[oilll^/Co3333'h2H?!!!— ~^/loil33~f>c2)2 • (2.1.25)
3X3

Equation (2.1.25) is the secular equation for Rayleigh

surface waves in a pre-strained incompressible isotropic elastic 

medium with a traction-free surface. In different notation this 

is equivalent to an equation given by Willson (1973a), although

Willson restricted attention to the special case X1 = \ 2 from the

beginning.

In the above we have assumed that sj*S2 * We now consider the 

following special case in which sj=s2=s, say, so that the 

solution (2 .1 .2 0 ) is replaced by

-SX3 i w(b -  _ i )
= (A + BX3 ) e e c

From this equation we have

I -SXq ifr>(t~X l)
t f 3 = [B - S (A + Bxg) ] e e c ,

I ~sxq iw(t-fii)
t f33 =C"2sB + s 2 (A + Bx3 )]e e c ,

“SXq ifaj(t-X l )
Y ,333 = [3s2B-s3A “S3Bx3]e e c .

Substitution into the boundary conditions(2.1.19) leads to 

(k2 + s2 ) A - 2SB = 0,

[k2N - s^ 0 3 1 3 1  - pw2] sA + [3 s2 ^ 0 3 1 3 1 + p u 2 _ Nk2]B = 0f 

where N is given by
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= c X o i l l l  + l/Io 3333 ~ 2jtoil33 ~ lX(

A  = = 0

N =cA /0 1 1 1 1 + ^ 0 3 3 3 3  ~ V 1 0 1 1 3 3  ~l/^03311 + P. 
i.e.

N = (/toilll + c/Lo3333 ~ 2c/foil33 “\ / C o 3 1 3 1 + 2P * (2 .1 .2 6 )

For these equations to have non-trivial solutions for A and B 

we must have

k 2 + s2 -2 s

(k2N-s2/t,0 3 i3 i“Pw2 ) s 2s2/[/03l314'Pw ^“Nk2

which reduces to

-^03131 (3k2 +s2 )s2 + (s2 -k2 )(Nk2 -pw2 ) = 0. (2.1.27)

Since it is assumed that 8 2 =8 2 =3 , equation (2.1.16) must give

[pw2 - ( / £ o i l l l  + , / L o 3 3 3 3  “ 2<Aoi331 ~ 2 / t o i l 3 3  ) k 2 ] 2 =

V t 0 3 1 3 1  Cc/?01313k4~Pw2k2] . 
and equations (2.1.17) become

2 s2 = (\/^llll t/^03333-^/£o 1331 “2/£o 1133 )k 2 ~p w 2
03131

(2.1.28;
s4 = (v^01313k2 " P“ 2 )k2 ^

^  03131

From (2.1.27) we have

^ 0 3 1 3 1  s4 + s2 [3k^/J0 3 i3i+Nk2 -pw2 ] - k2 (Nk2 -pw2 ) = 0. 

Therefore, the sum of roots for this case is

2 s2 = - [3k2/£o3131 * N k 2 -
^ 0 3 1 3 1

Using (2.1.26) and (2.1.28) yields 

s2 = -k2 .
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That is, s is purely imaginary, there is no decay when X 3 

approaches infinity, so this case cannot arise and we conclude 

that A = B = 0! This result appears to be new, although a 

corresponding result for the compressible case has been found by 

Hayes and Rivlin (1961b).

2.1.3. Results for some special deformations

(a) The case X3 = X]

Consider the special case of (2.1.25) in which Xj = X3 , so we 

obtain

A o n n  ° A  03333- 01313 03131>

(2.1.29)

l/foil33 =/ l  0 3 3 H *  01331 03113-
and recall from (1.5.16) that

l/"! 03131 = ~y[oil33 + xlf!!_) • (2.1.30)
3Xj

Using equation (2.1.29) the secular equation (2.1.25) simplifies 

to

P 2 c4 L/ t 0 3 1 3 1 = (yloi313~P°2 ) (2/lo3333+2 x l— -2/loil33-Pc2)2 -
3X^

Also, by using equation (2.1.30), we may rewrite this equation as

j b 3131 P2 c 4 = (^03131 ~ PC2 ) (4//o3131 “ PC2 )2 .

On setting x = pc2/^03131 this becomes

x 2 = (1—x )(4—x )2 , (2.1.31)

The only positive real solution of (2.1.31) is x=x0 =0.9126 

approximately. Thus there exists a Rayleigh wave with speed c 

given by

pc2 = X q ^  0313!
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providedy^03131 > 0 (this inequality is often referred to as the 

Baker-Ericksen inequality). This puts no restriction on the

admissible set of values of X3 = X^ (subject to the

incompressibility constraint x-j^Xg = 1 ).

(b) The limiting case x-̂  = X? = Xq - 1

In the particularly simple case in which the primary stress 

is zero and = x3 = x3 = 1 we have

(/foi313 = ,/£o3131 = u > 

where fj. is modulus of rigidity in the classical linear theory.

Then pc2 = wx0 , This special case was noted by Willson (1973a).

(c) The case X^ = x? = xQ = 1 in the presence of hydrostatic 

pre-stress

If the undeformed configuration is subject to a hydrostatic 

pre-stress °i = °2 = °3 then we have from (1.6.19)

t/foilll - ^ 0 3 3 3 3  " 2 u ’j 4 , 01313 t/^03131 =^ l o 3 1 1 3  =(// [  01331 = w

1133 = °*
So, (2.1.17) gives

(sf + s|)/k2 = 2 - pC

2 2 ,, i, „ pc2SiSg/k^ = 1

and we need the secular equation in the form (2.1.23), which 

yields

i - ! ! !  -
u J  m I (i J

-1 + 2 1 pc - 2o- i - pc'-i - O q  = 0
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On rearranging this and setting

o = 0 3 /[a , x = PC
u

we obtain

o 2 + 2 o - l) - (4-x) + x » 0.

We note that values of x must be restricted to the range

0 — x — 1. When x = 0, this equation yields o2 - 4 = 0,

i.e. o = ± 2 , while when x = 1 it yields (o-l)2 = 0 i.e. o = 1. 

What we require to find is the range of values of o for which the

above yields solutions for x in the stated interval (0 £ x ^ 1).

We therefore re-cast the above equation in form

(4-x-2o) /l-x = x+0 2 - 2o 

and, on squaring and rearranging this is written

f(x) = x 3+4(o-2)x2 + 6 (a-2)2x + (o+2)(o-2)3 = 0.

Then, at the end-points of the interval 0 ^ x ^ 1, we have

f(0 ) = (o+2 )(o-2 )3 , f(l) = (o-l)4

Clearly f (0) < 0 for -2 < o < 2

while f(l) > 0 in the same interval except at x = l .

Also, we have

f 1(x ) = 3x2+8(o-2)x + 6 (o-2)2 

and this is strictly positive except for o=2, x=0.

Thus, f(x) is monotonically increasing for 0 ^ x ^ 1 and changes 

sign once in this interval provided -2 < o < 2 and o * 1,

Thus, for each o in the interval (-2,2) there is a unique 

value of x satisfying the secular equation (0 = 1 corresponding to 

x=l).
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a=l

II 2 < a < 2 (a

Figure 1
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A Rayleigh wave will therefore propagate in a hydrostatically 

pre-stressed half-space provided the pre-stress satisfies

-2 < (o=q3) < 2 , The limiting cases o = ±2 correspond to
ju

situations in which the underlying homogeneous deformation 

becomes neutrally stable. (The stability of such configurations 

has been discussed in detail in the book by Ogden, 1984, for 

example).

The form of the function f(x) is illustrated in Figure 1 for 

different values of o.

(d) The case of uniaxial stress: og = oq = 0, X-p, = x3

Since kg = X3 and X2 X2 X3 = 1 we may write

-Jfix 2 = x3 - x x

and define

W(X2) = w(x^,x^,x^ )

Thus, we have

dw _ aw 3X X aw ax2 aw ax3
dx^ ^x^ ax^ ax2 ^x^ 3x3 sx^

and hence

v dw aw v awX 2 ___  —_Xg___
dX2 8X2 3X3

Also

d r. dW 1
X 1 X 1-------

=
dX 2 dX2 _ -

Xi - X,
3X 2 3X3 .

. a w  aw 1
xi—  - x3—  

3X 2 3X3

i.e.

2 d2w . dw 2 a2w.^ aw .2 a2w s aw  ̂ a2w
kl ___+X1  =xl  'rXl  +x3 _ +x3 ___ -2X1X3______2 2 .2dX2 dX2 3X2 3 X2 3X3 3 X3 3 X2 3X3
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and hence

X 1 -ytoilll +,/t 03333 ~ 2/£oil33 + 2X3
dxf

3W
8X3

Substituting into the secular equation (2.1.25), we have

«■> f
X i W

X?-l
(Xj W - p C d ) X1W 2 1 - pc*

lXi“l
(X^W" - pc2 )2 .

This is a cubic for n, (n=pc2 ), it can be written

Xl** jxiW'2- 2nX1 w' + n2) =
xl“l

xfw' - r\
X i  - 1

T 4"112 2 ''" oTXaW - 2nXjW + n2

 ̂112 ̂ iv 8 W W = X^ _____  - n
xl-l

_  6  I t  A  f _

4 - 2  0 X - , W  W  I  
X i W  +  2  1

O

+  n 2

'  +2 xfw'’ -  n 3

L m 3 -iJ A - 1

i.e.

n 3-n2 ♦ 2 X 2w"]
lxf-i J

*■» i
rxiw

Ixf-J
n 2+n fxfi}"2+ 2 X?ft"w' -2

3 3 Xi-1 Xi-lJ

+ X l» ' 3 - X 1
w"2w - 0

x?-l xf-1

This can be reduced to

n 3-n2 |\w' + 2 x2W"] + n xf(xf-l)W"2 +2 XiW”W ’- 2 W '2 xf/(xf-l)

+ [fi'2_ x f r 2] . 0 .
x?-:
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i.e.

f(n) s n 3 “ <xr'2 + £n - 7 = 0 , 

where k, p, y are given by

ov2ui" a. v M 1 n A t"2 2X?w "w ' 2X?w '2oc - 2X-jW + X-|W f P = X^W + 1 - 1

,l-i 4-1

<x?w’2 - w'2).
4-i

Recall from (2.1.17) that

s2 + s| = < A  01111 + l/^03333 ~ 2(_/£oi331 _ 2/toii33)k2 ~ pw2
. ^ 0 3 1 3 1

s2 g 2 = (^01313 k 2 " Pw 2 ) k 2

2 2Since S} and S2 are to have positive real parts, and , S2

are complex conjugates it follows, assuming/-Lo3131 > that 
2 2s^S2 must be positive. We therefore require

pw2 < J \ j 01313 k2 ,

i.e.

4~

Thus

PC2 3 n < ^ 0 1 3 1 3  s PC23 = ^
xf-i

4" i
0 < n < n 0 s 1W (2.1.32)

X?-l

Then,

f(0) = - 7, f(nQ ) = X ^ ' t X i W "  - X ^ ’)2 

f ' (n) = 3 n 2 - 2ccn + S.
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If y > 0 (<0) then f changes sign on the interval 0 < n < n 0 

provided X-jW" * W* > 0 (<0).

This will ensure the existence of at least one solution of 

f(n) = 0, and hence the existence of a Rayleigh wave. We do not 

investigate here the circumstances in which more than one such 

wave may exist.

2.1.4 Results for particular strain-energy functions

(a) The neo-Hookean material

We begin by considering the neo-Hookean material, for which

.. . v 2 v 2 v 2 .W — + Xg + X<j — 3) .

From equations (1.5.13) we obtain

Next, substitute these into the secular equation (2.1.16); we 

obtain

3131 03333 = wX3

01313 " wXl (2.1.33)

and

03113 01133 = °-

juXgs^ - (nXg + w x f ) k 2s 2 + «x^k^ + pw2 (s2-k2) = o,

i.e.

ttXgs^ + (pw2 - uX^k^ - ux|k2 )s2 + uX^k^ - pw^k2 = q.

2 2 *> 2The roots s = s^ and s = sg of this quadratic equation are

given by

2 o , 2  uXik2 - pw2si = k^ and S2 = 1
nX3
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Alternatively, since k = - the second of these may bec
written

s 2 = uX^-pc2 

k 2 jux|

Since.S£ must have positive real part and cannot be pure 

imaginary and pc2 must be positive the constraint

o 20 < pc^ < uXj

must be satisfied. This could be obtained directly by 

specializing (2.1.32).

Next, using also (2.1.33) in the secular equation (2.1.25), 

we have

nXgtuXj - uXq - pc 2 )2 - (pXj - pc2 )[mX^ + 3pXg - pc2]2 .

2—  pcBy putting n = ___ , we reduce this equation to
v

x|(x l “ x 3 “ n ) 2 = (X 1 “ ^)(x l + 3x| - n ) 2 , 

subject to

20 < n < X ̂ .

This is a cubic equation for n, which may be rewritten as

n 3+n2 (Xg—X^—2Xj—6 Xg) + n[(X^+3Xg)2 + 2X^(X^+3Xg) + 2Xg(Xg~X^)]

2 / 2  2 v o 2 / 2  2 . o+ x3 (x l_x3) ~ x i(x l+3 x3) = 0
and simplified to

f(n)sn3-n2 (3X2 +5X3)+n[HX3+3Xi+10X2 X3]-Xi-5X2 X 3 - H X 2 x|+X3 * 0 .



Consider the sign of f{n) for different values of (xlf X3 ) to
—  2determine how many roots, subject to 0 < n < Xj.

6 „„v4 2 2. 4 . 6f (0) — Xg — llXgX-ĵ  — OXgX^ — X-ĵ .

f(xf) = X3 > 0 .

f'(n) = 3n 2 - 2n(3Xj + 5x|) + [IIX3 + 3\\ + 10xfx|].

It is not difficult to show that f'(n) > 0 for all n, so in
—  —  2particular f(n) is monotonic increasing for 0 < n < X-̂ .

Therefore, for there to exist a real root n we must have

f (0) s Xg - llXgxf - 5\|x^ - X® < 0 .

2 2Let us now consider x = Xg/X-^ and find values of x for which

g(x) = x 3 - llx2 - 5x - 1 < 0,

bearing in mind that x > 0 .

We have

g(0 ) = -1

and

g'(x) = 3x2 - 22x - 5, g 1 (0) - -5.

It follows that g(x) = 0 has a unique positive solution, x' 

say, and hence g(x) < 0 for 0 < x < x l . The approximate value 

of x' is calculated to be x' = 11.44.

Thus, (2.1.33) possesses a positive real root n provided
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The limiting case x3 = X j A '  yields the solution n - This 
corresponds to the boundary of stability of the underlying

homogeneous deformation.

Finally, in the particular case Xg = X;Lj equation (2.1.31)

gives

r\ - XqXjj, or p c 2 = pxQX3 , 

and the restriction X3 < is automatically satisfied,

(b) The Mooney-Rivlin material

For the Mooney-Rivlin material, the strain-energy function is 

given by

W - J^p^tX^ + x2 + x3 ~ 3) — x2 + x3 — 3) 1

where p^ > o and p 2 < o. The shear modulus p  is given by

p = u x - p 2 . 

From (1.5.13) we obtain

A  2 - 2
^ 0 1 1 1 1  ~ W 1 X 1 ~ ,

A 2 - 2
^ 0 3 3 3 3  “ Mlx3 ~ 3^2x3 *

/A w l (x3~x lx3) + ^ 2 ^ -xl xl) \2 -2vAU)3131 =   - -... r_____ t £1 = «lx3 “ a 2 xl '
2 2 

x3 “ X1
(2.1.34)

A  — y l(xl~ x lxs) + ju2 (1-XiXo2 ) 2 .-2L'T01313 “ - ___ ______ ~ •
2 2

X1 - x3

^ 0 1 3 3 1  = ~ w 2 (x l^ + x32 )*

//^OllSS - °*
Substituting (2.1.34) into the secular equation (2.1.16), we 

obtain
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(Pl\3“M2Xl ) s4 -{/u1X1-3/u2 X1 X 3 — 3a2 X3^+2p2 (X ^ 2 + X 2 ^ )}k2 s2

+ (aix|-|LC2x3 )^4 + pw2 (s2 -k2 ) = 0 ,

i.e.

(^lx3-#i2x l ) s '̂~{*i;].(X2+Xg)k2-ji2 {Xj +X3 )k2+pw2 }s2 +(/iiX^-zugX^ )k2

- pw2 k2 = 0 .

This equation has roots

s? = k 2 t S9 = (MlXl " ^2x32 )k2 “ f>w2>
—  —

^lx3 ~ y2 xl

Alternatively, we may rewrite the second root, since

1 wk = as c

2  v 2  v “ 2  2s2 = a lxl ~ W 2X3 ~ PC*
2 -2 

^lx3 ” W 2 X 1

Recalling the notation (1.6.17), we may reduce the above 

root to

2 2 2 
s2 = c13 - C
— ?V ---------------k2 2C31

2Since s 2 must have positive real part and cannot be pure
2 2 imaginary the constraint pc2 < - ^ 2 ^ 3 s PC 13 must be

satisfied.

Also, substitute (2.1.34) into (2.1.25), to obtain pc2 , we get

(uixl - p2 xi2 ) [pi(xi-x|) + P-2 ^xl2 ~ x3 2 ) ” PC2 ]2 =

2____ _2 2 2 *~2 ” 2(u1x1-n2\3 -pc2 ) [a(x1+3x3 )-ju2 (3x1 +x3 ) - pc2 ]2 .

Since

2 -2 2 
ylxl " ^2X3 = Pc13'

y lx§ - ^ 2X 1 2 = PC§lf
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we may reduce this equation to

2 r 2 2 2 , 2 _ . 2 2 , r 2 0 2 2 , 2
c13 f c13 “ C31 " c ] “ (C13 ~ c ) f c13 +3c31 “ C ] r

o 2 2subject to 0 < pc2 < PC}3 or 0 < c2 < c^g.

i.e.

6 4 / 2 o 2 _ 2 2 ,  p/o 2 2 . 4 . 2  2 „ 4  4c + G (Ci3-2 ci3 -6 c3 i-c13) + c<5(2c13C3i+2c13+6ci3C3 1 -2c13+c13
2 2 2 + 6c1 3 c3 1 +9c31)

6 2 4 ^ 4 2 4 2  2 4  6
+ c13+c13c31-2c13c31"6c13c31-9c13c31“c13 = °-

This equation reduces to
6 4 , „ 2 6 , 0 / 4  .. . 2 2 -.4 2 4  4 2 ,c - c (2 c 1 3+6 c3 i) + 0 ^(0 2 3 +1 4 0 1 3 0 3 1 +9 0 3 1 ) - 3 (C 1 3 C3 1 +C 1 3C3 1 )=0 .

c2 /By using the ratio £ = / 2 , where 0 < £ < 1, and
c 13

2
a = Cs1/ 2 , we get h(£) = £3 -£2 (2+6a) + £(9a2 +14a+l) - 8 (a2 +a)i=o. 

c 13
Next, consider the sign of h(£) subject to 0 < £ < 1: 

h(0 ) = -8 (a2+a) 

h(1 ) = a 2 .

Thus, h changes sign on 0 < £ < 1 so there exists at least one 

solution. We omit further details here.

2 . 2  Propagation in a general direction in the (xi, x*>) plane

So far we have considered Rayleigh waves on a pre-strained 

half-space of incompressible material with propagation along a 

principal axis. In this section we shall obtain equations for 

the propagation in a general direction in the (xi, x3 )-plane. 

The direction of propagation has direction cosines (cos©, sin©).

From (1.5.20) for an incompressible material the motion is 

governed by
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jtpjiik vk,jJ? P,i = Pv i ’
with 1,1 =  0 .

Now let v and p be given by

‘t _ x-^cos© + X2 si
iwv =i|j (x3 ) e

iw
p * ®(x3 ) e

in©

t _ x 1 cos0 +X2 sin©

so that the components of v are

ih 1£t>
vi = T  i (x3 ) e

t _ xlCos© + x2siin0

From (2.2.1) we then obtain

(i=l,2 ,3). (2

iwcos©
2(x 3)

iwsin©

and

A o j i n  V11 j*+/tojl42 v2 , j*+t/fojl*3 v3, jJf-P, 1 =P V 1 -

c/loj2il vl,ji+A <}j2S2 v2, jJ?V?oj243 v3 , j *+P , 2=PV2 - 

A L o j 3 S l  V1 , jJ?V^oj352 v2,j$+Aoj3Sl3 v3 , j JTP, 3=P')3 •

By differentiating (2.2.3) and substituting into (2.2 

obtain

lA 0 1 1 1 1
W^COS^G

^  i  +Jt02121
w^sin^©

^ 1  + ^ 0 3 1 3 1

+ A  01122 + A o 2 1 1 2 ^  2

+ ^ 0 1 1 3 3  +c/io3113) 4**3

w^sinGcos© 
2----c

iwcos©
c

iwcos© . - ,

(2.2.1)

(2.2.2)

.2.3)

(2.2.4)

(2.2.5)

. 5) we



4M-

< / U  u  ^ 01221) ^[-r-2.sie7 °se] ^ 01212^ w 2 COS2©'

02222 w 2sin2©
^2 't/I3232^ I

t/^02233 03223)ip'3 iwsin©" _ '_iwsin©'
c c

<l> = -p^o, (2 .2 .

\/4>33:Lltj/ 1
iwcos©

+jloi331
iweos©

fiwsine] /J ( h r  « 2 cos2©] // ih w2 sin2ei /t
------- V X O I 3 1 3 T 3 ~----- J\J32333 T 3 *--------- ^ 3 3 3 3I c j 1 J

j + (/?03322t/?02332)

,2 c ,* t̂2 q-

[p 3-p '=-p(jj 3

Suppose now that

= A iSX3, %  = B iSX3, ^ 3  = C 5SX3, « = D iSX3.

Equations (2.2.6) and (2.2.4) become
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t „2 /T w 2 cos2© ^  wsin2© /f . .lp s /L03131 “ ---- -— [/L 01111 " ___ “__t/i02121) A

w 2 sin©cos© . fl * .
- ----- ----- (i/toil22 Vt-02112) b

iswcos© , /I A  iwcos©
------- (^01133 V 003113)c + ______ D = 0,

w 2 sin©cos0 , /j ^ a  w 2 cos2© /}
. ^ 0 2 2 1 1 ^ 0 1 2 2 1  )A + (P+S^ 6 0 3 2 3 2 “____ „__ ^ 1 2 1 2TJ " ~ "  V U t i O J . 4 .  K /  U l i t t  '  '  '  (J W \ J \ J C i \ j £ t   7y

c2
(2.2.7

w 2 sin2© A  XD iwssin©, a  /f iwsin©„
’ 2 2 2 2 )B “  W 0 2 2 3 3 t r 6 o 3 2 2 3 ) c +  D = °-c‘

iswcos©, a A iswsin©, a a
------ ^ 0 3 3 1 l V t 0 1 3 3 l ) A + ---------- (/£,03322^02332 )B

, o /f w 2 cos2© /t w 2 sin20 A
(p+s t/L/03333 ~----?r^ J 101313 “________ /£o2323)c + sD = 0,

. _ wcos©. wsin©„ isC = A + B.

On eliminating C, equations (2.2.7) become

[p+s 2J i  03 x 3 (/to 1 133+A o 3  11 3 ' A o  1111 ) i 2 1 ]A
c2 c2

w 2sin0 cos0 , /! /I A  /} iwcos©
+ p V  ̂ 1 1 3 3 ^ 0 3 1 1 3 ^ 1 0 1 1 2 2 7 / 1 0 2 1 1 2  ̂ B+ 0=0 ’

|2nn<s2o /.12c- n ,-,2w^cos^O w*s+•
c*

2 2 3 3 ^ 0 3 2 2 3 7 ^ 0 2 2 1 1 7 / 0 1 2 2 1  )A + [p+si'4o3232

(2.2.8)

in2©, y/ // A . iwsin© _ _
~--- Vt02233yL032237/L02222) JB + _______  0 = 0 »
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[ P+s 2 33 3 3V^0,3 311 V f o  13 31) 1 3 1 2  3 2 31

tJC--9 A + [P+s2 ( / lo 3333~ yl03322̂ 02332) °S Qy/L
w 2 sin2©1313'

A  . wsin©„ . p t/t'023233  B+is2 D=0 .

For equations (2.2.8) to yield a non-trivial solution for A, B, D 

we must have

As

pc2+s2cfyt 03131 
+w2cos2e (,/£ 01133

+j i  03113_̂ 0111l)
- w2sin2© t/?02121

w 2sin©cos©(i/to2233 
03223 "c/̂  0 2 2 1 1

~Jloi22\)

X/̂ 033U “/1 01331) 

<Aq2323]

w 2 sin©cos©(t//foil33 iwccos©
vfo3113l/£oil22
”cXo2112)

pc2+s2 c2/f0 3 2 3 2 iwcsin©
-w2 cos2 © ^ 0 1 2 1 2  

+w2sin2©(c/4o2233 
03223~Ao2222^

wcos©[pc2 +s2 c2 (^03333 w sine[pc2 +s2 c2 ( ( ^ 3 3 3 3 is2 c2

-w2sin20i/^ol3 1 3 -w2sin20
- A o 3222~A o 2332)

-W2COS2©ŷ 01313
-w2sin2©^Q2323]

=0
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A s w4s in 20cos20(y^O2233+^o3223^O 22117/?O 122l) [pc2+s2c2 

((/^033337/2o3322x/?02332)_w2cos2®/^01313~w2sin2Q/^02323) 

^ 2 Cos2e[pc2+s2c2 (y4o3333x/^3311^0133l)

-w2cos2^ ol313-w2sin20y^o2323l [pc2+s 2c ^ 0 3 2 3 2 ~w 2cos29 

v/^01212 + w 2 s i n 2 9 (i/^O2 233 03 2 2 3 2 2 2 2 ) ]"w 2 s 1 n 2 9

[pc2+s2c ^ o 3 1 3 1 +“2cos2e(/Coil33V?03113yZoilll)"w2sin2e 

«/fo21213 [pc2+s2c2 (Jlo3333'[/io3322z/to2332 ) _w2cos2®/^01313 

-w2sin2e ^ 02323]+w 4sin2©cos29(/̂ o i l 3 3Vfo3113^/^1122

^/lj)2112 ̂ [PC2+s2c2 (y^03333 t/^03311t/^01 331) -w2cos20

l/?01313~w2sin2g/f02323]+s2c2[Pc2+s2c5^03131+w2cos2 

^ 0 1 1 3  31/^0 3113 v 4 >  1111)"w 2 s 1 n 2 ©/fo 2121 H P C2 + s 2 c2

l̂o3232~(j}2cosZŷ [oi212+U}2sin2G{/to2233't/t.03223~{/lo2222̂  1 

-w4sin29cos29(l/foil33t/^)3113'[/^01122~L/^02112) C/^02233 

t ^ 3 2 2 3 ^ 0 2 2 1 1 ^ 0 £ a 2 1  )s2c2=0* (2.2,9)

This is a cubic equation for s2. Let s^, s2 . S3 be the three 
values of s with positive real part. Then we may write the 

solution in the form

^  = AliSlX3 * A2 5S2X3 + A3 5S3x?

^ 2  = + B2es2x3 +■ B3 is3x3 (

= Cl5slx3 + c2 5s2x3 + c3es3x3 ,

0  =  + D 2eS2x 3 +  D 3 e s 3 x 3 .
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Each ratio A^: B^: Cj: Di (i=l,2,3) is obtained from (2.2.7). 

For A^: A 2 : Ag to be non-trivial the boundary conditions yield 

the secular equation. Because of complicated algebra involved we 

do not give the details of the general case here, but concentrate 

on the application to the neo-Hookean material.

2.2.1 Propagation in any direction for a neo-Hookean material 

For a neo-Hookean material we have

,02222 = II02121 = A  02323=^x2»
^  ^  (2.2.11)

W = &u(Xj + X2 + X3 - 3),
and hence, from (1.5.13), we obtain

v/toi 111 =^4.01313=^01212=^xl

LAoi331^4o3113'^4oil33=/[o2233y-/(o3223^4o2211v4o3311= 0 ‘ 

Substituting (2.2.11) into (2.2.9) we obtain

2 2 2 w 2cos2q (pc 2+juXgs^c^“aX^£tj2cos^9“MX2w^s in^0 ) ̂ -w^sin^Q

(pc2+ux|s2c2-nx|w2cos29-ux|M2sin29)2+s2c2

(pc2+juX3 S2c2-nX^£i>2Qos20 -nX2w 2sin20 ) 2 = 0 ,

2 2 2 (pc2+MX3 S 2c 2-nX-jW2cos29 -AiX2to2 sin20 ) 2 (s2c 2-w 2 )=0 (2 .2 .1 2 )

Equation (2.2.12) yields two district values of s2 with 

positive real part, and s2 say, where
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s^c2=w2 or S1 C = 1 

and (2.2.13)
2 oSoC , . 2 ort 2 . p ? w  v2g = (m X-̂ c o s ^Q + juX2sin,!l0 - pc^/nXg,
w 2

this requiring

2 2 0 < pc2 < ju(X^cos20 + X2Sin29 ) .

From (2.2.13), we see that ŝ j is a repeated root, that is 

s2 = s3 - so equations (2 .2 .1 0 ) become

4 ^  = A^eS lX 3 + (A2 +A3X 3 )eS 2 X 2 ,

4*2 = BjeS lX 3 + (B2 +B3X 3 )eS2X B'
ili (2.2.14)
t 3 = C^eSlX2 + (C2 +C3 x3 )eS2X 2 ,

0 = D^e8 ! 3*2 + (D2 +D3 x3 )eS2 X3 .

Next, the incremental boundary conditions for propagation in 

any direction are

S03i = 0  on x 3 = 0

i.e.

®031 = °» Sq32 = 0 , S0 33 = 0 on x3 = 0 .

On use of equations (2.1.4), (2.2.2) and (2.2.3) with the 

above boundary conditions, we obtain
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(7^)3113 + P) ^ 3  +ly^03131 (J>1 = °>
(A 03223 + P) p^!_Sin!j ^ 3  + ̂ 0 3 2 3 2  = 0- (2.2.15)

,/&3311 4* l V ^ 3 3 2 2  - lfa?Sln9 ^  2 + ( ^ 3 3 3 3 +P) ^

on x3 = 0

3WSince, from <1.5.13) , ^ 0 3 1 1 3  ^ 0 3 1 3 1  " >̂ 3____.
3X3

c/tj03U3 + P =t/^03131 “ °3 and similarly, 7^03223 + P = 

7 ^ 0 3 2 3 2  " °3 * Also with the case when o3 = 0, equations 

(2.2.15) become

iwcos©
i[> 3 + tj)'1 = 0 ' u j

(iwsin©-) 1 ,|.i
- I ijj 3 + T  2 = °> (2 .2 .1 6 )

^ 2 + (/^03333+P) 3 -0 * 0 .

C J
03322

iwsin©

on x3 = 0 .

For the neo-Hookean material the third of (2.2.16) reduces

to

(2uk|) (Jl'3 - <t> = 0 (2.2.17)

since 0 3  = 0 implies p = nx3 , and the first two of (2.2.16) are 

unchanged.

Next, using equations (2.2.14), (2.2.16) and (2.2.17), we

have
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iwcose
c

iwsin©'

(CJ+G2 ) - + A 3 - S2A 2 ~ 0 ,

(Cj+C2 ) - + B 3 — SgB2 = 0 , (2.2.18)

2(2uX2+ p )(-s^C^ - S2 C 2 + C3 ) - (D^ + D 2 ) = 0.

Now, we want to determine the ratio Aj/. Bj_: from

(2.2.8) and (2.2.7). For the neo-Hookean case the first two 

equations of (2 .2 .8 ) reduce to

2 2 2
[pc2 +nX3 C2 s2 -uX2w 2 cos2 0 -n\2d£)2 sin2 0 ]A+iwccos0 d = o ,

(2.2.19)
2 2 2 [pc2 +uX3 C2 s2 -uX^w2 cos2 -uX2w 2 sin2 ©]B+iwcsin0 0 = 0 .

For s=s^ these give

Di - [pc2 +yx|c2 sf-uX2w 2cos20 -jLtX2w 2sin20 ]
Ai iwccos©

o 2 2 2 2Di _ -[pc2 +uX3 C2 s^-uX^w2 cos20 -uX2w 2sin20 ]
B^ iwcsin©

so that

= tano.»1
Al

For s = s 2 we have to consider

^ 1  = (A2 + A 3X3 )eS2X3,

- (B2 + B 3X 3 )eS2Xs,

^ 3  ~ (c 2 + ^3 X3 )eS 2 X 3 .

p = (D2 + D3X3 )eS2X3.

Substitution of (2.2.20) into (2.2.6) shows that

^3 =6 3 =0 3 =0 3 = 0  and hence (2.2.19) applies with s=s2 , giving

(2 .2 .20)
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and

2 2 2 2 D2 _ _ pc^+/uX3C^S2-MX2W^COs^9-juX2W^sin^0’
A 2 L iwccose

D 2 _ _rpc^+px|c^S2-P^iw2cos^0 -px|w2sin 2Q-
Bo iwcsin0

^ 2  = tan0 . 
a 2
From (2.2 .7)4 we also have

co colsjCj = _ cos© A 4 + _ sin©
c c

CO COls2 ^ 2 = — cose A2 + _ sin© B2 . 
c c

Thus, the boundary conditions (2.2.18) become 

(Cl+C 2 ) + slA l + s2a 2 = ®

(Ĉ -t-C2 ) + + s2 ® 2 “ ®

i to
c

1W

COS0

sin0
L C

2nXg(s^C-^ + S 2C 2 ) D 2+D 2 — 0 .

Substitution for C lt C 2 , B x , B2 , D lt D 2 in terms of A lt 

gives

to 1 co 1
lslcl = _ A 1 » 1S2 C 2 = _ A 2____

C COS0 C COS0

Hence

co COS0 wAj
S^CCOS0 S2CCOS0

+ SjA! + s2A2 = 0,

2 nx| co A  W A 2
C  COS0 CCOS0

+ iD1 + iDp = 0

i.e.

cô
.C^Sj

A 2 + cô
+ S 1 +  S p  1 n  "

■ Lc s2
Ap — 0

2 .2 .21)

A2

2 .2 .2 2 ) 2



53

and
2

2h \2io (A2+A2 ) + iccoseD^ + iccos0D2 = 0 , 

and hence
2 2 2 2 2 2wXgw2 (A2+A2 )-[pc^+nXgc^si-nX^w^cos^B-nXgw^sin^ojAj

2 2 2 £ -[pc2+(uX3C2s2-uX-iw2cos2©-nX2w 2sin20]A2 = 0. (2 .2 .22)2

For A ^ , A 2 in (2.2.22)2 2 non-trivial solution we require

A =

+ s
0*52

p  2  p  2  2  ppc,;:+yX3C‘:S2-2nX3w*:

2 2 -juX1w 2 cos2 ©-nX2w 2 sin20

Hence

A = 2
s 2 — —  + s ls 2 cd

c 2s 2
+ s2

p  2  p  2  2  ppc‘5+nX3C':s2-2nX3w‘s

2 2 
- n X 2 w 2 c o s 2 e - n X 2 t l) 2 S 2 n 2 Q

« 0,

(pc2w 2+MX3C2s2-2ax|w2_yx2w^cos20-jux|w^sin2©)

^ o 2 2 2 2 2s 2 + S2S2 (pc2w 2+uX3C2s ;|>-2iuX3w2“nX-[W2cos29-*iX2M 2sin20)=O
c2

and, on rearrangement, this becomes

(pc2w 2-2nx|w2-nX2w2cos29-nX2w 2sin2©) {w (S2 -S2 )+S2S2 (s2~s2 ))

£ i p / 3  3 . 2 p 2 2 .  .+ p X g w ^ s ^ S i J + p X g c ^ S j S ^ s ^ S j )  = 0. (2.2.23)

Assuming S 2 $ s2 , the secular equation (2.2.23) reduces to

2 2 2 (pc2w2-2pX3w2-*jtX4w2cos2©-nX2w2sin20)

2 2 2 + (s^+s^s2 +s2 ) *1X3w 2 = 0.

f w2
sls2

2 p 2 2+ *1X3 0 ^ 8 2 3 2

(2.2.24)

This is the secular equation for the propagation of Rayleigh 

waves in any direction for a neo-Hookean material. (As in the 

case of incompressible materials, si=s2 gives only the trivial 

result A 1 =A2=0 etc.)
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But, from (2.2.13)

to
S1 = - 

c

__ 10 fuX^cos2© + juX2sin2© - pc2]^
n2ux3

s o ,

2 ^ 2  si + s2
2

w 2 f + pX^cos2© + juX2sin2© - pc2 
&  -----

Hence
. 2 pX3

(pc2w 2-2pw 2 X3 -juX4w 2 cos2e-uX2w 2 sin20 )-siS2w 2 (pc2-3uXg
c*

^ x^cos20-yx|sin2©)+ux|c2s^s|+)uX3w2 (s^+s|)=O,

i.e.

2 2  2
(pc2-2wX3-pX-jLcos20"*iX2sin2e ) -

2 2
pX4COS20+«X2sin2©-pc2l^

v2u\3

( pc2 -3*1X3 -iuX2cos20"MX2sin20 ) + (uX2Cos2©+pX2sln20-pc2 )+uX3

2 p  2  , p  p^e+juXpsin^e-pc^ = 0+pX^cos‘s©+yX2 

and hence

2 2 2(uX}Cos2©+nX2sin29-aX3-pc2 ) =
2 2

rpX1cos2©+uX2sin2e-pc2'1
V2ux3

2 2 2(pc2-3uX3-'/iX^cos2©-yX2sin2©)

By putting x = pc2/ux|, r\ = nX^cos ©+ux2sin ©  ̂ secular
. 2*1X3
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equation simplifies to

(n - x - 1) = (n - x)^(x - n - 3),

i.e.

(n-x)2 + 1 - 2 (n-x) = (n-x) [(x-n)2 + 6(n-x) + 9]

= ,(n-x)3 + 6 (r\-x)2 + 9(n-x).

Thus, the secular equation becomes

(n-x)3 + 5 (n-x)2 + ll(n-x) - 1 = 0 .  (2.2.25)

Equation (2.2.25) gives only one solution for n-x, nQ say,

so

p(Xjcos20+x|sin20) - pc2 = n p X q .
o

Hence

pc2 = u(X2COS20 +\2 sin20 )-nopX3 .

This result is equivalent to an equation given by Flavin 

(1963).
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2.3 Rayleigh waves on a pre-strained elastic half-space

2.3.1 Analysis for compressible materials

For compressible materials the components of S are 

(1.5.8). In full the components of S are

Soil “̂ /^Ollll
3 ^
ax-̂ +j^[ 01122

3v2

3^2
+c/^01133

3v3
, 9

ax3

S 0 2 2 =c/*Z 0 2 2 1 1
avi
BXl

V ?  0 2 2 2 2
3v2
ax2 +l/~[q 2233

av3
t

ax3

S033 =i/lo33ll av^
axj +c/^ 03322

av2
ax^ +l/?03333 3v3 _ >  

3x 3

S0 1 2 =i/[oi212 dv2
ax! +l/toi221

av
»

ax 2

^ 0 2 1 \ Z C o 2 1 1 2
av2
axi +i/to2121

avj
_ t

ax2

S013 = l/?01313
av3
dXi

+ 01331 ____ t
ax3

®031 =(/^03113
av3
axi

+ t/?03131
avj
ax3

®023 =l/^02323
av3
ax2

+t/^02332 a^ 2 __  »
ax3

S032 =J~[q 3223
av3

ax2
+L/?03232

3 v 2
_

given by

2.3.1)

(a) Plane incremental motion

We take v2=0 and assume that v-̂  and v3 depend on x^ and X3 . 

Equations (2.3.1) then simplify to



57

Soil V ^ O l l l l  v l,l +c/^01133 v3,3-

S022 ~(Ĵ L 02211 v l,l +v/^02233 v3,3>

S033 ~\fb03311 v l,l + 03333 v3,3» (2.3.2)

S013 =/ ^ 0 1 3 1 3  v3 ,1 + J t  01331 v l,3>

S031 = l/£o3113 v3 1  +t/^03131 v l,3*

By using the incremental equation of motion for a

compressible material (1.5.19) with equation (2.1. 7) we get
i

Soji,j ^^/^ojiik vk ’J?j = pvi • (2.3.3)

From this equation, when we take i=l and i=3, we obtain

s011,l + s031,3 = P^l-

s013,1 + So33,3 = pv3*
Next, from equations (2.3.2) we have

(2.3.4)

5011.1 = ^ 0 1 1 1 1  v l,ll +i/^01133 v3 ,31 *

5031.3 =t/Zo3131 V 1 ,33 +L^ 0 3 1 1 3  v3,13>

5013.1 =l/^01313 v 3 ,11 +/ C o i 3 3 1 v l ,31 (2.3.5)

5033.3 v C  03311 V1 ,13 V l ?  03333 v3,33-
Substituting (2.3.5) into (2.3.4) we have the required

equations of plane incremental motion, namely

pvl^/'^01111v l , llt/?01133v3,31+t/?03131vl f 33~j/£o3113v3 ,13 • 

pv3=/tP1313v3 , llj/^01331vl , 3 i y ^ 0 3 3 1 1 vl , 13t/?03333v3 , 33 • (2.3.6)

(b) Propagation along a principal axis

We now assume that and v3 are given by

. -sxq+iw = A^e J c
(2.3.7)

IV-xlT
. -SXq+iWv3 = A 3e

t-fl
cj
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where Aj and A3 are constants.
Substitution of (2.3,7) into (2,3.6) yields

~pw2a1 = (i/£o 3131s2~ ^ ^ 0 1 1 1 1 )  A 3-
c

(2.3.8)
Sf 2

-P“2A3 = i!!s (y/oi331 +u/ 60331l) Al + (s5^03333 “t/^01313^) A3 • c

For a non~trivial solution for A lf A 3 we must have 

iy^03i31 -^/j[pllll+pw2 01133^/^03113)

A 3

i - s  ^ 0 1 3 3 1 + / ^ 0 3 3 1 1 ) s^ 0 3 3 3 3 " ! L / ? 0 1 3 1 3 +pw2
0 c

Therefore,

A B Q/Jo 3131 s2“_^v/tollll+Pw 2 ) (ŝ 0 2 2 2 2 " ! ! 2/foi313+pw2)+!^s2

(/£oil33 +,/Lo 3113)2 * °*

i.e.

i/^O 3333^/^03131 s4"-zs 2 ty^01111y^03333 +t/ ^ 03131/^01313 "

t/^01133 V ^ 03113^  + ^ ^ 0 1 1 1 1 ^ 0 1 3 1 3  + Pw2

(pw2+/^03131 s2t/?03333 s 27 ^ 0 1 1 1 1  ^ ^ 0 1 3 1 3  ^ ) = 0 (2.3.10)
c c

2
This is a quadratic equation for s 3 . Suppose it has roots and

2s2 - Then
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2 2 
S 1 + s2 =

^|/f0 1111^03333^(0313J^01313 “ ($01133 jzfo3113? 'f A r“ (r{03131 $ 0 3333 )f>w*

2 2 
sls2 =

10

A 01111A 01313 " ̂ z<401111t^01313o

(2.3.11)

^ 0 3 3 3 3 ^ 0 3 1 3 1  
The Incremental boundary conditions are

®031 = °» ®033 = 0 on x 3= 0 >
so from equations (2.3.2) we obtain

^ 0 3 1 3 1  V1 ,3 + \ A o 3113 v3 ,1 = °»

^ 0 3 3 1 1  vl,l + \ A o 3333 v3 ,3 = 0 • on x 3 = 0 (2.3.12)

For Rayleigh surface waves we seek a solution for v  ̂ and v3 

in equation (2.3.7) which vanishes when x3-»+<» and which also 

satisfies the boundary conditions in equation (2.3.12).

The general solutions for and v3 are given by

V1 = (AiBS1X3 + BjeS2x3) eiw

v3 = (A3eSiX3 + B3eS2x3) elw

t-fi
cj

t-fl
CJ

(2.3.13)

where s^ an(j S2 should have positive real part.

Next, substitute equations (2.3.13) into the boundary 

conditions (2.3.12) to obtain
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"4 0 3 1 3 1  S l A l ~ ~ j ^ 3 1 1 3  a 3 ~ A o 3131 b 1 " ±!L/lo3113 B 3=0 • c c

(2 .3 .14)

03311 A 1 ~ A L  03333 S1A 3 ~ A A o 3311 B 1 -t/?03333s2B3=0 ■
C C

From equations (2.3.8) we obtain

1a3 = (k5^01111''sll/?03131-Pw 2 ) (
A1 kal(/?01133t/?03113)

and similarly (2.3.15)

iB3 = (k^01111~sl/?03131~ptlj2) ,
B1 ks2(/[oil33^2o3113)

Now, substitute (2.3.15) into (2.3.14). This yields

{ ^ 0 3 1 3 1  s 1 + c/^00113  ̂ k 5 ^ 0 1  H 1 ~ s 1l/^03131~pm2) +
sl[/i01133l/l03113)

jy4)3131s2 + ^ 0 3 H 3  (k^ 4 o i l l l - s2l/ ^ 3 1 3 1 - p^ 2 )jB:] = 0f
s2[/2°H33t^03113)

(2.3,16)

{i^/fn^^l1+^ 03333(k^ 0llll~Sl ^ 03l3l~ptrf2n Al + 
c ik [/^01133yfo3113)

[i-AoSSll ^ 03333(k5 ^ 0 1 1 1 1 ~ s2 ^ ) 3 1 3 1 - pttj2)|B;L = 0 . 
C ik ̂ 0 1 1 3 3 ^ 0 3 1 1 3 )

We may rewrite equation (2.3.16) as

s2< sl/^0313l(/^01133^(o3113)^4)3113(k 5/:̂ 01111~s l/fo3131“pw2) >A 1

+s l( s|^0313iy^01133^3113)(J^03113<k^ 0 1 1 1 1 “s2/^03131''pw2) }B 1=0.



61

03311 !/foi 1 3 3 y !fo3113)x/?03333(k ^ Z o i l l l _sl/^03131_P“ 2 ) >A 1

+ <k34) 3311 (yfoi 133t/?03113) ̂ ^ 3 3 3 3 0 1 1 1 l“s|/^03131-pw2)}Bi=0

For these equations to have non-trivial solutions for and 

, we must have

A EE

s Is 2 ^03131 (/101133+

A 03113>+s A  03113

* A  01111~sl/^03131“p£t,2)

k5^0331l(/[ 01133^/1,03113^

A o 3 3 3 3 ( k A  01111-sl 

y[o3131"pw2)

s2s l/^)313li^01133'

^Lsil^+Sl Ao1-03113

<kj4oilll-s| 4  03131-pw2

03311^(01133 j4o3113)

zA.03333 (k 2/4 01111“s2 

c/to3131-pw2)

= 0

and hence

A = [s1s^/j'o3i 31 ( A o i l 3 3 t X o 3 1 1 3 >  0 3 1 1 3 s 2 <k2 / ( o i l l l _ s l y /(o3131~P“ 2 ) 1

fk l 4  03311 01133+v/fo3113 03333 (k21 01111“s|/{o3131_Pu2 )] 

_[s2sIj4.03131 ̂ 0 1 1 3 3 ^ 0 3 1 1 3 )  ■,‘sl4)3113(k5 4  01111~s2/j()3131-PI,'2 > 1 

tkM .  03311 01133^/1,03113 03333 <k ?/( 01111"sl/(o3131_Pw 2 n =0.

Thus
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satsfk2 (jl01133 *A 03113)^03131iyfo33ia+k204oil33V^03113)

<kU  01111_s 1^0 3 1 3 1  “P"2 ̂ 0 3 1 1  .3^03311 “s 1 ( X 01133 t/f 03113 ) 

(k? X o i i n - s | X  03131 ~P"2 )l/[o31 3 1 ^ 0 3 3 3 3 1/[03113^03333 

(k! / o i l U - s | tA03131-pu,2 )(k2y(,oull-Sll/4o3131-P"2 )]-s1 [slk2

<l/[oll33+l/l03113)^/o3131^(o3311_ *kV ifoilll_sl'Xo3131”P“ 2 )

01111“sl A  3131 -put2 lXo3113yfo3333 +k2U  01133^03113)

(^2ytoilll-s|/|o3131''P£l,2)c^0331l/(o3113“s2(k2^ 0 1 1 1 1 “s1 ^ 0 3 1 3 1 -Pw 2 )

( A o n s z x A  03L13)/(o313iy|§3333l = °*

Gathering together like terms, we obtain

k2 ^ 0 1 1 3 3 V^03113) Vfo3131v/4oil33 s 1 s 2 (s1 -s2) + (8 3 -̂8 2 )

01 lll"s 1̂ 403131̂ “ 2)<k2i  0111 13 l~pw2 113

+k 2 (c/( 0113 31 4  0 3113 ̂ -4 0 3113 ,/fo 113 31s 2 (k V f  01111 ~ s 1/^0 3131" Pw 2) 

-sl(k ^ 0 1 1 1 1 -s2 X o 3 1 3 1 “Pw 2 ) M ( k ^ 0 1 1 1 1 “s v 4 ) 3 1 3 1 -Pw 2 >s ls2 

“(kVfoilll“s2yfo3131_p“2)sls2J Q-4oil33v4o3113v4o3131v/()3333=0

i.e.

(s1”s2 ) ]k2sls2,4o313v( 01133 (,Xoil33 v(o3113 )2t/( 01133^03113 

(kV t o i l l l _sL 4  03i3i-pw2 ) 01111_s2^03131_Pw2) 

03113i4oil33^4oil33v£o3113) {P“ 2~k ?/;'(oilll-sls2v4o3131^ 

^0313li03333(i0U33^03113) {Pw2slS2“slsî 4.03131_k2sls2

X l l l l ) ]  = °-
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As for incompressible materials the case si = S2 does not 

lead to the existence of Rayleigh waves. We therefore assume 

that si*s2 , and hence

k2sls2<A 03133^01133 ̂ (01133 +A.03113 ) 2+^0 113g/jp3113 (: 01111 "P^2 )2 

+>Xoil33(X o 3 1 1 3 i/(o3131sls2 “ (sl+s2l/lo313l(k5/loilll"f:)w2) 

l^OI 133^4.03113+k^/^03113 ̂ 1 1 3 3 ^ 0 1 1 3 3 ^ 0 3 1 1 3 )  (pw2“ *u. 01111) 

-k2SlS2jlo3llsAoil33Ao313lUloil3$+jl 03113 )+s Is 2/^03131^/^03333 

(v4oil33vfo3113) (Pw 2 - l c 0 1 1 1 l ) - s ls 2 ^ 0 3 1 3 1 ^ 1  03333 

(y[oil33vto3113) = 0,

i.e.

s Is 2^03131 {Jl 01133^03113 -A 03333(o^01133+^  03113) ) 

+k2SiS2^03131/(oil33^ (y4.°1133t/̂  03113)2yfo3113o4oil33t/(o3113) ) 

+sls2./!o313vt 03333 <A  01133tXo3113) (Pw2~k2^ 0 1 1 1 1  )~(s2+S2) 

jlo313ljloil33/[ 03113 0111l"Pw 2 ) V^°1103/fo3113

(k?/loilll-P-2 ){ (k^ 0 1 1 1 1 “Pw 2 )+k2(/(oil33V^03113) }= 0 > (2.3.17)

where, from (2.3.11),

c2 , 2 2.(Sl + s2) =
10̂

^ 0 1 1 1 1X 0 3 3 3 3  v (  0313 xJo 1313~j/loil33t/(o3113)2‘~(tylo313lVlo3333)Pc2 t
l A ) 3 1 3 l / ( o 3 3 3 3

( 2 . 3 . 1 8 )

°4 s?s? = ^  01111^01313 " PC2 (^4oilll v(.01313).ls2
^ 0 3 1 3 1 ^ 0 3 3 3 3
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Equation (2.3.17) is the secular equation for Rayleigh surface 

waves propagating along a principal axis in a pre-strained 

compressible elastic medium.

2.3.2 Results for some particular deformations

(a) The case

Consider the special case of (2.3.17) in which X3=Xlf so we

have

1X 01111^ X 03333* Xoi313=Xo3131*
u4oil33=Xo3311 - tAoi331\ A o 3ll3 ' (2.3.19)

Recall from (1.5.6) that

Xo3113Vloi313 ~ °3> (2.3.20)
and from (1.5.15) that

01313 = J<(Xoilll‘X o i l 3 3 +°3) •
Thus,

vXoil33=iAoilll"V(oi313+03 (2.3.21)
For convenience we write 0:=^ oilll* 01313- Then use of

(2.3.19) in equations (2.3.11) leads to

2 2
sl +s2 = 2 - 

k^~
<x+/3
lap

PC2 ,

(2.3.22)
2 2 ra+Pl pC‘oc+j3

l«P~ J

Also, by using (2.3.19), (2.3.20), (2.3.21) in the secular 

equation (2.3.17), we have
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p A
S1S2^ { («“2P+o3 ) (0-O3)-oc(oH3)+k2 SiS20(oc“20+O3) { («~P)2 -(P-0 3 )

2 2(cc-p) }+SiS2 p«(<x-P) (pw2 -k2 cc) - (SJ+S2  )P(a~2 P+ 0 3  ) (p-0 3 ) (k2 cc-pw2 ) 

+ (oc-2P+o3) (P-0 3 ) (k2 «-pw2) { (k2 oc-pw2) +k2  (oc-p) }=0 ,

Thus,

k4 ’ foc+Pl O
1 1

pc^
. l«/3 J

'oc+P] o'
2 - pc^

Lap J

P 2  {(<x-20 +CI3 ) (1 3 - 0 3  )-<x(oH3) }

Pk2 (oc-2P+o3 ) (P“03 ) (k2cc-pu2 )

+ («-2P+o3 ) (p-o3 ) (k2 <x-pw2 ) {k2 (2oc-P)-pw2 ) 

+Ps^S2 {a(«-P) (pw2 -k 2 a)+k2 (o:-2 P+0 3 ) (<x-p) (<x-2P+0 3 ) }=0

i.e.

Pk2  j\ - p* pc2  { (Pk2 -ak2 +paj2 ) (a-2P+o3  ) (P- 0 3  ) -aPk2  (ce-p) }

+ (oc~2P+0 3 ) (P-0 3 ) (k2 <x-pw2 ) {k2  (2oc-2P) -pa)2 }

+PSjS2  (<x-P) {a(pw2 -k2 cc)̂ -k2  (0C-2 P + 0 3  ) 2 }=0 ,

and after further rearrangement this can be expressed as

(pc2 )2 p(P-o3 ) (0C-2 P+O3 )

-pc2 (cc-p) { (<x-2P+o3) (P-0 3 ) (p-2a)+ap (<X+P) }

+ (oc-p ) { (p-<x) (0C-2 P+O3  ) (P- 0 3  )<x4-cc2 P2 }

-ccP (oc-p) jl-j~g+Pjpc2j {oc(pc2 -cc)+a-2P+o3 )2 }=0. (2.3 .23)
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Equation (2.3.23) is the secular equation for Rayleigh waves 

in pre-strained compressible isotropic elastic medium, for the 

case \3 =X^. For the case 0 3 = 0  the existence of surface waves has 

been discussed from a general standpoint by Chadwick and Jarvis 

(1979) using a different approach; also, for the case o3=0 an 

equivalent result, but in different notation, was given by Hayes 

and Rivlin (1961b). For the special case >^i=X2 and 0 3 = 0  

corresponding results can be found in Willson (1972, 1973b).

(b) The case X-^Xg^x^

Here <x=x+2n and |3=n, as from equation ( 1 . 6 . 1 8 )  where X and n 

are the classical Lame moduli.

If, in particular, . o3=0 then (2.3.23) reduces to the 

corresponding result of the linear theory, namely

(pc2 )2y 2 X-pc2u(X+u){ ( x + 2 n )(X+3n)-X(2X+3u))

+p(X+p) (X+2/u) {n(x+2 /^-x (x+p )  }

-n(X+2ju) (X+ju) fl-f jpc2] { (X+2ju)pc2 +4ju2 -4u(x+2A£) }=0 .
1 u t ( x +2n) J J

This is equivalent to the results derived using the linear 

theory from beginning, namely

‘pc2' “■pc2 ' CO1
CO 'PC2 '-h

. u . - n . . n „
24-16

X+2n
'pc2'+16

■
1- u "

. u . . X+2tt.
0

(see, for example, Eringen and Suhubi (1975)).

(c) The case of uniaxial stress; o? - 0 0 = 0 ,

This special case has been considered by Willson (1972) using 

a special form of strain-energy function. Because of the 

cumbersome algebra involved we omit details here.
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2.4 Propagation in a general direction In the (x-i.xp) plane

In this final section of chapter two, we shall deduce the 

equation for propagation in a general direction in the (xlfx 2 ) 

plane.

From (1.5.19), the motion for compressible material is 

governed by

Differentiating equation (2.4.3) and substituting into equations

(2.4.4) we get

(2.4.1)

Now suppose v is given by

(2.4.2)

i.e. the components of v are

X^cos9+X2sin0'
c (2.4.3)

From (2.4.1) we deduce
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01111
w^cos2©'

02121 w 2sin29'
7Z

(^01122^402112)  ̂ 2
w 2 sin©cos©'

4*1 v 4)3131 (J)' 1

(401133+403113) (|)'

iwcos©'
=  - p ♦l.

( ^ 0 2 2 1 1 ^ 0 1 8 2 1 )  ̂  1 [---Sig ! ° S9] ^ 0 1 21 2 ^ 2 [ - ^ 2e] U

4*:
w 2 sin2©

~2~~ \A 03232  (|) 2 + < 4  02 2 3 3 ^ 4  0 3223) Ip'

.02222

iwsin©l ,(1) 
~~Pr2 ,

l\ .' f iwcos©] /} 1
t/l03311 tp 1 " JtA0133l(p 1 iwcos©'

(2.4.5)

( 4 o 3 3 2 2 + 4 o 2 3 3 2 )  2

f Iwsin©
'^01313 4^3 [~— .°S t X o 2 3 2 3 ^ 3  ~--S^n 8] +4o3333 ty"

I J cd

« - p k .■P ^ 3  

Suppose 2 anc* Y 3 have the same form as in the 

incompressible case, namely

% = a5SX3, = BiSX3, 3̂ = C5SX3
Equations (2.4.5) then become

(pc2+s2ci24  03131 -w2cos2© 4 o i  111-w2sin2eyfo2 1 2 l)A "w2sinecos© 

(4 0 1 1 2 2 + 4  02112 )B + icscose( 4 o i l 3 3 t 4 o 3 1 1 3 ) c = °»

-w2sin©cos©(4o2211+4oi22l)A + (p c 2+s 2c ^4  03232-w2cos2e4oi212

-w2 sin20(4  02222)6 + icssin© ( 4  02233+4-03223)c = °* (2.4.6)

i c s c o s e ( 4 o 3 3 1 1 + L4 o i 3 3 l ) A + iC s s i n e ( 4 o 3 3 2 2 + 4  0 2 3 3 2 ) B 

+ (pc2+s2c^4 03333 -W2cos2© 4 o i 3 1 3 ”w2sin2e4 o 2 3 2 3 ) c =
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For A, B and C are a non-trivial solution, we must have

A s

PC2+s2c2l/^oi3i3 -

w 2 cos2 0t/Jollll

-w2sin2eu/t02121
-w2 sin©cose ( ^ 0 2 2 1 1  

\pL 0122l)

icscose(J[o33ll

t/loi33l)

-w2 sin0cos9

(j^01122 

+^/lo2112)

pC2 +S2 C2

JloS232~0}2cos2e

v/loi212-w2sin2e

\Aq2222

icssine(j^03322

t/to2332)

icscos0 ( ^ o l l 3 3

+</Io3113)

icssin0(ĵo2233
03223)

=0,

pC2 +S2 C2

y [ 0 3 3 3 3 - w2c ° s 2 

^ O I S I S -"2311120 

*/[ 02323

So, A gives a cubic equation for s2 , which is similar to 

equation (2.2.9).

We also must have three values of s, s lt s2 , S3 , say, with 

positive real parts. We then write the solution in the form,

= A-^e3^ 2 + A2eS2X2 + A3eS2X2, 

^ 2 = B^eSlX2 -f B2eS2x3 + 3ges3x3 f 

= c. 5S1X3 + Cois2x3 + c,is3x3.3 = C1 '

The ratio Aj_: B j : (i=l,2,3) is deduced from (2.4.6), for

Aj_: A 2 : A 3 to be non-trivial solution gives determinat as zero 

to provide equations involves s ^ , s2 » S3 for c2 . Because of

complicated algebra involved we do not give any details of this 

general case. We refer to Chadwick and Jarvis (1979) for an 

alternative approach to this problem.
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CHAPTER 3 

Love waves

Surface waves with horizontally polarized displacement do not 

exist on a half-space, but if there is a layer they do. The 

explanation of this phenomenon was first given by Love (1911), 

who showed that such waves are essentially horizontally polarized 

shear waves trapped in a superficial layer and propagated with 

multiple total reflections between the boundaries of the layer.

In this chapter we shall discuss Love waves in a pre-strained 

layer and half-space of different material. In particular, we 

consider pre-strained half-space with a pre-strained layer of

different material. We assume that the pre-strains are coaxial 

and, in particular, we consider propagation along a principal 

axis for both incompressible and compressible elastic materials.

3.1. Results for incompressible materials

3.1.1 Propagation along a principal axis

We consider a pre-strained half-space defined by xg^O on 

which there is a layer of different pre-strained material of 

uniform thickness h with boundaries X g = 0  and xg=h. The axes of 

Cartesian coordinates correspond to the principal axes of

homogeneous pure strain in both half-space and layer.

We are seeking to find waves such that the traction and the

displacement are continuous across Xg=Q and the traction is zero

on Xg=h.

Let (XltX2 A 3 ) and (xi * >x2 * *x3 * ) the stretches of the

deformation in the half-space and layer respectively and let W 

and W be the corresponding strain-energy functions’

We wish to solve the equations of motion for incompressible 

material, (1.5.20) with the following boundary conditions.
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Figure 2
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so3i = 0 on x 3=h,
(3 .1 .1 )

* **H = v - s o3i=r 5^1 O a K3 ̂  O .
The asterisk refers to quantities in the layer. Thus, i4f and v4, 

are the elastic modulus tensors in the half-space and layer 

respectively. We assume that

iw
v = (0, v2 ,0) = (0, AeSXse

t-X l
cj . 0). (3.1.2)

lw t-fl
Cv = (0, v2 ,0) = (0, f(x3 ) e , 0), (3.1.3)

where f(x3 ) is given by

f(x3 ) = (A'cos s*x3 + A'sin s*x3 ). (3.1.4)

Substitution of (3.1.2) into equations of motion (1.5.20) gives

P,1 = °>

A  01212 v2 ,11 + A 03232 V2,33 = Pv2>

P,3 = 0-

and substituting (3.1.3) into (1.5.20), we deduce

(3.1.5)

p,l = 0.
*
01212 v2 ,11 + vA03232 v 2,33 = Pv 2-

*
P,3 “ 0-

. * * * sje * He
^ 401212 v 2 . 11 + . A (3.1.6)

On use of (3.1.2) in (3.1.5)2 we obtain

01212 ^ 1  * j l 03232 S2 = P"2 (3.1.7)

and hence
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s2 « w 2 (v4oi212 " P°2 ) 
C ^ 0 3 2 3 2

similarly

(3 .1 .8)

*
2 r„„2_ /?,pc "i/101212

^ --------------- (3.1.9)
v4.03232

Next, on introducing the notation (1.6.17), we have

^ 0 1 2 1 2  = PC?2. j[o3232 = Pc32’

/  * * *2 /  * * *2 
v/t 01212 - P C  ^ 0 3 2 3 2  = Pc 32-

So, we may write equations (3.1.8) and (3.1,10) as

2 ^ ^ ( c 12 - c2 )
2 2 c c32

o, o * 2
*2 _ to (c c ̂ 2 )

~  2~*2c 2c 32

(3.1.10)

Let us now substitute these solutions into the boundary 

conditions (3.1.1). We have

®032 = 03223 + P) v3,2 ^ 03232 v2,3 = ^ 0 3 2 3 2  v2,3

The boundary condition (3.1.1)} then gives ^2 3 =0 on x3 =h 

and hence from (3.1.3)

A*sin s*h - a 'c o s  s*h = 0. (3.1.11)

From (3.1.1)2 we obtain

A = A' (3.1.12)

and
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s^/Jo3232 ~ s* A^y/[o3232 (3.1.13)

Next, using (3.1.11), (3.1.12) and (3.1.13), we obtain the 

secular equation

* /} ̂S o/ q Q3232 = co^ (3.1.14)
^ 0 3 2 3 2

On use of equation (3.1.10) in equation (3.1.14), the 

secular equation becomes

tans*h = sp^32 , (3.1.15)
* # s p C32

where

*2 - 1
c 12 < c2 < c 12 (3.1.16)

Also, by using (3.1.10), the secular equation can be written as

tan ^  / c2~C*2 
c *

c32

2p c32 ^  c12_c . (3.1.17)
p* * ^2

C32 /c -c12

We want to solve equation (3.1.17) for the wave speed c when
* * * 

p /p , udh, c 12’ c3 2 ’ c 12 anc* c32 are specified. That is we want

to solve equation (3.1.17) for c as a function of wh for fixed
^  *  * 

p/p , c^2 ’ c32» c 12 an(* c32- Note that, unlike Rayleigh waves,

Love waves with speed c given by (3.1.17) are dispersive.

For illustration we consider neo-Hookean material so that

2 2 * *2 * *2 pcij = p c ij = a X i

and hence (3.1.16) becomes
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Equation (3.1.17) then becomes

tan kh v'

'p

u" c2-x Xo» /3
* SH

X3U

Xi - U c‘
IT 1 3

C  - X i

(3.1.18)

where k =
c

vffi jj|{

Next, specify p/u, p*/n*, x-̂ , X3 , X^, x3 and n/n*, subject

to

*2
u v 2 - x l (3.1.19)

Now, when we take the following value for the physical constants
* * *X3 =l, X3 = 0 .75, 9 =1, p=2, p=p =3 then we may write equations

(3.1.18) as follows:

/ 2 3 2 3 / X1 - - c2f /  9 ~ 2 Ctanjkh /  3C2-X-L j = -   (3.1.20)

/  3c2 - Xi

and (3,1.19) reduces to

*2 o
x x < 2Xi. (3.1.21)

By choosing X^=X2 and using the incompressibility conditions 

we deduce that

*2 8
< 3  " 2 .6 6 . (3.1.22)
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*We choose = 1.2 so that (3.1.20) becomes

r i 3 ^  4/3 3/2 (3.1.23)
tanfkh J  3c2 -1.4 4 ] = — / o i 77~I J 2 /  30^ - 1.44

Next, we want to obtain some numerical results, that is, we 

wish to solve equation (3.1.23) to find kh as a function of c or 

conversely. Subject to the constraints 0.48 < c2 < ®/g we choose 

the following values for c to obtain the corresponding values of 

kh, as shown in the table below

c kh

0.70 5.145

0.71 3.834

0.74 2.313

0.77 1.656

0.81 1.149

0.84 0.884

0.89 0.531

0.93 0.232

Figure 3 shows kh plotted as a function of c. There is a 

vertical asymptote at c2 = 0.48.
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&

-1 / _8 1 
9

c

-1
\ 2c = 2 / 2

c = 0*48

-3

Figure 3 Solution of equation (3,1.23)



78

3.1,2 Results for the linear theory

Consider the special case of (3.1.18) in which X3=X1=X2~1 
* * *

and X3 =x 1~x2=l. Equation (3.1.18) gives

« [1 - (t7 c T >2f
 * __________   = 0. (3.1.24)

[(c/c*)2-l]“

where

2 n n*cT = _, cT =
P P

Equation (3.1.24) is the well known dispersion relation for 

Love waves in the linear theory; see, for example, Achenbach 

(1984). The inequality (3.1.16) requires that

tan- *
cT

-1 kh

*
C<p < c < c^.
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3.2 Results for compressible materials

Let us assume, as in the incompressible case, that 
# * *

xl* x2> x3 anc* x l* x2» x3 ke the stretches of the deformation in 

the half-space and layer respectively and let W and W* be the 

corresponding strain-energy functions. Also, we assume that 

the elastic modulus tensor in the layer is and in the half

space iA .

For a compressible elastic material, we want to solve the 

equations of motion (1.5.19) with the boundary condition

S03 i = 0  on x 3=h

v = * S031 = S031 on x3 = 0 ,

where it and u* are given by (3.1.2) and (3.1.3) 

The equations of motion are

j \ 01212 v2,ll 03232 v2,33 = Pv2 >

rt * * /T* *
^ 1 0 1 2 1 2  v2 ,11 +Kfio3232 v2 ,33 = Pv2 >

i.e.

;2=J<2 TJk01212 "
2-»

J l P 3232

where

k2 = .

(3.2.1)

(3.2.2)

in the half-space and layer respectively.

Also, using (3.1.2) in (3.2.2) lt we deduce

s^/[o3232 * _»/£oi212 = “ P"2 (3.2.3)
rsC*

(3.2.4)
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Similarly

-ATn<: _ //**2 = k 2 p *°2 '[/loi212

Jlo3232
(3.2.5)

Next, on introducing the notation (1.6.17), we have

^ / J .0 1 2 1 2  = p c 12'  J^03232 = p c 3 2 ’

l / [ o i 2 1 2  = P * c * f 2 ' l/ I o3232 = pc*32-

ft
So, we write (3.2.4) and (3.2.5), in terms of c12 , c3 2 , c1 2 , 
*

c32 as

2 _ k2(c12 ~ °2 >

c32

(3.2.6)

*2 K "'u' ~ c 12‘
o o *2 k 2 (c2 - Cio)

s = *2 
c32

Let us now substitute these solutions into the boundary 

conditions (3.2.1). We have

S{332 = t/f03223 + P) v3 , 2 +J^[ 03232 v2,3 = t/?03232 v2,3-
ft

The boundary condition (3.2.1) then gives v2 3 =0 on x3=h and 

hence from (3.1.3), we get the same results as in the 

incompressible case.

That is, the secular equation (3.1.17) is the same as in the 

incompressible case namely,

/  2 *2~'j y---------
* c ~ c 12 /  2 2 

tan kh  ---------- | ^  °32 °12 ~ C
c32 P* * /  2 5fr̂~~c32 /  c —c12
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This result, but not the corresponding result for 

incompressible materials, was given by Hayes and Rivlin (1961b), 

but expressed in different notation.

3.3 Further Problems

The case of propagation in a general direction is worth 

considering, but this is left for future work.

Also, Rayleigh-type waves propagating in a half-space with a 

superficial layer have not been considered here. Those will also 

be examined in future work.
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