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SUMMARY

The objective of this research is to develop a
mathematical model to describe the dynamic and thermo-
dynamic history of a Subsea Cryogenic Gas Release, and
thus allow prediction of buoyancy, area, velocity and
temperature on arrival at the sea surface.

The thesis begins with a review of previous work and
notes the shortfalls in the models produced. This work
concentrates on the main part of the rise, although in
reality both initial and final stages would have an effect.

It is assumed that the gas forms a buoyant plume within
an axisymmetric geometry. From the conservation laws a
system of equations is derived which are then combined with
a number of thermodynamic relations in a computer program.
The semi-empirical formulae used in describing the thermo-
dynamics relate to methane, this being the major consti-
tuent of the natural gas under consideration.

Release rate, depth and pipeline conditions are input
variables. Velocity and void-fraction profiles are
assumed to be 'equivalent' top-hat, with correspondence
between these values and those of gaussian being noted.
Assumptions are made to the bubble size and the heat trans-
fer to the gas with sensitivity studies being performed to
identify the influence of these parameters.

Initially mass transfer is disregarded, but a second
model allows for the dissolution of the gas in the sea-

water and the effect of this on the surface conditions 1is

assessed.
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CHAPTER 1

Introduction

With the ever increasing attention being paid to
achieving maximum recovery of energy from the oil and gas
reserves of the world's oceans, many gas gathering pipeline
networks are being constructed to transport the associated
gas extracted with the oil to suitable landfalls. This gas
was historically disposed of by fuelling offshore facilities
and reinjection into the reservoir with the balance waste-
fully flared.

In addition to the associated gas gathering pipeline
systems, present indications suggest that the exploitation
of gas and gas condensate fields may be commercially
attractive; thus an increase in subsea gas trunklines could
reasonably be expected.

The hydrocarbon gas mixtures transported through the
gas pipelines are generally maintained above super-critical
pressure to prevent liquid dropout; should, however, any
significant loss of mechanical integrity of the pipe occur,
the escaping gases would instantaneously drop in temperature
relative to the new pressure environment (dependent on water
depth). For the majority of hydrocarbon mixtures this
release temperature would be expected to be in the low
cryogenic region of 120 to 180°K, dependent on vapour
composition and water depth. From this point the mechanics,
hydrodynamics and thermodynamic history of the subsequent
vapour rise through the water column is not presently

totally understood. Investigation of the evolution of this
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gas, and in particular, determination of its characteristics
upon reaching the surface is, therefore, desirable. It is
important to be able to answer the question of when and
where the gas will pass through its lower flammable limit,
and hence define the potential hazard interaction length to
adjacent platforms, shipping, helicopters etc. It is also
necessary to calculate the density deficiency caused at the
point of exit, and the area over which this extends.

The petrochemical industry, therefore, has an obvious
need for a clearer understanding of this subject, to which
this research is aimed. The objective is to develop a
computer based mathematical model which can accurately
describe the thermodynamic history of a subsea cryogenic
gas release as it passes through the water column and des-
cribe the buoyancy, velocity, area and temperature of the
gas plume on arrival at the sea surface.

The initial inspiration came from the work of Smith-
(1982), which involved a large release (of the order of
500kg/s) of pure methane from a high pressure pipeline (160
atmospheres) at a depth of 90m, these values being typical
of those to be considered in this work. His work, although
realising that immediately above the fractured pipe a
turbulent gas jet would develop, concentrated on the rise
of a single gas bubble.

Several papers have been written on the characteristics
of rising gas bubbles, e.g. Davies & Taylor (1950), Moore
(1959), Collins (1966), Parlange (1969), Wegener, Sundell
and Parlange (1971), Wegener (1973), and Miksis, Vanden-

Broeck & Keller (1982), to name but a few. The most
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pertinent results to be taken from these papers are, in our
case, the shape and velocity of the bubbles. Rosenberg
(1950) observed that bubbles of less than 1.24mm in
diameter were spherical, while from an equivalent diameter,
de’ of 1.24mm to 7mm they were deformed into an oblate
spheroidal shape. For de between 7 and 17.6mm and a
Reynolds number, Re, between 1600 and 5000 there was a
transition stage from oblate spheroid to spherical cap, with
almost rectilinear motion. For de > 17.6mm (Re > 5000) the
bubbles formed were spherical caps and the motion
rectilinear. From observations of bubble sizes, which will
be commented on at a later stage, it may be assumed that the
bubbles formed would be of a spherical cap shape, and the
various authors propose a number of expressions for the rise
velocity, each being dependent on the bubble size. In the
light of our uncertainty towards the exact bubble size
encountered, there seems little point in going into detail
in deriving the rise velocity and so the:formula quoted by
Smith (1982), which is that adopted by Davies & Taylor
(1950), and whose derivation is given, for completeness, in
Appendix A, will be used.

The actual shape of the spherical cap bubble, denoted
by the half-angle, ©,» and shown in Appendix A has been
proposed by Davies & Taylor (1950), Collims (1966) and
Wegener et al (1971) and all agree on a value of approxi-
mately 50°.

The work of Vanden=-Broeck & Keller (1980) and Miksis,
Vanden-Broeck & Keller (1981, 1982) was devoted to a
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theoretical discussion of the deformation of gas bubbles,
and their shape was calculated numerically. Results agreed
favou;ably with experiments. Smith adopts two methods of
determining the size of the bubbles produced, both of
which predict basal diameters of the order of metres, in
conflict with the more widely reported values of 1-2 cm.
The thermodynamic relationships used by Smith are
adopted in the thesis, and it is the results of his sensi-
tivity analyses, concluding that the surface release
conditions would be determined largely by the bubble size
and the heat transfer coefficient, which provoke the sensi-

tivity analyses carried out in Chapter 6.

Clearly, with the large flow rates of gas we wish to
consider (of the order of thousands of kilograms per second),
giving rise to a multitude of closely packed bubbles,
considering the evolution of a single bubble is not likely
to model the situation adequately. (Use will still be made,
however, of the rise velocity of a single bubble).

A natural progression is to assume that the escaping
gas forms a buoyant plume. An extensive literature search
was conducted, but material entirely relevant to the problem
proved to be very scarce.

Morton, Taylor & Turner (1956), developed an integral
theory for single-phase plumes by deriving conservation
relations for volume, momentum and density deficiency.

They then used experimental observations to fit the velocity
and buoyancy profiles to Gaussian distributions. Morton

(1959) allowed for the fact that there was a greater



lateral spread of heat than of vertical momentum, and hence,
chose two separate Gaussian profiles to fit the velocity and
temperature excess measurements. He also extended the work
from a uniform environment to a stably-stratified one.

Cederwall & Ditmars (1970) then developed, along
similar lines, an integral theory for two-phase bubble
plumes, neglecting the contribution to the momentum flux
from the turbulence. They also introduced the slip (or
relative) velocity associated with the bubbles and the
ratio, A, of gas radius to velocity radius. ) is also
referred to in the literature as the Schmidt number (see
eg. Milgram (1983)). Kotsovinos & List (1977) attempted to
improve the entrainment law suggested by Morton, Taylor and
Turner (1956) by assuming a non~constant entrainment para-
meter. They also observed that it may mot be possible to
ignore the turbulent flux of buoyancy in a turbulent buoyant
plume, which could account for as much as 407% of the trans-
port in the plume.

The work of Brevik (1977) is closely linked to that of
Kotsovinos & List (1977), but instead of an entrainment
law, he used an energy conservation equation. Both he and
Wilkinson (1979) devote their attention to two-dimensional
bubble plumes arising from a line source, whereas we are
really more interested in a single source, giving rise
to an axisymmetric plume.

Unlike most other investigations, which are partly

theoretical and paftly experimental, Tsang (1984) gives a




purely theoretical set of criteria for modelling bubble
plumes.

Haaland (1979), like Kotsovinos & List (1977) looked
at the possibility of having a non-constant entrainment
parameter. Over the past‘few years there has been an
increase in interest in blowouts of o0il/gas beneath the
sea, and, as a result a number of papers began to appear
on the subject e.g. Topham (1975), Fazal & Milgram (1980),
Fanneldp & Sjden (1980), Mundheim et al. (1981), Milgram &
Van Houten (1982), Sjden (1983) and Milgram (1983).

All the aforementioned papers consider the gas present
to be some hydrocarbon mixture, but their experimental work
is restricted to air escapes.

Although these papers deal with depths of the order of
102m, which is relevant to our model, because the gas
involved is released along with an oil escape, the gas flow
rate is one or two orders of magnitude less than that
encountered in the pure gas escape which we are considering.

The majority of papers make reference to Gaussian
distribution when describing characteristic profiles.
Hussain & Siegel (1976), however, make use of Tophat
profiles and Fazal & Milgram (1980) comment that experi-
mental evidence suggests that short-time-averaged gas
fraction distributions may be squarer than Gaussian.
Goossens (1979) and Chesters, Van Doom & Goossens (1980)
make no assumptions as to the shape of the:profile: instead
they talk of "equivalent" values of velocity and diameter,

which the parameters would have were their profiles top~hat.




The dynamics of the present model, which are detailed in

Chapter 2 will follow a similar argument.

Returning to our initial objective, to model the

complete history would involve consideration of a number

of distinct stages.

1. Initial Stages.

Pressure fall in pipeline

Expansion of gas at point of discharge

Contact area and heat transfer to the turbulent
jet initially formed

Size and behaviour of bubbles formed at break-up

of unstable jet

2. Behaviour throughout main part of rise.

Dynamics and thermodynamics of bubble plume rising
through significant pressure range with evaporation
of liquid phase of the gas

Contribution of direct contact heat transfer from
the sea to the bubbles

Influence of large volume of water entrained by

the rising gas

3. Final stages of the rise where surface effects

become important and the entrained liquid flows off

horizontally
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The Final dilution of the gas above the sea surface -
affected both by the state of the gas upon its arrival

at the surface, and the prevailing conditions at that

moment.

It is the second of these stages, known in the litera-

ture as the Zone of Established Flow, to which this work is

directed. A few comments, however, will be made here on the

other three stages.

Stage 1:

This is known as the Zone of Flow Establishment and

will be important in determining the initial conditions for

stage 2. To circumvent this problem a number of assumptions

are made. Some of these are mentioned here while others

will be introduced later.

(a)

Due to the large pressure difference between the
pipeline and the ambient pressure outside at the point
of release, the escape will be at sonic velocity and
the flow will continue at a uniform rate until the
pressure in the pipe falls below a critical value (for
methane this value is approximately 1.83 times the
ambient hydrostatic pressure outside the pipe). After
this the rate will be reduced, and the velocity will be
subsonic.

(for details see Appendix B)

The most serious conditions are those which arise




immediately following the fracture, and so we are
justified in making the assumption of a constant

release rate of gas.

(b) The gas is assumed to undergo an adiabatic/isentropic
expansion as it leaves the pipe. This represents the
worst possible condition, with the greatest drop in
temperature. In reality it will probably be somewhere
between isentropic and isenthalpic, which would result

in a smaller temperature drop.

For small flow rates this region does not extend very
high. Fazal & Milgram (1980), quote a height of 5 - 10
times the exit diameter before the 2nd stage is reached.
For an exit hole of about 0.4m (typical pipe size) this gives
a height of 2 - 4m which is negligible over a total height
of 100m. Even the presence of higher release rates should
not increase this greatly and so in the model, this height
will be ignored and the second stage will be assumed to
commence at a depth equal to that of the gas escape.

Milgram (1983) also found that the exact height of
stage 1 was unnecessary since the plume equatiomns, which

are valid throughout stage 2, are stable to perturbations

in the initial conditions.

Stage 3:

This is known as the Zone of Surface Flow and has been

considered in some detail by Goossens (1979),Fauneldp & Sjoen(1980)
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Milgram & Van Houten (1982) and Milgram & Burgess (1984).The region
extends from the upper surface to a depth about equal to
the plume diameter. Most of the gas is to be found in the
central region, spread over an area about equal to the plume
cross-section with some of the bubbles (together with oil
drops in the case of an oil/gas escape) surfacing further
out.

The slight spreading of the gas by the horizontal move-
ment of the liquid can only improve conditions existing if
this stage is ignored: the density deficiency will be
reduced and the increased area of contact between the
bubbles and the warm surface water will increase the heat

transfer and thus increase the gas temperature.

Stage 4:

We shall just mention a few of the factors, suggested
by Smith (1982), which would aid the gas dispersion, should

it not be positively buoyant.

(a) Heat transfer to the bubbles from the significantly

warmer air.

(b) High gas velocity at the surface will tend to
project the gas into the atmosphere so that dilution

occurs at heights of perhaps 10's of metres.

(¢) Heat transfer from the sea-surface to the cloud is

enhanced by sea-surface movement.
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(d) Accidents (due to e.g. anchor dragging) are more
likely in severe weather which will increase speed

and amount of atmospheric mixing of the gas cloud.

A very detailed piece of work pertaining to stage 4,
sponsored by the U.S. Coast Guard, has just appeared, see
Havens & Spicer (1985 a,b,c): this work could easily be
used in conjunction with the present to find conditions
after the surface escape of gas.

Concentrating on stage 2, Chapter 2 is concerned
with deriving a set of dynamic equations from a set of
conservation laws.

The initial conditions will be those that arise from
stage 1, and it will be assumed that the equations of

Chapter 2 are valid all the way to the surface.

Chapter 3 is devoted to the thermodynamics of the model.
This does not seem to have been covered in the literature.
All references quoted assume an isothermal rise, except for
Fannelgp & Sjden (1980), Fazal & Milgram (1980) and Milgram
& Van Houten (1982) who do mention a non-isothermal rise but
do not go into any details on the mechanisms involved. 1In
view of the fact that most of theother papers refer to air,
an isothermal rise is probably the correct assumption since
there will be no dramatic pressure drop, with associated

temperature drop, as the air leaves the pipe.

Chapter 4 combines the dynamics and thermodynamics into

a computer based mathematical model.
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Chapter 5 is concerned with reviewing the experimental
work carried out, and assessing how well the observations
agree with the numerical predictions.

As mentioned previously, Chapter 6 looks at the
sensitivity analyses of bubble size and heat transfer
coefficient.

Wegener, Sundell & Parlange (1971) observed spherical
cap bubbles of volume 7.5-151 cm3 in an experiment with
air bubbles in a 1.5m tank. Relating this to the '"equiva-
lent" diameter which a bubble would have were it spherical
we have diameters of 2.43 - 6.6lcm. Milgram (1983)
observed bubbles of volume 0.01 to 33cm3 for air bubble
plumes in water, with the majority having volumes in the
range 0.02 to O.Scm3,'while Clift, Grace & Weber (1978)
quote bubble sizes of 1-2cm, a similar range to Fannelgp
& Sjden (1980) and Topham (1975). It would seem, therefore,
that the bubbles formed are most likely to have an equiva-
lent diameter of the order of a few centimetres. The
occurrence of larger bubbles, however, could have a
dangerous effect on the surface conditions, since for
these both in terms of contact area and contact time the
contribution of direct warming from the sea water will be
reduced. It is important, therefore, to investigate the
scale of this effect.

There have been widely varying suggestions as to the
value of the heat transfer coefficient, from 8W/m2°K by
Smith (1984) to 100-200 W/m2°K by L'Ecuyer in his paper

"Heat Transfer to a gas bubbling through liquid". The
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purpose of the sensitivity analysis is to try to allow
predictions to be made for a heat transfer coefficient
lying between certain limits, thus removing the require-
ment of an exact value.

Chapter 7 is an extension to the model to allow for
mass transfer through dissolution of the gas in the water.
This is done by adding a term to the mass balance equation
of the gas and introducing another mass balance equation for
the:.solute. The mass transfer coefficient is discussed, and
the necessary adjustments to the program are noted.

A further extension would be to allow for loss of
mass through hydrate formation. This has been considered
by Topham (1978, 1984a, 1984b) for both the single bubble
and the bubble plume. His method isto obtain a rate
equation which is then included as an extra term in the
equation of mass balance.

His main findings were that the hydrate formation is
closely linked tothe small scale bubble characteristics
such as bubble size and shape. Thus, the behaviour is
sensitive to the actual choice of plume model and Topham
points out that present models impose severe restrictions
in this respect.

Hydrates can exist for natural gas at depths below
200m, while for total hydrate formation Topham concludes
that depths of 500m are necessary for single bubbles and at
least 800m in the case of a bubble plume, due to the:
enhanced velocity within the plume.

At presat, the depths of interest are approximately




14
100m, so hydrate formation is not casidered. As drilling
extends into deeper waters, however, clearly hydrate forma-

tion could have a pronounced effect on the state of the gas.
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CHAPTER 2

DYNAMICS OF GAS ESCAPE

2.1 Basis for Plume Model

To obtain some starting point for the model, the

following assumptions were made.

1. Gas release is from a single source; i.e. it is assumed
that the shorter limb of the pipeline would not maintain

a continuing release.

2. The gas forms an unconfined buoyant plume.
3. Axisymmetric and non-rotating geometry.

4, Gas concerned is Methane, rather than a multi-component
mixture - this simplifies greatly the thermodynamics,
and should still give a good indication of the true
situation as methane will be the major constituent of
the escaping gas. (Typical values, quoted by Britoil,

for North Sea gas are 76.10%, 75.35%, 62.28%, 59.58%.)

Using the model defined in Chesters et al. (1980) and

Goossens thesis (1979) as a basis, we note the following:

1. No assumption is made as to the radial profiles of the
liquid velocity or gas fraction. Instead the local

mass and momentum fluxes are used to define an equivalent
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diameter d and velocity v which the plume would have

were its velocity profile square.
No assumption is made as to the contribution to the
total momentum flux from the mean flow and the fluc-

tuating velocity component.

Two basic modifications have been incorporated, and the

model reformulated.

Due to the dramatic decrease in temperature of the gas
as it exits the pipe, it will enter the two-phase
region and so exist as a mixture of liquid and vapour.
Instead of requiring the gas density, pg, and gas
velocity, Vg’ as in the basic two-phase model mean

and v, must be

°B B
substituted. Using some simple ideas from the continuum

values for the two-phase bubbles,

methods for mixtures (Appendix C) pp can be expressed
in terms of the densities of the two phases, and it will
also be assumed that vy = vg.

The expansion is no longer assumed to be isothermal.
This introduces the need for thermodynamics, which will

be considered in Chapter 3.
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2.2 Derivation of the Plume Equations

The plume may be thought of as existing in three

distinct stages.

1. Close to the gas-injection plane, the liquid has no
vertical motion except in the immediate vicinity of

individual bubbles.

2. This wake liquid shares its momentum with adjacent
liquid and at some critical height all the liquid
between the bubbles is in upward motion. This is the

beginning of the second stage when the flow can be

truly thought of as a "plume".

3. The plume reaches the surface and the entrained liquid

flows &ff horizontally.

Stage (1) may be thought of as being short in duration
but establishing the initial conditions for stage (2).

Stage (3) is mentioned in the introduction, but is ignored

in the development of the model.
The evolution of the plume is determined by:

1. An increase of momentum flux which leads to an initial

contraction in the plume width.
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2. An increase in mass flux which then dominates to

create an expansion in the plume width.

CONSERVATION EQUATIONS

These are derived by consideration of a control volume

~%
element of the plume.

Mass out

|

Entrainment . Az v
, l z, measured down-
T wards denotes
Mass in

pressure head

rather than depth
CONSERVATION OF MASS

GAS

Under the assumption of NO MASS TRANSFER, the mass flux

of gas, ﬁg, will be constant. This may be written as

m = m ]
&out gin

where a dot above a symbol will denote a rate, or flux.

Thus,
g_r'r_lg = 0 (2.2.1)
dz

which implies
' = m 2.2.2
my . ( )

0

where hg is the initial mass flux.
o

where “fhe vertical parts of the contrdl surface
Le outside e plume .
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LIQUID

Letting él be the mass flux of liquid we can write

my = my + rate of liquid mass entrainment
out in

into control volume

Taking the limit as Az -> O

gél = - Rate of entrainment
dz

ENTRAINMENT LAW

Assuming that the radial flow of liquid into the plume
will be proportional to the vertical plume velocity, the
turbulent entrainment law for single-phase axisymmetric

plumes suggested by Turner (1969) is

dz
where uj =  local plume velocity
dp = local plume diameter

and K is a constant, assumed to be the same to within

experimental error as that for single-phase free jets.
From experiment work Ricou and Spalding (1961) found

that, in terms of the equivalent velocity, v, and the

equivalent diameter, d, the entrainment law may be written

as

dmy -Kpyvd (2.2.4)
dz
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K = 0.25

A similar expression was derived by Morton, Taylor and
Turner (1956), but with Ky = 0.26

In our case, the presence of the gas bubbles will
increase the diameter, and hence the circumference of the
plume, thus increasing the area of entraining surface.

This may be accounted for by restating (2.2.4) as

Ei.r_"ll = -k
dz-

1plvdeff (2.2.5)

where d ¢¢ is defined in terms of the equivalent diameter

in the absence of gas, d, and the cross-sectional area of the

gas, Ags by
2 - 2 =
ggeff ad® o+ KzAg, K2 0(1) constant (2.2.6)
4 4
K1 may also be altered, but at this stage we assumed that
K, = 0(0.25). (2.2.7)

CONSERVATION OF MOMENTUM

Consideration of the forces acting on the control volume
" yields
Downward force =  weight of control volume

glojay + pBAg] (~22) } (2.2.8)

where , a® noted ot  Beginawng of chaoptet, Po e fers

to the mean c\en:—sltu./ of the two-Pphase Pubkles.
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where Ay Ag refer to the cross sectional areas of liquid
and gas respectively and g denotes the acceleration due to
gravity.

Similarly,

il

Upward force Buoyancy

weight of displaced liquid

]

gloy (&) + 2] (-a2) (2.2.9)
Using the relation

Force = Rate of change of momentum (2.2.10)

and calculating the net force from (2.2.8) and (2.2.9) we

obtain

AM = g(p.1 - 0p) Ag (-Az) (2.2.11)
where M denotes the momentum flux.

Taking the limit as Az ->0

aM = -p(p, - p.) A 2.2.12
= glpy - pg) A, ( )

In this derivation the following assumptions have been

made.

1. The viscous and Reynolds stresses on the vertical parts
of the control surface may be neglected as this part of

the surface lies outside the zone of large velocity

gradients.

2. The extra forces exerted on the horizontal portions of
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the control surface due to departures from the hydro-

static pressure, Py 82, together with the surface tension

force on bubbles cut by the surface may also be neglected.

It is now necessary to write down expressions for the
mean mass and momentum fluxes. Before writing these in terms

of the equivalent values, v and d we shall consider the more

generalised situation.

TIME AVERAGING

(Details of averaging techniques may be found in Ishii

(1975)) This has the effect of

1. Smoothing out the turbulent fluctuations associated

with the two-phase flow.

2. Transforming the two phases which alternately occupy
a given point into two weighted continua which exist

simultaneously at this point.

As is customary for single-phase flow and is also
possible for two-phase flow, density fluctuations are
neglected
i.e.

o, = 04 (2.2.13)
and so we only consider the velocity. We can express the
liquid velocity, Uy in terms of its mean and fluctuating

component as follows

4. = §.+u (2.2.14)
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where the overbar indicates the average over the time the
liquid is present,

i.e.

1
| =

u u, dt (2.2.15)
1 At 1 A

Aty
We use the above idea to write down expressions for the mean

mass and momentum fluxes.

MASS FLUX

For the liquid, at a given point

mass Mux Jarea = P Uy if liquid is present
0 if no liquid is present
(2.2.16)

Thus, over a time increment, At

mean mass flux = 1 Dlu]dt + 1 0 dt
At At
Aﬁl Atg
= at; py L |ugdt (2.2.17)

At Atl

t
A%y

"1

where Atl, Atg refer respectively to the time the liquid

and the gas is present but,

if @ = fraction of time gas present = éEg (2.2.18)

At
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then

mean mass flux at a point = pl(l-&) ﬁl (2.2.19)

Integrating across the plume gives the mass flux at a

given depth

~ 8

-

m, = 0 (1-a) U, 2mx, dr, (2.2.20)

Similarly for the gas

8

ci

2nr, drx, (2.2.21)

o]

where the double overbar denotes an average taken over the

time the gas is present.

MOMENTUM FLUX

In this case, for liquid at a certain point

Momentum R/ = ¢ qu,?  if liquid present (2.2.22)
ALt
0 otherwise
giving
mean value of Momentum flux = 1 p1u12 dt + 1 |0 dt
at a point At At




2
AEI Dl_i_ 4y dt
At At
Atl
u 2
1
2
= 0 (1-8) v (2.

25

2.23)

and integrating across plume we have that the mean Momentum

flux at a given height is given by,

01 (1-3) ul2 2nr, dr,

L.
[
]
U ov——--—138

= Myt M
where oo
?11 = P (1-8) G‘lz 27, dr,
O
Moo= oy | (1) G 24r.dr
(o]

(2.

(2.

(2.

(2.

(2

I(Appendix

2.24)

2.25)

2.26)

2.27)

.2.28)

D)

As for the mass flux, we can express the mean Momentum flux

for the gas
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2z, dr, (2.2.29)

o

which again may be split into two parts, one arising from
the mean flow and the other due to the fluctuating component
of the velocity.

For single-phase free turbulent jets, it has been
shown that ﬁlz 0.1 ﬁl so that concentrating on the mean
velocity should give reasonable results. In the case of two-
phase buoyant plumes the two terms may, at least initially,

be of the same order and so neglect of M, would lead to an

1
apparent loss of momentum.

Experimental results of Chesters et al (1980) show that

%
.

Ml may be as little as 40% of the totai momentum flux, Ml’
near the base of the plume although the ratio'ﬁl/ﬁl
tends to rise to around 0.8 further up the plume.

Chesters et al (1980) neglected the momentum of the
gas which was negligible in comparison to that of the
liquid. 1In refining the equations, however, to take account
of the gas itself existing in two phases, it is not

necessarily obvious that the momentum of the gas bubbles

may be ignored and so this term will be retained.

Combining equations (2.2.24) and (2.2.29) yields

(=]

M = 2nDl (1-3) uy gﬁg'+ 2npg [3
o o (2.2.30)

u

r, dry

Neglecting the contributions from the fluctuating




components (2.2.30) reduces to

oo
. N - 2
M =27 P (1-o) u;  rdr + 27 pg[ (3 ug r, dr,
)

27

(2.2.31)

We do not, however, use equations (2.2.20), (2.2.21) and

(2.2.31) directly.

In terms of the equivalent velocity, v, and diameter,

I3 . . . ~N A
d, assuming negligible gas fraction,q , we can write down

the following expressions for the mean mass and momentum

fluxes.
Iﬁl = pl 1T_d2V
4
Ml = oy ggz v2 =m v
4

d = 2ml
Y orp My
= M
v Tl
my

SLIP VELOCITY

We re-express the gas velocity, ug, as

=u +
u = Uy Ur

(2.2,32)

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.36)
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Simil

veloc

where K. v
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h

u slip velocity

relative velocity of the bubbles with

respect to the surrounding liquid

arly, in terms of v, we may express the mean gas

ity at a given cross-section, Vg’ as

vg = K3v + v Ky = 0(1) (2.2.37)

3 mean velocity of liquid in which the

bubbles are situated

v = mean relative velocity of the bubbles with
respect to the surrounding liquid at a given

cross-section

and v, = u, if we assume u. is constant across the
plume.
Assumptions
1. Except initially where the gas fraction may be high, V.
may be approximated by the free rise velocity of a-
single bubble.
2.

V. is related to the size of the bubbles by

v. = /54 (2.2.38)

r

where d  is the equivalent bubble diameter (see

Appendix A ).
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Observations on bubble size have already been mentioned
in Chapter 1. Using (2.34) they predict velocities of 20-30
cm/s. Haberman & Morton (1954) suggest a slip velocity of
0.28m/s for natural gas;Brevik (1977) infers that V. should
be 0.4m/s, which is somewhat larger than the normal free rise
velocity of a Single bubble but he feels that due to the
strong turbulence in the air-bubble plume the two situations
are not directly comparable. He does, however, conclude that
the results are not sensitive to small chances in Ve A
point also raised by Milgram (1983). He used a value of V..
= 0.35m/s, based on his observations of bubble size together
with the correlation of Haberman & Morton (1954). He found
that the effect of varying the value of v. by 0.05m/s was to
produce a change in the vertical plume velocity of about 3%.
Neglecting the slip velocity altogether, however, gave a
variation of 20%.

It seems safe to say, therefore, that the exact value of
Ve is not essential, but it cannot be discounted altogether.

The present model will in general use a bubble size to
give V. = 0.3m/s.

In terms of the average gas velocity, Vg’ we may write

the following expression for the mean mass flux of gas.

*

he = pp Vg Ay (2.2.39)

and similarly, for the momentum flux

-

ﬁg = og v 2y = ny (2.2.40)
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Using equations (2.25) and (2.232), and assuming Ay is

constant

'Z-n o, [2dvd(d) + > av] = - K

1 P1 VvV degs (2.3.41)
dz dz

while equations (2.2.2), (2.2.12) and (2.2.33) yield

2 2 .
T p [2dv® d(d) +2d°v dv] +m_ dv. = -g (p_. - py) A
z 1 dz az o P 1 B” Tg
(2.2.42)
using eqn (2.2.6) to substitute for daggo
d = [a?+4kya )" (2.2.43)
eff — g e
m
and eqn (2.2.37) to substitute for vg
dv, = Kgdv + dv (2.2.44)
dz dz dz
we can then rewrite (2.2.41) and (2.2.42) as
5
LS p]: [2dv d(d) + dzd_v] = "Klpl vd [1 + ilsz_ég ]
4 dz dz n d?
(2.2.45)
1oy 2dv? d(d) + [ 1o 2d%v + Ky m, 1dv 4, IVr
4 dz 4 %o dz %o dz
= -g(py -pp) A, (2.2.46)

Subtracting v x (2.2.45) from (2.2.46) gives




2 . .
[101d% + K3 m, Jdv = -g(pg -op)A, - my dvy

g
o —=
dz dz

%
2 2
+ Kyo,vod [1+ 4K2§g ]

1Td2

L
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(2.2.47)

subtracting (2v + Ks m, ) x (2.2.45) from (2.2.46) gives

¢

TPy d2
4
9 .
PV d d(d) - oV ZdK3 m d(d) + mg dv
dz 4 Q dz ° dz
2
p1. m d
'z
= -3 (ol -pB)Ag + Ky o v(2v + K3 mgo ).
2
o md /4
L
dl1 + 4K,A_ 12 (2.2.48)
'nd2
calo —o) A +m oLk dv (2v 4 Kam )1+ 4KA
=8le ") Ay Ty T Ky 3 2
dz 2
2 m o2
(mp 4d /4‘, d
2
(20111 dv® + 2v K, m_ ) (2.2.49)
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4

. 2 ;‘
d = e - - 2
av gGﬁ pB) Ag mgo dvr + Klpl ved [1 + 4K2Ag]
dz dz m d2
(pymd%v + Ko m_ ) (2.2.50)
pl 3 go el
Using the relations
A = m (2.2.51)
g &o
vag
and Vg = K3v + V. (2.2.52)
we finally arive at
_ . o _p . _ 0 2 . .
d(d) = g mgo( . g) + mgo dv. - K,P dv[2+ K3mgo 1+4K2mgo
dz dz - d2v A ﬂ«;————
T
pB(K3v+vr) 1 /4_,B d (K3v+vr)
20, mdv? [1+Kym ] (2.2.53
1 " — 3 g .2.53)
4 O
2
p.md%v
1 /4
and
. . 2 . %
dv = -g m_ ( =pp) = m_ dv_ + K, p, dv° [1 + 4K, m ]
a1z &, L 8, r 1"1 2 86
dz 9
g (Kgv+v ) mppd“(Kqvtv )
) .
oy "V g . Kym ] (2.2.54)

¢}

2
p.nd%y
1 /4




33

Equations (2.2.53) and (2.2.54) form a system of
ordinary differential equations, which may be solved

numerically.
dvr

CONSIDERATION OF TERM dz

With v_ given by equation (2.2.38) we have

dv, =/_5_' a(dy) (2.2.55)
4d dz

dz e

The value of this term is, therefore, dependent on the
growth pattern of the bubbles in the plume. This has not
been fully analysed yet, and so to make the equations as
simple as possible it has been assumed that the bubble size
does not grow, but rather that as the volume increases the

bubbles break up into a larger number of similarly sized

bubbles.
Hence

dvr =0 (2.2.56)

dz

and this term may be omitted from egns (2.2.53) and (2.2.54).
Perhaps a more realistic assumption would be that the
bubbles increased to some critical volume, VC, say, where
they then split to form two bubbles, each of volume %VC,
which would then follow the same pattern of expanding and
splitting.Fanneldp & Sjden (1980) note that individual

bubbles will grow to a critical size, break up, and grow
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again.

Sevik & Park (1973) and Lewis & Davidson (1982) are
concerned with the splitting up of bubbles, and both papers
propose a critical Weber number, We, at which this will
occur. The Weber number can be thought of as a ratio of
pressure forces to surface tension force. This, however,
has not been investigated further and so the assumption
(2.2.56) will stand.

Making our simplification, however, reduces the

equations to

. 2 . .
d(d) = gmgo (01 "DB) - kl P1 dv® [2 + KBmgo ][1 + 4K2mgo ]
— )
dz DB(KBV + Vr) plﬂd V/A PRT d2(K3v+vr)
20, mdv? [1 + K,m ] (2.2.57)
1 Y Mg
4 2
pymnd V
1 /4
. 2 . %
dv. = -gm_ (p;=-pp) * Kyp,dvi[1l + 4K, m ]
dz g, 1 "B 1*1 278,
244
DB(K3v+vr) pBﬂd (K3V+Vr)
d2 .
PI™Y [1 + Komo ] (2.2.58)
4 3 o
pymd vy
4
If we let
h =2z -2z = height above injector (2.2.59)
d = -d (2.2.60)

[N
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and so, equations (2.2.57) and (2.2.58) become

1
_ . 2 - . 'i
d(d) = —gmg (Pl -‘B) + KlpldV [2 + K3mg] E1+4K2mg ]
dh O Q (o]
dv 2
pB(K3v+vr) P 4T /4 pgrd (K3V+Vr)
2 mdvZ[1 + K3& ] (2.2.61)
4 8o
2
p. md%v
1 /,,
d - n (pi-04) - K, p.dv® [1 + 4K.m 1%
av g g P17PR 1P 2Mg
dh o [ }
2
pB(K3V+Vr) and (K3V+Vr)
0y 1d%y [1 + K3$ ] (2.2.62)
4 %o
2
pmndv,
1 /4

INITIAL CONDITIONS

As previously indicated, these are determined by the
transition from stage 1 to stage 2, whereby all the liquid
between the bubbles first attains an upward velocity. Thus,
the liquid immediately surrounding the bubbles moves with
velocity of the order of Vo while the velocity of the liquid
exactly between the bubbles is almost zero. We, therefore,

make the assumption

V,

o = K,v_ K, = 0(0.5) (2.2.63)

for the initial equivalent plume velocity, Vo
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The other initial condition we require to solve the
system of ordinary differential equations is do'
Again following Chesters et.al (1980), Goossens (1979),

if we assume the bubbles rise rectilinearly in stage 1, we

shall have

(doggdy = dinj (the width of the gas injection
device) (2.2.64)
and so
2 _ 2
™y = md, RyA, (2.2.65)
& 4
Now
A = m
g £
)
DgO(KBVo + V) (2.2.66)
and so
2 . 2
do = dinj 4K2 Agb
T
= 2 .
= dinj - 4K2m
g, w . (1+K K, ) (2.2.67)
S S —
- inj 2"0
ﬂVr(1+K3K4) (2.2.67)

where G, denotes the initial volumétric flow rate. .Using
this value of do’ however, would lead to problems for the
case we.are interested in where the flow rates, G,, are

high.

As may be seen from eqn (2.2.67), there are two limits
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1. When second term on RHS =->0, we have

d = d, . (2.2.68)
o inj

This is the case for very small gas flow rates

2. When second term on RHS -> dinjz’ we have

d0 = 0 (2.2.69)

This is the case when the injector area is all covered
with gas while no liquid is entrained inside the gas jet, and
occurs for high gas flow rates.

Thus, it is this second limit which causes problems in
our case.

It can be seen that if the diameter of gas injection
or initial relative velocity of the bubbles (which is related
to the bubble size) is too small or the rate of gas flow is
too great then the second term will be larger than the first
term on the RHS of (2.2.67) and so the equation cannot be
used to determine the initial value do'

Since d, ->0 as the gas flow rate increases, it seems

reasonable to assume for our cases of high flow rates that

do = 0.

It should be noted that the gas jet formed will break
up into a bubble plume and start to entrain liquid at some
hight above the injector which will be much greater than in
the case of bubbles forming immediately at the lower gas
flow rates.
There is evidence (Kobus, 1973), that the overall plume beha-

viour is not altered, and in the light of our depths of
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interest being large (i.e. O(lOz)m), we shall still ignore
the height of stage 1.

Upon returning to the system of equations (2.2.61),
(2.2.62), it can be seen that due to the way the diameter

appears, putting d0 = 0 would cause problems.

If, however, we modify the system by expressing d in

terms of the cross sectional area of the liquid, A

l’
defined by
A, = qd? 2.2.70)
1 - T ( -
4
then
dAl= m d d(d) (2.2.71)
dz 2 dz
and,
_ . “ 2 - 1/2 .
dd) = gm_ {0y -ep) = Kypy dvi[1+akym, I*[2+kgmg ]
dz S

DB(KBV'+ Vr) ndzoB(K3v+V2 0 frdzv/
4

20 mdv? [1 + K.m. ]

1 WZ_M 3 g,
L .2
p. md v
1 /4
. ) . :
= (pl—-oB)gmg - Koppdvi[1 + Kymg T2 + m, ]
o ‘ 0 o
P18y7
pB(K3v+vr) AlpB(K3v+vr)
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_ 2 .
where D = 2p1 ﬁl [1 + K3mgo]
Ol. Alv
= (® -p dgm_ g - K0d2v2[1+K m ]%[2+K m 1
1~ B"" g 11 27g, 37g,
QB(K3v+vr) Af)B(K3V+Vr) ) (Av
‘2(Jv2A [1 + K,n ]
171 37g,
P 141V
Hence,
T4 d@d) ="d% (o -po)em 2 2 . % .
) AL TPBI8M gy - KiP d%v® md[1+K,m %[ 24K gm
dz 1 2 &o &o
pp(Kgv + Vr)
AlpB(K3v+vr) plAlv
20 v [1+K.m_ ]
1 3'g
o]
plAlv
=> dA, = 2A, G- 5) gm - 2K.p-V2A. hA, E[1+ Kom 1% 24K am ]
1 167 03) 8mg 1°1° 410 2Mg 3"g
(o] ( ) (o} (o]
dz -
OB(K3V+vr) AlpB(K3v+vr) plAlv
20 va [1+K 5 1
1 1 3'g

Q

014V




and

= Al(pl‘pB)gmgo -
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2 . ;2 .
2K pqv [Al + Kngo] [2A1+K3mg ]

—— 0

<

v

pB(K3v+Vr) P

= Al(ol-pB)gmg

2 L]
PV [A1+K3mgo]

PV

. . ;2'
- 2K1 V[ZAlplv + K mg ]{Al +K2mg ]

3
0 o So
DB(K3V+Vr) v pB(K3v+Vr)
V[alvA1+K3mgo]
. . - 1/2
= (pl—pB)gmg Ay - 2K1(2Alplv+K3mg )[A1+K2mg ]

O

o 8}

opV(Kgvtv ) /T pg(Kav+v )
(plvAl+K3mgo) (2.2.72)
. 5 . L
dv = 'gmgo<0pr) + Kyoqdv [1+4K2mgo ]
dz 9
pB(K3V+Vr) nd pB(K3v+vr)
o ﬂd2V[1+K f ]
I'— 3g, T
4 [
p.md v
1 /
4
: Y a :
= -gmgo(pl pg) + Kip v’ 4Ag [1+K2mg0
QB(K3V+V ) m DBA1<K3V+Vrj
DlvA1[1+K3m ]
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o 2 . %
= -gmgo(pl- %)+ 2Ky oyv [A1 + szgo ]
pB(K3V+Vr) ./E_ pB(K3v+vr)
(plvAl + K3mgo) (2.2.73)
or, letting h = z -z, d = -d
© dh dz
da (2A,p,v+K.m_ )[A,+K m ]% m (p,-pp)A
1 = 2K 1°177 3% 7T T &g MP17PB/M
o a op(Kgv+v ) ov(Ravv )
(plvA1+K3ﬁ1gO) (2.2.74)
dv = gm_ (p,-pg) - 2K, o,v% [A] + K,m 1%
IR g, 1 'B 1 1 1 27,
/T 0
p
p(Kgviv ) p(K3vtv,)
(plvA1 + K3mgo) (2.2.75)

and then (2.2.74), (2.2.75) may be solved numerically to give

Al, V.

VOID FRACTION

The void fraction,a , is
development of the model. It
the density deficiency of the

The void fraction may be

an important parameter in the
will be required in calculating
sea water.

defined as

o cross-sectional area of plume occupied by gas

cross~-sectional area of plume

(2.2.76)
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Using (2.2.6) this may be written as

nd” + KZA (2.2.77)

B~

Use of (2.2.51), (2.2.52) and (2.2.70) reduces this to

A +Kom (2.2.78)
27g

/pB(K3V+Vr)

A little manipulation results in

a = K &

2 go

szgo + AlpB(KBV+Vr) (2.2.79)

which may then be evaluated at each step, once Al,v haveave

been determined. __._

2.3 Note on Derivation - work of Sjden (1983)

The arguments of Chesters et.al.(1980), involving a
control volume do not seem entirely rigorous. Sjden (1983)
gives a very detailed derivation of the plume equationms,
The Sjden model, however, seemed to show many similarities
to the Chesters model and so, in order to be able to use
Sjden's results for comparison purposes, a check was made

as to how closely the models matched, where the differences,
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if any, existed; and how such differences altered the
solutions obtained.

Sjden begins with the general conservation equations
of mass and momentum for both the gas and liquid phases,

plus extra jump conditions for interfacial mass and momen-

tum balance. From here he employs a number of simplifying

procedures.

1. He takes weighted time averages to smooth out turbulent

fluctuations and transform the two phases which

alternately occupy a point into two weighted continua

which exist simultaneously at that point.

2. He assumes stationary flow, axisymmetric and non-rota-

ting geometry, no interfacial mass transfer, incompressible

liquid phase and neglects viscous stresses, pressure
differences between phases, surface tension, body forces

other than gravity and density fluctuations.

3. Each variable is expressed as the sum of a weighted

time average plus a fluctuating component.

4, The two momentum equations are combined to produce a
"Mixture-Momentum" model which allows interfacial
stresses to be replaced by relative velocities between

the phases at each interface - these being easier to

measure.

The closure problem is discussed, and to reduce the

number of variables an order of magnitude estimate removes
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the gas phase tefms from the mixture momentum equation
(this simplification being one of those made by Chesters,
but without detailed verification).

Finally, by integrating across the plume, the system
of partial differential equations is reduced to a set of
integral equations which can then be further reduced to a
set of ordinary differential equations by the application
of appropriate velocity and void fraction profiles, together
with suitable boundary conditions. As with Chesters' paper,
Sjden mentions the contribution made to the momentum flux by
the fluctuating component of the velocity, but concludes
that the contribution will be of lesser importance in the
full scale than in the corresponding model and so may justi-

fiably be ignored.

This leaves the set of integral equations as, Sjden

(1983), p.59,

[e+]

2w lap (w1 + wng r.dr, = mg (2.3.1)
g o)

o
d (1- o) Wy r, dr, = - [nkvl] I_&-—>°° (2.3.2)
dz J

e o
d (1 -a) wl2 r.dr, = g |qr.dr, (2.3.3)
dz

O
(e}

where velocities, w, refer to time-averaged values.

These may be directly related to the equations

derived from the control volume considerations of Chesters
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et al. (1980), as we now show.

Since Pg is assumed constant across the plume, and
using the mean value theorem for integrals, (2.3.1) may

be written as

o]

by Vg 2T|orudr. = I;'lgo (2.3.4)

where Vo is the mean gas velocity over the area where

bubbles are present

o

but 21| a i dr, = Ag (2.3.5)

so that eqn (2.3.1) reduces to

A - : 2.3‘6
Pg Vg g Teo ( )

which corresponds exactly with eqns (2.2.2), (2.2.39)
In the case of eqn (2.3.2), the R.H.S. refers to the
inflow of entrained liquid, and by applying a similar

hypothesis to the one proposed by Taylor (1945), he

replaces -[1;}71]1%_>oo by
2.3.
< bwC (2.3.7)
where
B = entrainment parameter
b = characteristic plume radius
w = centre-line vertical velocity
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since Py is constant we now rewrite egqn (2.3.2) as
[=]

d oy (1-0) vy 2m rodg, = 21 B b W, Py . (2.3.8)
dz .
o
Comparing this with eqns (2.2.5) and (2.2.20) it may be seen

that there is exact correspondence if
Klp v d = 27 B b WPy {(2.3.9)

(the negative sign accounting for the fact that Chesters
and Sjden measure =z in opposite directions)

ie if
v d = 2m 8 b W, (2.3.10)

T W 2b (2.3.11)

From experimental observations, values for B have
been proposed e.g. for a Gaussian profile Fanneldp & Sjden
give B(;= 0.07 - 0.08 for small flow rates rising with
increasing flow rates or increasing source depth to a
value approaching %; = 0.1,

Haaland (1979) questions the possibility of a constant
value for the entrainment parameter in a buoyant plume when
his observations suggest that B is approximately 0.057.
initially, in the jet region, but becomes around 0.085 in

the plume region. He goes on to derive a variable expression

for the entrainment parameter. Milgram (1983) also allows

for the entrainment to be dependent upon local plume




47
properties.

In the present model, however, we shall keep things as
simple as possible by maintaining a constant entrainment
parameter. The relationship between an equivalent entrain-
ment parameter, corresponding to an equivalent diameter and
velocity, and the constant Kl can be seen by comparing
the expressions for the liquid entrainment, (2.2.5) and

( E.11), and noting that v = Wi deff = 2b;. The result

is that

K1 = 7 B (2.3.12)
Finally, rewriting eqn (2.3.3) as

d Py (1-w) le 21 r,dr. = gpl aZm r, dr, (2.3.13)
dz

and comparing it with eqns (2.2.12) and (2.2.26) it may be
seen that there is correspondence, using eqn (2.3.5), and
allowing for the fact that Sjden has ignored the contribu-
tion to the momentum from the fluctuating component of
the velocity .

Again the negative sign accounts for the difference
in the direction of =z.

The only difference is that in the actual model
considered in this work the density of the bubbles is not
ignored, although it was in Chesters' model, giving rise to

the term (p1 -pB) rather than simply Py

Sjden's work then concentrates on assigning Gaussian
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profiles to the velocity and void fraction.

2
-(n, )
/b
Wi = WCR, ( 2
@ “ag P (2.3.14)
so that
b = the effective half-width of the plume
Ab = the effective half-width of the part
occupied by bubbles
and

W s o are centre-line values

\

whereas Chesters 'equivalent' velocity and diameter refer to

Top Hat profiles.

Y1 - f Ye Iral < bT
0 | %l 2 bT (2.3.15)
o = o e |r¢\| < kaT
o Tl > Arby
with v = LA deff = ZbT and Ap = 1

Since the basic set of dffferential equations 1is
the same, comparisons may be made of the solutions so long
as the relationships between T&p Hat and Gaussian values are
known. |

The relationships used are summarised below, and shown

in detail in Appendix E.

A 8 ine wmbio of vod Fraction profile o veloc\ty PTOHI@
defined i kEhe ligk of S\im\mols.
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WG = ZWT (2.3.16)
bG = E)I ) (2.3.17)
2
o = 22 (2.3.18)
AG
= B (2.3.19)
Be =
2
Ky = {1 Top Hat (2.3.20)
1 Gaussian
- 2
1 +J\G

Sjden discusses in detail a number of asymptotic
solutions:(the simplest of which corresponds exactly to the
one mentioned by Chesters et al. Sjden goes on to use the
asymptotic equations to obtain initial values for z, b and
w. Due to the fact that he ignores the gas momentum, he has
an upper limit of a, = 0.5 and this gives a minimum value
of z, from which the plume equations may be used. Corres-
ponding to this minimum z, values of b and w are found from
the asymptotic expansions. Due to the fact that the present
work does not ignore the gas momentum, and that the depths

involved would be large, it was thougﬁt to be accurate

enough to assume the equations were valid from the point of
release, although it was realised that there would exist a

region, presumed to be small in height in comparison to the

total depth, where this would not in fact be true.

Q.q. Ve = O and  We Boussinesq appoximation
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CHAPTER 3
THERMODYNAMICS

3.1 Temperature-Entropy diagram

The escaping gas is assumed to undergo an isentropic
expansion as it leaves the pipe, followed by an expansion
as the gas rises due to the falling hydrostatic pressure
plus some contribution due to heat transfer. The paths
the gas may follow are summarised on the temperature-

entropy diagram (fig. 3.1.1).

p = 150atm 10 atm 1 atm

T(°K) / /
/N
| . 4 : (C) 7

4
-~

Q

(b)

N
Fig. 3.1.1 Temperature Entropy diagram S ( dal /mol °K)
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Forbidden zones

(a)
(b)
(e)
(d)

p < Patm
cannot decrease entropy
cannot have gas becoming hotter than the sea

cannot increase pressure as gas rises

The point O corresponds to the release point, and the

line 0-1 to the isentropic/adiabatic expansion as the gas

leaves the pipe.

There are then four possible routes to describe the

rise of the gas to the surface.

1.

1-2: This is one extreme - there is no heat transfer

and the rise is completely adiabatic/isentropic.

1-3-4-7: This is the other extreme case - there is an
instantaneous rise in temperature to that of the
surrounding sea and subsequent heat transfer will
maintain this temperature.
The entropy will increase as the bubble expands

isothermally to atmospheric pressure.

1-6: This curve shows the most probable situation,
lying somewhere between the two extremes. Its
actual shape will depend on the amount of heat

transfer (see below).

1-3-5: This is a special case of possibility (3)
which is possible, but highly unlikely - the amount

of heat transfer is precisely that required to
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maintain the gas at the temperature with which it

left the pipe.

Effect of heat transfer on shape of curve in case (3)

Details of the FirstLaw of Thermodynamics can be found
in Van Wylen & Sonntag (1978). It is possible to write the
first law in the form

¢, dT + pdv = 8q = cpdT - vdp (3.1.1)

where o CP are the specific heats at constant volume and
pressure, respectively, T is the temperature, p the pressure,
¥ the specific volume and 6q the eneryy transfer per unit mass.

Thus,

cPdT = §q + vdp (3.1.2)

where the term vdp is negative for the rising gas.

The variation of T with p, therefore, and thus the
shape of the curve 1-6, depends on 8q. If |vdp| > éq
initially there will be a drop in temperature.

Also, note that case (4) corresponds to

|8 ql = |vdp]| (ie dT = 0) (3.1.3)

3.2 Derivation of Entropy Equation

Consideration of the thermodynamics of the problem
necessitates the modelling of the temperature throughout the
rise.

The first step is to derive an equation for the
temperature, T, in terms of the pressure, p, and the specific

entropy, s, defined by




53

ds = §q (3.2.1)
T

where §q is, as before, the enerqy transferred per unit mass.
Consider the important thermodynamic relations (to be
found in Van Wylen & Sonntag (1978))
Tds

dh - vdp (3.2.2)
g = h-Ts (3.2.3)

where fi is the specific enthalpy, v is the specific volume
and g is the Gibbs function.

Equation (3.2.2) may be applied to irreversible, as
well as reversible, processes between two given states but
the integration must be performed along a reversible path

between the same two states.

The latter equation yields

A

dg = dh - Tds - sdT (3.2.4)
and substituting from (3.2.2) leads to
dg = ~dp - sdT (3.2.5)

from which we can write

A =
(%) =V
ap T

(.ﬁé) =3 (3.2.6a,b)
aT

Using the Ideal Gas Equation of state

2]
=

v = (3.2.7)

o |

where ris the gas comnstant, (3.2.6(a)) may be solved to give
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g =rTlop  + 4(T) (3.2.8)
and using (3.216(b))
-s = rlop+ g '(T) (3.2.9)

Making use of the definition of specific heat capacity
at constant pressure.

c = T(asy = (9h, (3.2.10)

P
5T 3T
P P

(3.2.9) yields

-T 3 = Tg "(T) = - 3.2.11
(—i y g "(T) s ( )
o p
Thus
N(T) - -c
g °p
T

and hence

g'(T) = - p dT (3.2.12)

so that from (3.2.9)

S = iE dT - r 1np (3.2.13)
T

If o is assumed constant, and the gas is ideal

0
I

cp 1nT - rlop + Const (3.2.14)
o
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where the subscript on €y refersto the gas being ideal.
If it is not reasonable to assume a constant specific

heat, then an empirical specifc heat may be used.

Rearranging

+ rln - Const } (3.2.15)

The actual equation used in the model has a few modifica-

tions from thistheoretical one.

(a) It is assumed that p = 1042 (3.2.16)

(b) A curve-fit to data from the T-s diagram for methane

is performed

(c) Allowance is made for the possibility that the gas may

enter the 2-phase region
This leads to the equation (Smith, 1982)

T = exp{S' + Inz -0.457} (3.2.17)
8 3.65

where

S'= max {S, §, 1}
_ (3.2.18)
and Sgqt can be approximated by the curve fit

' = - 51 .2,
Ssat 158 5inz (3.2.19)
4

Note that S is measured in cal/mol.°K, rather than SI units,

which s is measured in.

To compare eqns. (3.2.15) and (3.2.17), substituting
(3.2.16) into (3.2.15) gives

T = eXpy S + 1lnz ) - C } (3.2.20)
c :
Po Cpo/r
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where

¢ = Conmst- 1n(10%) (3.2.21)

c
P, (cpo/r )

For methane (at 300K) (Van Wylen & Sonntag (1978))

Cp = 2.2537 kJ/kg°K = 8.6341 cal/mol°K
o
r = 0.51835 kJ/kg°K (3.2.22)
=> c = 4,3478 (3.2.23)
Po
v / in
giving
T = exp { S + 1Inz - C' | (3.2.24)

8.6341 4.3478

Comparing this to eqn (3.2.17) shows some variation.
One way to try to explain this is to consider, instead

of the ideal gas law, a modified version.

pv = ZrT (3.2.25)

where Z compressibility factor

If all other assumptions are maintained, the effect is

to replace r by rZ in eqns (3.2.15) and (3.2.20), giving

T = exp{ s + 1nZ - " } (3.2.26)
c (c )
P, po/Zw

with
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‘g" = Const -~ ln(1042 (3.2.27)
c (c )
P
(o] pO/rz

The value of Z for methane, however, varies approxi-
mately from 0.8 to 1.0 so that cpo/rZ varies from 4.35 to
5.43 which does not help the discrepancy.

The most likely reason for the variation in the two
eugations is that Smith adopted an empirical law like (3.2.20)
and then carried out a curve-fit to find the appropriate
constants. |

A comparison was made of values of S,T as calculated
by eqn (3.2.17) and those read off the Temperature -Entropy
diagram, for a pressure of 1 atm (ie z = 10m).

The results are shown in Table 3.2.1

From this it may be seen that over the given tempera-
ture range, which covers those temperatures likely to be
encountered, the agreement is quite good, given the
inaccuracy in reading values from the graph, and also the
assumption in converting atmospheric pressure into a
pressure head of 10m.

It would, therefore, seem perfectly acceptable to use

eqn (3.2.17) for the calculation of the temperature.

Attempts to produce another equation based more closely

on the theoretical equation using cp and ¢ have not

o 0
A
produced any better agreement. r
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T(°K) S (cal/mol®°K) T(°K) [Calculated]
133 37.7 132.5
143 38.2 141.0
153 38.9 153.9
163 39.2 159.8
173 39.8 172.3
183 40..3 183.4
193 40.8 195.2
203 41.1 202.7
213 41.4 210.4
223 41.8 221.2
233 42.1 229.6
243 42.4 238.4
253 42.7 247.5
263 43.0 257.0
273 43.4 270.2
283 43.7 280.5
293 44 .0 291.2
303 44,3 302.3

Table 3.2.1 Comparison of entropies.

3.3 Form of Expansion

Previous work (Chesters, (1980), Sjden (1983) and

others) has concentrated on an isothermal expansion.

present work no longer insists on this restriction.

The

It must

be checked how relaxing this constraint affects the system

of equations.

For the case considered by Chesters, the following

thermodynamic relation holds

133 = const

(3.3.1)
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Relating the hydrostatic pressure to the pressure head,

pp8&zm = const

p
g

Assuming the mass, m, of gas in the bubbles remains
constant we may simplify and rearrange the above equation

to obtain

(3.3.2)

where the o subscript refers to some reference position.
The RHS of (3.3.2) is then substituted for oy in the set of
equations.

Equally well, (3.3.2) could have been added as another
separate equation and this is what was done in the present
work. The form of the equation, however, is somewhat
changed, since (3.3.1) no longer holds.

From the Ideal Gas Law, expressed in a slightly
different fovm from (3.2.7),

pV = ®RT (3.3.3)

under the assumption that the pressure may be approximated

by
_ A
e = 1072 (3.3.4)

the following expression is derived for the gas density
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= 10%N2 (3.3.5)

where M is the molecular weight and R is the Universal gas
constant, equal to rM. From equation (3.3.5) it may be seen
that the density varies with depth and temperature. Since,
at a given depth, z is fixed, irrespective of the form of
expansion, the only way this can influence the density is
through the temperature.

For comstant T, (3.3.5) is identical to (3.3.2).

For varying T, the variation in density with depth
will depend also on the form of the temperature change .
which reflects the form of the expansion.

Hence, in the set of ODE's to be solved, the appearance
of the gas density Ppo which depends on 0o where pg is
calculated from (3.3.5), having first calculated T from an
expression relating to the form of the expansion, means

that the method of expansion is being taken into account.

ANALYSIS OF FORM OF EXPANSION

The initial expansion as the gas leaves the pipeline
is assumed to be adiabatic. If this also applied
throughout the rise then using the relation for a reversi-

ble adiabatic process between two states 1 and 2

Y
Pyvq p2V2 (3.3.6)

fl

where v ratio of heat capacities = N (3.3.7)
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Combining equation (3.3.6) with equation (3.3.3)
Py Py 1/ = T
Y —
(=) T
Py Pg 2

which implies

or using (3.3.4)

T —

2 )

If we let T1 = T, z) = 2 be conditions at depth z, and
let T2 = TO, 2y =z be initial conditions, then (3.3.8) may

be rewritten as

1-1.
T = ,z 7
r O ) Y
o 0
leading to

z = z_ .z \N (3.3.9)
T

T z

(¢] 6]

From the derivation of the entropy equation we have

the expression

(E ) Cp exp { s=5q } (3.3.10)

This may be rewritten as
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z = 2z z 1"]7 exp { - (s-s. )} (3.3.11)
T0 cp
But r = Cp - ¢y (3.3.12)
and so 1 - = c = 1, (3.3.13)
lyc Sy 4
p c
p
Hence,
2 = zo.<§)‘1/v exp{ - (s=s )} (3.3.14)
T T %, c
o P

From this, it can be seen that there is equality between

(3.3.9) and (3.3.14)

<=> exp { - s-s } =1

<=> s =8, ' (3.3.15)

"which is consistent with the fact that a reversible,
adiabatic expansion is isentropic.

For a non-~isentropic process, (3.3.15) does not hold
and, therefore, neither does (3.3.9).

When a gas undergoes a reversible process in which
there is a heat transfer, however, the process often takes

place in such a manner that a general polytropic gas law

holds, namely

py "

constant (3.3.16)
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with n = 0 corresponding to isobaric process
n = 1 corresponding to isothermal
n = Y corresponding to adiabatic

(See, for example, Van Wylen & Sonntag (1978)

For such a process, (3.3.9) is generalised to

=R

1 1
) ° = (=)

T 0 Z zZ
o] fe) (o]

1, -1, _ (e
2 /4 /Y = exp {- (s-s )}
o 5
solving this for n
(1 -110 2y = - (s-s))
n Y ZO
c
P
and so
1 = 1 - (s=sy)
n Y ! )
cp1n(z/z

0

or, since z < z, for rising bubbles,

o=

= 1 + (s-s)

Y cpln(zo/g

o

.z / = z z /Y exp |- (s-so)}
z

P

(3.3.17)

(3.3.18)

(3.3.19)




64

Also,

and so

o=
v
< [

or

n < vy (n, v > 0) (3.3.20)

Returning to (3.3.19); suppose Zy, z, represent two depths

with corresponding entropies s s

1° 72
Then,

1 = 1 + Sq - So
I'll Y

cpln(zo/21) (3.3.21a,b)
1 = 1 + S, = 8,
0, \ )

cplt_l(zo/z2

If we assume Y, cp do not vary with depth

) ]

11'1(20/ ) 1n(zo/ )
Zl 22

= 1 [(S -
2 c 1
P

l l SO) = (52 = SO
n n

1

(3.3.22)

A polytropic process requires that n be constant, i.e.

ny = n, = n, and hence
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sy - 8, = s, - s,
1n(z ) In(z )
oy 0/
z4 Z9
It follows that
DALY
s, = syt (s1 - so) In( 22)
ln(zo/z )
1
| and
Zo Zo
s, = 84 = (s0 - Sl> In(zl) + (s1 - so)ln(z2 )
in ﬁ'
21

(s1 - so) ln (Zl/zz)

1n(%o)
21
substituting from (3.3.21(a)) and remembering n; =n

(constant) we arrive at

]
0
~~
[N
|
JEEY
—
[y
pe]
N

s, - sy o (L-1 1 (3.3.23)

which shows the variation in entropy with depth which would

produce a polytropic process.

Note that for n = 1, (3.2.23) becomes
S, -8y = cp(l - 1/Y ) 1n (Ei)
23
which is identical to (3.3.14) with

S =S4, 2 = 243 8, % 89y 2, = 2y and T = To

This verifies that n = 1 corresponds to the isothermal process.




Starting with equation (3.3.10)

1-1/
T = (5 ) Y - exp { s - s
T z, 0
o
c
P
If the gas cools as it rises
T < T
o
z < 2
o}
Thus
T<1
To
and so from (3.3.24)
1-1
Z A exp{ s-s_} <1
(z) 0
o c
p
which means
(1-1, ) 1n ,z + s-s <0
4 (=) 0
o)
c
P

or

s=s < (1-1 ) 1n 2
° 4 (=2)
c z
|%
Using equation (3.3.19)
(1 -1) 1n z, < (1-1) 1in
n (—=) (
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} (3.3.24)

(3.3.25)




but 1n , z > 0
()
z
and, therefore
1 -1 < 1-1
1-1d /,

hence, necessarily

n > 1

Similarly, if the gas heats up as it rises

T > T
o)
z < z
0
then
n < 1

Finally, returning to equation (3.3.17)

for a polytropic gas law
1-1
(£) g
z

T
T 0

0
so using either (3.3.24) or (3.3.29)
the density may be expressed as

- 4
pg 10 "Mz 1_1/
RT, [( % y y exp {s-so}]
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(3.3.26)

(3.3.27)

(3.3.28)

(3.3.29)
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1-1
= 104ﬁz" [ z, /Y exp{ - (s-s )} 1]
RT C(z7) o
p
40 L
= 10%Mz_ [ Zy Y exe { - (s=s )} ]
(o]
RT_ 5
OR)
o = 10%iz
g —  1-1
RT 4 /.
0 ('Z'; .
o]
. 1
= 10 "Mz 7z /n
of >)
RT ©
[s]

where 1/ is given by (3.3.19)
n

In terms of the actual temperature equation used (3.2.17)

g = | 10% Mz [ z) /3,65 exp {- (S_So) }]

RT ‘o 8
o
°K
S in cal/mol

= (1-1 ) + (5-s,)
3.65

RT o . 8 1n(%o )
Z

(3.3.30)

(o]

~~
NN

g
=]
=B

Hence, the form of the thermal expansion s ex presged Hnmxgﬁ the

variation i the expwssion  Yor e densiky

DENSITY OF BUBBLES

It must be remembered that the present work allows
for the fact that the gas may enter the two-phase region

and hence the actual density of the gas, in terms of the
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liquid and vapour phases, is given in Appendix C as

= 3 3-3.31
oy Py Py ( )

g0, + (1-8)p
g1 &g

where & fraction in vapour phase

and, again from curve-fitting the Temperature-Entropy

diagram for methane (Smith, 1982), in this two phase region

we may write

£ = (2S - 35 inz - 29) (3.3.32)
(50 - 61nz)

Outwith the two-phase region, i.e. for s greater that the

saturated entropy for a given pressure,

tad
]

1 and (3.3.31) reduces to

Py = P (3.3.33)

3.4 Heat Transfer

An important factor in determining the final state of
the gas is the heat :transfer from the sea to the bubbles -
it is this process which will lessen the severity of the

situation. (v2. \nCweose ihe ges buoyoney  and VQ\OCHY )

The basic principles of Heat Transfer may be found in

o e . e e T I
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many books e.g. Cornwell (1977) and Butterworth & Hewitt
(1977).

The method adopted in calculating the heat transfer to

the plume was as follows.

1. At a given height the approximate heat transfer to a
single bubble was calculated by use of an overall Heat
Transfer Coefficient, hT.

2. This value was then multiplied by the number of bubbles

existing in the plume cross-section at that height.

Thus, in a time interval At, the amount of energy trans-

ferred , AQ is given by

4Q = Nit s hTAT | (3.4.1)
where N = number of bubbles present
| sg = surface area of bubble
hT = heat transfer coefficient
AT = difference in temperature between the sea

water, Tsea’ and the gas, T

This may then be transformed into an expression for the

change in entropy, S, (where S is measured in cal/mol.°K),

as shown.

(4.1868)@T
where m = molar mass of gas to whichaQ is transferred

and the factor 4.1868 converts joules into calories
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Expressing the surface area SB as Ede2
where
€ = m(3+cos0 )
4[ (1-cose) (2+cos0)?] (3.4.3)
as shown in Appendix F
and noting that
n = NpBVB, where VB is the volume of one bubble
~
M

equations (3.4.1) and (3.4.2) may be combined to give

AS = (33 At (0.016) hT (T
‘m? d 4.1868
B e

cea " 1) (3.4.4)

T
since M = 0.016 for CH,,

Taking the limit asA t ->0

ds = 6e  (0.016 ) hy (Tg,, - 1) (3.4.5)
dt mopd,  4.1868 T
and
= ds . = 6b¢ . -
ds ds . dt . dz o (0.016) h, (Tsea 1)
TF
dh dt dz dh deevg 4.1868 T
(3.4.6)

HEAT TRANSFER COEFFICIENT

Due to the large differences in heat capacities between

the gas and the liquid, it is reasonable to assume that the
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heat transfer resistance is entirely on the gas side, and
thus calculate only one heat transfer coefficient.
An appropriate expression with which to begin our

derivation is (Leclair & Hamielec (1971)).

i i
Nu = C Re® Pr* (3.4.7)

where the Nusselt number, Nu, the Reynolds number, Re, and

the Prandtl number, Pr, are defined by

Nu = the (3.4.8a,b,c)
k
Re = b_ov. d
B're Pr = C
—= “p"
u
k

k is the thermal conductivity, while p 1is the viscosity.

Upon substitution (3.4.7) reduces to

-

h = C

T kac (3.4.9)

[3?—7—9]

and Leclair& Hamielec (1971) propose that

C = 1.13 (3.4.10)
V1-q' where ¢ is the gas fraction

Smith (1982) adopts the penetration theory prediction
for the unsteady state convective heat transfer into a flat

stationary surface which yields, for a single bubble

h = 2 k. p (3.4.11)
T T —eB 4 { ke 4 0)
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tc represents the contact time at the interface, which may be

interpreted as the time the bubble takes to pass a certain
point. Assuming the speed of the single bubble to be /Sde,
and the vertical height of the spherical cap to be 0.41 dg,

tC may be written as

te = 0.41 de = O.2/de‘I (3.4.12)
V5 de !

and (3.4.11) reduces to

h = 1.76 ke p v
T [ P B'r
de

(3.4.13)

b O

where V. in this case is the individual bubble velocity. For
a spherical bubble of vertical height de’ with a similar

velocity to spherical cap,

- %
hp = 1.13 : k ¢ PRV, : (3.4.14)
d*e

VALUES USED FOR hT

1. Initial suggestion of Smith (1982) was a value of
80 w/m2°K, based on equation (3.4.13) for a 1-2m bubble,
a slight increase over the calculated value being
proposed to take into account
(a) the curvature of the surface

(b) the probability of turbulent mixing

Although this value was thought to be rather high for a
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convective gas film coefficient, it was thought to be
acceptable due to the circulation and mixing occurring
in the bubbles leading to a rapid rate of surface

renewal.

On the basis of experimental evidence Smith (1984)
suggested that his initial estimate was a factor of 10
too large, and that a value of 8 W/m2°K was more

realistic.

Equation (3.4.9),with C given by (3.4.10), combined
with a constant value for hT when o > 0.9 to deal with
the singularity in (3.4.9), at ¢ = 1, woS then assumed .
The value of the thermal conductivity, k, is tempera-
ture dependent, and is expressed in terms of a cubic
function by performing a curve-fit to data points
obtained from Perry & Green (1984). The resulting

function is

y2 - 3.593(T

k = [-0.213 (T/100)3+1.778(T )

/100 /100

+3.948 ] x 1072 (3.4.15)
UCONS,

The constant valuejused fora > 0.9 was found by doing

a number of runs with different fixed values and choosing

the one which allowed a smooth change over to eqn (3.4.9)

once o was reduced to 0,9,

This value turned out to be 300 W/m2°K. At first

glance, this seems to be rather high, but at the initial

"blow-out" instant turbulent mixing will strongly enhance
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heat transfer, and so such a large value is'likely to be
oul

acceptable to theAindustry. From its initial value hT

decreased according to (3.4.9), (3.4.10) until at the

surface it was of the order of 50W/m2°K.

Thus, the form of the heat transfer coefficient is

hp = J 300 A > 0.9 (3.4.16)

L
1.13 varkcp a £ 0.9
Ase L= ]

gince methods 1, 2 and 3 give rather conflicting
proposals as to the numerical values of hT, a sensitivity
analysis was performed to evaluate the importance of this
parameter on the evolution of the plume. The results of

this can be found in Chapter 6.

3.5 Note on Isothermal Case

This corresponds to the 2nd route mentioned in
section 3.1 and assumes that the gas and the sea-water
share the same temperature throughout the rise.

It can be seen from Fig. 3.1.1 that the entropy of
the gas increases as the pressure falls. Equation (3.4.6),
however, cannot be used to calculate the changing entropy

because it assigns a value of zero to ds for

T = T . dz
sea

Since T is fixed, (3.2.17) can be re-expressed in the form

s! = 8 { InT -1lnz + 0.457} (3.5.1)
3.65
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where S' is given by (3.2.18).
and thus S' may be calculated as a function of z.

Comparison of S' with Sq (3.2.19) will then give

at’
rise to two possibilities

1. S' > S when S' will denote the actual

sat ’
entropy, S, of the gas (3.5.2a,b)

2. §' = Sqat when it can only be said that
S € S', and the actual entropy
is not known,
If possibility (3.5.2(b)) occurs, then it may be that

S is some unknown value such that S < SS .In such

at
a case, the vapour fraction is less than 1, but as the value
of S is unknown it is not possible to calculate this vapour
fraction, and hence the mean density of the bubbles. The
whole calculation process then breaks down.

For possibility (3.5.2.(a)) to occur, the following

equation holds

8 { InT - 1nz + 0.457} > 158 - 5inz
3.65 4

which restricts z as

z < exp {1nT - 4.4805 } (3.5.3)
0.1177

Thus, for the case of T = 280K, possibility (1) occurs

for all values of z such that

z < 18161 (3.5.4)
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Reducing T will, of course reduce z and, for example, at
T = 150K, it is necessary that

z < 90

for (3.5.2(a)) to hold.

It is only necessary to ensure (3.5.3) holds for Z,»
as it will then hold for all values of z < 2, and the
calculations can continue to the surface.

Since S > Ssat’ it can also be said that the vapour
fraction will be unity throughout the rise.

In this case, differentiation of (3.5.1)

leaves us with

ds = -8 (3.5.5)
dz 3.65¢z

in place of (3.4.6), or in terms of h,

ds - = 8 (3.5.6)

dh 3.65 (zo-h)

-

[ ———————
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CHAPTER 4

THE MODEL
4.1 General

In order to formulate the mathematical model, it is
necessary to combine the Dynamics and the Thermodynamics.

Equations (2.2.74) and (2.2.75) are two coupled non-
linear ordinary differential equations in the three depen-
dent variables Al’ v and Pg* Pp is determined from a set
of equations arising from the thermodynamics, namely (a.aqu)i
(3.2.17) - (3.2.19), (3.3.5), (3;3.31)_*(3.3.33), (3.4.6),(3.4.15)
and (3.4.16).

The method employed to solve the equations involves a
numerical fourth-order Runge-Kutta scheme incorporated in
a NAG subroutine, whereby the system is integrated stepwise
from a set of initial values. )

The actual system to be integrated consists of (2.2.74);

(2.2.75) and (3.4.6) or (3.5.6), which are rewritten below.

iﬁl = EEl (2Alplv+K3[;1go)[Al+§gég ]%_gﬁgogi-gh)Al
dh <3 QB(K3v+vr) PBV(K3V+Vr)
(_olvA1+K3&180) (4.1.1)
v = g';lgo<g’1'F’B) - 2K PV Kpmgl TE (4.1.2)
dn a by (Kgvy.)
: (DlvA1+K3ﬁgo)




ds =

dh
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b e 0.016 hR Tsea - 1) (4.1.3)
ﬂdee(K3v+vr) 4.186 -
(non-iothermal case)
8 (isothermal case)
L 3.65(zo-h)

while those necessary for closure are rewritten as follows:

= 0 p (4.1.4)
&g 81
Ep_ +(1-E)p
g1 gg
= 104ﬁz (4.1.5)
RT
= 2 - h (4.1.6)
o
= 28 - 3.51nz - 29
4.1.7
[ 50-61nz S< Ssat . i )
1 1 otherwise
= exp{S + [Inz - 0.457} (4.1.8)
8 3.65
=  max (S’.Ssat) (4.1.9)
= 158 -5 Ing (4.1.10)
4
= T (3+cos ©) N
[4(1~cos0)(2+cos8)2]? (4.1.11)
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- 3
hT = 1'13[PBVr k cp} ag 0.9 (4.1.12)
/1- (¢ de'
UCONS o> 0.9
Qa = K, m
2 &
szg0+A1@B(K3V+Vr) (4.1.13)
- 3 2
k = [-0.213(T/ ) 1.778(T/ )
100 100

2

-3.593(T/ )+3.948]x10" (4.1.14)
100

4.2 Initial Values

The numerical integration technique requires a set of

initial conditions, These are given by

h =0
o
Vo = K4 V.. K4 = 0(0.5) (4.2.1)
A = 0
s
S —

pipeline entropy (non-isothermal)
8[1nTs - 1nzo + 0.457] (isothermal)
3.65

From equations (4.1.1) to (4.1.14) plus (4.2.1), it can
be seen that the following set of parameters must also be
specified.

Kyp Kyy Ky K

31 By mgo’ ‘e r’ %o

Tgeq and UCONS

assuming g, o1 pgl, R and Cp all to be constants.
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Those which mustbe entered on each run of the program are
1. The depth of the pipeline escape (=zo—10)

2. The bubble size (de) which also determines the slip
velocity (vr) by eqn (2.2.38)
3. The mass release rate (&g ) - either input directly
)

or calculated, via eqn (B.18), Appendix B, from

the size of the escape hole.

The other parameters are set to standard values, given
in Table 4.2.1, but the program is designed to allow these
values to change.

The standard value of S, comes from a pipeline condition
of p = 140 atmospheres and T = 280K. The value of UCONS
denotes the initial fixed value of the heat transfer coef-
ficient as described in section 3.4.

The value of K, (2.2.5), may be altered by entering a

value for the entrainment parameter,f , and using equation

(2.3.11) for the case where w, =, 2b = deff’ (i.e. a
Top Hat profile), this reduces to
K1 = . 7g. (4.2.2)

The value of Kyl (see eqn (2.2.6), corresponds to the
bubbles lying wholly within the plume, and is the only case
considered.

The value of Kg, (2.2.37), corresponds to a Top Hat

profile and may be altered to model different profiles.




82

e.g. 2 for a Gaussian profile (Appendix E)
/ 2)
1+A.G

Table 4.2.1

PARAMETER STANDARD VALUE
K1 0.25
K2 1
, Ky 1
K4 0.5
M 0.016
0 o
: 5v/18(50 )
T 280
sea
UCONS 300
S 32.2
(o]

4.3 Numerical Procedure

The main components of each step in the numerical

integration are as follows:

1. Use of (4.1.6) translates the height risen, h, into

a pressure head, =z.

2. Comparison of the actual entropy of the gas with that
of saturated gas at the same depth (i.e.pressure),

(4.1.10), determines the fraction of gas in the vapour

phase (4.1.7).




83
Knowledge of the entropy allows calculation of the

temperature of the gas, (4.1.8), (4.1.9).

Calculation of the density of the vapour phase, p_ ,

usirg the ideal gas law (4.1.5) plus (4.1.4) givesg

the mean density of the bubbles.

From the temperature it is then possible to calculate
the thermal conductivity, k, from (4.1.14) and hence,
via (4.1.12) the heat transfer coefficientrcan be
found. The value of a, (4.1.13), on the first step is
obtained from the initial conditions (giving a value of
a = 1) and thereafter is calculated from the condi-

tions at the previous step (i.e. those of Al, \ andjh).

Equations (4.1.1) - (4.1.3) are then integrated and the

values of h, Al’ v and S updated.

Using (2.2.37), (2.2.43) and (4.1.13) the values of
Vg’ deff and .« are calculated, while the time elapsed

is updated using the equation

+ Ah (4.3.1)

where to1q Was assigned a value of zero on the first

step.

The integration then moves on to the next step and the

above components are repeated.

The integration ceases when the surface is reached.

At intervals, dictated by another input parameter,
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the values of t, depth, Vg’ deff’ T, S, &, (N and a are

printed.

4.4 Variations

(A) To use the program to make comparisons with experimental
work, or the numerical work of Sjden (1983), certain

modifications are built into the program.
1. The gas involved can be air, rather than methane.

2. Rather than specifying de and m it is possible to

&6

specify the atmospheric volume rate of release plus

the slip velocity.

3. It is assumed that there will be no great drop in
pressure as the air is released. Hence there will be
no drop in temperature, and so the gas will.be at the
same temperature as the sea water and the risewill be

isothermal.

4. The equations relating to entropy and vapour fraction
are not applicable to air. Due to the higher tempera-
ture, the air will be completely in the vapour phase, and

& 1is assigned a value of 1.0 throughout. We are not
interested in the entropy directly, since we know the
temperature and can calculate the gas density from

this via (4.1.5).It is possible, therefore, to ignore

(4.1.3) and reduce the system to two equations.




compared to that of saturated gas (4.1.10). If S' = §
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The molecular weight is automatically changed for air

calculations to
A
M = 0.029 kg/mol. (4.4.1)

Referring te 3.1 which gave four possible routes to
describe thermodynamically the rise of the gas.Route (3)

is the one described in the general program.
Route (4) is highly unlikely and so is not considered.

The other two routes; the opposite extremes are catered

for.

For no heat transfer, it is simply necessary to set the
heat transfer coefficient to zero, i.e. set UCONS to

zero, and do not change to the variable from (4.1.12).

The other extreme case, where the rise is isothermal,

has been discussed at the end of 3.4,

The entropy is calculated from equation (3.5.1 ) and

{
sat]

then the necessary calculations cannot be made and so the

program is stopped.

If s” > S ap» the entropy calculated from (3.5.1 ) is

the actual entropy of the gas, the vapour fraction is 1.0,

and the rest of the calculations are as for main case.
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4,5 Validation of Model

The first step was to compare the results wiﬁh those
obtained by Chesters et al (1980), since the equations
used were initially motivated by their system. This
necessitated using the variation which allowed for air to
be used as the gas.

To make a direct comparison, non-dimensionalised values
were required. Rather than refﬁrmulate the system of
equations in non-dimensional form, the results, themselves,

were non-dimensionalised, using the same scaling as Chesters,

namely,
A _ 2 1/5
z = z/L } L (6, /g) (4.5.1)
D = d
D = /.
Voo v, U= (Gog2)1/5 (4.5.2)
U

A little care was required in the correlation of the

output.
1. A conversion factor is necessary to convert
N A
Deff to D
Now,
md 2 = ma? s koA by (2.2.6)
ef f = 2% y \e.s.
4
4
= 1 = d? + KA
lq .2 27g
eff
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2
= d +
/ 2
defs

Thus,
d = /1 _aldeff (4.5.3)

and hence,
D = /1 -« ﬁeffl (4.5.4)

2., In a similar way to 1. it is necessary to convert

A
v to V
g

Now (2.2.37) yields

vg = K3v + V.
=> _V_g = K3V + V_r
U U )
A ~ N
i.e. Vg = K3V + Vr \ (4.5.5)

N N FAY
3. Values of Zo - Z are required, where Z refers to the

pressure head, but the output from the program refers

to true depths.

Létting

201 = pressure head corresponding to z,

z1 = pressure head corresponding to z
then

1

2 =

6 z, *+ 10

z1 = z + 10
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and
~1oo= 21 2 5 410 =7+ 10
ZO 0 o 0 /L
L L
A A
71 = Ei = 2z +10 =2+ 10/;
L L
Therefore,
A A A A
AR A (4.5.6)
0 0

so that it makes no difference whether we use true

depths or pressure heads.

A A
It may be, however, that ZO1 - Z0 will not come close
to f .
0
At the surface 21 = 10, so that at any point of the
rise z1 > 10.
Thus,
1 1 1

2z, - 2 < 2z, - 10

A A A
> ozt ¢zl oo (4.5.7)

) ) /L

If the volume release rate is small, then L is small

(4.5.1) 51 21, e 21
.5.1), and Zo - Z7 is significantly less than Zy -

The values of the constants K1 - K4 were the same as

those used by Chesters.

Output from the present model will always yield a

N
value of Do = 0, since this comes from the initial
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value of A1 which was zero, on the assumption that
initially the area of the plume was entirely gas.

This is not in total agreement with Chesters who
assumes a standard value of 80 = 2. From the
sensitivity analysis done onlﬁo by Chesters, it only
affects the solutions slightly in the initial stages,
where the model does not describe conditions accura-

tely anyway. After this the results are independent of

N
decreasing the value of DO-

RESULTS

N
Table 4.5.1 shows values of D at a number of values of

é; - 2 for a number of cases.
For values of 201 and Qr equal to those standard ones
of Chesters, the agreement is very good, except for the
first reading which is a little high. This, however, is in
the initial region where model is not thought to be accurate.
The sensitivity studies of Chesters predict that
variation in Gr has little effect on B, while variation in
20 does give rise to slight changes; a smaller than

1

A A
standard Zo leading to an increase in D, while a larger

than standard value shows very little change in 8.

Cases 3-7 have larger values of 201 but show little
variation in ﬁ (last two values of B in each case are rather
high, but again program may not accurately predict condi-
tions close to the surface).

Cases 8, 9 have a lower value of 2;1 and initially

A
show larger values of D though this increase does seem to

disappear in last values.
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Table 4.5.2 shows an identical set of cases involving the
A
nondimensional velocity V.
All cases show very good agreement with the results of

Chesters, except, perhaps close to the surface where values

1

A
are a little low. Thus, the variation in Z0 has little

effect on the results as noted by Chesters, while the slight
n
variation in Vr in cases 8,9 is linked to a very slight

increase in values of V, again backing up the observations

of Chesters.

CONCLUSION

These two sets of results show that, at least in the
main part of the rise, the present model gives solutions

very close to those of Chesters.
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4,6 Siden Results vs Present Model

It has already been noted in Chapter 2 how closely the
theory behind the present model matched that of Sjéen (1983).
Here a comparison is made of the two sets of solutions
obtained for the same input conditions of depth, flow rate

and slip velocity.

Variations in Standard Program

, 1. Calculations based on air

2, Volume flow rate and slip velocity input rather than

mass flow rate and bubble diameter,

3. To take into account the variation between Gaussian and

Top Hat profiles, the constants Kl’ KB are altered.

(a) Value of Kl

From Appendix E, (E.20),
and hence,
v 2B o (4.6.1)

(b) Value of K3

From eqn. (2.2.37)

Vg = K3V + v, (4.6.2)
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where, as shown in Appendix E,

K = 1 for Top Hat profiles (4.6.3)
{ 2 for Gaussian profiles
1+AG2
The subscripts G, T will denote Gaussian, Top Hat
values respectively.
WG, bG’ Aas AG’ may be interpreted as exactly the values of
centre-line velocity, effective plume radius, centretline
void fraction and scaling parameter for void fraction profile
quoted in Sjoen's results.
W and bT may be interpreted as v and deff/2 from the
present model, witha,T equal to the uniform void fraction.
Since the present program outputs values of the average
gas velocity, this must be translated into a value for w

T,
using (4.6.2) namely

wp = v o= (1+AG2) (vg-vr) (4.6.4)
2

Linear interpolation has been used to evaluate v, deff

and.°‘T at depths corresponding to those given by Sjden.

RESULTS

Table 4.6.1 shows the surface values of liquid velocity,
plume radius and void fraction in 12 cases, along with the
ratios of Sjoen's values to those of the present model

(Gaussian to Top Hat).




95

Case w

No.

\ w
G T "G
- /WT

bg

b b
T Pg ‘
/o %

o

0. A
G/a]j G

1
2

O ©o ~N O (9] &~ W

10
11
12

0.364 0.180 2.02
0.280 0.139 2.01
0.649 0.322 2.02
0.730 0.361 2.02
0.826 0.409 2.02
0.874 0.431 2.03
1.07 0.528 2.03
1.22 0.603 2.02
0.999 0.495 2.02
0.477 0.221 2.02
0.535 0.263 2.03
0.628 0.309 2.03

.118

0.172 0.686 0.,0165

0.0973 0.141 0.690 0.0133

0.843
1.05
1.08
1.19
2.25
3.96
7.36
0.270
0.329
0.386

1.205 0.700 0.00712
1.50 0.700 0.00860
1.555 0.695 0.0110
1.725 0.690 0.0128
3.20 0.703 0.00825
5.65 0.701 0.0134

10.4  0.708 0.00496
0.392 0.689 0.00673
0.477 0.690 0.00897
0.560 0.689 0.0108

0.00379 4.35 0.7

0.00236
0.00173
0.00207
0.00265
0.00304
0.00205
0.00324
0.00122
0.00160
0.00237
0.00322

5.64 0.61

4,12 0.7
4.15 0.7

4,15 0.7
4.21 0.7
4.02 0.7
4.14 0.7
4.07 0.7
4,21 0.7
3.78 0.74
3.35 0.79

Table 4.6.1: Comparison of velocity, plume width and gas

fraction:

subscripts G, T (Gaussian, Top Hat)

refer to Sjoen's results and present model

respectively.

Comparing these ratios with the theoretical predictions,

based on the assumption of a negligible void fraction and

.AT

= 1, as shown in Appendix E.

'_]O‘
] I
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og = 2 = | 4.08 Ag = 0.7 (4.6.7)
@ A g2 5.37 Ao = 0.61
] 3.65 Ng = 0.74
3.20 rg = 0.79

We can see that there is good agreement in all cases. The

fact that in general the velocity and void fraction ratios
were found to be slightly larger, and the radius ratio
slightly smaller than the theoretical values fits in well
with the trends suggested in Appendix E for non-negligible
void fraction. |

Tables 4.6.2 to 4.4.6 concentrate on cases 1, 2, 7, 8,
& 11 and show the corresponding values throughout the rise,
rather than just those at the surface.

w 3
The lorm Am3/s refers to  "normol m~ (s te. oL

P

stoarndord  mperolure ond pwssure
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Each table shows the same trend in the three ratios:

Velocity - Dbegins at a value higher than the
theoretical prediction and gradually

decreases to its surface value

Radius - Dbegins at a value lower than theory
predicts and increases to its surface
value

Void - varies as the velocity

Fraction

These three observations are as expected and reflect
the fact that in the initial stages, the effect of the
non-negligible void fraction is most pronounced.

A final comparison made was that of Mass Flux at the
surface, which it would seem reasonable to assume should
be the same irrespective of the choice of profile.

From Appendix E(E5, E6), we have the two expressions

for Mass flux of liquid

i, T m, Yo be® (1 -ag ) (4.6.8)
141, 2
e

mp = np,l Wi sz (1 -a.r) (a T = 1) (4.6.9)

Table 4.6.7 gives the results of calculation of mass flux
at the surface for the 12 cases considered previously, where,
before, subscript G refers to Sjden value and T to those of

present model.
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giiier e M B ! (mi'mG)X100%
¢
1 15.8 16.7 0.9 5.70
2 8.3 8.66 0.36 4.38
3 1.45 x 10°  1.47 x 105 20 1.38
4  2.52 x 105 2.55 x 103 30 1.19
5 3.02 x 105 3.10 x 103 80 2.65
6  3.87 x 105 4.02 x 10° 150 3.88
7 1.70 x 10*  1.70 x 10% 0 0
8  5.98 x 10*  6.03 x 10% 500 0.84
9  1.70 x 10°  1.68 x 10° -2000 -1.18
10 1.02 x 102 1.07 x 10% 5 4.90
11 1.81 x 10>  1.88 x 102 7 3.87
12 2.93 x 102 3.03 x 102 10 3.41
Table 4.6.7 Comparison of Liquid Mass flux at the
surface
RESULTS

It can be seen from the relative differences that there

is very good agreement between m, and my in all 12 cases.

The moduli of the relative differences, in fact, have a

mean of 2.78% and a sample standard deviation of 1.83%,

while

the true relative differences have a mean of 2.58%

and a sample standard deviation of 2.12%.




OVERALL CONCLUSION

The numerical results bear out the claim that the two
models are very similar, and that by making use of the
relationships in Appendix E, the present model can be used

to predict Gaussian values.
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CHAPTER 5
SURVEY OF EXPERIMENTAL RESULTS

5.1 General

_ A brief review is given of known bubble plume experiments.
How relevant they are to the present work is debatable. This
project was undertaken for the oil industry, which is interes-
ted in massive release rates of hydrocarbon gas, whereas the
few experimental results available are concerned with
relatively small releases of air. Indeed the volumetric flow
rates used in the experiments are lower by a factor of
thousands. In most cases, also, the depth of release is
lower by a factor of 102; two exceptions being Topham (1975)
and Milgram (1983). Since the surface tension of natural gas
against water is similar to that of air against water it is
thought that an escape of air bubbles should have the same
characteristics as a gas "blowout". This reasoning, howéver,

breaks down at great pressure, i.e. large release depths.

5.2 Review of Bubble Plume Experiments

Kobus (1968) conducted his experiments in an 8 by 280
metre tank with a release depth of 4.5m, and various release
rates of between 0.00013 and 0.006 normal m3/5. The only
data obtained was that of the velocipy profile at certain
heights.

The expériments of Goossens (1979) were on a very small
scale with a release depth of 0.28m and airflow rates of the

order of 1072 - 10-4 m3/s, similar to those of Tekeli &
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Maxwell (1978), although they had a slightly deeper tank
giving a release depth of 1m.

Fannelgp & Sjden (1980) performed experiments in a 10.5
by 260m towing tank with a depth of 10m. They used airflow
rates of 0.005 - 0.022 normal m3/s and measured fluid
velocities, as well as influx towards plume (to determine the
entrainment parameter).

Fazal & Milgram (1980) used a cylindrical tank of
diameter 1.65m and a release depth of 3.9m. They quote only
one release rate of 0.00236 normal m3/s. Their measurements
covered air-bubble velocity and momentum flux (from which
they derived the liquid velocity) plus the gas fraction
distribution within the plume.

Milgram & Van Houten (1982) had a similar laboratory
set up to Fazal & Milgram (1982), but considered four
release rates varying from 0.000205 to 0.002341 normal m3/s.
They measured bubble and liquid velocity distributions,
momentum flux distribution and mean centre-line gas fraction.

Those on a larger scale, which were conducted in open
water,include Topham (1975) who used release depths of 23m
and 60m and release rates of between 0.06 and 0.36 normal
m3/s.

These release rates are of the same order as that quoted
by Topham in a 'standard Beaufort Sea blowout', which refers
to an o0il blowout with dissolved gas contained in the oil
reservoir. Here the escaping gas rate was 0.66 norma} m3/s.

This, however, is still far less than a typical
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volumetric release rate encountered in the pure gas escapes
being considered in this thesis which is more likely to be
1500 normal m3/s. Topham only obtained measurements of flow
velocity vs radius at various heights. Milgram (1983)
considered a release depthof 50m and flow rates of up to

0.59 normal m3/s, thus considering situations similar to those
of Topham (1975). Milgram, too, only managed to make

measurements involving velocity profiles.

5.3 Use of Experimental work

A number of parameters used in the theoretical model are
assigned standard values, based on experimental observations.

These include the slip velocity, v

3 the entrainment

parameter, B, and the gas/velocity radius ratio, A+ This last
parameter is also referred to as the Schmidt number (see e.g.
Milgram & Van Houten (1982)).

Previous mention has been made of typical values of v

T
and 8 in section 2.2.

Typical values of )\ have been suggested, either by
visual observation or by comparison of void fraction profile
to velocity profile.

Fannelgp & Sjden (1980) estimate that ) = 0.65 + 0.1,
while Milgram & Van Houten (1982) predict a range of values,

A= 0.59 - 0.86.

Milgram (1983) notes that larger scale plumes, having
an increased plume velocity but the same bubble size
distribution as smaller ones should reflect an increased

value for A (although still <1.0). His numerical results
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for varying M show that a change of 0.1 in A leads to a
barely- detectable change in plume characteristics, a view
echoed by Sjden (1983).

He, therefore, concludes that any value of XA between
0.8 and 0.9 would be appropriate in all but the very small

and slow plumes when a value of 0.8 should be used.

5.4 Comparisons of Experiments with Theory

The experimental results of Tekeli & Maxwell (1978)
Topham (1975), Fannelgp & Sjden (1980) and Milgram & Van
Houten (1982) are compared by Sjgen (1983) to his theoreti-
cal model. In section 4.6 we compared Sjgden's model to the
present one, using, in fact, the very set of results he
used in his comparison with the experimental values. Having
shown the two models to be in fairly good agreement, it is
only necessary, therefore, to comment on the results of
Sjden's comparison of theory with experiment.

His conclusion is that over the range of depths and
release rates the agreement is very good, the most noticeable
discrepancy being in the plume velocity where the theoretical
predictions are somewhat higher than the measured mean
values,

This may be explained by the fact that the theoretical
model ignores the contribution to the momentum flux from the
fluctuating component of the velocity. This was noted by
Milgram & Van Houten (1982) and Milgram (1983) and a
correction made by introducing a momentum-amplification

factor. While this factor is significantly greater than 1
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in small scale laboratory experiments, it is reduced to a

value close to 1 for larger laboratory experiments and is

expected to be very close to 1 in the case of subsea pipeline

ruptures.
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CHAPTER 6
SENSITIVITY STUDIES

6.1 General

As noted in Chapter 1, Smith (1982) concluded that two
crucial parameters in determining the surface conditions were
the bubble size, de’ and the heat transfer coefficient, hT.
The reason for this may be seen by examining the expression
for the heat transfer (3.4.1).

Clearly, the amount of heat transfer will influence the
surface conditions, and this is affected by the bubble size
(for equal volumes, the total effective surface area availa-
ble for heat transfer is reduced as the bubble size is
increased), and the heat transfer coefficient.

Change in bubble size will also affect the slip velocity
and this too will have a bearing on the plume behaviour.

Available evidence on heat transfer coefficients, e.g.
L'Ecuyer, is very limited, while bubble sizes quoted in the
literature, e.g. Clift,Grace & Weber (1978) are almost
entirely concerned with air released at a rate which is
lower by a factor of thousands than the massive release
rates experienced in the oil industrf and to which this work
is aimed.

It should be possible to determine, theoretically, a
"critical" bubble size on the basis of some kind of stability
argument. Vanden-Broeck & Keller(1980) and Miksis, Vanden
Broeck & Keller (1981) considered this approach. They,

however, encountered great difficulty while considering

only a very idealised problem with axial symmetry. Hence,
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in view of the time available, a sensitivity analysis was

thought to be the best method of obtaining some sort of
answer.
It was hoped that, by performing a sensitivity analysis

on each of the two variables, d ., and hT’ it would be possible

to investigate their influence on the final state of the gas
and to ascertain how precisely each must be described to

allow accurate prediction of surface conditions.

6.2 Initial Investigation

The effect of heat transfer was first assessed by
considering the two extremes in Fig. 3.1.1 along with a
general case allowing for an intermediate amount of heat

transfer. Thus, the following cases were looked at
(a) Non-isothermal without heat transfer (route (1))

(b) Non-isothermal with heat transfer (route (3))
(i) fixed heat transfer coeff; hT=8
(ii) variable heat transfer coeff; as given by

equation (3.4.16)
(e) Isothermal (route (2))

All other parameters were held constant, and the

standard set of values is given in Table 6.2.1.




112

Parameter Standard Value
S, 32.2
K1 0.25
K2 1.0
K3 1.0
K4 0.5
T 280

sea
Depth 80
de 0.018
m 2200
o

Table 6.2.1: Standard set of parameter values

The surface values of various parameters in each of
the four cases are summarised in Table 6.2.2. Linear extrapo-
lation was used to obtain values exactly af the surface,
from the last two values output by the program, which lay

in the range 1073 < 2 < 1.5.




Case
[Parameter a b(1) b(2) c
Time 7.98 7.05 6.35 6.39
Vg 11.0 14.6 14.7 14.7
deff 19.8 22.6 24,0 24,1
B 2.21 0.790 0.703 0.686
T 116 244 274 280
S 32.2 42.5 43.5 43.6
a 0.292 0.479 . 0.463 0.466
3 0.756 | 1.0 1.0 1.0
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Table 6.2.2 Surface values for varying amounts of heat

transfer.

RESULTS AND CONCLUSIONS

The main points to be taken from Table 6.2.2 are the
variation in gas velocity, plume width and gas temperature
as the heat transfer increases (since the variable heat
transfer coefficient is always greater than the fixed value
of b(1), the heat transfer is greater in b(2) than in b(1)).

It can be seen that all three variables increase with
increasing heat transfer. The most dramatic changes are
from case (a) to b(1l) while the changes from b( 2) to (c)
are very slight.

The values for pp and S are directly related to the
temperature and neeéd not be considered separately. It may

be noted, however, that the significantly larger value of Py
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in case (a), which is not proportional to the drop in
temperature, is due to the fact that £< 1 implying that
there is some liquid gas present.

From equation (4.1.13) it can be seen that o varies

. ] . in

inversely with Py vg and deff The very large value of pp im, |

case (a) leads to the small value inw. In the other three §

cases, however, as v_and d increase, ., decreases and
g eff B

the result is that @ is very much the same.

From this, it seems to suggest that the effect of
increasing heat transfer is to increase gas velocity, plume
width and gas temperature while the void fraction will not
change significantly so long as temperature is great enough
for all gas to exist in vapour phase.

We shall now go on to examine the influence of the

Heat Transfer coefficient in more detail.

6.3. Sensitivity Analysis of Heat Transfer Coefficient

The effect of varying the Heat Transfer Coefficient
is now considered in more detail.

The procedure is as follows

1. The standard set of conditions are as given in

Table 6.1.1.

2. A non~isothermal expansion is assumed with a constant

value for the heat transfer coefficient, hT.

3. hT is varied through the values

0,1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100
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RESULTS AND CONCLUSTIONS

Table (6.3.1) shows the surface values of a number of
parameters for each value of hT’ linear extrapolation again
being used to give the values exactly at the surface.

As noted in 6.2, the three parameters of most interest
are the gas velocity, the plume diameter and the gas
temperature.

Graphs of final gas velocity, plume diameter and tem-
perature against h, are shown in Fig. 6.3.1 (a),(b),(c).

It can be seen that all three show a similar trend: an

increase with hT up to approximately h_, = 10, followed by a

T
levelling off to an asymptotic limit. By comparison with the

final column of Table 6.2.2, this asymptotic limit corresponds
to the isothermal case.

This limiting value is achieved earliest by the velocity,
then the temperature, and finally by the diameter.

A reasonable conclusion to beldrawn would appear to be
that for hT > 40, the surface values of all three parameters

are independent of hT and are equal to the values encountered

for an isothermal rise.

It was then decided to investigate the manner in which
each of these parameters reaches its surface value, and see

if this shows any variation with hT.
The following three graphs
(a) Depth vs velocity for varying ho (9,10,20,30,...,100]

(b) Depth vs diameter for varying h. [9,10,20,40,60,80,100]
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(c) Depth vs temperature for varying hq [9,10,20,30,...100]
are shown in Fig. 6.3.2 (a),(c),(b).

RESULTS AND CONCLUSIONS

Fig. 6.3.2(a) shows that for hT > 20, where the surface
velocities are approximately constant, the velocities are
independent of hT from a depth of 30m to the surface and
follow a common path. At depths greater thanm 30m, the paths
begin to diverge one by one, the lower hT is the sooner
the values diverge from the common path until at a depth of
70m there is a distinct variation in velocity with heat

transfer coefficient.

Fig. 6.3.2.(c) shows that for hT > 40, the diameter is
independent of hT throughout the rise. From Fig. 6.3.1(b)
‘it can be seen that it is only for hT > 40 that the surface
diameter is independent of hT. For lower values of hT’ the
variation in deff with HT is independent of depth.

Fig. 6.3.2(b) shows that the greater h; is the more
quickly the temperature reaches its maximum value. For
hT = 20, the gas undergoes an isothermal expansion over
approximately the final 30m while for hT = 100, the rise
is isothermal after the first 10m.

To conclude, it seems that from a depth of 30m to the
surface, the gas velocity, plume diameter and gas tempera-
ture are independent of the exact value of hT as long as it
exceeds some critical value, evidently in the range 20-40.

Below this, the velocity and temperature do show some

variation with hT although this is only very appreciable in
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the temperature for h., > 10.

T
Another point to note with regard to the variation in
temperature with hT’ is the route the temperature takes from

its initial value of 150K to its surface value

il

(a) For hT 0,1, the temperature simply falls

(b) For h

T 2-8, the temperature falls initially, but

then rises

(¢) For hp = 9,10,20, the temperature varies as in (b)
until close to the surface it experiences

a slight decrease

(d) For hT > 30, the temperature rises immediately and
continues to its maximum value which it
maintains until close to the surface
where it undergoes a slight decrease

as in (c).

This reflects a comment made in 3.1.

From (3.1.2)

c_ dT = &q + wdp,

P )
negative
so that
§q < )Vdp] = > dT <0
$q > Pﬂp|= >dT > 0

Hence, for §q small, the temperature will fall.

e.g. for hT = 0, §q = 0 and so the temperature falls
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throughout the rise of the gas.

Cases (b), (¢) occurswhen §q is initially < |vdp|, but
then as the bubbles expand §q increases above |vdp|.

Case (d) corresponds to the case when §q is initially
> |vdp| and so there is no initial drop in temperature.

The slight drop in temperature experienced close to the
surface in cases (c), (d) corresponds to the expansion being
so great that |vdp| exceeds §q again.

Having concluded that for hT > 40, the rises were
indistinguishable from a depth of around 30m to the surface,
the sensitivity analysis for hT was repeated for a release
depth of 30m. The large release rate of 2200 kg/s was retained,
with all other input values as in Table 6.2.1.

Table 6.3.2 and Fig. 6.3.3 (a),(b),(c), correspond
exactly with Table 6.3.1 and Fig. 6.3.1 (a),(b),(c).

RESULTS AND CONCLUSIONS

Again it can be seen that after initial increases the
graphs tend to level off for values of hT > 20. 1In the
case of the diameter a slight increase can still be detected
but it is much less than that observed for values of hT <
20.

Comparing the asymptotic limits on each graph with those
for a depth of 80m, that of the velocity is increased, while
that of the diameter is decreased and the temperaturelimit is
approximately the same. These may be attributed to the

following -

The Temperature limit is the same since it corresponds

to the isothermal case with T = Tsea'
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The decrease in depth:reduces the amount of water
entrainment which leads to a decrease in the plume width.
With the decrease in entrainment the effective buoyancy
force is increased which increases the velocity.

Concentrating on the plateau region graphs corres-
ponding to Fig. 6.3.2 (a),(b) are shown in Fig. 6.3.4 (a),(b),
the graph concerning the diameter being omitted as it did not
show such interesting characteristics.

As before, the common feature in the two graphs is that
the higher hT is, the more immediate is the change towards
the asymptotic limit. Both graphs show a very similar shape
to the corresponding one for the 80m depth. In the case of
the velocity, the depth of the common point is now 5m and
below this the spread is a little more pronounced. In the

case of the temperature, for h_, = 20 the isothermal rise is

T

only over the last 5m, while for hT = 100 it is over 25m of the

the 30m rise.

Finally, the sensitivity analysis was performed once
more for a different gas flow rate. Standard conditions
are as in Table 6.2.1, except we now have &go = 220, i.e. a
decrease by a factor of 10.

An identical set of Tables and graphs to those for the

second case were drawn up, and are shown in Table 6.3.3,

Fig. 6.3.5 (a),(b),(c) and Fig. 6.3.6(a),(b).
RESULTS

Yet again both the velocity and temperature experience

an initial increase with increasing hT’ before levelling off.
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For the temperature this occurs at h,, = 20, but for the

T
velocity the limiting value is reached for hT = 7.

The asymptotic limit for the velocity is much lower
than for m = 2200, caused by the decrease in buoyancy
force, Whiie that for the temperature is about the same,
due to it again being equivalent to an isothermal rise.
Fig. 6.3.5(b) shows that the surface plume diameter is
subject to an initial decrease, followed by a steady increase
up to hT = 20. After this the graph levels off, but a slight
increase is still apparent. Values of the diameter are

significantly less than for m = 2200, which is to be

&

expected with the large drop in the volume of gas at the
surface,

Fig. 6.3.6 (a),(b), show trends very similar to the
corresponding graphs in the previous cases. For the tempera-
ture the large initial spread can be seen at a depth of 75m,
hT = 20 gives isothermal conditions from a depth of around
45m while hT = 100 allows this to occur at around 70m below
the surface.

For the velocity, since the plateau region in Fig. 6.3.5
(a) begins earlier, fig. 6.3.6(a) involves values of hT > 7.
The spread can clearly be seen at a depth of 75m, gradually
decreasing as the gas rises, until at around 25m a point is

reached whence the rise is virtually independent of hT'

To draw some general conclusions, it seems that, for
typical depths and release rates of interest to the oil
industry, there exists some critical value in the range

20-40 whereby for all values of hT greater than this critical
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value the surface conditions are independent of the heat
transfer coefficient and correspond to an isothermal rise.
This state is also true over the latter stages of the rise
(last 5m for a 30m depth and 25-30m for an 80m depth).

A similar result holds for reduced depths of release
or reduced release rates, the critical value being
slightly higher in the case of reduced depth and slightly
lower for a smaller release rate.

For shallower releases, there is a decrease in the
fraction of depth over which isothermal conditions. exist.

(16% for 30m depth and 31-38% for 80m).

6.4 Sensitivity Analysis of Bubble Size

The investigation into the effect of bubble size on the
behaviour of the plume is carried out in two stages.

Stage 1 is as follows:

1. The standard set of conditions as given in Table 6.4.1

are used in the program.

2. The equivalent diameter, d, , is varied through the

values

0.009, 0.018, 0.036, 0.05, 0.1, 0.15, 0.18, 0.20, 0.25.

3. A non-isothermal expansion is assumed. Due to the
fact that the bubble size affects the rise of gas
through both the change in heat transfer and change in
slip velocity, two separate cases are considered.

(a) A constant value is assumed for the heat transfer

coefficient: hT = 8,
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(b) The heat transfer coefficient is assumed to be
zero: this removes any heat transfer and means
that any variations will be due to changes in the

slip velocity.

Comparison of the two cases will then allow us to
evaluate the effect of the bubble diameter on the

heat transfer within the plume.

Parameter Standard Values
S 32.2
o)
T 280
sea
Depth 80
mgo 2200
K1 0.25
K2 1.0
K3 1.0
K4 0.5 i

Table 6.4.1 Standard values.

RESULTS AND CONCLUSIONS

Tables 6.4.2(a),(b) show surface values of various
parameters for each value of dge in cases (a) and (b). Again
concentrating on the temperature, velocity and plume diameter,
graphs are drawn of each of these variables against bubble
diameter, the results from the two cases being combined on

the one graph.
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These are shown in Figs. 6.4.1(a), (b), (c).

In case (b), with no heat transfer, the graphs show
that the gas temperature, plume velocity and plume
diameter are virtually invariant under changes in bubble
size. Since, as noted, variation in bubble size in case
(b) corresponds exactly with variation in slip velocity,
these results show that gas temperature, plume velocity and
plume diameter are not sensitive to small changes in slip
velocity (0.212 to 1.12 m/s for the bubble sizes considered).
This is in total agreement with observations of Brevik
(1977) and Milgram (1983).

In case (a), where h_ = 8 W/mz/uK, the effect of

T
increasing the bubble size is to

(i) Decrease the gas temperature
(ii) Decrease the plume velocity
(iii) Decrease the plume diameter

These observations can be explained as follows:

Temperature:

As noted before; for the same volume of gas, larger
bubbles reduce the overall surface area available for heat
transfer. Reducing the heat transfer reduces the increase

in entropy and hence, from equation (3.2.17), reduces the

temperature.

Velocity:
The decrease in temperature results in an increase

in density which reduces the net upward force and hence,
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the velocity.

Diameter:

The increase in gas density reduces its volume which
decreases the total cross-sectional area of the plume. There
is also a secondary effect. Due to the decrease in velocity

there is a drop in the amount of entrained water, which again

reduces width of plume.

By comparison of the two cases on each graph we may
conclude that the variation in the parameters with changing
bubble size can be attributed to its effect on the heat
transfer, and that the effect caused by the changing slip

velocity is insignificant in comparison.

For values of d:, > 10cm the graphs of case (a) level
off af a constant value, which is close to the value obtained
in case (b). In the temperature case the values are almost
identical, while for the diameter, case (a) values remain
approximately 0.2m greater and the velocity ones approxi-
mately 0.25 - 0.5 m/s higher.

If it were shown that the correct value for the heat
transfer coefficient was 8 W/m2/°K (proposed by Smith (1984))
then it could be said that the existence of bubbles of
equivalent diameter greater than 10cm would result in the
ameliorating effects of the heat transfer being removed.

It is thought, however, that hT could be far higher

than 8.

Stage 2 of the analysis looks more carefully at how the
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value of the heat transfer coefficient would affect the

dependence on the bubble diameter.

The procedure is as follows:

1. Standard input conditions are as given in Table 6.4.1.
2, Various values for de are used, between 0.018 and 2.5m
3. Three separate cases are considered; fixed values for h

T
of 150 and 300 Wﬁn%mK and a variable value given by

equation (3.4.16).

Figs. 6.4.2 (a), (b), (c), (d) show variation of gas
temperature, plume velocity, plume diameter and void fraction
with bubble diameter, for varying values of the heat transfer
coefficient; the case of h,, = 0 also being plotted for com-

T
parison purposes.

RESULTS AND CONCLUSIONS

All four graphs show similar trends. For a non-zero
value of hT’ the parameters decrease with increasing bubble
diameter, but eventually level off at a constant value
which is approximately that for h_ = O.

T

The effect of varying the value of hT is that the

larger hT is the more slowly the parameter falls to its
limiting value.

It can be seen that for a variable heat transfer
coefficient which begins at a value of about 300 W/m2/°K
and falls to around 50 W/m2/°K, the appropriate quantity

falls to its limiting value significantly more quickly than
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when hq = 150 w/mz/oK.
One of the crucial questions we wish to answer is
whether or not the gas will be positively buoyant when
reaching the surface. For methane this corresponds to having
a temperature of around 170°K.

By considering Fig. 6.4.2(a) we can see that if h. were

T
as large as 300, then bubble diameters would have to exceed

1.5m before the temperature fell below 170°K but if the
variable form is an accurate description of the heat transfer
coefficient only bubbles with de < 20ecm would ensure positively
buoyant gas at. the surface.

From Fig. 6.4.1(a) for hT as low as 8 W/m2/°K, positive
buoyancy will be achieved for de < Scm.

Experimental observations predict bubble sizes to be of
the order of a few centimetres.

Thus, if the heat transfer coefficient is at least as high
as the values given by the variable form of hT, then it seems
fairly likely that the gas will be positively buoyant, but if
it is as low as 8W/m2/°K, then the exact size of the bubbles
will be necessary before a decision can be reached.

From Fig. 6.4.2.(b) it can be seen that the enhanced
velocity which will help to expel the gas into the atmosphere
no longer exists for bubble sizes above 0.5m in the variable
heat transfer case, while it is present in the cases of higher
heat transfer coefficient until de is well over 1m.

In terms of the density deficiency which can be measured

in terms of the void fraction, a , Fig. 6.4.2(d) shows that

the variable form of hT is more favourable in giving a lower
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void fraction for any prescribed bubble size than the higher
values of hT. Overall, large bubbles are desirable in that
they reduce the void fraction, but this would have to be

weighed against the other adverse effects of increasing d. .
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CHAPTER 7

MASS TRANSFER

7.1 General

In our formulation of the model, it has been assumed
that the entire quantity of gas released from the pipeline
will be maintained in the plume throughout the rise to the
surface. It is known, however, that hydrocarbon gases are
soluble in water (e.g. Solubilities of Inorganic and Organic
Compounds, Vol. 1 (Binary Systems), Part 1). It is, there-
fore, possible that a proportion of the gas released would
go into solution, which could alter the evolution of the
plume and the conditions existing at the surface.

This section concentrates on reformulating the model,
taking into account the possibility that some of the gas

released may pass into solution.

7.2 Governing Equations

As in Chapter 2, for the case of no mass transfer, in

this section we derive a set of conservation equations

MASS OUT

]

Dissolutio
ENTRATNMENT — | 00 >0 Az

MASS IN
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In this case, within the control volume dissolution is
permitted, and hence we must have an extra parameter, the

solute.

Most symbols are as mentioned in Chapter 2.

CONSERVATION OF MASS

GAS
m = m - amount of gas dissolved in control volume
Eout 8in
and so
m =m - rate of mass removal through dissolution
Sout &in
Thus,
Alng = - rate of mass removal through dissolution
= - km(ci - ¢ ) (surface area of gas)
= - km(ci - cw) (no. of bubbles in vol element)x

(S.A. of bubble)

= - km(c. - ¢ ) ( [vol. in control volume] s
vol. of bubble

B

= -k (e, =c ) [ 2a(- a2)] sy
ﬂd83/6

= k (e, -c ) [ 6aA az] S

B
mdQB
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Taking limit as AZ =->0

dn, = ko(ey - e, ) §§§3 sy (7.2.1)
dz e
where
km = mass transfer coeff.
c = concentration of dissolved methane at the
interface
(= mass of methane dissolved/unit volume of
liquid)
¢ _ = mean concentration of dissolved methane in the
liquid at a distance from the interface.
gB = surface area of a single bubble
o = void fraction
A = cross-sectional area of plume
CONCENTRATION

The variation in gas concentration from a bubble to the

surrounding liquid may be represented as follows.

GAS

S~—— 11QUID

INTERFACE

This may be approximated by




GAS
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LIQUID

It is the difference (ci - ¢_) which is the driving force

behind the dissolution.

Now,
= (y_A

Mg Pg & AVg
so that

d& = A dv_ + v dA + Av

Pg @7 g T Pg¥g == T Py
dz
dz dz

and (7.2.1) becomes

oh dv_ + p av_ dA +p Av dO + LAy
g & g3, & &gz g
dz
6@A3. Sp
nde
LIQUID

As before (2.2.5)

dz

£f

we also have,

(7.2.2)

do +0Av_ dop
dz g 8
dz

EE& = km(ci-qx).

dz

(7.2.3)

(7.2.4)
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my = pl(l-a) Av (7.2.5)
Combining (7.2.4) and (7.2.5) gives

p,(1-a) A dv + p(1-a) v dA - o AV da + (1-0) Avde,
1 dz dz dz

dz
4A %

= =K p.v 84
1710 ) (7.2.6)

SOLUTE

The solute refers to the gas which has dissolved in the
liquid.

Thus,

m = m + increase in mass due to-dissolution in

control volume, from which follows

m = mg + rate of mass increase due to dissolution
out in

and so

A Mg = rate of mass increase due to dissolution

= -km(ci-cm) 6oeA3 Az sp
ad

Taking limit as paz -> 0 gives

dmg = -k _(c;-c_) SoA_ s (7.2.7)
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Now,

Mass flow rate of solute = c, [volume flow rate of liquid]

giving
mg = o, (1-) Av (7.2.8)
Combining (7.2.7) and (7.2.8) yields

Col(l=g)A dv + c_(1-a)v dA - cxAv do + (1-0)Av dc
dz dz dz HES

= -plejme,) Sod o (7.2.9)
nde
Combining (7.2.1) and (7.2.7), however, yields

d (ﬁ] + ﬁ] ) = 0 (7.2.10)
@ &
This implies that

mg + ﬁs = constant = &g (initial gas flow rate) (7.2.11)
(o]

Using (7.2.2) and (7.2.8) we have

]
=R

P oA vg + cw(l-u) Av

]
g

A[pg ‘avg + ceo(l-q) v (7.2.12)

CONSERVATION OF MOMENTUM

As before we consider a force balance on the control

volume, and the fact that

Force = rate of change of momentum

This time,




Downward force

If we assume that the mass of solute dissolved

weight of control volume

g [mass of control volume]

|

+ ¢ (vol. of liquid)]
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g &1(vol. of liquid) +£%(vol. of gas)

is small

enough to have a negligible effect on the volume of liquid,

then

vol. of liquid

vol. of gas

Thus,

Dol

Upward Force

Hence,

and taking

dM =

dz

(1 -a) A (- pz)

ah (-az)

gA(-12) lloy + ca) ( 1-a) + pa]

Buoyancy

welght of displaced liquid

gpl A (_AZ)

net upward force
-gA [a(pl - Dg) - (1 -a) C&]A\Z
limit asAz =-> 0

-g A [a (og- og) - (1-a) Cow)

(7.2.13)

(7.2.14)

(7.2.15)

(7.2.16)

From equations (2.2.33) and (2.2.40), and applying a similar
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argument to the solute momentum flux, we can write

M = ﬁ \
g g 'g
Mi = &1 v
Ms = m, v
Thus,
dM =  dM_ + dM, + dM
an 1 s
dz —& T
dz Z dz
- . L] - +
Vg dE& + mg dv
dz d

(7.2.17)

v[dmy + dﬁs] + (ﬁl + mg) dv
dz dz dz
(7.2.18)

If we make similar assumptions about the gas velocity, namely,

K3V + V.

dvr = 0

dz

then, (7.2.18) becomes

+ K é

am = g 3'g

(Kqvtv_) dm

dz I dz

(K3v+vr) dm, + v _dmy +
dz dz
Using (7.2.1), (7.2.4), (7.2.5),

(‘”’Ks)c‘m ¢ < Pl
leaves us with

(7.2.19)

(7.2.20)

z dz dz
dms] (K3mg + mi+ms) dv
dz dZ

(7.2.7) and (7.2.11),0nd aGssuming
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. N 2 %2—
aM = [(Kg-1)vtv Tk (e -c) 6oA, sp -2K Py VoA
dz nd e
€ es
+ (K3m +p, (1-a)Av) dv (7.2.21)
8, 1 Iz

Finally, combining (7.2.21) with (7.2.16) we obtain

- 2.% . _
{(K3 1)V+Vr}km(ci-cw> 6ZA33B - 2Klpl v©A +(K3mgo +ﬂﬁ(1 ﬁ@Av)%%
TT +
¢ /T
= -gAla(py-0,) - (1-9 C ol (7.2.22)
Letting
Kplei-cw) Qﬁé3ﬁs= ®. (7.2.23)
,wde

(7.2.22) may be rewritten

. ) C ar ) —(1- .
[KBmgO +pl(1 a) Av] %g gA[a(pl Dg) (1~a) c ]

2.5 i
+ 2K1pl VoA —@[(K3 1)v + vr]
yielding < _
%% = —gA[a(pl-pg)-(l-?)Cﬁ] + - F&VZA@ -0 [(K3—1)v+vr]
[K,m_ + .p(1-o) Av] (7.2.24)
3g, A

Equation (7.2.12) may be solved to give cg,

c, = m -p_ oA #1 (7.2.25)
g, & ' .
(1-¢4) vA @ = 1, under assumption
0 @ = 1 only at very beginning,

when no gas has dissolved.
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Substituting for (1-a) c_ in (7.2.24) gives

——aAp-p - POy A
= g[ (py- g) { 2o & '8

v

} + 2K101v2A2 ~O[(Ry-1)v+v ]

0,
<
1

3

[1<3mgo +.pl(1—a) Av]

. 2
= «g[0pAp ~cAp - m_ +p aA (K, v+v_ ) ]+2K, p Vv
gl oA 1 g g, '8 3V Vr 1°1

v v /j”“
[K3‘;‘go +p 1 (1"0'-) AV]

A% -8 (Rg=1)vav ]

- ;‘
= -g/v[aAplv-mg +.0A p {(K3—1)v+vr}]+ 2K1D1V2A2—¢[(K3-1)v+vr]
g —_
© /T

[K3r'ngo +o 1(1"0"-),AV]

= -g/vlaAlg v+ [(Ry-1)viv ]} -ﬁlgo]**ﬂplva%w[ (Ky=1)v+v ]
YT

[KB g, + pl(l—m) Av]
(7.2.26)

To summarise, we have the following set of equations, making

use of (7.2.19), (7.2.20)

GAS (7.2.3)

Adv + K, v+ dA +p A(K,v+ a +Q + = 0.
3pg®t X VV)dz P A VV)dZ A(Kgvv _)dp
dz
(7.2.27)

LIQUID (7.2.6) (assumingp1 is constant)
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(1) Adv + (1-u) vdA - Avdg = -2K; vaAZ (7.2.28)
dz dz dz
/o
SOLUTE (7.2.12)
[co(l=-a) v +.pgq(K3v+vr)] A = mgo (7.2.29)

MOMENTUM (7.2.26)

2K
. 2 ;,
dv = -g/v[aa{o lV+Dg[(K3-1)v+vr]}-—mgo]+ —*1431v A2—¢[(K3-1)v+vr]

2 T

[K3r'ng + pl(l-u) Av) (7.2.30)

(o]
Rewriting (7.2.27) and (7.2.28),

pg(KBV“LVr)[a%% + A dz] =0 -aA(K3v+vr);1p - KBpqu % (7.2.31)
Z

2
v [ (1-a) dA - Ada ] = - 2K, vA® - (1-a) A dv (7.2.32)
dz dz — dz

YT

Adding v x (7.2.31) to pg(K3v+vr)x(7.2.32) gives

[N

ng(K3V+Vr) %A = ¢v -ZKl{hV(K3V+Vr)A

-a Av(K,v+v_) dp
z 3 r-_8

/T dz

- [AK v+ (1-¢) v_] dv
Pg 3 3z (7.2.33)

Subtracting gpg(K3v+vr) x (7.2.32) from (1-a) v x (7.2.31)

gives
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= (1= %
ng(K3V+vr)A da= (1-0) vo + 2K apyv(Kav+v )A

dz —_—
3

-a(l-0) Av(K3v+vr) dp +pgg(1—u)Avr %X

dz z

(7.2.34)

%

dA =0V -ZKﬂygv(K3v+vr)A -aAv(K3v+vr)dp —4éA[K3v+(1-u)vr]%%

dZ /1-_.[—. dZ
ng(K3V+Vr)
(7.2.35)
and
2K1up 5 o
%% = (1-g)vep + - gv(K3V+vr)A --(1-Q)AV(K3V+Vr)dpg+{éa(l'al
dz
Av_ dv
r az
o AV(K, v+v_)
g 3 r (7.2.36)

Throughout this derivation, g has been used to denote
the density of the gas. 1In reality, as noted before, the gas
may exist in both liquid and vapour phase ande is used to
denote the mean density of the bubbles, whilep  will refer
to the vapour phase alone. If the entropy is greater than the
saturation entropy, all the gas in the bubbles will be in the

vapour phase and i will equal Py
&




168

Rewriting equations (7.2.29), (7.2.30), (7.2.35) and (7.2.36)

gives the system.

[e w(1-0) v + ogalRgviv )]a = m (7.2.37)
o}
d _ } . ZKl 2. % Dv+v_]
a% = -g/V[uA{p1v+pB[(K3—1)v+vr] - mg0]+ :%rplv A -m[(KB- v V.
[Kom, + p(1-0) A
Mg, TS v (7.2.38)

%

dA = 5y - 2K V(K ,v+v_)A2=qAv(K,v+v_)d oy = pA[K v+ (1~ ®)v_]dv
v 1 PR3V Ve 3VTVy/des - ALR3 £y
/T dz

oV (K3v+v,.) (7.2.39)

]

i
de (1-a)v o+ 2K ap BV(K3V+Vr)A2-Ot(l—Ol)Av(K3v+vr) de+pBa(1—a)-
dz /T dz

Av dv

dz

0 BAV(K3v+vr)
(7.2.40)

with ¢ given by (7.2.23)

Equations (7.2.37) to (7.2.40), therefore, give a system of

four equations in the five unknowns A,v,a, c, and Py assuming

that the values of K,, K,,pq, m and v_- may all be prescribed.
1 3’71 g, r

Calculation of ¢ requires knowledge of the parameters k and C.is

which will be discussed in the following two sections.
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To resolve the closure problem use is made of the following

constitutive equations for the density.

1. From Chapter 3 we have the expression for the mean bubble
density.
o = PP (7.2.41)
B 8y 81

: +(1-¢ )
gy Pe,

with

E = 28 - 3.5 inz - 29 S < Ssat (7.2.42)
50 - 61lnz

sat

2. Equation (3.3.5) gives an equation for the gas density,

derived from the ideal gas law

= 104ﬁz (7.2.43)
RT

Pg

g

Hence, assuming.pgl constant,

dp, =p do [Eo +(1-E)p_ I-g o [0, . dE +(1-%) dp_ -p  d&]
a_g &1 & 81 &g g1 gz &l 3, gg g, dz
Z dz dz &

[ep. + (1-8)p _ 1°
gl gg
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Ee, + (1-8)p , 17 (7.2.44)
&

= (2 ds - 3.5) (50-6 Inz) - (25-3.5Inz - 29) -6
dz b4 ( z)

(50 - 6lnz)2

= (100 - 121nz) dS + (12S - 349) (S < S__.)
dz -z sat
(50 - 6lnz)? (7.2.45(a))
= 0 S» Sg.. (7.2.45(b))
= 10“M - 10%Mz 4T
RT rré 4z
= 10% [1 - z aT) (7.2.46)
RT T dz
equation (3.2.17), (3.2.18)
]
= exp {S +1lnz - 0.457} (7.2.47)

8 3.65




with
Sl
= max (S, Ssat)
Thus,
dT = (1.ds'+ 1 ) T

which can be substituted into (7.2.46) to give

d oy = 10M[1t - gg§'+1>
g RT g dz 3.65

dz

= [ 2.65 - z ds']

Finally, there are two expressions for gg';

dz

From (3.2.19)

S = 158 - 51nz
sat
4
=> ds = - 5
sat Z-i
dz

From (3.4.4)
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(7.2.48)

(7.2.49)

(7.2.50)

(7.2.51)
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- = - - 7.2.52
ds = 4s 6e (0.016 h, (Tsen 1) ( )
dz Az _ ﬁDBde(K3V+Vr) 4,1863

T

with ¢ as given in (3.4.3), and hT is given as before by

hy = | 113 v ko 2 gg 0.9 (7.2.53)
[——2]
A3 d
a > 0.9
UCONS

There are two separate situations

Thus, from (7.2.49)

dp = p, [ 2.65 - 2 ds ] (7.2.54)
_B B 3
dz z 3.65 dz

» with

dS given by (7.2.52)

dz
(ii) § < Ssat
¢ =
5 Ssat

From (7.2.49) and (7.2.51)

d-pg =0, [ 2.65 + 5 ] -~ (7.2.55)
g g 3.65 32
dz :
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(7.2.41) may be rewritten to give

Pg @DglpB

[og, - (1-8)p5] | (7.2.56)

g

which may then be used along with (7.2.55), (7.2.45(a)) and
(7.2.52) in (7.2.44) to yield an expression for

dDB

dz

As with the case of no mass transfer, it is more

convenient to define h, the height above release by

h =12z -z (so that z = z, - h) : (7.2.57)

which leads to

d = -d
dh dz (7.2.58)

Our final system of equations May then be written, instead of

equations (7.2.38) - (7.2.40), as

]

dv

e/v [aA{plv+pB[(K3-1)v+vr]}-ﬁgo]—ZK 2A%+Q[(K3—1)v+vr]
dh :

1PV

/T

[KBmg +pl(1—a) Av] (7.2.59)
o

n

. |

%% 2K, ppv(Kgviv JAZ - &v —GAv(K,v+v )dpp=p ALK v+(1-a)v_]dv
— an dh
£

QBV(K3V+Vr) (7.2.60)
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do = —2K1 aoBV(K3V+Vr)A%-(1-a) V¢-a(1-a)Av(K3V+Vr)de+pB (1-a).

dh 7%; dh
Av_ dv
dh
pBAv(K3v+vr) (7.2.61)
while (7.2.37) is unchanged
[ cel-g)V +¢BQ(K3v+vr)] A = ﬁgo
Those corresponding to the density equations become
(i) S v ssat
de = _EE [ 2.65 + (zo- h) ds ] (7.2.62)
dh (zo-h) 3.65 8 dh
ds = be ( 0.016 ) hT( Toen = 1) (7.2.63)
dh ﬂdee(K3v+vr) 4.186 T
(ii) S < Ssat
de = - Dg [ 2.65 + 5 ] (7.2.64)
1 —t 65 32
dh (z -h)
o Epgy PB
8g 1

[pgl - (1-g) ] (7.2.65)




dg = [100 - 121n(z_-h)] d§ + (349-125,

dh dh zo-h

[50 - 6ln(z,-h)]?

ds as above (7.2.63)

d = -
B Qg1[Dglg drg @gg
dh

Cog, =p 8g) 4t ]

2
[E pgl + (1“£)pgg]

INITIAL CONDITIONS
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(7.2.66)

(7.2.67)

Following the arguments of the case without mass transfer,

we assume that initially the entire cross section of the plume

is occupied by gas, giving the conditions

Ao = mgg
DBO(K3VO + Vr)
a = 1
o]

and we shall assume

o 4V K, 0(0.5)

In this system we also requirepB y S,
o

Using equations (3.3.5) and (3.3.31)

(7.2.68)

(7.2.69)

(7.2.70)
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LA
P =p [ 10"Mz ]
R TO
4n
Eoegl + (1-g)[ 107Mz | ] (7.2.71)
RTO

where'TO,§ o depend on So9 Ssato

Finally,

S = initial pipeline entropy of Gas, unless rise
is isothermal when So is calculated from the
temperature of the gas by changing around

(3.2.17) (7.2.72)

7.3 Mass Transfer Coefficient

In a manner entirely analagous to that used to define the
Heat Transfer coefficient, (Leclair & Hamielec, 1971), the

following expression is used as a starting point

i i
Sh = C Re? Sc* (7.3.1)
where C = 1.13 (7.3.2)
/1-¢

and the Sherwood number, Sh, the Reynolds number, Re, and the

Schmidt number, Sc, are defined by,

Sh = d.k (7.3.3.a,b,c)
m

D
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The symbols are as defined previously, except for D which is

the Diffusivity.

This then reduces to

%

o C [ E_Y_IZ ] (7.3.4)

de
Due to the form of the expression for C, there is again the

problems of a singularity at o = 1. As before, the solution

employed is to use a constant value for kjuntil o has fallen

to 0.9.

This constant value is chosen to be that obtained from
(7.3.4) foraq = 0.9.

In our case km is a function of § alone. By having a
fixed bubble size, we have dictated that d, and v, are
constant throughout the rise. D is a function of the sea
temperature, but again this is kept constant and hence so is
D. D is expressed as a cubic function of the sea temperature
by curve fitting data points' quoted in Witherspoon & Bonoli,
1969 and the required value for Tsea = 280 is then calculated

giving D = 0.97 x 1072 m%/s.

Thus, the actual expression used in the model is given

by (7.3.4), where

c = 1.13 a € 0.9 (7.3.5)
/T= 0

3.57 & > 0.9
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Interfacial concentration

7.4

We firstly consider the well known statement of Henry's

Law (see e.g. Balzhiser & Samuels (1977))

P. = Hi Xs (7.4.1)
where
Pi = partial pressure of constituent i
(= total pressure when only 1 constituent)
X = molal concentration

At a given temperature, Hi is a constant, reflecting the

variation of Py with Xs but H.l varies with temperature.

Where the solvent is water, we may write

xi = ml/ﬁl (7.4.2)
m. ;4 + my, /G
.l/Mi W/MW
under the assumption of a weak solution,
myom << my, Ay (7.4.3)
i
and < A
5 L Wy . M, (7.4.4)
M,

0.018, and that the interfacial

A
Using the fact that My
concentration is the mass of solution per unit volume of

solvent, (7.4.4) reduces to
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X, = 0.018 .c. (7.4.5)

We now introduce the Bunsen Absorption Coefficient BN

which may be defined by the following statement (Seidell, 1941)

By is the volume of gas (reduced to 0°C and 760mm)
dissolved by 1 volume of the liquid when the partial pressure
of the gas is 760mm.

Linked to the Bunsen Absorption coefficient, is the

solubility Expression, 1, which is defined as (Seidell, 1941)

1 is the ratio of the volume of gas absorbed at any
pressure and temperature to the volume of the absorbing
liquid.

It differs from By in that the volume of gas is not reduced
to 0°C and 760mm, and thus 1 is the volume of gas dissolved
by unit volume of solvent at the temperature of the experiment.

Clearly, for a single constituent,

Ci = 1. Py (7.4.6)
1 = I(T)

Returning, however, to the Bunsen Absorption coefficient,

the following is true

CR = BN.pgR (7‘4'7)

where the subscripts i have been dropped since there is only
one constituent, mamely the methane, and the subscript R refers

to the reduced conditions.

From (7.4.5) and (7.4.7) we can write
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Xg = 0.018 BNO&R

i

(7.4.8)

P
grw
Returning to Henry's Law, at any given temperature

(7.4.9)

and, using equations (7.4.1), (7.4.5) and (7.4.9), we can

express the interfacial concentration, at this temperature, by

c; = B pgR'BN (7.4.10)
b

where BN = BN (T) (7.4.11)

By use of the ideal gas law (3.3.3) we can write

P o= p (7.4.12)
T

li = p, T By (T) (7.4.13)

Use of (3.3.5) translates this into

- 44
1, = 107Mz B (T) (7.4.14)

RTR

Comparison of (7.4.6) and (7.4.13) shows the relationship

between BN and 1 as noted in Seidell (1941), which is

’
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TR

The Bunsen Absorption Coefficient may be expressed as a

function of temperature and salinity, (Yamamoto et al. (1976)),

as follows:

_ 2

1nBN = A1+A2(1OO/T)+A3(T/1OO)+51[B1+Bz(T/100)+B3(T/1OO) ]

(7.4.16)

where

AL = -67.1962

A, = 99,1624

Ay = 27.9015

B, = -0.072909 (7.4.17)

B2 = 0.041674

B3 = =0.0064603

and Sl is the salinity, measured in parts per thousand.

No mention is made as to whether T refers to the tempe-
rature of the methane or the water, the two presumably being
assumed to be equal.

This is not true, however, in our model and so a choice
must be made as to the exact definition of T. Equation
(7.4.16) is only valid for a temperature range =-2°C to 30°C
and salinity range 0-40 parts per thousand, so it was decided
to assume that the temperature to be used was that of the
water. Use of the gas temperature would lead to values far
lower than -2°C and (7.4.16) would not.be appropriate to

evaluate ﬁN.




dA
dh

dv
dh

7.5 Variation in Basic Model

The model is essentially the same as that detailed in
Section 4.

The main difference is that the system of ordinary
differential equations has been increased to five from the
existing three. The two additions relate to the bubble
density,.DB, and the void fraction,®..

The equation describing the variation in area now refers
to the total cross-sectional area of the plume, rather than
just the area of the water.

The set of equations to be integrated now consists of

(7.2.59) - (7.2.61), (7.2.63) and either (7.2.62) or (7.2.67)

which are rewritten as follows:

1

]
2Klva(K3v+vr)A -¢v-aAv(K3v+vr)doB—DBA[K3v+(1—a)vr] 3§
YT dh

DBV(K3V+vr) (7.5.1)

g/v[aA{plv+pB[(K3-1)v+vr]}mmgo] ~2K1p1V2

Z

A%+ o [(Ky-Duty, ]

[K3rhg + 0, (1-0) Av] (7.5.2)

e}
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dQB =( —pB [ 2.65 +(Ea‘h)§§ ] S ? S (7'5'3)

sat
" (zny 3:65 8 dn

1p, Lo, Ede, - o, (p ""pgg) g ] s <s_ .,

2
[501-*- (1-g)pg]

S
da = -2K eappv(Ey+y)A*-(1-e)ve-a(l-a)Av(Kavtv Jdpptpopa(l-a)Av _dv

dh Ve dh dh
pBAv(K3v+vr) (7.5.4)
- 6 -
as = 25 ( 0.016 ) hp (Tsea 1) (7.5.5)
dh andé(K3v+vr) 4.1868 T

In this case the extra equations necessary for closure consist
of (7.2.23), (7.2.25), (7.3.4), (7.3.5), (7.4.13), (7.4.16),
(7.2.42), (7.2.43), (7.2.50), (7.2.53) plus, in the case
of S < Ssat’ (7.2.64) - (7.2.66).

Again a set of initial conditions must be prescribed at

h0 = 0, and these are given by (7.2.68) - (7.2.72), while the

standard parameters are as in Table 4.2.1

The main changes in the numerical procedure are then
(a) pp is no longer calculated from p_~ and ¢, rather it is

determined by the integration andfgg is then calculated

according to equation (7.2.65).

(b) o is also determined by the integration, rather than

being calculated separately.

The additional procedures carried out at each step are

as follows.
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1. Calculation of the Bunsen Absorption Coefficient, By

from (7.4.16), (7.4.17).

2. Calculation of the Mass Transfer Coefficient, km, via
(7.3.4), (7.3.5) where the constant D is given the value

calculated in section 7.3.

3. Calculation of the Interfacial concentration, csH by

use of eqn. (7.4.13).

4,  Calculation of the bulk concentration, ce, (7.2.25)
which, in conjunction with c allowsevaluation of the

mass transfer rate, ¢ .

REDUCTION OF SECOND MODEL TO FIRST MODEL

Although the two systems of equations seem very different,
for consistency the second system should reduce to the first
in the absence of mass transfer.

The assumption of no mass transfer means that the RHS of
(7.2.1) is zero, i.e. o = O.

Using this fact in (7.2.59) - (7.2.61) leaves us with the

set of equations.

’ . -2K 2 3
dv = g/v[aA{p-lv+p B[(KS_l)V+Vr]}_mgo]_;Fﬁlplv A? (7.5.6)
dh 0
[KBmgo + pl(l-a)Av]
L
da = 2K1 DBV(K3V+Vr)A2-QAV(K3V+Vr)de—pBA[K3v+(1~a)vr]gX
dh S dh dh

@BV(K3v+vr) (7.5.7)
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3

da = -2Ky agV(Kgvtv JA%-a(1-a)Av(Kv+v )dpgtepa(l-a)Av, dv

dh S dh dh
pAv(Kgvv ) (7.5.8)

We also have the following relationship

Al = (1-a) A
and so
dA1 = (1-3) dA - A da
d dz dz
z

Substituting from (7.5.7), (7.5.8), leads to

%
dA; = 2Ky ppv(Kgvtv )A* - . (1-0)A(Kgv+v ) dv

dz ST dh

va(K3v+Vr)
which can be written more simply as

dA, = 2K, A® - (1-q)A dv
dz Ve v dh

By use of (7.5.6) plus the relations

A = Aq + Ag
A = . =
. Mg x A
pB(K3V+Vr)

(7.5.12) may finally be written as

(7.5.9)

(7.5.10)

(7.5.11)

(7.5.12)

(7.5.13)

(7.5.14)




186

da, = 2K, (2p,VA, + K m YA, +m ]%— (.- g ) A m
1 s s | 3Tt e 8MP17 PR/ Mg
dh /T o B(K3V+vr) va(K3v+vr)
(Ksmgo +pl VA]_) (7.5.15)

which is exactly (2.2.74)with K

9 1

Similarly, using

(2.2.75), with K

9 1

From equation (7.2.60), (7.2.61)

1 de -

a K
dh

-1 da - 1

1 dg -
A dh

3

D —
B dh (K3v+vr)

This can then be solved to give
ah -op (Rovtv )

const

Using the initial conditions at h

mgo

const

and thus, in general

mgo

o BA(K3V+Vr)

P (Kovtv.) [A +m
B ‘"3
r 1 go/pB(K3

dv

dh

0, we have

]

viv.)

(7.5.13), (7.5.14) in (7.2.6) yields

(7.5.16)

(7.5.17)
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Loghy (Roviv ) +m, ] (7.5.18)

&

which is exactly the definition of .« in the first model
(K2 = 1) (2.2.79).
With these simplifications, there is no longe' any need

to define dﬁ% explicitly.

dh

dDB
7.6 Consideration of the Term dh

In the initial model, neglecting mass transfer, it was
possible to formulate the system of eguations without specific
mention of de.

dh

In the more complicated system arising from the inclusion
of the possibility of mass transfer, this is no longer
possible, and the term dpp appears explicitly in (7.2.60),

dh
(7.2.61). Over a small increment in h, this term is likely to
be small, and the question was raised as to whether this term
could be neglected, thus simplifying greatly the system of
equations and returning the calculation of PB to that used in

the first model.

By considering equation (7.2.60) (7.2.61) in the special
case of no mass transfer ( ¢ = 0), they may be rewritten in

the form of (7.5.16), and then rearranged slightly to give
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1 do+1 dgy + Ky dv . +1 da =0 (7.6.1)
o dh pg dh (E"W_v y dh A dh
3 r
which may then be solved as before, to give
chf%(K3v+vr) = const. (7.6.2)
Evaluating at h = 0, gives
1. mgo pBO(K3vo+vr) = const. (7.6.3)
pBO(K3V0+Vr)
In other words
const = m (7.6.4)
gO
and hence,
o o= mgo (7.6.5)

DBA(K3v+Vf)
which is exactly the equation used for calculation of o in

the first model (assuming K2 =1)

By choosing to neglect the term de in eqns (7.2.60), (7.2.61),

dh
they may be combined to give
da = A de - KA dv (7.6.6)
dh @ dh (K3v+vr) dh

which can be rearranged to give




e |-
., ’a
> oe

+ K
(K3v+vr)
Solving this yields
o A(K3V+Vr) =

const

Again evaluating

const = m
&o
P
B
o)
which means that
= m
o g,

o BOA(K3v+vr)

this expression at h = 0, we have

Comparison of (7.6.5) and (7.6.10) shows that (7.6.10)
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(7.6.7)

(7.6.8)

(7.6.9)

(7.6.10)

gives an erroneous expression for ¢ , and as the gas rises,

and p, decreases, (7.6.10) would predict too low a value for

a , which in turn would affect the values of A,v.

We can, therefore, conclude that it is not permissible to

neglect the term de from the second system of equations.

dh

7.7 Effect of Mass Transfer

To assess the effect of allowing the possibility of

mass transfer a number of runs were made, at varying depths

and release rates, with the second model, each run being




190

made under two conditions:

(i) Allowance made for mass transfer by dissolution of

methane in the water.

(ii) By setting the mass transfer coefficient to zero,

the mass transfer is neglected.

Table 7.7.1 shows surface values of Vg?deff’ T, and «
for cases (i) and (ii) at each depth and release rate: for
each the upper set of figures relate to case (ii), while the

lower set refer to case (i).

CONCLUSIONS

The results show that the effect of allowing mass

transfer is to

(a) decrease gas velocity
(b) decrease width of plume
(c) decrease the void fraction

while there is no effect on the temperature of the gas. The
inclusion of mass transfer does not affect the values greatly,
especially at shallow depths and low release rates, but the
general trends are as would be expected.

Dissolution of the gas means that there is a smaller
volume of gas, which will decrease the buoyancy force and
lead to a smaller velocity. There will be a two-fold
effect on the plume width. Decrease in gas present plus a

slight decrease in amount of water entrainment due to smaller
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velocity will both lead to a decrease in plume width. The
second of these two effects will be far less significant and
hence the void fraction, being predominantly affected by

the change in gas volume, will also decrease.

By comparing values of g in Table 7.7.1 it can be seen
that the masstrensfer has increasing effect as the depth
increases, and at a fixed depth, the effect varies directly
with the release rate.

Finally, to check that case (ii) was equivalent to the
first model, the set of runs was repeated using the first
model. Table 7.7.2 shows the results: the upper set of
figures referring to the second model (case (ii)), while the
lower set refer to the first model.

It can be seen that the figures are identical.
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CHAPTER 8

CONCLUSIONS

By means of a control volume argument the conservation
equations for an unconfined bubble plume in non-stratified
surroundings are established. These equations are identi-
cal to those obtained by simplification of the general
conservation equations of mass and momentum for the gas and
liquid phases.

No assumption is made as to the liquid velocity and
void fraction profiles; instead "equivalent'" values are used.
A correlation between these and the corresponding values from

Gaussian profiles is made.

Thermodynamic relations are used to allow for a non-
isothermal rise of gas through the water and various
expressions for the heat transfer coefficient are discussed.
Numerical values and empirical formulae used all relate to
methane, the major constituent of the gas under considera-
tion.

By combining the dynamics and thermodynamics a general
mathematical model is obtained which is then solved
numerically. This model describes the main part of the rise

through the water. This is, in fact, the second of four
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separate stages necessary to describe cpmpletely the history
of the escaping gas. Brief comments aremade on the other
three stages.

Comparison of the present model with experimental results
shows that for relatively low flow rates of air the model
will give reasonable predictions of plume characteristics.

Experimental data on high release rates of low temperature
gas does not appear to be available. Further work in this
area, where the initial stages of the plume formation are
likely to be important, is needed. The accuracy of the
initial conditions for phase two which have been assumed
could then be assessed and any necessary adjustments made.

Sensitivity analysis for the heat transfer coefficient,
hT shows that oncefﬂu§heat transfer coefficient exceeds some
critical value (in the range 20-40 W/m2°K) the surface
conditions are independent of this coefficient and resemble
those of an isothermal rise. Variation does occur as to the
depth at which the gas achieves these isothermal character-
istics.

This study also shows that positive buoyancy is achieved
by the gas for all values of hT above a second critical
value (this time of the order of 5 W/m2°K).

Sensitivity analysis for the "equivalent" bubble diameter,
de, shows that in the absence of heat transfer the surface
conditions are virtually independent of bubble size. This
also means that the model is not sensitive to changes in the
slip velocity. In the presence of heat transfer from the

surrounding water, increasing the bubble size reduces the
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warming effect. For de greater than some critical value
the effect of the heat transfer is cancelled out, this

value depending on the heat transfer coefficient assumed.

I

8W/m2°K to vaiues of the order of a
300 W/m2°K).

(From 0.1im for hT

few metres for hT

As to the buoyancy of the gas at the surface; for hT =

300 W/m2°K the gas will be positively buoyant if d, does

I

not exceed 1.5m. If the variable form of the heat transfer
coefficient derived is assumed bubbles over 0.2m in
diameter would result in the gas being negatively buoyant
while for hT = 8W/m2°K this would occur for dp greater than
0.05m.

An extension to the model allows for the possibility of
mass transfer caused by the dissolution of the gas in the
sea-water. An expression for the mass transfer coefficient
is derived in a manner similar to that employed for the
heat transfer coefficient. On comparison with the initial
model, the presence of mass transfer results in a decrease
in gas velocity, plume width and void fraction while the
temperature of the gas is unchanged.

At this stage of development there remains unanswered the
question of the effect of using a richer gas, e.g. a

typical composition might be

Cq 62.28%
¢, 17.747%
C3 14.297%

IC4 0.85% [eeeen
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NCQ 2.23%
IC5 0.11%
N05 0.11%
N2 0.28%
CO2 2.117

where C1 - C5 denote Methane, Ethane, Propane, Butane
and Pentane, N, is Nitrogen and CO,, Carbon Dioxide.

In place of the numerical values and curve-fitted
expressions used in Chapter 3 for thermodynamic properties,
use of the computer program in conjunction with one of the
property generating programs available would allow evalua-
tion of such properties for any given gas composition.

As depths of interest get deeper the question of hydrate
formation will become important. The depths quoted in the
literature (Topham (1984a,b)), however, refer to ambient
pressure. In our case there is a large pressure drop at the
point of escape giving rise to a significant temperature
drop which could make hydrate formation an important consi-
deration at much shallower depths. I believe, therefore, that
further study in this area would be beneficial.

There is a need for accurate experiments to determine
the heat transfer coefficient. There is some available
evidence, e.g. L'Ecuyer, but experimental results relating

to ‘heat transfer are rare, especially for hydrocarbon gases.
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APPENDIX A RISE OF SPHERICAL-CAP BUBBLES

The following consideration of the speed of rise of a
spherical-cap bubble is based on the arguments of Batchelor

(1967) and Davies & Taylor (1950).
V-

For small gas bubbles of volumes less than about 6 x 10-101113

rising through water, the effect of surface tension is
sufficiently strong to keep the bubble approximately spherical.
As the volume increases, the bubble becomes oblate due to the
variation of pressure in the water over the surface of the
bubble, and for volumes above about 5 x 10™® w3, for which
surface tension effects are negligible, the bubble has a
spherical cap shape. The vertical motion is approximately
steady and the front surface is steady, smooth and closely
spherical while the rear face is jagged and irregular.

By considering the steady flow near the stagnation point,
s, on the forward face, with axes fixed relative to the bubble,
we use Bernoulli's theorem for a streamline at the bubble

surface.

Outside the bubble,
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p * Pg Rycos @ + %pusz = P, * rgRa (A1)

where the subscript s refers to evaluation on surface of
bubble, and the subscript o relates to the stagnation point.
If we let an overbar denote conditions inside the bubble,

then corresponding to (Al) we can write

P+ pg Recos.® + 1 ¢ ug? = p + 5 gRe (A2)
5 o

[yl

Subtracting,

(p - 5) + (p - ) gR&cos®+(1/zpus2

- - 2. - -
-1 = - -

50 u ")=(p ~p )*+(p-p)gRa
By making the assumption that the variation of the dynamic
pressure inside the bubble, % ¢ Gsz, is small compared with
that outside, we have (p-p) + (p~ p)g Recos@ + %p us2 =
(p,~Py) *+ (p-p)gRa

(p=B) + %0 u® = (p_-p,) + gR (o -D)(1-cos6 ) (a3)
The pressure difference must be uniform, implying

P-DP = P, - P, (A4)
and thus reducing (A4) to

%usz = gR{p-p)(1-cos @) (A5)

P




Since it is not possible to calculate the flow round a
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spherical cap shaped body, but evidence shows that the detached

boundary layer lies roughtly on the same sphere as the forward

face of the bubble, u, was calculated from the flow round a

Fal

sphere in an inviscid fluid, moving with speed U, giving

u = §‘§sin ® (A6)
2

Equating the two expressions for ug leads to

n2

U = g gR. (p-p) [ 1-cos@ ] (A7)
E e sinZ0

For © small l-cos @ -> %

sin? o

so that, near the stagnation point

i\] = Z gR(\ ( 0_:5_) (-AS)

3 o

Expressing R in terms of the equivalent diameter, de,

(see Appendix F)

RC\ = de (Ag)
2 %
[2(1~cosg@ (2+008qn)}




201

/B )

[2(1-cos @ )2(2+c058,)]7 (A10)

o

For a typical value of qn = 50° this reduces to

A

U = 0.712 g(g:P)de (A11)
[

Experimentally, Davies & Taylor (1950) found that

A
U 2.48 y1/6

1

, where V is the volume of the

bubble

which translates into
/\ -
U 2.23Y de = /4.96de (A12)

It is based on this figure that the present model assumes a

[l

value of 5de
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APPENDIX B GAS DISCHARGE

This appendix contains some well known theory which is

included for completeness.

1.

Velocity of Sound in an Ideal Gas

If we consider a disturbance set up by the movement
of a piston at the end of a tube. A wave travels down
the tube with sonic velocity, c. After the passage of
the wave the properties of the gas have changed by an
infinitesimal amount and the gas is moving with velocity
du towards the wave front.

By considering the wave front as a control surface,
the First Law of Thermodynamics may be written (Van

Wylen & Sonntag (1978)) as

b+ c2/2 = (h+df) + (c-du)?

2

A
where h denotes the specific enthalpy.

To leading order, this implies
A
dh - ¢cdu = 0 (B.1)

From the continuity equation, for a tube of cross-

sectional area A,

pAc = (p+ dp) A (c-du)

and so, again to leading order
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cdp = pdu =0 (B.2)
Using the thermodynamic relation
A
Tds = dh - dp (B.3)
P

and assuming the process is isentropic (ds = 0) (B.1)

may be rewritten as

dp -c¢cdu =0 (B.4)
(o}

which may then be combined with (B.2) to give

(_a_E) = 02 (B.S)
ap

S

For an ideal gas undergoing an isentropic change of

state, assuming a constant specific heat we also have

the relation

(3R) =Y (B.6)
a0

s

~Dh

where +y is the ratio of specific heats.
Combining (B.5) and (B.6) and making use of the

Ideal gas law, leaves us with

c2 = YrT (B.7)

where T is the temperature, and r is the gas constant
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Reversible, Adiabatic, One-Dimensional, Steady Flow

of an Ideal Gas through a nozzle

Letting the subscript o denote stagnation conditions,

the First Law gives

A
ho+u’ = B (B.8)
2

Using the thermodynamic relations

A
h = cPOT (B.9)
cp = Ty - (B.10)
0 —
Y-~ 1

(B.8) may be rewritten as

u? = 2yeT (I‘ - 1) (B.11)

L
T

Y -1
Combining with (B.7) and rearranging

39 = 1 +(y-1) M (B.12)

where M’= u is the Mach number

(e

For an isentropic process

T 1/v-1
o
—

(T >‘Y/Y-1 =P ( (B.13(a), (b))

P

po

p

Hlo

leading to




§]
C
i}

[ 1 +y-1 M2

2

o)

[ 1 +x-1)M2)
2

ko
p
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Yoy-1) (B.14)

L
{y-1] (B.15)

At the throat of the nozzle, necessarily

M = 1

and so, denoting by

Ix = 2
T, 1
P (Z.)Y/Y_l
P, v+l

97-1
LR
Py Al

* the conditions at the throat,

(B.16(a),(b),(c))

These ratios are frequently referred to as the critical

temperature, critical pressure and critical density ratios:

and can be found in tables

Mass Flow Rate of an Ideal

Gas through an Isentropic

nozzle

The mass flow rate per unit area can be written




rT

s

YT
o)

pu [l 739 /1 '
/er Tdr To

> 18 .

]

Use of (B.14) leads to

Y

[1+1___M ] 2(Y -1)

At the throat, M'= 1 and (B.17) reduces to

m o= p fyx . __ 1
A}“ r Y_.t}_

(1-1;-—1-)2(Y~1)

R

4. Note on Maximum flow rates
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pM [+ =12 (by use of (B.7)
[T, J Z and (B.12))

(B.17)

(B.18)

Effect of the back pressure, pp, which is the pressure

outside the nozzle exit.

\[




(a)

(b)

(c)

(d)
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when Pp = 1, there is no flow; Pp = 1

P, Py

If Py is lowered but Py critical pressure ratio,

p

then m has a certain value and Pp = Py (exit

&}

Mach number is less than 1)

If P is lowered to the critical pressure ratio,

= p, and the exit Mach number is 1.
Pr B

Further decrease in Py will not increase m, pg
remains constant at the critical pressure and the
exit Mach number is 1. The drop in pressure from
Pr to Pp occurs outside the nozzle exit. Under
such conditions the nozzle is said to be choked,
which means that for given stagnation conditions

the nozzle is passing the maximum possible mass

flow.

In the case of interest in this thesis, it is not the

back pressufe which is varying, but the stagnation pressure

P, which is decreasing with time.

This affects two things

(1) The mass flow rate

(2)

The speed of exit of the gas

For a given stagnation pressure, Py» the gas will be at

sonic velocity so long as the back pressure is less than or

equal to the critical pressure for this Po-
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For y = 1.3 (value for methane), the critical pressure
ratio is

p* = 0.5457 | (B.19)

Po

which implies the critical pressure is 0.5457 P,

Therefore,

Flow will be at sonic velocity so long as

§ 0.545
pg ¢ 7po

i.e. p, 2 Py
0.5457

Once p, < Py , the exit velocity will be less

0.5457

than sonic.

Although the speed of exit of the gas will remain at
sonic velocity until the stagnation pressure falls below

1 times the back pressure, the mass flow rate will

0.5457

not remain at a constant value during this time, but will
decrease with the decreasing Ps according to (B.18).

For methane,
'Y = 1-3

0.51835 x 103

H
I
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and (B.18) becomes

It

0.0293 p_ (B.20)

I

o
x
A
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APPENDIX C AVERAGE DENSITY AND VELOCITY OF TWO-PHASE

BUBBLES

The concept of continuum theories is comprehensively
explored by Atkin & Craine (1976a,b). In less detail, the
general formulation adopted here is that discussed by Sco
(1976).

Following his method, it is assumed that for a mixture

of two phases, a particle in each phase exists at every point

of the mixture.

DENSITY

We have for the mass of the bubble, in terms of the mass

of the two phases,

mg = my +m (C.1)

or, dividing by the volume of the mixture, VB’

Ld -

P = P +p0 (C.2)
B 3] ng

where the densities on the RHS refer to their values within
the mixture.

We require, however, to express pg in terms of the
densities which each phase would have existing as a separate

entity; p, and p
Sg g)

Then,

L = og v (C.3)
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(C.4)
(C.5)
;!
VELOCITY
By writing the momentum of the mixture as
= v C.6
MpVg Mg Vo +my Vg, (C.6)

g g
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where the terms Vg v%f»v denoted the velocities of the
mixture, the gas phase and the liquid phase, respectively
Hence the mean velocity of the two-phase mixture may be

written as

v = m + m v
B gg gg g1 &1
™mB
= £ v, + (1-€) v (¢.7)
gy &1

If, however, we assume that both phases move with the same

velocity i.e.

v = v = v (C.8)

vg TV (C.9)
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APPENDIX D

MEAN AND FLUCTUATING COMPONENTS OF VELOCITY

Letting u instantaneous liquid velocity

it = average value over the time liquid
is present
u = fluctuating component
Then,
u = u +u (D.1)
and
u o= 1 u dt (D.2)
Atl
t
A%
Thus,
u2 = 1 u2 dt
Aty
Atl
_2 _" ~2
= 1 (u + 2uu + u®) dt
A
t1
Atl
- - - ~2
= 1 42dt + 1 2u (u-u) dt + 1 u® dt
Atl Atl Atl
At At

1
1 Atl




(D.3)
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APPENDIX E: RELATIONSHIP BETWEEN GAUSSIAN AND TOPHAT PROFILES

The present model is based on Top Hat profiles for the
velocity and gas fraction, while Sjoen (1983) concentrates on
Gaussian profiles.

If Top Hat values are identified by the subscript T, and

Gaussian by the subscript G, then there exists the following:

Top Hat: The plume has average upward velocity W and
radius bT'
The gas fraction has a value %, averaged across
the plume to a radius A_b

T°T
So,

Wep bT and ap are functions of the height z, but

independent of the radial distance rw.

Gaussian: Here the upward velocity is denoted by

I AT (E.1)
G
where Wo = centre line value, and
bG = characteristic plume radius

and the gas fraction

@ = q e-rcg/kc;zbcz (E.2)
G .
where ag = centre line value, and
AG bG = characteristic radius of the bubble-

containing part of the plume.

It is possible to compare various quantities, calculated

using both Top Hat and Gaussian distributions, namely gas




216

volume flux, gas cross-sectional area, liquid mass flux,

liquid momentum flux and liquid entrainment.

GAS VOLUME FLUX

Gaussian
G = 2nro (w+wr)dr£ )
0 2 2 2
= - Ly
mag VG 2r, e 1:"/bG <1+14G2&:ﬂa e¥r | 2re n“‘szbGz dr
o o)
= Mo w. bl +  mes W A 2 4 2
G G TG G "r G G
1+1/AG2
= ma, buZr,2 + E.3
G °G G(_g Wr) .
9 .
1+ G
Top Hat o
6 = 2mr, O (WT + Vr) dry
o) .
min( TbT,bT) A bT
= 2 o ¥ rdr, + ?‘“O‘Tvr r, dr,
o o

2, 2

_ . 2 2. 2
mo . Wy min ( A q by, by ) + mar Vo A bp
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LIQUID MASS FLUX

Gaussian

Top Hat

my

Aq ¢ 1
(E.4)
AT > 1
pl z'ﬂr&(l_a) w drt\
(0]
Ql 2"]"[]."(:k (1"‘ aGe WG e . dr(\.
o
Lao oo
-x2 /b, -n?/bG2(1+1/xG2)
Zﬁple [ re dr, - aq (e dr,
(]
2 2
Ve ( BgT Tt egbs )
2
+
1 1/AG
2
1+1 £ 2 .
Ag

8

P 2 (1- o) wp drg
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) bT min(kaT,bT)
= Zﬂple ! X, dr - aT ;ldxk
L o )
_ i 2 2. 2 2
T TPWp br” - ap M Gy, bp®) }
= |up., w.. b 2 (1 -2 2 ) A € 1 (E.6)
1 T T T T T '
2 > 1
TPy Wi bT (1- aT) AT
LIQUID MOMENTUM FLUX
Gaussian -
M; = I 29r, (1-0) w? dr .
1 1 b &
o] =] T
) -’ /b2 -r/bg2(2+1/ ) 7
= TPy Ve [ 2re dr, - a. | 2ze G dﬁ
e} 0O N
_ 2 2
= TAY (P /2 TPt
| 2+1/7\ 2
2 . 2 |
= 'n'plWG bG ( 1 - -(ig ) . (E-7)
2 1+ %XGZ
Top Hat
M, = 2m (1- o) w 2 dr
1 pl QT T a
o
b mi
in( A by br)




GAS CROSS-

( .
2 . 2 2
mpy Wy bpt (1= 7 %)

3
o

1Y% b 2 (1- o)

\

SECTIONAL AREA

Gaussian

Top Hat

27Ty a dr,

Il
8
N
=
n
Q
]

(o
Pﬂ

o}

8

o}
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(E.8)

(E.9)

(E.10)
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LIQUID ENTRAINMENT

This is related to the liquid mass increase equation

Gaussian

[oN
=
L]

—2wol Bo waG (E.11)

[a R
e
1

“2mp
1 187 v b (E.12)

where B is the entrainment parameter
Comparisons between certain parameters of the two profiles

may be made by equating a number of the previous expressions.

By equating the liquid mass and momentum fluxes, and dividing

the equation relating to momentum by that relating to mass

w 2b 2
2. 2
2 1+%AG2 = Wi br. VAT
2
waGz (1- q ) Wpbp
1+1/AG2
which may be rearranged to see that
= 2 2 v
Ve = 2wT { 1+ ZKG ’ 1+ AG (1-0G) ] AT (E.13)
1+ 3.2 2% 2(1-
Ag 127\G (1 aG)
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For negligible gas fraction,1 = o ¥ 1, and the above equation

reduces to

= 9 W ‘ (E.14)

which is the well known result, as quoted in Fannelgp & Sjgen

(1980).
Equating the mass fluxes

_ 2ry o2
W, bG 1 - oG } = waT [1 mln()\T ,1)aT]
1+1/;\G2

Substitution for o gives

2 - 2 -1 2 .
Wb { 1- g | = by [1-min(ag®, D) ag]
1+1/AG2

o2, [
5 1+21G2 1+AG2(1_QG)

which may be solved for bG to obtain

1

_ 2 r 2 K
bg = bp [ 14y g [ 14235 (1-0,)] "
A 201~
AL 2 2(a)| | 1 202
i
[1-min ( A 2,1)e ]2 (E.15)

Again, for negligible gas fraction, the equation reduces to

(E.16)
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as expected.

Using the equations relating to the momentum fluxes

yields an identical result.

Equating the gas cross-sectional areas yields

o A2 2 L 2.2
¢ "¢ g % fr by

Substituting for bGz, and rearranging, we find

2
g = Zaghp [’1+AG2(1-QG)}[}+ 225 ] (E.17)
)

AGZ'(i'U 20, 1 +a G2 1+2)\G2(1-0L

)

. 2
W = min (AT , 1)
and, for negligible gas fraction

o = 2
e 2 A" @

, T (E.18)

AG
Finally, equating entrainment rates

f and this leads to

S

2
Bg = B [ 1+ 22, (1"QG)} (E.19)

O A 2
so that for @y Oy K1

Bg = Bp (E.20)

vz

It is possible to write equations (E.13), (E.15), (E.17), (E.19




in a different form

Voo o 2 1+ AGZQG ]
V1 [ [142g21[1+2 2,2 (1= gg) ]

*2
It
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(E.21)

2
1 [i+xc4{aG(1"aG)+[1+2Agz(l’aG)][ug‘uzaT(1+1/xG2)]}]
> ¢

[1+22,21[ 14247 (1-0g) 12

w2 { thag® + 228(1-00)]

(E.22)

% = ZXTZ[1+AG2aG[+(u2-AT2){2xG2(z'ag)+4lc4(1"ac)}

.CCT :&2
¢ 2 a2 (10 H)? (14222 (1-ag)]
3
Bg
L= 1 2 2 G
BT /2 [ 1 +q aT[1+2XG (1- ﬁsz)] ]
2 2
(1423 %) (L1-naq)
from which the simplified forms for agrag? << 1 can
easily be seen.
Equation (E.21) shows that the effect of allowing
negligible gas fraction is to increase the ratio Vo /v
T

values of A, a( a< 1)

The ratios bG/bT and BG/BT, however, will show an

increase or decrease depending on the values of A, a .

For %G e ? if XT ¢ 1 there will be an increase, but
T

for AT > 1 it will depend on », 4

J}

(E.23)

(E.24)

a non-

for all

!
E
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Returning to (E.21), if we let

f(xG) = J\GZaG (E.25)
[1+AG2] [1+ ZAGZ(l'aG)]

Then, by differentiating and rearranging

£'(00) = 2xgag[1-224(1~ag)]
[142,21°[1+22,2(1-a) 1% (E.26)
Hence, f'(xG) = 0 when Ajo, [1—21G4(1-ac)] =0
This requires AG = 0 or ag = 0, or
At = 1 (E.27)
2(1—uG)

Since gas is present, the first two solutions are not
possible so that the third must hold.

In fact, for A,2 . 4 , £1 (Ag) > 0 (E.28)

Y ZZl-uG)

and so f (KG) increases with AG’

while for A,° > 1 , £ (<0,
/2(1-uG)

and f(AG) decreases with AG- (E.29)
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As a, =20, 1 ->

G
,/2(1-aG) 4

(E.30)

and it can be noted that f(AG) increases witha, so long as

AGZ < 1// y, i.e. so long as lG < 0.841

2

For og # 0, 1 > 1 (E.31)

/2(1-&G) /2

and hence, f(AG) increases with Ao for Ag >AGcrit
where » > 0.841
crit

Using this information in (E.21), we can say that for

%G # 0, the effect on the ratio wG/w will be to increase
T

its value above 2, and this increase will be dependent on A

(assuming effect oka dominates effect of varying uG) in such

a way that it is directly proportional to AG for all values

of Ag Ag where A > 0.841.

. G
crit crit . o
Due to the complicated nature of the expressions, similar
analysis was not applied to the other ratios. For comparison
purposes in each of the four ratios the simplified version

obtained for SRRy -> was used

(E.32(a),(b),(c),(d))




AVERAGE GAS VELOCITY

By considering equations

for a Gaussian profile t

1

1+ XG

+
2

while for a Top Hat prof

r

Vg = WT -+ Vr
) +
i
X2

We shall only consider A
is not applicable.
Comparing (E.33) an

follows that, assuming w

2

1+ AGZ

1

L
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(E.3) and (E.4) it can be seen that

he average gas velocity may be written

W (E.33)
ile, the equivalent expression is

A v < 1 (E.34)
T A T > 1

T €1, so the second alternative

d (E.34) with equation (2.2.37) it

v

2w
r

v and Lo

’ =

T T,

Gaussian profile (E.35)

Top Hat Profile

For the purpose of comparing results in 4.6 a special case of

(E.22) is considered.

Assumptions:

1 (E.36(a),(b),(c))
1
XGZ % y where by previous

2K discussion

K > 1
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Equation (E.22) may then be rewritten as

bG 1 [ 1 + RGA g(AG) }

E; /2 [1+2AG‘][1+AG?(1-aG)]Z

[N\

I}

(E.37)

where

2 2
g(Ag) = QG(1~GG)+[1+2AG2(1—QG)] [“G - XT% (141 ) ] (E.38)

This reduces to
g(AG> = GG [(1"1/K) + (1_1/K)(1'QG> + 2(1-1/K) kGZ(l—uG)—XGZ

2K

K 2K 2

"1t (e -1
G

(E.39)

Clearly, for K = 1, g(kG) < 0, but for non-negligible gas
fraction K > 1, and the sign of g (AG) is not so obvious.

If we consider the term

[2(1'1/K)'E9? ] %GZ(l—aG), (E.40)
K

this is less than zero so long as

2
K <1 + AG (E.41)
2

In this case

(1- 1/K) + (1-1/K) (1-dG) - AG?- -1

—— 2
ok Kre
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In this case

(1-1/K) + (1-1/K) (1-a) =A% -1
- 2
- 2K,
\ .2 1 - 2
<(1—2 2)-G2+( ~2_ﬁ2)(1-ac)-12 2
2 + g 2%, G e (2+ AG )
= (1 -2 Y(1-a - 1
G = 2
9 +AG2 \g2 (2+>\G )
< 1-2 )
2+ 22 a2 (BT
4
= - 1 (1 - x.")
H— G
AG (2+xG2)

< 0, since AG‘< 1

Thus, g(kG) < 0 and the result is a decrease in the ratio

2
bc/brfor values of K greater than 1 but less than 1 + XG /2.
Using equation (E.36(c)) we can say that g(AG) <0
(5. -
if o, <1+2 = 0 ag =07
_G i
X G . 6.37 A, = 0.61 (E.42)
' G
4.65 ¢ XG = 0.74
4.20 A, = 0.79
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APPENDIX F: SURFACE AREA OF SPHERICAL CAP IN THE FORM

SA = d 2
ot e

The volume of this spherical cap may be calculated from

om

v = 2m rzsin@ dr, d@
o 'Beh
cos @
to give
Vo = 1w h%(Roh/3) (F.1)

The surface area of this spherical cap may be calculated

from

27 @m

S.A. = RZ sinede df + 1 [R2-(Roh)2]

to give

S.A.

ath (4Ra-h) (F.2)
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It is also easily verified that

h = R{1 - cos® m) (F.3)

Substituting (F.3) into (F.1) and (F.2) leads to

vV = EBS (1 - cos Om)z (2 + cos Bm) (F.4)
3
S.A.= WRE (1 - cos @m) (3 + cos® m) : (F.3)

We wish, however, to relate everything to the "equivalent"

diameter de’ defined by

_ 3
v.oo= md (F.6)
6
If we express the surface area as
_ 2
S.A. = €d_ (F.7)
then
v o= nde (F.8)
S.A. oo
which, from (F.4) and (F.2) may be equated to
V. = R{1 - cosp m) (2 + cosp rn) (F.9)
S.A.
3(3 + cos@ m)
to give
€ = md, (3 + cos.em) (F.10)

2Ra (1—coseln)(2 + cos@ln)
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Finally, from (F.4) and (F.6), we have

d

e

Ra = (F'll)
2%(1-cos® m)%(2+cose.m)’13

This may be substituted into (F.10) to give

. 7(3 + cos em) (F.12)

[4(1- cose _)(2+cos ‘@m)z];é
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APPENDIX G: SAMPLE OUTPUT

The program is run for the standard set of values as

given in Table 6.2.1.

The variable form of the heat transfer coefficient is used

and mass transfer is accounted for.

Figure Gl shows a sample output with values printed at

Sm intervals.

Figures G2, G3 and G4 are plots of velocity, diameter and

temperature against depth respectively.
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