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Chapter 0 Preface

There must be few people who, ten years ago, could have imagined the tremendous 

interest now being shown in finding the prime factors of large integers. What used to be 

just another part of the Mathematics taught in schools that most pupils forgot after entering 

the outside world, namely that every positive integer ( >  1) is the product of a unique set of 

primes, has now become a focus of attention. Several factors have contributed to this, but 

undoubtedly one reason lies in recent developments in cryptography.

Several years ago a scheme was announced called the RSA Public Key Encryption 

system [Rivest, Shamir and Adleman 1978]. This is a method for coding information with 
the advantage that the method by which a message is encoded can be made public (hence the 

name "Public Key") while only the information necessary for decoding need be kept secret. 

The mathematics involved centres round a particular congruence modulo N  , say, where the 

integer N  is the product of two large primes (each having probably more than 40 decimal 
digits) chosen beforehand, and at present, the only way known (or at least published!) to 
crack this is to find these two primes. This is not a simple task. Certainly, the factorisation 

of very small integers poses few problems, but to find the factors of, say, a 100-digit decimal 

integer would probably take many years of computer time, even using the fastest algorithm 
available! Hence the considerable amount of effort now being applied to this problem. In 

the related area of primality testing, recent theoretical advances have resulted in tests that 
can ascertain whether a given integer is prime or not in a very short period of time. For 

example, the work involved for a 100-digit number would typically require less than one 

minute of cpu processing! Unfortunately this has not happened w ith factorisation, and the 

main achievements in the field are now coming from the efficient implementation of existing 

algorithms on the very fast computers now available.

It has not just been the great progress made in chip technology that has produced these 
high-speed computers. Much research effort has also been directed to the actual design of 

machines themselves, and how best to make use of the devices available. Thus, many novel 

computer architectures have been suggested and built, and it is these that have proved 

extremely useful to those mathematicians trying to solve the problems associated with 
integer factorisation.
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Just three years ago, it was widely believed that numbers w ith 50 digits represented 

the limit of computational feasibility. But such is the progress in this area, made possible by 

the use of these advanced computers, that only last year a team at Sandia National 

Laboratories managed to factor the 69-digit Mersenne composite 2251 — 1 in only 32 ■ 2 hours 
of computer time. This was such a significant achievement, demonstrating as it does, the 

advances made in numerical computing, that it was the subject of the plaque presented to 

the IEEE on the occasion of their centenary, by the ACM. In fact, the Sandia team have 

gone on to larger numbers, factoring, for example, a 71-digit integer in only 6*45 hours of 

cpu time. The leader of this group, Gustavus Simmons, is quoted by Kolata [1983] as saying: 

"Fm convinced now that large-scale computational problems such as factoring depend as 

much on the architecture of the machine as on its brute-force speed. If you can modify the 

architecture you can make enormous progress The exploitation of machine architecture is 

a whole new way of doing mathematics."

Simmons* work has been on a CRAY-1 computer, which is typical of one approach to 
"supercomputer" design. However, there are other possibilities, and these are the subject of 

Chapter 1. A ll the designs have one feature in common though, namely, the use of 

parallelism to increase the speed of the machine. The survey begins by showing how 

parallelism was first introduced to computer architectures at the bit level, with the 

development of word-based machines, before the demand for ever faster processors prompted 

its incorporation into other areas of machine design, w ith the result that now computers 
have been built w ith up to thousands of processing elements working in parallel.

As part of this research has involved the use of one particular supercomputer, namely 

the ICL Distributed Array Processor (DAP), we then go on to describe this machine in some 

detaiL Mention is also made of the high-level language available on the computer, and 

examples are given and techniques discussed, to illustrate the problems associated with 

programming such a processor array. It is interesting to note that, after trying to implement 

the Continued Fraction factoring algorithm on the DAP in only a couple of months, 

Wunderlich is on record [Kolata 1983] as saying, "It takes a gigantic effort to put a new 

algorithm on a large machine."

Chapter 3 begins w ith an outline of the mathematical idea which underlies most of the 

modern factoring algorithms along with a brief survey of some of the better-known current 

work, before the method chosen for consideration in this study, namely the Lehman 

factoring algorithm, is presented, and proved. During the discussion which follows, various 

short-cuts that can be incorporated into a computer implementation are mentioned, including 
one modification to the algorithm which reduces the constant implied in the running time 
being O (N 11 3) .



-  3 -

In Chapter 4 we give a brief description of an implementation of this algorithm on a 

VAX 11/780, before going on to discuss in detail, the parallel version on the DAP. The 

problem of performing trial divisions in parallel on a processor array is analysed and we 

show that, unless just prime divisors are used (which is impractical because of the storage 

required), the best processor utilisation figure that can be obtained (on the DAP) is only 80%. 

Also discussed fully  is a binary algorithm for finding square roots which is particularly 

suited to the architecture of the DAP.

Assessing the relative performance of machines (especially if they have fundamentally 

different architectures, as here) is very difficult Thus, the beginning of Chapter 6 is devoted 

to a brief discussion of this complicated problem, before the results obtained from this 

research are presented and analysed. For various reasons, which are examined, the speed-ups 

over the VAX, obtained by using the DAP, are sometimes more than would have been 
expected.

In Chapter 7 we give an example of when an even greater speed-up was recorded, and 

show mathematically w hy this was the case. Further analysis of the algorithm follows, 

leading up to the statement of a generalisation of the Lehman algorithm. We also discuss 

how certain extra knowledge can be used to reduce the amount of work required by the 
algorithm.

An alternative technique to division for identifying divisors of an integer is presented 

and analysed in Chapter 8 and, in addition to an examination of how one could generate lists 

of consecutive primes on the DAP, Chapter 9 contains a discussion of a topic related to 

factorisation, namely primality testing. Two tests suitable for use on the DAP are presented 

(from the literature), along with a running time analysis which shows that the algorithm 
concerned runs in polynomial time.

Chapter 10 contains a summary of the conclusions which this research led to, as well 
as an indication of further work that could be done.



Chapter 1 P arallel Processing : An H istorical Survey

With the advent of electronic computers, scientists found themselves able to do in 

minutes what had previously taken them days, or even longer. It is surprising to discover, 

though, that there were those who felt that even faster machines would not be required. In 

a summary of a talk he gave in 1949, von Neumann [1949] is reported as making the 

following point.

"A major concern which is frequently voiced in connection w ith very fast computing 

machines, particularly in view of the extremely high speeds which may now be hoped 
for, is that they w ill out-run the planning and coding which they require and, 

therefore, run out of work."

Of course, this was not the case. Von Neumann went on to point out, in the same talk, 

how the size of the problems that had been tackled up till then, had been limited by the 
speed of the machines available, and how the desire to solve larger problems would bring 

pressure to bear on designers to produce faster computers. Five years later, when speaking at 

the first public showing of the IBM Naval Ordnance Research Calculator [von Neumann 

1954], he emphasised the importance of following the example of the US Navy and IBM, and 

"to write specifications simply calling for the most advanced machine which is possible in 

the present state of the art". As can be seen from what follows, his advice was heeded.

The early electronic computers were "bit-serial" machines (i.e. arithmetic and logical 
operations, as well as data transfers, were performed serially, one bit at a time) and so were 

comparatively slow. An example of such a machine was the Pilot ACE (short for Automatic 

Computing Engine), and its commercial derivative, the English Electric DEUCE [Wilkinson 

1953]. An obvious (looking back!) improvement was to process more than one bit of a 
number or operand simultaneously, and so n -bit machines (where n  >  1 is an integer) were 
born. Bit-parallel arithmetic, as it is called, became possible w ith the advent (and 

availability) of static random-access memories from which all the bits of a word could be 

read in parallel. In 1952, at the Institute of Advanced Studies, the first experimental 

machine to use such arithmetic was completed, while 1953 saw the appearance of the first 

commercial computer to employ parallel arithmetic, the IBM 701.

Another feature of early machines which limited their performance was that all 

input/output operations involved the use of a register in the arithmetic unit, thus halting
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arithmetic activity for relatively long periods of time, due to the slowness of the type of I/O 
equipment being used (e.g. on-line card reader; 150-250 cards per minute ; card punch: 100 
cards per minute ; line printer: 150 lines per minute; and, of course, paper tape reader: up to 
1000 characters per second). Even the introduction of magnetic tape drives as the primary 

I/O medium w ith the provision of off-line card-to-tape and tape-to-printer facilities via 

another computer, failed to solve the problem, since even a tape speed of 15,000 characters 

per second was approximately 1,000 times slower than some processors (e.g. IBM 704).

This problem was at least partially overcome with the use of a separate computer 

(called a data channel) whose only job was to transfer data to and from (slow) peripherals 

and the main memory of the computer. Thus, once initiated by the main control unit, data 

transfers could proceed independently of the main processor, leaving the arithmetic unit 

free for more useful tasks. Of course, one was not limited to a single channel. In 1958 six 

data channels were added to the IBM 704, which produced the IBM 709, though this 
machine had a short life due to the use of "out-dated" technology (i.e. the use of valves 

when the transistor had become a reliable component).

The use of data channels is an example of what could be called "functional 

parallelism", which is the provision of several independent units for performing different 

functions (such as I/O, logic, addition, or multiplication), which are capable of operating 

simultaneously on different sets of data. This represents one of the four ways of introducing 
parallelism into the architecture of computers, namely pipelining, functional parallelism, 
multiprocessing, and processor arrays.

1. Pipelining

This method makes use of the principle of the production line. The assembly of a car, 
for instance, can be divided into many smaller tasks, each independent of the others, and all 

capable of being performed simultaneously. There are many tasks in computing that can be 

similarly split up. For example, the addition of two ffoating-point numbers could be 

decomposed into the following three stages:

- prenormalise

- arithmetic operation

- postnormalise

all of which can be carried out at the same time on (obviously) different data, thus forming 
what would be called a three-stage pipeline.
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If pipelining is to be used in the design of a computer, several factors have to be taken 

into consideration. For one thing, it is desirable that the operation whose execution is to be 

pipelined be divided into stages that take approximately the same time to complete, 
otherwise some stages w ill involve a (comparatively) large amount of waiting for others to 

finish, resulting in a certain degree of inefficiency. It is also important to keep the pipeline as 

fu ll as possible (i.e. We want each stage to have operands to process for as much of the time 

as we can.). Gaps in the pipeline (as stages without operands are called) occur when the 

sequence of operations is being set up (i.e. in the filling of the pipeline), and when the 

sequence is being terminated (i.e. when the pipeline is, as they say, being flushed). 
Unfortunately, there is really nothing one can do about this. However, once the pipeline is 

full, a certain amount of ingenuity is required on the part of the designer to keep it that 

way. Such contingencies as conditional branches and operand dependency can, unless 
properly dealt with, cause a (wasteful) gap in the pipeline.

Despite these problems, this technique has been used effectively to speed up various 

arithmetic operations. For example, the CRAY-1 [Russell 1978] has twelve functional units, 

all pipelined, to perform such tasks as floating-point addition, multiplication and reciprocal 

approximation, as well as logical operations and shifts on vector operands (which are a 

feature of this very high-speed machine). The CDC 7600 and IBM 360/91 [Anderson et al 

1967] also provide pipelined functional units, while in the AMDAHL 470 V/6, the entire 
processing of instructions is pipelined, with instruction execution divided into twelve 

suboperations. A new instruction can be taken every two clock cycles (or every 64ns), and 

so, at any given time, up to six instructions can be in various phases of execution. Thus, to a 

certain extent, this machine, and the others like it, may be considered parallel processors.

While the CRAY-1 computer, as already noted, features many special-purpose 

pipelines, other machines, like the CYBER 205 (as Hockney and Jesshope [1981] report) 
incorporate a number of general-purpose ones. Another such machine was the TIASC 

[Watson 1972] which had either one, two or four identical general-purpose pipelines.

The efficacy of pipelining was demonstrated in the early 1960s in  Manchester, where 

the ATLAS computer was developed. This was a single processor machine in which 
pipelining was employed in the executing of instructions. It proved very effective because, 

for example, in a series of floating-point additions, the average time per operation was 

reduced from 6.0 fi s for the sequential execution of the program, to 1.6 [x s w ith pipelining 
[Hockney and Jesshope 1981].
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2. Functional Parallelism.

As already mentioned, the term "functional parallelism" refers to the provision of 

separate units for performing different tasks, each independent of the others, and all capable 
of operating simultaneously on different data. One of the earliest computers to include this 
feature was the pilot ACE [Wilkinson 19531 which permitted one out of each of the 

following classes of operation to be performed in parallel:

- add, subtract, fetch, store

- multiplication, division

- memory transfer to and from drum

- input, output

The ATLAS computer is another example, since it provided a separate autonomous 24-bit 

adder for index calculations, in addition to the main fixed- and floating-point arithmetic unit 

which worked on 48 bits. However, the first computer to employ functional parallelism as a 
major design feature was the CDC 6600 [Thornton 1964] which had ten separate functional 
units. The IBM 360 series machines also used this idea in that they had separate execution 
units for fioating-point and integer address calculation which could operate in parallel.

Before discussing multiprocessing and processor arrays, it might be constructive to see 

where parallel processors fit into the whole spectrum of computer architecture. A useful 

categorization of machine design was developed by Flynn [1966, 1972]. He classified 
computers into four groups according to the number of instruction and data streams which 
can be processed simultaneously, as follows.

(1) SISD single instruction stream/single data stream. This is the conventional serial von

Neumann [von Neumann et al 1946] computer in which there is one processor 

executing one stream of instructions, using a single stream of data. Whether 
pipelining is used or not is irrelevant for the purposes of the categorization. 

Examples of such machines are: CDC 6600 (unpipelined); CDC 7600 (pipelined 

arithmetic); AMDAHL 470 V/6 (pipelined instruction processing).

(2) SIMD single instruction stream/multiple data stream. Such a machine could be called a

vector processor since each instruction operates on a vector of operands, rather than 

on a single data item. The individual elements of each vector could be considered 

members of different data streams - hence the classification name. One could argue 

that this group should contain the pipelined uniprocessors which can process vector 
instructions (like the CRAY-1), although nowadays the term SIMD is used to refer
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to an array of processors working under common control, examples of which w ill 
be given later.

(3) MISD multiple instruction stream/single data stream. In this type of computer, each

operand would be operated on by several instructions simultaneously. However, at 

present, there is no system that is purely MISD, and it is hard to imagine what 
advantages such a machine would have. Thus, this grouping is only included to 

make the categorization symmetric.

(4) MIMDmultiple instruction stream/ multiple data stream. The computer described here is

formed from at least two independent processors (independent in the sense that 

each is capable of operating on its own data stream, using its own instruction 

stream) connected together in some way. This group w ill shortly be described 

under "multiprocessing".

As can be seen, in this classification, nothing is said about the architecture of the processors 

involved, or about how they are connected together (in the cases of SIMD and MIMD 

machines), and so, to a certain extent, it is too broad. However, it w ill suffice for our 

purposes. (An example of a more detailed categorization is Shore’s taxonomy which Hockney 
and Jesshope [1981] describe, in addition to a very complicated system of their own.)

3. Multiprocessing

As the name implies, a multiprocessor is a computer incorporating more than one 

processor. Since 1959, when Holland (as Hockney and Jesshope [1981] report) presented 
what could be considered to be the first large-scale multiprocessor design, several such 

machines have been produced, and from the standpoint of high-speed computation, the area 

seems a promising one. Unlike a processor array, which is composed of a large number of 

identical processors working in lockstep, this type of computer is made up of usually a 
smaller number of general-purpose processors, each capable of executing different instruction 

streams. The processors share global memory, and so one of the most important components 

of the system is the processor-memory interconnection network. In the designs so far 

produced, many different types of interconnection schemes have been used.

The most popular design has been that of a crossbar switch, which connects every 
processor to every memory module. It was used by Burroughs in their 5000 series machines, 
as well as in their D825 command and control computer [Anderson et al 1962]. The Cmmp 

[Wulf and Bell 1972] developed at Carnegie-Mellon University is another example, as more 

recently, is the S-l multiprocessor [Widdoes and Correll 19791 Developed at the Lawrence
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Livermore Laboratory, University of California, under the auspices of the U.S. Navy, this 

machine was designed to have a performance ten times that of a CRAY-1! The S~1 Mark 

HA, as it is called, consists of 16 specially developed single processor machines (called S-l 

Uniprocessors), each with about the computational power of a CRAY-1, connected to 16 main 
memory banks via a crossbar switch which provides high-bandwidth, low-latency 

interprocessor communication. (There is also a shared bus whose function, among other 

things, is to transmit interrupts and small data packets from one uniprocessor to any subset 

of the others.) Early results seem encouraging, and there are plans to (re)implement the 

whole system using VLSI techniques. (That the idea of connecting together very powerful 

computers is still current in research, can be seen from a recent paper which describes a 

distributed system, called LCAP [Clementi et al 1984], being developed by IBM. Designed 
initially for applications in computational chemistry, it consists of two IBM-4341,s and one 

IBM-4381 as front end processors, and ten FPS-164 attached array processors. This parallel 

system was claimed, in June of last year, to have a peak performance of 120MFlops (i.e. 

millions of floating point operations per second), which, it was hoped, would have risen to 
550MFlops by the end of 1984).

There is, however, a major snag with the crossbar network. The cost of a such a switch 

grows as the product of the number of processors and memory modules. So, for a large 

number of processors w ith the corresponding memory, the price of the required switch could 

dominate the cost of the entire system!

A second computer developed at Carnegie-Mellon University, called Cm* [Swan et al 
1977a, b l uses a less expensive interconnection method. The main distinguishing feature of 

this machine is that, instead of the shared main memory being separated from the processing 

elements, it is spread throughout the whole system. One processor (in this case an LSIll) 

and a unit of memory form the basis of what is called a "computer module". Up to 14 of 

these modules may be grouped together, along with a mapping processor (called a Kmap) to 

form a "cluster". The Cm* is basically a collection of such clusters. Communication in the 

system is performed using a three-tiered bus structure. Within each computer module, 
communication is via the LSIll processor’s bus. To enable modules in the same cluster to 
communicate w ith each other, every cluster contains a bus connected to all the LSIll buses 

via a switch (or Slocal) in each module. The Map Bus (as it is called) is also connected to the 

Kmap which performs the required routing. If, however, a processor wishes to communicate 

w ith a processor in a different cluster, then this can be done through an intercluster bus 

connecting all the Kmaps, which again controls the routing of the data or message. Packet 

Switching, rather than Circuit Switching, is used in an attempt to achieve good bus 
utilization while minimising bus contention.
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The cost of such a system is roughly linear with respect to the number of computer 
modules, and this makes possible the inclusion of a large number of processors (Jones [Jones 

and Schwarz 1980] reports the use of 50.). However, this interconnection scheme is 
comparatively slow, especially when intercluster communication is required. Thus, a certain 

amount of planning is required to try  and ensure that very rarely does a processor need an 

operand contained in a memory unit within a different cluster.

A good compromise between the costly crossbar switch and the slow asynchronous bus 

would seem to be the network used in the Burroughs’ design for a Flow Model Processor 

(FMP) [Lundstrom and Barnes 1980]. This was an architecture designed for NASA with a 

planned performance of lOOOMflop/sec, targeted to be the FMP for the Numerical 

Aerodynamic Simulator. While this machine was not actually built, extensive simulation 

and analysis showed that, for certain favourable aerodynamic applications, the required 

performance level would have been achieved. The connection network between the 512 

processors and 521 memory modules (Hockney and Jesshope [1981] state that this number 
was chosen because having a prime number of memory elements which is greater than the 

number of processors reduces memory conflict.) in the computer was considered an essential 

element in the design. What was required was a connection scheme that would allow all 

the processors to request simultaneously, and attend to their needs "fairly" and with little 
delay. The designers chose what is called the "baseline" network. This has a complexity of 

O {PlogP) (where P is the number of processors), which compares favourably with the 

crossbar switch (0  (P 2) complexity) from the point of view of cost, and w ith the 
asynchronous bus system w ith respect to time.

While the design of this class of machines makes them inherently more flexible than 

processor arrays, there are very real obstacles in the way to achieving high performance. 

Such problems as allocating tasks to processors, synchronization of computations on different 
processors, and the sharing of resources, giving precedence to certain processes over others, as 

well as the design of interprocessor connection networks, are still topics requiring further 
research. (The Denelcor HEP has an interesting solution to the problem of resource 

allocation incorporating a queueing system [Snelling 1984].)

It is worth noting that most of the multiprocessors commercially available do not 

incorporate as many processors as some of the research machines mentioned above. Two or 
four processors have been the more common numbers to be used. For example, the CRAY 

XMP has only two processors, but with each of them being equivalent to a CRAY-1, it is one 
of the most powerful computers ever built.
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4. Processor Arrays

Here we are referring to the provision of an array of identical processing elements 
working under common control, designed to perform the same operation simultaneously, but 
on different data stored in their private memories (i.e. operating in lockstep). These should 

be distinguished from array processors, since the latter term is used to refer to any computer 

that has special facilities for the processing of arrays, and so can include pipeline machines as 

well as processor arrays [Robinson 19791

Hockney and Jesshope [1981] report that the idea of having a connected array of 

processors was first developed by von Neumann, who demonstrated that a two-dimensional 

array of computing elements with 29 states could simulate a Turing machine and so perform 
all operations. Unger [1958] followed this theoretical work by producing a design for a 

"spatial computer" consisting of a rectangular array of processing modules under the 

direction of a single control unit that broadcast instructions to all the modules. The major 

milestone in the introduction of this type of architecture was the SOLOMON computer, first 
described in 1962 [Slotnick et al 19621

The Simultaneous Operation Linked Ordinal Modular Network (or SOLOMON for 
short) was originally a two-dimensional array of 32 X 32 processing elements (or PE’s), each 

w ith its own two memory frames, again under the control of a single control unit which 

processed a single stream of instructions, and an input-output unit. However it appeared 

from a later paper [Gregory and McReynolds 1963] that it was possible to add or remove 

modules of 256 PE’s, and their associated memory frames, from the system, so that the 

configuration could vary in size from a minimum of 3 2 x 8  PE’s up to a maximum of 

32 X 64. Each PE had 4096 bits of core storage in addition to a bit-serial arithmetic unit, and 

was able to communicate w ith its four nearest neighbours, if they existed. Gregory and 
McReynolds state that by specifying alternate connections between (only) the edge elements, 
a number of different geometric configurations were available to the programmer, namely: a 

horizontal cylinder; a vertical cylinder; a torus; a horizontal circle; and a vertical circle, as 

well as the normal planar configuration. The network control unit had two major 

functions: that of decoding and organising the execution of instructions, and controlling 

memory addressing. In addition, a broadcast option was provided, whereby the control unit 

could simultaneously supply the same operand (e.g. some required constant) to any (probably 

large) subset of the PE’s, thus acting as a sort of "fifth nearest neighbour".

While this actual design was never implemented, it did "pave the way" for many of 

the processor arrays so far constructed. Machines like the ILLIAC IV, PEPE, STARAN, DAP, 

and the MPP all exhibit the influence that the SOLOMON computer had on the architecture 

of this type of machine. Before discussing these examples more fully, it would be
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worthwhile to consider some of the main design issues which have to be resolved in the 

design of a processor array.

Firstly, one has to decide how many processors are required for the array. Or perhaps 
a better question would be "How many processors can be afforded?"! The answer to this 

problem w ill be influenced very much by one’s decision on the second point, namely: "How 

complex should the processors be?". (As mentioned before, all the processors in the array 

w ill be identical.) "Do we want a large number of single bit processors (like the DAP), or a 

smaller number of 64-bit floating-point units (as in the ILLIAC IV), or are we going to try  

and seek a compromise somewhere in between?" is a question that has to be answered. It is 
interesting to note that, in terms of a processor array, 64 PE’s constitute a small number! 

The amount and type of memory (i.e. associative or not), and how much of it w ill be 

common to all, rather than local to each PE, has also to be considered. Possibly the most 

important decision to be made concerns how the PE’s w ill be interconnected (if at all - c.f. 

PEPE, later). It would be very undesirable if the potential increase in computation speed 
gained from the number of processors was lost, or not fu lly  realised, because of routing 
delays. There have been several communication networks proposed for processor arrays [see 
Kuck 1977, Siegel 19791 three of which (namely mesh, cube and perfect shuffle) are 

described by Dekel and Sahni [1981] as follows.

(1) Mesh Connected Computer (MCC).

Here we consider the PE's to be logically arranged as a k  -dimensional array which we 
w ill denote by A(n,jt_1,n i _2, ■** , n 0) , where there are processors in the i th 

dimension, and the total number of processors is equal to nk _xnk _2 mmmn  0 . The PE at 

location A (i*_1, • * • , i j , • • • , i 0) is connected to the PE's at location 

A ( tjfc_1, ■ •• ••• , i 0) and A (i&_!, ■ ■ • t i j - l , • • • , t 0) , 0 < / < £ ,
provided they exist. This interconnection scheme, however, requires (at most) 2k 
connections per PE ( <2k  for the cases where not all the "neighbours" exist).

(2) Cube Connected Computer (CCC).

This interconnection scheme is only possible if the number of PE’s is equal to a power 

of 2 (i.e. p  = 2q , say). Using Dekel and Sahni’s notation, if we let iq- Xiq- 2 * * • io be 
the binary representation of i , for i e [ 0 ,p  —1 ] ,  and be the number whose 

binary pattern is iq- x • * * h+ ih  H -i ' “ h  > where ib is the complement of ib , and 
0 ^ 6  <q  , then in this network, PE(0 is connected to PE(i^), 0 ^ 6  <q . Thus we 

have a model requiring log2 p  connections par e£.

(3) Perfect Shuffle Computer (PSC).

Let p  , q , i and be as above, and let iq iq_2 ■ ■ ■ i Q be the binary representation
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of i . Define SH U FFLE  (0  and U NSHU FFLE  G) to be, respectively, the integers 

with binary representations iq- 2iq - 3  and ■”  *i- Then, in this

scheme, PECO is connected to PEG ̂  ), V'EiSHUFFLE G )) and PEG7N SH U F F LE  G )), 

the three connections being called exchange, shuffle and unshuffle respectively. It is 

not hard to see that this connection network requires only three connections per PE.

As most communication networks are more suited to certain applications than others (due to 

requirements for data flow in the algorithms), the choice of interconnection scheme is 

usually influenced by the proposed uses of the machine. So it is important to decide what 

one wants the machine for, before building it. Admittedly, it would be preferable if there 

was a design which was independent of a particular application and efficient in the solution 
of a wide range of problems. However, this achievement is still a matter for research. Of 

course, another avenue for investigation is the development of algorithms for many different 

applications, all suited to a certain type of interconnection network , as is taking place with, 

for example, the ICL D AP.

As w ith the previous class of machines, many computers have been built which 
conform to the basic SIMD pattern - too many for them all to be listed here. Thus, in the 

descriptions that follow, mention is made only of the more significant or representative 
machines.

ILLIACIV, PEPE, BSP

In 1966 the University of Illinois was awarded a contract by the U.S. Department of 

Defense’s Advanced Research Projects Agency to design a computer based on the SOLOMON 

proposal. This machine became known as the ILLIAC IV [Slotnick 1967, Barnes et al 1968]. 

The original design was for a machine made up of four quadrants connected by a highly 

parallel I/O bus, and using a large disk for secondary storage. Each quadrant was to contain 

64 processors (PE’s) under the direction of a control unit executing a single stream of 

instructions, w ith each PE connected to^four nearest neighbours. Slotnick reported that each 

PE was provided with three 64-bit arithmetic registers and high-speed adders for fu ll 64-bit 

floating- and fixed-point operations, in addition to 2000 64-bit words of thin film memory. 
Such a machine, it was planned, would achieve a maximum processing rate of lGflop/s, and 

was to be used for the solution of partial differential equations. However, due to many 

problems, ranging from the too slow development of the intended technology (ECL) to 

uncertainty over a location for this huge machine (see [Falk 1976] for further details), the
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design as planned was never constructed. One quadrant, though, was built by Burroughs 
and delivered to NASA Ames Research Center, California, in 1972. It took a further three 

years of testing and replacing of faulty parts (e.g. 110,000 resistors had to be replaced 

because of unreliability) before it was fully  operational. While the performance was not 

even a tenth of what had been proposed, the ILLIAC IV had a profound influence on the 
development of computer design, software, and especially technology. It was one of the first 

machines to use semiconductor memory chips for all its main memory, due to the fact that 

there was not enough room on the circuit boards for the thin-film memory originally 

intended. In the excellent historical survey at the beginning of their book , Hockney and 

Jesshope [1981] mention that the ILLIAC IV also "pioneered the use of 15-layer circuit 

boards and computer-aided layout methods that proved necessary to wire them".

As already mentioned, Burroughs were the main contractors of the ILLIAC IV (from 

1969 - 73). In fact, they were involved with three parallel machines in the 1970’s, the 

second of which was the PEPE computer ( Appendix A of [Enslow 1974] ). The Parallel 

Element Processing Ensemble (PEPE, for short) was a special-purpose machine designed to 

control a ballistic missile defence system of radar detectors and missile launchers for the U.S. 
Army. It grew ( Hockney and Jesshope [1981] state ) out of research at Bell Laboratories, 
Whippany, into content-addressable distributed logic memories combined w ith floating-point 

processing . PEPE consisted of 288 PE’s working together in lockstep under the direction of 

three control units. Each PE actually contained three processors (one each for input of radar 

signals, processing of data, and output of control signals) - hence the need for three control 

units, one for each type of processor. Hockney and Jesshope report that "When operating, 

each target that was identified became the responsibility of one PE and, because there were 
no ordered connections between the targets, no direct connections were provided at all 

between the PE’s. When necessary, communication between the PE’s took place via the 

memories of the control units. The array of processors was then said to be unstructured and 

the word ensemble was coined for this arrangement.". Theoretically, the maximum 

computing rate of PEPE was 288Mflop/s (lMflop/s per PE). However, a more realistic 
estimate was 100Mflop/s.

The third machine was a commercial venture called the Burroughs Scientific Processor 
(or BSP) [Stokes 19771 Its design benefited from the experience gained from the construction 

of the ILLIAC IV. The aim was to provide a computer using standard technology (rather 

than pioneering new methods) which was capable of sustaining a high percentage of its 

maximum performance (in this case, sustain 20-40Mflop/s and have a maximum 

performance of 50MfLop/s), something the ILLIAC IV failed to do, and be programmed 

exclusively in a high-level language. The BSP consists of 16 serially organised floating-point
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processors (each over twice as powerful as those in the ILLIAC IV) connected via a crossbar 
network to 17 memory banks, under the direction of a central processor. Pipelining is used 
in the execution of instructions. While the first design principle was not adhered to strictly, 
since the massive file memory of the BSP was constructed using charge coupled logic (CCL) 

technology, Hockney and Jesshope [1981] list timings which show that the desired 

performance was achieved. However, the BSP was withdrawn in 1980 before any had been 
sold.

DAP, MPP

This type of machine exemplifies a completely different approach to high-speed 

computation via arrays of PE’s. Rather than the powerful processors used in machines like 

the BSP, here, large numbers of simple processors are involved in the design. The ICL 

Distributed Array Processor (DAP) [Flanders et al 1977] is an example of such a machine, 

and since much of this dissertation concerns it, a more detailed description w ill follow in the 

next chapter. But, for the sake of completeness, a brief outline is included here to show 

where the DAP fits into the spectrum of parallel computers. First delivered in 1980, it is a 

64X64 two-dimensional array of single bit processors, each connected to its four nearest 
neighbours, working under the control of what is called the Master Control Unit. A feature 
of this machine is that 16 PE’s and the associated memory are mounted on the same circuit 

board, in contrast to the von Neumann concept of a computer in  which logic and memory 

are completely different (both conceptually and materially). Thus the logic could be said to 

be distributed throughout the memory - hence the name of the computer. Hockney and 
Jesshope give performance figures for this machine ranging from 15Mfiop/s for matrix 

inversion to 48Mflop/s for Poisson solution which uses a number theoretic transform which 

optimises the use of the hardware.

The Massively Parallel Processor (MPP) [Batcher 1980] was the result of a contract 

awarded to Goodyear Aerospace by the NASA Goddard Space Flight Center in December 

1979 for a machine capable of the very high-speed image processing required to process 

satellite photographs. It comprises a two-dimensional array of 128 X 128 PE’s, again with 

nearest neighbour connections, and a single array control unit, (There is also an additional 

rectangle of 128 X 4 PE’s that is used to reconfigure the main PE array in the event of a PE 

fault.) Single bit processors were chosen to enable the efficient processing of operands of any 

length. The results achieved are tru ly  astonishing. Batcher gives a table showing speeds of 
typical operations which range from 216 million operations per second for the multiplication 

of two 32-bit floating-point numbers to 6553 million operations per second for the addition
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of 8-bit integers.

STARAN, LUCAS

These machines are similar to the DAP and MPP in that they also comprise arrays of 

single bit processors. The main difference lies in their use of associative memory. In this 

type of memory, an item is accessed by its contents, rather than by an address (hence its 

alternative name: Content Addressable memory.). Usually a comparison is performed 

between a certain part, or field, of each memory word and a given pattern or mask, and the 
data item is accessed if  a match is obtained. (Some associative memories also have a 

conventional addressing system.) Various machines based on associative memories have been 

produced [see Thurber and Wald 1975, Yau and Fung 19771 the best known of which is the 

STARAN [Batcher 1974] processor array produced by Goodyear and completed in 1976. 

Hockney and Jesshope summarise the features and uses of the computer as follows.

"The STARAN typically comprised four array modules, each w ith 256 one-bit PE’s and 

between 64Kbits and 64Mbits of total storage, controlled by a sequential PDP-11. 

Unlike the SOLOMON, however, the storage was not assigned to specific PE’s; instead, a 

flexible *FLIF network was interposed between the PE's and the memory. A slice of 

256 bits was selected from memory in a pattern specified, under program control, by a 

256-bit code. The pattern selected may, for example, have treated the store as a 
multidimensional array with a varying number of dimensions, or shuffled the data in 

the manner required by the fast Fourier transform and other important numerical 

algorithms. Connections between the PE’s were achieved by passing the 256-bit slices 
of data through the FLIP network, thus achieving in minimum time a highly flexible 
effective interconnection pattern that could be varied from problem to problem by the 

programmer. The STARAN, like other bit-oriented computers, was most effective 

when performing logic and short word-length integer arithmetic. A particularly 

suitable application is the digital processing of pictures, in which the image is divided 

into millions of pixels (picture elements) each of which is represented by 6 - 12 bits. 

The first STARAN was delivered to the Rome Air Force base for such an application 
and it has also been proposed for air-traffic control."

A more recent, if less well known, machine is that developed at the University of 

Lund in Sweden. LUCAS (Lund University Content Addressable System) [Ohlsson and 

Svensson 1983] was developed as a research tool to investigate the applicability of associative 

processors. It consists of an array of 128 identical single bit processors interconnected using 
the Perfect Shuffle/Exchange network (see above). Apart from STARAN, whose FLIP
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network can resemble the Perfect Shuffle connection, LUCAS is the only machine at present 

known to have this network, and so the findings of this research w ill be especially 

interesting. Early results seem promising.

It should be said before concluding this section, that all the above machines normally 
require a host computer, and so act as special-purpose attached processors. For example, the 

ILLIAC IV was connected to a PDP-10, the PEPE to a CDC-7600, the DAP to an ICL 2980, 

and the STARAN at Rome Air Development Centre is attached to an I/O channel of a 

Honeywell HIS-645 computer.

Other approaches

A ll the machines mentioned above follow von Neumann's idea of sequential 

instruction execution. However, architectures are being proposed which do not operate on 

this principle. One alternative is the data flow concept which Dennis [1979] describes as 
follows:

"In a data flow computer, an instruction is ready for execution when its operands have 
arrived - there is no concept of 'control flow*, and data flow computers do not have program 
location counters. A consequence of data-activated instruction execution is that many 

instructions of a data flow program may be available for execution at once. Thus highly 

concurrent computation is a natural accompaniment of the data flow idea."

However, the extent to which such potential concurrency can be exploited is limited 
when only a single processor is being used (although such techniques as pipelining can be 

employed). Thus, a natural extension is to connect together many data flow processing 

elements to form what Dennis calls a "data flow multiprocessor system". In fact, he goes on 

to describe a possible architecture for such a machine, that has been developed at MTT. 

Various other designs have also been proposed, including a 20 processor system currently 

under construction at Manchester University [Gurd 1984]. However, this class of computers 
is still at the development stage, w ith much more work to be done if this type of machine is 

to become commercially widely available, and whether they w ill ever achieve the 
performance figures quoted for other high-speed machines remains to be seen.

Another approach to high-speed computation, though specifically for use in special- 

purpose machines, has been developed recently at Carnegie-Mell<wv University. Kung [1982] 

describes the basic idea involved in "systolic architectures", as they are called, as follows.

"A systolic system consists of a set of interconnected cells, each capable of performing 

some simple operation. Because simple, regular communication and control structures have 

substantial advantages over complicated ones in design and implementation, cells in a systolic
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system are typically interconnected to form a systolic array or a systolic tree. Information 
in a systolic system flows between cells in a pipelined fashion, and communication with the 

outside world occurs only at the ‘boundary cells’. For example, in a systolic array, only those 

cells on the array boundaries may be I/O ports for the system."

Kung goes on to explain that this class of machine was proposed in order to speed-up 

those computations where multiple operations are performed on each data item in a 

repetitive manner (e.g. matrix multiply, convolution problems). By replacing a single 
processing element w ith an array of systolic cells, it was envisaged that a higher 

computation throughput could be achieved, without increasing memory bandwidth. Since 

the cells used are very simple processing elements, such machines can be implemented in 

VLSI at relatively low cost. Versions of systolic processors are being designed and built by 
several industrial and governmental organisations, and it w ill be interesting to see if, as 

Kung hopes, they result in "cost-effective, high-performance special-purpose systems for a 
wide range of problems."

Related areas in  research

The study of Parallel Processing is not limited to machine architecture. The 

development of algorithms, and languages to express them, which exploit the potential of 
these machines is also of great importance. Work has been done in the writing of compilers 

which can detect parallelism in a serial program. But, for reasons that w ill be discussed 

later, for the most part, it is still up to the programmer to identify the possible parallelism 

beforehand, and to express it using one of the available parallel languages like TRANQUIL, 

GLYPNIR, ACTUS and CFD FORTRAN, which were all developed for the ILLIAC IV, or 

DAP FORTRAN, to name but a few. As can be seen, the above languages are specifically 
designed for certain machines. However, in the interests of even just portability, it would 

be desirable to have a "universal" language for the writing of programs for parallel 

machines. It had been hoped that the new language Ada would have proved suitable. 

However, this seems unlikely to be the case.

It seems certain that this whole area will be the subject of much study in the future, 
for as Stone says [Stone 1975]:

"To achieve even faster computers in the future we must take new approaches that do 
not depend on breakthroughs in device technology, but rather on imaginative 

application of the skills of computer architecture.".



Chapter 2 The ICL DAP

In the previous chapter we briefly mentioned that the DAP, w ith its 64x64 array of 

bit processors operating in lockstep under the control of the Master Control Unit (mcu), is 

typical of one of the approaches to parallel processing. We start this chapter by giving some 
of the reasons which motivate the design of this class of machine.

It is well-known that there are many algorithms which require basically the same 

operationCs) to be performed on many different numbers (e.g. matrix manipulation, finite 
difference methods for solving Partial Differential Equations; Lattice Gauge Theory). On a 

serial machine, this involves the use of DO loops (or the equivalent), where the same 

sequence of instructions has to be repeated over and over again, but on different data. If, 

however, we were able to allocate a separate processor to each data item, then we could 

perform all the required operations in parallel. Often, as in the case of finite difference 
methods, this might require the use of thousands of processors, This, in turn, places certain 

constraints upon them; for example, the processors would have to be physically small, of low 

power consumption, and be relatively simple. Conventional 8- or 16-bit processors are not 

suitable; for one thing, they (rightly) have an instruction decoder. But this facility is 

unnecessary in an SIMD computer, since all the processors w ill obey the same instructions 
which, therefore, need only be decoded once (by the mcu), and not 4096 times. Thus it is 

not surprising that most of the SIMD machines designed to date, have used specially- 

designed, bit-organised processing elements.

The DAP is no exception. Its processing elements (PE’s) are identical, and have only 

three registers, each one bit long, together with an arithmetic logic unit, and some memory. 

Originally, each processor had 4K bits of memory, but in the DAP at Queen Mary College, 

extra has been added, to bring the total up to 16K bits per processing element. As one would 
expect, there is an Accumulator (Q), and a Carry register (C).However, the third register is 

more unusual. Called an Activity bit (and denoted by A), this register provides the ability 

to effectively "turn off" (and "turn on") processors as we wish. Since the processors work in 

lockstep, they all obey the same sequence of instructions, broadcast from the mcu. Of course, 

they w ill probably not be operating on the same data! However, if for some reason, we only 

wanted some subset of the PE array to perform a certain task, we are forced to have the 

necessary work carried out by all the processors. This could cause problems, as w ill be 

shown later. But, among other things, the Activity bits allow us to select which processors
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will actually store the result of such an operation, and which w ill not. Thus, while all the 

processors have to do the specified work, not all of them need to record the effect. Hence, we 
can think of those PE’s which do not perform the assignment part of the instruction as being 
"switched off". This technique (known as masking) is one of the most powerful features of 

this machine, and so w ill be described in more detail later.

Normally, (though, of course, it w ill depend on the application), the processors use data 

from their own local memories. But there are times when information is needed from 
"outside", so to speak, and there are two ways in which this can be supplied. As well as 

telling the processors what to do, the mcu can broadcast a given scalar value to all the 

processors at once. Although it is not possible for different values to be made available 

globally simultaneously (instead, several broadcast instructions would need to be used, along 

with masks to select which processors received which data), this facility can prove very 

useful. In addition, the processors can communicate w ith each other by means of the 
interconnection network. The PE’s are connected to their nearest neighbours (i.e. to the 
processors which are immediately above, below, to the right, or to the left - denoted, in an 

obvious notation, by NSEW), and data can be passed between them on these row and column 

highways (as they are called). There is no restriction here that all the values be the same. 

It is quite possible for each processor to receive a different number. However, there is a 
limitation; namely, that every processing element receives a value, and that all the values 

travel the same distance, in the same direction. In other words, it is not possible for one 

processor to receive a piece of data from the PE which is three rows below it, but in the 

same column, while another processor is passed a value from the PE to its left. Every 

processor must receive information from the same corresponding source, with masking used 

to indicate which processors are not to store the value they receive.

It is because of this interconnection scheme of rows and columns, that we can conceive 
of the processors as being arranged in an array. Of course, physically, this is not true. The 

PE’s are placed on circuit boards (16 per board) which are, in turn, arranged side by side in 

cabinets. Nevertheless; the conceptual idea of an array is a useful one to have, as it can help 
us visualize the parallel activity that we are trying to arrange. It also means that we can 

refer to a certain processor easily, by stating which row and column it is in. Thus PE( i , j  ) 

w ill lie at the intersection of row i and column ] , where both i and j  take values between 
1 and 64 inclusive.

The hardware also provides connections between the elements at the edge of the array. 
The processors on the left edge (i.e. in the first column) take as their left neighbour, the 

element in the same row in the last column, while the PE’s in the first row are connected to 

the corresponding elements of the last row. Thus the array can be thought of as both a



-  2 1 -

vertical, and a horizontal cylinder. A more unusual system of edge connections, supported 

by software, provides a link between the bottom elements of the first 63 columns w ith the 

top elements of the successive columns. Thus, for example, PE(1,64) is (conceptually) joined 

to PE(2,l), PE(2,64) is connected to PE(3,l), and so on. How such a scheme can prove useful 

w ill be seen later in this chapter.

Since the processors are capable of receiving information only one bit at a time, the 

connections described above are just one bit wide. Thus, a 64-bit register could supply data 

to all the row or column highways simultaneously. The mcu has 8 such registers attached 

to the row and column highways, which can be used, not only to transmit data to all the 
processors in a given row or column, but also to receive data from selected processors.

As has already been mentioned, the DAP does not stand alone, but requires a host 

computer, through which all communication with "the outside world" takes place. The 
DAP itself has no input or output facilities, and so any required data must be read in by the 

host, which must also write out any necessary results. Programming the DAP is done in a 

specially-designed high-level language called DAP-FORTRAN, and the instructions are 

executed after a call of the DAP from a main program in the host Thus there me two 

distinct parts to any job that requires the use of the DAP: a host section, written in 

FORTRAN IV or FORTRAN 77, consisting of a main program, and possibly some host 

subroutines; and the DAP code, which is a collection of subroutines, written in DAP- 
FORTRAN. At least one of these subroutines must be, what is called, an "entry subroutine".

The entry subroutine is a parameter-less subroutine which is called by the host 

program as if it were written in normal FORTRAN. However, all its instructions are for 

execution on the DAP, and so, on its call, control is passed from the host to the DAP mcu, 

which then takes over the running of the program. If the programmer wishes, further 

subroutines may be called once the DAP has been entered. These w ill be internal to the 
DAP section of the job, and can have parameters, if required, which w ill be passed by 

address, rather than by value. It is only the entry subroutine which must have no 

parameters. Instead, values of variables are passed in and out of the DAP by means of 

FORTRAN named COMMON blocks. The way data is stored in the host is not the same as 
in the DAP, and so, before any values in a COMMON block can be used, they have to be 
converted to the DAP format (There are routines supplied for doing this, which have only to 

be called, usually from the entry subroutine, with the appropriate names as parameters.). 

Similarly, any output from the DAP must be converted to the host mode (again using 

standard routines) before the DAP section can be completed, and control passed back to the 

host
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The DAP may be entered (and left) as many times during the running of a job as the 

programmer wishes, provided that one is prepared to accept the overhead in time that this 

w ill require. But, in the interests of speed of execution, it is better to limit leaving and re­
entering the DAP, to as few occurrences as possible. Indeed, w ith each of the programs that 

w ill be described in this thesis, there is only one entry subroutine, which is just called once. 

This does not mean, however, that we never re-enter the DAP, as we w ill now explain.

In a serial machine, a "tried and trusted" way of debugging a program is by tracing, i.e. 

to insert (possibly many!) "write statements" in the code, to print out the values of relevant 

variables, so that the programmer can discover if  the program does what it was meant to. 
This technique can sometimes prove vital in finding inconspicuous errors in a piece of code. 

However, this cannot be done easily on the DAP. Values of variables can only be printed 
out by the host, and these would normally be passed from the DAP in a COMMON block, 

once the work of the entry subroutine, and any routines it may call, had been completed. 

Thus, to find the intermediate values of certain variables, we would be faced with writing a 

whole series of entry subroutines, each one containing a few more instructions than the 
previous one, running them in succession, and then comparing the results returned in the 

COMMON blocks - a very cumbersome procedure!

In order to avoid this, DAP-FORTRAN provides a facility for tracing the intermediate 

values of variables. Called, not surprisingly, a TRACE statement, it is used in exactly the 

same way as a "write statement", except that it causes the DAP to be left, the host entered, 

the required value(s) printed out, and then the DAP to be re-entered, w ith execution of the 

DAP program restarted at the instruction immediately following the TRACE statement. 
While such statements may be inserted anywhere in the DAP code, they have one 

disadvantage which w ill be mentioned later. Even so, this feature is extremely useful, as it 

makes less difficult what is, perhaps, the hardest part of DAP programming, namely, 

debugging a program and getting it to run! Of course, since TRACE statements necessitate 

leaving the DAP, they should be used sparingly in programs which are known to work 
correctly.

When a machine has such a definite structure as the DAP, this must be taken into 

account when producing programs for it, otherwise the computer’s potential will, almost 

certainly, not be realised. Certainly, this is nothing new. For example, optimising compilers 

are written for a specific machine so that advantage can be taken of the features of its 

design, without the programmer having to know about them. Programming bit processors in 

parallel is not that simple, however. The problem lies in there being two different areas that 
must be considered before optimal performance can be reached, or even approached. The 

first concerns the parallelism of the machine, to make use of which normally involves the
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re-ordering or unrolling (or both) of loops, so that blocks of iterations can be performed in 
parallel. For many years now, such problems and their solutions have been discussed in the 

literature [Kuck 19801 and compilers have been written to detect pieces of code which could 

be performed in parallel, and then arrange for this to be done, w ith varying degrees of 

success. For example, an optimising compiler (called CFT) has been written for the CRAY-1 

computer, which "vectorizes" innermost DO loops to take advantage of this particular 

machine’s vector registers [Russell 19781

However, it is in the second area that real problems stand in the way of compiler-based 

solutions. As we w ill discuss more fully  later, one of the consequences of performing many 

tasks in parallel using bit-processors is that all the arithmetic involved must be done bit- 

serially, which opens up a whole new field for optimisation and improvement. Certainly 
one could just perform in parallel exactly the same sequence of instructions as would be 
used on a conventional word-based machine. But this would mean ignoring much of the 

potential of the DAP. There are many algorithms which, while being relatively time- 

consuming on word-based computers are relatively quick on the DAP (finding square roots is 

an example of this which w ill be discussed later). In addition, an array of bit processors 

provides the programmer w ith the scope for using bit-manipulating algorithms, which as we 

w ill also show later, can prove very effective. Such a simple approach to parallel 

programming as described above, w ill also mean the neglecting of the interconnection 

network, and the possibilities it makes available, like the technique of recursive doubling 

(again, see later). From the above, it should be clear that to get the best out of a machine 

like the DAP w ill certainly require much careful thought and planning, and probably 

involve different algorithms and techniques to those employed on a word-based machine. 

For this reason, at the present time, it is not practical to write a compiler which would 
produce from an existing serial program, very efficient code for the DAP, and the 
programmer has to decide how to organise the performing of the required tasks in a way 

that w ill capitalise on the DAP’s form. To do this, one must be able to express the 

parallelism required.

To meet this need in a high-level language, a version of FORTRAN has been written 

specifically for the DAP, namely DAP-FORTRAN. One of the advantages in using a high- 

level language is that, while the programmer will be aware of the general architecture of 

the computer (e.g. that it has 4096 processors), the low-level features of the design (e.g. that 

the processors are bit-serial, and are connected in an array) can be hidden. Of course, to use 

the processors most efficiently w ill probably require some knowledge of the latter, and even 

then, as we w ill describe later, DAP-FORTRAN can be used to express low-level concepts.
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The decision to extend an existing language (in this case, FORTRAN IV) rather than 

design a new one, was made because it was envisaged that most of the users of the DAP 
would be members of the scientific computing community, where in the past, FORTRAN has 

been the most popular language and that it would be easier for them to adapt to the new 

machine if  they did not have to learn a completely new language.

The main extension provided by DAP-FORTRAN is in the data modes. Conventional 

FORTRAN has only one : namely, scalar mode. DAP-FORTRAN has, in addition to this, two 

new modes: vector and matrix. A vector, of a certain type, is the same as a 64-element array 

of scalars of that type, except that all the elements of the former w ill be operated on 

simultaneously. Similarly, a matrix is equivalent to a two-dimensional array (with 64 

elements in each dimension) of scalars of the same type, where, again, all 4096 elements of 

the matrix can be processed at the same time. Thus, instead of using the following loops:

DO 10 I  = 1,64

DO 10 J  = 1,64

1 0 C ( / , J )  = A ( / , / )  + £ ( / , / )

to add the contents of corresponding locations of two 2-dimensional arrays (each of size 
64x64 ), we can simply say

C = A + 5

where A, B, C are declared to be matrices of the desired type. This could also be written as

C ( , )  = A ( , ) + £ ( , )  ,

where the two dimensions of each operand have been left empty, showing that they are 

what are called "constrained dimensions", and to be operated on in parallel. The inclusion 

of the constrained dimensions is optional, unless one is dealing w ith an array of matrices, in 

which case they must be included. For example, an array of INTEGER matrices, w ith 3 

components, TEMP say, would be declared as

IN TE G E R  T E M P („  3)

(The same convention applies to vectors, except that there is only one constrained 
dimension.).

Thus the iterations required can be expressed in terms of a single instruction. The 

same is true for the other arithmetic operations: subtraction, multiplication and division. It 

is worth mentioning that when you multiply two DAP-FORTRAN matrices together (using 
the arithmetic operator *), what is performed is not the conventional matrix multiplication 

algorithm, but the forming of the product of the corresponding elements of the two
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operands. The other arithmetic operations: + , - and /  , are similarly performed pointwise.

It is through the use of these two data modes that the programmer controls the 
parallelism of the machine. A matrix of type, say INTEGER, refers to 4096 scalars of that 
type, each one lying in the memory of a different processor, but all at the same address. The 

same is true for matrices of the two other numerical types in the language: REAL and 

LOGICAL. The fact that all the elements have the same address (in different memories) is 

very important, as w ill now be shown.

We have already mentioned how we imagine the processors to be arranged in a 64 X 64 
array. Let us imagine further, that all of the 16K bits of memory local to PE(l,l) are placed 

one on top of the other, resulting in a column, as it were, rising out of the processor. If we 

were to do this for every PE, then we could consider the DAP to be the shape of a cuboid, 

w ith the processors at the bottom, and the memory arranged in planes (each 1 bit deep) 

above them. Now, since all the elements of a matrix have the same address (but lie in 
different memories, and hence, columns in our analogy), we can imagine a matrix to be 

stored as a contiguous set of these store planes (hence the use of the term "vertical storage" 
to describe the representation of matrices).

The DAP can process only one store plane at a time, and so all arithmetic has to be 

performed by system-supplied software routines. One consequence of this is that we can 

choose the precision to which we work, and similarly, we can choose how many store planes 
each matrix w ill be allocated. However, as we have already remarked, if  we require some 

processors to perform a task, then all the PE's have got to do it : we can only be selective 

about the storing of results. This is because the DAP cannot process just part of a store 
plane. It is a case of "all or nothing". So, if we had a matrix of integers, one of which had 

33 bits in its binary representation, while all the others had less, then all the elements 

would have to be allocated 33 bits (i.e. the matrix would require 33 planes of the DAP 
store). In fact, in a DAP-FORTRAN program, we would need to set aside 40 bit planes for 

storing such a matrix because there is a (software) limit to the variety of precisions that 

DAP-FORTRAN INTEGER variables can have.

Normal FORTRAN supports at most two precisions: single and double, which, on a 

machine w ith a word size of 32 bits, would correspond to 32 and 64 bits, respectively, being 

allocated to integer variables. In addition to these lengths, DAP-FORTRAN offers the choice 

of 16, 24, 40, 48 and 56 bit integers (denoted by INTEGER * n , where the integer is to be 

allocated 8n bits). A similar situation exists with the type REAL, but not w ith LOGICAL 
variables.
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It is one of the important features of DAP-FORTRAN that LOGICAL variables only 

occupy a single bit of memory. This is far more efficient than the method often used in 

computers w ith word lengths of more than one bit, where up to 32 binary digits (i.e. one 

machine word) are used to store either a .TRUK or a .FALSE.. (Of course, having a machine 

word larger than one bit does have certain advantages when performing arithmetic 

operations, as w ill be mentioned later.) The DAP's storage arrangement means that a 
LOGICAL matrix w ill only require one bit plane to hold its values. Hence, a one­

dimensional array of LOGICAL matrices, with 32 components w ill be stored in 32 

contiguous store planes, and thus be indistinguishable from a matrix of type INTEGER * 4. 

From this we see that the EQUIVALENCE statement of normal FORTRAN can take on a 
whole new significance here. By making an array of LOGICAL matrices (of the right size) 
equivalent to, say, an INTEGER matrix, we can gain access to the bit patterns of the latter’s 
elements.

The same is true for scalars and vectors. Scalars are stored horizontally (i.e. in a single 

plane), w ith the bit pattern (of length up to 64 bits) spread across consecutive processors in 

the same row, w ith the least significant bit stored in the rightmost processor. A LOGICAL 

vector is also stored in a single row, and so, by means of an EQUIVALENCE statement, the 
bits of the scalar’s binary pattern can be manipulated in terms of the elements of the 

LOGICAL vector. (If the scalar is not of 8-byte precision, then it should be converted to this 

length, to match the size of the vector.) INTEGER or REAL vectors, however, are stored one 

element per row (as scalars above), and so require a whole store plane (since each has 64 

elements). Thus, for a vector of type INTEGER, the 64th column of the plane w ill contain 
the least-significant bits of all 64 elements. Access to the binary digits can be obtained via a 

LOGICAL matrix, after any necessary length change, and the appropriate EQUIVALENCE 
statement.

Thus, by means of an EQUIVALENCE statement, we can have access to the binary 
patterns of numbers (although they are expressed in terms of the logical values .TRUK and 

.FALSE rather than the digits 1 and 0) directly from our high-level language. This allows 

the programmer to implement bit-manipulating algorithms (which are, of course, very suited 

to an array of bit processors) without having to resort to the complications of assembly code 

programming. As we w ill illustrate later, this feature has been made use of in the 

implementation of the Lehman algorithm on the DAP .

Returning to our analogy of the cuboid, we can see another use for LOGICAL matrices. 

We have considered the DAP to be 16,384 bit planes, stacked on top of the array of 

processing elements. But, since each PE contains 3 bit registers, we could think of there 

being 16,387 bit planes^ w ith the lowest 3 planes containing the contents of the 3 registers,
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one register per plane. Thus all 4096 Activity bits (designated the A plane) could be 

assigned by means of a LOGICAL matrix. This is indeed possible; how it can be done is 

shown in the following short piece of a program to obtain the square roots of those elements 

of the real matrix NUMBERS which are positive.

LOGICAL M ASKQ ,)

REAL* 5 NUMBERS  ( ,)

REAL* 3 ROOTS ( , )

M A S K  = NU M BERS .GE  .0 

ROOTS (M A SK  ) = SQRT (NUMBERS  )

ROOTS (JVOT. M A S K ) = 0

We require the square roots of the elements of the real matrix NUMBERS, but have no 
guarantee that the latter are all non-negative. Trying to find the square root of a negative 

real number (even just one out of 4096) w ill cause a machine error; but only if an 

assignment of the "bogus" root is attempted. Thus, by identifying those processors with 

negative values (indicated by a .FALSE, in the LOGICAL array MASK), we can block, or 

"mask out", the assignment of the root in these processors, and so avoid trouble. The 

masking takes place during the instruction

ROOTS (M A S K  ) = SQRT {NUMBERS  )

which causes the following course of action to take place: (a) all the elements of the matrix 

NUMBERS have their square roots taken but (b) only where the corresponding element of 

the A plane (which holds the matrix MASK) contains a .TRUE, will the value of the root 

be stored in ROOTS. We can also negate the mask so that all the locations not assigned above 
may be given some other value; in this case, 0.

This technique is extremely useful as, for instance, it allows us to implement "IF 
(condition) THEN (task 1) ELSE (task 2)" branches, where a mask would be set w ith the 

condition in the IF statement, and used in masked instructions to perform task 1. Then task 

2 could be carried out, again using masked assignments, but w ith the negative of the 

previous LOGICAL matrix.

One of the features of the DAP is that, once the masks have been obtained, using them 
to select processors for an assignment like this, is virtually "free", for a masked assignment 
takes only 1 fisec more than the equivalent unmasked instruction. There is an important 

principle of DAP programming here: "The DAP loves to make decisions in parallel", so to
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speak. Of course, this is the exact opposite of a pipeline machine, where conditional branches 
can cause a flush and refill of the pipeline, thus wasting time. Admittedly, w ith the DAP, 

both branches of a conditional may have to be performed, as there could be some processors 

w ith values necessitating one course of action, while the other processors required the 

alternative. But this is a consequence of the SIMD approach, and cannot be avoided. 

However, it cannot be overemphasised that boolean operations cost so little, (For example, on 
a CRAY, a floating-point multiply is only equivalent to a few logical operations; whereas on 
a DAP, depending on the precision required, it is equivalent to up to 1,000 boolean 

operations.) as this is one of the key features in favour of arrays of single bit processors.

We have shown above, how the binary patterns of the elements of a matrix can be 
made available to the programmer by means of LOGICAL matrices, and now we have noted 

how effective the DAP is at logical operations. Thus, through the high-level language of 

DAP-FORTRAN, it is possible for the user to take advantage of the bit-processing nature of 

the DAP. However, as we w ill discuss later, the gain from this approach is not as great as 

might be hoped, due to the overhead of all the indexing involved in manipulating arrays.

Before considering some other features of DAP-FORTRAN, it is worth mentioning that 
there are facilities provided for converting between data modes. For example, a matrix 

(with identical columns or rows, respectively) can be formed from a vector by setting either 

each row or each column of the former, equal to the latter. There also exist functions to 

expand a scalar to a vector or matrix (all of whose elements would be equal to that scalar), 

but they are not often used, because the desired expansion happens (conceptually) 

"automatically" when, say, adding a scalar to a vector or matrix. In fact, at times, something 

slightly more efficient happens. For example, in the case of adding a scalar to (each element 

of) a matrix, rather than broadcasting the value to each processor, bit by bit, and having it 

transferred to the DAP store as a series of bit planes, which then have to be "brought back 
down" to the processors so that the addition can be performed, each bit of the scalar could be 
broadcast to every PE, and added to the relevant bit of the existing element, and the sum 

stored immediately. Tricks like this have been implemented in some of the software 

routines, while in others, due probably to time constraints when the system software was 
being written, no shortcuts are taken,

A vector may be obtained from a matrix by summing its columns or its rows (also a 

scalar from a vector or matrix again by summing, while from a LOGICAL matrix, a scalar 
can be produced by using the function SUM. When used w ith a LOGICAL matrix (or 

vector) this function forms the sum of the 4096 elements of the matrix, counting a .TRUK 

as a 1, and a .FALSE as zero (similarly for LOGICAL vectors). Such a facility is very 

useful, as it supplies the number of elements which have the value .TRUK in a mask. Thus,
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if a matrix had been set according to some expression, the function SUM could be applied to 

the mask to find how many elements had satisfied the test. In the example above, for 
instance, we could assign to the INTEGER scalar, NUM, the number of operands which were 

greater than or equal to zero, by including the instruction

N U M  = SUM {M ASK  ) 

in the code.

If one simply wished to know if any bits at all, were set in a mask, then the function 
ANY could be used, which logically OR’s all the elements of the matrix. On the other hand, 

that all the bits were set, could be discovered by the function ALL, which performs a logical 

AND on all the matrix elements.

Another useful function is ERST which, when applied to a LOGICAL matrix, returns 
another such matrix, all of whose entries are .FALSE, except for one, corresponding to where 

the first .TRUE, occurs in the former. (How we can talk about a "first" .TRUE, element in a 

matrix w ill be explained later.) Of course, if no bits are set in the operand, then all the 

elements of the resulting matrix w ill also be .FALSE.. If, on the other hand, one needed to 

know where in a LOGICAL matrix, or vector, the first .TRUE, element was, then this could 
be found w ith the use of the function ELN which, when given a LOGICAL matrix or 
vector, returns the index of the first .TRUE, entry (or zero, if all the bits are .FALSE). To 

show how these functions should not be used (but often are, by the beginner), we give the 

following example.

Suppose we wished to find the element in the INTEGER matrix NUMBERS which 
corresponded to the first .TRUE element in the LOGICAL matrix MASK, then we might be 
tempted to write:

IN D E X  = E L N  {MASK  )

TEM P  = NUMBERS {IN D EX  )

where TEMP and INDEX are both INTEGER scalars. (How we can use a single number to 
refer to a matrix element w ill be explained shortly.) While this code would perform the 
required task, it is very clumsy and inefficient, since extra calculations (hidden from the 

programmer) have to be performed to find where, in the matrix, the required element is. 
Instead, we should use:

TEM P — NUMBERS {FRST {MASK  ))

since this is much quicker (and "better" style) as it uses a LOGICAL matrix w ith only one 
bit set, to indicate which is the required element, (another example of a use for LOGICAL 

masks). The equivalent can be done with vectors also. While the former suggestion would
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probably be more natural to a programmer used to serial machines, it is the latter way of 
thinking that has to be adopted (and cultivated) if the potential of the DAP is going to be 
used.

The snag with using TRACE statements that we referred to earlier, is that one cannot 

trace just a selection of elements from, say, a vector or a matrix, but must output all the 

values (similarly for arrays of any type and mode). However, as we have just shown, there 

are various ways of selecting elements from matrices and vectors, and values thus obtained 

could be assigned to scalar variables (of the appropriate type and length) for printing with a 
TRACE statement.

In the above we used a single index to select an element from a matrix. We can do this 

because, as well as thinking of a matrix as a two-dimensional array, DAP-FORTRAN permits 

the programmer to imagine it to be a one-dimensional array w ith 4096 components. This is 

what is called "long vector" format, in which we consider the columns of the matrix to be 
joined "nose to tail", w ith the successor of the 64th element of one column being the 1st 
element in the next column to the right.

Processors communicate w ith each other in DAP-FORTRAN by means of shifting 

matrices or vectors. Matrices can be shifted up or down (i.e. move whole rows up or down), 

and to the right or left (by shifting columns). This poses the following problem. Suppose 

we shift a matrix one column to the left (i.e. column 1 is replaced by column 2 which, in 

turn, is replaced by column 3, etc.). What is the new value of column 64? In DAP- 
FORTRAN we can specify two different "geometries": planar, in which case the last column 

w ill be filled with zeros; or cyclic, where the values shifted out of column 1 are transferred 
to the last column (considering the DAP to be a vertical cylinder).

In addition, a matrix can be considered to be a long vector, and so shifted as a vector 

(either to the left or to the right). In other words, columns can be moved up or down, with 

the bits shifted out being fed in at the bottom of the previous column, or at the top of the 

next, respectively - hence the unusual connection scheme, supported by software, which was 

described earlier. As before, we can specify what happens at the ends of the vector, by 

choosing which geometry is required.

There are many other functions in DAP-FORTRAN which have not been mentioned 

above, since the aim of this section is to emphasise those aspects of the machine which have 

proved useful in the implementation of the Lehman algorithm (hence too, the emphasis on 

matrix, rather than vector, mode). A complete description of the language and all the 

built-in functions can be found in the appropriate ICL reference manual.
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In addition to the built-in functions of DAP-FORTRAN, there is a collection of many 

other useful routines called the DAP Subroutine Library. A fu ll description of the contents 

(along with some local additions) can be found in a handbook document from QMC. We use 
one of these subroutines, called

X05_LONGJNDEX

which, when given a matrix and a starting value, n say, considers the matrix to be a long 

vector, and assigns to the k th element , the value ( k — 1 + n  ). Rather than the 4096 

assignments that a serial program would need, on the DAP this can be done in only 12 

operations (an operation being a shift and an add) after an initial assignment, by means of a 

technique known as recursive doubling. By way of explanation, we demonstrate this 

method for a "vector" of length 8 bits, and a starting value of 1.

(i) initialise all the elements t o l  1 1 1 1 1 1 1 1

(ii) shift right 1 place 1 1 1 1 1 1 1

(iii) add 1 2  2 2 2 2 2 2

(iv) shift right 2 places 1 2  2 2 2 2

(v) add 1 2  3 4 4 4 4 4

(vi) shift right 4 places 1 2  3 4

(vii) add 1 2 3 4 5 6 7 8

and we are done. Thus at each stage, we double the number of locations correctly assigned. 

This technique is not limited to assigning vectors, but can be used in many algorithms to 

replace, say, N  operations with only log2 N  .

Before leaving this chapter, it must be noted that one of the consequences of using an 

array of bit processors to enable the parallel execution of tasks previously done one after the 

other, is that some of the operations which would have been done in parallel on a 

conventional machine now have to be performed serially. For example, a machine with a
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word length of 32 bits (e.g. a DEC VAX 11/780) can add two 32-bit integers together in one 

instruction (in addition to the fetching of the operands and the storing of the result). But 
the DAP, on the other hand, when dealing with matrices, can only handle one bit of each 

operand (albeit there are 4096 pairs of such operands) at any given moment. Thus, we 

cannot expect a speed-up factor of 4096 when comparing the DAP to conventional serial 

machines - a fact that w ill be discussed later, in Chapter 6. A ll arithmetic operations on 

matrices have to be performed one bit plane at a time by software routines, and so the time 

taken for a given operation is proportional to the precision being used. Addition and 

subtraction varies w ith the length of the operands, division and multiplication w ith the 
square of the length (since in DAP-FORTRAN, one is restricted to both operands being of the 

same length). This makes the DAP very suitable for problems involving the manipulation 

of integers of arbitrary length since it gives the flexibility of only doing as much work as is 

necessary on each operation. However, unless one is prepared to store the integers concerned 

in contiguous sets of bit planes, and write one’s own arithmetic routines in terms of logical 
operations, then the fu ll advantage of the DAP’s flexibility is not available to the 
programmer through DAP-FORTRAN. Unfortunately, if one wishes to add an 8-bit integer 

to a 32-bit one, the former must be converted to the latter’s length (done automatically) 

before the addition is performed. The same is true for the other arithmetic operations. Even 

more of a drawback is that if, for example, you wished to multiply two 32-bit integer 

matrices together, and even just one entry of the answer is larger than 231 — 1 then 
overflow w ill occur, and the program terminated. To avoid this, the whole multiplication 
would have to be performed in the precision needed by the largest result. It is left to the 

programmer to do this, probably by making use of the LENGTH statement in DAP- 

FORTRAN which converts a given operand (the first parameter) to the length specified 

(which is the second parameter). Unless the maximum size of the numbers concerned was 

known beforehand, the programmer would have to "play safe" and choose 8-byte precision.

Of course, if a programmer is so concerned about efficiency that he is worried about 
problems like those mentioned above, then one might ask why he or she chose to compromise 
by using a high-level language, when they would have been better off writing their 

program in assembly language. As we w ill show later, shortcuts which make use of binary 

patterns can be implemented in DAP-FORTRAN through LOGICAL arrays, but obviously, 

the improvements in running-time so achieved will not be as large as they would have been, 

had the code been written in APAL, the DAP’s assembly language. However, since 
programming in a high-level language is so much easier than in assembly code, thus 
allowing ideas to be developed quickly, it was decided to implement all the routines for this 

implementation in DAP-FORTRAN. It is worth noting though, that the DAP, when
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programmed in APAL, w ill still be far more flexible than a word-based machine running its 
assembly language because the latter is still forced to operate on a fixed number of bits per 

instruction whereas the DAP is not, and so with the processor array, one can take advantage 

of (known) low-precision numbers, as well as handling much larger integers effectively.

Among the consequences of doing arithmetic one bit at a time are that data movement 

is fast relative to floating point operations (a fact that is important since it is often thought 

that the cost of data routing could dominate execution times), and, as we have already noted, 
logical operations are very fast relative to arithmetic. Parkinson [1980] gives the following 

table which illustrates these, and other points. The figures on the right are approximate 

relative operation times for a single DAP processing element, and translate approximately to 

microseconds on the basis of the 200 nanosecond (approximately) cycle time of the machine.

Single bit Boolean operation (L1.ANDX2) 1
16 bit fixed point addition (I = J + K) 10
16 bit data movement (I = J) 6
32 bit fixed point addition (12 = J2 + K2) 20

32 bit floating point addition (X -  Y + Z) 180

32 bit floating point multiplication (X = Y * Z) 280

32 bit floating point square root (X » SQRT(Y)) 250

64 bit floating point multiply (X2 = Y2 * Z2) 1000

Perhaps the most surprising fact to be observed in the above is that square root-taking 

is quicker for matrices than multiplication (and also division). This is because both tasks 

have to be performed by software and, as we will describe later, the method used for finding 

roots, is relatively simple, requiring little arithmetic, but mostly shifting. Of course, this 

fact would not be true of conventional serial machines w ith their advanced floating-point 

multiplication units. Thus, because the relative magnitude of certain operations on a bit 

processor is completely different from that on a word-based computer with a hardware 

floating-point unit, we find that operations which would normally be considered time- 

consuming and avoided if possible, are relatively quick on the DAP, and so can form the 

basis of efficient programs. We w ill see an example of this in connection with Step 2 of the 

Lehman algorithm.

In addition to operation times varying with the length of the operands, they also 

change according to the mode being used. As a rough Hrule of thumb", working with 

vectors and matrices takes respectively, 2 and 10 times as long as the equivalent scalar 

operations; since the latter are performed by the mcu (The different times for vector and
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matrix work are due to the different way in which they are stored in the machine.). This 
difference in time between scalar and matrix manipulations is taken into account (as it 
should be!) in the implementation of Step 2 of the Lehman algorithm (see Chapter 5).

One final point worth noting is that it is not possible to get an exact execution time for 

a program on the DAP at Queen Mary College. Instead, "pseudo-time" (called DAP-time) is 

used, where an approximate value is calculated on the basis of the number of machine 

instructions used. However, the author has been assured by staff there that the figures given 

are accurate, in general, to within 5%.
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Chapter 3 The Lehman A lgorithm

Factoring integers has long been of interest to mathematicians. In fact, most of the 

modern algorithms for this task are based on a technique that Fermat used in 1643. 

However, as commented earlier, despite centuries of work, relatively few breakthroughs 

have been made. As Lenstra [1982] put i t :

"Suppose, for example, that two 80-digit numbers p and q have been proved prime; this is 

easily within reach of the modern techniques [for primality testing]. Suppose further, that 

the cleaning lady gives p  and q by mistake to the garbage collector, but that the product pq 

is saved. How to recover p  and q ? It must be felt as a defeat for mathematics that, in 
these circumstances; the most promising approaches are searching the garbage dump and 

applying mnemo-hypnotic techniques."

Nevertheless, considerable progress has been made in the last 60 years, much of it 

stimulated by a British army officer, Lt.-Col. Allan J. C. Cunningham. In 1925, he and H. J. 

Woodall published a volume of tables containing the factorizations of numbers of the form 
bn + 1 and bn — 1 for b = 2 ,3 ,5 ,7 ,1 0 ,1 1 ,1 2 ,  for various high powers of n  . By 
drawing on others' work, in addition to their own, the authors had, in effect, presented a 
summary of what was then known in the area and, in so doing, had shown how much was 
still to be done.

During the years that followed, D. H. Lehmer [1933] built several sieve machines (both 

mechanical and electrical) which he used, to some effect, for factorization and primality 

testing. However, progress became more rapid with the advent of electronic computers, and 

hence the availability of surplus cpu hours. As is reported in the historical survey in 

[Brillhart et al 1983], many factorizations were obtained by programs running at low 

priority on University machines.

Even so, as Kolata [1983] reports, it was widely thought that the limit of computational 

feasibility had been reached in 1982. But, as has already been described, by making use of 

the "supercomputer" architectures now available, further substantial progress has been made 
possible.

The basis of most of the modern factoring algorithms, as well as the method Fermat 

used, is the following.
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Let N  be the positive integer we wish to factor (if N  <  0, then factorise -N  ), and suppose 

we have found two integers A ,B  such that

A 2 =  Z?2 ( mod N  )

Then

N  1 (A 2 - * 2)

i,e.

N  I (A  + 5 X A  ~ ~ B ) 

and one of these four cases applies:

(i) N  1 ( A + B  ), but N  X ( A -  B >,

GO N  1 (.A — B X but N  X ( A + B );

(hi) N  1 (A  + Z? ) and N  ! (A  -  B >,

(iv) N  X ( A + B  ) and N  X ( A — B ), but since N  1 (A  + B X A  — B \  we must

have that "part of N " 1 ( A + B  ) and "part of N " 1 (A  - B  ) .

So, if A  & B  (.mod N  ) and A — Z? ( ZV ) ,  then case (iv) applies, and the 

calculation of gcd (A  + B , N  ) w ill yield a non-trivial factor of N  . Note that

gcd (A  + i ? , ZV ) = 1 

implies that N  I ( A — B ) ,  which contradicts Civ), and

gcd (A  + B  ,Z\Z ) = N

implies that N  I (A + B ) , which again gives a contradiction. Thus, the integer found will 

be a non-trivial factor of N , (and so worth finding!)

To date, the two most popular methods have been the Continued Fraction [Morrison & 
Brillhart 1975] and the Quadratic Sieve [Pomerance 1982, Gerver 1983] algorithms. The 

former searches for such squares (i.e. for an A as above) among the continued fraction 

convergents to ViV , while the latter searches among consecutive integers, starting at 

[VZNZ ]. However, due to the very recent publication of the Quadratic Sieve algorithm, it is 

the Continued Fraction method that has been the means of most of the published results. It 

was this technique that the team at Sandia Laboratories implemented on a CRAY-1 (and 
were reported [CACM 1984] to be moving to the CRAY XMP at Los Alamos National 

Laboratory last year), to achieve the results given previously. Wagstaff and his colleagues 

have designed and built their own machine to perform this algorithm. One of the features 

of their computer is the ability to perform trial divisions in parallel. After attempting to
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implement the Continued Fraction algorithm on the DAP (while some lessons were learnt 

[Parkinson & Wunderlich 1984] the programs were never completed), Wunderlich is 

reported [Kolata 1983] to have transferred his work to the MPP. His research was planned 

with the ILLIAC IV in mind, but because of its eventual destruction, he moved to these 
other SIMD machines. However, Kolata quotes him as saying: "But my experience on the 

ILLIAC said to me that this is really the way to do factoring."

Apart from some work by Lehmer on the ILLIAC IV no other research seems to have 

been carried out into the suitability of the SIMD type of architecture to number theory 

problems and in particular, to factorisation and primality testing - hence this dissertation.

The factorisation algorithm chosen for consideration was developed by R. Sherman 
Lehman [1974], who combined the above idea about squares w ith trial division, to produce a 

completely deterministic O ( 3) algorithm. This last point is an important one. The 

Continued Fraction and Quadratic Sieve methods are probabilistic algorithms. By that is 

meant that there is no guarantee that they will work (i.e. find the required squares). 

However, when they work (in practise, most of the time), they do so much quicker than the 
deterministic ones. However the Lehman algorithm is inherently parallel, as Voorhoeve 
[1982] noted, and so it seemed worthy of further study. The following discussion down to 
the end of the proof of the Theorem is based on Voorhoeve's statement and proof of the 

algorithm.

Lehman algorithm :

Step 1:

Trial divide N  up to [ZV1/3] . If no factors are found, N  is either prime, or the

product of two prime factors p ,q  , w ith

N lf 3 <p  <ZV2/ 3

Step 2:
N i,e

F o rk  = 1 ,2 .........[N 1,3] , d  = 0 , 1 , . . . ,
4 7 r  + 1

test whether

( [V 4kN  ] + d  )2 -  4k N

is a perfect square. We w ill show below, that if any pair ( £  yd  ) produces a square, 

then we have found numbers A  and B  as described above in (iv).

Thus, the idea is to try  and find small prime factors first (if there are any). Then, if 
there are no small factors, one looks for two larger prime factors via a system of "educated 
guesses".
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That this method exhausts all the possible prime factors of N  which are >  N lf 3 and 
< N 2 / 2 is proved in the following Theorem.

Theorem:

If we find no factors in this way, then N  is prime.

i.e. if N  is composite, this method will yield the required factors.

Proof:

We wish to show that if N  is not prime, then there exists a pair ( k  , d ) such that
fce{ 1 ,2 ,  * ■ • ,[W 1/3]} andde{  1 ,2 , ,[(W 1/6/  4V F ) + l ] } a n d

([V4F\T] + d )2 -  4k N

is a square, and hence Step 2 yields a non-trivial factor of N .

So, suppose that N  is composite. Then, since N  has no prime factors ̂  [N lf 33 (after

Step 1), N  = pq , where p ,q  are prime with N l/ 3 < p  ^  q < N 21 3 .

We assert (and w ill prove in Appendix A) that there exist r  , s  e Z + (where Z + denotes 
the set of positive integers) w ith rs < N lf 3 and I pr — qs I <  N lf 3 .

Put k  = rs . (Note that k  <Arl/ 3 and k  e Z + imply that k  ^ [N 113] , and so 
k  e { l , 2 ,  ^W 1' 3]} .)

Then we have that

4fcN = ( pr  + qs )2 — ( pr — qs )2

which implies that

( pr + q s ) 2 — 4 k N  = (pr  — q s ) 2 .

Putting cf = p r + gs — [V 4k N  ] ,  we have that

( [V 4k N  ] +  J  )2 — 4AriV = ( pr + )2 — 4kN

is a square, as we require for Step 2.

All that remains to show is that d e { 0 ,1 ,  ■ ■ * ,[GVi/ 6/  4 f k  ) + 1 ]} . Now, since 
p  ,q  , r  , s , [V4kN  ] € Z + , d  is certainly an integer. Putting A  = pr + qs T 
B  = ] pr — qS | < TV J/ 3 we have that

A 2 “  4^W + B 2

which implies that
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A 2 < 4k N  + N 2/3

jue.

y/ 4kN  +

A  < V 4k N  +

N 1/6
47F

# i/6
4 7 F  ‘

Since A is an integer, and U + y  ] ^  [x ] + [y ] + 1 for all x  , y  ^  0 , it follows that

N K6
A  ^  [V 4k N  ] + 47k

i.e.

d -  A  — [V 4kN  ] <

+ 1

N 1/6
IT T + l

Also, since B 2 ^ 0 ,  

A 2 > 4k N

i„e.

A ^  [V4kN ].

Hence A = [V4k N  ] + d , where 0 ^

can obtain d ^  1 .).

W1/6
4 7 F

+ 1 (It w ill be shown later how one

Thus we have proved that if N  is not prime, then Step 2 yields a pair of squares 
congruent modulo N  . Hence, if we find no such squares via Step 2, we can conclude that 
N  is prime. QJEJX

W hy both gcd ( A  + B  rN ) and gcd (A  — B , N  ) yield non-trivial factors of N  , for 
N  greater than some limit, can be seen from the following.

A 2 = 4k N  + B 2

implies that

A 2 <  4 N 413 + N 2f3

= N 2 -  (W 2 — 4 N 4t 3 — N 2f 3)

= N 2 -  N 2,3( N 4 ,3 - 4 N 2f3-  1)
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= N 2 -  N 2/ 3 { ( N 2f 3 — 2)2 — S') .

Thus, A 2 < N 2 provided that N 2/ 3( ( ,N 2f 3 — 2 )2 — 5 )  ^ 0 ,  i.e. provided that 
N 2 I3 > 2  + V 5.

In other words, A  < N  provided that A  ^  9.

This implies that A + if < N  + N lf 3 <  2N , so that (since 

A  + B ^  p + q > 1  ) A + B =  0 (mod N  ) can only occur if A + B — N  , and hence 

A  — B = 4k . However, this would imply that 2A = N  + 4k which is a contradiction, 
since N  is odd. Thus, for N  ^ 9 ,  A + 5  ^  0 ( mod N  ) and so (since A + 5  > 1) 

gcd (A  + B tN  ) is a non-trivial factor of 2V .

Also, A  — B — ps + qr — I ps — qr I which equals either 2qr or 2ps , depending

on whether ps ^ q r  or not. In both cases we have that A  — B > 2 .  In addition, for
N  ^  9 (since A < N  \  A  — B < N  and so gcd { A  — B , N  ) is also a non-trivial factor of 
N  (for N  > 9 ) .

Furthermore, since 8 is not divisible by two distinct primes and 7 is prime, the lower 

bound for N  can be reduced to N  ^ 6 ,  which is the figure that Voorhoeve states.

It was claimed earlier that this algorithm is of order O QV1/ 3) . Clearly Step 1

involves less than Arl/ 3 operations (in this case, divisions), and so it only remains to show 

that Step 2 is also O (A 113) . The number of operations (where an "operation" consists of 

processing a ( k  ,d  ) pair ) required in Step 2 is at most

[V 3]
Ek=i

N 1' 6
4V&

+ 1 + 1

[iv113]
Lk =1 4V k

+ 2

at i/6  3]
—  Z  4 -  +  2[AT*'3] .  4 V F

Since the function f  f t  ) = -A _  is monotonically decreasing and positive for k  ^  1 ,

Iff1' 3! i ■(
T  - J — ,*ti V F  {  7 F  ’

and so the number of operations required in Step 2 is

1/6 [v1/*]

*  —  (  T F d k  +  2[Afl,3]
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< E ^ L  f  - k - d k  + 2 N 1' 3 
4 J0 w k

+ 2 AT1/3

t f l / 3

N

N

1/ 6
\ 2 k "  lo

\Nlf 3

1/ 6
(2  Af1/6) + 2iV 1/ 3

= i  AT1/3 + 2AT1/3 
2

Hence, the algorithm is indeed of order O ( N 113 )

General Considerations

Before we go on to consider the implementations of the algorithm, it would be 
appropriate to mention some of the important decisions, regarding strategy, that have to be 

made before designing and writing the code.

Step 1

(a) The algorithm requires trial division up to [TV-11 3] and so we must first calculate an 

upper bound for the divisors. The only condition that this bound must satisfy is that 

it be greater than or equal to [ N 113] . Of course, if we were to adopt an integer much 

larger than necessary, then we could waste a considerable amount of time performing 
needless trial divisions. (The only occasion that these extra trial divisions w ill not be 
wasted time, is when one of the two remaining factors of N  (p , say) is so much 

smaller than the other (i.e. is so close to N 11 3 ) that it is less than the upper bound we 

have calculated, and so the factor is found before Step 2 is entered. However, unless 

we tested what was left of N  for primality, we would still have to perform all the 

iterations of Step 2 ( for k  ^  [<?11 3] ) before we discovered that we had finished, and 

this might take longer than Step 2 would have taken to produce both factors! Since 
this is such a rare occurrence, it is not worth trying to capitalise on its happening.) 
Therefore it is worth taking some care over choosing our limit.

As w ill be described more fully  later, in the serial case we use an "integer-only" 

version of the Newton-Raphson algorithm, whereas for the parallel implementation,
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we use a metliod more suited to the DAP’s architecture.

(b) The next problem to be dealt with concerns how we obtain the trial divisors. 

Obviously, the best possible solution is to use only primes. However as there are in the 

region of 600,000 primes ^  107 and all of these would have to be found and stored 

beforehand (since there is no formula for the n th prime ), it is probably not feasible to 

adopt this method (and definitely not feasible for N  much larger than 1021 ). 

Another method has therefore to be used instead. W hat we want is an easily 
computable series of integers which contains all the primes and as few composite 

numbers as possible. (Because we use the divisors in ascending order, it is wasting time 

to divide N  by a composite number, since the latter’s prime factors, if originally 

present in N , w ill already have been removed (see later).)

Our first thought might be to eliminate all multiples of 2 (except 2 itself), by choosing 

the set of odd numbers (with 2 added). But, if we list this set

(2), 3, 5, 7, 9,11,13,15,17,19, 21, „

it soon becomes clear that one out of every three numbers is always composite, and so

i  of the trial division time would certainly be wasted. It would be sensible,

therefore, to eliminate multiples of 3 (except 3 itself) also, leaving us with the set

(2),(3), 5, 7,11,13,17,19, 23, 25, 29, 31, 35, 37, ~

which, apart from the first two elements, consists of the integers congruent to 1 or 5 
modulo 6 (i.e. integers of the form 6&+1 or 6 k -1 , for some k \

However, viewing this set as residues modulo 30, we find that, after the initial

irregularity, we are generating the set of integers which are congruent modulo 30 to 
one of the following 10 residues:

1,5, 7,11,13,17,19, 23, 25, 29

But, since 5 divides 30, those integers which are congruent to either the second or the 

ninth residues are clearly composite, and so represent wasted time. Removing these

two residues leaves us w ith 8 residues (modulo 30) of interest to us.

Thus, having started by looking at 1 out of every 2 integers, then considering 2 out of

every 6, we are now using only 8 out of every 30 integers.
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This process can obviously be continued For example, using the relevant residues 

modulo 210 w ill remove multiples of 7 (except 7 itself of course!); residues modulo 210 

w ill cause the removal of multiples of 11, and so on. The following table summarises 

the position, ignoring the initial slight irregularity.

prime multiples proportion of successive
removed integers used improvement

2 r  = 50%

2, 3 2 = . 1 = 3 3 . 3 % 1
6

2, 3,5 ^  = 4 - s=26' 7%
1

15

2, 3, 5, 7 48 “  8 -2 2 -9 %  210 35
4

105

2, 3, 5, 7,11 480 = ^  *3 20-8% 2310 77
8

385

2, 3, 5, 7,11,13 576?.., = 192 *19-2% 
30030 1001

16
1001

Thus it is clear that as we remove the multiples of more and more small primes, we
CL

are tending to^limit (namely, that of using all primes). As it is impractical to use this 

limit, we have to stop the process somewhere, and, as w ill be justified later, we use the 

residues modulo 30 (and also modulo 210 in the DAP implementation) to generate our 
set of trial divisors.

However, since small prime factors are much more common than large ones, (e.g. —- ofz

all the integers are divisible by 2, whereas only ^023 t ^Lem ^ave 3023 ^  a prime

factor), it is important to try  all the small primes as soon as possible (i.e. avoid wasting 

time by dividing by composite numbers so early on). It is probably preferable that the 

first 4,096 primes be stored in a file in the machine, and we start our trial divisions 

using only these primes, and afterwards, use the residues modulo 30 to generate the 

subsequent trial divisors. This solution also has the advantage of getting over the 
initial irregularities w ith the residues mentioned above.
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(c) Once a factor, say p  , is found, it should be removed from N  (i.e. replace N  by ~
P

NThis involves no extra work, since the quotient —  has already been calculated during

the initial trial divisions^ and has the possible advantage of reducing the amount of 
work in the subsequent trial divisions, since the new N  might require fewer 
multiple-precision digits.

A further, more substantial, gain can be made as follows. Once a factor, say p  , is
Nfound, we could, in effect, start the whole algorithm again, this time to factor —  .

Thus our upper limit w ill now be N
I t  3

P
(or slightly greater), which could be

much less than [Arl/ 3] . Of course, we do not need to re-try all the earlier divisors, but 

can start the divisions w ith the next trial divisor after p (unless multiple occurrences 

of p  were not checked for before, in which case we should re-start w ith p  ). This
f t  1/3

involves the calculation of N
1/ 3

P
either from scratch or by considering

As w ill be seen later, in the serial version, we use the former method so as to avoid the 
problems with round-off error which using the latter could cause, whilst in the 

parallel version we again use a method more suited to the DAP’s architecture. (In the 
case when the factor found, p , occurs to a power > 1, it is obviously more efficient to 

wait until all the occurrences of p  have been removed before we recalculate the upper 
bound.)

Step 2

(a) Again we need to obtain a value (to approximate) for [N lf 3] to serve as the upper limit 

for the outer loop, and this is found using the methods previously mentioned . In 

addition, we need a bound for the counter in the inner loop.

For a given k , the algorithm requires d  to take values up to and including 
[ N 116 /  (4V k  ) + 1], and so we have to calculate [ N v  6 /  (4V k  )] (since 

I N 1' 6/  (4VF) + 1] = I N1' 6/  (4VF)] + 1 ) .  N ow,

jy i /6 jy - l  / 3 Vi

4 V k 16k

[ N 1' 3] 
16k

€

16k



- 4 5 -

where 0 ^  € <  1

[iv1' !
Vk'

16k

and it is this last expression which we use for the upper bound, since we already have 

(an approximation to) the value of [N 113] .

In Step 1, performing a few extra trial divisions (because our upper limit is too large) is 
not a great disaster, while in Step 2, if N  is composite, we are guaranteed the discovery 
of two squares congruent modulo N  before k  exceeds [N 11 3] , and so, again it does not 

matter if our upper limit for k  is slightly too large.

The only case (say, for Step 2) in which such inaccuracy could cause extra work is if 

N  is prime. However, there are much quicker ways of showing that an integer is 

prime than by using this algorithm, which is primarily a factoring one, and so the use 
of a primality test at the start of the program would solve this problem. In fact, the 

use of such a test would eliminate the need for an upper bound for the outer loop in 

Step 2 altogether, and a suitable one w ill be presented in Chapter 9.

Now, since the inner loop is performed possibly many times, for each value of k  , it is 

important that our upper limit for d  be as small as possible. It has been shown above 
how the exact value for this bound can be calculated in terms of [N 113] . But, as w ill 

be mentioned later, the "integer-only" version of the Newton-Raphson algorithm 

returns a value for [JV11 3] which could be 1 or 2 too large. Even so, it would be an 

extremely rare occurrence if this resulted in a d  loop bound being 1 too large.

(b) Of course, of far more importance than finding upper bounds, is ensuring that the 

calculations required inside the loops are performed as efficiently as possible.

One trivial point is that of calculating the product 4kN  , and the integer part of its 

square root, outside the d  loop (i.e. once for each value of k  ) rather than calculating it 

afresh for each value of d  . For the serial version, the value of [V 4k N  ] is calculated 

using the Newton- Raphson iterative method (again, an "integer-only" version), while, 

in the parallel implementation, a method which exploits the bit-processing capabilities 
of the DAP is used.

The addition, squaring operation and subtraction, required by the inner loop, are
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performed using the traditional arithmetic algorithms (see [Knuth 1981] for examples 

of these), and it is the final task, that of ascertaining whether or not we have found a 

perfect square, that requires the most consideration. Because this w ill have to be done 

possibly many thousands of times, it is vital that it be implemented as efficiently as 

possible. As w ill be discussed later, we again find that the best serial method is not the 
best choice for use on the DAP.

In the serial implementation, possibly many multiplications can be avoided by adding 

4N  (which has already been calculated when k  = 1) to the product 4 k N , to obtain 

the value of 4{k + 1)// . Similarly, since ( X  + 1 )2 = X 2 + 2X + 1 , the value of 
([ V 4kN  ] + 2 )2 — 4k N  can be found by adding 2 [ V 4kN  ] + 1 to the previous 

difference, ( ([ V 4k N  ] + 1 )2 — 4k N  ) , thereby avoiding further, time-consuming, 

multiple-precision multiplications. Versions of both these ideas can also be used in the 
parallel program.

(c) Finally, whenever d = 0, the expression formed in the inner loop

( [V 4k N  ]2 — 4k N  ) is either negative, or zero. So it is only in the latter case that we 

need to look for, and hence find, a perfect square. But,

[ V M ] 2 -  4k N  = 0

if and only if  I [V 4kN  ] I -  I V 4kN  I 

if and only if 4k N  is a perfect square 

if and only if k N  is a perfect square 

if and only if both k  and N  are perfect squares

The validity of the last equivalence can be seen from the following.

An integer is a perfect square if and only if the exponents of the primes in its prime 

decomposition are all even. So, if k N  is a perfect square, but N  = pq , say, is not (i.e, 

the primes p  and q are different), then p  , q must be factors of k  , each appearing an 

odd number of times in the set of its prime divisors. But this implies that 

k  ^  pq = N  , which contradicts 1 k  ^  [V 11 3] . Hence N  must be a perfect 
square. That k  must also be a perfect square, and that the second-last equivalence 
holds, can be seen from a similar argument.

Thus, if  N  is not a perfect square, the d = 0 loop is unnecessary, since it can never 

produce a perfect square. On the other hand when AT is a perfect square, there is an
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easier way to detect this than by calculating [iV1/ 3] , [ CN 116/  4) ] and 

( [V 4 ^ T ]2 -  4JkAT)! So, we can omit the d = 0 iteration, preferring instead to start 

Step 2 by testing for N  being a perfect square.

This can also be seen from the proof given earlier, for the d  = 0 case corresponds to 

B — 0 . However, the latter equality implies that pr = qs . Now, if N  is not a perfect 

square, ( p  , q ) = 1 , and so we must have that q I r  . But, this is impossible since 

r ^ r s  = k  < N lf 3 <q . Hence, unless p = q , in which case N  is a perfect square (and 

this can be detected by a test before Step 2), the d — 0 iteration is unnecessary.

The above improvement has the effect of reducing the constant implicit in the 

algorithm being O (iV1/ 3) , since now the number of operations in Step 2 is at most:

N i/eIn 1' 3]

Zk=l 4v k
+ 1

by an argument similar to that given previously to obtain the constant

3
The constant y  above can be improved further as follows. We require a bound for

the sum

[jv1/ 3]
= Z*=i

N l /  6 

4dk
Z

d  =  1

+ 1

1 .

N 11 bThis is equal to the number of integer points under the graph of y  = ■ ̂ — for

1 ^ i V 1/3. In the previous working we approximated this value by the area under the

graph for 0 < x  ^ N 113. However, by changing the order of summation, we can obtain a 
better bound for S  .

Tur 1/ 6
4-1jri/3 I T T

s  < Z  Z i
* =i a =i

N l/ 6

z
d ~ l

Nl/ 6 
4

L
d —2

+1

•+1

min V1' 3, j y l / 3

16(d - l ) 2

Z
jfc=l

N 1 / 3

16W -1)2z 1 + w1/3
k =1

Nl/ 6
+1 I f  1/

+ N 1/ 3
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= N 1/ 3

(where S = d  — 1)

N 1/3 
16

N x> 6
A  1
Zw "F2 
5=1 o

<  iV1/3 + N 1 /3

16
CO -I

z 4
6=1 O

1/ 3
^ 1 / 3

16
7T2

X

°° 1 77̂by the well-known result that —j- = - .
r  =1 r  6

Thus

5 <  (1  +  ™  )I\T^ (1  * 1028 ) iV17 3 .96

We w ill show later how this bound can be improved even further.

It is important to note that the above working simply involves counting the maximum 
number of ( k  yd ) pairs to be considered, and does not take into account the amount of 

work involved for each such pair. A more accurate bound on the running time of the 

algorithm could be obtained by considering the number of bit operations required by each 

step. But, due to the complicated nature of the work involved in Step 2 which causes one to 

be unable, at times, to ascertain accurately the length of the operands involved, this analysis 

is omitted. However, the corresponding treatment of Step 1 is quite straightforward, as w ill 
now be shown.

Bit Operation Count for Step 1

To divide an n-b it integer by one of length r  bits (where r  < n )  requires (n — r )  

subtractions, where each of the operands is r  bits long, and so requires r (n  — r )  bit 

operations. Therefore, to divide an n  -bit integer by all the integers w ith r  bits w ill require

2r-1 r  Qi — r )

bit operations.

Now, if we assume that N  , the number to be factored, has n  bits in its binary pattern, 

then [iV1/3] w ill have approximately n f  3 bits. Thus, to divide N  by all the integers
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^  [N lf 33 (except 1) w ill require at most

n /  3
£ 2 r~1r(n  — r )

r  =  2

bit operations. However, as has been discussed already, we do not use every integer, but 

only trial divide with 8 out of every 30 possible numbers. Therefore an approximate bound 
on the number of bit operations required for Step 1 is

A  n !  3 A—  y  y-vu - ;•) =
1 5  r  =2 1 5

ti l  3
n Z r2T"~1

r —2

n l  3
22 r 22r_1

r = 2

This figure (which we shall denote by S  ) is only an upper bound since we start by using 

less than 4/15 of the available integers (when trying the first 4096 primes) and, if a factor is 

found and removed from N  , the number of bits in N  will, obviously, be less than n - a 
factor which is not taken into account in the sum.

Now

A  r a™"1 -  1
-   7—

r=2 a  1

and, by differentiating, one can show that

r —i (m -  1 )am~22 > '
r =2 (a — l )

a "1” 1 -  1 
(a -  l)2

and

TVfV 1 r —2  _  On — 1) (m — 2) am~3 2(m -  lV"~2 2(am"1 -  1)
Z r ( r _ 1 ) a --------------------------  ~  (a - 1?  + ...... ( « - 1>»—r= 2

Using the above identities, we can evaluate the previous sum, thereby deriving an 

expression for the number of bit operations required for Step 1 .

_4_
15

n I 3
n  £ r 2 r " 1

r=  2

n /  3 n /  3
2 I > ( r  ~  l ) 2r-2 -  E r 2 r ” 1

7= 2 r= 2
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Chapter 4 The Serial Im plem entation

In order to assess how much the DAP’s extra processing elements improve the running 

time of the Lehman algorithm, we also implemented the method on a serial machine. 

Factoring integers can take a long time, and during the running of the program it is 

important that as few other people use the machine as possible, otherwise the many 

interrupts caused by their work could affect the accuracy of the execution time given. So, 

because of the availability (on some nights and week-ends) of surplus cpu hours on the VAX 

11/780 in the Computing Science Department, this computer was chosen for the 

implementation. Also, since it was the language with which the author was most familiar, 

the code was written in Pascal. How the results so obtained w ill be used for assessing the 

DAP’s performance, w ill be discussed later, in Chapter 6.

Because the VAX has a word length of 32 bits, the greatest integer it can handle, (of 
type "integer" in Pascal), is only 231— 1. Of course, it can handle much larger real numbers, 

but, for our work, we must know all the digits of each operand, and hence the inaccuracy 
associated w ith floating-point storage is unacceptable. In order to manipulate large integers 
in a high-level language, they have to be broken up into smaller parts, each of which can be 

handled by the integer routines supplied. When storing operands in "multiple-precision" 

form (as it is known) we are effectively changing the base of our number system from 10 to 

a value of our choice. For this machine, any integer less than V 2 3 1  — 1 would be suitable 

(for then the product of two "components" of multiple-precision numbers w ill still be less 
than the upper bound on the type integer), but, because of the obvious advantages in 

multiplying or dividing by a power of 2 (provided the machine "recognises" it), rather than 

by a number w ith more general form, as well as others that can be seen from what follows, 

we chose the largest such power possible, namely, 215, to be our base.

In order to work with large integers, routines for performing multiple-precision 
arithmetic are required. In this case, as can be seen from the code, many of these procedures 

had to be written. Some of them handle two multiple-precision integers, returning a third, 

while, if  it is known that one of the operands will be strictly less than the new base, (i.e. 

w ill have only one digit), then, in the interests of efficiency, a special routine is used which 

takes this into account (identified by the prefix "SingleDigit"). The algorithms used are 

based on those given by Knuth [1981].
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By far the longest procedure is that for dividing one multiple-precision number by 

another, for which we used Knuth’s "divide-and-correct" technique. Admittedly we could 

have avoided this by multiplying the dividend by the reciprocal of the divisor; a method 

which, Knuth claims, can be considerably faster than our choice, for "extremely large 

numbers". However, whether the numbers we are concerned w ith are large enough to make 

the second method preferable, is not certain. Even if they were, the use of this alternative 

approach would pose certain problems. For one thing, we would now be introducing 

approximations to real numbers into our calculations, since the required reciprocal would 

have a (possibly infinite) decimal expansion. These would have to be stored as if they were 

multiple-precision integers, except that the decimal point would be (conceptually) to the left 

of the digits (base 215 ) rather than to the right. Hence we would also have to write routines 

to sort out where, in the product of the dividend and the reciprocal of the divisor, the 

integer part stopped, and the fractional part began. In addition, since the remainder might 

only be found approximately, this method would not be suitable for the trial division of 

Step 1 (where a non-zero remainder implies that the divisor concerned is not a factor), or for 

the gcd calculation in Step 2. Thus, we would be forced to have two procedures for long 

division, which, in the interests of simplicity and brevity, is not desirable. A possible 
improvement to the routine we have used, that could save some time, w ill be discussed later 

in this chapter. Meanwhile, we now describe how the steps of the algorithm were 
implemented.

Step 1

As was mentioned in the previous chapter, we begin the divisions of Step 1 by trying 

the first 4096 primes. These are read in, one at a time, and the division performed, along 

with any necessary repetitions. Because not all these primes are less than 215, we use a 

boolean flag to indicate when we must stop using the simpler "single-digit-division" 

procedure in favour of the more general long-division routine. However, the larger primes 

are still read in as integers (since the 4096/A prime is 38,873, which is less than 231 — 1 ), 
and converted to the multiple-precision format by the program. A slight improvement 

could be gained by also storing the multiple-precision versions of these divisors, thus saving 

several thousand "div" and "mod" operations. However, the primes would still need to be 

held as integers as well, since they have to be compared w ith [ N lf 33 to discover whether all 

the divisors necessary have been tried or not, and the comparing of variables of type integer 

w ill be quicker than comparing multiple-precision integers.

If, once all these primes have been tried, further division is necessary, then subsequent 

divisors are generated by calculating the relevant residues modulo 30, namely
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1, 7,11,13,17, 19, 23, 29.

Of course, this should not be done by calculating 30k , for some k  , and then successively 

forming the sums 30&+1, 30k +7, etc.. Instead, all one need do is add 6 to 30£+l to get the 

next divisor, then add 4 to obtain 30&+11, and so on. Adding 2 to 30£+29 will (obviously) 

produce 31k +1, and so no multiplication is ever required. These 8 increments are held in an 

array, and a counter (which is reduced to 0 whenever it becomes 8) is used to select which 

of them is to be added to find the next divisor.

This process continues until either N  equals 1, or the next divisor is greater than 

in which case, the work of Step 1 has been completed. As has already been 

discussed, whenever a factor is found, the upper limit of [N 11 3] is reduced accordingly, 

using an "integer-only" version of the Newton-Raphson algorithm, which we w ill discuss 

later. The factors of N  which are identified are stored in a one-way linear list, the nodes of 
which are variant records so that, depending on their size, the primes can be held as either 

"normal" integers, or in multiple-precision format.

There are various trivial improvements which could have been made that would result 

in very slight savings of time. For example, since we have chosen 215 to be our base, when 

trying the prime 2, initially we need only divide the least significant "digit" of N  by it, for 
if  2 does not divide this last component, it certainly w ill not divide N  . Of course, if the 

binary pattern of N  were available, then by counting the number of zeros (if any) which 

occurred at the least significant end, we could find the exponent to which 2 divided N  

without any division. But, as this expansion is not easily accessible from Pascal, we are 
forced to ignore this trick.

That 3 was not a factor of N  could be identified without a division of the several (base 

215) digits of N  by dividing instead, the sum of the decimal digits of N  , which could be 

formed while N  was read in, digit by digit, at the start of the program. However, if 3 was 

a factor, then a division of N  would be required to remove it (and any repeat occurrences).

At present, [A 11 3] is calculated before any division takes place, and so several (if not 
many) recalculations might be necessary before all the first 4096 primes have been tried. 

This allows us to stop the division as soon as is possible, even if  some of the initial block of 

primes have not been tried (albeit, an unlikely occurrence for large N X  Whereas, as w ill be 

seen from the next chapter, in the DAP implementation, all the primes must be used, and 

hence there, the calculation of the upper bound is not performed until after they have been 

tried. A small gain could be made in the serial version by delaying the finding of [ N 11 3] 
until after the first successful trial division, or after the 4096 primes have been tried, 
whichever occurs first.
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Before the discussion of how the second part of the algorithm has been implemented, it 

would be appropriate at this point, to describe how the necessary square and cube roots are 
found. The Newton-Raphson iterative process, because of its convergence of the second 
order, has long been recognised as one of the most suitable algorithms for finding roots of 

polynomial functions on a word-based computer with a fast fioating-point divide operation. 

It is normally implemented in real arithmetic. But we have chosen to avoid the inaccuracies 

of floating-point calculations, preferring to work at all times, w ith integers (multiple- 
precision or otherwise). Thus we have to use an "integer only" version of the Newton- 

Raphson method in which successive estimates to the root are rounded up to the nearest 

integer before the next iteration takes place. This is the same idea that Morrison and 

Brillhart [1975] used in their work w ith the Continued Fraction algorithm. Apart from, at 

times, slightly slower convergence, the only price to pay in making this simplification is that 
the answer could be larger than the true value (in the author's experience, the error 

involved has only been in the region of 1 or 2 units). This does not matter, as has already 

been discussed, when calculating an upper bound for the trial division of Step 1 or the outer 

loop for Step 2. However, in Step 2, it is important to have the exact value of [V AkN  ] for 

each k  , and for that reason, there is a procedure called "TruncSquareRoot" which also uses 
this Newton-Raphson variation to get an approximate value, (to V X  say ) and then 
subtracts 1  from the root and compares its square w ith the value of X  until [VX ] is 
obtained.

Each iteration of the Newton-Raphson algorithm requires the calculation of

where x i + 1  is the new approximation to the square root of a. Since we only require the 

nearest integer at each stage, the remainder from the division above is not required. 

However, since in the gcd calculation at the end of Step 2, remainders are required, the long 

division algorithm that has been written always calculates it. Thus a saving could be made 

by having a second such procedure which does not return a remainder. But, this saving will 
only be very slight for the size of numbers we are factorising for two reasons: (i) In the 

algorithm used, finding a remainder basically only requires a "single-digit" divide, which is 

fast when compared w ith all the other work involved; and (ii) whenever the previous 

estimate is less than 2 15, a "single-digit" division procedure is used which does not find a 

remainder. Of course, if N  were so large that the second reason above did not often apply, 

then the alteration under discussion would be worth making.
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Because the number of entries would have been too large, we use the Newton-Raphson 

algorithm to calculate [A 1! 3] rather than the look-up table adopted for the DAP version (see 
Chapter 5). The root is found from scratch each time a factor of A  is identified, since, 
depending on the size of the prime discovered, the old value of [A 11 3] could be larger than 

our initial estimate. In both cases we take as our initial estimate (which is calculated "in 

line", at the start of the procedure), the smallest integer whose square (or cube) has one more 

(base 2 1 5  ) digit than the number concerned, so that we are guaranteed to start the process 

"to the right" of the root (except for a special square root procedure used to find [VAkN  ] 
which w ill be mentioned below).

Step 2

In order that the inner d loop can start at 1 rather than at 0, we begin the second step 

of the algorithm by testing to see if A  is a perfect square. Since A  is known to be odd at 

this stage, it must be congruent to l(mod 8 ), and again because of our choice of base, we need 
only examine the last "digit" of A  . If it passes this test, then we calculate [V a  ] and test 

to discover if A  = [V A  ] 2  . If this is true, then we are finished, and so can stop.

If A  is not a square, then we proceed to calculate [A 11 3] , before beginning to search 

for a pair of perfect squares which are congruent (mod A ). It is true that this value is 

already known, as it was used in the condition which terminated the first part of the 
algorithm, (if A  -  1 , which is the other terminating condition, then there is no need to use 
Step 2!), but since it was decided to use separate programs for each step, in order to tell what 

proportion of the total time each step takes, unless this upper bound was read in as data, 

there is no alternative but to recalculate it. However, when compared with the time that 

the required loop iterations can take, the effect of these few extra instructions is negligible.

As mentioned briefly in the previous chapter, several "short-cuts" have been used 

which reduce the amount of computation required For example, the product AkN  is not 

calculated afresh, but obtained by adding 4A to the previous value (i.e. 4(&—l)A  ), thereby 

replacing two multiplications by one addition (the increment, 4A  , has to be calculated 

anyway as it is the value of the product when k  = 1). Another gain was made, this time in 

the finding of [V A{k + 1 )A  ], by making use of the knowledge of [V AkN  ], rather than 

starting "from scratch" each time. As is described in Appendix B, various methods were 

tried, and the best found to be simply using [V AkN ] as the initial estimate to [V Akk + 1 )A  ] 

for the Newton-Raphson algorithm. Hence the inclusion of a second square-root procedure 

which does not calculate an initial estimate, but receives it as a parameter value.

We have already described in a previous chapter, how our knowledge of [A 11 3] is used 

to calculate the upper bound for each d  loop. This upper limit is inversely proportional to
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k  , and, in fact, once k  exceeds N 11 3  only one inner loop iteration per k  value is required. 

Thus, if the number to be factored was either a prime, or required the performing of a 

considerable proportion of the outer loop iterations before the factors were found, we would 

eventually be recalculating a bound which was already known to be 1. However when, in 

the serial version, a flag was set to indicate when this upper limit had become 1 , and hence 

further calculations were unnecessary, the program actually took longer to run! When the 

boolean flag was later (after the performing of the long timing runs described in Chapter 6 ) 

replaced by an integer flag, the program did run slightly quicker than when the d  loop 

limit was calculated afresh each time (37mins 36secs, compared w ith 37mins 56secs - 

whereas the boolean flag version took 42mins 45secs), which implies that the version of 

Pascal running on this particular VAX is not very efficient when manipulating boolean 

variables.

For those inner loops which have more than one iteration, we have already described 

how the successive values of the difference ( [V 4kN  ] + d )2 — AkN  can be found by 

adding (2[VAkN  ] + 1) to the previous one, thus replacing a "single-digit" addition and a 

multiple-precision squaring and subtraction, with a quicker multiple-precision addition 

(following the initial calculation of the increment). A further saving in work was made 

through a variation of a preliminary test which Fermat used when identifying perfect 
squares.

Knuth [1981] describes how Fermat examined the last two decimal digits of each 
number concerned, (since there are only 2 2  possibilities for this last pair of digits if the 

number is indeed a square), and only if these were in the required set would he proceed 

with further testing. Because the values we wish to test are not held as decimal integers, 

these two digits are not easily obtained. However, since we chose 21 5  as the base of our 

calculations, the last "digit" of each number holds its 15 least significant bits. It is easy to 

show that if an integer is a perfect square, then its binary pattern w ill have one of the 
following three possible endings:

000, 001, 100 .
Thus, by using this binary equivalent of Fermat’s test, we save (at times) a considerable 

amount of needless calculation. Each square root calculation has to be performed "from 

scratch" however, since we have no guarantee that we have any previous knowledge to 
make use of!

Once a pair of squares has been found, the only work that remains is to calculate the 

greatest common divisor of N  and (A + i?) (where A 2  and B 2 are the two squares found), 

which is performed using the well-known Euclid’s algorithm [Knuth 1981]. In some cases, 

finding gcd (JN ,A — 2?) might be slightly quicker, but, compared w ith the time required
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for the loops of Step 2, any difference at this stage w ill be negligible.
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Chapter 5 The DAP Im plem entation

We begin this chapter by stating the Lehman algorithm in a form suitable for parallel 

computation. The work, that could be performed in parallel is bounded by the words par 
begirt and par end. For the sake of convenience, separate algorithms are given for the two 

parts, and no mention is made of testing N  for being a perfect square, since this is a one-off 

exercise which takes place between Steps 1 and 2, and so could be done in parallel w ith 

either (as the last process started in Step 1, or the first one started in Step 2).

Step 1 : while trial divisors left do 

par begin

select next divisor and current value of N  ; 

perform trial division; 
while successful do 

repeat division (keeping count of number of successes); 

i f  successful then 

begin

replace N  by quotient produced; 
reduce upper limit of divisors; 
end; 

par end;

It has been assumed that the values of N  and the upper limit for the divisors can only 

be accessed by one processor at a time. The same is true of the count of ( k  , d ) pairs, along 
w ith the values themselves, which are used below.



Step 2 : while squares not found and values of k  , d  available do 

par begin

select next k  , d  pair;
decrease count of pairs by one;

2̂
calculate 

i f  this is a square then 

squares found := true; 

par end;

+ d \ - 4 kN ;

It is obvious that if we had any number of independent processors (in an MEV1D 

design), then all the iterations of both loop could be performed simultaneously, in parallel. 

However, this is not as good as it appears, for several reasons.

(1) For the smaller k  values, there w ill be many more d values to consider than for 

larger k  , and so processors assigned these former values w ill have far more work to do than 

those w ith larger k  , while in addition, all of them have a larger workload than those 

processors engaged on Step 1. Thus, (depending on how soon a pair of squares were found), 
most of the processors could spend most of their time doing nothing!

Even if  we could assign a pair ( k  , d ) to each of the Step 2 processors, rather than just 

a value k  , these processors would still take much longer over their work than those 

processors involved in the trial divisions of Step 1. Therefore, unless any necessary repeat 
divisions could be carried out while the Step 2 calculations were still being performed, we 

would have a very inefficiently-used system.

(2) Since Step 2 is designed to find a prime factor of an integer known to have at 

most two such divisors, if any small factors were found by Step 1, then all the work of Step 

2 might have to be repeated, since there is no guarantee that the first run of Step 2 would 

have produced the desired factor.

Thus it would be better to adopt a two-stage process, in which we first performed all 

the trial divisions of Step 1, at the same time, before going on to carry out the iterations of 

both loops in Step 2 in parallel. For a given N , this scheme would require "only" 

1 *1028 [N 11 3] processors (i.e. equal to the total number of ( k  ,d  ) pairs required by Step 2).

However, it w ill be noticed that in Step 2, all the processors working in parallel are 

performing exactly the same sequence of instructions. Hence, for this part of the algorithm, 
the flexibility of an MIMD system is not required. If one then reconsiders the work of Step
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1 , it w ill be seen that a similar situation exists there except that the tasks w ill not be 
identical if factors are found, for then the processors involved have to re-divide N , (each 

time removing the corresponding divisor), until all the repeat occurrences have been dealt 

with. Thus, while an SIMD-type machine would be sufficient for Step 2, its use for Step 1 
could involve a slight inefficiency. But, since the processors in an MCVID design have to be 

more complicated than those used in SIMD systems, building a computer of the former type 

with a large number of processors would be extremely expensive. Hence an SIMD 

architecture would be the more practical choice, even though it could result in a small 

amount of inefficiency in Step 1.

But, in adopting this design, we are faced with a further problem - that of initialising 

the processors so that both loops of Step 2 can be performed simultaneously. It would 

require a considerable amount of ingenuity to share out the (fc f d ) pairs efficiently (since 

the number of d  values varies with k  ) on a DAP-style of architecture, and we could find 

that the time taken to set up the process would be greater than that required by the actual 
calculations! Whereas if we adopted the simpler scheme of one k  value per processor (and 
thus, less than [A 11 3] processors would suffice for both steps), then we would find that most 

of the processors spent most of the time waiting for others to finish, since the upper bound 

for the d  loop is very large (depending on N )  for small k  , but decreases rapidly until, for 

most of the k  values, d need not exceed 1. Although it would certainly run very quickly, 

it would be hard to justify the construction of a machine with a vast number of processors, 
most of which were almost always idle!

Of course, it is very unlikely that the building of such a machine would ever be 

considered. In the real world, one has to settle for more modest facilities, in this case, 4096 

processing elements, arranged in a 64 X 64 array, and a compromise found between running 

time and the efficient use of resources.

It w ill be described later how, at times, the DAP w ill be forced to do more work than 
is required by the algorithm. However, it w ill also be shown how, on occasion, this can 

actually result in considerably reducing the execution time of the algorithm.

To get the best out of a machine w ith such a definite structure as the DAP, one has to 

adapt one’s programming style to suit the particular details of the computer’s design. Thus 
the number 4096 w ill appear many times in what follows, but, contrary to what one might 

have expected, it does not prove to be a "mill stone round the neck" of the programmer. 

While it is true that, as they say, "you can’t win them all" and that sometimes we have to 

compromise and tolerate certain inefficiencies^ at other times, such a rigid bound as this can 

actually reduce the amount of work required and prompt the design of simpler algorithms.
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Step 1

An example of this last point can be seen in connection w ith Step 1. Since trial 

division involves repeating the same operation with just a different divisor, and each 

repetition is independent of the previous one, (e.g. whether or not 7 is a factor of N  does 
not have any bearing on whether 13 divides N  ), the SIMD architecture of the DAP is 
suited to this process (except, of course, when repeat divisions have to be performed). Thus 

we w ill divide N  by 4096 trial divisors simultaneously. Hence, we no longer need to 

calculate [N J/ 3] . Instead, we only require to find the number of blocks of divisors we will 

need to use. As w ill be seen, this can be found in a very simple way on the DAP. But first 

we consider the formation of the blocks of divisors, and explain w hy residues modulo 30 

and 2 1 0  have been chosen.

As has already been justified in Chapter 3, we start by trial dividing w ith the first 

4096 primes. These can be read in by the host program, and transferred to the DAP by 

means of a named COMMON block. Since the 4096^ prime is 38,873, what follows will 

concern the construction of matrices of divisors in increasing magnitude, where the first 

element of the first matrix w ill be the next divisor under the respective "system", after 
38,873.

W orking modulo 6

The residues (modulo 6 ) of interest are 1 and 5, and since 38,873 =  5 ( mod 6 ), the first 
matrix of divisors w ill contain the 4096 elements :

38,874+1; 38,874+5 ; 38,880+1 ; 38,880+5; 38,886+1 ; 38,886+5 ; • • • 51,156+1; 51,156+5 , 

(where 51,156 = 38,868 + ( 6  X 2048) ). Such a matrix can be formed simply in DAP- 

FORTRAN by using a mask to pick out, first, those elements which w ill contain a trial 

divisor congruent to 1 (modulo 6 ), and then (using .NOT. mask) the other elements, which 

w ill hold numbers congruent to 5 (modulo 6 ).

The second matrix w ill start with the integers:

51,162+1; 51,162+5; 51,168+1; 51,168+5 ;
and so on. Now,

51,162 = 38,874+ 12,288,
51,168 = 38,880 + 12,288,

and so it is easy to see that the second matrix can be obtained from the first by merely 

adding 12,288 ( = 6  X 2048) to every element of it. Indeed, any divisor matrix (except the 

first, of course) may be so obtained from its predecessor.
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Thus, when using these residues, the first matrix of trial divisors can be quickly 
formed, and subsequent ones easily found. However, as discussed earlier, we have included 

many numbers which we know to be composite. For example, over 800 elements in each 

divisor matrix w ill be divisible by 5. In fact, out of the first 5 blocks, we waste, through 

multiples of 5, the equivalent of 1 block! So it is wise to investigate the relevant residues to 

other moduli, in order to find a more efficient compromise for the matrices of divisors we use.

W orking modulo 30

Using this modulus w ill ensure the removal of spurious multiples of 5, leaving us with 
the eight residues:

1, 7,11,13,17,19, 23, 29 .
Now, since 38,873 =  2 3 {mod 30) , we w ill actually use the residues in the following 
order:

29,1, 7,11,13,17,19, 23 .
and the first matrix of trial divisors w ill be

38,850 + A
where A is the matrix

0 X 30 + 29 504x30 + 29
1 X 30 + 1 505 X 30 +  1
1 X 3 0 +  7 505 x  30 + 7
1 X 30 + 11 505X30 + 11
1X30 + 13 505X30 + 13
1X30 + 17 505 x  30 + 17
1X30 + 19 505 X 30 + 19
1X30 + 23 505 X 30 + 23
1X30 + 29 505x30 + 29
2 X 3 0 +  1 506 X 30+  1

8X30 + 23 512X30 + 23

Since 4096 = 512 X 8  , each residue w ill appear 512 times in this matrix (and in the 

other ones also) and so the next matrix w ill have as its first few elements:
38,850 + (512 X 30) + 29 ; 38,850 + (513X 30) + 1 ; 38,850 + (513X 30) + 7 etc, 

and again we have that subsequent divisor matrices can be obtained by adding a constant (in 
this case 15,360) to each of the previous ones.

While the setting up of the first matrix of trial divisors using residues modulo 30 will 

take slightly longer than that for the residues modulo 6  case (we now need 8  masked 
assignments rather them 2 ) this w ill be much less than the time saved through the more 
efficient choice of divisors.
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W orking to larger m oduli

As has already been stated, this selection of divisors tends to a limit, namely, using 
only primes, and because it is not practical to adopt this limit, we have to compromise, and 

make do w ith a system of the form we have just been describing. However, if we wish to 

get close to the limit, by choosing residues to a larger modulus, we find that the problems of 

implementation on the DAP could outweigh the advantages.

For example, working modulo 210, there are 48 residues of interest. However, 

4096 = 85 X 48 + 16 and so, unlike the first two cases, the number of residues does not 

map "nicely" onto the DAP. We have two possible choices: (i) Start each matrix w ith a 

divisor congruent to 29 (mod 210) since 38,873 = 2 3 (mod 210) , the 1th residue of 

interest, and so be forced to re-use the last sixteen divisors tried at the end of the previous 
matrix, thereby effectively wasting 16 processing elements; or (ii) start the first matrix with 
the 1th residue, the second matrix w ith the 23rd residue, the third matrix w ith the 39fft 
residue, and then the fourth with the 1th residue, and so on. While the latter certainly 

makes fu ll use of the processing elements, it does require 3 matrices, each of which will 

need 48 masked assignments for its setting up, whereas the former requires just one matrix 

(and hence 48 masked assignments to form it), but at a cost of processor utilisation. How 

quickly the DAP can perform the assignment of a scalar to selected elements of an integer 

array w ill determine how large N  needs to be before the time saved by this choice of 

divisors w ill be greater than the time taken for the additional initialisations.

The situation is even worse if  we decide to remove spurious multiples of 11 also, by 

using the 480 relevant residues modulo 2310. Unfortunately 480 is not a divisor of 4096, 

and there are 256 residues "left over" after every block. As before, we either "waste" that 

number of processing elements, or use 16 different matrices (since 4096 = 16 X256 ) in order 

that the recalculation of the divisor matrices can be done in terms of the previous values. 

Thus we w ill need either 480 or 7,680 masked assignments to perform the necessary 
initialisations - requiring A  to be even larger to make this extra work worthwhile.

D ivisor Generation

Before choosing which method to adopt, let us examine the general question of 

generating trial divisors, via residues of different moduli, for use on processor arrays like the 

DAP, of varying sizes. Because of the obvious advantages in efficiency of addressing, we w ill 
limit our study to arrays of size p  , where p  is a power of 2 .

As described above, there are two ways in which a processor can fail to do useful 

work: (i) by using a trial divisor which is composite - in this case we shall say that the 

processor is "wasted" and (ii) by always having to use a divisor which has been tried
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already, composite or otherwise, because the number of relevant residues does not divide 

exactly the number of processors (where we are choosing to have only one matrix of 

residues, and not several) - such processors we shall call "idle". Thus we have two 

quantities to measure (i,e. the number of processors in each of the above categories), and two 
quantities to examine the effect of varying, namely the size of the processor array, and 

which modulus we work to, when selecting residues.

We start by considering the 8 relevant residues modulo 30, and a processor array of 

size 1024 = 322 . Now since 8 is a factor of 1024, there are no processors idle. But many are

wasted. We have only removed the multiples of the primes 2,3,5 and so y  of all the

divisors w ill certainly be composite (since 7 is a factor). Similarly, —  of the divisors w ill

be multiples of 11 . Of course, some of the divisors divisible by 11 w ill also have 7 as a 

factor, and so, when calculating the number of composite divisors (and hence wasted PJE/s) 
we must be careful not to count some more than once! Thus, the number of processors 

whose divisor is either a multiple of 7 or 11, or both, is

+(1024) + -+(1024) - 1 1024 10 1024
11 7 11 7 + -jUl024)

= A  , say.

When we take into account multiples of 13, this count increases to

A + -+-(1024) -  JL (A ) =  -j+(A ) + — (1024) = B ,say.

By counting divisors which are multiples of 17, we find that at least

B + -+-(1024) -  +-CB) = -H .&0 + -+-(1024)

processors w ill try  composite divisors. Hence, the number of wasted processors w ill be 

greater than

16 12 10 1024
17 13 11 7 + ~  11024 + ~  |1024 4-^-110241 >  330.

Performing the same calculation for arrays of different sizes produces the following table.
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array size idle processors wasted processors* % not used*

162 = 256 0 82 32

322 = 1024 0 330 32

642 = 4096 0 1323 32

1282 = 16384 0 5292 32

*Tkese figures are actually just lower bounds, since we have only counted multiples of 

7,11,13 and 17 and so not included all the divisors which are multiples of 19, 23... etc- 
The last column is an indication of what proportion of the processors do not contribute 
anything to the solution, since they are either idle or wasted, and so is calculated using the 

expression (idle + wasted)/(array size) .

If we remove all the multiples of 7 by using the 48 residues of interest (modulo 210), 

we find that, irrespective of which array size we choose (assuming that it is the square of a 
power of 2) 16 processors are idle. Thus, to calculate the number of wasted processors, say 
for an array of size 1024, we use the formula

16 1 2 1008
17 13 1 1

+ -j j  11008 + 11008

where 1024 has been replaced by 1008 ( = 1024 — 16 ) since idle processors cannot also be 

wasted! The figures which apply this time are presented below:

array size idle processors wasted processors* %not used*

256 16 50 26
1024 16 2 1 1 2 2

4096 16 857 2 1

16384 16 3440 2 1

When we remove divisors w ith 11 as a factor, we find that the number of idle processors 

does not remain constant. We have that

1,024 = 2X480 + 64 
4,096 = 8X480 + 256

16,384 = 34X480 + 64,

and since 64 X 4 =  256 (mod 480) , and 256 X 4 =  64 (mod 480) , the idle processors 

alternate in number between 64 and 256. To calculate a lower bound for how many
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processors are wasted, we now use the expression (say, again, for an array of 1024 processors):

16
17

960
13

+ i960

(where 960 = 1024 - 64), and so calculate the entries in the following table:

array size idle processors wasted processors* %not used*

1024 64 125 18-5

4096 256 503 18-5

16384 64 2141 13-5

No mention is made of a 16 x  16 array, since 256 < 480 , and so the use of residues (modulo 

2310) would not be possible when using a single matrix of residues.

There are 5,760 residues of interest (modulo 30,030), which makes using this modulus 

impossible w ith all but the largest of our suggested arrays. But, since

16,384 = (2 X 5,760) + 4,864 , we find that 4,864 processors would be idle, and at least

— (16,384 — 4,864) > 677 processors wasted. Thus, in excess of 5541 ( ~  33-8% ) of the

processors would not be useful, unless many different matrices were used to generate the 
residues.

If we compare the results for a 64 X 64 array, we have the following:

modulus primes removed idle wasted not useful %

30 2, 3 ,5 0 1323 1323 32

2 1 0 2 ,3,5,7 16 857 873 2 1

2310 2,3,5,7,11 256 503 759 18-5

with the use of residues 30,030 not possible. From this we can see that a large gain is made 
by choosing residues modulo 210, rather than modulo 30, even without having 3 matrices, 
(in order to avoid the 16 idle processors). However, the improvement from using the next 

residue (namely 2310) is not nearly so significant.
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We could, in. fact, eliminate the overhead of setting up the matrix of residues by 

forming it beforehand, and then reading it in, along with the matrix of primes, at the start 

of each factorisation. Thus the drawback with using the moduli 210 and (especially) 2310 

can be removed, and so it would appear that using residues modulo 2310 would be best, 
(that we have not included in our count of non-useful PE’s, those w ith divisors which are 

multiples of 19, 23 or higher primes, should not affect this conclusion). This is not 

surprising, as we remarked before about how the process of choosing divisors tends to a lim it 

What is interesting is th a t by deciding to use only one matrix for the residues, as we 

approach this lim it the best processor utilisation we can have is only 80%, unless we adopt 

the lim it and hence use all the processors. Unfortunately, as we have already remarked, 
unless we are prepared to fill vast amounts of backing-store w ith matrices of primes, this 

limit is not practical. Thus, the best we can hope for is having 80% of the processors doing 

useful work.

Rather than adopting the optimal solution, it was felt that a comparison of the moduli 
30 and 210 would be more worthwhile, as we could then see whether or not, in practice, 

there was such a great difference between the two, as the figures above suggested. Thus, 
both choices were implemented.

Calculation o f L im it

Now that methods for forming the blocks have been chosen, we are in a position to 

discuss how to find the number of blocks required. Since the same process is used for both 
moduli, we describe the work involved only for the modulo 30 case.

The last elements of the first four, say, blocks of these divisors are, respectively,

38,850 + ( 512 X 30 ) + 23 = 54,233

38.850 + 2(512 X 3 0 )+  23 = 69,593
38.850 + 3( 512 X 30 ) + 23 = 84,953

38.850 + 4(512 X 30) + 23 = 100,313

and the 4096^ block w ill end with

38,850 + 4096(512X 30)+ 23 = 62,953,433

As w ill be justified later, it is enough for our purposes, for this implementation to be capable 

of factoring integers =55 27 2  , and since 62,953,433 >  22 4  = 16,777,216, the last element of 

the last block of divisors which we use, w ill lie between 54,233 and 62,953,433.

Thus, if we were to form a matrix whose i th element (when considered as a long

vector) is 38,873 + i (15,360), and set a mask by comparing this matrix w ith [N 11 3], the
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number of blocks required should (see later) equal SUM(mask) + 1. However, this still 

involves the calculation of [iV‘1/ ^  . Also, if we know the value of [N 11 3] , then a much 

easier way of calculating the number of blocks required would be to find

([2V1/3] -  38,879)
15,360

because, rounding up this value to the nearest integer, would give us the required bound.

But, we can avoid calculating [iV11 3] by finding instead, the number of blocks, the 

cube of whose last element, is less than N  . This can be done by just cubing the matrix of 

last elements described above, comparing it to N  , and setting those elements of a logical 

mask which correspond to cubes less than N  , to .TRUE. Again, SUM (mask) + 1 should 

equal the number of blocks required.

One might be tempted to ask w hy we should bother w ith such a scheme, when we 

could have used the "integer-only” version of the Newton Raphson algorithm. The reason 

for this choice follows from the fact that the finding of the number of blocks of divisors 

needed is not a "one-off" calculation, but w ill need to be repeated every time a factor is 

found. So, while the initial use of the Newton-Raphson algorithm might take a similar 

amount of time to this scheme (depending, of course, on how close our initial estimate is), the 
finding of subsequent bounds would require more arithmetic operations, rather than the 

comparison and use of SUM which suffices when using this look-up table.

We could have used the ceiling (i.e. rounding up) of

N  -  (38,879)3 
(15,360)3

to find the number of blocks required, but this too, w ill eventually involve more 

calculations than the matrix approach (depending on the number of factors of N  which are 

^  [N if 3] ). But, this method has a far greater disadvantage (shared with the use of 

Newton-Raphson) from the point of view of implementation, which w ill become apparent 

when we consider the details of program design.

There is a slight disadvantage with this method which was hinted at above, namely, if 

N  lies between the cube of the last element of the k th block, say, and the cube of the first 

element of the (Jc + i)th block, then [W1/ 3] will equal the 4096th element of the k th block, 

and so only k  blocks are required, whereas our method would indicate that (£+ 1 ) were 
needed. This is not as bad as it seems because, once a factor of N  is discovered, the bound 
w ill be recalculated, and we would be very unfortunate if the same thing happened again. 

However, such worries can be eliminated by calculating instead, the cubes of the first 

elements of the blocks. In other words, we could use the matrix whose elements are the
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cubes of

38.850 + (512 X 30) + 29 = 54,239
38.850 + 2(512 X 30) + 29 = 69,599

38,850 + 4096(512 X 30) + 29 = 62,953,439.

But, we still have the drawback that we must use at least one block of these divisors, even 
though [N lf 3] might be less than the last prime used, or less than the first element of the 

first matrix generated). This problem can be solved by using the matrix whose i th element 

is the cube of

38,850 + 6  -  1) (512 X 30) + 29 .

The 4096*ft element w ill now be 62,938,079, which is still larger than 22 4  , as we require. It 

is, in fact, this latter scheme that we use.

Removal o f factors

When a factor is found, we remove it from N  and then test for any repetitions by re­

dividing w ith the current block. This raises several questions:

(a) Is it not inefficient to re-use all 4096 divisors, when only a few factors need to be 

checked for repetitions?

The answer is, unfortunately, "yes”, but it would be considerably more inefficient to 
construct a new matrix, some of whose elements were repeat divisors, and the rest were 

new.

(b) If more than one element in a given block is a factor, should they all be removed from 

N  before repeating the trial division, or just taken one at a time?

Since the re-use of blocks of divisors is inefficient, it should be kept to a minimum. 

Thus, only removing one successful divisor before repeating the division would be very 
wasteful in time, if more than one factor had been found in that block. Hence, all the 

divisors found, in a given matrix, are removed before repeat occurrences are tested for.

As described in Chapter 2, the first element of the matrix DIVISORS, say, which 

corresponds to a 1 in the LOGICAL matrix MASK can b e ^ ^ ^ b y  using the DAP-FORTRAN 
statement:

element = DIVISORS(FRST(MASK)).
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By repeating this process, each time setting to .FALSE, the bit in MASK corresponding to the 

element obtained, all the factors found in a given block can be obtained easily. If there is 
more than one bit set in MASK (which can be discovered by using the DAP-FORTRAN 
function SUM), a running product is made of the primes selected, so that a scalar division 

can be used to obtain the new value of N  . (Since, as w ill be discussed later, no multiple- 

precision long-division routine has been written, once the product is about to exceed 2 31, a 

"single-digit" division is used to remove those factors whose product is less than the base.)

Thus we see that, in order to gain the advantage of performing many trial divisions in 

parallel, we have to make slight comprises from the standpoint of processor utilisation. 

However, since we might need to try  several thousand blocks of divisors, the inefficiency in 

having to re-use several is not so significant after all. Indeed, compared to the time that 

could be required for Step 2, which, in general, is far greater than that for Step 1, questions 

concerning how many milliseconds we have wasted are not really relevant!

Of more concern, however, is the problem already mentioned in the general points, 

that if the smaller of the two large factors of N  , p say, is very close to [N 11 3] , then 

removing it, and using Step 2 to show that what is left of N  , q say, is prime, might take 

longer than to factor pq using Step 2. However, a primality test w ill be described later, the 

use of which, before Step 2, w ill solve this problem.

M ultiple-precision arithm etic

It would be appropriate at this point, to describe briefly the way in which we handle 

the large integers required by the algorithm, on the DAP.

The largest integer which DAP-FORTRAN can manipulate as a variable of type 
INTEGER is 26 3  “  1 and so, as w ith the serial case, we w ill have to use multiple-precision 

arithmetic. Like before, the numbers w ill be stored in arrays, except that this time we will 
choose our base to be 2 3 1  (the largest power of 2  w ith the property that the square of the 

previous integer (i.e. 23 1  — 1 ) is less than or equal to "maxint"). Apart from the obvious 

advantage, already mentioned, which is gained from dividing by a power of 2 , which 

requires only shifting, rather than by an integer of a more general form (but only if the 
compiler recognises it!), such a choice of base means that the binary digits of each multiple- 

precision integer are easily accessible, since they have simply been divided into groups of 31 

bits, each of which can be found in the right hand end of the array elements.

Since, w ith this choice of base, the multiple-precision digits w ill be ^  23 1  — 1 , they 
can each be stored as INTEGER*4 variables, where only the sign bit is "wasted", thus 

ensuring efficient use of storage. Further efficiency is obtained by calculating beforehand
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how large each array needs to be, assuming that N  ^  27 2  . Thus, some arrays have only two 

elements, some three, and some have four "digits". A count is also stored, as before, of how 

many elements in each array are actually used. Unfortunately, as has already been 

mentioned, when we wish to multiply two such digits together, they have both to be 
converted to 8  byte precision, to avoid integer overflow. However, this cannot be avoided if 
one wishes to use DAP-FORTR AN.

Of course, since we are using the DAP, most of the variables w ill have 4096 values to 

be operated on simultaneously, and so we w ill be manipulating arrays of matrices, rather 

than just the one-dimensional arrays of the serial case. Hence, the multiple-precision 
arithmetic routines which have to be written are more complicated than before.

[Note that a consequence of working in parallel is that our terminology is now in 

danger of becoming very confusing. It is unfortunate that the word array can refer to two 
completely different structures : the 64x64 array of PE's in hardware, or an array of 

variables in software, such as in the languages FORTRAN or Pascal. In order to reduce this 

ambiguity, we w ill (for the most part) restrict the use of the term "array" to refer to the 

way of connecting processing elements together employed in the DAP (e.g. 64x64 array of 

PE’s). The word "matrix" (and "block") w ill continue to describe a set of numbers to be 

operated on simultaneously by the processor array, with one number stored per processor. 

When dealing with multiple-precision integers, we w ill talk of them as having several 
"components" or "digits", and whenever we wish to manipulate such numbers in parallel, 

we w ill use a "multiple-precision matrix" to hold them, where one matrix w ill contain all 

the first components, another matrix w ill store all the second components, and so on.]

While, in some ways, the multiple-precision arithmetic is more complicated than 
before, one consolation (which, admittedly, is common to all machines supporting 64-bit 

integers), is that, since our base is so large, we can divide a multiple-precision integer by 

decimal integers up to and including 23 1  — 1 (and for N  ^  27 2  , all our trial divisors lie in 

this range), using the simpler "single-digit-divide" algorithm, rather than the very 

complicated long-division algorithm which we had to resort to in the serial version. This is 

the disadvantage with the other methods of finding a value for [N lf 3] described earlier. 

Even if they were to prove slightly quicker than our matrix method, there are other areas of 

the program where more significant speed gains could be achieved w ith the same amount of 
programming effort as would be required to implement a long-division algorithm (although, 
of course, Knuth's algorithm w ill probably not be the most suitable for a bit processor). 

Indeed, implementing such a procedure in DAP-FORTRAN could be considered a waste of 

time, for reasons that w ill be given later.
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Because we wish to divide N  simultaneously by a matrix of trial divisors, we need to 

have a multiple-precision matrix with identical elements, each of which equals N  , that w ill 

be re-initialised by broadcasting to each processor the quotient obtained after the removal of 

all the factors found, in the event of there being any.

The factors, however, can still be stored in a scalar array (of type INTEGER*4), w ith a 
second array to hold the corresponding exponents.

Step 2

Here again we have a loop (the k  loop), each repetition of which is independent of the 

others, and hence is suitable for implementation on a SIMD machine. Thus we w ill perform 
4096 outer loop iterations in parallel, using a matrix to hold the counter values. So, as 
before, the upper bound we need is not the exact value of [N lf 3] , but rather the number of 

blocks of k  values required. We find this by the same procedure as in Step 1, except that, 

since k  takes successive integer values, starting with k  = 1 , the first elements of the first 

four, say, blocks are:

1 , 4096 + 1 , (2 X 4 0 9 6 )+  1 , ( 3 x 4 0 9 6 )+  1 ,
and so the matrix of first elements this time, has as its i th element

((4096 X t) + l)3 ,

where 1  ^  i ^  4096 . The first element of the first block of values is not included in this 

matrix because N  w ill certainly be greater than 1!

Using just this one matrix, we can find the k  loop bound for all integers
N  <  (4096x4096 + l ) 3  = (22 4  + I ) 3  . Now, because the purpose of this exercise is to

compare the performance of a serial machine with the DAP, we are restricted in our choice 

of input data by the time the serial implementation would take to complete its task. 

Integers with, in the region of, 20 decimal digits can take up to many hours of cpu time to 

factor w ith this algorithm on a serial machine, which suggests that using numbers any 

larger than this would not be practical. Since 27 2  has 22 decimal digits^ and is within the 

range mentioned above, we have restricted the input data for both programs to integers 

which are ^  27 2  . (We could, in fact, have used integers which are <  (22 4  + l ) 3  , but this 
bound is not so convenient as a power of 2.) How the DAP implementation can be extended 

to deal w ith larger integers w ill be mentioned later.

In the general points discussed in Chapter 3, it was remarked that the upper limit for

each d  loop would be found in terms of [N 1/ 3] , rather than N 1 1 6  , since we had already

calculated the former value. But, w ith the above scheme, we have succeeded in avoiding 

doing this! However, the exact value of [N lf 3] can be found by repeating the above, after 
replacing the matrix of first elements w ith the last matrix of values w ith the property that
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N  is greater than or equal to the cube of its first element. (Because N  is known, at this 
stage, to be the product of at most 2  primes, it cannot be equal to the cube of an integer, and 

so "strictly greater than the cube of its first element" will always be the case.) If a mask is 

set, as before, to indicate those elements (cubes) which are strictly less than N  (again noting 

that N  cannot be a perfect cube), then

[Arl/ 3] = {(number o f  k  Mocks required ) — lf̂ t- SUM (JMASK ) .

The above is just a "one-off" calculation, and so we do not require the advantage of 

rapid recalculation of upper bounds which favoured this approach for Step 1. However, 

when using this method (unlike the "integer-only" version of the Newton-Raphson 

algorithm, which would require further multiplications to test its accuracy), we are 

guaranteed the return of the exact value of [N l/ 3] . So, while the Newton-Raphson method 
might be quicker here, the simplicity and accuracy of this matrix algorithm is very 
appealing. Of course, saving (or wasting) a few milliseconds over a calculation performed 

only once is not of the utmost importance. So, since the code for the above was already 

written for Step 1, and because it constitutes, to a certain extent, "better parallel 

programming", it was decided to use this matrix technique again.

When, after finding the value of [N 113] , we proceed to calculate the upper limit for 
the d  loops ( = [([ iV 1/3] /  16k)%] ) , we encounter another problem (which has already 
been mentioned) : the number of iterations in each d  loop is inversely proportional to k  . 

Hence, for a given block of k values, the corresponding d  limits could vary, w ith those at 

the start of the block being larger than those at the end. Thus we might contemplate 

calculating a matrix of d  limits, and using a mask to indicate which processors (and hence 

which iterations of the k  loop) still had d  values to use. In practice (depending on the size 
of N  ), it is only the early blocks (probably only the first block) of k  values which have a 

wide spread of corresponding d  limits, and so, for the sake of perhaps only the first block, 
we would have introduced a large amount of extra logical testing (unnecessary for most of 

the k  loop iterations), and have made the code more complicated to read. While the time 

required for all the masked assignments is negligible on the DAP, this approach could still, 

in fact, have an extremely detrimental effect on execution time.

As has already been remarked, processors masked out in an assignment still perform 

any calculations involved, and are only excluded from the storing of the new value. Thus, 

using a masked assignment does not save any work or time. In fact, it takes slightly longer, 
though this extra time is negligible. While in many situations, masking can prove a very 

powerful tool in selecting values of interest, its use here to ignore what some (and 

eventually many) processors are doing, is pointless - indeed, inefficient. Even if what the
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processors were doing was of no interest, allowing them to continue working for d values 

larger than the relevant limit, would not do any harm, since in this case, d  loops for 

different k ’s are completely independent. It would, in fact, make the program much simpler 
to read and understand, (and cause a (probably) slight improvement in execution time). 

However, a much more spectacular gain can result in letting all the d  loops run for as long 

as the smallest k  in the block requires. We w ill show later that, if  the prime factors of N  ,

p and q , where q > p , are such that -j- is very close to a simple rational number (i.e. a

fraction w ith small numerator and denominator), then by searching for d *s in a range larger 

than that given above, a pair (.k ,d  ) and hence a pair of squares congruent modulo N  , can 

sometimes be found in less time than Voorhoeve’s version of the Lehman algorithm requires.

Thus, by choosing to perform the k  loops in parallel, and hence the d  loops serially, 

what could have been considered inefficient, namely, doing far more work for certain k  

values than is necessary (and which, admittedly, w ill be an (unavoidable) waste of time for 

many integers), will, for some numbers, prove very advantageous indeed, as w ill be 
demonstrated later.

Another, though less significant, gain which results from this is that the matrix of d 

loop limits (as well as the matrix arithmetic operations needed to form it each time) is no 
longer necessary, and a scalar, initialised to the bound corresponding to the first element of 

the k  matrix, is all that is required to control the loop. As has already been mentioned, 
scalar arithmetic is approximately ten times quicker than the equivalent matrix calculations 

to the same precision.

Much more important than calculating bounds efficiently, is performing each of the 
possibly many loop iterations in an optimal way. As has already been noted, adding 4096 to 

each of the values in the current block w ill produce the next block of k  values. Hence, the 

next product matrix can be obtained by adding 4x4096x2V to each element of the current 

one (and calculating this increment requires no extra work since it w ill already have been 

found as the last element of the first product matrix).

Similarly, once in the d  loops, subsequent values of ( [V 4k N  ] + d  ) , which are stored 
in the (software) array of matrices called AMJDIGITS, say, can be obtained by just adding 1 
to each of the elements of the previous matrix. The other "short-cut" used in the serial case, 

namely, finding ( [V 4k N  ] + d  + l)2 — 4kN  by adding 2( AkN ] + d ) + 1 to 

([V 4H T ] + d ) 2 -  4k N  can also be used here except that the scalar increment is replaced 

by the matrix (or matrices, if multiple-precision working is required) equal to 

2(AM_DIGITS) + 1 . The effectiveness of such "tricks" as these, which replace 

multiplications w ith additions and subtractions, is directly proportional to the difference in
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time between multiplication and addition on the computer concerned Thus, on a machine 
like the DAP where this difference is so large, these modifications are very worthwhile; more 

so than on a word-based machine like the VAX.

However, of much more significance will be the way we choose to find the required 

square roots, and identify perfect squares. As w ill be justified later, the success of this 

parallel implementation of the Lehman algorithm hi probably partly due to the method we 

use, and so it w ill now be described in detail.

Finding Square Roots

Gostick [1979] describes the algorithm used for the DAP-FORTRAN function SQRT as 

follows, where N  is the number whose square root we wish to find The aim is to find x  

such that x 2 = N  , to the precision we have decided to work. The root is constructed, bit 

by bit, in the following way.

Suppose, after n steps, we have found the first n  bits of x , giving us an n -bit number 
xn which approximates x  to this number of bits, and satisfies x 2 < N  . The next 

approximation, xn + 1  , w ill have the same first n  bits, and the in  + l) rt bit w ill be chosen 

such that x 2+1 . (If equality is the case, then we are obviously finished) To see how

this is done, let x n = 0 • a 1 <z2  * * * an , = 0 - 0 0  • • • 0 |8 B + 1  , where /3„ + 1  = 0  or 1  ,

and is preceded by n zeros after the binary point, and let rn denote the error at the n th 
stage. Then

rn -  N  — x 2

Now

Xji + 1  "F + 1  0  * G i Q 2  "** &n fin + 1

and so

^ + 1 = N  -  xn+i2

= N  -  Ocn + bn +1 ) 2

(2 -̂ n + bn 4.]) bn .

Compute (2xn + bn +1)&„ + 1  w ith fin^= 1 . If this expression equals rn (which implies that 

rn + i==^ )w e  may finish. Otherwise, if taking fin+i = 1 makes rn+1 > 0  , then put 

= 0*a 1 a 2  * * ■ an 1 , while, if rn+1 would be < 0  w ith j3n + 1  = 1 , we should make 

xn+i ~ ®'a i a 2 "  ' di 0 . Thus, starting with a first approximation * 0  = 0 , we form the 
root digit by digit. If, at any stage, we find that rn = 0 , then the corresponding xn is the 
exact root, and we terminate there.
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As Gostick points out: "No arithmetic is needed in forming the error terms. 2xn is xn 

shifted one place to the left, producing a 0  at the right; addition of bn+i is then done by 
putting a 1  at the right of this 0  and the final multiplication by bn+1 is a shift of n + 1  

places to the right." He then goes on to claim that: "when the program is worked in detail, it 
is found that the number of operations required is about half that for a division to the same 

number of bits." This explains the unusual fact mentioned earlier, that finding the 4096 

square roots of a real matrix takes less time than multiplication (or division) for real 
matrices.

Unfortunately, this algorithm is only designed to handle numbers in floating-point 
format (and thus, to find the square root of an integer in DAP-FORTRAN, it must first be 

converted to type REAL), whereas all our operands are integers; often with values spread 

over several integer variables. So, at first sight, this algorithm is not applicable to our 
problem.

However, as we have remarked before, the DAP is very effective when operating on 

LOGICAL variables. Also, because LOGICALS are stored as single bits, we can equivalence 

an INTEGER variable to a LOGICAL array, and so immediately gain access to the binary 

pattern of the integer concerned. (In this section, contrary to our previous convention, the 

word "array" will be used to refer to the software structure, since one-dimensional arrays of 
LOGICAL scalars, and later, one-dimensional arrays of LOGICAL matrices, w ill be required 
in the implementation of this algorithm. However, no ambiguity should arise, as we will 

not be referring to the structure of the DAP for some time.)

If we could obtain the binary pattern (stored as a LOGICAL array) of the multiple- 

precision integer whose square root we required, then we could imagine that there was a 

binary point immediately to the left of the bits, and so have the number in a suitable form 

to use the above algorithm. This can be done by equivalencing each INTEGERM "digit" of 

the number, to a LOGICAL vector and then copying bits 34 -► 64 into the required positions 

in a LOGICAL array. An array with 32 elements cannot be used in the EQUIVALENCE 

statement, because of the way scalars are stored in the DAP : an integer scalar is stored in 
one row (aligned to the right), whereas arrays (even LOGICAL ones) are stored w ith only 

one element per row. Of course, this restriction does not apply when equivalencing 
INTEGER matrices and arrays of LOGICAL matrices, since then, both variables are stored 
"vertically".

Our first approximation equals 0 , and so the first error term w ill be 

r 0 = N  — x 02 = N  . Thus, the binary pattern of N  should be copied directly into the 

LOGICAL array (called REM) which holds the value of rn . I n  addition, we need two 

similar arrays to hold the value of (2 xrt + bn +i)bn + 1  and the difference between it and rn
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(called NEWR and DIFF respectively); as well as a smaller array, by the name of X, to hold 

the binary pattern of the root, as it gets built up. Since, at times; we require to shift 
patterns one place to the left, we adopt the convention for all the arrays, that the binary 

point lies between positions 1 and 2. Thus the most significant digit of N  w ill be copied into 
the second element of REM, and so on.

One problem we have not yet dealt with, is how to detect when to terminate the 

algorithm. If we were to continue the process until rn = 0 for some n  , then, unless N  

were a perfect square, we would never decide to stop. In fact, we would not need to make 

such a decision, since the system would make it for us, by terminating the whole program, 
when we tried to exceed the bounds of one of the arrays! Even if we could continue 

indefinitely, all we would be finding would be more and more of the digits after the binary 

point in the expansion of the root, (and, since the square root of a non-square integer is 

irrational, we would never have rn = 0 ) . But, all we need is the integer part of the square 

root, and so the algorithm should be terminated before it starts to calculate the root’s 

fractional part. This can be done by counting, for if  N  has 2n  digits, for some n  , then

22n~2 < 22n~1 ^  N  < 22n

which implies that

2"”1 < [VF] < 2n .
In other words, [ ViV ] has exactly n  digits. Similarly, if N  has 2n — 1 digits, then

22n~2 <  N  < 22"”1 < 2271

which implies that

2R_1 < [VF] < 2 \

and so, again [V N  ] has exactly n  digits. Thus, if N  has d  binary digits, say, then after 

[(<2+1)/ 2 ] (  — I , say ) steps, the integer part of the root w ill have been found, and will 
lie in locations 2 -» (Z +1) of the array X . If the remainder term, r* , is zero at this point, 

then it follows that N  is a perfect square, and so the exact root has, in fact, been calculated.

The above is, of course, just a binary version of the method taught in many schools, for 

finding the square root of a decimal number (integer or floating-point), in which, by a 

process not unlike long-division when written down, the decimal digits of the number are 

taken two at a time, and the root subsequently produced. However, when the operand has 

an odd number of digits, then the first digit has to be handled on its own, while the rest are 

used in pairs. In order to avoid making a special case of such numbers (in an 

implementation), a zero could be actually inserted to the left of the first (i.e. most
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significant) digit of such operands. Then we would always be dealing w ith numbers which 
had an even number of digits, and so the digits could always be taken "two by two".

Since this is also true for the binary version, whenever the integer N  has an odd 

number of binary digits, we store a zero (or FALSE.) in position 2 of the LOGICAL array, 

and let the binary pattern of N  begin in the third location.

To show how all of this works in practice, we now give two examples.

Example 1

Let N  = 33 « 1000012  = 0-100001 X 26

Put %o = 0
r 0 = 0-100001

Try fix = 1 : Shift x 0  1  place to the left : 00 ■

Addition of bx : 00* 1

Now shift 1  place to the right : 0-01

?*i =  r o - 0 - 0 1  =  0 - 1 0 0 0 0 1 - 0 - 0 1  =  0 - 0 1 0 0 0 1  > 0 ,  

therefore keep ($i = 1 , and so x t = 0  ■ 1  .

Try fa  — 1 : Shift x i  1 place to the left : 1-0 

Addition of b 2 : 1*01 

Now shift 2 places to the right : 0 • 0101

t 2 =  T i - 0-0101 =  0 - 0 1 0 0 0 1 - 0 * 0 1 0 1  < 0 ,

therefore put j32  — 0 , and so x 2 = 0 • 10 , and r 2  = r± .

Try j33  = 1 : Shift x 2 l  place to the left : 1-00 

Addition of 6 3  : 1 • 001 
Now shift 3 places to the right : 0  • 0 0 1 0 0 1

r 3 = r 2 -  0-001001 = 0-010001-0*001001 = 0-001000 > 0 ,  

therefore keep j33  = 1 , and so x  3 = 0 * 101 .

Now, [7/ 2] = 3 , and so we should stop at this point. Since r 3  0 ,  the algorithm

indicates, correctly, that 33 is not a perfect square. Also

[V 33] = 0-101 X23 = 1012 = 5

as required.
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Example 2

Let N  =25 = 110012  = 0 - 0 1 1 0 0 1  X 2 6

Put X q = 0

r 0  « 0 * 0 1 1 0 0 1

Try = 1 : Shift x 0  1 place to the left : 00 •

Addition of b i : 00 ■ 1

Now shift 1 place to the right : 0 • 01

r i  -  r 0 — 0*01 = 0*011001-0*01 = 0*001001 > 0 ,  

therefore keep 0 i = 1 , and so x ! = 0  • 1 .

Try 0 2  = 1 : Shift x x 1 place to the left : 1*0 
Addition of b 2  : 1*01 

Now shift 2 places to the right : 0  * 0101

r 2 a  n -  0*0101 =  0 -0 0 1 0 0 1 -0 * 0 1 0 1  < 0 ,

therefore put 0 2  = 0 , and so x 2 = 0  • 1 0  , and r 2 = r  i .

Try 03 = 1 : Shift x 2 1 place to the left : 1-00 

Addition of b3 : 1*001 

Now shift 3 places to the right : 0  • 0 0 1 0 0 1

r 3  = r 2 -  0 - 0 0 1 0 0 1  = 0 *0 0 1 0 0 1 - 0 * 0 0 1 0 0 1  = 0 , 

therefore keep 0 3  = 1 , and so x 2 — 0  • 1 0 1 .

Now, after three steps, we have correctly identified 25 as being a perfect square (since 
r 3 = 0 ) , and

V25 = 0 - 1 0 1  X 2 3  = 1013  = 5

as required.

Thus, summarizing the above, to find the integer part of the square root of a multiple- 

precision integer (eg. the number to be factored, N  ) we perform the following:

(a) Calculate the number of digits (denoted by d , say) in the binary pattern of N  . (This 

can be done either by searching for the first 1 (or .TRUK) in the most significant (base 

231 ) digit of N  , or by expanding this digit to 8-byte precision, equivalencing it to a 
LOGICAL vector, and then using the DA P-FORTRAN functions FRST and ELN to
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produce the index of the first .TRUE*

(b) If d  is even, then copy N  into the LOGICAL array REM, starting with the most 
significant bit in position 2, while if d  is odd, replace d  w ith d  +1, store .FALSE, in

REM(2), and start the binary pattern of AT in the third location of the array,

(c) Perform the above /3 loop ~  times.

(d) Copy elements 2 + lj of the LOGICAL array X into the right-hand end of an

INTEGER variable (since [VaT] <  2 3 6  ) .

Notes

(1) If all of locations 2 -* (d +1) of REM contain zeros (i.e. are .FALSE.), then AT' is a 

perfect square. Thus, this method hi suitable for use at the start of Step 2 to discover if AT is 
a perfect square,

(2) Testing the contents of REM every time to check if AT" is a perfect square is not 
advisable. It is far more probable that AT is not a perfect square, and so the checking of 

REM, element by element (until a .TRUE, is found), on each step, would be a waste of time. 

Indeed, its effect could be significant, even though the process only involves (quick) logical 

tests, because the rest of the algorithm also consists of logical manipulations. Thus, we chose

to ignore the possibility of finishing early, and instead, perform the /3 loop ~  times before
dt

testing for a zero remainder.

(3) Consider the following table which shows the number of digits in  the binary patterns 

(that is, after the binary point, as described above) of the following numbers:

£ xt ( 2  xt + 6 i+1 ) 6 i + 1 *i+i

0 0 2 1

1 1 4 2

2 2 6 3
3 3 8 4

Thus, after n  steps, ( 2xn _i + bn )bn , (note that £ ~ 0 on the first step), has 2n bits after 

the binary point, Hence, on the j th step (when £ = j  — 1), only 2 j  binary digits need to be
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subtracted from (the more significant end of) REM. This was taken into account when 

writing the subroutine for subtracting two binary patterns stored as LOGICAL arrays, in 
order to eliminate unnecessary subtracting by zeros. Similarly, if j8 i + 1  = 1 , rather than 
recalculating r i+1, all we require to do is to replace the contents of locations 2 -» ( 2 / + l )  
of REM, with the corresponding elements from DIFF. The other case, (i.e. /3i + 1  = 0 ) ,  can be 
easily detected, for then the difference w ill be negative, and so after the subtraction, the 

borrow w ill still be 1 (i.e. .TRUE.).

Since these subtractions are the only arithmetic involved in the algorithm, it is easy to see 

that, if shifts are ignored, the number of bit operations required to find the integral part of 
the square root of a 2 n  -bit integer is equal to

2 + 4 + 6  + • • • + Iti

n
=  2

i = l

= 2. -^-(n + 1)

= n 2 + n

which is, indeed, less than half the work required to form the quotient of two such 
numbers, as Gostick stated.

(4) It would appear from the examples that we need to have two places to the left of the 
binary point, in order that we may shift x 0 -  0 - one place to the left, making it equal to 

00* . This is, of course, unnecessary. Rather, on the first step, we do not shift ;c0  at all, 

while on subsequent steps, we only shift locations to the right of (and including) the second.

The only drawback w ith the above is that it finds just one square root each time, 
whereas, after the initial test for N  being a perfect square, we w ill require 4096 roots to be 

calculated simultaneously (for example, the values of [V 4k N  ] for a block of k  values. As 

we have already remarked, since each root-taking operation is independent of the other ones 

in the same k  block, and involves using the same algorithm on just different data, such a 

task is suitable for an SIMD machine. Thus we require a version of the above method which 

manipulates arrays of LOGICAL matrices rather than scalars. (For this section, we will 
continue to go against our convention, and use the term array to describe the software 
structure.)

It is at this point that we encounter a problem. Since the k ’s vary in size throughout 

each block, so, obviously, w ill the products 4k N  . Thus we could find that some of the 

binary patterns to be manipulated are much longer than others, and so finding some roots
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will require more steps than others. We faced a similar situation earlier, w ith the d  loops, 

except that then, the extra work carried out by some processors, rather than being a 

hindrance to us, could, in some cases, prove very beneficial. However, the same is not true 

here.

Once the integer part of a square root is found, further steps w ill only supply the 

beginning of the binary expansion of the fractional part of the root, and since we only 

require the integer part, these extra bits w ill never be of use. Indeed, they could complicate 

our working, because now we would need to know where in each LOGICAL array the 

integer part stopped, and the fractional part began! There is certainly no way to avoid 
performing all the steps required to find the square root of the largest entry in the matrix 
concerned, even if the smallest root could be found after only half this number; this is a 

consequence of the particular architecture we are using. But, unless care is taken in setting 

up the matrix of LOGICAL arrays (actually declared as an array of LOGICAL matrices), we 

could complicate matters and "make life much harder" for ourselves.

For example, if we had copied the binary patterns of the 4096 numbers of interest into 
the start of each array, then, before beginning the algorithm, we would have to calculate 

how many digits of each root array would be of interest, and store these values in another 

matrix. Once all the steps had been completed, the required number of bits from each array 

could be copied into the less significant end of an INTEGER variable - or could they? The 

problem here is that if some roots had more digits than others then, for example, their least 
significant digits would lie in different store planes in the DAP. It is not possible, in one 
instruction, to obtain a LOGICAL matrix (or a matrix of any other variable type), some of 

whose elements come from one store plane, and some from another (since, as was remarked 

earlier, the DAP can only process one store plane at a time). Masked assignments would be 

the only way of doing this. Thus, to obtain the least significant digits of the 4096 roots 

could require rather complicated logical masking. Of course, this problem is not unique to 
the least significant digits, and so we might have to use a considerable amount of masking to 

obtain the integers we require. That such a state of affairs is bound to happen, at least in the 
early steps, can be seen from the following.

We need to find the value of [V 4kN  ] for 4096 values of k  simultaneously. The first 

element of the first product matrix is 4jV , while the last element of the same block is 

4X4096XA which equals 212X (the first element) . Thus, in the first step, the binary 

patterns of the products w ill differ in length by up to twelve digits. The first and last 
elements of the second block are, respectively, 4x4097xAr and 4x8192xAr (almost twice 

the first), and so some of the binary patterns w ill almost certainly (depending on N  ) have
3one more bit than others. In the third matrix, the last product is nearly — times the first
z
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4
one, while in the fourth block, the factor is almost — and so in both cases, all the binary 

patterns need not have the same length. In general, for n > 1 ,  the last element of the n th 

product matrix is almost — — times the first element, which implies that, while the
71 —  1

probability of it happening decreases as N  increases, in any block we could be faced with 

this problem of the roots being of different lengths.

Of course, in the cases where the binary patterns of the products differ in length by at 

most one (i.e. all blocks except the first one), if the smaller patterns have an odd length, say 

(2d — 1), then all the roots w ill be the same length, namely d  . In this case too, assigning 

the LOGICAL arrays for the initial product is very simple. In location 2 we either store a 0 

(i.e. .FALSE.) or the most significant bit (i.e. .TRUK), depending on whether the product has 

length (2d  —1) or 2d bits respectively. The next location w ill either hold the most 

significant digit for the smaller numbers, or the second most significant bit for the larger. In 

both cases, the digit stored is the (2 d — l)*A bit (counting the least significant bit as first), 

and so they all w ill lie in the same store plane to start with. The same is obviously true for 

all subsequent array elements, and indeed, for the first element as well, because, whenever 

the binary pattern of an integer does not fill the number of bytes allocated to it, the sign bit 

is duplicated to fill up the remaining bits, and in this case, since the products (along with 

every number we deal with) are positive, the sign bit is a 0 as we require. It could be the 

case that the (2d j h bit (of the larger numbers) occupies the least significant position of 

another multiple-precision digit But, since multiple-precision numbers are "padded out" 

w ith zeros, where necessary, again the elements of this store plane corresponding to the 

smaller products, w ill already contain the required zero. Thus, the assignment of the matrix 

of LOGICAL arrays is simply a matter of transferring whole planes of store.

Such a method is clearly not limited to the situation when the patterns differ in length 

by only one bit, but could also be used for the first block, in which case up to twelve 0’s 
might be stored at the front of some of the binary patterns. Again, this w ill happen 

"automatically" for the reasons given above, and so we do not need to know how long each 

binary pattern is. Instead, all we require is the length of the longest one, which can be 

found by searching for the first plane (starting at the most significant end of the most 

significant digit), in the relevant matrix of multiple-precision numbers, which does not 

contain all zeros. (It does not matter, for our purposes; how many Vs there are in this 
plane.) Depending on whether the length of the longest binary pattern(s) is odd or even, we 
either store a plane of zeros in location 2, and start copying at position 3, or begin initialising 

in position 2. We could use an EQUIVALENCE statement and then perform the necessary 

shifting to remove the first planes of each INTEGER*4 digit, since these are sign bits that we
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w ill not require, as well as any "surplus" zeros at the front of the binary patterns due to the 

corresponding multiple-precision integers being smaller than ( 2124 — 1 ) .  However, as the 
latter would involve changing the values of the INTEGER, matrix concerned, we chose the 

former method.

Under this scheme, once the steps have been performed, all the integer parts of the 
roots w ill lie "right-aligned" in the LOGICAL matrix array, and so can be shifted, plane by 

plane, into an INTEGER matrix of the required precision. That some roots might be 

extended to the left w ith zeros does not matter, since these bits in the corresponding 

INTEGER variables would hold zeros anyway (duplicated sign bits).

Thus we have a situation where, if time has to be "wasted" with some processors doing 
needless tasks; it is much better that this happens at the start of the calculations, rather than 
at the end.

Another interesting point is demonstrated here. Many serial algorithms contain loops 

of the form "do until done". This square root algorithm, as originally described, is such an 

example. If the error, rn becomes zero before we have finished the required number of steps, 

then we can stop, because the integer is a perfect square, and so the remaining bits in its 

binary pattern w ill be zero. (We chose to ignore the possibility of finishing early, due to the 
overhead of checking for zero (or .FALSE.) all the components of the error array each time.) 
However, in the parallel case, we can only stop early if all the tasks are done, and to detect 

this could require a considerable amount of logical testing. Thus, w ith an algorithm like 

ours, since it is very unlikely that all 4096 matrix elements w ill be perfect squares, it is 
probably better to calculate beforehand the maximum number of steps we w ill require, 
given the data, and then perform them all; in other words, adopt a "for loop" rather than 

the "do until" construction.

Of course, in the case of the products 4k N  , we have already shown that none of these 

w ill be perfect squares (since we only need to calculate them if AT is not itself a perfect 

square), and so we know beforehand that there is no point in looking at the rn ! However, 

the same is not true when searching for a pair of squares congruent modulo N  . We have 

already described how this algorithm can be used to identify perfect squares, and because 

this method, w ith its logical manipulations, is so suited to the DAP's bit-processor design, it 
was decided to use it here, for that purpose. But since, for the majority of cases, the numbers 

tested w ill not be perfect squares, it is better to wait until the end of all the necessary steps, 

before testing for an rn which equals zero, thus saving many needless (and, in the context, 
expensive) logical tests.
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As has already been mentioned, processors masked out still perform the same 

calculations as the active ones, and only avoid the final assignment. Thus, when trying to 
stop early, no work w ill be saved until each of the 4096 jobs is done. So, unless it is likely 

that all the processors could be finished "early", and that the cost of testing their status is 

small compared to the work involved in each step (not the case here), it is advisable to 

replace the "do until" condition w ith a "for loop". Indeed, it could be the case, as here, that 

the program becomes much simpler by adopting a "for loop", and rearranging the data 
accordingly.

In the serial version, we only tested for a perfect square if the last three binary digits 

of the number concerned, were of a certain form. The relevant condition here (at the start) 

is that, unless the binary pattern ends with 001, the number concerned cannot possibly be a 

perfect square. We use this as a preliminary test on N  at the start of Step 2 (and since N  is 

known to be odd at this stage, we need only examine the second and third least significant 

bits) to discover if the binary square-root routine is required. However, such a "short-cut" is 
not suitable when 4096 data streams are being processed simultaneously, for no time would 

be saved unless some of the entries in the relevant matrix were of the required forms (i.e. 

000, 001, 100). Even if just a few of the elements were worth further testing, the entire 

matrix of LOGICAL arrays would need to be manipulated, since the cost of selecting the 
relevant arrays for processing, either 64 at a time (using vectors), or one after the other (if 

there were only a small number of them), would almost certainly outweigh any time 
saved. Thus, we have another example of a serial improvement which would only slow 

down a parallel implementation.

Further Points

(1) The limit on the size of numbers which can be handled by this implementation is not, so 

to speak, "absolute", but was self-imposed, for two reasons.

Firstly, choosing 231 to be the base for our multiple-precision arithmetic enables us to 

divide multiple-precision numbers by integers up to (but excluding) this value using the 

comparatively simple "single-digit-division" algorithm, described earlier. To divide by larger 

numbers would require a more complicated one. In the serial case, we used the long-division 

algorithm which Knuth gives. Of course, since the DAP is more suited to working at the bit 

level, this previous choice would not be as suitable here. Instead, we would be better to 

copy the operands concerned into LOGICAL arrays, and use the well-known binary 

algorithm, which performs division by repeated shifting and subtraction. Once we had been 
"forced into" implementing this algorithm to perform 4096 divisions in parallel, we could 

use it to replace the "single-digit-division" algorithm, w ith all its INTEGER divisions and



- 86 -

multiplications, which, in the interest of simplicity, was adopted earlier. However, even this 

would he a mistake, as w ill be explained in (2 ) below.

The method we chose to find [N 11 3] was the other limiting constraint. In Step 2, w ith 

the matrix of first elements, we had that N  must be strictly less than C224 + l ) 3 while, in 
Step 1, the corresponding bound was 62,953,4393 < 278. To cater for larger numbers, we 
could continue to use this look-up table approach by using several matrices of first elements. 
However, in  Step 2, using the second such matrix would only extend the range to 

N  <(4096X 8192 + l ) 3 . A larger bound could be achieved by first comparing A  to a 

matrix whose elements were the first entries of the first 4096 matrices of first elements 

(although, as before, there is no need to include the first matrix of first elements, and so the 
i th entry in this initial matrix should be the first element of the ( i  + 1 )*A matrix of first 
elements) to find which "normal" matrix of first elements would be the relevant one to 

form. For Step 2, this modification would only enable us to handle integers 

N  <  (( 224 X 4096 ) + 1 )3 = ( 236 + 1 )3 . To increase our range beyond this would probably 

require changing the method used to find cube roots. Since by this stage, we would have 

implemented a division algorithm to enable us to perform the required trial divisions (for 

divisors ^ 2 31) we could make use of the Newton-Raphson algorithm here, and so 

completely remove the upper bound on N  . It is also conceivable that we could write a 
binary algorithm analogous to that used for square-root finding. However, this time, the 

calculation of the error terms, would not be so simple, for if rn = N  — xn 3 , then, in the 
notation used before,

r rt+i = N  - * n+i3

= N  — (x n + bn+1y  

— AT xn ( 3xn + 3xn bn + 6 ^ + 1  ) bn

“  r n bn +l Grra + bn +1 ) ~  bn + 1  .

But, multiplication by 3 is equivalent to adding the operand to twice itself, and so a shift 

and an addition is all that is required. As before, the multiplication by bn + i , and the 

forming of 6 „3+i > only require shifting. It would appear, though, that a multiplication (i.e. 

many shifts and additions) is required to form the product of xn bn + 1  and ( x n + bn +1). 
But, xn = x n- i  + bn and so

3xn bn +i( xn + bn )

= 3(^n_! + bn )fen+1 (x ft_! + bn + bn+0

= (3 ^ 2_x + 3 ^ _ !  bn + 3xn _i6 rt +1) bn + 1  + terms involving bn , bn+1 ,
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where the first two terms in the brackets are already formed (in the previous step), the 

third term can be calculated by just a shift and an addition, and the terms involving bn 

(which could be zero, thus saving some of the work) and bn+lL require only shifts. 

Similarly, to find the value of bn 6n+1 xn- i  w ill require only shifts and one addition. Thus, 

by making use of previous knowledge, the calculation of each successive rn can be reduced 
to only several shifts and additions. Hence, this second method should prove ideal for the 

DAP, as its counterpart did before.

These suggestions have not been implemented since, in studying the algorithm, the aim 

was to compare a parallel implementation with a serial one, and so we chose to limit our 

input data, to values which the serial version could process in a reasonable amount of time 
(i.e. in up to several hours of cpu time). Thus, having N  <  272 was quite satisfactory. But, 

as we have now shown, it is quite possible to remove this restriction by making certain 

changes, (though, of course, since the multiple-precision numbers could have more 

components than before, we w ill also need to alter the assignment of the matrices which 

hold a count of how many digits each number has). Of course, a binary division algorithm 

would probably have been slightly quicker than the method we chose, but why it was not 
implemented w ill now be discussed.

(2) It was mentioned in Chapter 2 how shortcuts which make use of binary patterns can be 

implemented in DAP-FORTRAN through LOGICAL arrays. One example of this was the 

square root routine described above. Another such "trick" is the result of our choice of base. 

Many of the multiple-precision arithmetic routines which have had to be written involved 
multiplication and/or division by BASE. But, since it is known beforehand that the value 

involved is a power of 2, these operations only require the shifting of the operand 31 places, 

rather than the use of the system INTEGER multiplication or division routines. However, 

when such savings were attempted, the reduction in running was only slight, due mainly to 

the overhead of all the indexing that was required. The same would have been the case if 

the implementation of a long-division algorithm using LOGICAL arrays had been attempted.

Thus, it would be better for such tricks to be implemented in APAL. Certainly, trying 

a DAP-FORTRAN implementation through LOGICAL arrays, of a low-level algorithm can 

be useful in showing the feasibility of the idea in question. But, it should not be considered 

a final version, since much of the effectiveness of the new method would be lost because of 

the indexing overhead involved.

Two points could be argued from this.
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(a) It should not be left up to the users to write any multiple-precision arithmetic routines 
(including those for square and cube root-finding) that they may require. Instead, such 

routines should be written, once for all, and made available to all DAP users. In fact, 

such a provision could serve to attract new users, especially Number Theorists.

(b) What is really required on the DAP is a high-level assembly language, similar to the 
language C. While still retaining some of the advantages of a high-level language, 
such a facility would enable much of the potential flexibility of the DAP to be 

exploited without having to resort to assembly code programming.

When discussing the serial implementation in Chapter 4, it was mentioned how the 

greatest common divisor calculation needed in Step 2 was performed using Euclid's 
algorithm. However, because of the size of the numbers involved, this method could require 
the use of a long-division algorithm, rather than just a " single-digit" one. This was not a 

hindrance to the version on the VAX, but, as has been discussed above, it does pose a problem 

for the DAP program, since no such procedure is available. Thus, this calculation is not 

performed on the DAP, and the program terminates once squares are found and their values 

printed (or all the ( k  fd  ) pairs have been considered). Since, in general, it is the searching 
for such squares that is the time-consuming part of Step 2 (with the time required for 
Euclid's algorithm insignificant in comparison), this omission w ill not affect the conclusions 

drawn in the next chapter.

(3) While, above, we have referred to the array of processors, and hence matrices of 

operands, it is not crucial to the implementation that the PK's be arranged in such a way. 

Indeed, the interconnection network is really irrelevant to us. We certainly do require the 
ability to broadcast a single value to all the processors (e,g. constants for the assignment of 

the matrices which store the size of each multiple-precision number, etc.) but being able to 

shift values from one processor to another, is not necessary for our application. In both Steps 

1 and 2 we do make use of this latter feature "subconsciously", in calling the DAP 

subroutine X05_LONGJDMDEX in order to form a matrix whose i th element is, say, i. 
However, this could be avoided by just reading in the required matrix from backing store.



- 8 9 -

Chapter 6 Assessm ent o f Results

The problem of assessing the performance of parallel computers is an extremely 
complicated one w ith the issues involved not yet fully resolved. Even when one is trying to 

compare two conventional serial machines, there are many factors which have to be 
considered, for example :-

- number of registers

- amount of memory, and speed of access
- processor cycle time

- amount of internal parallelism

- language and compiler .

All these can affect the relative performance of two different computers. Indeed, when one 

is trying to compare two machines, what one is really doing is comparing two systems which 
comprise both hardware and software, with the latter consisting of not just the benchmark 

program written by the user, but also any system software used (e.g. compiler). When one 

considers parallel processors, other factors, including

- number of processors

- power of the processors

- organization of the processors
- interconnection network

must be added to the list.

Since, as the above illustrates, assessing the relative performance of different computers 

is so complicated, it is worth considering why such a task is ever attempted. There are two

reasons:

(i) to assess the advantages, within a given architecture, of modifications such as

pipelining, a memory cache, or extra buffers ; and

Cii) to highlight the relative merits of two different machine architectures.

Comparing the different models of a given computer series is very worthwhile - 
indeed, a practical necessity. Otherwise, potential customers would be unable to make a wise 

choice concerning which machine was appropriate to their needs, and manufacturers would 

have no data on the relative worth of various improvements, to guide them in the design of
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more powerful computers. In this kind of study, by keeping constant most of the factors 

mentioned above, while varying a limited number, one is able to produce reliable statistics 

on the effect of the changes made. In this context, the two performance measures 
traditionally used for assessing parallel processors, namely :

SPEED UP = ^ 1 = Time using 1 processor
T p Time using p processors

and

E F F IC IE N C Y=  SPEED-UP fo r  p processors
P

w ill be accurate guides to the success of the system.

For example, the improvement which is gained over a single CRAY-1 computer by 

building a multi-processor system comprising, say, p  CRAY-l's would be indicated reliably 
by calculating the ratio

Time using 1 CRAY-1 
Time using p CRAY-Ts

for a wide range of application programs.

Similarly, if one wished to assess the effect of having only 1024 PE's in a DAP rather 

than 4096, then the ratio

Time with 1024 processors 
Time with 4096 processors

would provide an accurate guide to the Speed-up obtained, while the quantity

Speed-up
4

would be a fair reflection on the efficiency of the larger system, for a given program. If one 
wished to know how much quicker, in general, the larger array was, then, as w ith any 
general comparison, many different application programs would have to be used in the 
assessment.

Thus, these parameters are meaningful if one is comparing a single machine w ith a 

system made up of several (or many) of the same (or very similar), The measures are also 

worthwhile when one is assessing the effect of increasing the number of processors in either 

an SIMD or MIMD system. However, it is unfortunate that these parameters are widely 

used to compare serial word-based machines with arrays of single bit processors, since they 
are not at all suitable for this task.

Parkinson [198©] presents two possible reasons for the failure of the Efficiency 
parameter:
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(1) the lack of a true meaning of T  i for bit-organised systems ; and

(2) the failure of the formula to include any component arising from the overall system

organisation.

T T
Certainly, to compare — with -= will give a reliable indication of the effect of

1 4096 ? 1024

increasing the number of PE's in the array. However, to substitute for T  ± the time taken by 

one's favourite 32-bit minicomputer or 64-bit mainframe, would not be fair to the DAP in 

terms of the resulting Efficiency figure. Yet, Buzbee [1984] has suggested that the Speed-up 

parameter should be altered to equal

time fo r  best possible serial implementation 
time fo r  this particular parallel processor

But, what is the "best possible serial implementation"? Unless one searched for a serial 

machine which used no form of parallelism or pipelining in its internal processing, one 

would be inclined to use a computer such as the CRAY-1, which would only compound the 

inaccuracies of these parameters.

One factor that should be taken into account when assessing SIMD machines is that, 

just because a processor is idle, (or, as with the DAP, busy, but "masked out"), it does not 

follow that it is not contributing information to the solution of the problem. An example of 

this can be seen in how the maximum element of a matrix of type INTEGER is found on the 

DAP. Since the elements are stored "vertically" all the corresponding bits of each number 
w ill lie in the same bit plane. Thus, to find the largest element, all that is required is to 
consider each bit plane in turn, starting w ith the most significant, and for each, set to 

.FALSE, the activity bit of those processors which have not been previously masked out and 

which, for this plane, contain a zero, (unless, of course, no active processor holds a 1, in 

which case no action is taken). If, at any stage, only one processor is left active, then it 

contains the maximum element. Similarly, if more than one processor is still active once all 
the planes have been considered, then there must have been several occurrences of the 

largest number in the matrix. Thus it can be seen that those processors which become 

inactive during this algorithm still play a part in the finding of the required value, since 

they indicate which numbers are smaller than other elements of the matrix. Yet, the 
Efficiency parameter, having a value of 3%, does not reflect this.

A more surprising fact that must also be considered is that, to a certain extent, the 
number of processors, p  , in the DAP does not remain constant throughout a program! 
Certainly, when matrices are being manipulated, then the DAP behaves as a 64 X 64 array 

of bit processors. However, since vectors are stored across columns; w ith all 64 entries in the 

same bit plane, all the bits of every element in a given vector can be operated on
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simultaneously. Thus the DAP performs as if it were an array of 64 processors, each of 

which could handle 64 bit numbers though not as efficiently as a machine with a 64-bit 

word since, for example, in the former, carries have to be propagated by software. Finally, 

when scalar operations are being carried out, the DAP could be considered to be a single­
processor system, the power of which is greater than either of the processors in the above 

two configurations. Thus, if one were to attempt to use the traditional performance 

parameters, what value should p  have? Should it be 4096 or 64, or perhaps an average 

figure, depending on how many matrix instructions there were in the program, compared 
with vector ones? Similarly, which "processor" should be used for the calculation of .

From the above discussion, it can be seen how complicated the whole area of 
performance assessment is, especially for SIMD single bit processor arrays. In addition, serial 
machines, even with the same word size, vary widely in performance, and so it is not 

possible to put a single value on how much quicker the DAP is than a conventional 

computer. Comparisons, for them to be meaningful, can only be made for particular 

programs and particular machines. (An example of this can be seen in the way that 

prospective users run benchmark programs as a factor to be taken into account in the 
purchase of a new machine.) Parkinson [1980] summarised the situation well when he said: 

"The ratio of the parallel machine to any given machine is therefore a function of the size of 

the problem w ith the parallel machine giving its best performance when the number of 

processors matches the size of the problem. There is therefore no magic single figure which 

expresses the speed of DAP relative to a given serial computer. The performance is highly 
application dependent and those worthy gentlemen who spend much time trying to measure 

performance in terms of arbitrary measures such as GAMM, POWU, MIPS, MEGAFLOPS, 
etc., are wasting their time."

As was mentioned above, when the execution time of a program on the DAP is 

compared w ith the corresponding serial version, what are really being investigated are two 

systems. Naturally, some systems w ill favour the parallel machine and others, a serial 
computer. Therefore, in order to set some standards against which the parallel 

implementation of the Lehman algorithm could be compared, three other systems were 
considered, two of which suited the DAP, while the other was designed w ith a serial 

computer in mind. Of course, the only part of each system that is within easy reach of the 

programmer is the user program itself. So it was important to chose these so that for them 

all, the other factors in the system were approximately the same. For example, both steps of 

the Lehman algorithm involve, almost entirely, integer arithmetic (the only place floating­
point numbers are involved is for the calculation of the upper limit  for the d loops - a 

calculation which is not required for every value of k ,  since a flag is set to indicate when
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the bound equals 1). Thus it would not be valid to compare the relative performance of 
these programs on both machines, w ith benchmarks which consisted, mainly, of real 
arithmetic.

In Chapter 9 a simple prime-generating program (written in Pascal) for the VAX is 

described and it is mentioned how, when the DAP was treated as an SISD machine, the 

latter took three times as long as the VAX to perform the same algorithm. Admittedly some 

fLoating-point arithmetic was involved in the calculation of the square roots required by the 
algorithm. However, compared with the amount of integer arithmetic (especially division) 

needed, the effect of the former should not be significant. It is worth noting that the DAP 

version could have been made even slower by manipulating matrices, all of whose elements 

were identical, rather than scalars. But even without this gross inefficiency, it is clear that if 

one ignores the potential in the DAP’s architecture then it is possible to find that a program 
w ill take longer to run on this "supercomputer" than on a 32-bit minicomputer like the 
VAX 11/780.

On the other hand, a task that would clearly suit the DAP would be repeating the 

same arithmetic operation on a large number of different operands. The parallel execution of 

4096 such calculations is achieved by means of matrices in DAP-FORTRAN. Thus a 

program was written (in DAP-FORTRAN) to compare the time to add two INTEGER*4 

matrices together on the DAP with the time taken for a Pascal program on the VAX to 

perform 4096 additions serially. Both programs involved a loop so that the relevant 

calculation^) could be repeated a certain number of times, (as well as some necessary 
initialisations). Similar programs were written with the addition operation replaced by 

multiplication. The results obtained for various limits on the outer loop are given below. 

The times given are in seconds. It should be noted that both computers have the same cycle 
time ( 200 nanoseconds).

ADDITION (seconds)

repetitions VAX 11/780 DAP VAX/DAP ratio

500 11-3 0*038 2 97 :1
1000 22-6 0*076 2 97 :1

10000 225 0*768 2 9 3 :1
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MULTIPLICATION (seconds)

repetitions VAX 11/780 DAP VAX/DAP ratio

500 13-2 0-203 6 5 :1
1000 26-5 0-420 6 3 :1

10000 277-3 4-642 6 0 :1

TJiese figures illustrate clearly the much larger difference in time between performing 

addition and multiplication on the DAP, compared with that required by the VAX. This is 

what one would have expected, since the former performs these operations bit-serially, and 

it emphasises how appropriate, for the DAP especially, was the inclusion of some of the 

shortcuts mentioned earlier (e.g. adding 4N  to 4kN  ).

What would not have been expected is the size of the VAX/DAP ratios. The DAP can 

simultaneously operate on 128 times the number of bits that the VAX can and so, for 

addition of 32-bit integers, one would only have expected a speed-up factor in the region of 

128 and not 300. However, the numbers used in the above program, while being stored as 

32-bit integers, were much smaller (since we were repeatedly forming the sum of the first 
4096 positive integers), and this can help to explain the larger speed-ups, for, as the author 

has been assured by staff at the DAP Support Unit at QMC, the DAP only does as much 

work as it has to and, therefore, does not need to manipulate all 32 bit planes of each 

operand. A similar comment applies to the case of multiplication where, because the number 

of bit operations is proportional to the product of the length of the operands, a speed-up of as 
little as four-fold could have been expected.

The above results also imply that the speed-up from using the DAP, rather than the 
VAX, w ill vary according to the type of work involved, w ith the VAX/DAP ratio varying 

in value between 60 and 300. Thus, for a program containing a mixture of instructions, one 

would hope to achieve an increase in speed of between 150- and 200-fold.

Of course, it must be remembered that these ratios only apply to the case when both 
machines are performing the same algorithm and so the increase in speed is due simply to 
the parallelism made possible by the DAP’s many processing elements. However, greater 
speed-ups can be obtained at times, for two reasons:

(1) the algorithm used on the DAP involves less work than the method used on the serial 

machine would have required; and

(2) less iterations were actually needed to accomplish the required task on the DAP and so, 

irrespective of whether the algorithm used was more efficient than performing the
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serial algorithm in parallel, the processor array finished sooner than would have been 

expected

Thus, not surprisingly, the algorithm chosen for a particular task can affect greatly the 

execution time of the program concerned

At times it w ill not be possible to achieve an improvement factor of 200 w ith the DAP, 

simply by performing the serial algorithm 4096 times simultaneously, since these extra 

repetitions might not be necessary. Therefore a different method has to be (developed and) 

used just so that most, if not all, of the processing elements can be used effectively in the 
solution of the problem. This is not the case with the Lehman algorithm, however. The 

loops of both Steps 1 and 2 are suited (except for the first block of k  values in Step 2 and 

the occasional re-division in Step 1) to the SIMD approach, and so performing the serial 

method for 4096 different data streams in parallel should result in running times over 200 

times faster than the VAX. But, as w ill be seen in connection with Step 2, for various 
reasons, greater improvements were obtained.

Because, as w ill be discussed in the next chapter, the time required for Step 2 can be 
very small, depending on the prime factors of the integer involved, it was decided to 

compare maximum running times on both machines and so input data was restricted to only 

primes. Of course this means that the time required to remove a prime factor, p  say, from 

N  (i.e. replace N  by N  f  p \  and store it in an array, is not included. But as this event w ill 

be comparatively rare in general (V  has, on average, only loglogN prime factors and, for 

example, loglog\Qp° ^  5), this omission will not be significant. Similarly, in Step 2, not 
performing the one-off gcd calculation will not put in doubt the validity of any conclusions 
drawn.

In order to see how the maximum running time of the algorithm depends on the 
length of the number whose factorisation is being attempted, primes were chosen whose 
binary patterns differed in length by a constant amount. The numbers used were the first 

primes after 2* , for i — 35, 4 0 ,4 5 , • • • 70, and thus were the values
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i Prime

35 34,359,738,421

40 1,099,511,627,791
45 35,184,372,088,891
50 1,125,899,906,842,679
55 36,028,797,018,963,971
60 1,152,921,504,606,847,009

65 36,893,488,147,419,103,363
70 1,180,591,620,717,411,303,449

The results obtained (in seconds) when the relevant residues modulo 30 were used to 
generate the divisors; once the first 4096 primes had been tried, are given below. Since the 

times obtained w ith these primes w ill be representative of the worst case for f -bit integers 

(£ = 35,40, • • • ,70 ) rather than (l +l)-bit numbers, in the tables we consider the primes 

to be respectively 35,40, ■ • • ,70 bits long, instead of 36,41, ■ • • , 71.

VAX 11/780 DAP

length of N IN 1/3] time blocks* DAP-time

35 3251 0-4 0 0-019
40 10,322 1-0 0 0-020

45 32,769 2-9 0 0-020

50 104,032 76-6 5 0-056
55 330,281 311-1 19 0-159
60 1,048,577 1148•1 66 0-527
65 3,329,022 3855-0 215 2-354
70 10,568,984 13762-7 686 7-963

*This figure does not include the first matrix of primes.

If the ratio (DAP-time/iV1/3) were to be calculated, then one would see that it is not 

constant. There are two reasons for this. Cl) The use of only primes, rather than 8/30 of all 

the integers, for the first block, has a distorting effect upon the results for the smaller test 

cases. (2) As mentioned earlier, the length of time an operation takes depends on the length
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of the operands. Thus, the times increase, not only because more divisors have to be used, 
but because the dividend is longer than the previous case, and so all the earlier blocks will 

take proportionally longer also.

The analysis at the end of Chapter 3 indicated that the number of bit operations 
required for Step 1 was given by a function exponential in the length of the integer to be 

factored. This is borne out by the shape of the graphs when the above results were plotted 

(see Plate 1, at the end of the chapter). It is also worth pointing out that the graph of the 

DAP-time is a similar shape to that for the VAX except that, due to performing 4096 

divisions in parallel on the former machine, the exponential growth is delayed somewhat

When one calculates the ratio of the time the VAX required, compared with the DAP­
time needed, the following values are obtained.

length of prime (bits) VAX/DAP ratio

35 21
40 50
45 145
50 1368

55 1957

60 2178

65 1638

70 1728

There are two points worth noting from these figures. First how the ratios are very 

small at the start, and second, how they increase to values much larger than might have 

been expected, in the light of the above discussion. It was mentioned in Chapter 4 how the 

DAP must use all of the first 4096 primes, whereas the VAX version stops whenever the 
necessary trial divisions have been completed, even if only a few of the primes are all that 

have been used. This was the case with the first three test cases, since they are all less than 

the cube of 38,879, the first element of the first block of calculated divisors. The ratios 

increased because, obviously, as the size of the test cases increased, a larger proportion of the 

primes were required for the trial division, and so the advantage of the VAX version 
decreased.
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The very large ratios obtained for the other test cases stem from the different values of 
rnaxint for the two machines. Because 231 — 1 is the largest value an integer variable can 
have on the VAX, 215 was chosen as the base for the multiple-precision arithmetic rather 
than the value 231 which could be used on the DAP. Thus, towards the end of the initial 

block, of primes, the serial version has to stop using the single-digit-divide algorithm and call 

the more complicated long-division procedure, while on the DAP, the simpler version can be 
used all the time. As can be seen from the program listings, the long-division procedure is 
much longer, and requires considerably more work than the single-digit version, and so here 

we have an example of Point ( l)  above - the DAP does not need to do as much work as the 

VAX to accomplish the same task - and also an explanation for the high ratio values. The 

reason they fluctuate so much can be seen from the following table:

j Cube of first element of j th block Ratio

5
Prime

6

1,009,600,560,761,759

1,125,899,906,842,679

1,547,973,697,191,839

1368:1

19 
Prime

20

31,362,862,163,813,279
36,028,797,018,963,971

36,172,409,463,084,959

1957:1

66

Prime

67

1,116,057,979,038,068,639

1,152,921,504,606,847,009

1,166,375,448,489,993,119

2178:1

The nearer the integer being divided is to the cube of the first element of the next block of 

divisors, then the fewer are the unnecessary divisions performed by the DAP, and hence a 
higher ratio when compared w ith the VAX which always does no more divisions than are 
necessary.

Of course, these impressive gains are, therefore, not due to the extra processors of the 

DAP, but would apply, in part, to a comparison of the VAX w ith any computer which could 
operate on 64-bit integers. Thus, let us consider again the case of the 46 bit test case. Now, 

215 = 32,768 which is <  32,771, the 3,513^ prime. In other words, the VAX only used 
439
- ^ 2  the first 4096 primes. Scaling up the time taken accordingly, it is reasonable to 

suppose that the serial version would have taken about 3 ■ 4 seconds to perform 4096 single­
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digit-divisions, giving a VAX/DAP ratio of around 170. In the above estimate we also 

include a proportion of the time required to find the cube root of the 46-bit number, but 

since the latter is so close to 245, it w ill have taken very little time for this value to be 

calculated. Since in general, an integer for which the trial-division would require 4096 

primes, w ill not be so near a cube, more work could be involved in finding its cube root. 

Thus, it is probably the case that a ratio slightly in excess of 170 is to be expected.

However, it would not be wise to draw firm conclusions on the basis of such short 
programs, for several reasons.

(i) Any inaccuracy present in execution times will be magnified when such small 

numbers are involved.

(ii) The effect of the initialisation of the factor array on execution time (especially for the 

DAP), w ill be greater than if  more divisors had been used.

(iii) The look-up table method used on the DAP will probably not be as quick as the 
Newton-Raphson algorithm, (since the former involves the manipulation of much 

larger integers than the latter, for a number with only 46 bits) and this difference 

could have a distorting effect w ith so comparatively few other instructions used.

Nevertheless, these results would suggest that the DAP performs well when used for 
trial division, comparing especially favourably with machines like the VAX, which cannot 
operate on 64-bit integers.

Effect o f reducing the Array Size

In order to simulate the effect of having only 1024 processors in the array, the DAP 
version was run again, but w ith only one quarter of each matrix used. Since, after the 
division by all the primes, it is known that 2 is not a factor of the number under 
consideration, the last 3072 locations of each divisor matrix were initialised to 2 rather than 

use the previous division matrices and then continually mask out these elements. To avoid 

writing a new routine to find the number of smaller blocks required, four times the number 

of larger blocks needed was used instead. Admittedly, with the smaller spread of values in 
each matrix, this value could be up to three too large, but the effect of this w ill be negligible 

since hundreds of blocks have to be tried anyway. The results obtained are given below, 
again in seconds.



- 100 -

bits Time for 4096 DAP Time for 1024 DAP (1024 DAP)/(4096 DAP) ratio

45 0-020 0-039 1-95
50 0-056 0-179 3-20
55 0-159 0-592 3-91
60 0-527 2-061 3-98
65 2-354 9*368 3-98
70 7-963 31-807 3-99

From the table it can be seen that, after the initial irregularity, the smaller DAP was taking 

approximately four times as long as the larger one, as we would have expected. The smaller 

ratios at the top of the table reflect the fact that arithmetic operations are a function of the 

precision being used, w ith the DAP only doing as much work as is necessary. Since a SIMD 

machine has to work at the speed of the slowest processor, when there is a wide range in the 
size of numbers being operated on, as in the first few blocks, processing them in smaller 
groups is leas wasteful.

Using Residues (Mod 210)

In the previous chapter it was claimed theoretically that generating divisors from the 

relevant modulo 210 should be significantly faster than using residues modulo 30, Since in 

the former case, 873 PE's, out of 4296, are not useful, rather than 1323 with the former case, 

an improvement of just over 10% is to be expected. But, while such a gain was obtained in 

practice, as can be seen from the table below, it varies slightly according to what proportion 

of the last block of divisors is unnecessary in each case. Once again, the times given are in 
seconds.

bits in prime Residues (mod 30) Residues (mod 210) (mod 210 time)/(mod 30 time)

45 0-020 0-020
50 0-056 0-052 0-93
55 0-159 0-148 0-93
60 0-527 0-461 0-87
65 2-354 2-032 0*86
70 7-963 6-855 0*86
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What has not been investigated in practice is the effect that finding a factor, and hence 
having to redivide by a block, w ill have on the results. However it is clear that this w ill 

have a more adverse effect on the DAP execution times than on the VAX’s, since a repeat 

division on the former is approximately equivalent to requiring to use an extra block. But 

since factors are comparatively rare (an integer, N  , has on average only loglogN factors, 
and loglog 1070 ~ 5 ) ,  re-division w ill not be required very often, and when it is, the 

inefficiency of the DAP is one of the consequences of this type of architecture, and so has to 

be tolerated.

Step 2

The same test cases were used for Step 2, and the results are given below, again in 

seconds. (A similar comment on the ratio (DAP-time/V113) to that made for Step 1 applies 
here.)

bits in N [N  1/3] VAX time blocks DAP-time VAX/DAP ratio

35 3,251 56*4 1 0*649 87
40 10,322 166*3 3 1*509 110
45 32,769 1,107*2 8 3*924 282
50 104,032 4,505*7 26 10*264 439
55 330,281 13,911*3 81 29*660 469
60 1,048,577 44,917*5 256 92*818 484
65 3,329,022 127,704*7 813 312*849 408
70 10,568,984 > lOOhrs 2581 1,074*965

These results, for both machines, have been plotted on Plate 2. While, as was stated in 
Chapter 3, a bit operation analysis was not possible for Step 2, these graphs would indicate 

that a fast-growing function, exponential in the length of the number to be factored, would 
have been the result (as was obtained for Step 1).

These figures are much harder to interpret than the previous ones because there are so 
many factors involved.

The DAP does less work than the VAX for two reasons:

(i) As noted above, multiple-precision integers of the same size have more "digits" on the 

VAX than on the DAP, and so the former has to manipulate more array elements than
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the latter to perform the same arithmetic operation.

(ii) The method for finding square roots used on the DAP is so much simpler than the

Newton-Raphson algorithm.

On the other hand, the DAP has to do more work than the VAX for three reasons:

(a) Not every value of ( [V 4k N  ] + d )2 — 4kN  need be completely tested for being a 

perfect square on the VAX, since Fermat’s method is used as a fast preliminary check.

(b) More k  values w ill probably be processed than necessary on the DAP, since they have 

to be taken in blocks of 4096.

(c) As was discussed in the previous chapter, 4096 d loops are performed in parallel, with 
all of them running for the length of the longest in that block, and this w ill involve 

considerably more work them need be done on the VAX.

An indication of how much extra work has to be performed by the DAP can be 

obtained from Plate 3, where the number of d loop iterations performed by the VAX has 

been plotted against those of the DAP version for the 46-bit prime. If one were to count the 

number of d  loop iterations performed on each machine (whether in parallel or serially) for 
the 51-bit prime, the following results would be obtained:

DAP VAX DAP/VAX ratio

438,272 114,613 3-82

Thus we have that, despite doing four times as many iterations, the DAP was still, at times, 

over 400 times quicker than the VAX. Both programs involved the performing of 
multiple-precision arithmetic, and while the former would still have an advantage over the 

VAX because of the different choice of base, one would not have expected as large an 

improvement as was obtained in connection with Step 1, when single-digit operations were 

being compared w ith multiple-precision work. Yet, if the DAP had only performed the 

same number of iterations as the VAX, the Speed-up factor would, again, have been in the 

region of 1,600 or more. This suggests that the use of the simpler square root routine on the 

DAP has contributed positively to its performance. But, in order to quantify the gain, one 

would need to move the serial implementation to a machine which could handle 64-bit 
integers.
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Comparison w ith  on ly  tria l division

When it is noted how much longer Step 2 took, when compared with Step 1, for the 
above test cases, one might wonder if using the Lehman algorithm was a mistake, and that 

we would have been better to use only trial division up to . However, if one takes as an 

approximate time for trial dividing a 40-bit integer up to its square root, the time that Step 1 

took for the 60-bit prime (in fact, as already mentioned, the latter w ill take slightly longer), 

one finds that the use of only trial division would have taken the VAX over 1,000 seconds, 

rather than the 167*3 seconds required for both parts of the Lehman algorithm. The 
equivalent figures for the DAP are 0 • 527 and 1 • 529 seconds respectively, w ith the Lehman 
algorithm taking longer because, w ith such small integers, the effect of all the extra d  loop 

iterations is magnified. To perform such a comparison on the DAP for much larger primes, 

to discover how large N  needs to be before the maximum running time of the Lehman 
algorithm is less than that for only trial division, would require a multiple-precision long- 
division routine, and so has had to be omitted. But, as we w ill discuss later, in the next 

chapter, one can compromise and trial divide beyond N lf 3 in Step 1, thereby reducing the 
time needed for Step 2.

However, it  must be remembered that the times given above were for prime test cases - 

numbers for which neither algorithm would normally be used (a primality test would be 

all that is required). It is certainly true that for some numbers, ordinary trial division 
would be the quicker method (e.g. those with only small prime factors (in which case Step 2 

would not be required, and so both algorithms are equivalent), or those integers whose 

second largest prime factor is not much larger than its cube root), but it would be very 
surprising if one found, after comparing the times that both algorithms took to factor 

thousands of integers chosen at random, that in general, the O (iY%) algorithm was faster.
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Chapter 7 The G eneralised Lehman A lgorithm

From the above discussions, it should be clear that, while using an array of 4096 bit 

processors has many points in its favour, there are disadvantages associated with such an 

architecture. In Chapter 5, when describing the parallel implementation of the Lehman 

algorithm, we noted how, for each block of k  values, either all the inner d  loops would 

have to run for the length of the longest, or some (and eventually many) processors be 
masked out, once "their" d loop, so to speak, had completed the required number of 

iterations. Because using masked assignments does not actually save any time, since all the 

processors still have to obey the instructions concerned, it was decided to adopt the former 

scheme. It was also claimed that this apparent inefficiency could cause remarkable savings in 

time. In this chapter, we justify that claim, giving an example of a factorisation which took 
less than one tenth of the time it would normally have required.

The number in question is 11,111,111,111,111,111 which is the product of the primes 

2,071,723 and 5,363,222,357, and since it has no small factors, Step 1 w ill not contribute to 

the factorisation process (except to indicate that N , say, is of the required form for Step 2). 

Under normal circumstances, a pair of squares is not found until k  takes the value 41,420, 
for then, w ith d equal to 1, we have that

( [ V S T ]  + l ) 2 -  4kN  = 197,7632 = B 2 , say,

where

([V4ENT3 + 1) = 42,905,581,093 = A , say.

Then,

A  -  B  = 42,905,383,330 = 20,710 X 2,071,723 

A  + B  = 42,905,778,856 = 8 X 5,363,222,357 

and hence we can obtain the prime factors we seek, since

^ ^  11,111,111,111,111,111 = 2,071,723 X 5,363,222,357 .

V C/
5 -

T *  ̂ “

~ ^ ̂  t *
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It took just under 38 minutes (2276 seconds to be precise) for the serial version of Step 
2 on the VAX to reach the required { k  ,d  ) pair. For the parallel version on the DAP to 
find this same pair of squares, it would require just over 12 seconds (12,214 milliseconds). 

To ensure that this was the pair of squares found it was necessary to refrain from checking 

if any squares had been found until the eleventh block of k  values was processed (the block 

in which 41,420 lies), since otherwise the program would stop after only 1043 millisecs, 

having discovered that

(10,726,913,204 )2 -  4kN  = 468,4902 .

Now,

10,726,913,204 -  468,490 = 2 X 5,363,222,357

and

10,726,913,204 + 468,490 = 2 x  2589 x  2,071,723

and accordingly, these squares were found when k  had the value 2589 

(A 2 — B 2 = 4kN  ) ,  w ith a corresponding d  value of 11. Using the serial version of the 

algorithm, this inner loop would only have had 3 iterations, but because the inner loop for a 

k  value of 1 (the first value in the block) requires 119 iterations, this value of d was 
reached on the DAP, and the squares found.

It is worth asking the question: "Did this happen by chance, or is there some 

mathematical reason for it?" We w ill now show how this result can be explained, thus 

giving rise to a generalised version of the Lehman algorithm, which w ill be described 
towards the end of the chapter.

The proof of the algorithm depended on the existence of a pair of natural numbers, r  
and s , such that

fx < A 1/3 and I pr — qs I <  N 11 3

where pq = N  . This is proved in Appendix A where, by considering the continued

fraction expansion of — , we show that, if — is the last convergent of ~  such that
P s p

rs < N 11 3 , then the second inequality above holds. Since we put k  = r s , it is clear where 

the upper bound for the outer loop in the algorithm comes from. However, it is worth 

asking why N 17 3 had to be the value which was used in the proof.

We require an upper bound for the product rs , where — is one of the convergents of

the continued fraction expansion of — . Since — is rational, the last convergent w ill be —
P P P
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itself, thus giving the trivial bound

rs ^  N

for all the convergents y  . But, using this value would produce an algorithm with a 

maximum running time of the order OGV ), which would not be very u sefu l! However, if

th r nwe denote the n  convergent by — , then we have that
$n

Tjj-j- “  A 173, ^i = l  and hence r*si <  A 17 3 . We also know fromr l = N-

the theory of continued fractions, that rnsn is an increasing sequence, and have shown that 

the product of the numerator and denominator of the last convergent is N  . Thus, it must 

be possible to find an m  such that

Cl) rmsm < A 173

(2) rm+1sm+1 > N 1' 3

(since N  has at most two prime factors, N 17 3 is not an integer, and so equality cannot hold 

in either of the above). Since N 17 3 is the best such bound known at this stage (the other 

bound being N  ), it is adopted for the product rs , and hence for k  .

However, since A 17 3 < p  ^  q < N 21 3 , taking N 17 3 as an upper bound for is

very much a "worst case choice". If we had known beforehand that, say, p  was nearer A ^

than A 17 3 , then the value of — would be much less than A 17 3 , and so we could lower
P

the bound on the outer loop. What effect this would have can be seen from the following.

Suppose that — ^  T < N 17 3 , and let be the last convergent of ~  such that P sm p

(1) rmsm ^  T

(2) rm +1 ^  + 1  > T  .

Then, as shown in Appendix A, putting rm — r  and sm = s , we have that

\l  -  «.! < !r. _  i™±l ! = 1
I s P I I s Sm+1 I i  i m+l 

which implies that

i pr — qs I <  —- — .
sm+i

As before, by considering the convergents to we have that
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Hence,

I pr — qs I ^  —-— .
r m +1

I p r — qs I2 ^  ---- —-----rm +±sm

In other words,

P£
Vz

< N
+l^m +1 T

and since T < N lf 3 ,
Vz

N_
T

Vz

>  y/ N 21 3 = N 11 3'

Hence we have that rs < T  , but that

I pr ~~ qs I could be > N 1/3 .

(7.1)

Put k  = rs , and consider

( pr + qs )2 — 4k N  = (p r  — q s }2 <  .

Then, if ^  is defined by pr + qs — [V 4kN  ] + d  , where c£ 5s 1 ,  we have 

Nr >  (p r  ~  q s }2 = ( jpr + — V 4&iV ) ( pr + gtf + V 4kN  }

> U  -  l ) ( 2 - /4 k N  }

Hence,

^   + 1
4Ty / k N

(7.2)

iV%
+ 14t 7 F

and since T < N lf 3 , this last bound is strictly greater than

N v 6
4V F

+ 1 .

Now, if q and p denote the prime factors of 11,111,111,111,111,111, where q >p  ,

then the continued fraction expansion for — is
P
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[2588; 1 ,3 ,2 ,2 ,1 ,2 ,2 ,4 ,1 ,5 ,1 ,1 ,1 ,2 ,5 ,1 ,5 ].

Therefore, the first few convergents are

ri_ = 2588 rz_ _  2589 ^  = 10355
1 ^2 1 ^3 ^

and so it can be seen that, since

r 2S2 ^  2589 and r 3s 3 > 2589,

the number 2589 could be used as an upper limit  for the k  loops. The counter for the 

corresponding inner loops would then need to take values in the range

N Vz

2589.4. Vfc
+ 1 .

For a k  value of 2589, the limit on d  would be 201, and thus the ( k  , d  ) pair found 

was well within the permitted range. This bound of 201 is very large when compared with 

the value of 3 required by the normal form of the algorithm. The reason for this is that the
Vz

as a bound for — was again a "worst case choice", but one has to be made,use of N_
T

since we have no knowledge about the size of rm +1 or sm +1 except their product is >  T . In 
this case,

“  r 3s 3 -  10,355 X 4 -  41,420

(the reason why this number is familiar w ill be discussed later) which is much greater than

T  = 2589, w ith the result that more iterations are performed in each d loop, than are really
2

necessary. For example, the value of —  ^  , for N  ,p  , sm+1 as above and k  — 2589
4s2m+1y /kN

is 12. This is greater than the bound for the "normal" algorithm since, in the latter, a 
different sm +1 is used (see later).

N Vz
If one were to plot the function — ----- -— + 1 for k  between 1 and 2589, then

* 2589.4. V F
the graph of Plate 4 (see end of chapter) would be obtained. Now, the maximum number of 

d  loop iterations for the Lehman algorithm with T  = 2589 equals

2589

L* =i
N Vz

2589.4. V F
+ 1 N Vz 2589

/
dk

2589.4 7 F + 2589

105,409,255 L / jp ]2589 + 2589
10,356 f  I®

= 10^ 9;3 55 .2(V 2589) + 2589
10,356
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~  1, 038, 400 .

But, the corresponding bound for the [JV113] version has a lr e a d y  been shown to be 
3—N  ' 3 ^  334,716. (In the present analysis, we have chosen to use the first method ofJL

obtaining a bound on the number of (£  ,<£ ) pairs given in Chapter 3, rather than the 

second, more complicated, one. However, as we use the same estimate in all the following 
comparisons, this choice w ill not invalidate the conclusions drawn.) Thus, reducing the limit 

on the outer loop could result in more work being required - a fact that can also be seen 

from the comparison of the graphs of the d  loop bounds with T  ~ 2589 and T  = [iV11 3] in 

Plate 5, where the long "tail" of the T — [N lf 3] graph has been omitted in the interests of 
clarity.

In fact, for this particular number , 11,111,111,111,111,111 , to have performed the 

modified algorithm with T -  2589 on a serial machine would have resulted in a longer 

execution time than if the normal algorithm had been used, since, for this value of T  , the 

total number of d  loop iterations required is:

2588
Y  + i

^  (2589.4 Vit

^  1,038,207

neoo
+ u  <  105,409,255 r dk  

10,356 {  7 F

(where the sum on the left-hand side only goes up to 2588 since only 11 of the d  values for 
k  = 2589 need be used), whereas for T  = [N v  3] this value equals

41420
z

1
N v  6 
4 7 F + 1 N 1/ 6

. 2( V41420) + 41420 =  89,489.

(Actually, the former bound should have been

2587

Lk-1 2589.4V F
+ 1 + 120 ^  1,038,111

since, as w ill be described below, the pair (2588,120) also produces squares congruent modulo 

N  , and the d  value of 120 is within the range corresponding to k  — 2588 and T  = 2589.)

Thus, the drawback with reducing the number of iterations in the k  loop is that the 

inner loop bound has to be increased. In addition to making the maximum running time 

larger than the T  = [N 11 3] case, this modification could result in the actual searching time 

being more than before, since one has no knowledge about how soon a ( k  , d  ) pair w ill be 

found. Indeed, there might not be a ( k  , d  ) pair to find! From the theory above it can be
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rseen that reducing the k  loop bound to T , say, is only possible if there exists a convergent ~

to — with rs < T  . This is implied by — < T  But, if one "took a chance" so to speak, and 
P P

chose T  to be some convenient value (e.g. 4096 or 8192), without having known that it was 
a valid reduction, then there could be no ( k ,d  ) in the range being searched. Certainly, for 

any k  value there w ill always be a d value such that

([V4E\T] + d )2 -  4kN

is a perfect square. For,

4kN  -  (Jfc + N ) 2 -  U  - N ) 2

and since,

U  + N  )2 >  4 k N  ,

we must have that

k  + N  =  W 4 k N ]  + d

for some d ^ 0 .  However, for a given k  and N ,  d could be huge. What the Lehman 

algorithm guarantees is that if N  is the product of two primes; both greater than [ N lf 3] 
then, for at least one k  value ( ^ [ N u  3] ), a suitable d value w ill lie within a certain range.

It has already been shown that, in addition to T = [ N lf 3] for 11,111,111,111,111,111, 

T  = 2589 is also a valid choice for the other loop limit. If, on the same diagram as the 

graphs of the d loop limits corresponding to these choices of T , there was to be plotted the 

graph representing the work performed by the DAP version for the former value of T , then 

Plate 6 would be obtained (where the long "tails" have again been omitted). The position of 

the pair ( 2589,11) has also been indicated, and from this it can be seen that the graph for 
the parallel program includes enough of the area under the T  ~ 2589 graph, for this pair to 
be "within range". Since, in this implementation, the k  values are processed in consecutive 

blocks of 4096 values, starting at k  = 1 , the Ck ,d  ) pair w ith k -  2589 is found very 

quickly.

Such an occurrence cannot be guaranteed in general, since there might not be a ( k  , d  ) 

pair lying above the [N 11 3] version graph, but within the graph of the work done by the 

DAP. Nevertheless, the way this algorithm has been implemented on the DAP allows us to 

take advantage of this happening (without, obviously, knowing beforehand), and so gain an 

additional speed-up of possibly, as in this example, more than 10-fold.
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Possible values fo r  k

From the proof of the normal algorithm, it can be seen that the k value (corresponding 

to a d value within a certain range) whose existence is proved is, in fact, equal to the

product of the numerator and denominator of a convergent to — . Thus, if there exists a 

convergent, —  say, w ith rn sn much less than [A 1/ 3] , then might also be such that
Sn s n +1

rn +1sn +1 ^  [N11 3] . This was the case here, since

r 2S2 — 2,589X1 = 2,589

and

r 3s 3 = 10,3544x4 = 41,420.

But, we also have that

r iS i = 2,588X1 = 2,588 < [iV1/3] ,

and so there should be a d value corresponding to k = 2588. This is indeed the case, namely 

d = 120. However, this value is well beyond the bound used in the serial version ( = 3, 

for 7c = 2588), and is also outside the area searched by the DAP in this case (which is 

1 <  d ^ 1 1 9 ) .  It is only when k equals the last product (of the numerator and

denominator of a convergent to — ) which is < Arl/ 3, that the proof guaranteed that the
P

corresponding d value is within the range specified.

Another observation that can be made is that if — is a convergent to — such that rs iss p
considerably smaller than [N113] , then if there exists an integer t , say, such that 

rst2 [N11 3], then this value for k w ill also correspond to a relatively small d value for 
the following reason. Suppose that

At 2rsN — ( prt +  qst )2 — ( prt — qst )2 .

Then, if

{pr A- qs') = [VAkN 3 +  d 

it follows that

( prt +  qst ) =  £[V A7cN 3 +  td

< frV4E\T3 + td 

~ [V 4t 2kN 3 + td ,

and so the d value for tk w ill be less than or equal to t times the d value that
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corresponded to k .  But, again, there is no guarantee that this value of d  w ill be inside 

either the limit used for the serial version, or within that on the DAP. An example of this 

can be seen w ith 11,111,111,111,111,111, where the pair k  ~ 10,356 = 4 X 2589 and d = 21 
will result in squares congruent modulo N  being found, though in the performing of the 
algorithm, these values w ill not be tested, since the d limit in both cases, for k  = 10,356 is 

only 2 . How the existence of these pahs is known will be explained later in the chapter.

However, while points like the above are interesting and worth mentioning, they are 

only of limited value unless they can be used to reduce the time required to factor a given 

integer. We now state some facts which, if a certain amount of extra knowledge were 
known, could significantly reduce the running time of the algorithm.

The Lower Bound fo r  th e  O uter Loop

It has already been pointed out how the k  value whose existence is proved in Chapter 

3, is the product of the numerator and denominator of one of the convergents to . As 

noted at the start of this chapter, it is this fact that gives rise to the upper bound on the k  

loop. Now the lower bound for this loop was taken to be 1 since the first convergent —
s l

say, has Si = 1 and r 1 = [q/ p \  ^  1, since q ^ p  . However, if it was known that

— > S  , where S  is an integer, then the loop iterations for k  in the range 1 -* (S —l)
JP
would be unnecessary and so could be omitted. Even if S were not much larger than 1, this 
could result in a considerable reduction in running time, since it is the inner loops 

corresponding to these initial k  values which involve the most iterations. It would 

especially benefit the DAP version since it is for the low values of k  that the inefficiency 

from performing more d  loop iterations than necessary, is greatest. Of course, we have just 

shown above how this extra work can sometimes bring rapid results. But, if one knew that

^  > S  , then it would probably be better to make use of this fact, rather than ignore it and

"take a chance" on a ( k  ,d  ) pair being found quickly. A possible compromise would be to 
take as the upper bound for the d loops corresponding to the k  values S + 4095 ,
the limit on the d  loop for a k  value of [S /  4096] X4096.

In general, if presented with an integer N  to factor, one would have no way of

knowing of a bound for — . But, if it was known that N  had been formed for use in a
P

public key encryption system where it had been specified that one prime be chosen very

close to 1060 and the other very near 1080, then a lower bound for — could, almost
P
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certainly, be taken to be 1019, thus saving a considerable amount of work.

W hen d = 1 w ill suffice

Suppose that there exist natural numbers a , b with

I qa -  bp I <  ( 2 ( 4 abN f*  + l ) ^  . 

Then, if ab were known, we could proceed as follows:

(qa  + bp )2 = 4abN + (qa — b p }2 

and, by (7.3), this implies that

4abN <  (qa + b p } 2 < AabN + 2(4abN}*  + 1

(7.3)

AabN <  ( qa + bp }2 <  ( (AabN )% + 1 )2

and so

(AabN)% ^  qa + bp < (AabN }Vl + 1 ,

which implies that

qa + bp = [ (AabN)% ] + 1

if p s*q and ab <  pq = N  . In other words, the pair k  — ab, d  = 1  will produce 
squares, as required.

Thus, if we knew a pair a , b such that (7.3) held then starting the k loop at S = ab 

would result in squares being found immediately. This compares very favourably with the 

number of d loop iterations that the Voorhoeve version of the algorithm would require 

which equals*

AT 1 /6
— -— ( 2(ab )% ) + ab 4

V2N lfKab)% + ab . (7.4)
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"fNote that here we have assumed that <* > * £ 1  , so that
^ 1 /6  
47 F

+ 1 would be 1

when k  = ab t otherwise the number of iterations needed to reach the Ck ,d  ) pair C ab , 1) 

w ill be slightly (i.e. [N 11 6/  (4V ab )]) less than the sum on the left hand side.]

Even if we only knew that (7.3) was true for some a ,b  w ith ab < L  , (but not the 

actual values of a and b \  then this bound would still apply, and while its exact value 

would not be known, we would still have that it was

< + l .2

However, we have shown above that the d value corresponding to k = ab w ill equal 

1. Thus, there is no need to perform any more than just the first iteration of each inner 
loop. If this alteration is made then, the maximum number of ( k  , d  ) pairs that need to be 

considered is L  , rather than the much larger bound above.

The above has important consequences for public key encryption systems, and explains 

the following comment made by Knuth [1981, p.388]

"in fact, we don’t  want the ratio — to be near a simple fraction, otherwise Lehman’s

generalisation of Algorithm C would find them"

as w ill now be shown. Suppose that two primes p  , q have been chosen with N  — pq , and 

that there exist natural numbers a ,b  such that (7.3) holds. Then

I qa -  bp I < ( 2(AabN Y1 + l ) %

if and only if

if and only if

I „ h I
pa I -i- — — I < (2(4a&i\T)% + l ) %

| p a |

— — — I <  —  (2(4oW7)% + 1 )%.p a  | pa

Therefore, if

I — -  -  I <  TT-finn  ( 2(AabN Y1 +  1 T  (7.5)I p  a | [iV 1 ]a

then, since p > [ N lf 3] , we would have that (7.3) holds, and so the Lehman algorithm 
would, indeed, find a pair of squares, and hence the factors of N ,  w ith the number of

iterations required bounded above by (7.4). If — is a simple fraction, then ab (i.e. L )  is
a
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small, and so Step 2 would then be an OGV1/ 6) algorithm. Of course, if one knew to expect 
that (7.5) would hold for some a ,b , then N  could be factored quickly by only performing

the first iteration of each d  loop, (with the running time being especially small if is a 

simple fraction).

A special case of the above is when — is close to 1, for then,
P

I q -  p  I <  (4  + I f 2

and so, by the above, the ( k  , d ) pair ( 1 ,1 )  w ill give rise to a pair of squares congruent 

modulo N , and hence to the required factors. For example, the integer 

15,241,578,503,276,943 can be shown to be the product of 123,456,789 and 123,456,787 in 

only 0.1 seconds of cpu time on the VAX (compared with nearly 40 minutes which

11,111,111,111,111,111 required). This example also illustrates another interesting point : 

p and q do not have to be prime (e.g. 3 is a factor of 123,456,789), for Step 2 of the 
algorithm to find them.

In the proof of the theorem, the primality of p and q was never used. All that was 

required was that N lf z  < p ^  q < iV 2/3 . The Voorhoeve version of the algorithm 

guaranteed this by removing any small factors of N  so that what was left was either prime 

or the product of two primes in the required range. However, if N  had two factors (prime 
or composite) in the range above, then the trial division of Step 1 would be unnecessary. 

Instead only Step 2 (preceded by checking if N  were a perfect square) would be needed to 

produce one (and hence both) of them (which would then require factoring themselves, if 

they were not prime). Of course in general, a composite N  need not have two such factors. 

For example, the integer 95,704,051,146,663,247 which equals the product of 112,103 and 
853,715,343,449 w ill be claimed to be prime by Step 2, if Step 1 is omitted!

The Generalised Lehman Algorithm

The points discussed above motivate a generalisation of the algorithm. Let N  be a 
natural number. Then, for any real numbers S ,T  with 1 < 5  ^  T  ^  N ^2 , the (S  ,T  ) 

Generalised Lehman Algorithm may be described as follows.

N ^For each integer k ,  S  ^  k  < T  and each integer d w ith 1 ^ d  ^  + 1 ,

form

u -  QW 4kN  ] + d  )2 -  4kN.

If u is a perfect square then (no more values of u need be considered, and) write B =
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and A = [ (4 k N )^] + d . Then A  > B  and

A  < ( A k N ^  + - 4 C -  + 1 < (4V 3/2)% + + 1
4k  4

= 2 V 3' 4 + H i  + i  
4

if iV ^ iV 0 (a small positive integer - see below).

Thus we have that

4kN  = A 2 -  B 2 = (A + i?) (A — 5  )

with

A + £  <  2A < N

and hence

A  — B < N

for N  > N q. Therefore, gcd(A 4- B , V )  will be a non-trivial divisor of N , as w ill 

gcd(A — B , N )  (by a similar method to that used in Chapter 3 one can show that 
A  — B  > 1 ) .

By a straightforward extension to the working already given above, and in Chapter 3, 

it can be proved that this algorithm w ill find a factor, p , of a composite N  which lies in 
the range

(where the above inequality is implied by S ^  — < T  ) .  That N 0 = 1,024 w ill suffice
V

in the above can also be shown, by noting that 2N zt 4 + N V2/  4 + 1 — ^  is a function of 

N  which is negative and decreasing for N  ^  1,024.

The algorithm which Voorhoeve gives, and we implemented, is the ( 1, N lf 3 ) version, 
which w ill find a factor p  w ith

N lf3 < p <  N * .

As has already been pointed out, the trial division of Step 1 is required to ensure that such a 

factor exists (unless what is left of N  is prime). It is clear from the above that the amount 

of trial division required w ill depend on the choice of T. Putting T  = [iV%] w ill imply the 

need for trial division of N  up to [ N114] . However, T  could, in fact, take values up to N



- 117 -

itself. While one would not normally choose such a value, since it would result in an 

algorithm w ith a maximum running time of O {N  ) ,  it is interesting to note that, by putting 

T  = N  , we obtain the algorithm that Fermat himself actually used to factor integers.

It is also interesting to note that one can, in addition, generalise (7.3) to obtain a pair of 

inequalities which show how 1 p r — qs i depends on the values of k  , d  , and N  .

Let N  = pq (where we have already checked that p *£q \  and let {rs,d ) be a (£ ,d )

pair giving rise to a pair of squares congruent modulo N  . Then

ArsN  = ( qs + pr )2 — ( qs — pr )2

and

( qs + pr )2 = ( [ V 4rsN  ] + d )2 .

Therefore

{qs — pr )2 = ( [ V4rsN  ] + d  )2 — ArsN

^  {^A rsN  + d ) 2 -  4rsN  

= 2d J A r s W  + d 2 .

But, we also have that

{qs — pr )2 = ([ VArsN ] + d  )2 — ArsN

> (V  4rsN  — 1 + d  )2 — 4rsW 

= 2 ( d - l ) V r a v "  +  ( d — 1 )2 .

Hence, if the pair ( rs , d  ) give rise to squares congruent modulo N  , then

2{d — l ) ( 4 rsN  )% + {d  — l ) 2 < {qs — pr )2 2d (4rsW  )% + d 2 .

It is easy to see that when the value d = 1 is put into the right hand side of the above, the 

inequality (7.3) is obtained. (The left-hand inequality was not included in (7.3) since we 

were allowing for the possibility that p  and q were equal.)

Searching fo r  k  *s in  general

We have shown above how, in particular situations, or if certain extra knowledge is 

available, the running time of the second step in the Lehman algorithm can be very small

indeed. But, suppose such extra information is not known, or that all we can tell is that —



-  118 -

(and hence k  ) lies between some numbers S  and T . Is our only option then to search the 

values consecutively, or are some possibilities for k  more likely than others?

The extra (& ,d  ) pairs that were mentioned in connection with N  =

11,111,111,111,111,111 were found when a search was made of all the i k  ,d  ) pairs in the 
range 1 ^ 61,440 and 1 ^ d  ^  120, to discover which gave rise to squares congruent
modulo N  . The results are shown in Plate 7 where the range that the DAP would consider 

has also been plotted. As can be seen, there are very few "successful" pairs within easy 

reach. What would be instructive to know, but certainly non-trivial to discover, is whether 

it is possible to predict beforehand where suitable {k  ,d  ) pairs are likely to be. Certainly, 

this algorithm guarantees that at least one such pair w ill lie in a specified range, and we 

have shown, above, how this range can be reduced if certain conditions are met. However, it 
would be interesting to know, in general, the probability distribution of those ( k  ,d  ) pairs 

which give rise to squares congruent modulo N  , as this could suggest a more effective 

searching strategy.

For example, given that k  lies between S and T  , is it more likely to be nearer one end 

of the range than the other? Indeed, is our best plan just to consider each possible value 
consecutively, starting with k  = S  ? Lehman [1974] makes an interesting point on this 

subject:

"In going through the integers k  from 1 to r  [his notation for the upper limit], there is 

an advantage in going through them in a prescribed order. Let dOc) be the number of 
positive divisors of k  . If a l b  is closest to the ratio of the divisors of n  [the number to be 

factored], which k  = ab should we try  first?

He gives, as an example, k  = 23,220 = 22. 33.5 .43  and continues:

"Thus, there are <f(&) = 3 .4 .2 .2  = 48 different representations a f  b that we look at 

simultaneously. Clearly, it is better to first choose k  w ith d ( k )  large. For that reason, we 
chose to look at multiples of

30 = 2 .3 .5 ,  24 = 23.3 , 12 = 22.3 , 18 = 2 .3 2, 6 = 2 .3 ,  2 , 15, 43 .

The program is designed to go through these sequences."

While Lehman gives examples of rapid factorisations through using this "trick", it 

must be noted that, at times, adopting this searching strategy would have a detrimental 
effect on the running time. For example, if p and q were close to each other, then, as 
described above, a k  value equal to 1 would produce the required squares, but under 

Lehman’s scheme, this would not be the first k  value to be considered (indeed, far from itl). 

Also, considering say k  = t 2rs , where rs is the k  value whose d  value w ill be inside the 

limit, could be a waste of time since, as has been shown above, the d  corresponding to this
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larger value of k  need not lie within the prescribed range. Thus, while particular 

factorisations do benefit from this approach, it is not certain that this method will be quicker 
in general (i.e. for more than 50% of all the numbers of the form suitable for Step 2).

However, even if Lehman’s method could be proved to be better (for a serial 

implementation) than taking the k ’s consecutively, it would not necessarily suit a parallel 

approach. As has already been commented on, the d loops for a given block of k  values 

must all run for the length of that inner loop corresponding to the smallest k  in the block. 

Hence, there is an obvious advantage in considering all the very small k  values first (i.e. 

performing, say, the first 4096 inner loops in parallel), so that the performing of many extra 

d loop iterations is kept to a minimum. Although thereafter, it would be quite possible to 
consider the remaining k  values in the order Lehman suggests (where each sequence would 
be taken 4096 members at a time).

Deciding on an optimal strategy

It has been shown above how the time required for Step 2 can be reduced by lowering 
the bound on the outer loop. However, unless one knew in advance some extra information 
about the factors of N  , one would need to perform more trial divisions than in the 

Voorhoeve version to ensure that N  had a prime divisor in the range being searched in the 

second step. From the results in Chapter 6 it can be seen that, for our test cases, Step 1 took 

only a fraction of the time that Step 2 required. What would be interesting to know is if 

this was the optimal strategy, or if further trial division would have resulted in a smaller 

execution time for Step 2, and a quicker running time for the whole algorithm.

So, suppose that we trial divide up to R , where N 11 3 ^  AT% . Then, what is left

of N  (which we shall still denote by AO is either prime or the product of two primes p , q

with R < p ^  q < ^ -  Cor N  = 1, in which case we need not continue). Suppose also that
n

we have checked that N  is not a perfect square. Then, if N  is composite, we have that

1 < ~  < ITTP R 2

and so we need only consider k  values in the range 1 ^  k < (Le. put 5 = 1  and
R

NT  = —--, to use the earlier notation).
Y 2

By considering the continued fraction expansions of — and — one can show, as before,
P 9

that there exist natural numbers r  , s with
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Nrs < and I pr — qs I <  R  .

Again as before, putting k  = rs and A  = pr + qs = [V ] + d  , one can show that

4&iV = ( pr + )2 — ( pr — qs )2

implies that

i?2A < W 4kN  ] +
4V kN

and one can again show that d ^  1.

Thus, in this case, the number of ( k  , d ) pairs which need to be considered for Step 2
becomes

2J2
*2 + 1

*=1 d= 1

n  r 2 + 1
R 2 4 VUiV)

Z Z 1
k =1 d =1

+ 1 mln V  i?4
W iv 5  2 ' 16(d -1 )2N

z Z
d = i jfc=l 

R 2

 ̂ +-—y -r
4 4 V iV

1 6 N  £  S 7

= K ( R ) ,

say.

Now, let us find the minimum value of K  (R ) .

d K ( R )  _  2 N R V  
dR R 3 24N

which equals zero when

2N  _  R V  
• J T  24N

i.e. when

* N 2R 6 = 48 iXg-
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i.e. when

R  = 48 N ‘
1 / 6

(1-30)AT1/3 .

It is easy to see that this value of R represents a minimum value for K ( R ) ,  which is equal 

to

96N 2 + ( (48AT 2)/ tt2) X tt2 
96N X(48 / tt2) ^ 3^ 273

1/ 3
144N 2 
96N 5/ 3

u2
48

7T2

48

1/ 3

N i n  as 0 -885AT1' 3 .

However, as was shown earlier, the amount of trial division required in Step 1 is
inversely proportional to the upper limit for k  in Step 2. We have proved above that to

minimise the maximum time required for Step 2 will require trial division up to 
1 / 6

N 11 3, which is more than that for the Voorhoeve version. Therefore, this choice48
IF

for R does not necessarily correspond to the smallest maximum running time of the whole 
algorithm. To find this value we would need to minimise the function

i J V
y R  +  w  + 96N

where yR  is the amount of time Step 1 takes, and so will depend on which sequence of trial 

divisors is used. In assigning a value to the constant y ,  one w ill also need to take into 

account the difference in time required for the operations of Step 1 (i.e. a division, after an 

addition to generate the divisor when necessary) compared with the various multiplications, 

additions, subtractions and perfect square tests involved in Step 2. Thus, to a certain extent, 

this value, and hence the optimal strategy, w ill depend on the machine being used.

Indeed, it may be that the optimal strategy will not be to perform all of Step 1 before 
the work of Step 2. It is clear that trial division finds small factors very quickly, and we 
have shown above how Step 2 can yield factors rapidly in certain circumstances (e.g. if 
N  — pq , where p  is very close to q \  Thus, the optimal strategy might consist of 

alternating between the two parts of the algorithm. However, to ascertain if this is the case 

would involve factoring a large number of integers, chosen at random, and consequently 

require a vast amount of machine time. Hence, it was not feasible to include this analysis in 

this research project.
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Possible values for d

The above discussion concerning the selection of ( k ,d  ) pairs has centered on which k  

values are worth considering, and we have tacitly assumed that all the corresponding d 
values need to be considered. This is, in fact, not the case. We w ill show below how, as 
Lehman points out, not every d value needs to be examined, and then use this result to 

achieve a lower bound for the number of ( k  , d  ) pairs that need to be processed in Step 2. 

The exclusion, until now, of this consideration does not invalidate the conclusions already 
drawn. Instead, as can be seen from below, it has served to make the working involved in 

the running time estimates simpler and easier to follow. The ( k  , d  ) pair bound obtained at 
the end of this discussion is for the Voorhoeve (T  — N  u  3) version. A similar analysis could 
be done for the optimal strategy estimate above.

Putting, as before, A  = pr + qs and B = I pr — qs I (where k  — rs and N  ~ pq') 

we have that

A 2 + B 2 = 4kN  .

Now, suppose that A is even. Then either both pr and qs are even, or they are both odd. 

The former condition implies that both r  and s are even (since p  and q are odd) which is a

contradiction because ( r  ,s  ) = 1 (this follows from the fact that — is a convergent to — ).
j  *  P

Thus the latter must apply. This implies that both r  and s , and hence k  , are odd. In other 
words, A even implies that k  is odd.

Similarly, if A is odd, then either pr is even and qs is odd, or vice versa. The former 

implies that r  is even and s is odd (since both p and q are odd), while the latter implies the 

opposite. From both possibilities, therefore, it follows that k  = rs is even, ie. A odd 
implies that k  is even.

Thus, in both cases, we have that

A  =  k  + 1 {mod 2)

i.e. d =  k  + 1 -  W4kN~](.nwd 2)

and so we need only look at approximately half of all the possible ( k  yd  ) pains.

In fact, we can do better than this for, suppose that k  is odd. Then both r  and s are 

odd. Now

( p “ j ) ( < y — r )  = pq + rs — pr — qs = N  + k  — A , 

and because ( p — s ) and ( q — r  ) are both even (and > 0 since, for example, s ^ k  <p) ,
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we have that

A  =  N  + k  (mod 4)

i.e. d  =  N  + k  — [V 4kN  ] (mod 4) .

Hence, if k  is odd, we need only consider one out of every four of the possible values for d  .

Of course, for much of the time spent on Step 2 (depending on how soon a pair of 
squares is found), the limits on the d  loops w ill be less than 4 (and possibly less than 2 also)

3
and so making use of this feature w ill not, in general, result in only looking at — of all the

possible ( k  ,d  ) pairs. However, as w ill now be shown, when this pre-selection of d  values 

is included in the count of operations (i.e. count of ( k  , d ) pairs) given towards the end of 
Chapter 3, one is able, as was mentioned, to reduce the constant associated with N 11 3.

The count of ( k  , d ) pairs can be divided into two parts. When k  is even, we need 

only include those d ’s which satisfy d = k  + 1 — [V 4k N  ] (mod 2) =  a k (mod 2),

say, and when k  is odd, we need only count those d values for which d =(3k (mod 4), 

where =  N  + k  — [V 4kN  ] (mod 4). Thus, for a given N  , in both cases the 
selection of d  values depends only on k  . From this one can see that the number of ( k  , d  ) 

pairs to be considered becomes

#1/ 6
4V jfc + 1[V1/ 3]

s  = L  £ i +
k  = 1 , k even d  = 1 , d  =ofj(mod 2)

[tf l/3 ]

Z
k  =1, k odd

N1/ 6 
4V k

+ 1

d ~ l , d  =($%(mod 4)

= S \ + S-

say. We deal first w ith S  i .

If

jy i/ 6 
47 F

N l / 6

4 7 F
is odd, then the inner sum in S i is just —

Ja

is even, the inner sum is ^ W1/6 
47 k

N 1/e 
4V &

+ 1 , while if

+ 1 . Thus, in both cases, the sum over d

N l i 6

47T
+ 1, and so

[ N V  3]
^  T 1 N l f 6 + 1

k = l , k  even 2 47 k
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[JV1/  3]
£  l  +

k —l , k  even

1 /3 ]

z 4
k —l , k  even

N lf6 
4V k

NH 6 
JV 1/ 3 8V fc

Z Z i
* =1, k even d =1

NM 6 -̂1/3
~ W T  64 d 2

£  i  + £  £  i
A: = 1 , k even d = l k  =1 , k even

N l /  3

£  l +
k =1, k even

N 1/ 3

N 1/ 3

Z i + Z
JV-1/ <S
8^.2 3

* =1, k even d - i  128 d ‘

(If N 1/ 3
is even, the inner sum of the second term equals — N 1/ 3

64d2

whereas if not, the inner sum equals 

above.)

64<f:

1 iV1/3 £  ^ 1/3y
2 64d2 128<f 2

N I t  3

1 2 M 2 ’

j y l / 3

£  l +
k  = 1 , k even

JV1/*
N m  - w r  t
128 d*

jyl/ 3
£  l +

Jfc =1, jfc even

N  V3 
128 4% d

CO -j

z 4

£  1 +
k =1, k even 6X128 '

(7.6)

Similarly, for S 2 we have that

S 2
[jv1/ 3]

<  y 1 IV1/6 + 1w
fc =1, jfc odd 4 4V£

[v1/ 3]
£  1 +

k  =1 , k odd

[JV-1/ 3] t

Z  4* = 1 , k odd

t fV  6
4 7 F

jyl/ 6
JV 1/ 3 JV 1 / 3  1 6 V *

£  1 + £  £  1
k ~ l ,k o d d  k = l ,k  odd d =1

JV'1/3
2V1/ 3
Z i + Z

* =1, k odd d =1 * = 1 , * odd

Nl/ <S
15~ 256c/2

Z i-
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Now, if
N 1 /3 1 iV1/3is even, the inner sum in the second term equals
256d2 256d2

, -while if not,

this sum equals 1 iV1/3
2 256d2 + 1. In both cases we have that the inner sum is

. jy i /s
^  + 1 and so we have that S' 2  is512d 2

j y l / 3

^  1  + r
k = l ,k  odd 512 d- 1 d

°2 1 N  i/6 
16

16 *
" v 3 , ^ W3 ^  a . ^ 1/6

512 • 6

Combining (7.6) and (7.7) we can see that 

S = S x + S 2

^  7T2N lf3
«  Z i  + ^ 4 —

Jfc=l 0
1 + 1

1  + Stj2
3072

N l f 3 +

128 512

jy l/6

jV 1 / 6

16

16 ’

(7.7)

which is not in the form we would have wished. However, one can eliminate the term in 
N lf 6 by improving the bound for S 1 .

From two lines before (7.6) we have that

NH 6 
j y l /  3 8V2JV 1/  3 H J l / 3  8 V Z i

1 < Z 1 + 4s r  s  7Jfc =1 , * even ±a o  ^ = j  a

JV1/ 3z
£ — 1 , k even

a t - 1/ 3  0 0  - t

t  1  + — y  _ L  —
^  ^  128

Now, let X  and Y  be positive integers. Then

y  1 ^ 1 y
£  ~7T >  Z  T77TXTT =  Z

d= XS=kd* A d  {4+1)

Letting Y  -*■ 0 0  we see that

^ 1 /3  g

j v 1/  6 
8^2

128

d +1

.

+ 1

where X  is an integer. Hence
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^ 1/3 A7-1/  3 _ 6
S i <  L  1 + ^

jfc = 1 , jfc even. 128 ’ 6
tv 1/3 
128 TV1/6 

"872"
+ 1

and we w ill have

1 + Sir2
3072 ( l-0 1 6 )T V 1/3 ,

provided tliat 

TV1/6 <  TV1' 3 TVI f  3
16 128 ‘ N U 6 

8 V 2 + 1
128 TV1/ 6

8V 2 + 1

TV1/3 V 2
!6  * (TV1/6 + 875)

i.e, provided that

i.e, provided that

i.e. provided that

TV x' 6 ( TV x' 6 +  8V2) ^  V2TV1' 3

( V 2  -  l)TV1/3 > 8V2iV1/6

8V2 
7 2 “ -  1 4-152 X108 .

Thus; provided that TV is greater than this bound, the number of ( k  , d  ) pairs to be 

considered is approximately (1*016)TV1/3 which is about 10% less than the best bound 

obtained in Chapter 3 (which was 1 • 1028 TV11 3 ) .

Therefore, by including this feature, the times obtained on the VAX for the test cases 

in Chapter 6 could be reduced by 10%. Of course, the improvement could be much greater 
in factorisations where squares are found comparatively quickly (i.e. before the d  loop limit 

becomes 1 ), for then reductions of up to (and sometimes exceeding) 50% are possible.

Unfortunately, though, this modification is not suitable for inclusion in the DAP 

implementation in which, as already discussed, 4096 k  values are handled simultaneously. 
Even if  we took the even values first and then the odd, there is no guarantee that, say, for 
every member of a given block of 4096 even k  values, the expression k  + 1 — [VAkN  ] 

w ill give rise to the same residue modulo 2, and thus some of the corresponding inner loops 

would require d  to take the values 1 , 3 , 5 ,  • • • while others involved the processing of 
d  = 2 , 4 , 6 ,  ••• . This is a drawback with using an SIMD machine that we have already 

mentioned (of course, such a structure has very real advantages in other ways), and provides 
another example of the "best possible serial version" being different to that for the parallel



machine.
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Chapter 8 An A lternative Technique for  Detecting
Divisors

It is well known that a decimal integer is divisible by 3 if, and only if, the sum of its 

digits is also divisible by 3. Mathematically, what we are saying is this.
n

Suppose the integer in question, N  , say, equals ( dn dn _! • * • d x d  0 ) = £<^10* . Then
i=o

N  mod 3 = Z d i  10*
i =0

mod 3

Thus,

di 10* mod 3 )
i-o

mod 3

d^mod 3).(10*mod 3)
i =0

mod 3

^T^dimod 3 ) .l
i—0

mod 3

J^di mod 3
i =0

mod 3

Z * ii=0
mod 3 .

N  mod 3 -  0 i f  and only i f Z di
i -0

mod 3 = 0

In other words,

N is divisible by 3 i f  and only i f z *i =0
mod 3 = 0

This method is easy to use because 10* mod 3 = 1 for all i ^  0 , and so, apart from the 
final division by 3, the only work required is to calculate a sum. However, it could easily be 

generalised to other number bases, and to other divisors - the only cost being that the
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arithmetic involved might not be so simple. In particular, a variation of this technique 

could be used to identify divisors of an integer, given its binary expansion.

Suppose that we consider the binary representation of N  , which we shall denote by

bn bn_x ■ ■ • b 1b0 ( i.e. N  = 2* ) ,  and wish to know if a prime p  divides N  . Then,
i -o

N  mod p  =
n
Z& |2‘
i= 0

mod p

=
Tt
22 ( h  mod p  )(2* mod p  ) 
i~ 0

mod p

= 2 > i  (2* mod p  )
i =0

mod p , since

22 2* mod p 
* = 0 , ^ = 1

i.e. N  mod p  = 0 if and only if

mod p .

T  2l mod p
i =0, =1

mod p  = 0 .

Thus, to see if p  divides N  , all we need to do is to sum those 2' mod p  for which the 
corresponding bt is non-zero. If this sum, modulo p  , is equal to 0, then p  divides N  .

This method would apply even if  p  was not a prime. However, as our aim is to find 
the prime factors of a given integer, we will only be interested in primes (and perhaps some 
powers of primes).

To use this idea to factorise a number N  , say, into primes; we would need to find all

the primes (and powers of primes) p  , such that 22 21 mod p
i=0,bt=l

mod p  = 0 ,  where

N  = , as before. This involves, for each prime p  tried, the calculation of 2* mod p
i=o

for possibly many values of i and accordingly, a considerable amount of work for just one 

division. However, if we had a fixed set of primes (called a factor base), and we wished to 

factor many integers over this base, then the initial calculation of all the residues of the 

powers of 2 could be offset by the speed of each individual factorisation.

As Professor D. Parkinson suggested to the author, this method is ideally suited to an 

array processor, for each processor could hold a different prime p  (or if necessary, a power of 
p X as well as the residues 2* mod p  for i in the range 0 to the word length being used, 

which could all be calculated at the start. Then, as we considered each binary digit of N  in 

turn, whenever a 1 was encountered, all the sums (one per processor) could be updated 

simultaneously w ith the respective residue. Thus, for the DAP, we could simultaneously
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divide N  by up to 4096 primes. The primes which did divide N  could easily be found at 
the end, by picking out all the processors (and hence primes), whose sum, modulo its 

particular prime, was equal to 0.

A version of the above which makes use of a more efficient binary representation of the 
number concerned has been implemented on the DAP by the author, and a discussion of it 

now follows.

In the theory above, it was assumed that the number to be factored would be 

represented in normal binary form as;

[fog2iV]
N  = Z  M  , h  = 0 , 1 .

i =0

However, an alternative binary representation is:

Uog2V]+f
N  = £  a2‘ , a =  -1 ,0 ,1 ,

i =0

where a block of Ts is replaced by 0’s except for a -1 in the location of the rightmost 1 ,  and 
the 0 immediately to the left of the block is replaced by a 1 . This is a valid transformation

k
since £ 2 '  = 2*+1 — 2^ . (The sum goes up to [log 2N  ] + I to cater for when the

i = j

leftmost binary digits of N  form a block of Ts, in which case a 1 is inserted to the left of 

the block, in the ([ log2W ] + I Yh position. Otherwise, this position w ill (be considered to) 
contain a 0.)

The time taken for this algorithm is proportional to the number of additions and
Uog2;\r]

subtractions (if any) which we perform. With the first representation, this is £  ,
i =0

[log2V]-t|
whereas the second method only requires Ic; I and, as can be seen from the

i =0

following example, this second sum could be much less than the first.

Suppose we are considering the number whose normal binary representation is

1 1 1 1 1 1 1 0 0 1 .

Dividing this by a given set of trial divisors would require 8 additions using the method 

already given. However, if we considered the number to be

1 0 0 0 0 0 0 ( - 1)001

then only 3 "additions" would be needed, (where we assume that a subtraction takes 

approximately the same time as an addition).
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Thus, this second version would appear to be the better method. It is instructive to note 
that this representation is analagous to the "short-cutting" method of multiplication used in 
hand calculators [Comrie and Hartley 1939]. However, before this algorithm can be 

implemented, one has to decide on a way of obtaining the alternative binary representation 

described above. Examining the normal binary pattern of the number concerned 

beforehand, through LOGICAL vectors and converting it where necessary is not possible, 
since we cannot store the digits 0,1, and -1 in terms of the values .TRUE, and .FALSE! But, 
in fact, it is not necessary to physically change the bits of N  i the process of conversion can 

be carried out "conceptually" as the algorithm is performed. We now describe two ways in 

which this can be done.

First suggestion

The first scheme uses a LOGICAL flag (initialised to .FALSE.) to identify the start of a 
block of (possibly only one) l's (or .TRUE’s). Working from right to left along the binary 

pattern for N  , the method consists of:

- Whenever a 1 is encountered (and flag is .FALSE., implying that this could be the 

start of a block), perform a subtraction, and set the flag to .TRUE..

- If any more l ’s are encountered while the flag is .TRUE, do nothing.

- A t the first 0 while the flag is .TRUE, perform an addition, and set the flag to 

.FALSE, and repeat the whole process if there are any more binary digits to consider. 
(Whenever the bit of A  in question is 0, but the flag is .FALSE, do nothing.)

- If, after all the binary digits of N  have been considered, the flag is still .TRUE then 

perform an addition corresponding to the next power of 2, and set flag to .FALSE. (i,e. 

consider N  to have an extra binary digit which equals 0 on the left).

There are four logical possibilities to consider here:

Flag Bit under consideration Action

T 1 do nothing
F 0 do nothing

T 0 ad d ; flag <— F
p 1 subtract; flag <- T
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The only "snag" with this is that a single 1 in the binary pattern of N  is treated in the 

same way as a block of 1’s, and so, instead of just an addition, one has to perform a 

subtraction, and then add on the next iteration of the loop. However, the method can be 

extended to take this point into account, as we shall now show.

Second suggestion

Again we use a LOGICAL flag, initialised to .FALSE., to identify blocks of l ’s. 

However, this time, as we work from right to left along the binary pattern of N  , we do the 

following. Whenever a 1 is encountered:

- if  flag is .FALSE, and the next digit is 0 (i.e. a single 1), then add, but leave flag 

unchanged;

- if flag is .TRUK and the next digit is 0 (i.e. a 1 at the left hand end of a block of l ’s), 
do nothing;

- if flag is JFALSK and the next digit is 1 (i.e. a 1 at the start of a block of l ’s), then 

subtract and set flag to .TRUK;

- if flag is .TRUK and the next digit is 1 (i.e. a 1 in the middle of a block of l ’s), do 
nothing.

Whenever a 0 is encountered:

- if flag is .TRUK (i.e. the first 0 after a block of more than one l ’s), add, and set flag to 
JFALSK;

- if flag is JFALSK (i.e. a 0 after a single 1 or after another 0), do nothing.

The logical possibilities here are:

Flag Next bit Bit under consideration Action

F 0 1 a d d ; flag unchanged
T 0 1 do nothing
F 1 1 subtract; flag T
T 1 1 do nothing
F irrelevant 0 do nothing
T irrelevant 0 add ; flag *- F
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Assuming the declarations:

LOGICAL FLAG, BITS (73)
INTEGERS TOTALS ( , )

INTEGERS MODPOWERS ( , ,73) , PRECISION

where the LOGICAL array BITS holds the normal binary representation of N  (with the 

least significant bit stored in the first location), the array of INTEGER matrices 

MODPOWERS w ill already have been assigned the required residues, and the INTEGER 
scalar PRECISION holds the length of the binary pattern of N  (where N  is assumed to be 
^  272 ), the following piece of DAP-FORTRAN w ill perform this algorithm:

FLAG = .FALSE.

TOTALS = 0

BITS (PRECISION+1) = .FALSE.
DO 5 0 1 -  1 , PRECISION

IF (CNOT.(FLAG .OR. BITS (i+l))) AND. BITS (I)) GO TO 40
i f  ( C n o t . f la g )  a n d .  (Brrsd) a n d .  b i t s  (i+i))) g o  t o  2 0  

IF (FLAG a n d .  ( n o t  BITS (I))) GO t o  10 

GO TO 50

10 TOTALS = TOTALS + MODPOWERS( , ,  I)
GO TO 30

20 TOTALS = TOTALS - MODPOWERS ( , ,  I)
30 FLAG = .NOT.ELAG 

GO TO 50

40 TOTALS = TOTALS + MODPOWERS ( , ,  I)

50 CONTINUE

It is this second method that has been implemented. As we have already remarked, 

this idea is suitable for use when trying to factor many integers (one at a time) over a fixed 

set of divisors. This is what is required at the start of Step 1 of the Lehman algorithm. We 
have described in Chapter 4 how N  , the integer to be factored, is divided by a matrix 

containing the first 4096 primes, which is read in at the start of the program. If instead, the 

73 matrices of residues required by the above algorithm were read in, then this method 

could be used rather than normal division, to identify which, if any, of the first 4096 primes 

were factors of JV . It could be used for all the other blocks too, provided we had sufficient 
memory to store the tens of thousands of matrices that would be required, and of course, we 

don't! But, even though it is relatively expensive in storage, this scheme is certainly worth 

it for, as we w ill show, it constitutes a much more efficient way of identifying divisors of an
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integer.

As has already been discussed, arithmetic operations on matrices have to be performed 

one bit plane at a time by software routines. When one of the operands is a scalar, this 
allows us the possibility of taking advantage of the form of its binary pattern. For instance, 
to multiply a matrix by a scalar w ill involve repeated shifts and additions of the elements 
of the matrix. However, if a given bit of the scalar is zero, there is no need to shift the 

matrix elements. Instead one could wait until a 1 was encountered, and then shift the 

elements the appropriate number of places.

Such a trick, unfortunately, is not possible with long-division of a scalar by a matrix. 

In this case all the divisors are shifted until their most significant bits correspond to that of 

N  , and then shifted to the right one bit at a time, w ith subtractions from N  being 

performed where possible, until all the least significant bits are aligned. Thus, the number 

of shifts and subtractions is proportional to the length of the binary pattern of N  . With 

the algorithm given above, however, the number of additions and subtractions is 
proportional to the number of Ts in the binary expansion of N  (and no shifting is required). 

In fact, the number of additions and subtractions equals the sum of the number of single Ts, 

plus twice the number of blocks which contain two or more Ts in the binary pattern. So 
we have a method which, like the trick for multiplication mentioned above, allows us to do 
only as much work as is necessary to identify divisors of N  . Admittedly, the above does 
not find the quotient after dividing N  by the product of the factors, but this can be found 
easily by scalar division. We have already remarked how scalar operations are 

approximately ten times quicker than the matrix equivalents, and since this method should 

take less than 90% of the time required for conventional division, (an assertion which w ill 

be justified below), it w ill still be quicker. Indeed, when more than 1 factor is found by 

using the latter method, say p  , q , r  , then a scalar division routine still has to be used to
N  N  N  Nfind -----  since we w ill only know —  , —  , —  , and we have already discussed, inpqr p q r

Chapter 5, how it is quicker to remove all the factors found at once, rather them one at a 

time.

When this method was used to factor the integer 270, a number for which this 

technique should have been very suitable, it took 545 millisecs of DAP-time, whereas the 
normal division routine took only 405. One reason for this was that because of space 

limitations, the matrix of powers had to be computed at the start of the former program. 
When corresponding statements were added to the latter program, it took 503 millisecs. 

Apart from the obvious reason, namely the amount of indexing required in using a high- 

level language, another possibility is described below.
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In the high-level code given above, it was assumed that the binary pattern of N  was 

stored in an array, rather than having the bits accessed directly from the INTEGERM 

locations across which they are stored. This is because of a small problem with 
equivalencing LOGICAL vectors to INTEGER scalars: the elements of a vector are indexed 

from left to right, whereas the binary pattern of a scalar is "written" from right to left. 
Thus, because the counter in a FORTRAN DO loop cannot take decreasing values, a second 

indexing variable has to be used, whose value is decreased by 1 as part of each loop iteration. 

It was felt that the above code would be easier to follow if the bits of N  had been copied 

into a LOGICAL array (with the least significant bit in location 1), so that a single indexing 
variable would suffice, and in fact, this was the version that was run  initially. When the 

program was changed to process the binary expansion of N  without copying it into an array, 
the program took slightly longer to run, (577 millisecs) because the former version included 

a search for the most significant bit of N  , and so as each bit of N  was processed in turn, it 

was known how many there were to consider. In the second method no such search was 

made. Instead, for simplicity, all 31 bits of each multiple-precision digit of N  were 
considered. Thus, a reduction in the running could be made, by including an examination of 
N  beforehand, to identify its most significant bit. But, of course, what would be more 

worthwhile would be to implement this algorithm in APAL, thus allowing it to be 

compared fairly w ith the normal division software routine.

In a previous paragraph it was supposed that this alternative technique should require 

at most 90% of the time taken by the normal division routine. We will now show how, in 
theory, this assertion can be justified.

Suppose, for example, that the number to be factored, N  has 70 bits. Since the first 

and 4096^ primes have respectively 2 and 16 bits, to divide N  by the normal method w ill 

require 69 shifts and subtractions, most of which (55, to be exact) w ill involve operating on 

16 bits. Thus, ignoring shifts, the number of bit operations w ill be equal to

15
(5 5 X 1 6 )  + = 880 + 120 = 1000.

i =1

This figure is constant for all N  of this length, since it is independent of the number of bits 
set in the binary pattern.

On the other hand, one would imagine that the alternative method should be quicker 

for those N  whose binary patterns contain more 0’s than l ’s, w ith perhaps less of an 
improvement in the case where more than half the bits in N  are set. Since this suggests a 

natural division of possibilities, we w ill consider each case separately.
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Suppose, first, that less than Cor equal to) half of the bits in the binary pattern of N  , 
are l ’s. Hence there are at most 35 out of the 70 bits set. The best we could have is for all 

the 35 l ’s to be in consecutive locations, and thus only one addition and one subtraction will 

be required by the algorithm. Since the largest residue can have, at most, 16 bits, the 

number of bit operations required to form the necessary sums w ill be ^  32 . The worst case 

w ill be when one addition w ill be required for each bit set, and this w ill correspond to the 

l ’s alternating with 0’s, or appearing in pairs, with a zero on either side. Hence, the number 

of bit operations needed w ill be at most

35X 16 = 560.

Of course, once the sums have been formed, they need to be reduced modulo the 

corresponding prime. Now, as w ill be shown below, for integers w ith 70 bits, the most 
number of additions required w ill be 47, and so the largest sum w ill be ^  47 X 38,872 

= 1,826,984. and so have at most 21 bits. Thus, the reduction w ill require, by an 
argument similar to the first estimate above, at most

(6 x  16) + £  i = 96 + 120 = 216
t=i

bit operations. From this we can see that if less than 49 additions or subtractions are 
required for the alternative algorithm, then it w ill be quicker than normal division, and as 

has been shown, this is the case for at least half of the numbers w ith 70 bits. In fact, this is 

the case for every integer < 270.

The number of bit operations required in the worst case rises to a maximum when 47 ( 

= [70/3] ) bits are set. If these bits occurred in pairs (except for the "odd one" ) separated by 

zeros,

47 X16 = 752

bit operations would be required. When 48 bits are set, the worst case consists of 22 pairs 

and a block of four l ’s, (or 21 pairs and two blocks of three l ’s etc.), thus requiring 46 

additions and subtractions. If 49 bits are set, the most work is required, among other 

possibilities, when the l ’s occur in 21 pairs and one block of 7, in which case 44 additions 

and subtractions are needed. The worst case when 50 bits are set corresponds to 20 pairs and 

a block of ten l ’s (as well as other arrangements); a situation which would require 42 

additions and subtractions, and so on.

In the above we have not included the time needed for the division to remove any 
factors found. In the case when more than one factor has been found, both factoring 

methods w ill require the use of a scalar division procedure. Admittedly, to remove the
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primes p ,q  say, when using the alternative method, the value of —  would need to be

Ncalculated, whereas the knowledge of —— could be used to slightly reduce the amount of

work involved, if the normal method had been employed. However, depending on the size 
and number of the factors found, the difference should only be slight, and thus it is when 

only a single prime divides N  that there could be a disadvantage in using the alternative 

technique. But, the worst case would be the removal of 2 for which (unless the binary 

pattern of N  were shifted, in which case dividing N  by 3 would involve the most work) 

2 x 6 9  = 138 bit operations would be required. Allowing for the fact that scalar operations 

are about 10 times quicker than the equivalent matrix ones, this extra task should only take 

the equivalent of 14 of the operations which were counted above. This is approximately the 

same as the amount of work involved in dealing with a 1 in the binary pattern of N  , and 

so including this figure w ill reduce the "cut-off" point from 49 to 48 additions or 

subtractions, which is still strictly greater than the most possible, namely 47.

The time required to form the product of all the divisors found, before removing them 

from N  , has not been included either, in the above, since, whenever more than two factors 

have been found, both techniques will require this operation, and, in the case when only 
two factors have been found, the time required for the multiplication w ill be small, and so 
not affect the above conclusions.

The above analysis can be generalised as follows. To divide (using the normal method) 

an n  -bit integer by the first 4096 primes w ill require

((n  + 1) -  16) X  16 + £  i -  (n -  15) X  16 + 120
i  = 1

bit operations, whereas the amount of work involved in using the alternative method is 

16 x  (number of "additions") + work to reduce the sums modulo p 

which equals

16 X  ( n u m b e r  o f  " a d d i t i o n s " )  + Qy — 15) X  16 + 120

b i t  o p e r a t i o n s ,  w h e r e  y  s a t i s f i e s

2 ^ “D ^  (maximum number of "additions") X 38,872 < 2y .
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Therefore, if  the number of additions or subtractions required is — y  (or < n — y 

to allow for the extra scalar division that could be necessary), then to use normal division 
would be slower. As was described above, the number of additions reaches a maximum

2when two-thirds of the bits in the dividend are set. Thus, if —n < n — y , i.e. if

y <  , then, irrespective of how many bits are set, this alternative technique w ill be

quicker. In other words, if

( m a x i m u m  n u m b e r  o f  " a d d i t i o n s ' ' )  X  3 8 , 8 7 2  <  2n/ 3

i.e. if

X  3 8 , 8 7 2  <  2 n  /  3 ,

then this alternative technique w ill be quicker. It is easy to show that, for n  ^ 6 3 ,  the 
above inequality is satisfied. Of course, if numbers less than 263 were to be considered, then 

one would find that, as n  became smaller, some numbers would suit the normal division 

method rather than this alternative idea. But, to find the "cut-off" point, so to speak, for the 

size of n> below which more than 50% of the numbers would require more time if this 

alternative were used, is not trivial. It would require complicated combinatorial 

mathematics to decide, for numbers whose binary pattern was of a certain length, w ith a 
given number of bits set, how many suited long-division and how many, this method. Thus, 
this analysis is omitted. However, there are further points that can be made.

If only one bit were set in the binary pattern of the number in  question, then a flag 

could be put to .TRUE^ to indicate that the sums obtained did not need to be reduced 

modulo the relevant prime. Similarly, if there were only two Ts in the binary expansion 

under consideration, another flag could be set to show that the reduction of the sums could 
be done with only one subtraction (where needed), and that the longer division routine 
would be unnecessary. Two points follow from this.

(1) There w ill always be integers, no matter how small, and irrespective of how many bits 

are set in their binary patterns, for which this alternative method w ill be quicker. As 

was demonstrated above, when considering numbers between 269 and 270 , this 

improvement can be quite considerable - at times, in excess of 10-fold.

(2) Waiting until all the additions were finished before reducing the sums modulo the 

corresponding prime will, for many integers, prove slower than reducing the sums, 
where necessary, after each addition. Of course, if an extra subtraction was needed 

every time a 1 was encountered in the binary pattern of the number being factored,
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then this reduction of the running sums could prove more time-consuming than a final 

division. It would be interesting to know, but again require complicated mathematics 

to find out, how likely this occurrence is. It may be that it would always be quicker 

to reduce the sums where necessary after each addition, thus making the latter even 
more favourable.

Two factors were not taken into account in the above analysis, namely, the time 

required to decide whether to add or subtract or do nothing for each bit of the operand, and 

the amount of storage required. Since the former are only scalar logical tests, their 

contribution to the running time w ill be slight, when compared with the other operations 
involved in the test. The second factor is more significant, however. Since the largest prime 

involved is 38,873, C > 2 15), at most 16 bits of storage w ill be required to hold each matrix 

element. For a DAP-FORTRAN implementation, this necessitates the use of EMTEGER*3 

matrices, but an APAL version could be more efficient Even so, to store all these residues 
w ill require a large amount of memory. But this is the price that has to be paid for the 
increased speed. One could certainly re-compute the residues as they were required, and 

hence only store one of the matrices at any given moment However, if this technique was 

used in conjunction w ith the Continued Fraction or Quadratic Sieve algorithms, then there 

would probably be millions of integers which had to be factored over the factor base, and so 

the time required for re-computation would be considerable, (As can be seen from above, it 

took 98 millisecs of DAP-time to generate the required matrices of the residues of the powers 

of 2 up to and including 273.) and possibly, depending on the length of the binary patterns 

involved, outweigh the advantage in using this method. However, it is very unlikely that 

there would not be enough memory available in the 16K DAP at QMC to store all the 

matrices. The amount of source code for the rest of one’s program would need to be very 
large for there not to be enough space for these residues. For example, all the routines for 
Step 1 of the Lehman algorithm along with 73 matrices of residues could be accommodated 
in only a 4K DAP (since at times, the DAP at QMC processes two streams of jobs - one for a 

12K (or 6 Mbyte) DAP, and the other with programs for a 4K (or 2 Mbyte) machine). It 

must also be noted that the storage requirements do not grow rapidly (unlike that required 

for storing all the primes ^  N  , which grows as the size of N  ), but increase with the length 
of the numbers to be factored.

Thus we have here a technique which seems very promising, as it provides the 

possibility of speeding up trial division by more than 10-fold. While it could be used in 

connection w ith the block of primes in Step 1 of the Lehman algorithm, it should prove 

even more useful in conjunction with the Continued Fraction and Quadratic Sieve 

algorithms, in both of which, up to millions of numbers need to be factored over a known
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factor base of primes. Therefore it is certainly worth further consideration and, in 

particular, an implementation in the DAP’s assembly language, APAL.
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Chapter 9 Prim es and P rim ality  Testing

In Chapter 3, during the general discussion of the Lehman algorithm, it was described 
how, since small factors are more common than large ones, it would be wise to "make the 

most of" the first matrix of divisors, and use all primes. Hence the serial version of the 

algorithm also began by trying the first 4096 primes before generating subsequent trial 

divisors via residues modulo 30. However, it was not stated where the primes would come 

from, and so we start this chapter by briefly describing how they were generated.

One of the best known methods for generating a list of consecutive primes on a serial 
machine, is the sieve of Eratosthenes, which Wunderlich [1967] describes as follows:

"We let A ^  be the sequence of positive integers greater than 1 and store a finite 

portion of this sequence in the main memory of the machine. A® is obtained by 

eliminating all integral multiples of 2, the first element of A (1). A (3) is obtained by 
eliminating all integral multiples of 3, the second element of A ^ .  In general, A te+1) is 
obtained from A ^  by eliminating all integral multiples of , which is the k th element of 
A ^ .  The eliminations are executed within two nested DO loops by storing zero in the 

appropriate words. When the k th element of A ^  exceeds Vx  , the surviving sequence is 

the set of all primes less than x ."

Hence, no division is required to pick out the composite members of the sequence. 

Instead, these are identified by their position in the list. Thus, it is not necessary to store the 
sequences A ^  at all. Rather, we could use a logical array of the same length with each 

element initialised to .TRUE.. A representation of A (z) could be obtained by setting every 

second location to .FALSE.. Then setting every third location to .FALSE, (except element 3) 
w ill produce A ^  , and so on. The required primes are then just the indices of the locations 

in the array which still hold the value .TRUE..

As Wunderlich points out, the advantage of using such a sieving procedure (which is 

normally reducing the computing time by a factor of 100) has to be set against the main 
disadvantage, namely, the large amount of storage that would normally be required. Of 

course, representing the sequence of integers as a "packed array" of type "boolean" in Pascal 

would overcome this problem.

However, since we only require to generate this sequence once, it is not vital that the 

most efficient algorithm is used, and so a more naive method was employed, as we w ill now
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show.

We start with, say, the first 4 primes, and then "guess" what the next one w ill be. If 

the number picked is composite, then it w ill be divisible by at least one of the primes 

already found (unless it is so large that it is the product of primes not already found - a 

possibility that is, needless to say, avoided by a "sensible" choice for the next "possible 

prime"). Thus, all one has to do, to check if the number is prime, is to divide it by all the 

primes so far obtained. Of course, this would be more work than is necessary, since the 

prime factors of a composite integer are all less than or equal to that integer’s square root. 

Hence, one need only check for divisors amongst this smaller set of primes.

We have already discussed how to generate a sequence containing all the primes, and as 
few composite numbers as possible. But, since for our purposes, the generation of this list of 
primes is a "one off" exercise, it does not matter if our program is not the most efficient that 

could have been written. Therefore, because of its simplicity, the sequence formed by the 

terms: 6k + 1 and 6k — 1 Qc ^  1) was used as a source for the next "guess", (subsequent 

terms of the sequence are obtained by adding alternately 2 or 4 to the previous one). It took 

the VAX 15-5 seconds of cpu time to produce the required list. When exactly the same 

algorithm was written in DAP-FORTRAN, and run on the DAP, (thereby ignoring its 
potential for parallelism, and treating the DAP as an SISD machine), the time taken was 

49 * 7 secondsl This suggests that the master control unit, which performs scalar operations 

in addition to decoding instructions and broadcasting data, is not as quick a machine (at least 

for a program which involves mainly fixed point arithmetic) as a VAX 11/780.

Another factor which contributed to the mcu's poor performance was that the primes, 
as they were generated, were not held in a conventional (software) one-dimensional array, 

but were stored as the elements of a matrix, with one prime located in each processor. Thus, 
to divide the next "guess" by a prime already found, involved picking the latter out from 

the matrix and transferring it to the mcu. A natural improvement to the method was to 

replace the repeated transferring of primes to the mcu with transferring each "guess" to the 

processor array, and performing all the divisions simultaneously. As the next prime was 
found, it was stored in the next available location in the matrix of primes (considered for 

this purpose, as a long vector). Matrix elements which had not yet been assigned a prime 
were initialised to the value 2.

Following the division of the next member of the sequence, a LOGICAL mask was used 

to indicate the processors in which no remainder had been produced. Thus it was important 

for those processors which had not yet been allocated a prime, to be unable to affect the 
outcome of a division by claiming not to have a remainder when the dividend had, in fact, 

been a prime. Rather than using a second LOGICAL matrix to mark out those processors
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which were to be ignored (an element of which, would then have to be changed whenever a 

prime was found), these PE's were assigned the value 2, since all the members of the 

sequence 6k + 1, 6k — 1 (k 1) are odd.

The time the DAP required for this method was just over 11 ■ 5 seconds. This was

certainly an improvement on the previous time, but not much quicker than the serial

machine. In an effort to discover why the DAP had not been even quicker, instructions

were added to the program to count how many times a mask was tested, how many scalar 

instructions there were, and how many times the processor array was used for calculations, 
the assigning of a mask, or the assigning of an integer matrix. The results were as follows:

Tests of masks 12,955

Scalar instructions 21,140
4096 PE’s used 38,866

1 PE used 4095

77,056

The fourth row refers to the storing of each successive prime. The number recorded is 4095 

and not 4096, since the first prime, 2, was broadcast to all the processors, and so this 

instruction is counted in the previous row of the table. Thus one can see that only just over

half of the instructions made use of the SIMD capability of the DAP. The other
instructions, for the most part, were either scalar operations or the logical combining of 

matrix elements. When one considers that out of the 38,866 matrix operations performed, 

many of the processors were doing a needless task (i.e. dividing by 2), it is clear why the

DAP’s time was so poor in comparison with the VAX.

The sad fact is, though, that apart from minor modifications (e.g. using a vector to store 

and divide by the first 64 primes), there does not seem to be a more suitable method for 

generating consecutive primes on the DAP. The Sieve of Eratosthenes would not suit the 

DAP’s architecture for, unlike the CRAY-1 which has a stride facility enabling the "picking 

out" of those locations of a vector which are a certain distance apart (e.g. every third one), 

accessing matrix elements which are not a power of 2 apart is not easily possible. The mask 
that one would have to form to mark every fifth, say, element in the first matrix of possible 

primes would not suit the second matrix, but would need to be shifted one place to the left 

(considered as a long vector). Certainly, this would not take very long, but the situation 
would not be so simple in the case of the prime 647 ( 4096 = 6 X 647 + 214) which would
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require shifting 214 places left as a long vector, or 3 cyclic shifts west of the matrix and 

then 22 shifts left as a long vector, and would get even worse when considering a prime, 

like 4231, which is larger than the number of elements in one matrix.

Thus it would appear that, until a more ingenious method can be developed (if 
possible) that suits its architecture, if one requires the generation of tables of consecutive 
primes very quickly, then the DAP is not the machine to use.

However, as w ill now be shown, the DAP is very suited to a related problem which is 

more complicated than the above, namely, identifying whether a given integer is prime or 
composite.

When generating primes, the next one was recognised by proving that it had no factors 

( >  1) less than or equal to its square root, and this method is adequate for the small 

numbers being dealt with. However, to test a 50-digit decimal integer for primality by 

simple trial division would not be wise simply because of the time it would take! Indeed, 

using any factoring algorithm to identify large primes would be extremely wasteful, for it 

would involve doing far more work than is actually necessary. As Lenstra [1982] remarks:

"To the uninitiated reader it may seem surprising that it is possible to prove that a

number is composite, without the proof yielding a factorisation."

but if it were not true, then the advances that have been made w ith primality testing, 
would not have been possible.

The main result, to date, in this field is that of Adleman, Pomerance and Rumely 

[1983], a version of whose test has been implemented by H. Cohen on the CDC-Cyber 170- 

750 computer of the SARA Computer Centre in Amsterdam. Lenstra reports how, at the 

time of his writing, it was the only primality test in existence that could routinely handle 
numbers of up to 100 decimal digits; doing so within approximately 45 seconds! (According 
to Dixon [19841 the "most recent report is that this program can routinely handle proofs of 

primality for primes up to 200 digits in less than 10 minutes".) However, the algorithm 

involved is extremely complicated, and an investigation of its potential for a parallel 

implementation is a non-trivial problem. In view of the difficulties associated w ith putting a 
new algorithm on a machine like the DAP, mentioned earlier, it was considered more 
suitable for the present piece of research, to investigate other, simpler, algorithms. The test 
that has been implemented is capable of proving that a given integer is composite, but can 

only indicate that a number is probably prime. However, the algorithm is such that, as we 

w ill now describe, the probability of drawing the wrong conclusion is so small that, if it did 

happen, then this would be of much more interest to statisticians and number theorists than 
being wrong would be disappointing.



-  145 -

The idea which underlies the test follows from Fermat's Theorem, namely, that if p  is 

a prime, and x  is not a multiple of p , then

x p~x = 1  ( mod p  ) .

Knuth [1982] describes how this can be used to show the non-primality of a given integer as 

follows.

"When n  is not a prime, it is always possible to find a value of x < n  such that 

x n_1 mod n y* 1; experience shows that, in fact, such a value can almost always be 

found very quickly."

However, there are certain composite integers, called Carmichael numbers, for which 
x a-1 ™ 1 ( mod n )  for every x  e Z  coprime to n .  But, as Knuth points out, it can be 

shown that if  n  is a Carmichael number, then it has a factor less than n lf 3 .

Thus, this test could be of use between Steps 1 and 2 of the Lehman algorithm, because 

by that time it is known that what is left (iV, say) of the number to be factored, is either 

prime or the product of only two primes. If we were to pick at random several x ’s and find 
for each of them, that x N-1 =  1 ( mod N  ) , then this would suggest that N  were prime, 

and hence the iterations of Step 2 would be unnecessary.

But, how sure could we be that we were right? If we had chosen an x  such that 

x N_1 sfe 1 {mod N  ) ,  then we could be certain that N  was composite. But, just because all 

the x ’s tried did satisfy the congruence does not imply that N  must be prime. We could 
have been "unlucky" in those numbers picked, or had not chosen enough.

The following variation is better, because one can place a numerical bound on the 

probability of N  behaving like a prime when it is not. Knuth states the algorithm as 

follows:

Let n  = 1 + 2* q , where q is odd.

PI [Generate x  .] Let x  be a random integer in the range 1 < x  < n  .

P2 [Exponentiate.] Set j  *- 0 and y * -x q mod n  .

P3 [Done?] (Now y  = x 2iq mod n  .) If j  = 0 and y  = l , o r i f y  = n — 1, terminate the

algorithm and say Vis probably prime". If j  > 0  and y — 1, go to step P5.

P4 [Increase j  .] Increase j  by 1 . If j  < k  , set y * -y2mod n  and return to step P3.

P5 [Not prime.] Terminate the algorithm and say that " n  is definitely not prime."

The motivation for this test is that, if n = 1 + 2k q is prime then, by Fermat’s 

Theorem, x n~x — x 2*? w ill be congruent to 1 modulo n  . Now, having

y 2 — 1 {mod p  )
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is equivalent to saying that

p  i ( y  — l ) ( y  + 1 )

which implies, if p  is a prime, that

y i C p —1) or y I ( p + 1)

In other words, y  must be congruent to 1 or ( p — 1) modulo p  (since 

p — 1 =  — 1 ( mod p  ) ). So, if p  is a prime, the sequence

x 9 mod p  , x 29 mod p , x 49 mod p  , • * * , x 2*9 mod p

w ill end with 1, and as we have just proved above, the previous member of the sequence 
w ill be either 1 or p  — 1 . Hence the tests of the algorithm.

However, just because x ^ 9 mod n equals 1 for some i does not mean that n  must be 
prime. If there had been no i w ith 1 , for which the above equality held, then we

could be certain that n  was composite. But, as with the previous test, the primality of the 

number concerned cannot be rigorously proved. The advantage w ith this test over the other 

is that one can put a bound on the probability of being wrong. Knuth shows how to obtain

the value -1-; a useful result since this value is independent of the size of n  . He goes on to

describe how this algorithm (which he calls Algorithm P) can be used as the basis of a 

primality test which is almost completely reliable.

"Suppose we invoke Algorithm P repeatedly, choosing x  independently and at random 

whenever we get to step PI. If the algorithm ever reports that n  is nonprime, we can say 

that n definitely is not prime. But if the algorithm reports 25 times in a row that n  is 
"probably prime", we can say that n  is "almost surely prime." For the probability is less 

than (1/ 4)125 that such a 25-times-in-a-row procedure gives the wrong information about n . 

This is less than one chance in a quadrillion; even if we certified a billion different primes

w ith such a procedure, the expected number of mistakes would be less than ^qq^qqq1 • ^  ^

much more likely that our computer has dropped a bit in its calculations, due to hardware 

malfunctions or cosmic radiations, than the Algorithm P has repeatedly guessed wrong!"

This algorithm is very suitable for implementation on the DAP for several reasons

(l)  The work associated with each of the values is independent of that for all the other 
random numbers. Thus, a vector could be used to perform the test simultaneously for 
64 random numbers. The probability of being wrong would then be (1/ 4)^  . If this 

were not small enough, then matrices could be used instead to give a probability of 

making a wrong judgment, equal to (1/ 4)4096 !
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(2) Much time and effort has already been spent developing quick and reliable random
number generators for the DAP and so there would be no difficulty in obtaining a

vector or matrix of x  values.

But, the main disadvantage in using the DAP is that one is forced to do far more work 

than is really necessary. For a serial implementation, 25 repetitions of the algorithm with 

different values, would give an acceptable probability of error. One would certainly never 
think of performing the algorithm 4096 times! However, this is just one of the drawbacks 

in using a large array of bit processors.

Certainly one could say that an event with a probability of happening equal to -L -4

was more likely than an event w ith a probability of associated w ith it, but in practice,

neither would be expected. But, if the latter did happen, then the disappointment in 

deciding, wrongly, than an integer was prime would be considerably outweighed by the 

interest raised by the occurrence of such an unlikely event.

This algorithm has been implemented in DAP-FORTRAN, but because no multiple- 

precision long-division procedure has been written (which would be required to reduce an 
integer modulo n , if  n  were large), the program just manipulates integers <  2M, and so can 

only test integers less than < 232. However, this test is certainly worth implementing for 

multiple-precision integers, once a long-division procedure is available, since, as can be seen 

from below, the algorithm is "good" in the sense that its running time is bounded by a 

polynomial in the length of the integer to be tested.

It is well known that by a process of repeated squaring (modulo n  ), the exponential 

x q (.mod n  ) can be calculated in CKlogj ) steps. What one does is to produce the sequence

x  , x 2(mod n ) ,  x 4(mod n ) ,  x 8(mod n ) etc. 

and form the product of those x  ̂  (mod n ) for which a,- = 1 in the binary representation 

52 2f of q .
i =0

Since at every stage, the value to be squared w ill be < n ,  at most (log2n )2 bit 
operations w ill be required for each multiplication. The result w ill be < n 2, and so have 

^  21og2n bits. Hence, the greatest number of bit operations required for the reduction 
modulo n  w ill again be (log2n  )2 . Thus, the squaring involved in the initial exponential 

calculation w ill require at most

2 (log 2n  )2. log2 §f

bit operations.
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By a similar argument, each multiplication needed to form the final product w ill 
require at most 2(log2n )2 bit operations. Since the number of l ’s in the binary pattern of q 
cannot exceed log2<? + 1, at most log# multiplications w ill be required (no multiplication is 

needed to take account of the least significant bit of q being set), and the number of bit 

operations required to calculate the exponential w ill be bounded above by

4 (log 2n  )2. log# .

A t this point it may be possible to terminate the algorithm. If not, then the process of 
squaring and reduction modulo n  must begin, each iteration of which w ill require, as shown 

above, 2(log2n )2 bit operations. The worst case w ill be when x 2kq (mod n ) must be formed, 

thus involving a total of 2k (log2n )2 bit operations for the second stage.

Hence, the whole algorithm requires at most

2 (log 2n )2 (2  (log #  ) + k  )

bit operations. But, since n — 1 = 2k q , we have that k  + log# ^  log2n , and so the 

upper bound on the work involved in the test is

2(log2n )3 + 2 (log 2n  )2. log# ^  4(log2n )3

bit operations.

Thus, the running time of the algorithm is indeed bounded by a polynomial in the 

length of the integer in question. This could make this test theoretically quicker even for a 

serial machine than the one implemented by Cohen mentioned above. (It depends on the 

constant implied in saying that Cohen's test is 0((log n  , where c is another

constant.) However, the price we have chosen to pay is the possibility of deciding that a 
composite number is prime. But, when one takes into account that the probability of this 

happening is ^  (1/ 4)4096 , then it would appear not to have been such a high price to pay.
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Chapter 10 Conclusions

The Lehman Algorithm

We have shown how this algorithm is indeed suitable for a parallel implementation. 
However, while the flexibility of an MEMD system is not, for the most part, required, the 
SIMD structure of the DAP forced us to accept some inefficiences. For example, wishing to 
re-divide w ith one divisor in a given block necessitates re-division by the whole block, since 

to construct a new matrix of divisors would be time-consuming. Another example was seen 

in connection w ith performing the d  loops. Because the inner loop limits vary inversely 

w ith the outer loop counter, we had to do far more work than was necessary in the d loops 
corresponding to very small values of k .

On the mathematical side, in addition to refining the running time bound for Step 2, it 

has been demonstrated how, for numbers of certain forms, the Lehman algorithm can find 

the factors quickly, sometimes "instantly". It has also been shown that extra knowledge 
about the relative size of the factors of N  can, in some cases, be used to reduce the running 

time. We have noted too, how the rigidity of the DAP can sometimes allow us to take 

advantage of the form of a number without knowing about it!

However, there are certain points worth further investigation.

(1) If it is possible to know, in general, the probability distribution of the (£  ,d  ) pairs (i.e. 
which k  values or ( k  ,d  ) pairs are more likely), this could suggest better ways of 
performing the search of Step 2.

(2) In the algorithm, several pieces of information are ignored. For instance, the primality 

of p  and q , the factors of N  , is never used (all we use is that p  and q lie within a 

certain range, and that after a perfect square test we can say that p  5^g). Also, the 
search for ( k  ,d  ) pairs seems to be on the basis of "pot luck". The fact that we know 

values of k  and d which did not work, is not made use of when selecting the next 
pair to try. If a way could be found to make use of this knowledge, then it might be 

possible to develop a much more efficient deterministic factoring algorithm.
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The DAP

When one reads the historical survey of integer factorization in [Brillhart et al 1983],

it becomes clear that there are two facilities which make a computer suitable for number
theoretic calculations:

(i) the returning of a double-length result from a multiplication; and

(ii) the provision of a multiple-precision arithmetic package.

To a certain extent, the DAP does provide the first. However, a 64-bit result can only be 

obtained in DAP-FORTRAN if the operands are also of that length. Unfortunately, when 

one multiplies together two 32-bit integer variables, and the answer is larger than 231 — 1, 

INTEGER overflow occurs, even if the variable on the left-hand side , which is to store the 

result, is of 64-bit precision. What would be a useful alternative is for the precision of the 

result of a calculation to be decided by the length of the variable on the left-hand side of 

the assignment statement, rather than being governed by the precision of the operands on 
the right.

It is unfortunate that the second requirement is not provided, and that the writing of 

any multiple-precision routines required is left to the user. It is also disappointing that 

much of the advantage that should be gained from the DAP’s flexibility in handling large 

integers is lost when DAP-FORTRAN is used. It is unlikely that many mathematicians, or 

DAP users in general, w ill want to learn APAL, the DAP’s assembly language, in order to 
avoid these problems. Thus, in addition to (or perhaps instead of) the suggestion above, two 
things are required.

(a) a multiple-precision arithmetic package, which could be even more useful if it 

included routines for finding roots of polynomials, (especially square and cube roots), 

and for calculating the quadratic residue (necessary for solving quadratic congruences - 
a task required in the Quadratic Sieve algorithm) and Jacobi symbols ; and

(b) a high-level assembly language, like C , so that users could have access to the flexibility 
of the bit-manipulating capability of the machine, without the overhead of array 

indexing (as at present, when using LOGICAL arrays in DAP-FORTRAN).

The suitabilty of the DAP for variable-precision arithmetic is due to it being an array 
of single bit processors. Of course, the disadvantage with this design is that floating-point 

operations are relatively time-consuming. But, since number theory calculations (especially 
primality testing and integer factorization) typically involve only integer arithmetic, this 

factor does not affect such work. However, improvements could be made concerning the 

time that multiplication takes (see times in Chapter 6), and it would seem to have been a 

wise decision to make, to (presumably) use more powerful bit processors in the new version
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of the DAP (which has a cycle time of 150 nanoseconds, rather than 200).

Perhaps the one drawback with the new machine is that the array size has been 

reduced to 1024 processors. As we showed in Chapter 6, this will, as would have been 

expected, result in it taking four times as long as the 4096 DAP to perform the same task. 
But, the advantage in having a smaller array, from the point of view of the Lehman 
algorithm, is that the inefficiencies mentioned at the start, w ill not be so great in relation to 

the total amount of work required. Although, it is a tribute to the power of the original 

machine that, despite these inefficiencies, some very high speed-up ratios were obtained. Of 

course, it must be added that the new, smaller DAP, at one fiftieth of the price, but leas than 

a quarter of the power, is much better value than the old one!

A further piece of work, whose outcome would be interesting, is the re-implementation 

of the programs described in this thesis, in APAL, so that, as well as using the parallelism of 

the DAP (as has been done), the bit-processing flexibility of the machine can be exploited.
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Appendix A Proof o f the A ssertion in  Chapter 3

In the proof we asserted that there exist natural numbers r  , s such that 

rs < N 11 3 and I pr — qs I <  N 11 3 .

This w ill now be proved.

Let — denote the n th convergent of the continued fraction expansion of — . Now,

p > N 1 /3andq < N 21 3, so that — < N  1/3.iV2/3. Thus r i  =p < N 11 3. Also, since

q ^ p  , we have that — ^ 1  and so r t =
P

^ 1 .  Hence since Si = 1 we have that

0 < r 1̂ '1 < N V 3. Now, {rn }, {x„} are increasing sequences, and therefore so is {rn sn }. We 

have shown that r  ̂  < N lf 3. Since — is rational, and q ?±p , the last convergent w ill be

— , and pq = N  > N 11 3, and so, we can find an m such that
P

(1) rmsm < N 11 3

(2) rm+1sm+1> N 1/3.

(Both inequalities are strict because N  ~ pq is not a cube.) Take r  = rm , s = sm . Then, by 

(1), rs < N 11 3. So, it remains only to show that I pr — qs I <  N 113. Now, for this 
choice of r  and s , we have that

\ l  -  «  IL
I S P I I S

r m + 1

^m+1 j

*̂ m+l I

(since — and .. m+1. are consecutive convergents to —)

| rSm +1 |
I SSm +1 I

I rsm+1 -  rCT+1x I
^m+1

^m+l

rm rm
(from the theory of continued fractions, i f  a n d  are consecutive convergents to a

Sm Sm
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given real number, then I rm^m+1 — rm +15'nI I = 1), which implies that

I pr — qs i ^  ——— = ——— .
SSm +1 Sm

By considering the convergents of the continued fractions expansion of it can be shown

in a similar manner that

I pr — qs I ^  —- — .
?~m +1

Hence

(p r  — q s )2 ^  a = N 213
I'm +1Sm +1 N

i.e.

as required.

I pr — qs I <  N 11 3,
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A ppendix B Using previous know ledge in  Step 2

Once the value of 4(k + l)N  had been found, the next task to be done was to calculate 

[VAik +1)A 1 This could have been done "from scratch" each time. However, since we 

already knew [V 4k N  1 it was natural to try  and use this knowledge to save some time. We 

tried various schemes to do this; but, as w ill now be described, only one met w ith any 
success.

(i) The gap between k 2 and (k +1)2 is equal to 2k +1 (assuming k  >  0); the gap between 

(& + l)2 and Oc +2)2 is 2k +3 , and so on. Now, since [V 4(£ +1)N  ] is equal to the number of 

perfect squares which are less than or equal to 4(k +1)N , if we knew one of these perfect 

squares, say X 2, then we could repeatedly subtract 2X+1, 2X+3, «« etc., from 

(4(fc +l)W  — X 2) = Gap, say, until Gap were ^  0 . Then, if Gap equals 0, [V 4(k +1 )N  3 
would equal the sum of X  and the number of (2X + i j s  subtracted, whereas, if Gap < 0 
the value of [V 4(& +1)W ] would be one less than the previous sum.

Obviously we would want the X 2 chosen to be as large as possible, and this is where 

we tried to make use of our previous knowledge. [V 4kN  ]2 is a perfect square, whose square 

root is known, which is less than 4(k +1 )N  , and as this is the largest such number known 

at this stage of the program, it could be used to "play the part of" X  . The following 
algorithm could then perform the process:

Gap: = 4(ifc +1 )N  -  [V4W ] 2;

[ V 4 a + l ) W ] : =  [ V4 k N] ;

SmallerGap: = 2* [V 4k N  ] + 1 ;
while Gap >= SmallerGap do 

begin

Gap: = Gap - SmallerGap;

SmallerGap: = SmallerGap + 2 ;

[V4U +1)N  ]: = W4Uc +1 )N  ] + 1 
e n d ;
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This method is certainly very simple, using for the most part, only addition and 
subtraction - operations which are quicker than the multiplications required by the 
Newton-Raphson algorithm, and it proved very satisfactory for small N  . However, when it 

was tried with larger N  , the gaps between successive values of 4k N  were just too large. 

Subtracting the "Smaller Gap’s" two or four at a time only provided a temporary 
improvement, and it was found that, long before N  was as large as 270, this scheme became 

impractical.

Cii) Consider the following

V4 {fc+DN  = V 4kN  + 4N

= V 4kN
y%

= V 4kN i  + A . - J L +  1 -  5 + 7 ,
2k W *  16P" 12 8k4 256k*

by the Binomial Theorem. Now, since the series:
Vi

_  1 -}- ^ _____ 1 ^ . 1    ^  _j_ 2
2k &k? \6 k*  12& F 256k5

is absolutely convergent for k  ^  1, we can rearrange the series in an infinite manner as 
shown:

1 + r
% 1= 1 4- — 1

'
1 5 7

2k 8 k 2 16k3 128 k 4 256k5

< 1 + —-  2k

since each of the brackets on the right hand side, contains a positive term. Hence,
Vi

V 4U +l)iV = Vffiv"'

<  V4kN 1 +

= V4 k N  +

2k

ffVt

______________  AT Vi
< ^

< [V4k N  ] + 1 + + i  .



-  156 -

Now, it can be shown that

N * [iV*]S
llfc41] j

+ 1

and so we have that

[V4U +1W ] < V4U +1W

< [V4EV] + [ff*]
t*t

+ 3

Thus, if we know the values of [N Vz] and [Vfc ] ,  we can use our knowledge of [V4kN  ] to 
calculate an upper bound for [V 4(A +1)N  ] . Obviously, we have to find the first value, 

[V 4N  ] ,  from scratch, and this can be used to obtain W N  ] ,  since

[V F ]  = [V4F ]  div 2 .

Since the iteration variable, k  , takes as its value each successive integer Cup to some limit) 

starting at 1, in ascending order, a simple counting procedure can be used to determine when 

W k  ] should be increased by one (because, as mentioned before, if X  ^ 0  , then 

( X + l ) 2- X 2 = 2X + 1).

As w ith the previous idea, this method worked well for small N  , but for larger N  

proved unsatisfactory. The problem is that, since we only used two terms of the above series 

in our working, the upper bound produced, for even relatively large N  , is much greater 

than the actual value, and so more time is spent reducing our estimate than it would have 

taken to find [VAik +1)N ] from scratch. Taking more of the terms in the series for

1 + JL into account would not necessarily solve the problem, since the forming of these

would require multiplications and divisions, and because, for very large N  , so many terms 

would be needed before the bound was sufficiently close to the actual value, the work 

involved would be greater than that for the Newton-Raphson method.

(iii) The third way to take advantage of the knowledge of [V 4kN  ] which was tried, was 
to use it as the initial estimate for [V Aik +1)N ] when using the Newton-Raphson algorithm. 

While it may not be the most imaginative plan, it certainly proved to be effective.



-  157 -

Com puting Science References

Anderson J P, Hoffman J A, Shifman J and Williams R J 1962

"D825 - A Multiple-Computer System for Command and Control" AFIPS Conference 

Proceedings, 1962, Vol. 22, pp. 86-96.

Anderson D W, Sparacio F J and Tomasulo R M 1967
"The IBM System/360 Model 91: machine philosophy and instruction handling" IBM J. 

Res. Dev., Vol. 11, pp. 8-24.

Barnes G H, Brown R M, Kato M, Kuck D J, Slotnick D L and Stokes R A 1968

The ILLIACIV computer", IEEE Transactions on Computers, Vol. C-17, pp. 746-57.

Batcher K E  1974

"STARAN parallel processor system hardware", Proc, of the National Computer 
Conference, Vol. 43, pp. 405-410.

Batcher K E  1980

"Design of a Massively Parallel Processor", IEEE Transactions on Computers, Vol. C-29, 

No. 9, September 1980, pp. 1-9.

CACM 1984
"ACM Commemorates IEEE Centennial", news report in Communications of the ACM, 

August 1984, p. 851.

Clementi E, Corongiu G, Detrich J H and Khanmohammedbaiji H 1984

"Parallelism in computational chemistry: applications in quantum and statistical 

mechanics", paper given at Vector and Parallel Processors in Computational Science II, 

Oxford, 28-31 August 1984 (Proceedings to appear).

Comrie L J and Hartley H O 1939

"Modern machine calculation", translated and revised from original by H Sabielney, 

(Scientific Computing Service Ltd, London).

Dekel E and Sahni S 1981

"Binary Trees and Parallel Scheduling Algorithms", The University of Texas at Dallas 

Technical Report #95.

Dennis J B 1979

"The Varieties of Dataflow Computers", Proc. of the First International Conference on



-  158 -

Distributed Computing Systems, October 1979, pp. 430-439.

Enslow P H Jr 1974
"Multiprocessors and Parallel Processing", Conitre Corporation (John Wiley and Sons, 

New York).

Falk H 1976

"Reaching for the gigaflop", IEEE Spectrum, Vol. 13 (10), pp. 65-70.

Flanders P M, Hunt D J, Reddaway S F and Parkinson D 1977

"Efficient high speed computing with the distributed array processor", High Speed 

Computer and Algorithm Organization, ed. D J Ruck, D H Lawrie and A H Sameh, 

(Academic Press, Inc. (London) Ltd.), pp. 113-28.

Flynn M J 1966

"Very High Speed Computing Systems", Proceedings of the IEEE Vol. 54 pp. 1901-9. 

Flynn M J 1972

"Some computer organisations and their effectiveness", IEEE Transactions on 

Computers, VoL C-21, pp. 948-60.

Gostick R W 1979

"Software and algorithms for the Distributed-Array Processors", ICL Technical 
Journal, Vol. 1, Issue 2, May 1979, pp. 116-135.

Gregory J and McReynolds R 1963

"The SOLOMON computer", IEEE Transactions on Electronic Computers, Vol. EC-12, 
pp. 774-81.

G u r d J K  1984

"The Manchester dataflow machine", paper given at Vector and Parallel Processors in 

Computational Science n, Oxford, 28-31 August 1984 (Proceedings to appear).

Hockney R W and Jesshope C R 1981

"Parallel Computers", (Adam Hilger Lt<l, Bristol).

Jones A K and Schwarz P 1980

"Experience Using Multiprocessor Systems - A Status Report", ACM Computing 
Surveys, Vol. 12, No 2, pp. 121-65.

Knuth D E  1981

"Seminumerical Algorithms", The A rt of Computer Programming (Second Edition), 
VoL 2, (Addison-Wesley Publishing Company, Reading, Mass.).

K u c k DJ  1977

"A survey of parallel machine organisation and programming", ACM Computing



-  159 -

Surveys, Vol. 9, pp. 29-59.

K u c k D J  1980
"High-Speed Machines and Their Compilers", paper from CREST Conference on 
Parallel Processing, contained in "Parallel Processing Systems - An Advanced Course", 

ed. D J Evans; (CUP).

K u n g H T

"Why Systolic Architectures?", IEEE Computer, January 1982, pp. 37-46.

Lundstrom S F and Barnes G H 1980
"A Controllable MEMD Architecture", Proceedings of the 1980 International 

Conference on Parallel Processing, pp. 19-27.

von Neumann J 1946

"Preliminary discussion of an electronic computing instrument", Collected Works of 

von Neumann, VoL 5, pp. 34-79, (actually co-authored by A W Burks, H H Goldstine 

and J von Neumann).

von Neumann J 1949

"The Future of High-speed Computing" Collected Works of von Neumann, VoL 5, 

p236.

von Neumann J 1954

"The NORC and Problems in High-speed Computing", Collected Works of von 

Neumann, VoL 5, pp. 238-247.

Ohlsson L and Svensson B 1983

"Matrix Multiplication on LUCAS", Proceedings of the Sixth Symposium on Computer 
Arithmetic (IEEE Computer Society 1983), pp. 116-22.

Parkinson D 1980

"Practical Parallel Processors And Their Uses", paper from CREST Conference on 

Parallel Processing, contained in "Parallel Processing Systems - An Advanced Course", 

ed. D J Evans; (CUP).

Parkinson D and Wunderlich M 1984
"A compact algorithm for Gaussian elimination over GF(2) implemented on highly 

parallel computers", Parallel Computing, VoL 1, Number 1, August 1984, pp. 65-73.

Robinson A L 1979

"Array Processors: Maxi Number Crunching for a Mini Price", SCIENCE, VoL 203, 12 

January 1979, pp. 156-160.



-  160 -

RussellRM  1978
"The CRAY-1 computer system", Communications of the ACM, Vol. 21, No. 1, pp. 63- 

72.

Siegel H J  1979

"Interconnection networks for SIMD machines", IEEE Computer, VoL 12 (6), pp. 57-65.

Slotnick D L, Borck W C, and McReynolds R C 1962
"The SOLOMON computer", AFIPS Conf. Proc., Vol. 22, pp. 97-107.

Slotnick D L 1967

"Unconventional systems", AFIPS Conf. Proa, Vol. 30, pp. 477-81.

Snelling D F 1984

"Applications of the HEP", paper given at Vector and Parallel Processors in 

Computational Science n, Oxford, 28-31 August 1984 (Proceedings to appear).

Stone H S  1975

1975 "Introduction to Computer Architecture", ed. H S Stone (Science Research 

Associates, Inc.), Chapter 8, pp. 318-74.

Stokes R A 1977

"Burroughs Scientific Processor", High Speed Computer and Algorithm Organization, ed 

D J Kuck, D H Lawrie and A H Sameh, (Academic Press, Inc. (London) Ltd.), pp. 85-9.

Swan R J, Fuller S H and Siewiorek D P 1977

"Cm* - A Modular Multi-Microprocessor", Proceedings of the National Computer 

Conference, 1977, pp. 39-46.

Swan R J, Bechtolsheim A, Lai K-W and Ousterhout J K 1977

"The Implementation of the Cm* Multi-Microprocessor", Proceedings of the National 
Computer Conference, 1977, pp. 645-55.

Thornton J E  1964

"Parallel operation in the control data 6600", AFIPS Conf. Proc., Vol. 26 (part n), pp. 
33-40.

Thurber K J and Wald L D 1975

"Associative and parallel processors", ACM Computing Surveys, Vol. 7, N a 4, pp. 215- 

55.

Unger SH  1958

"A computer oriented towards spatial problems", Proc. Inst. Radio Eng. (USA), Vol. 46, 

pp. 1744-50.



- 161 -

W atsonW J 1972
"The H  ASC : A Highly Modular and Flexible Super Computer Architecture", AFIPS 

Proceedings FJCC, pp. 221-228, reproduced on pp. 753-762 of "Computer Structures : 
Principles and Examples", by D P Siewiorek, C G Bell and A Newell (McGraw-Hill 

Book Company, New York, 1982).

Widdoes L C Jr and Correl S 1979

"The S-l Project: Developing High-Performance Digital Computers", Energy and 

Technology Review, September 1979.

Wilkinson J H  1953
"The pilot ACE", Computer Structures: Readings and Examples Chapter 11, ed. C G 

Bell and A Newell (New York: McGraw-Hill) pp. 193-9.

W ulf W A and Bell C G 1972

"C.mmp - A Multi-mini-microprocessor", AFIPS Conference Proceedings vol.14 part n, 

FJCC 1972, pp. 765-77.

Yau S Sand Fung H S  1977
"Associative processor architecture - a survey", ACM Computing Surveys, Vol. 9, No. 1, 

pp. 3-27.



M athem atics References

Adleman L M, Pomerance C and Rumely R S 1983
"On distinguishing prime numbers from composite numbers", Annals of Mathematics, 

117 (1983), pp. 173-206.

Brillhart J et al 1983

"Factorizations of bn +_ l ' \  Contemporary Mathematics, Vol. 22, (American 
Mathematical Society, Providence, Rhode Island).

Dixon J D  1984,

"factorization and Primality Tests", The American Mathematical Monthly, Vol. 91, No. 
6, June-July 1984, pp. 333-352.

Gerver J L 1983

"Factoring Large Numbers With a Quadratic Sieve", Mathematics of Computation, Vol. 

41, No. 163, July 1983, pp. 287-294.

Lehman R S 1974
"Factoring Large Integers", Mathematics of Computation, VoL 28, pp. 329-336.

Lehmer D H 1933

"A Photo-Electric Number Sieve", American Math. Monthly, VoL 40, pp. 401-406. 

KolataG 1983

"Factoring Gets Easier", SCIENCE, VoL 222, 2 December 1983, pp. 999-1001.

Lenstra H W J r  1982^

"Primality Testing" pp. 55-77 of "Computational Methods in Number Theory", Part 1, 
ed. H W Lenstra Jr and R Tijdeman, Mathematical Centre Tracts, No. 154, 
(Amsterdam).

Morrison M A and Brillhart J 1975

"A Method of Factoring and the Factorization of F 7" Mathematics of Computation, 
VoL 29, No. 129, January 1975, pp. 183-205.

Pomerance C 1982

"Analysis and Comparison of Some Integer Factoring Algorithms", pp. 89-139 of 

"Computational Methods in Number Theory", Part 1, ed. H W Lenstra Jr and R 

Tigdeman, Mathematical Centre Tracts, No. 154, (Amsterdam).



Rivest R L, Shamir A and Adleman L 19787

"A Method for Obtaining Digital Signatures and Public-Key Cryptosystems", 

Communications of the ACM, Vol. 21, No. 2, pp. 120-6.

Voorhoeve M 1982

"Factorization Algorithms of Exponential Order" pp. 79-87 of "Computational Methods 
in Number Theory", Part 1, ed, H W Lenstra Jr and R Tigdeman, Mathematical Centre 

Tracts, No. 154, (Amsterdam).

Wunderlich M C  1967

"Sieving Procedures on a Digital Computer", Journal of the ACM, Vol. 14, No. 1, 

January 1967, pp. 10-19.


