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SUMMARY

The maljority of this thesis comprises a survey of existing
knowiedge.

Let G be a finite group and suppose that M is a subgroup of G
such that () 1<M<G, and

(D for all xeM¥, Cg(x) M.,

Such a subgroup M is called a CC-subgroup.the concept to which
this thesis is predominantly devoted.

Foliowing a brief introduction, Chapter li consists of a survey of the
known resulis on the odd prime structure of finite groups. This survey
is split into three seciions as follows. The first gives an account of
the development of a uniiled theory for characterising groups with
CC-subgroups of order divisible by three.Section Il introduces the
twin ideas of closure and homogeneity, concluding with a theorem
which has Iimportant applications later in Chapter V. Section il
consists of a straightforward listing of the remaining odd prime
structure results.

Chapter iil is the theoretical base of the thesis.coniributing ail the
major resuits which are required before proceeding. Section |l of this
chapter is itself an integral part of the survey,being a systematic
exposition of basic CC-subgroup theory.

Chapter IV is a discussion on the various techniques and proois
involved In Chapter Il glving a readable yet rigorous explanation of
the theory.

Chapler V highlights more recent, and more general. results invoiving
CC-subgroups. glving detailed proofs.and sets the scene for the final
chapler,

Chapter VI consists of two sections. Section | is given over entirely to
the statememt and proof of a single theorem which completely
classifies groups containing CC-subgroups.,a simple corollary of which
Initiates Section li, an outline of the search for CC-subgroups of the
finite simple groups. This section. and the thesis.ends with four tabies
that give as complete a list as possible of the information currently
available on the CC-subgroups of the simpls groups.




CHAPTER !: INTRODUCTION

Late in 1980,the complaete ciassification of the flnite\ simple groups
was achieved after some quarter century of continuous development.
In effect.the result siates that the only finite simple groups are:

(idthe cyclic groups of prime order(the only abelian simple

groups) .,

(iidthe allernating groups of degree at least 5,

(iidthe simple groups of Lie type,and

(ivithe 26 sporadic simple groups.

Even a glance at the main theorems in speclfic characterisations of

finite simple groups reveais that the classification was achieved by
studying various aspects of the prime 2.for example properties of
2-elements and subgroups defined in terms of 2-elements, which are
called 2-structure.Of the many good reasons for the fundamental
importance of the even prime we shall consider two.

Firstly we have the Brauer and Fowler result of 1954,0ne form of
which is the following.

Theorem 1.1013).1f G Is a finite simple group of even order and t is
an involution in G(that is.an element of G of order 2) then
1G1=(1CG(D 121

Alithough the bound is not particularly useful in Itself.its existence
clearly implies that there are only finitely many simple groups with a
particular centraliser of involution. (in {fact,it Is rare for more than
two or three simple groups to have some centraliser of involution in
common ). Brauer realised the possibilities of this and proposed the
idea of a classification scheme.

Secondly we have the fundamental result of Walter Feit and John
Thompson. published in 1963[24]. one form of which is that every finite
non—abelian simple group has even order.thus bringing every such
group within the scope of Brauer's scheme,

From the publication of these two resuits until the final papers
which settled the classlification(see for example, Griess{38] Iin which
was proved the existence and uniqueness of the largest sporadic
group.F,) . many mathematicians have been Invoived In developing
new techniquas with which to attack the problem.

First we have the centraliser of Involution method In which was
supposed that a centraliser of some invoiution(of no specific group)
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had a certain form, usually taken from already existing
configurations. With this limited information. delicate character theory
of the type pioneered by Brauer and Suzuki(given in detail by
Higmanl47]) was used to produce a set of possible orders of a
hypothetical simple group containing the given centraliser. it was then
necessary to either refer 1o some previous descriptive paper proving
the existence and uniqueness of &a simple group with such an
order.or if such a paper did not exist.to seek an existence theorem
from the information known.

Researchers were sometimes then faced with the fact that there
was no known simpie group of a particular order and the possibility
arose of the existence of a new simple group.in this way several of
the sporadic groups were first discovered and characterised. for
example the four Janko groups.the Lyons and O'Nan groups.and the
Heid group which arose from Held's attempt to characterise the
Matthieu group M, and PSL(5,2) which contalin isomorphic
centralisers of involution. He found that one possible configuration
could not be eliminated In any other way than by supposing the
existence of a new group.

Another tachnique.which has dominated the more recent studles.is
the investigation of groups via the structure of local subgroups.that
is.normalisers of p-subgroups where p is a prime,called |ocal
analysis. There is now a very powerful theory of local analysis. based
originally on the group-theoretic results of Thompson in the Odd
Order paper and refined by Glauberman and Bender among many
others. Here we also mention Thompson’s results on N-groups.that
is.insoluble groups all of whose local subgroups are soluble.in this
work, which eventually stretched to over 400 pages of published
research.Thomﬁson in particular classified all the minimal simple
groups. those with no/soluble subgroups.

Many authors have also given general classifications on finite
groups with restrictions on the form of their Sylow 2-subgroups, for
example.to abeliani65], dihedrall361.({371 or quaternion[14],and also
with restrictions  on contralisers of  arbitrary . subgroups, for
example, abelian(58], which exiends to niipotent[22].

However the Initial Interest of this thesis lay not in these "even”
approaches,but In the odd prime structure,and with this restriction
there are fewer publications. One of the earllest and most Important




of these is "Odd characterisations of finite simple groups" by
@. Higmanl47], which was the first comprehensive survey of such
results.,and is a basis i{for more recent researches on the
subject. Nevertheless, the greatest interest in odd prime structure was
comparatively short-lived. There are several reasons for
this. Firstly. the progress of the even classification in the 1870's was
so rapid that few felt the need or desire to waste valuable time
axploring areas not directly connected with  the main
theory. Secondly, as was the view of many.it simply did not look as If
odd prime structure would produce any significant breakthroughs.

Be that as it may.there does exist a body of work of some
importance, aimost exclusively concerned with the prime 3.on odd
prime structure.

Chapter |l consists of a survey of all the known results concerning
odd primes and finlte groups.in particular introducing us to the
CC-subgroup. After listing in Chapter Il the Important resuits
necessary for continuing,Chapter IV gives a detailed discussion on
the techniques invoived in proving the results of Chapter ii.

Later chapters will expand and generalise the idea of the
CC-subgroup.and the thesis will cuiminate in a classification theorem
which will be used to list the CC-subgroups of simple groups.

Before proceeding,it is convenient to give the notation which will
be met soon.As much as possibie.this notation follows that of
[Gorensteinl. All groups considered will be finite and all simpie groups
non-abelian unless otherwise stated.G always denotes a group.p
always a prime and q a prime power.with 7 a set of primes. Ix| will
denote the order of the element xeG and w(n) and 7(G) denote the
set of primes dividing respectively the positive integer n and the
group G.The cyclic group of order n will be denoted by Z,.and
finally, G-H denotes the set of elements of G which are not In
H. References are in square brackeis as usual.with textbooks having
the author’'s name within the reference brackets.




CHAPTER 1l A MATHEMATICAL SURVEY

Section |: Groups with CC-subgroups of order divisible by 3

Feit and Thompson commenced the studies of the 3-structure of
iinite groups with a paper published in 1962. Subsequentiy both of
these authors concenirated on 2-structure.but nevertheiess their

result. which is given now.is of fundamenta! importance.

. Theorem 2.1(Feit and Thompsoni23D).let G be a group with a

sell-centralising subgroup of order 3.Then one of the following is
true.
(i) There exists a normal nilpotent subgroup N of G such that
G/N=A, or S,.
(i) There exists a normal 2-subgroup N of G such that
G/N=A=PSL(2,4).
(i) G=PSL(2, 7).
We can see clearly in the above that restricting the group G to
being a simple group provides us with an odd characterisation of Ag

and PSL(2.7).

Now. retaining the hypothesis of Theorem 2.1.let us denote the
seli~centralising subgroup of order 3 by M. Clearly.M has the property
that for ail xeM#'CG(x) =M. This led to the following generalisation.
Definition 2.2.Let M be a subgroup of a group G.Then M is said to
be a CC-subgroup of G,written M£;cG.Iif and only if

(i) T<M<G. and

i) for all xeM¥: Cgx) =M.

Condition () is Included to remove ftrivial cases.
Note: Clearly in condition (il) of the definition,equality holds if and
only it M is abelian.
it Is weasily proved that the following Is true. (see.for
examplel43: Theorem 2. 3D,
Theorem 2.3.Let M=,.G. Then

(XM is a Hali-subgroup of G, and _ .
DT Ng(M)2M then NG(M) Is a Frobenius group with kernel M.
Note: By Thompson[63] the kernel of a Frobenius group is nllpotent.

As a consequence of Theorem 2.3(I) we have the following
definition.




Definition 2.4.let M=,,G and w=a(M).Then G Is said to be a

aCC—group with nCC-subgroup M.

The subsequent theory of the odd prime structure of finite groups
dealt almost exclusively with n#CC—groups. specifically when 3ew. Hence
the title of this section. '

Note: We can now restate the hypothesis of Theorem 2.1 in terms of

the CC-property.as:let G be a 3CC-group with Sylow 3-subgroup of
order 3.

in the 1960's, Marcel Herzog investigated the CC-property subject to
the restriction that the CC-subgroup was cyclici44],{45] or elementary
abellan{43]. clearly the simplest cases of nilpotency(see the note
following Theorem 2.3).Although Herzog's work on the latter case
proved fruitful,and will be given later in part(Theorems 2.8 to
2.11}).his results for the cyclic case—an immediate generalisation of
Theorem 2.1-were weighed down by unwanted restrictions and will
not be given here.In this case, however,the initial breakthrough was
made by W.B. Stewart.
Theorem 2.5(Stewart[56]), Let M=,.G and suppose that M is abelian.
3 divides |M| and ING(M)/M|€2. Then one of the foliowing is true.

(i) There exists a nilpotent normal subgroup N of G such that

G/NaNG(M) .
(iD There exists a normal elementary abelian 2-subgroup of G

such that G/N=PSL(2,2M) for some n22,

(iil) G=PSL(2.q) for some odd q.

A short argument, given in Chapter IV.shows that i M=gcG.3
divides M| and M Is cyclic then Iindeed |NG(M)/M|£2,and so
Theorem 2.5 can be applied.

Later, Herzog himself extended the result.
Theorem 2.6(Herzogl461).let M=,o,G .and suppose that M is
abelian. 3 divides (M| and ING(M)/M|=28=d for some s=0.Then one
of the following is true.

(D There exists a normal nilpotent subgroup N of G such that

G/N2NG(M) .
(i d=8 and If PeSyla(M) then |04(P) |=9.
(iiiYd=4, IM|=9 and G=PSL(2,9).

(iv)d=2.M iIs cyclic and G has a normal elementary abelian




2-subgroup N such that G/N=PSL(2,2") for some n22.
(v)d=2 and G=PSL(2,q) for some odd q.

Theorem 2.7(Herzogl46:Theorem 21).lLet M«£.oG and suppose that M

is abelian.3 divides [M| andINg(M)/M1=B. Then INg(M)/MI Is a
power of 2.

Both of these theorems were proved using the following results of
Herzog on the «case where a CC-subgroup is elementary
abelian. Theorems 2.8 to 2.11.Throughout them.M will denote a
CC-subgroup of a group G,.m=|M|.and d=|Ng(M)/M!.

Theorem 2.8[43:Theorem 3. 11, Suppose that d#1 or m-1,M4G and M
is not a nonabelian p-group with {M/M’1<4d2. Then either

(hd<vy{m-1 ,or

(idd*»ym-1 and M is elementary abelian,

Theorem 2.9(43:Theorem 4.2.Corollaries 4.2 and 4.6]. Suppose that
the hypothesis of Theorem 2.8 holds.and aiso that 3 divides
IM].Then all of the following is true.

(DM has a normal Sylow 3-subgroup P with PsZ(M).

(1) M is abselian of odd order.

(iibif d is odd then part (i) of Theorem 2.8 holds.
Theorem 2.10[43:Theorem 4.4].Suppose that M is a noncyclic

elementary abelian 3-group. Then one of the following holds,

(DM=2G and so G Is Frobenius with kernel M.

(idd=(m-1) /72 and G is simple.

(iidd=m-1 and G Is simple.

(ivyd=m-1 and G contains a simple normal subgroup of index 2.
Theorem 2.11[43:Theorem 5.11.Suppose that the hypothesis of
Theorem 2.8 Is satisfled.3 divides M| and d Is odd. Then
m=3",d=(m-1)/2 and G=PSL(2,3M) ,where n>1 and n is odd.

Before proceeding. It Is necessary to introduce a concept first
studled by G.Higmanl47]1. He considered groups in which ceantralisers

ol 3-eloements are 3-groups.but we will work with a more general
condition.

Definition 2.12. A Cwrm—group Is a group in which centralisers of all
non-trivial m—elements are m—groups. (By convention we suppose such
a group Is not a wr-group).




The importance of this idea is made obvious by the following two
resuits.

Proposition 2.13. A 7CC-group is a Cmr—group.
Proposition 2. 14. A Cpp-group with abelian Sylow p-subgroups is a
pCC—-group.

Although Higman,and later Fletcher, studied Cmrm—groups in their
own right.we use the idea purely for convenience.as some imporiant
theorems on wCC-groups were proved in the context of Cmr—groups.in
particular we have the following.

Theorem 2.15(Fietcheri31: Corollary).A simple C33-group has
abelian Sylow 3-subgroups.

We also have the foliowing two resuits which though of interest to
the survey.were obtained at a later date than the present resulits and
do not take any direct part in the development of the CC-theory as
given in this section(though the latter wili be used eventually in
Chapter VI).

Theorem 2.16(Arad and Herzogll11D),C33-groups of even order are
8CC-groups.

Theorem 2.17(WIllliams[B6]) . Suppose that 24 and let G be a
Cmo-group such that OT(G)=G and G has a niipotent Hall
m—subgroup. Then G is & mCC—group.

Fletcher proceeded to give the following specific case using
Theorems 2.6,2.10 and 2.11.and also incorporating some of
Higman's resulis.

Theorem 2, 18(Fietcher(32D).let G be a C33-group with Sylow
* 8-subgroup M of order 9. Then one of the following is true.
(a)M is cyclic and G/0,(GQ) is Ilsomorphic to either

(HhM,

(iIDNg(M) . a dihedral group of order 18.

(il PSL(2,8) with 0,:(G) being an elementary abelian 2-group.
or (IWMPSBL(2.17) or PSL(2,19) with 0, (G)=1.

(b)M is elementary abelian and elther
(D M=2G,

(i) INQ(M) /M |=4 and G=PSL(2,9),
G INgG(M) /M 1=8 and G=PSL(3,4),
or (iv) INgG(M)/M[=8 and G has a simple normal subgroup of




Iindex 2,isomorphic to PSL(2,9).

At this point we have considered 3CC-groups with Sylow
3-subgroup M given [M|=3(Theorem 2.71) and (M|=9(Theorem
2.18).1t was therefore at this point desirable to seek a generalisation
to arbitrary powers of 3.0n this line.Pamela Ferguson proved the
following result.

Theorem 2.19(Fergusoni25).let G be a 3CC-group with Sylow
3-subgroup M.and suppose that Ng(M)/M is a non-triviai group of
odd order.if M is nonabelian then M is normal in G.

This combines with Herzog’'s resuits, Theorems 2.8 to 2. 11,
Theorem 2.20(Ferguson[25;Theorem 21).Let M<,,G.3 divide IM|.M
be noncyclic and suppose that Ng(M)/M is a non-trivial group,of
odd order not equal to IM|-1. Then either

(HM=2G, or

(ibM is an elementary abelian 3-subgroup of G of order 3P, and
G=PSL(2,3N) .,

Littie further work on the subject has been published without the
oxtensive involvement of Zvi Arad.In 1976, he produced the following
important extension of Theorem 2.19.

Theorem 2.21(Aradi2:Lemma 21).Let M£,.G and suppose that M is a
Sylow 3-subgroup of G. Then either

() M=G, |

(i M is cycilic.or

()M is elementary abelian.

Using this result,it was a short step to the complete cilassification
of 3CC—groups.

Theorem 2.22(Aradl2:Theorem Ald.Let G be a 3CC-group with
Sylow 3-subgroup M. Then one of the following is true.
(DM=G and G is Frobenius with kernel M.
(il) There exists a normal nilpotent subgroup N of G such that
G/N=Ng(M). M is cyclic.

(ilD There exists a normal elementary abelilan 2-subgroup N of G
such that G/N=PSL(2,2™) for some n22,

(iv) G=PSL(2, q) for somse odd g>5.

(v) G=PSL(3.4).

(vi)G has a simple normal subgroup of index 2.isomorphic to




PSL(2.3M for some nx2,

In three papers published in 1976 and 1977.the last two with the
aid of Herzog.Arad completed the classification of all finite groups
with a CC—subgroup of order divisible by 3.

Theorem 2.23(Aradi3]).let M£,,G and suppose that 3 divides
IM1. Then one of the following is true.

{(IM=2G and G is Frobenius with kernei M.

(i Ng (M) =M.,

(iibM Is an elementary abslian Sylow 3-subgroup of G.

(ivIM is a cyclic subgroup of G of odd order.

As groups arising in the cases (li) and (iv) had aiready been

classified, by Theorems 2.22 and 2.6 respectively.it only remained to
classity groups arising from case (i),
Theorem 2.24(Arad and Herzogl9l).Let M=;,G.3 divide M|, and
suppose that Ng(M)=M. Then either

(DG is Frobenius with complement M.or

() G=PSL(2.q) for some g=5.

In particular Arad listed all simple groups satisfying the conditions
of Theorem 2.23.
Theorem 2,25(Aradi(3:Theorem Bl).let G be a simple group with a

GCC—subgroup of order divisible by 3, Then G is isomorphic to either
(D PSL(3.4),

(I PSL(2.2M) for some na2,
Ui PSL(2,3M for some na2,or
(WMPSL(2,p™ for some prime p>3 such that pN+Smod12.

Conversely. all the simple groups listed contain a CC-subgroup of
order divisible by 8.

The various cases of Theorem 2.23 are not necessarily mutuaily
exclusive. We can rectify this by restating the theorem as follows.
Theorem 2.26.Let G be a finite group with a CC-subgroup M of
order divisible by 3. Then one and only one of the following is true.

(DM=2G and G Is Frobenius with kernel M.

D NGg(M)=M and G is Frobenius with complement M.

I NGg(M)=M and G=PSL(2,q) for some q=5.

(V) MKNg(M) <G and M is a noncyclic elementary abellan Sylow
3-subgroup of G.
(VIM<NG(M) <G and M is a cyclic subgroup of G of odd order.
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Remark: The corresponding result in the case when 2 divides the
order of the CC-subgroup was completely settled In the early 1960's
by Suzuki. We state It here for completeness.

Thoorem 2.27(Suzuki(59].[601).Let M£,oQ with 2 dividing IMI. Then
one of the following is true.

(DG is Frobenius with M as kernel or complement.

(DG is isomorphic to PSL(2,2M or Sz(22N+1) for some n.and M

is either a Sylow 2-subgroup or a Sylow 2-normaliser.
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Section_ii: Closure _and Homogeneity

Zvi Arad and Pamela Ferguson,who figured prominently in the
previous section,waere also involved Iin developing a theory to
accompany the related concepts of closure and homogeneity, ideas
intraduced by Reinholt Baer[12] in which he gave the basic theorems
that are required for further development. These results will follow
immediately after the definitions.

Definition 2.28.A group G Is sald to be m—ciosed If the set of all Its
m-glements forms a m—subgroup.

in this case it is easy to see that the subgroup so formed Is a
normatl Hall m-subgroup,and hence also characteristic. in particular. a
m'—group Is w-closed as the set of all lts m—elements conslists of the
identity only.which is a normal m—subgroup.Clearly any primes in w
not dividing the order of G do not affect the situation.and so it can
generally be assumed that 7 is a subset of m(Q).

Definition 2.29.A-group G Is sald to be nm-homogeneous If,for all
m-subgroups H of G.Ng(H) /Cg(H) Is a m-group.

It is clear.as in the above remarks,that we can suppose that r is
a subset of 7(Q).

We can now state Baer’'s results.

Theorem 2.30(Baerli2;:Lemma 2. 1D.If G Is a nm-closed group then G
Is m'—homogeneous.

Theorem 2.31{12:Lemma 2. 3].Subgroups.direct products and factor
groups of m—homogeneous groups are m—homogeneous.

Note: Analogously to Theorem 2.31.it Is obvious that subgroups and
factor groups of m—closed groups are w—-closed.

Theorem 2.32(12:Lemma 2.4].Suppose that G is a w'-homogeneous
group and K&G.If both K and G/K are m-closed then G is m-closed.

The foliowing definition Is made for convenience.

Definition 2.33.A group is saild to be m-separable If its composition

factors are either w—groups or m'-groups.
Clearly wm-separability and n'-separability are the same concept.

We can now give the first important partial converse to
Theorem 2. 30.
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Theorem 2.34(12.Lemma 2.51.A group G is n-closed if and oniy if G
Is both m'-homogeneous and n'—separable.

in particular we have the following.

Corollary 2.35. Suppose G Is soluble. Then G is m-closed If and only
If G Is m'~homogeneous,

A theorem of Frobenius(see.for exampleiRose:10.47) can now be
given in terms of the above definitions.

Theorem 2.36.A group G is p-closed If and only if G Is
p'-homogeneous.

The problem.then.was to generalise Theorem 2. 36.
Remark: it is necessary to stress the significance of the position of
the ™'".as interchange will usually cause theorems such as
Theorem 2.36 to break down.as can be seen from the following
counterexamples.
Exampie 2.37.A; is 5'-homogeneous but not 5-ciosed.[A; has only
six conjugacy classes of §'-subgroups(of orders 1.2.3.4.6 and
12)and it is easlly shown that each of these satisfy the criterion for
S5'-homogeneity, Clearly.as BSem(Ag) and As Is simple.As is not
5-closed]. ‘
_Example 2.38.The simple groups PSL(2,22"+1) where nx1 are
3'-homogensaous but not 3-closed(ses, for examplei2l).

The best results obtained by Baer.Theorems 2.39 and 2.41.use
Theorem 2.36 in their proofs.
Theorem 2.39(12:Theorem 5.2].A group G Is both p-homogeneous
and p‘-homogeneous If and only f G Is the direct product of a
p-group and a p’—group.

This result led Baer to make the following conjecture.
Conjecture 2.40.A group G Is both m-homogeneous and
n'~homogeneous it and only if G is the direct product of a m-group
and a n'-group.

We shall investigate this conjecture later in this section.and aiso In
Section Il of Chapter IV.
Theorem 2.41{12:;Theorem 5.31.A group G is m-closed If and only if
G is m'-homogeneous and G satisfies the following condition,

(*)if R is a maximal n-subgroup of G and P Iis a Syiow
p-subgroup of G for some pém then <R.P> Is a {m, p}-group.

|
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Condition (*) is not very helpful. Much Iater,after an hiatus of
fileen years,Arad.in his doctoral thesis extracts published in
1874, improved slightly on Baer’'s results. The first theorem is in
relation to the prime 2.

Theorem 2.42(Aradli:Lemma 2.61). A group G is 2-closed If and
only G is 2'-homogeneous.

Thus, taking Theorem 2.36 Into account.the prime 2 has a certain
symmetry which odd primes do not.

Arad then extended Frobenius’' theorem.
Theorem 2.43(1:Theorem Al .Suppose that 2er and that all
m-subgroups of a group G are 2-closed.Then G Is m'~closed If and
only it G is m~homogeneous.

He then attacked the general problem of equating n'-closure with
mhomogeneity.

Theorem 2.44(1;Theorem Bl.Suppose that 2em.Then a group G Is

n'-closed if and only it G is wm—homogeneous and any one of the
following conditions holds.

() 3¢m(@) .

(iD The n'-subgroups of G are soluble.

(iiiYG has abelian or dihedral Sylow 2-subgroups.

(iv) Every chain of subgroups in G has length at most 7.

(Note that a chain of subgroups |Is an ordered Ilist of
subgroups. each of which is maximal in the next).

Clearly.the aim was to extend this list, or, alternatively.to seek more
general statements. The latter view held,as will be seen after the
following corollary of Theorem 2. 44,

Corollary 2.4501: Theorem Cl.Suppose G is a group such that
Im(G) [=4. Then G is n'—closed If and only if G Is m-homogeneous.

It is convenient now to make the foliowing definition.
Definition_2.46. A group G Is sald to be a Dg—-group If G has a Hall

m-subgroup. all Hall r-subgroups are conjugate,and every w-subgroup
is contained in a Hall m—subgroup.

The last theorem of Arad from 1974 can now be given.
Theorem 2.47(1:Theorem Dl.Let G be a w—-homogeneous

Dpg~group. Then G is n'-closed if and only if one of the foliowing
hoids.

(1)34m(G) .
ﬁ (i) The proper subgroups of G are m'—closed.

|
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Ferguson then gave an important result reiating to 3'-homogenseity.
Theorem 2.48(Ferguson[26]).The only finite nonabelian simple

3'-homogeneous groups are Sz(22n+1) apd PSL(2.22N*3)  for
some nxil,

(Note that the Buzuki groups are obviously 3'-homogeneous as
their orders are prime to 3,and the Ilinear groups are
3’'-homogeneous by Exampie 2.38).

Extending Theorem 2.48,Arad showed that In a sense the above
linear groups are the only groups to violate the equivalence of
3'-homogeneily and 3-closurs.

Theorem 2.49(Arad{2:Theorem Bl .Let G be a 3'-homogeneous

group and suppose that PSL(2,22N%1) {s not involved in G for any
n21. Then G is 3-closed.

(A group H is sald to be involved in a group G if H Is a factor
group of a subgroup of G).

In the same paper.Arad gave the following.
Theorem 2.50[2:Theorem Cl.Suppose that 247 and B3en. Then
m-homogeneity Is equivalent to n'—closure.

One year later.in 1977,Ferguson gave an important improvement
over both Theorems 2.36 and 2.47.
Theorem 2. 51(Fergusoni2sl) . Let G be a m-homogeneous
Dp~group. Then G Is n'-closed.

This result was proved‘ without reference to any of the previous
theorems except Baer's basic results, Theorems 2.30,2.31.2.32 and
2.34.by showing that the group G satisfles the hypothesis of a
certain character—theoretic result of Brauer and
Suzuki{Theorem 3. 35) which Immediately implies m'—closure.

There followed a period of seven years when there was no
published work on the subject, untll in 1984, Arad and Chillag gave the
foliowing theorem,the proof of which uses to good effect the complete
classlfication of the finite simple groups.

Theorem 2.52(Arad and Chillag[8]) . Suppose that 24w. Then a group G

Is m'-closed If and only if G Is n-homogeneous.

In later chapters we shall see extensive use of this fundamental
theorem to prove resuits of major signiflcance. However we shall end

e
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this section by noting that Theorem 2.52 can be used to prove the
truth of Conjecture 2.40.as wili be seen in Chapter IV.
Jheorem 2.53.A group G Is both nm-homogeneous and

m'~homogenseous If and only If G Is the direct product of a m—group
and a w'—-group.
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Bection Iii: Further odd characterisations of simple groups

For completeness.there now follows a listing of the remaining
important theorems concerning odd characterisations of simple
groups. As their proofs are so diverse in technique it is not possible
in this thesis to give an adequate description and so no discussion of
them wiil be given.

The first two theorems are contalned in G.Higman's Odd
Characterisation Lecture Notes.

Theorem 2.54(Higman{47: Theorem 111).Let G be a simple group with
elements x and y of orders 3 and 5 respectively,such that
Ca(x)=wx<y> and Cg(y) Is insolubie. Then GxPSU(3.4),

Theorem 2.55[47:Theorem 12l.Let G be a simple group with a
subgroup isomorphic to DgxD,o which Is the normaliser in G of both

the subgroup of order 3 and the subgroup of order 5 contained in it.
Then G=J;.

3 LR, NPT

We now have an alternative characterisation involving PSL(2.7) to
that of Theorem 2.1.

Theorem 2.56(Collins[17: Theorem Al .Let G be a simple group such
that whenever K is a subgroup of odd order which is either abellan

or a p—group.then {NG(K)/Cg(K) |3, Then G Is Isomorphic to elther
PSL(2,7) or PSL(2,2M for some nx2.

The next theorem combines results from two papers to give a
characterisation of certain symplectic groups.
Theorem 2.57(Haydeni401.[41D).let G be a simple group containing a
3-central element x of order 3 such that Cax)xCpgp(4,3m) () for
some 3-central element « of order 3 in Psp(4.3™) for some

mrl.and that for all elements 2z In the centre of Cgx).
Ca(2=Cxz(x) ,and that not all 3~central elements of G belong to the
same conjugacy class of G. Then G=Psp(4,3M).

Note: The corresponding result tor Psp(4,3) given by Haydeni39] was
shown to be wrong.and corrected. by Prince In Theorem 2.68 below.

We now have an extension of Theorem 2. 54,
Theorem 2.58(Stewart(571).Let G be a simple group containing an
element x of order 3 such that Cg(x)aZ, .. Then G Is isomorphic to
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either PSL(2,16),PSL(2,29).PSL(2.31) or PSU(3.,4).

The next theorem.as with many of the other resuits in this
section, requires 2-locai analysis In its proof, although it contains no
2-structure in its hypothesis.

Theorem 2.59(0’'Nan[51]).Let G be a simple group with an element x
of order 3 such that Cg(x)/«> Is isomorphic to either
PSL(2.q).PGL(2.q) or PrL(2,q).Suppose also that there exists an
elementary abelian 3-subgroup P of G.of order 9,such that all

non—identity elements of P are conjugate in G.Then G iIs isomorphic
1o one of the following:

PSU(3.5) ,PSL(3.7).Mz>.M;35. M. HS, Ru,

Later O'Nan improved this result as follows.
Theorem 2.60(0'Nani62]).let G and P satisfy the hypothesis of
Theorem 2.59 minus the condition that the non-identity elements of P
are conjugate. Then the only possibilities for G other than those listed
In Theorem 2.59 are PSL(5.2),J, and Psp(4.4),

A resuit related to C33-groups is the following.
Theorem_2.61(Yoshidal69]).let G be a simple group such that for
each element x of order 3.Cx(x) Is isomorphic to either Z,xZ, or
ZaxA,. Then G Is isomorphic to one of the folliowing:

Ag.A5.PSL(3.4) ,PSL(3.,7),PSU(3,5),M;;.

Arad and Chillag improved Theorem 2.61.
Theorem 2.62(Arad and Chillagib).Let G be a simple group such
that for each element x of order 3,Ci(x) Is elther a 3-group or is
isomorphic to Z3xA,. Then G is isomorphic to one of the following:
PSL(2,q) where q=2,3"+1 for some na1,

PSL(2,3M for some nx2,

PSL(2.8),PSL(3.4),PSL(3,7) ,A,,PSU(3.5) ,M,..

The next theorems concern the presence or absence of elements
of order 6.
Theorem 2.63(Hayden and Winter{42D .let G be a simpie group with
a seolf-centralising element of order 6 such that G has only one

conjugacy class of involution. Then G Is isomorphic to one of the
foliowing: ~

M;:.d,.PSL(3,3),PSL(2,17),P8L(2,13).

l
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Theorem 2. 64(Frohardtl34]).Let G be a simple group with an element
x of order 3 such that Cg(x) is abelian of odd order,no non-trivial
2-subgroup of G is normalised by «> and G has a cyclic Sylow
3-subgroup.

Then G=PSL(2,220*1) {or some nal,

. &7
Theorem 2. 85(Fietcher ,Stewart’ and \Stellmachef33]).Let G be a

simple group with no element of 6rdéf ’6.such that some non-trivial
2-subgroup of G is normalised by an element of order 3. Then G is
isomorphic to one of the following:
PSL(2,3M ,PSL(2.p™) for some pN=t5modi2,
PSL(2,22M) ,PSU(3, 2N ,PSL(3.2M) for some 27¢1mod9.

L My L G Bt Aucit s ¢

Theorem 2.66(Higmani48]) .Let G be a simple group with an element

X of order 3 and cycliic Sylow 3-subgroup such that Ng(oe)=<H, ™
where H is an abelian subgroup of G of odd order and (ht)2=1 for
ali heH. Then G Is Isomorphic to one of the foliowing:

PSL(2.2M) for some n=2,

PSL(2.q) for some odd q*5 and q=:Smod 12.

This resuit was improved by Dickson.

Theorem 2.67(Dickson{19).Let G be as in the hypothesis of

Theorem 2,66 except that now H is an abeillan subgroup of order not
divisible by 4. Then G is Isomorphic to one of the foliowing:
PSL(2.2™ for some n22,

PSL(2.q) for some q=t5.%7 or x11mod24,

A result on CC-subgroups of order divisible by 3 is the following

alternative characterisation of PSL(2.3") which was published after
Arad’s classification(Theorem 2. 23).
Theorem 2.68(Ferguson and Smithi29]) ., Let G be a simple 3CC-group
with Sylow 3-subgroup M such that M Is abelian and G has at ieast
two conjugacy classes of elements of order 3. Then G is Isomorphic
to PSL(2,3M) for some n22,

The next result corrects a mistake in Hayden[39] as promised in
the note following Theorem 2.57.First,it is convenient to state an
hypothesis.

Hypothesis A.G is a group with an element x of order 3 such that
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(DCgx) is isomorphic to the centraliser of a 3—central element
of order 3 in Psp(4,3).,and

(IDCg(x) contains an elementary abellan subgroup of order 33
which does not normalise any non-trivial 3'-subgroup of G.
Theorem 2.69(PrincelS3).Llet G be &a simple group satisfying
Hypothesis A.

(DI x Is not conjugate to s inverse then G=Psp(4,3).

(iDif x is conjugate to its inverse then G=Psp(6.2).

In connection with Theorem 2.69.we make the following definition,
Definition 2.70.We will say that two groups have the same
3—-centraliser structure if they have the same number of conjugacy

classes of elements of order 3 and the corresponding centralisers
are isomorphic.

An extension of Theorem 2.69 can now be given.
Theorem 2.71[53].

(Dlet G be a simple group with the same 3-centraliser structure
as Psp(4,3).Then G=Psp(4.3).
(idLlet G be a simple group with the same 3-centraliser structure
as Psp(6.2).Then GaPsp(6.2).
Prince later applied the same Ideas to the group 2D,(2).
Theorem 2.72(Princel54]).let G be a simpie group with the same
3-centraliser structure as 2D,(2). Then G=2D,(2).

The next result requires two definitions.

Definition 2.73. A group G is said to be a perfect central extension of
another group H If G/2(G)=H and G'=G.

Deofinitlon _2.74. et G be a group with Sylow p-subgroup P.A

subgroup W of P is said to be weakly closed in P with respect to G
it whenever W3<P for some geG then W9=W.

Thoorem 2. 75(Stafford[551).let G be a simple group with an element
x of order 3 such that Cg(x) Is a perfect central extension of M,,,
and that for some Sylow 3-subgroup P of G containing x.«* Is not
weakly closed in P with respect to G. Then Gau,.

Lastly we have another result condensed from more than paper.
Theorem 2.76(Thomasl62]).Let G be a simple group satisfying the
following three conditions.

(D The centraliser of each element of order 3 has a Sylow

i
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2-subgroup which is either cyclic, dihedral, semidihedral or
generalised quaternion.

(i) The centraliser of some involution of G has a non-cyclic Sylow
3-subgroup.
(i All 2-local subgroups are 2-constrained.

Then G Is Isomorphic to either PSU(4,3),Psp(4,3) or G (3).
Note:A group H Is p-constrained if whenever P is a Sylow
p-subgroup of Op' p(H) then CH(P)€O0p p(H).In particular, every
soluble group is p-constrained for every prime p.
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CHAPTER llI: RESULTS REQUIRED IN THIS THESIS

Sectlon . General Group Theory

This section consists of a listing of results from general group
theory which are useful in later chapters whether for convenience or
necessity, However we start with some unnumbered definitions.

First we redefine some terms appearing in the previous chapter.
Definition. Let M be a subgroup of a group G.Then M is salid to be a
CC-subgroup of G.denoted MgpoG . If and only if it s
proper. non~trivial and for all xeM¥, Cg(x) =M,

Now, although we have not yet proved that a CC-subgroup is a
Hall subgroup(Theorem 3.36),we define a nCC group.

Definition. Suppose that M=;.G.and let m=ar(M),Then we call G a
n1CC—group, with vCC-subgroup M.

Definition. A group G Is said to be a Crn—group for some set n If and
only if the centraliser of every non-trivial m—element Is a w-group.

Definition. A group G is said to be a Dg~group f G has a Hall
m-subgroup.all Hall w-subgroups of G are conjugate and evaery
n—-subgroup of G is contained in a Hall m—subgroup.

Definition. A group G Is n-separable if the composition factors of G
are elther m—groups or n'-groups.

Definition. A group G is m-soluble if the composition factors of G are
either w'—groups or p-groups for perm.

A useful ldea encountered frequently in later chapters is that of a
T.1-sel.
Definition. A subgroup H of a group G Is sald to be a T.l-set In G |f
for all geG-Ng(H).HNHS=1.

We now give the standard definltions ot Frobenius and Zassenhaus
groups.

Definition. Suppose that a group G has a subgroup H such that H Is
a T.l-set in G and Ng(H)=H.Then G is called a Frobenlus group
with complement H.
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; Note: It is obvious that any conjugate of H is also a complement.

Definition. A group G is a Zassenhaus group of degree n If it satisfies
the following three conditions.
()G is doubly transitive on n symbols,
(1) Any non-identity slement of G has at most two fixed points,
(1 G has no regular normal subgroup.
Lastly we have the foliowing.
pEL = A 5L

. \v‘r: W\(W'\
Definition. PrL(2. q) =AutPSL(2. @) . L @ ¢

We are now in a position to list the required resuits.

in this list there is no special significance in the ordering. However
there Is a general progression from elementary results to much
deeper ones. It should be noted that proofs will only appear if there
is no explicit reference avallable.In any particular proof.results in this
section needed will precede that being proved.
Proposition 3. 1[Rose: Lemma 4. 36]. Suppose that H«G, Then
Ca(H)eNg(H) and Ng(H)/Cg(H) can 'be embedded In AutH.

Proposition 3. 2{Rose:Lemma 4.381.1f G is a cyclic group then AutG
Is abelian.

Proposition 3.3[(Rose.temma 9.15]1.f G is a cyctic group of prime
order p then AutG is cyclic of order p-1.

Proposition 3. 4[Rose.Lemmas 11.8 and 11.9].If P Is a p-group then
P/&(P) iIs elementary abelian.

Proposition 3. 5[Rose: Theorem 7.4).Suppose KeG.if K and G/K are
both soluble then G is soluble.

Proposition _8.6.1f G Is a non-irivial soluble group then F(G)#1,
Proof.Since G Is soluble,every chief factor of G is elementary

abellan. In particular G has a non-trivial nlipotent normal subgroup.

Proposition 8.7.Suppose that K<G,H Is a Hall m-subgroup of K and
all Hall m-subgroups of K are conjugate in K. Then G=Ng(H)K.
Proof. H<K, and so H9=K9=K for any geG. Since HY is a Hall

e
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n-subgroup of K.H9=HK for some keK.Thus gk *eNg(H) and so
geNg(H)K as required.

Theorem 3. 8[Rose: Theorem 11, 18l.if G is a solubie group then G is
a Dpg—group for any w.

Theorem 3. 9[Gorenstein; Theorem 6.3.61.f G is m-soluble or
m'-soluble then G Is a Dg—group.

Theorem 3.10[(Scott:9.3.14].1f G has a niipotent Hall m-subgroup
then G Is a Dpg-group.

Proposition 3.11. Suppose N is a minimal normal subgroup of a group
G.Then elther N is elementary abelian or N is the direct product of
isomorphic simple groups.

Proof. Clearly N Is characteristically simple. The result follows by
[Rose: Theorem 8. 101,

Proposition 3. 12. [Rose:Lemma 10.20]l.Let P be a Sylow p-subgroup
of a group G.Then any two elements of Z(P) which are conjugate in
G are already conjugate in Ng(P).

Theorem 3.13{Rose. Theorem 10.21).Let P be a Sylow p-subgroup of
a group G.lIt PEZ(Ng(P)) then G has a normal p—complement.

Theorem 3. 14[{Gorenstein: Theorem 5.1, 4] Let U be a
p'-automorphism of a p-group P which induces the Identity on
P/®(P).Then ¥ is the identity automorphism on P.

Theorem 3. 15[Gorenstein: Theorem 3.8.21.Let K be a conjugacy class
of p-elements of a group G such that every palr of elements of K
generates a p-group. Then K lies in a normal p—subgroup of G.

Theorem 3. 16lisaacs:Theorem 7.2l.Let G be a Frobenius group with
complement H. Then there exists a normai subgroup K of G, called the
kernel, such that G=HK and HnK=1.

Theorem 3. 17[Gorenstein; Theorem 5.4.3).Let P denote elther the

dihedral group Dpm or the generalised quaternion group Q,m for

* N
D ,\:ﬂx { \sz
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some ma3, Then the following hold.
(N IZ(P) 1=2 and P/Z(P)=D.m-1.
I3 Al
(i P=Dzm then subgroups of P are cyclic or dihedrai. =

(ib it P=Q.,m then .subgroups of P are cyclic or generalised
guaternion.

Theorem  3.18(Thompsoni63]).If G admits a fixed—-point-free
automorphism of prime order then G is niipotent.

"Theorem_ 3. 19i(Gorenstein: Theorem 10, 3, 1i{Huppert i;V B.18l.Let G
be a Frobenius group with kernel K and complement H.Then the
following hold.

(D Ng(H)=H.

(iidH Is a T.l-set In G.

i KeG,

(iv) G=HK, HnK=1,

(v) {H| divides [Ki-1.

(vibH can be embedded in AutK.

(vih K is nilpotent.

(viiblf p is odd then Sylow p-subgroups of H are cyclic.

(ix) Sylow 2-subgroups of H are cyclic or generalised quaternion.
() ZCH) #1.

(xDI |H} Is odd then H is metacyciic.

(xiD |H| Is even then |Z(H) | is even and K is abelian.

(xiidif H is abelian then H is cyclic.

Theorem 3.20i{Felt and Thompsonl. Groups of odd order are solubie.

Theorem 3.21.Groups with non-trivial cyclic Sylow 2-subgroups are
soluble.

Proof.let G be a group of even order with a cyclic
Sylow 2-subgroup.P.let g be an element of odd order in
Ng(P).Then g acts as an automorphism of P by conjugation and so
induces an automorphism on P/¢(P).But P/¢&(P)=Z, and
AutZ,=1.Thus g Iinduces the trivial automorphism on P/&®(P) and so
by Burnside's Theorem 8. 14.g acts trivially on P.that Is.g centralises
P.S8Since we also have P<Cg(P) It follows that Ng(P)<Cg(P),that
Is.NG(P)=C@(P).Thus P£Z(Ng(P)) and we use Theorem 3.13 to
obtain that G has a normal 2-complement, K,say. Now K Is soluble
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by Theorem 3.20,and since G/K=P, Proposition 3.5 implies that G is
soluble.

Proposition_3.22. Suppose K<H«<G and that H is a T.i-set in G.Then
NG(K) €NG(H) .

Proof. Let geNg(K).Then K9=K.Thus HnHO%1.Then since H is a
T.l-set in G.geNg(H).as required.

Proposition 3, 23(Rose: 7. 3]. Suppose that H.K.and L are subgroups of
a group G such that K€H. Then HN(KL) =K(HnL) .

Proposition 3.24.let H be a Hall m—subgroup of G and suppose N is
a normal subgroup of G such that (1Hi, IND)#1. Then HNN#1.

Proof. Let p divide (IH|,IN}) and let x be a p—element of N.Since
per and H is a Hall m-subgroup.x8eH for some geG.But N=2G and so
x9eN. Hence result.

Theorem_ 3. 25[Huppert lil;: Xl Lemmas 3.1 and 3. 10 and Theorem 3. 9].
Let G be the Suzuki group Sz(q) where q=22"*1 for some n21,and
let r=2", Then the following are true.

(D p is odd then Sylow p-subgroups of G are cyclic.

(iDG has cyclic CC-subgroups of orders q*2r+1.denoted by H; for
i=1,2 such that ING(H;)) /HjI=4 for i=1.2.

(ildG has a Frobenius CC-subgroup F of order q2(q-1) with a
cyclic complement of order q-1.

Theorem 3.26(Suzukil591) . A Zassenhaus group of odd degree |is

simple and is isomorphic to either PSL(2,2N") or Sz(22N*1) for some
nz1, :

Theorem 3.27(Suzukil60D,lLet M=,c.G such that 2 divides [M|.Then
one of the following is true.

(DG is Frobenius with M as kernel or complement.
(IDG is a Zassenhaus group of odd degree and M Is either a
Sylow 2-subgroup or a Sylow 2-normallser.

- Theorem_8. 2B(Gorenstein and Walter[36],[371).let G be a group with

dihedral Sylow 2-subgroups.Then G/0,'(GQ) is isomorphic toc one of
the following.
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(1) A Sylow 2-subgroup of G.
(i The alternating group A-.

(i) A subgroup of Pri(2,q) containing PSL(2,q) for some odd q.

Theorem 3. 29(Brauer and Suzuki[i4ld.Let G be a group with
generalised quaternion S8ylow 2-subgroups.Then |Z(G/0,:(G)) =2
and denoting G/0,'(Q) by G .G"/Z(G™=H is a group with dihedral
Sylow 2-subgroups and O,/(H)=1.

f;_gg_f.G' has generalised quaternion Sylow 2-subgroups and so
factoring out the centre of such a group.of order 2.produces a group
with dihedral Sylow 2-subgroups. Now the inverse image of O,-(H) in
G" is Z,x(a group of odd order) and hence equals Z, since
0.'(G™=1.Hence O,/ (H)=1.

Theorem 3.30.Let G be a non-soluble Frobenius group with kernel K
and complement H. Then the following are true.
(DH has even order.
(INK is abelian of odd order.
(il G has generalised quaternion Sylow 2-subgroups.
(N Z(G/0,' (G ) Z,.
(MG/0,(R)/2(G/0,: () )=PSL(2,p) for some p.
_E_rgg_f_.(l)Supp‘ose that H had odd order.Then H would be soluble
and hence so also would G.a contradiction.
(Rt Is immediate that K has odd order.By
[Isaacs; Lemma 7.21).K is abelian,
GidA Bylow 2-subgroup of G is contained in H.By
Theorem 3.19.H has cyclic or generalised quaternion Sylow
2-subgroups. it H had cyclic Sylow 2-subgroups then by Theorem
38.21.H would be soluble and hence G would be soluble,a
contradiction.

(iv) Follows immedlately from (lil) and Theorem 3.29.

(v) By Theorem 3.17,tactoring out the centre of a group with
generalised quaternion Sylow 2-subgroups leaves a group with
dihedral Sylow 2-subgroups.Thus L=G/0,:(G)/Z(G/0,:(G)) has
dihedral Sylow 2-subgroups.Also.0,:(L)=1 as in Theorem 3.29 and
so L has one of the three forms listed in Theorem 3, 28,

Now If L was a 2-group then G/0,'(G) and hence G would be
soluble.,a contradiction. Also it i{s obvious that A; has a noncyclic
elementary abelian 3-subgroup and so L.being a factor group of the
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complement H,would have a noncyclic 3-subgroup,. contradicting

Theorem 3.719.Thus L Is a subgroup of PrL(2.q) for some q.
containing PSL(2,q).But PSL(2,q) has elementary abselian subgroups
of order q.a contradliction unless q=p.a prime. In this
case, Pro(2, p)=PGL(2, p) . Honce elther L=PGL(2.p) or PSL(2,.p).But

PGL(2,p) does not have dihedral Sylow 2-subgroups and so
L=PSL(2.p).

Theorem 3. 31(Thompson. unpublished) . Let G be a simple
3'-group. Then GuSz(2,22N*1) {or some nx1.

Theorem 3.32(Glauberman, unpublished) .if G Is an S,-free group

then G contains a strongly-closed abeiian 2-subgroup in a Sylow
2-subgroup T with respect to G.

JTheorem 3.33(see.for examplel2]).Let G be a group.Then G s

8,-free if and only if Ng(H)/Cg(H) is S,-free for all 2-subgroups H
of G.

Theorem 3.34(Goldschmidtl35]).Let G be a simple group with a
strongly-closed abelian 2-subgroup in a Sylow 2-subgroup with
respect to G. Then G is isomorphic to one of the following.

(HPSL(2,q) where g=2" or gq=3 or 5mod8.

(D PSU(8,22M) for some nal.

(i 8z(220+1) {or some nal.

(iv) dy.

(V) 2G,(32N*1) for some n=1,

Theorem 3.3S(lsaacs:Theorem 8.22].Llet G "be a group with a Hall
subgroup H such that whenever two elements of H are conjugate in G
they are already conjugate in H.Suppose aiso that for every
elementary subgroup E In G(that Is a direct product of a cyclic group
and a p—group).if 1E| divides |H| then E Is conjugate to a subgroup
of H.Then there exists a normal complement to H In Q.
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Section 1I: The basic theory of groups with CC-subgroups

This section consists of a systematic exposition of the basic results
Involving groups with CC-subgroups. Though Iin reality it is wused
oxtensively as a reference section,It is hoped that this part of the
thesis will be seen to exist also as a self-contained whole.As
such. all proofs are from first principles or at ieast starting from weli
known resuits. Some proofs are trivially simple but are given for
completeness and several of the results have never actually been
stated explicitly before.

Proposition 8. 36. Let M=,~G. Then M is a Hall subgroup.

Proof. Let p divide M| and suppose that P Is a Sylow p—subgroup of
M contained in a Sylow p-subgroup S of G, Then Z(8)=Cx(P)=M and
so 8=Cg(Z(8))=M. Thus P=8,as required.

Proposition 8.837. Let M=,.G. Then MB«,,G for all geG.
Proof. Let xeM*, Then Cg(x9)=(Cg(x))9<M8, as required.

Proposition 38.38.Let M, N<gcG. it MAN=1 then MnN<goG.
Proof.Let  xe(MAN)¥. Then Cg(x)€M  and  Cg(x)<N.Hence
Cg(x) =MnN, as required.

Proposition 8.389.Let M=,.G and suppose Z(M)#1.Then M Is a
T.l-set in G,

Proof. Suppose MnM9:1 and let xe(MnMS) ¥, Clearly
Z(MYUZ(MD) £Cg (X)) =sMnMI. Let we(Z(MD Y# Then weM and SO
MO=Cg(w) =M. Thus M9=M, as required.

Proposition 3.40.Let M=ccG and H=G.Then either MnH=1,MnH=H or
MﬁHéccH.

Proof. Suppose MnH#1 or H and let xe(MnH)®, Then Cg(x)<M and so
CH(x) £MnH, as required.

Proposition 8. 41. Let K£;oM=ccG. Then K=qcG.
Proof. Let keK¥. Then Cg(Kk)<M and so Cg(k)=CMm(K) <K, as required.

Proposition 3.42.let Mg cG.m=n(M) and 1et N be a normal
m-subgroup of G.Then N=M,
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Proof. MN is a m—subgroup of G containing M and so MN=M as M is
Hall. Thus N=M.

Proposition 3.43.Let M<;-G. Then Z(G) =1.
Proof. Suppose Z(G)#1 and let ze(Z(GN . It 2eM then G=Cg(2)£M. a
contradiction. and If z¢M then zeCg(M)=£M,a contradiction.

Proposition 3.44. Lot M=,,G and suppose that G=AxB.Then either A=1
or B=1,

Proof. Suppose nelther A nor B is 1.Let p divide |M| and
suppose, without loss of generality.that p divides |Al.Let x be an
element of order p in A. Then xeM8 for some geG. Thus
B£Cg(A) <Cg(x) =M9 and SO A=Cg(B)=M8. Hence G=M9. a
contradiction.

Proposition 38.45.Let M=,.G and suppose that M=G.Then G s
Frobenius with kernel M.

Proof.M is a normal Hall subgroup of G and so by the
Schur-Zassenhaus Theorem G splits over M. That Is,.thore exists H=G
such that G=HM and HnM=1,

Let geG-H and put g=xm for some xeH and some meM¥ . Lot
yeHNHE, Then yeHM™M and so y=hM for some heH. Since yeH we have
lh.mi=h"iyeH. Since M=2G,[h.mleM and so as MnH=1,[h,ml=1.Thus
heCa(M)=M.Hence h=1 and so y=1.Thus HnHO9=1.Then by the
definition of a Frobenius group.G is Frobenius with complement H
and so by Frobenius’ Theorem 3.16,.G has kernel M.

Proposition 3.46.Let G be a Frobenlus group with kernel K and
complement H. Then both K and H are CC-subgroups of G.
Proof. Let heH¥ and geCgth) . Then heHnHY and so since H is a
T.l-set in G,H=HY:- Thus geNg(H)=H.Hence HegG.

Let keK¥ xeC(k) and suppose that x¢K.Then xeHI for some
geG. Now keCg(x)<HO by the first paragraph.a contradiction.
Hence K=goG.

Proposition 3.47.let M<;,G and suppose that G is Frobenius with
kernel K and complement H. Then either M=K or M=H9 for some geG.
Proof. Suppose that MnK=1.Then MnHY92%1 for some conjugate HY of
H.S8ince Z(H)#1. Propositions 3.40 and 3.43 imply that
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HB<M. Suppose that HI<M. Then since G=HIK, MnK#1, a contradiction.
Hence HB=M.Thus we can assume that MnK#l.As before,since
Z(K)#1,we have that Ke&M.if KM then by the above argument
MnH921 for some complement HY9 of G and so H9€M.Thus
G=HY9K<M. a contradiction. Hence K=M,

Proposition 3.4B.Let H be both a Frobenius complement and a
Frobenius kKernel. Then H is cyclic of odd order.

Proof. Since H is nilpotent. Sylow subgroups of H are normal in
H.and a Sylow 2-subgroup.P.is either cyclic or generalised
quaternion by Theorem 3.19.Suppose that Pz1.Then in either case
for P.P contains a characteristic subgroup of order 2(the latter case
by Theorem 3.17).Thus H has a normal subgroup of order 2.N
say. Now let G be a Frobenius group with kernel H and complement
L.By Proposition 3.1, NG(N)/Cg(N) can be embedded In
AutN=AutZ, =1, Now Ca(N)=H as H=goG. and HeNG(N) . Thus
Cg(N)=Ng(N)=H. Hence L normalises and s0 centralises
N.contradicting the fact that H&gcG.Hence 2 does not divide
IH!. Thus H Is the direct product of cyclic groups of relatively prime
orders and therefore cyclic.

Proposition 3.49.let G be a Frobenius group with kernel K and
suppose that N2G. Then elther K£€N or N=K,

Proof. Suppose that N4K. Then we can select xeN-K and without loss
of generality suppose that x is of prime order p where p does not
divide |K| as K Is a Hall subgroup. Thus «* acts as a q'-group of
automorphisms on each Sylow gq-subgroup Q of K for any g dividing
1K1. Thus by [Gorenstein: Theorem 5.3.51.Q=[«>.QICq(x) . Thus
Q=[¢0>,Q} since CQ(x)=1 as Ke=gcG.Thus Q=N as [« Ql=N.Hence
K<N, as required.

Proposition 3. 50. Let MgcccG and N be a minimal norma! subgroup of
G such that MnN#1.1f N4M then N is simple.

Proof. By Proposiﬂonra.]],N Is elther elementary abellan.in which
case,. by Propositions 3.40 and 3.43.N=<M.or N is a direct product of
isomorphic simple groups.in the latter case,if the product has length
greater than one,then by Propositions 3.40 and 3.44,N=M, Thus In
order that N¥M.N must be a simple group.
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Proposition 3.51. Suppose that 1<KeM<,,G and H«G such that
MnH=1. Then the following are true.

(DIf K=2G and H4G then HK Is Frobenius with kernel K and
compiement H.

(it HeG and K+G then HK is Frobenius with kerne! H and
complement K,
Proof. (D Cg(k) <M for all kek¥,

Thus CH(K)=1 for all keK¥.

Thus K Is a normal CC-subgroup of HK and so HK is Frobenius
with kernel K by Proposition 3. 45. Similarly, Ck(h)=1 for all heH¥* and

so HegoHK. Thus by Proposition 3.47.and since H#K.H Is a
complement for HK.

The proof of (i) is analogous.

We now require to introcduce some character theory.
Proposition 38.52.let #y,; denote the number of different ways of
expressing z as the product of a conjugate of x and a conjugate of y
and let &xy denote the function that has vaiue 1 If x and y are
conjugate and 0 otherwise. Now suppose that G Is a Frobenius group
with kernel K and complement H and let kek¥, u,veG-K.
(D #yy—1x=Byy 1G171CG W) |
(i K=G' and K=G’ if and only if H is cyclic.
Proof. (YA well known order formula is the f{ollowing(see for
examplaelGorenstein: Theorem 4.2.12}).
*xyz= 1G] £ X x(yIx(z")
1ICax) 1ICa(y | xelrrG x(1)
We neglect the precéedlng constant for the moment and consider
the sum,which can be split into two as follows.

L + L
xelrrG : xehrrG
Kekerx Kskery

But by ([QGorenstein;Theorem 4.5.3] the flrst sum Is Identically
zero(since we take x=u¢K) and the second sum can be considered
as the sum over the irreducibie characters of G/K=H. Thus

#yy— 1K= 1G1 L x(uw) x(v™1)
1Ca(w 11Cg(v) | xelrrH
By the second orthogonality relation,.this sum s Just
8uyICH(V) |, and the result follows since H#gG.
(1IN Suppose v and v are conjugate. Then #,yy—14#0 and it follows
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; that k=Iw.2] for some w,z2eG with w and z conjugate to u,Thus
KeG'.Now K=G' It and only if G/KaH Is abelan.That Iis.by
Theorem 3.19(xiiD ,if and only If H is cyclic.
Proposition 3. 53(Herzogl43: Theorem 2. 3D .Let M<,,G and suppose M
is a T.i-set in G. Then the following hold.

(O If Ng(M) has no normal complement in G and N is a normal
subgroup of G such that MnN=#1 then M=N.

(iDIt Ng(M)#M then M=G’,

(i if NG(M) has no normal complement in G then M<G" and G Is
insoiubie.

(M Ng(M)#M and N is a non-trivial normal subgroup of G such
that MnN=1 then M Is cyclic of odd order.N is nlipotent and Ng(M)
is metacyclic.

Proof. (D Let K=MnN and suppose that Npn(K)=K.Then by Frobenius’
Theorem 3.16.K has a normal complement D in N such that N=KD
and KnD=1.D is characteristic in N and so normal in G,and
DANGg(M)=1,As K is a Hali subgroup of N by Proposition 3.36,we
use Frattini‘s rule Proposition 3.7 and Proposition 3.22 to obtain that
G=NG(KIN=N@(M)D. a contradiction.Hence we can assume that
NN(K) 2K, 8ince N@(M) has no normal compliement, Ng(M)#M, and we
can choose neNGg(K)€NG(M) by Proposition 38.22,with n¢M. Let
meM.Then n and nM are contained in Ng(M)-M and so by
Proposition 3. 52, #,(nm)—1m#0. Thus m=n9nMh for some g.heNg(M)
and so meN as N=G,as required.

(i) By Proposition 3. 52(i) . M=(Ng(M)) '=G’. Hence resuit,

(lidAgain Ng(M)#M. I M=G" then Ng(M) would have normal
complement 1.a contradiction, Now suppose that G is soluble and
consider the derived series for G.If Ng'(M)#M then we use
Proposition 3.53(i) to obtain that M=G’’. By Induction, then, either
NGgWiM) =M for some n.or M=1.and the latter is a contradiction. Thus
we can assume that Ng(W(M)=M for some n and thus that GW is
Frobenius with complement M and kernel K say.K is a normal
subgroup of G and If an asterisk denotes factoring by K.then
NG*(M™) =G*. Thus Ng*(M™ has normal complement 1 In G* and so
Ng(M) has a normal complement in G.a contradiction. Hence G s
insoluble.

(IV) MAN=1. Suppose that NANg(M)#1 and let ne¢{NnNg(M)») ¥ Since
n¢M,we can use Proposition 3.52(i) to obtain that M=N,a
contradiction, Thus NANg(M) =1, Thus by Theorem 3.51.MN is

|
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Frobenius with kernei N and complement M.But M is aiso a kernel
and so by Proposition 3.48.M is cyciic of odd order.Since the
complement of Ng(M) is a group of automorphisms of M. it is abelian
and so by Theorem 3.18(xiil) .is cyclic. Thus Ng(M) is metacyclic.

Proposition 3. 54(Herzogl[43D) . Let M=£,oG.M a T.l-set of G,such that

Ng(M)#M or G.and M Is not cyclic of odd order. Then the following
hoid.

(i) It there exists a proper non-triviai normal subgroup N of G then
M£N and G iIs Insoluble.
(IiD G contains a simple normal subgroup containing M.

Proof. (D By Proposition 3.53(lv) ., we have MnN#1 and so by
Proposition 3.53().M=N and Ng(M) has no normal compliement in
G. Thus by Proposition 3. 53(iil) .G Is insoluble.

(iblet G™ be a minimal normal subgroup of G.If MnG™=1 then
M is cyclic by Proposition 3.53(iv).a coniradiction. Thus by
Proposition 3. 50, either G™<M or G" Is simple.But If G*<M then by
Proposition 3. 22, M2G., a contradiction, Hence resuit.

Proposition 8. 55(Herzog{43) .Let M=,,G.M & T.l-set in G and
suppose that G is soluble. Then one of the following holds.
{(DM=2G and G is Frobenius with kernel M.

(D Ng(M)=M and G is Frobenius with complement M.
UHIDNG(M)Y#M or G.Ng(M) has a normal complement.M is cyclic
of odd order and N@(M) is metacyclic.
Proof. If Ng(M)=M or G. (i) and (i) hold respectively.otherwise. by
Proposition 3. 530D .Ng(M) has a normal complement and so by
Proposition 3. 83(iv) . (1il) holds.

Proposition 3. 56(Arad and Chillag).Let H=2G and xeG such that
Cixl, IH1)=1,and denote by asterisk the image modulo H. Then
Ca*(x)=Cgx) H/H.

Proof. Cg*(x*)=(g"eG™: x" g =g"x™

=(g'eG*:ng=xgH} where g is an inverse image of g"
in G. ={g"eG™: Ix. gleH}.
Clearly then,if geCg(x) then g*eCg*(x™).
Now iet ¢c"eCg*(x™) with inverse Image ¢ in G.We have
xcH=cxH. That is.xCH=xH,and so «C>H=<w>H.
Since (ix}.|H})=1 and H=G,H=&H and we use the
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Schur-Zassenhaus Theorem to obtain that <«*H splits over H,with the
complements of H being conjugate. Thus «C> and «> are conjugate in
«H.That is.there exists heH such that «®=w>f Now let neN such
that xC=(xMh Then xNH=x"hH=hxCH=hxH.Then as H<G.hXeH and so
xN~1egH. Thus x""1=1, That Is.x"=x and so xC=xP. Thus ch~teCg(x).and
so ceCg(x) H, as required.

Note: This result allows us to say that it M£goG and HeG then either
M™=1,M*=G™ or M™£;.G".

Proposition 8.57.Let M be a Hall m-subgroup of G.H=G and suppose
that either H is a w'-subgroup or MH is soluble. Then.denoting by an
asterisk images modulo H.we have Ng*(M™)=Ng(M)H/H.
Proof. Ng*(M™) =(g"eG™: g"M™=M"g™

={g*eG™: (M) 98%=M")

=(g"eG™: (MD) *=M").
Clearly If geNg(M) then g*eNg*(M™).

Now let n"eNG*(M™) with inverse 1Image n In G.Then
(M™)N*=M" that is,MNH=MH,and either by the Schur-Zassenhaus
Theorem as in the previous proof.or by Hall’'s Theorem 3,8.there
exists heH such that MP=MP. Thus nh~teNg(M) and so neNG(MXH as
required.

Proposition 3. 58. Let M<ycG, m=r(M) and suppose that Og(G)#1.Then
Op(G)=M and G is Frobenius with kernel M.

Proof.Let N be a non-trivial normal w-subgroup of G.Then by
Proposition 3.42,N=M and so Mg=#l.If Mg=M the resuilt follows, and
S0 we can assume that Mg<M.As Mg Is a normal CC-subgroup of
both G and M(by Propositions 3.37 and 3.38).M "and G are
Frobenius groups with kernel Mg.let H be a complement to Mg in
M. Then H=g,cG and so by Proposition 3.56, H=M/Mg=ccG/Mg. But
G/Mg is isomorphic to a Frobenius complement and so has
non-trivial centre. contradicting Proposition 3.43. Hence result.

Proposition 3.59. Let M=,:G and suppose that (|F(G)|.IMD)#1.Then
F(GQ) =M.

Proof.Let p be a prime dividing both [F(G)| and |M| and let
m=n{M).Then Op(G)=M by Proposition 3.42, Now for all primes g=p.
OptGIn0q(G)=1 and so(by [Rose:Theorem..3.53D ,[0p(G), Oq(G))=1.
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Thus Oq(G)GCG(Op(G))GM as M<ocG. Thus F(G)= 1 Og(G)<M as
required. qll1G|

Proposition 3.60.Let M=,.G and suppose that (IF(G)I,IMD=1.Let
asterisks denote images moduio F(Q),

(O if F(G™#1 then F(G™ =M™,

(IDIf G is insoluble and Ng(M)#M then F(G™) =1,

Proof. ()Suppose that F(G™#1 but that C(IF(G™) |, IM"D=1,
Consider F,(G).the inverse image of F(G™,so that
F,_(G)/F(G)=F(G').Slnce both |F(G)| and IF(G™) | are coprime to
IMILIF2(Q) | Is coprime to IM| and thus by Theorem 38.51. MF(G)
is Frobenius with kernel F,(G).But then F,(G) is a normal nilpotent
subgroup of G strictly ocontaining F(G).a contradiction. Thus
CIFCG™ |, IM*D#1. Now by Proposition 3.56,either M*&;cG™ or
M*=G".and thus by Proposition 3.59 applied to M*, F(G™) =M",

(i) Now suppose that G is insoluble and Ng(M)#M but that
F(G");ﬂ.Again applying Theorem 3.51.MF(G) is a Frobenius group
with complement M so that by Theorem 3,48 ,M is cyclic of odd
order. Aiso,by () ,F(G™) &M so that F(G™ s cyclic. We can thus
choose a characteristic subgroup R* of order p for some prime
p.Then R*2G™ and so by Propositions 3.1 and 3.3,G"/Cg*(R™ can
be embedded In AutZpaZp—,.But G” Is insoluble since G s
insoluble.and so Cg*(R™ is Insoluble. However, CG*(R™)eM™ as
R*«M™,which Is soluble since M Is cyclic, a contradiction. The result
follows.
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CHAPTER IV: A MATHEMATICAL DISCUSSION

Section 1: On groups with CC—subgroups of order divisibie by 3

Most of the early results on CC-subgroups of order divisible by
3.up to and including Theorem 2.20(except for the two Inserted
results. Theorems 2.16 and 2.17)were obtained with the use of
character theory,sometimes extensively. One reason for this is that,as
CC-subgroups are in general trivial-intersection sets,a large body of
weall understood theory could be applied.In fact, before the concept of
CC-subgroups existed on ‘its own,the CC-property,along with the
*T.i—ness",had been shown by Feit and others io be fundamentaily
involved with the theory of exceptional characters(see for
exampiellsaacs: Chapter 71).Thus Herzog,whose researches stemmed
from those of Felt,relied predominantly on the use of exceptional
characters in proving Theorems 2.8 to 2.11.and also to a lesser
extent in Theorem 2.6.

Another technique frequently invoked is the Brauer—Suzuki method.
mentioned in the Introduction,of constructing parts of character
tables(usually blocks for ease of handling)to which can be applied
order formulae involving centralisers and conjugacy classes. To show
the applicabllity of this method to CC-subgroup theory we consider a
group G.The method requires the existence of a subgroup H of G
which has a subset of pairwise non-conjugate elements {(h,....hpl,
each of which satisfies Cg(h}) <H(conjugacy classes in H of these
olements are called the special classes of H).Clearly this conditlon is

oasily satisfled In the case that He€£g;cG. An example of the order
formulae is the well known "sharp” equation

#(a b =)= 1G} IN x(a) x(b)x(c™ %)
iICa(a)1ICg(M) | xelrrG x(1 .

where #(a'b-=¢) denotes the number of different ways that ¢ can
be given as the product of a conjugate of a and a conjugate of b.
Calculation of the left hand side of this equation in general requires
knowledge of subgroups generated by conjugates of a and b.and so
is restricted to elements of orders 2 and 3
(see for examplel47: Theorem2]) , whereas the right hand side can be
made manageable provided at least one of a.b and ¢ Is in a special
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class. in that it then Involves a fixed set of unknowns satisfying a set
of equations previously obtained by the character theory,

In this way several of the preliminary results in the proof of
Theorem 2.5 were abtained.and also the specific characterisations of
simple groups by Higman and Fletcher in Theorem 2,18,

However as a policy the author of this thesis has chosen to
concentrate on the group-theoretic arguments at the expense of any
specific character theory. As a consequence, discussion on these early
results will for the most part, only be qualitative.

The Feit and Thompson proof of Theorem 2.1,as with most of the
following in this section.begins by considering a minimal
counterexample, quickly sean to be simple.and proceeding to a
contradiction via the existence of irreducible characters with particular
properties, Extensive use Is made of order formulae relating to
conjugacy classes.and Sylow theory.to obtain three possibie
configurations for the counterexample.each of which Iis proved
invalld. either by a false arithmetical relation or the existence of a
simple group with an lmposslbslja order. However this proof was
considered by Higman and/ Stewart to be unsuitable for
generalisation, Higman([47] proceeded to give  two alternative
proofs.both of which use the Brauer-Suzuki method.and can be
generalised in particular to results on C33-groups. The first of these
is standard In that it gives an arithmetical property of a minimal
counterexample which is not compatible with the hypothesis. The
second is more sophisticated and uses local group theory to show
that no counterexampie exisis.it is this latter technique which Stewart
extended to prove Theorem 2.5,

Stewart used much more local analysis.the Brauer-Suzuki method
being used in a slightly different way from Higman to obtain a set of
lemmas useful in the proof(for Iinstance that a minimal
counterexample has all its Involutions conjugate) .

As promised in the remarks made after the statement of Theorem
2.5.we now show that theorem’s applicabliity to the cyclic case.

Llemma 4.1.Let M=ccG.3 divide |IM| and suppose that M Is cyclic.

Then ING(M)/M|=<2,

Proof. M Is a Hall subgroup.Let P be a Sylow 3-subgroup of G
contained in M. Since P Is cyclic. P=CG(P) and so NG(P)/Cg(P) is a
3'-group of automorphisms acting non-trivially on P, Thus by
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Proposition 8. 14, NG(P)/Cg(P) acts non-trivially on P/¢(P).But
P/®(P) is an elementary abellan cyclic 3-group and so has order 3.
Thus Ng(P)/Cx(P) can be embedded in AutZ,=Z,.

Now,since clearly Cq(P)=M and Ng(M)=Ng(P).we have
ING(M) /M|<2, as required.

The proof of Herzog's further extension of Theorem 2.1.that is
Theorem 2.6.proceeds again by minimal counterexample.G, say. A
configuration is obtained for G which.on applying some further theory
of exceptional characters, gives an upper and lower bound for the
order of G in terms of polynomials in m.the order of the
CC—-subgroup M. These bounds are incompatible unless m=3.which by
Theorem 2.5 Iimplies that G satisfies the conclusion of the
theorem, an immediate contradiction.

Theorem 2.7 is a consequence of Theorems 2.8 to 2. 11(which are

proved by exceptional characters and are not discussed here).and
Theorem 2.6,

We now proceed to the Higman and Fletcher development of
C33—-group theory. and the generalisation introduced by
Definition 2.12.1n order that it may be seen how closely related this

-ldea is to the study of CC-subgroups.we prove Propositions 2.13 and
2,14,

Proof of Proposition 2.13[(rCC-groups are Cumr-groupsl.Let G be a
wCC—-group with nGCC-subgroup M.Let x be a non-trivial m—element of
G.Then for some power xM of x.x" is of prime order p for some
pen. Since M contains a Sylow p-subgroup of G.x" is conjugate to an
element of M and hence Cg(x™ is a nm—group. Since Cg(x)=Cg(xM it
follows that Cg(x) is a m~group. Hence result.

Proof of Proposition 2.14{Cpp—-groups with abelian Sylow p-subgroups
are pCC-groupsl.tet G be a Cpp-group with abellan Sylow

p-subgroup P. Let xeP¥. Then Cg(x) is a p-group containing P and so
Ca(x)=P.Hence result.

Fletcher's proof of Theorem 2.15.that simple C33-groups have
abelian Sylow 3-subgroups.uses standard group-—theoretic arguments.
However.though the result is required In later resuilts,as this
discussion concentrates on CC-subgroups.the proof will not be given
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here.

The important characterisation result Theorem 2.18 is for the most
part an immadlate consequence of previous results, by considering in
case (a),Theorem 2.5 applied to the particular configuration.and In
case (b).Theorem 2.10.The Iindividual characterisations of the
3CC-groups PSL(2,.9) and PSL(3.4) were given by
Higmani47:Theorem 13.3] and Fletcheri32] respectively by using the
Brauer-Suzuki method to find possible orders for groups satisfying the
conditions of Theorem 2.10(l) and i),

Lastly in the set of character theory dominated resulis Is
Theorem 2.19.The proot of this Is extremely complicated.and as it
was greatly simplified and extended by Arad without the use of
characters in Theorem 2.21,we shall not dwall on it.

We now come to the body of work produced by Arad which
culminated in the classification Theorem 2,23, Although this work
relies on character theory inasmuch as it is based on many of the
previous results.the actual proofs given by Arad contain no explicit
use of characters whatsoever,since he made use of several advanced
local group-theoretic results which had been made available in the
intervening years.for example Glauberman’s Theorem 3.32 and
Goldschmidt's Theorem 8.34.Aiso used for the first time in the
comtext of CC-subgroups of order divisible by 3 was Suzuki's result
for the even case.Theorem 3.27.As these results would take several
hundred pages to prove on their own,and involve theory far outwith
the range of this thesis,they will not be discussed.

First we need a result of Fletcher which originated from his
doctoral thesis.

Theorem 4.2(Fletcher(30).Let G be a simple CB33-group and
suppose that one of the following is true.

(D There exists an Insolublie subgroup N of G such that 3 divides
INI and O (N)=1.

(i) Some non-trivial 2-subgroup of G is normalised by an slement
of order 3,
Then G is Isomorphic to either PSL(3.4) or PSL{2.q) for some
q=4,

Unfortunately no proof of this resuit has been published to the best
of this author’'s knowledge.
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The following preliminary result is a convenience which Arad
did not adopt.
Proposition 4.8.tet G be a simple Cwrm—-group for some w such that

S8er and 24w, and suppose that G Is S,-free. Then G=PSL(2,q) for
some q.

Proof. By Theorem 3.32.G(if It exists} must be one of the groups
listed In Theorem 3.34.Clearly G is not a Suzuki group since 3
divides 1G}.The possible sets m for J; and 2G,(32N*1) grg
known(see Chapter VI) and none satisfy the necessary conditions. The
possible sets n for PSU(3.4) are also known and none of these
satisty the necessary conditions either and since PSU(3.4) can be
embedded In PSU(3,4™ for all n»1,none of these groups Is a
Cmrm—group for a suitable w. Hence result.

Remark: This result holds in particular for mCC-groups where 3er and
2*11.

The next result. which Improvas upon Theorem 4.2.is essential for
further development. The proof is very representative of Arad’'s
technique.

Proposition 4, 4(Arad(2: Lemma D, Let G be a simple
C33—-group. Then G is Isomorphic to either PSL(3,4) or PSL(2,q) for
some q.

Proof.Let H be an arbitrary non-trivial 2-subgroup of G.If 3 divides
ING(H) | then the result follows by Theorem 4,2Cil).THus we can
assume that 3 does not divide |ING(H)|.Then by Theorem 3.33.G Is
S.-free and so by Proposition 4.3,G=PSL(2.q) for some q.Hence
result,

Note: In particuiar, by Proposition 4.4,simple C33-groups have cyclic
or elementary abelian Syiow 3-subgroups.

We can now give the folliowing.

Proof of Theorem 2.21.Let G be a minimal counterexample and let N
be a minimal normal subgroup of G.Suppose that 3 does not divide
IN{.Then N admits a fixed—point-free automorphism of order 3 and
so Is nllpotent by Theorem 3.18.Thus by Theorem 3.11.N Is a
p-group for some p=#3.We can assume that M4G so that by
Theorem 3.51,MN is a Frobenius group with complement M. Hence by
Theorem 3. 19(vii) .M Is cyclic, a contradiction.

Thus we can assume that 3 divides IN|.In this case MnN#1 by
Proposition 8.24,and so by Proposition 3.50.elther NM or N is
simple. if NM then by Proposition 3.22,M<G,a contradiction. Hence
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N is simple.If Ng(M)=#M then by Proposition 3.54,M<N and since G
is a minimal counterexample, G=N. Thus by Proposition 4.4, M Is cyclic
or elementary abelian.a contradiction. Thus we can assume that
NG(M)=M.in which case M is a Frobenius complement of G and so
by Theorem 3, 18(viil) .M is cyclic, a final contradiction.

Proof of Theorem 2.22.We use Theorem 2.21.If M=2G then clearly (D
hoids. it M Is cyclic then by Theorem 2.5.one of (i), (i) and (iv)
holds.and if M Is elementary abeilian then Theorem 2.10 and
Proposition 4.4 cover the remaining possibilities.

To give a proof of Theorem 2.23 we require the foliowing
immediate coroilary of Theorem 2. 65,

Proposition 4.5.1et G be a simple group and suppose that the

following hold.

(DG has no element of order 6.

(ii) Bome non-irivial 2-subgroup of G Is normalised by an slement
of order 3.

Then CC-subgroups of G.of order divisible by 3.if they exist, are
either cyclic of odd order or elementary abelian.

We can now proceed to the proof of the main resuit.
Proof of Theorem 2.23.Llet G be a minimal counterexample. Then
Ng(M)#1 and so M Iis nilpotent. By Proposition 3.54.G contains a
simple normal subgroup G containing M and  satisfying
Ng*(M)#M. Thus,as G is a minimal countergxample,we can Ssuppose
that G=G*.{ 2 divides |M| then Theorem 3.27 implies that

G=PSL(2.2M) for some n.a contradiction. Thus we can assume that 2
does not divide |[M| and then that G has no element of order 6(for
such an element would ceniralise an element of M).Let H be an
arbitrary non-trivial 2-subgroup of G.if 38 divides INg(H)1 then by
Proposition 4.5.M is elther cyclic of odd order or elementary
abelian.a contradiction. Thus we can assume that 3 does not divide
ING(H) | in which case by Thecrem 3.33 and
Proposition 4.3, G=PSL(2,q) for some q.a contradiction.

We prove Theorem 2.25 before Theorem 2.24 as the latter needs
an additional preliminary result,
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Proof of Theorem 2.25.Let G be a minimal counterexample.If 2

divides M| then GaPSL(2.2M) by Theorem 3.27.a contradiction.
Thus we can assume that 2 does not divide |M| and so G has no
element of order 6.As in the proof of Theorem 2.23,if 3 divides

ING(H) | for some non-trivial 2-subgroup H of G, then elther M is
cyclic or elementary abellan and using Theorem 2.5 and
Proposition 4.4.G Is one of the groups listed.and § 3 does not
divide INg(H)| then by Theorem 3.33 and Proposition 4.3,
G=PBL(2,q) for some sultable q.

Note: Here we use the values for q as given in Theorem 2.65.

The last result to be proved from Chapter Ii, Section I, that
Is, Theorem 2.24,requires the following result. Here an Inconsistency
in the original proof by Arad and Herzog has been corrected.
Proposition 4.6(Arad and Herzog{9).lLet M=,,G and suppose that
NGg(M)=M.Then one of the following is true.

(DG Is Frobenius with M as complement,
(iIDG has a simple section H/K and If an asterisk denotes an

image modulo K we have

(a) MeNg (H)NNG(K) ,

(b)Y M™ g5 (MH) ¥,

(©) (HAM) “cH™, and

Cd) N* CCHAMD) ) =(HAM) *.
Proof.tet G be a minimal counterexamp!e.M |Is a Hall m-subgroup of
G where nm=n(M).Clearly G s ‘neither simple nor Frobenius with
compliement M. Thus by Theorem 3.27.2 does not divide |M| and so
M is soluble.

Suppose that Op(Q)21.f G/Op(G)aM  then () holds,a
contradiction. Hence G/On(G)#M.11 we denote factoring modulo
O (G) by a bar. it follows that M&gcG and NG(M)=M. Hence.as G Is
a minimal counterexample,elther () or (1) holds for G.and so also
for G.a contradiction. Thus we can assume that O,/(G)=1.Let N be a
minimal normal subgroup of G.Then since (IMI]. INIY#1, MaN#1,
Suppose N=M.Then 1<Mg<M and so G is Frobenius with kernel Mg by
Proposition 3.45.But then by Proposition 3.47,either M=Mg or
MnM@=1.a contradiction. Hence by Proposition 3.50 we caﬁ assume
that N is simple.Let R=MnN.Then R£goN. Suppose that Nn(R)#R. Then
M<NG(R) and so by the minimality of Q,either Ng(R) Is Frobenius
with complement M. contradicting the fact that ReNg(R) ,or (i)
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holds for Ng(R) and so also for G.,a contradiction. Thus NN(R)=R.
But then G satisfies (1) with H=N and K=1,a final contradiction.

This enables us to give the following.
Proof of Theorem 2.24.1let G be a minimal counterexample. Then
condition (I} of Proposition 4.6 holds.if 2 divides [MI then
G=PSL(2,2M) ,a contradiction. Thus we can assume that 2 does not
divide |M|.Suppose that 3 divides I1(HAM)™|.Then by Theorem
2.23,H" is one of a known list of simple groups.none of which
except PSL(2,q) satisfy condition (i) (d) of Proposition 4.6 such that
2 does not divide I(HAM)™|.and so (i) of this theorem holds. Thus
we can assume that 3 does not divide I(HnM)"\.Then 3 does not
divide |H"1 and so by Theorem 3.31,H"=82(22"*+1) for some n=1.Let
meM be an element of order 3.Then by condition (ib(a) of
Proposition 4.6 and ([Gorenstein: Theorem 6.2.2(i)1.m™ normalises
the centre of a Sylow 2-subgroup of H™.which has order 22N+ As 3

does not divide 22N*1-1 m™ centralises an involution in H”.Since 2

does not divide |M| we have a final contradiction to condition (i) (b)
of Proposition 4.86.

Another proof- of Theorem 2.24 was given later by Arad and

Herzog[101 which is similar in technique but does not invoive factor
groups.
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Section Il: On closure and homogeneity

All the results in Section |i of Chapter |l were obtained
group—theoretically. making use of several highly non-triviai results
which,as in the previous section.lle far outwith the domain of this
thesis. However, using these results.it Is possible to prove every result
in this part of the survaey.Nevertheless.in cases where the proof
involves lengthy computation or repaetition of previous arguments.only
an outline of the proof will be given.

The main reason for Including the Ideas of closure and
homogeneity in the survey.,apart from the obvious dependence on
primes.is that the central body of results were produced by Arad and
Ferguson simultanecusly with their deveiopment of CC-subgroup
theory.and many of the proofs Iin this section involve largely the
same techniques.Indeed at a glance it is difficult to distinguish the
proofs of Theorems 2.48 and 2.49 from those of Theorems
2.21,2.23 and 2.25.Another reason is that certain important
CC-results rely on the main theocrem of this section, Theorem 2.52,as
wiil be seen for instance at the end of Chapter V.

Important additions to the collections of useful results are the list
of minimai simple groups obtained by Thompson.from the N-group
paperl64l. and. again by Thompson,the classlification of all slmple
3’'-groups, Theorem 3.31,which though used once in the previous
seclion,is used extensively here and in Chapter V.

However we first have to consider the more elementary
group-theoretically proved results of Baer.

Proof of Theorem 2.30{r-closure implies m'-homogeneityl.Let m be a
set of primes and let G be a w-closed group.Then R,the set of
w—elements of G.is a characteristic Hall wm-subgroup of G.Suppose
now that 8 is a w'-subgroup of G and let geRNNG(S).Then I[g.sleS
for all 58 and also.since R=2G.Ig.sleR. Hence Ig.sleRnS=1,and so

geCa(8). Thus RnNG(8)=Cx(8).it follows that Ng@(8)/Cg(8) Is a
w'-group,as required.

We shalt refrain from giving proofs of Theorems 2.31 and 2.32.
They involve straightforward but lengthy arguments of Sylow theory
and automorphism results. However,as Theorem 2.33 Is a partial
converse to Theorem 2.30(which Is central motivation 1o the
subsequent theory) .we shail give its proof.
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Proot of Theorem 2.84.let G be a w-closed group.By
Theorem 2.30,G Is n'~homogeneous. Also, since subgroups and factor
groups of w—closed groups are n—-closed.the composition factors of G
are w-closed simple groups(here.simple Iincludes cyclic of prime
order) ., But simpie groups are m-closed If and only If they are elther
w-groups or w'—groups, and thus G is w'-separable.

Conversely, suppose that G is n'-homogeneous and w'-separabie. We
shall use induction.By definition of n'~separabliity.there exist
subgroups {Gj:1=0..n} of G for some n such that Gy=1.Gn=G and
Gi=Gi+, wheore Gj+,/G} Is either a wn-group or a w'—-group.in
particular. Gj+,/G; is m-closed for I=0..n-1.Now G, is m—closed and
G;/Go are r—closed, Also,. G is T'—~homogeneous by
Theorem 2.31. Hence by Theorem 2.32,G,; Is m-closed. Now suppose
that Gj (s w-closed. Then again by Theorem 2.32.Gjy+, Is n-closed,
Hence by induction. G=Gp is m-closed. as required.

Wa shall require Frobenius’ Theorem 2.36 in the following.
Proot of Theorem 2.39.1f G Is the direct product of a p-group and a
p’—group then clearly G=0p(G)x0p’'(G) and obviously G is p-ciosed

and p'-closed.hence p-homogeneous and p’-homogeneous by
Theorem 2, 30,

Conversely. suppose that G is both p-homogeneous and
p'-homogeneous. Then G Is p'-closed by Theorem 2.36 and so there
exists a characteristic Hall p'-subgroup Q of G such that |G/Q] is a
power ot p.f P is a Sylow p-subgroup of G then G=PQ and
PnQ=1.8Since G Iis p'-homogeneous.G/Cg(Q)=Ng(Q)/Ca(Q} s a
p’-group and so P=Cg(Q).Thus G=PxQ as required,

Theorem 2.41 Is proved using similar techniques to those of the
above results, but although it remained the best result availabie untii
1974.its proof will not be given as it was superceded by what
follows, and more importantly,was not used Iin the proofs of later
theocrems. (This cannot be sald.for example.,of the early resuits of
Stewart and Herzog In the previous section).

The proof of Theorem 2.42 is deceptively simple.
Proot of Theorem 2.42i2'-homogensity implies 2-closurel.let G be a
minimal counterexample.By Theorems 2.31 and 2.32.G must be a
simple group.Let K be the conjugacy ciass of some involution ueG,
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Obviously [K|>1.Then by Baer's Theorem 3.15,there must exist
veK,v#u,such that uv Is not a 2-element. if |uvi=2Kkm where m>1 and
Is odd, then let t=(uv) 2..(Then Iti=m. Now

tU=uCuv. . .uvdu=Cvu. . .va)=t"* and so N@g()/Ca( Is not a
2'-group. Hence G is not 2'-homogeneous, a contradiction.

The conciseness of the proof of Theorem 2.42 is only
possible, however, by using Theorem 3. 15.the proof of which in itself
1s a 3—to-4 page continuous flow of Sylow theory. As it is not directly
relevant to this thesis.but only used as a means to an end.the proof
is reluctantly omitted.

We now give a proof of Theorem 2. 43,
Proof of Theorem 2.43.1f G Is a wn'-closed group then G s
r-homogeneous by Theorem 2. 30.

Conversely, suppose that G is a minimal counterexample to the
theorem. Then G Is n—homogeneous.if |G| Is odd then G is soluble
and so m-separable and thus by Theorem 2.34.G is n'-closed.a
contradiction. Thus we can assume that |Gl s even.From the
hypothesis, 2erm. It »={2) then G Iis w'-closed by Theorem 2.36.a
contradiction. Thus |ri22, Hence G has the following properties.

{DG Is m—homogeneous, 2en{ Q) , 2er and |22,

(i) m-subgroups of G are 2-closed(from the hypothesis).
(I G is not w-closed.

(iv) Proper subgroups of G are w'—ciosed(by minimaliity of G).

let H be a proper subgroup of G.Then H is an extension of a
m'—group by a w-group and the m—group.by (I} is Iitself an extension
of a 2-group by a 2'-group.Thus since 2em,H Is soluble by
Theorems 3.5 and 3.20. (Note that it Is this step which requires the
additional hypothesis (i) and is crucia! to the remainder of the
proof) .

Now suppose that G Is not simple and let N be a minimal! normal
subgroup of G.Then by the previous paragraph.N is soluble and so
by Proposition 3.11.N is an elementary abellan p—-group. Suppose that
per and let K/N be a m-subgroup of G/N.Then K is a m-subgroup of
G and so is 2-closed.Thus the w—-subgroups of G/N are
2-closed.and by the miminality of G.G/N is ='-closed. Then by
Theorem 2.82.G Is n'-closed,a contradiction. Thus we can assume
that p4m. Suppose again that K/N is a w-subgroup of G/N.Then by
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the Schur-Zassenhaus Theorem,K=HN where H Is a Hall r—-subgroup
of K.Thus K/NaH has a normal Sylow 2-subgroup by condition
(ii) . Again by the minimality of G.G/N.,and hence also G.ls
w'-closed, a contradiction. Hence G is simple.

Since all proper subgroups of G are soluble,.G Is now a minimal
simple group and so by Thompsoni64].G is one of a known list of
simple groups whose subgroup structures are well known. Each of
these is checked in turn and it happens that none of them satisfy all

the conditions for a minimal counterexamplie to the theorem.The
result foilows.

The proof of Theorem 2.44 is in effect a set of Independent proofs
for each part.in actual fact Arad gave two further conditions Iinvolving
chains of subgroups. However we will not prove the equivalence in all
cases, butl only in case (i) and partiaily in case (ii}.The other parts
are proved similarly.

Proof of Theorem 2.44(.The forward Iimplication (s obvious by

Theorem 2.30.let G be a minimal counterexample to the converse.
Then G is m—homogeneous, 2¢m and 34m(GQ).If G were not simple then
Theorems 2.31 and 2.32 would Iimply that G Is n'~closed.a
contradiction. Hence by Thompson's classification of simple 3'—groups.
Theorem 3.81.G=8z(q) for some q.Thus by [1:Lemma 2.11(which
simply glves some properties of the Suzuki groups).G Is not
m-homogeneous, a contradiction.

Proof of Theorem 2.44(li}.let G be a minimal counterexample. Then
G Is mhomogeneous.24r and w'-subgroups of G are soluble.
Aiso, proper subgroups of G are w'-closed and so are soluble by
Theorems 3.5 and 3.20.In an analogous way to the proof of

Theorem 2.43.G Is proved simple and so minimal simple. Thus, again
using Thompson's list,we find that no group satisfles all the
properties held by G.Hence result.

We have the following succinct proof of Theorem 2.45.
Proot of Theorem 2.45.I1f G Is m—homogensous and |G| has exactly 4
distinct prime  factors  then by Frobenius’ Theorem 2. 36,
Theorem 2,42, Theorem 2. 44(ii), Burnside’s p“qB-theorem and the
Odd Order Theorem. G is n'—closed.
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From now on,Definition 2.46 of a Dg—group will be used for
convenience.

We have the following sketch of a proof.
Proof of Theorem 2.47(i).Let G be a minimal counterexample. Then
Theorems 2.3 and 2.32 together imply that G is
simple. Theorem 3.81 then Impiles that G=8Sz(q) for some q.in
addition. 2emr since otherwise Theorem 2.44(1) would Imply that G Is
w'—closed, a contradiction. A reference to Suzuki's descriptive paper(59]
then implies that G has more than one class of maximal w-subgroup
and so Is not a Dp—-group.a contradiction.

Theorem 2.47(i) Is proved similarly.

Arad conjectured that in Theorem 2,47, neither of the two extra
conditions was necessary.a result subsequently proved by Ferguson.
Theorem 2, 51.which we shall discuss shortly after the following.
Proof of Theorem 2.48.let G be a simple 3'-homogensous group.if 3
does not divide |G| then G=Sz(22n*+1) {or some n=1.Hence we can
assume that 3 divides |G|.By Theorem 3.83,G is S.-free If and only
if whenever H is an arbitrary non-trivial 2-subgroup of G then S, is
not involved in Ng(H) /Cg(H) . But since G is 3'-homogeneous, 3 does
not divide ING(H)/Cg(H)| for such an H.Thus by Glauberman’s
Theorem 8.32 and Goldschmidt's result, Theorem 3.34,G is one of a
known list of simple groups.A check of this list shows that G is
isomorphic to PSL(2,22N*3) for some na1. Hence resuit.

Proof of Theorem 2.49.Let G be a minimal counterexample. Clearly by
Theorems 2.31 and 2.32,G Is simple.As In the above proof of
Theorem 2.48,we know that every 3'-homogenesous group s S free
and so by Theorems 3.32 and 3.34,.G is one of a known list, from
which it follows that G Is Isomorphic to PSL(2,22N*1) for some n.a
contradiction.

The proof of Theorem 2.50 foliows a simlar pattern.A minimal
counterexample is seen to be a simple group form Goldchmidt's st
in Theorem 3.34, and checking of this list gives a contradiction.

The next resuit. Theorem 2.51.Is proved using the standard

techniques of group theory. However its length restricts us to giving a
brief sketch.
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Sketch of the proof of Theorem 2.51.To begin,G is supposed a

minimal counterexample,.that is.G is a m—homogeneous Dg—group
which is not n'-closed. We let H be a Hall n-subgroup of G.

Step 1:Ferguson originally proved that if G is a Dg—group.then
G/0x(GQ) is a Dg-group.(The proof of this however is easily
extendable to the case where Onx(G) Is replaced by an arbitrary
normal w-subgroup).it Is then obvious that if Of(G)#1 then both
G/0x(G) and On(Q) are n'-closed and so by Theorem 2.32.G is
w'—closed, a contradiction. Hence On(G)=1.

Step 2:By far the longest stage.here are obtained certain fusion
resuits, as follows.

Let 8§ be a non-trivial p-subgroup of H for any perm.Then the
following hoid.
(DNG(S) Is n'-closed,
(D NG(S)=NH{(S)On (Ca(S)).
(i If 8€HY9 for some geG then HI=HY for some yeOgy (Cx(S)).

By Step 1.Ng(S)<G.Thus by the minimality of G.in order to prove
(1) it is sufficient to show that Ng(8) Is a Dp—group. Then proof Is
then split into two cases,according as 8 is a Sylow p-subgroup of
H(and hence G) or not.Once these have been proved. (i) and (iiD
follow quickly in each case.The proofs of (i) proceed by elementary
Sylow theory and fusion resuits.though in the latter.the profusion of
conjugacy prompis the hope that a shorter argument might be
found. It is from amidst the various conjugacy inequalities that parts
(i and (i) arise.

Step 3:Here it is proved that If zeH" then Cg(2) is n’'-closed. and
aiso that if ze(HAH®MH* for some geG then HI9=HY for some
yeOp (Cx(2)) . The element z is supposed a counterexample of
minimal order,and by Steps 2(i) and 2(I) respectively for the two -
parts of the result,must be of composite order. The two results now
follow easily by supposing that z=z,z;, where z; Is of prime power
order.and the fact that Cg(2)=£Cg(z) for i=1.2,and again using
Step 2.

Step 4:Any two elements of H¥# conjugate in G are conjugate in
H. This is easlily proved by similar techniques to the above.

Step 5:The proof of the theorem foliows Immediately by applying
Theorem 3. 35.
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Without a doubt,the single most important resuit In this survey is
Theorem 2.52. (it Is also the one with the most complex proof). Not
only does it represent the final aim of the theory of closure and
homogeneity. but it can be used to prove many other results which
have important applications of their own.We shall see such resuits
later(for example, Theorem 5.12).However we will now try to give a
general flavour of the proof. '

Sketch of the proof of Theorem 2.52.As in all the other results,
' —closure implies w-homogenelty, and thus In discussing the proof we

shall consider a minimal counterexample G which is w—homogeneous
but not n'—closed,

Theorems 2.31 and 2.32 Immediately Imply that G is simple. The
first step is to obtain additional Information about G and n.We can
assume that wen(G).and since if |wl=1,Theorem 2.36 gives a
contradiction.we can also assume that 2«77 (G) |.

Now since G Iis a minimal counterexample.any group properly
involved in G Is n'-closed.In particular,if H Is a simple group
properly involved In G then,as |[H| Iis even,H must be .a
m'—group. This point is critical to the proof.

Using the complete classification of the simple groups.each simple
group is then checked.and it is shown that no simple group is
m~homogeneous for any suitable m.There are three main techniques
involved in the proof which sometimes overlap in use.

(a)We can show that if G is m-homogeneous then I[mi=1,a
contradiction. This is possible when the exact orders of the simple
groups in question are known and a table of containment is
available. as with the sporadics in [38). The alternating groups are
also handled in this way.

(b)We can attempt to locate a w-subgroup H of G for which
NGg(H)/Cg(H) contains an involution.,a contradiction.This s
particularly sultable when the subgroup structure of G Is well
known.as In the small cases of the groups of Lie type when the
dimension or the field size is low,for exampie PSL(2,q) for any q.

(c)We can use the Involvement of simple groups in each other(see
for example, Kantor[481) to firstly reduce the possibilities for 7 and
then use the existence of a special type of maximal abelian subgroup
called a torus(see for example, Carter[16]) to obtain that a Sylow
p-subgroup P for some per Is centralised by such a subgroup(of
known order) whose index is a m'-number. Thus.as G is
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m'-homogeneous, Ng(P) /Cg(P)=1 and 50 by Burnside’s
Theorem 3.13,G Is not simple.a contradiction. in this way most of the
groups of Lie type are deait with.

It can happen that because of the involvement In G of other simple
groups. It is found that n(G) Is completely accounted for by the
divisors of these simple groups so that G Iis a w'—group,an
impossibliity.and there is no need to proceed further.This happens
tfor instance with F,(q) and E5(qQ).

It is also necessary in some cases 10 work some additional
theory, but this is only used to bring the group in question to the
point where one of the above three techniques can be applied.

In this way ail the simple groups are shown not to be
counterexamples to the theorem, estabiishing the result.

Finally we use Theorem 2.52 to prove Theorem 2. 53.

Proof of Theorem 2.53. Clearly.as in the proof of Theorem 2.39,the

backward implication  holds.We  thus suppose that G is
m-homogeneous and m’'—homogeneous. Then, without loss of
generality, we can suppose that 24r and so by Theorem 2.52.G s
w'—closed.that is.G has & normal Hall w'-subgroup Hgy.By the
Schur-Zassenhaus Theorem,G splits over Hg. Thus G=HgHy; where Hy
is a Hall m-subgroup of G. Since G is
m'—homogeneous. Ng(Hy) /CG(Hy ) =G/Cg(Hy) is a m'-group and so
Hp=Cg(Hp) . Thus Hgy=Cg(Hg) . We then have that both Hy; and Hyr

are contained In Ng(Hyp).Hence G=HgHpeNGg(Hy) . Thus Hg=G and
G=H"'XH1T.
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CHAPTER V: THE RECENT THEORY OF CC-SUBGROUPS

In this chapter we develop certaln Sylow-like properties of
CC-subgroups(Theorems 5.8 and 5.12).In order to do this a
collection of important structural results is given,which will also
provide a base for further study.especially towards the classification
of all groups with CC-subgroups in the next chapter. We also include
an interesting result Involving 3'-groups with non-cyclic
CC-subgroups.

Extensive use will be made of Chapter lil.in patijicular Wielandt's
Theorem 3.10,and of course all of Section i,

This entire chapter is based on the published researches of Arad
and Chiliag. but many of the proofs have been altered for the sake of
clarity and a better unity of technique.

The first theorem has an important bearing on simple groups.
Theorem 5.1(Arad and Chillagl6:Lemma 1.2(d)D).Let M=£;cG and
suppose that Ng(M)#M and F(G)=1.Then the normal closure V of M
in G is a simpie minimal normal subgroup of G.and G=VH where H
is a Frobenlus complement of Ng(M).

Proof.Let N be a minimal normal subgroup of G.If MnN=1 then by
Theorem 3.851.,MN is Frobenius with kernel N and so N is
nilpotent. contradicting F(G)=1,Thus we can assume that
MnN=#1, Buppose that Ng(M) has a normal complement L in G. Then
again by Theorem 3.51,since MnL=1,ML is Frobenius with kernel L.a
contradiction. Thus. since M is nilpotent and so Is a T.l-set in G.we
can apply Proposition 3.53(1) to obtain that M=N.S8ince M=zN as
F(G)=T1.N is simple by Proposition 3.50.and MsgcN.Let V be the
normal closure of M in G.Then V=N and so V=N since N is minimal
normail.

Since M Is nllpotent.we can apply Theorem 3,10 to obtain that ail
subgroups of V of order [M| are conjugate In V.Thus by Frattini's
Argument, Proposition 3.7,G=VNg(M).But Ng(M)=MH where H is a
Frobenius complement of Ng(M).Hence G=VH as required.

Suppose that M Is a CC-subgroup of a group G.An Important
property of M is that if Ng(M)#M then M Is niipotent. Later,in
Chapter Vi,we will investigate this case further.The following result
covers all non—nilpotent cases.
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Theorem 5. 2(6: Proposition 1.3].Let M£,.G.If Ng(M)=M then one of
the following is true.

(DG is Frobenius with M as complement,

(iDG is a simple group and M is Frobenius with nilpotent kernel K
and oyclic complement H of odd order,where N@g(XK)=M and
Ng(H) =H.

Remark: By Proposition 3.41,H and K are CC-sg’bgroups of G.

Proot of Theorem 5.2. (Johnson and Bowshal) .If M is a T.l-set in
G then by definition, (i) holds. Thus we can assume that M Is not a
T.1-set in G.Now suppose that F(@)#1.if MnF(G)=1 then by
Theorem 3.51.M is a Frobenius complement of the group MF(G) and
so by Theorem 3.19(x).Z(M)#1,which implies by Proposition 3.39
that M is a T.l-set.a contradiction. Thus MnF(G)#1. Then,since M Iis
a Hall 7(M)-subgroup for G.there exists a prime pemr(M) such that
1¢«0p(G) <M. Hence by Proposition 3.58.G Is Frobenius with M as
kernel. a contradiction. Thus we can assume that F(G)=1,

Since M is not a T.l-set in G,there exists geG such that
1<MnMS<M. Then by Propositions 3.37 and 3.38, MnMB«,.G. Suppose
M@#1. Then by Proposition 3.45.M@ is a Frobenius kernel and so
nilpotent, contradicting F(G)=1.Thus Mg=1.Now since Mg is the
intersection of ail conjugates of M, there must exist some intersection
H of conjugates of M such that H#1 but HAMX=1 for ali xeG such that
H4MX.We can assume that H<MnMS(otherwise we can replace
g).Clearly H is a T.l-set in G and H&goG. Hf Ng(H)=H then G is a
Frobenius group, contradicting F(G)=1.Thus Ng(H)#H and so H s
nilpotent. Then by Proposition 3.43.H contalns no CC-subgroup of G.

Now H and HE™ are nlipotent Hall subgroups of M and so by
Theorem 8.10,H9-‘=Hk for some keM.Then kgeNg(H). and since
ng,kg{aM.Hen‘oe Ng(H)>Np(H) . It follows by Proposition 3. 4, that
NM(H) £coNg(H) and since Ng(H) Is Frobenlus, either Npm(H)=H or
NMm(H) is a Frobenius complement of Ng(H).But HeNpm(H) and so
NMm(H)=H.Since H Is a T.i-set,M is Frobenius with complement H by
definition, and kernel K.say. As KegoMEgoG . KegoG. Now by
Proposition 3.43.2(M)=1 and so M is neither a kernsl nor a
complement of Ng(K).Thus M=Ng(K) by Proposition 3.47,as
required.

Llet V and W be the normal closures In G of K and H respectively. it
foliows by Theorem §&.1(all conditions being fulfilled) that V and W
¥ are simple minimal normal subgroups of G and G=VH(since H is the

|l
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Frobenius complement of Ng(K)=M).Since [K,H}#1(as a result of the
CC-property) .we have 1<K, HI<[V, Wi«VnW. Hence VnWz1 and so since
V and W are minimal normai, V=W.In particular, H€&V so that G=V, as
required.

Finaily,H Is a Frobenlus complement and kernei and so is cyclic by
Proposition 3. 48.

The next result is a simple generalisation of Proposition 3. 55.
There are several proofs but none quite as short as the one given
here.

Theorem §5.3[6:Lemma 1.4l.Let G be a soluble group with a
GCC-subgroup M. Then one of the following is true.

(DG is Frobenius with M as kerne! or complement.

D Ng(M)#M or G,Ng(M) has a normal nlipotent complement in
G.M is cyclic of odd order and Ng(M) is metacyclic.

Proof. f Ng(M)=M then the resuilt follows from Theorem 5.2,and If
Ng(M) =M. it follows from Proposition 3. 55,

To prove Theorem 5.6 it iIs convenient to give the next two
lemmas.
Lemma 5.4(Arad and Chillagl4:Lemma 21).Let M=;cG with Z(M)#1
and let N be a non-trivial proper normal subgroup of G.Then one of
the following holds.

(DG is Frobenius with M as kernel or compiement.

(DMNN=T.M Is cyclic of odd order and MN Is Frobenlus with
kerne! N and complement M.

(ilyM=N and M has odd order.

(iMNG(M) has a normal complement In G and M Is cyclic of
odd order.
Proof.!if |M| is even then by Theorem 3.27.(D) Iis true since G Is
not simpie. Thus we can assume that |M| is odd.if Ng(M)=M then as
M is a T.i-set in G, () holds by dsefinition. Hence we can assume
that Ng(M)=M,If MnN#1 then either Ng(M) has no normal
complement in G so that by Proposition 3.53, (ill) holds,or Ng(M)
has a normal complement and by Theorem 3.51.M is a Frobenius
complement so that since M is also a kernel.M is cyclic by
Proposition 3.48,and (iv) holds. Thus we can assume that MnN=1.If
M=G, () holds. Thus we may suppose that M$G.We can then apply
Theorem 3.51 to obtain that MN is Frobenius with kernel N and
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complement M and so (i) holds., again applying Proposition 3. 48.

Lomma 5. 5[4:Lemma 5l.Let M£,,G with Z(M)#1 and let N be a

minimal normal subgroup of G.Then one of the following holds.

(DG Is Frobenius with M as kernel or complement.

(i M is cyclic.

GIDM=N and N is simple.
Proof. Suppose that neither parts (i) nor (i) hold.f N=G then G is
simple and (ili) holds. |If N<G then by Lemma §5.4.M=<N.We now apply
Proposition 3. 50 to obtain that N is simple.

Before investigating the Sylow-like properties of groups with

CC-subgroups.we can now prove a result which complements
Theorem 2. 23,

Theorem  5.604: Theorem 4l.Let M=goG. M being non-cyclic. if
(3. 1G1)Y=1 then one of the foliowing holds.

()G is Frobenius with M as kernel or complement.

(i) G=8z(q) for some q.and M Is either a Sylow 2-subgroup or a
Sylow 2-normaliser.

Proof.Let G be a minimal counterexample. By Suzuki’'s
Theorem 3.27.|M| is odd.Suppose that Ng(M)=M.Then M Is
nilpotant, Assume that G is not simpie and let H be a minimal normal
subgroup of G.By Lemma 5.5.M=H and H is simpie. Thus by Theorem
3.31.H28z(q) for some gq.Hence by Theorem 3.25. all Sylow
p-subgroups of H are cyclic for odd p,and since M is nilpoteni.M is
cyclic. a contradiction. Thus G is simple and again by Theorem 3. 31,
G=8z(qg) for some q.,and similariy to the previous sentence. M is
cyclic. a coniradiction. Thus we can assume that Ng(M)=M.

Suppose that G 'is not simple and let H be a minimal normal
subgroup of G.

Now suppose that H Is an elementary abelilan p-group for some
p.Let m=m(M) and suppose that pg¢m.Then,with an asterisk denoting
factoring modulo H and using Proposlitions 3.56 and 3.57,we have
M 2.cG" and Ng*(M™)=M*,where M*=M since MnH=1.Hence by the
minimality of G.M" Is a Frobenius complement of G* since M| Is
odd and so part (i) cannot hold. Thus there exists a normal Hall
n'-subgroup R™ of G”*(that Is,the kernel of G*).The Inverse Image R
of R* in G is a normal Hall n'-subgroup of G.It follows by Theorem
3. 51 that G Is Frobenius with M as complement. a contradiction. We
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can assume then that perm.Thus by Proposition 3.42.H€M@G<M. Since
M@g#1.G iIs Frobenius with kernel Mg and so by Proposition
3. 47, either M=Mg or MnM@=1. both contradictions,

Thus we can suppose that H Is the direct product of isomorphic
simple groups H,....Hg for some integer K.Suppose that
MnH=1.Then by Theorem 3.51,MH Iis Frobenius with kerne! H.a
contradiction, Thus L=MnH#1.We have that LeggH.if LnH,=1 then LH;
is Frobenius with kernel H,.a contradiction. Hence LnH;#1. Thus there
oxist elements of L centralised by H,x..xHk.Hence Hyx..Hk=1 and H
is simple, Thus H=Sz(q) for some q and since |IL| is odd.L Is
cyclic. i Np(L)=t=CH(L).then H is not simple by Theorem 3.13 and
so Ny(L)#L.and also M&NgG(L) since L&M.If M=Ng(L) then L=Npn(L).
a contradiction. Hence M<N@G(L)<G.Thus by the minimality of G.we
can apply the theorem to Ng(L).Since M| is odd.part (ii) does not
hold. f Ng(L) was Frobenlus with kernel M then M would be niipotent
and so a T.l-sel.making G Frobenius with complement M.a
contradiction. Thus Ng(L) is Frobenius with complement M, and kernel
K.say.Since KeNg(L) and KnlL=1 we obtain that KeCg(L)£M.,a
contradiction.

Hence G is simple and so G=8z(q) for some q.Thus as IM]| is
odd. M is cyclic.a contradiction.

We now investigate the Sylow-like properties.

Theorem 5.7i6:Lemma 1.5l.let M and N be CC-subgroups of a
group G.H {Mi=|IN| then M and N are conjugate.

Proof.lf either Ng(M)z2M or Ng(N)zN then the result follows
immediately by Wislandt's Theorem 3.10.Thus we can assume that
both Ng(M)=M and NG(N)=N. Applying Theorem 5.2 we can suppose
that condition (i) of "that result holds for both M and N,since
otherwise M and N would be Frobenius compiements and so
conjugate.

Thus M=KH and N=XY where K and X are the kernels and H and Y
the complements of M and N respectively. Also G is simple and by
the remark following Theorem 5.2,K and X are nllpoteht
CC-subgroups of G and H and Y are cyclic CC-subgroups of G of
odd order.

If 1M1 is even then by Theorem 3.27.M and N are Sylow
2-normalisers and thus conjugate. Thus we can assume that 1M]| is
odd so that M and N are soluble.
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et 7=r(K).Then N contains & subgroup of order I|K| by
Theorem 3.8 and so by Theorem 3.10,N contains some conjugate K/
of K for some /«G. Since K/ I1s a CC-subgroup of the Frobenius group
N, either K/=X or K/ is a Frobenius complement for N by
Proposition 3.47.1f K/=X then N@(K)=M Is conjugate to Ng(X)=N, as
required. Thus we can assume that K/ is a Frobenius complement for
N so that by Theorem 3.1719(v), K| divides {X1-1.Similarly we can
assume that M contains some conjugate X9 of X.If X8 is a Frobenius
complement for ™M then [X| divides |Ki-1.which is Impossible
number-theoretically. Thus X8=K and Ng(K)=M is conjugate to
Ng(X)=N. as required.

The first main theorem of this chapter can now be given.
Theorem_ 5. 8(6: Theorem 1.11.Let M=cG and w=n(M).Then M Is a
Hall m-subgroup of G and all Hail r~-subgroups of G are conjugate.
Proof. We ailready know that M Is a Hall m—subgroup of G.Let N be
any other Hall m—subgroup of G.In view of Theorem 5.7 it is enough
to prove that N is a CC-subgroup of G.

By Theorem 3.10,if M is nllpotent then the theorem holds. Hence we

can assume that Ng(M)=M and then that part (il) of Theorem 5.2
holds.If M| is even then by Theorem 3.27.M and N are both Sylow
2-normalisers and so conjugate. Hence we can assume that |M| s
odd and so N is soluble.Let M=KH as in Theorem 5.2(i).,and let
my=m(K) and wy=a(H).Since N Is soluble,N contains Hall
mi-subgroups N;j for i=1,2,By Theorem 3.8,N,=K3 and N,=H%. for
some g;.g,<G.Since both KO and HB8: are CC-subgroups of G.we
have that N; and N; are CC-subgroups of G.Now let neN and
suppose thal n=n,n, where nj Is a non-trivial m-element of N for
i=1.2. Then njeCg(n) and so neCg(np.But nieNik for some /&N for
I=1,2 and as Nj=ccG we have that neNi for I=1,2. Thus,since
CINLI. IN21Y=1,n=1.Thus every element of N is either a m;-element
or a m—element. Now iet n be an arbitrary element of N and suppose
that n is a m-element for i=1 or 2.Then Cg(m =N;9 for some geN
and so N=50G.as required.

For the second maln theorem we need another structural result,
Proposition 5.8i6:Lemma 1.8].Let G be a soiuble group containing
two non-conjugate CC-subgroups M and L. Then G Is Frobenius with
M as kernel and L as complement, or vice-versa.
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Proof.Let G be a counterexample. Then by Theorem 5.3.Ng(M) has
a nilpotent normal compiement K.M is cyclic and also,.since | can
replace M.L is cyclic.

Suppose that (IM],IL1=21 and let p divide (IMI],.ILID.M and L
contain Sylow p-subgroups P and Q of G respectively. Since M and L
are cyclic CC-subgroups.M=Cg(P) Iis conjugate to Cg(Q=L.a
contradiction. Hence (IM|, [L1)=1,

Suppose that (|K}, [L1)#1. Then by Proposition 3.59.K=<L and since L
iIs a T.l-set in G.L=G by Proposition 3.22.Hence L is the Frobenius
-kernel of G.a contradiction. Thus (K}, IL])=1.We already know that
CIKL. IM1D)=1 and so since G is solubie.G has a Hall subgroup T of
order IMIiLIIK|.Let V be a subgroup of T of order IMilL}.Then,as
in the proof of Theorem 5.8.V£;,G and so VsgoT. Hence. since
(VI 1K) =1 and K=T.K Is a normal CC-subgroup of T.This implies
that V is a Frobenius complement of the Frobenius group T and so
by Theorem 3. 19, Z(V)#1, contradicting Proposition 3,43, Hence result.

We can now proceed io the second main theorem.
Theorem 5.10(Arad and Chillagi7: Theorem BI).let M=,,G and let
m=n{M), Then all of the following are true.

(DM is a Hall m-subgroup of G and all Hall m—subgroups of G are
conjugate.
(iDG has at most two classes of soluble maximal m—subgroup.
(i it M is not niipotent then elther G is a Frobenius group with
complement M or M is a Frebenius group with kernei K and
complement L where Ng(K)=M and Ng(L)#L.and L Is cyclic of odd
order,
(i G has two classes of soluble maximal m—subgroup then
(a)G Is simple.
(b)M Is not nilpotent,
(c)the normaliser of every non-trivial soluble m—-subgroup of
G Is a w-subgroup,
()M and N@(L) are representatives of the two classes of
soluble maximal m—subgroups of G(where L is as In part (i),

Proof. Part () holds by Theorem 5.8.1f Ng(M)=M then M s
nilpotent and so G is a Dg—group by Theorem 3.8,and the theorem
holds. Thus we can assume that Ng(M)=M.Suppose that G is a
Frobenius group with complement M. Then clearly G Is m'-soluble and
so by Theorem 3.9.G is again a Dgy—group and the result holds.
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Hence we may assume that G s not Frobenius with complement
M.Then by Theorem 5.2.G Is simple and M is a Frobenius group
with kernel K and complement L,where Ng(K)=M and Ng(L)#L and L
is cyclic of odd order.We also know that K and L are GG-subgroups
of G.,and T.l-sets in G.Let wmy=r(K) and m,=m(L).Then by
Theorem 3.8,G is a le-group and a Dfr;group,

(*) Llet T be a m-subgroup of G for i=1,2. Then either T=K9 or Telf
for some f,geG.in particular.T is contained In a conjugate of M. Thus
by Proposition 3.22,elther Ng(T)=Ng(K9)=M9 or
Ng(D=Ng(Lth=NgL T,

From now on,glven a soluble subgroup X of G.we wili denote by
Xj.a Hall m—subgroup of X.

Let B be a soiuble n—-subgroup of G which Is nsither a mwy~group nor
a mwp-group.Then B=B,B, where 1<B,<k" and 1<B =LY for some
h.deG.by paragraph (*).Thus 1<BnK so that BnKP<;oB. Then BnKM Is
a Hall m,-subgroup of B and so B,=BnKP and B,<,cG.Similarly
B,=BnLY and B,£cB. Proposition 5.9 now implies that B is Frobenius
with By as kernel or complement for i=1 or 2.Suppose that Bj is the
kernel. Then  B=Ng(B)p and  either BéNG(Bj)éNG(Kh)=M" or
BsNg(L)9,as In paragraph (*).and part (i) of the theorem
holds. Also since Bj is characteristic In B(being a normal Hall
subgroup) .we have that NG(B)=Ng(B)).Thus either NG(B)éMh or
Ng(B)<Ng(L Y.

Thus every maximal soluble m-subgroup is contained in a conjugate
of M or Ng(L) and the normaliser of every non-trivial soluble
nm-subgroup is contained in a conjugate of M or Ng(L).Hence In
order to prove the remainder of the theorem it is enough to show
that if G has more than one class of soluble maximal m-subgroup
then Ng(L) Is a soluble n—subgroup.

Since N@g(L) s Frobenius with a ocyclic kernel L,the
complement, which can be embedded In AutL by Theorem 3.19.is
abellan by Proposition 3.2,and so cyclic by Proposition
38.19(xilD . Thus N@g(L) Is metacyclic and hence soluble.Let A be a
soluble maximal m-subgroup not contained in a conjugate of M. Then
A=A,A, where A;<KP and A,<LC for some b.ceGlas with B above).lf
A is a m—group for =1 or 2 then A would be contained in a
conjugate of M.,a contradiction. Thus.as with B,A Is a Frobenlus
group with A} as kernel or complement.if A, is the kernel then
AsNG(A,) NG (KP) «MP by paragraph (*).a contradiction. Hence A, is
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the kerne! and ASNG(A)«NG(L)C. Then, as A,«LC, A<A,LC. Also. since
ALC/1LCaA /A NLE and both L and A, are soluble,A,LC Is a soluble
m-subgroup. Hence A=A,l¢ Let R be a Frobenius complement for
NG(L)C.Then |A;| divides |R|.Hence R contains a p-eiement for
some pem,. Since no p-eiement of G commutes with a n'—element of
G(as M«£;:G).and since by Proposition 3.19,Z(R)#1.we have that R
contains no w'-element.Thus Ng(L® is a wnw-group and so
A=NG(L)C. This proves the theorem.

In order to prove the last theorem In this chapter.we give a
straightforward corollary of Theorem 5. 10,
Corollary §.11.Let Mg G.m=n(M) and suppose that |M| s odd. Then
all of the following are true.

(iYM is a Hall m-subgroup of G and all Hall m—subgroups of G are
conjugate.

(iD G has at most two classes of maximal m-subgroup.

(iDH M is not nilpotent then either G is a Frobenius group with M
as complement or M is a Frobenius group with kernel K and
complement L where Ng(K)=M and Ng(L)#L and L is cyclic of odd
order.

(v)if G has two classes of maximal m~subgroup then

(a)G is simple,

(bYM is not nilpotent,

(c)the normaliser of every non-trivial m-subgroup of G Is a
m-subgroup,. and

(dM and Ng(L) are representatives of the two conjugacy
classes of maximal m-subgroups of G(where L Is as In part D).
Proof. immediate from Theorem 5.10 and the fact that groups of odd
order are soluble.

We can now use Theorem 2.52 to give the last theorem of this
chapter.
Theorem 5.12(Arad and Chillagi8:Coroilary 3D .Let M be a
CC-subgroup of a group G.7=m(M) and suppose that |IM]| is odd.
Then M is a Hall nm—subgroup of G,all Hall m—subgroups of G are
conjugate, and every m—subgroup of G is contained Iin a conjugate of
M.
Proof. By Theorem 5.8.we already know that M is a Hall s—subgroup
and that all Hall m-subgroups of G are conjugate. Suppose that not
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every w-subgroup of G is contalned in a conjugate of M.Then by
Theorem 5.11(IH,G has two classes of maximal w-subgroup and so
by Theorem 5.11(iv),G is m—homogeneous. Thus by Theorem 2.52,G
is m'~closed. Then.since G Is simple.G must be a m—group. But this iIs
impossible since 24m. Hence result.

" Note: Theorem 5.12 would be false without the hypothesis of odd
order, Arad and Chillag gave the specific example of PSL(2,16) with
m™=(2.3.5)} in Examples 1 and 2 of [7].for which there are at least

three non-conjugate maximal n-subgroups at least one of which Is a
CC-subgroup.
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CHAPTER VI: THE SEARCH FOR CC-SUBGROUPS

Section |: A classlification theorem for groups with CC-subgroups

This section consists of a single resuit which completely covers
overy possible case for a group to have a CC-subgroup.

Theorem 6.1.let M be a CC-subgroup of a group G.Then one of the
following Is true.

()G is a Frobenius group with M as kernel or complement.

(NG Iis soluble, Ng(M)#M and G=KML where M is cyclic of odd
order,.L is a cyclic Frobenius complement of Ng(M) of odd order
and K is a nilpotent normal compiement to Ng{(M) in G.

(i) G is simple.Ng(M)=M and M is Frobenius with kernel K and
complement L where K and L are CC-subgroups of G,
NG(KY=M,Ng(L)#L and L is cyclic of odd order.

(v (IFCG) 1. IMD =1, Ng(M)#M and if asterisks denote images
" modulo F(G) then M £;cG* and G™=V*H* where V™ Is a simple

normal subgroup of cha containing M™ and H™ Is a Frobenius
complement of Ng*(M™).

Proof. This will consist of a sequence of lemmas.We let G be a
minimal counterexample to the theorem.

Lemma 6.1.1.G is insoluble.

Proof. Suppose G is soluble. Then by Theorem 5.3.G satisfles parts
(h or (i) of the theorem.a contradiction,

Lemma 6.1.2. IM| is odd.

Proof. Suppose |M| Is even.Then by Theorem 3.27.either G s
simple and satisfies (iv) with F(G)=1 and G*=V",or G satisfies (i),
a contradiction.

Lomma 6.1.8. Ng(M) =M,

Proof. Suppose Ng(M)=M.Then by Theorem 5.2, either G satisfies
() or G satisfles (iil).a contradiction.

Lemma 6.1.4. M4G,

Proof. Suppose M=G.Then by Proposition 3.45,(1) holds.a
contradiction.
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Lemma 6. 1.5. F(G) #1.

Proof. Suppose F(G)=1.Then by Lemma 6.1.3 and Theorem 5.1.G
satisfies (iv),a contradiction.

Lemma 6.1.6. F(G)=M,

Proof. Suppose that (IF(G) |, IMI)=1 and let asterisks denote
factors modulo F(G).Then by Proposition 3.56,either M"=1", M =G"
or M =.cG™.

Suppose M*=1",Then M=F(G).a contradiction since their orders are
coprime. Thus M*=1%,

Suppose M™=G™.Then G=MF(Q).But since |M| is odd by Lemma
6.1.2,M is soluble.As F(G) is soluble we then have that G Iis
soluble. a contradiction. Hence M**G™.

Thus we can assume that M™£.,.G™.Now by Proposition 3.57,since
NG(M)#M,NGg*(M™) #M™ and by Proposition 3.60Ci),F(G*)=1. Since
IG*1<1G| we can apply the theorem to G” to obtain that G satisfles
(iv) with F(G®)=1,and hence G satisfies (Iv).a contradiction,

Hence by Proposition 3. 59, F(Q) M,

temma 6.1.7.G has generaiised quaternion Sylow 2-subgroups.

Proof.Let T be a Sylow 2-subgroup of G.We can apply Theorem
3.51 to obtain that F(G)T is a Frobenius group with kernel F(G) and
complement T.Then by Theorem 3.19.T is either cyclic or
generalised quaternion.if T were cyclic then by Theorem 3.21.G
would be soiuble,a contradiction. Hence result.

Lomma 6.1.8. F(G)=M,

Proof.let K be the Inverse image In G of Z(G/0,-(@)).Then by
Lemma 6.1.7 and Theorem  3.29,K/0,'(G)=Z,.Hence K s
soluble. Since aiso M is soluble(being of odd order) ,KM is a soluble
subgroup of G.We have M=.cKM and thus as |KMI<IG|.we can apply
the theorem by Induction. Then either

(a) KM is Frobenius with kernel M,

(b)KM is Frobenius with kernel L say,and complement M.or

(c)KM has a normal niipotent complement L say.to Ngm(W) .

Now in cases (b) and (c). (ILf.IMI)=1 and L=KM so that

IL. F(Q)I=F(G)nL=1 as F(G)<M by Lemma 6.1.6. Thus
L£CKM(F(G)) =M as M<goG. Hance L=1.

Thus case (b) coliapses and case (¢) coincides with case (a).But




64

now KeKM and M<KM and so by Proposition 3. 49, either M<K or
KeM.As K| Is even and i1M| is odd.the latter Is Impossible and so
M<K. Therefore M Is a nllpotent normal subgroup of K and so
MeF(K)<F(Q) , But F(G)<€M by Lemma 6.1. 6. Hence result.

Now since Lemma 6.1.8 contradicts Lemma 6.1.4.G as a minimal
counterexample does not exist and hence the theorem is true.
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Section ll: GC—subgroups of simple groups

in this section we locate the CC-subgroups for a "large" set of
simple groups.which iInformation is presented in Tables 1 to 4 as a
suitable end to this thesis. We outline how the information is obtained
and give results which may aid in the complietion of the search.

Throughout this section.the complete classification of the finite
simple groups is tacitly used.

To start,it can be seen that restricting the hypothesis of
Theorem 6.1 to the case of a simple group provides the following

result.

Corollary 6.2.let G be a simple group with a CC-subgroup M. Then
oither

(iYM is nilpotent. or
GDNg(M)=M and M is a soluble Frobenius group with niipotent

kernel and cyclic complement of odd order.both of which are
CC-subgroups of G.

Thus a simple group with a CC-subgroup necessarily contains a
nilpotent CC-subgroup.We first engage in a search tfor such
subgroups and then use the Information obtained to find the
remaining CC-subgroups.

In view of Theorem 3.27,which completely classifies the case when
the CC-subgroup has even order.we can restrict the search to the
odd case.lt may also be convenient In some situations to use the
results of Chapter Il.Section | to further restrict the search to the
case when the CC-subgroup has order prime to 3.Such a case
arises now,

We consider first the alternating groups Ap of degree n=5.Now
As=PSL(2.4) and A =PSL(2.9) are both 3CC-groupsi(with Sylow
3-subgroups of orders 3 and 9 respectively.the latter being
elamentary abelian). Also. by ‘Tﬁéqrqm 3{2}!\5 iIs a 2CC~group. Since
no other alternating group is isomorphic to any of the groups listed
in Theorem 2.2/3?\049 need only consider possible CC-subgroups of
orders prime to 2 or 3.

Theorem 6.3.let A, be the alternating group of degree n=5.Then Ap
contains niipotent CC-subgroups of orders prime to 2 or 3 it and only

H n=p.p+1 or p+2 for some prime p.in which case A, contains a
CC-subgroup of order p.
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Remark: Clearly if p+2 is also a prime then Ap+, has two classes of
nilpotent CC-subgroup of order prime to 2 or 3.namely one each of
orders p and p+2,

Proof of Theorem 6.3.For convenience we let G=A, and suppose that
M=.cG such that IM| is odd. Let p divide |M|.Then by conjugating Iif

necessary, we can suppose that the element x=(1 2--:.p) of order p

is contained in M.Now ciearly Cg(x) contains all the elements of G
which act only on the letters p+1.::.n.Thus Cg(x)=An_p. But Ap—p Is
not nilpotent of order prime to 2 or 3 unless n-p=0.1 or 2.in which
case n=p.p+1 or p+2.

Conversely.we consider the three cases separately. We note that In
the symmetric group.elements are conjugate if and only if they have
the same cycle pattern. Thus the conjugates of x are precissely those
of length p.However some of these conjugates may not belong to the
corresponding alternating group.Thus we introduce the number e
whaere « can take values 1 or 1/2 and which will be calculated In
each case.

Denote by cl(x) the conjugacy class contalning x.Then
1ICgx) {=1GI/1clx) |.The values of cl(x) are obtained
combinatorially.

First, suppose that n=p. Then [cl(x) |=ep!/p. Thus

ICa (X)) I=(pl/2) / (epl/p)=p/2e,

Since p Is odd we must have e=1/2 and hence G is a Cpp-group
with a cyclic Sylow p-subgroup.Thus by Proposition 2.14,.G is a
pCC-group.

Now suppose that n=p+1. Then [cl(x) |=(p+1)ep!/p. Thus

1ICGX) I=((p+DI/2) / ((p+1) epl/p)=p/2e.

As in the above case,e=1/2 and G Is a pCC—group.

" Lastly suppose that n=p+2. Then |ci(x) |=((p+2) (p+1)/2) epl/p. Thus
1ICG () I=((p+2)1/2) / ((p+2) (p+1) epl/2p)=p/e.

Now consider Sp=H. Then 1CH(X) |=(p+2)1/((p+2) (p+1) p!/2p)=2p. But
now the element (p+1 p+2) is cont<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>