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Introduction

An important part of the usefulness of the Laplace transform
(and other integral transforms) lies in its power to reduce the
transcendence level of a functional equation involving such

transcendental operators as differentiation and convolution.

For example, if y is the solution of a linear ordinary differential

equation with constant coefficients, then the Laplace transform Y

of y satisfies a linear algebraic egquation rather than a differential

equation. Again, a partial differential equation in n independent
variables is reduced to one in n-1 indevendent variables.

However, the price paid for this powerful techniﬁue is the problem
of inverting the»transformed solution when its explicit form has
been found. Extensive tables of known transform pairs.do exist

but these are for the cases where the complex inversion formula

‘ c+1g
£(t) = L"1{F(s); sy} = L F(s).est ds
T e

is more or less tractable.
Faced with a mathematical problem of great complexity arising

from an applied science we can either simplify the mathematical

model until an analytic (or approximate analytic) solution can be }

obtained or else attémpt t0 analyse numerically the original model
in all its complexiliy. In the past the former was cexrtainly the

easier and sometimes successful,if risky, procedure.




But nowadays the electronic computer has opened up the second,
again not entirely risk-free, path. Thié is the situation facing
the user of the Laplace transform.

However, once it is decided to embark upon a numerical
solution of the problem in hand, it may be better to return to the
original equations and solve these directly rather than invert the
Laplace transformed solution numerically. In some cases the
Laplace transform apvroach is found in practice to be definitely
superior to the classical numerical techniques. I'or some examples
of particular applications see appendix 1. Another point in favour
of the Laplace transform approaohlis that the compubter program
written to invert the transform numerically, can be applied in a
routine way to several types of problem that would need severai
different classical algorithms, and this should make numerical and
computing work less arduous for the occasional computor.

Accepting this defence of the Laplace transform method
followed by numerical inversion, this dissertation endeavours to
discuss and expound a particular numerical inversion algorithm
that has been found successful in practice, together with a
possible application to an invexrse problem in viscoelastic theory
and also a possible treatment of the llellin transform on the same

lineS¢




2

The General Problem of inverting an Integral Transform

The problem of inverting an integral transform K

b

Xf(s) = \fk(s,t), £(t) - at = g(s)

a
is the problem of solving a Fredholm integral equation of the
first kind. Vhereas there is an extensive literature on Fredholm
equations of the second kind, there is not much on those of the
first kind: see D.L. Phillips 1 . An important characteristic
of an integral operator such as K is that its inverse is unbounded
so that the problem: given g, find f = K71g, is "ill-posed".
Small changes in g can yield vexry large changes in f. To see this,
suppose f is the solution of

R(sst). £ (8). at = g(s) (a¢sd) (2.1)

s

©

and add to f the function fm(t) = sin(mt).
Then by the Riemann-Lebesgue lemma, for any integrable kernel
b

gm(s) = \f k(sy,t) sin(mt) at —» 0, as m~»c0,

. a
wniformly on [a,b] when k(s,t) is continuous in s on the compact
set [a,b] . Hence by choosing m large enough, £ and f + £ will
be mapped by K to points Kf, K(f + fm) in the range space which

are arbitrarily close (in the uwniform metric) .




Also we would expect 8> 0 as m-»wfaster for flat smooth kernels
than for sharply peaked kernels. (If k(s,t) =8(s - t) then gﬁ =
fm4?t)).
Hence we conclude that success in solving equation (2.1) by any
method depends largely on the accuracy of g(s) and the shape of
k(s,t).

We now discuss two possible methods of solution of equation(2.1).
1. Ve approximate the operator K (operating on L, (ayb) by a
matrix operator K.n (operating on Rn, the space of n-tuples of reals)

leaving the problem of solving

KEf = g, (2.2)
where fn and g, are discrete approximations to the unknown and

knowvn functions repectively. The matrix Kn is obtained by
approximating the integral by a discrete quadrature rule. The error
of this ap:;roximation will decrease as n increases. Having got Kn 3
then providing det(Kn) # 0 the solution of (2:2) would be

straight forward on an 'ideal' computer working in infinite length
arithmetic. In practice it is found that the solution is hampered
by i1ll conditioning of the matrix Kh which grows with increasing n;
this reflects the unstable nature of the original operator K"1 and
we now have an ill-posed problem in the space RY, Using this method
we can expect the error to first decrease with increasing n, as the

quadrature formula becomes more exact, and then increase as the ill-

conditioning of Kn swamps this improvement.




2, The second method falls in the category of projection methods.
The TFourier expansion of the unknown function { in terms of a

complete orthonormal set of functions {QHE is

Now we can truncate the Fourier development, or in geometric

language consider the projection of f on the subspace spanned by
I Ry +or 0@ )

n

=) (539,

m 0

1

and with appropriate conditions on the smoothness of £ we can
bound the error of this approximation. We now substitute this

approximation to f in the integral equation

b n
| x(sit) (£,Q). 9, (¥) - at = &(s)
a m = Q

b
or ji:: [lfk(s,t). Qn\(t)' dt:]. (f,Qh) = g(s)

m= 0 g
b
If the integrals ‘f k(s,t) an(t) dt (m = 0,...,n) can be
a

evaluated then Fourier coefficients (f,Qn) (m=0,...,n) of £
can be found by solving a system of linear equations possibly with

the difficulties of ill-conditioning.




Numerical Inversion of the Lanlace transform

The two methods outlined above are exemplified by the
algorithms given recently by R.E. Bellman, R.Z&. Kalaba, and J.
Lockett [27] 1966 (method 1) and by IL.K. liiller and W.T. Guy, Jr.,

[3J 1966 (method 2). We discuss briefly the Bellman, Kalaba and
Lockett method (abbreviated BKL) and then go on to develop the
liller and Guy (1iG) method in full.

o

P(s) = j O
0

The BKL method begins by changing the variable of integration:

-t
e

X = to obtain a finite interval of integration

1 1

F(s) = \[xs-1 f(- log x) dx = ‘j\xs -1 g(x) dx
0 0

The approximation Kn to K is now obtained using Gauss- Legendre

quadrature (but with the shifted Legendre Polynomials P¥ defined on

[0,1] ) to get

n

— g=1 -
:l_ WX, g(xi) = T(s)

i=1
whereixQ are the n roots of Pg(x) and wa} are the associated

weights. Letting s assume n different values say s = 1,2, . . ,n

yields a linear system

)} [
:i: Wixi{ g(xi) = Flk+1) kK = 0, \..,n~1.)




After some manipulation using the Lagrange interpolation formula
and some properties of the Legendre polynomial Pg we get an
explicit relation for the elements of the inverse of the matrix
(wixik) in terms of the X and the coefficients of Pﬁ, both of
which can be calculated to any required degree of accuracy. Thus
the inverse matrices Kn"1 can be compubted to any required degree of
accuracy and stored on magnetic tape beforehand. Then when the
vector I is given, the vector f is computed by a straight forward
matrix product routine in a very short time:-

f = Kn_1 F.
We are however, still left with the problem: small n 3 few values
of approximation to f; large n 3 badly ill conditioned Kn' Ang,
although Kn-1 is known to any desired accuracy, if F is got
empirically from measured values F + € where €& is a "noise" vector

Kh"1F - Kh"j (F +€ )|l could be very large.

of random errorssthen]
But if we have reason to expect f to be "smooth'" then this can be
taken account of as an extra side condition in solving
an = F.

BKL do this for the general problem Ax = b, with A ill-conditioned,
by minimizing functionals over x such as

(Ax - b, Ax - Db) + ﬂDn(x)
where (.,.) is an inner product and
Dn(x) = (x,l ~Vx2)2 + (x2 - 33)2 + + (Xn~1 -xn)?

which decreases with increasing "smoothness".




They achieve this minimization with aid of dynamic programming.
With 4 small, x is then a good approximation to the solution. 'A
similar aporoach to the selection of the, in some sense, smoothest
x from among those which A maps into an & -neighbourhood of b is
given by D.L. Fhillips [11 and S. Twoney [4] ; they have achieved
encouraging results.

Also on the same topic are papers by A.N. Tihonov (5]&[6]
where an error functional of integral form is minimized by the
clasgical method of the Calculus of Variations, reducing the problem
to an Euler equation which can be solved numerically by finite
differences.

Ve now describe in full, a projection method based on the papeﬁ
by Miller and Guy [3] .

The Laplace transform of f£(%) is defined by the integral

05

r(s) = fe:{p(—st) . £(8) . at (Re(s)? ¢ »0.) (3.1)

o

We assume below that the integral in (3.1) exists for Re(s) > 0.
The variable of integration may be changed by the substitution

x = 2 exp (-0t) - 1 (».2)

where§ is a positive real parameter. It follows that

S
exp(-st) = (1__5__}:_) /g

and. [
1 1T+ x
t = - 8 log‘( 5 )

| o




e define g over (-1,1) by

I R |

In order to extend the domain of definition for g)define g(1) and

g(~1) vy
g(1)y = lim g(x) and g(-1) = lim g(x)
K> le X=y |+
Bssentially, these definitions require that £(0) = lim f£(%)
t = O+
and f£(eo ) = 1lim f£(t) be finite. If f is continuous then g is also
L o0

a continuous function. Substituting (3.2) into (3.1) we get

+1

2 -1
P(s) = 2—% f(1 L x) ° 7 g(x) . ax (3.3)

-1

Now assume that g can be expanded over [;1, +1j in an infinite series
of oxrthogonal polynomials.
A special caseof the Jacobi polynomial of degree n is defined

by (see [ 7] Chapter 22)

<

Pn(o’ﬁ) (x) = éilgn(1 * x5¢§§fh [‘(1 -t (1 x)n+ﬂ, p> -1.

dx

the
where(parameter ® which appears in the general definition is zero.




If g can be expanded over [-—1,1] in terms of these polynomials then

o0

f——

) =) o p(0f) () (.4)

n=2~0

substituting (3.4) in (3.3) we get

S

+1 Sy ®
F(s) = %—S f(l__é:_};)5 I Z . Pn(Osfg) (x) | ax
-1 n =

0

FNow put s = ( [2, + 1+ k)§ , where k2 0 is an intecer to get

+1

sEL(p +1+105]= 2(f v .+ 1) j(lﬁ-x)ﬁ"*k[z CnPn(o,ﬁ )(xﬂdx
-1 n =20

(3.5)

Now the factor (1 + x)k which appears in (3.5) may be expressed as a

finite linear combination of the Jacobi polynomials
p (O B) . p (Osp).
o] k

Thus
PO(O’{; >(x) + oAy P1(O’ﬁ )(J:) +oaee akPk(O’Iz ) (x)

(3.6)

(1 + x)k = 9'0

For 0<m< k a typical coefficient a, is a function of k andp . In

order to evaluate a , multiply both-sides of (3.6) by

B
(1 + x) Pm(o’g) (x) =and integrate over [ -1,71.




- : B+ 1
J{. (1 + :{)k (1 + x)g 1>m(<5,§ )(x) Ldx o= am‘(—gn-%;ﬁ—ra) (3.7)
-1 ‘

fhe factor 277 1/ (2m +f +1) on the right is the normalization term
for the Jacobili polynomials. Denote this by hm. Now the Jacobi

polynomial Pm(o’~ﬂ )(x) can be expressed in the form
1 Q m
Bm( ’ﬁ)(x) = by o+ b1(1 +X) 4 oeee + bm(‘l + X) (3.8)

Substituting Pm<°’5 )(x) in this form into (3.7) yields

+1
N ~ k+ﬁ[.' vm]
2 h = f (1 + x) by *+ by (1 + x) + ...+bm(1+..) ax
-1

2k +p +1 21{ +8 +2 2k +f+m+ 1

R B R o e R N

ok +f +1 Pg 2b, zmbm
= T, t T, T see T
k+8+1 " (k+p+2) (k +f+ m +1)

(3.9)

If the unknown 2 is considered as a function of the parameter k

then we may write

21{ +p +1 ) gm(l)

%&n=[k+@+ﬂMk+W+@]:~f[k”@+m+wj

(3.10)




here Qm(k) is a polynomial in the symbol "k" of degree m.
The explicit expression for Qn(k) may be determined by the use of
(3.6) and (3.7). In (3.7) let k =m - 1. Then, because of the

orvhogonality property of the Jacobli polynomials

+1

jj (1 + =)™~ 7(1 + x)ﬁ Pm(o’ﬁ ) (x),dx = O.
-1

Thus one of the roots of Qm(k) mist be k = m - 1. A similar procedure
shows that the remaining roots of Qm(k) are k=M =~ 2, M = 3, +es ,
1, 0. So Qm(k) is now known up to a constant multiplicative factor

and may be written as

Q (k) = & [k- (m-1)].[1c- (m-—2)] cee -k
and A is a constant to be determined. TFrom the definition of Qm(k)
in (3.10) from (3.9) we have, multiplying through by (k B +1) eee

(k +B+ m +1),

m

b, 2™
Qm(k) = (k+f+1) oos (k+p+m +1)[jET:ET:T P PR m

and the coefficient of of k™ on the left is A and on the right is

b+ 2b, + 2°b

0 1 o T oeee ¥ 2mbm. But from (3.8)and the property

Pm(O,ﬁ )(1) = 1 form=0,1,2, ... We have

+ eae 2m-b = 1

0,8 -
Pm( i )(1) = by + 2Dy m

Hence A = 1 fOI‘ m= 0’1,23 eee




s~

Thus from (3.9)

k(k = 1) -+ « .« (k-{m-1) (3.11)
k+p+1)(k +f +2) ooo (kK +8+ m +1)

k
a = 2 (2m +p +1) {

For kx = 0 and m = O the right side of (3.11) is replaced by 1.

il

Substituting (3.6) into (3.5) gives

+1

j(1+x) 5: a P ’ﬂ_) (x) .

8 m=0

o
. ( Z CnPn(O’ﬁ)(x)J dax (3.12)
n=0

- k +1
F[(g+ k +138]) (Q i )

for k = 0,1, ... where a_ is given by (3.11).
Integrating termwise in (3.12) gives k + 1 non-zero terms because of
the orthogonality property of the Jacobi polynomials. Substituting

for a we now get

k
1 C N~ AL - 1 LR E{_ M - 1
SF[(B’” T+ *C)SJ = ({20+ 1 + k) +Z._ 1(1(c1+(3+2)(k b(glx@( (k)'i‘]/}i‘"'] Hrb

nm= 1

(3.13)
Now allowing k to take the values 0,1,2,... we get the following

system of equations:




%
%Fﬂ:(@ +1)&)= ZE—:T)
(3.14)
C

- C ’
5FL<{5+2)5J=. (%Ié‘) * ((512)({3 +3)

2C 2C

e CO 1 2
vrl (e +3)8]= (pw3) " b+ +a) " QR +3)(p+4) (B +5)

: CO 3C, ' 3'202
vl (bl v+ sy (prD (F+5)(p +0)

3V .G
B EDICEEOICED

If we know I on the positive real axis then this system can be
solved for 00,01,... very easily by successive back substitubtion:
deternining C0 then with the knowledge of CO determining C1 and so on.

If Cy;Cqeeey Cy are calculated then g(x) may be approximated by

o’
N
ex) 2 ) cr (OF )y
n=20
since x = 2 exp(-Y1t) -1 we can express the approximation to f(4)
directly
N

RO Z c.p (OF) [ 2 exp (-0%) 1]

n=20




Now if we had an infinite-length computer (a per_fect computer) then
as we calculated more and more coefficients our approximation to f
would get better and better and.although,logically,we could never
know how good this apnroximation was in practice, for the sort of
functions met in applications this would not matter. Wot having such
a computer we are limited to a finite number of the coefficients after
which rounding error builds up. With a computer working in 12

decimal floating point arithmetic approximately the first 10 or 12
coefficients are significant.

The points on the positive real axis at which F(s) is evaluated
depend on the real parameters {3 and § which we can vary within the
constraints »> -1, §»O0.

Theoretically, again with a pexrfect computer, the Fourier-Jacobi
expansions derived from an exactly known F for different values of f(
and § would all yield the same function f. With real computers and,
sometinmesg, an approximately known I we will generate as many different
tvwnecated gpproximations to £ as values (g , %) we take. Our task
is now to.choose the optimum (ﬁ s 0 ) pair.

From the Tauberian results

lim sF(s) = £(o )
g » 0

lim sF(s) = £(0)

S >

(see [ 8] page 243 (37.5), (37.6) withy = 1)
We see thét for large t, f is determineddby the behaviour of I' for

small 8 on the positive real axis, and vice versa, Thus one guide
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to the best choice of 5 and § is the particular t-domain of f in
which we are intefested: If we are interested in f for small
. values of t we choose { and & large, and so on.

Another important principle to follow in the choice of £ and
§ has already been expounded in connection with the BKL method,
nanely if we have reason to believe that f is smooth then we should
choose ﬁ- and § to yield the smoothest function.

Once a pair (3,8 ) is chosen, the ALGOL program determines the

set of coefficients { Co vees C } denoted{ C ilg s

Now glx) =3 CiPi(ngs )(x) + Z CiPi(O’fl )(x)

i =90 1 =n+1

and the Chebyshev norm of the truncation error is

- j{f‘ciPi(O,ﬁ i, - mp | e(x) - ZL c,p, (0P )(x) |
0

- {ZC (bi&)x)}

VCL ~1 1]11—}-1

= IJZciPi(O’ﬁ) \\ (3.15)

n +1 “

n
— )
e -5 ;2,8 )]

1=

Let us dei‘inegn(g i fo 5)

T'

r1heo::-e tically (3.15) allows us to mlnlmlzeg ;o 5) over some
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allowed region of the ﬁ s =-dlane without any knowledge of g: we

merely have to minimize

@
— 0 )
” 111 CiPi< 7 (5)“ over { Ci]/i,é‘ .
n
In practice we can minimize =
” QZT CiPi(O’F )H for some finite k.
n +1

The fact that this truncation and minimization procedure tends to
cut down the "high-frequency" component of the Fouriew-Jacobi
development, fits in with our intention to choose the smoothest of

the available approximations to the unknown f.




Humerical nrocedure and the results of anplying the

method to the transforms of some known functions

The basic program written to carry out the IIG method of inversion

of a given transform F has the structure indicated in Fig.1.

The sub-routine 3 evaluates the error estimate by finding

Z:j C, P.(O’B ) (x) over at first 8 values fx1.}
174 i

of x in the interval of interest)then over these and the interlacing

equidistant § Xos f (giving 16 Exi} in total)’ then over the 16
% XBi} interlacing these points and so on until the successive

maxima are within a given tolerance of one another.

The method of finding the optimum (g, §) is quite unsophisticated.
Good results can be had by making the grid of samvle points very
fine but then usually a vast amount of machine time is spent in

looking




START
) <
1 Choose (5, ) on given - ¢ grid
v
2 svaluate C. ... C
Y0 N+ ok

for given (F ;Y )

Y

3 Evaluate error estimate

1)

ﬁi =” ni : C_J..?i(o’/g ) “ for giveni Cif

N

n + 1
4 Is én (g3 fo V)< all previous fn' s
o
YES N0

Store iCi} as current ovptimum approximation >~

Wond
S

is f-3 O

grid exausted? | YES

take stored f C. 7} Y
i

and evaluate f(%)
at svecified points on
specified interval of[0,®)

A

Y

8 plot Approximate Graph

Print table of Results

|

STOP

FIG.1,

Y




at areas of the # - J »lane that are far from the actual optimum.

The problem we are faced with is the common one of finding the
mininum of a multi-variable function of complicated or analytically
unknown form. In our case the 2-variable function Eln(giﬁ gy O ) can
be evaluated at an individual point but it is not known analytically.

To evaluateéin(g;fs, §) at a larse number of points is costly in

computing time. However, with the examples of f (and thus g)
oonsideredfé-n(g;g , 0 ) seemed reasonably well behaved suzgesting
the use of a more sophisticated minimizaotion vprocedure which could
converge on the optimum (& ,8 ) much more quickly. One such
procedure is the "lMethod of Steepest Descent" ([ 9] Ch.2) but this
requires the evaluation of the zgradient ofé?n(g; s 5) with respect
to £ ,¢ =and this computation would both consume time and add error.
A more pronising possibility is to use one of the several nronosed
methods of function minimization without evaluating derivative.s
( [10) , [113 , [127). The hope is that one of the methods would
speed up and improve the accu_racy of the program.

The program as written uses the basic program outlined ahove,

to evaluate the approximation
Lo

Z Cipi(oaﬁ ) (X)

i=0

with optimum values of (/%, @) for values of n over a sgpecified range.




The question of which n is the best one is a difficult one. TFor

the functions e~ and Jo(t), with Laplace transforms E_%”ﬁ' and

rﬂni—~ respectively, the optimum value of n was around 4 for e
7 8%+ 1

and around 10 for Jo(t). A rouch guide may be: small n for smooth
f and large n for less smooth f. By large is meant large, but not
so large that rounding-off error causes the higher coefficients to
start growing. In fact another guide for optimizing with resnect to
n is, possibly, to stop when the highest coefficients begin to
grow azain after their initial decrease.

"

The best numerical resulits obtained for the test functions e =

and Jo(t) were for example, 8 decimal place accuracy over | 0,5 |

for e;t and 4 decimalplace accuracy for\z)(t) over the same range.

These results are much better than those obtained by other published
results as pointed out by lidller and Guy. In their paper [:3] they
give gravhs of their results using this method plotted tomether with
the results obtained by other methods. Another point made by iiiller

and Guy is that althouzh the theory of the method is developed for

functions £(t) finite at O and ® , tests with ¥(s) =1,
wnich has tho invorso transform (i) = tvyic]d tho 5% following
type of rosulti: A
L) .
e )
L]
! >
G
T t




The algorithm achieves the result fc(t) =t for tE€ [O,T]

but there_after the computed function fc(t) settles down to a

constant value T. Thus, approximately

fc(t) = t-(t -1 HH% -T)
and L [fc; t 9»3] = gg - §523§:2§>
So for large T %2 ~ %2 - exnsa-Tsm

and in the finite length comoputer arithmetic these two functions
will be indistinguishable. But the algorithm has selected the one
which is finite at o0 . Anothercase in which, while the theory
does not strictly apovly, the algorithm gives good results i§ the
Dirac delta function which has the Laplace transform F(s) = 1.
0f course what the algorithm produces is an approximation to the
behaviou; of this generalized function. The more coefficien_is Ci
that are calculated, the higher the peak at t+ = O becomes. Also
thi;;a good example of a case wvhen our volicy of minimizing the
"high frequency" component of the Fourier-Jacobi expansion is not a
good one, any approximation to E(t) being far froﬁ smooth at the
origine. Nevertheless,once we have got some results from a firs?y

application of the algorithm we can use this rough descrintion of

fhe unknown f to govern our further application of the algorithm.
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Advantares of the 1IG method

One immediate advantage wovld seem to be the superior accuracy
of this me_thod to that of other published methods (see [13L [14]
and the bibliography in_[14] ) althoush an exhaustive comparitive
study has not, as far as we know, been undertaken., A major advantage
of the LG over the BXL method is the fact that the LG method gives
the approximation to f(t) effectively as a polynomial which can be
evaluated at any required value of t without any difficulty. The
BKL method, on the other hand, only givés a set of points and since
they are lozorithms of the zeros of the shifted legendre polynomials
they are awkwardly situsted and irregularly spaced. Also in the IiG
method there is no need to store any watrices to perform the

inversion.
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[0

A Possible Al~orithn for the ilellin Transform

The eassential feature of the 11 method is the observaltion that

once the defining integral has been put in the form

+1 / ? X :
#(s) = 5% . J‘ \ J—E%E%J g(x) dx

a factor (1 + X) can be got in the integrand by choosing s
appropriastely and that this is a weightinz function for the Jacobi
polynomials Pn(o’ﬁ ) (x). Fow, another integral transform with

important applications is the llellin transform.

F(p): Jp 21 f(x) dx (6.1)
0

the
-t
or puttiny x = e =~ we getAtwou31de Laplace transform

o) = J/e"pt f(e“t) at (6.2)

Looking at (6.1), the factor 2 suggests the use of the Generalized
o
Laguerre polynomials Ln( ) (x), which are orthogonal onEO, “3)With
¢ i
weight function w(x), Puﬁ'¥&hé§(X) and assume that g(x) can be

expanded in terms of the generalized Laguerre polynomials
s 2

g(x) = ZL Cn (). Ln GX)'(X) (x>-1) (6.3)

['1’) wik) = ¢ " x° (D( > —1) see [T] section 222




where Cn (¢) is the nth Fourier-Laguerre coefficient depending on
the choice of & .

Rodrigues' Formula for the generalized Laguerre polynomials is

( [771 22.11)

o 1 S
Ln( ) (x) = m 9(31:11 2 e X x X } (6.4)
n. € x

Substituting (6.3) in (6.1) and then (6.4) in to the result

20 o
X n

=Vj x P71 o7 :Ej Cn( ) %L & " g}@- (euxkd+n) dx
O n=20

(6.5)

and now the exponential factor e—x, wnich remains in the partial
sums after simplification, ensures the validity of the interchange
of the order of integration and summation since exyf%) dominates
(ultimately):x% ™™ and the Lebesgue dominated convergence theorem

gives the result
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Put p = « +1+k where k is o positive integer i.e. choosing k and x
such that o = o- (k+1) and k< p.

Then (6.6) gives

[
f no -
F(x +k+1) = Z %‘ Cn(a’) J o %’«Z‘" (e x P (et 1) + By ax
n=20 0
fAv)
k (ln -X __ pin=k-1
Now define I, = j Sl (e = ) dx

1

o

_ kf xk—-'i (7% xp»{—n—k—‘l)(nm‘l) ax (6.7)
0

The first term in (6.7) is zero so

oo
_ k=1, =x _prh-k-1y (n-1)
Ten = -1‘:[45 (™ xm ) dx
0
Ik,n = -k Ik—1, n-1
2%
Forn>k I = f R Rt ikl WP
0,n~k dx;”"k'
0

_( ﬁn-k—} -X _ prn-k=1
ﬁL n-k-1 (e * )
dx




—
|\ n-k-1 P
- (P ST (fﬂj—?) () een et t) 75| (629)
L »r=0
o
where | = pin-k-1, by Leibniz' formula
But b =(n-k-1) = p > O so the value at x = 0 of the expression

ingide (6.9) is zero and the exponentde ™ ensures that it is zero

atw as well,

Hence IO,n-—k = 0 (n> k)
and thus I_ . = 0 for n> k by (6.8)
D,k
6o
For n< k I - xR g7 Pkl (6.10)
— k-n,0 J } : *
0
DO
A -X p-l
= [
J e pd dx
Q
-
en = L@ (6.11)
1 for n< k I (k"
and for nX k k,n " - m,. V’O (6.12)
A

which follows from the recurrence relation (6.8).

So by (6.10) and (6.11)

La = (D" iy T ) (acw) (6.13)

= 0 (k)




Hence recalling the definition of P

oS
N 1 »
Flo{ +kt1) = :1 = cn(a) Len
n= 0
LY
1 . n kit i
= L o G, () (-1) Gyt | ().
n=20
k
- Fletlarl) | n ok
e TR = ST (0T () 0,W) (6.14)
n=20
Put G = Pl+la1) /17 @+let1) and C = C,(¥); then letting k

assume the values 0,1,2,... (6.14) gives a linear system of

equations for the coefficients Cn

GO = CO
G1 = CO - C1
G, = C,-2C, + G, (6.15)
G3 = CO - 3Qi+ 302 - C3
Solving (6.15) we get
CO = GO
“1 7 S G (6.16)
Cé = GO - 2(},I - G2
03 = GO - 3G1 + 3G2 - G3




which suggests the general solution Ck =S (-«1)J (z\) GJ (6.17)
J=1
We show this by induction
Suppose (6.17) holds for = 0,1,2,... k=1, k |
Wow by (6.14)
R+i
a - (w,])l‘ (18’1'{-1) C
le+1 Z r T
r=0
k
I+ r k+1 ~
so (-1) Ck—ﬂ - Glﬁ-'] - Z (-1)" ( r ) Vr
r - 0

ki1
¢ = {-1)° Cies1

ke r
- (-1)1‘”[ PRNCOHGAD SN COEIN G crjj

k+1
r=20 J=20

"k k
= (-] ~(- kﬁr <™ v r el
Ot = (7 0y (1) er:_o?_: O(-ﬂ) (e, <r>]

i
Wherez indicates that the summand depending on j is zero for j > r.

k+1

SCOR -c-m)“fz COLEADN .m)l‘(";")(?—?ﬂ (6.18)

Ck+1




kel my . (er)t rt (1) (ksd=DV
S L B TS TR € ) L T 75 1) EN ) F o (PP B ey

-] J ktl-x

=(1c-§1) <lc+1-—j> _ (k»r‘i) _ (1c+1-,j) (6.19)

Using (6.19) in (6.18)

k i

_ kt1 J ler1 ket 1=3 kel -m

Cret = (-1) Cet = Z (-1) Gj ( 3 ) Z (k»;-1~r> (=1)
j=0 z =

k o+ 1 f=0

Put 5:— (‘.{'{-1—3) (_1)k+1-1'.‘ - Z_‘ (k%*']-j) (_1)P (6 20)
k1 =2 P :
r= ] P=T+1=]

where f = kil-r. Bubt the expression on the right of (6.20) is the

binomial expansion of (1-1)1{”—3 = 0.
Iz
Hence Z‘ (tﬂ:i (_1)1c+1-:c o (k+(1)..'j) 1Y - o
r=j
k
N G R N (k?) (_1)3(}3
j=0
k-1
that is C ., = 9. (“‘3.'1) (=1)9 G, (6.21)

j=0
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and this demonstrates, by induction, the truth of (6.17).

Thus we have an algorithm for the liellin Transform which is similar
to Ililler & Guy's .
C~ Fourier-Jacobil algorithm for the Lapvlace transform. e would

hope that the parameter « could be chosen to select a smooth
solution in much the same way as we chose (g , §). One slight
advantage of this Iourier-Lagzuerre algorithm is that we have an
explicit analytic expression (6.21) for the coefficients Ch("()
which may speed up the computation. On the other hand we have only
one paraneter Y to vary. This algorithm has yet to be given a

practical test.




Avnmendix 1

Solution of Inverse Problems Usins the Lanlace Transform

-
i

ilany problems in methematics are what might be called direct
problems in the sense that once we have set up a mathematical model
ve are interested in seeking this model's implications and in applied
mathematics, interpreting these in the vhysical domain. DIul many
important problems need a different approach: a certain physical
situation moy be avproximately representable by a whole range of
models varyins with parameters they incorporate. The problem now,
is, given some data (which would correspond to the predictions of
these models), to decide which is the (in some sensc) best model to
fitv this data. This is an inverse problemn.

For example we may have a system the behaviour of which can be
described by a transfer fuaction k(t) which determines the
output function u(t) of the system ziven an input function £(%), in

the relation

t

u(t) = f k(t-x) £ (x) ax (41)

0]

Using the Laplace transform we can write

Lk(s) = %ﬁ?g (42)




The calculation of Lu(s)/Lf(s) involves two straight forward quad-
ratures on [0 ,ab) . Thus a subroutine to determine Lk(s) from
u(t) and £(%) can be written, inserted in the Laplace transform
inversion alzorithm and the Fourier-Jacobi expansion of an approximatiol
to k(%) obtained. See E2] Ch. 3. Sections 21-24 for a discussion
on estimation of system constants.

It is possible that this anproach may be useful in determining
the functions X(t), Q(%) which relate stress and strain in

T=dimensional viscoelastic materials through the relations

£
e(t) - [ At -T) - @%’Q, a
(43)
t

€(T)

¢ (t) = ;FSO("' -T) 4 ::“ a7
v dz
-0

If it is assumed that 6=z € = 0 for t < O

Then equations (A3) reduce to two convolution equations

t

€(t) - [X(t-7) af(n) av
0 d T
t

c(t) = [ @lt-7) a&ls)  de
0 @




5o
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transforming:

c(s) = X(s) . [s& (s) - 6 (or )]

%(s).s G (s)

]
It

T() =) [s2(s) - €] = plo)s &(o)

—

Lis) = 1. €(a)

% (=)

i

nl—
|
9

€ (s)

and we can determine %(t), ¢ (t), in much the seme way as the transfer
function k(%) in (A1), providing we know € (%) and ¢ (t) on [0, )
Another method to determinejx and P'using the Laplace transform is

given in (167 .
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*ESTABLISH DDOOYTROOKPU+KOBOOOTAPSPE;

JACOBI INVERSN EXPNj

0/PL,8+

begin library A0, A6, A12; integer n, ni, n2, N, ENILO, ENUP, M, KK, f1, £2; KK:= 0; open(20); Ni= read(20);
begin array C[0:N]; real b, d, dlo, dd, dup, blo, db, bup, TL, TU; boolean more data;

real procedure F(s); value s; real s}
begin Fim 1/s end F;

progedure JCOEFFSP(F, delta, beta, print, N, C); value delta, beta, N; real procedure Fj

array C; real delta, beta; integer N; boolsan print; comment JCOEFFS caleculates the Jacobi
polynomial coefficients C[0] to C[N];

begin integer 1, J, k; réal q, p;
real procedure SIGMA(K); yalue K; integer K; gcomment sum from O to K = 1j
begin integer m; real s, q; si= 03 q:= K + beta + 1;
for mi= O step 1 untll K - 1 do
s:= ((q +m + 1)/(K - m))x(C[m] + s);
SIGMA:= 8
ond SIGMAj
£1:= format([nd]);
if print then write text(70, [[5o2ls]ocefficients*a(i)[5c]]);
qi= beta + 13 Cl[0]:= deltaxF(qxdelta)xq;
if print then begin write text(70,[k*=**0[155]]); output(70,C[01)s end;
for k= 1 gbep 1 until N do '

begin q:= k + beta + 15 pi= 13 for ji= 1 step 1 until k do begin pi= px((q + J)/J) end;
Clk):= (pxqxdeltaxF(qxdelta)) - SIGMA(k); :

Af print then begin write text(70,[k*=*]); wrise(70, £1, k); space(70,15); output(70, C[k]) .

end;




end
end JCOEFFSP;

procedure JACPOL(beta, N, x, P); value beta, N, x; real beta, x; integer N; array P;
gomment values P(0, beta, n, x) at‘mred in array P for n = 0 to Nj
begin integer n; real A, B, C; P[0]:= 15 P[1]:= ((beta + 2)xx = beta)/2;
for n:= 2 gtep 1 until N do
begin A= 2xnx(n + beta)x(2n + beta = 2);
Bim (2xn + beta = 1)x((2xn + beta)x(2xn + veta = 2)xx - (petat2));
Cim 2X(n - 1)x(n + beta = 1)x(2xn + veta);
Pln]l:= (B X PIn = 1] « ¢ x P{n « 2]1)/A

end

end JACPOLS

procedure JEXPN(N, C, delta, beta, tl, tu, M, V); valus N, C, t1, tu, M;
integer N, M; real delta, beta, tl, tu; array C, V; comment values of approximation to £(%)
are oaloulated for t » tls......,tu in M equal steps and stored in V[1:M, 2] ;
begin integer 1, j3 real dbt, x, s; sarray P[O:N];
dtam (tu = t1)/M;
VI1,1]:= 13 for 1:= 2 step ¥ until M do V[1,1]:= V{1 = 1, 1] + at;
for 1= 1 step 1 wntil M do
begin xi= (2xexp(-(deltaxv[1,1]))) - 1;
JACPOL(beta, N, x, P); s:= 03
for §i= O step | until N do s:m= & + (CLJIxPL4]);
Vi1,2)1= 8

13
end JEXPN;




procedure PLOT(D,V, K, M); value D, V, K, M; integer D, K, M; array V; comment D is device

number for graph output, V holds abseissae and ordinates K 1s plot number
and M 1igs nu_mber of abscissae; |
begin integer 1, J, Y, Y1, 1, f2, £3; real del, 1, u;
£1:= format([-d.ddw#nd]); f2:= format([-d.ddddsadddsddp#nd]); f3:= format([nddece]);
write text(70, [[pclplot**number*:*]); write(70, £3, K);
write text(70, [[30s]x[59sly[2c]]);
for 1:= 1 step 1 until M do
begin write text(70, [[20s]]); write(70, £2, V[1,11);
write text(70, [[U40s]1); write(70, £2, V[1,2]); write text(70, [[e]])
end;
l:mu:m V[1,2];

for i:= 2 step t until M do

begin 1f V[1,2] < 1 then 1:= V[1,2]; 1f V[1,2] > u then u:= V[1,2]

end;

del:= (u-1)/89; Yli= entler((1/del) + 0.5); write text(D, [[p4slx[Us]]);
space(D, 91); write text(D, [[4sly[c9s]1]);

for J:= 0 step 1 until 90 do write text(D, [+]); write text(D, [[e]l]);

for 4:= 1 step 1 until M do

begin Y:= entier((V[1,2]/del) + 0.5) - Y1; write(D, £1, V[1,11); write text(D,[+]);
Af Y > 0 then begin space(D, Y -~ 1); write text(D,[+]) end;
space(D, 89 - Y); write text(D, [+]1);
write(D, £1, V[1,2]); write text(D,[[c]])

end;

write text(D, LL99.]_1,)5 for ji:= 0 step 1 until 90 do write text(D,[+])

end PLOT procedure;

procedure SUM{N1, N2, x, S)3 value N1, N2, x; Integer N1, N2; real x, S;
commant S = C[N1JP{N1] + ... + C[N2]P[N2] evaluated at x for values
of beta and Cln] current at call of procedure;
begin integer 1; array P[O:N2];

JACPOL(b, N2, x, P); S:= 03 _
for 1:= N1 step 1 until N2 do S:= S + C[1]xP[1];

end SUM;




procedure CHEBYNORM(N1, N2, t1, t2, E); value N1, N2, 1, t2; integer N1, N2;

real t1, t2, E; comment Chebyshev norm of truncation error on [t1,t2]
estimated from max(t in [t1,t2]) of abs(C[N1IP[N1]+ ... +C[N2]P[N2]) for
values of beta and delta current at call of procedure and stored in Ej
begin Integer count, i, m, p; real M, 3, A, B, D, DD, max;

max:= 05 A= 2Xexp(-dXt2) - 13 Bi= 2xexp(-dxtl) - 1}

D= B - A3 DD:= 0.125XD;

JCOEFFSP(F, d, b, false, N2, C);

for 1:= 0 step 1 until 8 do

begin SUM(N1, N2, A + 1xDD, S); S:= abs(S);

if S5 > max then max:= S

end;
pi= 85 counti= 0} Mi= 1,01Xmax} E:= max}
I11: DD:= 0.5XDD; m:= pj pi= 2Xp;
for 1:= 1 step 1 wntil m do
begin SUM(N1, N2, A + (2xi - 1)xDD, S); 1= abs(S);
AL S > max hen
begin 1f S < M then
begin 1if count < 3 then count:= count + 1
else begin E:i= S; ocount:= 0; goto L22 end;
end;
maxi= S; M:= 1.01xmax
end;
end;
if p < 100 ghen goto L11;
122: end CHEBYNORM;




procedure FINDMIN(n, t1, t2, dlo, dd, dup, blo, db, bup, L, U, optdelta, optbetz, OPTC, MINERROR);
value n, t1, t2, dlo, dd, dup, blo, db, bup, L, U; integer n, L, Uj;
real t1, %2, dlo, dd, dup, dblo, db, bup, optdelta, optbeta, MINERROR;
array OPTC; gcomment truncation error E for nth order approximation is minimized
(discrete approximation) over dlo < delta < dup, blo < beta ¢ bup and optimum
delta, beta, C, and E stored in optdelta, optbeta, OPTC, MINERROR;
begin integer £, i, J, k; real E, m; mim p203
fi= format([sd.dp?nd]);
for iim 0, 1+ while dlo + ixdd ¢ dup + dd do
begin d:= dlo + ixdd;
for jim 0, J+1 while blo + Jxdb ¢ bup + db do
begin b:= blo + Jxdb; CHEBYNORM(n - L, n + U, t1, t2, E};
write(70, £, E);
Af E < m then
begin mi= E; optdelta:m d; optbeta:m bj
for k:= 0 step 1 until n do OPTC[k] := C[k];
end;
end;
. newline(70, 1);
ad;
MINERROR := mj
end PINDMIN;




data:

open(70); write text(70, [T.S.HARRIS]); .
£1:= format([ndde]); r2:= format([nd]);
KK:=m KK + 13 write text(70, [[plresult**]); write(70, 1, KK}; newline(70, 5);
write text(70, [N¥*m**]); write(70, 1, N);
dlo:= read(20); write text(70, [dlo™=*#]); output(70, dlo);
dd:= read(20)}; write text(70, [dd**=**]}; output(70, dd);
dup:m read(20); write text(70, [dup*=*#]); output(70, dup);
blo:= read(20); write text(70, [blo*=*#*]); output{70, blo);
dbie read(20); write text(70, [db**m*#]): output(70, db);
bupi= read(20); write text(70, [bup*=*+]); output(70, bup);
M:= read(20); write text(70, [M**m**]): write(70, £1, M);
nt:= read(20); write text(70, [n1*=**]); write(70, £1, n1);
n2:= read(20); write text(70, [n2*=**]); write(70, £1, n2);
ENLO:= read(20); write text(70, [ENIO*w**]): write(70, f1, ENLO);
ENUP:= read(20); write text(70, [ENUP*w##]); write(70, £1, ENUP);
1= read(20); write text(70, [TL*=*#]); output(70, TL);
TU:= read(20); write text(70, [TU**]): output(70, TU);

Degin array V[1:M,1:2], OPTC[0:N]; integer k; real optdelta, optbeta, MINERROR;
for ni:e= n1 gtep 1 until n2 do
begin write text(70, [[p3c] n"=**]); write(7n, f1, n); newline(70, 3);
FINDMIN(n,TL,TV,d10,dd ,dup,blo,db,bup,ENLO,ENUP,,optdel ta,optbeta ,0PTC,MINERROR ) 3
write text(70, [[3c]optdeltn®=*+]): output(70, optdelta);
write text(70, [optbeta**w**]); output(70, optbeta)s
write text(70, [[3e25s]0PTC(k)[36]]);
for k:= 0 step 1 until n do
begin write text(70, [k**=*]); write(70, £2, k); space(70, 10); output(70, OPTClk])
onds
write text(70, [[Po] MINERROR*=*#]); output(70, MINERROR);
JEXPN(n, OPTC, optdelta, optbeta, TL, TU, M, V);
PLOT(70, V, n, M)
end;
o«
more dataie rend boolean(20); if more data ghen goto dnt~ else close(20); close(70);

ad program;

ad

-




