ON A TECHNTQUE FOR THE NUMERICAL INVRRSION
OF THE
TAPIACE AND MELLIN TRANSFORMS
by
T. S. HAPRIS

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13834211
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346
Acknowi edsement
Section

1. Introduction
2. General Problem of Inverting an Integral Transform
3. iTumerical Inversion of the Lanlace Transform
4. Numerical Procedure and the results of applying the methodto the transforms of some known functions
5. Advantaces of the II G li.ethod
6. A Possible Alcorithm for the Mellin Transform
Annendix 1 Solution of Inverse Problems Using the Laplace Transform
Appendix 2 ALGOL Program Developed
References

Acknomledsement

I would like to thank the members of the Glasgov University Computinc Department for their helpful advice and "machine time" needed in the development of the ALGOL program, and also to thank Professor I.N. Sneddon for his encouracement and inspiration.

Further, I would like to thank the Science Research Council for providing the Advanced Course Studentship which I held while doing the work for this thesis.

Introduction

An important part of the usefulness of the Laplace transform (and other integral transforms) lies in its power to reduce the transcendence level of a functional equation involving such transcendental operators as differentiation and convolution. For example, if y is the solution of a linear ordinary differential equation with constant coefficients, then the Laplace transform Y of y satisfies a linear algebraic equation rather than a differential equation. Again, a partial differential equation in n independent variables is reduced to one in $n-1$ independent variables. However, the price paid for this powerful technique is the problem of inverting the transformed solution when its explicit form has been found. Extensive tables of known transform pairs do exist but these are for the cases where the complex inversion formula

$$
f(t)=L^{-1}\{F(s) ; s \rightarrow t\}=\frac{1}{2 \pi} \int_{c-i \infty}^{c+i_{\infty}} F(s) \cdot e^{s t} d s
$$

is more or less tractable.
Faced with a mathematical problen of great complexity arising from an applied science we can either simplify the mathematical model until an analytic (or approximate analytic) solution can be obtained or else attempt to analyse mumerically the original model in all its complexity. In the past the former was certainly the easier and sometimes successful, if risky, procedure.

But nowadays the electronic computer has opened up the second, again not entirely risk-free, path. This is the situation facing the user of the Laplace transform.

However, once it is decided to embark upon a numerical solution of the problem in hand, it may be better to return to the original equations and solve these directly rather than invert the Laplace transformed solution numerically. In some cases the Laplace transform approach is found in practice to be definitely superior to the classical nunerical techniques. For some examples of particular applications see appendix 1. Another point in favour of the Laplace transfom approach is that the computer program written to invert the transform numerically, can be applied in a routine way to several types of problem that would need several different classical aleorithns, and this should make numerical and computing work less arduous for the occasional computor.

Accepting this defence of the Laplace transform method followed by numerical inversion, this dissertation endeavours to discuss and expound a particular numerical inversion algorithm that has been found successful in practice, together with a possible application to an inverse problem in viscoelastic theory and also a possible treatment of the Mellin transform on the same lines.

The General Problem of inverting an Integral Transform

The problem of inverting an integral transform K

$$
K f(s) \equiv \int_{a}^{b} k(s, t) \cdot f(t) \cdot d t=g(s)
$$

is the problem of solving a Fredholm integral equation of the first kind. Whereas there is an extensive literature on Fredholm equations of the second kind, there is not much on those of the first kind: see D.I. Phillips 1 . An important characteristic of an integral operator such as K is that its inverse is unbounded so that the problem: given g, find $f=K^{-1} g$, is "il loosed". Small changes in g can yield very large changes in f. To see this, suppose f is the solution of

$$
\begin{equation*}
\int^{b} R(s, t) \cdot f(t) \cdot d t=g(s) \quad(a \leq s \leq b) \tag{2.1}
\end{equation*}
$$

a
and add to f the function $\quad f_{m}(t)=\sin (m t)$.
Then by the Riemann-Lebesgue lemma, for any integrable kernel

$$
\mathcal{S}_{m}(s)=\int_{a}^{b} k(s, t) \sin (m t) d t \rightarrow 0, \text { as } m \rightarrow \infty
$$

uniformly on $[a, b]$ when $k(s, t)$ is continuous in s on the compact set [apb] . Hence by choosing m large enough, f and $f+f_{m}$ will be mapped by K to points $K f, K\left(f+f_{m}\right)$ in the range space which are arbitrarily close (in the uniform metric).

Also we would expect $g_{m} \rightarrow 0$ as $m \rightarrow \infty$ faster for flat smooth kernels then for sharply peaked kernels. (If $k(s, t)=\delta(s-t)$ then $g_{\mathrm{m}}=$ $\left.f_{m} \ngtr 0\right)$.

Hence we conclude that success in solving equation. (2.1) by any method depends largely on the accuracy of $g(s)$ and the shape of $k(s, t)$.

We now discuss two possible methods of solution of equation (2.1).

1. Te approximate the operator K (operating on $L_{2}(a, b)$ by a matrix operator K_{n} (operating on R^{n}, the space of n-tuples of reals) leaving the problem of solving

$$
\begin{equation*}
K_{n} \tilde{I}_{n}=g_{n} \tag{2.2}
\end{equation*}
$$

where f_{n} and ε_{n} are discrete approximations to the unknown and known functions repectively. The matrix K_{n} is obtained by approximating the integral by a discrete quadrature rule. The error of this aproximation will decrease as n increases. Having got K_{n}, then providing $\operatorname{det}\left(K_{n}\right) \neq 0$ the solution of $(2,2)$ would be straight forward on an 'ideal' computer working in infinite length arithmetic. In practice it is found that the solution is hampered by ill conditioning of the matrix K_{n} which grows with increasing n; this reflects the unstable nature of the original operator K^{-1} and we now have an ill-posed problem in the space R^{n}. Using this method we can expect the error to first decrease with increasing n, as the quadrature formula becomes more exact, and then increase as the illconditioning of K_{n} swamps this improvement.
2. The second method falls in the category of projection methods. The Fourier expansion of the unknown function f in terms of a complete orthonormal set of functions $\left\{Q_{n}\right\}$ is

$$
f=\sum_{n=0}^{\infty}\left(f, Q_{n}\right) \cdot Q_{n}
$$

Now we can truncate the Fourier development, or in geometric language consider the projection of f on the subspace spanned by

$$
\begin{aligned}
& \left\{Q_{0}, \ldots, Q_{n}\right\} \\
& \quad\left\{\simeq \sum_{m=0}^{n}\left(f, Q_{\mathrm{in}}\right) \cdot Q_{\mathrm{m}}\right.
\end{aligned}
$$

and with appropriate conditions on the smoothness of f we can bound the error of this approximation. We now substitute this approximation to f in the integral equation

$$
\begin{aligned}
& \quad \int_{a}^{b} k(s, t) \sum_{m=0}^{n}\left(f, Q_{m}\right) \cdot Q_{m}(t) \cdot d t=g(s) \\
& \text { or } \quad \sum_{m=0}^{n}\left[\int_{a}^{b} k(s, t) \cdot Q_{m}(t) \cdot d t\right] \cdot\left(f, Q_{m}\right)=g(s) \\
& \text { If the integrals } \int_{a}^{b} k(s, t) Q_{m}(t) d t \quad(m=0, \ldots, n) \text { can be }
\end{aligned}
$$

evaluated then Fourier coefficients $\left(f, Q_{m}\right)(m=0, \ldots, n)$ of f can be found by solving a system of linear equations possibly with the difficulties of ill-conditioning.

Numerical Inversion of the Laplace transform

The two methods outlined above are exemplified by the algorithms given recently by RoB. Bellman, R. in. Kalaba, and J. Locket [2] 1966 (method 1) and by I.K.K. Filler and W.T. Guy, Jr.,
[3] 1966 (method 2). We discuss briefly the Bellman, Kalaba and Lockets method (abbreviated BKL) and then go on to develop the filler and Guy (fiG) method in full.

$$
P(s)=\int_{0}^{\infty} e^{-s t} f(t) \cdot d t
$$

The BKI method begins by changing the variable of integration: $x=e^{-t}$ to obtain a finite interval of integration

$$
F(s)=\int_{0}^{1} x^{s-1} f(-\log x) d x=\int_{0}^{1} x^{s-1} g(x) d x
$$

The approximation K_{n} to K is now obtained using Gauss- Legendre quadrature (but with the shifted Legendre Polynomials P_{n}^{*} defined on $[0,1]$) to get

$$
\sum_{i=1}^{n} w_{i} x_{i}^{s-1} g\left(x_{i}\right)=F(s)
$$

where $\left\{x_{i}\right\}$ are the n roots of $p_{n}^{*}(x)$ and $\left\{w_{i}\right\}$ are the associated weights. Letting s assume n different values say $s=1,2, \ldots, n$ yields a linear system

$$
\sum_{i=1}^{n} w_{i} x_{i}^{k} g\left(x_{i}\right)=F(k+1)(k=0, \ldots, n-1 .)
$$

After some manipulation using the Lagrange interpolation formula and some properties of the Legendre polynomial P_{n}^{*} we get an explicit relation for the elements of the inverse of the matrix $\left(w_{i} x_{i}{ }^{k}\right)$ in terms of the x_{i} and the coefficients of P_{n}^{*}, both of which can be calculated to any required degree of accuracy. Thus the inverse matrices K_{n}^{-1} can be computed to any required degree of accuracy and stored on magnetic tape beforehand. Then when the vector F is given, the vector f is computed by a straight forward matrix product routine in a very short time:-

$$
f=K_{n}^{-1} F
$$

We are however, still left with the problem: small n $>$ few values of approximation to f; large $n \Rightarrow$ badly ill conditioned K_{n}. An q, although $\mathrm{K}_{\mathrm{n}}{ }^{-1}$ is known to any desired accuracy, if F is got empirically from measured values $F+\varepsilon$ where ε is a "noise" vector of random errors, then $\left\|K_{n}^{-1} F-K_{n}^{-1}(F+\varepsilon)\right\|$ could be very large. But if we have reason to expect f to be "smooth" then this can be taken account of as an extra side condition in solving

$$
K_{n} f=F
$$

$B K L$ do this for the general problem $A x=b$, with A ill-conditioned, by minimizing functionals over x such as

$$
(A x-b, A x-b)+\lambda D_{n}(x)
$$

where (.,.) is an inner product and

$$
D_{n}(x)=\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\quad+\left(x_{n-1}-x_{n}\right)^{2}
$$

which decreases with increasing "smoothness".

They achieve this minimization with aid of dynamic programming. With λ small, x is then a sood approximation to the solution. A similar approach to the selection of the, in some sense, smoothest x from among those which A maps into an ε-neichbourhood of b is given by D.L. Phillips [1] and S. Twomey [4]; they have achieved encouraging results.

Also on the same topic are papers by A.N. Tihonov [5] \& [6] where an exror functional of interral form is minimized by the classical method of the Calculus of Variations, reducing the problem to an Bulex equation which can be solved numerically by finite differences.

We now describe in full, a projection method based on the paper by hililer and Guy [3].

The Laplace transform of $f(t)$ is defined by the integral

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} \exp (-s t) \cdot f(t) \cdot d t(\operatorname{Re}(s) \geq c>0 .) \tag{3.1}
\end{equation*}
$$

We assume below that the integral in (3.1) exists for $\operatorname{Re}(s)>0$. The variable of integration may be changed by the substitution

$$
\begin{equation*}
x=2 \exp (-\delta t)-1 \tag{3.2}
\end{equation*}
$$

where δ is a positive real parameter. It follows that

$$
\exp (-s t)=\left(\frac{1+x}{2}\right)^{s / \delta}
$$

and

$$
t=-\frac{1}{\delta} \log \left(\frac{1+x}{2}\right)
$$

Te define of over ($-1,1$) by

$$
g(x)=f\left\{-\left(\frac{1}{\delta}\right) \cdot \log \left[\frac{1+x}{2}\right]\right\}=f(t)
$$

In order to extend the domain of definition for \mathcal{E}, define $\mathcal{g}(1)$ and $g(-1)$ by

$$
g(1)=\lim _{x \rightarrow 1^{-}} g(x) \text { and } g(-1)=\lim _{x \rightarrow-1^{+}} g(x)
$$

Essentially, these definitions require that $f(0)=\lim _{t \rightarrow 0+} f(t)$
and $f(\infty)=\lim f(t)$ be finite. If f is continuous then g is also $t \rightarrow \infty$
a continuous function. Substituting (3.2) into (3.1) we get

$$
F(s)=\frac{1}{2} \int_{-1}^{+1}\left(\frac{1+x}{2}\right)^{\frac{s}{\delta}-1} \cdot E(x) \cdot d x
$$

Now assume that g can be expanded over $[-1,+1]$ in an infinite series of orthogonal polynomials.

A special caseof the Jacobi polynomial of degree n is defined by (see [7] Chapter 22)

$$
P_{n}(0, \beta)(x)=\frac{(-1)^{n}}{2^{n} n!}(1+x)^{-\beta} \frac{\frac{d}{n}^{n}}{d x^{n}}\left[(1-x)^{n}(1+x)^{n+\beta}\right], \quad \beta>-1 .
$$

the
where ${ }_{\swarrow}$ parameter α which appears in the general definition is zero.

If o can be expanded over $[-1,1]$ in terms of these polynomials then

$$
\begin{equation*}
g(x)=\sum_{n=0}^{\infty} \cdot C_{n} p_{n}(0, \beta)(x) \tag{3.4}
\end{equation*}
$$

substituting (3.4) in (3.3) we get

$$
F(s)=\frac{1}{2 \delta} \int_{-1}^{+1}\left(\frac{1+x}{2}\right)^{\frac{s}{\delta}-1}\left[\sum_{n=0}^{\infty} c_{n} p_{n}(0, \beta)(x)\right] d x
$$

Now put $s=(\beta+1+k) \delta$, where $k \geq 0$ is an integer to get

$$
\begin{equation*}
\delta F[(\beta+1+k) \delta]=2^{-(\beta+k+1)}, \int_{-1}^{+1}(1+x)^{\beta+k}\left[\sum_{n=0}^{\infty} c_{n} P_{n}(0, \beta)(x)\right] d x \tag{3.5}
\end{equation*}
$$

Now the factor $(1+x)^{k}$ which appears in (3.5) may be expressed as a finite linear combination of the Jacobi polynomials

$$
p_{0}(0, \beta), \ldots, p_{k}(0, \beta) .
$$

Thus

$$
\begin{equation*}
(1+x)^{k}=a_{0} p_{0}^{(0, \beta)}(x)+a_{1} p_{1}(0, \beta)(x)+\ldots+a_{k} P_{k}(0, \beta) \tag{x}
\end{equation*}
$$

For $0 \leq m \leq k$ a typical coefficient a_{m} is a function of k and β. In order to evaluate a_{m}, multiply both sides of (3.6) by

$$
(1+x)^{\beta} P_{m}(0, \beta)(x) \text { and integrate over }[-1,1]
$$

$$
\begin{equation*}
\int_{-1}^{+1}(1+x)^{k}(1+x)^{\beta} p_{m}(\hat{0}, \beta)(x) \cdot d x=a_{m} \cdot \frac{2^{\beta+1}(2 m+\beta+1)}{(2 m)} \tag{3.7}
\end{equation*}
$$

The factor $2^{\beta+1} /(2 m+\beta+1)$ on the right is the normalization term for the Jacobi polynomials. Denote this by h_{m}. Now the Jacobi polynomial $P_{m}(0, \beta)(x)$ can be expressed in the form

$$
\begin{equation*}
P_{m}(0, \beta)(x)=b_{0}+b_{1}(1+x)+\cdots+b_{m}(1+x)^{m} \tag{3.8}
\end{equation*}
$$

Substituting $P_{m}(0, \beta)(x)$ in this form into (3.7) yields

$$
\begin{align*}
a_{m} h_{m} & =\int_{-1}^{+1}(1+x)^{k+\beta}\left[b_{0}+b_{1}(1+x)+\cdots+b_{m}(1+x)^{m}\right] d x \\
& =b_{0} \frac{2^{k+\beta+1}(k+\beta+1)}{}+b_{1} \frac{2^{k+\beta+2}(k+\beta+2)}{\left(k+\cdots+b_{m} \frac{2^{k}+\beta+m+1}{k+\beta+m+1}\right)} \\
& =2^{k+\beta+1}\left[\frac{b_{0}}{k+\beta+1}+\frac{2 b_{1}}{(k+\beta+2)}+\cdots+\frac{2^{m} b_{m}}{(k+\beta+m+1)}\right] \tag{3.9}
\end{align*}
$$

If the unknown a_{m} is considered as a function of the parameter k then we may write
$a_{m} h_{m}=\frac{2^{k+\beta+1}}{[k+(\beta+1)][k+(\beta+2)] \cdots \cdots(k)}$

Where $\eta_{m}(k)$ is a polynomial in the symbol " k " of degree m. The explicit expression for $a_{m}(k)$ may be determined by the use of (3.6) and (3.7). In (3.7) let $k=m-1$. Then, because of the orthogonality property of the Jacobi polynomials

$$
\int_{-1}^{+1}(1+x)^{m-1}(1+x)^{\beta} P_{m}^{(0, \beta)}(x) \cdot d x=0
$$

Thus one of the roots of $Q_{m}(k)$ must be $k=m-1$. A similar procedure shows that the remaining roots of $Q_{m}(k)$ are $k=m-2, m-3, \ldots$, 1, 0 . So $Q_{m}(k)$ is nov known up to a constant multiplicative factor and may be written as

$$
Q_{m a}(k)=A[k-(m-1)] \cdot[k-(m-2)] \ldots k
$$

and A is a constant to be determined. From the definition of $Q_{m}(k)$ in (3.10) from (3.9) we have, multiplying through by $(k+\beta+1) \ldots$ $(k+\beta+m+1)$,

$$
Q_{m}(k)=(k+\beta+1) \ldots(k+\beta+m+1)\left[\frac{b_{0}}{k+\beta+1}+\ldots+\frac{2^{m_{b}} b_{m}}{k+\beta+m+1}\right]
$$

and the coefficient of of k^{m} on the left is A and on the right is $b_{0}+2 b_{1}+2^{2} b_{2}+\cdots+2^{m} b_{m}$. But from (3.8) and the property $P_{m}(0, \beta)(1)=1$ for $m=0,1,2, \ldots$ we have

$$
P_{m}(0, \beta)(1) \equiv b_{0}+2 b_{1}+\ldots 2^{m b_{m}}=1
$$

Hence $A=1$ for $m=0,1,2, \ldots$

Thus from (3.9)
$a_{m}=2^{k}(2 m+\beta+1) \frac{k(k-1)}{(k+\beta+1)(k+\beta+2) \cdots\left(\frac{k}{k}-(m-1)\right)}$
Fox $k=0$ and $m=0$ the right side of (3.11) is replaced by 1 . Substituting (3.6; into (3.5) gives
$F\left[(\beta+k+1 ; \delta]=\frac{2^{-(\beta+k+1)}}{\delta} \cdot \int_{-1}^{+1}(1+x)^{\beta} \sum_{m=0}^{k} a_{m} p_{m}(0, \beta)(x)\right.$.

- $\left[\sum_{n=0}^{\infty} c_{n} p_{n}(0, \beta)(x)\right] d x$
for $k=0,1, \ldots$ where a_{m} is given by (3.11).
Integrating termwise in (3.12) gives $k+1$ non-zero terms because of the orthogonality property of the Jacobi polynomials. Substituting for a_{m} we now get

$$
\begin{equation*}
\left.\delta F[(\beta+1+k) \delta]=\frac{C_{0}}{(\beta+1+k)}+\sum_{m=1}^{k} \frac{k(k-1)}{(k+\beta+1)(\dot{k}+\beta+2) \cdots(k+\beta+1+m}\right)^{m} \tag{3.13}
\end{equation*}
$$

Now allowing k to take the values $0,1,2, \ldots$ we get the following system of equations:

$$
\begin{align*}
& \delta F[(\beta+1) \delta]=\frac{C_{0}}{(\beta+1)} \tag{3.14}\\
& \delta F[(\beta+2) \delta]=\frac{C_{0}}{(\beta+2)}+\frac{C_{1}}{(\beta+2)(\beta+3)} \\
& \delta F[(\beta+3) \delta]=\frac{C_{0}}{(\beta+3)}+\frac{2 C_{1}}{(\beta+3)(\beta+4)}+\frac{2 C_{2}}{(\beta+3)(\beta+4)(\beta+5)} \\
& \delta F[(\beta+4) \delta]=\frac{C_{0}}{(\beta+4)}+\frac{3 C_{1}}{(\beta+4)(\beta+5)}+\frac{3 \cdot 2 C_{2}}{(\beta+4)(\beta+5)(\beta+6)} \\
& \quad+\frac{3!}{(\beta+4)(\beta+5)(\beta+6)(\beta+7)} \frac{C_{3}}{(\beta-1}(\beta)
\end{align*}
$$

How if we had an infinite-lensth computer (a perfect computer) then as we calculated more and more coefficients our approximation to f would get better and better and, although,logically, we could never know how good this aproximation was in practice, for the sort of functions met in applications this would not matter. Not having such a computer we are limited to a finite number of the coefficients, after which rounding error builds up. With a computer working in 12 decimal floating point arithnetic approxinately the first 10 or 12 coefficients are significant.

The points on the positive real axis at which $F(s)$ is evaluated depend on the real parameters β and δ which we can vary within the constraints $\beta>-1, \delta>0$.

Theoretically, açain with a perfect computer, the Fourier-Jacobi expansions derived from an exactly known F for different values of β and δ would all yield the same function f. With real computers and, sometimes, an approximately known F we will generate as many different truncated approximations to f as values (β, δ) we take. Our task is now to choose the optimum (β, δ) pair.

From the Tauberian results

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \operatorname{sF}(s)=f(\infty) \\
& \lim _{s \rightarrow \infty} \operatorname{sF}(s)=f(0)
\end{aligned}
$$

(see [8] page $243(37.5),(37.6)$ with $\gamma=1$)
Wie see that for large t, f is determinedby the behaviour of I for small s on the positive real axis, and vice versa. Thus one guide
to the best choice of β and δ is the particular t-domain of f in which we are interested: If we are interested in f for small values of t we choose β and \bar{c} large, and so on.

Another important principle to follow in the choice of β and δ has already been expounded in connection with the BKL method, namely if we have reason to believe that f is smooth then we should choose β and δ to yield the smoothest function.

Once a pair (β, δ) is chosen, the ALGOL program determines the set of coefficients $\left\{C_{0} \ldots C_{n}\right\}$ denoted $\left\{C_{i}\right\}_{\beta, \delta}$

Now $\quad \mathcal{E}(x)=\sum_{i=0}^{n} C_{i} P_{i}(0, \beta)(x)+\sum_{i=n+1}^{\infty} C_{i} P_{i}(0, \beta)(x)$
and the Chebyshev norm of the truncation error is

$$
\begin{align*}
& \left\|\left\|_{g}-\sum_{0}^{n} C_{i} P_{i}(0, \beta)\right\|_{T}=\sup _{x \in[-1,1]}\left|g(x)-\sum_{0}^{n} C_{i} P_{i}(0, \beta)(x)\right|\right. \\
& =\sup _{x \in[-1,1]}\left|\sum_{n+1}^{\infty} c_{i} P_{i}(0, \beta)(x)\right|= \\
& =\left\|\sum c_{i} P_{i}(0, \beta)\right\| \tag{3.15}\\
& \mathrm{n}+1 \\
& \text { Let us define } \mathcal{E}_{n}(g ; \beta, \delta)=\left\|\delta-\sum_{i=0}^{n} C_{i} P_{i}(0, \beta)\right\|_{T} \\
& \text { Theoretically (3.15) allows us to minimize } \mathcal{C}_{n}(\delta ; \beta, \delta) \text { over some }
\end{align*}
$$

allowed region of the β, δ-plane without any knowledge of $g:$ we merely have to minimize

$$
\| \sum_{n+1}^{\infty} c_{i} P_{i}(0, \beta)_{i \mid} \text { over }\left\{c_{i}\right\}_{\beta, \delta}
$$

In practice we can minimize

$$
n+k
$$

$$
\left\|\sum_{n+1} c_{i} P_{i}(0, \beta)\right\| \text { for some finite } k
$$

The fact that this truncation and minimization procedure tends to cut down the "high-frequency" component of the Fourier-Jacobi development, fits in with our intention to choose the smoothest of the available approximations to the unknown f.
ifumerion mrocedure and the results of annyinc the
method to the transfoms of some known functions
The basic program written to carry out the lif method of inversion of a given transform F has the structure indicated in Fig. 1.

The sub-routine 3 evaluates the exror estimate by finding

$$
n+k
$$

\max
$\left\{x_{i}\right\}$$\left|\sum_{n+1} \quad c_{i} P_{i}(0, \beta) \quad(x)\right| \quad$ over at first 8 values $\left\{x_{1 i}\right\}$
of x in the interval of interest, then over these and the interlacing equidistant $\left\{x_{2 i}\right\}$ (giving $16\left\{x_{i}\right\}$ in total), then over the 16 $\left\{x_{3 i}\right\}$ interlacing these points and so on until the successive maxima are within a given tolerance of one another. The method of finding the optimum (β, δ) is quite unsophisticated. Good results can be had by making the grid of sample points very fine but then usually a vast amount of machine time is spent in looking

FIG. 1.
at areas of the f - δ plane that are far from the actual optimum. The problen we are faced with is the comon one of finding the minimun of a multi-vaxiable function of complicated or analytically unknown form. In our case the 2 -variable function $\mathcal{\varepsilon}_{\mathrm{n}}(\xi ; \beta, \delta)$ can be evaluated at an individual point but it is not known analytically. To evaluate $\mathcal{C}_{n}(E ; \beta, \delta)$ at a larfe number of points is costly in computing time. However, with the examples of f (and thus \mathfrak{f}) considered, $\mathcal{E}_{\mathrm{n}}(\xi ; \beta, \delta)$ seemed reasonably well behaved sugcrestins the use of a more sophisticated minimization procedure which could converge on the optimum (β, δ) much more quickly. One such procedure is the "Nethod of Steepest Descent" ([9] Ch.2) but this requires the evaluation of the gradient of $\mathcal{C}_{n}(\delta ; \beta, \delta)$ with respect to β, δ and this computation would both consume time and add error. A more promising possibility is to use one of the several proposed methods of function minimization without evaluating derivative_s $([10],[11],[12])$. The hope is that one of the methods would speed up and improve the accu racy of the program.

The program as written uses the basic program outlined above, to evaluate the approximation

$$
\sum_{i=0}^{n} C_{i} P_{i}(0, \beta)(x)
$$

with optimum values of (β, δ) for values of n over a specified range.

The question of which n is the best one is a difficult one. For the functions e^{-t} and $J_{0}(t)$, with Laplace transforms $\frac{1}{s+1}$ and $\frac{1}{\sqrt{s^{2}+1}}$ respectively, the optimum value of n was around 4 for e^{-t} and around 10 for $J_{0}(t)$. A roush guide may be: small n for smooth f and large n for less smooth f. By large is meant larce, but not so large that rounding-off error causes the higher coefficients to start exowing. In fact another guide for optimizing with resnect to n is, possibly, to stop when the highest coefficients begin to grow acain after their initial decrease.

The best numerical results obtained for the test functions e^{-t} and $J_{0}(t)$ were for example, 8 decimal place accuracy over $[0,5]$ for e^{-t} and 4 decinalplace accuracy for $J_{0}(t)$ over the same rance. These results axe much better than those obtained by other published results as pointed out by lillier and Guy. In their paper [3] they give grophs of their results using this method plotted torrether with the results obtained by other methods. Another point made by iiiller and Guy is that althourg the theory of the method is developed for functions $f(t)$ finite at 0 and ∞, tests with $F(s)=\frac{1}{s^{2}}$, which has tho invorso transform $f(t)=t$, yiold tho \vec{s}^{2} following typo of rosult:

The alcorithm achieves the result $f_{C}(t)=t$ for $t \in[0, T]$ but thereafter the computed function $f_{c}(t)$ settles down to a constant value T. Thus, approximately

$$
f_{c}(t)=t-(t-T) \cdot H(t-T)
$$

and

$$
L\left[f_{c} ; t \rightarrow s\right]=\frac{1}{s^{2}}-\frac{\exp (-T s)}{s^{2}}
$$

So for large $T \frac{1}{s^{2}} \simeq \frac{1}{s^{2}}-\frac{\exp (-T s)}{s^{c}}$
and in the finite length computer arithmetic these two functions will be indistinguishable. But the algorithm has selected the one which is finite at ∞. Anothercuse in which, while the theory does not strictly apply, the algorithm gives good results is the Dirac delta function which has the Laplace transform $F(s)=1$. Of course what the algorithm produces is an approximation to the behaviour of this generalized function. The more coefficien.its C_{i} that are calculated, the higher the peak at $t=0$ becomes. Also is this ia good example of a case when our policy of minimizing the "high frequency" component of the Fourier-Jacobi expansion is not a good one, any approximation to $\delta(t)$ being for from smooth at the origin. Nevertheless, once we have got some results from a first application of the algorithm we can use this rough description of the unknown f to govern our further application of the algorithm.

Advantares of the If method

One immediate advantace would seem to be the superior accuracy of this me,thod to that of other published methods (see [13], [14] and the bibliography in [14]) although an exhaustive comparitive study has not, as far as we know, been undertoken. A major advantage of the $M G$ over the BKI method is the fact that the $\pi \cdot G$ method gives the approximation to $f(t)$ effectively as a polynomial which can be evaluated at any required value of t without any difficulty. The BKL method, on the other hand, only gives a set of points and since they are logorithms of the zeros of the shifted legendre polynomials they are awkwardly situated and irregularly spaced. Also in the líg method there is no need to stome any matrices to perform the inversion.

A Possible ilorithm for the rollin Transform

The essential feature of the $2 \boldsymbol{i} G$ method is the observation that once the defining integral has been put in the form

$$
F(s)=\frac{1}{2 \delta} \cdot \int_{-1}^{+1}\left(\frac{1+x}{2}\right)^{\frac{5}{\delta}-1} \quad g(x) d x
$$

a factor $(1+x)^{\beta}$ can be got in the integrand by choosing s appropriately and that this is a weighting function for the Jacobi. polynomials $P_{n}(0, \beta)(x)$. Now, another integral transform with important applications is the iiellin transform.

$$
\begin{equation*}
F(p)=\int_{0}^{\infty} x^{p-1} \quad f(x) d x \tag{6.1}
\end{equation*}
$$

or putting $x=e^{-t}$ we get $h^{\text {two - side }}$ Laplace transform

$$
\begin{equation*}
F(p)=\int_{-\infty}^{+\infty} e^{-p t} f\left(e^{-t}\right) d t \tag{6.2}
\end{equation*}
$$

Looking at (0.1), the factor x^{p-1} suggests the use of the Generalized Daguerre polynomials $I_{n}(\alpha)(x)$, which are orthogonal on $[0, \infty)$ with weight function $w(x)$. Put $f(x)=e^{-x}(x)$ and assume that $\mathcal{S}(x)$ can be expanded in terms of the generalized Daguerre polynomials

$$
\begin{equation*}
g^{\prime}(x)=\sum_{n=0}^{\infty} C_{n}(x) \cdot I_{n}(x) \cdot(x) \quad(x>-1) \tag{6.3}
\end{equation*}
$$

$(\downarrow) \quad w(x)=e^{-x} x^{\alpha} \quad(\alpha>-1)$ see $[7] \operatorname{section} 22 \cdot 2$
where $C_{n}(\alpha)$ is the nth Fourier-Laguerre coefficient depending on the choice of α.

Rodricues' Formula for the generalized Daguerre polynomials is ($[7] 22.11$)
$I_{n}(\alpha)(x)=\frac{1}{n!e^{-x} x^{d}} \frac{a^{n}}{d x^{n}}\left\{e^{-x} x^{\alpha} x^{n}\right\}$

Substituting (6.3) in (6.1) and then (6.4) in to the result

$$
\begin{align*}
F(n)= & \int_{0}^{\infty} x^{p-1} e^{-x} \sum_{n=0}^{\infty} C_{n}(\alpha) L_{n}(\alpha)(x) d x \\
& =\int_{0}^{\infty} x^{p-1} e^{-x} \sum_{n=0}^{\infty} c_{n}() \frac{1}{n!} e^{x} \cdot x^{-\alpha} \frac{d^{n}}{d x^{n}}\left(e^{-x x^{\alpha} \cdot n}\right) d x \tag{6.5}
\end{align*}
$$

and now the exponential factor e^{-x}, which remains in the partial sums after simplification, ensures the validity of the interchange of the order of integration and summation since $\operatorname{exf}\left(-\frac{x}{2}\right)$ dominates (ultimately) $x^{\alpha} \cdot e^{-x}$ and the Lebesgue dominated convergence theorem gives the result

$$
\begin{equation*}
F(p)=\sum_{n=0}^{\infty} \frac{1}{n!} C_{n}(x) \int_{0}^{\infty} x^{p-1-\alpha} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{\alpha+n}\right) d x \tag{6.6}
\end{equation*}
$$

Put $p=\alpha+1+k$ where k is a positive integer i.e. choosing k and α such that $\alpha=p-(k+1)$ and $k<p$.

Then (6.6) gives
$F(\alpha+k+1)=\sum_{n=0}^{\infty} \frac{1}{n!} c_{n}(x) \int_{0}^{\infty} x^{k} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{p-(k+1)+n}\right) d x$

How define $I_{k, n}=\int_{0}^{\infty} x^{k} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{p+n-k-1}\right) d x$

$$
\begin{align*}
& =\left[x^{k}\left(e^{-x} x^{p+n-k-1}\right)^{(n-1)}\right]_{0}^{\infty} \\
& -k \int_{0}^{\infty} x^{k-1}\left(e^{-x} x^{p+n-k-1}\right)^{(n-1)} d x \tag{6.7}
\end{align*}
$$

The first term in (6.7) is zero so

$$
\begin{aligned}
& I_{k, n}=-k \int_{0}^{\infty} x^{k-1}\left(e^{-x} x^{p+n-k-1}\right)(n-1) d x \\
& I_{k, n}=-k I_{k-1, n-1}
\end{aligned}
$$

For $n>k \quad I_{0, n-k}=\int_{0}^{\infty} \frac{d^{n-k}}{d x^{1+-k}}\left(e^{-x} x^{p+n-k-1}\right) d x$

$$
=\left[\frac{d^{n-k-1}}{d x^{n-k-1}}\left(e^{-x} x^{p+n-k-1}\right)\right]_{0}^{\infty}
$$

$$
=\left[(-1)^{n-k-1} e^{-x} \sum_{x=0}^{n-k-1}\binom{n-k-1}{r}(-1)^{r} \mu \cdots(\mu-n+1) x^{\mu-r}\right]_{0}^{\infty}(6.9)
$$

where $\mu=n+n-k-1$, by Leibniz' formula
But $\mu-(n-k-1)=p>0$ so the value at $x=0$ of the expression inside (6.9) is zero and the exponential ${ }^{-x}$ ensures that it is zero at ∞ as well.

Hence

$$
I_{0, n-k}=0 \quad(n>k)
$$

and thus $I_{n, k}=0$ for $n>k$ by (6.8)
For $n \leq k \quad I_{k-n, 0}=\int_{0}^{\infty} x^{k w n} e^{-x} x^{p+n-k-1} d x$

$$
=\int_{0}^{\infty} e^{-x} x^{p-1} d x
$$

$$
\begin{equation*}
I_{\mathrm{k}-\mathrm{n},} 0=\Gamma(p) \tag{6.11}
\end{equation*}
$$

and for $n \leq k I_{k, n}=(-1)^{n} \frac{k!}{(k-n)!} I_{k / 2}^{-n}$
which follows from the recurrence relation (6.8).
So by (6.10) and (6.11)

$$
\left.\begin{array}{rlrl}
I_{k, n} & =(-1)^{n} \frac{k!}{(k-n)!} \Gamma(p) & & (n \leq k) \tag{6.13}\\
& =0 & & (n>k)
\end{array}\right\}
$$

Hence recalling the definition of

$$
\begin{aligned}
F(\alpha+k+1) & =\sum_{n=0}^{\infty} \frac{1}{n!} c_{n}(\alpha) I_{k, n} \\
& =\sum_{n=0}^{k} \frac{1}{n!} c_{n}(\alpha) \cdot(-1)^{n} \frac{k!}{(k-n)!} \Gamma(p) .
\end{aligned}
$$

ie. $\frac{F(\alpha+k+1)}{\Gamma(\alpha+k+1)}=\sum_{n=0}^{k}(-1)^{n}\binom{k}{n} \quad c_{n}(\alpha)$

Put $G_{k}=F(\alpha+k+1) / \Gamma(\alpha+k+1)$ and $C_{n}=C_{n}(\alpha)$; then letting k assume the values $0,1,2, \ldots(6.14)$ gives a linear system of equations for the coefficients C_{n}

$$
\begin{align*}
& G_{0}=C_{0} \\
& G_{1}=C_{0}-C_{1} \\
& G_{2}=C_{0}-2 C_{1}+C_{2} \tag{6.15}\\
& G_{3}=C_{0}-3 C_{1}+3 C_{2}-C_{3}
\end{align*}
$$

Solving (6.15) we get

$$
\begin{align*}
& C_{0}=G_{0} \\
& C_{1}=G_{0}-G_{1} \tag{6.16}\\
& C_{2}=G_{0}-2 G_{1}+G_{2} \\
& C_{3}=G_{0}-3 G_{1}+3 G_{2}-G_{3}
\end{align*}
$$

which suggests the general solution $C_{k}=\sum_{j=1}^{k}(-1)^{j}\binom{k}{j} G_{j}$
ire show this by induction
Suppose (6.17) holds for $r=0,1,2, \ldots k-1$, k
Now by (6.14)

$$
G_{k+1}=\sum_{x=0}^{k+1}(-1)^{r}\binom{k+1}{r} c_{r}
$$

so $(-1)^{k+1} c_{k+1}=G_{k+1}-\sum_{r-0}^{k}(-1)^{x}\binom{k+1}{x} c_{r}$

$$
\begin{aligned}
& C_{k+1}=(-1)^{k+1} G_{k+1}-(-1)^{k+1}\left[\sum_{r=0}^{k}(-1)^{r}\left(\begin{array}{c}
k+1 \\
i
\end{array}, \sum_{j=0}^{r}(-1)^{j}\binom{r}{j} G_{j}\right]\right. \\
& c_{k+1}=(-1)^{k+1} G_{k+1}-(-1)^{k+1}\left[\sum_{r=0}^{k} \sum_{j=0}^{k}(-1)\binom{r}{j} G_{j}(-1)^{r}\binom{k+1}{r}\right]
\end{aligned}
$$

where \sum^{\prime} indicates that the summand depending on j is zero for $j>r$.

$$
C_{k+1}=(-1)^{k+1}{ }_{G_{k+1}}-(-1)^{k+1}\left[\sum_{j=0}^{k}(-1)^{j} G_{j} \sum_{r=j}^{k}(-1)^{r}\binom{k+1}{r}\left(\begin{array}{l}
r \\
j
\end{array}\right] \quad(6.18)\right.
$$

$$
\begin{align*}
& \binom{k+1}{x}\binom{r}{j}=\frac{(k+1)!}{r!(k+1-r)!} \frac{n!}{j(r-j)!}=\frac{(k+1)!}{j!(k+1-j)!} \quad(r-j)!\left(\frac{k+1-j)!}{(k+1-j-(r-j))!}\right. \\
& =\binom{k+1}{j}\binom{k+1-j}{x-j}=\binom{k+1}{j} \cdot\binom{k+1-j}{k+1-r} \tag{6.19}\\
& \operatorname{Vain}_{6}(6.19) \text { in }(6.18) \\
& C_{k \cdot+1}=(-1)^{k+1} G_{k+1}-\sum_{j=0}^{k}(-1)^{j_{G}}\binom{k+1}{j} \sum_{i=j}^{k}\binom{k+1-j}{k-1-r}(-1)^{k+1-r} \\
& \text { But } \sum_{r=j}^{k \div 1}\binom{k+1-j}{k+1-r}(-1)^{k+1-r}=\sum_{\rho=k+1-j}^{\rho=0}\binom{k+1-j}{\rho}(-1)^{\rho} \tag{6.20}
\end{align*}
$$

where $\rho=k+1-r$. But the expression on the right of (6.20) is the binomial expansion of $(1-1)^{k+1-j}=0$.

Hence $\sum_{x=j}^{k}\binom{k+1-j}{k+1-x^{2}}(-1)^{k+1-x}=-\binom{k+1-j}{0}(-1)^{o}=-1$

$$
\text { so } C_{k+1}=(-1)^{k+1} G_{k+1}+\sum_{j=0}^{k}\binom{k+1}{j}(-1)^{j} G_{j}
$$

that is $C_{k+1}=\sum_{j=0}^{k_{-}-1}\binom{i+1}{j} \quad(-1)^{j} G_{j}$
and this demonstrates: by induction, the truth of (6.17). Thus we have an algorithm for the liellin Transform which is similar to Billeer \& Guy's

C Tourier-Jacobi algorithm for the Lavlace transform. He would hope that the narameter α could be chosen to select a smooth solution in much the same way as we chose (β, δ). One slicht advantace of this Founier-Lacuerre algorithm is that we have an explicit analytic expression (6.21) for the coefficients $C_{n}(\alpha)$ which may speed up the computation. On the other hand we have only one paraneter α to vary. This algorithm has yet to be civen a practical test.

Apmendix 1

Solution of Inverse Problems Using the Lanlace Transform

liany problems in methematics are what might be called direct problems in the sense that once we have set up a mathematical model we are interested in seekinc this model's implications and in applied mathematics, interpretine these in the physical domain. But many important problems need a different approach: a certain physical situation may be anproximately representable by a whole rance of models varying with parameters they incorporate. The problem now, is, ©iven some data (which mould correspond to the predictions of these models), to decide which is the (in some sensc) best model to fit this data. This is an inverse problem.

For example we may have a system the behaviour of which can be described by a transfer furction $k(t)$ which determines the output function $u(t)$ of the system siven an input function $f(t)$, in the relation

$$
\begin{equation*}
u(t)=\int_{0}^{t} k(t-x) f(x) d x \tag{A1}
\end{equation*}
$$

Usine the Laplace transfoxm we can write

$$
\begin{equation*}
\operatorname{Lk}(s)=\frac{\mathrm{Lu}(s)}{\operatorname{Lf}(s)} \tag{A2}
\end{equation*}
$$

The calculation of $L u(s) / L f(s)$ involves two straight forward quadnatures on $[0, \infty)$. Thus a subroutine to determine $\operatorname{Lk}(s)$ from $u(t)$ and $f(t)$ cen be written, inserted in the Laplace transform inversion alcorithm and the Pouriex-Jacobi expansion of an approximation to $k(t)$ obtained. See [2] Ch. 3. Sections 21-24 for a discussion on estimation of system constants.

It is possible that this approach may be useful in determining the functions $X(t), \varphi(t)$ which relate stress and strain in 1-dimensional viscoelastic materials through the relations

$$
\epsilon(t)=\int_{-\infty}^{t} x(t-\tau) \cdot \frac{d \sigma(\tau)}{d \tau} \cdot d \tau
$$

$$
\begin{equation*}
\sigma(t)=\int_{-\infty}^{t} \varphi(t-\tau) \cdot \frac{d \epsilon(\tau)}{d \tau} \cdot d \tau \tag{AB}
\end{equation*}
$$

If it is assumed that $\sigma=\epsilon=0$ for $t<0$ Then equations (A3) reduce to two convolution equations

$$
\epsilon(t)=\int_{0}^{t} x(t-\tau) \quad \frac{d \sigma(\tau)}{d \tau} d \tau
$$

$$
\sigma(t)=\int_{0}^{t} \varphi(t-\tau) \frac{d \epsilon(\tau)}{d \tau} \cdot d \tau
$$

transforming:

$$
\begin{aligned}
& \bar{\epsilon}(s)=\bar{\chi}(s) \cdot[s \bar{\sigma}(s)-\bar{\sigma}(0+)]=\bar{\chi}(s) \cdot s \bar{\sigma}(s) \\
& \bar{\sigma}(s)=\bar{\varphi}(s) \cdot[s \bar{\epsilon}(s)-\hat{\epsilon}(0+)]=\bar{\varphi}(s) \cdot s \bar{\epsilon}(s)
\end{aligned}
$$

so $\vec{\chi}(s)=\frac{1}{s} \cdot \frac{\vec{E}(s)}{\bar{\sigma}(s)}$

$$
\bar{\varphi}(s)=\frac{1}{s} \cdot \frac{\bar{\sigma}(s)}{\bar{\epsilon}(s)}
$$

and we can determine $\mathscr{X}(t), \varphi(t)$, in much the same way as the transfer function $k(t)$ in (A1), providing we know $\epsilon(t)$ and $\sigma(t)$ on $[0, \infty)$ Another method to determine X and φ using the Laplace transform is given in $[16]$.

REPERS:OSS

[1] D.I. PMILLIPS, "A technique for the frumerical Solution of certain Interral Equations of the First Kind". J. issoc. Computing Machinery Vol.9. 1962 np. 84-97.
[2] R.S. BidLinit, R.A. KALABA, \& J. LOCKPMT, "Numerical Inversion of the Laplace Transform: Applications to Biolocyy, Economics Encrineering and Physics". American Elsevier. New York 1966
[3] in. K. ITLLER \& $\bar{i} \cdot T$. GUX, JR. "inumerical Inversion of the Lavlace Transform by use of Jacobi Polynomials". SIAB. J. Fumer. Anal. Vol3. IVo. 41966 pp 624-635.
[4] S. RNody "On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by quadrature"
J.Assoc. Computing Machinery, Vol.10. 1963. pp 97-101
> [5] \& [6] A.IT. TIHONOV "Solution of Incorrectly Formulated Problems and the Regularization Iiethod" \& , "Regularization of Incorrectly Posed Problems".

> Soviet Maths. Vol. 4 1964. pp 1035-1038, 1624-1627.

[7] HATDBOOK OF MATES ATICAL FUNCTIONS edited by Li. Abramowitz \& I.A. Sterun. National Bureau of Standards 1964 and Dover 1965.
[8] I.i. Sitionoit "Functional inalysis" In "Handbuch der Physik" B:nd II Springer, Berlin, 1955.
[9] T.L. Shaty \& J. bridi "ionlinear iathematics", Licgraw - Hill, New York 1964.
[10] MoJ.D. Po:mLL "iiinimization of Functions of Several Variables" Ch. 8 in "Humerical Analysis: An Introduction". Edited by J. Walsh, Acaderic Press, London 1966.
[11] in.J.D. PO:TELL "An efficient method for finding the minimum of a function of several variables without calculating derivatives." Comp.J. Vol.7 pp. 155-162.
[12] R. FOOKE is T.A. JEEVES " "Direct Search" Solution of Numerical and statistical Problems". J.Assoc. Computine liachinery Vol. 8 pp. 212-229.

> of
[13] A. Papoulis "A New itethod of Inversion/the Laplace Transform." Quart. Appl. Math. Vol. 14. 1957. pp 405-414.
[14] H.V. Hordis "Tumerical Inversion of the Laplace Transform" Acad. ibo. Ser B Vol. 22. 1961 pp 3-31.
[15] D.S. BERRY \& S.C. HUNTER "The Pronagation of Dynamic Stresses in Visco Elastic Rods"
 of Meaningful Viscoelastic Constitutivo Equations." Avco Coxporation, Lowell, Massachusotts.

```
ZESTABLISH DDOO4JROOKP4+K080007APSP;
JACCIBI INVERSN EXPN;
0/PL,8
bogin library AO, A6, A12; integer n, n1, n2, N, ENLO, ENUP, M, KK, f1, f2; KK:= 0; open(20); N:= raad(20);
begin apray C[0:N]; real b, d, dlo, dd, dup, blo, db, bup, TL, TU; boolean more data;
```

real procedure $F(\mathrm{~s})$; value s ; real s ;
begin $F:=1 / s$ end F;
procedure JCOEFFSP(F, delta, beta, print, $N, C)$; value delta, beta, N; real procedure F;
array C; real delta, beta; integer N; boolean print; comiment JCOEFFS calculates the Jacobi polynomial coefficients $C[O]$ to $\mathrm{C}[\mathrm{N}]$;
begin integer $\mathrm{fl}, \mathrm{J}, \mathrm{k}$; real q, p;
real procedure $\operatorname{SIGMA}(K)$; value K; integer K; comment sum from 0 to $K-1$;
begin integer m; real $\mathrm{s}, \mathrm{q} ; \mathrm{s}:=0 ; \mathrm{q}:=\mathrm{K}+$ beta +1 ;
for m:= 0 step 1 until $K-1$ do
$s:=((q+m+1) /(K-m)) \times(C[m]+s) ;$
SIOMA: $=\mathrm{s}$
and SIOMA;
f1:= format([nd]);
if print then write text(70, [[5c24s]coerricients*c(k)[5c]i);
$q:=$ beta $+1 ; \quad C[0]:=$ deltaxp (q×delta) $\times q ;$
If print then begin write text(70, [k*m** 115 s$] 1$); output(70,C[0]); end;
for k:m 1 step 1 until N do
begin $q:=k+$ beta $+1 ; p:=1$; for $j:=1$ step 1 until k do begin $p:=p \times((q+j) / j)$ end;
$C[k]:=$ ($p \times q \times d e l t a x p(q \times d e l t a)$) - SIGMA(k);

and;
and
and JCOEPPSP;
procedure JACPOL(beta, N, x, P); value beta, N, x; real beta, x; integer N; array P;
coment values $P(0$, beta, $n, x)$ stored in array P for $n=0$ to N;
begin integer n; real $A, B, C ; P[0]:=1 ; P[1]:=(($ beta +2$) \times x-$ beta $) / 2 ;$
for $n:=2$ step 1 until N do
begin $A:=2 \times n \times(n+$ beta $) \times(2 \times n+$ beta -2$) ;$
$B:=(2 \times n+$ beta -1$) \times((2 \times n+$ beta $) \times(2 \times n+$ beta -2$) \times x-($ betata $)) ;$
C: $=2 \times(n-1) \times(n+$ beta -1$) \times(2 \times n+$ beta $) ;$
$P[n]:=(B \times P[n-1]-C \times P[n-2]) / A$
end
and JACPOL;
proceduro $\operatorname{JEXPN}(N, C$, delta, beta, $t l, t u, M, V)$ value $N, C, t l, t u, M$;
interer N, M; real delta, beta, tl, tu; array C, V gomment values of approximation to $f(t)$ are oalculated for $t m t l, \ldots . .$. ,tu in M equal $s t e p s$ and $s t o r e d$ in $V[1: M, 2]$;
begin integer $1, j$; real $d t, x, s$ array $P[0: N]$;
dt:m (tu - ti) $/ \mathrm{M}$;
V[1,1]:m ti; for $1:=2$ step 1 until M do $V[1,1]:=V[1-1,1]+d t ;$
for 1:= 1 stop 1 until M do
begin $x:=(2 \operatorname{xexp}(-(\operatorname{del} \operatorname{taxV}[1,1])))-1$;
JACPOL(beta, $N, X, P) ; s:=0 ;$
for $\mathrm{j}=0$ (top 1 until N do $\mathrm{s}:=\mathrm{s}+(\mathrm{C}[\mathrm{j}] \times \mathrm{P}[\mathrm{j}])$;
$V[1,2]:=8$
and
and JEXPN;
procedure $\operatorname{PLOT}(D, V, K, M)$ value D, V, K, M integer D, K, M array V; comment D is device number for graph output, V holds abscissie and ordinates K is plot number and M is number of abscissae;
begin integer 1, $\mathrm{J}, \mathrm{Y}, \mathrm{Y} 1, \mathrm{f1,f2,f3;}$ real del, $1, \mathrm{u}$;
$\mathrm{fl}:=$ format([-d.ddp$\neq n d]$); f2:= format([-d.ddddsddddsdd $\left.{ }_{0} \neq n d\right]$); f3:= format([nddece]);
write text(70, [[pc]plot**number*:*]); write(70, f3, K);
write text (70, [[30s]x[59s]y[2c]]);
for 1:= 1 step 1 until M do
begin write text(70, [[20s]]); write(70, f2, V[1,1]);
write text(70, [[40s]]); write(70, f2, V[1,2]); write text(70, [[cll)
end;
1:-u:= V[1,2];
for $1:=2$ step 1 until M do
begin if $V[1,2]<1$ then $1:=V[1,2] ;$ if $V[1,2]>u$ then $u:=V[1,2]$
end;
del:= (u-1)/89; YI:= entier((1/del) +0.5$) ;$ write text(D, [[p4s]x[4s]]);
space($D, 91$); write text(D, [[4s]y[c9s]]);
for $j:=0$ step 1 until 90 do write text(D, [+1); write text(D, [[c]]);
for 1:m 1 step 1 until M do
begin $Y:=$ entier($(V[1,2] / d e l)+0.5)-Y 1 ;$ write(D, f1, $V[1,1]) ;$ write text $(D,[+1)$; 1f $Y>0$ then begin space $(D, Y-1)$; write text $(D,[+])$ end; space (D, $89-Y$); write text($\mathrm{D},[+]$); write(D, f1, V[1,2]); write text(D,[[c]])
end;
write $\operatorname{text}(\mathrm{D},[[9 \mathrm{~s}]])$; for $\mathrm{J}:=0$ step 1 until 90 do write text $(D,[+])$
end PLOT procedure;
procedure $\operatorname{SUM}(N 1, N 2, x, S)$; value $N 1, N 2, x$ integer $N 1$, N2; real x, S;
comment $S=C[N 1] P[N 1]+\ldots+C[N 2] P[N 2]$ evaluated at x for values of beta and $C[n]$ current at call of procedure;
begin integer 1; array $\mathrm{P}[\mathrm{O}: \mathrm{N} 2]$;
JACPOL(b, N2, $x, P) ; S:=0 ;$
for $1:=\mathrm{N} 1$ step 1 until N 2 do $S:=S+C[1] \times P[1]$;
end SUM;
procedure $\operatorname{CHEBYNORM}(\mathrm{N} 1, \mathrm{~N} 2, \mathrm{t} 1, \mathrm{t} 2, \mathrm{E})$; value $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{t} 1$, t 2 ; integer $\mathrm{N} 1, \mathrm{~N} 2$; real t1, t2, E; comment Chebyshev norm of truncation error on [t1,t2] estimated from $\max (\mathrm{t}$ in $[\mathrm{t} 1, \mathrm{t} 2]$) of $\mathrm{abs}(\mathrm{C}[\mathrm{N} 1] \mathrm{P}[\mathrm{N} 1]+\ldots+\mathrm{C}[\mathrm{N} 2] \mathrm{P}[\mathrm{N} 2])$ for values of beta and delta current at call of procedure and stored in E; begin integer count, $1, m, p$; real $M, S, A, B, D, D D, \max ;$
$\max :=0 ; A:=2 \times \exp (-\mathrm{d} \times \mathrm{t} 2)-1 ; \quad B:=2 \times \exp (-\mathrm{d} \times \mathrm{t} 1)-1$;
$D:=B-A ; \quad D D:=0.125 \times D ;$
JCOEPPSP(F, d, b, false, N2, C);
for 1:=0 step 1 until 8 do
begin $\operatorname{SUM}(N 1, N 2, A+1 \times D D, S) ; S:=a b s(S) ;$
if $\mathrm{S}>\max$ then $\max :=\mathrm{S}$
end;
p:= 8; count:=0; M:=1.01×max; $E:=\max ;$
L11: DD: $=0.5 \times D D ; m:=p ; p:=2 \times p ;$
for 1:= 1 step 1 until m do
begin $S U M(N 1, N 2, A+(2 \times 1-1) \times D D, S) ; S:=a b s(S) ;$
if $S>\max$ then
begin if $S<M$ then
begin if count <3 then count: $=$ count +1
else begin $\mathrm{E}:=\mathrm{S}$; count:= 0 ; goto L 22 end; end;

```
                max:= S; M:= 1.01xmax
```

end;
end:
1f $p<100$ then goto L11;
L22: end CHIBYNORM;
procedure $\operatorname{FINDMIN}(n, t 1, t 2, d l o, d d, d u p, b l o, d b, b u p, L, U$, optdelta, optbeta, OPTC, MINERROR); value $n, t 1, t 2, d l o, d d$, dup, blo, $d b, b u p, L, U ;$ integer $n, L, U ;$ real ti, t2, dlo, dd, dup, blo, db, bup, optdelta, optbeta, MINERROR;
ampay OPTC; compent truncation error E for nth order approximation is minimized (discrete approximation) over dlo < delta < dup, blo < beta < bup and optimum delta, beta, C, and E stored in optdelta, optbeta, OPTC, MINERROR;
berin integer $r, 1, j, k ;$ real $E, m ; \quad m:=x 20 ;$
f:C format([sd.dmfnd);
for 1:=0, $1+1$ while $d l 0+1 \times d d \leq$ dup + dd do
begin d:= dlo + ixdd;
for $\mathrm{j}: \mathrm{m} 0, \mathrm{j}+1$ while blo $+j \times \mathrm{db} \leq$ bup +db do
begin b:= blo $+j \times d b ; \quad \operatorname{CHEBYNORM}(n-L, n+U, t 1, t 2, E) ;$
write (70, r, E);
if $\mathrm{E}<\mathrm{m}$ then
begin m:= E; optdelta:= d; optbeta:= b;
for $k:=0$ step 1 until n do OPTC[k]:= C[k];
end;
and;
newline(70, 1);
nad;
MINEPRGR :m m;
open(70); write text(70, [T.S.HARRIS]);
f1:= format([nddc]); \quad f2: format([nd]);
data: KK:= KK + 1; write text(70, [[plresult**); write(70, $\mathrm{C1}, \mathrm{KK}$); newline (70, 5);
write text(70, [$\mathrm{N}^{* * m * *}$) ; write(70, ft, N);
dlo:= read(20); write text(70, [dlo*=**]); output(70, dio);
dd:e read(20); write text(70, [dd**m*"); output(70, dd); dup:m read(20); write text(70, [dup*=**1); output(70, dup); blo:= $\operatorname{read}(20)$; write text(70, [blowm**L); output(70, blo); db; $\operatorname{read}(20)$; write text(70, [db**m*1); output(70, db); bup:m $\operatorname{road}(20) ;$ write text(70, [bup"m** ${ }^{*}$); output(70, bup);
 $n 1:=\operatorname{read}(20) ;$ write text (70, [n1"m" 1); write(70, r1, n1); n2:= read(20); write text(70. [n2*m**); write(70, r1, n2); ENLO: $=\operatorname{read}(20)$; write text(70, [ENLO"m**]); write(70, f1, ENLO);
ENUP:= $\operatorname{read}(20)$; write text(70, [ENUP*m*] 1); write(70, f1, ENUP);
TL: mead (20); write text(70, [TL"m**]); output(70, TL);
TU: $=$ read (20); write text(70, [IU*m**]); output(70, TU);
becin array $V[1: N, 1: 2], O P T C[0: N]$; integer k; real optdelta, optbeta, MINERROR;
for n: ni stop 1 until n2 do

FINDNIN (n,TL, TU, dlo,dd ,dup,blo, db, bup, ENLO, ENUP, optdel ta, optbeta, OPTC, MINERROR);
write text(70, [[3cloptdelts****1); output(70, optdelta);
write text(70, [optbeta**=*" 1); output(70, optbeta);
write text (70, [(3025s]OPTC(k)[3011);
for k: $=0$ stop 1 until n do
berin write text(70), [k*** 1); writo(70, fr, k); space(70, 10); output(70, OPTC(k])
and;
write toxt(70, [LPo】 MINERROR*m** 1); output(70), MINERROR);
$\operatorname{SEXPN}(n$, OPTC, optdelta, optbeta, TL, TU, M, V);
PLATM (70, $V, n, M)$;
and;
and;
more datase rend boolean(20); if more data then \&uto drit else close(20); close(70); and program;
and

