
ON A TECHNIQUE FOR THE NUMERICAL INVERSION

OF THE

LAPLACE AND I,ELL IN TRANSFORMS

by

T. S. HARRIS

196S

ProQuest Number: 13834211

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 13834211

Published by ProQuest LLC(2019). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

CONTENTS

Ackno v/1 edgenent
Section

1. Introduction

2. General Problem of Inverting an Integral Transform

3» Numerical Inversion of the Laplace Transform

4« numerical Procedure and the results of applying the method

to the transforms of some known functions

5* Advantages of the II G I.Iethod

6„ A Possible Algorithm for the Mellin Transform

Appendix 1 Solution of Inverse Problems Using the Laplace Transform

Appendix 2 ALGOL Program Developed

References

Ackno wl ed ̂ eme nt
- ,-------------- - - . u - - - - -

I would like to thank the members of the Glasgow University

Computing Department for their helpful advice and "machine

time" needed in the development of the ALGOL program, and

also to thank Professor I.N, Sneddon for his encouragement

and inspiration.

Further, I would like to thank the Science Research Council
for providing the Advanced Course Studentship which. I held
while doing the work for this thesisn

1

Introduction

An important part of the usefulness of the Laplace transform

(and other integral transforms) lies in its power to reduce the

transcendence level of a functional equation involving such

transcendental operators as differentiation and convolution,

lor example, if y is the solution of a linear ordinary differential

equation with constant coefficients, then the Laplace transform Y

of y satisfies a linear algebraic equation rather than a differential

equation. Again, a partial differential equation in n independent

variables is reduced to one in n-1 independent variables.

However, the price paid for this powerful technique is the problem

of inverting the transformed solution when its explicit form has

been found. Extensive tables of known transform pairs do exist

but these are for the cases where the complex inversion formula

Faced with a mathematical problem of great complexity arising

from an applied science we can either simplify the mathematical

obtained or else attempt to analyse numerically the original model

in all its complexity. In the past the former was certainly the

easier and sometimes successful, if risky, procedure.

C+ ioO

is more or less tractable.

model until an analytic (or approximate analytic) solution can be

k-

But nowadays the electronic computer has opened up the second,

again not entirely risk-free, path. This is the situation facing

the user of the Laplace transform.

However, once it is decided to embark upon a numerical

solution of the problem in hand, it may be better to return to the

original equations and solve these directly rather than invert the

Laplace transformed solution numerically. In some cases the

Laplace transform approach is found in practice to be definitely

superior to the classical numerical techniques. For some examples

of particular applications see appendix 1. Another point in favour

of the Laplace transform approach is that the computer program

written to invert the transform numerically^ can be applied in a

routine way to several types of problem that would need several

different classical algorithms, and this should make numerical and

computing work less arduous for the occasional computor.

Accepting this defence of the Laplace transform method

followed by numerical inversion, this dissertation endeavours to

discuss and expound a particular numerical inversion algorithm

that has been found successful in practice, together with a

possible application to an inverse problem in viscoelastic theory

and also a possible treatment of the Llellin transform on the same

lines.

5

The General Problem of inverting an Integral Transform

The problem of inverting' an integral transform K

b
n

ICf(s) = k(s,t) , f(t) - dt = g(s)
a

is the problem of solving a Fredholm integral equation of the

first kind. Whereas there is an extensive literature on Fredholm

equations of the second kind, there is not much on those of the

first kind: see D.L. Phillips 1 . An important characteristic

of an integral operator such as IC is that its inverse is unbounded

so that the problem: given g, find f = IC g, is ’’ill-posed".

Small changes in g can yield very large changes in f. To see this,

suppose f is the solution of

b
J"il(s,t),f (t)v dt - g(s) (afs<b) (2.1)
a

and add to f the function “ sin(m)̂ •

Then by the Hiemann-Lebesgue lemma, for any integrable kernel

b
- J k(.,t) si„(„t) at -a 0, «

. a

uniformly on £a,b̂ | when k(s,t) is continuous in s on the compact

set [a,bj . Hence by choosing m large enough, f and f + f' will

be mapped by IC to points ICf, ic(f -t- f) in the range space which

are arbitrarily close (in the uniform metric).

Also we would expect g 0 as m->^faster for flat smooth kernelsm
than for sharply peaked kernels. (If k(s,t) « S(s - t) then g ~

f -f* 0).m 1 /

Hence we conclude that success in solving' equation. (2.1) by any

method depends largely on the accuracy of g(s) and the shape of

k(s,t)*

i7e now discuss two possible methods of solution of equation(2.1).

1. We approximate the operator K (operating on (a,b) by a

matrix operator IC (operating on Hn, the space of n-tuples of reals)

leaving the problem of solving

K f - g (2.2)n n v • /
where f and g are discrete approximations to the unknown and n n
known functions repectively. The matrix K is obtained by

approximating the integral by a discrete quadrature rule. The error

of this approximation will decrease as n increases. Having got K >

then providing det(K) 0 the solution would be

straight forward on an 'ideal1 computer working in infinite length

arithmetic. In practice it is found that the solution is hampered

by ill conditioning of the matrix K which grows with increasing n;
-1this reflects the unstable nature of the original operator K and

we now have an ill-posed problem in the space Rn. Using this method

we can expect the error to first decrease with increasing n, as the

quadrature formula becomes more exact, and then increase as the ill-

conditioning of K swamps this improvement.

2, The second method falls in the category of projection methods.

The Fouxier expansion of the unknown function f in terms of a

complete orthonormal set of functions [is

Od

f = 7 (f,Q) • Q,I \ 7 ^
n =s 0

Now we can truncate the Fourier development, or in geometric

language consider the projection of f on the subspace spanned by

n

xn = 0

and with appropriate conditions on the smoothness of f we can

bound the error of this approximation. Y/e now substitute this

approximation to f in the integral equation

b n

j (f,Qnr*- ' dt =
a m = 0

f ,
01? b j k(s,t) . (t) . dt . (f,Qp = g(s)

m - 0 &

b
If the integrals J k(s,t) (t) dt (m = 0, , . * ,n) can be

a

evaluated then Fourier coefficients (fjQ^ (m - 0, . . . ,n) of f

can be found by solving a system of linear equations possibly with

the difficulties of ill-conditioning.

Numerical Inversion of the Laolace transform

The two methods outlined above are exemplified by the

algorithms given recently by U.S. Bellman, U.S. Kalaba, and J*

Lockett [2] 1966 (method 1) and by ILK, Hiller and V/*T. Guy, Jr*,

[3J 1966 (method 2), 7/e discuss briefly the Bellman, Kalaba and

Lockett method (abbreviated BKL) and then go on to develop the

Miller and Guy (MG) method in full,

F(s) = J e f(t) . dt
0

The BKL method begins by changing the variable of integration:
*»tx = e to obtain a finite interval of integration

1 1

F(s) = JxS ̂ f(- log x) dx - xs g(x) dx
0 0

The approximation K to K is now obtained using Gauss- Legendre

quadrature (but with the shifted Legendre Polynomials P* defined on

C 0?1J) to get

n53 WiXiS"1 = Fl̂
i = 1

where}x.\ are the n roots of Px'(x) and 5w.} are the associatedx 11' ' c xJ
weights. Letting s assume n different values say s = 1,2, « . ,n

yields a linear system

After some manipulation using the Lagrange interpolation formula

and some properties of the Legendre polynomial P* we get an

explicit relation for the elements of the inverse of the matrix

(w.x.k) in terms of the x. and the coefficients of P’x', both of v 1 r 7 r n
which can be calculated to any required degree of accuracy. Thus

-1the inverse matrices K can be computed to any required degree of

accuracy and stored on magnetic tape beforehand. Then when the

vector F is given, the vector f is computed by a straight forward

matrix product routine in a very short time:-

f = K “1 P.n
7/e are however, still left with the problem: small n^few values

of approximation to f; large n $r badly ill conditioned K . An$,
-1although K is known to any desired accuracy, if F is got

empirically from measured values F + £ where £ is a "noise" vector

of random errors^then)|K ^F - IĈ ̂ (F + £)|| could be very large.

But if we have reason to expect f to be "smooth" then this can be

taken account of as an extra side condition in solving

K f - F . n
BKL do this for the general problem Ax - b, with A ill-conditioned,

by minimizing functionals over x such as

(Ax - b, Ax - b) + ^

where (*, -) is an inner product and

Dn(x) = (X1 + (x2 - x3)2 + + (xn-1 -xn)2

which decreases with increasing "smoothness".

They achieve this minimization with aid of dynamic programming.

similar approach to the selection of the, in some sense, smoothest

x from among those which A maps into an £ -neighbourhood of b is

given by D.L. Phillips [1] and S» Twomey [41 > they have achieved

encouraging results*

v/here an error functional of integral form is minimized by the

classical method of the Calculus of Variations, reducing the problem

to an Euler equation which can be solved numerically by finite

differences.

\7e now describe in full, a projection method based on the paper

by Miller and Guy [3] •

The Laplace transform of f(t) is defined by the integral

We assume below that the integral in (3.1) exists for Re(s) > 0.

7/ith 2 small, x is then a good approximation to the solution. A

Also on the same topic are papers by A,N. Tihonov ["3&T6]

c

tThe variable of integration may be changed by the substitution

x = 2 exp (-St) - 1

where $ is a positive real parameter. It follows that

&.2)

Tfe define g over (-1,1) by

g(x) = f| ~ (j). iog,ri p } = f(t)

In order to extend the domain of definition for g define g(l) and

g(l) - lim g(x) and g(-l) = lim g(x)
x->l~ x —>- [»-

Essentially,these definitions require that f(o) = lim f(t)
± O-h

and f(oa) = lim f(t) be finite. If f is continuous then g is also
-t ̂ oC>

a continuous function. Substituting (3*2) into (3 **0 we get

F(b) 25

+ 1
n

-1

1 + X f *“1
g(x) . dx (3-3)

Now assume that g can he expanded over P-1, + g in an infinite series

of orthogonal polynomials.

A special caseof the Jacobi polynomial of degree n is defined

by (see 7 3 Chapter 22)

V
p<o,io (x) _ (zi)n(1fx)- ^ r (i - x)n (i + x)

2 nl dx
n+P

P .1.

where^parameter o(which appears in the general definition is zero

If g can be expanded over [-1,1] in terns of these polynomials then

CO
(0,0)e(x) c p n n (x) (3.4)

n = 0

substituting (5*4) (3*3) we get

+ 1?(s) = h f1 T X U - 1

-1

cK)

n = 0
C P n n

(o,n dx

No 77 put s = (| Q > + 1 +lc)5 , where k> 0 is an integer to get

+1 r
I +ks*f(/s + 1 + k)s] = 2 " ^ + k + 1), JO-t-x)^ +k X

-1 n = 0

(0 J)C P 7 (x)n n v 7

(3.5)

kNov7 the factor (1 + x)K which appears in (3.5) expressed as a

finite linear combination of the Jacobi polynomials
p (0, 0) p (c? ft) *
o ’’ * * ’ *k

Thus

(1 + x)lc = a0 P0^°’ ̂ (̂x) + a, P ^ ° ’^ (x) + ... - » (°,(3+ v * * ; w
(3.6)

For 0£ mi k a typical coefficient is a function of k andp

order to evaluate multiply both-sides of (5-6) by

(1 + x) 'pJ ^ 9 ̂ ̂ (x) integrate over

In

+1

! (1 + x)k (1 + x)P Pm(C’̂ }(x) . dx =
+ 1

J
-1

a 'm (2m i- 1) (3.7)

The factor 2* 1 "J/ (2m +(3 11) on the right is the normalization term

for the Jacobi polynomials. Denote this by h . Now the Jacobi

polynomial P P (̂x) can be expressed in the form

P (o? p ^ + b (1 + x) + ... + b (1 + x)m v 7 0 1v 7 mN '
m (3-8)

Substituting ̂^(x) "this form into (3*7) yields

+1

a h
m m = f (1 + x) k [" bo + b! (1 + x) + ... + b (1 + x)m] m J dx

2k +p> +1 2k +(5 +2 2k + p + m + 1
°(k --p +1) + ^1^k+p-i-2)+ *,# + ^m(k + m + 1)

= 2k +p +1 0 2b., 2 ^

L
+ . • • + m

(k + ft + m +1)

(3.9)

If the unknown a^ is considered as a function of the parameter k

then we may write

V, - 2k + g +1 U k) (3.10)
m m £ k +(^"+"1)J ["k ~+~(p +2) J * •.. ĵ k" +(^ + m +1) j

’.There ^(h) is a polynomial in the symbol uk" of degree m.

The explicit expression for 3^00 may determined by the use of

(3-6) and (3.7)* In, (3*7) let lc = n - 1. Then, because of the

orthogonality property of the Jacobi polynomials

+1

j (1 -i- x)m (̂1 + x)^ P ̂ (x) , dx = 0.
d m
-1

Thus one of the roots of Q^k) must be k - m - 1. A similar procedure

shows that the remaining roots of Q^(^) are k = m - 2, m - 3, ... ,

1,0. So Q^(k) is nov/ known up to a constant multiplicative factor

and may be written as

Q̂ (lc) = A £"k- (m - 1)3 - £ k- (m - 2) . *k

and A is a constant to be determined. From the definition of Q^(k)

in (3*10) from (3.9) we have, multiplying through by (k +j3 +1) ...

(k + p + m +1),

r b 2*%
Qjk) = (k +f +1) ... (k +(2> + m +l)^-k +1 + "• + lc H-’p + n +1,

and the coefficient of of km on the left is A and on the right is

b^ -i- 2b̂ + 22b2 + ... + from (3.8)and the property

p (0,P)(i) _ ̂ por m = 0,1,2, ... we have
m v 7

P)(•)) = b + 2b. + ... 2mb = 1m N 7 0 1 m

Hence A — 1 for m — 0,1,2, ...

Thus from (3*9)

a - 2k f2n + b h-1 1 - D — :___________ pLgiB.--.JjL. (3.11)m ' P ' (k +p +1)(lc +(* +2) ... (k + (J + m +1)

For k = 0 and m = 0 the right side of (3*11) is replaced by 1.

Substituting (3*6) into (3*5) gives

I’C(j2+ k +1)$1- ' - f (1 + Jtf I aaPJ ° ’̂ ̂ ^ •
° -1 m = 0

4?

\ c p (° ’P\x)a n w
n - 0 J

dx (3*12)

for k a 0,1, ... v/here a is given by (3.11).
m

Integrating termwise in (3*12) gives k + 1 non-sero terms because of

the orthogonality property of the Jacobi polynomials. Substituting

for a we now get m 0

c, k
a iNvl_____ 0_______ + \ lc(lc — 1) ... Qc— (m — 1 yj____

? L (|3 + + X)5J ~ (p + 1 + k) (k + jl +1) (k +p +12) V™(k̂ '-pl'7m)m
m = 1

(3*13)

Now allowing k to take the values 0,1,2,... yiq get the following

system of equations;

(3.14)

2C„ 2C,
?!•[(& +3)s]- ^ +3) + (L +3)(^ +47 + TjTGKfi +4) ((3 +5)

 ̂ r / i co ̂*^^2
i n (£ +4)S> x n 4) + + (g, +4)(^ +5)(6 «-6)

3 '• C
+ (|4 +4)(> +5)(p+6)(p +7)

If we know F on the positive real axi3 then this system can be

solved for Cq,C^,... very easily by successive back substitution:

determining then with the knowledge of determining and so on.

If CqjC^..., Cm are calculated then g(x) may be approximated by

U

g{x) ^ CxiPn̂ 0’ ^
a = 0

since x = 2 exp(- £t) -1 we can express the approximation to f(t)

directly

N

f(t) oi cnpn^ ̂ C 2 exp (-St) -1 j
n = 0

Now if we had an infinite-length computer (a per^fect computer) then

as we calculated more and more coefficients our approximation to f

would get better and better and,although^logically, we could never

know how good this approximation was in practice, for the sort of

functions met in applications this would not matter. Not having such

a computer we are limited to a finite number of the coefficients,after

v/hich rounding error builds up. Y/ith a computer working in 12

decimal floating point arithmetic approximately the first 10 or 12

coefficients are significant.

The points on the positive real axis at which F(s) is evaluated

depend on the real parameters ft and f which we can vary within the

constraints -1, 8>0 .

Theoretically, again with a perfect computer, the Fourier-Jacobi

expansions derived from an exactly known F for different values of

and S would all yield the same function f. Y/ith real computers and,

sometimes, an approximately known F we will generate as many different

't approximations to f as values ([>,?) we take. Our task

is now to choose the optimum ((I , S’) pair.

From the Tauberian results

lim sF(s) f(oo)
3 ^ 0

lim sF(s) = f(o)
S ^ CO

(see [s] page 243 (37*5)» (37*6) with ̂ = 1)

We see that for large t, f is determinedly the behaviour of F for

small s on the positive real axis, and vice versa* Thus one guide

to the best choice of (3 and S is the particular t-domain of f in

which we are interested: If we are interested in f for small

values of t we choose p> and & large, and so on.

/mother important principle to follow in the choice of p and

S has already been expounded in connection with the BKL method,

namely if v?e have reason to believe that f is smooth then we should

choose and S' to yield the smoothest function.

Once a pair ([2 , £) is chosen, the ALGOL program determines the

set of coefficients? C C denoted! C. f 0
L o nJ iJ£,S

n AJ
How @(x) = C.P.^* ̂ ̂(x) + C.P.i i

(0,p)(x)
i = 0 i = n + 1

and the Chebyshev norm of the truncation error is

n

r i
0

n
lie - X T c, p/ 0^ L l , - sup

XiSr - v i
e(x) - c.p.(0^ \x) I

o

<X5

- sup J h cipi
xe r -1, 1J1 . 1u ? n + 1

(c> n)

n + 1
(3.15)

Let us define1ineCn(s i (& » S') = 11.
n

-> C.P. /I- i x
■i-0

(0,£)
T

Theoretically (3*15) allows us to minimize*^ (g; (?) over some

allowed region of the j*> , -plane without any knowledge of g: we

merely have to minimise

[I ^ ^ jj over { G. 1II ^ 1 1 j J L i J
n + 1

In practice we can minimise ,n + lc
> C . p i 0 ’ ^i i for some finite k
n + 1

The fact that this truncation and minimization procedure tends to

cut down the "high-frequency'1 component of the Fourier-Jacobi

development, fits in with our intention to choose the smoothest o

the available approximations to the unknown f*

Numerical procedure and the results of applying the

method to the transforms of some kuovm functions

The basic program written to carry out the MG method of inversion

of a given transform F has the structure indicated in Fig*1.

The sub-routine 3 evaluates the error estimate by finding

(x) | over at first 8 values j j

of x in the interval of interest^then over these and the interlacing

equidistant j x^^ j (giving 16 \ x̂ j in total) ̂ then over the 16

x^j interlacing these points and so on until the siiccessive

maxima are within a given tolerance of one another*

The method of finding the optimum (̂ , $) is quite unsophisticated.

Good results can be had by making the grid of sample points very

fine but then usually a vast amount of machine time is spent in

looking'

n + k
max

K i
i i

n + 1

STARTr
f

1 Choose (£ , T) on given ^ - s grid

2 Evaluate CL ... C, , 0 N + k
for given (j? , I)

t
3 Evaluate error estimate

V n Y " V i (0’f) r!L'j An + 1
for given |

°if

i

5 Store \ C R as current optimum approximation

4 Is tn (s; f. J S)< all previous R ' s
?

>

YES NO

is jl » S’ NO6
grid exausted? YES

take stored J C.£ r
and evaluate f(t)
at specified points on
specified interval of^O,^}

V/

<-

8
Print table of Results
plot Approximate Graph

V

STOP

FIG.1.

at areas of the & - d plane that are far from the actual optimum.

The problem we are faced with is the common one of finding the

minimum of a multi-variable function of complicated or analytically

unknown fora. In our case the 2-variable function £* n(s> f ? £) can

be evaluated at an individual point but it is not known analytically.

To evaluated n(sj p> > S') at a large number of points is costly in

computing time. However, with the examples of f (and thus g)

considered £ n(&; f » 0) seemed reasonably well behaved suggesting

the use of a more sophisticated minimization procedure which could

converge on the optimum (ft , d) much more quickly. One such

procedure is the "Method of Steepest Descent" ([9l Ch.2) but this

requires the evaluation of the gradient of f? (g; (I, J1) with respect

to P> 9 S' and this computation would both consume time and add error.

A more promising possibility is to use one of the several proposed

methods of function minimization without evaluating derivatives

([10] 5 , [12]). The hope is that one of the methods would

speed up and improve the accu^racy of the program.

The program as written uses the basic program outlined above,

to evaluate the approximation yv

• £ > (x)
i = 0

with optimum values of (jl , $) for values of n over a specified range.

X 5

The question of which n is the best one is a difficult one. For
—x 1the functions e""0 and Jrt(t), with Laulace transforms and0' J 3 - s + 1

1 -t= respectively, the optimum value of n was around 4 for e
] s + 1

and around 10 for J^(t) . A rough guide may be: small n for smooth

f and large n for less smooth f. By large is meant large, but not

so large that rounding-off error causes the higher coefficients to

start growing. In fact another guide for optimizing with respect to

n Is, possibly, to stop when the highest coefficients begin to

grov/ again after their initial decrease.

The best numerical results obtained for the test functions e~

and Jq(^) were for example, 8 decimal place accuracy over 1.0,5 1

-tfor e and 4 decimalplace accuracy for (t) over the same range.

These results are much better than those obtained by other published

results as pointed out by I.tiller and Guy* In their paper [3] they

give graphs of their results using this method plotted together with

the results obtained by other methods. Another point made by miller

and Guy is that although the theory of the method is developed for

functions f(t) finite at 0 and00 , tests with F(s) = 1
which has the inverse transform f(t) = t yield the following
typo of rosult:

The algorithm achieves the result f (t) ~ t for ^ £ fo,T̂ |c L

but there after the confuted function f (t) settles down to ac
constant value T. Thus, approximately

f (t) = t - (t - T) * H(t « T)

and L [fc; t > sj = -p

1 1 So for large T ^ 72

and in the finite leng-th computer arithmetic these two functions

will be indistinguishable. But the algorithm has selected the one

which is finite at oO • Anotherca£e in which, while the theory

does not strictly apply, the algorithm gives good results is the

Dirac delta function which has the Laplace transform F(s) = 1 .

Of course what the algorithm produces is an approximation to the

behaviour of this generalized function. The more coefficients Ch

that are calculated, the higher the peak at t - 0 becomes. Also
is

this^a good example of a case when our policy of minimizing the

"high frequency" component of the Fourier-Jacobi expansion is not a

good one, any approximation to S (t) being far from smooth at the

origin. Nevertheless;once we have got some results from a first

application of the algorithm we can use this rough description of

the unknown f to govern our further application of the algorithm.

exo (—£la)

exp (-Ts)

Advantages of the LIG method

One immediate advantage would seem to be the superior accuracy

of this method to that of other published methods (see ['131 Ij43

and the bibliography in [141) although an exhaustive comparitive

study has not, as far as we know, been undertaken. A major advantage

of the MG over the BXL method is the fact that the MG method gives

the approximation to f(t) effectively as a polynomial which can be

evaluated at any required value of t without any difficulty. The

BKL method, on the other hand, only gives a set of points and since

they are logorithms of the zeros of the shifted legendre polynomials

they are awkwardly situated and irregularly spaced. Also in the MG

method there is no need to store any mct'̂ ric-Q.s to perform the

inversion.

x ^

A Possible Algorithm for the Hellin Transform

The essential feature of the I1G method is the observation that

once the defining integral has been put in the form

A s) = 2I • J ^ g(x) dX

a factor (1 + x) can be got in the integrand by choosing s

appropriately and that this is a weighting function for the Jacobi
(0,(3.)
t

important applications is the I.Iellin transform.

polynomials P ' ' (x). Now, another integral transform with

F(p)- J* f(x) dx (6.1)
0

or putting x = e ° we get^two-side Laplace transform

T?
H- °0

-Ut(p) = / e“*- f(e”u) dt (6,2)

T3 TLooking at (6.1), the factor x^ suggests the use of the Generalized

Laguerre polynomials L ̂ ̂ (x), which are orthogonal onjo, *>jwith

weight function w(x). jW=£g(x) and assume that g(x) can be

expanded in terms of the generalized Laguerre polynomials

g(x) = ^ Cn (x). Ln ^ (x) (*>-1) (6 .3)
n “ 0

('¥) W (X) - £ “ X X 01 (* > — 0 -sec*t»'ô Z> A

where ($) is the nth Fourier-Laguerre coefficient depending on

the choice of & .

Rodrigues’ Formula for the generalized Laguerre polynomials is

([7 1 22.11)

(“) t \ 1 dn £ -x c/ n] / rv (x) = d- e x x (6.4)
nl e x J

Substituting (6.3) in (6.1) and then (6,4) in to the result

CO CO

A p) = f X p_1 e_X ^ cjpt) i f *) (x) dx
0 n - 0

iX) cO
1 p-1 -x n / \ 1 x -« dn / -x # -i-nx -= ; x e / C () —. e • x v“n Ce x J dx y ns 7 nl dx s /
0 n = 0

(6.5)

and now the exponential factor e “ , which remains in the partial

sums after simplification, ensures the validity of the interchange

of the order of integration and summation since) dominates

(ultimately) x* e X and the Lebesgue dominated convergence theorem

gives the result

'L ft

Put p = X +1+k where k is a positive integer i.e. choosing k and 0<

such that CX ~ p- (k+1) and k< p.

Then (6.6) gives

00to
/ \ ’C- 1 « t \ f k dn / -x p-(k+1) + n%F(c< +k+1) - X . Ca(?) j x (e x) dx

0

Ifov/ define I
00

k dnn , x te xk?n J dx
0

(e-x x p+n-k-1} dj.

Oi

CO

- k j xk-1 (e"x dx
0

The first term in (6.7) is zero so

co
_ . f k-1 / -x b+fi-k-1v (n-1)I, = -k / x (e)k,n J N dx

0

(6.7)

I, - -k I k,n k-1, n-1

vQ

For n > k I r _n-k / -x 7>Hi-k-1\ ,j d (e x ") dx
0 dx:1»v- k

F ,n-k-1 1 1d / -x p+n-k-1“ — . (e x -k-1 N

eO

dxn-

|

! / n-k-1 -x= ; M) eL
n-k-1

n-k-1 (-1) ... (ji-r+1) xp-r (6.9)

where {n - p+n-k-1, by Leibniz' formula

But fi -(n-k-1) = p > 0 so the value at x = 0 of the expression

inside (6.9) is zero and the exponent.’4e X ensures that it is zero

at as well.

Hence = 0 (n > k >
and thus I . = 0 for 11 > k by (6.8)n, k

i'or n < k Ik-n90

c»

0

Oa

k~n -x p+n-k-1 x e xr dx

J
f -x p-1 ,' e x dx

(6.10)

0

1. 0 = P (p)k-n, (6.11)

and for n < k I, (-1)n kl
*k,n ̂ 'J (k-n) I y, 0

which follows from the recurrence relation (6.8).

So by (6.10) and (6.11)

(6.12)

I = f-l")11 kl p
k,n (k-n)I ' (p)

0

(n<' k) (6.13)

l>o

Hence recalling the definition of |>

<x>

P(c<+k+l) = ^ 1 Cn(«) Ik>n
n= 0

k_

= nl Cn ^

k
Ffff+k+1) —̂ / ,\n /k>
J"1 +k+1)

n = 0
i.e, 1 ̂ \-~rf = ^ (-1) (n) Cn(o() (6.14)

Fiit = F(of+k+l) / r (oc+k+1) and - Cn(tf); then letting k

assume the values 0*1,2,..* (6*14-) gives a linear system of

equations for the coefficients Gn

Go = co

G1 = c0 - C1

G2 “ C0 " 2C1 + °2 (6.15)

g3 = CQ - 3Q, + 3C2 - C3

Solving (6*15) we get

co = Go

C1 = Go " G1

C2 = G0 " 2G1 * G2

C3 = G0 " 3G1 + 3G2 " G3

(6,16)

which suggests the general solution C, *= \ (-1) ^] G (6.17)A- \ J / ti
j - 1

Vie show this by induction

Suppose (6.17) holds for r = 0,1,2,... k-1, k

How by (6.14)

R~h\
r /k-f-1

^ < r ‘> °r
r = 0

(-k!c+1 ck+i - Vi - £ <-or (k;b
r - 0

k rvi - s-"11*1 v, - (-d r z <-i>3 <? °3
r = 0 j = 0

r = 0 ; j - 0

where ̂ indicates that the summand depending on j is zero for j r,

/k+1wr\ _ (k+1) \ __ t \ _ (k+1) I ^
r j ~ rf, (k+1 -r) I j"(r-"o7 • 7• '(k+l-jT'-" (^“d)'' '(k+1-d-(r-

/k+1\ /k+1-j\
d r-d

Using (6*19) (6 ,18)

c * 1> ■

■k+1 (6.19)

'k+1 (~i)k+1 ak+1 Z (-kb. (™) z (S:J) (-kk+1"r
3 = 0 r - 0

k + 1

r = d

k+1 -r
/>= 0
- r

/>= k+1-3
(!7 -3) (-0p (6.20)

where P = k+1-r. But the expression on the ri';ht of (6.20) is the
/ \ k+1 — ibinomial expansion of (1-1) = 0.

k
Hence ^ (J ^) (-1)1w1- - - (k+^) (-1)° - -1

r = j

s° ck+i= ,(-kk+1 ok+1 - r Ftb (-kja.
j - 0

k-i-1
that is Cfc+1 = C ^ 1) (-1)3 G.. (6.21)

j = 0

ancl this demonstrates,- by induction, the truth of (6.17) •

Thus we have an algorithm for the Llellin Transform which is similar

to Hiller & Guy* s - ^

Fourier-Jacobi algorithm for the Laplace transform. V/e would

hope that the parameter d could be chosen to select a smooth

solution in much the same way as v/e chose (g , £) . One slight

advantage of this Fourier-Laguerre algorithm is that we have an

explicit analytic expression (6*21) for the coefficients)

which may speed up the computation. On the other hand v/e have only

one parameter ^ to vary. This algorithm has yet to be given a

practical test.

Annendix 1

Solution of Inverse Problems Using the Laplace Transform

many problems in mathematics are what might be called direct

problems in the sense that once we have set up a mathematical model

we are interested in seeking this model's implications and in applied

mathematicsj interpreting these in the physical domain. But many

important problems need a different approach: a certain physical

situation may be approximately repire sent able by a whole ranee of

models varying with parameters they incorporate. The problem now,

is, given some data (which would correspond to the predictions of

these models), to decide which is the (in some sense) best model to

fit this data. This is an inverse problem.

For example we may have a system the behaviour of which can be

described by a transfer fuvu-tiou k(t) which determines the

output function u(t) of the system given an input function f(t), in

the relation

t
u(t) f (x) dx (A1)

0

Using the Laplace transform we can write

Llc(s) (A2)

The calculation of Lu(s)/Lf(s) involves two straight forward quad

ratures on £c> j cO) . Thus a subroutine to determine Lk(s) from

u(t) and f(t) can be written, inserted in the Laplace transform

inversion algorithm and the Fourier-Jacobi expansion of an approximatioi

to k(t) obtained. See [2] Ch. 3- Sections 21-24 for a discussion

on estimation of system constants.

It is possible that this approach may be useful in determining

the functions %(t), <p(t) which relate stress and strain in

1-dimensional viscoelastic materials through the relations

t
€ (t) = J" TC(t -T) - ~ • d-r

- CO

(A3)
t

<T (t) = f <p(t -«r) . . d T
-co

If it is assumed that <T =? € = 0 for t <* 0

Then equations (A3) reduce to two convolution equations

3 (?

trans fo rming:

£ (s) = %(s)

fr (s) = (j) (s) .

So %(s) = 1 . ,LC?1
ff (s)

9>(s) = 1 . <t(s),
e (B)

and we can determine ?w(t), <f(t), in much the sane way as the transfer

function k(t) in (A1), providing we know £ (t) and (f (t) on fO,^)

Another method to determine % and (p using the Laplace transform is

given in [16] *

cr (s) - (T O)] = %(s).s ff*(s)

6 (s) - € (0-1)] = <p (s).s e (s)

D.L. PHILLIPS, "A technique for the numerical Solution of

certain Integral Equations of the First Kind".

J. Assoc. Computing Machinery Vol.9- 1962 PP* 84-97*

R.3. BELLMAN, R.E, KALABA, & J. LOCKETT, "Numerical Inversion

of the Laplace Transform: Applications to Biology, Economics

Engineering and Physics”. American Elsevier. New York 1966

U.K. PULLER & w.T. GUY, JR. "Numerical Inversion of the

Laplace Transform by use of Jacobi Polynomials".

SIAM. J. Numer. Anal. Vol3^No*4 1966 pp 624-635*

S. TJOPTEY "On the Numerical Solution of Fredholm Integral

Equations of the First Kind by the Inversion of the Linear

System Produced by Quadrature"

J.Assoc. Computing machinery. Vol. 10. 1963* PP 97-101

&[”6] A.IT. TIHONOV "Solution of Incorrectly Formulated Problems

and the Regularization Llethod" &, "Regularization of

Incorrectly Posed Problems".

Soviet Maths. Vol.4 1964* PP 1035-1038, 1624-’!627.

HANDBOOK OF I'.IATHE.TATICAL FUNCTIONS edited by II. Abramowlfe &

I.A. Stegun. National Bureau of Standards 1964 and Dover 1965*

I.IT. SNEDDON "Functional Analysis" In "Han&bucTi der Physilc"

Band II Springer, Berlin, 1955*

Y.L. SAATY II J. BRAH "Nonlinear 3,iathematics11,

Licgraw - Hill, New York 1964.

IEJ.D. POV/ELL "minimization of Functions of Several Variables

Ch.3 in "Numerical Analysis: An Introduction".

Edited by J. Walsh, Academic Press, London 1966.

I.l.J.D. POV/ELL "An efficient method for finding the minimum

of a function of several variables without calculating

derivatives." Como.J. Vol.7 PP* 155“^62*

R. HO0ICE cc T.A. JEEVES " "Direct Search" Solution of Numerical

and statistical Problems". J,Assoc. Computing Machinery Vol.8

pp. 212-229.

of-

A. PAPGULIS "A New Liethod of Inversion^the Laplace Transform.

Quayt. Appi . Ivlath. Vol. 14* 1957- PP 405-4"!4*

H.V. NO EDEN "Numerical Inversion of the Laplace Transform"

Acad. Ab o. Ser B Vol. 22. I96I pp 3-31.

D.S. BERRY & S.C. HUNTER "The Propagation of Dynamic Stresses

in Viseo Elastic Rods"

Uech. Phys. Solids Vol.4- ^956 pp. 72-95*

[16] E„ M, LENOE ?.z C a J0 MARTIN. "A Technique for the Formulation
itof Meaningful Viscoelastic Constitutive Equations.

Avco Corporation, Lowell, Massachusetts.

-►ESTABLISH DD004JROOKP4+K080007APSP;
JACOBI INVEPSN EXPNj
0/PL,8+
begin library AO. A6, A12j Integer n, n1, n2, N, ENLO, ENUP, M, KK, f 1, f2; KK:« Oj open(20)j Ni» raad(20);
begin array C[o;N]; real X>, d, dlo, dd, dup, bio, db, bup, TL, TU; boolean more data;

real prooedure F(s)i value s; real a;
begin Fi- i/s end F;

prooedure JCOaFFSP(F. delta, beta, print, N, C); value delta, beta, N; real prooedure F:
array C; real delta, beta; integer N; boolean print; comment JCOEFFS calculates the Jacobi
polynomial coefficients G[03 to C[N];
begin integer f1, J, k; real q, p;
Peal procedure SIGMA(K); value K; Integer K; comment sum from 0 to K - 1;

begin Integer m; real s, q; s;« 0; q;« K + beta + 1;
for mi- 0 step 1 until K - 1 do
si- ((q + m + 1)/(K - m))x(C[m] + s);
SIGMA:- s
end SIGMA;

f1 i- format(_[ndj_);
if print then write text(70, f 15o24s]ooefficients*c fk)[5c1]):
q:- beta +1; C[o]i- deltaxF(qxdelta)xq;
if print then begin write text(70*[k*-»*0[15s]3): output(70,C[o]); end;
for ki- 1 step 1 until N do
begin qi- k + beta + 1; pi- 1 5 for J:- 1 step 1 until k do begin pi- px((q + J)/j) end;

C[k]i- (pXqxdeltaXF(qXdelta)) - SIGMA(k);
if print then begin write text (70,^*-*^); write(70, fl, k); space(70,l5); output(70, C[k])

end JCOEFFSP;

procedure JACFQLfbeta. N, x, P); value beta, N, xj real beta< x$ Integer N; array P;
comment values P{0, beta, n, x) stored In array P for n - 0 to N$
begin Integer n; real A. B, C5 F[o]:» 15 P[1]s* ((beta + 2)xx - beta)/2}
for n:- 2 step 1 until N do
begin A:»« 2xnx(n + beta)x(2xn + beta - 2);

B:« (2>Ci + beta - l)x((2>oi + beta)x(2xn + beta - 2)xx - (betaT2));
Cs« 2x(n - T)x(n + beta - 1)x(2xn + beta)$
P[nJ:- (B x P[n - 1] - C x F[n - 2])/a

end
end JACPOLj

procedure JBXPNfN. C, delta, beta, tl, tu, M, V)j value N. C, tl, tu, M;
Integer N, M; real delta, beta, tl, tuj array C, V; ooianent values of approximation to f(t)
are oaloulated for t - tl,..... ,tu In M equal stepB and stored In V[1:M, 2] ;
begin Integer 1, JJ real dt, x, ŝ array P[0:N]$
dtJ- (tu - tl)/M;
V(1,1] *■• tlj for 1** 2 step 1 until M do V[1,1] V(1 - 1, 1] + dtj
for i:« 1 step 1 until H do
begin x:» (2xexp(-(deltaXV[l,1]))) - 1$

JACPOL(beta, N, x, P)j s:» 0;
for J 0 step 1 until N do e:« s + (C[jJxP(J]);
V[1,2]*» a

end
end JEXPN;

prooedure PIOr(D,V# K, M); value D, v, K, M; Integer L, K, M; array V; comment D is device
number for graph output, V holds abscissae and ordinates K is plot number
and M is number of abscissae;
begin Integer i, J, Y, Yl, f 1 , f2, f3; real del. 1, u;
ft forroat(J_-d.ddi)̂ ndJJ; f2:« format(^-d.ddddsddddsddwj^nd_]_); f3J“ format(J_nddcccJJ;
write text(7o, [[pc3plot**number»:*]); write(70, f3, K);
write text(70, [[30a]x[59s]y12c]]);
for i:- 1 step 1 until M do
begin write text(70, [[20s]]); write(7o, f2, V[i,1]);

write text(7o, [[4()s 3 3); write(70, f2, V[i,2]); write text(70, [[c] 3)
end;
U-Ui- v[1 ,2];
for i:« 2 3tep t until M do
begin if V[i,2] < 1 then 1:- vr i,2]; if V[i,2] > u then u: = V[i,2]
end;
del:»= (u-l)/89; Yl:«» entier((l/del) + 0.5); write text(D, [[p4s]x[4s]]);
space(D, 91); write text(D, [[4s]y[c9s]]);
for J:- 0 step 1 until 90 do write text(D, £+].); write text(D, [[c]]);
for ii« 1 step 1 until M do
begin Y:- entier((V[i,2]/del) + 0.5) - Yl; wrlte(D, f 1 , V[i,1]); write text(D,£+]_);

if Y > 0 then begin space(D, Y - 1); write text(D,[_+J[) end;
space(D, 89 - Y); write text(D, £_+]_);
write(D, f 1 , V[i,2]); write text(D,[[c]])

end;
write text(D, [[9s]]); for j:- 0 step 1 until 90 d£ write teKt(D,|_+J_)
end PLOT procedure;

procedure SUM(N1, N2, x, S); value N1, N2, x; Integer N1, N2; real x, S;
comment S «* C[N1]P[N1] + ... + C[N2]P[N2] evaluated at x for values
of beta and C[n] current at call of procedure;
begin integer i; array P[0:N2];

JACP0L(b, N2, X, P); S:= o;
for i:« N1 step 1 until N2 do S:= S + C[i]xP[i];

end SUM;

procedure CHKBYNORM(N1 , N2, t1, t2, E); value N1 , N2, t1, t2; Integer N1 , N2;
real t1, t2, E$ comment Chebyshev norm of truncation error on [t1,t2]
estimated from max(t in [t1,t2]) of abs(C[N1]P[N1]+ ... +C[N2]P[N2]) for
values of beta and delta current at call of procedure and stored In E$
begin integer count, 1, m, p; real M, S, A, B, D, DD, max;

max:® 0; A:« 2xexp(-dxt2) - 1; B:® 2xexp(-dXt1) - 1$
D:® B - A; DD:« 0.125XD;
JCOEPPSP(F, d, b, falsej N2, C);
for 1:* 0 step 1 until 8 do
begin SUM(N1 . N2, A + lxDD, S); S:» abs(S);

if S > max then max:® S
end;
p:= 8; count:-* 0; M:® 1 .Olxmax; E:* max;

L11 : DD:® 0.5XDD; m:= p; p:® 2xp;
for 1:® 1 step 1 until m do
begin SUM(N1 , N2, A + (2X1 - 1)xDD, S); S:- abs(S);

if S > max then
begin If S < M then

begin if count < 3 then count:® count + 1
else begin E;» S; count:® 0; goto L22 end;

end;
max:® S; M:® 1.0lxmax

end;
end;
If p < 1 no then goto Li 1;

L22: end CHEBYNDBM;

prooedure FINDMIN(n* t1, t2, dlo, dd, dup, bio, db, bup, L, U, optdelta, optbeta, OPTC, MINERROR)
value n. t1, t2, dlo, dd, dup, bio* db, bup, L, U; integer n, L, U;
real tl, t2, dlo, dd, dup* bio, db, bup, optdelta, optbeta, MINERROR;
array OPTC; conmant truncation error E for nth order approximation is minimized
(discrete approximation) over dlo < delta < dup, bio < beta < bup and optimum
delta, beta, C, and E stored In optdelta, optbeta, OPTC, MINERROR;
begin Integer f. 1, j, k; real E, m; m:« »20;

f:- fonaat(£sd.d»/ndJ[);
for li- o, 1+1 while dlo + ixdd £ dup + dd do
begin ds- dlo + ixdd;

for J 0, J+1 while bio + jxdb £ bup + db do
begin b:- bio + jxdb; CHEBYNORM(n - L, n + U, tl , t2, E);

wrlte(70, f, E);
If E < m then
begin ms- E; optdelta!- d; optbetab;

for k:« 0 step 1 until n do OPTCtk) C[k];
end:

end:
• newline (70, 1);

end:
MINERROR m;

end FINEMIN;

opan(70); write text(70, XT.S.HARRISJJ;
fl:- format(JnddoJJ; f2:» format ([ndjj;

datat KK:- KK + 1; write text(70, [tplresult**]); write(70, f 1, KK); newllne(7o, 5);
write text(70, LM#*"##1)5 wrlte(70, ft, N);
dlo:- read(So); write text(70, Jdlo*-**D; output(70, dlo);
dd:- read(2o); write text(70, £_dd**»#*J_); output(70, dd);
dup:- read(2o); write text(70, Jdup*-**i); output(?o, dup);
bio:- read(20); write text(70, Xblo*-**^); output(7o, bio);
db:- read(2o); write text(70, Xdb**-**^); output(70, db);
bup:- read(2o); write text(7o, Xbup*-**JJ; output(7o, bup);
Mi- read(20); write text(7o, iM**-**]J; write(70, ft, M);
n1:- read(20); write text(70, £n1*-**J_); wrlte(70, fl, nl);
n2:- read(20); write text(7o, Xn2*-**^); wrlte(70, fl, n2);
ENLO:- read(2o); write text(70, £ENL0*»**]J ; write(70, f 1, ENLO);
ENUP:- read(20); write text(70, [ENUP*»**1); wrlte(7o, f 1, ENVP);
TL:- read(20); write text(70, £TL*-**J_); output(70, TL);
TU:- read(20); write text(7o, XT11*"**!)* output(70, IV);

begin array Vf1111,1:21« 0PTCto:N]; Integer k; real optdelta, optbeta, MINERROR;
for n:- nl a ten 1 until n2 do
begin write text(70, trp3ol n*»**1); write(7o, fl, n); newline(70, 3);

FINDHIN (n ,TL,TU ,dlo ,dd ,dup ,blo ,db ,bu p , ENLO ,ENUP , op tdel ta , op tbe ta ,0PTC ,MINERROR);
write text(7o, ff3cioptdelta*-**1): output(7o, optdelta);
write text(7o, JjDptbeta*+-**JJ; output(7o, optbeta);
write text(70, LL3c25alOPTC(k)^oJJ.);
for k:- o step 1 until n do
begin write text(70, ££**-*!); wrlto(70, f2, k): space(70, 10); output(70, OPTCtk])
end;
write text(7o, |[2o] MINERROR*-**^.); output(70, MINERROR);
JI5XPN(n, OPTC, optdelta, optbeta, TL, TU, M, V);
PLOT(7o, V, n, M);

»»re data:- read boolean(20); wor® data Rjfco tot"* else close(2o)» clo3e(7o);
a n program;
an

end;
end;

