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SUMMARY

The objective of this thesis is to give sufficient conditions for
global bifurcation of solutions to the nonlinear eigenvalue problem:
F(x,A) = 0, where F : X xR +~ Y, with X xR, Y Banach spaces and
(x,A) e X xR, F(.,A) is assumed to belong to the class of A-proper
maps and to be of the non-standard form, an A-proper, linear operator
A - 2B : XY plus a nonlinear mapping R(.,A) : X - Y. R{x,x) is taken
to satisfy a smallness condition in x at the origin in X. OQur analysis
is based on an extension of known methods, for obtaining global bifur-
cation results, which have been used successfully when the mappings
involved are compact or k-set contractive.

Chapter One is an introduction to the concepts used throughout
the thesis, including Fredholm maps of index zero, A-proper maps and
generalised topological degree. 1In Chaptér Two we state and prove our
main global bifurcation theorem in terms of the generalised degree;
this result forms the basis for the proofs of all the main theorems in
the thesis. Chapters Three and Four contain various giobal bifurcation
theorems, for different sets of hypotheses imposed on the mapping F
and the underlying spaces X xR and Y. "Finally, in Chapter Five we
apply our results to certain classes of ordinary differential equations
and obtain existence results, for periodic solutions in one case and
not necessarily periodic solutions in another.

The main results are: Theorem 2.10; Theorems 3.3 and 3.13;

Theovrems 4.7, 4.12, 4.15 and 4.18.
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INTRODUCTION

This thesis 1is concerned with proving existence of nontrivial so-

Tutions to a nonlinear operator equation of the form
F(x,A) =0 (0.1)

where F : X XIR -~ Y 1is continuous with X and Y Banach spaces. In par-
ticular we wish to study the dependence of the solution set on the para-
meter A. Equation (0.1) is often referred to as a nonlinear eigenvalue
problem. ‘

Suppose that F(0,r) = 0 for all » inRR. Then we call {(0,A) :
A € R} the set of trivial solutions and denote by S the set of non-
trivial solutions, so that, (x,x) € S if and only if F(x,A) = 0 with
X # 0.

We say that A e R is a bifurcation point of equation (0.1) if
there 1is a sequence of solutions in S converging to the point (O,AO).

So there is a 'forking' of solutions at the point (O,Ao), where
a branch of non-trivial solutions emanates from the set of trivial so-
Tutions. By 'branch' we mean a maximal connected subset. The term
global bifurcation will be used, which refers to the fact that global
properties of this branch of solutions are obtained. Typically we
shall see that the branch has at least one of the following properties:
it is unbounded in X; it meets the trivial solutions at a point.(O,A])
with A # Ags OFs it contains elements in S for either all parameters
greater than, or all parameters less than, s for which equation _
(0.1) is defined. In such a case, we say that A, is a global bifurca-

tion point.
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It is our objective to impose conditions on F which are sufficient
to ensure global bifurcation occurs for equation (0.1). In order to

achieve this goal, we shall assume F has the general form
F(X,A) = Ax = T(A)Xx - R(x,A) =0 (0.2}

where A - T(x) : X - Y is the Frechet derivative of F(.,\) at the fixed
point x = 0, a bounded, Tinear operator, and R is the 'higher order’
term.

One method of proving bifurcation results for equation (0.2) is
to apply the Implicit Function Theorem: if there exist continuous pro-
jections P : X > X and Q : Y -~ Y, with ranges given, respectively, by
R(P) = N(A - T(AO)) and R(Q) = R(A - T(xo)), where 2 is the candidate
for a bifurcation point, then there exist closed subspaces XT ¢ X and
Yy ¢ Y with X = N(A - T(AO)) 8 X, and Y =Y, 8 R(A - T(AO)). An appli-
cation of the Implicit Function Theorem shows that Ao must be such that
N(A - T(AO)) # 0 . Then, using the decompositions of X and Y and in-
voking the Implicit Function Theorem, again, the problem is reduced to
an equivalent one on N(A - T(AO)). This reduction argument is known
as the Liapunov-Schmidt procedure. In most cases N(A -.T(AO)) has a
smaller dimension than that of X. In fact, we shall only be dealing
with problems where N(A - T(ho)) is finite dimensional, and in this
case the classical Brouwer degree theory may be used to obtain the bi-
furcation result after reduction by the Liapunov-Schmidt method. This
approach, however, does not give global results. Moreover, if equa-
tion (0.2) involves a class of operators for which there exists a
topological degree theory we may use the degree properties directly

without performing any reduction. The classes of operators for which
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there are topological degree theories are quite extensive. In addition
to the Brouwer degree for continuous maps acting from oriented finite
dimensional spaces onto spaces of equal finite dimension there are:

the Leray-Schauder degree, developed in 1934 by Leray and Schauder
[15], for maps of the form identity minus compact; the degree of
Nussbaum [221, for identity minus k-set contractions; the coincidence
degree of Mawhin [18]; the generalised degree of Browder and Petryshyn
[5], for so called A-proper maps, which we shall define below; and
others.

The method of solving problems by topological degree arguments was
one of several used by Krasnosel'skii [13]. He applied the Leray-
Schauder degree when the operators involved were compact, and his re-
sults were essentially of a Tocal form. Then, in 1971 Rabinowitz [35]
proved the first global result when he gave sufficient conditions for
global bifurcation of equation (0.2) when A = I, T(X) = AB with B and
R compact maps. After this important paper, a number of generalisa-
tions were made including: C. A. Stuart [36], who allowed F{.,A) to
be a k-set contraction with R({.,A) = AR; Stuart and Toland [38], they
retained the compactness of B and R, but let A have the more general
form I - C, with I the identity, C compact and I - C not necessarily
invertible; Toland [42], Tlet A = I, T(x) = AB and obtained global bi-
furation results when F(.,x) and I - AB are A-proper maps with X =Y
a Hilbert space.

Recent global bifurcation results, which use homotopy theary rath-
er than degree theory, seem to be extremely general indeed, see, for
example, Alexander and Fitzpatrick [2] and Ize [11]. We have not stu-

died homotopy theory but remark that in order to obtain stronger, more




general results, this seems to be the way forward.

In this thesis we shall be concerned with so called A-proper maps.
The class of A-proper maps was first studied by Petryshyn, gnder vari-
ous guises, and then in 1968 Browder and Petryshyn christened them
Approximation-proper, or more concisely, A-proper maps. Their defini-
tion requires the idea of an admissible scheme, T ='{Xn,Yn,Qn}, for
maps from X into Y : {Xn} c X and'{Yn} ¢ Y are sequences of oriented
finite dimensional subspaces, with dim Xn = dim Yn for each n e N; {Qn}
is a sequence of projections of Y onto Yn for each positive integer n,
with Qn y >~y as n-»>« for each y ¢ Y; and the distance from Xn to X
tends to zero as n » =, for each x ¢ X. Then, a not necessarily lin-
ear mapping, f : X >~ Y, is said to be A-proper with respect to r, if
Qn f is continuous, for each n, and whenever Qn f(xn)+ y as n- «,
for some y ¢ Y and some bounded sequence {xn}, in Xn’ then {xn} has a
convergent subsequence converging to X, such that f(x) = y. Browder
and Petryshyn [5] also developed a degree theory for A-proper maps:
they denoted by Deg(f,G,0), the generalised topological degree of f
at 0 relative to the open bounded set G. This degree is well defined,
provided that 0 ¢ f(5G), where 3G is the boundary of G, and although
multivalued in general, possesses most of the useful properties of
the Brouwer degree. For a comprehensive account of A-proper maps and
generalised degree, see the survey article by Petryshyn [31].

In Chapter One of this thesis, we introduce the basic ideas re-
quired in the development of our theory, including a reiteration of
the definition of A-proper maps and generalised degree, given above.
We prove most of the important results except the very well known and

excessively long ones and where appropriate we give reference sources.
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Also included in this chapter is the definition of Fredholm maps of
index zero, which have been successfully employed in bifurcation theory
by many authors, including Mawhin [18], Alexander and Fitzpatrick [2]
and Ize [11], and shall play an important part in the work contained
here. We prove the useful theorem, due to Petryshyn [33], that a
linear Fredholm mapping of index zero is necessarily A-proper with re-
spect to a particular admissible scheme.

In Chapter Two, we suppose that F(.,A) and its Fréchet derivative
A - T(r) are A-proper with respect to some admissible scheme I', for
all » e(a,b), an open interval in R, which may be infinite. Then, we
generalise the global bifurcation results - of Rabinowitz [35] for com-
pact maps and the subsequent extension. by Stuart [36] to k-set con-
tractions - to the class of A-proper maps. This possibility of global
bifurcation for A-proper maps was observed by Toland, whose main theorem,
in [42], may be deduced as a special case of the results given in §4.3
of this thesis. Toland stated that the proof follows as a generalisa-
tion of Rabinowitz' [35] method for compact maps, but he never gave
the details, so we include our own proof for completeness. The global
result itself, tells us that if the generalised degree of the linear
part of equation (0.2), namely A - T(X), changes as A moves across an
isolated value A, for which N(A - T(Ao)) # {0} - that is,
Deg (A - T(r),6,0) # Deg(A - T(X),G,0) for A < Ay < % sufficiently close
to Ay with G an open, bounded set in X - then, Ao must be a global bi-
furcation point.

Our main objective, over the subsequent chapters, is to impose
conditions on Ay, A, T(A) and R under which this change in degree takes

place.
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Chapter Three generalises two different methods of Toland for prov-
ing that the degree changes. In §3.7 we take T(A)= N %~>Y , with
B Tinear and compact and assume, for some g e IR with N(A - AOB) # {0},
that BN(A - 3,B) N R(A - AOB) = {0}. The required degree result is
shown to hold provided that dim N(A - AOB) is. an odd number, and, for
all x ¢ A, in an interval (AO =8y Ayt §), N(A - AB) = {0}.

This generalises Toland's [43] result. The hypothesis

BN(A - AOB) n R(A - ROB), known as a transversality condition, was
not considered by Toland, but we show that it generalises one of his
sets of hypotheses and allows a more general setting. Many authors
in bifurcation theory use a transversality condition, see for example
Mawhin [18] and Alexander and Fitzpatrick [2]. The oddness require-
ment on the dim N(A - AOB) is a recurrent condition throughout the the-
sis and is closely related to the concept of multiplicity of elements
Ao With N(A - xDB) # {0}, which we define in the text. For this rea-
san it is sometimes said that global bifurcation occurs at values o
of odd multiplicity.

The results in §3.1 have been published jointly with J. R. L. Webb,
[48].

In §3.2 we generalise a Leray-Schauder degree multiplication for-
mula, due to Krasnosel'skii [13], to a generalised degree version. Our
result proves that, when X = E1 ® EZ’ where E] and E2 are closed sub-
spaces with E1 finite dimensional; I - T : X » X is a homeomorphism;

Ti D By Ei(i = 1,2) is the restriction of T to Ei’ and B%(O,T) is
the open unit ball in Ei(i = 1,2); then, Deg (I - T, B(0,1),0)
= degLS(I - Tl,B](O,l),O) Deg(1 - T2,Bz(0,1),0), where B(0,1) is the

open unit ball in X. We use this formula to generalise another result
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of Toland [41]. Our main theorem on global bifurcation applies to the
situation: X =Y, A =1, T(2) = & AJB, for some odd number k, under
various hypotheses, such as an odg-%u1tip1icity requirement, and a trans-
versality assumption. This generalises Toland [41], who required that
B.(j = 1,...,k) were all compact. A corresponding generalisation is
proved when X is a Hilbert space. A more concise version of these re-
sults has also been published jointly with J. R. L. Webb, [49].

In Chapter Four, §4.1, we assume that, at some Ao with
N(A - T(Ao)) # {0}, A - T(AO) can be decomposed as H - C where H is
a homeomorphism and C is a bounded linear mapping. Then, the results
of Chapter Two are used to prove that global bifurcation occurs at AO
if the degree of I - cu! - (T(x) - T()\O))H'1 changes as X crosses Ag.
In §4.2 it is assumed that A - T(Ad) is Fredholm of index zero and that
the transversality condition (A - T(X))N(A - T(AO)) n R(A - T(AO)) = {0},
for all A # A4, holds. Exploiting the properties of Fredholm maps we
prove that the decomposition in §4.1, of A - T(AO), into H - C, may be
chosen so that C is compact.

It is shown under various hypotheses that global bifurcation occurs
at Ay if dim N(A - T(AO)) is an odd number. The hypotheses depend on
the form of T(x): when T(A) = AB, then A, may be positive, negative
or zero; however, for T(x) = I Aij, with k finite, we have to Tet
X and Y be Hilbert spaces andJ;}therﬂho =0 or A is a. . .- positive
value; furthermore, if k is allowed to be infinite, then we further
restrict ourselves to A, = 0, again with X and Y Hilbert spaces.

The results contained in §4.2 generalise some of those which ap-

pear in Chapter Three.
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In §4.3 it is not assumed that the transversality condition holds.
Instead we impose a segment condition which depends on the decomposi-
tion H - C of §4.1, where in general C is not compact. It is shown
th;t if the radius of the essential spectrum of CH‘] is less than one
and the algebraic multiplicity of A,» namely dim'{ng1 N((I - CH"I)n)},
is an odd number, then the required degree result holds. Actually,
the condition on the essential spectrum of CH™! implies that A - T(Ao)
is again Fredholm of index zero and so the decomposition H - C can be
chosen such that C is compact. However, the segment and multiplicity
conditions depend explicitly on H and C. So, even though we know that
such a compact C exists, if we cannot find it explicitly, then we may
be unable to verify the other conditions. If, on the other hand, there
is a readily available explicit decomposition H - C where C is not
compact, but for which the other conditions are satisfied, then this.
method may be used.

Finally, in Chapter Five we give applications to the problem of
the existence of even, T-periodic solutions of the ordinary differen-

tial equation

x''(t) + b2 x(t) = g(x,x',x""),

where 0 < befR, x :R~+>R and g : RB +~R is continuous and bounded,
and satisfies a smallness condition.

We indicate how this problem may be transformed into an abstract
nonlinear eigenvalue problem of the form of equation (0.2). The re-
sults of Chapter Four are then used to give a solution to this problem

under some additional hypotheses.
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We also consider the problem of existence of solutions (XK’A)’

with X, not identically zero, of the ordinary differential equation
x"'(t) + ax(t) = Ag {t,x,x'5x""),

where x(0) = x(1) = 0, A e R, x:f;i}~R and g : [0,1] x R +~R is
bounded and continuous and satisfies a smallness condition.

Again, we impose additional hypotheses on the equation and invoke
the theorems of Chapter Four.

Finally, examples, of the above ordinary differential equations

are given, which satisfy the various hypotheses.




CHAPTER ONE

PRELIMINARIES

1.1 Notation and general concepts

We shall write Z for the set of all integers, N for the set
of all positive integers, 1, 2, ...., and R for the set of real numbers.

Unless otherwise stated X and Y will denote Banach spaces with
norms given, respectively, by || x|| and || y|| for a1l x e X and y ¢ Y.

X xR and Y xR are, then, also Banach spaces with norms given, re-
spectively, by [llx]F + |x|2]% and [[\ylﬁ + |A|2]% for all (x,A) ¢ X xR
and (y,A) € Y xR,

For the remainder of this section we take Z and E to be Banach
spaces.

If Dc Z is a linear subspace, then dim D will be written for the
dimension of D, which may be infinite. If G is a subset in Z and z ¢ 7
an arbitrary point, then dist(z,G) will denote the distance of z from
the set G, that is, dist(z,G) = inf{|z-g|l : g € G}. The closure and
boundary of a set G will be denoted, respectively, by G and aG.

B(z,r) will denote the open ball in Z, centre z and radius r with
closure B(z,r) and boundary 8B(z,r).

If there exist subspaces Z1 and 22 of Z, such that each z in Z may
be written uniquely in the form z = Zy + Zo)s with zq € Z] and Zy € 22,
then we write Z = Z] & ZZ’ and call Z, 8 Z2 the direct sun of Z1 and Zz.

The next result may be found in Taylor and Lay [39].

Theorem 1.1 If Z has a finite-dimensional, and hence closed, subspace

Z], then there exists another closed subspace 22 such that Z = ZI ® 22.




Definition 1.2 A continuous mapping f : Z -~ E, which is one-ta-oné (in-

jective), onto (surjective) and whose inverse mapping f-1 i E~» 7 s

also continuous, is called a homeomorphism.

Definition 1.3 A mapping f : Z + E is said to be compact if it is

continuous and (D) is compact in E whenever D is a bounded subset in

Z.

Remark It is well known, see for example Taylor and Lay [39], that if
f is linear and T(D) is compact in E, whenever D is a bounded subset in

Z, then f is continuous.

Definition 1.4 Let D be a bouhded subset of Z. The set (ball) measure

of non-compactness of D, denoted by o(D) (8(D)) is such that o(D)
= inf{d > 0 : D can be covered by finitely many sets each of diameter
less than or equal to d} (g(D) = inf{r > 0 : D can be covered by finitely

many balls each of diameter r, with centres in Z}).

Definition 1.5 We call a continuous map f : Z - E a k-set contraction

if there is a constant k > O such that for all bounded sets D c Z.
a(f(D)) < k a(D), and define o(f) = inf{k : f is a k-set contraction}.
We say that f is set condensing if o(f(D)) < (D) for all bounded sets
D ¢ Z such that «(D) # O.

Replacing the word "set" by the word "ball" and « by B, we obtain

an equivalent definition for the ball measure of noncompactness.

Notice that f is compact if and only if it is a O-set (0-ball)
contraction.
Two impértant properties of « and g are that, if D, D], D2 are

bounded subsets of Z, and L : Z = E is linear, then




a(D1 + D2) 5_@(01) + u(Dz) and «(L(D)) < ||[L|] « (D). The same in-
equalities hold when o is replaced by 8.

For a further discussion of the set and ball measures see [14],

[16] and [22].

Definition 1.6 A mapping f : Z ~ E is said to be Frechet differenti-

able at the point z, € Z, if there exists a bounded, 1inear map f' &0) :
Z ~ E such that f(z0 +h) - f(zo) - f'(zo)h = R(zo,h), where
R: Zx Z~ Eis such that || R(zo,h)H / llhl] +0as || h] »o0.

We call f'(zo) the Frechet derivative of f at the point Zy -

Remark If f is a k-set contraction, then so is its Fréchet derivative
[21]. This is not true, in general, for the A-proper maps we shall
define in 81.2.

The next collection of results may be found in the book of Taylor
and Lay [39].

Let L : Z > Z be a bounded, linear operator and denote the null
space and range of L by, respectively, N(L) and R(L). Note that
N(Lk)_c N(Lk+]) and R(Lk+]) c R(Lk) for each k e M, so N(Lk) is an in-
creasing family, and R(Lk) is a decreasing family, of subspaces of E.
If there exists a smallest positive integer p(q), such that N(LP)
= N(Lp+1) (R(Lq+1) = R(LY)) then p @) is called the ascent (descent)
of L. In general the ascent and descent of L need not be equal or even
finite. However, when they are both finite, then they are equal, and
Z = N(LP) & R(LP).

Two sets which will be frequently encountered are
oLy = {xe@: (W - L)'] : Z~ 7 is a bounded Tinear operator},
known as the resolvent set of L, and o(L) = {x e @& : A £ po(L)}, called

the spectrum of L. An important subset of o(L) is the essential spectrum




ce(L) of L, which corresponds to all A ¢ o(L) for which at least one
of the following conditions is satisfied:

(1) the range of AI - L is not closed;

(2) x is a 1imit point of o(L);

(3) dim U NI - L)) is infinite.
n=1

Nussbaum [20] has shown that ae(L) is a closed, bounded set. Its
radius is defined by re(L) = sup{|A| : A e ce(L)}.

Nussbaum [20] related the essential spectrum to the notion of k-
set and k-ball contraction by proving that re(L) = ;ig{a(Ln)}T/n
= %iﬂ{ﬁ(Ln)}1/n. Thus the essential spectrum of a compact mapping is
zero.

There are several possible definitions of essential spectrum. The
one given here is due to Browder [3] and leads to the largest set. How-
ever, Nussbaum [20] has also shown that whichever definition is taken,
the radius is the same. Also A. Lebow and M. Schechter [14] prove si-
milar results.

Another ihportant set, which corresponds to the reciprocals of a
subset of s(L), is the set of characteristic values, ch(L), of L given
by ch(L) = {A eR : N{I - aL) # {0}}.

For » ¢ ch(L), we define the algebraic multiplicity Ma(x) and geo-
metric multiplicity Mg(A) of A by, reépective1y,

Ma(A) = dim{nog1 N((I - aL)M3, Mg(x) = dim{N(I - AL)}. In general
Ma(x) and Mg(A) need not be equal or even finite. However, when L is
compact then Ma(k), and hence Mg(x),is finite; ch(L) is a discrete set
with no finite Timit points, and is bounded away from zero; the ascent
and descent of I - AL are finite, equal to p say; and

Z = N((I - aL)P) & R((I - aL)P), with M (3) = dim(N(I - AL)P}.

This decomposition is often called the Riesz decomposition of Z.




1.2 A-proper maps

The main results in this thesis will involve, so called, Approxi-
mation proper maps, or, more concisely, A-proper maps. This class of
maps was first named as such by Browder and Petryshyn [5] in 1968, al-
though Petryshyn had used them earlier in [25], where he referred to
them as mappings satisfying condition (H). To define A-proper mappings,

we need the following definition.

Definition 1.7 T = {Xn,Yn,Qn} is said to be an admissible scheme for

maps from X into Y provided that:

(1) {x}cX and'{Yn} ¢ Y are sequences or oriented finite dimen-
sional subspaces with dim Xn = dim Yn’ for each n ¢ N;

(1) {Qn} is a sequence of Tinear, continuous projections, with
Q
yelVY;

n Y > Yn for each n ¢ N, and Qn y -y as n - =, for each

(i11) dist(x,xn) +~ 0 as n~ = for each x & X.

In Definition 1.7 by 'oriented' finite dimensional spaces Xn’ Y

H

n
we mean that bases have been chosen for Xn and Yns such that if a

bounded, Tinear operator L : Xn - Yn maps the basis in Xn onto the ba-

sis in Yn, then the determinant of the matrix of L is positive.

Remarks (1) By the Uniform Boundedness Theorem, cf. [39], condition
(ii) in Definition 1.7, implies that there exists a number K > 0 such
that [|Q || <K, for all n eN.

(2) It is easy to show that if X and Y possess Schauder bases then
there exists an admissible scheme [31]. 1In particular if X and Y are

separable Hilbert spaces, then an admissible scheme exists.
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Definition 1.8 A, not necessarily, Tinear map f : X -~ Y 1is said to be

A-proper with respect to the admissible scheme I = {Xn,Yn,Qn}, if
f =Qf|, :X =Y 9ds continuous for each n e, and if whenever
n n Xn n n

{x, %, = X, is any bounded sequence with fn_(xn )~y as j > =,

J J J j i
for some y ¢ Y, then there exist a subsequence, which we again denote

by {xn,}’ and x ¢ X, such that X, .+ X as j~ e and f(x) = y. Sometimes
we just speak of an operator being A-proper, without mentioning an ad-
missible scheme; in such cases it is implicit that an admissible scheme
exists.

Thus, in the class of A-proper maps the problem of finding solu-
tions to an infinite dimensional problem f(x) = y may be reduced to
that.of solving the associated finite dimensional problems me(xm)
= me. The required solution is then the strong limits of some sub-
sequence of'{xm}, provided the sequence {xm} is bounded.

It follows directly from Definition 1.8 that if f : X = Y is A-
proper with respect to r, thenc f : X - Y is also A-proper, for any
constant ¢ e IR; however, Petryshyn [27] has shown that the sum of two
bounded, Tlinear A-proper operators need not be A-proper. Thus, the
set of all bounded, linear A-proper operators is not a linear subspace
of the space of all bounded, Tinear operators.

The class of A-proper maps evolved from the concept of a Projec-
tionally-compact mapping, or, more concisely, a P-compact mapping,
which was introduced by Petryshyn, [23] in 1966. Petryshyn, [31] has
shown that a mapping f : X -+ X is P-compact if and only if T, = f -2l
is A-proper for each A > 0, where I is the identity mapping. It was
shown in [24], that if H is a Hilbert space and L : H + H is a bounded,

Tinear, monotone decreasing (i.e. (Lx,x) < 0 for all x e H) operator,




then -L is P-compact. Thus, for such an operator L, L + AI is A-proper
for each A > 0. Other examples of A-proper maps include I - f : X > X,
where f is k-ball condensing, provided || QnH = 1 for each n e N. This
fact was proved by Webb, [45] and extended the result that I - f is A-
proper when f is compact. In two recent papers, Webb [46,47] has im-
proved a result of Toland [42], which gives another example of an A-
proper mapping. In order to cite this example we need some additional
information. Recall that if X has a uniformly convex dual space X*,
then it is well known, [31], that the duality map J : X = X* is uniquely
determined by the requirements || Jx{ = | x|| and (x,dx) = || x|| 2,
where (x,f) denotes the value of f ¢ X* at x ¢ X. One may then define
a mapping f : X > X to be accretive (or J-monotone) if, for all x, y e X,
(f(x) - f(y), d(x-y)) > 0. If f -c I is accretive for some ¢ > O,
then f is said to be strongly accretive with constant c. Webb, [47]
has shown that, if X* is uniformly convex; [| Q[ =1 and X ¢ X .q,
for each n eMN; g : X > X is a k-ball contraction; f : X = X is strong-
Ty accretive with constant ¢, and demicontinuous - i.e. Xq T X implies
that f(xn) Y f(x) ( ¥ denotes weak convergence), - then f + g is A-
proper if k < ¢, and I + g + f is A-proper if k - ¢ < 1. Notice that
f need not be bounded. The class of k-ball contraction plus strongly
accretive and demicontinuous mappings is not known to belong to any
other class of mappings and, consequently, the A-proper mapping theory
is the only one that can handlie such equations.

MiloZevic, [19]1, has considered similar problems, and his results
imply that if X is a reflexive Banach space, f : X »~ X is a linear,
continuous, accretive operator and g is a linear, compact operator,

then oI + f + g is A-proper for each o« > 0.




We now Took at some properties of A-proper maps. These are all

due to Petryshyn and the proofs are included for completeness.

Theorem 1.9  (Petryshyn, [26]). Suppose thatL : X = Y is a bounded,

Tinear, injective, A-proper operator with respect to I = {Xn,Yn,Qn}.

Then L is a homeomorphism,

Proof: We have just to show that L is onto, for then the Open Mapping
Theorem, cf. [39], gives the required result.

First, let us prove that there exists a constant C > 0 and N0 e N,
such that ||Q L x || > C[x. || for all x e X withn> N . Suppose
the contrary, then there is a sequence {xn}, which by Tinearity of QnL
we may choose with l[xnll = 1 for each n ¢ W, such that ||Q, L Xl
< %—]Ixnll = %~+-O as n + =, By A-properness of L this implies the
existence of a subsequence, which.we again denote by'{xn}, and an ele-
ment x e X with x_ + x as n > . Clearly, | x| =1 and Lx = 0. This
contradicts the injectiveness of L, so C and Ny exist. Thus, for
n g_NO, Qn len_: Xy = Yn is injective and therefore onto, since Xn
and Yn are of equal finite dimension n and Qn L is linear and contin-
uous for each n E-No' Thus, for each y ¢ Y there is a unique Xy € Xn’
such that Q L x, = Q, ¥, for each n > Nj. Now C l|xn|| <ot X |l
= llq, Yl < K|lyll , since the Q. 's are uniformly bounded, cf. Remark
(1) preceding Definition 1.8. So, ||xn|| is a bounded sequence and
Qn L Xy = Qn y ~ ¥, as n + «, which implies, again by A-properness of
L, that there is an x e X, such that for a subsequence, Xg 7 X and
Lx = y. By the injectiveness property, such an x is unique. Hence L

is a bijection and therefore a homeomorphism.




Theorem 1.10  (Petryshyn, [281). If f : X - Y (not necessarily linear)

is continuous and A-proper with respect to T = {Xn,Yn,Qn}, then the
restriction of f to any closed, bounded subset F of X is proper: where,
by proper we mean that for any compact set K in Y, the non-empty set

Fn f'](K) is also compact in X.

Proof: Let F be a closed, bounded subset of X and {x,} a sequence in
Fn f'T(K), where K is a compact subset in Y. Then {f(xk)} is a se-
quence in K, which, without loss of generality, we may assume converges.
That is, f(xk) > y{say) € Y as k » .

Now for each k €N choose e > 0 with e 0 as k - ». By contin-
uity of f, there exists 8y > 0, with 8y > 0 as k » =, such that, if
v - ka < 8 for v e X, then | F(v) - f(xk)H < e, But, by the pro-
perties of an admissible scheme there exists vn(k) € Xn(k) (where we
can suppose that n(k) > k) with || f(vn(k)) - f(xk)H < g and
I (k) ~ ka < 8. Thus, | Qn(k) f(vn(k)) - vl
<l Qn(k) f(vn(k)) - Qn(k) f(Xk)“ + i Qn(k) 'F(Xk) - Qn(k) yil

+ 1l Qi ¥ - VI

< K FG ) = FOIE + KQEG) =yl + [ Qg ¥ - vl 5 since the
Qn's are uniformly bounded by the constant K. So Qn(k) f (Vn(kp -y
as k ~ . Hence, by the A-properness of f, we may assume (passing to
a subsequence if necessary) that there exists x € X, such that Vn(k)+ X
as k +~ = and f(x) = y. This implies that X, > X as k - =, and, since

F is closed, x ¢ F N f'] (K), which is therefore compact, as required.

Theorem 1.11  (Petryshyn, [26]1). If L : X » Y is a bounded, linear,

A-proper operator with respect to T =‘{Xn,Yn,Qn}, then N(L) is finite

dimensional.
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Proof: Assume that N(L) is infinite dimensional. Then, since 3B(0,1)
is not compact in the infinite dimensional space N(L)}, there exists a
sequence {xn} in aB(O,T) and a constant C > 0, such that

Il x .

;- xjH > C for 1 # J, and L{x;) = 0 for each i eIN. Now, since

{x;}c 3B(0,1), then {xi}is bounded. Also L is a continuous, A-proper
operator. Thus, Theorem 1.10 tells us that {xi}is compact and, there-

fore, has a convergent subsequence {x,}, with x, + X (say) as k » =,
¢
2’
with k # &. This contradictionimplies that N(L) is finite dimensional.

Hence, there exists N e M, such that [x = x, [l < for all k, & > N

Theorem 1.12  (Petryshyn, [26]). If L : X -~ Y is a bounded, linear,

A-proper operator with respect to I' = {Xn,Yn,Qn}, then R(L) is closed

iny.

Proof: This proof is similar to that for the compact case as in, for
example, Yosida's book [51]. Suppose that R{L) is not closed. Then

there is a sequence {xn} ¢ X such that an ~y and y # R(L). By the

Tinearity of L, y # 0 and we may assume, without loss of generality,

that X £ N{(L) for each n ¢ N. Since N(L) is closed,

d = inf{H><n - x|l : x e N(L)} > 0 for each n e N. By a property of
the infimum, we can choose s e N(L) such that A = |/ x - spll < 2d

n
for each n € N. We shall prove that An + o as n -~ «, Suppose not, then

{xn - sn} contains a bounded subsequence {x_i - 5.}

; {ki} for which

Lki = in - Lsi = in +yas i +»=, Since {ki} is a bounded sequence,
then {Lki} is also bounded and every subsequence converges to y. So,

by Theorem 1.10, {ki} is compact and, therefore, has a convergent sub-
sequence {kj} with kj + k(say) ¢ X as j +~ ». Thus, Lk = y e R(L), con-

trary to our assumption. Hence, An +® 3s n + =, Setting
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-1 co s .
p, = A, (x, - s;) it is easily seen that lp Il =1 for each n e M,

"1 x - +0asn-«. Again, by Theorem 1.10, )

and Lpn = An n

has a convergent subsequence'{pj} such that Py > p(say) € X as j = «.
Clearly ||p]l =1 with Lp = 0, and so p & N(L).

Finally, setting z, = s, + Anp, we have that LG = 0 for each
n e, implying that z_ e N(L). Thus, ||x - z | > d for each n M.
On the other hand N Ap = An(pn - p). Now,
Ap<2d,sod < |[x,-z]| <A e, - el <2d (e, - pil . This implies

that 1 < 2flp - p|l for each n ¢ N, contradicting the fact that {p,J con-

tains a subsequence {pj} converging to p. Hence R(L) is closed.

1.3 Fredholm maps of index zero

The following class of operators will play an important role in

this thesis.

Definition 1.13 A bounded, linear operator L : X - Y is said to be a

Fredholm operator if dim N(L) = n(L) (say) and dim{Y/R(L)} = d(L) (say)
are both finite; where dim{Y/R(L)} = codim R(L), that is, the dimension
of any subspace of Y complementary to R(L). We denote the class of
such operators by &(X,Y), or &(X} if X = Y. The index of L, denoted
by 1(L), is given by i(L) = n(L) - d(L). When i(L) = 0, L is said to
be a Fredholm operator of index zero, the class of which we denote by
QO(X,Y), or ¢ (X) if X = V.

Examples of maps belonging to @O(X,Y) include B : X -~ Y, where B
is a linear, continuous bijection, and I + C : X »~ X, where C is a com-

pact, Tinear operator.

Remarks (1) If L « #(X,Y), then R(L) is closed, cf. Taylor and Lay [39],

Theorem IV. 13.2.
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(2) It is shown in Theorem 5.26 of Kato [12], that, if
L e ¢O(X,Y) and C : X > Y is a linear, compact operator, then
L+ Ce @O(X,Y).

(3) Nussbaum has shown in [20] that if L : X +.X is a bounded,
Tinear operator and || > re(L), then AI - L ¢ ®O(X).

(4) If L ¢ QO(X,Y),and T e ®O(Y,Z) for some Banach space Z, then
TL & QO(X,Z), see Taylor and Lay [39].

(5) Petryshyn [31]1, Theorem 2.3A, has shown that if L is a bounded,
Tinear, A-proper operator, then either, N(L} = {0}, in which case L is

a homeomorphism, or N(L) # {0}, and in this case i(L) > O.

The class QO(X,Y) has the following useful properties.

Theorem 1.14  (Petryshyn, [33]). When L ¢ QO(X,Y), there exist closed
subspaces X1 of X and Y2 of Y such that X = N(L) & X], Y = Y2 ® R(L):

Ly = le is injective with L1(X]) = R(L); and dim Y2 = dim N(L). Fur-

1
thermore, L may be decomposed into H - C : X > Y, where H: X > Y is a

Tinear homeomorphism and C : X - Y is linear and compact.

Proof: Since L e ®O(X,Y) there exist Y,, a complement of R(L) in Y,

and dim Y, = dim N(L) is finite. So, Y, is a closed subspace and by
Theorem 1.1 there exists a closed subspace X1 in X such that the decompo-
sitions of X and Y hold as required. Let P be the continuous, linear
projection of X onto N(L), and M a Tinear homeomorphism of N(L) onto

Y Then, we define C : X ~ Y2 by C = MP, and since Y2 is finite di-

9
mensional, C is linear and compact. Remark (2) succeeding Definition
1.13 tells us that L + C ¢ QO(X,Y). Furthermore L + C is a homeomor-
phism. To see this we first verify that it is injective. Suppose that

(L+¢C)(x) =0. Then x = u + v, withue N(L), ve X4 and Lv + Mu = 0.
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But Lv € R(L) and Mu ¢ Yoo implying that u = v = 0. Thus L + C is in-
jective. It is also surjective since it is Fredhoim of index zero.
Hence by the Open Mapping Theorem L + C is a homeomorphism. Thus,
setting H=L + C we have that L =L + C - C =H - C, which completes
the proof of the theorem.

The next result tells us that, in a space which has an admissible
scheme, linear Fredholm maps of index zero are A-proper with respect

to a related scheme.

Theorem 1.15  (Petryshyn, [331). Suppose that L ¢ @o(X,Y) and

T = {Yn,Qn} is an admissible scheme for maps from Y into Y. Then L is
A-proper with respect to the admissible scheme Iy= {Xn,Yn Qn}, where

Xn = H'](Yn) for each n e N and where H = L + C is the decomposition

given in Theorem 1.14.

Proof: First, we show that T, is admissible. Since H is a linear ho-
meomorphism, dim H‘](Yn) = dim Y, and for each x e X, there exists
y e Y with x = H(y), and dist(x,H™ (¥ )) = dist(H™ (y),H7 (V)
< RV distly.Y ) > 0 as n > w.

Finally Qny +~yas n->« for each y ¢ Y, since T is admissible.
Therefore, T, is an admissible scheme.

To prove that L is A-proper with respect to PH’ assume

{xn DXy € Xn } is an arbitrary bounded sequence such that

J J J
Q, Lx, ~Vyas j~>» foryeY. Then, Qn (L+C - C)(xn_) ~y and,
J J J N
since C is compact, we may assume that Qn. Cx, = w (say) as J » .

n.

oy )=o),
J N ] 3 . N
0. =Y. for each j €. Thus, an ynj = y”j + Yy *+ was

j = . Therefore, (L + C) X Y W, which implies that

J

J
Also, there exists Yp. € Yn such that X

and an Y
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X > (L + C)"] (y +w) = x(say) as j . So Cx =w and (L + C)(x)
j )
=y+w=y-+ Cg. Hence, Lx = y and, therefore, L is A-proper with

respect to TH.

Remark Examples by Petryshyn, [27] show that:
(i) An A-proper mapping need not.be Fredholm of index zero;
(ii) A Fredholm mapping of index zero need not be A-proper with
respect to a given scheme; however, if L is a bounded, Tinear,
A~proper operator with N(L) = {0}, then L is Fredholm of index
Zero.
IT we perturb a mapping in QO(X,Y), which is also A-proper, by a bounded
linear operator of sufficiently small norm then the perturbed map is

still A-proper with respect to the same admissible scheme.

Theorem 1.16  (Petryshyn, [30]). If L ¢ ®O(X,Y) is A-proper with re-

spect to an admissible scheme T', then there exists a constant Y > 0 such
that, for each bounded Tinear operator T : X - Y, with || T] < v, the

map L + T is also A-proper with respect to T.

Remark In the book by Taylor and Lay [39], Theorem 13.6 shows that
there certainly exists v > 0 such that L + T ¢ QO(X,Y) for all bounded
Tinear operators T : X - Y with ||T|| < Y. So, Theorem 1.15 above im-
plies that L + T is A-proper with respect to Ty = {H°](Xn),Yn,Qn} where
L+T=H-C. However, Theorem 1.16 says that whatever admissible
scheme L is A-proper with respect to, L + T is A-proper with respect

to the same scheme, for || T| < v.

Proof: See Petryshyn, [30].
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1.4 Generalised topological degree

One of the main tools available in nonlinear problems is the theory
of generalised topological degree. For A-proper maps the theory was
developed by Browder and Petryshyn [5]. This degree, although not single
valued, possessés most of the useful properties of the classical Brouwer
topological degree for maps between oriented normed spaces of equal fi-
nite dimension. Throughout the text we shall assume that the reader is
familiar with the definition and properties of the classical Brouwer
degree, which we denote by deg, and the classical Leray-Schauder topo-
logical degree, denoted by degLS, for infinite dimensional maps of the
form identity minus compact. These concepts may be found in the book
of N. G. Lloyd [16]. One result on Leray-Schauder degree, which does
not appear in Lloyd's book is the following, due to Krasnosel'skii [13],
which may be found in Cronin {71, in the form given here.

(The Leray-Schauder Formula). Suppose that L : X = X is a linear
compact operator and A > 0 is not a characteristic value of L. Then
degLS(I - aL,G,0) = (-1)", where G ¢ X is an arbitrary open bounded
set containing zero, and v is the sum of the algebraic multiplicities
of the characteristic values of L in the interval (o,A).

We now recall the definition of degree for A-proper mappings.

Definition 1.17 (Browder and Petryshyn [5]) Let G ¢ X be an open

bounded set and, for each n ¢, define G =GN X . Then, Gh =G N X,
and 3G =9GN0 X . If f: G + Y is A-proper with respect to the ad-
missible scheme T ='{Xn,Yn,Qn} and 0 £ f(5G), then we define the gen-
eralised topological degree of f at 0 ¢ Y relative to G, denoted by

Deg(f,G,0), to be the set {m eZU {-»,»} : for a subsequence {nj} of N,
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deg (Q. f,G_ ,0) »mas j » =}.
n. >n.
J J
Remark The A-properness of f ensures that for sufficiently large j,
0 £ Q f(aG .), and so deg is well defined and Deg(f,G,0) is a non-
J
empty subset of 2 U{-o,o}.
It is convenient to note that an alternative definition is possi-

ble in terms of limits of degLS, when f =1 -g : G-~ X is A-proper
with 0 ¢ (I - g)(aG).

Theorem 1.18 Let G ¢ X be an open bounded set. If I - g : X » X is

A-proper with respect to the admissible scheme T = {Xn Yn,Qn}, and
0 £ (I - g)(3G), then Deg (I - g,G6,0) = {m e Z U{-»,»} : for a sub-

sequence {nj} of IN, degLS(I - ang,G,O) +mas j - «}.

Proof: From definition 1.17 we need only show that for j sufficiently
large degLS(I - Q g,G,0) = deg(Q (I -g), GN X O) Trivially,
J

J(I - g)[G nx =1 -Q JgIG 0 X , and, for a11 sufficiently large

J. 0 4 (I - Q g)Ja(G n X ) by A- prgperness
J
Also, for all j € IN, 0 e X _and Qn g(G) ¢ Xn . Hence, by the
J J

definition of Leray-Schauder degree, cf. Lloyd [16],
deg, (I - Q. g,6,0) = deg(l - Q g, G0N X ,0) for all j sufficiently

LS n. nj nj
large. The result follows by Tetting j -+ .

Remark From Theorem 1.18 it is easily seen that, if 0 ¢ G, then

Deg(I,G,0) = 1, where I is the identity operator.

Untike the Brouwer and Leray-Schauder degrees the generalised de-
gree is multi-valued, in general. For example, Deg(-I,B(0,1),0)
= {-1,1}. As we shall see, however, many of the useful properties

of classical topological degree hold for generalised degree. Results
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that are well known we shall just cite, the others will be proved. Un-
lass otherwise stated we shall assume the notation of Definition 1.17.

(P1.) (Lloyd, [16]). If Deg(f,G,0) # {0} then there exists x ¢ G
such that f(x) = 0.

(P2.) (Lloyd, [16]). Let G = G, U G, where G, and G, are open
and 0 ¢ f(aG1 U an U(G1 N GZ))' Then Deg(f,G,0) g_Deg(f,GT,O)
+ Deg(g,Gz,O), with equality holding if either Deg(f,G},O) or
Deg(f,Gz,O) is single valued.

(P3.) (Homotopy property). (Toland, [42]). Suppose that
H: XX [0,11 >~ Y is such that H(.,t) : X > Y is A-proper with respect
tor ='{Xn,Yn,Qn} for each t ¢[0,1], and H(x,.) : [0,1] ~ Y s con-
tinuous, uniformly for x in closed, bounded subsets of X. Let
G c X x [0,1] be a bounded open set and define Gt ={x e X : {X,t) € G}.
Then, Deg(H(.,t),Gt,O) is independent of t ¢ [0,1], provided that

0 # H(3G,,t) for 0 < t < 1.

Proof: As Toland does not prove this result we give a proof for com-
pleteness.

Since 0 ¢ H(aGt,t) for each fixed t e [0,1]1, then by the remark
following Definition 1.17, Deg(H(.,t),Gt,O) is well defined. The re-
quired result holds if we show that, for sufficiently large j N,
deg(@n_H(.,t),Gt N an,O) is independent of t in [0,1]. Theorem 2.2.4
in Lloyd ['6] tells us that this is so, provided there exists N > 1
such that, for all n > Ny» 0 ¢ an H(a(Gt n an),t) for 0 < t < 1.
Suppose this is not true, then there exist sequences'{nj} c N,

{tj} ¢ [0,1] and {x, }c a(Gt. n Xn-) such that ng > = and, without loss

J J
of generality, tj +~tas J >« with Qn.H(Xn.’tj) = 0 for each j  WN.

J J
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By assumption, H(x,.) : [0,11 = Y is continuous, uniformly, for x
in bounded subsets of X. Now for each j N, a(Gt‘rw Xn.) is contained
in the closure of the set {Gt : t €[0,1]1}, which is closed and bounded.
Thus || H(xnj’tj) - H(xnj,t)H +0as j -+ and so
|lQn‘H(xn.,tj) - anH(an’t)” = ][anH(an’t)H +~0as j - =,

But H(.,t) : X »~ Y is A-proper for each t £[0,1], therefore, there
exists X € X and a subsequence, which we again denote by {xn_}.such that

J
X, = xas J-«and H{x,t) = 0. So (x ot ) + (x,t) as j -+ = and

n. n
J J J
since (xn oty ) € 3G for each j e N, it follows that (x,t) e 3G and
j d
X € aGt. This contradicts the fact that 0 £ H(aGt,t).

Hence the result follows.

(P4.) (Toland, [42]). Let L : X » X be a bounded Tinear operator
with re(L) < |1/x], such that I - AL is A-proper with respect to the
admissible scheme T ='{Xn,Yn,Qn}. Then, provided A is not a charac-
teristic value of L, Deg(I - AL,G,0) = {(-1)"}, where v is the sum of
the algebraic multiplicities of the characteristic values of L in the
interval (0,A), and G is an arbitrary open, bounded set containing zero.

This resujt is not given a proof in [42], so we include our own.
Proof: Since re(AL) < 1, then Ma(A) = dim{ng] N((I - AL)M?} is finite
and so the ascent p (say) of I - AL is finite with
dim{N((I - AL)P)} = MaOQ. Also, I - AL is Fredholm of index zero by Re-
mark (3), following Definition 1.13, and then, by Remark (4), (I - AL)"
is Fredholm of index zero for each n e N. Hence, since
RU(I = APy ¢ RO(T - AL)P), then dimR((I - AL)P)} = dim R((I - aL)P*T,
and we have that the descent of I - AL is also finite. Therefore, by

the results of s1.1, X = N((I - aL)P) ® R((I - AL)P).
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Now by a similar method to that used by Nussbaum [21], in his proof
of Lemma 8, we may show that X = E] ® EZ’ with El finite dimensional,
E, a closed subspace, L.:Eq > By LiEy > By, and I - t A L]Ez an A-proper
homeomorphism for each t in [0,1]; A-properness of I - t A L[E requires
an argument using Theorem 1.16. Let P be the projection of X onto E],
and define T : X -~ X by T = LP. Then, T has finite dimensional range
and is therefore compact. Define the homotopy H : B(0,1) x [0,1] -~ X by
H(x,t) = x - t A Tx = (1 - t) A Lx, for x e B(0,1) and t [0,1].

Since T is compact, H(.,t) : X > Y 1is A-proper with respect to T for

all t £[0,11. We shall prove that H(x,t) # 0 for all x e 3B(0,1) and

t €[0,11. Suppose the ;ontrary, then

H(x,t) = 0 for some x e 3B(0,1) and t £[0,1]. Then x = x; + X, where

1
Xq € E] and Xy € EZ' This gives,

Xa + X5 = £ ALXy = (T=t)ALxy - (1 -1)2 Lx2 =0,

1 2 1 1
since Tx = LP(x] + XZ) = Lxq. Thus , Xy = A Lxy = —(x2 - (1 -t) A Lx2)
= 0 by the invariance of E] and E2 under L. Hence, Xy = 0 since

I -(1-1t)x L]xz is a homeomorphism, and therefore x; = 0, for A is
not a characteristic value of L by assumption. Therefore, x = 0, con-
tradicting the fact that x ¢ aB(0,1). Hence, it follows that

Deg(I - AL, B(0,1),0) = Deg(I - AT, B(0,1),0) = {degLS(I - AT,B(0,1),0)}
(by Theorem 1.18) = {(-1)"} (by the classical Leray-Schauder formula
which is stated before Definition 1.17), where v is the sum of the al-
gebraic multiplicities of the characteristic values of T in the inter-
val (0,1).

To complete the proof we show that v also equals the sum of the

algebraic multiplicities of the characteristic values of L in the in-

terval (0,A).
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Suppose that u €(0,A), X e X, x # 0, n e N and (I - WY x = 0,
then, writing x = Xq + Xos where Xq € E1 and X2 € E2 and T = LP, we
have that (I - uL)" X7 = " X, = 0 by invariance of L on E; and E,.

So, Xo = 0 and x = Xy implying that (f -ul)" x = 0. Conversely,
suppose that (I - uL)n X = 0 with u, n and x as before. Then,

(I - uL)" Xy = (1 - w)" Xo = 0, and, since I - uLlE2 is a homeomor-
phism, then Xy = 0 and X = Xp = Px], which implies that (I - uT)n x = 0.
0 if and only if (I - ul)" x =0, so

Hence, (I - uT)" x

U IN((T - wT)™M3 = U IN((I - ul)™3, which completes the proof.
n=1 n=1

n’

| (P5.) (Petryshyn, [311). If L : X~ Y is a linear, continuous,
injective, A-proper map and G is an arbitrary open bounded set in X

with 0 ¢ G, then for arbitrary r > 0, Deg(L,B(0,r),0) = Deg(L,G,0).

Proof: For arbitrary e such that 0 < ¢ < r, it follows easily that
B(0,r) =B{0,rY\B(o,e/2)) U B(0,e). Now, since L is injective, Lx # O
for x € B(0,r)\B(0,e/2) and so (P1l) implies that
Deg(L,B(0,r)*B(0,e/2),0) = {0}. Thus, by (P2.), we have
Deg{L,B(0,r),0) = Deg{(L,B(0,e),0) + Deg{L,B(0,r)\B(0,e/2),0)

Deg(L,B(0,e),0) + {0}.

But 0 ¢ G and G is open, and so there exists €9 such that 0 < gg < T
with Elo,eg) c G. As above, the injectiveness of L implies that
Deg(L,GN\B(0,e,/2),0) = {0}. Thus, ‘

Deg(L,G,0) = Deg(L,B(O,aO),O) + Deg(L,G<§(0,eo/g)}0)
= Deg(L,B(0,e4),0) + {0}. |

If we take ¢ = €0° it is easily seen that Deg{(L,G,0)
= Deg(L,B(0,r),0).

This proves the result.
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(P6.) (Fitzpatrick [8]). Let f : X >Y and G ¢ X satisfy the hy-
potheses of Definition 1.17. Assume that f is continuous and 0 ¢ G.
Suppose that g : G -~ Y is also continuous and A-proper with respect to
r. Then there exists d > 0 such that, if ||g(x) - f(x)]| < d for all
x ¢ 8G, then Deg(f,G,0) = Deg(g,G,0).

Proof: First, we prove that there exists d > 0 such that Deg(g,G,0)
is well defined. To do this we need to show that there exists 8y > 0
such that || f(x}|| > &, for all x e 2G.

Suppose not, then for each k > 0 there is a sequence'{xk} in oG
with [ £(x )| <5+0as k=, soflx,) >0as k=

However, f is continuous and A-proper, which, by Theorem 1.10, im-
plies the existence of X e 3G such that f(x) = 0. Thus, 81 exists.
Hence, for d less than 12;- it follows that [[g(x)|| > [[fF(x)]] - d.,
> i%- for all x ¢ 3G. So Deg(g,G,0) is well defined for d <fﬁ_.

To complete the proof we show that there exists N0 e MN séih that
for all n z_No,deg(an,G n Xn,O) = deg(Qng, G N Xn,O). Recall that
26 N X)) =26 NX.

Now there exists 62 > 0 and N0 e N with the property that for all
n > No, | Quf(x )l > 28, for all x,e 3G 0 X, . For otherwise A-
properness implies f(x) = 0 for some x e 3G, which is a contradiction.
Also, for each n e M, |]Qn(f(xn) - g(xn)m 5_K[|f(xn) - g(xn)H

< Kd for all x € 3G N Xn
where K is the uniform bound on ||Q |l . Now choose d < min{s,/2 ,8,/K}
and consider the continuous homotopy H_ : GnN Xn x[0,11 +Y defined by
Ho(x,t) =t Q g(x) + (1 - t) Q, f(x) for x e'ﬁfI)g1and t e[0,17.
We shall prove that for each n > Ny, Hn(x,t) # 0 for all x e 3G N X
and t €[0,1].
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Suppose the contrary, then there exist sequences {nj} c N, {xn }

J

c 3U Nx_ and {t_ } c[0,1] such that n, > N, for all j e N, n + «,

nj nj jg=0
t ->tas j->eand H (x_ ,t ) =0.
nj n, n nj

This implies that ||t Q  g{x_ )+ (1 -t) Q f(x_ )| ~0 as j+w.

Thus JjQ, f(x_ ) -tQ (f(x ) -g(x )| ~0as j~» .

n, n n; n n,

We have seen above that for nj > Ny

o, flxp ) ~-tQ (flx )-glx N
Ny Ny ;
110, T ) I8y (£ ) = sl )]
720y -8, =68,>0

This contradiction shows that Hn(x,t) is a valid homotopy and the re-
gquired result follows by application of the homotopy property for

Brouwer degree.

(P7.) (Fitzpatrick, [8]). Assume that f(0) = 0 and f is Fréchet
differentiable at 0 with the Frechet derivative f'(0). Suppose f'(0)
is injective and A-proper with respect to I'. Then 0 is an isolated so-
Tution of f(x) = 0 and there exists r > 0 such that Deg(f,B(0,r),0)

= Deg(f'(0),G,0) where G is an arbitrary open bounded set in X contain-

ing zero.
Proof: By Definition 1.6, there exist R : G x X = Y and ry> 0, with
f(x) = £'(0){x) + R(0,x) for all x e X,such”that,whehevér J<r < T
then . IF(x) - £'(0)(x)]| -;{ ‘ngﬁX) Ix|l, for x # 0, x & X

0, for x = 0

< d, for all x e 8B(0,r), where d > 0 is the constant from (P6.).
Now, since f'(0) is injective, then 0 ¢ f'(0)(3B(0,r)) for all r > 0,
and by the proof of (P6.), there exists ro > 0 such that for

0<rr,, 0 ¢ f(3B(0,r)). So, by choosing r = min{ry,ry}, 0 is the
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only solution of f(x) = 0 in B(0,r), and, by (P6.) and (P5.) ,
Deg(f,B(0,r),0) = Deg(f'(0),B(0,r),0) = Deg(f'(0),G,0). The last
equality follows by (P5.), since f'(0) is linear, continuous, injective
and A-proper with respect to I'. This completes the proof.

(P8.) The Multiplication Formula (Petryshyn, [32]). Suppose

that L, : X = Y and L2 : X > Y are bounded, linear operators such that

1
L] is injective and A-proper with respect to the admissible scheme

T = {Xn,Yn,Qn}. Assume that L2 is compact, L1 - L2 is injective, and
let G be an arbitrary open ball in X containing zero. Then,

Deg(L G,0)

1}

-1 Deg((I - L.L '])L1,G,O)

ok
= deg, (1T - LZL]'l,L](G),O) Deg (L

1 2’

'IQG’O)

Proof: Since Lz is compact, L1 - tL2 is A-proper with respect to I for
each t €[0,1]. Also, L1 - L2 and LT are linear, continuous, injective and
A-proper. So, as in the proof of Theorem 1.9, there exists a constant
Co > 0 and Ny e N, such that [['@,(Ly = L) (x )| = Collx. Il
and ||Qn L, xnﬂ z_coilxnu for all x_ e X and all n > Ny. Also, by
Theorem 1.9, L, is a homeomorphism, so I - L2L1'1 : Y > Y is also
Tinear, continuous and injective; furthermore, since L2 is compact and
{Y,.Q,} is an admissible scheme for Y, then I - LZL]'1 is A-proper with re-
spect tor, = {Yn,Qn} and there exists a constant C; > 0 and N, e N for
which |Q (1 - Lob ™y ) 2 Cqlly Il s for ally, e Y, with n > N,.
We shall prove that for n > max{Nj,N,} = N2 (say),
deg(Qn(L1 - L2), B(0,1) N xn,o)
= deg(Q, (I - L,L,™"), L{(B(0,1)) 0 ¥,,0) deg(Q;L1.B(0,1) N X ,0).

From the above argument each Brouwer degree in this equation is

well defined, for n > N,.
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We shall use a homotopy argument to obtain the required result.
Define Hn . (B{0,17 N Xn) x [0,11 > Y, by,
= -1
Ho(t) = &0 (Ly = L) (x )+ (1= 1) Q (T = Lol ™) Q) Lylx).
Then, Hn(x,t) # 0 for x ¢ aB(0,1) N Xn and t €[0,1]1, with n 3_N2.
For, suppose the contrary, then there exist subsequences {nj} c N,
{xnj} c aB(0,1) N X, and {t 1} c [0,1] such that n; > Ny for each

J J
jeMl, nj -+ », and tnj -~ 1t e[0,1] as j > « with Hnj(xnj’tnj

) = 0 for
each j « IN.

S0, t (Q (L = L)(x )+ (1= 1) (I-LL;7)Q, Lylx, ) >0as jore,
J J J J J
and, therefore,

) -t Q. Ly(x ) -(1-80Q LL7Ta Lix )+0asj+e.
j j nj 2 nj nj 271 nj 1 "j
Now, since Qn- L](xn ) is bounded and L2 is compact, we may assume
J J
..'] . -
that L2L1 Q, L](Xn~) ~ W as j > =, therefore

J_ J
10-00, Lot ‘ Ly ) - (- 1) wl]
<fla, (-t Lt Lilx ) - (1 -t
N 2-1 nj 1 nj nj
e, (1T-1t)w=-( -1t)wl
J
<oyl (- vl Lok Uy, Ly xg ) - vl
+ | an(1 -t)w- (T -t)w] ~0as j~=.
Thus, (1 - t) an LZL]'] an LT(an) > (1 -t) was j »«. Hence,
an(L1 - tL2)(an) + (1 - t) w, and, by the A-properness of L, - tlL,,

we may assume that there exists x e X such that Xy, 7 X and
J
(L

| anL1(an_) - L0l <l an LT(xnj) - an L, (x) |
* l1Qn. L1(x) - L1(x)“ + 0 as j » =, which implies that
J

- tLZ) x = (1 - t) w. Then
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LZL]"T Q. L1(Xn.) - L2L1'] Lix = Lox = w.
Thus, (L, - tL,) x - (1 - t) Lyx =0, or (Ly - L2)x = 0 with
x|l =1, contradicting the injectiveness of L, - L,.
Hence, by the homotopy property for Brouwer degree, we have, for
each n > Ny, that
deg(Q,(Ly - L,), B(0,1) N X, 0)
deg(Q (I - Lol ™) QLys BO,1) A X, 0)

deg(Q (1 - LZL}'T), L,B(0,1) N Y_,0) deg(Q, Ly, B(0,1) N X, 0,

il

by the multiplication formula for Brouwer degree. Now, by definition
of Leray-Schauder degree [16], deg(Qn(I - L2L1']), L](B(O,])) n Yn,O)

= deg, (I - L2L1'1, L,(B(0,1)),0).

Hence, letting n » «, we have Deg(L1 - Ly, B(0,1), 0)

= degLS(I - L2L1_1, L1(B(0,1)),O) Deg(L],B(O,1),0), and the result fol-

Tows by (P5.).
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CHAPTER TWO

GLOBAL BIFURCATION

VIA
GENERALISED TOPOLOGICAL DEGREE

Introduction

In this chapter we define, in its most general form, the abstract
nonlinear eigenvalue problem to be considered in this thesis. Such a
probTem has the form F(x,A) = Ax - T(A)X - R(Xx,A) = 0, where
F:XxR=Y, A-T(x) is linear, R is a higher order term with F(.,\)
and A - T(\) both A-proper for A in some interval in R. We define the
concept of bifurcation of solutions to this equation and prove that a
sufficient condition for bifurcation is that the generalised degree of
the linear part, A - T(A}, changes as the real parameter A moves across

a'spec1a1 point Ao' A. is then called a bifurcation point. Our method

0
provides us with g]obél results, in particular we are able to deduce
that from a bifurcation point o there emanates from (O,AO) a maximal
connected set(% ¢ X xR, of solutions which satisfies at least one of
three properties: namely, it is unbounded; it moves out of the region
where our maps are well-defined; or it simply ends at some other point
(0,3\0) with io different from A_.

The use of degree theory in proving global results, was first made
by Rabinowitz [35] when the mappings involved were compact. Generalisa-
tions have been given to more general classes of mappings, see, fTor
example, Stuart [36], Toland [42], Stuart and Toland [38] and Mawhin

[18]. Stuart and Toland [38] considered problems, where the nonlinear

eigenvalue problem has the non-standard form,
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I ~C=2B -R{(.,A) =0

with B,C linear compact maps and R a compact continuous map of higher
order. They proved a global result when it was not required that I - C

be invertible. Stuart [361 also proved a global result for the problem

I - AL - AR = 0,

where A(L + R) is of the more general class of k-set contractions, with
k < 1, and R again of higher order.

We shall extend these two methbds by replacing I or I - C by a
general linear map A, by allowing AL or AB to have the more general form
T(x), retaining the linearity and continuity conditions, but assuming
that A - T{x) - R(.,A) and A - T()) are‘A—proper for certain values of

AL

2.1 The general global bifurcation result

The equation to be studied is as follows:
F(x,A) = Ax - T(A)x = R(x,A) =0 (2.1)

with F : X xR ~ Y, where X, Y and X x R are Banach spaces.

We impose the following hypotheses:

(H1) F(.,A) : X~ Y is an A-proper mapping with respect to the
admissible scheme T' = {Xn,Yn,Qn} for A in some real interval (a,b) fi-
nite or infinite;

(H2) A - T(») : X + Y is a bounded linear, A-proper operator with
respect to T for all » e (a,b) (as in (i)) and T(A)x is uniformly con-

tinuous in A for x in bounded subsets of X;
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(H3) R(.,x) : X+ Y is a continuous mapping such that
I| R(x,A) [} 7 1]l =~ 0 as || x{| -~ 0, uniformly for A in bounded intervals;
(H4) The mapping A = R(x,A) is continuous from R into Y, uniformly

for x in bounded subsets of X.

Remark From (H3) it follows that A - T(x) is the Frechet derivative of
F(.,A) at the point O.

We shall refer to equation (2.1) satisfying hypotheses (H1) - (H4)
as problem (2.1).

It follows from (H3) that the set {(0,A) ¢ X x R} is a solution
set for equation (2.1). We call this the set of trivial solutions and

make the following definition.

Definition 2.1 S will denote the set of non-trivial solutions of equa-

tion (2.1) in X x R. That is (x,r) ¢ S if and only if F(x,r) = 0 with
I x| # 0.

If (O,AO) e X xR is a point from which emanates a continuous set
of non-trivial solutions of equation (2.1), then the value Ao is called

a bifurcation point. More precisely:

Definition 2.2 A point AO e fR is called a bifurcation point of equa-

tion (2.1) if there exists a sequence {(xn,xn)} in S converging to the
point (O,AO) e X X R.

It will be shown that all the bifurcation points of equation (2.1)
are “"characteristic values" of the linear operators. More precisely

we make the following definition.

Definition 2.3 The set of characteristic values of T(.) relative to

A, denoted by CA(T), is given by
CalT) = 1h e R : N(A - T(A)) # {0}
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This set is a simple generalisation of the set ch(T) of charac-
teristic values of T defined in Chapter One.

Note that for A £ CA(T) with » e(a,b), A - T(1) is a linear, con-
tinuous, injective, A-proper map and so is a homeomorphism by Theorem

1.9.

Proposition 2.4 A1l bifurcation points of equation (2.1) in the in-

terval (a,b) are contained in CA(T).

Proof: Suppose that A e(a,b) with X £ Ca(T). We shall prove that A is
not a bifurcation point. First we show that there exists a constant
k > 0 such that || (A - T(A))x|} > k|| x|l , for all x e X.

For if this is false, then there exists a bounded sequence {xn} in

X with [[x || =1 for all n eM, such that || (A - T (x )l

1

& —

~0 as n—+», Thus {(A - T(i))xn} is compact in X. Now since

=

- T(}) is continuous and A-proper, then by Theorem 1.10 A - T(}) is
proper on closed bounded sets in X. Hence we may assume that there
exists x e X such that x » x as n > = and (A - T(3)) x = 0 which con-
tradicts the assumption that X ¢ CA(T). So k > 0 exists.

Let A eR and x ¢ X, x # 0. Then

| Ax = T(x)x = R{x,A) ||
= JAx - T(A)x = (T(A) = T(A)x = R(x,A)]]

> M Ax = T(ROx|E = 1TG) = TR Tx - TROGA)
> k= ITGY - TN = PROGO) N T X for [[x]] # 0
> 0,

when |» -1 and |[x] are sufficiently small. Hence X is not a bifur-

cation point of equation (2.1).
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Proposition 2.4 tells us that a bifurcation point of equation (2.1)
must necessarily be a characteristic value of T{(A)} relative to A. How-

ever, not all characteristic values are bifurcation points. For example,

2

Tet X = Y =RR“ and A have a matrix representation (8 é) with respect to

some basis iniRe. Let T(r) = AL where L = ('g _?) and define R{x,A)

= (x$3) where R :IR2 X R +-m?and X = (x1,x2) for X ele. Then
IRGOM/Tx ] = D0+ 2% < el g = %% and so
IR /7l %]l ~0as fIx] ~o0.

Thus since all maps are compact it is easily seen that this exam-
ple fits into the framework of problem (2.1)

Now , CA(L) = {)x : N(A - AL) # {0}} is easily seen to be the single-
ton {0}. The equation Ax - ALX - R(x,A) = 0 is equivalent to the si-

multaneous equations

il
o

X, + AX

which imply that x1(l2 + x12) = 0,

Hence the only solution to this problem is the trivial one
X| = X, = 0. Thus Ag = 0 is not a bifurcation point.

However, as we shall see, isolated elements Ao of CA(T) for which
the degree of A - T(A) changes as X passes through A, are always bifur-

cation points. Before proving this we require some preliminary results.

"Definition 2.5 Denote by S' the set S U{(0,A) e X xR : x ¢ CA(T)}.

Lemma 2.6 Let [c,d] be any closed interval contained in (a,b). Define

Z=S"0{X x [c,d}}. Then all closed bounded subsets of Z are compact.
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Proof: Let {(xn,kn)} be a sequence in an arbitrary closed bounded sub-
set of Z. Without loss of generality we may assume that An + A as

n - o,

1

For each n eMN set T_= A - T(r) - R(.,2,) and

n
T=A-T() -R(.,1). Then
1F,(x) - FOON = [1(T0) - T e+ R(xA) = RGGA )|
<) = TGO IxlE + IR(x:2) = RxA M~ 0 as n >,

uniformly for x in bounded subsets of Z. Now since {xn} is a bounded se-
quence in Z and Tnxn = 0 for all n e N we have that T X, > 0asn>e.
But T is continuous and A-proper, therefore it is proper, by
Theorem 1.10, on closed, bounded sets. Hence, we may assume that there
exists X ¢ X such that X X (say) as n > = and Tx = 0.
Thus, (xn,An) + (x,A) and it follows that all closed bounded sub-

sets of Z are compact.

‘Definition 2.7 Let Aj e CA(T) and denote by C_ the component (maximal

connected set) of S' containing the point (O,Ao). Then we say that A
is a global bifurcation point of equation (2.1) or that global bifurca-
tion occurs at AO, provided Cssatisfies at Teast one of the following
properties:
(1) Cis an unbounded subset of X x R;
(i) (O,XO) e Cg for some element io £ CA(T) with io # Xy
(ii1) infir - ap: K,A) e C for some X e X} =0 or
infb - At: (x,2) eCS‘for some X € X} = 0.
Before giving our main bifurcation theorem we state a topological

result and prove a Lemma.
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Lemma 2.8  (Whyburn, [50]). Let K be a compact metric space and A and
B be disjoint closed subsets of K. Then, either there exists a connected
set in K meeting both A and B, or K = KA U KB, where KA’ KB are disjoint

compact subsets of K containing A and B respectively.

Lemma 2.9 Suppose.thét Ay € CA(T) is isolated but A  is not a global
bifurcation point of equation (2.1). Then there exist a bounded open
set G in X xR and positive numbers e, p and n such that:

(a) A >a+eand A <b-¢e for all A R such that (x,1) ¢ G
for some x = X3

(b) (0,1,) € &3

(c) SN 3G = ¢3;

(d) I x]| > n for all x : (x,A) € G with |x - Aol > 03

(e) A, is the only element belonging to CA(T) in the interval

- +
[RO P Ao pl.

Remark: Similar to results of Rabinowitz [35] and Stuart [36].

Proof: Let C denote the maximal connected subset of S' to which (0,2,)
belongs. Since Ao is not a global bifurcation point, then (i) of De-
finition (2.7) does not hold and C, is therefore a closed bounded sub-
set of X xR. Llet

e =Lk inf{l, A - a, b = 2 : (X,A) ¢ Cg for some x e X}.
Then since (iii) of Definition 2.7 fails we must have ¢ >0 and there-
fore A >a+ e, A <b - ¢ for all A e R such that (X,\) € C for some
x e X. DefineZ=S8'"N{Xx [a+e,b-cel}
Then, from Lemma 2.6, all closed, bounded subsets of Z are compact, there-

fore Csis compact.
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Now, since(ii) of Definition 2.7 also fails, if (x,io) e Cg
with Xo 5 CA(T) and Xo # 2, then lIx]] > 0. So there exist numbers

py > 0 and ny > 0 such that x|l > ny for all (x,1) eCgwith

A - XGI < o7 Also aj e Cy(T) is isolated so Proposition (2.4) and

the previous argument imply the existence of numbers p > 0 and n > 0

such that |[x || > 4n for all (x,1) eC_with [x - a5l > %pand where

A, is the only element of CA(T) in the interval (A - 0> AO‘+ ol.

Hence (e) 1is satisfied.

Let ¢ = min{e, %p, n} and
Vg = {(XT,k]) e X XR-: llx] - x|| 2 4 |A - A]IZ < 8% for some (X42) € C. 1.
Then, by our choice of &, |[x|| > 3n for all (x,r) e Vg with {3 - 2]
> to. This tells us that (0, a o) £ V,. To see this consider
(0, Ay t p) and suppose that the nearest point in Vs to (O,AO +p) is
(x,2). If [A - A ] = 40 then I x| > 3n and so dist((0,x; + p),(x,2))
> 3n > 0. Alternatively if |x - A0| < 1p, then dist ((O,A0 + 0}, (X,A))

> 40> 0. S0 (0,2, +0) Vg and similarly (0, - o) £ V.

Now, let K=Z N V% =S'N VS'

Then K is a closed bounded subset of Z and hence compact by Lemma 2.6.
This follows since when {(xn,xn)} is a sequence in K such that

(xn,xn) + (x,A) (say), then by closure and boundedness of Vs, (x,1) € Vg
and (x,A) is bounded. Hence, by the continuity of F, (x,A} £ S'.

Now, since & > 0, CS and aVs are disjoint closed subsets of K,
therefore so are Csand S' N aVg. Also, by the fact that Csis a maximal
connected subset of S', there is no connected subset of K intersecting
both Csand S' N Bvﬁ' Hence, by Lemma 2.8, there exist disjoint compact
subsets K, and K, of K with K = K; U K,,C. ¢ Ky and St eV, c K.

2 1 2°7s
Let dist(Kl,Kz) = m. Then,by compactness,m > 0. Define
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2
2
G = {(x],A]) e X XR : Hx1 - X]]©+ ]A1 - AF < %%— for some

(x,A) € K;}. Hence, since (O,AO) s:CSg_K1 c G, (b) holds.

Now dist(cs,aG) < dist(Cs,Kz) < & and so G ¢ V5 and 8G ¢ Vs.
Also K N 5G = (K] U Kz) N 3G = ¢, therefore,
o =K Mo =(s' NT,)Noae=5"n2G,and (c) holds.

Furthermore, since G ¢ Vs’ then (a) holds and by our observation
above that [ x| > 3n for all (x,A) e V, with A - Aol > 2o then (d)
holds. Hence G satisfies all the conditions (a) - (e).

We can now prove the following global bifurcation result.

Theorem 2.10 Let Ay € CA(T) be isolated and suppose that there exists
§ > 0 such that Deg(A - T(A), W, 0) # Deg(A - T(X), W, 0) for

Ag = § <A <A < A< Ao, ¥ 8, where W is an arbitrary open bounded set
in X containing zero. Then ho is a global bifurcation point of equa-

tion (2.1).

Proof: The proof is by contradiction. We assume that AO is not a glo-
bal bifurcation point and prove, then, that necessarily
Deg(A - T(A), W,0) = Deg(A - T(X),W,0) contradicting our assumption.

So suppose AO is not a global bifurcation point. Then by Lemma
2.9 there exist an open subset G of X and positive numbers e, p and n
satisfying conditions (a) - (e). For » ¢ R we define
GX = {xeX : (x,A) £G}and BGA = {x e X : (x,r) £ 3G},
Choose A,A with Mg = P <AL S X < A, * o such that (0,r) ¢ G for
all A e[A,x], and p as defined in Lemma 2.9.

Note that this is possible since (O,Ao) e G, and G is open. So

02 96, and hence 0 ¢ GA for A e[x,A). Now, by condition (c) of Lem-

ma 2.9, SN 3G = ¢, and, therefore,
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Ax - T(x) x - R(x,A) # 0, for x ¢ 3G, and A e[A,A].
Also, A > Ax - T(x) x - R(x,A) is continuous on [X,A], uniformly on
'GTA and A - T(x) - R(.,1) is A-proper for all A e[X,A]. Hence by the

homotopy property (P3.), Deg(A - T(A) - R(.,A), G,, 0) is defined and

A’
independent of X for A e[A,A], which implies that

Deg(A = T(?_\_) = R(-S.&)a G DeQ(A - T(ﬂ = R(-sDQ-Gxa 0) (2-2).

L 0)

We show that

I

Deg(A - T(X) - R(.,1), &, 0) = Deg(A - T(X) - R(.,1),B(0,r),0)

with r > 0 arbitrarily small. It follows, from Proposition 2.4, that

there exists a number r, (X) such that for every A e[X,p+ A1, 0 is the

only solution of equation (2.1) in the closed ball 'B'(-._O,r}(ﬂ). Let

rz(T) = min{%r; &), ¥nl. Then, from condition (d) of Lemma 2.9,
§(O,r2(3\—)) n EA =¢ for A >+ A.

Suppose that x e a(GA\E(O,rZ(T))) for A > A. Then, either || x| = rz(A),
or else || x| » rz(T), and x ¢ 3G,. By condition €) of Lemma 2.9 this
implies that if A > X and X e a(G§§(0,r2(T))),then (x,A) does not satis-
fy equation (2.1). Also, A - TQ) - R(.,A) is A-proper for

Ae[A, b - €] and A -~ Ax - T(x) x - R(x,A) is continuous on [, b - €],

uniformly for x in G;\\ §(O,P2(D). Hence by the homotopy property (P3.)
Deg(A - T(r)} - R(.,A), Gk\g(o,r‘z(f)), 0) is defined and independent of
A e[x, b - €]. In particular

Deg(A - T(X) - R(.,A), GX\"B"(O,rZ(T)), 0)

= Deg(A - T(b - ¢) - R(..,b - ), G _ \B(O,ry(x)), 0) = {0},

This follows by degree property (P1.) since Gy E\E(O,rz(ﬂ) = §.
Hence by (P2.),
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Deg(A - T(ﬂ = R(-:T):Gi‘s 0) = DeQ(A - T(ﬂ - R(-:x) sGi‘\§(Osr2(T))s O)

+ Deg(A - T(X) - R(..X), G5 0 B(0,2r,(T)), 0)

Deg(A - T(X) = R(.,xr), B(o,zrzm), 0) + {0} (2.3)

since Gy N B(O,Zrz(i)) = B(O,Zrz(iﬁ). Note that we have equality here
since one of the terms in the sum is single valued. It should also be
emphasised that we originally chose ro half as small as was neéessary,
so replacing rz(i) by 2r2(i) does not affect any of the important ar-
guments. In particular for A e[X, p + Ao], zero is the only solution
of equation (2.1) in the closed ball EI&,Zrz(X)).

It may be proved similarly that there exists rz(l) such that

Deg(A - T(_};) - R(-sl) aG)\so) = Deg(A - T(l) = R(-s&_)s B(O,ZY‘Z(L)), 0)
+ {0} (2.4)

Finally by choosing rz(g) and rz(i7 small enough it follows from (P7.)
that Deg(A - T(a) - R(.,A)s B(0,2r,(1)),0) = Deg(A - T(2),B(0,2r,(2)),0)
and

Deg(A - T(X) - R(.,X), B(o,zrz(i), 0) = Deg(A - T(X), B(O,Zrzm), 0).

Then, from equations (2.2), (2.3) and (2.4) and (P5.), we have that
Deg(A - T(A),W,0) = Deg(A - T(X),W,0) for Ag =P S A A< X < Ag T 0
which is a contradiction. Hence Ao is a global bifurcation point of

equation (2.1) as required.

Remark The remainder of this thesis will be concerned with obtaining
sufficient conditions under which Theorem 2.10 may be appiied. That
is, conditions which imply that the generalised degree of A - T(A) does

change as A moves across AO € CA(T).
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CHAPTER 3

DEGREE MULTIPLICATION FORMULAE

LEADING TO GLOBAL BIFURCATION

Introduction

In this chapter we present generalisations of two methods of Toland
for obtaining giobal bifurcation of problem (2.1) via Theorem 2.10.
Both of the ideas involve a degree multiplication formula: one for a
product of mappings and the other when a direct sum, of the underlying

space, exists in a particular form.

3.7 A result using the Leray~Schauder formula

This section extends Toland's work in [43] where he shows that
two different sets of hypotheses provide a method for proving global
bifurcation of problem (2.1) by a procedure which depends on the mul-
tiplication formula for Leray-Schauder degree, cf. Lloyd [16]. The re-
sults here were obtained in collaboration with Dr. J. R. L. Webb and
a shorter version is to be published [48]. In [48], however, it was
assumed for simplicity that X = Y. The proofs for the general case
are essentially the same.

One extension we make is to allow more general operators. Toland
considers problem (2.1) with X =Y, A=1 - A and T(A) = AB where A
and B are linear compact maps and R is continuous and compact. We also
consider problem (2.1) with T(x) = AB : X » Y, where B 1is linear com-
pact but we do not require that A : X + Y be of the form identity minus
compact or that R be compact. Since we replace compact maps by A-proper

maps we must also replace the Leray-Schauder degree with the generalised
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degree. But,as previously noted, the proof adopted by Toland, and suit-
ably modified by us, relies on the multiplication formula for Leray-
Schauder degree, which has no direct equivalent in the generalised de-
gree theory. Petryshyn has shown, however, ((P8.) of Chapter 1) that
there is a restricted analogue of the Leray-Schauder multiplication
formula, in the generalised degree theory, which enables us to obtain

a global result in an analogous way to Toland.

Another extension we make is to provide an alternative set of hy-
potheses, for which the method still works, which involves a condition
on the null space N( A - AOB) at some characteristic value lo' This
condition replaces the commutativity demanded by Toland and turns out
to be a generalisation of his other set of hypotheses: namely,

Y = X is a Hilbert space, A and B are self-adjoint and either A or B
is positive semi-definite.

Let us be more precise.

Consider problem (2.1) with the additional hypotheses:

(H5) T(X) = AB, where B : X + Y is a compact linear map;

(H6) For some X e (a,b) n CA(T), BN(A - kOB) N R(A - AOB) = {0}.

Hypothesis (H6) is known as a transversality condition and is fre-
quently employed in bifurcation theory, as for example in Alexander and
Fitzpatrick [2], Mawhin [181, Chow and Hale [61 (Chapter 5), and many
others.

Note that A is A-proper since B is compact and so A - AB is A-
proper for all A e R.

The first result is that the compactness of B implies a dichotomy

of the set CA(T).
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Proposition 3.1 Either CA(T) =R, orCA(T)is a discrete set with no

finite 1imit points.

Proof: Assume that there exists a point p such that u ¢ CA(T). Then
A - uB is a homeomorphism and we have that
Co(T) = (n + u = NI - 2B(A - uB)™1}# {0} .

Since B is compact, CA(T) is a discrete set with no finite limit

points, c¢f. Chapter One. The other possibility is that CA(T) = R.

Remark: This proof is exactly the same as the one given by Toland [43],
it applies equally well to our situation.

We now give the main result in this section.

Theorem 3.2 Consider problem (2.1) with the additional hypotheses

(H5) and {H6). Suppose that CA(T) #R, let v = dim N(A - AOB), and
suppose [A,A] N CA(T) ='{A0} for A < A/ < *. Then, Deg(A - 2B,G,0)
= (-1} Deg(A - AB,G,0) for an arbitrary bounded open set G ¢ X contain-

ing zero.

Proof: We have that A - AB

A-2AB-(x-2MB
= {1~ (V-2) 8 (A-28)"I(A - 2B)

Replacing Ly by A - AB and L, by (X - A)B in (P8.) implies that,
Deg(A - XB,G,0) = deg)<(I ~(X - A)B(A - 2B)7',0,0) Deg(A - 2B,G,0),
where D is the open set (A - AB)(G) containing zero.

Now by the Leray-Schauder formula, cf. remarks preceding Defini-
tion 1.17, deg (I - (¥ - 2)B(A - 2B)"',0,0) = (-1)”, where v is
the sum of the algebraic multiplicities of the characteristic values
of (A - A)B(A - &B)'1 in the interval (0,1). We shall prove that there

is only one such value. Suppose n £(0,1) is a characteristic value of
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(% - 2)B(A - AB)"'. Then, for some y # 0, y - n @& - A)B(A - 2B)"'y = 0

which implies that (A - AB)x - u(x - A) Bx = 0, where

(A - AB)_]y =x # 0. So Ax -(A + u(X - 1)) Bx = 0, where u £(0,1).
A=A
Hence A + u(x = A) =r_oru = 0O = =, (say).
- -0 X - A 0

Next we show that the ascent of I - uo(i'- A)B(A - 55)—1 is equal to one,

that 15 N(I = u (% - )B(A - 28)™1)% = N(I - u (X - 1)B(A - 28)71),

which will prove that v = dim{N(I - uo(i'- A)B(A - AB)-1)}.

So, Tet (I - u (¥ - A)B(A - 2B) )% = 0, with y # 0.

Now I -u (% -2)B(A - 28)”"
(g - D - 1)

(A~ 2)

I 1

B (A - AB)~

(A - 2B - (a, - 2)B)(A - 2B)”]

= (A - 2,B)(A - 2B)""

So ((A - AOB)(A - AB)"])Z y =0, withy #0

—
=
[
wn

w

—
=

1

AOB)(A - A_B)'1 w = 0 where,
W= (A-2B)A - AB)"1 y e R(A - A B).
Therefore, (A - 35)‘1 we N(A - AOB),

so we (A- AB)N(A —AOB)

[t}

(A-2B - (_x_-»AO)B)N(A - )\OB)
BN(A - AOB).

1]

Hence w = BN(A - xoB) N R(A - AOB) = {0}, by H6, which implies that
0= (A -2 8)(A - 28)ly = (I -y (¥ - B(A - 2B)7)y.

Thus N(T - u_ (% - L)B(A - 28)" )2 ¢ NI - u (% - AB(A - 2B)71).

The reverse inclusion is always valid and so equality holds.
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Finally it follows easily that

dim(N(I - 1 (X - A)B(A - 2B)71))
din{N((A - 1 B)(A - 2B)™)}
dim{N(A - AOB)} =y

]

Hence the theorem is proved.

Remark (1) If A is of the form I - K, where K is a k-set contraction
with k < 1, practically the same proof holds using the degree theory of
Nussbaum, [22]. Thomas, [40] proves the necessary version of the mul-
tiplication formula. The required extension of the Leray-Schauder For-
mula has been proved by Stuart and Toland [37].

(2) If X is a Hilbert space, a linear operator T : X » X is said
to be positive semi-definite, provided : T is self-adjoint; (Tx,x) > 0
for all x ¢ X; and (Tx,x) = 0 implies that Tx = 0.

If A # 0, condition (H6) generalises one of Toland's [43] set of
assumptions; namely, X = Y is a Hilbert and A,B are self-adjoint maps
with either A or B positive semi-definite. To see this, assume that
w e BN(A - xOB) N R(A - kOB). Then there exist x, v € X with

w=2Bxand w= (A - AOB)V, where (A - AOB)x = 0. So (Bx,x) = (w,x)

((A - AOB)V,X) = (v,(A - AOB)x) = 0 and, if B is positive semij-defi-
nite, then Bx = 0 and w = 0. Also (AXx,x) = (AOBX,X) and the result
holds again if A is positive semi-definite. A similar argument may be
used to show that (H6) also generalises the assumption : X =Y is a
Hilbert space and A,B are self-adjoint maps with either A or B negative
semi-definite.

(3) We could prove a result under Toland's other set of hypotheses

too, namely that X = Y and A and B commute. These hypotheses would
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replace our hypothesis (H6). The conclusions of Theorem 3.2 hold, with
this assumption, if we replace dim{N(A - AOB)} by dim{N((A - AOB)p}, where
p is the ascent of A - A B. This follows from the proof of Theorem 3.2,

since T - u(X - MB(A - 2B)™" = (A - 2 B)(A - 28)”]

(A - 2B)7'(A - 2 B),
So, for each n ¢ W,
(1 - u (X - 2)B(A - 2B)"")"x = 0
if and only if (A - AOB)nx = 0.
Note, since B is compact this also shows that p is finite and
dim{N(A - A ,B)P} is finite.
Theorem 3.2 provides us with the following global bifurcation

theorem.

Theorem 3.3 Consider problem (2.1) with the additional hypothesis (H5).

Suppose that CA(T) #R and, for some A R, with » £ CA(T),
Deg(A - AB,G,0) is a singleton, where G ¢ X is an arbitrary bounded,
open set containing zero. Then, AO is a global bifurcation point if
at least one of the following additional hypotheses is satisfied:
(1) hypothesis (H6) holds with dim{N{A - AOB)} an odd number;
(2) X =Y, A and B commute and dim{N((A - AOB)p)} is an odd number,
where p is the ascent of A - AOB, which is finite;
(3) X =Y 1is a Hilbert space, A,B are self-adjoint operators with
either A or B positive semi-definite and dim{N(A - AOB)} is

an odd number, with AO # 0.

Proof: From Theorem 3.2 we have that; if A < A < Ay [AAT 0y (T)
='{A0}, and dim N{(A - AOB)} = v is an odd number, then

Deg(A - %B,G,0) = (~1)” Deg(A - AB,G,0) = -Deg(A - AB,G,0).
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Now, since A - AB and A - AB are homeomorphisms,

Deg(A - AB,G,0) ¢ {-1,1} and

Deg(A - AB,G,0) ¢ {-1,1}, cf. [31].

But by assumption, there exists A e R, with A £ CA(T), such that
Deg(A - AB,G,0) is a singleton. Then since [A,A] N CA(T) = {1
Proposition 3.1 tells us that there is a discrete number of characteris-
tic values, i.e., they are isolated. Thus, by Theorem 3.2, for each
A eR with A ¢ CA(T), Deg(A - AB,G,0) is a singleton and alternates
between 1 and -1 as A passes through isolated characteristic values of
odd multiplicity. Hence Deg(A - AB,G,0) # Deg(A - AB,G,0) and the re-
sult of the theorem follows from Theorem 2.710 and the preceding Remarks

(2) and (3).

Remark (1) In Theorem 3.3 we have assumed that Deg(A - AB,G,0) is a
singleton for some » € R with A ¢ CA(T). In Chapter Four, Theorem
4,12, we prove a global bifurcation result without making this assump-
tion and for not necessarily compact B, which generalises Theorem 3.3
(1). Also in Chapter Four, Theorem 4.18, for the case » = 0, we
generalise Theorem 3.3 (3), without making the assumption that the de-
gree is a“singleton, for the more general T(A) =z Aij, where Kk is
finite or infinite. We are able to relax the coga}tion that A and the
Bj's are self-adjoint and we require a less stringent condition on the
Bj's than positive semi-definite.

(2) There are examples where Deg(A - AB,G,0) is a singleton. For

instance, A - AB is of the form I - compact, I - ball condensing; A - AB
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is orientation pregerving; and others, including the following. Con-
sider problem (2.1) with the additional hypothesis (H5) and where X is
reflexive and A - AB is accretive for some A ¢ R with A £ CA(T).
(Accretive maps were giveh as examples of A-proper maps following De-
finition 1.8). We define a homotopy H : G x [0,1] = X by H{x,t)

= (1 - t)x + t(A - AB)for (x,t) € G x [0,1]. H(x,.) : [0,1] = X is
easily seen to be uniformly continuous on G. Hence, to show that H is
a valid homotopy we need only prove that H(.,t) : X - X is A-proper
and H(3G,t) # 0 for each t €[0,1]. First notice that H(x,1) = A - AB
is A-proper and for 0 < t< 1, H(x,t) = (1 - t) T + t(A - AB) ié of
the form ol + accretive and is, therefore, A-proper by [19]. Hence,
H(.,t) is A-proper for each t <[0,1].

Now suppose H(xo,to) = 0 for some X, € aG and t0 e[0,1], that is,

(1=t )%, + t (A - AB)x,

%, 0 with [[x || # 0.

Since A - AB and I are injective maps it follows easily that
to # 0 and to # 1. Thus t e(0,1) and, therefore

] (1 - t))

%

(1-1t))
ey el <0

(A - AB)x0 = X, and

il

0 < ((A - 2B)x,, Jxo)

by the accretiveness of A - AB. This contradiction proves that
H(5G,t) # 0 for each t €[0,1]. Thus by the homotopy property (P3.) we
have that Deg(A - AB,G,0) = Deg(I,G,0) = {1}.

A particular case of the above situation may be seer when X =Y
is a Hilbert space. If 0 € R and there exists e > 0 such that
(Ax,x) g_ellxl|2 for each x ¢ X, then whenever 0 < |x| < ¢/| Bl , it

follows that ((A - AB)x,x) > 0. But X is a Hilbert space which is
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reflexive and the duality map J equals I. So A - AB is accretive for
0 < |a| < e/||B]l and the above analysis implies that, here,

Deg(A - AB,G,0) is a singleton for each x e R with A ¢ C,(T).

Al

3.2 A product formula for generalised degree

The results in this section are again joint work with Dr. J. R. L.
Webb and a shorter version is to be published, [49].

We shall extend a Leray-Schauder degree multiplication formula of
Krasnosel'skii to a generalised version. Krasnosel'skii [13] showed
that if X can be decomposed into the direct sum E1 ® E2 and
T. : E; -~ E. (j = 1,2) are compact Tinear operators such that

J J J

I - Tj : Ej - Ej are homeomorphisms, then by defining Tx = T,x; + ToX,,

for Xy € Ej(j = 1,2}, the Leray-Schauder degrees are related by
deg) (1 - T,8(0,1),0) = deg, (I - T15B4(0,1),0) deg, o(T - T5,8,(0,1),0)
where B1(0,1) and 82(0,1) are the open unit balls in E1 and E2 respect-
ively.

We shall assume that X = E1 0] Ez, where E1 is a finite dimensional

subspace of X and E2 is a closed subspace of X. We suppose also, that

I -T: X=X is an A-proper homeomorphism with respect to an admissible

scheme T ='{Xn,Qn}. Then we prove that the generalised degree multi-

“plication formula

Deg(I - T,B(0,1),0) = degLS(I - T1,81(0,1),0) Deg(I - TZ,BZ(O,l),O) holds.
The proof involves showing that I - T : X -~ X is also A-proper with

respect to another admissible scheme 1'' constructed from the original

scheme . Relative to I''', we are able to prove that the generalised
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degree multiplication formula does hoid and then by a homotopy argument
it is shown that the result also holds relative to the original scheme.
By making a transversality assumption similar to that in §3.1
hypothesis (H6) and assuming that I - T(Ao) is Fredholm of iﬁdex Zero
we show that a decompasition X = E] 8 E2 exists with dim E1 finite and
such that both E] and E2 are invariant under T(A). Then by hypotheses
similar to Toland's [41] we use the derived generalised degree multipli-
cation formula to prove global bifurcation results. We take problem
(2.1) with X =Y, A =1 and T(A) = _g Aij. This generalises Toland's
work in that he considered the sameJ;lob1em but demanded that Bj be
lTinear and compact for j = 1,2,...,k and R be continuous and compact.
The proof we adopt is similar to Toland's, in particular we use the
same homotopies. However, we deal with the class of A-proper maps and

hence use generalised degree theory.

So, consider problem (2.1) with the additional conditions:

(H7) X
A

Y, O E(a:b)s

I, and for k e N, T(}X) . AJBj,

Jj=1
1,2,...,k and 1T < k e IN;

k

where Bj are bounded Tinear maps for j
(H8)  There exists a smallest positive element A e CA(T) n (a,b)
and this is isolated, such that N(T-TOJY) € X, §or each Nne N |
(H9) (I - T(A)) N (I - T(x ) AR - T(x))) = {0}
for A # X, with A, @s in (H8) and I - T(AO) is Fredholm of index zero;
(H10) k is an odd integer and for k > 3, Bk is injective;
(H11) Bi commutes with Bj (1T <1,J <k)s
(H12) If (I - T(xo))x =0 for x # 0, then (I - T(u))x # 0 for

all u # Ay M e R, where A is as in (H8).
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We shall prove that AO is a global bifurcation point of problem
(2.1), with the above hypotheses, provided that dim N(I - T(Ao) is odd.
The first step is to generalise the following result due to

Krasnosel'skii.

Theorem 3.4 (Krasnosel'skii, [13], p. 129).

Suppose X, E1 and E2 are Banach spaces such that X E] 8 E2 with

compatible norms. Let Tj : Ej > Ej be a compact linear operator such
that 1 - Tj : Ej - Ej is a homeomorphism (j = 1,2). If x = Xy * Xy
with Xy € Ej(j = 1,2) define Tx = T1Xq + ToX,.  Then the Leray-Schauder
degrees are related by degLS(I - T, B(0,1),0) = degLS(I - T]°BT(0’])’0)
degLS(I - T2,82(0,1),O) where Bj(O,l) is the open unit ball in Ej

(J =1,2).

For the remainder of this section we adopt the following notation.

X = E1 6 E2, where E1 and E2 are Banach spaces with compatible
norms and dim E] is finite. P : X > E] is the projection o% X onto E1,
so that P is compact; T : X -~ X is such that I - T is a linear, A-proper
homeomorphism with respect to T = {Xn’Qn}ﬂ whare E'G'X“ ‘§°F" enary
nelN. T1 and T2 denote the restrictions of T to E] and E2, respect-
ively, and I - Tj : Ej -+ Ej are homeomorphisms. Finally, Bj(o,l) de-
notes the open unit ball in Ej (3 = 1,2).

First we show that I - T2 : E2 - E2 is A-proper with respect to

some admissible scheme.

Lemma 3.5 I - T, : E, > E, is A-proper with respect to the admissible

2 2 pa
scheme T' = {Xn‘,Qn'}, where we take projections Qn' = (I - P)Qn and

(- 1
subspaces Xn Qn (X).
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Proof: First notice that T is admissible for maps from E2 into Es-
For, dim Xn‘ = dim(I - P)(Qn(X)) = dim(I - P}(Xn) < dim X <o
for each n ¢ WN. Qn' is easily seen to be a continuous projection.

Also Q;x = (I - P) an > (1 - P) x = x as n -+ « for each X ¢ EZ’
and hence dist(x,xn') + 0 as n - =,

Thus, T' is an admissible scheme for maps from E2 into Ez'

To show that I - T2 is A-proper with respect to I'', suppose that
(X, +x,¢ Xn'} is a bounded sequence with

Xo - Qn' TZXn ~W as n-> = for some w ¢ X.
Now, X, € Xn' for each n e N, so there exist u e X and u, = Qnu € xn such
that X, = Qn'u = (I - P) Qnu = Uy - Pun. Therefore,
u, - Pu, - (1 - P)QnT2 (un - Pun) +~ W as n » = and, since P is compact,
PQnTz(un - Pun) -+ p (say) and Pun +~v (say) as n +~ «. So
Uy - QnT u, * Qn TP Uy > W + v - p, where we must replace T2 by T when
we split up (un - Pun).

Hence Qn(I - T)un +~w+ Vv -p~-Tv and by A-properness of I - T
with respect to T, we may assume that there exists u e X such that

u, *uasn->e andu - Tu=w+ v -p - Tv. Therefore, Pu=v and

X, = U - Pun +>Uu=-Pu=u-=-vy=x (say) as n » «.

n
Sox= (I -P)uce E2 and by invariance of E2 under T,
Tx = T2 X € E2’
Hence, since X, - Qn' szn W, X - (I - P)Qnszn > W
and so x - (I - P)sz = w, or, equivalently, x - T2x =W,
Thus, I - T2 is A-proper with respect to I'', which completes the
proof.

Next we show that the fact that I - T2 : E2 -+ E2 is A-proper with

respect to I'' implies that I - T : X = X is necessarily A-proper with
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respect to an admissible scheme T''', which we construct from T'. In

general T''' is different from T.

Lemma 3.6  Suppose I T2 : E2 - E2 is A-proper with respect to an

H

admissible scheme T' {Xn',Qn‘}. For x = Xy + X, with x. ¢ E.

J J
(j =1,2), let Tx = T]x] + ToXs. Then, I - T : X =X is A-proper with
respect to the admissible scheme T''' = {Xn",Qn"} where, Xn"

= t (] - 1 .
E] ® Xn and Qn (x] + x2) Xy * Q' Xos with Xy € E‘ and Xo € EZ'

Proof: First we show that r''' is an admissible scheme. For,
. ||= » t - ] 3 ) o

dim Xn d1m(E] ® Xn ) = dim E1 + dim Xn < o for each n ¢ .

Also for each x e Xand n elN, x = Xy + Xo s where X| € E] and
bly o ti = 1 =

Xo € E2, and Qn X Qn (x] + x2) Xq t Qn Xy + Xy t X, = X as

n -+ <, which implies that dist(x,Xn") + 0 as n » » for each x € X,

and since Qh" is a continuous projection, then r'' is admissible.
To prove that I - T : X - X is A-proper with respect to T'', sup-

pose that {xn DX, E Xn"} is a bounded sequence with

] : - 1
Xg = Qn Txn +~w. We can write x e, + Xy o where e, € E1 and

n
xn‘ £ Xn‘.

Then, since {en} is a bounded sequence in a finite dimensional
space, we may suppose that e, ece E] and Ten = T1en +—T1e as n > =,
Also e, + xn' - Qn”T(en + xn') -+ w implies that xn' - Qn'szn'
+~w - e+ Tie. But (I - Qn'Tz)Xn' = Q' (I - To)x,'s
S0 Qn'(I - Tz)xn' > W -+ T1e as n - =,

By the A-properness of I - T2, with respect to I'', we may assume
that there exists x' ¢ Es such that xn' +x'" as n > = and so X,

=e +x ' e+ x' = x (say) as n -+ =,
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Hence, Qn"Txn +~Txas n~»w=and (I - T} x = w, which proves the Lemma.

So we have the following result.

Lemma 3.7 I - T : X~>Y is A-proper with respect to r'' = {XE',QH"},
where X '' = E, 8 (1 - P)Qn(x) and in'(x1 + xz) =X + (I - p)anz,

where Xy € Ej (3 = 1,2).

Proof: Immediate from Lemmas 3.5 and 3.6.

Before proving our generalised degree multiplication formula we

need one more preliminary result.

Lemma 3.8 For all sufficiently large n € N, degLS(I - Qn"T,B(O,1),0)
= degLS(I - QnT,B(O,]),O) and degLS(I - Qn"T2,82(0,1),0)
= degLS(I - QnT2582(091)90)-

Proof: Notice first, from the proof of Theorem 1.18, that for suffi-
ciently large n, degLS(I - Qn"T,B(O,]),O)

deg(I - Qn"T,B(O,1) n Xn",O) and degLS(I - QnT,B(O,]),O)

deg(I - QnT,B(O,1) n Xn,O) and all degrees are well-defined by vir-

tue of the fact that I - T is a homeomorphism.

il

Also since Xn = Qn(X), Xn' (I - P)(Xn) and

) X,'' = By 8 X" =E 8 (I-P)Xp),
then Xn c Xn and I - QnT : B(0,7)n Xn - Xn‘ Therefore, by the ex-
cision property for Brouwer degree, cf. Lloyd [16],
deg(I - QnT,B(O,l) N Xn,O) = deg(I - QnT,B(O,T) n Xn",O)
= degLS(I - QnT,B(O,1),O).
Now Tet H  : (B(0,1) Nn X,'') x [0,1] = X" be defined by
.Hn(x,t) = X - thTx - (1~- t)Qn"Tx, for each x ¢ B(0,1) N Xn"

and t ¢[0,1].
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Note that for each n e N, Hn(.,t) is of the form identity minus Tinear
compact and so is a valid homotopy for both Brouwer and Leray-Schauder
degrees. To apply the homotopy property we must show that, for n suf-
ficiently large, Hn(x,t) # 0 for all x ¢ 3B(0,1) N Xn‘I and t € [0,1].
Suppose the contrary. Then there exist sequences {n} ¢ N,
{x} ¢ 3B(0,1) N Xp'' and {t } ¢ [0,1] with t =t [0,1] as n + =,
and such that Xy = thnTxn - (1 - tn)Qn”Txn = 0 for each n. Writing
X, = €, + Yn with e € E] and Yy € Xn', we have

e +
n Y

Now Qn"(Ten + Tyn) = Te, + (1

. thn(Ten + Tyn) - (1 - tn)Qn”(Ten + Tyn) = 0 for each n.

P) QnTyn and, since {en} is bounded
in E], all the terms tn, €, Te_ and PQnTyn may be assumed to converge.
(1 - £)(Tey + (1 - P)Q,Ty,) = 0

implies that Yp - (I - P)QnTyn +w (say) as n -+ =, But

Then e+ y. - thn(Ten + Tyn)

Y, € Xn' = Qn‘(X) = (I - P)Qn(X) c Ey, 5Oy = Qn'yn and, therefore,
Q,'(1 - Thy, =0Q,"(I - Ty)y, ~wasn=>e.

By the A-properness of I - T2 with respect to I'' we may assume
that there exists y € E2 such that YprYyasnoe and (I - Tz)y = W,
So Xp =€ ty, ety =x (say) as n » =, where e, > e (say) ¢ E]
as n - o,

Therefore, 0 = x - £ Q TX - (1 - tﬁ)Qn"Txn

> X - tTx - (1 = t)T¥ as n o, and so (I - T)x = 0.
Now since ||xn|| = 1 for each n, then || x|| = 1, and this contradicts
the injectiveness of I - T. Hence, by the homotopy property for
Brouwer degree, for n sufficiently large, we have -
deg(l - Qn"T,B(O,l) N Xn",O) = deg(I - QnT,B(O,1) N Xn",O) and so,
by the first part of the proof, degLS(I - Qn"T,B(O,]),O)
= degLs(I - QnT,B(0,1),0) which proves the first assertion of the lemma.
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The result for T2 follows by the same procedure, but is simpler since
all the components of decompositions are zero outside E2. Hence the
lemma is proved.

We may now prove the generalised multiplication formula.

Theorem 3.9 For T, T] and T2 as defined above,

Deg(I - T,B(0,1),0) = deg(I - T],B](O,1),0) Deg(1 -'T?Bz(0,1),0).

Proof: From Theorem 1.18 it follows that Deg(I - T,B(0,1),0)
= {me ZU {-~,»} : there is a sequence‘{nj} with
dEQLS(I - anT,B(O,]),O) =mas J + «}
Now from Theorem 3.4 and Lemma 3.8, for each sufficiently large j €N,

deg) (I - anT,B(O,T),O) = deg, (I - Q  ''T,B(0,1),0)
= deQLs(I - Qn.”T'lsBl(Os-])so) degLS(I = Qn_”Tszz(Oi])so)

= deg, (1 - Q, ''T1,B1(0,1),0) deg, (I - Q T,.B,(0,1),0)
J

J
But Qn"'T}x = T]x for all X ¢ E.I and for all j €N, so

deQLS(I - an“T] sB'[(O;])m{»:deQ(I - T'I SB](O’])’O)'

Therefore,
Deg(I - T,B(0,1),0) = deg(I - T;,B7(0,1),0) {m & Z U{-=,=}:

there is a sequence {nj} with degLS(I - anTz,B2 ©,1),0) > m

as j - »}

= deg(I - T],B](O,l),o) Deg(I - TZ,BZ(0,1),0),
which is the required result.

Theorem 3.9 provides us with a useful multiplication formula when-
ever there exists a direct decomposition of the space X into E] & E2
with E, finite dimensional and E1 and E, are both invariant under T.

2
We shall prove that condition (H9) implies such a decomposition.
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Proposition 3.10 We may decompose X into

N(I - T(;\O)) ® R(I - T(AO))

E] 8 E2 (say),

where Ay is as defined in hypothesis (H8), E1 = N(I - T(AO)) and
E

X

5 = R(I - T(Ao)) with dim E] finite and E2 a closed subspace of X.

Proof: Notice first that, by Theorems 1.11 and 1.12, since I - T(AO)
is A-proper, Ey = N(T - T(AO)) is finite dimensional and R(I - T QO))
js closed. (Thus, certainly by Theorem 1.1 there exists a decomposition
X = NI - T(AO)) ® E, with E, a closed subspace. However, in order to
apply Theorem 3.9 we need to know that E2 is invariant under T(A). So
we must find E, explicitly).

From Theorem 1.9, if A1e(a,b) with 2 £ CA(T), then I - T(A]) is
a homeomorphism and so (I - T(A]))"1 exists. We show that
N((T = TOONI = TN = (T - TN - T(xg)). Let
x e N((I - T (I - T())™Y), then (I - T(x))) w = 0, where
w= (I-TN x

Thus w = (I = TOg) ™ x e NI - T() and x e (I = TO NI = Th).
Hence N((1 - T(A))(I - T(4)™) ¢ (1 - TN - T(x,)). The re-
verse inclusion follows similarly aﬁd so equality holds.

Next we show that N(((I - TO))(I - T(3;))7)?)
= N((1 - TOINI - T,

Suppose that for x e X,((I - T QO))(I - T(A1))'])2x = 0, then
(1= TONI - TON Tk = w e ML = TR = TN
= (1= TOIN - T ).

Hence w ¢ (I - T(A]))N(I - T(AO)) N R(I - T(AO)) which implies,
by assumption (H9) that w = 0.
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Thus, (I - T( )T - T(q) ™  x = 0, and so
N(LE = TOT = T ™HE e N(T - TO T = TO) ™.

The reverse inclusion always holds so we have equality.

Now by the commutativity condition (H11), (I - T(x]))'1 commutes
with T - TQ). Thus N(((I - TG )T - TO)™) = N((T - TOY),
5= 1.2, and so N((I - T())?) = N(I - T(,)). This proves that the
ascent of (I - T(Ao)) is equal to one. Also since I - T(xo) is Fred-
holm of index zero by (H9), it follows from Remark (4) preceding Theorem
1.14, that (I - T(AO))2 is also Fredholm of index zero and has the
same null space as I - T(Ao). Hence the codimensjon of R {(I - T(xo))z)
equals the codimension of R(I - T(AO)) and since R{(I - T(AO))Z)

c R(I - () we must have R(I - T(2)) = R((I - T(x))%). Thus the
ascent and descent of I - T(AO) are both one and, therefore, by the
results of Chapter One,

X= NI -T0,)) &R - T(AO)) as required.

We may use similar techniques to Toland [41] to prove the follow-

ing degree result.

Theorem 3.11 Consider probiem (2.1) with the additional hypotheses

(H7)- H12). If dim{N(I - T(AO))} is odd, then there exists § > 0 such
that Deg(I - T(1),G,0) # Deg(I - T(X),G,0) for Ag = 8 <A< Ay <A

< Ao + §, where G is an arbitrary open bounded set in X containing zero.

Proof: First suppose that A € @,Ao) and consider H : G x [0,1] = X
defined by H(x,t) = x - T(tA)x.
Then H(8G,t) # 0 for t e [0,1].

For suppose the contrary, then there exist x e 3G and t e[0,1]
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such that = x - T(tA)x = 0, [[x]|| # 0, which implies that
tr e Cp(T). But 0 < tr <2, and if t1 = 0, then x = 0, therefore
0 < ta <A, Thus by hypothesis (H8) we must have x = 0.

This contradiction proves that H(3G,t) # 0 for all t [0,1].
Moreover, by hypothesis (H7), (O,AO) ¢ (a,b) and so H(.,t) is A-proper
for all t €[0,1]1 and H is continuous in both arguments. Hence, by
(P3.), we have that Deg(I - T(A),G,0) = Deg(I,G,0) = {1}.

To prove the theorem we will show that for some & > O,

Deg(I - T(X),G,0) # {1} for Ay < X < A, + 6.

From assumption (H11) it is easily seen that T(X) commutes with
T(AO) for all » £ R and, therefore, from Proposition 3.10, E and E2
are invariant under I - T(a).

Now, since A e CA(T) is isolated, we can choose § > 0 such that
Ag + 8> > Ags  e{a,b) and A is less than any other positive ele-
ment of CA(T). So I - T(Xx) is a homeomorphism.

Next we use the decomposition X = N(I - T Qo)) ® R(I - T(Ao))
= E

0 E2 and define a homotopy on E, = R(I - T(AO)). Let Tj denote

1
the restriction of T to Ej (j =1,2), then I - Tj (X) is a homeomorphism

on Ej (j = 1,2). For x e Eé(0,1) ¢ E, (the closed unit ball on Ez),

)
Tet H(x,t) = x - T2(ti)x for t €[0,1]. Then H(BBZ(O,T),t) # 0 for

t ¢[0,1]1. For if not, there exist x € 382(0,1) and t [0,1] such that
H(x,t) = 0 = x - Tz(ff)x = x - T(tx)x, since x ¢ Eé(0,1) c E,.
This implies that tr = X, and so x ¢ N(I - T(AO)) n R(I - T(AO)) = {0}.
Therefore, by the homotopy property (P3.), since I - T(tX) is A-proper
for all t €[0,1], Deg(I - T2(X3,82(0,1),0) = Deg(I,Bz(O,l),O) = {1}.

In E; = N(I - T(AO)) we use the homotopy




56

k
z

H(x,t) = (2t - 1)x - i tj/k (2t - 1)(k'j)/kBjx for

X € E&(O,]) (the cTosga]unit ball in E]) and t €[0,11, which is easily
seen to be continuous and well defined since (—1)1/k is a real number
for k odd.
Since E} is finite dimensional we need only use the Brouwer degree,
As before, H(x,t) # 0 for all x ¢ 381(0,1) and t £[0,11. For,
suppose the contrary, then there is X ¢ 881(0,1) and t €[0,1] such that

H(x,t) = 0. If t =1, then 3% K

Bx =0 and, by hypothesis (H10),x = 0.
Note that if k = 1, then B.x = 0 implies that A B;x = 0 and, since

1 "0 1
x e N(I - AOB), in this case we must have x = 0. So t # % and
x - T, (%t %/(26-1)¥)x = 0, which tmplies that
X -'T(KKt/Zt-T)]/k)x = 0, since x ¢ E;. Thus, by assumption (H12),

1

§E§T01/k-un1ess X = 0., However, (?E§T01/k 1lies in the range

(-=,0] U [1,), so this is impossible. Therefore x = 0, contradicting

Ay = A(
the fact that ||x|| = 1. Hence H is a valid homotopy and by the homo-
topy property for Brouwer degree

deQ(I - T](XjaB](OsT)sO)

1}

deg(—I,B](O,T),O)

(_])dim N(I - T(Ko))
- 1.

Note, the fact that deg(-I,BT(O,l),O) = (-1)V, where v is the dimension
of the underlying space (in our case N(I - T(AO)) is a well known re-
sult and follows easily from the definition of the Brouwer degree, cf.
Lloyd [16]. Hence by Theorem 3.9,

Deg(I - T(x),B(0,1),0) = deg(I - T](X),B1(o,1),o) Deg(I - TZ(X),BZ(O,l),O)
{-11,

and, therefore, Deg(I - T(X),6,0) # Deg(I - T(A),G,0) where we have ap-

plied (P5.). This is the required result.
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Another set of hypotheses is possible when X is a Hilbert space.

Theorem 3.12  Consider problem (2.1) when X is a Hilbert space with addi-
tional hypotheses (H7), (H8), (H9) and (H11). If dim{N(I - T(Ao))} is
k

odd and (Bjx,x) > 0 for all x & N(I - T(x,)), with 2 (Bjx,x) > 0 for

all non zero x e N(I - T(Ao)), then the conclusion of Theorem 3.71 holds.

Proof: The proof is almost identical to Theorem 1.25 of Toland [41],
but we give it here for completeness.
Exactly as in the proof of Theorem 3.11 we may show that
Deg(I - T(»),6,0) = {1} and that, on Ess Deg(1I - Tz(i),a,o) = {1}.
In E; = N(I - T(Ao)) we use the homotopy H : §;KO,1) x 10,11~
defined by
H(x,t) = (2t - 1)x - t _; Xd Bjx, for each X e §;10,1) and tke[0,1].
We shall prove tha%—; is a valid homotopy for Brouwer degree. First
notice that the uniform continuity assumptions on H(.,t) hold. Also,
suppose there exist X e 881(0,1) and t £[0,1] such that H(x,t) = 0.
Then it is easily seen that t # 0 and t # 1. If t = % we have
A jgl Xﬂ(Bjx,x) = 0 which implies, by the monotonicity assumptions

~

that x = 0. Thus t # %, and so x = ?%TT I AUB.X, or
, 51 J
k .
2 t =]
Ix|| € =5 = A7(B.Xx,X).
2t-1 j=1 J
But X ¢ 881(0,1) c By = N(I - T(Ao)), therefore
k . k .
- J 2 - J
X jE] X Byx and || x|| i Ay (Bjx,x).
Hence ; (n J_o_t Xj)(B x,x) = 03 however, t e (0,1)\% implies
0 ’(“2'.'{:"_) js ’ 3 ) 2

j:] i
that mt— e (-=,0) U (1,=), from which we see that x J Iﬁi—- is
a Zt_'] € s 2 2 (4] 2t'-[
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either negative or greater than Ao’ for each j € N, which again contra-
dicts the monotonicity assumptions. We have, thus, shown that H is a
valid homotopy and by the homotopy proper for Brouwer degree,

deg(I - TT(X),B1(O,]),O) = deg(—I,B](O,i),O) = -1, since”

dim E1 is an odd number. The result follows exactly as in the proof

of Theorem 3.11.

Remarks (1) As previously noted, Theorems 3.11 and 3.12 are similar to
Theorems 1.24 and 1.25 of Toland, [41] and exactly the same homotopies
are used; however, we obtain a different decomposition of the space by
assuming condition (H9), which Toland never considered. We have also
replaced the compactness condition on the Bj‘s by the more general A-
properness assumption and extended the multiplication result of
Krasnosel 'skii, to generalised degree.

(2) We could obtain similar results to Toland [41] by replacing
hypothesis (H9) by an assumption that
X = N((I - T(x ))P) 8 R((I - T(x))P) for some p e M and
dim{N(I - T(AO))p} js finite. In this case we obtain analogues of
Theorems 3.11 and 3.12 replacing the condition that dim N(I - T(AO))
is odd by the condition that dim N(I - T(Ao))p is odd. Notice that if
we retain the Fredholm of index zero property of (H9), but replace the
transversality assumption by the condition that I —(T(AO) has finite
ascent p, then this decomposition of X holds due to the Fredholm of
index zero property.

(3) By removing the compactness property on the Bj's we lose the
result of Friedman and Shinbrot [9] invoked. by Toland [41], which

guarantees that the set CA(T) is a discrete set with no finite Timit
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points and is bounded away from zero. This result ensures that there
is a smallest positive element of CA(T), which is isolated. Since this
fact is crucial to the method, we had to assume that such an element
exists. It is not obvious that this assumption is valid. The follow-
ing example, however, indicates that there are linear operators which
satisfy our assumptions, but fall outside that covered by Toland.

Let X be a Banach space and C : X » X be a compact linear map.

n

Define T(x) = AC + AZC + A3I.

Then I - T(A) = (1 = 23) T =A(1 + A)C
= (1 -8 MM ) | fora £
| 1 -2
{ -2C , for A =1
= (1 -2 (1 -ul)C) |, forx #1
b , fora =1,
where u(x) =%CLJt%§l.
1 -2

Thus, I - T(x)} is A-proper for all A # 1. We suppose that the
“smallest positive characteristic value of C is Ny = 6/7. This corre-
sponds to Ay = ke By considering the graph of n(x) we see that u())
increases for XA between 0 and 1. Also p{(A) has a positive maximum of
approximately 0.23 for A in the range (-~,01 which occurs between -2
and -3. Furthermore, u(r) is always negative for A > 1. Hence
A, = % is the smallest positive element in CA(T) and is isolated since
C is compact.

Thus, if R is compact or ball-condensing, or -R is accretive and
satisfies a smallness condition, then we can satisfy hypotheses (H1) -
(H4) of problem (2.1): furthermore, hypotheses (H7), (H8), (H10) and

(H11) are easily seen to hold. We shall give conditions under which

(H9) and (H12) also hold. First consider (H12). Suppose, for
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Ay = L, there is 0 # x ¢ X with (I - T(AO))x = (I - T(%)x = 0 or,
equivalently, (I - g-c)x = 0. Then, in order that (I ~ T(A))x = 0,
we must have either, (I - u(A)C)x =0 if A # 1, or =2Cx = 0 if A =1,
But since (I - %—C)x = 0 implies that x = %—Cx, then equality

(I - u(A)C)x

1]
1]

0 may be rewritten as (g-— u(r))Cx = 0, which gives

g-Cx = 0. Thus,

il

>
il

n(r) = g-and %, Also -2Cx = 0 implies that x
we have shown that (H12) holds. Before imposing a further condition
on C to make (H9) true, we observe, from the previous remark (2), that
Theorems 3.11 and 3.12 give a global bifurcétion result when (H9) is
replaced by an assumption that X = N(I - T(Ao))p 8 R(I - T(ho))p, for
some p £ N and dim{N(I - T(AO))p} is finite and an odd number. Well
in this case we have Ay =% with I - T(ko) =1 - %-C, and the compact-
ness of C ensures that such a p ¢ IN exists, and we may assume that
dim{N(I - g-C)p} is an odd number. A special case of this situation
js when p = 1 and dim{N(I - g-C)} is an odd number. We now show that

the transversality condition H9 holds under this assumption. It is re-

quired that

(1 - u(2)C) N(I -%c) N R(I -%c) - {0} for X # % and A # 1,
and C.N(I -%c) N R(I --‘71(:) = {0} for A = 1.
The first observation is that when A # % and A # 1, then

(1 - w0 MI-50) = (1-Fc- () -5y M - 50)

(w0 - S NI - Sc)

1l

- . 1
C N(I - %—c), since p(xr) # g-for A F 5 .

11

Thus to verify (H9) we need only show that
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C NI -5c) nR(I-Sc) = (0.
Suppose there are X, y e X such that (I - %—C)x = 0 and

ex = (1-30)y.

Then x = g~Cx and %—x = Cx. So (I - g-C)Cx = %{I - g-C)x =0,
which fmplies Cx e N(I - $¢) nR(I - $¢) = {03

Hence (H9) holds.

Finally when X is a Hilbert space and x ¢ N(I - T(AO)), then
(I - %-C)x =0 and X = g-Cx. So (Cx,x) = (%—x,x) = %—|lx||2 > 0. Thus
the positivity conditions of Theorem 3.12 are also satisfied.

We have shown that the conditions (H1) - (H4) and (H7) - (H12) can
be satisfied for the above problem which falls outside the class of
problem covered by Toland [41] : in infinite dimensional spaces I is
not compact.

From the previous theorems and remarks, we may deduce the follow-

ing global bifurcation result.

Theorem 3.13  Consider problem (2.1) with the additional hypotheses

(H7), (H8) and (H11). Then A, is a global bifurcation point of prob-
Tem (2.1) if at least one of the following hypotheses is satisfied:
(1) Assumptions (H9), (H10) and (H12) hold and dim{N(I - T(xo))}
is an odd numbers;
(2) Assumptions (H10) and (H12) hold and there exists p € N with
dim{ (N(I - T(ko))p)} an odd number and
X = NI = T )P) 8 RUT - TR NP);
(3) X is a Hilbert space wjth (ij,x) > 0 for each j =1, 2,...,kK
and all x ¢ N(I - T(AO)); z (Bjx,x) > 0 for all
X e N(I - T(AO)) with x # 0, and, either assumption (H9)

holds with dim{N(I - T(Ao))} an odd number, or there exists
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p ¢ N with{dim N((I - T(AO))D)}'an odd number and
X = N((I - T(A))P) 8 RU(T - TOP).

Proof: Follows from Theorems 2.10, 3.11 and 3.12 and Remark (2) above.

Remarks (1) In Chapter Four, Theorem 4.15 we prove a more general result
than 3.13(3). In particular, we replace I by the more general bounded, linear
operator A and we do not require that the Bj's commute.

(2) There are some problems which satisfy all the hypotheses of both
sections 3.1 and 3.2. By comparing Theorems 3.3 and 3.13 it is easily
seen that, when X = Y, A =1, T(A) = B with B ¢ X > X Tinear and compact;
Ay 1s the smallest positive element in CA(T), (O,AO) ¢ (a,b) and'CA(T)# (a,b);

then, by either theorem, A_ is a global bifurcation point of problem (2.1)

0
if:
(1) BN(I - A _B) N R(I - AB) = {0} and dim N(I = A _B) i$ an odd number;
or,
(2) dim{N((I - AOB)p)} is an odd number, where p is the ascent of
I - AOB.
This follows easily since hypotheses (H5) and (H6) of §3.1 and
(H7) - (H12) of §3.2 are all satisfied.




63

CHAPTER FOUR

GLOBAL BIFURCATION OF FREDHOLM

MAPS OF INDEX ZERO

Introduction

In this chapter we derive global bifurcation results for problem
(2.1) by decomposing A - T(Ao) into H - C, where A is some isolated
element 1in CA(T) n (a,b), H is a Tinear homeomorphism, and C is a
bounded 1inear operator. In §4.7 we use this decomposition to trans-
form equation (2.1) from A - T(x) - R(.,A) : X > Y into
I - cH! - (T(X) - T()xo))H'1 - R(H_](.),A) : Y~ Y for each A ¢(a,b), where
the transformed equation has the same continuity conditions and analogous A-
properness conditions to the original. In fact we prove, by a suitable
definition of global bifurcation, that a global bifurcation point of
the new equation is necessarily a global bifurcation point of the ori-
ginal equation. Then, by pr]oiting the jdentity operator, which is
present in the new equation,we prove a global bifurcation result via
the methods of Chapter Two which consequently holds for the original
equation.

In §4.2 we first assume that A - T(AO) is Fredholm of index zero
and that the transversality assumption
(A - T(r)) N (A - T(Ao)) N R(A - T(Ao)) = {0} holds for all X # A,.
Then, from Theorem 1.14,we deduce that a decomposition of A - T(AO) -
= H - C exists with the property that C is linear and compact. The
methods of §4.1 are then used to prove a global bifurcation result for

problem (2.1) when T(A) = AB, where, by making a judicious choice for
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H and C, we obtain our result when dim{N(A - xOB)} is an odd number.
We then extend the method to cover the more general case where
T(r) = _g Aij with k finite or infinite; however, we must have
X =Y aJ;}1bert space and impose a positivity condition on N(A - XOB).
We prove two results here: one when Ao > 0 and k is finite, the other
when ho = 0 and k may be infinite.

In the final section we study the same problem but do not assume
that the transversality condition holds. We do not suppose that
A - T(AO) is Fredholm of index zero directly, but, as in 54.1, that
A - T(AO) can be decomposed into H - C, where C is a general bounded,
linear mapping, not necessarily compact. A sufficient condition for
global bifurcation, depending upon the mappings C and H, is then proved.
Other additional conditions assumed in this proof imply that A - T(AO)
is, in fact, Fredholm of index zero, and so as before H - C certainly
exists and C can be chosen to be compact. Since the results here, how-
ever, depend explicitly on C and H we must know what these mappings are.
In some cases there may be a decomposition H - C readily available,
where C is not compact, with no obvious method of obtaining an explicit
alternative decomposition in which C is compact. Of course, the method
works equally well if we can find explicitly a decomposition with C

compact, provided the other hypotheses are satisfied, and the proof

in this case is much simpler than the one we give for general C.

4.1 The general operator decomposition

Assume problem (2.1) holds with the additional hypotheses:
(A5.) For some isolated A, € CA(T) n (a,b), A - T(ho) can be de-

composed into H - C where H : X > Y is a Tinear homeomorphism and
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C: XY is Tinear and continuous;
(A6.) For a decomposition, as in (A5.) there exist Ty > 0
and T, > 0 such that A - T(A) - &C is A-proper with respect to T,
for all A and & with [x - A | < 7y and lg] < Ty
Once again we are seeking sufficient conditions for AO, satisfy-
ing hypothesis (A5.), to be a global bifurcation point of problem (2.1).
From (A5.) we may rewrite equation (2.1) in the form;
F(X,A) = Ax - T(Ao)x - (T(x) - T(Ao))x - R(x,2)
Hx - Cx - (T(x) - T(AO))x - R(x,A) =0,

I

i

where (x,A) € X x R.
If we set y = Hx, then
FIHT(y)a0) = y = Gy = (T() = TOOH Yy = RIT (1)2) =0 (4.1)
where (y,A) ¢ Y x R and F(H'1(.),.) :YXR =Y,
We will show that equation (4.1) may be used to obtain global bi-
furcation results, for problem (2.1), via the methods of Chapter Two.
Qur first result is on the smalliness of the non-linearity of equa-

tion (4.1).

Proposition 4.1 For X in bounded intervals,

1-ci! - (T - T(xo))H'] . Y > Y is the Frechet derivative of
F(H‘1(.),k) at the point 0.

s clearly seen to be a

Proof: First, I - CH™ - (T(x) - T(x )M
linear continuous map. For A in bounded intervals we obtain from con-
ditions (H3) and (H4) of problem (2.7) that R(H'1(O),A) =0

and, if y # 0,

IRETGLOL - MRG0l 1 ol
l\yn llH'](y)” y
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Hence, by Definition 1.6 of the Frechet derivative, the result follows.

The next result tells us about the A-properness of equation (4.1),

1

Proposition 4.2 F(H'](.),A) and I - CH ' - (T(») - T(J\O))H'1 are A-

proper with respect to the admissible scheme PH = {H(Xn)’Yn’Qn} for all
A efa,b). Furthermore, provided |g] < t,,
I-(1+ g)CH'] - (T(n) - T(ho))H'1 is A-proper with respect to T, for

all » such that |x - A | < 1.

Proof: First we show that I, is admissible. Since H is a homeomorphism,
dim H(Xn) = dim Xn = dim Yn for each n e N. Also for each y ¢ Y,
dist(y,H(Xn)) = dist(Hx,H(Xn)), for some X & X, SO dist(y,H(Xn))
< I H]l dist(x,Xn) -~ 0 as n -+ =, by admissibility of I'. Since
I' is admissible, then, Qny +yasn-»>oeo, S0 Ty is admissible.

To see that F(H'1(.),k) is A-proper with respect to T for

A ela,b), ]et'{xn : X e H(X )} be a bounded sequence such that

i " "
Qn F(H"](xn JoA) »y as j =+« fory € Y. Then there exists
J J
: _ =1 . . . - . - R
z, = H xn £ Xn- with Qn- F(zn_,x) +yas J -, Since {zn.} is

J J J J J J
bounded we may assume, by the A-properness of F for X e(a,b), that

there exists z ¢ X such that z, ~zas j -« and F(z,A) = y.

- J
But z = H 1x > Z, SO X_- =+ Hz = x (say) as J - =.
ny ns n;
Hence z = H”]

|
X and F(H 1(x),;\) = y, which proves that
F(H'1(.),A) is A-proper with respect to Ty-

The above analysis shows that, if T : X - Y is A-proper with re-

! + Y > Y is necessarily A-proper with respect

-1

spect to T, then TH™

to T,. The result for I - cHl - (T() - T( K follows similarly.
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Also I - (1+ £)CH! - (T() = T NH = (A - T(A) - €OH!
and so, by hypotheses (A6.), for all A such that
A =2l < with Jg] < 1, = (1+ £)CH - (T() = T(a K]
is A-proper with respect to FH' Hence result of Proposition.
Propositions 4.1 and 4.2 tell us that the structure and A-
properness properties, which were used to prove the global bifurcation
results of Chapter Two, also hold for equation @.1). Since, in Chap-
ter Two, we only used the fact that our operators were A-proper with
respect to some admissible scheme, then the theorems of Chapter Two ap-
ply equally well to equation (4.1). Equivalently, we may regard (4.1)
as a particular case of prob1ém (2.1); which is not surprising really,
in view of its construction. We, therefore, make similar definitions
here to those made in Chapter Two.
Notice, by Proposition 4.1, that the set {(0,A) : A ¢ R} is a solu-
tion set of equation (4.1), which we call the set of trivial solutions,

and is equal to the corresponding trivial solution set of equation (2.1).

Definition 4.3

Cy(T) = th e R 2 N(I - CHT = (T() = TOHT) # (0333
S=((y, ) e Y xR : F(H 1 (y),A) = 0 with ||y # 0};
S'=SU{(0,) e Y xR : A e M)

The sets CH(T), S and S' are analogous to CA(T), S and S' of Chapter Two

and are related as follows.

Proposition 4.4 CA(T) = CH(T)
and §' = {(H 1 (y),2) : (ys2) € §"

Proof: By definition Cp(T) = {n eR : N(A - T(x)) #1013
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Now  N(A - T(A))

NA = TO) - (T0) = TO))

N(H - € - (T0) = T(a))

N((T - CH™ = (T() = T(3 )™ )H)
KN - e - (1) = T )HT)

i

it follows easily that CA(T) = CH(T). The result on S' follows directly
from the construction of equation @.1).
Let us now generalise the concepts of algebraic and geometric mul-

tiplicity of Chapter COne.

Definition 4.5 For A ¢ CA(T) the algebraic multiplicity, denoted by

M. (), is given by
My(3) = diml U N((T - CH - (T(2) - T NH ™)
n:

Similarly the geometric multiplicity of A ¢ CA(T) is given by
M (1) = dim{N(I - cH ! - (T(A) - T(AO))H'1)}."

A global bifurcation point of equation (4.1) is defined exactly
as in Definition 2.7, for equation 2.1, replacing X, CA(T) and S' by
respectively Y, CH(T) (equal to CA(T) by Proposition 4.4) and S'. Then

the following is true.

Theorem 4.6 A is a global bifurcation point of problem (2.1) if and

only if it is a global bifurcation point of equation (4.1).
Proof: Immediate from Definition 2.7 and Proposition 4.4.
The preceding results enable us to prove the next important theorem.

Theorem 4.7 Consider problem (2.7) with the additional hypotheses (A5.)

and (A6.). Then A is a global bifurcation point of problem (2.1) if
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there exists & > 0 such that Deg(I - CH"]

1

- (T(R) - TO K ,6,0)
# Deg(I - CH™ = (T(2) - T(x)))H',6,0), for
Ay = 8 <A <A < A< A, + 8, where G is an arbitrary open bounded set

in Y containing zero.

Proof: By Propositions 4.1, 4.2 and 4.4 we may regard equation (4.1)
as a special case of equation (2.1) and, from Theorem 2.10, obtain a
global bifurcation result, at Ay E CH(T) = CA(T), of equation (4.1),
when the above degree property holds. Theorem 4.6 then gives us the

required result.

Remark For the rest of this chapter we shall consider additional hypo-

theses which ensure that the degree result in Theorem 4.7 holds.

4.2 The Transversality Condition

Consider problem (2.1) with the additional hypotheses:
k

(A7.) T(r) = =& AJBj, where k is a positive integer, or is infinite;
J=1

(A8.) there exists an isolated element Ao of CA(T) n (a,b), and
A - T(AO) is Fredholm of index zero-where, if k # 1, either;
(A9.) Ao # 0and k > 1 is finite, X = Y is a Hilbert space, 0 ¢ (a,b),
and A is . - .Q positive element in CA(T) N (a,b);
there exists n > 0 such that N(A - T(AO)) and R(A - T(AO)) are
invariant under A - T(2), whenever A e (0,A_ + n) n (a,b);
for all x ¢ N(A - T(Ao)), (Bix,x) >0 (i=1,...,k) and

§ (Bjx,x) > 0 for all 0 # x « N(A - T(Ao)); or,

3=1

(A10.) Ay = 0 and k > 1, possibly infinite, X =Y is a Hilbert

space and there exists n > 0 such that N(A - T(ko)) and
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R(A - T(AO)) are invariant under A - T()A), whenever

A e (0,n) N (a,b); {Bj} is a uniformly bounded sequence of

bounded Tinear operators; that is, sup{|| lel 2 J e N} is

finite; for all x e N(A -T()), (Bix,x) > 0 for every

i=1,2,...,k, and (B]x,x) > 0 for all 0 # x ¢ N(A - T(AO)).
(A11.) The transversality condition,

(A-TO)) N(A-TODIN R(A - T(r,)) = {03,

holds for all A e (a,b) with x # Age

When k = T this condition is equivalent to

B N(A - AOB) N R(A - AOB) = {0}.

From hypothesis (A8.), Theorem 1.14 tells us that A - T(xo) can
be decomposed into H-C with H a linear homeomorphism and C Tinear and
compact. Hence hypotheses (A5.) and (A6.) of §4.1 are satisfied and
the methods of that section may be used here.

The transversality condition (A11.) is a generalisation of assump-
tjon (H9.) of §3.2 with the identity I replaced by A. We can prove an

analogous result to Proposition 3.10.

Proposition 4.8 (i.) If k = 1, then

X

Y

BN(A - xoB) ® R(A - AOB),
where X, = (A - A )']R(A - kOB) for a fixed A1# X with A, ¢ CA(T) and

A, e (a,b); furthermore, dim{BN(A - AOB)} = dim N(A - AOB), which is

1
finite by A-properness; A(Xz) ¢ R(A - AOB), B(Xz) ¢ R(A - AOB) and

(A - uB)X2 c R(A - AOB) for all v e(a,b).

(ii.) If k > 1, then X =Y = N(A - T(AO)) ® R(A - T(Ao)),
k

and 5 (33 - 2 008y NA = T0)) © NA - T(3)), for all 2 e (0,20 +n)n (a:b).

3=1
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Proof: (i.) As in the proof of Proposition 3.10, replacing I by A and
T(x) by AB, we may show that

N((A - A B)(A - Klg)nl)z = N((A - aB)(A - AlB)nl). Now since

A - B s a homeomorphism it is Fredholm of index zero and, by Re-
mark (4) following Definition 1.13 and hypothesis (A8.), it follows that
(A - kOB)(A - J\]B)'1 is Fredholm of index zero. Hence, as in the proof

of Proposition 3.10, this implies that the ascent and descent of

(A - AOB)(A - ATB)—] are both equal to one, so

1l

Y = N((A - A B)(A - A, y"1) 8 R((A - AGB) (A - A]B)_])

(A - A]B) N (A - AOB) ® R(A - AOB)

I

(A - A B - (A1 - AO)B) N (A - AOB) ® R(A - AOB)

n

BN(A - AOB) ® R(A - AOB),
and
- =1

X = N(A - AOB) ® (A - AlB) R (A - ADB)
= N(A - AOB) ) XZ’

where X, = (A - AB)T R (A - A B).

Since A - A1B is a homeomorphism and

dim{N(A - AOB)} is finite by A-properness of A - A B, then

dim{N(A - kOB)} dim{ (A - A]B) N (A - AOB)}

dim{B N (A - A B)}..

Next we prove that (A - uB) X2 ¢ R(A - AOB) for all u e(a,b).

We have that (A - A]B)X2 = R(A - AOB). Let x, be an arbitrary ele-
ment of XZ‘ Then, there exists x e X such that

(A ~ A1B)x2 = (A - AOB)x, therefore

(A - B - (Aq - AO)B)x2 = (A - AOB)x.

—

n

So, —(A] - AO)Bx2 (A - AOB)(x - x2) and

Bx, = (A - XOB)(x xz)/(AO - A]). Thus, BX, ¢ R(A - AOB). Also
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Axy = lexz + (A - AOB)x, SO AX2 ¢ R(A - AOB), which implies that
(A - uB) X2 c R(A - AOB) for all u e(a,b).

(ii.) By the same procedure as in (i.) we may prove that
X=Y= (A - T(A])) N (A - T(AO)) ® R(A - T(AO)), for some fixed
A e(a,b) n (0, Ayt n) with A # CA(T) (n as defined in (A9.) ov (A10.)).
But from (A9.) or (A10.), N (A - T(AO)) is invariant under (A - T(k1))
and by A-properness, N(A - T(Ao)) is finite dimensional. Hence
(A= T(q)) N (A-T()) = NA - T(2)) and, therefore,
X =Y = NA - T(Ao)) 6 R(A - T(AO)).
Finally notice that
(A= TR N (A -T0Y))

n

(A-Tg) = (T(A) = T ) N (A= TR))

- (T = T N (A = T())

In 1=

. ng - Aof)Bj N (A - T())

c N (A - T(AO)), for all x e(a,b) n (0O, Ay * n)s
by hypotheses (A9.) or (A10.)

Remark If A - T(x) and A - T(Ao) commute for every i e(a,b), then it is

easily seen that the decomposition in Proposition 4.8 (ii.) holds.

We shall now choose H and C in a particular way, which will reduce

the algebraic multiplicity Ma(xo) to the geometric multiplicity Mg(AO).

Proposition 4.9 A - T(AO) may be decomposed into H - C, where:
(i.) if k=1, C : X = BN(A - AOB) is defined by

Cx = C(x, + x2) = Bx1, with Xy € N(A - ADB) and Xo € X2;

1

(ii.) if k> 1, C : X > N(A - T(AO)) is defined by

Cx C(x] + x2) -(A - T(A))x], with
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X; € N(A = T(x)))s x5 € R(A = T(a))), where A is fixed,
A e(xo, A Y n) n (a,b) and 0 < A - Ay < dist(xo,CA(T)\{AO}).
In (i.) and (ii.), H is defined by Hx = (A - T(AO) + C)x, for each

x ¢ X. Then, in both cases, C is compact and H is a homeomorphism.

Proof: Note thgt, since [A - Aol < n and » e(a,b), then (A9.) o (A10.)
imply that C in (ii.) maps X into N(A - T(AO)). Decompositions
X = Xq X in (i.) and (ii.) are guaranteed by Proposition 4.8. Since
BN(A - AOB) in (i.), and N(A - T(AO)) in (ii.), are both finite dimen-
sional, then C is compact. H is, therefore, A-proper, and by Theorem
1.9 we need only show that H is injective to complete the proof.

Suppose Hx = 0, then (A - T(AO) + C)x = 0, which implies that
(A - T(AO))X = -Cx. Thus:

(i.) When k =1, x = X+ X, where Xq € N(A - AOB), Xy € X2 and
(A - AOB)x2 = -BXqs S0 Bx; e BN(A - AOB) N R(A - AOB) = {0} by (A12.).
Since (A - AOB)X] = 0, it follows that Ax] = 0 and therefore (A - AB)x-I =0
for any X £ CA(T). This implies that Xy = 0. Also
Xo € N(A - AOB) N X2 = {0}, by Proposition 4.8, therefore x = Xy t X, = 0

and H is injective.

(ii.) When k > 1, x = X + Xoo where
Xy € N(A - T(AO)), Xo € R(A ~ T(AO)) and (A - T()\O))x2
(A - T(A))x] e (A -T()) N (A - T(AO)) N R(A - T(xo))

1l

(A - T(A))xl, S0
{0}, by (A1%.).
Hence, x; = 0, and X, ¢ N(A - T(AO)) N R(A - T(AO)) = {0} by Proposition

1

4.8. Thus, X = x + Xy = 0 and H is injective. This completes the proof.

Proposition 4.10 The algebraic multiplicity Ma(AO) is independent of

H and C and is given by the finite number

Ma(xo) = dim{N(A - T(AO))}
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(which equals dim{N{I - CH-})}), the geometric multiplicity of X .

Proof: Since C maps X into the complement of R(A - T(AO)), then
(A-TOL) + CONA =TGN R(A - T(r)) = {03,

However, A - T(Ao) +C =H, therefore,
HNGA = T()) = N((A = TO )M

(
((H - C)H ‘)
(
(

N
N
N(I - CH™ )

R(I - CH)

I}

and R(A - T(ho))

Hence N(I - CH™') N R(I - CH™') = {0}, which implies that
N(T - cH™Y) = N(I - ch" )2, For if (I - cH D)%y = 0, then
(1 -CcH Ny e R(I-CH MY NI -CcH!) = (03,

Hence N((I - CH'])Z) ¢ N(T - CH'l) and, since the reverse inclusion
is always valid, equality holds. Thus

s -1 s _
Ma(xo) = dim{N(I - CH ")} = dim{N(A - T(AO))} = Mg(A0

We now prove one of the main results in this section.

Theorem 4.11 Consider problem (2.1) with the additional hypotheses (A7.),

(A8.) and (A11.) with k=1. Suppose that dim{N(A - AOB)} is an odd number,
Define
§ = min{1, dist(AO,CA(xOB)yAOD,_AO -a, b- Ao_} .

Then

-1 -1 -1

Deg(I - CH™' = (1 - 2)BH',6,0) # Deg(I - CH™' = (X - A )BH ,G,0)

fOP,AO - 8 <A< <A <t where G is an arbitrary open, bounded

set in Y containing zero, with C and H as defined in Proposition 4.9 (i.).

Proof: First we prove that

deg, ¢(I - £ CH',6,0) = ~deg, (I - T ch1,6,0) (4.2)
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for0<T-8<t<l<t<l+s,
We may apply the Leray-Schauder Formula, cf. §1.4 preceding Defi-

nition 1.17, provided that t and t are not characteristic values of

CH']. Note that, since Ay € CA(T), then 1 is a characteristic value

of CH']; we shall prove that 1 is the only characteristic value of

cHt, Suppose, for some t # 1, there exists y e Y with || y || = 1 such
1 1 1

that y - tCH 'y = 0, then, y - CH 'y - (t - 1)CH 'y = 0, so

(A~ 2B - (t-1O)H

Let H"1y =W =Wyt v, where W, e N(A -~ AOB) and W, e X2. Then

0.

b4
il

(A - AOB)W2 = (t - 1)C(w1 + w2) = (t - 1) Bw1.

However, as we noted in the proof of Proposition 4.9, (A - AB)N(A - ADB)
= BN(A - AOB), so by hypothesis (AT11.),

(A - 2 B)w, e BN(A - A B) N R(A - 2 B) = (0).

2
Thus w, e N(A - AOB) nX, = {0} by Proposition 4.8 (i.)}, implying that
(t - 1) Bw1 = 0. Hence Bw} = 0, and, since Aw1 = AOBw] = 0, then

(A - AB)w] =0 for A # o with 1 £ CA(AB) and so w, = 0. Thus w=0
and, therefore, y = 0, which contradicts ||y || = 1. We have shown that

1 is the only element in ch(CH'1) and so by the Leray-Schauder Formula

deg, (T - & CH™',6 0) (-1)° =

~1\n
and deg (I - E’CH'] ,0) = (- ]) { N(( - CH )™

But from the proof of Proposition 4.10, dim {ﬁlN((I - e hM
n=
= dim{N(A - AOB)}. Hence

~1.

So equation (4.2) holds.
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To complete the proof we use a homotopy argument. Define the

homotopy H : G x [0,1] = Y by

1 1

H(y,s) =y - st CH 'y - (1 - s)CHly - (1 - s)(t - 1)BH 'y,

for each (y,s) € G x [0,1].
Let us rewrite this in the form

H{y,s)=y - (1+s(t - NOH 'y - (1 - s)(t - 1)BH y.

Now, since |s(t - 1)| < 8 < 1o for all s £[0,1] and
(1 -s)(t-1) <8 < Tqs then by Proposition 4.2, H(.,s) is A-proper
with respect to Ty for all s ¢[0,1]. Clearly H(.,s) is continuous,
uniformly on closed, bounded subsets of Y. We shall prove that
H{(3G,s) # 0 for each s ¢[0,1]. Suppose the contrary, then there is
y € 3G and s ¢[0,1] such that

y - (1+s(t-1))CH Ty = (1-s)(t-1)BH

y=0,y#0. Ifs=020,
this implies that t - 1 ¢ CA(T), which is impossible since

[ (£ - D] < s < dist(a,C(TINAJY). Also if s = 1, then

t e ch(CH™') and by the first part of the proof this implies that t = 1
which is a contradiction. Thus s # 0 and s # 1. We may rewrite the

above equation in the form

[H-C-(1-5s)(t-1)B-s(t-1)0CIH y=o0.
Setting H-C=A - AOB and H']y =X = X +x2, where

Xy € N(A - xOB) and x, e X,, we have
[A -2 = (1-5)(t-1)B-s(t-T1)CIx +x,) =0.

Therefore, replacing C, as in Proposition 4.9 (i.), we find that
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It

A= (gt (1 - s)(t - 1))B)x2 (1 -s)(t - 1)Bx] + s(t - 1)Bx]

(t - 1)Bx,

Now since 0 < |(1 - s)(t

1] <8 <min{A, - a, b -2}, for
s ¢(0,1), it follows from Proposition 4.8, that

A -(AO + (1 - s)(t - 1))Bx2 e R(A - AOB). But (t - 1)Bx1 eBN(A - xoB).

Hence by assumption (AS8.)

n

(A - (AO + (1 - s)(t - T)B)x (t - 1)Bx] = 0,

2

This implies that Xp = 0 and Bx] = 0; however, (A - AOB)x1 = 0, SO

AXT = Aon] = 0. Hence (A - >\B)x.|

A A CA(T), and so Xq = 0. Thus x = 0 and therefore y = 0. This contra-

0, for an arbitrary A e(a,b) with

diction tells us that H(3G,s) # 0 for all s e[0,1]. Hence by the homo-

topy property (P3.),

1 1 -1

Deg(I - t CH ',G,0) = Deg(I - CH™' - (t - 1)BH ',G,0).

Using the homotopy
H(x,s) = 1 - STCH - (1 -s)CH ! = (1 - 8)(E- 1)BH
we may prove in the same way that

Deg(I - T CH™1,6,0) = Deg(I - CH™' - (T - 1)BH™',6,0).

The result follows easily from equation (4.2) recalling, cf.

Theorem 1.18, that
Deg(I - t CH™',6,0) = {deg (1 - t cH',6,0)}

and replacing t - 1 and t - 1 by, respectively, A - 1  and A - Ay-

We have the corresponding global bifurcation result.
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Theorem 4.12 Consider problem (2.1) with the additional hypotheses

(A7.), (A8.) and (A11.) with k = 1. Suppose that dim{N(A - AOB)} is an

odd number. Then Ao is a global bifurcation point of problem (2.1).
Proof: Immediate from Theorems 4.7 and 4.11,

Remark Theorem 4.12 generalises Theorem 3.3 (1) to the case when B is
not necessarily compact. Here we do not need to assume that
Deg(A - AB,G,0) is a singleton for any A e(a,b).

When Ay = 0 and X = Y is a Hilbert space we can generalise Theorem
4.12 to the more general case, where T(A) = z Aij, with k finite or
infinite: we prove this result in Theorem 4??;.

In order to extend our results, when AO# 0, to the more general
situation T(A) = jg]Aij, where k > 1 and finite, we require a Lemma.
Lemma 4.13 Let K1 > 0 and K2 > 0 be two constants such that, for Ao
satisfying hypotheses (A7.), (A8.) and (A9.),

(A - T(Ao))xH > Kys for all x e R(A - T(AO)) with ||x|| = 1,
and A - T(AO) + L is A-proper with respect to r for all bounded linear

operators L : X = X with
Ll < K2.

Note that K2 is guaranteed by Theorem 1.16.
ks
Then there exists s > 0 such that x Agd 20 - 1] HBjH

J_
< min{x_,K;5K,}, whenever | A= 1] < 8o with A >0 fixed.

Proof: First, we prove that K] exists. Suppose not, then there exists
a sequence {xn} in R(A - T(AO)) with ”an = 1 for each n e N such that

| (A - T(;\o))xnl!<]ﬁ' So (A - T(AO))xn +0as n - =,
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By Theorem 1.10, {xn} is compact, therefore we may assume without
loss of generality that there exists x e X with [[x|| = 1 such that
Xy 7 X and (A - T(AO))x = 0. Hence, x € N(A - T(AO)) ﬁ R(A - T(AO))
= {0} by Proposition 4.8 (ii.). This contradiction implies that K
exists.

Next we prove the inequality. If x = 1 the inequality is trivial.

When 0 < Al < Tor [a] > T, maxt|ad 1] :1<j<ki= K1) so
K. ko,
2o e < S -1 maxt|| Byl s 1<i<krz ad
2.0 jhvo= J -V ™2 %
! J“1(1 y K
)\ —
_ 15K ) : 0 o)
= |2 - 1] max{]| BjH 0 1< J kY == Y

| if Ao # 1
{
kIAk - 1] max{]| BjH 13 <k, ifa =1
<Kk -1y,

where K is a finite positive constant. The result follows easily.

We can now prove an important degree result.

Theorem 4.14 Consider problem (2.1) with the additional hypotheses

(A7.) - (A9.) and (A11.). Suppose that dim{N(A - T(xo))} is an odd
number.

Define
§ = min{(xO -a), (b~ AO), 850 Ago dist(xo,CA(T)\{Ao}),n}

where 60 is as defined in Lemma 4.13. Then

1

Deg(I - CH™! - (T(2) = T, )IH™',6,0)

# Deg(I = G - (T(X) = T( )K" ,6,0)
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for Ag =6 S A <A < A< 8+ Ao where G is an arbitrary bounded open
set in X containing zero and C is the compact map defined in Proposition

4.9 (ii.) by

il

C(x1 + x2) -(A - T(x))x1

-(A - T(g) = (T() - T )X

]
T
——

>
o
1
—
—
>
o]
g
g
bad
—

for x; e N(A - T(AO)) and x, e R(A - T(AO)), where A is an arbitrary

fixed number such that 0 < A - Ay < 8 and H = A - T(AO) + C.

Proof: In a similar manner to the proof of Theorem 4.17, we first

prove that

1 1

degLS(I -t CH ', G,0) = -degLS(I -t CH™ ',G,0)

f0r031—6/)\0<£<]<f<1+6/)\0_<_2.
Suppose for some t # 1, there exists y ¢ X with || y|| = 1 such that
y -t CH']y = 0.

Then,

Ty ot - 1ewly = o,

y - CH™
or  [A-T() - (t = 1)CIH ly =.0.

Let H']

Y = W= Wt Wy, where Wy e N(A - T(Ao)) and W, e R(A - T(Ao)).
This decomposition is guaranteed by Proposition 4.8 (ii.). Then, from

the definition of C,
(A - T(AODWZ

(t = 1) C (W + wp)

St = 1A - TR,

k . .
~ 3 J o_ J
(t T)j=1(k A )ij1

{]
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But from Proposition 4.8 (ii.) and our choice of 23

k
(t -1)z

J
4.8 (i1.),

(Aj - Aoj)ij] c N(A - T(AO)). Thus, again by Proposition
1

(A - T(AO))WZ e N(A - T(AO)) N R(A - T(AO)) = {0}, and so,
Wy e N(A - T(x)) N R(A - T(x,)) = {03.

Also, -{t - 1)(A - T(A))w] = 0, which implies that (A - T(A))w] = 0,
and by our choice of A we must have Wy = 0.
Hence w = 0 and therefore y = 0, which contradicts || y|]| = 1.
1

We have thus shown that 1 is the only characteristic value of CH .
So as in the proof of Theorem 4.11 the Leray-Schauder degrees are re-

Tated as required.

To complete the proof we use the homotopy property (P3.).

Let H : G x [0,1] ~ X be defined by
. K 3 -1
y = (1 =s)CH 'y = = ((1 -s)a )’(tY - 1)B.H 'y,
j=1 0 J
where T is arbitrary, but fixed, such that 1 < t < /2, * 1.

Hly,s) = y - ST CH™!

We may rewrite H(y,s) as
1, K = = - -1
H(y,s) =y -CH 'y - = ((1 - s)AO) (¥ - I)BjH y - s(t -1)CH 'y
j=1
and since C is compact we need only prove that

k .
I - cH! -3 ((1 - s)AO)J(ﬁﬂ - 1)BH'] is A-proper with respect to T,.

J=1
But we can write this operator as
k ..
(H=C- 2 ((1-sn )@ - 1B )"
j=1 ° !
k. k ..
= (A - a8 - = (1= s ) (E - DB H).
j:] J j:] J
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Now | = ((1 - s )I(E - 1]

A

.,
ne1r=x 0o =x
— —_

RIGIER NN

o,

< K25 by Lemma 4.13 and our choice of §.

Hence by Theorem 1.16 and the proof of Propasition 4.2 it follows
that H(.,s) is A-proper with respect to Ty for all s € [0,1]1. We show
that H(5G,s) # 0 for s ¢ [0,1] by a contradiction argument. Indeed,
suppose H(y,s) = 0 for some y ¢ 3G and some s [0,1].

First we prove that s # 0 and s # 1. If s = 0 then E'Ao e CA(T)
AS

which is a contradiction, since (?XO - ko) =2 (T-1) <2 =5

< dist(A ,Cp(T) \ {2 }). Sos # 0.

If s =1, then T is a characteristic value of CH_], which is another con-
tradiction, by the argument above. Thus s €(0,1). Now we have that,.

k

H(y,s) = (H - €= s(E-1)c~ 1 ((1-sn )@ - )8Ry =0
J=1
q k k
Setting H ' y-= x = Xq + X5, with x| ¢ N(A - ji]lo Bj) and x, € R(A —j=?° Bj)
we aobtain,
k. k . _
(A- £a9B, - 2 ((1-8)a)3(F - 1)B, -s(T-1)C)(xq +x,) =0
a0 ] . 0 J 1 2
j=1 j=1
K k L
So (A - -E A, BJ.)x2 + (A - .E (1 - s)txo) Bj)x2
j=1 J=1
K j
- (A - R ((1 - S)XO) Bj)xz
=1
X S N
= JE](((T - s)t ?\0) - )\0 )Bjx]
k SO - kK o
= I (1= s = A NBxy + s(E - 1) 2 (0 - A N)Baxy, (4.4)
j='] o i J=-l 0 J

using the definition of C.
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Since (1 - s) E'AO and (1 - s) A, both belong to the interval (0, Ay * n) s
it follows by (A9.) and Proposition 4.8 (ii.) that the left hand side
of equation (4.4) belongs to R{A - T(AO)), while the right hand side

belongs to N(A - T(AO)). Hence both sides must equal zero by Proposi-

tion 4.8, Thus

=

k ..
(A - %2 JB Xy = Z_((1 - ) W - 1)B:X,
§=1° 3= ° )

(s(E - DO - agd) + (1= nl@ - ey,

1}
I ™ =

J=1
=0 (4.5)
But 0 < (1 -s) <1,s00< (1 - s)j <1, Aoj > 0 and (Aj - Aoj) >0
for each j = 1,...,k; and, by our choice of t, s(t - 1) > 0. Hence
taking the inner product of the right hand side of equation (4.5) with
X1 it follows from (A9.) that (Bjx1,x]) = Q for each j = 1,...,k,
which is a contradiction unless Xy = 0. Therefore, x = Xy = H'1y # 0
and we may divide the left hand side of equation (4.5) by || x,[| to
obtain

K J NIE=
(A - JE]AO BJ Tr——Tro - z «1 -s)A M(tY - 1)B. (Tr*—Trﬁ

which implies that

S YT, 3y 3 X2
| (A - jiik Bj)(ﬂ—ggﬂ-)“ = | jil(] - st (- 1)Bj(ﬂ"§5ﬂ")u
But from Lemma 4.13
I o - i‘:‘ﬂs)(ﬁﬁn . ¥,
j=1 *2
and 1| 5 (1 - )5 3@ - 08 2ol < 2@ - Dl
j=1 2 3=1
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This contradiction proves that Xy = 0, and so y = 0, which implies
that H(2G,s) # 0 for all s ¢[0,1]. Hence by the homotopy property (P3.)

we have that

o ) K . . )
Deg(I - TCH™Y,6,0) = Deg(I - cH™! - ¢ ((x ©)J - 2 JyB.H71,6,0)
j=1 O o ‘j
for T<t <1+ 8/x, or equivalently A < A0¥'< Ao TS
By using the homotopy H : & x [0,1] + X defined by
- 1 1, K 3ed -1
H(y,s) = y - stCH 'y - (1 - s)CH 'y = ((1 - s)a ) (" - 1)Bij ,
J=1
where t is arbitrary but fixed, such that 0 < 1 - a/AO <t<1,
we can use a similar procedure to prove that
-1 K i dve gl
Deg(I - tCH ",G,0) = Deg(I -~ CH ' - = ((A_t)¥ - A Y)B.,H ',G,0)
‘FOY‘Of_)\O-<5<;t_)\0<)\O.
Hence, from the fact that Deg(l - tCH!,6,0) = {deg ¢(I - tCH™',6,0)1,

cf. Theorem 1.18, the result of the Theorem follows by replacing ;}0
k .
and fio by, respectively, A and 2 and recalling that T(x) = = AJBj.
J=1
The corresponding global bifurcation result is the following.

Theorem 4.15 Consider problem (2.1) with the additional hypotheses

(A7.) - (A9.) and (A11.). Suppose that dim N(A - T(AO)) is an odd num-

ber. Then X is a global bifurcation point of problem (2.1).
Proof: Immediate from Theorems 4.7 and 4.14.

Remark Theorem 4.15 generalises Theorem 3.13 (3) to the case where A

replaces I, - the B i=1, 2 .k, do not necessarily commute, an&
ks wek rve_‘ur-u—e& &)ch: M(A T ,,))C:X %T- very N & .

We now seek sufficient conditions for Ao = 0 to be a global bifur-

cation point of problem (2.1). Again we shall assume that
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T(A) =
J

[T s i

AJBj; however, this time k may be infinite.
1

We require a Lemma.

C@s\*s:\.cto_r“ pm\:lam (7- -‘) CU'\&
Lemma 4.16 ,assume hypotheses (A7.), (A8.), (A10.) and (A11.) hold.

Suppose that H : X » X is a linear homeomorphism. Let G be an arbi-

trary open bounded set in X, containing zero. Define

My = inf{(Byx,x) @ x < N(A) 0 H1(s6) 3

and M2 = sup{sup(Bjx,x) : x e N(A) i H"1(BG) }.

j e
Then M1 > 0 and M2 < w,
Proof: First consider M1. Suppose M1 = 0, then there is a sequence
{x,} ¢ N(A) N H7'(36) such that (Byx .x;) » 0 as n > =.
But dim N(A) dis finite.by Theorem 1.11 since A is A-proper, so
N(A) N H—](BG) is a compact set in N(A) and we may assume without loss
of generality that x_ - X e N(A) N H'1(aG). Therefore (B1x,x) = 0 and,
since X ¢ H'](BG), x # 0. This contradicts hypothesis (A10.) and so M] > 0.
Next consider MZ' For each j e N, if x ¢ N(A) N H'l(aG), then
sup(Bjx,x) < | BjH sup{ || x|| 2. x e N(A) N KT (6))
<185l swtl W2 2y e 2@
< Bl TR 2 suptlly ) 2oy e o8
< Bl a2,
for some constant N > 0, since G is bounded. So

M, = suplsup(Byx;x) : x & N(A) N Hl(a6)} < |HTT)| 2

J el
which is finite by hypothesis (A10.).

N sup{|| lel : jelN},

This completes the proof of Lemma 4.16.

We can now prove the following degree result.
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Theovem 4.17 Consider problem (2.1) with the additional hypotheses

(A7.), (A8.), (A10:) and (A11.).
Suppose that dim N(A) is an odd number and let 8, > 0 be such that

whenever 0 < [x - 1] < §_, where M; and M, are the constants defined in

Lemma 4.16.

Define

§ = min{l, 8, dist(O,CA(T)\ {0}), -a, b,a1§

then,

1

Ko,
Deg(l - CH™' - = 2IB,H1,6,0) # Deg(r - cH! -

J=1 J

| Bl

9B, 1,6,0)
1 J

for =6 <A <0 <X < &, where G is an arbitrary open bounded set in Y

containing zero and C and H are as defined in Proposition 4.9 (ii.) with

k
C(x1 + x2) = 3

AJB.x1 for Xq € N(A) and x
=1

5 € R(A), where 0 < A < &.

Proof: As in the proof of Theorem 4.14 we may prove that

1 1

deg) (I - tCH™',6,0) = -deg  ((I - TCH™',G,0) for

0<1-8<t<1<t<l+s.
To complete the proof we require a homotopy argument. Define
H:Gx [0,1] ~ X by

1 1 k 1

y - (1 -s)ely - 5 ((1-s)(t - 1))IB.H7y,
5=1 J

where t is taken arbitrarily, but fixed such that

H{y,s) =y - stCH™

0<tT-68<t<Tl.

Rewriting H as
k .
H(y,s) =y - (1 s(e - IOy = 2 (1= ) - D)BH
J:

and using the fact that |s(t - 1)| < 8 and

1
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0< (1 -s)(t-1)] <6< T, and € is compact, it follows by Proposi-
tion 4.2 that H(.,s) is A-proper with respect to Ty for each s ¢[0,1].
It is easily seen that H(x,.) : [0,1] = X is uniformly continuous on

G and H(.,s) is continuous on [0,1]. To apply (P3.) we must show that

H(3G,s) # 0 for all s ¢[0,1]. Suppose the contrary, then

H{y,s)

Note that s # 0 and s'# 1. For then t is a characteristic value of

0 for some y ¢ 3G and s ¢[0,1].

el or t-1c¢ CA(T), both contradictions. So s «(0,1) and

k | .
(H-C-s(t-1C- 5 ((1-s)(t-1))B)H Ty =o0.
3=1 !

But H - C = A, so setting H"1y

X = Xq + X with x; e N(A), Xy € R(A)
and replacing C, we have that

k .
(A= = ((1-s)(t-1))B;)x
j=1

K ;
2 0= - e

+s(t-1) (4.6)

i 1

e x ™o

3 J
AVB.
: BJx

Since 0 < | (1 - s)(t - 1)] < & and & £(0,n) n (a,b) then by (A10.)
and Proposition 4.8 {ii.), the left hand side of equation (4.6) belongs
to R(A), while the right hand side belongs to N(A). Hence by Proposition

4.8 (i.),

el

(- 3 (- s)E- IBx = 1 (s(e- 1+ (- )3 - ey

3=1
=0 ‘ (4.7)

H X

]

j=1

Taking the inner product of the right hand side of this equation

with X we obtain
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[T e B ot

(s(t - 10+ (1= 5)3(t - 1)I)(Bixp.xy) = 0
1 UL

J
We shall prove that s(t - 1))\j + (1 - s)j(i_- 1)j is negative for
each j = 1,2,...,k, which, by hypothesis (A10.), implies that~(B1x],x])

= 0, and so x; = 0.

k .
Since the first part of the summation, namely, I s(t - 1)AJG3,xI;xJ
o1 5
is always negative, we shall obtain our result by showing that
k
)X

T = (1 - s)j(i;— 1)j(Bjx1,x]) < 0.

3= -
We do this by proving that the sum of all the positive terms in =

added to the single term (1 -5s)(t - 1)(B1X],x1), is negative. So con-

sider the sum of positive terms given by
2 2
Z] = (1 - s) (;t_' ]) (BZXT’X-I) + (1 - 5)4(1 - ])4(B4x'|sx-|)
+ ...

assuming that k is infinite. If k is finite then there are less posi-
tive contributions than we have taken, so an infinite number of terms
is the worst case as regards proving negativity. From Lemma 4.16 we

have that (Bjxl,x1) < M, for each j e N, so

el - 98- D2 (- st - Dt
My(1 - $)2(x - 1?
1-(1-9)%t-1°

by summing to infinity and using the fact that 0 < [(1 - s)(t - 1) < 1.
Also 0 < (1 -s) <1, s0 (1 - 5)2 < {1 -58)<1and
1 ' 1.

— < — , therefore
1-(1-8)(t-1% 1-(t-1)7°
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My(1 = $)(t - 1)°

La <

Now the first negative term is (1 - s)(t - 1)(B]x1,x1). But by

Mgli.“ 1]
Lemma 4.16 (B1x],x]) 3_M1> 5
1= (L-1)
since |t - 1] <& <¢,.

M1 - s)(E - 1)°

1 - (t-1)°

Thus (1 - s)|t - 1](B1x1,x1) >

> Iy by above.

We have therefore shown that even if all the positive terms in I
are non-zero, their sum is still Tess than the modulus of the first
negative term, (1 - s)(t - ])(B]x1,x1).

Hence, from (A10.) it follows that Xy = 0. So x =X, # 0.

But since 0 < |(1 - s)(t - 1)| < & , then

k .
A- t ((1-s)(t- ]))JBj is a homeomorphism which implies from equa-
j=1
tion (4.7) that X, = 0. Soy=Hx=0and this contradiction shows that

H(3G,s) # for all s ¢[0,1]. Hence H is a valid homotopy and (P3.) gives

1

Deg(I - tCH™',6,0) = Deg(I - CH -z (t - 1)9B.H71,6,0).

3=1 )
By use of the homotopy H:Gx [0,1]+Y defined by

k .
y - (0 =sely - 3 (1 -9 E - )y

j=1

H(y,s) = y - sT CH!

we may show as above that

Deg(I - TCH™',6,0) = Deg(I - CH™! -

N o=

(T - 1)9B.H1,6,0),
_ 3= J
for 1 <t <1 + 8.

The result then follows easily by noting that
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1 1

Deg(I - tCH ',G,0) = {degLs(I - tCH™ ' ,G,0)} and replacing t - 1 and

t - 1 by, respectively, A and % .

Remark  For the proof that Deg(I - TeH!

1 1

,G,0)

k _—
-t (T -1)IB.H
=1 3,

ment used for t, since (t - 1)Y is positive for all j M.

= Deg(I - CH™ ,G,0) we do not require the sign argu-

We have the following global bifurcation result.

Theorem 4.18 Consider problem (2.1) with the additional hypotheses (A7.),
(A8.), (A10.) and (A11.).

Suppose that dim N(A) is an odd number. Then Xo is a global bifur-

cation point of problem (2.1).
Proof: Immediate from Theorems 4.7 and 4.17.

Remarks (1.) Theorem 4.18 generalises Theorem 3.3(3) for Ay = 0, to the
case when T(a) = _;Tijj with k finite or infinite; where A and the Bj's
(3 =1,2,...,k) ai; not necessarily self-adjoint; a less stringent con-
dition than positive semi-definite is assumed on the Bj‘s, and we do not
demand that Deg(A - T(x),G,0) is a singleton for any x» e(a,b). Theorem
4.18 also generalises Theorem 4.12, for ko = 0, when X = Y is a Hilbert
space.

(2.) Throughout this section we assume that g € CA(T) n (a,b) is
isolated. When T{A) = .; Aij, we may ensure that AO is isolated by
imposing a more stringegi]transversality condition: namely, whenever
07 x e N(A - T(a,)), then jgl(xj -2 )Bsx £ R(A = T(h)) For A # 1 e(a,b).
This condition implies hypothesis (A11.) and so the methods outlined
above all go through as before. To see that (A11.) holds, suppose the

contrary. Then there exist 0 # x « N(A - T(AO)), 0#ye X, and
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A # A, such that (A - T(A))x = (A - T(}\o))y. But (A - T(x))x

ks :

= (A - T() - (T() - TANx = =(T(A) - T(x))x = 351(»" - 2,7 )B,x
kK . :

and so ji](ﬂ - AOJ)BJ.X e R(A - T(x,)), where A e(a,b) with A # »  and

0#x e NA - T(AO)). We have, thus, shown that (A11.) holds whenever
the more stringent transversality condition holds. Now it has been
shown by Fitzpatrick, cf. [2], that this stronger condition is equiva-
Tent to : There exists e > 0 such that || (A - T(x)) x]||

: .
>elz (A - AOJ)ZIZHXII, whenever A is sufficiently close to A
J=1 :

and x ¢ X. Hence A is an isolated element in CA(T).
k .

(3.) We have considered T(A) to have the form = AJBj rather than

k j=1
the, perhaps, more natural form = A.B. for some vector parameter
j=1

A= (A],...,Ak) in Rk' This choice has been forced upon us by our use

0

of degree theory to obtain global results. The method requires that an
element Ay € CA(T) be isolated and, for a = (A],...,Ak), CA(T) generally
corresponds to some hypercurve iank which has no isolated elements in
Rk. However, for the summation involving powers of A, CA(T) turns out
to be the set of roots of a polynomial in A which are isolated in R.

Some authors have obtained global bifurcation results for A = (A1,...,Ak)
£ Rk, for example [2] and [11]; however, these require homotopy theory

which we have not considered. It should be noted that our Theorem 4.12

may be deduced as a special case of the results in [2].

4,3 The segment condition

In the previous section we assume that the transversality assump-
tion (Al1.) is satisfied and that A - T(AO) is Fredhoim of index zero,

which allows us to use the theory of §4.1. In this section we shall
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not assume the transversality condition, but will again use the results
of §4.1. It will be seen that other hypotheses we make, imply, as in

the previous section, that A - T(xo) is Fredholm of index zero. Although
this property ensures that hypotheses (A5.) and (A6.) of 54.1 hold, we

do not necessarily take a decomposition, H - C of A - T(AO), where C

is compact. This is because one of our conditions will depend explicitly

on knowing C and there may be a more accessible C, which is not compact.

We shall take problem (2.1) with hypotheses (A5.) and (A6.) of §4.1.

As in the previous section, we will give sufficient conditions
under which Theorem 4.7 applies, where C may not be compact.

We require a definition.

2

Definition 4.19 C(T,C) = {(u,A) eR" : N(A - T(x) -~ (u-1)C) # {0}1,

M Ope) = Lun) e®E 2 0 < (u = D2+ (=207 < P,

where A = A+ m{u - 1), for some m > O}.

Lemma 4.20 C(T,C) = {(u,r) ele :
N(T - wCH™! - (T(V) - T(xo))H'T) £ {0}}.

Proof: Let (u,r) ¢ C(T,C). Suppose x € N(A - T(x) - (n - 1)C), then
there is 0 # x e X such that Ax - T(xg)x = (T(A) - T(AO))X - (u=-T1)Cx =0,

S0
1

It

(= uC - (T(A) = T ))x = 0 and (I - wCH™' = (T(2) = TQ)H Hx = 0.

Hence (us) & ((wsn) ¢ RE & N(T = weH™T = (T(A) = T # (03},

The converse is proved similarly.
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Definition 4.19 may be seen, through Lemma 4.20, to be a generalisa-
tion of a couple of sets defined and used by Stuart and Toland [38]. The
form of these sets, and the subsequent condition which we will give in

the next theorem, were suggested by the homotopy arguments used in the

previous section.
We may prove the following degree result.

Theorem 4.21 Consider problem (2.1) with hypotheses (A5.) and (A6.)

of 84.1. Suppose that re(CH"]) <1, AO has odd algebraic multiplicity
Ma(xo) as defined in Definition 4.5, and there exists « > 0 such

that,

C(T,C) N M (x .e) = ¢, or
C(T,C) N M (A 4e) = 0.

Let

O
|l

, = dist(1,o(CH )\ {13),
8 =_€2/(1 + SZL’TFSZ is finite
1, otherwise
-1
1 - (CH)
ERtTaE
- Te

, if 0 < ré(CH'1) <1
I

Define & = min{e,dist(r, Cp(TINTAS), Ay = @y b = Ay 875 835 15 Tp.he

Then,Deg(I - CH™! - (T(a) - T(x))H™',6,0)
-1 -1 —
# Deg(I - CH™' - (T(X) - T(AO))H ,G,0) for Ag = 8 <A< A <A <A * S,

where G is an arbitrary open bounded set in Y, containing zero.
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Remark By Remarks (3.) and (4.) following Definition 1.13, since re(CH-])

<1, 1 - CH™! is Frednolm of index zero and therefore (1 - CH_I)H

H-C=A- T(AO) is also Fredholm of index zero. Then by Theorem
1.14 we may decompose A - T(AO) into H - C with C Tinear compact. But
unless we can find such a map C explicitly, we cannot verify the con-
dition C(T,C) N Mi(ho,e) = ¢. For this reason we assume a general de-

composition as in hypothesis (A6.) of §4.1.

Proof of Theorem 4.21: As 1in Theorems 4.11, 4.14 and 4.17 we first show

that .

1

Deg(I - tcH™',6,0) # Deg(I - TCH™',G,0) (4.6)

for 0<1-8<t<T<¥T<1+s.
We emphasise that now C is not necessarily compact.

We can apply (P4.) to both operators in equation (4.6), provided

that re(CH"1) < £:< %3 if T, t are not characteristic values of cH™! and
t —
1 1

I - tCH " and I - TCH ' are A-proper with respect to Ty-

Consider I - TCH™!

=1 -(1 +(E - 1))eu T,

Since T - 1 < § < 15, then from Proposition 4.2, I - TH™! and

1

L}

similarly,I - tCH™' are A-proper with respect to T,.

-1
1 - re(CH )

Now ¢ < s+ SO

re(CH'])
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re(CH_]) i ] TS TEE ST < f o
-1
re(CH )
as required for an application of (P4.)
8
_ 2 ) pe s
Also 1 - t < ¢ <8 = T—;rgg-, if 8, is finite,
%2 e 1
therefore 1 - v 5 < t, which implies that T—;~§E <t,
or equivalently %—< 1+ Y

Hence 0 < %—- 1<6,= dist(1,o(CH”]) \{11).

This inequality is trivially satisfied if 62 is infinite.
62 1+ 26 1T+38

- - - 2 1 2
Similarly t <1+ 6 <1 + T T 5o therefore — > T 55.°
: 2 2 t 2
+ 8 §
1 2 2
so0<1-=<1- = < 8,.
¥ 1+ 262 T+ 262 2

Thus we may apply (P4.). If v is the sum of the algebraic multiplici-

ties of the characteristic values of CH“] in the interval (0,t), which

1 1

is finite since r (CH'1) < — < —, then
e ':t;'- _1_3_

1

Deg(I - tCH™',G,0) = {(-1)"} and

Deg(I - TeH1,6,0) = £(-1)° * Malho)y = (1)1,

The second equality holds since by the results in Chapter One, the

1

algebraic multiplicity of the characteristic value t of CH™' s given by

dim{ U N((I - tcH"")™3.
n=1
However, by the arguments above, 1 is the only such characteristic value

in the interval (t,t). So the sum of the algebraic multiplicities of
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the characteristic valuesin the interval (o,t) is given by
o +din( U NI - )My
n=1

which is precisely equal to o + Ma(ho) by Definition 4.5. Hence
equation (4.6) holds as required.

We now use a homotopy argument to obtain the desired degree re-
sult.

Define H : G x [0,1] = Y by

1 -1

H(y,s) =y - stCH™y = (1 - s)CH " - (T(a, + (1 - s)(& -1)-T(x DRy,

0
where t is arbitrary, but fixed in (1 - §,1).

1 -1

= (T, + (1= s)(2 - 1)-TO DR,

i

Now H(.,s) = I - (s{t - 1) + 1)CH”

with A, + (0= s)(t-1) -a | =100 -s)(-1)] < <1
and |s(t - 1)} < & < 1, for each s e[0,1], and so H(.,s) is A-

proper with respect to FH’ for all s €[0,1], by Proposition 4.2. In
order to apply (P3.), we must prove that H(3G,s) # 0, for all s ¢ [0,1].
Suppose the contrary, then there is y € 3G and s in [0,1] with

H(y,s) = 0. Notice that s # 0, for otherwise Ag t (t-1)¢ CA(T),
which is a contradiction by the choice of §. So we have, for some

s €(0,1] and y € oG that

1y -0,

y - (s(t - 1+ DEHly = (T + (1= $)(t = 1D-TON
implying that

(1% s(E =10, 2+ (1= 8)(E - 1)) & CT.0).

However, the distance, ianZ, from this point to (1, AO) is given by

2

0<% =s2(t-12+(1-s)%t-1)
(t - D22+ (1 - 9)9)

< (t- 12 <% <

il
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S0, for s e(0,11, (1 +s{t-1), 2, + (1=5)(t-1)) M (0,e)

contradicting our assumption that C(T,C) N M+(Ao,e) = ¢, Hence
H(3G,s) # 0, for s €[0,1] and by (P3.), we have

Deg(I - tCH |

,6,0) = Deg(I - CH™ - (T(x_ + (£ - 1))-T(a ) ',6,0).
Using the homotopy.,

1

ﬁ(y,s) =TI -stcH' - (1 - s)CH'1 - (T(A0 + (1 -s)(t - 1))-T(» ))H"],

0
we may prove, in an identical manner, that

1

Deg(I - T CH™',6,0) = Deg(I - CH™! (T + (T - T)-T(AO))H-1,G,O).

The result of the theorem follows easily from equation (4.6), by

replacing Ay * (t - 1) and Ay T (T - 1) by, respectively, A and X.

Remark  In the above proof, we obtained our contradiction by assuming
jmplicitly that C(T,C) n M+(x0,e) = ¢, and applying the homotopy argu-
ments using H(.,s) and ﬁ(.,s). If, however, the alternative hypothesis,
namely, C(T,C) N M (0,e) = ¢, is assumed to hold, then the same proof
applies if we replace the terms T(A0 + (1 -s)(t -1)) and

Tg + (1 =) -1)) by T(a  + (1 - s)(1 - %)) and

T(A0 + (1 - s)(1 - t)), respectively, in the above homotopies. In

this case we obtain our contradiction via C(T,C) N M_(ho, ) = ¢,

and here we replace A, + (1 - t) and A, + (1 = t) by A and X, re-

spectively.
The corresponding global bifurcation result is the following.

Theorem 4.22 Consider problem (2.1) with the hypotheses (A5.)

and (A6.) of §4.1. Suppose that-re(CH'1) <1, Ao has odd algebraic
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multiplicity Ma(lo) and there exists € > 0 such that,

C(T,C)N M (ase) = ¢, or

C(T,C) N M7 (A ,e) = ¢.

Then A is a global bifurcation point of problem (2.1).

Proof: Immediate from Theorems 4.7 and 4.21.

Remarks (1.) In the paper by Alexander and Fitzpatrick [2], homotopy
theory is used to prove general global bifurcation results for equa-
tions similar to equation (2.1), but where A is allowed to be vector
valued; however, Theorem 4.22 cannot be déduced as a special case of
their results since they require that the transversality condition,
mentioned in Remark (2) at the end of the previous section, should hold.
(2.) In Theorem 4.22, T(r) has a more general form than in the
previous sections, where we took T(A) = .g ij., for some k, finite

=1
or infinite.

We consider an example when Theorem 4.22 is applicable.

Example 1 Consider problem (2.1) with T(X) = B, where B is not
necessarily compact and A is an injective, A-proper operator with
respect to . Then, by Theorem 1.9, A is a homeomorphism. Suppose
A, € CA(T) N (a,b). LetH=A, C-= AOB and assume that re(CH'])
= r (3 BH7') < 1. Then, hypothesis (A5.) holds.

To verify that (A6.) is true we must prove that there exist

11 > 0 and 1, > 0 such that A - (A*—EAO)B is A-proper with respect
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to T, whenever |x - AOI < 74 and le] < Tpe But A e(a,b) and by

assumption (H2.) of problem (2.1), A - AB is A-proper for all

A e{a,b). Thus, if we set n = mih{ko - a,b - AO} and choose

Ty £ n/2 and T, < n/2|x |, then

| (A + g;\o) - Aol = |(x - AO) + gxo[

<In=agl + lel Iyl

<1t Tl
0, n|a,l
<2 AR T
=n

So, (n + gxo) e (a,b) in this case, therefore (A6.) holds.

The condition C(T,C) N M- (Ao,a) = ¢ for some ¢ > 0 is also

satisfied. For, suppose (u,r) e C(T,C). Then, from Lemma (4.20),

there exists x # 0 such that

1

- -1,
X - uAOBA X - (A - AD)BA x =0,

which implies that
X - (ko(u - 1) + A)BA']x = 0.
-1 . =] .
But re(AOBA ) < 1 may be written as re(BA ) < 1/|Ao|, S0 1/A0 is
1

is an isolated characteristic value of BA'1.

an isolated element in the spectrum of BA™ ', or equivalently, A

0
Thus, if we choose
(usr) e m? and € > 0 such that A = Ao + m(u - 1) for some m > 0, and
0 < {p - 1)2 + (A - AO)Z < e2 implies that

0 < |(Ao(u - 1) + ) - AO[ < dist(xo,ch(BA_])\{lo}), then

(1) & M5 (4 e), but (w,2) £ C(T,C). Hence, by Theorem 4.22, if

Ma(ko) is an odd number, then Ao is a bifurcation point.
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Remarks (1) Example 1 was considered by Toland [42] in Hilbert
space, with A = I.

(2) Example 1 was treated by Petryshyn [32] in the case when
B is compact, but he never gave global bifurcation results. The
compactness of B ensures that re(AOBA'l) = 0 < 1, and when
problem (2.1) holds, then A is automatically A-proper with respect

to T.
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CHAPTER FIVE

APPLICATIONS

5.1 Results on the existence of periodic solutions to a class of ordi-

nary differential equations.

Consider the ordinary differential equation
xTH(E) + bEx(t) = g(x(£),x" (£),x" " () (5.1)

where 0 < b e R, x : fR=R and g satisfies:

3 2

(A1.) g : R - R is bounded and continuous, g(X,.,.) : R" >R is
uniformly continuous for x in bounded subsets of R and g(x,y,z)
= o(max{|x|,|y|.]z|}) as x, ¥, z » 0.

From (Al1.) it follows that x = 0 is a solution of equation (5.1)
for each t ¢ R, called the equilibrium solution. We shall consider
the problem of proving the existence of non-trivial, even, T-periodic
solutions, that is, solutions such that for some T > 0, x{(t + T) = x(t)
and x(t) = x(~t) for all t ¢ R.

Note that T is also an unknown of the problem: we seek T > 0 and
a solution x of period T.

To obtain our results we shall invoke the global bifurcation analy-
sis of the previous chapters. The first step is, therefore, to trans-
form the problem into an equivalent nonlinear eigenvalue problem. If
T > 0 is given, then making the change of variable t - Tt, x is a T-
periodic solution of equation (5.1) if and only if x(t) = z(t/T) = z(x)
is a 1-periodic solution of the equation -

2,2

2" (1) + T%P2(x) = T2

(z(e)og 2 ()17 2 (1)) (5.2)
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This follows since

dx(t) _ dz(t/T) _ dz(z) _ drt

e G i T A R el Ay

at dt dt " dt d " Ta (1) andso

Now setting A = T2 and reverting to t for t and x for z we see
that the problem is equivalent to seeking non-trivial, even, 1-periodic

solutions of the ordinary differential equation

X'(t) + ab2x(t) = ag(x(t) A7E(E) ATk () (5.3)

for values of A.in (0,=) = R,.
Since we are looking for even, 1-periodic solutions of equation

(5.3) we shall impose the following condition on g.
(A2.) g(x,y,z) = g(x,-y,z) for all : X,y,z ¢ R,

This assumption makes equation (5.3) consistent for all values of
t e R,

We shall convert equation (5.3) into an operator equation of the
type studied in the previous chapters. The existence results given
there depend on a condition of odd multiplicity at some characteristic
value. We shall see that, by restricting ourselves to even solutions,
this odd multiplicity property can be satisfied.

We wish to transform equation (5.3) into.an abstract, non-linear

eigenvalue problem in some Banach space. To this end we make the

following definition.

Definition 5.1

X = {X e CZGR,R) : X is 1-periodic and is an even function, that

is, x(t + 1) = x(t) and x(t) = x(-t) for all t e R};
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= {y e CORR) : y is T-periodic and even};

i}

x'"'(t) for each t e R;

Y

A X Y with Ax(t)
B : XY with Bx(t) -bzx(t) for each t ¢ R;

R: X xR_+ Y with R(x(t),r) = XQ(x(t),A'%x'(t),x'1x"(t))

for each (x,x) € X xR, .

Let the norms on Y and X be given by ||y||0 = sup{|y(t)| : t e R}
for each y ¢ Y and ||x|]2 = max{||x(j)H o 0<J <2 for each x e X.
By periodicity we have that
Iyl = suptly(t)] : t e R} = max{]y(t)}] : t e[0,1] for each
y € Y,and so X and Y are both Banach spaces and by the well known em-
bedding result, see for example [1], X is compactly embedded into Y.
Note that, since we are using A-proper maps we are able to use two
spaces of classical differentiable functions. We could aiso use Sobolov
spaces via a weak formulation but this is not necessary for us. We can

rewrite equation (5.3) in the operator form:

F(x,A) = AX - ABx - R(x,A) = 0, (5.4)

where F : X x(R+ > Y.

Notice that X xR, ¢ X xR, the Banach space with norm || (x,A)|]
= (||x|122 + Az)% for each (x,\) e X xR,

Equation (5.4) is in the standard form of equation (2.1), w{th
T(x) = AB. We now verify that the hypotheses (H1) - (H4) of problem
(2.1) are all satisfied.

Theorem 5.2 A : X -~ Y is a Fredholm map of index zero;

B: X~=Y is a compact linear map;

N(A) = {x ¢ X : x(t) = a constant for all t e R};
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R(A) = Lye Yt f) y(t)dt = 03
X = N(A) & Xp» for some closed subspace Xy ¢ X3
y =

IN(A) 8 R(A), where I is the inclusion map of X into Y

which is compact.

Ay = A]X : X] ~ R(A) is a homeomowrphism; A - AB is Fredholm of
1
index zero for all A € R, and for each A € R there exist a lTinear homeo-
morphism H : X - Y and a Tinear compact operator C : X - Y such that

A - AB=H - C, where in general H and C depend on .

Proof:  Suppose Ax = 0, then from Definition 5.1, x''(t) = 0. So
x'(t) = D and x(t) = Dt + E, where D and E are constants. From the 1-
periodicity of x we have, E = x(0) = x(1) = D + E, therefore D = 0 and
N(A) is precisely the set of constant functions in X, which implies
that dim N(A) = 1. Hence X = N(A) 8 Xy» where, by Theorem 1.1, XT

may be chosen to be closed.

Now if y € R(A), then y = Ax = x'' for some x ¢ X and so

1
0

shall prove that R(A) is actually equal to {y e Y : fé y(t)dt = 0}.

soooy(t)dt =‘Ié x"'"(t)dt = x'(1) - x'(0) = 0 by the 1-periodicity. We
First notice that if y ¢ Y with fé y(t)dt = 0, then fé't y(t)dt = 0.

For,

fg y(t)dt = 0, y e ¥

if and only if s_2y(t)dt =0 (by 1-periodicity of y)

ey

M)

if and only if {%Oy(t)dt = 0 (by evenness of y).

1

Then fo

1

ty(thdt = r2t y(£)dt + 1 ) (s + Dy(s + 1)ds

flét y(t)dt + s gs y(s)ds + s ? y(s)ds
0 =3 -3
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(by 1-periodicity)

1. 1
12t y(t)dt - f(;zs y(s)ds

(since s y(s) is odd)

Now suppose y € Y with f% y(t)dt = 0, we must show that there
exists X € CZGR,R), where x is l1-periodic and even, with x'' = y.
Setting x'' = y and integrating we have x'(t) = x'(0) + foty(s)ds
so x'(0) = x'"(1). Also

x'(-t) t

il

y(s)ds

x'{0) - Iot y(s)ds (since y is even),

x'(0) + fo'

therefore, if we take x withx'(0) = 0, then x' is an odd function, such
that x'(t) = fot y(s)ds = Y(t) (say). Again by integration we have
x(t) = x(0) + fot Y(s)ds. Since Y(s) is odd, fot Y(s) is even and so

X is even, Finai]y

x(1) = x(0)

i
-
—

Y(s)ds

fl
-
—t

t
5 (fo y{s)ds}dt

= f% (1 - s)y(s)ds

=1 y(s)ds - 7L sy(s)ds
0 0

= Q.

fl

This proves that R(A) = {y ¢ Y : fé y(t)dt = 0}.

To see that the decomposition Y = I N(A) 8 R(A) holds observe that
each y e Y may be written in the formy = f% y(t)dt + (y - f% y(t)dt),
where f% y(t)dt € I N(A) and f% (y(s) - f% y(t)dt)ds = 0, which
implies that'y - f% y(t)dt € R(A).

Thus Y = IN(A) + R(A). Finally if /1 (/1 y(t)dt)ds = 0, then

f% y(t)dt = 0.
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Hence Y = I N(A) 8 R(A), where I is the inclusion map of X into Y, which

1
morphism. The fact that B : X >~ Y is compact follows trivially, since

is compact. It is easily seen that A= A[X : X; + R{A) is a homeo-
1

X is compactly embedded in Y. Finally, we haVe shown that A is Fredholm
of index zero, so by Remark (2.) preceding Theorem 1.14, A - AB is also
Fredholm of index zero for all A € R and, for each A ¢ R, the decompo-

sition H - C is guaranteed by Theorem 1.14.

In order to prove that A is an A-proper map we need to define an
admissible scheme for maps from X into Y. For each n ¢ N, define

ti = %—for i=0,1,...,n and for each y ¢ Y,

Qn y(t) = z(t) for each t R, where
z(t) = y(t), when t = ti (i=0,...,n)
. (t' t'i)
{y(t) + (v(ts,q) - y(t: ) g———= » when
i+1 i
t e (ti’ti+1) (i = 0,...,n-1);

and extend z(t) to all of R by periodicity such that z(t) = z(t + 1)
for all t e R.
Let ¥ = R(Qn) (the range of Qn), then the following result holds.

Theorem 5.3 T = {Yn,Qn} is an admissible scheme for maps from Y into

Y, with [[Q || =1 for each n e N. If H is the homeomorphism from
Theorem 5.2 for some fixed value o e R then 'y ='{H"1(Yn),¥n,Qn} is an
admissible scheme for maps from X into Y and A - AB : X » Y 1is A-proper

with respect to Iy, for all X e R.

Proof: First we show_that‘{Yn} c Y. Clearly if z ¢ Yn, then z is con-
tinuous onR and T-periodic. Also, since t e (ti’ti+1) implies that

-t g(;t1+1,—ti), it is easily verified that z is an even function by
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using the fact that y is an even function. Hence {Yn} c Y.

Next we prove that, for each n e, Qn is a continuous projection
of Y onto Yn.

Let y,w € Y and «,8 € R. Consider Qn(ay + gw). It follows
trivially from the definition that Qn(ay + Bw) = oQy + Ban, and if
{yk} is a sequence in Y such that Y Y as k + =, then Qnyk »~Qny as
k -+ o,

Also an y(t) = Q_ y(t) = y(t) for each t = t,

; (i=0,...,n), and

since Qn joins the points y(ti) by straight 1ine segments we must
have an y(t) = Qn y(t) for all t e R.
Thus, for each n ¢ N, Qn is a projection from Y onto Yn.
Next we prove that I is admissible. We have, for each n € N, that
dim Yn =n+ 1. -To see this, let {eo,e[,...,en} be the standard ortho-
normal basis 1an"+1 and suppose that z ¢ Yn as defined above. Then
n+1

z is uniquely defined by the element (y(to),y(t1),...,y(tn)) inR" .
Thus every z e Y, with z(t) = Qny(t) for some y ¢ Y and all t e R, is

n
uniquely defined by » o.e, for some (o _,...s0 ) sIRn+], where y(t.)
j=o 99 0 n i
= 0.(i = 0y...5n).
i
We also have that, for each y ¢ Y, Qny +~y as n >« in the || .| o

norm. For, consider

1Q, v = ylf 5 = max{[Qy(t) - y(£)] : t £[0,11}
= max{|.V(t.i) + (‘y(t'l'i‘]) = Y(ti))m' y(t)l
= (0,...,n=1)

: t skh-: ,»4_:“), for i

y(&)] : t ek )for = (0,...,n-1)
t - t_i ) .
+ max(|y(tyg) - y(t)] |ml Pty 1S
t - t.
+0as n + =, since h;—-ffLE-[ < Tand |y(ty,q) - y(t;,)] »0as n e,
i+ T Y -

< max{{y(t;)

{
-
o

-

w
=
1
—
f
—
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for each i = (0,...,n=-1).
Finally we shall prove that |[Qn|| =1 for all n e N,
By definition,

Lol = suptlloll g« llylly =13

sup{max(|Qy(t)] : t e[0,11) : Iyl =13

| A

sup{max(|y(t)| : t e[0,1]) : Hy|h3= 1}

But y(t) =1 for all t eR is such that y € Y and [IQnyIIO = lyll,=1.
Hence || Qn“ = 1 for each n ¢ .

Thus it follows by Theorems 5.2 and 1.15 that A - AOB is A-proper with
respect to Ty and since B : X - Y is compact, A - xB is A-proper with

respect to T, for all A ¢R. This completes the proof of Theorem 5.3.

Our next task is to show that A - AB is the Frechet derivative of

F(.,A) at the point O,

Theorem 5.4 R(x,.) : R, ~ Y is continuous uniformly for X in bounded

subsets of X and [[R(x,A)[| /Il x] 5, ~ 0 as I x| 5~ 0, uniformly for

A in bounded intervals of Rp» which are bounded away from zero.

Proof: That R(x.,.) :IR+ + Y is continuous uniformly for x in bounded

subsets of X follows easily from (Al.) and Definition (5.1). Now

RGOV

T

A max{|g(x(t),>\'1/2x'(t),>\']x"(t))l:te[O,]]}max{i] X || O,A"l/zll x| o’)‘—] I x o}

maxt x| ol l o llx gy maxt L gon 2l ] g™ e
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L -
But max{ || x|| g2 E x| AT x| )

-y
< max{l,x =

A7 Dmaxt [ xSl x s lx )
-+ 0 as |]x||2 + 0

for A bounded away from zero in R+.

So || R{x,x) || o

” X ”2
max{lg(x(t),k_l/ax'(t),A'1x"(t)l : t (0,113 max{1,>\"x/2,>\'1}|| x|l 5
) _
—= =1 -
max(|| x || o A7H X AT I X,

> 0as || x{|,~0

for A in bounded intervals in Rys which are bounded away from zero.
Hence the result is proved.

In order to prove that F(.,A) : X =+ Y is A-proper with respect to
Iy another assumption on g is required.

(A3.) There exists a constant q €(0,1) such that

lg(x,y,2) - g(x,y,w)| < q]z - w| for x,y,z,w ¢ R.
Some such restriction is necessary, for we must exclude equations
such as x''(t) = x''(t).

We shall also need the following definitions and lemmas.

Definition 5.5 (Browder [4]). Let f : D~ Y be continuous and bounded,

where D is a closed subset of X. Then f is said to be a k-semicontrac-
tion if there exists a continuous and bounded mapping V : X x X » Y
and a constant k, 0 < k < 1 such that f(x) = V(x,x) for all x ¢ D and

for each fixed x in X, V(.,x) : X = Y is k-Lipschitzian (that is
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v (z,x) - V({w,x)|| o Sk lz = wl| o for z,w e X) and V(x,.) : X > Y is

compact.

Lemma 5.6  (Webb, [44], Petryshyn, [29]). If G ¢ X is open and
f : G~>Y is a k-semicontraction, then f is a k-ball contraction (cf.

Chapter 1).

Definition 5.7 If L : X+ Y is Fradhein e¥~éﬁﬂwue‘1uare then we define
2(L) by

2(L) = sup{r > 0 : rg(n) < g(L{(n)) for each bounded @ c X}.

Lemma 5.8  (Petryshyn [33]). Suppose that L : X - Y is Fredholm of
index zero and T = {Xn,Yn,Qn} is an admissible scheme for maps from X
into Y constructed as in Theorem 1.15, with || Q]| =1 for each n e M.
Let N : X~ Y be a bounded k-ball contraction with 0 < k < &(L). Then

L -sN: X=>Y is A-proper with respect to T for each s (0,1].

Before proving that F(.,A) is A-proper we need one more preliminary

‘result about the mapping A.
Lemma 5.9 2(A) > 1, where 2(A) is defined in Definition 5.7.

Proof: We already know from Theorem 5.2 that X = N(A) 8 Xy
Y = IN(A) & R(A) and A1 = A|X DXy R(A) is a Tinear homeomorphism.

1
“a(a) + Pla),

Thus, for each bounded set @ ¢ X we have that a ¢ A]
where P is the projection of X onto N(A), defined by Px = fé x(t)dt.
Now, since P(u) is compact, then g(P(2)) = 0, therefore, by the re-
sults of Chapter One, 8(a) < 8(A7 (A(2))) < [|A;7 I 8(A2)).

We shall complete the proof of the Lemma by showing that [[A]']H

= supt]| ATl s Dyl = 10 <1
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For each y ¢ R(A) with Hyll0 = 1, there exists x e X such that
Ax = x''"(t) = y and, since x(0) = x(1) and x'(0) = x'(1), we may write

this x in the form

x(t) = 7 5 % y(e)de)ds - t s, 1 (s Sy(x)dn)ds + C.

0
But since y is an even function,

Tp. 8 =
7,55 ylx)dr)ds = 0. So

x(t) = s %(s % y(x)da)ds + €, | (5.5)

and 1f we choose € = -/ '1s B(s % y(x)dr)dsidt, then s ! x(t)dt = o,
which implies by Theorem 5.2 that x ¢ X] is the unique solution of
A1x = ¥,

Now since foT y(t)dt = 0, then for 0 <s, t < 1,

t
|7g

yode] = syt y()dt - % y(ade - s y(e)a]
< 7S Iyt ldr + 7 y(n)|de,
t t t
therefore 2|fS y(t)dr| g_lfs y(t)dt| + I ly(t)|de
s 1 t
<78 ly(mlde + 20 ly(e)lde + 7 ly(e)[de

= 15" Iy(o)

Hence |fst y(t)dt| < % f01|y(T)|dT,

for 0 < s,t < 1, provided fo1 y(t)dt =0 (5.6)
From equation (5.5) it follows that

Ix(t)! j_lfot(fos y(t)dt)ds| + |C|, where f01(f0S y(t)dr)ds = 0

since y e R(A).
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Thus by equation (5.6)

x(8)] <% 5,1, ylr)delds + [cf

<% ‘/af01(f0]!y(r)ldT)ds + {C]

|~

% lyll o+ [C]

=%+ [C], since |ly],=1.

Similarly |C| = |/f ][f t(foS y(t) dr)dsidt|

0 o

1,.t,.s
</, ,Ifo (fo y(z)dt)ds|dt.
But again we have f01(f0S y(t)dt)ds = 0 and so by equation (5.6)
A 1.8
el 250y (g 17y y(r)dr]ds)dt
< 5% 0 s Ny () de)ds 1dt
2y Uy Vo VY :
<& [yl =%
Also since x'(t) = fot y(t)dt, then
_ t
[x (£} = lsg y(r)dr|
. 1
<k 7y ly(o)ldr
Byl =%

Finally it is trivial that |x“(t)] = |y(t)|. Hence
x5 = max{l]x{[ ool x"1 sl X" o3
< max{}%,%,1}

= 1.
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-1 -
Therefore, || A, I sup{ || Ay 1y” o' I vl o = 1

1l

sup{|l x| , = x"'(t) =y with [ y]| j =1}

P A

1 by the above analysis.

Thus 8(2) < B(A(2)) and therefore £(A) > 1.

Theorem 5.10 If (Al.), (A2.) and (A3.) hold, then F(.,x) : X = Y is

A-proper with respect to PH for A in bounded subsets ofIR+, which are

bounded away from zero.

Proof: We prove this assertion by an application of Lemma 5.8, by
showing first that R(.,A) : X > Y is a k-semicontraction for XA in
bounded subsets of R, which are bounded away from zero and k e [0,2(A)).
Then Lemma 5.6 tells us that R(.,x) is, therefore, a k-ball contrac-
tion, which implies, by Lemma 5.8, that A - R{.,x) is A-proper with

respect to PH for A in bounded subset in R

+» which are bounded away

from zero. The required result then follows since B is compact. To
prove that R(.,r) is a k-semicontraction, define V : X x X -~ Y by
V(u,x) = A g(x(t),x'%x'(t),ku1u"(t)), for t e Rand A ¢ R,. Then

V(x,x) for x ¢ X. From (Al.), V is continuous and bounded

R(x,2)
for A in bounded subsets oflR+, which are bounded away from zero, and,
for each u ¢ X, the mapping V(u,.) : X = Y is compact and continuous
since X is compactly embedded in {x ¢ C'(RJR)} : x is T-periodic and
even}. Furthermore (A3.) implies that for fixed x ¢ X and u,v e X,
[| V{u,x) = V{v,x)|| o
= 2 supt] g (tax(£) 273 (£) 0 T (1)) - gltsx (), K (£) A7 v (2)]
: t e[0,1]}

<a g a7 supllutt(t) - vi(e)] st e[0 11 = allutt - v < allu - v,

for q ¢ (0,1) ¢ [0,2(A)), by Lemma 5.9.
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Thus, by Lemma 5.6, R(.,A) : X > Y is a g-ball contraction for A in
bounded subsets of!R+, which are. bounded away from zero. Hence the result

follows by Lemma 5.8 as described at the start of the proof.

Remark From Theorems 5.3, 5.4 and 5.10 we see that equation (5.4) satis-

fies hypotheses (H1) - (H4) of problem (2.1), with (a,b) any bounded in-

terval in R, provided a # 0. From Theorem 5.4, (H3) holds for alla &a,b).
We shall obtain our results by invoking Theorem 4.12 of §4.2.

First we must verify that all of the conditions of the theorem hold.

Theorem 5.11 CA(B) = { (54— : k e N} and for each k =N,

N(A - (3-';1‘- 12B) = {D cos(2krt) : D e R}, which is one dimensional.

Proof: Suppose that Ax - ABx = 0, with 0 # x e X andx > 0. Then
x'"'(t) + xbzx(t) = 0.

Therefore, by the elementary theory of ordinary differential equa-
tions,

x(t) = D cos(t/ %69+ E sin(t/ 762, x> 0,

where D and E are constants. For x to be an even function we must set

E=0. Also from periodicity assumptions, x(0) = x(1), so
D= D cos/ 7b2,

which implies that v Abz = 2kw, for some k ¢ Z.

2kmy2

Therefore, A = ( b with k ¢ N since » > 0, and x(t) = D cos(2knt),

DelR, t eR, k eIN. Thus for each k N, Ay = (gEEJZ is a characteris-
tic value of B relative to A and N(A - AkB) = {D cos(2kwt) : D e R},

which is one dimensional as required.

Notice that by restricting ourselves to even solutions we have en-

sured that dim N(A - AB) is odd for each X ¢ CA(B).




115

2k m 2
Theorem 5.12  For each ko = (——%—J » with ko e N, the transversality

assumption BN(A - AOB) N R(A - kOB) = {0} holds; A - AOB is Fredholm
of index zero; X = N(A - AOB) 6 X5, Y = IN(A - AOB) ® R(A - AOB), where
X2 cX is a closed subspace, such that BX2 ¢ R(A - AOB).

Proof: First notice that since B : X »~ Y is defined by Bx(t) = -b2 x(t),

for each t € R, then it follows from the proof of Theorem 5.11 that

BN(A - AOB) = IN(A - AOB) = D cos 2k wt
Now suppose that

AX - AOBx =D cos(Zkowt) (5.7)

for some 0 # X € X, D ¢R.
Then as in the proof of Theorem 5.11, DO cos 2k0wt is the comple-
mentary solution, and so a particular solution must be of the form

xp(t) = E t COS(ZkOTrt) + F t sin(2ko~nt).

p
1-periodic we require that F be zero. Thus the only solution of equa-

But, for x_(t) to be even, we need E to be zero, and for xp(t) to be

tion 5.7 is x = 0, when D = 0. Hence
BN(A - XOB) n R(A - AOB) = {0}.

Now we know from Theorem 5.2 that A - AOB is Fredholm of index zero.
Hence, since equation (5.4) satisfies hypotheses (H1) - (H4) of prob-
Tem (2.1), it follows from Theorem 5.11 and the above that Proposition

4.8 (i.) of 84.2 may be invoked. This completes the proof.
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We can now prove a global bifurcation result for equation (5.4).

Theorem 5.13 Assume that (Al.), (A2.) and (A3.) hold and

2k m
_ 042

o ( b )
equation (5.4).

A with kO eMN. Then A_ is a global bifurcation point of

0

Proof: Immediate from Remark following Theorem 5.10 and Theorems

5.11, 5.12 and 4.12.

Theorem 5.13 provides us with a result on the existence of T-
periodic solutions of equation (5.1). Before proving this, we need
the following well known theorem which may be found in the book of

Chow and Hale [6].

(Implicit Function Theorem)

Suppose X,Y,Z are Banach spaces, U ¢ X, V ¢ Y are open sets,
F:UxV~>Z-is continuously differentiable, (xo,yo) e U xV,
F(xo,yo) = 0 and the Fréchet derivative FX'(xo,yo) of F, with respect
to x in U at the point (xo,yo), has a bounded inverse. Then there is
a neighbourhood U] X V] ¢ Ux Vof (xo,yo) and a function f : V] -+ U1,
with f(yo) = X, such that F(x,y) = 0 for (x,y) ¢ Uy X vy if and only
if x = fly). If Fec®U x V,2), k > 1, then f e CX(V;,X) in a neigh-

bourhood of Yor

We shalk @_xJA-J& ong o§ the threo Pcséu}o'uld&s
§M‘ %LOLQL \ovgw*ccia.or\ EL} &SSW\'\'U\() ‘h\r\ﬁd'c ()Q)(\\-},’Z) [
Lcc&ufu) L'Lps-c/km'&:z ‘i X, 4 ‘g‘m’“ Qvery Z .
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Theorem 5.14  Assume that hypotheses (A1.), (A2.), and (A3.) hold and
2k w
Tet TO e (0,») with TO = —59—3 for some k0 e IN. Then at least one of

the following properties holds:

(a.) For any number M > 0 there exists an even T, - perjodic solu-

M
tion x, of equation (5.1) such that ||xMH o =Mand if M>0, Ty ~ T3

(b.) There is an even T-periodic solution X1 of equation (5.1),
either for all T e (O,TO), or for all T ¢ (To,w), such that leTH o> 0
for T in the appropriate interval and . [[x{]l , > 0, @s: T+ T..

Proof: First notice that from Theorem 5.13, Ao is a global bifurcation
point and so there is a maximal connected setCs(say) in X xR, which
satisfies at least one of the conditions (i.), (ii.) or (§ii.) in De-
finition 2.7. Then, using the fact that a continuous image of a con-
nected set is itself connected, we may take the continuous projection
of(% ontolR+ to obtain an interval onIR+. Transforming these facts

for equation (5.4) into the terminology of equation (5.1), it is easily
seen that (a.) and (b.) are direct consequences of (i.) and (iii.)} of
Definition (2.7) for the global bifurcation point, Ay of equation
(5.4). To prove the theorem we must show that possibility (ii.) in
Definition 2.7 is not possibie for equation (5.1). We prove this in

two steps.

(1.) If (x,A) e €. and 0 < A - AOI is sufficiently small, then

x = ux, + o({u]) as u > 0, where u ¢ R and X, 15 a non-zero element in

N(A - AOB), that is, x_ = D cos (ZkOwt) with 0 # D « R.

0
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To see this we apply the Implicit Function Theorem. Suppose
(A,Xx) € C, and 0 < A - A0| is sufficiently small. Then
F(x,A) = Ax - ABx - R(x,A) = 0. From Theorem 5.11, dim N(A - AOB) = 1.
Also from Theorem 5.12 there exists a closed subspace X2 c X with

X = N(A - AOB) ® X, and Y = IN(A - % B) & R(A - AOB).

2
Writing x = X1t X, with Xy € N(A - AOB), and Xo € X2, we have that

F(x, + XZ,A) = (A - AOB)(X] + x2) - {n - AO)B(X] + x2) - R(x1 + xz,x) = 0

1
If we let Q; : Y > IN(A - AOB) and Q : Y -~ R(A - AOB) be continuous
projections, then
(A - AOB)XZ -(x - AO)BXZ - QZR(X1 + xz,x) = (A - AD)BX] + Q1R(x] + xz,x)
= 0.
Notice we have used the fact that Bx, R(A - AOB) which follows
by Theorem 5.12.

Let us consider the equation

[en]
[}

(A - AOB)XZ - (n - AO)sz - QZR(x1 + xz,k)

1

(A - AB)x2 - QZR(XI + xz,x)

= FolxqsX,02) (say).

Then F,(0,0,2) = 0 for all A ¢ R, and the Frechet derivative,
1
Fs (0,0,1), of F2(x1,x2,l) with respect to Xx,, at the point (0,0,1),

is such that

F,'(0,8,0) = (A =" 2B),

which is a homeomorphism for |A - Aol < dist(AO,CA(B)\{AO}).
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Thus by the Implicit Function Theorem, there exists.a neighbourhood
N1 x N, of (O,Ao) e N(A - AOB) X R and a function oo N1 x Ny > X,
such that Fz(x],xz,x) = 0 has the unique solution,
- 2
Xg = Fplxq52) e C°(Ny x Ny, X5) and £, (0,1) = 0.

= _ -1 . -
Hence x, = fz(x1,x) = (A - AB) Q2 R(x1 + fz(x],k),k), and implicit

differentiation of this equation with respect to X1 implies that

l{fg(x]’k)“ 2
IIX]H 2

+ 0 as ||xqf] »o0

Now since N(A - AOB) is one-dimensional we may write Xy = ux, with

I xOH2~= T and u e R. Hence x = x; + X,

UX | + fz(uxo,x)

ux, + o(Ju}) as u ~ 0,
as required. This follows since

EXCISSI

|ul

»~ 0 as u -+ 0.

(2.) Notice that for each k € N the element Xy = Dk cos (2knt),

Dk # 0, of N(A - Akﬁ), where A = (E%EJZ, is such that x, has exactly

k

2k simple zeros in the interval (0,1). Let S" denote the set of all

functions x(t) e X having exactly 2k simple zeros in the interval

(0,1) and for which x(0) = x(1) # 0. Then it is easily seen that,

k Knst =y fork#2 el Now,

for each k €N, $" is open in X and S
if (x,A) € CS and 0 < | - AOI is sufficiently small, then from step

(1.) above, x = ux, + o(Jul) as u > 0. Since xo(t) =D, COS(ZkOﬂt)




120

has exactly 2k zeros in (0,1), then {(x,r) ¢ Co : (x2) # (@ ,N),

k o
0 < ]Ao - A+ l|x||2 is smal1} ¢ S © x R. Now if
k
(x;2) & € n (38 9 YxR), then x must have a double root in (0,1). To

k K

see this notice that since x ¢ 3S O,and 33 @ is arbitrarily close to

Sko, certainly x cannot have more than 2k, roots in (0,1). If x is
such that x(0) = x{(1) = 0, then the evenness of x ¢ X implies that
x'(0) = 0 and so, by the uniqueness of the initial value problem

X € CZ[O,]], x(0) = x'(0) = 0, we must have x identically zero. But
(2,0) = (A,X) € Cy implies that A is a bifurcation point of equation
(5.4), which is a contradiction since 0 < IAO - A| may be taken less
than dist(ko, CA(B)\ {ko}). Thus x must have a double root in (0,1),
but again by the uniqueness of the initjal value problem we must have
x = 0, which is a contradiction by the previous argument.

K
We have, therefore, proved that if (x,A) G, then (x,1) ¢ S ° xR

2k.m 2
and in particular (x,r) # (O,A]) for any Ay = ( g } with k0 # k1 e IN.

This completes the proof of Theorem 5.14,

Remark  If the function g in equation (5.1) is independent of x'', then

the map R(.,A) : X > Y defined in Definition 5.1 is compact for x in

compact intervals inR,, since X is compaét1y embedded in

{x e C'RJR) : x is an even, l-periodic function}. The conclusions of

Theorem 5.14 then hold without requiring condition (A3.). This case

has been studied by many authors, including [17], whére the main tool

used is the Leray-Schauder degree theory. Note that this method cannot

be used when g also depends on x'', since then g is not compact.
Conclusion (i.) of Theorem 5.14 says that the periodic solutions

Xy are unbounded. If we know, a priori, that for certain periods, even
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periodic solutionsare bounded, then for these periods conclusion (7.)
is redundant. We shall now impose further conditions on equation (5.1),
which ensure that, for certain periods, such a priori bounds exist.

In addition to the hypotheses (Al1.) - (A3.) assume that the fol-

lowing two conditions are satisfied by equation (5.1).

(Q1.) There exist non-negative constants D, E, F and Ao inlR with

E> 0 and AZ > 0 such that

l9(x,y,0) - b%| <D + E|x| + Fly|,

for x and y inR with

2

)2 [=F + / F2 + 8E(1-q) 1 > A

2E 2

where q €(0,1) is the Lipschitz constant from (A3.)

(Q2.) There exist A > 0 and M > 0 such that for each 1 with

0 <Ay <A<

1 2°
] "‘1/2 I '] | 2
o Ag(x(t), A 2" (t),A" x''(t)) - b™x(t)¥dt # 0,
for each x e X with |x(t)]| > M for all t eR.

We have the following result on constants E and Ay appearing in

(Q1.)

Theorem 5.15 If there exist x,y ¢ R such that g(x,y,0) = 0, then the

constants E and Ay in hypotheses (Q1.) are such that E 3_b2 and Ay < =5 .

Proof: Suppose that g(x,y,0) = 0, then trivially

l9(x,y,0) - b%x| = b?|x].

Hence E 3.b2.
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Now it is easily verified that

(%%02 [-F + J?z + 8E(1-q)]2 decreases as E increases from b2 and

2

-F + /F© + 8E(1-q) decreases as F increases from 0. Thus

2012
(2002 [-F + /% + 8E(1-0)22 5,E-§EZ£%191
_ 26%(1-q)
b2
2'rr2 .
< =5, since g e(0,1)
b
2
Hence Az <
b

We now prove the following result on a priori bounds.

Theorem 5.16 If (Al.), (A2.), (A3.), (Q1.) and (Q2.) hold and

Ax - ABx - R(x,x) = 0 for x ¢ X with 2 e(A],AZ), then there exists a

constant M, > 0, independent of x and 2, such that x5 < M.
Proof: Let X e X and A e(x1,xz) with Ax - ABx - R{x,A) = 0, then
ZxU(E) = Ab2x(t) = Ag(x(t), 7B (£),07 X" (1)) (5.8)

On integration from 0 to 1 equation (5.8) becomes

AL %x(t) - g(x(8) A7 (£) a7k (£)3dt = 0 (5.9)
which implies by assumption (Q2.) and the 1-periodicity of x that there
exists t  e[0,1] such that !x(to)l < M. Writing x(t) = a, + u(t) with

a, = fo] x(t)dt it follows that
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o ult)dt = 0, x'(t) = u' (1)

t

Since for toe[O,l] we may write x(t) = x(to) + fto x'(s)ds,
we have that
|x(t)] <M+ |Ix']] =M+ [Ju']] forall teR (5.10)
where |[v | = [fo]lv(t)Izdt]%.
Notice that the norm || .}l is different from both || .|| , and Il o

Next we prove that || x|| <M+ %—I]u‘l|.

To see this consider
w(t) = x{t+t - 1)-x(t)), if 1 -t <t=<]
x(t + to) - x(to), ifOo<t<1- t,
Since w(0) = w(1) = 0 and w € C'[0,1], then by Theorem 257 in [10],
lwll < 5 lwll

. 2 _ -t 2 1 Y
Now since [[w + x(t )] © =/ ofx(t + t )|"dt + f]_tgx(t + t,-1)]Tdt

= follx(t)lzdt,

then fIx|l = [[w + x(t )|
< Il + Ixce)l

< hwll + M,

I

. : ]-to ' 2 1 t 2
and || w i) [x'(t + t )| "dt + f1_tgx (t + t,-1)|"dt

0

£o x! (£)]dt,
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therefore, ||w'| = || x']] = |Ju'll .

Thus [[xI| <M+ Jlwll <M+ 2 fw'|

=M+ fut (5.11)

Now from the equality

X' (8)2 = 4 g(x(£),A7 B (£) T ! )x! () - ab? x(t)x'' (t)

it follows that

.ro1 x"(t)zdt = f01|x"(t)lzdt
1

< lglx(8) 275 (13,07 X (£))-bP

x(t)] [x''(t)]|dt
Thus || x"||2
< a1 g, 75 (£),00-b2x(8)] + Ja(x(1) 7% (£),07 %! (8))

- g(x(t),2 7% (1),0)]1 |x' ' (t)|dt
implying by (A3.) and (Q1.) that,

Il 2 < T+ Elx(0)] + 7R (0)] + a7 (0)]1 X (2) e,

and by Holder's inequality,

Ix 2 <amlx " + Elx] Bxl o+ BTl ke x4,

so |l x" = gkg o+ Ellx + F AR (5.12)

Moreover, from the equality,

XU (A)x(t) = AbSxA(t) - ag(x(t). AR (£),A7 x' (£))x(t)

we have that

f01|x'(t)}2dt Afg[bzﬂa— g(x(t),l'%%'(t),h' x''(t))Ix(t)dt

A oo g(x(8) a7 (1,07 Tk (£0)1(ag + w(t))dt
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implying by (A3.), (§l.) and equation (5.9) that
1 2 1 2 ‘l/z | '1 [
| x| 2 M |bxe- g(x(t),x 7 2x" (t),a" x" ' (t))[[(u(t)|dt
< a0+ E(E)] + PR+ T X () |1 [u(t) |dt

and so by Holder's inquality
Ix 18 <am+ Ellx ]+ 27 Ix ]+ ]

But, equation (5.12) implies that
It 2 <am0+ Elxll = a7 ]+ g3 0+ Bl + BTl

A
1-q

Thus | x'[| 2 < 22 10+ Ellx|| + P75 ut i1 flu |

Also by the definition of u(t) we have fé u(t)dt = 0, therefore,

by Wirtinger's inequality [10], it follows that,
lull <o fu'll
— 2T ’
Hence from equation (5.11)

2= el e e e00e Hlutl) + 7% ut i gllutl

] ] 2
—o+oem) 2y gy ey AL

2n(1-q) 212(1-q)

2
so 22020) |y | <n(D 4 BM) + (E+ o 7H) ||

7w A (D + EM) < A] (say) (5.13)

This [lx' ) = utl) s AR

where AT > 0 is a constant independent of x and A e(x],kz).
Notice that 2n2(1-q) - (Ex + wFA%) > 0, since

(Q1.) implies the following
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272(1-q) - (Er + wFA%)

2 nl . - i '

> 20°(1-q) - ael-F + /F¢ + 8E(1-q)] - —pl-F +vF¢ + 8E(1-q) ]
2 e . |

= 21°(1-q) - zgl-F +/FZ + 8E(1-q) 1[-F + YF% + 8E(1-q) + 2F]
2 w2 2

= 21°(1-q) - Zzg[-F° + F° + 8E(1-q)]

_ 52 2 -

= 2n(1-q) - 2r°(1-q) = 0 as asserted.

Thus from equations (5.10) and (5.13),
[x(t)] < M+ A} = A, (say) for all t eR (5.14)

and from equations {(5.11) and (5.13)

Aq

[x] <M+ — (5.15)

Therefore, from equations (5.13) and (5.15), it follows by equation
(5.12) that

A -1
Ix" ] <y 10+ E(M + —1) + FX7, ]

= ;\D+AE(M+§-|—)+FA}?A]
1-q [ i i

< A3 (say),
where AB > 0 is a constant independent of x and A in (A],Az).

Now, since x{(0) = x(1), there must exist ts e(0,1) such that

x'(t1) = 0, so

x'(t) = ftt x''(s)ds and
1
[x'(t)] < sL [x''(s)|ds < [Ix'"[ by Holder's inequality.

Thus |x'(t)] < A; for all t eR, by periodicity. (5.16)
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Also from equation (5.8), (A3.) and (Q1.)

|x'"'(t)| < A[D + E|x(t)] + A—%F|x'(t)| + A-}q Ix-' (t) ]2

and so |x''(t)] 5—1iq [D + Elx(t)] + A'%lx'(t)l] therefore equations

(5.14), (5.16) imply that

A
1-q

' (t)] < 72 [0+ E A, + 27,1 < A, (say) for all t e R (5.17)

where A4 is a positive constant independent of x and 2 e(A],AZ).

Finally by equations (5.14), (5.16) and (5.17)
XI5 = maxtll x| oo llx "I ool X"l 3 < maxiAyuhgshyd = My (say)

which is a finite number as required. This completes the proof of

Theorem 5.16.
We can now prove the following improved version of Theorem 5.14.

Theorem 5.17 Assume that hypotheses (A1.), (A2.), (A3.), (Q1.) and
kK m

(Q2.) hold and Tet T_ (0,=), with T_ = —b—°- , for some k e M. Let

M] be the constant defined in Theorem 5.16. Then at least one of

the following properties holds:

(i.) For any number M > 0 there exists an even TM—perTodic4so1u—

tion xy of equation (5.1) such that | xyll 5 = M and:
(a.) if M- 0, then Ty + T 3

_ Vi Yo,
(b.) if M » My, then T, £ (A],Az),

(ii.) There is an even T-periodic solution x, of equation

(5.1), either for all T e(O,TO), or for all T E(To,w) such that
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Ve vy

. 2
||xTH o > 0, and if T e(Ay,2,) then 0 < | X[l 5 < My. Furthermore,
if || xgll 5 > 0, then T Ty

Proof: As in the proof of Theorem 5.14 using the additional results

supplied by Theorems 5.15 and 5.16.

Remarks (1.) As far as the author is aware the above application is

a new result.

(2.) Equation (5.1) may be regarded as a special case of an equa-

tion considered by Petryshyn and Yu [34]. They prove existence results

for an equation of the form
(p(t)x' (£))" + Ft,x(t),x'(t),x""(t)) = y(t);

x(0) = x(1), x'(0) = x'(1) under varjous conditions on the functions
p, vy and . However, their results cannot pick out even periodic solu-

tions and their method does not determine any properties of the solution.

(3.) Mahwin [181 gives results on periodic solutions to systems
of ordinary differential equations using a bifurcation argument akin
to ours. However, the non-linear term considered there cannot depend on

the highest derivative and they employ coincidence degree theory.

(4) By a similar procedure we can find odd, T-periocdic solutions of
equation (5.1). We make a hypothesis akin to (A2.) and a definition
analogous to Definition (5.1). In this case N(A) = {0} and R(A) is

the whole space. This case is, therefore, somewhat simpler.
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5.2 Existence results for a class of ordinary differential equations.

Consider the ordinary differential equation

x''(t) + ax(t) = aglt,x(t),x" (t),x'"(t)), (5.18)

)\E‘_tR\X f[?\\]"ﬁ"R\
where, x(0) = x(1) = 0 and g satisfies:

(C1.) g : [O;M}xm3 +R is bounded and continuous and
g(t,X,y,z) = o(max{|x}{,|y|.|z|})

as X,y,z -+ 0, uniformly for t «[0,1].

From (C1.) it follows that x = 0 is a solution of equation 5.18
for each t €[0,1] and for all X ¢ R. We shall consider the problem of
proving the existence of solutions (x,A) with x not identically zero.
We shall again employ the global bifurcation results of the previous
chapters and the analysis will be similar to that in the previous sec-
tion. First we must transform equation (5.18) into an abstract, non-

Tinear eigenvalue problem.

Definition 5.18

x e C2[0,17 : x(0) = x(1) = 0};
Y= {y e C[0,11%;

A : X >Y, where Ax(t)
B

R

><
It

[}

x''(t) for each t €[0,1];

i

¢ X > Y, where Bx(t) = -x(t) for each t €[0,11;

: X xR, where R(x,2) = 2 g{t,x,x',x"") for each (x,A) ¢ X xR.

If we denote the norms on Y and X by

Iyl o = max{|y(t)] : t e[0,11} for each y ¢ ¥ and

”xllz

then X and Y are Banach spaces.

max{]lx(j)llo :0<j<2 foreach x e X,
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Thus we can rewrite equation (5.18) as
F(x,A) = Ax = ABx - R(x,A) = 0, (5.19)
where (x,A) e X xR and F : X xR > Y.
We have the following analogue to Theorem 5.2.

Theorem 5.19 A : X = Y is a bijection, that is, N(A) = 0 and

R(A) = Y; A is a Fredholm operator of index zero; B : X > Y is a com-
pact Tinear operator; A -~ AB is Fredholm of index zero for all A e R;:
for each A ¢ R there exist a linear homeomorphism H : X - Y and a
Tinear compact operator C : X -~ Y such that A - AB = H - C, where in

general C and H depend on A.

Proof: Suppose Ax = 0, then x''(t) = 0, so x(t) = Ct + D. The boundary
conditions x(0) = x(1) = 0 imply that x(0) =D =0=2C
and, therefore, N(A) = {0}.

To prove that R(A) = Y, we must show that for each y € Y, there
exists x ¢ X such that x''(t) = y(t) for all t ¢[0,1]. Integrating we
have that

x'(t)

x'(0) * fot y(s)ds

and x(t) t(

1l

tx' (0) + /, IOS y(u)du)ds

So x(0) = 0. We must prove that x(1) = 0.

x(1) = x' (0) + IO](IOS y(u)du)ds
x' (0) + fo1(fu] y(u)ds )du
x'(0) + f01(1 - u)y(u)du

x'(0) + fo] y(u)du - f01u y(u)du.

But £," y(u)du = 5 'x (t)dt = x'(1) - x'(0),
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1

1]
-,
d
=

—
r'-
g
(=%
ot

and fyu y{u)du

]
—
t
b4
—
+
~—
p—
1
—,

Hence x(1) = x'(0) + x'(1) - x*(0) - x"(1)

Thus R{(A) = Y.

As we noted in Chapter One, a bounded, linear bijection is Fredholm
of index zero. Hence A is Fredholm of index zero. B s easily seen to
be compact and the remainder of proof follows exactly as in Theorem 5.2.

The next result is similar to Theorems 5.3 and 5.11.

Theorem 5.20 Let Qn and Yn be as defined in the Tast section preceding

Theorem 5.3. Suppose H is the homeomorphism from Theorem 5.19 for some
fixed 2, eR. Then, Ty = {H'1(Yn),Y ,Qn} js an admissible scheme for
wibh MGW = | Sor em'}\_ NN
maps from X into %é A - AB: X > Y is A-proper with respect to Ty for all
A eRs Cy(B) = ta = (km)® : k e M), and N(A - A, B) = {D sin knt : D e R},

which is one dimensional.

Proof: That T, is admissible and A - AB is A-proper with respect to
Ty follows in a similar way to Theorem 5.3 : at the point where we prove
that [[Q,ll =1, we show that o Il <1, as before and then use y ¢ Y
such that y(t) = =2 |t - %| + 1 to deduce that |]anl = 1 for each
neN.

Now suppose that (A - AB)x = 0, 0 # x € X. Then
x''(t) + ax(t) = 0, therefore x(t) = D sin ¥it+ E cos vaAt,if » >0

AT, o /AT

and x(t) = Fe Ge t, if A < 0. Notice that if A = 0, then x =0
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which is a contradiction. Using the boundary conditions x(0) = x(1) = 0

we have that E = 0 and VA = kr for k e N. So A = Umﬂzand x(t)
oy VA

=D sin knt, k eMN. Also 0=F+ Gand 0 =Fe'” + Ge "". Therefore,
F = -G and
YA -Vx
o=orle e )
2
= 2F sinh /%

Thus F = G = 0. So Cy(B) = {, = (kr)2 : k e N} and N(A - AB)
= (D sin krt : D ¢RI, for each k N where A, = (kn)Z which is 1 di-

mensional. This completes the proof of Theorem 5.20.

It is a trivial consequence of hypothesis (C1.) and Definition
5.18 that R, in equation {(5.19), satisfies hypotheses (H3) and (H4) of
problem (2.1); furthermore, from Theorem 5.20, (H2) is satisfied.for all
» eR, so (a,b) =R. In Theorem 5.23 we shall see that (H1) also holds.
Before verifying (H1) we prove that equation (5.19) satisfies a trans-

versality condition.

Theorem 5.21 BN(A - ka) N R(A - AkB) = {0} for each k ¢ W such that
kk = (kﬂ)z.

Proof: We have seen in Theorem 5.20, that N(A - 2 B) = {D sin knt: DeR}.
It follows easily that BN(A - AkB) = IN(A - AkB), where I is the inclu-
sion map of X into Y, which is cempact. Then, if D sin knt

e BN(A - AkB) NR(A - kkB), we must have D = 0. For,suppose (A - ka) X
=D sin krt, 0 # x € X, then x''(t) + Akx(t) = D sin krt. The comple-

mentary function is given by xc(t) = F sin kat + G cos krt, for some

constants F and G, so the particular integral must be of the form
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Xp(t) = Pt sin kwt + Qt cos knt.

Thus we must have

x(t) = F sin kat + G cos kwt + Pt sin kwt + Qt cos kwt.

]

Since we require that x e X, then x(0) = x(1) = 0, which implies that

G=Q=0 and
x(t) = F sin knt + Pt sin knt, with
x''(t) = <F(km)? sin krt + 2Pkr cos knt
—Pt(kﬂ)2 sin knt.

Hence x''(t) + (kw)2 x(t) = D sin kat, which implies that 2Pkr cos kut
= D sin knt, which can only be true when D = P = 0.

Thus the transversality condition holds.

It follows from Theorem 5.21 that we can use similar results for
solving equation 5.19 as we used for équation 5.4; 1in particular the
theorems from §4.2 apply since a transversality condition holds. First
we need to prove that F(.,)) is A-proper for X in some open interval

of the real line. A further assumption on g is needed.

(C2.) There exists a constant q €(0,1) such that
lg(t,%,y,2) - g{t.x,y,w)| < qlz - w|, for x,y,z,weR and t [0,1].

We dqain assame thak q s Loc.m.u«ﬁ Lipschite wkh
ﬁhQsPégi: o x-cu\&.gs‘

The statement of the next theorem is exactly the same as Lemma 5.9,

but the proof is different.
Lemma 5.22 2(A) > 1.

Proof: Since A is a bijection, it is a homeomorphism, so for each bounded

set o c X, 8(a) < [AT] e(A(R)).
We shall prove that [[A™'[| = supt|[ A7yl , ¢ NIyl = 13 <1
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For each y e Y with Ily!lo = 1, there exists xe X such that
Ax = x'' =y,

Integrating we obtain that

x'(t) = x'(0) + foty(s)ds, and

tx' (0) + fot(fosy(u)du)ds + C

1]

x(t)

But x(0) = 0 implies that C = 0 and x(1) = 0 gives

x'(0) = -IO'!(IOS y(u)du)ds

So x(t) = r t(f S y{u)du)ds) - tf01(f05 y(u)du)ds. Or, equivalently,

0 0

f

Ot(

pod
—
«+
~—
It

IOS y(u)du)ds - tfo](fov y{u)du)dv

ts S ylu)du)ds - tr (7, y(u)du)dv]

w
o
pd
—~
ot
~—
1]

/s

t

I
-,

7S y(udu = 7' (5" y(u)du)dvids|

1

S .
y(u)du - o

(Iov y(u)du)dv|ds

ty. 1,,.s T1,. v
17y (g yluddu)dy = 7 7/ " y(u)du)dv]ds

1

= 1ty (0 y(u)du)dvds
1. s

</ S |fv y(u)du|dv ds

Ty U Nyu)]du dv ds

<lylig=1.

Also, since x'(t) = fot y(s)ds - fo](foS y(u)du)ds, then

1]

x'(t) = s ](fot y(s)ds)dv - f01(fov y{u)du)dv

0

1,.t
Iy (fv y(s)ds)dv.




?

135

So as above [x'(t)| < |ly|l , = 1. Hence, since Ix" = lyll, =1,
we have

1
|

1%l 5 = maxtllxll gollx "l gallx 1 g < 1, and so A7) <1

which impTies that g(a) < g(A(@)) and 2(A) > 1.

Theorem 5.23 If (C1.) and (C2.) hold, then F(.,A) : X = Y is A-proper

with respect to Ty for all x e R.
Proof: Exactly as in the proof of Theorem 5.10, using Theorem 5.22

The preceding results tell us that equation (5.19) satisfies the
hypotheses (H1) - (H4) of problem (2.1) with (a,b) =R and that
BN(A - AOB) n R(A - AOB) = {0}, for each A, = (kow)z, k e N. We can
use Theorem 4.12 to prove that such a A is necessarily a global bi-

furcation point of equation (5.19).

Theorem 5.24  Assume that (C1.) and (C2.) are satisfied. Then, Ay

= (ko-n)2 is a global bifurcation point of equation (5.19) for each

kO e IN.

Proof: Immediate from Theorem 4.12 and the preceding results.

Transforming the conclusions of Theorem 5.24 into an existence
theorem for equation 5.18 we have the following analogue to Theorem

5.14.

Theorem 5.25  Assume that equation 5.18 satisfies (C1.) and (C2.)
)2

and AO = (kon for k0 e N. Then at least one of the following must

hold:
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(a.) For any M > 0 there exist AM > 0 and Xy € X such that
|[xM[| = M and (xM,xM) satisfies equation (5.18); further-
more, if M > 0, then AM - A,
0

(b.) There is x, e X such that for all x e(ko,m), I x, [ 5 >0

A
and (x,,) satisfies equation (5.18). If || x,[ , ~ 0,

then X =+ A_.
0

Proof: The proof is similar to that of Theorem 5.14 with R, replaced by

R: as in step (1.) we may take X = N(A - AOB) 8 X,»

Y = IN(A - AOB) ® R(A - AOB),
and, using the Liapunov-Schmidt procedure, show that if (x,A) € CS
(the maximal connected subset of X x R guaranteed by Theorem 5.24),
and 0 < [x - 2| is sufficiently small, then x = ux  + o(|u]) as
u- 0, where u ¢ R and Xq = D0 sin kowt with 0 # DO e R. We can
then denote by Zk the set of all functions x ¢ X having exactly
k- 1 simple zeros in the open interval (0,1) and for which x(0) = x(i) = 0,
x'(0) # 0 and x'(1) # 0. Then for each k ¢ N, 7K is open in X and
X n 2t

¢ for k # & ¢ N. Proceedingagain as in the proof of
Theorem 5.14 we may show that possibility (ii.) of Definition 2.7

js impossible. Finally, observe that if (x,\) ¢ CS with A = 0,

then x'' = 0 and so x is identically zero and therefore A = 0 is a
bifurcation point. But 0 ¢ CA(AB) which implies that A = 0 is not

a bifurcation point. This contradiction tells us that equation 5.18
cannot have solutions (x,r) with |[ x|, # 0, if » = 0. Hence by
Theorem 5.24, Definition 2.7 (iii.) and Definition 5.18, the result

follows.
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In almost exactly the same way as in the previous section, we may
find a priori bounds for x, whenever (x,2) is a solution of equation
(5.18), provided A T1ies in some specified interval. We make the fol-
Towing assumptions, which correspond to (Q1.) and (Q2.) of section

5.1.

(C3.) There exist non-negative constants, O, E, F and AZ inRR

with E > 0 and A, > 0 such that [g(t.x,y,0) - x| <D+ E[x]| + Fly],

2
for x and y inR and t ¢[0,1], with (%%-)2 [-F + J/Fz + 8E(1-q)1 > A

2!
where g € (0,1) is the constant from C2.

(C4.) There exist A, > 0 and M > 0 such that for each A with

1 A{g(t.Xx,x',x'') - x(t))dt # 0, for every x e X

with |x(t)] > M for all t e R.

0 f_l] < A< AZ’ fo

Proceeding exactly as in section 5.1 we have the following theorem

which is a consequence of Theorems 5.15 and 5.16.

Theorem 5.26 If there exist t, x, y € R such that g(t,x,y,0) = 0, then

the constants E and Ay in (C3.) are such that E > 1 and Ao < 2w2.

If
(C1.) - (C4.) are satisfied and (x,A) is a solution of equation (5.18)
with A e (3,15), where A; is as defined in (C4.) then | xl , < My for

some finite number M1 > 0 which is independent of x and A.
Procf: Immediate from Theorems 5.15 and 5.16,

Theorem 5.26 provides us with an improved version of Theorem

5.25.
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Theorem 5.27 Assume that hypotheses (C1.) - (C4.) are satisfied and

A= (kowr)2

o , for kO e IN.. Let M1 be the finite number defined in Theorem

5.26. Then at least one of the following properties holds:

(a.) For any M > 0 there exists AM > 0 and Xy € X such that
leM”z.= M and (xy,ty) satisfies equation (5.18). If M+ 0,
then IR and, furthermore, if M > M] then A £ (A] Az);

(b.) There is X, e X such that for all a s(xo,m), ||xKH 5 > 0

and (xx,x) satisfies equation 5.18. Furthermore, if

WG, >M,  Hhen N ¢(‘)\h)\z_)% and if [fx, [l , > 0, then
A= 10.

Proof: Follows from Theorem 5.26.

Corollary 5.28 Suppose there exist t, x, y R such that g{t,x,y,0) = 0

and hypotheses (C1.) - (C4.) are satisfied such that M f_ﬂz and

Ay € (w2,2n2). Then there is a solution (xx,x) of equation 5.18 for
every X e (ﬂz,kzj such that 0 < [[ x,{[ , < M;, where My is the finite

number defined in Theorem 5.26.

2

Proof: 1In Theorem 5.27 set AO = 1% and the result is immediate. Notice

that Ao < sz follows by Theorem 5.26.

Remark (1.) An equation similar to equation (5.18) is considered by Chow
and Hale [6], Chapter 5, §5.8. They obtain a global bifurcation result
when the nonlinear term g has the form g(t,x,x'). Since g does not de-
pend on x'' it is compact and they use the Leray-Schauder degree to ob-

tain their result.

(2.) The application given in this section is a new result.
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5.3 Examples

In this final section, we give an example of an equation which
satisfies the hypotheses (C1.) - (C4.) of the previous section and an
example which satisfies (A1.) - (A3.), (Q1.) and (Q2.) of Section 5.1.

Assume notation as before. Consider,

') + ax(t) =ag(t,x,x"',x"") = aq sin x(t)sin{x''(t)), where
»elR, g ¢(0,1) and x :b,i]+ R.

['sin x(t) sin(x"" (t)

Then q
“ X” 2
max{|sin x(t) sin x''(t)] : t €[0,11}

max (X1 5o X T oo TX T,

=q
max{[sin x(t)| [sin x''(t)] : t €[0,11}
X
I!.tl

< q max{|sin x(t}| |s;n xt

=9
: t e[0,11%

+ 0as |[x[[,+0. So (Cl.) is satisfied.

Now ||q sin x(t) sin x''(t) - q sin x(t) sin x*' ()] o

< gl sin x(£)]] o [l sin x"'(t) - sin X" (D)

<q 1] 2 cosRLEL T RICE)y o x!1(8) = K (bhy

X' (t)

<q 2 | cos(

[

+
2 2

< 2q || sin@ L= XDy

= 2q maX{|sin(xll(t)2' x"(t))‘ 1t e[0,11}

< 2q max| XL XU g o1

=B -k 2a xR
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implying that (C2.) holds since q <(0,1). Now lg(t.,x,y,0) - x| = |x]|,
so (C3.) holds with E =1, D=F = 0 and

2
(F0)% [-F + /F2 + 8E(1-0)] = (D)Z 8 (1-q) = 2n’(1-q) €2,

Finally consider fo] A{q sin x(t) sin{x''(t)) - x(t)}dt.

Since |q sin x(t) sin(x''(t))] < g for all t e@fand for all r > 0,
then provided that |x(t)| > g for all t 5595}3

f01 A{q sin x(t) sin x''(t) -wepdt # 0 for all A s(O,lz).

Hence (C4.) holds with A =0 and M any number greater than q.
Thus (C1.) - (C4.) are all satisfied. Notice that if 0 < q < %,
then Corollary 5.29 applies, since g{t,x,y,0) = 0 for all =~ x, y €R.
By considgring the equation
x'"'(t) + bzx(t) = g(x,x",x"") = g sin x(t) sin x''(t),
where 0 < b e R, g ¢(0,1) and ¥ : R ~ R, a similar procedure shows

that (A1.) - (A3.), (Q1.) and (Q2.) are satisfied.
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