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SUMMARY

The objective o f th is thesis is to give s u ff ic ie n t  conditions fo r  

global b ifurcation of solutions to the nonlinear eigenvalue problem: 

F(x,A) = 0, where F : X x IR -*• Y, wi th X x IR, Y Banach spaces and

( x , a )  e  X x IR. F ( . ,A )  is assumed to belong to the class of A-proper

maps and to be of the non-standard form, an A-proper, l in e a r  operator

A - AB : X Y plus a nonlinear mapping R ( . , a ) : X -> Y. R ( x , a ) is taken

to sa tis fy  a smallness condition in x a t the orig in  in X. Our analysis 

is based on an extension of known methods, fo r  obtaining global b i fu r ­

cation resu lts , which have been used successfully when the mappings 

involved are compact or k-set contractive.

Chapter One is an introduction to the concepts used throughout 

the thesis , including Fredholm maps of index zero, A-proper maps and 

generalised topological degree. In Chapter Two we state and prove our 

main global b ifurcation theorem in terms of the generalised degree; 

th is  resu lt forms the basis fo r  the proofs of a l l  the main theorems in 

the thesis. Chapters Three and Four contain various global bifurcation  

theorems, fo r  d i f fe re n t  sets of hypotheses imposed on the mapping F 

and the underlying spaces X x IR and Y. F in a lly ,  in Chapter Five we 

apply our results to certain  classes of ordinary d i f fe re n t ia l  equations 

and obtain existence resu lts , fo r  periodic solutions in one case and 

not necessarily periodic solutions in another.

The main results are: Theorem 2.10; Theorems 3.3 and 3.13;

Theorems 4 .7 , 4 .12, 4.15 and 4.18.



INTRODUCTION

This thesis is concerned with proving existence of nontriv ia l so­

lutions to a nonlinear operator equation of the form

F(x ,A) -  0 (0 .1 )

where F : X x IR Y is continuous with X and Y Banach spaces. In par­

t ic u la r  we wish to study the dependence of the solution set on the para­

meter A. Equation (0 .1 ) is often referred to as a nonlinear eigenvalue 

problem.

Suppose that F(0,A) = 0 fo r  a l l  X in IR. Then we call { ( 0 , a )  :

X e IR} the set of t r i v ia l  solutions and denote by S the set of non­

t r iv ia l  so lutions, so th a t ,  (x,A) e S i f  and only i f  F ( x , a )  = 0 with 

x f  0.

We say that X Q e IR is a b ifurcation point of equation (0 .1 ) i f  

there is a sequence of solutions in S converging to the point (0,A ).

So there is a 'fo rk ing ' of solutions at the point (0»A ) ,  where 

a branch of n o n -tr iv ia l solutions emanates from the set of t r iv ia l  so­

lu tions. By 'branch1 we mean a maximal connected subset. The term 

global b ifurcation w i l l  be used, which refers to the fa c t  that global

properties of th is branch of solutions are obtained. Typically we

shall see that the branch has at least one of the following properties:

i t  is unbounded in X; i t  meets the t r iv ia l  solutions a t a point.(0»x*|)

with A-j f  Aq ; or, i t  contains elements in S fo r  e ith e r  a l l  parameters 

greater than, or a l l  parameters less than, A , fo r  which equation 

(0 .1 ) is defined. In such a case, we say that X Q is a global b ifurca-



I t  is our objective to impose conditions on F which are s u ff ic ie n t  

to ensure global b ifurcation occurs for equation (0 .1 ) .  In order to 

achieve this goal, we shall assume F has the general form

F(x,A) = Ax - T(A)x - R(x,A) = 0 (0 .2 )

where A - T(a ) : X Y is the Frechet derivative  of F ( . ,A )  a t the fixed  

point x = 0, a bounded, l in ear  operator, and R is the 'higher order' 

term.

One method of proving bifurcation results fo r  equation (0 .2 ) is 

to apply the Im p lic it  Function Theorem: i f  there ex is t continuous pro­

jections P : X X and Q : Y Y, with ranges given, respectively, by 

R(P) = N(A - T(A ) )  and R(Q) =  R(A -  T ( a q ) ) ,  where Aq is the candidate 

for a b ifurcation point, then there ex is t closed subspaces X̂  c X and 

Y2 c Y with X = N(A - T(x ) )  © X] and Y = Y2 © R(A -  T ( A q ) ) .  An ap p li­

cation of the Im p lic it  Function Theorem shows that a q must be such that 

N(A - T(A ) )  f  0 . Then, using the decompositions of X and Y and in ­

voking the Im p lic it  Function Theorem, again, the problem is reduced to 

an equivalent one on N(A -  T ( a q ) ) .  This reduction argument is known 

as the Liapunov-Schmidt procedure. In most cases N(A - T(x )) has a 

smaller dimension than that of X. In fa c t ,  we shall only be dealing 

with problems where N(A - T(x ) )  is f in i t e  dimensional, and in this  

case the classical Brouwer degree theory may be used to obtain the b i ­

furcation resu lt  a f te r  reduction by the Liapunov-Schmidt method. This 

approach, however, does not give global results . Moreover, i f  equa­

tion (0 .2 ) involves a class of operators fo r  which there exists a 

topological degree theory we may use the degree properties d ire c t ly  

without performing any reduction. The classes of operators for which



there are topological degree theories are quite extensive. In addition 

to the Brouwer degree fo r  continuous maps acting from oriented f in i t e  

dimensional spaces onto spaces of equal f in i t e  dimension there are: 

the Leray-Schauder degree, developed in 1934 by Leray and Schauder 

[153, fo r  maps of the form id e n tity  minus compact; the degree of  

Nussbaum [2 2 ], fo r  id e n tity  minus k-set contractions; the coincidence 

degree of Mawhin [18]; the generalised degree o f Browder and Petryshyn 

[5 ] ,  fo r  so called A-proper maps, which we.shall define below; and 

others.

The method of solving problems by topological degree arguments was 

one of several used by Krasnosel‘sk ii [13]. He applied the Leray- 

Schauder degree when the operators involved were compact, and his re ­

sults were essentia lly  of a local form. Then, in 1971 Rabinowitz [35] 

proved the f i r s t  global resu lt  when he gave s u ff ic ie n t  conditions for  

global b ifurcation of equation ( 0 . 2 )  when A = I ,  T ( A )  -  AB with B and 

R compact maps. A fter  this important paper, a number of generalisa­

tions were made including: C. A. Stuart [36 ], who allowed F ( . ,A )  to

be a k-set contraction with R (.,A ) = AR; Stuart and Toland [38], they 

retained the compactness of B and R, but l e t  A have the more general 

form I -  C, with I the id e n t i ty ,  C compact and I -  C not necessarily 

in v e r t ib le ;  Toland [ 4 2 ] ,  l e t  A = I ,  T(a) = AB and obtained global b i-  

furation results when F ( . ,a )  and I -  AB are A-proper maps with X = Y 

a H ilb e rt  space.

Recent global b ifurcation resu lts , which use homotopy theory rath­

er than degree theory, seem to be extremely general indeed, see, for  

example, Alexander and F itzp a tr ick  [2] and Ize [11].. We have not stu­

died homotopy theory but remark that in order to obtain stronger, more
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general resu lts , th is seems to be the way forward.

In this thesis we shall be concerned with so called A-proper maps. 

The class of A-proper maps was f i r s t  studied by Petryshyn, under v a r i­

ous guises, and then in 1968 Browder and Petryshyn christened them 

Approximation-proper, or more concisely, A-proper maps. Their d e f in i ­

tion requires the idea of an admissible scheme, r = {Xn,Yn,Qn} ,  fo r  

maps from X into Y : {Xn> c X and"{Yn> c Y are sequences of oriented

f in i t e  dimensional subspaces, with dim Xn = dim Yn fo r  each n e IN; {Qn>

is a sequence of projections of Y onto Yn fo r each positive integer n,

with Q y y as n « fo r  each y e Y; and the distance from X„ to xn n
tends to zero as n -> °°, fo r  each x e X. Then, a not necessarily l i n ­

ear mapping, f  : X Y, is said to be A-proper with respect to r ,  i f

(L f  is continuous, fo r  each n, and whenever 0  f (x „ W  y as n «>, n n ' n#
fo r  some y e Y and some bounded sequence {xn>, in Xn, then {xn> has a 

convergent subsequence converging to x, such that f ( x )  = y . Browder 

and Petryshyn [5] also developed a degree theory fo r  A-proper maps: 

they denoted by D eg(f,G ,0 ), the generalised topological degree of f  

at 0 re la t iv e  to the open bounded set G. This degree is well defined, 

provided that 0 £ f (a G ),  where 8G is the boundary of G, and although 

multivalued in general, possesses most of the useful properties of 

the Brouwer degree. For a comprehensive account of A-proper maps and 

generalised degree, see the survey a r t ic le  by Petryshyn [31].

In Chapter One of this thesis , we introduce the basic ideas re ­

quired in the development of our theory, including a re ite ra t io n  of 

the d e fin it io n  of A-proper maps and generalised degree, given above.

We prove most of the important results except the very well known and 

excessively long ones and where appropriate we give reference sources.
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Also included in this chapter is the d e fin it io n  of Fredholm maps of 

index zero, which have been successfully employed in b ifurcation theory 

by many authors, including Mawhin [18], Alexander and F itzp a tr ick  [2] 

and Ize [11 ], and shall play an important part in the work contained 

here. We prove the useful theorem, due to Petryshyn [33 ], that a 

l in e a r  Fredholm mapping of index zero is necessarily A-proper with re­

spect to a p a rt icu la r  admissible scheme.

In Chapter Two, we suppose that F ( . , a ) and its  Frechet derivative  

A - T(a) are A-proper with respect to some admissible scheme r ,  fo r  

a l l  A e (a ,b ) ,  an open in terval in IR, which may be in f in i t e .  Then, we 

generalise the global b ifurcation results - of Rabinowitz [35] for com­

pact maps and the subsequent extension, by Stuart [36] to k-set con­

tractions - to the class of A-proper maps. This p o s s ib il i ty  of global 

bifurcation fo r A-proper maps was observed by Toland, whose main theorem, 

in [42], may be deduced as a special case of the results given in §4.3 

of this thesis. Toland stated that the proof follows as a generalisa­

tion of Rabinowitz' [35] method fo r  compact maps, but he never gave 

the d e ta i ls ,  so we include our own proof fo r  completeness. The global 

resu lt  i t s e l f ,  te l ls  us that i f  the generalised degree of the l in ear  

part of equation ( 0 .2 ) ,  namely A -  T ( a ) ,  changes as A moves across an

isolated value \ n  fo r which N(A - T(A ))  f  {0} -  that is ,O o
Deg (A - T(2J,G,0) f  Deg(A - T(“x),G ,0) fo r  A_ < a q < T  s u f f ic ie n t ly  close 

to Aq with G an open, bounded set in X - then, a q must be a global b i ­

furcation point.

Our main objective , over the subsequent chapters, is to impose 

conditions on A0 , A, T ( a ) and R under which this change in degree takes 

place.



Chapter Three generalises two d if fe re n t  methods of Toland fo r  prov­

ing that the degree changes. In §3.1 we take T ( a )  =  > w1'th

B l in e a r  and compact and assume, fo r  some \ Q e IR with N(A -  A B)  t  {0}', 

that BN(A -  A0 B )  f] R(A - AQB)  = {0 } .  The required degree resu lt  is 

shown to hold provided that dim N(A - Aq B )  is. an odd number, and, fo r  

a l l  A. ' f  Aq in an in terval ( a  -  <5, Aq +  <$), N(A -  AB)  = {0}.

This generalises To!and's [43] re s u lt .  The hypothesis 

BN(A - A qB)  f| R(A - known as a transversality  condition, was

not considered by Toland, but we show that i t  generalises one of his 

sets of hypotheses and allows a more general se ttin g . Many authors 

in b ifurcation theory use a transversality  condition, see fo r  example 

Mawhin [18] and Alexander and F itzpa tr ick  [2 ] ,  The oddness require­

ment on the dim N(A - A qB )  is a recurrent condition throughout the the­

sis and is closely related to the concept of m u lt ip l ic i ty  of elements 

a q with N(A - Aq B)  f  {0 } ,  which we define in the te x t .  For this rea­

son i t  is sometimes said that global b ifurcation occurs at values AQ 

of odd m u lt ip l ic i ty .

The results in §3.1 have been published jo in t ly  with J. R. L. Webb,

[48].

In §3.2 we generalise a Leray-Schauder degree m ultip lica tio n  fo r ­

mula, due to Krasnosel'skii [13 ], to a generalised degree version. Our 

resu lt  proves th a t ,  when X = f  E^, where E-j and Eg are closed sub­

spaces with E-| f in i t e  dimensional*, I -  T : X X is a homeomorphisnr,

Ti : E-j E-j(i = 1 *2) 1S the re s tr ic t io n  of T to E.., and B^(0,1) is 

the open un it ball in E^(i = 1 ,2); then, Deg ( I  -  T, B (0 ,1 ) ,0 )

= degL$( I  -  T-j ,B1 (0 ,1 ) ,0) Deg ( I  - T2 ,B2(0 ,1 ) ,0 ) ,  where B(0,1) is the 

open u n it  ball in X. We use this formula to generalise another result



of Toland [41]. Our main theorem on global bifurcation applies to the
k

situation: X = Y, A -  I ,  T (a) = 2 AJB.. fo r  some odd number k, under
j= i  J

various hypotheses, such as an odd m u lt ip l ic i ty  requirement, and a trans 

versa!ity  assumption. This generalises Toland [41], who required that 

B. ( j  = l , . . . , k )  were a l l  compact. A corresponding generalisation is
J

proved when X is a H ilb e rt  space. A more concise version of these re­

sults has also been published jo in t ly  with 0. R. L. Webb, [49].

In Chapter Four, §4.1, we assume th a t ,  a t some Aq with 

N(A - T (AQ))  f  {0 } ,  A - T(A ) can be decomposed as H - C where H is 

a homeomorphism and C is a bounded lin ear  mapping. Then, the results  

of Chapter Two are used to prove that global b ifurcation occurs a t Aq 

i f  the degree of I -  CH~̂  -  (T ( A) -  T(ao))H""* changes as A crosses X Q ,

In §4.2 i t  is assumed that A - T (aq) is Fredholm of index zero and that

the transversal i ty  condition (A - T (a ))N(A - T( A ) )  f] R(A - T(x ))  = {0}

fo r  a l l  X f  aq, holds. Exploiting the properties o f Fredholm maps we 

prove that the decomposition in §4.1, of A - T(aq) ,  into H - C, may be 

chosen so that C is compact.

I t  is shown under various hypotheses that global b ifurcation occurs 

at X Q i f  dim N(A - T(aq))  is an odd number. The hypotheses depend on

the form of T (A): when T (a ) -  AB, then A may be p o s it ive , negative
k ior zero; however, fo r  T (a ) = e Aj B., with k f i n i t e ,  we have to le t

j= i  j
X and Y be H ilb e rt  spaces and e ither Aq = 0 or aq is a -  positive

value; furthermore, i f  k is allowed to be in f in i t e ,  then we further  

r e s t r ic t  ourselves to AQ = 0, again with X and Y H ilb e rt  spaces.

The results contained in §4.2 generalise some of those which ap­

pear in Chapter Three.
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In §4.3 i t  is not assumed that the transversality  condition holds. 

Instead we impose a segment condition which depends on the decomposi­

tion H -  C of §4.1, where in general C is not compact. I t  is shown 
*

that i f  the radius o f the essential spectrum o f CH is less than one

and the algebraic m u lt ip l ic i ty  of A , namely dim { U M((I - CH" ) n) } ,
0 n=l

is an odd number, then the required degree resu lt holds. Actually ,

the condition on the essential spectrum o f CH"  ̂ implies that A - T(Aq) 

is again Fredholm o f index zero and so the decomposition H - C can be 

chosen such that C is compact. However, the segment and m u lt ip l ic i ty  

conditions depend e x p l ic i t ly  on H and C. So, even though we know that 

such a compact C ex is ts , i f  we cannot find i t  e x p l ic i t ly ,  then we may 

be unable to v e r ify  the other conditions. I f ,  on the other hand, there 

is a read ily  availab le  e x p l ic i t  decomposition H -  C where C is not 

compact, but fo r  which the other conditions are s a t is f ie d ,  then this  

method may be used.

F in a l ly ,  in Chapter Five we give applications to the problem of 

the existence o f even, T-periodic solutions of the ordinary d iffe re n ­

t i a l  equation

x " ( t )  + b2 x ( t )  = g ( x ,x ' , x M ) ,

3where 0 < b e IR, x : IR IR and g : IR IR is continuous and bounded, 

and s a tis f ies  a smallness condition.

We indicate how this problem may be transformed into an abstract 

nonlinear eigenvalue problem of the form of equation (0 .2 ) .  The re­

sults of Chapter Four are then used to give a solution to this problem 

under some additional hypotheses.
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We also consider the problem of existence of solutions (x ^ ,x ) ,  

with xx not id e n t ic a lly  zero, of the ordinary d i f fe re n t ia l  equation

x 11 ( t )  + xx (t)  = Xg ( t , x ,x 1 , x 11) ,

where x(0) = x ( l )  = 0, x elR, x i f o ^ IR  and g : [0,1] x IR̂  IR is 

bounded and continuous and s a tis f ies  a smallness condition.

Again, we impose additional hypotheses on the equation and invoke 

the theorems of Chapter Four.

F in a lly ,  examples, of the above ordinary d i f fe re n t ia l  equations 

are given, which sa tis fy  the various hypotheses.
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CHAPTER ONE 

PRELIMINARIES

1.1 Notation and general concepts

We shall w rite  1  fo r  the set o f a l l  integers, IN for the set 

of a l l  positive integers, 1, 2, _____ and IR fo r the set o f real numbers.

Unless otherwise stated X and Y w i l l  denote Banach spaces with 

norms given, respectively, by || x|| and || y || fo r  a l l  x e X and y e  Y.

X x IR and Y x IR are , then, also Banach spaces with norms given, re ­

spectively, by [ || x ||̂  + | and [ || y | f  + |x | ^]^ fo r  a l l  (x ,x ) e X x IR 

and (y ,x) e Y x IR.

For the remainder of th is section we take Z and E to be Banach 

spaces.

I f  D c Z is a l in ear  subspace, then dim D w i l l  be w ritten  fo r the 

dimension of D, which may be in f in i t e .  I f  G is a subset in Z and z e Z 

an a rb itra ry  po int, then d is t(z ,G ) w il l  denote the distance of z from 

the set G, that is ,  d is t(z ,G ) = in f { || z -g  || : g e G}. The closure and 

boundary of a set G w i l l  be denoted, respectively, by G and 3G.

B (z ,r )  w i l l  denote the open ball in Z, centre z and radius r  with 

closure B"(z,r) and boundary 9 B (z ,r ) .

I f  there ex is t subspaces Z-j and Z2 of Z, such that each z in Z may 

be w ritten  uniquely in the form z = z-j + z2 , with ẑ  e Ẑ  and z2 e 2^, 

then we w rite  Z = Z-j © Z2> and call Z-j © Z2 the d ire c t sum of Z-| and Z

The next resu lt  may be found in Taylor and Lay [3 9 ].

Theorem 1.1 I f  Z has a fin ite -d im ensional, and hence closed, subspace 

Z-j, then there exists another closed subspace such that Z = Z-j © Z^.
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D efin ition  1.2 A continuous mapping f  : Z E, which is one-to-one ( in ­

je c t iv e ) ,  onto (sur jec tive ) and whose inverse mapping : E Z is

also continuous, is called a homeomorphism.

D efin ition  1.3 A mapping f  : Z E is said to be compact i f  i t  is

continuous and f(D ) is compact in E whenever D is a bounded subset in

Z.

Remark I t  is well known, see for example Taylor and Lay [39], that i f  

f  is l in e a r  and f ( D ) is compact in E, whenever D is a bounded subset in 

Z, then f  is continuous.

D efin ition  1.4 Let D be a bounded subset of Z. The set (b a l l )  measure 

of non-compactness of D, denoted by a(D) (3(D)) is such that cs(D)

= in f{d  > 0 : D can be covered by f in i t e ly  many sets each of diameter 

less than or equal to d} (3(D) = in f { r  > 0 : D can be covered by f in i t e ly

many balls each of diameter r ,  with centres in Z } ) .

D efin ition  1.5 We ca ll a continuous map f  : Z E a k-set contraction  

i f  there is a constant k _> 0 such that fo r  a l l  bounded sets D c Z. 

a ( f ( D ) ) <_ k a (D ), and define a ( f )  = in f{k  : f  is a k-set contraction}.

We say that f  is set condensing i f  a(f(D)) < a(D) fo r  a l l  bounded sets 

D c Z such that a(D) f  0.

Replacing the word "set" by the word "ball" and a by 3, we obtain 

an equivalent d e f in it io n  fo r  the ball measure of noncompactness.

Notice that f  is compact i f  and only i f  i t  is a 0 -set (0 -b a l l )  

contraction.

Two important properties of a and 3 are th a t, i f  D, D-j, D̂  are 

bounded subsets of Z, and L : Z •* E is l in e a r ,  then
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a(D-j + Dg) <_a(D.|) + a ^ )  and ot(L( D)) <_ || L || a (D). The same in ­

equalities hold when a is replaced by 3 .

For a fu rther discussion of the set and ball measures see [14],

[16] and [22].

D efin ition  1.6 A mapping f  : Z E is said to be Frechet d i f fe r e n t i ­

able at the point zQ e Z, i f  there exists a bounded, l in e a r  map f  (zQ) :

Z E such that f ( z  + h) -  f ( z Q) - f ' ( zQ)h = R(z0 ,h ) ,  where

R : 2 x Z ^ E is such that || R(z0 >h)|| /  |[ h|| •> 0 as || h|| ->■ 0.

We ca ll f ' ( z  ) the Frechet derivative of f  at the point zQ.

Remark I f  f  is a k-set contraction, then so is i ts  Frechet derivative  

[211. This is not true , in general, fo r  the A-proper maps we shall 

define in §1.2.

The next co llection of results may be found in the book of Taylor 

and Lay [391.

Let L : Z -*• Z be a bounded, l in ear  operator and denote the null 

space and range o f L by, respectively, N(L) and R(L). Note that

N(Lk) c N(Lk+1) and R(Lk+1) c R(Lk) fo r  each k e IN, so N(Lk) is an in -
u

creasing fam ily , and R(L ) is a decreasing fam ily , of subspaces of E.

I f  there exists a smallest positive integer p (q ),  such that N(LP)

= N(LP+"*) (R(LC,+'*) = R(LP))  then p (q) is called the ascent (descent)

of L. In general the ascent and descent of L need not be equal or even

f in i t e .  However, when they are both f i n i t e ,  then they are equal, and

Z = N(LP) © R(LP).

Two sets which w i l l  be frequently encountered are
_ 1

p ( L )  = (A e <£ : ( x l  -  L ) '  : Z Z is a bounded lin e a r  operator},

known as the resolvent set of L ,  and c r ( L )  -  { X  e C  : X £  p ( L ) > ,  called  

the spectrum of L. An important subset of a(L) is the essential spectrum
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a  (L) o f L, which corresponds to a l l  X e a(L) fo r  which a t least one 0

of the following conditions is sa tis f ied :

(1) the range of X I  - L is not closed;

(2) X is a l im i t  point of a (L );
00

(3) dim U N ((XI -  L )n) is in f in i t e .
n=l

Nussbaum [20] has shown that cr (L) is a closed, bounded set. Itse
radius is defined by r  (L) = sup{|x| : X e a (L )} .6 0

Nussbaum [20] re lated the essential spectrum to the notion of k-

set and k-ball contraction by proving that r  (L) = lim {a(Ln) } ^ n 
n 1/ e n-Ho

= lim{$(L )}  , Thus the essential spectrum of a compact mapping is
n-K°

zero.

There are several possible defin itions of essential spectrum. The 

one given here is due to Browder [3] and leads to the largest set. How­

ever, Nussbaum [20] has also shown that whichever d e f in it io n  is taken, 

the radius is the same. Also A. Lebow and M. Schechter [14] prove s i ­

m ilar resu lts .

Another important se t, which corresponds to the reciprocals of a 

subset of s (L ) ,  is the set of characteris tic  values, ch (L ), of L given 

by ch(L) = {X elR : N(I -  XL) f  { 0 } } .

For x e ch(L), we define the algebraic m u lt ip l ic i ty  M (x) and geo­

metric m u lt ip l ic i ty  M( x )  o f x by, respectively,
co ^

Ma(x) = dim{ U N (( I  - xL)n) } ,  M (x) = dim{N(I -  XL)}. In general 
a n=l g

Ma (x) and M (x) need not be equal or even f i n i t e .  However, when L is

compact then M (x ) ,  and hence M_(x), is f in i t e ;  ch(L) is a discrete set 
a 9

with no f in i t e  l im i t  points, and is bounded away from zero; the ascent 

and descent of I -  XL are f i n i t e ,  equal to p say; and

Z = N (( I  -  XL)P) ® R (( I  - XL)P) ,  with M (x) = dim{N(I -  xL)p}.a
This decomposition is often called the Riesz decomposition of Z.
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1.2 A-proper maps

The main results in th is thesis w i l l  involve, so ca lled , Approxi­

mation proper maps, o r ,  more concisely, A-proper maps. This class of 

maps was f i r s t  named as such by Browder and Petryshyn [5] in 1968, a l ­

though Petryshyn had used them e a r l ie r  in [2 5 ], where he referred to 

them as mappings satisfying condition (H). To define A-proper mappings, 

we need the following d e f in it io n .

D efin ition  1.7 r = ^xn »Yn5Qn} 1S sa^  t0 be an admissible scheme fo r  

maps from X into Y provided that:

( 0  {Xn} c X and {Yn> c Y are sequences or oriented f in i t e  dimen­

sional subspaces with dim Xn = dim Y , fo r  each n e IN;

( i i )  {Qn> is a sequence of l in e a r ,  continuous projections, with 

Qn : Y Yn fo r  each n e IN, and Qn y y as n ®, fo r each 

y e Y;

( i i i )  d is t(x ,X  ) -> 0 as n °° fo r  each x e X. n

In D efin ition  1.7 by 'oriented' f in i t e  dimensional spaces X , Y , 

we mean that bases have been chosen fo r Xn and Yn, such that i f  a 

bounded, l in e a r  operator L : Xn -*• Yn maps the basis in Xn onto the ba­

sis in Y , then the determinant of the matrix o f L is positive .

Remarks (1) By the Uniform Boundedness Theorem, c f .  [3 9 ],  condition 

( i i )  in D efin ition  1 .7 , implies that there exists a number K > 0 such 

that || Q || <_ K, fo r  a l l  n e IN.

(2) I t  is easy to show that i f  X and Y possess Schauder bases then 

there exists an admissible scheme [31]. In p a rt icu la r  i f  X and Y are 

separable H ilb e rt  spaces, then an admissible scheme ex ists .
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Defin ition 1.8 A, not necessarily, l in ear map f  : X Y is said to be

A-proper with respect to the admissible scheme r = ^ n ^ n * V 9 ^

■f = Q «fL  : X + Y is continuous for each n elN, and i f  whenever n n 'xn n n
{x : x„ e X 1 is any bounded sequence with f  (x ) y as j  n • n * n ■ n . n .

J J J 0 J
fo r  some y e Y, then there ex is t a subsequence, which we again denote 

by {x } ,  and x e X, such that x ■ -»- x as j  -> °° and f ( x )  = y . Sometimes
j  j

we ju s t speak of an operator being A-proper, without mentioning an ad­

missible scheme; in such cases i t  is im p lic it  that an admissible scheme 

e x is ts .

Thus, in the class of A-proper maps the problem of finding solu­

tions to an in f in i t e  dimensional problem f ( x )  = y may be reduced to 

that of solving the associated f in i t e  dimensional problems Qmf ( xm)

= Q ^ . The required solution is then the strong lim its  of some sub­

sequence of {xm} ,  provided the sequence {xm> is bounded.

I t  follows d ire c t ly  from D efin ition  1.8 that i f  f  : X Y is A- 

proper with respect to r ,  then c f  : X Y is also A-proper, fo r  any 

constant c e IR; however, Petryshyn [27] has shown that the sum of two

bounded, l in ear A-proper operators need not be A-proper. Thus, the

set of a l l  bounded, l in e a r  A-proper operators is not a l in e a r  subspace 

of the space of a l l  bounded, l in e a r  operators.

The class of A-proper maps evolved from the concept of a Projec- 

tionally-compact mapping, or, more concisely, a P-compact mapping, 

which was introduced by Petryshyn, [23] in 1966. Petryshyn, [31] has 

shown that a mapping f  : X X is P-compact i f  and only i f  T , = f  - XI  

is A-proper fo r each X > 0, where I is the id e n t ity  mapping. I t  was 

shown in [24 ], that i f  H is a H ilb e rt  space and L : H H is a bounded,

linear, monotone decreasing ( i . e .  (Lx,x) ^ 0  for a l l  x e H) operator,
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then -L is P-compact. Thus, fo r  such an operator L, L + AI is A-proper 

fo r  each x  > 0. Other examples of A-proper maps include I -  f  : X X, 

where f  is k-ball condensing, provided || Q || = 1 fo r  each n elN. This

fac t was proved by Webb, [45] and extended the resu lt that I - f  is A-

proper when f  is compact. In two recent papers, Webb [46,47] has im­

proved a resu lt  of Toland [4 2 ], which gives another example of an A- 

proper mapping. In order to c ite  this example we need some additional 

information. Recall th at i f  X has a uniformly convex dual space X*, 

then i t  is well known, [3 1 ] ,  that the duality  map J : X X* is uniquely 

determined by the requirements || 0x|| = || x|| and (x ,Jx) = || x|| ,

where ( x , f )  denotes the value o f f  e X* at x e X. One may then define

a mapping f  : X X to be accretive (or J-monotone) i f ,  fo r  a l l  x , y e X, 

( f (x )  -  f ( y ) ,  J (x -y ) )  >^0. I f  f  -  c I is accretive fo r  some c > 0, 

then f  is said to be strongly accretive with constant c. Webb, [47] 

has shown th a t ,  i f  X* is uniformly convex; || Q [| = 1 and Xn c Xn+-j,

fo r  each n e IN; g : X X is a k-ball contraction; f  : X X is strong­

ly  accretive with constant c, and demicontinuous - i . e .  xn ^ x implies 

that f ( xn) f ( x ) ( ^ denotes weak convergence), - then f  + g is A- 

proper i f  k < c , and I + g + f  is A-proper i f  k -  c < 1. Notice that 

f  need not be bounded. The class of k-ball contraction plus strongly 

accretive and demicontinuous mappings is not known to belong to any 

other class of mappings and, consequently, the A-proper mapping theory 

is the only one that can handle such equations.

Milosevic, [1 9 ], has considered s im ilar problems, and his results

imply that i f  X is a re f le x iv e  Banach space, f  : X X is a l in e a r ,  

continuous, accretive operator and g is a l in e a r ,  compact operator, 

then a l  + f  + g is A-proper fo r  each a > 0.
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We now look a t  some properties of A-proper maps. These are a l l

due to Petryshyn and the proofs are included fo r  completeness.

Theorem 1.9 (Petryshyn, [2 6 ] ) .  Suppose that L : X Y is a bounded, 

l in e a r ,  in je c t iv e ,  A-proper operator with respect to r -  TXn3Yn»Qn>- 

Then L is a homeomorphism.

Proof: We have ju s t to show that L is onto, fo r  then the Open Mapping

Theorem, c f .  [3 9 ], gives the required resu lt .

F i rs t ,  l e t  us prove that there exists a constant C > 0 and Nq elN,

such that |[ Qn L xn|| >_ C ||xn || fo r  a l l  xn £ Xn with n >_ NQ. Suppose

the contrary, then there is a sequence [x n>, which by l in e a r i ty  of QnL

we may choose with || xn || = 1 fo r  each n £ fN, such that || Qn L x j j  
1 1< n ^ x n  ̂ = ” ^ 0 a s n - * ° ° .  By A-properness of L this implies the 

existence of a subsequence, which we again denote by and an e le ­

ment x e X with xn x as n -*■ «. C learly , || x || = 1  and Lx = 0. This 

contradicts the injectiveness of L, so C and NQ e x is t .  Thus, fo r

n > N , Q L L  : XM is in je c t iv e  and therefore onto, since X — o n 1 Xp n n n
and are of equal f in i t e  dimension n and Qn L is l in e a r  and contin­

uous fo r  each n > N . Thus, fo r  each y e Y there is a unique xn £ Xn, 

such that Qn L xn = Qn y ,  fo r  each n > Now C II x n II £  II Qn L xnll

= II Qn yII £  K|| y || , since the Qn 's are uniformly bounded, c f .  Remark

(1) preceding D efin ition  1 .8 . So, || x || is a bounded sequence and

Qn L xn = Qn y -> y ,  as n -*■ which implies, again by A-properness of

L, that there is an x e X, such that fo r  a subsequence, xn x and

Lx = y. By the injectiveness property, such an x is unique. Hence L

is a b ijec tion  and therefore a homeomorphism.
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Theorem 1.10 (Petryshyn, [2 8 ]) .  I f  f  : X *> Y (not necessarily l in ear)  

is continuous and A-proper with respect to r = {Xn,Yn,Qn} ,  then the 

re s tr ic t io n  of f  to any closed, bounded subset F of X is proper: where,

by proper we mean that fo r  any compact set K in Y, the non-empty set 

F fl f  (K) is also compact in X.

Proof: Let F be a closed, bounded subset of X and {x^} a sequence in

F fl f~^(K ), where K is a compact subset in Y. Then { f(x^.)} is a se­

quence in K, which, without loss of genera lity , we may assume converges. 

That is ,  f ( x k) y(say) e Y as k «.

Now fo r  each k e IN choose > 0 with 0 as k ». By contin­

u ity  of f ,  there exists <5̂  > 0, with 5  ̂ 0 as k such th a t, i f

|| v -  xk || < 5^ fo r  v e X, then || f ( v )  -  f (x^ )||  < But, by the pro­

perties of an admissible scheme there exists vn(|<) e Xn(k) (w^ere we 

can suppose that n( k) > k) with || ^(vn(j<)) " f  (x|<) II < e|< and

II vn(k)  -  x kll < V  Thus’ II Qn(k)  f ( v n ( k ) } '  y H 

±  II Qn(k)  f ( v n ( k ) } -  Qn(k)  f ( x k } U + H Qn(k) f ( x k ’ '  Qn(k)  y H

+ II Qn ( k )  y  -  y| l

- K llf ( v n (k )5 “ f ( x k^l + K lif ( x k) “ + II Qn(k) y " y H 9 since the

Qn 's are uniformly bounded by the constant K. So Qn(|<) f  ( vn(|<)) *  Y

as k -> «>. Hence, by the A-properness of f ,  we may assume (passing to

a subsequence i f  necessary) that there exists x e X, such that x

as k « and f ( x )  = y . This implies that x^ x as k -*■ « , and, since

F is closed, x e F fl f"^ (K ), which is therefore compact, as required.

Theorem 1.11 (Petryshyn, [2 6 ]) .  I f  L : X Y is a bounded, l in e a r ,  

A-proper operator with respect to r = {Xn,Yn,Qn>, then N(L) is f in i t e  

dimensional.
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Proof: Assume that N(L) is in f in i t e  dimensional. Then, since 3B(0 91)

is not compact in the in f in i te  dimensional space N(L), there exists a 

sequence {xn> in aB(0,T) and a constant C > 0, such that  

|| x . - x . || > C fo r  i f  j ,  and L (x .)  = 0 fo r  each i elN. Now, since
■ \J

{x .}  c 3B(0,1 ) ,  then {x^} is bounded. Also L is a continuous, A-proper 

operator. Thus, Theorem 1.10 te l ls  us that {x.} is compact and, there­

fo re , has a convergent subsequence ix ^ } ,  with x^ x (say) as k °°.
r*

Hence, there exists NQelN, such that || x  ̂ -  x j )  j ,  fo r  a l l  k, % >_ Nq 

with k /  l  This contradictionimplies that N(L) is f in i t e  dimensional.

Theorem 1.12 (Petryshyn, [2 6 ] ) .  I f  L : X Y is a bounded, l in e a r ,  

A-proper operator with respect to r = Q }» then R(L) is closed

in Y.

Proof: This proof is s im ila r  to that fo r  the compact case as in ,  fo r

example, Yosida's book [51]. Suppose that R(L) is not closed. Then 

there is a sequence {xn> c X such that Lxn y and y £  R(L). By the

l in e a r i ty  of L, y f  0 and we may assume, without loss of generality ,

that xn £  N(L) fo r  each n e IN. Since N(L) is closed, 

d  ̂ = in f { II x -  x|1 : x e N(L)} > 0 fo r  each n e IN. By a property of

the infimum, we can choose sn e N(L) such that An = l lx n " snH < 2c*n

fo r each n e IN. We shall prove that Â  ® as n « . Suppose not, then

{xn -  sn> contains a bounded subsequence (x̂ . -  s..} s {k .}  fo r  which

Lk  ̂ = Lx.. -  Ls  ̂ -  Lx. +  y as i 00. Since {k..} is a bounded sequence,

then {Lk..} is also bounded and every subsequence converges to y . So, 

by Theorem 1.10, { k . }  is compact and, therefore, has a convergent sub­

sequence { k .} with k. ■+■ k(say) e X as j  «. Thus, Lk = y e R(L), con-
J J

trary  to our assumption. Hence, An + <» as n «. Setting
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Pn = ^n" ^ xn ~ s n̂  1S eas1' ^  seen ^hsit IIP n ll ~  ^ ^or eac  ̂ n 8 *N>
-1and Lpn = An Lxn -> 0 as n -> ». Again, by Theorem 1.10, {pn> 

has a convergent subsequence ( p .} such that p. ■* p(say) e X as j  ».
J J

Clearly || p || = 1  with Lp = 0, and so p e N(L).

F in a l ly ,  setting zn = sn + AnP> we have that Lzn = 0 fo r each 

n elN, implying that zn e N ( t ) .  Thus, l lx n " zn ll iL dn f ° r  each n elN.

On the other hand xn - zn = + sn " sn “ Anp = An^pn " p *̂ Now’

An < 2dn» s° dn 1 II x n - znll i . AnIIPn ’  pH — 2dnll pn ~ pH ' This implies
that 1 < 2 1| p n -  p|| fo r  each n efN, contradicting the fa c t  that {p^} con­

tains a subsequence {p .}  converging to p. Hence R(L) is closed.
J

1.3 Fredholm maps of index zero

The following class of operators w i l l  play an important ro le in

this thesis.

Defin ition  1.13 A bounded, lin ear operator L : X Y is said to be a 

Fredholm operator i f  dim N(L) = n(L) (say) and dim{Y/R(L)} e d(L) (say) 

are both f i n i t e ;  where dim{Y/R(L)} = codim R(L), that is ,  the dimension 

of any subspace of Y complementary to R(L). We denote the class of 

such operators by $ (X ,Y ), or $(X) i f  X = Y. The index of L, denoted 

by i ( L ) ,  is given by i(L )  = n(L) -  d (L ). When i (L )  = 0, L is said to 

be a Fredholm operator of index zero, the class of which we denote by 

$0 (X ,Y ), or #Q(X) i f  X -  Y.

Examples of maps belonging to <£>0 (X,Y) include B : X -*■ Y, where B

is a l in e a r ,  continuous b i je c t io n , and I + C : X -> X, where C is a com­

pact, l in e a r  operator.

Remarks (1) I f  L e $ (X ,Y ), then R(L) is closed, c f .  Taylor and Lay [39], 

Theorem IV. 13.2.
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(2) I t  Is shown in Theorem 5.26 of Kato [12], th a t ,  i f

L e $Q(X,Y) and C : X Y is a l in e a r ,  compact operator, then

L + C e * (X ,Y).

(3) Nussbaum has shown in [20] that i f  L : X X is a bounded, 

l in ear  operator and |x| > r (L ) ,  then XI -  L e  ̂ (X ) .

(4) I f  L e $ (X,Y) ,and T s $Q(Y,Z) fo r  some Banach space Z, then

TL e $ (X ,Z ),  see Taylor and Lay [39].

(5) Petryshyn [31], Theorem 2.3A, has shown that i f  L is a bounded,

l in e a r ,  A-proper operator, then e ith e r ,  N(L) = {0 } ,  in which case L is

a homeomorphism, or N(L) ?  {0 } ,  and in this case i (L )  >_ 0.

The class $ (X,Y) has the following useful properties.

Theorem 1.14 (Petryshyn, [3 3 ]) .  When L e $Q(X ,Y ), there ex ist closed 

subspaces X-j of X and Y  ̂ of Y such that X = N(L) © X-j, Y = Y  ̂ © R (L );

= L| is in je c t iv e  with L-|(X^) = R(L); and dim Y2  = dim N(L). Fur­

thermore, L may be decomposed into H -  C : X -> Y, where H : X Y is a

l in e a r  homeomorphism and C : X Y is l in e a r  and compact.

Proof: Since L e $ (X,Y) there ex is t Y0 , a complement of R(L) in Y,
V  “

and dim Y2 = dim N(L) is f i n i t e .  So, Y  ̂ is a closed subspace and by

Theorem 1.1 there exists a closed subspace X-j in X such that the decompo­

sitions of X and Y hold as required. Let P be the continuous, lin ear  

projection of X onto N(L), and M a l in e a r  homeomorphism of N(L) onto

Y2 - Then, we define C : X Y2 by C = A ? ,  and since Y2 is f in i t e  d i ­

mensional, C is l in e a r  and compact. Remark (2) succeeding D efin ition  

1.13 te l ls  us that L + C e  $Q(X ,Y ). Furthermore L + C is a homeomor­

phism. To see this we f i r s t  v e r ify  that i t  is in je c t iv e .  Suppose that  

(L + C) (x) = 0. Then x = u + v, with u e N (L ), v e X-j and Lv + Mu = 0.
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But Lv e R(L) and Mu e Y2 , implying that u -  v = 0. Thus L + C is in ­

je c t iv e .  I t  is also surjective  since i t  is Fredholm of index zero.

Hence by the Open Mapping Theorem L + C is a homeomorphism. Thus, 

setting H = L + C we have that L = L + C - C = H - C ,  which completes 

the proof o f the theorem.

The next resu lt  te l ls  us th a t,  in a space which has an admissible

scheme, l in e a r  Fredholm maps of index zero are A-proper with respect

to a related scheme.

Theorem 1.15 (Petryshyn, [333). Suppose that L e $ (X*Y) and

r = { Yn>Qn} is an admissible scheme fo r  maps from Y into Y. Then L is

A-proper with respect to the admissible scheme r H= {Xn ’Yn ,Qn} ’ where 

Xn = H”^(Yn) fo r  each n e IN and where H = L + C is the decomposition 

given in Theorem 1.14.

Proof: F i rs t ,  we show that is admissible. Since H is a l in ear  ho­

meomorphism, dim H~^(Yn) = dim Y , and fo r  each x e X, there exists 

y e Y with x = H"1(y ) ,  and d is t(x ,H _1(Yn)) = d is t(H _1(y ),H "1(Yn) )

<_ || H""* || d is t (y ,Y n) -> 0 as n °°.

F ina lly  Qny -> y as n <» fo r  each y e Y, since r is admissible.

Therefore, is an admissible scheme.

To prove that L is A-proper with respect to r^ ,  assume 

(x n : xn e Xn } is an a rb itra ry  bounded sequence such that

Q \  x ^  y as j  « fo r  y £ Y, Then, Q (L + C - C)(x ) y and, 
n « n.» 4 *iJ O  o 0

since C is compact, we may assume that Q„ C x w (say) as j  ■+ ».
j   ̂ _1

Also, there exists y £ Y such that x = H (V ) = (L + C) (y„ Kn.* n. * n. • »i ■ n j
J J J J o

and = fo r  eactl 0 e IN. Thus, Q y = y •> y + w as
nj  nj  " j  0 J 0

j  -*• «. Therefore, (L + C) xn y + w, which implies that
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-1
x (L + C) (y + w) -  x(say) as j  •* ®. So Cx = w and (L + C)(x) 

nj
= y + w = y + Cx. Hence, Lx = y and, therefore, L is A-proper with 

respect to r^.

Remark Examples by Petryshyn, [27] show that:

( i )  An A-proper mapping need not be Fredholm of index zero;

( i i )  A Fredholm mapping of index zero need not be A-proper with

respect to a given scheme; however, i f  L is a bounded, l in e a r ,  

A-proper operator with N(L) = {0 } ,  then L is Fredholm of index 

zero.

I f  we perturb a mapping in $ (X ,Y ), which is also A-proper, by a bounded 

l in ear operator of s u ff ic ie n t ly  small norm then the perturbed map is 

s t i l l  A-proper with respect to the same admissible scheme.

Theorem 1.16 (Petryshyn, [3 0 ] ) .  I f  L e $0 (X,Y) is A-proper with re­

spect to an admissible scheme r ,  then there exists a constant y > 0 such 

th a t,  fo r  each bounded lin e a r  operator T : X Y, with || T || < y , the 

map L + T is also A-proper with respect to r.

Remark In the book by Taylor and Lay [39], Theorem 13.6 shows that 

there certa in ly  exists y  > 0 such that L +  T e $Q(X,Y) fo r  a l l  bounded 

l in e a r  operators T : X -»■ Y with || T || < y . So, Theorem 1.15 above im­

plies that L + T is A-proper with respect to r H = {H“^( Xn) where 

L + j  = h - C. However, Theorem 1.16 says that whatever admissible

scheme L is A-proper with respect to , L + T is A-proper with respect

to the same scheme, fo r  || T || < y.

Proof: See Petryshyn, [30].
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1.4 Generalised topological degree

One of the main tools available in nonlinear problems is the theory 

of generalised topological degree. For A-proper maps the theory was 

developed by Browder and Petryshyn [5 ] .  This degree, although not single  

valued, possesses most o f the useful properties of the classical Brouwer 

topological degree fo r  maps between oriented normed spaces of equal f i ­

n ite  dimension. Throughout the te x t we shall assume that the reader is 

fa m il ia r  with the d e fin it io n  and properties of the classical Brouwer 

degree, which we denote by deg, and the classical Leray-Schauder topo­

logical degree, denoted by d e g ^ , for in f in i t e  dimensional maps of the 

form id e n tity  minus compact. These concepts may be found in the book 

of N. G. Lloyd [16], One resu lt  on Leray-Schauder degree, which does 

not appear in Lloyd's book is the fo llowing, due to Krasnosel'skii [13], 

which may be found in Cronin [7 ] ,  in the form given here.

(The Leray-Schauder Formula). Suppose that L : X X is a l in ear

compact operator and x  > 0 is not a characteris tic  value of L. Then 

deg^s( I  -  AL,G,0) = ( - l ) v, where G c X is an a rb itra ry  open bounded 

set containing zero, and v is the sum of the algebraic m u lt ip l ic i t ie s  

of the characteris tic  values of L in the in terval (o ,x ) .

We now reca ll the d e fin it io n  of degree fo r  A-proper mappings.

D efin ition  1.17 (Browder and Petryshyn [5 ])  Let G c X be an open 

bounded set and, fo r  each n efN, define Ĝ  = G fl Xn . Then, Gn -  G ft X  ̂

and 8Gn = aG f! Xn . I f  f  : GT -*• Y is A-proper with respect to the ad­

missible scheme r = {X ,Y ,Q } and 0 £  f (3G ), then we define the gen-n n n
eralised topological degree of f  at 0 e Y re la t iv e  to G, denoted by 

Deg(f ,G ,0 ) , to be the set (m eZU } : fo r  a subsequence {n .̂} of IN,
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deg (Qn f  ,Gn ,0) -> m as j  -> » } .
J 0

Remark The A-properness of f  ensures that fo r s u f f ic ie n t ly  large j ,

0 £  Q f ( 3G )> and so deg 1S well defined and Deg(f,G,0) is a non-
nj  j  

empty subset o f ZU{-°°,«>}.

I t  is convenient to note that an a lte rna tive  d e f in it io n  is possi­

ble in terms of l im its  of deg^s , when f  = I -  g : GT-> X is A-proper 

with 0 £  ( I  -  g )(9G ).

Theorem 1.18 Let G c X be an open bounded set. I f  I -  g : X X is 

A-proper with respect to the admissible scheme r = ( Xn9YnsQn> > and 

0 £  ( I  -  g )(9G ), then Deg ( I  - g,G,0) = {m e ZU{-<»,co} : fo r  a sub­

sequence { n -} of [N, deg, « ( I  - Q g,G,0) m as j  •> «>}.
j  l  j  n j

Proof: From d e fin it io n  1.17 we need only show that fo r  j  s u ff ic ie n t ly

large degLS( I  -  Qn _g,G,0) = deg(Qn ( I  - g ) 9 G fl X ^ O ) .  T r iv ia l ly ,
j  j  J

Qn U  - g) |q n X = 1 " ^n.g 'G n X 9 and# f0 r  a11 s u f f i c ie n t ly la r 9e

j ,  0 i  ( I  -  Q g)^3(G fl X ) by A-prtlperness.
j  j

Also, fo r  a l l  j  s IN, 0 e X and Q g(G) c X . Hence, by the
j  j  J

de f in i t ion  of Leray-Schauder degree, c f .  Lloyd [16] ,

deg,s ( I  -  Q g,G,0) = deg ( I  -  Q g, G n Xp ,0) for  a l l  j  s u f f ic ien t ly
0 J J

large. The re s u lt  follows by le t t in g  j  -*■ «.

Remark From Theorem 1.18 i t  is easily  seen th a t, i f  0 e G, then

Deg(I,G,0) = 1, where I  is the id e n t ity  operator.

Unlike the Brouwer and Leray-Schauder degrees the generalised de­

gree is m ulti-valued, in general. For example, D e g (- I ,B (0 ,1 ) ,0 )

= { -1 ,1 } .  As we shall see, however, many of the useful properties 

of classical topological degree hold fo r generalised degree. Results
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that are well known we shall ju s t c i te ,  the others w il l  be proved. Un­

less otherwise stated we shall assume the notation of D efin ition  1.17.

(P I . )  (Lloyd, [1 6 ] ) .  I f  Deg(f,G,0) f  {0} then there exists x e G 

such that f ( x )  = 0.

(P2.) (Lloyd, [1 6 ] ) .  Let G = G-| U Ĝ  where G-j and G2 are open 

and 0 i  f(3G1 U 3G2 U(G] fl G2) ) .  Then Deg(f,G,0) c Deg(f .G-j ,0)

+ Deg(g,G2 ,0 ) ,  with equality holding i f  e ither  Deg(f,G-j,0) or 

Deg(f,G2 ,0) is single valued.

(P3.) (Homotopy property). (Toland, [4 2 ] ) .  Suppose that  

H : X x [0 ,1] Y is such that H ( . , t )  : X ■+■ Y is A-proper with respect 

to r = {Xn,Yn,Qn} fo r  each t  e [ 0 , l ] ,  and H (x , . )  : [0 ,1 ] ^ Y is con­

tinuous, uniformly fo r  x in closed, bounded subsets of X. Let 

G c X x [0 ,1] be a bounded open set and define Ĝ  -  (x  e X : ( x , t )  e G). 

Then, Deg(H(. , t ) ,G t ,0) is independent of t  e [0 ,1 ] ,  provided that  

0 t  H(3Gt , t )  fo r  0 <_ t  <_ 1.

Proof: As Toland does not prove this resu lt  we give a proof fo r  com­

pleteness .

Since 0 *£ H(3G^,t) fo r  each fixed  t  0 [ 0 ,1 ] ,  then by the remark 

following D efin it ion  1 .17, Deg(H(. , t )  ,G^.,0) is well defined. The re ­

quired resu lt holds i f  we show th a t, fo r  s u f f ic ie n t ly  large j  elN,

deg(Q H ( . , t ) ,G .  fl X ,0) is independent of t  in [0 ,1 ] .  Theorem 2 .2 .4  
nj  j

in Lloyd [16] t e l ls  us that th is is so, provided there exists Nq >_ 1

such th a t,  fo r  a l l  n . ^  N , 0 /  Q H(a (G. fl X ) , t )  fo r  0 <_ t  <_ 1.j o  n .  j
Suppose th is  is not true , then there ex ist sequences { n -} cIM,

{ t . }  c [0 ,1] and {x } c 3(G. n X ) such that n. «> and, without loss
j  nj  j  j

of genera lity , t .  t  as j  « with Q H(x , t . )  = 0 fo r each j  e IN.
j  j  j
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By assumption, H (x , . )  : [0 ,1] ■* Y is continuous, uniformly, fo r  x

in bounded subsets of X. Now fo r  each j  elN, a(G. fl X ) is contained
3 3

in the closure of the set {G^ : t  e [ 0 , l ] } ,  which is closed and bounded.

Thus || H (xn , t j )  -  H(xn , t ) | |  *> 0 as j  » and so

H Qn H(xn . t  *) -  Q H(x  ̂ , t ) | |  " || Qn H(x , t ) | |  -  0 as j
j  3 3 J J 3

But H ( . , t )  : X Y is A-proper fo r  each t  e [0 ,1 ] ,  therefore , there

exists x e X and a subsequence, which we again denote by {xn } such that
J

xn •> x as j  « and H (x ,t)  = 0. So (xn , t n ) *> ( x , t )  as j  and

since (x , t  ) e 3G fo r  each j  e IN, i t  follows that ( x , t )  e aG and
3 3

x e aĜ .. This contradicts the fa c t that 0 £  H(aG^.,t).

Hence the resu lt  follows.

(P4.) (Toland, [4 2 ] ) .  Let L : X *> X be a bounded lin ear  operator 

with r  (L) < | 1 A | ,  such that I -  XL is A-proper with respect to the 

admissible scheme r = {Xn,Yn,Qn}. Then, provided A is not a charac­

t e r is t ic  value of L, Deg(I -  AL,G,0) = { ( - l ) v>, where v is the sum of 

the algebraic m u lt ip l ic i t ie s  of the characteris tic  values of L in the 

interval (0 ,A ) ,  and G is an a rb itra ry  open, bounded set containing zero. 

This resu lt is not given a proof in [42], so we include our own.

oo

Proof: Since r  (AL) < 1, then M„(a ) = dim{ U N (( I  - AL)n)} is f in i t e
e a n=l

and so the ascent p (say) of I -  AL is f in i t e  with

dim{N((I -  AL)P)} = M (A). Also, I -  AL is. Fredholm of index zero by Re­ft
mark (3 ) ,  following D efin ition  1.13, and then, by Remark (4 ) ,  ( I  - AL)n 

is Fredholm of index zero fo r  each n e IN. Hence, since 

R(( I -  AL)P+1) c R ( ( I  -  AL)P) S then dim{R((I -  XL)P)}  = dim R (( I  -  XL)P+1, 

and we have that the descent of I - AL is also f i n i t e .  Therefore, by 

the results of §1.1, X = N (( I  -  AL)P) ® R ((I - AL)P).
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Now by a s im ilar  method to that used by Nussbaum [2 1 ], in his proof

of Lemma 8, we may show that X = E-j © E£, with E-j f in i t e  dimensional,

a closed subspace, L: E-j E-|, L:.E2 -*■ E^ * a^d I -  t  A L|  ̂ an A-proper

homeomorphism for each t  in [0 ,1 ] ;  A-properness of I -  t  x L |f requires
2

an argument using Theorem 1.16. Let P be the projection of X onto E-j, 

and define T : X ■+■ X by T = LP. Then, T has f in i t e  dimensional range 

and is therefore compact. Define the homotopy H : F (0 ,1 )  x [0 ,1 ]  X by 

H (x ,t )  = x - t  X Tx -  (1 - t )  X Lx, fo r  x e B(0,1) and t  e [ 0 , l ] .

Since T is compact,H(. , t )  : X -> Y is A-proper with respect to r fo r  

a l l  t  e [0 ,1 ] .  We shall prove that H (x ,t)  f  0 fo r  a l l  x e 3B(0,1) and 

t  e [0 ,11. Suppose the contrary, then

H (x ,t)  = 0 fo r  some x e 8B(0,1) and t  e [0 ,1 ] .  Then x = x-̂  + x^ where

x-j e E-j and x2 e E^. This gives,

xl + x2 -  t  X Lxi -  (1 - t )  X Lx-j - (1 -  t )  X Lx2 = 0,

since Tx = LP(x^ + x^) = Lx-j. Thus, x-j - X Lx-j = - (x^ - (1 - t )  X Lx^)

= 0 by the invariance of E-j and Ê  under L. Hence, x^ = 0 since

I — (1 — t )  x L | i s a  homeomorphism, and therefore x-, = 0, fo r  x is
2

not a characteris tic  value of L by assumption. Therefore, x = 0, con­

trad icting  the fa c t that x e 3B(0,1). Hence, i t  follows that 

Deg(I -  XL, B (0 ,1 ) ,0 )  = Deg(I -  XT, B (0 ,1 ),0 ) = (degLS( I  - XT,B(0,1) ,0 ) }  

(by Theorem 1.18) = { ( - l ) v) (by the classical Leray-Schauder formula

which is stated before D efin ition  1 .17 ), where v is the sum of the a l ­

gebraic m u lt ip l ic i t ie s  of the characteristic  values of T in the in te r ­

val ( 0 , x ) .
To complete the proof we show that v also equals the sum of the

algebraic m u lt ip l ic i t ie s  of the characteristic  values of L in the in ­

terval ( 0 , x ) .
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Suppose that y e (0 ,X ) ,  x e X ,  x ^ 0 , n e l N  and ( I  -  yT)n x = 0, 

then, w riting  x = x-j + x2 , where x-j e Ê  and X2 e and T = LP, we

have that ( I  -  yL )n x-j = -y 11 x2 = 0 by invariance of L on E-j and E2 .
* M

So, x2 = 0 and x = x-j, implying that ( I  -  yL) x = 0. Conversely, 

suppose that ( I  -  yL)n x = 0 with y , n and x as before. Then,

( I  - yL )n x-j = - ( I  -  yL) n x2 = 0, and, since I -  y L |£ is a homeomor­

phism, then x^ = 0 and x = x-j = Px.j, which implies that ( I  -  yT)n x = 0.

Hence, ( I  -  yT)n x = 0 i f  and only i f  ( I  -  yL)n x = 0, so
00 CO

U { N( ( I - yT )n)} = U {N ( ( I  -  yL)n) } , which completes the proof. 
n=l n-1

(P5.) (Petryshyn, [3 1 ] ) ,  I f  L : X Y is a l in e a r ,  continuous, 

in je c t iv e ,  A-proper map and G is an a rb itra ry  open bounded set in X 

with 0 s G, then fo r a rb itra ry  r  > 0, D eg (L ,B (0 ,r ) ,0) = Deg(L,G,0),

Proof: For a rb itra ry  e such that 0 < e < r ,  i t  follows easily  that

B (0 ,r) ~B(Q,r)H.B"(o,£/2)) u B (0 ,e ). Now, since L is in je c t iv e ,  Lx f  0 

fo r x e B (0 ,r ) \B (0 ,e /2 )  and so (P I) implies that  

D e g (L ,B (0 ,r ) \B (0 ,£ /2 ) ,0 )  = {0 } .  Thus, by (P 2 .) ,  we have 

D eg (L ,B (0 ,r ) ,0) = Deg(L,B(0,c),0) + D e g (L ,B (0 ,r ) \B (0 ,e /2 ) ,0)

= Deg(L,B(0,e) ,0 )  + {0 } .

But 0 e G and G is open, and so there exists eq such that 0 < £q < r

with B(0,£q) c G. As above, the injectiveness of L implies that

Deg(L,G\F(0,s0/ 2 ) ,0) = {0 } .  Thus,

Deg(L,G,0) = Deg(L,B(0,e0 ) ,0) + Deg(L,GsI(0,E()/2 )  ,0)

= Deg(L,B(0,e0 ) ,0 )  + {0 } .

I f  we take e = Eq , i t  is easily  seen that Deg(L,G,0)

= D eg (L ,B (0 ,r),0 ) .

This proves the resu lt .
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(P6..) (F itzp a tr ic k  [8 ] ) .  Let f  : X +  Y and G c X s a tis fy  the hy­

potheses of D efin ition  1.17. Assume that f  is continuous and 0 e G. 

Suppose that g : G- Y is also continuous and A-proper with respect to 

r .  Then there exists d > 0 such th a t, i f  || g (x) -  f ( x )  || <_ d fo r  a ll  

x e 3G, then Deg(f,G,0) = Deg(g,G,0).

Proof: F i rs t ,  we prove that there exists d > 0 such that Deg(g,G,0)

is well defined. To do this we need to show that there exists 6-j > 0

such that || f  (x ) || > <5.j fo r  a l l  x e 3G.

Suppose not, then fo r  each k > 0 there is a sequence {x^} in aG

wi th || f  (x^) || < 0 as k so ^ xk̂  0 as  ̂ OT*

However, f  is continuous and A-proper, which, by Theorem 1.10, im­

plies the existence of x e 3G such that f (x )  -  0. Thus, 6^ ex ists . 

Hence, fo r  d less than J -  i t  follows that | |g (x ) | |  >_ || f  (x) || -  d,
6i &> for a l l  x e bG. So Deg(g,G,0) is well defined fo r  d<_J_ .
1 2

To complete the proof we show that there exists U Q e IN such that

fo r a l l  n > NQsdeg(Qnf,G fl Xn>0) = deg(Qng, G n Xn#0 ) .  Recall that

g( G n x  ) = 3G n x  .n n
Now there exists §2 > 0 and NQ e IN with the property th at for a l l

n 1  Nq, || Qnf ( x  ) || > 2$2 fo r  a l l  x ^  9G fl Xn- For otherwise A-

properness implies f ( x )  = 0 fo r  some x e 8G, which is a contradiction.

Also, fo r  each n elN, l|Qn( f ( xn) “ 9 (xn))|l l K llf (xn) “ 9 (xn)ll

£  Kd fo r  a l l  x e 3G (1 Xn

where K is the uniform bound on ||Qnll • N°w choose d < min(6^/2 ,52/K} 

and consider the continuous homotopy Hn : G fl Xn x [ 0 , l ]  -*Yn defined by 

Hp( x , t )  = t  Qn g(x) + (1 -  t )  Qn f (x )  fo r  x £ G fl Xn and t  e [ 0 , l ] .

We shall prove that fo r each n >_ Nq, Hn(x , t )  f  0 fo r  a l l  x e 3G fl Xn

and t  e [0 , l  ] .
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Suppose the contrary, then there ex is t sequences {n .}  cIN, {x }
j

c 3U fl x and { t  } c [ 0 , l ]  such that n. >_ Nq fo r a l l  j  e IN, n
j  J

t  t  as j  -> « and H (x , t  ) = 0.
j  J J j

This implies that || t  Q g(x ) + (1 -  t )  Q f ( x  ) || ^ 0 as j +« .
j  j  j  j

Thus ]| Q f (x  ) -  t  Qn ( f (x  ) - g(x ))  || + 0 as j  -> ».
j  j  j  j  j

We have seen above that fo r n̂ . >_ Nq

II Qn f ( x n ) -  t Q „  ( f (x  ) - g(xn )) ||  
a j  j  j  j

1  II Qn f (x  )|| - || Q ( f (x  ) -  g(x ))||  
a j  j  j  j

> 2«2 -  62 -  62 > o

This contradiction shows that Hn( x , t )  is a va lid  homotopy and the re­

quired resu lt  follows by application of the homotopy property fo r  

Brouwer degree.

(P7.) (F itz p a tr ic k ,  [ 8 ] ) .  Assume that f ( 0 )  = 0 and f  is Frechet 

d iffe re n tia b le  a t 0 with the Frechet derivative f ' { 0 ) .  Suppose f ’ (0) 

is in je c t iv e  and A-proper with respect to r .  Then 0 is an isolated so­

lu tion  of f ( x )  -  0 and there exists r  > 0 such that D e g ( f ,B (0 ,r ) ,0)

-  Deg(f' ( 0 ) ,G,0) where G is an a rb itra ry  open bounded set in X contain­

ing zero.

Proof: By D efin it ion  1 .6 , there ex ist R : G" x X ■+ Y and r-j > 0, with

f  (x) -  f ' (0) (x) + R(0,x) fo r a l l  x e X, such that * whenever 0 < r  <_ r^ ,

then - l|f (x ) -  f ' ( 0 ) ( x ) | |  = ■ II x ||, fo r  x ?  0, x s X

0, fo r  x = 0

<_ d, fo r  a l l  x e 9 B (0 ,r ) ,  where d > 0 is the constant from (P 6 .) .

Now, since f ' ( 0 )  is in je c t iv e ,  then 0 $  f ' ( 0 ) (9 B (0 ,r ) ) fo r  a l l  r  > 0, 

and by the proof of (P 6 .) ,  there exists > 0 such that fo r  

0 < r i r 2 , 0 i  f ( 9 B ( 0 , r ) ) .  So, by choosing r = m i ^ r - j , ^ } *  0 is the
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only solution of f (x )  = 0 in B (0 , r ) ,  and, by (P6.) and (P5.) ,

D e g (f ,B (0 ,r ) ,0) = Deg(f' ( 0 ) ,B ( 0 , r ) ,0) = Deg(f1( 0 ) ,G ,0 ) . The las t  

equality follows by (P5,)> since f 1(0) is l in e a r ,  continuous, in jec t ive  

and A-proper with respect to r .  This completes the proof.

(P8.) The M u ltip lica tion  Formula (Petryshyn, [3 2 ] ) .  Suppose 

that L-j : X Y and L^  : X Y are bounded, l in e a r  operators such that  

L-j is in je c t iv e  and A-proper with respect to the admissible scheme 

r = {X ,Y ,Q } .  Assume that l 9 is compact, L1 - L? is in je c t iv e , and
I I  f I I I  b  I Li

l e t  G be an a rb itra ry  open ball in X containing zero. Then,

Deg(L1 -  L2 ,G,0) = Deg((I -  LgL-,'1 )L1 ,G,0)

= degLS( I  -  LgL-j_1 >L-| (G) ,0) Deg(Lr G,0)

Proof: Since is compact, L-j -  tLg is A-proper with respect to r for

each t  e [0 sl ] .  Also, L-j -  and are l in e a r ,  continuous, in je c t iv e  and

A-proper. So, as in the proof of Theorem 1.9, there exists a constant 

CQ > 0 and NQ e IN, such that - L2 ) (xn) 11 > c0 II xR || ,

and || Qn xn|| >_ CQ|| x n || fo r  a l l  xn e Xp and a l l  n >_ NQ. Also, by

Theorem 1.9 ,  L-j is a homeomorphism, so I - : Y Y is also

l in e a r ,  continuous and in je c t iv e ;  furthermore, since is compact and 

{Yn,Qn> is an admissible scheme fo r  Y, then I -  L̂ L-j  ̂ is A-proper with re ­

spect to r Y = ^ n ,Qn> anc* there exists a constant C-j > 0 and N-j e IN for

which || Qn( I  -  L2L1‘ 1) ( y n)|| > C1 | | y n|| , fo r  a l l  y p e Yp with n > N] .

We shall prove that fo r  n >_ maxlNg,!^} = Ng (say),

deg(Qn(L1 - l 2) ,  B(0,1) n xn,o)

= deg(Qn( I  -  LgL,- 1 ) ,  L ^ B f O . l ) )  0 Yn,0) deg(QnL1 ,B (0 ,1 ) fl Xn>0 ) .

From the above argument each Brouwer degree in this equation is 

well defined, fo r  n >_ Ng.
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We shall use a homotopy argument to obtain the required resu lt.  

Define Hn : (B (0 ,1 ) fl Xn) x [0 91] Yn by,

Hn(x , t )  = t  Qn(L1 -  L2) (x n) + (1 -  t )  Qn( I  -  LgL,- 1 ) Qn L ^ x J .

Then, H ( x , t )  f  0 fo r  x e 8B(0,1) fl and t  e [ 0 , l ] ,  with n >_

For, suppose the contrary, then there ex ist subsequences {n .}  cIN,
J

{x } c 3B(0,1) fl X , and { t  } c [0,1] such that n- >_ PLfor eachnj n̂ . n̂ . j  *-
j  e IN, n . and t  +  t  e [ 0 , l ]  as j  « with H (x , t  ) -  0 for  

J j  j  j  0
each j  e IN.

So, t  (Q (L, -  Lz ) (x  ) + (1 -  t)Q ( I  - 4  (x ) -> 0 as j  —
j  J 0 j  j

and, therefore,

V Ll (xJ  - t  Qn. L2(xn . } '  0  - Qn, L2L1_1 Qn >1 (xn . } ^  0 as J *  ’
J J 3 3 3 3 3

Now, since Qn L-jUn ) is bounded and L2 is compact, we may assume
•i J O

that Qn< L-j (xn ) ->■ w as j  « ,  therefore

L2 h _1 -  (1 '
J J J

1  II Qn Cl '  t )  LgL,'1 Qn L-j (xn 0 - Qn (1 - t)w||
J J J J

+ II Q. 0  - t )  w - (1 - t )  w|| 
j

< II Qn .ll 0  -  t )  1| LgL^1 Qn _ L-| (xn ) - w||
J J J

+ || Qn (1 - t )  w - (1 -  t )  w|| ■> 0 as 3 +  ®. 
nj

Thus, (1 -  t )  Qn . L ^ " 1 Qn> ^ (1 - t )  w as j  -> «». Hence,

Qn .(L] - tL2) ( x nJ  (1 - t )  w, and, by the A-properness of L-j -  tL2 ,
J J

we may assume that there exists x e X such that x ^ x and
j

(L-j -  tL 2) x -  (1 - t )  w. Then

II Qn Ln(xn ) - L-j (x) || < HQn . h ( x n .) - Q n . h ( x ) | |
j  j  J J J

+ || Q L-j (x) - L-j (x) || -> 0 as j  -> which implies that
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L2 L 1  ̂ . M Xn ^  L2 L 1 L1 X ’  L2 X ~ w*
Thus, (L] -  tL2) x - (1 -  t )  L2x = 0, or (L1 -  L2)x = 0  with 

|| x || = 1 , contradicting the injectiveness of L-| -  L2 -

Hence, by the homotopy property fo r  Brouwer degree, we have, fo r  

each n _> N2» that

deg(Qn(L1 -  4 ) ,  B(0,1) fl Xn, 0)

= deg(Qn( I  -  L g ^ " 1 ) QnLr  B(0,1) (1 Xn> 0)

= deg(Qn( I  -  l^L -, '1 ) ,  1- ^ ( 0 ,1) fl Yn>0) deg(Qn L1 , B(0,1) fl Xn> 0 ) ,

by the m ultip lica tio n  formula fo r  Brouwer degree. Now, by d e fin it io n  

of Leray-Schauder degree [16], deg(Qn( I  -  ^ ), L-j (B(0*1)) fl Yn,0)

= degLS( I  -  LgL,’ 1 , L , (B (0 ,1 ) ) , 0 ) .

Hence, le t t in g  n -> » , we have Deg(L-j -  L2 , B (0 ,1 ) ,  0)

= degLS( I  -  L ^ " 1 , L-, (B (0 ,1 ))  ,0) Deg(L., ,B (0 ,1 ) ,0 ) ,  and the resu lt  f o l -

lows by (P 5 .) .
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CHAPTER TWO

GLOBAL BIFURCATION 

VIA

GENERALISED TOPOLOGICAL DEGREE

Introduction

In this chapter we define, in i ts  most general form, the abstract

nonlinear eigenvalue problem to be considered in this thesis. Such a

problem has the form F ( x , a )  = Ax -  T ( a ) x  -  R ( x , a )  = 0, where

F : X xIR Y, A - T ( a ) is l in e a r ,  R is a higher order term with F ( . , A )

and A - T (x ) both A-proper fo r  A in some in terval in R. We define the

concept of b ifurcation of solutions to this equation and prove that a

s u ff ic ie n t  condition fo r  b ifurcation is that the generalised degree of

t h e  l i n e a r  p a r t ,  A - T ( a ) ,  c h a n g e s  a s  t h e  r e a l  p a r a m e t e r  A m o v e s  a c r o s s

a special point a  . a q  is then called a b ifurcation point. Our method

provides us with global resu lts , in particu lar we are able to deduce

t h a t  f r o m  a  b i f u r c a t i o n  p o i n t  A q  t h e r e  e m a n a t e s  f r o m  ( 0 9A q )  a  m a x i m a l

connected set 0s c X x IR, o f solutions which s a t is f ie s  a t least one of

three properties: namely, i t  is unbounded; i t  moves out of the region

where our maps are w ell-defined; or i t  simply ends a t some other point

(0 , A ) with A „  d if fe re n t  from A .1 0 0 0
The use of degree theory in proving global resu lts , was f i r s t  made 

by Rabinowitz [35] when the mappings involved were compact. Generalisa­

tions have been given to more general classes of mappings, see, fo r  

example, Stuart [3 6 ], Toland [4 2 ], Stuart and Toland [38] and Mawhin 

[18], Stuart and Toland [38] considered problems, where the nonlinear 

eigenvalue problem has the non-standard form,
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I -  C -  XB - R (. ,X) -  0

with B,C 1 inear-compact maps and R a compact continuous map of higher 

order. They proved a global resu lt  when i t  was not required that I - C 

be in v e r t ib le .  Stuart [36] also proved a global resu lt fo r  the problem

I -  XL - XR » 0 5

where x(L + R) is of the more general class of k-set contractions, with 

k < 1, and R again of higher order.

We shall extend these two methods by replacing I or I -  C by a 

general l in e a r  map A, by allowing XL or XB to have the more general form 

T ( x ) , retaining the l in e a r i ty  and continuity conditions, but assuming 

that A - T ( x )  - R ( . , x )  and A - T ( x )  are A-proper fo r  certain  values of 

x.

2.1 The general global b ifurcation resu lt

The equation to be studied is as follows;

F(x,X) = Ax - T(x)x -  R(x,x) = 0 (2 .1 )

with F : X x |R Y, where X, Y and X x IR are Banach spaces.

We impose the following hypotheses:

(HI) F ( . ,x )  : X -* Y is an A-proper mapping with respect to the 

admissible scheme r = fo r  A in some real interval (a ,b) f i ­

n ite  or in f in i t e ;

(H2) A -  T( X) : X ^ Y is a bounded l in e a r ,  A-proper operator with

respect to r fo r  a l l  x e (a ,b) (as in ( i ))  and T ( x ) x  is uniformly con­

tinuous in X fo r  x in bounded subsets of X;
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(H3) R ( . ,x )  : X ■* Y is  a continuous mapping such that

II R(xsx)|| /  ||x|| ■> 0 as || x || -»■ 0, uniformly fo r X in bounded in terva ls ;

(H4) The mapping x -* R(x,X) is continuous from IR into Y, uniformly 

fo r  x in bounded subsets of X.

Remark From (H3) i t  follows that A - T(x) is the Frechet derivative of 

F ( . ,x) a t the point 0.

We shall re fe r  to equation (2 .1 ) satisfying hypotheses (HI) -  (H4)

as problem ( 2 . 1 ) .

I t  follows from (H3) that the set { (0 ,x )  e X x IR} is a solution 

set for equation (2 .1 ) .  We call th is  the set of t r i v ia l  solutions and 

make the following d e f in it io n .

D efin ition  2.1 S w i l l  denote the set of n o n -tr iv ia l solutions of equa­

tion (2 .1 ) in X x IR. That is (x ,x ) e S i f  and only i f  F (x ,x) = 0 with

II x|| S6

I f  (0,x ) e X x |R is a point from which emanates a continuous set 

of no n -tr iv ia l solutions of equation (2 .1 ) ,  then the value X Q is called  

a bifurcation point. More precisely :

D efin ition 2.2 A point Xq e IR is called a b ifurcation point of equa­

tion ( 2 . 1 ) i f  there exists a sequence I ( xn*xn) I  in S converging to the

point ( 0 9Xq) e X x IR.

I t  w i l l  be shown that a l l  the bifurcation points of equation (2 .1 )  

are “ch aracteris tic  values1' of the l in e a r  operators. More precisely  

we make the following d e f in it io n .

D efin ition 2.3 The set of characteris tic  values of T ( . )  re la t iv e  to

A, denoted by CA(T ) ,  is given by

Ca (T) = ( X  e IR : N(A - T (x ))  f  {0}}
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This set is a simple generalisation of the set ch(T) of charac­

t e r is t ic  values of T defined in Chapter One.

Note that fo r  X £  CA(T) with X e (a ,b ) ,  A - T(x) is a l in e a r ,  con­

tinuous, in je c t iv e ,  A-proper map and so is a homeomorphism by Theorem 

1.9.

Proposition 2.4 All b ifurcation points o f equation (2 .1 ) in the in ­

terval (a ,b) are contained in C^(T).

Proof: Suppose that x e(a,b) with x £  C^(T). We shall prove that X is

not a b ifurcation point. F irst'we show that there exists a constant

k > 0 such that [| ( A - T(x))x || >_ k|| x|| , fo r  a l l  x e X.

For i f  this is fa ls e ,  then there exists a bounded sequence {xn> in 

X with |i x n || = 1  fo r  a l l  n e IN, such that || (A -  T ( x ) ) (x n) ||

<_ 1  ->0 as n Thus {(A - T (x ) )x n> is compact in X. Now since

A - T(x) is continuous and A-proper, then by Theorem 1.10 A - T(x) is 

proper on closed bounded sets in X. Hence we may assume that there 

exists x e X such that x ■> x as n + « and (A - T (x ))  x = 0 which con­

trad icts  the assumption that x f  C^(T). So k > 0 ex is ts .

Let X e (R and x e X, x f  0. Then

|| Ax - T(x)x - R(x,X) ||

= || A* -  T(x)x -  (T(x) - T(x))x -R (x ,x ) | |

> || Ax - T(x)x|| -  || T(X) -  T(X) || || x |1 -  | lR (x ,x ) ||

1  [k -  || T (X) - T(x)|| -  |! R(x,x) || / 1| x || ] || x || , fo r  || x || f  0

> 0 ,

when | x -  x | and || x || are s u ff ic ie n t ly  small. Hence x is not a b i fu r ­

cation point of equation ( 2 . 1 ) .
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Proposition 2.4 te l ls  us that a b ifurcation point of equation (2 .1)

must necessarily be a characteristic  value of T(x) re la t iv e  to A. How­

ever, not a l l  ch aracteris tic  values are bifurcation points. For example,
2 0 1 l e t  X = Y -  IR and A have a matrix representation (g g) with respect to

2  - 1 0  some basis in IR . Let T(x) = XL where L = ( Q _-j) and define R(x,x)

= ( °o) where R : IR̂  x (R (R? and x = (x. ,x0) fo r  x e IR*\ Then
X ] J I ^

II R (x ,x ) II / II x |] = Ix-j3| / (x 12 + Xg2}55 £  Ix ^ l / lx ^  = and so

II R (x ,x )||  / | |  x || +  0 as || x || 0.

Thus since a l l  maps are compact i t  is easily  seen that this exam­

ple f i t s  into the framework of problem ( 2 . 1 )

Now, C^(L) = {x : N(A -  XL) ?  {0}} is easily  seen to be the single­

ton {0 } . The equation Ax -  XLx - R(x,X) = 0 is equivalent to the s i ­

multaneous equations

x2 + xXl = 0
3

X)<2 -  x̂  = 0  

2  2which imply that x-j(x + x̂  ) -  0 .

Hence the only solution to this problem is the t r i v ia l  one

x., = x0  = 0 . Thus x = 0 is not a bifurcation point.1 2 o
However, as we shall see, isolated elements XQ of CA(T) fo r  which 

the degree of A - T(x) changes as X passes through xq are always b i fu r ­

cation points. Before proving this we require some preliminary resu lts .

D efin ition  2.5 Denote by S* the set S U{(0,x) e X x IR : X e ^^(T )}.

Lemma 2.6 Let [c,d] be any closed interval contained in (a ,b ) .  Define 

Z = S' fUX x [c ,d ] } .  Then a l l  closed bounded subsets of Z are compact.
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Proof: Let { (x n ,An)} be a sequence in an a rb itra ry  closed bounded sub­

set of Z. Without loss of generality we may assume that An x as

n

For each n e fN set Tn = A - T(x ) - R ( . , A n ) and

T = A -  T ( a ) -  R ( . , a ) . Then

II f  n(x) -  T(x) |I -  |[ (T (X) - T(An))x+ R(x ,A) - R ( x ,A n)||

£  II T (A) -  T(An) II II x II + II R(x,A) -  R(x,An)|| 0 as n -> * 9

uniformly fo r  x in bounded subsets of Z. Now since {xn> is a bounded se­

quence in Z and Tnxn = 0 fo r  a l l  n e IN we have that T xn 0 as n -* 00.

But T is continuous and A-proper, therefore i t  is proper, by

Theorem 1.10, on closed, bounded sets. Hence, we may assume that there 

exists x e X such that xn x(say) as n and Tx = 0 .

Thus, (xnjXn) (x,A) and i t  follows that a l l  closed bounded sub­

sets of Z are compact.

Defin ition 2.7 Let Aq e CA(T) and denote by Cg the component (maximal

connected set) of S' containing the point (0,A ) .  Then we say that Aq 

is a global bifurcation point of equation ( 2 . 1 ) or that global b ifurca­

tion occurs a t  a , provided C_ sa tis f ies  at least one of the following  
0  s

properties:

( i )  Cs is an unbounded subset of X x IR;

( i i )  ( 0 , A q ) e C$ fo r  some element Aq e C^(T) with \ Q $  Aq ;

( i i i )  i n f ( I A  - a | : f c , A )  e Cs fo r  some x e X} = 0 or

i n f  {lb -  A1 : ( x , a )  e C$ fo r  some x e X} -  0.

Before giving our main b ifurcation theorem we state a topological 

resu lt and prove a Lemma.
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Lemma 2.8 (Whyburn, [5 0 ]) .  Let K be a compact metric space and A and 

B be d is jo in t  closed subsets of K. Then, e ither there exists a connected 

set in K meeting both A and B, or K = K̂  U Kg, where K^, Kg are d is jo in t  

compact subsets o f K containing A and B respective ly .

Lemma 2.9 Suppose, that X Q e CA(T) is isolated but \ Q is not a global 

bifurcation point of equation (2 .1 ) .  Then there ex is t a bounded open 

set G in X x IR and positive numbers e ,  p and n such that:

(a) x  > a + e and X <  b -  e fo r a l l  X e IR such that ( x , a ) e G

fo r  some x e X;

(b) (0 ,Ao) e G;

(c) S fl 3G = <f>;

(d) II x II L   ̂f ° r  x : ( X’A) e G with | A - A | >_ p;

(e) Aq is the only element belonging to C^(T) in the interval

[ X0  -  p .  x 0  +  p ] .

Remark: Similar to results of Rabinowitz [35] and Stuart [36].

Proof: Let C$ denote the maximal connected subset of S' to which ( Q , A q )

belongs. Since a q is not a global bifurcation point, then ( i )  of De­

f in i t io n  (2 .7 ) does not hold and Cg is therefore a closed bounded sub­

set of X x IR. Let

e = k  i n f { l ,  A -  a, b - A : ( x , A )  eC s for some x  e X}.

Then since ( i i i )  of D efin ition  2.7 fa i ls  we must have e > o  and there­

fore A > a + e, A < b - e for a l l  A £ IR such that ( x , A )  £ Csfo r  some 

x £ X. Define Z = S1 fl (X x [a + e ,  b -  e ] } .

Then, from Lemma 2, 6, a l l  closed, bounded subsets of Z are compact, there- 

fo re C s is compact.
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Now, s in c e ( i i )  of D efin ition  2.7 also f a i l s ,  i f  (x,A ) e CU ^
w i t h  Aq e  C ^ ( T )  a n d  \ Q £  a q ,  t h e n  ]| x  || >  0 .  S o  t h e r e  e x i s t  n u m b e r s  

p.j > 0  a n d  n-j >  0  s u c h  t h a t  || x  || £  n-j f o r  a l l  (x ,a ) e C s w i t h  

I *  ”  X 0 I £  P-j • A l s o  Aq e C ^ ( T )  i s  i s o l a t e d  s o  P r o p o s i t i o n  ( 2 . 4 )  a n d  

t h e  p r e v i o u s  a r g u m e n t  i m p l y  t h e  e x i s t e n c e  o f  n u m b e r s  p >  0  a n d  n > 0  

s u c h  t h a t  || x  || >_ 4n f o r  a l l  ( x , A )  £ C s w i t h  | a  -  A | > _ % p a n d  w h e r e  

\ Q i s  t h e  o n l y  e l e m e n t  o f  C ^ ( T )  i n  t h e  i n t e r v a l  [ x  -  P ,  x 0  +  p ) .

Hence (e) is s a t is f ie d .

Let 5 a min{e, %p, r \ }  and 

v 6 = { (x-j ,X1) e X X IR : || x 1 -  x|| + |x - X-| | < 6Z fo r  some (x ,x ) E Cs) .

Then, by our choice of 6 , | |x || > 3n fo r  a l l  ( x , a )  e V5 with |a -  a |

> ip , This te l ls  us that (0 , X n  + p) £  V_. To see th is consider~~ 0 — o
( 0 ,  aq + p) and suppose t h a t  the  n e a r e s t  p o i n t  in  to  ( 0 5ao + p) is  

( x , A) .  I f  | A -  Aq | _> £ p, then || x || > 3n and so d i s t (  ( 0 ,A^ + p ) , ( x , a ) )

> 3n > 0. A lte rn a tiv e ly  i f  | a  -  a  | < i p ,  then d is t  ( ( 0 , A q + p ) , ( x , A ) )  

> _ ± p >  0. So (PjA + p )  £  and s im ila r ly  (O, A - p )  £  .

Now, l e t  K = Z fl V = S' n V
0 o

Then K is a closed bounded subset of Z and hence compact by Lemma 2 . 6 .

This follows since when I ( xn^ n) I  a sequence in K such that 

(xn,An) (x,A) (say), then by closure and boundedness of (x ,a) e Vg

and ( x , a ) is bounded. Hence, by the continuity of F, (x,A) e S ’ .

Now, since 6 > 0, Cs and 9V6 are d is jo in t  closed subsets of K, 

therefore so are Cs and S' fl 9V5 . Also, by the fa c t  that C$ is a maximal 

connected subset c f S’ , there is no connected subset of K intersecting  

both Cs and S' fl 9 Vg. Hence, by Lemma 2 .8 , there ex is t d is jo in t  compact

subsets K-j and of K with K = K-j U K2 ,CS £  K.| and S' fl aV  ̂ £

Let dist(K-j,K2) = m. Then,by compactness, m > 0. Define
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G = { (x.j ,X-j) e X x IR : || x  ̂ -  x || 2  + | X-j -  x j2 < yg- fo r  some 

(x ,x ) e K^}. Hence, since (0,Xq) e c G, (b) holds.

Now dist(C«9G) < dist(C ,K0) < 6 and so G c V. and 9G c V„.
Si S c — o o

Also K fl 3 G = (K-| U Kg) n sG = <p, therefore ,

$ = K fl 3G = (ST n ¥ . )  n sG = S' fl aG, and (c) holds.
o

Furthermore, since G c V , ,  then (a) holds and by our observation
o

above that || x || > 3n fo r  a l l  (x ,X) e Vg with |x -  x | £  ip then (d)

holds. Hence G sa tis f ies  a l l  the conditions (a) - (e ) .

We can now prove the following global b ifurcation resu lt .

Theorem 2.10 Let XQ e C^(T) be isolated and suppose that there exists

5 > 0  such that Deg(A - T(_x), W, 0) f  Deg(A -  T (X ), W, 0 ) for

X -  6 < X < x < X  < X +  <5, where W is an a rb itra ry  open bounded seto — o o
in X containing zero. Then xq is a global b ifurcation point of equa­

tion ( 2 . 1 ) .

Proof: The proof is by contradiction. We assume th at X Q is not a glo­

bal b ifurcation point and prove, then, that necessarily  

Deg(A -  T [ \ ) , W,0 ) = Deg(A - T(X),W,0) contradicting our assumption.

So suppose XQ is not a global b ifurcation point. Then by Lemma 

2.9 there ex is t an open subset G of X and positive numbers e, p and n 

satisfying conditions (a) - (e ) .  For X e IR we define 

G, = {X e X : (x ,x ) e G} and 3G* = {X e X : (x,X) e 9G}.
A A

Choose x , r  with X Q - p < £  < X Q < X < X Q + p such that (0 ,x ) e G fo r  

a l l  x e [£ ,X ], and p as defined in Lemma 2.9 .

Note that this is possible since (G A Q) £ G, and G is open. So

0 £ 3 G,# and hence 0 e G, fo r  X e [ X , I ] .  Now, by condition (c) of Lem-
X X —

ma 2.9 , S fl 9G = cf), and, therefore,
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Ax -- T(x) x - R(x,x) f  0, fo r  x e and X e U ,T ] .

Also, X ■* Ax -  I ( x) x - R(x,x) is continuous on [ X , \ ] , uniformly on

Ĝ  and A - T ( x )  -  R ( . , x )  is A-proper for a l l  x e[_x,x]. Hence by the 

homotopy property ( P 3 - ), Deg(A - T ( x )  - R ( . , x ) ,  G^, 0) is defined and 

independent o f x fo r  A e [X.sA], which implies that

Deg(A -  T ( x )  -  R ( . , x ) ,  G., 0) = Deg(A - T ( x )  - R ( . , x ) ,  G , 0) (2 .2 ) .
A. X ‘

VJe show that

Deg(A -  T(x) -  R ( . ,X ) ,  f ip  0) = Deg(A -  T(x) -  R (. J )  ,B (0 ,r )  ,0) 

with r  > 0 a r b i t r a r i ly  small. I t  follows, from Proposition 2 .4 , that 

there exists a number r-j(T) such that fo r  every A e[T, p + Xq]5 0 is the 

only solution of equation (2 .1 ) in the closed ball B '(p,r.j(X)). Let

r 2(T) = min{%r-j (T), Then, from condition (d) o f Lemma 2.9 ,

B(Q,r2(X)) n Ga =  ̂ fo r  A >_ p + xq .

Suppose that x e 3(G^\B(Q9r 2(x ) ) )  fo r  x >_X. Then, e ith er  || x || = r 2(x ) ,

or else || x || > r 2 (x ) ,  and x e 3G^. By condition (c) of Lemma 2.9 this

implies that i f  A >_ T  and x e a (G ^F(0 ,r2( r ) ) ) ,  then (x ,x ) does not sa tis ­

fy  equation (2 .1 ) .  Also, A -  T (\) -  R ( . ,x )  is A-proper fo r

Ae[A*, b -  e] and x -> Ax - T(x) x -  R(x,x) is continuous on [T, b - e ] ,

uniformly fo r  x in G.>\F(0,r2( X ) ) . Hence by the homotopy property (P3.) 

Deg(A - T(x) - R ( . ,x ) ,  G^B^O,r2(X ) ) ,  0) is defined and independent of  

x e[X, b - e ] . In p art icu la r  

Deg(A - T(x) - R ( . ,x ) ,  G ^ B ^ r ^ A ) ) , 0)

= Deg(A - T(b - e) -  R (. ,b  -  £) ,  Gb _ £\ B ( 0 , r 2( x ) ) ,  0) = {0>.

This follows by degree property (P I . )  since Ĝ  _ \B ' ( 0 , r 2 ( r ) )  =

Hence by (P 2 .) ,
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Deg(A -  T ( D  -  R ( . , x ) , G p  0) = Deg(A -  T(x) -  R ( . ,x) ,Gx\B'(0, r 2 ( ~ ) ) ,  0)

+ Deg(A -  T(x) -  R ( . , x ) ,  G^n B(0,2r2( x ) ) ,  0)

= Deg(A -  T(x) -  R ( . , x ) ,  B (0 ,2r2( x ) ) 5 0) + {0} (2 .3)

since Ĝ - f| B (0 ,2r2 (T )) = B (0 ,2r2( r ) ) .  Note that we have equality here 

since one of the terms in the sum is single valued. I t  should also be 

emphasised that we o r ig in a lly  chose r 2 h a lf  as small as was necessary, 

so replacing r 2(X) by 2 r2(X) does not a ffe c t any of the important a r ­

guments. In pa rt icu la r  fo r  X e [ X , p + x ] ,  zero is the only solution

of equation (2 .1 ) in the closed ball lT(0»,2r2( X ) ) .

I t  may be proved s im ila r ly  that there exists r 2(x) suc*1

Deg(A - T(x) -  R-(. ,x) ,GX>0) = Deg(A - T(x) -  R ( . ,x ) ,  B (0 ,2 r2 ( x ) ) ,  0)

+ {0} (2 .4 )

F ina lly  by choosing r 2(x) anc* r 2 ^  small enough i t  follows from (P7.) 

that Deg(A - T(x) - R ( . , x ) ,  B (0 ,2 r2( x ) ) ,0 )  = Deg(A - T(x) ,B (0 ,2 r2( x ) ) ,0)

and

Deg(A - T ( I )  -  R ( . ,x ) ,  B (0 ,2r2( I ) , 0) = Deg(A - T ( D ,  B (0 ,2 r2(X ) ) ,  0 ) .

Then, from equations ( 2 .2 ) ,  (2 .3 ) and (2 .4 ) and (P 5 .) ,  we have that  

Deg(A - T(A_),W,0) = Deg(A - T ( x )9W#0) fo r  Xo - p < 2 l < x0 < x < x 0 + p 

which is a contradiction. Hence XQ is a global b ifurcation point of 

equation (2 .1 ) as required.

Remark The remainder of this thesis w il l  be concerned with obtaining 

s u ff ic ie n t  conditions under which Theorem 2.10 may be applied. That 

is ,  conditions which imply that the generalised degree of A - T(x) does 

change as X moves across XQ e C^(T).
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CHAPTER 3

DEGREE MULTIPLICATION FORMULAE 

LEADING TO GLOBAL BIFURCATION

Introduction

In this chapter we present generalisations of two methods of To!and 

fo r  obtaining global b ifurcation of problem (2 .1 ) via Theorem 2.10.

Both of the ideas involve a degree m ultip lica tion  formula: one for a

product of mappings and the other when a d irec t sum, of the underlying 

space, exists in a p art icu la r  form.

3.1 A resu lt  using the Leray-Schauder formula

This section extends To!and's work in [43] where he shows that 

two d if fe re n t  sets o f hypotheses provide a method fo r  proving global 

bifurcation of problem (2 .1 ) by a procedure which depends on the mul­

t ip l ic a t io n  formula fo r  Leray-Schauder degree, c f . Lloyd [16]. The re­

sults here were obtained in collaboration with Dr. 0. R. L. Webb and 

a shorter version is to be published [48]. In [48], however, i t  was 

assumed fo r  s im plic ity  that X = Y. The proofs fo r  the general case 

are essentia lly  the same.

One extension we make is to allow more general operators. Toland 

considers problem (2 .1 ) with X = Y, A = I - A and T (X) = \B where A 

and B are l in e a r  compact maps and R is continuous and compact. We also 

consider problem (2 .1 ) with T(x) = XB : X Y, where B is l in ear  com­

pact but we do not require that A : X Y be of the form id en tity  minus 

compact or that R be compact. Since we replace compact maps by A-proper 

maps we must also replace the Leray-Schauder degree with the generalised
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degree. But, as previously noted,the proof adopted by Toland, and s u it ­

ably modified by us, re lie s  on the m ultip lica tion  formula fo r  Leray- 

Schauder degree, which has no d irec t equivalent in the generalised de­

gree theory. Petryshyn has shown, however, ((P 8 .) of Chapter 1) that  

there is a res tr ic ted  analogue of the Leray-Schauder m ultip lica tion  

formula, in the generalised degree theory, which enables us to obtain 

a global resu lt in an analogous way to Toland.

Another extension we make is to provide an a lte rn a t ive  set of hy­

potheses, fo r  which the method s t i l l  works, which involves a condition 

on the null space N( A - AqB) a t some characteristic  value x . This 

condition replaces the commutativity demanded by Toland and turns out 

to be a generalisation of his other set of hypotheses: namely,

Y = X is a H ilb ert  space, A and B are s e lf -a d jo in t  and e ith er  A or B

is positive sem i-defin ite .

Let us be more precise.

Consider problem (2 .1 ) with the additional hypotheses:

(H5) T(x ) = XB, where B : X Y is a compact l in e a r  map;

(H6 ) For some XQ e (a ,b) fl CA(T ), BN(A -  AqB) fl R(A - Xq6 ) = (0 ) .

Hypothesis (H6 ) is known as a transversality  condition and is f r e ­

quently employed in b ifurcation theory, as for example in Alexander and 

F itzpa tr ick  [2 ] ,  Mawhin [1 8 ], Chow and Hale [ 6 ] (Chapter 5 ) ,  and many 

others.

Note that A is A-proper since B is compact and so A - AB is A- 

proper for a l l  X e JR.

The f i r s t  resu lt  is that the compactness of B implies a dichotomy 

of the set Cy^(T).
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Proposition 3.1 Either C^(T) =^sOrC^(T) is a d iscrete set with no 

f in i t e  l im i t  points.

Proof: Assume that there exists a point y such that y  £  C^(T). Then

A - yB  is a homeomorphism and we have that  

Ca (T) = {X + u : N[I -  XB(A -  uB)-1 ]}? {0} .

Since B is compact, C^(T) is a discrete set with no f i n i t e  l im i t  

points, c f .  Chapter One. The other p o ss ib ility  is that C^(T) = IP-

Remark: This proof is exactly the same as the one given by Toland [43 ],

i t  applies equally well to our s ituation .

We now give the main resu lt  in this section.

Theorem 3.2 Consider problem (2 .1 ) with the additional hypotheses 

(H5) and (H6 ) .  Suppose that C^(T) ?*1P> l e t  v -  dim N(A - XqB), anc* 

suppose [X_,T] fl C^(T) = {Aq} fo r  )L < X Q < A. Then, Deg(A - AB,G,0)

= (- l)v Deg(A - A_B,G,0) fo r  an a rb itra ry  bounded open set G c X contain­

ing zero.

Proof: We have that A - XB = A - AB -  (A - a)B

= [ I  -  (X - X )  B (A - AB)-1 ] (A - AB)

Replacing L-j by A - AB and L2  by (X - AjB in (P8 .)  implies th a t,

Deg(A - AB,G,0) = deg^g(I - (X ~ Â )B(A -  X $ )  ,D,0) Deg(A - A_B,G,0),

where D is the open set (A - AB)(G) containing zero.

Now by the Leray-Schauder formula, c f .  remarks preceding D efin i­

tion 1 .17, d e g ^ ( I  -  (a -  A_)B(A - AB) \ d , 0 )  = ( - l ) v , where v is 

the sum of the algebraic m u lt ip l ic i t ie s  of the characteristic  values 

of (X - a_)B(A -  AB) - 1  in the interval (0 ,1 ) .  We shall prove that there 

is only one such value. Suppose y e (0 , l )  is a characteris tic  value of
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(a -  a_)B(A -  2l b ) _1  * Then, fop some y j* 0, y - y (a -  x ) B { A  -  A B )  V  =  0

which implies that (A -  AB)x - y(A - A_) Bx = 0, where

(A - AB)"V -  x f  0. So Ax ~ ( x _  + y(A - Aj) Bx = 0, where y e ( 0 , l ) .
A -A_

Hence A_ + y ( A  -  A )  = A or y = —---------  = y (say),
A -  A_

Next we show that the ascent of I -  y Q (A - a)B(A -  AB)  1 is equal to one,

that is N(I - y Q(A -  _a)B(A -  AB)  = N(I -  pq (a - A_)B(A -  AB)  "*),

which w il l  prove that v  = dim{N( I -  y Q ( A -  a)B(A - AB)  ^ ) ] ,

So, l e t  ( I  -  yQ(a" -  AjB(A - X B )  ^ )2y = 0, with y f  0.

Now I - yQ(A -  A_)B(A - X B )  1

(XQ “ A.) (X ~ h )  - 1
= I  _   B (A - A B )  1

( X  -  A )

= (A - AB - (A - X.)B)(A -  AB) ' 1

= (A - A q B ) (A - A B ) " 1

So ((A - AqB)(A -  A_B) - 1 ) 2  y = 0, with y /  0

Thus, (A - AqB)(A - AB) " 1 w = 0 where,

W = (A - AqB)(A - XB) " 1 y e R(A -  AqB ).

Therefore, (A - AB)”  ̂ w e N(A - XqB),

SO W e (A -  X_B)N(A -XQB)

= (A -  XqB -  ( i - X 0 )B)N(A -  XqB)

= BN(A -  X B ) .

Hence w e BN(A - X B) (1 R(A - XqB) = { 0 } ,  by H6 , which implies that  

0  = (A -  XqB)(A -  XB)_1y = ( I  -  n0 (x -  x)B(A - xB)_1 )y-

Thus N(I -  uQ(X - X_)B(A -  XB) £  N(I - iiQ(x -  X_)B(A - XB) ) .

The reverse inclusion is always va lid  and so equality  holds.



41

F ina lly  i t  follows easily  that

dim{N(I -  yb (~  -  A_)B(A - AB)"1)}

= dim{N((A -  A B)(A -  AB)'1)}

= dim{N(A -  AqB)} = ■»

Hence the theorem is proved.

Remark (1) I f  A is of the form I - K, where K is a k-set contraction 

with k < 1 , p ra c t ic a lly  the same proof holds using the degree theory of 

Nussbaum, [22]. Thomas, [40] proves the necessary version of the mul­

t ip l ic a t io n  formula. The required extension of the Leray-Schauder For­

mula has been proved by Stuart and Toland [37],

(2) I f  X is a H ilb e rt  space, a l in e a r  operator T : X X is said 

to be positive sem i-defin ite , provided : T is s e lf -a d jo in t ;  (Tx,x) >_ 0

for a l l  x e X; and (Tx,x) = 0 implies that Tx = 0.

I f  Aq f  0, condition (H6 ) generalises one of Toland's [43] set of 

assumptions; namely, X = Y is a H ilb ert  and A,B are s e lf -a d jo in t  maps 

with e ither A or B positive sem i-defin ite . To see th is ,  assume that  

w e BN(A - aqB) fl R(A - AqB) . Then there ex is t x, v e X with 

w = Bx and w = (A - AQB)v, where (A - AqB)x = 0. So (Bx,x) = (w,x)

= ((A - a q B ) v , x )  = (v ,(A  -  A q B ) x )  = 0 and, i f  B is positive semi-defi­

n i te ,  then Bx = 0 and w = 0. Also (Ax,x) = ( A q Bx , x ) and the resu lt  

holds again i f  A is positive sem i-defin ite . A s im ila r  argument may be 

used to show that (H6 ) also generalises the assumption : X = Y is a 

H ilb ert  space and A,B are s e lf -a d jo in t  maps with e ith er  A or B negative 

semi-defini te .

(3) We could prove a resu lt under Toland's other set of hypotheses 

too, namely that X = Y and A and B commute. These, hypotheses would
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replace our hypothesis (H6 ) .  The conclusions of Theorem 3.2 hold, with 

this assumption, i f  we replace dim{N(A - XqB)} by dim{N((A - XqB)p} ,  where 

p is the ascent of A -  XqB. This follows from the proof of Theorem 3 .2 ,  

since I -  y(x - X_)B(A - XB)"'* = (A -  XQB)(A - XB) ^

= (A -  XB)_1(A -  X0B).

So, fo r  each n e IN,

( I  -  y (X -  X)B(A -  XB)_1) nx = 0

i f  and only i f  (A -  x B)nx = 0.

Note, since B is compact this also shows that p is f i n i t e  and 

dim{N(A - XqB)p} is f i n i t e .

Theorem 3.2 provides us with the following global b ifurcation  

theorem.

Theorem 3.3 Consider problem (2 .1 ) with the additional hypothesis (H5). 

Suppose that C^(T) f  IR and, fo r some x e (R, with x £  C^(T),

Deg(A - XB,G,0) is a singleton, where G c X is an a rb itra ry  bounded,

open set containing zero. Then, XQ is a global b ifurcation point i f

a t least one of the following additional hypotheses is sa tis f ied :

(1) hypothesis (H6 ) holds with dim{N(A -  X0 B)> an odd number;

(2) X = Y, A and B commute and dim{N((A - XqB)p)} is an odd number, 

where p is the ascent o f A - XqB, which is f i n i t e ;

(3) X = Y is a H ilb e rt  space, A,B are s e lf -a d jo in t  operators with

e ith e r  A or B positive semi-definite and dim{N(A - xqB)} is 

an odd number, with XQ f  0.

Proof: From Theorem 3.2 we have that; i f  x_< XQ < X, [X_,X] fl C^(T)

= { x q } ,  and dim N{(A - XQB)} = \> is an odd number, then

Deg(A - XB,G,0) = ( - l ) v Deg(A - XB,G,0) = -Deg(A - XB,G,0).
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Now, since A - XIB and A - AB are homeomorphisms,

Deg(A - x_B,G,0) £ { - 1 , 1 }  and 

Deg(A -  XB,G,0) c { - 1 ,1 } ,  c f .  [31].

But by assumption, there exists x e !R, with x £  C^(T), such that  

Deg(A - XB,G,0) is a singleton. Then since [x_,x] fl C ^ ( T ) =
Proposition 3.1 te l ls  us that there is a discrete number o f characteris­

t ic  values, i . e . ,  they are isolated. Thus, by Theorem 3 .2 , fo r  each 

X e (R with x £  C^(T), Deg(A - XB,G,0) is a singleton and alternates  

between 1 and - 1  as x passes through isolated ch aracteris tic  values of 

odd m u lt ip l ic i ty .  Hence Deg(A - xB,G,0) f  Deg(A -  XB,G,0) and the re ­

su lt of the theorem follows from Theorem 2.10 and the preceding Remarks 

(2) and (3 ) .

Remark (1) In Theorem 3.3 we have assumed that Deg(A -  XB,G,0) is a 

singleton for some X e !R with X £  C^(T). In Chapter Four, Theorem 

4.12, we prove a global b ifurcation resu lt without making th is assump­

tion and for not necessarily compact B, which generalises Theorem 3.3

(1 ) .  Also in Chapter Four, Theorem 4.18, for the case XQ = 0, we

generalise Theorem 3.3 (3 ) ,  without making the assumption that the de-
k igree is a"singleton, for the more general T(x) = z  XJB., where k is

j= i  J
f in i t e  or in f in i t e .  We are able to relax the condition that A and the

B.'s are s e lf -a d jo in t  and we require a less stringent condition on the 
J

B - 1s than positive sem i-defin ite .

(2) There are examples where Deg(A - XB,G,0) is a singleton. For 

instance, A - XB is  of the form I -  compact, I -  ball condensing; A - xB
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is orientation preserving; and others, including the following. Con­

sider problem (2 .1 ) with the additional hypothesis (H5) and where X is 

re flex ive  and A - AB is accretive fo r  some A e (R with A £  C^(T). 

(Accretive maps were given as examples of A-proper maps following De­

f in i t io n  1 .8 ) .  We define a homotopy H : G x [0 ,1] X by H (x ,t)

= (1 - t ) *  + t(A -  A B ) x fo r  ( x , t )  e G- x [0 ,1 ] .  H (x , . )  : [0 ,1] K is

easily  seen to be uniformly continuous on G\ Hence, to show that H is 

a va lid  homotopy we need only prove that H ( . , t )  : X X is A-proper 

and H(aG,t) f  0 fo r  each t  e [0 ,1]. F irs t  notice that H (x , l )  = A - AB 

is A-proper and fo r  0 <_ t  < 1, H (x ,t )  -  (1 -  t )  I  + t(A - AB)  is of

the form aI + accretive and is ,  therefore, A-proper by [19]. Hence,

H ( . , t )  is A-proper fo r  each t  e [ 0 , l ] .

Now suppose H(xQ, t o) = 0 for some x q e 9G and t Q e [ 0 , l ] ,  that is ,

(1 -  t 0 )x0 + t 0 (A - XB)x0 = 0 with | |x 0 || f  0.

Since A - AB and I are in je c t iv e  maps i t  follows easily  that

t  f  0  and t  f  1 . Thus t A e ( 0 , l )  and, thereforeo o o

by the accretiveness of A - AB. This contradiction proves that  

H(9G,t) f  0 fo r  each t  e [ 0 , l ] .  Thus by the homotopy property (P3.) we 

have that Deg(A -  AB,G,0) = Deg(I,G ,0) = {1}.

A pa rt icu la r  case of the above situation may be seen when X = Y

is a H ilb ert space. I f  0 e [R and there exists e > 0 such that

(Ax,x) >_ e|| x ||  ̂ fo r  each x e X, then whenever 0 <_ | AJ e/1| B || , i t

follows that ((A - AB)x,x) >_ 0. But X is a H ilb ert space which is

(A - a B ) x q
n  - t o)

y a nH

0 <_ ((A - xB)xo, Jx0 )
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re flex ive  and the duality  map J equals I .  So A - XB is accretive fo r

0  < | A |  < e / 1| B || and the above analysis implies th a t ,  here,

Deg(A - XB,G,0) is a singleton fo r  each x e IR with x e C^(T).

3.2 A product formula fo r generalised degree

The results in this section are again jo in t  work with Dr. J. R. L.

Webb and a shorter version is to be published,[49].

We shall extend a Leray-Schauder degree m u ltip lica tio n  formula of

Krasnosel1sk ii to a generalised version. Krasnosel'skii [13] showed

that i f  X can be decomposed into the d irec t sum E-j © E2 and

T. : E. E. ( j  = 1,2) are compact l in ear  operators such that
J J J

1 - T. : E. •* E. are homeomorphisms, then by defining Tx = T ,x 1 + T?x?,
J J J I I u &

fo r  x . e E . ( j  = 1 ,2 ) ,  the Leray-Schauder degrees are related by 
3 J

degLS{ I  -  T ,B (0 ,1 ) ,0 )  = degLS( I  -  T-, .B-, ( 0 ,1 ) ,0) degLS( I  -  T2 ,B2 ( 0 ,1 ) , 0 ) 

where B^(0,1) and B^(0 S1) are the open unit balls in E-j and E2  respect­

iv e ly .

We shall assume that X = E-j ® E2 , where E-j is a f i n i t e  dimensional

subspace of X and E2  is a closed subspace of X. We suppose also, that

I -  T : X X is an A-proper homeomorphism with respect to an admissible 

scheme r = {Xn,Qn>. Then we prove that the generalised degree m u lti­

p lication  formula

Deg( I -  T ,B (0 ,1 ) ,0 )  = degLS( I  -  ^  ,B1 (0 ,1 ) ,0 )  Deg( I -  T2 ,B2 (0 ,1 ) ,0 )  holds.

The proof involves showing that I -  T : X ^ X is also A-proper with 

respect to another admissible scheme r 1' constructed from the original 

scheme r .  Relative to r 11, we are able to prove that the generalised
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degree m ultip lica tio n  formula does hold and then by a homotopy argument 

i t  is shown that the resu lt also holds re la t iv e  to the orig inal scheme.

By making a transversality  assumption s im ilar to that in §3.1 

hypothesis (H6 ) and assuming that I -  T(x ) is Fredholm of index zero 

we show that a decomposition X = exists with dim E-j f in i t e  and

such that both E-j and E  ̂ are invariant under T (x ) .  Then by hypotheses 

sim ilar to Toland's [41] we use the derived generalised degree m u lt ip l i ­

cation formula to prove global b ifurcation resu lts . We take problem
k 1(2 .1 ) with X = Y, A = I and T(A) = 2 AJB.. This generalises Toland's

j= i  J
work in that he considered the same problem but demanded that B. be

\J

l in ear  and compact fo r  j  = l , 2 , . . . , k  and R be continuous and compact.

The proof we adopt is s im ila r  to Toland's, in p a rt ic u la r  we use the 

same homotopies. However, we deal with the class of A-proper maps and 

hence use generalised degree theory.

So, consider problem (2 .1 ) with the additional conditions:

(H7) X = Y, 0 e ( a ,b ) ,
k iA = I ,  and fo r  k e IN, T(x) = 2 xJB.,

j= l  J
where B. are bounded l in e a r  maps fo r j  = l , 2 , . . . , k  and 1 <_ k e IN;

(H8 ) There exists a smallest positive element aq e C^(T) fl (a ,b)

and this is iso lated , sack U  (x  ~ t o o )  c  X tv eo xk  rv e  iKi ^

(H9) ( I  - T(A))  N ( I  -  T(Xq)) H R(I -  T(Xq))  = {0}

fo r X j* X with X as in (H8 ) and I -  T (x J  is Fredholm o f index zero;
0  0  o

(HI0) k is  an odd integer and fo r k >_3, B̂  is in je c t iv e ;

(HI 1) B. commutes with B . (1 <_ i , j  £  k);
• J

(H I2) I f  ( I  - T(A ) )x  = 0 fo r  x f  0, then ( I  -  T (u ))x  f  0  fo r

a l l  v f -  X ,  v e IR, where X is as in (H8 ) .
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We shall prove that is a global b ifurcation point of problem

(2 .1 ) ,  with the above hypotheses, provided that dim N(I -  T(x ) is odd.

The f i r s t  step is to generalise the following resu lt  due to 

Krasnosel'ski i .

Theorem 3.4 (K rasnosel'sk ii, [13], p. 129).

Suppose X, E-j and are Banach spaces such that X = E-j © Ê  with

compatible norms. Let T. : E. E. be a compact l in ear  operator such
J J J

that I ~ Tj : Ej -* E. is a homeomorphism ( j  = 1 ,2 ) .  I f  x = x-j + x2 

with X j  e E j ( j  = 1,2) define Tx = T-jX-j +  T2 x2 . Then the Leray-Schauder 

degrees are related by degLS( I  -  T, B (0 ,1 ),0 ) = degLS( I  -  T-| ,B̂  (0 ,1 ) ,0) 

degLS( I  - T2 ,B2 (0 ,1 ) ,0 )  where B^(0,1) is the open un it ball in Ê

( j  = 1 , 2 ) .

For the remainder of this section we adopt the following notation.

X = E-j © E2 , where E-j and E2  are Banach spaces with compatible
i

norms and dim E-j is f i n i t e .  P : X E-j is the projection of X onto E-j, 

so that P is compact; T : X X is such that I -  J is a l in e a r ,  A-proper 

homeomorphism with respect to r = TXn>Qn>  ̂ wWi-e 'ELjC.'X^ 3 0 r- 

tx c lK S *  T-j and T2  denote the restric tions of T to E-j and E2 , respect­

iv e ly ,  and I -  T. : E. E. are homeomorphisms. F in a l ly ,  B.(0 ,1 )  de- 
J J j  J

notes the open un it ball in E. ( j  = 1 ,2 ) .
\J

F irs t  we show th at I -  T2  : E2  E2  is A-proper with respect to 

some admissible scheme.

Lemma 3.5 I -  T2  : E2 -> E2  is A-proper with respect to the admissible 

scheme r '  = {Xn ',Q n' } ,  where we take projections Qn ' = ( I  -  P)Qn and 

subspaces Xn ' = Qn‘ (X ) .
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Proof: F irs t  notice that r is admissible fo r maps from into E2 *

For, dim Xp ' = dim(I - P)(Qn(X)) = dim(I -  P)(Xn) < dim Xp < » 

fo r  each n e IN. Q ' is easily  seen to be a continuous projection.
i

A lso Q x  = ( I - P ) Q x ^ ( I  - P) x = x as n •> « fo r  each x e E?, n n - ,
and hence dist(-x,X 1) ^ 0 as n -> ».

Thus, r 1 is an admissible scheme fo r maps from E2 into E^.

To show that I -  T2 is A-proper with respect to r 1, suppose that

{x : x e X '}  is a bounded sequence with n n n n

x - Q 1 T0x w as n °° fo r  some w e X. n Hn 2 n
Now, xn e X 1 fo r  each n e IN, so there ex is t u e X and un = Qnu e Xn such

that x = Q 'u -  ( I  P) Qnu = un - Pup. Therefore,

un " Pun " ^  " p^ n T2 ûn ~ Pun̂  ^ w as n ^ 00 ancl> since P is compact,

P̂ nT2^un ” Pun̂  p ŝay  ̂ and Pun ^ v ŝay  ̂ as n ^  So
u - Q T u  + Q T P u  w + v - p, where we must replace T9 by T when n Hn n ^n n r r  d

we s p l i t  up (u - Pu ) .

Hence Q ( I -  T)un ^ w  + v -  p - T v  and by A-properness of I -  T

with respect to r ,  we may assume that there exists u e X such that

u ^  u as n ^  ® and u - T u  = w +  v -  p - T v .  Therefore, Pu = v and

x = u -  Pu - ^ u - P u  = u -  v = x (say) as n *  «. n n n
So x = ( I  -  P) u e E2 and by invariance of E2 under T,

Tx = T^ x e E2 -

Hence, since xn - Qn ' T2xn ^ w ,  xfi ■ ( I  - P^ n T2xn ^ w 

and so x - ( I  -  p)T2x ~ w# or# ec!u'iv a le n t ly , x -  T2x = w.

Thus, I -  T2 is A-proper with respect to r 1, which completes the 

proof.

Next we show that the fa c t  that I -  T2 : E2 -5- E2 is A-proper with 

respect to r 1 implies that I -  T : X X is necessarily A-proper with
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respect to an admissible scheme r " 9 which we construct from r 1. In

general r 11 is d i f fe re n t  from r .

Lemma 3.6 Suppose I -  Tg : E2 ^ E2 1S A~Pr0Per respect to an 

admissible scheme r 1 = { Xn 1 ,Qn 1 >. For x = x̂  + Xg with x̂ . e Ê

( j  = 1 ,2 ) ,  l e t  Tx = T^x  ̂ + TgXg. Then, I -  T : X -*X is A-proper with

respect to the admissible scheme r M = tXn 1 ‘ ,Qn 11 > where, X 11

= E1 « X 1 and Qn "(x-j + Xg) = x1 + Qn'x2 , with x] e E( and x£ e Eg.

Proof: F irs t  we show that r 11 is an admissible scheme. For,

dim X 11 ~ dimfEn § X ' )  = dim E, + dim X ' < « fo r  each n elN. n I n  I n
Also fo r  each x e X and n e IN, x = x-j + Xg, where x-j e E-j and

Xg e Eg, and Qp ' 'x = Qp* 1 (x-j + Xg) = x-j + Qp Xg x-j + Xg -  x as

n m, which implies that di st ( x, Xn ‘ 0 as n fo r  each x e X,

and since Q^11 is a continuous projection, then r 1' is admissible.

To prove that I -  T : X X is A-proper with respect to r , , 9 sup­

pose that {xn : xp e Xn M } a bounded sequence with

xn ” ' '  Txn ^  w‘ We can w n te  xn = en + xn *s wJlere en e E1 anc*

x 1 c X ' .  n n
Then, since (e } is a bounded sequence in a f i n i t e  dimensional n

space, we may suppose that e ^  e e E| and Tep = T-|ep T-je as n 

Also en + xn ' - Qn MT(en + xp 1) + w implies that xp ' - Q ^ T ^ '

■* w - e + ^ e .  But ( I  -  Q ^ V V  = % ' ( l  “ W 5

so Q 1 ( I -  T2)xn ‘ ■+■ w - e + T-je as n -*• ®.

By the A-properness of I -  Tg, with respect to r ' ,  we may assume 

that there exists x 1 e Eg such that xp ' *> x 1 as n 00 and so xp 

= en + xn' ^ e + x ' “ x ( say) as n
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Hence, Qn MTx Tx as n +  °° and ( I  - T) x = w, which proves the Lemma. 

So we have the following resu lt .

Lemma 3.7 I -  T : X Y is A-proper with respect to r 1 1 = {X^1 sQn 1' } ,

where Xn "  = E] 0 ( I  -  P)Qn(X) and Qn " ( x 1 + * 2) = x1 + ( I  -  P)Qnx2 ,

where x. e E. ( j  = 1 ,2 ) .
J J

Proof: Immediate from Lemmas 3.5 and 3.6.

Before proving our generalised degree m ultip lica tion  formula we 

need one more preliminary resu lt .

Lemma 3 .8  For a l l  s u ff ic ie n t ly  large n e IN, degL^ ( I  - Qn ' 'T ,B (0 ,1 ) ,0 )

= degLS( I  - QnT ,B ( 0 , l ) ,0 )  and degLS( I  - Qn" T 2 ,B2(0,1 ) ,0 )

= degLS( I  -  qnT2 ,B2 ( 0 , n , 0 ) .

Proof: Notice f i r s t ,  from the proof of Theorem 1.18, th a t fo r  s u f f i ­

c ien tly  large n, degLS( I  -  Qn 1'T ,B (0 ,1 ) ,0 )

= deg ( I  -  Qn ' 'T .BJO .I) fl Xn ' \ 0 )  and degLS( I  - QnT ,B ( 0 , l ) ,0)

= deg(I -  QnT ,B (0 , l )  fl Xn ,0) and a l l  degrees are well-defined by v i r ­

tue of the fac t that I -  T is a homeomorphism.

Also since Xp = Qn(X ), Xn ' -  ( I  -  P)(Xn) and

Xn"  = E-j © Xn ' = E1 0 ( I  - P)(Xn) ,

then Xn c Xn and I - QnT : F (0 ,1 )  fl Xn Xn. Therefore, by the ex­

cision property fo r  Brouwer degree, c f. Lloyd [16], 

deg ( I  - QnT,B(0 ,1 ) fl Xp.0) = deg ( I  - QnT .B (0 , l )  fl Xn" , 0 )

= degLS( I  -  QnT ,B ( 0 , l ) , 0 ) .

Now l e t  H : {¥ (0 ,1 ) fl Xn" )  x [0 ,1] Xn"  be defined by

Hn( x , t )  = x -  tQnTx -  (1 -  t)Qn' 'T x ,  fo r each x e B (0,1) fl Xn"

and t  eE 0 ,l] .
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Note that fo r  each n e|N, H ( . , t )  Is of the form id e n t ity  minus lin e a r  

compact and so is a va lid  homotopy for both Brouwer and Leray-Schauder 

degrees. To apply the homotopy property we must show th a t ,  fo r  n suf­

f ic ie n t ly  large, Hn( x , t )  f  0 fo r a l l  x e 3B(0,1) fl Xn ‘ l and t  e [0 ,1 ] .

Suppose the contrary. Then there ex is t sequences {n} cIN,

{xn> c 3B{0,1) ft Xn * 1 and { t n> c [0 ,1] with t n t  e [ 0 , l ]  as n ®,

and such that xn - t nQnTxn - (1 -  t n)Qn" Txn = 0 fo r  each n* Writl*n9

xn “ en + yn with en e E1 and y p e Xp 1, we have

e + y - t Q  (Te + Ty ) - (1 - t  )Q M (Te + Ty ) = 0 fo r  each n.n Jn n^nx n J n' v n 'yn v n ''n'
Now Qn , l (Ten + Tyn) = Ten + ( I  -  P) QnTyn and, since {en> is bounded

in E-j, a l l  the terms t  , e , Ten and PQnTyn may be assumed to converge.

■Then en + yp - t nQn(Ten + Tyn) - (1 - t n)(Ten + ( I  - P)QpTyn) = 0

implies that y n -  ( I  -  p)QnTyn w (say) as n +  ». But

y n £ V  = V (X) " ( I  '  P)V X) c E25 50 yn = Qn‘y n ands therefore=>

Qn 1 ( I  -  T)yn = Qn 1 ( I  -  T2)yn + w as n + ».

By the A-properness of I -  T2 with respect to r 1 we may assume

that there exists y e E2 such that y n *> y as n ■* ® and ( I  -  T2)y = w.

So xn = ep + y n -*■ e + y = x (say) as n ®, where en + e (say) £ E-j

as n +

Therefore, 0 = xn -  t nQnTxn -  (1 -  t n)Qn" T x n

x - tTx - (1 -  t)Tjc as n and so ( I  -  T)x = 0.

Now since || x || = 1 for each n, then ||x|| = 1, and this contradicts 

the injectiveness of I  -  T. Hence, by the homotopy property for  

Brouwer degree, fo r  n s u ff ic ie n t ly  large, we have 

deg(I - Qn , , T ,B (0 , l )  fl Xn " , 0 )  = deg ( I  -  QnT ,B (0 , l )  n Xn " , 0 )  and so, 

by the f i r s t  part of the proof, d e g ^ ( I  -  Qn‘ ’T ,B (0 ,1 ) ,0 )

= degLS( l  -  QnT ,B ( 0 , l ) ,0 )  which proves the f i r s t  assertion of the lemma.
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The resu lt fo r  follows by the same procedure, but is simpler since

a l l  the components of decompositions are zero outside E^. Hence the 

lemma is proved.

We may now prove the generalised m ultip lica tion  formula.

Theorem 3.9 For T, T̂  and T  ̂ as defined above,

Deg(I -  T ,B (0 ,1 ) ,0) = deg ( I  -  T] ,B1 (0 ,1 ) ,0) Deg ( I  -  T^Bg(O.l) ,0 ) .

Proof: From Theorem 1.18 i t  follows that Deg(I -  T ,B (0 ,1 ) ,0 )

-  {m e 7  U : there is a sequence {n-} with
\i

degLS(I -  Q T ,B (0 ,1 ) ,0 )  = m j s  j  +  » }
u

Now from Theorem 3.4 and Lemma 3 .8 , fo r  each s u f f ic ie n t ly  large j  elN,

degLS( I  ‘  V T,B(0’ 1),C)) = degLS( I  '  Qn ." T » B ( 0 , l ) ,0 )

= degLS( I  -  Qn . " T r B1( 0 , l ) , 0 )  degLS( I  -  Qn _1 'T g .B ^ O ,! ) ,0 )

= degLS( I  -  Qn / ' T 1 ,B1(0 ,1 ) ,0 )  degLS( I  -  Q„ T2 ,B2( 0 . 1 ) ,0)

But Qn 1‘T^x = T^x fo r a l l  x e E-j and fo r  a l l  j  e IN, so

degLS( I  ‘  Q n ." Tr Bi ( ° ’ 1) 4 =de9 ( I  -  Tj jB-j (0 ,1 ) ,0 ) .
3

Therefore,

Deg ( I  -  T ,B (0 ,1 ) ,0) = deg(I -  T, ,B] (0 ,1 ) ,0) {m e 7

there is a sequence {n -> with deg^j(I -  Qp TgsBg (0 ,1 ),0 ) -»• m

as j  +  <*}

= deg ( I  -  T-j ,B  ̂(0 ,1 ) ,0) Deg ( I  -  T2 ,B2(0 ,1 ) ,0 ) ,

which is the required resu lt .

Theorem 3.9 provides us with a useful m u ltip lica tio n  formula when­

ever there exists a d irec t decomposition of the space X into E-j © E2 

with E-| f i n i t e  dimensional and Ê  and E2 are both invariant under T.

We shall prove that condition (H9) implies such a decomposition.
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Proposition 3.10 We may decompose X into

X = N{I -  T (aq))  © R(I -  T(Ao))

= E] © Eg (say),

where Aq is as defined in hypothesis (H8), E-j = N(I -  T (aq))  and 

Eg = R(I -  T(Xq) ) with dim f in i t e  and Eg a closed subspace of X.

Proof: Notice f i r s t  th a t ,  by Theorems 1.11 and 1.12, since I - T(X )

is A-proper, E-j = N(I -  T(x ) )  is f in i t e  dimensional and R(I - T ^ 0))  

is closed. (Thus, ce rta in ly  by Theorem 1.1 there exists a decomposition 

X = N(I -  T( A0))  ® Wlt*1 E2 a closed subspace. However, in order to 

apply Theorem 3.9 we need to know that Eg is invariant under T (a) .  So 

we must find  Eg e x p l ic i t ly ) .

From Theorem 1 .9 , i f  A^e(a,b) with A-j £ C^(T), then I - T (a^) is 

a homeomorphism and so ( I  -  T(A^)) ex ists . We show that  

N ((I  - T(X0) ) ( I  - K x p ) " 1) = ( I  -  T(X-,)N(I -  T (xq)) . Let 

x e N( ( I -  T(X0) ) ( I  -  T (x1) ) _1) , then ( I  -  T (xq) )  w = 0, where

w = ( I  -  T(X] ) ) " 1 x.

Thus w = ( I  -  T(X-j ))"* x e N(I -  T(X0) and x e ( I  -  T(X-j ) )N ( I  -  .T(xq))  . 

Hence N (( I  -  T(x0 ) ) ( I  -  T ^ ) ) " 1) c ( I  -  T(x1) )N ( I  -  T(xq) ) .  The re -  

verse inclusion follows s im ila r ly  and so equality holds.

Next we show that N( ( ( I -  T (aq) ) ( I  -  T (a.j))  ^ )2)

= N (( I  -  T(X0 ) ) ( I  -  TCx1) ) _1) .

Suppose that fo r  x e XS( ( I  -  T ^ 0 ) ) ( I  -  T ( x p )  T x  = 0, then 

( I  - Tfc0 ) ) ( I  -  T(X1 ) ) _1x = w e N (( I  -  T(X0 ) ) ( I  -  T tX . , ) ) '1)

= ( I  - T(X1) )N ( I  -  T (xq) ) .

Hence w e ( I  -  T (X ,) )N ( I  - T (xq))  fl R(I -  T (xq))  which implies, 

by assumption (H9) that w = 0.
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Thus, ( I  -  T(x ) ) ( I  -  T(x.|)) x =  0, and so

NC( I -  T(Xo) ) ( I  -  T U - j ) ) ' 1) 2 c  N (( I  - T(X0) ) ( I  -  T(X1) ) - 1 ) .

The reverse inclusion always holds so we have equality .
-1Now by the commutativity condition ( H l l ) 9 ( I  -  T(x.j)) commutes 

with I  -  T (XQ) . Thus N ( ( ( I  - T(X0 ) ) ( I  -  T(X1) ) ' 1 )J ) = N (( I  -  T(XQ) ) j ) ,  

j  = 1 ,2 , and so N (( I  -  T (xq) ) 2) = N(I -  T (xq) ) .  This proves that the

ascent of ( I  -  T (xq))  is equal to one. Also since I -  T(Xq) is Fred­

holm of index zero by (H9), i t  follows from Remark (4) preceding Theorem

1.14, that ( I  -  T (xq))  is also Fredholm of index zero and has the
2

same null space as I -  T (xq) .  Hence the codimension of R ((I -  T (xq)) )
2

equals the codimension of R(I -  T (xq))  and since R (( I  - T U 0 )) )

£  R( I - T(X0 ))  we must have R(I - T(XQ))  = R( ( I -  T (xq) ) ^ ) .  Thus the 

ascent and descent o f I -  T(Xq) are both one and, therefore, by the 

results of Chapter One,

X = N (I -  T (xq))  © R(I - T ( x0 ))  as required.

We may use s im ilar  techniques to Toland [41] to prove the fo llow­

ing degree re s u lt .

Theorem 3.11 Consider problem (2 .1 ) with the additional hypotheses 

(H7) -  (H12). I f  dim{N(I -  T(xq) ) }  is odd, then there exists 6 > 0 such 

that Deg(I - T (X )sG,0) f  Deg(I -  T (x ),G ,0) fo r  XQ - 6 < x < XQ < x 

< XQ + 6, where G is an a rb itra ry  open bounded set in X containing zero.

Proof: F irs t  suppose that X_ e (0,XQ) and consider H : G x [0,1] X

defined by H (x ,t )  = x - T(tX_)x.

Then H(9G,t) f  0 for t  e [0 ,1 ] .

For suppose the contrary, then there ex is t x e 9G and t  e [0 , l ]
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such that ' x - T (U )x  = 0, ||x || f  0, which implies that

tx E Cfl(T ). But 0 £  tx_< X , and i f  tx = 0, then x = 0, therefore
A O

0 < tx < X . Thus by hypothesis (H8) we must have x = 0.

This contradiction proves that H(9G,t) f  0 fo r  a l l  t  e [ 0 , l ] .  

Moreover, by hypothesis (H7), (0,X ) £  (a,b) and so H ( . , t )  is A-properU
for a l l  t  e [0,1] and H is continuous in both arguments. Hence, by 

(P 3 .) ,  we have that Deg( I -  T U ) ,G ,0 )  = Deg(I,G,0) = { ! } .

To prove the theorem we w i l l  show that fo r  some 6 > 0,

Deg( I - T(X),G ,0) f  {1} fo r  xq < X  < XQ + <5.
From assumption (HI 1) i t  is easily  seen that T(x) commutes with 

T (xq) fo r  a l l  X e (R and, therefore , from Proposition 3 .10 , and Eg

are invariant under I -  T (x ) .

Now, since \ Q e Ĉ (T) is iso lated, we can choose 6 > 0 such that 

X o + S . x . X q ,  X e(a,b) and X is less than any other positive e le ­

ment of C^(T). So I -  T{X) is a homeomorphism.

Next we use the decomposition X = N(I - T (\Q))  R(I - T(Xq))

= E-j © Eg and define a homotopy on Eg = R(I -  T(Xq) ) .  Let T. denote

the re s tr ic t io n  of T to E. ( j  -  1 ,2 ) ,  then I - T. (x) is a homeomorphism
J  J

on E. ( j  = 1 ,2 ) .  For x e B g(0 ,l)  c E2 (the closed u n it  ball on E2) ,  

l e t  H (x , t )  = x - T2(tX)x fo r  t  e [ 0 , l ] .  Then H (3B g(0,l) , t )  ?  0 fo r  

t  e [0 ,1 ] .  For i f  not, there ex is t x e 3Bg(0,l) and t  e [ 0 , l ]  such that

H (x ,t )  = 0 = x - T2(tX )x  = x - T (tX )x , since x e B2(0 ,1 ) c Eg.

This implies that tX  -  XQ and so x e N(I -  T(xq) ) fl R (I - T(xq))  = {0 } .  

Therefore, by the homotopy property (P 3 .) ,  since I - T (tx ) is A-proper 

fo r  a l l  t  e [ 0 , l ] ,  Deg(I -  T2(X) ,B2(0 ,1 ) ,0 )  = D e g ( I ,B2(0 ,1 ) ,0 )  = {1} .

In Ê  -  N(I -  T(x ) )  we use the homotopy
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H (x ,t)  = (2 t  - l ) x  -  z  P  t j / k  (2 t  -  l ) (k"j " kB.x fo r
j =1 ,

x e B-| ( 0 91) (the closed un it ball in E-j) and t  e [ 0 , l ] ,  which is easily  

seen to be continuous and well defined since { - l ) ^ k is a real number 

fo r  k odd.

Since is f i n i t e  dimensional we need only use the Brouwer degree.

As before, H (x ,t)  j* 0 fo r  a l l  x e 9B^(0,1) and t  c [ 0 , l ] ,  For, 

suppose the contrary, then there is x e aB^(0 ,1 ) and t  e [ 0 , l ]  such that  

H (x ,t )  = 0 .  I f  t  = ^  then ^B^x = 0 and,by hypothesis (H10)sx = 0.

Note that i f  k -  1, then B^x = 0 implies that ^0B-jX = 0 and, since 

x e N(I -  ^0B )9 in this case we must have x = 0. So t  f  h  and 

x - T.j(Xt"^k/ ( 2 t - l ) ^ k)x = 0, which implies that  

x - T ( I ( t / 2 t - l  ) ^ k)x = 0, since x e E^. Thus, by assumption (H12), 

x o  = unless x = 0. However, ^ies the range

( “°°,0] U [ ! , « ) ,  so th is is impossible. Therefore x = 0, contradicting  

the fac t that || x || = 1 .  Hence H is a valid homotopy and by the homo­

topy property fo r  Brouwer degree

deg ( I  - T-j (X) ,B-j (0 ,1 ) ,0) = deg(-I ,B] (0 ,1 ) ,0)

= (_-j)dim N(I - T (xq) }

= - 1 .

Note, the fa c t that deg(-I,B^ (0 ,1 ) ,0) = ( - l ) v , where v is the dimension 

of the underlying space (in our case N(I - T(XQ)) is a well known re­

su lt and follows easily  from the de fin it ion  of the Brouwer degree, c f, 

Lloyd [16], Hence by Theorem 3 .9 ,

Deg(I - T (a) ,B ( 0 ,1 } ,0 )  = deg(I -  T] (X) ,B1(0 ,1 ) ,0 )  Deg(I - T2 ( D ,B 2(0 ,1 ) ,0 )

= {-.!},

and, therefore , Deg(I - T (x ),G ,0 ) f  Deg( I -  T(A_),G,0) where we have ap­

plied (P 5 .) .  This is the required resu lt .
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Another set of hypotheses is possible when X is a H ilb e rt  space.

Theorem 3.12 Consider problem (2 .1 ) when X is a H ilb e rt  space with addi­

tional hypotheses (H7), (H8), (H9) and (H U ) .  I f  dim{N( I -  T(x ) ) }  is
k 0

odd and (B.x ,x) > 0 for a l l  x e N(I -  T(x ) ) ,  with E (B .x ,x)  > 0 fo r  J -  o j=1 j
a l l  non zero x e N(I - T(x ) } ,  then the conclusion of Theorem 3.11 holds.

Proof: The proof is almost identical to Theorem 1.25 of Toland [41],

but we give i t  here for completeness.

Exactly as in the proof of Theorem 3.11 we may show that 

Deg(I -  T (x ),G ,0 ) = {1} and th a t ,  on E2 , Deg(I -  T2Cx),G,0) = { ! } .

In E-j = N(I -  T(x ) )  we use the homotopy H : ETj"(0,l) x [0 ,1] -*E-j 

defined by
k
z

We shall prove that H is a va lid  homotopy fo r  Brouwer degree. F irs t

H (x ,t )  -  (2 t  -  l )x  - t  z  X ^  B.x, fo r  each x e B-.(091) and t  e [0 , l ]
j = i  J

notice that the uniform continuity assumptions on H ( . , t )  hold. Also,

suppose there ex is t x e 3B-j(0,l) and t  e [0 , l ]  such that H (x , t )  = 0.

Then i t  is easily  seen that t  f  0 and t  f  1. I f  t  = h  we have 
k - ih  z  xJ (B .x ,x) = 0 which implies, by the monotonicity assumptions

j =1 J t  k - j „that x -  0. Thus t  f  h *  and so x = y y y  }  X B .x, or
J 1

llx l l 2 = 7 r r  z *’J'(Bix,x).
j= i  J

B.ut x e aB, (0,1) c E-j = N(I - T(XQ)) j therefore
k ■ p k *

x = E X „J B ,x  and II x II ^ = E XnJ ( B , x , x ) .  
j=1 0 J J -l 0 3

k
Hence z  (XQJ' - -^y^y) *"J ) (B jx >x ) = however, t  e (0,1 ) \ ^  implies

f 1 i
that ^ y  e u ( ! • “ )» from which we see that x0 “ 2 F T  is
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e ith er  negative or greater than x , fo r  each j  e IN, which again contra­

dicts the monotonicity assumptions. We have, thus, shown that H is a 

valid  homotopy and by the homotopy proper fo r  Brouwer degree, 

deg ( I  - T-j (?T) ,B-j (0 ,1 ) ,0) = aeg(-I,B-| (0 ,1 ) ,0) = -1 ,  s in ce '  

dim E-j is an odd number. The resu lt  follows exactly as in the proof 

of Theorem 3.11.

Remarks (1) As previously noted, Theorems 3.11 and 3.12 are sim ilar to 

Theorems 1.24 and 1.25 of Toland, [41] and exactly the same homotopies 

are used; however, we obtain a d i f fe re n t  decomposition of the space by 

assuming condition (H9), which Toland never considered. We have also

replaced the compactness condition on the B.'s by the more general A-
\J

properness assumption and extended the m ultip lica tio n  resu lt  of 

Krasnosel‘s k i i , to generalised degree.

(2) We could obtain s im ilar results to Toland [41] by replacing 

hypothesis (H9) by an assumption that

X = N (( I  -  T (xq) ) p) « R (( I  -  T U q) ) p) fo r  some p e IN and

dim{N(I -  T U 0 ) ) P} is f i n i t e .  In this case we obtain analogues of 

Theorems 3.11 and 3.12 replacing the condition that dim N(I -  T (xq) )  

is odd by the condition that dim N(I -  T (xq) ) p is odd. Notice that i f  

we reta in  the Fredholm of index zero property o f (H9), but replace the 

transversality  assumption by the condition that I -  T (xq) has f in i t e  

ascent p, then th is  decomposition of X holds due to the Fredholm of 

index zero property.

(3) By removing the compactness property on the B .̂'s we lose the 

resu lt of Friedman and Shinbrot [9] invoked, by Toland [41], which 

guarantees that the set C^(T) is a discrete set with no f in i t e  l im i t
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points and is bounded away from zero. This resu lt  ensures that there

is a smallest positive element of C^CO, which is iso lated. Since this

fact is crucial to the method, we had to assume that such an element

exists . I t  is not obvious that this assumption is v a lid .  The fo llow­

ing example, however, indicates that there are l in ear  operators which 

satis fy  our assumptions, but f a l l  outside that covered by Toland.

Let X be a Banach space and C : X X be a compact l in ear map. 

Define T(x) = AC + X2C + X3I .

Then I -  T (x) = (1 -  X3 ) I  -  X(1 + x)C

= (1 -  A3 ) ( I  - Xi L l _ U c )  , for x f  1
{ 1 * *

-2C , fo r  X = 1

= 0  -  x3 ) ( I  -  u (x )c ) , fo r  X f  1

{ -2C , fo r  X = 1,

where y(x) = + ~X
1 -  xJ

Thus, I -  T (x ) is A-proper fo r  a l l  x f  1. We suppose that the 

smallest positive ch aracteris tic  value of C is yQ = 6 /7 . This corre­

sponds to XQ =  h .  By considering the graph of y(x ) we see that y(x) 

increases fo r  X between 0 and 1. Also y(x) has a positive  maximum of 

approximately 0.23 fo r  x in the range ( - “ ,0] which occurs between -2  

and -3 . Furthermore, y(x) is always negative fo r  X > 1. Hence 

XQ = h  is the smallest positive element in C^(T) and is isolated since 

C is compact.

Thus, i f  R is compact or ball-condensing, or -R is accretive and 

s a tis f ies  a smallness condition, then we can sa tis fy  hypotheses (H I) - 

(H4) of problem (2 .1 ) ;  furthermore, hypotheses (H7), (H8), (H I0) and 

(HI 1) are easily  seen to hold. We shall give conditions under which 

(H9) and (H12) also hold. F irs t  consider (H12). Suppose, fo r
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XQ = h i  there is 0 f  x e X with ( I  -  T(Xq))x  = ( I  - T(%)x = 0 or,

equivalently , ( I  -  y  C)x = 0. Then, in order that ( I  -  T (x ))x  = 0,

we must have e ith e r ,  ( I  -  y(x)C)x = 0 i f  X f  1, or -2Cx = 0 i f  X = 1.
fi 6But since ( I  -  y  C)x -  0 implies that x = y  Cx, then equality

c
( I  -  y ( X) C)x = 0 may be rewritten as ( y  - y(x))Cx = 0, which gives

y(x) = j  and X -  Also -2Cx = 0 implies that x = y  Cx = 0. Thus,

we have shown that (H I2) holds. Before imposing a fu rth er  condition 

on C to make (H9) true , we observe, from the previous remark (2 ), that 

Theorems 3.11 and 3.12 give a global b ifurcation resu lt  when (H9) is  

replaced by an assumption that X = N(I - T(X J)*5 © R(I -  T(Xq))P , for  

some p e IN and dim{N(I - T(Xq))P} is f in i t e  and an odd number. Well
/r

in this case we have Xq = \  with I - T(xq) = I -  y  C, and the compact­

ness of C ensures that such a p e IN ex ists , and we may assume that 

dim(N( I - j  C)p} is an odd number. A special case of th is s ituation  

is when p = 1 and dim{N(I - y  C)} is an odd number. We now show that  

the transversality  condition H9 holds under this assumption. I t  is re ­

quired that

( I  - y(x)C) N(I - J  C) n R(I - J  C) = {0} for  X f h  and \  f  1 ,

and C. N(I  -  I- C) n R(I -  j  C) = {0} for  X = 1.

The f i r s t  observation is that when X f  \  and X f  1, then

( I  -  u(X)C) N(I -  f -C )  = ( I  -  | -C  -  (y (x) -  f ) C )  N(I -  j  C)

= (y (x ) - f-)C N(I -  f  C)

= C N(I -  % C), since n(X) f  j  for  X j  .

Thus to v e r ify  (H9) we need only show that
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C N ( I  -  J  C)  n R ( I  -  y  C)  =  { 0 } .

Suppose there are x, y e X such that ( I  -  y  C)x = 0 and

Cx = ( I  -  y  C)y .

Then x = y  Cx and t  x = Cx. So ( I  -  y  C)Cx = | ( I  -  y  C)x = 0,

which implies Cx e N(I -  y  C) fl R(I -  y  C) = {01.

Hence (H9) holds.

F ina lly  when X is a H ilb ert  space and x e N(I -  T(x ) ) ,  then

( I  - j  C)x = 0 and x = y -  Cx. So (Cx5x) = (~  x sx) = ^  || x || 2 >_ 0. Thus

the p o s it iv i ty  conditions of Theorem 3.12 are also s a t is f ie d .

We have shown that the conditions (HI) -  (H4) and (H7) - (H I2) can

be s a tis f ied  fo r  the above problem which fa l ls  outside the class of

problem covered by To!and [41] : in in f in i t e  dimensional spaces I is 

not compact.

From the previous theorems and remarks, we may deduce the fo llow­

ing global b ifurcation resu lt .

Theorem 3.13 Consider problem (2 .1 ) with the additional hypotheses 

(H7), (H8) and ( H l l ) .  Then Xq is a global b ifurcation point of prob­

lem (2 .1 ) i f  a t least one of the following hypotheses is sa tis f ied :

(1) Assumptions (H9), (HI0) and (H12) hold and dim{N(I -  T(Xq) ) }  

is an odd number;

(2) Assumptions ( HI0) and (H I2) hold and there exists p e IN with 

dim{(N(I -  T ( x ) ) ^ ) }  an odd number and

X = N ( ( I  -  T(x0) ) p) « R( ( I -  T(X0 ) ) P);

(3) X is a H i lber t  space with (B.x ,x) >_ 0 for  each j  = 1, 2  k
kJ

and a l l  x e N(I -  T ( x J ) ;  X (B.x ,x) > 0 fo r  a l l
J=1 , ,x e N(I -  T(x ))  with x f  0 ,  and, e i ther  assumption (H9) 

holds with dim{N(I - T(X ) ) }  an odd number, or there exists
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p e IN with{dim N( ( I  -  T(Aq) ) p)}' an odd number and

X -  N (( I  - T(X0 ))P) © R(( I -  T(Ao) ) p).

Proof; Follows from Theorems 2.10, 3.11 and 3.12 and Remark (2) above.

Remarks (1) In Chapter Four, Theorem 4.15 we prove a more general result  

than 3 .1 3 (3 ).  In p a r t ic u la r ,  we replace I by the more general bounded, l in ear  

operator A and we do not require that the B. 1s commute.
J

(2) There are some problems which sa tis fy  a l l  the hypotheses of both 

sections 3.1 and 3 .2 . By comparing Theorems 3.3 and 3.13 i t  is easily  

seen th a t ,  when X = Y, A = I ,  T(A) = AB with B X X l in e a r  and compact;

Aq is the smallest positive element in C^(T), (0,Aq) c  (a ,b ) and'C^(T) f  (a ,b );

then, by e ith er  theorem, Aq is a global bifurcation point o f problem (2 .1 )  

i f :

(1) BN( I -  AqB) fl R(I -  AqB) = {01 and dim N(I = AqB) is an odd number; 

or,

(2) dim{N((I -  AqB)p)}  is an odd number, where p is the ascent of 

I -  AoB.

This follows easily  since hypotheses (H5) and (H6) of §3.1 and 

(H7) - (H12) of §3.2 are a l l  s a tis f ie d .
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CHAPTER FOUR

GLOBAL BIFURCATION OF FREDHQLM 

MAPS OF INDEX ZERO

Introduction

In this chapter we derive global b ifurcation results fo r  problem

(2 .1 ) by decomposing A - T(x ) into H - C, where is some isolated  

element in CA(T) n (a ,b ) ,  H is a l in ear  homeomorphism, and C is a 

bounded lin ear  operator. In §4.1 we use this decomposition to trans­

form equation (2 .1 ) from A -  T(x) - R ( . ,x )  : X +  Y into

I -  CH~̂  - (T (x) - T(x JJH"1 - R(H“^ ( . ) ,A )  : Y Y for each X e (a ,b ) ,  where

the transformed equation has the same continuity conditions and analogous A-

properness conditions to the o r ig in a l.  In fa c t  we prove, by a suitable  

d e fin it io n  of global b ifurcation , that a global b ifurcation point of 

the new equation is necessarily a global b ifurcation point of the o r i ­

ginal equation. Then, by exploiting the id en tity  operator, which is 

present in the new equation,we prove a global b ifurcation resu lt  via 

the methods of Chapter Two which consequently holds fo r  the orig inal 

equation.

In §4.2 we f i r s t  assume that A - T (XQ) is Fredholm of index zero 

and that the transversality  assumption

(A - T (x ) ) N (A -  T(X0 ) ) n R(A - T(XQ)) = {0} holds fo r a l l  X f  XQ. 

Then,from Theorem 1 .1 4 ,we deduce that a decomposition of A -  T(xq)

= H - C exists with the property that C is l in ear and compact. The 

methods of §4.1 are then used to prove a global b ifurcation resu lt  fo r  

problem (2 .1 ) when T(x) = XB, where, by making a judicious choice for
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H and C, we obtain our resu lt  when dim{N(A - is an odd number.

We then extend the method to cover the more general case where 

k iT (a) = s AJB. with k f i n i t e  or in f in i t e ;  however, we must have 
j= i  J

X -  Y a H ilb e rt  space and impose a p o s it iv i ty  condition on N(A - xqB).

We prove two results here: one when aq > 0 and k is f i n i t e ,  the other

when A = 0 and k may be in f in i t e ,  o
In the f in a l section we study the same problem but do not assume 

that the transversality  condition holds. We do not suppose that 

A - T(x ) is Fredholm of index zero d ire c t ly ,  but, as in §4.1, that 

A - T(A ) can be decomposed into H -  C, where C is a general bounded, 

l in e a r  mapping, not necessarily compact. A s u ff ic ie n t  condition for  

global b ifu rcation , depending upon the mappings C and H, is then proved 

Other additional conditions assumed in th is proof imply that A - T(x ) 

is ,  in fa c t ,  Fredholm of index zero, and so as before H -  C certa in ly  

exists and C can be chosen to be compact. Since the results here, how­

ever, depend e x p l ic i t ly  on C and H we must know what these mappings are 

In some cases there may be a decomposition H - C read ily  ava ilab le ,  

where C is not compact, with no obvious method of obtaining an e x p l ic i t  

a lte rna tive  decomposition in which C is compact. Of course, the method 

works equally well i f  we can find e x p l ic i t ly  a decomposition with C 

compact, provided the other hypotheses are s a t is f ie d , and the proof 

in this case is much simpler than the one we give fo r  general C.

4.1 The general operator decomposition

Assume problem (2 .1 ) holds with the additional hypotheses:

(A5.) For some isolated Aq e C^(T) H (a ,b ) ,  A - T(Aq) can be de­

composed into H - C where H : X Y is a l in e a r  homeomorphism and
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C : X Y is l inear  and continuous;

(A6.) For a decomposition, as in (A5.) there ex ist  t -j > 0 

and Tr> > 0 such that A - T(x) - £C is A-proper with respect to r ,

for  a l l  X and s with JX - XQ| < and \ z \  <

Once again we are seeking su f f ic ien t  conditions fo r  XQ, sa t is fy ­

ing hypothesis (A5 . ) ,  to be a global bifurcation point of problem (2 .1 ) .

From (A5.) we may rewrite equation (2.1) in the form;

F(x,x) -  Ax - T(Xq) x -  (T(x) -  T(X0 ))x  - R(x,x)

*  Hx -  Cx - (T(x) - T(Xq)),x -  R(x,X) = 0, 

where (x ,x)  e X x (R.

I f  we set y = Hx, then 

F(H_1 (y) ,X)  = y -  CH_1y -  (T(x) - T(X()) ) H '1y -  R(H_1 ( y ) , x )  = 0 (4 .1)

where (y ,x)  e Y x IR and F(H'1( . ) , . )  : Y x IR Y.

We w i l l  show that equation (4 .1)  may be used to obtain global b i ­

furcation resu lts ,  for  problem ( 2 .1 ) ,  via the methods of Chapter Two.

Our f i r s t  resu lt  is on the smallness of the non-l inearity  of equa­

tion (4 .1 ) .

Proposition 4.1 For X in bounded intervals,

I -  CH"1 - (T(x) - T ( xq))H"^ : Y ^ Y is the Frechet derivat ive of  

F(H“^ ( . ) , x )  at  the point 0.

Proof: F i rs t ,  I -  CH"1 - (T(x) - T(xq ) )H_1 is c lear ly  seen to be a

l in ear  continuous map. For X in bounded intervals we obtain from con­

dit ions (H3) and (H4) of problem (2 .1)  that R(H ^( 0 ) ,x) = 0 

and, i f  y /  0,

11 R(H~1(y).x) |1 = || R 11 H’ 1 ( y .).lL

| |H - ' ( y ) | |  I'
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~   ̂  ̂ ^  ^  ^ 0 as || y || 0  ̂ -̂ CT— V "wn

i* ^ w  / II kxsw x iU A  i,rCtc.rvxXs .

Hence, by Defin i t ion 1.6 of the Frechet derivat ive,  the result  follows.

The next result  t e l ls  us about the A-properness of  equation ( 4 .1 ) .

Proposition 4.2 F(H"^( . ) ,X )  and I -  CH"  ̂ - (T(X) - T(Xo))H~^ are A-

proper with respect to the admissible scheme = (H(Xn)sYn,Qn> for  a l l  

x e ( a ,b ) . Furthermore, provided |^| £  t^ ,

I - ( I  + - (T (x ) - T(Xo))H- "* is A-proper with respect to for

a l l  x such that |x - x | < t , .i o 1

Proof: F i rs t  we show that is admissible. Since H is a homeomorphism,

dim H(Xn) = dim Xn = dim Yn for each n e IN. Also fo r  each y e  Y,

d is t (y ,H (Xn))  = dist(Hx,H(Xn) ) ,  for  some x e X, so d is t (y ,H (Xn) )

<_ || H || d is t (x ,X n) 0 as n •+ by admissib il ity  of r .  Since

r is admissible, then, Qny y as n ®. So r H is admissible.

To see that F(H~^( . ) ,x )  is A-proper with respect to for

X e (a ,b ) ,  l e t  {x : x e H(Xn )} be a bounded sequence such that
J O  0

Q F(H”^(x ) , x ) -> y as j  fo r  y e Y. Then there exists
 ̂j   ̂j

z = H_1X e X with Q F(z„ ,x) •*- y as j  ■+ ■*>. Since {z  } is
" j  nJ nj  "o "o " j

bounded we may assume, by the A-properness of F fo r  x e (a ,b ) ,  that

there exists z e X such that z z as j  -> » and F ( z , x )  = y.
1 ^But z = H" xn z, so x - Hz = x (say) as j  00.

j  j  j
Hence z = H_1x and F(H ^ x ^ x )  = y ,  which proves that

F(H ( . ) , x )  is A-proper with respect to r^.

The above analysis shows that ,  i f  T : X Y is A-proper with re­

spect to r ,  then TH"  ̂ : Y Y is necessarily A-proper with respect

to r u. The resu lt  fo r  I  -  CH" 1 -  (T(x) - T ( x j H -1 follows s im i la r ly .H O
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Also I -  (1 + ?)CH_1 - (T(X) -  T(X ))H-1 = (A -  T(X) -  5C)H_1

and so, by hypotheses (A6. ) ,  for  a l l  X such that

|x -  X0 | < ^  with | 5 |  < t 2 , I -  ( 1 + ?)CH_1 -  (T(X) -  T(X0 ))H_1

is A-proper with respect to r^. Hence result  of Proposition.

Propositions 4.1 and 4.2 t e l l  us that the structure and A- 

properness properties, which were used to prove the global bifurcat ion  

results of Chapter Two, also hold fo r  equation (4.1). Since, in Chap­

te r  Two, we only used the fa c t  that our operators were A-proper with 

respect to some admissible scheme, then the theorems of Chapter Two ap­

ply equally well to equation (4 .1 ) .  Equivalently, we may regard (4 .1)  

as a par t icu la r  case of  problem (2 .1 ) ;  which is not surprising re a l ly ,  

in view of i ts  construction. We, therefore, make s imilar  defin it ions  

here to those made in Chapter Two.

Notice, by Proposition 4 .1 ,  that the set { (0 ,x )  : x e |R} is a solu­

tion set of equation (4 .1 ) ,  which we call  the set of  t r i v i a l  solutions,

and is equal to the corresponding t r i v i a l  solution set of equation (2 .1 ) .

Def in it ion 4.3

Ch(T) = {X e IR : N{I -  CH"1 -  (T(x) -  T(X0) ) H ' 1) f  {0 } } ;

s = { (y .x )  e Y xIR : F(H- 1 (y ) ,X )  = 0 with ||y || t  0};

S' = S U{(0,x)  e Y xIR : X e Ch (T)>

The sets C^(T), S and S1 are analogous to C^(T), S and S' of Chapter Two

and are related as follows.

Proposition 4.4  C^(T) = C^(T)

and S' = {(H"1(y ) ,x )  : (y ,x )  e S'}

Proof: By de f in i t ion  C^(T) = {X elR : N(A -  T (x))  ^{0}}



68

Now N(A -  T (X ) )

= N(A -  T(Xo) -  (T(x) -  T(X0 ) ) )

= N(H -  C -  (T(x) -  T(X0 ) ) )

= N( ( I  -  CH' 1 -  (T(x) -  T(Xo))H_1 )H)

= H' 1 N(I  -  CH' 1 -  (T(X) -  T(Xo) ) H ' 1) ;

i t  follows easily that C^(T) = Cj_|(T)* The result  on S' follows d irec t ly  

from the construction of equation (4.1).

Let us now generalise the concepts of algebraic and geometric mul­

t i p l i c i t y  of Chapter One.

Definit ion 4.5 For x e C^(T) the algebraic m u l t ip l ic i ty ,  denoted by

M (x), is given by a
CO ^

M (x) = dim{ U N (( I  -  CH' 1 -  (T(x) -  T(x ) ) H " ' ) n)> 
a n=l 0

Similar ly  the geometric m u l t ip l ic i ty  of x e C^(T) is given by

M (X) = dim{N(I -  CH" 1 -  (T(x) - T(X()) ) H '1) } .

A global bifurcation point of equation (4 .1)  is defined exactly

as in Defin it ion 2 .7 ,  for  equation 2.1 , replacing X, C^(T) and S' by
vs

respectively Y, CH(T) (equal to C^(T) by Proposition 4.4)  and S ' .  Then 

the following is true.

Theorem 4 . 6 XQ is a global bifurcation point of problem (2 .1)  i f  and 

only i f  i t  is a global bi furcation point of equation (4 .1 ) .

Proof: Immediate from Definit ion 2.7 and Proposition 4 .4 .

The preceding results enable us to prove the next important theorem.

Theorem 4.7 Consider problem (2 .1)  with the additional hypotheses (f\5.) 

and (A6.) .  Then XQ is a global bifurcation point of problem (2.1) i f
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there exists 6 > 0 such that Deg( I -  CH”1 - (T(A) -  T(x ))H”\ g , 0 )  

f  Deg(I -  CH"1 -  (T(A) - T(Aq)JH"1 ,G ,0 ) , for

Ao _ 5 < — < L̂o < ^ < A o + 59 where G is an a rb i t ra ry  open bounded set 

in Y containing zero.

Proof: By Propositions 4 .1 ,  4.2 and 4.4 we may regard equation (4.1)

as a special case of equation (2 .1)  and, from Theorem 2.10, obtain a 

global bifurcation resu l t ,  at \ Q e C^(T) = CA(T ) ,  of equation (4 .1 ) ,  

when the above degree property holds. Theorem 4.6 then gives us the 

required resu lt .

Remark For the rest of th is  chapter we shall consider additional hypo­

theses which ensure that the degree result  in Theorem 4.7 holds.

4.2 The Transversal ity Condition

Consider problem (2 .1)  with the additional hypotheses: 
k i(A7 . )  T (A) = £ A B •, where k is a posit ive integer,  or is in f in i t e ;

0=1 J
(A8.) there exists an isolated element XQ of C^(T) fl (a ,b ) ,  and

A -  T (A ) is Fredholm of index zero-where,  i f  k  ̂ 1, e i ther;o
(A9.) Aq  ̂ 0 and k > 1 is f i n i t e ,  X = Y is a H i lber t  space, 0 e (a ,b ) ,

and aq is : - CL posit ive element in C^(T) (1 (a ,b ) ;

there exists n > 0 such that N(A -  T ( aq)) and R(A - T ( aq))  are

invariant under A - T ( a ) ,  whenever A e (CsAq + n) fl (a ,b);

for a l l  x e N(A -  T(a ) ) ,  (B..x,x) >_ 0 (i  = 1 , . . . ,k) and

2 (B.x,x) > 0 for  a l l  0 f  x e N(A - T(aq) ) ;  or,  
j = l  3

(A10.) Aq = 0 and k > 1, possibly i n f i n i t e ,  X = Y is a H i lbert  

space and there exists n > 0 such that N(A - T ( a )) and
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R(A -  T(X ))  are invariant under A - T(A),  whenever 

x e (0 ,n) H (a ,b ) ;  {B.} is a uniformly bounded sequence of 

bounded l inear  operators; that is ,  sup{|| B.|| : j  e IN} is

f i n i t e ;  for  a l l  x e M(A - T ( a ) ) ,  (B.jX,x) :> 0 for every 

i = l , 2 , . . . , k ,  and (B^x,x) > 0 for  a l l  0 f  x e N(A - T(ao) ) .

( A l l . )  The transversal i ty  condition,

(A - T ( a ) )  N (A -  T (aq))  n R(A - T ( aq)) = {0} ,

holds for  a l l  A e (a,b) with A f  A .

When k = 1 th is condition is equivalent to

B N ( A  -  A q B )  0  R ( A  -  A QB )  =  { 0 } .

From hypothesis (A8. ) ,  Theorem 1.14 t e l ls  us that A - T (XQ) can 

be decomposed into H-C with H a l inear  homeomorphism and C l inear  and 

compact. Hence hypotheses (A5.) and (A6.) of §4.1 are sat is f ied and 

the methods of that section may be used here.

The transversal i ty  condition ( A l l . )  is a generalisation Df assump­

tion (H9.) of §3.2 with the ident i ty  I replaced by A. We can prove an 

analogous result  to Proposition 3.10.

Proposition 4.8 ( i . )  I f  k = 1, then

X = N(A - AqB) © X2 ,

Y = BN(A -  A q B )  © R(A -  A q B ) ,

where X2 = (A -  A1B)”1R(A -  Aq B )  for  a fixed A-j f  AQ with A-j j t  CA(T) and 

A.| e (a ,b ) ;  furthermore, dim{BN(A - XqB)> -  dim N(A -  which is

f i n i t e  by A-properness; A(X^) c R(A - X q B ) ,  B(X2) c R(A - A q B )  and 

(A - p B ) X 2 c R(A -  Aq B )  for  a l l  y e (a ,b ) .

( i i . )  I f  k > 1, then X -  Y = N(A - T(aq))  © R(A -  T(xo))> 

and s N Â " T { \ ) ]  c N Â " T X̂o ^ s for  a11 X e (°>x0 + n)n (a ,b ) .
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Proof: ( i . )  As in the proof of Proposition 3.10, replacing I by A and

T(A) by AB, we may show that
X 2

N( (A - AoB)(A - A^B) ) = N( (A -  Aq B ) ( A  - Â B ) Now since

A -  a x B is a homeomorphism i t  is Fredholm of index zero and, by Re­

mark (4) following Defin it ion 1.13 and hypothesis (A8. ) ,  i t  follows that  

(A - Aq B ) ( A  -  A-|B)_1 is Fredholm of index zero. Hence, as in the proof

of Proposition 3.10, th is  implies that the ascent and descent of

(A - A q B ) ( A  - a ^ B )  are both equal to one, so 

Y = N((A -  XqB)(A -  X-jB)'1) © R((A -  XQB)(A -  X ^ ) " 1 )

= (A -  X-jB) N (A -  XqB) © R(A -  I  B)

= (A -  XqB -  (X1 -  Xq)B) N (A -  XqB) © R(A -  XQB)

= BN(A -  X B) © R(A -  X B), 

and

X = N(A -  X B) © (A -  X-jB)'1 R (A -  XQB)

= N(A -  XQB) © X2 ,

where X2 = (A -  X-jB)"^ R (A -  XQB).

Since A -  a^B is  a homeomorphism and 

dim{N(A - Aq B ) }  is f i n i t e  by A-properness of A - A0B, then

dim{N(A - AQB)} = dim{(A -  A-jB) N (A -  AQB)}

= dim{B N (A - AqB ) } . .

Next we prove that (A - yB) c R(A -  AQB) for  a l l  y e ( a ,b ) .

We have that (A - \.|B)X2 = R(A -  A B). Let x2 be an arb i t ra ry  e le ­

ment of X^. Then, there exists x e X such that  

(A - x-|B) x2 = " Aq B ) x , therefore

(A -  XqB -  (X1 -  X0 )B)x2 = (A -  XqB)x .

So, - (X ,  -  X )Bx2 = (A -  XqB)(x -  x2) and

Bx2 = (A -  XqB)(x -  x2 ) / ( X 0 -  x p .  Thus, BX2 c  R(A -  XqB). Also
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Ax2 = + (A -  ^0B)x, so AX2 c R(A - A B), which implies that

(A - yB) X2 c R(A - AQB) for  a l l  y e (a ,b) .

( i i -) By the same procedure as in ( i . )  we may prove that

X = Y = (A - T(X-j))  N (A - T(Xq)) ® R(A -  T( aq) ) ,  for  some fixed

A-j £(a,b) fl (0, XQ + n) with x̂  £  C^(T) (n as defined in (A9.) o r  (A10.)) .  

But from (A9.) o r  (A10.) ,  N (A - T(XQ)) is invariant under (A - T(A-j)) 

and by A-properness, N(A - T(x ))  is f i n i t e  dimensional. Hence 

(A - T(X-j)) N (A - T(xq) ) = N(A -  T (A0 )) and> therefore,

X = Y = N(A - T (xq) ) © R(A - T(Xo) ) .

F inal ly  notice that

(A .  T(X))  N (A - T(X0 ))  = (A - T(Xq) - (T(x) -  T(XQ) ) )  N (A - T(Xq))

= -  (T(A) - T(xo)) N (A -  T(Ao))

= ,Ek(xj  -  X0j )Bj N (A - T U 0 ))

c N (A -  T(Xq) ) ,  for  a l l  X e(a,b)  fl (0, XQ + n) ,  

by hypotheses (A9.) o r  (A10.)

Remark I f  A -  T (X) and A -  T(x ) commute for  every X e (a ,b ) ,  then i t  is 

easily seen that the decomposition in Proposition 4.8 ( i i . )  holds.

We shall now choose H and C in a part icular  way, which w i l l  reduce 

the algebraic m u l t ip l ic i ty  M (A 1 to the geometric m u l t ip l ic i ty  NL(x ).
a  0  y  O

Proposition 4.9 A - T(x ) may be decomposed into H -  C, where:

( i . )  i f  k = 1, C : X BN (A - XqB) is defined by

Cx = C(x  ̂+ x2 ) = Bx-j, with x-j e N(A - XqB) and x2 e X2 ;

( i i . )  i f  k > 1, C : X -> N(A - T(x ))  is defined by

Cx = C(x-j + x2 ) = -(A -  T (x ) )x - j , with
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x-j e N(A - T(x ) ) ,  x2 £ R(A - T(X ) ) ,  where X is f ixed,

A £ (Aq, Aq + n) n (a,b) and 0 < X - xq < dis-t(XQ, CA( T ) \ { aq>).

In ( i . )  and ( i i . ) ,  H is defined by Hx *= (A - T(x ) + C)x, for  each 

x e X. Then, in both cases, C is compact and H is a homeomorphism.

Proof: Note tha t ,  since |x -  x | < n and x e (a ,b ) ,  then (A9.) o r  (A10.)

imply that C in ( i i . )  maps X into N(A -  T(x ) ) .  Decompositions

x = x-j + x2 in ( i . )  and ( i i . )  are guaranteed by Proposition 4.8.  Since 

BN(A - xqB) in ( i . ) ,  and N(A -  T(x ))  in ( i i . ) ,  are both f i n i t e  dimen­

sional, then C is compact. H is ,  therefore, A-proper, and by Theorem

1.9 we need only show that H is in ject ive  to complete the proof.

Suppose Hx = 0 ,  then (A - T(x ) + C)x = 0, which implies that  

(A - T (xq) ) x = -Cx. Thus:

( i . )  When k = 1, x = x-| + x2 , where x-j e N(A - x B), x2 e X2 and 

(A - XqB)x2 = -Bx-j, so Bx1 e BN(A - XqB) fl R(A -  XqB) = {0} by (A12.).

Since (A - XqB)x  ̂ = 0, i t  follows that Ax-j = 0 and therefore (A - XB)x-j = 0 

for  any X £  C^(T). This implies that x-j = 0. Also

x2 e N(A -  XqB) fl X2 = {0 } ,  by Proposition 4 .8 ,  therefore x = x-j + x2 = 0 

and H is in jec t ive .

( i i . )  When k > 1, x = x-j + x2 , where 

x-j e W(A - T(Xq ) ) ,  x2 e R(A - T(XQ)) and (A -  T(X^))x2 ~ (A - T(x))x-j ,  so

(A - T (X) ) x-j £ (A - T (X))  N (A - T(XQ)) fl R(A -  T(Xq ) )  = {0 } ,  by ( A l l . ) .

Hence, x-j = 0, and x2 £ N(A - T(x ))  fl R(A -  T (xq ) )  = {0} by Proposition 

4.8.  Thus, x = x-j + x2 = 0 and H is in jec t ive .  This completes the proof.

Proposition 4.10 The algebraic m u l t ip l ic i ty  M ( A ) is independent of 

H and C and is given by the f i n i t e  number 

Ma(X0 ) -  dim{N(A - T(XQ))>
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(which equals dim{N(I - CH ) } ) ,  the geometric m u l t ip l ic i ty  of x .

Proof: Since C maps X into the complement of R(A - T(Xq) ) ,  then

(A - T(X0) + C)N(A - T(Xq))  n R(A - T(XQ))  = {0}.

However, A - T(x ) + C = H, therefore,

H N(A -  T(XQ))  = N((A -  T(X0))H’ 1)

= N((H -  C)H_1)

= N(I -  CH'1 ) 

and R(A -  T(x ) )  = R(I -  CH'1)

Hence N(I -  CH'1 ) fl R(I -  CH'1 ) = { 0 } ,  which implies that  

N(I -  CH'1) = N(I -  CH'1 )2 . For i f  ( I  - C H ' V y  = 0, then

( I  -  CH'1 )y e R(I -  CH'1) fl N(I -  CH'1 ) = {0} .
-1 9 -1Hence N( ( I - CH ) ) c_ N(I -  CH ) and, since the reverse inclusion

is always va l id ,  equal ity holds. Thus

Ma(XQ) * dim{N(I - CHr l )> = dim{N(A -  T(XQ) )} = Mg(A0 )-

We now prove one of the main results in th is  section.

Theorem 4.11 Consider problem (2.1) with the additional hypotheses (A7. ) ,  

(A8.) and ( A l l . )  with k = l . Suppose that dim{N(A - xqB)} is an odd number.

Defi ne

6 = m in { l , d is t (x o,CA(xoB)\{xo}), XQ - a, b -  XQ ^ .

Then

Deg(I -  CH"1 -  (x -  Xo)BH'1 ,G,0) f  Deg(I -  CH"1 -  ( I  -  Xo)BH'1 ,G,0)

for x0 - 6. < 1  < X0 < "x < XQ + 6, where G is an arb i t ra ry  open, bounded 

set in Y containing zero, with C and H as defined in Proposition 4.9 ( i . ) .

Proof: F i rs t  we prove that

deg.s ( I  -  t  CH_1,G,0) = -degLS( i  -  t  CH_1,G,0) (4 .2)
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f ° r  0 1 - 6 < t _ < l < t < l + - 6 .

We may apply the Leray-Schauder Formulas cf .  §1.4 preceding Defi­

n it ion 1.17, provided that t_and t  are not character ist ic  values of

o e CAICH . Note th a t ,  since X e C»(T)» then 1 is a character ist ic  value

of CH"1; we shall prove that 1 is the only character ist ic  value of  
_1

CH . Suppose, for  some t  f  1, there exists y e  Y with || y || = 1  such 

that y -  tCH_1y = 0, then, y -  CH_1y -  ( t  -  1)CH_1y = 0, so

(A -  XqB -  ( t  - l )C)H_1y = 0.

Let H y = w = w-j + w^, where ŵ  e N(A - AoB) and w2 e X2> Then

(A -  * QB)w2 = ( t  -  1 )C(w-| + w 2) = ( t  -  1) Bw-|.

However, as we noted in the proof of Proposition 4 .9 ,  (A -  xB)N(A - AqB) 

= BN(A -  xqB)s so by hypothesis ( A l l . ) ,

(A - XqB)w2 e BN(A -  AqB) D R(A - AqB) = {0} .

Thus w2 e N(A - AQB) n ^  ^  by Proposition 4.8 ( i . ) ,  implying that

( t  -  1) Bŵ  = 0. Hence Bw-j = 0, and, since Aw-j = AqBw-| = 0, then

(A -  aB)w-j = 0 for  A  ̂ Aq with A  ̂ C^(AB) and so ŵ  = 0. Thus w = 0

and, therefore, y = 0, which contradicts || y || = 1. We have shown that
-11 is the only element in ch(CH ) and so by the Leray-Schauder Formula

degLS( I  -  t  CH- 1 ,G,0) = ( - 1 ) °  = 1

and degLS( I  -  t  C H ' fa .O )  -  {n°=lN ( ( I  “

f t  „  1 , n  ,

But from the proof of Proposition 4.10,  diim {U N( ( I -  CH ) )}
n=l

= dim{N(A - AQB)} .  Hence

degLS( I  -  t  C H 'L g .O) = -1 dl,Il{N(A '  xoB }̂
= -1.

So equation (4 .2)  holds.
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To complete the proof we use a homotopy argument. Define the 

homotopy H : (T x [0,1] + Y by

H(y,s) = y -  st CH_1y -  (1 -  s)CH_1y - (1 -  s ) ( t  -  l)BH_1y .

for each (y ,s)  e G" x [0 ,1 ] .

Let us rewrite this in the form

H(y,s) = y -  (l + s(t -  I))0H"1y -  (1 -  s)(t - I)BH'V

Now, since | s( -  1) | < 6 £  for a l l  s e [0 , l  ] and

| (1 - s ) ( t _ -  1)| < 6 £  , then by Proposition 4 ,2 ,  H ( . ,s )  is A-proper

with respect to fo r  a l l  s e [ 0 , l ] .  Clearly H ( . ,s )  is continuous, 

uniformly on closed, bounded subsets of Y. We shall prove that

H(3G,s) f  0 for each s e [ 0 , l ] .  Suppose the contrary, then there is

y e §G and s e [ 0 , l ]  such that

y -  (1 + s ( t  -  l))CH-1y -  (1 -  s ) ( t  -  l)BH-1y = 0 , y M .  I f  s = 0,

this implies that t  ■ 1 e C^(T), which is impossible since 

| (jt -  1)| < 6 <_ d i s t U 0 ,CA( T ) \ U 0} ) . Also i f  s -  1, then 

t  e ch(CH~**) and by the f i r s t  part of the proof this implies that t, = 1

which is a contradiction. Thus s  ̂ 0 and s f  1. We may rewrite the

above equation in the form

[H -  C -  ( I  -  s ) ( t  -  1)B -  s ( t  -  1 )C ]H ’ V  = 0.

-1Setting H -  C = A - xqB and H y = x = x-j +x2 , where

x-j e N(A -  XqB) and x2 e X,>, we have

[A - X B - (1 - s ) ( t  -  1)B -  s ( t  - l ) C ] ( x 1 + x2) = 0.

Therefore, replacing C, as in Proposition 4.9 ( i . ) 5 we find that
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(A - (XQ+ (1 - s ) ( t  -  1) )B)x2 = (1 - s ) { t  -  1 )Bx  ̂ + s ( t  -  l)Bx.j

= (t_ - 1 )Bx^

Now since 0 <  | (1 - s) (jt -  1) | < 5 <. min{Ao - a, b - Aq} , for  

s e ( 0 ,1 ) ,  i t  follows from Proposition 4 .8 ,  that

A -(A + (1 - s ) ( t  -  1))Bx2 e R(A - AqB). But ( t  -  1)Bx] eBN(A - AQB ).

Hence by assumption (A8.)

(A - ( a + (1 - s ) ( t  -  l )B )x 2 = ( t  - l)Bx1 = 0.

This implies that x2 = 0 and Bx-j = 0; however, (A - * 0B)x-j = 0, so

Ax-j = xqBx  ̂ = 0. Hence (A - AB)x  ̂ = 0, for  an a rb i t ra ry  A e(a,b) with

A j t  C^(T), and so x-j = 0. Thus x = 0 and therefore y = 0. This contra­

diction te l ls  us that H(96,s) f  0 for a l l  s e [ 0 , l ] .  Hence by the homo­

topy property (P 3 . ) ,

Deg ( I  - t  CH'fG.O) = Deg ( I  - CH"1 - ( t  -  D B H 'A g .O).

Using the homotopy

H(x,s) = I  -  s t  CH'1 -  (1 -  s)CH_1 - (1 -  s ) ( t  -  D B H '1

we may prove in the same way that

Deg(I -  t  CH'fG.O) = Deg ( I  -  CH"1 -  ( t  -  I ^ H " 1 ,G ,0 ) .

The resu lt  follows easily from equation (4 .2)  reca l l ing ,  c f .  

Theorem 1.18, that

Deg(I -  t  CH"1 ,G,0) = {degLS( I  -  t  CH_1,G,0)}

and replacing t_ - 1 and t  -  1 by, respectively, A_ -  Aq and A - A .

We have the corresponding global bi furcation resu lt .
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Theorem 4.12 Consider problem (2 .1)  with the additional hypotheses 

(A7. ) ,  (A8.) and ( A l l . )  with k = 1. Suppose that dim{N(A - xqB)} is an 

odd number. Then XQ is a global bifurcation point of problem (2 .1 ) .

Proof: Immediate from Theorems 4.7 and 4.11.

Remark Theorem 4.12 generalises Theorem 3.3 (1) to the case when B is

not necessarily compact. Here we do not need to assume that

Deg(A - XB,G,0) is a singleton for any X e (asb).

When XQ = 0 and X = Y is a H i lbert  space we can generalise Theorem

4.12 to the more general case, where T(x) = z  xJB.,  with k f i n i t e  or
j= i

i n f in i t e :  we prove this result  in Theorem 4.18.

In order to extend our results ,  when X ^  0, to the more general
k •

situation T(x) = e  x B-, where k > 1 and f i n i t e ,  we require a Lemma.
j= i  J

Lemma 4.13 Let K-j > 0 and 1<2 > 0 be two constants such that ,  for  XQ 

satisfying hypotheses (A7. ) ,  (A8.) and (A9.) ,

||(A - T(xo))x|| >_ K-j, for  a l l  x e R(A - T ( * 0 )) with ||x|| = 1,

and A - T (xq) + L is A-proper with respect to r for a l l  bounded l inear

operators L : X •*- X with

II L|| < K2 .

Note that K0 is guaranteed by Theorem 1.16.
k i iThen there exists 6 > 0 such that z  X0J |xJ -  1| ||B.||

0 j= l  J
< min{x ,K.| ,K2>, whenever |x -  1| < 6qJ with x > 0  f ixed.

Proof: F i rs t ,  we prove that K-j exists . Suppose not, then there exists 

a sequence (xn> in R(A -  T(x )) with ||xn || = 1 for each n e IN such that

II (A - T(A0 ) ) xJ | < 1 .  So (A -  T(X0) ) x n +  0 as n + «.
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By Theorem 1.10, {xn> is compact, therefor^ we may assume without 

loss of general ity that there exists x e X with ||x|| = 1 such that

xn x and (A - T(Xq) ) x = 0. Hence, x e N(A -  T(x )) fl R(A - T(X ))

= {0} by Proposition 4.8 ( i i . ) .  This contradiction implies that K-j 

exists.

Next we prove the inequali ty . I f  X = 1 the inequali ty is t r i v i a l .

When 0 <  | X | < 1 or |x| > 1, max{ | xJ' -  1 1 : 1 <_ j  £  k} = | X  ̂ -  1 1 so

£ v V  -  1| IIB. || < |xk -  1| max{|| B.|| : 1 < j  < k} z X 3
j= l  0 3 3 j= l  0 k

I, X„(l -  xn\
= |xK -  1| max{|| BjII : 1 < j  < k> ■° 1 _  ̂ p

i f  Xo f  1
{

k|xk -  1 1 max{ || B. || : 1 £  j  <_ k } , i f  XQ = 1

<K |xk -  1[ ,

where K is a f i n i t e  posit ive constant. The result  follows easily.

We can now prove an important degree result .

Theorem 4.14 Consider problem (2.1) with the additional hypotheses 

(A7.) - (A9.) and ( A l l . ) .  Suppose that dim{N(A - T ( xq))> is an odd 

number.

Define

6 = min{(XQ -  a ) ,  (b - XQ) ,  SQ, XQ, d is t (x 0>CA(T ) \ {X 0} ) ,n }

where 6 is as defined in Lemma 4.13. Then o

Deg(I -  CH-1 -  (T(x) -  T(Xo))H"1 ,G,0)

f  Deg(I -  CH'1 -  (T(x) -  T(xo) ) H '1 ,G,0)
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for Aq -  <$ < 1 < A o < a < 6 + Xo9 where G is an a rb i t ra ry  bounded open 

set in X containing zero and C is the compact map defined in Proposition

4.9 ( i i .)  by

C(x-| + x2) = -(A -  T(x))x-|

= -(A -  T(X0 ) -  (T(x) -  T(xQ) ) ) x 1

= (T( X) -  T(X0 ) ) x 1

k 1 i = E (x -  X J )B .x , ,
0=1

for x, e N(A -  T(x ) )  and x2 e R(A -  T(xo) ) ,  where X is an arb it ra ry  

fixed number such that 0 < x -  X < 6, and H = A -  T (xq) + C.

Proof: In a similar manner to the proof of Theorem 4.11,  we f i r s t

prove that

deg.s ( I  -  t  CH'1 , G,0) = -degLS( I  -  t  CH'1 ,G,0)

for 0 < 1 - SA < t < 1 < t < l  + 6/A < 2.
0 “  0 “

Suppose for  some t  f  19 there exists y e X with ]| y|| = 1 such that  

y -  t  CH_1y = 0.

Then >

y -  CH_1y -  ( t  -  T)CH_1y = 0, 

or [A -  T ( xq) -  ( t  -  l )C]H_1y = 0.

Let H y = w = w, + w2 , where w-j e N(A -  T (xq))  and w2 e R(A -  T (xq) ) .  

This decomposition is guaranteed by Proposition 4.8 ( i i . ) .  Then, from 

the de f in i t ion  of C,

(A -  T ( a0) w2 = ( t  -  1) C (w1 + w2)

= - ( t  - 1 ) (A -  T(x))w1

= ( t  -  l ) J i { A j  -  X0j )BjWl



81

But from Proposition 4.8 ( i i . )  and our choice of 

k i i( t  -  1) I  ( a -  A J )B.w. c N(A -  T(A ) ) .  Thus, again by Propositioi 
j= i  0

4.8 ( i i . ) ,

(A - T(Ao) ) w2 e N(A -  T(Aq)) fl R(A -  T(Aq))  *  {0} ,  and so,

w2 e N(A -  T(AQ))  8 R(A - T(A0 ))  = {0} .

Also, “ ( t  -  1) (A - T (A))w-| = 0, which implies that (A -  T (a ) ) w  ̂ = 0, 

and by our choice of A we must have w-j = 0.

Hence w = 0 and therefore y -  0, which contradicts || y|| = 1 .  

We have thus shown that 1 is the only characterist ic value of CH~^.

So as in the proof of Theorem 4.11 the Leray-Schauder degrees are re ­

lated as required.

To complete the proof we use the homotopy property (P3.) .

Let H : G x [0 ,1 ]  ^ X be defined by

H(y,s) = y -  s t  CH_1y - (1 -  s)CH_1y -  2 ((1 - s)A ̂ ' ( t 0* - 1)B.H"V»
j= i  0 J

where t  is a rb i t ra ry ,  but f ixed ,  such that 1 < t  < <5/Aq + 1.

We may rewrite H(y,s) as
k

H(y,s) = y -  CH_1y -  S ((1 -  s ) O j ( t J -  DB.ff ’ y -  s ( t  -  l)CH_1y
j =1 0 J

and since C is compact we need only prove that

I -  CH"”1 -  i  ((1 - s)A )^(t^ - 1 )BH“  ̂ is A-proper with respect to r^.
j= l

But we can write th is  operator as

(H -  C -  Z ((1 -  s ) x ) J ( t J -  1)B.)H-1 
j= l  0 J
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k * ,
Now || E ((1 -  s)A )J ( t J -  1 )B . || 

j= l  0 J
k i - i< E A J ( t 3 -  1)11 B II

j= l  0 J

< by Lemma 4.13 and our choice of <5.

Hence by Theorem 1.16 and the proof of Proposition 4.2 i t  follows

that H ( . ,s )  is A-proper with respect to for  a l l  s e [0 ,1 ] .  We show

that H(9G ,s ) 0 fo r  s e [0,1] by a contradiction argument. Indeed,

suppose H(y,s) = 0 fo r  some y e 9G and some s s [ 0 , l ] .

F i rs t  we prove that s f  0 and s f  1. I f  s = 0 then t  A e Ca(T)

which is a contradiction, since (tXQ - Aq) = A ( t  -  1) < ^ ” <5
o

<_ dist(Ao ,CA(T) \ { A 0} ) .  So s f  0.

— -1 I f  s = 1, then t  is a characterist ic value of CH , which is another con­

trad ic t ion ,  by the argument above. Thus s e ( 0 , l ) .  Now we have that ,

H(y,s) = (H -  C -  s ( t  -  1)C -  E ( 0  -  s)A ̂ ( t 3 -  D B J H ^ y  = 0
j= l  0 J

, k j k .
S e t t i n g  H y  = x = x ,  + x „ ,  w i t h  x,  e N(A -  E A „J B . )  and x „  e R(A >■ EA B . )

I C I j  = l *1 j  = l 9
we obtain,

k • k . . _
(A -  E A B. -  E ((1 -  s)A ) ( t  -  1)B. -  s ( t  -  l )C ) (x ,  + x?) = 0 

j= l  0=1 0 J
k k

So (A -  E A '3B . )x ,  + (A -  E ((1 -  s ) t A j J'B . )x ,  
j= l  0 J 1 j= l
k -i

-  (A -  E ( 0  -  s)A ) B . ) x «
j= l

k _
= E ( ( ( 1  -  S) t  A ) J -  a J )B .X ,  

j= l  0 0 0 1

k . J _  k . •
-  2 ( ( ( 1  -  s)A ) J -  A )B .X ,  + S ( t  -  1) E (A -  AnJ ) B . X i ,  ( 4 . 4 )j= l  0 0 J I j=1 0 J I

using the de f in i t ion  of C.
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Since o(l -  s) U Q and (1 - s) Aq both belong to the interval (0, Aq + n ) 9 

i t  follows by (A9.) and Proposition 4.8 ( i i . )  that the l e f t  hand side 

of equation (4.4) belongs to R(A -  T ( aq) ) ,  while the r igh t  hand side

belongs to N(A - T (aq) ) .  Hence both sides must equal zero by Proposi­

tion 4.8 . Thus

k .. k , ,
(A -  z \ . J B . ) x „  -  z ( (1 -  s ) X ) ( t  -  1 ) B , x 2 

j = l  J j = l  0 J

= E ( s ( t  -  l ) { X d -  X d ) + ((1 -  s)Xn ) j ( t d -  1 ) )B .X ,
j  = l  °  J

= 0 ( 4 .5 )

But 0 < (1 -  s )  < 1 ,  so 0 < (1 -  s ) d < 1 ,  XQd > 0 and (Xd -  XQd ) > 0

for each j  = l , . . . , k ;  and, by our choice of t 9 s ( t  -  1) > 0. Hence

taking the inner product of the r igh t  hand side of equation (4.5) with

x-j, i t  follows from (A9.) that (B.x^,x-|) = 0 for  each j  = l , . . . , k ,

which is a contradiction unless x-j = 0. Therefore, x = X2  = H y ^ O

and we may divide the l e f t  hand side of equation (4 .5 )  by || x2 || to

obtain

<» ■ -  j , {1 - s)xo)1 ( iJ  -  11bj i t ^ t ) ' 0

which implies that

11 (A - ' 11 >  - S)V<P' ' ’’Vinifr111
But from Lemma 4.13

ii <A - 1v V i r a r )l1 - Ki
k . . .  x ,  k , ,

and 1| _z (1 - s)JxoJ( t J - l ) B j ( j / | p ) | |  < .s xoJ( t J - D l l  BjH
j= l  2 3 1

< Kr
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This contradiction proves that = 0 9 and so y = 0, which implies 

that H(aG,s) f  0 for  a l l  s e [ 0 , l ] .  Hence by the homotopy property (P3.) 

we have that
k

Deg(I -  tCH- 1 ,GJ0) = Deg( I - CH'1 - 2 ( (x t ) J" -  X ,G,0)
j= l  0 0 J

for  1 < "t < 1 + 6/ xq or equivalently XQ < x t - < XQ + s.

A___________

By using the homotopy H : G x [0 ,1 ]  X defined by

k
H(y.s) = y -  stCH_1y -  (1 -  s)CH_1y E ((1 -  s)xn)J’ ( t J -  l ) B . H y ' \

j= l  0 0

where t_ is a rb i t ra ry  but f ixed,  such that 0 £  1 -  6/X q < t  < 1,

we can use a s imilar  procedure to prove that

Deg ( I  -  tCH- 1 ,Gs0) = Deg ( I  -  CH"1 -  z  ((X t p  -  X X b . H ' 1 ,G,0)
0=1 °~ 0 J

for 0 < X  -  5 < t  X < X .— o — 0 0

Hence, from the fact  that Deg(I -  tCH"\G ,0 )  = { d e g ^ ( I  -  tC H " \G ,0 ) } ,

cf . Theorem 1.18, the result  of the Theorem follows by replacing tx
k 1and tx by, respectively, X and x and recal l ing that T(x) = z xJB.,

0 j= l  3
The corresponding global bifurcation result  is the following.

Theorem 4.15 Consider problem (2 .1)  with the additional hypotheses 

(A7.) - (A9.) and ( A l l . ) .  Suppose that dim N(A -  T(X ) )  is an odd num­

ber. Then xq is a global bifurcation point of problem (2 .1 ) .

Proof: Immediate from Theorems 4.7 and 4.14.

Remark Theorem 4.15 generalises Theorem 3.13 (3) to the case where A

replaces - the B^'s, j  = 1,2,*. . . , k ,  do not necessarily commute  ̂ an A 
cb ls wobr A K} (A - T(Xe)) c. vv ^ ttsi .

We now seek s u f f ic ien t  conditions for XQ = 0 to be a global b i fu r ­

cation point of problem (2 .1 ) .  Again we shall assume that
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k iT(x) = e AJB.; however, th is time k may be in f i n i t e .  
j= i  J

We require a Lemma.

Clotvsuliir' pnaWlfcrw a x \& .

Lemma 4.16 ^assume hypotheses (A7. ) ,  (A 8 . )s (A10.) and ( A l l . )  hold.

Suppose that H : X -> X is a l inear  homeomorphism. Let G be an arb i ­

trary  open bounded set in X, containing zero. Define

M-j -  inf{(B.|X9x) : x e N(A) n H”*1 (3G) }

and M9 = sup{sup(B-x,x) : x e N(A) fl H"^(9G) }.
C j  elN J

Then M-j > 0 and < «.

Proof: F i rs t  consider M-j . Suppose M-j = 0, then there is a sequence

{xn> e N(A) fl H-  ̂( 3G) such that (B-jxnsxn) 0 as n ■> «.

But dim N(A) is f in i te -b y  Theorem 1.11 since A is A-proper, so

N(A) fl H ^ ( bG) is a compact set in N(A) and we may assume without loss

of generali ty that xp x e-N(A) fl H ”* ( bG). Therefore (B-jX,x) = 0 and,

since x e H (bG), x f  0. This contradicts hypothesis (A10.) and so M-j > 0.

Next consider M2 . For each j  e IN, i f  x e N(A) fl H ̂ (BG), then

sup(B .x,x) <_ || B -1[ sup{ || x || 2 : x e N(A) fl H "*(BG)>
J J

<_ || B j || sup{ 11 H_ 1 (y ) | |  2 : y  E 3G}

±  II B j  || || H - 1 1| 2 sup{ || y || 2 : y e 3G}

f_ II B j| |  || H ' 1 1| 2 N,

for  some constant N > 0, since G is bounded. So

M9 = sup{sup(B .x,x) : x e N(A) fl H""* (SG)} <_ || H  ̂|| sup{ || B .|| : j  elN},
1 3 elN 3 J

which is f i n i t e  by hypothesis (AT0 . ) .

This completes the proof of Lenma 4.16.

We can now prove the following degree resu lt .
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Theorem 4.17 Consider problem (2.1) with the additional hypotheses

(A7. ) ,  ( A 8 . ) 9 (A10;) and ( A l l . ) .

Suppose that dim N(A) is an odd number and l e t  <5q > 0 be such that

MJ(X - 1)|
0 < —  9 < M.

1 -  (X - 1) l  1

whenever 0 < |x - l !  < 6  , where PL and are the constants defined in 1 1 o l L

Lemma 4.16.

Define

6 = m in d ,  sQ, dist(0 ,CA( T ) \  { 0 } ) ,  -a, b,

then,

Deg ( I  - CH" -  I  X_JB.H ,G,0) f  Deg ( I  - CH"1 -  I  X°B.H ,G,0)
0=1 J j= l  J

for  - < 5 < ^ < 0 < A < < 5 ,  where G is an arb it rary  open bounded set in Y

containing zero and C and H are as defined in Proposition 4.9 ( i i . )  with

k i
C(xi + Xg) = £ XJBjX-j fo r  x̂  e N(A) and x^ e R(A), where 0 < X < 6 .

J 1

Proof: As in the proof of Theorem 4.14 we may prove that

degLS( I  -  tCH"1 ,G,0) = -deg,s ( I -  tCH'hG.O) fo r

0 <_ 1 - 6 < t_ < 1 < T  < 1 + 6.

To complete the proof we require a homotopy argument. Define

H : G x [0,1] + X by
k

H(y,s) = y -  stCH^y - (1 - s)CH_1y - £ ( 0 - s ) ( t  -  1 ) ) J*B.H_1y ,
j= l  J

where t_ is taken a r b i t r a r i l y ,  but fixed such that  

0 < 1 - 5 < t  < 1.

Rewriting H as
k .

H(y.s) = y -  (1 + s ( t  -  l) )CH"1y - e ((1 -  s ) ( t  -  D p B . H " 1
j= l  J

and using the fac t  that |s(t_ - 1) | < 6 and
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0 <_ | (1 - s)(t,  -  1) | £  6 < t.| and C is compact, i t  follows by Proposi­

tion 4.2 that H{ . ,s )  is A-proper with respect to fo r  each s e [ 0 , l ] .

I t  is easily seen that H ( x , , )  : [0,1] -> X is uniformly continuous on 

GT and H ( . ,s )  is continuous on [0 ,1 ] .  To apply (P3.) we must show that  

H(9G,s) j* 0 fo r  a l l  s e [ 0 , l ] .  Suppose the contrary, then

H(y,s) = 0 for  some y e 3G and s e [ 0 , l ] .

Note that s  ̂ 0 and s f  1. For then t  is a characterist ic  value of  
-1CH or t  -  1 £ B̂ (T ) ,  both contradictions. So s e ( 0 , l )  and

k . -
(H -  C -  s ( t  -  1)C -  £ ( 0  - s ) ( t  -  D )  B-)H y = 0.

j= l  J

But H -  C = A, so sett ing H y = x = x, + Xg with x-| e N(A)S Xg e R(A)

and replacing C, we have that

k . k .
(A - £ ((1 - s ) ( t  -  D )  B. )x? = £ ((1 -  s ) ( t  -  1)) B .x, 

j= l  3 d  j=1 J 1
k i

+ s ( t  -  1) I  (4 .6)
j= i  J 1

Since 0 < | (1 - s)(t.  -  1)| < 6  and X e(0,n) fl (a sb) then by (A10.)

and Proposition 4.8 ( i i . ) ,  the l e f t  hand side of equation (4.6) belongs

to R(A), while the r ight  hand side belongs to N(A). Hence by Proposition

4.8 ( i . ) ,

(A - z ((1 -  s ) ( t  -  l ) ) J*B.)x? = z ( s (jt -  l )v *  + (1 - s ) ^ ( i  -  1)^)Bj x-| 
0=1 J

= 0 (4 .7)

Taking the inner product of the r ight  hand side of this equation 

with x-j we obtain
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Z ( s ( t  - 1)XJ‘ + (1 -  s ) j ( t  -  1 )J')(B.x^ ,x-|) = 0
j  = l

We shall prove that s(t. -  l ) x J + (1 - - 1 )J is negative for

each j  = l , 2 , . . . , k ,  which, by hypothesis (A10.) ,  implies that (B^x^,x^)

= o , and so x  ̂ = 0.

k 4
Since the f i r s t  part of the summation, namely, 2 s(jt -  1

j= l
is always negative, we shall obtain our result  by showing that

i = l  (1 -  s )J' ( t -  1 )^(B .x.. ,x.,) < 0. 
j= i  3 ' 1

We do this by.proving that the sum of a l l  the posit ive terms in z

added to the single term (1 - s ) (jt -  l ) (Byx^,x^), is negative. So con­

sider the sum of posit ive terms given by

£-, = ( ! -  s )2(t_ -  1 )2(B2x1 ,x1) + (1 - s )4 ( t  -  1)4 (B4x1 , x1 )

+ . . . ,

assuming that k is i n f i n i t e .  I f  k is f i n i t e  then there are less posi­

t ive  contributions than we have taken, so an in f in i t e  number of terms

is the worst case as regards proving negativ ity. From Lemma 4.16 we 

have that (BjX^,x-|) <_ for  each j  e IN, so

e1 < M2m  -  s )2 ( t  - 1 ) 2 + o  -  s )4 ( t  -  D 4 + . . . ]

M2( l  -  s )2( t  -  I ) 2 

1 -  (1 -  s )2 ( t  -  I ) 2

by summing to i n f i n i t y  and using the fact  that 0 < | (1 -  s)(jt -  1)| < 1. 

Also 0 < (1 -  s) < 1, so (1 -  s )2 < (1 -  s) < 1 and

1 1  >    <    , therefore
1 -  (1 -  s )2( t  -  l ) 2 1 -  ( t  -  1)



Now the f i r s t  negative term is (1 - s ) ( t  -  l ) ( B 1x 1,x 1) .  But by
M J t  - 1| “  1 1 1

Lemma 4.16 (BnX^x.)  > M-,> -----    r*
11 1 “ 1 1 - (t - I T

since \ t  -  1 1 < 6 £  60 ‘

M H - s H t  - 1
Thus (1 - s ) 11 - iKB^x^Xn) > — -----------------— — n--

1 1 1  1 - (t_ - 1)

> by above.

We have therefore shown that even i f  a l l  the posit ive terms in e

are non-zero, the ir  sum is s t i l l  less than the modulus of the f i r s t

negative term, (1 - s)(jt  -  l) (B^x^,x^).

Hence, from (A10.) i t  follows that x-j = 0. So x = x^ f  0.

But since 0 < |(1 - s)(jt  -  1)| < 6  , then

k 1 A - e ((1 - s)(t_ - 1))  B. is a homeomorphism which implies from equa-
j= i  J

tion (4 .7)  that x^ = 0. So y = Hx = 0 and this contradiction shows that

H(8G,s) f  for  a l l  s e [ 0 , l ] .  Hence H is a val id homotopy and (P3.) gives

Deg( I  -  tCH- 1 ,G.O) = Deg( I  -  CH-1- 1  ( t  -  1 ^B.H " 1 ,G ,0 ) .
j= l  J

/V _
By use of the homotopy H : G x [0,1 ] + Y defined by

k *
H(y,s) = y -  st  CH-1y -  (1 -  s)CH-1y - s ((1 -  s ) ( t  -  O r B - H ^ y

j - l  J

we may show as above that

Deg ( I  -  tCH ,G,0) = Deg ( I  -  CH'1 -  I  ( t  -  1) B.H L g .O),
j - l  0

for  1 < t  < 1 + <5.

The result  then follows easily by noting that
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Deg( I - tCH~\G,0) = {deg^s ( I  -  tCH’ ** ,G#0)} and replacing t_ - 1 and 

t  - 1 by, respectively, A_ and X .

Remark For the proof that Deg(I -  tCH"^9G,0)
k   i _]

= Deg(I -  CH I  ( t  - 1) B.H ,G,0) we do not require the sign argu-
j= i  _  J i

ment used for  t_, since ( t  -  1 )J is positive for a l l  j  efN.

We have the following global bi furcation resu lt .

Theorem 4.18 Consider problem (2.1)  with the additional hypotheses (A7. ) ,

(A8.) ,  (A10.) and ( A l l . ) .  .

Suppose that dim N(A) is an odd number. Then \ Q is a global b i fu r ­

cation point of problem (2 .1 ) .

Proof: Immediate from Theorems 4.7 and 4.17.

Remarks (1 . )  Theorem 4.18 generalises Theorem 3 .3 (3)  fo r  X n -  0, to the
k , 0

case when T (a ) = s XJB. with k f i n i t e  or in f in i t e ;  where A and the B. 's
j= i  J 0

( j  = 1 , 2  k) are not necessarily s e l f -a d jo in t ;  a less stringent con­

dit ion than posit ive semi-definite is assumed on the B^'s, and we do not 

demand that Deg(A -  T (a) ,G ,0)  is a singleton fo r  any x  e (a ,b ) .  Theorem 

4.18 also generalises Theorem 4.12, for Aq = 0, when X = Y is a Hi lbert  

space.

(2 . )  Throughout this section we assume that A e Cfl(T) fl (a ,b) is
k . 0 A

isolated. When T(A) = z  AJB., we may ensure that A is isolated by
j= i  ° 0

imposing a more stringent transversal i ty  condition: namely, whenever
k i n

0 f  x e N(A - T ( x J ) ,  then z  (xJ - AnJ )B.x £  R(A - T ( a J )  fo r  X f  X e (a9b).O j_-j o J u u
This condition implies hypothesis (All.) and so the methods outlined 

above a l l  go through as before. To see that (VII.) holds, suppose the 

contrary. Then there ex ist  0 f  x z  N(A - T(aq) ) ,  0 f  y e X, and
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X f  X such that (A - T(x))x  = (A - T(X ) )y .  But (A - T(x))x
k

= (A -  T(X0 ) -  (T(X) -  T(Xo) ) ) x  = - (T(X) - T(X0 ))x  = -s (X J -  X^ jB jX
0 1

k i  iand so e (xj  - XQJ)BjX e R(A -  T(xq) ) ,  where X e(a,b) with X f  XQ and 
J ^

0 f  x e N(A - T(x ) ) .  We have, thus, shown that (All.) holds whenever 

the more stringent transversal i ty condition holds. Now i t  has been 

shown by F i tzpa tr ick ,  c f .  [2 ] ,  that this stronger condition is equiva­

len t  to : There exists e > 0 such that || (A - T ( x ) ) x||
k • •? q i

>_ e[ z  (xJ - x J) ]^|| x || , whenever x is s u f f ic ie n t ly  close to x 
0=1 0 0

and x e X. Hence x is an isolated element in Cfl(T) .
0 k i

(3 . )  We have considered T(x) to have the form s xJB. rather than
k j= l  3

the, perhaps, more natural form z L B .  for  some vector parameter
k j =1x = (X-j xk) in (R * This choice has been forced upon us by our use

of degree theory to obtain global results.  The method requires that an 

element XQ e C^(T) be isolated and, fo r  x = (x.j , . , .  ,xk) , C^(T) generally
i/

corresponds to some hypercurve in IR which has no isolated elements in
k \IR . However, for  the summation involving powers of x, C^(T) turns out

to be the set of roots of a polynomial in x which are isolated in IR.

Some authors have obtained global bifurcation results fo r  x = ( x ^ , . . . , x k)

e IR , fo r  example [2] and [11]; however, these require homotopy theory

which we have not considered. I t  should be noted that  our Theorem 4.12

may be deduced as a special case of the results in [2 ] .

4.3 The segment condition

In the previous section we assume that the transversal i ty  assump­

tion (All.) is sa t is f ied  and that A - T(x ) is Fredholm of index zero, 

which allows us to use the theory of §4.1. In this section we shall
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not assume the transversal i ty  condition, but w i l l  again use the results 

of §4.1. I t  w i l l  be seen that other hypotheses we make, imply, as in

the previous section, that A -  T(x ) is Fredholm of index zero. Although

this property ensures that hypotheses (A5.) and (A6.) of  §4.1 hold, we 

do not necessarily take a decomposition, H - C of A -  T (xq) ,  where C 

is compact. This is because one of our conditions w i l l  depend e x p l ic i t ly

on knowing C and there may be a more accessible C, which is not compact.

We shall take problem (2.1)  with hypotheses (A5.) and (A6.) of §4.1.

As in the previous section, we w i l l  give su f f ic ien t  conditions 

under which Theorem 4.7 applies, where C may not be compact.

We require a d e f in i t ion .

Definit ion 4.19 C(T,C) = { (p ,x )  e IR2 : N(A - T(x) - ( p - l ) C )  f  { 0 } } ,

M" ( \ , e )  = { (p >X) 0 JR2 : 0 < ( p  -  I ) 2 +  (X -  X ) 2 <Q U

where x = xq + m(p - 1 ) ,  fo r  some m >_ 0}.

Lemma 4.20 C(T,C) = { ( p , x )  e IR2 :

N(I -  uCH'1 -  (T(X) -  T(xo))H_1) f  { 0 } } .

Proof: Let ( p , x )  e C(T,C). Suppose x e N(A - T(x) - (p - 1)C), then

there is 0 f  x e X such that Ax -  T(x0)x - (T(x) - T(xq))x  -  (p - 1)Cx = 0,

so

(H -  vC -  (T(X) -  T(X0 ))x  = 0 and ( I  - vCH-1 -  ( T (x )  -  T(xo) ) H '1)Hx = 0.

Hence (p,a) e { ( v , x )  e fR̂  : N(I -  ijCH ̂ -  (T(X)  -  T(XQ))H h  f  {0 } } .

The converse is proved s im i la r ly .
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Definit ion 4.19 may be seen, through Lemma 4.20, to be a generalisa­

tion of a couple of sets defined and used by Stuart and Toland [38]. The 

form of these sets* and the subsequent condition which we w i l l  give in 

the next theorem, were suggested by the homotopy arguments used in the 

previous section.

We may prove the following degree result .

Theorem 4.21 Consider problem (2 .1)  with hypotheses (A5.) and (A6.) 

of §4.1. Suppose that r Q(CH“"*) < 1, X has odd algebraic m u l t ip l ic i ty
G 0

M (X ) as defined in Definit ion 4 .5 ,  and there exists e > 0 sucha v n 'a v o 

that ,

C(T,C) n M+(Xo ,e) = <|>, or 

C(T,C) n M'(X0 ,e) =

Let

1, otherwise

1 -  r„(CH )
6 =  ^ -------
3 re(CH )

{ e

. i f  0 < r e (CH_1) < 1

1 , i f  re (CH-‘ ) = 0 .

Define 6 = min{e,d ist(XQ, C ^ ( T ) \ { X q} ) ,  xq - a, b -  XQ, 6^, T] » T2 *}*

Then, Deg ( I  -  CH"1 -  (T(-x) -  T ( x q ) )H_1 ,G,0) 

f  Deg(I -  CH'1 -  (T(X)  -  T(X0 ) ) H ' 1 ,G,0) for  XQ -  6 < 1  < XQ < T  < XQ + s ,

where G is an a rb i t ra ry  open bounded set in Y, containing zero.



m

Remark By Remarks (3 . )  and (4 . )  following Definit ion 1.13, since r„(CH- 1 )e
< 1 , 1 -  CH-1 is Fredholm of index zero and therefore ( I  -  CH- 1 )H

= H - C = A - T(x ) is also Fredholm of index zero. Then by Theoremo
1,14 we may decompose A - T(XQ) into H - C with C l inear  compact. But 

unless we can find such a map C e x p l ic i t l y ,  we cannot ve r i fy  the con­

dit ion C(T,C) fl Mi (xo,e) = <j). For this reason we assume a general de­

composition as in hypothesis (A6.) of §4.1.

Proof of Theorem 4 .2 1 : As in Theorems 4.11, 4.14 and 4.17 we f i r s t  show

that .

Deg(I -  tCH_1,Gs0) f  Deg(I -  tfcH'1 ,G,0) (4 .6)

for  0 < 1  - 6 < t ^ < l < t < l + 6 .

We emphasise that now C is not necessarily compact.

We can apply (P4.) to both operators in equation ( 4 .6 ) ,  provided
l 1 1 — -1that r  (CH ) < ~  < t ■, i f  t ,  t_ are not characterist ic values of CH and

e t  -
I - tCH-1 and I -  ITCH**1 are A-proper with respect to r^.

Consider I -  tCH-1

= I -(1 + ( t  -  1))CH- 1 .

Since t  -  1 < 6 <_ t 2 , then from Proposition 4 .2 ,  I -  tCH-1 and^ 

s im i la r ly ^  -  t£H-1 are A-proper with respect to r^.

1 - r  (CH- 1 )
Now 6 < --------- — n  , so

r e ( CH )
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r  (CH'1) = ------------ 3-------------- < _ L ^  < 1  < 1
1 +  1 ~ r e<CH ) t  i

as required fo r  an application of (P4.)

5 2Also 1 - t  < 6 < <5-, = r s ^  i’s f i n i t e ,— — i i + *-

^ 2  . 1therefore 1 -  y  y--y - < t., which implies that 1 y y -  < jt ,

or equivalently y  < 1 + 6 2 *

Hence 0 < j  -  1 < «2 = d is tO  ,a(CH_1) \ { U ) .

This inequality is t r i v i a l l y  sat is f ied i f  is i n f i n i t e .

_  6 2  1 + 2<$2 -j *1 +
Similar ly  t  < 1 + e <_ 1 + y — $ “ y y  $ > therefore =  > -| y  2(S ,

1 l + 5 2  52
so 0 < 1 -  -  < 1 1 + 2(5̂  = 1 + Z s ^  < «2 .

Thus we may apply (P4 . ) .  I f  v is the sum of the algebraic mu1 t i p i i c i -
“ 1ties of the characterist ic values of CH in the interval ( 0 , t ) ,  which

- 1  1 1is f i n i t e  since r  (CH ) < “  < -r9 then
e t  -

Deg(I -  tCH"1 ,G,0) = { ( - l ) v} and

Deg(I -  tCH'1 ,G,0) = { ( - l ) v + W }  =

The second equali ty holds since by the results in Chapter One, the
- Ialgebraic m u l t ip l ic i ty  of the characterist ic value t  of  CH is given by

CO ^  _

dim{ U N((I -  tCH ) n) } . 
n=l

However, by the arguments above, 1 is the only such characterist ic value

in the interval ( t / t ) .  So the sum of the algebraic m u l t ip l ic i t ie s  of
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the character ist ic  values in the interval (o , t )  is given b y

00 i
a + dim{ U N( ( I -  CH" ) )}  

n=1

which is precisely equal to a + M (A 1 by Definit ion 4 .5 .  Hencea 0

equation (4 .6)  holds as required.

We now use a homotopy argument to obtain the desired degree re­

su l t .

Define H : G* x [0,1] Y by 

H(y,s) = y -  stCH_1y -  (1 -  s)CH_1 -  (T (xq + (1 -  s) ( t  -1  ) ) -T (xq) )H_1y.

where t_ is a rb i t ra ry ,  but fixed in (1 -  6 ,1 ) .

Now H ( . ,s )  = I -  ( s ( t  -  1) + 1 )CH_1 -  (T<AQ + (1 -  s ) ( t  -  1 ) ) -T (X0))H"1

with | aq + (1 -  s ) ( t  -  1) -  Aq | = | (1 -  s ) ( j t  -  1 ) |  < 5 < t ] 5

and |s(t_ - 1)| < 6 £  for each s e [ 0 , l ] ,  and so H(. ,s) is A-

proper with respect to r^,  fo r  a l l  s e [ 0 , l ] ,  by Proposition 4 .2 .  In 

order to apply (P 3 . ) ,  we must prove that H(BG,s) f  0, fo r  a l l  s e [0,1]

Suppose the contrary, then there is y e sG and s in [0,1] with

H(y,s) = 0. Notice that s f  0, fo r  otherwise X +  { t  -  1) e C^(T),

which is a contradiction by the choice of 6. So we have, fo r  some

s e ( 0 , l ] and y e 9G that

y -  ( s ( t  -  1)+ D C H 'V  -  (T(X0 + (1 -  s ) ( t  -  l ) - T ( X 0) ) H '1y = 0,

implying that

(1 + s ( t  -  1 ) ,  X0 + (1 -  s ) ( t  -  1) )  e C(T,C).

However, the distance, in IR , from this point to (1, A ) is given by

0 < D2 = s2(jt -  l ) 2 + (1 - s )2 ( t  -  l ) 2 

= ( t  - 1 )2 (s2 + (1 -  s )2)

£  ( t  -  1 ) 2 < 62 £  E2 .
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So, for  S e (0 ,1 ] ,  (1 + s(jt -  1 ) ,  X Q + (1 - s)(jt -  1)) e M+ ( 0 , e)

contradicting our assumption that C(T,C) fl M+ (Xo , e) = (j). Hence 

H(9G,s)  ̂ 0, for  s e [0,1] and by (P3 . ) ,  we have

Deg ( I  -  tCH 'tG .O)  = Deg(I -  CH'1 -  (T(XQ + ( t  -  l ) ) - T ( x o))H"1,G,0).

Using the homotopy,

H(y,s) -  I - s t  CH'1 - (1 -  s)CH-1 - (T(XQ + (1 -  s ) ( t  -  1) ) -T (X Q) ) H '1 ,

we may prove, in an identical manner, that

Deg(I -  t  CH- 1 ,G,0) = Deg(I -  CH'1 - ( T ( xq + ( t  -  1) - T ( xq) ) H '1 ,G ,0 ) .

The resu lt  of the theorem follows easily from equation (4 .6 ) ,  by 

replacing X Q +  ( t _  -  1 )  and X Q +  ( t  -  1 )  by, respectively , X_ and X.

Remark In the above proof, we obtained our contradiction by assuming 

im p l ic i t ly  that C(T,C) n M and applying the homotopy argu-
A

ments using H ( . ,s )  and H ( . , s ) .  I f ,  however, the a l ternat ive  hypothesis, 

namely, C(T,C) fl M“ ( 0 , e ) = 4>, is assumed to hold, then the same proof

applies i f  we replace the terms T(xq + (1 - s ) ( t  -  1) )  and

T ( x 0 + (1 - s ) ( t  -  1))  by T ( x o + (1 - s ) (1 - t ) )  and 

T(xo + (1 - s ) ( l  -  t } ) ,  respectively, in the above homotopies. In

this case we obtain our contradiction via C(T,C) fl M (XQ, ) = <f>,

and here we replace xq +  (1 - t) and XQ + (I t )  by x̂  and x, re ­

spectively.

The corresponding global bi furcation result  is the following.

Theorem 4.22 Consider problem (2.1)  with the hypotheses (A5.) 

and (A6.) of §4.1. Suppose that- r  (CH- 1 ) < 1, XQ has odd algebraic
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m u lt ip l ic i ty  Ma(x 1 and there exists e > 0 such tha t ,
a 0

C(T,C) fl M+ (Xo ,e)  = or 

C(T,C) n M"(X0>e) = <t._

Then XQ is a global bi furcation point of problem (2 ,1 ) .

Proof: Immediate from Theorems 4.7 and 4.21.

Remarks (1 . )  In the paper by Alexander and F i tzpa tr ick  [2 ] ,  homotopy 

theory is used to prove general global bifurcation results fo r  equa­

tions s imilar  to equation (2 .1 ) ,  but where X is allowed to be vector 

valued; however, Theorem 4.22 cannot be deduced as a special case of  

the ir  results since they require that the transversal i ty  condition,  

mentioned in Remark (2) at the end of the previous section, should hold.

(2 . )  In Theorem 4.22, T(x) has a more general form than in the
k •

previous sections, where we took T(x) = s XJB.,  fo r  some k, f i n i t e
0=1 3

or i n f in i t e .

We consider an example when Theorem 4.22 is applicable.

Example 1 Consider problem (2 .1)  with T(x) =  XB, where B is not

necessarily compact and A is an in je c t ive ,  A-proper operator with

respect to r .  Then, by Theorem 1.9,  A is a homeomorphism. Suppose

Xq e H (a ,b ) .  ,Let H = A, C = XqB and assume that re (CH- ^)
-1= r (x BH ) < 1. Then, hypothesis (A5.) holds, e o

To ver i fy  that (A6.) is true we must prove that there exist  

t-j > 0 and t 2 > 0 such that A - (x+ &XQ)B is A-proper with respect
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to r, whenever |x -  x | < and \ e , \  < But XQ c(a,b) and by 

assumption (H2.) of problem (2 .1 ) ,  A - XB is A-proper for  a l l  

x e (a ,b ) .  Thus, i f  we set n = min{XQ - a,b - XQ} and choose 

t^ £  n/2 and t 2 £  n/2|x | , then

l(x +  e * 0 ) - * 0 | = I (x - x o ) +  a 0 |

£  | x  -  \ j l  +  l e i  | x 0

< T i  +  t 2 ' X o

< j  + nl>° 12 2]T

= n

So, (x + £Xq) e (a,b) in th is case, therefore (A6.) holds.

The condition C(T,C) fl (x , e )  = <j> for  some e > 0 is also

sat is f ied .  For, suppose (y ,x)  e C(T,C). Then, from Lemma (4 .20 ) ,

there exists x f  0 such that

X -  yX BA""*x - (X -  X0 )BA"^X = 0,  

which implies that

x - (XQ(y - *1) + x)BA l x = 0.

But r  (X BA"1) < 1 may be writ ten as r  (BA"1) < 1 / 1X I ,  so 1/x isg o e o u
an isolated element in the spectrum of BA , or equivalently , XQ

is an isolated character ist ic  value of BA"1 . Thus, i f  we choose

(y,x)  e IR2 and £ > 0 such that X = XQ + m(y -  1) fo r  some m >_ 0 ,  and

0 < (y - I ) 2 + (x - xq) 2 < e2 implies that

0 < |(X (y - 1) + X) -  X | < d is t (Xo,ch(BA_1) \ {X o} ) ,  then

(y,x) E (XQ,e ) ,  but (y,x) i  C(T,C). Hence, by Theorem 4.22, i f

M (X ) is an odd number, then Xn is a bifurcation point, a o' o
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Remarks ( l ) oExample 1 was considered by To!and [42] in Hi lbert  

space, with A = I .

(2) Example 1 was treated by Petryshyn [32] in the case when 

B is compact, but he never gave global bifurcat ion results .  The 

compactness of B ensures that r e (xQBA ) = 0 < 1, and when 

problem (2 .1)  holds, then A is automatically A-proper with respect 

to r .
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CHAPTER FIVE 

APPLICATIONS

5.1 Results on the existence of periodic solutions to a class of ord i­

nary d i f fe re n t ia l  equations.

Consider the ordinary d i f fe re n t ia l  equation

x " ( t )  + b2x ( t )  = g (x ( t )  ,x' ( t )  ,x ' 1 ( t ) )  (5 .1)

where 0 < b e f R ,  x : f R - * I R  and g sa t is f ies :

3 2(A l . )  g :IR IR is bounded and continuous, g ( x , . , . )  : IR IR is

uniformly continuous for  x in bounded subsets of IR and g (x ,y ,z )

= o(max{|x| , | y | , | z | } )  as x, y ,  z 0.

From (A l . )  i t  follows that x = 0 is a solution of equation (5 .1)  

for each t  elR, called the equilibrium solution. We shall consider 

the problem of proving the existence of n o n - t r iv ia ! , even, T-periodic 

solutions, that i s ,  solutions such that for some T > 0, x ( t  + T) = x ( t )  

and x ( t )  = x ( - t )  for  a l l  t  e IR.

Note that T is also an unknown of the problem: we seek T > 0 and

a solution x of period T.

To obtain our results we shall invoke the global bifurcation analy­

sis of the previous chapters. The f i r s t  step is ,  therefore, to trans­

form the problem into an equivalent nonlinear eigenvalue problem. I f  

T > 0 is given, then making the change of variable t  T t , x is a T -  

periodic solution of equation (5 .1)  i f  and only i f  x ( t )  = z ( t /T )  = z(x)  

is a 1-periodic solution of the equation

z " ( t ) + T2b2z(x) = T2g ( z ( t )  ,1  z ' ( t ) , - L  z " ( t ))  (5 .2)
1 T
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This follows since

dx(t) _ dz(t/T) _ dz(-r) _ dx dz(t)  _ 1 dz , , . .
T t  a t -------------- dt " dt T x  " t  d7 (t) and so

d2x ( t )  = T_ dz , ) 

dt2 T2

2Now sett ing A = T and reverting to t  for  t  and x for  z we see 

that the problem is equivalent to seeking n o n - t r i v ia l , even, 1-periodic 

solutions of the ordinary d i f fe re n t ia l  equation

x 11 ( t )  + Ab^x(t) = Xg(x(t)  ^""VCt)  ,x”^x' 1 ( t ) ) (5 .3)

for  values of A-in (0 ,»)  = |R+ .

Since we are looking for  even, 1-periodic solutions of equation

(5.3)  we shall impose the following condition on g.

(A2.) g (x ,y ,z )  = g (x , -y ,z )  fo r  a l l  : x ,y ,z  elR.

This assumption makes equation (5 .3)  consistent fo r  a l l  values of  

t  s fR.

We shall convert equation (5 .3)  into an operator equation of the 

type studied in the previous chapters. The existence results given 

there depend on a condition of odd m u l t ip l ic i ty  at some characterist ic  

value. We shall see that ,  by res tr ic t ing  ourselves to even solutions,  

this odd m u l t ip l ic i ty  property can be sa t is f ied .

We wish to transform equation (5 .3)  into.an abstract,  non-linear  

eigenvalue problem in some Banach space. To this end we make the 

following d e f in i t ion .

Definit ion 5.1
o

X = {x e C (1R,IR) : x is 1-periodic and is an even function, that  

i s ,  x ( t  + 1) = x ( t )  and x ( t )  = x ( - t )  fo r  a l l  t  eHR};
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Y = {y  £ C(IR,IR) : y is 1-periodic and even};

A : X -v Y with Ax(t ) = x ‘ ‘ ( t )  fo r  each t  e IR;

B : X Y with Bx(t) = -b^x(t)  for  each t  e IR;

R : X x IR+ + Y with R ( x ( t ) , a) = Ag(x(t) ,A~^x'(t ) ax”^x‘ ' ( t ) )  

for  each (x , a ) e X x IRT

Let the norms on Y and X be given by || y || -  su p{ |y ( t ) |  : t  e IR}

for  each y e Y and || x ||  ̂ " niax{ || x ^  || : 0 £  j  £  2} for each x e X.

By periodic i ty  we have that  

|| y || 0 = sup{ |y ( t )  | : t  elR} = max{|y(t) |  : t  e [ 0 , l ] } f o r  each 

y e Y, and so X and Y are both Banach spaces and by the well known em­

bedding results see for example [ l ] s X is compactly embedded into Y.

Note tha t ,  since we are using A-proper maps we are able to use two 

spaces of classical d i f fe ren t iab le  functions. We could also use Sobolov 

spaces via a weak formulation but this is not necessary fo r  us. We can 

rewrite equation (5 .3)  in the operator form:

F(x , a ) = Ax - ABx - R(x,A) = 0, (5 .4)

where F : X x IR, -»■ Y.+

Notice that X x !R+ c X x IR, the Banach space with norm || (x,A)||

" ( II x II 2 + ‘f ° r  each (X»x) e X x IR.

Equation (5 .4)  is in the standard form of equation (2 .1 ) ,  with 

T (a) = AB. We now ve r i fy  that the hypotheses (HI) - (H4) of problem 

(2 .1)  are a l l  sa t is f ied .

Theorem 5.2 A : X +  Y is a Fredholm map of index zero;

B : X Y is a compact l inear  map;

N (A) = {x e X : x ( t )  = a constant for  a l l  t  elR};
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R(A) = ( y e  Y : f ]  y ( t ) d t  = 0};

X = N(A) © Xp for  some closed subspace X̂  c X;

Y = IN(A) © R(A), where I is the inclusion map of X into Y 

which is compact.

A-j = A|j, : X*j R(A) is a homeomorphism; A - XB is Fredholm of 

index zero fo r  a l l  X e IR, and for  each X e |R there ex ist  a l inear  homeo- 

morphism H : X ^ Y and a l inear  compact operator C : X Y such that  

A - XB = H - C, where in general H and C depend on X.

Proof: Suppose Ax = 0, then from Definit ion 5.1 ,  x ' 1( t )  = 0. So

x ' ( t )  = D and x ( t )  = Dt + E, where D and E are constants. From the 1-

periodic ity  of x we have* E = x(0) = x ( l )  = D + E, therefore D = 0 and

N(A) is precisely the set of constant functions in X, which implies

that dim N(A) = 1. Hence X = N(A) © X-j 9 where, by Theorem 1.1, X-j

may be chosen to be closed.

Now i f  y e R(A), then y = Ax = x 11 for some x e X and so 

/J  y ( t ) d t  = /J  x l , ( t ) d t  = x ' ( l )  -  x ' (0 )  = 0 by the 1-p e r io d ic i ty . We 

shall prove that R(A) is actual ly  equal to {y e Y : / J  y ( t ) d t  = 0}.  

Firs t  notice that i f  y e Y with /J  y ( t ) d t  = 0, then / J  t  y ( t ) d t  = 0. 

For,

y ( t ) d t  = 0, y e Y

i f  and only i f  f  ?;y(-t)dt = 0 (by 1-per iod ic i ty  of y)~-h

i f  and only i f  / ! ° y ( t ) d t  = 0 (by evenness of y ) .
“ -"2

Then / i  t  y ( t ) d t  = t  y ( t ) d t  +  f  °  (s + l )y (s  + 1)ds
O 0  ~ '2

= y ( t ) d t  + /  ?s y(s)ds +  f  ?  y(s)ds  
0  2 ~ 2.
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(by 1-per iod ic i ty )

= t  y ( t ) d t  - f ^ s  y(s)ds 

(since s y(s)  is odd)

= 0 .

Now suppose y e  Y with y ( t ) d t  = 0, we must show that there 

2exists x e C (fR,(R), where x is 1-periodic and even, with x 1' = y.

Setting x M = y and integrating we have x ' ( t )  = x ' (0 )  + / ô y(s)ds 

so x 1 (0) = x 1(1 ) .  Also

x ' ( - t )  = x ’ (0 )  + J'0" t  y ( s ) ds

= x ' ( 0 )  - /  y(s)ds (since y is even), 

therefore, i f  we take x withx'(O) = 0, then x' is an odd function, such 

that x ‘ ( t )  = /  *  y(s)ds = Y(t )  (say). Again by integration we have 

x ( t )  = x(0) + f ^  Y(s)ds. Since Y(s) is odd, f  ^  Y(s) is even and so 

x is even. F ina l ly

x ( D  -  x ( 0 )  = / I  Y(s)ds

= ^ ( / 0 t  y ( s ) d s ) d t

= ^ (1 -  s )y (s )ds

= ^ y ( s ) ds  -  / J  sy(s)ds  

= 0 .

This proves that R(A) = {y e Y : /J  y ( t ) d t  = 0}.

To see that the decomposition Y = I N(A) © R(A) holds observe that

each y e Y may be writ ten in the form y = / I  y ( t ) d t  + (y - / I  y ( t ) d t ) ,  

where y ( t ) d t  e I N(A) and / I  (y(s) - / I  y ( t )d t )ds  = 0, which

implies that y - / *  y ( t ) d t  e R(A).

Thus Y = IN(A) + R(A). F inal ly  i f  / I  ( / I  y ( t )d t )d s  = 0, then 

/ q y ( t ) d t  = 0.
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Hence Y = I N(A) § R(A), where I is the inclusion map of X into Y, which 

is compact. I t  is easi ly  seen that Â  = A [  ̂ : X-j + R(A) is a homeo-

morphism. The fact  that B : X Y is compact follows t r i v i a l l y ,  since 

X is compactly embedded in Y. F ina l ly ,  we have shown that A is Fredholm 

of index zero, so by Remark (2 . )  preceding Theorem 1.14, A - aB is also 

Fredholm of index zero for  a l l  A e IR and, for each a s IR, the decompo­

sit ion H - C is guaranteed by Theorem 1.14.

In order to prove that A is an A-proper map we need to define an 

admissible scheme for  maps from X into Y. For each n e IN, define 

t  = 1  for  i = 0 , 1 , . . . , n and for each y e Y,

Qn y ( t )  = z ( t )  for  each t  efR, where

z ( t )  » y ( t ) , when t  = t . (i = 0 , . . .  ,n)

( t  -  t . )
{ y ( t , )  + ( y ( t i+ 1 ) - y ( t -)) -X , when

1 1 1  1 xi+l xi

t  e ( t ^ , t^ +1) (i  = 0 , . . .  , n - l );

and extend z ( t )  to a l l  of IR by per iodic i ty  such that z ( t )  » z ( t  + 1) 

for  a l l  t  e IR.

Let Yn = R(Qn) ( ^ e range of Qn) ,  then the following resu lt  holds.

Theorem 5.3 r = {Y ,Q } is an admissible scheme fo r  maps from Y into ---------------------------  n n

Y, with || Q || = 1  fo r  each n e IN. I f  H is the homeomorphism from

Theorem 5.2 fo r  some fixed value \ n  £ IR then r u = {H~^(Y ),Y >Qn> is ano n n n n
admissible scheme fo r  maps from X into Y and A -  aB : X Y is A-proper 

with respect to for  a l l  A e IR.

Proof: F i rs t  we show that { Yn> c Y. Clearly i f  z e Yn, then z is con­

tinuous on IR and 1-periodic. Also, since t  e ( t .  ) implies that

- t  e ( - t . j+i s-t-j)* i t  is easily ve r i f ied  that z is an even function by
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using the fact  that y is an even function. Hence {Yn> c Y.

Next we prove th a t ,  for each n e!N, Qp is a continuous projection 

of Y onto Y .

Let y,w e Y and a, 3 e IR. Consider Qn(ay + 3w). I t  follows 

t r i v i a l l y  from the de f in i t ion  that Qn(ay + 3w) = aQny + 3Qnw, and i f

{y^} is a sequence in Y such that y^ y as k + then Q y^ Qny as

k to.

Also Qn2 y ( t )  = Qn y ( t )  = y ( t )  fo r  each t  = t.. ( i = 0 , . . . , n ) ,  and

since Qn joins the points y ( t . ) by stra ight l ine  segments we must

have Qn2 y ( t )  = Qn y ( t )  for  a l l  t  e IR.

Thus, for  each n e l l ,  Q is a projection from Y onto Y .n r n
Next we prove that r is admissible. We have, for  each n e IN, that  

dim Yn = n + 1. To see th is ,  l e t  fe > e  en> be the standard ortho-
n+l

normal basis in IR and suppose that z e Yn as defined above. Then 

z is uniquely defined by the element (y ( t  } ,y ( t - | ) , . . .  , y ( t  ) )  infRn+1. 

Thus every z e Yn# with z ( t )  = Q y ( t )  for  some y e Y and a l l  t  e IR, is
 ̂ riH* 1

uniquely defined by 1 a. e.  for some (a , . . .  ,a ) e IR , where y ( t . )
j_Q j  j  o n  i

~  ( i — 0 , . . . , n ) .

We also have th a t ,  fo r  each y e Y, Qny + y as n «> in the |[ . |] Q 

norm. For, consider

II Qn y "* y|| o 88 max{|Qny ( t )  -  y ( t ) |  : t  e [ 0 , l ] }

( t  -  t . )
= m ax{ |y ( t . )  + ( y ( t i+ 1 ) - y ( t i ) ) ( t >1 - " T ) ~

: t  for  i = ( 0 , . . . , n - l )

^  max{ |y ( t . . ) -  y ( t ) |  : t  e ^ .v t jy o r  i ‘ = ( 0 , . . . , n - l  }
t  -  t .

+ max{ | y ( t . +i ) -  y t t p i  ----- ^ ^ 1  : t  *■•„)> 1 = ( ° .......... " - ! ) } •
t  -  t .  1+1 1

+ 0 as n °°, since t ------------+—| < 1 and | y( t . . )  -  y ( t . ) | 0 as n +  «>,
xi+ l  " i 1 1  1
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for  each i = ( 0 .........n-1) .

F inal ly  we shall prove that | |Qn H = 1 a l l  n e IN.

By d e f in i t ion ,

IIQn II = sup{ || Qny|| Q : II y || 0 = 1 >

= sup{max( |Qny ( t )  | : t  e [ 0 , l ] )  : II y ll0 = 1 >

£  sup{max( |y ( t )  | : t  e[0,1])  : | |y | |0 = 1}

= 1.

But y ( t )  = 1 for  al l  t  e IR is such that y e Y and || Qny|| 0 -  || y II 0 = 1 • 

Hence ||Qnl| = 1 for  each n elN.

Thus i t  follows by Theorems 5.2 and 1.15 that A - XqB is A-proper with

respect to and since B : X Y is compact, A -  XB is A-proper with 

respect to for  a l l  X efR. This completes the proof of Theorem 5.3.

Our next task is to show that A -  XB is the Frechet derivative of

F ( . ,x) at the point 0 ,

Theorem 5.4 R (x , . )  : IR+ ^ Y is continuous uniformly for  x in bounded

subsets of X and || R (x ,x)  || Q/1| x ||  ̂ 0 as || x ||  ̂ ^  uniformly for

X in bounded intervals of R , , which are bounded away from zero.

Proof: That R (x , . )  : IR+ -4- Y is continuous uniformly fo r  x in bounded

subsets of X follows easily from (A l . )  and Defin it ion (5 .1 ) .  Now

• ■l | R(x, x) | | 0 

" II x-[f-2 "

x m ax{ |g (x ( t ) ,x "^x ' ( t ) ,x '1x " ( t ) ) | : te [0 , l ] }m a x { | |x | |  0,x_!s|| x ' || o,x_11| x "  || Q>

max{ || x || 0 , || x 11| 0 , || x "  || 0> max{ || x || 0 . x '%|| x ' || 0>x ' 1 1| x "  || Q}
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But max{|| x|| 0 ,x"%| |x ' | |  0 »x_1| | x " | |  0>

^  max{l ,x ‘ Ss,x "1}max{|| x j| 0 >|| x ' || Q, || x "  || Q}

0 as || x || 2 ** 0 

for x  bounded away from zero in R , .
T

So || R (x ,x)  || Q

l l x l l 2

max{ |g (x ( t )  ,A~^x' ( t )  ,x“^ x ' ' ( t )  | : t  e [0,1 ]}X max{l } || x || 2

max{ || x || Q X h \\ x 11| 0}r ] || x ' 11| 0> II x || 2

-v 0 as || x || 2 0

for X in bounded intervals in R+s which are bounded away from zero.

Hence the resu lt  is proved.

In order to prove that F ( . ,A )  : X -> Y is A-proper with respect to

another assumption on g is required.

(A3.) There exists a constant q e ( 0 , l )  such that

|g (x ,y ,z )  - g(x,y,w)| <_ q| z - w| for  x 9y 9z 9w elR.

Some such res t r ic t ion  is necessary, for  we must exclude equations

such as x 11( t )  = x ‘ 1( t ) .

We shall also need the following defin it ions and lemmas.

Definit ion 5.5 (Browder [4 ] ) .  Let f  : D Y be continuous and bounded,

where D is a closed subset of X. Then f  is said to be a k-semicontrac­

tion i f  there exists a continuous and bounded mapping V : X x X Y

and a constant k, 0 <_ k < 1 such that f ( x )  = V(x,x) for  a l l  x e D and

for each fixed x in X, V(..,x) : X -*• Y is k-Lipschitzian (that is
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|| V (z ,x )  - V(w,x) || <_ k ]|z - w|| 2  for  z,w e X) and V ( x , . )  : X Y is

compact.

Lemma 5.6 (Webb, [44] ,  Petryshyn, [29 ] ) .  I f  G c X is open and

f  : G" Y is a k-semicontraction, then f  is a k-ball contraction (cf .  

Chapter 1).

Definit ion 5.7 I f  L : X Y is FmmUvcLa. S  - z e re  then we define

&(L) by

£ (L) = sup{r > 0 : r3(n) <_ e(L(n))  for each bounded si c X}.

Lemma 5.8 (Petryshyn [3 3 ] ) .  Suppose that L : X Y is Fredholm of

index zero and r = {X SY„,Q > is an admissible scheme for  maps from Xn n n
into Y constructed as in Theorem 1.15,  with || Q || = 1  for  each n e(N.

Let N : X -*■ Y be a bounded k-ball  contraction with 0 £  k < £(L). Then

L - sN : X Y is A-proper with respect to r for  each s e (0 *1].

Before proving that F ( . , x )  is A-proper we need one more preliminary 

result  about the mapping A.

Lemma 5.9 £(A) >_ 1, where £(A) is defined in Defin it ion 5.7.

Proof: We already know from Theorem 5.2 that X = N(A) $ X-j,

Y = IN(A) $ R(A) and A-j = A|^ : X-j R(A) is a l inear  homeomorphism.
1 _■]

Thus,for each bounded set si c X we have that si c Â  A(n) + P(ft),

where P is the projection of X onto N(A), defined by Px = x ( t ) d t .

Now, since P(n) is compact, then $(P(&)) = 0> therefore, by the re ­

sults of Chapter One, &(n) <_ b(A^ (A(n)))  <_ ||A^"^|| 3 (A(n)).

We shall complete the proof of the Lemma by showing that  ||A^  ̂ ||

= sup{ || A1_1y II 2 : || y || Q = 1} < 1.
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For each y e R(A) with ||y||  = 1, there exists x e X such that

Ax = x 11 ( t )  = y and, since x(0) -  x (1) and x 1 (0) = x 1 (1 ) ,  we may write  

this x in the form

x ( t )  = •/,0t U 0S y(T)dT)ds - t  S q ( / oSy(x)dT)ds + C.

But since y is an even function,

V ( / oS = °- So

x ( t w > 0s y ( T^ ) ds + c » (5 -5^

and i f  we choose C = - /  ^[ /  ^ ( / Q S y ( T ) d T ) d s ] d t ,  then /   ̂ x ( t ) d t  = 0,

which implies by Theorem 5.2 that x e X-j is the unique solution of

A-| x = y.
1Now since f  y ( t ) d t  = 0, then for  0 £  s, t  £  1,

| / st  y ( x ) d x |  = | / Q1 y ( x ) d t  -  f QS y ( x ) dx  -  y ( x ) d x |

± f 0S | y ( t ) |dx + | y ( x ) | d x ,

therefore 2 | / g  ̂ y ( x ) d x |  £  | / s* y ( x ) d x |  + | y ( x ) | d x

± f 0s ly(T)ldT + f t  iy(T)ldT + /st ly(T)IdT

= / q 1 |y(T)|dT  

Hence j / g  ̂ y ( t ) dx | < _ h  / Q  ̂jy (x ) |dx,

*i
for 0 <_ s , t  £  1, provided /  y ( t ) d t  = 0 (5 .6)

From equation (5 .5)  i t  follows that 

| x ( t ) |  1  I / q V  y ( T)dT)dsl + lc l> where f 0 ^ ( f QS y(x)dx)ds = 0 

since y e R(A).
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Thus by equation (5.6)

I x ( t ) |  < _ h  / 0 V 0S y(T)dT|ds + jc|

1  %/'0 1( / 0 '*|y(,t)|dT)ds + |C|

< h  l ly ll  o + lc l

= k  + |C|,  since || y || Q = 1.

S im i la r ly  |C| = | / C)1[ / 0t:( / 0s y ( f )  di :)ds]dt|

i  •r01l / ot ( / oS y ( ' r ) dT)dsl d t -

But again we have /  ( / Qs y(x)dT)ds = 0 and so by equation (5.6)

lc l < > s / 0V 0V 0s y(T)<Mds)cit

± h h  S q  U q  ( / q  ̂ | y ( f )  | dx)ds]dt

< % llyll  o = *•

Also since x ' ( t )  = /  * y ( r ) d T s then 

lx ( t ) |  = I f 0 l  y(T)dx|

1  % S q  |y (01 d x

£  ^ II y II o =

F ina l ly  i t  is  t r i v i a l  tha t  |xu( t ) |  = | y ( t ) | .  Hence 

II x || 2 = max{ || x || || x 1 || Q,|| x ' 1 || Q}

£max{%,%9l }

= 1.
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Therefore, || A1~11| = sup{ || A-j 'Vll 2 : II ^ll 0 = 1}

= sup{ || x|| 2 : x " ( t )  = y with || y|[ Q = 1}

1 by the above analysis.

Thus $(fl) <_ p(A(ft)) and therefore fc(A) 1.

Theorem 5.10 I f  *(A1. ) ,  (A2.) and (A3.) hold, then F ( . ,X )  : X -> Y is 

A-proper with respect to r u for x in bounded subsets of IR,, which areh *r

bounded away from zero.

Proof: We prove this assertion by an application of Lemma 5 .8 ,  by

showing f i r s t  that R ( . ,x )  : X *> Y is a k-semicontraction for  A in

bounded subsets of IR which are bounded away from zero and k e [0 ,&(A)) .

Then Lemma 5.6 t e l l s  us that R ( . ,x )  i s ,  therefore, a k-ball contrac­

t ion ,  which implies, by Lemma 5.8 ,  that A - R ( . ,x )  is  A-proper with 

respect to fo r  X in bounded subset in IR+ , which are bounded away 

from zero. The required result  then follows since B is compact. To 

prove that R ( . ,x )  is a k-semicontraction, define V : X x X •* Y by 

V(u,x) = x g (x ( t )  ,X " -V  ( t )  ,x”^u11 ( t ) ) ,  for  t  e IR and x e IR+ . Then 

R(x,x) = V(x,x) for  x e X. From ( A l . ) ,  V is continuous and bounded 

for  x in bounded subsets of IR,, which are bounded away from zero, and, 

for each u e X, the mapping V (u , . )  : X Y is compact and continuous 

since X is compactly embedded in {x e C1 (IR,IR) : x is 1-periodic and 

even}. Furthermore (A3.) implies that for  fixed x e X and u,v e X,

|| V(u,x) - V(v,x) || o 

= x s u p { | g ( t , x ( t ) , x " ^ x ' ( t ) sx"1u , , ( t ) )  -  g ( t , x ( t ) , x " ^ x , ( t ) , x " 1v “ ( t ) |

: t  e [ 0 , l ] }

< X q x ' 1 sup{ | u 1 1 ( t )  -  v ' ' ( t )  I : t  e [0,1 ] }  = q || u * ' -  v "  || Q < q|| u - v|| 2 , 

for  q e (0 ,1)  c [ Os&(A)) ,  by Lemma 5.9.
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Thus, by Lemma 5 .6 S R(. ,A) : X Y is a q-ball contraction for A in 

bounded subsets o f IR , ,  which are bounded away from zero. Hence the result
T

follows by Lemma 5.8 as described at the s ta r t  of the proof.

Remark From Theorems 5 .3 ,  5.4 and 5.10 we see that equation (5.4) sa t is ­

f ies  hypotheses (HI) - (H4) of problem (2 .1 ) ,  with (a,b) any bounded in ­

terval in IR , provided a /  0, From Theorem 5 .4 ,  (H3) holds for  a l l  X e(a,b). 

We shall obtain our results by invoking Theorem 4.12 of §4.2.

F i rs t  we must ver i fy  that a l l  of the conditions of the theorem hold.

Theorem 5.11 C.(B) = { ( ^  )2 : k e IN} and for  each k elN,

N(A -  ) B) = {D cos(2kwt) : D elR}, which is one dimensional.

Proof: Suppose that Ax - ABx = 0 ,  w i t h O ^ x c X  andA > 0. Then

x " ( t )  + kb2x ( t )  = 0.

Therefore, by the elementary theory of ordinary d i f fe re n t ia l  equa­

tions ,

x ( t ) = D cos ( t /  Ab2) + E s i n U / T b 2),  A > 0,

where D and E are constants. For x to be an even function we must set

E = 0. Also from periodic i ty  assumptions, x(0) = x ( l ) ,  so

D - D  c o s /T b 2 ,

 2
which implies that /  Ab = 2k7r, for  some k e 2.

Therefore, A = ( ^ - ) 2 with k e IN since A > 0, and x ( t )  = D cos(2kTrt),
01/ 0

D e IR, t  E IR, k e IN. Thus for  each k elN, Ak = (^jp)- is a characteris­

t ic  value of B re la t iv e  to A and N(A - A^B) = (D cos(2kTrt) : D elR},

which is one dimensional as required.

Notice that by res t r ic t ing  ourselves to even solutions we have en­

sured that dim N(A -  AB) is odd for each' A e C^(B).
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2ko7T 2Theorem 5.12 For each A = (— r—) , with k e IN, the transversal i ty  ---------------------  o b o
assumption BN (A - AqB) fl R (A - Aq B) = {0} holds; A - AqB is Fredholm 

of index zero; X = N(A - AqB) © X2 9 V = IN (A - AqB) @ R(A - XqB ) ,  where 

X̂  cX is a closed subspace, such that BX̂  c R(A -  AqB) .

o
Proof: F i rs t  notice that since B : X + Y is defined by Bx(t) = -b x ( t ) ,

for  each t  e IR, then i t  follows from the proof of Theorem 5.11 that

BN (A - A q B )  = IN (A -  A q B )  = D cos 2kQTrt

Now suppose that

Ax - AqBx = D cos(2ko7rt) (5 .7)

for some 0  ̂ x e X> D elR.

Then as in the proof of Theorem 5.11, DQ cos 2kQ7Tt is the comple­

mentary solution, and so a part icu lar  solution must be of the form 

x ( t )  = E t  cos(2k Trt) + F t  sin(2k irt).|J U Lr

But, for Xp(t)  to be even, we need E to be zero, and for  Xp(t) to be 

1-periodic we require that F be zero. Thus the only solution of equa­

tion 5.7 is x = 0, when D = 0. Hence

BN (A - A q B )  n  R(A -  A q B )  = {0}..

Now we know from Theorem 5.2 that A -  Aq B is Fredholm of index zero. 

Hence, since equation (.5.4) sa t is f ies  hypotheses (HI) -  (H4) of prob­

lem (2 .1 ) ,  i t  follows from Theorem 5.11 and the above that Proposition 

4.8 ( i . ) of §4.2 may be invoked. This completes the proof.
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We can now prove a global bifurcation result  for  equation (5 .4 ) .  

Theorem 5.13 Assume that ( A l . ) ,  (A2.) and (A3.) hold and

equation (5 .4 ) .

Proof: Immediate from Remark following Theorem 5.10 and Theorems

5.11, 5.12 and 4.12.

Theorem 5.13 provides us with a result  on the existence of T- 

periodic solutions of equation (5 .1 ) .  Before proving th is ,  we need 

the following well known theorem which may be found in the book of 

Chow and Hale [6 ] .

( Im p l ic i t  Function Theorem)

Suppose X,Y,Z are Banach spaces, U c X, V c Y are open sets,

F : U x V t  is continuously d i f fe re n t ia b le ,  (xoJy0 ) e  U x V,

F(V y0) -  0 and the Frechet derivative Fx ' (x0 ,yo) of F, with respect 

to x in U at the point (x0 *y0 )> has a bounded inverse. Then there is 

a neighbourhood U-j x V-j c U x V of (x0 >y0) anc* a function f  : V-j ■+■

with f ( y  ) = xQ such that F(x,y)  = 0 for (x ,y)  e x V-j i f  and only

i f  x = f ( y ) . I f  F e Ck(U x V.Z). k > 1, then f  e Ck(V-, ,X) in a neigh 

bourhood of y .J  Q

2 k  IT o

 ̂ = (— r - )  With k  e|N. Then is a global bifurcat ion point of
0 D 0 0
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Theorem 5.14 Assume that hypotheses ( A l . ) ,  (A2. ) ,  and (A3.) hold and
2k it

l e t  Tq e (0 ,«)  with Tq -  — , for  some kQ e IN. Then a t  least one of

the following properties holds:

(a . )  For any number M > 0 there exists an even T^ - periodic solu­

tion x  ̂ of equation (5 .1)  such that || x^|| 2 = M and i f  M -*■ 0, T ;

(b . )  There is an even T-periodic solution x-j- of equation (5 .1 ) ,  

either  for a l l  T e (0 ,To) ,  or for  a l l  T e (T »»), such that || x j | |  2 > 0 

for T in the appropriate in terval and \ | | X j | |  2 0, T ->■ T .

Proof: F i rs t  notice that from Theorem 5.13, aq is a global bifurcat ion

point and so there is a maximal connected set Cg (say) in X x (R+ which 

satis f ies  at  least one of the conditions ( i . ) ,  (11.)  or ( i i i . )  in De­

f in i t io n  2.7. Then, using the fact  that a continuous image of a con­

nected set is i t s e l f  connected, we may take the continuous projection  

of Cg onto fR+ to obtain an interval onlR+ . Transforming these facts 

for  equation (5 .4 )  into the terminology of equation ( 5 .1 ) ,  i t  is easily  

seen that (a . )  and (b . )  are d irect  consequences of ( i . )  and ( i i i . )  of 

Definit ion (2 .7 )  for  the global bifurcation point,  x , of equation

(5 .4 ) .  To prove the theorem we must show that po ss ib i l i ty  ( i i . )  in 

Definit ion 2.7 is not possible for  equation (5 .1 ) .  We prove this in 

two steps.

(1 . )  I f  ( x 9x) e Cs and 0 < |x - X | is s u f f ic ie n t ly  small, then 

x = uxQ + o( | u | ) as u 0, where u e IR and xQ is a non-zero element in 

N(A - AoB), that is ,  xQ = D cos (2ko7rt) with 0 f  D e IR.
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To see th is  we apply the Im p l ic i t  Function Theorem. Suppose 

(x,x) e Cs and 0 < |x - x | is s u f f ic ie n t ly  small. Then 

F(x,x) = Ax - XBx - R(x,x) = 0. From Theorem 5.11, dim N(A - XqB) = 1. 

Also from Theorem 5.12 there exists a closed subspace c X with 

X = N(A - XqB) © X2 and Y = IN(A -  XQB) © R(A - XQB).

Writing x " xi + \  with x-| e N(A - x B), and x2 e X^, we have that

F(x-j + x£ ,x) = (A - X B)(x1 + x2 ) - (X -  x )B(x1 + x2) - R(x] + x2 ,x) « 0

I f  we l e t  Q-j : Y IN(A - XqB) and Q2 : Y + R(A - XQB) be continuous

projections, then

(A ~ XQB)x2 ~ ( x  " Xq)Bx2 ~ Q2R(Xi + x2 ,X) = (x - Xq)Bx1 +  Q iR (x-j + x 2 ,x)
= 0.

Notice we have used the fac t  that Bx2 e R(A - xqB) which follows 

by Theorem 5.12.

Let us consider the equation

0 = (A - XqB)x2 -  (x - Xq)Bx2 -  Q2r ( xi + x2 »x )

= (A - xB)x2 -  Q2R(x1 + X2>x)

*= F2 (x-| 9x2 ,x) (say).

Then F2 (0 ,0 ,x )  = 0 for  a l l  X e IR+ and the Frechet der ivat ive ,

F2 ( 0 , 0 , x ) ,  of F2 (x-|,x2 ,x) with respect to x2 , at the point ( 0 ,0 ,x ) ,  

is such that

F2 '(O,0 ,X) = (A - XB),

which is a homeomorphism for  |x - x | < d is t (x o ,C^(B)\{xo> ) .
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Thus by the Im p l ic i t  Function Theorem, there exists«a neighbourhood 

N-j x N2 of (0,XQ) e N(A - XqB) x IR and a function f^ : N-j x ^  X25 

such that F^Cx-jjX^jA) = 0 has the unique solution,

x2 ~ ^2^xl e  ̂ ^1 x ^2 > ^ 2)  ^ 2  =

Hence x  ̂ = f  2 (xq  ̂^) ~ (A - AB)  ̂ R(x  ̂ + f 2 (x-j ,A) ,A ) , and im pl ic i t  

d i f fe ren t ia t ion  of th is  equation with respect to x-j implies that

II " 2̂^X1 M  2

x-, ||
0 as || x-j || -* 0

Now since N(A - AqB) is one-dimensional we may write  x-j = uxQ with 

|| x || = 1  and u e (R. Hence x = x-j + X2

= uxQ + f 2 (ux0 ,x)

=  u x  +  o (  | u | )  a s  u  •+■ 0 ,

as required. This follows since

II f 2( ux0 9̂ )II 2
-> 0 as u 0.

( 2 . )  N o t i c e  t h a t  f o r  e a c h  k  e IN t h e  e l e m e n t  xk =  Dk c o s ( 2 k T r t ) ,
OL O

Dk f  0, of N(A - AkB), where Ak = , is such that  xk has exactly
Lr

2k simple zeros in the interval (0 ,1 ) .  Let S denote the set of a l l  

functions x ( t )  e X having exactly 2k simple zeros in the interval  

(0 ,1)  and for  which x(0)  = x ( l )  f  0. Then i t  is easi ly  seen that ,

fo r  each k elN, is open in X and fl -  <j> 'for  k f  £ eIN. Now,

i f  ( x , A)  E Cs and 0 < |x - x j  is su f f ic ie n t ly  small, then from step

(1 . )  above, x = uxQ + o ( |u | )  as u -*• 0. Since xQ( t )  = DQ cos(2kQTrt)
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has exactly 2k zeros in (0 ,1 ) ,  then { ( x , a )  e C : (x,A) f  ( 0  ,X),
k °

0 < ] A -  A | + || x || 9 is small} c S 0 xIR. Now i f  
k

(x,A) e C n (3S xfR), then x must have a double root in (0 ,1 ) .  To
k k

see this notice that since x e 3S , and 3S is a r b i t r a r i l y  close to 
k

S , certa in ly  x cannot have more than 2kQ roots in (0 ,1 ) .  I f  x is 

such that x(0) = x ( l )  = 0, then the evenness of x e X implies that

x 1(0) = 0 and so, by the uniqueness of the i n i t i a l  value problem
o

x e C [0 ,1 ] ,  x(0)  = x ' ( 0 )  = 0, we must have x iden t ica l ly  zero. But 

( A , 0) =  ( A , x )  0 Cs implies that A is a bifurcat ion point of equation

(5 .4 ) ,  which is a contradiction since 0 < |x - a |  may be taken less 

than d i s t ( A n ,  C«(B)\  ( A  } ) .  Thus x  must have a double root in (0 ,1 ) ,0 M 0
but again by the uniqueness of the i n i t i a l  value problem we must have 

x = 0, which is a contradiction by the previous argument.
k

We have, therefore,  proved that i f  (x,x) e Cs, then ( x , a )  e  S x IR
2k17i 2

and in part icu lar  ( x , a )  f  ( 0 , A ^ )  for  any A^ =  ( — p - )  with k Q f  k ^  e ( N .  

This completes the proof of Theorem 5.14.

Remark I f  the function g in equation (5 .1)  is independent of x ' * ,  then 

the map R(. ,A) : X -»• Y defined in Definit ion 5.1 is compact for A in 

compact intervals in IR+ , since X is compactly embedded in 

(x e C'0R,IR) : x is an even, 1-periodic function}. The conclusions of 

Theorem 5.14 then hold without requiring condition (A3.) .  This case 

has been studied by many authors, including [17],  where the main tool 

used is the Leray-Schauder degree theory. Note that this method cannot 

be used when g also depends on x ' 1, since then g is not compact.

Conclusion ( i . )  of Theorem 5.14 says that the periodic solutions 

x  ̂ are unbounded. I f  we know, a p r io r i ,  that for certain periods, even
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periodic solutionsare bounded, then for these periods conclusion ( i . )  

is redundant. We shall now impose further  conditions on equation (5 .1 ) ,  

which ensure that ,  for  certain periods, such a p r io r i  bounds ex ist .

In addition to the hypotheses (A l . )  - (A3.) assume that the f o l ­

lowing two conditions are sat is f ied  by equation (5 .1 ) .

(Q l . )  There exist  non-negative constants D, E, F and Â  i n IR with 

E > 0 and Â  > 0 such that

|g (x ,y ,0 )  - b2x| + E|x[ + F |y | ,  

for  x and y in IR with

  2
O^.)2 [-F + A 2 + 8E(1-q) ]■ > X2

where q e ( 0 , l )  is the Lipschitz constant from (A3.)

(Q2.) There exist  >_ 0 and M > 0 such that fo r  each A with

0 £  A-j < A <

/ QV { g ( x ( t )  ,A~"V ( t ) ,A ~^x! ' ( t ) )  -  b2x ( t ) } d t ^  0,  

for  each x e X with | x ( t ) |  >_ M fo r  a l l  t  e IR.

We have the following result  on constants E and Â  appearing in

( Q l . )

Theorem 5.15 I f  there ex ist  x,y e fR such that g (x ,y ,0 )  = 0, then the
  2

2 2tt
constants E and A0 in hypotheses (Q l . )  are such that E > b and A9 < .

Proof: Suppose that g(x ,y ,0 )  = 0, then t r i v i a l l y  

|g (x ,y ,0 )  -  b2x| = b2 | x | .

2
Hence E > b .
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Now i t  is easi ly  ve r i f ied  that

[-F + / f2 + 8E(1 - q ) ] 2 decreases as E increases from b2 and 

-F + /F2 + 8E(1- q ) decreases as F increases from 0. Thus

( *  )2 [ _ F + / f2 + 8 E ( l - q ) ] 2 <
2t 4b

_ 2ir2 ( l - q )

= b2

2 2< - 5 — , since q e (0 » l )

9 2
Hence a9 < —^  •

 ̂ b

We now prove the following result  on a pr ior i  bounds.

Theorem 5.16 I f  ( A l . ) ,  (A2.) ,  (A3.) ,  (Q l . )  and (Q2.) hold and 

Ax - ABx - R ( x , a ) = 0 for x e X with A z { x ^ , \ 2) 9 then there exists a 

constant > 0, independent of x and A, such that || x.|| ^  ■

Proof: Let x e X and A e(A^,A2 ) with Ax - ABx - R(x,A) -  0, then

- x " ( t )  = Xb2x ( t )  -  x g ( x ( t ) sx_5sx ' ( t ) , \ - 1 x "  ( t ) )  (5 .8)

On integration from 0 to 1 equation (5 .8) becomes 

x / I  {b2x ( t )  -  g ( x ( t ) , x " !'2x ' ( t ) , x ' 1x l , ( t ) )> d t  = 0 (5 .9)

which implies by assumption (Q2.) and the 1-per iod ic i ty  of x that there

exists t Q e [0,1] such that | x ( t  )| < M. Writing x ( t )  = aQ + u ( t )  with

aQ = /   ̂ x ( t ) d t  i t  follows that
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■Cp1 u ( t )d t  = 0, X ' ( t )  = u‘ ( t ) .

Since for  t  e [0sl ]  we may write  x ( t )  = x ( 0  + / .  x ' (s )ds ,o t Q
we have that

lx ( ' t ) | i< M + | | x , || = M + | | u , || for  a l l  t  s IR (5.10)

where ||v || = [ f Q 11 v ( t )  12dt]^ .

Notice that the norm || . j| is d i f fe ren t  from both || . || and || . || 

Next we prove that || x|| £  M + ^  || u 1 || .

To see this consider

w(t) = x ( t  + t Q - 1 )“X ( tQ) ,  i f  1 - t Q <_ t  <_ 1

x ( t  + t Q) - x ( t Q) 9 i f  0 <_ t  < 1 - t Q

Since w(0) = w( l )  -  0 and w e C ' [ 0 S1 ] 9 then by Theorem 257 in [10] 9

IIW tl < 1  II W • II •

Now since || w + x ( t Q)|| 2 = / g " * ° | x ( t  + t Q) |^dt + / • ^ l x ( t  + t Q- l ) | 2dt

= / ( / W t ^ d t ,

then || x || = || w + x ( t Q) ||

1  ||w|| + II x ( t 0 )||

£  II w II + M,

1 _ t
and || w 1 || 2 = /  ° | x ' ( t  + t  ) | 2dt + / J j x ' t t  + t  -1 ) |  dt

0

= / 0 1j X1( t ) | 2dt ,
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therefore, | |w' ||  = || x 1 || = || u 1 || .

Thus || x || <_ M + || w || M + 1  || w ' ||

= M + i  || u ■ ji . (5.11)

Now from the equali ty

x " ( t ) Z = x g ( x ( t ) , x ~ V ( t ) , x ‘ 1x " ) x , , ( t )  - xb2 x ( t ) x " ( t )  

i t  follows that

x " ( t ) 2dt = / 01| x " ( t ) | 2dt

< l / J  | g (x ( t ) , x " 3sx , ( t ) , X -1x " ( t ) ) - b 2 x ( t ) |  | x " ( t ) | d t

Thus || x "  || 2

/ 01r |g ( x ( t ) , X -J£X> ( t ) „ 0 ) - b 2x ( t ) I  + | g ( x ( t ) , x " V  ( t ) , x -1 x "  ( t ) )

- g ( x ( t ) ,x _!V ( t ) 50 ) | ]  | x ' 1 ( t ) | d t

implying by (A3.) and (Q l . )  that ,

l l x " l l  2 + E|x ( t ) |  + FX-Js| x 1 ( t ) |  + qX_11 x ' ' ( t ) |  ] x "  ( t )  d t ,

and by Holder's inequali ty ,

so 11 x ■ ■ II [D + Ell x II +  F x - ^ l l x ' l l  ] .  ( 5 - 1 2 )

Moreover, from the equality,

- x 11 ( t ) x ( t )  = xb2x2 ( t )  -  x g ( x ( t ) Jx ' S c ' ( t ) , x ~ 1x " ( t ) ) x ( t )

we have that

/ o 1 | x ' ( t ) | 2d t  = X/^ [b2xM- g ( x ( t ) , A " V  ( t ) , X _1x "  ( t ) ) ] x ( t ) d t

= x/J [b2xid- g ( x ( t ) , x " %x ' ( t ) , x ‘ 1x " ( t ) ) ] ( a 0 + u ( t ) ) d t
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implying by (A3 . ) ,  (Q l . )  and equation (5 .9)  that  

II x ' II 2 1  l b2xW~ ( t ) , X _1x "  ( t ) )  | | (u ( t ) |d t

< A/1 [D + E | x ( t ) | + FX- ^ | x * ( t ) |  + q x '1 |x , , ( t ) | ] | u ( t ) | d t  

and so by Holder's inquali ty

II X 1II 2 < X[D + E|| x [| + X~^F|| x 11| + qx"1 | | x "  II ] | |u  II .

But, equation (5.12) implies that

II x ' II 2 < *[D + Eli x II + x ‘ %F| |x'H +T?q (D + E||x|| + FX^H x '

Thus H x * || 2 [D + E|| x || + FX^H u'|| ] II u II

1
Also by the def in i t ion  of u( t ) we have /  u ( t )d t  = 0, therefore,  

by Wirt inger 's inequali ty  [10], i t  follows that ,

M l  <27  M i l  •

Hence from equation (5.11)

II x 1II 2 = M i l  2 iT ^ q  [D + E(M + 1|| u ' II ) + FX-^llu 'll] f l u ' l l

= (D + EM) X II u ' 11 + (E + ttFX-3$) AJUJJI—
2 ir ( l -q )  2tt (1 —q )

2
so  ̂ || u 1 || <_ t t ( D  + EM) + (E + ttFX 2) || u 1 || .

Thus II X ' II = II u 1II < -------- r q r  < A, (say) (5.13)
2tt (1 - q ) - (EX + ttFX )

where A-j > 0 is a constant independent of x and X e(x-|,Xr,).

Notice that 2 tt2 (1 - q ) - (Ex + ttFX^) > 0, since

(Q l .)  implies the following
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2 tt2 (1 - q ) -  (EX +  ttFX 2)

2 2 2 

> 2tt2(1 -q) - 5 f [ “F + /F^ + 8 E(l -q ) ]  - ^ [ - F  +-/F2 + 8 E(l -q )  ]

? 2   __________
= 2 tt ( l - q )  - ~ - [ -F  + /F* + 8 E(l-q )  ] [-F + A 1 + 8 E(l-q )  + 2 F]

= 2it2 (1 -q) - ^ [ - F 2 + F2 + 8 E ( l -q ) ]

= 27r2 ( l - q )  - 2Tr2 ( l - q )  = 0 as asserted.

Thus from equations (5.10) and (5 .13 ) ,

| x ( t )  | <_ M + ~  ^2 for   ̂ e ^  (5.14)

and from equations (5 .11) and (5.13)

II X II < M + - 1  (5.15)

Therefore, from equations (5.13) and (5 .15 ) ,  i t  follows by equation 

(5.12) that

. A, j
|| X 1 1 || < ’p q  [D + E(M + - 7 ) + F X_'aA1 ]

= [XD + XE(M + - I )  + F X ^ ]

< _ h ^  (say),

where A  ̂ > 0 is a constant independent of x and A in ( A - j ^ ) .

Now, since x(0) = x ( l ) ,  there must ex ist  t^ e ( 0 , l )  such that 

x ‘ (t -| ) = 0 , so

x l ( t )  = I  y  x 1 1 (s)ds and 
r l

l x ‘ ( t ) |  | x ' ' ( s ) |d s  <_ H x l , |l by Holder's inequali ty .

Thus | x 1 ( t ) | A3  fo r  a l l  t  elR, by per iod ic i ty .  (5.16)
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Also from equation (5 .8 ) ,  (A3.) and (Q l .)

| x 11 ( t )  [ £ A [D  + E| x ( t )  | + A~^F | x 1 ( t )  | + A“ q̂ | x , l ( t ) | ]  

and so | x ' '  ( t ) ] £  [D + E |x ( t ) |  + x“^ | x ' ( t ) | ]  therefore equations
* H

(5 .14) ,  (5 .16) imply that

| x " ( t ) |  i - A -  [D + E A2 + x A g ]  £  A4 (say) for  a l l  t  e IR (5.17)

where Â  is a posit ive constant independent of x and A e(.A-|,A2 ).

F inal ly  by equations (5 .14 ) ,  (5.16) and (5.17)

II x II 2 = max{ || x || Q, || x ' || Q ,  |[ x "  || Q> <. m a x l A ^ . A ^  = M., (say)

which is a f i n i t e  number as required. This completes the proof of 

Theorem 5.16.

We can now prove the following improved version of Theorem 5.14.

Theorem 5.17 Assume that hypotheses ( A l . ) ,  (A2.) ,  (A3 . ) ,  (Q l . )  and
2 k ¥

(Q2.) ho.ld and le t  Tq e(0,«>), with Tq = —  , fo r  some kQ e IN. Let

M-j be the constant defined in Theorem 5.16. Then at least one of

the following properties holds:

( i . )  For any number M > 0 there exists an even T^-pertodic .solu­

tion x  ̂ of equation (5 .1)  such that | |x M|| 2 = M and:

(a . )  i f  M ^ 0, then T^ Tq;
* 4  *4

(b . )  i f  M > M-j, then T^ jL (A-j Â2);

( i i . )  There is an even T-periodic solution Xy of equation

(5 .1 ) ,  e i ther  for a l l  T e(0,T ) ,  or for a l l  T e(T0 ,«>) such that
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*4 </*
II x j l l  2 > anc ̂ ^   ̂ e^ ]  ^ en  ̂ < II x t  11 2 — • Furthermore,

l f  II xyII 2 "* ° s ^ en T *  ^ o '

Proof; As in the proof of Theorem 5.14 using the additional results  

supplied by Theorems 5.15 and 5.16.

Remarks (1 . )  As fa r  as the author is aware the above application is 

a new resu lt .

(2 . )  Equation (5 .1)  may be regarded as a special case of an equa­

tion considered by Petryshyn and Yu [34].  They prove existence results  

for  an equation of the form

( p ( t ) x ' ( t ) ) '  + f ( t , x ( t ) , x ' ( t ) , x 11( t ) )  = y ( t ) ;

x(0) = x ( l ) ,  x ' (0 )  = x 1(1) under various conditions on the functions 

p, y and f .  However, th e i r  results cannot pick out even periodic solu­

tions and th e ir  method does not determine any properties of the solution.

(3 . )  Mahwin [18] gives results on periodic solutions to systems 

of ordinary d i f fe re n t ia l  equations using a bi furcation argument akin 

to ours. However, the non-linear term considered there cannot depend on 

the highest derivative and they employ coincidence degree theory.

(4) By a similar procedure we can find odd, T-periodic solutions of 

equation (5.1). We make a hypothesis akin to (A2.) and a definition 

analogous to Definition (5.1). In this case N(A) = {o} and R(A) is 

the whole space. This case is, therefore, somewhat simpler.
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5.2 Existence results fo r  a class of ordinary d i f fe re n t ia l  equations.

Consider the ordinary d i f fe re n t ia l  equation

x 11{ t )  + x x ( t )  = X g ( t , x ( t ) , x ‘ ( t ) , x ' 1( t ) ) ,  (5.18)
X  & IR N x : [ o  -*■ \R  ^
whereAx(0) = x ( l )  = 0 and g sa t is f ies :

o
(C l . )  g : [0,1 ] xIR ->IR is bounded and continuous and 

g ( t , x , y , z )  = o(max{ | x | , | y | , | z | })  

as x ,y ,z  0, uniformly for t  e [ 0 , l ] .

From (C l . )  i t  follows that x = 0 is a solution of equation 5.18 

for  each t  e [ 0 , l ]  and for a l l  x e IR. We shall consider the problem of 

proving the existence of solutions (x ,x)  with x not iden t ica l ly  zero.

We shall again employ the global bifurcation results of the previous 

chapters and the analysis w i l l  be similar  to that- in the previous sec­

t ion. F i rs t  we must transform equation (5.18) into an abstract, non­

l inear  eigenvalue problem.

Definit ion 5.18

X = {x e C2 [0,1] : x(0) = x ( l )  = 0};

Y = {y e C [ 0 , 1 ] } ‘

A : X Y, where Ax(t)  -  x ' 1( t )  for  each t  e [ 0 , l ] ;

B : X Y, where Bx(t) = - x ( t )  for  each t  e [ 0 , l ] ;

R : X x IR, where R(x,x) = X g ( t , x , x ‘ , x ' 1) for each (x,x) e X xIR.

I f  we denote the norms on Y and X by

|| y || = max{|y(t) |  : t  e [ 0 , l ] }  for each y e Y and

|| x || 2 = max{ || x ^  || : 0 <_ j  £  2 for  each x e X,

then X and Y are Banach spaces.
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Thus we can rewr i te  equation (5.18) as

F(x,A) = Ax - ABx - R(x,A) = 0, (5.19)

where (x,A) e X x (R and F : X x IR Y.

We have the following analogue to Theorem 5.2.

Theorem 5,19 A : X +  V is a bisection, that is ,  N(A) = 0 and

R(A) = Y; A is a Fredholm operator of index zero; B : X Y is a com­

pact l inear  operator; A - AB is Fredholm of index zero fo r  a l l  A e|R;

fo r  each A e IR there ex ist  a l inear  homeomorphism H : X + Y and a

l inear  compact operator C : X Y such that A - AB = H - C, where in

general C and H depend on A.

Proof: Suppose Ax = 0, then x " ( t )  = 0, so x ( t )  = Ct + D. The boundary

conditions x(0)  = x ( l )  = 0 imply that x(0) = D = 0 = C

and, therefore, N(A) = {0}.

To prove that R(A) = Y, we must show that for  each y e Y, there 

exists x e X such that x 11( t ) -  y ( t )  for  a l l  t  e [ 0 , l j .  Integrating we 

have that

x ‘ ( t )  = x ' (0) + / Qt  y(s)ds 

and x ( t )  = t x ‘ (0) + y(u)du)ds

So x(0) = 0. We must prove that x ( l )  -  0.

x ( l )  = x* (0) + y(u)du)ds

= x' (0) + f g U u  y(u)ds)du 

= x ' (0) + X01(1 - u)y(u)du 

= x ' ( 0 )  + Z 1 y(u)du - yQ u y(u)du.

But T01 y(u)du = yo1x " ( t ) d t  = x ' ( l )  - x ' ( 0 ) ,
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and /  !u y(u)du = /  "* t  x ' ' ( t ) d t

= [ t  x ' ( t ) ] J  - / 0 1 x ' ( t ) d t  

= X ' ( l )  - ( x ( l )  -  x ( 0 ) )

= x ' ( l ) .

Hence x ( l )  = x ' (0 )  + x 1 (1) - x ' (0 )  - x 1 (1)

= 0.

Thus R(A) = Y.

As we noted in Chapter One, a bounded, l inear  bisection is Fredholm 

of index zero. Hence A is Fredholm of index zero. B is easily seen to 

be compact and the remainder of proof follows exactly as in Theorem 5,2.  

The next resu lt  is similar  to Theorems 5.3 and 5.11.

Theorem 5.20 Let Qn and Yn be as defined in the las t  section preceding

Theorem 5.3.  Suppose H is the homeomorphism from Theorem 5.19 for some
_1

fixed A e IR. Then, r„ ~  {H (Y ),Y ,Q } is an admissible scheme for
vA În ilQvll —  t ecctJv (vgIKJ 

maps from X into Ŷ; A -  AB: X -> Y is A-proper with respect to for  a l l

A £ fR; C^(B) =’ { Â  = ( k?r)  ̂: k e IN}, and N(A -  A^B) = {D sin kTrt : D e tR>,

which is one dimensional.

Proof: That is admissible and A - AB is A-proper with respect to

r u follows in a s imilar  way to Theorem 5.3 : at  the point where we prove 

that || Q || = 1, we show that | |Qn || i  1, as before and then use y e Y

such that y ( t )  = -2 11 -  %| + 1 to deduce that || Qn|| = 1 fo r  each

n e: IN.

Now suppose that (A - AB)x = 0, 0 f  x £ X. Then 

x , l ( t )  + Ax( t ) = 0, therefore x ( t )  = D sin A  t  + E cos / C t , i f  A > 0 

and x ( t ) = F e ^ +  Ge_>/^ ,  i f  A < 0. Notice that i f  A = 0, then x = 0
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which is a contradiction. Using the boundary conditions x(0) = x ( l )  = 0 

we have that E = 0 and /x = kir for k e IN. So X = (k7r)2 and x ( t )

= D sin kut, k efN. Also 0 = F + G and 0 -  F e ^  + Ge"^.  Therefore,

F = -G and

= 2F sinh /x

Thus F = G = 0. So C„(B) = {X. = (kir)2 : k e IN} and N(A -  XfcB)
2

= {D sin kirt : D e l R } ,  for  each k e IN where X  ̂ = ( k-rr) which is 1 d i ­

mensional. This completes the proof of Theorem 5.20.

I t  is a t r i v i a l  consequence of hypothesis (C l . )  and Definit ion  

5.18 that R,  in equation (5 .19 ) ,  sat is f ies  hypotheses (H3) and (H4) of 

problem (2 .1 ) ;  furthermore, from Theorem 5.20, (H2) is s a t is f ie d . fo r  a l l  

X e l R ,  so (a,b) = IR. In Theorem 5.23 we shall see that (HI) also holds. 

Before verifying (HI) we prove that equation (5.19) sa t is f ies  a trans­

versal i t y  condition.

Theorem 5.21 B N ( A  - X^B) fl R ( A  - X^B) = {0} for  each k e IN such that  

Xk = (kir)2 .

Proof: We have seen in Theorem 5.20, that N(A - x^B) = {D sin kirt: DefR}.

I t  follows easily that BN (A - X^B) = IN(A -  where I is the inclu­

sion map of X into Y, which is compact. Then, i f  D sin kirt 

e BN(A - X^B) H R(A -  X^B), we must have D = 0. For,suppose (A -  x^B) x 

= D sin knt, 0 f  x e X, then x " ( t )  + xfcx ( t )  = D sin kirt. The comple­

mentary function is given by x ( t )  = F sin k - n t  +  G cos kirt, for  some 

constants F and G, so the part icu lar  integral must be of the form
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Xp(t) = Pt sin kirt + Qt COS k-rrt.

Thus we must have

x ( t )  = F sin k?rt + G cos k^t + Pt sin kirt + Qt cos kirt.

Since we require that x e X, then x(0) = x (1} = 0 9 which implies that

G = Q ~ 0 and

x ( t )  = F sin kirt + Pt sin k-rrt, with

x ’ ^ t )  = - F ( k-TT)  ̂ sin kirt + 2PkiT cos kirt

-Pt(kiT)2 sin kirt. 

o
Hence x 11 ( t ) + (kir) x ( t )  = D sin kirt, which implies that 2Pk-jT cos kfrt

= D sin k-irt, which can only be true when D = P = 0.

Thus the transversal i ty  condition holds.

I t  follows from Theorem 5.21 that we can use s im ilar  results for

solving equation 5.19 as we used for  equation 5.4; in part icu lar  the 

theorems from §4.2 apply since a transversali ty condition holds. F i rs t  

we need to prove that F ( . , x )  is A-proper for x in some open interval

of the real l ine .  A further  assumption on g is needed.

(C2.) There exists a constant q e(0»l)  such that  

|g ( t ,x ,y  ,z )  - g ( t , x sy,w) | £ q | z  - w | , for  x , y 5z sw elR and t  e[Osl ] .

W ■L.t-psdu.'fcz.

The statement of the next theorem is exactly the same as Lemma 5.9,  

but the proof is d i f fe ren t .

Lemma 5.22 &(A) £  1.

Proof: Since A is a bisection, i t  is a homeomorphism, so fo r  each bounded

set S5 c X, e(n) £  || A  ̂ || 3(A( ) ) .

We shall prove that || A"1 1| = sup{ || A"V I I  2 : H ^ II 0  = ^  ^  '
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For each y e Y with ||y || = 1, there exists xe X such that

Ax = x 11 = y.

Integrating we obtain that

x ' ( t )  = x ' ( 0 )  + f Q t y [ s ) d s > and 

x ( t )  = tx ' (O )  + f Q ^ ( f QSy { u)du)ds + C

But x(0) = 0 implies that C = 0 and x (1) = 0 gives 

X1(0) = - / 01 ( f Qs  y(u)du)ds

So x ( t )  = / 0t (J'0S y(u)du)ds) -  t /  1( /  s y(u)du)ds. Or, equivalently,  

x ( t )  = y(u)du)ds -  t / on( / Qv y(u)du)dv

So |x ( t ) 1 = 1 -r0t (J'0S y(u)du)ds -  t / 0 V 0 v y(u)du)dv|

= k 0t [J'0S y(u)du - / 01( / 0V y(u)du)dv]ds|

i _ z 0t l / oS ■ / 0^ / oV y ( u)du)dvl ds

= / 0 V 0 V 0 S y(u)du)dv -  Z QV 0v  y(u)du)dv| ds 

= O - ' o  y(u)du)dv|ds

-  V  ' o V  y(u)du|dv ds

-  / q1 V -ro 1i y ( u ) idu dv ds

= 10

Also, since x ' ( t )  = / Qt  y(s)ds - ( / QS y(u)du)ds, then 

x ' ( t )  = y(s)ds)dv - / Q1( / 0V y(u)du)dv

= ■(0V vt  y(s)ds)dv.
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So as above | x 1 ( t ) | <_ || y || Q = 1. Hence, since || x 11 || Q = || y || = 1,

we have

II x II 2 = max{ || X II 0 , II x 1II o, II x "  II o> 1  1, and so || A"1 1| < 1

which implies that  $ ( n )  £  3(A )) and £(A) >_ 1.

Theorem 5.23 I f  (C l . )  and (C2.) hold, then F ( . , a ) : X Y is A-proper 

with respect to for a l l  A elR.

Proof: Exactly as in the proof of Theorem 5.10, using Theorem 5.22

The preceding results t e l l  us that equation (5 .19) sa t isf ies  the 

hypotheses (HI) - (H4) of problem (2 .1 )  with (a,b) = (R and that  

BN(A - XqB) n R(A - AqB) = {0} ,  for  each Aq = (k ir)^, k e IN. We can

use Theorem 4.12 to prove that such a XQ is necessarily a global b i ­

furcation point of equation (5 .19) .

Theorem 5.24 Assume that (C l . )  and (C2.) are sa t is f ied .  Then, Aq

= ( kQtt) is a global bifurcation point of equation (5.19) for  each

k e IN.0

Proof: Immediate from Theorem 4.12 and the preceding results.

Transforming the conclusions of Theorem 5.24 into an existence 

theorem for  equation 5.18 we have the following analogue to Theorem 

5.14.

Theorem 5.25 Assume that equation 5.18 sat is f ies  (C l . )  and (C2.)
2

and A = (k tt)  for  k elN. Then at least one of the following must o o o
hold:
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(a . )  For any M > 0 there exist  Au > 0 and xM e X such that

|| xM|| = M and ( )  sa t is f ies  equation (5 .18);  fu r ther ­

more, i f  M -* 0, then AM X .M o
(b .)  There is xx e X such that for  a l l  A e(Ao,« ) ,  II x j l  0

and (x^,a) sa t is f ies  equation (5 .18) .  I f  | |x^|| ^

then x  -> x  .o

Proof: The proof is similar  to that of Theorem 5.14 withfR+ replaced by

!R: as in step (1 . )  we may take X = N(A -  aqB) 6 X^,

Y = I N(A - AqB) © R(A - X B),

and, using the Liapunov-Schmidt procedure, show that i f  ( x , a ) e

(the maximal connected subset of X x IR guaranteed by Theorem 5 .24 ) ,

and 0 < |A - a | is su f f ic ie n t ly  small, then x = uxQ + o ( |u | )  as

u -*■ 0, where u e fR and x = sin k irt with 0 f  e IR. We cano o o  o
then denote by Z the set of a l l  functions x e X having exactly 

k - 1 simple zeros in the open interval (0 ,1)  and fo r  which x (0) = x (1) = 0, 

x 1(0) f  0 and x ' ( l )  f  0. Then for  each k e N, Z  ̂ is open in X and

fl = cf> for  k t5 i  e IN. Proceeding again as in the proof of

Theorem 5.14 we may show that poss ib i l i ty  ( i i . )  of Def in it ion 2.7 

is impossible. F in a l ly ,  observe that i f  (x,A) e C$ with A = 0, 

then x ' 1 = 0 and so x is ident ica l ly  zero and therefore A = 0 is a 

bifurcation point. But 0 i  CA(AB) which implies that A = 0 is not 

a bifurcation point. This contradiction t e l ls  us that equation 5.18 

cannot have solutions (x ,a)  with ||x||  2  ̂ 0,i*f X = 0. Hence by

Theorem 5.24, Definit ion 2.7 ( i i i . )  and Definit ion 5.18, the result

follows.
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In almost exactly the same way as in the previous section, we may 

find a priori bounds for x, whenever (x,A) is a solution of equation 

(5 .18 ) ,  provided A l ies in some specified in te rva l .  We make the f o l ­

lowing assumptions, which correspond to (Q1.)  and (Q2.) of section 

5.1.

(C3.) There ex ist  non-negative constants, n, E, F and Â  inlR

with E > 0 and > 0 such that |g ( t , x ,y ,0 )  - x| <_ D + E|x| + F | y | ,
 2

fo r  x and y in IR and t  e [0 , l  ] ,  with (•£— [-F + / +  8E ( l -q ) ]  >_ A^,

where q e (0,1) is the constant from C2 .

(C4.) There ex ist  A-j >_ 0 and M > 0 such that fo r  each A with 

0 < < A < a2 , /  ** A { g ( t , x , x ‘ , x ‘ 1) -  x ( t ) } d t  f  0, fo r  every x e X

with | x (t ) | >_ M fo r  a l l  t  e IR.

Proceeding exactly as in section 5.1 we have the following theorem 

which is a consequence of Theorems 5.15 and 5.16.

Theorem 5.26 I f  there exist  t ,  x, y e IR such that g ( t , x , y s0) = 0, then 

the constants E and Â  in (C3.) are such that E _> 1 and Â  < 2 t t  . I f

(C l . )  - (C4.) are sa t is f ied  and ( x , A )  is a solution of equation (5.18)

with A s (A-pAgJs where Â  is as defined in (C4.) then || x|| 2  £  M-| for

some f i n i t e  number M-j > 0 which is independent of x and A.

Proof: Immediate from Theorems 5.15 and 5.16.

Theorem 5.26 provides us with an improved version of Theorem

5.25.
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Theorem 5.27 Assume that hypotheses (C l . )  -  (C4.) are sat is f ied  and 
2

= (krtir) , for  k e IN. Let be the f i n i t e  number defined in Theorem o o o 1
5.26. Then at least one of the following properties holds:

(a . )  For any M > 0 there exists Â  > 0 and e X such that

II X|Yj|| = M and (x^A^) sat is f ies  equation (5 .18) .  I f  M 0, 

then Â  aq and, furthermore, i f  M > then A j t  (Â  A^);

(b .)  There is x. e X such that for a l l  A e(A . « ) ,  || x. II 0 > 0
A 0  A £

and (x, ,A) sat is f ies  equation 5.18. Furthermore, i f
A

X and i f  || x j  2 + 0, then

A A .
0

Proof: Follows from Theorem 5.26.

Corollary 5.28 Suppose there exist  t ,  x, y e IR such that g ( t ,x ,y ,0 )  = 0
2

and hypotheses (C l . )  -  (C4.) are sat isf ied such that A-j <_ ir and 

2 2Ar, e ( tt ,2 it ) .  Then there is a solution (x^,A) of equation 5.18 for  

2every A e (tt such that 0 < || x j l   ̂ £  M-j, where M-j is the f i n i t e  

number defined in Theorem 5.26.

?Proof: In Theorem 5.27 set aq -  tt and the result  is immediate. Notice
2

that Â  < 2tt follows by Theorem 5.26.

Remark (1 . )  An equation s imilar  to equation (5.18) is considered by Chow 

and Hale [6] ,  Chapter 5, §5.8. They obtain a global bifurcat ion result  

when the nonlinear term g has the form g ( t , x , x ' ) .  Since g does not de­

pend on x 11 i t  is compact and they use the Leray-Schauder degree to ob­

tain th e ir  result .

(2 . )  The application given in this section is a new resu lt .
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5.3 Examples

In this f in a l  section, we give an example of an equation which 

sat is f ies  the hypotheses (C l . )  -  (C4.) of the previous section and an 

example which sa t is f ies  (A l . )  -  (A3.) ,  (Q1. )  and (Q2.) of Section 5.1.  

Assume notation as before. Consider,

x 1 * ( t ) + A x ( t ) = A g ( t , x ,x ' , x ‘ 1) = Aq sin x ( t ) s i n ( x ‘ 1( t ) ) ,  where

A eJR, q e ( 0 , l )  and x :[b,j]-*IR.

|[ sin x ( t )  s i n ( x " ( t ) ) | |
Then q ----- ------------------------------------- --

II x|| 2
max{|sin x ( t )  sin x 11( t ) | : t  e [ 0 , l ] }

= q max{|| x || 0 , || x 1 K Q, || x "  || Q

max{|sin x ( t ) |  |sin x ' ' ( t ) |  : t  e [ 0 , l ] ^
1  q -----------------------------------------------------------------

l | x l I | l 0

max{|sin x ( t ) |  l 3™'1'̂ . )  ^  1 : t  e [0 , l  J 3

->■ 0 as || x || 2 0. So (C l . )  is sat isf ied .

Now || q sin x ( t )  sin x 1 1 ( t )  -  q sin x ( t )  sin x l , ( t ) | | o 

±  q|| sin x ( t ) | |  Q || sin x " ( t )  -  sin x " ( t ) | |  Q

< q 1 1| 2 cos(^ , ' ( t ) 2+- A '.' l tJ -) s in ( x " .( t >g-- X lJ i t })|| o

< q 2 II cos(2 1 ^ lL li^ ll)|| o ||sin(x“.(11.̂ - ^ 111)11 q 

±  2q || 51n(x , l l l l -- . 1 - 1 H ) | |  p

= 2q m a x{|s in (-— ( llg —1 — 111) | : t  e [ 0 , l ] }

< 2q max{|X" ( t l 2~ x "  (H | : t  e [0 , l ]>

= II x ' 1 - x "  ||0 < q II x - x|| 2
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implying that (C2.) holds since q e ( 0 , l ) .  Now | g ( t , x ,y , 0 )  - x| = | x | ,  

so (C3.) holds with E = 1, D = F = 0 and

2
(# )2 [ ' F + + S E( l -q ) ]  = ( f ) 2 8 (1 -q) = 2tt2 (1 -q) 4  Xg.

F inal ly  consider /  X{q sin x ( t )  s i n ( x " ( t ) )  - x ( t ) } d t .

Since |q sin x ( t )  s in (x M ( t ) ) |  <_ q for a l l  t  eB\i]and f ° r  X >  0 ,  

then provided that | x ( t ) |  > q for a l l  t

/  ** X{q sin x ( t )  sin x l 1 ( t )  -W } d t  f  0 for a l l  X

Hence (C4.) holds with X^ = 0 and M any number greater than q.

Thus (C l . )  -  (C4.) are a l l  sa t is f ied .  Notice that i f  0 < q < %,

then Corollary 5.29 applies, since g ( t ,x ,y ,0 )  = 0 for  a l l  x, y e|R.

By considering the equation

x 1 1 ( t ) + b2x ( t )  -  g ( x , x ' , x ' ' )  = q sin x ( t )  sin x ' ' ( t ) ,  

where 0 < b e IR, q e ( 0 , l )  and x  : IR -> IR, a s imilar  procedure shows

that (A l . )  - (A3.) ,  (Q l . )  and (Q2.) are sat is f ied .
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