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Abstract

Today a wide variety of images may be expressed as the attractor 4 of an iterated
function system in the plane. An iterated function system or IFS is a finite collection of
affine transformations w, ..., wy, while the attractor 4 is the unique fixed point of the
associated collage map W where W(E) = U ;w;(E) for any compact set E [4].

Since only 6N real numbers, known as the code of the IFS, are necessary to store
this image, IFS's are being considered as a method of image compression [2, 5].
Moreover, algorithms which produce 2 quickly on a computer screen are being sought.

In this thesis, we study combinatorial ways of screening fractal pictures from the
IFS code. We introduce the optimal sequence method and show it to be more accurate and
faster than the widely used Random Iteration Algorithm (RIA for short) [1, 4, 16]. We
also show it to be superior to the Adaptive Cut Method or ACM [13, 28] - one of the best
non-RIA algorithms. :

For uniform IFS, our investigations also lead to the expansion of the term M-
sequence to include linear recurring sequences of period NX - 1 over structures other than
finite fields, and in particular over far rings which we define. We also study a new class of
latin squares - k-recurrent latin squares. For non-uniform IFS, we initially restrict

ourselves to a very simple model before extending the results obtained to more complicated
models.




Chapter 1
Chapter 1 Introduction

In this thesis, we introduce and study a new way of obtaining fractal images on the
screen - the optimal sequence method.

In Chapter 2, we begin with a brief introduction to iterated function systems
(IFS's). We note that provided efficient algorithms to determine the IFS code of images
can be found, then fractal pictures (or attractors) may prove to be an efficient approach to
image compression. We will study how the image can be re screened given the IFS code.
We seek an algorithm which is fast and which does not waste time repeatedly hitting the
same areas. We describe the Collage algorithm but show that it is not suitable for practical
purposes. In Section 2.3, we consider the Random Iteration Algorithm (RIA) or Chaos
game. This algorithm requires a random number generator (RNG) driver. Thus although
the chaos game is usually an improvement on the collage algorithm, a poor choice of RNG
can result in its failure. In order to appreciate this, we introduce an addressing scheme.
This addressing scheme is crucial to the optimal sequence method. Finally, the Adaptive
Cut method (ACM) is given. We are now in a position to introduce the optimal sequence
method and to compare it with the above algorithms.

In Chapter 3, we consider the optimal sequence method for uniform IFS's. We
define optimal sequences and discuss why the optimal sequence method guarantees an
accurate approximation of the image. In fact, for any uniform IFS with N maps, an optimal
sequence is simply a sequence of minimal length containing every k-digit word over
{1, ..., N} exactly once. These sequences may be obtained using graph theory.
However, this process is time consuming. If N is a prime power, then a kth-order M-
sequence (with an additional initial zero) is an optimal sequence. We extend the definition
of M-sequences to kth-order linear recurring sequences of period NX-1, over any structure
with N elements. In particular, we define far rings and show that M-sequences may be
defined over some far rings. We also introduce k-recurrent latin squares. We compare the
optimal sequence method (or M-sequence method) with the chaos game. We find that the
M-sequence image shows much more detail and is produced in less time. In Section 3.4,
we compare the M-sequence method and the ACM. The results highlight the speed and
accuracy of the M-sequence method. We also note that the ACM does not always produce a
true approximation of the attractor. This is investigated in Section 7.1.2.

Chapter 4 is concerned with the existence of M-sequences over structures other then
finite fields. In particular, we give some results on far rings and the associated latin
squares. We study the possible existence of M-sequences over two specific forms of latin

squares. In Section 4.3, we give an example of a structure which is neither a far ring nor a
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finite field over which M-sequences exist. Finally, we list some conjectures and suggest
some related problems.

We must then consider the optimal sequence method for non-uniform IFS.
However, this is significantly more complicated than the uniform case. Consequently, we
begin in Chapter 5, with a simple model non-uniform IFS. We give various results on the
type and number of addresses. We show that the associated optimal sequences are cyclic.
We study the structure of optimal sequences and find that certain addresses must occur in
runs or towers. As a means of obtaining optimal sequences, we define the dovetailing
graph of an IFS. By closely examining the possible paths through these graphs we develop
algorithms which quickly produce an associated optimal sequence. We offer a template
algorithm for this model. We compare the optimal sequence method and the chaos game for
some non-uniform IFS. We note the superiority of the optimal sequence method.
However, in its present form, the uses of the optimal sequence method are somewhat
limited.

In Chapter 6, we extend the results of the previous chapter to a more general model
so that images including a fern and a tree may now be produced. We describe how the
algorithms of Chapter 5 may be adapted using M-sequences. Finally, we illustrate how
sequences may be spliced together for more complicated images. For example, a szem may
be added to the fern. The optimal sequence results maintain their hi gh standard.

In Chapter 7, we compare in more detail the speed and accuracy of the chaos game,
the ACM and the optimal sequence method. We discuss why the optimal sequence method
produces better results than the ACM. Finally, we illustrate how the addresses may be used
to improve the chaos game.

Chapter 8 is a brief discussion of the main results of this research and a look to the
future.
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Chapter 2 Iterated function systems - An introduction

In this chapter we introduce the necessary background and describe three

previously established ways of producing fractal pictures. General references include
[1, 3,4, 16, 28].

2.1 Preliminaries

Notation 2.1 Let (X, d) be a complete metric space where d(x, y) denotes the distance

between any points x, y of X. Further, let #(X) denote the collection of all non-empty
compact subsets of X.

Definition 2.2 Letx € X and B € #(X). Then the distance from the point x to the set
B, denoted d(x, B), is defined as :

d(x, B) = min {d(x, b) : be B}.

Definition 2.3 For any A, B € #(X), the distance from the set A to the set B,
d(A, B) is
d(A, B) =max {d(x,B): x € A}.

Definition 2.4 The Hausdorff distance between A and B € #(X) is defined by
h(A, B) = max {d(A, B), d(B, A)}.
In particular the Hausdorff distance, h(A, B), is zero if and only if A and B are identical.

Definition 2.5 The diameter of any A € #(X), diam(A), is defined to be the maximum
distance between any two points of A. Thus,

diam(A) = max {d(x, y) : X,y € A}.

Note In the above definitions, the maximum and minimum exist because the sets A, B, X
are compact [4, 16].

Definition 2.6 A transformationf: X — X is contractive provided there exists a non-
negative number s, 0 <s < 1, such that

d(f(x), f(y)) < s d(x, y),
for all points x and y in X. The smallest such constant s is called the contractivity factor,
Lipschitz constant or simply the ratio, of f.
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Definition 2.7 Let f : X — X be a transformation on (X, d). Then, f* : X — X, for
n=0,1, 2, ... is defined by fO(x) = x, fi(x) = {(x), fe+ 1) = f (fn(x)).

Theorem 2.8 (Banach's Fixed Point Theorem) Let f: X — X be a contraction
mapping on the complete metric space (X, d) with ratio s where 0 < s < 1. Then f
possesses a unique fixed point. That is, there exists exactly one point ¢ of X such that
f(c) = c. Moreover, for any point xg € X, writing X, = f(xp) for n > 0, the sequence {x,}
converges to c. That is,
Limg s f2(X) = ¢

Finally, we have the following estimates for the distance from the fixed point ¢ after n
iterations.

S
d(x,,c) < I—_—Sd(xn.l,xn). (2.1)

Sl’l

d(x,,c) < d(Xo, %) (2.2)

)

Proof Letxg € X. Then for integers m > n > 0, we have
d(Xq, Xm) = d(f®(x), f™(x0))
= d(f2(x), f(f(m-n)(x))
< st d(Xg, Xm-n)
< s"{d(xo, X1) + d(xq, X2) + ... + d(Rmon-1, Xmn)}
< s"d(xg, x){1 +s+s2 +... }
= st d(xg, x1) /(1 -s).
Then, d(xy, Xm) can be made arbitrarily small by taking m, n sufficiently large. Hence {x,}
is Cauchy and, since X is complete, this Cauchy sequence has a limit ¢ € X such that
Xp — € as - e, Since f is contractive and therefore continuous, we have
f(e) = f(Limp_,00 {®(x0)) = Limy_se (f2+1)(x0)) = c,
showing that c is a fixed point. To show that there is no other fixed point, suppose there
are two fixed points ¢ and ¢'. Then ¢ = f(c) and ¢' = f(c") so
d(c, ¢') = d(f(c), f(c") < s d(c, "),
whence (1 - s) d{c, ¢") = 0. But since (1 - s) = 0, we have d(c, ¢') = 0, implying ¢ = ¢
Hence c is the unique fixed point of f.
To prove (2.1) consider,

d(xna Xm) = d(xna Xn+1) + .o+ d(xm-l’ xm)
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= d(Xp-1, Xp){s +s2 + ...}

< d(Xp.1, Xp) s /(1 - s).
Now let m — o so that x;; — c. Then, since d is continuous in each variable,
d(Xp, Xm) — d(Xy, ¢) while the right hand side remains unchanged, and we have proved
(2.1). By noting d(x,.1, X,) = s d(Xp.0, Xp-1) < ... = 571 d(Xg, X1), we obtain (2.2) from
(2.1). This completes the proof.

Definition 2.9 An iterated function system, or IFS for short, consists of a complete
metric space (X, d) and a finite set of contractive mappings w; : X — X with
corresponding contractivity factors s; (1 < i < N). Such an IFS is often denoted
{X5 wi,...,wn} or simply {X; win}.

Definition 2.10 The IFS {X; w,} is said to be uniform provided the corresponding
ratios s; (1 <i<N) are all equal. Otherwise itis a non-uniform IFS.

Theorem 2.11 Associated with any IFS {X; win}, we define the collage map,
W #(X) — #(X) by
W(E) = Ujw;(E)
for all E € #(X). Then W is a contractive mapping with contractivity factor
$ = max{sj,..., sN} and W has a unique fixed point 4. That s,
A =W(A)=u;wi(2).
Infact 2 = Lim p_, W(4g) forall 2, e HX) .

Note The map W is called the collage map to remind us of the fact that W(E) is formed asa
union or collage of the N sets w,(E), ..., wnN(E). W is also referred to as the Hutchinson
operator after J. E. Hutchinson. He was the first to prove that W is contractive with
respect to the Hausdorff distance and to apply the Fixed Point Theorem to W [17].

Definition 2.12 The fixed point 2 e #(X) of the collage map W, defined in
Theorem 2.11, is called the attractor of the IFS {X; wy.n}. The term attractor is used to
suggest the movement of 4y towards 4 under successive applications of W. In contrast,
since 4 is the unique set of #(X) which is unchanged by W, it is also referred to as the
invariant set of the IFS.

Definition 2.13 An affine transformation w : R2 — R2is a composition of a linear
mapping and a translation. It may be represented as
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w(x)=Ax +t
a b

where A is the (2 x 2) matrix [C d] (the linear transformation) and t the column vector
[e f]T (the translation). Then an affine transformation is completely specified by the 6-tuple
(a, b, ¢, d, e, f) known as the code of w.

In this work, we only consider the IFS {X; w; N} where X is the plane R2 or a
compact subset. We will denote such an IFS simply by {w;.n} where each w; is the affine
transformation of ratio s; and with code (aj, by, ¢, di, ;, f;) (1 <i < N). Over the plane RZ?,
there are many different metrics which can be used to measure distance. Let u = (x, Y1)
and v = (X, y2) be arbitrary points of the plane. Then examples of metrics include the
Euclidean metric which is defined as da(u, v) = V(X1 - x2)2 + (y; - y2)2, the
maximum metric, given by d(u, v) = max{ Ix; - x5 |, |y1 - y2 |} and the lattice metric

di(u, v) = |x1 - X3 | + |y1 S 7) |. The ratio of a transformation depends on the choice
of metric [28]. Consequently, a transformation may be contractive with respect to one
metric and not with respect to another. For example, consider the map w with code
(0.6, -0.6,0.6, 0.6, 0, 0). Setting u = (0, 0) and v = (1, 1). It is easily checked that w
is not contractive with respect to the maximum metric d... Similarly, taking u = (0, 0),
v =(0, 1), we find that w is not contractive over the lattice metric d;. However, for
arbitrary points u, v of the plane, dy(w(u), w(v)) < 0.6\2d,(u v), showing that w is
contractive with respect to the Euclidean metric. On the other hand, the map w' with code
(0.85,-0.1,0.85, 0.1, 0, 0) is contractive with respect to the maximum metric but not
with respect to the Euclidean metric. We use the Euclidean metric throughout unless
otherwise stated.

Today, a wide variety of images may be expressed as the attractor, 4, of an IFS of
the plane [2, 5]. Further, as only 6N real numbers, known as the code of the IFS, are
necessary to store this image, IFS's are being considered as a method of image
compression. Moreover, algorithms which produce 4 on computer screen quickly are being
sought. Below, we describe a few of these algorithms.

Note

(1) The affine transformation w with code (a, b, c, d, e, f) has the unique fixed point (x, y)
given by

_ e(d-1) + bf _ f(a-1) + ce
T @DE-D-be 7 @D@E-D - be

and has ratio s (with respect to the Euclidean metric),

(2.3)
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sz‘/p+\/p2—4q
2

The ratio s is independent of e and f since translation preserves distance.

wherep = a®+b*+c?+d* and q = (ad - bc)? (2.4)

(ii) The code of the IFS {w; N} is given in a table where the ith row is the code of the

transformation w; (1 <i < N). This replaces the use of a large number of matrices.

Example 2.14 Table 2.1 is the IFS code for Barnsley's Fern. Using (2.3) and (2.4) it is
easily checked that the fixed point of map wy is (X2, y2) = (2.656, 9.959) and it is of ratio
sp = 0.851. Further, since the ratio of each of the other three maps is smaller than s,, we
may conclude that the associated collage map W has ratio 0.851.

Attractor map a b c d . e f
Bamsley's | w; 0 0 0 0.16 0 0
Fern Wy 0.85 0.04 -0.04 0.85 0 1.6
(Fig. 2.1, [wy 0.2 -0.26 0.23 0.22 0 1.6
2.2) Wy -0.15 0.28 0.26 0.24 0 0.44

Table 2.1 The IFS code for Barnsley's Fern.
2.2 Deterministic IFS algorithm (Collage algorithm)

Let {w1.n} be an IFS of the plane with ratio s. Then the collage algorithm is given

by
(i) Select any Ag € R2,
(i1) Generate a sequence of collages {Ag, Ay, ...} where
Ani1 = W(AY),
or equivalently
Ap = Wi(Ag).

Then, by the Fixed Point Theorem 2.8, this process generates a (converging)
sequence of sets which tends towards 4. After one iteration, A is the union of N sets, after
two iterations, Ay is the union of N2 sets, ... and so on. Further, Theorem 2.8 allows us
to predict n, so that A, is within a prescribed distance of 4. In fact,

d(Ap, 4) < IS" (Ao, A) . (2.5)
-8

Note This bound is reduced by a factor s < 1 after each iteration.
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Example 2.15 Barnsley's Fern. We began with a small black square as our initial set A
and produced the converging sequence of collages A, = W™(Ap) for Barnsley’s fern. The
sets A, are given in Figure 2.1 for some n. The square was chosen since it illustrates
clearly what happens to the set A, when we apply the collage map W (for small n). Notice
A is the union of four sets, each characterising a different transformation w; (1 <i < 4.
By Az3, we have reached the attractor A4 within the accuracy permitted by the screen
resolution. We observed in Example 2.14 that the ratio of this IFS is 0.851. Then, by
calculatingd(Ag, A1) and using (2.5), the reader may verify that d(A;3, 4) < 1. To produce
Ay from Ao, it is necessary to compute and draw 1 + 4 + 42 + ... + 4n = (4041 - 1)/3
rectangles. For example, to reach A3 below, we computed approximately 9.38 x 1013
rectangles. This illustrates the inefficiency of the collage algorithm.

We have observed that the collage algorithm is not fast enough for practical use. We
need a more efficient algorithm, such as the one described in Section 2.3.

2.3 Random Iteration Algorithm (RIA), or chaos game

The Random Iteration Algorithm or RIA [1, 4, 11] produces a sequence of points
{Xn} given by .

(i) Select xg € 4 (a point Xq, such that wj(xq) = xq for some i, will do)

(i1) Plot points Xg, X1, ... where X;,1 = w(x,) and w is one of Wi, w., WN
which 'converge' to the attractor 4.

The driver of the RIA is the algorithm which produces a sequence G G3...0 on
{L, ..., N} where wg_is the transformation performed at stage n.

Traditionally, each w; occurs with a preassigned probability p; (1 =i < N) and a
random number generator (RNG) is used to drive the RIA. We shall refer to such an RIA
as the chaos game. However, to determine the best values for these probabilities can be
difficult. Below, we describe the method popularised by Barnsley [4].

As usual, let 4 denote the attractor of the IFS {wi.n}. Then the N sets w,(4),
w2(A), ... , wN(A) form a covering of 4. That is, each point of 4 is in at least one of the
sets w;(4), called attractorlets. To achieve uniform distribution, assuming no significant
overlap between attractorlets, the number of points in each attractorlet should be
proportional to the area of that attractorlet. Thus, since the factor by which an 'area’
changes on undergoing an affine transformation is the absolute value of the determinant of
the linear part of the transformation, we set
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Figure 2.1 Barnsley's Fern (Table 2.1). Starting with a small black square, the sets

A = WA U wa(A)) U wi(A)) U wy(A,) converge to the fern. In each frame, n, the corresponding

number of iterations is given in the bottom left hand corner. After [16].
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_ldetAl
 Sldetal
This formula usually provides a reasonable estimate of the probabilities. However,
if there are large areas of overlap then this method is less effective; or if the above formula
results in p; = O then the method fails. In the latter case, pi would simply be set to a small
positive number (cf Example 2.16). Unless otherwise stated, (2.6) will be used in our
examples to determine the probabilities for the chaos game. In Section 7.2, we discuss an

alternative way of determining the probabilities, which appears to be better than using
(2.6).

where wi(x) = Ajx + t;. (2.6)

i

Example 2.16 Barnsley's Fern. Since det Ay = 0 for the map w; of Table 2.1, formula
(2.6) would result in p; = 0 and the stem would never appear. Instead, we set p; = 0.01.
Barnsley's fern was produced using the chaos game. The images produced at various
stages are given in Figure 2.2. Even after only 500 iterations of the algorithm, a rough
outline of the fern is visible.

In this thesis, we introduce a new class of drivers for the RIA - optimal
sequences. In Chapters 3 and 5, optimal sequences are defined formally and we seek
efficient ways of obtaining them. We illustrate that these optimal sequences drive the RIA
much more efficiently than any RNG. Below, we introduce the concept of addresses
crucial to optimal sequences and explain why the RIA works.

10
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100 ) i

80000

Figure 2.2 Barnsley's Fern after various stages of the chaos game. The number of points plotted for each

image is given in the bottom left hand corner. After [16].
2.3.1 An addressing scheme

In section 2.3.2, we show that the RIA, driven by (i) a RNG and (ii) an optimal
sequence, will in time produce an accurate approximation of the attractor 4. In order to do
this, we must first introduce an addressing scheme for the IFS {w; N} [4, 17, 16]. Before
introducing a scheme for general N, we will consider a simple example.

Example 2.17 The Sierpinski gasket (for IFS code see Table 3.13 [24]) is the attractor
of the IFS {A; w;_3} where A denotes a solid equilateral triangle with vertices labelled 1,
2, 3, a centre of mass 0 and where w; is the dilation with ratio 1/2 and centre i (1 < i < 3).

We seek some way to describe the point x of Figure 2.3.

11
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1 2

Figure 2.3 The addressing scheme for points of the Sierpinski gasket.

Initially, we subdivide A into four equilateral triangles. Each time a triangle is
subdivided in this way, we will use 1 to identify the lower left triangle, 2 the lower right
and 3 the uppermost. Further the middle triangle will be removed. Then the point x lies in
Ay, the first level subtriangle with label 1. This triangle is then subdivided into smaller
triangles and we note that x is in subtriangle 3 of subtriangle 1. We call this second level
triangle A;3. Repeating this subdivision, we see x lies in the third level subtriangle A3
and so the address of x begins 131. To determine the address of x to a greater accuracy,
we continue to subdivide and identify subtriangles. Some points may be identified by more
than one address. For example the point y of Figure 2.3 has address 322... or 233... .

This address scheme is closely related to the application of the transformations w;
(1 =1 < 3). Evidently, A; = w1(A), Ay = wo(A) and Az = w3(A). In fact, Aggy =
W WpW,(A) where the transformations are applied from right to left (o, B, x € {1, 2, 3}).

Notation 2.18 To extend the notation of Example 2.17 to the more general IFS

{X; win} with attractor 4, we express the subset with address beginning ¢ = ¢105...0%
(k finite) as
Ag =Asy...0x = Woyp--- Wi {A).

Then, applying the subdivision process of Example 2.17 to 4, we have 4 = U,
1 <05 < N,ﬁlzuﬂloioj, 1 =0, cjsN,ﬂzuﬂchok, 1 <05, 6, 6k < N and so

forth. Further any point x € 4 has an address beginning some sequence of length k, say
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0102..0x, where x is in the kth level partition s, ¢ and 4 = UAs;...op
c; € {1,...,N}.

Theorem 2.19 We shall denote the ratio of the map wg by p(c). Then we define
p(0;0;).the ratio of the composite map WaWg; to equal the product of the ratio of wg; and
Wo;-
i.e.

p(cic)) = p(cp(0;).

Remark 2.20 The above definition is valid since the ratio of the composite map WoiWg;
(over the Euclidean metric) is no more than the product of the ratio of Wg; and Wo-

Although in some cases Definition 2.19 may significantly over estimate the ratio of
composite transformations, it is quick to compute.

Definition 2.21 Let4 be the attractor of the IFS {w N} of ratio s and let € > 0 be given.
Then, the corresponding list of addresses consists of all sequences 6 = 60,...Gy over
{1, ..., N} where p(0,0;...0¢) <€ and p(G07...6x 1) > £. So the addresses divide the
attractor into the subsets 25 = wg;... W (A), each of diameter not exceeding €.

We may represent this construction by an address tree. Starting with a node
labelled 1, we recursively branch at the node G (representing the partition 45) whenever,

p(o) > &. We label such branches G, ..., Gy and their respective new nodes 66y, ...,
o ON. When the tree is complete, each end node 7 satisfies p(T) < € and represents a unique
address.

Note For a given € > 0, a corresponding optimal sequence contains every address.
Example 2.22 The Sierpinski gasket of unit diameter. Let € = 1/8. Then by Definition

2.21, the complete list of addresses is {00,063 : 65 € {1, 2, 3} (1 <i <3)}. The subsets
associated with these addresses partition the attractor as shown in Figure 2.4.

13
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Figure 2.4 The subsets A; = Wg) WopWo3(A) where 66,63 is an address.

Example 2.23 Let 4 denote the Barnsley's fern attractor and recall
A= wi(A) U wa(2) U wz() U wy(2) (see Table 2.1 for IFS code). In fact w3(2),
w4(A) are the lower left and right leaves respectively and wo(4) is the remainder of the fern
apart from a small piece of the stem which is w1(2) (see Figure 2.5 where w(4) is blue,
w2(A) red, w3(4) yellow and w4(4) green). The address of each point in the lowest left leaf
begins with 3. Similarly, every point in the lowest right leaf has address beginning with 4.
Moreover, all point in the lowest left leaf of the lowest left leaf have addresses beginning
33 and so on.

The tree IFS of Figure 2.6 consists of only 5 affine transformations (see Table 7.3
for IFS code).

14




Figure 2.5 To illustrate how Barnsley's fern is formed, we have chosen a different
colour for each area wi(A) (1 <i<4).

Figure 2.6 The tree IFS has only five maps.
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2.3.2 Why the RIA works -
2.3.2.1 Using a RNG driver - The chaos game

Consider the IFS {w;_N} with corresponding probabilities p; , ratios s; and attractor
A (1 <i<N). Recall, the RNG driven RIA (i.e. the chaos game) produces a sequence of
points {X,} where x;.1 = w(xp), w is randomly chosen from {wy, ..., wy} and xg € 4.
We wish to show that {x,} produces a reasonable approximation of 4. Clearly, due to the
invariance property of the attractorx, € 4. Then it remains to show that {Xn} fills out the
attractor densely. Let o0 € 4 with address beginning T,75...; T; € {1,....N} and lete > 0.
We will show that by playing the chaos game sufficiently long we will obtain a point
Xp € A within a distance € from . Recall,

A=UWg,... W (A) where 6; € {1, ..., N} for k=1, 2,...
Wehave o0 € Wrp... Wy () for k=1, 2,... where,
diam(wy,.. Wy (2)) < 8. .. Sy diam(a).

Thus by choosing k large enough, the diameter of Wy Wry (A) will be less than €. Also

any point of the attractor with address beginning 1;...7, will be in the kth-level partition
We;... W () and so will have distance less than £ from the point a. Suppose the driver of

the RIA produces the sequence 6 = 6,05... . Then if Tx...T1 appears as a subblock in ¢, a
point X, will be plotted in Wrp...Wq(4). In other words we require that
G = Oj...0pTk-..T1Op+k+1... fOr some positive integer p. The probability that any k-digit
subsequence Gj...Cj,k.1 of G equals Tk..-Ty iS Pry...Py; a positive number. Hence by
playing the chaos game sufficiently long, we will obtain a point X, of the attractor within a
distance € of o. We may conclude that we can indeed get arbitrarily close to any point of
the attractor and so the chaos game fills out the attractor densely.

Note Above, we assume that the RNG is perfect. That is, that each symbol Gj occurs with
probability p; and that every k-digit sequence 0)...0 occurs with positive probability
P1---px- But, in practice, it is essentially impossible to find a RNG which produces all or
even most k-digit sequences, however small the value of k [20]. Thus, the chaos game
often produces patchy images (see Section 2.3.2.1.1 below).

2.3.2.1.1 Addresses and RNG's

Recall, the chaos game requires a random sequence {G,} over {1, ..., N} such that
i occurs with probability p; and each symbol is independent of the previous. Below, we
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illustrate how one particular type of random number generator which was first introduced
by D. H. Lehmer in 1949 [22], may be used to produce {c,}.
A linear congruential sequence {z,} = {z, z1, ..} is given by

Zn+1 =(az, + ¢) mod m (2.7
with the modulus m > 0, the multiplier a, 0 < a < m, the increment ¢, 0 < ¢ < m and the
initial value zg, 0 < zp < m. All linear congruential sequences are periodic. Further, since
z, may take at most m different values, the maximum period is m. Both the period and the
'randomness’ of the sequence {z,} depend on the parameters m, a, ¢ and zp. For example,
withm=10,a=c=29=9, the sequence z, = {9, 0, 9, 0,...} defined by (2.7) has period
two and is clearly not random. We seek values for these parameters so that {z,} is (i) of
long period, (ii) random and (iii) fast to compute. Notice with a = 0, (2.7) becomes
Zne1 = ¢ mod m, while a = 1 gives z,,; = (z, + ¢) mod m, neither of which will be
random. Thus in practice, we are restricted to 2 < a < m.

A long period is essential for any sequence that is to be used as a random number
generator and, since the period of {z,} cannot exceed m, the modulus must be large.
Notice that a long period does not ensure that {zn} is random. For example,
Zn+1 = (Zp + 1) mod m has period m but is certainly not random. It is also desirable that
(azy + ¢) mod m be fast to compute. For this reason, when {za} is being produced by a
t-bit binary computer, m is often set to the word size, 2t (for some positive integer t). Then
addition is automatically given mod m while multiplication mod m is simply the lower half
of the product. However, there is a drawback. It is easily checked, if d is a divisor of m
and zp' = z, mod d, then z,,1' = (az,' + ¢) mod d. Thus if m = 24, then the low-order k-
bits are z,' = z, mod 2K so that {z,'} forms a congruential sequence of period 2k or less.
For some applications, the low-order bits are insignificant and so w = 2! is suitable.
Otherwise, this situation may be prevented by takingm=2'" +1 orm = p where p is the
largest prime number less than 2. The Macintosh RNG, RandomX is
Zntl = 77 2y mod (231 - 1) where 231 is the word size of this computer and 23! - 1 is in
fact prime.

For a given m, the next question to be answered is :- what values of a, c, zo (if
any) result in period m? If m is the product of a number of distinct primes then only a = 1
can result in a full period, while if a higher power of some prime is a divisor of m, there are
various possibilities. Knuth studies this in detail [20].

So, the sequence {z,} given by (2.7) generates a sequence of numbers in the range
{1, ..., m}. The length and the randomness of this sequence depends on the choice of
parameters a, ¢, Xo. From {z,}, we may obtain a sequence {y,} of random real numbers
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between zero and one, by setting y, = z,/m. The random distribution of {y,} depends on
the randomness of {z,}.

From {y,}, we get random integers ¢, between O and N -1 by letting
Gy = [N yq]. This gives each integer with equal probability 1/N. Alternatively, we may
obtain the sequence {G,} where the integers 1, ..., N occur with probabilities py, ..., pn

respectively, as follows:-
0= Yo < Pi
<

(1 if
2 if p =y, <pi+p2

(N if Pr+...+pnr S V<1
However, {0} will only contain every k-tuple over {1, ..., N} provided {z,} was
truly random, as the example below illustrates.

Example 2.24 The square (see Table 2.2 for IFS code) was produced using the chaos
game driven by the linear congruential sequences (i) z,,1 = (228 + 3)z, mod 2292 and
(i1) Zpy1 = 75 2y mod (231 - 1) - the Macintosh RandomX. The results are given in Figure
2.7. The approximation produced by driver (i) is very strange. Although the points plotted
all lie in the attractor, large parts appear to be missing. Further, even iterating the chaos
game for 10,000 points or more does not fill in the missing areas. Initially, we might check
that each map w; occurs with the probability 0.25. For 10,000 iterations, we recorded the
number of times each map is used and this confirmed that each map is performed with
probability 0.25. So where does the problem lie? Looking again at Figure 2.7, we note that
the chaos game with driver (i) is unable to produce many addresses. The following 3-digit
words can never occur within the address of any point plotted using (i):-

223, 232, 233, 322, 323, 332, 230, 231, 320, 321, 201, 210, 301, 310, 023,
032, 123, 132, 012, 013, 102, 103, 001, 010, 011, 100, 101, 110.

We have z,,.1 = (228 + 3)z;, mod 229 with zp = 1. Then the corresponding driver 6,
where O, =| 42,/22° | produces random integers between 0 and 3 inclusive. For any z,
Zn+1 = (228 + 3)z, mod 229 and 7,9 = (228 + 3)z,,,; mod 229 =9z,
so that
Zn+2 =374 - 228z, mod 229,
Then, given 6, Gy 1,
On+2 =3(Cpt1 + €1) - 228(0, + €2) mod 4

18




Chapter 2

where 0 < €y, €, < 1. Thus the triples (G, Gp.1, On+2) are restricted and non random.
This accounts for the image produced.

Attractor map a b (€ d e f
The Square | Wy 0.5 0 0 0.5 0 0
(Figure W) 0.5 0 0 0.5 0.5 0
2.7) Wy 0.5 0 0 0.5 0 0.5
W3 0.5 0 0 0.5 0.5 0.5

Table 2.2 IFS code for the square attractor.

(@ (i)

S *3;?

7
4
2

Figure 2.7 The square produced by the chaos game with drivers (i) and (ii) are given above. It is
remarkable that (i) produces this image as an approximation of the square. The triples (o,, ©,,,, Cn42)

produced from (i) are restricted.

Note In general, it is unwise to take a + & to be divisible by high powers of 2 when 8 is
small and m = 2! for some positive integer t. Although the shortcomings of RNG's of this
form were first illustrated by M. Greenberger [12] in 1965, they were still being widely
used more than ten years later [20].

Then the success of the chaos game depends on the choice of RNG driver. It
requires a RNG where each number produced is independent of the previous (so that all
possible addresses may occur for a prescribed accuracy €).

The example above illustrates how a poor choice of parameters a, c, Xo for a given
modulus m results in a non-perfect random integer generator, which in turn, results in the
failure of the chaos game. In general, it is not possible to state whether or not a sequence is
random. We apply a series of tests (both empirical and theoretical) to the number

generator and if it passes them all, then we assume it to be random. Other methods to
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produce random number generators include combining two unrelated random number
generators to produce a 'more’ random sequence. Alternatively, z,, | may depend on z,, and
2,1 so that the period can be as large as m2. In fact this may be extended so that z,;
depends on the previous i values. Again Knuth [20] covers this in more detail. However, it
is essentially impossible to obtain a RNG which produces all or even most k-digit words
over {l, ..., N}.

2.3.2.2 Using an optimal sequence

For completeness, we state the following. Recall, for a given £ > 0, the
corresponding addresses partition 4 into subsets each of diameter not exceeding €. It will
be shown later that optimal sequences guarantee that the RIA plots at least one point in each
of these subsets. Then, by setting € sufficiently small (Iess than one pixel), the RIA with an
optimal sequence will produce an accurate approximation of 4.

The following theorem holds for any driver (any sequence) which satisfies the
stated condition and it gives a measure of the accuracy of the RIA.

Theorem 2.25 Consider the IFS {X; w; N} with ratio s and attractor 4. Suppose the
finite sequence ¢ = 003...0p, contains all k-digit combinations over {1, ..,N} and is
used as the driver in the RIA to produce a sequence of points {x,} where xg € 4 and
Xn+1= Wg,(Xn). Then, for every point o0 € 4, there is some point x, within distance €
where € satisfies

£ < skdiam(4).
We say {x,}is e-dense in 4 [16].

Proof We shall prove the result by expressing 4 as a union of sets of diameter not
exceeding sk diam(A4), each containing a point X,. Recalling Notation 2.18, we have
Ay = Wo(A), Agry, = Wweo(A), ..., Ay = Wry...wq (A) and so on. Let
X, Y € Ay g - Thenx = Wrp...Wg(x') and y = Wr...wy (y") for some x', y' € 4.
Further,

d(x, y) < sk d(x",y" (2.8)
Write X = {x,} and let & € 4. Recall, 24 = VA0, Oi € {1,...,N} with
diam(Ag; o) < skdiam(a). Then o € Ar,..q forsome e {1,...N}, i=1,...,k.
But ¢ contains all k-digit combinations over {1, ..., N}, so in particular it must contain

T1...Tk. Thus we may write & = ...Tk...Ty... where 6y=1Ty, G_| =12, ...., Opk.1 = T for
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some positive integer t. Then x; = Wrp.. . Wy (We - Wg;(Xp)) 1s in the partition Ary.. e
Therefore,
d(a, X) < d(a, xq)
<diam (4, .y, ) since o, X; € Ag; 7
< sk diam(4) by (2.8)

Since this inequality holds for any 0. € 4, we have
h(2, X) < skdiam(a).
Hence result.

2.4 Adaptive Cut Method (ACM)

The Adaptive Cut Method (ACM) is one of the best non-RIA algorithms [13, 28].
For a given € > 0, the ACM plots one point in the partition As for each address ¢. Let
Xo € A, then the ACM provides the approximation

Ag = {X : X = Wg,...Wg,(Xp) : Gy...0k is an address of the partition of a}.

This algorithm may be described recursively as below. Let Id denote the identity
affine transformation with code (1, 0, 0, 1, 0, 0) and let xo € 4. Further let subdivide be a
recursive function which plots the point w(xg) if w = Wg..-Wg, and
p(0102...0x) < & < p(G1063...0.]). Otherwise it calls subdivide(wwy), ...,
subdivide(wwy). Then the adaptive cut method is simply subdivide(1d).

In later chapters, we compare the RIA and the ACM.
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Chapter 3 Optimal sequences for uniform iterated function systems

Throughout this chapter we restrict our attention to the uniform IFS {w.N} with
ratio s and attractor 4. Recall, in a uniform IFS, all ratios s; are equal (1 <i < N). Then
each transformation is responsible for covering the same proportion of 4 and thus the
probability p; is set to 1/N (1 <i < N). We define a class of sequences called optimal
sequences, look at ways of producing these sequences and introduce the optimal
sequence method. We compare the optimal sequence method with both the chaos game
and the ACM (We previously presented some of the following results in [14, 261.).

3.1 Addresses and optimal sequences
Using Definition 2.21, we may explicitly list the addresses of the attractor 2:-

Theorem 3.1 Let 4 be the attractor of the uniform IFS {wi.N} of ratio s and let € > O be
given. Then the corresponding addresses are all k-digit sequences over {1, ..., N} where k
is the least positive integer such that sk diam(4) <e.

Example 3.2 Consider the uniform IFS {wa, wp} of ratio 1A/2. Suppose the
corresponding attractor is of unit diameter and let £ = 1/(2\/5) Then by Theorem 3.1, the
addresses consist of all 3-digit sequences over {a, b} and the address tree is given in
Figure 3.1.

al a%b aba ab? ba’ bab ba b

Figure 3.1 The address tree for the uniform IFS {Wa, Wy} of Example 3.2.

Notice the address tree has three levels below the starting node and the ith level
nodes are the 21 i-digit words over {a, b}.
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More generally, the address tree for the uniform IFS {wg, g} has k levels below
the starting node 1 and the ith level (1 < i < k) nodes are the Ni i-digit words over
{01, ey GN}.

To achieve uniform distribution when producing an approximation of 4, it is
reasonable to divide A into subsets of diameter not exceeding € and impose the condition

that at least one point is plotted in each subset. In fact, for a given £ > 0, the associated
addresses provide a natural subdivision of 4, namely As = Wg;... W, (A1) for each address

G =0}...0k. Let xp € 4. Then one method to guarantee a point in each subset 4, is to plot
Wy W (Xg) for each address ¢. This is the ACM (see Sections 2.4, 3.4 and 7.1). But is
it possible for the RIA to meet this condition? Recall, we observed in Section 2.3.2.1 that
provided the driver produces a sequence which contains the subblock Gy. .., then a point
will be plotted in the kth-level subset As,...0- The example below illustrates this for the
Sierpinski gasket with k = 2.

Example 3.3 Consider again the Sierpinski gasket with vertices 1,2, 3 and suppose the
driver produces the following sequence, written from right to left for convenience,
...1232213

We will illustrate what is required of the driver so that every 2nd-level subtriangle
Ajj contains at least one point (1 < i, j < N). Applying the first two transformations,
w1w3(A) takes us to Aj3. On applying the next transformation w,, we land in partition
Az13 which is contained in A, . Moreover, no matter what our first transformation had
been, this would have taken us to Ay ;. Applying the other transformations of the sequence,
we then visit Agy  Aga, Az3, Ay etc. Thus, the 2nd-level subtriangle visited after the jth
transformation is Agj_l_cj. It is determined by the (j - 1)th and the jth transformation and is
independent of all other previous transformations. Then to guarantee that a point is plotted
in each of the 2nd-level triangles, the driver must produce a sequence which contains every
2-digit combination on {1, 2, 3}.

Then obviously, to ensure that at least one point is plotted in each of the kth-level
subsets of the attractor of the IFS {w;.n}, the driver of the RIA must produce a sequence
which contains every k-digit combination over {1, ..., N} [11, 16, 28]. Further,
Theorem 2.25 gives us an estimate of how large k must be in order to obtain an accurate
approximation of 4.

Thus by choosing a sufficiently large k and provided we can find a sequence

containing all k-digit combinations over {1, ..., N}, we can use the RIA to obtain a
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sequence of points {x,} which is arbitrarily close to A. In fact any number generator
satisfying this condition will do. The key to speeding up the RIA is finding sequences
where every k-digit word appears very quickly. Indeed, these sequences need not even be
random! Moreover, it is essentially impossible for a RNG to produce sequences which
contain all k-tuples (see Section 2.3.2.1.1) [20].

Theorem 3.4 Over a set of N elements, the shortest possible sequence containing every
k-digit word exactly once has length Nk + k - 1.

Proof Suppose sequence ¢ is such a sequence. Then each new position of the sequence
must be the start of a unique k-digit word. There are exactly Nk different k-di git words over
{1, ..., N}. Then © must have Nk digits plus an additional k - 1 to complete the last
k-digit word. Hence length(c) = Nk + k - 1,

Our approach is to dovetail the addresses into an optimal sequence S which is then
used to drive the RIA - the optimal sequence method. By an optimal sequence, we mean a
sequence of minimal length containing all addresses of 4. Consequently, S has length
Nk + k - 1(Theorem 3.4). Further every address (i.e. every k-digit sequence over
{1, ..., N}) starts in exactly one place and all but the last k - 1 digits start an address.
Also, however produced, S is cyclic, that is the last k - 1 symbols are identical to the first
k - 1, as proved below.

Theorem 3.5 For uniform IFS's, optimal sequences are cyclic.

Proofleta;bic; ... denote the ith address in an optimal sequence S. Write the successive
addresses as columns, say :-

Row 1 ag aj ap Ay, where by = a,;
Row 2 b() b1 b2 bm Co = b1 =as
Row 3 Co c c Cm and so on.

We claim that any fixed symbol T € {l, ..., N} appears in each row the same
number of times. Consider for example rows 1, 2. Since permuting the symbols of an
address gives another address, we have a bijection defined by xy... ¢> yx... between
addresses with 7 in the first position (T in row 1) and those with 7T in the second position
(T in row 2). Thus T appears the same number of times in rows 1 and 2. Similarly for any
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other two rows. Now consider again rows 1, 2. We have bgbj...by; = aja,...a; and

hence by, = agp. Similarly ¢, = bg = a; and so on. Thus S is cyclic.

Lemma 3.6 If S is an optimal sequence for the uniform IFS {w;_n} then so is its reverse.
Proof Reversing the entries of an address gives an address.

In view of Theorem 3.5, we may now define an optimal sequence formally as:-

Definition 3.7 For a given € > 0, there exists a least positive integer k such that
sk diam(2) < €, and an optimal sequence of the uniform IFS {w;.\} is a sequence of
period length Nk which when continued cyclically to Nk + k - 1 terms, contains every
k-digit word over {1, ..., N} exactly once.

Lemma 3.8 Consider the uniform IFS {w; N} and associated optimal sequence of
Definition 3.7. Suppose this optimal sequence is used to drive the RIA. Then, after
Nk + k -1 jterations, the points {x,} will be e-dense in 4. We shall refer to this as the
optimal sequence method for uniform IFS.

Proof The result follows from Theorem 2.25, since any NK + k - 1 consecutive terms of
an optimal sequence contain every k-digit word exactly once.

Example 3.9 Then the sequence S = a3bab3a? is an optimal sequence for the uniform IFS
{Wa, wp} of Example 3.2. Notice that the first two digits are equal to the last two
(Theorem 3.5), indicating that the sequence is cyclic. S is of period length 23 = 8 and its

reverse is also a valid optimal sequence.

In Sections 3.2, 3.3, we study ways of obtaining optimal sequences for any
positive integers N and k. We also compare the results of the chaos game and the optimal
sequence method.

3.2 Obtaining optimal sequences from graphs

We seek ways of finding sequences of minimal length containing every k-digit
word exactly once. One method involves graph theory. We first introduce the required
terms [6, 7, 19].
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Definition 3.10

(1) A graph G =(V, E) is defined to be a set of points, V, (called vertices)
together with a set of lines, E, (called edges) joining certain vertices.

(i1) It is directed if there is a direction associated with each edge. i.e. let e = (v;, vj)
be an edge in a directed graph.Then v; is the initial vertex of e while vjis the final vertex.

(iii) The ir (out)-degree of a vertex v; € V is the number of edges where v; is the
final (initial) vertex.

(iv) A directed graph is balanced provided each v; € V has in-degree(v;) = out-
degree(v;).

(v) A path p, from vertex Vi, to vertex vj, is a finite sequence of edges of the form

2 = (Vi Vig):(Vig, Vig)sewos(Vig 15 Vig ) -

(vi) A directed graph is connected if and only if for each distinct pair of vertices v;,
vj there exists a path from v; to vj or from vj to v;.

(vii) A vertex v of a directed graph is isolated if in-degree(v) = out-degree(v) = 0.

(viii) An Eulerian circuit in a directed graph is an oriented path such that every
edge in the directed graph occurs exactly once and the initial vertex of the first edge is equal
to the final vertex of the last edge.

Theorem 3.11 A finite directed graph G = (V, E) with no isolated vertices possesses an
Eulerian circuit if and only if it is connected and balanced [19].

Proof We shall assume G is balanced and let P = (e, ..., em) be an oriented path of
longest possible length that uses no edge more than once where ej denotes the edge
(vj> vjs1) (for j = 1, ..., m). Then vy, is the final vertex of the path, and if k is the out-
degree of vp. 1, then all k edges e with initial vertex Vm+1 must appear in P. For otherwise,
we could add e to P and obtain a longer path. But if the initial vertex of the edge ¢; with
j> 1 equals vy, 1, then the final vertex of edge ej.; must also equal vy,,1. Hence since G
is balanced, we must have v| = vy, ;, for otherwise the in-degree of vertex v, 1 would be
at least k + 1. Now, by cyclic permutation of P, it follows that any edge e not in the path
P, has neither initial or final vertex in common with any edge ej (1 <j <m) in the path.
Thus if P is not Eulerian then G is not connected.

Recall, we wish to find a sequence of minimal length which contains every k-digit
combination of {1, ..., N} exactly once. Let Gy = (Vy, Fy) be the directed graph where
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Vi ={Vvi 1 Vi = Gj;...0i g5 Cj; € {1,..., N}}
and
Ex = {(vi, vj) : vi= Gj,. +-Oig_1> Vj= Oiy---Ojy_|Oiy ; Oj; € {1,....N}}.

Then G has N¥1 vertices each one corresponding to a different (k - 1)-digit
word on {1, ..., N} and in-degree(v;) = out-degree(v;) = N for all v; € V. Hence, Gy is
balanced and has no isolated vertices. Further, it is easily checked that Gy is connected.
Thus, by Theorem 3.11, Gy has an Eulerian circuit.

Theorem 3.12 From any Eulerian circuit of the graph Gy = (Vi, Ey) above, construct the
finite sequence 6 = G...0 N as follows. Let
o1 = first digit of the label of the initial vertex,
O = first digit of the label of next vertex visited,

and onk = first digit of the second last vertex visited.
Then the sequence © is a cyclic sequence of period NX, which when continued to
Nk + k - 1 terms contains every k-digit combination of {1, ..., N} [6], and so may be

used in the optimal sequence method for the uniform IFS {w_n}.

Proof Label the edge from vertex Gj,. --Oiy_y to vertex Gi,...Cy by Gi,...0j for every

edge of Gg. Then, in any Eulerian circuit, the (k - 1) consecutive edges following the
arbitrary edge G, ...0j, necessarily have the form

Gip0iz-+-Oix_ 104 T1
Oi30iy-- -0 T1T2

GigT1-- . Tk-2Tk-1

for appropriate letters Ty, T2, ..., Tk.;. The corresponding terms of the finite sequence ¢
ate Oj;...0j, Which is the edge (that is, the k-digit word) with which we arbitrarily started.

Thus © clearly contains every k-digit word and is of length Nk, Hence result.
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Example 3.13

1\—-( For N = 2, k = 2, consider the

A

\

8 Y
6

00 10 graph Gg = (Vk, Ex) of Figure 3.2. The
/ TS edges are numbered 1 to 8 to indicate an
11
AN
4

-

2
01 3 Eulerian circuit and from Theorem 3.12, the
corresponding optimal sequence is

S =0001110100.
Figure 3.2 Gy where N=2.

Note Numbered edges correspond to

an Eulerian circuis.

We have stated a method for finding optimal sequences for any positive integers
N, k. However, finding Eulerian circuits can prove to be a 'slowish' process particularly
for larger values of N and k. We seek a simpler way to prdduce optimal sequences. In the
next section, we consider linear recurrence relations.

3.3 Obtaining optimal sequences from linear recurrence relations

In this section, we show how linear recurrence relations produce optimal
sequences. We begin by considering the uniform IFS {wx} where N is a prime power.

3.3.1 IFS with N = pr

Recall, we wish to obtain a sequence of length Nk + k - 1 containing every
k-digit combination over N elements. Provided N = p’, for some prime p, then the answer
lies in finite field theory.

Informally, a field is a set F together with '+' and '.", two binary operations
defined over F. It contains a zero, and an identity, usually denoted by 0 and 1 respectively,
and satisfies the usual rules of arithmetic. Further, every non zero element, a, of F has an
inverse, a'l(e F), such thata.al= ala=1 Ifab=0 (a, b € F), then we must have
a=0 or b = 0. Real, rational and complex numbers are all examples of infinite fields.
However, finite fields also exist. The necessary definitions and results are given below but
for more background on finite fields refer to [23] or [25]. Unless otherwise stated, let
N = pf, throughout Section 3.3.1.
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Let F be an arbitrary field. Then F[x] consists of all polynomials in x with
coefficients in F (or more briefly all polynomials over F). If f(x) is an irreducible
polynomial over F (i.e. f(x) cannot be expressed as the product of some non-constant
polynomials over F), then F[x] (mod f(x)), the set of polynomials in F[x] with the
condition f(x) = 0 imposed, is a field. Let Fydenote a finite field with N elements.

Definition 3.14
(i) A ring is a system (R, +, .) consisting of a non-empty set R on which are
defined the binary operations '+, '.' satisfying (for all a, b, ¢ € R):-

(AQ) R is closed under +' (M) Ris closed under "'
(Al)a+b=b+a (M2) (a.b).c=a.(b.c)
(A2)(a+b)+c=a+(b+¢) D)a(b+cy=ab+ac
(A3) There is a zero in R, usually denoted and (a+b).c=ac+be

O,suchthatOQ+a=a+0=a

(A4) For all ain R, there is -a in R such

that a+ (-a)= (-a) +a = 0.

It is usually denoted simply by R.

(i) In aring R, an identity, denoted 1, is an element such that 1.a = a.1 = a, for all
aeR.

(ii) A ring R is commutative provided x.y = yx forall x,y € R.

(iv) Let a € R where R is a ring with identity 1. If there exists a-! € R such that
aal = ala=1, then a is a unit. Further, R is a division ring if every non-zero element
1S a unit.

(v) Let R be a ring with a zero, 0. Then a non-zero element a € R is said to be a
divisor of zero if there exists a non-zero b € R such that a.b = 0 or b.a = 0.

(vi) A field is a commutative division ring.

Theorem 3.15 (Existence & Uniqueness) For every prime p and every positive
integer r there is (up to isomorphism) exactly one finite field with N = pr elements. It may
be constructed as follows. Let f(x) be an irreducible polynomial of degree r over Fp. Then

Fn = Fp[x] (mod f(x)) (3.1)
is a finite field of order N.

The above uniqueness property permits us to talk of Fy; the finite field of order N.
When N = p, the elements of Fp are often represented by {0, 1, ..., p-1}, the set of
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integers reduced modulo p (i.e. with the condition p = 0 imposed) and F;, is called Zp. The
example below illustrates how (3.1) may be applied in practice.

Example 3.16 It is easily checked that f(x) = x3 + x + 1 is a 3rd degree irreducible
polynomial over F5. Then Fg = F[x] (mod f(x)), and every element of Fg may be
expressed uniquely as a polynomial ao2 + b + ¢ where a, b, ¢ € F5 and o is a root of
in Fg. In fact, Fg = {0, 1, o, o2, o+1, o2+, 02+0+1, oi2+1}.

Definition 3.17 Let k be a positive integer and let a;, ..., a; be elements of the finite
field F. Then a sequence of elements Gy, G, ... of Fysatisfying the relation
Op=a10p.1 + 8302 + ... + ak0p.k (3.2)

is called a (kth-order) linear recurring sequence. The relation is a (kth-order)
homogenous linear recurrence relation. Associated with this recurrence relation is the
characteristic polynomial

f(x) = xk-a;xk-1- .. - ag ;x - ag. (3.3)
Note Each digit 6, is determined recursively from the previous k digits by (3.2). Thus, if
a sequence of k successive terms recurs then so do all subsequent terms, and we say G is
periodic.

Example 3.18 OverZ, let f(x) = x3 - x - 1 be the characteristic polynomial of the 3rd-
order linear recurring sequence 6. Then, by (3.2) 6, = G5 + Gy.3, or more simply o, is
the sum of two digits back and three digits back mod 3. Suppose, we set 6;6,03 = 001,
thenc =0010111220120010... .

After 13 digits, the 3-bit word 001 reappears, followed by 010, ... and so forth.
Then ¢ has period 13. Further, no matter how long we continue ©, it will only ever include
the following 3-digit words over {0,1,2}:- 001, 010, 101, 011, 111, 112, 122, 220, 201,
012, 121, 210, 100. We require a sequence of period Nk = 27,

Definition 3.19 Let k be a positive integer. Further, let ¢ be a kth-order linear recurring
sequence over Fy with corresponding characteristic polynomial f(x). The greatest possible
period of such a sequence is Nk - 1. If 6 has period NX¥ - 1, then, o is called a Maximal
sequence (M-sequence). In this case, f is said to be primitive over Fu.

Example 3.20 Over Z,, let f(x) = x* - x - 1, be the characteristic polynomial of G.

Then O, = Oy.3+ Opa. Setting ©;...04 = 0001, we obtain
¢ = 0001001101011110001... . Then ©, having period 24- I = 15, is a M-sequence.
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Further, 0;...01g contains every non-zero 4-digit binary word exactly once. Hence, by
setting 69 = 0, we have that Gy...0 g is a sequence of minimal length (see Theorem 3.4)
containing every 4-digit word over {0, 1} exactly once.

Note The maximum possible period of a kth-order linear recurring sequence over Fy is
Nk - 1. Then an M-sequence is so called because it has period NX - 1. On the other hand,
an M-sequence gives a sequence of minimal length containing every possible non-zero
k-tuple over Fy.

So, by choosing a primitive polynomial of degree k over Fy to be the characteristic
polynomial of the sequence 6 and setting Gg...0x = 0...01, we can easily obtain a
sequence of period length Nk from the associated linear recurrence relation.In other words,
an M-sequence with an additional initial zero yields an optimal sequence. Moreover, by
associating a different transformation w; (1 <i < N) with each of the elements of Fn, these
sequences can be used in the optimal sequence method to produce the attractor of the
uniform IFS {X; wn}.

Note If the optimal sequence method involves a kth-order linear recurrence, we generally
refer to it as the M-sequence method.

Definition 3.21 For any non-zero element o € Fak (k > 1), the order of o is the least
positive integer t such that o = 1. An element of order N - 1 is called primitive.

Definition 3.22 Associated with each o0 € Fpk is a unique irreducible polynomial
Mgy (x) € Fy, with leading coefficient one, of least degree such that My(o) = 0. It is
called the minimal polynomial of o.

Theorem 3.23 For every integer k > 1, there exists a primitive polynomial of degree k
over Fy. Moreover, it is the minimal polynomial of a primitive element o € Fnk and may
be determined by

Mo(x) = IT*_(x - N,

Example 3.24 Let Fy = {0, 1, b, b2} where b2 = b + 1. We wish to find a primitive
polynomial of degree 3 over F4. The polynomial f(x) = x3 - x - 1 is irreducible over F4. Let
0. € F43 be a root of f (i.e. 03 = o+ 1). Then F43 = Fyx] (mod f(x)). It is easily
checked that B = bo. + 1 has order 63 and so is a primitive element of F43. Further,
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Mg(x), the minimal polynomial of 3, is a primitive polynomial of degree 3 over Fy. In fact,
Mg(x) = x3 - x2 - bx - b - 1. Further, the corresponding linear recurrence relation will

produce a sequence of period 43 - 1.

Then provided N = p7, it is possible to find a kth-order linear recurring sequence of
period N¥ - 1. Goodman [11] and Hoggar [16] independently illustrated the superiority of
the M-sequences method over the chaos game when producing the Sierpinski gasket. In the
examples below we consider IFS's with N = 5, 8, 9. We compare the results of (i) the
chaos game and (ii) the M-sequence method. Qur RNG driver is based on the Macintosh
RandomX.

Example 3.25 The crystal is the attractor of an IFS with five transformations, each
responsible for 1/5th of the final area. The IFS code is given in Table 3.1. It is possible to
find M-Sequences of degree k over Zs (see below Theorem 3.15). The crystal attractor was
produced using (i) the chaos game and (ii) the M-sequence method.

The maximum distance between any two points of this attractor, diam (4), is 101
pixels and the crystal IFS has contractivity ratio 0.382. The linear recurring relation
corresponding to a kth degree primitive polynomial over Zs, will produce an M-sequence.
Then, by Lemma 3.8, the M-sequence method approximation, {x,}, will be £-dense in the
attractor where € < (0.383)k 101. For k = 2,..., 5, Table 3.3 below gives the required
information.

Attractor map a b C d e f
Crystal Wy 0.382 0 0 0.382 0.3072 0.6190
(Figure Wo 0.382 0 0 0.382 0.6033 0.4044
33) | W 0.382 0 0 0.382 0.0139 0.4044
Wy 0.382 0 0 0.382 0.1253 0.0595
Ws 0.382 0 0 0.382 0.4920 0.0595

Table 3.1 The IFS code for the crystal.
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(1) Chaos game

26

(i) M-sequence method

26

127

127

Chapter 3

3129
Figure 3.3 Comparison of the approximations of the crystal produced by (i) the chaos game and (ii) the

M-sequence method (The corresponding number of iterations is given below each image.).

Number of Chaos game M-sequence method
Iterations (k) % Original Points Time Taken (s) % Original Points Time Taken (s)
26 (2) 100.0 0.5 100.0 0.5
127 (3) 99.2 2 100.0 1
628 (4) 89.5 12 99.4 9
3129(5) 62.9 62 78.2 46

Table 3.2 Percentage of original points and the time taken for each approximation of the crystal.

k Coeffs. of Primitive Number of Iterations = € < (0.382)K diam(2)
Poly aj...ag and diam(4) = 137pixels

2 22 15 pixels

3 012 7

4 1012 2

5 00012 1

Table 3.3 Primitive polynomials, length of corresponding M-sequences and accuracy for the M-sequence

approximation of the crystal attractor for k = 2,...,5.
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Although for a small number of iterations, both algorithms produce a high
percentage of original points, even at this stage the image obtained by the M-sequence
method is superior since it gives a better overall impression of the final attractor.

As the number of iterations increases, the chaos game attractor sees a significant
drop in the number of original points while even after 3129 iterations using the M-sequence
method, 78.2 % of the points plotted are original.

Clearly, the M-sequence method does indeed ensure the points are well distributed.
Moreover, the M-sequence method is also faster than the chaos game with RandomX (see
Section 7.1.1).

Example 3.26 The Sierpinski carpet requires eight affine transformations wy, ..., wg
each with associated probability p; = 1/8 while the Peano curve is described by nine (equal
probability) affine transformations (see Table 3.13 for IFS code). Let o denote a primitive
element of Fg (where 03 = o2 + 1). Recall, from Example 3.16, each element of Fg, may
be expressed in terms of a. It is easily checked that x4 - x - 02 and
x5 - ox# - x2 - (02 + o+ 1)x - (a2 + o) are primitive polynomials of degree 4 and
5 respectively over Fg. Similarly, let B denote a primitive element of Fg (where
B> = 2B+ 1). Then x3 - x - Band x5 - (2B + 2)x* + (B + 2)x3 - 2Bx2 + 2x - B
are primitive polynomials over Fg. The associated M-sequences were used in the optimal
sequence method and the results produced were superior to the chaos game. The
corresponding Peano curve images can be found in Section 3.4 where we compare the M-
sequence method and the ACM.

For any IFS with pf transformations, it is always possible to define a kth-order
linear recurrence relation which will produce an M-sequence. However, we have not
considered what happens when N s p. In the next section we set out to see if there are any
kth-order linear recurrence relations over N # pf elements with period Nk - 1, or Nk,

3.3.2 IFS with Nzpr

Ideally, we would like to be able to find a kth-order linear recurring sequence of
period Nk - 1, over something with N = p’ elements. We again refer to these sequences as
M-sequences.

For N # p', consider Zn= {0, 1, ..., N-1}; the set of integers reduced modulo N.
Then (Zy, +, .) is a ring with a zero where multiplication and addition are performed

mod N. Further, (Zy, +,.) contains some divisors of zero. For example over Zg,
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although 2,3 = 0 we have 2.3 = 0. Thus 2, 3 are divisors of zero. The following lemma

shows that M-sequences cannot be produced by linear recurrence relations over the ring
@n +, ).

Lemma 3.27 If N is not the order of a finite field, say N = NyNs...N;, s > 2, where each
N;j is a power of a distinct prime. Then the period of the linear recurring sequence (3.2)

over Zy falls short of Nk by an amount at least
S H‘Ll(Nik _ l)l-lls_

Proof The general case is clear from the proof for s = 3. For positive integers a, b, ¢ we
have (a+ 1)(b+ 1)c+ D=ab+I)c+ 1 +(b+ 1)c+1)>..=abc + ab + bc + ca >
abe + 3(abc)?/3, since the arithmetic mean of ab, be, ca equals at least its geometric mean.
From Knuth [20], the period of (3.2) mod N equals the lem over i of its periods mod N;.
These cannot exceed Njk - 1, by exclusion of the all 0's case. Setting Nyk=a+ 1, Nok=1b
+ 1, N3k =c¢ + 1 above we have (since the lcm of numbers does not exceed their product),
that the excess of NK over the actual period of (3.2) is at least
BINE - D(NK - D)(Nzk - 1)]273,

Example 3.28 By Lemma 3.27, the period of a sequence produced by a 3rd order linear
recurrence over the ring (Zg, +, .) can be no more than 189. In practice, the maximum

period of a 3rd order linear recurring sequence over the ring (Zg, +, .) is 182.

Thus conventional modular addition and multiplication over Zy fails to give
sequences of large enough period. In an attempt to obtain M-sequences we shall redefine
the multiplication '.' over the additive group (Zy;, +).

Definition 3.29 A set Qs a quasigroup if there is a binary operation, '.", defined on Q
and if when any two elements a, b € Q are given, the equations a.x = b and y.a = b each
have exactly one solution.

A loop L is a quasigroup with an identity. That is, a quasigroup in which there
exists an element e € L such thate.x =x.e =x forall x € L [8].

Definition 3.30 For any positive integer N, an (N x N) latin square on the numbers
{1,2, .., N} is an array of N rows and N columns where each row and each column
contains each of 1,2, ..., N exactly once [8].

Note We shall use the convention of denoting N by 0.
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Theorem 3.31 The multiplication table of a quasigroup (and a loop) is a latin square [8].

Proof Let a;, ..., aydenote the elements of the quasigroup Q with associated binary
operation '.". Further, let a;.aj = aj. Then, the (i, j)th entry of the multiplication table for'."
over Q is the product of the elements a; and a;. Suppose an element occurs twice in the
same row so that a;; = ajx = a, say. But this gives two solutions to the equation a;.b = a,
contradicting the quasigroup axiom. A similar argument may be applied to each column.
Hence each element occurs in every row and every column exactly once. It follows

immediately that the (unbordered) multiplication table is a latin square.

Definition 3.32 The structure (Zy, +, .) is a far ring provided (i) (Zy, .) is a loop and
(i1) (Zn, +) is the additive group of integers mod N.

The next question to be answered is :- Do M-sequences exist over far rings? Since
we are particularly interested in the case N = p¥, we begin by considering a far ring with six
elements; six being the smallest non-trivial positive integer which is not a prime power. Let
FR| be the far ring (Zg, +, .) with elements denoted {1, ..., 5, 0} and with multiplication
'.! given by Table 3.4(1).

M (i)

W B Ol NN
NOrH—NLWW
N WO &)
LW = O WKW
—NWnbh WO

O b WK =
WO DN
N ON—WW
thmd-b-h
B 0O WL
NW—MWNOIO

SOnhwN~—
OUnhWN —|—

Table 3.4 Multiplication table for the far rings (i) FR, (Zg, +, .) (ii) FR, (Zg, +, *).

For k =2, it is found that there are seven 2nd-order linear recurring sequences
over the far ring FRy of maximal period 62 - 1 = 35. In other words M-sequences of
period 35 exist over FR;. This is very promising. The periods of the other 2nd-order linear
recurring sequences include 3, 8, 27, 29 and 34.

On considering k =3, there are no linear recurring sequences of period
6* - 1 =215 over FR;. There are, however three 3rd-order linear recurring sequences of
period 214. With k = 4, there are two M-sequences of period 6% - 1.

Now consider the far ring FRy (Z¢, +, *) with multiplication table 3.4(ii). It is
found for k = 2, 3, 4 that M-sequences of period 6K - 1 do exist over FR.

36




Chapter3

For k = 2, 3, 4, Table 3.5 (Table 3.6) gives the coefficients of all kth-order linear
recurrence relations which define sequences of the maximum period possible over the far-
rings FR; (FRp). If this maximum period is 6k - 1 then the corresponding sequences are
M-sequences. Otherwise, although these sequences are not actually M-sequences, they may
be used in the optimal sequence method since the difference in period is very small (e.g. for
k =3 over FR;, the period is 214 rather than 215 ).

aay Period M-8eq A ey Period M-Seq 812333, Period M-Seq

0t 35 130 214 x 1022 1295 v
04 " 150 v x 1324 " v
10 " 541 " X

20 "
41 "
51 "
52 "

LA

Table 3.5 Coefficients and period of all linear recurring sequences Gy = a10y-1 +...+ agCp.k Wwith

maximum period possible over the far ring FRy for k = 2, 3, 4.

aa, Period M-seq a3y Period M-Seq ayaayay Period M-Seq

12 35 v 135 215 v 0243 1295 v
21 " v 513 " v 1524 " v
23 " v 523 " v 2133 » v
31 o v 2305 " v
2312 " v
3321 " v
5454 " v

Table 3.6 Coefficients and period of all linear recurring sequences Oy = a10p.] +...+ axOp.x with

maximum period possible over the far ring FRy for k = 2, 3, 4.

Remark 3.33 The period of any kth-order linear recurring sequence defined over the
finite field Fy where N = pf is always a divisor of Nk - 1, provided the characteristic
polynomial is irreducible. Can we make an analogous statement for far rings? - Observe,
multiplication '.' is not distributive over addition in the far ring (Zn, +, .). Indeed, for any
a,binZy, ab=a.(b+0)=ab + a0 implies a.0 = 0, contradicting the definition of a
quasigroup. Then the operations "' and + of polynomials over the far ring (Zn, +, .) are
not well defined. For example a;x + byx = (a; + by)x and (ap + ax).(by + b1x) =
aobp + (apby + ajbg)x + a;byx2 (for any ag, a;, by, by in ZyN). Hence it is not possible to
define characteristic polynomials for linear recurrences over far rings.

Definition 3.34 For any positive integer N, let (Zy, +, .) be a far ring with N elements
over which a kth-order linear recurring sequence of period Nk - 1 exists. Then the latin
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square corresponding to the multiplication over this far ring is defined to be an
(N x N} k-recurrent latin square.

Example 3.35 In this example we use M-sequences over the far ring FR, in the M-
sequence method to produce a hexagonal gasket. The results are compared with those of
the chaos game.

As in the previous example, the M-sequence method plots a higher percentage of
original points than the chaos game. Further, the points, being well distributed, give a
clearer view of the final attractor. Again, the M-sequence method is faster than the chaos

game.

(i) Chaos game

218
(ii) M-sequence method

M

Rt
-

= si{_u:"'
15

218 1299

Figure 3.4 Comparison of the approximations of hexagonal gasket produced by (i) the chaos game and

(i) the M-sequence method (A gain the corresponding number of iterations are given below each image.).
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Attractor map a b C d € f

Hexagonal | wi 1/3 0 0 1/3 0 0
gasket wo 1/3 0 0 1/3 1/3 143
(Figure w3 1/3 0 0 1/3 1/3 -1h3
3.4) |wa 13 0 0 1/3 1 143
w5 1/3 0 0 13 1 143

w6 1/3 0 0 1/3 4/3 0

Table 3.7 The IFS code for the hexagonal gasket [18].

Number of Chaos game M-sequence method

Iterations (k) % Original Points Time Taken (s) % Original Points Time Taken (s)
218 (3) 08.1 5 98.6 3
1299 (4) 85,7 27 " 96.8 22

Table 3.8 Percentage of original points and the time taken for each approximation of the hexagonal

gasket.

Note The M-sequence method produces an image which is e-dense in the attractor where € < 5.3 pixels for
k=3 and € < 1.8 pixels for k = 4.

The discovery that M-sequences may be defined over far rings with six elements is
very exciting. It provides a simple way to produce optimal sequences when N # pl. A
method to produce k-recurrent latin squares and the corresponding sequences must be
sought. The new mathematics arising from this study will be of interest to people of
different research backgrounds and results obtained may be pursued elsewhere. We study
far rings and k-recurrent latin squares in Chapter 4.

3.4 A comparison

For uniform IFS’s, we have illustrated the improvement in the RIA when it is
driven by an optimal sequence (in particular an M-sequence) rather than a RNG. However,
it is only fair that we compare the M-sequence method to another efficient algorithm.
Consider the IFS {X; w;_n} with uniform probabilities, ratio s and attractor 4. Both the
optimal sequence method and the ACM ensure that a point is plotted in each kth-level
subset Ag...0x (corresponding to the address G;...0%) to produce an image which is e-
dense in 4 (¢ < sk diam(4)). One difference between the two algorithms is the precise
choice of the point plotted in each subset. Let xg € 4, then the ACM provides the attractor
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approximation 4; = {X : X = Woi---We(X0) : 05 € {l,..., N}}. After essentially the
same number of points have been calculated, each algorithm produces an approximation
which is e-dense in 4 where € < skdiam(4). However, to reach this kth-level
approximation using the ACM involves much more work than using the M-sequence
method, since the code, (a, b, c,d, e, f), for each of Nk composite affine
transformations wg, ... Wg, must be computed. Indeed this may be done recursively to
reduce work (Algorithm 7.1) but it could never be as fast as the M-sequence method which

simply involves computing G, from a kth-order linear recurrence relation and then
performing wg, (see Section 7.1.1 for further analysis of the speed).

Below we compare the ACM, and the M-sequence method, for various IFS (The
code for each can be found in Table 3.13.). The time (in seconds), the number of original
points and the image produced must be considered in each case. In some of the more
interesting cases, the chaos game results are also given.

ACM

{Number of Iterations = 3k)

M-sequence method
{Number of Iterations = 3K + k -1)

k % Original Points Time Taken (s) % Original Points Time Taken (s)
6 100 30 95 11
7 75 91 75 33

Table 3.9 Percentage of original points and the time taken for (i) the ACM and (i1) the M-sequence

method approximation of the Sierpinski gasket.

ACM

(Number of lterations = 8%)

M-sequence method

(Number of Iterations = 8% + k -1)

k % Original Points Time Taken (s) % Original Points Time Taken (s)
4 64 144 75 74
5 14 1159 13 690

Table 3.10 Percentage of original points and the time taken for (i) the ACM and (ii) the M-sequence

method approximation of the Sierpinski carpet.
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ACM
(No. of Its. = 2k)

Chaos game

(No. of Its. = 2¥)

M-sequence method
(No. of Its. =2k + k - 1)

k % Orig. Pts. Time (s) % Orig. Pts. Time (s) % Orig. Pts. Time (s)
12 32 215 51 78 54 64
13 31 427 32 156 33 129

Table 3.11 Percentage of original points and the time taken for (i) the ACM, (ii) the chaos game and

(iii) the M-sequence method approximations of the dragon.

ACM
(No. of Its. = 9%)

Chaos game

(No. of Its. = 9%)

M-sequence method
(No. of Its. =9k + k - 1)

k % Orig. Pts. Time (s) % Orig. Pts. Time (s) % Orig. Pts. Time (s)
3 54 25 91 16 99 13
5 9.4 2070 9.3 1380 9.3 1350

Table 3.12 Percentage of original points and the time taken for (i) the ACM, (ii) the chaos game and

(iii) the M-sequence method approximations of the Peano curve.
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(i) ACM (i1) M-sequence Method

Figure 3.6 Comparison of the approximations of the Sierpinski carpet produced by (i) the ACM and

(11) the M-sequence method.

(11) Chaos game (ii1) M-sequence method

Figure 3.7 Comparison of the approximations of the dragon produced by (i) the ACM, (ii) the chaos

game and (iii) the M-sequence method.
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(11) Chaos game (111) M-sequence method

Figure 3.8 Comparison of approximations of the Peano curve pmdﬁced by (i) the ACM, (ii) the chaos

game and (iii) the M-sequence method.

The above results confirm that the M-sequence method is significantly faster than
the ACM. For example, in less than the time taken for the ACM to produce an
approximation of the dragon, 4., where ¢ < (I/ﬁ)lz.diam(ﬁl) , the M-sequence method
can produce an approximation which is d-dense in 4 where & < ( 1/'\/5)13diam(ﬂ).

For IFS with only a few affine transformations (N = 2, 3), the ACM produces the
highest percentage of original points for small values of k. However, as k is increased, the
difference between the ACM and the M-sequence method decreases and they produce a
similar percentage of original points. In fact for large enough k, the M-sequence method
plots significantly more original points (cf dragon k = 12). Even with relatively small k, the
M-sequence method is clearly superior to the ACM for IFS with several affine
transformations (N = 8, 9). The Sierpinski carpet (Peano curve) is made up of
approximately 4500 (5550) different pixels. Hence, as k = 5 involves over 32,700
(59,000) iterations, it is inevitable that all three methods will produce a very small
percentage of original points.

Finally, the images produced must be compared. For the Sierpinski gasket, the
ACM and the M-sequence method produce results of the same standard while, as expected,
the chaos game approximation (not shown) is very 'fuzzy'. The adaptive cut approximation
of the dragon has two horizontal and two vertical white lines. This is not a fault of the

printer - the equivalent pixels are unlit on the screen. These lines could be wrongly
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interpreted as a feature of the dragon attractor. Using ACM with k = 3, the Peano image
produced is very disappointing. In fact the chaos game produces a higher percentage of
original points than the ACM for the Peano curve (k =3, 4, 5) and the dragon (k = 12, 13).
Moreover, the ACM approximation of the Peano curve with k = 4 (see Section 7.1.2) has
white horizontal and vertical lines running through it. The M-sequence method and the
chaos game produce images which correctly approximate the dragon and the Peano curve.
Recall, we stated previously that in general well-distributed points provide a better
approximation of the attractor. On first inspection of the Sierpinski carpet (k = 4), it is
tempting to say the adaptive cut image is superior for just this reason. However, on closer
examination, there are a number of horizontal and vertical lines on the image. Again, this
gives us an incorrect impression of the final image. The performance of the ACM appears
to depend on the choice of xo. For example, in the case of the dragon, using a different xg,
the ACM produces an approximation of the attractor without the white lines. This is
investigated further in Chapter 7. We note that taking k sufficiently large ensures that the
ACM approximation is correct. For example, with k = 5, the ACM approximation of the
Peano curve is correct.

The ACM computes the code of Nk composite affine transformations and this is
time consuming. In contrast the M-sequence method is very fast. Further, M-sequences as
opposed to RNG's, ensure that the RIA plots well distributed points. This reduces

redundancy. So the M-sequence method combines the speed of the chaos game with the
accuracy of the ACM.
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Attractor map a b C d € f
Sierpinski | w; 1/2 0 0 172 0 0
gasket W 1/2 0 0 1/2 1/4 1/44/3
(Fig. 3.5) | w3 1/2 0 0 1/2 1/2 0
Sierpinski | w; 1/3 0 0 1/3 0 0]
carpet Wy 0 -1/3 1/3 0 1/3 1/3
(Fig. 3.6) | ws 1/3 0 0 1/3 0 2/3
Wy 0 1/3 -1/3 0 1/3 1
Ws 0 1/3 -1/3 0 1/3 1/3
We 1/3 0 0 1/3 213 0
We 0 -1/3 1/3 0 1 1/3
Wg 1/3 0 0 i/3 2/3 2/3
Dragon Wy 1/2 1/2 -1/2 1/2 0 0
(Fig. 3.7y | ws -1/2 1/2 -1/2 -1/2 1 0
Peano Wy 1/3 0 0 1/3 0 0
curve Wa 0 -1/3 1/3 0 1/3 0
(Fig. 3.8) | wg 1/3 0 Q0 1/3 1/3 1/3
Wy 0 1/3 -1/3 0 2/3 1/3
Ws -1/3 0 0 -1/3 2/3 0]
W 0 1/3 -1/3 0 1/3 0
Wy 1/3 0 0 1/3 1/3 -1/3
Wg 0 -1/3 1/3 0 2/3 -1/3
Wo 1/3 0 0 1/3 2/3 0

Table 3.13 Code for various uniform IFS.

In this Chapter we considered only IFS's with uniform probabilities. The main

objects were to discuss a sufficient requirement of good drivers and define optimal

sequences and the optimal sequence method.

The first method of obtaining optimal sequences was related to graph theory and
although it always guarantees a solution it is computationally expensive. We extended our
study to the finite field Fy (N = pT) and illustrated that M-sequences (with an additional
initial zero) are in fact optimal sequences. We illustrated that M-sequences exist over
structures other than finite fields. These were used in the M-sequence method for uniform
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IFS with N # p® transformations. We defined a new class of latin squares. In the future
we hope to prove that for any N 2 prand any k, an (N x N) k-recurrent latin square exists.
Such results will be of interest in many other areas of research (see Chapter 4).

Finally, several examples illustrate the superiority of the M-sequence method
compared to the chaos game. The M-sequence method is shown to be in some respects
better than the ACM, one of the best non-RIA methods. This comparison is studied further
in Chapter 7.

This M-sequence method need not be restricted to uniform IFS. As suggested by
Hoggar [16], it may be possible to adapt the M-sequence method for non-uniform
probabilities. Alternatively, optimal length sequences containing the required addresses for
any IFS may be able to be generated. This is studied in Chapters 5 and 6.




Chapter 4
Chapter 4 Some results on the existence of M-sequences.

In Section 3.3.2, we introduced far rings. To recap, the structure (Zy;, +, .) is a far
ring provided
(1) (Zx; .) is a loop. i.e. conditions (4.1) and (4.2) hold for all a, b in Zy;.

Equations a.x = b and y.a = b, each have exactly one solution 4.1)

1 is the identity: l.a=a=a.l. (4.2)
(11) (Zn, +) is the additive group of integers modulo N.

In fact, the multiplication table for the far ring (Zy, +, .) is a latin square. In this
chapter, we study far rings and the associated latin squares. We again use {0, 1, ..., N-1}
to denote the elements of (Zy;, +, .). But zero is not an annihilator. Indeed, 0.x = 0 for all x
in Zy;, contradicts condition (4.1). Further, the multiplication '." is not distributive over
addition. For a.b = a.(b + 0) = a.b + a.0, implies 0 = a.0 (for all a). Notice (4.1) gives the
cancellation law: a.x = b = a.z implies x = z.

Consider the kth-order linear recurrence

Op =2a1.0p.1 +82.0.2 + ... +85.0p x mod N 4.3)
defined over the far ring (Zy, +, .). For N = 6, we previously gave examples of far rings
and the associated coefficients a), ..., ay so that the sequence {G,} has period Nk - 1 (see
Section 3.3.2). We extended the use of the term M-sequence to mean any linear recurring
sequence meeting this bound, over whatever structure (originally over finite fields only).
We said in the case of far rings that the corresponding latin squares were k-recurrent (see
Definition 3.34).

Below, we give some initial results on far rings and the associated loops (or latin
squares) [14]. We study two specific forms of latin squares and try to determine for what
values of k (if any) they are k-recurrent. We give an example of a structure which is neither
a far ring nor a finite field over which M-sequences exist. In Section 4.4, we list some

possible conjectures.
4.1 Far rings and k-recurrent latin squares

For the fixed set of coefficients aj, ..., ay and any set of initial values G¢, ..., O],
the period of the sequence {o,} defined by (4.3), can not exceed NK - this being the
maximum number of distinct k-tuples which can occur in such a sequence before a
repetition is unavoidable. Further, since any k-tuple may be taken as the starting set,
{00, ..., Ok.1}, every k-tuple is present in exactly one sequence (for a fixed set of
coefficients) and the period lengths of the different sequences produced sum to NX.
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As our underlying interest in far rings is to determine the nature of the associated k-

recurrent latin squares, we make the following definition.

Definition 4.1 For the far ring (Zy, +, .), the period profile of the coefficient k-tuple
(a1, ..., ag)isalist (in descending order) of the period lengths of the different sequences
produced from (4.3) (as noted above these lengths sum to Nk).

The period profile of the multiplication table (or latin square) is a set of Nk
period profiles ; one for each of the coefficient k-tuples (ay, ..., ax).

We computed the period profile of many different loops and now make the related
conjecture.

Conjecture 4.2 Over any far ring (Zy, +, .), the maximum possible period of the linear
recurring sequence (4.3) is Nk- 1,

Example 4.3 There are exactly four far rings of order four. The corresponding latin
squares are given in Table 4.1 below. All four define groups. A, B, C are the cyclic group
of order 4 while D is K4, the Klein 4-group. The corresponding period profiles for k = 2
are given in Table 4.2.

Note Since the multiplication table borders are in standard order 1,2,..,N-1,0, we

may omit them. In other words, we give the equivalent latin squares.

A1t 2 3 0 B:1 2 3 o0 C1 2 3 o D1t 2 3 0
2 0 1 3 2 1 0 3 2 3 0 1 2 1 0 3
31 0 2 3.0 2 1 301 2 3 01 2
0 3 2 1 0 3 1 2 0 1 2 3 0 3 2 1

Table 4.1 The four multiplication tables (latin squares) of order 4.
We hope to prove the following conjecture.

Conjecture 4.4 For every positive integer N = prand every integer k > 2, there exists an
N x N k-recurrent latin square.

Proving Conjecture 4.4 should result in a method to obtain a k-recurrent latin
square and the corresponding M-sequence coefficients a,, ..., ax for any N = pr, k = 2.
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Coefficients Sequences over far ring of Table A (with period length in brackets) Period
see Table 4.1 Profiles
00 110 (3); 123 (3); 132 (3); 200 (3); 330 (3); 2 (1) 35,1
01 120322 (6); 102300 (6); 133 (3); 1 (1) 6%,3,1
02 1302 2320 (8); 112103 (6); 3 (1); 0 (1) 8,6,1%
03 113 100301 220 2 (13); 233 (3) 13,3
10 122100 (6); 232030 (6); 133 (3); 1 (1) 62,3,1
11 112310 (6); 130322 (6); 220 (3); O (1) 62,3,1
12 11312 00323 30102 (15); 2 (1) 15,1
13 132 230 020 (9); 1103 (4); 12 (2); 3 (1) 9,42,1
20 131032 230 (9); 11202 (5); 3 (1); 0 (1) 9,5,12
21 11323 30201 21003 (15); 2 (1) 15,1
22 122 030 023 133 2 (13); 110 (3) 13,3
23 12320 01022 13033 (15); 1 (1) 15,1
30 113003 (6); 10220 (5); 233 (3); 12 (2) 6,53,2
31 11030 13122 32002 (15); 3 (1) 15,1
32 123 033 100 (9); 1322 (4); 20 (2); 1 () 9.4,2,1
33 11203210 (8); 133023 (6); 2 (1); 0 (1) 8,6.1°
Coefficients Sequences over far ring of Table B ( with period length in brackets) Period
see Table 4.1 Profiles
, 00 12303320 (8); 110213 (6); 2 (1); O (1) : 8,6,1%
‘» 01 12002 3301031322 (15); 1 (1) 15,1
i 02 133100 (6); 22030 (5); 112 (3); 23 (2) 6,532
| 03 113 003 210 (9); 1223 (4); 20 (2); 3 (1) 9,4,2,1
| 10 122 100 203 (9); 1330 (4); 23 (2); 1 (1) 9,4,2,1
11 112310 (6); 130332 (6); 220 (3); 0 (1) 62,3,1
12 120102 (6); 223003 (6); 113 (3); 3 (D) 6%,3,1
13 11030 23313 20012 (15); 2 (1) 15,1
20 1300103220233 (13); 112 (3) 13,3
21 122320 (6); 100302 (6); 113 (3); 3 (1) 62,3,1
22 110 (3); 123 (3); 132 (3); 200 (3); 330 (3); 2 (1) 35,1
23 1203 1022 (8); 133230 (6); 1 (1); 0 (1) 8,6,12
30 11321 20030 22310 (15); 3 (1) 15, 1
31 11020 32300 13312 (15); 2 (1) 15,1
32 122 103 130 (9); 23320 (5); 1 (1); 0 (D) 9,5,12
33 112 322 0100213 (13); 330 (3) 13,3

Table C :- Each coefficient pair has profile 62,3, 1

Table D :- Coefficients 00, 02, 20, 22 have profile 35,1; the remainder have profile 62,3,1

Table 4.2 Period profiles for 2nd order linear recurrences over the far rings with Tables A, B, C, D of

Table 4.1 and the corresponding sequences for A, B.

2 1 3 0 Note None of the four possible latin squares of order 4, which
1 3 0 2 possess identities, (i.e. A, B, C, D of Table 4.1) are 3-
6 2 1 3 recurrent. However if we remove condition (4.2) so that (Zy;, .)
3 0 2 1 is a quasigroup (but not a loop), then the latin square of
Table 4.3 Table 4.3 , with borders 0123, defining the multiplication "',
3-recurrent latin square., over the structure (Zy, +, .) is 3-recurrent. For example, taking

49




Chapter 4

the coefficients ajayaz = 030 results in an M-sequence.

Similarly, for N # prand some integer k > 2, it may be that no (N x N) latin square
corresponding to a loop is k-recurrent. Thus we might be forced to remove condition (4.2)
in order to prove Conjecture 4.4.

Definition 4.5 The quasigroups (G, .) and (H, *) are isotopic if there exists an ordered
triple of bijections 0,9,y : G — H such that for all x, y in G,

W(x.y) = 0(x) * ¢ (y).
If 0 = ¢ =, then the quasigroups are isomorphic.

Definition 4.6

(a) We define the following operations which may be performed on a multiplication
table or latin square.

(1) transposition - interchanging rows for columns,

(ii) taking the row conjugate - let J be the permutation sending each element of the
column border to the element in the same row of column j. Then in the row conjugate the
corresponding permutation map is J-1,

(ii1) taking the column conjugate - as for (ii) above but with the roles of row and
column reversed.

(b) Conjugates of a multiplication table (or latin square) are formed by performing
any sequence of the operations (i), (ii), (iii) above.

Example 4.7

(i) Observe that the loops A, B, C, D of Table 4.1 are unchanged by transposition. Thus
multiplication over each of the corresponding far rings is commutative.

(i1) It is easily verified that for the loop B of Table 4.1, the J maps are in order :- identity,
(12)(03), (1320), (1023) so that the row conjugate has rows 1203, 2130, 3012, 0321.

(iii) Loop D, its row conjugate and its column conjugate (also its transpose - see (i)) are all
identical.

A natural question to ask is :- Do far rings have the same period profiles if their
associated loops are

(1) isotopic,
(2) isomorphic,
(3) conjugate?
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By considering latin squares A, C of Table 4.1, we immediately see that
isomorphism does not imply equal period profiles. Then, as isomorphism is a special case
of isotopism, this gives NO to (1) and (2) above.

For each of loops A, B, C, we compared the period profile (k = 2, 3 only) of the
loop itself, with its row and column conjugates. For k = 2, 3, A, its row conjugate and its
column conjugate have equal profiles. Similarly for B. However, for C, only the loop and
its column conjugate have equal profiles. This requires further investigation but it will not
be pursued at present - the row and column conjugates of A, B, C being without an identity
do not define multiplication over a far ring.

We wish to define an isomorphism of far rings, incorporating both addition and
multiplication, such that (4.4) holds.

Far rings are isomorphic > their period profiles are equal. (44)

To determine whether far rings are isomorphic, it is not desirable to have to
compute their period profiles and so we seek a simple test. We make the following
definition related to condition (4.4).

Definition 4.8 The far rings (Zy, +, .) and (Zy, +, *) are isomorphic if there exists a
pair of permutations (\f,¢ ) of Zy such that,

Ow) =1,

(1) ¢ (ar.a + B.b) = y(a) * ¢ (a) + y(B) * ¢ (b) forall o, B, a, b in Zy. 4.5)

Theorem 4.9 Isomorphic far rings have the same period profiles.

Proof We must prove if (y,0) is an isomorphism between the far rings (Zy;, +, .) and
(Zn, +, ™), then the coefficient k-tuples ay, ..., ax and y(ay), ..., yf(ax) have the same
period profiles for any integer k = 2.

We begin with k = 2, and suppose that the coefficient pair (a;, ap) with the
multiplication’." produce a sequence {6,} of period t. That is, with addition mod N and
subscripts mod t, we have G, =a;.6,_; + a5.6,,.5. Then by (4.5),

¢ (0n) = W(a1)*¢ (Gn1) + Waz)*$ (0,.2),
and, since ¢ is bijective, the coefficients W(ay), Y(az) with the multiplication "*' give the
sequence {¢(Op)} of period t. Moreover, the bijection y defines the bijection of pairs
(a1, az) = (y(ay), y(ay)) so that the two far rings have the same period profile.

The result for k = 2 follows by induction. It suffices to illustrate by taking the step
from k =2 to k = 3. Consider the recurrence with coefficients aj, ap, az and to simplify
notation, let % Boud denote four successive terms of the sequence. Then
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d=aj.0+aP+azy

= O =aj.o+ 1.(a2.B +a3.x) 1 being the identity for'.',

= @) =w(p * o) +y(1) * ¢(az.P +az.y) by (4.5),

= O (0) =wy(ay) * d(a) + d(az.pB + as.y) since Y(1) = 1, an identity for '*',
= 0®)=w@) * (o) +y(a) * ¢ (B) + wias) * () by (4.5).

Thus if the coefficients aj, ..., ay generate a sequence {G,} of period t under the
multiplication "', then the coefficients y(a;), ..., (ax) generate the sequence {¢(c,)} of

period t under the multiplication *'. We conclude that isomorphic far rings have the same
period profiles for all k = 2.

Theorem 4.9 meets condition (4.4) in the forward direction. Theorem 4.11 below,
concerns (4.4) in the opposite direction. However, since the result requires that we already
have candidate maps y,¢, it is only a partial converse of Theorem 4.9.

Notation 4.10 Lety,$ be permutations of Zy and let FR{, FR; be far rings of order N.
We say that (y,¢) preserves k-profiles from FR, to FR, provided ¢ maps a sequence
defined over FR; by a kth-order linear recurrence with coefficients a; (1 <1< Kk) to the

sequence over FR, given by a (kth-order) recurrence with coefficients y(a) (1 <i<k).

Theorem 4.11 Let \y,¢ permutations of Zy and let FR{, FR, be far rings of order N with
respective multiplication ', "*'. Suppose that y(1) = 1 and that (v,9) preserves 2-profiles
from FR; to FRy. Then (y,9) is a far ring isomorphism FR; — FRo,.

Proof We have y(1) = 1. Thus to prove that (y,$) is a far ring isomorphism, it remains
to show that condition (4.5) holds for all ordered 4-tuples o, B, a, b in Zy.

Consider a fixed 4-tuple (o, [3,a,b) and the associated linear recurrence of order 2.
Then since a, b must appear as successive terms of some sequence {C,} with the
coefficient pair o, 3, we have at.a + B.b = ¢ for some element ¢ in Zy. Further ¢ maps this
sequence {Gp} to the sequence {¢(G,)} over FR, with coefficients y(o), y(P) so that
W(a)*¢(a) + w(B)*¢ (b) = ¢(c) = ¢ (at.a + B.b) - this is condition (4.5).

Finally the above argument is valid for every 4-tuple over Zy and so the proof is
complete.

Example 4.12 By referring to Table 4.2, notice that the far rings FRA and FRB with
multiplications ', '"*' given by latin squares A and B (of Table 4.1) respectively, have the
same period profiles for k = 2. Is it possible to find an isomorphism (¥, ¢ ): FRA — FRB -
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we suppose there is one and find out what it could be. For ease of calculation, we consider
the period profiles which apply to as few coefficient pairs as possible and within these we
pick out the sequences of least period.

(1) Profile 3°,1- This is the period profile of the coefficient pairs 00 and 22 over FRA and
FRB respectively and of no others. Thus y(0) = 2. Further, over both far rings, the
corresponding period 1 sequence is 22..., so that ¢(2) = 2. Now by considering the
sequences of period 3, we may conclude that the sequence 200... over FRA must be
mapped, by ¢, to the sequence 200... over FRB, giving ¢(0) = 0.

(2) Profile 9,5,12 - This occurs for the coefficient pairs 20 over FRA, 32 over FRB and no
where else. Thus y(2) = 3. Moreover, since V is bijective, we must have Y(3) = 0. Hence
W = (1)(230). Comparing the corresponding sequences of period 1, we may deduce
¢ (3) = 1. Finally, since the map ¢ is bijective, we have ¢ (1) =3 so that ¢ = (0)(2)(13).
(3) We conclude that if there is an isomorphism of far rings (y,9): FRA — FRB, then
Y =(1)(234) and ¢ = (0)(2)(13). Applying Theorem 4.11 systematically shows that
(V¥,9) is indeed an isomorphism. Further, by Theorem 4.9, the two far rings FRA, FRB
have the same period profiles for k =3, 4.... .

Theorem 4.13Lety,¢ be permutations of Zy with Y(1) =1 and ¢(0) = 0 and let FR;,
FR; be far rings of order N. If for some integer m > 2, (¥,9) preserves m-profiles from
FR; to FRy, then (y,4) is a far ring isomorphism from FR; to FR,.

Proof We may induct down from m to 2 to show that condition (4.5) holds for all o,3,a,b
in Zn. However, as before, it is sufficient to illustrate the reduction from 3 to 2. Again, let
"', "' be multiplication over FR; and FR, respectively. Then, over FRy, if (y,¢)
preserves 3-profiles, we have

= c=0o.a+ B.b

= c=o.a+3.b+ 1.0 1 is the identity of '.",

= o) =y()*¢(a) + w(B)*¢(b) + w(1)*¢ (0) (y,9) preserves 3-
profiles,

= 0(c)=y(a)*d(a) + y(B)*d (b) y(1)=1,¢(0)=0.

The result follows by Theorem 4.11.
Definition 4.14

(1) The composition of the far ring isomorphisms (v,0) : FR; - FRy, (W' ,0") : FR; —»
FR3, is the isomorphism (y'vy,0'¢) : FR; — FR;,
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(ii) The inverse of the isomorphism (y,d): FR; — FR; is itself an isomorphism and it is
given by (y,¢)! = (y-1,0-1) : FR; = FR,,

(iit) If the multiplications "', '*' for the isomorphic far rings FR;, FR, coincide then FR,
= FRy and (y,0) is an automorphism of FR;. The automorphisms of FR; form a group,
Aut(FR;).

Remark 4.15 If FR;, FR are isomorphic far rings, then the number of isomorphisms
between them equals both |Aut(FR;) | and |Aut(FR,) |.

Proof Suppose there is at least one isomorphism f : FR; — FR,. Then, we have the
bijections Aut(FRy) < {isomorphisms from FR; to FRp} — Aut(FRg) given by
glf « g—fgl

4.2 A study of two different structures of far rings

Below, we consider two constructions of far rings and discuss whether the

corresponding latin squares are k-recurrent.
4.2.1 The first category - FRLy

Notation 4.16 Let Ly be the latin square of order N where the (i, j)th entry is
(i + j - 1) mod N. Also, let FRLy denote the far ring (Zn, +, .) where multiplication "'
is defined by L.

Observation 4.17 Consider the kth-order linear recurrence (4.3) defined over the far
ring FRLN. Since i.j = (i +j - 1) mod N (for all i,je {0, 1, ..., N-1}), the recurrence may
be rewritten as

On=(a; +Op.1- 1)+ (a2 + Gp2- 1) + ... + (ag + Gpx - 1) mod N

Op=3X"_Oni+ 2" (a-1)mod N

6y = 2" Op.+ diff mod N (4.6)
where diff € {0, I, ..., N-1} and it may be determined by Z"m(ai - 1.
Note For a given k and N, the far ring FRLy will have at most N different period profiles -
one corresponding to each value the term diff may take.

We give some elementary observations concerning the sequence (4.6) before
making a conjecture based on the period profiles of various far rings FRLy.
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Lemma 4.18 Let N be any even integer greater than 2. Then the latin square Ly is not

2-recurrent.

Proof With 6o = 6y = N/2 - diff, the sequence {6} given by (4.6) has period 3 and so
prevents the possibility of an M-sequence with any starting set.

Observations 4.19 Let N denote an even integer which is not a prime power. Then, we
have the following.

(1) If diff = 0, (4.6) simplifies to ¢, = lecn-i mod N which, as previously
observed (Lemma 3.28), can never produce an M-sequence when N = p".

(i1) If diff is even and k = 3, then sequence (4.6) can never be an M-sequence. The
recurrence will always produce two distinct sequences of period 1, namely -diff/2... and
N/2 - diff/2... |

(ii)) If diff = 1 -k and k = 2, then with 6g = ... = O =1,0,; =N/2+ 1, a
sequence of period k + 1 will be produced.

(iv) If diff = N/2 and k = 4 and with 6; =0 (0 < i < 3), the sequence (4.6) has
period 5. '

Conjecture 4.20 For any positive integer N = pf and any k > 2, the latin square Ly is not
k-recurrent.

Example 4.21 Recall, with diff = 0, the kth-order linear recurrence over FRLy simplifies
to 6, = kacn_i mod N. In fact, if N = pr, this corresponds to the kth-order linear
recurrence, G, = Z"izl(sn_i, over the finite field Fy, with associated characteristic polynomial
f(x) = xk-xk-1- . -x- 1. Then if f(x) is a primitive polynomial over Fy, the recurrence
will produce an M-sequence. For example, the polynomials x2 - x - 1 and
X6 - x5 - x* - x3 - x2 -x -1 are primitive over the finite field Z3 and so M-sequences
of order 2, 6 will be obtained from (4.6) where diff is zero. This illustrates that we can not
extend Conjecture 4.20 to include integers which are a prime power. We computed the
period profiles of sequence (4.6) with N =3,k = 2, 6 and diff = 0, 1, 2. The period
profile in each case was Nk - 1,1.
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Example 4.22 Below, we givethe latin square Lg and the period profiles (k = 2) for each
possible diff. Notice that Lg is not 2-recurrent (see Conjecture 4.20 above).

® (i)

diff | Sequences over far ring FRL (with the period in brackets) Period
123450 Profiles
23 4501 0 | 123521341505543145325101 (24); 24044202 (8); 303 (3); 0 (1) | 24.,8,3,1
345012 1} 124102304544320342140500 (24); 35331511 (8); 522 (3); 5(1) | 24,83,1
450123 2 | 305125343321523103545501 (24); 24220400 (8); 411 (3);4 (1) | 24,8,3.1
501234 3 | 423221041205243445025401 (24); 53551311 (8); 300 (3);3 (1) |24,83,1
0123435 4 | 541323345143503121105301 (24); 42440200 (8); 525 (3);:2 (1) | 24,8,3,1

S | 542504302122340324520100 (24); 35155313 (8); 414 (3); 1 (1) [ 24,831

Table 4.4 (i) Latin Square Lg and (ii) the sequences and period profiles for k = 2 over the far ring FRL.
4.2.2 The second category - FRMy

Notation 4.23 Let N be any positive integer such that N + 1 = p' for some prime p.
Consider the multiplication over the loop (Zy 1, .) where the multiplication "' is performed
mod (N + 1). By deleting the row and column corresponding to multiplication involving
zero, we obtain a latin square with elements 1, 2, ..., N such that 1 is the identity. We shall
denote this latin square M. Further, let FRMy be the far ring (Zn, +, .) with addition
mod N and multiplication '.' defined by M.

Note Equivalently this far ring involves (i) addition mod N and (ii) multiplication
mod (N + 1), where 1, 2, ..., N denotes the elements.

Example 4.24 Below we illustrate how the latin square Mg may be obtained.

0 (i)

1234560 1 2 3 456
2461350 246135
3625140 => Remove the seventh row 362514
4 1 52 6 3 0 and column to form =» 4152 6 3
5316 420 5316 42
6 5432 10 6 543 21
00 0O0O0O0OTO 0

Table 4.5 (i) Multiplication mod 7, (ii) Mg obtained from Table (i) by deleting the appropriate rows.
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At presens, we have proved few results. However, below we give some of the
observations which we have made.

Example 4.25 We computed the period profiles of every possible coefficient k-tuple over
FRMy for some integers N = p - 1, k = 2. The table below shows the number of
M-sequences that exist for these cases.

Number of M-sequences over the far ring:-
k | FRM, FRMg4 FRM; o FRM;, ,
2 |4 0 6 4
310 10 8 2
4 |6 10 * *

Table 4.6 The number of M-sequences over the far ring FRMy, N = 4, 6, 10,12 ( * not computed).

Observation 4.26 For any N = pr- 1, the kth-order recurring sequence (4.3) defined
over the far ring FRMy can never be an M-sequence if any one of the following holds for
1=1,2, ...,k :-

(@Dai =1,

(i) a; = N,

(iii) k is even, Nis even and a; = N/2 .

Proof (i) (4.3) simplifies to 6, = Zkizlﬁn-i mod N - this can never produce an M-sequence
(Lemma 3.27, N # 2).

For (ii), (iii) set 6; = 1 (1 <i <k) to produce a sequence of period k + 1.
4.3 Other structures over which M-sequences exist

We originally defined far rings so that we could obtain M-sequences when N = p~.
However, as the example below illustrates, this does not prevent us from considering other
possible structures over which M-sequences may be found.

Example 4.27 Consider the structure (Zg, +, .) with elements {1, 2, 3, 4, 5, 0} where
addition is performed mod 6 and the multiplication'." is given by Table 4.7(i). Notice this
has both an identity and a zero, so is not a far ring. For some coefficient k-tuples
(a1, ..., ay), the initial set 6(G10, never reappears in {0,}. For example, if
(a1, ap) =(1, 0), the recurrence is simply 6, = 6,,_; and with Cp=X,01=yY,X#Y, we
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get the sequence xyyy...\so that xy never reappears. However, there are coefficient k-
tuples for which the corresponding kth-order recurring sequence is a valid M-sequence.
These are given in Table 4.7(ii) fork = 2, 3, 4.

@) (i1)

123 450 k 2 3 4
23 4510 M-sequence coefficients | 31 NIL 4021
345120 g, ..., 41 4051
4 512 30 4221
512340 4551
000 O0O0O0

Table 4.7 (i) Multiplication "' and (ii} the M-sequence coefficients over (Zg, +, Y fork=2,3, 4.
This example suggests a new area of study in the search for M-sequences.

4.4 Problems and conjectures

In addition to proving Conjectures 4.2, 4.4 and 4.20, we hope to investigate the
following.

Problem 4.28 Find a short test for isomorphic far rings based on inspecting latin
squares.

Problem 4.29 Reduce to a minimum the number of 4-tuples we must check to verify
(4.5).

Problem 4.30 Investigate isomorphism and k-recurrence for far rings with N > 6. Also,

find a simple test for k-recurrence and a way of obtaining the corresponding M-sequence
coefficientsay, ..., ay.

Conjecture 4.31If two far rings based on the same Zy have the same period profiles,
then they are isomorphic.

Problem 4.32 Investigate the relationship between the far ring (Zy, +, .) and any
structure (Z;, +, *) where the latin square for '*' is a conjugate of the latin square for '.',

(Zn, *} is a quasigroup (but not necessarily a loop) and addition is performed mod N.

Problem 4.33 Study structures other than far rings over which M-sequences exist (see
Example 4.27).
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J

Problem 4.34 Discover whether amongst latin squares which produce M-sequences,

there are characteristics reflected in the IFS attractors based on these sequences.
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Chapter 5 Optimal sequences for non-uniform iterated function systems -
The simplest case

We now turn our attention to non-uniform iterated function systems. That is, the
IFS {wy.N} where the corresponding ratios s; are not all equal. With non-uniform IFS, the
shortcomings of the chaos game become more apparent. The main problem being how to
calculate the associated probabilities p;. Ideally the probabilities would be set to values
which maximise the efficiency of algorithm. That is, so that the points plotted are well
distributed over the attractor 4, with little wasted in going over the same areas more than
once. This reduces the time taken to achieve an approximation of 4 to a given accuracy.
However, in spite of refinements in the choice of p;, much computation is still wasted [28]
(See Section 2.8 for the usual method of computation for p; [4], and Section 7.2 for an
alternative method [28].).

In this chapter we give some initial results about addresses and optimal sequences.
We study a simple model non-uniform IFS and suggest the format of a general algorithm to
produce optimal sequences [15, 27]. We compare this optimal sequence method to both the
chaos game and the ACM. In Chapter 6, we extend some of these results to more
complicated models and discuss how these algorithms may be modified to produce
associated optimal sequences for more complicated models.

S.1 Addresses and optimal sequences

To begin, we consider iterated function systems with just two maps w,, wy, which
scale uniformly in the ratios r,, 1, respectively. That is, Iw(x) - wi(y) = rIx - yl for
T € {a, b} and vectors x, y. Further since we are only concerned with non-uniform
iterated function systems we must have t, # 1,. For uniform IFS's see Chapter 3.

Notation 5.1 Let 6 = G6y...0x , 0j €{a, b} be a sequence of subscripts. Then
Wg = Wg,;...Wq,, the corresponding product of maps, scales uniformly in the ratio

p(o) = [1 rg; with p(c1) = p(0) p(T),
where T denotes any sequence of subscripts.
Note When applying wg to a point x, Wy is applied first, followed by wg, , ..., and
lastly wg,.

A For completeness, we restate Definition 2.21 for the IFS {wa, Wy} above, using
Notation 5.1.
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Definition 5.2 Let 4 be the attractor of the IFS {w,, wy,} of ratio s = max{r,, r,}. Then,
the corresponding list of addresses consists of all sequences G = G,...0x over {a, b} such

that p(0,...0x) < € and p(0y...0x1) > €. The addresses divide 4 into subsets
As = Wgy--. W () with diam(4;) = p(c) diam(2) < €.

To simplify notation, choose the units so that the diameter of 4 is one and let
€ > 0. Then (analogously to the uniform IFS of Chapter 3), to obtain our approximation
of 4, we aim to partition A into subsets of diameter not exceeding € and to produce a
sequence of points Xg, X1, ... with a point in each subset. Again, these subsets are related
to the addresses of 4. As noted in Definition 5.2, the subsets will be of the form
As = Wgy...We (A), with diam(,) equal to p(G). We achieve this partition as follows.
Starting with 4 = 4, U Ay (Theorem 2.11), we recursively replace As by A = Agy U A
whenever p(0) > €. Since w,, wy are both contractive, this process must eventually
terminate and we will have a list of subsets

As = Wgy... We (A) with diam(4,) =p(c) <€ .
We refer to A as the subset with address 6 =61 ... oy.

Recall, we may represent this construction by an address tree. Starting with a node
labelled 1 to represent 4 itself, we recursively branch at the node G (representing partition
Ag) whenever p(c) > €. We label such branches a, b and their respective new nodes oa,
ob. When the tree is complete, each end node 7 satisfies p(T) < €. A simple example of
an address tree is given in Figure 5.1

Example 5.3 The address tree for the IFS {w,, wy,} where the ratios r,, rp, respectively,
satisfy 1, = rp, 1,2 = € is given in Figure 5.1. Observe that the sequence bb, usually
written b2, is an end node and hence an address, because p(bb) = sp2 = £ whereas
p(b) = sp> €. On the other hand the sequence ba is not an address since p(ba) =rpry > €
and so we must branch beyond this node. Then, reading off the end nodes we have the
complete list of addresses:- a#, a3b, a2b, aba, ab2, ba2, bab, b2. We must accept apparent
overkill in the sense that ab2 and b2 are both included. This is a logical consequence of the
subsets covering the whole of 2 as well as being small enough.
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Figure 5.1 The address tree of Example 5.3 where r,2 = rp and 1,2 = €.

We now have the required partition of 4. But how can we guarantee to plot a point
in each subset of this partition? Let xo € 4. Then, as we observed in Chapter 3, by plotting
Wgi... We (Xp) for each address ¢, the ACM meets this condition. Alternatively, for the
uniform IFS {w; n}, the RIA when driven by a sequence of minimal length containing
every address (i.e. every k-digit sequence over {1, ..., N} for some integer k) meets this
requirement - the optimal (or M-) sequence method. Can we implement a similar idea for
non-uniform IFS? Again, our approach is to dovetail the addresses into an optimal
sequence, that is a sequence of minimal lengt