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Injective Modules and Representational Repleteness
by

Gordan MacLaren Low

Abstract

The purpose of this thesis is to introduce a new representation theoretic con-
dition on prime ideals of noncommutative Noetherian rings, to study its properties
and to investigate various classes of ring in relation to it, including enveloping al-
gebras of solvable Lie algebras, finite dimensional algebras and skew-polynomial
rings.

In Chapter 1, we review the basic theory of injective modules over both com-
mutative and noncommutative rings and the strong connections which these mod-
ules have with the ideal structure of the ring. In particular, when R is a Noetherian
ring and P a prime ideal of R whose clique satisfies the second layer condition, we
recall the description of the fundamental series of a uniform injective module with
assassinator prime P and of the associated primes of its non-zero factors, the set
of fundamental primes of P.

Our object is to investigate the relationship between this set and the right
clique of P and, in Chapter 2, we introduce the concept of representational re-
pleteness to refer to such an assassinator where every linked prime is fundamental.
Moreover, P satisfies strong representational repleteness when, for every natural
number 7, the n*® prime in any chain of links from P is a fundamental prime of
the n*! layer. Finally, the ring R is said to be (strongly) representationally replete
provided all its prime ideals are.

In Corollary 2.1.3, we present a classification of the strongly rep. rep. primes
of a commutative Noetherian ring as all non-minimal primes together with those
minimal primes, the localizations at which are fields; furthermore, we observe that,
in a trivial way, the ring itself is rep. rep.. Moreover, in Lemma 2.1.6, we show
that any prime of a Noetherian right hereditary ring whose clique satisfies the s.l.c.

is strongly rep. rep..
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In §2.3, we see that both representational repleteness and strong represen-
tational repleteness are preserved under localization at an appropriate Ore set
(Theorem 2.3.2) and that they are Morita invariant properties (Theorem 2.3.3).
Chapter 2 is concluded by discussing how the repleteness of a ring R relates to
the repleteness of a factor R/I where I is polycentral or regularly polynormal
(Theorem 2.3.14): in the first case, we find that P/I is rep. rep. in R/T if and
only if P is rep. rep. in R ; in the second case, and with the additional assumption
that r.cl.(P) is locally finite or that R satisfies the s.l.c., we show the forward

implication holds. The first main result is then deduced:

Corollary 2.3.17. The enveloping algebra of a finite dimensional solvable Lie

algebra over C is representationally replete. .

Finite dimensional algebras over algebraically closed fields are examined in
Chapter 3 and we obtain, in Theorem 3.3.6, a necessary and sufficient condition for
strong representational repleteness; namely, that the algebra be Morita equivalent
to a certain type of factor of a generalized triangular matrix ring over division
rings.

In Chapters 4 and 5, our attention is turned to skew-polynomial rings over
a commutative Noetherian ring R. Here we provide sufficient conditions for the
repleteness of a prime P in an iterated differential operator ring T = R[©;A]
of commuting derivations A on R (assuming R is a Q-algebra) and in an Ore
extension S = R[f; 0] of a single automorphism ¢ of R. When P = (P N R)T or
(PN R)S we find that P is rep. rep. and is strongly rep. rep. when P N R (in the
first case) or a prime minimal over PN R (in the second case) is strongly rep. rep.
in R (Corollary 4.2.14(i) and Theorem 5.2.3). Primes P of S containing # are also
always rep. rep. and are strongly rep. rep. when P N R is strongly rep. rep. in R
(Theorem 5.2.1) but this is not a necessary condition,

For any other prime P of T' or S, we show that P is rep. rep. when Rpnpg is a
regular local ring (in the first case) or a regular semilocal ring (in the second case)
(Corollary 4.2.14(i1) and Theorem 5.2.4). We also include a sufficient condition for

strong representational repleteness for a prime P of T in terms of eigenvectors of
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the action of A on (PN R)/(P N R)? (Corollary 4.2.14(iii)). Again, none of these
conditions is necessary (see §§4.3 and 5.3).

Our main conclusion for skew-polynomial rings is the following;:

Corollaries 5.2.6 and 4.2.15. Let R be a regular commutative Noetherian
ring, let o be an automorphism of R and let A be a finite set of commuting
derivations on R. Then, the Ore extension R[6; 0] is a rep. rep. ring. Furthermore,
if R is a Q-algebra, the iterated differential operator ring R[O; A] is a rep. rep.

ring. n

Finally, in Chapter 6, we discuss the extent to which repleteness of a Noethe-
rian ring R carries over to the ordinary polynomial ring R[z] which we assume
satisfies the second layer condition. The question splits into two cases: when, for
the prime P of R[z], P = (PN R)R|[z] and when P 2 (PN R)R[z]. In the first case,
we establish a positive result, Theorem 6.2.3, that P is rep. rep. [resp. strongly
rep. rep.] in R[z] if and only if P N R is rep. rep. [resp. strongly rep. rep.] in R.
In the second case, while we show in Theorem 6.2.1 that P is always strongly rep.
rep. when R is commutative, we see (in §6.3) that, in general, P need not be rep.
rep. in R[z], even when P N R is strongly rep. rep. in R.

We do, however, discuss some partial results for the second case, using a
method based on [B&G] for constructing R[z]-module injective hulls from R-
module injective hulls (see (6.2.4) to (6.2.16)). This method is a generalization
of the modules of inverse polynomials which arise in [N2] when constructing the
injective hull of the trivial module of a commutative polynomial ring over a field
(see §2.2).

Throughout the thesis, we include numerous examples and counterexamples
illustrating the concepts introduced and the results deduced. These include explicit
calculations of injective hulls (§2.2) after the manner of [N2] but mainly rely on
results of [B&W] and [L&L] which allow the fundamental primes to be determined
from the ideal structure of the ring (§§4.3, and 5.3).
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Introduction

Since 1940, when Baer proved that every module embeds in an injective mod-
ule, it has been evident that injective modules would play a leading role in rep-
resentation theory. However, it was not until Eckmann and Schopf developed the
notion of the injective hull in 1953 that the study of the structure of injectives
began, culminating, for commutative Noetherian rings, in 1958 with Matlis’s clas-
sical results (§1.1). In particular, if R is a commutative Noetherian ring and E is
a uniform right R-module with assassinator prime P, then every element of F can
be annihilated by some power of P (see Theorem 1.1.14).

Much work has been done recently in extending this theory to noncommuta-
tive rings (see for example [J2], [B&W] and [L&L]) and, in §1.3, we discuss the
noncommutative analogue of the above theorem of Matlis, obtained as [B&W,
Lemma, 5.4]. For a Noetherian ring R, we denote by A,(P) the associated primes
occurring at the n'* layer of a uniform injective with assassinator prime P (see
1.3.1) whose first layer we can assume is a torsion-free R/P-module (see 1.3.1
and 1.3.4(ii) for details) and recalling the definition (1.2.1) of second layer links
between prime ideals, we denote by X,(P) the set of primes (n — 1) links from P
(see 1.2.3). In the commutative case, these sets are either empty or contain only
the prime P.

By insisting that P satisfies the second layer condition (1.2.5), Jategaonker’s
“Main Lemma” (Lemma 1.2.4) requires that Ay(P) C Xo(P). However, if we
assume that the clique of P satisfies the s.l.c., in which situation detailed results
are obtained in [B&W], it is known that A,(P) C X,(P) for all n € N (Corol-
lary 1.3.5). The question of when equality holds is raised in [B&W, 5.11] where it
is noted that (J;,_; X (P) can be infinite even when | J°°_, A,,(P) is finite. (For
instance, consider (4.3.4): R = Clz,y : yz = z(y + 1),2*> = 0].) It is also noted,
however, that X;(P) = A2(P) always holds and it is the purpose of this thesis to
consider the higher layers. We introduce the following definitions.

Let P be a prime ideal of a Noetherian ring R such that cl.(P) satisfies
the s.l.c.. . Then we say (2.1.1) that P is (right) representationally replete in R
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provided ooy Xm(P) = Uj_; Am(P) and we say that P is (right) strongly
representationally replete in R provided X,(P) = A, (P) for each m € N. Thus,
representational repleteness asserts that every prime @) in the right clique of P
does occur as an associated prime of some layer of a uniform injective module
with assassinator prime P, while strong representational repleteness guarantees
that, if @ is (n — 1) links from P, then @ will occur at the n*! layer.

Our main tools in deciding which primes are (strongly) rep. rep., Theo-
rems 1.3.7 and 1.3.11, come from [L&L] and [B&W] and relate to the bimod-
ule structure of the ring. The possession of these properties by a ring depends on
whether the bimodules arising from the second layer links can be combined to form
an appropriate ideal link between a given prime in r.cl.(P) and P. Repleteness is
a kind of smoothness property on a ring.

Trivially, commutative Noetherian rings are rep. rep. (that is, all their primes
are) and, in Corollary 2.1.3, we classify their strongly rep. rep. primes as all non-
minimal primes together with those minimal primes the localizations at which are

fields. We conclude §2.1 by showing:

Lemma 2.1.6. Any prime of a Noetherian right hereditary ring whose clique

satisfies the s.l.c. is strongly rep. rep.. .

Since Theorems 1.3.7 and 1.3.11 translate the study of repleteness into a ques-
tion of the ideal theory of the ring and since injective hulls tend to be inaccessible,
most of the examples we consider avoid explicit descriptions of injective hulls. How-
ever, in §2.2, we include two examples where we display the repleteness of primes
by constructing appropriate hulls. Thus, Example 2.2.5 uses the method of [N2]
to express Ej[s,,... s,](k), where k is a field, as a module of inverse polynomials
and so illustrates the strong repleteness of <z1,...z,> in k[z1,...,2,]. Using a
similar technique, Example 2.2.7 shows that a co-Artinian prime is strongly rep.
rep. in the two dimensional solvable non-Abelian Lie algebra over C. In (2.2.6),
(2.2.8) and (2.2.9), we discuss generalizations of these constructions.

In §2.3, we consider how these properties behave under various construc-

tions. Thus, Theorem 2.3.2 shows that (strong) representational repleteness is
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preserved under localization at an appropriate Ore set, and Theorem 2.3.3 shows
that (strong) representational repleteness is Morita invariant. The rest of §2.3
is concerned with how the repleteness of a ring R relates to the repleteness of a
factor R/I where I is polycentral or regularly polynormal (see Definitions 2.3.4).
We prove the following;:

Theorem 2.3.14. Let R be a Noetherian ring with a prime ideal P and let I
be an ideal of R with I C P.
(i) Suppose that cl.(P) satisfies the second layer condition. If I is polycentral,
P/I is rep. rep. in R/I <= P is rep. rep. in R.
(ii) Suppose either that cl.(P) satisfies the second layer condition and r.cl.(P) is
locally finite (that is, | X,(P)| is finite for each n € N) or that R satisfies the
second layer condition. If I is regularly polynormal,

P/I is rep. rep. in R/I = P is rep. rep. in R. =

By localizing at the appropriate clique and exploiting properties of the local-

ized ring, we use this theorem to obtain:

Corollary 2.3.17. The enveloping algebra of a finite dimensional solvable Lie

algebra over C is rep. rep.. "

Chapters 3, 4 and 5 discuss particular classes of rings, in an attempt to de-
cide when their primes are (strongly) rep. rep., drawing heavily on the known
structure of these rings. Thus Chapter 3 uses Harada’s description [Ha| of heredi-

tary semiprimary rings as certain factors of generalized triangular matrix rings to

classify the strongly rep. rep. primes:

Theorem 3.3.6. Let k be an algebraically closed field and let A be a finite
dimensional k-algebra. With the notation of (3.1.3) and (3.1.7), the following

conditions are equivalent.
(i) A is strongly rep. rep..
(ii) There exists T' a hereditary g.t.a. matrix ring over division rings with radical
J and an ideal I C J? such that A is Morita equivalent to T/I and such that
(J™)ji € (J™ 4 1);; whenever ¢, j and m € N and (J™);; # (J™t1); ;. =
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In Chapter 4, we use Goodear!’s classification [G2] of the link graph of differ-
ential operator rings to provide the following sufficient condition for repleteness in

these rings:

Corollary 4.2.14. Let R be a commutative Noetherian Q-algebra. Fix n € N,
let © = {61,...,0,} be a set of indeterminates and let A = {61,...,8,} be a set
of commuting derivations on R. Suppose P is a prime ideal of T = R[@; A] such
that M = PN R.
(i) If P = MT then P is rep. rep. in T and is strongly rep. rep. if and only if M
is strongly rep. rep. in R;
(i) If Ry is a regular local ring, then P is rep. rep. in T. .

We conclude our discussion of differential operator rings with a series of ex-
amples (§4.3) which illustrate the concepts introduced and, in particular, this last
corollary. Thus, while we see in Example 4.3.2 that regularity is not a neces-
sary condition for the repleteness of P, (4.3.4) and (4.3.5) show that it cannot be
dropped altogether. In the situation of Corollary 4.2.14(ii), we also provide a suf-
ficient condition for P to be strongly rep. rep. although Example 4.3.3 shows that
this is not a necessary condition either. It may, indeed, be found advantageous to
read through these examples before embarking on the details of Chapter 4.

In Chapter 5, we discuss the repleteness of primes in Ore extensions of the
form S = R[§; ¢}, where o is an automorphism and R is a commutative Noetherian
ring, using Poole’s description [Po] of the second layer links. Let P be a prime
of § and put A = PN R. Following Poole, we refer to primes of $ containing
as type (1) primes. The other primes are either upper primes (when P ;Z AS) or
lower primes (when P = AS). (See Notation 5.1.1.) In §5.2, we discuss each type
of prime in turn. For type (1) primes, A is a prime ideal of R and we prove the

following;:

Theorem 5.2.1. With the notation of (5.1.1), let P be a type (1) prime of S.
Then P is rep. rep. in S and, furthermore, if A is strongly rep. rep. in R, then P

ig strongly rep. rep. in S. m




We note, however, that this condition for strong repleteness is not a necessary
condition (Remark 5.2.2). On the other hand, some condition is required as we
see in Example 5.3.2.

For upper and lower primes, we have the additional problem that A may not
be a prime ideal of R. However, since 4 is a o-cyclic semiprime ideal (see (5.1.4)),

the repleteness of lower prime ideals is readily understood:

Theorem 5.2.3. With the notation of (5.1.1), let P be a lower prime ideal of
S. Then P is rep. rep. in S. Furthermore, letting J be a prime ideal of R minimal
over PN R, P is strongly rep. rep. in S if and only if J is strongly rep. rep. in R.m

For upper prime ideals, we obtain a result very similar to that for differential

operator rings (Corollary 4.2.14(ii)):

Theorem 5.2.4. With the notation of (5.1.1), let P be an upper prime ideal of

S. If Ry is a regular semilocal ring, then P is rep. rep. in S. "

Again, we discuss, in §5.3, some examples (Examples 5.3.3 and 5.3.4) which
show, in particular, that this condition is not a necessary one ecither. Exam-
ple 5.3.5, however, does show that not every upper prime is rep. rep..

We observe that both T in (4.2.14) and S in (5.2.4) are rep. rep. rings provided
their coefficient rings are regular (Corollaries 4.2.15 and 5.2.6).

In Chapter 6, we discuss whether the repleteness of a ring R carries over to
the ordinary polynomial ring R[z]. We construct various examples in §6.3 (for
instance Example 6.3.2) which show that this is not the case. However, we are

able to derive some positive results. In particular, for commutative rings we have:

Theorem 6.2.1. Let R be a commutative Noetherian ring and let P be a prime
ideal of the polynomial ring Rjz]. If P ; (PN R)R[z] then P is strongly rep. rep.
in R while, if P = (P N R)R[x], then P is strongly rep. rep. in R[z] if and only if
PN R is strongly rep. rep. in R. -

For noncommutative rings, we show that a prime P 2 (P N R)R[z] of R[]
need not be rep. rep. even when PNR is strongly rep. rep. in R (see Example 6.3.3).

However, we can establish:
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Theorem 6.2.3. Let R be a Noetherian ring and assume that the polynomial
ring R[z] satisfies the second layer condition. Let J be a prime ideal of R. Then
J R[z] is rep. rep. [resp. strongly rep. rep.] in R{z| if and only if J is rep. rep. [resp.
strongly rep. rep.] in R. .

Finally, we discuss some conjectures on how we might obtain results for primes
P ;2 (P N R)R[z] in the noncommutative case. In particular, we show how un-
published work of Brown and Goodearl [B&G] on constructing injective hulls over
a g-skew polynomial ring from injectives over the coefficient ring, might apply in
this case to ordinary polynomial rings. The method involved is, in fact, a return

to the ideas of §2.2 (see (6.2.4) to (6.2.17)).
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A Note on Terminology

The basic terminology and notation will be consistent with those of [G&W],
[McC&R], [A&F] and [Rm]. The following conventions, in particular, will be fixed.

Throughout this thesis, all rings contain an identity element and, by a Noethe-
rian ring, we mean a left and right Noetherian ring. All modules are unital and

are right modules unless otherwise indicated.

Given a ring R and a right R-module M, the annihilator of a subset N of M,
the right ideal

annp(N) = {r € R: Nr = 0},

is also denoted by ann(N) if the ring is not in doubt. Moreover, the annihilator

of N in a subset Y of R is denoted by

anny(N)={r €Y : Nr =0}.
Similarly, the annihilator in N of Y is

annn(Y) = {m &€ N : mY = 0}.

If ann(M) = 0, M is said to be faithful while M is fully faithful if every non-
zero submodule of M is faithful. An associated prime, P, of M is an annihilator
of a non-zero submodule, N, of M such that every non-zero submodule of N
has annihilator P, while, if R is right Noetherian and M is uniform, its unique
associated prime is termed the assassinator prime.

Similar definitions apply for left modules and, if we wish to emphasize (for
instance in bi-modules) whether an annihilator is taken with respect to a left or

right module, we replace “ann” with “l.ann” or “r.ann” respectively.

By a regular element of the ring R, we mean a non-zero-divisor of R, that is,
an element € R such that r.ann(z) = Lann(z) = 0. Given an ideal I of R, we

denote by Cr(I) (or C(I)) the set of elements of R regular modulo I. By a right
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Ore set in a ring R is meant a multiplicatively closed subset X of R containing

the identity which satisfies the right Ore condition, namely that
rXNzR #0

for all r € R and £ € X. A left Ore set is defined similarly and, of course, a set

which is both left and right Ore is called an Ore set. It is well known that the

regular elements of a semiprime right Noetherian ring form a right Ore set.
When M is a right R-module and X is a right Ore set in R, the X-torsion

submodule of M is the submodule
tx(M)={m e M : mz =0 for some z € X}.

If tx(M) = M, M is said to be X-torsion while, if tx(M) = 0, M is said to be
X -torsion-free. In particular, if R is a semiprime right Noetherian ring and X is
the right Ore set of regular elements of R, we denote tx(M) by Z(M) and call it
simply the torsion submodule of M. Similarly, in this case, M is said to be torsion
if Z(M) = M and torsion-free if Z(M) = 0.

If R is a right Noetherian ring and X is a right Ore set, we denote the (right
Ore) localization with respect to X by RX~! (although R may not embed in
RX ! unless X consists of regular elements) and if, moreover, R is commutative,

we denote the localization at a semiprime ideal 4 by R4.

The set of prime ideals of R will be denoted by Spec(R). If S C Spec(R),
then an S-semiprime ideal of R will be an intersection of primes of $. Of course,

when R is right or left Noetherian, we can insist that this intersection is finite

[G&W, Theorem 2.4].

Finally, we use C for the complex numbers, Q for the rationals, Z for the

integers and N for the natural numbers, {1,2,3,...}.

xiv




Chapter 1 : Injective Modules

§1.1 Matlis’s Theorems

Definition 1.1.1. Let R be any ring and let E be a right R-module. Then, F is
injective, provided that, whenever A and B are right R-modules with A C B and
f 1s an R-module homomorphism from A to F, then f extends to an R-module

homomorphism from B to E. -

What are now known as injective modules, first appeared in 1935, for the
ring of integers, in Zippin’s work on Abelian groups [Z]. (See Remarks 1.1.5.)
However, it was Baer in 1940 who studied the general notion for arbitrary rings
[Ba]. His paper is concerned with what were called “complete” modules, that
is, modules satisfying condition (c) of the following result which is now known as
“Baer’s Criterion” (see [G&W, Proposition 4.11). In fact, the modern terminology
of “injective” modules, along with that of the dual notion, “projective” (a module
is projective provided it is a direct summand of a free modulej, was introduced in

1956 in Cartan and Eilenberg’s important work [C&E].

Theorem 1.1.2. Let R be a ring and A a right R-module. The following

statements are equivalent:

(a) the right R-module A is injective;

(b) for every right ideal I of R and every R-module homomorphism f from I to
A, there exists a € A such that f(r) = ar for allr € I;

(¢) for every right ideal I of R and every R-module homomorphism f from I to

A, f extends to an R-module homomorphism from R to E. ]

Remarks 1.1.3. (i) An element a of a Z-module A is said to be divisible by a
non-zero integer n provided ¢ € nA. The module A is called divisible provided
every element of A is divisible by every non-zero integer; that is, provided n4 = A
for all non-zero n € Z. Since an element a € A is divisible by a non-zero integer n

if and only if the homomorphism nZ — A sending n to a extends to Z, it follows
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immediately from Baer’s Criterion that a Z-module is injective if and only if it is
divisible [G&W, Proposition 4.2].

(i1) It is easily seen that all direct summands and all direct products of in-
jective modules are injective. However, while it follows that all finite direct sums
of injectives are injective, this is not true of arbitrary direct sums. In fact, a ring
R is right Noetherian if and only if every direct sum of injective right modules is

again injective (see [Pa, Theorem 1] and [Bs, Theorem 1.1]). n

Our main interest in this section is with Matlis’s celebrated paper of 1958;

however first we require some basic terminology.

Definitions 1.1.4. Let R be any ring and let M be a right R-module. We say that
a submodule NV is essential in M and write N <, M provided LNN 3 0 for all non-
zero submodules L of M. In this case, M is said to be an essential extension of N.
The module M is called uniform when M is non-zero and ANB # 0 for all non-zero
submodules A and B of M, or, equivalently, when M is non-zero and N <, M
for all non-zero submodules N of M. Uniform right ideals were introduced by
Goldie [Gol] who extended the concept to modules in [Go2]. (We note that every
non-zero Noetherian module has a uniform submodule [G&W, Corollary 4.15].)

Then again, we say that M is indecomposable provided the only direct summands

of M are 0 and M. =

Remarks 1.1.5. Clearly uniform modules are non-zero indecomposables. How-
ever, M = g:—;ﬂ- is not a uniform C[z,y]-module since M N yM = 0, while
zM + yM # M and M is indecomposable. Nonetheless, for injective modules,
the terms “uniform” and “non-zero indecomposable” mean the same [Ma, Propo-

sition 2.2]. -

In the first work on the subject, it is proved in [Z] that an Abelian group
is divisible if and only if it is a direct summand of every Abelian group which
contains it. It was soon shown that this is not a special property of Z-modules:
the generalization to an arbitrary ring (the equivalence of (a) and (b) in the next

theorem) is proved in [Ba, Theorem 1]. The equivalence of (a) and (c) is contained

in [E&S, §4].




Theorem 1.1.6. Let R be aring and let E be an R-module. Then the following
are equivalent:

(a) ERr is injective;

(b) ERg is a direct sumimand of every module which contains it;

(c) Er has no proper essential extensions. n

Definitions 1.1.7. In 1940, Baer showed that every module M can be embedded
in an injective module [Ba, Theorem 3] and this we call an injective extension,
while, in 1953, Eckmann and Schopf proved that every module has a maximal
essential extension which is also a minimal injective extension [E&S, §4]. We use
the term injective hull of M, introduced by Rosenberg and Zelinsky in 1959 (see
[R&Z]), to refer to such an extension which can be more easily defined as any
injective module E such that M <. E. (The alternative term injective envelope

is also frequently encountered.) "

A proof of part (i) of the next result can be found in [G&W, Theorem 4.8(a)]
while part (ii) is proved in [G&W, Proposition 4.9]. In particular, we see that the

injective hull of an R-module M is unique up to isomorphism.

Theorem 1.1.8. Let R be a ring and let M be an R-module.
(i) Any injective module containing M contains an injective hull of Mg.
(ii) Let E and F' be injective hulls of Mg. Then, the identity map on M extends

to an R-module isomorphism between FE and F. , "

In the light of Theorem 1.1.8(ii), we can usually refer to the injective hull of
Mp and we write it as Er(M) or E(M) if the ring is not in doubt. We note a
standard result which will frequently be useful. It appears as [G&W, Exercise 4E].

Lemma 1.1.9. Let I be an ideal in a ring R, let A be a right (R/I)-module
and let E be an injective hull for Ar. Then, the right (R/I)-module anng(I) is

an injective hull for Ag;;.

Proof. Since A <. E as R-modules, it is immediate that A <. anng(7)
as R-modules and hence as R/[-modules. Now suppose that B and C are R/I-
modules with B < C and suppose that f is an (R/I)-module homomorphism
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from B to anng(I). Then, f is an R-module homomorphism from B to E and so

extends to an R-module homomorphism, f', from C to E. Since

f(O).I=f(CI)=f'(0)=0,

we see that f' is also an R/I-module homomorphism from C to anng(l) and thus

anng([l) is an injective ( R/I)-module. This completes the proof of the lemma. =

Remark 1.1.10. It is easy to check that any essential extension of a uniform
module is uniform (this also follows from [Ma, Proposition 2.2]). However, it is
also easy to see that an essential extension of an indecomposable module need not
be indecomposable. For if Mg is a non-zero indecomposable which is not uniform
then Er(M) cannot be uniform (non-zero submodules of uniform modules are

obviously uniform) and hence is not indecomposable. "

We now state a result which was proved independently in [Ma, Theorem 2.5]
and [Pa, Theorem 2].

Theorem 1.1.11. Every injective right module of a right Noetherian ring has a

decomposition as a direct sum of indecomposable injective submodules. =

As a consequence of this theorem, we need only consider uniform injective
modules if we wish to understand all injectives over a Noetherian ring. Matlis’s
paper goes on to obtain a description of the uniform injectives over a commutative

Noetherian ring and we now state [Ma, Proposition 3.1].

Theorem 1.1.12. There is a one to one correspondence between the prime
ideals of a commutative Noetherian ring R and the uniform injective R-modules
given by P — E(R/P) for each prime ideal P of R. The reverse bijection is given

by FE — (assassinator of E ) for each uniform injective module E. n

Remarks 1.1.13. Over noncommutative Noetherian rings, this bijection breaks
down in general. Of course, E(R/P) need not be uniform but still we can take
U to be a uniform right ideal of R/P and then Eg(U) is uniform with assassina-

tor P. However, the mapping F — (assassinator of F), is a bijection between the
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uniform injectives and the prime ideals if and only if R is an FBN ring [G&W, The-
orem 8.14]. Usually, there are more uniform injectives than there are prime ideals.
As an example of this, we can take R to be a simple Noetherian domain which is
not a division ring (for instance the Weyl algebra over a division ring of charac-
teristic zero) and A to be a simple right R-module. Then E(Rg) and E(A) are
uniform modules which are not isomorphic, although both have assassinator 0, the

unique prime of R. .

In the commutative case, Matlis then shows how an injective module can be

split up into layers which are easier to understand than the whole module.

Theorem 1.1.14. Let R be a commutative Noetherian ring and E a uniform

injective right R-module with assassinator prime P. Set E,, = {e € E : eP™ = 0}

for m > 0. Then, for alln € N,

(i) E is isomorphic to the injective hull of (R/P)g ;

(i) B = Unm=1 Em ;

(iii) E, = {e ¢ E :amn (%ﬂ-) - P} ;

(iv) En/Ep—y = anng;g, ,(P);

(v) P is the unique associated prime of E/E,_; provided E # E,_y;

(vi) En/E,_ is afinite dimensional vector space over the quotient field, ), of R/ P
and this dimension is equal to the dimension over Q) of (PRp)"~!/(PRp)".
In particular, Ey 2 @ and E, = E,_4 if and only if (PRp)" = (PRp)"~ .

Proof. (i) is [Ma, Prop. 3.1], (ii)~(v) follow from [Ma, Theorem 3.4] and

(vi) follows from [Ma, Lemma 3.4 and Theorem 3.9]. =

Notwithstanding the failure of Theorem 1.1.12 in the noncommutative case,
it still makes sense to ask whether we can extend this description. For instance,
if £ is a uniform injective with assassinator P, we can let By = anng(P) and
form E/E,. For an analogue of Theorem 1.1.14, we would first need to know the
associated primes of this factor. Then again, since every element of E can be
annihilated by some power of P when R is commutative, we would ask whether

the same happens for noncommutative R,
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As we will find in the rest of this chapter, the noncommutative case is very
different, although, with suitable assumptions, it can be described in much the

same format.

§1.2 Prime Links and the Second Layer Conditions

In order to answer the question introduced at the end of the last section, we
require to recall a combinatorial structure of the prime spectrum of a Noetherian
ring, the graph of links. While further information about links and fundamental

primes can be found in [J2], we first recall the basic terminology.

: Definitions 1.2.1. For a Noetherian ring R with prime ideals P and @, we say
there is an ideal link from @ to P and write Q~~>~~>P if there are ideals
A C B of R such that B/A is torsion-free (or equivalently, by [G&W, Lemma, 7.3
and Proposition 7.4], fully faithful) as a right R/P and as a left R/Q-module.
If QP € A and B = @ N P, we call such a link a second layer link and write
Q~~>P. A link from a prime ideal to itself will be referred to as a trivial link.
Unless otherwise specified, links will always be assumed to be second layer links.

Given P € Spec(R), the right clique of P is defined

r.cl.(P) = {Q € Spec(R) : Q = P~ Py~ oo ~in> Py = P,

for some P; € Spec(R) and some n € N},

cl.(P) = {Q € Spec(R) : there exist P; € Spec(R) and n € N such that P, = Q,

Py = P and for each 2 < m < n, either Pp,~~>P,_1 or Pp1 M@Pm}.
We note that, by definition,
Per.cl(P)Ccl(P)

|
’ while the clique of P is defined
even if P is not linked to itself. "




The notion of ideal links appeared first in work of Jategaonkar (see [J1]) while
second layer links were introduced by Miiller for FBN rings as an obstruction to
localization (see [Miil]). This latter aspect, together with most of the present
section can be found in [J2], however we will not discuss the localization criteria
beyond noting the following result which can be found in [G&W, Lemma 12.17]
and in the proof of [J2, Theorem 5.4.5].

Theorem 1.2.2. Let R be a Noetherian ring and let P and () be prime ideals
of R such that Q~~~>P. Let C be a right Ore set in R. If the elements of C are

regular modulo P then they are regular modulo Q. "

Of course, in a prime Noetherian ring, a right Ore set which does not contain
zero consists of regular elements (see for instance [G&W, Lemma 9.21]) and so the
conclusion of Theorem 1.2.2 could be re-expressed to say that if C is disjoint from

P then it is disjoint from @.

We note that, if P is a prime ideal of a commutative ring, the clique of P is
just {P} although P is not necessarily linked to itself. We note also that, if P and

() are maximal ideals, @~~~ P if and only if %;TP is non-zero. As an example of

a second layer link, we can consider the ring ((((]: g) which has two prime ideals

((g %) and (g g) and just one second layer link, namely

0 C C C
0 C 0 0,/ °
Other examples can be found in [G&W, Chapter 11].

Before indicating our motivation for considering second layer links, we com-
plete our discussion of the link terminology by introducing some further notation
which we will require in the next section and which will, indeed, be fixed through-

out this thesis.

Notation 1.2.3. Let R be a Noetherian ring and P a prime ideal of R. We define
X1(P)={P} and for n > 1,

Xnt1(P) ={Q € Spec(R) : Q~~>1I for some I € X,(P)} .
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Where the prime P is not in doubt, we abbreviate X, (P) to X,. Finally, we note
that

rel(P) = | J Xa(P). "

The fundamental connection between these concepts and the representation
theory of Noetherian rings is made clear in the following “Main Lemma” of Jate-

gaonkar [J2, Lemma 6.1.3].

Lemma 1.2.4. Let R be a Noetherian ring, Mg uniform with assassinator prime
P and let U = annpy(P). Suppose 0 < U < M with (M/U)p uniform and having

assassinator prime (). Assume M@ C U and that, for all M' < M with M' £ U,
ann(M') = ann(M).

Then, either (1) QP (Vja E%) ’
or else (2) ann(M) = Q ;% P "

The occurrence of case (2) in Lemma 1.2.4 is excluded by the following defi-

nitions which can be found, for instance, in [G&W, p.183].

Definitions 1.2.5. Given R a Noetherian ring and P a prime ideal, if case (2)
cannot occur P is said to satisfy the right strong second layer condition. For any
Y C Spec(R), Y satisfies the right s.s.l.c. if every prime in Y does, and R satisfies
the right s.s.l.c. if Spec(R) does. Analogous definitions apply on the left, and R is
said to satisfy the s.s.l.c. if it satisfies the left and right s.s.l.c..

Including the hypothesis “Ug,p torsion-free” in the lemma gives rise to simi-
lar definitions substituting “second layer condition” for “strong second layer con-
dition”. It is an open question whether a prime can satisfy the s.l.c. without
satisfying the s.sl.c..

Examples of rings which are known to satisfy the s.s.l.c. include commuta-
tive rings (trivially), Artinian rings (since they contain no primes P and @ with
Q ;Cé P), FBN rings [G&W, p183], group rings of polycyclic-by-finite groups over
commutative Noetherian coefficient rings [J2, Theorem A.4.6] and enveloping al-
gebras of solvable Lie algebras [J2, Theorem A.3.9].

On the other hand, [G&W, Exercise 11H] is an example of a Noetherian ring

which does not satisfy the second layer condition. .
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In fact, almost all the rings considered in this thesis will satisfy at least the
second layer condition and, in such rings, [G1, Lemma 1.3} provides us with sim-

plified characterisations of ideal links and second layer links.

Lemma 1.2.6. Let R be a Noetherian ring with the s.l.c. and let P and ) be
prime ideals. Then,
(i) @~~>P if and only if R/QIQQOP_PIR/P is faithful on both sides, while
(ii)) Q~~r>~~>P if and only if we can find ideals A and B of R such that
QB + BP C A and such that R/Q|%tR/P is faithful on both sides. .

The following lemma will frequently be useful. Part (i) is contained in [J2,
Theorem 8.2.4] while part (ii) is [J2, Theorem 8.2.9]. We first recall the definition

of classical Krull dimension, introduced in this form in [K1, Definition 11].

Definition 1.2.7. Let R be any ring and define the sets S, of prime ideals of
R, for each ordinal «, by the following transfinite induction. First, we set S_;
equal to the empty set (here, —1 is considered to be an ordinal number). Now let
a > 0 and assume that Sz has been defined for each ordinal # < «; we let S,
consist of those prime ideals P of R such that every prime properly containing P
is a member of | J g<a Sp- If there is some ordinal v such that every prime ideal of
R belongs to S, then we say that the classical Krull dimension of R exists and is
equal to the smallest such v. We write this as “ CLK.dim(R) = v ”.

If the classical Krull dimension is finite, then it is simply the supremum of
the lengths of chains of prime ideals and, indeed, this was the original definition.
If R is a ring which satisfies the ascending chain condition on prime ideals (in
particular, if R is Noetherian), then its classical Krull dimension exists (see for

instance [G&W, Proposition 12.1]) although it need not be finite. .

Lemma 1.2.8. Suppose R is a Noetherian ring, let P be a prime ideal of R and

let @1, Q2 € cl.(P).
(i) If cl.(P) satisfies the s.l.c. and Qy C Q3, then @y = Q5.
(That is, cl.(P) satisfles the incomparability condition.)
(ii) If R satisfies the s.l.c., then CLK.dim(R/Qy) = CLK.dim(R/Qs) . n
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§1.3 The Fundamental Series

Notation 1.3.1. Let R be a Noetherian ring. Then, for any uniform injective
module, Eg, with assassinator prime P, we put Ey = 0 and Ey = anng(P). Then,

for n > 0, we let

App1(E) ={Q : Q is an associated prime of E/E,}
and

E\ . o . i .
Ent1= {e € F : ann (E—}ig-———> is a finite intersection of primes in An+1(E)}.

n
Definitions 1.3.2. If either cl.(P) satisfies the s.l.c. and E = E(U) for some
uniform right ideal U of R/P (all such E(U) are isomorphic), or cl.(P) satisfies
the s.s.l.c., then A,(E) is known as the set of n'® layer fundamental primes of E

and {E,} as the fundamental series of E. .

The next result is due to Brown and Warfield [B&W, Lemma 5.4 and Theo-
rem 5.10]. (In fact, (1)~(3) are only stated in [B&W] for the case where the clique

of P satisfies the strong second layer condition but the proof works in either case.)

Theorem 1.3.3. Let R be a Noetherian ring and let P be a prime ideal of R.

Suppose that either cl.(P) satisfies the s.l.c. and E = E(U) for some uniform right

ideal of R/ P or cl.(P) satisfies the s.s.l.c.. Let n € N. Then, in the notation of

(1.2.3) and (1.3.1),

() E= U3y Bn s

(ii) B, = {e € E:ann (ﬂ];:?—’:'l) is a finite intersection of primes in X, (P)}
={e€ E:am (%) is a finite intersection of primes in r.cl.(P)}
= {e € E : eI™ = 0 for some r.cl.(P)-semiprime ideal I of R} ;

(iii) En/Epn—y = Egexn(P)a’nnE/En—l(Q) ;

(iv) if cl.(P) satisfles the s.s.l.c., Ap(E) is determined by the prime P and does

not depend on the choice of E. "
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Remark 1.3.4. (i) We note that the direct sum of (iii) need not be finite, although
for many rings it is. (See the discussion on local finiteness in Definition 1.3.9.)
Again, some of the summands may be zero and this is the key issue under analysis
in this thesis.

We note also that, by Lemma 1.1.9, (E1)g/p is an injective hull for Ug/p.

(ii) By Theorem 1.3.3(iv), we can always assume, when considering the fun-
damental primes, that E = Ep := E(U) for any uniform right ideal U of R/P
(or, equivalently, that (E;)g/p is torsion-free). So, for any prime P whose clique
satisfies the second layer condition, we use the notation A,(P) to mean A,(Ep),
which is then known as the set of n*" layer fundamental primes of P. Where the

prime P is not in doubt, we abbreviate A,(P) to A,. Furthermore, we put
Fund(P) := | | An(P)
n=1

and call this the set of fundamental primes of P. "

By Lemma 1.2.4 and the (strong) second layer condition, Az(P) C X,(P).

As we now show, Theorem 1.3.3 ensures that a similar result holds for all layers.

Corollary 1.3.5. Let R be a Noetherian ring and let P be a prime ideal of R
whose clique satisfies the second layer condition. Then A,(P) C Xn(P) for all
n € N.

Proof. Let E = E(U) for some uniform right ideal of R/P and let Q &
Ap(P). Then, by definition of an associated prime, @ is the annihilator of some
submodule of E/E,_; which we can assume to be cyclic. On the other hand,
by Theorem 1.3.3(ii), such a cyclic submodule has annihilator equal to a finite
intersection of primes in X,(P),say @1 N...NQ¢. So @ = Q1 N...NQ; and it is
easily seen that ¢} = @Q); for some ¢ (and hence, by Lemma 1.2.8(1), for all ¢). Thus
@ € X,(P). n

Remark 1.3.6. By definition, 4y = X; = {P} and Brown and Jategaonkar have
shown that A; = X, ([J2, Lemma 9.1.1(a)] or [G&W, Theorem 11.2]). However,

in general A, ;Cé Xn for n > 3. In fact, we will see several examples later where
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Fund(P) ; r.cL.(P). On the other hand, Lenagan and Letzter have obtained the
following easily stated description (i) of Fund(P) [L&L, Theorem 2.3]. For (ii),
see the proof of [J2, Theorem 8.2.4]. .

Theorem 1.3.7. Let R be a Noctherian ring and P a prime ideal of R. Then,
(i) if R satisfies the s.l.c.,

Qr~> > P > () € Fund(P) ;
(ii) if cl.(P) or cl.(Q) satisfies the s.l.c.,

Qr~> > P = @ € Fund(P) . .

Corollary 1.3.8. Suppose R is Noetherian, @, P € Spec(R) and either cl.(Q)
or cL.(P) satisfies the s.l.c.. If Q~rr>~r~>P then Q € r.cl.(P).

Proof. This follows from Theorem 1.3.7(ii) and Corollary 1.3.5. "

As suggested by Jategaonkar’s “Main Lemma” (Lemma 1.2.4) and by Theo-
rem 1.3.7, bimodules play a crucial role in the study of the fundamental primes.
Indeed, before introducing our main definitions, we give a refinement of Theo-
rem 1.3.7 due to Brown and Warfield, describing the n'! layer primes, which does,

however, require a further condition on r.cl.(P), that of local finiteness.

Definition 1.3.9. The right clique of a prime P of a Noetherian ring is said to
be locally finite provided |X,(P)]| is finite for all n € N.

This condition holds for many important classes of rings, for instance group
rings of polycyclic-by-finite groups over commutative Noetherian coefficient rings
[B2, 6.4 and the last paragraph of §1], enveloping algebras of finite dimensional
solvable Lie algebras over C [B3, Theorem 2.9] and Noetherian P.1. rings [Mii2].
This last class was extended to all FBN rings in [St2, Corollary 3.10].

In fact, [St2, Corollary 3.13] shows that in any Noetherian ring, every clique
is at least countable. On the other hand, [St1, 4.4] shows an example of a Noethe-

rian ring satisfying the strong second layer condition having a prime P such that

| X2(P)| = |Az(P)| is infinite. .
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Notation 1.3.10. We use the same notation as Brown and Warfield {B&W, §5]
which we list as follows. Let R be a Noetherian ring and let P be a prime ideal of
R. Forn > 1, let

Sn = Noex.(r) @

I, = 5.50-1...51 N Sp4150 ... 52,

Jn' = Spt1Sn ... 51,

Jn/Jn' = the torsion submodule of (In/Jn')R/p ,

B,(P)=1,/J, , Bo(P) = R/P and

B,(Q,P) ={b & Bp(P): Qb= 0} for each Q € X, 11(P) . .

The next result follows from [B&W, Theorem 5.6] although, as for Theo-
rem 1.3.3, it is only stated in the case where the right clique of P satisfies the

strong second layer condition.

Theorem 1.3.11. Let R be a Noetherian ring and P a prime ideal of R. Suppose
that cl.(P) satisfies the s.l.c. and that r.cl.(P) is locally finite. Let n € N and
@ € Xnt1(P). Then, with the notation of (1.3.1) and (1.3.10),

En+1/En = HOIHR/p (Bn(P), El)

QEAn+1(P) = Bn(Q,P)#O ]

and

Remark 1.3.12. The bimodule B,(Q,P) is, by definition, torsion-free as a
right Z/P-module while it follows, from [G&W, Proposition 7.5], Corollary 1.3.8
and Lemma 1.2.8(i), that it is torsion-free as a left R/Q-module. Thus, when
Bn(Q, P) # 0, it forms an ideal link between @ and P. So Theorem 1.3.11 pro-
vides a converse to Theorem 1.3.7(ii) in the case where r.cl.(P) is locally finite.
That is, when cl.(P) satisfies the second layer condition and r.cl.(P) is locally
finite,

@ € Fund(P) if and only if Q~~>~~>P. .
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§1.4 Notes

The results of this chapter have almost all appeared elsewhere in the literature.
Those of §1.1 are well known and, except for Theorem 1.1.14, can be found, for

instance, in [G&W, Chapter 4]. We note the following specific references.

Theorem 1.1.2 is essentially proved as [G&W, Proposition 4.1], while, that a Z-
module is injective if and only if it is divisible, is proved in [G&W, Proposition 4.2].
That a ring is Noetherian if and only if every direct sum of injective mod-
ules is injective was proved independently by Bass [Bs, Theorem 1.1} and Papp
[Pa, Theorem 1].
That any non-zero indecomposable injective module is uniform, was proved in
r [Ma, Proposition 2.2]. The characterizations of injective modules in Theorem 1.1.6
; are due to Baer [Ba, Theorem 1] and Eckmann and Schopf [E&S, §4]. As noted,
i the first of these is a generalization of Zippin’s result for Abelian groups [Z].

That every module can be embedded in an injective module was shown in
[Ba, Theorem 3], while the existence of injective hulls follows from [E&S, §4].

Theorem 1.1.8(i) is proved in [G&W, Theorem 4.8(2)] but is originally due
to [E&S]. Part (ii), the uniqueness of injective hulls up to isomorphism, can be
found, for instance, in [G&W, Proposition 4.9] but follows from [Ba, Theorem 4].

Lemma 1.1.9 is a well known result and appears as [G&W, Exercise 4E].

Theorem 1.1.11 was proved by Matlis in [Ma, Theorem 2.5} and independently
by Papp [Pa, Theorem 2].

Theorem 1.1.12 is taken from [Ma, Proposition 3.1]. A version of this result
for noncommutative rings in terms of irreducible ideals instead of primes, can be
found in [Ma, §2].

That the mapping E +— (assassinator of E), is a bijection between the uni-
form injectives and the prime ideals if and only if R is an FBN ring, was proved
independently in [G&R, Theorem 8.6 and Corollary 8.11] and [K2, Theorem 3.5].
The reverse implication (that the bijection holds in FBN rings) was also proved in
[L&M, Corollary 3.12].

Theorem 1.1.14 is extracted from several results of [Ma, §3].
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Most of the material of §1.2 can be found in [J2]. However, a version of
Lemma 1.2.4 can also be found in [B1, Lemma 5.3], while Lemma 1.2.6 follows

immediately from [G1, Lemma 1.3].

The results of §1.3 are principally due to Brown and Warfield (see [B&W]
and [L.&W, §7] for some minor corrections to this paper). There is a useful overall
review of the representation theory of Noetherian rings in [B5] which also discusses
how these results might extend to the case where the clique does not satisfy the

second layer condition.

Theorem 1.3.3 was proved in the case where the clique of P satisfies the strong
second layer condition in [B&W, Lemma 5.4 and Theorem 5.10]. The slightly
generalized form we have quoted is essentially taken from [J2, §§9.1 and 9.2].

Corollary 1.3.5 is noted in [B&W, 5.11] and again in [B5, §3]. A proof is also
given in [J2, Theorem 9.1.2].

Part (i) of Theorem 1.3.7 is proved as [L&L, Theorem 2.3]. Part (ii) follows
from the proof of [J2, Theorem 8.2.4], although the conclusion as stated there is
that @ is in the clique of P,

Corollary 1.3.8 is a well known result but is usually stated (as in [L&L]) for
rings satisfying the second layer condition.

The notation of (1.3.10) as well as Theorem 1.3.11 are taken from [B&W, §5].

The observation of Remark 1.3.12 does not appear to have been stated before.
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Chapter 2 : Representational Repleteness

§2.1 The Definitions and Elementary Examples

Definitions 2.1.1. For a Noetherian ring R with a prime ideal P where cl.(P)
satisfies the s.l.c., we say that P is right representationally replete (right rep.
rep.) in R provided Fund(P) = r.c.(P) and we say that P is right strongly
representationally replete (right strongly rep. rep.) in R provided A,(P) = X,(P)
for each n > 1. Of course we say that R is right (strongly) rep. rep. provided
every prime of R is. Similar definitions can be made by interchanging right and
left modules but we consider only the right-handed definitions throughout and, for

r convenience, abbreviate “right (strongly) rep. rep.” to “(strongly) rep. rep.”. =

Before going on to describe some properties of these definitions, we discuss

. some examples. In the next section, these will involve detailed constructions of
injective hulls but, for the moment, we consider two easy cases. Firstly, when R

is commutative, cl.(P) = {P} for any prime P of R and, by Corollary 1.3.5 (or

by Theorem 1.1.14(v) to which Theorem 1.3.3 reduces), Fund(P) = {P}. Thus,

every prime of a commutative Noetherian ring is rep. rep.. To see that strong

representational repleteness can fail, we need only consider:

Example 2.1.2. Let R = <C)[()§]>, P = 5£2 and put

E := Er(R/P) = anng_, (r/p)(X?) ,
where the equality holds by Lemma 1.1.9. Then, F has only two layers so, while
44(P) = 43(P) = Xo(P) = {P}
for all n € N,
An(P)=10
for all m > 3. (We will discuss this example in more detail in (2.2.9).) m

The next result answers the question of which commutative rings are strongly

representationally replete.
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Corollary 2.1.3. Let R be a commutative Noetherian ring and P a prime ideal
of R. Then P is rep. rep. and, moreover, the following are equivalent:

(1) P is not strongly rep. rep. in R;

(2) P is a minimal prime of R and anng(P) C P;

(3) P is a minimal prime of R and Rp is not a field;

(4) P is a minimal prime of R and Rp is not semiprime.

Proof. Since R is a commutative ring, either X,,(P) = {P} foralln > 1 (in
the case where P~~~ P) or X,(P) = 0 for all n > 2 (in the case where P~y P).
So, if P~{>P, then P is strongly rep. rep. in R. Now As(P) = X3(P) so, if
A2(P) = 0, then P is strongly rep. rep. in R. On the other hand, A,(P) C
Xn(P) for all n > 1 and so P will fail to be strongly rep. rep. if and only if
there are precisely n non-zero layers in E(R/P) for some finite n > 2. Thus, by
Theorem 1.1.14(vi), P will fail to be strongly rep. rep. precisely when (PRp)™ =
(PRp)**! for some n > 2 but PRp # (PRp)?, that is, when (PRp)™ = 0 for
some n > 2 but PRp # 0.

The equivalence of the statements follows easily. m

Examples 2.1.4. For an example where Rp is not semiprime but P is strongly

rep. rep, we can take R = Rp = %[%ll and P = ZR 4+ yR. On the other hand,

the zero ideal in any domain is an example of a minimal prime which is strongly

rep. rep.. "

Remark 2.1.5. As noted in [B&W, 5.11], noncommutative rings may fail even
to be rep. rep.. Indeed, Miiller has shown [Mii2] that Fund(P) is finite for any

Noetherian P.I. ring even though r.cl.(P) can be infinite. For example,
R=Clz,y:yz = z(y +1),2° = 0
is such a ring and the prime P = zR + yR has right clique
{tR+(y —n)R:n e NU{0}}

(see Remarks 2.2.9 and 4.3.4). In fact, his proof extends, by [J2, Theorem 9.3.6(a)],

to centrally separated rings (that is rings where every non-zero prime ideal of
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a prime factor ring contains a non-zero central element). By Corollary 2.1.3,
commutative domains are always strongly rep. rep.. However, this is not true for
noncommutative domains (see Example 4.3.2). Indeed, [Miil, Counterexample 2]
shows that a prime Noetherian P.I. ring may have infinite right cliques, so, by the

above, prime rings need not be rep. rep.. On the other hand, we do not know of

any domain which is not rep. rep.. n

It is, however, easy to see that some noncommutative rings are strongly rep.
rep.. We recall that one definition of a right hereditary ring, R, is that every factor
of an injective right R-module be injective. (Left hereditary is defined similarly

and R is hereditary if it is both left and right hereditary.)

Lemma 2.1.6. Let P be a prime of a Noetherian right hereditary ring R such
that cl.(P) satisfies the s.l.c.. Then P is strongly rep. rep. in R.

Proof. Suppose that P;_; € A;—; and that P;~~>P;_;. Then since P;_y
is an associated prime of E/F;_ 5 and E/E;_, is injective, [J2, Lemma 9,1.1(a)]
shows that P; is an associated prime of E/E;_;. The result follows by an induction

argument on . =

On the other hand, as we shall see in due course, there are plenty of noncom-
mutative strongly rep. rep. rings which are not hereditary (for instance, Examples
2.2.7, 3.3.2, and 4.3.3).

§2.2 Calculations on Injective Hulls

Since Theorems 1.3.7 and 1.3.11 transform the study of the fundamental
primes into a question in the ideal theory of the ring, explicit descriptions of
injective hulls will play a relatively small part in this thesis. Indeed, in most of
our examples, the injective hulls are inaccessible and, to determine whether Q is a
fundamental prime of P, it is much easier to look for an ideal link between @ and

P, and, in particular, to calculate the bimodule B,(Q, P) of (1.3.10). However,
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in this section, we discuss two examples where the injective hulls are known and
use these decriptions to establish strong representational repleteness directly. We

first recall the definition of an exact contravariant functor [Rm, pp.34&35].

Definition 2.2.1. Let F' be a contravariant additive functor between categories

of modules. Then, F is left exact if exactness of the sequence
x-4v-2,2-%0
implies exactness of the sequence
0-Lrzi ry Iopx
while F' is right exact if exactness of the sequence
0-Lx-%y Lz
implies exactness of the sequence
Fzilry I px 20 .
Furthermore, F' is exact if and only if it is both left exact and right exact. .

The first part of the next theorem is taken from [Rm, Theorem 2.9] and the
second part from [Rm, Theorem 3.16].

Theorem 2.2.2. The contravariant functor Hom( , M) is left exact for every

module M and is exact if and only if M is injective. "

We now quote the “Adjoint Isomorphism Theorem”, which can be found in

[Rm, Theorem 2.11].

Theorem 2.2.3. Consider rings R and S and let A be a right R-module, B an
(R, S)-bimodule and C' a right S-module. Then, there is an isomorphism

Homgs(A ®r B,C) = Homp (A, Homs(B, C))

Our next result is extracted from [N2, §1] in a slightly more general form.
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Corollary 2.2.4. Consider rings R and S such that S is a subring of R and

let E be an injective right S-module. Then, Homg(R, E) is an injective right
R-module.

Proof. First, we note that, for any right R-module A,
Homg(A, E) = Homg(A ®r R, E) & Homp (A, Homg(R, E))

where the second isomorphism holds by Theorem 2.2.3. Thus, Homg( , E) and
Homp ( ,Homs(R, E)) are naturally equivalent as functors from the category of
right R-modules to the category of Abelian groups. Since E is an injective right
S-module, we see from Theorem 2.2.2 that these functors are exact and, applying

Theorem 2.2.2 again, it follows that Homg(R, F) is an injective right R-module.m

We are now in a position to present our examples. In the first, the description
of the injective hull of the trivial module over a ring of polynomials over a field,

can be found in [N2, Theorem 2] but first appeared as [Hs, Exercise 6.11].

Example 2.2.5. Let k be a field and let R = k[X] = k[zy,...,2,] be the
commutative ring of polynomials in the n indeterminates X := {z1,...,2,}. Let
P =R+ -+z,R, a co-Artinian prime ideal of R, and we note that R/P = k as
a k-module, the mapping from R to k which sends each polynomial to its constant

term, inducing an isomorphism. Indeed, this isomorphism allows us to regard k as
a uniform R-module with assassinator P, which we do from now on. We can see
from Corollary 2.1.3 that P is a strongly rep. rep. prime of R, however, we now
show this directly, by considering E := Ep(k).

We denote by k[[z7",...,2,;]], the ring of formal power series in the inde-

terminates z7',...,z,;' and we define a mapping

¢ : Homp (K[ X], k) — k[[z]Y,..., 2]

YR

by means of the formula

(f) = Zf(wl 51:2 e Ty )wl)\l ;)\2 S

A 20
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for each f € Homg(k[X], k). Clearly, ¢ is an isomorphism of Abelian groups.
However, Homy (R, k) is a right R-module with an action of R given by

(f.r)(s) = f(rs)

for each f € Homi(R,k) and r and s € R. Thus, we can turn k[[z]%,...,z;"]]
into a right R-module by defining

pr=¢(¢7 (p).r)

for each p € k[[z],...,2;']] and r € R. To see explicitly what this action looks

like, we fix (p1,...,¢n) and (v1,...,v,) € (NU {0})", and « and B € k. We

observe that ¢~1(Bz7"* ...z, ") is the mapping f € Homy(k[X], k) given by
f(il?i\l cezn) = {ﬂ if (A1, n) = (v1,...,vn) 5

0 otherwise,

extended linearly to k[X]. Thus,

—Vp

—V1 #1 Hn
Bz .ozt Lk

= Z(f.cm:i” D | C ARl Pt I el

A: >0
= Z Flaght™1  ghatdnyg=d | g=An
AL>0
_ {aﬂml_(yl_ﬂl) ...:v;(""“”") fpu <vifor1<i<n;
0 otherwise.

Of course, this multiplication is extended by additive and distributive laws to the
module action of R on k[[z7,...,z;!]].

Since ¢ is now a right R-module isomorphism, we see from Corollary 2.2.4
(with S = E = k) that k[[z*,...2!]], under this action, is an injective right
R-module and, since it contains kg, we see that it must also, by Theorem 1.1.8(i),
contain an injective hull for kg. We claim that this hull is simply the set of formal
polynomials k[z77, ...,z 1.

It is obvious that k[z7",...,z;'] is an R-submodule of k[[z]?,...,z;]] and
we show first that it is an essential extension of k. If M is a non-zero R-submodule

of k[z7?1,...,z;t], then it contains some non-zero polynomial, p say. Choose a
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non-zero term, fa; " ...z, of p such that vy + -+ + v, is as large as possible.

So, for any other non-zero term, yz; a .7, for some 4, (; < v; and thus
7zt 2l =0 .
We see, therefore, that
p.xt..xpt =P ez = B

Thus, f € M Nk and, since § # 0, it follows that kg is essential in k[z1,...,z.]R.
We have now established that

kECklzt,...,2; | CECk[[z7Y,...,27%]]

where E = Eg(k). To show that E = k[z]',...,z;'], we let £ be a non-zero
element of E which is therefore a formal power series in z*,...,z;! over k. By
Theorem 1.1.14, £.(z1 R+ - - + 2, R)® = 0 for some non-zero integer, s. Thus, for
1<:<mn,£zf =0 and it follows that ¢ € k[z],... 2], which establishes that

E = FEgr(k) = k[xi_l,...,a,‘;l] .

Now, by Theorem 1.3.3, and in the notation of (1.3.1), we see that
En={e€ E:eP™ =0}
={peklz7",...,27' :p(z1:R+ - + 2, R)™ = 0}
= Z Brsrodn @ M o ay™ By . € K

AlyeeryAn >0
At A, <m

Clearly, then, E # E,, for any m € N and P occurs as the fundamental prime at
each layer. (Indeed, for m € N, E,,/Ey_ is an n™!-dimensional vector space

over k 2 R/P.)
We have thus shown directly that P is strongly rep. rep. in R. =

Remarks 2.2.6. (i) Continuing the notation of (2.2.5), if we write

K[X]] = E[l21, ..., 20l ],
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for the ring of formal power series over X, then

k[[X]]
k[ [X]] 4 + 2o k[ [X]]

and so we may ask what the injective hull of kj[x)] would be. In fact, it turns

k =

out that the set of inverse polynomials, kfz] 1 ..., &Y described above, is also a
module over k[[X]] and, as such, is again an injective hull for kij(x)). (This can
be found in [N2, Theorem 3] although it was first proved in [Gal, p7].
(ii) When £ is a field and R = k[X], Northcott’s construction provides a de-
scription for the injective hull of R/P where P is the maximal ideal 2y R+ -4z, R
of R. This result was generalized by Fossum [F] to give a precise (though not ex-
. plicit) description for Eg(R/P) where P is any prime ideal of a commutative
Noetherian ring R. After localization of R at P and completion of the local ring
Rp (see Definitions 4.1.9) [F| uses Cohen’s Theorem (Theorem 4.1.11) to express
Rp as a homomorphic image of a ring of formal power series and then introduces
modules of inverse polynomials.

(iii) When k is algebraically closed, any maximal ideal in the ring R[X] can
be written in the form z;R + .-z, R, after making appropriate substitutions
for zy,...,zy,, if required. So, in this case, Northcott’s construction describes
Er(R/P) for any maximal ideal P of R. This can be generalized: see [S&9]
for the case where k is not algebraically closed but has characteristic zero. For

instance,

B Qlz,y]
Q=,y) (22 — 2,12 + 1)
is described as [S&S, Example 3.12].

(iv) Finally, we mention that Kucera has also repeated Northcott’s argument
to provide an explicit description of Er(R/P) where R = k[z1,...,z,] and P =
€1+ -+ z¢R for t < n. Specifically, [Ku, Corollary 2.10(a)] shows that

Er(R/P) = k(zt41,. - zo)z], ... 27}
with an R-module action similar to that of Example 2.2.5. ™

Given that repleteness for commutative rings is completely solved by Corol-

lary 2.1.3, we are, of course, more interested in descriptions of injective hulls over
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noncommutative rings. Our next example, however, uses an argument very sim-
ilar to that of the previous one. While this example is certainly not new either
(it appears, for instance, as [Da, §4, Example 1]; see also Remarks 2.2.8, below),
similar ideas will recur in Chapter 6. In particular, the method we use to show
that Clz~!,y™'] can be taken as the whole injective hull, will reappear in Theo-
rem 6.2.9, the special positive case of Hypothesis 6.2.8.

Example 2.2.7 will be met again in Example 2.3.16 and in Example 4.3.1
where we will prove strong representational repleteness for a second time, but by
consideration of the bimodule B,(P) of (1.3.10). In fact, it will be convenient for

us to borrow results of Chapter 4 for the description of prime links in R.

Example 2.2.7. Let T = Clz,y : yz — 2y = z] (the enveloping algebra of
the two-dimensional solvable non-Abelian Lie algebra over C and which therefore
satisfies the s.s.l.c. by, for instance, [J2, Theorem A.3.9]). Let P = zT + yT. As
in Example 2.2.5, C = T/P and so we can and do regard C as a uniform right

- -

T-module with assassinator prime P. We will show that P is a strongly rep. rep.
prime of T, by constructing the injective hull, E := Ex(T/P).
We denote by C[[z™!,y™']], the ring of formal power series in ™! and y~?!

over C and we define a mapping
¢ : Home(T,C) — C[[z7,y71]]

by means of the formula

$(f) = fla'y)z iy

1,520
for each f € Homg(T,C). Clearly, ¢ is an isomorphism of Abelian groups. How-
ever, Homg(T, C) is a right T-module with an action of 7' given by

(F)(s) = £(ts)

for each f € Hom¢(T,C) and t and s € T. Thus, we can turn C[[z™1,y~!]] into
a right T-module by defining

p.t:= qS(qS_l(p).t)
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for each p € C[[z71,y7"]] and # € T. To see explicitly what this action looks
like, we fix (u,7) and (v,w) € (NU{0})?, and o and B € C. We observe that
¢~ (Bz¥y ™) is the mapping f € Homg(T,C) given by

f(x)\yﬂ) — {g if ()":U“) = (Vaw) ;

otherwise,
extended linearly to T. Now, since yz = z(y + 1), we see that y*z* = z'(y +i)*

for any ¢ and A > 0. Thus,

Bz Yy~ azty?

= (fazty*) ety )z ~ty ™
0,520

= > flasty aiy) e~y
720

= flaa"t(y + iy ey~

1,520

=« Z Z( ) A= f(ght yP i)z =iy =i

2,720 p=0

afz==m) TR () (v = ey~ i p <y
afy~(w=2 ifu=vand A\ <w;
0 otherwise.

Of course, this multiplication is extended by additive and distributive laws to the

module action of 7" on C[ [z}, y71]].

Since ¢ is now a right T-module isomorphism, we see from Corollary 2.2.4
(with R =T and S = F = C) that C[[z~!,y™]], under this action, is an injective
right T-module and, since it contains Cr, it must also, by Theorem 1.1.8(i), contain
an injective hull for Cr. Of course, it could contain more than one, however, we
claim that one such hull is the set of formal polynomials Clz™*,y~!].

It is obvious that Clz™!,y™'] is a right T-submodule of C[{z~!,y~1]] and
we show first that it is an essential extension of C. If M is a non-zero T-
submodule of C[z™1,y™1], then it contains some non-zero polynomial, p say. Let
S = {fiz7"y™* : i € I} (for some index set I), the set of non-zero terms of p
such that v is as large as possible. For any other non-zero term, yz~Sy~¢, ¢ < v
and so

vz Ty T8zt =0,
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Let fz~"y~“ be the element of & such that w is as large as possible. Then, for

every other element of S, w; < w so that
Biz TPy a¥y¥ =0 .
We see, therefore, that

-y, — W v, w ﬁ

paty® =Pz Vy V.2V y"Y =

Thus, # € M NC and, since § # 0, it follows that Cr is essential in Clz =1,y 1] .
We have now established that

CCClzly ' |CECCz"tyY]

where E is some injective hull of Cr. To show that E = Clz™1,y71], welet ¢ € E

1 over C.

so that ¢ is a power series in ™! and y~

Now, zT = Tz so, as we shall see in Lemma 2.3.5, z is contained in every
prime in the right clique of P (alternatively, we can refer to the description of the
right clique given in Example 4.3.1 and quoted below) and so, by Theorem 1.3.3,

we can find some s € N such that g.z* = 0. Since, whenever 0 < w and s < v,
m——uy—w_ws — w—(u—s)y—w
we see that
¢ e Clly ][],
the algebra of formal polynomials in ™! over C[[y~!]]. Thus, writing the “coef-

ficients” on the right,

=@+ g+ g+ +a g

for some ¢o,...,qr € C[[y~!]] with r < s.
We observe that ¢, = g.2" € E. However, if we can establish that ¢, € Cly 1],

then, since

mmrqr € (C[m_lay_l] g E b
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we can replace g with

¢ =gp+z g+ -+ Vg,

and an induction argument will show that ¢ € Clz™1,y71].
By Lemma 1.1.9, anng(zT) is an injective hull for Cy,,r while, since T'/zT &2
Cly|, Example 2.2.5 shows that

Er/e1(C) =Cly™]

with the same action as that induced by the T-module action described above.

On the other hand, ¢,..z = 0 in the T-module E so that
; {¢:}UCly™] C anng(zT) .

Since there cannot be two copies of the injective hull of Cr/eT, one strictly con-

' tained inside the other, we see that ¢, € Cly™].
As noted, an induction argument now shows that ¢ € Clz™,y™'] and so we

have proved that
Er(C) =Clz"",y7"]

with the action described above.
To establish the repleteness of the prime P in T, we next require to know

the right clique of P. In fact, as we will see in Chapter 4, and in the notation of
(1.2.3),

Xn(P)={2T+ (0 —a)T :a € {0,1,2,...,(n — 1)}}

for each n € N (see Example 4.3.1).
We claim that, in the notation of (1.3.1),

En_1= Z ﬂu,ww_—yy_w : ﬂu,w cC

v,w>0
v+w<n—1

and that,
An(P) = X,,(P)
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for each n € N,
The claim is trivially true for n = 1 since Eq = 0 and 4;(P) = X1(P) = {P}.
So we assume it is true for n < k for some k € N and consider n = k + 1.

Now, for 0 < v < k and w = k — 1 — v, certainly
:IZ_Vy—w.:I} — m_(u—l)y—-w — x—(u—l)y—(k—l—u) € Er_y

while

Vm~uy—w _I_:L.muy—(w—l)
Y= =vz Yy W+ Py 52 whenv£k—1;
ve ™ = (k — 1)z~ (k1) when v =%k —1.

We thus see that, when 0 <v <k—-2andw=%k~1-v,
?f 27y (aT + (y — )T) = g~ Dyt vy =(k=2-v)p c g,
‘ while, when v =k —landw=k—-1—-v =0,
ey T (eT + (y — (k= 1) T =2~ Dy~ k=120 L0 c By, .

This establishes two facts: firstly, that each of the primesin X k(P) is an associated
prime of E/Fy_; (for, by the above, each prime in Xj(P) annihilates a non-zero
element of E/Ey_; and so is contained in an associated prime which must equal

it by the incomparability property of r.cL.(P)), and so Ax(P) = X(P); secondly,
that

Ep D Z Brwe "y 1 B, €C
1 v,w>0
viw<k

To complete the induction step, we must show that equality holds. So, consider
p € Ex(P). Since z is contained in every prime in X(P), we see that p.z € Ej_;.
Thus,

pr= Y Byur "ty

v,w>0
vtw<k—1

for some 8, € C. Since, whenever v and w > 0,

:C—m(u+1)

—W Y, w
Yy X =T Y y
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we see that

p=q+)Y, Bz Ty

v,w>0
v4w<hk—1

1

where ¢ is a polynomial in y~" over C which we observe is also contained in Ex(P).

From the description of X (P),

qy(y — 1)y —2)...(y — (k= 1)) € Eg_1)(P)

and hence has degree (in y™!) less than k — 1. However, since
yy—-Dy—2)... (v = (k~1) = (D" k- 1ly +y*.h

for some polynomial 4 in y, multiplying by it reduces the degree of ¢ by only 1.
Thus, the degree (in y~!) of ¢ is less than k. It follows that

pc E 6u,wm_yy_w tPrw €C
v,w>0
rv4+w<n

and this completes the induction step and hence the proof of the claim.

We have thus shown directly that P is strongly rep. rep. in 7. ]

Remark 2.2.8. The isomorphism between Homg(7, C) and C[[z™1,y7!]] can be
generalized to the enveloping algebra of any Lie algebra. Indeed, by [D2, Proposi-
tion 2.7.5],if {e1,...,en} is a basis for a Lie algebra L over a field k of characteristic
zero and U(L) is its enveloping algebra,

vy v
et...eln
[ f— E f(————vll ”')wi’l...mf;‘

v
v; >0 "

provides an isomorphism from the algebra Homy (U(L), k) to the algebra, of formal

power series k[ [z1,...,Za]].
The inclusion of v;!...v,!, means this is a slightly different isomorphism to
ours. With this modification, L acts on k[[z1,...,zxs]] as a Lie algebra of deriva-

tions [D2, p91]. Specifically, the action of e; is given by S & | a;; 8/dx; where
a;j € klz1,...,z,). Furthermore, when L is a solvable Lie algebra of finite dimen-

sion n over C and P is a co-Artinian prime of U(L), [Lv, Theorem 2.2] uses results
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of [H1] and [H2] to show that the injective hull of U(L)/P (& C) can be identified
with Clz1,...,z,], a submodule of C[[z1,...,z.]].

Since [B3, Theorem 2.11] provides a description of the link graph of P (a
result based on [Lp]), we might hope to generalize Example 2.2.7 to Lie algebras
of arbitrary finite dimension. In fact, we will prove in Corollary 2.3.17 that re-
pleteness holds for any prime of a finite dimensional solvable Lie algebra over C.

However, it remains open whether strong representational repleteness must hold

for any such prime. "

Remark 2.2.9. Both Examples 2.2.5 and 2.2.7 can easily be extended, by the use

of Lemma 1.1.9, to consider injective hulls of C over factor rings. For instance, in

the notation of (2.2.5),
ER/zzR(C) = annE(w2)
and so can be identified with the first two layers of Er. In this case, P/z? R will

not be strongly rep. rep., X, (P/2*R) = {P/2?R} for each n € N, while there are
only two layers in the (R/z*R)-module injective hull of C. (This was the example

which we saw as Example 2.1.2.)

Similarly, in the notation of (2.2.7),

Er/p27(C) = anng(a?)

= Z Buwr "y B0 €C

v=0 or 1
w>0

and we see that

{P/2?T} ifn=1;

Ap (P/:rZT) = { {P/sz,(:cT—l—(y — 1)T) /sz} fn>2.

Since z? € QP for any linked primes Q and P of T, it is easy to see that Q/z*T
and P/z>T will still be linked (see Lemma 2.3.7). So, we obtain the link graph

of P/z*T simply by factoring out each prime in the link graph of P by the ideal
z2T. That is,

Xo (P/2*T) = {(zT + (y — )T) /2°T : a € {0,1,2,...,(n — 1)}}
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for each n € N. Thus, A, (P/2?T) = X, (P/2*T) if and only if n = 1 or 2
and so P/z?T is not strongly rep. rep. in T/2%T. Indeed, since |r.cl. (P/z2T) |
is infinite while |A, (P/2®T)| = 2, we see that P/z?T is not even rep. rep. in
T/x®T. (This observation is made in [B&G, 5.11]. That |An (P/2*T)| is finite,
follows from [Mii2], since T'/2>T is a P.L ring, the identity (ab — ba)? = 0 holding
for all @,b € T/2?T.) (This example, which we saw in (2.1.5), will reappear as
Example 4.3.4.) "

§2.3 Properties of Representational Repleteness
Remarks 2.3.1. Let C be a right Ore set in a Noetherian ring R. It is well

,[ known (see for instance [G&W, Theorem 9.22]) that contraction and extension
; are inverse bijections between the set of prime ideals of RC™! and the set of those
‘ prime ideals of R that are disjoint from C. If P and @ are prime ideals disjoint
from C, then it is routine to check that QC~'~~»PC~ if and only if Q~~>P (sce
[G&W, Ex 118]). This, of course, ensures that, if r.cL.(P) is locally finite, then so
too is r.cl.(PC~!). Furthermore, P satisfies the second layer condition if and only

if PC~! does. (For the strong second layer condition, however, only the forward

implication is known to be true, the reverse implication being an open question. )

The next result shows that (strong) representational repleteness is also pre-

served in this situation.

Theorem 2.3.2. Let R be a Noetherian ring and P a prime ideal of R . Let C
be a right Ore set in R disjoint from P (or, equivalently, C is a right Ore set in R
with all elements of C regular modulo P). Suppose that cl.(P) satisfies the s.l.c..
Then P is rep. rep. [resp. strongly rep. rep.] in R if and only if PC™ is rep. rep.
[resp. strongly rep. rep.] in RC™.

Proof. Let E = Egr(U), for some uniform right ideal U of R/P. By
[G&W, Corollary 9.16], E is isomorphic as an R-module to EC~! and we lose
nothing by identifying them. Then, again by [G&W, Corollary 9.16], E is an
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injective RC~!-module. Furthermore, since RC~!-submodules of E are identified
with their contractions to Ep, it is easy to see that E is a uniform injective RC~!-
module.

We note that, by Theorem 1.2.2, since C is regular modulo P, C is regular
modulo @ for every @ € r.cl.(P) So, by induction on n and using Remarks 2.3.1,

Q € Xa(P) & QC' € Xn(PCTY).

We now claim that, for each n > 1, the n*! layers of E as an R-module and as a

RC1-module coincide and that
Q € Ap(P) < QC™' € A (PCTY).

Obviously this is true for n = 1 and the induction step is routine once we recall

that the inclusion of A,(P) in the right clique of P guarantees that all primes in
Ay (P) are disjoint from C.

n. This completes the proof of the theorem. -

It is well known that fuhe s.s.l.c. and the s.l.c. are Morita invariant properties
and we now show that the same is true of the (strong) rep. rep. properties, the proof
being a straightforward application of standard Morita Theory. (The notation of
[McC&R, Chapter 3, §5] is used. In particular, M* := Hompg(M, R) .)

Theorem 2.3.3. Suppose that R and S are Morita equivalent Noetherian rings
with progenerator sMpg and let P be a prime ideal of R whose clique satisfies the
s.l.c.. Then P is rep. rep. [resp. strongly rep. rep.] in R if and only if MPM* is
rep. rep. [resp. strongly rep. rep.] in S.

Proof. Since
(MQM*)H(MPM*)_M(QOP)M*
(MQM*)(MPM*) — M(QP)M*

M(QNP)M*
SHMQM*)| M(QP)M* |S/(MPM*)

factor which is torsion-free on both sides if and only if R/Q | Q—&—Dﬁl R/P has a non-

and since it is easy to show that

has a non-zero

zero factor which is torsion-free on both sides, it follows that
Q~>P in R <= MQM*~~>MPM* in S
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and so, by induction on n, we see that
Xn(MQM*) = {MQM"* : Q € X.(P)}.

Let E be a uniform injective R-module with assassinator prime P. Then
EQpr M* is an MM* = S-module which is uniform [McC&R, Lemma 3.5.8(vi)],
injective [A&F, Proposition 21.6(2)] and is easily seen to have assassinator prime
MPM*.

Now, anng(P) is a torsion-free %-module if and only if anngg, p«(MPM*)
is a torsion-free ﬁwmodule while, if not, then, by Theorem 1.3.3(iv) above,
Apt1(E ®r M*) is the set of assassinator primes of % for any uniform S5-

module, W, with assassinator prime MPM*. In either case, the n*! layer of

E@prM*is E, Qg M* and An(E Q@ M*) = {MQM* : Q € A,(E)}. That is,
Apn(MPM*) = {MQM* : Q € A,(P)}.
The result follows. =

We now wish to consider extensions of rep. rep. rings and so we must first
recall that the second layer conditions are inherited by factor rings. We find,
however, that for the repleteness property we need to be more careful about which
factors are allowed (see Examples 2.3.15 and 2.3.16). Our starting point is to

consider the behaviour of links on factoring. We require the following definitions.

Definitions 2.3.4. An element a of a ring R is central provided ar = ra for all
7 € R and normal provided aR = Ra. An ideal I of R is said to be polycentral
if it is generated by some elements ay,...,a, of R where a; is central in R and
a; + Z;";ll a; R is central in R/ (E;____ll ajR) for 2 <7 < n. A polynormal ideal
is defined similarly and I is said to be regularly polynormal if it is generated by
some elements ai,...,a, of R where a; is a normal non-zero-divisor of R and

a; + Z;;i a; R is a normal non-zero-divisor of R/ (Z;;& a,jR) for2<i<n. =

The next result is well known.
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Lemma 2.3.5. Let R be a Noetherian ring and P and () prime ideals of R with
Q~~~>P. Suppose also that c is a normal element of R. Then,

cEP <= ceQ.

Proof. Let € L P be a linking bimodule for Q~~>P and assume c € P.

Let a € @NP. Then, by normality, we can find some b € R such that ca = be.
Since ca € @, bc € Q and so bcR = bRc C Q. Now, if ¢ ¢ @ then b € Q and so
ca =bc € QP. Thus, if ¢ ¢ @ then ¢(Q N P) C QP C A, since a was arbitrary in

Q N P. However, r/q | Q 2 P is non-zero and faithful so we conclude that ¢ € Q.

This establishes the “=" implication and the “«” is similar. =

Suppose that < 2 P isa linking bimodule for Q~~>P and that we wish to
factor by an ideal I. Lemmas 2.3.6 and 2.3.7 consider the two cases, I € A and
I € A. We note, however, that these cases may not be disjoint for primes P and

| @ since A is not fixed.

‘ Lemma 2.3.6. Let R be a Noetherian ring with prime ideals P and Q and

suppose that Qr~~>P via % 2 P Letce P— A.

(i) If ¢ is normal in R then Qc = cP. If, moreover, c is a non-zero divisor then
Q) = o(P) where o is the automorphism of R given by o(t)c = ct for t € R.
(ii) If ¢ is central in R then @ = P.

Proof. Firstly, we note that given the hypothesis of (i) or (ii), c € Q N P
by Lemma 2.3.5.

(i) Suppose ¢ is normal in R and let d € Q. Then we can find e € R such
that ce = dc € QP and so cRe = Rce C QP C A. Now —CRALA is a non-zero sub-
bimodule of €0 and, since L9-L | p is fully faithful, it follows that e € P.

Thus Qc C cP and similarly ¢P C Qc. The first part of (i) follows and the second

part is immediate from the existence of the automorphism ¢ in the case where ¢
is a non-zero-divisor.
(ii) Suppose c is central in R. Then, ¢ = Qc € A and so, again since

Q 2 P |r/p is fully faithful, we conclude that @ € P and similarly P C @ estab-

lishing (ii). -
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The next result is immediate from the definitions.

Lemma 2.3.7. Let R be a Noetherian ring and P and Q) prime ideals of R. Let
I be an ideal of R with I C PN Q. Then, for any ideal A with I CAC QN P,

QNP . Q/I n P/I
A = Q/I'V\"}P/I via —Aﬁ"*“" ]

Q~~>P via

The following result, which is also contained in [{J2, Proposition 5.3.12], is
an easy consequence of Lemmas 2.3.6 and 2.3.7 and a simple induction argument

on the number of generators for Ig. A version for ideal links can be found in
[L&L, Corollary 2.5].

Corollary 2.3.8. Let R be a Noetherian ring with prime ideals P and ) and a
polycentral ideal I. Then,

ICP Q#Pand QP < ICQNP, Q/I # P/I and Q/I~~>P/I.

Proof. The “<=” implication is obvious, so consider the “=" implication.

(a) First suppose I = cR for some central ¢ in R and assume the left-hand
side with Q~~>P via @0 F n . Then, by Lemma 2.3.6(ii), ¢ € A and the right-hand
side follows by Lemma 2.3.7.

(b) Now suppose the result is known for some polycentral ideal I' and that ¢+
I' is central in R/I" for some ¢ € R. Put I = I'+cR and assume I C P, Q # P and
Q~~>P. Then certainly ¢+ I' € P/I’ Q/I' # P/I', and Q/I'~~~P/I' and so,
Q/I P/I
by (a)’ e+ I - Q/II 0 P/II’ (cR—{—I')/I’ 7é (cR-I—/I’)/I' and (CR+/1")/I’N\P>(CR+/1")/I’ .
Thus I CQNP, Q/I # P/I and Q/I~~>P/I.

The result now follows by induction on the number of generators of Ig. n

This last corollary shows that, for a polycentral ideal I which is contained
in P, @ € r.cl.(P) if and only if Q/I € r.cl.(P/I). Thus, the question of the
preservation of representational repleteness under such factors and extensions is
equivalent to asking whether @ € Fund(P) if and only if Q/I € Fund(P/I). In
the next two lemmas we turn our attention to the fundamental primes and indeed

Lemma 2.3.9 answers this question in the positive.
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Lemma 2.3.9. Let R be a Noetherian ring with prime ideals P and () and an
ideal I such that I C P N Q. Suppose also that cl.(P) satisfies the second layer
condition. Then, for all n € N,

Q/I € A(P/I) = Q € A,(P).

Further, if I is polycentral we have the partial converse
n
Q € An(P) = QI € | ] Ax(P/I).
k=1
Proof. We choose a uniform submodule, U, of (R/P)g and, for each n € N,
denote (Er(U)),, and (ER/I(U))n by (Er)n and (Eg/r)n respectively.
It is well known that Er;r(U) = anng,y)(I) and, in fact, we can see from

an induction on n using Theorem 1.3.3(i1) that, for all n € N,

(ER/I)n = a,IlIl(ER)n(I) . (A)

Suppose Q/I € An(P/I). Then we can find a € (Eg/r)n — (Br/r)n-1
such that a@ C (Eg/r)n—1. By (A4), a € (Egr)r and a ¢ (ER)n-1. However,
a@ = a(Q/I) C (Erjr)n—1 € (ER)n-1 and so Q € A,(P) establishing the first
implication.

To prove the second implication, we first assume that I = cR for some central
c€ R. Let n € N, fix @ € A(P) and let M/(ERr)n—1 = anng, v)/(£n)._,(Q).

Suppose @ & Uz;l Ar(P). Then there are r.cl.(P)-semiprimes, T},...,Tp_1
with P = T1, over none of which @ is minimal and which satisfy M QT —;...T} = 0.
Now, MTp—y... Ty € (ER)n—1 but (MTy_1...Th)c = McTh_1... Ty = 0 since
- ¢ € Q and c is central in R. Certainly, then, MT,_;...Ty C Ep /er(U) and, since

(MTu—i...Ti)(Q/cR) = MT,_y ... TiQ C MQ C (ER)u_r1 ,

it follows from (A) that (MTy.—1...T1)(Q/cR) C (Egjcr)n—1. Consequently, in
this case, Q}/cR € A,(P/cR).

Since A;(P) = {P} and Ay(P/I) = {P/I} the result for I = ¢R now fol-
lows by induction on n. Finally, by a similar argument to the proof (b) of Corol-
lary 2.3.8, the result for any polycentral ideal, I, follows by an induction argument

on the number of generators for Ig. n
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We see in Examples 2.3.15 and 2.3.16 that the second part of this lemma does
not extend to a full converse or to the case where I is only polynormal.

We could now state the result for the polycentral case but defer this to allow
the remaining technicalities for polynormal extensions to be disposed of. We first
require a definition in which it is sufficient for us to restrict our attention to the

case where [ is cyclic.

Definition 2.3.10. Let R be a Noetherian ring and consider I = ¢R where ¢ is a
normal element. We wish to deduce the repleteness of a prime P of R, containing
I, from the repleteness of P/I.

Let @' € r.cL(P). Lemma 2.3.7 shows that, given a link Q" ~~>Q’, on passing
to the factor ring we can find a link Q" /I~n~Q' /I provided I C A for some linking
bimodule Q”;;QI between Q" and @'. Such a link, we call a lifting link. (If Q is
linked by a chain of lifting links to P and P/I is rep. rep., Lemma 2.3.9 shows

‘ that @ € An(P).)

When we can find no such bimodule, we call the link in R a non-lifting link

and apply Lemma 2.3.6: if ¢ is central, we see from (ii) that the only non-lifting
links are self-links; if ¢ is not central, we insist that it is a non-zero-divisor and

then, by (i), the link is given by the automorphism o of R. .
We now show that Fund(P) is closed under o.

Lemma 2.3.11. Let R be a Noetherian ring and let P be a prime ideal of R.
Suppose either that cl.(P) satisfies the second layer condition and r.cl.(P) is locally
finite or that R satisfies the second layer condition. Let ¢ be a normal element
of R which is a non-zero-divisor and suppose ¢ € P. Define an automorphism,
o, of R by ct = o(t)c for each t € R. Then, for all @ € Fund(P) and n > 0,
o™(Q) € Fund(P).

Proof. By Remark 1.3.12 or by Theorem 1.3.7(i), there are ideals J C I of
R such that R/Q|§IR/P is torsion-free on both sides. Let n > 0. Since o™(Q)c" =
c"(), we can consider B = R/om (Q)Igs—ﬂ R/P" Now, since ¢ is a non-zero-divisor,

c"I/c"J = I/J as right R/P-modules and so B/ p is torsion-free.
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Now let v € R, regular modulo ¢™(Q), let a € I and suppose uc™a C c"J.

Since uc™ = c"0""(u) and ¢ is a non-zero-divisor, we see that o™ "(u)a C J.
However, since u is regular modulo ¢™(Q), o~"(u) is regular modulo Q. So, by
the torsion-freeness of p;(I/J), it follows that @ € J and c¢"a € ¢*J. Thus,
R/on(Q) B is torsion-free.

From Theorem 1.3.7(ii), we conclude that ¢™(Q) € Fund(P). =

Where I = ¢R for a normal, non-zero-divisor ¢, Lemmas 2.3.6 and 2.3.7 show
us that any non-lifting link arises via the automorphism ¢, so it follows from
Lemma 2.3.11 that a prime @', linked via n non-lifting links to a fundamental
prime @), is itself fundamental, although it does not say in which layer it lies. For
strongly rep. rep. to be preserved, we would, of course, require Q' to be in the
ntt layer above Q. (However, while we do not know in general that o(P)~~s>P,
Lemma 2.3.11 does show that o(P) € r.cl.(P).) In any case, what of a prime Q"
linked to Q' via a lifting link ? Lemma 2.3.9 does not help here since we do not
know that Q'/I € Fund(P/I). The next lemma uses o to find a new chain of links
from Q" to P with all of the non-lifting links occurring at the left-hand end where

Lemma 2.3.11 can handle them.

Remark 2.3.12. Part (ili) of Lemma 2.3.13 can also be found in [B&duC,
Lemma 3.8] where, however, the proof is incomplete, this last question discussed

in the previous paragraph being overlooked. -

Lemma 2.3.13. Let R be a Noetherian ring and let P be a prime ideal of R.
Also, let ¢ be a normal element of R which is a non-zero-divisor and suppose ¢ € P.

Define an automorphism, o, of R by ct = o(t)c for each t € R.

(i) If Q is a prime of R with Q~~>P via Q—E—B then,

(1) Q/cR~~>P/cR,
(2) foranya>0,c=0"%c) € o"(A)

(a) ce A = and 0~ *(Q)~~>0"%(P) via a_a(?f{P(Z;a(P) )
o™ (Q o”*(P) .
(3) for any a > 0, cl({ ) s dg )

(b) cg A = Q=0(P).
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(ii) Q"' € Xpy1(P) for somen > 0, there exist Q € r.cl.(P) and 0 < a < n such
that Q' = 0*(Q) and Q/cR € Xp_411(P/cR) (where ¢ € Q by Lemma 2.3.5).

(iii) Suppose either that cl.(P) satisfies the second layer condition and r.cL(P) is
locally finite or that R satisfies the second layer condition. Then,

r.cl.(P) = {o™(Q):n >0 and Q/cR € r.cl.(P/cR)} .

Proof. (i) Let @ be a prime of R with Q~~>P via Q—ZB.

(a) If ¢ € A, then (1) is true by Lemma 2.3.7, (2) is easy to see and (3) follows
from Lemma 2.3.7 and (2).

(b) This implication is just Lemma 2.3.6(i).

(ii) Since X;(P) = {P}, we can take a = 0 and Q = P in the case where
n = 0 and we proceed by induction. So suppose the result is true for n = m for
some m > 0 and consider Q" € X, 42(P). Then, by definition, there exists Q' €
Xm+1(P) such that Q" ~~>Q’, via 9”—29*1, say, while, by hypothesis, there exists
Q € r.cl(P) and 0 < a < m such that Q' = ¢*(Q) and Q/cR € Xn—or1(P/cR).
From (i), either

(8) c € 4 and, by (3), T T = G and s0 TED € Xnoara(Fy)
while Q" = o%(c=%(Q")) ;

or else
(b) ¢ ¢ A and so Q" = o(Q").
In either case, the result is true for n = m + 1 and (ii) follows by induction on n.

(iii) The left-hand side is contained in the right-hand side as a consequence
of (ii), and so we consider the other inclusion. Let Q/cR € r.cL.(P/cR) and let
n 2 0. Now, by Lemma 2.3.7, @ € r.cl.(P) and sor.cL(Q) C r.cL.(P). In particular,

if r.cl.(P) is locally finite, so is r.cl.(Q). Certainly @ € Fund(Q) and therefore, by
Lemma 2.3.11,

o™(Q) € Fund(Q) Cr.cL(Q) .

Thus, 6™(Q) € r.cl.(P). 0

We now give the results for both the polycentral and polynormal cases.
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Theorem 2.3.14. Let R be a Noetherian ring with a prime ideal P and let T

be an ideal of R with I C P.

(i) Suppose that cl.(P) satisfies the second layer condition. If I is polycentral,

P/I is rep. rep. in R/I <=> P is rep. rep. in R.

(ii) Suppose either that cl.(P) satisfies the second layer condition and r.cl.(P) is
locally finite or that R satisfies the second layer condition. If I is regularly
polynormal,

P/I is rep. rep. in R/I = P is rep. rep. in R.

Proof. (i) Corollary 2.3.8 shows that, for each prime Q of R, @ € r.cL.(P)
if and only if Q/I € r.cl.(P/I) while Lemma 2.3.9 shows that @ € Fund(P) if and
| only if @/I € Fund(P/I) and (i) follows.

| (ii) Let ¢ be a regular normal element and, as before, let ¢ be the auto-
; morphism of R defined by ¢t = o(t)c for each t € R. Let @' € r.cl.{P). Then
' Q' € Xpt1 for some n > 0 and so, by Lemma 2.3.13(ii), there exist @ € r.cl.(P)
and 0 < a < n such that Q@' = 0%(Q) and Q/cR € Xn_o41(P/cR). Now, if
we assume that P/cR is rep. rep. in R/cR, then Q/cR € An(P/cR) for some
m € N and, by Lemma 2.3.9, Q@ € A,,(P). (Of course, if P/cR is strongly rep.
rep. in R/cR, we can take m = n —a + 1.) In this case, Lemma 2.3.11 shows that

Q' = 0*(Q) € Fund(P).
We have thus established (ii) for I = ¢R and, by a similar argument to the
proof (b) of Corollary 2.3.8, the result for any regularly polynormal ideal, I, follows

by an induction argument on the number of generators for Iz. "

Example 2.3.15. It is easy to see that 2.3.14(i) does not extend to strong repre-
sentational repleteness in either direction. Consider R = C[z] and P = zR. Then
An(P) = X, (P) = {P} for each n so that P is strongly rep. rep. in R, yet, as we
have seen, P = P/2%R is not strongly rep. rep. in R = R/22R. So “<” fails even
though a? is a regular central element. Then again, % 2 0 is strongly rep.
rep. in ;%— = C, so “=” fails.

Since x 4+ 2R is a zero-divisor in R/z?R, this example would not prevent (ii)

from extending to the analogous statement for strong representational repleteness,
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a question which remains open. »

Example 2.3.16. Certainly, without regularity, (ii) fails and, moreover, the con-
verse to (ii) fails in general, even assuming strong representational repleteness in
each case. To see this, consider T' = C[z,y : yz — zy = z] (the enveloping algebra
of the two dimensional solvable non-Abelian Lie algebra over C) and Q = 2T +yT.
Then, as we saw in (2.2.5), @ is strongly rep. rep. in T' while, as noted in (2.2.9),
Q = Q/z*T is not even rep. rep. in T = T/a*T, even though z? is a regular
normal element of T'. Then again, 7 is normal but not regular in T and, by Corol-
lary 2.1.3, it is easy to see that W/a;yf = 9 Cld] is strongly rep. rep. in the ring
—% =~ ).

More will be said about differential operator rings like T' in Chapter 4. "

We complete this section with an application of the last theorem. Let U be
the enveloping algebra of a finite dimensional solvable Lie algebra over C and P
a prime ideal of U such that U/P = C. We have seen in (2.2.7) that, when the
dimension is two, P is strongly rep. rep. in U and, as commented in (2.2.8), we
might hope to extend our argument to Lie algebras of arbitrary finite dimension.
However, using Theorem 2.3.14, we can obtain a result for any prime of U and, in
fact, state it in more generality.

Recall that, for any ring T with an ideal I, we denote by Cr(I) the set of

elements of T regular modulo I.

Corollary 2.3.17. (i) Let R be a Noetherian ring, let P be a prime ideal of R
and let C be a right Ore set in R such that C C Cg(P). Suppose either that cl.(P)
satisfies the second layer condition and r.cl.(P) is locally finite or that R satisfies
the second layer condition. Suppose, further, that PC~" is regularly polynormal
in RC™'. Then P is rep. rep. in R.

(ii) If U is the enveloping algebra of a finite dimensional solvable Lie algebra

over C, then U is rep. rep..

Proof. (i) First, we note that, by Remarks 2.3.1, the above hypotheses tell us
cither that cl.(PC™!) satisfies the second layer condition and r.cl.(PC™1) is locally
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finite or that RC™! satisfies the second layer condition. Now, since r.cl.(0) = {0},
PC~1/PC! is strongly rep. rep. in RC™*/PC~! and so, by Theorem 2.3.14(ii),
PC~! is rep. rep. in RC™1. Theorem 2.3.2 then shows that P is rep. rep. in R,
establishing the first part of the corollary.

(ii) Next we recall that the enveloping algebra of any solvable Lic algebra
satisfies the s.s.l.c. (for instance see [J2, Theorem A.3.9]). Now, for any prime P
of U, let S(P) = gea.(p) Cu(Q). By [B4, Theorem 5.3(ii)], S(P) is an Ore set
and, by [B4, Theorem 6.1(iii)], PS(P)™* is regularly polynormal in US(P)™? so
that the first part applies. .

As we do not know whether Theorem 2.3.14(ii) extends to strongly rep. rep.,
| it is an open question here whether the enveloping algebras of Corollary 2.3.17(ii)
are in fact strongly rep. rep.. However, having seen a class of rings which are at
least rep. rep., we consider in the next chapter a class of rings in which we can

, categorize those which are strongly rep. rep..

§2.4 Notes

Although the question of when the fundamental primes coincide with the right
clique of an assassinator prime has been raised before (for instance in [B&W, 5.11]),
the definitions of (2.1.1) are here introduced for the first time. Consequently,

Corollary 2.1.3 and Lemma 2.1.6 are both new results.

Theorems 2.2.2 and 2.2.3 are both standard results which can be found, for
instance, in [Rm]. Specifically, the first is proved in [Rm, Theorems 2.9 and 3.16]
and the second in [Rm, Theorem 2.11].

"There does not seem to be a specific reference for Corollary 2.2.4 although, as
an easy consequence of Theorems 2.2.2 and 2.2.3, it may be well known. It is, how-
ever, derived in specific cases in [N2, §1], [Da, Theorem 3] and [G&W, Lemma 4.3].

The derivation of the injective hull in Example 2.2.5 is, as stated, extracted

from [N2, §§1&2], although the construction first appeared as [Hs, Exercise 6.11].
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Indeed, the use of modules of inverse polynomials goes back to F. S. Macaulay
[McA]. As noted in (2.2.6), related constructions and generalizations can be found
in [Gal], [F], [S&S] and [Ku].

Again, the calculation of the injective hull in Example 2.2.7 is a modified
version of [Da, §4, Example 1]. This is a special case of [Lv, Theorem 2.2] which
is, itself, based on results of [H1] and [H2]. However, that a Lie algebra, L, over a
field, k, of characteristic zero acts via derivations on Homy (U(L), k) and that this
algebra is isomorphic to an algebra of formal power series over k, can be found in
[D2, p91 and Proposition 2.7.5].

The description of the link graph of the prime P in Example 2.2.7, is certainly
well known (see, for instance, [G&W, Exercise 11G]). It can also be calculated from
Theorem 4.1.7(ii) [G2, Theorem 5.11(a)] (see Example 4.3.1). Alternatively, the
links between co-Artinian primes of the enveloping algebra of a finite-dimensional
solvable Lie algebra over C are fully described by [Lp] (quoted in [B3, Theo-
rem 2.11]), a result partially generalized to all primes by [B3, Theorem 2.9].

Theorems 2.3.2 and 2.3.3 are new; however, the preservation of second layer
links and of the second layer conditions under localization and under Morita equiv-
alences, are standard results. See [G&W, Ex118S] for the preservation of links un-
der localization and the proof of [J2, Proposition 8.1.4] for the preservation of the
second layer conditions under localization. That the converse holds for the sec-
ond layer condition but is open for the strong second layer condition, is noted in
[Be3, p23]; as seen in (1.2.5), there are in any case no known examples of a prime
satisfying the second layer condition but not the strong second layer condition. The

Morita invariance of the second layer conditions is noted in [J2, Proposition 8.1.5].

Lemma 2.3.5 is a consequence of the facts that any ideal generated by normal
elements has the AR property (see, for instance, [J2, Theorem 3.3.16]) and that,
if I is an ideal satisfying the AR property and I C P for some prime ideal P, then

I C Q for each prime @ in the clique of P, and even for each @ ideal linked to P
(see [J2, Proposition 5.3.9]).

Lemma 2.3.6(i) is essentially contained in the proof of [B&duC, Lemma 3.8].
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Corollary 2.3.8 is contained in [J2, Proposition 5.3.12]. It is also shown in
[L&L, Corollary 2.5] that an analogous statement holds for ideal links, namely that,
assuming P and @ are prime ideals and I is a polycentral ideal of a Noetherian
ring R, if I C P and Q~~>~~>P in R, then I C Q and Q/I~~»~~P/I in
R/I.

Lemmas 2.3.9 and 2.3.11 appear to be new results as does Lemma 2.3.13(ii)
however, as noted, Lemma 2.3.13(iii) has appeared as [B&duC, Lemma 3.8] with
a gap in the proof.

Theorem 2.3.14 and Corollary 2.3.17 are also new results.
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Chapter 3 : Finite Dimensional Algebras

As shown in Lemma 2.1.6, any Noetherian hereditary ring satisfying the sec-
ond layer condition is strongly rep. rep.. Theorem 2.3.14(i) can therefore be used
to provide examples of factors of hereditary rings which will again be rep. rep.. Of
course, by Theorem 2.3.3, any ring Morita equivalent to such a factor will also be
rep. rep.. Here we consider a finite dimensional k-algebra, A, where k is an alge-
braically closed field, and show in Theorem 3.3.6, the main result of this chapter,
that A is strongly rep. rep. precisely when A is Morita equivalent to a certain kind

of factor of a hereditary finite dimensional k-algebra.

§3.1 Harada’s Results and Generalized Triangular Matrix Rings

Definitions 3.1.1. We recall that an idempotent in a ring R is an element e
such that e = e? and that two idempotents e; and e, are orthogonal provided
eres = eze; = 0. An idempotent e is called primitive when e is non-zero and there
do not exist two non-zero orthogonal idempotents e; and e; such that e = e; + es.
Let I be an ideal of the ring R and let ¢ + I be an idempotent element of R/I.
Then we say that this idempotent can be lifted (to e) modulo I when there is an
idempotent e of R such that e + I = g + I. When every idempotent of R/I can
be lifted to R we say that idempotents lift modulo I.

A ring R is called semiperfect provided idempotents lift modulo its Jacobson
radical J(R) and R/J(R) is Artinian. Let R be a semiperfect ring. Then a
module Mg is primitive when M £ eR for some primitive idempotent e of R. A set
{e1,...,em} of idempotents of R is basic when its elements are pairwise orthogonal
and the set {e1R,...,enR} is a complete irredundant set of representatives of
the primitive right R-modules. By [A&F, Proposition 27.10], such a basic set of
idempotents always exists for a semiperfect ring.

An idempotent e of a semiperfect ring R is called a basic idempotent when

it is the sum of the elements of a basic set of primitive idempotents. Indeed,
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since a basic set of primitive idempotents is pairwise orthogonal, the sum of the
elements of any basic set is a basic idempotent. A ring S is a basic ring for
R provided S is isomorphic to eRe for some basic idempotent e of R. Since, by
[A&F, Propsition 27.10], a basic set of idempotents exists for any semiperfect ring,
any such ring R has a basic ring. Since all basic rings for R are isomorphic (see

[A&F, p308]), we refer to the basic ring of R and denote it by B(R). .

Remarks 3.1.2. A ring R is called semiprimary if its Jacobson radical, J(R) is
nilpotent and R/J(R) is Artinian. Obviously, Artinian rings, in particular finite
dimensional k-algebras, are semiprimary. On the other hand, it is easy to see
that all Noetherian semiprimary rings are Artinian and so the terms “Noetherian
semiprimary” and “Artinian” are equivalent. In 1964, Harada [Ha] categorized
hereditary semiprimary rings as certain “generalized triangular matrix rings” over
semisimple rings.

Now, by [A&F, Proposition 27.1], idempotents lift modulo a nil ideal in any
ring and so we see that all semiprimary rings are semiperfect. Let R be a semiper-
fect ring (so for instance R could be semiprimary). Then R is Morita equivalent to
its basic ring, B(R), [A&F, Proposition 27.14]. Furthermore, R is termed a basic
ring provided 1 is a basic idempotent for R; it is noted in [A&F, p309] that the
basic ring of a semiperfect ring is indeed a basic ring. By [A&F, Proposition 27.15],
R is basic if and only if R/J(R) is a direct sum of division rings. By the Morita

invariance of the strong rep. rep., hereditary and semiprimary properties, we need

only consider basic semiprimary rings. m

Next, however, we must recall the construction given in [Ha, §2] of a general-

ized triangular matrix ring.

Notation 3.1.3. Suppose that Ry,..., R, are rings and let R|M; j|r; be bimod-
ules for 1 < j < ¢ < n. Let T,,(Ryi; M; ;) be the set

1,1 0 e 0 0
ma1 T2,2 I 0 0
i1t € By and my ; € M, ;
Mp—11 Mp-12 ... Tp_inp-1 0O
Mp,1 Mnp,2 coe Mp,n-1 Tn,n
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For convenience, we denote R; by My ¢ for 1 < ¢ < n and we let m; ; and m;-,j

denote elements of M;; for 1 < j < ¢ < n. Then, T,(R;; M; ;) becomes a ring

under the definitions

(mi5) & (my ;) = (maj; £ my )

i
(mij) . (mi;) = Z 4’5,3'(7”2',! ® my ;)
1=y
where the
¢§,j M @r, My j — M;

are bilinear (R;, R;)-homomorphisms, in particular

¢§,t : Mt ®r, Ry = M;,
and

;,t : Rz ®R‘- Mi,t = M,;,t

being given by the module actions in g|M; ¢|r,, and where the diagrams

4,i OF5 4
M;,; @r; Mj1 ®pr, Miy — M;; ®r;, M
| # @ L4
i
i,k
Mi’[ Qr, My —_— M; 3,

with ¢ denoting the identity map, commute.

Given the above, T' = T, (R;; M; ;) is called a generalized triangular matrix

ring (or a g.t.a. matrix ring) over the rings R;. Let

€; :diag(ORl,...,OREMI,].R“OR‘._H,...,ORn) .

Then, for any ideal I of T, e;Ie; C I and hence I = Tn(Si; N; ;) where S; is an
ideal of R; and N, ; is an (R;, R;)-sub-bimodule of M; ;. In these circumstances,

we denote S; by I; ; and N;; by I; ;. »

It is easy to see that the ring T.,(R;; M; ;) is semiprimary if and only if each
ring R; is semiprimary. Thus the hereditary semiprimary generalized triangular

matrix rings are characterized in the following result taken from [Ha, Theorem 1].
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Theorem 3.1.4. Forl <i¢ < n, let R; be semiprimary rings with radical J;. A
generalized triangular matrix ring Tn(Ri; M; ;) over R; is hereditary if and only if
the following conditions are satisfied:

(a) all R; are hereditary;

(b) for each triplet (¢,7,k), with1<j <k <i<n, gﬁf’k is monomorphic;

(c) for each pair (i,7), with1 < 7 <1 <n, i Jf"‘zléj:_l YT is a projective
left R;-module; in this case we let M; ; be an R; submodule of M; ; isomorphic

to M :
M;,; Jj+2:;; MM, ;
(d) for each pair (¢,7) with1 <j <i < n,

M = Mi; & Mijy1Mjp1,; ® - @ My a M1, ® M; ;7
as a left R;-module. "

The next result, taken from [Ha, Theorem 4] and its proof, shows that every
hereditary semiprimary ring is isomorphic to a generalized triangular matrix ring.

To state it, however, we will again need to introduce some further notation.

Notation 3.1.5. Let T be a basic semiprimary ring (as is the ring T of Theo-
rem 3.1.6 by Remarks 3.1.2) and let {e; : 1 < ¢ < n} be a basic set of primitive
idempotents of T such that 1 = "7 | e; (see Definitions 3.1.1). Since the radical
J of T is nilpotent, there is an integer n(e;) for each e; such that J™(¢)e; =£ 0 while
Jred+le, = 0. We re-order the e;, if necessary, to ensure that n{e;) > n(eiy1) for
all ¢. .

Theorem 3.1.6. Let T be a hereditary semiprimary ring with radical J and
suppose that T/J = @}, R; for some division rings R;. Let {e; : 1 < i < n}
be a basic set of primitive idempotents of R such that 1 = >on e and assume
that these have been re-ordered as described in (3.1.5). For 1 < j < i < n, put
M;; = e;Tej. Then, T is isomorphic to the generalized triangular matrix ring

Tw(Ri; M; ;) where the qbf’k of (3.1.3) are given by multiplication in T n

Notation 3.1.7. We assume that the rings R; are Noetherian and that the
bimodules g |M; ;|r; are finitely generated on both sides, so that T' = Ty,(R;; M; ;)
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is Noetherian. If, moreover, the R; are semiprimary, we then have that 7' is a
semiprimary Noetherian and hence, as noted in (3.1.2), Artinian ring. In this
case, therefore, T satisfies the strong second layer condition and, since T has only
finitely many primes, r.cl.(P) is trivially locally finite for each prime P of T. In
particular, if the R; are division rings, it is easily seen that the primes of T' are

the ideals
Py =Ty(R1,...,Rr-1,0, Ray1 ... Ry; M; ;)

for 1 < A < n and that the Jacobson radical of T is J = J(T') = T,,(0; M; ;). We

retain this notation throughout the present chapter. =

§3.2 Quivers

Definitions 3.2.1. Let Ay and A; be two sets and let s and e be two maps from
Al to Ao. Then

A= (Ag, Ay, s,€)
is called a quiver. Here, Ay is known as the set of vertices and A as the set of

arrows. Given an arrow «, s(a) is called its starting point and e(a) its end point.

When a = s(a) and b = e(a), it is usual to write the arrow o as

o
a—sb

and to say that it points from a to b. We note that there may be more than one

arrow pointing from a to b. The quiver A is said to be finite provided both A,

and Ag are finite.

Given the quiver A, its opposite quiver A* is the quiver
A* = (Ao, Al,e, 8) .

Thus, the opposite quiver is obtained simply by reversing the arrows of A.
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|

A path of length | > 1 from vertices z to y in the quiver A is a sequence of
aITows au,...,q; such that e(a;) = s(aiq1) for all 1 < i < [ — 1 and where the

starting point of o is # and the end point of a4 is y. Such a path can be written

(z|lag,...,aly) .

Furthermore, for any vertex = in A, we define a path of length 0 from z to itself

and denote it by

A path of length greater than or equal to 1 from a vertex to itself is called a cyclic
path.

Finally, given a field k, we define the path algebra on A as the k-vector
space with basis the set of all paths in A and with the product pg of two paths
p = (alaa,...,ai|b) and ¢ = (¢|f1,..., Bs|d) defined as zero when ¢ # b and as

(G|C¥1,---,(Xl,ﬁ1,-~-,ﬁsld)

when ¢ = b. The path algebra defined in this way is denoted kA.

We note that the path algebra kA is finite dimensional provided A is finite
and there are no cyclic paths in A. We note also that, in this case, the Jacobson
radical of kA is the ideal generated by all arrows. We denote this ideal by kA™.
Clearly (kA*)™ is the ideal generated by all paths of length greater than or equal

to n. n

The following result is proved in [Bm, Corollary 2.6]. A proof for the case

where @ is a finite quiver can also be found in [Bn, Theorem 4.1.4].

Lemma 3.2.2. Suppose that Q is a quiver with finitely many vertices and let k

be a field. Then the path algebra kQ is a hereditary algebra. n

Notation 3.2.3. Let k£ be an algebraically closed field and A a finite dimensional
k-algebra. We form the Ext-quiver of A, denoted by A 4, by taking vertices to be

the isomorphism classes of simple right A-modules and by requiring there to be n
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arrows from the isomorphism class of the simple module M to that of the simple

module IV where

n = dim;ExtYy (M, N) .

(If A is basic, of course, we can identify the vertices with the right A-modules A/P
for each prime P of A and in this case the number of arrows from A/Q to A/P is
dimExt} (4/Q, A/ P)), for any two primes Q and P of A.)

Furthermore, we let Hs be the path algebra of the finite quiver, A%, the
opposite quiver of the Ext-quiver A4 of A. -

The next result was originally proved in [Ga3, §4.3]. Again, a version of
this can be found in {Bn, Proposition 4.1.7]. (In this second reference, however,
multiplication of paths is defined in reverse order so that the Ext-quiver is actually

the opposite quiver of the above definition.)

Lemma 3.2.4. Let k be an algebraically closed field and A be a basic finite
dimensional k-algebra. Then, adopting the notation of (3.2.3), there is an ideal I
of Ha with I C (kA**)? such that A 2 H,/I. "

Remark 3.2.5. It follows immediately from these two lemmas that a basic finite
dimensional algebra over an algebraically closed field is isomorphic to a factor ring
of a hereditary ring. However, although H 4 is the path algebra of a finite quiver,
this hereditary ring is not in general itself a finite dimensional algebra, since the
Ext-quiver may contain cyclic paths. However, as we will see in Lemma 3.3.5, for
a strongly rep. rep. algebra A, H, is in fact finite dimensional and so we will be

able to apply the construction of §3.1 to it. =

§3.3 The Repleteness of Finite Dimensional Algebras

We return to our consideration of generalized triangular matrix rings and use
the notation of §3.1. In the case where the R; are division rings it is easy to

calculate ideal links and second layer links as we now show.
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Lemma 3.3.1. Let T' = T,(R;; M; ;) be a g.t.a. matrix ring where the R; are
division rings and the M; ; are finitely generated on both sides and let J be its
Jacobson radical. Then, for any A and p € {1,...,n} and for each m € N, and
with the notation of (3.1.3) and (3.1.7),
(i) Pur~>Py <= p> Xand Y0750 My M\ G My,»

<~ (Jz).u,k ; Jux s
(ii) P, € Fund(Py\) <= M, #0;
(i) Py € Ampn(Pa) = (T™1)0 & (T

Proof. Let Aand pe {1,...,n} and me N.

(i) By Lemma 1.2.6, P,~~>P, if and only if P, N Py ; P,P,. Now, if
i 7 p then (P,);; = R; while if § # X then (Py);; = R; and in either case
(PuPy)i; = M; ;. So, for p > A, Py~~>P, if and only if M, ; (PuPr)y,»,
while (PuPa)ur = S804 MyiM; x since (P, = 0 and (Py)ax = 0. Also,
for p > A, Ef‘:_,fﬂ My iM; x = (J*)px and My » = J,a. Of course, if p < A,
(Pu O Pa)u,x = 0 so that Py~olb>Py and also (J2), x = J, » = 0. The equivalences

of (i) now follow.

(ii) Let A and B be ideals of T with A C B, satisfying P, B+BPy C A. Then,
for any j # p and for any k, (P,);,;Bjx = RjBjr = Bj. So, Bj = Aj for all
J # p and similarly Bj = A;; for all k 5 A, Thus, if M, = 0, B/A = 0 and
hence, by Theorem 1.3.7, P, & Fund(P,). This establishes the “=” implication.

On the other hand, if M), x # 0, then, where “+” represents arbitrary entries
© ) ) P

chosen from the M; ;,

0
P00 i0
0 0 e 0 0 0 e 0
Murx0 - . i} 0 0 -« - 0

is a non-zero (T/P,,T/Py)-bimodule and so, by Lemma 1.2.6 and Theorem 1.3.7,
P, € Fund(Py), establishing the “<” implication.
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(iii) For t > 1, 1 < k < n and for a fixed prime, P, of T, put

‘R, = {0 if Pj € X,(P)

R; otherwise.

Then, in the notation of (1.3.10), where we consider P = Py and @ = P,, it is
easy to see that Sy = T(*Ry,...,"Rp; M; ;). We next show that

tRl N 41 Rl 0
' ) (4)

SH_lStﬁ JSt+ t.
0 tRnnt+1Rn

for t > 1.

It is clear that the right side is contained in the left side, and so we consider

the other inclusion. For this, it is enough to consider the 7** row,
| (Miy,..., Mi;—1,"" R;,0...,0) ,
of Siy1 and the j** column,
col (0,...,0,"Rj, Mjt1,5,---, Mn ;) ,

of St, where j < ¢, for those ¢ such that “*1R; = R;, that is, such that P & Xeg1.
If j = ¢, then
(St—l-lst)i,j — t+1RitRz’ C tRi N t+1Ri

and so we consider j <. If ‘R; = R;, then
(JSe)ij 2 Mi;jRj = M, ; .

On the other hand, if 15Rj = 0, then P; € X; and, since P; ¢ X;y, we see that
Piref>Pj; s0, by (i),
i—1

(JSe)ij 2 Y, MixMy; =M .
k=j+1

In either case,

(JSe)ij 2 Mi,j 2 (Se41Se)i5
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establishing (A).
Now, Si11J C (St415¢) N J, so, by (4), we have

Sep1d C IS, (B)

for t > 1.
Obviously, (S1)k,a = Jg,a for all & # A, while (S1)ax = Jaa = 0 since
S1 = Px. Suppose (Sm...S1)kx = (J™ ), for all 1 < k < n which we know is
true for m = 1. Then
(Sm+1Sm - 51k A = (Smt1I ™)k,
C(J"S1)ka by (B)
= (J™ D) since (S1)ux = Jyx for all .

Thus, by induction, for all m > 1 and for all 1 < k < n,

(Sm - Sk =(T™)k (<)
the reverse inclusion being obvious.

Now consider the bimodule

Sm-l-]_---Sz n Sm...SI
T/P, Sl - - S1 T/Py

Bm(Pm P)\) =
By the same reasoning as in part (ii),

Bu(Pu,Pr) #0 <> (Smt1-.-52)ux N (Sm...Sl)”,)\; (Smt1--S1)un -

Now,

(J™)ux © (Smt1 - 82)uA N (Sm - S1)ua C© (S S = (J™)
by (C), and so
Brm(Pu, Pa) #0 <= (J™)ux 2 (J™ ) a

Finally, (ii1) follows by Theorem 1.3.11. n
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The above lemma allows us to test whether a given g.t.a. matrix ring over
division rings is strongly rep. rep.. We know, by Lemma 2.1.6, that all hereditary
g.t.a. matrix rings, which are characterised by Theorem 3.1.4, must be strongly

rep. rep.. Consider, however, the following example:

Example 3.3.2. The ring

k 0 0
T = kdk k 0 ,
kBkDk®Ek
Forgoge kOk k

where the entries multiply via tensoring, has link graph
P3 rv-\n;_Pz ru\n}Pl

and is strongly rep. rep.. To see this, we must show that P3 € A3(P;). We denote
the Jacobson radical of T by J and note that

0 0 0 0 0 0
J= ke k 0 0] soJ?= 0 0 0] and J® =0.
kPkDkDE k @ k 0 kOkDEDE 0 0
kPkDOH0 EDEDODO

Thus, (/)3 = 0 G $28BEOE — (72);; and it follows from Lemma 3.3.1(iii) that
Py € A3(Pr) whence T is strongly rep. rep.. (That P3 € Ay(P,) and P, € Ay(Py)
hold automatically by Remark 1.3.6.)

On the other hand, T is not hereditary. (Theorem 3.1.4 shows that, if T' were

hereditary, then all ¢¢ , would be monomor hisms; here, ¢2 , is not. .
i,k p 3,1

Remark 3.3.3. Suppose T' is a strongly rep. rep. g.t.a. matrix ring over division
rings (for instance, T hereditary) with Jacobson radical J and let I C J2 for some
ideal I of T. Since, by Lemma 2.3.7, T/I has the same link graph as 7', and
since the linked primes of T coincide with its fundamental primes, we can apply
Lemma 3.3.1(iii) to the ring T to determine the link graph of T/I. Of course,
T/I is itself a g.t.a. matrix ring over division rings and so we can also apply
Lemma 3.3.1(iii) to the ring T/I to determine its fundamental primes. By these
considerations, we see that T'/I is a strongly rep. rep. ring if and only if, whenever

5,7 €{1,...,n},m € Nand (J™);; # (J™);,, then (J™);; 2 (J™H +1);;. =
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Of course, not every factor of a hereditary g.t.a. matrix ring over division

rings is strongly rep. rep. or even rep. rep.. For instance, consider:

Example 3.3.4. The ring

E 0 0
T=1|%k k£ 0
kE k k
has link graph
Ps NV\>P2NV>P1
and P3 € A3(P;) via the bimodule
0 0 0
I=10 0 0
k 0 0

Since I C J%, where J is the radical of T', we see (for the same reason as in
Remark 3.3.3) that P3/I € X3(Py/I). Again, since T/I is itself a g.t.a. matrix
ring we can apply Lemma 3.3.1(ii) to show that P; ¢ Fund(P;). Thus, T/I is not

even rep. rep.. "

While not every factor of a hereditary g.t.a. matrix ring need be rep. rep.,
Lemma 3.3.5 shows that, up to Morita equivalence, the converse is true for finite
dimensional algebras over algebraically closed fields. However, to prove this, we
require the terminology of §3.2. Furthermore, for the rest of this chapter, we will

denote the Jacobson radical of a ring S by J(5).

Lemma 3.3.5. Let k be an algebraically closed field and A a finite dimensional
k-algebra. If A is strongly rep. rep., then A is Morita equivalent to H /I, where H
is a basic hereditary finite dimensional k-algebra and I C (J(H))?. In particular,
we can take H = Hp( 4y with the notation of (3.2.3).

Proof. First, as noted in (3.1.2), A is Morita equivalent to its basic algebra
B(A) so, by Theorem 2.3.3 we can assume that A is basic. Then, by Lemma 3.2.4,
and in the notation of (3.2.3) we write A = H,/I for some ideal I of H4 where
IC(J(H A))z. Since A% (the opposite quiver of the Ext-quiver A 4) is finite, H 4
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is a hereditary k-algebra by Lemma 3.2.2 and, as noted in Definition 3.2.1, H 4 is
finite dimensional if and only if there are no cyclic paths in A%.
Let P and @ be prime ideals of A. By construction (3.2.3), in the Ext-quiver

A, of A there is an arrow
A/Q — A/P < Ext'(4/Q,A/P)+#0
and so, by [J2, Lemma 6.1.6],
A/Q — A/P <— Q~>P.

Now, for any Artinian ring, the fundamental series of an indecomposable injective
is just its socle series and, since modules over Artinian rings have finite Loewy
length [G&W, Propositions 3.14 and 3.15], there can be no infinite chain of links
in a strongly rep. rep. Artinian ring and therefore no cyclic paths in A 4. Clearly,
then, there are no cyclic paths in A% either and so H,4 is finite dimensional.

The result follows. =

We can now present the main result of this chapter which characterizes the

strongly rep. rep. finite dimensional algebras over algebraically closed fields.

Theorem 3.3.6. Let k be an algebraically closed field and let A be a finite
dimensional k-algebra. With the notation of (3.1.3) and (3.1.7), the following

conditions are equivalent.

(i) A is strongly rep. rep..

(ii) There exists T' a hereditary g.t.a. matrix ring over division rings with radical
J and an ideal I C J? such that A is Morita equivalent to T/I and such that
(J™)ji € (J™H +1);; whenever i, j and m € N and (J™);; # (J™1); ;.

Suppose that these equivalent conditions hold. Then, in (ii), and with the notation

of (3.2.3), we can take T = Hp(4) and in this case T'/I & B(A), the basic algebra

of A. Further, if T is any hereditary g.t.a. matrix ring over division rings with
radical J and an ideal T C J? such that A is Morita equivalent to ’f/f, then

(J™);i & (J™*1 +1);,; whenever i, j and m € N and (J™);; # (T™+1); ;.

Proof. Assume (i) holds. By Lemma 3.3.5 A is Morita equivalent to
Hp(a)/I for some ideal I C (J(Hp(ay))?, while Hp(y) is itself a basic hereditary
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finite dimensional k-algebra. In this case, we can apply Theorem 3.1.6 to see that
Hp(a) is isomorphic to a g.t.a. matrix ring over division rings. Being hereditary,
Hp(a) is strongly rep. rep. by Lemma 2.1.6 while Hp(4)/I is strongly rep. rep. by
Theorem 2.3.3. Statement (ii) follows by Remark 3.3.3.

Conversely, assume (ii) holds. Since T is strongly rep. rep. by Lemma 2.1.6,

Remark 3.3.3 ensures that T'/I is strongly rep. rep. and then (i) follows by Theo-
rem 2.3.3.

In the case where the conditions hold, we have already seen that we can take
T = Hp(a) and that Hp4) and hence Hp(4)/I are basic. Finally, assuming A
is strongly rep. rep. and is Morita equivalent to f/ T as described, then T and
T / T are strongly rep. rep. by Lemma 2.1.6 and Theorem 2.3.3 respectively. The

conclusion follows by Remark 3.3.3. "

Suppose we are given a finite dimensional algebra A over an algebraically
closed field. To decide whether A is strongly rep. rep., we would first use the
construction in (3.2.1) and (3.2.3) to describe the path algebra Hp4) of the quiver
A%, the opposite quiver of the Ext-quiver Ap(4) of the basic algebra B(A) of A.
By the proof of Lemma 3.3.5, it is necessary for Hp(4) to be finite dimensional as
a k-algebra if A is to be strongly rep. rep.. If this is the case, we would then find
I, the kernel of the surjection from Hp(a) to B(A) which is defined in [Ga3, §4.3]
and also in [Bn, Proposition 4.1.7]. Finally, we would check the condition in
Theorem 3.3.6, by using Theorem 3.1.6 which, for a basic Artinian hereditary

ring, describes the M; ; in terms of idempotents.

Remark 3.3.7. In particular, returning to Example 3.3.2, for the ring

k 0 0
A= rer & 0],

kDEDk

ROLOLDL kok

which Lemma 3.3.1 showed us was strongly rep. rep., we can take

k 0 0 0 0 0
T= kdk k 0] and I= 00 0 0
kekokdk kdk k kokd0d0 000 O
in Theorem 3.3.6, to see again that A is strongly rep. rep.. n
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§3.4 Notes

"The theory of idempotents and basic algebras discussed in (3.1.1) and (3.1.2)
is well known and can be found for instance in [A&F]. The remainder of the
terminology and results of §3.1 are taken from [Ha]. In particular, Theorem 3.1.4

is [Ha, Theorem 1] and Theorem 3.1.6 is [Ha, Theorem 4’].

The description of quivers and the terminology introduced in §3.2 is taken
primarily from [Rg, §2]. The term “Ext-quiver”, however, is taken from [Bn, Defi-
nition 4.1.6]. In fact, [Bn], which deals with left modules, defines multiplication in
path algebras to be composition of paths in reverse order and, consequently, our
definition of the opposite Ext-quiver is just the Ext-quiver of [Bn]. Our terminol-
ogy corresponds to that of [Rg].

Lemma 3.2.2 is taken from [Bm, Corollary 2.6] and is well known. It can also
be found in [Bn, Theorem 4.1.4] with a proof for the case where Q is a finite quiver
and is discussed in [Rg, §2.4].

Lemma 3.2.4 is due to Gabriel [Ga3, §4.3]. Again, this is a well known result
which is proved in [Bn, Proposition 4.1.7] and stated in [Rg, Theorem 2.1.2]. Gen-
eralizations of this result to fields which are not algebraically closed are discussed

in [Bn, Proposition 4.1.10 and Corollary 4.1.11].

All of the results of §3.3 are new, except that Lemma 3.3.1(i) and (ii) are

special cases of [J2, Proposition 5.3.13] which describes the second layer links and

ideal links for a general Artinian ring.

We saw in the proof of Lemma 3.3.5 that if A is a strongly rep. rep. finite
dimensional algebra over an algebraically closed field, then the Ext-quiver of A
contains no cyclic paths. This improves [Bn, Lemma 4.2.3] which proves the same
result for a hereditary finite dimensional algebra. (Of course, by Lemma 2.1.6,
every hereditary Noetherian ring satisfying the second layer condition is strongly
rep. rep..)

In fact, suppose R is any ring with an ideal I which is finitely generated as
a left and as a right ideal and suppose that I C (J(R))®. If R/I is hereditary,
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then I = 0 (see [Bn, Lemma 4.2.1]). It follows that if A is a finite dimensional
hereditary basic algebra over an algebraically closed field, A & H,, the path
algebra of its opposite Ext-quiver (see [Bn, Proposition 4.2.4]). It is remarked
after [Bn, Proposition 4.2.5], that this is not true for arbitrary finite dimensional
algebras and so the assumption of algebraic closure would seem to be necessary in

our analysis in §3.2.
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Chapter 4 : Differential Operator Rings

Definitions and Notation 4.0.0. Let R be any ring and ¢ an endomorphism

of R. By a o-derivation of R is meant an additive map 6 : R — R such that
8(rs) = o(r)é(s) + 6(r)s

for all 7 and s € R. In the case where o is the identity map, ¢ is simply called a
derivation of R.

Given a ring R, an endomorphism o and a o-derivation 6§, we can form the
free left R-module S with basis {1,6,6%,...}. We define a multiplication in S by
setting 6'¢7 = 6"+ and

Or = o(r)f + 6(r)

for each r € R. By [G&W, Proposition 1.10], this multiplication can be extended
to the whole of S by imposing associative and distributive laws. Thus, the con-
struction turns S into a ring which is denoted S = R[6; 7, §] and is termed a skew
polynomial ring over R. If o is the identity, S is called a (formal) differential
operator ring over R and is abbreviated to R[6; §], while if § is the zero map, S is
called an Ore extension of R by ¢ and is written R[6;c]. (In fact, the term “Ore
extension” is often applied to any skew polynomial ring, but we will reserve it for
the case where 6§ = 0.)

Provided o is an automorphism on R, a version of Hilbert’s Basis Theorem can
be proved for the skew polynomial ring § = R[6; 0, 6] [G&W, Theorem 1.12]. Thus,
if R is a right [respectively left] Noetherian ring, then S is a right [respectively
left] Noetherian ring.

Naturally, the above construction can be used to produce iterated skew poly-

nomial rings; that is, rings of the form
R[01;01,61][02; 02,82 ... [0n; 0, 62l

where o3 is an endomorphism of R and §; is a ¢y-derivation of R, while o, is an

endomorphism of R[6;¢1,8,] and 6, is a oo-derivation of R[6;;0y,6;] and so on.
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Suppose we are given sets

Y={o1,...,00}
A ={b1,...,6n}

and

where the o; are commuting endomorphisms on R and the §; are commuting o;-

derivations of R. We can form an iterated skew polynomial ring
S = R[91;01, 51][92; 62, 02] ces [Hn; Cn,an]
by defining

G (Zri‘gi(l). z(a 1)) ZGJ(TZ)az(l) z(J 1)
9; (Zrﬁi“)- z(:—l)) S 6i(ro)ei© gD,

We will denote S so formed by

and

S = R[lgl, n,O"l, an,él,...,tﬁn] -—‘“—-R[@,E,A]

where © := {6y,...,6,}. By repeated applications of the above Hilbert Basis
Theorem, we see that, when the o; are automorphisms and R is right [respectively

left] Noetherian, then S is right [respectively left] Noetherian. n

In Chapter 5, we will turn our attention to Ore extensions by a single au-
tomorphism. However, in this chapter, we restrict our attention to an iterated
differential operator ring T' of commuting derivations on a commutative Noethe-
rian Q-algebra R. Such a ring is, of course, again Noetherian since the o; are
trivially automorphisms in this case. Furthermore, the ring T satisfies the s.l.c.
[Be2, Theorem 7.3] and an explicit description of the link graph of 7' is provided
by [G2]. (In particular, T' satisfies the local finiteness condition.)

In §4.2, we use this description to give in Corollary 4.2.14(i), our main result,
a sufficient, though not necessary, condition for a prime P of T' to be rep. rep.:
specifically, P is rep. rep. in T provided Rpng is a regular local ring. In Corol-
lary 4.2.14(iii) we also provide a sufficient condition for strong repleteness. In the

case when P = (P N R)T', Corollary 4.2.14(ii) is more precise: namely that P is
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always rep. rep. and is strongly rep. rep. if and only if P N R is strongly rep. rep.
in R. Finally, we note that T is rep. rep. when R is regular (Corollary 4.2.15).

§4.1 Prime Links in Differential Operator Rings and Preliminaries

Notation and Remarks 4.1.1. Suppose R is a commutative Noetherian Q-

algebra, let {61,...,0,} be a set of commuting derivations on R and put
T = R[Gl,... ,Gn;51,...,5n] = R[@,A]

Let P be a prime ideal of T'; so P is completely prime (that is, T'/P is a domain)
by {G&W, Theorem 9.24], a special case of [Sg, Corollary 2.6]. Put M = PN R
and C = R— M. By [G1, Lemma 7.3], M is a prime ideal of R which is A-invariant
:r (that is to say, A(M) C M so that MT = TM is an ideal of T') and, if @ € cl.(P),
| then @ N R = M. Also, as noted in [G2, 1.2}, C is an Ore set in T and, writing
Ty for TC™!, we can identify Ty with Rayg[6:,...,60n;61,...,6,], extending the
6; to Ry via the quotient rule (see, for instance, [McC&R, Lemma 14.2.7]). By
Theorem 2.3.2, it is therefore sufficient to consider the case where R is a local ring

with maximal ideal M. (See Definitions 4.1.9(i).) "

At this point, we note a result from [G&W, Lemma 2.20] which shows, in
particular, that any minimal prime of R is A-invariant (for recall that we are

assuming that R is a Q-algebra).

Lemma 4.1.2. Let S be any ring, let § be a derivation on S and let I be a
minimal prime ideal of S such that the characteristic of S/I is zero. Then I is a

é-invariant ideal. n

Notation 4.1.3. Adopt the notation of (4.1.1) and we write K = R/M. Then,
since M is closed under the action of A, we can form U := K[0; A] 2 T/MT and
we identify these rings where convenient (see [G2, Lemma 3.1]). Of course, since

U is a domain, MT is a prime of T. We denote

i=1

n
W = {a191+---+an9n:al,...,anéKand Zai5,~=00nK}§U,
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so that W is a K-subspace of > 7 | K6;, and let Uy be the subring of U gen-
erated by K and W. (Indeed, by [P2, Theorem 2.2], Uy is the centralizer of
K in U.) By [G2, Lemma 2.3], U, is a commutative domain and an affine K-
algebra which is closed under the operation of A. After renumbering, if neces-
sary, we may assume that the subset {0,...,6;}, of © (for some [) is a basis
for the K-vector space ., K6;/W. Now let ¢ be the natural projection from
e K8 = Wao Zj:l K0; onto W and let w; = ¢(6;) for [ +1 < i < n.
Then {wiy1,...,wn} forms a basis for W. Furthermore, by [G2, Proposition 2.4],
U=10Uyb,...,60;61,...,6] and Uy = Kl|wi41,...,wy], the ordinary polynomial
ring over K in the indeterminates wiyq,...,w,.

If K" is an isomorphic copy of K, we let W' be the K'-subspace of Y 1, K'6;
corresponding to W and wy, ,,...,w}, be the images of wit1,...,wn.

We note that M2T is a (U,U)-bimodule and that Mﬁ% LU, is a right Up-
submodule of #L.. We write P' = P/MT (so P' is a prime ideal of U) and
Py =P'nU (so Py is a prime A-invariant ideal of Us). n

The following result is proved in [G2, Theorem 2.9] and is a special case of

the “Passman Correspondence” [P2, Theorem 4.3].

Theorem 4.1.4. Adopt the notation of (4.1.1) and (4.1.3). Then, contraction
(Q' — Q' NUy) and extension (Qy — QoU) are inverse bijections between the

prime ideals Q' of U and the prime A-invariant ideals Qo of Uy. In particular,
P()U =P ’. L

To state Goodearl’s results, we require the following terminology of [G2, §5].

Notation 4.1.5. We maintain the notation of (4.1.1) and (4.1.3).

Let K# be an algebraic closure of K, let U¥ = Uy @ x K#* and identify U
with K#[wit1,...,w,] so that Up is a K-subalgebra of U# and U] # is integral
over Uy. Let (MZ) M2 ®x K# and identify U# R L il and 24 iz OK U# with

K#®K MA”Z];’;’F LUy so that U¥ @ Y isa (U#, U0 )-bimodule, containing a natural

copy of (#4;)#. Then a map ¢ € Homg (W, K#) is an eigenvalue for W on (&5)*

if and only if there exists a non-zero element p of (25 )# with wy — pw = e(w)u
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in Uf QK % for all w € W. Any such u is called an eigenvector for W on
(%)# with eigenvalue e. Then, 7. is the unique K#-algebra automorphism of
U# such that 7.(w;) = w; + e(w;) for ¢ = 14+ 1,...,n and is called a winding
automorphism of U¥. It is easy to see that tu = pre(t) in UF @k Y for all
t € U¥ [G2, Lemma 5.5]. -

Before stating the main result of [G2], we quote a result extracted from
[Z&S, Chapter VII, §11, Corollary p226], which, since every extension field of
a fleld of characteristic zero is separable [McC, Chapter 1, Theorem 7], shows in

particular that, with notation as in (4.1.1), (4.1.3) and (4.1.5), the ideal PyUZ of

U g% is semiprime,

Lemma 4.1.6. Let F' be afield and L a separable extension field of F'. Let I be a
prime ideal of the polynomial ring F{X,...,X,]. Then, the ideal IL[Xy,...,X,)

of the polynomial ring L[ X1,..., X} is semiprime. .

Theorem 4.1.7. Let R be a commutative local Noetherian Q-algebra with

maximal ideal M, fixn € N, let © = {61,...,0,} be a set of indeterminates and

let A = {é1,...,6n} be a set of commuting derivations on R. Suppose P and Q

are distinct prime ideals of T' = R[0®;A)] such that M = PN R = Q N R. Let

Uo, W, K, K#, U¥ and (M/M?)# be defined as in (4.1.3) and (4.1.5) and set

Py = (P/MT)N Uy and Qo = (Q/MT)NUy.

(i) Let P(;# be a prime of Ugé’e lying over Py. Then Q~~P if and only if there

f exists an eigenvalue € for W on (M /M?*)# such that the prime Tg“l(Pg#) lies
over Q.

(ii) Suppose that all eigenvalues for W on (M/M?*)# map W into K. Then
Q~~>P if and only if there exists an eigenvalue ¢ for W on (M/M?)# such
that Qo = 7.7 (Pp).

Proof. By [G2, Theorem 1.2], we can assume that M? = 0 and then (i)
follows from [G2, Theorem 5.8] and (ii) from [G2, Theorem 5.11(a)]. .

To complete the description of the links of T', we state [G2, Theorem 6.1].
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Theorem 4.1.8. Let R be a commutative Noetherian Q-algebra, fix n € N, let
© = {61,...,0,} be a set of indeterminates and let A = {81,...,6,} be a set of
commuting derivations on R. Put T = R[©; A].
(i) Every non-minimal prime of T is linked to itself.
(ii) The minimal primes of T' are the ideals MT where M is a minimal prime of
R. A minimal prime MT is linked to itself if and only if MRy # 0. "

We conclude this section by listing some preliminary results we will require

from commutative ring theory. First we recall the concept of complete local rings.

Definitions 4.1.9. (i) Let A be a commutative Noetherian ring. Then A is
a semilocal ring provided it has only finitely many maximal ideals, while A is a
local ring provided it has a unique maximal ideal. Assume A is a local ring and
let J be the maximal ideal. Let b be an element of A and let by, by, bs3,... be an
infinite sequence of elements of A. We say that the sequence (b,) converges to b
and that b, tends to b asn tends to infinity provided, whenever s € N, we can find
some ng = no(s) € N such that, b — b, € J® for all n > ng. In this case, we write
“bp — basn — oco”. Furthermore, we say that a sequence (a,,) of elements of A is
a Cauchy sequence in A if, given any s € N, we can find some ny = ny(s) € N such
that an — am € J° whenever n > m > ng. It turns out (see [N1, §5.2 Lemma 1])
that (a,) is a Cauchy sequence if and only if a,, — ap—1 — 0 as n — oo.

(ii) If a;, — @ in a commutative Noetherian local ring A, then it is easily seen
that ap — an-1 — a —a = 0. Thus, if a sequence has a limit in A, it must be a
Cauchy sequence. Following the ideas of ordinary analysis, we define R to be a
complete local ring if every Cauchy sequence in A has a limit in A.

(ili) Let A and A' be commutative Noetherian local rings with A C A'. If a
sequence of elements of A is a Cauchy sequence in A when and only when it is a
Cauchy sequence in A', we say that A’ is a concordant extension of A. If A’ is a
concordant extension which is complete and whose every element is the limit of a

sequence of elements of A, then A’ is said to be a completion of A (at J). ]

The next theorem is well known and can be found, for instance, in [N1, §5.5

Theorem 4].
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Theorem 4.1.10. Let A be commutative Noetherian local ring. Then A has a
completion A. Moreover, if A' is another completion of A, then the identity map

on A extends to an isomorphism from A to A'. "

In view of this theorem, we can talk of the completion of a local ring A which
is usually denoted by A. It will be convenient for us to have an explicit description
of the completion, and this is provided by [Na, Corollary 17.6] (a result sometimes

known as Cohen’s Theorem) as follows.

Theorem 4.1.11. Let A be a commutative Noetherian local ring with maximal

ideal J. Say J =Y ._, jiA, for some j; € J. Denote the completion of A at J by

A. Then
Allz1,. . zr]]
E:=1($i _Jl)A[ [wlv v 7"1"7']]

where the z; are indeterminates. n

A

12

We now note some important properties of the completion. The following

theorem can be found in [N1, §5.5 Proposition 9 and Theorem 6].

Theorem 4.1.12. Let A be a commutative Noetherian local ring with maximal
ideal J and let A be its completion.

(i) The maximal ideal J of A is given by J = JA and, for every s € N,
T'na=Je. Furthermore, if I is any ideal of A, then TAN A = I.

(ii) Let I be a proper ideal of A. The natural map from A to A/IA induces
a homomorphism from A to A/IA with kernel IA N A(= I by part (i)). If we
identify A/I with its image in A/IA then A/IA is the completion of A/I. -

The following corollary is another well known result.

Corollary 4.1.13. Let A be a commutative Noetherian local ring with maximal

ideal J and let A be its completion. Then the map
a+J—a+JA

is an isomorphismn from the ring A/J to the ring A/ JA.
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Proof. By Theorem 4.1.12(ii), A/J A is a complete local ring and the map
given in the statement of the Corollary is an embedding of A/J into it. On the
other hand, since A/J is a field, it is certainly complete and the result follows by
Theorem 4.1.10. .

The next two results we require are taken from [Z&S, Chapter VIII, §6, Theo-

rem 15(c) and §12, Theorem 27] respectively, although both Theorems 4.1.16 and
4.1.19 are originally due to Cohen [C].

Theorem 4.1.14. Let A and B be commutative Noetherian local rings and
suppose that B is finitely generated as a module over A. If A is a complete local

ring then so is B. .

Definition 4.1.15. Let A be a local ring with maximal ideal J. Then A is
equicharacteristic, provided A and A/J have the same characteristic; in this case,
the characteristic is clearly zero or a prime.

If the characteristic of A is a prime p, then A contains the field of p elements.
On the other hand, if the characteristics of both A and A/J are zero, then J
contains no non-zero integer and so every non-zero integer is a unit in 4; in this
case, A contains Q.

Since it is obvious that a local ring containing a field is equicharacteristic, we

see that a local ring is equicharacteristic if and only if it contains a field. "

We now note that an equicharacteristic complete local ring contains a copy

of the field A/J. This result, a consequence of Theorem 4.1.11, is also frequently

referred to as “Cohen’s Theorem”.

Theorem 4.1.16. Let A be a complete commutative Noetherian local ring which
is equicharacteristic. Then, A contains a subfield L isomorphic to A/J, with an

isomorphism being given by the restriction to L of the canonical epimorphism from

AtOA/J. n

For our final preliminaries, we require some more terminology, that of regular

commutative rings.
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Definitions 4.1.17. Let A be a commutative Noetherian local ring with maximal
ideal J and classical Krull dimension d. (The classical Krull dimension of a com-
mutative Noetherian local ring is finite by [A&McD, Corollary 11.11].) Then A
is said to be regular provided J can be generated by d elements {or, equivalently,
provided the dimension of J/J? as a vector space over A/J is d).

Furthermore, if B is an arbitrary commutative Noetherian ring, then B is said

to be regular provided the localization By is a regular local ring for each prime
ideal K of B. -

It is primarily for the following property that regular local rings are of interest

to us. This result is taken from [N1, §4.6, Lemma 3.

Lemma 4.1.18. Let A be a regular commutative Noetherian local ring with
maximal ideal J. Suppose that o € J* — J*1 and 8 € J* — J** for some

non-negative integers h and k. Then, aff € Jhtk — jhth+1 =

Since, in the situation of Lemma 4.1.18, the intersection of the powers of J
is zero (that is, Mo, J* = 0, a special case of the Krull Intersection Theorem
[Na, Theorem 3.11]), it is an immediate consequence that a regular commutative
Noetherian local ring is an integral domain.

We complete our introductory discussion with the characterization of com-
plete regular local rings, known as “Cohen’s Structure Theorem” (part (ii) of
Theorem 4.1.19). This may be found in [Z&S, Chapter VIII, §12, Corollary to
Theorem 27] and its proof. Part (i) may be found in [N1, §5.6, Corollary to
Theorem 8|.

Theorem 4.1.19. Let A be a commutative Noetherian local ring with maximal

ideal J.
(i) Let A be the completion of A at J. Then A is regular if and only if A is

regular.

(i) Suppose that A is equicharacteristic, complete and regular and let d be
the classical Krull dimension of A. Then A is isomorphic to % [[X1,...,X4]], the

ring of formal power series in d indeterminates over the field A/J. "
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§4.2 The Repleteness of Differential Operator Rings

To apply Goodearl’s results in our context, we need to manoeuvre into a
setting where the hypothesis of Theorem 4.1.7(ii) holds. For this, it is sufficient
that all the eigenvectors for W on (M /M?)# can be chosen from M/M? and in fact
we will need this stronger condition in Theorem 4.2.12. To this end, we first show
that we can assume that the commutative Noetherian Q-algebra R is a complete
local ring. By Theorem 4.1.16, R then contains a copy K' of K = R/M (an
isomorphism being given by the restriction to K’ of the canonical epimorphism
from R to R/M) and we show that, for sufficient conditions for repleteness, we

can replace T' with T @pg/ar R//\]YJ for any finite algebraic extension, R//K/[ of R/M.

Remark 4.2.1. Let R be a commutative Noetherian local ring with maximal
ideal M. Say M = Y., a;R, for some a; € M. Denote the completion of R at
M by R. Then, by Theorem 4.1.11, there is an isomorphism

Rl[z1,...,2,]]
Yoi=1{zi — a))R[[e1,. .., z,]]
where z1,...,z, are indeterminates.

If we identify R with the subring {s +.I_,(z; — a;)R[[z]] : s € R}, of ¥(R),
we can then identify ¢)(R) with the completion R of R. "

Y : R

1R

The next result is well known. (See, for instance, [G,L&R, p16].)

Lemma 4.2.2. Let R be a commutative Noetherian local ring with maximal
ideal M and let A be a set of commuting derivations on R. Then A extends

uniquely to a set A of commuting derivations on the completion R of R at M.

Proof. We adopt the description of R given above. For each § € A, define
6'(z;) = 6(ai) and §'(s) = 8(s) for each 1 < i < r and s € R. This extends A to

A', commuting derivations on R[[z1,...,2,]]. Then, since

Z(mi —a;)R[[z1,...,2/]]
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is A'-invariant, A’ induces a set A of commuting derivations on R. Now, for each
s € R and 6 € A we have
§ (s + (Z(mz — a;)R[ |z] ])) = §'(s) = 6(s)
i=1

so A extends A to R and this extension is clearly unique. n

Notation 4.2.3. In the situation of Lemma 4.2.2 and given the differential oper-
ator ring T' = R[O; A], we can extend, by Lemma 4.2.2, the set A of commuting
derivations on R to a set A of commuting derivations on the completion & of R
at M. We form the differential operator ring T = R[0©; A] and we consider T' to
be a subring of T. Suppose that P is a prime ideal of T such that PN R = M. By
Corollary 4.1.13, R/MR = R/M and hence T/PT = T/P as rings, so that PT is

a prime ideal of T. =

Lemma 4.2.4. Let R be a commutative local Noetherian Q-algebra with max-

imal ideal M, fix n € N, let © = {61,...,0,} be a set of indeterminates and Iet

A = {83,...,6,} be a set of commuting derivations on R. Suppose P is a prime

ideal of T' = R[O®; A] such that M = P N R. With the notation of (4.2.3),

(i) if I/P is a uniform right ideal of T/P then Ep(I/P) can be made into a
T-module and, as such, is (isomorphic to) E=(IT/PT);

(ii) P isrep. rep. [resp. strongly rep. rep.] in T if and only if PT is rep. rep. [resp.
strongly rep. rep.] in T.

Proof. (i) Let ¢ € R, so that there is a Cauchy sequence {"c} in R
such that "¢ — ¢ (Definition 4.1.9(iii)). Put E = Ep(I/P) and let z € E. By
Theorem 1.3.3, z € E; for some i € N, where, in the notation of (1.3.1), E; is the
*h layer of Ep. Then zM* = 0 since every prime in the clique of P contains M by
[G1, Lemma 7.3] (see Remark 4.1.1). Now, by the definition of a Cauchy sequence
(Definition 4.1.9(1)), we can find N(c) € N such that "¢ — ™c € M’ whenever
n > m > N(c). Thus, z."c = 2.™c = £.N(¢, Let t € N and, for each 1 < i <,
let (i1,...,%n) € N®, let ¢; € R and define:

¢ t
z. ( Zcieil . ..92‘) = Z (:c.N(c‘)c,;) i ... in |

=1 =1
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which extends the action of T on E to make E into a T-module.

Now let E be the T-module injective hull of E. As noted in (4.2.3), T/PT
T/P as rings and hence as T-modules and so E = E=(IT/PT). As a T-module,
E = E @ L for some T-module L. Again by Theorem 1.3.3, if z € L then z € E;
for some ¢ € N and, for the same reason as applied to F;, oM =0, Now, for all
7 € R, there exists r € R such that F—r € . So 2T —zr = 0 € L and it follows

that L is a T-module. Since —ET is uniform, we must have L = 0 and thus £ = E.

(ii) Now, since T/MT = T/MT, contraction (Q — Q N T) and extension
(P — PT) are inverse bijections between the prime ideals of T' containing M and
of T containing MT. We claim that, for each i € N,
Ai{(PT) ={QT : @ € A;(P)
and _ { (P} (A)
E; =E; .
Since A1(P) = {P} and A;(P) = {P}, the claim, for i = 1, follows from the

equivalences
e€ B < eP=0 <= ePT=0 <> ecE, .

So suppose that, for some n € N, the claim (A4) is true for all 1 <7 < n.

Now, if @ € Apy1(P) then @ is an associated prime of (E/E,)7. So there is a
T-submodule, M/ E., say, of E/E, with M/E, a fully faithful 7/Q-module. Since,
by the same argument as before, any T-submodule of E is also a T-module, it is
easily seen that M/E, is a fully faithful T/QT-module. So, QT is an associated
prime of (E/Epn)z = (E/Ey,)7. That is, QT € Aps1(PT).

Conversely, if Q@ € Apy1(PT) then, by Corollary 1.3.5, Q@ € ¢L.(PT) and so,
by [G1, Lemma 7.3] (see Remark 4.1.1), QN R=PTNR=MR. Put Q =QNT
and then, by the above bijection, @ = QT. Now @ is an associated prime of
(E/Ey)7 and so there is a T-submodule, say M, of E with M/ E, a fully faithful
T/Q-module and therefore a fully faithful 7/Q-module. Thus Q € App1(P).

We have shown that Ap41(PT) = {QT : Q € Ap1(P)} and further, that
Epy = Epy1, follows easily from the definitions of F,..; and E,41. This estab-
lishes (A) for 1 < ¢ < n+ 1 and hence, by induction, for all 5 € N.
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To complete the proof we need to show that, for each 7 € N,

r.cl. 7(PT) = {QT : Q € r.cl. 7(P)}
Q€ X;(P) < QT € X;(PT) .

and

Clearly, it suffices to show that
Q> PinT < QT~>»PTinT. (B)

Now, by Lemma 1.2.6, Q~~»P in T if and only if T/Q| IT/P is faith-

ful on both sides, while QT'~~~>PT in T if and only if = IM

QTPT |T/P7‘—:
707 %Eb ,p i faithful on both sides.

Suppose Q—QO—PE—|T/P is not faithful, and let t € T'— P such that (QNP)t C QP.

T
Then t € T — PT while (@n P)Tt C QPT so that W_(QQHP)P% ‘T/PT
(Q N P)T

QP77 |T/PT is not faithful and let ¢t € T — PT such
l that (Q N P)Tt C QPT. Since T = T + MT, we can find s € T such that
s+ MT =t + MT. Then s ¢ P while (Q N P)s C (QPT)NT = QP so that

Q n Lid |T/P is not faithful.

T/QT

18 not faithful.

Conversely, suppose

Smce a similar argument holds on the left, we see that (B) holds completing

the proof of the lemma. =

Notation 4.2.5. For any ring S containing a copy L' of a field L of which L is
an extension field, we can form the ring S=8@ 1 L where the L-module action

on S is given by L'. We will usually identify S ®1 L with S and regard S as a
subring of S. .

So, for instance, let R be a commutative local Noetherian Q-algebra with
maximal ideal M. For the purposes of studying repleteness, we can assume, by
Lemma 4.2.4, that R is complete and then, by Cohen’s Theorem (Theorem 4.1.16),
R must contain a copy K' of K = R/M (an isomorphism being given by the
restriction to K’ of the canonical epimorphism from R to R/M). Indeed, whenever
R contains such a copy and Kis any extension field of K, we can form R as above.
We are interested in the case where the extension is finite algebraic and, in order

to replace R with Ritis necessary to extend the derivations A to R.
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Now, it is well known that commuting derivations on a field extend uniquely
to commuting derivations on any separable algebraic extension field [Z&S, Chapter
II, §17, Corollary 2’ to Theorem 39] and so, for instance, the induced derivations on
K = R/M extend uniquely to commuting derivations on an algebraic extension K
of K. In fact, since the characteristic of K is iero, R being a Q-algebra, and since
any algebraic extension of a field of characteristic zero is separable [McC, Chap-
ter 1, Theorem 7], the next lemma shows that the derivations, A, of R, extend to

derivations on R even though K’ is not in general closed under the action of A.

Lemma 4.2.6. Let S be a ring and let A be a set of commuting derivations on
S. Suppose that S contains a copy of a field I of which I is a separable algebraic
extension and let S = S® L. Then A extends uniquely to a set A of commuting

derivations on the ring S.

Proof. Suppose z € T and, for 0 <7 < n, let a; € L such that Yor Xt
is a minimal polynomial for z. We let L' be the copy of L contained in § and
denote by A’ the image in L' of each element X of L. If 7 is to be a derivation on
T, we see by applying it to the identity Y% (a} ® 1)(1 ® z)* = 0 that we require

n

Y (@I ®2) +i(d @)1 @) y(1® ) =0

=0

1(1@z)=- [ iv(ai ®1)(1 @)

=0

and hence

n -1
11 ® Z iaiwi_ll

=0

where the denominator is non-zero by the separability of the extension L C L
[McC, Chapter 1, §3, Proposition]. So, for each § € A we require to define a

derivation such that

. [ Ziaimi_l] (A)

=0

s1l®az)=— [ ié(ai)@mi

=0

and to extend thisto S = S®L by additivity and the product rule for derivations.

Assuming that § is a well-defined derivation on S , we will require that

(s ®1)=6(s)®1 (B)
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so that, identifying S ® 1 L with S, § extends the action of § to S. Evidently 5

will be the unique such derivation.

Rather than verify directly that the definition (A) gives rise to a set of well
defined commuting derivations on S , we first restrict our attention to the case
where I = L(z), a simple separable algebraic extension. As above, we assume
that E?:o a; X* is the minimal polynomial for z and that a, = 1. Foreach s € S
we define 8(1 ® z) and 3(3 ®1) as in (A) and (B) and then set

b

s®@a™) =8 @ 1)(1®z™) + (s @ ma™1)§(1 ® z) (C)

for each m > 0. We observe that, since § is a derivation on 3,

Sl(s®@2™)(r®a")] =58(s @a™)(r ® ') + (s ® 2™)8(r ® &) (D)
and
s ®@z™) + (r®@a™)] = 8(s @ z™) + 8(r ® z™) (E)

for s, r € Sand I, m > 0.
Next, since the minimal polynomial for z has degree n, each element t of S

can be expressed uniquely in the form
n—1
t= Z 8 ®xt
=0

for some sg,...,8,—1 € S. Thus, we can extend our definition, (C), to S by

setting,

n—1 n—1
E(Zsi@)mi) = Zg(si@):ci) . (F)

1=0 =0

To see that § is a derivation on 5 , we note that, for ¢y and t; € 5 ,
8(t1 -+ t2) = 8(t1) + 8(ta)

by (E) and (F') while
g(tltz) ES g(tl)tz + tlg(tz)

by a straightforward calculation applying (D) to (F).
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If, 61 and é2 € A, then we can form the derivations 31 and 32 on S by the
above. Since ¢, and §; commute, it is easy to see from (A4), (B) and (C) that 5,
and &, commute. Thus, we have extended A to a set A of commuting derivations

on § in the case where I = L(z).

Now let L = L(B) be an arbitrary separable algebraic extension of I and
let I be the set of all subsets, B,, of B such that A can be extended to a set of
commuting derivations Aq on Sq = S @7, L(By). The set I is non-empty since
it contains the empty set. If B, C Bg then Ag extends A, from S, to Sg. It
follows that any ascending chain in I has an upper bound in I and so, by Zorn’s
Lemma, there is a maximal element B’ in I. Let S’ = S ®; L(B') and let A’
be the set of commuting derivations extending A to S'. If L(B') # L(B), then
there exists an element y € L(B') — L(B) and, by the above argument, A’ can be
extended to a set A" of commuting derivations on L (B' U {y}). This contradicts
the maximality of B’ in I and it follows that L(B") = L(B).

We have thus shown that A can be extended to a set of commuting derivations

Aon §=8®; L where L is any separable algebraic extension of L. "

Remark 4.2.7. In particular, consider the case where R is a commutative local
Noetherian Q-algebra with maximal ideal M, R contains a copy K’ of K = R/M
and K is a finite algebraic extension of K. Assuming this extension is finite, R is
again Noetherian. Further, by [P1, Theorem 7.2.5], M@ x K = J(R)®xK C J(ﬁ),
while ﬁ—gx% >~ K @x K = K so that J(R) C J(R)®x K = M ®x K. Thus R is

K

local. Furthermore, if R is complete then, by Theorem 4.1.14, Ris complete. =

Notation 4.2.8. In the situation of Remark 4.2.7 and given the differential op-
erator ring R[O;A], we can extend, by Lemma 4.2.6, the set A of commuting
derivations on R to a set A of commuting derivations on the ring R and we form

the differential operator ring T = ﬁ[@; E] Finally we put

~

Uo = Klwigs, ..., wa] 2 U ®x B and U = R[0,A] = T/MT ,

(these isomorphisms hold since the K-module action on R/M arising through

multiplication in R by K’ coincides with the ring multiplication in R/M ) and,
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where. convenient, we will identify these isomorphic rings. We note that, as K
vector spaces, T2T® K Eand U2y oK K. However, since neither T' nor
U are K-algebras (K not being central in general) the right-hand sides do not

automatically have a ring structure. =

In Lemma 4.2.11, we show that, for the purpose of finding sufficient condi-
tions for repleteness in T', we can instead look at the ring T\, although the lemma
does not show that repleteness in T is necessary for repleteness in T. First we re-
quire two preliminary results. Lemma 4.2.9 is proved in [Lt, Corollary 2.4], while

Lemma 4.2.10 is a well known result.

Lemma 4.2.9. Let S be a right Noetherian subring of a ring V such that Vg is a
finitely generated module. Then, the extension S C V satisfies the incomparability
property on prime ideals; that is, for every prime I of S, there do not exist primes

Ly ; Ly of V such that I is minimal over both Ly NS and Ly N S. n

Lemma 4.2.10. Let S CV berings with sV a free module. If By is an injective

module, then Eg is injective.

Proof. We suppose that I is a right ideal of S and consider f € Homg(I, E).
To define a V-homomorphism, f' : IV — E, fix a free basis {vy : A € A} for V

over 5. Then, for any finite subset J of A and for any elements a; € I, set

f (E ajvj) = flaj)v;.

jeJ JjeJ
It is easy to check that f'(bv) = f/(b)v for all b € IV and v € V and that
f'(a) = f(a) for all @ € I. Now, we can extend f' to f" € Homy(V, E) by the

injectivity of Ev. Then, since the restriction of f" to § extends the action of f

on I, it follows Eg is injective. "

Lemma 4.2.11. Let R be a commutative local Noetherian Q-algebra with max-
imal ideal M, fix n € N, let © = {61,...,8,} be a set of indeterminates and let
A = {61,...,6n} be a set of commuting derivations on R. Suppose R contains

a copy of the field K = R/M of which K is a finite algebraic extension and let
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T be constructed as in (4.2.8). Suppose P is a prime ideal of T = R[©;A] with
M=PnNR.

(i) There is a prime ideal, P, of T such that PNT = P and any such P is minimal
over PT.

ii) If some such P is rep. rep. [resp. strongly rep. rep.] in f, then P is rep. rep.
g
[resp. strongly rep. rep.] in T .

Proof. (i) Adopting Notation 4.1.3, we put P’ = P/MT and P, = P'NU,.
Then, since R is a Q-algebra, the characteristic of K is zero, K isa separable

extension of K [McC, Chapter 1, Theorem 7] and so Lemma 4.1.6 shows that
Poﬁo :P()]?:,Plon...ﬂpto

for some primes Pig, ..., Pso of fj(), minimal over P, (70. By Lemma 4.1.2, each Py

is A-invariant. Now,
B :PoﬁoﬂUo =(p1oﬁUo)ﬂ...ﬂ(PtoﬂUo)ﬁ PioN...N Py

for prime ideals Pig = (Pijo NUp) of Uy. We claim that Py = Pjy for each 3.
For, if there is any j for which Py ;Cé Pjo then, denoting by Cs(I) the set of
elements of a ring S regular modulo the ideal I, we see by [G&W, Exercise 3L and
Proposition 5.9] that Pjo N Cy, (Po) # 0. In this case, since Cy, (Py) C Cs, (P, Ty),
we have Pjg N Cg, (Polo) # 0, contradicting the minimality of Pjo over PyUp. It
follows that Py = P; for every .

Write TPy = P!, which is a prime ideal of T by Theorem 4.1.4,' and let P;
be the prime of T such that Pi/ M T = P;. Then, for each 1,

(P;NT)/MT =PnU=0UP;uNU .

Now, since P; is completely prime by [G&W, Theorem 9.24] (see Remark 4.1.1),
P; NT is a prime ideal of T and hence UP;, N U is a prime ideal of U. So, by
Theorem 4.1.4, we see that

UPonU =U (f]‘m nUN Uo) —U (ﬁm N Uo) .
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On the other hand,
P/MT = UPy = UPy = U(PaUs) =U (0Pan 8o Us) = U (TP Ts) |

where we have again applied Theorem 4.1.4 for the first and fourth equalities. We

thus obtain, for each 7,
(PiNT)/MT = 0PN U =U (fmo n Ug> — P/MT,

so that ?; N T' = P and we can take P = P; for any i. Now,
PT/MT =UP,T =0 Py = TP T,

=0 (P n...0Py)

=UPin...n TPy

=Pi0...NP;

=P/MTN...0P,/MT

=(Pi0...0P) /MT
so that PT = PirN...0 P As above, P; NT = P for each 7 and we see that
the P; are the primes of T minimal over PT. Further, since the extension T C T
satisfies the incomparability property for prime ideals (Lemma 4.2.10), no prime

of T strictly containing one of the P; can contract to P. We will, for convenience,

take P to be P;.

(i1) As we have seen, every prime of T contracts to a prime of T' and, for every
prime of 7', there is a prime of T which contracts to it. So, by the incomparability

property of Lemma 4.2.10, for any prime Q of T,
CLK.dim (T/Q) = CLK.dim (T/(QNT)) . (4)

Now let V' be a uniform submodule of (f/’P) (#/») and put F = E~(V).

Since 7T is free, it follows, from Lemma 4.2.10, that F is an injective T-module.

Let @ be an associated prime of Er. We claim that

Q=PF. (B)
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By the choice of @, we can find e € F such that e7 is a fully faithful T'/Q-module.
Now, eI NV is a fully faithful T\/’P—module and so Q C PNT = P. On the
other hand, by Theorem 1.3.3 there exists a r.cl.(P)-semiprime ideal, Z, of T such
that Z*! C ann(eT) for some n € N. So (ZNT)"* € 7"+ N T C Q and
hence ZNT C Q. It follows that we can find a prime A in r.cL.(P) such that
ANT C Q C P. However, by Lemma 1.2.8(ii) and (A4),

. T (T T
ClLK.dim (W) = ClLK.dim (/—4) = CLK.dim (—'P_>

) T ) T
= ClK.dlm (W) = ClK.dlm (ﬁ) 3

and we see that ANT = Q = P establishing (B).

Thus, P is the unique associated prime of (Ei;(V))T and therefore, as T-
modules, £ = Ex(V) = @rea*E for some uniform injectives *E each with assas-
sinator prime P and some index set A. We observe that, as T-modules,

anng(P) = @acpanns g(P). (C)
For, if e € E and eP = 0 then ePT = 0 so we have e(PiN...0P) = 0. If
€P1 # 0 then (eP1) NV # 0 and so PoN...NP; C Py which is impossible. Thus
eP = ePy = 0. Conversely, if ¢ € E and ¢P = 0 then clearly cP = ¢(PNT) = 0.

Now suppose e € annx g(P) for some A € A and that et = 0 for some t € T'— P,
Clearly, t € T — P so that t is regular modulo P since P is completely prime. By
(C), e € anng(P) so, by the torsion-freeness of (annE(P))?/,P, we see that e = 0.
Thus, (ann g(P)) 1 p is torsion-free for each \. We can then assume that each *F
is the injective hull of a uniform right ideal of T/ P so that Theorem 1.3.3 applies.
In particular, the fundamental primes are identical for each *E.

As before, we write Fy and *E}, for the k" layers of Ez and AEr respectively.
Then, viewing E} as a T-module, we claim that, for each k£ € N,

(a) Ap(P)={QNT: Qe Ax(P)}
and (D)
(b) Ey, = ®xer "By, .
By (B) and (C), the claim is true for k¥ = 1 and we assume it for all 1 < k <n
for some n € N. We note that, as seen in (i), @ is minimal over (Q N T)T for any

prime @ of T
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(a) Let @ € A,q1(P). Then there exists ¢ € E — E, such that eQ C E,,.
Writing ¢ = @xeaen, where each ey € *E and only finitely many are non-zero, we

have, by the induction hypothesis on (Db),

Bacaer(QNT) C Brea En .

So, for some A, ey € *E —*E,, while ex(@NT) CAE,. Consequently, QNT C Q'
for some Q' € Ap41(P) C Xpny1(P). Again, by Lemma 1.2.8(ii) and (A),

: T\ (T T
ClLK.dim (m) = Cl.K.dim (—Q-) = CLK.dim (P)
) T ) T
go that 9NT = Q’ & An+1(P).

On the other hand, suppose Q € A, +1(P). We can write QT = @;N...N Q;
for some [ € N and where each @; NT = Q. Now, if we fix u € A then there exists
some e, € *E — #E, such that e,Q C #E,,. We now put

e)‘:{e‘u fpu=X,

. and e = Dareacy
0 otherwise € ’

and, by the induction hypothesis on (Cb), we see that
€Q1...21Ce(@1N...NQY) = eQT C Drer En = E, .
Now, if €Q) C E, then Q; C Q; for some @y € Apy1(P); but then
Q1N T € Ans1(P) C cl(P)

and so by Lemma 1.2.8() @ = @; NT = Q; NT. Thus, since the extension T cT
satisfies the incomparability property for prime ideals (Lemma 4.2.10), we see that
Q1 = QZ € Ant1(P). If eQy € E,, then we can suppose by induction that, for
some 1 <a <1-1,eQ;...Q, € E, while aQ;...Qq11 C E,. In this case,
Qa+1 € Any1(P). Thus we find @ € Anp1(P) such that Q NT = Q completing
the induction step for (Da).

(b) Now choose e € E — E,. Again we write e = @acpen, where only finitely

many e) are non-zero, and note that, by the induction hypothesis on (Db), ex €
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AE —*E,, for some \. Suppose e € Fpt1. Then we can find a subset {Q;: j € J}
of An41(P), for some finite index set J, such that e (ﬂjEJ Qj) C E,. Then
Dreaen. ﬂ (Q;NT) C B, .
JjeJ
Now, for each j € J, we have seen by (Da) that Q; N T € Apy1(P) C Xpy1(P)
while, for each A, ex.();c;(Q;NT) C *E, and so, by Theorem 1.3.3(ii), ey €
}‘En+1. We conclude that

Ent1 C ®rxeaEng1

Conversely, suppose that, for each A, ey € *E,.11 with only finitely many non-
zero and put e = @xecaer. For each A we can find finitely many 7 fy € *E such
that ey = Ej 7 fx and where 7 fy (j)‘P) C AE,, for some 2P ¢ Apti1(P). It suffices
to show that, for each A and j, 7 fx € Ep41. So we fix A and j and note that, by
the induction hypothesis on (Db), 7 fa (#*P) C E,. Now IAPT = APin...nirp,
where the AP, are the primes which contract to /P, Clearly, 7 fy. N, P, C E,.

By the same argument as before, one of the /*P,, say 7P, must be in Apta(P).

In fact, we claim that

I f. N Pp,.CE,. (B)
(j)\'pr EAn+1(P))

For if this is not the case, then since certainly

jf)\- ﬂ j}vpr‘ H j}\pr - En )

(j'\?)r G-An-i-l(p)) (‘iA'P?‘ EAH+1(P))
we would deduce that [ixp,ga,,,(p)) " Pr is contained in a prime in Anq1(P).
So, for instance, we would have AP, C Q € A4 (P) for some I*P, & Ani1(P).
Then, since *P, and Q are both in the clique of P and, by Lemma 1.2.8(ii),

CLK.dim. (j)"Pv) = ClL.K.dim. (é—) < CLK.dim. (J')"Pu) .

However, since 2P, N T = IAP, N T, we see from (A4) that

. T . T

. T : T
=Cle1m (W) = Clezm (3‘\—731"> .
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Thus *P, = Q € Apy1(P) which contradicts our assumption and so (E) is
proved. It follows from (E) and Theorem 1.3.3(ii) that 7 fy € En4; completing
the induction step of (Db) and therefore the proof of (D) for all k € N.

Finally, we observe that, given primes 2P~~>!'P in T' and a prime P of
T minimal over le, we can apply (Da) with P = 'P and k = 2 to produce a
prime P minimal over 2PT which is in Ag (1'P) C X, (173). Again, given primes
2Prm 1P in T we apply (Da) with P =P to see that 2P N T~~>!PNT. So,

by induction on these arguments, we deduce that, for all k € N,
Xp(P)={QNT:Q¢e Xx(P)} (F)

and any such Q is minimal over (Q N T)’f

Part (ii) of the Lemma, follows easily from (Da) and (F). n

In the case where R is a commutative local Noetherian Q-algebra with maxi-
mal ideal M and R contains a copy of K = R/M (for instance if R is complete),
Remark 4.2.7 and Lemma 4.2.11 show that, for finding sufficient conditions for
repleteness, we can replace K with any finite algebraic extension, K. So taking
a suitably large extension, we have reduced to the case where, in the notation of
(4.1.5), all the eigenvectors for W on (M/M?)# can be chosen from M/M?2. This
last condition is required in Theorem 4.2.12 but also ensures that all eigenvalues
for W on (M/M?)# map W into K, as follows from the definition of the action of
W on M/M?.

Thus R satisfies the hypotheses of Theorem 4.1.7(ii), which we wish to use
for the description of the clique of a prime of T

If we make the additional assumption that R is a complete regular local ring
(Definition 4.1.17), then, by Cohen’s structure theorem (Theorem 4.1.19(ii)), R is
1somorphic to a power series ring over K in finitely many indeterminates; however
in the following theorem we only require the fact which we noted in Lemma 4.1.18,
namely that, in any regular local ring with maximal ideal M, if m, € M¥* — p#+!
and my € M? — M?*! then

mims € Mu+v _Mu+'u+1 .
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Theorem 4.2.12. Let R be a commutative local Noetherian Q-algebra with

maximal ideal M, fix n € N, let © = {61,...,6,} be a set of indeterminates and

let A = {61,...,6,} be a set of commuting derivations on R. Suppose P is a prime

ideal of T' = R[©; A] such that M = PN R.

(i) If P = MT then P is rep. rep. in T and is strongly rep. rep. if and only if M
is strongly rep. rep. in R.

(ii) Suppose that, with the notation of (4.1.5), all the eigenvectors for W on
(M/M?)# can be chosen from M/M?. If R is a regular local ring, then P is
rep. rep. in T,

(iii) Suppose that, with the notation of (4.1.5), all the eigenvectors for W on
(M/M?)# can be chosen from M/M? and that (M/M?)g/n is generated by
the eigenvectors for W. If R is a regular local ring containing a copy K' of
K = R/M such that, in the notation of (4.1.3), each element of K' commutes
with each element of W' (or, equivalently, with each of {wi,,...,w}), then

P is strongly rep. rep. in T'.

Proof. We first note that X;(P) C X;11(P) for each ¢ € N, provided every
prime in the right clique of P is linked to itself. In this case, and in the notation

In _ SmSm-1..-5108m418m-.. 55  Smi1...5 )
g Smt1Sm .- 81 = Smi1...5

for each ¢ and m € N. By Theorem 4.1.8, (A) will hold except when P = MT = 0.

(i) Since (M*/M*+')p is isomorphic to a direct sum of copies of R/M for each
t € N, M*T/M*™'T is isomorphic to a direct sum of copies of T/MT as a right or
left T-module. Thus

M'T/M"T is torsion free as a left or right T/MT module. (B)

Since the prime MT of T" can be linked to no other prime (any such prime would
necessarily contain MT by [G1, Lemma 7.3] (see Remark 4.1.1) and so would equal
MT by the incomparability result of Lemma 1.2.8(i)), MT is always rep. rep. in
T. Of course, if it is not linked to itself, (that is, by (B), or Theorem 4.1.8(ii),
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if it is zero) it will be strongly rep. rep.. Since, by (B), Bn(MT) = I,/J",,
in the case where MT is self-linked (A) becomes By(MT, MT) = Bn(MT) =
M™ 1T /M™T. We thus see from Theorem 1.3.11 that MT fails to be strongly
rep. rep. precisely when M™~ 1T = M™T for some m > 3 but MT # 0, that is,
when M™ = 0 for some m > 2 but M # 0.

Part (i) of the theorem now follows from Corollary 2.1.3.

From (i), the prime MT is certainly strongly rep. rep. when R is regular and
we can now restrict our attention to the case where P # MT. In particular,
as noted at the start of the proof, the identity (A) holds. We also assume that
the eigenvectors for W on (M/M?)# can be chosen from M/M?. Suppose that
Q € Xpm41(P) and that @ is linked to P by m non-trivial links. We wish to show
first that @ € Fund(P).

Let P' = P/MT, so that P'is a prime ideal of U = K[©; A] and recall that,
by Theorem 4.1.4, P' = (P' N Uy)U. By Theorem 4.1.7(i),

(Q/MT)NUp =775 ..y s (P 0 To) (©)

where 7f, 4.+, is the winding automorphism given by some choice, fi,..., fm,

from the set {e1,...,&:}, of all eigenvalues for W on M/M?. Thus, putting
Crm = (77 g (P'0Y Uo)) U
we have Q' = Q/MT = Cy,. Now, we can find gy,,...,g5, € M — M? such that
wgjy = ggw -+ MUT = fi(w)gg; + M*T

for each w € W and 1 < j < m. From this and the definition of the winding

automorphism 7y, ,
wgy; + M*T = g5 75 (w) + M2T
for all w € Up. It follows from (C') that, in the (U, U)-bimodule M™T/M™+1T,

Cmgfl oG, -+ Mm™HT _ U (T}I}}_..‘_l_fm(Pl M U0)> 9fs -G fm +Mm+1T
Mmtip - miT
Uy, .95, (P' 0 Up) + M™HT)
MmtlT
M™PpP' + pMmtiT
C
= MmHiT )

-
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from which we conclude that
ngl...gfmngP§5m+1...Sl. (.D)

(ii) Suppose henceforth that R is regular. Now (M™P)NR = M™*! while we
see from Lemma 4.1.18 that gy, ...gs, ¢ M™!. Therefore, gy, cigf, EM™P
and the bimodule

9fy o Gfm L + M™P

m = E
¢ T/Q Mm™pP T/P (B)

is non-zero. Now, we have already noted that M™T/M™ 1T is a free right T/MT-
module and so M™T/M™P is a free right T/P-module. Since (Gw)r/p is a
non-zero submodule, it must be faithful. By [G&W, Lemma 12.3}, then, G,, has
sub-bimodules G' > G" such that G'/G" is a torsion-free right 7'/ P and a torsion-
free left T'/Q)'-module for some prime ideal ' of T' with @ C @Q'. Of course, by

Theorem 1.8.7, @' € Fund(P) C cl.(P). However, Q € cl.(P) also and so, by
Lemma 1.2.8(ii),

CLK.dim(T/Q) = CLK.dim(T/P) = CLK.dim(7/Q") .
Consequently, @ = @' and we have shown that Q € Fund(P).

Part (ii) of the theorem follows.

(iii) Now, we assume that R contains a copy K’ of K and we write K "1©] for
the set of polynomials in ® over K’ where the coefficients are written on the left.

This set is contained in T and, as a left K-module is isomorphic to
U=T/MT =K[O;4]] .

Furthermore, as left K-modules, T' = MT + K'[©]. For each i € N, we write, in
the notation of (1.3.10),

D;=S;,nK'[0].

Then, S; = MT + D} and D} is a left K-submodule of K'[@] isomorphic to
D; = Si/MT. We assume also the other hypotheses of (iii).
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For each 1 <j <t, let u; € M/M? be the eigenvector corresponding to the
eigenvalue ¢; with u; € M such that z; + M? = u;. Then, for each i € N,

Diji; + M?T  U(D; NUy)g; + M2T
M2T - M2T

Uﬁ;(Di_l N Uo) + M2T
M2T

c MU(Dioy 0 Uy) + M2T

- M2T

_ MD;_y + M*T

h M2T '

N

Thus, since the p; generate M/M?,
SiM C MSi_y = M?T + MD,_, .

An induction argument now shows that, for any s and t € N with 1 <t < s,

SsSs—1...51=(MT+ D,))(MT + D._,)---(MT + D))
=Dy...D,+MTD,_,...D\+ .- 4 M*T17iT (F)
Recalling that identity (A) holds, it follows from (F) that

Im _ Swti...S2  Dhiy...Dy+MTD', ... Db+ -+ M™T
Tt Sm41-..51  Dii...D\+ MTD,, ... D, + -4 MmHT *

(@)

Since @ is m non-trivial links from P but is self-linked, we have to show that
Q € Apyi(P) for each k € N. Since we are assuming that each element of
K' commutes with each of w)} 41>++ Wy, the left K-module isomorphism from
K[©;A] to K'[0], restricted to Uy = K[wit,...,wy,], is a ring isomorphism to
the commutative subring Uy = K'[w]y,...,w},] of T.

Now, in Uy,
(D} NUg)(Dy NTy) = (D, 0 Up)(Dy N Tp) (H)

for any k£ € N. On the other hand, we see from Theorem 4.1.4, that

T "+ MT
e () - (e )

MT ~ MT \MT T MT \MT MT
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and hence

P=T(PNU)+ MT =T(D, U, +MT .

We can also deduce from Theorem 4.1.4 that

St . Sk AU T _ Sk ﬂU(')—{—MT T
MT ~\MT "°) MT ~ \MT MT MT

and hence

Sk = (SkOUNT + MT = (S N UDK'[0] + MT .

Since UgK' = K'Uy, (SyNU{)K'[O] C K'[O] and so
D, =Sy NK'[0] = (S NUHK'[O] = (D, NUHK'[O] .

Combining (H), (I) and (J), we deduce that
PD} =T(D, NU)(Sk N UYK'[0] + MTD),
=T(Se NU)(D] NUHHK'[O] + MT D},
C SkP

It follows from this and from (D) that

Qgs, -9 Dj... Dy C M™PD}... Dy C M™D)y ... D4P C Spsic.

(Z)

(7)

91

while A := g5 ...95.D}... Dy C Spik...S2. By Theorem 1.3.11, it is thus
sufficient to show that there is no v € T — P with Au C Sm+k.--51. We now
apply (F) with s = m + k and £ = 1 and note that, since A € M™T, we can

assume, for a contradiction, that

AuC M™TD) ... Dy+ -+ M™HE=1TDl 4 ppmthp

Ndvv, since R is regular, Lemma 4.1.18 shows that A ¢ M™+'T. Of course, since

T = MT + K'[©; A], we can insist that u € K'[@; A] and then
Au=gg ...95,D}...Dyu € M™TD ... D), .

We deduce that D}, ... Dju C D), ... D} whereby u € D C P.
This establishes part (ii1) of the theorem.
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Remark 4.2.13. With the notation of (4.1.3), we note that M/M? is a (right)

module over Uy = K[wi41,...,w,] where the action of the w; is given by
(m + M?)w; := wym — mwy + M?

for each m € M. In the notation of (4.1.5) and under the assumption that all
eigenvectors for W on (M/M?*)# can be chosen from M /M?, the hypothesis of
Theorem 4.2.12(iii), that (M/M?)gr/p is generated by the eigenvectors for W, is
equivalent to requiring that the module (M/M?)y, be semisimple. "

We are now in a position to establish the main result of Chapter 4.

Corollary 4.2.14. Let R be a commutative Noetherian Q-algebra. Fix n € N,

let © = {6,...,0,} be a set of indeterminates and let A = {6y,...,6,} be a set

of commuting derivations on R. Suppose P is a prime ideal of T = R[©; A] such

that M = PN R.

(i) If P = MT then P is rep. rep. in T and is strongly rep. rep. if and only if M

is strongly rep. rep. in R; this case is characterised in Corollary 2.1.3.

(ii) If Ry is a regular local ring, then P is rep. rep. in T.

(iii) Let Ry denote the completion at MRy, put K = Ry /MRy and write K#
for an algebraic closure of K. Let K be a finite algebraic extension of K such

that, with the notation of (4.1.5), all the eigenvectors for W on K/IM% Qx K#
M

can be chosen from %% R K. Suppose that (1\14‘[42% Rx f{'>? is gener-
ated by the eigenvectors for W. If Ry is a regular local ring, and if there
exists an image K' of K in Ry such that, in the notation of (4.1.3), each
element of K' commutes with each element of W' (or, equivalently, with each

of {wi,y,...,wy}), then P is strongly rep. rep. in T.

Proof. By Remark 4.1.1, it is sufficient to assume that R is a local ring
with maximal ideal M and we do so. We note that part (i) is then just part (i) of
Theorem 4.2.12. We consider parts (ii) and (iii).

Put K = R/M and suppose R is regular. Then, in the notation of (4.2.3) and
by Theorem 4.1.19(i), the completion R is regular. By Cohen’s structure theorem
(Theorem 4.1.19(i1)), R = K[[Y3,...,Y:]] for indeterminates {¥3,...,¥;} and for
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some t. Take K to be a suitably large finite algebraic extension of K such that all
the eigenvectors on (MR/M Zﬁ)# can be chosen from (MR/M*R) ®x K. Now
Rox K = K[vi,... , Y3]] is also regular and, thus, in the notation of (4.2.5)
and recalling Definition 4.1.15, —]% is an equicharacteristic complete regular local
Noetherian Q-algebra to which we can apply Theorem 4.2.12. Finally, Lemma 4.2.4
and Lemma 4.2.11 complete the proof. "

The following is an immediate consequence of Corollary 4.2.14(i) and (ii).

Corollary 4.2.15. Let R be a commutative Noetherian Q-algebra and let T
be an iterated differential operator ring of commuting derivations on R. If R is a

regular ring then T' is a rep. rep. ring. "

§4.3 Some Examples

Example 4.3.1. As an easy illustration of the above results, we can now present
an alternative formulation of Example 2.2.7. Thus, consider R = Clz], T =
R[#6; xg‘i;] and P = gT 4 6T. Then, M = PN R = zR and clearly Ry is regular
(Definition 4.1.17) so that, by Corollary 4.2.14(i1), P is rep. rep. in T. Indeed,
since the eigenvector @ + M? Ry generates (M Ry /M?Ryz) o We see from Corol-
lary 4.2.14(iii) that P is strongly rep. rep. in T. It may be instructive to show this
by calculating, in the notation of (1.3.10), the bimodule B,,,(P) directly (since P
is co-Artinian, By, (P) = I,/ J},) and we do this in the same way as we derived the
identity (G) in the proof of Theorem 4.2.12. Now, the only links between primes

which contract to M are the trivial links and the links
2T + (0 — o — V)T~ zT + (0 — )T
for all a € C, corresponding to the eigenvector z + M2R,,. Tt follows that

Xn(P)={zT+ (0 -a)T: 2 €{0,1,2,...,(n —1)}} .
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So, in the notation of (1.3.10), Sp = 2T +6...(8 — n + 1)T and therefore, by an

induction argument,

Sn...S VR lanl-igie — 1) —2)i1. . (9 — )T
S 81 Y00 —1)i1(0 —2)i2 . (—i+ 1)1 T

for each n > 2. Thus,

Bn_y(P) =

Vo 1= ma9"_1—a(0 — iz @—n+l+a) +85,...5 € B, _1(P)— {0}
for each @ € {0,1,2,...,(n — 1)} while
T+ (0 —a)T) ya =0.

Accordingly,
Bu1(eT+ (0 —a)T,P)#0

and so, by Theorem 1.3.11,
T+ (0 —a)T € A, .
We have shown that An(P) = X,(P) for each n € N. "

Example 4.3.2. An example satisfying all the hypotheses of Corollary 4.2.14(iii),
except that Ry is not regular, with P rep. rep. but not strongly rep. rep. in T.
Thus, in the situation of Corollary 4.2.14(ii), regularity is not a necessary

condition. Consider R = C[t?,t%], T = R[f;t<] and M = t?R + t*R. Then the

prime P = MT + 0T is rep. rep. in T although Ry is not regular. To see this, we

note that the links are the trivial links together with
MT + (8 — a = 2)T~~o> MT + (6 — )T
corresponding to the eigenvector t> + M?Ry; € MRy /M? Ry, and
MT + (0 ~a —3)T~~>MT + (§ — )T
corresponding to the eigenvector ¢* + M?Ry; € MRy /M2 Ryy. Tt follows that,
Xn(P)={MT+ (0 —-a)T:ac{0,2,3,4,...,3(n —1)}}
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for each n € N and so
r.cl(P) = {MT + (0 —a)T:ac{0,2,3,4,...}}.

. 2 nl 2n1 4l )
On the other hand, it can be seen that % HL";I%T L and &5EEM T are ideal

links from MT +(6—2n)T to P and from MT +(8 — (2n + 1)) T to P respectively.
(Compare these bimodules with the bimodule G, defined at (E) in the proof of

Theorem 4.2.12.) Theorem 1.3.7 now shows that P is rep. rep..

'To see that P is not strongly rep. rep. in T', we note, from the description of
Xn(P) above, that

S = MT +6(6 — 2)(6 ~ 3)(6 — 4)... (0 — 3(n — 1))

and then, since the eigenvectors generate MRy /M? Ry, a similar argument to
that for Example 4.3.1 or for (@) in Theorem 4.2.12 shows that the bimodule

By—1(P) can be written in the form

Yo M Ti6i(9-2)  (6-3)F H;=2(e~3j+2)"+1—5(0—3j+1)"+1‘f(9—3j)"+1‘5T

" M““e"(o—z)i“l(e—S)“lH;;;(amaj-{-z)"f(9—3j+1)""-"(3—3j)""jT

i=0
for, since P is co-Artinian in T', B,;(P) = —g—"—gf— Now, for each m € N,
.

Mm™ B thR+t2m+1R
Mm+1 t2m+2R+t2m+3R :

It follows that S, ... S is generated by the set

{t°6°(0 — 2)°(6 — 3)' [ (6 — 37 +2)"177(0 — 3j + 1)1~ (g — 35)i+1—7

j=2
0<i<n-lands=2(n—-1-i)or2(n—1—1)+1but not 1}
and that none of these elements is contained in S, ... S;. Finally, we see that

(MT+(e—s)).tse*’(e—z)"(e—s)"]‘[;=2(a—3,‘+2)"+1-i(9~3j+1)"+1—f’(0—3j)*+1~5 C 8p..5

for each 0 <4 <n —1, whenever s = 2(n — 1 — i) or 2(n — 1 —¢) + 1 but not 1,
and so

An(P) = {MT + (0 —a)T : a € {0,2,3,4,...,2n — 1}} .
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Clearly, therefore, A,(P) G Xn(P) except when n = 1 or 2. For instance, we can

find a chain of links
MT + (6 — 6)T'~~>MT + (0 — 3)T~~>MT + 6T ,
each of which corresponds to the eigenvector t3 4 M?Rjs, and a chain of links
MT + (80 — 6)T~~> MT + (8 — 4)T~~> MT + (6 — 2)T~~> MT + 6T,

each of which corresponds to the eigenvector ¢2 + M2Rys. Then, MT 4 (0 —6)T ¢
As(P) although MT + (6 — 6)T € A4(P), basically because (¢3)? € M3, while
() ¢ M. .

Example 4.3.3. Furthermore, in Corollary 4.2.14, it is easy to see that the
module (MR /M Ry) R/M need not be generated by the eigenvectors when P
is strongly rep. rep., even for P # MT. For, we take R = Clz,y], 6(z) = y,
6(y) = 0, T = R[f] and M = zR + yR. Then, up to multiplication by scalars,
there is only one independent eigenvector, y + M2 Ry, which of course does not
generate (M Ry /M? RM)(C’ and the corresponding link is the trivial link, Thus, if
P =zT +yT + 6T, then X,(P) = {P} for all n € N and, since P is co-Artinian,
we see that

B(P,P) = Bp(P) = I/ J}, = P™1/P™

which is obviously non-zero. So P is strongly rep. rep. by Theorem 1.3.11. For a

less trivial example, we could have taken §(y) = y and we would again have found

; P to be strongly rep. rep.. However, we omit this calculation. =
| Remark 4.3.4. In fact, we do not have any example of a prime satisfying the
hypotheses of Corollary 4.2.14(ii) which is not strongly rep. rep. or of a prime
which fails to be rep. rep. when Ry is a domain. Certainly, if Ry is not a
domain, it is easy to obtain examples which are not rep. rep.. Indeed we have

already seen one in (2.1.5), (2.2.9) and (2.3.16) which, in our present notation, we

write as R = <Cm[§]>, T = R[6; a:%] and M = zR. Then, as well as the trivial links,

we have the links
T+ (0 —a—1)T~~>2T + (6 —a)T
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for all @ € C, corresponding to the eigenvector z - M? Ry;. However, for any prime
P of T, Fund(P) is finite by [Mii2], T being a P.I. ring. (The identity (ab—ba)? = 0
holds for each a and b € T'.) Consequently, no prime of T, other than MT, is rep.
rep.. For instance, taking P = zT + T, it can be seen that, for each n € N,

Xu(P)={MT + (0 —a)T:a € {0,1,2,...,(n — 1)}}
while {P} fn=1
A”(P):{{P,MT+(9—1)T} ifn>2. .
Example 4.3.5. As a more interesting example than (4.3.4), we can take R =
S—[;"%, 6(z) = 2z, 6(y) = 3y, () =0 forall @ € C, T = R[§; 6] and M = zR+yR.
Then P = 2T 4 yT + 6T is not rep. rep. in T, although in this case, Fund(P) is

infinite. The non-trivial links are of the form
MT +(0 —a —2)T~~s>MT + (0 — )T
MT + (0 — o — 3) T~ MT + (0 — )T
corresponding respectively to the eigenvectors z+M?*Rys and y+M? Ryy. It is easy
to see that the primes MT + (8 — 2n)T and MT + (6 — 3n)T are all fundamental,
the bimodules % and % respectively being ideal links to P.
Indeed, while we omit the details of the calculation, which are similar to those of
Example 4.3.2, it can be shown that, for each n € N,
Xn(P)={MT + (0 —-a):ac{0,2,3,4,...,3(n —1)}}
An(P) ={MT + (8 — ) : o =2m or 3m, where 0 <m <n—1} .

an

As in Example 4.3.2, A,(P) & Xn(P) except when n = 1 or 2. However, unlike
(4.3.2), P is not even rep. rep. For example, MT + (8 — 5)T', which arises by
connecting together a link corresponding to each eigenvector, is not fundamental,

essentially because zy = 0 in R. "
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§4.4 Notes

lterated skew polynomial rings over a field were introduced by Noether and
Schiedler in 1920. In particular, in [N&S, Satz III], they proved such rings are
Noetherian, generalizing Hilbert’s original results for ordinary polynomial rings,
[Ht, Theorems I and II]. While Noether and Schiedler were primarily interested
in the “unmixed” cases where either all derivations are zero or all automorphisms
are the identity, the case of a general skew-polynomial ring in one variable over a
division ring was studied in detail by Ore in [O].

That the right Noetherian condition on any ring R is inherited by iterated
skew polynomial rings over R, can be found in [G&W, Theorem 1.12].

The material of §4.1 has all appeared elsewhere. We note the following specific

references.

The second layer condition for iterated differential operator rings of commut-
ing derivations over a commutative Noetherian ring, was established in [Be, The-
orem 7.3] although whether the strong second layer condition holds appears to be
an open question. (See also the comments in §5.4.)

The terminology and notation of (4.1.1)—(4.1.8) is taken from [G2] as is the
classification of the second layer links in a differential operator ring.

Lemma 4.1.2 was first proved for commutative Noetherian Q-algebras in
[Sb, Theorem 1]. For noncommutative Q-algebras, the result for minimal com-
pletely prime ideals follows from [D1, Lemma 6.1} and this was generalized to all
minimal primes in {Ga2, Lemma 3.4]. The version which we have used is taken
from [G&W, Lemma, 2.20].

Theorem 4.1.4, quoted from [G2, Theorem 2.9], is, as noted, a special case of
[P2, Theorem 4.3].

Lemma 4.1.6 is part of [Z&S, Chapter VII, §11, Corollary p226].

Theorem 4.1.7 combines [G2, Theorem 5.8] and [G2, Theorem 5.11], while
Theorem 4.1.8 is taken from [G2, Theorem 6.1]. Corresponding results to these

were first proved in [Si] for the case of a single derivation.
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The theory of commutative local rings began with the 1938 paper of Krull
[Kr], where the question of the structure of complete local rings was raised. This
problem was solved in 1946 by Cohen [C]. However, our main sources in (4.1.9)-
(4.1.19) are [N1], [Na] and [Z&S].

Theorem 4.1.10 is a standard result. Qur specific reference is [N1, §5.5 The-
orem 4].

Theorem 4.1.11, can be found in this form in [Na, Corollary 17.6] but is
essentially due to [C].

For Theorem 4.1.12, we have combined [N1, §5.5 Proposition 9 and Theo-
rem 6]; Corollary 4.1.13 is a well known consequence.

Theorems 4.1.14 and 4.1.16 are quoted from [Z&S, Chapter VIII, §6, The-
orem 15(c) and §12, Theorem 27] respectively. The latter is originally due to
Cohen.

Our reference for Lemma 4.1.18 is [N1, §4.6, Lemma 3].

Part (i) of Theorem 4.1.19 is taken from [N1, §5.6, Corollary to Theorem 8] and
part (ii) (Cohen’s Structure Theorem), from [Z&S, Chapter VIII, §12, Corollary
to Theorem 27].

That a derivation on a commutative local ring extends uniquely to the com-
pletion (Lemma 4.2.2) is shown on [G,L&R, p16] but without explicitly defining
the extension.

Lemma 4.2.4 is a new result, however part (i) is based on the proof of
[Ma, Theorem 3.6] which established a similar result for commutative rings.

Lemma 4.2.6 appears to be a new result. That derivations on a field ex-
tend uniquely to derivations on a separable algebraic extension field, is proved in
[Z&S, Chapter II, §2, Corollary 2’ to Theorem 39] and the analogous statement of
our result for L-derivations is also well known (see for instance [Mu, §1]).

Lemma 4.2.9 is proved in [Lt, Corollary 2.4].

Lemma 4.2.10 is perhaps a well known result, however we do not have a
specific reference for it.

Lemma 4.2.11, Theorem 4.2.12, Corollary 4.2.14 and Corollary 4.1.15 are all

new results.
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Chapter 5 : Ore Extensions

Having studied repleteness in differential operator rings, it is natural to ask

what happens in Ore extensions of the form
S = R[b,...,0p;01,...,0,] = R[O; %],

where R is a commutative Noetherian ring and ¥ = {oy,...,0,} is a set of com-
muting automorphisms on R (see Definitions and Notation 4.0.0). (Such rings
satisfy the second layer condition by a similar argument to that of [Be2, Theo-
rem 7.3].) We might expect to obtain similar results to those of §4.2. To date,
unfortunately, the second layer links in S have only been calculated for the case of
a single automorphism (see [Po}) and we now examine repleteness in this situation.

Our main result in the case when § = R[f;0] is that a prime P is rep. rep.
in S when Rpng is a regular semilocal ring (Theorem 5.2.4). Again, for some
primes we obtain more precise results (Theorems 5.2.1 and 5.2.3). In particular,

P is always rep. rep. if it contains § or if P = (PN R)S and in these cases we give

conditions for strong repleteness.

§5.1 Prime Links in Ore Extensions and Preliminaries

Notation 5.1.1. Let R be a commutative Noetherian ring, ¢ an automorphism
on R and form the Ore extension S = R[#;0]. Let P be a prime ideal of S and
put A = P N R which, in general, is not a prime ideal of R. Following [Po], we

consider the three cases:
(1) 6 € P;
(2) 6 ¢ P and P = AS;
D
(3) 6 ¢ P and P2 AS.
Type (2) primes are known as lower prime ideals and type (3) primes as upper

prime ideals. -

The following classification of type (1) primes is well known.
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Lemma 5.1.2. Adopt the notation of (5.1.1) and assume that P is a type (1)
prime. Then A is a prime ideal of R and P = A + §S. Conversely, if I is a prime
ideal of R then I + 65 is a type (1) prime of S.

Proof. Clearly, when § € P, P = (PN R) +6S. Now suppose that I is an ideal
of R. It is easy to check that the map

rg+r10+---rj6jl—>r0 +1,

for ro,...,r; € R, is a ring epimorphism from S to R/I with kernel 6 + I. Thus
0S + I is a prime ideal of S if and only if I is a prime ideal of R. =

When P is an upper or a lower prime of S, PN R need not be prime; however,
the next result, taken from [I, Theorems 4.1 and 4.2], shows that it is at least

semiprime.

Theorem 5.1.3. Adopt the notation of (5.1.1) and assume that P is either a
lower or an upper prime ideal of S. Then A = (\._, 0*(J) for some prime ideal
J = o™(J) of R and some n € N. Conversely, if I is an ideal of R such that
I =N, 0'(K) for some prime ideal K = o™(K) of R and some m € N, then IS

is a lower prime ideal of S. "

Definitions 5.1.4. (i) A semiprime ideal of the form of J or I arising in the
previous theorem is called o-cyclic.

(ii) By a o-invariant subset of R or S, we mean a subset I such that o(I) C I.
(We extend o to an automorphism on S by defining o(8) = 8.) For such a subset,
ICo™N(I)C o7%1)C -+, and so, if I is a right or left ideal of R or S, the
Noetherian condition shows us that I = o(I). Clearly, a o-cyclic semiprime ideal
of R is o-invariant. We note, moreover that, if P is an upper or lower prime of S,
then P is o-invariant. For in this case, since P D 0P = o(P)f, we deduce that
o(P) C P by the primeness of P.

(iii) A o-invariant ideal I of R is called o-prime provided, for every two o-
invariant ideals B and C of R such that BC C I, either B C I or C C I. It is
shown in [I, Corollary 3.4] that, by the Noetherian hypothesis on R, o-cyclic and

o-prime ideals are the same. n
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The following result will frequently be useful. The proof for the first part is
taken from [G&M, Lemma 1.4].

Lemma 5.1.5. Adopt the notation of (5.1.1) and let X be a ¢-invariant Ore
set in . Then X is an Ore set in S. In particular, when P is an upper or lower

prime of S, Cr(P N R) is an Ore set in S.

Proof. Letce€ X andlet f = fo+ fi6+--- f;6/ € S. Since X is an Ore set in
R, we can find dy € X and by € R such that fydy = cby. Thus

fdo = cbo + f1o(do)0 + -+ + fio? (do)6?.
Again, we can find d; € X and & € R such that fy o(dp)dy = by and so
fdoo™(dy) = cboo ™ (dy) + cbif + - + fr07 (do)o? ™ (dy )8,
Continuing in this way, we can find dy,...,d; € X such that
fdoo™(d1)...079(d;) = cg
for some g € S. Since X is o-invariant and multiplicatively closed,
doo ™ (dr)...07i(d;) € X

and this establishes the right Ore condition. The left Ore condition holds similarly.
For an upper or lower prime ideal P of S, we have seen in (5.1.1) that PN R
is a semiprime ideal of the commutative ring R and thus Cr(P N R) is an Ore set

in R. We have also seen that P N R is o-invariant so that
o(C(PNR))CC(e(PnN R)) CC(PNR).

Thus C(P N R) is a o-invariant Ore set in R to which we can apply the first part

of the lemma, n

Before discussing the link graph of an Ore extension, we require some further
preliminary terminology which will give us a description of the upper prime ideals.

The comments of (5.1.6) to (5.1.8) are contained in [I] and [Po].
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Remarks 5.1.6. Given a o-cyclic ideal, 4, of R, we have seen by Theorem 5.1.3
that the ideal AS of S is always a lower prime ideal of S. As in this theorem, we
can write A = ()i, o*(J) for some prime ideal J = 0®(J) of R and some n € N.
Furthermore, we write R for the ring R/A and 7 for the automorphism induced
on R by . By [I, Theorem 4.3], there can be upper prime ideals of S lying over
A only in the case when & has finite order. When this condition holds, we denote

the order by m and put t = ™. "

As we now see, the finiteness of the order of 7 is, in fact, a sufficient condition

for upper primes to exist. The result is taken from [I, Theorem 4.4].

Theorem 5.1.7. Adopt the notation of (5.1.6) and let R’ be the fixed subring
of R under the action of &. Then, —Rﬁ[t] is the centre of R[6;7]. Furthermore, the
upper primes of R[f; 7] which intersect R in {0} are in one to one correspondence

with the non-zero primes of _Ri[t] which do not contain t and intersect & in {0}.m

Poole’s description of the links between upper prime ideals uses this corre-
spondence after first localizing at Cr(A), which of course, is an Ore set in S by
Lemma 5.1.5. We outline the required details, extracted from Irving’s proof of

Theorem 5.1.7, as follows.

Remarks 5.1.8. (i) Assume we are in the situation of (5.1.6) and (5.1.7). Let Q
be the classical quotient ring of R and extend & to Q in the natural way. By the

Chinese Remainder Theorem,

Q ~on g
7/A) = o

a direct sum of the quotient fields K; of R/o*(J). We identify these isomorphisms

Q = e3?:1 (

where convenient. Furthermore, since each natural epimorphism
Q
0; : _

Q - EH'I(J/A)Q

¢ (g)+7 1 (J/A)Q
has kernel 7¢(J/A)Q, we see that the K; are cyclically permuted by &. Indeed,

(g1 +7(J/A)Q,..., ¢+ (J/A)Q)
= (7(gn) +7(J/A)Q,...,5(gn-1) +T"(J/A)Q)  (4)

100




for ql’...,Qn 6 Q'
(ii) Denote by k the fixed subring, Q%, of Q under the action of 7. We observe

from (A) that any element of k¥ can be written in the form
(5(a) +7(J/4)Q, ... ,5™(9) +7"(J/A)Q)

for some ¢ € Q such that "(¢) = ¢. Thus, regarding Q as a direct sum of copies
of K, k is embedded diagonally in Q and is isomorphic to the fixed subfield K "
of K, under the action of 7. Furthermore, since the order of @ on R is finite
(and equals m), the order of " on K, is also finite, and so, by [McC, Chapter 2,
Theorem 3|, the degree of the extension k C K, is finite. Thus, K, and hence Q
are finite dimensional vector spaces over k.

(ili) By Theorem 5.1.7, the upper prime ideals of S lying over A are in one to
one correspondence with the non-zero prime ideals of k[t] which do not contain t;
that is, with the non-trivial monic irreducible polynomials of k[t] other than t. We
note that k[t] is the centre of the ring Q[6; 5] which can be identified with the right
Ore localization of R[f;5] = S/AS with respect to the set of regular elements of R.
Bach upper prime ideal of this localization is centrally generated by a non-trivial
irreducible monic polynomial B[t] of k[t] other than t. Following [Po], we denote
the corresponding upper prime ideal of S by [4,7(2)]. ]

We will now consider the right clique of each type of prime in turn. Qur first

result, for type (1) primes, can also be found in [Po, Theorem 6] and its proof.

Lemma 5.1.9. Adopt the notation of (5.1.1), let P and Q be prime ideals of S

and suppose that Q~~>P. Then, Q) is a type (1) prime if and only if P is a type
(1) prime; in this case, either Q = P or Q = o(P).

Proof. That 8 € @ if and only if § € P is proved in Lemma 2.3.5. The

second part of the result follows from Lemmas 2.3.6(i) and 2.3.7. m
The proof of the first part of the next Lemma is taken from [Po, Theorem 6].

Lemma 5.1.10. Adopt the notation of (5.1.1) and suppose that P is a type
(1) prime of S. Then o(P)~~~>P and, furthermore, P~~>P if and only if

ann(s(a)uo-1(a)) (4r) S 4.
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Proof. We first recall that, by Lemma 1.2.6, there is a link Q~~> P between
prime ideals ) and P of S if and only if QQHPP is faithful as a left S/@Q-module
and as a right S/ P-module.

We let ¢(P) N R = B and observe that

o(P)NP = (ANB)+6S

while
o(P).P = (B +65).(A+0S)=BA+ 607 (B)S + 6AS + 6°S
=BA +0AS + 6>8S.

Now, let s = {=0 ri0* and suppose s. (o(P) N P) C o(P).P. In particular, s6 €
o(P).P, whence
edwl('f‘o) =ref € A,

Thus, 07 (ro) € A, so 7o € o(A) C o(P) and hence s € o(P).
We have established that "Erl()}),)‘jlpp is faithful as a left S/¢(P)-module and

similarly it is faithful as a right S/P-module. Consequently, o(P)~~sP.

For the second part of the lemma, we note that
P?=(A+468).(A+6S)=A*+0 (A+07'(4)) S +625.
First suppose that s € o(A) — A and sA C A%. Then, certainly s € $ — P while
sP =3(A+6S)=3sA+00""(s)S C A% + 6AS C P?

from which it follows that s/p(P/P?) is unfaithful. Similarly, if we can find some
t € 071 (A) — A such that At C A?, then (P/P?)g,p is unfaithful. In either case,
P~+/>P. This establishes the forward implication.

Now we suppose that P~/ P. First assume g/p(P/P?) is unfaithful. Then
we can find s € §— P such that sP C P%. Since § € P, we can assume that s € R.
In particular, s6 = 6071 (s) € 0 (A + 071(A)), whence s € A+ o(A). Again since
A C P, we can assume that s € g(A) — A. Now, by the choice of s, s4 C P2 N R;

so we see that sA C A%, By a similar argument, if (P/P2%)g /p is unfaithful, we
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can find some ¢ € 071(A) — A such that At C A%. This establishes the reverse

implication. n

Remark 5.1.11. In particular, it follows by this last result that, for type (1)
primes, if A~~>A then P~~~>P. This is of course immediate from the definition
of links once we notice that P/0S = A. (See also Lemma 2.3.7.) However, the
prime zClz] of C[z] is a type (1) prime which is linked to itself while the contraction

0 to the coefficient ring C is not. "

The next result follows immediately from the previous two lemmas. The last

part of the Theorem is the conclusion of [Po, Theorem 6].

Theorem 5.1.12. Adopt the notation of (5.1.1) and suppose that P is a type (1)
prime of S. For each n >0,

Xn(P) = {ai(P):OSiSn——l},
provided ann(,(ayus-1(a)) (—f‘y) C A, while
Xo(P) = {o™1(P)}
otherwise. In either case,

r.cl.(P) = {o*(P):i >0} . "

As we might expect, the situation for lower prime ideals is essentially the

same as for commutative rings. The result is proved in [Po, Theorem 9].

Lemma 5.1.13. I, in the notation of (5.1.1), P is a lower prime ideal of S, then
r.cl.(P) = {P}. 0

Remark 5.1.14. As we shall see in the proof of Theorem 5.2.3, if P is a lower
prime ideal of S and if J is a prime ideal of R minimal over the o-cyclic semiprime
ideal P N R of R, then P~~>P if and only if J~~>J. By Lemma 5.1.13, then,
Xn(P)={P} when n =1 or J~~%J and is empty otherwise. n

We now turn our attention to the right clique of an upper prime ideal of S.
The first result which we note is taken from [Po, Lemma 10]. We include the proof

for the sake of completeness.
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Lemma 5.1.15. Adopt the notation of (5.1.1), let P and ) be prime ideals of
S and suppose that Q~~>P. Then, Q is an upper prime if and only if P is an
upper prime; in this case, Q N R = PN R.

Proof. That @ is an upper prime if and only if P is, follows from Lemmas 5.1.9
and 5.1.13. We now assume that @) and P are upper prime ideals with Q~~<P. By
Lemma 5.1.5, Cr(PNR) is an Ore set in § and so, by Theorem 1.2.2, Cr(PNR) C
Cr(Q N R). Similarly, Cr(Q N R) € Cr(P N R) and thus Cr(Q N R) = Cr(P N R).
It follows easily that QN R = PN R. "

We next show that any upper prime is linked to itself. The argument is taken

from [Po, p440].

Lemma 5.1.16. With the notation of (5.1.1), let P be an upper prime ideal of
S. Then P~~>P,

Proof. We put A = PN R and recall that, by Lemma 5.1.5, C = Cg(4) is an
Ore set of S. So we can replace S with SC~! and P with PC™! (see Remarks 2.3.1);
we assume that this has been done. In this case, and putting R = R/A in the
notation of (5.1.6) and (5.1.8), R = Q(R) and k[t] is the centre of R[f; 5] which we
identify with S/AS. We write B(t) for the central irreducible polynomial of S/AS
such that P = [A,5(t)]. Thus,

P =AS+p(t)S

for p(t) € S such that p(t) + AS = p(¢). Evidently, p(t) is central in $ modulo AS

and it is easy to see that
P? = A%S + p(t)AS + ASp(t) + p*(1)S .
Suppose that Pd C P? for some d € S. Then, writing p = p(t),
pd = ay + pag + asp + p°s
for some a; € A%S, as, a3 € AS and s € S. Thus,

pS(d —ps) € (AS + Sp)(d — ps) = AS(d —ps) + S(a1 + paz + azp) € AS
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and, since AS is a prime ideal of S,
d—ps € ASCP.

Thus, d € P and so we have shown that (P/P?)g/p is faithful. Similarly, P/P? is
faithful and it follows from Lemma 1.2.6(i) that P~~~ P. [

Notation 5.1.17. Adopt the notation of (5.1.6) and (5.1.8), let P = [4,p(t)] be
an upper prime ideal of 5. Assume that we have localized S at Cr(A). Now, if
A =0, then P is centrally generated by p(t) and so r.cl.(P) = {P}. In this case P
is trivially rep. rep. and, in fact, since no power of P is zero, it is easy to see from
Theorem 1.3.11 that P is strongly rep. rep. in S.

So, assume that A # 0. Let A = A/A?, which is a finitely generated right
R-module and, since 7 has finite order here, a finite dimensional right vector space
over k. Let {@1,...,@n} be a basis for A over k and we note that this induces a basis
A= {CZ;‘ :1<73<n,0<¢ < m— 1} of the right k[t]-module AS = ASJA?S.
Let & be the invertible k-linear operator on A induced by the action of ¢ on A.

For each i and j € {1,...,n}, let u; ; € k such that

n

(@)7 =) s

=1

and let U be the matrix (u; ;).

Finally, let & be the algebraic closure of k and, for each a € k, let ug(a) be

the minimal polynomial for o over k. n

The next result is taken from [Po, Theorem 13], the main result of that paper.
Together with Theorem 5.1.12, Lemma 5.1.13 and Lemma 5.1.16, it completes the
description of the link graph of S.

Theorem 5.1.18. Adopt the notation of (5.1.1), (5.1.6), (5.1.8) and (5.1.17).
Assuine that A is a non-zero o-cyclic ideal of R. Let Q = [A,q(t)] and P = [4,5(2)]
be distinct upper prime ideals of S and let §(t) = px(a) for some a € k. Then
Q~~r>P if and only if B(t) = pp(a/A™) for some non-zero eigenvalue A of U. =
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§5.2 The Repleteness of Ore Extensions

We recall from (5.1.1) that, for a type (1) prime P, A = PNR is a prime ideal
of R. The next result shows that strong repleteness of the contraction carries over

to P.

Theorem 5.2.1. With the notation of (5.1.1), let P be a type (1) prime of S.
Then P is rep. rep. in § and, furthermore, if A is strongly rep. rep. in R, then P
is strongly rep. rep. in S.

Proof. Since 4 is a regular normal element of S and S/6S is commutative,
it follows from Theorem 2.3.14(ii) that P is rep. rep. in S. Now, from the proof
of Theorem 2.3.14(ii), we see that, for strong representational repleteness to be

preserved, it suffices to show that, for each n € N and all Q € An(P),

o(Q) € Any1(P) . (4)

By Theorem 5.1.12, r.cl.(P) is locally finite, so, by applying Theorem 1.3.11
we assume that B,_1(Q,P) # 0. So, in the notation of (1.3.10), suppose that
be Spe1...51N8,...5, that there is no element ¢ of S, regular modulo P,
such that bc € S,,...S; but that Q6 C S, ... S;. Now, since 8 € P, Lemma 2.3.5
says that 6 € I for all I € r.cl.(P). Thus, § € S; for all t € N and so b €
Sn... 851N Spg1...592. Let c € .5 and suppose that

gbCESn+1...S1 . (B)

We claim that
bc € Sp... 5 ()

from which it will follow that ¢ is not regular modulo P.

Since ¢ € I for each I € r.cl.(P), we can write, for each ¢ € N,
S; =05+ D;

for some ideal D; of R. By Lemma 5.1.10, there is always a link o(I)~~T for
each I € r.cl.(P) and so, ¢(S;—;) D S; or, equivalently, o=1(S;) C S;—1. Then,

S0 = 90‘_1(5,') C 0S5;_4
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from which we see that
Sn+1...51=95n...51+Dn.|.1...D1. (D)

It is easy to see that (C') follows from (B) and (D).
Furthermore, 0(Q)# = 0Q and it follows that ¢(Q)6b € S,1y...S;. Thus,
Bn(Q, P) # 0 and, by Theorem 1.3.11, this establishes (A4). "

Remark 5.2.2. Tt is possible for a type (1) prime P to be strongly rep. rep. in $
even when A is not strongly rep. rep. in R. (See, for instance, Remark 6.2.2.) In
fact, when o is the identity, we shall see in Theorem 6.2.1 that type (1) primes are
always strongly rep. rep. and this also follows from the proof of Theorem 5.2.1.
However, in Example 5.3.2, we will see that type (1) primes are not always strongly

rep. rep. in general. -

For an upper or lower prime P, the contraction A = PN R need not be prime.
However, we recall that PN R =, 0*(J) for some prime J = 0*(J) of R and
some n € N. We observe that, since ¢ is an automorphism, the repleteness of
o'(J) and the question of whether it is linked to itself, will be the same for each
t. We now show that, when P is a lower prime, the repleteness of P is determined

by that of J, as follows.

Theorem 5.2.3. With the notation of (5.1.1), let P be a lower prime ideal of
S. Then P is rep. rep. in S. Furthermore, letting J be a prime ideal of R minimal
over PN R, P is strongly rep. rep. in S if and only if J is strongly rep. rep. in R.

Proof. By Lemma 5.1.13, the clique of P is a singleton and therefore it is
certainly rep. rep. in S.
Recalling that PN R = A and P = AS, it is easy to check that
(A7 /AT, 4 is faithful if and only if (P?/Pitl) g p is faithful, (A)

for each j € N, and that these statements are equivalent to those for left modules.
Let J be as described in the statement of the theorem and assume that » is minimal

with the property that o™(J) = J. We now show that
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(A7 /A7) g, 4 is faithful if and only if (J7/J7F 1) g, is faithful. (B)

For, suppose that (A7/A7)g, 4 is faithful and let » € R be chosen such that
Jir C Ji*1, Clearly, then,

n—1 jt+1 n Jjt+1
Alr, (H a’(J)) - (H ai(J)) C AITL,

By the faithfulness of (47 /47*1)g /A» We see that

n—1 j+1
r. (H a"(J)) CACJ
=1
whence r € J.

| Conversely, suppose that (J7/Ji+1) ryJ is faithful and let » € R such that
Alr C ATt We observe that

n-1 J n J
Ja. (H a’(])) 7 C (H af(J)) o C Alr C ATHY C Jitt
i=1 =1

By the faithfulness of (J7/JiT1), /7, it follows that

(ﬁ ai(J)) rCJ
i=1

whence r € J. Now, we note that ((cr’:(J))j/ (ai(J))j+1) R o) is faithful for
| each 1 <1 < n, since ¢ is an automorphism. So, by a similar argument, we could
| deduce that r € o?(J) for each 1 < i < n. Thus, r € A.

| By (A) and (B) we have established that, for each j € N,

(J7/J7H ), 5 is faithful if and only if (P7/P7*Y)gp is faithful, ()

and that these statements are equivalent to those for left modules. Taking j =1
in (C'), by Lemma 1.2.6, J~~J if and only if P~~>P. In the absence of such
links, of course, both J and P are strongly rep. rep.. So assume that the links

exist. Now, in the notation of (1.3.10),

___pijpit
Bj(P,P) = Bj(P) = Z(Pi[PiFiyg,,
and Jj/Jj+1 )
Bilh )= BilD) = g55/ 77y
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where Z indicates the right torsion submodule. It follows, by [G&W, Lemma, 7.3],
that B;(P, P) # 0 if and only if (Pj/Pj"'l)S/p is faithful and that B;(J,J) # 0 if
and only if (J7/Ji*) g, s is faithful. By (C) and (D), we see that B;(P, P) + 0 if
and only if B;(J,J) # 0 and therefore, by Theorem 1.3.11, P € A;, if and only
if J € Aja(J).

It follows that P is strongly rep. rep. in S if and only if J is strongly rep. rep.
n R. ]

For upper prime ideals, we obtain a result very similar to Corollary 4.2.14(ii)
although, since, as in the previous theorem, A = P N R need not be prime, R4
need only be semilocal. (See Definitions 4.1.9 and 4.1.17 for the definitions of

semilocal and regular commutative rings.)

Theorem 5.2.4. With the notation of (5.1.1), let P be an upper prime ideal of
S. If Ry is a regular semilocal ring, then P is rep. rep. in S.

Proof.  Let C = Cr(A), which, by Lemma 5.2.4, is an Ore set in S. By
Theorem 2.3.2, for the purposes of studying repleteness, we can replace S with

SC~! and we do so, as in the proof of Lemma 5.1.16.

Now, suppose @ € X;.1(P) for some [ € N and suppose, moreover, that we

can find [ non-trivial links between @ and P. That is,
Q frever QII\N?QI_IIW PPN WQIWQO = _P

where Q; # Qj—1 for any 1 < j <. Now, in the notation of (5.1.6) and (5.1.8),

we write

for each 0 < ¢ <[ and we suppose that

@—(t) = ﬂ'k(ai) P

the minimal polynomial of some o; € k. Then, by Theorem 5.1.18, and in the
notation of (5.1.17), we can find non-zero eigenvalues, A1, Az,..., )\ of U such

that, for 1 <j <1,

aj1 = a;/AT .
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We see from this that

20(t) = pr(aua/AT" ... AT") .

On the other hand,
a(t) = pr(ou)
and it follows easily that

T (AT ATE) = ()

for some non-zero v € k.

(4)

Now, for 1 < j <, we can find by j,..., b, ; € k, not all zero, such that

b1,j b1,j
U. = /\j.

br,j bn,j

Thus, adopting the notation of (5.1.17),

(Z aﬁbi,,) =) @) b
i=1

i=1

n n
=§ E arug,;b; ;

=1 k=1
n

k=1 =1

from which it follows that, in A3,

7(@) (Z @bi,j) = ( a;bi,;
i=1 i=1
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for each f(t) € k[t]. For 1 < j < [, let ja € A such that ja+ A% =30 @by .
We see that, in S/AS,

T(t).la.[_la o010+ Al+15 = 1q.]—1a ... 1&?(A’1n e /\{nt) + AH-]'S (B)

for each f(t) € k[t].
Taking f = ¢; in (B), we see from (A) that
Gi(t)aaa-ra...;a+ AMS = ja. qa G (AP AR 4+ AL

=1a... 1a.’y.q_0(t) + Al+15 (C)

for some non-zero v € k. Writing v = ¢+ A for some ¢ € R, invertible modulo A

(C) becomes

?

qt)aaa. . ja+ A S = a.. ja.cqo(t) + ATLS (D)
Since @ = AS + q(t)S and P = AS + qo(t), it follows from (D) that
Q.uaq—1a...1a+ ATS = .. .1a.P+ AH1g

Thus,
a...1a8 + AH'g

1
(@, P) = 1a...1aP 4+ AH1g

|
| is an (S/Q, S/P)-bimodule which we claim is faithful on both sides. Let s € §

such that H;(Q, P).(s + P) = 0 and we require to show that s € P. Then,
1a...1a(s —p) € AS = R AH1g
i for some p € P. We write
’ S—p=rog+rl+r0*+ ... 4, 6%

for some ro,...,ry € R, we fix z € {0,...,w} and we claim that r, € A. Note
that

1a...qar, € At C g1
and that, after localizing R at J,
-1 +1 -1 —1\ i+
.. qarlm € T (R-J) T = (J(R=T)7H T .
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Suppose that r, ¢ J. Then, since Ry is a regular local ring, Lemma 4.1.18 shows

that, for some i € {1,...,{},
ial™ e (J(R—J)™) =3 (R-J)".

Thus, we can find some z € R — J such that ;az € J?. Now,

saz (0(1))? (02(1))* ... (6" (J)* T2 (a(J))?... (6" X(J))”
C(Ine(I)Nn...o"1(1))*
=A*

and so, in ER,

(39%43) a(a(D))?... (a”“l(J))Z -0,

Since 0(A?) = A% and ¢ L"’;—Lﬁ = ﬂif—z Aidn A\k, we see that
A A

(ia ;;AZ) N.o? (w(a(D)) ... (a"( 7)) =0

for any j > 0. Since A is a non-zero element of the field &,

(iaZ2A2) o’ (a:(o(.]))z_'_ (an—l(J))2) —0.

Of course, since
z(o(N) ... (") g T,
it follows that
o (2 (o). (0" (1)) g o ()
so we have shown that

. 2 .
I ;= annp (ZGZZA ) Z o?(J)

for any j > 0. For each 0 < j < n — 1, choose

n—1
y; € I [] o*(7)
=0

i#
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such that y; ¢ o7(J). Since y; € 0(J) for 0 < ¢ < m—1,4 # j, y =
E]MO y; € o*(J) for any 4, while y € I since each y; € I. Thatis, y € I N Cr(A).
However, R is semilocal with semimaximal ideal A and so y has an inverse in R.
Thus 1g € I and it follows that ;a € A2,

Since this is a contradiction of the choice of ;a, we conclude that r, € J.
Similarly, r, € ai(J ) for each 7 > 0 so that r, € A as claimed. Since z was
arbitrary, we see that s — p € AS C P and, consequently, s € P. We have thus
shown that Hi(Q, P) is faithful as a right $/P-module and, similarly, it is faithful
as a left S/Q-module.

By Theorem 1.3.7, this completes the proof. "

Remark 5.2.5. As we might expect in view of the differential operator ring
examples, regularity is not in fact a necessary condition for repleteness (see Ex-
ample 5.3.3). (Indeed, we do not know of any prime satisfying the hypothesis
of Theorem 5.2.4 which is not strongly rep. rep..) Moreover, we do not know of
any example where R4 is semiprime and P is not rep. rep. although, even when
Ry is prime, P need not be strongly rep. rep. (see Example 5.3.4). Certainly,

if R4 is not semiprime, it is easy to find examples where P is not rep. rep. (see
Example 5.3.5). n

The following is an immediate consequence of Theorems 5.2.1, 5.2.3 and 5.2.4.
We observe that this is the same conclusion as that for iterated differential operator

rings over a commutative Noetherian Q-algebra (Corollary 4.2.15.).

Corollary 5.2.6. Adopt the notation of (5.1.1). If R is a regular ring then S is

a rep. rep. ring. "

§5.3 Some Examples

Example 5.3.1. Let R = C(t)[z] and put S = R[#; 0] where o is the automor-
phism of R given by o(t) = (t41) and o(z) = 7, so that 8t = (¢+1)8 and 6z = z6.
Then, by Theorem 5.2.1, the type (1) prime P = (z — ¢)S + 65 is strongly rep.
rep.. We now show this by calculating the bimodule B,,(P) directly.

113




By Lemma 5.1.10, the links of r.cl.(P) are the trivial links together with the

links

(z —t = a)S + 08~ (z —t — a+1)S + 65
so that, for n € N,
Xo(P)={(z —t—m)S+0S:me{0,1,...,n—1}}
Sp=(z—t)w—t—1)(z—t—n+1)S +6S.

By an induction argument similar to those of Chapter 4,

Snsn—l LI 52
SnSn—1...51

350 [To(e —t —n+i)i(e —t+j —n+1)ign1=ig

We note that the elements

Bn_y(P) =

J
i :=H(m-—t—n—l—i)'(m-t+j—n+1)j9”_1”“j+Sn....5'1

i=0
for 0 < j <n — 1 are non zero generators of $(Bn-1(P))s and that
((z—t—37)S+65) . yn-1—;=0

in Byp_1(P) for each 0 < j < n—1. It follows that X, (P) = An(P)foreachn € N

and so P is strongly rep. rep. in S. "

When o is the identity, we shall see in Theorem 6.2.1 that type (1) primes

, are always strongly rep. rep.. This is not true in general as we now show.
:

Example 5.3.2. An example of a type (1) prime which is not strongly rep. rep..
Let R be the ring (4{% &) %Z &) ZZZ)’ let o be the automorphism of R defined by
o(u1,uz,us) = (us,u1,uz) and put S = R[f;o]. Then, the primes

Z
poost (Zoko)s

47, ~ AZ T AZ

Z 27 Z
P2—05+(ZL~Z—EBZL—Z@E>S

Z Z 27
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are co-Artinian, type (1) primes of R. We will show that P := P, is not strongly
rep. rep. (and P; and P; will, of course, also fail to be strongly rep. rep. by

symmetry).

_ (2L B T _ (ZoZel
We note that A = PN R = (%Z ® @ 47—) that A/A? = (4024@_;2@;2 and
that anng(A4/A%) = A. Thus P~~P by Lemma 5.1.10 (and similarly, Py~ P,

and P3~~>P;). By Theorem 5.1.12, then,

{P} whenn =1 ;
Xn(P) =< {P, P} when n =2 ;
{Pl,P2,P3} WhennZ?).

It follows that

GS-I-(i—Z@% %)S whenn =1 ;
Sn: 2 Z

1
65—{—(4—%@%@4@)3 when n = 2 ;
Z%EB )S when n > 3 .

Since 6r = o(r)f for each r € R and since 0 (22 @ 2Z g 22 — (Zplg 2), a
simple induction argument shows that, for n > 3,
Sn... S
Sn... 51
0" S +o" (£ 0 %) 2 S+om (000 2%)6m %S
9" Ston (£050%)0" ' S+o"(Gord L)~ *Stom (00002 )" %5

Bn_l(P) =

and this also holds for n = 2 if we replace §~! with 0. Clearly, B,_i(P) is

generated by the non-zero elements

pi=0""14r S, ...8
and
pi=0"(1+4Z,2+4 47,2+ 4Z)0" > + S, ... S1 .

On the other hand, we observe that
Z Z 27
n —_— —_— _— =
(6’S+J (4Z®4Z®4Z))'p 0

A/ B
(95’+a (42@——@ )).M_o.

Thus, by Theorem 1.3.11,

n( Z 7 27 nl Z Z 7
An(P)—{QS—f-O‘ (4_2692269 Z),@S—!—O‘ (Z@_@E)}
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for n > 2, and we deduce that

{P1} ifn=1;
An(P) = {P1,P,} ifn=2 (mod3)andneN;
STV {Py,Ps} ifn=0 (mod3)andneN;
{P1,P3} ifn=1 (mod3)andneN-{1}.
Finally, we note that An(P) = X,(P) if and only if n = 1 or 2 and so P is not
strongly rep. rep. in S. (Of course, in this case, PN R = %% @ Z%Z @ ZZ'Z’) cannot

be strongly rep. rep. in R.) "

Example 5.3.3. An example of a strongly rep. rep. upper prime which does not
satisfy the hypothesis of Theorem 5.2.4.

Let R = <C:£f]> and S = R[f]. The upper prime ideal P = zS + (8 — 1)S is

of course strongly rep. rep. in the commutative ring S since it is not a minimal

prime. However, Rpng = —%’% is not even semiprime. .

Example 5.3.4. An example of a rep. rep. upper prime P which is not strongly
rep. rep., where Rpnp is a prime local ring which is not, however, regular.

Let B = Cl2?,2°)], let o(f(2)) = f(2z) for each f(z) € R and put § = R[6; 5].
The ideal P := (0 — 1)S 4 225 + 23S of S is a co-Artinian upper prime while
A:=PNR=2’R+ 2R is a prime ideal of R and R4 is a prime local ring which
is not regular. We will show that P is rep. rep. but not strongly rep. rep.. The
argument proceeds along the same lines as those of Example 4.3.2.

Since o is the identity on C 2 R/A, k = C in the notation of (5.1.8) and, since
{2? + A%, 2% + A%} is a basis for A/A? over C, it is easy to see that, in the notation
of (5.1.17), the only eigenvalues for U are 4 and 8. So, aside from the trivial links

of Lemma 5.1.16, there are by Theorem 5.1.18, corresponding respectively to these

eigenvalues, the links

(6 — 40)S + AS~~>(6 — a)S + AS
(6 — 8a)S + AS~nr>(6 — a)S + AS

and

between upper prime ideals, for each & € C — {0}. It follows that

Xn(P)={(6-2)S+AS:i€{0,2,3,4,...,3n —3}}
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and so

Sp=(0—-1)(0 —2%)(0—2°)(6 —2%)...(6 —2°"%)§ + AS
for each n € N. Since
(0—1)(8 —22)(0 —2°)... (6 — 25" )a? = o2(6 — i)(e _20)(8—21)... (6 —28n—%)
and
(0-1)(0-2%)(8-2%)...(0—2""")a2® = 2(§ - %)(9—2”)(9— 2%)...(6—-2°""%)

we see that

SnA C ASy—1

and, by an induction argument,

Sn PR 52
Bua(P) =55,
::01 An—1—:‘(9_1);'(0_22).‘(9_23):'H;::z(g__zsj—-2)i+1—j(0__.23j—1)c‘+1—j(0_235);'-]—1—1'S

:L=0 An—1(6_1)6(0_22)i—1(6__28)€—1 H;—:;(O_Zaj—'z)i-j(0_23_{—1);'—-;‘ (0_2sj)i—js
for each n > 2. Now, for each m € N,

Am B :csz—i—azzm"'lR
Am+1 T 22m+2 R g2m+3 R

It follows that Sy, ... S is generated by the set

{w“’(@ i 1)i(9 _ 22)i(6 _ 23)~i fl(e _ 23j-—2)i+1—j(9 _ 23j~1)i+1—j(6 _ 23j)z'+1——j .
=2
Ogign—la,nds:JQ(n—l—i) or2(n—¢—1)+1 but not 1}
and that none of these elements is contained in S, ...S;. Finally, we see that
((0-2")5+A45).2°(6-1)"(6~2) (0-2°) [ _, (9259 =2)iHi =1 (g2 =1)i+1=i (g% )i+1-

C Sp...5

for each 0 < i <n —1, whenever s =2(n —1~1i) or 2(n — 1 — 1) + 1 but not 1,

and so

An(P)={(0-2°)S+ AS: @ € {0,2,3,4,...,2n — 1}} .
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We observe that A,(P) = X,(P) if and only if n = 1 or 2, so P is not strongly
rep. rep. in S. On the other hand,

Fund(P) = fj A (P) ={(6—-2%)S + AS 1 a € {0,2,3,4,...}}

n=1

oo
= U Xn(P) =r.cl(P)
n=1
so that P is rep. rep. in S as claimed. "

Example 5.3.5. On the other hand, not every upper prime is rep. rep.. For, let
R Dbe the ring Clz], take ¢ to be the automorphism such that o(z) = 2z and put
T = R[f;0]. Now, the upper prime P = 25 + (6 — 1)S is certainly rep. rep. by
Theorem 5.2.4. We show first that it is strongly rep. rep..

Since ¢ is the identity on C & R/zR, k = C in the notation of (5.1.8) and
since {a: + (PN R)2} is a basis for (TPr?Ri)f over C, it is easy to see that, in the
notation of (5.1.17), the only eigenvalue for U is 2. It follows then, from Lemma
5.1.16 and Theorem 5.1.18, that

Xn(P)={2zS+(0—-2™)S:0<m<n—1}

and so
Spn=2S5+(0—-1)0-2)(0—-4)...(6 —2" 1§
for each n € N. Since
1
(0—1)(0—-2)(0—4)...(0 —2" Dz = 2"z(§ — 5)(«9 —1)(0—-2)...(6 -2 %
we see that
S’nx g :cSn_1
and, by an induction argument, B,_;(P) can be written as

Sn... 8y a0 — 1)H(0 — 2)i(0 — 4)i .. (6 — 21
Sn... 81 Yoan O —1)i(0 —2)i-1(d —4)i-2 ., (f — 2i-1)1g

for each n > 2. Thus,

7i =2 IO — 1) — 2)' (6 — 4) .. (0 —2)' + S,... 8 € Ba_y(P) — {0}
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for each 0 <4 < n — 1 and these elements generate B,,_1(P). Clearly,

so that
Bn,_1(zS+ (6 — 2™5,P)#0.

Hence, by Theorem 1.3.11,
zS+(0—-2m)S € A,

for each 0 < m < n — 1 and, accordingly, P is strongly rep. rep. in S.

However, since z € @ for each @ € r.cl.(P), the link graph is unchanged if
we replace R by R = wTRR" Furthermore, B,_ (T—’—) is still generated by the 7;. In
this case, however 7; = 0 for 0 < ¢ < n — 3. We see, therefore that

= {P} ifn=1

An (P) = {{F,m§+(0—2)§} ifn>2
and so A, (P) = X, (P) if and only if » = 1 or 2 and, indeed, |Fund(ﬁ)| =2
while Ir.cl.(?)f = oo. Thus, P is not rep. rep. in S. "

§5.4 Notes

That rings of the form R[©; ], where R is commutative Noetherian and ¥} is a
set of commuting automorphisms on R, satisfy the second layer condition, follows
by an analogous argument to that for differential operator rings in [Be, Theo-
rem 7.3]. In fact, it is shown in [G3, Theorem 5.1] that the skew polynomial ring
R[0;0,6] (where o is an automorphism) over a commutative Noetherian ring R
(which of course includes the rings considered in this chapter) satisfies the strong
second layer condition. It appears to be an open question whether rings of the
form R[61;61]. .. [0n;6,] and R[6y;01] ... [0,; 0] (where R is commutative Noethe-
rian and {61,...,6,} and {01,...,0,} are sets of noncommuting derivations and

automorphisms respectively) satisfy the second layer condition in general.
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The terminology and notation of §5.1 can be found in [Po} and [I]. In partic-
ular, the terms “lower” and “upper” primes were introduced in [Po, §1].

Lemma 5.1.2 is a well known result while Theorem 5.1.3 is contained in [I, The-
orems 4.1 and 4.2].

Lemma 5.1.5 is essentially [G&M, Lemma 1.4]. In fact, in that reference it is
proved that, for any right Noetherian semiprime ring R, S = R[6; o] satisfies the
right Ore condition with respect to Cr(0).

The comments in (5.1.6) and (5.1.8) are taken from [Po, §1], although the
results are mainly proved in [I, §§4&5]. In particular, Theorem 5.1.7 is one of the
main results, [I, Theorem 4.4], of Irving’s paper.

Lemma 5.1.9 can be found in [Po, Theorem 6] and its proof.

‘That, for type (1) primes, o(P)~~s P, is proved in [Po, Theorem 6], however,
the rest of Lemma 5.1.10 appears to be new.

The last part of Lemma 5.1.12 is the conclusion of [Po, Theorem 6] while the
other parts follow from the proof of [Po, Theorem 6] in the light of Lemma 5.1.10.

Lemma 5.1.13 follows from [Po, Theorem 9] although this latter result has
been independently proved in [Bel, Proposition 7.6].

Lemma 5.1.15 is quoted from [Po, Lemma 10].

Lemma 5.1.16 follows from the discussion of [Po, p440] and Theorem 5.1.18
from [Po, Theorem 13].

Theorems 5.2.1, 5.2.3 , 5.2.4 and 5.2.6 are all new results.
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Chapter 6 : Polynomial Rings

In this chapter, we discuss the natural question of whether the repleteness of
aring R carries over to the ordinary polynomial ring R[z]. An immediate obstacle
is that it is an open question whether the second layer conditions carry over to
polynomial rings. For some important classes of rings, however, this question is
known to have a positive answer.

Specifically, if R is a fully sub-bounded Noetherian ring, then R satisfies the
strong second layer condition By, proof of Lemma B] and R[zy,...,z,] satisfies
the second layer condition [By, Corollary D]. (A primering R is called sub-bounded
if every non-zero prime ideal of R contains an element ¢ and a non-zero sub-ideal
J such that J C ¢cRN Re; a ring R is fully sub-bounded if every prime factor of R
is sub-bounded. Fully sub-bounded rings include FBN rings, PI rings, polynormal
rings and rings in which all prime ideals are maximal.) Indeed, if R is an FBN ring,
then R[z1,...,z,] satisfies the strong second layer condition [By, Corollary F.

However, even assuming that R[z] satisfies the second layer condition, we will
see that, in general, our question has a negative answer, although we do present
some positive results, in particular for commutative rings (Theorem 6.2.1) and for
the case where the prime P of R[z] is just (P N R)R[z] (Theorem 6.2.3). First, we

discuss some preliminaries.

§6.1 Prime Links in Polynomial Rings

For any ring R and a prime ideal P of the polynomial ring S = Rlz], it is easily
seen that J = PN R is a prime ideal of R. In this scenario, and assuming that R
(and hence 5) is Noetherian, we discuss in this section how the clique of P is related
to that of J. The proofs are extracted from those contained in unpublished work
of Brown and Goodearl [B&G]| which deals with g-skew polynomial rings. These

results only require that R satisfies the second layer condition.
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Lemma 6.1.1. Let R be a Noetherian ring which satisfies the second layer
condition and P and @ prime ideals of the polynomial ring S = R[z]. Suppose
that Q~~>P. If Q N R~t>P N R then ) = P ; (PN R)S.

Proof. (From [B&G, Proposition 1.7 and Corollary 1.8].)

Put K = QN R and J = PN R. Suppose that Q~~>P and that Knol> J.
Then, by Lemma 1.2.6, %ﬁl must be unfaithful either as a left R/K-module or
as a right R/J-module; we suppose the latter. Let

K
I:annR( OJ) .
R

KJ

Since I 2 J, I € P and so, since
(KN J)SI=S(KNJICSKJCQP,

it follows that (—K:Qg}s,-—'i'@ is unfaithful as a right S/P module and so is torsion.
We now suppose that the link Q~~> P arises via the (5/Q, S/P)-bimodule 9%13
for some ideal A of S with A D QP and note that, since this is torsion-free as a
right S/ P-module,

(KNJ)S CA.

Consequently,

Q/(K 0 J)S~~sP/(K N J)S (4)

and so, without loss of generality, we may assume that KNJ = 0. By Lemma 1.2.8,
the primes K and J of R are minimal and therefore are disjoint from C r(0), the
regular elements of R. It follows that @ and P are disjoint from C r(0) and so, as
noted in Remark 2.3.1, we may localize S at Cr(0).

So, without loss of generality, we assume that R is a semisimple ring and then
J = Re for some central idempotent e in R. By Lemma 2.3.5, we see that e € K

and so J C K. Similarly K C J and hence
J=K. (B)

Now, (A) becomes
Q/IS~>P/JS ()

122




and so, from the definition of a link, @ # JS and P # JS. Furthermore, we see
from (B) that, in fact, R is a simple Artinian ring and, by [L&M, Theorem 2.2
and Proposition 2.9], either S has only one non-zero prime, in which case, clearly,
@ = P, or else each non-zero prime of S is generated by a central element. In the

latter case, we apply Lemma 2.3.5 again to see that @ = P. In either case,
Q=P ; JS
and the proof is complete. =

Lemma 6.1.2. Let R be a Noetherian ring which satisfies the second layer
condition and P and @ prime ideals of the polynomial ring S = R[z]. Suppose
that Q~~>P. Then Q = (Q N R)S if and only if P = (P N R)S.

Proof. (From [B&G, Proposition 1.7 and Corollary 1.9].)

Put K = @N R and J = PN R. By Lemma 6.1.1, if K~of>J, then Q = P #
JS and, in this case, the result follows trivially. So, we suppose that K~~sJ and
assume that K—S—J is the linking bimodule for some ideal C of R with KJ C C.
Without loss of generality, we may assume that C/KJ is a torsion right R/.J-
module. Furthermore, assume that the linking bimodule for Q~~>P is 9%13 for
some ideal A of S with QP C A. We note that 97}5 is a torsion-free right R/J-
module. Since KJ C QP C A, it follows that C C A and therefore CS C A. Thus,
R/CS~~>P/CS and so we may assume that C' = 0. Consequently, KJ = 0 and
so N = K N J is the prime radical of R. Furthermore, Cr(N) = Cr(K) N Cr(J),
while, by the definition of a link, IV is torsion-free as a right R/J-module and as
a left R/K-module. Hence N is Cr(N)-torsion-free on both sides. Since this is
clearly true of R/N as well, we see that Cr(N) C Cr(0). We thus have Cgr(N) =
Cr(0) since the reverse inclusion holds in any Noetherian ring (for instance, by
[G&W, Lemma 10.8]) and so, by Small’s Theorem [G&W, Corollary 10.10], Cr(0)
is an Ore set in R, the corresponding localization being Artinian. Of course, P
and @ are disjoint from Cr(N) = Cg(0) and so, by Remark 2.3.1, we can assume
that this localization has been made.

Thus, R is an Artinian ring and R/J is a simple Artinian ring. We assume

that P/JS is a non-zero prime of S/JS and claim that @ # KS. The reverse
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implication will follow by symmetry. To this end, we identify S/JS with (R/J)[z]
and note that the leading coefficients of polynomials in P/JS form a non-zero ideal
of R/J. Since R/J is simple, there must be a monic polynomial in P/JS and so
P contains a monic polynomial. By [R,S&S], the set M of monic polynomials
in § is Ore. Since M Z Cg(P), and Q~~>P, it follows by Lemma 1.2.2 that
M Z Cs(Q). As R is an Artinian ring, this means that we can find some monic
polynomial in @ and, consequently, Q # KS.

This completes the proof of the lemma. =

Theorem 6.1.3. Let R be a Noetherian ring which satisfies the second layer
condition and P and Q prime ideals of the polynomial ring S = R[z]. Suppose

that P = (PN R)S and that Q = (Q N R)S. Then Q~~>P if and only if
Q N R~>P N R.

Proof. (From [B&G, Theorem 2.1].)

Put K = QN R and J = PN R. We suppose first that Qr~r>P. If Krol>J,
then, as seen at (C) in the proof of Lemma 6.1.1, Q/JS~~sP/JS which is im-
possible since, by assumption, P/JS = 0. It follows that K~~>J.

Conversely, suppose that K~~J with a linking bimodule %‘—J for some
ideal A of R with A D KJ. We can assume without loss that 4 = 0 and, in this
case, {J and hence QP are zero. Since K N J is a torsion-free right R/ J-module,
it can be embedded in (/J)" for some n € N. Since S is a flat module, tensoring

by it we obtain a right S-module embedding
QNPE(KENJT)@rS — (R/J)"®r S =(S/P)".

It follows from this that QNP is a torsion-free right S /P-module and, by a similar
argument, it is a torsion-free left S/Q-module. Thus, Q~~>P which completes

the proof of the lemma. "

§6.2 The Repleteness of Polynomial Rings

We first deal with the case where R is a commutative Noetherian ring. Of

course, since R[z] is commutative, it is rep. rep. and, indeed, strong representa-
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tional repleteness is also preserved as follows. (In fact, the second part is also a
corollary of Theorem 5.2.3, however we give an alternative proof which relies on

our classification of commutative strongly rep. rep. primes.}

Theorem 6.2.1. Let R be a commutative Noetherian ring and let P be a prime
ideal of the polynomial ring R[z]. If P ; (P N R)R[z] then P is strongly rep. rep.
in R while, if P = (P N R)R[z], then P is strongly rep. rep. in Rz] if and only if
P N R is strongly rep. rep. in R.

Proof. If P 2 (P N R)R[z] then P is not a minimal prime so must be
strongly rep. rep. by Corollary 2.1.3. Now suppose P = (P N R)R|[z]. In this

case, P is a minimal prime of R[z] if and only if P N R is a minimal prime of R.

Furthermore,
anng(P N R) = anng,) (PN R)R[z)) NR = anng(P)N R,

from which we see that, if ann R[z}f’ € P, then anng(P N R) C PN R. Conversely,
if f(z) € annp,)(P) — P, then, by considering the coefficient of highest degree
in f(z) we see that that coefficient annihilates P and, similarly, so does each
coefficient. Since not all coefficients are in P N R, annp;)(P)NR ¢ PN R and
so annp(P N R) € PN R. The result follows from two further applications of
Corollary 2.1.3. "

Remark 6.2.2. Given a commutative Noetherian ring R and a prime P of R[z],
if PN R is strongly rep. rep. in R then, by Theorem 6.2.1, P is strongly rep. rep.
in R[z]. We see, however, that the converse is false: simply take J to be a prime
of R which is not strongly rep. rep. and let P = JR[z] + zR[z]. For instance,

consider R = gi’L We saw in Example 2.1.2 that yR is not strongly rep. rep. in

R while, by the above, zR[y] + yR[y] is strongly rep. rep. in R[z]. n

As we shall see, for noncommutative rings, a prime P 2 (PN R)R[z] need not
be rep. rep., even assuming P N R is strongly rep. rep.. However, the second part
of Theorem 6.2.1 does in fact, carry over to the noncommutative case as we now
show. (Although it is much simpler, the proof proceeds along similar lines to that

of Lemma 4.2.11 and, furthermore, in this case a converse holds.)
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Theorem 6.2.3. Let R be a Noetherian ring and assume that the polynomial
ring R[x] satisfies the second layer condition. Let J be a prime ideal of R. Then
J R[z] is rep. rep. [resp. strongly rep. rep.] in R[z] if and only if J is rep. rep. [resp.
strongly rep. rep.] in R.

Proof. By Lemma 6.1.2, if Q € cl. JR[z], then Q@ = (@ N R)R[z| and,
by Theorem 6.1.3, if J; and J, are primes of R then Jy~~>J; if and only if
JoR[z]~~>J; R[z]. Tt follows that, for all n € N,

4 (1) Xu(J)={QNR:Q e X,(JR[z])} (4)
an
(2) Xn (JR[z]) = {KR[z]: K € X,,(])} .
Now let U be a uniform right ideal of R[z]/JR[z] and set E = ERr()(U). Since
E is an injective right R[z]-module and rR[z] is free, E is also an injective right

R-module by Lemma 4.2.10. Let K be an associated prime of Eg. We claim that
K=17. (B)

By the choice of K, we can find e € E such that eR is a fully faithful R/K-module.
Now, eR[z]NU is a fully faithful R[z]/JR[z]-module and so K C JR[z]NR = J. On
the other hand, by Theorem 1.3.3 there exists a r.cl. (J R[z])-semiprime ideal, I , of
R[z] such that I"*! C ann (eR[z]) for some n € N. So (INR)"*! C ["*'NRC K
and hence I N R C K. It follows that we can find a prime A in r.cl.(J R[z]) such
that ANR C K C J. By (A1) above, AN R is in r.cl.(JR[z] N R) = r.cl.(J)
and then, by the incomparability of r.cl.(J) (Lemma 1.2.8(G)), ANR = K = J
establishing (B).

Thus, J is the unique associated prime of (ER[z](U )) g and therefore, as R-
modules, £ = Egp)(U) = ®rea™E for some uniform injectives *E each with
assassinator prime J and some index set A. Clearly, annp(J) = anng (J Riz])
and, since this is a torsion-free R[z]|/J R[z]-module, it is easy to see that it is also
a torsion-free R/ J-module. Thus, we can assume that each *E is the injective hull
of a uniform right ideal of R/J so that Theorem 1.3.3 applies. The fundamental

primes are, of course, identical for each *E.
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As before, we write Ej and AE}, for the k" layers of ER[z) and AER respec-

tively. Then, viewing E as an R-module, we claim that, for each & € N,
(al) A(J)={QNR:Q € A; (JR[z])},
(a2) Ak (JR[z]) = {KR[z]: K € Ax(])}, (C)
(b) Ey = @xerEr .

As noted above, the claim is true for £ == 1 and we assume it for all 1 <k <nfor

some n € N.
(a) Let Q@ € Apt1 (JR[z]). Then there exists e € F — E,, such that eQ C E,.
Writing e = @aeaex, where each ey € *E and only finitely many are non-zero, we

have, by the induction hypothesis on (Cb)
Drcaer(@ NR) C Drea*Ey

So, for some A, ey € *E — *E,, while ex(@ N R) C *E,. Thus, since, by (A1),
QN R € Xnyi(J), and by the incomparability of cl.(J) (Lemma 1.2.8(i)),

QNRE Anp1(PE) = A1 (J) .

On the other hand, suppose K € A,41(J). Now, if we fix i € A then there
exists some e, € *E — *E, such that en K C *E,. We now put

ex={ o Hn=1,

’ and e = Dircaex
0 otherwise € ’

and, by the induction hypothesis on (Cb), we see that
eKR[z] C ®reaEy = E,, .

It follows that K R[z] C Q for some Q € Ant1 (JR[z]) C r.cl. (JR[z]); but since
K € r.cl(J), KR[z] € r.cl.(JR[z]) by (A2) and so, by Lemma, 1.2.8(i),

KR[z] = é € Any1 (JR[2]) ,

completing the induction step for (Cal). That (Ca2) holds, follows from (Cal)
and the fact that, if @ € cl. JR[z], then Q@ = (Q N R)R[x] by Lemma 6.1.2.
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(b) Now choose e € E — E,. Again we write e = @xcpex, where only finitely
many ey are non-zero, and note that, by the induction hypothesis on (Cb), ey €
AE —*E,, for some \. Suppose e € Ernt1. Then we can find a subset {Qg : £ € E}
of Any1 (JR[z]), for some finite index set =, such that e (nEGE QE) C E,. Then

Drenex. ﬂ (QeNR) C E, .
¢eE

Now, for each { € &, we have seen by (Cal) that Q¢ N R € Apy1(J) € Xpg1(J)
while, for each A, ex.[\eez(Q¢ N R) C *E, and therefore, by Theorem 1.3.3(ii),
ex € *Epy1. We conclude that

En+1 g GB/\EAAETH—I .

Conversely, suppose that, for each A, ex € *E,y; with only finitely many
non-zero and put e = Peaer. For each A we can find finitely many ¢ fy € *E
such that ey = ZE ¢ fx and where ¢ f) (5'\.]) C *E, for some ¢ J ¢ Apy1(J). Tt
suffices to show that, for each A and &, ¢f) € E,4y. So we fix A and ¢ and note
that, by the induction hypothesis on (Cb),

i (M) C B,
Now, as seen by (Ca2), (**J) R[z] € Ap1 (JR[z]) while clearly
“fr () Rlz] C E, . (D)

It follows from (D) and Theorem 1.3.3(ii) that ¢ fy € E,+; completing the induc-
tion step of (C'b) and therefore the proof of (C) for all k € N.

That J is rep. rep. [resp. strongly rep. rep.] in R if JR[z] is rep. rep. [resp.

strongly rep. rep.] in R[z], follows from (A1) and (Cal) while the converse follows
from (A2) and (Ca2). n

We now consider the case where P is a prime ideal of R[z] and P ; (PNR)R.
If we let E = Egy, (R[z]/P) then, as before, Eg is injective and, by a similar
argument to that of Theorem 6.2.3, P N R is its unique associated prime. If we

tried to imitate the rest of the proof of Theorem 6.2.3, two problems would arise.
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Firstly, trivial links in cl.(P) need not contract to trivial links in cL.(P N R)
(for instance, zC[z]~~>2zC[z] in Clz] but 0~%>0 in C) and so we cannot expect
this method to show that strong representational repleteness is preserved under
polynomial extensions. Secondly, it is not difficult to see that there is an immediate
obstacle to the induction argument in the description of E;. For, if we have an
element of E which can be annihilated by the prime J = P N R of R, we cannot
deduce that it is also annihilated by the prime P of R[z]. The identity P = JR[z]
which is available in the above proof does not, of course, hold here. This is also
a problem in Lemma 4.2.11, but the solution which we used there also fails here,
because it would require that P be a prime minimal over JR[z].

It should be noted that, even in Lemma 4.2.11, we were unable to deduce that
all primes of the extension ring lying over fundamental primes of the base ring were
again fundamental, and this prevented us from concluding that the repleteness of
the base ring carried over to the extension. Here, the extension fails to satisfy the
incomparability property for prime ideals (see Lemma 4.2.9) and, as a result, the
method of Theorem 6.2.3 for describing the layers of F R[z] breaks down completely.
In an attempt to resolve this situation, we change our approach, and show that
our injective R[z]-module can be formed starting from an injective R-module.

The first result which we need is taken from [B&G, Lemma, 2.4] and, in fact,
holds for any skew polynomial ring, S = R[z;0,8]. We include the proof for the

ordinary polynomial ring S = R[z] for the sake of completeness.

Lemma 6.2.4. Let R be any ring and let S be the polynomial ring, R[z]. Let A
be a right S-module and suppose that A is an R-submodule of an injective right
R-module E. Then there is an S-module structure on E compatible with its right

R-module structure and also with the right S-module structure on A.

Proof. We set
B=E®1)®(E®z)CE®rS

C=E®l)eo(A®z)CB
which are right R-submodules of £ @z S and define an additive map f: C — E
by

and

fe®l+a®z)=c+azx
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for all e € E and a € A. Now, f is a right R-module homomorphism, since
f(e®l+a®z)r)=fle®@r+a®@rz)= fler @14 ar ®x)
=ertarz=(e+az)r =(fe®l+a®2))r
for all r € R, and so it extends to a right R-module homomorphism g:B - E.
Furthermore, we define an additive map A : E — E by
he) = g(e ® )
for each ¢ € E. Again, we note that
(hle)r =(g(e®2))r = g(e ® ra)
= g(er @ z) = h(er)
for each e € E and r € R so that we can extend the right R-module structure on
E to a right S-module structure by defining
|
‘ ez = h(e)
|
|

for each e € E. Since, for each a € 4,

h(a) =g(a®z) = fla®z)=az ,
this S-module structure extends that on A. n

Thus, if P is a prime ideal of the ring § = R[z], if U is a uniform right
ideal of S/P and if we let E = Eg(U), then we can regard E as an S-module.
| The next lemma allows us to construct an injective S-module using E. The proof

is extracted from [B&G, Lemma 3.8] which again deals with skew polynomial

‘ extensions.
|

Lemma 6.2.5. Let R be any ring and let S be the polynomial ring R[z|. Let E
be a right S-module and let E be the Abelian group [[°, E.

a) E can be made into a right S-module using a multiplication * such that
8 g D.
(eo,e1,e2,...) %7 = (egr,exr, ear,...)
(€ose1,e2,...) %z = (egx + ey, e17 + €y, €22 + €3, . . )
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for each (eg, ey, €e3,...) € E and r € R.
(b) Each of the sets W, = {(60,61,62,...) € E: e; = 0 for all ¢ > n} is an
S-submodule of E.

(c) If E is an injective R-module then E is an injective S-module.

Proof. (a) It is clear that E is a right R-module under the action #* and
so, to see that it is an S-module we note that, for each e € E’v, r€ Rand: >0,
[(exa)*r], = (esz + €if1) * T = €;TT + €417
= ;1T + eip1r = [(e * 1) * 2],

and therefore (e * z) xr = (e * r) * .

(b) If e; = 0 for all i > n then clearly [e xz]; = [e* r]; = 0 for all » € R and
all 2 > n.

(c) For each 1 > 0, let m; : E — E be the right R-module homomorphism
defined by

Ti(eo,e1,€2,...) = ¢;

where (eg, e1,¢3,...) € E. We note that,
mi(ex) = (mi(e)) x + miy1(e)

foreach i > 0 and e € E. Now, fix a right S-module A and let 7§ : Homg(4, E) —
Homp(A, E) be the map defined by

(5 (£)) (@) = mo (f(a))

for each f € Homg(A, Ev) and a € A. It is sufficient to show that the map 7 is a
bijection,

So, suppose 7 (f) = m5(g) for some f and ¢ € HomS(A,E). We claim that
i ((f — ¢)(a)) = 0 for each i > 0 and all a € A. Certainly, this is true for i = 0
since

7o ((f = 9)(@)) = mo (f(a) — g(a)) =m0 (f()) — m (g(a))
=(m5(f)) () = (5(g)) (a) =0
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for each a € A where the second equality holds since 7 is an R-module homomor-

phism. Suppose it is true for ¢ = k for some k > 0. Then, since

m ((F = 9)(az)) = (m ((f — 9)(@))) & + w41 ((f = 9)(a))

and since A is an S-module, we see that mgi1 ((f — ¢)(a)) = 0 for all a € A. This
establishes the claim and it follows that f = g so that « is injective.

Now let fo € Hompg(A, E). We inductively define maps f; : A — E for i > 0
by

fila) = fi—i(az) — (fi-1(a)) z

for each a € A. We claim that the f; are R-module homomorphisms for each i > 0.

This is true for ¢ = 0 and we assume it is true for ¢ = & for some k > 0. Then, for
all a; and as € A,
frr1(ar + az) = fi (a1 + a2)z) ~ (fr(as + a2)) x
= fir(arz) + fr(aze) — (fr(a)) 2 — (fi(az)) =
= frr1(a1) + frta(az)

while, for all ¢ € A and for all r € R,

fea(ar) = fe(ars) — (fi(ar)) =
= fr(az)r — (fr(a)) 2r
= (fu(az) = (fe(a)) z)r .

Thus, fr41 is an R-module homomorphism and it follows that the same is true for

fi, for all 4 > 0. It follows that the map

.f = (anflafza"')

is an R-module homomorphism from A to E, Furthermore, for each 7 > 0 and for
all a € A,
mi (f(az)) = fi(az) = firi(a) + (fi(a)) =

= miy1 (F(a) + (mi (F(0))) @
= m; ((f(a)) z)
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so that f(az) = (f(a))« from which it follows that f is a right S-module homo-
morphism. Finally, for each a € A4,
(73 (f)) (@) = mo (f(a)) = fola)
mo(f) = fo

80

Thus, 7§ is surjective.
Since 7§ is a bijection, it follows, as noted above, that Eisan injective right

S-module. .

Lemma 6.2.6. Construct the R[z]-module E as in Lemma 6.2.5 and, for each

element e € E, write ¢; for its 1*b component. Then, for each f € R[z] and i > 0,

2 1dif
(e fi = Zeiﬂi'ﬁw .

§=0

Proof. It is sufficient to establish the identity for f = z* for each ¢ > 0 and

we note that it is clearly true for ¢ = 0. Now suppose that the Lemma holds for

f = z* for some k > 0. Then,

(exa* 1) = ((ex z*) % 2); = (e x z¥);2 + (e+ )iy

> 1 d*(z*) 1 d/(z*)
= (;61+]-ﬁ dzi ) +Zez+_7+1 ol:rJ

J=0 J'
‘ 1 d/(z*) o 1 di=i(zh)
- Ze"“'ﬁ o “Z‘”‘**J( T dgit
7=0
1 [ dia*) di1(2F)
k+1 .
+Z ity ( dzi T g >+ Citht1

7=1

1 k! %!
— e.phtl J k—j+1
- +Z RN ((fc—:z)' (k—j+1>!) SR s

1 (k+1) ‘
_.k+1|§:..__..________k1+1,.
€;x GH.J.],! (k ] 1)' z Citk+1

1 d](:z,’k"'l)
Xt

]i dw]
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so that the Lemma holds for f = z**!, by induction for f = zt, for all £ > 0, and
hence for any f € R[z]. -

When Epg is injective, the injective module Eg must, of course, contain an
injective hull of Eg for which the next result provides us with a candidate in the
case when S satisfies the second layer condition. A related result is proved as
[B&G, Proposition 3.9] for S being the skew polynomial ring Rfz; o, 6] but in the
case where o(P N R) # P N R. We do, however, require the additional condition
that R be a Q-algebra.

From now on, we will supress the notation “*” for the action of S on E.

Lemma 6.2.7. Let R be a Q-algebra, S be the polynomial ring R[z] and P be
a prime ideal of S such that P ;Z (PN R)S. Let I be a right ideal of S/P, set
E = Egr(I) and endow E with the S-module structure of Lemma 6.2.4. Construct
E, W, Wi,... asin Lemma 6.2.5 and set W = | J°2 , W,,. Then Wy is an essential
S-submodule of W and so Is < W < Eg(I) < E.

Proof. It suffices to show that W,,_; <, W, for each n € N and so
we consider w € W,, — W,,_; and show that we can find some s € S such that
0#ws e Wy_1.

Since Ir <. E, there exists some r € R with 0 # wyr € I and so we can
assume that wy, € I. Similarly, if w,—; # 0, then we can find ' € R such that
0 # (wr')n—1 = wp—yr' € I. In this case, if (wr'), = 0, then 0 # wr' € W,_; and
the proof is complete, so we assume instead that 0 (wr')n € I. So, without loss
of generality, we will assume from now on that both w, and w,_; are in I , with
Wy, 7 0.

Suppose wp—1 = 0 so that (wz),—1 = wy, # 0. In this case, if wyz = 0, then
wz is a non-zero member of W,_; and the proof is complete, while otherwise,
both (wz)n—1 and (wz), (= wnz) are non-zero members of I. Thus, replacing
w with wz if necessary, we can now assume that both w,, and Wp-.1 are NON-Zero

members of I.

Now, if f € P, then we see from Lemma 6.2.6 that
(Wfn = wpf =0
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and that

(Wf)n—1 = wn-1f + wn% = wn% .

So, we require to show that we can find some f € P for which wn% # 0. Writing

wn = s + P for some s € § — P, we can assume, for a contradiction that, for all

feP,s¥cp. Thus, for each f € P and t € 5,
dz

g _ 400 b,

st dz dx dz

and, since P is a prime ideal of S, it follows that % € P for all f € P. Now, since
P # (PO R)S, we can find a polynomial of minimal degree

sza@a:iEP_(PﬂR)S,

=0
with the a; € R and a,, € PN R. Since

t—1
E i —_— P
1a; T = tE

i=1
we see from the minimality of m that ma,, € PN R and hence a,, € P N R since
R is a Q-algebra. This contradicts the choice of a,, and so we have established
that (Wy)s <. Ws.
Finally, by Theorem 1.1.8(i),

Is<W<Es(I)<E

since Ig <. Eg & Wy and Eis an injective S-module. n

Hypothesis 6.2.8. Let I be a uniform right ideal of S/P and set E = Eg(I). In

the situation of Lemma 6.2.7 above, we see that
Is<W<Es(I)<E

and we assume that, in the case where R is a Noetherian ring and R[z] satisfies
the second layer condition, Eg(I) = W. This is, of course, equivalent to the

requirement that W be essentially closed in E.
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It is, of course, possible to consider Example 2.2.5 (with n = 1) as a special
case of this construction: if we take E = Ex(K) = K, then E corresponds to the
injective K [z]-module K[[z~*]], and W corresponds to the submodule K[z~!], an
essential extension of Kpq,). So, our proof that Exs)(K) = Kz, shows that
the hypothesis is true in this particular instance.

In the context of a g-skew polynomial ring S = R[z; 0, 6], where W was first
constructed, this hypothesis is certainly true for the case where o(PNR) # PN R
(see [B&G, Remark 3.10]). We do not know whether it is always true in our present
setting, although we note, in the next result, one further case where it does hold.

Indeed, all the examples of §6.3 are of this type. "

Theorem 6.2.9. In the situation of (6.2.7), suppose that S satisfies the second

later condition and that the natural embedding of R/(P N R) into S/P is an
isomorphism. Then Eg(I) =W. .

Proof. Suppose, as an induction hypothesis, that we know
Es(I), € Wh-1
for some n > 0 (with the convention that W_; = 0) and let
(eo,e1,€2...) € (Bs(I))n+1
for some e; € Er(I). Now, there is a r.cl.(P)-semiprime ideal N of S such that
(eo,e1,ez,...).N C (Es(I)), € W1 .
In particular, we observe that
(ens€nt1;Ent2y...).N =0
and it follows, by Theorem 1.3.3, that
€:= (en, en+1,Ent2,...) € (Es(I)), .

We claim that & € W, and observe that this will complete the induction step.

Since, by assumption,
Es/p(I) = Erypnry(1) , (4)
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we see that

(8—]— annER(I)(PﬂR)GBOGBO®~--) P =0 (B)

On the other hand, applying Lemma 1.1.9 twice to (4),
annpg (1y(P) = anng,n(P N R) . (C)

Thus, since there cannot be two copies of anngy,()(P N R) (& Er/par(l)), one
strictly contained in the other, we conclude from (B) and (C) that € € W, which
establishes Hypothesis 6.2.8 in this case. .

Remarks 6.2.10. (i) In particular, the condition of Theorem 6.2.9 is satisfied in
all of the examples of §6.3. Also, if P contains z — «, for some a € R, and z — « is
normal in ., then every element of S can be written as a polynomial in z — o, with
the coefficients on the left, and it is then easy to see that the natural embedding

of R/(P N R) into /P is an isomorphism. So Hypothesis 6.2.8 holds by the last

result.

(ii) Let I be a uniform right ideal of S/P and set E = Eg(I). Suppose
that K is an assassinator prime of Er. Then annp(K) is a fully faithful R/K-

module. However, (anng(K)) SNanng(P) is a fully faithful S/P-module and thus,
K = PN R. So we can write

Er = ®xer E

for some uniform injective R-modules, *E, each with assassinator PNR, and where
A is some index set. Furthermore, we note that Cr(P N R) C Cs(P). (To see this,
we can assume without loss that P N R = 0 so that C := Cr(P N R) = Cg(0)
is an Ore set in R and in S. Then, since C is disjoint from P, C C Cs(P), by
[G&W, 9.21] for instance.) It follows that S/P is a torsion-free right R/(P N R)-
module. Thus, the right submodule T R/(PnR) is also torsion-free and, for each
A € A, so must be (annxg(PNR)), J(pnr) Which is an essential extension of
(INannag(PNR))p J(PR)- Thus, Theorem 1.3.3 applies to the uniform injectives

(*E)Rr. The fundamental primes are, of course, identical for each (AE)g. -
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Notation 6.2.11. Assume we are in the situation of (6.2.7) and (6.2.10(ii)) and

suppose S satisfies the second layer condition. Then, for each 7 > 0, we put
E; = ®rea(ME);
where (*E); is the i'* layer of *E, as in the notation of (1.3.1). n

Theorem 6.2.12. Let R be a Noetherian Q-algebra, let S be the polynomial
ring R[x| which we assume satisfies the second layer condition and let P be a
prime ideal of S such that P 2 (PN R)S. Let U be uniform right ideal of S/ P, set
E = Eg(U) and endow E with the S-module structure of Lemma 6.2.4. Construct
E, Wy, Wh,... as in Lemma 6.2.5, set W = o7, W,, and assume that Hypothe-
5is 6.2.8 holds so that we can (and do) identify W with Es(U). With the notation
of (1.3.1) and (6.2.11),

(Es(U))i CE®E, 1D BFE,0E 000 --- (#)

for each ¢ > 0. In particular, equality holds when ¢ = 0 or 1. Furthermore:

(1) if @ € Ax(P) and equality holds in (#) for i = k —1 and for i = k, then
Q@ € Ap41(P);

(i) if K € Ax(P N R), then there exists a Q € A;(P) for some j > k such that
Q@ N R = K; when equality holds in (#) for i = k, we can take j = k;

(iii) if Q@ € A;(P), then QN R € Ag(P N R) for some k < j; when equality holds
in (#) for ¢ = j — 1, we can take k to be the minimal value of j such that
Q € A;(P).

Proof. We note first that (Es(U)), is isomorphic to a simple right module
over Q(S/P), the Goldie quotient ring of S/P, while By = ®xen ()‘E)1 where
each (*E), is isomorphic to a simple right module over Q (R/ (P N R)), the Goldie
quotient ring of R/(P N R). Since R/(P N R) embeds naturally in S/P, the same

can be said of their Goldie quotient rings and it follows that

Ei 00006 - C(Bs(U)), . (4)
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We note that (#) certainly holds for ¢ = 0 and we assume it is true for all { < n—1

for some n € N. So let

e = (60,61,62,...) € (Es(U))n .

Then, we can find a r.cl.(P)-semiprime ideal I of S such that
el C(Es(U))y1 CEn1®E 20 ®FE,D0®0D--- (B)

where the second inequality holds by the induction hypothesis. Now, IN R is a
r.cl.(P N R)-semiprime ideal by Theorem 6.1.3 and we observe that

{(eoa,er1a,e2a,...):a € INR} =e(INR) Cel

so that ¢;(INR) C Ep,_y_jforeach 0 < j <n —1 and e;(I N R) = 0 for each
7 =2 n—1. It follows that ej € E,_jfor 0 < j <n-—1while ej € By forj >n—1.
We require to show that, in fact e; = 0 for j > n.
By Hypothesis 6.2.8, we can find some m > 0 such that e; =0 for j > m.
So, we can assume that m > n and it is sufficient to show that e, = 0. Now,
letting f be an element of P and denoting its first derivative by f', we see from
Lemma 6.2.6 that
(ef)m—1 = em-1f+emf =emf (€)

where the second equality holds by (A) since e,y € Ey. By (B), (e)y—1 C Ey =
0 since m > n. For the same reason, (en)I = (el),, = 0, so if we assume that
em # 0, I C P. If we denote by M’ the set of first derivatives of the elements of
an ideal M of S, it follows from (C) that

0= (el)m-1 = en(I)

whence

I'cp.

Suppose that I = Py N...N P, for some incomparable prime ideals Py € r.cL.(P)
and assume that P; = P. Then

P2I'+P2(P....P) +P=P|P,...P,+P2PP,...P,
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and, since P is prime and the Py are incomparable,
POP.

As we saw in the proof of Lemma 6.2.7, this conclusion is impossible for a prime
P # (P 0 R)S and so we conclude that e, = 0 as required. This completes the
proof of (#).

Of course, it is trivial that equality holds in (#) for i = 0 and, furthermore,
equality holds for 7 = 1 by (A) above.

(i) Let & € N, let @ € Ax(P) and assume that equality holds in (#) for
¢t=4k—1and for 7 = k.
Now, we can find e € (Es(U)); — (Es(U)),_, such that eQ € (Es(U)),_,. If

we write

e = (eo,e1,...,€5-1,0,0,...)

then e,, € E.m for 0 < m < &k — 1 and, by the equality of (#)ati=k—1,
em & Ek—m-—1 for some m. Take m maximal with respect to this property. Without
loss of generality, we can assume that all other e; = 0; for clearly, by the equality
of (#) at ¢ = k, and with the assumption that e; = O for allt £ m, e € (Es(U)), —
(Es(U))j_, while

1 dm-—tQ

(@) = em (m —4)! dam—t

€ Ep—y—1

for each t < m. It then follows by (#) that

m--2 zeros

€:=(0,...,0,em,0,0,...) € (Es(U))i .

On the other hand,

1 dm-t+1 Q

(eQ)t = €em (m —1 + 1)| dwm__t+1

€ Er_y

for each ¢ < m + 1. It then follows by the equality of (#) at ¢ = k that €Q C
(Es(U)), and thus Q € Ap1(P).
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(ii) Let K € Ag(P N R). Then, we can find ¢ € Er — E;_; such that
anng (%Eki) = K. We put

-1

€ =(e0,0,...)

so that, by (#), € € (Es(U)),_,- We can, however, choose j > k such that
RS (ES(U))].. Then there exist primes Q1,...,Q, € Fund(P), where each Q, €
A (P) for some j = ((\) > k, such that

k1
g (ﬂ Q)\) C(Es(U))p_y -
A

We note therefore that, by (#) again,

J—k+1
e. (ﬂ(QA N R)) C (B)k

and by the faithfulness of eRgf’i“l | Ry x it follows that MA(@ANR) C K. Tt is then
casy to see that (Qx N R) C K for some 1 < A < 5. However, by Lemma 6.1.1,
(@xNR) € cl.(PNR) = cl.(K) so by the incomparability property of cl.(P N R),
we in fact have (Qx N R) = K. Since Qs € A¢xn(P) and § > ¢()\) > k, the first
part of (i) has been proved. Of course, if equality holds in (#) at 1 = k, then

€ € (Bs(U)) so we can take j = k above. In this case, ((\) = k and the second
part of (i1) follows.

(iii) Let Q € A;(P). Then, we can find e € (Es(U)); — (Es(U));_, such that
anng (%(:E(—SU()—I)J—)E—*) = Q. If we write

€ = (60,61,...,6J‘_1,0,0,...)

then em € Ej_ for 0 < m < j — 1. Now, we can find primes Ky,...,K, €
r.cL.(P N R), where K € X¢(»)(P N R) for some 1 < ¢()\) < j and such that

e. (QK,\)jzo.

By the faithfulness of %?[%}?—wsm, we see that ([0, K;\)j C @ whence

My Kx € Q. It follows easily that Ky C Q for some 1 < A < s. By the same

141




argument as that in (i), Kx = @ N R which proves the first part of (iii) since
Ky € X and ¢(X) < 5.

Now let j be minimal such that @ € A;(P) and assume that equality holds
in (#) at ¢ = § — 1. We claim that

eo € Ej1. (D)

Otherwise, we observe that

€:=(e1,e2...,€j-1,0,0,...) ¢ (Es(U));_y - (E)
We can find r.cl.(P)-semiprime ideals I1,. .., I;_, such that

G.Q.Il ‘e .Ij_z g (ES(U))I = El GBO@ 0 @ -

from which we see that

Q... I;_,=0.

It follows from (E) and Theorem 1.3.3 that @ € A;_;(P) a contradiction of the
choice of j. This establishes (D).

Since e.Q) C Eg(U);j—1, we see from (#) that

e(QNR)CE; 1OE 2@ - ®E 0000

whence

60.(Q N R) Q Ej—l-

By this observation and (D) above, QN R € A;(PNR). This completes the proof
of (iii). .

Remark 6.2.13. (i) Unfortunately, equality need not hold at (#), even for i = 2
as we will see in the next section (Example 6.3.4). Of course, by Remark 1.3.6, we
cannot find @ € X3(P) — A3(P) but, in fact, in this example, X;(P) = 4;(P) =
{P} for each 7 so that strong repleteness is preserved.

(ii) Since P 2 (P N R)S, the same can be said for all primes in the clique
of P by Lemma 6.1.2. So, applying Theorem 6.2.12(ii) with k = 2 together with
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Remark 1.3.6, to each prime in the clique of P, we see that, whenever Q' is a
prime in the clique of P and K~~>Q' N R, we can find a prime Q of S such that
QN R =K and Q € r.cL(Q'). Of course, if equality holds at (#) for ¢+ = 2 with
@' in place of P in Theorem 6.2.12, we can insist that Qr~r>(Q'. Thus, whenever
K € Xo(PNR), we can find a prime Q € X,,,(P), for somem > n, with QNR = K
and when equality holds at (#) for i = 2 (replacing P with @' in Theorem 6.2.12),

we can take m = n. n

Corollary 6.2.14. In the situation of Theorem 6.2.12 (but without assuming
equality at (#)), if P is rep. rep. in S, then P N R is rep. rep. in R.

Proof. Let K € r.cl.(P N R). By Remark 6.2.13(ii), we can find a prime
@ € r.cl.(P) such that @ N R = K. Assuming that P is rep. rep., Q € Fund(P)
and, by Theorem 6.2.12(iii), K = @ N R € Fund(P). Since this holds for all
K € r.cl.(P), the result follows. n

Remark 6.2.15. As seen in (6.2.2), the above Corollary does not extend to the
analogous statement substituting strongly rep. rep. for rep. rep.. In that example,
both S and R are rep. rep. rings (being commutative) which are not strongly rep.
rep.. In the next section, we will see a noncommutative counter-example (6.3.2)
(where, furthermore, S is not rep. rep. and R is rep. rep.). We do not know of any

example where S is strongly rep. rep. and R is not strongly rep. rep.. .

Corollary 6.2.16. Adopt the notation and hypotheses of Theorem 6.2.12.

(i) Suppose that, whenever @ and @' € r.cl.(P) and Q N R = Q' N R, then
@ =Q'. If PN R is rep. rep. in R, then P is rep. rep. in S.

(i) Suppose that, whenever Q and @' € X;(P), for some i > 0, and QNR=
Q' N R, then Q@ = Q'. Furthermore, assume that equality holds at (#) in Theo-
rem 6.2.12 for each « > 0. If PN R is strongly rep. rep. in R, then P is strongly
rep. rep. in S.

Proof.  Suppose @ € X;(P) for some ¢ > 0 and that Q ¢ X;(P) for any
J <i. By Lemma 6.1.1, QN R € X;(PNR).
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(i) If PN R is rep. rep. in R, then @ N R € Fund(P N R) and, by The-
orem 6.2.12(ii), there exists some (' € Fund(P) such that Q' N R = Q N R.
Assuming the hypothesis of (i), @ = Q'. Since this holds for each Q € r.cL.(P), P
is rep. rep. in T.

(ii) If PN R is strongly rep. rep. in R, then QNR € A;(PNR) and, by Theo-
rem 6.2.12(ii), there exists some Q' € A;(P) such that Q' "R = QN R. Assuming
the hypothesis of (ii), @ = Q' so that @ € 4;(P) and then, by Theorem 6.2.12(1),
Q € Ay(P) for each k > i. Since this holds for each @ € X;(P), P is strongly rep.

rep. in S. .

Remark 6.2.17. As noted at (6.2.15), we will see in the next section that,
while the additional hypotheses of Corollary 6.2.16 are certainly not necessary
conditions, without them we can find a ring R which is rep. rep, but for which
R[z] is not rep. rep.. In fact, even assuming that P N R is strongly rep. rep., P
need not be rep. rep., although in our example of this, R is not a rep. rep. ring.
(In the examples which we consider, it is, however, the first hypothesis of part
(ii) which fails and this is weaker than that of part (i).) We do not know of any
strongly rep. rep. ring R for which R[z] is not strongly rep. rep. or even of any
rep. rep. ring R where P N R is strongly rep. rep. and P is not strongly rep. rep..
In the next section, we do present an example where equality does not hold at (#)
in Theorem 6.2.12, but even here strong repleteness carries over to the polynomial

ring. "

§6.3 Some Examples

Example 6.3.1. We first show that strong representational repleteness may carry

over to a polynomial ring even where the first hypothesis of Corollary 6.2.16(ii)
does not hold,

Let R = C(?)[6; o] where o is the automorphism of C(t) given by o(t) = (t+1),
so that 6f = (£ + 1)0. The co-Artinian prime J = §R is strongly rep. rep. by
Theorem 5.2.1. (In fact, R is a strongly rep. rep. ring.) Put S = R[z] and
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P = (z —1)S 4 6S so that PN R = J. By Theorem 5.2.1 (or as shown in
Example 5.3.1), P is a strongly rep. rep. prime of S.

Furthermore, we note that
R/J=S/P=Ct),

with the natural embedding providing an isomorphism, so Hypothesis 6.2.8 holds
by Theorem 6.2.9.

On the other hand, by Lemma 5.1.10, the links of r.cl.(P) are the trivial links
together with the links

(z —t—a—1)8 4+ 65~~>(z —t —a)S + 65
and consequently,
Xn(P)={(z —t-—m)S+65:me{0,1,...,n—1}}

for each n € N. Now clearly, ((z —t—m)S+0S)NR=0Sfor0<m<n-—1so
that @ N R = 05 = J for every Q € r.cL(P). (Of course, since r.cl.(J) = {J}, this
is inevitable by Lemma 6.1.1.) It follows that the hypothesis of Corollary 6.2.16(ii)
fails for every pair of primes Q and Q' € X;(P) and for every i except i = 0.  m

Example 6.3.2. An example where the coefficient ring is rep. rep. but not strongly
rep. rep. and the polynomial ring is not rep. rep.; where, furthermore, the polyno-
mial ring contains a strongly rep. rep. prime whose contraction to the coefficient
ring is not strongly rep. rep..

We let R be the same ring as in the previous example and put B = <—£§.
Then, putting J = ~<—991;L>, we see that J is the unique prime ideal of R and so R is
rep. rep.. However, since % is non-zero, J~~%J. So, since 7= 0, J cannot be
strongly rep. rep. in R.

Now let S = R[z] and consider the prime P = (z — t)S + 65, which satisfies
Hypothesis 6.2.8 for the same reason as in Example 6.3.1. Since, in the previous

example, every prime in the right clique of P contained 6, we see that the link

graph of P is obtained from that of P by factoring out by the ideal 62S. That is,
Xn(P)={(z —t—m)S+6S:me€{0,1,...,n—1}}
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for each n € N. Furthermore, an identical argument to that of Example 5.3.1
produces again the elements 7; as the generators of B,_;(P). However, since

6? = 0 in S, there are only two non-zero %; which generate the bimodule in this

case, namely

n—1
Ta—1 = H(x wt—n—}-z‘)i(az %t)n_l +5,...5
=0
and
n—2 .
Trn—2 := H(w~t—n—|—z’)’(m~—t——1)"_29+5n...51 .
=0
Of course,
((:c — t)"S_ + 9§) An—1=0
and

(z—t-1)S + 05) Fnz =0

in By, (ﬁ) and so

An (P) = { ﬁ,{ﬁ :)f)ér ﬁ}?} inss
Thus, A, (ﬁ) = X, (F) if and only if n = 1 or 2 and, indeed, |Fund (?)| = 2
while lr.cl. (TP“)| = 00.

While we have seen that S is not a rep. rep. ring and R is, we note that the
prime @ = 2§ + S (which also satisfies Hypothesis 6.2.8) is strongly rep. rep. in
S although QNR = J is not strongly rep. rep. in R. To see that @ is strongly rep.
rep., we note that, by Theorem 5.1.12, or since @ is generated by normal elements,
r.cl. @) = @ while @ is a co-Artinian prime with Q" # 0 for any n € N and so
B._1(Q,Q) £0. n

Example 6.3.3. An example where a prime of the polynomial ring is not rep.
rep. but its contraction to the coefficient ring is strongly rep. rep., but where the
coeflicient ring is not, however, rep. rep..

We take, for our coefficient ring R, the ring § = =H—[z] of the previous
example which, as we saw, is not rep. rep.. Furthermore, we take J to be the
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prime Q (= zR + HE) which, as noted, is strongly rep. rep. in R. Now, although
the prime P = y§—|— 25 + 605 of § = fi[y] satisfies PN R = f, we will show that
P is not rep. rep. in S.

First, however, we note once again that P satisfies Theorem 6.2.9 and hence

Hypothesis 6.2.8.

By Lemma 5.1.10, the links of r.cl.(ﬁ) are the trivial links together with the
links

(y—t—a)§+x§+9§~v>(y—t—a+1)§+m§+9§

so that, for n € N,

Xn(ﬁ)"—"{(y—t—m)§+$§+9§:m€{0,1,...,n—-1}}
Sn=(@-t)y—t—1)(y—t—n+1)S+25+65.

By an induction argument similar to those of Chapter 4,

Snsn—l .- 52
SnSn—1...5

Y e Sheo [Ty =t —n 4 8)k(y —t + j —n 4 1)~k gkgn—i-1§
Ym0 2ot Ilimp(y — t — n + i)i~kghgn—i 3 '

Bny(P) =

Recalling that 62 =0 in S , we note that the non-zero elements

n—1
Tr—1,k = H(y —t—n+) Ty -t F gk L 5 LS,
f=f
for 0<k<n-—1, and

n—-2

Vr—2.k 1= H(y —t—n+) Tyt 1) F2ke 1 5, S,
i=k

for 0 < k < n — 2, generate 5 (Bn_l(ﬁ)),s\. Of course,
((y -5+ 25+ 9§> An_1,k =0,
forall0<k<n-—1, and
((y —t—1)5+285+68) 45, =0,
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foral0<k<n-—2,in Bnml(.ﬁ) and so

N {ﬁz(y—t)§+w§+9§} ifn=1,
An(P) =

{ﬁ,(y—t—1)§+m§+9§} if n > 2,

Thus, An(P) = X, (P) if and only if n = 1 or 2 and, indeed, 'Fund(ﬁ), = 2 while
‘r.cl.(ﬁ)

= 0Q. L]

Example 6.3.4. An example where equality fails at (#) in Theorem 6.2.12

for: = 2.

Form the differential operator ring
T = Clw, z]ly; 6]

where §(w) = 0 and §(z) = w. We note that w is central in T and that, since
yz — 2y = w, z is central modulo wT. Thus, the prime ideal J = wT + zT is
polycentral. In particular, by Corollary 2.3.8, the clique of J is a singleton. It
follows by [G&W, Theorem 12.20] (or by [J2, Corollary 7.3.10]), that J is classi-
cally localizable in T' and we let R be the corresponding localization. Furthermore,
we let S be the ordinary polynomial ring R[z] and we let P be the prime ideal
wS + 25 + (z — y)S. Since P is polycentral in T, we see that its clique is also a
singleton.

We note that S/JS = C(y)[z] and that the dimension of the vector space

(J/T%)q(y) is two. Moreover, since
w=yr—zy = (2—y)r—z(z —y) € P?,

we see that the dimension of the vector space (P/P? )c(y) 1s also two. Now, in the
notation of (1.3.10),

By(P) =B:(P,P) = P/P?
By(J) =By(J,J)=J/J?

and

while, by Theorem 1.3.11, and in the notation of (6.2.10(i1)) to (6.2.12),

(Es(U)), [ (Es(U)), & Homg,p (B1(P),(Es(U)),)
(AE)2/(*E)1 = Homp, s (B1(J), *E))

and
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for each A € A. It follows that the dimension of E%'Eg;%ﬂ@(y) is two while the
dimension of Eﬁ%}m—g%‘#]qy) is three. Thus, although P satisfies Hypothesis 6.2.8
by Theorem 6.2.9, we see that equality fails at (#) in Theorem. 6.2.12 for ¢ = 2.
However, in this case, since the cliques of both P and J are singletons and
both Bn(P) and B,(J) are non-zero for each n € N, P is strongly rep. rep. in S

and J is strongly rep. rep. in R. »

§6.4 Notes

As noted above, the results of §6.1 are extracted from unpublished work of
Brown and Goodearl {B&G]. In particular, Lemma 6.1.1 is taken from [B&G, The-
orem 1.7 and Corollary 1.8], Lemma 6.1.2 from [B&G, Corollary 1.9] and Theo-
rem 6.1.3 from [B&G, Theorem 2.1].

Theorems 6.2.1 and 6.2.3 are both new results.

Lemma, 6.2.4 is a special case of [B&G Lemma 2.4] and Lemma, 6.2.5 a special
case of [B&G, Lemma 3.8].

Lemmas 6.2.6 and 6.2.7 are both new: the proof of the analogous result to
Lemma 6.2.7 for the ¢-skew polynomial case is proved as [B&G, Proposition 3.9]
but requires a condition which cannot apply to ordinary polynomial rings.

Theorems 6.2.10 and 6.2.12, and Corollaries 6.2.14 and 6.2.16 are all new

results.

149




[A&F]

[A&MeD]

[Ba]

[Bs]

[Bel]

[Be2]

[Brm]

[B1]

[B2]

References

F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer—
Verlag (New York) 1992.

M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley (Reading, Massachusetts) 1969.

R. Baer, Abelian groups that are direct summands of every containing Abelian

group, Bull. Amer. Math. Soc. 46 (1940) 800-806.

H. Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc.
102 (1962) 18-29.

A. D. Bell, Localization and ideal theory in Noetherian strongly graded group-
rings, J. Algebra 105 (1987) 76-115.

A. D. Bell, Localization and ideal theory in iterated differential operator rings,

J. Algebra 106 (1987) 376-402.

A. D. Bell, Notes on localizations in noncommutative Noetherian rings, Cua-

dernos de Algebra 9, Universidad de Granada (Granada) December 1988.

D. J. Benson, Representations and Cohomology I : Basic Representation
Theory of Finite Groups and Associative Algebras, Cambridge Studies in
Advanced Mathematics 30, Cambridge University Press (Cambridge) (1991).

G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc.
200 (1974) 1-32.

K. A. Brown, Module extensions over Noetherian rings, J. Algebra 69 (1981)
247-260.

K. A. Brown, The structure of modules over polycyclic groups, Math. Proc.
Cambridge Philos. Soc. 89 (1981) 257-283.

150




[B3] K. A. Brown, Localisation, bimodules and injective modules for enveloping

algebras of solvable Lie algebras, Bull. Sci. Math. (ser.2) 107 (1983) 225-251.

[B4] K. A. Brown, Ore sets in enveloping algebras, Comp. Math. 53 (1984) 347—
367.

[B5] K. A. Brown, The representation theory of Noetherian rings, in Noetherian
Rings (S. Montgomery and L. W. Small, Eds.) 1-25, Springer-Verlag (Berlin)
1992.

(B&duC] K. A. Brown and F. du Cloux, On the representation theory of solvable Lie

algebras, Proc. London Math. Soc. (3) 57 (1988) 284-300.

[B&G] K. A. Brown and K. R. Goodearl, Prime links in g¢-skew polynomial rings,
Preprint (1993).

[B&W] K. A. Brown and R. B. Warfield, Jr., The influence of ideal structure on
representation theory, J. Algebra 116 (1988) 294-315.

[By] L. H. Byun, The second layer condition for certain centralizing extensions of

FBN rings and polynormal rings, Comm. Algebra 21 (1993) 2175-2184.

[C&E] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press
(Princeton, New Jersey) 1956.

[C] L. S. Cohen, On the structure and ideal theory of complete local rings, Trans.
Amer. Math. Soc. 59 (1946) 54-106.

[Da] R. P. Dahlberg, Injective hulls of Lie modules, J. Algebra 87 (1984) 458-471.

[D1] J. Dixmier, Représentations irréductibles des algebres de Lie résolubles, J.

Math. Pures Appl. (9) 45 (1966) 1-66.

[D2] J. Dixmier, Algébres Enveloppantes, Cahiers scientifiques 37, Gauthier-Villars
(Paris) 1974.

[E&S] B. Eckmann and A. Schopf, Uber injektive Moduln, Arch. der Math. 4 (1953)
75-78.

151




[F] R. M. Fossum, The structure of indecomposable injective modules, Math.

Scand. 36 (1975) 291-312.

[Gal] P. Gabriel, Objets injectifs dans les catégories abéliennes, in Séminaire P,
Dubriel Exp.17, 1958/1959 1-32.

[Ga2] P. Gabriel, Représentations des algébres de Lie résolubles (d’apres J. Dixmier),
in Séminaire Bourbaki 1968/69 1-22, Lecture Notes in Mathematics 179,
Springer-Verlag (Berlin) 1971.

[Ga3] P. Gabriel, Auslander—Reiten sequences and representation finite algebras, in
Representation Theory I (V. Dlab and P. Gabriel, Eds.) 1-71, Lecture Notes
in Mathematics 831, Springer-Verlag (Berlin) 1980.

[Gol] A. W. Goldie, The structure of prime rings under ascending chain conditions,

Proc. London Math. Soc. (3) 8 (1958) 589-608.

[Go2] A.W. Goldie, Semiprime rings with maximum condition, Proc. London Math.

Soc. (3) 10 (1960) 201-220.

[G&M] A. W. Goldie and G. Michler, Ore extensions and polycyclic group rings, J.
London Math. Soc. (2) 9 (1974) 337-345.

[G1] K. R. Goodearl, Classical localizability in solvable enveloping algebras and
Poincaré-Birkhoff-Witt extensions, J. Algebra 132 (1990) 243-262.

[G2] K. R. Goodearl, Prime links in differential operator rings, Quart. J. Math.
Oxford (ser.2) (168) 42 (1991) 457-487.

[G3] K. R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl
algebras, J. Algebra 150 (2) (1992) 324-377.

[G,L&R] K. R. Goodearl, T. H. Lenagan and P. C. Roberts, Height plus differential

dimension in commutative Noetherian rings, J. London Math. Soc. (2) 30

(1984) 15-20.

152




[G&W] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative
Noetherian Rings, Cambridge University Press (Cambridge) 1989.

[G&R] R. Gordon and J. C. Robson, Krull Dimension, Memoirs Amer. Math. Soc.
No.133 (1973).

[Ha] M. Harada, Hereditary semi-primary rings and tri-angular matrix rings, Nago-

ya Math. J. 27 (1966) 463-484.

[Hs] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in

Mathematics 156, Springer-Verlag (Berlin) 1970.

[Ht] D. Hilbert, Uber die Theorie der algebraischen Formen, Math. Annalen 36
(1890) 473-534.

[H1] G. Hochschild, Algebraic Lie algebras and representative functions, Illinois J.
Math. 4 (1959) 499-523.

[H2] G. Hochschild, Algebraic Lie algebras and representative functions, supple-
ment, Illinois J. Math. 4 (1960) 609-618.

(I] R.S.Irving, Prime ideals of Ore extensions over commutative rings, J. Algebra

56 (1979) 315-342.

[J1] A. V. Jategaonkar, Injective modules and classical localization in Noetherian

rings, Bull. Amer. Math. Soc. 79 (1973) 152-157.

[J2] A. V. Jategaonkar, Localization in Noetherian Rings, Cambridge University
Press (Cambridge) 1986.

[K1] G. Krause, On the Krull-dimension of left Noetherian left Matlis-rings, Math.
Zeitschrift 118 (1970) 207-214.

[K2] G. Krause, On fully left bounded left Noetherian rings, J. Algebra 23 (1972)
88-99.

[Kr] W. Krull, Dimensionstheorie in Stellenringen, J. Reine Angew. Math. 179
(1938) 204-226.

153




[Ku] T. G. Kucera, Explicit descriptions of injective envelopes: generalizations of

a result of Northcott, Comm. Algebra 17 (11) (1989) 2703-2715.

[L&M] J. Lambek and G. Michler, The torsion theory at a prime ideal of a right
Noetherian ring, J. Algebra 25 (1973) 364-389.

[L&L] T. H. Lenagan and E. S. Letzter, The fundamental prime ideals of a Noethe-
rian prime PI ring, Proc. Edin. Math. Soc. 33 (1990) 113-121.

[L&W] T. H. Lenagan and R. B. Warfield, Jr., Affiliated series and extensions of
modules, J. Algebra 142 (1991) 164-187.

[L&M] A. Leroy and J. Matczuk, Prime ideals in Ore extensions, Comm. Algebra 19
(7) (1991) 1893-1907.

[Lt] E.S. Letzter, Prime ideals in finite extensions of Noetherian rings, J. Algebra
135 (1990) 412-439.

[Lv] T. Levasseur, L’enveloppe injective du module trivial sur une algebre de Lie

résoluble, Bull. Sci. Math. (ser.2) 110 (1986) 49-61.

[Lp] M. Loupias, Représentations indécomposables de dimension finie des algebres

de Lie, Manuscripta Math. 6 (1973) 365-379.

[McA] F. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge Uni-
versity Press (Cambridge) 1916.

[McC] P. J. McCarthy, Algebraic Extensions of Fields, Dover Publications, Inc. (New
York) 1991.

[McC&R] J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Wiley—

Interscience (New York) 1987.

[Ma] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958)
511-528.

[Mu] J. L. Muhasky, The differential operator ring of an affine curve, Trans. Amer.
Math. Soc. 307 (2) (1988) 705-723.

154




P

[Miil] B. J. Miiller, Localization in fully bounded Noetherian rings, Pacific J, Math.
67 (1976) 233-245.

[Mi2] B. J. Miiller, Two-sided localization in Noetherian P.I. rings, in Ring Theory
169-190, Lecture Notes in Pure and Applied Mathematics 51, Dekker (New
York) 1979.

[Na] M. Nagata, Local Rings, Interscience (New York) 1962.

[N&S] E. Noether and W. Schmeidler, Moduln in nichtkommutativen Bereichen,

insbesondere aus Differential-und Differenzenausdriicken, Math. Zeitschrift 8

(1920) 1-35.

[N1] D. G. Northcott, Ideal Theory, Cambridge University Press (Cambridge)
1953.

[N2] D. G. Northcott, Injective envelopes and inverse polynomials, J. London
Math. Soc. (2) 8 (1974) 290-296.

[O] @. Ore, Theory of non-commutative polynomials, Annals of Math. 34 (1933)
480-508.

[Pa] Z. Papp, On algebraically closed modules, Publ. Math. Debrecen 6 (1959)
311-327.

[P1] D. S. Passman, The Algebraic Structure of Group Rings, Wiley-Interscience
(New York) 1977,

[P2] D. S. Passman, Prime ideals in enveloping algebras, Trans. Amer. Math. Soc.
302 (1987) 535-560.

[Po] D. G. Poole, Localization in Ore extensions of commutative noetherian rings,
J. Algebra 128 (1990) 434445,

[R,S5&S] R. Resco, L. W. Small and J. T. Stafford, Krull and global dimensions of

semiprime Noetherian P.I. rings, Trans. Amer. Math. Soc. 274 (1982) 285-
295.

155




[Rg] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Springer--Verlag
(Berlin) 1984.

[R&Z] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Zeit-
schrift 70 (1959) 372-380.

[Rm] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, Inc.
(New York) 1979.

[Sb] A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J.
Math. 89 (1967) 22-42.

[S&S] R.Y. Sharp and Y. M. Song, Inverse polynomials, Galois theory, and injective

envelopes of simple modules over polynomial rings, Preprint (1993).

[Si] G. Sigurdsson, Differential operator rings whose prime factors have bounded

Goldie dimension, Archiv. Math. 42 (1984) 348-353.

[St1] J. T. Stafford, On the ideals of a Noetherian ring, Trans. Amer. Math. Soc.
289 (1985) 381-392.

[St2] J. T. Stafford, The Goldie rank of a module, in Noetherian Rings and their

Applications (L. W. Small, Ed.) 1-20, Math. Surveys and Monographs 24,
Amer. Math. Soc. (Providence) 1987.

[2&S] O. Zariski and P. Samuel, Commutative Algebra, Volumes I and II, Van Nos-
trand (Princeton, New Jersey) 1960.

[Z] L. Zippin, Countable torsion groups, Annals of Math. 36 (1935) 86-99.

156




Index

All numbers refer to pages. Definitions are shown in bold — 123; lemmas,
theorems and corollaries in roman — 123; and examples in italic — 729. All other

references are bracketed — (123).

Adjoint Isomorphism Theorem .............ouiein i 19
annihilator .. ... xiii
A ) e 10, 10, 11, 11, (11), (12), 13
ASSASSINALOT .t e xiii
associated prime ........ ... i x1il
Baer’s Criterion ........ .o 1
B ) e 13,13
B P ) e 13,13
basic ring .. ... 46, 51
Cauchy sequence in alocal TINg ......uuuiiiiniiien e 66
central element ...... ... ... 33, 34, (37), 40
centrally separated ring ........ ..o 17
classical Krull dimension ... 9,9
CQUE e 6,9
CLE.IM(R) .t 9.9
) e 6,9
Cohen’s Theorems .. .....o.uieiniiui e 67, 68, 69
commutative rings, repleteness of ...... ... .. 17
commuting derivations ............ ... .. . (62), 70, (71), 74
completely prime ideal ......... ... . i 63
completion of a local ring ........... ... . 66, 70, (71)
concordant eXtension . ...... ...t 66
cyclic pathin a quiver ... ... i 50
A-invariant ideal .........ooii 63, 64
derivation ........ .o 61, 70, (71), 74
differential operator ring ................... 61, see iterated differential operator ring
divisible element and module ............ . . 1
cigenvalue for W on (-—Aﬂfdy)# ............................................... 64, 65
eigenvector for W on (%)# ............................... 65, (89), 90, 91, 93, 94




R 10, 10, 13

enveloping algebras of solvable Lie algebras ................ (8), (12), (29), (30), (42)

repleteness of ... .. .. e 24, (29), 41, (42), 90
equicharacteristic local ring ........ ... i i 68, 68
Ep(M ) ...................................................................... 3
essential submodule and extension .......... ... ... . i 2
exact contravariant functor ... ... ... o 19,19
extension of the ground field .................... ... ... ... ..., (73), 74, (76), 77
Ext-quiver ... 50
falthful ..o xiii
finite dimensional algebra ...... ... .. i 51

repleteness of .. ... ... . 55, 56, 56, 57, (58), 58
fully bounded Noetherian rings (FBN rings) .................... (5), (8), (12), (121)
fully faithful ..o xiii
fully sub-bounded rings ... ... . 121
fundamental prime ... 10,11
fundamental series ......... . 5,10, 10
Fund(P) <o 11, (12), 12, (13)
generalized triangular matrix ring ......... ... .. .. . 47, 52, (55)

repleteness of .......... ... (55), 55, 56, 57, 58
G e 86
graph of links ... .o G

preservation of ........ .. (31), 32, 33, 35, 124
group rings of polycyclic-by-finite groups ..........oovuerini s (8), (12)
hereditary rings, ...... ..o 18, 50

repleteness of ... ... 18, 55, 56, 56
0 (Q,P ) ................................................................... 111
deal link ..o 6, 12, (13)
idempotent, basic, lifting, orthogonal, primitive ...........ovoreuroroirn . 45
incomparability condition for a clique ......... ..o 9
incomparability property for a ring extension ..............iiii 77
indecomposable injective ........ ...t (2), 4
indecomposable module ........... ... i 2
injective hull ... .. o 3, 3, 4, 134, (135), 136

explicit descriptions of .................. ... ..., (18), 20, (23), 24, 30, (136)
injective module ....... ... ... 1,1, (2), 3, 4, 19, 20, 77, 131
inverse polynomials .......... .. ... 20, 28, 24, 30, (136)




iterated differential operator ring .......... ... .. .. .o (62), (71), (76)

repleteness of ........ . ... 89, 90, 90, 91, 93, 94
iterated skew polynomial ring ............ ... 0 i i, 61, (62), (119)
Jategaonker’s “Main Lemma” ... ... . . i 8
lifting link .. ..o 37, (38), 38
Lie algebra of derivations .......... ... oot (29)
local commutative ring ...... ..o (xiv), 66, 67, 68, 69, 70, 89
local finiteness of the link graph ........................... 12, (13), (49), (62), 103
localization ... (xiv), 7, 31
lower prime ideal .......... ... ... i 97, 99, (100), 103, (107)

repleteness of ... . ... 107
Matlis’s Theorems ...... ... ..o e 4,5
Morita invariance of repleteness .............oeuuueirenr e 32
normal element . ........ ... i 33, 34, 37, (38), 38, 41
OPPOSIEe QUIVET ..\ttt et e e e 49
Oreset ... xiv, 7, (7), (31), 31, 41
Ore extension ......... ... i 61, (97), (120)

repleteness of ....... ... ... ... . ...l 106, 107, 109, 113, 113, 114, 116, 118
Passman Correspondence ..............oiiiiuionune o 64
path algebra of a quiver ...... ... .. . 50, 50
polycentral ideal ........ ... ... . i 33, 35, 36, 40, 40
polynomial extension ........... ... i (121)

repleteness of .......... ... ... ... ....... 125, 126, 143, (144), 144, 145, 146, 148
polynomial identity rings (PI rings) ..................... (12), (17), 17, 30, 93, (121)
polynormal ideal ..... ... ... 33, 40, 41
projective module ... .. 1
QUIVET ottt et et e e 49
R 6, 12
regular commutative ring ........ ... ... 0 69, 69, 89, 90, 109, 113
regular element .......... . xiii, 37, (38), 38, 41
regularly polynormal ideal ........... .. ... ... . 33, 40, 41
representational repleteness ......... .. . . 16

preservation of ........................ 31, 32, 40, 71, see polynomial extension
right clique ... . e 6, 12




second layer conditions ....... ... ... ... ... o . 8, (49), (62), (97), (119)

preservation of ... ... ... ... . i i (31), (32), (83), (43), (121)
second layer link ... ... 6, 7
semilocal commutative ring ........ ... i i (xiv), 66, 109
semiperfect Ting ....... ... i 45, (46)
SEMIPIIMATY TINE .\ttt et e e e 46
o-cyclic semiprime ideal ........... .. ... o 98, (100), 105
o-Invariant .. 08, 99
o-prime ideal ... 98
skew polynomial ring .......... ... 61, (119), (134)
S 13
SPEC(R) ot xiv
sub-bounded rings ........ ... 121
BOTSION o e xiv
torsion-free .. ... ... .. xiv
trivial link ... . (§]
type (1) prime ideal ...........ieiiinit 97,98, 101, 103

repleteness of . ... . 106, (107), 118, 114
uniform injective ...... ... .. (2), 4
uniform module . ... 2
upper prime ideal ...................... 97, 98, 99, (100), 100, 104, (105), 105, (107)

repleteness of ... .. . 109, (113), 116, 118
winding automorphism ..........o i 65, 65
(P ) oo 7,11, (11), (12)

G. MacL. Low

Department of Mathematics
University of Glasgow
University Gardens
Glasgow G12 8QW
Scotland

160

GLASGOW
UNIVERSITY
HpRaRY |




