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Sum m ary

In this thesis we investigate aspects of the E a rth ’s magnetic field with a 
view to further understanding the physical processes a t work in the E a rth ’s 
core which act to m aintain the geomagnetic field against ohmic decay. In 
particular, we consider problems relating to the stability of the E a rth ’s mag
netic field.

The basic model of the E a rth ’s fluid outer core we adopt throughout, 
chosen to simplify the problem whilst retaining the im portant features, is 
th a t of a cylindrical annulus of electrically conducting, incompressible fluid 
ro tating rapidly about its axis. In this annulus we impose a toroidal magnetic 
field and velocity field which both  depend only on the distance from the axis 
of rotation. This basic state is then perturbed and its stability investigated.

In the first problem we consider in Chapter 2 the annulus is unbounded in 
the direction of the axis of rotation. We extend the problem solved by Fearn 
(1988) to  include an inner core of finite conductivity and allow the m antle 
to be a perfect insulator or a perfect conductor. The effect of varying the 
inner core conductivity on the magnetic field strength required for the onset 
of instability is investigated and the result in the limit of an insulating inner 
core compared with tha t of Fearn (1988) to serve as a check on the results.

In C hapter 3 the same model is extended to include a finitely conducting 
layer at the base of the m antle as a model for the D n layer. The inner core 
conductivity is in most cases assumed to be equal to th a t of the outer core 
and the influence of the D 11 layer on instability is investigated. The results 
are compared with those of the previous C hapter in the appropriate limits.

In the final problem considered we extend the linear stability analysis 
into the weakly nonlinear regime. The annulus is bounded in the direction 
of the axis of rotation by perfectly conducting plates and the cylindrical 
walls are assumed to be perfectly insulating. To simplify the analysis the 
m agnetostrophic approximation is made. Using a multiple scales expansion 
technique an am plitude equation is derived and the coefficients evaluated to 
determine if the instabilities are of sub- or supercritical type. As a check on 
the results the geostrophic flow that arises in the nonlinear regime is used 
as input into the linear code and its effect on the field strength required for



instability investigated.

The calculations in this thesis were carried out on the University of Glas
gow’s IBM 3090-150E/VF mainframe computer. The graphics have been 
produced using the GHOST80 graphics package. The results of Chapters 2 

and 3 can also be found in Lamb (1994a,b).
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CHAPTER 1

In trod u ction

1.1 G en eral In tro d u ctio n

The task of understanding the physical processes at work in the E a rth ’s core 

which act to  m aintain the geomagnetic field against dissipative losses is an im 

mense one. The highly nonlinear natu re  of the governing equations coupled with 

a com parative ignorance of many of the im portant param eters makes progress dif

ficult. Nonetheless, advances have been made by approaching the problem from 

several different perspectives and it is the aim of the work presented here to further 

understanding of one of these, namely, the stability of the E a rth ’s magnetic field.

Although the attracting  properties of lodestones were known to the ancient 

Chinese and Greeks as early as the th ird  century B.C. it was not until the m id

sixteenth century th a t m easurements of declination, the angle between geographic 

and m agnetic north , led G erhard M ercator to  realise th a t the source of attraction  

for compass needles was terrestrial. Later, in 1600, W illiam Gilbert published the 

influential treatise De Magnete, credited by some w ith being the first scientific 

textbook although some of the fundam ental concepts of m agnetism  were recorded 

as early as 1269 by Petrus Peregrinus in Epistola de Magnete. From measurements 

of inclination G ilbert concluded th a t the E arth  itself is a great magnet, one of the 

first physical properties to be attribu ted  to  the E arth  as a whole. This im portant 

step was followed in 1634 by the discovery by Henry G ellibrand th a t the magnetic 

field was not constant in time, a fact he deduced from m easurem ents of declination.

Many of the early m easurements of geomagnetic properties were motivated 

by their use as a navigational aid. Nowadays extensive measurem ents are made 

across the globe. Accumulated over the centuries these direct m easurements have 

yielded a great deal of useful information. As well as showing the observable part
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of E a rth ’s field to be predom inantly dipolar in structure (the toroidal part of the 

field, believed to be the stronger part, cannot be observed because the bulk of 

the m antle is insulating) they have revealed some of the non-constant features, 

the secular (or tem poral) variation, and in particular the westward drift of some 

large scale features of the field (eg. Bloxham, Gubbins and Jackson, 1989). In 

the la tte r parts of last century palaeomagnetism began to reveal da ta  covering 

much longer timescales. Palaeom agnetists were able to extract information on the 

intensity and direction of the geomagnetic field dating back hundreds of millions 

of years from rocks formed from cooling of lava and sedim entation. Over these 

geological timescales the average intensity of the field has been almost constant 

but the polarity was found to have reversed at irregular intervals of between a 

hundred thousand and a million years although there have been long periods in 

which no reversals have taken place.

Although G ilbert had asserted th a t the geomagnetic field originated from 

within the E arth  it was Gauss in 1834 who brought a m athem atical approach 

to  the problem  and showed the bulk of the field had its source deep w ithin the 

Earth. However, perm anent magnetism cannot be retained at the tem peratures in 

the deep interior of the E arth  and the diffusion timescale for a magnetic field in the 

E arth  is O(105) years. It follows therefore from the long term  consistency of in

tensity and tim e dependent nature  of the geomagnetic field (i.e., secular variation, 

polarity reversals) th a t the geomagnetic field is not due to perm anent m agnetisa

tion bu t th a t some regeneration process is at work. It is now believed th a t the 

geomagnetic field is generated by a dynamo operating in the fluid outer core of the 

Earth. Conducting fluid moves through a magnetic field inducing electric currents 

and associated w ith these currents is a magnetic field which can act to reinforce 

the original field. As it grows stronger the field will act to  inhibit those motions 

which are enhancing it.

The most obvious obstacle to  progress in modelling the E arth  is our inability 

to directly sample the interior and consequent dependence on inferring information

2



indirectly. It was 1906 before R. Oldham concluded th a t the E arth  has a m olten 

core from the observation th a t, after an earthquake, only longitudinal waves are 

detected on the opposite side of the E arth  from the epicentre. The general nature 

and constituents of the E a rth ’s interior are now fairly well established from seismic 

observations and, as technology improves, from high tem perature and pressure 

experiments. We now know th a t the 3485km radius core consists of a solid inner 

part of radius 1220km of almost pure iron and a fluid outer part made up of 

iron alloyed with smaller quantities of other elements. The identity of these other 

elements is still debated bu t oxygen and sulphur are thought likely to be the 

most abundant alloying elements with silicon, magnesium and nickel amongst the 

other possible candidates. The core is surrounded by the solid m antle of oxide 

and silicate minerals and the properties of this region are currently the subject of 

much research. An overview of the core’s features can be found in Jeanloz (1990).

P lanetary  dynam o action is only possible in a conducting fluid region m ak

ing the outer core the only feasible location w ithin the Earth . Several possible 

sources of energy to  drive the dynamo have been considered. The most commonly 

adopted in models to date is a uniform distribution of heat sources giving rise to 

therm al convection (eg. Roberts, 1968; Fearn, 1979; Fearn and Proctor, 1983a) 

but it is now thought there is an insufficient am ount of radioactive m aterial in 

the core to provide the necessary heat. Precession as a source has also been ruled 

out on energetic and other grounds (Loper, 1989) and current thinking favours 

compositional convection as the main energy source for the geodynamo (eg. Gub- 

bins, 1977; Fearn, 1989; Loper, 1989). The idea is th a t as the E arth  cools the 

iron part of the outer core freezes out, releasing latent heat and leaving behind 

lighter compositionally buoyant m aterial. This buoyant m aterial will then rise up 

through the outer core driving convection and providing energy for the dynamo.

The problems facing anyone hoping to produce a realistic model of the geo

dynamo are daunting. They must solve a set of highly nonlinear 3-D partial 

differential equations in a spherical geometry. The model m ust reproduce fea
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tures such as secular variation and polarity reversals involving widely disparate 

timescales (eg. reversals occur at irregular intervals of the order of 105- 106 years 

but the field takes only 5000-10000 years to reverse). They are further hindered 

by the so called ‘anti-dynam o theorem s’ the most famous of which is Cowling’s 

theorem  which states th a t a steady axisymmetric poloidal magnetic field cannot be 

m aintained by axisymmetric motions [this was later generalised to axisymmeytic. 

toroidal fields by Backus and Chandresekhar (1956) and the non-steady case by 

Backus (1957)], making asym m etry an inherent part of the problem. Yet another 

problem is th a t some of the relevant param eters are not well known, for example 

viscosity and m antle conductivity. It is only recently th a t advances in com puter 

technology have made a full numerical solution to the geodynamo problem a real

istic possibility and because of the difficulties outlined above a great deal of work 

to date has concentrated on particular aspects of the problem.

One such approach is the kinematic dynamo, in which a flow is prescribed 

and the induction equation (see §2 .2 .1) solved, ignoring the reaction of the field 

on the flow, to determ ine if a growing magnetic field results (eg. Gubbins, 1973; 

Kum ar and Roberts, 1975 and for an introduction to  kinem atic dynamos Soward, 

1989). The aim here is to establish which types of flow produce dynamo action, 

particularly  with behaviour reflecting the geodynamo. The actual flow in the E arth  

is not well known although constraints on the flow near the core-mantle boundary 

(CMB) can be m ade from extrapolation of the magnetic field at the surface down 

into the lower m antle (eg. Gubbins, 1982,1991; Bloxham and Jackson, 1991).

A complimentary approach, and the one we adopt in this thesis, is a stability 

analysis of some prescribed magnetic and velocity field. Such an approach has 

proved very fruitful in isolating im portant aspects of the dynam o problem and a 

wealth of literature now exists on the various classes of instability which may have 

a role to play in the dynamics of the E a rth ’s core. Broadly speaking instabili

ties can be divided into therm ally driven instability (see eg. Eltayeb and K um ar, 

1977; Fearn, 1979; Drew, 1991) and magnetically driven instability (eg. Acheson,
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1972; Fearn, 1983b). We are interested only in the la tte r here. Many studies have 

concentrated on the m athem atically simpler plane layer geometry (eg. Soward, 

1979; Fearn and Proctor, 1983b; Kuang and Roberts, 1990,1991,1992) but cylin

drical ( Roberts and Loper, 1979; Fearn, 1983b; Fearn and Weiglhofer, 1992) and 

spherical (Fearn and Proctor, 1983a; Fearn and Weiglhofer; 1991a,1991b) models 

have also been investigated. A variety of instability types have been uncovered: 

dynamic instability (Malkus 1967), buoyancy catalysed instability (Roberts and 

Loper, 1979; Soward, 1979; Acheson, 1980), exceptional instability (Roberts and 

Loper, 1979; Fearn, 1988), field gradient (ideal) instability (Acheson, 1972,1973; 

Fearn, 1983b,1988) and resistive instability (Fearn, 1983b,1984,1988; Fearn and 

Weiglhofer, 1992; Kuang and Roberts, 1990,1991,1992) but it is the la tte r two 

tha t are now thought most likely to be relevant to the E arth . The properties of 

magnetically driven instability are further discussed in §1.2 .

These studies (and numerous others) are im portant in understanding both  the 

generation of the geomagnetic field and its characteristics. To date, dynamo mod

els have concentrated on axisymmetric mean field models in which the essential 

asym m etry (Cowling’s theorem) is included via some prescribed ct-effect [a mech

anism for the generation of poloidal (toroidal) field from toroidal (poloidal) field]. 

Braginsky (1964,1967) proposed th a t this asymm etry is provided by asymmetric 

instabilities of the axisymmetric m ean field. Instabilities will also place constraints 

on the strength  of the fields th a t can be m aintained since they are an additional 

drain on the available energy. In addition, Hide (1966) first suggested th a t the 

secular variation may be due to travelling hydromagnetic waves and recent s tatis

tical analysis (M cFadden and M erril, 1992) has supported the view th a t internal 

fluid instability in the core is responsible for polarity reversals. All of these pro

vide m otivation for further investigation of magnetically driven instability in the 

Earth.

1.2 M agn etic  In stab ility

The num ber of studies devoted to  magnetic instability is now considerable (see
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§1.1). An obvious but im portant consideration in such studies is the choice of the 

magnetic field. Many authors have adopted a field of the form

B = B Ms * l  (1.1)

where s* is cylindrical radius and B m  a constant. Two im portant effects are 

incorporated here: field curvature (so B =  B<f>) and field strength depending on 

radius (so B  = s*). Such a choice is made because the E a rth ’s field is believed to be 

predom inantly toroidal and because it greatly simplifies the m athem atics. Malkus 

(1967) found dynamical instability of such a field bu t the large field strengths 

required led him to dismiss it as being geophysically irrelevant. Roberts and Loper 

(1979) found an ‘exceptional’ instability which is absent when the m agnetostrophic 

approxim ation is made or in the presence of perfectly conducting boundaries. We 

discuss this exceptional instability further in C hapter 3. They also considered 

buoyancy catalysed instability of (1.1). Such instability m ust be magnetically 

driven because either a top-heavy or a bottom -heavy density gradient can have 

a destabilising effect. This was further investigated by Soward (1979). However, 

while the choice of field B  = s* simplifies the analysis it has the disadvantage of 

removing certain im portant classes of instability.

Acheson (1972,1973,1983) adopted a local analysis in a cylindrical geometry 

to investigate more general magnetic fields. His local analysis makes the assum p

tion th a t the instability mechanism operates on lengthscales short in comparison 

with the annulus width, ignores the effect of the boundaries and expands the 

perturbation  variables in the form

/  ~  exp[z(7s +  m<j) +  nz  ~  wt)], (1-2 )

where (s*,</>, 2*) are cylindrical polar coordinates, s = s * / s Q, z  = z* f s 0, s 0 is the 

outer radius, /  is any of the perturbation  variables and I »  1 . His earlier work 

(1972,1973) is concerned with the diffusionless limit in which the preferred modes 

have n > >  1. He showed th a t dynamical instability in a cylindrical geometry must 

drift westward and th a t the high field strength required for M alkus’ instability was



a result of his choice of magnetic field. W ith diffusive effects included Acheson 

(1983) established a stability criterion for ideal instability (ideal, in this context, 

implies the instability persists in the diffusionless lim it, not the absence of diffusive 

effects). For a magnetic field and velocity profile of the form

B 0 =  B m s F ( s )4>, Uo — (1-3)

this can expressed in term s of a param eter A where, in the absence of stratification

A = ^ £ ( ^ 2 -3fn.fi) (1-4)

where Uq is the fluid velocity relative to  ro tating axes and the modified

magnetic Reynolds num ber

(1.5)

is a m easure of the strength  of differential rotation. Instability arises when

A > A c =  m2 ( l  +  h )  +  , (1.6)

[cf. Acheson 1983 Eq(3.1)j. The param eter A can be regarded as a measure of the 

field strength  or, alternatively as an inverse measure of magnetic diffusion and is 

defined by

A — tv/ t3) (1.7)

where rv is the m agnetic diffusion timescale and r s is the  slow magnetohydrody- 

namic timescale

T n =  Ts =  2 ^ 1 0 / Q 2a , (1.8)

f i0 is the ro tation  frequency of the system and the Alfven frequency

n A ~  B m / s0(v Po)1/2- (1-9)

where fi is magnetic perm eability and p0 fluid density. W ith sufficiently large A

and n the stability condition (1.6 ) becomes

A > m 2. (1.10)

7



The slow timescale r s (slow because in the E a rth ’s core fiyi < <  Oo) is a n a tu 

ral timescale for instability arising in diffusionless rapidly ro tating  systems, the 

analogue of the Alfven timescale in a non-rotating system. Provided A satisfies 

A >  m 2( l  -f- l2/ n 2) the condition (1.6) can be rew ritten in term s of a minimum 

value of A, i.e., instability exists for a given value of A if A >  Ac where

A‘ = ^ ( ' 2 + «2)[A~m2 (i + 5
- 1/2

It is apparent from (1.10) or (1.11) th a t the most unstable mode is m  = 1. In 

the diffusionless limit A 00 the instability persists and the growth ra te  p tends 

to a constant; hence these instabilities are also term ed ideal instabilities. The 

above indicates there are two basic requirements for ideal instability. The first is 

geometric; the field m ust increase sufficiently rapidly w ith distance from the axis 

of ro tation [condition (1.6) w ith (1.4)]. This led Acheson to term  this type of 

instability “field gradient instability” . The second requirem ent is energetic. The 

instability m ust be able to extract sufficient energy from the field to counteract 

diffusive effects. Consider (1.7); as A is decreased from some supercritical value 

the instability  timescale and the diffusive timescale become more evenly m atched 

until eventually diffusion acts rapidly enough to dam pen out the instability.

Fearn (1983b,1984,1985,1988) found global numerical solutions to the prob

lem in a  cylindrical geometry and confirmed th a t m any of the results of Acheson’s 

local analysis carried over to the global results. In this case the boundaries act 

as a restriction so th a t global solutions will not necessarily satisfy I »  1 and 

boundary conditions cannot be ignored. Also, on the short lengthscales entailed 

by n  > >  1 diffusion becomes an im portant effect so n > 0 (1) is more reason

able. Nonetheless, the numerical solutions proved the local analysis to be a good 

guide to ideal instability. Fearn also found a second im portan t class of instability: 

resistive instability. Resistive instability was already well known in non-rotating 

m agnetohydrodynam ics [eg. Furth, Killeen and Rosenbluth (1963)] and the prin

ciple effect of ro tation  is in modification of the timescale. Again instability arises



when A > Ac but in this case the growth ra te  peaks as A is increased and then 

decreases towards zero as A is further increased so th a t the instability vanishes in 

the diffusionless limit. This requirem ent for finite diffusivity indicates these modes 

are resistive, the mechanism for instability being the reconnection of field lines al

lowed to  move relative to the fluid. Typically Ac is lower for resistive instability 

than  ideal instability and the preference for m  =  1 modes is less marked.

Resistive instability is usually associated with the presence of a critical level 

k .B ~ 0  where k  is a wavevector. For a toroidal field of the form (1.3) this condition 

reduces to  .F(s) =  0. However, Fearn and Weiglhofer (1992) and Fearn and Kuang 

(1993) have found resistive instability in the absence of critical levels. Although the 

necessary conditions for this ‘new’ resistive instability are not yet fully understood 

they found no instability unless B " / B  <  0 near an insulating boundary (the 

prim e denotes differentiation w ith respect to  radius). A nother feature of this 

instability  was its absence when the boundaries were perfect conductors. Unlike 

ideal instability field curvature is not a necessary ingredient; Kuang and Roberts 

(1990,1991,1992) have extensively investigated resistive instability in a plane layer 

geometry w ith straight field lines.

Both ideal and resistive instability have also been investigated in the more 

realistic spherical geometry by Fearn and Weiglhofer (1991a,1991b). They found 

the constricting effects of the geometry to be a stabilising effect on the field gradient 

instabilities although the effect was less m arked on resistive instability. Their work 

confirmed th a t these types of instability could have an  im portan t role to play in 

the dynamics of the E a rth ’s core.

In addition to the two types of instability described above, which are now 

well established as being relevant to study of the geodynamo, magnetically driven 

instabilities destabilised by other effects have been found. Fearn (1988) showed 

these arise when some effect acts to counter the stabilising influence of ro tation 

on ideal instability, eg. inertia and magnetic diffusion (Roberts and Loper, 1979), 

stratification (Roberts and Loper, 1979; Soward, 1979; Acheson, 1980), viscosity
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(Fearn, 1988). In a non-rotating system the condition (1.6) is modified to

A >  m 2 — 4. (1.12)

R otation is therefore clearly a stabilising effect. If, in a ro tating system, some 

mechanism acts to overcome this stabilising effect instability, not otherwise present 

in the rotating system, may become possible for m 2 ~~ 4 <  A < m 2.

The investigations mentioned briefly above (and many others not mentioned) 

have assumed the m antle and inner core to be either perfectly insulating or per

fectly conducting. However, the boundary conditions have a significant influence 

on certain instabilities, in some cases excluding them  altogether, and although the 

inner core conductivity is not known with certainty it is likely to closely resemble 

th a t of the fluid outer core (Jeanloz, 1990). This provides our m otivation in Chap

ter 2 in which we examine the effect of an inner core of uniform  finite conductivity 

on magnetically driven instability in a cylindrical geometry.

The effect of a finitely conducting layer in the m antle whose conductivity 

depends on radius (i.e., the layer conductivity am = crm(s)) is investigated in 

C hapter 3. In recent years our knowledge of this part of the E a rth ’s interior has 

improved greatly from both  seismology and laboratory experim ents on minerals 

a t high tem peratures and pressures. The conductivity of the bulk of the mantle, 

which extends from 3485km from the E a rth ’s centre to just below the surface at 

6371km (Gubbins and Roberts, 1987) is not well determ ined bu t is very small in 

comparison w ith the outer core. It is now generally believed th a t a layer of thick

ness 200-300km exists at the base of the mantle, the D// layer, whose conductivity 

is considerably greater than  the bulk of the m aterial above it. This increased 

conductivity is due to iron enrichment from the fluid outer core.

Chapters 2 and 3 are extensions of the model employed by Fearn (1983,1988) 

to investigate the linear stability of planetary magnetic fields. In C hapter 4 we 

retu rn  to this model and take both  the inner core and m antle to be insulating. 

Our aim here is to extend the linear analysis to a weakly nonlinear analysis to
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determ ine whether the instabilities of interest described above, the ideal and re

sistive instabilities, are sub- or supercritical. While linear analyses can tell us 

about the necessary geometry and field strength for instability  to arise it is only 

by extending this to the nonlinear regime th a t we can obtain  information about 

the param eter ranges in which steady finite am plitude solutions to the equations 

exist. It is these solutions we are most likely to observe. This is particularly rele

vant to the possibility th a t internal fluid instabilities trigger polarity reversals and 

to the westward drift.
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CHAPTER 2

M agn etic  In stab ility  W ith  A  
F in ite ly  C onducting  Inner C ore

2.1 IN T R O D U C T IO N

Our model of the E a rth ’s interior comprises a cylindrical annulus of electrically 

conducting fluid ro tating rapidly about its axis with angular velocity fio =  HoZ 

and confined between two solid regions rotating w ith the system. The fluid, with 

an azim uthal shear flow U  — U(s*)<f>, is perm eated by an azim uthal magnetic field 

B — In this chapter the m antle, represented in our model by the region

exterior to  the annulus, is taken to be a perfect electrical conductor or insulator 

and we investigate the influence of an inner core, the region w ithin the annulus, of 

arb itrary  prescribed uniform electrical conductivity on linear magnetic instability 

of the above state.

Previous investigations of the most relevant types of instability, the ideal and 

resistive instability, have assumed the m antle and inner core to  be either insulating 

or perfectly conducting. The effect of finitely conducting boundaries on therm ally 

driven instabilities has been investigated [eg. Sparrow et al. (1963)] and in this 

C hapter we examine the effect of a  finitely conducting inner core on magnetically 

driven instability. The effect of a finitely conducting layer in the m antle (with 

conductivity a function of radius) is investigated in the next Chapter. Although 

the inner core conductivity is not known precisely it is likely to be comparable 

with th a t of the fluid outer core. This provides the m otivation for our model.

The work of Fearn (1983b,84,88) is extended to include a solution of the induc

tion equation in an inner core of finite conductivity. As a reasonable representation 

of the m agnetic field in the E a rth ’s fluid core, the basic state  we consider is, in
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cylindrical polar coordinates (s*,<^,2*),

Bo = B 0( s * ) l  U 0 =  Uo(s*)<j>, (2.1)

incorporating field curvature bu t neglecting buoyancy effects. The param eter of 

interest is r)i — 17*/ r]0 where 7 7 *  is the magnetic diffusivity of the inner core and 

r}0 th a t of the fluid. The limits 17 i 0 and rji —»• 00 correspond to a perfectly 

conducting and an insulating inner core respectively. Basic states were chosen to 

perm it comparison w ith earlier work and enable the study of field gradient and 

resistive (with and w ithout a critical level) instabilities.

For both  classes of instability the behaviour in the rji —» 00 limit was as 

expected. In each case the modes found approached those of a perfect insulator 

irrespective of the basic state. A new feature of this model was found in the 

17 i —> 0 limit. In this limit the expected modes approaching those of the perfectly 

conducting case were found (with one exception) and, in some cases, a new mode 

of instability was also present. Typically, these new modes of instability are low 

frequency modes penetrating deep into the inner core and requiring lower Ac’s 

than  the expected modes m entioned above. Both ideal and resistive cases of this 

new mode were found.

Perhaps the most significant result was found when rji was varied over finite 

values. In almost all instances we found instability was most readily prom oted 

when rji was close to what is believed to be the the geophysical value of 17 «  1 . 

This, together with the above, suggests tha t a perfectly conducting boundary con

dition may not provide the best guide to the results and the inclusion of a finitely 

conducting inner core is worthwhile in future studies of m agnetic instability.

13



2.2 T H E  M O D EL

2.2.1  G overn ing E quations

The model we adopt, combining simplicity with the essential features of the 

problem, is an infinite cylindrical annulus of electrically conducting incompressible 

fluid with an inner radius of S{ and outer radius s 0. The regions 0 < s* < Si 

and s Q < s* are rigid solids, the inner one having arbitrarily  prescribed finite 

magnetic diffusivity 77*, the outer either insulating or perfectly conducting. The 

whole system rotates about its axis with angular velocity Ho =  £Iqz. The fluid, 

with constant magnetic diffusivity 770, magnetic perm eability //, kinematic viscosity 

v  and density po moves relative to this system with velocity U  and is perm eated 

by a toroidal magnetic field B. The equations governing the m otion of the fluid 

and evolution of the magnetic field are

< 9 1 1  V P  1

—  +  U .V U  +  2 O 0 x U  =  -  — - +  — (V x B ) x B +  ?/V 2U , (2.2)
Ot p  0 ppo

^ = V x ( U x B )  +  r?0V 2B, (2.3)

V .B  =  V .U  =  0, (2.4a, 6)

where P  is the fluid pressure. In the inner core (s* < S() there is no flow and the 

appropriate magnetic diffusion equation is

dB
- f t  =  ^ V 2B. (2.5)

Small perturbations b and u are then applied to an ambient state  B =  Bo, U  =  0

so th a t

B =  B 0 +  b, U  =  u, (2.6)

where

b (^s , , bz) , u — [ ug) u^^ u • (2.7)

Equations (2 .2 )-(2 .5 )  are non-dimensionalised using the lengthscale <s0, the 

slow m agnetohydrodynam ic timescale t 3 [defined in (1.8 )] and the magnetic field
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B m • The coordinates are then (s, <f>, z) w ith the inner boundary at s = s ^ ,  where 

sif, — S{js0. Unless otherwise stated  we take sa  — 0.35 in our calculations which 

is representative of the E a rth ’s inner/ou ter core ratio. After linearising, the equa

tions governing the stability of the basic state  are
F)\Jl

AE v —  +  z x u =  - V p  +  (V  x Bo) x b +  (V  x b) x Bo +  B V 2u, (2.8)

^  =  V x ( u x B 0) +  A -1V 2b, (2.9)

V .b  — V .u  =  0, (2.10a, b)

in the fluid and

^  =  A“ 1J;iV 2b, (2 .11)

in the solid inner core. The coefficients of b  and u  in the equations (2.8)-(2.11) 

together w ith the boundary conditions (detailed in §2 .2.2 below) are independent 

of (j>,z and t perm itting us to  use a modal expansion of the form

/ ( s ,  t) =  f(s)exp[i(m<j> +  nz  — wtf)], (2 .12)

where /  is any of the components of b  or u.

The param eters E  and E v , the Ekm an and magnetic Ekm an numbers, are non- 

dimensional measures of viscous and inertial effects respectively and are defined

by

E - d 4 -  x ' - s k -  (213)
where for the calculations in Chapters 2 and 3 of this thesis we take E  =  £7̂  =  10” 5 

(unless otherwise stated). Although in the E arth  these param eters are likely to be 

considerably smaller than  this (possibly as small as E  = 10-15 and E v = 10“ 9) 

choosing realistic values would entail boundary layers too narrow to be resolved 

numerically. The m ain param eter of interest in this chapter is rji where

Vi — Vi /Vo (2-14)

is the ratio  of m agnetic diffusivity in the inner core to th a t of the fluid. The 

limits rji —r 0 and rji —» 00 correspond to a pei'fectly conducting and a perfectly 

insulating inner core respectively.
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2.2 .2  B ou n d ary  C ond ition s

The boundary conditions on the velocity are simply the no slip condition and 

no norm al component, i.e.,

u  =  0, s = s ib, 1. (2.15)

The magnetic field must be continuous everywhere. On the axis of rotation this 

implies
Dbs = bz =  0 m — 11

> 5 — 0 , (2.16a, b)
bs — bz ~  0 m  > 1 J

where D  =  d/els.

In this C hapter, the m antle, s > 1, is taken to be either perfectly conducting 

or insulating. In the case of an insulator the condition is th a t the current norm al 

to the boundary vanishes and the field matches to some external potential field 

b (e) =  -V V . The first of these gives

s2Db3 -j- sbs +  i (m 2 +  n 2s2)bz / n  =  0, 5 =  1, (2.17)

The external potential field V  m ust satisfy

V 2V =  0, (2.18)

with general solution

V  =  A I m(ns) +  C K m(ns),  (2.19)

where A  and C  are constants and I m and K m are modified Bessel functions [see 

Abramowitz and Stegun (1965)]. For the magnetic field to remain bounded as

5 —> oo we require A  ~  0. Then, m atching the field at the boundary s =  1 to

eliminate the constant so th a t b =  we get

bs — 7 bZi (2.20)

where

7 — i[Km+ i ( n ) / K m(n) -  m /n \ ,  5 =  1 , (2 .21)
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In the perfectly conducting case the condition is th a t the tangential electric 

field is zero, i.e., n  x e =  0, where n  is a vector norm al to  the boundary. This 

leads to

b3 — Dbz =  0, s = 1, (2.22)

(see Fearn 1983a).

At the boundary between the fluid and the region of finite conductivity at 

s = so, the m agnetic field must remain continuous and the equations in solid 

and fluid regions are coupled. One possibility th a t was tried  is simply to solve 

the induction equation at the boundary itself, utilising the continuity of b  and 

coupling the equations across s =  S{b (numerically, when the equations are solved 

at discrete points, this means defining derivatives solely in term s of points in a 

given region up to and including the boundary point w ith an equation at the 

boundary defined in term s of points of either region). An alternative is to use the 

continuity of b with (2.10a) and the ^-components of (2.8) and (2.9). This leads 

to continuity conditions involving derivatives of bs and bz . However, we found tha t 

neither of these two alternatives is enough to ensure th a t our numerical solution 

of the system of equations is the one consistent w ith the physical conditions we 

are trying to model. The problem lies in the rji —> oo limit.

As r)i becomes large we approach the case of an insulating inner core and 

(2 .11) becomes

V x (V x b) =  0 . (2.23)

The solution of (2.23).z is

bz = A I m(ns)  +  C K m(ns ), (2.24)

where A  and C  are constants and I m and K m are modified Bessel functions. The 

boundary condition a t s =  0 ensures C — 0 and substitu tion of (2.24) into (2.23).s 

then yields, after solving for b3

b3 = [GIm(ns)  +  H K m(ns)]/s  +  A D I m ( n s ) / i n ,
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where G and H  are constants. As before the condition at s = 0 implies H  =  0. 

Physically however, the condition th a t should be satisfied in the inner core as 

rji — oo is

V x b =  0. (2.26)

i.e., the current in an insulator vanishes. The solutions (2.24) and (2.25) do not 

satisfy this condition, giving upon substitution

(V x b).s =  D (G n Im(ns ) /m s) .  (2.27)

The condition th a t ensures the solution to (2.23) satisfies (2.26) is continuity 

of the tangential electric field, i.e.,

[n x e] =  0 , (2.28)

where [/] =  (/)* — ( f ) °  and the superscripts i and o refer to  the inner core and 

outer core respectively. This can be expressed as

[n x 77J] =  0 .

where r) is the appropriate magnetic diffusivity for the inner core or the fluid. The 

^-component of this is

[rj(inbs — Dbz )\ =  0, (2.29)

or

(inb3 — Dbz y  — — (inb3 — Dbz )° =  0.
f]i

We approach the case of an insulating inner core by letting rji —> oo so this gives

[inbs — Dbz )* = 0. (2.30)

Substitution of (2.24),(2.25) (with C = H = 0) into (2.30) then yields

(■inGIm(ns)/s)* =  0 , 

18

(2.31)



and so, G =  0 and the solution (2.25) of (2.23) will satisfy (2.26). Finally, the 

continuity of b together with (2 .10a) give

[Dbs] =  0, (2.32)

which together w ith (2.29) form the magnetic boundary conditions at the inner 

core boundary (ICB).

2 .2 .3  M eth o d  o f  S o lu tion

After substitu tion of the m odal expansion (2.12) into equations (2.8)-(2.11) 

we can eliminate b^^u^ and 7r using (2 .10a), (2 .10b) and (2 .8).</> respectively to 

leave a ten th  order system of linear ordinary differential equations in s.

To solve these equations the regions s < sn, and <  s <  1 are divided 

into N\  and N 2 intervals respectively and differential operators replaced by fourth 

order finite difference operators. The resulting system of discretised equations can 

then be expressed as a m atrix  eigenvalue problem of the form

A v  = —iujCv , (2.33)

where

v  =  (2.34)

where N  = N \  +  N 2.

Two independent m ethods were employed to solve this eigenvalue problem. 

The first was the LR algorithm  [Peters and W ilkinson (1971a)]. This m ethod 

finds all the eigenvalues and eigenvectors of a given m atrix  but requires a large 

am ount of storage and CPU time. For this reason a second m ethod is used, the 

m ethod of inverse iteration [Peters and W ilkinson (1971b), Fearn (1991a)]. Taking 

a particular eigenvalue found by the LR algorithm  as a starting  value, this second 

m ethod iterates to the eigenvalue closest to it and also outputs the eigenvector

associated w ith it. Much greater resolution can be achieved w ith this m ethod

since it can work with only the band of the m atrix  containing non-zero entries. It
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can therefore utilise the banded structure of the m atrix which arises as a natural 

consequence of the finite difference approximations to  make considerable savings in 

storage and CPU tim e and output more accurate approxim ation to the eigenvector 

and eigenvalue.

2.3 R E SU L T S

2.3 .1  N u m erica l P roced u re

The code we used is one employed by Fearn (1988) modified to allow either 

a perfectly conducting or insulating boundary condition to  be used at the CMB 

and to  incorporate a solution of the induction equation in the inner core. The 

first step is to  determine if instability is present for a given set of param eters and 

basic state. A value of A is chosen and the LR algorithm  used to find all of the 

eigenvalues. If none are found with a positive growth rate, i.e., with

p — >  0 (2.35)

then A is increased and the process is repeated until one is found. This eigenvalue, 

the most unstable mode (in the sense tha t it is the first growing mode, there may 

be other modes a t larger field strengths which grow faster), is then used as input 

for the m ethod of inverse iteration which yields both  the eigenvalue closest to  the 

initial value and its corresponding eigenvector and can be used w ith considerably 

higher resolution than  the LR algorithm. Newton-Raphson iteration is then used 

to iterate  from this eigenvalue to find the point of m arginal stability, i.e., to find 

the value of A, Ac where p =  0.

In most of the calculations in this thesis the first p a rt of this process was 

unnecessary. In the m ajority of cases results of Fearn (1983b,88) or Fearn and 

Weiglhofer (1991a) were used as a starting  point. Most of their results were ob

tained w ith E  = E v = 0 and in these cases values of E  and E v smaller than  the 

standard  were chosen (in general E  = E v =  10-8  was small enough to accurately 

approxim ate the E  = E v =  0 case) and the mode followed as E  and E v were
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increased to E  = =  10~5. The param eter under consideration was then incre

m ented by some small am ount and the inverse iteration process repeated w ith the 

previous critical param eters used as the required initial estim ate.

2 .3 .2  P lo ttin g  E igen fu n ction s

Our code produces as outpu t bs ,bz , u s and u z and from these b$ and u $ could 

be calculated using (2.10a) and (2 .10b) if desired. The eigenfunctions have been 

normalised so th a t max\bz \ — 1 and real parts plotted as full lines, im aginary parts 

as broken lines. Throughout this chapter we use N \  = N 2 = 1000 grid points. In 

most cases this is more than  sufficient but ensures adequate resolution of viscous 

and magnetic boundary layers for the full range of param eters values we consider.

2 .3 .3  B asic S ta tes

The basic states we have elected to investigate are chosen to perm it direct 

comparison w ith previous work and to  allow study of ideal, resistive and excep

tional instability. The first field is unstable to  ideal and exceptional instability

F  = 1. The non-monotonic field (2.37) is likely to  be more geophysically realistic 

than  the field (2.36) since it vanishes at the boundaries. W ith a  > 0 there are

F  = sa . (2.36)

The second is unstable to ideal, resistive and exceptional instability and, w ith 

appropriate param eters, can be chosen with or w ithout critical levels

F  =
1 T  oc

1
(2.37)

The factor 1/(1 + a )  is a  norm alisation factor chosen so th a t the maximum of

no critical levels in 5,5 <  s <  1 , w ith a =  0 the field is zero a t both  boundaries. 

The gradient of field (2.37) is positive in the inner pa rt of the  annulus so th a t we 

expect ideal instabilities to  be concentrated in th a t region.
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F igure 2.1 Comparison of ideal modes of field (2.36) with m =  
1, ct — 1. The top figure includes a solution in the inner core with 
rfi =  103 and the bottom  with an insulating boundary condition 
applied at the ICB. Critical param eters are given in (2.38a,b).

2 .3 .4 . A  C heck On T h e R esu lts

As a test of the code, we compare results with some obtained using the code 

employed by Fearn (1983b,88), modified to allow any com bination of perfectly con

ducting/insulating inner and outer boundaries to  be chosen [in Fearn (1983b,88) 

both  boundaries were perfectly conducting (1983b) or insulating (1988)] and in

corporating viscosity. Here the outer boundary is taken to  be insulating. We also 

examine the consistency of our results with an analytic consideration.
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F ig u re  2 .2  Comparison of ideal modes of field (2.36) with rn =
1 , 0: =  1. The top figure includes a solution in the inner core with 
rji =  10~3 and the bottom  with a perfectly conducting boundary 
condition applied at the ICB. Critical param eters are given in 
(2.38c,d).

Figures 2.1-2.2 show eigenfunctions b3, bz for an ideal instability of the basic 

state  (2.36) w ith a — 1 and an insulating outer boundary. Figure 2.1 is a  com

parison between the eigenfunctions with solution in the inner and outer cores and 

rji — 103 (top) and a solution in the fluid only with an insulating inner boundary 

(bottom ). The agreement in the fluid region is excellent and in the inner core 

region in the top figure the solution can be seen slowly decaying as would be ex

pected. A comparison of the critical param eters for the rji =  103 case and an
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insulating inner boundary is shown in (2.38a) and (2.38b) respectively w ith the 

param eters for the rji = 10-3  case and a perfectly conducting boundary in (2.38c) 

and (2.38d).

Ac =  192.42, n c = 2.370, wc =  -0 .5052. (2.38a)

Ac -  192.49, n c = 2.374, wc =  -0 .5069. (2.386)

Ac =  210.43, n c =  4.508, a>c =  -0 .9800. (2.38c)

Ac =  210 .21 , n c = 4.514, wc =  -0 .9814. (2.38d)

Figure 2.2 compares the solution in the whole core w ith rji = 10~3 with the 

case of a perfectly conducting inner boundary. Again the agreement in the fluid 

region is excellent. In the inner core, bz can be seen adjusting rapidly in a thin

layer (so th a t b3,bz =  0 throughout the bulk of the inner core as would normally

be expected in a perfect conductor). This is considered further below.

2 .3 .5  T h e  L im it rji —>■ 0

Consider (2 .11).z, the equation determining bz in the inner core.

—iu>bz — A"“1?7i(Z)2 +  s ” 1!! — s -2 (m 2 +  n 2s2))bz,

which may be rew ritten as

[s2D 2 +  sD  — m 2 — (n2 — — — )s2]bz =  0, (2.39)
l i

w ith solution

bz -  A I m(ks)  +  C K m(ks ), (2.40)

where

k =  ( „ 2 -  —  ) V \  (2.41)
Vi
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Condition (2.16) implies C — 0 and if we choose to  normalise bz so th a t bz(s = 

sn)  =  1 we obtain

bz =  I m( k s ) / I m(ks ib). (2.42)

As we increase the conductivity of the inner core, 77̂ —> 0 and we have
'  • A \  1 / 2— ILOA \  '

(2.43)
Vi

At m arginal stability, to is real and we can write this as

fc =  ( i ± ! ) ( M h )  . (2.44)

The ±  sign in this expression is +  if ujc < 0, — if u>c > 0. (It should be noted here 

we are assuming th a t as 77̂ —> 0, 77* < <  to A. This is not always the case; solutions 

for which wA —» 0 as 77; —* 0 were found for some fields [basic state  (2.37)]. The 

analysis in this section does not apply to these low frequency modes which will be 

discussed further in §2.3.9).

To leading order (see Abramowitz and Stegun), then, in the limit 77 —> 0 (such 

th a t \ks\ »  1)

Jm(fc ,)/Jm(fc,.6) ~ ( (2^ )1/ 2) e x P[ ^ ] ( (2Tfc^ )i /2)  eXp [ - k s ib], (2.45) 

which, w ith (2.43) at m arginal stability, can be w ritten

I m ( k s ) / I m(ksib) = exp[( 1 (s ~  s ib)]- (2.46)

There are two points to be made from consideration of (2.46). The first is th a t 

when rji is very small the real part of the exponential will decay very rapidly to 

zero as s is decreased from s = Sib. This can be clearly seen in Figures 2.2 and 2.3, 

in particular the la tte r which shows blow-ups of the eigenfunctions bs , bz a t the 

boundary s  =  S i b for decreasing values of rji. A narrow boundary-layer structure 

can be seen developing as rji —> 0 and the field is expelled from the inner core. 

Secondly, the imaginary part of this same exponential will give rise to oscillations 

with a length scale ~  (rji/to A ) 1/ 2 placing a limit on how small rji can be whilst 

retaining sufficient numerical resolution. In practice we found rji 10~ 3 was in 

most cases small enough to accurately approxim ate the perfectly conducting case.
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F igure 2 .3  Blow ups of the eigenfunctions of an ideal mode of 
field (2.36) at the ICB with m  =  1, a =  1 and, from top to bottom , 

rji =  10“ \ l C T 2, l ( r 3.

2 .3 .6  F ield  G radient In stab ilities

In the previous section we considered the limits rji —» oo and rji —> 0 for the 

purposes of comparison w ith earlier work. In the rest of this chapter we examine 

the effect of varying rji on the instabilities.

The first type of instability we consider is the field gradient instability. For 

completeness we consider first the field (2.36) before proceeding to  the more real-
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F ig u re  2.4 As in Figures 2.1 and 2.2 but with r/i — 1. Critical 
param eters are given in (2.47).

istic case of (2.37). Figure 2.4 is the eigenfunction for this field with rji = 1, a  — 1 

and w ith critical param eters

Ac =  188, n c =  1.69, =  -0 .198 . (2.47)

Comparison with Figures 2.1 and 2.2 shows the mode evolves in a m anner tha t 

would be expected, the field being expelled from the inner core as r/i is decreased. 

The variation of Ac with rji is shown in Figure 2.5. The discontinuity in the 

gradient of the curve is due to A being minimised over n. The curve represents 

the global m inim um  over n, bu t local minimums can also occur and at the point 

of discontinuity the global minimum ‘jum ps’ from one local minimum to another. 

This is clarified in Figure 2.6, which shows plots of Ac versus n for rji =  0.1 (full 

line) and rji = 1 (dashed line). The change of global minim um  from one local 

minimum to the other is clearly illustrated and, away from these minima, Ac can 

be seen increasing as n is sufficiently increased or decreased. The circles on the 

vertical axes of Figure 2.5 represent the critical A’s w ith a perfectly conducting or 

insulating boundary condition applied indicating (together w ith Figures 2.1 and 

2 .2 ) a good m atch w ith the appropriate solutions.

The second basic state  we consider, field (2.37), is of greater interest. W ith
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F ig u re  2.5 Critical Elsasser num ber versus logiorji for ideal 
modes of field (2.36) with m  = l , a  =  1. The circles indicate 
the values with a perfectly conducting or insulating boundary 
condition applied.

this field geometry m  = 1 modes are not easily categorised as ideal or resistive 

with individual modes exhibiting some of the characteristics of both  (see Table 1 , 

Fearn 1988) so th a t we restrict a ttention to m  =  2. In Figures 2.7 and 2.8 the 

full line represents the ‘expected’ modes, i.e., those th a t approach the perfectly 

conducting and insulating solutions in the limits rji —> 0 and rji oo respectively.

However, at some rji a second local minimum develops (of A with respect to 

n ) which becomes the global minimum as rji is further decreased (this curve, the 

dashed line, is only plotted when it becomes the global minimum; this should not 

be interpreted as modes converging or vanishing). Figure 2.9 clearly illustrates this 

point which shows th a t the global minimum of A over n  is an order of m agnitude 

lower for very small bu t finite rji modes than  for the perfectly conducting case.
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F ig u re  2 .6 Critical Elsasser num ber versus n  for the ideal modes 
of Figure 2.5. The lines are rji =  0.1 (full line) and rji = 1 (dashed 
line) illustrating how the global minimum ‘jum ps’ from one local 
minimum to another.

The frequency of these modes, corresponding to Figure 2.7, is plotted in Figure 

2.8. For the ‘new’ slow modes the frequency scales w ith rji and is 0 ( r j i /A) so th a t 

loc —>• 0 as rji —»• 0 . This is discussed further in §2.2.9. The frequency of the 

faster modes remains 0 (1 ). In both  cases the frequency is negative, i.e., the 

modes travel westward. Figures 2.10 and 2.11 illustrate eigenfunctions for the 

expected and low frequency instabilities. The lower middle and bottom  parts of 

Figure 2.10 are eigenfunctions at rji = 10” 3 for bo th  m inim a of Figure 2.9. The 

former matches closely the eigenfunction for a perfectly conducting boundary and 

is confined to  the outer core bu t the la tter low frequency solution occupies the 

whole core. This behaviour is explained by differing timescales; the timescale of 

the slow (low frequency) mode is the diffusive timescale of the inner core so tha t 

on this timescale it can penetrate into the inner core (this is discussed further in

29



1 0 0 0

500

30 2- 3 2

LOG n,
Figure 2 .7  Critical Elsasser num ber versus logio^i for ideal 
modes of field (2.37) w ith m  =  2 , 0  =  1, a — 0.
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F igure 2 .8  G raph of u>c versus r)i for the ideal modes of Figure 
2.7.
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F ig u re  2 .9 Critical Elsasser num ber versus n for the ideal modes 
of Figure 2.7. The curves are rji ~  10, (thin full line), 1, (dashed),
10- 1 , (long-short dash), 10- 2 , (short dash), 10~3, (dash dot) and 
w ith perfectly conducting inner boundary (thiclc full).

§2.2.9) while the faster (higher frequency) mode operating on a shorter timescale 

can only penetrate  a very short distance (see Figure 2.2 or 2.3).

The critical param eters for these two modes [Figure 2.10 & 2.11 (lower middle) 

and Figure 2.10 Sz 2.11 (bottom)] together w ith the cases rji = 103 and rji =  1 , are

Ac =  508, 

Ac =  623, 

Ac =  1213, 

Ac =  106,

n c — 9.61, 

n c = 8.25, 

n c =  15.1, 

n c = 4.30,

LO, =

U>r =

ten ~  —

to,

0.934,

0.568,

0.969,

0.131 x 10“ 2.

ra = 103, (2.48a) 

rji =  1, (2.486)

rjt = 10"3, (2.48c) 

7u = 10"3, (2.48d)

illustrating the dram atic decrease in field strength required for these new low fre

quency instabilities. The unrealistically large value of Ac in (2.48c) is attributable
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F igure 2 .10  Eigenfunctions for bs,bz of ideal modes of Figure 2.7 
with, from top to bottom , rji = 103, 1 ,10-3  (full line Figure 2.7), 
10-3  (dashed line Figure 2.7). Critical param eters are in (2.48).
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to the choice of m  — 2 .

2 .3 .7  R esistive  In stab ility  W ith  A  C ritical L evel { a  =  0)

Typically, resistive instability requires significantly lower field strengths than  

an ideal instability and although less influenced by the geometry of the container 

there are features which depend on the particular basic state. In the case of field

(2.37) with a  =  0 , A —> 0 as n —> 0 so tha t we choose n to be fixed at n — 3 (see 

Fearn 1988).

The interesting behaviour again occurs when rji <  1. Figures 2.12 and 2.13 

plot the critical Elsasser num ber and frequency against rji for resistive modes of 

field (2.37) w ith a = 0. The dashed line in Figure 2.12 encloses a region of low 

frequency instability occupying the whole core in a similar way to tha t described 

above but clearly resistive in nature since the growth ra te  p vanishes when A —» oo. 

The full line converges to the higher frequency modes of an insulating or perfectly 

conducting boundary indicated by the circles on the vertical axes. The rapidly 

changing part of this line is magnified in Figure 2.14 showing the line is a  smooth 

one and these high frequency modes have three critical states in a very narrow 

range of rji. It should be made clear th a t while the full and broken lines cross, the 

eigenvalues and eigenfunctions are in fact very different. The behaviour loc —> 0 

as rji —*■ 0 is clearly illustrated in Figure 2.13 and discussed further in §2.3.9.

To more clearly illustrate what is going on, growth ra te  versus A curves are 

shown in Figure 2.15. These can be understood in relation to Figure 2.12 by 

imagining vertical lines of constant rji in Figure 2.12. In Figure 2.15 both  the full 

line and dash-dot lines are plots w ith rji = 2 x 10-2  dem onstrating the existence 

of three critical states when rji is small. The dash-dot line, cutting p = 0 twice in 

Figure 2.15 (this is more easily seen in Figure 2.16 in which part of Figure 2.15 is 

magnified) corresponds to the dashed line of Figure 2.12 while the full line, cutting 

p — 0 only once in Figure 2.15 (at higher A p —» 0 for this mode) corresponds to 

the full line of Figure 2 .12. The remaining three lines in Figure 2.15 correspond
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Figure 2.12 Critical Elsasser num ber versus logio^i for resistive 
modes of field (2.37) with m =  2 , /? =  1, or =  0.
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Figure 2 .13  G raph of ujc versus rji for the resistive modes of 
Figure 2 .12.
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F ig u re  2 .14  Blow up of rapidly changing part of full line of Figure
2.12 showing the curve is a sm ooth one.

to the full line of Figure 2.12; the short dashed line (rji — 3 x 10~2) lies just to 

the left of the region magnified in Figure 2.14 cutting p = 0 once, the long-dash 

short-dash line (ip =  3.5 x 10“ 2) passes through this region and cuts p =  0 three 

times while the dashed line, (77* =  4 x 10"2), passes to  the right of this region 

and cuts p  =  0 once. In contrast to  the ideal modes however, there is very little 

difference in field strengths between slow and fast modes as shown by these results 

with rji = 10-3

Ac =  25.3, ujc =  0.870 x 10"4, (2.49a)

Ac =  22.3, toc ~  —0.428 x 10 2, (2.496)

Ac =  24.8, loc =  0.215, (2.49c)

where (2.49a) and (2.49b) correspond to the same mode (full line of Figure 2.12).

In general, Ac for these modes is not strongly dependent on 77*, critical param eters 

at rji = 103 and 1 respectively given by

Ac =  29.3, wc =  0.172, (2.50a)

36



0 . 1

0. 0

- 0 . 2

20 21 22 23 24 25 26 27 28 29 30
A

Figure 2.15 Growth rate versus A for resistive modes of field 
(2.37) with a = 0, /5 =  l ,m  =  2. The curves are 77, =  2 x 10-2 

(dash-dot and full) 3 x 10-2  (short dash) 3.5 x 10-2  (long-short 
dash) and 4 x 10-2  (dashed).
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Figure 2 .16  Magnified part of Figure 2.15 showing where lines 
cross p = 0 (the full line of Figure 2.15 has been om itted).
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F ig u re  2 .17  Eigenfunctions for b3, bz of resistive modes of Figure
2.12 with, from top to bottom , rji =  103,1 ,1 0 ~ 3 (full line Figure 
2.12). Critical param eters are in (2.50a), (2.50b) and (2.49c) re
spectively.
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F ig u re  2 .18  As in Figure 2.17 but for eigenfunctions of u a,u*.
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F ig u re  2.19 As in Figure 2.17 &: 2.18 but for resistive slow modes. 
Critical param eters are given in (2.49a) (1st and 3rd Figures) and 
(2.49b) (2nd and 4th).
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Ac =  27.4, toc =  0.075, (2.506)

Eigenfunctions of the modes in (2.49) and (2.50) are illustrated in Figures 2.17-2.19 

showing again the deeper penetration of the slow modes at very low rji perm itted 

by their longer timescale.

2 .3 .8  R esistiv e  In stab ility  W ith o u t A C ritical L evel (a  > 0)

Fearn and Weiglhofer (1992) investigated resistive instability of the field (2.37) 

in a cylindrical geometry and found th a t with insulating boundaries the instability 

persisted as a  was increased through zero up to a  0.2, i.e., even in the absence 

of a critical level. However they did not find this behaviour w ith both  boundaries 

perfectly conducting. To investigate this further we wish to  choose the param eters 

such th a t the field has no zero w ithin the outer core. The conditions for this 

instability are not yet fully understood but Fearn and Kuang (1993) have gone 

some way towards this and found the instability was absent unless B q /  Bo < 0 

(the prime, in our case, means derivative with respect to s) near an insulating 

boundary. To allow us to satisfy this condition at bo th  boundaries and therefore 

perm it investigation of these modes with an insulating or perfectly conducting 

outer boundary we increase the inner radius to sh, =  0.7 and take a  =  0.5 and 

/? =  2 .

It might be anticipated th a t with a perfectly conducting outer boundary Ac 

would increase as rji is decreased until the instability vanishes. However Figures 

2.20 and 2.21 show th a t instability continues to exist as the conductivity of the 

inner core is increased. Indeed Ac decreased to around a th ird  of its value at large 

rji . Figure 2.22 shows th a t the modes are evolving into slow modes of the kind 

we have already seen in §2.2.6 and §2.2.7. Typical eigenfunctions are illustrated 

in Figures 2.22-2.23 with critical param eters

Ac =  33.99, ujc = —1.950,

Ac =  12.88, cjc =  -0 .679,

41
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F ig u re  2 .20  Critical Elsasser num ber versus logio^i for resistive 
modes of field 2.37 w ith m  — 1, n =  1, (3 = 2, a  — 0.5, =  0.7
and a perfectly conducting outer boundary.
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F ig u re  2.21 Frequency versus logio??* for modes of Figure 2.20.
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F ig u re  2.22 Eigenfunctions bs,bz for resistive modes of Figure 
2.20 with, from top to bottom , 77, = 103, 1 ,10~3. Critical param 
eters are given in (2.51a)-(2.51c) respectively.

Ac =  11.34, ujc = -0 .186 x 10- 2 , 77j =  10 3, (2.51c)

In each case m =  1 and n =  1.

Nearly identical behaviour is found when the outer boundary is insulating. 

Figures 2.24-2.27 are equivalent to 2.20-2.23 but with an insulating outer bound

ary. Differences are quantitative rather than  qualitative, the equivalent param eters
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F ig u re  2 .23  As in 2.22 bu t for eigenfunctions u s, u z . 

to (2.51) being

Ac =  6.86, =  -1 .367 , rji =  103, (2.52a)

Ac =  4.21, o>c =  -1 .080, rji =  1, (2.526)

Ac =  4.17, u>c =  -0 .445  x 10~2, rji =  10-3 , (2.52c)

This might have been expected since we chose the basic state  to  satisfy 

B g /B o  <  0 a t bo th  boundaries. However, the instabilities we have found with
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F igure 2 .24  Critical Elsasser num ber versus logio^i for resistive 
modes of field 2.37 with m  = 1, n = 1, (3 — 2, a — 0.5, = 0.7
and an insulating outer boundary.

0. 0

- 0 .  5

0

1. 5

-A - 3  - 2  -1 0 1 2 3 A

LOG n,
Figure 2.25 Frequency versus log io^ for modes of Figure 2.24.
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Figure 2 .26  Eigenfunctions bs,bz for resistive modes of Figure 
2.24 with from top to bottom  rji = 103, 1 ,10- 3 . Critical param e
ters are given in (2.52a)-(2.52c) respectively.

small rji are low frequency modes th a t do not correspond to the case of a perfectly 

conducting inner boundary where Ac was found to be 13.43 with u>c =  0.07. The 

corresponding modes to this case could not be found and we have no explanation 

for this. We have found all the eigenvalues for this case a t A’s greater than  13.43 

and only one with a positive growth rate was found, corresponding to the low 

frequency mode we have found with much lower Ac. One possible problem was
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F ig u re  2 .27  As in 2.26 bu t for eigenfunctions u s, u z .

th a t in the perfectly conducting case, the frequency passed through a zero close to 

the Ekm an num ber we have used bu t we were unable to find the modes at higher 

or lower Ekm an numbers and this remains unexplained.
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2 .3 .9  T h e Low Frequency In stab ilities

In §2.3.5 an analysis of the equations in the inner core was m ade in the limit

rji —► 0 applicable only if |w|A > >  rji as rji —> 0. However, we have found instability

when rji —» 0 for which this condition does not hold and we consider these modes 

further here.

Consider the induction equation in the inner core

—  =  —I7;A_1V x (V X b), (2.53)

or

b =  - 4 - V x ( V x b ) .  (2.54)
cjA

If |u>| rem ains 0 (1 ) as rji —* 0 (our fast modes) then clearly b —» 0 in the limit 

rji —» 0 (see, for example Figure 2.2) and, with the condition (2.28) we would 

recover the boundary conditions (2.22) for a perfect conductor.

However, an alternative possibility is |w| —► 0 as r ji —» 0. This is found to be 

the case for our slow modes, bo th  the growth rate and frequency u>i where

a;, -  Sft(u>), (2.55)

scaling w ith rji as rji —»■ 0. This is illustrated in Figures 2.29 and 2.30 in which A is 

fixed and supercritical [|w*|A and |p|A are plotted since it is the quantity to A which 

appears in the induction equation (2.54)]. The instability timescale is then the 

diffusion timescale of the inner core so th a t on this timescale significant penetration 

into the inner core is possible. In the limit rji =  0 both  p  =  0 and a;t- =  0, the 

timescale on which the instability grows will become infinitely long and no field 

lines will then cross into the inner core from the fluid. This explains why modes 

of this type are not observed when a perfectly conducting boundary condition is 

applied, eg. by Fearn and Weiglhofer (1992). In reality of course rji ^  0, the 

diffusion timescale of the inner core is 0(1O4) years, and it is conceivable th a t 

these modes will be present although probably not preferred (in Figure 2.7 the 

slow modes (dashed line) are preferred to the fast modes (full line) for Vi S  1-0).
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F ig u re  2 .28  Plot of logio|tUj|A versus logio^; w ith A and n fixed 
at A — 200, n = 4.3 showing how the frequency scales with r)i for 
slow modes. The mode is the equivalent of (2.48d) b u t supercrit
ical.
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F ig u re  2 .29  As in Figure 2.28 but for logio|p|A versus logio^j 
showing how the growth ra te  scales with r)i for the slow modes.
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2.4 C O N C L U S IO N S

We have investigated the effect of finite conductivity in the inner core on ideal 

and resistive instability of a toroidal magnetic field both  of which have been estab

lished as relevant to param eter regimes appropriate to  the Earth . We were able 

to reproduce (with one exception) solutions found with an insulating or perfectly 

conducting boundary condition applied at the ICB and found tha t in general a 

given basic state  was most prone to magnetic instability when rji was close to the 

geophysical value of rj «  1. Some interesting and unexpected behaviour was found 

when r}i < 1. This took the form of low frequency modes of instability penetrating 

deep into the inner core at small rji and was found to occur for both  ideal and 

resistive instability. Both the growth rate  and frequency of these low frequency 

modes scaled w ith rji so th a t in the limit rji —► 0, the perfectly conducting limit, 

the timescale of growth and oscillation for the modes tends to  infinity and no 

instability would be observed. T hat it should occur when the field is zero a t the 

boundaries is unsurprising. Ideal modes are concentrated where the field gradi

ent is positive and the zero of the field is an im portant influence on the resistive 

modes. Both of these features are present at or near the ICB so the conductivity 

of the inner core might be expected to play a role.

In term s of the critical Elsasser number, a m easure of the field strength, the 

difference between the ‘high’ and low frequency resistive modes was minimal, the 

big difference being in the structure of the eigenfunctions. However, for ideal 

modes the difference became dram atic as rji was reduced, the lower frequency 

modes occurring at Ac’s an order of m agnitude lower and at smaller axial wave 

numbers. In this sense they are therefore the modes th a t would appear first 

although it m ust be noted th a t at more geophysical values of rji the differences 

were much less marked.

It had been previously thought th a t resistive instability depended on the pres

ence of a critical level. Fearn and Weiglhofer (1992) then found resistive instability 

with a zero of the field outw ith the fluid, bu t not in the presence of perfectly con
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ducting boundaries. In Figure 2.20 we have found th a t instability persists when 

rji —r 0. One worrying feature was our inability to  find the equivalent mode to 

Fearn and Weiglhofer w ith an insulating outer boundary and perfectly conducting 

inner boundary. We have found, as yet, no reason why this should be the case. In

stability was found, at lower Ac than  expected and this difference clearly w arrants 

further attention.

W hat then of the significance to the E arth? Although, as mentioned above, 

the low frequency mode would not be observed in the limit of perfect conductivity 

the E a rth ’s inner core is not, of course, a perfect conductor and if, as thought, the 

conductivity of the inner core is comparable w ith th a t of the outer then it is feasible 

these modes have a role to play, at least in the case of ideal instabilities (see Figure 

2.7). For the high frequency instability rji — 1, the geophysically realistic value, is 

in most cases at, or close to, the minimum of Ac over rji i.e., the most unstable case 

(see Figures 2.5,2.7,2.20,2.24). For these reasons the choice of perfectly conducting 

boundaries may not provide the fullest and most accurate picture of magnetic 

instabilities in the core and the inclusion of finite conductivity in the inner core 

in fu ture models would be desirable and worthwhile as the results here underline 

the relevance of these types of instability to studies of the geomagnetic field.
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CHAPTER 3

T h e Effect O f A  F in ite ly  C on d u cting  
Layer In T he M antle On M agn etic  

In stab ility  In T he C ore

3.1 IN T R O D U C T IO N

Having examined the effect of inner core conductivity on magnetic instability 

in the core in C hapter 2, in this C hapter we tu rn  our atten tion  to  the influence 

of m antle conductivity. Our model is similar to th a t of C hapter 2, a rapidly ro

tating cylindrical annulus of electrically conducting fluid perm eated by a toroidal 

magnetic field, w ith the addition of a  layer at the base of the m antle of arb itrary  

conductivity and thickness. Unless otherwise stated we take the inner core conduc

tivity to be the same as th a t of the fluid and allow the m antle layer conductivity 

to depend on the radius.

U nderstanding of the conditions under which planetary  magnetic fields, in 

particular the E a rth ’s, become unstable has by now developed considerably. Many 

of the im portan t features have been investigated, eg. field geometry and differential 

ro tation b u t in the investigations of magnetic instability to  date, the m antle has 

been treated  as a perfect electrical conductor or insulator. Such an assum ption is 

m ade for reasons of simplicity bu t in light of recent improvements in our knowledge 

of the structure  of the E a rth ’s interior it is appropriate to investigate the possible 

effects of a region of finite conductivity in the mantle.

O ur increased understanding of the E a rth ’s interior has stemmed from two 

sources. Firstly, improved seismic d a ta  has allowed greater resolution of features 

within the Earth . They have confirmed the existence of a layer at the bottom  of the 

m antle, the D n layer, of thickness 200-300km [Young and Lay (1987)], although 

considerable variations in this thickness are known to exist. Lateral heterogeneities
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of the order of 10km in length have also been established from measurements of 

wave speed changes [Bataille and F la tte  (1988)]. Secondly, advances in technology 

have allowed high pressure and tem perature experiments to  be conducted in the 

laboratory to mimic conditions at the solid-liquid interface of the core-mantle 

boundary (CMB). The m olten (mainly) iron of the outer core will react rapidly 

with the minerals of the mantle. The products of these reactions will be lifted away 

from the reaction zone by m antle convection. However, this convection occurs on 

timescales much longer than  the reaction timescales, tens or hundreds of millions 

of years for m antle convection compared with less than  a million years for the 

reactions, and the relatively dense reaction products will sink back towards the 

CMB forming a layer at the bottom  of the m antle - the D n layer. The iron content 

in this region will be further enhanced by penetration of core m aterial along the 

mineral grains in the m antle [see, eg., Young and Lay (1987), Jeanloz and Lay 

(1993)].

Estim ates of the conductivity of the lower m antle derived from such experi

ments vary considerably; Li and Jeanloz (1987) give an upper bound of 10-2 Sm -1 

at a depth of about 1900km while Peyronneau and Poirier (1989) estim ate the 

conductivity to be 4-40Sm _1 in the lower mantle, extrapolated to  a lower bound 

of 70Sm_1 at the CMB. Whichever figure is correct, it is small in comparison 

with the more widely accepted figure of 104Sm_1 for the D n layer [Li and Jeanloz 

(1987)]. This appreciable conductivity (for comparison, the outer core conductiv

ity is ~  5 x 105Sm -1 ) is due to an enriched iron content from the outer core and 

may vary considerably because of lateral heterogeneities. For a general review of 

features of the E a rth ’s interior see Jeanloz (1990).

Here, our aim is to examine what effect this conducting layer might have on 

linear magnetic instability. Of prim ary interest are the two types of instability 

already discussed in some detail which have been established as being of signifi

cance to the E arth  and possibly responsible for secular variation and field reversals 

[McFadden and Merrill (1993)]: field gradient (or ideal) instability and resistive

53



instability. One other type of instability, the so called ‘exceptional’ instability of 

Roberts and Loper (1979), is thought to be of more theoretical than  geophysical 

interest since w ith insulating boundaries in the limit of vanishing viscosity (E  —» 0) 

the critical field strength required for instability —> oo and w ith geophysical values 

of E  the critical field strength far exceeds estim ates of the E a rth ’s field strength. 

We investigate this further with finitely conducting boundaries.

In previous investigations the m antle has been assumed to be perfectly con

ducting or insulating because the boundary conditions are comparatively simple 

and the need to solve equations in the m antle is avoided. Here we extend the 

model of C hapter 2 to include a layer at the base of the m antle with conductiv

ity a function of radius. The ratio  of magnetic diffusivity in the m antle layer to 

tha t of the fluid is denoted by rjm , where rjm 00 corresponds to an insulating 

layer and rjm —> 0 to a perfectly conducting one. The inner core diffusivity is in 

most instances assumed to equal th a t of the fluid, i.e., rji =  1. Previous studies 

incorporating a conducting m antle have involved layers of constant conductivity 

or conductivity decreasing as some power of the radius, eg. Ducruix, Courtillot. 

and Le Mouel (1980); Benton and W haler (1983); Drew (1993); Fearn and Proctor 

(1992). Diffusivity profiles similar to Fearn and Proctor (1992) are adopted in a 

single layer of finite conductivity; above this layer the m antle is assumed to be 

insulating. No attem pt has been m ade to model the lateral heterogeneities.

The addition of a conducting layer was found to be a destabilising influence 

for each type of instability considered. Solutions were found to m atch w ith the 

insulating m antle case in the limit rjm —> 00 but when rjm was varied, Ac decreased 

as rjm was decreased towards more geophysical values (rjm ~  50). Not surprisingly, 

increasing the thickness of the layer also had the effect of decreasing Ac. A par

ticularly interesting feature was the dependence of the direction of propagation 

of fast resistive modes, the direction changing from east to  west as rjm was de

creased through rjm «  10. The Roberts-Loper exceptional mode was investigated 

and found to persist when rji^rjm —> 0 but with growth ra te  and frequency scaling
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with r)i ( — rjm in this case). The behaviour of Ac as E  and E v [defined in (2.13)] 

were reduced was also found to depend on rji and rjm . W hen rji,rjm < 1 we find 

Ac remains finite as 15, E v —► 0 bu t Ac —► oo as E , E V —» 0 otherwise.

3.2 T H E  M O D EL

3.2 .1  G overn ing E q u ation s

Our model is identical to th a t explained in detail in C hapter 2, a cylindrical 

annulus of electrically conducting fluid perm eated by a toroidal magnetic field B 

and rotating rapidly about the ^ axis with a solid inner core of uniform relative 

magnetic diffusivity rji (i.e., the inner core magnetic diffusivity has been non- 

dimensionalised using the outer core magnetic diffusivity). To this we add an 

outer layer of thickness e and relative magnetic diffusivity rjm(s) (all variables 

here are dimensionless) at the base of the mantle, i.e., in 1 < s <  1 +  e. Above 

this the m antle is taken to be insulating. The appropriate equations for the fluid 

outer core and solid inner core are given in (2.7)-(2.10). In the m antle layer the 

induction equation is
ai
-  =  - A - ‘V x ( v V x b ) ,  l < s < l  +  e (3.1)

The linear analysis then proceeds as before. The basic state  is B =  U  =  0

where Bo — B m s F ( s ) and F  takes one of the forms (2.35) or (2.36). Unless 

otherwise stated  the param eters E , E V and so, take the values E  = 10"5,E ^ =  

10-5 and so, — 0.35.

3 .2 .2  B ou n d ary  C on d ition s

The form ulation of the boundary conditions applied is given in C hapter 1. 

Here, the conditions on the axis of rotation and at the ICB are as before. W ith a 

finitely conducting layer at the base of the mantle the condition at the CMB is now 

the same as th a t at the ICB, i.e., continuity of magnetic field and tangential electric 

field. Above this layer the m antle is taken to be insulating and the appropriate 

condition for an insulator applied at s =  1 +  e.
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F ig u re  3.1 Comparison of ideal modes of field (2.36) w ith m  = 
l,or =  1 and 77, =  1. The top figure has an insulating boundary 
condition applied a t the CMB, the lower figure includes a con
ducting layer of uniform diffusivity rfm = 104 and depth e =  0.06.
Critical param eters are given in (3.2a) (top) and (3.2b) (bottom ).

3 .3  A  L A Y E R  O F U N IF O R M  D IF F U S IV IT Y

We consider initially a layer of uniform diffusivity. Unless otherwise stated  

(i.e., except in §3.3.2) we take the depth to be t  =  0.06 which in our model corre

sponds to  209fcm, approxim ately the depth inferred from seismic m easurem ents 

for the D n layer and =  1 which is probably appropriate to  the Earth.

3 .3 .1  A  C heck On T h e R esu lts

Before proceeding to investigate the effect of varying r]m we make a comparison 

w ith a result of the previous C hapter [results of which were, in turn , compared 

w ith those of Fearn (1988)]. The same code has been used, modified to incorporate

.0

. 5

a 0
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the conducting m antle layer.

Figure 3.1 is a comparison of eigenfunctions 6a, bz of an ideal instability of the 

field (2.36) with a  = 1 and m  = 1. In each case rji — 1. The top figure has an 

insulating boundary condition applied at the CMB and the bottom  figure a layer 

of uniform diffusivity rjm =  104 and depth e — 0.06. The agreement in the core 

is excellent and critical param eters corresponding to the top and bottom  parts of 

Figure 3.1 are, respectively,

Ac -  188.11, n c = 1.691, u?c -  -0 .1983. (3.2a)

Ac =  188.05, n c =  1.691, u>c =  -0 .1983. (3.26)

Having found good agreement between the rjm —> oo solution and an insulating 

boundary solution we can proceed with confidence to examine the effect of varying 

T]m *

3 .3 .2  Layer T hickn ess

In C hapter 2 we found th a t in general Ac decreased as rji was decreased towards

1. We might anticipate therefore th a t similar behaviour would be found as rjm was 

decreased and th a t this effect would be more marked w ith a thicker layer. This was 

found to be the case. Figure 3.2 illustrates the destabilising effect of increased layer 

thickness on ideal instabilities of field (2.36) with a  =  1 and uniform diffusivity. 

For a given value of rjm , Ac clearly decreases as e is increased, this being more 

marked the more conducting the layer becomes. As would be expected, Ac becomes 

independent of e as rjm —* oo.

3 .3 .3  F ield  G radient In stab ility

As in C hapter 2, for field gradient, or ideal instability Ac is minimised over n 

since Ac —> oo as n —> 0 or n —> oo. Figure 3.2 also illustrates the behaviour of Ac 

as rjm is varied for the field (2.36). The conducting layer is clearly destabilising 

bu t the effect is only significant when rjm < O(102) when Ac changes rapidly as
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F ig u re  3.2 Critical Elsasser number versus logior]m for ideal 
modes of field (2.36) with m =  1, a = 1, and T]i = 1. The lines cor
respond to e =  0.03 (full line) e =  0.06 (dashed line) and e = 0.09 
(dash-dot line) [e = 0.03 corresponds to about 105km]. The cir
cle on the vertical axis represents a solution with an insulating 
boundary condition applied at the CMB.

indicated by the following sample modes whose eigenfunctions are illustrated in 

Figures 3.3 and 3.4.

Ac =  182, n c = 1.70, wc =  -0 .201, T)m = 102, (3.3a)

Ac =  146, n c — 1.73, u>c =  -0 .222, 7]m — 10) (3.3 b)

Ac =  68.6, n c = 1.79, ujc =  —0.254, — 1) (3.3 c)

Of more geophysical interest is the field (2.37). W hen this field was considered

58



bs bz

0. 6

0. 4

0. 2

x  ■ '  s
/ s

/ \
/ \

/ \
/ \

/

\ /

/  \
/  \

/  \

/  X
/  X .

/■

0. 0

0. 6

0. 4

0. 2

0. 0
0. 0  0 . 2  0 . 4  0 . 6  0 . 8  1.0

1 . 0

0. 5

0. 0

1 . 0

0. 0

0. 0  0 . 2  0 . 4  0 . 6  0 . 8  1.0

F ig u re  3 .3  Eigenfunctions of ba,bz for ideal modes of field 
(2.36) with m  =  l , a  =  1, rji =  1 and, from top to  bottom , 
rjm — 102, 10,1. The critical param eters are given in (3.3a)-(3.3c) 
respectively.

in the previous C hapter it was found th a t as r}i was reduced, both  a slow and a fast 

mode developed, the slow mode being preferred when rji was sufficiently small. We 

have chosen rji =  0.1 in this case so th a t the contrast between fast and slow modes 

is large and the effect of varying rjm on each may be compared. The ideal modes of 

this field are concentrated in the inner part of the annulus where the field gradient
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F ig u re  3 .4  Eigenfunctions of u 3, u z for the ideal modes of Figure 
3.3.

is positive so th a t we might expect the influence of the m antle conductivity to be 

small. This is found to be the case for the fast modes where the influence of the 

layer conductivity was almost negligible (particularly when rji was small). This is 

illustrated by the sample modes, for which ra =  2, cn =  0, /? =  1 and rji = 0 .1 ,

Ac =  1112.87, ric =  13.34, = -0 .8 6 7 8 , r,m =  103, (3.4a)

Ac =  1112.86, n c =  13.35, wc =  -0 .8680, j/m =  1, (3.46)
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Figure 3.5.

61



0. 6

0. 4

0. 2

0. 0

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1.0

0. 5

0. 0

1.0

0. 8

0. 6

0. 4

0. 2

0. 0

0. 0  0 . 2  0 . 4  0 . 6  0 . 8  1.0

0 . 5

0. 0

- 0 . 5

0. 4  0 . 6  0 . 8  1.0

-2

-4

2

0

2

4

0 . 4  0 . 6 0. 8 1.0

F ig u re  3 .7  Eigenfunctions of b3,bz , u 3, u z for ideal slow modes of 
Figure 3.5 with param eters in (3.5a) (1st and 3rd Figures.) and 
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[for field (2.37) m  = 1 modes show characteristics of both  ideal and resistive 

instability [Fearn (1988)] so we have chosen m  =  2 here w ith the result th a t Ac is 

much higher than  a geophysical value]. The slow ideal modes are more strongly 

influenced by the conductivity of the layer, indicated in Figures 3.5 and 3.6. We 

have here only taken rjm as low as 101//2 (this is still smaller th an  a likely value for 

the D"  layer in the Earth); lower than  this Ac continues to  decrease bu t ideal and 

resistive modes become harder to separate. Slow modes typically penetrate the 

whole of the core and this may account for a greater influence from the conductivity 

of the mantle. Eigenfunctions of these slow modes are shown in Figure 3.7 with 

critical param eters

Ac =  182, n c =  4.45, ojc -  -0 .708 x 10"1, rjm = 103, (3.5a)

Ac =  147, n c — 4.43, u>c =  -0 .740  x 10- 1 , t?„, =  101/2, (3.56)

3 .3 .4  R esistive  In stab ilities

The field (2.37) is also unstable to resistive instability. A lthough resistive 

instability has been found in the absence of critical levels [Fearn and Weiglhofer 

(1992), Fearn and Kuang (1993)] we here consider only instability in the presence 

of critical levels. In this case n is fixed since Ac —»■ 0 as n —>• 0. In C hapter 2 it was 

found th a t when rji was sufficiently small both  slow and fast modes occurred for 

a given value of rji w ith the slow modes having slightly smaller Ac’s but a growth 

rate  scaling w ith rji.

Since k.B  = 0  on the boundaries we expected to find th a t resistive instability 

was more influenced by the conductivity of the m antle layer th an  ideal instabilities 

of this field, particularly  the fast modes which in the case of ideal instability are 

concentrated near the ICB. O ur predictions were confirmed. Figures 3.8 and 3.9 

show the effect of varying rjm on fast resistive modes, w ith eigenfunctions shown in 

Figure 3.10. Again a difference in Ac is noticeable only when rjm <  0 (  102) and the 

decrease is not a large one. However, a more significant effect of the conducting 

layer can be seen in Figure 3.9 in which u>c changes sign, i.e., the direction of
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Figure 3.8.
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propagation of these modes depends on the conductivity of the layer. This was 

an unexpected feature not found in the other cases considered (ideal modes, as 

m entioned in C hapter 1, always propagate westwards) and may be of im portance 

to the observed westward drift.

For the slow resistive modes of field (2.37) the effect was a more m arked one 

when r}m became 0(1). Since the resistive slow modes were found only when 

r}i < 10"~2 we have taken a mode w ith rji =  10~3 [mode (2.48b) of C hapter 2)] and 

decreased r}m. W hen rjm was decreased below ^  10 a rap id  change occurred, both  

the critical Elsasser num ber (plotted against rjm in Figure 3.11) and frequency 

(plotted in Figure 3.12) increasing w ith the result th a t the mode was no longer 

able to penetrate  into the inner core [this can only happen if |u;|A =  0(??,:)]. 

Eigenfunctions are illustrated  in Figures 3.13 and 3.14, the former showing the 

field being expelled from the inner core as ijm is decreased and the mode appears 

to evolve into a fast mode (cf. Figure 3.13 and bottom  Figure 2.16). Critical 

param eters for these modes are

Ac =  21.8, <joc = -0 .751 x 10~2, ?]m — 10, (3.6a)

Ac =  22.2, wc -  -0 .211  x 1 0 ~ \ rjm =  101/2, (3.66)

Ac =  23.5, ujc = —0.156, 7 m == 15 (3.6c)

3 .3 .5  R o b erts-L op er  E xcep tio n a l In stab ility

Roberts and Loper (1979) found instability of a  field of the form (2.36) with 

a  =  0 [and therefore stable to ideal and resistive modes] present only when 

— 1 <  io <  0 and m  — 1 and hence term ed ‘exceptional’. Their analysis was 

valid for small fluid magnetic diffusivity. They show th a t their instability is due 

to a com bination of inertia  and diffusivity in the narrow m agnetic boundary layers 

present in the lim it of small magnetic diffusivity. The mode was absent in the pres

ence of perfectly conducting boundaries. Fearn (1988) investigated these modes 

further, adding viscosity to Roberts and Loper’s analysis and found it could play 

a destabilising role similar to the combination of inertia and magnetic diffusivity.
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F ig u re  3 .13  Eigenfunctions of b3)bz for the resistive slow modes 
of Figure 3.11 with critical param eters in (3.6a)-(3.6c) respec
tively.

His calculations were perform ed with perfectly insulating boundaries and he found 

th a t when E,  E v —> 0 (making the m agnetostrophic approxim ation) Ac —* oo . He 

also examined finite diffusivity and other fields and found the conditions for insta

bility to be less exceptional; eg. for the field (2.36) with a  =  3 he found instability 

with m  =  2 and w <  —1.

S tarting w ith a  mode from Fearn (1988) [see Figure 6a of th a t paper] of field
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F ig u re  3 .14  Eigenfunctions of u s, u z for the resistive slow modes 
of Figure 3.13.

(2.36) w ith a  — 0 we decreased the conductivity of the inner core and m antle 

to examine the effect on the critical param eters. Figures 3.15 and 3.16 show the 

variation in Ac and ujc respectively. As f?i, rym —► 0 we find th a t Ac remains finite 

tending towards a constant («  317) and both the growth ra te  and frequency scale 

w ith r]i = rjm so th a t there will be no instability in the lim it iji^rjm —> 0. Sample 

eigenfunctions are shown in Figures 3.17 and 3.18. It should be noted tha t in the 

boundary layer analysis of Section 4 in Roberts and Loper (1979) they make the
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exceptional modes of field (2.36) with m =  l , n  =  1 and a  — 0.
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F ig u re  3 .16  Frequency versus logio^i =logior/m for exceptional 
modes of Figure 3.15.
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F ig u re  3 .17  Eigenfunctions of b3, bz for exceptional modes of field 
(2.36) with m  =  1 and a  = 0. The critical param eters are, from 
top to bottom , Ac =  920, 408, 317, cjc =  -0 .310 , -0 .9 9 9  x 10"1, 
-0 .181  x 10“ 3, n c =  5.13, 4.25, 4.01 and m =  r)m =  103, 1, 10“ 3.

simplifying assum ption th a t A|w| > >  rfm (in their notation |w| > >  TA) but the 

modes we have found by decreasing r)i,r)m do not satisfy this when —► 0.

The conductivity of the boundaries also had a m arked effect on the behaviour 

of Ac as viscous and fluid inertia effects were reduced, i.e., as E ^ E n —>■ 0. This is
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F igure 3 .18  Eigenfunctions of u s, u z for the exceptional modes 
of Figure 3.17.

dem onstrated in Figure 3.19 in which Ac versus logE  =  logE^ for several values 

of rji — rjm as well as the most geophysically realistic case of rji — l ,rjm — 50. We 

find Ac —* constant as E  — E n —> 0 when rji — t]m < 1 bu t Ac —> oo for more 

realistic values of rji,r}m [over the range considered the frequency was essentially 

independent of i£, E v for each of the curves in Figure 3.19)] making it unlikely this 

type of instability will be im portant in the E a rth ’s core.
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F ig u re  3 .19  Critical Elsasser num ber versus logio-F — logioE^ 
for exceptional modes of field (2.36) with m  — 1 and a  =  0. The 
lines correspond to rji = rjm = 0.1 (full line), rji =  rfm =  1 (dashed 
line), rji — — 10 (dash-dot line) and (probably geophysically
realistic) rji — 1, rjm — 50 (long-dash short-dash line).

3 .4  A  L A Y E R  W IT H  N O N -U N IF O R M  D IF F U S IV IT Y

So far we have assumed the layer to have uniform diffusivity. Here we consider 

diffusivity as a function of radius i.e., we take

(3.7)

If A =  1 the diffusivity is then continuous across the CMB. We investigated ideal 

modes of field (2.36) w ith a  =  1 and A =  1. No significant differences were found 

from the case of uniform diffusivity. Sample modes, for comparison w ith (3.3), are

Ac =  183, n c =  1.70, u>c =  -0 .202 , (3 = 103, (3.8a)

Ac =  142, n c =  1.74, wc =  -0 .223 , /? =  102, (3.86)

Ac =  80.8, n c =  1.78, wc =  -0 .247 , (3 =  10, (3.8c)
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F ig u re  3 .20  Eigenfunctions for b9, bz of ideal modes of field 2.35 
and diffusivity profile 3.7. In each case A =  1. The critical pa
ram eters are given in, from top to bottom , (3.8a)-(3.8c) with 
(3 = 103,102 and 10 respectively.

Eigenfunctions for these modes are shown in Figures 3.20 and 3.21.

W hen ^ /  1 the diffusivity is discontinuous across the CMB. Figure 3.22 

illustrates the mode of (3.5b) with A =  100 (top) and A =  0.01 (bottom ). The 

critical param eters, given below, changed in the way one would expect with A < 1

74



0 . 20 

0 . 15 

0. 10 

0. 05 

0. 00

0. 2 

0. 1 

0. 0

/\
'  / I
^  1

0. 3

0. 2

0. 1

0. 0
0 .4  0 . 6  0 .8  1.0

2

0

2

2

0

2

4

0 .4  0 .6  0 .8  1.0

F ig u re  3.21 As in Figure 3.20 but for eigenfunctions of u s, u z . 

having a destabilising effect.

Ac =  187, n c = 1.69, =  -0 .199 , A =  102, (3.9a)

Ac =  82.3, n c =  1.58, wc =  -0 .044 , A =  10“ 2, (3.96)

3 .5 C O N C L U S IO N S

We have added a finitely conducting layer at the base of the m antle to a 

model representative of planetary magnetic fields and investigated its effect on
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F ig u re  3 .22  Eigenfunctions for ba,bz , u s, u z of ideal modes of 
field 2.36 with diffusivity profile 3.7 and /3 = 102. The critical 
param eters are given in (3.9a) (1st and 3rd Figures) and (3.9b) 
(2nd and 4th).

76



magnetic instabilities of relevance to the Earth. Our model also incorporated a 

finitely conducting inner core which, in general, was assumed to  have the same 

electrical conductivity as the fluid outer core as is believed to be the case in the 

Earth. The layer was, in most cases, chosen to have a thickness e — 0.06 to 

reflect the D"  layer which seismic evidence suggests has a depth  of 200km.  Three 

types of instability were investigated, each well known from previous work; ideal 

and resistive instability, already firmly established as being of significance to the 

Earth , and the Roberts-Loper exceptional mode which requires field strengths 

larger than  those likely to be encountered in the E arth  and is therefore probably 

only of theoretical interest. In each case we were able to recover the solution with 

an insulating m antle in the limit 77 m —> oo.

The addition of the layer was in almost all cases a destabilising influence. The 

critical Elsasser num ber Ac above which instability occurs was further reduced by 

increasing the layer depth, this effect being greatest when the diffusivity of the 

layer was small. However, for ideal and resistive instability, the type of instability 

of prim ary interest here, the change in Ac was negligible, particularly for the fast 

modes [see (3.4) and Figure 3.8]. The conductivity of the layer did however exert 

an im portant influence on the direction of propagation of fast resistive modes (see 

Figure 3.9). W hen r)m was large the modes travelled east; when it was decreased 

below r}m «  10 they travelled west. The Ac’s for slow modes of both type were 

more strongly influenced, especially the resistive modes for which Ac increased 

when rjm < 10. The frequency in this case also increased w ith the result tha t 

|cu|A was no longer of the same order as 7}i and the mode could not penetrate into 

the inner core. It was not surprising therefore th a t allowing the diffusivity in the 

layer to vary w ith radius had  only a minimal effect, in keeping with the slightly 

destabilising influence of a conducting layer outlined above.

The Roberts-Loper exceptional instability has not previously been investigated 

in the presence of finitely conducting boundaries and is not found when both  

boundaries are perfectly conducting. Starting from a mode from Fearn (1988) with
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insulating boundaries we decreased both  rji and r jm  w ith r ji =  r \m  and found the 

mode evolved to a low frequency mode with growth ra te  and frequency scaling with 

m i — Vm) which penetrated  into both  the inner core and conducting m antle layer. 

The field strength required for instability was also considerably reduced, Ac falling 

to around a th ird  its value w ith insulating boundaries when rji =  r jm  — 10- 3 . A 

common approxim ation in models of the E arth  is the neglect of viscous and inertial 

effects. In the presence of insulating boundaries this has the effect of filtering out 

the exceptional instability since Ac —> oo as —•» 0. However, with rji and

rjm <  1 this was no longer the case, Ac —» constant  as E, E v —► 0 and the mode 

would no longer be filtered out by the magnetostrophic. approxim ation.

While it is, of course, desirable to make our models as realistic as possible an 

im portant question is the appropriateness of the inclusion of any effect in fu ture 

models of the E arth . The conductivity of the D"  layer is believed to  be 1045 m -1 

and the outer core 5 x 1055 m —1 which translates to r]m = 50 in our model. W ith 

regard to those instabilities likely to be geophysically relevant inspection of Fig

ures 3.2, 3.5, 3.8 and 3.11 suggests th a t at realistic param eter values Ac shows no 

significant difference from the ijm —»■ oo case and the approxim ation of the m antle 

as a perfect insulator is a reasonable one. However, the dependence on tjm of the 

direction of propogation of fast resistive modes is interesting and may have a role 

to play in explaining the observed westward drift of certain persistent features of 

the E a rth ’s field. Although the field strengths required for exceptional instabil

ities were significantly less than  w ith both boundaries insulating this is largely 

a ttribu tab le  to the finite conductivity of the inner core and with realistic param 

eter values (long-dash short-dash line of Figure 3.19) Ac remains unrealistically 

high as E,  E v —> 0.
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CHAPTER 4

W eakly N on linear M agn etic  In stab ility

4.1 IN T R O D U C T IO N

Linear studies of magnetic instability in the E arth , such as those detailed in 

Chapters 2 and 3, are now well advanced and most of the im portan t features, such 

as field geometry and differential rotation, have been investigated. These studies 

represent an essential first step; they tell us what type of instability we can expect 

to have a role in the dynamics of the E a rth ’s core and the conditions required for 

the onset of instability. However, linear theory fails to tell us how these instabilities 

develop beyond the point of onset and whether stable finite am plitude solutions to 

the pertu rbation  equations exist only for field strengths greater than  tha t required 

for the onset of instability or whether they can be found at lower field strengths 

as well. Answers to these questions can only be found by extending the analysis 

into the nonlinear regime.

To begin to  investigate the nonlinear development of instabilities in a cylindri

cal geometry we consider a param eter regime in which our dimensionless measure 

of magnetic field strength, A, is slightly greater th an  th a t required for instability, 

i.e.

0 <  (A ~  Ac) <  1. (4.1)
Ac

We make the common approxim ation of neglecting viscous and inertial effects as

suming them  to be small in comparison with the Coriolis, Lorentz and pressure 

forces, i.e., we make the m agnetostrophic approxim ation. In the linear analyses of 

C hapters 2 and 3 the extra work involved in retaining these term s was relatively 

small. However, they would considerably complicate the  lengthy algebraic expres

sions which arise in the nonlinear analysis so th a t we make the m agnetostrophic 

approxim ation to simplify the problem. The penalty to be paid for this is th a t we
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m ust then consider Taylor’s constraint (this is discussed further in §4.2.3). In the 

param eter regime (4.1), the exponential growth of the perturbations is very slow 

but after some long tim e the nonlinear self-interaction modifies the grow thrate 

so th a t the perturbations equilibrate a t some finite am plitude thereby modifying 

the basic state  and establishing some new nonlinear equilibrium. The param eter 

regime in which stable nonlinear finite am plitude equilibrium may exist can be 

determ ined from the coefficients of the am plitude equation

rJA
~ ^  = a A  + h\A\2A  (4.2)

where A  is the complex am plitude and a  the growth ra te  and frequency of the 

linear analysis. The criticality (the meaning of which is made clear below) of 

the instability is determ ined by h. If h < 0, stable finite am plitude solutions to 

the pertu rbation  equations exist only for A >  Ac, the instability is said to be 

supercritical and the nonlinear equilibrium state  is described by (4.2). If h > 0, 

stable finite am plitude solutions may also exist for A <  Ac. The instability is 

then said to be subcritical bu t the eventual stable nonlinear equilibrium cannot 

be described by (4.2) since an assum ption made in its derivation (described in 

detail in §4.2.3) is th a t the am plitude of the perturbations is very small. It is 

envisaged, on physical grounds, th a t there will exist some Am  <  Ac below which 

no stable finite am plitude solutions can be found. This la tte r case of subcritical 

instability is of interest since it provides for the rapid evolution of the basic state  

( given a suitable disturbance ) through the growth of the pertu rbation  into a new 

stable finite am plitude equilibrium.

As m entioned above, establishing the criticality of the instabilities is achieved 

through the determ ination of the coefficient h in the am plitude equation (4.2). 

This equation is derived by a multiple scale m ethod in which the perturbations 

are expanded as a power series in their amplitude. An application of this technique 

was made by Kuang (1992). Kuang considered resistive instability of a sheared 

force free horizontal field in a plane layer geometry. In his model the most unstable 

perturbations are single-roll type solutions, i.e. one dimensional and this simplifies
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the problem considerably. In particular, he was able to solve the system of linear 

equations th a t results from the technique up to an order in the am plitude such 

th a t Taylor’s constraint (discussed in §4.2.3) is satisfied. He found th a t for the 

most unstable modes the bifurcation at m arginal A was supercritical.

The simplifications th a t Kuang could exploit in his model do not arise here. 

Instead, the nonlinear development of the perturbations gives rise to term s at 

second order in the series of linear equations th a t result from the m ethod which 

are independent of the axial and azim uthal coordinates - they are the nonlinear 

modification to  the basic state. In particular, a geostrophic flow Uq is generated 

which cannot be determ ined simply from the m om entum  equation since it is a 

function only of the radial coordinate s. To determ ine this flow viscous effects 

are reinstated bu t considered im portant only in the Ekm an boundary layers. It 

can then be shown (eg. Fearn 1994) th a t the resulting modification to Taylor’s 

constraint gives an expression for the determ ination of the geostrophic flow Uq - 

This is discussed further in §4.2.3.

Kuang considered both  the param eter regime (4.1) and the case A —̂ oo. The 

basic states we have chosen do not satisfy V 2B =  0, bu t ra ther decay on a diffusion 

timescale based on the annulus radius. In order for the analysis to be valid we 

require the m agnitude of the perturbations (proportional to A — Ac) to be small. 

However A — Ac m ust be big enough for the instability to  grow on a timescale 

faster than  the decay timescale of the basic state. This will be true provided th a t 

A is large enough. This is most clearly the case in the lim it A —» oo but this 

regime is physically much less interesting than  the regime (4.1).

In §4.3.2 we investigate instabilities of a m onotonic m agnetic field and of a 

field w ith zeros at the boundaries (both fields are azim uthal) and determ ine if they 

are of sub- or supercritical type. In the case of the monotonic field only subcritical 

instability was found. For the case of a field with zeros a t the boundaries and a 

m aximum within the fluid instability was in general found to be subcritical, an 

exception being for m  =  1 (m is the azim uthal wave num ber) modes when the
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maximum of the field was close to the outer boundary. As a test we then consider 

the effect of the toroidal flow generated by the nonlinear effects on the m easure of 

critical m agnetic field strength  Ac. Using the geostrophic flow Uq calculated for 

the case =  0 (where defined in (1.5), is a  m easure of the strength  of the 

differential rotation) as input into the linear problem Ac was calculated as was 

slightly increased. As expected we found Ac decreased for the case of subcritical 

instability and increased for the case of supercritical instability.

4 .2  T H E  M O D E L

4.2 .1  G o v e rn in g  E q u a tio n s

In this chapter we again consider a cylindrical annulus of conducting fluid but 

take the inner core (s < sn>) and m antle (s >  1) to be insulating (this gives simple 

boundary conditions and removes the need to solve equations in the inner core 

and m antle). In addition, the annulus is bounded in the z-direction by perfectly 

conducting plates a,t z  = ± d  (in dimensionless coordinates). The presence of 

these perfectly conducting plates does not affect the solution of the linear stability 

problem  (see below). It does however affect the nonlinear equations and introduces 

a more physically realistic closed container with, for a given d, discrete axial 

wavenumbers n (see 4.14). The simplicity of the boundary conditions for a perfect 

conductor allow the separation of the ^-dependence of the perturbations in a simple 

way as cos[n(^+d)] or sin[n(£-f d)]. The appropriate non-dimensionalised equations 

governing the stability of the basic state  are in essence the same as (2.7)-(2.9) but 

w ith two im portan t differences. Naturally, in a nonlinear analysis we m ust retain  

squares and products of the perturbation  quantities b  and u. We also make the 

m agnetostrophic approxim ation in which viscous and inertial forces are neglected ( 

although the im portance of viscosity is considered in determ ining the geostrophic 

flow - see §4.2.3). The instability timescale is long com pared with the inertial 

timescale and viscous forces are small compared w ith Coriolis and Lorentz forces 

so tha t it is a common approxim ation in geomagnetic studies to neglect these 

term s in (2.7), i.e., to take E  = E v =  0 (this has consequences for the boundary
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conditions which are discussed in §4.2.2). The equations governing b  and u  are 

then

z x u  =  - V p  +  (V x B 0) x b  +  (V  x b) x B 0 +  (V  x b) x b, (4.3) 

=  K m v  x (U„ X b) +  V x (u  x B„) +  V x (u  x b) +  A-1 V 2b, (4.4)
dt

V .b  =  V .u  =  0, (4.5a, b)

where 3im, the modified magnetic Reynolds’s number, is defined in (1.5) and can 

be regarded as a measure of the strength of differential rotation.

The basic state  takes the form

B 0 = BmsF ( S ,  Uq = UMsto(s)h (4-6)

where F  and f l  are chosen such th a t maxji^l =max|Js2| =  1.

We then proceed in a similar m anner to the previous chapters, eliminating the 

variables p, and b using (4.3).z, J^(4.3).^, ^ -(4 .3 ).s, (4.5a) and (4.5b).

The resulting equations can be expressed in the form

=  N , (4.7)

where

$  = (4.8)

and L, a m atrix  of linear differential operators and N  is the nonlinear interaction 

vector,

[ ( F 2 +  s F F '  -  s F 2 d a -  -  d , +  - F 2 s - \ d 2 +  s 2 d l ) d 4>

a - \ z s - ' d a +  a 2 +  ^ - 2( i  +  a 2) +  a 2)]a, + 2^ 1A -1a j

[ F s - ^ l  +  a 2) +  F 2sd2a [(F ( s F d a + 4 F  + sF ')  -  -  dt
+ 3 F 2ds -  3F F '  -  sFF"]d^  + A _1(s _1a s +  a 2 +  s~ 2d$ + d2s)}d:
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N  =
- d x[V x (u x b)]s +  F s - ^ K V  X b) X h]z -  F s - ' d + d ^ V  X b) X b]* 

- d x[V x (u x b)], +  F s- 'd + d s l sU y  x b) x b]0] -  F s ^ d ^ V  x b) x b]a J

(4.10)

where dz =  The linearised form of (4.6)

L §  = 0, (4.11)

is the problem solved by Fearn (1988). The equations (4.11) adm it solutions of 

the form

f(s,(f>yz) =  f(s,z)exp[i(m<f> -  ut)], (4.12)

where f  is any of the perturbation  variables.

4 .2 .2  B ou n d ary  con d ition s

In making the m agnetostrophic approxim ation the order, in s, of our system 

of differential equations (4.7) drops from ten to four ra ther than  six as would 

be expected. This is related to the cylindrical walls being parallel to the axis of 

rotation. Clearly, in neglecting viscosity, the no-slip condition cannot be applied 

bu t the question then arises of which of the remaining boundary conditions should 

be applied. Fearn (1983a), generalising work of Condi (1978), addressed this 

problem by reinstating viscous effects and considering the lim it E  —> 0. He showed 

th a t the contribution from the boundary layer was greater for u a than  for ba 

and bz so th a t it is the conditions on ba and bz (which m ust be satisfied by the 

m ainstream ) which are retained and the condition on u 3 (which is accommodated 

by the boundary layer) th a t is dropped. This problem does not arise on the 

perfectly conducting horizontal plates since equations (4.7) are sixth order in z.

The plates at z =  are perfect conductors and the appropriate boundary 

conditions are th a t the norm al velocity and tangential electric field are zero (the 

la tte r of these implies the norm al magnetic field is zero) giving

6. =  ^ = 0 .  (4.13)
dz

84



Differentiating (4.5a) w ith respect to z then leads to

d2b.
d z 2

-  0. (4.14)

The cylindrical walls of the container are insulating. Physically, the conditions 

th a t are applied are th a t the current norm al to the boundary vanishes and the field 

matches to some external potential field (see §2.2.2). Here we give the conditions 

as they apply to  the linear problem, the details for the nonlinear problem are given 

in Appendix C. W ith the pertu rbation  variables in the linear problem w ritten as

V cos n(z  T  d)
A . ibzi sin n(z  +  d)

im<f> (4.15)

(see next section for more details) the condition th a t the norm al current vanishes 

s — Sib and s =  1 is

s2Dbsi +  sb3l +  (m 2 -f n 2s2)bzi / n  = 0, 

and m atching to  an external potential field leads to

b3 = 7 bz,

ib i 1 ■) (4.16)

(4.17)

where

7 (4.18)
[ f  dmijlSib') ~\~ TnfnSib] S — S{b

[ i[I<m+\{n)IKrnin) -  m /n \  s = 1

(see §2.2.2).

4 .2 .3  T aylor’s C onstra in t and th e  M agn etostrop h ic  A p p rox im ation

A distinguishing feature of the geodynamo problem is the unusual force bal

ance in the outer core. Generally, in rapidly rotating hydrodynam ical systems the 

Coriolis force dominates and constrains motions to  be two dimensional - this is the 

well known Taylor-Proudm an theorem. In the E arth  however, this constraint is 

relaxed since the Coriolis force is balanced by pressure and Lorentz forces. How

ever, a rem aining consequence of the rapid rotation is th a t the viscous and inertial 

forces (other than  the Coriolis force) are, relatively, very small. In terms of the
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dimensionless param eters E  and the Ekm an and magnetic Ekm an num bers 

measuring viscous and inertial effects respectively and defined by

F -  " F  -  11
2 0 s2 ’ v 2Q,sV

estim ates are 0(1O-15) and O(10“ 9) (although it should be noted th a t the former 

of these is not well known). A common approxim ation therefore is to neglect these 

terms in the m om entum  equation, making it a  diagnostic ra ther than predictive 

equation. This is known as the m agnetostrophic approxim ation.

The consequences of making the m agnetostrophic approxim ation, which has 

the effect of filtering out short timescale motions, on the geodynamo problem were 

first discussed by Taylor (1963). He considered the mass flux across cylinders of 

radius s, coaxial w ith the axis of ro tation and contained w ithin the outer core, i.e.

j  j  Uad<j>dz, (4.19)

c(«)

(in cylindrical coordinates) where C(s)  is the surface of the cylinder described 

above. If the m agnetostrophic approxim ation is made, the cylinder C (s) extends 

all the way to the boundary. There can, therefore, be no flow into the ends of the 

cylinder. For an incompressible fluid this implies th a t the integral (4.19) is zero. 

Taylor then showed th a t solutions to (4.3) can only be found if

j  j  [(V x B) x B]td<t>dz = 0, (4.20)

CM

[see, for example, Fearn (1994)]. This is known as Taylor’s constraint and has been 

the subject of a great deal of attention particularly in the contexts of magnetocom 

vection (eg. Roberts and Stewartson, 1974,1975; Soward, 1980, 1986; Skinner and 

Soward, 1988) and dynamo models (eg. Soward and Jones, 1983; Braginsky and 

Roberts, 1988). If, in the framework of the m agnetostrophic approxim ation, (4.20) 

is satisfied then solutions to (4.3) can be found up to an ‘a rb itra ry ’ geostrophic flow 

U<j =  UG(s)<f> [arbitrary in the sense th a t we can add any such flow to a solution of
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(4.3)]. Taylor envisaged th a t this geostrophic flow would alter the magnetic field, 

via the induction equation, in such a way th a t (4.20) would be satisfied. However, 

one cannot be sure th a t (4.20) will be satisfied. Fearn and Proctor (1987) tried 

to determ ine UG by choosing it to  minimise the integral on the left hand side of 

(4.20) for a prescribed field and flow but with mixed results.

An alternative way of determining UG is to include the effects of Ekm an suc

tion. Consider the division of the outer core into three regions comprising bound

ary layers a t the ICB and CMB in which viscous effects are im portant and the 

interior in which they can be neglected. In this case the integral (4.19) is non-zero 

and it can be shown th a t (4.20) is modified to

Va = ^ E y 1' 2 I I  [(V x B) x B ^ d f d z .  (4.21)
c(*)

Unlike (4.20), which was a constraint on the magnetic field B , (4.21) is an expres

sion which determines UG at the outer edge of the boundary layer. Since UG is 

independent of z (4.21) then prescribes UG throughout the annulus. O ther forms 

of coupling, topographic or electromagnetic coupling, may also be im portant but 

if these are included and viscous effects neglected (4.20) m ust still be satisfied. 

A much more detailed discussion of Taylor’s constraint and the modifications to 

it when core-mantle coupling is introduced can be found in Fearn, Roberts and 

Soward (1988) and Fearn and Proctor (1992).

In the problem under investigation here we are interested in the nonlinear de

velopment of perturbations of the form (4.14). These perturbations are expanded 

as a power series in their complex am plitude (see §4.2.4) which, when substitu ted 

into the governing equations, give rise to a series of linear equations at ascending 

powers of the am plitude. At second order in this expansion term s arise which 

give rise to  a toroidal flow UG independent of the coordinates <f> and z. This flow, 

which represents the nonlinear modification to the basic state  by the p ertu rba

tions, cannot be determ ined simply from the m om entum  equation [(4.3).^ ] since 

this determines only the z-derivative of the velocity. To determ ine it we rein
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troduce viscous effects which are im portant in the Ekm an boundary layers but 

considered negligible elsewhere. The geostrophic flow, £/g , is then determ ined by 

the expression (4.21) above.

4 .2 .4  F in ite  A m p litu d e  A nalysis

Here we present the analysis whereby the am plitude equation governing the 

nonlinear behaviour of the perturbations is derived. It is the coefficient of the 

nonlinear term  in this equation which determines the nature  of the bifurcation at 

the onset of instability. For the sake of clarity, most of the complicated expressions 

arising in this analysis are left out here and given in Appendix A.

To investigate the bifurcation at marginal instability we consider the region 

slightly above critical, i.e. where

0 < ( A - A c) / Ac < 1 ,  (4.22)

and the growth rate, p, of the perturbations is small

p oc (A -  Ac)/A c. (4.23)

In this region the m agnitude of the perturbations, e, is very small (|e| <C 1) 

and we can expand the system of equations (4.7) as an asym ptotic series in e to 

obtain a sequence of linear equations in ascending powers of e. In order to solve

this sequence of equations we must eliminate secularity and in so doing we will

arrive at a relationship (the am plitude equation) involving the am plitude of the 

perturbations and the timescale r  on which they evolve where

r  oc p - 1 . (4.24)

Secular term s arise first at th ird  order in the expansion. This means th a t to 

eliminate them  the slow tim e derivative dt m ust be such th a t



This implies the growth ra te  p is 0 (e 2) and, with consideration of (4.23), we have

Ac2 =  (A — Ac)/A c.

where A is a constant of proportionality from (4.23).

The m atrix  L  and vectors and N  are expanded as follows

Jj ~  Liq T  t L \  -f- e2T 2 T  ■ ■' j 

$  — gbj e2b 2 4* c^b3 4- • • •,

1ST — g2!N2 4~ T  ■ ■ ■ •

(4.26)

(4.27)

(4.28)

(4.29)

Substituting into (4.7) we obtain a series of linear equations. At 0(e)  we retrieve 

the linear problem,

T 0b i -  0 (4.30)

where L q is given in Appendix A and

bi - bsi
ibzi

4- c.c. (4.31)

where c.c. means complex conjugate. The equations (4.30) adm it norm al mode 

solutions of the form

b i =  A ( t ) bs l (s ,z )
ibzX(s ,z ) exp(zm^) 4- c.c. (4.32)

The simplicity of the boundary conditions (4.16) and (4.17) also allows us to 

separate out the z-dependence as

b i  —  A ( t )
bsi(s)  cos n(z  4- d) 
ibzX (s) sin n(z  4- d) exp(imcj)) 4- c.c. (4.33)

[equations (4.3) and (4.4) then imply ~  cosn(z  4- d) and u zX

sinn (z  4- d)] where

n
k 7T
2 d ’

k e Z (4.34)

(see Lan, Kuang and Roberts 1992). This is the same linear problem solved by 

Fearn [1983b (with perfectly conducting boundaries), 1988]. Although he had no
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bounding plates in his model and the ^-dependence of his perturbations took the 

form exp(m;?), writing ibz\ in (4.32) means th a t our equations are identical to 

Eqns(2.5) of Fearn (1983b) (after elimination of u s, u z) and 6*1(3) is the same as 

bz(s) which appears there and in Chapters 2 and 3.

At next order, 0 (e 2), we have

To 1̂ 2 +  Iq b i  =  N 2. (4.35)

Although the numerical solution to the system of equations perm its any value of 

n, from (4.34), for fixed d, n is discrete so tha t

In -  0. (4.36)

The nonlinear vector N 2 takes the form

N 2 -  A2N 20 +  |A |2N n  +  A N 02

=  A" N 201
^202

N u i
A7112

—r2
-j- A A/"021 

AT022
—2 im<f) (4.37)

where A 201, AT202} A bu and A/112 are given in Appendix A and N 201 — A/0211 

N 202 ~  Â o22 where the bar denotes complex conjugate. In the subscripts here the 

first two digits refer to the powers of A  and A  respectively. Substitution of (4.37) 

into (4.35) then implies b2 m ust take the form

b 2 — A2b 2o +  |-d.|2b n  -f- A  bo2

A2 bs20
I e2 im<t> +  |A |2 bsii

1
—r2

-f- A b3 02r_ 0Z20 Ozll mVz02 m
-2 im(f> (4.38)

At G (|A |2) here term s 6^ ,  anc  ̂ (fh-e superscript (1) denotes term s

independent of z - see Appendix A) arise which are functions only of 3 . In the 

case of Ufiu this term  cannot be found from the m om entum  equation but must 

be determ ined by considering the im portance of viscosity in the boundary layers. 

This problem was discussed in §4.2.3 and further detail can be found in Appendix 

A.
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Equations (4.35), with (4.37) and (4.38), can be solved in a straightforw ard 

m anner with the appropriate boundary conditions given in Appendix C. The com

plem entary function which arises in this solution is proportional to b j and can 

therefore simply be absorbed into it. It is at the next order, 0 (e 3), th a t secular 

term s arise. From (4.7) and (4.27)-(4.29) with (4.36) the 0 (e 3) equation is

Loh^ = N 3 — Z ^bi, (4.39)

where

N 3 =  A3N 30 +  A |A |2N 21 +  c.c.,

A' -^301
iV302

,3 imtf> +  A\A\: N 211
N 212

+  c.c., (4.40)

Secularity arises because of the second term  on the right hand side of (4.40). In 

order to remove it we define an adjoint as follows. Let ( , ) denote the inner 

product

( f , g)  = -L  f  f g  dsdzdcf) (4.41)
i7T Jo J-dJs ib

where f , g  are arb itrary  functions of s, £ and 0. Then, if L '0 denotes the adjoint 

operator of Lq with the property

the adjoint problem  is

where

=  0

b t  = £ sin n(z  +  d) 
cos n(z  -f- d) eimcf> +  c.c.

(4.42)

(4.43)

(4.44)

(see Appendix B). The adjoint operator L q and the appropriate boundary condi- 

tions for b{ are given in Appendix B. If we pre-m ultiply (4.39) by b{, take the 

inner product and utilise the property (4.42) the solvability condition for (4.39) is 

then

(b } ,N 21) - ( b t . L j b ! )  = 0  (4.45)
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(only N 21 appears here since the other components of N 3 vanish after integration 

with respect to  <£). W hen secularity has been removed, bs in (4.36) takes the form

b 3 — A3b 30 4- A |A |2b 2i +  c.c.,

A 3 7 e3im^ +  A |A |2 bS2i1tbr30 Oz21
-f C‘C. (4.46)

Finally, after substitution from (4.31), the appropriate term  from (4.40) and 

L 2 (given in Appendix A) (4,45) gives us the am plitude equation

dA
a\ —-  =  a2\ A  +  a z A \A \2 

dr
(4.47)

where oq, a2 and a3 are given in Appendix A. Now, m ultiplying by e3 and defining

eA(r) —> A(t)  (4.48)

we have

where

dA
dt

= cAAA-j-  h A \A f

c =  °± h -  — 
ai ’ ax

AA =
A — A c 
 A r

(4.49)

(4.50)

Here cAA represents the growth rate  from the linear problem. This is our am 

plitude equation. There are two possible cases to consider. The analysis here is 

made simpler and more elegant by writing

A  = R e 1 , h — hr +  i h%

and considering the real part of (4.49) which gives

dR
dt c A A R + k rR £

(4.51)

(4.52)

i) cAA > 0  hr < 0

The bifurcation is said to be supercritical. Stable, finite am plitude solutions 

to the nonlinear problem exist with

R  = (cA A /l/irl)1/ 2. (4.53)
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The stability of these solutions can be seen from solving (4.49) to get

R ( t )2 =  — exp(—2cAAt))  -f exp(—2cA A t)]"1 (4.54)
f t0

so tha t

R  R e as t —» oo (4.55)

where Ro =  -R(O) [see, for example, Drazin and Reid (1981)]. 

ii) cAA > 0  hr > 0

The bifurcation is said to  be subcritical. A stable finite am plitude equilibrium 

does not exist in the approxim ation e <  1. In this case (4.46) fails to determine 

the nonlinear equilibrium state.

4.3 R E SU L T S

4 .3 .1 . A  check on  th e  resu lts

To serve as a test on parts of the code we make a comparison between the 

eigenvalues of the linear problem  (4.30) and the adjoint problem (4.43). From the 

definition of the adjoint problem the eigenvalues of (4.30) and (4.43) should be 

complex conjugates and can therefore serve as an indicator of the reliability of our 

solution to first order. In Figure 4.1 the modulus of the critical frequency is p lotted 

against the num ber of grid points N  for both  the linear stability problem (4.30) 

and the adjoint problem (4.43). They can be seen to be near identical at fairly 

modest values of N  indicating the solutions to (4.30) and (4.43) are correct (note 

th a t the determ ination of h depends on solutions to the linear stability problem, 

b i, the adjoint problem, b{ and the solution of differential equations for b 2 , the 

solution for the la tte r depending also on b i).

4 .3 .2  Sub- or su p ercritica l instab ility?

As in previous chapters we consider instabilities of two basic states which are

F  = s a , (4.56)
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F ig u re  4.1 Modulus of the critical frequency u>c of a resistive 
instability of field (4.56) versus number of grid points N  for the 
linear stability problem (full line) and adjoint problem  (dashed 
line). The param eters are a  = 1 , Ac — 28.9, u>c = 0.16, m =  1, 
and n — 3.

unstable only to field gradient instability, and

4(1 -  -  sfb)
F  =

(1 -  4 )2
(4.57).

which adm its bo th  field gradient and resistive instability. In this section we con

sider only the case =  0. Figures 4.2-4.4 illustrate solutions up to second order 

of an ideal instability of the field (4.56), including the geostrophic flow and

6^1  bo th  of which are concentrated, as would be expected, in the outer p a rt of
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the annulus where the field gradient is largest and therefore most unstable. This 

instability was found to be subcritical, as was each case of the basic state  (4.56).

For the field (4.57) the picture is less straightforward. W hen m  — 1 modes 

were investigated [these modes are not easily classified as ideal or resistive - see 

Fearn (1988)] the criticality depended on the field geometry, the cases /3 =  1, 2 

and 3 were found to be subcritical but j3 = 4 was supercritical. For m  = 2, all 

cases considered were subcritical. Samples of the linear and nonlinear states of 

an m  — 1 and m  = 2 mode of field (4.57) are illustrated in Figures 4.5-4.6 and 

4.7-4.8 respectively.

4 .3 .3  T h e effect o f  th e  geostrop h ic  flow on Ac

In this section we consider how the geostrophic flow generated by the nonlinear

interactions of the perturbations will influence the stability of the basic state. To

do this we consider the flow calculated for the case =  0. Using this flow
/ 1 \

(normalised so th a t m a x lu ^ J  =  1) as input into the linear code [i.e., we let 

take the form of in (4.6)] we increase slightly from =  0 and calculate 

Ac. This is illustrated in Figure 4.9.

As expected, for the case of subcritical instability the differential ro tation 

plays a destabilising role and instability is found at lower Ac. For supercritical 

instability the differential ro tation is a stabilising effect and Ac is increased.

4.4  C O N C L U S IO N

In this chapter we have investigated the weakly nonlinear stability of a toroidal 

magnetic field in an electrically conducting fluid bounded by cylindrical insulating 

walls and perfectly conducting horizontal plates. The simplicity of the bound

ary conditions on the perfectly conducting plates allowed us to separate out the 

dependence of the perturbations in a simple way perm itting  consideration of dis

crete modes of instability in the absence of the sideband effect (the 0 (e) correction 

to n th a t would occur as A is increased above Ac if n  were continuous - this would 

result in a ‘ban d ’ of modes for a given value of A rather than  a discrete mode).
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The interactions of the perturbations were found to  give rise to term s inde

pendent of 0 and <f> which were modifications to the basic state. Of these the 

geostrophic velocity was determ ined by considering the im portance of viscosity in 

the boundary layers (eg. Fearn, Roberts and Soward, 1988). The m agnitude of this 

velocity is proportional to E ~1/ 2. For sufficiently small values of E  therefore this 

term  dominates the nonlinear term s in the expression determ ining h. By including 

all of these nonlinear term s we were able to estim ate its relative im portance and 

found th a t very small values of E  were required before the integrand of (A63) was 

dom inated by the geostrophic flow (typically, at E  =  10- 8 , the geostrophic flow 

accounted for ~  50-80% of the integral (A63).
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Of prim ary interest of course is the most unstable mode of a given basic state. 

For the case of a monotonic field, unstable only to the field gradient instability, 

we found th a t the most unstable mode, and indeed every mode, was a subcritical 

instability. The more interesting case of a field vanishing at the boundaries was 

less straightforward. W ith m  = 1 the modes were sub- or supercritical depending 

on the geometry of the field. For (3 — 1 (when the maxim um  of the field (4.57) is in 

in the centre of the annulus) and (3 — 2 the modes were found to be subcritical but 

for (3 — 4 w ith the field maxim um  near the outer boundary supercritical instability 

was found. Of these cases, the la tte r also corresponds to the lowest Ac i.e., the 

most unstable mode considered. W ith m  =  2 or m  =  3 only subcritical instability 

was found although again only (3 < 4 was considered.

The m ethod we have used here does not allow us to determ ine the nonlinear 

equilibrium  state  of subcritical instability since an assum ption th a t the p e rtu r

bations are small is made. To do this an alternative approach will be required. 

However, the general predominance of subcritical instability in the cases we have 

considered here of both  ideal and resistive instability enhances the possibility tha t 

instability of this type may be responsible for some of the rapid phenomenon ob

served in the E a rth ’s magnetic field, in particular the very short timescales on 

which polarity reversals occur.
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CHAPTER 5

C onclusion

The work discussed in this thesis represents a further step towards under

standing the im portance of magnetic instability in the dynamics of the E a rth ’s 

core. We have focused here on two aspects of magnetic instability. The first was 

to  investigate the role of the boundary conditions in the linear stability analysis; 

the second was to make some progress beyond the linear regime into the nonlinear 

regime.

Previous studies of magnetic instability have assumed the boundaries to be 

either perfectly insulating or perfectly conducting. This simplifies the problem 

since the need to  solve equations in the inner core or m antle is avoided. The aim 

of C hapters 2 and 3 was to  explore more realistic boundary conditions. In C hapter 

2 we incorporated a finitely conducting inner core into the problem and found th a t 

instability was most readily excited when the conductivity of the inner core was 

comparable w ith th a t of the outer core. This is significant since it represents the 

situation in the E arth  and suggests th a t the inclusion of a finitely conducting core 

in future studies of magnetic instability would be worthwhile. W hen the conduc

tivity of the D"  layer (the conducting layer at the base of the largely insulating 

m antle) was considered in C hapter 3, its influence on the field strengths required 

for the onset of instability was found to be small. This is unsurprising since the 

layer is relatively very thin. However, it was found th a t the direction of propa

gation of resistive instabilities was dependent on the conductivity of the D n layer 

which may be of interest in view of the observed westward drift of some features 

of the E a rth ’s field.

The second general aspect we considered was the question of whether the in

stabilities thought most likely to be im portant w ithin the E arth , the field gradient
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and resistive instabilities, are sub- or supercritical. We found them  to  be predom 

inantly subcritical, although for the more interesting case of a  field vanishing at 

the boundaries this was dependent on the azim uthal wave number, m , and the 

exact field geometry. Subcritical instability is of particular interest since it pro

vides for the rapid  evolution of the field into a stable finite am plitude equilibrium 

at field strengths lower than  th a t required for m aiginal stability. This could be 

of relevance to  the polarity reversals observed in the E arth  since there is evidence 

these are triggered by fluid instability in the outer core (M cFadden and Merrill, 

1993).

Although many authors have carried out stability analyses of both  m agneti

cally and therm ally driven instability in the E arth  there is much th a t remains to 

be done. In particular, the finite am plitude analysis m entioned above was able 

to tell us whether the instabilities were sub- or supercritical but in the case of 

subcritical instability it was unable to  describe the stable finite am plitude states. 

To do this some alternative approach is required. It is, of course, also highly de

sirable to  carry out these studies in the more realistic spherical geometry. This is 

of added im portance in the light of ongoing attem pts to solve the full nonlinear 

dynamo problem numerically.
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A p p en d ix  A t  M atrix  and nonlinear vector  exp ression s

We give here the expressions om itted from the main text of §4.2.3 for clarity. 

Removal of secular term s from the asym ptotic expansion requires tha t

P =  0 (e 2), (a i )

and from (4.20) this leads to

Ae2 =  (A -  Ac)/A c, (A2)

or

A-1 =  A 7J(1 -  Ae2 +  0(e4)). (A3)

While the growth ra te  is 0 (e 2) the frequency, is 0(1)  so th a t we write

u)i — ujc( 1 Se2),

where A, <5 =  0 (1 ). Then, taking (A3)-(A4) together w ith (4.24) we have

Toi Lq2

where

To =
Tq3 L 04

Lqi =  \(F2 -f s F F '  -  s F 2D  -  -  drc

+  A : \ Z s ~ 1 D  +  D 2 +  s - 2( l  4- d l )  +  92)]a,

L 02 = - F 2a - 1{dl  +  s2d2)d4, + 2s~1A j 1dl  

i 03 =  [ F i - 1 ( l +  d l )  + F 2 s D 2 +  3F 2D -  3F F '  -  sFF"]d^

(A4)

(A5)

(A6)

(.A 7 )  

(AS)

Aoi =  [(F(sFD  +  4F + s F 1) -  -  drc

+  a : \ s ~1 d  + d 2 + s- 2d i  +  a 2)]a, {AS)
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Lo =

- d r - X K 1^  s ~ l D + D 2 
+ S-*(1 + d l )  + d*)\dz - 2 a" 1 AA"1̂

[ - a r - A A - 1( s " 1D+
D 2 +  3-2^2 +  Q2)]dz

(A10)

where dz = -^  and D ~  dfds.  In Lo above drc means the derivative evaluated at 

marginal stability (giving the 0 (1 ) terms, i.e., the frequency) and in L2 d r  applies 

only to the 0 (e 2 +  h.o.t) terms in the time dependence. For example, in (4.32) 

[with (4.35)] —drcb 20 — 2zcOcl)20 applies only to the remaining parts of the

time dependence.

The nonlinear term  in the order e2 problem is

N 2 =  A : A 201
A 202

32im<f> +  I 4 :
N i n
N u 2

+ A' A”o21
Nq22

(411)

where ^201 =  LV021, A 202 =  N 022- Each of the components in (A ll)  is determined 

in term s of the first order solutions from (4.9) giving

2? 2
^201 =  { —  [tm(u3l b^i -  ti^i6ai) -  in (us lbzi — u g\b9\)\ s

2?n2F r60i
 — nsb^i)  +  bsi( iDbzl +  nb3i)j ,

2 im n F
H 5— [ibzi ( - m b zl + nsb^i)  +  bs\(D(sb<j>l) -  zm63i)]}sin2n(,s: +  d)

( A 12)

and

N 202 ~  ^202 +  ^202 cos 2n(z +  d),(2) (A13)

where

N.(i)202
. im

-  {----   [mbzi(ibzi + nsbfii) + b3l (D(sb(f>i)  -  imb3\))

2m 2 F  1
d [~ibzi( iDbzi +  nbai )  bcf>i(D(sb<f>i)  -  imb3i)]}, (A14)
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■^202 — { \^7D(v,a\bz \ ^z lk$l)  2Tfl(u(j>\ bz l ^ zl^<f>l')\

? 711 ̂  J~)
_)--------------- [ _ i b z i ( m b z i -  n s b ^ )  +  bs l ( D ( s b <f)i )  — i m b 3i) ]

+

s
2 m 2 F [ibzi ( iDbzi +  nb3i )  ^ (L ^ s Z ^ i)  — mif>*i)]}, (A15)

s s

and

N n i  —
2?r

n

■tu ,xbzi —iu aibgi —iu zibai 4- iugibai] sin2n(z +  d)t (A16)

•Nil2 =  —D[—iu sibzi — iu sibzi — iu zib3i +  iuzi&ai] cos2n(z + d). (A17)

In (4.35) we therefore have

'20
^20 +  ^20  cos 2n0  + d)

- ^20 +  *>*20 sin2n(z  +  d ) .

32 im<f>

and

b i :
r kill + kiii cos 2 n ( z  + d )  

kiii +  kiii sin2n(z +  d) .

(A18)

(A19)

Taking the A2 part of (4.32) and substituting in for Lo, b 2o and N 20 we find

i /1) = n°z20 — Ui (A20)

which implies, from (4.4).z,

u ẑ2Q — ^

Consideration of the appropriate equations shows

//D =  5(1) =  J D  =  0
3 11 — z  11 “  2 11 — U*

(A21)

(A22)

so we write

b i
Z>3ii cos 2n(z  +  d) 

bz 11 sin2n(z +  d)

At 0 ( |A |2) in the momentum equation the perturbations take the form

(A23)

U311 =  ^ i i i  +  « ii i  cos 2n(z  +  d), 
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u<t> 11 =  v § l ! +  v § lx s in 2n(z  +  d), 

and, from the induction equation,

(A25)

btfiu = b™ 4- 6^11 sin 2n(z  +  d).(2) (A26)

The terms in (A24)-(A26) with superscript (1) are functions only of s and repre

sent modifications to the basic state. The terms 6^  and t t ^  can be found directly 

from (4.3).$ and (4.4).$ respectively. However, u ^xl cannot be determined from 

the m om entum  equation because (4.3).s determines only the ^-derivative of u<fi. 

This is the problem discussed in §4.2.4 - u^xl is the geostrophic flow and is de

term ined by reinstating viscous effects im portant only in the Ekm an boundary 

layers. It can be shown (see §4.2.4 and references therein) th a t

= ua  =  4 - ( 2 E ) - 1' 2 J  f  [(V x B ) x B )^d4>dz. (A27)

C(<)

(note tha t =  (2d) 1 (2E )1/ 2u ^ 1).

At the next order the nonlinear term s are

N , =  A c ^301
-^302

4- A\A[ N 211
N 212

imd> 1e v 4- c.c. (A28)

We need only consider IV21 here since it is this term  tha t appears in our solvability 

condition (4.42). From (4.10) we obtain

N 211 =  ^211 s inn (z  +  d) -f- sin3n(^ +  d),(2) (A29)

and

N 212 — -^212 cos n (z 4- d) 4- -^212 cos ^n (z (A30)

where

^211 ~  — [inm(wi  +  w2) 4- n 2(w3 +  u>4 +  ^ 5)

1 ITLTYlF
— m 2F( — (k 1 — ^2) 4* &3 — ^4 4" &s) 4-----------(51 4- ?2 4- <?3)]> (-^31)s s
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= — ~ \ i n m w \  +  9n2(u>3 — u>4)
2s
2 - / 1 ,, . v , , x 3i n m F . ..

— m  F ( —(k± +  k2) T ^3 4~ k^) H------ (—qi 4- 52)]?s s

1
^212 ~  7 r tn -° (^  — *2 + * 3) 4- in m ( i4 4- *5 4- *e)Is

1771 r 1
 (1 -  D)(qi 4- q2 4- qs) 4- m 2F ( r i  ( r2 4- r 3)],

■̂ 212 =  +  *2) +  3im n ( t4 4 -t5)
? 777 1

+ ------ (1 -  D)(q 1 -  <72) -  m 2F(ri  -  - r 2],
5 s

with

fci =  2 (725(6^ ! ^  4- b^b iH )  4-

&2 =  - ^ 2 o ( m^ l  ~  n s h l )  -  (m ^rl -  72s6^i),

^3 — bsi(Dbzn  4- 277.6311) +  b3l {Dbi2]0 4- 2726 2̂0),

/ 2 \ — —
*4 =  ^s2o( iDbzi 4- nb3i) +  bsU(iDbzi 4- nb8X),

k5 = 26320(726̂ 1 -  iDbzi)  4- 2 s " 1 [6 ,̂20(7256^1 

-  rribzi) 4- h ^ ^ n s b #1 “  ra&*i)],

(o\ — (42'\ 2̂^
qi = -  ibzi(2nsb)f>xl 4- imbzU) -  i b ^ i i m b ^  4- 2nsbK̂ 0),

-  7256̂ ,16^20 -  ras&0i 6*n,

q2 =  6si(D(56^21)1) -  272263!j ) 4- bs l(D ( s b $ 0) -  77226320) 

b  b̂S2Q71 (,$bfix) 4- bsn D (s b <fii),

<73 =  2[6slJD (56^\) b  bslD ( s b % )  4- 6i12)oL>(s601) -  im&.x&W)],

*” (!? ̂r, =  -  [j6jj(£>621] +  2n6,n ) -  ibzi ( D b \ j 0 -  2n6s2o)

— 42o(*7^^zl — 6. 1) +  &zll(2-06zl +

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)

(A38)

(A39)

(A40)

(A41)

(A42)

(A43)



r2 =  6^ i(D (s6jf1\ )  4- 6^ n )  4- b(̂ lQD{sb(j>i) 4- b(f>iD{sb^l0)

-  227726016320 4- 60h ( 5jD60i +  2777631) 4- 27776316020, (A44)

and

r 3 — 2 [60i(D (s 6 1̂1\ )  4- 6^\\) 4- ^ i ( ^ ( 5&02o) +  ^ 20) ”  ^ i m b ^ b ^ i

4- 6^2o(sD 60i 4- 2277631 4- 6 ^ ( 5  £>6 01 -  2777631)], (A45)

/  r j  \  / o  \  _

11 — 22316̂ 11 4~ 22̂ 16^20 22z2o^sl 22̂ 11631, (.A46)

t 2 = ~iv$J>zi  4- 222̂ 6*1 -  iu z lb3u  4- i u zib%}0, (AA7)

3̂ — 22(22̂ 16320 — 223236̂ 1 4- 223116̂ 1), (A48)

{ r)\ _
*4 =  2201 62h  4- 2201 &*20 +  u *20^1 “  u z l l H u  (A49)

*5 =  2^020^1 -  222̂ 16,1 4- i u z i b ^  -  222̂ 16^20, (A50)

te — —22(72̂ 2̂0^1 ~  22̂ 16^20 ”  u <f>nbzi 4- 22̂ 1 ^0n ), (A51)

, ( 2)  . _  , ( 2)  . ( 2 ) T , ( 2 ) ,
2Ci — u sib(j}n  4" us\b^2Q 4- u s2ob<f>i 4- u 3nb<f>i

220163H 22016320 22̂ 2o^sl ^ 0U^al ’ (.A52)

u>2 — 2{us\b^xx 4~ 22316^20 4~ 22320̂ 01 4~ 22311601

-  “ 01^20 “  W02o M  -  ( ^ 53)

2273 = 2 2 3 i 6 *n 4- 2 2 3 1  ̂ *20 “  ~  U«ll^ l) (A54)

ic4 =  -722^2o6zi -  722^!6*i 4- i u z lbsli -  iu z lb ^ 0, (A55)

w 5 =  - 2 7 (1 2 3 2 0 6 ^ 1  -  u ^ b z !  -  ^ 1 6 2̂ 0 ). (A56)

The solvability condition is

dA
at — = a2XA +  a 3 A\A\2. (A57)

dr
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where

a\ = I I [n( sin n ( z d ) b 3i sin n ( z d )
J  —  d J 3 i f)

— cos n(z  4- d)bz\ cos n(z  +  d)] dsdz , (A58)

a 2 =  — Ac 1 f  f  (  sin?7(T 4 -d)[(3s 1D +  D 2 + 5  2(1 — m 2) — n 2)n6si
v — d *J 3 {fa

— 2is_1 ?i2bzi) sin 72(2 4- d) +  £ cos n(z 4- d)[(s_1D 

>2 -2„,2 2'+  D —s m —77 )nbz\ cos n(z + d)] dsdz,  (A59)

d /* 1 

— dJ sib
a3 =  j  f  C  sin 4- c?) [dV̂  J j sin 77(2 4- d) 4- N^xlsinZn(z  4- d)]

— cos 77(2 4- d^TV ^ cos n (z 4- d) 4- ^212 cos 3n(z  4- d)] dsdz.

(A6 0)

After integration with respect to 2 these become

a i =  nd f  [(&si -  £bzi] ds, (A61)
J Sib

a,2 = —n d A c 1 f  C[(3-s 1D  4- D 2 4- s 2{1 ~~ m 2) ~  n 2)b3\ -\-2ins 162i]
d Sib

— £[(s~1D  4- D 2 — s~2m 2 — 772)62i] ds, (A62)

013 = d f  [C7V<J> - ds. (A63)
J  Sib

The am plitude equation (A57) then becomes, after multiplying by e3 and redefin

ing A ( t ) -»• eA(t),
dA
—  =  cAAA 4- AA|A|2, (A64)

where

c = " ,  h = — , AA =  — — , (A65)
ai ai Ac

For realistic values of the Ekm an number E  in (A25) the integrand in (A61) 

is dominated by the geostrophic flow and it follows th a t h , the param eter th a t 

determines if an instability is sub- or supercritical, is in tu rn  dom inated by u ^ xl ,
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A p p e n d ix  B : T h e  a d jo in t p ro b le m

In the adjoint problem we are seeking to determine b j  satisfying

4 * 4  =  0, ( s i )

j*where the adjoint operator L q is determined using the property

(b } ,£ 0b i)  =  < 4 4 ,  b a). (B2)

Starting with the left hand side of (B2) and integrating by parts with respect to

2- we obtain

(b f ,L o b i)  = A  + C +  f  f  b \ h \ b \ d s d z ,  (-^3)
J d v 3 j

where, after taking onto account (4.12) and (4.13),

A  = f  [ A - ' d ^ - i m ^ F 2 + s F F ' - s F 2D - $ t mQ)
J Sib

+  A c 1(3s 1D  -j- D 2 -f- s 2(1 — m 2)) — iu>c)bsi 

+  A ^ C ^ i  +  (C( m s F 2 +  25" 1Ac" 1) +  i A ^ d z O d z b ^ t d d s ,  {BA)

C

and

rd
/  [6s l(zm sF2 +  3s_1 A” 1 -  A: 1D)dz(  A  A ^ D b ^ C  

J - d  

-  imbal{ZF2 -  {F2 A  2sF F '  A s F 2D))£ -  i m s F 2Db3l(  

A bz l ( m s F 2 +  i s - 1 A - 1 A iA ~ l D)dzt, -  i A * 1 Dbz ldzZ]libdz, (£ 5 )

r t  _  0 —

H—
O

 

I

r t  1
02

r t
- 03

........1
H—

O

(B 6)

where

=  [ - im (2 F 2 +  +  s F 2D -  ft„ ,fi) -  i u c

+ A- ' ( D 2 +  3s- 1 D + s ~2(4 -  m 2) +  d2)]dz (B7)
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4 = -  t'm [Fs-1 ( l  -  m 2) -  5F F '  +  2 sF '2

- s F F "  + ( F 2D + AsFF')D  + s F 2D 2] (B8)

l | 3 =  —m F 2s~1( —m 2 +  s2d2) +  2is_1 A "192 (-B9)

4  =  -  3 F 2 +  s F F 1) +  Rmfi) -  i u c

+  A^ ( D 2 — s ~ l D +  s " 2( l  -  m 2) +  d 2z)\dz (BIO)

The appropriate z-dependence for £ and £ is determined from the requirement 

tha t, to satisfy (B2), A — 0 for all values of s. Since dzbzi , b9\ and d2zbs\ are 

non-zero on z — ± d  we require their coefficients in (B4) to be zero. The la tter of 

these gives

C =  0, z = ±d,  (£11)

The requirement

[d2z C -  i m ( ( ( F 2 + s F F '  -  s F 2D -

+  A ~ 1(3s~1D  +  D 2 +  s~2( l  -  m 2)) -  i u c)dt b,i]d_ d =  0, (B12)

then reduces to

d]C =  0, * =  ± d  (£13)

and setting the coefficient of dzbz\ to zero gives

dz£ — 0i  ̂ =  ±d , (£14)

To satisfy (B11),(B13)-(B14) we take

(  ~  sin 72(2 +  d), £ ~  cos n(z  +  d). (£15)

The boundary conditions for £,£ at s — Si6,l are found in a similar m anner

to above from the requirement C — 0. This leads to

C —  s  —  Sj'fr, 1 ,  
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A '^ C  +  fA-1 ? -1  + m s F 2/n) iD£  =  0, s = s ib, l ,  { B 17)

where 7  is given in (4.18).

A p p en d ix  C: B ound ary con d ition s for higher order term s

The boundary conditions as they apply to the linear problem are given in 

§4.2.2. Here we give them as they apply to higher order terms. The boundary 

conditions on the perfectly conducting plates at 2 =  are simple and satisfied 

by the z-dependence of the variables at each order. The conditions th a t must be 

satisfied at s = 1 are less straightforward and detailed further below.

f 2 \
For the term s b2Q and bn  the boundary conditions are essentially as before

* ( a)with only minor differences. For the terms b^o the condition tha t the current 

normal to the boundary vanishes becomes

^ O ^ o )  +  2(™2 +  n 2)b(S o / n  =  0 (C 1)

and matching to an external potential field gives

&«20 ~  71^20 ( ^ 2)

where

{- [ l 2m+i(^risib) / I 2m ( 2n s ib) +  m / n s ib] / 2 s = s ib
( C  3)

[/i2m +i(2n )//v 2m (2n) — m /n ] /2  5 — 1

Similarly, for bn  terms we obtain

D(sb3U) -  2nsbzii = 0 (C4)

and

where

&I20 =  746. (C5)

f - [ I i ( 2 n s i b) / I 0( 2 n s i b) \ / 2  s  =  s a  
72 =  < ( C 6 )

\  [ K i ( 2 n ) f I \ o ( 2 n ) \ / 2  s  = l
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For the terms b f^  there is no z-dependence and 6^0  =  0 so tha t the condition 

th a t the current normal to the boundary is zero is satisfied identically. To obtain 

a condition for 6^0 we again m atch the field to a  potential field in the insulating 

regions.

3 = S ib, l  (C7)

where

b (e) =  -  W ,  (C8)

and V  =  V ( s ) e x p ( 2im</>) satisfies

1 4 7712
- D ( s D V )  - F  =  0. (C 9)
s

Solving (C9) we obtain

V(s) = A s 2m + C s ~ 2m, (CIO)

where A  = 0 in s > 1 and C — 0 in s < sn.  The s and (j) components of (C8) are

b(,e) =  - D V ,  ( C l l )

and

4 e) =  —s~ 1dj,V. ( C 12)

which can be solved, with (CIO), to give

b(se) = - 2 m A s 2rn- \  s < s ib,

=  2 m C s ~ 2m- \  s >  1, ( C 13)

= —2i m A s 2m~1, s <  su,

= - 2im C s ~ 2m- \  a > l .  (C14)

Elim inating the constant between (C13) and (C14) gives

=  ihise ) i s  <  s ib ,

-  s > 1. (C15)
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From V • b  =  0, which must be satisfied everywhere, we have

^ ( 4 12>o) +  ^ C = ° >

which with (C15) and the continuity of bs^b^ at the boundaries becomes

sDbrt\d =  - i 1 ~  2m )^20 5 =  s ib,

=  - ( 1  +  2m) 6320 s =  !•
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