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Abstract

Some Estimation and Restoration Techniques for
Statistical Image Analysis

Graeme Ernest Barclay Archer
Department of Statistics
University of Glasgow
Submitted for the degree of Doctor of Philosophy
December 199/

This thesis is concerned with statistical image analysis: the estimation of
parameters within image models, and how to produce restorations of degraded
scenes which are the most probable given the parameter estimates and the data.
We develop algorithms for estimation within hierarchical and empirical Bayesian
models, and compare results with non-Bayesian methods. The empirical be-
haviour of parameter estimates under different algorithms are studied in a simu-
lation exercise and compared with their theoretical behaviour. We sample reali-
sations from Markov random fields using the Metropolis algorithm, and propose a.
resampling technique to assess convergence. An alternative to the EM algorithm
(EMA), the Image Space Reconstruction algorithm (ISRA), is extended and com-
pared with the EMA. A technique for increasing the rate of ISRA-convergence
is investigated. Finally, an adaption of a method to prevent over-smoothing of
image discontinuities is fully automated. The effect of user-supplied parameter
values on the image restoration quality is investigated via a simulation study; the
effects are found to be negligible.
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Chapter 1

Introduction

1.1 Image Analysis

Our work is concerned with statistical image analysis — that is, the restoration of

noisy, blurred images, using sound statistical techniques.

‘and what is the use of a book,’ thought Alice, ‘without pictures or

conversation? ™t

In accordance with these sentiments we present and discuss many pictures in the
course of our dissertation, to highlight the effect of the techniques we propose.
The term “image analysis” describes the restoration and interpretation of
remotely sensed—data, for example: ultra—sonic scans of patients’ internal organs,
or satellite data concerning land usage. Long regarded as a branch of digital image
processing by engineers, who applied various deterministic filtering techniques
to the noisy, blurred data (see, for example, [40]), there was an explosion of
statistical interest in the subject in the mid-to-late 1980s, due largely to the
seminal papers of Geman and Geman ([32]) and Besag ([6]). We summarise their

main results below, but their real value was to place the various problems of image

!Lewis Carroll, “Alice’s Adventures in Wonderland”.




analysis (from simple processing to classification, from satellite data to emission
tomography) firmly within the paradigm of Bayesian statistical inference, thus
allowing the application of sound estimation and inferential techniques.

A further dramatic result has been the re-~emergence of Bayesianism in many
other areas of statistics, due to the technology developed for image analysis
(mainly the practice of using Markov Chain Monte Carlo methods to sample
from previously intractable posterior distributions).

To motivate the thesis, we here present (without any statistical detail) a real
example of image processing. It is with the processing of images, rather than
the classification of their contents, that we shall be concerned. The left hand
side of Figure 1.1 is an ultra—sonic scan of a human heart, received from Stobhill
Hospital in Glasgow. The data is very distorted, due to blurring and noise in
the recording process. Using one of the techniques of the thesis (that of Chapter
5) we can form an estimate of what the true picture of the heart should look
like; the result can be seen on the right hand side of the figure, showing a clear
improvement over the data in terms of information displayed.

We now present an overview of the rest of this chapter: in the next section,
we introduce the notation we will need; following this we provide a short history
of the subject, in order to explain some concepts to which we shall subsequently
often refer, as well as giving our work its historical setting. Also in this section we
detail our attraction to the Bayesian paradigm for statistical inference. Finally,
we provide a summary of the rest of the thesis, mentioning the main results from

each of the chapters.




1.2 Notation

We follow closely the notation of Besag in [6]. Let S be a two-dimensional array
of pixels, labelled with integers {1,2,...,n}. We assume that the true, unknown
image, z, is a realisation on S of a random vector X = {X;, Xs,...,X,}. The
data, y, is a realisation of a random vector {Y; : t € T'}, caused by a stochastic

degradation D of the true image:
D: X —Y.

Throughout this thesis, S = 7', but this is not necessary in general. In Emission
Tomography, for example (see [80]), the data space is (usually) a two—dimensional
pixellated region, while the image space is the shape of the body-part under
investigation.

We use p(-) to denote a generic probability distribution, or density function,
according to whether the random variable (r.v.) under consideration is discretely
or continuously valued.

We now make two assumptions:

ONE. The random variables {Y¥;} are conditionally independent and have
the same conditional density function, dependent on X. Thus the joint density

function of y given z, i.e. the likelihood function of the data, is

p(y | ) = [ p(v: | ).

=1
In fact, in all the applications we discuss, the dependency between y; and the

true image extends only to a subset of S, B;, say. The size and shape of B; is

determined by the particular application: see Section 2.2 for details. O.




TWO. The true image x is a realisation of a locally dependent Markov random
field (m.r.f.). Let Q be the sample space for X. The m.r.f. assumption requires

that the following two conditions are met.
Lp(X =2)>0, forall z € Q,
2.p(Xi=ai | Xj=m;,j #i)=p(Xi =2: | Xj =2;,7 €6).

We say 6; is the “m.r.f. neighbourhood” of pixel ¢; what makes the use
of m.r.f.’s so appealing is that by defining §; in a local manner we induce a
unique joint distribution for p(z) (see [5]). We have only to ensure that the
neighbourhood structure is defined in such a way that 7 € §; & 5 € §,. By
“local manner” we mean that the neighbourhood of i should consist of those
pixels which are “geographically” close. We call a first-order neighbourhood the
set of pixels to the immediate north,south, east and west of ;. The second—order

neighbourhood consists of these four pixels plus the four diagonal pixels adjacent

to z. O.

Both the data-model p(y | ) and the image-model p(z) will contain param-
eters, the estimation of which will be our concern in Chapters 2 and 3. We defer
discussion of them until that time. For the moment, note that the two models can
be combined with Bayes’ theorem (see, for example, [16]), to form the posterior

distribution of x given y,

p(z | y) o< p(y | z)p(z). (L1.1)

If we wished the most probable estimate of z, the mazimum a posteriori (m.a.p.)

estimate, we would maximise (1.1) with respect to (w.r.t.) .




1.3 Seminal work

We here discuss two papers which in our opinion have greatly shaped the di-
rection of research in this area. Of course most new papers are a synthesis of
work that has gone before; but occasionally one emerges which seems to exert a
particulary powerful influence on subsequent research effort. That of Geman and
Geman ([32]) could perhaps be such a paper. The authors made the comparison
between images and statistical mechanics, and used methods from that area to
solve some of the problems in image restoration. In particular, they introduced
the techniques of simulated annealing (see [63], where the concept of annealing
is applied to problems of optimisation) and Gibbs sampling.

Later (in Section 2.3.1) we detail the severe computational problems involved
with maximising p(z | y); the Gemans proposed maximising {p(z | ¥)}'/¢, where ¢
is a control parameter corresponding to the temperature of a physical system : an
annealing schedule is the reduction of temperature (slowly) over time, producing
realisations that settle upon the mode of the posterior density.

The authors formulated the Gibbs sampler (a variation of the Metropolis al-
gorithm [70]), for sampling from the posterior density at a particular temperature.
Basically, each site of the graph is visited infinitely often (in practice, each site is
visited a large number of times). A new value for the site is chosen from the local
conditional probability distribution. For example, if @ = {1,2,...,c} and at a
particular iteration we have selected site [, then we set z; = f, where f € 2, with
probability p(z; = f | y,zsy). (The set S\ is the set of sites omitting site I.)

The sequence of realisations thus formed, say =, (| ..., forms a Markov Chain




with equilibrium distribution p(z | y). In Section 2.3.2 we discuss the difficulties
of assessing when equilibrium has been reached; Gelman ([31]) discusses the re-
lationship between Gibbs sampling and the non-iterative techniques of rejection
and importance sampling. Convergence difficulties notwithstanding, the use of
the Gibbs sampler (and variants) to sample from complicated multi-dimensional
integrals has freed much of Bayesian statistics from the charge frequently levelled
against it: that philosophically it is agreeable and elegant, but that any feasible
posterior distribution function is almost certainly analytically intractable. With
the Gibbs sampler, one no longer has to approximate the desired posterior with
a manageable distribution.

The work of Julian Besag, in [5] and [6], was highly successful in popularising
the use of m.r.f.s to describe the unknown image. In [6] he proposed an iterative
method for estimating the mode of p(z | y), less computationally demanding
than simulated annealing. The method was called Iterated Conditional Modes,
since it involves visiting each site in turn, and at site ! it chooses #; to maximise
p(z; | y,Zsy). Using Bayes’ Theorem, Assumptions ONE and TWO, and allowing
that p(y; | ) = p(y: | z:) (indicating that no blurring occurs between the image—
space and the data-space), we see that p(x; | y,&sy) « p(y | =) % p(z | &s,),
and so the method is particularly simple to implement.

In the same paper, Besag proposed the pseudo-likelihood estimator of the
parameters in the prior distribution (we make use of this method in Chapter
2), which again exploits the local dependency structure of m.r.f.s to choose the
parameter value which maximises [], p(z; | z5,) w.r.t. the parameter of interest.

An overview of the random field models used for image processing, and the




techniques used to sample from them, is provided by Dubes and Jain in [23].

1.3.1 Why Bayesian Image Analysis?

We are attracted to the Bayesian paradigm for all applications of statistical es-
timation and inference, and therefore also for image analysis, because we believe
that any attempt to render scientific investigation as somehow “objective” is
doomed to failure. The assumptions of the experimenter play a vital role in the
direction of his or her research and Bayesianism forces these assumptions to be
modelled explicitly, rather than allowing them to be swept under a frequentist
carpet. Thus, rather than finding the essential subjectivity of the Bayesian ap-

proach a weakness, we regard it as the system’s major strength. As de Finetti

says ([27]):

in deductive logic, if one utilises only part of the hypothesis, the set of
conclusions will be smaller but still correct; whereas in inductive logic, if
one neglects a part of the information (unless it happens to be irrelevant)

the conclusion drawn is incorrect.

For a defence of the subjectivist interpretation of probabilities, and the demon-
stration that a coherent individual’s belief about an experiment can be (should
be) described by a probability distribution, see [27], already cited. In [101], the
authors provide a measure of the disagreement between the a priori beliefs of
an individual, and the results of an experiment. Finally, for a splendid rebuttal
of frequentist statistics and a lucid explanation of the role of Bayes Theorem in

scientific reasoning, see the book by Howson and Urbach, [55].

10




1.4 Summary of results

In Chapter 2, we attempt to estimate parameters and restore the image “sim-
ulataneously” (albeit iteratively), in an hierarchical Bayesian framework. We
present four estimation-restoration algorithms, with varying degrees of complex-
ity in the underlying assumptions, and find fairly good image restoration but less
successful parameter estimation. We simulate what we hope are true realisations
from m.r.f.’s, in order to judge how well parameter estimation is proceeding, and
detail some of the difficulties inherent in this area. We present a resampling
technique to help judge when these simulations are successful. Finally, we carry
out a simulation exercise to better examine the effects of the two most successful
algorithms, and conclude that the simpler of the two is the more efficient.

In Chapter 3 we turn our attention to the empirical Bayesian paradigm: we
estimate the parameters by maximum likelihood, and “plug-in” these estimates
to obtain what we hope is the m.a.p. estimate of the true image. We provide
an iterative procedure to reach the m.a.p. restoration from the empirical Bayes
one, and compare our results with other standard “plug—in” estimators from the
literature, as well as two optimal ones.

In numerical work, and in contrast to Chapter 2, we see improvement in the
parameter estimation, and less success with image restoration. An examination
of the joint and some profile likelihood surfaces suggests a reason for why this
may be.

The work of the bulk of Chapter 3 appears in [2].

Chapter 4 views the image restoration problem as belonging to the class

11




of incomplete data problems. Such motivation leads to consideration of the
Expectation-Maximisation algorithm (EMA), particularly as expounded by Vardi
and Lee ([98]). We discuss another algorithm, similar in mechanism, but with
simpler motivation, called the iterative Image Space Reconstruction algorithm
(ISRA; see [15]), and compare the two in a wide variety of situations. For de-
tailed comparison we turn to image deblurring, finding excellent visual results
with both, with slight evidence to suggest quicker convergence for the EMA, but
better results for the ISRA. We then attempt to increase the rate of convergence
of the ISRA but here the results are less impressive, and indeed we have been
unable to prove convergence of the adapted algorithm.

The work of this chapter appears in [3].

Finally, Chapter 5 is a contribution to the problem of discontinuity detection.
Since in many areas of application it is the detection of discontinuities, or edges,
which is of prime interest, it is important to have image restoration algorithms
which do not oversmooth such features. We take an algorithm by Abdallah and
Kay ([9]), whigh relied on user—supplied parameter values, and fully automate
it, with some success. We compare three different edge detection methods, and
discuss why the technique is not more successful. To end, we explain how we feel

the technique should be advanced.

12




Figure Li: An example of image processing - on the left, a discorted picture of a human hear
on the right, a restoration.



Chapter 2

An hierarchical Bayesian
approach to simultaneous
parameter estimation and image
restoration

2.1 Introduction

In our problem of “blind” image restoration, we are faced with the difficulty of
not only restoring an unseen image, z, but also of estimating the unknown pa-
rameters within the image models. In this chapter, we wish to remain as far
as possible within the full Bayesian paradigm, to which we have admitted our
attraction. The paradigm is straightforward: express all of our uncertainty in
terms of probabilities, then manipulate into existence, using the calculus of prob-
abilities, the appropriate posterior probability distribution. Let us now attempt
to do this.

First of all, we observe a set of records, y, which we presume to depend on an
unobserved true image, ¢, which is being corrupted by a point spread function

(p.sf.) V (assumed known) and unknown noise process which has variance ¢.

14




Thus we will require to specify a form for

p(y | =, 4). (2.1)

Note that we are assuming the p.s.f. known - of course to be fully Bayesian
we should assign V' a probability distribution, and one can of course do this
([46],[105]). However, in many real-life image processing applications the ele-
ments of V can be accurately estimated via some off-line experiment and so
we feel not too guilty about assigning V the privilege of constancy. There is a
“blurring” matrix H corresponding to every V - discussion of these structures is
deferred until our experimental sections.

We must further express our uncertainty about z in terms of a probability
distribution — we suppose that this depends on one unknown parameter, 3, and

thus we will need to specify
p(z | B). (2:2)
Thus we have introduced 2 parameters ¢, 8 which require estimation — strictly

speaking, in the Bayesian setting, they are random variables and must be assigned

distributions:
p(4 | ®) (2.3)

and

p(B | ©). (2.4)
Later we shall specify the parameters ®, ©; here let us say that we will assume
them known constants and such that 8 and ¢ can be assumed a priori indepen-
dent. We have now specified all the objects about which we are uncertain and can
proceed to make inference concerning them by using Bayes’ Theorem to combine

15




(2.1,2.2, 2.3,2.4):

p(z, 8,6 | y) o< ply | z,¢) x p(z | B) x p(¢) x p(B) (2.5)

Hierarchical modelling

This form of Bayesian modelling, the most “correct”, was given a forceful
exposition in the 1970s by Lindley and Smith (see [65],[85]) who found Bayesian
estimates in the Normal linear model with lower mean square errors (m.s.e.’s)
than the standard least square estimates (l.s.e.’s). A model with n hierarchies is
called an n—stage model; we restrict attention to the case of a completely specified
model after two stages, i.e. n = 2. Parameters ¢ and 8 we call hyper—parameters;
Lindley and Smith, who attribute the “hyper” terminology to I.J.Good, assumed
¢ known, or estimated it in the “standard” fashion: that is, as some residual
sum-of-squares divided by appropriate degrees of freedom. Although we prefer
to assign a prior distribution, it will be seen that with prior ignorance this does
indeed lead to the usual estimate of variance.

More recently, hierarchical models have been used very successfully in the
construction of medical expert systems (for example, see [37],(38],[88]). From
this field has come the practice of drawing a directed acyclic graph (d.a.g.) to
represent the conditional probability distributions. Such a graph can greatly sim-
plify understanding of complicated problems; a d.a.g. of our model, assuming 3, ¢
each depend on 2 parameters, appears in Figure 2.1. We follow the convention
outlined in [103] and use round nodes to represent unobserved random variables

(our true image and the model parameters); square nodes signify observed r.v.s

16




(i.e. the data); double square nodes represent fixed quantities in prior distribu-
tions; arrows denote dependencies between the probability distributions. This 1s
known as a d.a.g. because the arrows denote the directed Markov assumption:

for example, given z, then we see y is independent of 3, a. v.

< 7 N
()

—>| ¥

Figure 2.1; A directed acyclic graph representation of the Markovian structure of the probability
distributions under consideration

More discussion of this approach to Bayesian inference can be found in [67],(54];

an important application to image analysis is in [20].

2.2  Algorithm normal’

Introduction

Here we make the problem-nearly as simple as possible, by assuming that
A |
our true unknown image has no spatial dependency structure -~ in other words

that every pixel is stochastically independent of every other. Let the image

17




be composed of square pixels, arranged in n, rows and n. columns. If, for all
n = n, X n, pixels, each z; is a realisation of a N(0,(28)7!)) random variable,

then straightforwardly:

p(z | B) o< 7 exp(—B 3] 22). (2.6)

=1
For B, we will assume prior ignorance and assume a tractable vague distribu-
tion:

p(B) x B2, (2.7)

In retrospect, this is a rather odd choice of # prior, and perhaps a more appro-
priate one would have been p(8) o< #~1/2. Our choice of prior is very improper.

The set of records we will assume are generated by a Gaussian degradation,
1.e.

Yi| X, ¢~ N(Y_ hijz;, 9), (2.8)

JEB;

In fact (Assumption ONE of Chapter 1) we further assume conditional indepen-
dence of the data given the image, so that

n

p(y I Ly ¢) = Hp(yi | $7¢)

i=1

Discussion of H, the point spread matrix

We take the point—spread matrix H to be a row-stochastic block Toeplitz
matrix in which each block is also Toeplitz. If the light from a pixel in the true
image-space spreads into a B = (2b+ 1) x (2b+ 1) area in the data-space, then
the size of the block-bandwidth of H is B.Every pixel 7 in the true image-space

will have such a block of pixels associated with it in the data—space, and so we

18




say that “B; is the blurring neighbourhood of pixel 2”. Further, we say that
the point spread function (p.s.f.) of H has bandwidth . The p.s.f. itself is
constructed from a symmetric blurring vector v, a vector of positive components

and of dimension b such that

b
Zvi = 1.

=1

Then, if we denote the p.s.f. by V, we have that
(V)i,j = v; XU for i,j = 1, veuy b.

The H corresponding to V will be large, sparse and banded.

In a similar fashion as for 3, we assign the following prior density to ¢:

p(¢) oc ¢71/2, (2.9)

Combining equations (2.6,2.7,2.8, 2.9) using Bayes’ theorem, we see that the

log of the posterior density function (2.5) is

(n+1), (n+1),
2 2

log(p(z, 3,4 | v)) og ¢ + ~——=log 8

NI E(w ~ 3 hye,)?

i=1 1,—'1 JEB;

To find the mazimum a posteriori estimates of z, 3, @, i.e. the most probable
estimates of z, 3, ¢ given the data y, we have to find the maximum of this function
with respect to the 3 quantities of interest.

If we write L = log(p(z,8,¢ | y)), we can see that

oL +1) &
53—” 232 (2.10)

when

(n+1)

f=g5m (2.11)

19




and

JL (n+1

9= 2g 24,2 Z( feTE; hijz;)* =0

when
b= =1 (Y — Ljen; hijmj)z,
n+1

and

o = 2o+ 33 hinly = % hges) =
when

Ty = 2¢ﬂ Zham(% - jfs\:z;.- hijz;),

form=1,2,...,n.

(2.12)

(2.13)

(2.14)

(2.15)

These normal equations suggest the following algorithm for simultaneous pa-

rameter estimation and image restoration, which we call “normal”, after the prior

distribution chosen for z=:

Algorithm normal

1. Choose £°¢,

2. Evaluate
- n -|— 1
qAS i (i — XJEB hi; “3’“)
n+1 ’
Anew - 1/2¢ﬂ thm(yz Z h” A;)ld \
JEB;

form=1,2,..,n
3. Check for convergence of "*¥: if

YES —s STOP

NO — set 3™ := 7°!? and go to step 2. O
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2.2.1 Experiments with Algorithm normal

Four test images were employed in the investigation of the effectiveness of this
algorithm. Each of these images was convolved with two point spread functions
(created as detailed above), and further degraded with the addition of indepen-
dent Gaussian noise, mean zero, and s.d. o. We used two values of o, making a

total of 4 test images and 4 blur/noise combinations:

Images:

I1: each pixel is a realisation from distribution (2.6), with 8 = 0.05.

I2: as I1, save that # = 2.0.

I5: artificial image “im.con”, which contains many sharp discontinuities.
16: artificial image “im.surfs”, with no sharp discontinuities.

(Images I3 and I4 are introduced later.)

Degradations:

B1: 3 x 3 p.s.f.: v =(0.3,0.4,0.3)T.

B2: 7 x 7 p.sf: v =(0.04,0.12,0.18,0.32,0.18,0.12,0.04)7.

N1: 0 = 2.0 (so ¢grye = 4.0).

N2: 0 = 5.0 (so ¢irye = 25.0).

In the sequel, “IIBIN1” refers to the set of data formed by the convolution
of image I1 with p.s.f. Bl and the addition of noise with level N1, and so on. In

the following tables, “no.iters” refers to the number of iterations required for the
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algorithm to reach convergence; convergence being assumed when

n
mse(ﬁ;itsr _ ijitcr——l) e Z({i::ter . &{ter-—l)? <. (216)

B
i=1

We chose a value of € to be 0.5. Some examples of these test images/data can be

seen in Figures 2.2 and 2.3.

Results:
I1: 29 =4
Data | Bt rue i Pt rue | A | é | mse(Z, z) | no. iters
I1BIN1 0.05 4.0 34947 [ 5.15 10.06 4
I[1IBIN2 | 0.05| 25.0 889.32 | 26.27 10.06 3
[1B2N1 0.05 4.0 [ 193067.50 | 4.43 10.06 3
[1B2N2 | 0.05]| 25.0 55.08 | 25.34 10.06 2
I1: 2@ =y
Data l Btrue l Ptrue | ,@ | é | mse(E, x) I no. iters
I1B1N1 0.05 4.0 207.96 | 5.13 10.06 3
I1BIN2| 0.05| 25.0139.96 | 26.13 10.06 3
I1B2N1 0.05 4.0 | 138.73  4.39 10.06 2
I1B2N2 [ 0.05 25.0 [ 31.86 | 25.38 10.06 2
12 : 300 =3
Data I Birue | Pirue , A l ¢ I mse(Z, ) l no. iters
I2B1N1 2.0 4.0 191.87 3.98 0.33 2
[2B1N2 201 25.0{ 1199.21 | 25.044 0.33 2
[2B2N1 2.0 4.0 8301.28 4.02 0.33 2
[2B2N2 2.0 25.0{51882.99 ] 25.08 0.33 2
12 : 30 =y
Data | Birue | Ptrue | i l ¢ [ mse(&, T) | no. iters
I12B1IN1 2.0 4.0 | 119146 { 4.02 (.33 3
[2B1IN2 20| 25.0( 204.86| 24.94 0.33 3
I2B2N1 2.0 4.0 212.23| 4.00 0.33 2
12B2N2 20 25.0 34.54 | 24.94 0.33 2

22




Figure 2.2: Some of the true test images From top left to bottom right: (i) IL. (ii) 12. (iii)
and (iv) If}.
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I-igure 2d: Some of the data created as detailed in Section 2.2.1. From top left to bottom right
we have (i) IIBIN 1, (ii) I2B1N2, (lii) I5B2NI. (iv) I6B2N2.



Data | Btrue | Ptrue l

5;(0) =z

A

I5:

¢ I mse(&, x) I no. iters

For I1,12, images generated directly from the simple Gaussian model (2.8), the

25

I5bBIN1 - 4.0 ] 276606.90 | 15171.88 | 15226.54 39
I5B1N2 - 25.0 | 860373.24 | 15194.12 | 15226.54 31
I5B2N1 - 4.0 9319.21 | 15126.22 | 15226.54 6
[5B2N2 — 25.0 942.97 | 15144.78 | 15226.54 5
I5 : 200 = Y
Data | Birue I Pirue | B I é l mse(E, z) l no. iters
I5B1N1 - 4.0 1 20793.54 | 15171.00 | 15226.54 39
I5BIN2 - 25.0 17.78 | 15153.06 | 15226.49 30
15B2N1 - 4.0 92.194 } 15109.93 | 15226.54 6
15B2N2 - 25.0 25.13 | 15115.81 { 16226.53 5
16 : 20 =4
Data | Birue | Ptrue | B | ¢ i mse(Z, ) | no. iters
6BINI ~1 4.0 [ 144449252 | 19019.60 | 19086.34 10
I6B1N2 ~| 250 32.98 | 19014.84 | 19086.31 31
I6B2N1 ~| 40|  2717.5118923.46 | 19086.34 6
I6B2N2 -1 25.0 161.75 | 18940.41 | 19086.34 5
I6 : 200 =y
Data ! Birue l irue | B I q3 | mse(Z, ) | no. iters
I6B1N1 - 4.0 775319.13 | 19019.63 | 19086.34 41
I6B1N2 -1 25.0 157.05 | 19033.20 | 19086.34 30
16B2N1 - 4.0 | 47428042.31 | 18927.15 | 19086.34 7
16B2N2 - 25.0 642657.33 | 18955.41 | 19086.34 6
Discussion:

estimation of noise variance ¢ is very good, yet disastrously bad for the artificial
images 15,16. In all cases, estimation of the m.r.f. parameter § is too high - the
parameter exhibits a tendency for vast inflation. We outline some reasons why

this may be expected in the discussion of the next algorithm.




In plots of B against iteration number (Figure 2.4), some interesting patterns
can be discerned, particularly for the artificial images 15 and [6. There seems
strong evidence of a “blur” effect: that is, the examples employing the larger
p.s.f., while not in general producing lower estimates of B8 than is the case for
those using the smaller p.s.f., do reach convergence more quickly. Put another
way, these estimates of f “blow—up” more quickly. This behaviour seems to be
replicated in image 11, but not in I2. For images I5 and 16, the estimate of 3 is
for a long time acceptably low: unfortunately m.s.e. convergence is not achieved
until the estimates enlarge. Examination of the plots of mse(&*er, #ier—1) vs
iteration number (Figure 2.5) re-inforce this pattern. Again there is a blur effect
for the artificial images, in that consecutive iteration m.s.e. drops away more
rapidly for those examples using the larger of the two point spread functions.
The plots of variance estimate against iteration number (Figure2.6) highlight the
difference between the performance of the algorithm for the simulated and the
artificial images. For the Gaussian simulations, I1 and 12, estimates of ¢ converge
to close to the true value, regardless of whether or not the initial estimate of the
true image was the data or the truth itself. For all 4 images, there are again
marked blur effects.

In all cases there is a remarkable “image—m.s.e.” effect: regardless of blur,
noise or starting estimate of z, each image has a value of mean square error
(between the final image estimate and the truth) to which it is unshakeably
drawn. This is because the very large estimates of § lead the final restorations to
be equivalent to zero, regardless of the true z. This behaviour - replicated often

in future algorithms — might also suggest that the most important factor in the
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Figure 2.4: Plots of the estimate of beta against iteration number.
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image restoration problem is, unsurprisingly, the image itself.

Parameter estimation may be so poor due to the over-simplified assumptions
we have made about z, and also because of the cyclical nature of the algorithm.
At each iteration, estimates of # and ¢ are constructed, treating the current
estimate of z as though it were the truth. These estimates are then used to
update that of 2, and so on. Small errors can therefore be promulgated through
the system of formulae leading, for example, to the rapid increase in the value of
the § estimate.

In Figures 2.7 and 2.8 we show some of the resulting reconstructions. We note
that, although parameter estimation is generally unsuccessful, we have obtained

some not unpleasing visual restorations of the image.

2.3 Algorithm vague

More realistic prior distributions for the unknown image

The assumption of stochastic independence between the pixel values in a
real image is unappealing, if not frankly unbelievable, and it is now relaxed.
Henceforward, we shall model z as though it were the realisation of a locally
dependent Markov random field (m.r.f.) (Assumption TWO from Chapter 1).
These structures are amenable to image processing because they allow the simple
modelling of local continuity, i.e. if a pixel takes a certain value then it is more
likely that pixels “close by” will be of like value, rather than radically different.

Of course this simple m.r.f. specification takes no account of edges, which matter
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Figure 2.7: Some of the restorations from Algorithm normal From top left to bottom right
we have (i) ISB2N2, starting point = truth, (ii) ISB2B2, starting point = data, (iii) 16B1INI1,
starting point = truth, and (iv) I6B1INI1, starting point = data



Figure 2.8: Some more restorations from Algorithm normal From top left to bottom right
we have (i) ISBINI1, starting point = truth, (ii) ISB1B1. starting point = data. (iii) I6B2N2.
starting point. = truth, and (iv) I6B2N2. starting point = data
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we address in a later chapter; for many images (such as 16) it is hopefully not too

extravagant to believe the m.r.f. is an appropriate representation of reality.
Thanks to the Hammersley—Clifford theorem (see, for example, [14], or [5]),

we can model the local neighbourhood structure, as discussed in Chapter 1, of

an m.r.f. via a Gibbs’ distribution:

p(z | B) = Z(B)"" exp{—pfa" Az} (2.17)

where Z(8) is the normalising constant required to ensure the distribution is
proper, i.e. that it sums to 1. Z makes the Gibbs distributions intractable:
consider a discrete-valued image of n pixels, each pixel taking a value from
{1,2,...,c}. Then the sample space of = is {I,2,...,¢}", and since calcula-
tion of Z involves summing (or integrating, in the case of continuously-valued
images) over every possible value of x, the computational cost is clearly pro-
hibitive. (Consider, for example, the very simple case of a binary, 4 x 4 image:
there are 2'® possible realisations of such an image and the probability of each
must be evaluated and summed to calculate Z.) However, if the rank of A is n

we can say, for a continuous x:

Z(B) = jauxexp{v—ﬁ:cTAx}da:

= P,

where c is a constant, independent of 8. Thus Z(8) oc 8"/,
Here, we call A the smoothing or reqularisation matrix, and it is used to dictate
the order of the m.r.f.; as with H, A will also be of block~Toeplitz form, with

each block Toeplitz. In general, when the order of the m.r.fis p, then A = QZQP,
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where @, is of order (n, — p)? x n? and has the form D, ® D,, where ® denotes

the Kronecker product. D, is the (n, — p) X n, matrix with (¢, k) element:

{Dp}in = (1) ( Z;: ) :

fore=1,2,..,n, —p; k=7 —1,7=1,...,i+ p (see [60] for details). We assume

@, is of full rank (n, — p)? and thus

r = rank(A) = (n, — p)*.

For example, if we have specified that z is a realisation from a second-order

m.r.f. (an 8-nearest-neighbours prior), then

T Az = Z(m, — z;)?

invj

where i ~ j means that pixel ¢ and pixel j are neighbours in the m.r.f.

definition.

Thus, we now specify the prior distribution for z as
p(z | B) o< 7 exp{—Ba" Ax}. (2.18)

Note that for r < n, this makes = a realisation of a singular normal distribution.
We also here specify general, natural forms for the priors of 3, ¢, i.e. we

specify that they follow an inverse Gamma distribution:

p(¢) o ¢! exp{—1/mg} (2.19)
and

p(B) o B4 exp{—p/k} (2.20)
where ¢, ,1,m,d, k > 0. By “natural” we mean “mathematically tractable”; it is
said that these are conjugate priors (see, for example, Section 6.3 of [16]) because
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Figure 2.9: Different representations of the Gamma priors used to represent our ignorance
concerning ¢, 5.

they will combine neatly with the Gaussian likelihood term when computing
posterior densities. Although with the advent of modern Bayesian techniques
such as the Gibbs Sampler (see [32}) this conjugacy between prior and likelihood is
no longer a sine qua non of practical Bayesian inference, it is the case that the use
of the Gamma density is rather uncontroversial; we shall specify in advance the
values of k,d, [,m to be used. Figure 2.9 displays some such choices graphically.

In this algorithm, we fix the parameters at d = 3/2,l = 1/2,k = m = oo so
that g3, ¢ follow distributions (2.7,2.9) as before. 'Later, we shall relax some of
these conditions.

We presume that y is caused by a Gaussian degradation, as in Algorithm
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normal.
Combining our uncertainties with Bayes’ Theorem again, we see that the log

posterior density is now

n+1 r4+1

log{p(z, 8,6 |y)} o« - log(¢#) + log(/3)
1 2 T
%Hy Hz|? - =" Az. (2.21)
The stationarity equations for 8 and ¢ take the form:
e, (r+1) T
— = — 22
95 55 z' Az (2.22)
and
9 ntl L Hape (2.23)
36 24 " 2g20Y ' '

We choose & to maximise p(z, ¢, 3 | y), which is equivalent to choosing z to

minimise fz” Az + 55(y — Hz)" (y — Hz). Differentiating this w.r.t. = we obtain:

which equals zero when
LHTH 4+ 284) = L7
¢ ¢ y'l
i.e. when
1 Ll
r = (wH " H4+2BA) —H"y
¢ ¢
= (HTH+XA)T' HTy, (2.24)

(2.25)

where A = 248.
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These stationarity equations suggest the following fixed—point algorithm:

Algorithm vague

1. Choose £°.

2. Evaluate
- r+1
B e= — —T (2.26)
vagu 2 Ziwj(xild — :vj"‘)z
. - H:?:"H 2
i lly I
n+1

& = N(\)y
where N(\) = (HTH + AA)""HT and \ = (2¢53).
3. Check for convergence of (8, , &%%): if
YES — STOP

NO — set 2°/¢ := 3"** and go to step 2. O

At each iteration of the algorithm, we are using the estimates of 3,¢ to
regularise our image estimate. See Section 3.6 in Chapter 3 for discussion of the

relationships between our algorithms and the methods of regularisation.

Exploitation of the structure of H, A.

The advantage of the block-Toeplitz structure adopted for H and A now
becomes clear: Toeplitz matrices can be well-approximated by circulant matrices,
and the eigen—structure of circulant matrices is well understood (see [43, 58]).

Further, we need only store the first row of each n x n matrix in order to capture

all the information within that matrix.
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Thus our computationally forbidding Algorithm vague can in effect be carried
out by 3 straightforward discrete fast Fourier transforms (ff.t.s) (see [40] and
[91]): if {h;},{a;} are the sets of eigenvalues of H, A respectively, obtained by
carrying out discrete f.f.t.s on their first rows, and w; is the i’th component of

the discrete f.f.t. of the data y, then we can write our estimate of the image z as

A

R i(w; * y)
.’E /\ X w;.

2.3.1 Generating true images from m.r.f. prior distributions

When we use a restoration technique on a “real-life” image, the m.r.f. prior is
a representation of what we intuitively feel should be correct in an image - i.e.
we expect to see and would like to preserve local continuity. Since a picture of
a heart, say, is very definitely not a realisation of an m.r.f., it follows that there
does not exist a “true” value of B to be estimated; rather we aim for a “good”
value of B in the sense of an aesthetically pleasing and informative restoration.

However, if the true image is indeed a realisation from

p(z | B) = Z(B)7" exp{~B ) (=i — z;)*} (2.27)

invj
then we would hope that the estimate of 4 is good not just in the sense that it
leads to a visually pleasing image restoration but also that it should be “close”
to the value used to generate the original image.
It 1s impossible to obtain such realisations directly due to the intractability

of the normalising constant Z(8) = 35, exp —83;.;(z; — z;)* in the Gibbs repre-
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sentation. We can obviate this difficulty and simulate such an image by using the
ingenious Metropolis-Hastings Algorithm (see [70],(53]) which can be explained

within the context of image analysis as follows (see, for example, [4] or [78]):

The Metropolis—Hastings Algorithm

Aim: to simulate a realisation from (2.27).

1. Choose 2° arbitrarily.

2. Choose z; from 2 at random.
Pick m such that m ~ N(0, 72).
(We deal with the specification of 7 shortly.)

Make z; = &; + m.

3. Calculate A = p(Z | B)/p(z | B)
where z = (.’f:l, .‘f:z, ceey 53;_.1, it,;, §2,‘+1, ceey ﬁ\?“).
It is the calculation of this ratio which renders unnecessary the calculation

of the hideous Z(f3).
4. Accept & with probability p = min(1, A).
5. Repeat from step 2 above until convergence.

The sequence of images & so constructed form a Markov Chain with equilib-

rium distribution (2.27) ([87]). O
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Convergence considerations

Methods such as this implementation of the Metropolis-Hastings algorithm,
and the Gibbs sampler ([32]), combine such simplicity, elegance and usefulness
that they have led to what may be only slightly over-stated as the renaissance of
Bayesian statistics. (For a very small sample, see references: [7],[8], [37]). Indeed
even non-Bayesian statisticians have made use of the flourishing ideas ([35]).
However, these Monte Carlo Markov Chain (MCMC) methods suffer from a major
drawback: how can we be certain that any particular sequence of realisations has
reached the desired equilibrium distribution ([100])? Clearly this is of prime
importance to our work, as we wish to test the efficacy of proposed estimators.

Green and Han ([47]) have shown that the speed of convergence is dependent
upon the transition matrix of the Markov Chain (MC); in practice this eigen-
analysis would usually be ominously complicated. Frigessi et al ([28]) show, again
through an eigen—analysis, that for Ising models, a simplified binary version of
the prior distribution that we are considering, the Metropolis—Hastings algorithm
will converge more quickly than the Gibbs sampler.

Other work ({41]) involves the examination of auxiliary and antithetic vari-
ables, but most authors advocate the plotting of a simple summary statistic after
each iteration with convergence being assumed when the plot of the statistics
versus time has stabilised ([86],(13]). For example, Smith and Roberts ([87]),
acknowledging that empirical evidence can never prove with certainty that con-
vergence has been achieved (no more than such evidence could ever prove or dis-
prove any statistical hypothesis), suggest some output analysis along these lines,

offering the caveat that observing a scalar statistic involves the risk of ignoring
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the multidimensional behaviour of the MC.

Kirkland ([62]) used time series techniques to check the stability of the pseu-
dolikelihood estimator of the parameter in the Ising model , and suggests values
for the number of realisations of the MC to be discarded before the assumption of
convergence would be “safe”. Gray ([41]) emphasises, again for the Ising I;rlodel,
that the initial configuration of the image is important.

The curiosity here is that Bayesians have fallen upon sampling theory to
rescue them from the intractability of their complicated distributions: however,
at least these methods are being used to sample from correct distributions.

The impossibility of using only a sample to make inference about a population
was recognised by David Hume in 1777 when he articulated what became known
as the “Scandal of Philosophy” (see [57], also [55]).

Here, I shall content myself with plotting the pseudo-likelihood estimator of
B ([6]) at every iteration and assuming that equilibrium has been reached if this
plot appears to converge to the correct value. In the next section we detail a
method which mdy be of use in determining if the target value of § has in fact
been reached.

There remains the question of choosing a value for 7; any positive value is
of course valid, but the value actually selected will greatly affect the speed of
convergence ([4]).

In our simulations, carried out to capture a realisation from (2.27), assumed
to be of the second order, we used a value of 7 = 2.0, and attempted to simulate
(1) from an m.r.f. with 4 = 0.05, and (2) from one where 8 = 0.20. The algorithm

was run for 100,000 and 500,000 iterations for these two 8 values respectively:
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in Figure 2.10 we see the results. For (3—0.05 the estimator we are tracking does
indeed appear to have converged to close to the correct value; however for the
larger value of /? the algorithm appears to be “stuck” at a value of about 0.16:
it is of course impossible to tell if the fault lies with the estimator, or with the
sampler - the sampler we use is a very simple one. We will proceed with the two
resulting images as though they were in fact realisations from m.r.f.s, although
(illogical though it be) we have greater faith that this is in fact the case with the
image corresponding to (3= 0.05. Henceforth, this image is termed “13”, and the
other m.r.f. realisation is “14”.

One point to mention is that in the definition of p(x) we have used, (3is basi-
cally a scale parameter and can therefore be altered by scaling x. Consideration

of this would lead to r being chosen appropriately for the two m.r.f. simulations.

2.3.2 Using the bootstrap technique to investigate (3.

Above, we have detailed the problems involved in deciding whether or not a
particular sample generated by the Metropolis- Hastings algorithm is in fact from
the required distribution. Here we develop a technique based on the bootstrap
procedure of Efron (see [24]) which we hope will aid us in that task. Although we
can never know with certainty if the sample comes from the target distribution,
we will use the bootstrap method to produce a range of plausible values for the
parameter in the distribution. Again, we should emphasise that simply because
the target value of /3 belongs to such a “confidence” interval, we could not make
the inference that the image is a target realisation. However, if the true value of

/3 is not within the interval, we would be fairly confident that the Metropolis-
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Hastings procedure had not reached the appropriate equilibrium distribution. We
offer the procedure as another method of weighing evidence, in other words, and
make no strong inferential claims.

We first outline the bootstrap method, and then detail how we adapt it for

our data structure.

THE BOOTSTRAP

Given some data x, which arise from an unknown distribution ¥, how can we
make inference about a statistic calculated on z, called s(z)? Suppose the data
is generated so that

z=(21,...,2,)" ~ iid. F,

where “i.i.d.” stands for independent and identically distributed. Bootstrapping
proceeds by non-parametrically estimating the true d.f. F, using the sample z.
Many resamples are taken from the original z, each providing a re-estimate of
the statistic s(z). If you could (re)sample an infinite amount of data, the non—
parametric estimate of the distribution function (d.f.) of the statistic would tend
to the true d.f. So we hope that with (large, finite) B resamples, the sampled
distribution of the statistic will be close enough to its true distribution, allowing
us to draw inference about the true value of the parameter.

To estimate F' non—parametrically, put probability mass (1/n) on each data
point:

£ probability 1/n on z;,2=1,...,n.

A bootstrap sample from Fisa sample drawn at random and with replacement
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from the original sample, i.e.

P (z5,..., )" = 2"

For every bootstrapped sample we draw, we recalculate the statistic of inter-
est, s* = s(z**),b=1,..., B, and we use the resampled statistics to assess the
accuracy of the original s (and by implication this provides information on the
parameter in which we are interested). Information about s is drawn through
this resample-distribution. For example, the so—called percentile confidence in-
terval, with nominal confidence 0.95, is produced by selecting the 0.025 and 0.975
percentiles of {s*} as endpoints. Note that this doesn’t provide a confidence in-
terval for the parameter which s(z) is estimating — although we use the produced
interval as though this were the case. Indeed, the inventor of the bootstrap, in
[25], uses a percentile interval of the distribution of the sample correlation coef-
ficient to make inference about the population correlation value. This abuse has
caused these intervals to be derided (see, for example, Tukey’s contribution to
the discussion in [25]) and labelled seductive confidence intervals.

It is easy to see that in the case of long tailed resample distributions, or
where such distributions are skewed, the percentile interval will be misleading.
Many resamplers are therefore drawn to using the bootstrap technique to estimate
the more robust quantities of the mean and standard deviation of the resample

distribution. The bootstrap estimates of these quantites are, respectively,

st =B Y s,
b

*b __ ox\2
sdos(s) = R
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An interval estimate for s based on standard normal asymptotic theory is then

given by

s* (+/=) (B — Lia)sdps(s) x \/B/(B - 1),

where t(v; a) refers to the 100ath percentile of the student—t distribution, evalu-

ated on v degrees of freedom.

BOOTSTRAPPING IMAGES

Having defined the bootstrap, how could it help us in our examination of the
output from Metropolis-Hastings? We are using the pseudo-likelihood estimate
of the population parameter 3 to indicate when to stop sampling. If we applied
the bootstrap to the sample we select as “truth”, and used the above techniques
to produce a resample distribution for the pseudo-likelihood statistic, this could
help us decide if the true parameter value has indeed been reached.

Our “data” then will be z, the true image. The pseudo-likelihood estimator
(see Equation (2.39)) takes the part of s(z). However z is very definitely not
composed of i.i.d. elements, without which condition there is no guarantee of
convergence of the estimated d.f. to true F'. To cope with this difficulty, we adapt
an argument of Hanna, in [52], who uses bootstrapping in a comparative exercise
of some Air Quality models. He advocates the blocking of environmental data into
homogenuous units, and resampling from within each unit, then recombining the
resampled sub—units into one resampled vector. Our idea is to take advantage of
the fact that the m.r.f. definition supposes the dependency structure in z is local
: the value taken by pixel 7, given the values of the pixels in its neighbourhood, is

independent of the distribution of the values in the rest of the scene, i.e. S\§;. For
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example, suppose z is 64 x 64, then we could divide it into eight non-overlapping
8 x 8 subsets (we choose 8 as an example only; and the subsets need not be
non-overlapping). Within each bootstrap cycle, take the first pixel from each of
the sub-blocks, resample these, and then take the set of second pixels, resample,
and continue, until the entire image has been resampled. Hopefully, each set of
pixels from which we resample are “far enough apart” to be independent of one
another, as well as identically distributed. For emphasis: we are not resampling
within each of the blocks, one block at a time. Rather, we take one pixel from
each block at each bootstrap iteration, and resample these.
More formally, let S, the set of indices of z, be partitioned into w subsets,each
of which is of size W. Write § = {51,...,5,}. The block of z belonging to S;
we denote by x[;), each xy; consisting of W pixels. The blocked bootstrapping
procedure is as follows:
For b=1,..., B do begin:
resample W points from z[y) — :z:’[“lbl
. and so on...
resample W points from zp,; — mf‘j]
resampled data is z* = (zz:’["f’], ... ,a:f:g})T.

evaluate bootstrap statistic s(z**).
End for b.

The resample distribution can then be used to produce either a moment or

seductive confidence interval.

46




AN EXAMPLE

We use image 18, which we hope is a realisation of an m.r.f. with g = 0.05. If
the technique works well for the true image, it may be of use in highlighting the
effects of blur and/or noise on the pseudo-likelihood estimator, and so we apply
the technique to the true image, to the true image after it has been blurred, to
the true image with added Gaussian noise but no blur, and to the true image
with blur and noise. The blur level is B1 and the noise level is N2; see Section
2.2.1 for more details. These four images can be seen in Figure 2.11.

We carried out 1000 bootstrap replications in each case, and split the image
into 12 x 12 sub-blocks, in an overlapping manner. Thus each of the pixels in the
image was included in one of the sub-blocks, but none of the pixels in each sub-
block was within 12 pixels of the others, either in the north-south or east-west
directions.

After the bootstrapping we drew pictures of the bootstrap distributions (see
Figure 2.12) and produced 95 per cent. seductive and moment intervals for 3, as

outlined above. The table below lists the values of the interval estimates.

Bootstrap interval estimates for the pseudo-likelihood statistic

image | percentile interval | moment interval
I3 (0.0464,0.0540) (0.0463,0.0541)
I3B1 (0.1204,0.1367) (0.1196,0.1370)
I3N2 (0.0045,0.0053) (0.0044,0.0053)
I3BIN2 | (0.0050,0.0058) (0.0050,0.0058)

DISCUSSION

From examining Figure 2.12, we see that although the estimates of § are very
different, each is quite symmetrical. This is reflected in the interval estimates,
which show close agreement between the percentile and moment approaches. The
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interval for the statistic calculated on the undistorted image I3 does indeed appear
to sit almost symmetrically around the target value of 0.05, so we continue to
view I3 as though it were a true realisation from the desired m.r.f. The other
three intervals, however, indicate that the pseudo-likelihood estimator will fail,
drastically, in the presence of distortion. For I3B1, the intervals are too high, and
for the images with noise added, the intervals are too low. A glance at Figure
2.11 explains why: the blurring has emphasised the neighbourhood structure,
producing an image which intuitively one would identify as a realisation from an
m.r.f. with a much larger “attraction” parameter than 0.05. On the other hand,
the images with noise added are completely swamped by the distortion; to the
naked eye there is no evidence of the local dependency structure at all. While
this is hardly surprising, it is a caveat against the use of pseudo-likelihood as an
estimator of m.r.f. parameters in the presence of large scale distortions.

In summary, it appears that this adapted block-bootstrap procedure may
be of use in the examination of the output from Monte Carlo Markov Chain

simulations.

2.3.3 Results for Algorithm vague

Again, 4 test images were employed; I5 and I6 as before, but in addition:
I3: a simulation using the Metropolis—-Hastings algorithm of a second order
m.r.f. with 8 = 0.05.

I4: as I3 save for 8 = 0.20.
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The degradation conditions were as for Algorithm normal, as was the con-

vergence criterion. The starting value for  was always taken to be the data,

Y.
Results:

I3
Data l Btrue l dirue | B | é I mse(Z, z) | no. iters
I3B1IN1 | 0.05 4.010.28 | 3.43 1.73 2
I3BIN2 | 0.05| 25.0| 1.44 | 23.91 2.12 3
I3B2N1 | 0.05 4.0 1 0.42 | 3.63 1.85 2
I3B2N2 | 0.05 | 25.0 | 2.55 | 24.15 2.14 3

I4
Data | Birue | Ptrue I ﬂA | é I mse(E, z) I no. iters
14B1IN1 | 0.20 4.0 [ 0.367 | 3.366 0.648 2
I4BIN2 | 0.20 | 25.0 | 1.643 | 23.768 0.782 3
[4B2N1 | 0.20 4.0 10.517 | 3.614 0.676 2
[4B2N2 | 0.20 | 25.0 } 2.719 | 24.105 0.789 3

15
Data | Birue | dtrue | BV | ¢ | mse(#,z) | no. iters
I5BIN1 - 4.0 | 0.876 | 3.87 21.71 2
I5B1N2 -1 25.0 1.04| 22.2 32.33 3
I5B2N1 - 4.0] 133 4.11 34.21 2
[56B2N2 - 25.0| 1.47| 23.72 44.84 3

(I the values in this column are x10~2.

16
Data | Birue | Strue | AP | ¢ | mse(2,2) | no. iters
I6B1N1 - 4.0 {0973 | 5.79 15.77 2
I6B1N2 -1 25.0| 1.06| 23.74 17.66 3
I16B2N1 - 4.0 0.955| 8.43 30.56 2
16B2N2 -1 25.0| 1.02}27.52 31.23 3

(@ the values in this column are x10~2.
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Discussion:

Here we see good— though consistently under— estimation of ¢, not only for the
simulated images but also for artificial I5 and 16 (recall that Algorithm normal
was incapable of this). The remarkable “image-m.s.e.(Z,2)” effect noticed in
Algorithm normal is not so evident here: perhaps there is evidence of a noise
effect in the simulated image examples.

We may directly compare the results of Algorithm vague with Algorithm
normal for artificial images 15,16 where the starting point was taken to be the
data, y. It is clear that there is a vast improvement in every measured respect:
much “better” estimates of 3, ¢ (i.e. the estimates of # are smaller and the esti-
mates of ¢ are quite accurate) leading to a reduction in the number of iterations
required to reach convergence, and a huge reduction in the m.s.e. between the fi-
nal image estimate and the truth. Average m.s.e. discrepancies between estimate
and truth for Algorithm normal are 15476.5,19086.4 for I5 and I6 respectively;
for Algorithm vague these figures fall to 33.27 and 23.81.

Some restorations effected by this algorithm can be seen in Figure 2.13.

Notwithstanding this greater success, it remains that for those cases where
we are permitted to make a decision about how close ﬁ is to the correct value, it
appears that once again the algorithm is producing estimates that are too large —
although the more realistic image—prior may have helped to reduce the estimates
from the huge values noted in Algorithm normal. We turn our attention to this

1ssue.
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The behaviour of 3

First of all, let us consider a very simple set—up, keeping our argument as
clear as possible. Setting H = A = I we may write the log-posterior density of
z,[3,¢ given y as

1 1 1
n—2|— logﬂ——n;— logqb-—ﬁme——Z—qSZ(yi—xi)z. (2.28)

If this is differentiated w.r.t. z,, and set to zero, we see the m.a.p. estimate

of z,, is

N Ym

m = T, = 1l,...,n. 22
z o5 " 1 n (2.29)

Now we substitute (2.29) into (2.28), to see that the “profile” log posterior

for (4, B) is

n+1 n+1 BYy?
5 log 8 5 Iogqﬁ—1+2¢ﬁ.

Now let B — oo in (2.30). Clearly, (2.30) will be dominated by log 8 as 3

(2.30)

increases in size. Since log3 — oo as # — o0, we see that 8 = 0o is a maximiser
of the log posterior density.

It remains to be seen, however, if the result holds for general H,A. The
general form of (2.28) is (2.21), and the m.a.p. estimator of x is given in (2.24).

Substitution as before yields

. r+1 n +
logp(&,6,81y) = 5 log B — 3

—B{W T H Y} AW H Ty}

: log ¢

1 _ -
—gg—b{y — HW ' HTy} {y — HW'HTy}

r+1 41
= Ty lef-—

log ¢
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1
—yT{BHW-TAW1HT 4+ 2—$1 (2.31)

Lgwomr 4 Lgwer HTHW'H T}y  (2.32)

¢ 2¢

(2.33)

where W = HTH + 2¢8A and so W' = H™Y(I 4+ 2¢BC)'H™T and C =
H-TAH.

Now examining the term in braces in (2.31,2.32):

- L -1 a1 g L
o} = 5o+ 2060)7(1+266C)(1 +2650)™" = S(1+268C)™" + 551
1

—2—¢?I
= -212(14- 268C) 1 +2¢68C — I

1 -
= —g(f“l"?(]sﬁc) Y+

= BC(I +24BC)".

So (2.33) has the simplified form

r41 n+41
5 loef-—5

log ¢ — By"C(I +248C) 1y, (2.34)

and, as with the simpler example, it is straightforward to see that this expression
will be dominated by log # as f — oo.

Besides explaining some of the large § estimates we have observed, this result
carries the worrying implication that the posterior distribution is improper, i.e.
it encloses a total volume greater than unity. The highly improper prior we have
employed for 3 seems to be the main cause of this trouble.

In our next algorithm we take cognisance of this possibility and introduce a
stronger prior distribution for the § hyper-parameter, which in effect places an
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upper bound on the set of possible /§ values. However a little thought shows that
the problem of posterior impropriety may well remain, despite the limits to the

range of £.

2.4 Algorithm gamma

More realistic prior distributions for the m.r.f. parameter
We now take advantage of the general Gamma prior we specified for 8