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A bstract

S om e E stim a tio n  and R esto ra tio n  T ech n iqu es for 
S ta tis t ic a l Im age A n a lysis

Graeme Ernest Barclay Archer 
Departm ent of Statistics 

University of Glasgow 
Submitted for the degree of Doctor of Philosophy 

December 1994

This thesis is concerned with statistical image analysis: the estimation of 
parameters within image models, and how to produce restorations of degraded 
scenes which are the most probable given the parameter estimates and the data. 
We develop algorithms for estimation within hierarchical and empirical Bayesian 
models, and compare results with non-Bayesian methods. The empirical be­
haviour of param eter estimates under different algorithms are studied in a simu­
lation exercise and compared with their theoretical behaviour. We sample reali­
sations from Markov random fields using the Metropolis algorithm, and propose a 
resampling technique to assess convergence. An alternative to the EM algorithm 
(EMA), the Image Space Reconstruction algorithm (ISRA), is extended and com­
pared with the EMA. A technique for increasing the rate of ISRA-convergence 
is investigated. Finally, an adaption of a method to prevent over-smoothing of 
image discontinuities is fully automated. The effect of user-supplied parameter 
values on the image restoration quality is investigated via a simulation study; the 
effects are found to be negligible.
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C h ap ter  1

In trod u ction

1.1 Im age A n a ly sis

Our work is concerned with statistical image analysis -  that is, the restoration of 

noisy, blurred images, using sound statistical techniques.

1and what is the use of a book, } thought Alice, cwithout pictures or 

conversation? *

In accordance with these sentiments we present and discuss many pictures in the 

course of our dissertation, to highlight the effect of the techniques we propose.

The term  “image analysis” describes the restoration and interpretation of 

remotely sensed-data, for example: ultra-sonic scans of patien ts’ internal organs, 

or satellite data  concerning land usage. Long regarded as a branch of digital image 

processing by engineers, who applied various deterministic filtering techniques 

to the noisy, blurred data (see, for example, [40]), there was an explosion of 

statistical interest in the subject in the m id-to -la te  1980s, due largely to the 

seminal papers of Geman and Geman ([32]) and Besag ([6]). We summarise their 

main results below, but their real value was to place the various problems of image
1 Lew is Carroll, “A lice’s A dventures in W onderland” .
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analysis (from simple processing to classification, from satellite da ta  to emission 

tomography) firmly within the paradigm of Bayesian statistical inference, thus 

allowing the application of sound estimation and inferential techniques.

A further dram atic result has been the re-emergence of Bayesianism in many 

other areas of statistics, due to the technology developed for image analysis 

(mainly the practice of using Markov Chain Monte Carlo methods to sample 

from previously intractable posterior distributions).

To motivate the thesis, we here present (without any statistical detail) a real 

example of image processing. It is with the processing of images, rather than 

the classification of their contents, that we shall be concerned. The left hand 

side of Figure 1.1 is an ultra-sonic scan of a human heart, received from Stobhill 

Hospital in Glasgow. The data  is very distorted, due to blurring and noise in 

the recording process. Using one of the techniques of the thesis (that of Chapter 

5) we can form an estimate of what the true picture of the heart should look 

like; the result can be seen on the right hand side of the figure, showing a clear 

improvement over the data  in terms of information displayed.

We now present an overview of the rest of this chapter: in the next section, 

we introduce the notation we will need; following this we provide a short history 

of the subject, in order to explain some concepts to which we shall subsequently 

often refer, as well as giving our work its historical setting. Also in this section we 

detail our attraction to the Bayesian paradigm for statistical inference. Finally, 

we provide a summary of the rest of the thesis, mentioning the main results from 

each of the chapters.
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1.2 N o ta t io n

We follow closely the notation of Besag in [6], Let S  be a two-dimensional array 

of pixels, labelled with integers { 1 ,2 , . . . ,  n}. We assume that the true, unknown 

image, x, is a realisation on S  of a random vector X  = {X i,  X 2, . . . ,  X n}. The 

data, y, is a realisation of a random vector {Yt : t £ T} ,  caused by a stochastic 

degradation D of the true image:

D : X  — » Y.

Throughout this thesis, S  = T, but this is not necessary in general. In Emission 

Tomography, for example (see [80]), the data  space is (usually) a two-dimensional 

pixellated region, while the image space is the shape of the body-part under 

investigation.

We use p(-) to denote a generic probability distribution, or density function, 

according to whether the random variable (r.v.) under consideration is discretely 

or continuously valued.

We now make two assumptions:

O N E .  The random variables {1^} are conditionally independent and have 

the same conditional density function, dependent on X .  Thus the joint density 

function of y given x , i.e. the likelihood function of the data, is

n

p{ y  I x ) = Y l p { y i  I x )-
1=5 1

In fact, in all the applications we discuss, the dependency between yi and the 

true image extends only to a subset of 5 , say. The size and shape of B{ is 

determined by the particular application: see Section 2.2 for details. □.
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T W O .  The true image £  is a realisation of a locally dependent Markov random 

field (m.r.f.). Let H be the sample space for X .  The m.r.f. assumption requires 

that the following two conditions are met.

1. p (X  =  x) >  0, for all i E O ,

2. p ( X i  ~  X{ | X j  = X j , j  y£ i) = p ( X {  = Xi | X j  = x j , j  e  Si).

We say Si is the “m.r.f. neighbourhood” of pixel i\ what makes the use 

of m.r.f.’s so appealing is tha t by defining Si in a local manner we induce a 

unique joint distribution for p(a) (see [5]). We have only to ensure tha t the 

neighbourhood structure is defined in such a way tha t i £= 8j ^  j  EE Si. By 

“local manner” we mean tha t the neighbourhood of i should consist of those 

pixels which are “geographically” close. We call a first-order neighbourhood the 

set of pixels to the immediate north,south, east and west of i. The second-order 

neighbourhood consists of these four pixels plus the four diagonal pixels adjacent 

to i. □.

Both the data-m odel p(y | x ) and the image-model p(x) will contain param­

eters, the estimation of which will be our concern in Chapters 2 and 3. We defer 

discussion of them  until tha t time. For the moment, note tha t the two models can 

be combined with Bayes’ theorem (see, for example, [16]), to form the posterior 

distribution of x  given ?/,

P(x \y )  oc p(y | x)p(x). (1.1)

If we wished the most probable estimate of x , the maximum a posteriori (m.a.p.) 

estimate, we would maximise (1.1) with respect to (w.r.t.) x.
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1.3 S em in a l w ork

We here discuss two papers which in our opinion have greatly shaped the di­

rection of research in this area. Of course most new papers are a synthesis of 

work th a t has gone before; but occasionally one emerges which seems to exert a 

particulary powerful influence on subsequent research effort. T hat of Geman and 

Geman ([32]) could perhaps be such a paper. The authors made the comparison 

between images and statistical mechanics, and used methods from that area to 

solve some of the problems in image restoration. In particular, they introduced 

the techniques of simulated annealing (see [63], where the concept of annealing 

is applied to problems of optimisation) and Gibbs sampling.

Later (in Section 2.3.1) we detail the severe computational problems involved 

with maximising p(x \ y)\ the Gemans proposed maximising {p(# | y)} 1̂ ,  where t 

is a control param eter corresponding to the tem perature of a physical system : an 

annealing schedule is the reduction of tem perature (slowly) over time, producing 

realisations tha t settle upon the mode of the posterior density.

The authors formulated the Gibbs sampler (a variation of the Metropolis al­

gorithm [70]), for sampling from the posterior density at a particular temperature. 

Basically, each site of the graph is visited infinitely often (in practice, each site is 

visited a large number of times). A new value for the site is chosen from the local 

conditional probability distribution. For example, if f2 ~  { 1 ,2 , . . . ,  c} and at a 

particular iteration we have selected site /, then we set x\ =  / ,  where / E f t ,  with 

probability p(x{ =  /  | y , x s \(). (The set S \ l  is the set of sites omitting site L) 

The sequence of realisations thus formed, say a /1), x^2\  . . . ,  forms a Markov Chain



with equilibrium distribution p(x \ y). In Section 2.3.2 we discuss the difficulties 

of assessing when equilibrium has been reached; Gelman ([31]) discusses the re­

lationship between Gibbs sampling and the non-iterative techniques of rejection 

and importance sampling. Convergence difficulties notwithstanding, the use of 

the Gibbs sampler (and variants) to sample from complicated multi-dimensional 

integrals has freed much of Bayesian statistics from the charge frequently levelled 

against it: th a t philosophically it is agreeable and elegant, but tha t any feasible 

posterior distribution function is almost certainly analytically intractable. W ith 

the Gibbs sampler, one no longer has to approximate the desired posterior with 

a manageable distribution.

The work of Julian Besag, in [5] and [6], was highly successful in popularising 

the use of m.r.f.s to describe the unknown image. In [6] he proposed an iterative 

method for estimating the mode of p(x \ y), less computationally demanding 

than simulated annealing. The method was called Iterated Conditional Modes, 

since it involves visiting each site in turn, and at site I it chooses X{ to maximise 

p(xi | y ,x s \ i ). Using Bayes’ Theorem, Assumptions O N E  and T W O ,  and allowing 

tha t p(yi ] a;) =  p(yi | Xi) (indicating tha t no blurring occurs between the image- 

space and the data-space), we see tha t p(xi | y ,xs \i)  oc p(yt | xi) x p(xi | aig,), 

and so the method is particularly simple to implement.

In the same paper, Besag proposed the pseudo-likelihood estimator of the 

parameters in the prior distribution (we make use of this method in Chapter 

2), which again exploits the local dependency structure of m.r.f.s to choose the 

param eter value which maximises | x st) w.r.t. the param eter of interest.

An overview of the random field models used for image processing, and the
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techniques used to sample from them, is provided by Dubes and Jain in [23].

1.3.1 W h y  Bayesian Im ag e  A nalysis?

We are attracted  to the Bayesian paradigm for all applications of statistical es­

timation and inference, and therefore also for image analysis, because we believe 

that any attem pt to render scientific investigation as somehow “objective” is 

doomed to failure. The assumptions of the experimenter play a vital role in the 

direction of his or her research and Bayesianism forces these assumptions to be 

modelled explicitly, rather than allowing them to be swept under a frequentist 

carpet. Thus, rather than finding the essential subjectivity of the Bayesian ap­

proach a weakness, we regard it as the system’s major strength. As de Finetti 

says ([27]):

in deductive logic, if  one utilises only part of the hypothesis, the set of 

conclusions will be smaller but still correct; whereas in inductive logic, i f  

one neglects a part of the information (unless it happens to be irrelevant) 

the conclusion drawn is incorrect.

For a defence of the subjectivist interpretation of probabilities, and the demon­

stration tha t a coherent individual’s belief about an experiment can be (should 

be) described by a probability distribution, see [27], already cited. In [101], the 

authors provide a measure of the disagreement between the a priori beliefs of 

an individual, and the results of an experiment. Finally, for a splendid rebuttal 

of frequentist statistics and a lucid explanation of the role of Bayes Theorem in 

scientific reasoning, see the book by Howson and Urbach, [55].
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1.4 S u m m ary  o f  resu lts

In Chapter 2, we attem pt to estimate parameters and restore the image “sim- 

ulataneously” (albeit iteratively), in an hierarchical Bayesian framework. We 

present four estim ation-restoration algorithms, with varying degrees of complex­

ity in the underlying assumptions, and find fairly good image restoration but less 

successful param eter estimation. We simulate what we hope are true realisations 

from m.r.f.’s, in order to judge how well param eter estimation is proceeding, and 

detail some of the difficulties inherent in this area. We present a resampling 

technique to help judge when these simulations are successful. Finally, we carry 

out a simulation exercise to better examine the effects of the two most successful 

algorithms, and conclude tha t the simpler of the two is the more efficient.

In Chapter 3 we turn our attention to the empirical Bayesian paradigm: we 

estimate the parameters by maximum likelihood, and “plug-in” these estimates 

to obtain what we hope is the m.a.p. estimate of the true image. We provide 

an iterative procedure to reach the m.a.p. restoration from the empirical Bayes 

one, and compare our results with other standard “plug-in” estimators from the 

literature, as well as two optimal ones.

In numerical work, and in contrast to Chapter 2, we see improvement in the 

param eter estimation, and less success with image restoration. An examination 

of the joint and some profile likelihood surfaces suggests a reason for why this 

may be.

The work of the bulk of Chapter 3 appears in [2].

Chapter 4 views the image restoration problem as belonging to the class
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of incomplete data problems. Such motivation leads to consideration of the 

Expectation-M aximisation algorithm (EMA), particularly as expounded by Vardi 

and Lee ([98]). We discuss another algorithm, similar in mechanism, but with 

simpler motivation, called the iterative Image Space Reconstruction algorithm 

(ISRA; see [15]), and compare the two in a wide variety of situations. For de­

tailed comparison we turn to image deblurring, finding excellent visual results 

with both, with slight evidence to suggest quicker convergence for the EMA, but 

better results for the ISRA. We then attem pt to increase the rate of convergence 

of the ISRA but here the results are less impressive, and indeed we have been 

unable to prove convergence of the adapted algorithm.

The work of this chapter appears in [3].

Finally, Chapter 5 is a contribution to the problem of discontinuity detection. 

Since in many areas of application it is the detection of discontinuities, or edges, 

which is of prime interest, it is im portant to have image restoration algorithms 

which do not oversmooth such features. We take an algorithm by Abdallah and 

Kay ([9]), which relied on user-supplied param eter values, and fully automate 

it, with some success. We compare three different edge detection methods, and 

discuss why the technique is not more successful. To end, we explain how we feel 

the technique should be advanced.

12



Figure Li:  An example  o f  image processing - on the left, a discorted picture of  a human  hear 
on the right, a restoration.



C h ap ter  2

A n  hierarchical B ayesian  
approach to  sim ultaneous  
param eter estim a tio n  and im age  
restoration

2.1 In tro d u ctio n

In our problem of “blind” image restoration, we are faced with the difficulty of 

not only restoring an unseen image, #, but also of estimating the unknown pa­

rameters within the image models. In this chapter, we wish to remain as far 

as possible within the full Bayesian paradigm, to which we have adm itted our 

attraction. The paradigm is straightforward: express all of our uncertainty in 

terms of probabilities, then manipulate into existence, using the calculus of prob­

abilities, the appropriate posterior probability distribution. Let us now attem pt 

to do this.

First of all, we observe a set of records, y, which we presume to depend on an 

unobserved true image, a:, which is being corrupted by a point spread function 

(p.s.f.) V  (assumed known) and unknown noise process which has variance 4>.

14



Thus we will require to specify a form for

p(y\x ,(j)) .  (2.1)

Note tha t we are assuming the p.s.f. known -  of course to be fully Bayesian 

we should assign V  a probability distribution, and one can of course do this 

([46],[105]). However, in many real-life image processing applications the ele­

ments of V  can be accurately estim ated via some off-line experiment and so 

we feel not too guilty about assigning V  the privilege of constancy. There is a 

“blurring” m atrix H  corresponding to every V  -  discussion of these structures is 

deferred until our experimental sections.

We must further express our uncertainty about x  in terms of a probability 

distribution -  we suppose that this depends on one unknown param eter, /?, and 

thus we will need to specify

p(x  | ft). (2 .2)

Thus we have introduced 2 parameters <f>, ft which require estimation -  strictly 

speaking, in the Bayesian setting, they are random variables and must be assigned 

distributions:

p(4> I * ) (2-3)

and

p{P I ©)• (2.4)

Later we shall specify the parameters $ ,0 ;  here let us say tha t we will assume 

them  known constants and such tha t ft and <f> can be assumed a priori indepen­

dent. We have now specified all the objects about which we are uncertain and can 

proceed to make inference concerning them  by using Bayes’ Theorem to combine

15



(2.1,2.2, 2.3,2.4):

p(x, <t>, 0 I y) oc p(y | x, <f>) x  p(x | 0) x  p(4>) x p{0) (2.5)

H ierarchical m od elling

This form of Bayesian modelling, the most “correct” , was given a forceful 

exposition in the 1970s by Lindley and Smith (see [65],[85]) who found Bayesian 

estimates in the Normal linear model with lower mean square errors (m.s.e.’s) 

than the standard least square estimates (l.s.e.’s). A model with n hierarchies is 

called an n-stage model; we restrict attention to the case of a completely specified 

model after two stages, i.e. n =  2. Parameters <f> and ft we call hyper-parameters; 

Lindley and Smith, who attribu te  the “hyper” terminology to I.J.Good, assumed 

(f> known, or estim ated it in the “standard” fashion: that is, as some residual 

sum -of-squares divided by appropriate degrees of freedom. Although we prefer 

to assign a prior distribution, it will be seen tha t with prior ignorance this does 

indeed lead to the usual estim ate of variance.

More recently, hierarchical models have been used very successfully in the 

construction of medical expert systems (for example, see [37],[38],[88]). From 

this field has come the practice of drawing a directed acyclic graph (d.a.g.) to 

represent the conditional probability distributions. Such a graph can greatly sim­

plify understanding of complicated problems; a d.a.g. of our model, assuming /?, <j> 

each depend on 2 param eters, appears in Figure 2.1. We follow the convention 

outlined in [103] and use round nodes to represent unobserved random variables 

(our true image and the model parameters); square nodes signify observed r.v.s
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(i.e. the data); double square nodes represent fixed quantities in prior distribu­

tions; arrows denote dependencies between the probability distributions. This is 

known as a d.a.g. because the arrows denote the directed M a r k o v  assumption: 

for example, given x, then we see y is independent of

Figure 2.1: A d irected acycl ic  graph, representat ion o f  the Markovian structure  o f  the probabil i ty  
dis tribut ions  under cons iderat ion

More discussion of this approach to Bayesian inference can be found in [67],[54]; 

an im portant application to image analysis is in [20].

2=2 A lg o r ith m  n o rm a l1 

In tro d u c tio n

Here we make the problem ’nearly as simple as possible, by assuming that
’ -o

our true unknown image has no spatial dependency structure -  in other words 

that every pixel is stochastically independent of every other. Let the image

IT



be composed of square pixels, arranged in n r rows and nc columns. If, for all 

n = n r x  n c pixels, each X{ is a realisation of a 7V(0, (2/9)-1 )) random variable, 

then straightforwardly:

p(x | /?) a  /T /2 exp(—/? J 2  x i )• (2-6)
i ~ l

For /3, we will assume prior ignorance and assume a tractable vague distribu­

tion:

m  <x p 1'2. (2.7)

In retrospect, this is a rather odd choice of jd prior, and perhaps a more appro­

priate one would have been p(f3) oc /3-1/2. Our choice of prior is very improper.

The set of records we will assume are generated by a Gaussian degradation,

i.e.

Yi | X , (j) ~  N{  ^  kijXj, 4>), (2.8)
jeBi

In fact (Assumption O N E  of Chapter 1 )  we further assume conditional indepen­

dence of the data given the image, so tha t

n

p ( y  I %,<}>) =  T [ p { y i  I
i —1

D iscu ssion  of FT, th e  po in t spread m atrix

We take the point-spread matrix FT to be a row-stochastic block Toeplitz 

m atrix in which each block is also Toeplitz. If the light from a pixel in the true 

image-space spreads into a B = (26+  1) x (26+  1) area in the data-space, then 

the size of the block-bandwidth of H  is B .Every pixel i in the true image-space 

will have such a block of pixels associated with it in the data-space, and so we
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say that “B{ is the blurring neighbourhood of pixel i”. Further, we say that 

the point spread function (p.s.f.) of H  has bandwidth b. The p.s.f. itself is 

constructed from a symmetric blurring vector u, a vector of positive components 

and of dimension b such that
6

E i
Vi =  1.

i= 1

Then, if we denote the p.s.f. by K, we have tha t

(V ) i j  =  Vi x vj for i , j  =  1, ...,6.

The H  corresponding to V  will be large, sparse and banded.

In a similar fashion as for /?, we assign the following prior density to </>:

p(4>) oc 4i-1/2. (2.9)

Combining equations (2.6,2.7,2.8, 2.9) using Bayes’ theorem, we see that the 

log of the posterior density function (2.5) is

lag(p(x,p,<f>\y)) oc ^  log^-t- log/3

- 0  5 > .2 -  ot; E ( v.- -  £
t=i i=i je B i

To find the maximum a posteriori estimates of #,/?, </>, i.e. the most probable 

estimates of /5, (j) given the data ?/, we have to find the maximum of this function 

with respect to the 3 quantities of interest.

If we write L =  log(p(;c,/?, <̂> | j/)), we can see that



and

when

and

 ̂ _  ]Ci=l(S/t hi jx j )  fr,

7 + 1  ’ V ' L6)

d h  1 71
- —  =  -2(3xm +  -7 S  him(yi -  hijXj) = 0 (2.14)
a x m 9 t=i j£Bi

when

1 n
Xm ~  260 ~~ S  hijXj), (2.15)

i=l j£B,

for m =  1, 2 , . . .  ,n.

These normal equations suggest the following algorithm for simultaneous pa­

rameter estimation and image restoration, which we call “normal” , after the prior 

distribution chosen for x:

Algorithm norm al

1. Choose x old.

2. Evaluate

72+1
^  x°ld2 ’

7 2 + 1

SST  =  (1/2W ) ' £ h im(yi -  E  h u x f ) ,
i- 1 je-Bi

for 722 “  1,2, ..., 72.

3. Check for convergence of x new: if 

Y ES — > ST O P

NO  — > set xnew := £o/d and go to step 2. □
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2.2.1 E x p e r im e n ts  w ith  A lg o rith m  normal

Four test images were employed in the investigation of the effectiveness of this 

algorithm. Each of these images was convolved with two point spread functions 

(created as detailed above), and further degraded with the addition of indepen­

dent Gaussian noise, mean zero, and s.d. a. We used two values of <r, making a 

total of 4 test images and 4 blur/noise combinations:

Im ag es:

I I :  each pixel is a realisation from distribution (2.6), with ft =  0.05.

12: as II, save that ft = 2.0.

15: artificial image “im.con” , which contains many sharp discontinuities.

16: artificial image “im.surfs” , with no sharp discontinuities.

(Images 13 and 14 are introduced later.)

D e g ra d a tio n s :

B l :  3 x 3  p.s.f.: v =  (0.3, 0 .4 ,0.3)T.

B2: 7 x 7 p.s.f.: v = (0.04,0.12,0.18,0.32,0.18,0.12,0.04)T.

N l :  (j =  2.0 (so <^true “  4.0).

N2: <j  =  5.0 (so <̂true =  25.0).

In the sequel, “I1B1N1” refers to the set of data formed by the convolution 

of image II with p.s.f. Bl and the addition of noise with level N l, and so on. In 

the following tables, “no.iters” refers to the number of iterations required for the
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algorithm to reach convergence; convergence being assumed when

m s e { x iUr -  x ileT~l ) = n-1 ]T(xfe’' -  x i‘er~1)2 <  e. (2.16)
{—1

We chose a value of e to be 0.5. Some examples of these test im ages/data can be 

seen in Figures 2.2 and 2.3.

R esults:

II : = x
D ata ^true ^true P mse(:r,#) no. iters

I1B1N1 0.05 4.0 349.47 5.15 10.06 4
I1B1N2 0.05 25.0 889.32 26.27 10.06 3
I1B2N1 0.05 4.0 193067.50 4.43 10.06 3
I1B2N2 0.05 25.0 55.08 25.34 10.06 2

II : = y
D ata Ptrue ^true P <i> mse(:z, x ) no. iters

I1B1N1 0.05 4.0 207.96 5.13 10.06 3
I1B1N2 0.05 25.0 139.96 26.13 10.06 3
I1B2N1 0.05 4.0 138.73 4.39 10.06 2
I1B2N2 0.05 25.0 31.86 25.38 10.06 2

12 : £(°) = x
D ata ftru e ^true P mse(£, x) no. iters

I2B1N1 2.0 4.0 191.87 3.98 0.33 2
I2B1N2 2.0 25.0 1199.21 25.044 0.33 2
I2B2N1 2.0 4.0 8301.28 4.02 0.33 2
I2B2N2 2.0 25.0 51882.99 25.08 0.33 2

12 : ®(°) = y
D ata fitrue ^true P <i> mse(^, x) no. iters

I2B1N1 2.0 4.0 1191.46 4.02 0.33 3
I2B1N2 2.0 25.0 204.86 24.94 0.33 3
I2B2N1 2.0 4.0 212.23 4.00 0.33 2
I2B2N2 2.0 25.0 34.54 24.94 0.33 2
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Figure 2.2: Some  of  the true test  images From top left to bo t tom right: (i) II. (ii) 12. (iii) 
and (iv) If}.
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I-igure 2d :  Some  of  the data created as detai led in Section 2.2.1.  From top left to bo t tom right 
we have (i) I I B I N  1, (ii) I2B1N2,  (lii) I5B2NI .  (iv) I6B2N2.



15 : =  x

D ata f t  rue ftru e P mse(x ,x) no. iters
I5B1N1 - 4.0 276606.90 15171.88 15226.54 39
I5B1N2 - 25.0 860373.24 15194.12 15226.54 31
I5B2N1 4.0 9319.21 15126.22 15226.54 6
I5B2N2 25.0 942.97 15144.78 15226.54 5

15 : *(°) = y
D ata f t  rue ftru e P mse(£, x ) no. iters

I5B1N1 - 4.0 20793.54 15171.00 15226.54 39
I5B1N2 - 25.0 17.78 15153.06 15226.49 30
I5B2N1 - 4.0 92.194 15109.93 15226.54 6
I5B2N2 25.0 25.13 15115.81 16226.53 5

16 : £(°) =  X

D ata ftru e ftru e P <i> mse(:r,:r) no. iters
I6B1N1 - 4.0 1444494.52 19019.69 19086.34 40
I6B1N2 - 25.0 32.98 19014.84 19086.31 31
I6B2N1 - 4.0 2717.51 18923.46 19086.34 6
I6B2N2 _ 25.0 161.75 18940.41 19086.34 5

16 : ®(°) =  y

D ata ftru e f tru e P m se(x tx) no. iters
I6B1N1 - 4.0 775319.13 19019.63 19086.34 41
I6B1N2 - 25.0 157.05 19033.20 19086.34 30
I6B2N1 - 4.0 47428042.31 18927.15 19086.34 7
I6B2N2 - 25.0 642657.33 18955.41 19086.34 6

D iscussion:

For 11,12, images generated directly from the simple Gaussian model (2.8), the 

estimation of noise variance </> is very good, yet disastrously bad for the artificial 

images 15,16. In all cases, estimation of the m.r.f. param eter (3 is too high -  the 

param eter exhibits a tendency for vast inflation. We outline some reasons why 

this may be expected in the discussion of the next algorithm.
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In plots of {3 against iteration number (Figure 2.4), some interesting patterns 

can be discerned, particularly for the artificial images 15 and 16. There seems 

strong evidence of a “blur” effect: tha t is, the examples employing the larger 

p.s.f., while not in general producing lower estimates of /? than is the case for 

those using the smaller p.s.f., do reach convergence more quickly. Put another 

way, these estimates of /? “blow-up” more quickly. This behaviour seems to be 

replicated in image II, but not in 12. For images 15 and 16, the estim ate of (3 is 

for a long time acceptably low: unfortunately m.s.e. convergence is not achieved 

until the estimates enlarge. Examination of the plots of m se(x lter, x%ter~1) vs 

iteration number (Figure 2.5) re-inforce this pattern. Again there is a blur effect 

for the artificial images, in th a t consecutive iteration m.s.e. drops away more 

rapidly for those examples using the larger of the two point spread functions. 

The plots of variance estimate against iteration number (Figure2.6) highlight the 

difference between the performance of the algorithm for the simulated and the 

artificial images. For the Gaussian simulations, II and 12, estimates of converge 

to close to the true value, regardless of whether or not the initial estim ate of the 

true image was the data  or the tru th  itself. For all 4 images, there are again 

marked blur effects.

In all cases there is a remarkable “image—m.s.e.” effect: regardless of blur, 

noise or starting estim ate of x , each image has a value of mean square error 

(between the final image estimate and the tru th) to which it is unshakeably 

drawn. This is because the very large estimates of (3 lead the final restorations to 

be equivalent to zero, regardless of the true x. This behaviour -  replicated often 

in future algorithms -  might also suggest tha t the most im portant factor in the
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image restoration problem is, unsurprisingly, the image itself.

Param eter estimation may be so poor due to the over-simplified assumptions 

we have made about x , and also because of the cyclical nature of the algorithm. 

At each iteration, estimates of (3 and <j) are constructed, treating the current 

estimate of x  as though it were the tru th . These estimates are then used to 

update th a t of x, and so on. Small errors can therefore be promulgated through 

the system of formulae leading, for example, to the rapid increase in the value of 

the (3 estimate.

In Figures 2.7 and 2.8 we show some of the resulting reconstructions. We note 

that, although param eter estimation is generally unsuccessful, we have obtained 

some not unpleasing visual restorations of the image.

2.3 A lg o r ith m  vague

M ore realistic  prior d istribu tion s for th e  unknow n im age

The assumption of stochastic independence between the pixel values in a 

real image is unappealing, if not frankly unbelievable, and it is now relaxed. 

Henceforward, we shall model x as though it were the realisation of a locally 

dependent Markov random field (m.r.f.) (Assumption TWO from Chapter 1). 

These structures are amenable to image processing because they allow the simple 

modelling of local continuity, i.e. if a pixel takes a certain value then it is more 

likely tha t pixels “close by” will be of like value, rather than radically different. 

Of course this simple m.r.f. specification takes no account of edges, which m atter
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Figure 2.7: Som e of the restorations from Algorithm  n o r m a l  From top left to b o ttom  right  
we have (i) I5B 2N 2, s tartin g  point =  truth, (ii) I5B2B2, starting  point =  data , (iii) 16B1N1,  
s tarting point =  truth, and (iv) I6B1N1, starting  point =  data

:u



Figure 2.8: Som e more restorations from Algorithm n o r m a l  From top left to b ottom  right 
we have (i) I5B 1N 1, starting  point =  truth, (ii) I5B1B1. s tarting point =  data. (iii) I6B2N2.  
starting  point. =  truth, and (iv) I6B2N2. s tarting point =  data
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we address in a later chapter; for many images (such as 16) it is hopefully not too 

extravagant to believe the m.r.f. is an appropriate representation of reality.

Thanks to the Hammersley-Cliiford theorem (see, for example, [14], or [5]), 

we can model the local neighbourhood structure, as discussed in Chapter 1, of 

an m.r.f. via a Gibbs’ distribution:

p(x | /?) =  Z((3)~l exp{—/3xTAx}  (2.17)

where Z{fi) is the normalising constant required to ensure the distribution is 

proper, i.e. th a t it sums to 1. Z  makes the Gibbs distributions intractable: 

consider a discrete-valued image of n pixels, each pixel taking a value from 

{1,2, . . . ,c } .  Then the sample space of x  is { 1 ,2 , . . . ,  c}n, and since calcula­

tion of Z  involves summing (or integrating, in the case of continuously-valued 

images) over every possible value of x , the computational cost is clearly pro­

hibitive. (Consider, for example, the very simple case of a binary, 4 x 4  image: 

there are 216 possible realisations of such an image and the probability of each 

must be evaluated and summed to calculate Z.)  However, if the rank of A  is n 

we can say, for a continuous x:

Z(0)  = f  exp{—j3xTA x}d x  J all x

= c(3~n/2,

where c is a constant, independent of fi. Thus Z(j3) oc j3~n^2.

Here, we call A  the smoothing or regularisation m atrix, and it is used to dictate 

the order of the m.r.f.; as with H, A  will also be of block-Toeplitz form, with 

each block Toeplitz. In general, when the order of the m.r.f is p, then A  =  QpQp,
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where Qp is of order (n r — p)2 x n 2 and has the form Dp <g> Dp, where (g denotes 

the Kronecker product. Dp is the (nr — p) x n r m atrix with (i ,k )  element:

for i — 1 ,2 ,..., nr — p\ k =  j  — z, j  =  i, . . . , *  +  p (see [60] for details). We assume 

Qp is of full rank (nr — p)2 and thus

r — rank(A) =  (nr — p)2.

For example, if we have specified tha t a: is a realisation from a second-order 

m.r.f. (an 8-nearest-neighbours prior), then

x I Ax  = J 2 ( x i -  x i f
i ~ j

where i ~  j  means th a t pixel i and pixel j  are neighbours in the m.r.f. 

definition.

Thus, we now specify the prior distribution for x as

p(x  | /?) oc exp{—ftxTAx}.  (2.18)

Note th a t for r  <  n, this makes x  a realisation of a singular normal distribution.

We also here specify general, natural forms for the priors of /?, <̂ , i.e. we

specify tha t they follow an inverse Gamma distribution:

p(<f>) oc 4>l~x exp{~l/m<^} (2.19)

and

p(/3) oc ( 3 exp{—(d/k) (2.20)

where ^ > , / , m , d ,  k > 0. By “natural” we mean “mathematically tractable” ; it is 

said th a t these are conjugate priors (see, for example, Section 6.3 of [16]) because
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they will combine neatly with the Gaussian likelihood term  when computing 

posterior densities. Although with the advent of modern Bayesian techniques 

such as the Gibbs Sampler (see [32]) this conjugacy between prior and likelihood is 

no longer a sine qua non of practical Bayesian inference, it is the case tha t the use 

of the Gamma density is rather uncontroversial; we shall specify in advance the 

values of &,d, l ,m  to be used. Figure 2.9 displays some such choices graphically.

In this algorithm, we fix the parameters at d — 3/2, / =  1/2, k = m  =  oo so 

that /?, (f> follow distributions (2.7,2.9) as before. Later, we shall relax some of 

these conditions.

We presume that y is caused by a Gaussian degradation, as in Algorithm
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norm al.

Combining our uncertainties with Bayes’ Theorem again, we see that the log 

posterior density is now

log{p(z,/?, 0 | y)} oc -^ p - lo g (< £ )  +  ^ ™ lo g ( /? )

~ ~ 7\\y ~  Hx\\2 - /3xt Ax,  (2.21)

The stationarity equations for j3 and (j) take the form:

dp  2̂ 3 xTAx  (2'22)

and

( 2 -2 3 )

We choose x to maximise p(a;,</>, (3 | ?/), which is equivalent to choosing x to 

minimise (3xTA x  +  ~ ( y  — H x ) T(y — Hx).  Differentiating this w.r.t. x  we obtain:

^ ' 1 1 tjT.,  = 2fiAx +  —H H x  — —H y,
ox <f> (j>

which equals zero when

i.e. when

( ± H T H + 2/3A)x = ± H Ty,

x =  { \ H TH  + 2 p A r x-x H Ty 
<P <P

=  ( H TH + \ A ) - i H Ty, (2.24)

(2.25)

where A =  2<f>j3.

36



These stationarity equations suggest the following fixed-point algorithm:

Algorithm vague

1. Choose x old.

2. Evaluate

7’ T 1
/3vague =  2 E ,~ i (■£?''' -  x f d)2 ’ {‘'2M )

. Hi/ -
re+ 1

xnew =  N ( \ ) y  

where jV(A) =  +  AA ) ~ ' H T and A =  ( 2 ^ ) .

3. Check for convergence of 0 ^ ^ x new): if 

YES — > ST O P

N O  — > set xoid := xnew and go to step 2. □

At each iteration of the algorithm, we are using the estimates of /?, </> to 

regularise our image estimate. See Section 3.6 in Chapter 3 for discussion of the 

relationships between our algorithms and the methods of regularisation.

E xp lo ita tion  o f th e  structure of /f , A.

The advantage of the block-Toeplitz structure adopted for H  and A  now 

becomes clear: Toeplitz matrices can be well-approximated by circulant matrices, 

and the eigen-structure of circulant matrices is well understood (see [43, 58]). 

Further, we need only store the first row of each n x n m atrix in order to capture 

all the information within that matrix.
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Thus our computationally forbidding Algorithm vague can in effect be carried 

out by 3 straightforward discrete fast Fourier transforms (f.f.t.s) (see [40] and 

[91]): if {ctj} are the sets of eigenvalues of H ,A  respectively, obtained by 

carrying out discrete f.f.t.s on their first rows, and Wi is the i’th component of 

the discrete f.f.t. of the data z/, then we can write our estimate of the image x  as

=  L ( m r r r } x “ *•i=l | hi |

2.3.1 G e n e ra tin g  t r u e  im ages fro m  m .r.f . p r io r  d is tr ib u tio n s

When we use a restoration technique on a “real-life” image, the m.r.f. prior is 

a representation of what we intuitively feel should be correct in an image -  i.e. 

we expect to see and would like to preserve local continuity. Since a picture of 

a heart, say, is very definitely not a realisation of an m.r.f., it follows tha t there 

does not exist a “true” value of ft to be estimated; rather we aim for a “good” 

value of j) in the sense of an aesthetically pleasing and informative restoration. 

However, if the true image is indeed a realisation from

p(x | /?) =  Z((5)~l exp{ -/?  -  X j ) 2 }  (2.27)

then we would hope th a t the estimate of is good not just in the sense tha t it 

leads to a visually pleasing image restoration but also th a t it should be “close” 

to the value used to generate the original image.

It is impossible to obtain such realisations directly due to the intractability 

of the normalising constant Z(/3) — ]Ca;exP — %j)2 in the Gibbs repre­
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sentation. We can obviate this difficulty and simulate such an image by using the 

ingenious M etropolis-Hastings Algorithm (see [70],[53]) which can be explained 

within the context of image analysis as follows (see, for example, [4] or [78]):

T h e M etrop o lis-H astin gs A lgorithm

Aim : to  sim ulate a realisation from  (2.27).

1. Choose £0 arbitrarily.

2. Choose Xi from x at random.

Pick m  such that m  ~  iV(0, r 2).

(We deal with the specification of r  shortly.)

Make X{ = X{ -f m.

3. Calculate A =  p(x \ j3)/p(x \ j3)

where x (*ri? •••? *£{—1 ? •> •••? ®n)*

It is the calculation of this ratio which renders unnecessary the calculation

of the hideous Z(/3).

4. Accept x with probability p = m in(l, A).

5. Repeat from step 2 above until convergence.

The sequence of images x so constructed form a Markov Chain with equilib­

rium distribution (2.27) ([87]). □
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C onvergence considerations

Methods such as this implementation of the Metropolis-Hastings algorithm, 

and the Gibbs sampler ([32]), combine such simplicity, elegance and usefulness 

that they have led to what may be only slightly over-stated as the renaissance of 

Bayesian statistics. (For a very small sample, see references: [7],[8], [37]). Indeed 

even non-Bayesian statisticians have made use of the flourishing ideas ([35]). 

However, these Monte Carlo Markov Chain (MCMC) methods suffer from a major 

drawback: how can we be certain that any particular sequence of realisations has 

reached the desired equilibrium distribution ([100])? Clearly this is of prime 

importance to our work, as we wish to test the efficacy of proposed estimators.

Green and Han ([47]) have shown th a t the speed of convergence is dependent 

upon the transition m atrix of the Markov Chain (MC); in practice this eigen- 

analysis would usually be ominously complicated. Frigessi et al ([28]) show, again 

through an eigen-analysis, tha t for Ising models, a simplified binary version of 

the prior distribution th a t we are considering, the Metropolis-Hastings algorithm 

will converge more quickly than the Gibbs sampler.

Other work ([41]) involves the examination of auxiliary and antithetic vari­

ables, but most authors advocate the plotting of a simple summary statistic after 

each iteration with convergence being assumed when the plot of the statistics 

versus time has stabilised ([86],[13]). For example, Smith and Roberts ([87]), 

acknowledging tha t empirical evidence can never prove with certainty tha t con­

vergence has been achieved (no more than such evidence could ever prove or dis­

prove any statistical hypothesis), suggest some output analysis along these lines, 

offering the caveat th a t observing a scalar statistic involves the risk of ignoring
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the multidimensional behaviour of the MC.

Kirkland ([62]) used time series techniques to check the stability of the pseu­

dolikelihood estim ator of the param eter in the Ising model , and suggests values 

for the number of realisations of the MC to be discarded before the assumption of 

convergence would be “safe” . Gray ([41]) emphasises, again for the Ising model, 

that the initial configuration of the image is im portant.

The curiosity here is tha t Bayesians have fallen upon sampling theory to 

rescue them  from the intractability of their complicated distributions: however, 

at least these methods are being used to sample from correct distributions.

The impossibility of using only a sample to make inference about a population 

was recognised by David Hume in 1777 when he articulated what became known 

as the “Scandal of Philosophy” (see [57], also [55]).

Here, I shall content myself with plotting the pseudo-likelihood estimator of 

P ([6]) at every iteration and assuming that equilibrium has been reached if this 

plot appears to converge to the correct value. In the next section we detail a 

method which may be of use in determining if the target value of (3 has in fact 

been reached.

There remains the question of choosing a value for r; any positive value is 

of course valid, but the value actually selected will greatly affect the speed of 

convergence ([4]).

In our simulations, carried out to capture a realisation from (2.27), assumed 

to be of the second order, we used a value of r  =  2.0, and attem pted to simulate 

(1) from an m.r.f. with (3 = 0.05, and (2) from one where (3 =  0.20. The algorithm 

was run for 100,000 and 500,000 iterations for these two (3 values respectively:
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in Figure 2.10 we see the results. For (3 — 0.05 the estimator we are tracking does 

indeed appear to have converged to close to the correct value; however for the 

larger value of /? the algorithm appears to be “stuck” at a value of about 0.16: 

it is of course impossible to tell if the fault lies with the estim ator, or with the 

sampler -  the sampler we use is a very simple one. We will proceed with the two 

resulting images as though they were in fact realisations from m.r.f.s, although 

(illogical though it be) we have greater faith that this is in fact the case with the 

image corresponding to (3 =  0.05. Henceforth, this image is termed “13” , and the 

other m.r.f. realisation is “14” .

One point to mention is tha t in the definition of p(x) we have used, (3 is basi­

cally a scale param eter and can therefore be altered by scaling x. Consideration 

of this would lead to r  being chosen appropriately for the two m.r.f. simulations.

2.3.2 U sing  th e bootstrap  technique to  investigate  (3.

Above, we have detailed the problems involved in deciding whether or not a 

particular sample generated by the M etropolis- Hastings algorithm is in fact from 

the required distribution. Here we develop a technique based on the bootstrap 

procedure of Efron (see [24]) which we hope will aid us in that task. Although we 

can never know with certainty if the sample comes from the target distribution, 

we will use the bootstrap method to produce a range of plausible values for the 

parameter in the distribution. Again, we should emphasise tha t simply because 

the target value of f3 belongs to such a “confidence” interval, we could not make 

the inference tha t the image is a target realisation. However, if the true value of 

/3 is not within the interval, we would be fairly confident that the Metropolis-
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Hastings procedure had not reached the appropriate equilibrium distribution. We 

offer the procedure as another method of weighing evidence, in other words, and 

make no strong inferential claims.

We first outline the bootstrap method, and then detail how we adapt it for 

our data  structure.

T H E  B O O T S T R A P

Given some data  x , which arise from an unknown distribution F , how can we 

make inference about a statistic calculated on x , called s (x)? Suppose the data 

is generated so tha t

x  =  (iCi,. . .  , x n)T ~  i.i.d. F,

where “i.i.d.” stands for independent and identically distributed. Bootstrapping 

proceeds by non-param etrically estimating the true d.f. F , using the sample x. 

Many resamples are taken from the original x,  each providing a re-estim ate of 

the statistic s(cc). If you could (re)sample an infinite amount of data, the non- 

parametric estim ate of the distribution function (d.f.) of the statistic would tend 

to the true d.f. So we hope tha t with (large, finite) B  resamples, the sampled 

distribution of the statistic will be close enough to its true distribution, allowing 

us to draw inference about the true value of the parameter.

To estim ate F  non-parametrically, pu t probability mass (1 fn )  on each data  

point:

F  : probability 1 j n  on x ^  i =  1, . . . ,  n.

A bootstrap sample from F  is a sample drawn at random and with replacement
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from the original sample, i.e.

F ^ ( x ’l , . . . , x l ) T = x \

For every bootstrapped sample we draw, we recalculate the statistic of inter­

est, s*b =  s (x*b), b — 1, . . . ,  jB, and we use the resampled statistics to assess the 

accuracy of the original s (and by implication this provides information on the 

param eter in which we are interested). Information about s is drawn through 

this resam ple-distribution. For example, the so-called percentile confidence in­

terval, with nominal confidence 0.95, is produced by selecting the 0.025 and 0.975 

percentiles of {s*b} as endpoints. Note tha t this doesn’t provide a confidence in­

terval for the param eter which s(:r) is estimating -  although we use the produced 

interval as though this were the case. Indeed, the inventor of the bootstrap, in 

[25], uses a percentile interval of the distribution of the sample correlation coef­

ficient to make inference about the population correlation value. This abuse has 

caused these intervals to be derided (see, for example, Tukey’s contribution to 

the discussion in [25]) and labelled seductive confidence intervals.

It is easy to see tha t in the case of long tailed resample distributions, or 

where such distributions are skewed, the percentile interval will be misleading. 

Many resamplers are therefore drawn to using the bootstrap technique to estimate 

the more robust quantities of the mean and standard deviation of the resample 

distribution. The bootstrap estimates of these quantites are, respectively,

s* s= B~l
b

and

a d B s i a )  =
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An interval estim ate for s based on standard normal asymptotic theory is then 

given by

** ( + / - )  K B  ~  s) x y j B / ( B  -  1),

where t(i/; a)  refers to the lOOath percentile of the s tuden t-t distribution, evalu­

ated on v degrees of freedom.

B O O T S T R A P P I N G  IM AGES

Having defined the bootstrap, how could it help us in our examination of the 

output from Metropolis-Hastings? We are using the pseudo-likelihood estimate 

of the population param eter /3 to indicate when to stop sampling. If we applied 

the bootstrap to the sample we select as “tru th ” , and used the above techniques 

to produce a resample distribution for the pseudo-likelihood statistic, this could 

help us decide if the true param eter value has indeed been i*eached.

Our “d a ta” then will be x, the true image. The pseudo-likelihood estimator 

(see Equation (2.39)) takes the part of s(a;). However x is very definitely not 

composed of i.i.d. elements, without which condition there is no guarantee of 

convergence of the estimated d.f. to true F. To cope with this difficulty, we adapt 

an argument of Hanna, in [52], who uses bootstrapping in a comparative exercise 

of some Air Quality models. He advocates the blocking of environmental data into 

homogenuous units, and resampling from within each unit, then recombining the 

resampled sub-units into one resampled vector. Our idea is to take advantage of 

the fact tha t the m.r.f. definition supposes the dependency structure in x is local 

: the value taken by pixel i, given the values of the pixels in its neighbourhood, is 

independent of the distribution of the values in the rest of the scene, i.e. S\S{. For
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example, suppose x is 64 x 64, then we could divide it into eight non-overlapping 

8 x 8 subsets (we choose 8 as an example only; and the subsets need not be 

non-overlapping). W ithin each bootstrap cycle, take the first pixel from each of 

the sub-blocks, resample these, and then take the set of second pixels, resample, 

and continue, until the entire image has been resampled. Hopefully, each set of 

pixels from which we resample are “far enough apart” to be independent of one 

another, as well as identically distributed. For emphasis: we are not resampling 

within each of the blocks, one block at a time. Rather, we take one pixel from 

each block at each bootstrap iteration, and resample these.

More formally, let S', the set of indices of x , be partitioned into u> subsets,each 

of which is of size W.  Write S  — {Si , . . . ,  S^}. The block of x belonging to Sj  

we denote by ajpj, each x p] consisting of W  pixels. The blocked bootstrapping 

procedure is as follows:

For 6 =  1, . . . ,  B  do begin:

resample W  points from X[i] — >

... and so on...

resample W  points from x [w] — > xfy.  

resampled data is x*b = . . . ,

evaluate bootstrap statistic s(a:*6).

End for 6.

The resample distribution can then be used to produce either a moment or 

seductive confidence interval.
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AN E X A M P L E

We use image 13, which we hope is a realisation of an m.r.f. with /? =  0.05. If 

the technique works well for the true image, it may be of use in highlighting the 

effects of blur and/or noise on the pseudo-likelihood estimator, and so we apply 

the technique to the true image, to the true image after it has been blurred, to 

the true image with added Gaussian noise but no blur, and to the true image 

with blur and noise. The blur level is B l  and the noise level is N2; see Section

2.2.1 for more details. These four images can be seen in Figure 2.11.

We carried out 1000 bootstrap replications in each case, and split the image 

into 12 x 12 sub-blocks, in an overlapping manner. Thus each of the pixels in the 

image was included in one of the sub-blocks, but none of the pixels in each sub­

block was within 12 pixels of the others, either in the north-south or east-west 

directions.

After the bootstrapping we drew pictures of the bootstrap distributions (see 

Figure 2.12) and produced 95 per cent, seductive and moment intervals for /?, as 

outlined above. The table below lists the values of the interval estimates.

B o o tstra p  interval estim ates for th e  p seu d o-lik e lih ood  sta tistic
image percentile interval moment interval

13
I3B1
I3N2

I3B1N2

(0.0464,0.0540)
(0.1204,0.1367)
(0.0045,0.0053)
(0.0050,0.0058)

(0.0463,0.0541)
(0.1196,0.1370)
(0.0044,0.0053)
(0.0050,0.0058)

D ISC U SSIO N

From examining Figure 2.12, we see tha t although the estimates of ft are very 

different, each is quite symmetrical. This is reflected in the interval estimates, 

which show close agreement between the percentile and moment approaches. The
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interval for the statistic calculated on the undistorted image 13 does indeed appear 

to sit almost symmetrically around the target value of 0.05, so we continue to 

view 13 as though it were a true realisation from the desired m.r.f. The other 

three intervals, however, indicate tha t the pseudo-likelihood estim ator will fail, 

drastically, in the presence of distortion. For I3B1, the intervals are too high, and 

for the images with noise added, the intervals are too low. A glance at Figure 

2.11 explains why: the blurring has emphasised the neighbourhood structure, 

producing an image which intuitively one would identify as a realisation from an 

m.r.f. with a much larger “attraction” param eter than 0.05. On the other hand, 

the images with noise added are completely swamped by the distortion; to the 

naked eye there is no evidence of the local dependency structure a t all. While 

this is hardly surprising, it is a caveat against the use of pseudo-likelihood as an 

estim ator of m.r.f. parameters in the presence of large scale distortions.

In summary, it appears tha t this adapted block-bootstrap procedure may 

be of use in the examination of the output from Monte Carlo Markov Chain 

simulations.

2.3.3 R esu lts for A lgorithm  vague

Again, 4 test images were employed; 15 and 16 as before, but in addition:

13: a simulation using the M etropolis-Hastings algorithm of a second order 

m.r.f. with /? =  0.05.

14: as 13 save for j3 =  0.20.
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The degradation conditions were as for Algorithm n o rm a l, as was the con­

vergence criterion. The starting value for x was always taken to be the data,

y-

R esu lts :

13

D ata ^true ^true P 4> mse(x, x ) no. iters
I3B1N1 0.05 4.0 0.28 3.43 1.73 2
I3B1N2 0.05 25.0 1.44 23.91 2.12 3
I3B2N1 0.05 4.0 0.42 3.63 1.85 2
I3B2N2 0.05 25.0 2.55 24.15 2.14 3

14

D ata Ptvue ^true P 4 mse(:c, x) no. iters
I4B1N1 0.20 4.0 0.367 3.366 0.648 2
I4B1N2 0.20 25.0 1.643 23.768 0.782 3
I4B2N1 0.20 4.0 0.517 3.614 0.676 2
I4B2N2 0.20 25.0 2.719 24.105 0.789 3

15

D ata Ptrxie ^true 0 (U 4> mse(#,;c) no. iters
I5B1N1 - 4.0 0.876 3.87 21.71 2
I5B1N2 - 25.0 1.04 22.2 32.33 3
I5B2N1 - 4.0 1.33 4.11 34.21 2
I5B2N2 - 25.0 1.47 23.72 44.84 3

I1) the values in this column are xlO 2.

16

D ata Pt rue ^true p m § mse(x ,x) no. iters
I6B1N1 - 4.0 0.973 5.79 15.77 2
I6B1N2 - 25.0 1.06 23.74 17.66 3
I6B2N1 - 4.0 0.955 8.43 30.56 2
I6B2N2 - 25.0 1.02 27.52 31.23 3

the values in this column are xlO 2.
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D iscussion :

Here we see good- though consistently under- estimation of <j>, not only for the 

simulated images but also for artificial 15 and 16 (recall tha t Algorithm n o rm a l 

was incapable of this). The remarkable “image-m.s.e.(£,a:)” effect noticed in 

Algorithm n o rm a l is not so evident here: perhaps there is evidence of a noise 

effect in the simulated image examples.

We may directly compare the results of Algorithm vague with Algorithm 

n o rm a l for artificial images 15,16 where the starting point was taken to be the 

data, y. It is clear tha t there is a vast improvement in every measured respect: 

much “better” estimates of /?,</> (i.e. the estimates of ft are smaller and the esti­

mates of (f) are quite accurate) leading to a reduction in the number of iterations 

required to reach convergence, and a huge reduction in the m.s.e. between the fi­

nal image estim ate and the tru th . Average m.s.e. discrepancies between estimate 

and tru th  for Algorithm n o rm a l are 15476.5,19086.4 for 15 and 16 respectively; 

for Algorithm vague  these figures fall to 33.27 and 23.81.

Some restorations effected by this algorithm can be seen in Figure 2.13.

Notwithstanding this greater success, it remains tha t for those cases where 

we are perm itted to make a decision about how close ft is to the correct value, it 

appears tha t once again the algorithm is producing estimates th a t are too large -  

although the more realistic image-prior may have helped to reduce the estimates 

from the huge values noted in Algorithm n o rm a l. We turn our attention to this 

issue.
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T h e  b e h a v io u r  o f ft

First of all, let us consider a very simple set-up, keeping our argument as 

clear as possible. Setting H = A  ~  I  we may write the log-posterior density of 

x j Pi $ given y as

Y Y  'os P -  log 4> -  P£  ^  -  x<)2- (2-28)

If this is differentiated w.r.t. x m and set to zero, we see the m.a.p. estimate 

of x m is

xm = =  1 , . . . , n .  (2.29)

Now we substitute (2.29) into (2.28), to see tha t the “profile” log posterior 

for (</>, ft) is

Now let ft —> oo in (2.30). Clearly, (2.30) will be dominated by log/? as ft 

increases in size. Since log ft —> oo as ft —»• co, we see th a t ft =  oo is a maximiser 

of the log posterior density.

It remains to be seen, however, if the result holds for general A. The 

general form of (2.28) is (2.21), and the m.a.p. estimator of x is given in (2.24). 

Substitution as before yields

logp(£, </>,/? | y) = r + 1
log/?

n +  1
log<£2 2 

—ft{W ~l H Ty }TA { W ~ l H Ty}

~ ~ { y  ~ HW~'HTy}T{y -  HW~lHTy}

r +  1 , * n + l_ _  i0g p ------i0g ^
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- y T{ P H W - TA W - ' H T + - ^ I  (2.31)
2 cf>

- - [ h W - ' H 1, + - ^ - H W - TH THW~'l H T}y (2.32)
<p 2 <p

(2.33)

where W  = H TH  +  2<t>0A and so W ~ x =  / / " ' ( /  +  24 0 0 ) - ' H~T and C  = 

H ~T A H ~ X.

Now examining the term in braces in (2.31,2.32):

{ • • • }  =  ^ ( I  +  24’PC)-1(I + 2 WC ) (I  + 2<t,f3C)-1 - ^ ( I  +  24>pC)-1 + ± l

=  - h {I +  2 m r X  +  T f t

=  ^ 1 (I+2<t>pCYxI + 2 ^ C  - I  
Z<p

=  /3C (/ +  2<j>pC)~1.

So (2.33) has the simplified form

7- ^ ~  log ft -  log (j> -  ftyTC ( I  +  2<f>ftC)~l y 1 (2.34)

and, as with the simpler example, it is straightforward to see tha t this expression 

will be dominated by log ft as ft — ► oo.

Besides explaining some of the large ft estimates we have observed, this result 

carries the worrying implication tha t the posterior distribution is improper, i.e. 

it encloses a to tal volume greater than unity. The highly improper prior we have 

employed for ft seems to be the main cause of this trouble.

In our next algorithm we take cognisance of this possibility and introduce a 

stronger prior distribution for the ft hyper-param eter, which in effect places an
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upper bound on the set of possible 0  values. However a little thought shows tha t 

the problem of posterior impropriety may well remain, despite the limits to the 

range of 0 .

2.4  A lg o r ith m  gamma

M ore realistic  prior d istribu tion s for th e  m .r.f. param eter

We now take advantage of the general Gamma prior we specified for 0  in the 

preamble to Algorithm vague. Suppose

0 ~  Ga(k , d)

that is, 0  follows a Gamma distribution, with associated p.d.f., defined by pa­

rameters d, given by

p(0)  oc 0 d~~l exp(—/?/&), (2.35)

with E(/9) =  dk and var(/?) =  dk2.

If we retain the same priors for (f> and x  as before, then the posterior distri­

bution becomes

p(x,<j),0 | y) = 0 ^  ^  exp{—“ ||?/ -  H x ||2 -  0 x TAx  -  0k~1}. (2.36)

On taking logs and differentiating, we arrive at the same stationarity equa­

tions for <j) and x as in Section (2.3), but the estim ate for 0  changes:

3 _  r +  2 ( d -  1)
Pgamma -  2^ t Ax  + k - i y  (2-37)

We thus have a third algorithm:
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Algorithm g a m m a  

-exactly the same as Algorithm vague, except replace vague-prior formula

(2.26) for 0  with th a t of equation (2.37). □

C o m p a riso n  o f /?gam m a und  /2vague

Comparing (2.37) with (2.26), we can see the mechanical implications of our 

desire to discourage large values of 0. Given tha t (as a glance at the formulae 

in the algorithms will confirm) as 0  increases, then xA Tx decreases, it would be 

possible for iterative Algorithm vague to cause spiralling estimates of 0  and ever- 

shrinking-towards-zero estimates of x. However, the imposition of the tighter 

prior in Algorithm g am m a means tha t, even if x A Tx — 0, our “worst-case” 

scenario for the m.r.f. param eter estimate is 0 = ~(r -f 2(d — 1)). For example, 

for a 64 x 64 image assumed to be the realisation of a 2nd order m.r.f., and 

choosing k = 0.1, d =  0.5, then the worst-case value for /?gamma is 192.15 -  

higher than any of the recorded values in Algorithm vague, but a lot better 

than some of the results in Algorithm n o rm a l. Of course, the price we must 

pay for this increased guarantee in the range of the m.r.f. param eter estimator 

is the generation of a further 2 hyper-param eters -nam ely &, d. However, as we 

hope the results below indicate, the procedure seems fairly robust to param eter 

mis-specification.

2.4.1 R e su lts  fo r A lg o rith m  gamma

Only the images tha t are being considered as realisations of m .r.f.’s were employed 

at this stage. Other conditions are identical to Algorithm vague. Three different
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parameterisations of the Gamma distribution used for the prior of the (3 parameter 

were used. If we write /3 ~  Ga(k^d) then E (f3) =  kd. For each image, we chose 

three values of k, d, so tha t (1) the expected value of (3 was equal to the true 

value, but the Gamma distribution was diffuse; (2) the expected value equalled 

the true value, and the distribution was tightly positioned around the true /?, and 

(3) the expected value of the distribution was not equal to the true value of the 

m.r.f. parameter.

R esults:

13

D ata k d Ptrne ^true P mse(£,:r) no. iters
I3B1N1 0.1 0.5 0.05 4.0 0.277 3.427 1.728 2

0.001 50.0 0.05 4.0 0.251 3.431 1.719 2
0.01 9.0 0.05 4.0 0.275 3.428 1.727 2

I3B1N2 0.1 0.5 0.05 25.0 1.430 23.912 2.120 3
0.001 50.0 0.05 25.0 0.850 23.919 2.110 3

0.01 9.0 0.05 25.0 1.352 23.915 2.119 3
I3B2N1 0.1 0.5 0.05 4.0 0.419 3.631 1.852 2

0.001 50.0 0.05 4.0 0.357 3.632 1.841 2
0.01 9.0 0.05 4.0 0.414 3.631 1.852 2

I3B2N2 0.1 0.5 0.05 25.0 2.516 24.150 2.143 3
0.001 50.0 0.05 25.0 1.123 24.149 2.134 3

0.01 9.0 0.05 25.0 2.268 24.151 2.142 3
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1 4

Data k d /^true ^true P 4> m se(^, x) no. iters
I4B1N1 0.1 2.0 0.20 4.0 0.366 3.366 0.648 2

0.001 200.0 0.20 4.0 0.361 3.384 0.648 2
1.5 3.0 0.20 4.0 0.362 3.367 0.648 2

I4B1N2 0.1 2.0 0.20 25.0 1.630 23.768 0.782 3
0.001 200.0 0.20 25.0 1.049 23.843 0.787 3

1.5 3.0 0.20 25.0 1.525 23.770 0.783 3
I4B2N1 0.1 2.0 0.20 4.0 0.516 3.614 0.676 2

0.001 200.0 0.20 25.0 0.476 3.622 0.675 2
1.5 3.0 0.20 4.0 0.507 3.614 0.675 2

I4B2N2 0.1 2.0 0.20 25.0 2.682 24.105 0.789 3
0.001 200.0 0.20 25.0 1.298 24.141 0.792 3

1.5 3.0 0.20 25.0 2.400 24.106 0.789 3

D iscussion :

The results are more similar to those of Algorithm v ag u e  than expected! 

The (f> estimates continue to be biased but good; since the formula is the same 

as before this is reassuring, given the iterative nature of these algorithms. The 

estimates of /?, although still too large, are much smaller than the “worst-case” 

scenario outlined above. Indeed, we may point out tha t although these experi­

ments suggest roughly similar values for the estimates of /?, Algorithm g am m a  

should ensure a finite result, while Algorithm v ague  cannot.

In Section 2.6, we carry out a simulation exercise to study more deeply the 

effect of (fc, d) mis-specification, and to compare further Algorithms vague and 

gam m a.

2.5 A lg o r ith m  pseudo

A p seu d o —lik e lih o o d  e s tim a to r  fo r /?

As our estimates for (f> appear to be reasonable, we turn our attention now to
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a different estimator for /3, based on an adaption of a likelihood-function.

Many statisticians are attracted  to the notion that all inference should pro­

ceed with respect to the likelihood function. Such people have attem pted to 

deal with the dependency in the image prior, which makes estimation of /3 so 

difficult, by using a technique known as maximum "pseudo-likelihood estimation 

(see, most famously, [6]). We have already used this estimator, in our section on 

bootstrapping and MCMC.

The likelihood function for a set of random variables {Xi  : i ~  1,2, ...,n}, 

each with p.d.f. indexed by param eter 8 <E 0 , is straightforward when there 

is stochastic independence among the {X;}. This enables us to write the joint 

density of the random variables as the multiple of the individual densities (we are 

here assuming, in a non-Bayesian manner, tha t our only assumptions regarding 

8 are th a t it is fixed and unknown):

P(x i $)=rppQ 16).
%

If we then regard a set of da ta  x — {aq} as being a set of realisations from 

p ( X  | 8), regard p(x \ 8) as a function of 8 rather than x and maximise this w.r.t. 

0, the solution is called the maximum likelihood estimator, Note that the form 

of this estim ator is equivalent to the Bayesian m.a.p. estimator, given a uniform 

prior distribution over 0’s range.

However, in image analysis we cannot make the simplifying assumption that 

our {#;} are independent -  in fact we feel confident to assert tha t there ought to 

be strong dependence among image elements in our data. A pseudo-likelihood 

function attem pts to overcome this difficulty by conditioning on the values of the
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m.r.f. neighbours of pixel i :

psl(x; P )  = f [  p{xi | x Sii /?), (2.38)
Z = 1

where £t- denotes the m.r.f. neighbourhood of pixel *, as described in Chapter 1.

It remains to construct the product terms on the R.H.S. of (2.38); given that 

we know, up to a constant of proportionality,

p(x  | @) oc Pr/2e x p { - p j 2 (x i ”  xj )2}‘>
t~3

then we see tha t (initially omitting reference to p  for clarity)

p{x5 \ x 6j) =  p(xh x Sj) lp (xS])

=  p{x)/p(xSj)

oc exp{ ~ P Y l ( x k -  xi )2} 
k&S3

oc exp{ - p ( n j x )  -  2x j J 2 x k +
k k

oc exp { - p n j {xj - x 8j)2},

since terms involving k are constants. In the above, rij = | 8j |, x$} =  — YlkeSj x ki 

and so we can see by inspection that

1 
p{xj I x Sl) = N ( x Sj, ^ — ).

Substituting this information in (2.38), we see tha t

psl(z; P )  = f l  P 1/2 exp{ - m P f a  -  x~6i ) 2 }
i= 1

= P n/2 e x p j-^ ^ n ffa i  “  ® f f i ) 2 } -  

%
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Clearly this function is maximised w.r.t. (3 when /? =  $psi where

n

flpsl = n/2[J2ni (x i  -  x8x)2). (2.39)
i- 1

We must be aware tha t in practice our pseudo-likelihood estim ator for (3 will 

be doubly approximate, since all x  in (2.39) will of course be estimated.

However, the use of the (2.39) leads to a further image restoration algorithm:

Algorithm pseudo

-  exactly the same as for Algorithm vague, except we replace the formula 

for ft in (2.26) with tha t of fipsi in (2.39). □.

NB: Although we are using a point-estim ate of f3 here, our aim is still that 

the iterative process should converge to the most probable m.a.p. estimates for 

(j> and x . We return to this point in the next chapter.

2.5.1 R esu lts for A lgorithm  pseudo

Both artificial images and m.r.f. images are used here; other conditions are as for 

Algorithm vague.

R esults:

13

D ata A, rue ^true b 4> mse(x,a:) no. iters
I3B1N1 0.05 4.0 75.275 4.233 2.152 3
I3B1N2 0.05 25.0 40.495 24.374 2.183 3
I3B2N1 0.05 4.0 264.852 4.102 2.179 3
I3B2N1 0.05 25.0 138.745 24.294 2.193 3
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14

D ata Pt iue ^true P 4> mse(£,:r) no. iters
I4B1N1 0.20 4.0 0.988 3.356 0.662 2
I4B1N2 0.20 25.0 40.383 24.174 0.845 3
I4B2N1 0.20 4.0 301.096 3.985 0.853 3
I4B2N1 0.20 25.0 128.613 24.413 0.870 3

15

D ata /^true ^true P mse(^, &) no. iters
I5B1N1 _ 4.0 1152998.837 655.067 708.512 14
I5B1N2 - 25.0 246253.579 674.421 708.472 11
I5B2N1 - 4.0 46744772.249 614.097 708.524 15
I5B2B2 - 25.0 189245.834 627.954 708.452 11

16

D ata Pt iue ^true P mse(:r, #) no. iters
I6B 1N1 - 4.0 0.143 9.223 16.544 4
I6B1N2 - 25.0 0.352 36.261 25.609 5
I6B2N1 _ 4.0 0.203 11.323 26.595 4
I6B2N2 - 25.0 0.436 46.901 32.802 5

D iscussion :

The retreat from the fully Bayesian approach has produced results similar to 

those for the over naive Algorithm n o rm a l: inflation of the estimates of (3\ good 

estimation of cj) for 13 and 14, the m.r.f. simulations, but poor estimation of <f> for 

the artificial images. The image restorations from this algorithm are undoubtedly 

the worst in this thesis.

Clearly the estimation of (3 and (f> is more successful the fewer edges there are 

in the underlying image. (This is reflected by comparing the results for sharp- 

edged 15 with continuous 16). This is not unexpected since our model for the true 

image (2.17) assumes there are no sharp discontinuities present. The value of /9, 

whether the pseudo-likelihood estim ator (2.39) or the earlier Bayesian ones, will



be decreased in the presence of edges, since all involve calculation of a sum -of- 

squares between the value of each pixel and its neighbours.

Some of the reconstructions from Algorithms g a m m a  and p seu d o  can be 

seen in Figure 2.14.

2.6 S im u la tio n  ex erc ise

M o re  d e ta iled  c o m p ariso n  b e tw een  A lg o rith m s  vague an d  gamma

Above, we noted th a t the vague prior and the Gamma prior algorithms ap­

peared to produce estimates of the m.r.f. param eter that were similar, although 

in theory the vague prior method is capable of producing much larger estimates 

of 0 .

Here, we carry out a simulation exercise to investigate the behaviour of the 

two estimators further. If there is no major difference between the results of the 

two algorithms, common sense would suggest the use of Algorithm vague, since 

there are fewer parameters involved.

D e ta ils

We use m.r.f. images 13 (ftrue  =  0-05) and 14 (/?true =  0.20), corrupted with 

blur level B1 and noise level N1 (^true =  4.0).

As starting point for the image estim ate we take — y , the data, and also

xS 1 =  # t r u e -

We attem pted to simulate 2nd order m .r.f.’s with the M etropolis-Hastings al­

gorithm; here we examine the effects of m.r.f. order mi s-sp edification by assuming
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that our image is of the first and then of the second order.

Each trial is allowed to run for a maximum of 120 iterations, or until | —

^ite r-i j<- q 5  ̂ Q̂r ap ^

We assume th a t /? has (1) the vague prior detailed in Algorithm vague, and 

(2) each of the 3 gamma priors for each image as specified in Algorithm gam m a.

There are 1000 simulations carried out for each of the possible combinations 

of starting points.

R esu lts

In the following, a ” represents the mean value of a set of simulations, and 

“e.s.e.” stands for the estimated standard error. “V” indicates that the vague 

prior of Algorithm v ag u e  was assumed, while “g” indicates a Gamma prior, with 

the following parameters:

image code k d
13 gl 0.1 0.5

g2 0.001 50.0
g3 1.5 3.0

14 gl 0.1 2.0
g2 0.001 200.0
g3 1.5 3.0
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: /^true — 0.05; < t̂rue —

3<°) m.r.f. prior P e.s.e.(/?) e.s.e. ((f>) m.s.e. e.s.e.(m.s.e.)
tru th 1 V 0.837 0.037 3.514 0.085 0.244 0.006

gl 0.833 0.037 3.514 0.085 0.244 0.006
g2 0.597 0.019 3.510 0.085 0.189 0.005
g3 0.838 0.037 3.514 0.085 0.244 0.006

2 V 0.731 0.039 3.794 0.089 0.257 0.009
gl 0.727 0.038 3.794 0.089 0.257 0.009
g2 0.543 0.021 3.794 0.089 0.217 0.008
g3 0.731 0.039 3.794 0.089 0.257 0.009

data 1 V 1.015 0.681 3.481 0.302 0.315 0.169
gl 0.987 0.671 3.474 0.303 0.319 0.170
g2 0.283 0.051 3.218 0.096 0.459 0.034
g3 1.016 0.682 3.482 0.302 0.315 0.169

2 V 0.281 0.013 3.505 0.081 0.441 0.016
gl 0.280 0.013 3.504 0.081 0.440 0.016
g2 0.254 0.010 3.509 0.081 0.416 0.016
g3 0.281 0.013 3.505 0.081 0.441 0.016

• P tru e  ~  0-20; ^true — 4*0.

*c°) m.r.f. prior } e.s.e.(/3) I e.s.e.(<^) m.s.e. e.s.e.(m.s.e.)
tru th 1 V 2.945 0.164 3.645 0.085 0.122 0.004

gl 2.902 0.159 3.644 0.085 0.121 0.004
g2 1.287 0.029 3.638 0.085 0.062 0.002
g3 2.948 0.164 3.645 0.085 0.122 0.004

2 V 2.663 0.188 3.825 0.087 0.121 0.007
gl 2.626 0.183 3.825 0.087 0.121 0.007
g2 1.244 0.036 3.830 0.087 0.077 0.005
g3 2.644 0.188 3.825 0.087 0.121 0.007

data 1 V 0.429 0.309 3.192 0.104 0.462 0.043
gl 0.422 0.280 3.191 0.101 0.462 0.040
g2 0.381 0.014 3.202 0.076 0.424 0.015
g3 0.430 0.309 3.192 0.104 0.462 0.043

2 V 0.402 0.020 3.445 0.079 0.341 0.014
gl 0.401 0.020 3.445 0.079 0.341 0.014
g2 0.390 0.016 3.463 0.079 0.314 0.014
g3 0.402 0.020 3.445 0.079 0.341 0.014
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D iscussion:

First let us discuss estimation of j3. The best results for 13 and 14 are pre­

dictably those for which the Gamma hyper-prior is tightly positioned around the 

true value. Not only are the estimates and s.e.’s of (3 smaller, but mse(x^x)  is 

also significantly reduced. This is, at least, reassuring.

There is very little difference between the results assuming a vague prior, dif­

fuse Gamma prior with expected value the true value of /?, and wrongly positioned 

Gamma prior. The conclusion we would draw is that unless one has highly accu­

rate information concerning the f3 param eter, there is little to be gained from the 

computational expense of imposing a Gamma, rather than a vague, hyper-prior.

W ith respect to there seems little to choose between any of the results, 

except tha t on two occasions the use of the tight {3 hyper-prior seems to cause 

smaller estimates, both of (j) and of its standard error, (f) is consistently under­

estimated by all hyper-prior/starting value for x/m .r.f. order combinations.

2 .7  S u m m ary

Four restoration/estim ation algorithms were proposed. The very simplest pro­

duced bad param eter estimates for both the m .r.f parameter, /?, and the noise 

level, (j>. Two more successful algorithms used a Gibbs prior for the unknown im­

age and placed hyper-priors of different complexity on a simulation exercise 

indicated th a t the less complicated algorithm was preferable, despite our fears 

of the possible ever-increasing behaviour of (3 under tha t scheme. The fourth 

algorithm, which estimated (3 by pseudo-likelihood at each iteration, was highly
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unsuccessful, partly due to the cyclical nature of the algorithm, and partly be­

cause the m.r.f. realisations, to which the algorithm was applied, are swamped 

by the degradation process.

All the algorithms seem to be implementable from a practical point of view, 

given tha t there is little difference between results which start with the tru th  as 

the initial estim ate of x , and those which use the data in this role.

We attem pted to simulate true realisations of m.r.f.s using the Metropolis- 

Hastings algorithm, and proposed a resampling technique to help judge when 

equilibrium is reached.

Finally, we should emphasise th a t none of the methods produces estimates 

of close to the correct value. According to Ripley ([77]), estimation of /?, even 

from the true image, undistorted by blur or noise, is liable to be unsuccesful, not 

only because of the computational complexity due to the normalisation constant, 

which we have already mentioned, but also because the param eter is measuring 

the conditional variance of a pixel, given its m.r.f. neighbours. Therefore our 

estimates of /? are unable to explain the large scale variability observed in typical 

images -  further explanation of why the methods are more successful on the 

simulated m.r.f. images, and also on the test image with no sharp discontinuities.

The same author makes the point which we mentioned earlier: “Perhaps when 

a model is only a means to another end, its inadequacies are only of second-order 

im portance” , i.e. if we are observing good image restoration, then the param eter 

estimation method, though not optimal in some senses, is certainly performing 

sufficiently well in another.
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Figure 2.11: T h e  m.r.f. realisation and its degraded forms. From top left to bottom  right, we  
have (i) 13, (ii) I3B1, (iii) 13 N 2, and (iv) I3B1N2.
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Figure 2.12. H istogram s o f  four resample distributions o f  the pseudolikelihood sta tis t ic  applied  
to various d istortions of true image 13.
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Figure 2.13: S om e restorations from A lgorithm  v a g u e .  From top left to b o ttom  right, we have  
( 1) I5B 2N 2, (ii) I5 B 2 N I ,  (iii) I6B1N2. and (iv) I6B1N2.
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Figure 2.14: S om e reconstructions from A lgorithms g a m m a  and p s e u d o .  Fop: A lgorithm  
g a m m a  - (i) I3B 2N 2, first ga m m a prior, (ii) I3B2N1. third g a m m a  prior; and bottom : Algo­
rithm p s e u d o  - (iii) I5B 1N 2. and (iv) I6B 1N I.
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C h ap ter 3

E m pirical B ayesian  estim ators, 
and oth er “p lu g -in ” approaches

3.1 In tro d u ctio n

In the previous chapter, we derived and implemented various hierarchical, itera­

tive procedures for the estimation of the true image and unknown model parame­

ters. Here we investigate a conceptually different method, a compromise between 

Bayesian and Maximum Likelihood estimation. A likelihood function is used to 

estim ate the parameters (/?,<£); then these m.l.e.’s are “plugged-in” to a formula 

for the m.a.p. estimate of x.

It is the reliance on the likelihood function of the data  which leads to this 

m ethod being known as the empirical Bayesian approach.

This two stage approach is implicitly advocated in [48], where the authers 

assert tha t the “normative” tool for param eter estimation is the likelihood func­

tion, and the “norm ative” tool for image restoration is the posterior density of x 

given y.

Various other plug-in estimates, many from the regularisation literature, will 

be compared with this technique.
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3.2 T h e  “p lu g—in ” approach

As before, (p(;c)} is assumed to be a realisation of an m.r.f., p(/?),p(^) are as­

sumed vague, with form given in (2.7),(2.9), and the records {y,-, i =  1, . . . , n} are 

formed by the same Gaussian degradation as in Chapter 2. The correct posterior 

distribution for inference is again (2 .5) :

Since it is x , the true scene, which in practice will usually be of greatest 

interest, it is perhaps more natural to regard as nuisance parameters and

integrate them out from the posterior, leaving:

to be maximised w.r.t. x aX x = xm, the marginal mode.

The integration in (3.2) is not generally straightforward (however, see Section

p(x , P I y) °c p{y | x, <f>) x p(x | /?) x p(<f>) x p(j3). (3.1)

(3.2)

3.4) and a common technique is to approximate the marginal density by

p(x,<j>,p | y) (3.3)

where (</>,/?) are picked in some suitable manner. The approximation to the 

marginal mode is then (see (2.24) in Chapter 2.):

x m =  a r g m a x ^ y  | x j ) p { x  | j§)} 

=  (Hr H + 2j>PA)~1H Ty.
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3.3 E m p irica l B a yesian  p aram eter  e s tim a te s

Clearly we require good estimates for ft and <j>. Here, are chosen to be

m.l.e.’s based on the data y. The relevant likelihood function is p(y \ 

computed thus:

p ( y \ ^ P )  =  J  P ( x , V  I <f>,ft)dx

oc j  p(y | x,(j))p(x | ft)p(ft)p((j>)dx

=  f  (f> 2~ ft~^  exp{—f txTAx  — — •\\y — Hx\\2}dx
J  2 <p

= 4 " ^ ( 3 ^  j  exp{—^[2ftxTAx  +  (l/(f>)\\y -  Hx\\2]}dx.

In fact the p(ft) X  p(<£) factor is included erroneously on line two of the above 

formulation, which has various effects on the subsequent discussion. The distri­

bution p(y | 4>,ft) is improper (if r < n ) and so the maximum likelihood estimate

of ft (i.e. oo) is not helpful! This problem can be obviated by restricting the

range of p{y \ (j>,ft) to ensure a proper distribution.

If we m anipulate the exponential term, easing m atters by writing a  = ( l /<^),7 — 

2ft, we see tha t

a ||y  — H x \\2 -f 7x TAx  

— a yTy — 2a yT H x  -f- a x T H T H x  +  7x TA x  

=  x T[aHT H  4- 7 A]# — 2ayTH x  -f- a y Ty. (3.4)

We would like to express (3.4) in quadratic form

(x — m )TW ( x  — m) b, (3-5)
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with b a scalar, in order to avail ourselves of results dealing with the integrals of 

such forms.

Now, (3.5) =  x TW x  -  2m TW x  +  m TW m  +  6, so by identification with (3.4):

W  =  a H TH  +  7 A. (3-6)

Bearing in mind the symmetry of H  and A and therefore of W t m TW  = ayT77,

giving W Tm  — a H Ty — WYn, so that

m  =  a ( a H T H  +  7A)-1 H Ty. (3.7)

Finally, m TW m  -f- b — a y Ty, so

b = a y Ty — m TW m

=  a y Ty e?yTH W ~ l H Ty

= a y Ty — a 2yT H [aH T H  +  'yA]~1H Ty. (3.8)

Neither the expression for m nor tha t for b involves a?, so we may combine

(3.6),(3.7),(3.8) to write the likelihood as

p(y | <f>,/3) = ( j } ~ ^ ( 3 ^ e(~b!2) J  exp{(—l / 2)(a; — m )T W ( x  — m)}dx  

oc | W  I"1/2,

where W  = [(1 /</>)HTH  +  2/3A] and b =  (1 /(f>)yTy -  (1 /(f>)2yTH W ' 1 H Ty. 

The log-fikelihood function for <j>, (3 is therefore

K fa fc y )  =  l°g{p(?/1 <£,/?)}•
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Again, we appeal to the block-circulant approximation to the Toeplitz matrices 

77, A  to see tha t we can write the log likelihood in the more tractable form:

K&PiV) = ~ ( (n +  l ) / 2) lo g ^  +  ((r +  l ) / 2)lo g £  

~ ^ p o g { { m  I |2 +2f}a,j} -  

=  — ((n +  l ) / 2) log 4* -f- ((r +  l ) / 2) log (3

(1/2) £  log{U /*) | k  |2 +2/?a,-} -  £  0aiW'
% I h< I2 + 2^ a* ’

(3.9)

where are the eigenvalues of 77, A  respectively, obtained by carrying

out a discrete f.f.t. on their first rows, and {ro;} are the components of the 

discrete f.f.t. of the data y. The expression (3.9) will still require numerical 

maximisation. The estimates of the parameters thus found are labelled “e.b.” 

(for Empirical Bayes) due to their reliance on the data likelihood.

Algorithm eb

1. O btain {(j>eb,{3eb) =  a rg m a x ^ /^ ,  /?; y).

2. Calculate x eb = argmaxxp{x | y,<f>eb,j3et>) =  (H TH  +  Aet,.A)~177Ty, where

AE6 =  24>ebJ eb- □

N u m e ric a l eq u iv a len ce  of E m p iric a l B ayes an d  M a rg in a l M o d es es­

tim a te s

We note here tha t we obtain the same numerical results from this e.b. motiva­

tion as would have been this case had we attem pted to find the “marginal mode”
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estimates for ($,/?), had we not included the p{j3) x p((f>) factor in calculating 

p(y J </>,/?), through joint maximisation of

p{<l>,0 \v )  = J p(x ,<i>,P I V)dx 

oc p(y\<f>,P)-

Alternatively, we could have decided to form separate marginal densities for the 

two parameters, choosing <f> — <f> to maximise

p(<£ I v) =  / p(<M  I y W , (3.10)

and j3 = (3 to maximise

p(/? I y) ~  Jp(4>,(3 I y)d(j). (3.11)

It is not possible to produce an estim ate for the image directly from these two 

marginal densities. We make the transformation (^, (3) — > (<f>, A), where A =  

2<j){3. Transforming the joint marginal density of (</>, f3) we obtain:

p(<A, a I y) =  ^_(r+4)/2A(,'+1*/2 I H t H  +  AA) |"1/2

x e x p [ - ( l /2 <l>)yTI  -  H ( H T H  +  \ A ) - l H Ty\.

(3.12)

For fixed A, this is maximised at

0(A) =  (yT {I -  H ( H t H  +  \ A ) ~ l H T) y ) / ( r  + 4). (3.13)

Then the posterior modes of (<j6, A) could be obtained by substituting (3.13) into 

(3.12), maximising numerically to find A, and substituting back into (3.13) to 

obtain <̂ (A).
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Further, we could integrate <f> from (3.12), to obtain

p(A | y) cc A(r+1>/2 | H t H  +  \ A  |" 1/2

[ / { /  -  H {H t H  +  \ A ) - 1H T} y} - ’- ^ ,

which could be maximised numerically to provide the marginal mode of A. How­

ever, an explicit formula for p(</> | y ) does not seem attainable, and so this proce­

dure seems unworkable without excessive numerical computation.

3.4  Itera tio n  from  e .b . to  m .a .p .

It will be recalled that motivation for Algorithm eb  arose from the desire to 

obviate the need for integration in (3.2). To enable the evaluation of the approx­

imation, we now consider a method for obtaining iteratively the modal estimate 

of a?, i.e. the xm which maximises (3.2). Well,

p { x  I v )  -  J  p ( x ><I>,@ | y)d<f*d(3  

=  J  p ( x , < i > , p , y ) l p { y ) d < i > d p

=  i l / p { y ) )  J p { y  I x ^ ) p { 4>)d(j) J p(x  | p )p ( f$ )d p  

= ( ! /p (? /) )^ /b , say.
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In what follows, we shall assume tha t p(<j>) oc c, and p(/3) oc d, where c, d are 

constants.

I  a  =  J  p(y | x,<j))p((j>)d4>

=  c [°° <j>~n/2e(- l /24>)\\y-H^ 2d<f>
Jo
roo

cx /  6~nl2e~‘* 64,
Jo

where 2 =  ( l/2 ) ||p  — ida;||2. Now put p =  z/<j>̂  so that d</> =  —07/ 2d?7 and 

becomes

IA o c  ~  f  z n^2zpn^2p 2z  ̂dpJ 00

,-(»/2)+l f °  rjlnm-Ze-Vcb,
J 00

-((n/2)- l )  f ° °  ^ M - 2 ^
do

2-«n/2>-l>r (p),

oc

OC £

where p =  ( n / 2) — 1. For square or rectangular images, n will be even, so p will 

be an integer, and I  a is easily evaluated since F(p) =  (p — 1)! in such cases.

Using a similar argument to the above, and writing w =  x T A x , it is easily 

seen that /g  oc u>”9r(</), for q =  (r/2 ) +  1. We combine these results to see tha t

p(x  | y ) oc

= {(l/2)||y -  H x \ \2} - « nW - V { x TA x } - « rM + l l

The most probable estim ate of the true image is the x = xm which maximises
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L ~  logp(x  | y ). Differentiating L w .r.t. x , we have

d L v "I- 2 . n — 2 r t  / t 1 .. rr-<
~di =  ~ x TA x  X ~  2||ji -  H x \ \ ^2H H x ~ 2(H y) 1> (3 J 4 )

and (3.14) is equal to zero when

n — 2 tjT
\\y~~Hx \\2 y

H Ty

H Ty .

T hat is,

x m = ( H TH  + \ A ) ~ 1H Ty (3.15)

where

A =  {(2 +  r)\\y — Hx\\2} / { x TAx(n  — 2)}

=  A(®).

In (2.25), we defined A =  2(f)f3. Later, we shall define certain estimators of 

as <j)T = (||j/ — Hx\\2) / (n  +  1) and /?T =  (r +  l ) / ( 2 x TAx).  For large r ,n  (as is

the case in image analysis), A(ic) can therefore be seen to be nearly equivalent to

2 4>t Pt '

If we define x ^ +1̂  =  (H TH  -f X ( x ^ ) A ) ~ 1H Ty and A (^^ ) =  {(2 +  r)\\y -  

— 2)}, then the following iterative algorithm is suggested 

for estimation of the modal xm:

7‘ A t  + ___ - ___ - ___ H t H x  =
x TA x  ^  \ \ y - H x f

(2 +  r)||g/ — H x \\2 A , „ Trr
(xTAx)(n  — 2) '4;c +  / /  ^

i.e. +  AA )x  =
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Algorithm m ap

1. Choose and set s 0.

2. Evaluate A(aAsl).

3. Compute iAs+1h

4. Check convergence of A: if 

Y E S  — ► S T O P

N O  — ► set s :=  s -f 1 and go to step (2). □

In our numerical experiments we always chose the eb estimates as the starting 

point for this algorithm. As noted, we hope that this algorithm converges to 

the modal estimate of a;. If it converges at all, it will at least be a solution of 

stationarity equation 3.14.

3.5 D iscu ss io n  o f  th e  e .b ., m .a .p . and h ierarch ica l m eth ­
od s

Above, we developed an empirical Bayesian and a maximum a posteriori approach 

to our problem of blind image restoration. The e.b. approach integrates x over 

the true image space to form a likelihood from which we may estimate our two 

parameters. The m.a.p. approach, instead, integrates out the hyper-param eters 

and then maximises the marginal posterior probability distribution of interest.

Intuitively it may seem th a t the m.a.p. approach should perform better than 

e.b.; after all, we are really only co-incidentally interested in the values of (0 , /?)
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in order to have a good estimate of x. However, the results of our experiments 

(see Section 3.7) seem to contradict this intuition. Further, in the literature there 

is evidence that this should not be entirely unexpected.

In [67], Mackay presents a lively confrontation between the two approaches. 

Although he approximates posteriors with Gaussian distributions rather than 

employing the iterative methodology we have used, and considers the case of 

fully known, so tha t /? is the only hyper-param eter, he concludes tha t “in severely 

ill-posed problems [such as blind image restoration] ... significant biases arise in 

the [m.a.p.] m ethod” .

He concludes tha t the estim ator xm is more regularised than xeb, and demon­

strates the difference between j3m and /7eb, analogous to the difference between 

the two estimators of the standard deviation of a normal distribution. The esti­

mator — (^(a;,- — x)2) j n  is biased, while a2 = (52i(x i ~  x )2) / (n  — 1) is not. 

The novelty in his work is tha t he motivates the unbiased cr2 as the empirical 

Bayesian estim ate obtained after one has integrated over the nuisance param eter 

(the mean of the distribution).

In any case, a mode may be representative of its distribution in the case of 

a tight, symmetrical Gaussian, but, for a skewed, multimodal distribution, it is 

hard to see how it can be other than misleading. (This would be particularly 

relevant were we interested in prediction.)

Further support tha t our results in Chapter 2 (which were generally superior 

to those of Chapter 3, e.b. or m.a.p.) are not atypical but perhaps to be expected, 

can be found in [54]. Again, (j) is assumed fully known, and again different meth­

ods are used in the estimation of x. The authors report good results from a
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hierarchical procedure for the estimation of /?, in a situation where they were un­

able to see how to proceed in an e.b. based manner. However, they also highlight 

the difficulties with all iterative procedures (interestingly, they discuss pseudo­

likelihood, which for us performed worst), which base param eter estimates on 

current estimates of the image as though they were the tru th .

In three related papers, Skilling and Gull ([83],[49], [84]) develop what is es­

sentially an empirical Bayesian approach justified through the use of an entropic 

prior distribution, which they view as deductively unavoidable. They point out 

tha t faulty param eter values are at least as likely to be the fault of an incorrectly 

specified model as they are to be with any particular estimation procedure. The 

Maximum Entropy (MaxEnt) approach can be summarised ( ignoring the philo­

sophical considerations) as:

argmaxa,{— ^  X{ logxt} subject to ||i/ — Kx\ \2 <  S'2, (3.16)
X

or, equivalently,

x me =  argminx{||?/ -  H x ||2 +  2A log x {}. (3.17)
i

(See [22]) Thus, M axEnt can be seen as essentially equivalent to our formulation, 

save for the alteration of

5 ^ (s i -  X j f  — > ^ 2  X{ log X{. (3.18)

According to the authors in [22], the M axEnt advantages are th a t the solution of 

(3.17) must be non-negative, and that the solution is non-linear in y. However, 

there is a disadvantage in terms of computational expense, and the restorations 

in the Gull and Skilling papers appear qualitatively no better than those we have 

presented above, and in Section 3.7.
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Further, we remain attracted to the justification for the m.r.f. specification 

of the prior distribution of images -  that pixels closer together should have a 

tendency towards the same value. While the M axEnt authors cited have clearly 

demonstrated th a t i f  there is a consistent prior on the space of all images, then 

tha t distribution must be of the form exp{/3S(x, M) } ,  where S ( x , M )  is the en­

tropy of x relative to model M , the assertion tha t there must exist such a con­

sistent prior for all images has not been demonstrated.

3.6 C o n n ectio n s w ith  regu larisa tion

The form of the Bayes estimate for the image, (2.24):

x = ( HT H + \ A ) - l H Ty) (3.19)

will be recognised as being equivalent to the ridge regression estim ator of x. This 

regularisedestim ate is proposed in the regression literature when the least-squares 

estimate (LSE):

xLS = (H TH ) - ' H Ty (3.20)

is unsuccessful, due to the ill-posedness of the problem. (The ill-posedness is 

due to the near linear dependence between columns of / / ,  leading to instability 

of ( / / T/ f ) _1, which in turn renders the LSE “spiky” (see [58], also [82], where the 

authors propose the combination of a smoothing step and the EM algorithm to 

regularise the estimate)).

Here we will discuss some of the history of the regularisation approach and 

examine some of the techniques developed for ill-posed regressions, such as we
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deal with in image restoration. An excellent summary of many of the methods 

discussed here can be found in [93].

However, before proceeding with the similarities between the Bayesian and 

regularisation approaches, let us emphasise their difference. Providing one is pre­

pared to form beliefs in a well-defined rational manner, the Bayesian paradigm for 

statistical inference is complete and coherent. On the other hand, regularisation 

of LSEs was proposed as an adhoc “fix” to ill-posed problems and as such reg­

ularised least-squares estimators (RLSEs) satisfy many various criteria. Indeed 

the least-squares approach itself, defended as it usually is on the three grounds 

of intuitive plausibility, equivalence with maximum likelihood estimates (MLEs) 

under the normal linear model (NLM), and the fact that LSEs are UMVUE (that 

is, of uniformly minimum variance within the class of unbiased estimators), has 

recently been exposed to serious Bayesian criticism ([97]). Thus, while a Bayesian 

may say :“x m is the most probable estimate of x  given y and our prior belief” , 

classical statisticians, who deny themsleves the opportunity to refer to A as a 

random variable, rely on various asymptotic predictive criteria when selecting an 

appropriate value for their parameter.

Philosophical worries apart, it remains th a t the MAP estimate of x and the 

RLSE are equivalent, in the sense tha t both select the x which solves:

argminr { A(®, y) +  A$(z)}, (3.21)

where

1. A measures a “distance” between the data and the true image;

2. $  is a regularisation functional which measures the roughness of the image -
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this can take the entropic form discussed above, or the finite difference form 

which we employ;

3. A, the smoothing parameter, measures the “trade-off” between A and 4>.

A =  0, for a classical statistician, implies that the least-squares solution is 

acceptable; for a Bayesian it corresponds to the rather unlikely notion that we 

are certain tha t f3 — 0 in the m.r.f. prior.

Before proceeding, we introduce some helpful notation:

N ota tion

To emphasise the dependence of an image estim ate on A, write:

x{ \ )  = (H t H  +  A A)~l H Ty. (3.22)

Also, we define the set of fitted values, or predictors, of ?/, as

y( A) =  H x(  A)

=  H { H t H  +  AA)-1# ^

=  N(X) yy say,

and the residual sums-of-squares is defined obviously as:

RSS(X)  =  \\y — y(A)||2. (3.23)

Hall and Titterington ([50]) pointed out that the main techniques of image 

regularisations are equivalent to simple linear regularisations: th a t is, the estimate 

of Xi is a smoothed version of the LSE of Xi, this smoothing being carried out 

by averaging over the (m.r.f.) neighbouring pixels. The same authors, in [51],
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compared some popular choices of A. First, Arisk, defined as:

Kisk -  argminAE[||£(A) -  aj||2]; (3.24)

next, Aresid, the value of A such that

RSS(X)  = n<f>. (3.25)

Clearly, in its present form, Artsfc is not practicable; although it minimises the 

mean squared error (MSE) between x  and £, it requires knowledge of x so to do. 

However, a cross-validatory estimate of the smoothing parameter, Xgcv, has been 

proposed, in [39], which is asymptotically equivalent to Ar{sk.

Xresid requires either knowledge, or a very good estimate, of cj>. Furthermore,

since y{A) is biased for H x , Ares^  will probably oversmooth the data. This led

W ahba ([102]) to define the “equivalent degrees of freedom” as:

EDF{X) ^ n - t i N ( X ) ,  (3.26)

and to estimate <f> via

iedf =  R SS( Xrisk ) /E DF ( Xrisit). (3.27)

Then a third choice for A is Aecy, defined as the solution to:

E[RSS{Xedf)] =  k d f E D F (  Xedf). (3.28)

Hall and Titterington found tha t Arts& and Aety were often equivalent, while X ^ ^  

often led to over-smoothing, as expected.

The complete data-based estimate Xgcv therefore became popular; however

problems were found to exist with it. In [90], it was found tha t the cross-

validatory function which is minimised to find Xgcv,G(\ ) :

G(A) =  RSS(X) / [n  -  trTV(A)]2, (3.29)
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could suffer through having multiple minima, or no minimum with A > 0; or 

indeed a global minimum could exist, but which produced unsatisfactory results.

These problems had been noted in [91]: Agcv was prone to smallness and thus 

to under-smoothing, while Ares^  (more often known as Ac/„-, due to the expected 

Chi-squared distribution of the residual sums-of-squares), over-smoothed, as 

expected.

In [60], a neighbourhood noise based estim ator is proposed for (j) and used in 

conjunction with these 3 methods. In an example using each of Xgcv, Aresid, Aed/, 

all the estimators produced over-smooth x. Theoretical considerations of signal- 

to-noise ratios in this paper, by Kay, show again why we may expect A t o  

over-smooth. Further asymptotic work by Kay , in [61], shows tha t, relative to 

the m ean-squared prediction error choice of Xtp:

Xtp = argminAE[||fTr(A) — tfa:||2], (3.30)

Xgcv is asymptotically optimal, and Aet/y <  A H o w e v e r ,  since image restoration 

is a question of estimation rather than prediction, Kay points out tha t comparison 

with Xtp is not the only possible criterion. However, similar empirical results to 

those in the previous cited works were noted.

In [29], despite confusion over the designation of posterior distributions and 

likelihood functions, it is shown th a t £(A) improves the MSE properties of x , 

relative to £(0) =  x l s • The claim of these authors, tha t “no rigorous justification 

of this assumption [that is, of the superiority of a regularised over a least-squares 

estimate] has appeared in the image restoration literature” is odd, given that 

most image restoration is carried out within the Bayesian paradigm, for which

87



very rigorous justification exists, and that within tha t paradigm it would be 

the specification of A =  0 which would require explanation. Further theoretical 

work leads Galatsanos and Katsaggelos to conclude that the variance of £(A) is 

a monotonically decreasing function of A, and tha t var[£(oo)] =  0. Again, for 

a Bayesian, this is no more than what is required from the definition of A (and 

hence /?).

In the following section on numerical work, we will compare our hierarchical 

experiments from Chapter 2, and the eb and m ap  methods from this chapter, 

with the three methods which seem most common from the literature: Xchi (that 

is, Are5Jcf), Aecif (the “fix” to Ac/lt), and Xgcv (the totally data-based estimate, 

asymptotically optimal relative to A*p).

3.7  N u m er ica l w ork

We have detailed how to find estimates of A, the smoothing param eter, through 

a variety of methods : eb , m ap  (the Bayesian plug-in choices), CHI, EDF, 

GCV (some classical regularisation choices). Here we present the results of some 

numerical work to compare the different approaches.

To facilitate this comparison, we require some measure for the “success” or 

otherwise of a particular restoration, so we first turn attention to this issue.

3.7.1 O p tim a l choices fo r A

If x  were known, then natural (for statisticians) estimates of (<̂>, /3) are given by

= \\y -  Hx\\2/ (n  -f 1)

88



frr = (2 +  r ) / 2x TAx

which combine to give At  and thus x Since this estimate requires knowledge of 

the true image (hence the “T ” for “tru th ” subscript), it is rather impractical to 

say the least, but we include it here for comparison.

A standard measure of success in image restoration is the m.s.e. between an 

estim ate and the tru th . So if we define X m s e  as

A m s e  = argminA||a: — £(A)||2

then xms e  formed from such a Xms e  whl again provide a useful comparator.

Note th a t this is essentially the Ar{sk of the previous Section 3.6.

In Figure 3.1 we display some plots of A against m.s.e., for some of our test 

images.

3.7.2 Error criterion

We define the m.s.e. per pixel between a target image x and its estimate x  as

m sel =  mse(a:, x)  =  n -1 ^ ( a ^  — X{)2. (3.31)
i

The m.s.e. between x and noisy, blurred y is

mse2 =  mse(x , y )  = n~l (a* — yi)2. (3.32)
i

In the experiments which follow, we judge a restoration to be a success in the cases 

when m sel <  m se 2. Although this is far from nonsensical, we must remember 

tha t m.s.e. is just one from an infinite range of error criteria. Not least among
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the rest of the class is our own aesthetic judgement of a particular restoration: 

e.g. x-[ may have higher mse  1 than X2\ yet we prefer £1, perhaps because the 

underlying discontinuities in the true x are more clearly reflected in the latter 

restoration.

3.7 .3  E x p e r im e n ta l  d e ta ils

4 test images: 13, 14, 15, 16 were employed (see Chapter 2 : 13,14 are osten­

sibly realisations of m .r.f.’s, with /? =  0.05,0.20 respectively). Each image was 

degraded using blur levels B 1,B 2 and noise levels N 1 ,N 2.

For each IiB b N n , i=  3 ,4 ,5 ,6 ; b ,n =  1,2, two restorations for each of the 

methods was carried out: one where the m.r.f. was presumed to be of order 1, 

and another where the assumption was order 2. Recall that 13,14 were simulations 

from a 2nd order m.r.f.

3.7.4 R e su lts

P a ra m e te r  e s tim a te s :

eb an d  “t r u t h ” re su lts  fo r 13

y order P 4> Peb $eb ^eb At 4>t Ay
B1N1 1 0.05 4.0 0.0992 3.9481 0.7832 0.0902 4.0003 0.7216
B1N1 2 0.05 4.0 0.0045 3.8352 0.0348 0.0437 4.0003 0.3493
B1N2 1 0.05 25.0 0.0395 24.0922 1.9045 0.0902 25.0016 4.5102
B1N2 2 0.05 25.0 0.0012 23.5542 0.0557 0.0437 25.0016 2.1829
B2N1 1 0.05 4.0 0.0679 3.8972 0.5291 0.0902 4.0003 0.7216
B2N1 2 0.05 4.0 0.0016 3.8302 0.0122 0.0437 4.0003 0.3493
B2N2 1 0.05 25.0 0.0212 24.1868 1.0236 0.0902 25.0016 4.5102
B2N2 2 0.05 25.0 0.0003 23.8558 0.0156 0.0437 25.0016 2.1829
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other results for 13

y order P Amap Achi Aedf Agcv Am se
B1N1 1 0.05 4.0 0.1700 2.6201 0.3880 1.0754 1.100
B1N1 2 0.05 4.0 0.1873 0.0527 0.1080 0.1244 0.501
B1N2 1 0.05 25.0 1.1618 49.9300 6.1630 170.156 55.100
B1N2 2 0.05 25.0 1.2821 0.7668 13.99 18.4605 6.001
B2N1 1 0.05 4.0 0.1939 6.666 0.5543 4.9853 2.600
B2N1 2 0.05 4.0 0.1988 0.0460 0.32225 0.3629 0.501
B2N2 1 0.05 25.0 1.2625 585.5 92.66 800.0 409.100
B2N2 2 0.05 25.0 1.3317 24.10 3.04 32.5069 45.001

eb and “tr u th ” results for 14

y order P <f> Peb 4>eb Aeb P t 4*t

B1N1 1 0.20 4.0 0.1744 3.8879 1.3564 0.2531 4.0003 2.0249
B1N1 2 0.20 4.0 0.0063 3.7929 0.0478 0.1264 4.0003 1.0115
B1N2 1 0.20 25.0 0.0453 23.9874 2.1717 0.2531 25.0016 12.6556
B1N2 2 0.20 25.0 0.0013 23.4881 0.0593 0.1264 25.0016 6.3221
B2N1 1 0.20 4.0 0.0918 3.8869 0.7137 0.2531 4.0003 2.0249
B2N1 2 0.20 4.0 0.0018 3.8249 0.0137 0.1264 4.0003 1.0115
B2N2 1 0.20 25.0 0.0225 24.1740 1.0871 0.2531 25.0016 12.6556
B2N2 2 0.20 25.0 0.0003 23.8534 0.0159 0.1264 25.0016 6.3221

oth er results for 14

y order P <l> A map Achi Aedf A gcv A m se
B1N1 1 0.20 4.0 0.1666 22.01 4.526 8.985 13.100
B1N1 2 0.20 4.0 0.1821 0.5509 0.9752 1.0176 1.501
B1N2 1 0.20 25.0 1.1253 521.4 131.2 192.404 389.600
B1N2 2 0.20 25.0 1.1816 15.00 21.17 21.405 43.501
B2N1 1 0.20 4.0 0.1901 34.82 6.793 11.837 43.600
B2N1 2 0.20 4.0 0.1951 0.7666 1.081 1.0962 5.001
B2N2 1 0.20 25.0 1.2229 898.2 241.6 234.043 579.100
B2N2 2 0.20 25.0 1.2839 27.25 26.10 26.079 64.500
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eb and “truth” results for 15

y order P <f> 0 * $eb
\ (*)

eb 4*t A t
B1N1 1 - 4.0 3.3591 10.1750 68.359 30.7543 4.0003 0.0246
B1N1 2 - 4.0 0.3646 10.2958 7.5070 11.7464 4.0003 0.0094
B1N2 1 - 25.0 5.8134 33.6637 391.40 30.7543 25.0016 0.1538
B1N2 2 - 25.0 0.5223 32.7560 34.213 11.7464 25.0016 0.0587
B2N1 1 - 4.0 1.2163 3.8247 9.3038 30.7543 4.0003 0.0246
B2N1 2 _ 4.0 0.1178 3.6325 0.8555 11.7464 4.0003 0.0094
B2N2 1 - 25.0 2.6282 26.0784 137.08 30.7543 25.0016 0.1538
B2N2 2 - 25.0 0.1694 24.9504 8.4522 11.7464 25.0016 0.0587

(*) The values in this column are xlO 4.

other results for 15

y order P * A(*>'m a p
\(*)

chi edf ampcv A m se
B1N1 1 - 4.0 11.195 686.0 172.5 0116.1 0.9201
B1N1 2 - 4.0 12.457 74.64 18.18 14.9 0.1001
B1N2 1 25.0 18.785 3225.0 714.4 749.7 1.04510
B1N2 2 - 25.0 21.767 401.2 98.62 95.0 0.1151
B2N1 1 - 4.0 22.258 682.5 113.7 116.4 3.51510
B2N1 2 - 4.0 22.572 82.67 13.19 14.2 0.3901
B2N2 1 - 25.0 32.506 4898.0 857.2 900.3 3.6101
B2N2 2 - 25.0 34.207 282.7 32.31 58.7 0.4001

(*) The values in this column are xlO 4.

eb and “tru th ” results for 16

y order P §
a{*)
Peb 4*eb \(*)

eb P t <f>T A j1
B1N1 1 _ 4.0 4.4224 10.4217 92.178 0.0159 4.0003 0.1268
B1N1 2 _ 4.0 0.4587 10.4708 9.6059 0.0052 4.0003 0.0418
B1N2 1 - 25.0 9.2891 34.2218 567.33 0.0159 25.0016 0.7926
B1N2 2 _ 25.0 0.6879 33.1548 45.6121 0.0052 25.0016 0.2610
B2N1 1 _ 4.0 0.5801 3.7595 4.3625 0.0159 4.0003 0.1268
B2N1 2 _ 4.0 0.1000 4.1867 0.8373 0.0052 4.0003 0.0418
B2N2 1 - 25.0 2.5671 28.8946 148.35 0.0159 25.0016 0.7926
B2N2 2 - 25.0 0.1413 27.0900 7.6565 0.0052 25.0016 0.2610

(*) The values in this column are xlO 4
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other results for 16

y order P </> A(*)m ap
\ (*)

chi
\(*)
A edf qcv ^ m se

B1N1 1 - 4.0 8.0136 12.44 7.63 6.87 4.0051
B1N1 2 - 4.0 8.8821 7.63 0.2134 1.62 0.4451
B1N2 1 - 25.0 14.540 15.26 252.5 1155.7 4.6401
B1N2 2 - 25.0 17.0827 7.63 38.97 158.7 0.5201
B2N1 1 - 4.0 19.631 7.64 2.282 2.101 41.00
B2N1 2 _ 4.0 17.115 7.64 0.274 0.233 4.5551
B2N2 1 - 25.0 27.681 15.27 9.92 9.304 43.5
B2N2 2 - 25.0 26.986 7.639 1.204 1.094 4.8501

(*) The values in this column are xlO -4

M ean  sq u a re  e rro rs :

m s e ( x , x) for 13

y order m s e ( x} y ) eb map chi edf gcv mse tru th
B1N1 1 5.141 1.667 1.908 1.657 1.673 1.623 1.622 1.626
B1N1 2 5.141 1.786 1.649 1.661 1.619 1.618 1.690 1.661
B1N2 1 26.018 2.726 3.053 2.129 2.275 2.139 2.128 2.338
B1N2 2 26.018 4.036 2.167 2.258 2.133 2.137 2.127 2.149
B2N1 1 5.440 2.014 2.301 1.897 1.957 1.887 1.876 1.926
B2N1 2 5.440 2.653 1.883 2.015 1.874 1.875 1.882 1.875
B2N2 1 26.310 3.503 3.308 2.189 2.203 2.191 2.188 2.555
B2N2 2 26.310 7.796 2.305 2.190 2.251 2.188 2.188 2.280

mse (x , x)  fo r 14

y order mse(x , y ) eb map chi edf gcv mse tru th
B1N1 1 4.445 0.780 1.245 0.687 0.700 0.686 0.685 0.739
B1N1 2 4.445 0.986 0.765 0.698 0.686 0.686 0.684 0.686
B1N2 1 25.191 1.730 2.222 0.817 0.833 0.823 0.816 1.057
B1N2 2 25.191 3.179 1.097 0.832 0.823 0.823 0.816 0.874
B2N1 1 4.572 1.047 1.492 0.763 0.794 0.776 0.763 0.873
B2N1 2 4.572 1.795 0.898 0.794 0.782 0.781 0.762 0.784
B2N2 1 25.319 2.495 2.376 0.848 0.859 0.860 0.845 1.157
B2N2 2 25.319 6.939 1.177 0.858 0.859 0.859 0.845 0.941
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mse(x , x ) for 15

y order m s e ( x , y ) eb map chi edf gcv mse tru th
B1N1 1 85.613 133.049 244.196 85.062 108.858 118.565 70.241 101.375
B1N1 2 85.613 134.531 118.584 84.838 110.096 115.042 69.719 82.080
B1N2 1 106.015 101.222 277.219 75.050 90.893 90.125 71.567 80.905
B1N2 2 106.015 107.983 120.901 74.052 87.803 88.373 71.119 72.346
B2N1 1 137.247 456.593 364.786 191.908 258.292 257.149 131.594 225.326
B2N1 2 137.247 497.188 231.867 189.210 256.485 252.937 131.345 185.642
B2N2 1 158.108 270.645 408.935 148.696 191.827 190.277 132.788 174.650
B2N2 2 158.108 319.363 230.174 161.859 233.920 208.922 132.549 147.227

mse(x,  x) fo r 16

y order m s e ( x , y ) eb map chi edf gcv mse truth
B1N1 1 47.442 91.395 254.187 200.488 253.388 266.913 32.395 46.526
B1N1 2 47.442 94.771 97.369 102.930 628.077 197.989 32.394 38.561
B1N2 1 68.402 62.643 291.064 273.272 80.235 52.404 33.446 37.041
B1N2 2 68.402 70.273 98.565 140.997 74.466 50.445 33.460 33.971
B2N1 1 72.183 583.947 328.448 474.283 714.782 732.327 58.180 115.620
B2N1 2 72.183 496.854 178.872 219.903 780.094 833.344 58.173 95.103
B2N2 1 93.547 201.562 382.751 527.734 675.578 701.136 58.911 86.359
B2N2 2 93.547 266.208 177.926 267.371 718.885 765.428 58.906 73.813

3.7 .5  D iscussion  of re su lts

M e th o d s  w h ich  e s tim a te

M ethod “T ”, which assumed knowledge of the true image, performed very 

well on 13 when the m.r.f. assumption was -  correctly- tha t of a second order 

neighbourhood. However, for 14 the first order estimates are over biased, while 

the second order ones are underbiased, although the estimates are of the correct 

order of magnitude.
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For 13 and 14, “e.b.” estimates of ft are much smaller than those produced 

by hierarchical Algorithms v ag u e , g am m a. However, for 15 and 16, ft tends to 

be so small tha t one suspects the resultant image to be under smoothed.

Gray, Kay and Titterington, in [42], had found tha t specification of m.r.f. 

order was of crucial importance in obtaining estimates of the param eter in a 

binary Ising model. Here, we note clear evidence of the same effect, for a prior 

model more complicated than Ising. Changing order specification from “one” to 

“two” does indeed decrease the value of ft] almost exactly halving it in the case of 

method “T ” . The effect, if anything, is even more marked for the artificial images 

which contain edges. Since the “T ” method has an explicit formula for ft it is 

not difficult to see why this should be the case for tha t procedure, but the eb 

results rely on numerical maximisation and so we find them more surprising and 

interesting.

M e th o d s  w h ich  e s tim a te  (j).

Not surprisingly, “T ” estimation of (j) performs extremely well across the range 

of test conditions. Estimation by the “e.b.” method also produced good results, 

although once again we observe th a t variance is better estim ated for the m.r.f. 

simulations than for the artificial images. There seems to be an increase in the 

precision of 4> the larger the p.s.f. and the larger the value of </>true-

E s tim a tio n  of A.

As suspected, Ae(, is smaller in every instance than Amse, the A which min­

imised mse(x,  £).
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We would also conclude that Ac/U- does indeed tend to oversmooth, as ex­

pected, and certainly when compared to the two Bayesian estimators Ae6 and 

Xmap •

The behaviour of the three “standard” estimators A ^ , A a n d  Xgcv seems 

too erratic to generalise. For 13 and 14 the estimates were usually of the same 

order of magnitude as the “optimal” Amse, while Ae6 and Xmap were much smaller. 

For 15, 16 we see again that, in all but two of the tests, Aĉ  was larger than either 

Xedf or Agcv •

M ean Square Error betw een  tru th  and restoration

Examining the m .s.e.’s for the m.r.f. simulations -  and remembering that 

defining “success” by mse( x , x )  < mse(x , y )  is only one such measure -  we see 

tha t every method was in this respect successful in every test condition. As 

examination of the A estimates indicated, however, m.s.e. values tend to be 

slightly higher for methods “e.b.” and “m .a.p.” than for the other methods, 

particularly for 14.

W ith respect to the two artificial images, none of the methods can be judged 

a success. Strangely, all seemed to perform best under the same blur/noise com­

bination: B1N2.

Some restorations can be seen in Figures 3.2 -3 .4 .

T he likelihood surfaces

Since our e.b. param eter estimates are maximum likelihood estimates, it 

could be revealing to examine the joint likelihood surface for some typical data.
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Figure .‘{.2: Some  restorations from the algori thms in this chapter.  From top left to bo t tom  
r ight: (i) I5B2N2,  a ssumed mrf order 1. Algori thm e h ,  (ii).  I5B2N2.  rnrf order 1. Algorithm  
m a p ,  (tit) I5B2N2 ,  mrf order 2. Algorithm eh .  and (iv)  I5B2N2,  mrf order 2, Algorithm m a p .

i t s



Figure 3.3: More restorations from the algori thms in this chapter All da ta  is image I5B2N2,  
true image  is assumed to he mrf  order 2. From top left to bo t tom right: (i) CHI,  (ii) KI)F. (iii) 
C»('V and (iv) MSE.
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Figure 3.4: More restorations from the algori thms in this chapter.  All da ta  is I6B1N1,  true  
image a ssumed to he an mrf of  order 2. From top left to bo t tom right: (i) Algor i thm m a p .  (ii) 
CHI,  (iii) Algor i thm el) ,  and (iv) I
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In Figures 3.5 -  3.8 we present not only the joint likelihood function for a range 

of </>, (3 for two sets of data, but also some profile likelihood plots; it is clearly 

of interest to examine if the maximum of one profile is strongly affected by mis- 

specification of the other parameter.

Figure 3.5 shows the joint likelihood surface for image I5B2N2, assumed here 

to be an m.r.f. of order 1. Figure 3.6 displays the same for image I3B1N1, an 

m.r.f. of order 2. These images are very different in quality and distortion, and 

the likelihood surfaces reflect this. In the (3 axis in 13, there is a clear maximum 

- albeit at a much higher value than we would wish. No such maximum is visible 

in the 15 surface.

W hat is less clear however is tha t both have maxima along the </> axis. These 

become much clearer in the profile plots. A profile likelihood is the univariate 

likelihood obtained by fixing one param eter a t a constant value and allowing 

the other to vary. For example, a profile likelihood function of (f> is obtained 

from evaluating p(< ,̂ (3 = constant | y ). Plotting profile likelihood functions of (f> 

against various values of (3 helps us determine if m is-estim ating one param eter 

can lead to bad estimation of the other. For /?, this does not seem to be the case; 

however,the shape of the <j) profile alters dramatically depending on the value of 

/5 chosen. The value of (3 selected in the 15 profiles (Figure 3.7) is the estimate 

of (3 found by the e.b. algorithm. As was found in the experiments, this leads to 

a clear maximum of <f> close to the correct value. W ith the 13 image (Figure 3.8) 

, we select the “correct” value of 0.05 for (3 (assuming our simulated image really 

is an observation of an m.r.f.) and are rewarded with a profile of <f) with a clear 

maximum at the correct value of 4.0.
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The message of these plots of likelihood surfaces would seem to be: correct 

likelihood estimation of /? seems to be out of the question. However, given a 

“workable” value of /?, good estimates of (f> are forthcoming.

It could be tha t the low-level Gibbs distribution prior is not able to capture 

well enough the features of a real image. A possible avenue of progress is to build 

higher-level priors, which model the features of an image, rather than the pixel 

values themselves. Such work is carried out in [79] and [89]. The vector of feature 

parameters would be called x , and a representation in terms of pixels, z(x),  could 

then be constructed, and compared with the data i/, using Bayes’ theorem.

3*8 S u m m ary

We presented two Bayesian algorithms for image restoration: one where param­

eters are first estimated by maximum likelihood and an approximation to the 

modal estimate of x  is found; and one where such a modal approximation is iter­

ated towards the true m.a.p. estimate. We compared these methods with three 

plug-in choices from the regularisation literature, and two optimal choices. We 

found tha t the estimates of the smoothing param eter were nearly always smaller 

than the value which was optimal w.r.t. the m ean-squared-error between x and 

x. Examination of some likelihood surfaces shed some light on the reasons for 

difficulties w.r.t /? estimation.
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Figure 3.5: The l ikelihood surface for image I5B2N2



Figure 3.6: T he  likelihood surface for image 13BIN1
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C h apter 4

T h e itera tiv e  Im age Space  
R eco n stru ctio n  A lgorith m  
(IS R A )

4.1 In tro d u ctio n

In the previous two chapters, we have tackled the problem of blind image restora­

tion via a series of Bayesian param eter estimation methods. Different hierarchical 

and empirical approaches were investigated, but the general procedure was to: (1) 

estimate parameters within image and data models, and (2) use these estimates 

for some iterative or regularisation method of image restoration.

In this chapter we motivate a fundamentally different approach to the prob­

lem: viz, we address the issue of image restoration head-on, via the image space 

reconstruction algorithm (ISRA). The ISRA is motivated by a least-squares (LS) 

argument, and so requires no distributional assumptions, and therefore no pa­

ram eter estimation.

We have already mentioned tha t there are many possible reasons why a LS 

solution may not be acceptable (see Section 3.6 and Citation [97]); however, 

the sum -of-squares distance is a commonly used metric in standard statistical
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methodology and so it is arguably of interest to examine whether it is of practical 

use with the linear models commonly employed for image analysis. Furthermore, 

we seek to make no inference about the estimates of the image so found, so strict 

adherence to the Bayesian paradigm is perhaps not vital.

The structure of this chapter is as follows: since we will be comparing the 

ISRA with the better-know n EMA ( “Expectation -  Maximisation Algorithm” , 

[17]), we begin with a discussion of that algorithm. In particular we review 

the work of Vardi and Lee ([98]), hereafter referred to as “VL” , who recently 

presented work tha t vastly increased the scope of the EMA. We examine the re­

lationship between the two algorithms, and we propose tha t the ISRA be used 

for solving a range of LININPOS (linear inverse problems with positivity restric­

tions) as defined by VL. Image restoration is an example of a LININPOS, and we 

demonstrate both algorithms on examples of images distorted by linear motion 

blur.

We will discuss modifications possible for the ISRA (including the application 

of a Bayesian framework) . In particular, we discuss recent work on speeding up 

convergence of the EM algorithm ([36],[56],[71]) and apply similar methods to the 

ISRA. We discuss convergence properties of the ISRA, and show the difficulties 

involved in proving convergence for the altered ISRA.

The chapter concludes with a discussion of the results and some ideas for 

further work.
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4.2 T h e  E M  a lgor ith m

Since we wish to compare the ISRA to the EM algorithm, we here outline the 

la tte r’s methodology, and the extensions of VL which make it a general solution 

to LININPOS.

The standard EM (“Expectation-M axim isation”) algorithm runs as follows: 

suppose we wish to estim ate a param eter 9 € 0 , which specifies the p.d.f. of a set 

of r.v .’s Z , viz, f ( z  | 9). Were we in possession of a set of realisations {z j , then 

estimation of 0, all other things being equal, would be straightforward. However, 

we suppose that Z  is decomposed into Z  =  (X , K), where Y  are observed random 

variables, and the X  are somehow “missing” . EM is an iterative procedure, with 

each iteration consisting of two stages:

E—step . Compute

Q ^ ( 0 )  = E { l o g f ( X , Y \ 0 )  (4.1)

M —ste p . Evaluate

=  argmax„<3<ro>(0). (4.2)

Initialise with some 0 ^  >  0, and the sequence of estimates for m =  1,2,3, . . . ,

can be shown to converge to a t least a local maximum of the likelihood function 

of 2, and the total likelihood increases at every iteration.

The algorithm has been applied in many statistical arenas and commonly in 

image analysis; see, for example, [75], [76] and [92],

The work of VL was to extend this algorithm to solve any LININPOS, which
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may be w ritten as

y(w) = / h(v,w)x(v)dV)W € Dy, (4.3)
J Dx

where DXi Dy are the domains of functions at, y, which are both non-negative and 

real-valued. The model (4.3) describes the distortion of a signal, a:, by a function 

h: the LININPOS is to recover x given h,y.

Equation (4.3) is also the formula for a mixture of probability densities, as 

well as being the law of iterated expectations: in fact, it can be generalised to 

cover a vast range of mathematical and statistical set-ups if we write it as

Y(w)  — (  X(dv) H( v ,  w) ,w  e  Dy (4.4)
J Dx

where Vf*), H(v,  •), v € Dx, are measures on Dy and X  is a measure on Dx. This 

general model (4.4) contains the following discrete representation of a noise-free 

version of the image degradation model we have been considering:

M

Vi =  £ A n (4.5)
t=i

where Dx =  { 1 ,2 , . . . ,  M ), Dy — { 1 ,2 , . . . ,  A^}. Note that, in the case where {hij} 

is the p.s.f. of a blurring process, the sum on the right hand side of (4.5) need only 

be over the members of Bj,  where Bj  is the blurring neighbourhood as defined in 

section (2.2). (This definition of the blurring process leads to a blurring m atrix 

which is the transpose of tha t used in earlier chapters. We adopt this formulation 

to ease comparison of our work with that of Vardi and Lee ([98]).)

VL’s EM solution to the recovery of the signal x(v) (i.e. the vector of values 

of the true image x -  we have not previously distinguished between the vector of 

pixel values and the image itself, but do so here to emphasise the generality of

the argument) is to consider { ( u j ,  Wj) : j  =  1,  2 , .  . . ,  N }  as a set of complete data
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with joint density x(v)h(v , w) on D x x  Dy. Of course we observe only { w j } .  The 

nonparametric maximum likelihood estim ate of the distribution function of x is

=  (4.6)
j

where l A is the indicator function applied to region A. This takes the part of the 

M-step. The E-step involves replacing 1 A{Vj) with its conditional expectation 

Pr(Vj £ A  | Wj , x )  = f  f v \ w ( v I Wj)dv.  Combining the E - and M -steps by 

substituting the conditional expectation within the formula for X  we obtain the 

iterative formula

X ^ \ A ) =  f  , ]dv- (4.7)

We take derivatives of (4.7) with respect to the Lebesgue measure to obtain the 

probability densities

x<"*>(<,) =  £ > ( u ,  W j ) l  f  h(s,  VV,-)®̂ m -1*(s)</4], (4.8)
3 D x

to which we may apply the strong law of large numbers to see that, as N  — > oo, 

* (» )(« )  =  x ^ ( v )  / Ds j - 1̂ 0 — — y ( w ) d w . (4 .9)

The discrete version of (4.9), suitable for image restoration, is 

T h e  E M A

1. Choose > 0.

2. For m  — 1 , 2, . . . ,  compute

N  M

x\m) =  E  (4.10)
j = 1 S — l

for i = 1, 2, . . . ,  M . □.
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VL show that the solution of (4.5) computed via (4.10) will minimise the 

Kullback-Leibler divergence between the left- and right-hand sides of (4.5).

The EMA has had a long and popular history within statistical image analysis. 

In [99] a statistical model for emission tomography, which we shall use in our next 

section to motivate the ISRA, was implemented via the EMA. However, Little 

and Rubin, in [66], warn of the dangers of equating missing data (which are r.v.’s) 

with fixed parameters and caution against the over-usage of EM procedures: they 

argue that param eters should be estimated from an integrated likelihood function, 

i.e. L{9 J y) =  /  f ( x ,  y | 6)dx , essentially the eb approach of the previous chapter.

4.3  T h e  IS R A

4.3.1 D ev e lo p m en t of th e  d is c re te  IS R A

The ISRA was first proposed by Daube-W itherspoon and Muehllehner ([15]) as a 

m ethod of image reconstruction for emission computed tomography (ECT) data. 

In fact they proposed it as an improvement of an EM algorithm ([80]) commonly 

used in such cases, and found in some experiments tha t it seemed to converge, ini­

tially, more rapidly than EM, and required fewer computations, although they of­

fered no theoretical convergence results. Titterington ([94]) showed tha t the ISRA 

can be motivated as, and proven to converge to, the least-squares solution of the 

image restoration problem. In the ECT context, X{ labels the number of emissions 

from the i ’th  of M  sources, { y j }  are the data collected by the set of N  detectors, 

and the {hij} are numbers such that Pr{an emission from i is detected at j }  ~  

h{j. Thus — 1 and E(y7) =  Y l j x ihij- It is assumed th a t the {hij} are
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known a priori.

Consider minimisation of yj = Xh Xihij, for j  =  1 , . . . ,  A , with respect to the 

sum-of-squares function:

s (x ) =  l l y - t f ^ l l 2
N  M

=  - J 2 Xihii)2' (4 1 1 )
j  = 1  i  =  1

Any minimiser x  of S(x)  will satisfy

H H t x

M

i.e. hjiCy^j %shsi) 
j  s = l

for * =  1 , . . . , M .  Thus

1 =  (4.12)
J  j  s

for i = 1, . . . ,  M . Multiplying both sides of (4.12) by Xi clearly motivates the 

following algorithm, which is the discrete ISRA:

T h e d iscrete  itera tive  ISR A

1. Choose > 0.

2. For m  — 1,2, . . . ,  compute

=  H y  

~  53  hijVjt
3



4.3.2 T he continuous ISR A

Examination of the continuous general models for LININPOS, (4.3, 4.4), leads 

to the conclusion that the ISRA can be extended to deal with such problems in 

the same manner as the EMA. For the continuous ISRA, the appropriate sum - 

of-squares function is

S(x)  ~  J {y(w)  — J  x(s)h(s,  w)ds}2dwy (4.14)

and application of the calculus of variations provides stationarity equations

j  h(v,w) J  x(s)h(s ,w)dsdw = j  h(v7 w)y(w)dw.  (4.15)

In the same manner tha t the discrete ISRA evolved from (4.12), so (4.15) leads 

directly to the following iteration:

i \, i In h(v.w)y(w)dw
* < » > »  =  z ( ” “ ' 1 > ( ® ) T - r 7 — wr --L 1)t L — i j T T ' u  e  D-' ( 4 - 1 6 )Id» ™)ud* x{ }{s )h (s i w)ds]dw

initialised by >  0, for all v € Dx.

Both the discrete and continuous formulae for the ISRA hold whether or not 

the measures A(-) and {i7(u,*) : v € Dx} are probability measures, whereas the 

VL formulae require normalisation modifications in order to cover the case of 

general, non-negative measures.

Clearly, in both the discrete and continuous cases, if the initial a;̂ °l >  0, then 

>  0 for all m, in view of the non-negativity of E(-) and {H ( v , •)}. Even if the 

latter are all probability measures, there is no guarantee tha t x ^  is a probability 

measure for any m, except possibly for m =  0 by design, but, if the algorithms 

converge to a solution of (4.3) or (4,5) then the limit will be a probability measure 

if the same is true for E(-) and {//(u , •)}. If only the {H(v,  *)} are probability
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measures, then the algorithm converges to a solution with total measure equal 

to that of Y.  In principle, we could constrain the total measure associated with 

X  using a Lagrange multiplier (c.f. Section 4.5.2 of [95]), but this seems an 

unnecessary complication in view of the limiting behaviour.

An interesting point about both the ISRA and the EMA is that, although 

here we are concerned with the statistical estimation of distorted images, they 

are both in fact applicable in a vast range of non-statistical applications.

4.3.3 C onvergence o f th e  ISR A

Convergence aspects of the discrete ISRA are discussed by T itterington ([94]) and 

De Pierro ([18],[19]), but a more general discussion is presented by Eggermont 

([26]) and it is this argument we summarise below.

Define Dr =  diag{ x ^ / H H Tx f \ i  = 1 , Then, by Lemma 6.1 of

Eggermont ([26]),

5 (a;(m- 1)) -  5 (x (m)) >  -  x im))TD~ 1_1(®(m” 1) -  z (m)), (4.17)

where S ( x ) is the sum-of-squares function as defined in (4.11). So at each iteration

the sum -of-squares function decreases and since, for every m, {# >  0 : S(x)  <

5(;r(0))} is a compact set, is bounded and every subsequence itself contains

a convergent subsequence.

Now let x be any point of accumulation of {tfb71)}, let A =  diag{(Hy) i , i  =  

1, . . . ,  M }, let
M

A k l (v ;w ) =  Y ^ v^ ° s ( vi / Wi) +  wi -  Vi, (4.18)
i— 1

the Kullback-Leibler directed divergence for v ,w  >  0, and let

e(x;x)  — A/cl(A^; A®) +  S(x)  — S(x).  (4-19)
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Then Lemma 6.2 of Eggermont ([26]) shows tha t

e ( £ ; >  e ( £ ; a ^ m )) .  ( 4 . 2 0 )

The convergence properties of imply th a t e ( x ' , x ^ )  — > 0 as m  ----» oo,

and so, therefore, does A k l (Ax ; A x (m)). The convergence of the Kullback-Leibler 

distance shows tha t — > £, and since x  can be shown to be a minimiser of

S ( x ), subject to x > 0, we have enough to state the following theorem: 

T h e o re m  : IS R A  convergence

The ISRA, defined by (4.5) and initialised by > 0, generates a sequence 

{^h71)} tha t converges to an x which minimises S(x)  subject to x > 0. □.

Extension beyond the discrete case proceeds along similar lines to those in 

Section 3.4 of VL: the main steps are sketched below.

T h e  case o f fin ite  Dx

Suppose Dx =  {1, . . . ,  M }, that

M

y ( w ) -  ^ 2 h i ( w ) x i , w  <E Dy ( 4 . 2 1 )
i=i

and tha t {x^m }̂ are generated according to

,(rn) _  J m - 1) fp ,  hj(w)y(w)dw

I d v k tM K jii x {J } h s ( w ) ] d w

starting from x ^  >  0. Then (4.17) and (4.19) hold with

S ( x ) — f  {y(w) -  ^2h i (w)x i )2dw,  (4.23)JDy i

f  M

Dr =  disig{x\r)/[ h{(w)(^2  x ^ ~ lS>hs(w))dw],i  =  1, . . . ,  M}.  (4.24)
J Dy  .
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and A == diag{/D  ̂hi(w)y(w)dw, i  = 1, . . .  , M }. The argument of our theorem on 

the ISRA convergence then confirms that { a :^ }  converges to an x  tha t minimises 

S(x),  as defined by (4.23), subject to x > 0. □.

T h e  case o f co n tin u o u s  Dx.

As in the case of Section 3.4.2 of VL, we approach this by way of a discretiza­

tion method. Suppose ?/(•) and h(v , •) are non-negative, integrable functions on 

Dy and suppose

y(w) = j  h (v ,w)x(v)dv ,v  G Dx (4.25)
J Dx

has a non-negative solution tha t is piecewise constant over the measurable parti­

tion {£fi , . . . ,  B m '} of Dx ( )  > 0, all i). Then, for any refinement {Ai , . . . ,  A m } 

of { i?!,. . . ,  B m ’} [ft{Ai) > 0, all i), the ISRA

A(m) =  A(m-1)________ f  H 2(Aj ,w)y(w)dw________  26

i =  1, . . . ,  M,  m  =  1, 2, . . . ,  initialised by > 0, converges to a limiting value 

^*(> 0), and
M

=  (4.27)
t=l

is a solution of (4.25). In (4.26), H2(Ai ,w) — fA{ h(v ,w)dv , all and in (4.27), 

1,4,-(') is the indicator function for A*, all i. This result follows from the results 

obtained in this section, and the final steps to the continuous case are parallel to 

those in Section 3.5 of VL. □.
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4 .4  E x a m p les o f  p o ss ib le  a p p lica tion s

In this section we list briefly versions of the ISRA and the EMA for a variety 

of cases, drawing heavily from the examples in VL, since we aim for a compar­

ison between the two algorithms. In particular we compare the ISRA and the 

EMA with respect to image restoration, for the case when linear motion blur has 

distorted an image, as discussed in VL.

4.4.1 Inversion o f Sim ple Linear Equations

This example, though trivial, illustrates elementary behaviour of the ISRA and 

EMA in solving under-determ ined linear systems.

C ase 1. One equation in tw o unknow ns

Suppose we wish to And X \ , x 2 to solve

y -  hxxi  +  k2x 2. (4.28)

The ISRA can easily be shown to be

+  fc2x£"_1)],i =  1,2. (4.29)

Thus, for any x ^ ° \ h x x ^  +  h2x ^  =  V-> so tha t the ISRA converges in one step.

The same is easily shown of the EM algorithm.

C ase 2. Tw o equations in th ree unknow ns

In this case, neither algorithm converges at once. For illustrative purposes, 

consider the equations

2/i =  x i + x 2

V2 =  x 2  +  x 3 
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with yi = y2 ~  2. Clearly, any x  of the form xT = (#i ,2 — £i , £i )  solves these 

equations. The ISRA is

x<m) =  2x<m- 1, /(x im~,) +  4 ”“" 1))

4 m) =  4 4 m“1)/(* i” “1, +  2 4 m-1) +  4 ’"~1))

„> l) _  oJ™ "1) 4-
X 3 —  A X 3 / \ j ' 2  T  * 3  J-

The first and third equations for the EM algorithm are the same as those for the 

ISRA, whereas the second one is

4 m> =  4 " ,- i >[(4m- i> +  4 m-1)r 1 +  ( 4 m_1) +  4 m-1))-1]-

Table (4.4.1) compares the algorithms in terms of the number of iterations re­

quired to obtain the limiting point correct to three decimal places in each com­

ponent of x . If =  (a, a, a), for any a , each algorithm converges at once to 

£ =  (1,1,1). If £(°1 =  (a, 6, a), for b ^  a, each algorithm also converges at once, to 

the same x  for both algorithms. Otherwise, the algorithms converge to different, 

but similar, £ ’s, in roughly the same number of iterations as each other.

Table 4.4.1
4°) (*i>®2)tSRA (£i , £2) f m Iters (ISRA) Iters (EM)

(0.5,1.0,0.5) (0.951,1.049) (0.906,1.094) 12 13
(0.5,1.5,1.0) (0.646,1.354) (0.636,1.364) 18 18
(1.5,0.5,1.0) (1.425,0.575) (1.416,0.584) 6 7
(0.1,1.0,9.9) (0.648,1.352) (0.664,1.336) 10 20
(1.0,0.1,9.9) (1.963,0.037) (1.899,0.101) 3 3
(1.0,9.9,0.1) (0.063,1.937) (0.061,1.939) 190 182
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C ase 3. T hree equations in four unknow ns

In this case, we discovered an example where the ISRA performs well and the 

EMA badly. Consider the equations

yi =  +  X2 +  x4

V 2 =  %2 +  £ 3  +  x 4

y3 =

If values (a?i, £2,^ 3, *4) =  (2 ,4 ,5 ,9 ) are selected, then y4 — 15, y2 — 18,3/3 =

11. Using these values of y to ensure a solution exists, we applied the dis­

crete EMA and ISRA of (4.10) and (4.13) respectively, with N  =  3 ,M  =  4. 

We used different starting values for x  and allowed the algorithms to run un­

til third decimal place convergence was achieved. We also calculated the fitted 

values, y =  We chose three sets of starting values for both algo­

rithms; set 1 was (2.5,3.5,4.5,8.5), set 2 was (1.0,100.0,100.0,50.0) and set 3 

was (50.0,75.0,20.0,10.0).

The ISRA performed well over a wide range of starting values, while the EMA 

could not find a good solution at all. Table 4.4.2 summarises the results for both 

algorithms.
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Table 4.4.2

Alg. X y Iters to converge
ISRA set 1 (2.316,3.980,5.327,8.694) (14.990,18.002,11.010) 48

set 2 (0.809,4.020,3.796,10.182) (15.010,17.997,10.991) 101
set 3 (8.301,4.019,11.290,2.689) (15.009,17.999,10.990) 107

EM set 1 (0,0.002,0,43.998) (44.0,44.0,43.998) 30
set 2 (0,0.003,0,43.997) (44.0,44.0,43.997) 32
set 3 (0, 0.002,0,43.998) (44.0,44.0,43.998) 37

4.4.2 P ortfo lio  O ptim isation

This subject is dealt with in VL, Section 3.1. VL use a different notation, which 

is in fact unnecessary: for each z, let Xi be the proportion of total assets to be 

invested in stock z , the j ’th column of H  contains one of N  possible sets of 

returns from the M  stocks, and yi is the probability that the y’th set of returns 

will materialise, j  = 1, . . . ,  N.  Clearly, the ISRA is precisely th a t of (4.13). The 

approach of VL is to maximise, in our notation,

W( x)  = Y ^ y j ^ ( Y ^ x ihij)- (4 -30)
3 i

In fact, any maximising x  satisfies y =  H Tx , the basic set of linear equations.

This example is basically the same as the example of grouped data considered 

in Section 3.2 of VL.

4.4.3 E m ission  Tom ography

(VL: Section 3.3, and see also [80].) Again, (4.13) is the relevant ISRA, if we use 

the notation we declared in Section 4.3.1. This problem is similar to estimating 

the mixing weights of a mixture of M  known multinomials, each defined on a 

sample space of N  categories. In tha t case, x is the set of mixing weights, y is
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the proportion of observations tha t fall into category j ,  and the z’th  row of H 

contains the z’th “pure” multinomial distribution.

Titterington and Rossi ([96]) noticed the relationship between these two prob­

lems in the context of the EMA, building on the earlier work of Di Gesu and 

Maccarone ([21]). Woodward et al. ([104]) compare an EMA for estimating the 

mixing proportions with a minimum distance technique, which selects an esti­

mate to minimise some distance between the empirical c.d.f. and the chosen 

family of theoretical c.d.f.’s. The EMA outperformed minimum distance in cases 

of Gaussian mixes, but was shown to suffer from a lack of robustness.

4.4 .4  M ixtures

(VL: Section 3.4.)

The special case of mixtures of multinomials is dealt with in Section 4.4.3. 

For more general finite mixtures, VL distinguish between two cases related to the 

“estim ation” of the mixing weights Xi corresponding to the following version of 

(4.4):

=  (4.31)
i

Suppose hi(-) denotes the density associated with #(z , •). If the problem is the 

statistical estim ation of the {aq} from a random sample Hfi, • • •, Wn  from the 

mixture, and if Yjq denotes the corresponding empirical distribution, then the 

ISRA is

x [m) _  x {m~l) /  hj(w)dY^(w)  (4 32)
f  h i (w)[£s hs(w)]dw

If, on the other hand, one is simply inverting (4.31), then the ISRA is (4.32), 

with Yn  replaced by V.
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4.4.5 C onvolutions and M otion  B lurring

(VL: Sections 4 and 5.)

In this example, h(v,w) = h(w — i>). We follow VL in concentrating, for 

simplicity, on the case of one-dimensional images, so tha t x ( ' ) , y (•) denote, re­

spectively, the unblurred and blurred images, and T =  {7 ^ ), 0 <  t <  T]  describes 

the blur in terms of the path followed by an origin of the co-ordinate system dur­

ing the exposure interval [0,T] of the photograph that produced y. Thus, instead

of (4.4) we have, for all w,

y(w) -  f  x(w  -  i{ t ) )dt  = f  x(u)r  ̂  u  J v, (4.33)
Jo J | 7 {7 - 1(ti; — v) \  |

where the limits of integration are defined by the indicator function. In terms of

(4-4),

h(v ,w ) =  lr(t«  — v) /  | 7 {7_1(tu — t>)} | . (4.34)

Particular cases of this are listed below.

C ontinuous case

In general (c.f. VL: Section 4.8),

a;(m)(u) =  a;{m -1)(u) f  \ ~  v)) |_1 y(w)dw/
Jv+r

J  I t ' ( 7 _ 1 ( w  -  « ) )  I " 1 { /  | , ,  1 1 ( — i _ i  ds}dv(A.35 )Jv+r Jw-r  | 7 (7 *(11? — v )) j 1

Special cases include the following:

(i) C onstant speed  linear m otion

Here, -f(t) — at^ 0 <  t < T, for some a > 0. Then (4.35) becomes (c.f. (4.10)
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in VL)

i ' v + a T  p v + a T  p w

X

p v + a l  p v + a l  p w
=  ®(m“ 1)(u)a / y(w)dw/[ { a^m -1)(.s)<£s}diu]. (4.36)

J v  J v  J w —aT

(ii) C onstant acceleration  from  rest along a stra ight line

This time, 7 (t) = at2, 0 < t  < T ,  for some a > 0, giving (c.f, (4.11) in VL)

, x x^n~^(v)2\ /{a) Jy+aT (w — v)~1/2y(w)dwx(mUv) =  — ^ v } v y JJv----- i 1 ZU. -------------- . (4,37)
i : +aT (w -  s (m- i >(s)(«' -  s ) - ' / 2ds}dw

D iscrete  case

The general form of the algorithm is given by (4.13).

(i) C on stan t—speed linear m otion

In this case, hij = al{0,...,&}(j — 1), for some a > 0, and (4.13) becomes (c.f. 

(5.6) of VL)
i-j-6 14-6 MAj

x ;  (4.38)
i=i i=i s=iv(j—6)

(ii) C onstant acceleration  from  rest along a stra ight line

Now, h{j = a | j  — i j1/2 1 — i ), for some a >  0, so tha t (c.f. (5.11) of

VL)

*<”> = Ejtj+1(j -  l)~1/22/j 3
E ’S +1(i -  0 - 1/2{E “ 74iH) -  s)~1/2}

4.5  Im age resto ra tio n s

We applied the algorithms to the “cart” example that constitutes Experiment 2 

of VL. We followed their procedure as closely as possible and ran both the EMA 

and ISRA for 106 iterations. (We are grateful to Professor P. J. Green for helpful
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discussions, and the supply of code, which enabled us to gain access to these 

data).

Two details of the image were considered, each of which was a 250 x 250 pixel 

scene (M  =  62500). It was assumed, as in VL, that a motion blur of 106 pixels 

had been imposed and, in analysing the two sub-images, data were used from 

adjoining strips of widths 106 pixels. The ISRA was therefore based on (4.38).

Figure 4.1 shows the first sub-image, which comprises the area of the whole 

image near a blurred wheel. Figures 4.1 (a) and (d) show, respectively, the results 

of applying the EMA and the ISRA for 106 iterations, and Figure 4.1 (c) shows 

the difference-image between EM and ISRA. The only substantial differences 

occur near the bottom  left edge of the wheel. In both Figures (b) and (d) there 

is evidence of vertical artefacts, mentioned in VL, that are, interestingly, less 

evident in Figure 4.2. Figure 4.2 is the 40-iterations equivalent of Figure 4.1; at 

th a t stage, the EMA and the ISRA results are very similar.

Figure 4.3 plots the pixel intensities corresponding to Figures 4.1(b),(d),(c) 

in Figures 4.3(a), (b),(c) respectively, where the pixels are numbered in raster- 

scan beginning a t the top left-hand corner. Figure 4.4 gives some idea of the 

convergence behaviour of the two algorithms, in terms of the per-pixel m ean- 

squared difference between successive iterates, i.e. M -1 — x f 1̂ ) 2.

Both Figure 4.4(a) and Figure 4.4(b), which is on the log-scale, indicate tha t the 

behaviour is very similar, with the EMA consistently taking slightly larger steps.

The other part of the image examined includes the letters “RPO ” from the 

word “AIRPORT” . Figure 4.5 is the 106-iterate version (c.f. Figure 4.1) and Fig­

ure 4.6 corresponds to 40 iterations (c.f. Figure 4.2). Again, the two algorithms
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produced very similar results, and the 40-iterate restorations seem to be at least 

as appealing as those after 106 iterations. It seems likely tha t, as emphasised 

later in Section 4.8, the inverse problem is somewhat ill-posed, and that stopping 

at, say, 40 iterations imposes beneficial regularisation.

We also examined the ubiquitous “lena” image, imposing a linear blur of 

30 pixels and examining the EMA and ISRA restorations after 40 iterations. 

Figure 4.7(a) displays the true 256 x 256 image; we applied the algorithms to 

the internal 256 x 196 sub-image (allowing a border of 30 pixels a t either side) 

and Figures 4.7 (b),(c), (d) display, respectively, the data, EM reconstruction 

and ISRA reconstruction. Again, there seems very little to choose between the 

performance of the two algorithms. Figure 4.8(a) shows the logarithm of the m.s.e. 

between successive iterations -  again, the EMA takes slightly larger steps than 

the ISRA. Figure 4.8(b), a plot of the m.s.e. between the true image and current 

reconstruction, shows tha t this may, however, have an adverse effect on image 

restoration however; EMA is always slightly further away w.r.t. this criterion 

than the ISRA. This is certainly not contradicted by the results we observed in 

the solutions of small sets of linear equations (see Section 4.4.1).

4.6  D iscu ss io n  o f  resu lts

The illustrations in Section 4.5 provide information about the comparison be­

tween the ISRA and the EMA. In general, both algorithms are prone to slow 

convergence. In the context of PET, Daube-W itherspoon and Muehllehner ([15]) 

provide further empirical evidence of this, but point out that the ISRA requires
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far fewer operations per iteration than does EM. Both algorithms can be accel­

erated, either by applying Aitken’s A 2 procedure, or by adding a linear search 

embellishment. Lewitt and Muehllener ([64]) implement this in the case of the 

EMA for ECT, and De Pierro ([18]) points out for the ISRA both tha t the optimal 

step-length in the proposed direction is easily computed and th a t the link with 

Chahine’s ([12]) algorithm makes available further improvement mechanisms de­

veloped in other branches of the inverse-problems literature. In the next section, 

Section 4.7, we introduce some new methods for acceleration and compare their 

effects on both algorithms.

An alternative general approach to the inversion of linear equations is through 

the Fourier domain. In the situation when there are missing data, Ollinger and 

Karp ([73]) compare the ISRA with two such methods, finding th a t the ISRA is 

slow in comparison but adm itting tha t it could be accelerated.

The (very limited) evidence from Table 4.4.1 is tha t the convergence rates of 

the EMA and the ISRA are similar. The local (near the limit point) convergence 

behaviour in the case of x  with finite domain Dx is dependent on Ostrowski’s 

Theorem; see, for instance, Ortega and Rheinboldt ([74], p .300). Consider an 

iterative algorithm  of the form

s,-m) =  & (z(m-1)) ,* ~  !>•••,  M , n — 1 , 2 , . . . ,  (4.40)

and suppose th a t x  is the limit of {a^m)}. Define the m atrix U(x)  =  {Uis(x)} by 

Uis(x) = d(f>i(x)/dxs, for i t s =  1, . . . ,  M.  Then the rate of local convergence to x 

is dictated by the spectral radius of U(x).

Consider now the versions of U{x)  corresponding to the discrete ISRA given
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by (4.13) and the discrete EMA defined by

d m) =  d m- 1)(E fc i,-)-1E ( - M t - i u  )»/„» =  (4.41)
J=1 3 = 1 A  5=1 Xs llsj

This is the version of (4.10) corresponding to the more general case when hij ^

1 for all i. We can now evaluate expressions for the matrices U(x e m ) and

U(xISRA). For the ISRA,

«Mx) =  xv  Ej^ 'JT , ,» — 1, ■ ■ ■, M, (4.42)
2-JS XS Z-jj “'ij'I'sj

so that, for i, s =  1, . . . ,  M,

TT — A hjjVj „ (E j  hjjyj)(E j hjjhsj ) ' . .
J ” E***(EiMiu) •' ( E ^ E j hijhkj)2 ’ 1

is the Kronecker delta. At £, E j  E jS /j/(E s *a(E j hijh3j)) =  1, so tha t

£A-a(®) =  <E -  hsJ ■ (4.44)
E j ‘lijVj

For the EMA,

<&(:c) =  X i ( ^ E i )"1 =  1, . . .  ,M,  (4.45)
3 3 s

giving, for z,s == 1, . . . , M ,

Wi.(*) = 5is(E  /I#)"1 -  Z i(E  h i ) - 1 E ( ( E ^ ^ . )2)!/r (4-46)

However, at Efc x khkj =  J/ji f°r all j ,  so that

a.-,(i) =  -  £ . ( E M ' 1 E ^ h i - (4.47)
i i Vi

For both (4.44) and (4.47), the methods of Titterington ([94]) show that the 

eigenvalues of U(x)  are non-negative and strictly less than unity. Comparison of 

the maximum eigenvalues in particular cases would complete the comparison of
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local convergence properties. In the case of the illustration in Section 4.4.1, part

(ii), where N  = 2 and yi =  y2, (4.44) and (4.47) are identical.

4 .7  O rdered  S u b sets

We have hitherto demonstrated a large range of applications for the EMA and 

ISRA. We have shown that both algorithms will, in suitable conditions, converge 

to produce estimates of x tha t are optimal, in different but well-defined senses. 

We turn  our attention now to the problem, mentioned earlier, of increasing the 

rate of convergence. There exist many established methods (see Section 4.6 and 

also [59] or [36]) which attem pt to speed up the EMA, but a recent paper ([56]) has 

offered empirical evidence that a new method could increase rate of convergence 

by an order of magnitude. We will detail that method, offer an adaption of 

it for the ISRA, display an example of the new algorithm, and finally discuss 

convergence issues.

4.7.1 H udson and Larkin’s Ordered Su bsets EM A

In [56], Hudson and Larkin attem pt to increase the ra te  of convergence for the 

EMA, in the context of single photon emission computed tomography (SPECT) 

by splitting the data into blocks, or ordered subsets (OS) and processing each 

block sequentially. If there are K  OS, we say “OS level =  K ”. A complete 

iteration of the algorithm, called OS-EMA, is a single pass through all of the OS.

For SPECT we use the same notation developed for emission tomography in 

Section 4.3.1; {xi  : i =  1, . . .  ,il4} are the unknown values of the emissions from 

the sources, {yj : j  = 1, . . . ,  Ar} are the observed counts at the detectors, and
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hij =  Pr{emission from i is observed at j } .  The data are divided into ordered 

subsets . S i , , S'/e. Using this notation , Hudson and Larkin’s OS-EM algorithm 

is as follows.

T he d iscrete  iterative OS—EM A

1. m =  0. Choose > 0.

2. x 1 := x<ml

3. m  :=  m  4- 1.

4. For subsets k = 1, . . . ,  K:

M

x i +1 J 2 i y j hi j / l>2hi3x i \ i i =  (4.48)
j&Sk i=1

N.B. if the divisor in (4.48) is zero, set :=  xf.

5. x (m) :=  x K+1.

6. Check for convergence of {a^771)}. If 

NO — >■ step 2

YES — ► STOP. □.

The obvious extension of Hudson and Larkin’s OS-EMA to provide a new 

ISRA is to replace step 4 with:

4' For subsets k = 1 , . . . ,  K:

M

4 +1 =  **[ E  ^ M / [  M E  M 4 ) t  * =  r  • ■ ■.M - (4-49)
.jSSfc i~ 1

4.7.2 C hoice of ordered subsets

For SPECT or PET there is a natural geometrical ordering for the subsets, corre­

sponding to groups of projections. In this chapter we have been considering the
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restoration of images degraded by linear motion blur, and here we find the choice 

of subset to be less obvious.

Initally, we selected each row as a subset, i.e. S k = {row k of data}; or a 

cumulative set was chosen, so th a t S k =  {the first k rows of the image}. These 

produced results that were better than standard ISRA for the same number of 

complete iterations; however, a little thought showed that we were in fact merely 

applying the standard ISRA k times as often. For define

T„ = {*: £  +  0)
=  {z : denominator of (4.48) is non-zero }

=  {z : x f is changed }.

Then if Sk — {&’th  row (or group of rows)}, Tk =  5*, and Tk =  0> k ^  I. So 

for linear motion blur with row ordered subsets, OS-ISRA =  ISRA, and OS-EMA 

=  EMA.

However, if Sk =  {fc’th  column (or group of columns)} then Tkf \Ti  0 

since Tk = { S k -f some more of #}. So, for our experiment, we used S k = 

{fc’th  column}, and also S k = {&’th  and (k +  l ) ’th column}.

4.7 .3  E xam ple

For our example we worked with artifical image II, to which we added linear 

motion blur of size 10 pixels (i.e. param eter b == 10 in equation (4.38)). Recon­

structions were carried out using the OS-ISRA assuming, first, tha t 5* = fc’th

column, and then th a t S k = fc’th  and (k +  l ) ’th  columns. The true image, the

data, and the one-column and two-column reconstructions can be seen in Figure
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4.9. In a second trial, Gaussian noise of s.d. 2.0 was added to the data before 

reconstruction commenced -  Figure 4.10 contains the results. It seems clear that 

both one-column and two-column reconstructions are very similar to the data, a 

fact which is born out by examining the m.s.e. between the data  and the tru th , 

and comparing it with the m.s.e. between the data and the reconstruction. The 

m.s.e.’s between the data and the true image were 220.9321 and 223.9807 for the 

noise-free and Gaussian noise cases, respectively. Table 4.7.3 displays the m.s.e.’s 

between the tru th  and the reconstruction after 10 iterations, when each of the 

algorithms was stopped.

Table 4.7.3: m .s.e . betw een  th e  tru th  and reconstruction

1 column OS 2 column OS
no noise 220.8776 383.2672ocdIIb 224.1884 398.5564

Figure 4.11 displays the value of m.s.e. between successive reconstructions 

as iteration number increased. It is clear that a large initial drop in m.s.e. is 

followed by changes so small as to be almost inconsequential (this is why we 

ran the algorithms for only 10 iterations and did not use m.s.e. as a stopping 

criterion as previously). Removing the large, initial first value shows tha t this 

m.s.e. figure can increase as well as decrease between iterations (see Figure 4.12), 

perhaps raising empirical doubts about our unproved hope tha t the OS-ISRA 

will converge to a useful solution (see following Section 4.7.4). The experimental 

evidence indicates tha t it converges to a different solution than the standard 

ISRA.
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4.7.4 C o n v erg en ce

We have not been able to prove convergence of the OS-ISRA, but here we present 

details of how we feel the argument should proceed. Hudson and Larkin in [56] 

were able to prove convergence of the OS-EMA estimates to the m.Le. in the 

noise-free case, but were unable to extend the proof to the case where noise is 

present.

We attem pt to adapt the argument of Eggermont ([26]), in particular his 

Lemma 6.1, which was used to demonstrate convergence of the ordinary ISRA. 

Define D k =  d ia g {z p  E je s t ^jl/j }■, where

[ if j  €  S k
y)  =  \ (4.50)

[ yj otherwise

and also set At- =  52jesk hijyj — (Hy){.  A =  diag{A; : i = 1, . . .  , M }. Let Ik be a

diagonal N  x N  matrix with l ’s in the rows corresponding to j  € Sk and zeros

elsewhere.Then

£  hijdj =  { ( h H T )Td}i  =  { H I kd}i  (4.51)

for any M -vector d. So Ejes* feyy, =  { H I ky}j  and Ejes„ h.jX*,) =

{ H I kH Tx k}i.

Our aim, following Eggermont, is to show that

e (z* ,zfc) >  e(x%xh+1) (4.52)

where

e(x*, x) =  A/o^Az*, Ax)  +  S(x)  — S ( x *). (4.53)

Here, x * is any point of accumulation of the series of x estimates, S(x)  is the sum -

of squares function defined previously in (4.11), and A kl  is the Kullback-Leibler
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(KL) directed divergence, which we can write as

M  M

A K L ( A x * ,  A x )  =  X i x i  loS ( x i / x i )  +  X i ( X i  ~  x * ) -  (4 -5 4 )
« ~ 1  i = l

We examine the difference in KL distances between Ax* and two successive OS 

estimates of x:

A KL( ^ ' , A x k) - A KL( k x%K x k+1) =
t X i

— (xk — x k+1)T D k 1(xk+l — x*)

= ~ { x k -  ®fc+1)TI>fc1(a;fc - x k+1)

+  {xk -  x k+1)TD ^ ( x k - x * )  (4.55)

Now, (xk — x k+1)D£ 1 =  H y k — Hy = H ( y k — j/), so that the second term  in (4.55) 

can be written as

(xk -  x ' ) TH ( y k - y )  =  (H Tx k -  H Tx' )T{yk -  y). (4.56)

But in view of the definition of y k and /&, we can write (yk — y) — Ik( H Tx k — ?/),

so that

( HTx k -  H Tx*)T{yk - y )  =  (HTxk -  ffTz*)r Ik(HTx k -  y),  (4.57)

which, by convexity, dominates

i ( H Tx k -  y)TIk{HTx k — y) — 1 ( / /Tx* -  y)Th ( H Tx* -  y). (4.58)

We would like to use (4.58) to prove an equivalent of Lemma 6.1 in Eggermont 

([26 ]):
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Lem m a

( HTx k-~y)TIk( H Tx k—y)—( HTx k+1—y)TIk( HTx k+1—y) >  (xk—x k+1)Dk l (xk—x k+l).

(4.59)

Unfortunately we have not been able to prove this Lemma. Also, it may 

not be of direct help in proving convergence since it deals not with the standard 

sum-of-squares function, but contains a troublesome Ik.

4.7.5 R ela ted  work

One other approach for increasing the rate of convergence for the EMA, not 

unrelated to that of the previous section, is that of Neal and Hinton, in [71]. They 

propose tha t the EMA be viewed as a problem of maximising a joint function 

F ( f ,  0), where, as in Section 4.2, /  =  f ( x , y )  is the p.d.f. of the observed (y) and 

unobserved (#} variables, and 0 are the unknown parameters we would like to 

estimate. The E-step maximises F  w.r.t. the distribution over the unobserved 

variables, the M -step w.r.t. the parameters. The function F  is defined by

n / .  9) =  E ,[log/(* ,! /, I «)] +  <?(/),

where G( f )  = —E/[log/(a;)], the entropy of the distribution. Neal and Hinton 

prove tha t a maximum of F  a t (/*, 6*) implies tha t 0* is also a maximum of 

f ( y  | 0) = Ylx f { x iVi I 0)* This justifies the use of incremental methods, where we 

seek only to increase, rather than maximise, the value of the likelihood, at each 

stage of the algorithm. Assuming the {a^} are independent, so tha t F ( f , 9 )  ~

E i Fi(fi, 0), where

Fi ( f i7$) =  E [ l o g f ( x i t y i \ e ) ]  +  G ( f i ) t
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Neal and. Hinton propose the following incremental EMA:

N ea l a n d  H in to n ’s in c re m e n ta l E M A  

E —s te p  Choose a data point i to be updated. Set:

/(,n) =  f ( m - D f o r ; V .

//m) ~ <irgma,xf .

where / / m) =  =  f ( x { | y ^ ™ " 1)).

M —s te p  Set 0 to 0 which maximises or, equivalently, which

maximises E/[log f ( x , y  | 0)]. □.

An ISRA version of this algorithm would be as follows:

f E " ,  hsjx ks if j  e S k 
y)  =  (4-60)

[ yj otherwise

Then the incremental ISRA (INC-ISRA) would be the same as OS-ISRA defined 

above, but with the following alteration to (4.49):

^ +1 =  4  £  k j V j /  £  M * ,  {4.61)
j£Sk j£Sk

for i =  1, . . . ,  M.  Clearly it would be of interest to implement this algorithm and 

compare with OS-ISRA.

Finally, the work of Meng ([68]), and Meng and Rubin ([69]), is related to 

these ordered subsets approaches. They have proposed an algorithm called ECM, 

for Expectation/Conditional Maximisation. The M -step of (4.2) in Section 4.2 

is replaced by a sequence of CM steps, each of which maximises Q(0) w.r.t. a

different subset of 9. For example, if 9 =  (0i , . . . ,  0$), then the s ’th CM step
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might maximise Q(0) w.r.t. 0S, all other ^-param eters being held constant at 

their current value.

4.8 R eg u la r is in g  th e  IS R A  and th e  E M A

At the beginning of this chapter we noted th a t the ISRA and the EMA were 

outside the Bayesian framework adopted in previous chapters. In some of their 

applications to image restoration we have seen evidence th a t the problems are 

ill-posed, in the sense discussed in Chapter 3. This is particularly likely in the 

case of images further degraded by noise. In Bayesian work, image estimates are 

regularised, and the ill-posedness removed, by the use of the prior distribution 

which acts as a roughness penalty function on the sum-of-squares or likelihood 

function which is to be optimised. This approach is possible with not only the 

EMA but also the ISRA.

Consider first the discrete case. Instead of S ( x ) in (4.11) we could have

Sp,a (x ) =  IIy ~  H Tx\\2 +  j3xTA x , (4.62)

where j3 > 0 and A  is non-negative definite. We have seen in previous chapters 

tha t (4.62) is equivalent to the logarithm of a normal posterior density for x , given 

?/, so th a t an EMA for seeking the posterior mode (the m.a.p. estim ate of x) can 

be constructed along the lines of Section 4.5 of the EMA paper by Dempster et 

al. ([17]).

So far as the ISRA is concerned, any minimiser of SptA(x) satisfies

K x  = v ,

137



where K  — ( H H T +  (3A) and v — H y , stimulating the algorithm

kisx^n~l)} , i  = 1, . . . ,  M.  (4.63)
s

In this case it is typical tha t some of the elements of A  are negative, so tha t it is 

not autom atic that x ^  > 0 for all m.

Silverman et al. ([82]) proposed the addition of a simple smoothing step after 

every M -step in EMA as a solution to the “spiky” m.l. solutions th a t result from 

ill-posed problems in PET. Of course the convergence-to-m.l.e. property of EM 

was then lost, but Nychka, in [72], shows a connection between smoothed EM 

and maximisation of penalised likelihoods, such as (4.62). This was made more 

explicit, and set in a Bayesian framework, by Green, in [44] and [45], who used an 

adaption of the EMA to estimate the m.a.p. rather than the m.l. estimate of x. 

He incorporated a Gibbs prior to explain prior knowledge, as we have employed 

in Chapters 2 and 3.

Turning to the case of a continuous function, the usual kind of penalty func­

tion is based on derivatives of a;, a common one being

A j {x"(v)}2dv , (4.64)

where &(•) is the density associated with the measure X(-). However, it is common 

to restrict the choice of x to some space spanned by a certain class of basis 

functions, and (4.64) reduces to a quadratic form in a transformed, finite vector 

of parameters; see Silverman ([81]), for example. The corresponding S(x)  is 

similarly transformed and the problem reverts to one of the form (4.62). Penalised 

versions of the EMA are studied by Byrne in [11].

138



4.9 A  w id er class o f  a lgor ith m s

In this final section we refer again to Eggermont ([26]), who considers wider 

classes of algorithms which include the EMA and ISRA as special cases. Consider 

the (discrete case) problem of minimising S(x)  subject to x > 0, where S(-) is 

a convex, continuously differentiable function on with compact level sets

and locally Lipschitz continuous gradient. Eggermont considers three classes of 

multiplicative, iterative algorithms, of the following forms:

x\m) =  £t-m-1)[l -  w;m{ A % (m_1))} J ,i =  1 , . . . ,  Af, (4.65)

zjm)[l +  u>m{AS,(;r(m))}i] =  =  1, . .  ., M,  (4.66)

and

x\m) = ^ ’"""^/[l + w m{ A % (m_1))},],i =  1 , . . . , M .  (4.67)

In (4.65)-(4.67), wm is a step param eter. Algorithm (4.66) is called an implicit

algorithm and (4.67) explicit. For appropriate choices of S, wm = 1 in (4.65) gives

the EMA in PE T and (4.67) gives the ISRA. In discussing (4.67), Eggermont 

develops the convergence properties for the ISRA as described above in Section 

4.3.3, and establishes the convergence properties of the implicit algorithm (4.66) 

by a similar but slightly simpler argument.

It would be of interest to investigate other versions of these algorithms, for 

different choices of £ , for various choices of step-length {u?m}, and in the context 

of the versions appropriate for solving integral equations.

139



4 .10  S u m m ary

We have presented and investigated an algorithm, the ISRA, which can be used 

to solve the large class of LININPOS problems. We have compared it with the 

EMA of Vardi and Lee ([98]) and find it is as useful as tha t algorithm for restoring 

images distorted by linear motion blur. Our experiments with images found 

that, although the EMA converged more quickly, it was perhaps converging to a 

solution further from the tru th  than was the ISRA.

Our attem pts to adapt the ISRA to speed up its rate  of convergence, by 

applying it to subsets of the data  in turn, were less successful. We were not able 

to prove convergence of the adapted ISRA, and found disappointing restorations 

of the degraded images.

Finally, we have explained how both the ISRA and the EMA may be placed 

within a Bayesian/regularisation framework.

We feel that the ISRA has shown itself a useful alternative to the more com­

mon EMA as a tool for the solution of this wide range of problems, particularly 

in the area of blind image restoration.
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Figure 4.1: from top left to bottom right: (a) “wheels” from “cart” image; (b) EMA recon­
struction after 106 iterations; (c) difference between EMA and ISRA reconstruction: (d) ISRA
reconstruction after 106 iterations.

1 11



Figure 4.2: from top left to bottom right (a) ‘wheels” from “cart.” image; (!>) EMA recon­
struction after 40 iterations; (c) difference between EMA and ISRA reconstruction; (d) ISRA
reconstruction after 40 iterations.
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Figure 4.3: from top to bottom: (a) pixel values for EM A at 106 iterations; (b) pixel values for 
ISRA at 106 iterations; (c) difference b etw een  (a) and (b).
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Figure 4.4: from top to bottom: (a) m.s.e. between successive iterations; (b) logarithm of m.s.e. 
between successive iterations.
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Figure 4.5: from top left to bottom right: (a) "rpo” from "cart” image; (b) EMA recon­
struction after 10(5 iterations: (c) difference between EMA and ISRA reconstruction; (<1) ISRA
reconstruction after 1 ()(> iterations.



Figure 4.6: from top left t<> bottom right: (a) “rpo” from "‘cart” image; (I)) EMA reconstruction
after 40 iterations; (c) difference between EMA and ISRA reconstruction; (cl) ISRA reconstruc­
tion after 40 iterations
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Figure 17: from top left to b o t to m  right: (a) "lena image; (b) image with linear motion blur: 
(c) LMA reconstruction: (d) ISRA reconstruction
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image; (b) logarithm of m.s.e. between current iteration and true image.
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Figure 4.9: From top left to  b o tto m  r i g h t :  the true im age II; the d ata  (II with linear motion  
blur); the one co lum n reconstruction: the tw o-co lum n  reconstruction.
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Figure 4.10: From top left to b ottom  right: the true im age II; the data  (II with linear mo­
tion blur and G aussian  noise wi th s.d.='2.0): the o n e-co lu m n  reconstruction; the two column  
reconstruction.
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C h ap ter  5

E dge preserving  im age  
restoration

5.1 In tro d u ctio n

In this chapter we turn our attention to the Gibbs prior distribution we have used 

to describe the underlying true image (or, rather, which we have used to describe 

the probability distribution of the pixel values which in turn describe the true 

image). In particular, we introduce an adaption of it which, while preserving the 

useful property of inducing a local Markov dependency structure, has the aim of 

capturing edges and preventing sharp discontinuities from being over-smoothed.

Such techniques could be useful in the field of medical imaging, for example, 

if they could help mark out more clearly areas of interest in remotely sensed data.

The work in this chapter is a direct extension to the work of Abdallah and Kay 

(see [1]). We attem pt to fully autom ate their technique. Blake and Zisserman 

([9]) also used a similar concept, th a t of building into the continuity-constrained 

prior model a smaller penalty for allowing an edge.

In this chapter, as in the previous, we focus on the problem of image restora­

tion. Although parameters (3 and <j) still require estimation, we will not concern
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ourselves too greatly with their accuracy, if we can use the estimates to good 

effect.

The plan of the chapter is as follows. In the next section we discuss problems 

with the Gibbs prior we have been using, and suggest a possible remedy. Then 

we detail how param eters will be estimated, and present the algorithm for edge 

preserving image restoration. In the numerical section, we present results of the 

algorithm and compare them  with the results obtained by Abdallah and Kay, as 

well as comparing different versions of the same process. We then carry out some 

simulation studies to see how sensitive the algorithm is to changes in its input 

parameters. Finally we present our conclusions.

5.2  T h e  G ib b s d is tr ib u tio n  prior

Our desire tha t the probability distribution for x  should display a local Markov 

dependency structure has dictated tha t we choose a Gibbs form for p(x):

p{x) = Z { f i Y x exp{ - p U ( x ) } .

U(’) is the energy function, describing how the pixels interact with one another. 

We choose to specify pairwise interactions, so we can write

U(x ) = Y l ^ ( x i ~
i~j

i ~  j  indicating, as usual, tha t pixels i and j  are neighbours, as defined by the 

m.r.f. structure.

Until now we have been content to specify Vp(u) =  u2 -  a simple quadratic 

prior. Although simple to manipulate, this prior can be criticised for heavily
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penalising large differences between neighbouring pixels, large differences which 

could reasonably be expected to occur at areas of sharp discontinuity.

In the literature, this problem seems to have been tackled in two distinct 

ways; either by adapting the prior to include a “line process” , which attem pts 

to accommodate edges by modelling them explicitly in the energy function U, 

or by changing the prior merely to less heavily penalise large pixel differences. 

The former is the method of Blake and Zisserman ([9]) and of the Gemans in 

their seminal paper on image restoration ([32]). The la tter method is explored 

by Bouman and Sauer in [10], who suggest modifying the prior, by setting

-  Z j )  =  p (A | X{ — Xj  | ) ,

where A is a scaling param eter, and p(-) is a monotone increasing non-convex 

function. Chosen appropriately, such a function would show quadratic behaviour 

near the origin -  i.e., where pixels i and j  are close in value -  and flat, non-punitive 

behaviour for larger values.

In [30], two line processes are incorporated into the prior model, one hori­

zontal, the other vertical. The novelty in this approach is tha t the m.r.f. is then 

approximated by a deterministic structure, which is used to estim ate the value 

of the partition function Z, from which line process effects are averaged out.

A different approach is suggested by the authors of [33], who implemented 

a binary edge detection scheme (edges are either “on” or “off”) by classifying 

groups of pixels as “alike” or “unalike” using a Kolmogorov-Smirnov distance 

measure.
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Other choices suggested for 'k(-) include th a t of Geman and McClure ([34]):

4>(u) =  (1 + j T 2) - \

while Peter Green ([45]) proposes

i])(k) =  c\ log cosh c2(u),

for certain values of Ci,C2, chosen to make the behaviour of these two priors 

practically identical.

These choices of prior distribution certainly succeed in damping down the 

edge penalty. However, they are perhaps a little difficult to motivate, and the 

choice of param eterisation is arbitrary. In an effort to obviate these difficutlies, 

Abdallah and Kay, in [1], suggest the following form, which models the edges 

explicitly:

^ (^ - -  Xj) =  (xi — X j ) 2 (  1 — eij). (5.1)

The {e^}  denote our belief in the existence or not of an edge between pixels 

i and j] if we think there is no edge present, set =  0, otherwise, if there is an 

edge present, set e,-j =  1. A simple “on-off” scheme, where eij is either 0 or 1, we 

call a “discrete edge structure” . As we may not wish to quantify our belief about 

an edge as strictly as this, we shall also examine a “continuous edge structure” , 

tha t is, one where eZJ- €E [0,1] for all i , j .  Of course, we also preserve symmetry so 

that — Cji.

There remains the problem of estimating these edge variables. If we for the 

moment ignore the fact th a t we do not know what value x  takes, then a plausible 

scheme could be as follows. If it is assumed tha t the probability of an edge 

between two pixels increases as the absolute value of their difference increases,
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then estimation of the edges may naturally be based upon consideration of the 

contrast variables defined as

d,  = | x P} -  x p/  |, (5.2)

where xp] is the average value of the pixels i and the P pixels in the opposite 

direction to pixel 7 , where 7 € the neighbourhood of i, and P is specified 

in advance (we take P =  2 in our experiments). This definition is more easily 

understood by examining Figure 5.1.

i s a t

L -

1

j

Figure 5.1: Explanation of the x Pl notation

For images which contain edges, a likely form for the distribution of c =  {c,;-} 

to take is for it to be multimodal, with a number of local maxima corresponding 

to the edges, and an overall maximum, corresponding to the smooth part (most 

of) the image. We could therefore use the quantiles of c to make some sort of 

decision about et-y. We compare three different quantile manipulation rules in our 

numerical work:

157



C ontinuous edges

e,-

0 C{j ^  (j\

  , cij -91 <7l <  Cij <  <?2

1 <72 >  Cij

Here, <71,(72 are the p i , p2 quantiles of the c distribution. Abdallah and Kay 

supplied p i , p2 intuitively, finding tha t the quality of the restored image seemed 

fairly robust against a range of px values, but tha t selection of P2 was critical. 

1 — p2 can be equated with the percentage of the image th a t is “edge” , thus giving 

the user a physical param eter to guess at. We wish, however, to fully autom ate 

the process, and, bearing in mind the postulated structure of the c distribution, 

we specify <71 and q2 to be the C{j values at either side of the largest gap in the 

{c{j} order statistic.

D iscrete  edges — version 1

Using the same definition of <71, <72, a straightforward rule for forming edges is

&i i  —  i
1 r .. >  71 ±22.1 — 2

D iscrete  edges — version 2

A slightly more involved method to estim ate the edges is to judge whether 

or not the corresponding contrast is “significant” in some pseudo-t-value man­

ner. Thus, let ese(c) be the estimated standard error of the c values; ese =

c)2
V — n(n-i)— > where n  is the number of contrasts in the image and c is their 

arithm etic mean. Then
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0 T < kese{c)

eij = S (5-3)
I 1 ^  > k
\  ese(c) —

Here, A: is a user-supplied constant. In keeping with the pseudo-significance 

approach, we chose k = 2 in our experiments. This method does not require us 

to inspect or estim ate quantiles of the contrast distribution.

Here then are three methods of estimating the images. We have assumed 

throughout the above th a t we know the true image x. In reality, this is precisely 

what we don’t have, and before we can estim ate x , we need to estimate or supply 

reasonable values for the other parameters in the model.

We note th a t there is a certain lack of clarity about the three quantities 

x,{eij},  {C{j}, since each one is being used to define the others. One may ask, are 

the edges fixed and unknown parameters? This seems initially feasible. Like (3, 

they are a part of the image prior, set in advance at a particular level which lead 

to the generation of the true x . Or, are they themselves random variables? This 

seems inescapable since we base their estimation on the contrast variables, which 

are themselves a function of the indubitably random x.

Some of this conundrum we later attem pt to resolve, by adapting the hier­

archical Bayesian argument of Chapter 2. Meanwhile we proceed by (falsely) 

imagining tha t at each step of the following procedures, the unknown quantities 

are in fact supplied by some external agent, without reference to other factors of 

the system.
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5.3 P a ra m eter  e s tim a tio n  and im age resto ra tio n

The estim ator of (f> we employ is the residual sums-of-squares divided by degrees 

of freedom that has performed well in previous chapters. The prior parameter 

( 3  we will estim ate by pseudo-likelihood ([6]), slightly more complicated than in 

Section 2.5 due to the inclusion of the edge term. Once again, for the moment 

we assume knowledge of the true image. Then, if we write e — {efy}, and S  \  i to 

denote the set of pixels with the i ’th removed, the pseudo-likelihood function of 

/3 is

N

p s l ( x ]  ( 3 )  =  Y I p ( x { \ x 6 n { 3 , e )
t=i

N

= II Pix i \ x s\i,(3,e)
1 = 1

■q p ( x \ P , e )
=i Ir P(x I

=  T~T exp[-ff -  X j ) 2 ( l  -  ei:j)]
i'= l f t  X ){(r,s):(r,s)j£{5 ,U i} } { X r

= J J  ~  Xi)2(l ~  etj)] ^  ^
i'=l h

where R  =  /^ e x p l—( 3  — ^y)2(1 — & i j ) ] d x i , and R  denotes the real line.

If we expand the square in and move all terms not involving Xi outside the 

integral, we can write

/• =  exp[-/? x2j ( l ~  eo)l f  exv[-P{Ax?  -  2xiB}]dxi,  (5.5)
jest JR

where A  =  ~  eo) and & — YljeSi x i(^ ~  e*j)- Next we complete the square

in the exponential term  within the integral and rewrite (5.5) as
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Ii =  exp[—•/? ^2, ^ ( 1  “  eb')l 
j

x f  exp[— A[3[(xi — A~l B ) 2 — A~2B 2]]dxi
J R

x f  exp[—Afi(xi — A~xB )2]dxi. (5.6)
J R

The integral in (5.6) can be identified as a Gaussian c.d.f. with mean A  l B  and 

variance (2Aj3)~1, allowing us, finally, to write

U OC (2/? Y ^ ( l “  eij))~1/2
3

x exp[/3{E g (11_ ~ J ))12 - £ » ? ( !  -  e.,)}]. (5.7)

The pseudo-likelihood estimator of /? can now be found by substituting (5.7) into 

(5.4), taking logs, differentiating and maximising, to find

2 E £ 1{Ey6S,(l -  <*)[*, -  ’

We have now detailed how we aim to estimate the edges, and the m.r.f. 

param eter j3. However, both these estimators have assumed knowledge of the 

true image x. In practice, of course, we will need to provide a good estimate of 

x. Here, we use an approximant to the modal image estim ate , Besag’s I te r a te d  

C o n d itio n a l M o d es ([6]), which at each step of the recursive procedure picks 

as an estim ate for pixel m  the most likely value given the data, other parameter 

estimates, and the present values of the pixels in the m.r.f. neighourhood. That
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IS,

iuew _ / l ''old Ax m = &rgma,xxp(xm | x5m, i/, e , /?), 

for m  = 1, . . . ,  N . So we need to compute

i i m P(* | e ,y , / 3 )  / cz o\P(x m x 6m,e,y,/3)  =  - — — ------- — . (5.8
J r P [ x  I e , y , P ) d x m

We assume the data is of Gaussian form, as in (2.8), and through an argument 

similar to the early stages of the computation of the pseudo-likelihood, (5.8) can 

be seen to be proportional to

exp[(-l/2<£) ( y { -  J 2  h i j X j ) 2 -  /? Y ,  ( x ™ “  x i ) 2 ( l  ~  e«ij)]-
JEtBmUTTl} jEBi  jESm

Here, B m represents the “blurring” neighbourhood of pixel m, tha t is, those 

pixels which are covered by the point spread function (discussed in Section 2.2) 

associated with m atrix i / ,  when it is centred on pixel m.

Some more algebra (taking logs, differentiating, solving) produces the follow­

ing estim ate of x m

E M f) + u p
iEBm jEB{ jE&m

/ ( E hL  + U P  E (1 - e*i)). (5-9)
igB jE6 m

for m  =  1 , . . . ,  TV.

5.4  T h e  E d ge P reserv in g  Im age R esto ra tio n  A lg o r ith m

Assembling together the estimators for the edges, other parameters and the image 

itself, we can construct this edge-preserving parameter estimation and image 

restoration algorithm.
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Algorithm edge

1. Choose x old; set et-j =  0 for all i , j .

2. Estim ate from £/, x old and {etJ}, using the standard formula for (f) and 

the pseudolikelihood formula for /? in (5.3).

3. Use formula (5.9) to update x .

4. Estim ate the edges using one of the methods described above.

5. Check for convergence of x :

Y E S  — > S T O P

N O  — > set xnew xold and go to step 2. □

This algorithm, although automatic, will probably sulfer from the lack of 

consistency we discussed above. In particular we have no fixed point justification 

for the algorithm, due to the fact tha t the updating equations are derived from 

disparate sources and principles.

5.5 N u m er ica l W ork

For our tests of this algorithm, we used two artifical images, both containing sharp 

discontinuities. They were I I ,  which we have used in many other experiments, 

and 17, an image containing several circles. The same Gaussian noise, of s.d. 

5.0, was added to each image, after a geometrical blurring had been carried out 

whose p.s.f. m atrix was of size 7 x 7 .  Since initial experiments and nearly all 

our previous work suggest tha t the estim ator of <f> works well, we assumed in 

this study th a t the correct value of (f> was known. The definition of the contrast
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variables requires taking an average over a pre-specified number of pixels. We 

set this number to 2, which could perhaps be criticised for being too low.

We tested all three methods of estimating the edges ( “cts” in the tables 

below signifies tha t they were assumed to be continuous, “ave” means tha t they 

are discrete and based on the quantile average, while “ese” indicates they are 

discrete and based on the estim ated standard errors of the contrasts) and used 

three techniques to specify the values of #1 and #2- First, we specified the values of 

(Pi? P2) in advance ( “user” in the table of results); following Abdallah and Kay we 

set pi =  0.1,p2 = 0,85. Next, we examined fully autom atic estimation of (#1,(72) 

( “auto” in the tables); tha t is, at each iteration we chose them  to be either end 

of the largest gap in the { }  order statistic. Finally, as a compromise between 

full autom ation and user-interference, we combined both methods, allowing user- 

specification of px, p2 for the first seven iterations, then switching to the automatic 

method (labelled “semi” below). Unfortunately only one of the experiments ran 

for enough iterations for the switchover to occur.

Convergence was assumed when the mean square error between successive 

iterations’ image estimates fell to less than or equal to 0.5, where we define 

m.s.e., as usual, as m se(x lter, x tier~1) =  N ~ l — x f er~1)2.
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5.5.1 R esults

image: II

edge method quantile method P 4i 4l no. iters
cts user 0.7604 0.1 11.3 5

auto 0.1525 27.8 29.9 3
ave user 0.6727 0.0 12.5 12

auto 0.1522 28.1 29.8 3
semi 0.1659 27.6 29.8 11

ese N/A 0.4031 — — 4

im age: 17

edge method quantile method P 4i 42 no. iters
cts user 1.1043 0.1 3.5 4

auto 0.1558 22.6 23.9 2
ave user 0.7619 0.2 4.2 4

auto 0.1552 22.7 23.9 2
ese N/A 0.7045 — — 3

D iscussion

The results suggest that, if we are using one of the quantile methods to 

estimate the edges, the estim ate of j3 is unaffected by the assumption of either 

continuous or discrete edges. However, supplying “sensible” values for p i ,p 2 leads 

to very different results for j3 than allowing the data to specify <71, 92-

The quantiles, when estimated from the data, are much larger than when 

specified directly. In Figure 5.2 we present histograms of the contrast variables 

for the true images (undistorted by blur and noise) and for the raw data. The 

true images display the clear multimodality corresponding to the different edges 

that we expected, but the data shows no such “nice” clustering, and so our hope 

tha t the largest gap in the {c -̂} values would lead to a useful cut-off point to 

decide “edge” from “not-edge” looks overly optimistic.



The one experiment which ran for enough iterations to switch from user- 

supplied to autom atic quantile estimation instantly exhibited behaviour typical 

of those experiments where 91,92 were automatically selected from iteration one.

The “ese” method of edge detection seems to have been a compromise between 

the “user” and “auto” methods, producing estimates of (3 smaller than the former 

and larger than the latter.

There remains the im portant consideration of the image restorations them­

selves. Figure 5.3 displays the true images and the raw data; Figures 5.4 and 5.5 

show various restorations.

W ith respect to image II, the user-supplied quantiles restoration does appear 

superior to the three autom atic attem pts, in tha t much sharper edges are clearly 

evident. For 17, however, the two user-supplied restorations, although again more 

sharply defined, have spurious artifacts in areas of the image we would expect to 

be uniform. Perhaps image 17 requires specification of different values of p i,p 2 ~ 

precisely the problem with this method.

A final point is tha t the contrast variables were calculated as the average over 

three pixels only (the original pixel and two others); this may not have extended 

far enough into the image to find enough of a difference to weight the contrast 

for tha t direction highly enough.

5.6 S im u la tio n  s tu d y

We have already expressed the worry that each of the edge-detection methods 

which are based on the distribution of the contrast variables (Equation (5.2))
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may be sensitive to specification of param eter P . Recall tha t P  is the number of 

pixels used in the construction of the contrast between every pair of pixels. We 

may ask, how im portant is the value of P? Would an alteration in its value from 

that of 2, which we used throughout Section 5.5, significantly affect results?

For the method of edge estimation based on the estimated standard error of 

the {c(j} (Equation (5.3)), there is a further parameter of interest -  the pseudo 

t-value, &, which in the experiments in Section 5.5 was set to 2.0, and which is 

clearly of crucial importance in deciding the presence or absence of an edge. We 

chose k — 2.0 as a nod towards the practice of significance testing (a standard 

normal random  variable has probability 0.05 of being larger than 1.96 or less than 

— 1.96), but since the { }  are neither normally distributed nor independent, it 

is hard to justify this choice.

We therefore carried out two simulation studies to investigate the effect of 

these parameters.

5.6.1 M eth od o logy

We used image 17, with the same blur/noise degradation used in Section 5.5, 

and the same convergence criterion for each run of Algorithm edge. Edges were 

estim ated using the discrete e.s.e approach.

The estim ate of /3 and the m.s.e. between the restored image and the true 

image were used to judge the effect of the varying parameters.

Each simulation run was carried out 1000 times.

In Set 1, we varied the value of k , and held P  constant (and equal to 2). The 

threshold value was allowed to vary over k = 1.5,2.5,3.5,4.5. In Set 2, we held k
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constant (at 2.0) and varied the value of P , choosing P  =  2 ,3 ,4 , 5.

5.6.2 R e su lts

Tables 5.6.1 and 5.6.2 display the results obtained by varying parameters k and P , 

respectively. We display the average value of the statistics over each simulation 

run, and the estim ated standard errors (denoted in the tables by t£e(-)” ).

T ab le  5.6.1 : R e su lts  fro m  S e t 1

k } e(/3) m.s.e. e(m .s.e.)
1.5 0.6990 0.0013 8539.93 0.4423
2.5 0.5506 0.0011 8539.68 0.4535
3.5 0.4473 0.0012 8539.28 0.4562
4.5 0.5160 0.0052 8537.98 0.4603

T ab le  5.6.2 : R e su lts  fro m  S et 2

P P m.s.e. e(m.s.e.)
2 0.6186 0.0012 8539.76 0.4507
3 0.5159 0.0011 8539.31 0.4553
4 0.4392 0.0021 8538.83 0.4544
5 0.5854 0.0049 8537.22 0.4602

5.6.3 D iscussion

Regarding p  estimation, the value of both k and P  is crucial. It appears tha t 

/3 tends to decrease as both k, P  increase, until a changepoint is reached, after 

which the estimates increase.

Restoration of the image, however, seems very robust across the range of 

both parameters, with respect to the measured m.s.e.. Since we have already 

stated th a t we were more concerned with restoration of the image, rather than
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with param eter estimation -  since these images are certainly not realisations of 

Markov random  fields -  we are encouraged by these results.

In Figure 5.6, we display some of the histograms of the estimates of (3 and 

m.s.e. for different values of k and P. It is clear tha t the distributions of (3 are 

strongly (k ,P )  dependent, while those of m.s.e. are not.

5.7  F u rth er w ork

It may be possible to marry the “edge-preserving” prior with a more formal 

hierarchical-modelling approach. Recall tha t this requires us to specify a prob­

ability distribution for all unknown quantities, and then use Bayes’ theorem to 

form a posterior distribution in the quantities in which we are interested. We 

could approach this in the following manner.

For simplicity, assume that p({3) oc ft1?2, and p{4>) oc <j)~lf2\ tha t the likelihood 

of the data is Gaussian:

P(y I x,<j>) oc </>~N/2 e x p { - ~ \ \ y  -  H x ||2},

and tha t the prior for x  is as specified in this chapter, in Equation (5.1). We will 

need a hyperprior for the edges, {e^-}.

We could define the total edge strength associated with pixel i as

ei =  E 4 -

To keep our discussion as simple as possible, we will assume 7 =  2, although 

theoretically it too could be estim ated in the hierarchical framework.
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Then we could assume th a t the prior distribution of the edges is

p(e) oc e x p [-0 ] T ] r  e?-]. (5.10)

For the sake of estimability, we need to specify a prior for 9 ; again, to keep 

notation simple, set p(9) oc 01/2.

Then we can form the log of the posterior distribution of the unknown quan­

tities, given the data, as

-(7 V + 1 ) 1
log[p(®, </>,£, e ,6> | y)] oc -------------log T -  log

-^iiy -  tf-ir -  -  ea)
T  i r v j

- 4  log8 -  YL 4 - (5 J 1 )
i J66,

This seems formulaically similar to the ideas of Blake and Zisserman ([9]). Now 

by taking the derivative of L (y ) =  log[p(:r, </>, /?, e, 9 | y)] with respect to 0,

estimators can be found which lead to an iterative algorithm for finding the m.a.p. 

estimates, in the same manner as in Chapter 2. For example,

P = \  -  xj )2(1 ~  ea)i

, ||y -  H x |[2
9 N  + 1 ’

* 1
2 E ; E ie5i e?-’

and

^  ~  T xj ( l  ~  emj)
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for m  — 1,. . ., j/V. However, the normal equation for the edge variable is not so 

easily solved, since

~  x i)2 ekh
0ekl k~l k l£Sk

which equals zero when

E  £ « «  = 4  £(**  -  *<)*• (5-i2)
k l(z6k k~l

The solution to (5.12) would itself require an iterative procedure, within each 

iteration of the algorithm.

Alternatively, in a pseudo-empirical Bayes manner, at each step in the algo­

rithm  the {e^} could be estim ated in one of the ways we investigated earlier.

5.8 S u m m ary

We have presented a fully autom atic restoration algorithm which seeks to preserve 

image discontinuities, by building an edge term into the image prior distribution. 

A more interactive form of the algorithm, where the user supplies the (p i,p2) 

quantiles of an edge-related variable’s distribution, seems a sensible approach, if 

specification of p i,p 2 is non-problematic. If this does present a problem, then 

any of the autom atic methods seem capable of producing restorations which are 

almost as good, and which are certainly an improvement on the data.

A simulation study indicated tha t the other parameters which must be set 

by the user, although strongly influential on the estimation of the f$ parameter, 

have practically no effect on the restoration of the image. Edges in the true 

image are more sharply distinguished using this adapted prior than was the case
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in Chapters 2 and 3, which utilised the simple quadratic prior.
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Figure 5.2: Histograms o f  the contrast variables.
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1' igurt’ •)..{ [ h e  true linages and the data. Kroin top left to bottom  right: II, 17, d at a( II),  
data( IT).



Figure 5.4: Som e restorations o f  image II. From top left to b o tto m  right, we have (i) user 
supplied quantiles, continuous edges; (ii) autom atica l ly  selected quantiles, continuous edges;  
(iii) a u tom atica l ly  selected quantiles. discrete edges: (iv) discrete edges based on t h e  e . s . e .  of  
the contrasts .



f ig u re  o.o: Som e restorations of i m a g e  I , from  top left to bottom  right. w e  h a v e  ( j )  u ser-  
supplied quantiles, continuous edges u i)  user supplied quantiles discrete e d g e s ,  ( in) a u to m a t­
ically selected quantiles. d iscrete edg' v ( i \  i discrete edges based on the e.s.e o f  t h e  contrasts.
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