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Abstract

Traditional survival analysis methods are primarily those of Kaplan-Meier curves,
the log-rank test and Cox’s Proportional Hazards model. Only the first of these
techniques is routinely used to provide a graphical representation of the data. The
idea of a regression curve is used to describe the relationship between survival
time and a continuous covariate is rarely considered. This is presumably due to

the complexity of estimating a mean when there are censored observations.

Median survival times are often quoted for a set of analysed data and ex-
tending this to a median curve across a continuous covariate would provide an
intuitive description of the effect of this covariate on survival time. In this thesis,
a combination of two nonparametric procedures using kernel estimates provides
a doubly-smooth quantile estimator for the p'* (0 < p < 1) quantile of survival

time given a covariate.

Similar percentile curves can be derived for both Cox’s model and a smooth
proportional hazards models. While these allow a more explicit form of the curve
to be written down, the doubly-smooth estimator has no assumptions about the

baseline hazard rate or the shape of the covariate effect and is therefore more

flexible.

Assessing and comparing the fits of each of these approaches can be achieved
by the calculation of a form of likelihood statistic. Due to the complexity of the
mathematical properties of the nonparametric method, testing procedures are

carried out using resampling techniques such as bootstrapping and permutation

tests.

One extension of this methodology is to consider the additional effect of a
binary covariate on survival time. This is analogous to an analysis of covariance in
a Normal regression model and interest lies in how to characterise the behaviour
of the curves from each of the two levels. As before, percentile curves can be

obtained and appropriate testing procedures applied.
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An algorithm based on serum creatinine curves was developed to detect graft
deterioration in kidney transplant patients. These diagnoses had previously only
been made by the subjective, experienced opinions of physicians, whereas the
algorithm provided an explicit rule for detecting these cases. Survival times were
also obtained and these data were analysed using standard techniques. Percentile
curves were used to provide more information where the interpretation of a co-

variate effect was difficult.

In the absence of censored data, a different form of nonparametric smoothing
was considered to assess the development of children suffering from cerebral palsy.
Percentile curves were obtained using cubic splines to describe the growth of
children with this condition and to compare them with those of normal children.
This not only vindicated the belief that children suffering from cerebral palsy tend
to be smaller and lighter than normal children of similar age but also provided

standard curves useful in monitoring the development of these children.
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Chapter 1

Introduction

1.1  Survival Data

Survival data arises when there is interest in the length of time until a particular
event occurs. Although there are many areas of application for this type of
data, the most common is probably in medicine. Individuals who experience the
event are classed as failures. However, there will be cases where the failure time
is not observed. This may be for reasons independent of the condition under
investigation. For example, it may be simply because they have not failed within
the period of the study. The end point in these cases are classed as censored times.
To investigate factors which may affect the observed time to failure, one or more
covariates for the individuals are often measured and these possible effects can

be analysed.

1.2 Techniques for Survival Analysis

The most common techniques for analysing survival data can be split into three

categories.

1. Nonparametric — The product-limit estimator proposed by Kaplan and Meier
(1958) estimates the distribution of the failure times. No covariate informa-

tion is used in this method.




2. Semiparametric — Cox’s (1972) Proportional Hazards model proposes a haz-
ard function which is composed of a baseline hazard and a parametric part
which assumes that covariate values act multiplicatively on the hazard. Es-
timation of the parameter involved is usually carried out using partial likeli-
hood. Testing whether this parameter could be zero, provides an assessment

of whether the covariate has any effect on survival time.

3. Parametric — One example of this is the Accelerated Failure Time model, as
described by Kalbfleisch and Prentice (1980). This also has a hazard func-
tion which is expressed as the product of a baseline hazard and a parametric
part. However, the covariates act multiplicatively on the time variable under
this model, implying that the baseline hazard rate changes (i.e. accelerates

or decelerates) unlike that of the Proportional Hazards Model.

Main Aim - The main aim of this research is to explore ways of describing
the relationship between survival time and a covariate of interest in a nonpara-
metric manner. These descriptions can then be used as graphical methods and
as means of carrying out nonparametric inference.

Consider the Stanford Heart Transplant data which have been extensively
analysed by survival data techniques. Figure 1.1 is a scatterplot of the logarithm
of survival time against age. (A cross denotes a failure time and the circles are
censored values) There may be a slight decrease in survival time as age increases
but an appropriate line superimposed on the plot to describe this effect would be

more informative.




log10(time)

Figure 1.1 : Stanford Heart Transplant Data
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To explore and model the data, the most obvious direction to take is to con-
sider the plot of time against covariate and fit a regression curve to the data.
For uncensored data, there are various techniques to estimate the mean regres-
sion line or curve, from the parametric approach of least squares estimation to
nonparametric methods of kernel estimation and fitting cubic splines, as well as
many others.

This is more difficult when there are censored observations, since due to in-
completeness of the data, it is not straightforward to calculate a mean. Recent
work by Fan and Gijbels (1994) discussed ways of transforming censored times
to failures, then by implementing a regression technique, a mean curve could be
estimated. However, if we wish to leave the censoring mechanism intact, another
approach should be used.

Doksum and Yandell (1982) suggested a nonparametric mean regression curve
based on an identifiable integral which represents the expectation of survival time
given covariate values. Also discussed in this article is Beran’s (1981) product-
limit median. The survival time corresponding to the point at which the esti-
mated survivor function is equal to 0.5 is found for the k** nearest neighbours
around each covariate value. The collection of these “running medians” provides

a simple, but informative, description of the effect of the covariate on survival.

1.3 Quantile Curves

For a sample of data, the p'* percentile is defined as the point below which p%
of the observations lie. Percentile charts, displaying percentiles as a function of
other variables, are particularly popular for describing growth since not only can
the median be estimated for a range of covariate values but, the results and ideas

also extend to a range of estimable percentiles.

Median survival times are often quoted in the context of survival data to
give a rough indication of time to failure for a particular condition. One way to
assess the effect of a covariate of interest on survival time would be to analyse

how median survival times change for different values of the covariate. Plotting




survival time against covariate, with a superimposed line indicating the median

(or more generally, p'* quantile) times could be highly informative.

Different methods of estimating percentile survival time will be discussed
in the next chapter, particularly those of a nonparametric nature, but a brief

summary is given below.

1. Nonparametric

e The empirical quantile function produces a point estimate. The idea

can be extended to estimation over a range of covariate values, see e.g.

Beran (1981), Doksum and Yandell (1982)

e The kernel estimator of Padgett (1986) provides a smoother approach for
evaluating a percentile but does not contain any information about the
covariate. Alternatively, Gentleman and Crowley (1991) suggest kernel
estimates to calculate a Kaplan—-Meier estimator weighted by covariate

values.

o Extension of the idea of cubic splines to estimate percentiles is straight-

forward but it not clear how to deal with censored data.

2. The Proportional Hazards Model

e Once a proportional hazards model has been fitted, the survivor function
can be estimated and used to find the percentile survival time. By
estimating over a range of covariate values, Doksum and Yandell (1982)

produced a percentile curve based on the model.

e Tibshirani and Hastie (1987) proposed an extension of Cox’s propor-
tional hazards model in which the covariate effect on survival time was
assumed to be smooth and estimable by nonparametric regression proce-
dures. Quantiles under the smooth model can be estimated in a similar
manner to those produced by Doksum and Yandell (1982). This is effec-
tively a nonparametric approach and could have been listed with those
above in 1. However, there is still an assumption of proportionality of

the effect of the covariate on the hazard function.




Proposal : A doubly—smooth quantile estimator
This estimator smooths across the values of the covariate using a weighted Kaplan—
Meier estimator and across the quantile space using a nonparametric quantile
estimator. Its basis are the ideas of Padgett (1986) and Gentleman and Crowley
(1991) mentioned above. Both procedures come from kernel estimates and the

combination of these result in a graphically smooth curve.
This is demonstrated in Figure 1.2 for the Stanford Heart Transplant data,
where survival time is now clearly decreasing as age increases which was not as

obvious simply from the scatterplot. (This dataset will be discussed further as

an example in chapters 3 and 4.)

1.4 Testing for an effect

A good, clear subjective impression can be gained from the percentile curves but
it is also useful to be able to follow it up with a formal testing procedure. We

consider a variety of models of interest.

1. The covariate has no effect on survival. i.e. the values of the covariate

appear to be randomly distributed about the survival times.

2. The effect of the covariate is most aptly described by a curve estimated from
nonparametric regression techniques which assumes neither proportionality

of hazards nor linearity of covariate effect.

3. The effect of the covariate is non-linear, but still proportional with respect

to a baseline hazard.

4. The effect of the covariate is linear, within a Proportional Hazards Model.

“Linear” here refers to the hazard function in the log scale. To estimate
percentile curves from each of the last three types of covariate effect requires
the same basic approach, with the main difference being the estimation of the
survivor function. In order to summarise the information from the survivor func-

tions across the range of covariates, a form of likelihood statistic is considered.




Figure 1.2 : Median Survival Time
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The expression for this is the product of contributions from failure and ce'nsored
times given their corresponding covariate values. Estimation of the underlying
density, or equivalently the gradient of the survivor function, is an appropriate
measurement for the failure times, with the censored times contributing the value

of the survivor function at that point.

However, this statistic has little informative use if not accompanied by an
appropriate testing procedure. Due to the mathematical complexity of the theory
behind the proposed nonparametric method, resampling techniques are employed,
providing a more formal way of analysing which of the above formulations of the

covariate effect provides a suitable description of the data.
1.5 Applied Work

Two applied statistical problems have been tackled, both involving nonparametric

curves of different types. A brief summary of each of these is given below.
1.5.1 Renal Unit

Research with Dr. Peter Rowe of the Renal Unit at Glasgow’s Western Infirmary
has focussed on the deterioration of a kidney graft in transplant patients. The
main aim initially was to construct a way of detecting if, and when, progressive
graft dysfunction, a particular type of deterioration, had occurred. This is often
routinely decided by physicians on the basis of decreasing serum creatinine levels
over time. The aim was to develop an algorithm, using elementary statistical
techniques, to mimic the ideas and decisions made by the experienced medical eye.
This would provide a more objective and standard procedure for classifying cases
where this condition has occurred, as well as making explicit the features of the

serum creatinine profile which leads to diagnosis of progressive graft dysfunction.

Using the results from the algorithm, an investigation was carried out into

which factors are associated with the occurrence of this condition. A combina-




tion of traditional survival analysis methods and the percentile curves approach
revealed that only a very small number of covariates had significant effect, but

that these effects were important.

1.5.2 Linear Growth Curves

At the Kennedy Krieger Institute in Baltimore, researchers were interested in the
growth development of children with cerebral palsy and how they compared to
normal children of similar age. The height and weight measurements of children

suffering this condition who visit the Institute had been recorded.

A common approach to analysing this kind of data is linear growth percentile
curves. Charts for normal children have been produced in this way and provided
a means of comparison to children with cerebral palsy. Under the supervision
of Dr. Scott Zeger, the percentile curves were estimated using a weighted cubic
spline where the weights were used to transform the spline from estimating the
mean to estimating the quantile of interest. Since the amount of data used to
calculate the percentile curves for the cerebral palsy children was much less than
that used to calculate the curves for normal children, it was important to assess
the amount of variability in these new curves. This was achieved by plotting the

percentile curves from bootstrap samples.

It is hoped that these linear growth curves for children with cerebral palsy
will be used in both the Kennedy Krieger Institute and other such centres to help

in the understanding of the development of these children.




1.6 Summary of Chapters

CHAPTER 2 is a review of quantile estimators and their properties. While it
attempts to cover many of the different approaches described in the literature,
nonparametric estimators and those relevant to survival data are discussed in

most detail.

CHAPTER 3 describes and discusses the doubly-smooth quantile estimator.
This is pursued through graphical examples and the calculation of a likelihood
statistic. A principal aim of this chapter is to compare this new approach with

those based on a commonly used form of model, such as proportional hazards.

CHAPTER 4 considers the use of resampling techniques as the basis of infer-
ential tests. Standard permutation tests are applied and a review of bootstrap
methods for survival data is given as a justification for the procedures used to

compare different models.

CHAPTER § takes all the proposed ideas from the previous two chapters and
extends them to the case where, in addition to being interested in a continuous

covariate, the effect of a binary covariate may also be important.

CHAPTER 6 gives full details of the analysis carried out to detect a particular
form of deterioration in transplanted kidneys and the investigation into factors

which influence this condition.

Finally, CHAPTER 7 describes the construction of centile growth curves for

children with cerebral palsy using a cubic spline approach.
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Chapter 2

Review of Quantile Estimators

The following sections review quantile estimators by stepping through a develop-
ment of ideas, considering at each stage those for the uncensored and censored
cases. After stating a few preliminary definitions, basic empirical quantile es-
timators are discussed and this is followed by an extension to nonparametric
smoothing quantiles. To incorporate a covariate, nonparametric quantile regres-
sion curves are reviewed. Finally, there is a discussion of how to obtain similar
curves under Cox’s Proportional Hazards model. This chapter is intended to
be a comprehensive review of published work in this field, hence many of the

mathematical results are quoted for completeness, without further exploration.

2.1 Preliminaries

2.1.1 Uncensored Case

Let Xy, X5,..., X, be independent and identically distributed random variables
with continuous cumulative distribution function F. Suppose we are interested
in the (100 x p)™ quantile (0 < p < 1) of X, i.e. where F(z) = p. Note that we
are effectively considering the inverse of the distribution function and that the

quantile function can be written as
Q(p) = F~(p) = inf{z : F(z) > p}
Let X() < Xy <... < X(n)y denote the order statistic of the X;’s.

11




2.1.2 Random Censorship Model

Let X7,..., X2 denote a sample of failure times for n items or individuals. Since
these rannot always be observed, we also have a sequence Uy, ..., U, of censoring
variables.

The observed right-censored data are usually denoted by the pairs (X;, A;)

for e = 1,...,n where

1 if X2 < U
0 if X7 > U

1

X; = min{X?, U;} A = {

So the value A of a corresponding time value X will tell us whether or not that

individual was observed to fail,

The most widely used (and probably most realistic) situation is the one in
which the random censorship model is applicable. Here we assume that the X?’s
are non-negative, independently and identically distributed random variables with
common, unknown distribution function F,. Also that the U; ’s are a random

sample from a distribution G' and are independent of the X? ’s.

Under this model, the distribution function of each X; is

F=1-(1-F)(1-0)

Since we are discussing a series of time values, it will often be appropriate to
look at these values as an ordered sample. While it should be obvious when the
estimators referred to are suitable for survival data, to make the distinction even
clearer, (t(;),6;) will denote the ordered X;’s, with ¢(;y referring to ordered times

and ¢; referring to the corresponding censoring indicator.

The quantile function when censoring is present is similar to @(p) above, but

depends only on the distribution of the failure times.

Q°(p) = I (p) = inf{t : Fy(t) = p}
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2.2 Empirical Quantiles

2.2.1 Uncensored Case

The most common estimator of F' is the empirical distribution function, defined
by

~ 7 .

F(X(i)):g ’L=1,...,TL

The p** quantile can then be estimated by

Q(p) = F7(p) = X(u))
where F is the empirical distribution function and [| denotes an integer value.

Another way of formulating this (see David(1970)) is that the probability
integral transformation v = P(z) takes the r** order statistic X into the rtt
order statistic V() where V4,...,V, is a sample from a rectangular Un(0,1) dis-
tribution.

50, Vry = P(X(r)) or equivalently X,y = Q(V,))

Expanding Q(V(r)) in a Taylor series about E(V(,)) = ~*5 = p, and
var(Viy) = (7:4(—?)_;(:22) = ”’gﬁf”) gives rise to the following properties.
pr(L —pr) -2
E(Xm) = " 2
(Xm) =Q(p) + 2 +2)Q( pr) +O((n+2)77)

var(Xey) = ZEZP) () () 4 0((n 4 2)7)

pe(l = )

cov( Xy, X(sy) = ——

— 5 @'(p)Q (p:) + O((n +2)7")

Note that Q'(p,) = where f is the derivative of F'.

f(Q( r))
Also, for 0 < py < p2 < ... < p < 1, the joint distribution of K(lnp;])

(7 =1,...,k) tends to a k-dimensional normal distribution with
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means Q(p1),...,Q(pr) and covariance

pi(1—pr) .
FReNfQEy St

oV (X(np,])» X(nps])) =

2.2.2 Censored Case
When censoring is present, it is usually more appropriate to discuss the survivor
function than the distribution function, where

S(t) =1— Fy(t) = Pr{survive beyond time t}

Kaplan and Meier (1958) derived the product-limit (PL) esimator which is defined

as follows :
1 0<t<tgy
S(t) = GRS tpey <t <tw k=2,..n
0 tin) <1

While the empirical distribution function has jumps’ of size * at each data-point,
the PL-estimator has ‘jumps’ which occur at failure times only, with the size of
each being determined by the number of censored values between two consecutive

ordered failure times.

Gill(1983) showed that, under very weak conditions on the censoring pro-
cess, the PL estimator is asymptotically normally distributed. This will be ex-
pressed more explicitly in terms of the PL-process. Breslow and Crowley(1974)
and Aalen(1976) proved that the PL-process

Ba(t) = /R(F,(t) — F(t)) — 00 <t < o0
converges weakly to a mean zero Gaussian process with covariance structure
cov(B(s), B(1) = (1 = Fo())(1 = F(0) [ L= F(w)]2dP(u) s <

where F(z) = [F(1 — G)dF,is the subdistribution function. Burke et al. (1981)

established strong approximations of 8, in terms of Gaussian processes.

14



The PL-quantile function is defined as
Qn(p) = inf{t : 1 — 5(t) > p}

which leads to the PL-quantile process

m(p) = Vrf(Q)(Q(p) — Qu(p))

where f is the derivative of F'.

The weak convergence of v, was proved by Sander (1975). Doss and Gill
(1992) derived a similar result by stating and proving a general theorem involv-
ing Bahadur representations which can also be applied to quantiles under the
proportional hazards model (discussed later). Aly et al.(1985) derived strong ap-
proximation theorems for the PL-quantile process by a generalised Keifer process.

Cheng(1984) developed an almost sure representation for Q,(p) which showed

that under a set of sufficient conditions, with probability 1,

S Qn(p) — Qp) — %—QF&S—))—)

as n —+ 0o, where 0 < p, <1, which led to the corollaries

= O(n"%(logn)%)

1. With probability 1

sup |Qn(p) — Q(p)] = O(n"7(loglogn)?) asn — oo
0<p<po

sup |va(p) — N(p)| = O(n”%(logn)%) asn — oo
0<p<po

where N is a sequence of identically distributed processes with zero mean
and covariance function

cor(N(p), N(@) = (1 =)L~ 0) || gy, PS¢

Chung et al. (1990) were concerned with estimating confidence bands for
the quantile function under the random censorship model. Previously bands had
been calculated for the PL-process and then inverted for the quantile function

(see e.g. Csorgé and Horvath (1986) ) but these were not asymptotically correct.
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The authors of this paper used a more direct approach by proving that the PL-
quantile process converges weakly to a Weiner process.

Brookmeyer and Crowley (1982) were also interested in providing a nonpara-
metric aysmptotic confidence interval for median survival time. The approach
applied here was to invert a generalisation of the sign test for censored data.

The sign test is also employed by Reid (1981). The facts that F,(p) is asymp-
totically normally distributed, and the sign test statistic for censored data is a
linear function of F,(p), imply that the test statistic is also approximately nor-
mally distributed.

Slud et al. (1984) compare a number of methods proposing estimates for non-
parametric confidence bands for median survival time based on right-censored
data, including those by Brookmeyer and Crowley (1982) and Reid (1981) men-

tioned above.

2.3 Smooth Quantiles

2.3.1 Uncensored Case

The methods in the last section choose the value of the p** quantile to be the data
point whose empirical distribution (or PL) estimate is smaller than but, closest to,
p. The main drawback to sample quantiles is that they experience a substantial

lack of efficiency, caused by the variability of individual order statistics.

Reiss (1980) proposed gquasiquantiles which take the average of two order
statistics a distance of m points from the sample quantile of interest,

Le. form € {1,2,...,min{(np) — I,n — (np)}}

~ Xn—m+Xn m
Go(p) = Kl )2 ([npl+m))

Other linear combinations involving a larger number of order statistics were
also suggested. The efficiency of two estimators can be measured by calculat-
ing lim,.., of the ratio of their variances. The relative deficiency of the sample

quantile with suitable quasiquantiles tends to infinity for increasing sample sizes.
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Linear combinations of this type are simple forms of smoothing and suggests
that averaging over the order statistic, by weighting observations according to
their proximity to the sample quantile, may be an improvement over the raw

sample quantile alone.

Stigler (1974) discussed an estimator of this form, namely

ZJ (n—l- 1) X

z""l

where J is a suitably chosen weight function e.g. if J(u) = 1 then B, is the sample
mean. Asymptotic formulae for the mean and variance of B,, were derived. Weak

convergence to a Gaussian process was also established.

A common technique for smoothing is kernel estimation. When considering
distribution functions, it is natural to think of the order statistics referring to
the horizontal axis, and the empirical distribution function to the vertical axis.
However, when the object of estimation is a quantile, this order can be reversed,
with the point of estimation p (0 < p < 1) referring to the horizontal axis and the
quantile scale expressed vertically. Standard nonparametric regression methods
can then be applied. This is not a viewpoint which has been adopted in the

literature, but it provides a helpful perspective on suggested estimators.

Parzen(1979) suggested an estimator of the form
1. 1 _
Tup) = [ F )y K (“ p) du
0 h, hn

- ZX(h/ ( )d"

where K is a bounded probability density function which is zero outside a finite

interval (-c,c) and is symmetric about zero, and {h,} is a “bandwidth” sequence
of positive numbers such that A, — 0 as n — oco. This estimator can be viewed as
arising from a nonparametric regression of X(;) on ;‘; (using a form of smoothing

proposed by Gasser and Miiller (1979) ).

Yang (1985) approximated this estimator by

ZX()*K (é_ )
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Using standard Taylor series expansion arguments, it can be shown that
- 1
B(T) = Q(p) + 5h°Q"(p) [ w*K(u)du + O(h?)

var(T,) = Q%@Ep(1 —p) — & (” L 9h { / tK(1)K* (t)dt} + 0( )

This shows that to first order, the kernel quantile estimator has the same basic

properties as the sample quantile estimator.

Yang(1985) also reported the following results :

1. The kernel-quantile process has the property that

- B _ _ lF(Q(p) — Pl
Va(Ta(p) — Q(p)) = —v/n QW) + 0p(1)

2. For 0 < py < p2 <...<pr <1, the asymptotic distribution of

ValTu(p) — Q(p1), - -, Tulpr) — Q(p)]

1s k-dimensional normal with zero mean vector and covariance matrix with

elements
pi(1 —p;)
F(QP))F(Q(p;))

Falk(1985) also derived multidimensional normality for this estimator.

Ly =1,k <

3. fn(p) and T,(p) are aysmptotically equivalent in mean square, and results 1

and 2 also hold for T}, (p).

Falk (1984) derived the asymptotic mean squared error, and Sheather and

Marron (1990) extended this to a higher term.

MSBT(p) = ~p( = pIQG ~ Q)N [ wk(w)K(u)du

—|~ih4[Q"(p)]2 [ I uzK(u)dur +O(n™th) + O(R")
where K*(z) = (Y, K(y)dy

Now define ¢(n) = min{j € N : MSE(@j(p)) < MSE(T.(p))}
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Falk(1984) showed that
lim (z(n) - n) _ 2/ eK(z)K*(z)dx

neN nh p(1 — p)

and so the quantity ¢(k) = 2 [2K(2)K*(z)dz can be regarded as a measure

of the asymptotic performance within the class of kernels. The sign determines
whether the smooth quantile estimator is better than the sample quantile (i.e. if
(k) < 0) or vice versa. Sheather and Marron (1990) commented that for large

samples, the deficiency will be relatively small.

Note that to estimate the variance of T,,(p), and therefore be able to construct
confidence intervals, it is necessary to estimate ()'(p)( also written as (F71)'(p).)
Falk (1986) proposed that since T, (p) — F~'(p) for n € N, in probability, then
the derivative of T, with respect to p would tend to the derivative of the quantile

function in probability also. So the kernel estimator of (F=!)/(p) is defined to be
1 1 p—
) = [ F @) %) do

where Kt : R — R denotes a kernel function. Under fairly general conditions,

this is shown to be asymptotically Normal.

Sheather and Marron (1990) derived an expression for an asymptotically op-
timal smoothing parameter obtained by minimising the asymptotic mean squared
error of T,,.

For p # 0.5, this is

hopt =

215, LI )] % EC) s
UKW | Q)

For p = 0.5 and [ symmetric, no single value of & minimises M SE(T,(0.5)).
Here, any h satisfying h = constant *n™™ (0 < m < 0.5) will, for larger values of

the constant, produce an estimator with smaller mean squared error than @(0.5).
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2.3.2 Censored Data Case

Padgett (1986) presented a smooth nonparametric estimator of the quantile func-
tion for right-censored data based on kernel estimates.

Extending the sample quantile function to one which was appropriate for cen-
sored data required replacing terms involving the empirical distribution function
with equivalent ones from the product-limit estimator. The same idea applies

here and we adjust the smooth quantile function, T}, accordingly to produce the

p>du
I R Y L. u—p)
= h;t(z)/h_lh( 5 du

where 7; = §(t(i)) — §(t(,-_13) and J; = Y 7., jk , the cumulative jump, as defined

estimator,

Qu(p) = 7 [ Gt (*

earlier.

This can be approximated by

P =1y —p
Qul _h; ’ﬁK< h )

Due to censoring, results similar to those derived by Yang and by Falk are
very difficult to obtain. However, under general conditions, Padgett (1986) proved
that Q).(p) is strongly consistent.

Lio et al. (1986) showed that the process

Vr[Qn(p) — Q°(p)]

converges in distribution to a Gaussian process with zero mean and variance
Q) [1 — F(u)] *dFY

i = (1 gyt [T L E IR )
0 13(Q°(p))

where F is the sub-distribution function of uncensored observations. Lio et al.

(1986) established an asymptotic uniform mean-squared equivalence of @, and

@r-

Lio and Padgett(1987) derived an expression for the mean squared error of

@n. However, Ghorai and Rejté (1990) obtained a slightly different result for this
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quantity and were subsequently able to obtain information about the relative

deficiency of @,,. The latter authors derived

nMSE(Qa(p)) = ( e ) /o%) UGB | ot iogn)

1@Q() (1= Fw)?
leading to
t 1-G . 2k JuK(u)K*(u)du
nMSE(Qn(p)) { 7 Q (1 —F)? FdF, Q)1 — G(Q(P)))H

< O h2m+2) + O(h2) + O(n4 pmtL logn) + (n_% log n)

Recalling the expression for the mean squared error of the PL-quantile func-
tion, the relative deficiency can be assessed, as for the uncensored case, by

i(n) —n  where i(n)=min{j: MSE(Q;(p)) < MSE(Q.(p))}

and

L (z(n) - n) _ 22K (z)K*(z)dz
n nh HQ(p)(L ~ G(Q(p)))o™(p)

where

2 ( 1—p )2 /Q(p) (1 — G(u))dF,
o" = —_—
QW) Jo (1 F(u)?
So, if the kernel is such that [« K (z)K*(z)dz > 0, then @, performs better than

Q.

To find the “optimal” bandwidth, Padgett and Thombs(1986) suggested a
bootstrapping approach. In order to create a single bootstrap sample, the collec-
tion of observations (t(;),6;) (where i = 1,...,n) is sampled with replacement n
times. A large number of these samples are drawn and the smooth kernel quantile
estimator is calculated for each. The mean squared error of these values can be
estimated from standard formulae. From a range of values of A, the “optimal”
value is chosen to be that which minimises the mean squared error. Bootstrapping

will be discussed in more detail in a later chapter.
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2.4 Incorporating a Regression Effect

2.4.1 Quantile Curves

Quantile regression curves provide a helpful graphical representation of how a
covariate affects a response of interest. These curves have been studied in a
variety of ways. One application is the construction of centile reference charts,
which are used in medicine to compare the measurements of individuals with those
estimated for the population. Typically, the variables on these charts relate to
growth, although there is a much wider area of applications. There are many
ways of tackling this problem and what follows is intended as a review of some

of the key nonparametric approaches.

Cleveland (1979) proposed fitting a smooth line to a scatterplot using locally
weighted regression. Healy et al. (1988) simplified and extended this idea to
estimating smooth centile curves, making use of polynomial regression and the

empirical quantile function.

The LMS method, introduced by Cole (1988) finds appropriate Box—Cox
transformations of the explanatory variable across the range of the covariate and
summarises the characteristics of the data by 3 curves representing the median,
coeflicient of variation and skewness. From these, centile curves can easily be
obtained. While this method is essentially a parametric approach, the extension
proposed by Cole and Green(1992) introduces a nonparametric aspect to the
problem. The original method required that the covariate should be grouped but
the improvement made by Cole and Green uses maximum penalized likelihood to

estimate the curves more directly using natural cubic splines.

Jones, in the discussion of the paper by Cole (1988), proposed that minimising
the sum of the absolute deviances and adding on a roughness penalty could

produce a spline smoothing regression quantile.

Kernel estimation of centile curves was also discussed by Jones and Hall(1990)

and Rossiter(1991). Jones and Hall (1990) regarded this as a nonparametric re-
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gression problem. Suppose we have data (z;,y;) where the y,’s are assumed to be
realisations from the conditional distribution of Y'|X = z with associated distri-
bution function F.(y). The regression quantile ¢,(z) is defined by Fy(g.(z)) = a
for o € (0,1). Stone (1977) proposed a weighted empirical distribution function,
F,, where the weights determine the jump at y; by the distance between = and
z; (instead of each being equal to ). Jones and Hall (1990) used kernel weights

to produce F, and solve Fy(Ga(z)) = . This can also be formulated as

go(2) is the solution # to the equation

Hol0) = 35 Wi(e) (s — 0) = 0
where
Uo(2) = alooo)(z) — (1 — @) (—c0,0)(2)

and

1 = T—u
Wi(z) = E/% K( W )du
where 14(z) is the indicator function, K is a kernel function and h, is the smooth-

ing parameter (as defined earlier).

The mean squared error of this estimator was proved to be the following

MSE(Gu()) = % [ / 2’ K (w)dm]2 {%}2

From this, the asymptotically optimal value of the smoothing parameter is given

by

i

b [ K*(z)dz ol —«) : -
* S22 K (x)dz [F(q())]?

Jones and Hall (1990) also derived results of this sort for the more general case

of the random design, which replaces the weight function W;, with

. 1 T —
Wi(m):nh K( h )

Rossiter (1991) used the nonparametric smoothing approach to density esti-
mation, using multidimensional kernels to condition on one or more covariates.
The percentiles were calculated by solving the integral of the estimates obtained

for the density for p using a Newton-Raphson procedure.
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2.4.2 Quantile Curves for Censored Data

A report by Doksum and Yandell (1982) explored ways of graphically describ-
ing the effect of a covariate on survival time by quantile curves. Semiparamet-
ric and parametric methods of achieving this can be based on the Proportional
Hazards and Accelerated Failure Time models respectively. The nonparametric
approaches discussed in this article are Beran’s running product limit median and

a running product limit mean.

Consider the data as a set of triples ((;), 6;, z;) where z; is the covariate value
for the ¢** individual ordered by time. Under the random censorship model, it is

assumed X° and U are conditionally independent given Z.

Beran(1981) proposed a running product-limit estimator (BRPLE) which is
conditional on a covariate. The idea is to choose a set of covariate grid values and,
for the time values corresponding to the k%" nearest neighbour covariate values,
calculate the product-limit estimates. This can be written formally as

Sty =TI [1=Ais(2)
{5l <t}

where
R iy = b8 € ()]
/\. =
ik (2) #[Y) > t,0 € Ii(2)]

and Ij(z) are the indices of the k** nearest neightbours of z.

The conditional median survival can then be defined to be

m(z) = 5lm*(2) + m™ ()]
where mt(z) =inf{t: S(t|z) < 1}
m”(z) = sup{t : S(t|z) > 1}
Plotting m(z) against z provides a nonparametric median regression curve for
random right censored data. Doksum and Yandell (1982) established consistency

and derived asymptotic distributions and confidence bands for this curve.
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Recall that the product-limit estimator for survival times can be Writ;cen as
5ty =TI (1 - —1—)
it <t n—141
Gentleman and Crowley (1991) extended this to the p** quantile and proposed
that kernel weights be used instead of k** nearest neighbours to estimate the
Kaplan-Meier. This can be written as

N ONR
Sh(tlz) = Mllt [1 2ieR; Wj(z)]

where W;(z) is the weight attached to the :** individual according to its covariate

value’s proximity to the point of interest and R; is the risk set (i.e. individuals

who have not yet failed or been censored) at time .

Si(t|z) can also be written as

n . . — Wiz 8
Sue) = ] [ BRI > 0 = W)

i<t ?:1 Wi(2)I(t; > t)
which in the uncensored case becomes
~ WY
Sh(t]z) = ZJ;—”-J« where Y; ~ Bi(1, S(t|z))
J=1 W?

Using Taylor expansions, it can be shown that
I h? " 2
B(Si(tle)) = S(tl2) + 55"(¢)2) f W2 K (u)du

var(Su(t]z)) = S(t]z)[1 = S(t|z)] + O(R)

Quantiles calculated over a range of covariate values are not necessarily smooth.

Gentleman and Crowley (1991) smooth the resulting curve using a kernel smoother.
Doksum and Yandell (1982) defined the running product mean to be

() = /0°° S, (tz)dt

However, with right-censored data, the right tail of the distribution function
cannot be estimated with much precision and so estimates of the mean will not

be accurate.
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2.5 Proportional Hazards Quantiles

2.5.1 The Model

A median curve under Cox’s(1972) Proportional Hazards (PH) modc! was men-
tioned very briefly as a semi-parametric method in the last section. While all the
techniques for quantile estimation mentioned so far have been nonparametric,
the main aim of this research is to provide quantile curves for censored data and
the proportional hazards model is a widely used tool in survival analysis. This,
and the fact that we will use it later in a formal test of covariate effect, makes it

appropriate to be discussed in the present context of quantiles.

The proportional hazards model of Cox (1972) specifies that the hazard rate

for an individual with covariate z is

At]z) = A(t) exp(B, 2)

where 3, is an unknown coeflicient and A is the underlying baseline hazard rate.

The survivor function under this model is written as
S5(t17) = S,(070

where S,(t) is a baseline survivor function. An estimate for 8 is usually found
by maximising the partial likelihood to give f and the baseline survivor function

can be estimated by

1—1
Solt) = I1
J1=

0

ety

E]’ER.‘ exp(ﬁzj)

Tibshirani and Hastie (1987) proposed a more general form of the PH model,

namely
Atlz) = A(t) exp( s(z) )
where s{) 1s simply a smooth curve of unrestricted shape. This will be referred

to as the smooth proportional hazards model.

One way to estimate the s(z) values, as proposed in the aforementioned paper,

is by application of the local likelihood technique. This uses the £** nearest neigh-
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bours of a covariate value of interest to estimate local partial likelihoods. These

are then maximised to provide the estimates of s{z). This can be formulated as

exp(zi5;)
PL; =
lel]-D—er:N; ZjeRmN; ewp(zj/gi)

»

where D is the set of indexes for the uncensored t¢’s, R; is the risk set and N;
represents those in the k™ nearest neighbours set. The smooth terms are then

estimated, using the trapezoidal rule, by

3(e0) = (e — 7 BT =)

To estimate the baseline survivor function, the fz; terms in the formula above
for S,(¢) in Cox’s PH model are simply replaced by the §(z;) values. This
provides a model whose description of the covariate is less restricted than that of

the monotonic behaviour in Cox’s PH model.

2.5.2 Quantile Curves under the PH model

Literature on quantiles under the PH model has focussed on the Cox model. Let
£,(2) be the pt* quantile of the distribution of the life length of an individual with

covariate z.
Doss and Gill (1992) showed that
Va(Ss() = 8(),8 = B) 5 (V(), W)

for some continuous mean zero Gaussian process, V, over a suitable interval and
W, a normally distributed random variable with mean zero, where Sg is the

estimated survivor function under the PH model.

Now the p** quantile survival time for a given covariate value z* can be found
by solving
SO = 1—p  fort

which can also be written as
&(2) = 871(1 = p)rF)
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Doss and Gill (1992) proved the weak convergence of the process

G(z) = \/ﬁ(gp(z) —&(2))

Dabrowska and Doksum (1987) also proposed similar estimates of this type, ex-
pressed in terms of the integrated hazard, which were discussed by Burr and Doss
(1993) along with the above estimator. Although these were shown to have the

same first order asymptotics, {, was shown to have “sounder theoretical basis”.

Burr and Doss (1993) proposed two approaches to estimating confidence
bands for percentile survival time under the PH model. The first method pro-
duced what they called “simulated process bands”. Noting that the process, (,,
converges to a distribution, V,, which is 2 Gaussian process defined on K, the
distribution of sup [V},(z) can be simulated and used to find the required critical
constants. The second method used the idea of bootstrapping, which will be

discussed in more detail in the next chapter.

Choosing a range of values of z* and plotting the estimated PH quantile
will produce a curve which describes the effect of the covariate on survival time
under the PH model. Although the mathematical properties of a similar quantile
estimation method for the smooth PH model case are more difficult to explore,
an analogous procedure is obvious and may prove to be a useful comparison
to those curves from Cox’s model. Because of the structure of the model, PH
quantile curves have monotonic behaviour, although for curves under the smooth
PH model, and for the sample and kernel quantile curves, this need not be the

case.

2.5.3 Plots of PH quantile curves

To conclude this chapter, the expected shape of the curves under Cox’s Propor-

tional Hazards model are discussed.

Consider 3 sets of data, each simulated from a PH model but with values

of B of -2, 0, 2. Scatter plots of these data are shown in Figures 2.1-3, with
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failure times denoted by crosses and censored times by circles. These cases rep-
resent increasing hazard, no covariate effect and decreasing hazard respectively,

as covariate values increase.

Figure 2.4 depicts the three estimated baseline survivor functions for these
data. The curve with the long right hand tail is that with 8 = —2. The next
plot focusses on the 0-1.5 survival time range and there appears to be very little

difference in any of the curves.

The quantile curves are calculated by finding the survival time at which the
survivor function for particular covariates is equal to a chosen percentile. The
slope of these curves is determined by the estimated value of the regression co-
efficient, . The difference of effect of these values is clearly seen in the last
three pictures. Here, in Figures 2.6-8, the median curves are plotted at 30 values
across the range of the covariate and superimposed on the scatter plot. It can
be seen that, due to the exponential power on the covariate, if the curves were
transformed to a logarithmic scale, the quantile curves will be approximately a

straight line.

With visual knowledge of what to expect under a PH model, a nonparametric
approach is now proposed which has no underlying assumptions about the model

and therefore is a much more data—driven technique for obtaining quantile curves.
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Chapter 3

The Doubly—Smooth Quantile
Estimator

3.1 Imtroduction

The principal aim of this research is to provide a method for obtaining non-
parametric quantile curves for the analysis of survival time in the presence of a
continuous covariate. By combining different ideas, described in previous sec-
tions, a doubly-smooth gquantile estimator for right-censored data is proposed.
This estimator smooths, using kernel estimates, in two directions — in the quan-
tile space and across the covariate. It is the combination of these procedures
which produces a curve which is smooth. Each smoothing component is based on
nonparametric regression, applying appropriate weightings of the covariate and
order statistic. This simplifies the computation involved for the quantile curves,

compared to other existing proposals.

The first step is to construct a local estimate of the distribution of survival
times. The data are weighted by the proximity of each individual’s covariate val-
ues to the point of estimation. The weighted Kaplan—Meier, discussed in section
4.2 of the previous chapter, produces a step function, whose size of “jump” is

partly determined by the amount of censoring, and which is conditional on the

covariate.

The second step comprises of a smooth quantile function, similar to that in
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section 2.3.2 proposed by Padgett (1986), which provides a direct forrn;lla for
a fixed quantile (as opposed to solving the survivor function inversely in the
manner of more traditional quantile functions). However, in the case of this
“doubly-smooth” estimator, information about the covariate is included by using

the weighted Kaplan—Meier estimates.

Calculating this estimate at various covariate values produces a curve whose
shape will describe the effect of that covariate on survival time. The roughness

of the curve will be determined by the smoothing parameters.

Using similar notation to that used before, this can be formulated as follows:

Again, denote a sample of right—censored data by the set of triples,

{(t(l), 51, 21), (t(g), 62, 22), ey (t(n), 6n, Zn)}

where ;) is the i** ordered survival time
0; denotes the corresponding indicator
(1=failure, O=censored)
z; 1s the covariate value for the ith individual
fori=1,...,n

Let z be a point of estimation, then we can represent the data as

2 (57) (ot (552)) o (1o (552)) )
— W, R —_ T
{(t(l)aéla hlml ( hy ) t(?.)a62: hy W, hy e t(n)aén) hq W, hy

where W is a bounded probability density function which is zero outside a finite

interval (—c¢,c) and is symmetric about zero and h; is a bandwidth sequence of

positive numbers such that Ay — 0 as n — oo.

The weighted Kaplan—Meier is defined to be

- i n Wj g8
Siltole) = T ()

k=1 j=k
For a set of data containing only failure times, §; =1 for all 7 = 1,...n, and so
ki3 n n
R ZWJ EWJ Z W,
S (tols) = || |2 ]S

n n T
ZWJ' ij ZW;‘
ji=1 j=2 =1

( n Wil(t; > t(i)))
?:1 Wj
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where I(t; > tu) = 1 if t; > t;) and 0 otherwise. Denote the “jump” at each
i (&) i (%) p

time point by
W;

37 = S (t@yl2) — Suy (beanyl2) = ST W
k=1

and the cumulative jump by

Z]k""l Sh1 ')IZ)

As mentioned in Section 2.4.2, in the case of no censoring, the expectation
and variance for the weighted Kaplan—Meier estimator can be derived by standard
Taylor series expansions as shown in Appendix A. The covariate here is assumed

to be uniformly distributed over the design space.
2
B(81a(t12)) = 5(t12) + 218"(1]2) [ v K (u)du + O(42)

var(8h, (t12)) = S(tl)[1 = S(t}2)] + O(hy)

These expressions show both the characteristics of the corresponding proper-
ties of the empirical distribution function and standard nonparametric regression
estimators. To the first order, these expressions are the same as those for the

empirical quantile function. The effect of smoothing is a second order one.

The idea of the doubly-smooth quantile estimator is to take an average of
the ordered failure times, weighted by the jumps in Sy, (¢|z). This can be written

as

J*
Qno(p) = ZJ toy K ( W Py

where K and h, are defined smnlarly to W and hq.

This is a form of smoothing which is appropriate when the “design points”
here the J*) are equidistant. A more general form of smoothing ensures the
) g

weights sum to one, as suggested for the standard nonparametric case by Nadaraya

(1964) and Watson (1964), is
n . e
> It K (57
_ =1

S K (E2D)

=1
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TN,

This form, Q’}‘L, has better behaviour because it is generally monotonic, unlike
Q». The reason for this is that when there is heavy censoring of large time values
the corresponding weights for estimation of large quantiles will be very small.
However, @}: will ensure that the sum of the weights at each value of the quantile
is 1. So instead of plummetting to zero for p large, the quantile time value will
be the same, or slightly higher, than that of the last failure time.

Problems still exist when p is a long distance from the nearest failure time, but
this is a situation where the estimation of the quantile would be unwise under

any circumstances.

The basic properties of the quantile estimator

- . I (+—p
Tn(p)z_ZX(i)Eh( h )
1=1

n._

can also be found by standard Taylor series arguments and these are given by

B(T.) = Q(p) + 5hQ"(p) [ w*K (u)du + O(h?)

~

ar(Th) = @J—)ﬁpu —p)— [-Q—Iff’—)]zzh {/t[{(t)f{*(t)dt} o

)
as stated in Section 2.3.1 and derived in Appendix A. Note the similarity between
the expectations for Sy, and 7},. Also, the variance expressions are the same as
their empirical estimator equivalents to the first order. When these estimators
are jointly used to produce the doubly-smooth effect for quantile curves, k, has a
second-order effect. One way of viewing this issue is to consider that an optimal
smoothing parameter for a survivor function is n™3 (Azzalini, 1981)whereas the

: . .. 1 i
optimal rate for nonparametric regression is n”5. The slower rate of n™% will

therefore be the dominant effect.

The complex mathematics required to derive formal properties for the doubly-
smooth estimator have not been pursued. However, the expressions derived for
the properties of the separate smoothing components indicate the behaviour of
the processes taking place. In particular, it is worth noting that the crucial step

is that of calculating Sy, .
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3.2 Graphical Interpretation of Quantile Curves

All sets of survival data have the common feature that there is interest in ob-
serving the length of time until the occurrence of a particular event and that, for
various reasons, it may not be experienced by all the individuals during the study.
However, beyond this, there are many characteristics which make data-sets differ-
ent. Several examples will now be used to present some of the possible covariate
effects and also to help explain the behaviour of the doubly-smooth estimator.
The percentile curves from this estimator will be compared to those calculated
under the smooth proportional hazards (PH) model and Cox’s PH model. Note
the value of k specified for the smooth PH model refers to the proportion of data
used to estimate each s(z) value. Finally, in an uncensored example, a comparison

will be made with quantiles estimated from cubic splines.
3.2.1 Example 1 — Simulated data with no effect

The simplest model of interest is when the survival time is unaffected by a mea-
sured covariate. One way to simulate data of this form is to generate survival
times and covariate values under independent distributions, then assign a censor-
ing indicator using a binomial distribution. While the choice of parameters for
the uniform distributions is relatively unimportant, the probability parameter of
the binomial distribution will determine the proportion of censoring in the sample
and it will be useful to look at different values.

Note that data of this form are not simulated under the usual random cen-
sorship model. Randomly censored data could be generated by, for example,
choosing a failure and a censored time for each individual under different uniform
distributions and applying the definition in section 2.1.2. The data from the ap-
proach used here will result in more of the censored times being smaller since

each survival time has equal probability of being classed as censored.

A scatter plot of data representing a sample generated such that ¢ ~ Un(0.5,10),
z ~ Un(0,6) and § ~ B%(100,0.8) (chosen to achieve approximately 20% cen-
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soring) is shown in Figure 3.1.1. The plot below this, Figure 3.1.2, repli"esents
the median doubly-smooth (solid line), proportional hazards (broken line) and
smooth PH (dotted line) percentile curves. The smoothing parameters used are
hi=5 and h,=0.075 and k = %:. As we would expect, there is little evidence of
a covariate effect although the doubly-smooth and smooth PH curves are less
straight and appear to be more sensitive to chance patterns in the data. Figures

3.1.3 and 3.1.4 show the 25" and 75% percentile curves respectively for each of

the three methods and convey similar conclusions.

The following plots attempt to explain graphically how the combination of two
nonparametric regression procedures produces a doubly-smooth quantile curve.
Figures 3.1.5 and 3.1.6 show the Kaplan-Meier curve, calculated using only the
survival times and censoring indicator, as a solid line, with the broken lines repre-
senting the weighted KM curves for the values 2 and 4 of the covariate respectively.
The dotted lines in these plots are the result of the second smoothing procedure,
which focusses on the relationship between the survival times and the quantiles
(equivalent to 1- the weighted KM estimates). So, when the covariate is equal
to 2, Figure 3.1.5 indicates that at, say p==0.25, or equivalently, the estimated
survivor function equal to 0.75, the percentile survival time is approximately 5.
In other examples, it may be interesting to compare these curves for various co-
variate values, to enable a closer look at the information summarised in plots

such as Figure 3.1.2.

The behaviour of the doubly-smooth estimator under different proportions
of censoring is an important issue as most estimators similar to this (see e.g.
Padgett (1986) ) are known to perform badly in the presence of a large amount
of censoring. It will be discussed later in an inference section but, as an intro-
duction to the problem, the above analysis was repeated with approximately 50%

censoring.

Figure 3.1.7 shows the data with the doubly-smooth (solid line) and PH
median (broken line) curves. The most notable difference is that the curves are

higher than those derived when only 20% of the data was censored. The data
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est. survivor time = 1-p

0.2

est. survivor time = 1-p

Simulated data with no effect : 20% censoring
Figure 3.1.5 : Survivor curves at covariate=2

1.0

0.8

0.6

0.4

0.0

time

Figure 3.1.6 : Survivor curves at covariate=4

1.0

0.8

0.6

0.4

0.2

0.0

time

h1=0.7 .h2=0.075

41




are not randomly censored by the definition of section 2.1.2, resulting in‘ larger
numbers of small censored times. The Kaplan-Meier curve (the solid line in
Figure 3.1.8) is more of an “S-shape”, with the slope being less steep for times
between 2 and 7 but more so for larger survival times. The smoothed survival
curves estimated at a covariate value of 4 (referring to the broken and dotted lines
in the same figure) have a similar shape and show why the percentile survival

times have increased.

When the larger survival times are censored, the weighted Kaplan-Meier
curve will not drop to zero. One solution in these cases would be to simply
estimate a smaller quantile which will reflect the effect of the covariate for survival

times which are mostly failures.
3.2.2 Example 2 — Simulated Quadratic Data

A key characteristic of the doubly-smooth quantile estimator is that it is not
forced to be monotonic, unlike percentile curves derived under the Proportional
Hazards model. In Cox’s model, the covariate is expressed as exp(fz) where g
is the regression coefficient and z is the covariate and is therefore linear on a
log—scale. The curves from the doubly—smooth approach are much more flexible.
There may be situations where young and old people are more susceptible to a
certain type of infection, or where low blood pressure is as detrimental to health
as high blood pressure. In such cases, as will now be shown, smooth procedures
have a certain advantage.

Consider a simulated data set of the form
ti=(2z—34+5+e wherei=1,...,100

where z is generated under a Un(0,6) distribution and & ~ N(0,2.5). The cor-
responding censoring indicator was generated using a Bi(100,0.8) distribution to

produce a set of data which had approximately 20% censoring.

A scatterplot of these data is shown in Figure 3.2.1. Adding the doubly-

smooth 50" percentile curve (hy=>5, hy=0.075) and comparable proportional haz-
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ards and smooth PH curves (represented as a solid line, a broken line and a dotted
line respectively), to this produces the plot in Figure 3.2.2. It is clear that while
the proportional hazards assumption of monotonicity is inappropriate for these
data, the two smooth approaches present very similar quadratic median curves.
The “shape” of the data is very obviously quadratic here, not least because of
knowledge of the data’s source. However, it may be in other situations that it is

not so clear but that a graphical representation might point to its presence.

Again we can look at the behaviour of the estimator for this data more closely.
In Figures 3.2.3-4, we have a plot of the Kaplan—Meier curve (solid line) with the
weighted Kaplan—Meier curves corresponding to the covariate values of 0.5 and 3
drawn as broken lines. Since these covariate values correspond to extreme survival
times, they depict the variability of the different curves across the covariate.
Again the curves for the covariate values are looked at separately with the dotted
line here representing the second smoothing procedure, which effectively performs
a nonparametric regression analysis on ¢ vs. p. Similar plots for covariate values
of 2 and 5 are on the following page and show the different behaviour of the
Kaplan—Meier curves at points where the slope of time vs. covariate is more

gradual.

3.2.3 Example 3 — Data simulated from a Proportional Hazards Model

In the previous two examples, data have been generated in such a way that the
scatterplot has a known “shape”. In this example, the data are generated under
the proportional hazards model. This information then allows us to assess the
performance of the doubly-smooth approach by comparing it with the PH curve,
also estimated from the data but with the knowledge that the PH assumption is
true. The aim here is to examine the performance of the nonparametric approach

when the data are generated from a parametric model.

For the definition of Cox’s Proportional hazards model, see Cox(1972) or Sec-

tion 5.1 in the quantile review. Here the data are generated from a proportional
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hazards model with regression coefficient, 3, equal to -1 and a sample size of 100.
Then, for a given covariate z generated under a Un(0,1) distribution, failure times
can be simulated from an Ex(e?) distribution and censored times from an Ex(2¢*)
(although, in the PH model, censored times should be generated independently
of the covariate). A set of data of the form (time,censoring indicator, covariate)

is created and the observed amount of censoring here is 22%.

A scatterplot of the data is shown in Figure 3.3.1. As expected from choos-
ing 8 = —1, as the values of the covariate increases, the “risk” decreases and
so survival time increases but, also, the spread of values increases. As in the
other examples, this is followed by a plot with the 50¢* doubly-smooth (h;=0.1,
h2=0.075), proportional hazards and smooth PH percentile curves. For the 25t
and 75" percentile curves under the three models, see Figures 3.3.3 and 3.3.4
respectively. The subjective impression of the data is confirmed and the doubly-
smooth curves look similar to both those derived from a PH model, except per-
haps at the extremes of the covariate on the right where the smooth PH and
doubly-smooth agree. The behaviour of the smooth curves is justified here by

the relatively big cluster of low survival times in this area.

The three survivor curves, Kaplan—Meier (solid line), weighted Kaplan—Meier
(broken line) and regression on p (dotted line), have been plotted for the covari-
ate values of 0.2 and 0.8 and are shown in Figures 3.3.5 and 3.3.6 respectively.
By choosing two covariate values so far apart, the increase in percentile time is

obvious from the shift of the weighted Kaplan-Meier curves.

This example helps to show that, when the proportional hazards assumption
is valid, the doubly-smooth percentile curves present the same basic shape as
those derived from the model. Later, a likelihood test statistic calculated from the
estimated survivor functions will be used as a formal test of when the Proportional

Hazards model is appropriate.
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Data simulated from a Proportional Hazards Model
Figure 3.3.1 : Scatter plot
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Data simulated from a Proportional Hazards Model
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Data simulated from a Proportional Hazards Model
Figure 3.3.5 : Survivor curves at covariate=0.2
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3.2.4 Example 4 — Non-PH Simulated Data

The final set of simulated data considers a particular example where the propor-
tional hazards model is not applicable. Here the data, plotted in Figure 3.4.1,
exhibit decreasing variability of survival time as the covariate increases, converg-
ing to a value close to the median time.

The survival times were generated from a Normal distribution with mean 20
and sample size 150. The covariate values are simulations of an Ex(2) distribution
and the censoring indicator is chosen from Bi(150,0.5) to attain approximately

20% censoring.

Figure 3.4.2 displays the median percentile curves under each of the 3 different
methods. (The line types correspond to the same type of percentile curve as
described in the other examples.) It may be worth noting that the median survival
time appears to decrease slightly as covariate increases and that there is relatively

little difference between any of the curves.

However, Figures 3.4.3 and 3.4.4 considers the 10**, 90** and 37, 97t per-
centiles respectively and highlights the consequence of placing a proportionality
constraint on the hazard. While the doubly-smooth estimator is less efficient in
its approximation of the underlying true curves, its behaviour more accurately
describes the data than the curves produced under the proportional hazards as-
sumption. The key to this issue is that the PH model fails to capture the variance
structure across the covariate and so over (under) estimation occurs for large

(small) centile values.

Transformations of the covariate may remove some of the heteroscedascity in
some examples. However, since this is not routinely performed in PH analysis, 1t

is reasonable to assess the fit of the curves on the raw values.
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3.2.5 Example 5 - Stanford Heart Transplant Data

The Stanford Heart Transplant Data is a very commonly used example for sur-
vival analysis and was originally presented in a paper by Crowley and Hu (1977).
Assessment of the manner in which the time to death following transplantation
is influenced by age has been tackled using many different methods. Doksum
and Yandell (1987) produced median survival curves based on the Proportional
Hazards model similar to those shown already for the simulated data. The non-
parametric approach, to which they compared these curves, was based on a “run-
ning” median, proposed by Beran (1981). In this example, the number of days
to failure is usually transformed by taking the logarithm to the base 10, due to

the skewness of the data.

Figures 3.5.1-2 representing a scatterplot, with 40** percentile curves from the
doubly-smooth (h3=>5, h=0.075), proportional hazards and smooth PH (k = )
approaches help to describe the age effect on survival time. (Note : we use the
40th percentile as there is a slightly higher proportion, s~ 40%, of censoring in
this example.) It is difficult to draw fine conclusions from the collection of these
curves as each displays slightly different features. The doubly-smooth curve (solid
line) shows a steady decrease in percentile survival time as does the curve under
the PH model (broken line). However, before the age of 30 years, the doubly-
smooth curve displays a slight increase in failure time as age increases. This may
be because the majority of censored values in this region have larger age values
than the failure times. The smooth PH quantile curve (dotted line) suggests a
constant 40** percentile survival time until the age of 40, after which it decreases
relatively quickly. It is difficult to assess which of these conclusions is correct.

Futher analysis of these models will be carried out in Chapter 4.

The following four plots (Figures 3.5.3-6) show, for age values of 15, 65, 30
and 50, the Kaplan-Meier curve (solid line), the weighted Kaplan-Meier (broken
line) at the respective age values with hy=5 and the nonparametric regression of

t vs. p (dotted line) with hy=0.075.
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Above, the behaviour of the percentile curves at age<30 years was discussed.
IFrom the plot of the survival curves at 15 years (Figure 3.5.3) we see that the
regression of ¢ vs. p is perhaps over-smoothing these weighted KM curves. How-
ever, hy,=0.075 appears to be a suitable smoothing parameter across the other
values of the covariate so we will continue using this value but be aware that
effects like this may occur, particularly at the edges where there is likely to be

less data.

3.2.6 Example 6 — Multiple Myeloma data-set

The effect of age on survival time is analysed for a sample of 48 patients in a
study on multiple myeloma. Krall, Uthoff and Harley (1975) gives details of the
other covariates measured. This is a relatively small data—set with a moderate

proportion of censoring (25%).

A subjective impression from the scatter plot of the data, Figure 3.6.1, might
suggest that, for most people, survival time will not be influenced by age. How-
ever, there appears to be a small group of people for whom survival time is larger
than the rest of the sample. The general pattern of the scatterplot is similar
to the data simulated under the PH model with a regression coefficient which
would be expected to be positive. The effect of using log(time) in this example

arises naturally as a suggestion to handle skewness in the survival times (as in

the Stanford data).

Figure 3.6.2 shows the scatterplot with survival time given a logarithmic
transformation and the doubly—smooth (solid line) median survival curve with
hy=3 and hy=0.075, the proportional hazards curve and smooth PH curve (broken
line and dotted line respectively). The curves for the 25" and 75" percentiles
are given in Figures 3.6.3 and 3.6.4. While the PH median curve suggests, on
the log time scale, that survival time changes very little as age increases, the
corresponding doubly—smooth curve proposes an increase in survival time until

about 55 years, which then decreases slowly until a much sharper decrease at 70
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years. The smooth PH curve lies between these two as an intermediate suggéstion.
However, this effect is perhaps not strong enough to be attributed to more than

random variation although it is more pronounced in the 75" percentile curves.
g p b

Again two covariate values of interest are selected and the weighted KM
(broken line) and ¢ vs. p regression (dotted line) curves are displayed. Figures
3.6.5 and 3.6.6 make the difference in the higher percentiles between 60 and 70

very obvious.

While the data may be adequately described by a proportional hazards model,
the doubly-smooth approach is also providing a plausible relationship between

survival time and age which may be worth consideration.

3.2.7 Example 7 — Renal Unit Data

Chapter 6 discusses in detail the research and results of work carried out with Dr.
Peter Rowe at the Renal Unit of the Western Infirmary in Glasgow. The main aim
was to detect a particular type of deterioration sometimes found in transplanted
kidneys called progressive graft dysfunction (PGD). Following on from this, there
was interest in comparing the time until PGD occurred with survival times from
patients who had stable grafts or who had suffered from the more severe event of
kidney failure. The latter two groups were treated as censored observations for the
analysis and those who suffered PGD as failures. The effect of various covariates
was explored. One in particular required careful interpretation and we shall
use these data as another example of where the information in a nonparametric

percentile curve is valuable.

Yearly blood pressure measurements were extracted from a database of all
patients visiting the Renal Unit. Included as a time-dependent covariate in a
proportional hazards model, the mean blood pressure (MBP) was found to have
a significant effect on time to PGD. The implication of analysing time-dependent
covariates is explained in more detail in the section entitled “Factors Affecting the

Onset of Progressive Graft Dysfunction” in chapter 6. Briefly, for each year until a
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patient “fails” (i.e. experiences PGD), they are recorded as being censored at the
end of that year with their measured MBP. Each measurement is included in the
PH analysis and so most individuals will contribute more than one observation.
The scatterplot in Figure 3.7.1 displays the data as it would be entered in the
model. In section 6.3, particular attention was paid to the effect of MBP on the
occurrence of PGD in the second year following transplanation. It is this subset

of the data which is now examined.

A key feature of the data here is the amount of censoring. A large proportion
of patients at the Renal Unit don’t experience PGD, so this, coupled with the
added censored observations for the time—dependent analysis, results in only 5% of
the data being regarded as failure times. To take account of this when producing
the percentile curves, a much smaller smoothing parameter in the quantile space
is required and the 5 percentile is calculated. The doubly-smooth (h;=7 ,
he=0.02) and proportional hazards curves are shown in Figure 3.7.2 as full and
broken lines respectively. The two curves agree in that both show a decrease
in survival time as MBP increases. The doubly-smooth curve shows a fairly
sharp decrease until around MBP=110, then the curve levels out. The PH curve,

however, shows a fairly steep decrease in survival time between 100 and 120.

The survivor functions, and their smooth versions, are plotted for MBP =
100 and 120. Not surprisingly, the curves don’t even reach 0.8. It is not sensible
for the estimator to approximate smaller percentiles than this, and has been
constructed not to evaluate quantiles beyond two bandwidth’s distance of the

end time point of the weighted Kaplan—Meier.

The percentile curves in Figure 3.7.2 proved useful in aiding the understanding
of the mean blood pressure effect although the high level of censoring in the data

makes it difficult to identify its exact nature.
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Figure 3.7.1 : Scatter plot
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3.2.8 Example 8 — Cerebral Palsy Growth Data

While the doubly-smooth quantile estimator has been tailored for censored data,
it can be applied in the more usual regression setting by simply regarding all of
the responses as “failures”. Linear growth charts are one such area of application
and were discussed briefly in Chapter 2. At the Kennedy Krieger Institute in
Baltimore, data have been collected on the development of children who have
cerebral palsy. Interest lies in the growth, particularly the height and weight, of
children suffering from this condition and how they compare to normal children

of similar age. Full details of the analysis of this data are given in Chapter 7.

Here we consider the relationship between height and age for boys and use it
as an example to exhibit the comparison of kernel and spline quantile approaches.

(The estimation of quantiles using cubic splines is also discussed in more detail

in Chapter 7.)

The linear growth charts for normal children, commonly used as national
standards, were contructed by Hamill et al. (1977). Measurements on over 20,000
individuals were used to derive curves for a large range of quantile values. For
a given variable of interest, for example height, the data were divided into very
narrow intervals according to age and the empirical quantile values calculated for
each interval. These values were then smoothed using a natural cubic spline with

5 degrees of freedom to produce the necessary curves for each quantile.

A scatterplot of the data is given in Figure 3.8.1. (Note here, the y—axis
represents the height measurements and the z-axis the age in months which
correspond to survival time and covariate respectively in previous examples.)
While we obviously have less information on cerebral palsy children than in the
sample used to produce the percentile curves for normal children, there is still a
substantial amount of data. A large number of the height values were recorded on
boys under 48 months and the variability of these measurements increases with
age. To produce a more even spread of values and remove as much linear trend

as possible, the residuals from the least squares estimation fit of height vs. the
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square root of age were analysed.

The resulting 10**, 50" and 90%" percentile curves, transformed back to their
original scale, are shown in Figure 3.8.2 as broken lines. To allow a fair compar-
ison, the data were given the same transformation before applying the doubly—
smooth estimator, producing the curves represented as full lines in Figure 3.8.2.
There is little evidence of differences between the two types of curve, although
the doubly-smooth percentile curves are slightly less steep for ages greater than

168 months but this also corresponds to a region where there is less data.
3.2.9 Conclusions from Examples

Cox’s Proportional Hazards Model assumes that, in the absence of a covariate,
there exists a baseline rate of survival. Choosing the effect of the covariate to be
linear forces the percentile curves under this model to be monotonic.

The doubly-smooth quantile estimator assumes neither of these and is a much
more data—driven approach. In fact, different percentiles from this method can
have very different shapes depending on the data.

The smooth PH model provides a combination of these, with the assumption of
a baseline hazard rate and the smooth covariate effect removing the monotonicity

assumption.

As has been shown in the first seven examples, the percentile curves from
these methods are usually very similar. Disagreements tend to occur when there
are smaller numbers of data points, especially at the extreme covariate values.
Here the heavy influence of the data on the nonparametric approach becomes
more obvious. In some instances, the monotonicity of the PH model will be
inapproriate and the curves from the doubly-smooth estimator and the smooth

PH model will provide a more accurate description of the data.

The smoothing parameter values were chosen subjectively. As discussed in
Chapter 2 and at the beginning of Chapter 3, the choice of the parameter in the

covariate space (hy) is generally more important to the shape of the resulting
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percentile curve than the parameter in the quantile space (h2). However, in cases
where there is a large proportion of censoring, particularly if the higher survival
times are censored, then the choice of hy becomes more important and, in general,
we would use a relatively small smoothing parameter. This is primarily because
the survivor function may not reach zero and so estimation is over a shorter range

than zero to one.

The issue of heavy censoring was also illustrated. In addition to lowering the
smoothing parameter hs, smaller percentiles should be plotted, as information for

higher values of p can become severely biased.

Finally, two nonparametric approaches were compared in an example where
there was no censoring. When calculated under similar circumstances, there was
very little difference between the quantile curves estimated from the cubic spline

and doubly-smooth approaches.
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3.3 Choice of smoothing parameter

The choice of smoothing parameter in smoothing problems is a topic on which
much literature has been written in a variety of contexts, particularly in the case
of kernel density estimation. Many of the basic ideas have been developed and
extended to the nonparametric regression setting. Marron (1988) provides a good
discussion and comparison of smoothing parameter selection methods, although

many more articles have been written on the subject since then.

In some cases, a form of cross—validation procedure is employed, often a
least-squares approach as in Bowman (1984) for density estimation and Hardle
and Marron (1985) for regression. The criteria for selection purposes is usually
the mean square error (MSE), the integrated square error (ISE) or the mean
integrated square error (MISE). (Grégoire (1993) lists many references for this.)
Various papers discuss the asymptotic rates of convergence for these quantities.
However, it is now generally accepted that the best selection methods are those
driven by “plug-in” estimators. The choice of smoothing parameter is made using
an iterative procedure with a criteria chosen to have good convergence properties.
The kernel density estimation case is discussed by Sheather and Jones (1991).
Gasser et al. (1991) propose the corresponding method appropriate for one form

of kernel regression.

Patil (1993) and Grégoire (1993) both recommended using a least-squares
cross—validation procedure when choosing a smoothing parameter for the hazard
rate estimated using kernel functions. The quantity to measure the amount of
error here was the integrated square error. The ideas presented in Tanner and
Wong (1984) were very similar, although the proposed selection criteria was a
modified likelihood statistic. While this is a different setting to that of quantile
estimators, it would appear that the same ideas can be used in the censored data

case as in that where no censoring exists.

In the context of kernel quantile estimators, Sheather and Marron (1990)

derived an expression for an optimal smoothing parameter based on the min-

71




‘ misation of the mean squared error. Padgett and Thombs (1986) discussed the
censored data version of this estimator and selected the smoothing parameter by

minimising the asyptotic mean squared error for bootstrap samples.

A feature of the doubly—smooth quantile estimator is that two smoothing pa-
rameters must be chosen. Boularan et al. (1994) discussed a two-stage smoothing
procedure for a nonparametric mixed effects model. The smoothing parameters
used here were estimated using cross—validation, with MISE as the measure of
error, and the second parameter being conditional on the first. While this is
an additive model and so the structure is quite different to that of the doubly-
smooth quantile estimator, the ideas may still give some clues as t0 the approach
required.

Within the notation of section 3.1 and referring to the discussion of the various
examples in section 3.2, importance should be placed on the selection of hq, the
parameter which controls the smoothing across the covariate. It is essentially this
value which determines the shape of the resulting quantile curve, whereas hq, the
smoothing parameter across the quantile space, produces additional smoothing to
make the curve more aesthetically pleasing, as well as providing a simple method

of calculation of the estimated quantile.

With this in mind, one possible, relatively simple method for choosing the
smoothing parameter is now explored. Sometimes data are simulated from a
model considered to be true to gain information about a similar, but perhaps
less well-defined, approach. In the case of choosing smoothing parameter a PH
assumption provides a useful reference model for a set of data. The median under
this model can be calculated to provide a set of data points (zi,m:) which de-
scribe the curve, where m; are the values of the fitted PH median at the covariate
values z;.

Now data are simulated from this fitted PH model and for a grid of values of
hy, the doubly-smooth median curve (7;) is calculated. (The simulation proce-
dure is similar to a bootstrapping method described later in section 4.2.3.) The

distance between each curve from the simulated data and the original fitted me-
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dian can be measured by d; = >;(m; — m;)2
These values are then averaged over the number of simulations (N), d =

Y di/N, as an estimate of the expected distance between the curves from the

two methods,
B [(m(z) - ()2 (2)dz

Then hy is chosen to be the value which minimises this average.

This procedure was carried out for 100 simulations for each of three data-sets
and Figures 3.9.1-3 are plots of d vs. h;. (To ease interpretation, a scatterplot
smoother using Normal kernel weights was added to each plot.) The results can

be summarised as follows.

e Simulated PH data — The criteria d is minimised when A, is about 0.25. How-
ever, there would appear to be little difference for values of the smoothing

parameter between 0.15 and 0.275.

e The simulated “no effect” data — When g for the fitted PH model is equal to,
or close to, zero then d will not have a unique minimum but will asymptote
for large smoothing parameters. For this data, a value of 1.5 appears to be

a reasonable choice on the basis of the d criteria.

¢ Stanford Heart Transplant Data — The values of d appear to be minimised

when hq is approximately 10, although choosing a value of 6 would be equally

acceptable.

This method of choosing hy does not have as much of a theoretically sound
basis as some of the previously mentioned approaches. However, it is a sensible
technique and appears to produce reasonable results. Analogous arguments ap-
ply in the case of density estimation, where a “rule of thumb” method is to use
a smoothing parameter which is optimal for a Normal distribution (Silverman,
1986). This approach seems to work surprisingly well (Bowman, 1985). A practi-
cal method of smoothing parameter choice based on the theoretical results given

above has yet to be developed.
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3.4 A Likelihood Statistic for Inference

In some situations, the role of the doubly—smooth percentile curve may be to
validate the information from the proportional hazards model. Other problems
may simply require a subjective impression for the effect of a covariate on survival
times with as few constraints as possible. However, it will often be helpful for
this to be accompanied by a formal test, based on a quantity which measures the

characteristic of interest.

The shape of the centiles curves is determined by the corresponding estimated
survivor function. The second smoothing procedure in the doubly-smooth quan-
tile estimator is merely a tool used to ease graphical interpretation. Therefore
attention should be focussed on the behaviour of each survivor function across
the range of covariate values. The aim is to provide a statistic which will enable

distinctions between different survivor functions to be identified.

Likelihood is a fundamental quantity in the field of statistics. Often the aim
is to find values of the parameters which maximise the probablility of an event
across the range of data, e.g. the partial likelihood under Cox’s PH model is
maximised to find the “best estimate” of the coefficient, 3. The value of the
maximised likelihood is also a basic measure of fit of a model, which can be used

in formal testing procedures.

The full likelihood for a set of survival data with a continuous covariate
(Kalbfleisch and Prentice, 1980) can be written as
k
L= TI{ T [S(@lz) — SCay +0l2)] TT S(tilz0)}
i=1 leD; leC;
where D; is the set of labels for those failing at t(;) and C; denotes those which

are censored in the interval [t(;), t;11))-

As survival time increases, survivor functions monotonically decrease over the
range [0,1]. Each estimated survivor function can be described by its hazard rate,

or by its gradient which is calculated using the actual values of the failure times.
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The survivor function uses the ranking order of the times (not the lengths of sur-
vival time itself), implying that the gradient is a more appropriate measurement
for the failure time. However, since the only information available on censored
observations is that their failure time exceeds that of the recorded survival time,
the contribution to a statistic should be of a form similar to that in £. There
are standard expressions for estimating the hazard rate under the Proportional
Hazards model but this is not true for the nonparametric method which uses
the weighted Kaplan-Meier. Therefore, it is more appropriate to consider an

expression which can be easily extended to any estimated survivor function.

The calculation of a likelihood statistic, L, is performed by considering each
failure time to contribute the gradient of the esimated survivor function at that
time, given its covariate value. The corresponding terms for censored times are

the values of the estimated survivor function itself, given its covariate value.

Azzalini (1981) derived an expression for an estimate of the distribution func-
tion using kernels which can be extended to the survivor function and written

as

—t
S(tlz) = ZJ’ ‘V*( A I)

" leD v
where h, is the bandwidth and K* is the kernel density function with K*(s) =

[7°° K(y)dy, in the same notation as chapter 2.

To find an estimate of the gradient from this, we differentiate with respect to

t to obtain

d t tf
ao ) = "Z” 1 (h)

" eD
The likelihood statistic can now be written as

k
L:H{H dtS(i )|z, H S(t”z;)}
i=1 \leD; leC;

where t(;y , i =1,...,k denotes the unique ordered failure times, and D; and Cj

are as before.

This quantity can then be constructed for the survivor functions from each

of the three models in exactly the same way. It is common practice to present
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the log-likelihood (1), since calculating the likelihood will produce very small
values, the mathematical expressions involved are more tractable under the log
tranformation, and in parametric cases appropriate distributions can be derived.

While this procedure introduces another smoothing parameter, the effect of
different values of h, on the conclusions will be diminished by using the same

value of &, in models to be compared. This effect is studied below.

The following section presents the results of the examples analysed.
3.4.1 Results of Calculations of Likelihood statistic

The aim of the following information is to illustrate the effect of modelling data by
each of the three methods and to what extent the statistic changes with different

levels of smoothing.

For each of the first seven example data—sets, explored graphically in the
last section, the log-likelihood (!!) statistic is calculated under each of the three
approaches. The smooth PH {SPH) and nonparametric (NP) models require an
amount of smoothing to be chosen. Tables of the log-likelihood statistics are
given for a wide range of values, from those representing extremely rough to
over-smoothed estimates. Also of interest is the difference between pairs of these
statistics. So for each of the smooth PH and nonparametric log-likelihoods, the
value under the PH model is subtracted as a point estimate description of the

difference in fit.

Considering the parameterisation of each of the models and the constraints
which these impose, it would be logical to expect, for a given data—set, that the
log-likelihood statistic under the PH model would be less than that of the smooth
PH model, which in turn would be less (for equivalent amounts of smoothing)
than the value under the NP model.

The smoothing parameters of the SPH and NP models control the amount of
weight observations near a given observation can have. Therefore, small values

of hl and k would result in only points which lay very close to the point of
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estimation having some influence on the estimate. Equally, large values of hl
and k give more equal weightings to a larger spread of observations at any given
point. (In fact when k=1, we would expect the value of the SPH 1 to be very
close to that of PH 11, although not equal to as s(2) is constrained to be zero.)
With this in mind, as k1 and k increase, it is logical to expect the values of NPU
and SPHII to decrease.

Let D, = PHIl - SPHIl and Dy = PHIl.- NP )
Simulated “No Effect” Data — 20% censoring

For h,=1.0,
PH 1l = -175.49
SPH 1 = -174.66 for k=0.25
NP 1l = -168.36 for h1=0.7

As expected, a slight increase is obtained in the log-likelihood statistics when
the smooth version of the PH model is used over the standard PH model. The
values of SPHII is very low because the value of k is so small that the local
likelihood estimates are based on very small samples, producing instability in the
likelihood statistic. The nonparametric approach produces even larger values for
the statistic. However, for “sensible” values of the smoothing parameters in Table

3.1, there appears to be little difference between any of the models.
Simulated “No Effect” Data — 50% censoring

For h,=1.0
PH 1l =-128.75
SPH 11 = -128.48 for k=0.25
NP 1l = -126.22 for h1=0.7

Increasing the amount of censoring produces larger values of the log-likelihood

statistic but the differences, Dy and Da, in Table 3.2 still suggest little discrep-
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k| SPHI D1 h1l NP1l D2
0.050 | -212.45 | 36.96 || 0.10 | -139.24 | -36.25
0.100 | -177.14 | 1.65 || 0.25 | -157.27 | -18.22
0.125 | -174.05 | -1.44 | 0.50 | -165.69 | -9.80
0.200 | -174.38 | -1.11 || 0.75 | -168.81 | -6.68
0.250 | -174.66 | -0.83 || 1.00 | -170.40 | -5.09
0.333 | -174.88 | -0.61 || 1.50 | -171.99 | -3.50
0.500 | -174.85 | -0.64 || 2.00 | -172.94 | -2.55
1.000 | -175.25 | -0.24 || 5.00 | -174.78 | -0.71

Table 3.1: Results for Simulated “No Effect” Data — 20% censoring

k1 SPHI D1 hl NPl D2
0.050 | -140.93 { 12.18 || 0.10 | -98.15 | -30.6
0.100 | -128.33 | -0.42 || 0.25 | -114.97 | -13.78
0.125 | -128.28 | -0.47 |} 0.50 | -124.10 | -4.65
0.200 | -128.67 | -0.08 || 0.75 | -126.53 | -2.22
0.250 | -128.47 | -0.28 || 1.00 | -127.56 | -1.19
0.333 1 -129.01 ; 0.26 || 1.50 | -128.52 } -0.23
0.500 | -129.60 | 0.85 || 2.00 | -129.02 0.27
1.000 | -130.14 | 1.39 || 5.00 | -129.89 1.14

Table 3.2: Results for Simulated “No Effect” Data — 50% censoring
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ancy between the models.

Simulated “Quadratic” Data

For h, = 1.5
PH 1l = -221.48
SPH 1l = -198.32 for k=0.25
NP 1l =-194.39 for h1=0.5

The failure of the PH model to detect a relationship between survival time
and a covariate which was non-monotonic was examined in the previous section
as Example 2. It is important that the corresponding /[ statistics also reflect this.
From Table 3.3, the value of the [l statistic under the PH model is very much
lower than those observed from the SPH and NP models, except for extremely
large smoothing levels, as would be expected. The [l statistics from the SPH and
NP models appear to be in close agreement, validating the subjective impression

from Figure 3.2.2.

Simulated “PH” Data

Yor h, = 0.5
PH Il = -120.63
SPH 1l = -118.85 for k=0.25
NP II = -115.40 for h1=0.1

The results of the statistics calculated using the data simulated from a Pro-
portional Hazards model in Table 3.4 reflect the same conclusions as those for

Tables 3.1 and 3.2, that there is little discrepancy between any of the models.

Non-PH Simulated Data

For h, = 2
PH 1l = -365.52
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k SPHII D1 hl NP1 D2
0.050 | -196.33 | -25.15 {{ 0.10 | -164.62 | -56.86
0.100 | -196.04 | -25.44 || 0.25 | -185.26 | -36.22
0.125 | -194.46 | -25.02 [| 0.50 | -194.39 | -27.09
0.200 | -198.32 | -23.16 || 0.75 | -200.34 | -21.14
0.250 | -199.23 | -22.25 §| 1.00 | -205.44 | -16.04
0.333 | -200.96 | -20.52 || 1.50 | -213.13 -8.35
0.500 | -208.63 | -12.85 || 2.00 | -217.51 -3.97
1.000 | -221.42 | -0.06 | 5.00 | -221.96 0.48

Table 3.3: Results for Simulated “Quadratic” Data

k SPHII D1 hl NP1l D2
0.050 | -304.23 | 183.60 || 0.010 | -76.31 | -44.32
0.100 | -117.63 -2.90 1| 0.025 | -97.07 | -23.56
0.125 | -118.01 -2.62 | 0.050 | -108.91 | -11.72
0.143 | -117.80 -2.83 || 0.075 | -113.27 | -7.36
0.200 | -117.99 -2.64 1 0.100 | -115.40 -5.23
0.250 | -118.85 -1.78 || 0.125 | -116.64 | -3.99
0.333 | -119.03 -1.60 | 0.200 | -118.84 -1.79
0.500 | -119.27 -1.36 || 0.400 | -122.59 1.96
1.000 | -120.64 0.01 {| 1.000 | -125.63 5.00

Table 3.4: Results for Simulated “PH” Data
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SPH Il = -364.28 for k=0.25
NP I = -346.08 for h1=0.4

As shown in Table 3.5, the values for the two PH models are very similar
for reasonable values of k. However, the NPIl values appear to be different,

confirming the impression from Figures 4.2-4.

Stanford Heart Transplant Data

For h, = 0.3
PH Il = -198.35
SPH Il = -189.56 for k=0.25
NP 1l = -181.39 for hl1=5

The values of Dy and D, in Table 3.6 show differences in the I/ statistics
between the smooth models and the PH model. While these values are not as
large as those found in Table 3.3, it would appear that the resulting percentile

curves under each of the methods may exhibit slightly different characteristics.
Multiple Myeloma Data

For h, = 5
PH 11 = -102.94
SPH 1l = -102.14 for k=0.25
NP 1l = -101.99 for h1=3

As shown in Table 3.7, the differences observed in this data—set are relatively
small. This may be partially due to the small sample size, although the results

reveal the same conclusions as Figures 3.6.1-3.

Renal Unit Data

For h, =30
PH 1l = -234.41
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k SPHII D1 hl NP1l D2
0.050 | -378.95 | 13.43 }| 0.10 | -311.50 | -54.02
0.100 | -362.96 | -2.56 | 0.20 | -332.80 | -32.72
0.125 | -362.76 | -2.76 || 0.40 | -346.08 | -19.44
0.200 | -363.57 | -1.95 || 0.60 | -351.96 | -13.56
0.250 | -364.28 | -1.24 || 0.70 | -353.93 | -11.49
0.333 | -365.08 | -0.44 || 0.80 | -355.49 | -10.03
0.500 | -364.87 | -0.65 || 1.00 | -357.72 | -7.80
1.000 | -364.84 | -0.68 || 2.00 | -362.00 | -3.52

Table 3.5: Results for Non-PH Simulated Data

k SPHI D1} Al NPl D2
0.050 | -187.55 | -10.80 1]-141.42 | -56.93
0.071 | -187.42 | -10.93 2 |-161.30 | -37.05
0.083 | -188.14 { -10.21 3 |-171.35 | -27.00
0.100 | -188.46 | -9.89 4 | -177.55 | -20.80
0.125 | -188.26 | -10.09 51-181.39 | -16.96
0.200 | -189.11 -9.24 6 ]-183.82 1 -14.53
0.250 | -189.56 | -8.79 7 1-185.46 | -12.89
0.333 | -190.40 | -7.96 8 |-186.66 | -11.69
0.500 | -191.62 | -7.09 || 10 | -188.43 | -9.92
1.000 | -192.77 | -5.58 |} 20 | -193.42 | -4.93

Table 3.6: Results for Stanford Heart Transplant Data

ki SPHIU D1 h1 NPl D2
0.125 | -102.30 | -0.64 || 0.5 | -97.14 | -5.80
0.143 | -102.30 | -0.64 || 1.0 | -99.87 | -3.07
0.167 | -102.54 | -0.40 || 2.0 | -101.40 | -1.54
0.200 | -102.40 | -0.54 || 3.0 | -101.99 | -1.04
0.250 | -102.14 | -0.80 | 4.0 | -102.29 } -0.65
0.333 | -102.30 | -0.64 || 5.0 | -102.48 | -0.46
0.500 | -102.65 | -0.29 || 7.0} -102.71 | -0.23
1.000 | -103.39 | 0.45 || 10.0 | -102.92 | -0.02

Table 3.7: Results for Multiple Myeloma Data
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SPH Il = -225.55 for k=0.25
NP 1l = -219.00 for hl1=5

In both sets of differences in Table 3.8, D1 and D2, the choice of smoothing
parameter has little effect on the values of the likelihood statistic. It would appear
that each of the approaches is slightly different to the others although the SPH

and NP statistics are closest.

Remark

Various values of h, were considered for each data—set but the results of the
log-likelihood ratios were found to alter only very slightly. The results for the
data simulated to have “no effect” with 20 % censoring are shown in Table 3.9
(k = %,k = 0.7). This suggests that the choice of , makes little difference to
any conclusions provided the same value is used for each of the three statistics.

However, a “sensible” subjective value would be advisable.
3.4.2 Conclusions

Comparisons of the above log-likelihood statistics support most of the subjective

impressions gained from the plots in the previous section.

Within a range of what could be termed “reasonable” smoothing parameters,
the effect of a smaller or larger parameter on the test statistics appears to make
little difference in most cases. However, choosing a value to represent the degree
of smoothing is not trivial and it is important to give various values careful

consideration to enable a good subjective choice.

The standard results of 2 x log-likelihood statistic being approximately chi-
squared do not hold here since the parameter values have not been chosen to
maximise this quantity. Further, the complexity of the theory surrounding the
nonparametric method creates difficulties in obtaining an inferential test. An

alternative approach is to consider a re-sampling technique such as permutation
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tests or bootstrapping. While these can be computationally intensive, they pro-
vide a relatively easy way of providing a more objective conclusion. The following

chapter discusses the different aims and implementations of these methods.
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k SPHI Dt || Ay NPl D2
0.050 | -226.18 | -8.23 1] -205.88 | -28.53
0.100 | -225.70 | -8.71 31-215.99 | -18.42
0.125 | -225.65 | -8.76 4 |-217.81 | -16.60
0.200 | -225.47 | -8.94 5 1-219.00 | -15.41
0.250 | -225.55 | -8.86 71-220.87 | -13.54
0.333 | -225.58 | -8.83 8 1-221.53 | -12.88
0.500 | -225.59 | -8.82 || 10 | -222.40 | -12.01
1.000 | -225.61 | -8.80 || 20 | -224.27 | -10.14
Table 3.8: Results for Renal Unit Data
hy PHI SPHII D1 NPl D2
0.10 || -287.11 || -285.73 | -1.38 || -279.69 -7.42
0.50 || -176.23 || -174.87 | -1.36 || -163.85 | -12.38
0.75 || -175.24 | -174.01 | -1.23 || -165.99 -9.25
1.00 || -175.49 || -174.66 | -0.83 || -168.36 -7.13
1.50 || -178.95 |, -178.00 | 0.95 || -173.74 -5.21
1.75 i -180.08 || -179.89 | -0.19 | -171.31 -8.77
2.00 || -182.65 || -179.84 | -2.81 || -171.85 | -10.80

Table 3.9: Comparisons of h, values
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Chapter 4

Bootstrapping Methods

4.1 Introduction, Aims and Permutation Tests

As discussed in Section 1.4, one of the main aims of this research is to consider
which of the four following descriptions is most apt for a set of data, with the
corresponding quantile curve method in brackets. These are also formulated
below in terms of the hazard function and “linear” here refers to the hazard

function on the log scale.

A) The covariate has no effect on survival time.  A(¢; z) does not depend on z

B) There is a covariate effect on survival time which is not linear nor can it be
modelled under a proportionality of hazards assumption (doubly—smooth

quantile estimator)  A(¢; z) varies smoothly with z.

C) The covariate has a non—linear effect but it can be assumed that a baseline
hazard rate exists. ( quantiles estimated under the smooth proportional

hazards model)  A(t;2) = A (t) exp(s(z))

D) The covariate effect is linear with a baseline hazard rate. (quantiles esti-

mated under the proportional hazards model)  A(¢;z) = A, (¢) exp(fBz)

The most routinely used methcd of assessing the applicability of the PH model

is to consider a plot of log(—log(S(£|2))) against survival time. If the model is
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appropriate, the lines for the different levels of Z will be parallel. If the covariate
is continuous, the values should be categoried to provide an interpretable plot.
A more formal score test for # = 0 is based on derivatives of the partial likeli-
hood under the PH model. Le and Grambsch (1994) provide a test of association
for survival time and continuous covariate which does not assume a monotonic
relationship. The method, based on ranks and similar to the Siegel-Tukey test,

is nonparametric but assumes that the covariate effect is symmetric.

Deriving properties and results which will allow practical inferential proce-
dures with the doubly—smooth quantile estimator is a difficult task. In statistical
research, when theoretical aspects of an analysis become mathematically com-
plex, resampling techniques can be useful in investigating properties which would
otherwise be extremely difficult to assess.

R.A. Fisher first proposed the idea of the permutation test in the 1930s and,
with the advancement of computing technology, this method has become more
and more popular. Efron (1981) introduced the resampling technique of boot-
strapping, which is also becoming applied to an increasing number of areas of
research and is computer intensive. For discussion of both these approaches,
Efron and Tibshirani (1993)’s recent publication on the topic provides an excel-

lent introduction.

The basic idea of a permutation test is that the statistic of interest is cal-
culated for resamples where the data have been permuted in a manner which is
consistent with the null hypothesis. These values are compared with the statistic
value observed for the original data. In the survival data setting considered here,
the (time,censoring) pair are permuted while the covariate values are held fixed.
The statistic of interest, #, can then be calculated for each resample of data and
compared to the value observed for the original data-set. This comparison can
be summarised as an empirical p—value, written as

no. of 8; which are more extreme than that observed

N

P =

where i =1,..., N and N is the number of resamples. This is an estimate of the

p—value, allowing an assessment of the presence of a covariate effect on survival
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time. Bootstrapping has become a very popular approach for a wide range of
applications. The following is intended to be a short introduction to the basic

method and a review of bootstrap methods for censored data.

4.2 Review of Bootstrap Methods for Censored Data

4.2.1 Introduction

Efron (1979) proposed a method, known as bootstrapping, which can be used to
make inferences about parameters of interest for the population using a large
number of resamples of the observed data and standard formulae. The simplicity
of the bootstrap makes it easy to estimate quantities such as standard error and
bias and to calculate approximate confidence bands in many situations. Because
it is a computer-intensive technique, it is extremely useful for cases where theory

is very complex. The basic idea is described below.

Suppose we have an independent and identically distributed random sample
from an unknown probability distribution function, F, so that X, X,,..., X, ~
F. Say these are observed as X; = z;,7 = 1,...,n and that we are interested in

the statistic (X1, Xz, ..., X»)

1. Construct £, the empirical distribution function, putting mass Latai=

1,...,n.

2. Draw a bootstrap sample X7, X5,..., X by randomly sampling with re-

placement from .

3. Calculate 6% = 8(XF, X3,..., X5).

n

4. Independently repeat steps 2 and 3 a large number, B, times to obtain a set

of bootstrap replications §*',8* ..., g°.

The basic idea of the bootstrap is that the behaviour of 8 about the true 0

will be reflected in the behaviour of 6* about 8. In particular, the standard error
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of 0 can be estimated using

[SIE

~ 1 5 b x*12
Oboot — {m;[e -0 ] } (41)

~. 1 &
where 0* = — Z 0" and the bias by
B b=1

biaspe = 0" — 0 (4.2)

The Percentile Method is probably the most straightforward approach for
calculating a confidence interval based on the bootstrap. Let the cumulative

distribution function for 8* be
CDF,(t) = Pr,{0* <t}

Under the assumption of no bias, and for 0 < @ < 1, a 1—2a% confidence interval

for 8 is (éLOW,éUP) where
é\LOW = CDF:I(Q) gyp = CDF*—l(l — Ol)

The scope for applications of this method is very wide and, over the years, there
have been many adaptations of the idea and derivations of appropriate asymptotic

results.

The following sections describe different ways in which the bootstrap can be
used to analyse censored data. First we tackle how to sample (time, censoring)
pairs and discuss the application to quantile estimation. Section 4.2.3 considers
how to incorporate covariate information and the assumption of a survival model.

These ideas are also extended to the estimation of quantiles.
4.2.2 Bootstrapping Survival Times

The obvious complication with bootstrapping survival data is how to deal with
the incomplete, or censored, observations. Some researchers propose sampling
the failure and censored times separately under appropriate survivor functions

while others suggest simply sampling the observations as a pair.
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The notation used will be that stated in Sections 1.2 and 2.2 of Chapter 2.
For censored data, sometimes it is more convenient to discuss the distributions

of variables in terms of the survivor functions, given by
St)=1—-F,(t) ; Rit)=1-G{)

where R is the cdf of the censoring variable. S is most commonly estimated using
Kaplan—Meier (1958) estimates to give 5. We can estimate R similarly by simply

treating the censored times as failures and vice versa.

Suppose now we observe right-censored data of the form
{(t1,61), (t2,62), ..., (tn,6x)} and assume that t; <tz < ... < t,. Efron (1981)
proposed a simple extension to the original bootstrapping method, and used this

to provide an estimate for the standard error of the Kaplan-Meier curve.

1
n

1. Using F, put mass L on each pair of observations {(t;,&;)} fori=1,...,n.

2. Construct bootstrap samples of the form {( X}, A7), (X5, A3), ..., (X, A%}
3. Calculate §* (t), the Kaplan—Meier estimates using the bootstrap sample.

4. Repeat 2 and 3 a large number, B, times giving g{, §§, e ,g}"g.

The standard error of the survivor function at a particular time ¢ can now
be estimated by replacing 5*(t) for * in equation (1). Greenwood’s formula is
perhaps the most traditional way of estimating this quantity, but results from the

bootstrap method are shown to agree very closely with values from this formula.

Recall the definition of right-censored data in section 2.1.2, where the X7
denote a sample of failure times and the U; are a sequence of censoring variables,
with 2 = 1,...,n. The data are then written as the pairs (X;, A;) where

1 if Xe < U
0 ifo>Ug

1

Xi:min{Xg,U,'} A; = {

Efron (1981) discussed sampling the variables X7 and U; separately under
their respective estimated Kaplan—Meier curves, using the definition of the ran-

dom censorship model to obtain bootstrap samples. However, this was shown to
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1

be equivalent to putting mass = on each (time,censoring) pair where there are

no ties between the failure times.

The method proposed by Reid (1981) sampled only from the Kaplan—Meier
curves, which implies that samples will consist solely of failure times and be con-
ditional on the amount of censoring in the original sample. The main advantage
of this idea is that a bootstrap sample containing only censored observations will
never occur, which is a possibility under Efron’s method.

The asymptotic behaviour of the Kaplan-Meier under Efron and Reid’s meth-
ods was studied by Akritas (1986). Using the theory of martingales for point
processes, it was shown that only Efron’s bootstrapping procedure could be used

to construct asymptotically correct confidence bands.

Doss and Gill (1992) proposed a bootstrapping scheme which concentrated
on the distribution of the censored times. The failure times are generated under
the Kaplan—-Meier estimates as before. However, when the survival time, X;, is a
failure, the only information available on the censored value is that it exceeds that
failure time. It is proposed that the censoring variable could be generated from an
adjusted Kaplan—-Meier curve, calculated using only survival times greater than

that value. The method can be written as follows.

1. Sample X¢" iid ~ F°  i=1,...,n
2. Independently generate U} as
e if 6, =0, let U¥ = X;
o if §; = 1, U7 is generated from @X'
where @X;(t) = %%%‘n fort > z;

3. Form X = min(X?",U?) and Af = I[(X¢" < Up).

4. Steps 1-3 are repeated a large number of times to form bootstrap samples.

This bootstrapping scheme is asymptotically cquivalent to Efron’s method

and can produce confidence bands which are asymptotically correct.
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We return now to the subject of estimating quantiles for censored data. The
pt" percentile survival time (0 < p < 1) can be defined as &, = inf{z : F(z) > p}.
Replacing F(z) by 1 — 5o provides an estimate of ¢,. Obtaining an estimate of
the standard error of the p** percentile lifetime can now be found using one of

the bootstrapping schemes mentioned above and applying equation (4.1).

Horvath and Yandell (1987) derived asymptotic results for the bootstrapped
Kaplan—Meier process and corresponding quantile process. Efron’s sampling
method was used although the size of the bootstrap sample was not necessarily
assumed to be the same as that of the observed sample. Using Wiener processes,
the convergence rates for strong approximations of the bootstrapped Kaplan—

Meier and quantile processes were determined.
4.2.3 Bootstrapping with a Covariate

Consider now the case where, for each of n individuals, a survival time, a cen-
soring variable (indicating if that person has “failed”) and a vector of covariate
measurements are observed.

The data can be thought of as a set of triples

{(t'l)él’;z..l)s (t2a 6'27 &2), ey (t'n) 61’11:2191,)}

A common technique for analysing data of this type is to fit Cox(1972)’s
Proportional Hazards (PH) model. This model is described in Section 5.1 of
Chapter 2. In this situation, bootstrapping could be used to estimate the standard
error for 3, the coefficient assigned to the covariate, and also find a confidence
interval. Other areas of interest may be assessing the validity of the model and
estimating the variance of quantile survival time given a covariate. Methods to
investigate these, and other problems, will be discussed. As before, for simplicity,

we shall assume we have measured only one covariate value for each individual.

Efron and Tibshirani (1986) discussed a number of examplés where boot-

strapping was useful, two of which involved survival data and the PH model.
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The following resampling scheme was used.

1. Put mass L at each triple (¢;,6;,2;) for i =1,...,n.

2. Generate a bootstrap sample {(X7, AL, Z7), (X5, A5 Z3), ..., AL, AL Z0)}

by randomly sampling with replacement.
3. Calculate 3* by maximising the partial likelihood of the bootstrap sample.

4. Repeat steps 2 and 3 a large number of time to obtain B{‘, B’Z“, . ,Bg.

The standard error, and a confidence interval based on the percentile method,

for B can be estimated as for @ in the introductory section.

Tibshirani and Hastie (1987) proposed replacing the term e by a more
general form, e*(*), where s(z) is estimated using local likelihood estimation, a
nonparametic technique. (See also Section 5.2 of Chapter 2 and Chapter 3 for
further discussion of this model.) If step 3 is altered so that it is fitting the general
model for each bootstrap sample then we can compare these with the observed
sample under the ¢#? form. This is probably most aptly achieved by plotting the
relative risk for a range of covariate values. These comparisons will show whether

the parametric form of the model is valid.

Chen and George (1985) fitted the PH model to a set of data using a stepwise
procedure to select appropriate covariates. To assess the validity of this model,
bootstrap samples were drawn using Efron and Tibshirani’s method (but sampling
the covariate vector instead of individual values) and models found for each. The
number of covariates and the frequency with which each was chosen were noted

and the final model was chosen to be that which was observed more often.

Efron and Gong (1983) discussed the case where the covariate is binary eg.
independent treatment and control groups. The bootstrapping method proposed
here was that, instead of sampling the set of triples, each group was sampled
separately under their respective empirical distribution functions. Then, each B

was calculated under the PH model for a pair of bootstrap samples.
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Karrison (1990) chose bootstrap samples under the piecewise expoﬁential
(PE) model, which assumes the hazard rate is constant within arbitrarily defined
intervals. The failure times are sampled under the survivor function of the PE
model for a given value of the covariate. The censored times are sampled from
the censored KM estimates. Then the minimum of each pair is chosen as the
survival time and the censoring indicator noted. Parameters and quantities of

interest under the PE model were then calculated.

Hjort (1985) employed a similar bootstrap scheme for the Proportional Haz-

ards model.

~ ~T
1. Generate X2 ~ (Sp(-))*PE 2) for s = 1,...,n.
2. Generate Uy ~ @, the KM for censored times for i = 1,...,n.

3. Then form X} = min(X?",U}) and A = I[(X§ < Uy) with Z7 = 2; for all
i to give a bootstrap sample {(X}, A, Z5), (X5, A%, Z3), ..., (X5, AL, Z2) )

4. Repeat steps 1-3 a large number of times to form appropriate bootstrap

samples.

For each bootstrap sample, the PH model can be fitted and 8 estimated. This
method is similar to that mentioned in the previous section by Doss and Gill
in that the failure and censored times are resampled separately under different
distribution functions. To make the methodology perhaps slightly more “sym-
metrical” we could sample the censored times from a PH model which treats the

censored times as failures and vice versa (as for G, the censored KM).

Burr and Doss (1993) proposed that, using this method of bootstrapping
within the Proportional Hazards model, a confidenee interval for the percentile
survival time, given a covariate value, could be found and that these intervals
would be asymptotically correct. The p** percentile lifetime given z can be esti-
mated by

E(2) = 54 ((1 - )Py 0<p<
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where S is the estimated survivor function under the PH model. Bands are

constructed using

V|6 (2) — &(2)]
up =
(p, )
where &(p, z} is calculated using an asymptotic result about the quantile process.

W*=s

Obtain W™ for each bootstrap sample to produce the sequence W}, Wy, ..., Wg.
Let b be the (1 —a)™ quantile of the empirical distribution of W}, Wy, ..., W5.
Then, the bands

)

(p, %)
v

have asymptotic coverage probability of 1 — a.

FOEL
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4.2.4 Summary of Main Methods

| Data

Reference

Method

(time, cens)

Efron (1981)

Sample pairs under empirical distri-
bution function

Reid (1981)

Sample failure times from KM esti-
mates

Doss and Gill (1992)

Sample failures and censored times
separately under respective KM
curves

(time,cens,covariate)

Efron & Tibshirani (1986)

Sample triples under empirical dis-
tribution function

Hjort (1985)

Sample failures under survivor
function from PH model and cen-
sored times from censored form of
KM estimator
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4.3 Test Procedures

Returning to the aims discussed in the first section of this chapter, investigation
of which of the four models best describes the covariate effect for a set of data
can now be examined more formally. To recap, the situations of interest from
section 4.1 are as follows, where “linear” refers to the hazard function in the log

scale.

A) The covariate has no effect on survival time.

B) The effect of the covariate is best described by a smooth curve which has no

assumption of proportionality in the hazard.

C) The covariate has a non—linear effect and it can be assumed that a baseline

hazard rate exists.

D) The covariate effect is linear with a baseline hazard rate.

In Section 4 of Chapter 3, a likelihood statistic was proposed which charac-
terised a set of data by estimating the gradient at failure times, in the form of a
likelihood function, and could be calculated under any of the 3 different quantile
curve approaches. Using this information and the knowledge of different resam-
pling techniques, a set of progressive testing procedures can be formulated. This

can be summarised by the table below.
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Comparison Approach
Avs. B Means of | A permutation test
Inference
Method of | Compare the value of NPl for the original data,
Assessment | to the N Pll values of the resamples and find the
empirical p-value for the test of “no covariate effect”
Buvs. C Means of | Bootstrapping triples approach of Efron and
Inference | Tibshirani(1986)
Method of | The N P!l values of the bootstrap samples provide a
Assessment | band representing the variability of the NP approach
and can be compared to the observed value of SPHI!
Bvs. D Means of | Bootstrap under the PH model, similar to Hjort (1985)
Inference | but using the more symmetrical approach of also sampling
the censored times under a PH model.
Method of | For each bootstrap sample, calculate the difference D,
Assessment | between NPl and PHIl and by comparing this with D,
for the observed data, calculate the empirical p—value

Table 4.2: Summary of Testing Procedures

This moves into the standard setting of testing which may be expressed in

terms of a null and an alternative hypotheses. For example, to test A vs. B,

Ho

Hy

No covariate effect

Covariate effect modelled by doubly-smooth quantile estimator

The case of comparing the doubly-smooth estimator with the smooth PH

model (B vs. C) is not a formal testing procedure. The implementation here
of the SPH model is a local likelihood approach. However, consideration of this
method of analysis is moving into the area of generalised additive models (Hastie

and Tibshirani, 1990) and this is, in itself, a large topic. To construct a test
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would require bootstrapping the data under the SPH model and the resﬁlts of
this would only really be convincing if a GAM was being fitted. Instead an
alternative approach is to bootstrap the data as triples (Efron and Tibshirani,
1986) and use the values of NPIl or the centile curves from these samples to
construct confidence bands. If the value of the likelihood statistic under the SPH
model lies outwith this band, it would give some indication that the approaches

are reporting different forms of covariate effect.

The case of B vs. D is a test of proportionality of the hazard and the mono-
tonicity of the covariate effect, it is an important comparison of methodologies.
This now provides a natural progression of testing the models A,B and D, with
the link between B and C considered separately. The following sections give the

results of these procedures for the sets of data discussed and analysed in Chapter

3.

4.4 Results

4.4.1 Testing A vs. B

Plotting the doubly-smooth median curves of permuted data, we would expect
to observe a band of curves which are clustered around the median survival time

across the range of the covariate.

Figure 4.1 considers the data simulated to have no covariate effect discussed as
Example 1 in Chapter 3. The curves for 100 sets of resampled data are plotted in
light grey, with the curve for the original data as the bold line. The median curve
does not appear to be significantly different from those which have randomly al-
located covariate values although the interpretation is arguable. However, when
the Stanford Heart Transplant Data is examined by the same procedure, in Fig-
ure 4.2, the 40th centile curve is clearly distinct from the curves constructed
from permuted data. There is therefore clear evidence that the survival time is

decreasing as age increases.
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Observed and Permuted data

Figure 4.1: No effect data
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Figure 4.2 : Stanford Heart Transplant Data

(0] 0 X

R
% o XXOXX 208Q
o® = 0 o-Bx

_ O‘
N1 X%
X
X X % XXXX%X :
XX x*
X X X
X
X
X
X
(0]
O X (o] X X
10 20 30 40 50 60
101
age




To test this informal assessment more formally, the likelihood statistic based
on the nonparametric approach is calculated for the 100 sets of permuted data
and an empirical p—value is found. This procedure is implemented on each of the

six example data-sets discussed in Chapter 3.

Example No. Data-set Emp. p-value
1 No Effect data 0.27
2 Quadratic data 0.00
3 PH data 0.05
4 Non-PH Simulated data 0.15
5 Stanford H.T. data 0.03
6 M. Myeloma data 0.36
7 Renal Unit data 0.44

Table 4.3: Results for Test of A vs. B

The values confirm the conclusions of the subjective impressions from the
graphical descriptions in Chapter 3.

The borderline significance of the data simulated from a PH model reflects the
slight curvature in the observed quantiles. Typically, low centile curves will stay
relatively constant across the covariate since although the range of the survival
time increases, the minimum survival time does not.

[t is interesting to note that the test concludes no covariate effect for the
multiple myeloma data. For higher centiles, there did appear to be a covariate
effect, but since this method is effectively testing over the whole range of centiles,
effects of this restricted type may not be identified.

Similarly the effect of blood pressure on survival time in the Renal Unit data is
not found to be significant. It has proved difficult to produce a definitive analysis
of these data as described in detail in Chapter 6, due principally to the extremely

high proportion of censoring.
4.4.2 Testing B vs. C

Example 4 in Chapter 3, the non-PH simulated data, displayed a case where the
percentile curves from a PH model were a poor fit to the data. The variability of

the survival times was decreasing across the covariate values, converging to the

102




median, but the PH model did not adequately capture this structure. However,
it is only in the large and small centiles that this is observed. Figure 4.3 displays
the doubly-smooth median curves for 100 bootstrap samples. The bold line is the
median curve under the smooth PH model. This would suggest that there is little
difference in the medians of the two approaches. However, IFigure 4.4 illustrates
the same data with the lines representing the 10" centiles. This clearly shows

the difference in the behaviour of the two approaches for the low centile.

In the next chapter, a data-set on leg ulcer patients is discussed. The time of
interest was the number of days until the ulcer had healed, and age was thought to
be a potentially important covariate. Also available, and thought to be important,
is a record of whether the presence of deep vein involvement played a part in the
healing process. Here, survival times for those patients who did experience deep
vein involvernent are analysed to assess the age effect. Figure 4.5 is a scatterplot
of the data with the PH (broken line), SPH (dotted line) and doubly-smooth
median curves superimposed. There appears to be a clear difference between
each of the three methods. The doubly-smooth curves for 100 bootstrap samples
are shown with the SPH median curve as a bold line in Figure 4.6. One conclusion
from this may be that the proportional hazards assumption is not a particularly

good description of the data.

The results of the bootstrap analyses of all the example data—sets are tabu-
lated below with the range of values of NP for the bootstrap samples written
as a confidence band. Checking whether the observed SPHI! value is near the
centre of this band can be informative when looking for evidence of differences

between the two approaches.
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Observed and Bootstrapped data

Figure 4.3 : Simulated data - median
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Observed and Bootstrapped data
Figure 4.5 : Median curves for Leg Ulcer Data

Figure 4.6 : Leg Ulcer Data




Example No. Data-set Confidence Band | Obs. SPHII
1 No Effect data ((197,04,148.32) | -168.36
2 Quadratic data (-190.46,-154.27) -172.05
3 PH data (-126.31, -90,35) |  -115.39
4 Non-PH Simulated data | (-413.85,-297.89) -364.27
5 Stanford H.T. data (-190.98,-155.21) -181.39
6 M. Myeloma data (-177.35,-119.69) -151.07
7 Renal Unit data (-592.44,-199.62) -225.55
— Leg Ulcer data (-116.79, -68.24) -110.09

Table 4.4: Results of Comparing B vs. C

This would appear to suggest that the curves from the doubly—smooth esti-
mator are often very similar to those estimated from the smooth PH model in
all of the examples. The only example where the observed SPIH Il value seemed
rather extreme is in the leg ulcer data which was expected from the plot of me-
dian curves. For example 4, we know that there are differences in the low and
high centiles, but since the likelihood statistic measures the fit of a model across
all of the centile values, none are substantially larger as to produce a significant
result. To highlight the differences in this example, a test for differences in the
individual percentile curves themselves would be necessary, something which may

be worth investigating in the future.

4.4.3 Testing B vs. D

Four examples are used here to exhibit the lack of differences between the curves
under the Proportional Hazards model and the doubly—smooth estimator. In
each the band of curves generated from PH resampling are shown as faint lines,
with the doubly-smooth quantile curves for the original data as solid, black lines.

For the “No éffect” data, it can be seen in Figure 7 that the doubly-smooth
median curve moves between the extremes of the PH band of medians but always
lies within it. As would be expected, we are unlikely to find differences between
the approaches for this type of data.

Figure 4.8 shows similar median curves for the Stanford Heart Transplant

data and here the difference in structure for age values less than 20 years is made
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obvious. However, for a large part of the age range, there appears to be little

difference between these curves.

Figure 4.9 shows the PH bootstrapped 10th centile curves and there is clearly
a difference for covariate values greater than 6. But again a formal test based on
all centiles may not detect this since these differences will not be so obvious in
centiles closer in value to the median.

Finally, Figure 4.10 considers the Leg Ulcer data discussed in the last sec-
tion (on B vs. C). Although there looked to be differences between the smooth
PH model and the doubly—smooth curves, these differences would not appear to
exist between the PH and doubly-smooth approaches. This may confirm the

reservations expressed over the implementation of the SPH model.

Results of the bootstrap test for each example are given below.

Example No. Data-set Emp. p—value

1 No Effect data 0.21
2 Quadratic data 0.00
3 PH data 0.46
4 Non-PH Simulated data 0.34
5 Stanford H.T. data 0.24
6 M. Myeloma data 0.17
7 Renal Unit data -

- Leg Ulcer Data 0.25

Table 4.5: Results of Testing B vs. D

An empirical p~value for the Renal Unit data was unobtainable, despite sev-
eral attempts. The problem was that too many samples consisted solely of cen-
sored times, preventing a PH model from being fitted.

These results reflect exactly the conclusions of the subjective impressions made
from Figures 4.7-10 and those from Chapter 3. Some differences appear to be
observed graphically but do not result in a small p—value. This may be because
the covariate effect is only different in one aspect, such as the very low and high

centiles of the Non—~PH data or at the extremes of the covariate values.
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Observed and PH Bootstrapped data
Figure 4.9 : 10th centile for Non-PH Simulated data
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4.4.4 Conclusions

The test statistic, along with the resampling techniques, has proved to be useful
in gaining an overall picture of differences between the different quantile curve
approaches. In certain cases, where centiles behave differently relative to other

centiles, it would perhaps be more appropriate to test only the information from

those curves.

4.5 A Small Power Study

When proposing a testing procedure, it is important to assess the power and
size. Here, there is particular interest in these properties for the test of the

nonparametric versus proportional hazards models (B vs. D).

First of all, the probability of wrongly rejecting the hypothesis that the PH
model is appropriate was assessed. For each of 100 data—sets simulated under
the PH model, the bootstrap test was applied and the empirical p—value noted.
These p-values should be approximately uniform and the number of values less
than or equal to 0.05 should be very small (hopefully around 5%). The actual

observed number was 7, which is within acceptable limits of Binomial variation.

Next, the case where the PH model is inappropriate is considered. The most
obvious example to use is the quadratic data and again 100 similarly simulated
data—sets were analysed. Here we expect the p-values to be very low, with almost
all of them being less than 0.05. In fact, because of the strong non-monotonic

covariate effect, none of the empirical p~values were observed to be above 0.00.

While the cases considered here are quite extreme, they provide a reassuring
illustration of the performance of the test. It would have been useful to have exe-
cuted similar exercises for the other examples but each of these has a substantial

computational cost.
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4.6 Summary

The plot of survival time vs. covariate is very useful for obtaining a subjective
impression of the effect of that covariate. More information can be extracted

from this if percentile curves are superimposed.

Cox’s PH model is a familiar and commonly-used one in medical statistics.
The theory is well-developed and implemented in many statistics packages. How-
ever, it is important to be aware of the assumptions made and the limitations
of the model. The smooth PH model, proposed by Efron and Tibshirani (1986),
provides an important step to making the original PH model more general, while
still retaining the baseline hazard assumption. By introducing the doubly—smooth
quantile estimator, the aim was to provide an alternative to the PH model which
would be applicable to all sets of data, particularly useful when the assumptions
of the model were inappropriate, and to provide a means by which the assumption

of proportionality in the SPH model could be checked.

Often a diagram depicting the curves from each of the approaches will allow
an informal assessment of whether these ideas agree but this can be tested more
formally using a likelihood based statistic and one of the resampling techniques

discussed here.

111




Chapter 5

Extension to Analysis of
Covariance

5.1 Discussion

One possible extension of the work on quantile curves is to consider the case
where, as well as investigating the effect of a continuous covariate on survival time,
a grouping factor is present. The interest here would be whether the behaviour
of the survival time for each level of this factor is different and how this difference
can best be characterised. This is analogous to the regression method known as
analysis of covariance (ANCOVA). In the simple linear case, the model can be

written as
. : )
Yij = o + BiXs; + €ij r=1,...,m;3=1,...,n

where Y is the response, X is the explanatory variable and the €’s are the errors,
assumed to have an N(0,1) distribution. For each level of the grouping factor,
the relationship between the response and the explanatory is expressed in a linear

form with slope 3; and intercept «;.

For simplicity, the simplest case where the data are grouped by a binary
outcome (m=2), for example, treatment/placebo or sex, is considered here. There
are 3 main situations in which we may be interested. These are where the lines

for each outcome 7 are
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1. Different : @y # ay and By # 52
2. Parallel:  «a; # ap and B =
3. Same: a1 = aq and By = By

Lines representing each of these situations can be fitted using least squares esti-
mation and standard parametric theory is available for testing which of the three
descriptions is most plausible for the data.

One alternative to the least squares approach is to consider a generalised ad-
ditive model (GAM). These models allow more flexible relationships between the
response and covariates and so imply the requirement for a smoothing procedure,
usually provided by cubic splines. This area has been researched extensively and
Hastie and Tibshirani’s (1992) book on the topic is an excellent account of this

work.

To extend the ideas behind these methods to quantile curve estimation, the
problem is best explored by considering the hazard function. While it is not
obvious how to produce quantile curves which are parallel for the levels of the
binary covariate, under the proportional hazards model, it is possible to constrain
the hazard to be parallel in the log scale.

For the smooth PH model case, a form of GAM is assumed. Here a simple
extension of the model described earlier is applied but for a fuller description of
the more general case see Section 8.3 of Hastie and Tibshirani (1992).

The different models, written in terms of the hazard function, for each of the

three approaches, are probably most easily explained by the table below.

1 | Different l Parallel | Same |

PH || Moi(tyexp{a; + Biz} | A(t)exp{a; + Bz} | A(t)exp{B=z}
SPH || Moi(t)expf{as + si(2)} | Ao(t) exp{a; + s(z)} | Ao(t) exp{s(z)}

NP Ai(t]2) - A(t]z)

The models which assume that the curve is the same for the 2 treatment

groups simply fits a single curve to the entire dataset. When the curves from the
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treatments are assumed to have different shapes, the data can be split into two
groups and analysed separately. The behaviour of the curves where there is an
assumption of parallelismm in the log scale is more difficult to fit and assess.

For the PH model, the value of « is chosen to be zero (automatic when the
first binary covariate level is coded as zero) and a; and # are chosen by the usual
partial likelihood method. For the smooth PH model, the s(z) term controls
the behaviour of the continuous covariate (as 3 does in the PH model) with o,
(a1=0) determining the amount of vertical shift. For a given value of ag, s(2)
can be found using a similar approach to that described in Section 5.1 of Chapter
| 2. The value of oy can be found by a grid-search, with the selection criteria

being the partial likelihood expression for which the estimates of s(z) have been
substituted.

A model corresponding to parallelism in the NP approach is more difficult to
formulate due to the unrestricted nature of the hazard functions in this case.
For that reason, parallel curves will be investigated only for the PH and SPH

structures.

The likelihood statistic, proposed in Chapter 3, can also be calculated under
each of these situations. When considering the quantile curves to be the same,
the information from the binary covariate is considered unimportant and the
likelihood statistic, L, is simply estimated as described in Section 3.4.

L=T1] { 1I —%g(t(i)lzl) 11 S‘(t,lzz)}

=1 | leD; leC;

For situations where the quantile curves are proposed to be different, the value
of L is calculated for each group separately and these are multiplied to give an
overall likelihood statistic for that method. Under the assumption of parallel
curves, the same principle applies. The SPH or PH model is fitted, the likelihood
is calculated for each group, then multiplied to produce the final value of L.

Comparisons can be made using bootstrapping and permutation tests as before.

Now, not only do we have to choose between the different survival models, but

also, given a model, which of the descriptions discussed above is most appropriate

for the data. The structure of the problem has become more complex, although
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the two issues of model form and covariate effects can be assessed separateiy, e.g.
it would not be sensible to test the parallel SPH curve against the different NP

curves situation.

Analysis procedures similar to those discussed in Chapter 4 can be applied.
To compare NP vs. SPH, Efron and Tibshirani (1986)’s bootstrap approach and
construction of confidence bands can be used. To test NP vs. PH, bootstrap sam-
ples under the corresponding PH model are analysed and result in an empirical

p—value to assess the applicability of the PH model.

When choosing a model, the key interest initially is to assess whether the
curves are different or if they are the same under a given model. This can be
examined by using the permutation argument again. If we randomly allocate the
binary covariate, under the assumption that the curves are the same, this should
make no difference to the likelihood statistic.

Having established that the curves are different for the two levels, if this is
indeed the case, then we may be interested in whether these curves can be assumed
to be parallel in the log scale. This is difficult to test since we have no formal
way of comparing the SPH and PH models and is a case which shall have to be

examined in more detail in the future.

5.2 An Application

These data were made available by Caroline Doré of the Royal Postgraduate
Medical School in London and were used as part of a clinical trial to investigate
factors affecting the healing time of leg ulcers. (For more details of this study, see
Skene et al. (1992)) Age is known to be an important covariate for this condition
and the severity of the ulcers is partly determined by whether or not deep vein

involvement {DVI) exists.

Figure 5.1 shows a plot of survival time vs. age. Survival time here is time

to healing, with a failure time (denoted by x) iere representing the number of
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days from the treatment being administered until the leg ulcers have completely
healed. (The censored times are, as before, denoted by a 0.)

Since there is a large cluster of low survival times and heteroscedasticity across
age, the survival times are given a logarithmic transformation. Figure 5.2 shows
the data in this form, with the failure and censored times for those who experi-
enced deep vein involvement denoted as solid boxes and solid circles respectively.
There may be a case for analysing only observations for which age > 50 years
due to sparsity of data below this age but, for the purposes of this example, all
of the available data will be used.

The median percentile curves are plotted for each of the different approaches
in Figures 5.3-5. In each of these plots, the different assumptions of same, par-
allel and different curves are illustrated. Where two lines are plotted (ie for the
“parallel” and “different” cases), the higher one represents individuals who expe-
rienced deep vein involvement.

The doubly-smooth curves of Figure 5.3 exhibit quite a lot of curvature but
the main point to notice is that when the data are separated by the binary co-
variate, the curves are quite clearly different. (hy = 5, hy = 0.075.)

In Figure 5.5 (k = %, where k is the proportion of data used in each window
of the local estimation procedure), the parallel assumption defines a clear shape
to the curves fitted under the smooth PH model, similar to that when the binary
covariate is ignored. However, the results are quite different and difficult to in-
terpret when the curves are plotted separately.

The conclusions for the PH model, shown in Figure 5.4, are basically the same
although the monotonicity assumption restricts the curve from dipping at 65

years, which was observed in both the nonparametric approaches.

The likelihood statistic for each of the possible situations was calculated, with

h, chosen to be 0.5, and these are given in the following table.
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Leg Ulcer data

Figure 5.3 : Smooth median curves
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| | Different | Parallel | Same |

PH || -208.503 | -222.585 | -225.883
SPH || -196.364 | -216.850 | -223.896
NP || -177.387 - -206.701

Of course, these are relatively uninformative unless accompanied by an em-
pirical p~value from an appropriate analytical procedure. Let us assume that the
age covariate has an effect but it is unclear which model or curve description is

most applicable. An analysis of these data is described below.

The first area of interest may be to compare whether, using the likelihood
statistic corresponding to the doubly—smooth estimator, the relationship between
age and survival time is the same independent of the occurrence of deep vein in-
volvement. A permutation test provided an empirical p—value of 0.00, suggesting
that the two groups should be looked at separately as their percentile survival
times will be different. (From Figure 5.3, the percentiles for those experiencing

deep vein involvement were higher.)

Now consider modelling the covariates under a smooth PH model. A boot-
strap band to represent the doubly—smooth approach is found to be of the range
(-191.66,-131.22) with the observed SPHII value of -196.36. This would appear
to imply that the SPH model is inappropriate here, which is perhaps not a very
surprising conclusion in the light of the behaviour of the percentile curves in Fig-
ures 5.4 and 5.5 being slightly peculiar. However, to be more confident of this
result, the doubly-smooth centile curves for the different levels of binary covari-
ate were plotted with a large smoothing parameter of h;=10. These curves can
be seen in Figure 5.6. The curvature between the ages of 60 and 80 years appears
to have been “ironed out” and the bootstrap reference band is now
(-205.53,-146.92), which contains the observed SPHI! value. The shape of the
doubly-smooth curves with h; = 5 suggest that the single values for the regres-

sion coefficients in the PH model would not summarise the data in precisely the

same way. (The values of the coefficients in the PH model were in fact -0.023 and
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-0.48 for age and deep vein involvement respectively and both were Statiétically
significant.) However, as was observed in the test between these two approaches
for the data involving deep vein involvement only in section 4.4.3, the likelihood
statistics VPl and PHII do not exhibit signs of being significantly different (em-
pirical p—value =0.26). Repeating this test for A;=10, it is not surprising to find
that the conclusion does not change and that the empirical p-value increases

slightly to 0.28.
Conclusions

The above was an attempt to explore an example where the methodology de-
scribed in Chapters 3 and 4 was developed further. Due to the increased variety
of models when a binary covariate is involved, relating the different relationships
became rather complex. However, plots of time vs. covariate with appropriate
percentile curves superimposed provide a good, visual explanation of some of
the characteristics of the data—set. The resampling techniques provide a logi-
cal procedure for interpreting the covariate effects. This allows some subjective
impressions to be strengthened in some cases, while protecting against the over-

interpretation of possibly random feaures in other cases.
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Figure 5.5 : SPH median curves
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Chapter 6

The Detection and Investigation
of Progressive Graft Dysfunction
in Kidney Transplant Patients

6.1 Introduction

Advances made in immunosuppresive therapy, most notably with the introduc-
tion of the drug cyclosporin in the early 1980s, has lowered the number of cases
suffering from acute graft loss in the first year after transplantation. However,
the rate of late graft loss, although much smaller initially, has remained virtually
constant for the past five to ten years and is thus assuming a greater impor-
tance as a cause of transplantation failure. Studies of late graft loss have shown
possible important factors to be the race of the patient, the number of previous
transplants, the age of the donor and the degree of graft match (Mickey et al.
(1990) and Gjertson (1991)). Collaborative research with Dr Peter Rowe and Dr
Maureen Lafferty of the Renal Unit at the Western Infirmary has focussed on the

occurrence of late graft loss in kidney transplant patients.

The main cause of late graft loss is known to be chronic rejection, although
it is unclear what causes this condition. One possible explanation is that it
is an immunological phenomenon and the infliction of graft injury is by a hu-
moral or cellular process, resulting in graft destruction. Another theory is that

a steady deterioration of the renal function occurs, caused by haemodynamic
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changes compensating for a reduction in nephron mass. (A transplanted i{idney
will contribute less than half of the normal complement of functioning nephrons,
due to unavoidable damage during the transplantation process.) A third pos-
sibility is that injury to the graft could have occurred by chronic cyclosporin
nephrotoxicity, where “too large” a dose of the drug has a detrimental effect on
the function resulting in renal failure (Salomon, 1992). It could also be that it is

a combination of these factors which causes chronic rejection.

We are actually interested in progressive graft dysfunction which, although
difficult to define, can be thought of as the condition of the graft during which

steady loss of function occurs leading ultimately to failure.

Objectives of the study
These are :

1. to investigate what causes progressive graft dysfunction

2. to study which factors are peculiar to patients who have suffered late graft

loss.

3. to help to decide upon the best form of treatment for this condition.

Firstly, we must find a method that will routinely detect progressive graft
dysfunction. This was achieved by a statistical algorithm. The aim of this al-
gorithm is to determine which grafts have suffered progressive graft dysfunction,

and when this occurred.

6.2 Detecting Progressive Graft Dysfunction

6.2.1 Previous Literature

All the papers published on this topic agree that when progressive graft dys-

function occurs, the negative reciprocals of the increasing body-weight-adjusted
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serum creatinine levels generally increase linearly with time. The examination
of plots of creatinine over time, and of the negative reciprocal of creatinine over
time, are routine tools employed by doctors. Experience has allowed them to

determine from this information when a graft has suffered from progressive graft

dysfunction.

One reason for examining the negative reciprocal of creatinine levels is that
reliance on the non-transformed levels over time alone leads to small changes in
the serum creatinine at the lower end of the range being overlooked and their
importance underestimated.

A more formal justification is derived from consideration of the glomerular fil-
tration rate (GFR) which forms the basis of kidney excretary function. The defi-
nition of GFR is the total volume of plasma water ultrafiltered through nephrons.
These values are usually quoted in units of ml/min and corrected for body surface

area. Calculation comes from the Fick principle,

GFR — amount of substance filtered

concentration in plasma x time
The substance employed should be freely filtered by glomerulus and neither re-
absorbed nor excreted by the remainder of nephron. Creatinine is derived from
the turnover of the skeletal muscle protein creatine and just about satisfies these

criteria. The GFR can now be written as

U where Ugr = Urine creat. conc.
cr X U-uol .
GFR = O % time U,ot = Urine volume
Cr X Lume Scr = Serum (plasma) creat. conc.

In a steady state, the creatinine excretion (Ug, X Uyer) is constant, providing the

relationship

GFR _ or, GFR « !
SC‘T

Scr X time
As a measure of excretary function, these values also give an indication of the

condition of the graft.

Most of the formal statistical techniques used to detect the event of chronic

rejection are on-line or predictive procedures (as opposed to the retrospective

detection we are interested in). They are mainly Bayesian approaches, such as
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the Kalman filter(Smith and West, 1983) and the intersection of two lines(Smith
and Cook, 1980) although ideas of ROC curves(Smith et al. 1983) and CUSUM
charts(Stoodley and Mirnia, 1979) have also been explored. The techniques are
generally mathematically complex. The aim of this study was to evaluate the

effectiveness of simple linear methods in the setting of retrospective data.

The basis of the algorithm is the fact that deterioration (signalling the onset
of progressive graft dysfunction) is displayed in a markedly positive slope in a plot
of the negative of the reciprocal of serum creatinine levels against time. Some
previous work used body-weight-adjusted levels but since the present study is
concerned with change and since body weight is unlikely to vary much over the

time periods considered, the adjustment was not adopted.

6.2.2 Different Classifications

The algorithm must be able to differentiate between the possible ways in which
a graft can function and events that can occur. The four main graft types to be

recognised are:

1. stable, good function
2. stable, poor function
3. the occurrence of progressive graft dysfunction (PGD)

4. the occurrence of acute graft loss (AGL)

Typical examples of the plots of interest for each classification are shown in

Figures 6.1-4.

The horizontal dotted line indicates the serum creatinine level of 200umoles
/litre, sometimes used to define a threshold between good and poor functions
that are otherwise stable. In each pair, the top figure displays serum creatinine

and the bottom figure displays -1/(serum creatinine).
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Example serum creatinine traces
Figure 6.1 : Hospital number 1
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Example serum creatinine traces

Figure 6.3 : Hospital number 3
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In all of these traces, serum creatinine levels are initially very high, which is
normal after a transplant, but they decrease very quickly in the first few weeks
following the operation. Ignoring this typical eflect, the key features of each set

of plots are :

Figs 6.1 a& b - a relatively smooth trace with very little increase in
creatinine levels. stable, good
(hospital number ~ 1 =)

Figs 6.2 a & b - the creatinine levels are higher than in the previous case
but the graft is still exhibiting signs of stability.
stable, poor
(hospital number - 2 -)

Figs 6.3 a & b - initially fairly smooth with the slope steadily increasing,
showing deterioration PGD
(hospital number - 3 -)

Figs 6.4 a & b - increasing creatinine levels with a very sharp rise towards
the end. AGL
(hospital number — 4 -)

6.2.3 Detecting Slope Change Over Time

The following method was implemented for each individual graft :

A grid of time values is set up 30 days apart, starting 90 days after the time
point corresponding to the lowest creatinine level in the first 90 days (to allow

for high creatinine levels after transplantation).

Windows of 180 days are centred round the grid points and for each grid
point, the slope of the straight line fitted through the points that lie in that
window is evaluated by least squares estimation. Bands of width 42 standard
errors are then calculated and the slope is deemed to be significantly positive if

the lower band is greater than zero.

The data in this problem constitute a time series and so the fact that the
errors are correlated should be taken into account. This was investigated by

examining sections of data where the process was stationary. In all of these
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cases, the autocorrelation was small and so this effect was outweighed by other,
more major, problems in the construction of a detection system, as described

below.

Another issue to be considered is that of multiple comparisons since, where
a large number of tests are carried out, the chances of a spurious result are high.
There are two simple ways of overcoming this. One is to use a larger width for
the confidence bands; for example 3 standard errors might be used. However,
it was decided that a more appropriate strategy would be to look for evidence
of deterioration in several consecutive windows. This will reduce the risk of a

misclassification which could otherwise occur on the basis of one result.

Now that a way of assessing change in slope over time has been established,

a number of issues remain to be addressed.

e For how long must the slope be positive for progressive graft dysfunction to

be concluded?

e How will acute graft losses be differentiated from progressive gratt dysfunc-

tion cases?

e When will a stable function be described as poor, as opposed to good?
6.2.4 The Algorithm

The initial construction of the algorithm was based on the ideas and recommen-
dations of doctors from the Renal Unit. Amendments and improvements were
made on the basis of the true classifications (as decided by Drs Rowe and Lafferty)

of a random sample of 100 grafts.

The final version of the algorithm can best be described by the following flow

diagram.




Start at first grid point

Do points in window have significantly
positive slope and mean creat. level >1507

/ No Yes

| .1 No Do next 3 windows alsoc have
‘ Go to next grid point Last grid point? |l significantly positive slope?
y
No Yes
f ¥
| .
Is mean creat. level Do next 3 windows Does creat. reach
in last window have significantly at least
more than 200umol/17? positive slope? 800umel/1l in 3 windows?
No \ es Yes Yes
Stable Good Stable Poor Progressive.Graft Acute Graft
Function Function Dysfunction Loss

6.2.5 Classifications

The features of this algorithm which address the outstanding issues identified

earlier are as follows.

e For progressive graft dysfunction to be identified there must be a significantly
positive slope in seven consecutive windows. corresponding to deterioration
over a l-year period. Where there is insufficient data to construct seven

consecutive windows a smaller number may be used, but there must be at

least three windows.
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e After a fourth consecutive window has resulted in a significantly pbsitive
slope, we assess the creatinine levels by looking for a value >800umoles/litre
in those windows. Cases which satisly these criteria are said to have suf-
fered acute graft loss. This takes into account the high levels and rapid

deterioration in acute graft loss.

e The distinction between stable good and poor functions was made by cal-
culating the mean of the serum creatinine levels in the last window. If this
| value was >200umoles/litre, then a stable, poor graft was concluded and

otherwise stable, good.

6.2.6 Time Points

So far classification of grafts into four groups has been discussed but to be able
to perform further analysis on the results, it would be useful to have a time
corresponding to the event of interest.

For stable functions, we use the last time point as the time of interest.

When a decision of progressive graft dysfunction or acute graft loss has been
reached then the time of interest is the value of the grid point corresponding to
the first window in which a significantly positive slope has been reached with

the appropriate number of consecutive windows also having significantly positive

slope.
6.2.7 Examples
All this information can now be conveyed conveniently in three plots :

e Time vs. creatinine
e Time vs. -1/creatinine

e Time vs. slope coefficients(with +2 standard error bands)
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The typical examples of each classification, which were used earlier are shown
with the additional graph in Figures 6.5-8. The vertical line denotes when pro-

gressive graft dysfunction or acute graft loss has occurred.

6.2.8 Results of the Algorithm on the Test Set

As would be expected with this type of analysis, the algorithm does not always
deduce the status correctly. However, in the test data available 91 cases were
correctly classified and only 9 cases were misclassified. The complete results are

displayed in the following table.

Algorithm
stable,good stable,poor PGD AGL
stable,good 70 0 2 0
True Status stable,poor 0 4 2 0
PGD 1 2 15 1
AGL 0 1 0 2

Table 6.1: Classifications of Test Cases

The main area in which we would like to see improvement is in the detection
of PGD. However, the four misclassified PGI) cases are spread across all the other
categories and so it will be difficult to pinpoint the problem, especially since four

non-PGD cases of different types have been classified PGD.

Figures 6.9-12 show four cases where medical opinion has disagreed with
the classifications made by the algorithm. These help to highlight some of the

difficulties in achieving improved performance.

Looking at the trace of hospital number — 5 —) we see that there is quite a sharp
rise in creatinine level which then appears to stabilise, producing an approximate
S-shape. The doctors describe this as a stable, poor function. However, the
algorithm has detected the rise and finds six subsequent, consecutive windows
which have (only just) significantly postive slope.

In the case of hospital number — 6 ~, the short spikes in the trace mean that

132




Example of stable, good trace
Figure 6.5 : Hospital number 1
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Example of stable, poor trace
Figure 6.6 : Hospital number 2
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Example of trace for PGD

Figure 6.7 : Hospital number 3
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Example of trace for AGL
Figure 6.8 : Hospital number 4
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the slope is not positive for a long enough period of time and is being clz;ssiﬁed
as stable, poor instead of its true status PGD.

The trace of hospital number — 7 — is positive just long enough for PGD to
be detected instead of being classified as stable, poor but here the values of the
lower band are extremely close to zero.

The graft with hospital number — 8 - is said by the medics to be a case of
progressive graft dysfunction but we suspect that short spikes and the sparseness

of the data are the reasons for the algorithm concluding a stable, good status.

On the whole, the algorithm seems to perform well. 1t is of interest to apply
it to more data and to continue with further analysis. Before doing so, a few

notes on problems and possible amendments should be made.

Firstly, the detection of the S-shape curve could be examined by looking at
the remaining data after detection of PGD and re-running the algorithm on this.
However, when this was tried, there was no further improvement in the success

rate already achieved and further adjustments were not attempted.

Some acute graft losses are still going undetected. There may be a need to
be more specific about the size of jumps in creatinine levels. However, this would

create yet another area requiring subjective tuning of the algorithm.

The effect of short spikes in the trace to the slope coefficient could be lessened
by using robust regression. This will be more difficult to implement, and could

affect those classifications already specified.
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Example of misclassification
Figure 6.9 : Hospital number 5
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Example of misclassification
Figure 6.10 : Hospital number 6
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Example of misclassification
Figure 6.11 : Hospital number 7
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Example of misclassification
Figure 6.12 : Hospital number 8
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6.2.9 Results of the Algorithm

The time of event, status and covariate information were available for 446 indi-

vidual grafts. The classifications of these were :

status number in category
stable,good 306
stable,poor 419
PGD 66
AGL 25

Table 6.2: Results of algorithm

The proportions in each category are similar to those observed in the set of
test cases. This indicates confidence of a representative test sample and consis-

tency in the algorithm.

A histogram of the times associated with the onset of progressive graft dys-
function (Figure 6.13) shows how the times are distributed, with most of them

occurring within two or three years of transplantation.
6.2.10 The Experts’ Views

The algorithm was tried, tested and improved on the basis of 100 randomly chosen

grafts and the views of two experienced medics.

A more rigorous test to assess the performance of the algorithm was carried
out using the opinions of three other experienced medics on all 446 of the available
grafts. Drs. Douglas Briggs (DB), Brian Junor (BJ) and Stuart Rodger (SR)
were given the traces of serum creatinine and -1/serum creatinine for each of the
individual grafts (similar to Figures 6.1-4). On the basis of these, each expert
independently decided on an appropriate classification from stable good, stable
poor, PGD or AGL.

Tables, similar to that in section 6.2.9, could be drawn for each pairing of

expert and of expert and algorithm. The question of interest is the extent to
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which there is agreement in PGD classifications.

The categories stable good, stable poor and AGIL are merged to provide a
classification which encompasses all cases ezcept those diagnosed as PGD. (The
motivation for this is clearer when techniques for further analysis are discussed
in the next section.) For example consider the comparison of opinions of Dr.

Douglas Briggs and the algorithm.

Algorithm
PGD Other
PGD 57 29
DB
Other 9 347

Table 6.3: DB and Algorithm classfications

Note: There were occasions when the experts felt that a particular graft did
not fall into any specific classifications. Also the algorithm requires at least one

year’s data to be able to make a decision. These cases have been disregarded

from this analysis.

An obvious quantity to measure agreement would be the proportion of cases
correctly classified. For the case of DB and algorithm above, this is 0.914, calcu-
lated as 57-+347 / 57429494347 . The other combinations of opinion produce

the following results.

DB BJ RR ALGO
DB 1 0941 0941 0.914

BJ 1 0947  0.881
SR 1 0912
ALGO 1

Table 6.4: Comparisons of Experts’ Views

In assessing the performance of the algorithm, it should be borne in mind that
the opinions of the experts are themselves not in complete agreement. However,

there is slightly greater agreement among the experts than between the experts
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and the algorithm. Nevertheless, the algorithm has achieved a good level of

performance.

6.3 Factors Affecting the Onset of Progressive Graft Dys-
function

To investigate which factors may cause, or have an influence on, the onset of
PGD, we grouped together cases in the stable good, poor and AGL categories.
This allows us to employ survival analysis techniques since we use our time event
of interest (discussed in an earlier section) as “survival time”, grafts which have
experienced PGD will be said to be “failures” and “censored” observations will
be all those which fall into the other three categories. The classifications used
are those obtained from the algorithm since these have been shown to be in close
agreement with diagnoses by medical experts and the criteria on which they are

based are expressed explicitly.

Firstly we found the Kaplan-Meier survivor function estimates for these data
and a plot of these can be seen in Figure 6.14. This gives a very basic illustration
of the probability of suffering PGD over time. Point estimates for this probability
for different years are helpful.

Estimated cumulative
Year | Probability of onset
of PGD

0.05

0.12

0.15

0.17

0.19

U Q2 DN

Table 6.5: Survival by Year

This reflects the pattern displayed by the histogram in the previous section,
namely that most of the occurrences of the PGD are detected within one or two

years of transplantation.




Various covariates which were thought likely to have an effect on the occur-
rence of PGD, were analysed using Cox’s proportional hazards model(Cox,1972).

The results of careful model comparisons can be summarised as follows.

A variety of covariates were not found to be related to the occurrence of PGD.

e Neither the age of the recipient nor the donor at the time of transplant was

found to significantly affect the onset of PGD.

o Neither sex, male or female, is significantly more at risk to this condition

than the other.

e The mismatch score, used to assess the acceptability of the kidney to the
patient, and the number of peak panel level reactive antibodies were

also found to be non-significant in their effect on PGD.

e The number of days between the date of the kidney first functioning
and the date of transplant does not have a significant effect on the onset of

PGD either.

e Cyclosporin dosage and blood level and the number of hypertensive
drugs were included as time-dependent covariates in the model but none of

these was found to have a significant effect.

o There are several immunosuppressive drugs used to suppress the natural
immunity of the body which would otherwise cause the transplanted organ
to be damaged by a rejection process, but none of these, nor any combination
of them, was found to have a significant effect on the occurrence of PGD.

(Perhaps due to small numbers in some groups.)
The following covariates were found to be related to the occurrence of PGD.
e The type of transplant (cadaver or living-related donor) was found to have

an effect which bordered on significance (p-value = 0.08) when fitted in the

Proportional Hazards model.
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When investigated further, using the log-rank test statistic to cdmpare
the two Kaplan-Meier survivor functions, there was again a borderline effect
(x* = 3.1, p-value = 0.078). Figure 6.15 shows these two curves and we
suspect that the difference would be more statistically significant if more
cases were available in the living-related donor group (Only 2 out of 37
grafts experienced PGD in the living-related donor group, as opposed to 60

out of 375 in the cadaver group.)

e The first covariate which was found to be strongly statistically significant
was the number of rejection episodes treated with steroids. (coefl =
; 0.06, p-value < 0.005)

Since there were dates available for when each rejection occurred, the
number of days to rejection from transplantation was entered as a time-
dependent covariate in the Proportional Hazards Model and found to be
significant.(coeff = 0.0007, p-value = 0.015)

A simple way to analyse this effect is, to use the log-rank test statistic to
test for different Kaplan-Meier survival curves.(See Figure 6.16)

Further investigation showed that the principle difference lies in whether or
not the graft has suffered a rejection episode, irrespective of how many. (x?

= 16, p-value < 0.0001) Point estimates for the two groups, similar to those

used earlier for the basic curve describing onset of PGD, are shown below.

year | no rejection episodes at least one
rejection episode
1 0.01 0.08
2 0.06 0.18
3 0.06 0.22
4 0.09 0.25
5 0.10 0.26

Table 6.6: Probability of survival by year and rejection episode

Recalling that the type of transplant was of borderline significance, the effect

of the number of rejection episodes treated with steroids was re—analysed on

cadaver transplant patients but the results were found to be very similar.
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e Systolic and diastolic blood pressure, fitted as time-dependent cov‘ariates
separately, are significantly related to the occurrence of progressive graft
dysfunction. (coeff = 0.0284 & 0.0327, p—value = 0.0001 & 0.0199 respec-
tively) These quantities are more traditionally analysed as a mean blood
pressure (ssystolic + 2diastolic) and, not surprisingly, this also produces a

result which is significant. {coeff = 0.0416, p-value = 0.0002).

This is in apparent contradiction to the non-significant effect of the number of

} hypertensive drugs and the interpretation of this is not clear.

l In this analysis the mean blood pressure (MBP) of individuals was noted
annually, for a maximum of six years. The time-dependent proportional hazards
model requires a survival time for each observed MBP measurement. So, indi-
viduals who had not yet been observed to fail in a particular time interval/year,
were classed as being censored at the upper end of that interval. Each of these
times is treated as an observation and Cox’s PH model is fitted using all these
measurements. For example, a patient observed to experience PGD after 1500

days will contribute 5 observations to the analysis.

Start End Status MBP at year ...

0 365 0 1

365 730 0 2

: 730 1095 0 3
1095 1460 0 4

1460 1500 1 )

Figure 6.17 displays the data as it would be analysed using the time-dependent
PH model. The high proportion of censored data and sparsity of large failure
times may be masking the evidence of an effect. A percentile lifetime curve un-
der the PH model would help to provide a graphical interpretation of how MBP
changes with time. It may also be informative to consider a doubly-smooth per-
centile curve as this does not have the restriction of being forced to be monotonic

unlike the PH curve. The smooth and PH 5% percentiles across the mean blood

pressure are shown in Figure 6.18. The axes have been swapped round to help




the understanding of the key features. Both curves suggest that the time to PGD

decreases as MBP increases.

To investigate this further, each year’s data, as it is entered in the time-
dependent model, is analysed separately.

The results of fitting Cox’s PH model to each year were as follows :

Year | Coeff. | p-value
11 0.035 0.064

2| 0.087 0.001
3 |-0.027 0.548
41 0.055 0.061

Table 6.7: Analysis of Mean Blood Pressure by Year

There is too little data to analyse the effect of MBP during years 5 and 6.
Also, since only 4 failures occurred in each of the third and fourth years, the
results from these time intervals are dubious. The effect of mean blood pressure
on progressive graft dysfunction in year 1 is marginally significant but the effect

during the second year is larger.

The subjective technique applied earlier to assess the effect of MBP on all the
data is employed here for data observed only during the second year. The smooth
and PH 5% percentile curves are calculated and shown in Figure 6.19. Under the
PH model, the curve decreases sharply at 100mm#Hg, with slope gradually becom-
ing less steep at around 120mmHyg. The smooth curve displays a less dramatic
shape although there appears agan to be a change in gradient around 115 or 120
mmHtg. Categorising the data into 2 groups, survival times with MBP<115mm#Hg
and MBP>115mmHg, the Kaplan—Meier survival curves can be drawn and com-
pared (see Figure 6.20). Results from this analysis show that there is significant
evidence that patients with mean blood pressure >115mmHg are likely to suffer
from PGD earlier than those with lower MBP. (x? = 6.4, p-value = 0.012)

Attempts were made to separate the data into three groups to assess whether
it is more applicable to consider MBP as low, medium and high but the results

implied that the lower 2 groups should be merged. Lack of data would also sug-
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T e

gest keeping only 2 categories as we want a reasonable number of individuals in

each.

Since the mean blood pressure at year 1 was observed to be a marginally
significant effect, it may be worth further investigation. The same procedures
were carried out as for the year 2 data but, as would be expected, evidence of an
effect was less obvious. In particular, the smooth 5 percentile curve, of Figure
6.21, displays very little change over the range of MBP (apart from those areas
where it is clear that one particular point is having an effect on the curve). The
value at which the PH curve decreases is around 100 mmHg which is consistent
with the data analysed in year 2.

The cutpoint 115mmHg was used to distinguish between high and low MBP
as before but the two Kaplan—-Meier curves were not found to be significantly
different. (x? = 2.2, p—value = 0.141). However the effect of moving the cutpoint
to 110mmHg produces a result which borders on significance. (x* = 3.8, p-value
= 0.051). Between 110 and 115, there are a lot of censored values and four failure
times, two of which are low. Figure 6.22 shows the 2 sets of KM curves for these
different cutpoints. It is very difficult to determine the nature of the effect of
blood pressure on survival time due to high censoring proportions and the extent

to which even one or two failure times can affect, or change, the conclusions.

This area may be worth further investigation, in particular to find more evi-
dence as to whether blood pressure is a causal or subsequent effect. However, it
should be borne in mind that the large amount of missing data and high propor-

tion of censoring casts doubt upon the significance of the results.

At first, it may seem surprising that only a few covariates were found to have
a significant effect on the onset of progressive graft dysfunction. However, since
relatively little is know about the occurrence of this type of deterioration perhaps
other factors, which have not been considered here, require analysis. These results
are still interesting and important and will, hopefully, help future research into

this condition.
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Figure 6.21 : Survival time vs Mean BP during year 1
with 5th smooth and PH percentiles

36064 wlwwu @ o @ o 00 o]
3304 . X \\\ "
3006 L '~ ~ X
2704 ' X \\
) 2404 X R -
> x Se
[0 210 = %
o x x
18064 ~ o
QJ X
g 1564 X X
}.— 1204 "
90
60
30
O._
T T T T T T
60 80 100 120 140 160
Mean Blood Pressure (mmHQ)
broken line = PH ; solid line = smooth
Figure 6.22 : Survival curves Survival curves
for low and high MBP for low and high MBP
= | ! =
_L_‘_\:««“ -_ﬂt:jé
1-<115 1-<110
g B 2->o0r=115 g B 2->0r=110
0 60 120 180 240 300 360 0 60 120 1 E;O 2:10 300 360
time to PGD (days) time to PGD (days)

154




6.4 Summary

Progressive graft dysfunction is a condition suffered by some kidney transplant
patients. It is a steady deterioration of the function of renal gr=ft but little is

known about what causes it.

An algorithm has been developed to provide an explicit rule for detecting
incidents of progressive graft dysfunction. Previously these cases have been diag-
nosed by the experienced, though subjective, impressions of doctors, who observe
| the transformed serum creatinine levels measured over time following transplan-
/ tation. The algorithm also uses these levels as the basis of its diagnoses and a
| graft can be classified as one of four conditions ~ experienced progressive graft
dysfunction or acute graft loss (a much more severe deterioration) or in a stable,
good or poor, state. A time corresponding to the number of days until the event
occurred is also given. The proportion of correctly classified grafts by this method

has been demonstrated to be high.

Cox’s Proportional Hazards Model and log-rank tests were used to analyse
the data obtained from the algorithm with appropriate covariate information.

The event of a rejection episode significantly increased the chance of the onset
of progressive graft dysfunction, although the risk did not seem to increase if
there were subsequent rejection episodes. This may be explained by early acute
rejection damaging the graft, rendering it susceptive to later immunological in-
jury, or perhaps further reducing the number of functioning nephrons. Another
study by Almond et al. also found this to be an important factor.

It also appears likely that patients whose kidney was from a living-related
donor are less likely to suffer from progressive graft dysfunction than those who
had a cadaver transplant. It is thought that the living-related donor grafts are
likely to be better matched and suffer less damage during organ donation and
transplantation.

The effect of blood pressure is interesting. It is thought that an increase in

blood pressure could cause injury to the graft through haemodynamic mecha-
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nisms but as yet it is unclear as to the extent of its significance.

Cyclosporin nephrotoxicity was observed to have an effect on the occurrence of
PGD in a study by Salomon (1992) but, in this analysis, the drug dosage did not
appear to have a significant effect. At the beginning of this chapter, other causes
of late graft loss were listed, such as donor age, but these would not appear to
be directly relevant to PGD sufferers and perhaps more distinction between the

different causes of rejection is required.
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Chapter 7

Linear Growth Curves for
| Children with Cerebral Palsy

. 7.1 Introduction

At the Kennedy Krieger Institute in Baltimore, Jackie Krick and Patti Miller
have collected data on a large number of children with cerebral palsy. They are
interested in assessing the growth and weight of these children relative to their

ages and how this compares to the development of normal children.

Cerebral palsy (CP) is caused by non—progressive abnormality of the imma-

ture brain and results in disorders of movement and posture. Other symptoms

may include mental retardation, seizures, visual and auditory deficits.

The cause of the brain damage, which results in cerebral palsy, can only be
identified in 60% of all cases but is distinguishable from other brain disorders in
that it occurs before a child’s brain has fully matured, which is usually when a

child is about sixteen years old, and its lack of progression.

There are different types of cerebral palsy, corresponding to differently dam-
aged regions of the brain, which in turn determines which limbs are most affected

by spasticity. The main types are :-
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e quadriplegia - all four limbs affected
e diplegia - legs affected more than arms
e hemiplegia - arms affected more than legs

e paraplegia - legs only affected, no involvement of arms

The National Centre for Health Statistics (NCHS) constructed percentile
curves which could be used to assess the physical development of normal chil-
dren. Data from other previous studies was combined providing measurements
on a sample of over 20,000 children. (Care was taken to ensure that this was
a representative sample of all children in the United States of America.) The
four curves derived from this research were various percentile curves for height,
weight and head circumference vs. age, and weight vs. height. Each chart was
constructed for males and females individually and for the two age groups 0-36
months and 2-18 years. We want to present similar charts for children with cere-
bral palsy. Although we obviously do not have as large amount of information
as was used to create the NCHS charts, there is enough data to achieve useful

results.

It is thought that there are less differences in height and weight between
children with cerebral palsy of a similar age, even children of different sex, than
we would find in normal children. So, we should assess the similarities of the
charts and consider the possibility of creating a “combined cerebral palsy chart”

to represent the growth of both sexes.

One of the major aims of the analysis is to compare the rate of growth of
normal children with that of the children with cerebral palsy. The latter are
thought to be both lighter and smaller than normal children.

Deductions from a visual comparison of the charts may not be enough since,
as was mentioned before, the sample of children with cerebral palsy is small

relative to that used to construct the NCHS charts. Therefore, we will assess the
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sample variability to validate our conclusions.

Objectives

o Compile growth curves for children with cerebral palsy
o Assess similarity of male and female curves.
e Compare CP and NCHS growth curves.

e Analyse sample variability and differences with NCHS curves.

7.2 The Data

We have data on 282 boys and 262 girls. During visits to the Kennedy Krieger
Institute, the age, height and weight of each child was recorded. The number of
measurements for each child varies widely and there is no set frequency to the
visits. In total, we have 1080 measurements on the boys and 1088 measurements
on the girls (although there are a few missing data points occurring where the
height was not recorded.) Data were not collected on head circumference as it
was not thought to be of interest in this research.

While it is tempting to utilise all of the available data, there is a longitudinal
aspect to the measurements. If a method appropriate for cross-sectional data
is used, there would be a risk of over-, or under-, representing some patterns of
growth. For example, very small children may be monitored more closely and
would therefore contribute more measurements to the data-set than children of
average height. (An informal investigation showed there to be some evidence
of this.) Therefore, for each child, only the information recorded for one visit,

chosen at random, is used in the analysis.

We must distinguish between the different types ot cerebral palsy from one

another as they are thought to develop at different rates, just as their growth rate

differs from that of normal children. However, we have an insufficient amount
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of data on any of the types of cerebral palsy apart from quadrilplegia so we will

consider only children with this condition.

In the NCHS charts, separate curves were derived for two age groups — <36
months and 36 months —18 years. However, we do not have enough information
on children under 36 months so charts will be constructed using the whole range

of data from 0-18 years.

Figures 7.1-6 show scatterplots of the complete data—set. (Other figures will
show only the data analysed.) These are plots of height vs. age, weight vs. age

and weight vs. height for males and females individually.

Although a smooth line representing the median growth rate on these plots
is informative, it is important to identify a region in which most of the data will
occur. This will be illustrated by also considering the 10th and 90th percentile
growth curves. The 10th(90th) percentile curve is defined to have 10(90) percent

of children’s heights below the curve at the corresponding age.

In both the girls’ and boys’ data, there appears to be a couple of observations
which look, almost unreasonably, large. There was assurance however, that these
were genuine measurements. These cases help to highlight the need to calculate
percentiles since the size of the value will not have as large an effect as it would

if we were calculating, say, mean values.
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Scatter plots
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7.3 Methodology

The topic of nonparametric percentile curves has been discussed at length already
in Chapters 2 and 3, where kernel estimates were used to derive quantile curves
for survival data. Here there are no censored observations and this is therefore

an opportunity to explore other nonparametric methods.

A common technique for fitting a curve to non-linear data is smoothing
splines. The rationale behind this is as follows. (See Hastie and Tibshirani

| (1990).)

Let {(X;,Yi)}~, be the set of n data points which have been collected,
where Y is the response variable and X is the explanatory variable. We wish to
characterise the dependence of Y on X. Suppose the relationship can be described

as
Y: = go(Xi) + &
where ¢, is an unknown mean curve. For any curve, g, the residual sum of squares

" (Y — g(X;))? measures the extent to which this curve is close to the data.

This residual sum of squares can be reduced to zero if we choose any curve
which interpolates the data. However, this would obviously produce a curve
which is too rough, and we expect our fitted curve to have a reasonable degree

of smoothness without too much local variation.

In order to choose a suitable curve, g, we can quantify local variation through

the integrated second derivative.

J(g"())d

This measures the roughness of the curve g and can be used as a penalty to ensure
sufficient smoothness, by constructing the weighted sum.
S3(9) = Yo% — g(X)) + A [ (" ()P
i=1

The quantity A denotes a smoothing parameter, whose choice determines the

trade-off between fidelity to the data and the smoothness of the curve. Choosing
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A to be small results in a larger roughness penalty, and hence a less smooth curve,
but a smaller residual error. Choosing X to be large gives a smoother curve but

larger residual error.

Alternatively, we could select the value of the smoothing parameter by spec-

ifying the degrees of freedom for the smooth curve. For the function, S, the
degrees of freedom is defined to be the trace of the matrix S, or, equivalently,
the sum of the eigenvalues of Sy. So the choice of degrees of freedom controls
the flexibilty of the fitted curve, g. This is analogous to degrees of freedom in a
E linear model. The unique solution to the problem of minimising S\(g) over the
class of all twice differentiable functions is a cubic spline. This produces a good

estimator of the true mean function g,.

Hamill et al. (1977) derived the NCHS curves by calculating the percentiles
from the empirical quantile function for small intervals of data across age. The
values for each centile were then smoothed using a cubic spline. Here, less data
is available and the number of points within each interval would be insufficient to
produce reasonable empirical quantile values so a more direct approach must be
used. An estimator of this type was proposed by Jones (1988) and is explained

below.

We are interested in producing a spline estimator for percentiles, rather than
mean values. In order to construct the median smoothing spline, the sum of the
absolute deviances should be used instead of the residual sum of squares. So, we

now solve the following

1‘1‘(li1)lz |Y; — g(X3)| + Af(gu(“))gd“
GE) =1

which can also be written as

mnzly g( (%~ 9K 4 [ (")

9(z) i

This is now a similar function to the one defined above, but with a weighted
residual sum of squares to result in the median spline being evaluated. To

generalise to the p'* percentile, 0 < p < 1, we adapt these weights further and
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use

min S Wilg) (% — g(X0))? 4 [ (" ()

where _
IYi—g(Xi)] LY, —g(Xi) >0

1— .
Wi(g) = Wl——g(%.)l if Y, —g(X;) <0
0 Y, —g(X;)=0

In applying these techniques, it can be helpful to first remove as much as
possible of the linear trend in the data. The quantile spline then has less pattern

to detect and so its fit to the data should be improved.

In the cerebral palsy data, transformations of age and weight improved the
linearity in the plot of response vs. explanatory in each of the charts. The
problem of scarcity of data on older children and the wider variability of height
and weight values of these children is also reduced by making these adjustments.
The transformations used were to take the square root of age and the natural

logarithm of weight values.

Least squares estimation was used to fit a linear regression model to each pair
of transformed (where applicable) variables. So the residuals from this analysis
and the transformed (again, where applicable) explanatory variable were then
used to fit a smoothing spline with 5 degrees of freedom for a specified percentile.
It is a straightforward procedure to transform the results from this back to their

original scale so that we have our curve of interest.
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7.4 The Cerebral Palsy Growth Curves

Figures 7.7-12 are the scatterplots of the different pairs of variables for the
individual sexes with the 10th, 50th and 90th percentiles superimposed.

As we would have expected, both from looking at the data and by intuition,
the rate of growth in the first two or three years following birth is high and
eventually slows down as children get older. Also, initially there is little variation
in the height and weight of children of similar ages but this variability becomes

larger between older children.

As we would expect, the weight vs. height charts show that, for most children,
these attributes will vary proportionally implying that small children will tend to
be much less heavy than tall children.

As mentioned before, information on older children is sparse and, as a result,
we would be wary of using these charts to make any conclusive remarks on children
over the age of 120 months. Despite this, the charts could be very useful in
determining the size of a child with quadriplegic cerebral palsy relative to other

children with this condition.
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7.5 Comparison of Sexes

The possibility of representing both males and females in a single chart was
discussed earlier. To assess the plausibility of this, the curves for males and

females were plotted together and can be seen in Figures 7.13-15.

There seems to be very little difference between the actual measurements
or the rates of growth in height and weight. The largest differences can be seen
in children over 120 months. Although it is known that boys are usually bigger
than girls as age increases, we should remember about the scarcity of data and

our consequent reluctance to make any conclusions about children in this region.

Merging the data for the two sexes results in the curves shown in Figures

7.16-18.

There is an argument that the two sexes are so biologically and physically
different that to assess the development of all children together is inappropriate,
regardless of the evidence of the similarity between them in Figures 7.13-15. Also,
the NCHS charts are constructed for males and females individually and we wish
now to compare these with the CP curves. For these two reasons, we shall proceed

treating the sexes separately.

7.6 Comparison with NCHS Charts

In order to reconstruct the NCHS curves, values for the various charts were taken

from the Normalized NCHS/CDC Anthropometric Reference Book.

For the height and weight vs. age curves, the 10th, 50th and 90th percentiles
of height and weight were plotted at 3 monthly intervals. This information was
only available up to the age of 120 months. However, this was not a problem
since we have maintained throughout the analysis that the curves beyond this
age were unreliable anyway. The “blip” at 24 months in the height vs. age chart

occurs because a distinction is made between how a child is measured. Children
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up until the age of 24 months have their length measured and children older than
this are measured by their height. Since children with cerebral palsy are unable

to stand up straight, their length is regarded as being equivalent to their height.

For the weight vs. height charts, the 10th, 50th and 90th percentiles of
weight were recorded for two values in every 5 centimetres between 50 and 135
centimetres. Again the full range of values available was used and here the height

measurements less than 65 centimetres are actually lengths.

Figures 7.19-24 show the charts for the different pairs of variables for both

the males and females individually.

In the height vs. age plots, the NCHS 10th percentiles lie between the 50th
and 90th percentiles of the CP curves suggesting that the children with cerebral
palsy are much smaller than normal children. During the first few months after
birth, there is only a small difference between the two types of curve but this
increases with time. So it appears that children suffering from cerebral palsy also

have a slower rate of development in height than normal children.

We see the same sort of effect in weight vs. age and so children with cerebral
palsy also seem to be much lighter and gain weight at a slower rate than normal

children.

The differences in the weight vs. height charts are not quite so strong but,
since age is not taken into consideration here, this reflects the fact that children

with cerebral palsy are only slightly lighter than normal children of similar height.

7.7 Assessing Sample Variability

As we discussed in the previous section, from the comparison of NCHS and CP
curves, children with cerebral palsy appear to be lighter and smaller than normal
children of a similar age. However we must remember that the sample used to

construct the CP curves is considerably smaller than that used in the NCHS
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Comparison of NCHS and CP curves
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charts. We therefore must assess the sample variability of our CP curves and

take this into account when making our comparisons between the two curves.

Estimating the variance of the quantile spline would be mathematically com-

plex but, using bootstrap samples, the variability of the sample can be assessed

in a relatively simple way.

As discussed in Chapter 4, the most basic method of bootstrapping is random
sampling with replacement from the available dataset under the cumulative distri-
bution function. So, for a dataset containing n observations, a bootstrap sample

will be of size n with 0,1,...,n repetitions of each of the original observations.

To assess the variability of a statistic, we draw a large number of bootstrap
samples, calculate the statistic of interest for each sample and create a histogram
of the values. The variability across the bootstrap replications represents the

uncertainty in the statistic calculated for the original sample.

In the CP case, we have resampled children rather than individual observa-
tions, so the resampling is from the joint distribution rather than the conditional
distribution. The percentile splines were calculated for each of 50 bootstrap sam-
ples. Figures 7.25-30 show the NCHS curves as seen before in Figures 7.19-24
but here the shaded areas on the plots indicate the region in which these curves
fell, with the boundaries representing the minimum and maximum values at 3

monthly intervals.

As we would expect, the variability in the percentiles varies slightly between
the variables and the sexes and there is a lot of overlap in the first few months.
The NCHS curves are still above these shaded areas in the comparison of age
vs. height and weight, and the comments of the last section still seem viable.
This analysis confirms that children with cerebral palsy appear to be shorter and

lighter in weight than normal children of the same age.
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Girls : Height vs. Age
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7.8 Conclusions

In the previous sections we have built up a picture of what is of interest in

assessing the development of children with cerebral palsy.

It is important to know how quadriplegic children compare to normal children

and to appreciate the amount of sample variability.

The last six growth charts, Figures 7.25-30, combine all this information.
They provide a chart to which a child with cerebral palsy’s height and weight
could be compared to that of both other children with the same condition and
normal children. This comparison can also be quantified in terms of whether the
child’s measurements lie within the 10th, 50th or 90th percentile curve areas. All
of this helps to give parents of children with quadriplegic cerebral palsy some idea

of how their child is developing.
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‘ Appendix A
Taylor Series Arguments
|

Consider the uncensored case of the weighted Kaplan-Meier estimator 5(t|z) and
use the results,

for X ~ Bi(n,0) E(X)=n# var=nf(l-9).
Recall that, for illustration, the covariate values here are assumed to be uniformly
distributed on the design space. The limits of the integration are assumed to

correspond to the range of the z values.

Z] 1 lelj

BE() = B(5852) where Y~ Bi(l,5(2))

(52) 5 tlz»/zw(f%fl)
Jw () sty ] [w (=
= WS - uh)du / JWw)du

= 2w

Q

- / W (w){S(t]2) — uhS'(t|z) + CRE8(¢|2) + O(h?)}du / / W (w)du

= S(t|z) + B.5"(t]z) f u*W (u)du + O(h2)

assuming i to be small and / uK (u)du = 0.
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var(S(t]z)) =

= wiw

Q

" W,Y,
var (—z—;z’—ﬁ—‘———»v";i> where
g=1 "2

Yj ~ Bi(1,5(¢]2))

I (35 van(¥;) [ & eI (552)

%/111_21;(2 (_Z_;};_g) S(tv)[1 - S(t|v)]dv/%/h%[{2 (z;v) dv

_ %/%K?’(U)S(ﬂz —uh)[1 — S(t|z — uh)]du/;i—/%f@(@du

&

—
’ Ps =4

Pr =

3=

E(Tu(p)) =

Q

~
~>

assuming A to be small.

J K*){S(t]z) - (wh)S'(t]z) + S5=8"(tl))
AL = S(t|2) + (uh)S'(t]z) — BE-S"(t|2)}du [ [ K*(u)du

{J K3 (w)S(t|2)[1 — S(t|2)]du + [ K*(u)uhS'(¢]2)[25(t]z) — 1 — uhS'(t|2)]du

+O(h?)} /f K*(u)du

= S(tz)[1 = 5(=)] + O(R)

again, assuming i to be small.

Now consider the expectation and variance of the quantile estimator, T.,.

Recall from sections 2.1.1 and 2.2.1 that
Q(p) = F~(p) = inf{z : F(z) > p}

with B(X@) = Q(p) ,  cov(Xw), X()) = % »2.(L = po)(F7) (pr) (F ™)' (ps) and

LS Lk (4n=2) F=1(i/n)
! 1 r— 1

/0 L (252) F(2)da
(1=r)/h

K(u)F~Y(uh + p)du

FY(p) + & (F~1)" (p) f u?K (w)du + O(R?)
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