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Summary

A better understanding of the process of bone mineralisation is needed before
effective treatments for bone diseases such as osteoporosis can be found. Bone growth
is essentially a surface process, and because of this, scanning electron microscopy has
proved of great value in imaging large areas of growth surface. Previous studies have
identified six mineral surfaces, each associated with a known metabolic growth state,
and each characterised by a particular surface texture. It is desirable to have quick and

accurate methods for recognising these surface types and evaluating them quantitatively.

The objective of this study was to develop algorithms to segment and classify,
automatically, the surface textures found in scanning electron microscopy images of rats’

bones. This thesis describes the techniques used, their success and their limitations.

Chapter 1 is a brief introduction to the physiology of bone and the use of the
scanning electron microscope to study bone surfaces. It explains the background to the
study and describes the texture types identified in bone surfaces. It also describes the
preparation of specimens for the scanning electron microscope, how the images are
captured by the SEM and the transfer of the images to disk for use on a Sun
SPARCstation.

Chapter 2 introduces the idea of texture, and reviews methods previously used
to classify texture. The techniques are divided into 3 groups - statistical, structural and
modelling.  The statistical techniques reviewed include variations based on co-
occurrence matrices, grey-level difference statistics and run-length matrices. Structural
methods mentioned include a linguistic approach to extracting primitives, an approach
based on grey-level thresholding and an edge-based approach. Modelling techniques
include random mosaic models, Markov and Gibbs random field models, and random
walk models. Each method is briefly described and results, where relevant, are quoted

and discussed.

In chapter 3 the classification techniques described in chapter 2 are tested on the

scanning electron microscopy images of rats’ bones. To accelerate the investigation




64x64 windows are extracted from the larger 512x512 images. Image standardisation
techniques are also discussed and investigated. None of the statistical classification
methods works as well as stated in published results, where, on the whole, images from
Brodatz’ (1966) texture album were used. The best classification technique for the
images in this study is a maximum likelihood classifier based on the co-occurrence
matrix without feature extraction. High rates of classification (88%-100%) are obtained

on training sets, although results are poorer when applied to test sets.

Chapter 4 deals with the problem of segmenting the images. The idea of edge-
detection is introduced and texture segmentation techniques are described and
investigated. Initially the results in this study are worse than those in published
literature but by combining and modifying some of the techniques the segmentation is
greatly improved. The chapter also examines automatically thresholding the images to

highlight edges. Results of the fully automatic segmentation process are shown.

Chapter 5 brings together the work of chapters 3 and 4. It deals with the larger
256x256 images, the drawing of boundaries between texture types using the methods of
chapter 4 and subsequent classification of each region into one of 5 types. This chapter
also discusses the detection of vascular channels and bone cells and illustrates some of
the difficulties in segmenting and classifying the images. Examples are given which
show that, to a certain extent, the objective has been achieved. Boundaries can be found
between formative and resorptive texture types and around vascular channels, Windows

can then be classified, with reasonable accuracy, into one of the 5 texture types.

Chapter 6 discusses the limitations of the methods used and the problems of
image capture. It also discusses possible ways of improving the results. These include
treating the texture types as a continuous scale rather than 5 (or 6) discrete types, and
using back-scattered electron images instead of secondary electron images. The latter
would result in very different images and may require a completely new set of
techniques to the ones used here. This chapter also summarises several other techniques
which have been used by authors for either texture classification or segmentation, and
could be tested on the images in this study. These include relative extrema techniques,

fractal-based approaches, and the use of neural networks.
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Chapter 1 A Physiological Background
1.1 The Structure of Bone

Bone is a form of connective tissue which forms most of the skeleton of higher
vertebrates. It consists of two main components - 1) bone cells and 2) an intercellular
matrix.

The matrix contains an organic component and an inorganic component. The
organic component is mainly collagen fibres which contribute greatly to the strength and
resilience of the bone, whereas the inorganic component, which accounts for
approximately two-thirds of the weight of the bone, gives it its hardness and rigidity.

Examination by eye reveals two types of bone - spongy bone and compact bone.
Spongy bone consists of thin, irregular branches or trabeculae which connect with one
another to form a mesh, the spaces of which are filled with bone marrow. Compact
bone appears solid except for microscopic spaces. Both spongy and compact types are
present in almost every bone, although the amount and distribution of each vary
considerably. In long bones such as the tibia the shaft is mainly compact bone
surrounding a bone marrow cavity. Each end consists of spongy bone covered by a thin
shell of compact bone. In flat bones, e.g. the skull, two plates of compact bone enclose
a middle layer of spongy bone.

Each bone is enveloped by a specialised tissue coat called the periosteum. A
similar, but less well-developed connective tissue layer called the endosteum lines the
marrow cavity and marrow spaces.

Microscopically, the most characteristic feature of mature bone is its lamellar
structure. The calcified intercellular substance, or bone matrix, is organised into
lamellae or layers arranged in various ways. Within the intercellular substance there are
small cavities called lacunae which contain the bone cells. Radiating from each lacuna
are numerous narrow channels, termed canaliculi, which penetrate adjacent lamellae to
join with canaliculi of neighbouring lacunae. Thus all lacunae are connected by a
system of these narrow channels. In addition, compact bone is traversed by vascular
channels called Haversian channels. These contain the blood vessels and nerves of the

bone and provide a means of transporting nourishment to the bone cells. In cross-




section, Haversian channels appear as round openings surrounded by ring-shaped

concentric lamellae. (Fig. 1.1)

Fig. 1.1

A scanning electron
microscope image of
bone showing a Haversian

channel.

There are three cell types peculiar to bone - osteoblasts, osteocytes and
osteoclasts (Fig. 1.2).

Osteoblasts are associated with bone formation. They vary in shape, have a large
nucleus and several canaliculi extending from them. Osteoblasts secrete the intercellular
substance of bone both around their cell bodies and around the canaliculi. When
mature, osteoblasts are termed osteocytes.

Osteoclasts, the third major type of bone cell, contrast with the other two types
in being very large with multiple nuclei and in being involved in bone resorption rather
than bone production. At one time they were thought to have formed from the fusion
of osteocytes but recent research has suggested this is not the case. Osteoclasts are now
believed to be derived from separate cell lines from osteoblasts and these fuse together
to form the multinucleate osteoclasts. Osteoclasts are however known to be associated
with bone resorption and are often found in shallow excavations known as Howship’s

lacunae.




(a) Osteoblast o (b) Osteocyte

(c) Osteoclast

Fig. 1.2 The bone cells.
1.2 Bone Growth and Bone Resorption

Bone is a living tissue and its composition and structure are constantly changing.
These changes are the result of two processes - the formation of new bone and the
resorption of older bone.

In a normal mammal, the formative and resorptive processes are finely balanced
to maintain a constant bone mass in the adult or, in the child, a controlled rate of bone
growth. Thus as new bone is added to the outside of a shaft of long bone, at the same
time, older bone must be resorbed from the inside of the shaft. If for some reason the
two processes of growth and resorption get out of balance with one another the bone
becomes abnormal. One example of this is the fairly well-known disorder, common in
post-menopausal women, called osteoporosis. Here, bone resorption is greater than bone

formation resulting in "thinning of the bones".
g g



1.3 The Study of Bone Surfaces

Both bone growth and bone resorption occur on the surface of bone so that all
alterations in the shape of bones that occur through their growth and development are
the result of bone being added to surfaces and resorbed from surfaces. Examination of
bone surfaces can therefore provide valuable information about the bone such as its age
and whether there is any history of bone disease. For this reason several studies have
involved examining various bone surfaces. Many of these studies have made use of an

instrument known as a scanning electron microscope.

1.3.1 The Scanning Electron Microscope

Electron microscopy has grown from man’s efforts to see, more clearly and in
increasing detail, the material world in which he lives. Regardless of how good a light
(or optical) microscope is, the resolution, which is defined as the closest spacing of two
points which can clearly be seen through the microscope, is limited. As a result, the
light microscope has, in recent years, been complemented by its electron-optical
counterparts, such as the scanning electron microscope (SEM), the transmission electron
microscope (TEM) and more recently the transmission scanning electron microscope
(STEM). All three electron microscopes project a beam of electrons (as opposed to a
beam of light in a light microscope) at the specimen. At the simplest level, a scanning
electron microscope provides images of external morphology, similar in appearance to
those formed by eye, whereas a transmission electron microscope probes the internal
structure of solids and provides microstructural detail not familiar to the human eye.
A scanning transmission electron microscope combines some of the advantages of the
SEM and the TEM.

One of the main differences between electron optics and light optics is that
electrons are very much more strongly scattered by gases than light is. This means that
in order to use electrons in a microscope all the optical paths must be evacuated to a
pressure of about 107 of atmospheric pressure. Another main difference is that electrons
carry a charge. This opens up the possibility of easily scanning a beam of electrons

back and forth, as happens in a cathode-ray tube or a television tube. The application
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of this approach has led to the development of the scanning electron microscope which
has revolutionised attitudes to the study of surfaces.

Figure 1.3 shows the main components of a simple scanning electron microscope.

Electron
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Fig. 1.3 The Scanning Electron Microscope

An electron gun, which is usually a heated tungsten hairpin filament, emits an
abundance of (primary) electrons which generate an electron beam. A series of lenses
then demagnifies this electron beam until it hits the specimen, which is held in the
specimen chamber. The fine beam of electrons is then scanned across the specimen by
the scan coils while a detector records the number of low energy secondary electrons,
or other radiation, given off from each point on the surface. At the same time, the spot
of the cathode ray tube (CRT) is scanned across the screen, while the brightness of the
spot is modulated by the amplified current from the detector. The electron beam and
the CRT spot are both scanned in a similar way to a television receiver, i.e. in a
rectangular set of lines known as a raster. By suitable choice of the number of turns of
the scan coils or by moving the coils which deflect the electron beam in the microscope,

the size of the raster scanned in the specimen can be arranged to be much smaller than




on the surface of the cathode ray tube. The magnification is the ratio of the length of
one side of the raster on the display cathode ray tube to the length of the corresponding
side of the raster scanned by the electron probe on the specimen. Thus the final picture
will be a magnified image of the object and within limits the magnification can be made
as large as wished. In practice, the magnification depends on the resolution, and the fact
that for small spot sizes, the number of electrons in the beam, and hence the signals
derived from their interaction with the sample, become very low.

One of the main features of the SEM is that, in principle, any radiation from the
specimen or any measurable change in the specimen may be used to provide the signal
to modulate the CRT and thus provide contrast in the image. Each signal is the result
of some particular interaction between the electrons and the specimen and may provide
us with different information about the specimen. Figure 1.4 shows some of the signals

which may be used in the SEM.

Incidermt
beam
Backscattered
electrons
4
Secondary
electrons
EBIC

Specimen
current

Transmitted
electrons

Fig. 1.4 Signals which may be used in the SEM

Secondary electrons are electrons which escape from the specimen with
energies below about 50eV. The yield of secondary electrons, that is the number

emitted per primary electron, can be as high as 1. Secondary electrons are therefore




abundant and are the most commonly used imaging signal in scanning electron
microscopy. Secondary electrons are detected by a scintillator-photomultiplier system
known as the Everhart-Thornley detector. Electrons are attracted from the specimen
towards a metal cup with a metal grid over its opening. The energy of the secondary
electrons is too low to excite the scintillator and so they are accelerated by applying a
voltage to a thin aluminium film covering the scintillator. The light created in the
scintillator then passes down a light pipe to a photomultiplier where it is converted to
an electric current ready for subsequent amplification.

One of the principal uses of the SEM is to study the topography of a sample.
Topographic images obtained with secondary electrons look remarkably like images of
solid objects viewed by light and the specimen in the SEM appears as if it were being
looked at from above.

The preparation of specimens for the SEM is far simpler than for other types of
microscope where thin specimens are used. Since there are no lenses below the
specimen in the SEM there is a great deal of space available to accommodate the
specimen, and therefore fairly large specimens can be viewed. For effective viewing of
the specimen in the SEM it is necessary for the surface of the specimen to be
electrically conducting. This is because, during normal operation, a surplus of electrons
builds up on the specimen surface. If these were not conducted away to earth, the
specimen surface would become negatively charged and a distorted image would be
formed. In biological materials it is common to coat the specimen with a thin
conducting layer of gold or carbon using sputter coating.

In summary, scanning electron microscopy is preferable to other microscopy
methods for various reasons. Probably the main advantage is the excellent resolution
compared with optical microscopes. In addition, specimens can be examined over a
wide range of magnifications and the SEM provides a greater depth of field than that
provided by light microscopy methods. Also specimen preparation is easier because it
is not necessary to prepare thin, flat sections, and the scanning electron microscope
provides a clear view of much larger specimens than, for example, a transmission

electron microscope.




1.3.2 Methods

Using a variety of methods of preparation, several different bone surfaces have
been exposed and examined using the scanning electron microscope (Fig. 1.5).

There have been several studies in which the morphological appearance of the
cellular layer lining bone surfaces has been investigated with the scanning electron
microscope (Jones (1974), Jones, Boyde & Pawley (1975), Davis et al. (1975), Jones &
Boyde (1976a & b), Jones et al. (1977)).

Other studies involve examining the surface of the bone matrix directly
underlying the cells (Boyde & Hobdell (1969)).

A third method is to remove the organic component of the bone matrix to expose
the mineral component for examination by the SEM. This method was first applied to
mammalian bone and dental hard tissues in 1968 (Boyde (1968), Boyde, Jones &
Hobdell (1968), Jones & Boyde (1968)). The organic component was dissolved using
sodium hypochlorite which exposes the surface of the mineral component without

affecting it to any great extent.

<« Bone Cells

I e

Fig. 1.5 Surfaces examined by SEM

Using this third method, in 1969 Boyde & Hobdell (1969a & b) studied the
appearance of free surfaces of anorganic bone and demonstrated that, based on this
appearance, it was possible to determine whether a surface was undergoing or had
undergone formation or resorption or if it was in a resting phase of activity.

In 1970, again using anorganic preparations, Jones & Boyde investigated the




changes induced in the surface topography of rat bones by hormone administration.
They found that they could now differentiate further the states of activity. Actively
resorbing zones could now be distinguished from previously resorbed surfaces which
were currently in a resting phase of activity and surfaces which had only recently

entered a resting phase could be distinguished from prolonged resting surfaces.

1.3.3 Classification of Bone Surfaces

Six different types of anorganic surface could now be distinguished on the basis
of their morphological appearance. These six surfaces represent different stages in the
bone turnover cycle.

Type 1 : Surfaces with a granular appearance composed of small fusiform mineral
particles. In some areas the particles display a random orientation, in others they are
aligned in rows. This type of surface is taken to represent an early phase of
mineralisation of the matrix (Figs. 1.61, 1.7).

Type 2 : Surfaces consisting of rows of larger mineral nodules resembling pebbles or
strings of beads. These areas are taken to represent a later stage in the calcification of
the collagen matrix (Figs. 1.6]l, 1.8).

Surface types 1 and 2 together represent incompletely mineralised matrix.
Type 3 : Smooth surfaces consisting of collagen fibre skeletons. These areas are taken
to represent completely mineralised, resting bone matrix. The rims of forming osteocyte

lacunae are smooth, representing a high level of mineralisation (Figs. 1.6111, 1.9).

Fig. 1.6 Stages in the mineralisation sequence.




There are also surfaces displaying numerous depressions or pits with bright
scalloped edges. These surfaces are always at a lower level than the adjacent bone
matrix and their borders are marked by fairly well-defined edges. These surfaces
correspond to bone which has undergone osteoclastic resorption. Two types of resorbed
surface can be distinguished.

Type 4 : Surfaces where individual collagen fibre skeletons are visible and their
orientation can be distinguished. The orientation varies between successive exposed
lamellae. These surfaces represent bone matrix which was undergoing erosion at, or
close to, the time the rat was killed (Fig. 1.9).

Type 5 : In other resorbed areas the surface has a much smoother texture and individual
collagen fibre skeletons cannot be distinguished. This surface type corresponds to bone
which was resorbed some time before the animal was killed and has subsequently
undergone some degree of mineralisation. This accounts for its smooth appearance.
Such surfaces are termed resting resorbed surfaces (Fig. 1.10).

Type 6 : This surface type occurs when resorbed surfaces are overlain by a
mineralisation front. The circle is now complete and new bone, i.e. type 1 is formed

on the resorbed surface (type 5). (Fig. 1.10)
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Fig. 1.9 Texture type 3, with its smooth collagen fibres, can be seen in the top left.

Texture type 4 is in the bottom right. The collagen fibres are clearly visible.

Fig. 1.10 The smooth appearance of texture type 5 can be seen at the top of the picture

with the mineralisation front of type 6 in the bottom left.



The proportion of each of these six surface types present in bone varies along the
length of a bone and with age. Reid (1986) found that the amount of active surface
decreases with age, and depends on whether the bone is diseased or healthy. Dempster
et al. (1979) measured the percentage area of each of the six different types of surface
described above on tibiae from three rats in each of three experimental groups.

1) Rachitic (R) - rats fed on a Vitamin D deficient and low phosphorous diet.
2) Vitamin D-Treated (D) - rats on a similar diet to group R but with a Vitamin D
supplement.
3) Normal (N) - rats fed on a "normal" diet.
More detailed descriptions of the diets can be found in Dempster et al. (1979).
The proportions were measured by taking a series of twenty-five micrographs
along the middle of each bone segment and analysing the micrographs using a computer-
linked planimeter (Biddlecombe et al. (1977)).
The results are illustrated overleaf and show that in rachitic bones a significantly
greater proportion of the surface was occupied by incompletely mineralised bone, i.e.
surface types 1 and 2, than was present in bones from Vitamin D-treated and Normal

rats.

13
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Fig. 1.11 Percentage area occupied by total incompletely mineralised,
resorbed and resting surfaces on the tibial endosteum of rachitic (R),

D-treated (D) and Normal (N) rats. Values are means +/- S.E.M. (n=3).

These results suggest that in rachitic and Vitamin D-treated rats the rate of
mineralisation between stages 2 and 3 is much slower and a lower percentage of bone
surface becomes completely mineralised.

Similar studies have been carried out on other types of diseased bone, e.g.
examination of osteogenesis imperfecta samples revealed all surfaces were either
mineralising or resorbed, with no resting, fully mineralised surfaces being found (Ornoy
& Kim (1977), Reid & Boyde (1983), Teitelbaum et al. (1974)). Boyde et al. (1986)
mention studies of various types of diseased bone, e.g. osteomalacia, renal bone disease
& secondary hyperparathyroidism, fluorosis, paget’s disease etc., in which differences
from normal can be seen in the morphology of the bone surface. Thus measurement of
certain features and surface types can provide a great deal of useful information about
the effects of such diseases. It is therefore important that we are able to compare the
proportions of the different surfaces which are present. Dempster’s study in 1979 did

obtain useful quantitative data but the method used was time-consuming and expensive

14



and the location of the boundaries between the surface types was decided by the

physiologist.
1.4 Current Objectives

The ultimate objective of this study is to make the analysis of bone structure
completely automatic. Thus the recognition of the different surface types and the
drawing of the boundaries between them would be carried out by computer. This would
make the procedure faster, less expensive and less dependent on the opinion of the
physiologist. Whether this task is possible, remains to be seen. With this in mind,
however, this study assesses various image processing techniques to investigate how

automatic the procedure can become.
1.5 Specimen Preparation

The bones examined in this study were tibiae of rats. Right and left tibiae were
extracted from several rats and a length of shaft was cut from the bone using a rotary
saw with a very thin (0.3mm) sintered diamond blade. Distilled water was used as a
coolant and a lubricant. The length of the shaft ran from the point of attachment of the
fibula to the point where the crest of the tibia meets the shaft.

This shaft segment was then cut longitudinally into medial and lateral halves

(Fig. 1.12).

]
Latero\

Fig. 1.12 The lateral segment of tibial shaft used for SEM.
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The lateral half was soaked in 5-7% sodium hypochlorite solution overnight
(Boyde & Jones (1974)). This removes all of the organic material in the bone, leaving
only the mineral component of the bone matrix. The specimens were then washed in
distilled water for one hour (4 changes) and dehydrated in ascending concentrations of
ethanol as follows:

70% EtOH - 3 hours (3 changes)

90% EtOH - 1 hour (4 changes)

They were then soaked in absolute alcohol for one hour (2 changes) and were
air-dried for 3 hours. The specimens were then glued (endosteum upwards) on to
aluminium stubs and given a 50 nanometer coating of gold.

The specimens were viewed on a JEOL T100 scanning electron microscope using
an accelerating voltage of 15kV. Digital images were saved on disk using a Joyce
Loebl Magiscan computer interfaced to the scan output of the scanning electron
microscope. The SEM magnification used was 350 but because the Magiscan only uses
the central part of each scan, the final digital image magnification is in fact twice this.

Using Kermit, the images were then transferred across for use on a Sun
SPARCGstation, on which all the following analysis was carried out. Figures 1.13, 1.14
and 1.15 show three examples of the images obtained. Figure 1.13 contains texture
types 1 and 5, figure 1.14 contains types 2 and 3 and figure 1.15 contains types 1,3 and
5. Embedded within each of the texture types, in all of the images, are vascular
channels and bone cells. The images also all contain, to varying degrees, a number of
artefacts. This is probably due, to a certain extent, to the age of some of the specimens -
although some specimens were prepared especially for this study, many of the ones
used in this initial phase of the study were prepared for Dempster’s work in 1979. It
should also be noted that the boundaries between texture types are far from clear.
Figure 1.15 contains a reasonably clear, though not continuous, boundary between types
3 and 5, but in all other cases one texture type tends to merge into another. In addition,
there is not always a natural progression through the 5 types. This is illustrated in the
bottom right-hand corner of figure 1.15 where texture type 1 lies beside texture type 3.
It can therefore not be assumed that anything surrounding, for example a type one
texture, will be one of either texture type 5 or 2.

All the facts mentioned above make the task at hand a difficult one, and the

16




problems they create will be discussed in more detail throughout the thesis.

Fig. 1.13 A 512x512 image containing texture type 5 in the lower half and texture type

1 above.
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Fig. 1.14 A 512x512 image containing texture type 2 in the lower half, with

texture type 3 above.
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Fig. 1.15

A 512x512 image containing texture type 5 on the left, texture type 3 to the

right and above, with a patch of type 1 in the bottom right.
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Chapter 2 Texture Classification. A Review

2.1 Texture

Although a property of almost all surfaces, no formal definition of texture exists.
It is generally viewed as a measure of properties such as smoothness, coarseness and
regularity. Figure 2.1 shows examples of a) smooth b) coarse and c) regular textures.
Part of the difficulty in defining texture is the large number of attributes required in the
definition. In 1978, Tamura et al. identified 6 dimensions of texture - 1) coarseness
(coarse v fine), 2) contrast (high contrast v low contrast), 3) directionality (directional
v non-directional), 4) line-likeness (line-like v blob-like), 5) regularity (regular v

irregular) and 6) roughness (rough v smooth).

Fig. 2.1 Examples of (a) smooth, (b) coarse and (c) regular textures.

Texture is a property of areas, the texture of a point being undefined. It is
invariant to changes in orientation (i.e. rotating an image by 90° does not change its
texture), brightness of the image and the size of the area. It is, however, dependent on
resolution and magnification. An image magnified 50 times may appear to have a fine
texture. If it is magnified 1000 times however, the texture will appear coarser.

For these reasons, standardisation of images is an important element in texture

classification and will be discussed in chapter three.




2.2 Previous Approaches to Texture Classification

There are essentially 3 main approaches used in image analysis to classify the
texture of a region. These are a) the statistical approach, b) the structural approach
and c) the modelling approach. Modelling approaches are sometimes incorporated into
the first two sections depending on whether the models are considered to be statistical
or structural.

In statistical texture analysis procedures, a textured image is represented as a set
of measurements called a feature vector. Many statistical methods are based on
variations of grey-level co-occurrence matrices. Other statistical approaches include the
use of grey-level difference statistics and grey-level run-length matrices, methods based
on texture edges and filter masks, and procedures using the power spectrum of the
image.

Structural approaches try to characterise the pattern which is repeated in texture.
They are therefore more appropriate for textures with fairly regular structures. They
involve the definition of primitives, i.e. objects or subpatterns which are repeated in a
given area. These primitives are extracted from an image and the texture is
characterised by means of some rule that limits the number of possible arrangements of
the primitive.

With the modelling approach, texture is assumed to be a realisation of a
stochastic process which is governed by some parameters. Texture analysis is viewed
as a parameter estimation problem: given a textured image the problem is to estimate
the parameters of the assumed random process. The estimated parameters can then
serve as features for texture classification and segmentation problems. Although several
models have been used to generate and represent textures, the most common approaches
are based on Markov random field models.

The modelling approach has received much attention in recent literature. A
difficulty with texture modelling, however, is that many natural textures do not conform
to the restrictions of a particular model. Similarly, structural approaches tend not to be
applicable to natural, irregular textures and have therefore been less popular than
statistical methods. Due to the fairly irregular textures in the data sets used in this study

the approach taken has been a statistical one. Structural and modelling approaches,

21




although reviewed, have not been tested on the images in this study.
2.3 Statistical Approaches

Statistical approaches compute local features at each pixel in an image and derive
a set of statistics from the distributions of these features. The simplest features are the
grey levels and the simplest statistics are the moments of the grey-level histogram of an
image or region. Let z be a random variable denoting the grey levels and p(z),
i=1,2...,LVL be the corresponding histogram, where LVL is the number of distinct grey

levels. The n™ central moment of z is given by:

1, 2) = E (z; - m)" p(z)

where m = Y z; p(z))
i

is the mean value of z and is the first moment.

The central second moment

> &-m)’ p()

is the variance and is a measure of the spread of grey levels. The third central moment
measures the skewness of the histogram: a value of 0 indicates a symmetric distribution,
whereas positive or negative values indicate distributions skewed to the right or left
respectively. The fourth central moment measures the flatness of the histogram.
When the problem is to classify images based on texture, the grey levels are
usually standardised to be either uniformly or normally distributed with the same mean

and variance. In such cases the moments could not be used to discriminate the textures.
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In addition, these first-order statistics suffer from the limitation that they carry no
information regarding the relative position of pixels with respect to each other. One
way to bring this type of information into the process is to consider not only the
distribution of grey levels, but also the position of pixels with equal or nearly equal grey
levels. Thus statistics based on relative position as well as grey level are more

frequently used in texture classification problems.

2.3.1 Grey-Level Co-occurrence Matrices

In 1973, Haralick et al. computed a set of matrices, called grey-level co-
occurrence matrices, for a given image and suggested a set of 14 textural features which
could be extracted from these matrices. He proposed that these features contain
information about image textural characteristics such as homogeneity, linearity and
contrast, and could therefore be used to classify images into texture types.

The first step is to construct a co-occurrence or grey-tone spatial-dependence
matrix. Suppose we have an nxn image consisting of 256 (0 to 255) grey levels. A co-
occurrence matrix is a 256x256 matrix computed by counting the number of times two
pixels separated by distance d at a specified angle 8° (displacement (d,0)) occur in the
image, one with grey level i and the other with grey level j. From this co-occurrence
matrix a normalised co-occurrence matrix can be computed by dividing each element
of the matrix by the number of possible pairs of neighbouring pixels. For example,
when the displacement is (1,0) i.e. the relationship is nearest horizontal neighbour, in
an nxn image there will be 2(n-1) neighbouring pairs in each row and there are n rows,
giving 2n(n-1) nearest horizontal pairs. Similarly there will be 2n(n-1) nearest vertical

pairs and 2(n-1)(n-1) nearest diagonal pairs.

N.B. Co-occurrence matrices are usually taken to be symmetric with pairs of grey levels

at angle © and 6+180° being counted.

As a simple example, given two 16x16 grey level images IP(i,j):
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Image 1

with displacement (1,0) i.e. a horizontal displacement of 1 pixel, then the normalised co-

Image 2

occurrence matrices would be, respectively:

Image 1:
Grey 0 1 2 3 4 5
Level
0 0.075 0.0688 0.0083 0 0 0.0083
1 0.0688 0.0375 0.0104 0.01455 0 0.0188
2 0.0083 0.0104 0.0417 0.0521 0.0063 0
3 0 0.01455 0.0521 0.1875 0.0083 0.0083
4 0 0 0.0063 0.0083 0.025 0.0646
5 0.0083 0.0188 0 0.0083 0.0646 0.0958
Image 2:
Grey 0 1 2 3 4 5
Level
0 0.0375 0.01458 0 0 0 0
1 0.01458 0.1250 0.04167 0 0 0
2 0 0.04167 0.1250 0.0542 0 0
3 0 0 0.0542 0.1333 0.0208 0
4 0 0 0 0.0208 0.1542 0.0354
5 0 0 0 0 0.0354 0.0917
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If a texture is coarse, and d is small compared to the size of the texture
elements, the pairs of points at separation d should tend to have similar grey levels.
This means that the high values in the co-occurrence matrix will be concentrated on or
near its main diagonal. This is illustrated in the normalised co-occurrence matrix of
image 2 above. Conversely, for a fine texture, if d is comparable to the texture element
size, then the grey levels of points separated by d will be quite different, so that values
in the co-occurrence matrix will be spread out relatively uniformly. Image 1 above was
an example of a fairly fine texture. Thus a good way to analyse texture coarseness
would be to compute some measure of the scatter of the co-occurrence matrix values
around the main diagonal. Similarly, if a texture is directional then the degree of spread
of the values about the main diagonal in the co-occurrence matrix should vary with the
direction 8. Thus texture directionality can be analysed by comparing spread measures
of the co-occurrence matrix for various values of 8.

Details of the 14 measures obtainable from these normalised co-occurrence
matrices can be found in the appendix. Four of the more commonly used features are
described here.

In the following, P(i,j) is the (i,j)th element of the given normalised co-

occurrence matrix for a given displacement. LVL is the number of grey levels.

1) Angular Second Moment

LVL-1 LVL-1

Y ¥ PG p?

=0 j=0

2) Contrast

LVL-1

> K3 PG

k=0 li—|=k
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3) Correlation

LVL-1 LVL-1
Y X PG - pe,
i=0  j=0

Oxoy

where p,,1,,0, & o, are the means and standard deviations of the marginal distributions

associated with P(i,j).

4) Entropy

LVL-1 LVL-1
- Y Y PG HInPG R
=0 j<0

Angular second moment (ASM) is a measure of homogeneity. A homogeneous
image will result in a co-occurrence matrix with a combination of high and low P(i,j)’s.
In particular, where the range of grey levels is small, the P(i,j)’s will tend to be
clustered around the main diagonal resulting in a high value of ASM. A non-
homogeneous image will result in an even spread of P(i,j)’s and hence a low ASM.

Contrast is a measure of the local variations present in an image. If there is a
large amount of variation in an image the P(i,j)’s will be concentrated away from the
main diagonal and the contrast feature will be high,

Correlation is a measure of grey-tone linear dependencies in the image and will
be high if an image contains a considerable amount of linear structure.

Entropy is another measure of the homogeneity of an image. It is large when

all the P(i,j)’s are of similar magnitude and small when the P(i,j)’s are unequal.

26




——

For the two images illustrated above, the values of the 4 features are as follows:

Image 1 Image 2

ASM 0.0789 0.0957
Contrast 1.7250 0.3333
Correlation 0.0218 0.0210
Entropy 2.8606 2.5209

Thus, for example, contrast is much higher for image 1 where there is much

more variation. Image 2 is more homogeneous than image 1 resulting in a higher ASM.

Haralick et al. (1973) tested their 14 textural features based on co-occurrence
matrices on three data sets. These sets were taken from a) photomicrographs of
different rocks, b) aerial photographs of man-made and natural scenes and c) high-
altitude satellite pictures of the earth. By computing the mean and variance over four
directions, 1 pixel apart, of several of the features (4 features for the micrograph data
and the satellite images and 11 for the aerial photographic data) between 80% and 90%
of the textures in each of the sets were classified correctly.

In a study by Conners and Harlow in 1980 it was claimed that the 14 textural
features proposed by Haralick et al. (1973) do not contain all the important information
about the texture and more recent studies have sought to address this problem. This has
resulted in the proposal of two further measures, called cluster shade and cluster
prominence, which can be computed from co-occurrence matrices (Conners et al.
(1984)). These measures are believed to guage the perceptual concepts of uniformity

and proximity (Julesz (1962)) and are given by:

LVL-1 LVL-1
Cluster Shade = 3 ¥ (i+j-p;~p)° PG, J)
0 jeo
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LVL-1 LVL-1
and  Cluster Prominence = Y. Y (i+j-p;~1)* PG, J)

-0 j=0
LVL-1  LVL-1 LVL-1 LVL-1

where y, = Y i Y. PG, ) and M, = > YN jEG ).
i jo 0 j0

In 1984, Conners et al. included cluster shade and cluster prominence in the set
of co-occurrence matrix features used to segment a high-resolution black-and-white
image of Sunnyvale, California. Regions were classified as belonging to one of 9
classes, e.g. residential, mobile home, water, runway etc.. Training data consisted of
1135 samples of size 145x145. Altogether 48 displacements were considered -
d= 1,2,4,6,8,12,16,20 and 6 = 0°,19°,75°,90°,109°,161°. The values of 6 were selected
according to the orientation of the streets. The features computed were ASM, contrast,
entropy, IDM, cluster shade and cluster prominence. Images were first classified as
Uniform (i.e. containing only one of the 9 classes), Boundary (2 or more of the 9
classes) or Unspecified (one or more unknown classes). Boundary and Unspecified
regions were then broken down into smaller regions and subjected to the same procedure
until Uniform classes were obtained. These were then classified into one of the nine
types. Testing the method on the training set, 90% of the images were correctly
classified. When the procedure was tested on a test set consisting of 1156 samples, the
number correctly classified was 83.4%. The results did not specify which features were
most useful in classifying the data.

Yogesan et al. (1993) included cluster shade and cluster prominence in their
investigation to discriminate between electron microscopy images of normal,
proliferating, pre-cancerous and cancerous mouse liver cell nuclei, but did not find them
to be particularly useful features for classifying livers of mice. They found the best
features extracted from co-occurrence matrices to be variance, the kappa statistic
(Parkkinen & Selkainaho (1990)), which is described later, and a new measure called

sum of homogeneity: SH = ¥ P(i,i) which measures homogeneous areas in an image.
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Carstensen (1993) also investigated cluster shade and cluster prominence in
classifying 15 textures from Brodatz’ (1966) texture album. As with Yogesan et al.
(1993) he did not find them to be particularly useful. He found the most useful features
to be correlation, contrast, sum variance, and a feature proposed by Laws in 1980 calied

diagonal moment defined by:

LVL-1 LVL-1
> X i livj-2p] PG, .
=0 j=0

The fact that the co-occurrence matrix depends on the displacement means that
different displacements reveal different information about the texture, and several co-
occurrence matrices with varying displacements could be combined in classification.
This, however, raises the problem of which displacement is best. This problem was
addressed by Zucker and Terzopoulos in 1980 and Terzopoulos in 1985. Based on the
theory of contingency tables, Zucker and Terzopoulos (1980) suggested a x* statistic to
measure the association between the grey levels of two pixels situated (dk,dl) apart. The

test statistic is given by:

LVL LVL

- [PG, )-PG, JP(, )T
DN T T

where P(i,.) and P(.,j) are row and column sums of the normalised co-occurrence matrix.

For a periodic texture, if the displacement is in the orientation of the periodicity,
and if the distance between the pixels is equal to one period, then there will be perfect
association and the x? statistic will have a high value. Thus the % statistic can be used
to measure the periodicity of the texture, and can be used to find the ’best’
displacement, or simply as a feature for classification. In 1990, Parkkinen & Selkainaho
pointed out that there exists another statistic, called kappa, also based on the co-

occurrence matrix, which measures the periodicity of a texture, and the authors claim
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that the kappa statistic is preferable because it is of order LVL, whereas x? is of order
LVLA
The normalised kappa statistic (Cohen (1960)) is given by:

Ka ( ) PO - PC
a W e aien
ppa (x PP
LVL-1
where P, = Y P(i,),
i=0
LVL-1
P, = Y PG,)P(.0)
i-0
LVL-1
and P, = Y min [PG,),P(.D]
i=0

Parkkinen & Selkainaho (1990) compared the kappa statistic for measuring
texture periodicity with the * statistic used by Zucker and Terzopoulus (1980) and
Terzopoulos (1985). To do this, they used images taken from Brodatz’ (1966) texture
album. No attempt was made to classify the images, but Parkkinen & Selkainaho (1990)
proposed that if texture periodicity is appropriate (i.e. if the texture has a regular
structure) the kappa statistic is a better measure than the ? statistic.

In 1982 Vickers and Modestino classified textures using co-occurrence matrices
without further feature extraction. Their method was based on a maximum likelihood

approach, allocating an image to its most likely texture type based on the whole co-
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occurrence matrix. The grey-level co-occurrence matrix C(d,0) is an LVLXLVL matrix
whose (i,j)th element is given by the number of times the grey levels i and j occur d
pixels apart at an angle 6°. The matrix is then made rotation invariant by averaging
over 0 in all directions and the result is denoted C(d). A co-occurrence matrix C(d), and

hence an image IP is classified as texture type k, if

L, [C@)] - max LIC@)

O<k<K-1

(K possible texture types)

where

LiC@] - mm

Py[C(d)]
and P;[C(d)] is a normalising function.
Assuming a multinomial distribution,
)" CG, jia)
PIC@)K] = 2L——— ] QG, jid |9

L1 ¢G siay s
ij

where Q(i,j;d}k) = Probability of observing grey levels i and j at a pair of points
separated by distance d if an image belongs to class k.

By taking the normalisation function P,[C(d)] as
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L,[C(d)] simplifies to

2 Y CG, jid) In QG, jid|k).
i i

To complete the description of the classifier it is necessary to estimate Q(i,j;d |k). The

maximum likelihood estimator of Q can be shown to be

CG, jidlk)

QG, jidik) = C

= PG, jidlk)
where C =YY CG, j;d)
i

and so the maximum likelihood rule becomes:

allocate to k, if:

3. ) CG, jd) In PG, jidlky) > Y ¥ CG, jid) In PG, jid|k)
i j [

for all k.

Vickers and Modestino (1982) used their maximum likelihood method to

classify nine textures from Brodatz’ (1966) texture album. For each texture, 16 64x64
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windows were extracted from a 512x512 image and divided into training and test sets.
Results are published with displacements d=1, d=3 and d=5. Displacement d=5
produced the best results on test images, with 98% of the images being classified
correctly. This method therefore achieved considerably better results than other studies
where only a subset of textural features was used, e.g. those of Haralick et al. (1973)

and Weszka et al. (1976).

A generalisation of co-occurrence matrices was suggested by Davis et al. in
1979. Instead of constructing grey-level co-occurrence matrices, the authors suggested
constructing a co-occurrence of, for example, edges. An edge-detector is applied to an

image (the authors used a Kirsch operator) to find edge-maxima and their corresponding

directions, e.g.

\%
H H H \%
\% \Y% L
H H H
R
R R L
R . Vv . Vv . R
H H H H

V=Vertical Edge L=Left Diagonal Edge
H=Horizontal Edge =~ R=Right Diagonal Edge

A generalised co-occurrence matrix can then be constructed by looking at the

relationship between these edge-directions. For the above example, counting pixels

distance one apart in any direction would produce the following matrix:
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H \Y% L R
H 12 5 0 1
v 5 2 0 1
L 0 0 0 1
R 1 1 1 0

Various relationships can be considered, and in fact Davis et al. (1979) counted the

occurrences of edges in cone-shaped regions as shown in Figure 2.2.

X
X X X X X XX
XXX XX0XX XXX X XX
X X X X X
X
0
X
X
XXX
X X X
X

Figure 2.2 Cone-shaped regions used by Davis et al. (1979).

The authors suggested several features which could be extracted from these generalised
co-occurrence matrices. These are similar to those suggested by Haralick et al. in 1973,
i.e. angular second moment, contrast, entropy and correlation, although the interpretation
depends on the operator used to obtain the co-occurrence matrix, e.g. edge-detector,
spot-detector etc., and also the displacement used. The authors also suggested that ratios
of features could provide useful texture information.

In their experiment, Davis et al. (1979) classified 6 samples of each of 5 texture
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types from Brodatz’ (1966) texture album using 4 generalised and 2 grey-level co-
occurrence matrices. They computed four features - angular second moment, contrast,
correlation and entropy, and, using a leave-one-out method, classified a maximum of
87% correctly, based on contrast and entropy from a generalised co-occurrence matrix
using a 5x5 edge operator. They compared this method with grey-level co-occurrence
matrices where they obtained a maximum correct classification of 57%. In 1981, Davis,
Clearman and Aggarwal conducted a similar study using a larger database. Again they
claimed to have obtained better classification results with generalised co-occurrence
matrices than with grey-level co-occurrence matrices, (61% versus 52%).

In 1980, Dyer et al. suggested a modification of the generalised co-occurrence
matrices above. They also applied an edge-detector to an image, this time taking the
absolute difference in grey level in 2x2 neighbourhoods in 4 directions. They suggested
6 different co-occurrence matrices that could be constructed from this edge map. One
example was "most similar neighbour along an edge’. Let p be a point having nonzero
edge magnitude, and edge orientation 0, and let d be a given distance. Let q be the
point at distance d from p in the 0 direction and let r be the point at distance d from p

in direction 0+m. Let i,j,k be the grey levels of points p,q,r respectively.

r(k) p(i) a(j)

———— ————>

d d

Let P(i,j) be the (ij)th element of the co-occurrence matrix. If |i-j] < [i-k],
increment P(i,j). Otherwise increment P(i,k). Thus both the edge information and grey-
level information are used. Other co-occurrence matrices can be constructed by
computing e.g. most similar neighbours across an edge, least similar neighbours across
an edge etc. etc.. For details, see Dyer et al. (1980). Once the co-occurrence matrix is
computed, features such as ASM, contrast, entropy and correlation can be extracted.

Although no quantitative results were published by Dyer et al. in 1980, the
authors reported an improvement in classification of images from Brodatz’ (1966)
texture album over fixed separation grey-level co-occurrence matrices. Entropy, from

any of the 6 co-occurrence matrices produced good separation. For a sample of
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LANDSAT images, however, separation was poor in all cases.

2.3.2 Grey-Level Difference Statistics

Grey-Level Difference Statistics are based on absolute differences between pairs
of grey levels. As with co-occurrence matrices the starting point is an nxn image
consisting of 256 grey levels. The grey-level difference statistics are contained in a 256-
dimensional vector and are computed by taking the absolute difference of all possible
pairs of grey levels distance d apart at angle 8° and counting the number of times the
difference is 0,1,...,255. The difference statistics are then normalised by dividing each
element of the vector by the number of possible pairs of pixels.

As examples, consider the two 16x16 grey-level images illustrated in 2.3.1, i.e.

Image 1

and displacement (1,0).

The vectors of grey-level difference statistics would be:
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[ 0.4625]
0.4083
0.0750
Image 1 =
0.0375
| 0.0167]

[0.6667 |
0.3333

Image 2 =

o O O

In image 2 only the top two values in the vector are non-zero. This indicates
that neighbouring pixels have the same or similar (a difference of 1) grey levels, i.e. the
texture is fairly coarse. In image 1 the values in the vector of difference statistics are

more evenly spread indicating a finer texture.

Weszka et al. (1976) suggested 4 measures which could be computed from these
vectors which may be useful in classifying texture.
In the following, the P(i)’s are the i* elements of the vectors of normalised grey-

level differences.

1)} Angular Second Moment

LVL-1

Y PGy

i=0
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2) Contrast

LVL-1
Y % PG)
i=0
3) Entropy
LVL-1
- ¥ PG In PG)
i=0
4) Mean

LVL-1

—_— i PG
LVL 3% ®

Angular second moment, contrast and entropy provide similar textural
information to those with the same name based on co-occurrence matrices. Mean is
essentially another measure of contrast. It will be small when neighbouring pixels have
similar grey levels and the P(i) are concentrated near the top of the vector.

The corresponding features for the images above are as follows:
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Image 1 Image 2

ASM 0.3880 0.5556
Contrast 1.725 0.3333
Entropy 0.1080 0.6365
Mean 0.7917 0.3333

Comparing the two images, entropy is larger for image 2, indicating a more
homogeneous image. Contrast and mean are higher for image 1 indicating more

variation.

2.3.3 Run-Length Statistics

Another set of measures, suggested by Galloway in 1975 are based on grey-level
run-length statistics. Again with an nxn image consisting of 256 grey levels and
dirccrion ©, run-length statistics are calculated by counting the number of runs
of a given length (from one to n) for each grey level. In a coarse texture it is expected
that long runs will occur relatively often whereas a fine texture will contain a higher
proportion of short runs.

Again, using the simple grey-level images in 2.3.1, i.e.

and direckion, © = o°




T TR

the run-length matrices would be:

Image 1:
RUN-LENGTH
1 2 3 4
G 0 13 4 7 0
R
E 1 20 9 0 0
Y 16 0 5 0
L 3 4 4 7 9
E
\Y 4 16 0 3 0
E
L 5 12 9 7 0
Image 2:
RUN-LENGTH
1 2 3 4 5
G 0 1 1 1 2 0
R 1
E 1 3 9 3 0
Y 2 7 10 10 0 0
L
E 3 5 7 8 3 0
\Y%
E 4 0 1 8 4 2
L 5 0 1 6 3 0

Thus, for example, image 1 contains 9 runs of length 4 of grey level 3.
Galloway (1975) proposed five measures which can be computed from run-length
matrices, where P(i,j) is the (i,j)th entry of the run-length matrix, N_ = the number of

grey levels and N, = the number of different run lengths.
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1) Long Run Emphasis

2) Grey-Level Distribution

GLD

3) Run-Length Distribution

RLD

N, N,

Y. D PG, P

_ a1 e

=

N, N,

Y Y PG,

=1 j=1

N, N,

N,
> PG, NP

=1 =

N, N,

N,
Y Y PG,

i=1 j=1
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4) Run Percentage

N, N,
Y Y PG, D
RP = -l
n?
(where n* = no. of pixels)
5) Short Run Emphasis
N, N,
Z Z P(l’ j)
SRE = i=1 j=1 j2
N, N,
> Y PG, )
i=1 jel

Long run emphasis will be large when there are lots of long runs of the same
grey level, whereas short run emphasis and run percentage will be large when there are
lots of short runs. If there is a mixture of long and short runs, i.e. the run lengths are
not evenly distributed, run-length distribution will be large. If run lengths are not evenly
distributed over the different grey levels, grey-level distribution will be large.

The five features for the two images above are:

Image 1 Image 2

SRE 0.6295 0.2649
LRE 4.0690 8.0625
LD 24.6828 19.4167
RLD 56.2690 28.3125
RP 145.0000 96.0000
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Run percentage and short run emphasis are higher for Image 1 which is as
expected given the variability of the image. Grey-level distribution is higher for Image
where it can be seen from the run-length matrix that the run lengths are not evenly

distributed over the grey levels.

Galloway (1975) used run-length matrices to classify 54 64x64 images into one
of nine terrain categories such as orchard, wood, urban, suburb etc.. Before the run-
length matrices were computed, grey levels were grouped into eight sets. The runs were
therefore computed for eight grey-level groups: 0-7, 8-15, 16-23, 24-31, 32-39, 40-47,
48-55 and 56-63. The run-lengths were also grouped into the ranges 1, 2-3, 4-7, 8-15,
16-31 and 32-64. Thus, the run-length matrices were 8x6 arrays containing 8 grey-
level groups and 6 run-length groups. Using these matrices Galloway, 1975 achieved
a classification accuracy of around 83%.

Yogesan et al. (1993) examined various features taken from run-length matrices
as well as co-occurrence matrices in their study to classify livers of mice. Of the run-

length matrix features they found the most useful to be short-run emphasis.
2.3.4 Fourier Power Spectrum
Bajcsy (1973) computed the power spectrum, which gives the magnitude of the

frequency components in the Fourier transform of an image.

The Fourier transform of an nxn digital picture is defined by:

n-1 n-1
Fw, v) = = ¥ 3 fGi, ) exp [-2n V1(uv)]
n® ic0 j-0

O<su,vsn-l

and the Fourier power spectrum is |F|* = FF" (where * denotes the complex conjugate).

A coarse texture will have high values of |F|* concentrated near the origin,
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while in a fine texture the values of |F|* will be more spread out. Texture
directionality can also be identified by examining the values of |F|°% If a texture
contains features orientated in one direction, the high values of |F|* will also tend to
lie in a single direction. This direction will be perpendicular to the direction in the
image. For example, horizontal streaks in the image will result in vertical streaks in the
power spectrum. If the texture has no obvious direction, no directional tendencies in the
power spectrum would be expected.

In order to simplify interpretation, the two-dimensional power-spectral function
is usually condensed to a one-dimensional function. To do this, the spatial frequency
domain is broken up into either rings or wedges centred at the origin.

Firstly considering the rings, the average of |F|* within a circle of radius r

centred at the origin is computed, i.e.

2w

o, - [ |IF(r8)[> db.

0

for various values of r, the ring radius.

Thus the rings are given by:

T 2n

f f |F(r,0) |> dbdr
0

n

where r, and r, are the inner and outer radii respectively.

The equivalent discrete version for an nxn image is given by:

n-1 n-1

Y 3N IFuw?

u=0 v=0

where 1, < v+v? = 1,°

0=uyv=n-l.
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Coarse textures will result in high values at low spatial frequencies whereas fine
textures will tend to result in values at higher frequencies.

The wedges are of the form:

x &
o = [ [IF(6)2dpdr

0 ¢,

where the angles ¢, and ¢, delineate the wedge. The equivalent discrete equation is

given by:

n-1n-1

3. ) [Fuw?

u=0 v=0

where ¢, < arctan(u/v) < ¢,

and 0 < u,v < n-1.

In this case a flat distribution implies a nondirectional texture. On the other
hand, peaks in the function suggest a specific orientation of the texture.

As a pilot study Weszka et al. (1976) tested co-occurrence matrices, difference
statistics, run-length matrices and Fourier features on Haralick’s aerial photographic data
set. This consisted of 6 samples of each of nine classes of land i.e. lake, woods, marsh,
orchard, urban, suburb, scrub, railroad and swamp.

Each sample was a 64x64 pixel image with 64 grey levels. Weszka et al. (1976)
tested the four methods using various displacements (4 directions 0°,45°,90° & 135°, and
distances 1,2,4 & 8 pixels apart). The only features examined were contrast taken from
co-occurrence matrices, mean from difference statistics and wedges and rings for the
Fourier features. Four run-length features were tested in a preliminary study but
performed so poorly compared with the other methods that they were not tested further.

Results using individual features were poor, with between 7 and 25 samples out
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of a possible 54 being correctly classified. No one method performed consistently better
than any other. Combining pairs of features produced much better results with features
from difference statistics classifying the largest percentage of images correctly. The best
result was 43 out of 54, i.e. nearly 80%. This result was obtained using the two
displacements (2,135°) and (4,135°).

In this study co-occurrence matrices performed better than Fourier features but
less well than difference statistics.

Weszka et al. (1976) also tested what they called composite features, i.e. taking
the mean and standard deviation of the various features over 4 directions and also over
4 sizes. The authors concluded that composite features performed no better than raw
features.

In their main study Weszka et al. (1976) classified LANDSAT images of three
geological terrain types: Mississippian limestone and shale, Lower Pennsylvanian shale
and Pennsylvanian sandstone and shale. A set of sixty 64x64 windows was selected
from each of the three regions. The displacements used were the same as in the pilot
study, as was the Fourier feature set. Contrast was again measured from co-occurrence
matrices where the co-occurrence matrices were computed based on both pairs of
average grey levels and pairs of grey levels of single points. Where averaging was used,
the averaging neighbourhoods were square and were of the same size as the
displacement (i.e. 1,2,4 or 8). Contrast and mean were computed from difference
statistics again using pairs of average grey levels and single points.

The authors concluded that the best features always involved small sizes.
Features based on averages did better than single points for large sizes but less well than
single point features using small sizes. Thus, from the results published there appears
to be no advantage in looking at averages since the best overall results were obtained
from single points using small sizes. Large sizes gave poor results with both averages
and single points. The best result (167 out of 180) was obtained from difference
statistics taking the mean of single points and displacements (v2,45°) and (2,0°).

In a supplementary study the authors investigated three other features proposed
by Haralick et al. (1973). These were ASM, entropy and inverse difference moment
(IDM), both from co-occurrence matrices and difference statistics. As in the main study,

these were computed based on both average grey levels and single points. IDM

46




performed worst, entropy from co-occurrence matrices did slightly better than entropy
from difference statistics, while ASM performed best, with the measurements from
difference statistics doing marginally better than those from co-occurrence matrices.
Similarly, when pairs of features were investigated, the best results were obtained using
ASM from difference statistics based on single points with displacements (v2,45°) and
(2,0°).

In summary, the computationally cheapest of the features, namely the means of
the single-point difference statistics seemed to do as well as any of the other features.
It should be noted, however, that in this study only a small subset of the possible feature
set was examined. An improvement in the classification results may have been achieved
by using some of the other 14 features or indeed a combination of two or more features.

In 1980, Conners and Harlow did a theoretical comparison of the four methods -

Fourier power spectrum, co-occurrence matrices, difference statistics and run-length
matrices. In this study the procedure did not depend on the displacements used but
sought to measure the amount of texture information contained in the matrices from each
of the four methods.

The data set consisted of texture pairs, where a texture pair is a set containing
two textures X,(n,m) and X,(n,m). One texture is represented by the random field
X,(n,m) and the other is represented by the random field X,(n,m). Co-occurrence
matrices, difference statistics etc. can be computed for each texture pair.

If the matrices are equal the textures cannot be discriminated. If, however, two
of the corresponding matrices are not equal, the algorithm can use the inequality to
discriminate the textures.

On the whole the results of this study agreed with those of Weszka et al. (1976).
The study showed that both co-occurrence matrices and difference statistics perform
better than Fourier power spectrum, and that run-length matrices are poor at
discriminating texture. The only difference in conclusions from the two studies is that
Conners and Harlow (1980b) found that co-occurrence matrices performed better than
difference statistics. They proposed that the reason for the different results may be that
the difference statistics do not necessarily contain more textural information than co-
occurrence matrices but simply that the most commonly measured features from co-

occurrence matrices i.e. ASM, contrast, correlation, entropy and IDM do not contain all
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the important textural information.

One problem with all the methods discussed so far is that they depend on the
orientation of the image. The solution used by many researchers has been to compute

the relevant feature over 4 (or more) directions and calculate the mean value.

2.3.5 Neighbouring Grey-Level Dependence Matrices

In 1983 Sun and Wee introduced the neighbouring grey-level dependence matrix
(NGLDM) where the relationship between an element and all its neighbouring elements
is considered at one time instead of one direction at a time. They proposed that this
method eliminates the angular dependency and reduces both computational time and
storage requirements. In addition, because the method only depends on the relationship
between a pixel and its neighbours, the authors claim the method is invariant to grey-
level transformation.

For an image IP(i,j), the neighbouring grey-level dependence matrix is computed
for given d and a by counting the number of times the difference between each element
in IP(i,j) and its neighbours is equal to or less than a at a certain distance d. As an

example, if the image is

IP(i! j) =

N O O O
N N O O
LUS T o R
W N =

and d = 1, a = 0, (i.e. 1 pixel apart), P(i,j,1,0) for the four pixels in the centre of the

image is given by:




0,4 (1,3)
2,3) 2,3

i.e P(2,2) has grey level 0 and has 4 neighbours also with grey level 0. The number of
neighbours is called the NGLDM number and the matrix Q(i,j), where Q(i,j) is the total

number of entries with grey level i and NGLDM number j is as tollows:

NGLDM Number
0 1 2 3 4 5 6 7 8
0 0 0 0 0 1 0 0 0 0
G 1 0 0 0 1 0 0 0 0 0
L 2 0 0 0 2 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

Sun and Wee (1983) suggested five measures that can be taken from the matrix

Q(i,j) to describe the texture.

1) Small Number Emphasis

QG J)

2

SNE =

-
~M
oy

2) ILarge Number Emphasis

L |

49




3) Number Nonuniformity

Y 3 oG )P

NNU = L1
R

4) Second Moment

[QG, NP

-
-

SM =

5) Entropy

=) QG, »H In QG, 7
i1
R

ENT =

where R is the normalising factor and is equal to the total number of entries in the Q(i,])

matrix.

SNE measures the fineness of an image. An image consisting of fine texture will
have a reasonable range of grey levels in a neighbourhood and hence NGLDM numbers
concentrated in the small NGLDM number columns, making Q(i,j)/j* large for small j.
Thus, the larger the SNE of an image is, the finer the image is. For a coarse texture
picture, a neighbourhood will contain similar grey levels and the large NGLDM numbers
will be concentrated in the large j columns, making j* Q(i,j) larger for large j. Thus if

LNE of one image is larger than the other, then the former will be coarser than the

50



latter. The measurement of the homogeneity of the Q matrix is given by SM. In a
homogeneous image, there are only a few large entries in the Q matrix. Then SM will
be large because it is the sum of the squares of all entries in the Q matrix. SM is
equivalent to ASM in co-occurrence matrices. NNU and ENT are related to the
coarseness of an image. These are similar measures to contrast based on co-occurrence
matrices.

Sun and Wee (1983) used a data set similar to that of Weszka et al. (1976) to
compare their neighbouring grey-level dependence matrices with other methods. 64x64
images of 3 geological terrain types, histogram flattened to contain 64 grey levels, were
classified using a nearest-neighbour rule. Using one feature, 79.44% were correctly
classified, compared with Weszka et al.’s (1976) 75.5%. For pairs of features, Weszka
et al.’s (1976) results were slightly better - 93% compared with Sun and Wee’s (1983)

DS G,

Berry and Goutsias (1991) extended the maximum likelihood classifier of Vickers
& Modestino (1982) to investigate neighbouring grey-level dependence matrices
(NGLDM) and neighbouring spatial grey-level dependence matrices (NSGLDM), as
well as spatial grey-level dependence matrices (SGLDM or co-occurrence matrices).
They tested the methods on 9 Brodatz’ (1966) textures - a similar data set to that used
by Vickers and Modestino (1982). They achieved 100% correct classification with both
neighbouring grey-level dependence matrices and co-occurrence matrices with a
displacement of 1 pixel and 64x64 images, although for smaller images - 32x32 and
16x16 - the authors found that co-occurrence matrices performed better than
neighbouring grey-level dependence matrices and neighbouring spatial grey-level
dependence matrices. For 64x64 images, results were comparable for all 3 methods but
the authors found that computational time was considerably reduced by using NGLDM

or, to a greater extent, by NSGLDM rather than co-occurrence matrices.

2.3.6 Relative Extrema Measures

Mitchell et al. (1977) suggested looking at the number of grey level extrema
along a one-dimensional scan line. The images are first smoothed using a threshold T,

so that only principal extrema are retained, and then the number of extrema outside
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various thresholds are counted.

Thus for threshold T, the number of extrema would be 4. At threshold T, the number
of extrema would be 6. The vector (4,6) could then be used as a texture feature. The
authors claimed that by taking logarithms of the grey levels the method is made
invariant to changes in lighting, while looking at ratios of extrema makes the method
invariant to the size of the texture. In addition, although the authors only tested the
method using a one-dimensional scan-line, they proposed that the method could be made
invariant to rotation by counting extrema in several directions.

Mitchell et al. (1977) tested their max-min method on 8 textures from Brodatz’
(1966) texture album. Forty-nine, 64x64 samples of each texture were taken, 36 of
which made up the training set, with the remaining 13 used as a test set. Six features
were computed for each of 2 methods of selecting the thresholds. 79.8% of the test
images were classified correctly using a 3-nearest neighbour decision rule. They
compared this with 66.3% correct classification using 6 features from grey-level co-

occurrence matrices.

2.3.7 Filter Masks

Harwood et al. (1985) introduced a method of texture classification using local
rank correlation. Most of the techniques described in this section so far are sensitive
to noise, changes in lighting conditions and other monotonic shifts in grey level. The
authors claimed that by using the rank of grey levels, a texture classification technique

which is invariant to such grey-level shifts, could be derived. The method of Harwood
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et al. (1985) is based on the masks used by Laws (1979) although the masks, as well

as the grey levels are ranked.

e.g.

-1 0 1
Original Laws Mask = | -2 0 2
-1 0 1
25 50 75
Ranked Mask = | 1.0 50 9.0
25 50 75

Spearman’s rank correlation coefficient is used to measure the correlation
between the ranked masks and the ranked neighbourhoods for all neighbourhoods in an
image. Then, to compare two samples, the distributions of the correlations of the
samples are compared using a likelihood ratio test. The classification of a sample is
based on computing, for each texture class, the median likelihood ratio test statistic of
comparisons of the sample with all samples in the class. The sample is then assigned
to that class for which the test statistic is a minimum.

Harwood et al. (1985) tested their local rank correlation method on 6 texture
classes taken from Brodatz® (1966) texture album and achieved a maximum 100%
success rate with 120x120 images, and 89% with 60x60 images using 3x3 rank masks.
They compared this with Laws’ texture energy method (1979) with histogram flattened
images where the maximum correct classification rate was 93% for 120x120 images and
90% for 60x60 images. The authors suggested that an extension to their method might

be to use ranked co-occurrence matrices as well as ranked masks.
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2.4 Structural Approaches

Structural approaches assume that textures are made up of regions or primitives
which appear in regular repetitive arrangements. They therefore tend to be more
appropriate for man-made textures, although several authors, e.g. Wang et al. (1981),
Zucker et al. (1975) have used structural techniques to classify Brodatz’ (1966) texture
images and terrain samples from LANDSAT images.

The first step in describing a texture is to identify the primitives. A primitive
is a connected set of resolution cells characterised by a list of attributes. The simplest
primitive is a single pixel with its grey level as its attribute. More commonly,
primitives are sets of pixels all with the same or similar grey level or edge direction.
Attributes may simply be the grey level of the region although other possibilities are
size, shape and direction. Once the primitives and their attributes have been identified,
the next step is to determine the placement rule, i.e. the spatial relationship between the
primitives.

The division between structural and statistical methods is not always clear cut.
Haralick (1979) divided structural methods into purely structural and structural-
statistical. His definition of structural-statistical approaches was those where the method
is structural in the sense that the primitives are explicitly defined, but statistical in that
the spatial relationship is measured by probabilities. Haralick (1979) also divided
textures into weak textures and strong textures, Weak textures are those which have
only weak spatial relationships between the primitives, whereas strong textures have
nonrandom spatial relationships. Several of the methods Haralick (1979) classified as
structural-statistical are included within the statistical approaches section in this study.
For example, weak texture methods include run-length approaches, and strong texture
methods include the relative extrema approaches of Mitchell et al. (1977) and

generalised co-occurrence matrices (Davis et al. (1979)).

2.4.1 Pure Structural Approaches

Haralick (1979) mentioned only 3 purely structural approaches. These were

those of Carlucci (1972), Zucker (1976) and Lu and Fu (1978).
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Carlucci (1972) examined textures from a linguistic point of view where
languages, whose sentences are descriptions of textures, were defined. In Carlucci’s
(1972) model of texture the primitives considered were line segments and open and
closed polygons, and the placement rules were based on a tree-like structure.

Zucker (1976) proposed the idea of texture modelling in terms of an ideal texture
and its transformations. According to Zucker (1976) a real texture is a distortion of an
ideal texture. The underlying ideal texture has a nice representation as a regular graph
in which each node is connected to its neighbours in an identical way. Each node
corresponds to a cell in a tessellation of the plane. The ideal texture is transformed by
distorting the primitive at each node to make a realistic texture.

In Lu and Fu’s model (1978) the primitives are pixels and a texture is divided
into 9x9 windows. The spatial structure of the resolution cells in the window is
expressed as a tree and the arrangement of grey levels to the resolution is given by the
rules of a stochastic tree grammar. Lu and Fu (1978) used this tree grammar for both
texture synthesis and texture discrimination. They classified 400 9x9 windows of 4
Brodatz’ (1966) textures. Of these 400, 30 were misclassified.

2.4.2 Structural-Statistical Approaches

Other approaches which may perhaps be described as structural-statistical are
those where the spatial relationship between pixels is not defined at all. For texture
classification, extracted primitives can be used as features, and standard classification
techniques can then be used. Wang et al. (1981) extracted primitives by thresholding,
resulting in a binary image, using one of three methods: a) fixed percentage (25%)
above threshold, b) histogram peak sharpening and c) superslice.

Once the primitives were selected, various properties such as area, perimeter,
compactness, eccentricity, direction and average grey level, were measured. The means
and standard deviations of these properties were computed, resulting in first-order
statistics. Second-order statistics were also computed by identifying neighbours of the
primitives and constructing co-occurrence matrices of attributes. From these co-
occurrence matrices, features such as angular second moment, entropy, inverse

difference moment and contrast were computed.
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Wang et al. (1981) tested their methods on 128x128 Brodatz® (1966) and
LANDSAT images. They used 4 samples of each of 4 Brodatz’ (1966) textures and 3
terrain types. No quantitative results were given, but the authors claimed that the
features could discriminate between texture types. Two features were needed for the
Brodatz’ (1966) images, and only one was needed for the terrain samples. The authors
found that the simplest method of thresholding (fixed percentage) produced the best
results, with the second-order statistics giving slightly better results than the first-order
statistics.

A similar technique was used by Hong, Dyer and Rosenfeld in 1980, although
they used an edge-based approach to extract primitives. An edge-detection operator was
applied to the image, followed by thresholding to eliminate weak edges, and
nonmaximum suppression to thin edges. Antiparallel edges were then paired and region
interiors were filled. Features, similar to those used by Wang et al. (1981) were then
computed for the resulting primitives.

Hong et al. (1980) used similar data sets to Wang et al. (1981) to test their
methods. They also used 128x128 images of 4 Brodatz’ (1966) textures and 3 terrain
types. They also measured 6 features from their primitives and computed the means and
standard deviations of each. Again no quantitative results were published but the
authors claimed that mean of area, mean of perimeter and standard deviation of average
grey level could separate Brodatz’ (1966) images, and standard deviation of area could
discriminate terrain samples.

Tsjui and Tomita (1973) extracted primitives to segment a picture consisting of
regions of different textures. The primitives ("atomic regions’) were defined to be sets
of points with almost the same grey level. Once the atomic regions were extracted,
properties such as size, shape, position, colour and average grey level were measured.
Histograms of the property values were constructed and the textures identified as peaks
in these histograms. The picture was then segmented by labelling the primitives with
the names of the textures to which they belonged. Zucker et al. (1975) extended this
idea to more realistic scenes, extracting their primitives using spot detectors.

Ehrich and Foith (1976) extracted primitives using a one-dimensional scan-line.
A relational tree representation recursively partitions the function at the relative minima

into finer partitions. Textural features, such as segment contrast, i.e. the mean of the
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differences between relative maxima and minima over the partitions at a given level of
the tree, can be extracted at any level of the tree.

Conners and Harlow (1980a) formulated a structural approach to texture analysis
based on the co-occurrence matrix. They used the contrast feature from co-occurrence
matrices to characterise the placement rules and the primitives of periodic textures, and
proposed a model based on mathematical tiling theory. They concluded that a structural
approach to texture could be formulated based on co-occurrence matrices although the
contrast feature did not provide all the textural information contained in the matrix

(Conners and Harlow (1980b)).

2.4.3 Conclusions

Structural techniques for texture analysis have not been widely investigated. Of
the approaches that have been used, most fall into the category of what Haralick (1979)
defined as weak texture measures, and what other authors have classified as statistical
techniques. Few purely structural approaches have been proposed, especially in recent
years. The main reason for this is that natural textures tend not to have the nice, regular
patterns required for such methods. More recent research has concentrated on
developing structural models (Ahuja & Rosenfeld (1981a&b), Wechsler & Citron

(1980)). These modelling techniques will be discussed in the next section.

2.5 Modelling Approaches

Texture modelling techniques involve constructing models to specify textures.
The object is to capture the intrinsic character of the texture in a few parameters. The
models can then be used to generate synthetic textures or to describe an observed
texture. Texture models can be broadly classified into stochastic models such as those
based on Markov and Gibbs random field models, and structural models, which specify
the manner in which an image is generated but have no probabilistic description.
Structural models which have been proposed include random walk models (Wechsler

and Citron (1980)) and random mosaic models (Ahuja and Rosenfeld (1981a&b),
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Schachter, Rosenfeld & Davis (1978)).

Early literature in texture modelling concentrated on methods for texture
synthesis, but recently there has been more interest in using texture models to segment
texture. Relatively little has been published on texture classification using modelling

techniques.

2.5.1 Gibbs and Markov Random Field Models

Markov random field and Gibbs models seem to be the most popular models
used to describe texture. The origins of Gibbs distributions lie in physics and statistical
mechanics literature. Ising (1925) used a special Gibbs distribution, now known as the
Ising model, to describe the magnetic properties of ferromagnetic materials. The source
of the revived interest in Gibbs distributions, especially in the context of image
modelling and processing is an important result known as the Hammersley-Clifford
theorem. This result, proved in the 1970°s by several researchers, establishes a one-to-
one correspondence between Markov and Gibbs random fields.

An image is assumed to consist of a square array of pixels or sites (i,j), 1=isn,
1sjsn. These sites are numbered row by row from 1 to n® starting in the upper left.
Each site in an image is assigned a ’colour’, where colour may be grey level in the
texture modelling context, or texture type in classification and segmentation contexts.
The idea of a neighbourhood is central to Gibbs and Markov models and the probability
of colour i at site t will depend on the neighbours of t. In a first-order model, t will
have 4 neighbours (horizontal and vertical), in a second-order model the four diagonal
sites will also be neighbours. Figure 2.3 shows 1st to 5th order neighbours of site t.
Figure 2.3 (a) is a relative numbering system which defines sites relative to a site t.

Figure 2.3 (b) marks all pixels which are distance k away, for k from 1 to 5.




t:-11 t:-7 t:-6 t:+8 t:+12

t:-9 t:-3 t:-2 ti+4 t:+10

t:-5 t:-1 t t:+1 t+5

t:-10 t:-4 t:+2 t:+3 t:+9

t:-12 t:-8 t:+6 ti+7 t+11
(a)

(b)
Figure 2.3 Neighbours of site t.

A clique is defined to be a set of sites where every pair of sites are neighbours,

e.g.

lst-order cliques | | .
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2nd-order cliques | | [ 1 ] - [_|_

11| I
RN
R I
1|
||

(N.B. individual sites are defined to be cliques.)

A Gibbs model then defines the probability of colour x at a particular site to be:

P(X-%) - exp[ ”ZU(x)]

where U(x) is called the energy function and is given by:

Ux) = Y V().

V (x) is a clique function and depends only on the colours in clique c.

Z is a normalising constant called the partition function and is given by:

Z = Y exp[-U@)].
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Various clique functions have been proposed. Derin and Elliott (1987) proposed taking

. X
V (x) =-0 ifall coloursina ~ are the same

= +0 otherwise.

For single pixel cliques, they defined V (x) = a,.
If only cliques of size 2 are considered the energy function can be written in the

form:

M M K
U(x) = E F(xt) * E E H(xt’ xt: +r)

t=1 t=1 r=1

where H(a,b) = H(b,a), H(a,a) = 0, and K depends on the size of the neighbourhood

around each site.

Writing the Derin-Elliott model in this form,

F(x) - ax, and HG@, )-8 I(x,x,.)

o+

where I(a,b) = -1 if a=b

= +1 if a=b.

For 2nd-order models there are 4 parameters - 6,, 6,, 6,, 8, where 8, influences pixels
in the horizontal direction, 8, influences pixels in the vertical direction and 6, and 0,
influence pixels in the diagonal directions.

Other possible models are the auto-binomial model where
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(G-1)!

F(x) = ax-ln[— & D! _
@ = axl

]

. +r) = er xt xt: +r

and H(x, x

and the Gaussian Markov random field model where

_ Gpmp)

202

F(x)

—0,Gc-p) Ly - e o)
2

and H(xt’ xt: +r) =
g

One approach to the classification problem would be to fit a Markov random
field model to each texture type using sample images to estimate parameters, then apply
standard maximum likelihood methods to make a decision. The unknown normalising
constant Z, however, makes this unworkable. In 1988 Chen suggested a more practical
approach which simply uses the parameters estimated from samples of each texture type
as feature vectors. For example, fitting a second-order model would mean that 4
parameters would be estimated and four-dimensional feature vectors would be used in
decision-making. Any of the standard classifiers such as Fisher’s canonical variate
analysis or maximum likelihood can be used. One advantage of this method is that the
models need not necessarily fit the data well, all that is required is that the models for
each class are different.

The main problem with Gibbs and Markov random field models is how to
estimate these parameters. Several methods have been suggested for doing this. These
include Besag’s coding method (1974), least square error method (Derin and Elliott
(1987)), logit model fit method (Chen (1988)) and maximum pseudolikelihood
(Besag (1974)). Of these, only the coding method and the maximum pseudolikelihood
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method can easily be used in images with more than 2 grey levels.
The coding method is based on Besag’s (1974) coding scheme. For a second-
order model, the sites of an image are partitioned into 4 codings, as shown below, where

the rows and columns of an array represent an image.

1212 ..1212
3434 ..34314

1212 ..1212
3434 .3434

All pixels labelled j are used to estimate the jth parameter, j=1,2,3,4.
Let §; be the set of sites labelled j in the above diagram. The coding method defines

the estimate 6 as follows:

First, find parameter 6, which maximises L,(8), the loge-likelihood in coding j.

L) = Y In [P(X,=x, | X,=x,)
t

where Ot refers to all sites in the neighbourhood of site t, excluding t.

This can be written:
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exp(-[w(x, x,)17 )0
Y exp(-[w(x, x,)17 )0

-

where W(x,Xs) = [Wi(XpXs) WolXuXs) Wa(XuXe) Wa(XpXa)]'

and 6 = [0, 6, 6, 6,]".

For the Derin-Elliott model the vector w is

Wr(xvx&!) = I(XpX,.) + I(X,X,,,) lsrsd

1,(0) is then optimised using Newton-Raphson and the coding method estimator is

defined as:

4
6 -L1yg
4%y

The coding method is basically a maximum likelihood estimation method that
yields parameter estimates that maximise the conditional joint distribution of a subset
of the random variables in the field, conditioned on the rest of the field. It requires the
solution of a set of nonlinear equations and is therefore cumbersome and difficult to use
reliably. Furthermore, depending on the order of the neighbourhood system a number
of different estimates are obtained from a single realisation and an established method
to combine these estimates into one does not exist. An alternative method suggested by

Besag (1974) is the maximum pseudolikelihood method:

exp[- U(x,0)]

P(X=x;,0) = Z®)
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where U(x,0) = Y w(x, x,)7 0

3

and Z(8) = Y exp[-U(x,0)]

Suppose we are given a single sample x. The standard approach to estimate 6
is to maximise the likelihood, i.e. choose 8 to maximise P(x,0). The problems of

computing Z(0) make this is infeasible. Besag’s pseudolikelihood function is given by:

PLx6) = [TII X, = x,|X, = x,, r=s;0)

SeS|8S

where 9, is the boundary of S under the neighbourhood system determined by the energy
U and S|9, is the complement of §, relative to S. The pseudolikelihood estimator is the

0 that maximises P1(x,0).

Thus rewriting P(X =x/X,,0), this becomes:

exp[-w(x, x,)7 10

Y expl-w(x, x,)7 10

where Y is summed over the grey levels,

Chen and Huang (1993) conducted two experiments to classify texture based on
2nd-order Markov random field models. In the first, their data set consisted of 64x64
images of 4 types of texture (16 of each) taken from Brodatz’ (1966) texture album.
They investigated the Ising model, the auto-binomial model and the Gaussian random
field model. For the first two models the images were grey-level equalised to contain

4 grey levels. Besag’s pseudolikelihood method was used to estimate the parameters
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of the models. Three different classifiers were tested - nearest neighbour, quadratic and
Fisher’s. The best results (62/64) were obtained using Fisher’s classifier with the auto-
binomial model. In the second experiment the data consisted of four types of sandpaper.
Models and classifiers tested were the same as the first experiment. Again Fisher’s
classifier produced the best results but using the Gaussian Markov random field model
resulted in one less misclassification than the auto-binomial model (7/64 and 8/64).
These results are better than most of those obtained using co-occurrence matrices and
the authors claim that the features are easier to extract because they involve only one
step. They suggest that both feature extraction and classifier design should be
considered simultaneously in designing an optimal classification scheme.

Ohanian and Dubes (1992) compared 4 types of textural features for classifying
texture. The features investigated were Markov random field parameters, Gabor multi-
channel filtering features, fractal based features and co-occurrence features. The authors
used these features to classify 4 types of images - fractal images, Gaussian Markov
random field images, natural images of pieces of different types of leather and natural
images of painted surfaces. All images were of size 32x32. The numbers of grey levels
ranged from 4 for the MRF features to 256 for the Gabor features. The classifier used
was a leave-one-out nearest-neighbour classifier. The authors concluded that co-
occurrence features performed best and suggested they should be tried first when
working with small images. They advised that MRF models should only be used for

large images, and the Gabor features used by the authors are not recommended.

2.5.2 Random Mosaic Models

Random mosaic models use random mosaics to represent a textured region. A
region A is first tessellated into cells A, j=1..m, and one of m colours is independently
assigned to each cell according to a fixed set of probabilities, p,...p,, > p=1. The set
of colours may correspond to values of any property, not necessarily grey level. Many
types of process that generate random mosaics have been proposed. In the
Checkerboard model, the origin and orientation of the axes are chosen randomly and the
plane is tessellated into squares. The hexagonal and triangular model are similar but

with hexagonal and triangular regions.
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In the Poisson Line model, a Poisson process chooses points in the strip Os0smn,
-oo<p<oo, Each of these points defines a line of the form xcos8+ysin8=p, and these
lines define a tessellation of the plane.

In the occupancy model, a Poisson process chooses points (nuclei) on a plane.
These nuclei spread out to form ’Dirichlet cells’ or *Voronoi’ polygons’ consisting of
all points in the plane nearer to it than any other nucleus.

In Bombing models, points are also dropped onto the plane by a Poisson process.
Each point then expands into a region of specific size and shape (e.g. a circle of radius
r with the point at the centre). The process divides the plane into a foreground (the
bombed out region} and a background.

Various statistical properties of the grey levels in a random mosaic can be
computed. The variogram of a random mosaic is the mean-squared grey-level difference

between a pair of points distance d apart:

V() = El(g(s) - &)

where s and s’ are 2 points distance d apart and g(s) is the grey level at point s.
For cellular textures, letting z; be a random variable describing the grey levels
in subregion A; with mean p; and standard deviation o, 1<ism, the varicgram can be

written in the form:

V(d) = E[(Zi - Zj)zl, i*j'

For i=j, E(z-z)*> depends on the correlation between pixels in the ith subregion. It is
commonly assumed that this correlation is of the form e, where a=0.
Writing p; for the probability that a point lies in the ith region, and P; for the

probability that two points distance d apart lie in the ith and jth subregions, 1=<ism, then

V@) = 3 Elz;-2)") Ip; Py(d+ p; Py(d)] + X Elz;2')"] p; Py(d)

i>j
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= Y 2p, pfo; + o} + (u-p)A1-0(@)

i>j

+Y 2p,07(1-expl-a] d) (p(1-0(d)+w(d).

where w(d) is the probability that two points distance d apart are in the same cell. For
Poisson Line and Checkerboard models w(d) can be calculated and theoretical
variograms can therefore be computed.

Schachter et al. (1978) compared theoretical and actual variograms using Poisson
Line and Checkerboard models for various samples taken from Brodatz’ (1966) texture
album. They found that the Poisson Line model gave better fits for more rordorn
textures. In this study no attempt was made to classify textures but the value of V(d)
at different distances could possibly be used as texture features. In 1981 Ahuja and
Rosenfeld (1981a) also studied random mosaic models. They mentioned various
properties such as autocorrelation, edge density and variogram that can be computed for
mosaic models. No results were presented in this paper but in another publication
(Ahuja & Rosenfeld (1981b)) they computed variograms from samples taken from
Brodatz’ (1966) texture album using six types of mosaic models. Based on their results,
they claim that random mosaic models are powerful tools for texture analysis and
synthesis. They claim the models are easier to specify than random field or time series
models and because of the large number of possible models, they provide a means of

controlling or matching many different texture features.
2.5.3 Random Walk Models

Wechsler and Citron (1980) suggested a procedure for texture classification based
on random walks. A planar random walk is characterised by a particle moving in unit
steps in one of four directions parallel to the x and y axes, assuming four-neighbour
connectivity. The random walk is fully specified by defining the probabilities that a
particle will leave a given pixel for any of its 4 neighbours. If the random walk is
performed over some array A, the absorbing barrier T' of A is defined as those pixels

in A which have at least one neighbour outside A. The pixels belonging to I' are called
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boundary points B, while all the other points in A are mesh points M (Figure 2.4).

Fig. 2.4 Window A within which the random walk is performed.

Once a particle hits the absorbing barrier I it is absorbed and its random walk stops. The
probabilities related to the random walks are as follows:
1) The probability of leaving a pixel belonging to a homogeneous array for any of its 4
neighbours is 0.25.
2) The probability of leaving I is zero.
3) The probabilities of leaving any mesh points are strictly positive, and for a non-
homogeneous array the probabilities are defined such that particles are more likely to be
shifted in the direction of smallest ascent or descent in the picture array. The probabilities
are therefore based on absolute grey-level differences.

The probabilities of moving up, right, down and left from a mesh point M to its

neighbours N, (M) are denoted P (M), k=1,2,3,4 and are calculated by first computing:

DIF(k) = |F(M)-FIN(M)]|
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4
Y DIF(k)
AVER = &1
4

DIF(k) = |DIF(k)-AVER|+1

where F(M) and F[N,(M)] stand for the picture value at M and its neighbours N, (M)

respectively.

The probabilities P,(M) are then defined as:

[DIF (k)]
4

) [DIF (i)™

k=1

Pk(M) =

The hitting distributions are defined as those probability functions which specify the
likelihood that a random walk started at M; will end at I’ ;7 The authors estimated these
hitting distributions by simulating random walks for the point M; and the absorption
distributions were obtained by multiplying the hitting distributions by the number of times
the random walk was simulated for that window. For texture classification, the authors took

5x5 windows and calculated gradients with magnitude m defined by:

1
m = [(Ax)*+(Ay)*]?

where Ax = S -S; and Ay =S, - S,

70




and S,, Sy, Sg and S, are the absorption probabilities corresponding to ', I'y, 'y and '
respectively.

Histograms of magnitudes for the whole image are then constructed and compared with
histograms of training images. An image is classified into the class with the highest
correlation between histograms.

Wechsler and Citron (1980) tested their random walk model on 128 images of 32
texture types from Brodatz’ (1966) texture album. Usinga nearest-neighbour classification
approach, they achieved 89.7% correctly classified for the leave-one-out test procedure.

A similar technique was used by Wechsler and Kidode in 1979 but they estimated
absorption probabilities for all nine mesh points (Figure 2.4). They tested their model on
56 64x64images of 14 texture types taken from Brodatz’ (1966) texture album. Again
using a nearest-neighbour classification approach they achieved a maximum of 86%
correctly classified for the leave-one-out test procedure. The authors compared their
performance with that obtained using co-occurrence matrices and difference statistics.
Using a nearest-neighbour classification and a leave-one-out approach they classified 78%

and 79% respectively with the two techniques.

2.6 Conclusions

It is difficult to compare all the methods discussed above objectively because the
results published are only applicable to the data sets on which they were tested. Also, for
several of the approaches, no quantitative results are given. On the whole, two types of data
sets have been used - Brodatz’ (1966) texture images and/or satellite images, with the
majority of researchers using Brodatz’ (1966) images. Even there, comparison of the
techniques is often not possible because of the different subsets of textures extracted from
the album.

Almost all the studies have involved 64x64 images, most of which have had their
grey-level histograms standardised by varying methods to contain 64 grey levels. Different
studies have attempted to discriminate different numbers of categories and clearly the
number of texture classes used will affect the results. Other important factors are the sizes

of the training and test sets, when used, and the classification criteria applied. As an
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example, in their pilot study, Weszka et al. (1976) had six samples of each of nine texture
types, whereas in their main study they had 60 samples of each of only three types.
Obviously fewer classes improve the chances of correct classification, as should larger
numbers of samples in the training set. Inaddition, some studies such as those by Weszka
etal. (1976) have obtained biased results by using the training set to test the method. Other
studies, on the other hand, have used either the ’leave-one-out’ technique, (e.g. Ohanian
& Dubes (1992)) or have tested their methods on separate test sets (e.g. Haralick et al.
(1973)).

Many authors have used the co-occurrence matrices of Haralick et al. (1973) as a
base and have compared their results with those obtained using co-occurrence matrix
features. For example, Davis et al. (1979) compared generalised co-occurrence matrices
with grey-level co-occurrence matrices in classifying 5 texture classes taken from Brodatz’
(1966) texture album. They claimed a success rate of 80% correctly classified with
generalised co-occurrence matrices compared with only 50% with grey-level co-occurrence
matrices. Similarly, Mitchell et al. (1977) used their relative extrema method to classify
8 classes of Brodatz’ (1966) images and obtained 79.8% correct compared with 66.3% with
co-occurrence matrices. Although they have obtained reasonably high success rates with
their proposed techniques, perhaps these authors should have questioned why their results
with co-occurrence matrices were so bad when other authors such as Haralick et al. (1973)
have obtained much better results with, what would appear to be, data sets that are much
harder to classify.

Sun and Wee (1983) tested their neighbouring grey-level dependence matrices on
images of 3 types of terrain, similar to the images used by Weszka et al. (1976) in their
main study, and obtained success rates of 79.4% and %% with single features and pairs of
features respectively. They compared their results with those of Weszka et al. (1976) -
76% for single features and 93% for pairs of features. Although the results for pairs of
features are good, one criticism of these 2 studies is that the methods were tested on the
training data. This is certain to lead to better results than if test images were used.

Wechsler and Citron (1980) obtained a correct classification rate of 89.7% when
they classified Brodatz’ (1966) texture images into 32 classes. Considering such a large
number of classes, this result was encouraging, but the size of images used was 128x128,

four times the area of images used by most authors. Harwood et al. (1985) also quoted
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high rates of classification for large images using their local rank correlation method -
100% for 120x120 images of 6 classes from Brodatz’ (1966) texture album, but the rate
reduced to 89% when 60x60 images were used.

Ohanian and Dubes (1992) compared 4 different methods - co-occurrence matrices,
Markov random field models, Gabor models and fractal models and found that for small
images co-occurrence matrices were best, followed by fractal models. The authors advised
that Markov random field models should only be used for large images. The authors did
not state how large images should be before using Markov random field models but
certainly for models of size 32x32 or less, they proposed that co-occurrence matrices are——
a better option for classification.

The best overall results have been obtained by Vickers & Modestino (1982) and
Berry & Goutsias (1991). Vickers & Modestino (1982) obtained 98% correct classification
on a test set of Brodatz’ (1966) images using the whole co-occurrence matrix and a
maximum likelihood classifier. Berry & Goutsias (1991) classified 100% of images,
similar to those used by Vickers & Modestino (1982) by again using a maximum likelihood
classification technique, either with the whole co-occurrence matrix or the whole
neighbouring grey-level dependence matrix.  Although neighbouring grey-level
dependence matrices were as good as co-occurrence matrices for classifying 64x64 images,
Berry & Goutsias (1991) found that when smaller images, i.e. 32x32 and 16x16 were to
be classified, co-occurrence matrices gave better classification results. The results in these
two studies are certainly impressive, one criticism of them, however, is perhaps in the data
sets used. For each texture type Vickers & Modestino (1982) took one 512x512 image
from Brodatz’ (1966) texture album and from this extracted 16 64x64 images, 8 of which
made up the training set and the remaining 8 formed the test set. Berry & Goutsias (1991)
selected training and test sets in a similar way. By taking all their samples from one image
they have eliminated any problems which might have occurred due to changes in lighting,
focusing, orientation etc.. It is doubtful that such high success rates would have been
achieved if training and test sets had been selected from a variety of images. Nevertheless,
using the whole co-occurrence matrix, rather than extracting a subset of features, appears
to give better rates of classification and is certainly worthy of further investigation.

The owverall conclusion, therefore, seems to be that co-occurrence matrices do

possibly contain more textural information than any of the other techniques investigated.
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The problem is that most authors do not select enough information from these matrices.
This agrees with the conclusion of Conners & Harlow (1980b) that the most commonly
selected features of angular second moment, contrast, correlation and entropy do not
contain all the textural information. Perhaps future studies should concentrate on some of
the other textural features available from co-occurrence matrices. It is unlikely, however,
that one subset could be found for all types of texture and, therefore, the best solution may
in fact be to use the whole co-occurrence matrix.

There are two main criticisms of co-occurrence matrices. The first is that they are
computationally relatively expensive.” If this is a problem, then neighbouring grey-level
dependence matrices may be an alternative option, but again without further feature
extraction.

The second criticism is the difficulty in finding the best displacement to use.
Currently there is no solution to this and most authors have either used a trial and error
technique or have taken pixels a small distance (typically one pixel) apart and have
averaged over four directions. Although some method is needed to make the techniques
rotation invariant, whether averaging over 4 directions is the best solution, is questionable,
especially since some research, e.g. Weszka et al. (1976) has found that using raw features
(i.e. individual directions) gives better results than composite features (i.e averaging over
directions).

In conclusion, although many techniques have been proposed in the past two
decades, very few seem to be able to match the results of the co-occurrence matrices
suggested by Haralick et al. in 1973. Many researchers have used angular second moment,
contrast, entropy and correlation to classity images, and although other features such as
cluster shade and cluster prominence have been proposed, very little work appears to have
made use of the various other features. Considering the suggestion made by Conners and
Harlow in 1980 that these four features do not contain all the important textural
information, and more recent research using the whole co-occurrence matrix, this is
perhaps surprising.

This chapter is not an exhaustive study of every method that has ever been
considered for texture classification. Texture analysis is an active area of research, and
modifications of existing methods, and new methods, are continually being suggested. To

describe each of these would be a never-ending task. Instead, this chapter is an attempt to
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outline some of the ’standard’ methods for analysing texture, which have prevailed through
time, such as those based on co-occurrence matrices, and to mention some more recent
techniques which have successfully classified certain types of texture. How these
techniques perform when applied to the rats’ bones data used in this study, however, will

be examined in the next chapter.
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Chapter 3 Classification of Texture in Bone

3.1 Subjective Impressions

As stated in chapter 2, the main approaches to texture classification are the
statistical approach, the structural approach and the modelling approach. Due to the
irregularity of the images used in this study it was thought that structural approaches
would not be appropriate. Similarly, it was thought that modelling such irregular images
would not be feasible. The approach taken, theretore, was a statistical one. Probably
one of the best known and most widely investigated statistical techniques for classifying
texture is the co-occurrence matrix. Haralick et al. (1973) suggested 14 texture features
that could be extracted from these matrices and in recent years this list has been
extended. In the past two decades many authors have successfully classified various
textures using co-occurrence matrix features. Other authors have taken classification
rates using co-occurrence matrix features as a base and have compared rates obtained
using their proposed methods with those obtained using co-occurrence matrices. Most
authors have extracted a small subset of the available features from the matrices and,
although it has been suggested (Conners and Harlow (1980b)) that certain of the features
do not contain all the textural information available, in most cases the use of three or
four texture features does produce fairly high rates of success. At the outset of the
present study this seemed a sensible place to start - would features from co-occurrence
matrices be of any use in classifying the textures found in the rats’ bones?

The initial data set consisted of 25 64x64 pixel images with 256 (0....255)
possible grey levels. The 25 images were made up of 5 of each of the first 5 texture
types which were manually sampled from 512x512 pixel images such as those shown
in figures 1.13, 1.14 & 1.15. At this stage all samples of the same texture type were
taken from the same 512x512 square image. The problem of standardising the images

is dealt with in Section 3.7. The images are shown in Figure 3.1 overleaf.
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Texture Type

Fig. 3.1 64x64 images used in the initial study.

All the computation was carried out on a Sun SPARCstation using a package
called Spider (Subroutine Package for Image Data Enhancement and Recognition). This
is a Japanese government software product which contains a number of algorithms for
texture analysis.

The first 13 of Haralick’s features from co-occurrence matrices were computed
in 4 different directions (0°,45°,90° and 135°) and 4 different distances (1,3,5,10 pixels)
apart.

A subjective impression suggested that many of the measures would be of little
use in distinguishing between textures. For most of the measures there seemed to be
a wide variation of values amongst texture types and a lot of overlap between types,
although angular second moment, contrast and correlation looked as if they might be
useful in distinguishing between certain of the texture types. The differences were more

noticeable with small displacements, either 1 pixel apart or 3 pixels apart. Table 3.1
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below shows means and standard deviations of various features averaged over the 5

images of each type for displacement (1,0), i.e. horizontally adjacent pixels.

ASM Cont. Corr.
Type Mean St.dev. Mean St.dev. Mean St.dev.
1 0.00020 6.29¢° 946.17 29.78 3.87e 5.75¢7
2 0.00021 1.10e% 806.25 80.51 6.73e* 3.05¢”
3 0.00039 4.34e™ 529.51 55.83 6.50¢e” 1.85¢®
4 0.00044 1.24¢™ 382.30 160.72 2.05¢e7 7.04¢”
5 0.00047 6.79¢> 352.85 99.21 2.19¢*® 5.73¢”

Table 3.1 Mean & standard deviation of various features taken from co-occurrence

matrices.

Although this table only shows features measured from one displacement, and
is based on a very small sample of images, it does appear that ASM is slightly higher
for type 5 than both types 1 and 2, with type 1 having the lowest ASM and type 5 the
highest. Contrast, on the other hand is considerably higher for types 1 and 2 than it is
for types 3,4 and 5, although it should be noted that the standard deviation of type 4
images is high. Correlation is highest for type 2 but will depend very much on the
displacement used.

In conclusion, at this stage, although there is a lot of variability in the texture
measures, it looks as if it may be possible to discriminate between at least some of the
texture types using a combination of ASM, contrast and correlation. A first impression,
however, suggests that these measures may not be able to distinguish between texture

types 4 and 5, and some other method may be needed to separate these two types.
3.2 Classification Algorithm

As an initial experiment, angular second moment, contrast and correlation based

on co-occurrence matrices were examined more formally. This time, ten 64x64
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windows of each of the 5 texture types, similar to those used above, were extracted from
the 512x512 images and the above features were calculated for each window to form
training sets. The displacements used were 1 pixel apart (horizontally & vertically) and
3 pixels apart (horizontally & vertically).

Test sets were constructed in a similar manner by extracting a further 5 windows
of each texture type and combining them in a pairwise fashion to give 10 test images,
i.e. a test set consisted of 5 images of one texture type and 5 images of a second type.

Although the aim of the project is to discriminate between all five texture types
simultaneously, at this early stage of research only two texture types were considered———
at a time. The idea was to investigate whether any of the texture features could
discriminate between any of the types and, if so, to build on this information to
discriminate between all types. A routine was therefore written to classify each of the
windows forming the test set as one of two types. Since the covariance matrices for
each texture type seemed to vary considerably, quadratic discrimination was used
(Lachenbruch (1975)).

The set of texture features measured on a training set image is treated as a
feature vector x. Initially we have two groups G, and G, and a set of feature vectors
XX g0 Xq AN X51,X5,...X5, Which are subsets of the 14 co-occurrence matrix texture
features computed from images belonging to each of the two types, G, and G,

respectively.

An image with feature vector x is assigned to G, if

P(G,|x) > P(G, %)

and to G, if P(G,|x) = P(G,|x)

i.e. the more likely texture, based on the computed texture features, is chosen.

(Since P(G,|x) + P(G,|x) =1, the above simply reduces to whether P(G, |x) is greater
than or less than 1/2.)




Images where P(G, |x) is equal to, or nearly equal to P(G,|x) should probably
be considered to be grey areas, but this was not allowed for at this stage and all images

were allocated to one of the two possible groups.

Then, assuming x|G; ~ N (u;,2;), using Bayes Theorem

1

Pi|G) - exp [—%Df(zc)]

[S15]

1
21

@m* ),

where Df@ = (x—u_')T Ei ! ()_c—ut)

and the above rule then simplifies to: decide G, if

Ip2 s 1y 2l PG
22 2 |%,| PGy

Ip2x-

In practice p; and »; are estimated from the training set images.
Then, if it is assumed that P(G,)=P(G,), i.e. the prior probabilities for each texture
are the same, the rule becomes:

decide G, if

2 D@ -2 DI > -2 In 2|

2 2 |22 |
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Otherwise assign to G,.
This rule can easily be extended to cases where there are (K>2) groups.
Assuming x|G; ~ N, (), (i=1,2,..,K), andhssuming that the K groups are a-priori

equally likely, the discriminant rule becomes:

assign to group i if:

i Y | 2w Y, o)

i=1,2..K,

i=j.
ie. f 2 m Y| -2pw>-Ln Y| -L oy
2 il Ty 2 g "3

i=1,2,..K,

ij.

The assumption that all texture types have the same probability of occurring in

a bone may not be valid. For example, younger rats are more likely to have a higher
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percentage of the formative types 1, 2 and 3, whereas older rats’ bones may consist
more of types 4 and 5. The probabilities of each type are unknown, however, and are
assumed to be equal here.

The results below show the number of images out of 10 which were classified
correctly when applying this procedure. (1) indicates that displacements of 1 pixel apart
were used, both horizontally and vertically; (3) indicates displacements of 3 pixels apart.

Thus the feature vectors x in the following results are 2-dimensional.

3.3 Co-occurrence Matrices T

ASM ASM Contr. Contr. Correl. Correl.
1) (3) (1) (3) (1) (3)
1v2 10 8 10 10 10 9
1v3 10 10 10 10 10 10
1v4 10 10 10 10 10 9
1v5 10 10 10 10 10 10
2v3 10 10 10 10 10 10
2v4 10 10 10 10 10 9
2v5 10 10 10 10 10 10
3v4 2 6 6 5 9 5
3v5 6 5 7 8 6 7
4v5 6 5 7 8 6 7
84% 84% 90% 91% 91% 86%

Table 3.2 Number of images correctly classified using 64x64 co-occurrence matrices.

The results were quite good considering the small sample sizes used. This is
especially true for images containing either texture type 1 or texture type 2, with nearly
all the test images being correctly classified. These results confirm the subjective
impression stated earlier that the differences in ASM and contrast between types 1 and
2 and the three other texture types are quite marked. The differences between texture

types 3,4 and 5 are less obvious, with contrast and correlation being the best features
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for separating them.

Ideally, we would like to be able to classify windows of size smaller than 64x64.

To see whether the textural differences could be picked up in smaller windows, a similar

experiment was carried out using 16x16 windows. This gave the following results:

1v2
1v3
1v4
1vs
2v3
2v4
2v5
3v4
3v5
4v5s

ASM ASM Contr. Contr. Correl. Correl.
(D 3 1) ©) (1) 3)
2 2 8 10 8 5

9 10 10 10 10
8 10 10 10 10 7
9 9 10 10 9 7
10 9 10 10 10 10
9 9 9 10 10 9
10 8 10 10 9 8
2 5 5 8 8 8
6 7 7 8 7 8
7 5 7 4 7 8

71% 73% 86% 90% 88% 80%

Table 3.3 Number of images correctly classified using 16x16 co-occurrence matrices.

Not surprisingly the results are not as good with 16x16 windows as with 64x64.

This is most noticeable from the results based on ASM, with only two images in the test

set containing types 1 and 2 being correctly classified. The difference in contrast and

correlation between texture types is still picked up using smaller windows. Contrast

seems to be the best feature for discriminating between most texture types although

correlation is better for discriminating between types 4 and 5.

Since the eventual aim is to discriminate between all texture types, the routine

was adapted to include 2 textural features. Thus using the same method as previously

but now with essentially 4 features (2 features at 2 different displacements -horizontal

and vertical) all pairwise combinations of features were investigated. The best results

were obtained with pairs which included contrast. The results are shown overleaf.
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ASM+Contr. ASM+Contr.  Contr.+Correl.  Contr.+Correl.

(1) 3 (1) 3)
1v2 6 9 10 5
1v3 10 10 10 8
1v4 10 10 10 10
1v5 10 10 10 10
2v3 9 9 10 8
2v4 10 10 9 9
2v5 10 8 1 Ol 8
3v4 4 4 8 4
3v5 8 4 9 5
4v5 7 6 7 4

84% 80% 93% 1%

Table 3.4 Number of images correctly classified by 16x16 co-occurrence matrices

using 2 features.

Using contrast and correlation with a displacement of 1 pixel apart has classified
93% of the images correctly. The main difficulty is in discriminating between types 4
and 5, with only 7 out of 10 images being correctly classified.

Next, even smaller windows were examined to see whether measuring the
contrast and correlation could pick up a difference in images as small as 8x8. For each
texture type 20 images of size 8x8 were extracted from the same 512x512 images as
previously and their contrast and correlation computed. These sets of features were used
as training sets. Ten test images were also extracted for each type and their contrast and
correlation calculated. Test sets were constructed as previously by combining features
from sets of 10 test images in a pairwise fashion to give 20 test images in each run of

the programme. The following results were obtained:
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Contr.+Correl.  Contr.+Correl.

1) (3)
1v2 15 14
1v3 20 20
1v4 16 18
1v5 20 20
2v3 20 20
2v4 16 17
2v5 20 20
3v4 10 19
3v5 20 11
4v5 10 13

83.5% 86%

Table 3.5 Number of images correctly classified using 8x8 co-occurrence matrices and

2 features.

Although the classification rate has dropped to 86%, the results are surprisingly
good for such small windows. The difference in coarseness between types 1 and 2 is
not picked up as well in such small images and there are still problems in discriminating
between types 4 and 5. Otherwise, however, the discrimination routine works well even

on windows as small as 8x8.

3.4 Difference Statistics

Since contrast has a corresponding feature based on difference statistics, rather
than continuing the investigation of co-occurrence matrix features at this stage, it was
decided to move on and examine difference statistics. The main advantage of difference
statistics is that they are much faster to compute. In addition, aithough Conners and
Harlow (1980b) found that co-occurrence matrices contain more textural information
than difference statistics, Weszka et al. (1976) obtained better classification results with

difference statistics than with co-occurrence matrices.
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Contrast and mean were calculated for each of the 16x16 training and test set
images, again using displacements of 1 and 3 pixels apart, horizontally and vertically.

The following results were obtained:

Contr.+Mean Contr.+Mean

(1) 3)
1v2 9 8
1v3 10 10
1v4 10 10
1§5 10 10
2v3 8 10
2v4 4 10
2v5 10 10
3v4 7 3
3v4 10 6
4v5 5 S

83% 82%

Table 3.6 Number of correctly classified images out of 10 using 16x16 difference

statistics.

For test sets containing type 2 images a displacement of 3 gives better
discrimination. For all other texture types a displacement of 1 pixel is at least as good
as a displacement of 3.

The discrimination is worse than that obtained from contrast and correlation
based on co-occurrence matrices. Since contrast measured from difference statistics and
co-occurrence matrices is essentially measuring the same thing the difference probably
arises in using mean instead of correlation. Unfortunately there is no feature from
difference statistics which corresponds to the co-occurrence correlation feature.

An examination of the grey levels of the images indicated that the mean grey
level and the standard deviation of the grey levels vary between certain types. For
example, the table below shows that the standard deviation tends to be lower for types

3, 4 and 5 than for types 1 and 2. Also, the mean grey level of type 1 images tends to
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be higher than that of types 2, 3 and 4, and type 5 images tend to have a slightly lower

mean grey level.

Type Mean St. Dev
1 122.9 42.4
2 106.5 35.7
3 106.8 17.1
4 105.6 18.1
5 103.3 17.2

Table 3.7 For each 16x16 image belonging to the training set the mean grey level and

corresponding standard deviation has been computed. The table shows the

average values for the 10 images of each type.

It was therefore thought that incorporating the mean and standard deviation of
the grey levels into the discrimination routine may reduce the number of images being
misclassified. The training and test sets still consisted of 4 features - contrast, 3 pixels

apart, horizontally and vertically, mean and standard deviation. The results were as

follows:




16x16 Difference Statistics

Contr. (3)
+Mean+St. Dev.

1v2 10
1v3 10
1véd 10
1v5 10
2v3 10
2v4 9

2v5 10
3v4 10
3v5 10
4v5 5

94%

Table 3.8 Number of images correctly classified using difference statistics and grey-

level mean and standard deviation.

Thus, by including mean and standard deviation in the discrimination nearly all
the images are classified correctly. There is, however, still a problem in discriminating
between types 4 and 5.

Looking at 8x8 images with training sets consisting of 2% images and test sets

consisting of 20 images gave the following results:
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8x8 Difference Statistics

Contr. (3)
+Mean+St. Dev.

1v2 18
1v3 20
1v4 18
1v5 20
2v3 19
2v4 18
2v5 20
3v4 15
3v5 12
4v5 10

85%

Table 3.9 Number of images correctly classified by 8x8 difference statistics and grey-

level mean and standard deviation.

Thus, again the differences are only really picked up between types 1 and 2 and
the other 3 types. Discrimination between types 3,4 and 5 is fairly poor, with between

25% and 50% of images being misclassified.
3.5 Fourier Power Spectrum

Although Weszka et al. (1976) concluded that features based on co-occurrence
matrices and difference statistics perform better than Fourier features and features from
run-length matrices, for completeness these features were investigated at this stage.

In the case of the Fourier power spectrum, averages over wedge-shaped and over

ring-shaped regions were examined.
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Fig. 3.2 The regions used in the Fourier power spectrum analysis.

The Fourier power spectrum was calculated in 16 regions and then averaged over

size or direction, to give a feature set consisting of 4 values in each case.

Radius (pixels)
(0-2) (2-4) (4-6) (6-8)

A 0-/2 Angle 1
n 7n/2-n Angle 2
g mn-32n Angle 3
1 3/2n-2n Angle 4
e

Size 1 Size 2 Size 3 Size 4

Fig. 3.3 The features used in the Fourier power spectrum analysis.

The results were as follows:
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16x16 Fourier Spectrum

Average over Average over
angles size
1v2 7 6
1v3 10 10
1v4 9 9
1v5 6 8
2v3 7 9
2v4 7 9
2v5 5 6
3v4 6 5
3v5 8 7
4v5 7 8
72% 77%

Table 3.10 Number of images correctly classified.

As expected, in agreement with Weszka et al. (1976), Fourier features seem to
perform less successfully than difference statistics and co-occurrence matrix features.
Averaging over size gives marginally better results than averaging over direction but

neither method discriminates well between types 1 and 2, and 3 and 4.

3.6 Run-length Matrices

In the examination of run-length matrices, once again 4 displacements were
considered and the average and standard deviation of the features over the four
directions computed. The best pair of features was grey-level distribution and run-length
distribution. As the results below show, run-length matrix features discriminate well on
test sets containing types 1 and 2, but are unable to discriminate between types 3,4 and
5.

A subjective look at the values of the features suggested that the standard

deviations played a small part in the discrimination - the major differences appeared to
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be in the means. The next step was therefore to include only the means of the features
in the discrimination. The first four features, i.e. short run emphasis, long run emphasis,
grey-level distribution and run-length distribution produced the results shown in Table
3.11 below. The improvement over using the mean and standard deviation of two
features is, however, very slight. Again the discrimination is fairly good for sets
containing types 1 and 2 although the features seem to be unable to discriminate
between types 1 and 2. The features do however appear to be able to discriminate

between types 3 and 4.

16x16 Run-length Matrices

GLD+RLD SRE,LRE,GLD
(Mean+St. Dev.) & RLD (Mean)
1v2 8 4
1v3 10 10
1v4 10 10
1v5 10 10
2v3 10 9
2v4 10 9
2v5 10 9
3v4 6 9
3v5 5 7
4v5 1 4
80% 81%

Table 3.11 Number of images correctly classified by run-length matrices.

The results obtained so far agree with Weszka et al. (1976) to the extent that
difference statistics and co-occurrence matrices perform considerably better than Fourier
power spectrum and run-length matrices. Computing contrast and correlation from co-
occurrence matrices gives better results than any combination of features from difference
statistics, but the best combination of features investigated is contrast based on

difference statistics plus mean and standard deviation. (Corresponding features taken
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from co-occurrence matrices would give similar results.)

There are several criticisms of this initial study that can be made. Firstly,
discrimination between only two texture types at a time was considered. This will be
of little use in ’real” situations where it is desirable to know to which of 5 or 6 classes
of texture an image belongs. This criticism will be addressed in the next section.
Secondly, images consisted of 256 grey levels. Co-occurrence matrices of sizes as small
as 8x8 were computed and thus 64 pixels were allocated to a matrix which contained
65536 cells. Inevitably, the co-occurrence matrices were fairly sparse and it is perhaps
surprising that the classification results were so good. In the remainder of work in this
chapter the images were transformed to contain 64 grey levels and the majority of
images considered were 64x64, giving 4096 pixels to be allocated to 4096 cells.

Only a small subset of texture features was considered, particularly in the case
of co-occurrence matrices, Various studies (Conners & Harlow (1980b)) have suggested
that ASM, contrast, entropy and correlation do not contain all the relevant textural
information, and some authors (Conners et al. (1984)) have found some of the more
recent features such as cluster shade and cluster prominence to be useful. In addition,
only vertical and horizontal displacements were considered here, whereas in order to
make the methods rotation invariant, many authors have computed averages over 4 (or
more) directions (Haralick et al. (1973), Weszka et al. (1976)).

Finally, the images of each type are taken from the same bone. Although several
authors such as Weszka et al. (1976) and Vickers & Modestino (1982) have constructed
both training and test sets from one image, to make the results in this study applicable
to any bone in the future, and therefore of any use medically, the data set has to be
extended to include several bones, and indeed several rats.

Thus, although this initial analysis was useful to get a subjective impression of
some methods which might be useful in future, no firm conclusions can be drawn at this

stage. Each of the criticisms made above will be addressed in the analysis that follows.

3.7 Image Standardisation

In the previous section, mean grey level and standard deviation were found to

be useful in discriminating between texture types. Although these features may provide
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useful textural information - for example the standard deviation of a smooth, fairly
uniformly grey, type 5 image is likely to be lower than for a type 1 texture which is
speckled with white granules -the differences may occur simply because of the variation
in conditions under which the images were saved. The manner in which the images are
saved as regards brightness, focusing etc. is very subjective and may result in
consecutive captures of the same image having a different distribution of grey levels.
The problem becomes worse when images are saved from different bones on different
days, etc., etc..

As an illustration of this the table below shows the difference in mean, standard

deviation and contrast of 3 type 2 images, 2 of which are from the same bone.

Mean St. Dev. Contr. (1) Contr. (3)
Bone 1 image a 106.5 35.7 2033 2616
Bone 1 image b 119.0 20.8 789 757
Bone 2 image c 119.2 28.1 1661 1272

Table 3.12 Features computed from 3 images illustrating the differences in similar

texture types.

Where training sets and test sets have been extracted from just one image of each
texture type, this may in fact aid the discrimination - e.g. a type 1 texture may appear
to have higher grey levels than a type 5 texture, but this may be due more to the
conditions under which the images were captured rather than actual differences in the
texture types. If the methods are to be useful in future it is obviously necessary to
choose training and test sets which are representative of each texture type over all
images and all bones. The subjective manner in which the images are saved, made
necessary by the limitations of the scanning electron microscope, makes it impossible
to save all images at exactly the same brightness without losing sharpness, and until a
SEM with automatic focus becomes available, because the texture features are based on
the grey levels of an image, it is imperative to find some way of standardising the grey

levels.
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3.7.1 Histogram Equalisation

The most commonly used method of standardisation is histogram equalisation or
histogram flattening (Hall et al. (1971), Haralick et al. (1973), Weszka et al. (1976),
Vickers & Modestino (1982)).

Histogram equalisation transforms the grey scale histogram to a uniform
distribution so that each grey level within the range desired occurs the same number of
times.

Thus histogram equalisation defines a mapping of p grey levels in the original
image into q grey levels in the new image such that the distribution of grey levels in the
new image is uniform.

The number of grey levels, p, in the original image will normally be less than
256. Most images are either predominantly dark or predominantly bright, i.e. the

histogram of grey levels is skewed to the right or left respectively.

(-] 255 [

Dark Bright

The mapping can expand the range of grey levels to 256 or more commonly,
reduce the number of grey levels to 64.

There are various methods of performing histogram equalisation. Some methods
do not divide grey levels, i.e. all pixels with the same grey level in the original image
will have the same grey level in the transformed image, and therefore do not result in
a perfectly uniform distribution.

Consider an 8x8 image with 6 grey levels which has to be transformed to contain

4 grey levels. Let p; represent the frequency of grey level i in the original image, q
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the desired frequency of grey level i in the transformed image and r; the actual

frequency of grey level i in the transformed image.

e.g.

GL {0 1 2 3 4 5

pp |12 16 13 10 8 5
¢ |16 16 16 16

As no division of grey levels is allowed, all that has happened in this case is that
pixels with grey levels 4 and 5 in the original image have been assigned grey level 3
in the transformed images and, as can be seen, the resulting histogram is not in fact
uniformly distributed.

A second method which results in the frequencies g; and hence a uniform
distribution would randomly select 4 pixels with grey level 1 in the original image to
have grey level 0 in the transformed image. It would then randomly select 4 pixels with
grey level 2 to have grey level 1 in the transformed image, and so on.

In practice, usually there is very little difference between the two methods (Fig.
3.4) though care has to be taken when using either method. The first method cannot be
used to expand the range of grey levels because no division of grey levels is allowed.
The second method can produce strange results, e.g. if an image is half black and half
white.

Some images of rats’ bones and their histogram equalised transformations are

shown in figure 3.4 below.
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Fig. 3.4 Original images (a),(b),(c) and (d) and histogram equalised transformations
method 1, (e)-(h), and method 2, (i)-(1).

Both the transformations have had the effect of standardising the images to some
extent, so that they all consist of roughly the same number of pixels of each of the 64
grey levels. Using the second transformation, all images contain exactly the same grey
levels, i.e. a 64x64 image contains 64 pixels with grey level 0, 64 with grey level 1 ...
64 with grey level 63. The texture in the images is still visible but there is now no
variation in first order information such as mean and standard deviation. Differences
in second order statistics such as co-occurrence matrices and difference statistics will

still exist, but there is a loss of useful information.

3.7.2. Histogram Normalisation

Another possible method of standardising the images is by histogram
normalisation, i.e. transforming the grey-level histogram to be normally distributed.

Again there are at least two different ways of achieving this. One way is to specify the
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desired mean and standard deviation, e.g. mean 32, standard deviation 12.5 (Vickers &

Modestino (1982)) and transform IP(i,j) to JP(i,j) using the following algorithm:

g
JPG, j) = (IP(, ) ~ B, X
Ooid

o

An alternative method would be to specify the range of grey levels [0,d] in the

transformed image, and use the algorithm:

d

c,ald

JPG, J) = (PG, J) - Pog + Og X 5

With the first method all images of all texture types will again have the same
mean and standard deviation resulting in loss of information. The second method has
the advantage of not specifying the new mean and standard deviation but has the
disadvantage of producing values of JP(i,j) outside the desired range, [0,d], e.g. < O,
where 1IP(i,j)< Wyq =y

A possible modification of method 2, resulting in all pixels being transformed

to within the desired range could be obtained by computing

(PG, J) - v

0old

KP(I, j) =

and then stretching the grey levels to cover the range [0,d] by computing
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d
max [KP(i, j)] - min [KP(, j]

JPG, j) =|KPG, j)-min [KPG, /)] x

Figure 3.5 shows the resulting images from each of these three transformations.

(a) (b)
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Fig 3.5 Original images (a)-(d) and transformed images (e)-(p), method 1, (e)-(h),
method 2, (i)-(1), method 3, (m)-(p).

3.7.3 Conclusions

There appears to be very little to choose between the methods. Visually there
is very little difference between the two types of uniform distribution standardisation
although the histograms of grey levels are not the same. The second type of histogram
normalisation results in fairly black and white images. This is because if the
transformation results in a pixel with a grey level outwith the desired range (for example
0-63) it is assigned either grey level O or grey level 63. This occurs fairly regularly.

The method used by most authors seems to be to transform to a uniform
distribution and therefore all the analysis that follows has been performed on histogram

equalised images with division of the grey levels (i.e. method 2).

3.8. Training and Test Data

The aim is to have a database for each texture type which is representative of all
images from all rats. Towards this aim new training sets were constructed. Training
data for each texture type now consist of 10 64x64 images containing images from
several bones. As stated above, all the images have now been histogram equalised to
contain 64 grey levels. The original images and the corresponding histogram-equalised
images are shown in figures 3.6 and 3.7 respectively. This new data set consists only

of images of the three formative types, 1,2 and 3, plus the resorptive type 5. Type 4
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was not included in this study because of the lack of clear images containing this texture
type available at the time. Texture type 4 is included in future analysis, the results of
which appear later in this chapter.

Texture Type

Fig. 3.6 New training set images before histogram equalisation.

103




Fig. 3.7

New training images after histogram equalisation.
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Due to the histogram equalisation it was no longer possible to use first-order
statistics such as mean grey level and standard deviation to discriminate between types
because these measures were now the same for all texture types (mean approximately
31.5, standard deviation approximately 18.475). Although fairly good classification
results were obtained on 16x16 and even 8x8 images in the initial study without using
the mean and standard deviation of the grey levels, the first order statistics certainly
helped to improve the results. Other features therefore had to be re-examined to try to
improve the classification. A finer edge than 64x64 windows will allow is desired, but,
considering that most other authors who have classified Brodatz’ (1966) images have
only classified 64x64 images, it is perhaps unlikely that accurate discrimination will be
possible on smaller windows of the natural images used in this study.

Also, because training sets now contain images from several bones with different
orientations, features which are orientation independent are required. For example

consider the two type 3 images in Figure 3.8.

(b)

Fig. 3.8 Type 3 textures with different orientations.
The human eye can see that these are the same texture type, only orientated

differently. Textural features are required so that the computer will also recognise these

as the same texture.
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3.9, Co-occurrence Matrices and Difference Statistics re-visited

Returning to the paper by Haralick et al. in 1973, 64x64 windows were classified
by measuring different subsets of the 14 features taken from co-occurrence matrices with
a displacement of 1 pixel apart and in each of 4 directions (0°,45°,90°,135°). The mean
and standard deviation of each feature over the 4 angles were then computed. Between
80% and 90% of images were classified correctly.

This technique was used to classify each of the 40 images in the new training
sets in this study into one of four types -1,2 3 or 5. Because of the small number of
images available at this stage, instead of testing the methods on test sets, jackknifing (or
the leave-one-out method) of Lachenbruch and Mickey (1968) was used. Using this
method, the discriminant rule is obtained from n-1 observations and the rule is used to
classify the remaining case. Efron (1983) claimed that, although the method can have
high variability, especially for small data sets, the method is nearly unbiased. Further
investigation of other methods can be made once a method for classifying the images
is found but it was felt that at this stage jackknifing would provide an adequate
indication of the error rate.

As well as investigating a displacement of 1 pixel apart, co-occurrence matrices
were also computed for displacements of 2,3 and 4 pixels apart. The features
investigated were the first 12 suggested by Haralick et al. in 1973, the kappa statistic
(Parkinnen & Selkainaho (1990)) and cluster shade and cluster prominence (Conners et
al. (1984)). The figures in Table 3.13 show the number of images out of 40 classified
correctly when using the resubstitution method, i.e. no jackknifing. Table 3.14 shows

corresponding numbers using jackknifing.
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T T ey

1
ASM 25
Con 29
Corr 24
SofS 23
IDM 17
SAv 14
SVa 26
SEn 26
Ent 27
DVa 29
DEn 27
MofC 25
Kap 18
CISh 28
ClIPr 28

Displacement

2 3 4
25 18 19
29 25 26
24 21 22
23 23 25
24 23 23
14 15 16
25 24 25
24 28 26
27 27 21
28 25 26
27 25 24
23 24 22
20 21 16
26 23 22
23 21 20

Table 3.13 Number of training images out of 40 correctly classified by co-occurrence

matrix features.

[ ASM=Angular Second Moment
Con=Contrast
Corr=Correlation

SofS=Sum of Squares

IDM=Inverse Difference Moment
SAv=Sum Average
SVa=Sum Variance

SEn=Sum Entropy

Ent=Entropy
DVa=Difference Variance
DEn=Difference Entropy
MofC=Information measure of
correlation
Kap=Kappa
CISh=Cluster Shade

ClIPr=Cluster Prominence
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Displacement

1 2 3 4

ASM 19 17 18 19
Con 23 20 19 24
Corr 19 22 20 21
SofS 18 18 18 19
IDM 14 20 19 18
SAv 10 10 11 11
SVa 24 19 18 16
SEn 21 16 20 21
Ent 20 19 19 15
DVa 23 20 22 24
DEn 25 20 20 19
MofC 18 19 20 15
Kap 12 15 17 6
CISh 24 19 14 16
CiPr 25 17 15 19

Table 3.14 Number of images out of 40 correctly classified by co-occurrence matrix

features using jackknifing.

The results are quite poor, with only a maximum of 72% of images being
correctly classified when the discrimination rule was tested on the training set, and a
maximum of 62% correctly classified when jackknifing was used. The results are,
however, comparable to those of Weszka et al. (1976). In their main study, they
obtained a maximum of 75% correctly classified using single features from co-
occurrence matrices, and testing their method on the training set. In their study, larger
training sets were used, with only three categories, each containing 60 samples.

The considerable drop in the number of correct classifications when jackknifing
was used in this study is almost certainly at least partly due to the small size of the
training sets used. It was hoped that a larger training set would improve the results.

What can be seen from these results is that, on the whole, small displacements seem to
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be best, with a displacement of one pixel resulting in the highest number of correct
classifications. This agrees with conclusions made by Weszka et al. (1976). Another
interesting point is that, as suggested by Conners and Harlow in 1980 the most
commonly used features of ASM, contrast, correlation and entropy are not necessarily
the most informative texture measures and in this data set the best results were obtained
from difference entropy and cluster prominence.

A similar study was carried out with features taken from difference statistics and

run-length matrices. The results are shown in Tables 3.15, 3.16 and 3.17.

Displacement
1 2 3 4
Con 29 28 25 26
ASM 24 22 25 22
Ent 26 24 25 24
Mean 27 26 26 26

Table 3.15 Number of correctly classified images out of 40 using features from

difference statistics without jackknifing.

Displacement
1 2 3 4
Con 23 20 22 24
ASM 20 18 20 19
Ent 22 19 20 19
Mean 22 20 23 21

Table 3.16 Number of correctly classified images out of 40 using features from

difference statistics with jackknifing.
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No Jackknifing Jackkniting
SRE 16 11
LRE 19 10
GLN 16 10
RLN 15 9
RP 18 12

Table 3.17 Number of correctly classified images out of 40 using features from run-
length matrices. [SRE=short runs emphasis, LRE=long runs emphasis,
GLN=grey-level nonuniformity, RLN=run-length nonuniformity

and RP=run percentage.]

The results for features based on difference statistics are similar to the
corresponding features computed from co-occurrence matrices. As found by Weszka et
al. (1976) and Conners & Harlow (1980b) run-length matrices perform less well than
both co-occurrence matrices and difference statistics.

In an attempt to improve the classification results, features were combined. All
pairwise classifications using co-occurrence matrices and a displacement of 1 were
investigated. The greatest number of correct classifications without jackknifing was
90% using sum average and cluster prominence. This dropped to 57% when jackknifing
was used. With jackknifing the best results were obtained from sum variance and either
cluster prominence or cluster shade, sum average and difference entropy and measure
of correlation and cluster shade. All combinations classified 60% correctly. The best

combinations are shown in Table 3.18 (no jackknifing) and Table 3.19 (jackknifing).
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Features No. correctly classified
SAv + CIPr 36
IDM + CIPr 34
Ent + DEnt 34
DVa + Kap 34
Con + Kap 34
ASM + Con 33
ASM + SVa 33
IDM + SVa 33
SAv + SVa 33
Ent + CIPr 33
SVa + CISh 33
IDM + CISh 33
Ent + CISh 33

Table 3.18 Number of images out of 40 correctly classified by pairs of features. No

jackknifing.
Features No. correctly classified
SAv + DEnt 24
SVa +CIPr 24
SVa + CISh 24
MofC + CISh 24
Cor + DEnt 23
SofS + DEnt 23
SAv + CIPr 23
Ent + CISh 23
DEnt + CIPr 23
MofC + CIPr 23
SEnt + Kap 23

Table 3.19 Number of images out of 40 correctly classified by pairs of features.

Jackknifing.
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Thus, although using two features has improved the results considerably when
the method is tested on the training set, there is no improvement in results when
jackknifing is used, and in fact the maximum percentage of correctly classified images
has dropped from 62% to 60%. Again, this is probably mainly due to the lack of
images in the training set. Introducing a third feature improved the classification results
for the training set, e.g. IDM, sum average and cluster prominence gave 95% correctly
classified. When jackknifing was used, however, this figure dropped to 52%. The best
result using jackknifing was 55% with sum average, difference entropy and cluster

prominence, but this was worse than the best result using just 2 features.

In an attempt to find the best combination of features for classification, SPSS
(Statistical Package for the Social Sciences) was used to carry out a stepwise
discrimination analysis. Two methods of selecting variables were investigated. The first
method was based on minimising the overall Wilks’ lambda. Wilks” lambda is given

by: {W|/|T|, where

kN

W= Y3 &, %) x5, -x)7

j=1 i=1

i.e. within-groups sum-of-squares

k n
and T = zzjz(xij _E) (x,-j _;)T

j=1 i=1

i.e. total sum-of-squares.

(x; is the ith point from class j, n;, is the total number of sample points in class j, X is
the overall sample mean and k is the number of classes.)

At each step the variable that results in the smallest Wilks’ lambda for the
discriminant function is selected for entry. Each entry or removal of a variable is

considered a step and the maximum number of steps permitted is twice the number of
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independent variables. The significance of the change in Wilks’ lambda when a variable
is entered or removed from the model is based on an F statistic.

The second method used was Mahalanobis’ distance. Mahalanobis’ Distance D*
is a generalised measure of the distance between two groups. The distance between

groups a and b is defined as:

P P

D%, , = (n-g) EZW,-,-* Ko X p) X;, ~X; p)

i=1 j=1

where p is the number of variables in the model, X, is the mean for the ith variable in
group a and wij' is an element from the inverse of the within-groups covariance matrix.
When Mahalanobis’ distance is the criterion for variable selection, the Mahalanobis’
distances between all pairs of groups are calculated first. The variable that has the
largest D? for the two groups that are closest (have the smallest D? initially) is selected
for inclusion.

Covariance matrices were assumed to be equal, although in reality this was
unlikely to be the case, and the discriminant rules were only tested on the training set.
Although this was likely to lead to slightly biased results, at this stage the aim was
simply to get an idea of variables which would be useful for discrimination, rather than
carrying out any formal analysis. Taking each displacement separately, all variables
were included in the analysis (i.e. 12 features from Haralick et al. (1973), cluster shade
and prominence, and kappa). Features consisted of the means and standard deviations
computed over 4 directions. The results, showing the variables entered and removed,

plus the final classification tables, are shown below.
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Displacement 1

Wilks” A Mahal. Dist.
In Out In Out
CIP1(S) SEn(M)
Con(M) Ent(S)
Ent(S) SofS(S)
IDM(M) CIPr(S)
SEn(M) IDM(S)
IDM(S) SofS(S)
Kap(M) SVa(M)
SofS(M) Corr(M)
Kap(S) Sva(M)
DEnt(S) IDM(M)
DEnt(M) DEn(S)
MofC(S) Kap(M)
Kap(M) Kap(S)
DEn(M) SVa(M)
ASM(M) DEn(M)
Ent(M)
DEn(S)

(M = Mean, S = Standard Deviation)

[In=Features in classifier

Out= Features not in classifier]




Classification Tables

Wilks™ A Mabhal. Dist.
Predicted Predicted
1 2 3 5 1 2 3
T 1 9 0 1 0 T 1 10 0 0
r 2 0 9 1 0 r 2 1 8 1
u 3 1 2 7 0 u 3 2 1 7
e 5 0 0 0 10 e 5 0 1
87.5% 85%

‘( Table 3.20 Number of images correctly classified (displacement 1),

[ ASM=Angular Second Moment Ent=Entropy

Con=Contrast DVa=Difference Variance
Corr=Correlation DEn=Difference Entropy
SofS=Sum of Squares MofC=Information measure of

correlation

IDM=Inverse Difference Moment  Kap=Kappa

SAv=Sum Average CISh=Cluster Shade
SVa=Sum Variance CIPr=Cluster Prominence
SEn=Sum Entropy ]
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Displacement 2

Wilks” A Mahal. Dist.
In Out In Out
Cor(M) Kap(M)
DEn(S) SAv(S)
IDM(M) IDM(M)
ASM(M) SoS(M)
CISh(S) Kap(S)
Ent(M) DEn(M)
CISh(M) SAv(S)
SofS(M) SEn(S)
Ent(S) CIPr(S)
SEn(M) ASM(M)
SAv(M) CISh(S)
ASM(M)
SEn(M)
SAv(M)
DEn(M)_
SVa(S)
SEn(M)
DEn(M)
IDM(S)
Cor(M)
ASM(M)
Ent(M)
DEn(M)
SAv(M)
SEn(S)
SVa(s)
Ent(S)
DVa(S)
CISh(M)
IDM(S)

116




Classification Tables

Wilks® A Mahal. Dist.
Predicted Predicted
1 2 3 5 1 2 3
T 1 8 1 1 0 T 1 10 0 0
r 2 0 10 0 0 r 2 0 9 1
u 3 2 3 5 0 u 3 1 1 8
e 5 0 0 0 10 e 5 0 0 0
82.5% | 92.5%

Table 3.21 Number of images correctly classified (displacement 2).

Displacement 3
Wilks™ A Mabhal. Dist.
In Out In Out
Cor(M) MofC(S)
Con(S) SAv(S)
Kap(M) DEn(S)
Kap(S) Ent(S)
CISh(S) MofC(M)
IDM(M) SAv(S)
DEn(M) Kap(M)
MofC(S) IDM(M)
Ent(S) Con(M)
CISh(M) Kap(S)
SofS(M) ASM(M)
SEn(M) SAv(M)
IDM(S) DEn(M)
SAV(S) CISh(S)
SVa(M)
CISh(M)
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T 1 10
r 2 0
u 3 0
e 5 0

Classification Tables

Wilks” A
Predicted
2 3 5
0 0 0 T
10 0 0 r
0 10 0 u
0 0 10 e
100%

L W N

o I o B N s

Mahal. Dist.
Predicted
2 3
0 1
10 0
0 10
0 0
97.5%

Table 3.22 Number of images correctly classified (displacement 3).

Displacement 4

Wilks’ A

Mahal. Dist.

In
SEn(M)
IDM(S)
SofS(S)
Kap(M)

Out

In Out
Con(S)
Kap(M)
IDM(S)
SEn(S)
Sva(s)
SofS(S)
SVa(M)
SofS(S)
DEn(S)
MofC(S)
Ent(S)
DVa(S)
SEn(M)
Sva(M)
Ent(S)
IDM(M)
Sva(M)
CISh(S)
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Classification Tables

Wilks® A Mahal. Dist.
Predicted Predicted
1 2 3 5 1 2 3 5
T 1 6 3 0 1 T 1 6 3 1 0
r 2 2 7 1 0 r 2 1 9 0 0
u 3 2 3 5 0 u 3 1 1 8 0
e 5 0 0 0 10 e 5 0 0 0 10
70% 82.5%

Table 3.23 Number of images correctly classified (displacement 4).

There is very little pattern in these results, with different variables being included
for each displacement used and for both methods of selecting variables. There are not
even any variables which consistently appear at the top of the tables for all
displacements. In fact, in each case, several variables are included, indicating that each
successive variable entered is providing new information and a small subset of variables
will not describe the texture adequately. One interesting point is that ASM, either mean
or standard deviation is seldom included in the model. 1DM, either mean or standard
deviation is included in most models, as is sum entropy. The best results were obtained
using a displacement of 3, with all the images being correctly classified by the Wilks’
A method.

A similar procedure was carried out using the 4 features from difference
statistics. Again both mean and standard deviation over the 4 directions were calculated
but this time features from displacements 1 and 2 and displacements 3 and 4 were

considered together. The results were as follows:
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Displacements 1 & 2
Wilks’ A Mahal. Dist.
In Out In Out
Con2(M) Mean1(S)
Mean1(M) ASM2(S)
ASM2(S) Mean1(M)
Ent1(S) Mean2(S)
Conl(M) Ent2(M)
Mean2(S) ASM2(S)
ASM2(S) Mean2(M)
ASMI1(S) Ent2(M)
Ent1(M) Ent1(M)
ASM2(M) Con2(M)
Conl(M) Coni(S)
Mean1(S)
Ent2(M)
Mean1(M)

(Con2=Contrast, displacement 2 etc.)

Classification Tables

Wilks® A
Predicted
1 2 3 5
9 0 0 1
0 9 1 0
0 1 9 0
0 0 0 10
92.5%

(displacements 1 and 2).
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Mahal. Dist.
Predicted
1 2 3
9 0 0
0 9 1
1 0 9
0 0 0
92.5%

Table 3.24 Number of images correctly classified by difference statistics

o S =
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Displacements 3 & 4
Wilks’ A Mahal. Dist.
In Out In Out
Cond(M) Con4(S)
Con3(S) Con3(S)
Con3(M) Con4(M)
Mean3(M) Con4(S)
Ent4(M) Mean4(M)
Ent3(S)
Mean3(M)
Con3(M)
Ent4(S)
Mean4(S)
Classification Tables
Wilks” A Mahal. Dist.
Predicted Predicted
1 2 3 5 1 2 3 S5
T 1 9 1 0 0 T 1 9 1 0 0
r 2 4 5 1 0 r 2 4 5 1 0
u 3 4 2 4 0 u 3 1 3 6 0
e 5 2 0 0 8 e 5 1 0 0 9
65% 72.5%

Table 3.25 Number of images correctly classified by difference statistics

(displacements 3 and 4).

Displacements 1 and 2 seem to give better classification results, but again there
is no real pattern. ASM seems to be the least useful feature for classification but
contrast, mean and entropy are included in most cases. In some cases there is additional
information in a feature already entered but with a different displacement, e.g. Con3(M)
and Con4(M). The classification results were quite good using displacements 1 and 2,

with 92.5% of images being correctly classified by both Wilks’ A and Mahalanobis’
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distance. The number of variables included in the classification was large (9, out of a
possible 12, with Wilks’ A and 10 with Mahalanobis’ distance). It seems unlikely
therefore that a smaller subset of variables could correctly classify future images and it
appears that the best classification results may be obtained by using all the information

in the difference statistics.

3.10 Maximum Likelihood

As mentioned above, because ot the number of variables included in each mode],
a better method of classification may be to use all the information contained in either
the co-occurrence matrices or difference statistics and use the maximum likelihood
method suggested by Vickers and Modestino in 1982. They tested their method using
displacements of 1, 3 and 5 and obtained the best results with a displacement of 5. The
same displacements were investigated in this study. Testing the classifier on the training

data from which it was constructed (i.e. no jackknifing) gave the following results:

Displacement 1 Displacement 3
Predicted Predicted
1 2 3 5 1 2 3 5
T 1 8 0 1 1 T 1 10 0 0 0
I 2 0 10 0 0 r 2 0 10 0 0
u 3 0 0 7 3 u 3 0 1 9 0
e 5 0 0 0 10 e 5 0 0 0 10
70% 97.5%

122




Displacement 5

Predicted
1 2 3 5
T 1 10 0 0 0
r 2 0 10 0 0
u 3 0 0 10 0
e 5 0 0 0 10

100%

Table 3.26 Number of images correctly classified using maximum likelihood.

Thus, using a displacement of 5, all the images are correctly classified. When
the method was tested on a new test set containing 5 images of each of the 4 types,

however, the results were:

Predicted
1 2 3 5
T 1 4 0 1 0
r 2 1 2 2 0
u 3 2 3 0 0
e 5 0 0 0 5
55%

Table 3.27 Number of new images correctly classified by maximum likelihood.

Conners and Harlow (1980b) suggested that the reason co-occurrence matrices
performed better than difference statistics in their study, but vice-versa in other studies
(Weszka et al. (1976)) may be due to the fact that the most commonly used features
from co-occurrence matrices do not contain all the textural information. It is, however,

possible that, similarly, the features extracted from difference statistics do not contain

all the textural information there is. Vickers and Modestino (1982) only tested their

method using co-occurrence matrices. Using a similar method, again with displacements

123




1, 3 and 5, but taking difference statistics as the starting point, produced the following

results:
Displacement 1 Displacement 3
Predicted Predicted
1 2 3 5 1 2 3 5
T 1 5 0 2 3 T 1 7 0 2 1
r 2 4 2 3 1 I 2 0 10 0 0
u 3 1 0 6 3 u 3 1 0 8 1
e 5 3 0 0 7 e 5 0 0 1 9
50% 85%
Displacement 5
Predicted
1 2 3 5
T 1 7 3 0 0
r 2 0 9 1 0
u 3 0 3 6 1
e 5 1 0 0 9
77.5%

Table 3.28 Number of images correctly classified by maximum likelihood based on

difference statistics.

This time, when the classifier was tested on the training set, displacement 3 was
best. As with co-occurrence matrices, when tested on a new test set, the results were

poorer:
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Displacement 3

Predicted
1 2 3 5
T 1 1 1 3 0
r 2 1 3 1 0
u 3 2 2 1 0
e 5 0 0 1 4
45%

Table 3.29 Number of new images classified by maximum likelihood based on

difference statistics.

Thus difference statistics do seem to contain less information than co-occurrence
matrices.

Because such good results were achieved with co-occurrence matrices on the
training set it is hoped that with a much larger training set, similar results will be
obtained when tested on a test set.

In an attempt to increase the size of the database a whole new set of images was
collected from different rats” bones. These images appeared much clearer on the screen
and consisted of good examples of all 5 texture types. Training sets consisting of 30
images of each of the 5 types were constructed.

A selection of five images of each of the types is given in figures 3.9 and 3.10. The
difficulty in distinguishing between the textures can be seen from these images. There
is a very fine dividing line between type 4 and type 5 textures and many of the type 5
textures, when examined over such small windows, look remarkably like type 3 textures.
With the formative types, type 1 and 2 textures can often look very similar, as can type

2 and type 3 textures.
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Texture Type

Fig. 3.9 A selection of the images that made up the new training set, before histogram

equalisation.

Texture Type
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Fig. 3.10 The images in Fig. 3.9 after histogram equalisation.

The maximum likelihood method was then tested on this new data with the following

results:
Displacement 1 Displacement 3
Predicted Predicted
1 2 3 4 5 1 2 3 4 3
T 1 29 1 0 0 0 T 1 30 O 0 0 0
r 2 2 28 O 0 0 r 2 0 29 1 0 0
u 3 1 2 26 O 1 u 3 0 1 29 0 0
e 4 0 2 1 22 5 e 4 0 0 2 26 2
5 0 3 0 0 27 5 0 0 3 2 25
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Displacement 5

Predicted
1 2 3 4 5
T 1 30 0 0 0 0
r 2 0 30 0 0 0
u 3 0 0 30 0 0
e 4 0 0 3 26 1
5 0 0 4 2 24

93.3%

Table 3.30 Number of images correctly classified by maximum likelihood based on

co-occurrence matrices.

The best displacement was 5, with 93.3% of images correctly classified. All of
the type 1,2 and 3 images have been correctly classified with all the misclassifications
being of type 4 and 5 images. A closer examination of the images that were
misclassified, indicates to some extent, the reasons for the misclassifications. The

images are shown in figure 3.11.

Fig. 3.11
Misclassified

images.

a) Type 4
b) Type5

(b)
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The first three images in figure 3.11(a) were classified as type 3 and the fourth
image as type 5. Comparing these with the selection of images shown in figure 3.10,
the misclassifications are not surprising. In figure 3.11(b) the first four images were
classified as type 3 and the last two as type 4. Again, comparing with figure 3.10 this
is not entirely unexpected. In addition, by comparing the log -likelihood functions for
each of the 5 types, in all the misclassified images, the correct texture type would have
been the second choice and there is often very little difference between the values of the
function for the first and second choices of texture. Table 3.31 below shows the log,-

likelihood functions for the type 5 images that were misclassified.

Image Type 1 Type 2 Type 3 Type 4 Type 5
a -33252 -33219 -33167 -33191 -33175
b -33278 -33263 -33221 -33275 -33237
c -33233 -33187 -33045 -32888 -32891
d -33215 -33150 -32960 -32685 -32708
e -33261 -33232 -33192 -33233 -33212
f -33249 -33223 -33165 -33200 -33179

Table 3.31 Log,-likelihood functions for each of the 5 texture types for the

misclassified type 5 images.

When the method was tested on a set of new test images the results were as

follows:
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Displacement 5

Predicted

1 2 3 4 5

T 1 8 2 0 0 0
r 2 2 8 0 0 0
u 3 0 2 7 0 1
e 4 0 0 2 6 2
5 0 1 6 0 3

64%

Once again, the results are worse than those obtained on the training sets, but are
still reasonably good for the formative texture types. The problem lies with the two
resorptive types, 4 and 5. What may be necessary is to first classify into one of types
1,2,3, and a resorptive type (either type 4 or 5) and then further classify the resorptive
types into one of types 4 or 5. Investigating the first stage of this procedure, i.e.
classifying the training images into one of the 4 classes above, gave the following

results with displacement 5:

Displacement 5

Predicted
1 2 3 4or5

T 1 30 0 0 0
r 2 0 30 0 0
u 3 0 0 30 0
e 4 0 0 3 27

5 0 0 5 25

94.6%

This has not really led to any improvement in the classification. The type 4 and

5 textures are still being confused with texture type 3. The results with 5 texture types,
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considering the wide variety of rats, bones, images, techniques for capturing the images
etc. are, however, fairly good, and at least comparable to those obtained by other
authors.

To see whether this new data set was compatible with the one used previously,
and in fact the two could be combined to provide more data, the maximum likelihood
routine was run using the new data set as the training set and the old data set was used

as the test set. The results, using displacements 1,3 and 5 are given in Table 3.32.

Displacement 1 Displacement 3
Predicted Predicted
1 2 3 4 5 1 2 3 4 5
T 1 5 3 2 0 0 T 1 7 0 3 0 0
r 2 5 4 1 0 0 r 2 3 0 7 0 0
u 3 6 3 1 0 0 u 3 4 0 6 0 0
e 5 0 0 7 0 3 e 5 6 1 3 0 0
32.5% 32.5%
Displacement 5
Predicted
1 2 3 4 5
T 1 6 2 2 0 0
r 2 7 2 1 0 0
u 3 6 2 2 0 0
e 5 0 0 6 3 1
27.5%

Table 3.32 Number of images in old training set correctly classified from new training

set images.

As can be seen, the results are very poor with only 32.5% of images being
correctly classified with displacements 1 and 3 and 27.5% with displacement 5. Why

the results are so bad is not immediately clear although by comparing the two sets of
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images (figures 3.6 and 3.9 and 3.7 and 3.10) it is not surprising that a large percentage
of images has been misclassified. Comparing either the original images or the images
after histogram equalisation it can be seen that each of the types looks quite different
in the two data sets. The images in figure 3.7 are quite blurred and the texture features
in some images are barely visible. The images in figure 3.10, however, look much
brighter and the texture features are more easily discernible. There are several possible
reasons for the differences. Firstly, the images in figure 3.7 are taken from quite old
specimens and it is possible that the gold covering has eroded away to some extent.
The images in figure 3.10, on the other hand were freshly prepared for this study. The
second major difference in the two sets of images is the method in which they were
saved. The original images (figure 3.7) were saved on disk using a Magiscan computer
connected to the SEM and then had to be transferred across, using Kermit, for use on
a Sun SPARCstation. The later images, however, were photographed from the SEM and
then the photographs were scanned onto disk. This method appeared to give clearer
images. In addition, partly due to the different methods of image capture, the two sets
of images have been magnified to slightly different degrees. As explained in Chapter
1, the Magiscan captures the central portion of the image and doubles the original
magnification. The images were viewed in the SEM at a magnification of 350, thereby
resulting in images with a magnification of 700. The later images, however, were
magnified 750 times. Visually, this should not make a great difference but may, to a
small extent, adversely affect the classification results.

The classification algorithm works reasonably well on both data sets and the
solution is probably to use similar images for training and test sets, i.e. if test images
have been captured using a Magiscan computer, use the old training set, whereas if test

images are taken from photographs which have been scanned, use the new training set.

3.11 Conclusions

Many techniques for texture classification have been suggested over the years.

Several of these are described in chapter 2. The majority of researchers have tested
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their techniques on Brodatz® (1966) images, with varying rates of success. This study
is one of few where classification techniques were tested on more natural images.
Consequently the results in this study do not appear to be quite as good as some of
those in published literature. Nevertheless, correct classification rates of over 80% are
good considering the small data sets used and the wide variety of bones imaged to make
up the sets. It is hoped that if a much larger database of images was used as a training
set the classification could be improved further.

The approach taken was first of all to examine statistical techniques, particularly
co-occurrence matrices, and to compare these with other techniques such as difference
statistics, Fourier power spectrum methods and run-length matrices. The results obtained
were similar to those of other authors such as Weszka et al. (1976) and Conners and
Harlow (1980b), in that co-occurrence matrices and difference statistics were found to
perform better than the other two methods. The results were encouraging, with a
reasonably high percentage of images being correctly classified, particulary in the case
of co-occurrence matrices, and so methods involving co-occurrence matrices were
investigated further. Although most authors have tended to use only the features angular
second moment, contrast, correlation and entropy, the use of a step-wise discrimination
routine suggested that, in this study, including several textural features produced the best
classification results. These features included, not only the original ones proposed by
Haralick et al. in 1973, but also cluster shade and prominence (Conners et al. (1984))
and the kappa statistic (Parkinnen & Selkainaho (1990)). It was also noted that no
subset of features consistently appeared in the list of those selected. As so many
features seemed to be required in the model, it was thought that a quicker and simpler
method may in fact be to use the whole co-occurrence matrix. Thus Vickers &
Modestino’s (1982) maximum likelihood method was employed. Vickers and Modestino
(1982) claimed a correct classification rate of 100% when their method was applied to
training sets and similar success rates were obtained in this study. If this research.is to
be of any use in the future, however, it is essential that the method also works well on
test sets. In all the examples in this study it was found that despite very high rates of
correct classification with training set images, the rates fell quite considerably when
applied to test sets. This indicates the necessity of assessing the performance of

classification techniques either using test sets or jackknifing. Although 100% correct
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classification has not been achieved on test sets in this study it is unlikely that this will
ever be achieved. A brief investigation of k-nearest neighbours classification technique
using a set of 12 features taken from co-occurrence matrices also obtained 100% correct
classification on the training set, but when tested on a test set the results dropped
dramatically. Misclassification matrices for 1st, 3rd and 5th nearest neighbours are

shown in table 3.33 below.

Ist NN 3rd NN
Predicted Predicted
1 2 3 4 5 1 2 3 4 5
T 1 3 4 3 0 0 T 1 5 2 2 0 1
r 2 2 4 1 2 1 I 2 1 7 1 1 0
u 3 2 1 6 0 1 u 3 4 0 5 0 1
e 4 0 1 1 3 5 e 4 0 2 1 5 2
5 0 2 2 2 4 5 0 2 2 2 4
40% 52%
5th NN
Predicted
1 2 3 4 5
T 1 4 5 0 0 1
r 2 1 7 1 1 0
u 3 2 0 8 0 0
e 4 1 2 0 4 3
5 1 2 0 3 4
54%

Table 3.33 Number of images correctly classified using k-nearest neighbour

classification.

Neural networks were also examined briefly, but again did not perform well on
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test sets. A feed-forward net with 13 inputs, 9 hidden units and 5 outputs trained using
variable-metric learning produced the following misclassification matrix when applied

to the test set.

Predicted

1 2 3 4 5

T 1 2 5 1 1 1
r 2 0 5 1 1 1
u 3 1 0 5 1 3
e 4 0 1 1 5 3
5 1 0 0 4 5

44%

Table 3.34 Misclassification matrix for a feed-forward neural network when applied

to a test set.

Further investigation of these methods, especially with the neural network
approach, where different architectures could be explored, may lead to an improvement
in results. However, considering the variability in the images, the similarity in some of
the texture types and the fact that physiologists may often not agree on the texture type
in an image, it is unlikely that any method will ever achieve 100% correct classification
on test sets. The results obtained here using the whole co-occurrence matrix and a
maximum likelihood classifier have produced fairly high rates of success. One way of
improving the results may be to increase the number of texture types and, for example,
have a texture type 1.5 which would represent a late type 1 or an early type 2 texture.
Similarly, ’in-between’ classes could be created for types 2 and 3 and for types 4 and
5. For this to be feasible, and this is probably the main weakness of this study, much
larger training and test sets would be required. More sophisticated techniques could
perhaps produce comparable results, but it is unlikely that a significant improvement
would be obtained using the same data sets. The greatest improvement could almost
certainly be obtained by simply applying the maximum likelihood method to much

larger training sets, where all images are saved in a similar way, with good examples
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of each of the 5 texture types, and further examples of ’in-between’ classes.
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Chapter 4 Segmentation

4.1 Introduction

Segmentation is the process which divides an image into its constituent parts or
regions. It is an important element in image processing because it is at this stage that
regions of interest are extracted for further processing such as the classification
discussed in chapters 2 and 3.

One of the simplest ways of extracting objects or regions from an image is by
grey-level thresholding. Given a grey-level image IP(i,j) in the range 0 to 255 and a

value of t between 0 and 255, by thresholding at t, we obtain the binary image:

IP(x,y) =255 ifIP (i,j) =t
=0 ifIP (ij) <t

If an image consists of objects that are either darker than their background or lighter
than their background then thresholding is a natural way to extract the objects.
Similarly, a grey’ object can be extracted from a black and white speckled background
by defining:

IP,, (i,j) = 255 if u s IP(i,j) s v

=0 otherwise.

In many image processing situations, however, the problem is not quite as
straightforward as this and segmenting a picture usually involves detecting edges
between two regions which differ with respect to their distribution of grey levels or their

texture.

4.2 What is an edge?

The classification techniques described in chapter 2 were designed to detect some
sort of uniformity in grey levels or textures within each texture type. The problem of

segmentation is based on detecting discontinuities, i.e. places where there is a change
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in grey level or texture indicating the end of one region and the beginning of another.
Such a discontinuity is called an edge. Ideally, an edge will be a continuous well-
defined line but in practice an edge may be broken, where the change in regions is not
abrupt enough, or in the extreme case where one region merges into another there will
be no clearly defined edge at all.

Various edge-detection operators have been developed. Kirsch (1971) and
Robinson (1977) applied 3x3 masks to an image and took the maximum value to be the
edge magnitude. Roberts (1965), Sobel (1971) and Prewitt (1970) devised differential
operators where the difference between grey ievels of two neighbouring pixels is taken.
High absolute values are associated with areas where the grey level is changing rapidly.

For example, given a grey-level image IP(i,j):

the Roberts’ (1965) operator computes the sum of the squared differences of diagonally

opposite pixel values. Thus

JP(i,j)= V[{IP(i,j)-IP(i+1,j+1)}* + {IP(i+1,j)-IP(i,j+1)}?]

producing the image JP(i,j):

N.B. No values are obtained for the margin i=\cand j=1¢

By thresholding at 20 this method would detect a continuous vertical edge:
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4.3 Texture Edge-detection

Segmentation of texture is slightly more complicated than grey-level edge-
detection. Consider an image containing two textures, on the right a very smooth texture

and on the left a texture with more contrast.

e.g. IP(i):

All the edge-detectors mentioned above would be able to detect the edge between
the two textures. They would also, however, detect edges within the coarse texture on
the left. For example, the resulting image using the Roberts’ (1965) operator above is:

Thus although, on the whole, the edge between the textures has been picked up,
so have the edges within the texture on the left. These abrupt changes in grey level are
however part of the texture and have to be recognised as such.

One way of overcoming this problem is by taking averages over neighbourhoods
and looking for discontinuities in the averages. Indeed, one of the most common ways
of detecting texture edges is by locating regions where there is an abrupt change in
average grey level.

In the example above, averaging over 2x2 neighbourhoods gives:
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A differential operator, such as the Roberts’ (1965) operator would now detect
a vertical edge between the two textures. Averaging over neighbourhoods of size 3x3
or 4x4 would also detect the edge but a neighbourhood of size 8x8 for example would
be too large to detect an edge between the two regions. The size of neighbourhood
needed depends on the coarseness of the texture, a coarse texture requiring a larger
neighbourhood than a fine texture, and also on the size of regions to be detected. If the
smallest region size is known in advance the largest possible size should be chosen such
that regions of this size can be detected. If this is not known, and it seldom is, a
possible approach would be to consider a selection of different sizes. Several authors
have measured image properties on windows of varying sizes using a split-and-merge
algorithm (Chen & Pavlidis (1979), Burt et al. (1981), Spann & Wilson (1985) and
Wilson & Spann (1988)).

The quad-tree approach is a particular case of a split-and-merge algorithm. The
leaves of the tree correspond to single pixels and the root (level 0) represents the whole
picture. If the entire picture is not considered to be homogeneous with respect to some
feature it is split into four equally sized blocks and the feature measured again in each
block. If any of the smaller blocks are still not homogeneous they are then in turn
divided into four. At each stage, as well as splitting inhomogeneous regions,
homogeneous regions may be merged. The procedure is repeated until the image
consists of a number of homogeneous regions.

Chen & Pavlidis (1979) used co-occurrence matrices as features to segment

textured images and a region R was said to have a uniform texture if:
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LVL-1 LVL-1

Y Y fmax ¢}, €2 C2, C) - min (C}, CZ, C, CHI < T,
=0 =0

where C';, C%;, C%; & C*; are the co-occurrence matrices of the 4 quadrants of R and

T. is a pre-specified threshold.

Spann & Wilson (1985) used a method which combined a quad-tree smoothing
operation with statistical classification performed at the highest level of the tree,
followed by a downward directed boundary estimation based on the segments obtained
at the top of the tree. The advantage of this method is that it doesn’t need any a priori
information - even the number of classes. In Wilson & Spann (1988) the features are
based on finite prolate spheroidal sequences derived from a tesselation of the frequency
plane.

In 1971, Rosenfeld & Thurston proposed a method which computes averages for
a range of sizes and picks a "best" size at each point of the picture by comparing these

values. The procedure is summarised in the following steps.

1. For a 2" by 2" image calculate the average grey level over the neighbourhood of size

2% by 2¥ (k=1,2,...n-1) at each point (x,y)

x+28° 11 ya2klg

Y DI/ ()
I L A i Al
4, &) -

e.g. if
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3
IPGy) = 9 3 10 2
3

A (3,4)

{IP(2,3)+1P(3,3)+IP(2,4)+1P(3,4) }/4

"

6.5

2. For each size, at each point, take differences between pairs of averages
corresponding to pairs of nonoverlapping neighbourhoods in each of 4 directions
(horizontal, vertical and two diagonals). These differences are measures of edge

strength., Thus the difference between a pair of horizontally adjacent nonoverlapping

averages of size 2* by 2* at (x,y) is

E,, (xy) = |A (x+2¥Ly) - A, (x-2Ly)]

€.g. E,, (3,5 1A, (3,6) - A (3,4)|

5.25 - 6.5

= 1.25
The best orientation is the one which gives the highest absolute difference.
3. The next stage is to pick a best size. This is taken to be the largest size for which
the next smaller size does not give a significantly higher absolute difference.
Specifically, if E,(x,y) is the best of the E’s of size 2* x 2* in four directions at the point

(x,y), and the sizes used are 1x1, 2x2, ... 2“x2%, the best size is the largest k such that

E  <AE ,<.< A\"¥E, but E, > AE,,
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where Rosenfeld & Thurston (1971) took A =0.75 to define "significantly" higher.

The edge strength at a particular point will be high if the averages over the two
neighbourhoods are very different, in particular, it will be high if the neighbourhoods
lie just on opposite sides of an edge.

If k is large, E, will be high, however, not only at an edge, but over a range of
positions on either side of it. This is because the averages over the two touching
neighbourhoods begin to differ as soon as one of the neighbourhoods overlaps both sides
of an edge, while the other neighbourhood lies entirely on one side. E,, however, should
be a local maximum when the neighbourhoods touch just at an edge, and each
neighbourhood lies entirely on one side, since the averages are then as different as
possible. Thus, if we want to determine the location of an edge, we should ignore high
values of E, if there are higher ones nearby in the same direction, i.e. only keep the

local maxima. This process is called thinning.

4. Erase the value at a point if there is a higher value at any point within a distance of
half the best size in a direction perpendicular to the best orientation at the point. For
example, if the best orientation is horizontal and the best size is 2*x2*, E,(x,y) is

suppressed if any E(x’,y) (where x-2¥! < x’< x+2%1) is greater than it,

E.g. if the matrix of best edge-strengths is:

E@y -

LA N
0 O
e O Lt W
i B W

and the best size at E(2,2) is 2x2 corresponding to a horizontal edge, then the edge
strength at E(2,2) would become zero because E(1,2) and E(3,2) are both greater than
E(2,2).
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A similar procedure would be carried out for each point (x,y).
5. The resulting image is then thresholded to produce a binary image.
The result of applying the first 4 of these procedures to the textured image

above, taking A to be 0.75 and using a maximum edge size of 3, corresponding to 8x8

windows, produced the following image:

The resulting image after thresholding at 20 is as follows:

At this stage, the method does not look very promising. Not only are edges
within the coarse texture still being highlighted, but also the main edge between the
textures seems to be lost. There are various reasons for this, and modifications that can
be made to improve the segmentation. These will be discussed throughout the rest of

the chapter.
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4.3.1 Notes on Rosenfeld & Thurston (1971) Algorithm

1) Rosenfeld & Thurston (1971) proposed that the largest neighbourhood used should
have "size comparable to that of the entire picture". Thus, for a 64x64 image, L would
be 6, giving neighbourhoods of size 64x64, 32x32, 16x16, 8x8, 4x4 and 2x2. For the
64x64 neighbourhood only one pixel could have its average grey level calculated and
it would not be possible to compute any differences of 64x64 nonoverlapping windows.
Thus all edge strengths would be zero. Moving down to L=5, ie. 32x32
neighbourhoods, considering only the horizontal direction for simplicity, it is possible

to calculate the average grey level of pixels in a square region from (17,17) to (49,49).

(1,1) (1,64)

(17,17)

(49,49)

(64,1) (64,64)

Edge values could then be computed for pixels (17,1)...(48,64). Note, however,
that most of these edge values will not have been calculated from the difference of two
averages, e.g. Esy (17,1) = A5 (33,1) - A (1,1), where neither A (1,1) nor A (33,1)
will be averages. If pixels where it is not possible to compute an average are left with
their original grey level, what is being calculated is not the edge strength between two
areas of size 32x32 but between single pixels. This problem will always arise at the
boundaries of an image, and the greater the neighbourhood used, the larger the
boundaries will be. To prevent these misleading results it is proposed here that edge
strengths should only be computed where it is possible to compute the appropriate
averages. Thus for a 64x64 image, the maximum edge size would be 5 (i.e. 32x32), but

this would only be possible at certain pixels, i.e. (33,17)...(33,49) for horizontal
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neighbourhoods.

2) Rosenfeld & Thurston (1971) took the value of A to be 0.75. If 2x2, 4x4, 8x8,
16x16 and 32x32 neighbourhoods were investigated in a 64x64 image, k=2 i.e. a 4x4
neighbourhood would be ’best’ if E, < AE; < A*E, and E, 2z AE,. Thus, with A = 0.75,
E, would have to be considerably bigger than E, and E,, but could in fact be smaller
than E,. It is intuitively sensible to have A less than one, since the aim is to detect
edges between relatively large areas of texture and to ignore edges within the texture.
Taking A greater than one results in the larger edge sizes being discriminated against in
favour of the smaller edge sizes and, hence, within-texture edges. Rosenfeld & Thurston
(1971) gave no reason for choosing 0.75 in preference to any other value. In this study
it was found that if the maximum edge size (L) was restricted to 3 then all values of A
between 0 and 1 produced the same results. Allowing neighbourhoods of sizes 4 and
5 led to spurious large edges. By increasing the value of A these could be suppressed
but when values of A greater than 1 were used the result tended to be lots of extra
smaller edges being highlighted. Thus it was found that for the 64x64 images used in
this study, the best segmentation was obtained with L, the maximum edge size, equal
to 3, i.e. only taking averages of 8x8, 4x4 and 2x2 neighbourhoods, and A taken to be

any value less than 1. From this point on, in fact, A was always taken to be 0.75.

3) To thin the edges, Rosenteld & Thurston {(1971) suggested looking within a distance
of half the best size in the direction perpendicular to the best orientation. For large
neighbourhoods this may not be sufficient to thin the edges fully. A greater distance
could be used but care would have to be taken if an image contains bands of texture,

or objects of similar size to the neighbourhood used (Figs. 4.1 and 4.2).
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Fig. 4.1 A band of texture Fig. 4.2 An object (O)
type 2. embedded in

the texture.

In Fig. 4.1, if the band is of width 5 pixels and thinning is carried out to within
a distance of 5 pixels, the weaker of the two edges of the band would be suppressed.
A similar thing would happen with the object in Fig. 4.2. Rosenfeld et al. (1972)
suggested that a way of getting round this problem would be to take signed differences,
when computing edge values in step 2. Edges would then be suppressed if there were
higher values of the same sign within a given distance and in a given direction. Since
opposite edges of an object would have opposite signs they would not compete with
each other. As illustrated in figures 4.1 and 4.2, the images in this study do contain
objects such as vascular channels and bone cells, and may contain bands of texture, and
these potential problems have to be considered when thinning is performed. In fact,
thinning was carried out to within a distance of half the best size. Because the

maximum edge size was limited to 8x8 pixels this did not result in many unwanted

edges.

4.4 Application of Rosenfeld & Thurston (1971) algorithm

Some early results of applying the Rosenfeld & Thurston (1971) algorithm to

images of rats’ tibiae are given in Reid et al. (1990). The method was tested on several
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64x64 images with varying success depending on the texture types they contained (Fig.
4.3). The method does, on the whole, highlight the boundaries between texture types
but also highlights various other unwanted edges in the images (Fig. 4.4). This is
particularly the case with texture type 2 where the edges round the mineral nodules are

highlighted (Fig. 4.4a).

(b)

(©)

Fig. 4.3 Digital image from SEM showing

a) texture type 4 with a band of texture type 2

b) texture type 3 (upper half) & texture type S (lower half)
c) texture type 5 (upper half) & texture type 1 (lower half)
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Fig 4.4 Application of the Rosenfeld & Thurston (1971) edge detection aigorithm to

locate boundaries, giving binary images (a), (b) & (c).

4.5 Smoothing

One possible reason for the segmentation algorithm performing so poorly is the
fact that the images are very noisy. In an attempt to remove some of the noise from the
raw images and improve the segmentation, two types of smoothing algorithms were
investigated. The first was an edge-preserving smoothing routine proposed by Nagao
and Matsuyama in 1979. The method looks at 9 masks - 4 pentagons, 4 hexagons and
1 square, and chooses the one with the minimum variance (Fig. 4.5). This reduces the
likelihood of averaging over neighbourhoods containing more than one texture type and

therefore preserves the jump in edge strength at an edge.

a * e s @

Fig.4.5 The masks used in the edge-preserving smoothing routine

The routine then averages over the grey levels and substitutes the average value
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for the grey level at a point.

As can be seen the results for the images containing types 3 and 5 were very
good (Fig. 4.6b). The edge is fairly continuous and the image contains very little noise.
Results for images containing types 2 and 4 were poorer (Fig. 4.6a). As before, the
main edge is detected but the edges around the type 2 pebbles are still highlighted.
Lowering the threshold does not help but simply causes the edge between the texture
types to become broken. Similarly, iteratively smoothing the images tends to make the
edges more broken and does not lead to a reduction in the number of unwanted edges

being highlighted (Fig. 4.7).

Fig.4.6 Application of the Nagao and Matsuyama (1979) smoothing routine

before edge-detection improves the segmentation.
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Fig. 4.7 Applying the Nagao and Matsuyama (1979) smoothing routine twice before

edge-detection.

The second method of smoothing investigated was median filter smoothing,
where the grey level of each pixel is replaced by the median of the grey levels in a
neighbourhood of that pixel. Median filtering is often preferred to averaging when the
preservation of edge sharpness is required. In order to perform median filtering in a
neighbourhood of a pixel the grey levels of the pixel and its neighbours are ordered, the
median is determined and this median value is assigned to the pixel. For example, in
a 3x3 neighbourhood the median is the Sth largest value, in a 5x5 neighbourhood the
13th largest value and so on.

In this study, 3x3, 5x5, 7x7, 9x9 and 11x11 neighbourhoods were examined.

The results for one image are shown in figure 4.8.
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Tx7 9%x9

Fig. 4.8 Median filter smoothing using different neighbourhood sizes, followed by

Rosenfeld & Thurston (1971) algorithm.

When 3x3 and 5x5 neighbourhoods are used, several edges within the texture are
highlighted, suggesting a bigger neighbourhood is needed. 11x11 is too large resulting
in the main edge being fairly broken. The best segmentation seems to be achieved by
using either a 7x7 or a 9x9 neighbourhood, although the upper edges are fairly broken.

The segmentation results above could posssibly be improved by either:
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a) using a larger neighbourhood size and lowering the threshold. This should
remove noise and improve the edge (Fig. 4.9(a)),

or

b) using a smaller neighbourhood size and increasing the threshold. This should

produce a less broken edge but may result in more noise (Fig. 4.9(b)).

11x11 5x5
lower threshold higher threshold

Fig. 4.9 Median filter smoothing

In fact, figure 4.9(a) illustrates that using a large neighbourhood size and
lowering the threshold improves the segmentation considerably, giving almost perfect
results. On the other hand, figure 4.9(b) shows that the smaller neighbourhood size with
a higher threshold produces a broken main edge with some unwanted noise.

When median filtering was applied to images containing types 3 and 5 (Figs.

4.10) similar results were obtained.
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3x3 5x5

7x7 9x9

Fig. 4.10 median filter smoothing

Neighbourhoods of size 7x7 and 9x9 produced fairly good results but, once
again, using an 11x11 neighbourhood and fowering the threshold produced better results

for the images containing types 3 and 5 (Fig. 4.11(a)). This was also true for images

containing types 1 and 5 (Fig. 4.11(b)).
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(b)

11x11 11x11
threshold=18 threshold=15

Fig. 4.11 median filter smoothing

Thus for all images, 11x11 neighbourhoods seem to produce the best results,
with a good continuous edge between textures and few edges being detected within

edges.

4.6 Relaxation Labelling

Although the methods used so far give fairly good segmentation results for most
images, in some images where the boundary between textures is less clear, there is still
a need for a method which will highlight the main edge between textures but suppress
the smaller, weaker edges within the various texture types. Relaxation labelling is a
method introduced by Rosenfeld, Hummel and Zucker in 1976 to reduce ambiguities in
an image by using relationships among the objects of the image. Various applications
of relaxation labelling have been proposed which include enhancing noisy images (Lev,
Zucker & Rosenfeld (1977)) and enhancing lines and curves (Zucker, Hummel &
Rosenfeld (1977)). In 1977, Schachter et al. proposed an application of relaxation
labelling to reinforce edges.

Relaxation labelling is an iterative process which operates on objects (or pixels)
which have labels attached to them. By examining relationships between labels, some

labels are strengthened and some are weakened or eliminated.
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Let:

a={a,,a,,....,a,} = the pixels of an image
A2 {A,Ag,. Ay} = the set of labels
and p;(A) = Prob (A is the correct label for a;)

Initially line detection operators in several orientations are applied to the image,
and their outputs are used to determine an initial probability that each point lies on a
curve in a given orientation. These points are then iteratively reinforced. At each
iteration, the new probability p*' (A) is a function of both the old probability pX(\)
of the given pixel and the old probabilities pj“()»’) of neighbouring pixels.

There are 3 basic kinds of contributions that one label A can make to another

label A on a neighbouring pixel.

1) If the two labels A and A’ are compatible, i.e. are likely to occur together, then p(A’)
should contribute positively to p(A).

2) If the two labels A and A\’ are incompatible, i.e. they are unlikely to occur together

then p(A’) should contribute negatively to p(hA).
3) If there is no relation between the labels, then one should not influence the other.

After a few iterations points that lie on smooth curves tend to have high
probabilities of being curve points while other points’ probabilities are low.

For edge enhancement, only two kinds of labels are considered - edge labels and
non-edge labels. Initially a gradient edge detection operator is applied to the image,
which gives an edge strength (or probability) and orientation at each point. These points
are then iteratively reinforced, similar to the curve case, and new edge probabilities at
a point (x,y) are defined in terms of the old probabilities at (x,y) and its neighbours.

Schachter et al. (1977) used a Prewitt operator to determine initial probabilities

156




and directions.

The Prewitt operator involves applying:

-1 0 1
D - -1 0 1
-1 0 1
and
-1 -1 -1
D, - o 0 o0
1 1 1
to an image.

The probability of an edge at a given point (x,y) is given by:

P(x, y) = mag (x, y)
’ max mag (x, v)

R

where max is taken over the entire image, and

mag = \[(D)* + (D).

The orientation is given by:
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D
0 - tan"1 =2 .,
D

The probability of a non-edge at (x,y) is defined by:

Py =1-Px ).

Let o be the edge slope at (x,y), B the edge slope at (u,v), y the slope of the line
joining (x,y) to (u,v) and D the chessboard distance from (x,y) to (u,v) i.e.
max (x-u, y-v). Then the edge/edge reinforcement process between the points (x,y) and

(u,v) has strength given by:

R - cos (e - f) cos (B - Y)'

ee 2D

The edge probability at (x,y) is weakened by the nonedge probability at (u,v) to
the degree R, defined by:

R min (0,-cos (2o - 2y)
en = 2D "

The nonedge probability at (x,y) is affected by the edge probability at (u,v) to
the degree R, defined by:
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R - l1-cos 2P - 27).

ne

20+1

The nonedge probabilities at (x,y) and (u,v) reinforce each other to the degree

R,, defined by:

For each point (x,y) the net effect of its neighbouring points on its edge

probability P(x,y) and non-edge probability
Py =1-Pxy

is computed as follows:

Q (x’ y) = E C1 P(u: V). Ree ((x7 )’), (u, V))
+ C, P(u, v). R, ((x, ¥), (#, V)

Q=Y C P, . R, (x, ¥, @)

+C, P(u, v). R ((x, »), (, V))

nn

where C,, C,, C,, C, are constants whose sum is taken to be 1.
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P =P (1+0)
P/

and P™ _
P+P

Schachter et al. (1977) used a 5x5 square neighbourhood centred at (x,y). Thus

24 (u,v)’s influenced a given (x,y). The values of the constants used were as follows:

C,=0.866 C,=0.124 C,= C, = 0.005

Applying this method to the 3 images produced the output in Figure 4.12.
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(a) (b)

Fig. 4.12 Relaxation labelling after median filter smoothing.

Schachter et al. (1977) warned that the results are sensitive to the values of C,-
C,. Large values of C, tend to thicken the edges and large values of C, lead to gaps
appearing in the edges. Various values of C,-C, were experimented with in this study
but altering the values did not appear to make a great deal of difference and certainly
did not improve the results. For example, taking C, =C, = 0.4 and C, =C, = 0.1
produced the image in Fig. 4.13.

Fig. 4.13
Relaxation labelling
with C,=C,=0.4 and
C=C,=0.1.
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Considerably reducing the value of C, has not made the edge any thinner and increasing
the value of C, has not led to fewer gaps in the edge.

Considering the results in Figure 4.12, the segmentation is good in image 4.12(b)
containing types 3 and 5 but there is no improvement in the images containing types 1
and 5 and 2 and 4. Here, the edges are broken and other edges within the texture types
are highlighted. The main reason for this is that this application of relaxation labelling
is not detecting texture edges. The initial probabilities are found using a simple
differential edge detector and therefore detect the edges within the textures as well as
those between textures. Even after several iterations the within-texture edges are
highlighted. This is not surprising since they are not simply random noise, but are
indeed edges with high edge strengths.

One solution to this would seem to be to compute texture edge strengths as the
initial probabilities instead of grey-level edge strengths i.e. use the Rosenfeld &
Thurston (1971) algorithm to compute the initial probabilities and then iteratively
reinforce these texture edge probabilities. 1n order to do this different orientations from
those used previously would have to be considered. Previously, possible orientations

were 0°, 45°, 90° and 135°, i.e. —

MRS and all combinations of these could
reasonably occur together, e.g. 0° and 45° —
S
Indeed, Schachter et al. (1977) state that orientations have to be specified modulo 360

rather than modulo 180, i.e. it is necessary to differentiate between 0° — and 180° <.

A similar, but simpler technique could use edge strengths of neighbouring points
to reinforce edges iteratively by firstly picking out points with high edge strengths, i.e.
’definite’ edge points, and then looking at the neighbours of each of these points. If
there is a neighbour with a ’relatively high’ edge strength it is fairly likely this will also
be an edge point. This procedure could be continued either until the boundary of the
image is reached or there are no neighbouring pixels with the desired edge strength.

This procedure is known as raster tracking.
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4.7 Raster Tracking

Raster tracking is often used to extract objects by tracking them from row to row
of the picture as the picture is scanned row by row in the manner of a T.V. raster. The
same idea can be used to track an edge. Specifically, in each row a pixel is considered
to lie on an edge if its edge strength exceeds some relatively high threshold d. 1In
addition, once a point (h,k) is accepted as a point on an edge we accept any neighbour
of (h,k) in seven directions: =~

-
s
provided that the neighbouring points have edge strength above some lower threshold
t.

As a simple example consider the image in figure 4.14 (a)

Fig.4.14
9 2 5 3 8 3 4 5
2 5 3 3 4 3 4 5
6 3 9 3 7 2 5 4
l 2 3 3 4 3 3 4 5
(a) Input image
255 0 0 0 255 0 0 O
0O 0 0 0 0 0 0 O
0O 0 255 0 255 0 0 O
0O 0 0 0 0 O 0O

(b) Result of thresholding
(a) at 7.
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255 0 255 O 255 O 255 255
0 255 O 0 255 0 255 255
255 0 255 O 255 0 255 255
0 0 0O 255 0 O 255 255

(c) Result of thresholding (&) at 4.

o
[yl
W
(¥}
(=
o
[\°]
W
LV,
o O O O
c © © ©
o O O O

(d) Result of thresholding
with d=7, t=4,

If a high threshold is chosen, the edge has several gaps in it (Fig. 4.14(b)). If,
on the other hand, the threshold is too low, too many pixels are highlighted (Fig.
4.14(c)). Tracking, using a combination of (b) and (c) gives a continuous edge with no
added noise (Fig. 4.14(d)). The process could be applied iteratively to fill in gaps in
edges.

Applying the algorithm to the rats’ bone images, initially using a relatively high
threshold to detect ’definite” edges, and then thresholding all neighbouring pixels of

these points at a lower level produced the images in Figure 4.15.
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(b)

Fig.4.15 Result of tracking after applying Rosenfeld & Thurston (1971) edge-detection

algorithm.

Although there was little room for improvement in the type 2 and 4 and type 3
and 5 images, raster tracking has had the effect of filling in gaps in the edges. The most
dramatic result, however, is in the image containing types 1 and 5. Whereas before
there were lots of very broken edges, now there is one continuous edge with no gaps.
Although there are still a few pixels highlighted which do not belong to the edge, an
operator would be able to recognise the edge between the texture types, and erase the

remaining pixels.

So far all the segmentation techniques have been tested on the original set of
images collected. As mentioned in chapter 3 a new set of images was collected later

in the study. There were several differences in the method of capture of these images
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(section 3.10) which resulted in difficulties when classifying the two separate data sets.
The same problems should not arise when segmenting the images and, because the
differences in the texture types are more pronounced, it was hoped that the results would
be at least as good as those obtained with the original set of images. To test this, the
technique used above was applied to several 64x64 windows taken from the new set of
images. A selection of these windows and the resulting segmented binary images are

shown in figure 4.16.

(b)

(c)
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(®)

(2

Fig. 4.16 64x64 windows and their resulting segmented, binary images.

In Fig. 4.16 (a), (c) and (g) the boundaries between the textures are quite clear
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and the segmentation algorithm has identified fairly good, well-connected edges. The
boundaries between the texture types in Fig. 4.16 (b), (d), () and (f), on the other hand,
are far less clear, but again the technique has performed well, producing almost
continuous edges. Although there are a few broken patches in some of the images, on
the whole, the results are good, with fairly continuous edges being detected and very
few non-edge pixels being highlighted.

Thus, in summary, for all the images in this study good segmentation results
have been obtained when median filter smoothing using an 11x11 window was
performed on the images before applying the Rosenfeld & Thurston (1971) edge-
detection routine, but restricting the maximum possible edge size to 3, corresponding to
8x8 pixel windows. The edges were then tracked and finally thresholded to produce the
segmented binary image.

At this stage, the two thresholds used in the tracking procedure were decided
subjectively. Further work was needed to find an objective method of finding the

optimum thresholds. This is discussed in the next section.

4.8 Thresholding

Thresholding, which converts a grey-level image into a binary one, is a widely-
used tool in image segmentation. The two levels involved may represent objects and
background, or two classes in an image. Pixels whose value exceeds a critical value
(the threshold) are assigned to one category, and the rest to the other. If the same
critical value is used throughout the image the threshold is said to be global, if different
values are used the threshold is local. Many algorithms have been proposed for
automatically selecting the threshold appropriate for a given image. Comparisons and
evaluations of these methods can be found in surveys by Sahoo et al. (1988), Lee et al.
(1990} and Glasbey (1993).

Global histogram-based algorithms are the most commonly used despite the
possible benefits of using contextual information and allowing the threshold to vary
throughout the image. Their main advantages are that they are relatively simple to
implement and computationally fast once the histogram has been obtained. Lee et al.

(1990) compared three histogram-based algorithms with two contextual ones. The five
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methods were: 1) Simple Image Statistics Method (SIS), Kitler & Illingworth (1985),
2) Between Class Variance Method (BSV), Otsu (1979), 3) Entropy Method
(ENTROPY), Kapur et al. (1985), 4) Moment Preserving Method (MOMENT), Tsai
(1985) and 5) Quadtree Method (Q-TREE), Wu et al. (1982). The authors tested the
methods on two 256x256 images - both were objects against a background. The first
object was a computer disk and the second a crane. In both images the variances of
background and image were quite large and in the crane image the object, i.e. the crane,
was relatively small. The conclusion that the authors came to was that all the methods
were image-dependent, i.e. they depended on various factors including the object size,
the mean difference between background and object, the variances of background and
object, contrast and noise. They suggested that SIS and BCV are probably best. They
both performed well regardless of the object size, and although BCV is sensitive to
noise, SIS works quite well on noisy images.

Glasbey (1993) reviewed eleven histogram-based thresholding algorithms. In this
review images were assumed to have bimodal Gaussian distributions. The simplest
techniques involved taking the threshold t such that 50% of pixels lie in both categories
(MEDIAN), taking t as the MEAN grey-level, choosing t as the minimum grey level in
the valley between the two maxima (MINIMUM), and finding the mean of the two
maxima (INTERMODES). Other methods were iterative, and Glasbey (1993) found that
the method of Kittler and Illingworth (1986), which he called MINERROR (I), was best.
This method minimises the number of misclassifications between the classes, and
Glasbey (1993) claims that for a bimodal Gaussian distribution this method is one of the
simplest to compute, it fails infrequently, and is relatively insensitive to the effects of
sampling variability.

In their survey in 1988, Sahoo et al. reviewed both local and global thresholding
techniques, as well as histogram-based and contextual algorithms. Point-dependent
methods included Otsu’s method (1979), based on discriminant analysis, entropic
methods of Pun (1980), Kapur et al. (1985) and Johannsen and Bille (1982), a moment-
preserving method (Tsai (1985)) and a minimum error method (Kittler and Illingworth
(1986)). Region-dependent methods included histogram transformation methods,
methods based on co-occurrence matrices and gradient relaxation methods. Sahoo et al.

(1988) evaluated nine of the global thresholding methods using 3 images - the
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’cameraman’, the *building’ and the model’. The cameraman and building images were
both bimodal, whereas the model was less regular. The authors found the best methods
to be the entropic methods of Johannsen and Bille (1982) and Kapur et al. (1985),
Otsu’s (1979) discriminant analysis method, and the moment-preserving method of Tsai
(1985), with Otsu’s (1979) method ranked in the top four for all three images.

More recently, methods of peak detection have been suggested for threshold
selection (Eklundh & Rosenfeld (1979), Olivo (1994)). Segmentation by peak detection
methods is based on the clustering of grey levels around peaks of the histogram in order
to define homogeneous grey-level areas. In this approach, peaks and vaileys are first
detected, from which thresholds are set to form grey-level clusters. Olivo's (1994)
method is based on the wavelet transform and he used it for multilevel thresholding.
He proposed that the detection of zero-crossings and the local extrema of a wavelet
transform of the histogram give a complete characterisation of the peaks in the
histogram - i.e. the values at which they start, end and are extreme. He tested his
method on two images - the ’girl’ and the ’garden’. The histogram of the garden was
bimodal but that of the girl was multimodal. Using a scale of 2° the results were good.
The author claimed that the major features of his method are a) it requires no
preassigned parameter, so no trial-and-error stage is needed; b) it provides a meaningful
sequence of signals which in turn gives a meaningful description of the image
histogram; and c) it is computationally effective.

When segmenting images in this study using the tracking technique described
above, two thresholds are required to be chosen. These are based on the edge strengths
of the image; the first, higher threshold, to detect ’definite’ edge pixels, and the second,
a lower threshold, to fill in gaps and complete the segmentation. Histograms of edge
strengths tend to be unimodal, and skewed to the right, with the majority of edge
strengths being low or zero, and relatively few high edge strengths. In some histograms
there is a slight jump in edge strength at certain points, whereas in others, there is
simply a gradual decline.

Some of the simplest methods mentioned by Glaseby (1993) such as MEDIAN
and MEAN are not appropriate for this problem because it is not possible to specify in
advance how much of the image consists of edge points. Glaseby (1993) recommended

the minimum error method of Kittler & Illingworth (1986) but he only considered
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mixtures of two Gaussian distributions. On the other hand, Sahoo et al. (1988)
considered both smooth bimodal and less regular histograms. Otsu’s (1979) discriminant
method seemed to work well on all the images in their study. Sahoo et al. (1988) used
the technique to find one threshold but Otsu (1979) proposed that the method could
easily be extended to find multiple thresholds. In addition, Otsu (1979) showed that the
method worked well on textured images where grey-level histograms tend to have a
peak at one end and long flat valleys. This method was therefore tested on some of the
images in this study. Here the method was adapted to find the two thresholds required
for tracking. At first the results were very poor with the resulting thresholds being
consistently much lower than those chosen subjectively by eye. Due to the edges being
"thinned’, however, the vast majority of edge strengths were zero and this had the effect
of producing thresholds which were too low. By omitting zero edge strengths, however,
the method performed remarkably well on both the older images and the new set of

images. The results are shown in Figures 4.17 and 4.18.

(b)
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Fig. 4.17 Original images and their segmented, binary images, after automatic

thresholding.

(c)
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(d)

(e)

(f)

(2

Fig 4.18 New images and their segmented, binary images, thresholding automatically.

Firstly comparing figures 4.15 and 4.17 the binary images are very similar. In
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4.17(c) the edge is no longer completely connected but the position of the edge can be
clearly seen. In both images 4.17(a) and (b) the thresholding has worked well and the
edges are clearly visible. Comparing figures 4.16 and 4.18, again it can be seen that the
thresholding algorithm has worked well. For some of the images the results using
automatic thresholding are exactly the same as using trial-and-error, and for the rest the
results are very similar. In all cases, apart from perhaps 4.18(c) the position of the edge
has been detected and any gaps could be filled in by an operator. The fact that the
segmentation in some cases is not quite as good using the automatic procedure as when
using trial-and-error, is far outweighed by the time saved when thresholding

automatically.

4,9 Conclusions

Finding edges between textures is a much more difficult problem than grey-level
edge-detection. This chapter has involved investigating several published techniques for
texture segmentation and applying them to, and modifying them for use on,the data set
in this study. Probably the best known method used for segmenting texture is the
method suggested by Rosenfeld & Thurston in 1971. The idea of averaging grey levels
in windows of varying sizes and looking for adjacent windows with large differences
in these averages is intuitively sensible. This was therefore the first segmentation
technique to be tested in this study. For some images the method worked reasonably
well and identified the edges between the different textures, but the images were
extremely noisy and it was obvious that some smoothing technique was going to be
required before the segmentation procedure was applied. A so-called edge-preserving
technique (Nagao & Matsuyama (1979)) was tested but this was found to work less
well than a simple median-filter smoothing algorithm, using 11x11 windows. Applying
the segmentation technique (Rosenfeld & Thurston (1971)) with a few modifications to
the smoothed images considerably improved the results and where there was a
reasonably clear continuous edge in the original image, this was detected. The only
problem then lay with images where the edge was either less clear or broken in places.

Relaxation labelling is a method that has been used to strengthen or weaken possible
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edge pixels based on the edge strengths of neighbouring pixels. This seemed a sensible
approach to take but after fairly extensive testing was found not to improve the
segmentation in this case. Gaps in edges were not filled, and all that seemed to happen
was that edges became thicker. This was not the desired result and it was decided to
investigate other techniques. In fact, the technique that produced the best results was
a fairly simple one based on ’tracking’ edges. In this technique, initially a high
threshold is used to detect ’definite’ edge pixels. The neighbours of these pixels are
then examined and if they have edge strengths above a slightly lower threshold than the
original one they too are considered to be edge pixels.

Thus, in summary, the best results were obtained when median filter smoothing
using an 11x11 window was performed on the images before applying the Rosenfeld &
Thurston (1971) edge-detection routine, but restricting the maximum possible edge size
to 3, corresponding to 8x8 pixel windows. The edges were then tracked and finally
thresholded using a discrimination technique to produce the segmented binary image.

Although the methods were tested on a fairly small number of images, the results
were good. In images where there was a definite boundary between texture types, fairly
fine, continuous edges were detected, and, by applying the tracking algorithm, even
where the edges in the original images were not clear continuous edges were detected.

The methods above, however, do not produce ’perfect’ segmentation in every
case and some further refining would be necessary to make the process fully automatic.
At this stage, however, an operator could clearly identify the texture edges and carry out
any necessary refining such as filling in gaps in the edges and erasing spurious
highlighted pixels. Certainly, considerable steps have been taken towards making the
segmentation process automatic. The position of boundaries between texture types can
now be found objectively and the automatic thresholding technique makes the whole
procedure significantly faster than when thresholding had to be done by trial-and-error.

This chapter has concentrated on segmentation between formative and resorptive
types, i.e. between types 1, 2 and 3 and types 4 and 5. Resorptive types occur where
bone has been eaten away, they lie at a lower level from formative types, and there is
therefore often a boundary between them. On the other hand, formative types 1, 2 and
3 merge into one another and there is therefore no boundary as such. Similarly, texture

type 4 merges into type 5. Due to the lack of boundary, segmentation techniques are

175




r

not successful in discriminating between types 1, 2 and 3, or types 4 and 5. For this
reason classification techniques, as described in chapter 3 will be used to ’segment’

them. The results are shown in the next chapter.
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Chapter 5 Combining Segmentation and Classification

5.1 Introduction

All the work in chapters 3 and 4 has involved 64x64 windows containing either
one texture type, in the images in chapter 3, or two types, in the images of chapter 4
where segmentation was the goal. This chapter now extends the techniques used to
256x 256 images. The aim is to segment into formative and resorptive types using the
techniques of chapter 4, partition the images up into smaller regions (64x64), and
classify each region into one of the 5 types using the techniques of chapter 3. Also
addressed in this chapter will be the problem of how to deal with Haversian channels

and bone cells.

5.2 Haversian Channels

Present throughout bone, Haversian or vascular channels contain the blood
vessels and nerves of the bone. In cross-section they appear as round dark openings,
often with bright edges. Due to the clear boundary, almost any edge-detection routine
should be able to detect the edge. Their dark interior, however, suggests that probably
the simplest way of detecting vascular channels, and classifying them as such, is by
grey-level thresholding. Figure 5.1 below shows 3 examples of 128x128 windows
containing vascular channels, and the results of thresholding at 35, after median-filter

smoothing. Thus, if

IP(i,j) < 35, set IP(i,j) = 0,
otherwise, set IP(i,j) = 255.

177




(d)

® | (&)

Fig. 5.1 Images containing vascular channels (a,b and c), and their corresponding

thresholded images (d,e and f).

In the example above, a threshold of 35 successfully segmented all the images,
even though no standardisation had been applied. This, however, will not necessarily

be the case for all images in the future, and so the images were standardised using the
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histogram equalisation technique described in chapter 3. At this stage, because only
thresholding is being used, it is probably sensible to retain as much grey level
information as possible. The images have therefore been standardised to contain 256

grey levels. The results, thresholding at 50, are shown below (Fig. 5.2).

(@ | @

Fig. 5.2 Images containing vascular channels (a,b and ¢), and their corresponding

thresholded images after histogram equalisation (d,e and f).
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Thus, because of their dark appearance, vascular channels can be fairly easily

detected by thresholding histogram equalised images.

5.3 Bone Cells

Osteocytes can be identified in a similar way to Haversian channels. Osteocytes
also appear as dark, fairly regular ring-shaped regions with bright edges. As with

vascular channels, they can be detected by an edge-detector (Fig. 5.3).

- : : -

Fig. 5.3 Image containing 2 osteocytes (a), and corresponding binary image

after applying texture edge-detector (b).

Alternatively, the osteocytes can also be identified by simple thresholding of grey

levels after applying median-filter smoothing.
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Fig. 5.4 Images containing osteocytes (a and b) and their corresponding thresholded

images (c and d).

In the case of the osteocytes, the threshold is higher than that for vascular
channels. For the two images above the threshold used was 75 but this may not be a
suitable threshold for all images. This problem can again be solved by histogram
equalisation. The results, thresholding at 30 and using standardised images with 256 grey

levels are shown in Figure 5.5.
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Fig. 5.5 Images containing osteocytes (a and b) and their corresponding

thresholded images after histogram equalisation (c and d).

Thus, again, simple thresholding can detect osteocytes. It should be noted
though that although vascular channels do appear darker than osteocytes, the threshold
used to detect vascular channels from histogram equalised images was actually higher
than that used to detect osteocytes. The reason for this is the size of the vascular
channels. For example, in figure 5.2(b) the vascular channel takes up about one fifth
of the image and will therefore take up about a fifth of the grey levels at the lower end.
The osteocytes, on the other hand, are smaller, take up less of the image, and hence less
of the grey levels. Thus, the threshold will, in fact, depend on the percentage of the
image taken up by the vascular channel.

It is obviously necessary to be able to detect both vascular channels and bone
cells in an image. Also osteoblasts are more irregular than the more mature osteocytes,
and although osteoblasts do tend to have a bright edge around them they are not as easy
to detect as osteocytes. Figure 5.6 below shows two examples of 256x256 images
containing both vascular channels and bone cells. Figure 5.6(a) contains one osteocyte

and one osteoblast and figure 5.6(b) contains an osteoblast.




Fig. 5.6

Images containing
vascular channels
and (a) an osteoblast
and osteocyte, (b) an

osteoblast.

(b)
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In both images above, the vascular channels and the bone cells appear darker
than the rest of the images. Applying histogram equalisation with 256 grey levels

emphasises this further (Figure 5.7).

Fig. 5.7

The images in
Fig. 5.6 above
after histogram

equalisation.
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The interiors of the channels and cells are still dark, and their surrounding edges
are brighter than previously. Figure 5.7(b) contains some noise within the vascular
channel. This, together with other noise in the images, can be removed by applying

median filtering (Figure 5.8).

Fig. 5.8

The result of
applying median
filter smoothing

to the images above.




Most of the texture information has been lost, but the bright edges with the dark
interiors are still visible. Also, in Figure 5.8(b) the edge between two texture types can
be seen.

Thresholding based on grey levels can still detect the vascular channels but
cannot always detect bone cells because often the bone matrix is as dark as the cells

(Figure 5.9).

Fig. 5.9

Vascular Channels
can be identified
by thresholding
but bone cells are

no longer visible.
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Edge-detectors can pick up the edge surrounding both the vascular channels and
the bone cells, although median filtering often makes the edge around the vascular

channels quite thick (Figure 5.10).

Fig. 5.10
Applying a texture
edge-detector to

the images.
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(b)

The thresholds used to identify the edges round the vascular channels and bone
cells in the images above were selected subjectively. As with the boundaries between
formative and resorptive textures, it would be preferable if the thresholds could be
selected automatically. An automatic threshold technique similar to the one that was
used in chapter 4 but this time thresholding grey levels instead of edge strengths, and
including all 256 grey levels, was applied to the two images. The results are shown in

figure 5.11.
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Fig. 5.11

Applying a texture
edge-detector to the
images and thresholding

automatically.

(b)

The results are fairly similar to those obtained by thresholding subjectively. The
vascular channels have been identified in both images, although in 5.11(b) part of the
outer rim has been highlighted as well as the inner rim. The osteocytes have been at
least partly identified in both images but the osteoblast in 5.11(a) has not been

highlighted. Thus, altho<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>