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A B S T R A C T

In C hapter 1 of th is thesis we review existing theory concerning group and monoid 

presentations, and the  concept of pictures over these. We also recall aspherical, combi­

natorial aspherical, n-Cockcroft (n 6  efficient and inefficient presentations. M ini­

m ality  is the  final concept introduced in this chapter: we present an im portan t theorem , 

due to  Lustig in the case of groups and to Pride for monoids.

In C hapter 2 we prove necessary and sufficient conditions for the presentation of 

the central extension to  be p-Cockcroft (p a prim e or 0). The starting  point of this 

result is the jo in t paper of Baik-H arlander-Pride. We end the  chapter by giving some 

exam ples.

In C hapter 3 we prove a theorem  on the efficiency of standard  w reath products of 

two finite groups. We also present some applications of the theorem  and end by giving 

exam ples.

C hapter 4 sees discussion on the  sem i-direct product of any two monoids. In par­

ticu lar we prove necessary and sufficient conditions for the standard  presentation  of 

the sem i-direct product of any two monoids to be p-Cockcroft (p a prim e or 0). We 

end by giving some applications of this theorem  to the  direct p roduct of two monoids 

and the  sem i-direct p roduct of two finite cyclic monoids.

We begin C hapter 5 w ith an application of the m ain theorem  of C hapter 4, nam ely 

we give necessary and sufficient conditions for a presentation of th e  sem i-direct product 

of a one-relator monoid by an infinite cyclic monoid to be p-Cockcroft (p a prim e or 

0), and give some exam ples of this. Following this we present the m ain theorem  of this 

chapter, which is sufficient conditions for the presentation of a sem i-direct product of 

a one-relator monoid by an infinite cyclic monoid to be m inim al bu t inefficient. We 

end by giving some exam ples.



N O T A T IO N

Let G and H  be groups.

G x H  the  direct product

G  0 H  the  direct sum (where G, H  are abelian)

G ® H  the  tensor product (where G, H  are abelian)

G xi 0 H  the semi-direct product of G by H  w ith /7-action 0

G I H  the standard  w reath product of G by H

G f  H  the quotient group of G by a norm al subgroup H

G ~  H  G is isomorphic to H

Gf th e  derived group (com m utator subgroup) of G

Ga6, H i(G )  th e  first homology group of G

H 2(G) the  second homology group of G (=  Schur m ultiplier)

Aui(G )  the  group of all autom orphism s of G (see note page x)

[a, b] the com m utator of a and b (=  aba~1b~1, a, b 6  G)

Z n the finite cyclic group of order n

t (A)  Let A be a non-trivial finite abelian group. T hen A  can be uniquely

decomposed [54] into a direct sum of cyclic groups, th a t is,

A  = Z mi ® Z m2 © • • • © Z mn, where m i  > 1 and m t- | m i+1 

for all i = 1, 2, • • • , n — 1. Then t (A )  is m \

(the first torsion num ber). If A  is triv ial then  t (A )  — 0 

Z G  the  integral group ring

Z n the  free abelian group of rank n

V  =  (x ; r)  group presentation 

F (x )  the free group generated by x

G (V )  group defined by V

[W] free equivalence class containing the word W

W  the elem ent of G{V)  represented by W

L ( W )  length of W

L X(W )  lenght of W  w ith respect to x
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exp^kE ) the exponent sum  of x  in W

~  freely equivalent

~-p equivalent (relative to V)

X{V)  Euler characteristic of V  (=  1 — |x | +  |r |)

x(G )  Euler characteristic of G

5(G)  =  1 -  r k z (H i (G ))  +  d(H2(G))

rk%( ) the Z -rank of the torsion free part

d( ) th e  m inim al num ber of generators

d e f ( V ) deficiency of V

d e f (G )  deficiency of group G

( T l )* 1, (T 2 )±1 T ietze transform ations

P a p icture over V

d P  the  boundary of P

VE(P) the boundary label of P

< P  >  the equivalence class containing P

tt2 (V)  the second hom otopy module

e x p ^ P )  exponent sum  of R  in P

A disc in the p icture V

d A  boundary of A

7  a transverse path

W ( 7 ) the label on 7

7  a spray

h i 'P )  the  second Fox ideal over V

X  set of generating pictures of ^ ( “P)

Let M  and K  be monoids.

M  -a 9 K  the sem i-direct product of M  by K  w ith K -action 9

M  = I\ M is isomorphic to K

E n d ( M )  the  monoid of all endom orphisms of M  (see note on page x)
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Z +n the free abelian monoid of rank n

V  =  [y ; s] monoid presentation

F ( y ) the free monoid generated by y

M ( V )  monoid defined by V

W  a positive word on y

[W] free equivalence class containing W

W  the elem ent of M ( V )  represented by W

L ( W )  length of kE

length of W  w ith respect to y 

^-p equivalent (relative to V)

xi 'P)  Euler characteristic of V  (— 1 — |y | +  |s |)

y (M ) Euler characteristic of the monoid M

5{M)  =  1 -  rk%(Hi(M))  +  d(H 2(M))

) the Z -rank  of the torsion free part

d( ) the m inim al num ber of generators

d e f ( V )  deficiency of V

d e f ( M )  deficiency of monoid M
d

—  the Fox derivation for a fixed y 6  y
oy
A an atom ic monoid picture

P  a path  in T>(V)} th a t is, a picture over V

exp5 (P) the exponent sum S  in P

/ ^ ( P )  the right second Fox ideal over V

/ ^ ( P )  the left second Fox ideal over V

T>(V) Squier complex

Y  is a trivialiser of T>(V)

T =  (E, E)  a graph:

V  vertex set 

E  edge set

i (e ) inital vertex of edge e
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r(e )  term inal vertex of edge e 

_1 inverse function

In set theory:

A  U B  the union of the sets A  and B

A  C B  A  is a, subset of B

\A\ the cardinality of A

Let Z and Z + be the sets of all integer and positive integer num bers.

For any a, 6 £ Z, 

hc f (a ,b )  highest common factor of a and b

T h r o u g h o u t  th i s  th e s is ,  a ll m a p s  w ill b e  w r i t t e n  o n  t h e  le f t ,  e x c e p t  w h e n  

w e w o rk  w ith  th e  m o n o id  End(  ) a n d  th e  g ro u p  A u t (  ) t h e n  w e w ill w r i te  

m a p s  on  th e  r ig h t .

x



C hapter 1

Prelim inaries

1.1 W ords

Let x  be a non-em pty set. We define x -1 to  be a set in one-to-one correspondence w ith 

x , x G> x ~ l (x G x), and let x * 1 — x  U x -1 . The elem ents of x ^ 1 are called let ters.  

Then, a word  IT  (on x ) is an expression

x \ l x \2 ( 1 .1)

where n ^  0, Xi G x , E{ =  ±1 and 1 ^  i ^  n. The initial le tte r of IT  is l ( W )  — x ei and 

the terminal  le tte r of IT is r ( W )  =  x €n. If n = 0 then IT is th e  empty  word , which we 

denote by 1 . We say IT is a posit ive  word on x  if either n — 0 or n >  0 and =  + 1 , 

1 ^  i ^  n. T he inverse  of IT , denoted IT -1 , is the word

ryi Z-Tl  ̂71 1 ^
^ n  x n ~  I

Let IT  be a word as in (l.'l) . The length  of W , denoted by L (IT), is the num ber 

of the le tters involved in IT. The length of IT with respect to  x, denoted by LX(IT), 

is |e{|. Also, the  exponent sum of x in IT, denoted by e x p ^ IT ) , is If IT
Xi —x  aZi—x

is em pty word then L X(W )  =  0 and e x p ^ IT ) =  0. Note th a t if IT is a positive word 

then  ^ ( I T )  =  exps (PT).

Let IT , U be two words on x. The product of IT and £/, denoted IT T , is the
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juxtaposition  of W  followed by U. By this binary operation, the set F(x.) of all positive 

words on x  then  is a monoid w ith identity  1 called the free monoid  on x.

Two words W ,  W  on x  are f r e e l y  equal, denoted W  ~  W j  if one can be obtained 

from the o ther by a finite num ber of applications of the following operations.

(1) : Deletion of a pair of inverse letters x Ex ~E, e =  ± 1.

( I ) " 1 : Insertion of a pair of inverse letters x £x ~£, e — ±1.

We denote the free equivalence class containing W  by [W]. Let F ( x )  be the set of all 

free equivalence classes of words on x. A m ultiplication can be defined on F (x )  by 

[W][?7] =  [ITf/j, and one can check th a t this is well-defined. By this m ultiplication,

F (x )  is then  a group, the free group on x  (see [35, Chapter 1]). We note th a t som etim es

we may sim ply w rite W  for the free equivalence class [IT] for any word W  on x , if it 

does not cause any confusion.

If W '  — U W V  (17, IT, V  are words on x ) then IT is a subword of IT '. We say th a t 

a word on x  is reduced if it does not contain any subwords x £x ~ £ (x E x , e =  ± 1 ). 

Moreover, x \ l x ef  ■ ■ ■ x'jp (n  ^  0, x t- E x, £*■ =  ± 1 , 1 ^  i ^  n)  is cyclically reduced if it is 

reduced and x \ l 7  ̂ x j £n.

The proof of the following theorem  can be found in [18].

T h e o re m  1 .1 .1  (N o rm a l F o rm  T h e o re m )  There is exactly one reduced word in 

each equivalence class.

1.2 G ro u p  p re se n ta t io n s

A group presentation

V =  ( x - r )  (1.2)

is a pair, where x  is a set (the generating symbols) and r  is a set of non-em pty, cyclically 

reduced words on x  (the relators). We say th a t V  is finite if x  and r  are both  finite.

We should remark that we will use angular brackets (• • •) to denote a group presen- 

tat ion; square brackets [• • •] to denote a monoid presentation (see Section 1.3).
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T h r o u g h o u t  th i s  th e s is ,  a ll g ro u p  p re s e n ta t io n s  w ill b e  a s s u m e d  to  b e  

f in i te  u n le s s  s t a t e d  o th e rw is e .

In order to define a group associated with P ,  we intoduce the following elem entary 

operations (in addition to the operations (1) and ( I ) -1 above) on words on x. Let IT 

be a word on x.

(2) : If W  contains a subword R 6 (P  E r, e = ±1) then  delete the subword.

(2) -1 : Insert P £ (P  E r, e =  ± 1) a t any position in IT.

Two words ITi, W 2 on x  are equivalent (relative to P J , denoted ITi W 2: if there  is 

a finite chain of elem entary operations of types (1)±1, (2)±1 leading from W\  to W 2. 

Now is an equivalence relation on the set of all words on x . Let [IT]?? (or sim ply 

[IT]) denote the equivalence class containing W .  A m ultiplication can be defined on 

equivalence classes by [ITiJp.fLIA]:? =  [ITiIT^p, and this m ultip lication is easily checked 

to  be well defined. The set of all equivalence classes together w ith this m ultiplication 

form a group, the group defined by P ,  denoted G{fP). The identity  in G (V)  is [l]p. We 

often w rite IT  — [IT]-p.

A group G is said to be presented (or defined) by P  if G = G(V).

Let N  be the normal closure of {[P] : P  E r} in P (x ) . The proof of th e  following 

lem m a can be found in [35, Proposition 4].

L e m m a  1 .2 .1

G (V)  = F ( x ) / N .

1.2 .1  T ie tze  tran sform ation s

Let P  — (x  ; r) be a group presentation. We define elem entary Tietze transformations  

on P  as follows.

(7T) If s is a finite set of words on x  and if each S  E s is a consequence of r  ( th a t is, 

[S] belongs to the norm al closure of {[P] : P  E r} ), then  replace P  by

(x ; r , s ) .
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(T 2) If t  is a finite set of symbols disjoint from x, and Ut (t 6  t)  is a word on x , then 

replace V  by

(x , t  ; r, t~ l Ut (t E t ) )  .

The proof of the following theorem  can be found in [47].

T h e o r e m  1 .2 .2  (T ie tz e  T h e o re m )  Two presentation V\  and V 2  define the same  

group i f  and only i f  one can be transformed into the other by a finite number of  opera­

tions ( T 1), (T2),  (T 2) - 1.

1 .2 .2  P ic tu res over group presen tations

T he m ateria l in this section m ay also be found in [11] and [49].

Let V  — (x  ; r) be a group presentation. A picture P over V  is a geom etric 

configuration consisting of the following:

(1) A disc D 2 w ith basepoint 0  on the boundary d D 2 of D 2.

(2) D isjoint discs A i, A 2, • • • , A n in the  interior of D2, Each A i has a basepoint 0 ; 

on the boundary <9A i of A;.

(3) A finite num ber of disjoint arcs oa, 0:2, • • •, d m where each arc lies in the  closure
n

of D 2 -  u A i and is either a simple closed curve having triv ial intersection with

d D 2 U <9Ai U A 2 U ■ * • U 5 A n, or is a simple non-closed curve which joins two points 

of d D 2 U <9Ai U A 2 U • • • U d A n, neither point being a base point. Each arc has a 

norm al orientation, indicated by a short arrow m eeting w ith  the arc transversely 

and is labelled by an elem ent of x  U x _1 which is called the  label of the  arc.

(4) If we travel around <9A; once in the clockwise direction starting  from O* and 

read off the labels 011 arcs encountered (if we cross an arc, labelled x say, in the  

direction of its norm al orientation, then we read x,  whereas if we cross the  arc 

in the  direction of its opposite orientation, then  we read £ -1 ), then  we obtain  a 

word which belongs to  r  U r “ b We call this word the  label of A;. If s is a subset 

of r , then  a disc labelled by an elem ent of s U s _1 is called an s-disc.

4



W hen we refer the  discs of P  we mean the discs A j, A 2, * * • , A n, not the  am bient 

disc D 2. A closed arc which encircles no disc or arc of P is called a floating circle.

We define dF  to  be d D 2. The label on P (denoted by W (P )) is the  word read off by 

travelling around dF  once in the clockwise direction starting  from 0 .

We say th a t P is spherical if no arcs m eet dF.  If P is spherical we often om it <9P.
n

A transverse path 7 in a picture P is a path  in the closure of D 2 — |^J A; which
i= 1

intersects the  arcs of P only finitely m any times. Reading off the  labels on the  arcs 

encountered while travelling along a transverse path  from its in itia l point to its term inal 

point gives a word on x  denoted W ^ ) .  Let 7  be a simple closed transverse pa th  in P. 

The part of P enclosed by 7  is called a subpicture of P. If 7  in tersects no arcs, then  the

part of P  enclosed by 7  is called a spherical subpicture of P.

A spray for P is a sequence 7 =  (71, 72, ■ ■ •, 7n) of simple transverse paths satisfying 

the following: for i =  1, 2, - • •, n, 7; starts at O and ends at the basepoint of A t-, for 

1 ^  i < j  ^  n,  7„- and 7j intersect only at 0 \ travelling around O clockwise in P we

encounter these transverse paths in order 71, 72, • ■ ■ , 7n-

E x a m p le  1 .2 .3  Let V  — {a, 6 ; a 2, 63, [a, 6]). Then 

P i

O

is a picture over V . In this picture we have nine discs A i , A 2, - - - , A 9 with each A* 

(1 ^  i ^  9) having a basepoint 0{ on the boundary dA{.  The label, fo r  example, 

of the disc A 4 is a2, A 5 is b3 and A 9 is [a,b]~l . Also, the closed arc labelled by a

5



is a floating circle but the closed arc labelled by b is not. We get the label on P  is 

W (F )  = bbbb~lb~l ab~1a~1.

We also have an example of spherical picture P 2 over V  as follows.

p 2

Let us fix some simple closed transverse paths 71, 72 and non-closed transverse path 

7 3  into the picture P x depicted as follows.

Pi

o ,  —

0

The part enclosed by 7 ! is a spherical subpicture and the part enclosed by 72 is a non- 

spherical subpicture o f  Pi .  We have W ( 7 2 ) =  b2a~1ba and ^ ( 73) =  a2b~1.



Here 7 =  (71, 72, 73, 74, 7s) a spray fo r  P 2 with W { 71) =  1 =  W (72), VP(73) =  

a 6a -1 , ^ ( 74) =  ab2a~l and ^ ( 75) =  a. <>

T h r o u g h o u t  th i s  th e s is ,  eac h  o f th e  b ro k e n  lin e s  in  a  p ic tu r e  r e p r e s e n ts  

a  t r a n s v e r s e  p a th ,  a n d  th e y  a re  n o t  a  p a r t  o f th is  p ic tu re .

A cancelling pair in P is a spherical subpicture w ith exactly two discs whose base- 

points lie in the sam e region. This means, for exam ple, th a t

6 b

are cancelling pairs, whereas

b

is not.

We now introduce some elem entary operations on spherical pictures as follows.

(A) Deletion of a floating circle.

(A ) " 1 Insertion of a floating circle.

(B ) D eletion of a cancelling pair.

( 5 )_1 Insertion of a cancelling pair.

(C ) Bridge move:

7



Two spherical pictures are equivalent if one can be obtained  from the other by a 

finite num ber of operations (/i), ( /I ) -1 , (j9 ), (B )-1 , (C).

Let Fh, P 2 be spherical pictures over V.  Then the mirror image of P i will be denoted 

by —P i, and P i +  P 2 is the  picture obtained by pu tting  P 2 next to P i. This can be 

illu stra ted  as follows.

Pi P2

+

We w rite P i — P 2 for P i +  (“ Fh)- For any picture P over V , P  — P  is equivalent to the 

em pty picture, and P i +  P 2 =  P 2 +  Pi-

Let P be any spherical p icture over V.  We denote by <  P  >  th e  equivalence class 

containing P. The set of all equivalence classes of spherical pictures over V  forms an 

abelian group under the following well-defined binary operation.

< P i >  T < P 2 >  =  <  P i +  P 2 >  •

Let W  be a word on x , and let P be a spherical p icture over V-  We then form a 

new spherical p icture over V  denoted F w  which is obtained from W  by surrounding P 

w ith a collection of concentric arcs w ith to tal label W .  T hen this can be illustrated  as 

follows (w ith W  =



>w

There is a well-defined G (P )-ac tion  on equivalence classes of spherical pictures given

by

W .  < p > = < p w > ( f e d ) .

We then obtain  a Z G (P )-m odu le  7r2(P ) called the second homotopy module of P . 

T here is an em bedding y  of 7r2(P ) into the free m odule (J )Z G (P )e R  defined as
RE r

follows (see also [11], [13], [49]).

Let <  P  > £  7T2( P ) and suppose th a t P has discs A i, A 2, • • • , A n w ith the  label 

R \ l , R €22, • • •, R £nn respectively (Ri £  r, et- =  ± 1 , i =  1, 2 , ■ • • , n). Let 7 =  (7^  • • • , yn) 

be a spray, as defined previously. Recall tha t W{yi )  is the label on 7„• which represents 

an elem ent of G. Then
n

M ( <  P  > )  =  ^ 2 £ i W ( - f i ) e Rr
i=1

We often w rite /i(P ) instead of /i(<  P  > ).

E x a m p le  1 .2 .3  (continued) For the spherical picture P 2, we get

/ i (P 2) — ( — 1 +  a)eb 3 — (1 +  aba 1 +  a 62a _ 1)e[fl)f)].

0

For each spherical p icture P over P  and for each R  £ r, let Ap,r be the coefficients 

of eR in /i(P ). Let 12 (F)  be the 2-sided ideal in Z G  generated by the set

{Ap^r : P is a spherical picture, R  £  r}.
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This ideal is called the second Fox ideal of V.  The concept of Fox ideals has been 

discussed in [43], [44]. In fact we need this concept for Theorem  1.2.17 below which is 

a test of m inim ality  of group presentations.

Let us consider a collection X  of spherical pictures over V . We introduce two further 

operations on spherical pictures.

(D)  Delete a spherical subpicture which is a copy of some elem ents of X  U —X .

(D ) " 1 The opposite of (D ).

Two spherical pictures will be said to be equivalent (relative to X.) if one can be

transform ed to the other by a finite num ber of operations ( / l ) ^ ,  ( B ) ±y, (C ) and ( D ) ^ 1.

Then, by [49] (see Theorem  2.6*, Corollary 1), we have

T h e o re m  1 .2.4 The elements <  P >  (P  € X ) generate ixFfP) i f  and only i f  every

spherical picture is equivalent to the empty picture (relative to~K.).

We say th a t X  generates ^ ( V )  (or X  is a set of generating pictures) if the elem ents 

<  P >  (P  6  X ) generate 7r2('P).

It can be shown th a t if X  is a set of generating pictures, then  12 (F)  is generated 

(as a 2-sided ideal) by

{APiR: P e X , i i e r } .

E x a m p le  1 .2.5 Let G — Z 3 0  Z be defined by T  = (a, b ; a3, [a, 6]). Then, by [5], 

tx2 ( V )  i s  generated by

r< r'a —>- a
r

/
s

/
t
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Then, /x(Pi) =  (1 —a)e03 and fx{P 2) =  (b — l ) e a3 -f ( l  +  bab" 1 -f ba2b~l )e[a^]. Thus, hi fP)  

is generated by {6 — 1, 1 A~bab~l -\-ba2b~l , 1 — a}. Note that bab~l =  a and ba2b~1 — a2.

1 .2 .3  A sp herica l and C ockcroft p resen tation s

D e fin it io n  1 .2 .6  Let V  be as in (1.2). Then V  is said to be a s p h e r ic a l  i f ^ i f P )  = 0 .

A group G is said to be aspherical i f  it is defined by an aspherical presentation.

We rem ark th a t all free groups and torsion free one-relator groups [45] are aspherical. 

Some other exam ples of aspherical presentations can be found, for instance in [12], [16],

[49].

D e fin it io n  1 .2 .7  Let V  be as in (1.2). Then V  is said to be c o m b in a to r ia l  a s ­

p h e r ic a l  (C A ) i f  7t2(V) is generated by a set of  pictures containing exactly two discs. 

A group G is said to be combinatorial aspherical (C A )  i f  it can be defined by a C A  

presentation.

E x a m p le  1 .2 .8  Let V  — (a \ an) be a presentation o f  cyclic group of order n. It is

known that ^ ( P )  is generated by the following single picture.

71a

Therefore V  is C A .  0

O ne-relator groups w ith torsion are C A  (but not aspherical) (see [45]). Some other 

exam ples of com binatorial aspherical presentations can also be found, for exam ple, in 

[12], [16], [30], [31], [49].

For any picture IP over V  and for any R £ r, the exponent sum  of R  in IP, denoted by 

exppi(IP) is the  num ber of discs of IP labelled by R , m inus the num ber of discs labelled by 

R ~ 1. We rem ark th a t if pictures P i and P 2 are equivalent, then  expn(Pj.) =  expn(P 2) 

for all R e  r.

11



D e f in it io n  1 .2 .9  L e t V  be as in (1.2), and let n be a non-negative integer. Then V  is 

said to be n -C o c k c ro f t  i f  expn(F)  =  0 (mod n), (where congruence (mod  0) is taken 

to be equality) for  all R  F. r  and fo r  all spherical pictures F over V . A group G is said 

to be n~Cockcroft i f  it admits an n-Cockcroft presentation.

R e m a r k  1 .2 .1 0  To verify that the n-Cockcroft property holds, it is enough to check

fo r  pictures  F g X ,  where X  is a set of  generating pictures.

The O-Cockcroft property  is usually ju st called Cockcroft.

In practice, we usually take n to be 0 or a prim e p.

T he Cockcroft property  has received considerable a tten tion  in [22], [25], [26], [27]

and [41]. The p-Cockcroft property  has been discussed for exam ple in [41].

E x a m p le  1 .2 .1 1  Let V  = (x, y, z  ; [x, ?/], [ x , z f  [y,z]). Then one may refer to [5] to 

show that  7t2('P) is generated by

z

Now since exp[x>y](F) — exp[x,z](F) = exp[y}Z](F) =  1 — 1 =  0 then V  is Cockcroft. 

E x a m p le  1 .2 .1 2  Let V  = (x , y ; ; ,t3, p3, [a:,?/]). Then , by [5], 7t2(7^) is generated by
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Then expxz(Fh) =  expy3(JP2) =  expx3(F3) — earp^FL) =  1 — 1 =  0, exp[XiV](F3) =  3 and 

exp[Xty](JP4) =  — 3. Thus V  is 3-Cockcroft.

N ote th a t

Aspherical => CA => Cockcroft n-Cockcroft (n £E Z +).

1 .2 .4  E fficiency o f group presen tations

Let V  be as in (1.2). Then we define the Euler characteristic of V  as follows.

X('P) =  1 — |x | +  |r |.

Let

5(G) =  1 -  r k ^ H ^ G ) )  +  d{H2(G)),  (1.3)

where rk(  ) denotes the  Z -rank  of the torsion-free part and d( ) means the m inim al 

num ber of generators. Then it is known (see [5], [10], [23]) th a t for the  presentation 

V ,  it is always true  th a t

x ( V )  >  5(G).

T hen  we define

x (G )  = m i n { x ( V )  : V  a finite presentation for G}.

13



We should rem ark th a t some authors consider ju st

— [x| +  |r |,

and call this the deficiency of the presentation P ,  denote by d e f ( V) .  The deficiency 

of a group G, denote by d e /(G ), is then taken to be the m inim um  deficiencies of all 

finite presentations of G. Clearly

1 +  def(V)  =  x ( n  

1 +  def(G)  =  x(G).

Definition 1.2.13 Let G be a group.

z) A presentation Vo fo r  G is called m inim al if

xifPo) <  x W ) ,

fo r  all presentations V  o f G. 

i i ) A presentation V  is called efficient i f

x c p )  =  m -

Hi) G is called efficient if

X (G)  =  5(G).

L em m a 1.2.14 (i) / / y ( G )  T 0 then G must be infinite.

(ii) I f  G is finite cyclic then x{G)  =  1- 

P ro o f .

(i) It can be found, for exam ple in [46] or [47], th a t for a presentation of th e  group 

G, if the num ber of generators is greater than  the num ber of relators then  G is infinite.

(ii) Let G be a cyclic group of order n w ith the presentation V  — (x ; x n). By 

definition, y(G ) ^  xi'P ),  th a t is x{G)  ^  1. B ut, by (z), x (G ) cannot be less than  1,

14



otherw ise G would be infinite cyclic, a contradiction. Hence y(G ) m ust be equal to 1 , 

as required. □

Exam ples of efficient groups are finitely generated abelian groups (Epstein [23]), 

fundam ental groups of closed 3-manifolds [23]; also finite groups w ith balanced presen­

tations (such finite groups have triv ial Schur m ultiplier [28]). F in ite  m etacyclic groups 

are efficient. This was shown by Beyl [8] and Wamsley [59]. Infinite m etacyclic groups 

however need not be efficient, a result due to Baik and Pride [5] (see also [3]). In [28] 

H arlander proved th a t a finitely presented group embeds into an efficient group. For 

more references on the subject of efficiency see Baik, Pride [4], Beyl, Rosenberger [9], 

C ham pbell, Robertson, W illiams [14] (and [15]), H arlander [29], Johnson, Robertson 

[37], Kenne [39], Robertson, Thom as, W otherspoon [53].

T he following result which is essentially due to Epstein [23] can be found in [41, 

Theorem  2.1].

T heorem  1.2.15 Let V  be as in (1.2). Then V  is efficient if  and only if  it is p~ 

Cockcroft fo r  some prime p.

As a consequence of the above theorem , we have 

Corollary 1.2.16 Let V  be as in (1.2). I f  V  is Cockcroft then V  is efficient.

Not all finitely presented groups are efficient.

B .H .N eum ann [48] asked whether a finite group G w ith d(G) =  1 m ust be efficient. 

Swan [57] gave exam ples (of finite m etabelian groups) showing this is not the case. 

These were the first exam ples of inefficient groups. In [61], W iegold produced a differ­

ent construction to  the same end, and then  N eum ann added a slight m odification to 

reduce the  num ber of generators. In [42], Kovacs generalized both  the above construc­

tions, and he showed how to construct more inefficient finite groups (including some 

perfect groups) whose Schur m ultiplicator is trivial. In [53], Robertson, Thom as and 

W otherspoon exam ined a class of groups, orginally introduced by Coxeter. By using a 

sym m etric presentation, they showed th a t groups in this class are inefficient. They also 

proved th a t every finite simple group can be em bedded into a finite inefficient group.
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Lustig [44] gave the  first exam ple of a torsion-free inefficient group. O ther exam ples 

were found by Baik (see [3]), using generalized graph products. In [4], Baik and Pride 

gave sufficient conditions for a Coxeter group to be efficient. T hey also found a fam ily 

of inefficient Coxeter group Gn>k (n ^  4, k an odd integer). For a fixed

x (G n,k) ~  6(Gn,k) oo.

We rem ark th a t there is no algorithm  to decide for any finitely presented group 

w hether or not the  group is efficient (see [1]).

The next result, due to  Lustig [44] (see also [41]) gives a m ethod of showing th a t a 

p resentation is m inim al.

T heorem  1.2.17 ([44]) Let G be a group with the presentation V  as in (1.2). I f  there 

is a ring homomorphism <f> from  h G  into the matrix ring of all k x k-matrices (k ^  1) 

over some commutative ring A  with 1, such that 1) =  1, and i f  <fi maps the second 

Fox ideal F f P )  to 0, then V  is minimal.

E xam ple  1.2.18 ([3]) Let G be a group defined by the presentation

V  =  (a, 6 ; a 5, a 6a “ 36-1 ]).

7T2(T)) is generated by

It is clear that V  is not p-Cockcroft for  any prime p, and hence not efficient by Theorem  

1.2.15. We will show that V  is minimal and so there could not be an efficient presen-
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tation which defines the group G. Thus we can conclude that G is not p-Cockcroft for  

any prime p.

From the above pictures, h i F )  is generated by

1 — a, 1 +  a -f a2 +  a3 -j- a4, 3 6 —1.

Let < x > be an infinite cyclic group and consider the ring homomorphism

Z G  —  ̂ Z < x >

arising from  the group homomorphism defined by

a i—  ̂ 1 , 6 i— > x.

[f we consider

Z <  x > —  ̂ Z 5

by sending all integer coefficients to their congruence modulo 5 and sending x  to the 

congruence class o f 2, then the mapping

Z G  — » Z  < x > — )- Z 5

sends the generators of fiifP) to 0 and 1 to I. Hence, by Theorem  1.2.17, V  is minimal. 

0

1.3 M o n o id  p re se n ta t io n s

A monoid presentation

V  =  [y ; s] (1.4)

is a pair, where y  is a set (the generating symbols) and each S  G s (a relation) is an 

ordered pair (5 + ,S ,_), where S + and S -  are distinct, positive words on x. We rem ark 

th a t one of m ay be the em pty positive word. We usually w rite S  : S + =  S~.

Once again, we say th a t V  is finite if y  and s are bo th  finite.

T hroughout th is  thesis , all m onoid presentations will be assum ed to  be 

finite unless sta ted  otherwise.

17



In order to define a monoid associated w ith V  we introduce the  following elem entary 

operation on positive words on y .  Let W  be a positive word on y .

(©) : If W  contains a subword Se, where e =  ±1, 5 + — 5_ G s, then replace it by S - e.

Two positive words Llfi, W 2 011 y  are equivalent (relative to V ) ,  denoted W\ ? W 2, if 

there is a finite chain of elem entary operations of type (©) leading from W\ to W 2. This 

is an equivalence relation on the set of all positive words on y .  Let [VV]-p denote the 

equivalence class containing W .  A m ultiplication can be defined on equivalence classes 

hy [Llfil'P-lJTyp =  [WiW^-p. It is easy to check th a t this m ultip lication is well-defined. 

The set of all equivalence classes together with this m ultiplication form a monoid, the 

monoid defined by V , denoted M( V) .  The identity  in M ( V )  is [l]p.

For a positive word W  on y ,  we will denote the elem ent \\¥]j> by W .

1.3 .1  Fox derivations

Let F ( y )  be the free monoid on y .  For a fixed y G y ,  we define a function

A  : F( y) — > Z F(y)

as follows. Let W  G F ( y )  and write

W  -  WoyWry  • • • W r-LyW r, (1.5)

where r ^  1, Wo, Idfi, • • • , W r are positive words on y  — {y}.  T hen

d W  ^
■ g^  = J ^ W 0y W 1y - W i. 1.

Q
We then  extend —  to a function 

dy

A  : Z F ( y) — > Z F ( y )

given by
d , . ^—v dW i

—  {n>iW\ +  n 2W 2 +  • • * +  n rW r ) — /  v 1)1" •>
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where r  ^  0, rai, • • •, n r E Z , W \,- "  , W r E ^ (y )-

Let M  be a monoid w ith the  presentation P ,  as in (1.4). We have the  na tu ra l ring 

hom om orphism

ZF{ y )  — ► Z M  

induced by the monoid hom om orphism

F{ y) Af, W i— > FF.

d M d v
We w rite - r —  or 77— for the com position 

<9i/ dy

Q_

z H y )  z ^ (y )  — ►Z M -

Thus, for LF G F( y )  as in (1.5),

r _________________

- Q —  = Y , Wav w ' y - Wi- '-
J i- 1

Let

aug : Z M  — Z, m  1— )► 1 

be the  augm entation m ap. Then we have

L em m a 1.3,1 For a fixed y E y,

d MW  
aU9^~ dy~ ^  =

P r o o f .

d MW
= a u g i T V V o y W . y - W ^ )  

y i - 1
— r

=  Ty(W ) since the  num ber of all occurences 

of y in W  is the length of y in W.

□
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1 .3 .2  P ic tu res over m onoid  p resen tation s

T he m ateria l used in this section m ay also be found in [50], [51].

Let V  be a monoid presentation, as in (1.4), and let F ( y )  be the  free monoid on y . 

If we have an elem ent

W  = U SeV  { U , V e F ( y ) , S e  s, e =  ±l)

of F ( y ) ,  then  we can replace S £ by S - E to get a word

I T  =  U S - eV.

This can be represented by a geom etric object called an atomic (monoid) picture

A =  ({/, 5, e, V)

as depicted in Figure 1.1 .

u se V

A

Figure 1.1

We rem ark th a t the disc labelled by S  in an atom ic p ic ture  A is said to be positive 

if e — 1 , and said to  be negative if £ — —1.

We have a graph T (=  r ( 'P ))  associated with P ,  called th e  Squier graph, which 

is defined as follows. The vertex set is F (y ) , and the edge set is th e  collection of all 

atom ic m onoid pictures. For an orientation of T we will take all edges (£/, S , +1, V). 

For an atom ic picture A, as in Figure 1.1, the word we read off by travelling along the 

top of the  atom ic picture from left to right gives the initial function, denoted by

i (A) = U SeV ,
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and the  word we read off by travelling along the bo ttom  gives the  t e r m in a l  function, 

denoted by

r(A ) =  U S - eV.

Also, the m ir r o r  im age  of A is denoted by

A” 1 =  { U , S , - e , V) .

A pa th

P = A 1A 2 - - - An (1 .6 )

(where each A* is an atom ic picture for i = 1, 2 , • • • , n )  in V will also be called a m o n o id  

p ic tu re  over V.  If l{A\ )  = r ( An ) then IP is called a spher ica l  m o n o id  p ic tu re  over V,  

otherw ise IP is called a non-spherica l  m o n o id  p ic ture  over V ■ For exam ple,

is a non-spherical monoid picture, since t(A i) ^  r(A 2). (For an exam ple of spherical 

m onoid p ic tu re  see Figure 1.2).

Note th a t we also have the te rm  subpicture ( tha t is, subpath) of monoid pictures. 

For exam ple, the  non-spherical picture depicted in the above figure is a subpicture of 

the spherical monoid picture as shown in Figure 1.2.

There is a left action of F (y) on T defined as follows. Let C  € F (y ) .

i) Let W  be a vertex of F. Then we define C .W  to be C W  (product in F( y) ) .

ii) Let A, as in Figure 1.1 , be an edge of V. Then C. A  =  (C U , A, e, V) and this can 

be illustrated  by
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We can define a sim ilar right action of F( y )  on F. The left and right actions of 

F( y )  on T extends to actions on pictures. T hat is, if F is a p icture as in (1.6), and if 

W, V  e  F (y )  then

W .F .V  = (W.Ai T ) ( 1F.A2T )  • • ■ ( W . K ‘V)-

E x a m p le  1 .3 .2  Let 75 =  [a, 6, c ; ab ~  ba, be = cb, ca =  ac], and let

Ai =  (1 , ab =  6a, - f l ,  c), A2 =  (6, ac =  ca, — 1, 1),

A3 — (1, 6c — c6, + 1 , a), Ai — (c, 6a =  a 6, —1, 1),

A5 =  (1 , ca — ac, + 1, 6), Ag =  (a, c6 =  6c, —1 , 1).

Then  r(A*) =  ) fo r  i — 1,2, * ■ •, 6 , and l( A i ) = t (Aq) — abc. .Sa IP =  Ai A2 • ■ • Ae

is a spherical monoid picture (see Figure 1.2.(i)). Now by a left action by a and a right

action by c, we obtain another spherical monoid picture. This can be illustrated as in

Figure 1 .2 .(n). <0

We now introduce some operations on spherical monoid pictures. Let A, B be 

atom ic pictures.

(A) Delete an inverse pair AA- 1 .

(A ) -1 The opposite of (A).

(B )  Replace a subpicture (A . t(B ) ) ( r (A ) . B) by ( t(A ). B)(A  . t(B ))  or vice versa (see 

Figure 1.3).

Two spherical monoid pictures are said to be equivalent if one can be obtained from

the other by a finite num ber of operations (A )^1, (B) .
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p a.P .c

c

— >■ a

Figure 1.2

T he graph T w ith the above equivalence relation on paths, is called the Squier 

complex of V  denoted by V ( V )  (see, for example, [51]). (More formally, V)  consist 

of the graph F, together w ith defining paths which are all the closed paths

[A, B] -  (A. t(B ) ) ( r (A ) . B )(A _1 . t (M))(l(A)  . B _1),

(A, B are atom ic pictures), as shown in Figure 1.3.)

Let Y  be a set of spherical monoid pictures. We introduce two further operations 

on spherical monoid pictures as follows.

(C)  D elete subpictures of the form W . P ±1. V  (P € Y , W, V  G A (y)).

{C) ~l The opposite of (C).

Two spherical monoid pictures will be said to be equivalent ( relative to Y ) if one can 

be transform ed to other by a finite num ber of operations (^T)1*11, ( 5 ) ,  ( C) ± l .
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r(A ).B

i(A).l

A .r

—

■

&
l -

—

A

Figure 1.3

By [51, Theorem  5.1], we say th a t Y  is a trivialiser of T>(V) if every spherical 

p icture is equivalent to an em pty picture (relative to Y ). Some exam ples and the 

details of the  trivialiser can be found in [20], [51], [52], [56], [60]. In Section 4.3.4, as 

an exam ple of this, we will give a trivialiser set of the Squier com plex of a presentation 

of the  sem i-direct product of any two monoids, as found by W ang (see [60]).

Let M  be a monoid w ith the  presentation V , as in (1.4). Let

P (,) =  0 Z Me s  and P w  =  0 / s Z M
ses ses

be the free left and right ZM -m odules w ith bases

{e5 : 5 G s }  and { f s : S  G s } ,

respectively. For an atom ic picture A =  (t/, S, e, V) (U,V  G iF(y), S G s, € =  ± 1 ), as 

in Figure 1.1 , we define

eva l^ l\ A) — e U e s  G and e v a & \ A) ~  e f s V  £ P^r\

where [/, V  G M (V )  = M .  For any spherical monoid picture P , as in (1.6), we define
n

ena/(,)( P) =  V  eva  €  P (0,

eval{r\ P) =  y ^ e w i w (Aj) £ P (r).
1=1

We let be th e  coefficient of e$ in eval^l\ P), so we can w rite

evalw (P) =  y^A piSes € P (,).
5es
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Similarly, we let rjf>,s be the coefficient in eval^r\ F ) ,  so

e v a l ^ ( P )  = Y / f sVr ,s e P {r).
S £s

E xam ple  1.3.2 (continued) Let

R  : ab =  6a, S  : be — cb, T  \ ca = ac.

Then we have

eval(l\ A i )  =  eR, eua/(d(A2) =  — 6e ,̂ evaT l\ A3) =  65 , 

eua/h)(A4) =  —ce#, e u a d ^ A s)  =  er,  eoa/^^Ag) =  —aes-

rp  7i  /ms

e u a /^ ( P )  =  Ap^e# -f Ap^es +  Ap/pex,

where

Ap>jR ~  1 — c, Ap(5 =  1 — a, AptT = 1 —6.

0

D efinition 1.3.3 Let I ^ i V ) ,  ^ { V )  be the 2-sided ideals o f h M  generated by the sets

{Apts : P is a spherical monoid picture, S  6  s},

{^p.s '■ F is a spherical monoid picture, S  6 s},

respectively. Then these ideals are called the second Fox ideals of V .

R em ark 1.3.4 I f Y  is a trivializer ofT) (V)  then ^ ( V )  and are generated (as

2-sided ideals) by the sets

{Api5 :F  g Y , S  6 s} and {t?p,s : F G Y , S  6 s},

respectively.

E xam ple  1.3.5 Let V  — [a, 6, c ; aba = ba2, ac =  ca3, be — cb\. Then, by [60], a triv­

ialiser Y  ofT>(V) can be taken to contains a single monoid picture P  depicted in Figure 

1.4. Let
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//

a

Figure 1.4

R  : aba = ba2, S  : ac =  ca3, T  : be = cb.

Then

e v a l ^ C ^ )  — Ap tR e R  +  A p ^ e s  +  A p ^ e ^ ,

where

Ap ,r  =  1 — c ( l  +  a +  a 2),  Ap,5 =  6 — 1, A p , t  =  1 — a .

Thus, by the above remark, the second Fox ideal l ^ i fP )  is generated by the set 

{1 — c ( l  +  a  +  a 2 ) , 6 — 1 , 1  — a } .  0

N ote th a t we need the second Fox ideal concept for Theorem  1.3.14 (see below).

1 .3 .3  A sp herica l and C ockcroft m onoid  p resen ta tion s  

D efin it ion  1.3.6 Let T  he as in (1.4). Then V  is said to be aspherical i f  there are
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no non-trivial spherical monoid pictures over V .

N ote th a t all free monoids are aspherical. In [34, Section 5] Ivanov proved th a t if M  

is a one-relator monoid, w ith relator 5 , say and if i ( S+) t ( S - )  (or t (S+) 7  ̂ t(5 _ ))

then  M  is aspherical. Some other exam ples of asphericity can be found, for instance 

in [17], [34], [40] and [51, Section 7].

D efinition 1.3.7 Let V  be as in (1.4). Then V  is said to be com binatorial aspher­

ical (C A ) i f  V  has a trivialiser set Y  such that every element o f  Y  contains exactly 

two discs. Also , a monoid M  is said to be combinatorial aspherical i f  it can be defined 

by a ( CA)  presentation.

In C hapter 4 we will use th a t all finite cyclic monoids are ( CA)  (see Lem m a 4.2.13). 

See [51, Section 7] for further discussion on the com binatorial asphericity.

For any p ic ture P over V  and for any S  £ s, the exponent sum  of S  in P  is the  

num ber of positive discs labelled by S\ m inus the num ber of negative discs labelled by

5.

Definition 1.3.8 Let V  be as in (1.4), and let n be a non-negative integer. Then V  is 

said to be n-Cockcroft i f  exp s (P) =  0 ( mod n), (where congruence ( mod  0) is taken 

to be equality) fo r  all S  € s  and fo r  all spherical pictures P  over V . A monoid M  is 

said to be n-Cockcroft i f  it admits an n-Cockcroft presentation.

R em ark  1.3.9 To verify that the n-Cockcroft property holds, it is enough to check for  

pictures P £ Y, where Y  is a trivialiser ofT>(V).

The 0-Cockcroft property is usually ju s t called Cockcroft.

In practice, we usually take n to  be 0 or a prim e p.

E xam ple  1.3.2 (continued) By  [60], trivialiser o f V ( V )  contains the single picture P 

depicted in Figure 1.2.(z). Since expfl(P) =  exp5 (P) =  expT(P) =  1 — 1 =  0, then V  is 

Cockcroft. 0

E xam p le  1.3.5 (continued) Since expR(P) =  1 — 3 =  —2, exp5 (P) =  2 — 2 =  0, 

expT(P) = 1  — 1 = 0  then V  is 2-Cockcroft. <>
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Note th a t

Aspherical CA =$■ Cockcroft =$■ n-Cockcroft (n E Z +).

1.3 .4  E fficiency o f m onoid presen tations

Let M  be a monoid with the presentation P ,  as in (1.4). As w ith  group presentations 

we define the Euler characteristic of V  by

X(V)  =  1 -  |y| +  |s|.

Let

5{M)  = 1 -  r k z i H ^ M ) )  +  d( H2{M)) ,

where rk%{ ) denotes the  Z-rank of th e  torsion-free part and c/( ) m eans th e  m inim al 

num ber of generators. Then we have

T heorem  1.3.10 (Pride-unpublished)

X (V)  >  6(M) .

Then we define

x (M ) =  m in { x { V )  : V  a finite presentation for M } .

We should rem ark th a t some authors consider J u s t  as w ith the group presentations,

- |y | + |s|,

and call this the deficiency of the presentation P ,  denote by def f iP) .  The deficiency of 

a monoid M , denote by d e /(M ), is then taken to be the m inim um  deficiencies of all 

finite presentations of M.  Clearly

1 +  de/(P ) =  x(P),

1 + d e f ( M ) = X (M) .

D efin ition  1.3.11 Let M  be a monoid .
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i) A presentation Vo fo r  M  is called m inim al i f

xCPo) < x{V),

fo r  all presentations V  of M .

ii) A finite presentation V  is called efficient i f

X (V)  = 6(M) .

Hi) M  is called efficient i f

X ( M)  = 5(M) .

T heorem  1.3.12 (Pride-unpublished) Let V  be as in (1.4). Then V  is efficient i f  

and only i f  it is p-Cockcroft fo r  some prime p.

As a consequence of the  above theorem , we have

Corollary 1.3.13 Let V  be as in (1.4). I f  V  is Cockcroft then V  is efficient.

Let f  be a ring hom om orphism  from Z M  into the ring of all k x k m artices over a 

com utative ring A  w ith 1, for some k ^  1, and suppose ^ (1 ) =  hxk-

T heorem  1.3.14 (Pride-unpublished) Let Y  be a trivializer o f V ( V ) .  I f  

either (a) =  0 fo r  all IP (E Y, S  6 s,

or (6) — 0 fo r  all P €  Y, S  G s,

then V  is minimal.

T he above theorem  can be restated  as follows.

T heorem  1.3.15 I f  there is a ring homomorphism as above such that either I ^ \ V )  

or I ^ i V )  is contained in the kernel of f ) ,  then V  is minimal.

One of our m ain results (see Theorem  5.3.1) concern minimal bu t inefficient monoid 

presentations.

Some other exam ples of efficient and inefficient monoid presentation can be found, 

for exam ple, in [2].
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C hapter 2

T he p-Cockcroft property o f central 

extension s o f groups

2.1 In tro d u c t io n

A presentation for an arb itrary  group extension is well-known, see for instance [6]. 

Also a generalization of the  work in [19] on central extensions is presented in [6]. As an 

application of this we discuss necessary and sufficient conditions for the presentation 

of the central extension to be p-Cockcroft, where p is a prim e or 0. Finally, we present 

some exam ples of th is result.

2.2 C e n tra l  ex ten s ion s

Let Q be a group w ith the presentation V q — (a ; r), and let K  be a cyclic group of 

order m  generated by x (m =  0 if x  has infinite order). Any central extension of K  by 

Q will have a presentation  of the form

V  = (a, x ; R x ~ kR (R  E r), x m, [a, x] (a E a)) , (2.1)

where 0 ^  kji < nr, (Hr E Z if m =  0).

However, not every presentation of this form defines an extension of K  by Q because 

the order of x m ay not be m  in G = G(V) .  B ut, by [19] (see also [6 , Corollary 7.2]), if
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we know a generating set, say Y , of ^ ( V q ) then we can give necessary and sufficient 

conditions for x  to  have order m  (Theorem  2.2.1 below).

Let Q  (Q  G Y ) have discs A i, A 2, • • ■ , A* labelled R £f i , ■ ■ ■, R Et l respectively

G r , e, =  ± 1 , 1 ^  i t). Then let us choose a spray

( 2 .2 )

for Q, and suppose the  label on 71- is W&t which is a word on a  (1 ^  i ^  t),  This can 

be illustrated  as in the following figure.

Let

/

(e. =  1) (e; =  - 1)

i=1

T h e o re m  2 .2. 1  ([6 ], [19]) Let G be the group defined by the presentation (2 .1). Then 

the order o f x is m  in G i f  and only i f

/5(Q) =  0 (mod to) (Q € Y ). 

For Q  G Y  as above and a G a, we let

t
= E £, expa(W&t)kRt.

(2.3)

i— 1
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2.3 T h e  p-C ockeroft p ro p e r ty  for th e  c e n tra l  e x te n ­

sions

2 .3 .1  T h e gen eral theorem

T h e o r e m  2 .3 .1  Let p be a prime or 0, and let V  be a presentation as in (2.1) such 

that the condition (2.3) holds. Then V  is p-Cockcroft i f  and only i f

(i) m  =  0 ( mod p),

(ii) expa(R)  = 0 (mod p), fo r  all a £ el, R  £ r,

( in)  V q is p-Cockcroft,

(iv) a a(Q) = 0 (mod p), fo r  all a E a, Q E Y ,

(t>) P(Q)  =  0 (mod m .p), for  all Q  e  Y .

2 .3 .2  T h e gen erating  p ictures o f  ^ (T )

Let V  be as in (2 .1) such th a t the condition (2.3) holds. Now, by using [6], we can give 

a set of generating pictures over V  as follows.

( I)  T he generating picture of the presentation V k  =  (% ; x m) which is illustrated

by

K

Note th a t if m  =  0 then  the above picture simply becomes the  em pty picture. 

( I I )  For each a £ a, we have a spherical picture
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a

" " t

Note also th a t if m  =  0 then again the above picture becomes the em pty picture.

( I l l )  For each R  £  r, we have a spherical picture as in (a) (or (b) if Ur  — 0) below.

»x,R

(b)

( I V )  For each Q £  Y , a p icture Q defined as follows.

For the p ic ture  Q, we have the spray (2.2). Then, for each disc A 4* labelled R e{1 (1 ^  

i ^  £), we replace the  spray line (transverse path) 7 ; by a p ic ture  consisting of discs 

labelled [a,x] (a £  a) and w ith boundary label W ^ ix EikR* W ^ 1x~ eikRi . This can be

illu stra ted  as in Figure 2.1. This gives a p icture Q* w ith the  boundary label

w (Q) = (xeikRix£2kR2 • ■ ■ xEtkRt y l

— x ~ by the definition of /3(Q).
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(£; =  1) (e; =  -1 )

Figure 2.1

/3(Q)We then  cap off Q* w ith a p icture consisting of —     tim es £ m-discs (where
in m

is taken to  be 0 if m  = 0), positively oriented if (3(Q) > 0, negatively oriented if

j3(Q) < 0, to  obtain  a spherical p icture Q. In doing this it m ay be necessary to join

up loose oppositely oriented rc-arcs. This can be illustrated  as in the following figure

(see also Exam ple 2.3.2 below).
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—>-x

E x a m p le  2 .3 .2  Let Q be the group defined by the presentation

V q — (a , b ; a3, a 6a _16_1) , 

and let K  be the cyclic group of order 3 generated by x. Consider the presentation  

V  =  (a , b, x ; a3# -1 , aba~1b~1x ~2, x 3, [6, a;]).

B y  [3], 7T2{Vq ) is generated by the pictures (Qh and Q 2 depicted in Figure 2.2. We

Qi

i
ia /

//
/

/
//

t

/ r
✓

/ r

» 4 ,'

Figure 2.2

have /3(Qi) =  0, /5(Q 2) =  6 . So (2.3) holds. Hence, by Theorem 2.2.1, the group G 

defined by V  is a central extension of I\ by Q. We get the pictures Q*, Q?] as Figure 

2.3. Then we obtain Q i, Q 2 as in Figure 2.4. 0

T he proof of the following theorem  can be found in [6 , Theorem  6.4].
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X

Figure 2.3

T heorem  2.3.3 Let V  be as in (2.1) such that the condition (2.3) holds. Then tt2 (V)  

is generated by the pictures

K, Ka (a G a), B X,R (R  G r) and Q (Q G Y).

2 .3 .3  T h e p roof o f  T h eorem  2.3.1

Let C r , Ca denote the relators R x ~ kR (R  G r), [a, a:] (a G a) respectively.

F irst assum e th a t m  ^  0.

Let us consider the p icture K. It is clear th a t expa,m(K) =  1 — 1 = 0 .  Also, let us 

consider a p icture Ka (a G a). Clearly expxm(Ka ) =  1 — 1 = 0 ,  and it is easy to  see 

th a t

expCa(Ka) =  expa,(:rm) =  m,

so we m ust have m  =  0 (mod p). Hence the condition (i) m ust hold.

Consider a p icture IDh^ ( R e  r). It is clear th a t

expCjl(DX)R) =  1 - 1  =  0 .

Also it is easy to see th a t

expCa(DXtR) =  expa(R),
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Figure 2.4

for all a E a. Thus the condition (ii) m ust hold.

Now consider a p icture Q (Q G Y ). We m ust have expc (Q) ^  0 (mod p). But

exPc*(Q ) =  expH(Q),

so we m ust have exp^(Q ) =  0 (mod p), th a t is, V q m ust be p-Cockcroft. This gives 

the condition (Hi),  Also, for a fixed a € a, it is easy to see th a t

exP c a(Q) = a a(Q)-

So we m ust have a a(Q) =  0 (mod p), which gives the condition (iv).  Finally, we have 

th a t

exp xm(Q) = ------- ■
771

T hen we m ust have /?(Q) =  0 (mod m.p). So the condition (v) m ust hold.

Suppose th a t m  = 0 .
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T hen the five conditions (i)- (u ) reduce to the three conditions

(ii) expa(R) =  0 (mod p), for all a E a, R  C r,

( in)  V q is p-Cockcroft,

(iv)  a a(Q) =  0 (mod p), for all a G a, Q G Y ,

since the conditions (i) and (v) autom atically  hold. Because the  pictures K and Ka 

are triv ial, so im pose no restrictions, and there are no x m discs, then the above proof 

will carry over.

Conversely suppose th a t the five conditions (z)~(u) hold. Then, by using the gen­

erating pictures of ^ ( 'P ) ,  we can see th a t V  is p-Cockcroft where p is a prim e or 

0 .

2.4 Som e exam ples

E xam ple  2.4.1 Let Q be the (fc, /, n)~ triangle group with the presentation

V q =  (a, b ; ak, b \  (ab)n ) ,

where k, /, n E and
1 1 1 .
T +  7 d ^  1)k I n

and let K  be a cyclic group of order m  generated by x (m is taken to be 0 i f  x has

infinite order). Consider the presentation

V  = (a ,  b, x  ] a kx ~ r , blx ~s, (ab)nx ~ \  x m , C a , Cb)  , (2-4)

where 0 ^  r, s, t < m  (or r, s, t G Tj, i f  m  =  0^ and, as in the proof of Theorem  2.3.1,

C a •=  [a ,  rr] and C \  : =  [b,x].

By the weight test (see [11], [?],), V q is C A  (and then Cockcroft). We can give a set o f  

generating pictures o f it2 (Vq) ,  as in Figure 2.5. We have (3(Q i) =  0, /3(<Q>2) =  0 and



PiQs) — 0. So (2.3) holds. Hence, by Theorem 2.2.1, the group G defined by V  is a 

central extension o f K  by Q.

We also have

exp a(ak) =  k,  exp b(bl) =  I,

exp a{{ab)n) =  n, exp6((«6)n) =  n.

Moreover, by the definition, we get

« a ( Q i ) = r ,  cp>(Qi) — 0 ,

«o(Q2) =  0, cq,(Q2) =  s,

« a(03) =  t, «b(Q 3) =  t.

Also, fo r  any prime p, we always have

(3 (Q i )  =  0 ( mod m .p ) (i — 1, 2 , 3).

0

Thus, we get the following result for the above exam ple, as a consequence of T he­

orems 2.3.1 and 1.2.15.

C o ro l la ry  2 .4 .2  Let p be a prime. Then the presentation V , as in (2.4), is p-Cockcroft



i f  and only i f

m  = 0  (mod p), 

k =  0 (mod  p), I =  0 (mod p), n =  0 ( mod p), 

r =  0 ( mod p), s = 0 (mod  p), t =  0 (mod p).

Hence V  is efficient i f  and only if

h c f ( m ,  k , /, n , r, s, t) ^  1.

E x a m p le  2 .4 .3  Let Q be the group Z^ © Z i ( k £ Z +) with the presentation

V Q -  (a, b\  ak, bl, [a, 6]),

and let K  be a finite cyclic group of  order m  generated by x.  Let us consider the 

presentation

V  =  (a , 6, x ; ahx~r, blx ~s, [a,b]x~f x m, Ca, C&) , (2.5)

where 0 ^  r, s,£ <  ?7i and again, as in the proof of Theorem 2.3.1,

Ca [a,x] and Cb :=  [6,x].

can give a set of generating pictures of  u 2 (Vq), as in Figure 2.6. We have /3(Qi) =  

0, /?(<G>2) =  0, PiQs) — It and (3(Q4) =  kt .

Suppose that

It =  0 (mod m) and kt  =  0 (mod m ).

So (2.3) holds. Then, by Theorem 2.2.1, the group G defined b y V  is a central extension 

of I< by Q.

It is clear that

expa(a fc) =  k, expb(bl) -  /,

expa([a,6]) =  1 - 1  =  0 exp6([a, £>]) =  1 — 1 =  0.

Also , by the definition, we get

aa(Qi) = r, ab(Q1) = 0,
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1

I
I t 

< 1

Figure 2.6

Q'a(Q2) =  0, a t fQ 'i)  =  S,

CVa(Q3) =  5, a 6(Q3) =  ~ 7 ^ (/ -  1)^

«a(Q 4) =  -jk{k -  l ) t ,  a 6(Q4) =  r.

0

Therefore, we get the following result for the above exam ple, as a consequence of 

Theorems 2.3.1 and 1.2.15.

C o ro lla ry  2 .4 .4  Let p be a prime. Then the presentation V , as in (2.5), is p-Cockcroft 

i f  and only i f

m  =  0 (mod  p),

k  =  0 ( mod  p), r  =  0 (mod p), kt  =  0 (mod m .p), — 1) < =  0 (mod p),

/ =  0 (mod p), 5 ee 0 (mod p), It = 0 (mod  m .p), —1/(/ — 1)£ =  0 ( mod  p).

Thus  P  zs e fficient i f  and only if

h c f ( m , k , l , r , s ,  \ k ( k  -  l ) t ,  ]-l(l -  l ) t ,  — kt, — It) ^  1.
2 2 in m
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C hapter 3 

T he efficiency o f standard w reath  

products o f groups

3.1 Som e b ack g ro u n d

Let (p denote the  set of all finite p-groups (p a prim e) which have efficient presentations. 

In 1970, Johnson [36] showed th a t is closed under direct products and after th a t, 

for p odd, is closed under standard  w reath products. Also in 1973, W amsley [58] 

showed th a t £p is closed under general w reath products.

Let £ be the set of all finite groups which have efficient presentations. In this chapter 

we will give sufficient conditions for the standard  w reath product of any two groups 

which belong to £ to be efficient.

D e f in it io n  3 .1 .1  I f  there are given

a-) a group A,

b-) a group K ,

c-) a homomorphisim 6  of  A  into the automorphisim group of  K

9 : A  — > A u t ( K ), a \— > 9a

fo r  all a £ A,
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then the semi-direct product G = K  Xe A  of K  by A is defined as follows.

The elements o f  G are all ordered pairs (a ,k)  (a G A, k G K )  and multiplication is 

given by

(a, k ) (a \  k') =  [ad, (kOa>)k').

Sim iliar definitions of a semi-direct product can be found in [7] or [54]. We rem ark 

th a t sem i-direct products of m o n o id s  will be discussed (in detail) in C hapter 4, Section 

4.3.

The proof of the following Lem ma can be found in [35, Proposition 10.1, Corollary 

10.1].

L e m m a  3 .1 .2  Suppose that V k  =  (y; s ) and V a  =  (x; r) are presentations fo r  the 

groups I\ and A  respectively under the maps

y 1— > K  (y e y), z ax (x e  x ).

Then we have a presentation for  G =  K  >\ $ A

V  =  (y, x ;  s, r, t)

where t  =  { y x X f f x ~ l \y 6 y,sr C x}, and Xyx is a word on y  representing the element 

(ky)&ax of  K  (a G A,  k  G K,  X e  X, y G y ).

Now let us define the standard  w reath product by using Definition 3.1.1.

D e f in it io n  3 .1 .3  Let A and B be finite groups with A  — { a }, a 2,- • • say , Let x

be any element o f  A. Then,

a\X , a 2 X , • • • ,agx

is a permutation of  « i, c&2, • • • , a g. So we can write a\x,  a2 X , • • • , agx as i), <^^(2) : ' '  ' 1 aax(a) 

where ux is a permutation of  1, 2, • • ■ , g.

Let K  be the direct product of the number of \A\ copies of  B, that is,

K  =  B w  =  B s =  B  x B  x ■ • • x B ,
(g times)

43



and let (6a i,602, • • • ,bag) be a typical element of  K . We have a homomorphism

9 : A  —  ̂ A u t ( K ) ,  x  i— > 9X

where

(ha 1 5 ba2 , * • • , bag)9x = 5 âCTa.(2) > ’ ’ ' ? ^a^g) )•

TAe extension K  Xg A is called the standard wreath product of  B  by A,  denoted 

B  I A.

We  should note th a t some authors, for instance K arpilovsky in [38], use the nota­

tion A I B  instead of B  I A.  Here we use the  notation as in [54].

We also need the following well known results.

Proposition  3 .1 .4  (Schur 1904) Let B  be a finite group. Then

(i) H 2 (B)  is a finite group, whose elements have order dividing the order of  B .

(ii) B.2 {B)  =  1 i f  B  is cyclic.

Definition 3.1.5 1) Given an abelian group A,  we denote by Afj^A the factor group

of A  (x) A  by the subgroup generated by the elements of the form  a ® b +  b (g> a, 

(a, b £ A).

2) In any group K ,  an element o f  order 2 is called an “involution”.

T heorem  3.1.6 (Blackburn 1972) Let m  denote the number of involutions in the

group A. Then H f i B l A )  is the direct sum of  i-/2(B ); /-/2(A), (1/2)(]A| — m  —1) copies 

of H i ( B )  <g> H i( B )  and m  copies of  H \ ( B )  f i  I i f iB ) .

L em m a 3.1.7 Let B  be a finite group, let

t

1 = 1
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and let s be the number of even n{, 1 ^  i Then,

H \{B )  #  H i(B )  SS 0  Z (n„n j ) ®Z<3),

where is a direct sum of s copies of  %2.

Proofs of Proposition 3.1.4, Theorem  3.1.6 and Lem ma 3.1.7 can be found in [38].

L em m a 3.1.8 (K unneth  Formula) Let A  and B  be any two groups and let G —

A x  B .  Then,

H 2 (G) = H f iA )  © H 2 {B)  0  H f iA )  0  ILfiB).

Defin ition  3.1.9 Let A  be a finite abelian group. Then we define,

I f i r s t  torsion number  i f  A ^ O  
t (A )  =  .

[ 0 i f  A =  0

L em m a 3.1.10 Let A  and B  be finite abelian groups. I f  ( t ( A ) , t (B ) )  =4 1 then

d ( A ® B )  = d ( A ) A d ( B ) .

Proof. Suppose th a t (2 (A ), t (B ))  1.

F irst of all, if one of t (A)  or t{B)  is 0, say t (A )  then by Definition 3.1.9, A =  0.

T hen, basically we have th a t d(B)  — d(B).

Now suppose both  t (A)  and t (B )  are non-zero, and let

A = Tjmy 0  ^m2 0  ' ■ • 0  

where m,- | m ;+ i, 1 ^  i ^  k — 1. Then t (A)  — m i. Similarly, let

5  =  Z n i © Z „ 2© - - - © Z ni,

where nj \ n j +i, 1 ^  j  ^  I — 1 and t (B )  =  n\.  Then,

A 0 B  =  Z mi © Z m2 © • • ■ 0  Z mfc 0  Z rtl 0 Zn2 0  • • • 0  Z n{.
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Now, let p be a prim e w ith p \ t (A)  and p | t (B ) .  Then

p | m u p | m 2, • • • | m k,p \ n i , p  \ n 2, ■■■ , p \ n h

So there are epim orphism s

ci>i : Z m< Z p and : Z nj -» Z p, 

where 1 ^  i ^  k  and 1 ^  j  ^  /. Then we get induced epim orphism s

<f> =  f i  : © 2 m2 © • • ■ © Zmjfc -» Z<*>

and

"0 =  Ipj ' ^ni © Z n2 © • • • ® Zni —» Z?>.

Then

</-©'</>: Z mi © • • • ffi Z m„ ffi Z ni ® ■ • ■ ffi Z„, -»  Z<t+,).

Now since Z is a vector space over Z p [54, Lemma 6.2], and since any two bases of

a vector space have the same cardinality [33, Theorem  4.2.7], th a t is, the dim ension 

of Z j^ , then  we have th a t Z j^  cannot be generated by less than  k elem ents. In other 

words, d (Z j^ ) =  k. Thus, by the fact th a t the minim al num ber of generators of a group 

is greater th an  or equal to the m inim al num ber of generators of any hom om orphic image 

of th a t group, we have th a t

d(A)  >  k.

On the  other hand, A  can be generated by k elements which are

( 1) 0 , 0, ■ ■ ■,  0) ,  ( 0 , 1, 0, ■ • ■,  0) ,  • ■ ■,  ( 0, 0, 0, • • ■,  1) .

So, d(A)  ^  k,  then d(A) — k . Similarly, d(B)  = I and d{A  © B )  — k -f I- □

R e m a r k  3 .1 .1 1  Clearly we can generalize this lemma for  more than two abelian groups, 

that is, i f  A{ (1 ^  i ^  n) are abelian groups and ( t ( A i ) , t ( A 2),- • • , t ( A n)) /  1 then

d(Ai  © A 2  © ■ ■ ■ © A n) =  d(yA\) +  d{A2) • -j- d (A n).
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3.2 T h e  m a in  th e o re m

Throught this section A, B  will be finite groups satisfying the following conditions.

(i) A, B  have efficient presentations V a =  (x  5 r ) an d V b =  (y ; s) respectively on 

g, n (gr, n  E N) generators where n — d(B ),

(ii) d { B ) ^ d { H l ( B ) ) )

(iii) either the  orders of A, H\ (B)  are even and also t ( H 2 (A)) , t{H 2 {B))  and i (H i (B ) )  

are even or the order of A is odd and there exists an odd prim e p dividing 

t ( H 2 ( A ) ) G { B 2 {B))  and t ( H i ( B )), where t is defined as in Definition 3.1.9.

T heorem  3.2.1 (M ain T heorem ) Let G =  B  \ A. Then G has an efficient presen­

tation.

T he proof of the following rem ark can be found at the end of this section as a 

lem m a.

R em ark 3.2.2 Suppose g =  cl(A). I f  ( t (Hi(A)) ,  t (H i (B ) ) )  ^  1 and d (H \(A ) )  = d ( A ) 

then d(G) = g A n.

The proof of Theorem  3.2.1 will proceed by the  following steps.

3.2 .1  C alcu lation  o f  I A) )  and S ( B  I A)

In this p art of the proof, we will calculate

S(G ) =  1 -  r k z i H ^ G ) )  +  d(H 2 (G)).

Now since G is a finite group then rk i (H \ (G ) )  is trivial, so we will ju s t calculate

5(G) =  1 + d(H 2 (G)).

Recall th a t we had a form ula to  calculate IL2 (G) by Theorem  3.1.6, th a t is,

l i 2 (G) = i i 2 { b \ a )

=  H2(B)  ffi H2(A)  ffi (Zf ,(B)  ffi ffi { HUB)  #
(3.1)
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where m  denotes the num ber of involutions in the group A.

Let us w rite

H \ ( B )  =  ZW1 © Z V2 ® ■ • * ® Z v n i Vi I v i+l i  1 ^ ^ 72 — 1. (3-2)

By (ii), d (H x(B))  = d(B)  =  n.

At first, let us calculate the “ (g)” part in (3.1).

H i ( B )  <g> H i ( B )  =  ( Z Vl ® Z Wl) © ( Z V1 © Z U2) ® .......... © (ZW1 (g) ZWJ  ©

(Zy2 (S) Z/Vl) Q (Zy2 <S> Zy2) © ............© (Zy 2 (g) Z yn ) ©

( Z Vn © Z Vl) © ( Z Vn © ZV2) 0 ........... © ( Z Vn © Z Vn) ©

— Z i V l  © © .......... © ^(vi,un) ©

Z ( V2,Vl) © Z y 2 © ...........© Z (V2,

Z ( v n>Vl) © Z ( y niy2) © ...........© Z y n .

Since Ujl | v 2 j ■ • ■ | vni we have

(u!,u2) — (ui,u3) = = ( v i , vn) =  Vi

(^2,^ 3) =  (^2, 774) =  =  {v2 , v n) -  v 2

(un_ i ,u n) Un_x

So the  sum  becomes

=  Z yy © Z ŷ  © • • • © Zyx ©

Zyx © Z ,2 © • • • © Zy2 ©

Z yx © Zy2 0  Zy 3 © ' * * © Z

Zyx © Zy2 © • ■ * © Zyn.
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T hen t ( H i ( B )  ® H \( B ) )  =  v\. Hence by Lem ma 3.1.10,

d( Hl (B)  ®  ^ ( B ) )  =  h | ^ |  -  m -  l ) c f ( B ) 2.
Cj

(3.3)

Case  1 : |Aj zs euen

In th is case we m ust calculate the a^ ” part in (3.1), as well.

Suppose th a t is even. Then it implies th a t each te rm  in the decom position

(3.2) of H i( B )  is even. Now let us use the form ula which is given in Lem m a 3.1.7. So,

f f i ( £ ) # t f i ( £ )  =  Z (Vl)1,2) ® Z(Vl)V3) ® ..............© Zp,ljWn) ©

^©2,f3) S  ^©2,1© T .....................© ^©2,fn) ©

^(u„-2 ,yn-l) © ^©„-2 ,«n) © %(vn- l  ,«n) © ^2^-

(Since every term  is even in H \(B )  then we take n to be the power of Z 2 in the above

form ula.) And by using the fact V\ \ v 2 \ • • ■ \ vn, the sum will become

=  'Eiy1 © Zyj © .© Z Wj ©

z ,2 © zW2 ©.© ZV2 ©

2An_2 © %v n- 2 © 1 ©

And so t ( H i ( B ) # H i ( B ) )  = 2. Then by Lem ma 3.1.10, we have th a t

= m((n~ 1)[(" ~ 1) + 1.l + „)
n 2 +  n  

= 2 )

f d{ B) 2 +  d(B) .
—  m  ----------------------------------------------------

1 2 ;

Therefore (again by Lem m a 3.1.10, and using assum ption (iii) )

d(H2{G))  =  d( ff2(A)) +  rf(B2(B ) )  +  i ( | / l |  -  m -  l ) d ( B f  +  ( d (B ) 2 +  d (B) ) ,
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and after some rearrangem ents, we get

1 777
d{I-h(G)) =  d(H2(A)) +  d(H2(B))  +  -  d ( Bf { \ A \  -  l +  — ).

Therefore we have

1 77?
5(G) =  d( H2(A))  +  d(H2{B))  +  1 +  -  d ( B f ( \ A \  -  I +  — ). (3.4)

Case  2 : \A\ is odd

By assum ption (iii), there exists an odd prim e p such th a t 

p \ t ( H 2( A ) ) , p \ t ( H 2( B ) ) , r \ t ( H !(B)) .

In this case, since the order of A  is odd, we cannot have any involutions in group A , 

so the value m in the th ird  and final term s of (3.1) becomes zero. Thus we will ju s t 

need to calculate the  part in (3.1). Now by using Lem m a 3.1.10, we have

d( H2(B)  ® / f 1( B ) ) ^ l /' l -1) =  l- ( \A \ -  1) d { B ) \

following the  same calculation as in (3.3). Then by using assum ption (iii) and Lem m a 

3.1.10, we get

d(H2(G)) =  d(H2(A)) +  d( H2(B))  +  t ( | A |  -  1 ) d ( B f .

Therefore we have

5(G) =  d(H2(A))  +  d(H2(B))  +  1 +  i d ( B ) 2[\A\ -  1). (3.5)

3 .2 .2  To ob ta in  an efficient presen tation  for G  — B  \ A

To get an efficient presentation for G — B  I A,  the following process can be followed:

@ For each a £ A  take a copy ( y ^  ; of V b ,
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© Choose an ordering cq < a2 <  ■ ■ • <  an of the elem ents of A where cq =  1,

9  Let {ax : x G x} be a generating set for A  corresponding to the  presentation 

V A = (x ; r ) ,

® Let {by : y G y} be a generating set for B  corresponding to  the presentation 

V b  =  (y  ; s).

L em m a 3.2.3 A presentation of  G — B  I A  is given by

Vo ~  ( y ^  (a e A ) , x ;  s (a) (a G A), r , y d ^ d )  =  ^ (a')y(A (a , a ' G A, a <  cd, y, z G y ),

x ~ xy ^ x  -  y^aax) (a G A, y G y , a G x) ) .

P ro o f .  By Definition 3.1.3, K  is the direct product of |A| copies of B  so th a t a 

presentation  of K  can be w ritten

V K = ( y (o) (a € A)  ; s<°> (a € A), [y(“>, z(“'>] (a, o' €  4 ,  a <  a ', i/,z  G y)^> .

A nd also by the same Definition, B  I A  is the split extension K  xi0 A, so as we said in 

Lem m a 3.1.2, a presentation of K  X q A  is given by

V  = ( y {a) (a G A), x  ; s (a) (a G A), r , [y{a- \ z {a>)] (a, a' e  A,  a < a', y , z  e  y ), t̂ > .

Here t  =  { y d iTy(aad 1 x ~ l \ y g y , x  G x}, where for any c G A, y d  represents the 

elem ent of B  x B  x • • • x B which has 1 in all positions except position c and the  value
| A| times

in position c is by where by G B.  Then V r is the same presentation  as Vo.

Therefore V q actually  is a presentation of B  I A, as required. □

We will identify G w ith the  group defined by Vo.

L em m a 3.2 .4  I f  W  is a word on x,  say W  =  x £f x ef  • • ■ x ’f 1, then

\ y ~ ly A ) w  = yAA\Ax\-a.%nn)

in G.
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P ro o f .  We will use induction on L{W).

i ) Let L ( W )  =  1. Then, for x\  £ x , y £ y  and a € A, we have

_ y((uciXl)a~l)

in G. So

X \ y ^ x ^ 1 — y(aax 11

in G. Hence, for 6\ =  ±1 we have

Z p y M z 'l  =

in G.

n )  Assume th a t the  result holds for L (W )  ~  n — 1. Now suppose th a t L(1T) =  n. 

Then let W  =  x ^ x ^ 2 ■ ■ * (ay € x , et- — ±1 for 1 G i ^  n). By induction hypothesis, 

we know th a t

(  £1 E2 . . . £ n - 1 \ - l  ( o )  El e 2 . . . _  ( o a ^  o ^ | - 0 ^ “ ^)
\ z l X 2 n-~ 1 J V X1 2 n~ 1 — V

in G. Now let us conjugate it by x n̂ . Then we get

V - £ n ~ £ n - 1 . . . £ n - l  £n  __  „ - £ n . . H i 1 a x\
'l n - 1 a  X1 Xn -1  X n ~  X n iJ X n i

and by th e  same process as in the first step, we have

/ £i £n — l \ / £1 £n — 1 £ji v
^, — Sn „ \ a a - x i  a x 2 '"a x n ^ 1 ) r £n  —  1 / \ a a x i " ' a x n ~  l a x n )
x n y  n y

Therefore we have

W ~ l y ^ W  — yfaa*i

in G, as required. □

• For each a 6 A, choose a word W a on x  representing a. (T hat is, if W  =  

x \ l x S2 • • • x £nn then the  product axl aê  ■ ■ • aexnn in A  is equal to  a.) W hen a = 1, 

choose W a to  be the em pty word.
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We now perform  a sequence of T ietze transform ations on V q.

S T E P  1 : Add the relators yA) = W a~x y A) W a (a £ A, a -=̂ 1, y € y) to Vo since

these are consequences of the relators of Vo by Lem ma 3.2.4. Then we obtain a new 

presentation

Vi = ^ y (a) (a e A ) , x ;  sA) (a £ A), r, yA)2A') — z ^ y ^  (a, a ' £ A, a < a \  y , z  £ y ), 

x ~ ly ^ x  ~  y {aax) {a £ A, x £ x , y  £ y),yA ) =  W a~l y {1)W a (a £ A, a ^  1, y £  y ) ) .

S T E P  2 : Delete the relators sA) where a /  1 since these are consequence of the

relators sA)} x ~ 1y ^ x  = y (aax) (a €  A, x £ x , y £ y) and yA) — W a~l y ^ W a (a £

A, a /  1, y 6 y ). So after deletion we have ju st the relators sA) in the new presentation.

We can show it as follows.

We have the relators

j / “) =  Wa- '  yW Wa ( a / 1 ) ,

in V\.  Now let S A) £ gA), so the letters in SA) belong to yA) and sim ilarly let for 

a /  1, S ia) £ sA), so the le tters in SA) belong to yA). And by a conclusion of Lem m a 

3.2.4, we get

5,a ) =

Llere, since sA) is a relator in V\  then S'A) =  1 in G and then  the  above equation 

implies th a t S’A) — 1 in G. Therefore we can delete sA) w here a /  1 and then we have 

the presentation

V 2 =  ^yA) (a £ A), x  ; sA), r ,  yA^AO — zA')y(a) £  A, a <  a ', y , z  £  y ),

x ^ y ^ x  -  yA°A (a £  A, x £ x , y  £ y), j/A) -  W a~l y^l)W a (a £ A, a ^  1, y £ y)} .

S T E P  3 : Delete the relations x ~ l yA) x — y(aciA £  / t ,  ic £ x , y £ y ) from TL-

We m ust show th a t these are the consequence of the other relators of V 2 . It can be 

shown as follows.
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Take Wa 1 Wa = and conjugate it by x G x. Then we get,

x ^ W - 1 y [1)W a x = x ~ l y {a)x.

B ut W ax  represents actx in A,  so W ax  =  W aax in A.  (T hat is, W ax and W aax are equal 

modulo the relators r.)

Hence, modulo the relators r  we can replace the above by

W ^ - 1 !/(1> Waa, =  X - 1 y<“)

and we thus obtain

y(aax) x - 1y(a) X'

Therefore we have the presentation

V 3  =  (a €  A), x  ; s ^ ,  r , — z ^ y ^  (a, a' G A, a < a \  y, z  G y)  ,

j/M =  Wa~l y ^ W a (a €  A, a ±  1, y €  y ) ) .

S T E P  4 : Delete th e  generators y(a) where a /  1 and replace all y(a\  z^a'̂  by

W a~1 y ^  W a and W a ~l z ^  W a> (a, a1 G A  and a, a' ^  1 y, z  G y ^ )  in

y {°)z W) = ^ aV a)-

After deletion and replacem ent we have just the generators y ^ .  T hen we have the 

presentation

VA =  ( y (1), x  ; s*1*, r, [ W - 1 y <*> Wa , War ‘ z™ Wa,\ (a, a' g  A, a <  a', y, z g  y )  ) .

S T E P  5 : Delete the relators of the form [W~l y ^  W a , W a ~l W a*) (a, a' G

A, 1 <  a <  a ' , y , z G y) since these are consequence of the  relators of the  form 

, H T'-1 z ^  W a>] (a' G A, a' /  1, y , z  G y) and r. We can show it as follows.

For any a, a' G A  where 1 < a < a', take a relator

[ I V r 1 y ^ W a , W ar '  z ^ W a ' ] .
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Then conjugate it by W a, we get

[y{1) ■,WaW ; , l z ^ W a, W - \

This is equal to  some relator which is of the form

[y(1), W a, r l z M w a„],

in presentation 7N, since W a/ W ~ l — W a" in A, where a" ^  1. Thus we have the 

presentation

5̂ =  ( y (1), X ; s (1), r, [y(1) , W a~l z {l) W a] (a G A, a ^  1, y , 2 G y)  ) .

Note th a t, from now on, we will om it the superscripts (1) on relators in our pre­

sentation, so th a t Vs becomes

V 5 =  (y ,  x  ; s ,  r, [y , z W a] {a G A, a 1, y, 2  G y)  ) .

Now we will apply some reductions on the [y , Wa-1 z W a] (a G A, a /  1, y , z G y)  

relators from Vs- Note th a t the num ber of these relators i n ( W - l ) | y | a.

S T E P  6 : The set A \{1} can be divided into singletons {a} (a G A, a an

involution) and pairs {a, a -1 } (a not an involution). Let A+ be a choice of one 

elem ent from each pair {a, a -1 }. (Note th a t |A+ | =  |( |A | — 1 — m ).) Let In v  be the 

set of the  involutions in the group A.  Now let us delete the com m utator relators which 

involve elem ents in the set A \({1} U A + U Inv} ) ,  since these are consequences of the 

relators which involve elements in the set A+ U Inv .  It can be done as follows.

Let a G A \({1} U A+ U Inv} ) .  Let us take a relator [y , W ~ x z W a] (y, z G y ) ,  and 

let us conjugate it by W a. (Recall th a t W a is a word on x  representing a.) Then we 

get

[Wa y W - \ z ] .

The inverse of it is

l>, w aVw - %
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which can be w ritten  as

M w c T V r r 1]-

Thus, since W - 1 =  W a-< in A, then we get

[z, O U -.r'y^-,],

where a~x £ A +.

After deletion, we have the presentation

=  (y , x  ; s, r, [y , hha_1 * W a] ( a £  A + U In v ,  y , z £ y ) ) .

Now, we can still apply some reductions on the relators [y , W ~ l z  W a] (a £ 

A + U In v ,  y , z  £  y ). Note th a t, the  num ber of these relators is

i ( |A | -  1 +  m ) |y |2.

Let us choose an ordering yi < y2 < ■ ■ • <  yn of the elem ents of the  generating set y .

S T E P  7 : Delete the relators of the form [z , W ~ l y W a] (a £ I n v , y , z £ y , y <

z)  since these are consequences of the relators of the form [y , W ~ l z W a] (a £ I n v , y, z £ 

y ,  y < z). It can be shown as follows.

Let a £ I n v  and y, z £ y , where y < z. Let us take a rela tor [ y , z W a\, and 

let us conjugate it by W a. Then we get

[Wa y W - \ z ] .

T he inverse of it is,

l z , W a y W ~ 1].

B ut, since a £ I n v  then  we have W a — W " 1 in A.  So, we get

\ z , W ; l y W a \

as required.
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T hen we have the presentation

TV =  ( y ,  x ;  s, r ,  [ y , W a 1 z VEa] (a G A + , t/, z  G y ) ,  

[ y , 2 Wa] (a G I n v , y, z G y ,  y <  2) )  .

Now the num ber of relators [y , IT^-1 z W a\ (a € A+ , y ,2  6 y )  is |( |A | — 1 — m ) \ y  |2 and 

the num ber 

So, we have

2

the num ber of relators [y , Vf̂ -1 £ W a\ (ct G I n v , £/, £ G y ,  ^  is m |y |2 —

^ | y | 2( H - i  +  ^ )

com m utator relators in TV-

Therefore the Euler characteristic of the  presentation TV can be com puted as follows.

I Ttl
x(TV) =  1 — ( |x | +  |y[) +  |r | +  |s| +  -  |y |2 (|A | — 1 +  |^ | )

=  1 — (|x[ +  |yI) +  1 -  1 4- |r| 4- |s| +  -  |y |2 (|A[ — 1 -f ̂ - )

=  (1 -  |x| +  |r|) +  (1 -  jy| +  | s j )  -  1 +  i  | y | 2 ( |A| “  1 +  P [)

= x CPa) + xOPb) - 1 +  ̂lyl2 (1̂ 1 -  1 + ^|)

=  <5(A) +  S(B)  — I +  2  l y t  (1^1 — 1 +  j^j)

( since V a  and V b  are efficient presentation )

=  1 +  d{H2(A))  +  1 +  d(H2(B))  “ 1 +  2 l A  — 1 +  j^j)

=  d(H2(A)) +  d(H2(B))  +  1 +  i  | y |2 ( |A| -  1 +  ^ ) -

Note th a t, if I n v  =  0 then m  — 0, so th a t the Euler characteristic  of TV becomes

X(B  7 ) — d(H2(A))  +  d(H2(B))  -f 1 +  — (\A\ — 1) jy |2.

And then , by the assum ption |y | =  d(B)  = n and by equations (3.4), (3.5), we have

X(V 7) = 6(G).

Therefore TV is an efficient presentation for the group G ~  B  I A.
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L e m m a  3 .2 .5  Suppose that g =  cl(A) = d(Hi(A)) .  I f  ( t (Hi (A) ) ,  t ( Hi ( B) ) )  ^  1 then

d(G) — g +  n.

P ro o f .  Now, let us take the presentation V 7 for the group G. Since V 7 has g -j- n 

generators then  we certainly have

d(G) ^  g -T n.

So we ju s t need to show th a t g +  n ^  d(G).  To do th a t, we will use the fact th a t 

the m inim al num ber of generators of a group is greater th an  or equal to the m inim al 

num ber of generators of a quotient of th a t group, in particu lar, d(G)  ^  d(Gab). So, we 

will show th a t d(Gab) = g ~\~ n.

Now let us choose an ordering X\ < X2 < • • • <  xg of the elem ents of the generating 

set x.

The first homology group of G can be given as follows.

Gab =  ( y ,  x  ; s ,  r, [y , W '1 2 W a\ {a G A+, y , z  e  y ) ,

[y > W a-1  z  Wa] i a e  I n v , j / y  G y ,  y ^  z ) ,  [y, x) (y  G y ,  x G x ),

[is z] ( y , z  G y ,  y  <  2 ) ,  [a;, x'] ( x ,  X G X ,  X < x ' ) ) .

By applying deletion operations to  this presentation of Gab, we have th a t

Gab =  <y,  x  ; s, r, [y, z] (y, 2 G y ,  y < z ) ,  [ay z ' ]  (a:, x G x , a: <  a; '),

b ,  z]  ( y  €  y ,  s  G x )>

= Hi ( A)  ©

And so, by Proposition 3.1.10 and by the  assum ption ( t (Hi (A) ) ,  t ( Hi ( B) ) )  7  ̂ 1 , we 

have th a t

d(Gab) =  d(Hi(A))  +  d (H i(B )).

Also, by the assum ptions d( Hi ( A) )  — d(A)  — g and d( Hi ( B) )  — d(B)  =  n, we get 

th a t

d(G°b) = g  +  n,
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as required. □

3,3 E x a m p les  a n d  app lica tions

E x a m p le  3 .3 .1  Let us take the metacyclic group

B  =  (a , 6; aw , b \b a b ~ l =  a~l )

which has order 20. Then, by [38], H 2 (B)  =  S 2. So, we can see by a simple calculation, 

the above presentation of B  is efficient. After that, i f  we f ind the abelianization group 

H i ( B )  of  B  and then i f  we apply some Tietze transformations on the presentation of 

Hi ( B) ,  we get

Hi ( B)  = (a, 6; a \ b 2,[a,b\)

=  x S 2.

So, d ( t f i ( £ ) )  -  d{B) .  Then,

t ( H l ( B ) ) = 2 = t ( H 2(B)) .

Hence by Theorem 3.2.1, i f  A  is a finite group such that \A\ is even and 2 \ t ( H 2(A)) ,  

and i f  A  has an efficient presentation then B \ A  has an efficient presentation. Moreover, 

i f  A  has an efficient presentation on g — d(A)  = d(Hi (A) )  generators then B  I A  has 

an efficient presentation on d (B  i A)  =  2 +  g generators. 0

E x a m p le  3 .3 .2  Now, let

B  ~  (a , b ; a3,63, (a6)3, (a_16)3) .

By  [38], B  has order 27. And again by [38],

H2(B)  =  Z 3 X Z 3.

Then,

5(B)  = l + d{H2{B)} = 3.
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On the other hand, the Euler characteristic of  the above presentation is 1 — 2 +  4 =  3. 

Therefore B  has an efficient presentation on 2 generators. Also, the first homology 

group of  B  is

Hi ( B)  ~  (a,b;  a3,63, (a6)3, (a -16)3, [a , 6]).

But, by applying some deletion operations to this presentation of H\ [ B) ,  ive have that

H1(B)  = ( a , 6;  a3,63, [a,6])

=  Z 3 x Z 3.

So, d ( Hi ( B) )  — d{B) .  Therefore

t ( H l {B))  = Z = t {H2{B)).

Then, again by Theorem 3.2.1 and Lemma  3.2.5, i f  A  is a finite group such that \A\ is 

odd and  3 | t ( H2(A)) ,  and i f  A  has an efficient presentation then B  I A  has an efficient 

presentation. Moreover, i f  A  has an efficient presentation on g = d ( A ) — d(H[(A) )  

generators then B  I A  has an efficient presentation on d (B  I A)  =  2 +  g generators.  0

L em m a 3.3.3 I f  G is a finite p-group, then

$(G ) =  G ' G f

where $ ((?) denotes the Frattini subgroup.

Proposition  3 .3 .4  (Burnside Basis Theorem ) Let X  be a subset of  a finite p- 

group G. Then X  generates G i f  and only i f  the cosets : x G X  } generate

G/A>(G). Every minimal set of generators for G has the same number of  elements.

Proofs of Lem m a 3.3.3 and Proposition 3.3.4 can be found in [35].

Now we can prove the following Proposition, by using these two above well-known 

results.

Proposit ion  3.3.5 Let B  be an arbitrary finite p-group. Then

d(B)  =  d(Hi{B) ) .
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P ro o f .  Let d( B)  = n, where n 6 Z"*\ Since H\ ( B)  = B / B'  then  we ju s t need to  show 

th a t d ( B / B f) =  n.

By Lem m a 3.3.3, we have th a t

§ ( B )  = B ' B V D B f.

So there is a well-defined epim orphism

B I B '  — >

and so, d ( B j B ' )  ^  d(B/<&(B)). Then by the Burnside Basis Theorem , d(B/<$>(B)) — 

d(B) .  In other words, d ( B / B' )  ^  d(B) .  On the other hand, by the fact th a t the 

m inim al num ber of generators of a group is greater than  or equal to the m inim al 

num ber of generators of a quotient of th a t group, then we have th a t d ( B ) ^  d ( B / B 1). 

Therefore,

d(B)  =  d { B / B ’) t

as required. □

C o ro lla ry  3 .3 .6  Let A, B  be finite p-groups. Suppose B  has an efficient presentation 

on d( B)  generators and A  has an efficient presentation. Then B  I A  has an efficient 

presentation. Moreover, i f  A  has an efficient presentation on d(A)  generators, then 

B  I A  has an efficient presentation on d (B  I A) generators.

P ro o f .  It is given th a t they have efficient presentations. And since they are finite 

p-groups then  by Proposition 3.3.5, d(B)  =  d(Hi ( B) ) ,  and their homology groups 

are p-groups, as well. So p divides f(Lf2(A)), t ( H2(B) )  and t ( Hi ( B) ) .  Therefore by 

Theorem  3.2.1, B\  A  has an efficient presentation, and then  by Lem m a 3.2.5, d ( B \ A )  = 

d( B)  +  d(A) ,  as required. □

C o ro l la ry  3 .3 .7  Let B  be a finite p-group and suppose that B  has an efficient presen­

tation on d{B)  generators.

I f  \A\ is finite and p \ t ( H 2 (A))  then B  I A  has an efficient presentation.
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It can be proved as Corollary 3.3.6.

T h e o re m  3 .3 .8  Let A  be a finite abelian p-group, and lei B  be a finite p-group which 

has an efficient presentation on d(B)  generators. Then G =  B  I A  has an efficient 

presentation on d (G ) generators.

Again, the proof of this theorem  can be obtained by using a sim ilar m ethod to th a t 

em ployed in the proof of Theorem  3.2.1, in conjuction with Lem m a 3.2.5.

C o ro l la ry  3 .3 .9  Let A i, A 2, • ■ ■ , A r, ■ • * be finite abelian p-groups, and let B  be a finite 

p-group. Let

Go = B ,

Gi = Go iI A

g 2 II I A

Gr — Gr—i I A r.

I f  B  has an efficient presentation on d{B)  generators then Gr has an efficient presen­

tation on d(Gr) generators.

P ro o f .  We will use induction on r.

i ) Let r  =  1. Then the result holds by Theorem  3.3.8.

i i ) Let r  >  1 then  Gr — Gr- i  I A r. By the induction hypothesis, Gr_i has an 

efficient presentation on d(Gr- 1) generators. Moreover, G,._i is a p-group. Since A r is 

an abelian p-group then  again, by Theorem  3.3.8, Gr has an efficient presentation on 

d(Gr ) generators. □
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C hapter 4

T he p-Cockcroft property o f the  

sem i-d irect products o f m onoids

4.1 In tro d u c t io n

In th is chapter we introduce the definition of the sem i-direct product of any two 

monoids, a generating set for this product and a presentation of this sem i-direct prod­

uct on the given above generating set, and then  we give a trivialiser set (see C hapter 

1) of the Squier complex of this presentation, as found by Wang (see [60]). Then we 

give necessary and sufficient conditions for the standard  presentation  of the  sem i-direct 

product of any two monoids to  be p-Cockcroft, for any prim e p or 0. Moreover, we 

give some applications of this to the direct product of two monoids and the sem i-direct 

product of two finite cyclic monoids.

4.2 M o n o id  p re se n ta t io n s

4 .2 .1  H om om orph ism s o f m onoids defined by p resen ta tion s

Let V  be a monoid presentation. We will give necessary and sufficient conditions for 

a function from the generators of V  to a monoid M  to induce a hom om orphism  from 

the  monoid presented by V,  say M ('P ), to  the monoid M.
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Let M  be a monoid, and let x  be a set. Consider a function

if : x M, x i— > m x . (4.1)

For any non-em pty word W  on x , say W  =  x \ x 2 ■ ■ • x r, we define

' i p ( W)  =  m Xlm X2 • • • m Xr (product in M) .

Also, if W  is tire em pty positive word, we define

$ ( W )  =  1M.

It is clear th a t if is a hom om orphism .

L e m m a  4 .2 .1  Let V  =  [ x ; r] be a monoid presentation. A mapping if, as in (4.1), 

induces a homomorphism

'(/A : M ( V )  — > M , [x v m.

if and only i f i f ( R +) =  ip(R-) ,  f or  all R  E r.

P ro o f .

Suppose i f ( R+) = i f ( R- )  for all R  6  r. Let us consider the function

A* : M ( V )  — > M, [W]v  ► i f {W) .

We m ust show th a t this is well-defined. So suppose th a t [Whjp =  [LW]^, where W\,  W 2 

are positive words on x.

Special case :

The positive word W 2 is obtained from the positive word W\  by applying a single 

elem entary operation [see C hapter 1], So Wi  =  U R EV , W 2 = U R - SV  for some positive 

words U and V  on x , R  G r  and e =  ±1. Then we have

0(W i) -  f f ( UReV)

=  m ) H R ^ ( y )

=  i > ( U W ( R ^ ) W )

since ip(R+) = V'l R - ) by assum ption 

= i>{UR-cV)

= V’(W j).
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General  case :

T here exists a finite sequence of positive words on x

Wi =  Uu  ■■■, Un = W 2,

where Ui+i is obtained from Ui (0 ^  i ^  n — 1) by an elem entary operation over 

monoids. T hen by the special case, we have

=  ip{Ui).

So

V;(bfh) -  iP(U0) =  ■ ■ • =  =  $ ( W 2),

as required.

Also ip* is a homom orphism:

[W2}v ) =  M [ W iW2]p )

= ^ ( W i W r i

since “0 is a hom om orphism

=  M W i \ v M w 2 \ v

Moreover, for all x  € x

ij)* [z] =  i>{x) =  m x.

Conversely, suppose th a t ip* exists. Let R  E r, w ith R + — XiX2 - - - x ni hL — 

x^x^- ' - x ' k  (xi,  x'j C x , 1 ^  i ^  n, 1 ^  j  ^  k).  So [/£+]■? =  [&-]?> th a t

[x\X2  * • • £n] =  [x \ x>2 ■ ■ ‘ 43* Then

[^l] M  • • * [xn] = [43 [x'2] • • • [x'k] ,

=> ip*{[xx] [x2] • • • M )  =  V 4I43 [43 • • • [41)

=S> m Xlm X2 • • • m Xn = m x<mx>2 • • ■ m x>k

since [x]v  m x and ip* is a hom om orphism  

=>■ ip(R+) =  ip(R„),
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as required. □

Let

M a t n( h +) — {M  : M is a n x n -m atrix  w ith non-negative integer entries}.

This is a monoid under m atrix  m ultiplication where the identity  elem ent is the n x n 

identity  m atrix .

E xam ple  4.2.2 Let V  — [x, y ; x 2y3 = yx] be a monoid presentation. Let us choose 

a map

ip : { x , y }  — y M a t 2{lH),  x i—4 m u y m 2,

where

Thus, since ip(x2y 3) = ip(yx) then, by Lemma  4.2.1, ip induces a homomorphism  

i p * : M ( V ) — y M a t 2(%+), \x\v  i— > m u \y]v  i—4 m 2.

0

E xam ple  4.2 .3  Let V  be as in Example 4.2.2. Let us choose a map  

xp : { x , y }  — y M a t 2( Z +), x  >— y y i— y m 2,

where

Here, since ip(x2y 3) ^  xp{yx) then ip does not induce a homomorphism

1 0
and m 2

r
0 1

0 0 0 0

1 1 1 0
and m 2 —

1 1 0 0



4 .2 .2  P resen ta tio n s o f  given m onoids

D e fin it io n  4 .2 .4  Let M  be a monoid, and let m  =  { m x : x E x} be a generating set 

for  M . We say that a presentation V  = [x; r] is a presentation of  M  on the generating 

set m , i f  the mapping

if : x  — M, x  i—  ̂ m x

induces an is o m o rp h is m

if* : M ( V )  —  ̂ M, [x]v  i—  ̂ m x.

E x a m p le  4 .2 .5  (F re e  a b e l ia n  m o n o id s )  Let the monoid M  be Z +n. Recall that 

Z +n consist of  all n-vectors v ~  (ui, i>2, • • •, vn) where u i , - - - , u n are non-negative 

integers. This is a monoid under vector addition where the identity element is 0 =  

(0, 0, ■ ■ •, 0). Then, Z +n is generated by the elements irii =  (0, 0, • ■ •, 1, 0, • • • , 0) where

the integer in the i th position is 1 and all other entries are 0 (1 ^  i ^  n). Then

V  =  [xi (1 <  i <  n) ; XiXj = XjXi (1 <  i < j  ^  ?z)] (4.2)

is a presentation of  Z +n on the set {mz- : 1 i ^  n} .  ( The proof of  this will be given 

later in this chapter.) <>

We now discuss f in i te  cy c lic  m o n o id s . Some of this m ateria l may also be found 

in [32] (see “Monogenic sem igroups” ).

Let M  be a finite cyclic monoid of order k > 1 , generated by m  say. Then

1, ?n, m 2, ■ • • , m k

all belong to M .  Since there are k +  1 elements in this list then the  elem ents cannot 

all be d istinct. So there exists 0 ^  p < q ^  k such th a t m p =  m q.

L e m m a  4 .2 .6  I f  m p =  m q in M  with 0 ^  p < q k then q = k.

P ro o f .  F irstly, we prove by induction on n th a t m n = m a^  for some 0 ^  a (n )  ^  q — 1.

67



© Let 0 ^  n ^  q — 1. Then take a (n ) =  n.

© Now suppose n ^  g, ancl assume inductively th a t m 1 =  m a^  for some 0 T a(t)  ^  

q — 1, for all t <  n. Let us w rite n =  A  ̂+  /./ where A ^  1, 0 p < q. Then

m n = m A9+M =  m Xqm M =  (m q)xm 91 

=  (?np)Am /i (since m p — m q)

=  m Apm M =  m Ap+#i.

By inductive hypothesis, since Ap +  p  < n then m Ap+/i =  m a(Xp+l^  for some 

0 ^  a(Xp  -f- p) ^  q — 1. So, m n — m a(Xp+A . Then take a(n )  =  a(Xp  d- p). Hence 

we get

m n = m a^  for some 0 T a(n)  ^  q — 1.

This implies th a t M  =  {1, m , m 2, • • •, 7u 9-1}. B ut since \M\  — A: this means th a t k 

m ust be equal to q.

Hence the result. □

We deduce from this lem m a th a t

i) we have m k = m l for some 0 ^  / <  k,

i i ) the elem ents of M  are 1, m , m 2, • • • , m fc-1 and since the  order of M  is k then  

these elem ents m ust all be d istinct,

Hi) the positive integer I in i) is uniquely determ ined by Af, for if there exists V £ Z + 

(/' 7  ̂ /, 0 ^  I' < k)  such th a t m 1' — m k then this gives m l> — m \  which contradicts 

the  above lemma.

L e m m a  4 .2 .7  A presentation for  M  on the generating set {m} is

V k,i = [a: ; x k — x l] . (4.3)

tjj
P ro o f .  Let us consider the m apping x \— > m.  Then, by Lem m a 4.2.1, we get an 

induced hom om orphism

i/>* : M(Vk,i)  — > M,  [a;]pfe[1 i— )• m ,
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since f ; ( x k) = by i). Note th a t ?/>* is onto since m  £ Imij)*. Clearly Vk,i is a

com plete rew riting presentation, and the irreducible elem ents are

1 , x, x 2, • • • , x k~: .

Hence the  distinct elem ents of M (V k f )  are [1], [a;], [a;2], • • • , [a:*-1 ], and then \M.{Vk,i)\ — 

k. Now if were not injective then  |/m 0*j < \M(Vk,i)\ = k. B ut this gives a contra­

diction. So '0* is injective, and is thus an isomorphism. □

We have now proved th a t any cyclic monoid of order k is isom orphic to M{Vk,i)  for 

some 0 / <  k.

Now, for any 0 ^  / <  k, M(Vk,i ) is a cyclic monoid of order &, generated by [x\-pk r 

We then  deduce from this and the previous paragraph th a t, up to  isom orphism , the 

cyclic monoids of order k are

M(Vk,i)  where / — 0 , 1 , • • • , & — 1 .

L e m m a  4 .2.8  I f  I ^  V then M(Vk,i)  ^  M(Vk,i>).

P ro o f .  Let us assum e th a t I <  and consider the cyclic group C  of order k — /,

generated by c. T here is a hom om orphism 7  from M(Vk,i)  onto C , given by [x\T>k, c.

Now if there were an isomorphism

w : M ( V k,v ) — > M ( V k,i)

then the com position 707 say 7 ' would give a hom om orphism  from  M(fPk,i>) onto C.  

Hence {[x\vk it) would have to be a generator, say c of C. B ut since [x]y>k =  [x ]vkl, 

then we would have

ck =  =  7 '( M 7 „ )  =  7

so <fk~in> — 1 in C. B ut since k — lr < k — I this contradicts the  fact th a t the order of

c m ust be k — I.

Hence the result. □

Let us denote M(fPk,i) by M ^/. Sum m arizing all the above, we have
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T heorem  4.2.9 For a fixed k >  1 the monoids (0 ^  I f  k — 1) are cyclic of  

order k, and are pairwise non-isomorphic . Any  cyclic monoid of  order k is isomorphic  

to Mkj fo r  some I.

Let us consider the elem ents of M^,i more closely. Recall th a t they are the  equiva­

lence classes [ad] (0 ^  i < k).  For 0 ^  i <  /, the equivalence class [ad] ju s t consist of 

the single elem ent ad. However for i ^  I, the equivalence class [ad] consist of infinitely 

m any elem ents which are defined by

M  : q- =  0 ,1 ,2 ,-  - -}.

E xam ple  4.2 .10 Let us take the monoid  Mg^. The equivalence classes are

[*°] -  {1}, M  M  =  i * 2}, 

k 3] =  j> 3, ^ 5, • • ■}, [̂ ,4] =  {^4, ^ 6, £8, • • •}•

0

Suppose m, n (m ^  n) belong to the same equivalence class [ad]. If i <  I then 

m  =  n. Suppose i ^  /. Then we m ust have

m  — i -\- q{k — I) and n  — i +  r (k  — /),

where g, r  are non-negative integers. There will then be a positive path  (th a t is, a 

monoid picture w ith all discs labelled by the relator x k =  x l w ith sign + 1) in the 

Squier complex from x m to  ad of length q, and similarly from x n to  ad of length r. This 

can be illustrated  geom etrically as follows.
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P.m

q positive 
dies

r positive 
discs

k

X

Therefore P f jP j  is a path  from x n to x m, and

expfl(PJPT 1) = r - q ,

where R  is the  relator x k =  x l. Since r  — q = —-------  then we have
k — I

expR(P nP m ) =  — — .

Note th a t when i <  I ( th a t is, m  — n) we have the em pty p a th  from x n to  x m. 

Therefore, we have

L em m a 4.2.11 Suppose x m and x n (m  T n) are in the same equivalence class. Then 

there is a monoid picture Q „jm with r(Q „jm) =  x n, r (Q njTn) =  x m and

exp

R em ark 4.2.12 Actually, one could take P n to be of the form  D„imPmj where B>nim is 

a path from x n to x m, so that P ^P ” 1 is freely equal to Dnjm.

E xam ple  4.2.10 (continued) Let us choose m  = 6 and n =  8 . Notice that x 6, x 8 are 

in the same equivalence class [.t4]. Then we can show that the picture P sP g 1 is freely 

equal to IDg.e as in the following figure.

71



X'

IPs

delete an

inverse pair

operation

P,6

0

One can give a trivializer set of the Squier complex of as follows.

L e m m a  4 .2 .1 3  Let M  be the finite cyclic monoid with the presentation Vk,i, as in 

(4.3). Then a trivializer set of  the Squier complex FfiPhfi is given by the pictures ; 

(1 ^  i ^  k — 1), as in Figure 4.1.

'k-
X

Figure 4.1

P ro o f .  Since Vk,i is a com plete rew riting presentation then, by “overlapping” , we can 

obta in  the pictures in Figure 4.1, as required. □
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4 .2 .3  E ncl o m or p his m s o f  m onoids

A hom om orphism  from a monoid to itself is called an endomorphism.  Let M  be a 

monoid. T hen the set of all endom orphism s of M  form a monoid under com position, 

where the identity  elem ent is id : M  — > M , and we denote this monoid by E nd(M ) .

Let V  — [x ; r] be a presentation of M , tha t is, M { V )  =  M .  For each x E x , let us 

consider a m ap

£ : x _ _ * M ( n  X ^ [ w x]p ,

where W x is a positive word on x. In order to show th a t this induces a hom om orphism , 

we m ust use Lem m a 4.2.1. For any positive word V  on x , say V  =  X1 X2 • ■ ■ x n, let

£ 0 0  -  [WX1W X3 • • • W Xn]P (product in M (V ) ) .

Then the  m ap £ induces a hom om orphism  if and only if

((R+)  =

for all R e  r.

E xam ple  4.2 .14 Let M  be Z +n, and let M be an n x n-matrix with non-negative 

integral entries. Then we get a mapping

— ► Z +n, v 1— ► uM ,

where v — (ui, t?2, ■ • •, un) as in Example  4.2.5. Actually, E E n d (Z +n) and ipMi Vjm2 ~  

^ M i M 2 • We should note that, i f  <f E E n d ( X +n) then there exists a matrix  M  (depending 

on f )  such that cj> — ifM.

By the mapping

M  1— y ^Mi

we get an isomorphism from the monoid M a t n(Z +) to the monoid E n d ( Z +n). 0 

E xam ple  4.2.15 Let M  be a cyclic monoid generated by m .
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Case 1 : Suppose M  is a cyclic monoid of order k. Then, by Lemma  4.2.7 and 

Definition 4.2.4, Mk,i == M  where 0 ^  I ^  k — 1 . By Lemma  4.2.1, the mapping

x i— [ad] (0 ^  i < k)

induces a homomorphism

ipi : M kJ —  ̂ Mk, i

since [aW] =  [ad4] in Mu,i- Moreover, i f  ip : Mk,i — > Mkj  is any endomorphism then we 

must have — [ad] fo r  some  0 ^  i < k, so ip and ipi agree on the generating set

{[x]} of Mk,i and so are equal. Hence ip0, ifti, ipk-i w e  the only endomorphisms  

of Mk,i- Since these endomorphisms take different values at [x] then they are distinct. 

Hence

E n d ( M kj)  — {fii : i =  0 , 1, ■ • • , k -  1}.

Case 2 : Suppose M  is an infinite cyclic monoid. This means we are ivorking on 

Z +n inhere n = 1, as in Example 4.2.14. So we have

M a t f i I f f )  ^  E n d { M ),

that is, h + =  E n d ( M ) .  0

We now consider some one-relator monoids.

E xam ple  4.2.16 Let M  be the one-relator monoid with the presentation

V  =  [sci, x 2 ; Xixl  =  •

In [21], it has been proved that M  has no endomorphism other than the identity homo­

morphism.  0

In the next three examples non-trivial endom orphisms will be introduced for some 

one-relator monoids which will be used later in this thesis.

E xam ple  4 .2 .1 6 .(a) Let M  be the one-relator monoid given by the presentation 

V  -  [xi, x 2 ; X1X2X1 — x 2x ^ \ . By Lemma  4.2.1, a mapping

£ : { x i ,x 2} — ► M ( V ) ,  xi 1— > [adj, x 2 1— > [x2],
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where i £ Z +, induces an endomorphism i f  and only i f

[ x \ x 2x\ ]  — [x2x k%].

This equality always holds as can be shown as follows.

[ x [ x 2x\]  — [x \ ~1x i x 2X i x \ ~ 1] =  [x \ ~1x 2x kx \ ~ l ] (since X i X 2X\  =  x 2x\ )

— [x \~2x i x 2x i x lT 2x \ ]  ~  [x%f 2x 2x \ x %f~2x\] (since x i x 2xi  — x 2x k )

i-j' _  r ki]=  [x[ lX2Xkl X \  } -  \x2 Xf],

0

E xam ple  4 .2 .1 6 .(b) Let M  be given by the presentation V  — \x\, x 2 ; x kx 2 — £2^1] 

Again, by Lemma  4.2.1, a mapping

£ : { x i , x 2} ~~~> M ( V ), xi  1— > [z\], x 2 1—  ̂ [x32],

where i, j  £ Z +, induces an endomorphism i f and only i f

[xkf x J2] =  [xJ2xklf

Indeed,

[xklx{] =  \_xkl~~k x kx 2xff  ̂ ] =  [xkl~kx2x kx{~1] (since x kx 2 =  x2x k)

=  [x kl~2kx kx 2x kx2x{~2] =  [x\l~2kx2xki x 2x l[ x f f 2] (since x kx 2 =  x 2x k)

„  £

[ x i x i l

x xx 2x x ’ ] — [x f  x 2x kx x } ] (since x kx 2 — x 2x \ )

0

E x a m p le  4 .2 .1 6 .(c )  Let M  be given by the presentation V  =  [.Ti, x 2 ; ^ 1^2 — x 2x kx\  

As  previously, by Lemma  4.2.1, a mapping

€ : { x u x 2} —  ̂ M ( V ), x 1 1— y [x\], x 2 1— > [x2],
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where i £  Z +, induces an endomorphism i f  and only if

[x\x2] = [x2x kf].

This always holds as can be shown as follows.

[x\x2] = [x\~1x ix 2} = [x\~lx 2x k\ (since x xx 2 — x 2x \ )

=  [xlf 2x i x 2x\] = [x\~2 x 2x kx k] (since XiX2 — x 2x k)

r i — (i— 1) k An r k k~\ r k(i—l)= [a?! 1 *x2x l ■ ■ ■ x x\ = [x\x2x 1 • * • x r\ =  [xix2x f

— [x2x kx k̂ 1 (since x \ x 2 — x 2x k)

ki 1

0

4,3 S em i-d irec t p ro d u c ts  of m ono ids

4.3 .1  T h e defin ition

Let A  ancl I\ be monoids, and let us take a monoid hom om orphism

0 : A  — y E n d ( h f  a \— y 6a (a £  /l) , 1 t— > i d ^ nci(K)- (4-4)

T hen we can define the sem i-direct product D of K  by A, as follows.

The elem ents of D  are all ordered pairs (a, k) where a £ A,  k £ K  and the  product

is given by

(a, k ) (a \  k ’) = (aa1, (kdat)k'). (4-5)

By checking the monoid axioms, we can show th a t D  is a monoid as follows.

а) T he closure holds by (4.5).

б) T he associativity:
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Let <ii, a2, a 3 G A  and /c2, &3 6  K.  Then we will check w hether the  equality 

(oq, Aq)[(a2, &2)(a3, &3)] =  [(&i, &i)(a 2, ’̂2)](«3, ’̂3)

holds. Let L H S  and R H S  be the left hand side and the right hand side of this 

above equality, respectively. Then we get

L H S  =  {au k l )(a2a3, ( k 28a3)k3) hy (4.6)

=  (a i(a 2a 3),(&i $a2a3) ( k 29a3) h )  by (4.5)

=  {aia2a3  ̂ ( k i 0 a2Oa3)(k 2 Oa3)ks) since 9 is a hom om orphism ,

and

R H S  =  (a ia 2, (ki9a2)k2){a3, k3) by (4.5)

=  ((a ia2)a3, (((k l 9a2)k2)9a3)k3) by (4.5)

=  (a i« 2a 3, {ki9a29a3)(k29as)k3) since 9as is a hom om orphism .

So, the associativity holds.

c) The i d e n t i t y :

Let 1a and l /v- be the identity  elements of A  and K ,  respectively. Then the 

identity  elem ent of D is (1a, 1a')- T hat is, for all (a ,k )  G D , we need to show 

th a t

(1a, l/r)(« , k) = (a, k)  = (a, k ) ( l A: I k ) .

First of all, we get

(In,  I k )(a, k) =  (1 Aa, (1 /<-0a)&),

by (4.5). Now, since 19a : H  — > K  (a G A)  is a hom om orphism  then  9a m aps the  

identity  elem ent of K  which is I k  to  itself. So, (1 K&a)k =  fc for all k G K.  Thus, 

(1 Ati, (U A )& ) =  (a,/c).

On the  other hand, we get

(a, &)(1a , 1/v) =  («1a ,(A;(9i a)1 ^ ),
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by (4.5). Since W G A  then $iA G E n d (K ) .  Furtherm ore, since 0iA = id,End(K) 

then  $iA is the identity  homom orphism  of K.  Then, for all k G A", kOiA = k. 

Thus, (a lA , (kQiA) l K ) =  {a,k).

Therefore A is a monoid.

R e m a r k  4 .3 .1  For any (a, k)  G D where a G A and k G K , we have

(To see this let us take (a, 1/^)(1J4, k). Then, by (4.5), we get (aW , (l/c# iA)k).  Since 

&iA is the identity  hom om orphism  and 1# is the identity  elem ent of K  then we get 

(af k),  as required.)

4 .3 .2  A  gen erating  set for D

Let us choose generating sets

k =  {ky : y G y} and a  =  {ax : x G x} 

for the monoids K  and 4 ,  respectively. Then the set

generates D.  T h a t is to  say, any elem ent in D, say (a, k) where a G A, k G A", can be

w ritten  as a product of some elements from the set d. We need to  show th a t

(a, k) — did2 "  - dr where d{ G d, 1 ^  i ^  r.

Since a  generates A  and k generates A", we have

(a, k) = ( a ,  1 a - ) ( 1 a ,  k ) . (4,6)

d  =  {(!,&„) (■j  G y ), (ax, 1) (x G x)}

ci — aXicix2 ■ • ■ aXm and k ■— /cyi • • • kyn , (4.7)

where Xi G x , yj G y, 1 ^  i ^  m, 1 ^  j  ^  n and m, n ^  0.
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Thus,

(a,/c) =  (a ,l) ( l ,f c )  by (4.6),

=  (aXlaX2 ■ ■ • aXm, l ) ( l , k yiky2 • • • kVn) by (4.7),

=  (aXl, 1 )(clX2 ,1) • • • (aXm, 1)(1, kyi)(1, kV2) • • • (1, kyn) by (4.6) and 

by the fact th a t 9ax, maps the identity elem ent of K  to itself,

and then, since each of these pairs is in the set of d  then we get w hat we required.

4 .3 .3  A  p resen tation  for D

Let V k  =  [ y ; s] and Va  =  [ x ; r] be presentations for K , A  on the generating sets k, 

a, respectively. Then, by Definition 4.2.4, we have isomorphism s

; M ( V k ) — > K-, [y}VK 1— > k y

^A.k : M ( V A) A,  [x ]Va ax

induced by the functions

: y  — /i, y i—  ̂ ky,

ip a ' x  A, x i— > ax.

For each y G y, x € x, let y6x denote a positive word on y  representing the elem ent 

kyOax A , th a t is '4}Kit[yOx]'pK =  ky0ax. Let Tyx denote the relator yx  — x(yOx), and 

let t be the set of all relators of the form Tyx (x £ x, y £ y).

T he proof of the following theorem  can be found in [55].

T h e o re m  4 .3 .2  A presentation for  D on the generating set d  is given by

V D = [x, y ; r , s, t ] . (4.8)

R e m a r k  4 .3 .3  I f  W  =  J/1J/2 ' * •Vm is a positive word on y  then for  any x £ x , we 

denote the positive word (yi&x){y2 @x) ‘ ‘ * {Vm^x) b y W 9 x . I f U  = X\X2  * • • x n is a positive 

tuord on x  then for  any y £ y , we denote the positive word (• • • {{y9X]) B X2)9X3 ■ ■ -)9Xn) 

by y9u, and this can be represented by a picture, say Aû y , as in Figure 4.2.
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A  U,y

xi

Figure 4.2

4 .3 .4  Trivializer o f  th e Squier com plex V ( V d )

Let X a  and X k  be triviabser sets of V ( V a ) and T>(Vk )-> respectively.

Let S  £ s, x  £ x. Since [S+9X\y> — [S-9x\p , there is a non-spherical picture, say

®S,:r5 over V k  w ith

t{y&s,x) — S+8X and t (MSiX) = S - 9 X.

Note th a t, there are various MsfX pictures which can be drawn.

Let R  £ r , y £ y . Then we get non-spherical pictures A/?+;y and Ajr _ )J/, respectively, 

as in Figure 4.2. We should note th a t, these pictures consist of only Tyx discs (x £ x). 

Moreover, since [y9R+]pjr =  \y9fiJ\p , there is a non-spherical p icture, say over

V k  w ith

L(^y,eR) ~  y$R+ and r (C y,y J  =  yOR_ .

We should also note th a t there are various pictures which can be drawn.
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Our aim  is now to  construct spherical monoid pictures by using these above non- 

spherical pictures.

Let us take a single Bsia; picture. If we process the initial positive word of BsiiC, 

which is S +0X, and the  term inal positive word of B ^ ,  which is S - 9 X, by a single avarc, 

then  we get some Tyx (y G y) discs at the top (and at the bottom ) of the Bs,x picture. 

Then we have a new picture containing a single Bs)iC picture and some Tyx (y G y) 

discs. B ut for this picture, we get the positive words S+x  (at the bottom ) and S -X  

(at the top), respectively, th a t is, it is a non-spherical picture. So, to  get a spherical 

monoid p ic ture  from this non-spherical picture, we m ust fix a single F-disc on the top 

(or bo ttom ) of this non-spherical picture. Then we have a spherical monoid picture, 

call it !Ps,a;, as shown in Figure 4.3.

Now let us take the pictures A#+iy and . We can combine these two pictures

by

@ fixing a single / 2-disc between them , and then

@ fixing a single CytgR p icture between the positive words y@R+ and y0R_ , respec­

tively. Then we get a new picture, and for this picture, we get the  positive words yR+  

(at the top) and yR~  (at the bottom ), respectively. To get a spherical monoid picture, 

we m ust fix a single R ~disc on the top (or bottom ) of this picture. T hen we have a 

spherical monoid picture, say as in Figure 4.3.

Let

C i =  { F s ,x ■ S  G s, x G x} and C 2 =  {Pn,y : R  G r , y G y}.

The proof of the following theorem  can be found in [60].

T h e o re m  4 .3 .4  Suppose that D ~  K  x# A  is a semi-direct product with associated 

presentation V d ,  as in (4-8). Lei X a  a n d X x  be trivialiser sets o f  the Squier complexes 

V ( V a ) and V ( V k ) ,  respectively. Then a trivialiser set o /T ){Vd)  Is

X a  U X k  U C i  U C 2 . (4 -9 )

Let us denote the  set (4.9) by X d -
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^  S,x P R,ij

-1

Figure 4.3

4 .3 .5  D efin ing  a hom om orphism  9 : A  — > E n d ( K )

Suppose th a t K  and A  are given by presentations V k  — [y ; s] and Va — [x ; r], 

respectively. We have seen in Section 4.2.3 how to obtain  endom orphism s of K . Let 

us suppose th a t, for each x E x , we have obtained an endom orphism  of K  in this 

way. So we have a m apping

x  — > E n d ( K ), x i— > ipx-

In order to show th a t this induces a hom om orphism

9 : A  —E End(I<),
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we m ust use the basic Lem m a4.2.1. For any positive word W  on x , say W  — x i x 2 • • • x n, 

let

ipw  = i>x1̂ x 2 ' ' '  ^ x n (product in E n d (K ) ) .

Then the above m ap induces a hom om orphism  9 if and only if

i>R+ =  tl>R-,

for all R  E r. Since two endom orphism s of K  agree if and only if they agree on a 

generating set, we m ust show th a t

[y]f>R+ =  k M R ->

for all y E y , R  E r.

E x a m p le  4 .3 .5  Let K  be Z +n. Let us consider the standard presentation (4.2) o f Z +n, 

and then let y  be the set of  generators and s be the set of  relators of  this presentation.  

Then P k  =  [y ; s] becomes a presentation of  the monoid  Z +n.

In  Example  4.2.14, lue showed that M a t n( Z +) ■= E n d ( Z +n). So the endomorphism 

(x E x) will be f>mx for  some matrix M ^. For any positive word W  ~  X\X2 ■ • • x n 

on x , let M w  be the product M a7lM a72 • * • of the matrices , • • •, . Then the

mapping x e—4 {x F x) induces a homomorphism

9:  A  — ► E n d ( Z +n)

if  and only z /M # + =  for all R  E r . 0

Let us give a specific exam ple of this as follows.

E x a m p le  4 .3 .5 .(a ) Let K  be the free abelian monoid rank 2 with the presentation 

Pl< = [ill, V2 ; V12/2 — J/2S/1] as in (4-2), and let A  be the one-relator monoid with the 

presentation Pa  — [24 , £2 ; x \ x 2 = x 2x\].

Let us take two matrices M Sl =
1 2 2 5

and M.T2 =
0 1 0 1

. Thus , since

=  M jjM j,! then the mapping x\  1— V x 2 1— > induces a homo­

morphism 9 : A  — > E n d ( Z +2). Q



By the  following exam ple, we define a hom om orphism  from  a finite cyclic monoid 

to  the  endom orphism  monoid of another finite cyclic monoid.

E x a m p le  4 .3 .6  Let K  and A  be two finite cyclic monoids with the presentations

'Pk = [ y ; y k =  y l] , V a  = [ x ; x^  =  x A] , (4.10)

respectively, where I < k and A < (i (see Lemma  4.2.7). Let ifi (0 ^  i < k) be an 

endomorphism of  K  (see Example 4.2.15, Case 1), Then we have a mapping

x  — y E n d ( K ), x i—-> ipi.

By  Lemma  4.2.1, this induces a homomorphism

9 : A  — y E n d ( K ), x \— y ifi

if  and only if

€  = •

Since i f f  and i f f  are equal i f  and only i f  they agree on the generator y of I\ , then we 

must have

[ < / ] - [ / ] •  (4-11)

4.4 T h e  p-C ockcroft p ro p e r ty  for sem i-d irec t  p r o d ­

u c ts

4.4 .1  T h e general theorem

T h e o re m  4 .4 .1  Let p be a prime or 0. Then the presentation V d , as in (4.8), is 

p-Cockcroft i f  and only i f  the following conditions hold.

(i) V A and V k  are p-Cockcroft,

(ii) exp (S)  ~  0 ( mod p) for  all S  E s, y € y ,
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1, S o - S
(Hi) exp5o(®5iX) =  < (mod p) for all S 0, S  £ s, x £ x,

I 0, otherwise

(iv) exp5(CypR) =  0 (mod p) for all S  £ s, y £ y , R  £  r,

(v) expTyx(AR+}V) = expTjtx(AR_ tV) (mod p) for all R  £ r ,  y  £ y  and x £ x .

P ro o f .  S ince the  trivialiser set X d  contains the trivialiser sets X a  of V ( V A ) and X k  

of V ( V k ) by Theorem  4.3.4, then we m ust have V a and V k  are p-Cockcroft. This gives 

the condition (i).

Consider a p icture P s iX (S  £ s, x £ x). It contains a single F-disc, some Tyx (y £ y ) 

discs and a single subpicture. F irst of all, this single S'-disc m ust be balanced by

using the subpicture which contains the rem aining s-discs. Thus we m ust have

f 1, s 0 - s
exPs0 (®s,x) =  \  _ (m od p),

I 0, otherwise

for all So £ s. So the  condition (Hi) holds. Furtherm ore, we need to  count the num ber 

° f Tyx (y £ y) discs in the P ^  picture. For a fixed y £ y , the exponent sum  of Tyx in

IPs,* is

Ly(S +) -  L y(S - )  = * /  expy(S).

Thus the condition (ii) m ust hold.

Consider a p icture (R  £ r, y £ y ) which contains the subpictures AJR+;y, C VieR

and two A-discs. Note th a t, the exponent sum of the A-discs will be equal to zero for 

the  p ic ture  Pjpy, th a t is, we have

exp#(Pfi,y) =  1 - 1 = 0 .

Let us consider the subpictures A^+iy and A w h i c h  consist of only Tyx (x £ x) 

discs. We should note th a t, Tyx (x £ x) discs are only contained in these subpictures, 

in the picture P Rty. Since the picture P ^ i2/ contains a single subpicture A^+ %y and single 

subpicture AK_,y-> then we have

e x PT„.(A R+ ,!,) -  e x P =  e x p ri„ (P f l ,y).
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Thus we m ust have

exPT,JX{ & R + , y )  -  e x P T y x ( ^ R - , y )  =  0 (mod p),

for all x € x.  So, the condition (v ) holds. Also, let us consider the subpicture CV)sR 

which consist of only the  A-discs (5  G s). So, we m ust have

exP s(Cy p J  =  0 (m odp),

for all S  £  s, and this gives the condition (iv).

Conversely suppose th a t the five conditions (z)-(n) hold. T hen, by using the  triv ­

ializer of th e  Squier complex T>(Vd ) i we can see fdat V d is p-Cockcroft where p is a 

prim e or 0. □

4 .4 .2  D irect products

In this section we will give necessary and sufficient conditions for the presentation of 

the direct product of the monoids A  and K  to be p-Cockcroft (p a prim e or 0).

The direct product corresponds to the case when 9 is the triv ial hom om orphism

A  — E n d ( K ), a i— > id (a E A).

So, let us take

=  (4-12)

for all y £ y. Then, for x £ x , y 6 y , the relator Tyx becomes simply

Tyx : yx  =  xy.

Then the p icture Au>y becomes the  p icture as shown in Figure 4.4.

By using (4.12), we have

i(%,®) =  S + and r(B>s ,x ) = SC (5  e  s, x € x),

for the subpicture B>s,x - Then we take Bs,x 1° be the following form.
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A U , y

Figure 4.4

By using (4.12), vve have

L(^y,eR) = y and r ( Cy,eR) = V (R  € r, y € y ),

for the subpicture . Then Cyj R can be chosen to consist of a single y-arc and no 

discs.

Therefore, as a consequence of Theorem  4.4.1, we get the following result.

T h e o re m  4 .4 .2  Suppose that 0 is the trivial homomorphism, and let p be a prime or 

0. Then the presentation V d , as in (4.8), is p-Cockcroft i f  and only i f  the following 

conditions hold.
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(a) V a and V k  are p-Cockcroft,

(b) exp (S') =  0 (m o d p ) for all S  G s, y £ y,

(c) expX(R)  =  0 (modp) fo r  all R  £ r, x € x.

P ro o f .  To prove the first part of this theorem , let us check the conditions of Theorem  

4.4.1 hold.

i) To m ake (i ) holds, we definitely need V a and V k  are p-Cockcroft. So, this also 

gives the condition (a).

i i ) Clearly, the  condition (ii) gives the condition (6).

Hi) T he condition (Hi) obviously holds.

iv)  The condition (iv) clearly holds.

v) It is clear th a t

exPTyi.(A/?+,y) =  LX( R +) and expTyar(Ai?_,y) =  L X( R - ) .

So, to m ake (u) holds, we need

L X( R +) -  L X( R _) =  0 (mod p).

T hat is,

expX(R)  =  0 (mod p)

which gives the condition (c).

Conversely suppose th a t the three conditions (a), (b) and (c) hold. Thus, by using 

the trivializer of the Squier complex 'D(Vd ), h  is easy to see th a t V d is p-Cockcroft 

where p is a prim e or 0.

Hence the result. □

Let p be a prim e or 0. Let K  be the monoid presented by V k  ~  [y ; s], and let 

A  be an infinite cyclic monoid generated by x. Then, a presenta tion  for the monoid 

K  x Z + can be given by

Ri<xZ+ = [y, X ; s, yx  = xy  (y £ y ) ] . (4.13)

As a consequence of Theorem  4.4.2 (so th a t Theorem  4.4.1), we have



C o ro lla ry  4 .4 .3  Let p be a prime or 0. The presentation V k x i n (4.13), is 

p-Cockcroft i f  and only i f

(a') V k  is p-Cockcroft,

(&') expy(lS) =  0 (mod p) fo r  all y £ y  and S  G s.

P ro o f .  The proof is an easy application of the proof of Theorem  4.4.2. To make 

(a) hold, we certainly need V k  is p-Cockcroft. Notice th a t, V a is aspherical, hence 

Cockcroft. So, these give the condition (a1). Clearly, (6) gives (6'), and the condition

(c) is vacuous. □

E x a m p le  4 .4 .4  As  an example of  Corollary 4.4.3, let us prove by induction on n that 

the presentation V ,  as in (4.2), presents the monoid  Z +n, and is Cockcroft.

® Let n — 1. Then, we get Z + which is infinite cyclic monoid with a presentation

T>i =  [yi ; ] ■

Then, V\  is aspherical, hence Cockcroft.

® Let us assume that

V n~i = [i/u V2 ■ ■ ■, Vn-i ; ViVj = VjVi (1 <  i < J <  n -  1)]

is a presentation of  Z +n 1 and that it is Cockcroft. Let y  be the set of  generators 

y i , • • • , yn-i> let s be the set of relators yiyj = yjyi (1 ^  i < j  ^  n — 1), and let x  be 

the generator yn . Then the set of  relators yiyn = ynyi (1 ^  i ^  n — 1) becomes the set 

of relators t .  Thus we have a presentation

V n = [2/1, p2 • ■ • , Vn ; ViVj = VjVi (1 C i < j  <  n -  1)

ViVn =  ynyt (1 <  i ^  n -  1)]

of the monoid  Z +n =  Z +n 1 X Z +, as in (4.13). Notice that the presentation V , as 

in (4.2) and V n are equivalent. To establish the Cockcroft property of  V n, let us use 

Corollary AAA.  By  inductive hypothesis V n- \  is Cockcroft, so the condition (a1) holds. 

Also, for  all S  E s, y £ y ,  expy(S') =  1 — 1 =  0 which gives the condition (6/). Thus, 

V n is Cockcroft, as required.



4 .4 .3  Sem i-direct p roducts o f  fin ite cyclic m onoids

In this section we will give necessary and sufficient conditions for the presentation of 

the sem i-direct product of two finite cyclic monoids to be p-Cockcroft (p a prim e).

Let K  and A  be two finite cyclic monoids with the presentations V k  and V a , 

respectively as in (4.10). Suppose th a t

[!/‘“] =  [ / ] •

T hen the  m apping x  i— > ipi induces a hom om orphism  9 : A  — > E n d ( I \ )  (see Exam ple 

4.3.6).

Now, by Theorem  4.3.2, we have a presentation

V D =  [y, x ; 5, R, Tyx\ , (4.14)

for the  monoid D — I\ A,  where

S  ' y k — y l ■> R '■ X>1 = %X and Tyx : yx  — x y \

We have the picture as in Figure 4.5, and then  exps (B s^) =  i.

Figure 4.5
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By the  assum ption, since (4.11) holds then, by Lemma 4.2.11, there is a monoid 

picture <Cy<eR with

L{<£y,oR) = y l\  r (C yieR) = i f X

and
i * — ix

exps {Cy,eR) = - j — - j •

Also, we have the picture (and similarly as in Figure 4.6. It is clear

&R+,y

Figure 4.6

th a t

exP TyX(^R+ ,y) =  1 +  z +  i2 +  • • • +  i*1 1 =  — —,i — 1

and
iX -  1

e x PTyx( ^ R - , y )  =  1 +  i +  i 2 +  h i  1 =  — —.i — 1
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Let

m  = k — I , n  =  i — 1 , t = C  — ix.

As a consequence of Theorem  4.4.1, we have the following result.

T h e o re m  4 .4 .5  L e tp  be a prime. Suppose that K  xi qA  is a monoid with the associated 

monoid presentation V d , as in (4.14). Then V d is p-Cockcroft i f  and only if

i i | t . tp | m, p j n, p I — , p I —.
m  n

P ro o f .  We will prove the  first part of this theorem  by checking the conditions of 

Theorem  4.4.1 hold.

(z) By Lem ma 4.2.13, trivialiser sets X k  and X a  of the Squier complexes T>(Vk ) 

and U ( V a ) respectively, can be given as in Figure 4.1. Thus, it can be seen th a t V k  

and V a are p-Cockcroft (in fact Cockcroft), and then the condition (z) holds.

ii) expy(S) = k — I so for (ii) to hold, we m ust have p \ k — I.

Hi) To m ake (Hi) hold, we need i = 1 (mod p), so th a t p j i — 1.

iv) For the subpicture Cyj R, we m ust have

, c  — c
p k - r

to  m ake (iv) hold.

v) Also, to make (u) hold, we need

V  -  1 i x -  1
i — 1 i — 1 

by using the subpictures Ak+,v and T hat is,

(mod p),

V  -  ix
0 (mod p).

i — 1

Conversely suppose th a t the conditions p | m , p | n , p | ^  and p | ^  hold. Then, 

by using the trivializer of the Squier complex T>(Vd ), it is easy to  see th a t V d is 

p-Cockcroft where p is a prime.

Hence the result. □
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We rem ark th a t as a consequence of Theorem  4.4.1, one can say th a t the monoid 

presentation V o ,  as in (4.14), is Cockcroft if and only if ji =  A, k = I and i =  1 .

However, since we require I <  k, A <  fi then this presentation can never be Cockcroft.

E xam ple  4.4.6 Lei k — 10, I = 6 , ft — 4, A =  2 and i — 3. Then we get

m  = 4 , n =  2, t = 34 -  32 =  72, — =  18, -  =  36.
m  n

Hence p =  2 divides these all values, and then by Theorem 4.4.5, V o  is 2-Cockcroft. 

Similarly, by chosing k — 6 , I = 2, fi — 5, X = 3 and i — 3, we get

m  = 4, n  =  2 , t  =  35 -  34 -  216, — -  54, -  =  108,
m  n

then again V o  is 2-Cockcroft. 0 

E xam ple  4.4 .7  Let p be any prime, and let

( v  _L U P  _  i
i ~  p -f 1, / = 1, A: = (p+ 1)(-----—----- ) + 1, A — 1, /i = p+ l.

Then,

m -  (p +  1) ( ^  +  ^ ------- ) ,  n = p, t =  (p + l ) p+1 -  (p +  l)1.
p

t t
Since p divides m, n, ■— and — then, by Theorem 4.4.5, V o  is p-Cockcroft. 0

m  n
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C hapter 5

M inim al presentations o f  

sem i-d irect products o f som e  

m onoids

5.1 In tro d u c tio n

In this chapter, as an application of the previous chapter, we begin by giving neces­

sary and sufficient conditions for a semi-direct product of a one-relator monoid by an 

infinite cyclic monoid to be p-Cockcroft, for any prim e p or 0, and then we give some 

applications of th is to  sem i-direct products of the free abelian monoid of rank 2 by an 

infinite cyclic m onoid, and sem i-direct products of some particu lar one-relator monoids 

by an infinite cyclic monoid.

Following this, we introduce our m ain result of this chapter which gives sufficient 

conditions for the presentation of a semi-direct product of a one-relator monoid by an 

infinite cyclic monoid to  be m inim al bu t not efficient, and then  we give some applica­

tions of this.
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5*2 S em i-d irec t p ro d u c ts  of o n e -re la to r  m ono ids by  

in fin ite  cyclic m onoids

Let K  be a one-relator monoid with presentation V k  — [y ; S+ = 5_], and let A  be 

the infinite cyclic monoid with presentation Va — [x ; ]. Let 0  be an endom orphism  

of K.  Then by Section 4.3.5, the m apping x \— > 0  induces a hom om orphism

6 : A  — ► E n d (K ) ,

and we can form the semi-direct product D = K  x e A. This will have a presentation

V D =  [y, x ; S + = S_, t ] , (5.1)

where t is the set of relators Tyx (y e  y). Notice th a t, since Va = [# ; ] is aspherical 

then X A =  0.  Also, for the relator A, let us assume th a t t ( S + )  i ( S - )  (or r ( 5 0 )

r ( S - ) ) .  S o , by [34], V k  is aspherical, so X k  =  0.  Moreover, since r  =  0 then  C 2 — 0. 

Therefore X D -  C l  Note th a t we have a single P s )37 p icture, as in Figure 5.1, in the 

set C i since I\ is a one-relator monoid.

5.2 .1  T h e p-C ockcroft property

T h e o re m  5 .2 .1  Let p be a prime or 0, and let K  be a one-relator monoid, with relator 

S  say. Suppose that l(S+) l(S - )  (or t (S+) r (5 _ ) ) .  Let D be a semi-direct product

of  K  by an infinite cyclic monoid A  with associated presentation V d , as in (5.1). Then  

V d is p-Cockcroft i f  and only i f

(a) expy(5) =  0 (mod p) for all y e  y ,

(b) exps (®s,r) =  1 (modp) .

P ro o f .  It is an easy application of the proof of Theorem  4.4.1.

Since Va  and V k  are aspherical and C 2 =  0 then the  conditions (i), (A ) and (v) 

of Theorem  4.4.1 are trivial. On the other hand, the condition (ii) gives (a) and the 

condition (Hi) gives (6).
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S,x

byX

Figure 5.1

Hence the result. □

E x a m p le  5 .2 .2  Let K  be the free abelian monoid of rank 2, presented by

V K = b i ,  V2 ; yiV2 =  3/22/1],

and let ip be the endomorphism ipM where M  is the matrix  

Z +), given by

fe/i] 1— > [v id i ]  and [y2\'— > [ y f y f ]

(see Examples  4.3.5 and 4.3.5.(a)).

By Theorem 4.3.2, we have the presentation

V d  [ 2 / 1 5  y 2 ?  % j Si TylXi ,

a  a

(d fd'
(a , a '.
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for  the monoid D = K  A, where

S  : yil / 2  =  2/22/1, TyiX : y ix  =  x y “y% and TV2X : y2x = xy^y^  , 

respectively. Note that the picture B StX can be given by Figure 5.2. 0

j

Figure 5.2

Now, by considering the picture Ms,x as in Figure 5.2, we prove the  following equal­

ity.

L em m a 5.2.3

exps (B s^) =  detM..

97



Proof. We have a(3'-tim es positive and cd/3-times negative A-discs, in Bs)a,. So th a t

exps (Ms ,x ) =  a p ' - c t ' f i ,

= det M ,

as required. □

As a consequence of Theorem  5.2.1, we have

Corollary 5.2.4 Let p be a prime or 0. L c I V d  be as in (5.2). Then V d  is p-Cockcroft  

i f  and only i f

det M  =  1 (mod p).

Proof. Let us check the conditions of Theorem  5.2.1 hold.

Since exp (5) =  0 =  expy2(A) then (a) holds. Also, by Lem m a 5.2.3, (b) holds if

and only if det M  — 1 (mod p). □

E xam ple  5.2.5 Let K  be the one-relator monoid with the presentation

V K =  h i ,  2/2 ; A ] ,

where S  : y iy 2 Vi — 2/2 2/n  and let f>x be the endomorphism given by

h i] 1— > h i] and [y2] i— > [2/2],

where i £ Z + (see Example  4.2.16.(a)). By Theorem 4.3.2, we have the presentation

V d  =  [2/1, 2/2, x ; A, y ix  = xy\ ,  y2x  =  x y 2] (5.3)

for  the monoid D — K  x# A.  The picture Bsia: can be given by Figure 5.3, 0

We get th e  following result for the above exam ple, as a consequence of Theorem

5.2.1.
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Corollary 5.2.6 Let p be a prime orO. Let V o  be as in (5.3). Then V o  is p-Cockcroft  

i f  and only if

a') k =  2 ( mod p) 

and

b') i =  1 ( mod p).

Proof. Let us check the conditions of Theorem  5.2.1 hold.

It is clear th a t e x p ^ S )  — 2 — k and expy2(S)  =  1 — 1 =  0. Then to make the 

condition (a) hold, we m ust have k — 2 =  0 (mod p) which gives a'). Also, since 

exp5 (BsiX) =  i then the condition (b) gives b').

Hence the result. □

E xam ple  5.2.5 (continued) One can choose k = 2 and i = 3 then V o  is 2-Cockcroft, 

or k  =  5 and i = 4 then V o  is 3-Cockcroft. 0



R e m a r k  5 .2 ,7  It is easy to see that if  k = 2 and i =  1 then V d is 0-Cockcroft. 

But  the condition i =  1 implies that is the identity map and so 0 is the trivial 

homomorphism, as in (4.12). Then the presentation V d becomes a presentation, as in 

(4.13), of the direct product I\ x Z + . Thus, by Corollary 4.4.3, we can see directly V d 

is 0 -Cockcroft when k  =  2 and i =  1.

E x a m p le  5 .2 .8  Let K  be given by the presentation V k  =  [y\, y2 ; S ] , where S  : 

Vil / 2  =  2/22/1 ? and let ipx be the endomorphism given by

M  1— > M  and [y2] 1— > [2/2],

where z, j  6  Z + (see Example 4.2.16.(6)). By Theorem 4.3.2, we have a presentation

'Pd =  [yu i/2, a-’ ; s ,  y ix  =  xy\ ,  y2x =  xyQ (5.4)

fo r  the monoid D. For this example, the picture Bs> can be given by Figure 5.4. 0

We then  get the following, as a consequence of Theorem  5.2.1.

C o ro lla ry  5 .2 .9  Let p be a prime or 0. LetVD be as in (5.4), T h e n V o  is p-Cockcroft 

if  and only if

i j  = 1 (mod p).

P ro o f .  Again, let us check the conditions of Theorem  5.2.1 hold.

Since e x p ^ A )  — k — k — 0 and expy2(S') =  1 — 1 =  0 then  the condition (a) 

holds. Also, since ex p ^ B g ^ ) =  i j  then to  make the condition (6) hold, we m ust have 

i j  =  1 (m od p) which gives the condition of the above corollary, as required. □

E x a m p le  5 .2 .8  (continued) One can choose i =  3 and j  =  1 then V d is 2-Cockcroft, 

or i = j  = 2 then V d is 3-Cockcroft. 0

R e m a r k  5 .2 .1 0  It is clear that i f  i — j  =  1 then V d  is 0-Cockcroft. But as we said in 

Remark  5.2.7, the presentation V d  becomes a presentation, as in (4.13), of the direct 

product I\ x Z + when i =  j  =  1 holds. Then, by Corollary 4.4.3, one can say directly 

the presentation V d  is Q-Cockcroft.
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bs,x

Figure 5.4

A sim ilar exam ple can be given as follows.

E x a m p le  5 .2 .1 1  Let K  be given by the presentation V k  ~  [y 1, V2 ; •S'], where S  

ViV2 =  2/22/1, and let be the endomorphism given by

[2/1] 1— > [y\] and M  1— > M ,

where i £ TV  (see Example 4.2.16.(c)). By Theorem 4.3.2, we have a presentation

V d  =  [yi,  t/2 , x  ; 5 ,  y i x  =  x y \ ,  y 2x  =  x y 2] (5 .5 ;

for  the monoid D. Also, the picture Bs^ can be given by Figure 5.5. 0

Thus, as a consequence of Theorem  5.2.1, we get
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\S,a:

- v >y\

Figure 5.5

Corollary 5.2.12 Let p be a prime or 0 . L e t V u  be as in (5.5). T h e n V o  is p-Cockcroft 

i f  and only i f

a') k =  1 (mod p),

b') i ~  1 ( mod p ) .

P ro o f .  Again, let us check the conditions of Theorem  5.2.1 hold.

Clearly e x p ^ S 1) =  1 — k and expya(5) =  1 — 1 — 0, so to  m ake the condition (a) 

hold, we m ust have k — 1 =  0 (mod p) which gives a'). Also, since exp5 (Bs!3:) =  i then 

the condition (6) gives b').

Hence the result. □

E xam ple  5.2.11 (continued) One can choose i — 5 and k = 7 then V d  is 2-Cockcroft} 

or i — k = 4 then V d  is 3-Cockcroft. 0
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R em ark 5.2.13 Clearly i f  i — k =  1 then V d  is 0-Cockcroft. But  as we said in 

Remarks  5.2.7 and 5.2.10, the presentation V d  becomes a presentat ion, as in (4.13), of  

the direct product K  x Z + when i =  k ~  1 holds. Then, by Corollary 4.4.3, one can 

say directly the presentation V d  is 0-Cockcroft.

5.3 Som e m in im a! b u t  inefficient p re se n ta tio n s

As we m entioned in C hapter 1, a presentation is efficient if and only if it is p-Cockcroft, 

for some prim e p. It follows from Theorem s 5.2.1 and 4.4.1 th a t the  presentation V d ,

as in (5.1), is efficient if and only if there is a prim e p such th a t

© exp (S)  =  0 (mod p) for all y 6  y ,

© exps (Bs ,x) -■ 1 (mod p),

in o ther words, if and only if

h c f (e x p y(S) (y E y), exps (Bs>x) - 1 ) ^ 1 .

In particu lar, V d is not efficient if

exps (Ms,x ) =  0 or 2 .

Let d =  h c f ( e x p y(S) (y € y)). The value of d will be taken to  be 0 if all exponent

sums are 0 in h c f (e xp  (S)  : y E y).

O ur m ain result of this chapter is the following.

T heorem  5.3.1 The presentation V d , as in (5.1), is m inim al (but not efficient) i f

d 2n and  exps (Bsja;) =  2 ,

fo r  any n E Z + .

To prove this theorem , we need the following m aterial.

Let us consider the p icture IPs,®, as in Figure 5.1.
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d . . .  d D
Recall th a t, for a fixed y £ y , 77-  denotes Fox derivation w ith respect to y, and -7—

oy oy
is the com position

Z F ( y) Z F ( y )  — ► Z D ,

where F ( y )  is the free monoid on y . Moreover, for the relator S ,  we define —— to be
oy

d DS + d DS _
dy

For a fixed y £ y , let us w rite

=  UoyUiy-- ■ Ur- i y U r and =  VQy V i y  • • Vk-iyVk,

where each Ui (1 ^  i ^  r) and Vy (1 ^  j  ^  &) is a word on y  — {t/}. Then, for this 

particu lar y, the left evaluations of the positive atom ic pictures in P s i-r (see C hapter 1) 

containing a Tyx disc are

UoeTyx, U0yUieTvx, • ■ •, U0y • • • Ur-ieTyx, 

and the left evaluations of the negative atom ic pictures in P 5jX containing a Tyx disc

are

— Vbery*, ~VoyVieTyx, • • •, - V 0y • • • Vk- i e Tyx-

Hence, for a fixed y 1 the coefficient of in eval^lVs.x)  is

d DS
Uo +  UoyUi +  • • • -T Uoy • • • Ur~ 1 — (Vo +  VoyVi +  ■ • ■ +  Voy • • • V V _ i )  — 0  ■. ( 5 . 6 )

dy

L e m m a  5 .3 .2  The second Fox ideal /^(TVd) ° f  V d is generated by the elements

d D S
1 -  x(eval^l\M s ,x )) and (y £ y) .

P ro o f .  Since T>(Vd ) has a trivialiser X d  consisting of the single p icture P ^ ,  we need 

to consider eval^l\ ¥ s }X)‘ We have

eval{-l\ F StX) =  ApSit5 e5 +  ^  ^Fs,x,Ty*eTy3;,
y€y
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where

^ s ,* ,s  =  (1 -  £ ( e n a / ^ ( ® 5 )a;))) ,

d DS
ApstXj y X =  (y e  y) by (5.6).

Thus, by R em ark 1.3.4, we get the result. □

L em m a 5.3.3

aug(eval{l\M s,x )) =  exp5 (B5);E).

P ro o f .  We can write

evcd{l\ M s ,x ) =  £ iW ie s  +  £2 W 2es H h £nW nes ,

where a  =  ±1 and the W;’s are certain words on y (1 ^  i ^  n). In the  above expres­

sion, each te rm  £2TK'£s corresponds to a single 5-disc. Also, the value of each £{ gives 

the sign of this single 5-disc. Therefore the sum of the e^s, th a t Is, aug(eval^CBs,x )) 

m ust give the exponent sum of the 5-discs in the p icture Bs[X, as required. □

The following lem m a is a special case of Lemma 1.3.1 on Fox derivations (see Section 

1.3.1).

L em m a 5.3.4
d D 9 

au9(^~)  = expy(5) (y e y)-

Now we can prove Theorem  5.3.1, as follows.

Suppose th a t d is not equal to 2n (n  £ Z +). Let

( Z d = 0
%d =  {

y Z (mod d) d ^  0

Suppose also th a t exp5 (Bs)a.) =  2.

Let us consider the  hom om orphism  from D onto the infinite cyclic monoid generated 

by x, defined by

V 1— > 1 (!/ ^  y ), x — > x.
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This induces a ring hom om orphism

7 : Z D  ——> Z[x].

Note th a t the restriction of 7  to the subring Z K  of Z D  is ju s t the augm entation m ap

aug : Z I\ — y Z.

Thus, by Lemmas 5.3.3 and 5.3.4, the image of I2 \ ' P d ) under 7  is the ideal of Z[x] 

generated by

I -  x{exps {MS}X)) = 1 — 2x, expy(S)  (y G y ).

Let 7 be the  com position of 7  and the mapping

Z[x] — y Zd[x\, x  i— y x, n 1— y n (n  G Zi),

where n is n (mod d). Then, since expy(5) ~  0 (mod d) (j/ G y ), we get

p ( I2 \ V D)) =  < l - 2 x >

— / ,  say.

L e m m a  5 .3 .5

I  ^  Zd[x],

P ro o f .  For simplicity, we shall replace x by x and 2 by 2 . Thus we have I  =<  l — 2x >. 

Then

<  1 — 2x > — {p(x) ( l  — 2x) : p(x)  G Z d[x]}. (5.7)

Suppose th a t <  1 — 2x > =  Zd[x] or equivalently, 1 G / .  So, 1 =  (1 — 2x)p(x)

for some polynom ial p(x)  G Zd[x }- W rite p(x)  = a0 +  ci\x T  cl2x 2 7- • • • -j- arx r where

ao, oq, a 2, ‘ ■ 1 ■> nr G Then

1 =  cia +  (a 1 — 2a0)^ +  (a2 — 2a\)x2 -f • • • -f (ar ~  2ar- \ ) x r — 2arx r+1.

Thus ao — 1 =  0 (mod d), a\ — 2a0 =  0 (mod d), • • ■, ar — 2ar_i =  0 (mod d) and 

— 2ar ~  0 (mod d). Since d ^  l , 2 n , we can choose an o d d  prim e p such th a t p j d.
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So, p | —ar (since p is oclcl then p does not divide 2, but we know th a t p \ d and 

—2ar =  0 (m od d) then  p \ —ar). Also, since p \ d, cir — 2ar_i =  0 (mod d) then 

p | —2a r_i =4> p | — ar~\. Similarly, since p j d and a r„i — 2ar_2 =  0 (mod d) then 

p | —2a r _2 => p | —a r_2. By iterating this procedure, we get p j ao- Thus, since p | d and 

g 0 — 1 ee 0 (mod d) then p | 1. But it is a contradiction. Therefore <  1 — 2x 

as required. □

Let ip be the com position

other words, the  images of the generators of h i V o )  are all 0 under ip. T h a t is,

where <p fhe natu ra l epim orphism . Then ip sends ^ ( V d ) to  0, and ip{\) = Y. In

ip(l -  x(eval^(B>s ,x ))) = cpp(l -  x ( ev a lV \B s ,x )))

=  </>(! — £(exp5 (B,sia7)) since p is a ring

hom om orphism  and by Lem m a 5.3.3 

=  <p{\ — x2) since exp5 (©5!X) =  2

=  o ,

and, for all y E y

— <p(expy(S))  since p is a ring

hom om orphism  and by Lem ma 5.3.4 

— </>(0) since exp (*!?) = 0 (mod d)

=  0 .

So, by Theorem  1.3.15 (Pride), V d is m inimal.

Hence the  result. □

Again for simplicity, let us replace x by x and 2 by 2.
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R e m a r k  5 .3 .6  Suppose that d = 2n (n € Z +). Then we get 1 E <  1 — 2x > , and so 

<  1 — 2x > =  Z d[x].

(To see this it is enough to show 2 E I  = <  1 — 2x > , because we certainly have

1 —2x £ I  and i f  2 E /  then we must  have 1 E / .  So let us take 1 — 2x E / .  Then, by

(5.7), we have

2"“ 1(1 -  2a:) E /  ^  2n_1 - 2 nx e I  => 2 ^  E /  since 2nz =  0 in Z d[x] =>

2n_2(l -  2a:) E I  => 2n~2 -  2n~1x E /  2n" 2 E /  since 2n~l E /  by the above line =*

• ■ • by iterating this procedure, we get ■ 2 E /  1 E / ,

as required.)

E x a m p le  5 .2 .2  (continued) Since

e x Pyi( £ )  =  e x p ^ f S )  =  0,

then we get d =  0. /i/sa, by Lemma  5.2.3, exp5 (Bsi;r) — detM . 0 

Thus, as a consequence of Theorem  5.3.1, we get

C o ro lla ry  5 .3 .7  Let det M  — 2. Then the presentation V d , as in (5.2), is minimal  

but not efficient.

3 1
E x a m p le  5 .3 .8  One can choose the matrix M

1 1
tion V d , as in (5.2), for  the monoid D — K  A  where

. Then we get a presenta-

S  : yij/2 -  V2 Vu Tyix : yxx =  x y \ y 2 and Ty2X : y2x  =  x y xy2,

respectively. Thus , by Corollary 5.3.7, V d is minimal.

E x a m p le  5 .2 .5  (continued) Here we have

expyi (5) =  2 -  k, expy2 (5) =  0 .

So d — k — 2. Also, e x p ^ B s^ )  =  i. Then, as a consequence of  Theorem 5.3.1, we have

the following result. <>
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Corollary 5.3.9 The presentation V d ,  as in (5.3) is minimal  ( but inefficient) if

k ±  2(2n~1 +  1) and i = 2 ,

where n £ Tffi.

E xam ple  5.2.8 (continued) Since expyi(S) = exp (5) =  0 then d = 0. Also,

exps (Bs ffi =  ij-

Then, as a consequence of  Theorem 5.3.1, the minimali ty o f V o  can be given as follows. 

0

Corollary 5.3.10 The presentation Vd ,  as in (5.4) is minimal  ( but inefficient) i f

{i->j) — ( 1>2), (2 , 1).

E xam ple  5.2.11 (continued) We have

e*Pyi(S)  = l ~ k ,  explj2{S) = 0,

so that d =  k — 1. We also have exps (Bs);c) =  i. Thus, again as a consequence of  

Theorem 5.3.1, we get the following result. 0

Corollary 5.3.11 The presentation V d , as in (5.5) is minimal  (but inefficient) if

k ^  2n -f 1 and i =  2 ,

where n £  T V .
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