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Abstract

We start by introducing the reader to the mechanisms behind earthquake 

production, including the Elastic Rebound Theory and the theory of Plate Tectonics. 

W e also discuss the quantification of earthquakes in terms of magnitude, intensity and 

energy released. A short review of the history of earthquake prediction is also given, 

along with a discussion of some of the latest attempts at discovering seismic 

precursors. The VAN method, and the controversy surrounding it are discussed in 

some depth in chapter 5, while the theory of Seismic Gaps is introduced in chapter 6. 

Experiments using cellular automata to model earthquake production are performed in 

chapter 7, and the resulting analysis presented. The use of mechanical models is 

explored in chapter 8, where the slider block model is analysed. The Hurst analysis of 

a time series is introduced, and real earthquake data analysed in detail. A short 

discussion of fractal dimensions is given in chapter 10, where we present some classic 

fractals such as the Sierpinski gasket and the Koch curve. The H ausdorff dimension 

is introduced, and the idea of Box counting dimension discussed. The calculation of 

the correlation dimension is then presented. This is then used in chapter 11, where we 

present a new prediction method, based upon fluctuations in the correlation 

dimension. The results obtained using this method are outlined, as are some hopes for 

the future of earthquake prediction.
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Chapter 1 

Introduction

“I f  I  were a brilliant scientist, I  would be working in Earthquake Prediction ”
Los Angeles talk show host(1994).

In 1964, Charles Richter, of Richter Scale fame, made the following quote: 

“Claims to predict earthquakes usually come from  cranks, publicity seekers, or 

people who pretend to foresee the future in general’'.

The aim of this thesis is to discuss a variety of different techniques used for the 

prediction of earthquakes. These techniques range from the measurement of 

geophysical data and the inferences to be made from the resulting information, to the 

use of statistical techniques and finally, the use of mathematical models. W e then 

extend the work, proposing a new technique, and giving examples of any predictions 

made and their successes and/or failures.

1.1 History
Throughout the history of mankind, earthquake prediction has been the focus 

of myths, folklore and sorcery. Earthquake prediction has always created controversy, 

with many people claiming that the mechanism is so complicated that earthquakes 

will never be predicted. The opposite viewpoint states that we have learnt so much 

about the earth, and progressed so far that, if we only do more research and perform 

more experiments, then we will eventually be able to predict them.
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1.2 The reasons for earthquake prediction
W orld-wide, there are on average, 18 earthquakes every year with a magnitude 

of 7.0 or larger. These earthquakes, if they occur in highly populated areas, can be 

very destructive and cause great loss of life. In many parts of the world earthquakes 

represent severe natural hazards, and thus earthquake prediction could save human 

life. Earthquakes have, throughout history, been responsible for a huge number of 

deaths. It is estimated that, world-wide, there have been in excess of 7,000,000 

deaths. Many of these deaths have occurred in the last 100 years, as populations and 

population densities have increased. In many cases, it is not the actual earthquake that 

causes the fatalities, but rather the after-effects of the quake, such as tsunamis, fires, 

landslides, and floods.

1.3 Where?
The distribution of earthquakes has a distinct spatial pattern. The reasons for 

this distribution will be discussed fully in the next chapter. The main areas which 

have earthquake problems are those countries which lie on the Pacific Rim, i.e. Japan, 

Chile, USA etc. Other nations affected include the old USSR, the Middle East and 

Greece.

Alaska ^

Greece
USAJapan

'Pacific Rim

Chile —>

.j"

(Figure 1.1 W orld Map)
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M ost of the countries which are affected by earthquakes have some form of 

earthquake prediction programme. For example, Japan spends millions of dollars, or 

billions of Yen, every year in an attempt to predict earthquakes. Since 1965 it has 

spent over $1 Billion on its earthquake prediction schemes. The old USSR, China, 

the United States of America and Greece all have substantial programmes of 

earthquake research. In the USA, earthquakes result in 70 million people living with 

a significant risk to their lives and property. In Los Angeles, a great earthquake could 

take 15,000 lives, and cause damage of over $25 Billion.

1.4 What constitutes a prediction?
W hen making a valid prediction, we need to specify certain quantities, 

ensuring that they are within narrow limits. We need to state the following :

1. The period within which the event will occur.

2. The Location of the Earthquake, within a specified tolerance.

3. The Magnitude range.

4. The odds that an earthquake of this type could occur purely by chance.

All of the above must be stated with an accuracy sufficient to ensure that the ultimate 

success or failure may be judged. See Rundle, Turcotte & Klein[ 1996] for more 

information.

1.5 Warnings and Predictions
A prediction  is a neutral statement that accumulated observations seem to 

signal clearly the occurrence of an earthquake. A warning is a declaration that normal 

life routines should be changed for a period of time due to an impending danger. It

should also advise the public of what procedures to follow. These two definitions are

different: predictions are based purely on science, while warnings are interpretations 

of predictions based on current public policy.
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Chapter 2 

Earthquake Theory

2.1 Introduction

In this section we shall give a brief explanation of the theory underlying 

earthquake occurrence. The structure of the Earth, the theory of Plate Tectonics and 

crustal faults are all discussed. We shall also list some of the key definitions and

terminology which will be used throughout the remainder of this thesis.

2.2 Earth Structure

For simplicity, the earth can be thought of as a sphere. In reality, it is an

oblate spheroid, as it is flattened at the poles and bulges at the equator. This

squashing is due to the forces resulting from the Earth’s rotation. We can split the 

interior of the Earth into a number of sections, including the mantle, the core and the 

crust. In figure 2.1, below, a schematic of the Earth’s interior is given.

Crust

(Figure 2.1- Schematic of Earth’s Interior)
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The inner core is solid, due to the intense pressure it is under, while the outer core is 

liquid. The mantle can be thought of as a very viscous fluid, which is capable of 

plastic flow. The crust is a shell of cold, solidified rock on the outside of the sphere. 

W e are interested in the Earth’s crust, its movements, and the theory of Plate 

Tectonics.

2.3 The Earth’s Crust
The Earth’s crust has been formed over time by the cooling of molten rock 

from the mantle. The crust is not one solid object, and does not have a uniform 

thickness, or density. In fact, the thickness of the crust can vary significantly, from 

over 50 kilometres thick beneath the continents, while only a few kilometres thick 

under the ocean. Figure 2.2, below, illustrates some of the points discussed above. 

Note that the crust "floats" on top of the mantle.

Continental
Crust

Oceanic
Crust

Lithosphere

100

Upper

Mantle
E

s z
AsthenosphereCL0)

700

(Figure 2.2 The Earth’s Crust and Upper Mantle)
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The uppermost layer of the mantle and the crust, approximately 100 

kilometres in depth, is usually called the Lithosphere. It is a rigid zone, and is 

stronger than the Asthenosphere, which lies directly beneath it. The Asthenosphere is 

a ductile solid, and can flow plastically. It is usually thought of as being a “weak 

zone”.

The crust is formed from a variety of different types of minerals and rocks. 

The rock type is dependent upon the chemical composition and the conditions under 

which the rocks were formed. This explains the variation in the densities of the rocks. 

As the crust is not one solid body, there are a number of fractures or ruptures in the 

structure. They are known as faults, and at these locations, rock movement can occur.

2.4 Faults
In this section, we will describe the different types of faults that occur, but first 

we must make a number of definitions. These definitions are adapted from those 

given by Lapidus[1987].

Definition 2.1

A fa u lt is a fracture in earth materials, along which the opposite sides have 

been relatively displaced parallel to the plane of movement. That is, a break in the 

Earth’s crust.

Definition 2.2

The surface along which movement takes place is known as the fa u lt plane (or 

fau lt surface, as it is not necessarily a plane).

M ovement along a fault occurs in two ways, by continuous creep, or in abrupt 

jumps. As the name suggests, continuous creep is a gradual process, with the two 

portions of rock sliding past each other bit by bit. If we have a series of abrupt jum ps, 

then the crust may move in steps of a few metres over a time scale of several seconds.



It is believed that most earthquakes are caused by this mechanism. There are three 

main types of fault, a normal fault, a reverse fault and a strike-slip fault, see Kearey & 

Vine[ 1996]. These three faults are illustrated below, in figures 2.3 - 2.5.

(Figure 2.3 A Normal Fault)

(Figure 2.4 A Reverse Fault)

(Figure 2.5 Strike Slip Faults)
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2.5 Plate Tectonics

The theory of Plate Tectonics states that the Earth’s lithosphere is not one solid 

object, but instead is composed of a series of interlocking “plates”, which cover the 

entire surface of the planet, see Kearey & Vine[ 1996] and Bolt[ 1993]. The plates 

move relative to each other, with the main driving force being convection currents in 

the mantle. The lithospheric plates slide over the weak, and ductile, asthenosphere. 

Figure 2.6, below, is an illustration of the world-wide distribution of earthquakes. 

The epicentre of each earthquake is represented by a black dot drawn on a world map. 

Earthquakes do not occur everywhere, but are restricted to certain narrow regions. 

These strips define the positions of the plate boundaries.

'
j+.

60

40

- 2 0

- 4 0

- 6 0

60

(Figure 2.6 World-wide Earthquake Distribution 1993-1996)

It is in these boundary areas that almost all the seismic activity is concentrated, 

and in which we are most interested. It was also postulated that away from the 

boundaries, in the middle of the tectonic plates, we would have aseismic regions, wbh 

almost no earthquake activity. The theory states that there are 3 different type of 

boundary. Figure 2.7, below shows the main tectonic plates, and their boundaries.
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A frican  
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India 

I p la ta

Pacific  p la ta N azca  \  
p ia ta

■p S o u th  
A m arlcan  

p la ta

A n ta rc tic  p la ta

Plate Boundaries ---------------- Coastline

(Figure 2.7 Tectonic Plates)

2.5.1 Constructive Boundaries or Mid-Oceanic Ridges
A mid-ocean ridge is a continuous feature which extends through all the 

oceans of the Earth. It occurs within the Earth’s oceans, at places where two tectonic 

plates are moving away from each other. At these points, new lithosphere is grown by 

the solidification of molten rock from the Earth’s interior. Where the two plates are 

separating, molten rock, or magma, wells up into the resultant gap. This material 

slowly cools to produce a new sliver of sea floor. A simplified diagram of this 

process is shown below, see figure 2.8.

New Crust

Older Crust Older Crust

Magma

(Figure 2.8 Sea Floor Spreading)
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This mechanism is known as sea-floor spreading and occurs at a rate of approximately 

4 centimetres per year. In these regions, there are a large number of earthquakes, 

caused by the plate movements. Once again see Kearey & Vine[ 1996].

2.5.2 Destructive Boundaries or Subduction Zones
A subduction zone is a region where two tectonic plates are moving towards 

each other slowly. The denser plate is forced under the other, and the under-riding 

plate is gradually re-absorbed in to the mantle, i.e. the plate is destroyed. Hence, 

subduction zones are also known as destructive boundaries. In figure 2.9, below, a 

schematic of the process involved is given. The bottom plate is absorbed as it is 

forced down into a high pressure and temperature environment. The angle of 

subduction depends upon the composition of the bottom plate (Kearey & Vine[ 1996]). 

Earthquakes are also produced in this area, due to the stresses being applied to deform 

the bottom plate. Volcanic activity occurs as a result of these subduction zones. As 

the lower plate is absorbed into the mantle, partially melted rocks can separate from 

the plate, and rise to the surface, resulting in the appearance of a volcano at a point on 

the top plate.

Top Plate

Volcano

Subducting Plate

Melting
Rock

Mantle

(Figure 2.9 Subduction Zone)
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2.5.3 Conservative Plate Boundaries

At conservative plate boundaries, crust is neither created nor destroyed. These 

boundaries are called transcurrent, or strike-slip faults, see figure 2.5. As stated 

before, at these faults we have two plates which are sliding past each other. 

Earthquakes occur at these boundaries when we have a sudden movement along the 

fault.

2.6 Earthquakes

An earthquake is defined as: "A rumbling or trembling of the ground produced 

by the sudden breaking of rocks in response to geological forces within the Earth" 

This trembling is caused by the sudden release of large quantities of energy which 

have been stored in the Earth’s crust. The elastic properties of the rocks in the crust 

allow energy to be stored during deformation caused by tectonic forces. W hen the 

strain in the rock exceeds the strength of the crust in a critically weak area, i.e. a 

geological fault, then we get slippage, and the two plates jump, releasing the elastic 

energy. This energy is released as seismic waves, and it is these waves which 

constitute an earthquake. This process is described more fully in the next section.

Earthquakes are usually assumed to have originated from a single point, 

known as the hypocentre, within the Earth. It is the initial rupture point of the 

earthquake. This is a simplification, as most earthquakes do not occur at a single 

point, but originate from a “focal region” which may extend over a few kilometres. 

The epicentre is the point on the Earth’s surface directly above the hypocentre.
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2.7 Elastic Rebound Theory

The majority of the world’s earthquakes are believed to occur according to the 

elastic rebound theory, which was proposed by Reid[ 1911]. It was developed due to 

observations made after the 1906 San Francisco earthquake. In essence, this theory 

proposes that an earthquake, or movement along a fault, is due to a sudden release of 

elastic strain energy. This elastic strain is built up by deformation caused by the 

tectonic process over a period of time. It postulates that this release of energy returns 

the rocks to a state with very little elastic strain. A set of diagrams representing the 

main points of the elastic rebound theory is given below, in figure 2.10. The figures 

below all represent a block of rock in which there is a pre-existing fault. Note that, in 

figure 2.10(a), the broken line XY represents the fault, and the arrows represent the 

direction in which the two blocks are moving. This movement introduces the elastic 

strain to the system, and results in movement along the direction of the fault. The line 

PQ is a marker, which allows us to demonstrate the increasing strain in the system.

As the build up in stress continues, at some point the elastic strain will exceed a 

critical value, and will be greater than the frictional and cementing forces, which are 

preventing movement. This is represented by figure 2.10(c), above. When this 

happens, fault movement occurs instantaneously, and we progress to figure 2.10(d).

P Q

Y

(Figure 2.10 The Elastic Rebound Theory)

12



The movement of the fault reduces the strain in the crust to almost zero, but if 

the forces acting on the crustal blocks persist, then eventually we will get a further 

build-up of strain energy, which will result in further fault movement. In essence, 

what the theory proposes is that we go through a continuous cycle of building up 

strain slowly, releasing it suddenly through an earthquake, then gradually increasing 

the strain again.

Slow build up 
of

Elastic Strain

Sudden Release 
of energy 
(Earthquake)

(Figure 2.11 Earthquake Cycle)

2.8 Seismic Waves

Part of the energy released by an earthquake is released in the form of seismic 

waves. There are a number of different types of seismic waves, but they are all 

propagated by elastic deformation of the medium through which they travel. To fully 

discuss the production, and transmission, of seismic waves requires a detailed 

knowledge of continuum mechanics and elasticity. Therefore, we will restrict 

ourselves to give a general overview of seismic waves.

There are two categories of waves: body waves, which travel through the 

interior of the Earth, and surface waves, which travel at, or close to, the Earth’s 

surface. W ithin these categories, there are a number of different types of waves.

2.8.1 Body Waves
There are two different types of body waves, namely P~waves and S-waves. 

These two waves correspond to the different ways that an elastic solid can be 

deformed to produce waves. A P-wave, or primary wave, so called because it travels 

faster than the other waves, is produced by compression of the medium. The particles

13



of the rock are made to vibrate along the direction of propagation. W hat results is a 

series of compressions and rarefactions. Note that this type of wave is equivalent to a 

sound wave through air. Figure 2.12 is a diagram illustrating the movement of 

particles in the medium through which the wave is travelling. A secondary, or 

S-wave, is produced by shear deformation, perpendicular to the direction of 

propagation. Again this is illustrated in figure 2.12. Fluids cannot support shear, thus 

S waves cannot be transmitted through a fluid. Consequently, S waves are unable to 

pass through the Outer Core of the Earth, as this is a liquid. In fact, this is the main 

evidence that the Outer Core is a fluid.

2.8.2 Surface Waves
W hen earthquakes occur close to the surface of the Earth, then some of the 

seismic energy is constrained to travel close to the surface, and it is emitted as surface 

waves. As with body waves, there are two types of surface waves. Rayleigh waves 

result in the particles of the rock following an elliptical path in a vertical plane, while 

Love waves are horizontal shear waves.

14



Compressionswave Undisturbed medium

b) S-wave

c) Love wave

d) Rayleigh wave

(Figure 2.12 Particle movement in Seismic Waves)
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2.9 Seismometers

The different types of wave outlined in the previous section can all be detected 

by an instrument known as a seismometer. This instrument is the basis for much of 

modern day seismology. Almost all seismometers are based on the principle of 

inertia. They consist of two main parts, a frame and a heavy pendulum. The frame is 

secured to the rock, while the pendulum is allowed to swing freely, but is constrained 

to move in only one plane. When a seismic wave passes our measuring station, it 

causes the ground to move. This results in the frame of the instrument moving. As 

the pendulum is free to swing, and because of the inertial properties of the heavy 

mass, the pendulum tends to stay still. As a result, we have relative motion between 

the pendulum and the frame. This motion can be recorded by attaching a pen to the 

end of the pendulum. The resulting trace is known as a seismogram. Figure 2.13, 

below, illustrates the main elements of a simple seismometer.

a) Fixed Frame

Pivot J
X T

Mass
m Pen 

1 ^ = = ^

b)

 ^
Ground Moves

(Figure 2.13 A Simple Seismometer)

Modern seismometers tend to be based on a moving coil in an electric field. Note that 

we need a seismometer for each direction under consideration, i.e. we need one
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instrument measuring North-South motion, and another measuring East-W est 

movement. Vertical motion can also be measured using the same principle, but with 

the use of a spring, instead of a pendulum.

The output from these seismometers appears as a “squiggly line. The different 

types of seismic waves are easily identifiable on a seismogram. An example of the 

output from a typical seismometer is given below, figure 2.14.

(Figure 2.14 A Seismogram)

The seismogram can be used for a variety of purposes, the most important of which 

being the determination of the strength and location of the earthquake.

2.10 The Size of an Earthquake

The size, or magnitude, of an earthquake is defined on the Richter scale. The 

Richter scale provides a quantitative method of describing the size of an earthquake, 

based on the seismogram recorded by seismometers. Prior to this, a qualitative 

method was used to describe the earthquake intensity.

2.10.1 Earthquake Intensity
The intensity of an earthquake is an estimate, at one particular place, of the 

amount of vibration, damage, etc.. There are a number of different scales used to 

measure the earthquake intensity, with two of the main examples being the Rossi- 

Forel scale and the Modified Mercalli scale. These scales depend upon observations 

made by people at a particular location. The Mercalli scale runs from I to XII, and is 

dependent upon the effects of the earthquake. Effects such as the disturbance of 

windows, standing cars rocking noticeably and heavy furniture moving, all determine

17



the value for the intensity. The Modified Mercalli Scale is given in Appendix A. 

Obviously this scale is subjective, and will depend upon the observer, and the distance 

from the source of the earthquake. Recently, the Mercalli Scale has been superseded 

by the European Macroseismic Scale (EMS), which tries to avoid subjectivity by 

defining terms precisely and relying on objective phenomena.

2.10.2 Earthquake Magnitude
The Richter scale is named after Charles Richter, who introduced the term to 

seismology around 1935. It is entirely based upon the instrumental record made by 

seismometers, and hence is reproducible and consistent. The Richter Scale was made 

logarithmic in nature, to allow for the huge range of energies emitted by earthquakes. 

It results in a single number being determined for each earthquake. These values are 

normally within the range -3 to +9. The magnitude scale is not limited to this range, 

these are just the practical measurement limits. Note that negative or small values 

represent smaller quakes, i.e. the bigger the Richter value, the bigger the quake. 

Richter defined his magnitude scale as follows:

The maximum trace on a seismogram, as measured in thousandths of a 

millimetre (1 micron), is used to determine the magnitude. An earthquake with a 

magnitude of 0.0 produces a maximum trace of 0.001 millimetres on a standard 

seismogram, 100 kilometres from the epicentre. Magnitude increases logarithmically 

(base 10) with the size of the maximum trace. For example, a maximum trace of 10 

millimetres would imply that we have an earthquake of magnitude 4.0. A distance 

correction determined from actual measurements was used to allow the magnitude to 

be determined from seismograms at distances other than 100 km. This magnitude 

scale is known as the Richter scale or, since the introduction of other similar scales, 

the local magnitude ML.

Richter’s scale was based on earthquakes in California, which are relatively 

small and shallow. Hence, an extension of Richter’s work was necessary to allow his 

definition of magnitude to be used in other areas, with larger earthquakes, and with

IB



other instruments. Correspondingly, these different magnitudes have a general 

formula which is based upon the amplitude of seismic waves, but with corrections for 

epicentral distance, depth and other regional factors. The general formula can be 

represented thus:

M  = Log
A
T

+ f  (d ,h) + Cs +  Cr ,

(Equation 2.1)

where A is the amplitude of the wave and T is the period. Two magnitude scales have 

emerged as the most frequently used, surface-wave magnitude, M s, and body-wave 

magnitude, mb. The Surface-wave magnitude scale is determined using the amplitude 

of the Rayleigh waves, which were discussed earlier. The body-wave magnitudes are 

based on calculations made using the first few cycles of the P-waves.

2.11 Earthquake Energy

The main aim of defining a magnitude scale is to facilitate an approximation 

of the amount of energy released by an earthquake. The relationship between energy 

and magnitude has been approximated by a number of parties, by far the most 

important of which is that of Gutenberg & Richter[ 1954]. They approximated the 

energy released as :

Log E = 1.5 M s  + 11.8
(Equation 2.2)

The energy released, E, is given in ergs. It is essential to realise the full impact that 

the logarithmic factor has on the quantity of energy released. For example, an 

increase in magnitude by 1, results in an increase by a factor of over 30 in the energy 

released. Thus, an earthquake of magnitude 5.0 releases 2 x 10*9 ergs of energy. To 

put this in perspective, the atomic bomb dropped on Hiroshima released 

approximately this amount of energy, while 1 ton of chemical explosive releases only
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4 x 1()16 ergs. If we consider a great earthquake (magnitude > 8), of which there are 

on average one per year, then the energy is equivalent to over 30,000 Hiroshima 

bombs. This statistic puts the power of the Earth and earthquakes into perspective. 

Note that over 80% of all seismic energy comes from earthquakes with a magnitude 

greater than 7.9, even allowing for the fact that there are many more small shocks than 

there are large ones.

2.12 Miscellaneous Terms

W e also define two important terms which will be used frequently. An 

aftershock is an earthquake following a larger earthquake and originating at or near 

the focus of the larger one. Generally, large earthquakes have quite a number of 

aftershocks. The aftershocks may extend over a period of days or even months, with 

the number decreasing as time passes. A foreshock is a small tremor which precedes 

a larger earthquake by an interval ranging from seconds to weeks or even longer.
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Chapter 3

History of Earthquake Prediction

In this chapter we review some of the previous attempts at earthquake 

prediction. W e also discuss the different ideologies behind the various different 

methods of prediction.

3.1 Ideologies
The current state of the art in earthquake forecasting suggests that there are 

three main ways in which we can proceed with prediction research. These three 

methods can be described as follows:

1) Precursory Phenomena

The fundamental assumption of this method is that the Earth emits "warning 

signals" which we must only decipher, to enable us to predict the earthquakes.

2) Statistical Analysis of Earthquake Catalogues

Once all the earthquake information is collected and recorded in an earthquake 

catalogue, these catalogues can then be analysed statistically. This analysis allows us 

to discover any patterns in the seismicity data. This prediction method can be 

summarised as "what happened in the past is the key to the future".

3) Physical Models

In this method, we create a physical model of the earthquake based on the laws 

of physics, and our current understanding of the mechanisms involved in earthquake 

occurrence. Using the model, computer simulations can be performed and predictions 

made from these.
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3.2 Types of Prediction

As with weather forecasting, there are a number of different types of 

prediction. W e classify the various types according to the time scales under 

consideration. We regard long-term predictions as those which deal with time scales 

of the order of decades, and intermediate term predictions as those which deal with 

time scales of years. Short-term predictions we will regard as discussing time frames 

of the order of days and weeks.

Long-term predictions are very useful in terms of improving urban planning, 

setting up legislation to improve building codes (ensuring new buildings are 

earthquake resistant etc) and increasing public awareness of safety procedures, risks 

involved and what to do when the "big one" strikes. A programme such as this should 

help to minimise loss of life and produce acceptable damage levels. Short-term 

predictions could be useful in terms of saving lives, as they would allow a state of 

emergency to be called and for appropriate action to be taken for a short period of 

time.

3.3 Legends

Historically, all sorts of legends have been associated with the prediction of 

earthquakes. Abnormal animal behaviour has regularly been cited as a forerunner of 

major earthquakes. In Japan, catfish and caip jumping out of ornamental ponds has 

often been “recognised” as a precursor to a major earthquake. The appearance of 

large numbers of deep-sea fish has often been reported prior to large events. Other 

animals which feature in reports on earthquake precursors include rats, frogs and 

snakes.

2 2



The appearance of mysterious lights in the sky have also been reported prior to 

the occurrence of large earthquakes. Other suggested phenomena include cases of 

magnets losing their magnetism and the position of celestial bodies.

3.4 Conclusion

The history of earthquake prediction is riddled with false claims and false 

claimants. The different methods outlined above are a selection of those which have 

been used historically to predict earthquakes. We argue that any claims made should 

be backed up with solid scientific evidence, and should be subjected to rigorous 

statistical tests. Claims should not be based on hearsay, or reports from untrained 

members of the general public, alone. For more background information on the 

material contained in chapters 1 to 3 see Bolt[ 1993], Doyle[\995], Mogi[ 1985], 

Rikitake[\916], R itter[\91\]  and Yeats et al. [1997].



Chapter 4

Precursory Phenomena
Precursory phenomena were the first of our three ideologies for earthquake 

prediction outlined in the last chapter. The basic premise of precursors is that, prior to 

an earthquake, an event occurs which we are able to observe, or measure in some way. 

W e can then decipher this event, based on our previous knowledge, and can predict 

the occurrence of an earthquake. These precursors act as warning signals, to inform 

us of a forthcoming earthquake.

There have been many claims regarding the discovery of reliable precursors 

which would enable us to predict major earthquakes. Unfortunately, these claims 

have been, on the whole, inaccurate. Once the precursor has been identified, and 

measurements of this quantity taken, the tendency has been for the precursor not to 

recur immediately before the next earthquake. This supposed unreliability of 

precursory phenomena is the main problem for earthquake prediction research. For 

reliable prediction methods we need consistent precursors; precursors which signal 

the onset of an earthquake every time.

To date, no precursor has been identified which pre-empts every earthquake. 

Precursors have been identified which occur before some quakes, but then are missing 

before others. As above, this may be due to the complex nature of the phenomena 

involved, and perhaps no precursor will ever be discovered which occurs before every 

earthquake. The solution to this could be the measurement of a number of different 

precursors. For example, if we measure five possible precursors, and three of our five 

showed a deviation from the norm, then we could base our prediction on these three 

changes.

In the following sections, we will discuss a number of the most popular, and realistic, 

precursors.
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4.1 IASPEI Committee

In 1989, a sub-committee on earthquake prediction was set up by IASPEI, the 

International Association for Seismology and Physics of the Earth’s Interior. Its 

function was to evaluate claims of earthquake precursors. The committee asked for 

nominations of geophysical precursors to be made, for inclusion in a preliminary list 

of significant earthquake precursory phenomena. These nominations must fulfil a 

number of criteria before they can be accepted. The criteria include presentation of a 

realistic physical model, definition of the anomaly being considered, and rules for 

associating these anomalies with earthquakes. The nominations are then reviewed 

rigorously, by experts, before being accepted or rejected. See Wyss[ 1997].

At the time of writing, over 40 nominations had been reviewed by the 

committee. Of these, only 5 have been accepted as possible earthquake precursors. 

Three of the five phenomena refer to changes in patterns of seismicity, while one 

refers to variations in ground water levels. The other phenomena is based on ground 

water chemistry.

Exclusion from the list does not imply that a precursor is not valid, it merely 

shows that there is not yet sufficient evidence to confirm, or refute conclusively the 

nomination. Similarly, acceptance to the list does not imply that the precursor is 

valid, but implies that there is enough evidence for the precursor to be considered.

4.2 Japanese Precursors

Japanese scientists have performed experiments on a wide range of precursory 

phenomena, and much research has been performed in a range of disciplines 

associated with geology and the earth sciences. Table 4.1 below lists some of the 

different precursors identified by the Japanese research, and the number of recorded 

occurrences of the phenomena, see Rikitake[ 1987].
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Table 4.1 Japanese Precursors

Precursor Type Number Precursor Type Number

of of

Data Data

Gravity 1 Q-Value 1

Geodetic Survey 12 Tilt (Horizontal Pendulum) 46

Tide Gauge Observation 9 Tilt (Water-Tube) 11

Foreshock 128 Strain (extensometer) 17

b-Value 15 Strain ( bore-hole strain meter) 24

Micro earthquake 10 Geomagnetic Field 5

Focal Mechanism 1 Earth Currents 10

Change in Seismic Wave Velocity 16 Resistivity (Variometer) 30

Change in Seismic Activity Pattern 14 Resistivity (Distant Electrodes) 9

Anomalous Seismicity 13 Electromagnetic Radiation 7

Seismic quiescence 12 Radon Gas 15

Seismic Wave Form 2 Underground water / Hot Spring 10

Note that the table contains a whole variety of different precursors, from different 

branches of the science. We have precursors which stem from earthquake statistics, to 

geochemistry and geophysics.

4.3 Seismic Velocities
One of the many precursory phenomenon that has been reported is the change 

in the ratio of the P~wave velocity, Vp, to the S-wave velocity, V s, prior to an 

earthquake. The different types of seismic waves were discussed in Chapter 2. This 

change was first observed in Garm, USSR, but has since been identified in other 

countries.
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W e do not calculate Vp an<̂  Vs independently, as their ratio can be easily 

obtained from travel time data. We denote the arrival times of the P-waves, by tp, and 

the S-wave arrival times by ts. Note that, as outlined in Chapter 2, the P-wave travels 

faster than the S-wave, and always arrives first. Hence, ts is always greater than tp, 

and the difference between them increases as tp increases.

If the graph of (ts - tp) against tp is plotted, then a straight line of gradient m 

is obtained. The gradient of the line is given by:

ts — tp tsm —----  = ------ 1
tp tp

(Equation 4.1)

Note that this considers the Earth to be homogeneous and isotropic. If we assume 

that the path followed by the waves are identical then:

V p tp — V  s ts 

ts Vp
i.e. — = — .

tp Vs

(Equation 4.2)

Therefore, by substituting into equation 4.1, we get that

Vp .m -  1
Vs

i.e. —  = m + l
Vs

(Equation 4.3)
V/>

The original experiments in the USSR showed that the —  ratio decreased
Vs

markedly, some time before a large earthquake, and then recovered to the "normal" 

level immediately afterwards. The "normal" value for the ratio was about 1.75, and 

anomalies of approximately 10% to 15% were experienced. It is now thought that the 

original Garm results were caused by the peculiarities in the method employed by the 

original experimenters, see Nersesov et a/[ 1971,1979].
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W ork in this area has also been performed in the United States. At Blue 

M ountain Lake, in New York State, Aggarwal et a l  [1973] reported that they had
VP

found variations in —  before earthquakes of magnitude 3.
Vs

Unfortunately, our familiar problems reappeared. Bakun et a l  [1973] showed
VP

that no changes in — occurred before the 1972 earthquake in Bear Valley, on the San
V s

Andreas fault. It seems that, once again, we have an example of a phenomenon which 

occurs before some earthquakes, and not before others. However, this method could 

be used as one of our basket of methods.

4.4 Seismicity Precursors
Due to the increasing interest in earthquakes, and the improvements in seismic 

monitoring equipment, many areas of the world are now closely monitored by local 

seismic networks. Hence, we can now produce detailed catalogues, recording most 

earthquakes.

It has been suggested that changes in the pattern of seismicity occur before an 

earthquake. These changes could be characterised by a period of seismic quiescence, 

where the seismic activity in a certain area appears to diminish for a period, or by an 

increase in seismic activity, as if the Earth were "winding up" for some large event. 

Unfortunately, the seismicity patterns that are measured, are so complex, that it is nigh 

on impossible to associate a changing pattern with any imminent earthquake. A 

seismicity pattern which shows the main points of the theory of seismic quiescence is 

given below, figure 4.1. In figure 4.1, we can see that there are "gaps" with no 

seismic activity, and immediately after these gaps we have a major earthquake.
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Figure 4.1 illustrates the distribution of seismicity for the Kurile Islands region. The 

dashed regions represent periods of seismic quiescence. See Kanamori[ 1981].

We can see that the sizes of the "gaps" are different along both axes. It is also 

felt that other gaps could be drawn on the map, but as it is known where and when the 

large earthquakes occur, the proposers only mark on the "correct" gaps. Figure 4.2 

below, shows additional areas for which gaps could feasibly have been drawn.
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(Figure 4.2)
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The author believes, however, that this sort of postdiction , or proof after the 

fact, is a very dangerous practice, and that prediction, is completely different. 

Projecting forward in time is much more difficult. If we are trying to predict 

earthquakes, then we must be very careful when applying this postdictive technique. 

Schreider[ 1990] proposed a statistical method for making reliable predictions based 

upon seismic quiescence.

Other possible seismic precursors are thought to include the appearance of 

foreshocks. Note that the definition of a foreshock was given at the end of chapter 2. 

Foreshocks occur before approximately one quarter of all large earthquakes. Apart 

from the obvious problem that foreshocks do not occur before every event, there is 

another major problem with this method: it is generally impossible to determine 

whether an earthquake is a foreshock until after the main shock occurs. A method 

was proposed by Kagan[ 1996], whereby after every moderately large earthquake, a 

warning would be issued, just in case this was the forerunner of some larger 

earthquake. Obviously, this is not going to be a very accurate prediction method, but 

it could form the basis of a more advanced method, i.e. it could be used in conjunction 

with other factors.

4.5 Water Levels
There are many reportedly precursory phenomena which are related to 

changing water levels. Variations in the water level in underground wells, changes in 

the flow rates of springs and general phenomena associated with the height of the 

local water table, have all been associated with earthquake forecasting.

The physical basis behind these phenomena is thought to be the process called 

dilatancy. Linear elasticity predicts that the volume of an object decreases linearly 

with increasing pressure. Dilatancy describes a deviation from this situation, the 

volume of the rock, during deformation by squeezing, changes but not in the linear 

way expected. The volume of the rock is greater than predicted by the linear
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elasticity law. This deviation is due to the opening and extension of small cracks in 

the rock. This effect has been the subject of many experiments in laboratories 

throughout the world. It is thought that dilatancy could explain the occurrence of 

many precursory seismic phenomena. Recently, however, there has been some 

controversy as to the validity of directly applying laboratory results to the Earth’s 

crust. Active research is still being carried out into dilatancy, ground water levels, 

and associated phenomena.

A significant problem with basing any forecasts on these phenomena is the 

possibility of results being affected by rainfall, precipitation and irrigation. These 

effects would need to be accounted for in some way before a reliable prediction 

method could be proposed for this precursor.

Other phenomena associated with water include changes in underground water 

temperature and water chemistry.

4.6 Geochemical Precursors
It has been reported that high levels of radon may appear in spring waters prior 

to an earthquake. Radon is a daughter product in the radioactive decay of Uranium 

238. The radioactive decay process is:

238 v  230 ^  226 R a  222 R n

(Equation 4.4)

See Sears[1987]. The half-life of Radon is approximately 4 days, and hence the 

radioactivity can be measured easily.

Results from deep well monitoring stations in Japan showed that, before the 

1995 Kobe earthquake, the radon concentration in the water increased markedly. 

Unfortunately, this was not noticed until after the earthquake had occurred.
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4.7 Electromagnetic Precursors
Precursory variations in measurements of electrical currents in the Earth have 

been recorded in a number of places. Most significantly, a number of important 

discoveries have been made in Greece, by Professor Varotsos of the University of 

Athens.

His method has resulted in a great deal of media interest, and has caused 

controversy amongst the geophysical community. As a result, the next chapter is 

devoted entirely to the discussion of his method.

There have also been numerous historical reports of major changes in 

geomagnetism around the time of a large earthquake. Rikitake[ 1968] showed that 

since the advent of modern measuring apparatus, the number of reports of this nature 

has declined sharply. This suggests that previous evidence should be treated as 

extremely unreliable.

Changes to the resistivity of rocks due to saturation and pressure effects have 

also been suggested as precursors.

4.8 Geodetic Surveys
It is well known large earthquakes are often accompanied by land deformation, 

but it has also been shown that some deformation occurs before an earthquake. It 

appears that the build up of strain, by tectonic forces, causes the land to flex at certain 

places. This movement, although small, can be measured with very high precision, 

The techniques involved in making these measurements use modern satellite 

technology and more traditional triangulation surveys.

The tilting effect can be used as a precursor, and with the use of previously 

collected data, can be used to form the basis of a prediction method.
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4.9 Conclusion
Many precursors have been postulated, from many different sources, using 

various techniques. Unfortunately, no precursor has been found to be foolproof. The 

problem still remains unsolved, and much further research is needed. As stated 

previously, it may be possible to use a collection of different precursors to help 

improve prediction.
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Chapter 5 

The VAN Prediction Method

5.1 Introduction

Since 1981, continuous measurements of the Earth’s electric field have been 

made in Greece. These measurements were used by a group of Greek scientists as the 

basis of a method for the prediction of earthquakes. The VAN prediction method 

(after the initials of its proposers Varotsos, Alexopouios and Nomicos) was originally 

postulated in 1981, and is a method for detecting Seismic Electrical Signals, hereafter 

referred to as SES. It is claimed by this group, and others, that this method can be 

used for the successful prediction of earthquakes. Varotsos et al.[1988] made a 

significant claim, that “every sizable earthquake is preceded by an SES, and inversely 

every SES is always followed by an earthquake, the magnitude and epicentre of which 

can be reliably predicted”. Its supporters have recently claimed to have achieved a 

number of notable successes, and as a result have had an entire journal issue dedicated 

to them (see Tectonophysics, Volume 224, 1993). This method, which has a large 

number of sympathizers, also has a vast array of sceptics. Geller[ 1996] and 

ICagan[\996] suggest that the results obtained by the VAN method are not statistically 

significant. In this chapter, we shall discuss the VAN proposals, and the controversy 

surrounding it. The information in this chapter can be obtained, in the following 

references [17], [34-36], [41], [48-52], [70,71], [83] and [105-122].

5.2 Overview of Methodology
The VAN method uses an array of conducting wires and electrodes, which are 

buried underground. These wires, and the potential differences, produced across
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them, are then monitored at a number of permanent monitoring stations. The 

hypothesis of Varotsos et a l,  states that if a transient change, or disturbance, in the 

electric field is detected by one, or more, of the monitoring stations, and if this signal 

is greater than the background noise level, then this may be a precursor to a large 

earthquake.

Definition

A signal is defined to be a transient change, AV, in the potential difference registered 

between the two electrodes. The electrodes are separated by a short distance.

Many hours before an earthquake occurs, a signal, as defined above, is recorded by 

the apparatus. This variation has a finite duration, of length x, before the voltage 

recovers its initial value. If these signals are sufficiently large, and can be 

distinguished from the usual background noise, then an earthquake will occur within 

the area of sensitivity of the station, and within a certain time span, called the lead- 

time. Varotsos5 method uses past experience to predict the earthquake, with the 

magnitudes of the earthquakes predicted being Ms > 5.0. Each prediction forecasts 

the epicentre and the magnitude of the impending earthquake as well as a time 

window, within which the earthquake is expected.

5.3 Apparatus
The VAN method uses a pair of nonpolarized lead/lead chloride electrodes 

(Pb/PbCl2), although copper or brass electrodes have been used previously. The lead 

electrodes have been selected because of their low noise and long-term stability. The 

lead electrode is surrounded by a mass made from mixing a solution of lead chloride 

w i 'p la s te r  of Paris. The electrode is then fixed into the hole by setting in a further 

mt ' ;„»re of plaster of Paris. The electrodes are buried in the earth to a depth of 2 

metres. It has been noted that the noise produced by different types of electrode can
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vary. The electrodes are separated by a distance, L, of between 30 and 200 metres. 

See Varotsos & Lazaridou[\ 991],

The electric field is determined by measuring the potential difference between 

these two electrodes. W e require at least two perpendicular lines to determine the 

electric field at a particular station. In the VAN experiment, at each station, one line 

was oriented in an East - West direction, while another was oriented in a North - 

South direction. The potential difference, V, is measured after amplifying and 

filtering out frequencies above 0.3 Hz. The results obtained are displayed on a strip 

chart recorder.

The siting of a particular recording station is crucial, as we wish to minimise 

the amount of “noise” in the circuit. Varotsos et a l claim that the noise should not 

exceed 0.1 - 0.2 mV for a line of length 100m. This implies that the station must be 

situated away from any electrical power sources (power cables, etc.) and obviously 

places severe restrictions upon where a station can be situated. Local disturbances 

due to the introduction of strong currents into the earth, e.g. by factories, must also be 

avoided. The telluric electric field can be disturbed by magnetic variations, but these 

can be excluded from the analysis if the magnetic field at the station is monitored 

continuously. During strong magnetic storms, the electrical variations produced are 

so large, that a SES cannot be recognised if the earthquake is weak (small SES), or the 

epicentral distance is large. Other problems incurred include the production of 

anomalous discontinuities produced by metal electrodes after rain. These 

electrochemical effects may be confused with SES. In total, 18 recording stations are 

used, with each station being linked to Athens via a telephone link. The distribution 

of these stations can be seen below, in figure 5.1.
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(Figure 5.1 - Map showing the Distribution of Greek Monitoring Stations) 

Above, we can see a map of Greece with the 18 permanent measuring stations 

marked, with each station labeled with a three letter code word. The two largest cities 

in Greece, Athens (ATH) and Thessaloniki (THES), are also marked on the map.

The names of the stations are given below:-

ASS = Assiros 

GLY = Glyfada 

GOR = Gorgopotamos 

IOA = Ioannina 

KAL = Kalamata 

KAV = Kavala 

KER = Keratea 

KOR = Korinthos

MEG = Megara 

NAF = Nauplio 

ORO = Oropos 

PIR = Pirgos 

SER = Serifos 

VER = Veroia 

VOL = Volos 

THI = Thiva
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5.4 Selectivity

A controversial aspect of the VAN method is “selectivity”. This permits an 

easy explanation if there is failure to identify, or predict an earthquake.

Given a particular monitoring station, SA, situated at position A, this station 

may be able to detect SES from seismic area B, but not from area C, even if the 

distance AC is less than AB (see figure 5.2).

Varotsos also states that this “selectivity” is not reversible and that, although SA may 

be able to record events at B, that a station at B may not be able to record signals at A. 

Varotsos goes further still, and states that even if all 3 points lie on a straight line, 

then station SA may be able to record SES from B, but not from C (see figure 5.3).

(Figure 5.3 Selectivity)

He claims this because, selectivity is not only a directional phenomenon, but that it 

depends on other factors.

(Figure 5.2 Selectivity)
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a) Physical Properties

This selectivity depends on the physical properties of the path  between the site 

of the SES and the monitoring station. For example, he claims that the conductivity 

of the Earth between the two positions determines whether we get a signal.

b) Source Properties

Varotsos also claims that the source of the SES affects the detectability of the 

signal. For example, the directional properties of the emitted current affect the 

detection.

c) Geological Structure at Station

He also makes the claim that any inhomogeneities in the Eartlf s crust, in the 

vicinity of the recording station, which result in different resistivities along various 

azimuths, will determine whether or not we can detect an SES. In a strongly 

inhomogeneous area, there are “sensitive localities”, i.e. small sub-areas that amplify 

the SES signal. This local effect is superimposed on the regional characteristics.

Varotsos makes one final claim regarding this selectivity. He proposes that once a 

station has been shown to be sensitive to a particular seismic area, then it will be 

sensitive to all future events in this area.

Utada[l993], he gives a possible explanation of the selectivity effect. The 

model requires that there exists a planar path between the source region and the 

sensitive monitoring site, through which the electric current can travel. This path 

must have a higher conductivity than the surroundings, which allows the electric 

current to be concentrated on this path. If there is a highly resistive anomaly on this 

path, then the electric field will be further amplified here, and this would be our 

sensitive area. This model accounts for all 3 of the properties postulated by Varotsos, 

see figure 5.4 below. W e do not claim that this is the only model or that it is actually
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feasible, we simply claim that it provides a possible reason for the appearance of these 

properties.

resistive "gap'L. 
(sensitive point)

resistive host rock conducting zone

source region

(Figure 5.4 Selectivity Model)

5.5 Method of Prediction

The potential difference for each pair of electrodes is recorded as it varies with 

time. When a transient change in this potential difference occurs, we say that a signal 

has been detected, and the next step is to determine the origin of the signal. By a 

transient change we mean that the potential difference deviates from its normal value 

for a short period of time. Usually, this is of the order of minutes, but in some cases, 

the deviation can remain for over an hour. This is the position we shall use as the 

epicentre of the impending earthquake. We must then predict the magnitude of the 

earthquake. The methods used employ a process of elimination, based upon previous 

experience, to determine the desired quantities.
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5.5.1 Determination of Epicentre
As stated above, the epicentre is determined by a process of elimination based 

upon the following criteria:

a) Selectivity Effect.

Using the knowledge gained from previous events which were not measured at 

this station, regions to which this station is not sensitive, are excluded immediately. 

This restriction limits the number of areas which we must consider to places which 

have produced an SES, and earthquake, before.

b) Polarity Effect.

From the restricted set of seismic areas obtained above, it is also possible to 

exclude those areas to which the station is sensitive, but which emit SES with polarity 

opposite to those of the signal recorded. For example, if a particular area is known to 

emit signals with a positive change to the potential difference, and the signal we have 

obtained has a negative sign, then we can eliminate this area.

c) Ratio of the two components of the SES.

The ratio of the East-West component to the North-South component of the
f £ V }  ( &V}

—  , can be determined and compared with previous
L  J i

signal, given by
V L  , EW V NS

SES from the remaining seismic areas. This ratio is used to identify the epicentre, 

based upon previously active regions. Unfortunately, if the ratio under consideration 

does not match that of a previous event, then a prediction has to be based upon 

interpolation, using the values of neighbouring areas.

This method allows us to predict the position of the epicentre of the earthquake.
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5.5,2 Determination of Magnitude

The method used to calculate the magnitude of the earthquake is, again, based 

upon past events. The predicted magnitude depends, not only upon the strength of the 

signal, but also the station the signal is recorded at, and the predicted region the signal

(Equation 5.1)

where the gradient typically takes a value of between 0.34 and 0.37, and the intercept, 

b, takes a variety of values depending upon the area under consideration. Therefore, 

for every area that a station is sensitive to, we must have a calibration, before any

prediction for the magnitude of the imminent event can be issued.

5.6 Mechanisms for Signal Production

One of the main problems with the VAN method is the difficulty in 

understanding the physical basis for the production of these seismic signals. In a 

number of recent papers, it has been claimed that the generation of these signals can 

be explained by various physical models, for example, Gershenzon & 

Gokhberg[\993]\ Lazarus[ 1993]; Slifkin[ 1993]. According to Lazarus, any model 

would need to fulfill a number of criteria, and answer a number of important 

questions. These questions include :

originates from. Using previous data, the graph of versus M ean be

plotted. This yields a straight line, with equation :

prediction of magnitude can be given. Using equation 5.1 and the value for ----- a
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1) Why are SES detected only prior to earthquakes, and not during them, when 

deformation would be larger?

2) Why is there such a large variability in the time intervals between the detection of 

the SES and the earthquake occurrence?

3) Why are SES only detected from certain sensitive regions, and only from 

earthquakes arising in certain areas?

4) How can the SES propagate over hundreds of kilometres to some detectors and yet 

not at all by much closer detectors?

It is claimed that, in principle, seismic electric signals could be generated by 

an array of different mechanisms. There are a number of theories which have been 

postulated as explanations for the appearance of these SES, these are mainly based 

upon mechanoelectric occurrences. For example, piezoelectric effects due to excess 

crystal polarities in one direction. A number of these theories are summarised below.

5.6.1 Piezoelectric Effect
It is a well known phenomenon that some anistropic materials polarize upon 

the application of mechanical stress. This effect is known as the piezoelectric effect 

For example, a quartz crystal will polarize along one direction if compressed along 

another at right angles. The production of the SES is based on this piezoelectric 

effect. At a geological fault, or where we have crustal movement, or deformation, any 

piezoelectric material if compressed could give rise to a voltage, see figure 5.5 below.

Force

Force

(Figure 5.5 Piezoelectric Effect)
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Quartz is a rock forming mineral, as well as a piezoelectric material, and could 

produce our SES. If the signal is large enough, then it can be detected by our 

monitoring stations.

5.6.2 Crystal Deformation
Another possible method of SES production is caused by defects in the crystal 

structure. In general, crystals of rock-forming minerals contain defects in their lattice 

structures. From Solid State Physics, it is known that these defects can form electric 

dipoles, because of non-uniformities in the charge distribution. These dipoles can 

change their orientation under an applied stress, resulting in an abundance of dipoles 

aligned in one direction. This method is similar to the piezoelectric effect, but has a 

different physical basis.

5.6.3 Charge Separation by Rock Fracture
Laboratory experiments have revealed that the deformation of some crystalline 

materials generates an electromagnetic field. The main cause of this appears to be the 

movement of charge dislocations. Gershenzon et a l[  1989], showed that during 

crustal fracturing, charged dislocations are produced. These dislocations result in 

measurable voltage differences being produced at crack tips.

5.6.4 Miscellaneous
Other methods of SES production involve the use of more complex solid state 

properties based on local changes in stress. They also make use of electrokinetic 

effects, local changes in crustal conductivity, moving source models, the Stepanov 

effect and many other effects obtained during rock failure experiments conducted in 

the laboratory.

44



5.6.5 Overview
It would appear that there are many different ways in which these SES could 

be produced, the methods outlined above are a selection of those currently being 

proposed. The opinion of this author is that, at this stage in the development of the 

VAN technique, the exact process through which these SES are produced is, while 

important, not the most important consideration. It is sufficient that we have a 

possible model for the production of the signals, ensuring that the technique does have 

a physical basis. One final point to consider is the possibility that more than one 

method of production is at work. It may be possible for a number of the mechanisms 

outlined in this section to contribute to the overall SES.

At this juncture, the most important research is the collection and publication 

of more reliable data, and the statistical analysis of the resulting data, proving that 

there is a significant statistical correlation between the SES and earthquake 

occurrence. If it is shown that there is a significant statistical link, then the correct 

model would need to be discovered, but this must be a secondary consideration.
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5.7 Results

In this section, we give a summary of the VAN group’s results from 1988 and 

1989. These results are presented as an example of the type of predictions and results 

presented by the VAN group. They were chosen for analysis because they consist of 

a manageable amount of data, and because they form the basis for the bulk of the 

discussions in the appropriate geophysical journals. In the following table (Table 

5.1), we list the predictions made by the VAN group, as they themselves present them. 

These predictions are sent to the Greek government by means of a telegram. They 

consist of the date on which the telegram was sent, and the magnitude and position of 

the earthquake epicentre. The position of the epicentre is given in terms of a bearing 

and direction from the central monitoring station, near Athens. For example, an entry 

such as NW330, implies that the epicentre will be at a position 330 kilometres to the 

North W est of the central station. Note that, in some cases two possible sites for the 

earthquake are predicted. This occurs as a result of similarities in previous signals 

form these areas.



Table 5.1 Summary of Van Predictions

Date of Prediction
Telegram Epicentre Magnitude

Earthquake 
Date Time Epicentre Magnitude

15-May-88 NW330
(W300)

5.0
5.3

18-May-88 5:17 W310 5.8

21-May-8 8 W300
(NW350)

5.3
5.0

22-May-8 8 3:44 W290 5.5

30-May-88 W300
(NW350)

5.4
5.0

2-Jun-88 10:35 W300 5.0

4-Jun-88 W300 5.0 6-Jun-88 5:57 W300 5.0

10-Jun-88 SW200 5.1 13-Jun-88 20:32 SW240 4.3

21-Jun-88 W300
(NW350)

5.0
4.8

26-Jun-88 6:05 W300 4.5-4,7

lO-Jul-88 W170
(WSW240)

4.7
5.2

12-Jul-88 2:27 NNW95 5.0

13-Jul-88 W70 5.0 16-JuI-88 1:54 SW100 4.9

18-M-88 NNW80
(SW100)

Uncertain 23-JuI-88 9:20 SW200 4.4

l-Sep-88 W240
(NW300)

5.8
5.3

22-Sep-88 12:05 W250 5.1-5.5

30-Sep-88 W240 5.3 30-Sep-88 13:03 W215 4.9
(NW330) 5.0 15-Oct-8 8 7:00 W235 4.9

3-Oct-88 W235 16-Oct-88 12:34 W240 6

21-Oct-8 8 Several tens 
of kin from 

W240

6.3-6.5 22-Oct-88 
31-Oct-88 
8-Nov-88 
11-Nov-88

9:34
3:00
8:18
17:52

W250
W230

SW170
W270

4.9
4.9 
5.3 
5.0

2-Mar-89 W300 5.4 5-Mar-89 16:44 NW440 4.7
(NW330) 5.0 8-Mar-89 5:57 NW470 4.9

3-Jun-89 W300
(NW350)

5.5
5.0

7-Jun-89 19:45 W185 5.2-5.4

13-Jun-89 W200
(NW350)

5.2
4.8

17-Jun-89 20:56 W140 4.5

23-Jul-89 NE40 5.0 1-Aug-89 2:24 N130 5.0

16-Aug-89 WNW200 5 20-Aug-89 18:32 WSW245 5.9

24-Aug-89 W NW 190-240 5.2-5.8 31-Aug-89 21:29 W170 4.8

11-Sep-89 W NW 190-240 5.2-5.8 25-Sep-89 7:35
7:38

WSW220
WSW235

4.7
4.6

18-Oct-89 NW300
(W240)

4.8
5.5

29-Oct-89 19:36 NW280 4.5
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5.8 Discussion of Claims

In this section we will discuss the success of the VAN method in the 

numerous papers. The main points of criticism against the VAN method will also be 

highlighted.

5.8.1 Selectivity
As discussed earlier, in section 5.4, the VAN group state that only seismic 

electric signals from certain areas are detectable at particular stations. While there is a 

possibility of a physical basis for this property existing, the Earth is clearly 

inhomogeneous (see chapter 2), it is felt that this explanation is too convenient, and 

easily susceptible to abuse. Again, we express our reservations regarding this claim.

5.8.2 Statement of Results
In Table 5.1, a summary of VAN’s results is given. If we examine the column

in which the epicentral position is predicted (column 2), we see that the position is

expressed as a distance and bearing from the central station in Athens. We note that

the bearing is expressed using 3 letters, for example, WSW is used to denote West-

South-West. Using a system of three letters, we may split the compass into 16
360°

different sections, which implies that the angle between each line is = 22.5°.

From Table 5.1, we see that every prediction consists of at most a 3 letter bearing; are 

we expected to believe that every prediction lies conveniently on one of the sixteen 

compass points? If not, are we to assume that the prediction is a region which 

subtends an angle of 22.5°? Actually, this statement is probably acceptable, since 

over the distances covered, i.e. a maximum of 400 km, this results in an error of at 

most 25km. As the VAN group claim a successful prediction if the error in epicentral 

distance is less than 100 km, this method of presentation is almost acceptable.
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However, it is felt that the statement of results could be better presented if given in 

either standard latitude and longitude coordinates, or by the use of a proper bearing.

5.8.3 Mis sing Earthquakes
Varotsos et a l  did not mention the earthquakes which they did not 

“predict”. There are a number of earthquakes with a magnitude greater than 5 for 

which they did not receive seismic electric signals as precursors. For example, an 

earthquake with Ms = 5.8 occurred on March 19, 1989, with an epicentre at 39.3°N; 

23.6°E. They failed to consider these unpredicted earthquakes, and did not seem to 

consider these “missed” events as important, or feel that they diminished the 

reliability of the prediction method.

5.8.4 Multiple Predictions
In many of the predictions issued by VAN, there were two possible solutions 

for each SES. This resulted in two predictions being issued for many of the SES, with 

one prediction being considered the primary one. These “double” predictions will 

clearly increase the probability of predicting the earthquake correctly. As is well 

known, earthquakes do not occur everywhere, but are mainly concentrated along 

faults. Therefore, there are a number of regions where the probability of earthquake 

occurrence is relatively high. By predicting two epicentral sites, in these “active” 

regions, the chances of success can be markedly increased. Therefore, the statistical 

significance of these multiple predictions must be questioned. Indeed, if we have a 

double prediction which predicts an earthquake, we should treat them separately as 

two different predictions. W e should count one of them as being correct, and the 

other as being incorrect when we perform our statistical evaluation. Immediately, this 

drastically reduces the efficiency of Varotsos’ method.
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5.8.5 Probability beyond Chance
The background seismicity in Greece is relatively high, and as stated above, 

we know that earthquakes tend to occur on fault planes. These two factors imply that 

simply by choosing a highly active region on a fault plane, and predicting an 

earthquake at this point, we have a reasonable chance of forecasting the event. What 

must be considered is not only the number of correct predictions, but the number of 

predictions beyond chance. In his analysis, Varotsos fails to consider this, simply 

claiming that if he forecasts the event correctly then it must be as a result of his 

method. In Mulargia and Gasperini [1992], these issues are discussed more fully, 

although their analysis has proved almost as controversial as the VAN method itself. 

They employ a declustering, or aftershock removal algorithm to obtain the catalogue 

of main shocks which they claim should have been predicted by VAN. The removal 

of aftershocks is however, a dubious and non-trivial undertaking, and it is felt that this 

is an unsuitable way of proceeding.

5.8.6 Rules of the Game
It has been claimed by some that the so called “rules of the game” have been 

changed by Varotsos as the study has progressed. For example, in Wyjj[1996], Wyss 

andAllmann[ 1993] and Mulargia and Gasperini[ 1992], the authors state that the Van 

group changed the lead time, the expected time until earthquake occurrence after 

arrival of SES, during the course of the study. They also claim that the allowable 

error in the predicted magnitude has been changed from 0.7 to 1.0, to improve the 

success rates. It is obvious that these post-event adjustments are not allowed, but it is 

felt that, while Varotsos' did not explicitly state the “laws of the game” beforehand, 

the claims made in these papers are, on the whole, unjustified. Throughout the course 

of the study, we could find no record of any alteration in the acceptable magnitude 

error, and that AM had remained constant at 0.7. The lead-time question is an 

altogether more difficult one to resolve. The lead time has changed during the course 

of the experiment, but Varotsos has claimed that this is due to the discovery of a
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different type of SES. It is necessary that the procedure, including any parameters, be 

stated explicitly beforehand to enable us to perform a complete evaluation of the 

method, and that statements of the following three criteria be given:

a) A list of all precursory seismic electric signals.

b) A list of all predictions issued.

c) A list of all earthquake’s occurring in region under study.

5.8.7 Earthquake Magnitudes
As described in chapter 2, there are a number of ways to define the magnitude 

of an earthquake. In the VAN experiment the magnitude of the earthquakes predicted 

are given in Ms, which appears to be the standard form in this area. VAN’s opponents 

claim that they do not state clearly which scale they are using, and that they have not

used the final earthquake catalogues. It is again felt that this criticism of VAN is

unfair, and we feel that he has recently stated accurately the magnitude scales he has 

used. Regarding the use of earthquake catalogues; Varotsos did indeed use the 

preliminary catalogues for Greece, but as these were the only ones available to him at 

the time, it is felt that this should be allowed. We now come to possibly the most 

controversial, and difficult, question surrounding the VAN method. Varotsos states 

that he is able to predict earthquakes with a magnitude in excess of 5.0, and claims 

that the error in this magnitude is AM = ±0.7. Thus, he claims that if he predicts an 

earthquake with M=5,0, and an earthquake with magnitude 4.3 occurs then this is a 

successful prediction, in terms of the magnitude. So far this would seem to be 

perfectly acceptable, but Mulargia and Gasperini (hereafter known as MG) state that 

if he claims this earthquake as a successful prediction, then he must also counts as 

fa ilures , the number of events which he fails to predict with an earthquake magnitude 

> 4.3. Equation 5.2, below, shows the relationship between the magnitude and the 

number of earthquakes with that magnitude. Gutenberg and Richter showed that the 

number, N, of earthquakes with a magnitude greater than M is given by the following 

relationship:
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L o g  N  = 8.2 -  M  

(Equation 5.2)

As a result of the logarithmic scale, the number of earthquakes increase dramatically 

as we lower the magnitude. This result implies that if we accept M G ’s argument then 

we would have to include a large number of failures, which would obviously decrease 

our success rate. In fact, the number of earthquakes included by employing this 

method is so great that it completely swamps all the “correct” predictions made, and 

results in there being a very small success rate. For example, MG state that for the 

data set, where we have 20 “successful” predictions, we must also include 234 

earthquakes with 4.3 < M < 5.0. This means that the success rate drops to below 

10%. It is felt, however, that this is not the correct way to proceed. The author does 

not believe that the lower magnitude earthquakes should be included when calculating 

the success rates. It is felt that they should be allowed to claim events of less than 

magnitude 5.0 as successes because of the complex nature of the earthquake 

mechanism. It is possible that a signal could be produced that gives the indications of 

a very large earthquake, but due to local considerations, may only result in a smaller 

event.
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5.9 Analysis
We performed an analysis 011 the data given in table 3.1. For various different 

sets of rules we calculated the number of successful predictions made by VAN. A 

successful prediction is defined to be one which lies within the range of the variables 

set out in the rules of the game. We counted the number of successful predictions for 

various errors in the distance from the actual earthquake. The maximum allowable 

error in the distance between the predicted earthquake and the actual earthquake 

ranged from between 30 kilometres to 150 kilometres. We repeated this process for 

different values of the maximum allowable error in the magnitude. The success rates 

for the different rules are shown in the table 3.2, below.

Table 5.2 Success Rates for Various Rules

Magnitude Range
Distance 0.3 0.5 0.7 0.9 1.1

30 0.14 0.33 0.38 0.38 0.38
50 0.14 0.33 0.38 0.43 0.43
70 0.14 0.33 0.43 0.48 0.48
100 0.14 0.38 0.52 0.57 0.57
130 0.33 0.52 0.71 0.81 0.81
150 0.33 0.52 0.71 0.81 0.86

From the data above, and Graph 5.1, below, we see that by changing the rules 

we obtain different success rates. Obviously, the larger we make the acceptable error, 

the more likely we are to get "correct" predictions. We can see that if we allow a 

prediction to be up to 150km out, and 1.1 units off the magnitude, then we obtain a 

success rate of 86%. This, however, is slightly misleading. At the larger distances, 

we start to "cover" an area which is approximately half of the total area under 

consideration.

For the normal rules, Ax = ±  100 km and AM = ± 0.7, we find a success rate of 

over 50%. It is felt that this result is quite reasonable at this stage of development of 

the method, and for the tolerances given.
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5.10 Considerations

In section 5.6.5, we discussed the possibility that a number of different 

mechanisms could be involved in the production of the seismic electric signals. If this 

is the case, then there is the possibility that two of the signals could cancel each other 

out. For example, if two different signals were similar in size, and opposite in 

polarity , i.e. one was positive and the other negative, then the resultant SES would be 

zero (or close enough for it to be regarded as noise). This is a very interesting 

thought, and could explain some of the cases where earthquakes were "missed". 

Although convenient for explaining the missing events, it would ultimately be a blow 

for the method, as it would mean that some events just could not be predicted.

Obviously, a lot more research needs to be carried out if we are to show 

whether this property is valid.
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5.11 Conclusion

As yet there is no consensus amongst the geophysical community on what 

represents an earthquake prediction, or how claims should be evaluated. There is no 

definitive theory of earthquake occurrence and, hence, proposed techniques must be 

studied and validated statistically. The current state of play suggests that the VAN 

method for earthquake prediction is not perfect. If, however, further research resulted 

in a workable, and reliable, method then this could be of great benefit. The amount of 

warning given is sufficient to allow emergency measures to be taken, which could 

reduce the number of casualties.

The many controversies surrounding the method are mainly due to the poor 

reporting of the results, and the confusion that this has entailed. It is felt that the 

results obtained by Varotsos et al., while not yet statistically significant, do provide a 

glimmer of hope. W hat is needed is a more rigorous test, with statements of the rules 

of the game and all appropriate parameters made beforehand, with no a posteriori 

adjustments allowed. Until this procedure is carried out, we cannot proclaim the 

VAN method as a success.
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Chapter 6 

Seismicity and Seismic Gaps

111 this chapter we will discuss some of the main points of our second ideology 

for earthquake prediction, that of earthquake catalogues and statistics. In chapter 4, 

we highlighted some precursory effects gleaned from earthquake catalogues. Effects 

such as foreshocks and seismic quiescence, which we can think of as gaps in time, 

were outlined. Here, we will consider the theory of seismic gaps, which we can think 

of as gaps in space. We will also mention "Mogi’s Doughnuts" and prediction using 

b-values.

6.1 Seismic Data

The collection of seismic data is a fundamental requirement for achieving any 

earthquake prediction. By recording earthquake occurrences world-wide, the 

distribution of earthquakes has been determined. Unfortunately, the records involved 

only stretch back about one hundred years. Historical earthquake catalogues of over 

1000 years are available, although these are generally unreliable. With the time scales 

involved in earthquake prediction, we do not have enough data to produce a thorough 

statistical analysis.

The data that we have obtained can be used to provide rough forecasts of 

earthquake occurrence. These rough estimates are based on regularity, and effects 

such as periodicity and characteristic earthquakes. Characteristic earthquakes are 

defined as earthquakes in which the same segment of fault ruptures as in previous 

earthquakes. A great deal of research has been performed in Parlcfield, California, 

where a characteristic earthquake is thought to occur approximately every 22 years, on 

average. It has done so for, at least, the last 150 years. See Bakun & Lindh[ 1985] for
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more details. Unfortunately, the experimenters have overestimated the regularity of 

the Earth and, although predicted to occur a few years ago, the next characteristic 

Parkfield earthquake has yet to occur.

Seismicity data can still give us a rough estimate of where and when large 

earthquakes will occur.

6.2 The Seismic Gap Hypothesis

Large (M > 7), shallow earthquakes tend to occur in regions that have not been 

the site of such earthquakes for decades. The Seismic Gap Hypothesis was first 

proposed by Feclotov[ 1965], based on his work in the USSR and Japan. The essence 

of the theory is based on the premise that if a large earthquake has occurred in a 

specific region, along a fault, then the next large earthquake is more likely to occur in 

another region along this fault.

Fedotov estimated the size of the focal regions for each of the large 

earthquakes that had occurred in the seismic zone under consideration. That is, he 

calculated the size and position of the areas that had ruptured during major 

earthquakes. He used data from aftershocks, tsunami information and geodetic survey 

data to estimate the size of the ruptured area. He then plotted the different areas on a 

map of the seismic zone under consideration, the Kamchatka-Hokkaido Zone, which 

incorporates north-east Japan and the east coast of the former USSR. His original plot 

can be seen in figure 6.1, below. Fedotov noted that the focal areas cover large 

sections of the fault, and they do not overlap.
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Fedotov’s hypothesis stated that the next large earthquake should occur to fill 

in the remaining unruptured areas, or gaps. These unruptured areas are shaded in 

figure 6.1, above.

Using a similar technique, A/r;g/[1968 a,b] analysed the seismic zone that runs 

form Alaska to Russia. For each large earthquake, the ruptured area was estimated 

and plotted on a map of the area concerned. The ruptured zones are shown below, in 

figure 6.2. In this diagram, the ruptured areas are shaded.

Aftershock Region

Mam Shock

A LA SK A
Bering Sea

Ruptured Areas Unruptured Areas 
(Seismic Gaps)

(Figure 6.2 Alaska-Russia Seismic Zone)

We can see that there is no overlapping of the ruptured regions. In fact, nearly 

all of the seismic zone has been "filled in" by these large earthquakes. It is assumed 

that once the zone is completely filled, we remove the first zone that ruptured, and go 

round the cycle again.

Results such as figure 6.2 are persuasive evidence as to the power of the 

seismic gap theory. It must be remembered that this is purely a long-term prediction 

method, as we are dealing with periods of decades. In recent years, work has been 

done to test the validity of the Seismic Gap Hypothesis.
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6.3 Validation ?

Unfortunately, there is a major problem in validating the seismic gap 

hypothesis, hereafter referred to as the SGH. Once again, the problem lies in the 

length of the earthquake catalogue and the time scale involved in great earthquake 

occurrence. As stated in section 6.1, instrumental data only cover the last 100 years or 

so. Japan and China have historical catalogues which extend back over 2000 years, 

but it is difficult to assess their accuracy and reliability. More events are needed 

before we can show confidently that the SGH holds.

The Seismic Gap hypothesis assumes that large earthquakes are quasi-periodic 

in nature. A number of other assumptions about the process are implicit in the 

hypothesis. They can be summarised as:

a) The plate boundaries and major faults are subdivided into natural segments.

b) Tectonic stresses within a segment must be relieved by an earthquake.

c) Such an earthquake reduces the stress significantly below the point where

successive large earthquakes are possible.

d) Within each segment, stress accumulates slowly, which implies that

decades need to pass before the next great earthquake.

Some, or all, of these assumptions may be incorrect. For example, work done by Bak 

& Tang[l9S9] suggested that the Earth’s crust is in a constant critical state. A state of 

"self-organised criticality". If this is true, then assumption (c) is invalid.

It must be remembered that we are only discussing large earthquake 

occurrence. As stated in section 2.11, the energy released by large earthquakes 

completely dominates the energy released by the multitude of smaller earthquakes.

Nishenko[ 1989] lists 13 earthquakes since 1968 which have occurred in 

previously identified seismic gaps. Thus many seismologists treat the Seismic Gap 

Hypothesis as confirmed by observation. According to Kagan & Jackson[ 1991], 

hereafter referred to as KJ, the procedure cannot be properly evaluated by considering 

only these successes. We must also consider its failures. Also, if we pick a series of
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random gaps, then some earthquakes will occur by chance; we must consider this in 

any analysis.

KJ conclude that the SGH is false, and is not statistically significant as it 

currently stands. Nishenko & iSy/ce.y[1993] make a counter claim that KJ are incorrect 

in their analysis and that the SGH holds. However, KJ appear to be correct in this 

matter, as Nishenko & Sykes make retroactive changes to the proposals (see chapter

5). These changes to the proposition are based on our increasing knowledge of the 

Earth’s crust. Changes to a model or theory are not allowed until after the testing is 

complete. Once the test is complete, changes can be made and a revised model tested. 

Kagan and Jackson’s result does not mean that a revised Seismic Gap Hypothesis 

could not be accepted in the future, only that the current model is unacceptable.

6.4 Mogi’s Doughnuts

A second type of seismic gap was proposed by M ogi[l979]. This is similar to 

seismic quiescence outlined in chapter 4. Mogi termed his gap a "seismic gap of the 

second kind", to distinguish it from the first kind of gap, outlined in the last section.

He discovered that prior to a large earthquake, not only did the focal region of 

the impending earthquake endure a period of quiescence, but the surrounding area had 

a period of higher seismic activity. The diagram below, figure 6.3, shows the main 

points of the proposition, with each dot representing an earthquake.
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Note that, in figure 6.3, the shaded area has high seismicity, while the 

unshaded, central area has almost no seismicity. As the shapes resemble ring 

doughnuts, this phenomena has been termed Mogi’s Doughnuts.

After the large earthquake has occurred, the pattern reverses; we have high 

activity in the central portion and lower seismicity in the outer ring. Figure 6.4, 

below, illustrates this. This diagram is the "jam" in the middle of the doughnut!

o
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(Figure 6.4 Seismicity After Large earthquake(1923 lokyo))
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Ellsworth et al. [1981] pointed out that this type of phenomena occurred prior 

to the 1906 San Francisco earthquake. Other examples of this type have been found 

in different regions throughout the world.

How can we explain why activity decreases prior to a large earthquake? The 

explanation for this phenomenon is, once again, the theory of dilatancy. Cracks open 

in the crust due to increasing stress, causing an increase in volume. Hence, water 

pressure in the crack pores decreases, which results in crustal strength increasing and 

a decrease in seismic activity. This process is known as dilatancy hardening.

It remains to be seen, however, if this identification of seismicity patterns in 

the shape of doughnuts can produce predictions, as opposed to postdictions.

6.5 Forecasting using b-values

Gutenberg&Richter[ 1942,1944] used all the data at their disposal to produce a 

law relating the number of earthquakes and the magnitude. Their law states that:

Log N  -  a -  b M

(Equation 6.1)

where N = the number of earthquakes with magnitude > M 

a = constant

b is a local variable but is normally approximately 1.

The Gutenberg-Richter Law  (GR-Law) states that the number of earthquakes declines 

logarithmically with magnitude. The extent of the decline is given by the b-value. 

Figure 6.5, below illustrates this for Californian Earthquake Data from 1932-1971. 

Note that this relationship holds true at both regional and global scales.
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Normally, b takes a value close to 1. However, it has been found that prior to 

large earthquakes, the b-value can drop significantly. Suyehiro[ 1966] analysed 

earthquake catalogues before the 1960 Chile earthquake. He found that the b-value 

dropped from its usual value of 1 to 0.55 before the great quake. SchoLz[ 1968] 

claimed that the decline in the b-value is due to an increase in stress. This would be 

consistent with our model of stress increasing until failure.

As with other precursory phenomena, the problem is that a decrease in the b- 

value is not always followed by a large earthquake. This problem, allied to the fact 

that we must, as usual, notice the decline before any large earthquake makes this a 

difficult method for forecasting events.
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6.6 Conclusion

As yet, not enough data have been accumulated to allow us to make accurate 

predictions based on seismic data alone. Perhaps the seismicity patterns will be so 

complex that we will never be able to predict earthquakes using this method alone.

At the moment, seismic data are only useful for identifying areas of high 

seismicity and high risk. This can help us to make rough forecasts, and allow the 

general public to be informed that they live in a high risk area.

We must continue collecting data in the hope that, one day, we will have 

enough of it to enable accurate forecasts to be made.
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Chapter 7 

Cellular Automata

7.1 Introduction

Many geological problems and phenomena possess properties of scale 

invariance. The observation of scale invariance in physics has tremendous 

importance, as scale invariance often indicates the existence of power laws. The 

advantage of power laws is that they are relatively easy to analyse and manipulate.

Mandelbrot[ 1967] introduced the idea of fractals. Fractals also deal with 

scale invariance. They may look the same, or similar, at different scales and different 

magnifications. The "Fractal" equation is a power law, and can be written as

(Equation 7.1)

where N = the number of objects with a characteristic linear dimension r, 

C = a constant, and 

D = the fractal dimension.

7.2 The Gutenberg-Richter Law

In section 6.5, the Gutenberg-Richter (GR) Law was outlined, along with its 

uses as a precursor of seismic events. The GR law can be formulated in two ways, 

cumulatively and non-cumulatively. In section 6.5 we expressed the cumulative form
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of the GR law; here we give the non-cumulative version. The non-cumulative GR 

law states that the logarithm of the number, N, of earthquakes of a certain magnitude, 

M, is directly proportional to the magnitude. The equation is usually written as

Log N  =  a  -  b M .

(Equation 7.2)

From equation 2.2, we know that the energy, E, obeys a similar rule, i.e.

Log E =  c+ d M  

... Log E - ci.e. M  = — 5-------
d

(Equation 7.3)

Therefore, by substituting for the magnitude, M, in equation 7.2 we get that

Log N  = a -  ^  Log E -  ^  = K  -  Log E
d  d  d

(Equation 7.4) 

where K is some constant. This implies that
„  L

N  <*= E ~ d .

(Equation 7.5)

In essence, the Gutenberg-Richter Law is a power law relating the frequency 

of earthquakes with the energy released.

Another empirical relationship was given by Utsu[ 1969]. He found a 

relationship between the size, S, of the fractured zone of an earthquake and the 

magnitude, M. His rule can be stated as

M  =  Log S + 3 . 7

(Equation 7.6)
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Substituting this into equation 7.2 yields

Log N ( S ) -  a -  b (  Log S +  3 .7 )  

i.e N ( S ) oc S~b

(Equation 7.7)

Once again, equation 7.7 represents a power law. This relationship will be used 

extensively throughout the rest of this chapter.

7.3 Real Earthquake Data

In order to check the validity of the Gutenberg-Richter law, real seismic data 

from the North California Earthquake Data Centre were downloaded from their 

information site on the world wide web. Earthquakes for the period 1990-1997 were 

used. All earthquakes with a magnitude greater than 1.5 were included in the 

catalogue. This provides us with a large earthquake catalogue, and a significant 

number of events.

Graph 7.1 was produced from the data. The two lines represent the 

cumulative and non-cumulative statistics. Note that for the non-cumulative data, in 

graph 7.1, we plot the logarithm of the number of earthquakes with magnitude M 

against the magnitude. For the cumulative data, we plot the logarithm of the total 

number of earthquakes above magnitude M, against the magnitude. This procedure is 

followed because the cumulative and non-cumulative Guttenberg-Richter Laws are 

mathematically equivalent (see Mm>z[1995] ). The gradients of the lines of best fit are 

also calculated.
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W e can see that in the graphs obtained the data results in two straight lines, as 

expected. Note that the straight lines are very good, except at the upper limits of the 

magnitude scale. This effect is due to the relatively small number of events at these 

higher magnitudes. The gradient of the line of the best fit for the non-cumulative data 

is -0.97, while for the cumulative data the gradient is -0.94. These results imply b- 

values of 0.97 and 0.94 respectively.

These results are well within the accepted values for the GR Law. It has been 

found that, in general, the b value is approximately 1. Variations in the b value do 

occur, and it has been found that for a wide variety of different regions, the b value 

lies in the range 0.8 to 1.2.

7.4 Models

Traditional approaches to the production of physical models has tended to use 

a “from the bottom up” methodology. In many cases, behaviour on a macro scale has 

been derived from models on a micro scale. For example, the kinetic theory of gases 

derives large scale properties of an ideal gas from the motion of individual particles. 

Using well known, but admittedly idealised small scale physics, we are able to explain 

the macro properties such as pressure and volume.

A typical model often requires the solution of a set of differential equations 

which describe the general dynamics of the system. This however is a very 

complicated process, and as we do not fully understand the mechanism and physics of 

earthquake production, it is unlikely that a model such as this could be used. Perhaps 

this type of model could be our ultimate goal, but for the moment we will consider 

simpler models. The first type of model we will discuss is the “Sandbox Model” .

According to Bak, Tang & Weisenfeld[ 1988], hereafter known as BTW, there 

is “little understanding of the spatio-temporal evolution of complex (spatially 

extended dynamical) systems”. For example, the Earth’s ecosystem cannot be
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understood by the isolated study of each component. It is well known that many 

species are interdependent. This implies that the system will be susceptible to 

perturbations. As an example, consider a disease which results in a reduction in the 

number of ladybirds. Consequently, the number of green fly increases, and plants are 

damaged. This results in other animals not being able to feed properly, which results 

in... .

However, the system cannot be too sensitive to these perturbations, otherwise 

it would not be stable enough to have evolved into its present state. It is this type of 

balancing act which convinced BTW to term this sort of system “critical” . The 

archetypal model for these critical systems is that of the “sandbox model” . This was 

first proposed by BTW, and as the systems evolve themselves, naturally, with no 

outside tuning or tampering, they called these systems self organised critical systems. 

Information regarding self-organised critical systems can be found in the following 

references: [2-4], [16], [42-47], [56], [64], [72-75], [88-92], [96-98], [101-103].

7.5 Sandbox Models
The model we propose is similar to the one proposed by BTW, the main 

difference being the necessary adoption of different boundary conditions. W e also 

visualise our model in a completely different way. Their model was based on a sand 

pile, to which sand was added randomly. Avalanches occurred when the slope of the 

sand pile exceeded a certain critical value. We propose a model which is based on 

small crustal blocks, and the strain in each block. Our model uses similar rules, but 

has different boundary conditions. Both models are easily represented using cellular 

automata, and can be simulated on a personal computer.

The essence of the model is this: when the strain in a block exceeds a critical 

value, then a "rupturing" is said to occur; this is equivalent to an earthquake. From 

chapter 2, where we outlined some of the aspects of earthquake theory, we can see 

that this model is a reasonable first approximation. We know that an earthquake
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occurs when the strain in a particular region exceeds the strength of the rock, so the 

idea of strain and failure seems a natural one.

The main points of the model can be thought of as the following:

1) Divide the crust into small blocks.

2) The “strain” in each block is measured and recorded.

3) Strain is added slowly and randomly to the system by some process.

Note: It is essential that the rate of increase of strain is small compared with the speed 

of the earthquake. Otherwise we have problems with the redistribution of strain while 

strain is being added. In the real world, strain does indeed build up very slowly over 

tens or hundreds of years, while it is released in a matter of seconds by an earthquake. 

Also, the process by which the strain is added is assumed to be a tectonic process, 

caused by plate movements and mantle convection.

4) Consider the block to which strain has just been added. If the strain 

exceeds a critical value, then redistribute the strain to the nearest neighbours. 

This is the seed of the earthquake.

5) If the redistribution causes any other blocks to become unstable then, once 

again redistribute the strain to the nearest neighbours.

6) Repeat step 5 until there are no critical blocks remaining.

7) Go back to step 3 and repeat the process.

We begin with a one-dimensional model, and then extend it to further dimensions.
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7.6 Definitions

Throughout the rest of this chapter we will be dealing with boxes or blocks 

which have a certain amount of strain in them. The amount of strain in a box is given 

by the value z  for that box. W e have a different name for blocks containing different 

amounts of strain. The classification used to describe a box depends on the strain in 

the box and its relation to the critical value.

In every model, the critical value z c is defined as the value above which a box 

will rupture. Using this notion of the critical value, the 3 different types of boxes are:

a) Stable Block

This is the label we give to all blocks whose strain is less than the critical value, i.e.

Z < Zc .

b) Critical Block

This is the label given to all the blocks whose strain is equal to the critical value, i.e.

Z =  2c .

c) Unstable Block

This is the name given to any block whose strain exceeds the critical value, i.e.

Z >  Zc .

Throughout the rest of this chapter these definitions will be used extensively.

7.7 The One-Dimensional Model

In this first model we will only consider one-dimension, and thus, we deal 

with a linear string of blocks. In this example, the number of blocks is L = 10. Figure 

7.1, below, shows a schematic of the Earth’s crust split up into a number of blocks. 

The height of each section denotes the amount of strain in the block, the higher the 

bar, the higher the strain. W e have defined the critical value to be 3, i.e. zc=3. In
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figure 7.1, block number 6, the darker block, has too much strain, it is unstable. We 

can also see that blocks 2, 7 and 9 are critical blocks, while the rest are stable blocks. 

We must now redistribute the strain from block 6 to the two nearest neighbours, the 

blocks on either side.

Strain

Position (n)

(Figure 7.1 One Dimensional Strain Model)

We can express adding strain and its redistribution in terms of a number of rules. 

Rule 1 - Adding Strain

Choose a site, n, randomly. Note that n = 1,2,..., L. Then

z(ri) -*z{n)  +1.

(Equation 7.8)

Rule 2 - Redistributing Strain

If z ( n ) > Z c  then
z(n) -> z(ri) -  2 

z ( n - 1) —>z(/7-1) + 1 

z(n+l) —>z(n+\) + 1

(Equation 7.9)
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Note that zc is the critical value for the strain; when z(n) exceeds zc then we must 

redistribute the strain. In figure 7.1, zc =3.

The boundary conditions we choose for our model can be expressed as :

2 ( 0 )  =  Zc 

Z { L  +  1) =  0

(Equation 7.10)

This implies that at one end of our linear set of blocks we enforce the condition that 

there is no strain, while at the other there is always strain, with the block at the critical 

point. This means that strain can only be "lost” from the system at one end of the 

blocks, i.e. at z(L). These boundary conditions are chosen deliberately to ensure that 

strain can only be lost at one end.

The model can be built up from scratch, i.e. z{n)  = 0 V n, or we can define

an initial configuration and proceed from there.

7.8 Results

The results of this one dimensional model are fascinating. As a consequence 

of the simplicity of the model, we can work out the results exactly without actually 

performing the experiment.

For any initial configuration, the crustal blocks evolve into a minimally stable 

state. This terminology was introduced by Weisenfelcl, Tang & Bak[\9&9]. The 

minimally stable state results in every block eventually obtaining a value equal to zc , 

i.e. z(n)  — Zc V n.  This situation is illustrated in figure 7.2 below.
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Strain

Position (n)

(Figure 7.2)

The effect of adding any strain to this configuration, no matter which position, is to 

cause a block to become unstable and hence cause a redistribution of the strain. 

Wherever the strain is added, we will exceed zc , this is then redistributed using the 

rules outlined above, and eventually one unit of strain is "lost" at the edge of the 

system, block z(L). The configuration which remains is the minimally stable 

configuration, z(n)  = Zc V n.  This state is, simultaneously, both sensitive and 

robust. According to Weisenfeld, Bak & Tang, it is sensitive because "a local 

perturbation propagates globally throughout the system" and robust because "the 

configuration is ultimately unaffected by the perturbation". Each time a unit of strain 

is added, the system reorganises itself and eventually loses one unit of strain at the 

edge of the system.

The minimally stable state is an amazing discovery. Unfortunately it is a 

freak, caused by the boundary conditions and the dimensionality of the model. Far 

more interesting is the two dimensional case.
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7.9 Two Dimensional Models

In this section we extend the idea of the strain model to two dimensions. We 

split the crust up into small boxes in both the x and y directions. Figure 7.3, below, 

illustrates this procedure. The darker block is, once again, an unstable block.

Position Y Position X

(Figure 7.3)

This model can be simulated easily using a computer program. The model can 

be thought of as a simple cellular automaton. We generalise the rules given in 

equations 7.7 and 7.8 to two dimensions.

Rule 1 - Adding Strain

A point on the grid is chosen randomly, and one unit of strain is added to this block.

z ( i ,  j)  =  z ( i ,  1 

(Equation 7.11)

Rule 2 - Redistributing Strain

If the strain in any of the blocks exceeds the critical value then redistribute the strain 

to the 4 nearest neighbours. If z ( i , j )  > Zc then
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z ( i j ) ^ > z ( i j )  -  4 

z (z + U ./) ~ ;> z (i + 1, j )  + 1 

- » z ( / - l , y )  + 1 

z (j j j  + l) z (i ),/ + ])+  1 

z ( i , j  - l )  - > z ( i , j - l ) +  1

(Equation 7.12)

Figure 7.4, below, represents the redistributions given by equation 7.12.

(Figure 7.4)

Again, we choose the critical value to be 3, i.e. zc = 3. When the strain in any block is 

unstable, i.e. z ( x ,y )  > 4 ,  then we must redistribute the strain. The value 3 is chosen 

so that when we redistribute, the strain in our rupturing block is reduced to zero.

For the two dimensional model we alter the boundary conditions slightly. We 

change the conditions so that we have a free boundary all around the model. At every 

point on the boundary strain can be “lost”, i.e. it is a dissipative boundary. In this 

case, we are dealing with a square L x L grid. We can express the boundary 

conditions as

z ( i , Q )  = z ( i ,L  + l) = 0 V/'

z (0 ,  i ) = z (L + 1, i ) = 0 Vi 

(Equation 7.13)

79



As we are trying to simulate earthquakes, we assume that the rupturing of the 

blocks represents the rupturing of the crust, as in a real earthquake. How do we 

define the “size” of an earthquake in this model? The obvious way of doing this is to 

count the number of blocks which rupture after the addition of one unit of strain. 

Equation 7.7 showed that there is a relationship between the size of the ruptured zone 

and the number of earthquakes. This relationship was derived from the Gutenberg- 

Richter Law. Equation 7.7 can be rewritten as

L o g  N ( S ) =  K  - b L o g S  .

(Equation 7.14)

This implies that if we plot the logarithm of the number of earthquakes of size S 

against the logarithm of the size, then we should obtain a straight line of gradient -b.

A BASIC program was written which simulates the above model. The 

program is available in appendix B. The main features of the program are these:

1) We initially run the system for a very long time, to ensure that we have 

reached a statistically stationary state.

Note : W e reach a statistically stationary state when, on average, the number of units 

of strain "lost" at the edge balances the number of units of strain added to the 

system.

2) W e then add strain randomly, one unit at a time, to boxes on the grid.

3) W e check to ensure that this box is not unstable.

4) If it is, then we redistribute the strain to the four nearest neighbours, using 

equation 7.11.

5) If any new  boxes become unstable then we redistribute them.

6) W e repeat step 5 until there are no more unstable boxes.

7) W e count the number of boxes that were involved in the “earthquake” .

This is the size of our earthquake.

8) Go back to step 2 and repeat the process the desired number of times.

9) Output all the earthquake sizes to a data file for analysis.
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The array used in the rest of this chapter was a 50 x 50 array. This gives us 

large events with over 2500 blocks rupturing, yet allows us to perform thousands of 

simulations relatively quickly.

7.10 Results

The computer program was executed and 10000 units of strain were added. 

This resulted in approximately 5000 earthquake events being recorded. 

Unfortunately, this gave us very poor results, as there were not enough earthquakes. 

We continued the experiment and performed a number of runs to give us a very large 

data sample. Overall, 30000 events were recorded. The reasons why this large 

sample is necessary will be explored later.

We denote the number of earthquakes of size S by the symbol N(S). These 

numbers are recorded, and a graph of Log N(S) against Log S plotted. The graphs 

obtained can be seen on the following page, Graphs 7.2 and 7.3. Note that the two 

graphs are different representations of the same data.
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The most interesting fact to come form these experiments is the variation in 

the sizes of the earthquakes obtained. Obviously small events occur more often, and 

we have large numbers of events where only one block ruptures. The surprising 

aspect was the appearance of events on all scales. We obtained earthquakes which 

ruptured 1, 10 or 100 blocks. We even had earthquakes which ruptured over 1000 

blocks. In fact, we had a number of earthquakes which ruptured every single block in 

the array. It is this scale invariance that is interesting.

Another interesting point to come from these experiments was the amazing 

“double rupturing” of some blocks. Some of the earthquakes resulted in over 2500 

blocks (the size of the array) rupturing. Admittedly, there were very few events of 

this size, and it obviously requires a very special set of circumstances for this to 

happen. This result was very unexpected, but a simple analysis shows that it is 

feasible. For example, consider a 3 x 3 array. This small array is chosen for 

simplicity, but it can be thought of as a small subsection of a larger array, see figure

7.5.

1 2 3
3 1 3
1 3 1

(Figure 7.5)

The diagrams below, figure 7.6 (a)-(f), represents what happens to a small array.



2 3 2
3 3 3 
2 3 2

2 3 2 

2^3 2

2 4, 2

'2W 2

(a)
Initial Configuration

(b)
Add strain to position (2,2) 
This makes (2,2) unstable.

(c)
Redistribution of Strain 
Results in
(1,2) (2,1) (2,3) and (3,2) 
becoming unstable

Ofsg 0 2 0 0 3 0
0 4 0 2 j j j  2 3 0 3

0 2 0 0 3 0
InvTT. *K»\f

(d) (e) ( f )
Further redistribution of strain This leaves (2,2) which has Final Configuration
Results in once again become unstable
(1,1) (1,3) (3,1) and (3,3) 
rupturing

(Figure 7.6)

Once all the redistributions have been carried out, and there are no unstable 

blocks left, we can count the number of times each block has ruptured, and also the 

total number of blocks ruptured. From figure 7.6, above, we can see that the central 

block, (2,2), ruptured twice, and all the other blocks ruptured only once. In total we 

therefore have 10 “ruptures” from only 9 blocks. The same procedure works for 

larger scale arrays. The important point is that for "double rupturing", the 4 nearest 

neighbours need to be critical also, and this guarantees that the central block will 

rupture again. In fact, in larger arrays it is not necessary for all the nearest neighbours 

to be critical, as the earthquake could eventually spread round to the nearest neighbour 

that is not critical and make it unstable.

This multiple rupturing is a most interesting phenomenon, and more research 

could be devoted to this subject. Obviously this is probably unrealistic in terms of 

real earthquakes, as they are thought to propagate out from a focal region, but it is 

interesting nonetheless.

W hen analysing the graphs, it must be remembered that the larger 

“earthquakes” occur rarely, and hence even although we produced over 30000 events,
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there are very few earthquakes at the bigger sizes. As a result, the graphs deteriorate 

badly at the larger magnitudes. This is identical to the results obtained for the real 

Gutenberg-Richter Law, where we found that because of the small number of large 

events, a few very large earthquakes affect the statistics.

W hat do we see in the graphs? The most important thing is that we obtain a 

linear relationship between the logarithm of the number of events of a certain size, S, 

and the size. This translates into there being a power law relationship between N(S) 

and S, i.e. N( S )  «= S b , for some b. This is exactly what was expected from

equations 7.2 - 7.7, and obtained in section 7.3, for real earthquake data. For real 

earthquake data we found that the b-value was approximately 1. The value for the 

non-cumulative statistics in section 7.3 gave a b-value of 0.97. For our sandbox 

model, it was found that the line of best fit, ignoring the higher magnitude sections 

where the data had deteriorated, had a gradient of -1.05. This translates to a b-value 

of 1.05. This is very close to the accepted value for real earthquakes, obtained by 

Gutenberg and Richter, which produced a b-value of approximately 1. This b value is 

also very close to the values we obtained ourselves from the Californian earthquake 

data. The only question mark could be the deterioration of the data at high 

magnitudes, but this also happens with real data, because of the rarity of large 

earthquakes, and therefore we do not feel that this is a significant problem. Perhaps 

the gradient and the graphs could be improved by taking more events into account, but 

this leads to problems with analysing such huge amounts of data.

W hat does this result tell us about our model? All of the above evidence 

suggests that the frequency distribution of events produced by our simplistic strain 

box model is similar to that produced by real earthquake mechanisms. Unfortunately, 

there are a number of problems with this simple cellular automaton model. The main 

problem with the events obtained by this model is the absence of fot'eshocks and 

aftershocks. These terms were defined in chapter 2. Perhaps by extending this model, 

we could achieve even better results.
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7.11 Extensions

It has been suggested by Barriere & Turcotte[ 1994] that the model could be 

altered, and a different pattern of blocks used. Whereas our model uses a regularly 

spaced grid, with blocks of equal sizes, they suggest using a grid of boxes with a 

fractal distribution of sizes. This means that we would have boxes on all different 

scales, from large to small boxes. Figure 7.7 below compares the normal box layout, 

with one possible fractal box layout. Note that there are many different possibilities 

for our fractal distributions. This one is chosen because of its nice symmetry 

properties.

Normal Box Configuration Fractal Box Configuration

(Figure 7.7)

The same rules as before are applied to this model. We add strain to the boxes 

in the model randomly; when the strain in a box exceeds the critical value then we 

must redistribute the strain. Note that the different sizes of boxes have different 

critical values. A large box requires more strain than a small box before it will 

rupture. Once again, the number of units of strain redistributed is a measure of the 

strength of the earthquake.

The advantage of this model is that it allows for foreshocks and aftershocks. 

The absence of these was one of the main deficiencies of our normal model. When a 

redistribution from a small box results in the instability of a larger box, then this is 

equivalent to a foreshock. The opposite is true for aftershocks. When a large box
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redistributes, and produces instabilities in smaller boxes, then this is the analogue of a 

foreshock.

Other possible extensions include making our model three dimensional, or 

making it anisotropic. In our model we used a uniform redistribution of strain, with 

one unit being redistributed to each of the 4 nearest neighbours. This rule forces the 

model to be isotropic, but we know that the Earth is not, see Chapter 5. By altering 

the redistribution rules, we can make the model anisotropic. Any non-uniform 

redistributions will produce an anisotropic model. For example, adding 2 units of 

strain to the boxes above and below the rupturing block, while only adding 1 unit to 

the boxes to the left and right would make the model anisotropic. This would allow 

us to consider "faults" or "fault zones".

To make the model three dimensional, we follow the same procedure as 

before, only we think of z(i,j,k). Considering the speed of our program for a 50 x 50 

array, the prospect of using a 50 x 50 x 50 array is not a pleasant one! This extension 

would, however, be relatively simple to perform if enough time was available.

7.12 Prospects for Prediction
So what do these results mean for our hopes of earthquake prediction? 

Unfortunately, the prognosis is not good. If the Earth’s crust is constantly in a 

self-organised critical state, then it may be impossible to predict earthquakes.

One of the main problems we have encountered throughout this thesis is the 

shortness of earthquake catalogues when compared with the time scales involved in 

great earthquakes. This results in problems when we analyse the data statistically. 

The main advantage of these models is that we can produce huge amounts of data 

quickly, without having to wait around for events to happen. A few groups have 

performed similar experiments, and produced very long earthquake catalogues. Their 

analysis of the data gives us the following result: there appears to be no seismic 

precursors. From their data they did not discover any significant seismic patterns.



No periods of seismic quiescence were found and Mogi s doughnuts (outlined in 

chapter 6) were not identified. None of the other expected precursors were discovered 

either.

Bak & Tang [1989] analysed the temporal evolution of the energy released 

versus time during a typical earthquake created using their cellular automaton model. 

Their graph is given below, in figure 7.8.
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(Figure 7.8 Fluctuation of Energy release against time for a typical model earthquake)

As we can see from the above figure, at several points the amount of "energy" 

being released by the earthquake drops to very low levels, i.e. the earthquake is dying. 

The continued evolution depends on minor details in the model, or in the Earth’s crust, 

far from the point of origin. Thus, in order to predict the size of an earthquake, we 

must have extremely detailed knowledge on very minor features of the crust, at large 

distances from the hypocentre.

These results do not auger well for earthquake prediction. Of course, it could 

well be that our model is too simple to produce these anticipated seismic precursors. 

Much further work is still required in this field.
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Chapter 8

Slider-Block Models

In this chapter we discuss a mechanical model of the earthquake process. This 

section is based on the model originally postulated by Burridge & Knopof[{\961'\. We 

will hereafter refer to them as BK. Their paper is an important one in the history of 

earthquake prediction; it was the first simple theoretical model of earthquake 

production. It has also been the basis for much further work in the modelling of 

earthquakes, but unfortunately little real progress has been made.

8.1 Introduction
In modelling earthquakes we wish to create an initially simple model, using 

physics that we understand, to produce an approximation of a real situation. Our 

model must explain, satisfactorily, the statistics of earthquake occurrence that we have 

collected at seismic monitoring stations. For example, we must explain the 

Gutenberg-Richter relation between frequency and magnitude.

When this model was originally postulated, most of the theories used in 

physics were linear theories. It is clear, however, that earthquakes with rock fracture, 

energy radiation and heat production are non-linear phenomena. The model which we 

discuss in this chapter is known as the Slider-Block model, and was originally 

proposed by BK in 1967. This model focuses on one aspect of earthquake production. 

It examines the idea that “friction between the two walls of an earthquake fault 

inhibits the relative displacement of the material on the two sides”, Burridge & 

Knopojf[1967]. The model assumes that earthquakes are produced by the elar ic 

rebound, or the stick-slip method, and that we have a normal fault (see chapter 2). ,;e

also Kanamori & Anderson[ 1981].
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8.2 Laws of Physics

Throughout the rest of this chapter, we will use some underlying physics in the 

analysis of our model. The main laws that we use are Hooke’s Law, and Newton’s 

Second Law. Our model consists of blocks and springs, so we must understand some 

of the physics behind their movement.

8.2.1 Hooke’s Law
Hooke’s law is concerned with the relationship between the force required to 

stretch a spring and the amount of stretching. The diagram below, figure 8.1 

illustrates this situation.

(Figure 8.1)

In figure 8.1, above, we show that to stretch the spring from its equilibrium, 

unstretched position by an amount x, we must apply a force of F newtons. Hooke’s 

law states that the force, F, required to keep a string stretched an amount x beyond its 

unstretched length is directly proportional to the elongation x. That is f  «  x or

F  =  k x

(Equation 8.1)

The constant, k, in equation 8.1 is called the force constant or the spring constant. 

Note that H ooke’s law only works for a limited range of forces and extensions. If we 

try to extend the spring too far, then the relationship is no longer one of direct
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proportion. Throughout the rest of this analysis we will assume that we are working 

within the limits of the deformation of the spring, i.e. with Hookean springs.

We also need to calculate the energy, or the work done, in stretching the 

spring. The work done by a force, F, when stretching the spring from zero to a 

maximum value, X, is given by the area under the curve, i.e. the shaded area in figure 

8.2, below.
F

kX

(Figure 8.2)

The area is a triangle, and the total work done is therefore given by

W o r k  D o n e  = -  — k
2

(Equation 8.2)

8.2.2 Newton’s Second Law
Newton’s second law is one of the foundations of mechanics. It states that the 

acceleration of a body is directly proportional to the force exerted on the body. This 

can be expressed, in its familiar form, as

F = m a

(Equation 8.3)

This law can be formulated in a number of ways, e.g. as the rate of change of 

momentum, but this formulation is by far the most common expression, and we will 

use this throughout the remainder of this chapter.
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8.3 The Slider-Block Model

Our model consists of a linear array of blocks connected by springs to their 

nearest neighbours. The entire system lies on a rough horizontal surface. This 

situation can be seen in figure 8.3, below.

kw, m a . m « J m m m
3 2 i

M —

(Figure 8.3 Slider Block Model)

Note that in this section, all the springs between the blocks are identical, i.e. the 

springs are the same length, 1, and the spring constants, k, are equal. Also note that 

the mass, m, of every block is the same. These conditions make the model spatially 

homogeneous. One other point of note is that the last block is left free.

The first block is connected to a spring which is then attached to a motor 

which extends the spring slowly. The first spring is stretched by the motor until the 

force applied to the first block is greater than the static frictional force on the first 

block. The first block then moves abruptly, reducing the extension in the first spring, 

but increasing the length of the second spring. It is this jerky movement of the blocks 

that we consider to be the earthquake. The string is extended slowly to ensure that the 

time between shocks is large compared to the duration of the shock, as in the case of 

real earthquakes.

The first spring is then stretched again, and the process continues. In some 

cases, after the movement of the first block, the increased tension in the second spring 

means that the force on the second block is greater than the static frictional force. 

This results in block 2 moving abruptly as well. The advantage of this model is that 

events of all sizes can be simulated. Obviously, there are more small events - where
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only the first block moves - than there are large, catastrophic events, where the whole 

system realigns itself.

8.4 Procedure

The masses and springs are placed on the surface in some initial, random 

configuration and the motor is turned on. The whole system begins to stretch and 

moves in a series of jerky, impulsive motions. The positions of the blocks can be 

measured and recorded, and these data used to calculate useful statistical properties.

The potential energy of the system can be easily calculated from the positions 

of the blocks. In section 8.2.1, we discussed the energy required to stretch a spring 

(see equation 8.2). Using this relation, the potential energy of the whole system can 

be calculated simply by summing the potential energy of each block. Let the position 

of the nth mass be denoted by the symbol xnt and the unstretched length of each spring 

to be I. Note that x0 is taken to be the position of the front spring, even though there is 

no mass there. This allows the potential energy contribution from this spring to be 

calculated. Using equation 8.2, the potential energy of the system is given by the 

following equation:

1 2 1 2 1 2 
P.E. = - k ( x 0 -  — / ) + — k (x, -  x 2 -  I ) + ......+ — k (xN_{ -  x N -  I )

In the quiet periods between shocks, the only variable that changes is x0. The 

positions of the blocks are measured and the potential energy calculated as we drive 

the system. The results obtained are shown below.

(Equation 8.4)
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8.5 Equations of Motion

Using Newton’s law, equation 8.3 above, we can write down explicit forms for

the equations of motion for the blocks in the model. We must first calculate the force

on each block. We use Hooke’s Law to calculate the forces acting on the blocks,

based on the extension of the strings. Using the position of the two blocks and the

length, 1, of the spring between them, we can calculate the force acting on each block.

By applying Newton’s law to each block we can produce an equation for the motion

of each block. Remember that the tension in one spring pulls the block to the right,

while the other spring pulls the block to the left. We denote movements to the right as 

positive and movements to the left as negative. Note that x  . denotes the velocity of

block j, while Xj; denotes the acceleration of block j. The force, F ( x in equation

8.5, below, is the frictional force acting on the block. Note that we assume that there 

is a component of static friction, and one of dynamic friction, which depends on the 

velocity of the block.

F o r c e  o n  b l o c k  j  — k ( x jnl — x  f -  k ( x j  — x  /+l — +  f ( x j  )

(Equation 8.5)

Using this expression for the force acting on the block, and Newton’s law, the 

equation of motion for block j is :

mXj  — k ( x H  —x- —l̂ j — k[xj  —x f+l —fj  + F ^ . )

=  f c ( x H  +  Xy+1-  2 X j )  + f ( x j ) .

(Equation 8.6)

We can repeat the above analysis for each of the blocks, and produce a system of 

coupled differential equations.

The solution of these equations depends upon the form of the friction law we 

assume acts upon the blocks. The normal law which is assumed takes the shape of the 

graph given in figure 8.4, below.
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F orce

V elocity

(Figure 8.4)

Figure 8.4 shows an idealised friction law which decreases monotonically with 

increased slipping speed. Obviously, the exact solution of these equations will depend 

upon the type and shape of the friction law assumed but, in principle, we can solve the 

equations numerically.

8.6 Results
In equation 8.4 we produced a formula for calculating the potential energy of 

the system from the positions of the blocks. These calculations were performed, and 

figure 8.5, below, shows the plot of the potential energy against time.
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(Figure 8.5)
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As we can see from the above diagram, the potential energy of the system is 

quite variable. Changes in the potential energy are due to the movement of the blocks. 

When the P.E. drops rapidly, we say that this is equivalent to an earthquake; the larger 

the drop, the larger the earthquake. The changes in the potential energy mirror that of 

real earthquakes, where we assume that the stress (energy) builds up slowly over time, 

and then the energy is released, in the form of an earthquake, before the strain (energy) 

is built up again. From the diagram, we can see that small events happen quite often, 

whereas the larger shocks are rarer, and quasi-periodic in nature. There also appears 

to be a maximum value that the potential energy can take before a large event “resets” 

the system. This may be due to the homogeneity of the system.

As outlined in chapter 7, there are a variety of relations between the “size” of 

an earthquake and the number of events of that “size”. These relations can be 

formulated in terms of the number of events with a certain magnitude, area of rupture 

or energy released (see chapter 7, equations 7.2 - 7.8 for more details).

The energy-frequency distributions for this model were monitored, and the 

results of this analysis can be seen in figure 8.6, below.
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(Figure 8.6)
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We can see that the relationship gives a straight line of gradient of -1, over a wide 

range of energies. As we know, this gives us a b-value of 1, which is the expected b~ 

value for many regions of the Earth, i.e. the model reproduces the GR Law.

The experiments were also carried out using unequal lengths for the springs. 

These experiments yielded a similar set of results, only the results were far less regular 

than before. Figure 8.7, below, shows the graph of potential energy against time for 

these unequal springs.
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(Figure 8.7)

Once again, we can see that we have events of all sizes; large events where the entire 

system moves, and small events in which only one block moves. Note that this graph 

is not as regular as that of the equal springs scenario.
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8.7 Analysis

As we have seen from the previous section, the results of the trials obtained 

using these models are very interesting. We can see that the relationships we obtain 

have certain similarities with those of real earthquakes. One of the main strengths of 

the BK model is that it naturally produces events of all sizes. It is therefore possible 

to examine correlations between small and large events.

If we compare figures 8.5 and 8.7, for the equal and unequal spring 

configurations, then we can see that figure 8.5 is far more regular than 8.7. In an 

earlier chapter we discussed characteristic earthquakes, and how they occurred at the 

same place on a periodic basis. Figure 8.5 resembles this situation; we have a period 

where the stress builds up and then we have our large, characteristic earthquake. The 

large synthetic events appear to occur on a regular basis, much like real characteristic 

earthquakes. For real earthquakes, the amount of available data for a characteristic 

event on a single fault is insufficient to accurately determine any mean repeat time. If 

this model does simulate these characteristic events, then we could analyse a large 

amount of synthetic data to see what we can learn.

8.8 Extensions

Variations of the BK model have been proposed by a number of parties, see 

Carlson <& Langer[l9%9c\,b], Carlson[\99\] and Brown et ct/.[1991]. M ost of the 

models are very similar to the original, with only minor alterations. Many extensions 

have tended to involve the use of a two dimensional lattice with a “driving plate” , 

which pulls all of the blocks simultaneously. This is different from our model, where 

we only pulled the first block and its movement “triggered” larger earthquakes. The 

figure below, figure 8.8, represents this “driving plate” model.
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(Figure 8.8)

These models are usually “long and thin". That is we have a very large number of 

blocks in the x-direction, and a very small number in the y-direction. The authors also

found that the ratio —— was an important one for the models. They found that by 
Kc

changing the value for —— they could change the seismicity patterns, as if they were
Kc

changing from one type of fault to another.

We can see the connection between the cellular automata models outlined in 

chapter 7 and these physical models. Each block in the physical model above is 

represented by one square in the CA model. Obviously, the CA model is simpler as 

we have discrete values, whereas the slider-block models are analogue in nature.



8.9 Predictions

W hat does all this tell as about our ability to predict earthquakes? W ork by

Brown et al.[ 1989] showed that the model has the ability to improve long-term

prediction of large events. They found that the recurrence time of large events had a

weak temporal pattern; larger recurrence times are often followed by shorter

recurrence times, and vice versa. They suggested that by training a neural network to

recognise these patterns, the long-term prediction of large events could be improved.

This discovery is useful, but ideally we are looking for improvements in short-term

prediction methods.

In a very interesting paper by Pepke & Carlson[ 1994], an algorithm which

measures the seismic “activity” in a certain space/time window is used to predict

earthquakes. They define a space/time window as

R  =  ( A x , A ^ ) ,

where Ax is a large circle, and A t  s some time frame. They measure the “activity”, 

A, in this window, and use it as a measure of how likely a large event is likely to be. 

They define the activity as

a = X e (" ,  - m0).
e v e n t s  in R

(Equation 8.7)

In equation 8.7, M, is the magnitude of event i, M0 is the lower magnitude cut-off of 

the events we wish to predict, and 0 (x )  is the Heaviside unit step function.

Basically, they count the number of events above a certain magnitude in a space/time 

window. When the value for the activity is either very high or very low, compared 

with the normal average value for this window, then they declare a time o f increased 

probability (TIP) of a large event occurring. Using this they produce a success curve 

which plots the fraction of events predicted as a fraction of the total space/time 

occupied by the TIP alarms. As a null test they also plot the success curve for a set of 

random TIP alarms.

101



As well as the activity, Pepke & Carlson also define the Active Zone Size , 

AZS, which is a measure of the number of blocks which have slipped in some event 

contained within our current space time window. They define the AZS as

A Z S  =  Z S (k ~ k ' )  k ' so m e e ve n t M j in R .
sites  k e  Ax

(Equation 8.8)

Figure 8.9, below, shows the success curves for the activity and the AZS.

Fraction Alarm Tim©

(Figure 8.9)

Their results for the BK slider block model showed success rates of over 90%. It 

would be interesting to see how these “precursors” worked with real seismic data. 

Much further work is required in this area.
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8.10 Conclusions

Obviously, the model is far too simple to be an accurate representation of the 

earthquake mechanism, but it is a useful first approximation. With this model we 

have achieved a number of goals. Our simple model yields the same magnitude 

frequency relations and the same characteristic earthquakes as real seismic data. It 

also exhibits the same space/time clustering as real earthquakes. Experiments should 

be carried out using a larger version of this model, to see if any seismic precursors, 

such as quiescence or increased small shocks appeal* before large events. A number of 

the proposed extensions should also be implemented.

The advantage of these models is that we can run them for a long time to 

obtain large amounts of data, which is impossible in the real world. Unlike the 

cellular automata model that we discussed in the chapter 7, in which we randomly 

introduced strain, the BK model is a purely deterministic dynamical model.

The results highlighted in the last section are also promising, but once again, 

more research needs to be performed before we can claim any successes.
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Chapter 9

Hurst Analysis and the Hurst Effect

9.1 Background

H.E. Hurst (1880 - 1978) was an English hydrologist, who spent much of his 

life in Egypt, studying the Nile. It is reported that he was nicknamed “Abu Nil” or 

“the Father of the Nile” by some of the locals, because he studied the river religiously 

and to such a great extent. Hurst was very interested in the designing and building of 

dams and reservoirs, and was involved in the planning of the great Aswan Dam. He 

was concerned about the storage capacity of the reservoir, in order to maximise 

irrigation from the Nile. In his own words:-

“The broad plan involves the storage o f water from  good years fo r  use in bad ones 

and necessitates reservoirs o f sufficient capacity to meet the shortages that might 

occur during a century. ” H.E. Hurs[1950],

Hurst spent years studying the extensive records that the Egyptians had made 

of the N ile’s overflows. The Egyptians had recorded all the N ile’s overflows since 

622 AD, to produce a record stretching to 1469, a span of over 800 years. W hat Hurst 

found was that the record did not appear to be random! If there was a period with 

overflows which were larger than the “average”, then the chances were that the 

preceding overflows would also be larger than average. The same applied to periods 

where there were smaller overflows, i.e. small overflows were followed by more small 

overflows. The change between large and small overflows also seemed to be rather 

abrupt. Hurst’s work was concerned with the Nile, which was also the setting for the 

Biblical story of Joseph, and his interpretation of the Pharaoh’s dreams. Joseph 

interpreted the dreams thus:-
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“Seven years o f great abundance are coming throughout the land, o f Egypt, but seven 

years o f fam ine will follow  them. Then all the abundance o f Egypt will be forgotten, 

and fam ine will ravage the land” Genesis, 41:29-30.

This phenomenon, which Mandelbrot termed the “Joseph effect”, is an 

example of the tendency of wet and dry years to cluster into wet periods and droughts. 

This was demonstrated by Hurst’s observations, which clearly showed that extreme 

periods of precipitation, whether high or low, can be lengthy. Basically, there 

appeared to be some sort of pattern, or some cyclic properties to the data, but with 

their length being nonperiodic. By using the standard statistical techniques of the 

time, no significant correlation could be discerned, so Hurst developed his own 

technique.

9.2 Brownian Motion
Since it was discovered in the early 1800s, the erratic movement of pollen 

grains (or smoke particles) when viewed under a microscope has been well 

documented. It has also been demonstrated to almost every schoolboy in the land. 

Robert Brown, a Scottish biologist, was the first to realise that this motion had a 

physical basis, and, in his honour, it is now known as Brownian Motion. Brownian 

Motion, or the movement of a random particle, is composed of steps, whose length 

seems to have some characteristic value, and whose direction is apparently random. 

As a result, Brownian Motion is often termed a “Random W alk” process. Albert 

Einstein showed that the distance that a particle travels increases with the square root 

of the time elapsed.

D = k 4 f

(Equation 9.1)

where D = Distance Travelled 

T = Time Elapsed.
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Hurst felt that, by using something similar to this, he could test for randomness in the 

Nile River’s overflow data.

9.3 Hurst Analysis

Let { e j  be a time series, representing n consecutive values, of whatever 

quantity we are measuring. It is not important which time scale we actually use. We 

may use hourly data, yearly data, or whichever time scale we deem to be most 

appropriate for the measurements being made. When Hurst initially performed the 

analysis, he used annual data for the discharge from the Nile, see Hurst[ 1952]. The 

procedure Hurst used in his analysis was a relatively simple one, and his method is 

outlined below.

Hurst's technique involved the averaging of the data series to obtain the mean. 

He would then calculate the accumulated departure of the time series from the mean, 

using a very simple formula. The largest value for this accumulated departure is 

noted, as is the smallest. The Range is defined to be the difference between these two 

values. Finally, the sample standard deviation for the time series is calculated, and the 

value obtained used in the calculation of the Rescaled Range.

The value for the mean of the series is

(Equation 9.2)

and the standard deviation of the series is

1 / 2

(Equation 9.3)
Let X(t, n) be the accumulated departure of the time series from the mean.
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X ( t , n ) = Y J { « / - ( < ? ) }
i = 1

(Equation 9.4)

The greatest difference between the maximum and minimum values for the 

accumulated departure from the mean is called the range R.

R ( n ) -  max X(t ,n)  -  min X(t ,n)
1 < t < n  I< t < n

(Equation 9.5)

Note : The value for max X ( t ,n ) will always be greater than zero , and that of 

min X ( t ,n )  will always be less than zero. This occurs because we have adjusted
1 < f < n

the time series to a mean of zero. This is a consequence of equation 9.4, where at 

each stage we subtract the mean, before summing.

Hurst found that the rescaled range, given by R/S, was well described by the 

following empirical relationship:

(Equation 9.6)

where k  is a constant.

He showed that this relationship worked for a number of different types of 

data. There are many examples from the natural world, where we have obtained 

measurements of certain quantities in nature, and recorded them as a long time series, 

i.e. we have a series of measurements, of one particular variable, made regularly over 

a long period of time. For example, Hurst made use of data from a wide variety of 

different fields, such as Tree Growth Rings, Temperature & Pressure, Sunspot 

Numbers, Rainfall etc.. In fact, the exponent which we labelled H in equation 9.6, 

Hurst actually called K. Mandelbrot renamed it H, the Hurst Exponent, in honour of 

Hurst. Hurst showed that, for many natural data series, the Hurst exponent took a
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Hurst. Hurst showed that, for many natural data series, the Hurst exponent took a 

value of approximately 0.72. This result is absolutely staggering, for if the values for 

our time series were independent we would expect a Hurst Exponent, H=0.5. Hurst 

had shown that there was some sort of correlation, and that the processes could not be 

assumed to be random and independent.

9.4 Why ?

An important question that needs to be addressed is “Why do natural 

phenomena show Hurst Statistics?”. The generally accepted view can be expressed 

succinctly as “what happens now depends on what happened yesterday, and all the 

days before”. That is, the data does not reflect a Markov process. For example, in 

the data Hurst originally used on river discharges, the amount of discharge from our 

river depends not only on the recent rainfall, but on earlier rainfall. The drainage area 

for a massive river, like the Nile, is obviously large. The level and amount of 

discharge from the river are, clearly, going to depend upon the amount of water stored 

in this area. For example, if we have a spell with low rainfall, we would expect the 

discharge level of the river to drop to a level below the average. We would also 

assume that the amount of water stored in the drainage area would decrease. Thus, 

when the rains eventually do come, the level of discharge from the river would remain 

lower than average, as the drainage area would absorb a proportion of the rainfall.

On the other hand, if we have a long period with high rainfall, we would 

expect that the quantity of water stored would increase, and that during drier spells, 

this excess water would be “used up”, as it was released from storage in the drainage 

area to add to the discharges in drier years. These so called “memory” effects, or 

persistence, explain the appearance of the Hurst exponent, as it implies that our time 

series are not independent, since they depend upon earlier events.
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9.5 Random Processes

To show that if we had a truly random process, we should expect the Hurst 

exponent to exist and take a value of 0.5, we will perform a similar experiment to the 

one originally performed by Hurst. There are a number of ways in which this can be 

achieved, Hurst himself used the tossing of coins, as well as the use of a so called 

“probability pack1’. He must have been very dedicated to his subject, as he performed 

thousands of repetitions of the coin experiment, as well as thousands of trials using his 

probability cards. W e will prove mathematically, that a random process should 

produce a Hurst exponent of 0.5, as well as producing an empirical experiment which 

demonstrates this. We will use Hurst’s probability pack as well as simple coin tossing 

to perform these experiments, but we will perform the experiments using computer 

simulations.

9.5.1 Preliminary Results
First we must prove a number of preliminary results. Throughout this section, 

we will use the following notation:

c- m , n

m + n \  (m + n) ! 

V n  j
m\ n\

(Equation 9.7)

W e also define H to be the number of heads, and T to be the number of tails as we 

proceed through a sequence of throws. See Fe//er[1951,1968] and Whitworth[l&&6],
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Proposition 9.1
Given that we have m  heads and n tails, Cm> n is the number of sequences with 

m  heads in m+n throws. Define Jnii n to be the number of sequences for which the 

condition H  > T  is true at every stage. Then

J 0,0 Cm, n — 1 T" J  1,1 Cm — 1, n — 2 + .....+  Jn ~ 1, n — 1 Cm — n +  1, 0 — Cm, n Jm, n

(Equation 9.8)

Proof
Consider the diagram below (figure 9.1), in which a step to right is equivalent 

to a head, and a step up is a tail. The sequence of heads and tails can be thought of as 

a path from O to P. The line OV marks the points where H and T are equal. Note that 

point A is defined to be (r, r), while B = (r, r+1).

Tails

Heads

(Figure 9.1 - Sequence of Heads and Tails )

The condition will be fulfilled by all paths which do not cross the diagonal line 

OV. The paths may touch, the line but not cross it!

The total number of paths from O to P is Cm<n, and the number of routes which 

do not cross the line is Jin>n. Therefore, the number of paths which fa il to fulfil the 

condition is Cra n - Jni>n.

W e classify these routes by the point at which they fir: cross OV. Consider 

the routes which first cross at the point A (r, r). At that stage we have r  heads
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W e classify these routes by the point at which they firs t cross OV. Consider 

the routes which first cross at the point A (r, r). At that stage we have r heads 

(horizontal steps), and r tails (venical steps). We may split the path OABP into 3 

sections, OA, AB and BP.

The path OA may be made in Jri. ways (definition of Jr r ), while the path AB 

can only be made in one way. BP may be made in C,n_r> n _r _ i  ways, as we do not care 

whether the path crosses the line OV again, after the point B. Therefore, OABP can 

be constructed in Jr.r X l x  G n -r ,n -r- iw a y s . Thus, the total number of paths
H-i

which fail to fulfil the condition that H > T  at each stage is J r , r Cm -  r. « -  r -  1,
r=o

but we know that this is equal to Cm n - Jm n. Hence, equation 9.8 holds, i.e.

J  0 ,0  Cm, n — 1 4 “ J  1,1 Cm — 1, n - 2 + .........+  Jn -  1, n -  1 Cm — n + 1,0 —  Cm, n —  Jm, n

as required.

Using the above result, it can be shown by simple induction, that

/  -  1 cJ  n % it — Cs ji, it
n + 1 

(Equation 9.9)

W e need this result to prove proposition 9.2, below.
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Proposition 9.2
Given that we have m  heads and n tails, the total number of sequences in

which, at some stage, the number of tails, T, exceeds the number of heads, H, is 
n

m + 1
C m, n .

Proof

From Proposition 9.1, we have that the number of ways in which the condition 

(T > H) is satisfied is Cin>n - Jm<n, and that

Jo,0 Cm, n -  1 d~ J  1,1 Cm -  I, n -  2 ~\~ d - Jn -  I, n -  1 Cm -  n + 1,0 — Cm, n Jm, n .

Substituting in the above equation for , using equation 9.9, we have th a t :

1 1 1
Cm, n -  1 H Cl,I C m  -  1, /; -  2 d  C l ,2 Cm -  2, n -  3 +  H Cn -  1, n -  1 Cm -  n + 1,0

2 3 n

— Cm, n J<n, n

(Equation 9.10)

By using the following property of the binomial coefficient

1 1  1
Co,0 Cm, /! H Cl,l C m — 1, n -  1 H Cl,2 Cm ~ 2, n -  2 d ~ ...........d  Cn — 1, n -  1 Cm — n,0

2 3 fi +  1

= C,m + 1, n

(Equation 9.11)

but writing n-1 in place of n, we may simplify equation 9.10 to obtain

Cm+l, « -l — Cm,n J m,n

(Equation 9.12).
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We know, however that

C  m + 1, n — 1 —
(m + ra)! (in +  «)!

Therefore,

(m  +  l)! (n — l) l m ! n !  m +  l 

(Equation 9.13)

M
C m, n “  C m, n — if /«, n

n 

m  + l
C  m, n

m + l

(Equation 9.14)

ft
i.e. the number of ways in which T > H at some stage i s   Cm,n .

m + l

Corollary 9.3
From proposition 9.2, and by rearranging equation 9.14 we get

n
J m, /i — C /«, ji — 7 C m, n

m +l
m — n +1 

i.e. Jm,n — ' Cm,ii
m + 1

(Equation 9.15)

i.e. the number of sequences in which the number of heads is always greater than or
1 r • m —n +1 _equal to the number or tails i s ------------Cm.n.

m + l

Another useful property of the binomial coefficient is the following :

C n +  h , n — h C It — 1 , 0  C n, n — h C/i,l C n — 1 ,  n -  h — 1 C n — I , / i  — hC h,Q
--------------  = ----------------------- h ----------------------------- h  H------------------------

h  h  h + 1 n
n —hC n - n  -i 
n +  /? ,  n -  It 1

1 . 6 .    —  /  C r  +  h ~  1 ,  /• ~  /% n — r  — h
h  r  +  h

(Equation 9.16).
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Theorem 9.4

Given that we have n heads and n tails, then this occurs in C„in ways. Of these, 

there are Cn+hjI1.h in which the number of tails will, at some point in the sequence, be at 

least h in excess of the number of heads.

Proof
Consider the diagram below (figure 9.2), in which a horizontal step is 

equivalent to the throwing of a head, and a vertical step equivalent to a tail. The line 

OV is the diagonal line in which the number of heads and tails are equal. The line GR 

is the line parallel to OV, but with a vertical offset of h , i.e. at a point on this line the 

number of tails is h greater than the number of heads.

Tails

Heads

(Figure 9.2 - Representing the Sequence of heads and tails as a Path)

The point A denotes the point with r heads and r+h-1 tails, i.e. A = (r, r+h-1). The 

point B is the point with r heads and r+h tails. Clearly, B lies on the line GR.
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Using the above diagram, we are interested in the paths from O to V which touch or 

cross the diagonal line GR. We classify the paths according to the point at which they 

first touch the line GR.

Let OABV be any route which first reaches the line GR at a point B, a distance r steps 

horizontally and r+h steps vertically.

Note

The point A is required because we can only get to B from 2 directions, see figure 9.3.

C  * b
rtS

A

(Figure 9.3)

If we travel from C to B then we would already have crossed the line GR before. 

Therefore, we must approach B from A.

We can divide the path OABV into 3 components, namely OA, AB and BV. As 

before, AB can only happen in one way and BV can happen in Cu.rt n_r_h ways, as we do 

not care how many times the path crosses the line GR after this first point; we must 

only ensure that we have the correct number of heads and tails.

Consider the diagram below, figure 9.4, and the path from O to A. This diagram is a 

simplification of figure 9.2. The line FS is parallel to GR, but is one step down, i.e. 

the vertical gap between FS and GR is always one unit.
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Tails

Heads

(Figure 9.4)

The path OA is the path from (0, 0) to (r, r+h-1). If, instead of the path OA, we

consider the path going from A to O, such that we do not cross the line FS, we can

easily calculate the number of ways of achieving this, and by using a symmetry

argument, this will be the same as the total number of ways of travelling form O to A,

without touching the line GR. Consider the path AO, such that we never cross the line

FS. The path may touch the line FS, but it may not cross it. By symmetry, i.e. the

interchangeability of heads and tails, and by a simple application of Corollary 9.3, the

number of paths which fulfil this condition is: 
m — n + 1
 ----------- - C in, n. In this case, m -  r+h-1 and n = r, which implies that the

m + l

number of possible paths is 1 +——-— C^ll. c  t + h - 1. r = ——  Cr + i>-1, r
r + h - \  + \ r + h
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Again, by using a symmetry argument, this is equal to the number of ways of

travelling from O to A without touching the line GR, i.e. OA can be formed in 
h

 Cr + />--], /• different ways.
r + h

h
Hence, the total number of paths OABV i s    C r  + A -u  X 1 X C n -  r, n - r - h  .

r + h

Therefore, the total number of paths from O to V which touch or cross the line GR is

From the property of binomial coefficients outlined previously (Equation 9.16), this 

simplifies to Cn+h, n-h» as required.
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9.5.2 Hurst Exponent for Random Processes

We will now show that, for a random process, the expected value of the Hurst 

exponent is exactly 0.5. The following proof is similar to the one given by Hurst.

Consider tossing a set of 2m coins N  times, denoting the appearance of a head by a 

“+1” and a tail by “-1” . Note that we use 2m coins to make the calculation simpler. 

The important statistic that we wish to measure is the difference between the number 

of heads obtained and the number of tails obtained in our 2m tosses. We will denote 

this difference for each trial, i.e. each collection of 2m tosses by

e i ~  #  h e a d s — # t a i l s  

(Equation 9.17)

W e calculate the average for this time sequence using Equation 9.2. We then 

proceed to calculate the accumulated deviation from the mean, and hence calculate 

the range between the maximum and minimum values for the accumulated deviation. 

This calculation is outlined above, in equations 9.3 - 9.5.

The total number of coin tosses we have is 2 m N , and we should have the same 

number of heads and tails equal after all the trials are complete, namely m N  heads and 

mN  tails. This is the reason why we originally chose 2m coins. Henceforth, we shall 

denote m N  by n, to simplify the notation. The total number of ways of arranging n 

heads and n tails is obviously :

r 2 n \ _  ( 2 ; i )!
v n J n \ n \

(Equation 9.18)

where we are just using the standard definition for choosing n objects from a selection 

of 2n. From theorem 9.4, we can see that among these orders there are
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f  2 n 

n +  h
occurrences of the number of tails exceeding the number of heads by h or

more, at some stage of the proceedings. To calculate the mean range we need to

calculate the number of arrangements where the difference between heads and tails

take certain values, so that we may calculate each possible arrangement’s contribution

to the total. This will then allow us to calculate the mean value, by division by the
(  2 n ^

total number of arrangements. For example, there are
72 + 1

arrangements where the
J

number of heads minus the number of tails is greater than or equal to 1, and there are
f  2 n \

in which heads exceeds tails by 9 or more. Therefore, the number of
n + 2 )

arrangements where, at some point in the process, the number of heads exceeds the

number of tails by exactly 1, with this being the maximum “lead” the heads have over 
f  I n ' ]

The contribution this makes to the total is given bythe tails, is
n +1

x
72 + 1 72 + 2

72 + 2

. The multiplying factor is one, because the maximum

value for the difference between heads and tails is 1. W e can easily calculate the 

number of arrangements in which the number of heads minus the number of tails is 

exactly equal to k, for some k. (See Table 9.1.)
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Table 9.1

Heads minus Tails 

1

2

No. of Arrangements 
2n ') f  2/1

v/J + ly n + 2

(  2n  ̂ f  2n 
n + 2V  

(  2 n

n

n + 3 

2 n 

72 + 4

Contribution 
(  2n \  f  2/7

72 + 1  ̂ 7̂2 +  2

2 j

3j

r 2/7 A / 2/7

72 + 2  J 1̂ 72 + 3

(  2n  W  277 '

72 + 3J 1̂ 72 + 4 ^

n-1
I' 2n

U » - i .

r2n^

k211;

n'

nj

( n - i )
f  2n

2n — 1/
f 2n^

Kl n j

' i n '
I n ,

f 2n ' f  In  ' '  2 / 2  ^ ' I n '
Sum + + , , ,  +

Vn  +  12 [n + 1, to
We also know from the binomial distribution that:-

2 2" = l  +
( 2 n  '\ (  2 n  '\

+
v b

+  +
r 2 n   ̂

[ n - l j

(2n\ (  2n ^
+ +

v " y \ n  +  l j
+  +

r 2 n '

K2 n J

(Equation 9.19)

Hence, using the symmetrical property of the binomial coefficients, we get the sum of 

the products to be :

Sum — — 
2

2 -

( 2 n \ \

V \ n ) )  

(Equation 9.20)

Therefore, the mean maximum value of heads minus tails is

2 2"-’ -

(  2 n \

\ n J
2tl^ 

72 ,
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but this is also the mean maximum value of tails minus heads, and equals 

— mean min value of (heads — ta ils ) . Therefore, the mean range is:
22n

M ean Range — R =
f  In

1

V n  J 
(Equation 9.21)

Now, as we want to be dealing with a large number of trials, n will be very large, 

hence we can use Stirling’s Approximation for nl. i.e.

n 1=42tlK

(Equation 9.22)

Using this, we can calculate an approximation for
(  2/7.)

V n J

v n y n In I

and thus, we have asymptotically

R ~ <yJn7V = ^jmN K

2 n

(Equation 9.23)

U K

(Equation 9.24)

The standard deviation of the binomial distribution produced by tossing 2m  coins is :

cr
1 1 m

2m  x  —X— = J —
2 2 V 2

(Equation 9.25)

This is the standard deviation for the number of heads, equally of the number of tails. 

The standard deviation for the number of heads minus the number of tails is twice a.

S = 2 a  =->/2m

(Equation 9.26)
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The proof of equation 9.26 is quite straight forward. Let H denote the number of 

heads in the series, and T the number of tails. Once again, the number of coins 

tossed is 2m. Then,

( H - T )  = H - ( 2 m - H )  = 2 H - 2 m

(Equation 9.27)

The variance of H is simply the standard deviation squared, i.e.

V ( H )  =  a 2

(Equation 9.28)

The variance of (H-T) can then be calculated.

V{ H  -  T ) = 22 V { H )

(Equation 9.29)

Thus, the standard deviation of (H-T) is given by :

s  ( H -  T ) =  2 a  = J i m

(Equation 9.30)

Therefore, as stated at the start of this section, for a random process, we get the 

relationship :

R _ ^jmN K _ IN ft _  [ft -  

S 2 m  1 2 V 2

(Equation 9.31)
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9.6 Experiments with Random Processes

To produce data on random processes, Hurst performed experiments involving 

the tossing of sixpences, the cutting of cards and the numbers of odd and even digits 

appearing in premium bonds. These experiments are what we would now call the 

Monte Carlo method. W e will perform two different experiments, one simulating 

H urst’s coin tossing and the other his card cutting procedure.

9.6.1 Coin Tossing

Hurst tossed 10 sixpences over a thousand times, in order to obtain a large

amount of data with which to test his theory. We performed a similar experiment

using a computer program, which generated up to 14000 different trials of 10 coin

tosses. The computer does this in under a minute, even using a BASIC program,

whereas Hurst would have taken over 6 hours to do only one thousand trials. The

program is available in Appendix C. It must have taken a lot of dedication to have

performed these trials so many times. We toss the 10 coins and, as outlined above,

count a head as a “+1” and a tail as a “-1”, the important quantity we measure is the

difference between the number of heads and the number of tails in each trial. W e then

followed the procedure described previously, to obtain the range and the standard

deviation. The data obtained can be seen in Table 9.2 and Graph 9.1. The results
R

obtained from the computer simulation, for the Rescaled Range — against time lag
o

iC  . . ,  ( ttau(x ), were recorded and the graph of against Ln J plotted. The graph

appeared to be a straight line, as we would expect from the theory, and the gradient for 

the line of best fit is 0.503. Thir <s clearly very close to the theoretical value of 0.5.
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Data for Tossing Coins (Unbiased Random Process)

Table 9.2 Coin Tossing
Tau Average R/S In (tau/2) In (R/S)

500 3.92 5.5214609 1.3660917
1000 5.25 6.2146081 1.6582281
2000 7.49 6.9077553 2.0135688
4000 10.8 7.6009025 2.3795461
8000 15.5 8.2940496 2.74084

12000 18.9 8.6995147 2.9391619

Gradient of Line of Best fit 0.503

Graph 9.1 Ln(R/S) against Ln (tau/2) for Coin Tossing

Graph 9.1 Ln (R/S) against Ln (Tau/2) for a Coin Tossing

2 -

0.5

4.5 5.5 8.56.5 7.5
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9.6.2 Probability Pack Experiments
Hurst also performed a series of experiments based upon what he called a 

“Probability Pack”. Talcing a pack of 52 cards, we label 13 of them with a ”+1”, and 

13 with a “-1”, 8 each of “+3” and “-3”, 4 are labelled with “+5, and 4 with “-5”, and 

finally we label 1 each with a “+7” and “-7” . (See table 9.3)

Table 9.3 Probability Pack Distribution

Label Distribution

-7 1

-5 4

-3 8

-1 13

1 13

3 8

5 4

7 1

We can see that the total number of cards is 52, and by examining the graph below we 

can see that it has the general appearance of the Normal Distribution with mean zero 

and standard deviation 3, i.e. N(0,3).
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Graph 9.2 Distribution of Probability Pack

D is tr ib u tio n  o f P rob ab ility  PAck

10
>.oc0)3cr
£
LL

•5 -3 1 3 5 7■7 1

Values on Cards

The procedure we used to perform the experiments is as follows:-

1) Shuffle the pack thoroughly.

2) Cut the pack and record the value on the exposed card.

3) Repeat the above process.

The sequence of cards cut, and values recorded, has a frequency distribution which is 

equal to that of the Normal Distribution. We would expect this, as the distribution of 

our cards is approximately Normal. This process could be performed manually, but it 

is easily simulated using a computer program. As before, a program was written in 

BASIC. This language was used as the procedure is relatively simple, and does not 

require a large amount of computer power. This program is available in Appendix C.

The data obtained can again be seen in Table 9.4 and Graph 9.3. When we plot the
(  r \  f

graph of Ln\ — against Ln — ,we can see clearly that we obtain a straight line, as

expected, and that the gradient of the line is 0.504. This is again very close to the 

theoretical value of 0.5.
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Data for an Unbiased Random Process using Probability Cards

Table 9.4 Probability Pack Experiment Data

Tan R/S ln (Tau/2) ln (R/S)
1000 35.65 6.21 3.57
2000 49.89 6.91 3.91
3000 60.34 7.31 4.10
4000 68.23 7.60 4.22
5000 75.56 7.82 4.32
6000 83.25 8.01 4.42
8000 97.56 8.29 4.58

10000 113.27 8.52 4.73
14000 137.51 8.85 4.92

Gradient of Line of Best Fit 0.504

Graph 9.3 Ln (R/S) against Ln(tau/2) for a Probability Pack

Graph 9.3 Ln(R/S) vs Ln(Tau/2) for an Unbiased Random P rocess using
Probability Cards
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9.7 Biased Random Processes

Hurst extended his work on the Probability Pack to introduce some sort of 

biasing factor. He wanted to see if this biasing affected the value of the exponent 

obtained after using his new analysing technique, the rescaled range analysis. The 

procedure he followed, used the same pack of cards as before, but the deck was subtly 

biased using an ingenious technique.

9.7.1 Biasing the Probability Pack
Hurst biased the pack by transferring high cards (or low cards) from the first 

hand to the second hand, while simultaneously taking the lowest (or highest) cards in 

the second hand and transferring them to the first hand. The procedure used is as 

follows

1) Shuffle the pack thoroughly.

2) Cut the pack and note the value on the exposed card.

3) Deal two separate hands (each will have 26 members).

4) If the card exposed in part (2) was “+5”, then the five highest cards in hand 

1 are transferred to hand 2, and the five lowest in hand 2 removed and 

transferred to the first hand.

Note. It does not matter whether we now use the first or second hand, as long as we 

are consistent in our method throughout the trial. The hand we use will now 

be biased, with either a “positive” or “negative” bias. Over a large number of 

trials, and as a result of the symmetry of our distribution, we should obtain the 

same number of “positive” and “negative” biased hands.
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5) Place a “joker” in the first hand, (or the second, see note above.)

6) Shuffle the first hand, again, to ensure that well mixed.

7) Cut the pack, and note the value on the exposed card.

This will be used to build up our biased sequence.

8) Repeat steps 6 & 7 until a “joker” is cut.

9) When a “joker” is cut go back to step 1.

We can repeat this process indefinitely, building up a long random sequence, but this 

time we have introduced a definite bias. Hurst performed this experiment a number of 

times with up to one thousand cuts. He obtained a value for the Hurst exponent of 

0.714, which was very close to the value he obtained for natural series.

9.7.2 Experiments on Biased Packs
W e generated a random sequence using the method described above. Again, 

the procedure was performed with the aid of a BASIC program, which is available in 

Appendix C. W e analysed the data obtained, by plotting the graph of 

-j against Ln ^  can clearly seen from Table 9.5 and Graph 9.4, that

we do have a straight line, but we do not have a gradient of 0.5, which we obtained 

with the unbiased processes. The gradient of the line of the best fit obtained from our 

computer simulation is 0.62. This strange change in the gradient is entirely due to the 

introduction of the “joker” and the biasing of the hands. Each hands biasing, and the 

subsequent memory of the deck, results in this change. Therefore, it is reasonable to 

assume that, for natural processes which display a Hurst exponent of greater than 0.5, 

there is some long term dependence or “memory”, and that the events cannot be 

assumed to be random or independent. In the next section we will demonstrate that 

for Earthquake Data from the North California Earthquake Data Centre, one of the 

regions discussed earlier, that earthquakes . ernot be regarded as random or 

independent.

129



Data for R/S and Tau using a biased Hurst hand

Table 9.5 Biased Probability Pack Experiments

Tau R/S In tau/2 ln R/S
500 63.2 5.52 4.15

1000 89.76 6.21 4.50
2000 140.65 6.91 4.95
3000 172.23 7.31 5.15
4000 202.11 7.60 5.31
5000 232.21 7.82 5.45
6000 268.35 8.01 5.59
8000 325.14 8.29 5.78

10000 410.91 8.52 6.02
14000 498.36 8.85 6.21

Gradient of Line of best fit 
0.621

Graph 9.4 Ln (R/S) vs Ln (Tau/2) for a Biased Process
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9.8 Interpreting the Hurst Exponent

W e have shown, both mathematically and experimentally, that for an 

independent process, the Hurst exponent is expected to exist, and take a value of 0.5. 

In the previous section, it was shown that, by biasing the pack, and ensuring that the 

process was not independent, but had a "memory", that the value for the Hurst 

exponent increased to a value greater than 0.5. What does this increase actually 

imply?

In the case of H > 0.5, the important result is that the series is persistent. 

Persistent time series are characterised by long term memory effects. In theory, these 

memory effects are infinite; what happens today has an effect forever. These long 

memory effects occur, no matter what time scale we are using. As a result, there is no 

characteristic time scale. In Hurst’s case, for annual river discharges, the Hurst 

exponent of 0.72 suggests that the time series is persistent, and that all future annual 

discharges are correlated. This property can be interpreted in another way. W e can 

think of our time series as fractional brownian motion, and if the Hurst exponent is 

greater than 0.5, then our walk will cover more distance than a random walk.

W e can also have a Hurst exponent less than 0.5. This result leads to an 

antipersistent time series. An antipersistent series tends to reverse its direction more 

frequently than a random one, and constantly turns back to the point form which it 

came. In our random walk analogy, this implies that the time series covers less 

ground than a random one.

As we have seen from Hurst’s results, persistent time series are the most 

common found in nature.
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9.9 Hurst Analysis of Earthquake Catalogues

In the previous sections, we discussed Hurst Analysis, and the application of 

this technique in relation to random 01* independent events, showing that for random 

events a Hurst exponent of 0.5 is expected. We also demonstrated that, for processes 

with long-term correlations or so called “memory” effects, the Hurst exponent 

increased to a value greater than 0.5. In this section, we will calculate the energy 

released by a series of earthquakes in the North California region. The energy values 

calculated will then be used as the basis of our Hurst Analysis. As discussed earlier, 

the energy of an earthquake, can be estimated empirically using the relation :~

L o g ,0 E = 11.8 + 1.5 M x 

(Equation 9.32)

where the energy E is in ergs. This equation can be easily modified to enable us to 

calculate the energy explicitly from the magnitude of the earthquakes considered. We 

shall perform the Hurst analysis technique on this data set.

9.9.1 Which Earthquakes?
Thanks to the recent improvements in seismometers and the increased number 

of seismic stations, measuring techniques have developed significantly, with data 

more accurate, and more reliable than ever before. This has enabled seismic stations 

to record very small earthquakes, known as microquakes. These small events are 

frequent, and result in huge numbers of earthquakes being detected, and recorded, by 

the seismic monitoring networks. To ensure that the number of events which we 

handled would not be excessive, we placed certain limits on the size of the 

earthquakes used. Fortunately, the energy of the earthquakes is calculated using a 

logarithmic scale (see equation 9.32), and this is of considerable use to us. This
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property means that an increase of only 1 in the magnitude of the earthquake results in 

an energy increase by a factor of over 30, and a magnitude increase of 2 implies an 

energy increase by a factor of 1000. As we can see from Table 9.6, a large event , 

such as a magnitude 6.0 quake, releases 1 million times more energy than an event 

with magnitude 2.

Table 9.6

Earthquake Magnitude Energy Released (ergs)

2.0 6.31 x lO 14

3.0 2.00 x lO 16

5.0 2.00 x lO 19

6.0 6.31 x lO 20

8.0 6.31 x lO 23

Thus, a very large earthquake, or even a moderately large one, will completely 

dominate all the smaller quakes in energy terms, even allowing for the increased 

frequency of smaller events. It was felt that this property could be used to eliminate 

the smaller quakes, to make calculation easier. As a result, it was decided that only 

earthquakes with a magnitude in excess of 2.5 would be considered. In the region 

under investigation there were well over a hundred earthquakes with magnitude 

between 4 and 5, as well as more than twenty quakes with a magnitude greater than 5. 

In the catalogue considered, these events are enough to dominate the large number of 

small quakes. The employment of this selection procedure still resulted in over five 

thousand events for the period under consideration.
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9.9.2 Procedure
W e calculated the energy for each of the earthquakes remaining in our 

catalogue, using the formula given earlier (see equation 9.32). In the first analysis, we 

wanted to investigate the rescaled range for a time scale of the order of weeks. Thus, 

the energies for each individual earthquake were summed, to give a total value for 

each week’s seismic energy release. This value was then used as the data for the time 

series, { et}  . W e performed the analysis, outlined earlier, using this time series. We 

calculated the mean, the accumulated deviation from the mean and the maximum and 

minimum values of this deviation. This enabled us to calculate the range, and hence 

the rescaled range by division by the sample standard deviation.

The next step was to change the time scale, and then repeat the analysis. The 

time scale was changed to monthly, and the total energy released per month calculated 

for the data. The Hurst analysis was then performed on this time series, as above.

9.9.3 Results
Once the calculation of all the appropriate energies was complete, it was 

possible to work out the value for the rescaled range (R/S) for various time lags ( t ). 

As before, the data were then plotted in the form of a graph of

r  ■ rLn I — I against Ln — J .

The results for the weekly time scale can be seen in Table 9.7 and Graph 9.5, 

while the results for the monthly time frame can be seen in Table 9.8 and Graph 9.6.
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Hurst Analysis for Weekly Earthquake Energy Data
(North California)

Table 9.7 Hurst Analysis for Weekly Data

Tau (Weeks) R/S Ln (tau/2) Ln (R/S)
10 2.85 1.61 1.05
15 3.62 2.01 1.29
20 4.25 2.30 1.45
25 4.80 2.53 1.57
30 5.30 2.71 1.67
35 5.75 2.86 1.75
40 6.17 3.00 1.82
45 6.56 3.11 1.88

Gradient of Line of Best Fit 
0.552

Graph 9.5 Ln (R/S) vs Ln (Tau/2) for Weekly Earthquake Data
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Hurst Analysis on Earthquake Catalogues for Monthly Data
(North California)

Table 9.8 Hurst Analysis for Monthly Data

Tau (Months) R/S In tau/2 In R/S
10 2.39 1.61 0.87
15 3.09 2.01 1.13
20 3.64 2.30 1.29
25 4.30 2.53 1.46
30 5.16 2.71 1.64
35 5.93 2.86 1.78
40 6.36 2.92 1.85

Gradient of Line of best fit 
0.743

Graph 9.6 Ln (R/S) vs. Ln (Tau/2) for Monthly Earthquake Energy
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9.9.4 Analysis of Results

From the data in Table 9.7 and Graph 9.5, we can see that, in the case of the 

weekly time scale, the graph obtained is an excellent straight line. The gradient of the 

line of best fit is 0.55. From theory, (see equation 9.6) this is the value for the Hurst 

exponent. This value for the Hurst exponent, i.e. H > 0.5, tells us, as before, that 

there is a persistent time series, and that some sort of long term correlation, or 

memory effect, is involved. The value of 0.55 is lower than the 0.72 obtained by 

Hurst for many of his natural time series; whether there is something significant in 

this is difficult to ascertain. Another consideration must be that the value for the 

Hurst exponent is close to the theoretical value for an independent process, i.e. H = 

0.5. Perhaps, this small increase could have been caused by our selection procedure 

or by experimental error. If this is the case then, we have shown that over a short 

time scale, the data are independent. Therefore, for short time spans in this region, it 

is difficult to make any firm conclusions as to the nature of the processes involved.

For the monthly case (see Table 9.8 and Graph 9.6), we can clearly see that the 

line of best fit obtained is not as good a fit as before, but that the line calculated is still 

valid. It is still a straight line, but the correlation is not as good as in the weekly case. 

The gradient of the line of best fit yields a gradient of 0.74. Again, this is the value 

for the Hurst exponent, i.e. H = 0.74. Clearly, this implies that over a monthly time 

frame, there is undoubtedly some long term correlation. In this case, experimental 

error could not be used as an explanation for the difference between this value and the 

theoretical value for a random process. Therefore, we must assume that over this time 

scale, there are definitely some "memory" effects in operation, and that the processes 

are not independent. Also, the value obtained for H is also very close to those 

achieved by Hurst for other natural data series.
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9.10 Yearly Time Scales and Hurst Analysis

After analysis of the results from the previous section, where we have shown 

for a monthly time frame, that there is a correlation involved, it was felt that the 

analysis should be expanded to a longer catalogue and a longer time frame. For this 

second case, a catalogue from the same source, i.e. the North California Earthquake 

Data Centre, was downloaded, but this time the catalogue ran from 1967 until the 

present day. As discussed earlier, the number of events recorded is prohibitive, and so 

to make calculation easier, selection procedures were again employed. To this end, 

only large earthquakes were retained, resulting in a catalogue consisting of only 

earthquakes of magnitude > 5. Once again, the reasoning employed earlier forms the 

basis of the logic behind this decision. The same procedure discussed previously, and 

utilised in the previous section, was employed once more. The data obtained from 

this analysis are shown in Table 9.9 and Graph 9.7.
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Hurst Analysis for Yearly Earthquake Energy Data 
(North California 1969-1997)

Table 9.9 Hurst Analysis for Yearly Data
T a n R/S In (tau/2) ln (R/S)

5 1.74 0.92 0.55
7 2.18 1.25 0.78

10 2.83 1.61 1.04
13 3.31 1.87 1.20
16 3.78 2.08 1.33
20 4.29 2.30 1.46
28 5.49 2.64 1.70

Gradient of Line of Best Fit 
0.660

Graph 9.7 Ln (R/S) against Ln (tau/2) for Yearly Data

Graph 9.7 Ln (R/S) vs Ln (tau/2) for yearly data
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9.10.1 Results and Analysis

The analysis was performed on the earthquake energy data, using the method 

outlined earlier. We can clearly see form the results obtained, that for a time scale of 

the order of years, the graph of against Ln is a straight line. Again, the

correlation is excellent, and the line of best fit is a very good one. This implies that 

the Hurst exponent does exist. From the table, we can see that the gradient of the line 

of best fit is 0.66. Once again, this is the value of the Hurst Exponent, i.e. H = 0.66. 

Since the value for H is greater than 0.5, this shows us that there is a long term 

correlation between the energies of the earthquakes on a yearly scale. As before, we 

must make allowances for the selection procedure employed, and its possible effect on 

the results. However, the value for H is significantly greater than that for an 

independent process, and therefore it is reasonable to conclude that there is some 

memory effect at work in the earthquake process.

9.11 Conclusion

Hurst Analysis is a very interesting topic, with much research still needed. 

From the results we have obtained for the North California region, it is fair to 

conclude that over longer time scales, such as months or years, there is undoubtedly a 

long term correlation between the energies of the earthquakes. Hence, using equation 

9.32, there is some memory effect involved in the magnitude of the earthquakes. We 

must however consider the simplifications made in the earthquake catalogue. These 

omissions were made in the interests of simplicity and ease of calculation, and only 

very small events which, although numerous, do not contribute significantly to the 

energy released, were omitted. Overall, it is felt that the inclusion of these small 

events would not affect the underlying results.
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9.12 Extensions

A number of possible extensions to this work have been considered. In the 

previous experiments, severe limitations were placed on us by the length of the 

available earthquake catalogues. As a consequence, it would be interesting to 

experiment with longer catalogues, to see if the same results were obtained. Also, 

although in our yearly example only large earthquakes were used, another extension 

could be to remove any aftershocks or foreshocks from the catalogue, and perform the 

analysis on the remaining main shocks, to discover if any correlation exists. This 

procedure would be difficult, as selection criteria would need to be decided upon to 

distinguish between foreshocks, main shocks and aftershocks. Another extension 

could be in the use of the Hurst statistic to pick out cycles, and periodic fluctuations 

(see reference 3). This extension is however beyond the scope of this thesis.

141



Chapter 10 

Fractals & Dimensions

In this chapter we will lay the foundations for some of the mathematics we 

will use in the next chapter. We explain more thoroughly the idea of fractals and 

dimensions, and highlight the methods used for the numerical calculation of a 

fractional.

10.1 Introduction

In chapter 7 we mentioned briefly the idea of a fractal. Many people have a 

preconceived notion of what constitutes a fractal. Usually this consists of a 

“multicoloured swirly pattern”, normally the Mandelbrot set, which they have seen on 

the back of a T-shirt. Although some of these are fractals, and are very pretty, there 

are other fractals which we do not even recognise as such, e.g. clouds, ferns and 

snowflakes. Figure 10.1 below, is an example of a fractal. We can see that if we take 

the whole shape and reduce it, then it exactly mirrors a smaller section of the picture. 

This is one of the main properties of fractals. Also, if we zoom in on a particular 

section, we continue to see more detail at a smaller scale. This is another property of 

fractals, see Falconer[ 1990] and Feder[ 1988].

(Figure 10.1 The Koch Curve)
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Fractals, as we think of them today, were “discovered” by Benoit 

Mandelbrot[l9S2]. Mandelbrot's book, “The Fractal Geometry of Nature”, is one of 

the seminal works of the 20th Century, and is a fascinating study by a unique 

individual. It is also an interesting read! Quoting from “The Fractal Geometry of 

Nature”, Mandelbrot says:

UI conceived and developed a new geometry o f nature....It describes many o f 

the irregular patterns around us, and leads to a number o f fu lly  fledged theories, by 

identifying a fam ily o f shapes I  call fractals. The most useful fractals involve chance 

and both their regularities and their irregularities are statistical. Also, the shapes 

here tend to be scaling, implying that the degree o f their irregularity....is identical at 

all scales. The concept o f fractal dimension plays a central role in this work. ”

10.2 Classic Fractals

The prototypical example of a fractal is a rocky coastline. Figure 10.1 could 

be thought of as a coastline, but one which is very regular. We can measure the 

length of a coastline by counting the number of steps, N(e), of a divider of length 8. 

The length of the coastline, L(e), is then found to be given by the following empirical 

equation :

L ( s )  =  N  ( £ )  X  £ .

(Equation 10.1)

This relationship is an empirical fact, and was discovered by Richardson in 1961. 

Obviously, N(e) will change as we vary s. The shorter we make 8, the more steps we 

will need to measure the length of the coast. We would also expect that the 

measurement would “settle down”, or tend to, some well defined value called the true 

length. For coastlines, this does not happen, and what we get is that N(e) is related to 

8 by a power law, i.e.
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(Equation 10.2)

Therefore, the length of the coastline becomes

L { £ )  =  —  X  £
£

= c e ' - D 

(Equation 10.3)

If D > 1 then, as the size of the dividers decreases, the length increases. In 

most cases L(e) increases without limit. This happens because a “bay” noticed at large 

scale will have “sub-bays” contained within it at a smaller scale, and each of these 

smaller features adds to the total length. D is called the fractal dimension, and for real 

coastlines is approximately in the range 1.15 to 1.25.

Another classical fractal is the Sierpinski gasket, this is given below, in figure

10.2. The Sierpinski gasket has a fractal dimension D = ——  = 1.58...
log 2

(Figure 10.2 The Sierpinski Gasket)

10.3 Dimensions

There are many different definitions of “dimension” in mathematics, and we 

must be very careful about which one we are using. The reasoning behind this 

multitude of different dimensions is that in some cases different definitions give
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different answers. Also, some methods are easier to evaluate than others. 

Mandelbrot[1982] originally defined a fractal as:

"A fractal is by definition a set fo r  which the Hausdoiff-Besicovitch dimension 

strictly exceeds the topological dimension. ”

In this short statement we have already used two different definitions of dimension!!

10.4 Topological Dimensions

The subject of Topology is often referred to as ‘‘Rubber Sheet Geometry” . We 

say that two objects are the same (topologically) if one can be pulled and stretched 

into the same shape as the other. Topology is a complicated subject, and has many 

facets. As a result, we do not go into any detail, but simply use an obvious result.

The idea of the topological dimension, DT, that we use is the natural one. It 

relies on the number of parameters required to describe the position. A single point is 

said to have a topological dimension of zero; a curve has a topological dimension of 

1; a plane has DT = 2, and so on. We can see that this is the intuitive way of defining 

dimension. Figure 10.3, below, illustrates this idea. See Hoggar[ 1992] for further 

details.
D.T 0

D.T

1 /

(Figure 10.3)

Note that topological dimension, DT, is defined to have an integer value.
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10.5 Hausdorff Dimension

Before discussing the Hausdorff Dimension, we must talk about the Hausdorff 

measure. Consider 7  c  i?n , such that V ^  (p . Then the diameter of V is defined as

| V  | = sup {|x — y | : x, y e V ]■

(Equation 10,4)

where \x -  y\ is the normal Euclidean distance between x and y.

Let F c  R n . Then a 5 -coyer o f F  is a countable collection of sets{W )}, with 

0 < |W;-1 < 8  , which cover F, i.e. F  c  U  WJ.
( = i

Using this, and for F  c  R n , s > 0  and 5  > 0 ,  we define the following quantity:

= | X  M  : { ^ } ^ s a < ? - cover o f F

(Equation 10.5)

W e try to minimise this quantity over all 5. As 5 tends to zero, the number of possible 

coverings reduces, and H#( F)  approaches a limit. (Note that this limiting value may

be infinite). W e define the s-dimensional Hausdorff measure as follows:

H ‘ ( F) = .

(Equation 10.6)

Also, for any 8-cover, {W)}, if t > s > 0 and 0 < <5* < 1 then we have

( / i

(Equation 10.7)

Thus, by taking the infima we get that

ff 1 ( 0 *  H s { F) -

(Equation 10.8)
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Letting 5  —» 0 we see that if H* (i7) < then H ! (F ) = 0 for t > s. The graph of 

H x (F)  against s is given below, in figure 10.4. There is a critical value of s at which 

H  K (jF)  “jum ps” from °o to 0. We call this critical value the Hausdorff dimension of

F, dimH F.

Hs(Fr

o

We can formally define it as:

dim „ F  = inf p : H ‘ (F )  = o} = sup p : H ‘ (F )  = ~ }  .

(Equation 10.9)

Unfortunately, the Hausdorff (or Hausdorff-Besicovitch) dimension is quite difficult 

to evaluate in experimental situations. Hence, we must find ways of calculating the 

dimension more easily.

10.6 Evaluating Dimensions

Measurement at scale s  is crucial to most definitions of dimension. In section

10.2, we discussed measuring the length of a coastline, F, using dividers of length £. 

This method means that we ignore all the irregularities of size less than 8. When we 

measure the object, the dimension of F is determined by the power law relationship (if
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there is one) between the number of objects (the number of steps of the divider) N(e) 

and s, the size, see equation 10.2. Taking logarithms of both sides of equation 10.2 

yields:

L o g  N  -  L o g  c -  D L o g  £

(Equation 10.10)

and
L o g  N  ( e )

D = Inn ------------
e -> 0 -  L o g  £

(Equation 10.11)

In practice, D is constant over a range of scales. This means that we can plot the 

log-log graph of N(e) against 8 and we will obtain a fixed straight line over a large 

section of the graph. We can use the above formula experimentally, as we can 

estimate D from the gradient of the log-log graph of N(e) against 8.

10.7 Box Counting

Box-counting is probably the most popular method for estimating fractal 

dimensions. This is due to the ease with which calculations can be performed. It is 

based on the same idea as outlined in the last section. Our method involves placing a 

regular grid of boxes over the fractal set, and observing how many boxes contain 

some part of the set. Let N(e) be the smallest number of these regular boxes of side

8 which cover F, then the box-counting dimension is defined to be
L o g  N ( s  )

D = lim  ------------
- L o g s

Note that this is the same as equation 10.11 above. We note how the number of boxes, 

N(e), varies as 8 changes. The gradient of the log-log graph of N(e) against 8 is then 

used as an estimate of D, just as in Richardson’s coastline analysis.
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10.8 Correlation Dimension

If we calculate the box-counting dimension, D, we can see that it is a purely

geometric measure. The value for D relies on the number of boxes containing part of

the set, and is independent of the “amount” contained within each box. For example,

consider a box which has only one point of our set contained within it, and another

box which contains a thousand points. The box-counting (and Hausdorff) dimension

consider both boxes equal. This is like counting the number of coins in your pocket

without considering the denomination. The correlation dimension is different, and

takes this into account, see proposition 10.1 and the subsequent discussion.

Hentchel & Procaccia[ 1983] exhibits an infinite sequence of generalised

dimensions. Their sequence includes the fractal dimension and the correlation

dimension, but excludes the topological dimension. We will restrict our discussion to

the correlation dimension, as this will be the main method we use to calculate

dimensions throughout the rest of this thesis.

Let be the points of a time series, with N a large number. W e define

the correlation integral, C(r) as:

(Equation 10.13)

with x  variable and a constant. It is found that C(r) obeys a power law over a range 

of scales. That is, for some constant k, we get that

(Equation 10.12)

where © is the Heaviside step function, defined by

C  ( r )  =  k r l/ .

(Equation 10.14)
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Hence, the correlation dimension, v ,of the time series is defined as

v = lim ---------
r—► 0 log r

log C(r)

(Equation 10.15)

To calculate v experimentally, we plot a graph of log C(r) against log r, and the

gradient of the line of best fit is taken as the correlation dimension. Note that in the

following chapter we only obtain straight lines in a so called “scaling region” . This is

because, with real data, the time scales involved mean that only very rarely do we

have large gaps between earthquakes. This affects the results at larger time intervals,

and results in a deterioration of the straight line.

W e can actually show that the correlation dimension v is a lower bound for

the box-counting (fractal) dimension, D. Once again, consider our time series,

. If we cover the time line by intervals of length r, then the probability, pis that

one of the points of our time series falls into interval i is given by

1

where f i  f is the number of points of the time series which fall into interval i. Let the

number of intervals required to cover the line be M(r). The expectation, or average 

value for the probability of landing in an interval is then

(Equation 10.17)

From the definition of the correlation integral, C(r), given in equation 10.12 we get

(Equation 10.16)

(Equation 10.18)
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Here we have replaced the number of pairs with distance less than r by the number of 

pairs which fall into an interval of length r.

Proposition 10.1

Consider a probability distribution {pj}. For this distribution (.p f ) *  ( p , y

Proof

Let p  = ( p{, p 2  , p N ) .  Then

P - 1  =  ( P i , P 2 » *Pn ) • ( U >  T )  ~  Pi +  Pi + ....... +  P N =  Y j P i  =  1

(Equation 10.19)

Using Schwarz’s Lemma, we get that

U p |p |2|T|2.

(Equation 10.20)

and using equation 10.19, above, we obtain the following

l2 < |p |2 * N  .

(Equation 10.21)

Therefore, by expanding and rearranging equation 10.21 we obtain the following:

i r 5  ■

(Equation 10.22)

W e have now shown that

_j > _
N  N 2 '

(Equation 10.23)
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The left hand side on equation 10.23 is just (pj ' j  , and we already know that 

(p.} = — , which tells us that the right hand side is simply (p ,)2 • W e have therefore

proved the proposition, i.e. > (p, )2 •

v M (r ) J  M ( r )

Returning to equation 10.18, we can see that

C ( f )  =  M { r )  ( pf )  > M { r )  (Pl)2 =  M(r)  .

(Equation 10.24)
1

Now, we have seen earlier, from equation 10.2, that M(r) varies as Thus, for 

some /, equation 10.24 becomes

C(r) > l r D .

(Equation 10.25)

But we already know from equation 10.14 that C(r) = k r v, hence

r v~D > — (a positive constant). 
k

(Equation 10.26)

If v > D  then letting r —>0 we get a contradiction. Therefore,

V <  D .

(Equation 10.27)

Grassberger & Procciccia[l983] claim that in cases where v  ^  D , v is more relevant. 

They claim that the neighbourhoods of certain points have higher “seniority”, in that 

they are visited more often than others. The fractal dimension is ignorant of seniority, 

being a purely geometric concept. The correlation integral ( and dimension) weights 

intervals according to their seniority. It is this property that we are most interested in 

and which we will make use of in the next chapter, where we calculate fractal 

dimensions for earthquake series.
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Chapter 11 

A New Prediction Method

In the last chapter we discussed fractal dimensions, and in particular the 

correlation dimension. We now use these definitions to propose our own method for 

predicting earthquakes.

11.1 Introduction

We have already looked at the Hurst exponent and the Hurst analysis of a time 

series. This was discussed in chapter 9, where it was shown that earthquakes were not 

independent events. The Hurst exponent, H, was found to be greater than 0.5, which 

suggested a persistent time series, with long term correlations, i.e. earthquakes are 

dependent upon the past as well as the present. The correlation dimension is also a 

measure of how points are related, and we wanted to see how the correlation 

dimension varied as the earthquakes under consideration changed. The main aim of 

monitoring changes in the value for the correlation dimension was to discover 

whether any precursory changes could be identified, especially changes which could 

lead to some sort of earthquake prediction method.

In this chapter we discuss the method used for calculating the correlation 

dimension, i.e. the computer algorithm and program used, as well as the procedure 

followed. W e then go on to consider the results of some preliminary studies.
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11.2 The Computer Program

The program used to calculate the correlation dimension throughout the rest of 

this chapter is given in appendix D. The program was developed over a period of a 

few months, and although the basic structure was in place fairly quickly, many 

refinements and improvements were gradually added. The program was originally 

written in BASIC, as this is the language with which we are most familiar. 

Unfortunately, because of the huge number of data points under consideration, this 

was found to be impractical, as the length of time taken to compute the correlation 

dimension was excessive. Also, the number of data points that could be handled 

easily was too small to be useful. The original BASIC programs are not given as they 

were never used in any experiments.

To improve the performance it was necessary to change the programming 

language to one which would facilitate faster calculation. Hence, the final program 

was written in C++, as this language fulfilled all the necessary criteria. Thankfully, 

the increase in speed of operation allows the rapid calculation of the correlation 

dimension. In most cases, one complete calculation took around 45 seconds. 

However, as we make over 1000 calculations at a time, the total length of time 

involved was still significant.

The program uses the Grassberger & Procaccia algorithm to calculate the 

correlation integral. This can be found in their paper, Grassberger & 

Procaccia[l9S3], The equation used was given in the last chapter, in equation 10.12.

W e now explain the main sections of the code, and the functions they perform. 

Firstly, the program sets up all the variables required; it then reads in the time series 

data to be analysed from the appropriate data file. The number of pieces of data read 

in at each step can be entered at the start of the program. Obviously, the smaller the 

size of the jum p, the longer it will take to process a complete data set.

The program now calculates the "distance" between all possible pairs of points 

in the data set under consideration. At this stage we are considering approximately

154



33000 pieces of data! It was found that by sorting the resulting data into numerical 

order, the speed of calculation could be increased dramatically. Hence, the next part 

of the program sorts the data into ascending numerical order.

W e now calculate the correlation integral using the sorted data we have just 

obtained. The formula used is given below, where we repeat equation 10.12 for 

convenience.

The program goes through the sorted data and counts how many points there are up to 

the current value of r. This counting is equivalent to the action of the Heaviside step 

function. We can then calculate the correlation integral. The process is then repeated 

as we change r.

To calculate the correlation dimension, D, we need to calculate the gradient of 

the graph of Log C(r) against Log r. We must first ensure that we do indeed have a 

straight line. To check this, the data is output to a data file from which the graph can 

be plotted using the computer application MATLAB. It was found that, in many 

cases, the graph followed a straight line up to a certain point, and then deviated from 

this line by tailing off slightly. This occurs because of the small number of large time 

intervals between earthquakes. The region in which we have a linear relationship is 

termed the scaling region. Throughout the rest of this chapter, all the gradients we 

calculate are for lines of best fit in the scaling region. Examples of these graphs, 

illustrating the scaling region and the deviation are given in appendix E.

The program then calculates the line of best fit in the scaling region, and the 

value for the gradient is output to a data file. It is this quantity that we are interested 

in; this is the correlation dimension, D, of our data. This process is repeated as we go 

through the data, and provides an illustration of how D is changing.

(Equation 11.1)
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11.3 Method

The method of calculation uses the data obtained from earthquake data sites on 

the world wide web. In the preliminary study, data from Alaska were used. For 

subsequent studies, the region under consideration was changed, as obtaining the 

necessary data became more difficult. Hence, as in chapter 9, data from the North 

California Earthquake Data Centre was used. All the earthquakes of magnitude > 2.5 

were included in the catalogue. Note that this gives us a huge amount of data to 

analyse, almost 5000 events in Northern California.

W e cannot, however, use the data as it currently stands, i.e. as a set of dates 

and times. W e must first calculate the inter-arrival times, i.e. the length of time 

between earthquakes in minutes. This technique is a fairly standard one from the field 

of statistics. W e calculate the inter-arrival times using a large spreadsheet, and then 

export the appropriate values to a data file for use with the computer program. We 

can now perform the analysis on this data set.

We run the program, and using MATLAB, check to see if we get a linear 

relationship. As stated before, examples of these plots are given in appendix E; we 

can clearly see the "tailing o ff’ of the graphs at larger values of r. The program 

calculates the line of best fit, and its gradient, in the appropriate scaling region.

The gradient, as mentioned before, is the correlation dimension. We monitor 

how the correlation dimension changes as we move through the data set.
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11.4 Preliminary Study

After testing the program and ensuring its reliability, the first serious 

experiment was performed on data from Alaska. We calculated the inter-arrival times 

for all the earthquakes with magnitude > 2.5 for the years 1992 to 1996. This

encompassed approximately 600 events. We then ran the program, and calculated the

correlation dimension for the data series. Using MATLAB, a graph of the correlation

dimension against current position in the data series was plotted. Note that in this

case the number of data points read in at each step was only 1. The graph obtained

can be seen below, in figure 11.1.
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(Figure 11.1 Correlation Dimension Vs Position for Alaska 1992-1996)

As we can see from the above graph, the correlation dimension changes quite 

significantly. It peaks at a value of 0.75, and has a minimum value of about 0.25. 

This preliminary study looks quite promising, that is there are distinct variations in the 

value for the correlation dimension. It was hoped that these variations could be used 

as a prediction method. For example, if a peak (or a trough) occurred before a large 

earthquake in the past, then we might expect the same pattern to repeat itself, and this 

could be used as a precursor. Hence, we decided to do a more detailed study.

W e extended the data to include a far bigger sample, this time the data for 

Alaska incorporated all earthquakes in the region for the period 1985 to 1996. This 

gave us a large number of events to process, well over 1500. In this example, we read
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in the data in chunks of 5 points in an attempt to speed up processing. This enables us 

to analyse the data more quickly, and within a reasonable time frame. Figure 11.2, 

below, shows the MATLAB output. Note that the x-axis on the graph starts at 181, 

this is because the program uses the first 181 points of data before it will return a 

value for the correlation dimension.
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(Figure 11.2 Correlation Dimension Vs Position for Alaska 1985-1996)

By comparing figures 11.2 and 11.1, we can see that there are a number of 

points of interest. The correlation dimension takes values in the range 0 to 0.9, and is 

quite variable. Obviously, as we are using an extended set of data in figure 11.2 there 

will be more peaks and troughs. The last section of figure 11.2, from about position 

931 on, is the same as figure 11.1, this is because we are using the same data, i.e. this 

is the 1992 to 1996 section of the data.

Figure 11.2 has a number of similarities with the build up of stress in the 

Earth’s crust and the elastic rebound theory which was outlined in chapter 2. It 

appears that the correlation dimension gets "built up” over time, and then something 

happens, like a large earthquake, which causes the correlation dimension to drop 

rapidly. It is then “built up” again over a period of time. This is very like the elastic 

rebound theory.

The next step was to identify the largest earthquakes in the data set. All the 

earthquakes above magnitude 4.9 were found, and their position in the data series

158



noted from the spreadsheet. These data were tabulated, and the results are presented 

in table 11.1 below.

Table 11.1 Major Earthquakes and their Positions

Position in Series Magnitude

649 4.9

926 5.6

953 5.9

967 6.0

1278 5.0

If we examine the actual numerical data produced by the program, as well as 

the data from figure 11.2, then we can calculate exactly the positions on the figure 

where there is a significant drop in the correlation dimension. We obtain a rough 

estimate of the position from the graph, and we can then check the exact point by 

reviewing the data file. Figure 11.3, below, shows the points on the graph where the 

correlation dimension “peaks” before dropping rapidly. The numbers given refer to 

the exact positions in the data series.

ao
Xfla
<0
S
Q

0.2

656 946 1281

1431 1681681 931
Data Point

431181

(Figure 11.3 Alaskan Data with “peaks” illustrated)
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As we can see from the values given in figure 11.3, the peaks we have 

identified are very close to the positions of the large earthquakes given in table 11.1. 

For example, the first peak/dip occurred at data point 656, while the first major 

earthquake occurred at position 649. There are 3 major earthquakes relatively close to 

each other in the data series, e.g. positions 926, 953 and 967. Our second peak/dip, at 

position 946, appears to be in the middle of these 3 large events. The third drop we 

have identified occurs at position 1281, while a large event occurred at position 1278. 

The last peak that we have illustrated, position 1536, is not a valid peak. This 

peak/dip is achieved because the data series has ended, i.e. the computer runs out of 

data points to consider, and the correlation dimension drops to zero. Hence, we do 

not consider this in our analysis.

At first sight it appears that these peaks/dips in the correlation dimension 

occur at, or very near the time of major earthquakes. It was hoped that by monitoring 

the correlation dimension, and any variations that might occur, some prediction 

method could be produced. This could only be done if the correlation dimension 

could be monitored regularly. Unfortunately, there are just not enough large 

earthquakes for us to consider in the Alaskan region. From 1985 to 1996 there were 

only 5 “large” events in our time series, see table 11.1. This is not really enough to 

allow us to test any theories, as we would have to wait a very long time for the next 

reasonably large event. Hence, it was necessary to change the region under 

consideration. In the following section we consider Northern California, and the 

earthquakes in this region.
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11.5 Probability beyond Chance

Before we go on to consider anything further with our prediction method, we 

must consider the chances of "guessing" randomly and still making a correct 

prediction. First we must consider the size of the earthquakes we are going to try and 

predict. Note that the size of an earthquake was discussed in chapter 2.

Earthquake prediction is usually performed in attempt to save human life. 

Therefore, we are only interested in trying to predict the occurrence of large, 

destructive events. Hence, it was decided that we would only try to predict events 

with magnitude greater than 5. Another factor which influenced this decision is the 

fact that events with a magnitude of between 4 and 5 are fairly common. If we had 

decided to try to predict smaller events, then we would have encountered serious 

difficulties as a result of the larger number of events. The high frequency of smaller 

events makes the task of deciding whether we are actually predicting them almost 

impossible; the probability of being successful while making random guesses is too 

high. Obviously, the chances of just guessing the time of a "large" earthquake are 

much higher if there are more earthquakes for us to claim as successes. For example, 

consider the following hypothetical prediction scheme:

1) We state that a large earthquake is going to occur on a certain date. This 

date is the start of our alarm period.

2) If within one week of the start of our alarm an earthquake of magnitude 4 or 

above occurs, then we deem this to be a successful prediction.

If we choose the start dates at random, what are the chances of getting a "successful 

prediction"?

At this stage, let us consider the earthquakes to be distributed randomly in 

time, i.e. their inter-arrival times are represented by a Poisson distribution. W e will 

use the data for Northern California which we employ in the next section. The period 

under consideration runs from February 1994 to May 1997; a period of approximately
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166 weeks. In total, there are about 5000 events of magnitude 2.5 or greater, yet there 

are only 165 "large" events, i.e. earthquakes with magnitude 4.0 or above. This 

implies that the mean number of "large" earthquakes per week is :

X = ■ ~ 0.994 to 3 decimal places,
166

(Equation 11.2)

where the symbol ~  means “approximately equal to” . The Poisson distribution is 

given by :

where P(x) denotes the probability of x  events occurring in one week. Hence, 

assuming this distribution, the probability that simply by choosing a start date 

randomly we could get a "successful prediction" is given by:

So simply by guessing we could get 63% of our predictions to be successful! This is 

clearly not acceptable.

If we change the criteria of what constitutes a successful prediction, and insist 

that only earthquakes larger than magnitude 5 are counted, then the probability of 

guessing and obtaining a successful prediction is significantly reduced. There are 8 

events of magnitude 5.0 or greater, in our 166 week time frame. This means that the 

average number of "large" events per week is given by

P { x )  = e -1 —
x ! ’

(Equation 11.3)

P (x>  1 event per week) =  1 — P (0 )  ~  1 — e  0994
0.994'

0.630 to 3 dp

(Equation 11.4)

X — -—t ~  0.048 to 3 decimal places.
166

(Equation 11.5)
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Once again, assuming the Poisson distribution, and that we choose the start of the 

alarm randomly, we get that the probability of a successful prediction is given by the 

following
0.048°

P(x>  1 event per week) = 1 — P(0) ~ i — e  °04S—" —  ~  0.047 to 3 dp.

(Equation 11.6)

So the chances of guessing the start date, and an earthquake of magnitude 5.0 

occurring within one week of that start date is only 5%. This is a far more acceptable 

figure than the 63% obtained for magnitude 4.0 earthquakes. Hence, it was decided 

that all predictions would only involve the prediction of earthquakes of over 

magnitude 5.0.

11.6 Northern California

After the preliminary study in Alaska, the focus of our study was changed to 

Northern California. This region was chosen because of the ease with which large 

amounts of data could be obtained, and the fact that computerised seismic records are 

available for long periods. This computerisation made the processing of vast 

quantities of data much less tedious. Another factor was the quantity of earthquakes 

occurring in this region, as it appeared that the level of seismic activity was far higher 

in this region than in Alaska. We downloaded the earthquake catalogue for the years 

February 1994 to May 1997. This included all earthquakes with a magnitude of over 

2.5. As a result, almost 5000 events were considered. As before, the data was 

imported to a spreadsheet, and the inter-arrival times calculated. This data was then 

exported to our C++ program, and analysed. The graph of the correlation dimension 

against position in the data series is given below, in graph 11.1.
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As we can see from the graph above, graph 11.1, there are a number of peaks 

and troughs in the value for the correlation dimension. We identify the points where 

we have a high value for the correlation dimension, followed by a sharp drop in that 

value. W e begin, as we did in the last section by examining the graph to obtain a 

rough estimate of the position, and then finding the exact position by checking the 

actual numerical data. In all, 7 peaks/drops were identified in the graph. These are 

given below, in figure 11.4. The final, exact, positions in the data series are also 

given in the diagram.
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(Figure 11,4)

The “large” earthquakes in our time frame, i.e. earthquakes with a magnitude of 5 or 

above, were also identified, as were their positions in the data series. In total, there 

are only 8 events of magnitude 5.0 or above in our data series. These earthquakes and 

their positions in the data series are given below, in table 11.2.
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T a b le  11 .2  Large Earthquakes in Northern California January 1994 to March 1997

Position Magnitude

1073 6.8

1176 5.5

1942 5.0

2131 6.1

2682 5.3

2820 5.4

3508 5.62

3847 5.0

From figure 11.4, and the above table, we can see that the peaks we identified 

tie in very closely with the large earthquakes identified above, in table 11.2. The 

peaks/drops occur slightly before the large earthquake strikes. For example, the first 

drop we identified was at event number 1066. This was followed by a large, 

magnitude 6.8 earthquake, which occurred at position 1073 in our data series. A 

magnitude 6.1 earthquake occurred at data point 2131, and we also identified a 

peak/drop at this point. This pattern is reproduced throughout the rest of the data.

Unfortunately, we do not have a perfect record, as some of the large 

earthquakes which occur do not have a related peak/dip. Also, two of the peaks which 

we claim should be followed by a large earthquake are not. We must also count these 

wrongly identified periods as failures in any analysis of the success of our prediction 

method. Table 11.3, below, summarises these results. Note that, once again, the 

positions refer to the position in the data series.
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Table 11.3 Summary of Results

Peak Actual Earthquake Earthquake Result

Position Position Magnitude

1066 1073 6.8 Identified

— 1176 5.5 Missed

— 1942 5.0 Missed

2131 2131 6.1 Identified

2661 2682 5.3 Identified

2814 2820 5.4 Identified

3061 — — No Earthquake

3491 3508 5.62 Identified

— 3847 5.0 Missed

4060 — No Earthquake

Overall, our record does not appear to be too bad. W e made 7 claims of large 

earthquake occurrence, and in 5 of these cases our claims appear to be justified. 

These are the five "identified" results in table 11.3. We also miss 3 large events, 

where a large event occurs, and we do not have a corresponding peak. In addition, 

two of our peaks are not followed by large events. In summary, we appear to have 

"predicted" five out of the eight earthquakes, with two "false alarms".

In defence of the “missing” of two of the earthquakes, we put forward the 

following argument. From graph 11.1, we can see that the value for the correlation 

dimension drops to almost zero after the first large earthquake (data point 1073). The 

two large events which we miss, occur just after this first large earthquake, at data 

points 1176 and 1942. At this stage, the dimension has not recovered its value, and 

perhaps it is too early for it drop again. W e can see from the graph that the c r , - elation 

dimension only drops significantly when it takes a value above 0.4, and at ' a ;ime of 

the second missed event, the correlation dimension is only 0.35. Another possibility
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could be that the two events we miss are aftershocks of the very large, magnitude 6.8, 

first event.

What are the chances of achieving this sort of success rate randomly? From 

section 11,5, we showed that the probability of making a prediction of a magnitude 

5.0, or above, event occurring within one week of our alarm starting was 

approximately 5%. If we assume that each of our 7 random "predictions" are 

independent, then the probability of getting 5 "successes" out of 7 predictions is given 

by the binomial distribution.

P (5 outof 7) = 7 C5 (0 .0 5 )5 (0 .9 5 )2 =  6 x l 0 “6

(Equation 11.6)

Hence, it is fair to assume that we are not just "lucky".

11.7 Prediction

Unfortunately, the process we have used to date is more a form of post-diction 

than it is pre-diction . We have already mentioned the problem of post-diction, and 

some of the pitfalls of post-dictive claims of a possible earthquake prediction method. 

These discussions took place in chapter 5, where we discussed the VAN prediction 

method. We must rectify this problem, and convert this “backwards in time” method 

of identifying large earthquakes, to one which can look forward in time, i.e. we must 

spot the earthquakes before they happen.

This has proved to be a very difficult problem to solve. It is all very well 

picking out the peaks and sudden drops from the graph once they have happened, but 

it is altogether more tricky to see where they are going to occur beforehand. In the 

following sections, we highlight two of the techniques used.
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11.8 A First Attempt

From graph 1 L I, figure 11.4 and our previous analysis, we can see that large 

earthquakes only occur when the correlation dimension is high. It has been shown 

that D takes a high value before dropping away rapidly. The large earthquakes only 

occur when the correlation dimension takes a value above 0.4. Would it be possible 

to announce an alarm, or a time of increased probability whenever the correlation 

dimension takes a value over 0.4?

Unfortunately, this would not be practical. Analysis of the data has shown that 

the correlation dimension takes a value above 0.4 just over half of the total time. This 

would mean that the alarm time would be too high. Any evacuations or action taken 

on the basis of this prediction method would probably be more expensive than the 

results of the actual earthquake. We need to narrow the limits of the time of increased 

probability to make the method more viable.
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11.9 Prediction Method 1

The first method we applied to the data was an idea based on the appearance 

of "plateaux" in the graph of correlation dimension against position. For example, if 

we examine graph 11.1 more closely, it appears that the correlation dimension rises 

sharply, reaches a certain height, before the rate of increase drops, and the graph very 

nearly levels out. A rough schematic of the situation is given in figure 11.5, below, 

while the actual situation, with the “plateaux” marked on is given in figure 11.6. Note 

that in figure 11.5, figures (a) and (b) represent two of the situations.

The idea behind this conjecture was that in many cases the lengths of these 

relatively flat sections appeared to be very similar. On first inspection it appeared that 

the correlation dimension rose steeply, levelled out for a period of time, and then 

dropped sharply just before a large earthquake. It was hoped that by looking at the 

lengths of these flat sections we could predict when the next dip would be.

(a) (b)

(Figure 11.5)
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(Figure 11.6)
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In figure 11.6, we have marked in the seven plateaux that we have identified. 

These are denoted by the letters A - G. Note that these tie in with the earthquake 

identifications discussed in the preceding sections. Plateau F is less of a plateau than 

the others; it almost appears to be just a “spike”, but we will consider it as a very thin 

plateau for this analysis.

We define the start of the plateau to be the point where the dimension stops 

climbing rapidly. Thankfully, in all of the plateaux, the correlation dimension appears 

to rise very sharply, then drop very slightly before levelling out, or just rising. This 

allows us to calculate the exact point of the start of our plateau, by taking this 

"mini-peak" as the start of the plateau. We use the actual numerical data to calculate 

these points, after obtaining rough estimates from the graph. W e then calculate the 

width of each plateau, by defining the end of the plateau to be the point at which the 

graph drops sharply; these were obtained in the previous section.

Table 11.4, below, summarises the data obtained for this plateau analysis. 

Note that, once again, the start and finish column denotes the position in the data 

series.

Table 11.4 Start, Finish and Length of Plateaux

Plateau Start Finish Length

A 811 1069 258

B 1856 2131 275

C 2356 2661 305

D 2716 2814 98

E 2886 3061 185

F 3351 3491 140

G 3806 4060 254

As we can see, the lengths of the plateaux are fairly variable; they range from 

less than 100 data points to over 300. Perhaps by using these maximum and 

minimum values for the plateau lengths, a time of increased probability (TIP) of a
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large earthquake occurring could be declared. The TIP is started after our plateau 

length passes the minimum value obtained for a plateau length, i.e. 98 events.

It was found that the average number of events per week in this region was 

approximately 30. Thus, if we declare a time of increased probability after the 

minimum plateau length, i.e. 98 events, then we could have an alarm time of 7 weeks, 

and this would extend beyond the maximum length of plateau so far recorded. This 

method would mean that we would predict the occurrence of large earthquakes with 

the same success rate as before.

We know that earthquakes are not distributed according to the Poisson 

distribution, but by using it we can calculate an approximate probability for the 

prediction of earthquakes. Thus, the probability of getting one of the earthquakes to 

occur in our 7 week time window at random is 28%, i.e.
0.333°

P(x>  1 event in 7 week window) = 1 — P (0) ~ 1 — <?-0'333  ■—  ~ 0.283 to 3 dp.

(Equation 11.6)

Thus, the chances of getting five out of the seven events correct is given by 

P(5  outof 7) ~  7 C5 (0.283)5 (0.717)2 * 0.019 ,

(Equation 11.7)

i.e. the chances of obtaining this success by chance is less than 2%.

W e now consider predicting the next large earthquake. From figure 11.7, 

below, we show the start of the next plateau is at data point 4383.
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(Figure 11.7)
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Thus, our time of increased probability starts at 4481; 98 data points from the start of 

our plateau. The maximum length of plateau we have obtained so far was 305 data 

points, thus our plateau should end before this, i.e. we should have a large earthquake, 

of magnitude greater than 5.0, by the time we reach data point 4688. This is our 

prediction:

Somewhere between data point 4481 and 4688 a magnitude 5.0 or above earthquake 

will occur.

Based on our past record, the probability of us being correct in our prediction 

is 0.714. In this case, we are definitely projecting forward in time, and there can be no 

claims of post-diction. W e use data from the past to allow us to determine the 

parameters for our prediction, but our prediction is made entirely forward in time.

Unfortunately, no large earthquake occurred in the time period specified! In 

fact, no earthquake larger than magnitude 5.0 occurred in a much longer time window, 

and to date, no such earthquake has occurred in this region. We are now at position 

4900 in the data series, and no such earthquake has occurred, although there have 

been a number of earthquakes over magnitude 4.5.

The correlation dimension remains high, and as yet has not dropped. This is, 

however, not much use to us as it is very difficult to predict when it will drop, and this 

is what we need to identify. This does not mean that the method is a failure, it could 

just be that it needs more "training". If we had more events to establish our 

parameters, then perhaps we could improve the success rate. Unfortunately, the 

length of time needed to analyse a larger data set goes beyond that available here.
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11.9 Method 2

The second method of predicting the position of a large earthquake is based on

the value of the correlation dimension, and the “amount of drop” after each large

earthquake. As we have already pointed out, just before a large earthquake the

correlation dimension drops. If we examine graph 11.1 and figure 11.4 closely, we

can see that after each peak, the graph dips significantly, but that the amount of drop

is different in each case. Also, the distance between the peaks is different. What we

are interested in is the possibility of any relationship between the amount of drop, and

the time to "recover" the value, before dropping again.
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(Figure l l .8)

We use the numerical data to find the value for the correlation dimension, at the peak, 

just before the drop. We then use the same data to obtain the lowest value in each 

section. The difference is the amount the correlation dimension has dropped. The 

data represented by figure 11.8 is given by. in table 11.5. This shows the length of 

each drop, and the distance before the next peak.

i p  V v
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Table 11.5 Size of Drop and Distance to next peak

Section Size of Drop Distance to N

A 0.457 1065

B 0.123 530

C 0.088 153

D 0.050 248

E 0.211 429

F 0.174 575

G 0.201 7

The graph of the size of drop was plotted against the distance to the next peak, and the 

line of best fit calculated. This can be seen below, in graph 11.2.

Graph 11.2 Change in Dimension against Gap to next
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Obviously, the graph of 11.2 is not perfect, it is extremely dependent on the 

outlying point for section A. More data is essential before we can see that there is a 

straight line dependence. However, it is felt that there is enough of a trend to justify 

the tentative estimate of a line of best fit. Clearly, there will be a large uncertainty due 

to the scarceness of data points. The proposition is that using the data for the size of 

drop G, we can estimate the distance to the next peak. This is done using the line of 

best fit from graph 11.2. Using the value 0.201 for the size of the drop we can 

estimate the distance to the next peak. This resulted in us obtaining a value for the 

gap to be 540 data points. The error in this estimate can be measured from the graph. 

The error was found to be approximately 30 data points, i.e. our estimate for the 

distance to the next peak is 540 ± 30 data points. This means that we predict the next 

peak, and hence the next large earthquake, to be at position 4606 ± 30. This is very 

similar to the answer given by the last method, only with a slightly smaller range. The 

probability of success is once again 71%.

Unfortunately, as with method 1, no large earthquake occurred in this period. 

In fact, as stated before, no large earthquake has occurred up to data point 4900, 

which is quite a distance from our projected next earthquake. Once again, this does 

not mean that our method is a complete failure, but that an extended trial needs to be 

performed. As stated previously, there is not enough time to perform a large trial 

because of the time scale involved.
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11.10 Conclusions

W hat can we conclude from this chapter? The correlation dimension does 

change, in some cases quite significantly, especially just before large earthquakes. 

W e showed that the probability of this happening randomly, assuming earthquakes are 

distributed in time according to a Poisson process was negligible, and that there is 

almost certainly a link between the correlation dimension and the large earthquakes. 

Unfortunately, we have the problem of identifying when these changes are going to 

take place. It is easy to spot where these changes take place after they have happened, 

but it is not as easy to look forward in time!

One major worry is the problem of post-diction, which has been discussed a 

number of times. Are we only identifying these earthquakes after they have occurred? 

If so, the method will be no use as a predicting tool. We proposed two methods of 

altering the method to produce a forward looking prediction rule. Unfortunately, 

neither of the two methods appeared successful in this instance. It would, however, 

be nice to try an extended trial, where we wait for the results of a large number of 

events, but this could take years, and there is not enough time available. This very 

long time scale is one of the main problems in earthquake prediction work.

This work on the correlation dimension does look quite hopeful, and there 

may be some prospects for a more successful rule later on. As yet, however, a lot of 

work still needs to be done.
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Chapter 12

Summary & Conclusions

In this thesis, we have introduced the theory of earthquake production, and 

some of the measurements that can be made regarding earthquakes. For example, we 

discussed in detail the definition of the size of an earthquake, and the distinction 

between magnitude, intensity and energy released. We also discussed the Gutenberg 

Richter Law.

In chapter 3, we reviewed the history of earthquake prediction. This review 

was a light hearted look at some of the crazy ideas which have been proposed past as 

possible earthquake precursors. While the review was light hearted, it should be 

remembered that earthquake prediction is a serious business, and should not be taken 

lightly, as millions of dollars and thousands of lives are at stake. A number of more 

serious precursors were reviewed in chapter 4. Many of these precursors provided a 

great deal of excitement for scientists in the 1970’s; most of them, however, appear to 

have been nothing more than "noise", with the phenomena being unreproducable in 

other areas. W e did suggest that were still a number of active fields of research. We 

also pointed out one of the main problems of earthquake prediction, namely the 

appearance of phenomena in one instance, followed by their non-appearance the next 

time. This variability results in the failure of many prediction schemes. It is almost 

as if the Earth gives us a "taster" to get our hopes up, before dashing them.

One of the most controversial, and interesting, modern prediction methods was 

outlined in chapter 5. The VAN method, proposed by Professor Varotsos and his 

group at the University of Athens, is a marvellous example of the pitfalls surrounding 

modern earthquake predictors. The VAN controversy highlights another problem, 

that as yet, no method of testing an earthquake prediction program has been 

unanimously agreed upon. Different scientists from all over the world have debated
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the VAN method, and there has even been a number of journals which have devoted 

an entire issue to the discussion of the VAN method. There has been a lot of 

disagreement about the success, or not, of Varotsos’ method. We have tried to 

present a balanced case for the VAN method, neither totally sceptical, nor totally pro- 

VAN.

In chapter 7, we presented the idea of self organised criticality, which was first 

postulated by Bak, Tang & Weisenfeld. We performed our own experiments, 

suggested our own model, and simulated our model using a computer program. The 

results of this analysis did not auger well for the prospects of earthquake prediction. It 

was felt that, if the Earth's crust is in a state of self-organised criticality, then the small 

scale properties of the distribution of the strain will affect strongly the size of the 

earthquake. Hence, to allow us to predict the size of an earthquake we would need to 

know the strain distribution very accurately.

In chapter 8, we discussed the possibility of using a mechanical model to 

simulate the occurrence of earthquakes, and we showed that the results were similar to 

those obtained in chapter 7.

Chapter 9, on Hurst Analysis, was a bit of a digression, but nonetheless is an 

important chapter. W e showed that earthquakes were definitely not random events, 

and that their arrival times were correlated in some way. This was all due to the value 

obtained for the Hurst exponent. A value of 0.5 indicated a random series, while a 

value of over 0.5 implied the appearance of a persistent time series with long term 

correlations. We obtained values well in excess of 0.5, thus suggesting correlations 

between the earthquakes. This is an important chapter; in the past some people have 

tried to claim that large earthquakes could be thought of as random events. Chapter 9 

shatters this proposal, as we also showed for large events that the Hurst exponent was 

greater than 0.5.

We then went on to discuss some of the mathematics behind fractal 

dimensions, before utilising this information to propose our own prediction method. 

This method was based on variations in the correlation dimension. We showed that
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the correlation dimension dropped at around the time of large earthquakes. We were, 

however, concerned about the possible post-dictive nature of the method, and 

attempted to convert it to a predictive technique. Although our resulting methods 

were unsuccessful, it was felt that with further work and a much longer time scale, 

some more promising results could have been obtained.

One of the main problems with earthquake prediction is the time scale 

involved in large earthquakes. As already mentioned before, in some areas, the repeat 

time of large earthquakes can be almost 200 years. We have only been keeping 

accurate records for 100 years, at most, and in some cases a lot less than that. Thus, 

the lack of long term data is a major problem.

In conclusion, the problem of earthquake prediction while not easy has 

provided us with some hope of solution. It will not be easy, and a lot of hard work 

and further research is needed before a reasonable method can be accepted. This 

author, does not subscribe to the view that just because we haven’t solved the problem 

in a hundred years we should give up. We feel that there is always hope for a more 

predictable future!
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Appendix A - The Modified Mercalli Scale
Intensity Description
I. Not felt except by a very few under especially favourable circumstances.

II. Felt only by a few persons at rest, especially on upper floors of buildings.
Delicately suspended objects may swing.

III. Felt quite noticeably indoors, especially on upper floors of buildings, but many 
people do not recognise it as an earthquake. Standing automobiles may rock 
slightly. Vibration like passing of truck.

IV. During the day felt indoors by many, outdoors by few. At night some awakened. 
Dishes, windows, doors disturbed; walls make creaking sound. Sensation like 
heavy track striking building. Standing automobiles rocked noticeably.

V. Felt by nearly everyone, many awakened. Some dishes, windows and so on 
broken; cracked plaster in a few places; unstable objects overturned.
Disturbances of trees, poles, and other tall objects sometimes noticed. Pendulum 
clocks may stop.

VI. Felt by all, many frightened and ran outdoors. Some heavy furniture moved; a few 
instances of fallen plaster and damaged chimneys. Damage slight.

VII. Everybody runs outdoors. Damage negligible in buildings of good design and 
construction; slight to moderate in well-built ordinary structures; considerable in 
poorly built or badly designed structures; some chimneys broken. Noticed by 
persons driving cars.

VIII. Damage slight in specially designed structures; considerable in ordinary substantial 
buildings with partial collapse; great in poorly built structures. Panel walls thrown 
out of frame structures. Fall of chimneys, factory stacks, columns, monuments, 
walls. Heavy furniture overturned. Sand and mud ejected in small amounts. 
Changes in well water. Persons driving cars disturbed.

IX. Damage considerable in specially designed structures; well-designed frame 
structures thrown out of plumb; great in substantial buildings, with partial 
collapse. Building shifted off foundations. Ground cracked conspicuously. 
Underground pipes broken.

X. Some well-built wooden structures destroyed; most masonry and frame structures 
destroyed with foundations; ground badly cracked. Rails bent. Landslides 
considerable from river banks and steep slopes. Shifted sand and mud. Water 
splashed, slopped over banks.

XI. Few, if any, masonry structures remain standing. Bridges destroyed. Broad 
fissures in ground. Underground pipelines completely out of service. Earth 
slumps and land slips in soft ground. Rails bent greatly.

XII. Damage total. Waves seen on ground. Lines of sight and level distorted.
Objects thrown into the air.
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Appendix B

BASIC Programs for Chapter 7 

Cellular Automata

1. Sand Box Program to Calculate Earthquake Sizes
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REM Sand Box Program to Calculate Earthqauke Sizes
REM By Euan Fraser July 1997

REM This sets up the size of the arrays, and the arrays etc.
REM They are here so that we can change evrything by altering 
REM one number. The arrays are bigger than necessary so we can 
REM see what happens at the boundary, if required.
CLS : size = 50: howmany = 10000: RANDOMIZE TIMER 
DIM x(size + 2, size + 2): DIM magn(howmany + 1)
DIM critx(10000): DIM crity( 10000)

REM This resets all the entries in the cellular automata,
FOR i ~ 1 TO size: FOR j -  1 TO size: x(i, j) = 0: NEXT j: NEXT i

REM We initially add lots of sand randomly, to ensure that we reach
REM a statistically stationary state.
total = 4 * size * size: PRINT total
FOR 1 = 1 TO total
addx -  INT(size * RND) + 1
addy = INT(size * RND) + 1
x(addx, addy) = x(addx, addy) + 1
NEXT!

PRINT "Finished adding"
PRINT

REM We now redistribute sand from all the unstable blocks.
FOR i = 1 TO size 
FOR j = 1 TO size 
IF x(i J )  >= 4 THEN 
x(i,j) = x ( i , j ) -4  
x ( i ,j-  l) = x ( i j -  1) + I 
x(i, j + 1) = x(i, j + 1) + 1 
x(j + 1, i) = x(i + 1, j) + 1 
x(i - l , j )  = x (i-  l , j ) +  1 
END IF 
NEXT j 
NEXT i

REM This is a special routine which speeds up the redistribution of 
REM the strain by "remembering" the unstable blocks, 
checkit: 
s = 0
FOR i = 1 TO size 
FOR j = 1 TO size 
IF x(i, j) >= 4 THEN 
s = s + 1 
critx(s) = i 
crity(s) = j 
END IF 
NEXT j 
NEXT i

PRINT s

IF s > 0 THEN 
FOR i = 1 TO s
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x(critx(i), crity(i)) = x(critx(i), crity(i)) - 4 
x(critx(i) - 1, crity(i)) = x(critx(i) - 1, crily(i)) + i 
x(ciitx(i) + 1, crity(i)) = x(critx(i) + 1, crity(i)) + 1 
x(critx(i), crity(i) - 1) = x(critx(i), crity(i) - 1) + 1 
x(critx(i), crity(i) + J) = x(critx(i), crity(i) + 1) + 1 
NEXT i 
GOTO checkit 
END IF

PRINT "Finished Setup"

REM We now print out the array, just for interests sake
REM This also helped with development, when ensuring that no blocks
REM had slipped through.
FOR i = 1 TO size: FOR j = 1 TO size: PRINT x(i, j); : NEXT j: NEXT i
PRINT
PRINT

REM We now add strain one unit at a time and redistribute, again using 
REM our optimised routine. We also count the number of blocks that 
REM are involved in each earthquake, 
counter = 1

DO
addx = INT(size * RND) + 1 
addy = INT(size * RND) + 1 
x(addx, addy) = x(addx, addy) + 1

IF x(addx, addy) > -  4 THEN 
x(addx, addy) = x(addx, addy) - 4 
x(addx - 1, addy) = xfaddx - 1, addy) + 1 
x(addx + 1, addy) = x(addx + 1, addy) + 1 
x(addx - 1, addy) = x(addx - 1, addy) + 1 
x(addx + 1, addy) = x(addx + 1, addy) + 1

magn(counter) = 1

checkit2: 
s = 0
FOR i = 1 TO size 
FOR j = 1 TO size 
IF x(i, j) >= 4 THEN 
s = s + 1 
critx(s) = i 
crity(s) = j 
END IF 
NEXTj 
NEXT i

magn(counter) = magn(counter) + s

^ s > 0 THEN 
: OR i = 1 T Os
\*.critx(i), crity(i)) = x(critx(i), crity(i)) - 4 
\(critx(i) - 1, crity(i)) = x(critx(i) - 1, crity(i)) + 1 
x(critx(i) + 1, crity(i)) = x(critx(i) + 1, crity(i)) + 1 
x(critx(i), crity(i) - 1) = x(critx(i), crity(i) - 1) + 1
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x(critx(i), crity(i) + 1) = x(critx(i), crity(i) + 1) + 1 
NEXT i
GOTO checkit2 
END IF

END IF 
PRINT counter;

counter = counter -f 1
LOOP UNTIL counter > howmany

REM We now write the earthquakes to a data file for analysis 
OPEN "c:\projects\phd\writeup\cells\magnit.dat" FOR OUTPUT AS #1 
FOR i = 1 TO howmany 
IF magn(i) > 0 THEN WRITE #1, magn(i)
NEXT i
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Appendix C

BASIC Programs for Chapter 9 

Hurst Anlaysis

1. Hurst Analysis of Coin Tossing

2. Probability Pack Cutting Experiment

3. Hurst Analysis of Biased Probability Pack

188



REM Hurst Analysis of Coin Tossing by Euan M. Fraser

REM This Program calculates the Rescaled Range for 
REM a sequence of coin tossings 
REM We set up the Arrays needed to store the numbers 
CLS : DIM e( 14000): DIM X(14000): RANDOMIZE TIMER

REM We calculate the difference between the number 
REM of heads and tails for 10 tossses.
REM We repeat this 14000 times to produce our random sequence

FOR i = 1 TO 14000 
FOR j = 1 TO 10 
RANDOMIZE RND 
RANDOMIZE RND 
y -  INT(RND * 2)
IF y = 0 THEN e(i) = e(i) - 1 
IF y = 1 THEN e(i) = e(i) + 1 
NEXT j 
NEXT i

REM We start the analysis here. This allows us to vary the 
REM time lag for the same sequence

LOOPY:
PRINT "What value do you want for tau?"
INPUT tau 
newrs -  0

FOR k = 1 TO 10
sum = 0: start = INT(RND * (14000 - tau)) + 1: stp = start + tau

REM This calculates the average.

FOR i = start TO stp 
sum = sum + e(i)
NEXT i
average = sum / tau

REM This calculates the accumulated deviation form the mean 
REM as well as the sample standard deviation

oldX = 0
FOR t = stai t TO stp 
X(t) = oldX + e(t) - average 
oldX = X(t)
stdsum = stdsum + (e(t) - average) A 2 
NEXT t

REM This section finds the maximum and minimum values for 
REM X, the accumulated deviation from the mean

max = X(start)
FOR j = start TO stp - 1
IF X(j + 1) > X(j) THEN newmax = X(j + 1)
IF newmax > max THEN max = newmax 
NEXTj
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mill = X(start)
FOR j = start TO stp - 1
IF X(j + i) < X(j) THEN newmin = X(j + 1)
IF newmin < min THEN min = newmin 
NEXT j

REM This calculates the range, standard deviation and finally, 
REM the rescaled range.

range — max - min
stdev -  ((1 / tau) * stdsum) A (.5)
RS = range /  stdev 
newrs = newrs + RS

NEXT k

REM This section prints out the results obtained,
REM before asking if you’d like to start again.
PRINT "Average R/S= ", newrs / 10 
PRINT "Tau/2= ", tau / 2

PRINT "log R/S = ", LOG(newrs / 10)
PRINT "log tau/2= ", LOG(tau / 2)

PRINT "Do you want to go again?"
INPUT X$
IF X$ = "y" THEN GOTO LOOPY
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REM Probability Pack Card Cutting Experiment by Euan M. Fraser

REM This program performs Hurst Analysis on the Probability Pack,
REM based on the experiment by Hurst.

REM We set up the arrays required, and the random number generator 
CLS : RANDOMIZE TIMER: DIM card(52): DIM y(14000): DIM X( 14000)

REM This is the Probability Pack we will use.
REM It has 13 1 ’s, 8 3’s, 4 5 ’s and I 7 
REM It also has the same distribution of -1, -3, -5, -7 
card(l) = -1: card(2) = 1: card(3) = -3: card(4) = -1: card(5) = 1 
card(6) = 3: card(7) = 3: card(8) = -3: card(9) = 5: card(10) = -5 
card(l 1) = -7: card(12) = 7: card(13) = -5: card(14) = 1: card(15) = 5 
card(16) = 5: card(17) = -5: card(18) = 5: card(19) = 3: card(20) -  -3 
card(21) = -3: card(22) = 1: card(23) = -1: card(24) = 1: card(25) = 1 
card(26) = 1: card(27) = -3: card(28) = -1: card(29) = 3: card(30) = - I 
card(31) = -1: card(32) = 1: card(33) = -1: card(34) = -1: card(35) = -3 
card(36) = -1: card(37) = -3: card(38) = 3: card(39) = 3: card(40) = 1: 
card(41) = -1: card(42) = 1: card(43) = 3: card(44) = 1: card(45) = -1 
card(46) = -1: card(47) = -5: card(48) = 1: card(49) = 3: card(50) = -1 
card(51) = -3: card(52) = 1

REM This gets a series of Random numbers between 1 and 52 
REM These will be used to determine which cards are drawn.
FOR i = 1 TO 14000
RANDOMIZE RND: RANDOMIZE RND 
y(i) = INT(52 * RND) + 1 
NEXT i

REM This calculates the distribution of the cards cut,
FOR i = I TO 14000 
IF card(y(i)) = -1 THEN negl = negl + 1 
IF card(y(i)) = 1 THEN posl = posl + 1 
IF card(y(i)) = -3 THEN neg3 = neg3 + 1 
IF card(y(i)) = 3 THEN pos3 -  pos3 + I 
IF card(y(i)) = -5 THEN neg5 ~ neg5 + 1 
IF card(y(i)) = 5 THEN pos5 = pos5 + 1 
IF card(y(i)) = -7 THEN neg7 = neg7 + I 
IF card(y(i)) -  7 THEN pos7 = pos7 + 1 
NEXT i
PRINT neg7, neg5, neg3, negl, posl, pos3, pos5, pos7 

REM This is the start of the Hurst Analysis 

LOOPY:
REM Here we ask for the time lag required 
PRINT "What value do you want for tau?"
INPUT tau

REM This calculates the average value for our sequence, 
sum = 0
FOR i = 1 TO tau 
sum = sum + card(y(i))
NEXT i
average — sum / tau

REM This calculates the accumulated deviation from the mean 
REM and the standard deviation.
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oldX = 0: stdsum = 0
FOR t = 1 TO tau
X(t) = oldX + card(y(t)) - average
oldX = X(t)
stdsum = stdsum + (card(y(t)) - average) A 2 
NEXT t

REM This section finds the max and min for this deviation 
max = X (l)
FOR j = 1 TO tau - 1
IF X(j + 1) > X(j) THEN newmax = X(j + 1)
IF newmax > max THEN max = newmax 
NEXT j

min = X (l)
FOR j = 1 TO tau - 1
IF X(j + 1) < X(j) THEN newmin = X(j + 1)
IF newmin < min THEN min = newmin 
NEXT j

REM This calculates the range and the rescaled range
range = max - min
stdev = (1 / tau * stdsum) A (.5)
RS = range / stdev

REM This prints the results obtained
PRINT "Range= ", range
PRINT " Standard deviation^ ", stdev
PRINT "R/S=:",RS
PRINT "Tau/2= ", tau / 2

PRINT "log R/S = ", LOG(RS)
PRINT "log tau/2= ", LOG(tau / 2)

PRINT "Do you want to go again?"
INPUT X$
IF X$ = "y" THEN GOTO LOOPY
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REM Hurst Analysis of Biased Probability Pack by Euan M. Fraser

REM This is a program which calculates the rescaled range for a 
REM sequence of biased hands

REM We set up the required arrays etc.
REM e denotes the values for each draw
REM X denotes the values for the accumulated deviation from the mean 
REM i.e. the "hurst statistic"
CLS : RANDOMIZE TIMER: DIM card(52): DIM e(15000): DIM X(15000) 

REM This is our Probability Pack
card(l) = -1: card(2) = I: card(3) = -3: card(4) = -I: card(5) -  1 
card(6) = 3: card(7) = 3: card(8) = -3: card(9) = 5: card(10) = -5 
card(11) = -7: card(I2) = 7: card(13) -  -5: cat*d(14) = 1: card(15) = 5 
card(I6) = 5: card(17) = -5: card(18) = 5: card(19) = 3: card(20) = -3 
card(21) = -3: card(22) = I :  card(23) -  -1: card(24) = 1: card(25) = 1
card(26) = 1: card(27) = -3: card(28) = -1: card(29) = 3: card(30) = -1
card(31) = -1: card(32) = 1: card(33) = -1: card(34) = -1: card(35) = -3
card(36) = -1: card(37) = ~3: card(38) = 3: card(39) = 3: card(40) = 1
card(41) = -1: card(42) -  1: card(43) = 3: card(44) = 1: card(45) = -1 
card(46) = -1: card(47) = -5: card(48) = 1: card(49) = 3 card(50) = -1 
card(51) = -3: card(52) = 1

REM Need to "deal" 2 hands, h l=  handl and h2=hand2, rd is the random numbers 
DIM h i (26): DIM h2(26): DIM rd(52)

REM This sets all the values to zero 
FOR i = 1 TO 52: rd(i) = 0: NEXT i

REM This chooses 52 different random numbers between 1 and 52
FOR i = 1 TO 52
check:
rd = INT(52 * RND) + 1
FOR j -  1 TO 52
IF rd = rd(j) THEN GOTO check
NEXT j
rd(i) = rd
NEXT i

REM This Deals the two hands, alternate cards going to different hands 
FOR i = 1 TO 52 STEP 2: h l((i + 1) / 2) = card(rd(i)): NEXT i 
FOR i = 2 TO 52 STEP 2: h2(i / 2) = card(rd(i)): NEXT i

REM Need a sort routine, to sort the hands into order to 
REM help to remove highest and lowest members 
FORj = 1 TO 25 
n = j  
DO
IF hl(n) < h l(n  + 1) THEN 
SWAP hl(n), h l(n  + 1)
IF n > I THEN n = n - I 
END IF
LOOP UNTIL hi .0 >= h 1 (n + 1)
NEXT j

FO Rj = I TO V. 
n -  j 
DO
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IF h2(n) < h2(n + 1) THEN 
SWAP h2(n), h2(n + I)
IF n > 1 THEN n = n - 1 
END IF
LOOP UNTIL h2(n) >= h2(n + 1)
NEXTj

FOR i = 1 TO 26: PRINT h l ( i ) ; : NEXT i 
FOR i = 1 TO 26: PRINT h2(i); : NEXT i

counter = 1 
FOR k = 1 TO 500
REM first thing we do is get the sign of the value of card drawn
REM cut the pack and choose a card
y = INT(52 * RND) + 1
REM Note the value on the card chosen
value = card(y)
sign -  SGN(value)

IF sign > 0 THEN GOSUB positive 
IF sign < 0 THEN GOSUB negative

REM FOR i = 1 TO 26: PRINT hl(i); : NEXT i 
REM FOR i = 1 TO 26: PRINT h2(i); : NEXT i

REM Need to include the jokers now
REM WE will just stick them in as h 1 (0) and h2(0)

DO
RANDOMIZE RND: RANDOMIZE RND
randy = INT(RND * 27)
e(counter) = h i (randy)
counter = counter + I
LOOP UNTIL (randy = 0)
REM PRINT "Cut a tc o u n te r ;
NEXT k

REM This is the start of the Hurst Analysis 
Loopy:
REM We ask for the required time lag
PRINT "What Value do you want for tau?": INPUT tau

totalrs = 0 
FOR n = 1 TO 25
start = INT(RND * (14000 - tau)) + 1: stp = start + tau

REM This calculates the average 
sum = 0
FOR i = start TO stp 
sum = sum + e(i)
NEXT i
average -  sum / tau

REM This calculates the accumulated deviation from the mean 
REM and the standard deviation 
X(0) = 0: stdsum = 0 
FOR i = start TO stp
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X(i) = X(i - 1) + e(i) - average 
stdsum = stdsum + (e(i) - average) A 2 
NEXT i

REM This finds the max and min values for this deviation 
max -  X(start)
FOR j -  start TO stp - 1
IF X(j + I) > X(j) THEN newmax = X(j + I)
IF newmax > max THEN max = newmax 
NEXT j

min = X(start)
FO Rj = start TO stp - 1
IF X(j + 1) < X(j) THEN newmin = X(j + I)
IF newmin < min THEN min = newmin 
NEXTj

range = max - min
stdev = ((1 / tau) * stdsum) A (.5)
RS = range / stdev 
halftau = tau /  2 
totalrs = totalrs + RS

NEXT n

PRINT "Tau/2-", halftau
PRINT "Average RS= ", totalrs / 25
PRINT "Ln (halftau)-', LOG(halftau)
PRINT "Ln (RS)=", LOG(totalrs / 25)

PRINT "Do you want to go again?" 
INPUT c$
IF c$ = "y" THEN GOTO Loopy

END

positive:
numb = ABS(value)
FOR i = 1 TO numb 
temp = hl(i) 
h i (i) = h2(27 - i) 
h2(27 - i) = temp 
NEXT i 
RETURN

negative:
numb = ABS (value)
FOR i = 1 TO numb 
temp = h i (27 - i) 
h 1(27 - i) -  h2(i) 
h2(i) = temp 
NEXT i 
RETURN

195



Appendix D

C++ Program for Chapter 11 

A New Prediction Method

Correlation Dimension Calculation Programme
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#include<iostream.h>
#include<math.h>
#include<stdio.h>

I I M is the number of datapoints we use (181 is the maximum)
// high is how far we go in each correlation integral calculation 
// howmany is the number of times we read in new data and do a calculation 
const M= 181: const high=4000;

// These are the 3 classes we use, we had to do this because 
// we had problems incorporating more data points 
class XDATA 
{
public:
unsigned short int x;
};

class ZDATA 
{
public:
unsigned short int z;
};

class CORDATA 
{
public: 
float cor;
};

main()
{
//jum p is the number of data points we read in at each cycle
unsigned short int i,j,1-0,temp,r,cont-0,jump=l;
float factor,q=2,power;
unsigned short int tempstore, offset-0;
unsigned short int begin,max=M;
unsigned long int howmany;

// Print the factor we use in the correlation integral 
factor=pow(181*180,-l);cout«  "Factor is " «  factor «  "\n";

// We set up the large arrays required for each of the calculations 
XDATA * xdata= new XDATA[M];XDATA *pxdata;
ZDATA * zdata= new ZDATA[M*M];ZDATA *pzdata;
CORDATA * cordata = new CORDATA[high];CORDATA *pcordata;

// Open the file with data on the hard disk i.e. data.m 
FILE ^stream;
stream=fopen("data.m", "r+");

// Read the first lot of data , first (181-jump) points
// This means that when we read in the next "jump" amount
// of points that we now use the first 181 points in our data set
// We want to find out where along the data we want to start calculating
co u t«  "Where do you want to start the data from?" «  endl;
cou t«  "Remember that we will take the NEXT 181 points from the one specified"
cou t«  endl;
cin »  begin;
co u t«  endl;
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cou t«  "How many values do you wish to calculate?"; 
cm »  howmany; 
cou t«  endl;
cou t«  "\nNow reading in the appropriate data\n";

for (j=l; j<begin; j++)
{
fscanf(stream, "%d", &tempstore);
}
for (i=0; i<M; i++)
{
fscanf(stream, "%d", &tempstore); 
pxdata= new XDATA; 
pxdata->x=tempstore; 
xdata[i]=*pxdata; 
delete pxdata;
}

// Read new points in to replace the first jump amount of points 
newdata:
for G-0; j<jump; j++)
{
fscanf(stream, "%d", &tempstore); 
pxdata-new XDATA; 
pxdata->x-tempstore; 
xdata[offset]-*pxdata; 
delete pxdata;
c o u t «  xdata[offset].x «  " "; 
if (offset<(M-l)) 
offset++; 
else
offset=0;
}
// Calculate the time difference data from the original data 
for (i=0; i<—M -1; i++)

{
for (j=0;j<=M -l; j++)
{
pzdata= new ZDATA; 
pzdata->z=abs(xdata[i].X“Xdata[j].x); 
zdata[l]=:|:pzdata; 
delete pzdata;
1++;
}

}

// Sort the Data into numerical order
// This speeds up the calculation in the long term
for (i=0;i<M; i++)
{

j=0;
do
{

if (zdata[j+i:!:M].z>zdata|j+ l+i^Mj.z)
{

temp=zdata[j+1 +i*M] .z; 
zdatafj+1 +i*M]. z^zdatajj+i^M] .z; 
zdatalj+i^M] .z=temp; 
if(j>D
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M H ;
else
j=0;

}
else
j++;

} while (j<M-l);
}
cou t«  "Finished sorting";
11 Calculate the correlation integral using the correct formula 
// This is based on the Grassberger/Procaccia Algorithm 
unsigned int counter,p; 
float add;

for ( l - l ; rchigh; r++)
{

add=0;
for (i=0; i<M; i++)

(
P-0;
if (r<=zdata[M-l+i*M],z)

{
do

{

P=P+l;
} while (r>zdata[p+i*M].z);

countei-p-1;
}

else
countei-M -1;

if (counter>0) 
add=add+counter;

}

pcordata= new CORDATA; 
pcordata->coi-factor*add; 
cordata[r]=*pcordata; 
delete pcordata;

}

// This section writes the data to an output file
// This was used to ensure that we actually have a stright line when
// we plotted the data of log correaltion integral vs log r
// We don’t use it here because we haddifficuty having more than one stream
// open at the one time
FILE *stream2;
stream2=fopen("getdata.m", "w+"); 
fprintf(stream2, "function x=getdata\n\n");

for (r=l; rchigh; r++)
{
fprintf(stream2,"x(%d)- %f;\n", r , loglO(cordata[r].cor));
}
fclose(stream2);

cou t«  "Finished Calculating and Outputting Data ";
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// Least square regression calculation 
int start=50,stop=3000;
float sumx2=0)sumx=0,sumxy=01sumy=0,sumy2=0,sxx=0)sxy=0,error=0,syy=0; 
float gradient[100];

for(r-start;r<=sLop; r++)
{
sumx2=sumx2+pow(log(r),2);
sumx-sumx+log(r);
sumxy=sumxy+log(r) * log(cord ata[r]. cor); 
sumy=sumy+log(cordata[r] .cor); 
sumy2=:sumy2+pow(log(cordata[r].cor),2);
}

sxx=sumx2-pow(sumx,2)/(stop-start);
sxy=sumxy-sumx*sumy/(stop-start);
syy=sumy2-pow(sumy,2)/(stop-start);
error=<sxx*syy-pow(sxys2))/((stop-start-2)*pow(sxx,2));
gradient[cont]=sxy/sxx;
co u t« jump*(cont+l)+M+begin «  " " «  "Gradient is " «  gradient[cont] «  endl; 

cont-H-;
if (cont<howmany) 
goto newdata; 
fclose(stream);

// We open a new file and put gradient data in it
// The first file is for use in MATLAB, and we need to multiply by jump 
11 then add M to get the actual position in the data set.
FILE * stream3;
stream3=fopen("grad.m", "a+");
// fprintf(stream3, "function X-grad\n\n"); 
for (i=0; i<howmany; i++)
fprintf(stream3, "X(%d)= %f;\n", i+l+begin/5, gradientfi]); 
fclose(stream3);

// This file is for use in EXCEL, and gives the actual position in the Dataset 
FILE *stream4;
stream4=fopen("grad2.m","  a+"); 
for (i=0; i<howmany; i++)
fprintf(stream4, "%d %En", jump*(i+l)+M+begin, gradient[i]); 
fclose(stream4);
}
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Appendix E

Scaling Regions from Chapter 11 

A New Prediction Method

Scaling Region Diagrams From MATLAB
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Appendix F

Earthquake Catalogue Used in Hurst Analysis
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catalog = NCSN
start time = 1967/01/01,00:00:00 
end time = 1997/05/01,15:45:14 
minimum magnitude = 5.0 
maximum magnitude = 10 
evem_type = E

Date Time Lat Lon Depth Mag Magt Nsl Gap Clo RMS SRC Event ID

1969/10/02 04:56:45.37 38,4882-122.6770 0.03 5,60 ML 47 105 51 0.38 NCSN
1969/10/02 06:19:56.12 38.4540-122.7653 2.70 5.70 ML 57 138 580.27NCSN
1972/02/24 15:56:51.05 36.5947-121.1965 ...41 5.10 ML 7 125 5 0.15 NCSN
1974/11/28 23:01:24.56 36.9203-121.4657 6.06 5.05 MLm 51 61 4 0.14 NCSN
1975/06/07 08:46:23.55 40.5453-124.2710 23.07 5.30 ML 14 173 5 0.07 NCSN
1975/08/01 20:20:05.19 39,4515-121.5377 2.87 5.70 ML 4 158 120.00NCSN
1975/08/02 20:22:16.87 39.4638-121.4737 0.60 5.10 ML 7 111 2 0.24 NCSN
1975/08/02 20:58:56.27 39.4512-121.4728 0.54 5.20 ML 7 93 10.18 NCSN
1975/11/16 17:29:39.43 40.6305-125.3728 3.66 5.00 ML 13321 950.13 NCSN
1976/11/26 11:19:32.41 41.0300-124.9208 39,08 6.30 ML 13 317 71 0.08 NCSN
1978/10/04 16:42:47.93 37.5350-118.6982 22,88 5.40 coda 37 171 58 0.20 NCSN
1978/10/04 17:39:02.41 37.5447-118.6657 25.19 5.10 ML 170 89 560.32NCSN
1979/02/03 09:58:17.12 40.8667-124.3130 23.14 5.20 ML 15 233 19 0.08 NCSN 
1979/02/22 15:57:28.63 39,9883-120.1222 S.22 5.30 ML 47 75 20 0.22 NCSN
1979/03/15 23:07:58.07 34.3293 -116.4367 1.88 5.20 coda 27 43 7 0.11 NCSN
1979/04/07 06:18:48.28 41.3293-125.5500 4.95 5.40 coda 10 332 1340.10 NCSN 
1979/08/06 17:05:22.91 37.1035-121.5118 8.89 5.60 MLm 80 97 6 0.07 NCSN
1979/10/07 20:54:40.71 38.2550-119.3303 5.00 5.00 ML 12 137 53 0.19 NCSN
1980/01/24 19:00:08.72 37.8300-121.7715 14.49 5.43 MLm 72 132 30.I2NCSN 
1980/01/24 19:01:01.55 37.8118-121.7757 7.03 5.10 ML 10 149 2 0.22 NCSN
1980/01/27 02:33:35.31 37.7488-121.7037 14.70 5.08 MLm 75 103 8 0.11 NCSN 
1980/03/03 14:17:04.05 40.4228-125.1103 12.15 5.10 ML 32 283 660.15NCSN
1980/05/25 16:33:43.93 37.5893 -118.8458 10.16 6.10 ML 12 163 2 0,27 NCSN
1980/05/25 16:49:27.11 37.6747-118.9152 8.86 6.00 ML 5 141 60.04NCSN
1980/05/25 19:44:49.45 37.4788-118.8332 20.60 6.10 ML 7 299 120.13 NCSN
1980/05/25 20:35:48.03 37.625S-118,8407 8.15 5.70 ML 6 175 2 0,09 NCSN
1980/05/25 20:59:22.38 37.6070-118.8245 17.15 5.00 ML 4 143 2 0.00 NCSN
1980/05/26 12:24:24,84 37.5582-118.8765 7.86 5.10 ML 12 196 7 0.11 NCSN
1980/05/26 18-57:55.49 37.5150-118.8805 4.72 5.70 ML 15 215 100.13 NCSN
1980/05/27 14:50:56.73 37.4927-118.8132 16.06 6.20 ML 20 188 6 0.17 NCSN
I9S0/06/29 07:46:13.27 38.0133-118.6620 9.32 5.00 ML 20 78 11 0.14 NCSN
1980/08/0116:38:55.92 37.5643 -118.8742 6.21 5.40 ML 14 178 5 0.11 NCSN
1980/09/07 01:30:42.02 38.0708-118.5765 10.44 5.10 ML 8 97 17 0.08 NCSN
1980/09/07 04:36:37.48 38.0647-118.5905 10.95 5.50 ML 7 96 16 0.07 NCSN
1980/09/07 06:48:09.91 38.0642-i 18.5955 10.42 5.30 ML 12 110 16 0.06 NCSN
1980/11/08 10:27:30.10 41.1488-124.7535 2.24 6.90 coda 134 227 65 0.33 NCSN
1980/11/28 18:21:12.99 39.2598-120,4563 3.60 5.10 ML 132 82 38 0.29 NCSN
1980/12/24 13:29:31.64 41.2948-124.7577 3.51 5.00 ML 13 316 690.16 NCSN 
1980/12/28 22:58:08.77 38.1633-118.3662 6.88 5.00 ML 12 135 160.11 NCSN 
1981/09/30 11:53:26.18 37.5852-118,8665 5.65 5.94 MLm 14 109 4 0.10NCSN 
1982/02/06 12:02:00.87 41.0907-125.1617 0.84 5.19 MLm 56 295 91 0.20 NCSN 
1982/04/15 21:52:08.10 38.0898-118.5397 26.21 5.05 MLm 55 75 51 0.28 NCSN 
1982/06/15 23:49:21.31 33.5472-116.6753 11.61 5.10coda 42 43 80.18NCSN 
1982/09/24 07:40:24.04 37.8548-118.1512 12.74 5.43 MLm 28 104 17 0.12 NCSN 
1982/10/15 10:58:42.66 32.9867-125.6410 5.00 5.00 coda 395 277 5050.40NCSN 
1982/10/25 22:26:03.62 36.3198-120.5093 12.14 5.36 MLm 66 87 120.14 NCSN 
1983/01/07 01:38:10.32 37.6380-118.8988 9.75 5.32 MLm 7 140 18 0.05 NCSN 
1983/01/07 03:24:18.9S 37.6295-118.9350 5.82 5.37 MLm II 109 3 0,07 NCSN 
1983/05/02 23:42:38.14 36.2267 -120.3175 9.84 6,48 MLm 36 212 30.07 NCSN 
1983/05/29 06:55:28,39 40.4470-126.0770 5.17 5.47 MLm 21 299 147 0.18 NCSN
1983/07/03 18:40:07.62 37.5598-118.8445 11.52 5.26 MLm 20 112 4 0.08 NCSN
1983/07/22 02:39:53.97 36.2358-120.4117 7.98 5.20 Mamp 44 47 60.12NCSN 
1983/07/25 22:31:39.48 36.2245 -120.4015 8.63 5.00 coda 43 41 6 0.09 NCSN
1983/08/24 13:36:29.49 40.3818-124.9120 16.77 5.58 MLm 42 257 50 0.19 NCSN
1983/08/29 10:10:30.94 35.8383 -121.3393 5.89 5.35 MLm 50 181 90.07 NCSN
1983/09/09 09:16:13,51 36.2195-120.2790 7.01 5,40coda 41125 7 0.05 NCSN 
1983/12/20 10:41:00.81 40.4765-125.9312 22.40 5.66 MLm 93 288 141 0,30 NCSN 
1984/02/16 11:14:57.59 39.9735-117.8168 4.49 5,05 MLm 9 192 72 0.27 NCSN
1984/04/24 21:15:18.75 37.3097-121.6767 8.61 6.04 MLm 97 26 6 0.06 NCSN
1984/09/10 03:14:01.95 40.6693-127.7088 4.50 6.62 MLm 98 297 2850.44NCSN
1984/11/23 18:08:25.33 37.4590-11S.6057 11.46 5.75 MLm 29 66 13 0.10 NCSN
1984/11/23 19:12:34.77 37.4372-118.6070 12.13 5,51 MLm 44 77 3 0.06 NCSN
1984/11/26 16:21:40.85 37.4487 -118.6475 8.94 5.27 MLm 33 124 10 0.05 NCSN
1985/03/25 16:05:12.78 37.4545-118.6118 7.62 5.06 MLm 43 55 3 0.06 NCSN
1985/08/04 12:01:55.88 36.1442-120.1548 16.01 5.52 MLm 41 163 100.09 NCSN 
1986/01/26 19:20:50.92 36.8032-121.2840 8.86 5.52 MLm 72 26 7 0.08 NCSN
1986/03/31 11:55:39.81 37.4790-121.6847 8.95 5,67 MLm S7 65 3 0.05 NCSN
1986/07/08 09:20:44.59 34.0010-116.6117 9.56 6.28 MLm 47 47 4 0.14 NCSN 
1986/07/13 13:47:30.12 34.0283 -119.2323 29.11 5.80 ML 103 291 68 0.49 NCSN 
1986/07/20 14:29:45.46 37.5668-118.4380 6.67 5.81 MLm 39 54 9 0.05 NCSN
1986/07/21 14:42:26.02 37.5388-118.4425 10.48 6.21 MLm 41 56 100.06 NCSN
1986/07/21 14:51:09.02 37.4928-118.4280 11.78 5.61 MLm 30 243 140,05 NCSN
1986/07/21 22:07:16.43 37.5940-118.3768 6.10 5.46 MLm 16 316 33 0.16 NCSN 
1986/07/31 07:22:39.74 37.4732-118.3653 8.10 5.68 MLm 43 83 6 0.07 NCSN
1986/08/01 14;2S: 18.16 37.5158-118.3962 9.00 5.13 MLm 27 54 8 0.08 NCSN
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1986/11/2123:33:01.40 40.3550-124.4272 17.64 5,11 MLm 5 258 150.01 NCSN
1986/11/2123:34:19.09 40.3682-124.3885 16.24 5,06 MLm 4 239 13 0.00 NCSN
1987/02/14 07:26:50.30 36.1732-120.3407 15.46 5.25 MLm 43 50 8 0.09 NCSN
1987/07/3123:56:57.79 40.4160-124.3857 17.56 5.63 MLm 9 247 8 0.09 NCSN
1987/10/01 14:42:18.30 34.0263 -118.1198 9.08 5.92 MLm 57 197 6S 0.40 NCSN 
1987/10/04 10:59:34.98 33.9120-118.1812 0.63 5.44 MLm 36 212 127 0.34 NCSN 
1987/11/24 13:16:09.54 33.7365-116.6948 4.77 5.50coda 31314 2360.37 NCSN
1988/02/20 08:39:57.24 36.7947 -121.3108 9.69 5.08 MLm 68 25 3 0.08 NCSN
1988/06/10 23:06:42.53 34.9485-118.7330 9.77 5.24 MLm 15 100 24 0.13 NCSN
1988/09/19 02:56:31.32 38.4562-118.3393 6.62 5.35 MLm 55 65 160.11 NCSN
1988/12/03 11:38:25.05 34.1042-118.1458 11.10 5.00 ML 42284 1010.24NCSN 
1988/12/16 05:53:08.11 34.1980-116.8825 5.39 5.30 ML 19 302 168 0.09 NCSN 
1989/01/19 06:53:24.90 33.7370-118.6557 1.91 5.30 ML 102279 90 0.35 NCSN 
1989/03/03 07:03:58.44 35.7442-124.5838 5.01 5.00 ML 30 332 259 0.27 NCSN 
1989/08/08 08:13:27.37 37.1445-121,9272 13.90 5.40 ML 89 51 3 0,09 NCSN
1989/10/18 00:04:15.26 37.0397-121.8773 16.79 7.00 ML 84 70 1 0.08 NCSN
1989/10/18 00:41:23.76 37.1852-122.0542 15.44 5.10 ML 52 60 40.15NCSN 
1990/01/16 20:08:20.33 40.2438-124,3840 9.18 5.40 ML 211 249 76 0.42 NCSN 
1990/02/28 23:43:44.77 34.3953-118.2350 25.32 6.20 ML 114 275 79 0.44 NCSN 
1990/04/18 13:53:51.28 36.9312-121.6585 5.81 5.40 ML 95 47 00.15 NCSN 
1990/04/18 15:46:03.43 36.9577-121.6843 6.41 5.10 ML 88 34 10.13 NCSN 
1990/10/24 06:15:17.77 38.1712-119.1997 8.22 5.80 ML 25 316 530.06NCSN 
1991/06/28 14:43:56.07 34.3575-118.1135 14,97 5.70 ML 91264 79 0.29 NCSN 
1991/07/13 02:50:14.37 42.0748-125.8328 6.23 6.60 ML 115 305 181 0.38 NCSN 
1991/08/16 22:26:11.23 41.7748-126.126Q 2.53 6.10 ML 167 299 186 0.28 NCSN 
1991/08/17 19:29:40.62 40.2872-124.2380 8.47 6.00 ML 10 185 120.09 NCSN 
1991/08/17 22:17:08.55 41.7578-126.0007 3.05 6.50 ML 101 298 1760.22NCSN 
1991/09/17 21:10:28.95 35.8187-121.3335 6.00 5.20 ML 52 174 11 0.08 NCSN 
1992/03/08 03:43:04.45 40.2582-124,2303 10.74 5.30 coda 15 191 9 0.15 NCSN
1992/04/23 04:50:23.44 33.9728-116.4555 13.73 6.20 coda 62 212 104 0.36 NCSN 
1992/04/25 18:06:05.18 40.3327-124,2295 10.21 6.50 coda 9 116 12 0,06 NCSN 
1992/04/26 07:41:39.76 40.4272-124.5965 19.42 6.30 coda 17 253 23 0.15 NCSN 
1992/04/26 11:18:25.66 40.3753-124.5853 22.63 5.90 coda 12263 240.07NCSN
1992/05/04 16:19:49.84 33.9600-116.2272 31.20 5.10coda 40 164 S30.32NCSN
1992/05/18 15:44:18.70 33.9005-116.3333 27.13 5.00 coda 67 154 85 0.37 NCSN
1992/06/28 11:57:33.72 34.2002-116.4367 12.00 7.20 coda 239 164 115 1.16 NCSN
1992/06/28 14:43:28.54 34.5447-117.4023 0.01 5.20 coda 25 287 160 0.44 NCSN 
1992/06/28 15:05:29.04 34.2033-116.S268 10.00 6.40 coda 345 297 267 1.58 NCSN 
1992/06/29 10:14:20.91 36.6620-116.1997 3.10 5.50coda 86271 151 0.23 NCSN 
1992/06/29 16:01:53.10 34.2672-116.8687 26.86 5.40 coda 45 288 109 0.29 NCSN 
1992/07/05 21:18:39.07 34.9495 -117.2265 23.70 5.30 coda 167 275 80 0.33 NCSN 
1992/07/0901:44:01.42 34.4063-117.1033 1.02 5.10coda 49 287 141 0.29 NCSN 
1992/07/11 18:14:15.85 35.2137 -118.0777 16.02 5.20 coda 19 139 220.10NCSN 
1992/07/24 18:14:44,28 34.2198-116.7790 29.37 5.00 coda 39 291 S4 0.26 NCSN 
1992/09/15 08:47:18.94 34.3993 -116.8753 17.49 5.10 coda 51 275 78 0.28 NCSN 
1992/11/27 16:01:09.40 34.7187-117.6483 24.S1 5.30 coda 96 274 980.42NCSN 
1992/12/04 02:09:08.30 34.7158-117.5405 33.30 5.20coda 71 276 107 0.31 NCSN 
1993/03/25 13:34:37.14 45.1700-123.4613 6.99 5.20 coda 253 324 319 0.97 NCSN 
1993/05/17 23:20:49.00 37.1680-117.7948 0.01 6.10coda 177 211 48 0.24 NCSN 
1993/05/28 04:47:39.82 35.1398-119.1003 28.65 5.00coda 23 80 190.16NCSN 
1993/09/21 03:28:55.31 42.2930-122.0687 6.20 5.50 coda 134 240 75 0.46 NCSN 
1993/09/21 05:45:35.15 42.3085-122.1090 5.49 5.70 coda 143 238 76 0.49 NCSN 
1993/12/04 22:15:19.59 42,2815-122.0153 4.32 5.20coda 5 117 8 0.02 NCSN 3 
1994/01/17 12:30:54,46 34.1903 -118.5665 15.51 6.60 coda 64196 45 0.24 NCSN
1994/01/17 23:33:29.77 34.2935-118.7227 14.00 6.00 coda 114 184 31 0,38 NCSN
1994/01/18 00:43:07.89 34.3353-11S.733S 14.71 5.20 coda 99 154 26 0.38 NCSN 
1994/01/19 21:09:27.41 34.3302-118.7318 15.91 5.40 coda 99 154 26 0.35 NCSN 
1994/01/29 11:20:35.64 34.2738-118,589S 9.58 5.10coda 63 185 360.27 NCSN 
1994/03/20 21:20:11.17 34.1998-118.5085 12.98 5.00 coda 72 162 42 0.26 NCSN 
1994/09/01 15:15:42.30 40.4368-126.889S 7.03 6.80 coda 344 2S6 217 0.50 NCSN 
1994/09/12 12:23:43.20 38.8173-119.6808 0.04 5.50 coda 344 161 87 0.52 NCSN 
1994/12/26 14:10:29.14 40.7413-124.3068 22.86 5.00coda 31 196 300.11 NCSN 
1995/02/19 04:03:11.95 40.5862-126.0793 7.83 6.10 coda 294 274 148 0.56 NCSN 
1995/08/17 22:39:58.48 35.7665 -117.6522 10.54 5.30coda 17 140 110.10NCSN 
1995/09/20 23:27:35.90 35.7478-117.6422 8,32 5.40 coda 16 141 13 0.12NCSN 
1996/03/30 15:22:23.76 37.6230-118.8600 8.45 5.62 MLm 28 76 2 0.08 NCSN 
1996/07/24 20:15:40.94 41.9358-126.3233 5.00 5,00coda 17299 I840.08NCSN 
1997/03/18 15:24:51.04 34.9800-117.0640 17.18 5,00coda 168 235 1030.52NCSN
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