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Abstract

This thesis uses combinations of Fourier, Hankel and Weber-Orr transforms to solve
boundary value problems in linear elasticity for compressible and incompressible isotropic
elastic materials occupying two different geometries. The basic equation of elasticity are
developed using the theory of successive approximations as originally described by Green

and Adkins [16].

The first problem studies the deformation of an elastic annulus formed by punching a
circular hole axially through the centre of a circular disk of uniform thickness. A rigid
shaft is passed through this hole and bonded to the annulus. Deformation is induced
by applying static and dynamic forces to the shaft. General solutions to this problem
are obtained using Weber-Orr transforms in the radial variable and Fourier transforms in
the axial variable. The exact problem is thereby reduced to a pair of integral equations
which are then solved by representing the two unknown functions using a suitable spectral
expansion. The cogfﬁcients of these expansions are obtained by solving a system of linear
equations. In fact, the solution of the static problem has been approximated by Adkins
& Gent [11]. Very good agreement is obtained with their approximate model for a thick
annulus but the agreement deteriorates as the annulus becomes thinner principally due

to the increasing presence of boundary layer effect.

The second problem investigates the deformation of a right circular column under axial
load. The plane ends of the column are covered by rigid plates that are bonded to it while
its curved surface is stress-free. Moghe and Neff’s [27] construct two mathematically
different but physically equivalent series solutions to this problem. The first solution Is
based on the roots of the Bessel function Jo(z) while the second uses the roots of the
Bessel function Ji(z). Unfortunately both “equivalent” solutions predict different shapes
for the radial displacement of the curved free surface. The discrepancy is most striking
where the curved surface joins the rigid plates. This problem is converted into a pair of
integral equations using Fourier transforms in the axial variable and Hankel transforms
in the radial variable. Qur analysis predicts a curved surface that most resembles that

derived by Moghe and Neff using the zeros of Jy(z).

vi
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Chapter 1

Introduction

1.1 Historical Background

The notion of “elasticity” was conceived in the seventeenth century by Robert Hooke
(1678) who observed that extension of an elastic strand and the force required to induce
this extension were in direct proportion provided the extension was “small”. In more
than one dimension, this empirical law generalises naturally to the idea that for small
deformations, induced stress is proportional to strain. This is commonly known as Hooke’s
Law [1]. In the early nineteenth century, the Theory of Elasticity became a separate
branch of Science when L. Navier (1821) [2] became the first scientist to investigate the
general equation of equilibrium and motion of elastic solids. The work of A. Cauchy

(1822) and S. Poisson (1829) (see [2]) followed shortly afterwards.

A body is considered to be purely elastic if it has infinite memory for a “reference shape”
in which it naturally resides in the absence of externally applied forces and to which it
will naturally return if deformed and released. On the other hand, if no such memory
exists then the body is considered to exhibit fluid properties. Of course, in practice real
materials have some measure of both properties and are said to be Viscoelastic. For purely
elastic bodies, the forces generated within the body (stress) are connected to the gradients
of the displacement of particles of the body from their natural position (strain) whereas
in fluids it is the time derivative of these gradients (rate of strain) that is important. In
a viscoelastic material both effects are present. The Theory of Elasticity describes the
connection between the stresses and strains acting in a purely elastic body and is sub-

divided into linear theory (typically “small” deformations) and non-linear theory. This



thesis will be concerned only with the linear theory of elasticity.

The theory of viscoelasticity has been investigated by many scientists, but Boltzman
(1874) is thought to be the first to formulate the three dimensional theory for an isotropic
medium while Volterra (1909) investigated anisotropic solids [3]. An introduction to the
theory of linear viscoelasticity is described by Christensen [7] and Wilhelm Flugge [8].
In recent years, there has been significant progress on stress distribution problems in
viscoelastic materials (see Lee [4] and Radok [5] and the references therein). Graffi and

Hayes [6] have investigated wave propagation in linear viscoelastic materials.

1.2 Introduction

In chapter two, the basic equations of linear elasticity are developed for compressible
and incompressible (isotropic) states using the theory of successive approximations. Full
details of this theory are described by Green and Adkins [16]. In the final section of this
chapter, equilibrium equations in cylindrical coordinates are stated and it is these that

are used in subsequent chapters.

In chapter three, Bessel functions and modified Bessel functions, finite Weber-Orr trans-
forms and their inversions are presented. The latter are generalisations of Hankel trans-
forms and rely on properties of Weber-Oxr functions. The original integral theorem for
these functions was discovered by Weber [17] and Orr [9]and [18]. Watson [19] and Titch-
marsh [20] give a proof of Weber’s integral representation. Weber-Orr transforms are
used to solve the boundary value problems arising in chapters four and five. Full details
for these transformations are found in [9]. Fourier-Bessel series (see Tolstov [10]) are

described in the final section of chapter three and used in chapters six and seven.

In chapters four and five, viscoelastic behaviour is investigated for static and dynamic
states and for incompressible and compressible problems. This work investigates small
axial deformations of an annulus of elastic material. The annulus is formed from a uniform
disk of thickness d and radius b by removing an axial cylindrical hole of radius a (a < b)
from the centre of the disk. Axial deformation is induced by the application of an axial
force to a rigid shaft that passes through this hole and is bonded to the material of the
annulus. Annuli composed of incompressible and compressible isotropic elastic materials

are considered separately. The presence of circles of “infinite” but integrable stress that
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arise where the rod first joins the annulus, suggest that the solutions for compressible
and incompressible materials may exhibit significantly different physical features in ad-
dition to the obvious mathematical differences arising from the fact that the underlying

equations for compressible and incompressible materials are fundamentally different.

Let cylindrical polar coordinates (r, §, z) be chosen so that the annulus occupies the region

Suppose that the outer boundary r = b is fixed and that, in the usual notation of ten-
sor calculus, deformation v = v'g; is induced in the annulus by applying a periodic axial
force to the rigid rod. In effect, the configuration closely resembles a shock absorber. This
research primarily explores the relationship between the geometry of the annulus and its
frequency response and it is novel in the respect that it uses Weber-Orr transforms [9]
and also develops an exact mathematical solution to the linear elastic problem in which
all natural boundary conditions are satisfied. The dynamic problem is completely new
but the static deformation problem has been discussed by Adkins & Gent [11] who obtain

the approximate relations

F

ompdH 3 [(ﬁ2 — 1)* — 45%(log f)* (1.2.1)

~ log B+ Qa?/d’ =3 5% —1
between F', the applied axial force, and H, the induced axial deformation. where x is
the usual elastic shear modulus and § = b/a ( ratio of the outer to inner radius of the
annulus). Their results are based on bending and shear stress theories which fail to
recognise that the top and bottom plane faces of the annulus are stress-free boundaries.
The parameter () appearing in (1.2.1) was introduced by Adkins & Gent to describe the
effects of bending stress on axial deformation. When § = 0, shear stress effects only
are included in formula (1.2.1). Hence this research provides an opportunity to compare
exact predictions of linear elasticity with H,,, the axial displacement predicted on the
basis of shear stress only (the case @ = 0) and Hg, the axial displacement predicted on

the basis of shear and bending stresses. Formula (1.2.1) yields the relations

_ Flogp

o _ F(log B+ a*Q/d*)
5= 2mud o '

H,
’ 2mpd

(1.2.2)




It is easily verified that @ > 0 when 8 > 1 so that Hy > H,s; that is, bending effects
increase axial displacement for a given axial force. Subsequent analysis confirms that
(1.2.1) is remarkably accurate over a large variety of annuli, being almost always within

10% of the theoretical answer and very often within 1% accuracy.

Static results are conveniently derived as limits of a slowly varying periodic axial force
of constant magnitude. In order to prevent unbridled motion at resonant frequencies,

viscous damping effects are included in this discussion. Thus, the stress tensor has form

17 = —pg? + p(o'f + ')+ a5 (0 +0°l) (1.2.3)

where 7 is shear viscosity. Unfortunately, realistic shear moduli and shear viscosities are

frequency-dependent constitutive functions and are commonly modelled by the formulae

(w) = /000 grjwir® dr , n(w) = /DOO g(r)Tdr (1.2.4)

1+ wr? 1+ w?r?’

where g(7) is a relaxation function. Treloar [12] discusses these relations in more detail.
In this particular application, frequency w of the applied forcing term enters the analysis

through two non-dimensional parameters

2&]2
¢ = % , o= p“’“ , (1.2.5)

where p is material density. Rather than explore the effects of particular functions g(7)
in formulae (1.2.4), here qualitative aspects of the axial vibration problem, particularly
with reference to free surface shape and dependence of resonant response on the geometry
of the annulus, are investigated. Frequency-dependent expressions for ¢ and ¢ in gum

rubber and polyethylene are illustrated in figures 1.1-1.4 respectively.

1.2.1 Gum Rubber

For pure gum rubber, Treloar [12] provides experimental data for wn(w) and p(w) over a
frequency range 20-200Hz at 50°C. In fact, p (= 3.5N/ m?) is effectively independent of
frequency so that the graph of ¢ is quadratic in w. Figures 1.1 and 1.2 have extrapolated

this information beyond Treloar’s frequency domain.
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0.84 Graph of § vs w. 904 Graph of o vs w.
0.6+ 1.67
1.27
0.4%
0.87
0.2 0.44
100 200 300 400 100 200 300 400
w Hz w Hz
Figure 1.1: {(w) for gum rubber. Figure 1.2: o(w) for gum rubber.

1.2.2 Polyethylene

Kolsky & Hillier [13] provide experimental data for low density polyethylene at 10°C.
Its mechanical properties are well modelled up to 20KHz by complex elastic modulus
p + iwn = k(iw)™, where k is a positive constant and n &2 0.1. Thus { = /2 = 0.16 and
this is independent of w. On the other hand, p(w) rapidly increases at low frequencies but
quickly flattens out to 5 or 6 times its low frequency value. Figures 1.3 & 1.4 illustrate
the behaviour of ¢ and ¢ for polyethythene.

f o
0 Graph of £ vs w. 1.8j§ Graph of o vs w.
0.2 151
1.2+
0‘1,_ 0.9"
0.6+
0.3+
%1% 16 20 1§ 12 16 20
w (KHz) —0.34 w KHz
Figure 1.3: {(w) for polyethylene. Figure 1.4: o(w) for polyethylene.

Despite dramatic change in x at low frequencies, both curves for o are qualitatively sim-

ilar. It can be seen that values of o over a large frequency range are dominated by w?




unless y follows a similar power law. This is unlikely for real materials. Hence {(w) is
approximately constant or is a mildly increasing function of w while o(w) is probably well

described by a quadratic function of w.

Finally, our mathematical analysis relies heavily on properties of finite Weber-Orr trans-
forms which are numerically inverted to determine solutions. This family of transforms
are uncommon, as can be seen by the fact that they are not specifically described in
Erdélyi et al [14]. The most detailed account of their properties is provided by Olesiak
[15].

The appearance of resonance for dynamic problems in chapters four and five can be briefly

evaluated by the following:

The kinetic energy (KE) of an annulus of uniform thickness d, outer radius b and con-

taining a hole of radius a is given by

KE = / pvidV
v

where dV = 2xrd(dr) and v; = &(8—r)/(8 — 1) are, respectively, volume and velocity of

an infinitesimal element of the annulus (r, r+dr). Then

o [P (B, mdite [ _ (B )M
I&E_£2ﬂrd68—_—m& pdrmm/l 7(,6-T)2d'r‘—--ﬁ(—ﬁ+—l),

where M = pr(3% — 1)d. The elastic potential energy (PE) is approximated by

PE = —ka?(2,

where k = F'/H, in which F is defined in (1.2.1), by using Lagrange formula

4oL oL
dt 8z’ Oz
where [ = K F -+ PE. Hence

&+ wie=0,




where

w? = 12p
(B 1)(B+3)[Qf +1og Bl

Values of w are given in Table (1.1) for various values of parameters § and v = d/a with

p=pu=1

Projected natural frequency fe.

™
<
Il
™
A
I
N
<
il
INT

v=1|v=2|v=3|v=4|v=5|v=6|v=T|v=8|v="9

1.5 | 2.577 | 3.250 | 3.444 | 3.521 | 3.599 | 3.615 | 3.620 | 3.622 | 3.624 | 3.625 | 3.625 | 3.625
2.0 | 0.850 { 1.334 | 1.561 | 1.673 | 1.808 | 1.837 | 1.847 | 1.852 | 1.855 | 1.856 | 1.857 | 1.858
3.0 | 0.246 | 0.449 | 0.596 | 0.696 | 0.864 | 0.911 | 0.929 | 0.938 | 0.943 | 0.946 | 0.948 | 0.949
4.0 | 0.116 | 0.222 | 0.311 | 0.381 | 0.531 | 0.585 | 0.608 | 0.620 | 0.626 | 0.630 | 0.633 | 0.635
5.0 | 0.068 | 0.132 | 0.190 | 0.239 | 0.363 | 0.417 | 0.442 | 0.456 | 0.463 | 0.468 | 0.472 | 0.474
6.0 | 0.045 | 0.088 | 0.128 | 0.164 | 0.264 | 0.314 | 0.340 | 0.355 | 0.363 | 0.36% | 0.373 | 0.375
7.0 | 0.032 | 0.063 | 0.092 } 0.119 | 0.200 | 0.246 | 0.272 | 0.287 { 0.296 | 0.302 | 0.306 | 0.309
8.0 | 0.024 | 0,047 | 0.069 | 0.090 | 0.157 | 0.198 | 0.223 | 0.238 | 0.247 | 0.253 | 0.258 | 0.261

9.0 | 0.019 | 0.037 | 0.054 | 0.071 ; 0.126 | 0.163 | 0.186 | 0.201 | 0.210 | 0.217 | 0.221 |} 0.225

10.0 { 0.015 | 0.029 | 0.044 | 0.057 | 0.104 | 0.136 | 0.158 | 0.172 | 0.182 | 0.188 | 0.193 | 0.196

Table 1.1: Table of values of frequency for selected values of v and g.




Chapter 2

Basic Equations

2.1 Introduction

Basic equations of elasticity and various aspects of notation are introduced in this chapter.
Let z; denote current coordinates at time t of a material point P which originally had

coordinates X4 at time to. Then motion in a continuum is characterised by the equation

z; = z:(Xa,t), (2.1.1)

where z;(X4a,t) are continuously differentable functions of X and § such that their Jaco-
bian is never zero. Under these circumstances, x; = z;(Xa,t) is an invertible mapping
with inverse Xa = Xa(2;,t). Consider a deformation in which points X and Xa + dXa
are deformed into z; and z; + dx; respectively. Let the distance between z; and z; + dz;

be ds and between X, and X + dXa be d5. Then

Oz; Oy
2 b=t “i T; = : : = Cl [
ds* = dz;dz 9X. 0Xs dXadXp = Cpap dXadXg , (2.1.2)
or alternatively,
0Xa 0Xa
? = (A = ———dz;dz; = B;; dx;dx; . N
dS* = dXpdXy ba: Bz, dedz; s dzide; (2.1.3)

Hence
(Cap — 6aB) dXadXp = 2L dXadXz ,
ds® — dS* = (2.1.4)
(8ij — Bij) dwidz; = 2E;ij dzida;




where Lap and Ej; are known as the Lagrangian and Eulerian finite strain tensors, re-

spectively. Suppose now that

;= OAXA + U, or equivalently X = (o — up)dra - (2.1.5)
Then
Ox; Ou; 0Xa Ouy,
— 61. —— 3 = 51 6~ . sl
ax, T ax, Bz AT G okh (2.1.6)

Then Lap and E;; become

LB

1 Jua 4 Ougp N Ou; Ou;
2 6XB 8XA aXA aJ(B ’

1 (0w | Ou;  OugOup
E” - 2(6$J‘+3$i 3232‘ 3:133)

(2.1.7)

Whenever the continuum is a rigid body, Lap = £;; = 0. When displacement u is small,
there is no distinction between Lap and E;; calculated to first order in u (the linear
theory of elasticity). General theory of elasticity is developed first and the linear theory

of elasticity is then extracted from it.

2.2 Constitutive Theory of Elasticity

General constitutive theory of an isotropic solid is now presented. Elastic displacements
are expanded in a power series in a “small” non-dimensional parameter e and constitutive
equations for linear theory of elasticity for an isotropic solid are extracted from general
constitutive theory. In this work, it is more convenient to use nominal stress tensor S,

which is related to the more familiar Cauchy-Green stress tensor o by
S=Jr"o, (2.2.8)

where J = det F and F = [2; 4] is the usual deformation gradient tensor. Suppose that
the material has specific strain energy function W, which is assumed to be a function of
deformation gradient tensor F only. Since W is invariant under all superposed rigid body
motion, then all occurrences of F in W must be replaced by C = FTF = [z;a%:B], where
C is the Cauchy-Green strain tensor. Furthermore, if the material is also isotropic then
it follows that

A ~

W =W(C) =W, I, ), (2.2.9)




where I, Iy and I3 are the invariants of C defined by

L =TrC, L=z[TtC)?-TxC", Iz =detC . (2.2.10)

L\Dir-—‘

Using an energy argument or an entropy inequality, it can be shown that Cauchy-Green

stress tensor o and nominal stress tensor S are related to energy function W through the

oW oW \ g oW | oW\ 1
(P e (W M)

In view of (2.2.9) and (2.2.10), S can be rewritten in the form

expressions

OW (8L,  OI.\ ¢
S = . 2.2.12
Z al; (ao ac:T) F (22.12)
It can be shown from definitions (2.2.10) that

oL oI, _ oI, 0, 0ls  0ls 4
%+W_21’ BC+8CT 21— 2C, BC+8CT I;C (2.2.13)

When results (2.2.13) are substituted into expression (2.2.12) for stress, the result is

oW oW LOW |
5"2[8111“[‘1 C) g7, + k€ 513]1? (2.2.14)

In particular, stress in an unstrained body (F =1, C=1) is

+2

2.2.15
on Tantan b (2.2.15)

E

(av‘v oW aW)

where the notation |z denotes evaluation of a function in an unstrained (or equilibrium)
state; that is, when

L=L=3 IL=1. (2.2.16)

In all future work, the unstrained body will be assumed to be stress-free, so that W

inherently satisfies the property

oW N zaw N oW
on " "aL, ' oL )|




In linear theory, no distinction exists between engineering stress (stress measured per
unit area of the unstrained body) and Cauchy stress (stress measured per unit area of
the deformed body). In the following analysis, reference coordinates are chosen from the

geometry of the undeformed state. The deformation gradient tensor is then expressed by
F=I+eH+---, (2.2.18)

where I is the identity and H is the first order displacement gradient tensor. The corre-

sponding expression for C, correct to first order in € is
C=I+eH+HD). (2.2.19)

Green and Adkins [16] introduced three new independent invariants Ji, J; and Js; that

are connected to [y, Iz and I3 by the relationship:

Jl = .[1—3"»—:26T1'H+O(€2) N
Jy = L—-2L+3=0("), (2.2.20)
Jg = I3—Iz+11—120(83).

In view of (2.2.20), the isotropic strain energy function W is now re-expressed in terms

of W

A

I’V(Jl,JQ,JQ,) = W(Il,.lrz, I3) y (2221)

so that X A .
ow B °1%% 23W ow

7|y 0L 0L " 0l

(2.2.22)

where |g also denotes the configuration in which J; = J; = J3 = 0. In terms of derivatives
of W with respect to Jy, Jo and Js, formulae (2.2.14) for the nominal stress tensor S

becomes

S = 2WLFT 4 2Wo[L BT — 2FT — FCT| 4 2W5[FT — L[FT + FCT + LF'], (2.2.23)

where

ow

Wk:—g‘—]’»—'E,

k=1,---,3. (2.2.24)

Stress tensor (2.2.23) is now expanded as far as first order in € in two steps:
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(i) Replace F, C and Jy in (2.2.23) by their expressions in terms of I and H and expand

as far as first order in €.

(ii) Replace the exact partial derivatives of W with suitable power series expansions in
e. In fact,
ow 0

The algebraic details are tedious and it can be shown that the final first order expansion

of the nominal stress tensor is

S = e[A(Tr H)I + p(H +HT)], (2.2.26)

where the Lamé constants A and u are defined in terms of the derivatives of W by the

relationship

oW W oW
/\ — e = e f— . L
4 (8J2 t a7 ) ’ n= iy, (2:2:27)

From (2.2.26), the nominal stress tensor can be expressed in component forms

tiy = ANHewby+ p(Hig + Hjq) (Cartesian Tensor) ,

- - . N (2.2.28)
t9 = XNH"|, g% + u(H + H|Y), (General Tensor) ,

where a subscripted comma denotes partial differentiation and | denotes covariant differ-

entiation with respect to metric g;; in these expressions.

2.2.1 Incompressible Materials

Constitutive formulae for a linearly elastic incompressible isotropic solid can be extracted
from expressions (2.2.28) by recognising that, in this event, I3 =1, so that W no longer

contains I3. Furthermore,

oW, oW
oL, oI

)

TTH -0, )\=4l

in such a way that

ANTH(H) = —p, (2.2.29)




where p is an arbitrary function of position and time — it acts like a pressure subject
to the laws of Fluid Mechanics. Hence, the first order nominal stress tensor for an

incompressible isotropic material is
S=¢[—pl+puH+HD, (2.2.30)

or in component form

19 = —pg" + p(H'Y + H[') . (2.2.31)

[t is common practice to re-express Lamé coefficients A and g in terms of more familiar

elastic moduli such as Young’s modulus F, Poisson’s ratio 19 and bulk modulus K. In fact,

L = M Young’s modulus ,
At
A
= — ; s rati 2.2.32
Vo Ot ) Poisson’s ratio , ( )
2
K = M+ FH Bulk modulus .
Furthermore,
EI/D E E
A= , = — K= ————. 2.2.33
(1+V0)(1 -—21/0) K 2(1+I/0) 3(1 '—21/0) ( )

If it is assumed that real materials deform in the direction of an applied force then f,
K and p are all positive. Hence Poisson’s ratio vy € (—1,1/2) from which it follows that

there may be a negative value for A, the first Lamé constant.

2.2.2 Equilibrium Equations

The equilibrium equations are in component form
4 pf? = pd, (2.2.34)

where p is density and f7 and @’ are components of external body force and material
acceleration and ¢V|; is the divergence of the stress tensor. Specifically

gt
ozt

tij|,; =

NN GRS AL (2.2.35)
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where Fj-k are the Christoffel Symbols of the second kind and are derived from derivatives
of metric tensor g¥. For example, in the case of cylindrical polar coordinates, non-zero

Christoffel Symbols are given by
1 2 2 1
Tl = —r, T2, =T%,=—. (2.2.36)
”

In the absence of external body forces, equilibrium equations in cylindrical polar coordi-

nates (r, 8, z) take the form

ot o ot 1T

L7 R Wl = pa,
6t12 8t22 at32 t12 N
o T e T 3T T e (2.2.37)
atIS at23 at33 t13 3
o Y e Te, T T P
14




Chapter 3

Bessel Functions

3.1 Introduction

Main properties of Bessel Functions are now recorded and are used to develop less well-
known properties of Weber-Orr functions which form the basis of the Weber-Orr transform

that is used extensively in this thesis.

3.2 Bessel Functions

Using the substitution @ = Ar, the differential equation
v du
22 e (A = = 2.1
Tdr2+Tdr+(Ar iu=0, (3.2.1)

may be simplified to canonical form

d*u du
2 . 22y,
a:dmz—i—mdm—l—(:v —v)u=0. (3.2.2)

This is called Bessel’s equation of order 1. Using a power series solution, it can be shown

that the Bessel equation has a solution J,(z) defined by expanding the infinite series

N haind (_1)kmu+2k
Jo(e) = ; SRR TR (3.2.3)

This is called the Bessel function of the first kind of order v. By symmetry, J_,(z) is
also a solution of (3.2.2) and this can be shown to be functionally independent of J,(z)

provided v is not an integer. In this case, equation (3.2.2) has general solution
w=AJ,(z) + BJ_,(z) . (3.2.4)
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However, if v = n is an integer then J_,(z) = (—=1)"Ja(2) so that J,(z) and J_,(z) are
now dependent functions. Thus, expression (3.2.4) is no longer a general solution of the
Bessel equation and it is now necessary to find another function Y;,(z) that is functionally
independent of J,(z). Resolution of this dilemma centres on properties of function ¥, (z)

defined for general v by
cosvmd,(z) — J_,(2)
sin v '

Y, (2) =

(3.2.5)

By construction, Y, (z) is a solution of Bessel equation (3.2.2) and is commonly called the
Weber-Bessel function of the second kind of order v. Self evidently, if 17 is not an integer,
then J,(z) and Y, () are independent functions. However, if L'Hépital’s rule is used to

interpret the definition of Y, (z) when » is an integer, then

Y,(2) = lim ¥i(e) = - 3{;,5”3)—(—1)“M] I (3.2.6)

dv

is a solution of Bessel’s equation that is functionally independent of J,(x). If W is the
Wronskian of J,(z) and Y,(2), then
J(z) Y.(z)

W = = J,(2)Y!(z) — Y, (z)J, () . (3.2.7)
Jul@) Y (z)

Since J,(z) and Y, (2) satisfy Bessel’s equations (3.2.2),

22 J"(z) + zJl(2) + (2% — ) (2) = 0,

(3.2.8)
2?Y"(z) + 2Y!(z) + (2 =AY, (z) = 0.

By multiplying the first of these equation by ¥,,(z) and the second by J,(z) and subtract-
ing them, it follows that

e (4 (2)YL() ~ Yola) L) = 0, (3.2.9)
with integrated form:
T(@)Yi(e) - Yu(@)Ie) = 2, (3:2.10)

in which A is a constant independent of z but potentially dependent on v. In view of the

definition of Y, (), relation (3.2.10) yields

(@) (&) = Ju(@) " () = SEBET (3.2.11)

Z
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Furthermore, the left hand side of equation (3.2.11) can be rewritten using expression

(3.2.3) for J,(z) leading to

' ' Sn — [ v)(—=1)kH 2k+21—1
Jon(@) () = J(2) T, (2) = ) Y o X0 +A:u))(1“(1)+l— ” ( ) , (3.2.12)

k=0 [=0
from which it follows (by considering { = k£ = 0) that C' = 2/m. Hence

T (@)Y !(2) = J ()Y (2) = — . (3.2.13)

mT

It is now clear that the general solution of the Bessel equation (3.2.1) is
v = AJ,(\r) + BY,(Ar) (3.2.14)

for all real values of v provided Y, (z) is suitably interpreted when v is an integer. Figure
(3.1) illustrates the general shape of Jo(z) and Yg(2) for finite z, while figure (3.2) similarly
illustrates the behaviour of Ji(z) and Yi(zx).

A A
:_anv
Ji(z) — Yi(z)
3.
—6-
Figure 3.1:  Graph of Jo(z) and Figure 3.2: Graph of Ji(z) and
Yo(z) versus . Yi(z) versus z.
3.3 Modified Bessel Functions
When z is replaced by iz, equation (3.2.2) becomes
d*u du
2 - 2 —_ . .
dm2+%da¢ (22 4+ vHu =0, (3.3.15)

which is known as the Modified Bessel equation of order v. The general solution of

(3.3.15) can be deduced from J,(z) and Y, (z) by replacing & with sz. Since the resulting
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functions have complex values, it is more convenient to introduce I,(z), which is com-

monly called the Modified Bessel function of the first kind of order v using the definition

( )u+2k
Z SR T (0 - k- 1)

I(z) = e/ ], (iz) (3.3.16)

The Modified Bessel function of the third kind (often called the Modified Hankel function)
is defined in terms of I,(z) by

nLu(@) L)
Az) = = 3.3.1
Kfa) 2 sin v (3:3.17)
The general solution of equation (3.3.15) is therefore
w= Al {z)+ BK,(z) . (3.3.18)

As with Bessel functions, this general solution is valid for all v provided K, (z) is inter-

preted (using L’Hopital’s rule) as the limit given by

Ko() = lim K, (z) = ( 21)n 8[_5;(3:)H8151(/a:) ,

v=n

(3.3.19)

when v = n, an integer. In view of the definition of Y, (z) in (3.2.5) and the connection
between I,(x) and J,(z) in (3.3.16), it follows from (3.3.17) that K, (z) can be re-expressed
in the form

K, (z) = %e"”i/z [, (iz) + §Y, (iz)] . (3.3.20)

Repetition of the Wronskian argument for I,(z) and K, (z) reveals that both functions

are independent and satisfy the relationship
1
L(2)K,(z) — I(2)K,(z) = - (3.3.21)

Figure (3.3) illustrates the general shape of Io(z) and Ko(z) for finite z while figure (3.4)

serves the same 18le for Ii(z) and Ki(z).

Finally, it is convenient to record here that J,(Ar) and Y, (Ar) satisfy the relationships

d d
&;[T”Jy(/\r)] = Ar"Jy,1(Ar), E;[T_VJ"(AT)] = —Ar ¥ Jup1(Ar)

d 124 v d - —_1 (3.3-22)
E;[T Y, (Ar)] = Ar*Y,_1(Ar), El—v:[r Y,(Ar)] = =AY, (Ar),
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)‘\
101
T
=3 3
Figure 3.3: Graph of Io(z) and Figure 3.4: Graph of I () and
Ko(z) versus z. Ki(z) versus z.
while the functions I,,(Ar) and K, (Ar) satisfy
d v v d bl 4 —_
%[r L(Ar)] = AvLa(Ar), E?T[T L) = Ar7"La(Ar),
p p (3.3.23)
c—i-;[v""ff,,(/\r)] = —Ar*K,_y(Ar) $[7‘""K,,()\r)] = —Ar K, 41 (Ar),

for all real values of v.

3.4 Orthogonality of Bessel Functions

Let ¢ and g be two different, non-zero real numbers and let u = J,(¢r) and w = J(ur).

Then u and w satisfy the Bessel equations
2 e (-1 u=0, r2w’ 4+ rw + (pir? —vHw =0. (3.4.24)

Multiplying the first equation by w, the second equation by u and subtracting yields the
identity
(6% — p?) / ruw dr = [r(u'vw — ww’)] 2 - (3.4.25)
0

Some important results in the theory of orthogonal expansions in terms of Bessel functions

are now described. Several of them are used widely in this thesis.

(a) Suppose that A = ¢ and A = p are different zeros of J,(Aa); that is, J,(€a) =
J,(na) = 0. Then the left hand side of (3.4.25) vanishes. Hence J,(¢{r) and Jo(pr)
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are orthogonal over the interval [0, «] in the sense that
/ rd, (Er)d, (ur)dr = 0.
0

(b) Suppose that A = ¢ and A = p are different zeros of J,(Aa); that is, J)(éa) =
J!(na) = 0. Then the left hand side of (3.4.25) vanishes, indicating that J,({r) and

J,(ur) are orthogonal over the interval [0, a} in the sense that

/Oa rd,(€r)J,(pr)dr =0.

This is a similar result to the previous item — the difference lies in the choice of a

set of zeros.

(c) Suppose that A = £ and A = p are different zeros of J,41(Aa); that is, J,41(€a) =
Joe1(pa) = 0. Result (3.3.22) enables J,11(Ar) to be re-expressed in the form

v

Jy+1 ()\7‘) = “)'\*7‘:

J(Ary = J (Ar), (3.4.26)

(and the left hand side of (3.4.25) vanishes) This result gives rise to yet another fam-
ily of zeros for which the members of the family J,(Ar) are all mutually orthogonal

over [0, a.
On the other hand, when A = £ = p the equation (3.4.25) can be reworked so that

pdy(Aa)Jy (pa) — M, (pa)Jy(Aa)

a ) B )
/0 rdZ(Ar)dr =a lel_r}r,i\ e (3.4.27)
L’Hopital’s rule is now used to evaluate this limit and leads to the result that
Cr ) dr = S [ v g 4.98
; rJi(Ar)dr = 5 J, (Aa)+ | 1 - IV J;(Ma)| . (3.4.28)

This integral arises in calculating coefficients of the Fourier-Bessel series.

3.5 Fourier-Bessel Series

Let f be a function defined on [0,a]. Then f is said to have a Fourier-Bessel series

representation over [0, a] if

F@) o~ fedu(Mr) (3.5.29)
k=1
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where A\ are the roots of J,(Aa) = 0 or the roots of J/(Aa) = 0. If f is a real piecewise

continuous function of bounded variation in (0, a) such that

| vswar,

it can be proved that series (3.5.29) converges to f(r) if f is continuous at r, otherwise

the series converges to

SUr) + 56, (3.5.30)

the “average value” of f(r) at point r. Coeflicients f, are determined by first multiplying
the series (3.5.29) by rJ,(A.r) and then integrating the result over [0,a]. Orthogonality

of Bessel functions eliminates all terms except one so that

/0“ rf(r)Jy(Ar)dr = [, /: rd2(Ar)dr . (3.5.31)

Evaluation of the right hand side of (3.5.31) depends on the choice of A, but follows from
equation (3.4.28)

(a) If Ay, Ag, - - - are the roots of J,(Aa) = 0 then

2

fo = W/o zf(z)J,(Anz) da . (3.5.32)

(b) If Ay, Ag, - - are the roots of J)(Aa) = 0 then

22

a? (a?A2 — v?) JE(Aua)

;= fo (@) (Mnz) da (3.5.33)

3.6 Weber-Orr Transforms

General forms of finite Weber-Orr transforms are derived from finite Hankel transforms
originally defined by Sneddon [22]. Olesiak [15] provides detailed discussion of the prop-
erties of infinite Weber-Orr transforms together with some applications in the theory of

elasticity. The general form of the finite Hankel transform of f(z) is
Ff) = /b zf(z)K(A z)dz 0<a<b. (3.6.34)
If « > 0 then (3.6.34) is of Weber-Orr type with kernel function
K\, 7) = C.,(Mr,Aa) = J,(Ar)Y,(Aa) — Y, (Ar)J,(Aa) , (3.6.35)
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in which p and v are positive integers and J, (), Y,,(x) are respectively the Bessel function
of the first and second kinds, both of order p. General properties of C),, can easily be

established from those of Bessel functions. In particular,

2
Cow(Ar, Aa) = —Cuu(Ar,Aa),  Cuu(zd,zd) =0,  Crupuu(Ar,Ar) = puw

d _
(7 Cu (A, Aa)) = —dr T g (Ar, Ad) (3.6.36)

d

z;(r“C'W(AT, Aa)) = ArtCu—nyu(Ar, Aa)

The inverse transform can be represented by the series
f(r) = fo+ > f2Cuw(dr,Aa), (3.6.37)
n=1

where A, are chosen to be the positive roots of equation C,(Ab, Aa) = 0 and coefficients
fo, fi - -+ can be evaluted by first multiplying the series (3.6.37) by 7Cy,(Aar, Ana) and
then integrating the result over [a,b]. The functions C,.(An7, Ana) can be proved to be
mutually orthogonal by a repetition of the argument that was used for J,(Ar) and Y, (Ar).
It can be shown that

foo= | e,

T2 \? J2(Ab)

= ¥ A
Jn 2 J2(%a) JZAb/ rf(r)Cu (Ar, Aa) dr

i

(3.6.38)
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Chapter 4

Response of an Incompressible
Elastic Annulus to a Periodic Axial

Driving Force

4.1 Introduction

This chapter investigates small axial deformations of an incompressible isotropic elastic
material formed into the shape of an annulus of uniform thickness d, outer radius b and
containing an axial cylindrical hole of radius a (¢ < b). A rigid shaft passes through
this hole and is bonded to the material of the annulus. Let cylindrical polar coordinates

(r,8,z) be chosen so that the annulus occupies the region

Suppose that outer boundary r = b is fixed and that, in the usual notation of tensor
calculus, displacement v = v'g; is induced in the annulus by the application of periodic

axial forces to the rigid rod. In effect, the configuration closely resembles a shock absorber.

4.2 Governing Equations

Suppose that the undeformed annulus is parameterised by coordinates #* with covari-

ant metric tensor ¢;; and base vectors g; and that the deformation is described by the
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representation

x=X+evtelw+. .., (4.2.1)
where ¢ is a “small” parameter. Constitutive theory of incompressible isotropic solids,
taking account of viscous effects, leads to the linear stress tensor

19 = —pg” + p (v +0[) + 0 (v 07T (4.2.2)

where p is an arbitrary function of position and time and the notation | denotes covariant
differentiation with respect to metric g;;. Details are available in Green and Adkins [16]
whose notation has been used here. Moreover, the incompressibility condition constrains
v to satisfy divv = vi|; = 0. In the absence of external body forces, the balance of linear

momentum requires that

P =11]; . (4.2.3)

Suppose that a periodic force, modelled by F(t) = Fe'f«t, is applied to the rigid shaft and
induces time-dependent displacement v(x,t) = v(x)e*/«* and pressure p(x,t) = p(x)e*/+*.
In these circumstances, the stress tensor (4.2.2) is represented by t¥(x,t) = #¥(x)e'/t

where
(%) = —pg' + (u+ i fum) (o +v) (4:2.4)
Displacement v(x) is solenoidal and the momentum equation corresponding to (4.2.3) is
—pfr? =), . (4.2.5)
The axial nature of the proposed deformation suggests that v(x) has component form
v =u(r,z)g1 + h(r,z)gs , (4.2.6)

and on this basis, non-zero components of the stress tensor are

L O0u P U

1mno_ ou 22 _ _ P u

£ = —p2u(l+i)o-, t 2t 2u(l +if) 5,
o 5 oh (4.2.7)

a3 Nk 13 _ 431 _ oy [ O OR

P = —p 2l +id)5-, th =1 #(1+2€)<Bz+61*) :
Since the material is incompressible then w(r, z) and h(r, z) satisfy
. Ou u Oh
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When constitutive relations (4.2.7) are substituted into momentum equations (4.2.5), it
is easily verified that the second of these equations is satisfied provided p = p(r,z). The

remaining equations yield

Op . v 0% 9*h 20w u
— 2 — JE— —_—— —
plu or Tl +it) (2 or? + 0z* * Oroz + r Or 27*2) ’
(4.2.9)

Op ) 9?h  0*h 0% 10u  10h
—pF2 — 1 i
pluh Oz +ul+ i) (2622 + or? + Ordz + r 0z + T 87") )

4.3 Boundary Conditions

Equations (4.2.9) must be supplemented by suitable boundary conditions which ensure

that
(a) boundaries z = 0 and z = d are stress free;

(b) the outer boundary of the annulus is held fixed;

(¢) every point on the inner boundary of the annulus is similarly displaced by an amount

Heilot+4) where H and ¢ are constants to be determined;

(d) the shear stress over the outer and inner cylindrical surfaces of the body both

integrate to the applied driving force Fe'f«t.

These conditions are now treated in sequence. On z = d, the unit outward normal is g3
and the related stress vector is t = n;tig; = t¥g; = t3g; +1%°gs. Since z = d is required
to be stress-free, then t3* = ¢33 = 0 on » = d. A similar argument yields the same result
for z = 0. In view of expressions (4.2.7), horizontal boundaries z = 0 and z = d are

stress-free provided that

oh ou Bh _

P2l +id)g-=0, ot o=

0, onz=0,d, (4.3.10)

where factor e'f«t has been cancelled. On r = b, the outer boundary, both radial and axial
displacements are zero whereas on r = a, the inner boundary, the radial displacement
is zero but the rod itself moves in sympathy with the forcing term but with a constant

phase shift. Hence on the cylindrical boundaries

u=20 u=10
onr="b, ' onr=a, (4.3.11)
h=20 h = He'
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where factor e/«! has again been cancelled. The boundary r = a has outward unit normal
—g; and so the stress vector on the inner boundary is t = —t''g; — t'%g3. Accumulated

shear stress on cylindrical boundaries must balance the applied force and hence

d
Fellotgs = — // t1PdA ) gy = —2ru(l +i€)R / 8/1 Ou dz | eelgy
0 8& 8z

(4.3.12)
where R = a and R = b denote respectively inner and outer boundaries. In conclusion,

applied force I enters the boundary value problem subject to conditions:

d d
F=-2nu(l+ zlf)a/ -6—%(—:—Zldz , F=—-2mu(l + zﬁ)b/ fog’%") dz . (4.3.13)

0 0

4.3.1 Non-dimensional Problem

Before analysing the boundary value problem just posed, it is good mathematical prac-
tice to non-dimensionalise all preceding equations and boundary conditions. Let non-
dimensional coordinates r*, z*, non-dimensional displacements u*, h*, non-dimensional

pressure p* and non-dimensional parameters be introduced by the definitions

7‘* — r .Z* — 2 ® E l* — _l}_
- a H - d ’ U - ) t - d bl
, (4.3.14)
. P _d _fum _ pfid
P T v.o= —, € — ) o = .
Iz a Iz I

Algebraic details of this operation are suppressed but after some analysis in which the
incompressibility condition is used to further simplify the momentum equations, it can be
shown that momentum equations (4.2.9) and incompressibility condition (4.2.5) reduce

ultimately to

dp 0% 82h _
Vg +(1+ z§)5§ —v(l+ z§) = -—ou,
Bp o%h L (8%h 18k
_ Fhe 10RN 4.3.
2 sariodnrarige (5 +rar) oh, (43.15)

Oh (20 < o
gz " V\ar Tv) T

where the superscript star notation has been dropped although all quantities appearing

in (4.3.15) are non-dimensional. Similarly, boundary conditions (4.3.10), (4.3.11) and
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(4.3.13) have non-dimensional form

.. Oh du oh
——p+2(1—|—z§)a—0, '5;'{-1/5—-0, OIIZ—O,l
. F _ L Oh(1, 2)
— = 1";6 = — ____.._L___ A
u=0, h=He?, S (l—l—zf)/o 5 dz , onr=1 (4.3.16)
: ' Oh(B, %)
u=0, h=0, 27r,ud2_(1+z§)ﬁ_/o sz, onr=p[,

where 8 = b/a and H and ¢ are constants to be determined. Equations (4.3.15) and
(4.3.16) constitute the final form of the boundary value problem.

4.4 Transformed Equations
Solutions to (4.3.15) and (4.3.16) are obtained using finite Weber-Orr transforms, which
were introduced in Chapter two.

Equations (4.3.15) can be transformed naturally in two ways

o Take the Cyg transform of p and A and the C\g transform of u. In this case, unknown
functions introduced by the integration process relate to normal stress on cylindrical

surfaces §; = {(r,z) :r =1,2€[0,1]} and S; = {(r,2) : r = 0,2 € [0,1}}.

e Take the Co; transform of p and A and the Cy; transform of w. In this case, unknown
functions introduced by the integration process relate to shear stress on cylindrical

surfaces & and S,.

In this work, the second approach is preferred since some of the boundary requirements
listed in (4.3.16) already involve shear stress on S; and S2. Let finite Weber-Orr trans-
forms #(z, A), A(z,A) and p(z,\) be defined by the integrals

B
u(z,\) = /lru(r,z)Cu(}\r,)\)dr,
B
h(z,A) = /rh(r,z)Cgl(Ar,)\)dr, (4.4.17)

I
p(z,A) = /Tp(r,z)C’m(/\r,/\)dr,
1

where parameter A is chosen to be a root of Ci1(8A,A) = 0. Finally, note that u(r, z)

and A(r,z) can be recovered from their respective finite Weber-Orr transforms using the

27




formulae

u(r,z) _ . Z)\ J (/\n_,B)’LL(A:»;)) Cll()"nry )\n) ,

- (4.4.18)
AL J h(An, 2)
h(r,z) = ho(z)+ ‘Z P o) Cor(Aams An)
where A,, n = 1,2... are the positive roots of C11(A3,A) = 0 so that
9 B
ho(z) = Wfl rhir,z)dr . (4.4.19)

Now multiply the third of field equations (4.3.15) (the incompressibility condition) by r

and integrate with respect to r over [1, 3] to obtain:

- (/1 rh(r, z) dr) = T@ dr = /1 (u + 7’57—) dr = —[ru(r,z)]] =0.
(4.4.20)

Hence, it is now clear from (4.4.19) that Ay = C, an unknown constant. Of course,
functions @, k appearing in (4.4.18) are just Weber-Orr transforms of u and h respec-
tively. These are determined by first transforming the original field equations (4.3.15)
and boundary conditions (4.3.16) and then integrating the resulting system of ordinary
differential equations. The first of the field equations (4.3.15) is multiplied by rCh1(Ar, A),
the other two are multiplied by rCo;(Ar, A) and the resulting three equations are now inte-
grated with respect to r over the interval [1,8]. The technical details are straightforward
and use only the properties of the Weber-Orr functions outlined in (3.6.36) (see appendix
A for further details of the transformation). In conclusion, @(z,\), A(z,A) and p(z, A)

satisfy the ordinary differential equations

1+ T8 4 up+ (1 +is = —oi,
d’h - dp 3 _
(1 +ig) (?Jz_z = w%) -L+ %(1 +if)g(z) = —oh, (4.4.21)
dh ~
Tn +wu = 0,
in which e
9(z) = gi(2) — Jll(/\ﬂ)gﬁ(Z) :
oh(1, 2z
()= 02 g =
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These equations form a fourth order system of ordinary differential equations. The orig-
inal boundary conditions (4.3.16) on z = 0 and z = 1 are now suitably transformed to

obtain the four boundary conditions

d—a—wh = 0,
dz
onz=0,1. (4.4.23)

dh
—p+2(1+¢)— =
p+2(1+if)— = 0,
It is clear from definitions of the \’s that solution (4.4.18) for u(r, z) automatically ensures
that u(1,2) = u(8, 2) = 0 and hence unknown functions gi(z), g2(#) and values for H, ¢
and C must be chosen to satisfy the remainder of the boundary conditions (4.3.16); that

is,

r ) !
h=0, ﬂ*—ﬁ(l'i'zf)/gﬁ(t)dt onr=p,
(4.4.24)
— i = = 1.
h=He?, 27r,ud2 1+z§)[ g1(t onr =1

4.4.1 Solution Procedure

Solution procedure begins by recognising that % and h can easily be eliminated from
equations (4.4.21) so that p satisfies

dz— _ 2
a_z_z_wzp TFV( + g) ) (4.4.25)

It is a relatively straightforward matter to confirm that
3

2 z
p = Acoshwz + Bsinhwz + 71-%(1 + 1) f g(t) coshw(z — t)dt, (4.4.26)
0
where A and B are constants to be determined by boundary conditions (4.4.23). In view
of the solution for 5, it now follows from equations (4.4.21) that h satisfies the second

order ordinary differential equation

& 0 = — (Asinhwz + B coshwz) + 2 /2 (t)sinhw(z —t)dt, (4.4.27)
— — = — wz wz) + — — A.
dz? 14 2¢ T Jo g ’
where
P = 4.4.2
T (4.4.28)

As with the equation for p, it is easily verified that (4.4.27) has general solution

h = CsinhQz+ DcoshQz + g— (Asinhwz + B coshwz)
4.4.29)
37N , w . (
—}—;_;(l + 35)/0 g(t) [smh w(z—1)— a sinh (2 — t)} dt
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where C' and D are two further constants of integration. Once k is known, @ is obtained

directly from (4.4.21) and has the form

u =

L [C cosh Qz + Dsinh Qz] — v [A coshwz + Bsinhwz]
w a

0y ] (4.4.30)
_E(l + zaf)/o g(t) [cosh w(z — t) — cosh Q(z — ¢)] dt .

Let three new functions, (G1(z), Gg(z) are GG(z), be introduced by the definitions

G = [(a0d, G = [(wnd,  6@= [Tooa. @
0 0 0
These manoeuvres facilitate the solution procedure for two reasons

e They provide a natural mechanism for the introduction of the externally supplied
driving force F'. Indeed, the boundary conditions (4.4.24) are conveniently rewritten

in the form

F
27 pd?

= —(1+i)Gi(1), = —B(1+1i§)Gp(1) . (4.4.32)

2mud?

e If the shear stress is singular on r = 1 at z = 0, 1; that is g1(2) has integrable sin-
gularities at these points (as is likely to be the case), then any numerical procedure
which aims to find ¢;(z) directly is doomed to failure. On the other hand, G(z)
is a well behaved function which is zero by construction at z == 0 and is finite at

z = 1. A similar remark applies to Gg(z).

It is a straightforward matter to replace occurrences of g(t) in expressions (4.4.26), (4.4.29)

and (4.4.30) with G(t), obtaining new forms in the process
- . 20° .
7 = Acoshwz+ Bsinhwz + };—(1 +1€)G(z)
2,8 N .
+T(1 +1£) | G(t)sinhw(z —t)dt,
0

h = CsinhQz+ DcoshQz+ d (Asinhwz + B coshwz)
o

—l“'ﬂ%(l -+ Zf)w/ G(t) [coshw(z — t) — cosh Q(z — t)] dt,
0
u o= _4 [C cosh Qz + D sinh Q2] — © [Acoshwz + Bsinhwz]
w o
202

(1+ if)/ozG(t) wsinhw(z — &) — Qsinh Q(z — t)] dt .

KiNea
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Coefficients A, B, C and D are determined from boundary conditions (4.5.52). Let
parameters « and ¢ be defined by the ratios

Quw? 2Quw

TR P Ty (4.4.34)

It can be quickly established that the most general form for expressions (4.4.33) satisfying
the two boundary conditions (4.4.23) at z = 0 is:

_ (o2 D ] 21/3 '
r= "‘;(C@ coshwz + = sinhwz) - E(1 +i6)G(2)
203 Y & .
+T(l + zf)/ G(t)sinhw(z — t)dt,
0
h = C(sinhQz — @sinhwz) + D(coshQz — COShqu)
o

s . (4.4.35)
+7T—VU-(1 + zf)w/ G(t) [coshw(z — t) — cosh Q(z — t)] dt,

cosh QZ) + Q(Sinh wz — @sinh Q2)
o

@ = Ce{coshwz —

«

—Z—V-(l + 1¢) /zG(t) [wsinhw(z —t) — Qsinh Q(z — ¢)] dt .

Parameters C' and D are now determined by applying boundary conditions (4.4.23) at

z = 1. In fact, these parameters are solutions of the simultaneous equations
C(apsinhw — sinh ) 4+ D(coshw — cosh Q) =

2—V—w(l + 1€) /1 G(t)[ecoshw(l — t) — cosh (1 — t)] dt,

sinh w vip

) =

Cp(cosh Q — coshw) + D(psinh Q —

W

3
——2——!.0 1+ 14¢) / G(t)[sinhw(l —t) — sinh Q(1 — )] di

4.5 Fourier-series Representation

Derivation of final expressions for 5, h and 4 is algebraically complicated. Unlike a
conventional transform technique, expressions (4.4.33) for transformed pressure p, trans-
formed displacements @ and A are still unknown in that they contain integrals involving
the unknown function G(¢). In order to handle these integrals, (G(t) is represented by a

complex valued Fourier series in a real variable z € {0, 1]. Two options present themselves
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(a) Extend Gi(t), Gi(t) into [—1,0] as odd functions (giving two sine series). These
series converge to zero at z == 1 and so this approach is satisfactory provided that
G1(1) = Gg(1) = 0 or, alternatively, that their values are not required in subsequent
analysis. It is self evident from (4.4.24) that values for G (1) and Gg(1) will be
required and that these values are not zero. Hence it makes no sense mathematically
to represent ; and Gig by a half-range sine series and an attempt to do so is likely to
experience serious numerical difficulties arising from the non-uniform convergence

of these series in the vicinity of z =1 (i.e. the Gibb’s phenomenon).

(b) Extend Gi(t) and Gg(t) into [—1,0] as an even function (giving a cosine series). In
this case both (7 and G can be evaluated at z = 0 and 2z = 1 by direct substitution

into their Fourler series.

In view of these comments, G; and Gg are now represented by the half range cosine series

Gh(z) = ZG,(}) cos(rmwz) , Ga(z) = ZGﬁﬁ) cos(rmz) , (4.5.36)
=0 r=0
where
Gi(0)=> GW =0, Gg0)=> GP=0. (4.5.37)
=0 -=0

Occurences of G in §, @ and A are now replaced by the infinite series

J1(N)

GO = G — F(NGE) | (4.5.38
J](AIB) r ¥ f( ) r ( )

G(z) = ZG,, cos (rmz) G, = G —
r=1

where f(A) is defined to be the ratio

J1(A)
A = . 4.5.39
For future convenience, let xn, @(A), ¥(A) and ¢(A) be defined by
(02 4 20° + n’r?)
X = (02 n2r?)(Q2 + nin?)
Q(\) = 2coshwcoshf) —2 — (ap + ai) sinhwsinh ),
v (4.5.40)

P(A) = ;ﬁ;—m[aq) sinh w(cosh @ — 1) — sinh Q(coshw —1)],

d(A) = m%m[mp sinhw(cosh ) + 1) — sinh Q(coshw + 1)} .
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For reasons that will shortly become clear, all even coefficients in the Fourier series of
G1(z) and Gp(=) are identically zero except in G and G| where values are determined
to ensure that G1(0) = Gg(0) = 0. Inorder to obtain this symmetry, the following analysis

treats even and odd coeflicients separately. It can be shown that

_ 3
R(Az) = 2 “’Z(czn\»m(z) + Gano1X2n-15(2))
n=t (4.5.41)
= kG sin (kmz)
—2v “’Z (w? + k272)(Q2 + k2n2)
where R(z) and S{z) are given by
B sinh Q1 —2)  1sinhw(; — 2)
fi(z) = $() [ sinh(1/2)  a sinh(w/2) ] ’
(4.5.42)

S(x) = B\ [coshﬂ(% —z) ;l—coshw(% — z)]
cosh(§2/2) a cosh(w/2)

Similar lengthy expressions can be derived for p and @ but since this work is aimed at a

description of surface deformation induced by a periodic axial force, then an additional

complication introduced by these solutions contributes nothing to the task in hand. In

particular, they have no rdle to play in the determination of the Fourier components

of G. Once these are known, pressure and radial displacement may be calculated as

required. Hence k(A,1), the transform of surface deformation, is expressed in terms of

Fourier coefficients by the formula

B()‘a l) 271'(,0(1 i ’Lf)z G2n 1¢ )X?n—-l - G2n¢(>\n)x2n) ? (4543)

and the resulting surface deformation is calculated from (4.4.18) by
2
n1)
h(r,1) = ZA i ’\ 2 Cm(/\nr An) (4.5.44)

having recognised that ho(z) = C, a constant. It remains now to calculate Fourier
coefficients for G;(z) and Gg(z). The key to success lies in the observation that if F(z)
and S(z) are replaced by their half-range sine series in [—1, 1], the resulting series will be
the half-range sine series of 2(, z). Of course, h(A, 1) cannot be computed from this series
but the representation is exact for z € (0,1). This is the reason for separate treatment of

h(X,1). Straightforward calculus reveals that B(z) and S(z) have half-range Fourier sine
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series

o 20%(A) . sin2kmz
2cr¢>(/\ = sin ( 2A sin (2k — 1)mz o
S(z) =
) w1+ z&)z k-1
Hence A (A, z) has half-range Fourier series representation
th sin k'rrz (4.5.46)
where the coefficients Ax(A) are given by
Wxk ZG 202wk Gy, p
2w L+if) 4 AX% T k) (QF + K2) e
hi(A) = . (4.5.47)
VXLZG 2wk Gy, L odd
2w 1§ i6) £ 74T ) (2 + kPn?) '

In particular, coefficients ha—1(A) depend only on odd Fourier coefficients of G1(2), Gg(2)
whereas coefficients hox()\) depend only on even Fourier coefficients of G1(z) and Gp(z).

It follows from (4.4.18) that the full solution for A(r, z) is

hir,2) = C + Z(ZA nCot(Ar An) hk(/\n)) M Le01).  (45.49)

Choice of A,, n > 1, guarantees that u = 0 on curved surfaces r = 1,3,0 < z < 1. It

follows immediately from (4.4.18) and from properties of Weber-Orr kernels that

h(l,z) =H = ﬂz (ZF (A )) M)

n=1

0 — o o M sin kmz
h(B,2)=0 = C ﬁ; (;fz(/\n) = lhk()\n)) o

where H is an unknown complex constant to be determined. Both these equations are

(4.5.49)

regarded as identities to be satisfied for all z € (0,1). In effect, the Fourier coeflicients
of each sum are interpreted as coefficients of their half-range Fourier sine series for some

appropriate constant. Since

A ze(0,1)
2A k
R L R
- —A ze(-1,0),
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it follows instantly from (4.5.49) that

P>t = 2y,

n=1

r>oedOn) gy = 20— -y

n=1"
Equations (4.5.50) are supplemented by the pair of equations (4.4.32) which introduce
the driving force into the problem. Note that

ZGA( 1)k _CO+ZGk( 1) EG(”[ —1)’“]:—2530%_1,
k=1

k=1

(4.5.51)
with a similar expression for Gp(1). Hence equations (4.4.32) become
LI =2(1+ zg)ZG r__ 26(1 + ig)ie“’) . (4.5.52)
2mpd? =10 2 pud? k=1

k=1
As stated already, even Fourier coefficients of G1(z) and Gg(z) appear only in coefficients
hax(A) which in turn appear in a system of homogeneous linear equations. Hence this
problem has a solution in which all even Fourier coefficients of G1(2) and G(z) are zero
except possibly Gt()l) and Gg’e ), whose values are chosen to ensure that G1(0) = G(0) = 0.

Hence

Gh(z) = Ggl) + ZG&) Lcos(2k — 1)mz
k=1

Go(z) = GP + ZGgi)_l cos(2k — 1)mz .

k=1

(4.5.53)

In view of this important result, expression (4.5.44) for the surface deformation is now

modified to

(8)
h(r,1) = C+ s 1+z 5 ZZ’\ [G% 1 (_”1)G“ 1]¢(An)x%_1cm(Anr, An) - (4.5.54)

Equations (4.5.50) which determine unknown Fourier coefficients of G'1(z), Gg(z) and

values of C' and H become

© S [Gh L — F)GEL] 2(C — H
B Gyt Cram) = A

j=1n=1

ZZ e )[Ggi) l f(/\n)Gg[?_l Cor—1,2i-1(An) = ?ﬁ
—1,2i-1(An) =

)—1 mv? ]

(4.5.55)

j=1n=1
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where

w2(2k — 1)27T2($k"
Cok-12i-1(A) = d(A)x2k-1X2j-1 — PR GT S e rop (ij e

(4.5.56)

Solution of equations (4.5.55) is facilitated by solving an equivalent pair of equations

formed by the sum and difference of equations (4.5.55). The equivalent system is

2 (G — FOW)GEL, ;
ZZ( f(aw) =1 >02’“-1'2J'—1(An) = —l(B+1)C -],

(4.5.57)

g [ G~ FOR)GEL
ZZ( J f()\f)(—i-)l : )O%—l,?j—l()‘n) = gg[(ﬁﬂl)O+H].

4.,5.1 Static Problem

Solution to the static problem can be obtained from (4.5.57) as ¢ —+ 0, or equivalently,

as (0 — w. It is a matter of algebra to show that

dow 1

) = , 4.5.58
() (w? 4+ 02)? tanh(w/2) — of tanh(02/2) ( )
and, using L'Hopital’s rule, it can be established easily that
2 (coshw+1
li = —— . 4.5.59
230 $(N) w (sinhw — w> ( )
In conclusion, the static equivalent of expression (4.5.56) is
2 (coshw +1 w(2k — 1)*m%6;
12 = e | ———— 1N 2i—1 — : 4.5.6
Cor—1,2j-1 ” (sinhw —w) X2k—1X2j-1 o7 + (2% — 1?2’ ( 0)
where xj, has the simplified form
k2n?(3w? + kin?
Xk(A) = ( ) (4.5.61)

(w2 + kzﬂ.z)z

4.6 Numerical Solution

Previous analysis makes it clear that the Fourier coefficients of unknown functions G1(t)
and Gg(t) are obtained by the solution of a system of linear equations. Of course, in

practice, both G;(t) and Gp(t) are given half-range cosine series of finite length, say
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N + 1 terms, so that

Gi(t) = 1>+ZC | | cos(2k — 1)z,
(4.6.62)
Gp(t)

I

Ggﬁ) + ZG%)_I cos (2k — 1)mwz .

k=1
Bearing in mind that G{") and G are determined by conditions Gy(0) = G(0) = 0,
as described in (4.5.37), equations (4.5.57) may now be regarded as a set of 2N simul-
taneous equations relating 2N + 2 complex variables Ggl), RN Gg\),_l, G'('@) G2N e
and H. The system is completed by two further complex simultaneous equations arising

from boundary conditions (4.5.52). These equations are now solved by an SVD method

although they are well- conditioned for any sensible choice of physical parameters.

4.7 Conclusions for the Static Problem

Tables (4.1) display values of H,, (axial displacement based on shear stress only) and
H,, (axial displacement based on shear and bending stress) as a percentage of Hy, the
axial displacement predicted by the Linear Theory of Elasticity for a fixed applied load.
Results are displayed for parameter values 8§ = b/a = 1.5,2,3,4,5,6,7,8,9, v =
d/a = 0.25,0.5,0.75, 1, 2, 3,4, 5,6, 7, 89, the parameter { = ¢ = 0 since f, = 0,
and F' = 1/InB. These results range over sheet-like geometries (large # and small
v) to collar-like geometries (small § and large v). There is an impressive agreement
between the displacement predicted by the bending and shear model of Adkins & Gent
[11] (as described in the introduction) and the exact linear displacement. Clearly, for
most practical engineering applications, the methodology of Adkins & Gent embodies all
the physical characteristics of the linear solution. Indeed the error is at most 5% over a
wide range of annular geometries. The results are consistent with intuitive thinking in
the respect that collar-like geometries are largely controlled by shear stress but as the
geometry becomes more sheet-like, bending stresses soon dominate. In the most extreme
sheet-like geometry investigated, (8 > 6.0 and v = 0.25), the table suggests that shear
stress accounts for at most 1% of the action, whereas in the most collar-like geometry
investigated (8 = 1.5 and v = 4.0), shear stress accounts for around 97% of the action.

Of course, primitive shear stress theories cannot satisfy zero stress boundary conditions
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Shear & Bending Shear & Shear
Stress Displacement Bending Stress
(Gent and Adkins) Stress % Only %

Linear Flastic
Displacement

v A=15 =2 B=3|pB=15 f=2 p=3|p=15p=2p=3|F=150=2p=3

025 | 1.986 4.663 14.67 | 1.981 4.788 15.03 100 103 102 50 21 7
0.50 | 1.308 1.957 4.407 | 1.245 1.947 4.507 95 99 102 76 o1 23
0.75 | 1.180 1.470 2.540 | 1.109 1.421  2.559 94 97 101 85 68 39
1.00 | 1.129 1.301 1.896 | 1.061 1.237 1.877 94 95 99 89 T7 83
2.00 | 1.061 1.127 1286 | 1.015 1.059 1.219 96 94 95 94 89 78
3.00 | 1.040 1.081 1.169 | 1.007 1.026 1.097 97 95 94 96 92 86
4.00 | 1.030 1.060 1.121{ 1.004 1.015 1.058 97 96 04 97 94 89
5.00 | 1.024 1047 1.095 1.002 1.009 1.035 98 96 95 98 95 91
6.00 { 1.020 1.039 1.078 [ 1.002 1.007 1.024 98 97 95 08 96 93
7.00 | 1.017 1.033 1.066 | 1.001 1.005 1.018 98 o7 95 98 a7 94
8.00 | 1.015 1.029 1.067 | 1.001 1.004 1.014 99 98 96 99 a7 95
9.00 | 1.013 1.026 1.051 | 1.001 1.003 1.011 99 98 96 99 97 95

. . Shear & Bending Shear & Shear
Linear Elastic . .
Displacement Stress Displacement Bending Stress
(Gent and Adkins) Stress % Only %
v =4 B=5 [=6| =4 B=5 p=6| f=4 B=5P=6] B=4 f=5F3=6
0.25 | 29.88 4952 T73.11 | 3043 50.24 73.97 102 101 101 3 2 1

0.50 | 8.162 13.03 18.89 | 8358 1331 19.24 102 102 102 12 8 5
0.75 | 4.189 6.336 8.925 | 4.270 6471 9.108 102 102 102 24 i6 11
1.00 | 2.815 4.012 5.460 | 2.840 4.077 5.561 101 102 102 36 25 18
2.00 | 1.510 1.803 2.157 | 1.460 1.769 2.140 97 98 99 66 55 46
3.00 | 1.272 1402 1.558 ) 1.204 1.342 1.507 95 96 97 79 71 64
4.001{ 1.186 1.261 1.349 | 1.1156 1.192 1.285 94 95 95 84 79 74
5.00 | 1.143 1.194 1.252 § 1.074 1.123 1.182 94 94 94 88 84 80
6.00 | 1.116 1.155 1.197 | 1.051 1.085 1.127 94 94 94 90 87 84
7.00 | 1.098 1.130 1.163 | 1.038 1.063 1.093 94 94 94 91 88 86
8.00 | 1.085 1.112 1.139 ; 1.029 1.048 1.071 95 04 94 92 90 88
9.00 | 1.075 1.098 1.122 | 1.023 1.038 1.056 95 95 94 93 91 89

. . Shear & Bending Shear & Shear
Linear Elastic . .
Displacement Stress Displacement Bending Stress
(Gent and Adkins) Stress % Only %

v B=7 B=8 =9 =7 B=8 B=9| =7 =8 =9 =7 =8 =9
0.25 | 100.3 131.0 164.8 } 101.3 132.1 166.0 101 101 101 1 1 1
0.50 | 25.67 33.29 41.74 | 26.08 33.77 42.27 102 101 101 4 3 2
0.75 | 11.92 15.30 19.04 | 12.15 15.56 19.34 102 102 102 8 7 5

1.00 | 7.138 9.030 11.13 | 7.270 9.193 11.32 102 102 102 14 11 9
2.00 | 2,570 3.036 3.554 | 2.568 3.048 3.579 100 100 101 39 33 28
3.00 | 1.739 1944 2,172 | 1.697 1.910 2.146 98 98 99 58 51 46
4,00 | 1.450 1.565 1.692 | 1.392 1.512 1.645 96 97 7 69 64 59
5.00 | 1.317 1.390 1.471 | 1.251 1.328 1.413 95 95 96 76 72 68
6.00 | 1.244 1.295 1351 | 1.174 1.228 1.287 94 95 95 80 7 T4
7.00 | 1.198 1.237 1.279 | 1.128 1.167 1.211 94 94 95 83 81 78
8.00 ! 1.168 1.198 1.231 | 1.098 1.128 1.161 94 94 94 86 83 81
9.00 | 1.146 1.171 1197 1.077 1.101  1.127 94 94 94 87 85 84

Table 4.1: Core axial displacement as a percentage of that predicted
by the linear theory of elasticity, for applied force F' =

1/1np.
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on the flat boundaries of the annulus. In qualitative terms, there is a region close to
exterior boundaries z = 0, z = d in which the primitive shear stress solution mutates
into a solution which satisfies stress-free boundary conditions. For collar-like geometries,
this region is relatively small but becomes more significant as the geometry becomes
progressively sheet-like.

The following three subsections display accumulated shear stresses Gy(z) and Gp(z),
related shear stress gi(z) and gs(z) and finally, surface deformation h(r,1) for a selection

of v values in [0.25,9]. Each graph contains six curves, one for each of 8 = 1.5, 2, 3, 4, 59.

4.7.1 Accumulated Static Shear Stress

Behaviour of inner accumulated shear stress Gy(z) and outer accumulated shear stress

are illustrated in Figures 4.1 and 4.2 respectively.

4.7.2 Static Shear Stress

Recall that shear stress on inner and outer boundaries is just the gradient of accumu-
lated shear stress on these boundaries. Figures 4.3 and 4.4 display ¢1(z) and gp(#), shear
stresses on inner and outer boundaries respectively. Each graph corresponds to the gra-
dient of the respective accumulated shear stress G (z) and Gg(z) appearing in figures 4.1

and 4.2.

4.7.3 Static surface deformation

The approximate shape of the deformed surface is consistent with intuitive thinking
although the precise nature of its approach to outer and inner circular boundaries is
perhaps less clear. Figures 4.5 and 4.6 depict static surface deformation A(r,1) from
inner boundary r = 1 to outer boundary r = § where (3 (ratio of outer radius to inner)

takes values between 1.5 and 9.0 for each different thickness ratio v.

Tables 4.2 records the displacement h(r, 1) for selected r values in [1, 8] and various aspect
ratios v. These results indicate that surface displacement A(r, 1) is always a monotonically
decreasing function of r. Furthermore, H = h(1,1), the induced displacement of the rod,

is an increasing function of # and a decreasing function of 1. Increasing 3 or decreasing v
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Figure 4.1: Graphs of G1(z) when v = 0.25, 0.5, 1.0, 3.0, 7.0, 9.0 for a static
applied axial force. As the annulus moves from a sheet-like geometry (small v
and large ) to a collar-like geometry (large v and small 3), graphs of accumu-
lated shear stress migrate progressively from a volatile nature to approximately
straight lines. Transition between sheet-like and collar-like geometries can be
considered to occur along a line v = v(f3), defined by the criterion that accu-
mulated shear stress just becomes a monotonic function of z. In particular,
accumulated shear stress across a membrane can oppose the applied axial force
(see v = 0.25 and 8 > 5.0) over large areas of contact.

are equivalent to increasing the sheet-like characteristics of an annulus. Hence, sheet-like
annulii deform more than collar-like annulii for a given applied force. These findings are

all consistent with intuitive thinking.

4.8 Dynamic Deformation

Until now, all results are based on an applied axial force that is fixed in time. The
remainder of this chapter, however, assumes that the applied force is now oscillatory. In
principle, it is possible to produce the entire spectral response of any annulus over a range

of frequencies. However, the process is numerically very intensive and so the results are




Figure 4.2: Graphs of Gs(z) when v = 0.25, 0.5, 1.0, 3.0, 7.0, 9.0 for a static
applied axial force. Accumulated shear stress on the outer boundary is quali-
tatively similar to that on the inner boundary, except that its variability as a
function of v and 3 is noticeably less pronounced.

presented for restricted frequencies f, = 0.5, 1.0, 2.0, and 5.0, the value of parameters o
and £, which appears in (4.3.14) are taken to be the quantities d*p/p =1 and n/p =1,
and for the same range of values of parameters § and v that were used in the static

problem.

Figures 4.7—4.15 illustrate accumnulated shear stresses (f1(z) and Gg(z), shear stresses
g1(2) and gg(z) and dynamic surface deformation A(r,1) for selected frequencies f. In
fact, all graphs display the amplitude of these functions since their Fourier coefficients in

the dynamic problem are complex valued.

Comment on the graphs is divided into cases » < 1.0 and v > 3.0. As has been previously
mentioned, small values of v are representative of sheet-like annuli, whereas large values
of v are more typical of collar-like annuli. When v < 1.0, behavior of G1(z) and Gp(z)

changes dramatically around frequency f, = 1. For frequencies greater than 2.0, it
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Figure 4.3: Graphs of g;(z) when v = 0.25, 0.5, 1.0, 3.0, 7.0, 9.0 for a static
applied axial force. As the annulus moves from a sheet-like geometry (small v
and large ) to a collar-like geometry (large » and small 3), the shear stress
moves from a rapidly varying function of z to one which is largely constant
across the interior of the annulus. Boundary layer effects are particularly pro-
nounced when the geometry is collar-like. Furthermore, for sheet-like annuli,
interior shear stress changes algebraic sign and acts in a counter-intuitive way
by opposing action of the externally applied force over a significant area of the
surface of contact with the rod.

would appear that accurnulated shear stresses all increase monotonically and all enjoy
the same approximate shape irrespective of the value of 3. For frequencies less than 1.0,
accumulated shear stress is often monotonic but not exclusively so. Moreover, there are
stress boundary layers that are particularly pronounced when (3 is small. The influence of
boundaries is more closely illustrated in Figures (4.9) which display the structure of shear
stress across the surface of contact with the rod. In almost all circumstances, there is
clear evidence for stress boundary layers with low, almost constant, stress in the interior
of the material. This is particularly noticeable when f is large; that is, the annulus is

sheet-like.
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7.0 v=29.0

v=3.0 v =

Figure 4.4: Graphs of gg(z) when v = 0.25, 0.5, 1.0, 3.0, 7.0, 9.0 for a static
applied axial force. As expected, shear stress on the outer boundary is quali-
tatively similar to that on the inner boundary except that most of its features
are less pronounced.

The rogue curves sprinkled across some of the diagrams are thought to be due to the
presence of resonance. This view is supported by a rough calculation of the natural
frequencies of oscillation of the elastic annulus (see page 6 and 7 of the introduction). To

summarise briefly

(a) The effect of resonance manifests itself through the appearance of rogue stress dis-
tribution curves. Resonant frequency is a decreasing function of 3 and an increasing
function of v. Calculations are consistent with the crude estimate of resonant fre-

quency based on elementary mechanical arguments.

(b) Stress distribution on the oscillating rod is typically U-shaped, indicating the pres-
ence of stress boundary layers on the upper and lower boundaries of the slab. Often
the stress profile is quite flat in the central region and would appear to be almost

independent of 3, v and f, except when near resonance.
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B=15 fw=20 B=40 fu=0

r v=025l =05 v=1 r=23 v=29 T r=02{r=05| r=1 v=3 v=29
1.000 | 1.9860 | 1.3085 | 1.1292 | 1.0399 ; 1.0132 1.000 | 29.882 | 8.1620 | 2.8145 | 1.1862 | 1.0746
1.087 | 1.7729 | 1.0835 | 0.9090 | 0.8327 | 0.8004 1.100 | 29.760 | 7.9369 | 2.5314 | 0.8900 | 0.7935
1.033 | 1.7155 | 1.0367 | 0.8684 | 0.7959 [ 0.7705 1.200 | 29.284 | 7.7777 | 2.4419 | 0.8292 | 0.7385
1.067 | 1.6126 | 0.9599 | 0.8020 | 0.7353 | 0.7138 1.400 | 27.693 | 7.3288 | 2.2680 | 0.7350 | 0.6531
1.100 | 1.5031 | 0.8896 | 0.7427 | 0.6810 | 0.6616 1.600 | 25.483 | 6.7331 | 2.0744 | 0.6572 | 0.5830
1.133 | 1.3827 | 0.8212 | 0.6866 | 0.6296 | 0.6120 1.800 | 22.870 | 6.0417 | 1.8633 | 0.5890 | 0.5220
1.167 | 1.2530 | 0.7536 | 0.6325 | 0.5801 | 0.5641 2.000 | 20.020 | 5.2948 | 1.6424 | 0.5276 | 0.4676
1.200 | 1.1174 | 0.6866 | 0.5799 | 0.5321 | 0.5176 2.200 | 17.064 | 4.56249 | 1.4190 | 0.4715 | 0.4183
1.233 | 0.9794 | 0.6205 | 0.5287 | 0.4855 | 0.4724 2,400 | 14,113 | 3.7590 | 1.19938 | 0.4200 | 0.3733
1.267 | 0.8425 | 0.5557 | 0.4789 | 0.4400 | 0.4284 2.600 | 11.261 | 3.0201 | 0.9886 | 0.3721 | 0.3318
1.300 | 0.7100 | 0.4927 | 0.4303 | 0.3958 | 0.3855 2.800 | 8.5903 | 2.3282 | 0.7916 | 0.3276 | 0.2934
1.333 | 0.5850 | 0.4318 | 0.3829 | 0.3526 | 0.3438 3.000 | 6.1715 | 1.7011 | 0.6124 | 0.2861 | 0.2576
1.367 | 0.4705 | 0.3732 | 0.3366 | 0.3104 | 0.3030 3.200 | 4.0697 | 1.1547 | 0.4549 | 0.2473 | 0.2240
1.400 | 0.3687 | 0.3168 | 0.2909 | 0.2688 | 0.2629 3.400 | 2.3432 | 0.7034 | 0.3224 | 0.2105 | 0.1922
1.433 | 0.2804 | 0.2616 | 0.2449 | 0.2270 | 0.2227 3.600 | 1.0451 | 0.3604 | 0.2175 | 0.1750 | 0.1611
1.467 | 0.2015 | 0.2036 | 0.1955 | 0.1822 | 0.1809 3.800 | 0.2247 | 0.1373 | 0.1387 | 0.1380 | 0.1287
1.483 | 0.1586 | 0.169%1 | 0.1658 | 0.1555 | 0.1593 3.900 | 0.0075 | 0.0692 | 0.1035 | 0.1161 | 0.1095
1.500 | 0.000C¢ { 0.0000 | 0.0000 | 0.0000 | 0.0000 4,000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

B=6.0 fu =20 B =90 fu=0

r v=025vr=05| v=1 v=23 v=29 3 v=025]w=05] v=1 v=3 =29
1.000 | 73.110 | 18.892 | 5.4603 | 1.5576 | 1.1218 1.000 | 164.84 | 41,736 | 11.127 | 2.1715 | 1.1971
1.167 | 72.892 | 18.665 | 5.1631 | 1.2239 | 0.8026 1.267 { 164.15 | 41.430 | 10.807 | 1.8037 | 0.8391
1.333 | 71.626 | 18.312 | 5.0253 | 1.1437 | 0.7371 1.533 | 161.04 | 40.615 | 10.558 | 1.7043 § 0.7614
1.667 | 67.446 | 17.211 | 4.6910 | 1.0192 | 0.6392 2.067 | 151.09 | 38.065 | 9.8590 | 1.5400 | 0.6502
2.000 | 61.773 | 15.747 | 4.2792 | 0.9120 | 0.5624 2.600 | 137.91 | 34.724 | 8.9767 | 1.3838 | 0.5664
2.333 | 55.187 | 14.062 | 3.8193 | 0.8125 | 0.4979 3.133 | 122.85 | 30.922 | 7.9878 | 1.2284 [ 0.4975
2.667 | 48.104 | 12.258 | 3.3347 | 0.7181 | 0.4419 3.667 | 106.83 | 26.882 | 6.9459 | 1.0744 | 0.4384
3.000 | 40.840 | 10.412 | 2.8437 | 0.6282 | 0.3922 4.200 | 90.510 | 22.776 | 5.8914 | 0.9243 [ 0.3863
3.333 | 33.652 | 8.5886 | 2.3614 | 0.5433 | 0.3477 4.733 | 74.453 | 18.737 | 4.8572 | 0.7804 | 0.3396
3.667 | 26.756 | 6.8406 | 1.9005 | 0.4637 | 0.3072 5.267 | 59.112 | 14.880 | 3.8711 | 0.6449 | 0.2974
4,000 | 20.336 | 5.2148 | 1.4719 | 0.3902 | 0.2701 5,800 | 44.876 { 11.301 | 2.9567 | 0.5199 [ 0.2590
4,333 | 14.554 | 3.7481 | 1.0854 | 0.3233 | 0.2359 6.333 | 32.091 | 8.0869 | 2.1351 | 0.4073 | 0.2238
4.667 | 9.5544 | 2.4797 | 0.7497 | 0.2636 | 0.2041 6.867 | 21.063 | 5.3133 | 1.4251 | 0.3088 | 0.1915
5.000 | 5.4678 | 1.4407 | 0.4726 | 0.2112 j 0.1742 7.400 | 12.070 | 3.0496 | 0.8439 | 0.2260 | 0.1615
5.333 | 2.4130 | 0.6608 | 0.2615 | 0.1655 | 0.1454 7.933 | 5.3628 | 1.3586 | 0.4069 | 0.1598 | 0.1330
5.667 | 0.4991 | 0.1671 | 0.1218 | 0.1233 | 0.1154 8.467 | 1.1756 | 0.2985 | 0.1286 | 0.1081 | 0.1040
5.833 | 0.0021 | 0.0346 | 0.0754 | 0.0997 | 0.0977 8.733 | 0.0949 | 0.0221 | 0.0511 | 0.0836 ; 0.0870
6.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 9.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

(c) Negative internal stress; that is, stress that opposes the prevailing driving force is

Table 4.2: Tables of incompressible surface deformation for static problem

for B = 1.5,4,6 and 9 and for different values of v.

possible but does not occur often.
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4.8.1 Dynamic Accumulated Shear Stress

Figures 4.7 and 4.8 illustrate general behaviour of accumulated shear stress over the

cylindrical surface of contact for selected values of v, 8 and frequency f,.

4.8.2 Dynamic Shear Stress

Figures 4.9 and 4.10 illustrate shear stress distribution across inner and outer cylindrical

contact surfaces.

4.8.3 Dynamic surface deformation

Figures 4.11 - 4.15 illustrate the behaviour of dynamic surface deformation f(r,1) for
frequencies f, = 0.5, 1.0, 2.0 and 5.0, and for selected values of 8 and ». The graphs
divide into two cases, 8 = 1.5 and 3 > 2.0, irrepective of the value of v (non-dimensional
thickness of annulus). When 8 = 1.5, it is clear that A(r,1) decreases monotonically with

7 — thick and thin annuli seem to behave in a qualitatively similar manner.

However, when 8 > 2.0, thin and thick materials behave differently. For thin layers,
the graphs exhibit resonance effects on different occasions and demonstrate that resonant
frequency is a decreasing function of 8 when v is fixed and is an increasing function of v
when [ is fixed. This is entirely consistent with the expression for base resonant frequency

based on a crude mechanical argument given in the introduction, namely

3(8% —1)* — 46%(log B)*
8 52 —1 '

2 _ 124
fo= D@ o ees G ¢

For f, < 1.0, the figures suggest that the free surface of the annulus can be expected to

have a ”corrugated” appearance which disappears as frequency is increased beyond 2.0.
For annuli with relatively small holes, say 3 > 6.0, it would appear that at frequencies
higher than the natural frequency, the material in the vicinity of the hole responds to
the oscillatory force in a way which is dependent on radial displacement up to r = 2.5
but thereafter the remaining material seems to deform as a solid body whose surface
displacement is small and almost constant. Figures 4.12 - 4.15 show more clearly the

behaviour of A(r,1). To summarise briefly,
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(a)

For annuli of a given aspect ratio v, resonance effects become increasingly evident
as B is increased. For small 3 (collar-like annuli), surface deformation decreases
monotonically to zero as r — 3. As § is increased, surface deformation is no longer
monotonic and, in particular, maximum surface deformation may not occur at the
inner hole. For large 3 (sheet-like annuli), surface deformation has a corrugated

character.

As aspect ratio v is increased for fixed @ and frequency, surface deformation moves
from a corrugated character to a monotonic character due to the fact that resonant

frequency is an increasing function of v.

Surface deformation h(r,1) is not necessarily a monotonic function of r at all fre-
quencies. It would appear that material near the oscillating rod can undergo large
oscillations while material more distant from the rod tends to behave like a rigid

body, moving in unison with a small and effectively constant axial displacement.

Table 4.3 illustrates relative magnitude of maximum surface displacement for dynamic

and static deformations.

Dynamic deformation | Static deformation
v 8 | fu h(1,1) h(1,1)
1.00 | 4.00 | 0.5 4.5750 2.8145
0.25 | 1.50 | 1.0 1.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>