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Summary

This thesis is concerned with D-optimal designs primarly for binary response or
weighted linear regression models. Its principle aim is to prove (using geometric
and other arguments) that D-optimal designs have two support points for two
parameter models depending on one design variable for all possible design inter-
vals. We also extend established results, for Gamma, Beta and Normal density

weight functions.

The first aim of this work is to prove Ford, Torsney and Wu (1992) conjectures
for a variety of such models. We also extend these results to higher dimensions.
This is based on a parameter-dependent transformation to a weighted regression

model and results will be extended to other such models.

Chapter 1 mainly gives an introduction to the study for linear and nonlinear

Optimal designs for regression models.

Chapter 2 leads on with D-optimal designs for binary regression models which
depend on two parameters and one covariate & in a design region, say X. It
mainly deals with the following three cases: (a) X is a unbounded, (b) X is a
bounded interval and (¢) X is bounded at one end only. We first establish that
only two support points are needed and then establish their values. The above
conjecture is confirmed for most models using a transformation to weighted re-

gression design.




Chapter 3 presents Weighted Linear Regression and D-optimal Designs for the
particular case of a Three Parameter Model with two design variables under a
transformation to a weighted linear regression when the design space is rectan-
gular. We first show that we have a four-point design for many of the weight
functions considered. We also have an explicit solution for the optimal weights.

An appropriate extension of the above conjecture is confirmed.

Consideration of more realistic constraints on two design variables in Chapter 4
leads, under a transformation, to bounded design spaces in the shape of polygons.

We establish results about D-optimal designs for such spaces.

Chapter 5 widens the scope of the thesis, by considering more general mod-
els and, in particular, multiparameter binary regression models. Here again, we
establish the existence of an explicit solution for the optimal weights for the rect-

angular case of the design space and further extensions of the conjecture.

Chapter 6 extends the ideas of Chapter 2 by applying them to Contingent
Valuation Studies. We illustrate one type of Contingent Valuation (CV) study,
namely a dichotomous choice CV study with the design variable being a 'Bid’
value. Respondents are asked if they are willing to pay this value for some ser-
vice or amenity. We focus on both dichotomous choice (or single bounded) CV’s

and on double bounded CV’s (in which a second bid is offered).

Finally, Chapter 7 presents our conclusions and ideas for future work.
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Chapter 1

Introduction

The last decade has seen an increasing level of work on optimal designs, with a

particular focus on binary response models.

Throughout our research, the main focus has been on the exploration of some
current ideas in this rapidly expanding field, with the aim of understanding and

testing them in some specific contexts, and possibly extending them.

But before presenting our findings in detail, it is probably necessary to gain more
insight into the building blocks of optimum design through a simple regression

design example.

In a classical regression problem for example, the aim is to investigate the relation
between a response variable and a set of explanatory variables. For such an
investigation to be carried out, it is necessary to gather some values for the

variables by making observations.
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In some cases, it is possible for the experimenter to choose the values of the ex-
planatory variables, which means that he/she can choose the situations in which
the observations will be made. And here in lies a very significant aspect of the
experiment, since the choice of the situation will in some way determine the qual-

ity of the design.

Some basic questions then naturally arise : What is a design 7 And how do
we measure the quality of a design 7

Although we shall later on cover both linear and nonlinear models in our study of
optimum designs, we address the above questions through a simple linear model

with n explanatory variables (van Berkum, 1995).

1.1 What is a design?

We consider a linear model with n explanatory variables zi, ..., 2,. The notation

for the model is as follows

Y = Bifi(x) + Bafo(m) + .. + Bufelz) + £ = T f(z) +¢,
with

z = (21, ..., 2,)%, the vector of n explanatory variables,
z € /X, the experimental region, X CR",
fi: X = R, a continuous function from X into R (z=1,..., k),

flz) = (fla), -, ful@)”,
and

€ a stochastic variable, the error term, independent of =
Y response, Y € R,

B= (B1, .-, B)T, the vector of unknown parameters.
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Let’s assume in the above example that we are able to make N observations,
and let’s denote each observation by Y;. For our assumed N observations, we
shall therefore have a corresponding set of normally distributed random errors,
each denoted by ;. In this particular case, we consider those errors g; to be
independent and uncorrelated with zero mean and constant variance o2, that is
V(e;) =0* Vi=1,---,N.

We now move on to the description of the design itself. We denote by 1, %o, - , Z,,
the distinct m points (m < n) in the experimental region where observations will
be taken. Here, each z; = (%1, Ti, -, %)’ € X. We also define n; as the

m

number of observations made at the point 2, Zm = N.

Let £ denote the design of our experiment. Foir:élarity, we shall sometimes refer
to it as £(N) in order to express the fact that we make N observations in that

particular design. In other words, a design £(N) can be fully described by spec-

ifying the above mentioned variables. We summarize the design as follows:

Design(General) : To obtain an observation on ¥ we need to choose a value
for z in & . We want good estimation of . Suppose the experimenter is allowed
to take N independent observations on Y at vectors z;,z,, - ,Zy chosen by
her/him from the set X. The basic problem is : How many observations
should be taken at each point in X or what proportion of observations
should be taken at each point in X7 The basic idea is that we should
choose (&, 2, ,Zy) to make the variance-covariance matrix of the estimators
"as small as possible”, or alternatively to make its inverse ”as large as possible”.
Suppose that the N observations consist of n; observations taken at z;,, 1 =

1,---,m. This is an exact design which is usually represented as follows

Ly Ly Ty, (1 1)
N1 Ng Ny ) '
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Model for an observation

Let Y; denote the [** observation obtained at ;- A model is

Yu=pfilz)+ -+ Befe(z;) +ea i=1,--,mandl=1,--+ ,n;

with E[ey] =0 and V[gy] = 0® V 1,1l

Throughout the rest of the text, we shall use the following notations:

Notation for the design The N x n matrix D of values of the explanatory

variables can be given by the following :

B w 3\

Ty e Tin
ny times
Ty - Tip
7
3\
T2l v Ton
> No times
D=
T21 -v T2m
by
A
Tml - Tmn
> N, times
L Tml v Tmn

= /

Notation for the Equation of the model : The general equation for the
model under consideration can be written as :

Y=XfF+¢

Where ¥ = (Y11, -+, Yin,, o, Yo, oo+, Yoy, ) and

£ = (Ella"' yE€1nyy """ Em1, )Emnm)

The N X k matrix X with values f;(z;) is called the design matrix, and has the

following form :
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B - 3\

flz) o felz)

> 1y times

filz) o felzy)

fl(gm) st fk(&m)

> Ny, times

L fl(im) f’\‘-(gm) |

Note : In vector form, we can write the design matrix as :

/

X' =[flz) - flz) - flz,) f_@m)]T For the least squares estimator

B = (D1, Br)" we have

B=(X"X)"'XTY,
where Y is the vector of observations,
Y = (Y4, .., Yn)T .

For the variance-covariance matrix Cov(f) of the vector § we have

Cov(fB) = (XTX) 1e? .
The predicted value of the response at z is

V = Aifil@) + -+ Befu(z)
= (f(2)) B,

with

[@) = (h@), -, f@),

V(¥) = o%(f(2) (X X)"'f(z),
and the standardized variance is

d(z,E(N)) =

(&2
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The matrix X7 X is very important and is called the information matrix M.

This matrix is also equal to

m

M=XTX = nif(z)(f(z)T,

=1

with

i(&v,) = (fl(&z)’fQ(zz)r ) fk(&z))T '

This last notation for M will be useful in finding optimal designs. To emphasize

the fact that the information matrix depends on the choice of the design we also

write M (&) or M(E(N)). Now we have

Cov(f) = o*M™

1.2 How do we measure the quality of a design?

In the previous section, we gave a brief definition of a design, together with
the definitions of some other fundamental concepts used in the study of optimal
design of experiments.

We now focus on the criteria that are commonly used to measure the quality of
a design. As we shall see later on, the choice of a design will always depend on
our interest. If our interest is parameter estimation for instance, we therefore
will want to choose a design that would minimize in some sense the variance-

covariance of the parameter estimator of our model.
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1.2.1 Criteria for the quality of a design

In the current statistics literature, there are many criteria used to measure the

quality of a design, among which are

e D-optimality: a design is D-optimum if it maximizes the value of
det(M(E(N))) or logdet(M(E(N))), i.e. the generalized variance of the

parameter estimates is minimized,

e c-optimality: in c-optimality the interest is in estimating the linear com-
bination of the parameters ¢’ with minimum variance. The criterion to

be minimized is therefore
Var(gTﬁ) x c'M7YE(N))e

where cis px 1 (A disadvantage of c-optimum designs is that they are often

singular.);

e (G-optimality: a G-optimum design £*(N) minimizes the maximum over
the design region X of the standardized variance i.e. £*(N) solves

minmaz iT(g,_')M “HE(N))f(z) = € X (this minimax value equals k);

e A-optimality: minimize the sum (or avarage) of the variances of the pa-

rameter estimates;

e E-optimality: minimises Ao, (M ~!), the maximum eigen-value of M~

where M = M(E(N)).

All these criteria are functions of the variance-covariance matrix of the parameter
estimates, and this justifies the central role that the information matrix plays in
the determination of the optimal design.

For the purpose of our study, we shall be using D-Optimality.
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1.2.2 Introducing D-Optimality

The study of D-optimality has been central to the work on optimum experimental
design since the begining e.g. Kiefer (1959). Fedorov(1972), Silvey(1980), and
Pazman (1986) likewise stress D-optimality. Farrell et al. (1967), give a sum-
mary of earlier work on D-optimality. This includes that of Kiefer and Wolfowitz
(1961) and Kiefer (1961) which likewise concentrate on results for regression mod-

els, including extentions to Dy-optimality. [See Atkinson and Donev (1992)].

The D-criterion is known as the criterion based on the generalized variance of @ ,
that is the determinant of the information matrix.

More precisely, D-optimality will consist in determining the design that maxi-
mizes the determinant, |M(E(N))|, of the information matrix.

In fact, there is a relation between this determinant and a confidence region for
the vector of unknown parameters. Assuming that € is normal, the confidence

region for f is defined by

(E_é)TXTX(_/B__ _IB_) <k SzFa;k,N—k )

where Fy. ny—p is the critical value of the F distribution with & and (N — k)
degrees of freedom and where

= (Y ~ XPT(Y - XP)

is an unbiased estimator for 0. This confidence region is an ellipsoid. The volume
of this ellipsoid is proportional to (det(XTX )‘1)%. So a D-optimal design is a
design which minimises the volume of this ellipsoid since M(E(N)) = XTX.

In the following we will consider D-optimality. An advantage of D-optimality is
that the optimum designs for quantitative factors do not depend upon the scale
of the variables. This criterion is invariant with respect to a linear transformation
of the form © = AfS. Except for G-optimality, the other criteria do not have this

important property.
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The value of det (M(£(N))) depends on the number of observations. If we have
a design £(N), then we can easily improve the design by choosing a design £(2N)
that consists is doubling the replication of the points of the design £(NNV). In this

case we have
det(M(E(2N))) = 2% det(M(E(N))) .

Therefore it is not useful to compare designs with different numbers of values of
N. In the literature though, there is a special treatment of D-optimality that
addresses the case of designs with a fixed number of observations. That criterion

is called D y-optimality.

The D-optimal criterion has been the most commonly used, and has dominated
the literature of optimal designs; [see, Fedorov (1972), Silvey (1980)].

Let ®(M) = log [det(M)] . The properties of the D-optimality criterion include :

1. ®(M) is an increasing function over the set of positive definite symmetric
matrices. That is for My, My € M, then ®(M; + My) > ®(M;) where M

is the set of all non negative definite symmetric matrices.

2. The function ®(M(E(N))), where M(E(N)) is the information matrix of
the design £(N)), is a strictly concave function on the set M [see Fedorov

(1972)]
3. ®(M) is differentiable whenever it is finite.

4. D-optimal designs are invariant with respect to any non degenerate linear

transformation of the estimated parameters. [see Fedorov (1972)]
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1.2.3 Optimal designs with fixed N

Definition 1.1. Dy-optimality :
A design E¥(N) is Dy-optimal if M(E¥(N)) mazimizes det(M(E*(N))) over all

N point designs.

det(M(E*(N))) = mazgny det(M(E(N))) .

1.2.4 Normalized Designs

We now focus on the comparison of designs with different numbers of observations,
and this is done by using normalized designs, which requires us to standardize
designs. This will be discussed in the next section.

Consider a design with N observations. In the point z; we have n; observations.
Another way to say this is that a fraction n;/N of the total number of observations
is taken at the point z;.

This consideration gives the following definition.

Definition 1.2. Ezact design : An evact normalized design py has the form
PN = (Zy) s Toni P1y s D)

and there ezists integer N such that p; = n;/N (n; < N).

Definition 1.3. Discrete design : A discrete normalized design p has the form
D= (L1, o Ty P1y oy D)

m
where p; € R,p; > 0 and Zpi =1.
i=1

Definition 1.4. Continuous Design : A continuous design is characterized by a
measure & on the experimental region x.
The names ezact, discrete and continuous are confusing. A measure & may also

be discrete of course. The name exact has been chosen because an ezact design

can also be performed in practice.
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A discrete design may also be exact (if p; € irrational numbers for all i). Every
discrete design can be approzimated by an exact design with a large number of
observations N.

We now define the per observation information matriz of a continuous design &

to be
M@%=/f@ﬂﬂ@ﬁ@@)

and in the case of an absolutely continous measure, t.e. a measure with a density
connnot

p(z) we define it to be

M) = [ 5a) [ (@) ds = B{f@)f ()

X

[paas=1.

X

with

If the design s discrete or exact, then we have

m

M(p sz._ )£ ()"

The standardized variance function d(z,p) equals

dz,p) = (f(z) M (p)f(z) (1.2)

Continuous designs can be useful to find optimal designs. They do not have any
practical meaning. They are just useful in as much as they help in finding the

optimal design analytically. We study only Discrete designs.
Theorem 1.1. For any given design p there exists a discrete design
P = (zy,...,z;P1, ..., 1) with

M(p) = M(p') ,

and

(k+ 1)k
2

I < +1.
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Proof: See Fedorov (1972) page 66-G7.

Theorem 1.2. Letlp be a normalized design with variance function d(z,p). Then

we have in the case of a discrete design
m
E pi d(z5,,0) =k,
=1
where z,;, = (Ti1, T, Tin)T € X and in the case of a continuous design

[ dw i@ =k

Proof. We can recall the variance function from equation 1.2:

d(z,p) = di = (f(z))" M (p)f(z;) (1.3)

| By equation 1.3
! Zpidi = Zpi(i(ﬁi)rf]w_i(p)i(ﬁi)
=1 i=1

= tr{M7(p) Y pi(f ()T ()}
i=1

= tT{M"l(p)]\/[(p)}

= ] k

= k
which is what was required to prove. [See Fedorov (1972) page 68-69.] O
A proof for a continuous design is similar.
Theorem 1.3. For the mazimum vaelue of the function d(z,p} we have

maxd(z,p) > k .

TEX

Proof: See Fedorov (1972). We now define D-optimality independently of the

number of observations.




CHAPTER 1. INTRODUCTION 13
Definition 1.5. A design p' is called D-optimal if
det(M(p')) = maxdet(M(p)) ,
p

where mazimization s with respect to all possible designs measures, descrete or

continous.

1.2.5 Weighted Linear Regression Design

An example of a linear design problem can be a design for a weighted regression
model. As we shall see later, the simplest case of Weighted Linear Regression
plays a central rele in our D-optimal design problems. See also Torsney and

Musrati(1993).

e Model :

E(y) = a+ Bz z € Z = [a,]

V(y) = ,

for some weight function w(z). «, f and ¢ (¢ > 0) are unknown parameters

and Z is the design space.

e Design :
Design points 2,29, -, 2., 2z; € 4 with weights py,ps,--- ,p, where the

variables p; are nonnegative and sum to 1. i.e.
”
dop=1, 0<p <Ll
i=1

e Information Matrix :

The informatiom matrix is of the form
T 1
M(p) = D pw(a) () (1,%)
i=1 t

&, {ve (1) 0.0}

= E, {ﬂT} where g = (g1, 00) and g; = \Vw(z), g2 = 2g1.
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1.3 Design for a general nonlinear model

Suppose some response variable y has probability model p(y|z, ) where z is a
given explanatory or design variable in the design space X [z € X] and @ is a
k-vector of unknown parameters (@ € R’“]. Suppose further that it depends on §

ounly through its expectation function,
E(ylz,0) = n(z,0)
where 77 is a known non-linear function of parameters # and z. Also let

Viylz,8) = alz,0)

where a(z,8) is a known conditional variance function. All observations are
assumed to be conditionally independent.
suppose that N observations are taken and cousist of n; observations taken at z;

¢t =1,---,m. This is the exact design

;’Q] Lo Ly, (1 4)

Ny N+ N ' '
Asymptotic Covariance Matrix : Assuming we estimate 8 by maximum like-
lihood and assuming the standard asymptotic results: Let 9ML denote the Max-

imum Likelihood (ML) estimator of §. Then from standard asymptotic theory

8,5, is asymptotically unbiased, efficient (and normally distributed) i.e.

E@ML) ~

[
m -1
Cov(0y1) = {Znﬁ(@i,ﬁ)}

, N large

where /(z;,0) is the Fisher Information Matrix for @ for a single observation at

the point z; and is given by

I(z,0) = W;@m (z,0)no(z, 0)"
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where 75 denotes the vector of partial derivatives
mo(z,0) = [0n/061,- -, 0n/06x|" and a(g, 0) =V(y|z).

Under the above design
Cov(@) = [Zpnil(z;,0)]"

Approximate design -Continuous design

Equivalently, let p; = 3 so that p; is the proportion of observations taken at ;.

Then for large NV

~

Cov(d) = [NZPpil(z;,0)]"

« [, pid(z,0)] " = [M(8,p)] "

These weights (proportions) define an approximate design. If the design has
trials at m distinct points in A, taking a proportion p; of observations at z;

i =1,---,m we denote it by

P= (21, Lp; PLy o, Pm)-

Clearly ¥p; = 1, p; > 0 . In general we may consider continuous design measures

£(-) satisfying measure [, &(dz) =1 and £(z) > 0 for which the per observation

information matrix is

M0.€) = [ Ia, 8)dt (@)

1.4 Design Criteria

These must now be functions of M (@, ). In particular the D-optimal criterion is
log{det[M (0,¢)]} = —log{det[M(0,£)]"'}.

Again this has a confidence ellipsoid interpretation.
Suppose that Q is the M.L estimator of @ obtained from data arising under a

design ¢ chosen on the provisional assumption that § = @ . Then log likelihood
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confidence regions for @ can be closely approximated by ellipsoids of the form
{8: (6 — Q)T]\/I(f,é) 8 — Q) < constant}.

The volume of the above ellipsoid is proportional to {det[M (£,8)]}~/2. So max-
imising log det[M (&,8)] would be equivalent to minimising the volume of confi-
dence ellipsoids for @ of the above form. That is, we are making our confidence

regions, in some sense, as small as possible.

To make the Information matrix small we should choose p; optimally. In practice,
observations will be taken at a finite subset of points. We focus on the proportion
p; of observations taken at z; for good estimation. The objective is to choose £ to
maximize det(M (&,6)) which is to minimize the volume of a confidence ellipsoid

for 6.

1.5 Optimality Conditions

We need conditions for identifying optimality. An important result in this con-
nection is the General Equivalence Theorem. It can be viewed as an extension of
the result that the derivatives are zero at an unconstrained maximum {(or mini-
mum) of a function.

The derivative of ®(-) at M (&) in the direction of M (&), see Whittle (1973) is

Fo(M(&), M(&)) = lim — [{(1 — )M (&) + aM (&)} — ®{M(£)}] .

a—0t Q¢

The General Equivalence Theorem states the equivalence of the following three
conditions on £ :
If ®(M) is strictly concave on the set of symmetric positive definitive matrices

then:

e the design £ maximises ®{M(£)},
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e the design {* minimizes the maximum over z € X of Fo(M(£*),I(z,0))

(=the minimum of Fy(M(£*),1(z,8) > 0),

e the derivative Fig (M (£*), I(z,0)) achieves its maximum of zero at the sup-

port points of the design £*(z). i.e. Fp(M(£*),1(z,8)) =01if £*(z) > 0.

In summary

= 0 if &(z)>0

Fa(M(€°), I(z, 9))

For & = log det(M) which is strictly concave

Fa(M (&), M(&)) = tr(M ™' (&)(M(&) — M(&)))
= tr(M'(&)M(&)) -

where k = tr(M~1&)M(&)),

Fa(M(E): Iw0)) = (M )T (2,) - &
= o)y

a(z, 0)
M (51)"70
= —————k
a(z, )
So £ is D-optimal if only if
1 - &
a(g,Q)Tigﬂ/[ YY) <k Vo
=k &) >0 .

Note this defines an ellipsoid centred on the origin containing the set
{ng = n(z,0) : z € X} with the support points of £&* on the boundary. Silvey
(1972) conjectured that this was the smallest such ellipsoid and Sibson (1972)

proved the conjecture to be true.




Chapter 2

Weighted Regression Model
Construction of D-optimal
Design :

The Case of the Two Parameter

Model.

2.1 Model under consideration

We consider a binary regression model in which the observed variable u depends
on a design variable z € &’ = [¢,d] C R. u can take only two possible values,
according as some event of interest occurs w = 1 or does not u = 0. We may

write the probabilities of the two outcomes as follows:

Pr(u=0|z)=1—n(z) Pr(u =1lz) = 7(z)

18




CHAPTER 2. TWO PARAMETER CASE 19

Namely, u ~ Bi(1l,n(z)). We assume 7(z) = F(a + fz), where F'() is a chosen

cumulative distribution function. So

f

E(ulz) w(z) = Ia+ fz)

V(ulz) = w(2)[l —n(z)]

Crucially the dependence of = on z occurs only through a nonlinear function of

the linear combination
z = a+pz (2.1)

for unknown parameters ¢, 5. This is an example of & generalized linear model.

2.1.1 Design For Binary Regression

We now apply the design theory on Chapter 1 to our binary regression model. It
is convenient to adopt the parameter dependent linear transformation z = o+ fzx.

For the above model the information matrix can be written as follows

U O A P
18 = i o) O

where f(z) = F'(2) and

n = 7(z)

= Fla+ fz), z =« fx

and

a(z,0) = V(ulz)
)
= Fla+ fz)[l — F(a+ fz)]

= F()1 - F()]
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and

0z 0o’ 0Oz 9p

[9F(2) 92 OF(2) 83} g
Ny = o a3

= |f(2), f(Z)fL}

- 1 (7).

OF(2) 92 OF(z) 02]
8z Oa’ Oz OB

Now let the vector
1

V()
(Y.
VE@[L - F(z)] \z

Further, given z = a + fz, then z € [q,0], (a,b determined by ¢,d) and

0 -0

|

Hence if
g(z) = By,
then
2 = \/F<z>f[§zz ) (2)
and
v = Blg(z)

D-optimality is invariant under non-singular linear transformations of the design
space. So as did Ford, Torsney and Wu (1992) we consider the D-optimal linear

design problem with design vectors

g = Vuw(z)(l2)T z € [a, b
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l—ﬂ% This corresponds to a weighted linear regression design

where w(z) =
problem with weight function w(z).

Therefore these nonlinear design problems transform to linear design problems
for weighted linear regression in z with weight function w(z) = ﬁ—(;)j(rj—(fl);w, where

f(z) = F'(z) is the density of F(-).

Table 2.1 lists examples of this kind of weight function (binary regression weight
functions) in two groups: Group I and Group II. Two other groups (II and IV)
which we will consider are also listed. Firstly, we consider finding D-optimal
designs for Group I (Table 2.2) and Group III (Table 2.3), and then investigate
Group II (Table 2.8) and Group IV (Table 2.11) separately.

In Table 2.2 we list details of the binary weight functions in Group I, namely
the Logistic, the Skewed Logistic, the Generalized Binary, the Complementary
log-log and the Probit; details are the pdf, the cdf, explicit formulae for
the weight functions and the support points of the two parameter case

(global) D-optimal design.

In Table 2.8 we give the same information for the two special binary weight func-
tions of Group II, namely the Double Reciprocal and the Double Exponential

weight functions.

Table 2.3 records the explicit formulae for the weight functions of Group III,
namely the beta, the gamma and the normal density functions, together with

the corresponding support points of the global D-optimal designs.

Finally, Table 2.11, shows the corresponding information for the weight functions

of Group IV.
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2.2 Characterisation of Optimal Designs
Let &* be a design measure on [a,b]. &* is D-optimal iff

V() = " (MMENg(z) < 2 £(2) =0

= 2 £'(z)>0.

V(%) is known as the variance function. This defines Silvey’s minimal ellipse.

It is useful to introduce the following set:

G =G(Z) = {g(=): (91) , g1 =+yw(z) g2 = 21,2 € Z}. (2.2)

g2
We call this an induced design space as did Ford et al. (1992). An alternative
and probably better name would design locus as orginally as used by Box and
Lucas (1959). In this two dimensional case, Silvey’s geometrical characterization
can provide us with some insights into the support points of a D-optimal design
or at least their number. The support points are the points of contact between
G(Z), the design space, and the smallest ellipse (SE(G)) centred on the origin
which contains G(Z). The idea was first conjectured by Silvey (1972), and proved
by Sibson (1972), both of these being contributions to discussion of Wynn {1972).

Pictures of G(Z) are important.

Our objective is to find D-optimal designs for all possible interval subsets Z =

[a, D] of Z,, where Z,, is the widest possible design space.

e Case 1: Z = £,
We consider Z2 = Z,, initially for all of the above weight functions Beta,
Gamma, Normal and Binary. The induced design space G is a closed
convex curve in R? for the widest choice of Z (= Z,,). For these cases in
Figure 2.1 and Figure 2.2 it seems likely that the minimal central ellipsoid
containing G(Z,,) can only touch it twice, in which case the D-optimal

design has two support points and must be the best two point design.
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Consider a design with 2 support points 4, ». For this to be D-optimal on
this support the weights must be 1/2,1/2. Denote this design by £. Then

the best two point design on Z,, must maximise
det(M(£))

with respect to w, v. Let a*, 0* be the optimal values of u, v. These are
listed in Table 2.2 and Table 2.3. All of these weight functions w(-) have
similar properties. In particular they are typically unimodal with one max-
imal Turning Point at zmer (W' (Zme)) = 0, and w'(z) > 0 if 2 < zy4, and
w'(z) < 01if 2 > Zpae) [see Figure 2.3 and Figure2.4].

In general support points must be found numerically. However for some of
the weight functions (Beta, Gamma, Normal) there is an explicit solution
for the support points, see Table 2.3 [Karlin and Studden (1966) Fedorov
(1972), Torsney and Musrati (1993))].

In most cases this best 2 point design is the D-optimal design. The Equiv-
alence Theorem is satisfied in all cases except for the double exponential

and the double reciprocal .

e Case 2-5:
We now consider those weight functions for which the above D-optimal

design is a two-point design.

o Case 2: Z=[a,b]a < a*b > b
The D-optimal design is the same as above since Z contains the above sup-

port points.

We now repeat the conjectures of Ford, Torsney, Wu (1992) Ford et al. (1992)
for three other cases and extend these to the non-binary weight functions listed

in the Table 2.3.
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We conjecture that the D-optimal designs € have the two support points listed

in the following three cases. (We assume a < b.)
e Case 3: a>a*b> 10"
Supp(€) = {a, mindb, ()} }, (0*(a) > b")
e Cased: a<a"b< D"

S'Upp(g) = {ma:z:{a, a’*(b)})b}’ (a’*(b) < G,*)

e Case b:a>a* b <}
Supp(§) = {a, b}

Here 0*(a) maximises det(M(€)) with respect to d (over d > a) where £ is the

design

¢ = (1C/L2 172)’

and o*(b) maximises det(M(£)) with respect to ¢ (over ¢ < b) where £ is the

design
— b
¢ = (1?2 1/2) ;

2.2.1 Justification of the Conjecture

The D-optimal design must satisfy the Equivalence Theorem. According to the

theorem (Silvey, 1980), a design £(+) is D-optimal iff

w(z)(1 2)M=1(£) (i) <2V zez (2.3)

= 2 if &) >0 (2.4)

This is true iff

1

1
U(Z) = _Q(Z) - ’LU(Z)

2
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1
where Q(z) = (1 z)M (&) (z) is a quadratic function. So for an optimal
design we wish to see v(z) < 0 Vz € Z. To explore the shape of v(z) we

analyze its derivatives. The derivative of v(z) can be written as

v'(z) = L(z)— H(z), (2.5)

where H(z) = [_uj‘(’;(ﬁg and L(z) is an increasing linear function of z because the
coefficient of z is the second diagonal element of the design Matrix M (&) which is
positive definite. In fact L(z) = (2E(w(Z%))z — 2E(Zw(Z)))/Det(M(£)) where

Z is a random variable with probability measure £ since

E(w(Z)) E(Zw(Z))
E(Zw(Z)) E(Z*w(Z))

M) =

The intercept will be negative if E(Zw(Z)) is positive and vice versa. The conse-
quence is v'(z) = 0 iff L(2) = H(z). That is, v'(z) = 0 when the line L(z) crosses
A question of interest is : "How many times can an increasing line L(z)
cross the function H(z) ?” Plots of H(z) are given in Figure 2.5 and Figure
2.6 for various weight functions w(-). These plots (appear to) have similar shapes
and properties. In particular let Z,, = [A, B]. Then H(A) = —o0, H(B) = +oo
and H (z) is concave increasing up to some point and thereafter is convex increas-
ing. Also H'(A) = oo, H'(B) = oo, while the second derivative of H(z) has one
change of sign for all the weight functions considered. This was observed em-
pirically in most cases. Only a few of them like the logistic and the normal weight

functions offer an H(z) function whose change of sign can be seen analytically.

Given such an H(z), an upward sloping line L{z) can cross it, over the whole
range of z, either one or three times. This depends on the slope of the line.
This means that the derivative of v(z) can have at most 3 zeros in (—o0,c0).

Further such a line must initially lie above H(z). So if there is only one Turning
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Point it is a maximal one, or if there are three the first is a maximal one and
hence so is the third while the second is a minimal TP. So v(2) has only one min-
imum turning point (TP) and at most two maximum TP’s. Hence given three
solutions to v'(z) = 0 the middle one must be a minimum turning point. (The
line crosses first from above, then from below, then from above, then from below

the curve [Figure 2.7].)

Consequently, this implies that there are two support points, because three sup-
port points would need two minimum TPs. As a result of this, all the above

weight functions have two support points with optimal weights 1. We list the

8|

H(z), H'(z) and H"(z) functions for the Binary weight functions and those of
Group III, Table 2.4 and Table 2.5, respectively.

We note that a some upword sloping lines may only cross H(z) once from above
in which case v(z) would only have one maximal TP while others might be tan-
gential either to the concave or convex section of [7(z) in which case v(z) has one
maximal TP and one point of inflexion. In either this means that a horizantal
line can only cross v(z) twice. More over v(z) lies above any such line between c
and d where these are the values of z at which crossing takes place. This cannot
be the case if v(z) arises under a design which is D-optimal on an interval say

[¢, d]. We must have v(z) < 2 on [c, d].

Hence the lines arising under designs & must cross the H(z) three times.
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2.2.2 Determination of support points binary regression

case

We now need to establish what the support points are of these D-optimal two-

point designs. We consider the arbitrary design

£ = i)

1/21/2

Then

det(M(£)) = (1/2)* (22 — 21)*w(z))w(z) 2z < 2.

We take the log function of the determinant which is a concave function of

M(+).
In[detM(€)] = —-2In2+2In(z — 2) +Inw(z) + Inw(z)

We note that we will be interested in the derivatives of this function with respect
to z; and/or z;. To find the best two-point design on £, we need to maximise
In[det(M (£))] w.r.t. 2 and zg; or if we wish to find the best two point design
subject to z; ( or z;) being a support point we need to maximise In[det(M (£))]
w.r.t. 2z (or z;). So we consider derivatives w.r.t. z; and z». A rearrangement of

the first order stationary conditions introduces a function h(z).

OllndetM(&)] = -2 L "(z1)
8z1 o Z9 — Zl ( )
S el o
- w(zy)(za — 1) [z2 h(zl)]
where h(z) = z + %}% 50 ?Mgz_f_\/[(i)] o« w'(z1)]z — h(z1)].
Furthermore,
OllndetM(£)] w'(z) B B
0z =0 = w(z1){z2 — 21) [ZQ MZl)] =Y

ie. = 23 = h(m) [given w'(z)#0].
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Note 2.1. If w'(z) =0, 6Und§gﬂg)] = =2 £ 0. 50, Zypas is not a solution of

Z2—Z21
AndetM(£)] __ 0
dzy -

Similarly,

O|ln detM{€)] w'(zg) N 2

Oz w(z) 2 — 2z
_ w'(z3) s 2w(zs) o (s
T w(z) (2 — 21) [ 2o At 'U)’(Zg):I (1fw'(z) #.0)
’tUI(Zg)

) [h(zg) - zl]

w(z)(zg — 2

where  h(z) = z3 + 3::)((;2)) So (f?[l%(;ﬂ\/f(gﬂ o w'(z) [A(z) — 7).
2 2
Further,
OllndetM(€)] w'(z2) B
—822 = 0 = ———w(zz)(zz ) [h(zz) - 31] =0

ie. =z = h(z) [gz’ven 'LU'(ZQ)%O].

Note 2.2. If w'(z) =0, OllndetM(g)] _ 2 # 0. S0, Znas 18 not a solution of

dzg 23—21

8[ln detM ()] _
[B—zz =0.

We can be interested in solving one or both of the equations

z1 = h(z) (2.6)
hz) = 2z (2.7)
hiz) = z+ 258)) (2.8)

As we can see it is useful to study A(z) since the solutions to the above equations
clearly depend on the nature of h(z). Plots of h(z) are shown in Figure 2.8
and Figure 2.9 for choices of w(z) which are unimodal and stationary at their
maximum, Say Zme,. 1hese reveal examples of h(z) which are increasing both

over 2 < Zmae and over z > zZp.. with a vertical asymptote at zpq. . This proves
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useful to us.

Let’s now consider the single equation in z :
nz) = e

An implication of the plots is that there is one solution to this equation say zj (c)
in the range z < Zmq, and one, say zj;(c), in the range z > zpq.;. Moreover since
w'(zi(c)) > 0 and w'(2f;(c)) < 0 we have 2} (c) < ¢ < z5(c) .

In equations (2.6) and (2.7) we have two versions of equation (2.8). Their joint
solution with z; < z, must be 2] = a*, 25 = b*, ¢* < 0¥, ¢* and b* being the
support points of the optimal two-point design on Z,, as defined in the conjectures

above.

Note 2.3. This means that
h(a*) = b*, h(d*) = o* and 2 = zj(23), 7z = z;(2]).

We can now consider checking these conjectures against the Equivalence Theorem.

Consider an arbitrary two point design say

£ = i)

1/21/2

The corresponding design matrix is

M) = 1/2( [w(z1) + w(z)] [21 w(z1) + 22 w(22)] ),
[

aw(za)+znw(n) [zZwlan)+ zZw(z)

and the determinant of M(€) is

det(M(&)) = (1/2) w(zr)w(z)(z — =1)".

The inverse of the above design matrix is therefore

ME) =

w(z)w(z)(z - 21)°

2 ( [Zw(z) + zow(zs)]  —[zw(z) + 22 w(z)] ) |

~[znw(z1) + 2 w(z)] [w(z1) + w(z)]
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If the above design is to be D-optimal on a set of values of z, say Z, then we

must have

v(z) < 0 Vze Z

where v(2) = §Q(2) — 5757 - In fact v(2) must be maximised at 21, 2; as v(z1) =
v(zy) =0 .

It is of interest to consider the derivative of v(z) at 21, z2 . Recall that

/(z) = Llz) - H(2),

where L(z) = 1Q'(2) and H(z) = [:;‘(';()2 .

Q) = M) ().

Z

Here
2
A T A P
([sz(zl) + zpw(z9)] — 2[zw(21) + zow(z)]z + [w(z1) + w(zz)]z’?> )
And

L) = 5Q0)

= ! 5 ( - 2[z1w(z1) + zw(zg)] + 2[w(z) + w(zg)]z) .

w(z)w(z) (22 — 21)

Therefore L(z) and L(z;) can be written as follows:

ey

L(Zl) = w(zl)w(222)(z2 — 2:1)2 (Zzl[w(zl) + ’LU(ZQ)] — Z[le(zl) -+ ZQ'LU(ZQ)D
= ’LU(Zl)’LU(ZQ)(Zg _ Zl)g[(zl - z?)w(ZZ)]
B —2
 w(n) (= —121)

L(z) = w(zl)u;(z«z) o) (2z2[w(z1) + w(z2)] — 2[z1w(z1) + 22w (22)])

w (22) (Zg — Zl)
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Now with

we have
v'(z)
Similarly,
U, (Zg)
So,

L(z) — H(z)

w'(z1)

[w(z1)?]
-2 w'(z)
w(zi)(z2 — z1)  [w(z1)?]

1 —2 w'(z1)
w(a) L@ =) " w(zn]

L(Z"1> -+

w'(z1) _-~2w(z1) _

()P =) | W) T zl)]
'LU'(Z1) — [ ZW(ZI)
z=lat 'w’(zl>]

Z9 — h(zl)} .

2 w'(2)
w(zz)(22 — 21) _[’w(zz) ]
w'(2y) 2w(zs)

’U}I(Zg)

(w(22)]?(22 — 21) _h(z?) - Zl:l :

v'(z1) o< w'(z1)|z — h{z)]

v'(z2) o w'(z2)[h(z2) — ).

31
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2.2.3 Some properties of v(z)

We also enumerate some properties of v(z) on the assumption that for any design
v(2) is continous and has two maximal and one minimal TP over Z,,. This will be
the case if H(z) has the properties mentioned above as demonstrated for several
examples.

Denote the TP’s by TPy, T'Py;, T'Py representing the Lower, the Middle and the
Upper Turning Points respectively so that TPy, < TPy < TPy and

TP, < Zmar < THy.

Some simple properties of v(z) will therefore be:
(i) v(z1) =v(z2) =0
(i) It is possible that v(T'Py) = v(T'Py) but v(TPy) # v(TPy), v(TPy).

(iii) v'(z) > Ofor z < TPrand TPy < 2z <TFy
’U’(Z) < Qforz>TPy andTPL < z <TPy

(iv) If v(2*) = v(TPy) then either z* < TPy with v'(2*) > 0 or
TP, < z° < TPy with v'(2*) < 0; in the last case v(z) < v(TPy) over

z > 2%

(v) If w(2*) = v(TPy) then either 2* > TPy with v'(2%) < 0 or
TPy < z* < TPy with v'(2*) > 0; in the last case v(z) < v(TPL) over

z < z*,

(Vl) If z > TF; and ’UI(ZQ) > 0 then 'U'.(Zl) <0ie TP, <z <TPy 3

If 20 < TPy and v'(2z) < 0 then v'(z3) > 0ie. TPy < 2o <TPFy .

(vil) Suppose v'(21) < 0 and v'(z) > 0. Then TP, < 2y < TPy < zp < TFy

and v(z) < 0,V z € [21, 23]

(viil) Suppose v'(2*) < 0 and v(z*) = v(TP) where v'(TP) = 0.
Then TP =TFy .
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Suppose v'(2*) > 0 and v(z*) = v(T'P) where v'(T'P) = 0.
Then TP =TPF;.

2.2.4 Confirmation of D-Optimality

We now consider taking z;, 22 to be the support points of the conjectured optimal
designs of the various cases of Z = [a, §] above. Our primary objective is to
establish that v(z) < 0 on Z. The above properties confirm that this will be true
if v'(21) < 0 and v'(22) > 0.

First we establish a preliminary result.

Theorem 2.1. There can only be one solution salisfying z, < zs to

h(z) = =z

hz) = =z
Hence there can only be one solution to the equations

Vv(z) = 0 i=1,2

and also w =0 1=1,2.
Zi

Proof. Suppose there are more than two pairs of solutions (z;,22). Then the

y—Ttunction for each solution satisfies

v(z1) = wv(zg) =0

v'(z) = v'(z) = 0.

Hence z, 2o are TP’s of v(+) with a comman value of zero. Since v(z) only has 3
TP’s these must be two maximal ones. So, z; = T'Pp, zp = TPy and v(z) <0V 2.
Hence the design (f}Q 17%) is D-optimal and so then is any convex combination

of them. Moreover they share a common design matrix and hence a common
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v(z) which therefore must be zero at all support points of these designs. Given
v(z) < 0 they are all Maximal TP’s. This conflicts with the assumption that v(z)

has only 2 max and 1 min TP. O

We now establish results confirming that v'(z) < 0, v'(z2) > 0 as required.
Crucially we assume that h(z) is increasing in z over z < zq, and over z > Zpes
where zp,, is the point where the weight function w(z) reaches a maximum.

( Note: Equal weights guarantee v(z;) = v(z2) = 0.)
1-

® 2= 0 > Znas, 22= b > a. We show that v/(a) < 0.

e
v (a’) - [w(a ]2(b . G,) [b ]( )]
Now since a > Zpas, w'(a) < 0. So v'(a) < 0 is true if [b — h(a)] > 0.

2w(a)
w'(a)

b—hla) = (b—a)-—

The right side of equation is always positive, because a < b and w'(a) < 0.

Therefore v'(z) < 0.

o 25 = b < Zmae, 21 = @ < b. We show (D) > 0.

w'(b)

v'(b) = m[h(b)—a]

Now w'(b) > 0. So v'(b) > 0 is true if [2(b) — a] > 0.

hid)—a = (b—a)-+

[A(b) — a] is always positive,because a < b and w'(b) > 0. Therefore

v'(z) > 0.

2- a* < a < Zmes < b < b Zn=a, Z=05b

Because a < Zmag, and b > Zpas, w'{a) > 0 and w'(b) < 0.
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e Since h{z) is increasing over (—oo, zZmaz), (a) > h(a*) and since b < b*

then [b — h(&)] < [b* — h»(a*)] = (. Therefore U'(Z1) < 0.

e Since i(z) is increasing over [zqq, 00), h(b) < h(b*) and then
[h(D) — a] < [A(D*) —a*] = 0. Therefore v'(z) > 0.

Hence the two-point design

_ a b
&= (1/2 1/2)
is D-optimal for all Z = [a,b] where a* < @ < 2zmee < b < b* .

3- z1=a" 2z =10 a* < b*

b* = h(a") (2.9)

h(d*) = a* (2.10)

From Theorem (2.1), o*, b* is the only possible solution (a* < b*) to equa-
tions (2.9) and (2.10). So v'(a*) = 0 v'(b*) = 0. Thus a*, b* identify
2 max TP’s of v(z). Moreover they are TP’s at which v(z) has a com-
mon value of zero since v(z) = v(z2) = 0. From property (ii) of v(z)
the only possibility is that they are the two maximal TP’s of v(z). i.e.
z1 = a* =TPp, 2o = 0* = TPy. Hence the Equivalence Theorem is sat-
isfied. Moreover since v(z) <0V z € Z, then v(z) < 0V z € Z = [q, ],
where [a,b] C [a*, b*]. Hence the two-point design

€= (o)

1/21/2
is D-optimal for all Z = [a,b] where a < o* and b > b*.
4-a < a*,b > 0"z = a* 29 = 0°

Same design as for 3.

5- a* < a< Zmae < 0 =0a) (0*(a) >V") 2z = a, 2 = b*(a)

Clearly v'(z2) = 0. First w'(a) > 0. We want v'(z;) = v'(a) negative. So
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we need to investigate the derivative of v'(a). Here

w'(a)
[’w(a)]z(b;(;l) —a)
~ Tw(@P(a) - a) A" (@) — hu(a)]

v(a) b*(a) — h(a)]

where hy'(2) is the inverse function of h(2) for z > Zmee and hy(z) = h(z)
for z < Zp4. . Consider de)L(a) = hy' (a) — hr(a), and recall that a < znqq.
We know from Theorem (Tl), a = a* is the only solution to dr;, = 0. So
the functions h3'(a) and hz(a) cross only once at a* . Further since
hi(Zmaz) = 0o while Ay (Zmae) < 00. Then hz'(a) < hp(a) at & = Zmee-
Hence this inequality is true for ¢* < a < 2,4,. Therefore

v'(z) = v'(a) < 0. Thus the two point design

f _ ((1. b (CL))

1/21/2

is D-optimal for all Z = [a, b], where a* < a < Zpa, and b = b*(a). Since

v'(z2) = 0 for zz = b*(a). This design is also D-optimal for b > b*(a).

a* < a < Znae, Vr<b<bda) z1 =a, z=0»>

First w'(a) > 0. Secondly [b—h(a)] < b*(a) —h(a) = hz'(a) —hr(a) < 0
by above. So v'(a) < 0. Also we need to show v'(b) > 0. Because of
b > Zmas w'(b) < 0. We assumed b < b*(a) . If h(-) is an increasing
function, h(b) < h(b*(a)) = a. Hence h(b) —a < [h(b*(a)) — a] = 0. Thus
v'(z2) = v'(b) > 0 and the two point design

&= ()

1/2 1/2
is D-optimal for all £ = [a,b] where o* < a < Zpae and b < b*(a).
a=0a"(0)(<a") < zZpmae <OV 2z =a"(h), 22 =0

(This is the complementary case of 5.)

Now v'(a) = 0. w'(b) < 0 and v'(b) > 0 is true if
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hr'(0) > hr(b) Vb € [Znaw,b]. So we need to investigate the derivative

of '(b).

w'(b)

[w(®)]*(0 — a* (b))
_ w'(b) -
= P —ay e O

where h7'(D) is the inverse function of /i(z) for z < Zpa, and hy(z) = h(z)

v'(D) [1(0) = a™(b)]

for z > Zpg,. Consider dip(b) = hgr(b) — A (b) and recall b > Zpe,. We
know from item 3 that b = b* is only solution to drgr(b) = 0. So the
functions hr(b) and h;'(b) cross only once at b* and since

hr(Zmas) = — 00 while hy(2mes) > —oo. Then hy'(b) > hr(b) or

hi < h'(b) at Vb € [Zmaz, b*]. Therefore this inequality is true for

Zmar < b < U*. And therefore v'(z;) = v'(b) > 0. Thus the two point

design

— (a*(b) t’))

1/21/2

is D-optimal for all Z = [a,)] where a = a*(b) and 2z < b < b*. Since

v'(21) = 0 for z; = a*(b). This is also D-optimal for a > a*(b).

a*(0) < a < Zmee <OV 21 =a 2 =20
This is the complementary of case 6.
Now v'(a) = v'(b) = 0. First consider w'(b) < 0, v'(b) positive. So we need

to investigate the derivative v'(b):

w'(b)
[w(®)?(b - a)

where (b)) —a < h(b) — a*(b) < 0 because of b > 2zye,- Therefore v/ () > 0.

v'(b) [1(b) — a]

Secondly w'(a) > 0 and v'(a) negative.

w'(a)

’U’(CL) = [’[U(b) 2(1) _ 0,)2 [b - /L(CL)]
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where

h(a) > h(a™(0)) =10
= —h{a) < —h(a*(D))

= b—Nh{a) <b—h(a"(b)=b—-0=0

Therefore v'(a) < 0. Thus the two point design

€= (%%

is D-optimal.

38
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2.2.5 Some Conclusions

These results confirm that :
Supp(&*) = {a*,0*} a<a,b>b
Supp(§*) = {maz{a, a*(b)}, 0} a<a*,b<b*
Supp(&*) = {a,min{d, b*(a)}}  a>a*,b>b"
Supp(&*) = {a,b} a>a"b<b"

So the equivalence theorem is satisfied by our conjectured optimal designs for all

possible design intervals [a, b] if the function

2w(z)

h(z) = Z+w’(z)

is Increasing over z < Zpge and over z > Zp... We have noted that this appears
to be true for a range of w(z). Plots of h(z) functions are given in Figure 2.8
and Figure 2.9. Interestingly these properties also guarantee that G(Z,) is a
closed convex set, as Wu (1988) reports. He established them analytically for a
number of our binary regression weight functions. In some cases he established
the stronger result that the ratio w(z)/w'(z) is increasing over z < Zpqe and
OVET Z > Zmay (for the logistic, complementary log-log and skewed logistic binary
weight functions). This implies that w(z) is log-concave. For the other cases he
proved analytically that 2(z) is an increasing function (Probit, Double exponen-
tial, Double reciprocal). We report and extend these results. Plots of
w(z)/w'(z) are given in Figure (2.10) and Figure (2.11). We summarize some
aspects of the functions h(z) and w(z)/w'(z) for some binary regression weight
functions and some non-binary weight functions in Table (2.6) and Table (2.7).

One of the most obvious remarks is that the functions A(z) and w(z)/w'(z) have
almost the same shape and are increasing over (—o0, Zie.) and (Zpeg, 00)
with a vertical asymptote at 2,4, for the weight functions listed. This confirms
and extends Wu’s (1988) findings for some of them. Thus we have established

the final condition needed to satisfy the Equivalence Theorem.
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Recently, Sebastiani and Settimi (1997) established the truth of the Ford et al
(1992) conjecture for Logistic Regression using exactly our approach. Indepen-
dently of Wu they established the necessary property of i(z).

In effect we have established the following theorem:

Theorem 2.2. Assume that w(z) is continuous, differentiable and unimodal

and suppose Z,, = [A, B]. Let w(z) be a weight function and

e
HE) = wpp
h(z) = z+ Qwul)((j))

o(z) = w(x)(12)M ()L

If H(z) is continous with H(A) = —oco, H(B) = oo, differentiable with
H'(A) = H'(B) = oo, AND is first concave increasing then convez increas-
ing the function v(z) [or the variance function] can have at most § TP’s two
mazimal ones & one minimal one. In consequence a D-optimal design on any
Z =a,b] has 2 support points.

Further if h(z) is increasing over z < Zmgg and 0Ver z > Zyae these support

pownts are as follows :

i - £ = Z, Supp{&} = {a*, b}
a* 0" mazimise det(M(£)) o< (b — a)*w(a)w(b) and b* = h(a*), a* =

h(b%).

i - Z=(A,0) and b <" Supp{&} = {maz{a, a*(b)}, 0}
a*(b) solves h(a) =b.

Wi - 2 = (a,B) and a > a* Supp{¢} = {a, min{b,0*(a)}}
0*(a) solves a = h(b).

- Z=]a,b] and a > a* b <b* Supp{&} = {a,b}.

This result provides confirmation for the Ford et al. (1992) conjecture.
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Before closing this chapter we also consider the weight functions in Group II and

IV.

Double Reciprocal & Double Exponential Binary Weight Functions

Our objective is to find D-optimal designs for possible interval subsets of Z,, = R
for two symmetric binary weight functions : the Double Reciprocal & Double

Exponential weight functions which are presented in Table 2.8 .

e Casel: Z2=2,=R
The first striking remark is that the Double Reciprocal and Double Expo-
nential weight functions are unimodal and both functions reach their max-
imum value at z = 2z, = 0 at which point both are non-differentiable.
So these are not stationary values [Figure 2.12]. For these two weight func-
tions, the induced Design Space G(Z) is again a closed convex curve in R?
for the Z = 2, = (—00, 0o) [Figure 2.13] . However it has a sharp vertex
at z = 0. For these cases it seems likely that the minimal central ellipsoid
containing G(Z,) will touch more than twice: at z = 0 and also, given the
symmetry of w(z) about zero, at two other points symmetric about zero, in
which case the D-optimal design has three support points. This impression
is confirmed by the plots of H(z) for these cases. H(z) is discontinuous at
z = 0. An upward sloping line can cross H(z) four times. We discuss H (z)
in more detail below. The distribution of the weights must be symmetric
too, that is the support is of the form {—2*,0,z*} with optimal weights
(p,1 — 2p,p) Musrati (1992). z* and p maximize the determinant of the

information matrix det(M (§)) with respect to £ where £ is the design
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When there are three support points there is an explicit solution for the
optimal weights as first reported by Torsney and Musrati (1993). If these

points are zi, 29, z3, the respective optimal weights py, pe, p3 are given by

pi = Di/(D1+ Dy + Dy), i=1,2,3 (2.11)
where
i = Djr/(Dij + Dy + Dy), (1,5, k) = (1,2,3),(2,1,3)(3,1,2),
Dij = ‘LU(Zi)’LU(Zj)(Zi - zj)27 (%7) = (172)1(1a3)a(2=3)

The support points and the optimal weights for both models are as follows

(Torsney,Musrati(1993)):

Name Support Points Optimal Weights
Double Reciprocal —/2,0,v2 0.2617,0.4766, 02617
Double Exponential —1.5936, 0, 1.5936 0.2819,0.4362,0.2819

Now we consider the variance function under these optimal designs. The
implication is that its maximum occurs at three local maxima (at £z* and
0) while it has two local minima ( at +2z% and 2% < 2*, for some 2® ).
All are stationary values except the local maximum at zero. This is indeed
the case so that the necessary and sufficent condition of the equivalence

theorem is satisfied. These designs are globally D-optimal.

e Case 2: Z =[a,b] =2 C[0,00) or & C (—o0,0j
For these cases results similar to the other binary weight functions hold.

Namely &* has two support points with equal weights;

if  a>0 Supp(€*) = {a, min{b*(a), b}}

if  b<0 Supp(€") = {maz{a,a"(0)},0} .
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Justification of the Conjecture

1-

Let’s first consider the function H(z). We have H(z) = 652> + 10|z| + 4s
and H(z) = 2sell for the Double Reciprocal and the Double exponential
weight functions respectively where s is sign of z. [see Table 2.9 and Figure
2.14]. In both cases H(z) is positive for positive z, negative for negative z
and discontinous at z = 0. However we only need to consider its behaviour
in [0, co) and (—oo, 0] separately. As Table 2.9 shows, H'(z) = 12|z| + 10,
H"(z) = 12s for the Double Reciprocal and H'(z) = 2el*l H"(z) = 2sell
for the Double Exponential weight functions . In both cases, it is clear that
H'(z) is positive for all z and H"(z) is negative for negative z and positive
for positive z. Hence H(z) is concave increasing from —oo over (—oo, 0]
and H(z) convex increasing over [0, co) to +oo [see plots in Figure 2.14].
An upward sloping line with a negative intercept must cross H(z) twice in
[0, co) while one with a positive intercept must cross H(z) twice in (—oo, 0].
Note that under a design on a subset of [0, co) the line L(z) has a negative
intercept since E(Zw(Z)) > 0 and vice versa for a design with a support on
(—o0, 0]. Thus v(z) can only have two TP’s in these intervals. In the case
of z > 0 an upward sloping line with a negative intercept crossing twice
must cross from below then from above. So the first TP is a minimum, the
second a maximum. The converse holds for z < 0. So v(z) has only one
minimum TP and at most one maximum TP in [a,b]. As a result of this

there are two support points in which case the optimal weights are %—, %

As before the function of A(z) is increasing in both regions. As Table

(2.10) shows h'(z) = 1-— [giinﬁﬁ %i‘gﬁ} for the double reciprocal weight

function and A'(z) = 1 — e~?l for the double exponential weight function
(Wu 1988). It is clear that the ratio %ﬂ%% < 1, and that el*l < 1.

This shows that the derivative h'(z) is positive for both weight functions.

Interestingly w(z)/w'(z) is not increasing. Plots of w(z)/w'(z) and of h(z)
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are given in Figures (2.15) and (2.16), respectively. These characteristics
are summarized in Table (2.10). Since i(z) is increasing the support points

are as given above.

e Case 3: Z=|a,0] (¢ < 0,0 > 0)

Torsney & Musrati (1993) and Musrati(1992) showed that in this case some-

times there are two support points with optimal equal weights (%, %), some-
times three support points (including z = 0) with optimal weights given by
equation (1.9); and in each of these cases sometimes neither, or one or both

endpoints @, b are support points.

Group IV : Two Non-Binary Weight Functions

Now we are going to apply our theorem to the weight functions listed in Table
(2.11), namely w(z) = e* and w(z) = 2'. Ford et al. (1992) derived the D-
optimal designs for all Z = [a,b] C Z, for the above functions. However it is of
interest to see that the above approach also works here.

If we look at plots of these weight functions, they have a shape that is different
from the shape of the previously studied weight functions [Figure 2.17]. Also
G(Z) is no longer bounded for all Z, [Figure 2.18]. Moreover, unlike before,
there now exists a one to one relationship between the components of g(z), namely

g1 = v/w(z) and go = zy/w(z), which can be derived explicitly. These are

g2 = 2g:lng for w(z) = €
eIt , ,
g2 = g1 ° for w(z) = 2"

We consider these weight functions in turn:

= z=2Ing
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Hence,
g2 = zy/w(z)
= 2¢11ng.

If we compute the first and second derivatives of g, with respect to g, we

get the following:

g—g? = 2(ng, +1)
8292 _ 2
EZ Y
2
Since g1 > 0, the second derivative 55?2— > 0 which establishes the con-

vexity of go as a function of g;.

b- w(z) =2

From the definition of g(z) once again, we can write the following:

n o= 2 =z=gl
Hence,
9 = 21 = g''g: = g0""".
Further
g2 241, 2t 241, o
s = (et = (5
N 2/t . . \ 892 .
ow g, > 0, which means that the sign of P depends only on the sign
g1
of 2t
Further
5% gy 2(2+1t) -0 2 (-
oz~ @ o pnt 20
o2 :
Hence sign( g;) = sign(2 +1).
dgi

We now consider three distinct ranges of values of t.
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, d o
—Ift < Othen 24+t < 0 222 > 0 and ——g; < 0. The weight function
g1 991
w(z) = z* is concave increasing in the interval t < —2.
. d 0* .
-If -2 < &t < 0, 992 < 0 and g; > 0. The weight function
On dg1
w(z) = 2% is therefore convex decreasing in the interval —2 < ¢ < 0.
0 o*
It > 022 > 0and —972 > 0. The weight function w(z) = 2% is
dg1 Lh

convex increasing in the interval ¢ > 0.
Therefore
e (G(Z) is convex increasing for w(z) = exp(z}) £ C R
e (G(Z) is convex increasing for w(z) =25, t> 02 CR*
e (G(Z) is concave increasing for w(z) =24, t <0 2 C R*
e G(Z) is convex decreasing for w(z) =z', -2 <t<0Z CR?"

The boundedness of G(Z) requires the following conditions:

w(z) Z = [a,b]

2, —-2>t>0 a>0,b< o0
2t < —2 a>0,b< oo
24t >0 a>0,0< oo
exp(z) a > —0o,b < oo

We now show that D-optimal designs on any £ = [a,b] which guarantees that
G(Z) is bounded have similar structure to those of our non-binary weight func-
tions.

We consider again the function H(z), [Figure 2.19].

e For w(z) = exp(z), H(z) = H"(z) = —e % < 0, H'(z) = e * (see Table
(2.12)). This means that H(z) is concave increasing from —oco up to 0 with

an infinite derivative at z = —co .
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e For w(z) = 2%, H(z) = —tz™", H'(z) = t(t + 1)z~ and H"(2) =
—t(t+1)(t+2)z~ 3 Sofor t > 0 H(z) is concave increasing from —oo to
zero with an infinite derivative at z = 0 (see Table (2.12)) while for ¢ < —2,

H(z) is convex increasing from zero to co with a zero derivative at z =0 .

e For w(z) = 2%, —2 <t < 0, H(2) is convex decreasing.
For these weight functions, H(z), H'(z) and H"(z) functions are presented

in Table (2.12).

We can then argue that an upward sloping line can cross H(z) at most twice in
the cases w(z) = €7, z', t > 0; 2%, t < —2 . Hence v(z) has at most two TP’s, one
a maximal TP, one a minimal TP. Thus there can be only two support points on
any Z = [a,b] .

In the case w(z) = 2z, =2 < t < 0 (a > 0,b < co) an upward sloping line
crosses H(z) only once from below. So w(z) has one TP, a minimal TP. The
implication is again that there can be only two support points. These must be
the endpoints a and b. In fact the plot of G(Z) shows a convex decreasing curve.
The minimal central ellipse containing G(Z) can only touch it at its endpoints.

Determination of support points

We consider the functions h(z) and w(z)/w'(z).

e For w(z) = exp(z), h(z) = z+ 2 which means that /(z) is an increasing

linear function from —oo to co.

e For w(z) = 7', h(z) = z+ % = (42)z, which is linear increasing if ¢ > 0

ort < —2. If =2 <t <0, h(z) is decreasing.

w(z)/w'(z) and h(z) are plotted in Figure (2.20) and Figure (2.21), respectively

and they are summarized in Table (2.13).
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Implications for support points of the D-optimal design on Z = [a, b] are

w(z) Z = la,b] Supp(€")

2, -2<t<0 a>0b< oo {a, b}

2t < =2 o> 0,0 <o {a, min{b, v*(a)}}
28t >0 a>0,b< o0 {{maz{a,a*(b)}, b}
exp(z) a > —00,b < oo {maz{a,a*(b)}, b}

In fact since h(z) is linear in z there are explicit solutions for a*(b), b*(a), i.e. for

the solutions to the equations
ha) = b
a = h(b).
These are a*(0) = b — 2 for w(z) = exp(z) while for w(z) = z*, a*(b) = b/ (t + 2)

(if t > 0) and b*(a) = ta/(t + 2) (if £ < —2). These values are reported by Ford
et al. (1992).
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Figure 2.1: Group : Plot of G(Z) for Binary Weight Functions Z,, = (—o0, c0),
(Note: 1 represents A).
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Figure 2.2: Group III : Plot of G(Z) for Non-Binary Weight Functions on Z,,
(Note: 1 represents \).
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Chapter 3

Weighted Regression Model
Construction of D-optimal
Design :

The Case of the Three Parameter
Model

3.1 Model under consideration

We consider a binary regression model in which an observed value Y, depends
on a vector z of 2 design variables £ = (z1, zo) which are selected from a design
space X € R% The outcome Y is binary, i.e., response or non-response, with

probabilities
Pr(Y = 0|z) = 1 —n(z) Pr(Y = 1|z) = n(z).

Thus, ¥ ~ Bi(1l,n(z)) . We investigate the relationship between the response
probability 7(z) and the explanatory or design variables z = (1, ;) . We assume

that w(z) = F(a+ fiz1 + faxs), where F'(+) is a cumulative distribution, so this

82
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is a GLM under which the dependence of

7 on z = (x),xy) is through the linear function
z1 = a+ (iz + Sy
for unknown parameters «, 51, 8y . So

EY|z) = w(z) = Fla+ pioy + fazs) = F(z)

V(Y]z) = w(@)[1—n(z)]

3.2 Design for three parameter
Binary regression

| We now apply the theory of section (2.2) - (2.4) of Chapter 2 to this problem. The
material is similar to that of section (2.4.1). For the above model the information

matrix can be written as follows

1
. _ J*(z) o
I(x,0) = Flz)[l—F(z) | (o1, 32),
)

where f(z) = F'(z),
n = m(z)
= Fla+ o+ fats), 2 = a+ iz + fozs
— F(a)
and
a(z,0) = V(Viz)
= w(z)[1 — n(z)]
= o+ bz + Bows)[l — Flo+ iz + Fas)]

= F(z)[l - F(z)].
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Also

Mg =

_aF(Zl) % 6F(Z]_> %GF(zl) 82’1 g
821 Ocx ’ 821 8,81 821 aﬁQ

= f(zl),f(zl):ﬁhf(m)h]

1
= f (Zl) T
Zo
Now define the vector

1 [0F(z) 021 8F(21) 02 0F (21) 02|
“”/(}IM) 82:1 oo’ 821 aﬂl 0z 8,82

1
_ f(=) .
VE@) I —F@)] |

Clearly, z; plays a similar role as z = « + fx in the two parameter case. It is

agaln convenient to exploit this linear transformation. In the two parameter case

we had
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where a, b, ¢ are arbitrary constants to be chosen by the experimenter. They
define an extra variable z;. We have transformed to two new design variables
z1, Z9. Their design space will be the image of X under the transformation.

Denote this by Z . Hence

g(z) = Bu
1
_ f(zl) B
VFE@)1-F@) | 7

and
v o= B‘lg(g).

D-optimality is invariant under non-singular linear transformations of the design
space. So, as did Ford et al. (1992), we consider the D-optimal linear design

problem with design vectors

Q = \/’lU(Z})(l, 21, Zz)T (251, ZQ)T S Za

where w(z) = F(,q_{[zl(_flp)’(zl)—]’ which corresponds to a weighted linear regression

design problem with weight function w(z).

Therefore these nonlinear design problems transform into linear design problems
for weighted linear regression in 2; and z; with weight function
w(z) = 7@?{%’ where f(z,) = F'(z), the deunsity of F(-). A geometrical

approach to the construction of D- optimal designs is useful. A crucial role is

played in this by the induced design space

G = G(Z) = {gz = (91792,93)T o= w(zl):QZ =2 w(zl),ga = 32\/w(zl)> zc Z}~
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3.2.1 Characterization of the Optimal Design

Let £ be a design measure on Z. £* is D-optimal iff

g (21, ) M7H(E) g (zl) <3 £(2)=0

22

= 3 £'(z)>0.

D-optimal designs have as support points the points of contact between G and

the smallest ellipsoid centred on the origin containing G' (Silvey,1980).

Clearly G must be bounded . This will be the case if X is bounded. However as
seen in the 2-parameter case gy and gs are bounded V z; for the weight functions
considered. But clearly g3, and therefore G, will be unbounded if z; is unbounded.
So bounds are needed on z9 . Due to the invariance of the D- criterion to linear
transformations, without lost of generality we assume —1 < 2z, < 1. This implies

Z = Zy
Zw = {(z1, ) 1 —00 < 21 < o0 -1 < 2z < 1}

This is an analogue of Z,, in the two parameter case. It is the 'largest’ possible
Z we can consider.
We first consider opfimum designs for this space and later consider optimal de-

signs for certain subsets of it.

e Casel: Z=2,={(zn,2): -0 <z <oo, -—1<z <1).
We consider Z = Z, initially for the Beta, Gamma, Normal and Binary
weight functions. Plots of G(Z,) for these weight functions are given in
Figure (3.1), Figure (3.2) and Figure (3.3). It is immediately clear that any
ellipsoid centred on the origin containing G can only touch G on the upper
and lower ridges. Since the support points of the D-optimal design are the
points of contact between G and the smallest such ellipsoid we conclude

that D-optimal support points lie on these ridges and hence have zp, = =1.
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Further, G is symmetric about g3 = 0 (22 = 0). This leads to the con-
jecture that D-optimal supports are such that if observations are taken at

a particular value of z, then these are shared equally between zy = =1 .

(Sitter and Torsney, 1995a, 1995Db)

e Case2: Z={(z,2):a<25n<b -1<xn<l}(=27cCZ,). We

now consider the case z; € [a,b] so that

G=Gu = {g€ R : g = Vw(z) (L,21,20)7, a <z <b, =1 < 2 <1},

This is the case of a subset of G(Z,) which is a ’vertical’ (in gs-direction)
portion of G(Z,,). We will consider other subsets later. Again we can argue
that support points can only be on the ridges of G and we can restrict
attention to weights equally distributed between zo = &1, since G is still
symmetric about g5 = 0 (z5 = 0). Thus we can restrict attention to the
simplified designs considered for G,, with the proviso that the z;-values
must lie in [a,b] .

The next point is : “how many support points are there?”. It is well
established that (by Caratheodory’s theorem) if there are k parameters, a

D-optimal design has at least k and at most k(k + 1)/2 support points.

Since there are k = 3 parameters, there are at least 3 and at most 6 of
them.

Given the above argument that observations taken at z; are shared equally
between z, = —1 and z; = 1 the implication is that there are either 4
or 6 support points. That is, observations are taken at 2 or 3 values z;
(as in the case of z in the two parameter models). Considerations of the
plots of G in Figure (3.1), Figure (3.2) and Figure (3.3) for binary, beta,
normal, gamma weight functions suggests that the smallest central ellipsoid

will only touch G, at 4 points, whereas in the case of the Double Reciprocal
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and Double Exponential weight functions, there are potentially 6 points of
contact, including two at z; = 0. Excepting these two cases we assert that
for any a, b there are only four support points and hence observations are

taken at only two values of z;. i.e. the design is of the form

De De Pa Pd
where 2(p. + pq) = 1.

Let Supp(&*) denote these two z;-values and let a*, * be their values on

Zw. We further assert that

Supp(€*) = {a*,V*'} a<a"b>b
Supp(&*) = {maz{a, a*(0)},b} a<a",b <D
Supp(€*) = {a,min{b, b*(a)}} a>a,b>b"

Supp(€*) = {a,b} a>a*,b<D*

where b*(a) (along with p4, p,) maximises det(M (€)) with respect to d (over

d > a) where & is the design

DPe Da Dd Dd

and a*(b) (along with p.,py) maximises det(M(§)) with respect to ¢ (over

¢ < b) where £ is the design
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3.2.2 Justification of the Conjecture

To prove the above conjecture we need to confirm the requirements of the Equiv-
alence Theorem. This requires that the following necessary and sufficient condi-
tions (Kiefer and Wolfwitz, 1960) must be satisfied by an arbitrary design (21, z2)

if it is to D-optimal.

w(z)(1, 2y, 2)M 7€) 2z < 3V z,mneZd (3.2)

= 3 if &z, 2) >0 (3.3)

We only need to check this for zs = 41 and all relevant z;, in which case equations

(3.2) and (3.3) imply

'LU(Zl)Qx(Zl) S 3V (Zl,il) €z

= 3 if £z, £1) >0,
where Q% (z1) = (1, 2z, £1)M Y&)(1, 2, £1)T, a quadratic function. That is

v (z) = Q%(a1) -

< 4
'w(ZI) < 0V (ZL, I)EZ

= 0 if &(z, £1) > 0.

So for an optimal design we wish to see v*(z;) < 0 in the case
Z ={(z122) 10 <2z <b—1<2z <1}. To explore the shape of v*(2), we ana-

lyze the derivative of v* (). This can be written as follows :

dv*(z)
clz1

= L(n) - Hi(n), (3.4)

-3 ’U)! 21 . . . . . .
where Hy' (z) = —3w'lz) and L(z) is an increasing linear function of z, be-

[w(z1))?

cause the coefficient of z; is the value of the second diagonal element of the inverse

of the design matrix M (£) which is positive definitive.
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dv* (211)
le
when the line L(z;) crosses H3 (z1).

. . B . d’Ux(Zl)
The consequence is that = 0iff L(z) = H3'(z). Thatis, ———= = 0

dz;

The striking point is that H; (z;) o< H(z;) [Chapter 2, equation (2.3)]. There is
no difference in the shapes of these functions. Thus L(z;) can only cut H; (z)
at most three times as was the case for most of our weight functions in the two
parameter case.

Therefore we have the same conclusion here (for most of weight functions con-
sidered): namely, H3(—oo) = —oo, Hi'(+00) = +oo and Hj'(z) is concave

increasing up to some point and thereafter convex increasing.

It follows that v™(z;) has at most 3 turning points at Z,. Because L(z) first
crosses Hy(z1) from above, v™(z1) has only one minimum turning point for the
same reasons as before. Hence for these weight functions there are only two
support points along each horizontal edge identified by two distinct values of 2
with the weight at these shared equally between z; = £+1. These give a total of 4
support points. We now need to determine the two values of z; and the optimal

weights. In fact there is an explicit solution for these weights.

3.2.3 Definition of weights

We consider the specific design

Z94 -1 1 -1 1
i Pe Pe Pd Pd

where p., pg > 0 and 2(p, + pg) = 1. The design matrix is

M) = Zipgg.
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where
9, = Vw(z)(l, 2, 2)" 1=1,2,3,4.
Therefore,
2pcw(c) + 2ppw(d)  2epow(c) + 2dpgw(d) 0
M(p) = 2epew(c) + 2dpgw(d)  2¢*pow(c) + 2d%pgw(d) 0
0 0 2pew(c) + 2paw ()

The determinant is

[M(p)| = 2°(d—¢)* pew(c) paw(D) [pew(c) + paw(d)].

We need to choose c, d, p., pq to maximize the determinant of the design matrix
| M (p)|. We can find an explicit solution for the weights: First, we get the log of

the determinant function which is a concave function of M (-) and substitute

1

Pi = 53— Pc -

In|M(p) = 2In3+2In(d—c)+1np. + ln(% —pe) +Inw(e) + Inw(d)

+In[p.w(c) + (% — pe)w(d)]
dln |M(p)| _ 1 1 w(c) — w(d)
apc Pe (% - pc) pc'U)(C) -+ (% - pc)w(d>
i wlg—w(d)
pe(l = 2pc)  pew(e) + (5 — pe)w(d)

Further,

Oln | M (p)| if 1 — 4p, w(c) — w(d) ~ 0

pe pe(l=2pc)  pew(e) + (5 —pJw(d)
fuw(e) - w(d)] - pule) - 2w(d] - w®) = 0 (3.5)

p, = wlo) —2uw(d)]+ VIw(e) — 2w(d)]” + 3[w(c) — w(d)]w(d)
: 6w(c) — w(d)] '
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This is an explicit solution for the values of p, that maximize |M (p)|. Of the

above two roots, our solution is given by the first root! :

[wie) — 2w(d)] + V[w(e) — 2w(d)? + 3[w(c) — w(d)]w(d)

Pe (3.6)
6lw(c) — w(d)]
Hence py = 5 — pe.
Further we can express the solution for p. in terms of r = %, namely:
r—2)+/(r—22+3(r—-1
e = qa(1) = (r=2) ++/(r — 2)> + 3( ) (3.7)

6(r—1)

: 3.2.4 Determination of support points

| Still the design is

21 c ¢ d d

2y -1 1 -1 1

b De Pe Pd Pd

and

In[detM (p)] = 3In2+2In(d — ¢) +Inp, + In(py)

+Inw(c) + Inw(d) + In[p.aw(c) + (pa)w(d)], c < d{3.8)

We now view this as a function of four sub-functions of ¢, namely w(c), p.,
1
pa (since py is a function of ¢ through the condition p,; + pci) and A(e,d) =

3In2+ 21In(d — ¢), so that

In[detM (p)] = Alc,d)+Inp, + In(pa) + Inw(c) + Inw(d)

+ In[p.w(c) + (pa)w(d)], c<d (3.9)
= F(A(c,d), w(c),w(d), pe,pd) (3.10)
- F (3.11)

n fact, the use of the second root leads to negative weights which obviously violates the
constraints on the weights.
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Note that here we have not substituted for p; in terms of p.. If we do not make
this substitution we need to use a Lagrangian approach to determine the optimal
values of p,, ps. Some useful formulae emerge if we do this. Since p, + pg = —;—

the Lagrangian is
L(pcapd: )\) = F - ’\(pc + Pa — 1/2)

Having formed our total objective function we now determine the partial deriva-

tives of L(pe, pa, A) with respect to p., pg and A respectively.
aL(pr:)ptb )\) OF

. op
OL(pe,pus ) _ OF
Opa Opq
8L(p(:)pd7’\)
e ld ) o —1/2
£ (pe +pa—1/2)
Hence
OL(pe, pa, \) oOF
. oo, =
OL(pe, pa, A) = oF (3.12)
27 L = — = )
apd apd
To determine A we note
8_F_|_ B_F \( + )
De apc Pd 823(1 Al Pe T Pd
1
—_— '2_/\.
Consequently,
oF oF
A = 2lp. 2 4, 3.13
[ Ipe +pd8pd] (8.13)
Now
oF 1 w(c)
= —+ 3.14
apc De [pcw(c') + pdw(d)] ( )
or- _ 1, w(d) (3.15)

Apa Pa  [pew(c) + paw(d)]
Multiplying equations (3.14) and (3.15) by p. pq respectively, and summing the
resulting equations we can write

oF OF pew(c) paw(d)
em— +Ppas— = 1+ +1+ =3
P bpe o [pew(c) + paw(d)] [pew(c) + paw(d)]




CHAPTER 3. THREE PARAMETER CASE 94

which is constant. And from equation (3.13), A = 6.

Further
oF _ 1 4 w(c) _ 6
Ope pe  pow(c) + paw(d)
pcw(c)
= 14+ = 6p.
pcw(c) -+ pdw(d) b
pew(c) ,
= = 6p.— 1. 3.16
P T @ P (3.16)
Similarly,
oOF 1 v
oF 1w,
, Opa pa pew(c) + pgw(d)
. w{d)pq
= 1 = 6p,
T pewl() + paw(d@) P
widpe g, (3.17)

pew(c) + paw(d)
We note that we will be interested in derivatives of this function with respect
to ¢ and or d. To find the best four-point design on Z, we need to maximise
In[detM (p)] w.r.t. c and d or if we wish to find the best four point design subject

to ¢ (or d) being a support point we need to maximise F' w.r.t. d (or c).

or IF  0A(c,d) OF Ow(c) OF dp. OF dpg
dc ~ dAcd) oc  ow dc @ opoe apgoe O

Now we can substitute the values from equations (3.16) and (3.17) into equation

(3.18) to obtain the following :

oF oF  0A(c,d) oF odw(c) _Op. _Opg
dc  9A(c,d) e +c'i’w(c) dc +68c+686 (3:19)

From the definition of p,, pa (Pe + pg = 1/2), we can write the following

apc apd .

dc + de 0
Ope _ _Opa
de dc

S
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Therefore,
oF or  9A(c,d) aF Ow(c) O
oc = BAld dc T ow oc e’

oF 8A(c,d)+ aF ow(c)
0A(c,d) dc dw(c) Oc

_ 2w pew'(c)
T d-c (o " pal(d +paw(d
_ 2 w'(c [ pcw( ) ]

d— w(c) pew(c) + pgw(d)
_ - 6p.w'(c)

d—c¢ w(c)
_ 2u(0)+ (pw!(0)6) (d— )

© w(c)(d —c)

_ w'(c) 6p. 3 w(c) Fow(e
— w(e)(d —¢) [( °) Bpr’(c)] f (c) #0
_ pew'(c)6 e
 w(e)(d—c) I:d P )]

w(c) % Olln detM (£))

where ha(c) = c+ S paw (o) 5 x pew'(z)6 [d — hd(c)}.

Further,

OllndetM(p)] ; pew'(c) 6 A 2w(c) _
e S T -9l ) gl =°

ie. if d = he(c) [given w'(c)#0].

O[ln det M (p)] —2

( Note, if paw'(c) = 0 then e = # 0. Since W' (Zpe) = 0,
SO Zmae 18 DOt a solution of M%?—/M = 0, where 2,4z is the value of z; which
maximises w(z).)
Similarly,
or OF  0A(c,d) OF Ow(d) OFOp. OF Opqg

or X a g
3 " FAlcd) 04 owd od < op.od T opiod 020

Now we can substitute the values from equations (3.16) and (3.17) into equation
(3.20) to obtain the following :

or OF  0A(c,d) OF dw(d) Ope D4
ad ~ 9Aed) od T ow@ od T%ad "%

(3.21)
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From the definition of p., pas (pc + pg = 1/2), we can write the following

apd apd o
od T oa
Opa _  _Opa
od od
Therefore,
oF OF  0A(c, d) OF 0Ow(d) %

30 = Acd) o4 T ow@ ad T aal O

=0
OF 0A(c,d) , OF duw(d)
9A(c,d) 0d @ dw(d) ad

_ 2 w'(d) paw'(d)
» T d—c T w(@d " pele) + pesld)
| 2 w'(d) pew(c)
| d-c + w(d) [1 * pew(c) +pd'w(d)]
| 2 6pqw’(d)
= a=c” w(d)
_ 2u(d) + (paw!(d) ) (4 — o
w(d)(d — ¢)
@ e 7 L
— w(d)(d—c) [(d )+ dew’(d)] / (d) #0

- 'u)zzcg)u('c(idli) [hc(d) - C]

w(d O|ln det M

where  h(d) = d+ 3—19(1-1(—&%?) So [—gm—(—@l o« paw'(2) 6 [he(d) — ]
Further,

O|ln detM (p)] : paw'(d) 6 w(d)

_— = O _ — _— =

ad o= w(d)(d — ¢) [(d 2 3pdw’(d)] 0
ie. if d = h(d) [given w'(d)+#0].
In det

(Note, if pyw'(d) = 0 then Atn g?; 1(p)] = 2 . # 0. S0 (2)mas 1S DOt a s0-
lution of wﬁﬂ = 0, where zpm,, is the value of z; which maximises w(z) )

As a result of this, we can be interested in solving one or both of the equations

c = he(d) (3.22)

he(c) = d (3.23)
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Clearly, the function h.(d), hq(c) play the role of h(z) in the two parameter
case but that has now been replaced by a class of functions. It is useful to
study h(z;). The solution to these equations clearly depends on the nature of
hi(z1). We consider the same weight functions as in chapter two. For those that
are unimodal and stationary at their maximum the class of functions h;(z;) are
increasing both over z; < 24, and over z; > 2., with a vertical asymptote at
Zmaz- Plots in the case of the weight function for binary logistic regression are
shown in Figure (3.6). Further plots are revealed in Chapter 5, Figures (5.2),
(5.3), (5.4) and (5.5). This again is useful to us.

Now consider the single equation in z;
ha(21) = e

As in the previous chapter there is one solution to this equation say z; = zj (e) in
the range z; < Zme, and one, say z; = zj;(e), in the range 2z, > Zne,. Moreover
since w'(2} (e)) > 0 and w'(z};(e)) < 0 we have zj(e) < e < z5(e). In equations
(3.22) and (3.23) we have two versions of the above. Their joint solution, with
z1 < z, must be 2z = a*, z5 = 0¥, a* < b*, a*, b* being the support points
of the optimal four-point design on Z,, as defined in the conjectures above. Note

this means
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3.2.5 Examination of the conjectures against

the Equivalence Theorem

We can now consider checking these conjectures against the Equivalence Theorem.

Consider an arbitrary four point design:

pi o) p(br) plbe) p(be)

where p(b;1), p(by) > 0 are the optimal weights for by, by respectively. The infor-

mation matrix is

M(p) = Sipgg,

where
g, = w(z1:)(1, 214 Zzi)T 1=1,2,3,4
Therefore,
2p(by)w(bn) + 2p(bz)w(ba)  2b1p(br)w(by) + 2bap(ba)w(ba) 0

M(p) = 2b1p(b1 )w(br) + 202p(ba)w(bz)  263p(b1)w(b) + 2b3p(ba)w(ba) 0

0 0 © 2p(by )wlby) + 2p(be)w(bs)

p(0)w(b1) + plba)w(ba)  bip(b)w(by) + bap(ba)w(be) 0

Mp) = 2 bip(br)w(b) + bap(ba)w(be)  b2p(biyw(By) + bip(ba)w(ba) : 0 (3.24)

0 0 © o p(on)w(by) + p(b2)w(be)

Let the partition of M (p) in Equation (3.24) be represented by

S 0
M(p) = 2

0 &
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where S = p(b1)w(by) + p(b2)w(bs) and Sy is

So1r Soiz
So21 Soaz

Sy =

where Spii = p(b1)w(b) + p(b2)w(ba), Sorz = bip(bi)w(br) + bap(by)w(by) and

Soza = b20(b1)w(by) + b2p(by)w(bs). Therefore the inverse of the design matrix is

1 St oo
M™(p) = 5 0 ,
0 &'
from the definition of S,
Sozs __Saiz
50—1 — |Sol [Sol
—Sp21 Sou
{Sol [Sol
which yields,
Soz2 Sa12
1 [Sol |Sol
-1 - S 5
M=) = 5| -
0 0o St

If the above design is to be D-optimal on a set Z of values of z; for zp = +1,

then, as noted in section (3.2.2), we must have

v¥(z1) < 0 Vz, € Z

where




CHAPTER 3. THREE PARAMETER CASE 100

and now
1 oo (0
Qx(zl) = (5) 1 2 il —'Is‘g?l ‘Iggﬁ 0 2
0 0 &t +1
_ 1 Soz — 2218012 + 23S0 _}_
2 ‘SO 82
- E : {[bzp(b Yw(by) -+ b2p(bg)w(bs)]
o} ST = (Vv o) + ot
25\192, b1p( bl) (b1) + bap(ba)w(ba)] + 0202 [p(by)w(by) + p(bz)w(bQ)]}

2

21 21

1
* [p(bl)w(bl) + p(bz)w(bz)] }

Equivalently we must have
v(z) < 0

where v(z1) = Q(z) — 5 with Q(z1) = 2Q™(z). In fact v(z) must be

'lU(Zl)

maximised at by, by over Z, a maximum of zero since v(b;) = v(b2) = 0. So it

is convenient to consider the derivative of v(z) at by, by. We recall that

e — ' 6’0!)'(21)
( 1) Q( 1) + [’U)(Zl)]z

= LB(Zl) - Hs(Zl)

—6w'(z1)

where or L3(z1) = @'(2z1) and Hs(z) = TP

as follows:

Now we can explore L3(z;)

Ly(n) = Q'(=1)
—28p21 + 2215011
|0}

p(bl)p(bz)w(h)lw(bz)(bz Y ( = 2[bip(b1 )w(b1) + bap(ba)w(ba)] + 221 [p(b1)w(by) + P(bZ)W(bz)])-
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Therefore L(by) and L(bg) can be written as follows:

L3(bh1) =

La(by) =

Po0)pbz)w (b )lw(bszz mryel
p(bl)P(bz)w(bl)gw(bz)(bz —h)?
p(b1)pcba)w(h )Lul(bz)(bz —b1)
p(b1)pba)w(b )Q'w(bz)(!m ~by)

We reached the same result in chapter 2.

S0

Similarly,

(01 — b2)p(b2)w(b2)]

5 [(bz — b1)p(b1)w (b))

v'(bi) = Ls(br) — Hs(by)
_ 6w’ (b1)
- O
N —2 6’LU’(I)1)
— p(0)w(by) (b —by)  [w(by)]?
_ 1 [ —2 Gw’(bl)]
w(by) Lp(br) (b — 1)~ w(by)
- 6‘11)’([)1) —Z’I_U(bl) _
(w00 (b — by) [GP(bl)w,(bl) + (b bl)]
o 6w’ (by) 2w (by)
— [w(0)]2(be — by) [bQ ~ oo Gp(bl)w'(bl)}]
Gw’(bl)

= [bg — hp, (D7)

_ 6u'(bs)
= Ls(by) + ({522
. 2 6’&)’(!)2)
= Bl r = br) | [l
_ 1 [ 2 Gw’(bg)]
w(bz) Lp(ba) (b2 — 1)~ w(by)
B 6w’ (by) 2w(bs) 3
= [T~ b [y )
 Gw(h) 2ulby)
= W= ® " e
Gu’(bs)

= [, (b2) — by).

[w(ba)]?(by — b1)

O

101

2b1[7)(b1)w(bl) -+ p(!')-z)w(bg)] — 2[[)113[111 ]w(bl) + bgp(bg)w(%)])

5 (202[p(b1)w(b1) + p(b2)w(ba)] ~ 2[b1p{b1)w(b1) + bap(bz)w(bs)))
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Therefore

v'(b1) o< w!(br)[ba — hy, (by)]

v'(b) o< w'(b2)lw, (b2) — bi]

So the signs of v'(b;) © = 1, 2 depend on the signs of w'(b;) i = 1,2 and [ba—hy, (b1)],

[y, (b2) — b1]-
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3.2.6 Two Conditions for the Conjecture

We can prove our conjecture about the support points if the following two con-

ditions are satisfied:
(1) hy(z1) is increasing in z; over 2y < Zmag and 21 > Zpaes for each u.

(i) For all 21 < zpax, hy(21) decreases in u over u > z,a0, and for all 27 > Zmae
hy(z1) decreases in u over u < zpq,. We only need to consider these cases

since we are considering desugn intervals contaning z,qz.

We can only provide empirical evidence in support of (i). In figure (3.6) we show
plots of h,(z1) for the Logistic weight function for a range of values of u. It can
be seen that these functions are all increasing. It is also evident that (ii) is true.

However, we can provide analytical proof for this.

Proof of condition (ii). To make our proof easy, we write h,(z1) in the follow-

ing form :

_ w(z ) w(zx)
B T T S M

where gs3(r) is the expression encountered in equation (3.7).

From the above expression of h,(z), proving that gs{r) is increasing would be
sufficient to establish that h,(z1) is decreasing. In appendix A we prove that
gs(r) is increasing in 7.

Thus if w'(z1) > 0, i.e. 21 < Zmaz, Mu(21) is decreasing in r, while if 27 > 24, it
is increasing in r.

Finally, we note that w(u) is increasing in u over u < 2z, and decreasing over
w(z1)
w(u)
OVET 2] > Zmas- Hence (ii). O

U > Zmeg- Hence r = is decreasing in u over z; < Zyq. and increasing in w
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3.2.7 Confirmation of D-Optimality

Now we consider w, 1y to be the two distinct values of z; which produce the
support points of the conjectured optimal designs of the various cases of [a, b].
Our essential aim is to verify that v(z;) <0 on [a,b]. The properties of v(z) [see
(Chapter 2, Section (2.2.4))] confirm that v(z) < 0 on [a,d] if v'(u;) < 0 and
v'(ug) > 0.

The confirmation of D-optimality is similar that of the two parameter
case. However, it is worth to detaling some of the cases:

We now establish results confirming v'(u;) < 0, v'(uz) > 0 as appropriate under

two assumptions. We assume that
(i-) hyu(z) is increasing in z over z < Zpyge and z > Zpae, for each wu.

(ii-) For all z < Zmag, hu(2) decreases in u over u > Zpge and for all 2 > Z,00

h(z) decreases in u over u < Zpaq-

We assume observations are taken at z; = uy, us.

Case 1 :

® Uy = 4 > Zmag, Y2 = b > a . We show that v'(a) < 0, where

6w'(a)
w@FG— o)

Now since @ > Zpaw, we have w'(a) < 0. So v'(a) < 0 is true if

v'(a) [0 — hp(a)].

[b — hy(a)] > 0.

2w(a)

b—T = (b—a)— ——————
we) = OO G ew@
The right side of the equation is always positive, because a < b and

w'(a) < 0. Therefore v'(a) < 0.

o Uy = b < Zpax, Uy = a < b. We show that v'(b) > 0.

6w’ (b)

YO = WEEe

[ha (D) — a]
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Now w'(b) > 0. So v'(b) > 0 is true if [h(b) — a] > 0.

2w ()

ha(b)—a = (b—a)‘jr‘m

[1(D) — a] is always positive, because a < b and w'(b) > 0. Therefore

v'(ug) > 0.

Case 2: o' < a < Zpaw < b< b* Uy =a, Us=2"0

Because ¢ < Zmay and b > 2., we have w'(a) > 0 and w'(b) < 0.

o [b—hy(a)] < [b* — hya)] since b < b*.
[0° — hy(a)] < [0* — hy(a)] since h,(z1) decreases in u by (ii).
(0" — hy(a)] < [0* = hy(a*)] by (i)
[0* — hp(a)] < [0* —hp(a*)] =0
Therefore v'(z) < 0.

e [1,(b) —a] < [he(d) —a*] since a* < a .
[1a(D) — a*] < [he(b) — a*]  since h,(z1) decreases in u by (ii).
[figr () — a*] < [har(b*) —a*] by (i).
Therefore v'(z) > 0.

Case 5: 0" < a< 2Zpe <0 =20(a) (V*a)>b*) w1 = a, us = 0*(a)

Clearly v'(bs) = 0. First w'(a) > 0. We want v'(b;) = v'(a) to be negative.

So we need to the investigate the derivative of v'(a). Here
w'(a) A
V(b)) = v'(a) = ———[0"(a) = My (a)]
) w@PG-—a @
v(a) o w'{a)[b*(a) — hyp)(a)]
where w'(a) > 0 since a* < a < Zpq,. Therefore we need to argue that

D = 0*(a) = hyp@y(a) <0Va* < a < Zmo-

From Theorem (2.1) a = a* is the only solution to D = 0. Further, taking

G = Zmaz, We 8t My (z0,) (Zimae) = 00 and b*(2zq,) is finite. Therefore
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D < 0 at a = zpqe and hence over a* < a < Zpee. Lherefore

v'(b1) = v'(a) < 0. This design is also D-optimal for b > 0*(a).

Case 6: a" < a < zpee 0" <b<b(a) wy=a, uy=2%
First w'(a) > 0. Secondly [b — hy(a)] < 0*(a) — hy(a) < b*(a) — hy(a)(a).
From above b*(a) — ly~(a) < 0, so v'(a) < 0. Also we need to show that
v'(b) > 0. Because of b > zpaq, w'(b) < 0. We assumed b < b*(a) . If
heof(-) is an increasing function, h,(b) < h.(b*(a)) = a. Hence

he(b) — a < [he(b¥(a)) — a] = 0.

3.2.8 Some Empirical Results for D-optimal designs

The general objective has been to find empirically D-optimal designs when Z =
{(#z1,22) 1 a <z < b, =1 < 2z < 1} for all possible choices of a, b. In section
(3.2.7) we showed that two distinct values of z; produce the support points of the
conjectured optimal designs of the various cases of £ = [a,b]. Now we will show
empirically that the Equivalence Theorem is satisfied by our conjectured optimal
designs for all possible design intervals [a, b]. There are only four support points

and hence observations are taken at only two values of z;.

Casel: 2 = Z, = {(z21,20) 1 —00 <z <00 —1< 2 <1}
and Supp(p*) = {-b*, 0"}
In the case of symmetric weight functions w(z;), z;- support points are
+b* with zo = £1 and with equal weights of —14 where b* maximizes
{detM(p) = L*[w(D)’}. As did Sitter and Torsney (1995) we found that
the b* value that maximizes detM (p) is b = =1.22 for the logistic regression
model.
We checked for the optimality of this design, by checking the Equivalence
Theorem for z; € (—oo, 00), and 2z = +1. Figure (3.7) presents the vari-

ance function. The design is globally D-optimal on Z,,.




CHAPTER 3. THREE PARAMETER CASE 107

Case 2: Z = {(z1,2):a <2 <0, =1 <2, <1}
and Supp(p*) = {maz{a,a*(0)}, b} a < a*, b < b*
Results are very similar with the next case. So we only include empirical

results for that.

Case 3: Z = {(21,z9):0a<2<b —1< 2 <1}
and Supp(p*) = {a, min{b,b*(a)} a > a*, b > b*
Here we have to choose b*(a), pa, py for fixed a to maximize det{M (p)}

where

det(M(p)) = (b— a)*papyw(a)w(b)paw(a) + pyw(b)]

Recall that there is an explicit solution for the optimal weights p,, py given
any a, b for any weight function and assuming a design of the above form,

namely,

[2w(b) — w(a)] £ V[2w(b) — w(a)]* — 3[w(b) — w(a)|w(b)
2 % 3[w(b) — w(a)]

Pa =

So we could substitute for p, and p, in terms of a, b and maximize the
resultant function with respect to b. This was done using a simple search to

find 0*. However, a possible alternative to this is the following alternating

algorithm.
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Alternating Algorithm Steps :
1. a fized.

2. Choose b9 initial value for b.

3. Let pl, p,(JU) be the optimal weights for a, b®.

4. Keeping pc(,,o), pgﬂ) fized, use the Newton-Raphson Method to mazimize
'
\
l

det(M (p)) with respect to b. Let the solution be b{).

. Let piY, p,()l) be the optimal weights for a, b(1).

ot

6. Keeping pg), pl()l) fized use the Newton-Raphson Method to mazimize

det(M (p)) with respect to b (using b as initial approzimation). Let

solution be b2,

The optimal design for b = 3 and a = -1.22, —1.20, —1.10, —1.00, —0.90

- 1.10,1.20 were calculated using this alternating algorithm. Results
are summarized in Table (3.1). Relevant variance functions are plotted
in Figures (3.8) and (3.9). These show that the necessary and sufficient

condition of the equivalence theorem is satisfied.

Case4d: Z = {(z1,22):a< 2z <b — 1<z <1}
and Supp(p*) = {a,b} a > a*, b<b*
For this z;-interval, end points are support points, and the equivalence
theorem is satisfied in the examples considered: a = —1, b=1; a = —0.75,

b=0.75 a = —0.50, b = 0.50. See Figure (3.10).
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Figure 3.1: Plots of 3-D G(Z) for the Logistic Weight Function with dif-
ferent orientations obtained by considering different permutations of axes,
gi = y/w(zi), g2 = Zly/w(zi), B = z2y/w(zijand -20 < zx <20, -1 <z2<1
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(cl) Logistic (b) Skewed Logistic m = 2/3 (C) Skewed Logistic m
(d) Skewed Logistic m = 3 (s) Generalized Binary 1= 0.6 (f) Generalized Binary 1
(g) Generalized Binary 1:3 (h) Complementary log-log (1) Probit

Figure 3.2: Plots of 3-D G(Z) for Group I-binary weight functions.
9i = Vw(z\), oo = ziy/w{zi), g3 = z2y/w{zl) and -20 < zx< 20, -1 <z2< 1
(Note : I represents the parameter A of the Generalized Binary case).
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(<) Beta,a = 3, 6= 3

(C) Beta,a = 0.9, 5 - 0.3 (d) Normai

(g) Gamma ¢ = 0.8 (f) Gamma g = 1.7

Figure 3.3: 3-D plots of G(Z) for Group III: Density weight functions.
91 = v M 20> 92 = Ziy/w(zi), g3 = Z2y/w{z").

(a represents a, b represents 0, g represents 7 and interval —1 < 21,22 < Ijinterval —20 < 2j < 20, —1 < 22 < 1; and interval
0 < 21 < 20, —1 < 22 < 1 are used to draw the plots for Beta, Normal and Gamma weight functions respectively).
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(a) Double Reciprocal (b) Double Exponential

Figure 3.4: 3-D plots of G(Z) for Group II; Double Reciprocal & Double Exponen-
tial Binary weight functions and g\ = yjw(z{), 22 — z1\/w(zi), g3 = z2\/w(zi)
and 20< 2z <20, _1<z2< 1
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(@) w(z) = ez

(©) w(z)=zl,t< -2, (t=-2.2)

113

Wm A

() w(z) =z ,t>0, (t=03)

d) w(z) =z, 2<t<0, {t = —0.7)

Figure 3.5: 3-D plots of G(Z) for Group IV weight functions and
9i = \AHzi), g2 = zi“w(zi), (z = z2\Uw{z\)| details are:
w(z) = e2—45 < z| <03, < z2 < L;

w(z) =z > 0, = 03), 0< zIl < I,d < z2< 1

w(z) =zl t <2, (t = 22), 0.1< Z< 3, 4 <z2 < I and

w(z) =1zI,—2<¢t<0,t= —07), 01< 4 <6, - <zX< L
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6 4 2 0 4
Z= 6:6/0.001

(a) Plotofhy(z) function for the Logistic Weight Func-
tion, with y=0.0,0.05,0.1,0.15,0.20,0.25,0.30,0.35,0.40

and number of parameter k is 3.

hy(z)

4

(b) 3-D Plots of ny(z) for the Logistic Weight Function, ny(z) =

z+3 205~y N~ 195 and ~2< * <2

Figure 3.6: Two Different plots of 4y(z) for the Logistic Weight Function.
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Three parameter case: Logistic weight Function,
z) € [a, o) for fixed a > —b*
optimal b py(a) and p,(b) value.
fixed a value b*(a) moa) Da (D)

-1.22291 1.222905 || 0.250000 0.250000
-1.20000 1.236604 || 0.251243 0.248757
-1.10000 1.298286 | 0.256628 0.243372
-1.00000 1.362882 || 0.261888 0.238112
-0.90000 1.430150 | 0.266959 00.233041
-0.80000 1.499816 || 0.271783 0.228217
-0.70000 1.571598 [l 0.276319 0.223681
-0.60000 1.645228 || 0.280539 0.219461
-0.50000 1.720466 || 0.284429 0.215571
-0.40000 1.797109 || 0.287988 0.212012
-0.30000 1.874993 || 0.291222 0.208778
-0.20000 1.953995 || 0.294149 0.205851
-0.10000 2.034021 || 0.296786 0.203214

0 2.115009 || 0.299156 0.200844
0.10000 2.196914 || 0.301281 0.198719
0.20000 2.279705 || 0.303185 0.196815
0.30000 2.363363 || 0.304889 0.195111
0.40000 2.447872 || 0.306412 0.193588
0.50000 2.533219 || 0.307775 0.192225
0.60000 2.619389 || 0.308995 0.191005
0.70000 2.706368 | 0.310085 0.189915
0.80000 2.794137 | 0.311062 0.188938
0.90000 2.882678 | 0.311936 0.188064
1.10000 -1.298286 || 0.256628 0.243372
1.20000 -1.236604 || 0.251243 0.248757

Table 3.1: For the Logistic weight function: D-optimal support points and
weights.
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25

vz

-5 4 -3 -2 é) 2 3 4 5

Figure 3.7: Plot of the variance function for the global symmetric D-optimal
four-point design on 2 = 2W= {(z12£2) :-00 < Zi < 00 —1 < 72 < 1} for the
logistic weight function. Note this plot is only for z? = +1.
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(@ (b) ©

(d) © (f)

2

(€3] (h) @)

Figure 3.8:
Some plots of the variance function, V(z[), under an optimal design on
Z = {(21,22) %a<Zi<bZ = £1}, a>a* b> b*a) for the logistic weight
function, (k —3).
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(@ (b) (©)

(d) (e) )

Figure 3.9: Some plots of the variance function, V(*i), under an optimal design
on Z = {(21,22) ma < Zi <bZ = *1} for the logistic weight function (k = 3)
ca >a* b> b*a) in plots (a) to (g); b < b* a < a*(b) in plots (h), (i).
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4

()

(b) ©

Figure 3.10: Some plots of the variance function, V(*i), of the D-optimal design

onthe Z = {(M,=):a<Z\<b =
function where a, b are support points.

+1 a > a* b < b* for the logistic weight



Chapter 4

A design region for 2y, 29 in the
form of a polygon : The Case of
the Three Parameter Model

4.1 Bounded design spaces

We first transformed A to the new design space, Z, with two new design variables
z1 = a+ (2 + Paxa, 22 = a + bz + cxy where a, b, ¢ are arbitrary constants to
be chosen by the experimenter. We also considered the further transformation
Z — G = G(Z). This set G needs to be bounded and then we have the
characterisation that D-optimal designs have as support points the points of
contact between G and the smallest ellipsoid centered on the origin containing
G (Silvey,1980). A minimum requirement for G to be bounded is that z; be
bounded. Without loss of generality, we assumed that —1 < 25 < 1. Bounds are
actually not necessary on 2.

So initially, we assumed X such that, Z = Z,,, G, = G(Z,), where Z,, is the
widest possible design space. Then we considered the case Z = {(z,22) : a <
z1 < b, —1 < 2z < 1} so that z; is potentially bounded. This is the case of a

subset of G, which is a 'vertical’ (in the gs-direction) portion of Gy,.
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zl

o1 1

Figure 4.1: Diagram illustrating the transformation from A design space to Z
design space, which creates a polygon

Now we consider other possibilities. The most likely scenario is that A is the set
of pairs (21, 23), satisfying ¢; < z; < d;, i = 1,2, so that it is rectangular. Thus
X o= {(z1,22) 1 & < 2; < d, 1=1,2}. This transforms A, into a polygon Z
in the variables z; = a + fz1 + g, 29 = a + bxy + cxy. It is a polygon with at
most 6 sides [See Figure 4.1]. The number of sides will depend on the choice of
z and z;. For example if 2y =21 (ifa =y =0, #=1) and 2z, = x5 then Z is a
rectangle. Of course the definition of z; is fixed, but 2o is a free choice for us and
the number of sides of the polygon may depend on this choice.

Other possibilities are that a bounded set A may be defined by other linear
constraints. For example there may be limits on z;+x5 if 21, 25 are the component
values of a mixture of two drugs. These could lead to quadritalerals, pentagons
or hexagons as the form of Z.
We consider simple cases first. A general point is that if Z is bounded, finite
limits will be imposed on z and z;, say e¢; < z < f;, + = 1,2. Thus Z is
contained in the rectangle {(z1,2) : e; < z < f; 1 = 1,2}. Again without

loss of generality we assume e; = —1, fo = 1. Hence G = G(Z) C G(Z,). In
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N2
2

the following examples we take w(z) to be the binary logistic regression weight

function.

4.1.1 Examples

Example 4.1. First we recall the globel D-optimal design on G, for Logistic

regression in the case k = 3. This 4s :

215 a* ot b b
s  —1 1 -1 1

L1 11
Dy 4 4 4 4

where af = —1.22 and b* = 1.22 are the support points. The design region for
21, %2 has the form of a infinite rectangle. We note that this remains the optimal
design for any finite rectangle Z = {(21,2), A <z < B, -1 <z <1} ¥
A< =122, B>1.22 e.g. A=—-B =23. See Figure 4.2

T T T T T
2
- e L LELE TR |
71 -1.22-1.22 1123 122
73N B I
(-1.221) L (122)
1 Rt i
i ;
H !
H !
- \
of+ ¥ : q 2
H '
- ]
i !
- ]
L Py
ST I L e B IR A RSN 1B BRI L L Dy
©1.22-1) D)
I EEROT, fe e Eei e e _
-3 1 1 1
=3 -2 -1 0 1 2 3

Figure 4.2: Design Region for the case of
two design variables using the Logistic weight
function.
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z2 z2

-1 ]

S T . — e
a2 al 0 bl b2 b -a 0 a b

(a) Z is quadriteral (b) Z is parallelogram

Figure 4.3:

Example 4.2. Now suppose Z 1is the quadrilateral with vertices

(a1, —1), (ag, 1), (b, —1), (b2, 1) [See Figure 4.3 a]. The above design is still opti-
mal if ay,as < —1.22 and by, by > 1.22. So we want to consider a; and/or a; >
—1.22 and/or by and/or by > 1.22. Consider the case by = —by = —b, ay = —ay =
—a.

If these 4 corners are the support points the symmetry implies that the structure

of the design should be as follows:

Di Do Do Da Db
where py, po > 0, 2py + 2py = 1, and p, = 5 — py [See, Figure 4.3 b]. The

information matric is

M) = Sipgg

where
9, = Vwly = (Lanm)  i=1,234
Therefore,
2ppw (b) + 2pew(a) 0 0
M) = 0 2p0%w (b) + 2p.a*w(a) 2pbw(b) + 2p.aw(a)
0 2ppbw(b) + 2paw(a)  2pyw(b) + 2p,w(a)
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The determinant is

[ME] = 2°(b+a)’pypow(b) wla) [pw(d) +pow(a)

We need to choose py, to mazimise det{ M (&)}. This is ezactly the same as
|M(&)| in chapter 3, section 3.2.3 . Hence we have the same explicit solution for

the weights:

)~ 2w(e)] + /0~ 2@ 30w
o= Gw(®) —wl) D

Hence p, = 5 — pp. Now our question is : Is this design D-optimal on 2

or G? We need to check the Equivalence Theorem. Given the minimal ellipsoid
characterisation of D-optimalty we only need to check along the edges of Z. Each
edge either corresponds to zo = 1 (as before) or can be viewed as defining 2
as a linear function of z1, say z3 = mz; + ¢, for some range of values of z,, say

A < z1 < B. Hence we are interested in checking for A < zy < B the value of
V(z) = ¢"M7 (g

where QT = Vw(z1)(1, z1, S(z1)), S(z1) = mz + ¢ and & is the conjectured
optimal design. We require V(z1) < 3 for A < z < B.

For Example 4.2 we checked the equivalence theorem for the following value(s)
of band a :

b=2,a=122,1,0.75, 0.50, 0.25, 0, —0.25, —0.50

Complete plots consist of possibly 4 distinct V(2 )-curves. In Figure (4.10) we
show plots depicting the four relevant curves simultaneously. It is clear that in
some cases these curves are partly above 3, and hence the Equivalence theorem
is not satisfied. Only for b = 2, a = 0 is the four-corner’design optimal [See
Figure 4.14].

Further Example 4.1. In Figure (4.11) we show 6 other quadrilateral choices
for Z. Optimal weights under the designs with the four corners as support points
are given in Table (4.1). These are not optimal for Z; see Figure ({.12). For

these designs since z, = 0 there is an explicit solution for the optimal weights as

abowve.
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Now a question of interest is ¢ What is the optimal design when the *four-

corner’ design is not optimal?’.

4.2 Determination of design using an algorithm

Initially, we use a class of algorithms ((Torsney, 1983) and (Torsney and Alah-
madi,1992)) to find these optimal designs. The algorithm is indexed by a function
which depends on derivatives and a free parameter (say §) for a constrained max-
imisation problem which requires the calculation of an optimizing probability
distribution. Such algorithms are needed since in general there is no explicit so-
lution for optimal designs or weights.

First we must establish conditions of optimality. It helps to consider the following

general problems, of which the design problem is an example.
7
Problem 4.1 (P1). Mazimise a criterion ®(p) subject to the constraints Z p; =
J=1
lLandp; 20 .
Problem 4.2 (P2). Mazimise ¥(X) over the polygon whose vertices are the
points G(v1), G(v), -+ ,G(v;), where G(-) is a given one to one function and
V = {vi,ve, - ,u;} is a known set of vectors (or matrices) vertices of fized

dimension. This is solve (P1) for:

J
® = W{E[GM)]}, X = E,[G(v)] = ZG('UJ-).

4.2.1 Optimality Conditions

We concentrate on Problem (P2) and define optimality conditions in terms of

point to point directional derivatives.
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4.2.2 Directional Derivatives
Let

f(X’ }/: C) = @{(1 - C)X + CY'}

af(X, Y. ¢) T VLY
I %ﬁz[\l{n—g)z\ + (Y} — U (X)]

Fy(X,7)
Fy(X,Y) is known as the directional derivative of ¥(-} at X in the direction of
Y, [(Whittle 1973)].

LetF; = Fe{X,G(v;)}. We call F; a vertex directional derivative of ¥(-) at X.
If W(.) is differentiable, then so is the function ®(p) = U{E,[G(v)]|} and

J
F?’ = dj“zpidi,
=1

8¢

where d; = oy

4.2.3 Condition for Local Optimality

If W(-) is differentiable at X = E,{G(v)}, then ¥(X) is a local maximum of V()

in the feasible region of problem (P2) if,

: = 0 if pi>0
F = Fu{X,G(v;)} (4.2)
< 0 af pi=0
If W(-) is concave on its feasible region then the first order stationary conditions

(4.2) is both necessary and sufficient for a solution to problem (P2). Indeed this

is the General Equivalence Theorem in optimal design.

4.2.4 A Class of Algorithms

Problem (P1) has a distinctive set of constraints, which are that the variables
P1, D2, - p; must be positive and sum to 1. An iteration which preserves these

and has respectable properties is

pitt = i, o) /sz'. di”, ) (4.3)
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where al_g.") = ng’; |lp=p, while f(d, 6) satisfies the following conditions:

(i) f(d, 6)>0,
(ii) f(d, d) > 0 is strictly increasing in d for some set of d-values, say § > 0,
(iii) the variable § is a free parameter.
Properties of the iteration:
a- p" is always feasible.

b~ Fu{p™, pr*+V} > 0 with equality when the d; corresponding to nonzero Pj

is equal (in which case pl'*+1) = p(),

¢ - Let vy, vq,...v; be the vertices of the feasible region of (P1) and V be the
induced design space. Let supp(p) = {v; € V: p; > 0 } denote the support

of the distribution p. Under the above iteration supp(p*+Y) C supp(p)).

d - An iterate pi") is a fixed point of the iteration if the derivatives 9¢/ apf’

corresponding (r)
ponding to nonzero p;

; are all equal. This is a necessary but not a

sufficient condition for p to solve (P1).
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4.2.5 Results of the algorithm and explicit solution for
the weights for this new design
The optimal support points found using this algorithm in all cases of Example

4.2 are summarized in Table 4.2 and 4.3.

We note the following:

i - Support points consist of two corners and one point on each of two opposite

sides. [See Figure 4.4]

ii - The designs are symmetric as is to be expected given the symmetry of w(z)

and of Z about z; = 0. In fact the designs are of the following form:
214 —b —a a b
§ = Z9; —d —c ¢ d ) (44)
Di g P P g

where 1 = 1,--- , 4,

iii- It turns out that we can find an explicit solution for the weights, ¢ and
p given a, b, ¢, d: For the above design the determinant |A/(£)| has the
following form (Fedorov 1972 page 83-84):

M) = qu(b)p*w?(a)[detVigs]?
+ ¢*w*(D)pw(a)[detV;z4)?
+ @w?(0)pw(a)[det Viz)?

+ qu (D) p*w?(a)[detVazq)?

where Vias, Viay, Visa and Visy are all possible 3 x 3 minor matrices of
the above design. For the above design [detVi;x]* = 4(bc — ad)® V 1,7, k.

Therefore, the determinant is

M) = 8(be — ad)*qu(b)pw(a)lqw(b) + pw(a)]
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z2

% Support points

Figure 4.4: Support point for optimal design

Note that, as a function of g, p, this is independent of c,d. In fact we have

exactly the same explicit solution as earlier for the weights for given a,b :
namely

[w(b) —2w(a)] + y/[w(b) —2w(@)]2+ 3[u(5) —w(a)]w(a)
A 6[ie(5) —u;(a)]

iv - We note again that to confirm D-optimality of the above designs, we only
need to check the equivalence theorem along the four edges of the paral-
lelograms. We have again produced ’four curve’ plots of V(z|) in Figure

(4.13), Figure (4.14) and Figure (4.15).

4.2.6 Conjectured D-optimal designs for polygonal Z

The first observation above supports the following assertion for any polygonal

Z = [4,B\.

Theorem 4.1. Suppose design space Z is a polygon and that the function

H(z\) = t— " 1". H(—oc) = —e0, H(00) = 00 and H(z) is concave increasing
wiz)\

up to some point and thereafter is convex increasing. Then, there can be at most

2 support points along any edge of design space Z.
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4.2.7 Proof

First, we note that if an edge is vertical, support points can only be at its end-
points since the minimal ellipsoid centered on the origin containing Z could not
touch the edge internally.

Any other edge must be defined by a linear equation, say 2o = S(z1) = mz; +c¢
over some range of values A < z; < B. Then if a design £* is to be D-optimal on
Z, the equivalence theorem must be satisfied along this edge.

According to the theorem the design £* is D-optimal iff

1
w(z)(1, 21, S(z))M7H(EY) 2 < 3V A<zun<B (4.5)

S(Zl)
= 3 if £(z1, S(z1)) >0 (4.6)

where S(z1) = mz +c.

Let
Vi) = w(z)1, z1, S(z))M )L, 21, S(z1)7
V(ize) = w(z)Q(z1)

where Q(z) = (1, z1, S(2))M (") (1, z1, S(z1))*. So the Equivalence theorem

is satisfied ift
V(z) < 3 V A<z <B
= 3 if  &(z1,5(z)) > 0.
This is true iff
v(z1) <€ 0 V A< <B
= 0 if  &(z1,S8(z1)) > 0.

where v(z1) = 3Q(z1) — 555- So for an optimal design we wish to see

v(z1) <0V z € Z =[A,B]. To explore the shape of v(z;) we analyze the
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derivative of v(z). This can be written as follows:

1 —w'(z1)

V) = 596 (e

= L(Zl) - H3(21)

where H3(z) = fw“(’;%}z) and L(z;) = 1Q'(%). Now

Q(z) = (1, 21, S(z))MHE, 21, S(z1))"
= [(0, z1, mz) + (1, 0, )M (E)[(0, z1, mz) + (1, 0, o))"
= [21(0, 1, m) + (1, 0, )]M 1 (&)[2.(0, 1, m) + (1, 0, ¢)]*

= (az + DM (E)(am +D)"
where a = (0, 1, m)T and b= (1, 0, ¢)7. Hence @(z;) is the quadratic function:
Q(zn) = a"M'(E)az} +2(a" M)z + 0 M ()

Since the coefficient of 22, (e’ M~1(¢)a), is positive, L(z,) is an increasing line.
As a result, v'(z;) = 0 iff L(z) = Hs(z). That is, v'(21) = 0 when the line
L(z) crosses Hs(z).

A question of interest is “How many times can an increasing line L(z)
cross the function Hs(z)?”

Recall that, H3(z1) o< H(z) [chapter 2 equation 2.3 and chapter 3, equation 3.3].
The similarity between these H functions leads to similar conclusions, namely
that H3(—o00) = —c0, Hs(0o) = co and Hj is concave increasing up t0 zmee (o1
On[—00, Zmas]) then convex increasing if H(z) possesses these properties. So, as
for the two-parameter case, v(z;) can have, over the real line, at most 3 TP’s.
Moreover since L(z;) first crosses Hy from above the first TP, and hence the
third, are maximal TP’s, leaving the middle one as a minimal TP. Clearly, any
number of these or none of them may occur in a particular line segment [A,B].
The various possibilities are depicted in Figure 4.16. These confirm that v(z)

can be zero at at most two points in [A, B].
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Since v(z;) = 0 at support points the theorem is proved.

We do not have recommendations to make about where support points might lie
along an edge except that they can only be at endpoints of vertical edges. Also
the minimal ellipsoid characterization may shed light on where support points
lie.

Clearly it would be possible to make progress in special cases like the symmetrical
Z of Example 4.2. There must be a solution in these cases along the lines of
Theorem (2.2).

However we settle for reporting results in some asymmetrical examples. These

further support the theorem.

4.3 Some More Examples

Example 4.3. Now suppose Z is the trapezium with vertices (—2, —1),(—1,1),
(1,1), (2,-1). [See Figure 4.5]. Again first consider the design with the four

corners as support points, namely

21i —b —a a b

£ = Zo; —d —c¢c ¢ d

bi g p P g
whereb=2,a=1,d=—-1,¢c=1andi=1,---,4. We note that the symmetry
about zy = 0 justifies assuming two pairs of equal weights. Correspondingly we

again have an explicit solution for these weights given a,b,c,d. The determinant

|M (&) is
(M) = 8(d— c)*qw(b)pw(a)[a’pw(a) + b*qu(b)].

In this case |M(£)|, as a function of ¢ and p, is independent of ¢, d. So the

optimal weights depend only on a and b. The solution is

(2w (b) — 2a%w(a)] + /[0*w(b) — 202w (a)]? + 3[b?w(b) — a?w(a)]a?w(a)
6[0*w(b) — a*w(a)] '

In fact the solution is identical to that in equation 6.6 (chapter 3, q(r)) but with

_ [Pu)]
" o)
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Figure 4.5: Trapezium design space I

This design proves to be non-optimal for Z. Therefore we found, the D-optimal
design using the algorithm in section (f.2). This is summai'ized in Table (4-4)¢
Additionally, we can see relevant variance functions in Figure 4-17. There are

two support points along three edges, including two vertices.

Example 4.4. Further, we will consider another trapezium with vertices (—2, —0.5)
(—2,0.5) (2,-1) (2,1). [See Figure 4-dJ. A symmetric design with the four cor-

ners as support points

Zu a a b b"
£ = zd -¢c ¢ —d d

| Pi P P ] aJ

where a = —2, b = 2, differently from the above example, ¢ = 0.5, d = 1 and

i=1e0m4.

Note that the structure of the design is similar to the above. Hence there is
an explicit solution for the optimal weights given the support points. First the

determinant function for the design is

IME) = 8(a —b)pgw(@)w(b)[cw(a)p + d2iss

The optimal solution is

[c2iv(a) —2d2w(b)] + \J[c2w(a) —2cPw(b)]2+ 3 [c2iu(a) —d2w(b)]d2w(b)
6/c2iv(a) —d2w(b)]



CHAPTER 4 THREE PARAMETER CASE: POLYGON 134

2,1

i

(-2,0.5) i

0.5 o |
T
1
!
1 — L
i
i
0.5 1
(-2,-0.5)

1

-2 0
Figure 4.6: Trapezium design space II
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Figure 4.7: An arbitrary Polygon, 1

This now depends on ¢ and d In fact the solution is again identical to that in
equation (3.6) [Chap 3, ¢g(r)1 but with r = c'lvy;aﬂ' Again the resultant design
is not optimal for Z. Using the algorithm we find the D-optimal design. This is
summarized in Table (4.4). Also, the variance function can be seen from Figure
(4.18). Results are similar to Example (4.1). There are two support points on

the bounds of z2 (or; there are two support points on the top and bottom edge).

Example 4.5. Now suppose Z is the  polygon with vertices
(-2,-1), (-1,-1), (1,1/4), (-1,1), (-2,1), (-3,3/4) [See Figure 4.7]. For this

example we found the D-optimal design using the algorithm.. We summarize the
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H /4,3/4)
"V e —

(-4,-1/4): /
1/4

Figure 4.8: An arbitrary Polygon, 2

results in Table (4-4)- There are three support points with equal weights. Two of
them are on the vertices and one of them lies on the top horizontal edge. Along
the six edges it can be seen from the Figure (4-19) that, the equivalence theorem, is
satisfied only a, these points. There are two edges with, no support points, there
are three edges with one and one edge with two. Of cour'se, vertices are a, the end

of two lines. So there is at most two support points along any edge.

Example 4.6. In this example, we consider the design space Z to be the polygon
with vertices (-1, -1), (1/2,0), (-1/4, 3/4), (-2,1), (-3, 3/4), (-4,1/4) [See Fig-
ure 4-8]- 171 the same way as in the preceding example we applied the algorithm to
find the optimal design. The D-optimal design has four support points at vertices.
See Table 4-4 an(t Figure 4-20. There is at most two support points along any

edge, including vertices.

Example 4.7. Lastly, we consider any polygon containing the supports on Zw
then the global optimal design must still be optimal and this only has support,

points along the horizontal edges of Z, two on each of these; [See Figure 4-9]-
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Figure 4.9: Polygon containing supports on 2,
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Three parameter case: Logistic weight function,
polygon design space
optimal four-corner design with optimal weights
VERTICES OF DESIGN REGION || SUPPORT POINTS || D-OPTIMAL WEIGHTS
1 1 1 1
Z1 -2 -1 1 2 2 23 Py
29 -1 -1 1 1
-2.0000 -1.0000 0.214346
-1.0000 -1.0000 0.285654
1.0000  1.0000 0.285654
2.0000 1.0000 0.214346
1 1 1 1
z1 -2 -1 1 2 1 2y i
29 1 T -1 -1
-2.0000  1.0000 0.214346
-1.0000  1.0000 0.285654
1.0000 -1.0000 0.285654
2.0000 -1.0000 0.214346
1 1 1 1
z1 -2 -1 1 2 2 29 Dy
%o -1 1 -11
-2.0000 -1.0000 0.214346
-1.0000  1.0000 0.285654
1.0000  -1.0000 0.285654
2.0000  1.0000 0.214346
1 1 1 1
Z1 -2 -1 1 2 b4l Zy ;i
29 1 -1 1 -1
-2.0000  1.0000 0.214346
-1.0000 -1.0000 0.285654
1.0000  1.0000 0.285654
2.0000 -1.0000 0.214346
1 1 1 1
21 -2 -1 1 2 21 Zy Pi
Z9 -1 1 1 -1
-2.0000 -~1.0000 0.291533
~-1.0000  1.0000 0.208467
1.0000  1.0000 0.208467
2.0000 -1.0000 0.291533
1 1 1 1
21 -2 -1 1 2 1 Z Dy
29 1 -1 -1 1
-2.0000  1.0000 0.291533
-1.0000 -1.0000 0.208467
1.0000 -1.0000 0.208467
2.0000  1.0000 0.291533

Table 4.1:

137

For Logistic Regression model D-optimal support points and weights.
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Three parameter case: For Logistic weight Function, a design region for z,z;

in the form of a parellogram: D-optimal weights and support points.

VERTICES OF DESIGN REGION SUPPORT POINTS D-CPTIMAL WEIGHTS VARIANCE FUNCTION
1 1 11
n -2 =12 12 2 z # p; V(z1)
22 -1 -1 1 1
-1.2000 -1.0000 0.2509 3.0000
1.2275  0.5172 0.2492 3.0000
-1.2275 -0.5172 0.2492 3.0000
1.2000  1.0000 0.2509 3.0000
1 1 11
Z1 -2 =1 1 2 21 22 Py V(Zl)
2 -1 -1 11
-1.0000 -1.0000 0.2622 3.0000
1.3773  0.5821 0.2378 3.0000
-1.3773 -0.5821 0.2378 3.0000
1.0000  1.0000 0.2622 3.0000
1 1 1 1
21 -2 =075 075 2 Z] z2 Dj V(Zl)
29 -1 -1 1 1
-0.7500 -1.0000 0.2730 3.0000
1.5040  0.6393 0.2270 3.0000
-1.5040 -0.6393 0.2270 3.0000
0.7500  1.0000 0.2730 3.0000
1 1 1 1
2 -2 —-05 05 2 21 Za Dy V(z1)
22 -1 -1 1 1
-0.5000 -1.0000 0.2838 3.0000
1.7004  0.7603 0.2162 3.0000
-1.7004 -0.7603 0.2162 3.0000
0.5000  1.0000 0.2838 3.0000

Table 4.2: For Logistic weight function D-optimal support points and weights.




CHAPTER 4. THREE PARAMETER CASE: POLYGON

139

Three parameter case: For Logistic weight Function, a design region for 2,2
in the form of a parellogram: D-optimal weights and support points.
VERTICES OF DESIGN DESIGN || SUPPORT POINTS || D-OPTIMAL WEIGHTS || VARIANCE FUNCTION
1 1 1 1
21 -2 —-0.25 025 2 z1 29 i V(z1)
2z -1 -1 T 1
-0.2500 -1.0000 0.2916 3.0000
1.8767  0.8904 0.2085 3.0000
-1.8767 -0.8904 0.2085 3.0000
0.2500  1.0000 0.2916 3.0000
1 1 1 1
2] -2 0 0 2 z1 29 Pi V(z1)
zy -1 -1 1 1
-2.0000 -1.0000 0.2040 3.0000
0 -1.0000 0.2959 3.0000
0 1.0000 0.2959 3.0000
2.0000  1.0000 0.2040 3.0000
1 1 1 1
z] -2 025 —-025 2 21 Zo Dj V(z1)
Z -1 -1 1 1
-1.8767 -1.0000 0.2085 3.0000
0.2500 -1.0000 0.2916 3.0000
-0.2500  1.0000 0.2916 3.0000
1.8767  1.0000 0.2085 3.0000
1 1 1 1
21 -2 05 -05 2 Z1 Z3 D; V(z1)
2 -1 -1 1 1
-1.7604 -1.0000 0.2162 3.0000
0.5000 -1.0000 0.2838 3.0000
-0.5000  1.0000 0.2838 3.0000
1.7004  1.0000 0.2162 3.0000

Table 4.3: For Logistic weight function D-optimal support points and weights.
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Three parameter case: For Logistic weight Function, a design region for zj,zo

in the form of a polygon: D-optimal weights and support points.

VERTICES OF DESIGN REGION

SUPPORT POINTS

D-0PTIMAL WEIGHTS

VARIANCE FUNGTION

1 1 1 1

Z1 —2 —1 1 2 21 zZ P V(Zl)
22 -1 1 1 -1
-1.2000 1.0000 0.2258 3.0000
1.2000 1.0000 0.2258 3.0000
-1.1363  -1.0000 0.2741 3.0000
1.1363 -1.0000 0.2741 3.0000
1 1 1 1
z1 -2 =2 2 2 21 E Py V{z1)
29 —-05 056 -1 1
-1.2829  0.5896 0.2040 3.0000
1.2829 0.9104 0.2960 3.0600
-1.2829  -0.5896 0.2040 3.0000
1.2829 -0.9104 0.2960 3.0000
1 1 1 1 1 1
1 —32 ~-1 1 -1 -2 -3 zZ1 Z32 Py V(Zl)
D -1 -1 1/4 1 1 3/4
-1.0000  -1.0000 0.3333 3.0000
1.0000 0.2500 0.3333 3.0000
-1.3000  1.0000 0.3333 3.0000
1 1 1 1 1 1
z1 -1 1/2 -1/4 -2 -3 -4 z1 z2 i V(z1)
z2 -1 0 3/4 1 3/4 1/4
-1.9500  1.0000 0.2894 3.0000
-0.2500  0.7500 0.1127 3.0000
0.5000 0.0000 0.2718 3.0000
-1.0000 -1.0000 0.3260 3.0000

Table 4.4: The trapezium and arbitrary polygon 1 and polygon 2. D-optimal
support points and weights for logistic weight function.
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Figure 4.10: To check ’four cormner’ design Variance Function for different a
value 6 = 2.
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Figure 4.11: Design Region for the case of two design variables (Z\,Zz2) using the
Logistic weight function in the form of parallelogram.
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Figure 4.12: Plots of the Variance function for 6 different parallelograms.
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Figure 4.13: Plots of the variance function for a D-optimal design on a parallel-
ogram and Design space for the Logistic weight function.
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Figure 4.14: Plots of the variance function for a D-optimal design on a parallel-
ogram and Design space for the Logistic weight function.
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Figure 4.15: Plots of the variance function for a D-optimal design on a parallel-
ogram and Design space for the Logistic weight function.
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Figure 4.16: Possible shapes for the variance function V(z;) under an optimal

design.
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Figure 4.17: Plot of the variance function for a D-optimal design on arbitrary
trapezium I for the logistic weight function.
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Figure 4.18: Plot of the variance function for a D-optimal design on arbitrary
trapezium II for the logistic weight function.
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Figure 4.19: Plot of the variance function for a D-optimal design on arbitrary
polygon 1 for the logistic weight function.
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Figure 4.20: Plot of the variance function for a D-optimal design on arbitrary
polygon 2 for the logistic weight function.



Chapter 5

Construction of D-optimal
Design For Multiple Parameter
Weighted Regression Model

5.1 Multiparameter Binary Regression

In multiple binary regression, we generally consider a model in which an observed
value Y depends on a vector of z of [ explanatory variables £ = (zy,---,z)
which are selected from a design space X € R'. The outcome is binary, with

probabilities
Pr(V =0z) = 1—7n(z) Pr(Y = 1|z) = ().

Namely, Y ~ Bi(l,7(z)). We deal with the relationship between the response
probability 7(z) and the explanatory or design variables z = (zy, -+ ,z;) . We
assume 7(z) = F(a+ frz1+- -+ Fiz), where F(-) is a cumulative distribution.
So this is a GLM under which the dependence of w on z = (21, -+, 2;) is through

the linear function
z21 = a+ b+ 4+ Py
for unknown parameters o, 81, , 06 . So

E(Y|g) = n(z) = Fla+ e+ + Biw)

V(Viz) = =(z)[1—n(z)]




CHAPTER 5. MULTIPARAMETER CASE 151

5.2 Design for k£ parameter Binary Regression

We now apply the theory of section 2.2-2.4 of Chapter 2 and section 3.2 of Chapter

3 to the multiparameter case. The informaton matrix for the above model is

1
_ f(21) 1 “
@9 = 5o Fea) e,

where f(z) = F'(z) and

n = =n(z)

= Fla+ fiz+- -+ fa), 72 = a+fixy+ -+ O

= F(a)
and
a(z,0) = V(Y]z)
= (@)l - n(z)]
= Fla+ i+ -+ fz)[l — Fla+ by + - + Buz)]
= F(z)[1 - F(z)].
Also

) (OF(2) 0 OF(%) 02 OF(z) aﬂ !
g — a *

9z o’ 0z OB 0z OB

T
= f(Z1), f(z1).’171, T :f(zl)a:l:]

1

T1

= f(z)
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Now let the vector

L [0F(z2) 02 0F(21) 020 0F ()  OF(2) 02|
Ve | 0z Ba’ 0z 0B, om ERT

S
I

f(z) Zy
VE(z1)[l — F(z)]

z
Clearly, z; plays a similar role as z = a+ fz and 2, = o+ f121 + f239 in the two
, parameter case and three parameter case respectively.

' We now consider the transformation

1 1 0 0 - 0 1 \
2 a B Bo - [ z
Z2 = by b3z D3z -+ bap Tg
\ 2 bn b bz - by \ @
1
T
= B
Ty
where k =11 and by, ¢ = 3,---,1 j =1,--+ , k are arbitrary constants to be
chosen by the experimenter. So we have defined further variables z;, 7 = 2,--- ,[.
We have transformed to [ new design variables z), -,z . Their design space

will be the image of A under the transformation. Denote this by 2 . Hence

g(z) = By

f(z1) Z1
V()1 - F(z)]

Z
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and

v = Blg(2).
We consider the D-optimal linear design problem with design vectors

Q - V 'U)(Zl)(l, 21,0 aZl)T (ZI:“. 7ZZ)T & Z

f2(z1)

where w(z;) = o= FED] which corresponds to a weighted linear regression

design problem with weight function w(z).

With this transformation the design problem is equivalent to a weighted linear
f2(z1)

(z)[1 = F(z]’

f(z1) = F'(z), is the density of F'(-). Again it is useful to define the induced

where

design problem with weight function w(z) = I

design space

G = G(Z) = {&: (!]1, T ,gk)T ‘0= '\/’w(zl), g;i = Zj—l\/w(zl):
j=2,--,k, z€Z}.

5.3 Characterization of the Optimal Design

Let &%, be a design measure on Z. £* is D-optimal iff

F M)z < & £(2)=0 (5.1)

=k £(z)>0

where QT(g) = \/—M(l, 21,29, 7)), and k=1 + 1.

We once again resort to Silvey’s minimal ellipsoid concept encountered in the
previous sections. As we said earlier, G must be bounded. For most of our
weight functions gy = Vw(z1), g2 = 21 \/M are bounded for all z; but

g9; = Zj__l'\/m J =3, -,k will be unbounded if z; is not restricted to a finite
set. Without loss of generality we assume —1 < z; <1, j = 2,---,[. So the

largest possible G is

G =062 = {g= (o0 0" 0= Volm), 6= 5/ula),

—co<zp<oo —1<z <1 j:2,---,k}.
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We again wish to establish D—optimal designs for all possible design intervals for

z1. So also of interest is

G =Gy = {gz = (g1, ,gk)T tg1 = yVw(z), gi = Zj—l\/w(zz)a

Z]G[G,Z)], _1SZJS1 ‘7:27,]‘}

From this geometrical consideration it is clear that such an ellipsoid will only pass
through boundary points of G. This intersection can only occur at points where
zj = x1 7 =2,---,0. It was possible to see this in the three parameter case.
Since (G was a vertical surface, an ellipsoid centered at the origin which contains

G could only make contact with it on the upper or lower ridges.

Case1: Z=2, ={(z - ,z5):—c0o<z <00, —1<z% <1, j=2---,1}
We consider Z = 7, initially for the Binary and Beta, Gamma, Normal

weight functions.

The design space G induced by this rectangle is then an [ dimensional
hyper-planar object perpendicular to the (g, ¢2) plane which tracks the
trajectory defined by (g1, g2) over the range of z;, and G is a closed region.
The smallest central ellipsoid can only intersect G on its boundaries. Thus

the D-optimal design must have support points on the boundary of Z.

Case 2: Z =2y ={(z21 - ,2):a<zn<h -1<z <1 j=2,--- 1}

We now consider the case z; € [a,b] so that

G =Gy = {(91,"' ,!Jk)T = Vw(z1) g5 = %101

nelad), —1<z <1, j:Z,--~,lz}.

This is the case of a subset of G(Z,,), a ’vertical’ portion of G(Z). We have
the same argument as in Case 1. Since G, is also a vertical hyper-planar
object, the smallest ellipsoid, centred on the origin, containing it can only
touch it on its boundaries and thus the D-optimal design must have support

point on the boundary of Z,,.
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The next point is How many support points are there? We claim for Case
2 that for many of our weight functions we will take observations at only two
values of z; and that one optimal design consist of dividing the total weight at
each of these values equally across the 28=? combinations z; = +1 j =2, , L.

Thus for any interval [a, ] of z;-values we are arguing that the design is of the

form
7 1 2 3 ... M N N+1 N+2 ... L
215 c Cc C C d d d v d
20 -1 1 —1 ... 1 =1 1 -1 1
£ =
2z —1 1 =1 -+« 1 —1 1 -1 1
Di Pe Pe Pe v+ Pe Pd Da Pa  ct Pa )

where 2872(p, +pg) = 1 and M = 282 N =262 4 1 and [ = 2F~1.
Let £* denote the D-optimal design and let Supp(£*) denote the two values of 2
at which observations are taken under £*. Further, let a*, b* be their values on

Zw. We further assert that

Supp(§) = {a" 0"} a<a, 0>V
Supp(&*) = {maz{a, a*()},0} a < a*,b < b
Supp(&*) = {a,min{d, 0*(a)}} a>a',b>b"

Supp(€*) = {a,b} a>a*b<b*

where 0*(a) (along with pg, p,) maximises det(M(&)) with respect to d (over
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d > a) where & is the design

1 12 3 - M N
214 a a a a d
22 -1 1 -1 -+ 1 =1
& =
o -1 1 -1 .-+ 1 -1
Di Po Pa Pa - Pa DPd

: where £ is the design

) 12 3 - M N
214 c ¢ ¢ c b
Z9; -1 1 -1 1 -1
f =
2y -1 1 -1 1 -1
P; Pe Pe P - Pc Do

18

w(z1)(1, 21, >Zl)j\/—[‘1(§)

IA

N+1 N4+2
d d
1 —1
1 -1
Dd Pd

N+1 N+2
b b
1 -1
1 —1
Po Dy

5.4 Justification of the Conjecture

k'V 2z, ,m€Z

Pa

156

and a*(b) (along with p., py) maximises det(M (£)) with respect to ¢ (over ¢ < b)

To prove the above conjecture we need to check the Equivalence theorem. Accord-

ing to this a necessary and sufficent condition for a design £(z) to be D-optimal

(5.2)
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We only need to check this for z; = &1 for j = 2,--- 1, in which case equation

(5.2) and (5.3) imply
w(z])Qx(zl) < k¥ _Z_EZX
=k i £&2)>0

where Z* ={z2€ Z:z;,=%1, j=2,--- ,i}. iec.

k.

w(z)

v (z) = @ (1) — 0V zeZz*

= 0 if £z >0

where Q*(z1) = (1, z1, £1,--- ,£)MY(é)(1, 2, +1---,£1)7T, a quadratic
function. So for an optimal design we wish to see v*(z;) < 0 in the case

Z={(z, m)ra<y <b-1<z<1,§=2,---,1}

Now
dv™(z
dZ(1 > = L(z1) — Hy(21), (5.4)
where H(z1) = . i (":1()']21) and L(z) is an increasing linear function of z; because

the coeflicient of z; is the value of the second diagonal element of the inverse of

d X
the design matrix M(£) which is positive definitive. Consequently, Ud (21) -0
21
- % . d‘UX(Zl) .
iff L(z) = H;5(z1). That is, s 0 when the line L(z;) crosses H(z).
1

The important point is that HX(z1) & H3 (z1) o< H(z;) (chapter 2 equation 2.3
and chapter 3). There is no difference in the shapes of these functions. Thus
L(z) can only cut HX(z;) at most three times in the case for most of our weight
functions in the two and three parameter case.

So we have the same conclusion here : HX(—o00) = —o0, HX(4+00) = +oco and
H(z) is concave increasing up to some point and thereafter convex increasing.
It follows that v*(z,) has at most 3 turning points on Z,,. Further, because L(z)
first crosses HX(z) from above, v™(z;) has only one minimum turning point

for the same reasons as before. Hence for these weight functions there are only
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two support points on each of the boundary hyperplanes z; = +1, j =2,--+ ,{,
being identified by two distinct values of z; with the weight at these split equally
between z; = £1 7 = 2,---,{. We now need to determine these two values of z;

and the optimal weights. In fact there is an explicit solution for these weights.

5.5 Definition of Weights

We consider a design of the form :

7 1 2 3 -« M N N+1 N+2 .- L\
21 a a a a b b b b
294 —1 1 -1 - 1 -1 1 —1 1
21 -1 1 -1 1 -1 1 —1 1

\ Pi Pa DPa Pa Pa Do Dy P Do

under which weight p, is assigned to each of the 2(*2) design points with z; = wu,
zp=+1j=2,---,u=aband M =252 N =2"24+1and L =251 So p,,
py > 0 and 2672 (p, +p,) = 1.

The design matrix is

ok—1

M(p) = Zplﬁzgj

where
T . k—1
Q?'. = lw(zli)(]-:zli:z%;”' 7zli> 1_1)27“‘ 72 .
Therefore,
pow(a) -+ ppuw(b) apaw(a) + bpyw(d) 0 e 0
apaw(a) + bppw(b)  UPpaw(a) + b2pyw(b) 0 e 0
M(p) = 202 0 0 paw(a) +pyw(b) - 0

0 0 0 o+ paw(a) + ppw(b)

The determinant is

M@ = 24 Pppw(ayw(b) (b~ a)paw(a) + pro(B)]*2.
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We need to choose a, b, p,, py to maximize the determinant of M(p). We can
find an explicit solution for the weights: First, we get the log of the determinant

function which is a concave function of M():

In{M(p)| = k(k—2)In2+1Inp, +1np, + Inw(a)+ nwd) + 21n(b — a)

+(k — 2) In[p,w(a) + pyw(b)]

Substituting for p, from

25N (pe+p) = 1 = Py = ﬁ — Pa;
the determinant function becomes
In|M(p)] = k(k—2)In2+Inp,+ 111(5(%_7) — Do) +Inw(a) + Inw(b) + 21n(b — a)
+05 = 2) Inlpeaw(e) + (g — paJu (8]
81n |M(p)| 1 L (k — 2)[w(a) — w(b)]
T B g ope [pew(e) + (guky — pa)u)]
Further,
Oln | M (p)| —0 i 1 1 1 n (k — 2)[w(1a) —w(b)] —0
Opa Pa  sum —Pa [Paw(a) + (Gamm — Pa)w (D))

— k22 Dw(a) — wd)]p*(a) + 2472 [(k — Dw(a) — (k + Dw(b)pe + wd) = 0

(5.5)
B2 3w (a) — wO)pa) — [(5 — Dew(@) — (6 + Du®)lp. — sgmgw®) = 0
(5.6)

A+ AP + 4625w (a) — w(b)]w(D)
Pa = 2202w (a) — w(b)]

where

A = [(k—-1Dw(a) — (k+ Dw(d).
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This is an explicit solution for the values of p, that maximize |M(p)|. Of the
above two roots our solution is given by the first root because the second root

leads to negative weights, namely:

A+ /{AY + 46202 (a) — w(b)]w(b)

P 252®2)[w(a) = w(b)] (5.7)
where
A = [(k—=1Dw(a) — (k+ Dw(b)].
Tt S
Nen P, = —Nj — Da-
: . w(a)
Further we can express the solution for p, in terms of r = r(z) = 0)’ namely:
w
(k—1)(r(z) 1) = 2+ (k= 1)%(r(z) — 1)* + dr(2)
o = q(r = . (5.8
Da Q(,’ (Z)) 2]62(k_2)(7"(2) _ 1) ( )
5.6 Determination of support points
Still the design is
i 1 2 3 -~ M N N+1 N+2 --- L
21 a a a -+ a b b b <o b
Zo; -1 1 -1 -+ 1 -1 1 - -1
Z1; -1 1 -1 - 1 -1 1 —1 1
b Pa DPo Pa ' Pa o Dy Do Tt Do
where M = 2872 N =22 4+ 1 and L = 2%~! and
In|M(p)] = k(k—2)In2+2Wn(b—a)+Inp, + Inp, + Inw(a) + lnw(d)

+(k = 2) In[p,w(a) + pyw(b)] a < b.
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We now view this as a function of four sub-functions of a, namely w(a), pa, 2y

and A(a,b) = k(k—2)In2+ 21n(b — a), so that

In|M(p)] = A(a,b)+1np, +Inp, +Inw(a) + Inw(d)
+(k — 2) In[p,w(a) + ppw(b)] a<b
= F(A(a,b),w(a), w(b),pa, ps)

= F

Note that here we have not substituted for p, in terms of p,. If we do not make
this substitution we need to use a Lagrangian approach to determine the optimal
values of p, py. Some useful formulae emerge if we do this. Since p, +p, = B

the Lagrangian is

1
L(ptnpb} A) = F—)\(pm_l_pb_ W)

Having formed our total objective function we now determine the partial deriva-
tives of L{pq, py, A) with respect to p, p, and A respectively.
8L(pa.7pb7 }‘) aF

= — A 5.9
Opa Opa (5.9)
6L(pa> Dy, ’)\) or
— = e = ) 5.10
Opy Opy (5.10)
aL(pa) Do, )\) 1
Hence
IL(pa,PbA) 0 SF
apa- : S Opa (5.12)
aL(paupb:A) — 0 _8_F — \
m apy ’
To determine A we note
ar oFr
o=+ p=— = Ap -+ 5.13
Pag - ) o (o + 1) (5.13)
1
Consequently,
OF oF
A o= 26-9[p, —| 5.15
[p p -+ Do s (5.15)
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Now
or 1 (k —2)w(a)
Ore ~ pe " pewl@ + pw)] (5:16)
oF 1 (k—2u() :
wm  m [paw(a) + pyw(D)] (5.17)

Multiplying equations (5.16) and (5.17) by p, py respectively, and summing the

resulting equations we can write

or oF (k = 2)pow(a) k= 2)ppw(b)
P e +pb8po b [pow(a) + pyw(D)] T [paw(a) + pyw(b)] ’

which is constant. And from equation (5.15), A = 2(--2)k,

Further
OF 1 (k — 2)w(a)
- L = 2D,
e Pa paw(a’) + pbw(b)
(k — 2)pow(a) (k—2)
- = 2 k a
Paw(a) + pyw(b) !
(k — 2)paw(a) (k—2)
o — 2 k @ — 1 5.18
pen(a) + pw(0) ’ o
Similarly,
o8 _ 1, (2ul) gy
8pb Dy pl)w(b) +pbw(b)
(k — 2)w(b)py (k=2)
= 14 =2 k
puw(b) + pyw (b) "
(k= 2)w(b)py _ z(k—z)kpb 1 (5.19)

pyw(b) + pyw(b)
We note that we will be interested in derivatives of this function with respect
to a and/or b. To find the best four-point design on Z,, we need to maximise
Inf{detM (p)] w.r.t. e and b or if we wish to find the best four point design subject

to a (or b) being a support point we need to maximise F' w.r.t. b (or a).

oF OF  0A(a,b) OF ow(a) OF Op, OF dpy

da  8A(a,b) Oa dw(a) Ba  Op, Da  Op Ba

(5.20)

Now we can substitute the values from equations (5.18) and (5.19) into equation
(5.20) to obtain the following :

OF  OF 0A(ab)  OF duw(a)

or - _ 4 O
da 0A(a,b) da ow(a) Oa

. ap .
(k=2 270 4 9k—25 =00 (5 91
+ k 90 + 94 (5.21)
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1\ (-2
From the definition of p,, mp (pa +pp = (5) ), we can write the following

apa apb _
da + da 0

Opa  _  _Om
da Oa

Therefore,

oOF oF 8/'1((1,, b) oF a'IU(G) 8pﬂ, (k—2) (k—2
= = —ta k— )y A
Ja = GA(ab) da | we) fa T 9al’ 2777k

N

-~
=0

_ 0A(a,b) OF Ow(a)

| B da + Ow(a) Oa

| (@) (= 2pav'(a)
w(a)  pew(a)+ pyw(b)
=2 w'(a) (k — 2)paw(a)
N + [1 + pew(a) + pg,'w(b)]

 b—a

b—a 'u()(a))
~2  2"Vp w'(a)
b—a ' w(a)
—2w(a) + (paw'(a) 2-2k) (b — a)
)w(a)(b - a)
w'(a) 22k p,
w(a) ((b —)a) [( —o) - 2= kp,w'(a)
. wl(a) (k-2 kpq w(a) . !
— w(a)(b—a) {( —a) - 2k*3kpaw’(a)] if wi(a)#0
_ paw'(a) 262k
= Tw@(b=a) [b = ()

2w(a)

] if w'(a)#£0

where  Rya) = a+ %Te%%m_ So Qmﬁ& x  pew'(2) 262k [b — hy(a)]
Further,
OllndetM(p)] _ pew’(a) 2-2k w(a) B

da =0 o= w(a)(b— a) [ —a) - 2(’“—3)kpaw’(a)} =0

ie. if b= m(a) [given w'(a)#0].

(Note, if p,w'(a) = 0, Q%ﬂl = = # 0. S0, Zmae is not a solution of

amdgsz 2l — 0, where zmqq is the value of z; that maximises w(z1).
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Similarly,

OF OF  9A(a,b)

OF dw(b)

OF Op. , OF opy

8  0A(a,b) b

" ow(d) b

(5.22)

apa ob 8pb ab

Now we can substitute the values from equations (5.18) and (5.19) into equation

(5.20) to obtain the following :

% o Towp) a T2 kgt ky 62
From the definition of p,, py (Pa + ps = %1_—2)), we can write the following
apa apb _
b " 0
Opa _Om
b b
Therefore,
OF  0A(a,b) OF Ow(b) 3pb (k=2)7. _ o(k-2)
W - o towm e a2 ko2 UM
=0
_ 0A(a,b) 4 OF dw(b)
N b ow(b) 0Ob
2 W) (- 2)pyw'(b)
 b—a  w()  paw(a) + pyw(b)
_ 2 (b)[ 1+ k= 2)paw(a) ]
b — w(b) pow(a) + pyw(b)

2 205=2) ey’ (b)
T b—oa w(b)
_2w(b) + (pew'(6) 2%2k) (b — a)
a w(b)(b— a)
_ w'(b)(pew' (b) 2~ 2)k) 2w(b) e
= [ + 2(,c_z)kmw,(b)] if w'(b)#0

w016 )
s (b) 262k
STOIG= [1(8) =]

w(b)
263 pyw' (D)

he(b) = b+

where

_ 0wy,

w(b)

—'"""’"2’6—3Acp,,w'(b)] if w(B)£0

O[ln detM (£)]

i (k—2) _
o7, x  pyw'(2) 2572k R, (b)
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Further,
d[ln det M (p)] _ pyw' (b) 2(6=2) w(D)
TPl — -
ob of v(b)(b - a) [(b @) 2(’““3)kpbw’(b)] 0
e if b= ho(b) [given w'(b) 0]
(Note, if pyw'(b) = 0, M%ZMM = (';E—a # 0. S0, Zmaz is not a solution of
OllndetM(p)] 0)
ob o

As a result of this, we can be interested in solving one or both of the equations

a = he(b) (5.24)

hy(e) = b (5.25)

Clearly, the function h, (D), 7 (a) play the role of h(z) in the two parameter case
but that has now been replaced by a class of functions as in the three parameter
case. It is useful to study hi(z;). The solutions to these equations clearly depend
on the nature of h,(z1). We consider the same weight functions as in chapter two.
Plots in the case of the weight function for binary logistic regression are shown
in Figures (5.2), (5.3), (5.4) and (5.5). This again is useful to us.

Now consider the single equation in z
]Zz2 (Zl) = e,

As in the previous chapter there is one solution to this equation say z; = zj (e) in
the range 21 < Zme, and one, say z; = zj;(e), in the range z; > 2z,q,. Moreover
since w'(z}(e)) > 0 and w'(25(e)) < 0 we have z}(e) < e < zj;(e). In equations
5.24 and 5.25 we have two versions of the above. Their joint solution with z; < zy,
must be 27 = a*, z3 = 0%, a" < 0¥, a*, b* being the support points of the optimal

28~ design on Z,, as defined in the conjectures above. Note that this means

(a*) = b, nb*) = o and 2} = z1(25), 25 = z5(=)).
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5.7 Examination of the conjecture against the
equivalence theorem

We now begin to check the conjectures in section (5.3) against the equivalence

theorem. We consider an arbitrary & parameter design as follows:

(i 1 2 3 . M N N+l Nt2 - L
21; ¢ a a -+ a b b b e b
-1 1 -1 -1 1 -1 1
-1 1 —1 1 -1 1 -l 1

\ P Pe Pu Pa P B B D By )

where p,, pp > 0 are the optimal weights for a and b and M = 2F=2 N = 26~2 1.1

and L = 2571, The design matrix is
2k-1

M(p) = ) migg;
i

where
g‘i = w(zli)(l;ziia 294, " )Zli)T 1= 1: 27 o 72k_1
pew(a) + pyw(b) apew(a) + bpyw(h) 0 . 0
apaw(a) + bppw(b) bipaw(a) + b2pmw(h) 0 e 0
]\/f(p) — 2(’““2) 0 0 paw(a) -+ pbw(b) T 0 (5.26)
6 0 0 . paw(a) + pyw(b)
The design matrix can partioned as follows:
Sy 0
M(p) = 202 | 7
0 &
Here & is the 2 x 2 matrix
Soi1 So12 pow(a) +pyw(b)  ap,w(a) + bpyw(b)

Soz1 Soae apaw(a) + bpyw(b) b2pow(a) + b?pyw(d)
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From the definition of &y,

Soza _ Saie
30—1 - [Sol [So]
=So21 So11
|Sol |Sol
where the determinant of &y is :
1So| = [paw(a) + pyw(b)][paw(a)a® + pyw(b)b?] — [paw(a)a + pyw(b)]”

= papytw(a)w(b) (b — a).

Further, &, = ¢/ where I is the (k — 2) x (k — 2) identity matrix and ¢ =

paw(a) + pyw(b).

Therefore
So2a So1
& T 000 0
Soo1 S
" 1S0] I:So'(lli 0 0 - 0
1 0 0 Ly 0
M=p) = iy :
k—2 .
790 0 0 0 Lo
\ 0 o 0 0 --- &

If the above design is to be D-optimal on a set of values of z; for z; j = 2,---,1,

say the set Z, then, as noted in section 5.4, we must have
v () < 0 VelZ (5.27)
where

v (z1) = Q%(z)— (5.28)

w(zr)
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where
Saza Soiz
% s 00 "N/
Si So11
Sl s 00 0
21
y 0 0 £ 0 0
Q@ (n) = W(la z1, 1, 1) X +1
0 0 0 0
+1
0 0 0 0 L )
1
21
1 1S — 218012 =Sz + 215m1 | 1 1
= o Do
\ +1
. 1 8022 — 2218012 + Z%Sou 1 1
= 3 EX st
1 18022 — 2218012 + #So11 . (k—2)
= . .2
9 (k—2) [ | So | c ] (5.29)
Equivalently we must have
v(z1) < 0 (5.30)
(k—2} .

where v(z1) = Q(z1) —

w(z)

with Q (Zl)

26=209% (2). And v(z;) must be

maximised at a, b over Z, a maximum of zero as v(a) = v(b) = 0. So, we need

to consider the derivative of v(z) at a, b.

v(z):

v'(z)

where or Li(z1) = Q'(#z) and Hy(z) = —

Q' (z1) -

Lk(zl) -

We have to explore the derivative of

E20b=2)y! (21)
[w(z)]?
Hk« (Zl)

(5.31)

(5.32)

E2 =2/ (27)
[w(z1)]?
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Now

Li(z1) = Q'(n)
_ —28012 + 221811
| So |

In particular,

2[paw(a) + pyw(b)la — 2[paw(a)a + pyw(b)b]

fele) = | So |
' _ 2pw(b)(e—b)
| papyw(a)w(b)(a — b)?
| =2
; ~ (b— a)paw(a)
L) = 2lpew(@) +pw)o — 2paw(a)a+ pro)l

| So |
2paw(a)(b — a)
papbw(;)w(b) (a —0)?
(b — a)pyw(b)

So

v'(a) = Lg(a) — Hy(a)
k252! (g
[w(a)]?
-2 N E2%:=2)q' (a)
pow{a)(b— a) [w(a)]?
1 -2 k2%~ 29! ()
w(a) [pa(b ) ]
k2052’ (a) —2w(a)
— [kQ(’“”z)paw’(a) + (b - a)]

= Lk (CL) +

W@k a)
k2t Dy(a) W
= m@FG-a
_ k2t2g)(g) — hla
" fw@Pe oM

w(a) ]]
k20=3)p,w' (a)
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V(b)) = Ls(b) — Hs(b)
2=y ()

[w(D)]”

2 N 224y (b)

pyw()(b — a) [w(b)]?
1 [ 2 AQ(’“ 2)w’(b)]
w(b) Pb(b - a) w(b)
AZ tk=2)qy [ 2w({b) a)]

= L3(b) +

(b ) L2t p,,wf(b
kz A 2

(b—a)
| B AZ(" 2w’ (b ()
| = PG a0

]

l‘,2(}L 3)pbw' B a]

Therefore

v'(a) o w(a)[b — hy(a)]
v'(b)  ocw' (b)[he(b) — a]

So the sign of v'(a) and v'(b) depend on the signs of w'(a) [b — hy(a)] and w'(b)

[ha(b) — a] respectively.
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5.8 Proof of the Conjecture

The function hy(2) has exactly the same definition as in the three parameter
case. Hence if it were increasing in z over z < Zyq, and z > zp4, then the proof
of the conjecture would be identical.

Condition (i) of section (3.2.6) does appear to hold for low dimensions k£ < 6, but
for higher dimensions h,(z) can have two TP’s : a maximal then a minimal one.
Condition (ii) is satisfied for all dimensions. These assertions are evident from
the plots of hy(z) in Figures (5.2), (5.3), (5.4), (5.5) (for different values of k,
the number of parameters), (5.6), (5.7) (for different values of y (the end point-
support point)) for the Logistic weight function.

What is also evident is that a weaker but still sufficient condition for proof of the
conjecture is satisfied : namely that for b > zpne., M (2) > b for a*(b) < z < Zmag,
while for a < Zmaez, ha(2) < @ for zpme, < 2z < *(a). There is in fact only one

solution in each of the ranges z < zp4. and z > 2z,,,, to the equation
hy(z) = y.
5.9 Study of the function h,(z)

In this section we will be looking at the function

1 w(z)
k20:=3) p, (2)w'(2)

hy(z) = z+

We note that there will be pairs of values (y;,y2) of ¥ with 11 < 20 < Yo such

that
hy (2) = hy,(2) vV oz

This follows since w(z) is unimodal. These values must satisfy w(y;) = w(yz).
If w(z) is symmetric about zero then y; = —yp. Otherwise numerical techniques
will usually be needed to determine y, say, for given 4. An exception to the

above is of course ¥ = zpas-
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So a given function h,(z) could be labelled with two different y-values. For our
purposes the most important labels are the higher y-values over z < z,,,, and the
lower y-values over z > Zpyqq. S0 first of all this study leads us to the consideration
of graphing the function h,(z). Recall that h,(z) is a function of z and of y and
k.

We consider the dependence of h,(z) on z, y and & in turn.

We focus on z < z,., throughout.

e Dependence on z:
We have to remark that %, (z) is not monotonically increasing. [see Figure
5.6 and Figure 5.7]. Note that on these figures +y values are also plotted.
On both sides of the plot of h,(2) has local minimum and maximum TP’s.
Ideally we want to see hy(z) crossing y once. (Clearly, this is true if h,(z)
is increasing in z.) The presence of TP’s implies the possibility of three
crossings. However the plots suggest that this does not happen. Fortunately
the TP’s lie between £y. Consequently, A, (z) crosses the value £y once in
(—00, Zmaz) and once in [Zpee, 00). As we can see from in Figure (5.1) it
appears that:
1. 2 (—y) <21 <z < 2°(+y) and A (21) = hy(z) = 0.
—— N —
mox TP min TP
2, —y < hy(z) <y, #=1,2 where h'(z;) = 0 i = 1,2, z*(c) solves
hy(z) = e

Crucially hy(z1) <y and hy(z) > —v.

Further the graphs of hy(z) for increasing k show that when the number of
parameters increase the minimum TP approaches the point (—y, —y) but
never touches it, and this in turn gurantees that we will always end up

having two support points.

For further insights consider d = d(z) = (k — 1)(r — 1). Substituting d in
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Figure 5.1: Plot of arbitrary h,(z) function.

g(r) gives
(k— 1) {cz—2+\/d2+%+4}
Hence
- g(d) -
hy(z) = z+ 7 (2) (5.33)
1 4d
where here g(d) = T 2—d+\/d?+ o1 +4r{d+(k—-1)}.

As means of forming an impression about h,(z), we study g¢(d).
‘We note the following points :
1.d> —(k—1)sincer > 0. Sod € [~(k —1),00).

2. gdy=0atd=—(k—-1)

eg. ifk=6 = d=-5 =g(d)=0

3. g(d) is a positive function since g(d) =

4. g(d) — o0 as d = 400
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5. In general, g(d) has 2 TP’s, first a local mazimum and then a local
manimum. However it seems that there are no TP’s if k < 5. [see

Figures (5.8}, (5.9), (5.10)].

6. The derivative of g(d) with respect to d is

?%_(jl:%{Z—Zd—(k——l)+A+A'(d+(k—1))}
with A = (d2+ (l;l_dl) +4)% and ' = - (2d+ Z%""I)
So
.“’f’a% - %{2—% A—1)+A+%l~<2d+?i—1->[d+(l€—1)]}
= {2-2d-(k-1)
N %{ [d2+di£k——11)+2} +A(k261 1)}
- A(kil)h{@—l)[z—zd—(fc—i)]A}
+E&_{—1)]€ {A(k = 1)+ (k1) [@ + d(k — 1) +2] + 24}
_ ;k{[(S—Iz)—2d]A+2d2+[itifmﬁ_-;—w}d-#G}.

= 0 will lead to

[(3—k)—2d]\/42+%+4— {— (2d2+ {%ﬁ} d+6)}.

vy

Now, solving

dg(d)
od

LHS RHS

Now,

RHS* = {— <2d2+[6—-+;k_;11) d+6)}2
_ 4[d]4+4{———(k“kl) +6}[d]

+{24+ [(A—_A#r} [d]2+12{(—’f—7€§1_-)21—“L—6}d+36




1
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and
. 2 4d
LHS* = {[(3—Fk)—2d] A} where A= d2+m+4
4d
- {(3—k)2+4d2+4(3—k-)d}{d2+m+4}
= 4d* + 4 {K* -4k +7}d®+ (3—k)2+i%~—(k—-2) d?
(k—1) k—1
o JE=3)+4(E—1) o
+ 4k 3){ ) d+ 4(k — 3)%.
Hence,
2 2 8k 3
C(d)=RHS® ~LHS* = .—d
[(k—1)2+6]" - (38— k)?(k—1)>  32(k—2)
+ |24+ (e B
8k(k — 8)
R S 4k(6 —
4+ k(6 — k)
8k o, ik 0
= k_1d+(k_1)2{k—3k+11}d
- —E—;klikf_l&d—wlk((i—k).

Stationary values of g(d) will be a subset of the roots of the cubic

equation
c(d) = 0.

Thus C(d) can have at most three TP’s and probably less. Consider

k = 6. At this value the constant term of the cubic is zero and

B 48 . 696 , 96
Cd)=0 <= 5d+25d+5d—0

12
= 5d[20d% +58d+40] =0
Q

= di(2) =0 or ds(z)=-113 or ds(z)=—-1.77.

We note that all the three roots are greater than [—(k — 1)] = —5, the
9g(d)
od
di(z) and dy(z) do identify TP’s of g(d) (minimal and mazimal TP,

lower limit on d. However d3(z) is not a solution to = 0 while

dZ
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respectively). Thus g(d) has two turning points. This appears to be

the case for £ > 6 in general while for £ < 5, g(d) is increasing.

0g(=(k - 1))
od

[see Figure (5.11) (5.12) (5.13)].

7. In fact > 0, so there are only two TP’s in [—(k—1), co).

8. It appears that g(d) is an increasing function for £ < 5 while for & > 6

it has two TPs as in the case k = 6. See Figures (5.8) (5.9) (5.9).

The above properties of g(d) would appear to induce the same in Ay, (z) i.e.

‘ hy(z) increasing in z for £ < 5, while developing two TP’s for & > 6.

e Dependence on y :
For all z1 < 240, fiy(21) decreases in y over y > Zyq,, and for all 21 > Zmaes
hy(z1) decreases in y over y < Zpq,. To prove these we write hy(z) in the

following form:

e w()
(@) = 2t ) w(y)

w(z)
w(y)
From the above expession of A, (z), proving that ¢(r) is increasing in y would

where ¢(r) is the expression encountered in equation (5.8) and r =

be sufficient to establish that h,(2) is decreasing in y. In Appendix B we

prove that ¢(r) is increasing in r.

~ Hence hy(z) decreasing in r.

- Hence r = w(z)
w(y)

- We note that w(y) is decreasing in y over [zmaq, 00),

increases in y over [Zmez, ©0)

Therefore, h,(z) decreases in y.
e Dependence on £ :

— Now we show analytically that the function h,{z) is decreasing in k.

Substitute d = (k — 1)(r — 1) in the function g(d).
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Therefore we will have,

hy(z) = z+ (k—?‘%% (5.34)
where
g(r k) = T(kk“ D {2 ~(k=1)(r—1)+ \/[(k: D -1+ 47~}.
Let

Gl k) = _&(ﬁﬁ))

= {2 (-0 -1)+ V4]

3

>~

where A = (k — 1)%(r — 1)? + 4r.
Therefore we will have,

G(r, k)
")

hy(z) = z+

Ohy(2) <o

k

To show that h,(z) is decreasing in k we need to prove that

Now, let’s take the derivative of h,(z) respect to k:

Bhy(2) AGlek) D) gy k)

. ok _ ok
Ok r'(z) r'(2)]?
!
Now or () = (, since r is independent of k. Therefore

Ohy(z) _ S50
ok r'(2)

be enough for us to see the behaviour of h,(z) with respect to .

. So, taking the derivative of G(r, k) respect to k will
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The derivative of G(r, k) with respect to k is given by the following

expression:
aGg,;’ k) _ % {—(T — 1)+ A (k—1)(r — 1)2}
* (;) {2_ (k= 1)(r — 1)+A%}
r(r—1)

= ———{-ne-1at-1}

- {2 ~ (k= 1)(r = 1)+ A3}
r(k—1(r -1 »(r-1) 2r

kA k k2
| +7@uqu—n_r¢2
] L2 12
ork(k—1)(r =12 rk(r—1)VA
a kA kA
3 2rVA N rk—1D(r—1)VA B rvVAVA
k2 A k2 A k2/A
M
= I

{k(k —1)(r —1)* = k(r — )VA - 2V/A
+(k —1)(r — 1)VA - A}

r DV (r—1)%
- kzﬂ{k(k Dr—1)%—A+VA
[(k = 1)(r —1) = k(r—1) - 2] }
- o
{k(k—1)(r — 1)* — [(k — 1)*(r — 1)* + 4r]
~(r+1)VAL
- E;ﬁ{—(k—l)(r—l)z—@r—(T+1)\/E}
= —in/z{[(k1)(r1)2+47’+(7*+1)\/z]}

= =T

Since T" > 0, aaég;,k) =T < 0. Therefore G(r, k) is decreasing in k. As

a consequence, hy(z) is decreasing in k (If 7'(z) > 0 as is the case for

2 < Zimaz)-
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— We now consider the limit of hy(z) as k — oo :
Let s=(r—1) <= r=(s+1).
and l=(k—-1) <= k=(+1).

Substituting in G(r, k) we have

(s,
hy(z) = ”Fftﬁ (5.35)
. _stlyg 2.2 her
where G(s,1) = T { Is+2++/12s —{—4(s—|—1)}. Further,
Gs(s,l) = ?ii{2—55+\/l232+4(3—|—1)}
+1

s 2 4d(s +4)
— R ’ 2
z+1l{z s+ 1/8% B }

_ s+1 12 , . 4(s+4)
= 1+%{E—5+ 5% 4+ 2 .

Hence,

s 1f >0
lim Gy(s,l) = (s+1){—s+
e -s if s<0, (-1<s<0)

0 if s>0
—2s(s+1) if s<0, (—l<s<0)

And llim G(s,1) is always positive since [—2s(s + 1)] is positive on
—rc0
-1l <s<0.
Therefore, the limit of h,(2) in equation 5.35 is :
0 if s>0

—2s([s+1]
s'(z)

lim hy(z) = z+ .
e if —1<s<0

Now

s=0 +—= r=1 <= w(z)=uwy)

— Z=1Y
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where, assuming z < Zmea, Ui < Zmes < ¥ and w(y) = w(y).

S0
i ( z if >0 r>1 ie. z((;g>1
li)lg) ’I,y(Z) - 2s[s+1] . p
z = S if —l<s<0 O<r<l1
\
z if w(z) > w(y)
1 z— 2—1%1 if  w(z) <wly)
S0

2+ 3 if z>y

. _ s'(z)

lli{tl;lo hy(z) o 2s{s+1] .
Gy 4

zZ <Y
This suggests 1y (y;) = v is a minimum TP.

In particular, for the logistic weight function, Z.. = 0 and w(:) is

symmetric, so that y;, = —y. Hence,

)
z if z>-—y
lim hy(z) =
l—co _ 2w(@)[w(z)-w(0)] if z< —y

Z W' (2)

\
p

z if z>-—y
L RG]

w'(z)

z < —y
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5.9.1 Explicit Solutions for some weight functions

We extend results of Torsney and Musrati(1993) for the Gamma, Beta, Normal
weight functions.
We find explicit formulae for the D-optimal design weights for some weight func-

tions

Case 1 : Symmetric Beta Weight Function
wb) =1 -0 y>1, -1<b< 1.
This weight function is symmetric about the origin, for all 4. Hence one
optimal design must put equal weight on the 25~ points satisfying z; = =+b,
zj = X1, j = 2,---,1 for some b, which can be determined by maximiz-
ing the determinant of the information matrix with respect to b; that is

maximise
p(b) = 2Ind+kIn[(1 — %))

Note that b can not assume the values 1 or -1, since w{—1) = w(1) = 0.

Therefore the first order conditions for & is

o) 2 2b(y— 1)k

b b (L—102)
which implies

= & ! (5.36)

For instance, if we let v = 3 and k = 3 in equation (5.36), then the support

points of the four-point design on 2, = {(z12) : -1 <z; <1 j=1,2}
are z; = +0.378, 23 = £1 with optimal weights ﬁ These symmetric 2¢~!
points design are globally D-optimal because they satisfy the necessary and

sufficient condition of the equivalence theorem; that is they satisfy equation

(5.1).
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Case 2: Normal Weight Function w(b) = ¢ /2, —co < b < co.
This weight function is also symmetric about the origin. Hence one optimal

design must have the same form as in Case 1. Now we have to maximise

2
$(b) = 2mb— .
Therefore first order conditions for b are
0 (b) 2
T
which implies
2
b = =+ T (5.37)

For instance, if we let & = 4 in equation (5.37), then the support points of
the eight-point design on

Zy = {(21,22,23) : —00< 2z <00, —1<2z <1, j=2,3} are

z = £0.707107, z; = £1, j = 2, 3 with optimal weights %. These symmetric
281 points design are globally D-optimal because they satisfy the necessary
and sufficient condition of the equivalence theorem; that is they satisfy

equation (5.1).

Musrati(1992) and Torsney and Musrati (1993) reported these results for two

parameter model.

5.9.2 Some Empirical Results for D-optimal designs

The general objective has been to find empirically D-optimal designs when

Z={z,,m)a<zn<bh —-1<z <1 j=2,,1} for all possible
choices of a,b. In section (5.6) for the most weight functions we showed that
two distinct values of z; produce the support points of the conjectured optimal
designs of the various cases of Z = [a,)]. Now we will show empirically that
the equivalence theorem is satisfied by our conjectured optimal designs for all
possible design intervals [a, b]. There are only two distinct value of z; and hence

observations are taken at only two values of z.
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Case1: Z = 2y = {(z, - ,z):—0<n<oo —1<2z,<1j=2,--+,1}

and Supp(p*) = {-0*,0"}

In the case of symmetric weight functions w(z1), z;- support points are
=b* with z; = &1, 7 = 2,.--,{ and with equal weights where b* maximizes
{detM(p) = v*[w(b)}*}. We found the b* value that maximizes detM (p)
for the k parameter case with the logistic, probit, normal and symmetric
beta weight functions. Empirical D-optimal designs for five choices of w(-)
are listed in the Table (5.1). We checked for optimality of this design, by
checking the equivalence theorem for z; = (—o0, 00), z; = £1,5 =2, -+ ,8.
Additionaly, Figure (5.14) represents the variance function for the Global
D-optimal design on Z,, for the Logistic weight function, for the k£ = 4
parameter case. We consider further examples for this choice of weight

function again with k& = 4.

Case 2: Z = {(21,20,23) :a<2 <), 1<z <1, 7=2,3}
a < a*, b<b* and Supp(p*) = {maz{a,a*(b)}, b}
Results are very similar with next step. So we only show include emprical

results for that.

Case 3: 2 = {(z1,20,23) 10 <2z <0b, —-1<2z <1, j=23 a>ad,
b > b* and Supp(p*) = {a, min{b,b*(a)}
For the 4 parameter logistic regression model we used as in Chapter 3,
section 3.2.6, Case 3 an alternating algorithm to determine b*(a) for
k=4 and a = —1.04, —1.00, —0.90 --- 1.00,1.04. The D-optimal support
points and weights are summurized in Table 5.3. Figures 5.15 and Figures
5.16 show that the necessary and sufficient conditions of the equivalence

theorem are satisfied.
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Case 4: Z = {(z1,22,22) :a <2z <D, —-1<z <1, j=23}
a>a*, b<b*and Supp(p*) = {a,b}
For this 2; interval the end points are the support points and the equivalence

theorem is satisfied. See Figure 5.17.

5.9.3 Efficient Approximations

This section will be devoted to finding the efficiency of D-optimal designs based
on Probit Regression Model and Normal regression models. To compare different
designs, we will use a modification of the efficiency measure used by Atkinson

and Donev (1992) , and proposed by Abdelbasit and Plackett(1983).

First we look at the ratio between probit regression model support points and
normal regression model support points. As we can see from the Table5.1 the

ratio of the probit model support points and normal model support points are

approximately equal to (1.15 \/%)

We suggest that the design for the Normal regression model which, although not
optimal for Probit response model, gives an efficient alternative to the optimal
design for probit response model. To explore this we investigate the relevant D-
efficiency which is based on the determinant of the information matrix. Let
£* be the optimal design for a k parameter Probit regression model, and &7 be
the optimal design for the normal density weight function k parameter model.

Determinant values under the probit regression model are:

detM(£*) = (b)) [wa b))
detM (€1 = (b3)*[wa(bys)]®
where b'l*(k) identifies the global support points for the normal density weight

function k parameter model, b';(k) identifies global support points for the pro-

bit regression k parameter model and w, represents the probit regression model
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weight function. Note, there is an expilicit solution for the normal density weight
functions : by, = :i:\/%[See section 5.3.4, case 4.

Now we measure the efficiency of ¢t relative to £* as

i/k
ez 5.0

Dey = efF(€1¢7) = {deu\/f(g* 1)

(B ) [ (B3 )15 1
(bi(k))z[u& (b’{(k))]k

" 2/k "
%@_ W2(bz(k)) (5.39)
bl w‘l(b'{(ia))

Note: If Dey; = ef f(€7,£€) is high (e.g. around 90%) then £ is an approxi-

mately optimal design for the probit weight function.
Results are given in Table5.2. According to these, the design which is optimal
for a normal regression model is an efficient alternative to the optimal design for

the probit regression model.
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Four parameter case: For Logistic weight Function,
zy = [A,B] = by, co) for fixed b, and b, > —b*
' the lower support point, optimal bs; p; and p; value.
fixed b; value b3 (b1) iy (b1) i, (b2)
-1.04363 1.043625 || 0.125000 0.125000
-1.00000 1.074189 || 0.127208 0.122792
-0.90000 1.148056 || 0.132245 0.117755
-0.80000 1.226839 || 0.137156 0.112844
-0.70000 1.309847 || 0.141832 0.108168
-0.60000 1.396236 || 0.146186 0.103814
-0.50000 1.485121 || 0.150159 0.099841
-0.40000 1.575692 | 0.153728 0.096272
-0.30000 1.667281 || 0.156892 0.093108
-0.20000 1.759399 || 0.159673 0.090327
-0.10000 1.851721 || 0.162104 0.087896
0 1.944058 || 0.164222 0.085778
0.10000 2.036324 | 0.166066 0.083934
0.20000 2.128502 || 0.167670 0.082330
0.30000 2.220616 {| 0.169068 0.080932
0.40000 2.312716 || 0.170288 0.079712
0.50000 2.404861 || 0.171354 0.078646
0.60000 2.497112 || 0.172289 0.077711
0.70000 2.589526 || 0.173110 0.076890
0.80000 2.682153 || 0.173832 0.076168
0.90000 2.775035 || 0.174469 0.075531
1.00000 - - -
1.04363 -1.043625 || 0.125000 0.125000

Table 5.3: For Logistic weight function D-optimal support points and weights.
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Figure 5.2: Plots of Ahy(z) for the Logistic Weight function, y = 0.0, -=m,4.0 for
each of k = 2,3.4, 5.
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k=7

hy(z1)
°

Figure 5.3: Plots of hy(z) for the Logistic Weight function, y = 0.0, m+ 4.0 for
each of £k = 6,7, 8,9.
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5 O 5 5 O
z1

Figure 5.4: Plots of 4y(z) for the Logistic Weight function, y = 0.0, e+ ,4.0 for
each of £ = 10,20, 30,40.
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Figure 5.5: Plots of hy(z) for the Logistic Weight function, y = 0.0, *++.,4.0 for

each of £ —50,60,70,80.
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Figure 5.6: Plots of hy(z) for the Logistic Weight function,
k =3,4,19, 20,25, *++,75,80 for each of y = 0.0,0.2,0.5,1.0.
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hy(z1)

hy(z1)

<=345,..19120.25,30,...,75,80

Figure 5.7  Plots of hy{z) for the Logistic Weight function, &k =
3,4,19, 20, 25, = ,75,80 for each of y = 1.5,2.0,3.0,4.0.
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(a) Q) (c)
(d) (e) ®
(8) (h) )

Figure 5.8: Plots of g(d) for k = 3,4,5, ¢+ ,10,11 and d > —(k —1).



[be
e7]
—

&
-
1
2
o
L o
\ ..... pa—
P
...... JIIII’ it : =
— ¥
l!‘,
w»
g ° 7 d
2
2\
B4 A 0
I .
v © o)
T S
\
A _
//! e
H ——
+ c 2
[ !
H]
w
S| 0
{INERN .
k- ~
‘\ w
AN ,
'rl.lj-l! .
H e

o
— T z
-
i £
4 i Y
? 10
o L o
m/w o
) e
u =2
e
1
[lll'l-l’.ll’j.-ll‘
Yo
2
" -
[124]
(=]
©
-
Il
= (=2
o
Ll / )
/V 29
ol
.\\
o 2
—— -
I._lll.”
m =1
] !
<
ey <
w
h =3
Ed
i / )
N =32
\
A 2
e —— )
H D
o o
(B !

i [— k=18

N

/

T 5T

B

k=18

N\

2
z
o
o
4o
&
=31
—_
=]
—
o
e
1
El
o
b
o
o
-
°
-2 )
=
~—
e
i
i
i
o
2
ia
o
@
—
o
T
o
]
b

-
(F16

,19,20and d > —(k — 1).

Figure 5.9: Plots of g(d) for £ =12,13,---




CHAPTER 5. MULTIPARAMETER CASE 197

— k=

[—— k=35 |

g
\\
Bt
:

{
\
\
-

et e . /2 =
\ | |

]— k=50|

]
T~
.
T~
.
o

—
e
gid)
b wnr
e’
gid)
"

- 20 40 o0
R
— e ]
20 . 3

M I~ = k—m ]
w0 /: \ o !

[ —— k=80 |

ald)
T~
.~
.
/

—
—
od
3
2
Py
/

gld)
.
.

3
nOo
3
H
2
1 \\
T—
: et

h = g 20 40 60 I
(g)

Figure 5.10: Plots of g(d) for k = 25,30, ,75,80 and d > —(k — 1).




CHAPTER 5. MULTIPARAMETER CASE 198

P
/

— k2] \ [ L H f— <51

I

o
P

Deiivalive of £(6)
e
Darvaltye of g(d)
9
ST
Danvalive ol gid)
-
L

i

2 © 2
Yo

2
'
e

)
|
@
]
N;
{
!
[
o

(a) (b) ()

—— k=6 fe— a7} —— k=8
1. \\ t \ T 1 o
z \\ g \ 5 I \
Z o NG o g o i
k) <%0 10,0) 3 et B 2,00 {o.7: 5 (£2.634,0); (202,05 ettt
£ 2 2 :
] s H et
3 -0 o] Z o
Y S
-1 1. i —1.
4 4 8 2 - 4 ) = -2 4 G E 4 = 2 ) ]
o a4 d

——— k=0 X f— k=10} I_ k=11 ]
15 5 1 1 T
\\ x \\ AN
Els N & o i g o i
3 (-3.208.0) 1552, s \ {-Q.757.0y 1.849,0) 5 (-4.252,0) (2.1073)
2 2 s
- ~
& -o. & -0 & -0 N
£ -1 -
1 ~1.5 -1
o -6 ~3 -2 & g ! - -~ - 4 6 I [ -6 -3 -2 a 3 3 o
d d ¢

(e) (k) (i
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Figure 5.12: Plots of # for k= 12,13, ---,19,20 and d > - |
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Figure 5.13: Plots of # for k= 25,30, *w ,75,80 and >
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Figure 5.14: Plot of the variance function for the global symmetric D-optimal
four-point design on Z — Zw = {(21,22,"3) . 00 <21 <00 —1 <z < 1,j =
2,3} for the logistic weight function(fc = 4).
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Figure 5.15: Some plots for the variance function under an optimal design

on 2 = {(zi,22,73) :a <2\ <bZ ==x1,j =23}, a>a* b> b¥*a for the
logistic weight function, (k —4).
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Figure 5.16: Some plots for the variance function v(zi) under an optimal design
on 2 — {(M,Z,e3) 1 (i< 2z <6 £1,7 =123}, a b > b*() for the
logistic weight function, (k = 4).
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Figure 5.17: Some plots for the variance function v(z;) under an optimal design
| : ) .
| on Z = {(z,20,2) a0 <z <bgz=4=x1,j=273}a>a b<b for the
| logistic weight function, (k = 4).




Chapter 6

Some Advances in Optimal
Designs in Contingent

Valuation Studies

6.1 Introduction

A Contingent Valuation Study is essentially a Sample Survey of a relevant pop-
ulation, the primary aim of which is to estimate that population’s willingness to
pay (WTP) for some new (or possible previously free) amenity or it might be
to estimate what increase in charges the population is willing to pay for an es-
tablished ainenity. These amenities fall into the category of non-market goods or
services. Examples of such studies arise in the areas of health or welfare e.g. pay-
ment for (provision) of medical programs see Donaldson (1993); recreation (e.g.
payment for fishing permits); and the environment {(e.g. payment for pollution
reduction programs).

The first such study focussed on pollution in the Delaware River Basin, USA
in 1947. A more recent example is seen in Hanley (1989) which reported a study
into the Willingness to Pay of visitors to a part of the Queen Elizabeth Forest

Park in Central Scotland. There was interest in four aspects; wildlife, landscape,
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recreation and all combined. Four WTP questions were asked. For the last
category this was: ’Suppose the government was considering selling the Queen
Elizabeth Forest Park to a private forestry company. This would mean people
would no longer be able to visit it. If the only way to prevent this happeﬁing was
for the Forestry Commission to raise revenue by selling day tickets to visitors, how
much would you be willing to pay, per person per visit?’ This kind of question is

known as an open ended question.

6.2 Criticisms of CV Studies

“An overriding criticism is that a CV question invites a hypothetical valuation,
particularly if the respondent has not previously considered the issue in question.
This could lead to biases of various kinds. Bishop and Heberlein (1979) construct
a list of possibilities. Broadly speaking they fall into three categories: psycholog-
ical, economic and statistical. Psychological biases include ’strategic bias’ arising
when a respondent ’overestimates’ his/her WT'P if (s)he suspects that payment
will not become a reality, and ’free-riding’ meaning W1 P is 'underestimated’ to
keep real fees low. Economic biases include the ’embedding problem’ arising if
a respondent is unable to recognise other competing demands on a finite (recre-
ational or environmental or health) budget. Finally CV studies are as subject to
‘statistical’ biases as any sample survey. For example length biased sampling is a
potential problem with the study of Hanley (1989) since respondents were sam-
pled on site. Two styles of enquiry were used : a self completion questionnaire
and an interview. Those who stayed longer in the park were more likely to be

interviewed.
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6.3 Literature

These issues have given rise to a great deal of literature. Much of this appears
in the following journals: Land Economics, American Journal of Agricultural
Economics and The Journal of Environmental and Economic Management. This
literature is rich in its use of statistical tools including regression, and binary re-
gression methods since other potentially relevant questions are regularly included
such as general questions on income and age. We shall also see the need for
optimal regression designs. One apparent lack seems to be reference to methods
of analyses developed in the survey methodology arena. The literature also in-
cludes a batch of 8 papers in Volume 34 of the Natural Resources Journal a legal
publication, arising from contentious litigation concerning the use of CV studies

in relation to the Exon Valdez Oil Spillage in Alaska.

6.4 Variations of the WT P question

With a view to resolving some of the criticisms of CV studies a blue ribbon panel
was set up in the USA chaired by Arrow (the Nobel prize winning economist)
and Solow. This produced a list of 15 recommendations for the conduct of CV
studies. One of these stated that a dichotomous choice WT' P question should be
used, one of several alternatives to the open ended question which have evolved.

These include:

1. Closed ended format (or payment card):

The respondent is offered a list (possibly on a card) of possible payments
and asked to identify the one closest to his/her maximum WTP. This
variation was also used in the Hanley (1989) study. It produced higher
mean WP values than the open ended case for all four aspects of interest,

‘significantly so’ in the case of two of them.
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2. Dichotomous Choice Format

The respondent is offered a single payment or bid and simply responds Yes
or No according to his/her willingness to pay this bid. This format is also

known as a Discrete Choice or Single Bounded question.

3. Double Bounded Format

Here the respondent is offered two dichotomous choice questions. If the
answer to the first bid is YES, a higher bid is offered in the second ques-
tion, otherwise a lower bid is offered. This is known as a Double Bounded

question.

4. Iterative Bidding

Here the respondent is offered a sequence of dichotomous choice questions,
increasing or decreasing in bid-value offered according as the response to
the first question is YES or NO respectively. The process stops when the

response changes or the list of bids is exhausted.

One other variation on any WTP question is a WTA question which aims to
identify a respondent’s willingness to accept compensation for removal of a service
or for foregoing a right to use an amenity. The Arrow panel recommended the
use of a WTP question and that this be of dichotomous choice format.

Clearly the binary responses to such a question require binary data techniques;
in particular binary regression methods. Also the bids offered must be chosen. A
distribution of bids across respondents is required; i.e. a binary regression design

is needed.
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6.5 Design of Single Bid Dichotomous Choice
CV Studies

In a single bid dichotomous choice CV study a bid value, say @, must be chosen
for a respondent. This is a design variable. An axiomatic assumption is that
his/her response will be YES if WT'P > z and NO otherwise, where WT'P is
the respondent’s true willingness to pay. In order to apply the design theory, we
need to make assumptions about the distribution of WT'P across the population
of interest. Common assumptions in the CV literature have been that WTP or
InWT P has a logistic or normal distribution. The logistic distribution is given a
utility function theory justification [See Alberini (1995), Kanninen (1993) Nyquist
(1992)]. Let G(-) denote the cumulative distribution function of WT'P, so that
G(z) =Pr(WTP < ). It is convenient to assume that

G(z) = Go (ﬂl_(f_ﬂ)_—ﬁ) |

g

where h(z) is an increasing function, p and o can be interpreted as a location
and a scale parameter of h(WTP), and Gy(:) is a standardised distribution.

It is natural to focus on modelling the probability of a YES response.

Pr(YES|BID =z) = Pr(WTP > 1)

= 1-G(2)
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where

z = a+ fh(z)
a = plo, p=(-1/0)
F(z) = 1—Gy(-2).

Note that the function F'(z) satisfies the properties of a cumulative distribution
function. Also # should be negative. Thus we have formulated a binary regres-
sion model, with the variable z representing a standardised design variable, like

that of Chapter 2.

Thus our CV design problem, under the parameter dependent linear transfor-
mation z = a -+ fz, can be transformed to a D-optimal or a c-optimal design

problem for a weighted linear design problem with weight function

w(z) = —
F(2)[1 - F(z)]

Optimal designing here means choosing bids for respondents (possible values of
WTP). A criterion needs to be chosen. D-optimality is a possibility if both pa-
rameters are of interest, in effect p and . We focus on this. However estimation
of mean WT'P is usually of primary interest. We should want then to minimise

the (asymptotic) variance of fi. This is an example of the c-optimal criterion.

The c-optimal criterion aims to minimise the asymptotic value of V(eTA) where
c?'A is a known linear combination of the unknown parameters \ = (v, ,B)T. Un-
der the transformation z = - Gz, this transforms to another c-optimal criterion.
The geometrical characterisation of a c-optimal design, due to Elfving (1952) (see
also Chernoff (1979)) is based on identifying the boundary of the convex hull of

G U {—G}. The vector ¢ extended if necessary will cut this at a point which is
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a convex combination of points in G and {—G}. These points are the support
points and the convex weights are the optimal weights. Algebraic solutions for
these weights are given in Kitsos, Titterington and Torsney (1988). In the case
of two parameter models there must exist a design with 1 or 2 support points.
Ford et al. (1992) derived c-optimal designs for all vectors ¢ and for all choices
of Z = [a,b], identifying, in particular, changes from one to two-point designs. It
is clear from the convexity of the plots of G that there will be one-point designs
for many choices of c. Wu (1988) extended this work to percentile estimation as
noted above. A particular conclusion is that for the choices of F'(-) considered,
the optimal design for estimating the median is a one-point design taking all ob-
servations at the (current provisional estimate) of the median. This transforms

to z = 0 in the case of the normal and the logistic choices of £#'(-).

If the criterion is good estimation of the median by minimising the asymptotic
variance of its estimate the design is to take all observations at the currently
believed value of the median. If however we wish good estimation of both pa-

rameters of the model the D-optimal criterion could be optimised.

To completely define our problem we need to be clear about the design interval
for z. Clearly WT P and hence z is positive. Hence a design interval for z must be
positive. This in turn could impose restrictions on z, unless the function h(z) of
section (6.5) is unrestricted. For example h{z) = In(z). In this case distributions
such as the standardised normal or logistic are feasible choices of F(-). This of
course implies that WT'P is log-normal or log-logistic. However in the early CV
literature raw W1 P has been assumed to be normal or logistic. This corresponds
to hiz) = z.

Then z = e+ fz < «, if f < 0. So a largest design interval for z is £ = (—o0, ],

b = . Possibly this should be further restricted to a finite interval [a, b] a trans-
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formation of limits ¢ and d on & (whatever is h(z), where c is a minimum viable

charge and d is a maximum politically acceptable price.

However this issue has been ignored in the CV literature on design. These have
effectively assumed Z = (—o00, 00), in which case the standardised support points
quoted may not transform back to positive WTP values. Kanninen (1993) for
the logistic and Alberini (1995) for the normal report three {classes of) such
designs namely: a D-optimal design, the design for minimising the asymptotic
variance of the estimate of the median (c-optimality) and designs (which depend
on the sample size) for minimising the width of a fiducial interval estimate of
the median. The c-optimal design is the one point design placing all weight at
z = 0 and hence at the (currently known) median WT P-value. The others are
symmetric designs in z placing equal weight at values 42", where z* maximises
the relevant criterion over such symmetric designs. We have already reported
such values for the D-criterion in Chapter 2.

These same authors went on to consider Double Bounded CV studies to which

we now turn.

6.6 Omn Design of Double Bounded CV Studies

Recall that a Double Bounded CV study presents each respondent with two bids,
the second being higher or lower than the first according as the response to the
first bid is Yes or No. Kanninen (1993) and Alberini (1995) report constrained
optimal designs for these bids under which the first bid is set equal to the currently
known median i.e z = 0 and the second bid is +2z* or —z* according as the answer
to the first bid is Yes or No, z* being chosen to optimise the relevant criterion.
They report the values of z* for the criteria for which they reported single bid
designs, and for the same distribution. A crucial further assumption was that

this distribution was assumed to be the same at both bids. To distinguish this
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approach from the following we call it the Univariate Approach.

Alberini (1995) relax this assumption. They consider the notion that a respondent
has two WT'P-values, WT'P, and WT P, at the two bids respectively. Hence we
call this the Bivariate Approach. There would be a justification for this if there
was a time lag between offering the two bids thereby allowing for a change in
opinions. Alternatively some argue that the respondent may react to the first
bid, resulting in a revision of their opinions. The authors assume a bivariate
normal distribution for (InWT Py, InWTP,) with a common mean g, a common
standard deviation o and a correlation p. Thus exp(u) is median WT'P. Let z;
and z3 be the two bids to be offered. Then standardised design variables (w.r.t.
W, 0) are z; = L(—ll}—aia)—ﬂ For fixed or known p then, this is a two-parameter

model. Alberini (1995) determine constrained c-optimal designs under which

z, = 0 for all respondents and for YES responses to this bid

+z* with probability \*
Zg =

—z* with probability 1 — A\,

while for NO responses

—z* with probability 1 — A\*
Z9 = !
+z*  with probability A\*.

with 2* and A" being chosen optimally. Their values depend on p. Note that an

implication is that some of those who respond YES to the first bid may be offered

a lower bid and vice versa.

Table 6.1 shows that for low p, the second bids are extremely close to the median.
If the two WT'P variables are uncorrelated, the design problem reduces to that

of finding the optimal design for the median of each of the two single-bounded
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Table 6.1: Optimal Variance Minimizing Designs for the Bivariate Probit
Model®. Alberini (1995)

p 0.1 0.2 0.4 0.5 0.7 0.9 0.95 0.9999
z* || 0.0054 0.0230 0.1038 0.1812 0. 4956 0.9529 0.9803 0.9816

A* 1 0.6319 0.5641 0.6310 0.6666 0.7468 0.8564 0.8989 0.9955

“The first bid value is always ¢ = exp(u); the second bid value are V" = exp(z),,0 + p) and

DN

c?" = exp(—z,.,0 + () with probability A* or (1 — A*) depending on the answer to the first

WT P question.

models associated with the two payment questions. The single-bounded model
would be applied in this situation. As p increases to one, the design tends to the
double-bounded variance-minimizing design : virtually all of those who answered
“yes” are offered a bid value equal to exp(0.98160 + 1), and all of those who
answered "no” to the first question are offered a bid value equal to exp(—0.98160+

-t

6.7 Designs for Second Bids

The rationale of the approach we now advocate is that a design for the second
bid of a double bounded CV question should, wherever possible, be based on the
conditional distribution of WT' P given the response, YES or NO, at the first bid;
that is the c.d.f. F(-) and p.d.f. f(.) above should take the relevant (standardised)

conditional forms. We consider both the Univariate and Bivariate approaches.

1The Optimal design suggested in this section defines four groups of respondents, which are
described by ("yes” to the first question, second bid lower than the first), ("yes” to the first
question, higher second bid), ("no” to the first question, lower second bid), and ("no” to the
first question, higher second bid). Clearly, if the correlation between the first and the second
WT P values is high but the sample size is small, the second and the forth of those groups may
be composed of very few respondents (or none at all), and the emprical frequency of one type of
response in those two groups may be one. In that case the MLE estimator may not be defined.
These problems should be absent if the sample size is sufficiently large.
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6.7.1 Univariate Approach

Suppose that the first bid is 2. Then our standardised design variable is z =
a + Bh(z). Let ¢ = z. Suppose that the answer to the first bid is NO, so that
WTP < z. Hence the random variable U = ao + Sh(WTP) > ¢ if p<0. A

relevant standardised conditional distribution function is

PU<L2U>¢) = %—%—]@—], z>c

= F(zlz > ¢) say,
since F(-) is the marginal c.d.f. of U. The corresponding conditional p.d.f. is
[(zlz2¢) = ——F— z>c

Thus the design problem for the second bid transforms to a weighted linear re-

gression design problem with weight function

f2(zlz > c)
Fzlz =z ¢)[l — F(z|z > ¢)
P2

T F@-FOIl-F@] ° 2 ¢ (6.1)

w(z) =

If the response to the first bid is YES the corresponding c.d.f, p.d.f. and weight

function are

F(zlz<¢c) = iig
felz<o) = 15
W) = et ) (6.2

F(2)[F(c) = F(2)]
We note that both equations (6.1) and (6.2) are unbounded at z = ¢. For the
case of equation (6.1) see plots of 1/w(z) in Figures (6.2) (6.3) (6.4) (6.5) (b) (e)

(h) (k). 2z = ¢ is not a permissable member of the design interval.
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6.7.2 Bivariate Approach

Here we have the concept of potentially different WT' P values, WT P, WTP, at
the two bids. We consider the following general scenario under which for some
increasing function A(:), the pair A(WTP,), h(WTP,) have a joint distribution
indexed by a common location parameter p, a common scale parameter o, and
a third parameter, say p, measuring correlation or possibly some other form of
dependence. Further we assume that the standardised variables Z; = (h(WTFE;) —
u) /o, 1= 1,2 have a joint distribution indexed only by p.

In these terms the relevant standardised distributions for the second bid given
the response YES or NO, at the first bid are those of Z5 conditional on Z; > ¢
or Z; < ¢, where ¢ represents a standardised initial bid.

Let X = 71, Z = Z,. Assume that these have joint c.d.f. F,.(z,z), marginal
c.d.f’s F(z), F(z) and respective marginal p.d.f’s f(z), f(z).

We want to determine the conditional distribution of Z given X > c or X < c.

The respective c.d.f.s, p.d.f.s and weight functions are:

[I'(2) — Fiz(c, 2)]

Pz o - HE =,
f(zlz 2 ¢c) = [f(z)[_la_FE‘_((i’)f)/aZ],
") = Fa e e ey 9
-0 <2< o0
and
Paz<g = Pl
fele<e = =Bl
wiz) = LTl z)[92)* o 2= oo (6.4)

F’L‘z (C) Z) [1 - F‘EZ(67 Z)] ’
A clear added dimension to weight functions at Equations (6.3) and (6.4) are that

they require calculation of a joint c.d.f. and one of its first partial derivatives. By
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current standards these are not available 'explicitly’ for the standard bearer of
joint distributions -bivariate normality although there are published programs for
calculating the joint c.d.f.. This was the distribution used by Alberini (1995) but
they did not need to calculate these terms. As to the logistic there is no standard
choice of bivariate extension.Various classes have been proposed, including one

based on copulas. This is a joint c.d.f. defined as follows:
E’vz(mv Z‘) = H{F'L(T)’ FZ(Z)}i

where H(u,v) is a joint c.d.f on [0,1]* with uniform marginals, i.e. H(u,1) = u,
H(1,v) = v. The function H (u,v) is known as a copula. It is a tool for generating
joint distributions with given marginals; see Hutchinson and Lai (1991) Chapter

10. One example is Plackett’s distribution for which

L+ (¢ —D(u+v)] — 1+ @~ 1)(u+ )] =4 — Duv
2(41—1)

H = H(u,v) = [

The parameter ¢ is a constant global cross ratio since

H(l—-uw—-v+H)
[(w = H)(v = H)]

p =

1t is a measure of dependence, taking the value 1 when the underlying uniform
random variables are independent. In the results we report below we adopt this
particular copula and assume F,(z) = F,(2) = F(z) = exp*/(1 + exp®); i.e. a
common logistic marginal. This results in the following simplifications of (6.3)

and (6.4) respectively

221 — 0H (u,v)/dv]?
[F(z) = H(u,v)|[1 = F(c) = F(z) + H(u,v)]’
F?(2)[0H (u, v)/dv]*
H(u,v)[1 - H(u,v)]’

(6.5)

(6.6)

where u = F'(c), v = F(z). For the logistic F'(z) = F(2)[1 — F'(2)]. See Figures
(6.1) (b) and (d) for the case (6.3) and Figures (6.1) (f) and (h) for the case (6.4).
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6.7.3 Result for the Bivariate Approach

It is again illuminating to study plots of the set G; that is of g(z) = Vw(z) (1,2)7
for the appropriate set of z-values. We consider the Bivariate Approach first.
Figure (6.1) (a) and (c), depicts a plot of G for case (6.5) of w(z) (see Figure
(6.1) (b) and (d) for the case of (6.6)) with F'(z) the logistic » = 1.6 ¢ = —5
and —co < z < co. This is typical of the other values of ¢ and . The shape is
similar to that of Figure (2.1) for unconditional binary weight functions. Namely
it appears to be a closed convex curve in R? for the widest choices of Z. In
terms of Silvey’s minimal ellipsoid argument we have the same conclusion. The
minimal central ellipsoid containing GG can only touch it twice in which case the
D-optimal design has two support points. This is indeed the case, the support
points being -1.544, 1.558. The same conclusion is reasonable for the section of
G corresponding to the interval ¢ < z < b i.e on the design interval [a, b] for z.
Moreover the solution should be the same as that of the conjecture of Chapter
2.2

The structure of c-optimal designs should also be similar to those derived in Ford
et al.(1992) for arbitrary design intervals [a, b]. These are either one point designs
or two point designs which may comprise both endpoints or include only one of
them or neither according to rules similar to those for D-optimality. In this case

the values a**, o™

are the support points on (—co, 00) if, for the vector ¢ defining
the c-optimal criterion, two points are needed. They are independent of ¢. It is
likely that for estimating the median, which should correspond to ¢ = (1,0) if

z = 0 is a standardised median, the optimal design will be the one point design

2Let a* = —1.544, b* = 1.55 so that these are the support points on [a,b] = (=00, 00). They
are therefore also the support points on [a, b, where a < a* and b > b*. Consider a > ¢* and
let *(a) denote the value of z which maximises the D-optimal criterion over two-point designs
with support points @ and z subject to z > a. The points a and 5*{a) should be the support
points on the design interval [a,00) and hence on [a,b] if b > 6*(e). Similarly consider & < b*
and let a*(b) denote the values of z which maximises the D-optimal criterion over two point
designs with support points z and b, subject to z < b. The points a*{b) and b should be the
support points on the design interval {—oco,b] and hence on [a, ] if @ < a*(b). Otherwise the

support points should be the endpoints a and b. In particular this should be the case if a > a*
and b < b*
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taking observations at z = 0.

6.7.4 Result for the Univariate Approach

We turn now to the Univariate Approach which we have studied more extensively

in respect of D-optimality. Plots of the /w(z) of Equation (6.1), and of z+/w(z)

and the corresponding G are shown in Figure (6.2) , Figure (6.3), Figure (6.4),

and Figure (6.5), with F'(z) the logistic for a range of values of the standardised

initial bid ¢. These illustrate various points:

1. First G is no longer bounded, (since w(z) is not bounded : w(z) = co when

Z =

c) at least in the first component of g(z) as z approaches ¢ from above

since w(z) is infinite at ¢. Thus we must impose an arbitrary, lower bound

a on z satisfying @ > ¢ and ’cut away’ that part of G corresponding to

¢ < z < a. We focus on D-optimal designs on [a, b] for b = oco.

2. Second the shape of G changes with c.

1.

il.

1.

c>0
For positive ¢, g(z) — (o0,00)" as z — ¢ from above. In general G

has the shape of an increasing curve. [see Figures (6.4) and (6.5) (a),

(), (g), ()]
c=20
For ¢ = 0 it rises to a maximal turning point, and thereafter

g2(2) = zy/w(z) = 0 as z — ¢ = 0 from above. [see Figure (6.3) (j).]

c <0

For negative ¢, g1(z) = +00, ga(z) = —00 as z — ¢ from above. For
large enough negative ¢ however G initially begins to exhibit something
of the ’closed’ convex shapes seen above, before *turning’ to proceed

to the above limits thereby forming what we call a *tail’. [see Figures
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(6.4) and (6.5)] Denote by ¢* the critical value of ¢ for which this first

happens.

We considered the case where the answer to the first bid is NO. For that reason
we look at plots of the weight function of Equation (6.1) : For each value of c,
this weight function is different from those of Chapter 2 which were unimodal.
But here there can be either no turning point or two. From Figures (6.2) (6.3)
(6.4) (6.5) (b), (e), (h), (k) it appears that w(z) is decreasing for large ¢, but

below some critical value of ¢* it possesses two TP’s.

Critical value of c¢*.

Denote by z! the value of z at which the maximal turning point occurs. We note
that there must therefore be a value of a < 2! such that w(a) = w(z). The
critical value ¢* is the value of ¢ such that F'(¢) = 1/9 as we now show.

Since f(z) = F(2)[1 — F(2)] for the logistic then

P21 — FP?
{(F—Fr@1L-F1}
P P
[F — F(c)]

w(z) = F=F(z)> F(c)

Hence £(F) = In(w(z)) = 2In(F) +In(1 — F) — In(F — F(c)) . w(z) has TP’s if
[(F') has TP’s. The solution to £ (F') = 0 are solutions to a quadratic equation in
F, if they exist. The discriminant of this quadratic function is in turn a quadratic
function in F(c), which is positive only for 0 < F(c) < 1/9. Calculation of the

critical ¢ value is summurized in Appendix C.

6.7.5 Conjecture for the support points.

CASE 1 : We conjecture that for ¢ > ¢*, the D-optimal designs on [a, cc) have,

for all @, two support points a and 0*(a) as defined above. This will be the
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D-optimal design on [a,b] for b > b*(a). For b < b*(a) we conjecture the

support points to be a and b.

Support points Supp(p*)

{a,b"(a)}
{a,0"(a)}
{a, b}

Design Interval

Z =1la,b),
Z =a,b],
Z =a,l),

a>c,
a > c,

a>c,

b = co.
b > b*(a).
b < b*(a).

CASE 2 : For ¢ < ¢* the situation is more complicated. Sometimes there are

two support points which may or may not include a and sometimes there

are three support points including a. For the design interval [a,c0), we

believe that the solution can be summarised in terms three critical values

of a, say a(L), a(M), a(U)

as follows.

For a < a(L) and a > a(U) there are two support points ¢ and b*(a). For

a(L) < a < a(M) there are three support points including a. The other

two points can be found by maximising the D-optimal criterion subject to a

being a support and using the explicit formulae for the three weights stated

Chapter 2, section (2.2.5). For a(M) < a < a(U) there is a fixed two-point

support consisting of a(U) and 0*{a(U)}. For ¢ = —b values are

(a(L) a(M) a(U)) = (-4.73,

Range of Value

-4.60, -1.586).

—c<a<a(l) {a,b"(a)}

a(L) <a < a(M) {a, 2{(a), 2(a)}
a(M) < a < a(U) {ay, bV (a(U))}

a > a(U) {a, " (a)}

Support points Supp(p*)

Design Interval
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6.7.6 Geometrical explanation of the optimal design

A rationale for the above solution can be found by considering Silvey’s minimal

ellipsoid argument.

o Pirst we study G for all z > ¢. We denote this G by (.. Each point in G is
defined by a unique value of z. One can describe G, as a locus which starts
at the origin and follows an almost closed convex smoothly changing path,
which, for large negative ¢ will almost come back to the origin but at some
point it turns away from the origin developing a ’tail’ in convergence to
(00, —00) as z — ¢ from above. One exception to this is the case ¢ = —co
when GG_. will come back to the origin as z —> ¢. In fact this is the & of
Figure (6.2) a,d,g,j for ordinary logistic regression. For large negative finite

b

¢ the ’almost closed convex ’ part of G, must be closely approximated by

this logistic regression case.

e Now consider the case Z = [a,00), G = {g(2) € G.: z > a}. For sufficiently
large values of a, the tail of G extends well out towards (co, —00). So that
g(a) is to the right of and below g(z). Intuitively the minimal ellipsoid

touches G at g(a) and at one other point above and to the left of g(z'),

that is at a point corresponding to a value of z say b*(a), above 2.

Now think of a increasing so that we are 'cutting away’ more of G. It seems
plausible that the above solution remains valid at least until the value of a
such that w(a) = w(z"). Thereafter from some value a(L) onwards there is
clearly the potential in the case b = co for the minimal ellipsoid to touch

at g(a) and at two points corresponding o values of z on either side of z'.

A justification for the fixed two-point design over a(M) < a < a(U) can be
drawn from the approximation, noted above, between G_., and the almost
closed convex part of G, for large negative c. The optimal design for this

part of G, and for G_, must be approximately the same. This would
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mean that the D-optimal design for the ’almost closed convex’ part of G,
has two non-extreme support points say a*,0* so that the minimal central
ellipsoid containing this part of G,, containg strictly within it that section
of this ’almost closed convex’ part of GG, corresponding to z < a*. It will
also contain part of the tail of G, but only part of it since clearly the tail
must cross any bounded set. The value of z at which this crossing occurs

identifies the value of a{), while o(U) = a*.

This value a(M) like the value a(L) is a value of ¢ at which there is a change
from two support points to three or vice versa. Strictly speaking for these
two values there are two active support points (with equal weight therefore)
but in addition there is a ’sleeping’ support point with zero weight. In the
case of ¢ = a(L) the active support points are a(L) and 5*{a(L)} and
the sleeping point is a value say z, above these. In the case of a(M)} the
support points are a(U) and b*{a(U)} while a(M) is the sleeping support
point. As a increases from a(L) to a(M) the weight at a decreases from 1/2
to 0. A set of equations for identifying these values can be derived from
the fact that if there is a three point design on [a, c0) with o as a support
point then the variance function w(z)(1, 2)(M*)~*(1,2)" (where M* is the
optimal design matrix) must have turning points at the two higher support
points, say z1, and z;. The triplet (a(L), b*{a(L)}, z,) must be the values of
(@, z1, z2) which satisfy the two zero derivative equations plus the equation
setting the (explicit formula for the) weight at zs to zero. The triplet

(a(M),a(U),b*{a{U)}) instead satisfies the zero weight at a(M).

These conjectures for ¢ < ¢* cover the design interval Z = [a, c0) for all
values of a. For the case of a finite Z = [a,)] we have limited comments.
If b is greater than the upper support point of the design on [a,o0) then

that design must also be optimal for Z = [a,d]. Otherwise the design must

differ.
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It is fairly likely that b will be a support point (e.g. when a > o*(U)) but
this may not always be so. In general there will be designs with 2 or 3
support points which may include both a and b as support points or only

one of them.

Remark 6.1. Plots of the function H(z) for various values of ¢ are given in

Figure (6.7). These depict different shapes according to the value of c.

e c>c" : We have shapes similar to those in chapter 2, section (2.5.1).
H(z) is convez over (c¢,o0) and convez increasing if ¢ > 0. See plots
in Figures (6.7) (d), (e), (), (9), (h), (i), (G), (k), (1). An upward
sloping line with a negative intercept can cross H(z) at most twice in

(¢, 0).

e ¢ < ¢ : H(z) has a different shape now; a reflection of the weight
function, w(z). H(z) is convez up to the some point concave increasing

and again coOnveT increasing.

Remark 6.2. So in the case ¢ > c* the equivalence theorem is salisfied by our
congectured optimal designs for all possible design interval [a,b] if the func-
tion h(z) is increasing over z < Zpae and OVET Z > Zmaw. 1ThiS seems to
be the case from the plots of h(z) in Figure (6.6). In fact h(z) seems to be
increasing for all c. So the best two-point D-optimal design on |a,b], a > ¢

15 possibly given by the conjecture if ¢ < ¢*.
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(@) )

(d)

a(L)=-4.73. g1=0.1922. g2=-0.9091
a(M)=-4.60. g1 =0.1734. 2=-0.79B0
a(U)=-1.586. al=0.0.3837. g2=-0.6070
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1) 00
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226

©
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Figure 6.2: Plots of G, gi = yjw(z) and g2 = zy/w(z) for Univariate Approach

Logistic Function for various ‘“c” values; 2 > ¢, ¢ = —7, —6, —5, —4.
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(a) (b) ©
(d) ©) ()
(@ (b) 0)

@ (k) ¢

Figure 6.3: Plots of G, g| = >/w(z) and g2= zyjw(z) for Univariate Approach
Logistic Function for various *“c" values; z > ¢ c = —3,—2,—1,0.
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Figure 6.5: Plots of G, gi —\Jvo\z) and g> = Zy/w(z) for Univariate Approach
Logistic Function for various ‘“c” values; 2 > ¢, ¢ = 2,3,5,7.
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Chapter 7

Conclusion

7.1 Discussion of results

We have derived locally D-optimal designs for various binary regression prob-
lems. The results discussed so far show that for the binary regression model,
locally D-optimal designs can be sensible designs if provisional information on

the true values of the parameters is available from pilot studies.

Our exploration of D-optimality made extensive use of weighted linear regression,
and this led us to exploiting and applying well established results on optimal de-

signs in linear models.

First of all, we considered D-optimal designs for binary response models with one
design variable, and we transformed the design problem to one for a weighted
linear regression model, the weight function being :

f*(2)
Fz)[L - F(2)]

w(z) =

where f(z) = F'(z) is the density of F(z), and the design interval being 7 =

[a,b]. We also considered various other (non-binary) weight functions.

232
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We established that for many weight functions the optimal design is a two point

design. The support points for the z values are :

Supp(€*) = {a*,b*} a<a,b>b"
Supp(&) = {maz{a, a*(0)}, b} a<a*,b<b
Supp(€) = {a,min{b, b*(a)}} a>a",b>b"

Supp(&) = {a,b} a>a*b<b

where a*, b*, a*(b), b*(a) maximise the determinant over relevant intervals.

These results follow if

(i) the function H(z) = is first concave increasing then convex in-
creasing,

2w(z
w'(z)

G(Z,) is closed convex). In some cases the ratio w(z)/w'(z) is also in-

(i) the function h(z) = z +

is increasing (this also guarantees that

creasing. (Note: G(Z) shows that induced design space and Z,, the widest

possible design space.

Secondly, we studied the more general situation of multiple design variables.
Multiparameter design problems also tranformed to weighted regression design
problems in design variables z;, - , z with rectangular design spaces. Such that
z1 € [a,0] and -1 < z; <1, j = 2,--+,l. For many of our weight functions
optimal designs consist of taking observations at two values of z;, the two val-
ues satisfying the above conjecture. One such design consists of dividing the
total weight at each of these values equally across all combinations of z; = =+£1,

i=2,-,1).




CHAPTER 7. CONCLUSION 234

We also considered some bounded design spaces. We found optimal designs for 2
design variables 2, 23 as above when their design space is a polygon. Some of the
above results extended to this. In particular for many weight functions at most
two observations can be taken along any edge. We note that Sitter and Fainaru

(1997) considered the case zp = 22.

Possible problems for future consideration are :

e to extend the work of chapter 4 on polygonal design spaces to higher di-

mensions,

e to establish necessary and suflicient conditions on w(z) for guaranteeing the

above conjecture.

Finally, results from optimal design theory have been used uncritically in the
CV literature in respect of various design criteria. We made improvements. We
also reported new results which focus on optimal designs for the second bid of a
double bounded study given the response at the first bid. These will be useful
when there is a time gap between offering the two bids.

We reviewed with some minor criticisms the use of optimal designs in the case of
CV studies with dichotomous choice questions and have offered new designs for
the 2nd question of a double bounded dichotomous choice question conditional
on the response to the first bid.

There remains much to do including deriving designs, in respect of 'D-optimal’

and 'median’ oriented criteria, of the following kinds :

e designs for both stages of a double bounded CV study-univariate and bi-

variate cases.This will involve theory of designs for multivariate responses.

e Designs for the bivariate approach when the dependence parameter is treated
as unknown. This is a consideration for both the univariate and bivariate

approach.
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e Designs for the bivariate approach to double bounded CV studies when
different location and scale parameters are assumed at the two bids. This
would seem a natural extension of the common location/scale case although
the choice of criterion is possibly unclear. Good estimation of the parame-

ters of the second bid may be of greater importance.

e Designs when finite limits are imposed on bids for both the double bounded

and single bounded cases.

e Designs for optimal bids when other explanatory variables are included in

a model for WTP.
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Appendix A
Monotonocity of ¢3(r)

In this appendix, we prove that gs(r) is an increasing function of r.

_ (r=2)+VA
v = ey
where A = (r —2)2+3(r — 1).
dq3(r)
or
consider the following expression of the derivative of ¢z(r) with respect to 7:

To prove that ¢3(r) is increasing, it suffices to prove that > 0. Now let’s

1+ %A'zl [2(r — 2) + 3]' (6(r—1)) —6 [(1‘ —2)+ \/Z]

dgs(r) |
or 36(r — 1)2
_ 6(r—1) N 20 —2)+3)][6(r—1)]  6(r—2)  6V/A
36(r —1)2 72(r —1)2/A 36(r — 1)2  36(r —1)2
1
T T(r—1)2/A

{12VA(r — 1) +12(r = 1)(r = 2) +18(r = 1) = 12(r = 2)VA
—12 [(r = 2)> + 3(r — 1)] }

1 12{r — 7 — r—1)— r—2)?
_ m{uﬂﬂz@ 1)(r—2) +18(r — 1) — 12(r — 2)
~36(r — 1) }
1 ; 2
= W{IQ\/ZnLG(T—l)[Z(T—?)—3]—12(7"_2)}
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1
= —————={12VA+6(r - 1)(2r - 7) ~ 12( — 2)*}
72(r — 1)2VA { =1 )~ 12(r=2)
1
= —————— {12V A+ 127 — 5dr + 42 — 1272 + 487 — 48
72(r — 1)2V/A { ? }
1
= ———— = 2VA—(r+1)
C 12 /A | =~
12('] 1) A hs \—};I;S_/
‘ . . Oq3(r) - .
From the above expression of oy all we need to do is to prove that LHS >
r
1
RHS since —— = > 0. Now, because LHS > 0 and RHS > 0, proving

36(r — 1)2¢/A
that (LHS)?* > (RHS)? is equivalent to proving that (LHS) > (RHS). Let

f(r) = LHS* — RHS* If we expand the expression of f(r), then we get the

following:

fr) = LHS?— RHS”

S PV o | W (RN

= 4[(r—2*+30r-1)] - (r+1)°

= 4[r*—4r+4+3r-3] - [P*+2r +1]

= 42 —16r4+16+12r — 12— 12 - 9r — 1

= 3r2—6r+3
= 3(r*—2r+1)
= 3(r—1)

The above expression of f(r) clearly shows that f(r) > 0 which is equivalent to

LHS? > RHS?.




Appendix B

Study of function hy(z)

B.1 Monotonocity of ¢(r).

In this appendix, we prove ¢(r) is an increasing function with respect to 7.

(k=1)(r(z) 1) —2+VA
2k20=2)(r(2) — 1)

where A = (k — 1)*(r(2) — 1)% + 4r(2).

q(r(z)) =

9q(r)
o
consider the following expression of the derivative of ¢(r) with respect to r:

To prove that g(r) is increasing, it suffices to prove that > 0. Now let’s

Oq(r) _ 1 {(’» Dr—1)—[(& —1)(?"1)—2]}
or 2k 2(k-2) rr — 1)

{%A—U(%ﬁ 4] (k- 1) w-n+qw;n}

(r— 1)
(r—1) }

2A2<"’ ~2)

Zkz(k 2)

r—l)(k—1)+2] VA }

2){ T/
B r=DE-1)"+2 VA
= 2/12@ 5\ = 1) T—*l)\/:‘l— (r—1)°
B L0 2 VA
- 2A2(‘“ DN (r-1° VA  (-1D)VA (-1
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1
2522 (r(z) — 1)2/A
{2\/}1‘+ (k=12 —1)>2+2(r—1)— (\/E)’?}
1
2k2¢=2)(r(2) — 1)2//A
{oVA+ (-1 (=1 +20 = 1) = (k= 1) (r — 1)’ —4r}

1
T 2t (r(z) — 1)VA {2vA~2r -2

1 -
T RD(r(z) — 1)2/A {@‘&iﬂ}

From the above expression of 9a(r)

1 or

RHS since > 0. Now, because LHS > 0and RHS > 0,
E2¢=2(r(z) — 1)2/A

proving that (LHS)? > (RHS)? is equivalent to proving that (LHS) > (RHS).

, all we need to do is to prove that LHS >

Let f(r) = (LHS)? — (RHS)?. If we expand the expression of f(r), then we get

the following:

f(r) = LHS? - RHS?
= {VA} —{r+ 1)y
— A (r41)?
= A-r-1)+2P
= A—(r—1)?—dr+4—4
= (k—12(r—1)%+4dr— (r—1)" —dr
= (r(z) —1)*{(k—-1)* -1}

The above expression of f(r) clearly shows that f(r) > 0 which is equivalent to

(LHS)? > (RHS)?.



Appendix C

Conditional Contingent

Valuation.

C.1 Critical value of c.

We have shown that the Double Bounded Dichotomus choice Conditional Uni-

variate Model Weight function to be

f*(2)
[L = F(2)] [F'(z) — F'(c)]

we(z) = z>c

In the case of Logistic Distribution f(z) = F(z)[l — F(z)]. Because of that we

can rewrite w,(z) as follows:

1 _ {FeI-FE) Z>c
ve(2) [1— F(2)][F(z) — F(c)] me

To explore the critical value of ¢, we compute the derivative of the w.(z) with
respect to z'. However, before taking the derivative of the w.(z) we can make
some simplifications on the formulae of w,(z): |
F2(z)[1 - F(2)]
[F(z) = F(c)]

L As we can see plots of \/w,(z) at Figures (6.2) (6.3) (6.4) (6.5) (b), (e), (k), (h), for negative
value of ¢ (¢ < —2) w(z) changes from being decreasing to having two TP’s

we(z) zZ > cC (C.1)
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Equation C.1 can be solved as follows:

L [P - F)
we(z) F2(z)[1 - F(z)]
Hence
In [ﬁ} = W[F(z) — F(c)] — 2In F(z) — In[1 — F(2)],
—In{w.(2)} = In[F(z) — F{c)] - 2InF(z) — In[1 — F(z)].
S0
Il JG)_2G)J)
Oz [F'(z) — F(c)] F(z) 1—F(z2)
1 1
- 1N R o)
_ f(z){F(Z) [1 - F(z)] - 2[F(Z) Fe)l[l = F(2)] -+ F(z) [F(Z)—F(C)]}
‘ F(z)[1 = F(2)] [F(2) = F(c)]
- ) { [F(z) — F*(= )] + [F(z) — F(c)] [F(2) — 2(1 — F(2))]
F(2) [1 = F(2)[F(z) = F(c)]
_ { [F(z) = P(2)] + [F(z) ~ F(c)] BF() - 2] }
F(z)[1 = F(2)] [F(2) — F(c)]
~ ) {F(z) F2(2) +3F(2)? - 2+ 3F(2)] F(2) + 2F(c)]
F(z)[1 = F(2)][F(2) — F(c)]
Q(2)
e 26%(z) — [1 + 3F ()] F(2) + 2F(c)
' Fz)[1 = F@)][F(z) - F(e)] |
Therefore Oln E;ic(z)] = 0if Q(2) = 0where Q(z) = 2F*(2)—[1+ 3F(c)] F(2)+

2F(c) if Q(2) has roots.
Roots of Q(z) can be written as follows:

(1+3F(c)) £ /(1 +3F(c))? — 16F(c)
4
(1+3F(c)) + /1 +6F(c) + 9F2(c) — 16F(c)
4
(14+3F(c)) + \/1 —10F(c) + 9F2(c)

F(Z) 1,2 =

(1+3F(c) fc\/l— N —9F(c))
4
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There are three possibilities regarding the discriminant:

=0 if F(c)=1lorF(c)=4%
[1=F()[1-9F(c)] = ¢ >0 if 0<F(c)<4

<0 if Flc)>4

—_

Thus @(z) has roots iff 0 < F(c) < = ie. for ¢ < F~'(1/9). For the logistic

=}

c=1n(1/8) = —2.07944.




