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Sum m ary

This thesis is concerned with D-optimal designs primarly for binary response or 

weighted linear regression models. Its principle aim is to prove (using geometric 

and other arguments) that D-optimal designs have two support points for two 

parameter models depending 011 one design variable for all possible design inter­

vals. We also extend established results, for Gamma, Beta and Normal density 

weight functions.

The first aim of this work is to prove Ford, Torsney and Wu (1992) conjectures 

for a variety of such models. We also extend these results to higher dimensions. 

This is based on a parameter-dependent transformation to a weighted regression 

model and results will be extended to other such models.

Chapter 1 mainly gives an introduction to the study for linear and nonlinear 

Optimal designs for regression models.

Chapter 2 leads 011 with D-optimal designs for binary regression models which 

depend on two parameters and one covariate x  in a design region, say X.  It 

mainly deals with the following three cases: (a) X  is a unbounded, (b) X  is a 

bounded interval and (c) X  is bounded at one end onfy. We first establish that 

only two support points are needed and then establish their values. The above 

conjecture is confirmed for most models using a transformation to weighted re­

gression design.



C h ap te r 3 presents Weighted Linear Regression and D-optimal Designs for the 

particular case of a Three Parameter Model with two design variables under a 

transformation to a weighted linear regression when the design space is rectan­

gular. We first show that we have a four-point design for many of the weight 

functions considered. We also have an explicit solution for the optimal weights. 

An appropriate extension of the above conjecture is confirmed.

Consideration of more realistic constraints on two design variables in C h ap te r  4 

leads, under a transformation, to bounded design spaces in the shape of polygons. 

We establish results about D-optimal designs for such spaces.

C h a p te r  5 widens the scope of the thesis, by considering more general mod­

els and, in particular, multiparameter binary regression models. Here again, we 

establish the existence of an explicit solution for the optimal weights for the rect­

angular case of the design space and further extensions of the conjecture.

C h a p te r  6 extends the ideas of C h ap te r 2 by applying them to Contingent 

Valuation Studies. We illustrate one type of Contingent Valuation (CV) study, 

namely a dichotomous choice CV study with the design variable being a ’Bid’ 

value. Respondents are asked if they are willing to pay this value for some ser­

vice or amenity. We focus on both dichotomous choice (or single bounded) CV’s 

and on double bounded CV’s (in which a second bid is offered).

Finally, C h ap te r  7 presents our conclusions and ideas for future work.
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C hapter 1

Introduction

The last decade has seen an increasing level of work on optimal designs, with a 

particular focus on binary response models.

Throughout our research, the main focus has been 011 the exploration of some 

current ideas in this rapidly expanding field, with the aim of understanding and 

testing them in some specific contexts, and possibly extending them.

But before presenting our findings in detail, it is probably necessary to gain more 

insight into the building blocks of optimum design through a simple regression 

design example.

In a classical regression problem for example, the aim is to investigate the relation 

between a response variable and a set of explanatory variables. For such an 

investigation to be carried out, it is necessary to gather some values for the 

variables by making observations.

1
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In some cases, it is possible for the experimenter to choose the values of the ex­

planatory variables, which means that he/she can choose the situations in which 

the observations will be made. And here in lies a very significant aspect of the 

experiment, since the choice of the situation will in some way determine the qual­

ity of the design.

Some basic questions then naturally arise : W h at is a  design ? A nd how do 

we m easure  th e  quality  of a design ?

Although we shall later on cover both linear and nonlinear models in our study of 

optimum designs, we address the above questions through a simple linear model 

with n  explanatory variables (van Berkum, 1995).

1.1 W hat is a design?

We consider a linear model with n explanatory variables aq, The notation

for the model is as follows

Y  = Pifi(x)  +  +  ■■■ +  Pkfk(x) X £ ~  /?T f (x )  +  e ,

with

x — (aq, ... ,xn)T, the vector of n explanatory variables,

x E A, the experimental region, X  C Wn,

fi : X  —y 7£, a continuous function from X  into IZ (i = 1, ...,&) ,

/(£) = (A(t), ■ • • Jk(x))T,

and

e a stochastic variable, the error term, independent of x 

Y  response, Y  €

/3 = {(31 , ...,^/c)T, the vector of unknown parameters.
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Let’s assume in the above example that we are able to make N  observations, 

and let’s denote each observation by W For our assumed N  observations, we 

shall therefore have a corresponding set of normally distributed random errors, 

each denoted by In this particular case, we consider those errors Si to be 

independent and uncorrelated with zero mean and constant variance a2, that is

We now move on to the description of the design itself. We denote by a;1} x2, ■ ■ ■ , xm 

the distinct m  points (m < n) in the experimental region where observations will 

be taken. Here, each x{ — (xn^Xi2:--- ,Xin)T E X.  We also define ni as the

Let E denote the design of our experiment. For clarity, we shall sometimes refer 

to it as E(N)  in order to express the fact that we make N  observations in that 

particular design. In other words, a design E(N) can be fully described by spec­

ifying the above mentioned variables. We summarize the design as follows:

D esign(G eneral) : To obtain an observation on Y  we need to choose a value 

for x in X  . We want good estimation of /?. Suppose the experimenter is allowed 

to take N  independent observations on Y  at vectors ^ , ^ 2 , ••• -,xN chosen by 

her/him from the set X.  The basic problem is : How many observations 

should be taken at each point in X  or what proportion of observations 

should be taken at each point in X?  The basic idea is that we should 

choose (a^, a?2>' ' '  >Tn) to make the variance-covariance matrix of the estimators 

”as small as possible” , or alternatively to make its inverse ”as large as possible” . 

Suppose that the N  observations consist of observations taken at xi) i — 

1, • • • , m. This is an exact design which is usually represented as follows

number of observations made at the point xit jT'rii  =  N
i—1

(1.1)
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M odel for an  observation

Let Yu denote the Ith observation obtained at xir A model is

Yu ~  A / i f e )  H b Ac/itfe) T en  i =  1, • • ■ , m  and I =  1, •

with E[eij] =  0 and Y[eu] =  cr2 V Z.

Throughout the rest of the text, we shall use the following notations:

N o ta tio n  for th e  design The N  x n matrix D of values of the explanatory 

variables can be given by the following :

D  =

x n

• T . i

%2l

%2l

'L'inl

■̂ ml

•̂ In

%ln 

•E2n

2n

> rii times

> 77,2 times

> rim times

N otation  for the Equation of the m odel : The general equation for the 

model under consideration can be written as :

Y  =  X p  +  £

W here F  =  (Yn , • ■ • , U  , • • • , U , i ,  • • • , YmnJ  and

^ (̂ -11) ‘ ' ' 5 i ‘ > E-ml j ' ' * j £-mnm)

The N  x k matrix X  with values is called the design matrix, and has the

following form :
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X

Afe) ■■■ Afe) 

Atei) Atei)

/ l  fern)  ■■■ A  fern)

> n i times

?rm times

/ i ( $ j  /(=fe„)

N ote : In vector form, we can write the design matrix as :
T

X 1 =  [ /te i)  • • • / te i )  • • • / f e m) • • * /tem)] • For the least squares estimator

£=(&>•■■> A0 T we have

£  =  ( x Tx ) ~ 1x Ty ,

where Y_ is the vector of observations, 

y  =  (Yu ...,Yn )t ■

For the variance-covariance matrix Cov(/?) of the vector /? we have 

Cov(£) =  (ATA )-1cr2 .

The predicted value of the response at x  is

y  =   f A A te)

= ( /fe ))T| ,

with

/($ ) =  (./'] ($),'■■, ./tfe))7',

v (f ) =  C T y n y y y - v n ) ,

and the standardized variance is

d(x,£(JV)) =  A L
CT

= (/($)) (X X )-'/fe)



CHAPTER 1. INTRODUCTION  6

The matrix X TX  is very important and is called the in fo rm ation  m a trix  M.  

This matrix is also equal to
m

M  = x Tx  =  ,
i=l

with

/ f e )  =  ( / l f e ) , / 2 f e ) , - , / ( c f e ) ) r  .

This last notation for M  will be useful in finding optimal designs. To emphasize 

the fact that the information matrix depends on the choice of the design we also 

write M(8)  or M(S(N)).  Now we have

C ov0)  =

1.2 H ow do we m easure the quality o f a design?

In the previous section, we gave a brief definition of a design, together with 

the definitions of some other fundamental concepts used in the study of optimal 

design of experiments.

We now focus on the criteria that are commonly used to measure the quality of 

a design. As we shall see later on, the choice of a design will always depend on 

our interest. If our interest is parameter estimation for instance, we therefore 

will want to choose a design that would m inim ize in some sense the variance- 

covariance of the parameter estimator of our model.
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1.2.1 C riteria for th e  quality of a design

In the current statistics literature, there are many criteria used to measure the 

quality of a design, among which are

• D-optim ality: a design is D-optimum if it maximizes the value of 

det(M{£(N)))  or log d,et(M (£ (N))), i.e. the generalized variance of the 

parameter estimates is minimized,

• c-optimality: in c-optimality the interest is in estimating the linear com­

bination of the parameters cT/3 with minimum variance. The criterion to 

be minimized is therefore

V a r ^ f l )  oc (A M ~l (£(N))c

where c is p x 1 (A disadvantage of c-optimum designs is that they are often 

singular.);

• G-optim ality: a G-optimum design £*(N) minimizes the maximum over 

the design region X  of the standardized variance i.e. £*(N) solves 

minmax f r (g^M~l (£(N))f{x) x  E X  (this minimax value equals k );

• A-optimality: minimize the sum (or avarage) of the variances of the pa­

rameter estimates;

• lA-optimality: minimises A t h e  maximum eigen-value of M -1 , 

where M  = M (£ {N )).

All these criteria are functions of the variance-covariance matrix of the parameter 

estimates, and this justifies the central role that the information matrix plays in 

the determination of the optimal design.

For the purpose of our stud}^ we shall be using D-Optimalit}'.
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1.2.2 In troducing  D -O ptim ality

The study of D-optimality has been central to the work on optimum experimental 

design since the begining e.g. Kiefer (1959). Fedorov(1972), Silvey(1980), and 

Pazman (1986) likewise stress D-optimality, Farrell et, al. (1967), give a sum­

mary of earlier work on D-optimality. This includes that of Kiefer and Wolfowitz 

(1961) and Kiefer (1961) which likewise concentrate on results for regression mod­

els, including extentions to Ds-optimality. [See Atkinson and Donev (1992)].

The D-criterion is known as the criterion based on the generalized variance of /?, 

that is the determinant of the information matrix.

More precisely, D-optimality will consist in determining the design that maxi­

mizes the determinant, |M(£(JV))|, of the information matrix.

In fact, there is a relation between this determinant and a confidence region for 

the vector of unknown parameters. Assuming that e is normal, the confidence 

region for (I is defined by

(0 -  l ) TX TX ( 0  - p ) < k  s2Fa.XN- k ,

where Fa]̂ N-k is the critical value of the F  distribution with k and (Ar — k) 

degrees of freedom and where

s 2  =  j P ^ f X . - X ^ T O r . - X ' Q

is an unbiased estimator for a2. This confidence region is an ellipsoid. The volume 

of this ellipsoid is proportional to (det(XTA )-1)^. So a D-optimal design is a 

design which minimises the volume of this ellipsoid since M (£ ( N )) =  X TX .

In the following we will consider D-optimality. An advantage of D-optimality is 

that the optimum designs for quantitative factors do not depend upon the scale 

of the variables. This criterion is invariant with respect to a linear transformation 

of the form © =  Aj3. Except for G-optimality, the other criteria do not have this 

important property.
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The value of det (M(£(N)))  depends on the number of observations. If we have 

a design £{N),  then we can easily improve the design by choosing a design £{2N) 

that consists is doubling the replication of the points of the design £{N).  In this 

case we have

det(M(£(2IV))) -  2k det(M(£(N)))  .

Therefore it is not useful to compare designs with different numbers of values of 

N.  In the literature though, there is a special treatment of .D-optimality that 

addresses the case of designs with a fixed number of observations. That criterion 

is called D^-optimality.

The D-optimal criterion has been the most commonly used, and has dominated 

the literature of optimal designs; [see, Fedorov (1972), Silvey (1980)].

Let <L(M) =  log [det(M)] . The properties of the D-optimality criterion include :

1. <h(M) is an increasing function over the set of positive definite symmetric 

matrices. That is for Mi, M2 € A4, then T(Mi +  M2) > 4? (Mi) where A4 

is the set of all non negative definite symmetric matrices.

2. The function $(M(£(N))) ,  where M(£(N))  is the information matrix of 

the design £(iV)), is a strictly concave function on the set Ai  [see Fedorov 

(1972)]

3. <F(M) is differentiable whenever it is finite.

4. D-optimal designs are invariant with respect to any non degenerate linear 

transformation of the estimated parameters, [see Fedorov (1972)]



CHAPTER  1. INTRODUCTION 10

1.2.3 O ptim al designs w ith  fixed N  

D efin ition  1.1. D n -optim ality  :

A design S*(N) is -optimal if M(£*(N)) maximizes det(M(£* (N))) over all 

N  point designs.

det(M(£* (N))) =  max£(N) det(M{£{N))) .

1.2 .4  N orm alized  D esigns

We now focus on the comparison of designs with different numbers of observations, 

and this is done by using normalized designs, which requires us to standardize 

designs. This will be discussed in the next section.

Consider a design with N  observations. In the point x{ we have n* observations. 

Another way to say this is that a fraction n i /N  of the total number of observations 

is taken at the point x jr

This consideration gives the following definition.

D efin ition  1.2. Exact design : An exact normalized design has the form

P N  ”  ( T l ) ■ Tm>Pl  ? ■ ■ - j  P m )  j 

and there exists integer N  such that pi = m / N  (n* < N).

D efin ition  1.3. Discrete design : A discrete normalized design p has the form

D efin ition  1.4. Continuous Design : A continuous design is characterized by a 

measure f  on the experimental region x-

The names exact, discrete and continuous are confusing. A m.easure f  may also 

be discrete of course. The name exact has been chosen because an exact design 

can also be performed in practice.

P  (lii j  ■ ■ ■ i Tin') P i  i 1 ■ ’ j Pm )  i

m
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A discrete design may also be exact (if pi € irrational numbers for all i). Every 

discrete design can be approximated by an exact design with a large number of 

observations N,

We now define the per observation information m,atrix of a continuous design £ 

to be

^ " (0  =  J  f{x){f{x) )Td((x)
x

and in the case of an absolutely continous measure, i.e. a measure with a density 

p(x) we define it to be

M(p) =  J p{x) l {x) ( l{x) )Tdx =  Ep{ l ( x ) f r (x)} 
x

with

I p { x ) d x  =  1
x

If  the design is discrete or exact, then we have
m

= / t e ) ( / f e J ) T •

7 = 1

The standardized variance function d(x,p) equals

d{x,p) = (/(^ ))TM -1(p)/(^) (1.2)

Continuous designs can be useful to find optimal designs. They do not have any 

practical meaning. They are just useful in as much as they help in finding the 

optimal design analytically. We study only Discrete designs.

T heorem  1.1. For any given design p there exists a discrete design 

P1 = U i , - , a ; P i ,  - .P i)  vnth

M(p)  =  M (p') ,

and
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Proof: See Fedorov (1972) page 66-67.

Theorem  1.2. Letp be a normalized design with variance function d(x,p). Then 

we have in the case of a discrete design
m

E f t  =  k ,
£=1

where x u, — (xn,Xi 2 , • • • >Xin)T £ X  and in the case of a continuous design

j n d(x,p)d£(x) =  k . 
x

Proof. We can recall the variance function from equation 1.2:

d(x^p) = di =  ( /(x i))TM “1(p )/(s i) (1.3)

By equation 1.3

n

= tr{ i tf -1(p )]T p i( /(£i) ) /T(s )}
i='l

=  £r{M - 1 (p)M(p)}

=  t r h  

=  Jfc

which is what was required to prove. [See Fedorov (1972) page 68-69.] □

A proof for a continuous design is similar.

Theorem  1.3. For the maximum value of the function d(x,p) we have 

maxd(x,p)  > k .

Proof: See Fedorov (1972). We now define D-optimality independently of the 

number of observations.
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Definition 1.5. A design p' is called D-optimal if 

det(M(p')) =  maxdet(M(p))  ,p

where maximization is with respect to all possible designs measures, descrete or 

continous.

1.2.5 W eighted  Linear R egression  D esign

An example of a linear design problem can be a design for a weighted regression 

model. As we shall see later, the simplest case of Weighted Linear Regression 

plays a central role in our D-optimal design problems. See also Torsney and 

Musrati(1993).

• M odel :

E(?/) =  a  +  {3z, z E Z  = [a, b]

v(y)
a 2

w(z) ’

for some weight function w(z). a, j3 and a (a > 0) are unknown parameters 

and Z  is the design space.

• D esign :

Design points Zi, z2, • • • , zr, Zi G Z  with weights Pi,P 2 , ■ ■ ■ Hr where the 

variables pi are nonnegative and sum to 1 . i.e.

=  0  < ^  < 1 .
i= 1

Inform ation M atrix :

The informatiom matrix is of the form
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1.3 D esign  for a general nonlinear m odel

Suppose some response variable y has probability model p(y\xt &) where x is a 

given explanatory or design variable in the design space A  [a; <E X] and 9 is a 

k-vector of unknown parameters [9_ e  R k]. Suppose further that it depends on 9 

only through its expectation function,

[y\^§)  =  Vfe, 6) 

where 77 is a known non-linear function of parameters 19 and x. Also let

^ (y  =  &(£>£)

where a(x,9) is a known conditional variance function. All observations are 

assumed to be conditionally independent.

Suppose that N  observations are taken and consist of n* observations taken at x t 

i = 1, ■ ■ ■ , m. This is the exact design

™1 —2 ' ' ' —m  j _ / 1>4n

n i n 2 ---nmJ

A sy m p to tic  Covariance M a trix  : Assuming we estimate 6 by maximum like­

lihood and assuming the standard asymptotic results: Let 6ml denote the Max­

imum Likelihood (ML) estimator of 9. Then from standard asymptotic theory 

9ml is asymptotically unbiased, efficient (and normally distributed) i.e.

ML ) ~  f ,  N  large

C°v{6_m l)
Z=1

-1

where I  (x -, (I) is the Fisher Information Matrix for 9 for a single observation at 

the point and is given by

 ^ 'Ooi.D
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where i]q denotes the vector of partial derivatives 

Vei^O) = [di]/d9i, ■ • • , di]/d9k]T and a(x,6) =V(y\x) .

Under the above design

C ov(0  = [E£ln ,/(SEjlfi)]-1 

Approxim ate design -Continuous design

Equivalently, let pi =  ^  so that pi is the proportion of observations taken at X{. 

Then for large N

Cov{i) =

oc K i .p i l f e . i ) ] - 1 =  [M(8,p)]_1.

These weights (proportions) define an approximate design. If the design has 

trials at m  distinct points in A,  taking a proportion pi of observations at x.t 

i =  1 , • * * , m  we denote it by

P  ( T i )  • • • )  ••■■>Pm)-

Clearly Epi =  1, Pi > 0 . In general we may consider continuous design measures 

£(•) satisfying measure f x £(dx) =  1 and £(£.)> 0  for which the per observation 

information matrix is

M(B,S) =  J  I fe .g K fe ) -

1.4 D esign  Criteria

These must now be functions of M(8 , £). In particular the D-optimal criterion is 

log{det[M(9^)]} = -log{det[M{9, £)]-1}.

Again this has a confidence ellipsoid interpretation.

Suppose that 9 is the M.L estimator of 9 obtained from data arising under a 

design £ chosen on the provisional assumption that 9 = 9 .  Then log likelihood
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confidence regions for 6_ can be closely approximated by ellipsoids of the form

{£ '■ ( 0  — Q TM(C 6) (6 — 6) < constant}.

The volume of the above ellipsoid is proportional to {dei[M(£, 0)]}-1/2. So max­

imising log det[M(£)&)] would be equivalent to minimising the volume of confi­

dence ellipsoids for 6 of the above form. That is, we are making our confidence 

regions, in some sense, as small as possible.

To make the Information matrix small we should choose pi optimally. In practice, 

observations will be taken at a finite subset of points. We focus on the proportion 

P i  of observations taken at for good estimation. The objective is to choose £ to 

maximize det(M(£t 0)) which is to minimize the volume of a confidence ellipsoid 

for Q.

1.5 O ptim ality C onditions

We need conditions for identifying optimality. An important result in this con­

nection is the General Equivalence Theorem. It can be viewed as an extension of 

the result that the derivatives are zero at an unconstrained maximum (or mini­

mum) of a function.

The derivative of <[>(■) at i) in the direction of M(£2 ), see Whittle (1973) is 

F.i(M(Si), M (6 )) =  lim -  [<I{ ( 1  -  a )M (^ ) +  a M f a ) }  ~  ${M (& )}] .
a—3-0+ Cl'

The General Equivalence Theorem states the equivalence of the following three 

conditions on :

If <&(M) is strictly concave on the set of symmetric positive definitive matrices 

then:

• the design £* maximises ${M (f)},
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• the design £* minimizes the maximum over x G X  of F$(M(£*), I(x,9))  

(=the minimum of I(x,&) > 0  ),

• the derivative F$(M(£*), I(x,  0 )) achieves its maximum of zero at the sup­

port points of the design £*(z). i.e. F$(M(£*), I{x,9))  =  0  if £*fe) > 0 .

In summary

f -  0 i f  r f e )  > oF * (M (? ) , I ( x ,Q )  {

1

OVI i f  r f e )  =  o

For =  log det(M)  which is strictly concave

F*(M(£O .M fo)) -  tr(M -1( 6 ) ( M ( 6 ) - M ( 6 )))  

=  t r ( M - l (ZL)M(&)) -  k

wher e k  = tr(M

) ,/(* ,£ )) =  t r ( M - l ( ^ ) I ( x , 9 ) ) - k

a(x,  0)

So is D-optimal if only if

<  k V %

= k ? ( x )  > 0  .

Note this defines an ellipsoid centred on the origin containing the set 

{Vl — • x E X }  with the support points of on the boundary. Silvey

(1972) conjectured that this was the smallest such ellipsoid and Sibson (1972) 

proved the conjecture to be true.
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W eighted R egression M odel 

C onstruction  o f D -optim al 

D esign  :

T he Case o f the Two Param eter  

M odel.

2.1 M odel under consideration

We consider a binary regression model in which the observed variable u depends 

on a design variable x E X  — [c, d\ C 7Z. u can take only two possible values,

according as some event of interest occurs u — 1 or does not u = 0. We may

write the probabilities of the two outcomes as follows:

P r(ti =  0|x) =  1 — 7r(a;) P r  (u = 1|.t) =  7t (.t )

18
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Namely, u ~  Bi{ 1 , 7r(a;)). We assume n(x) — F (a  +  jdx), where F(-) is a chosen 

cumulative distribution function. So

Crucially the dependence of tt on x occurs only through a nonlinear function of 

the linear combination

for unknown parameters a, (3. This is an example of a generalized linear model.

2.1.1 D esign  For B inary R egression

We now apply the design theory on Chapter 1 to our binary regression model. It 

is convenient to adopt the parameter dependent linear transformation £ =  a+j3x. 

For the above model the information matrix can be written as follows

E(u|a.') =  t t ( x )  =  F ( a Jrj3x) 

V(n|:c) =  7r(a;)[l — vr(m)]

a  +  fix (2 . 1)

where f ( z )  =  F'(z) and

rj =  ty( x )

F(a  +  fix), 

F( z )

z = a fix

and

a(x,8) =  ¥(u|(c)

7 r (a :) [ l  -  7 r ( i ) ]

F ( a  +  Px) [ l  -  F ( a  +  px) \  

F { z ) [ l - F { z ) ]
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and

Vo
dF(z) dz dF(z) dz 

dz d a 5 dz d/3
T

f ( z ) J ( z ) x  

1
/  0)

Now let the vector

v =
y v f « k )

dF(z) dz  dF(z) dz  
dz d a ’ dz dp

'I

T

g F ( z ) [ l - F ( z ) }  \ x .

Further, given z — a E  (3x, then 2: € [a, 6], (a,b determined by c,d) and

=  B

1 0

a (3

1 '
x

Hence if

then

a w  =

g(z) = Bv,

/(*)

and

F =  B lg{z) .

D-optimality is invariant under non-singular linear transformations of the design 

space. So as did Ford, Torsney and Wu (1992) we consider the D-optimal linear 

design problem with design vectors

g =  Vw(z)(1 z): G [n, 6]
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where w(z) = F^ i _ F^  • This corresponds to a weighted linear regression design 

problem with weight function w(z).

Therefore these nonlinear design problems transform to linear design problems 

for weighted linear regression in 2: with weight function w(z) =  , where

f ( z )  = F'{z) is the density of D(-).

Table 2 .1  lists examples of this kind of weight function (binary regression weight 

functions) in two groups: Group I and Group II. Two other groups (III and IV) 

which we will consider are also listed. Firstty, we consider finding D-optimal 

designs for Group I (Table 2 .2 ) and Group III (Table 2.3), and then investigate 

Group II (Table 2.8) and Group IV (Table 2.11) separately.

In Table 2 . 2  we list details of the binary weight functions in Group I, namely 

the Logistic, the Skewed Logistic, the Generalized Binaiy, the Complementary 

log-log and the Probit; details are the pdf, the cdf, explicit formulae for 

the weight functions and the support points of the two parameter case 

(global) D-optim al design.

In Table 2.8 we give the same information for the two special binary weight func­

tions of Group II, namely the Double Reciprocal and the Double Exponential 

weight functions.

Table 2.3 records the explicit formulae for the weight functions of Group III, 

namely the beta, the gamma and the normal density functions, together with 

the corresponding support points of the global D-optim al designs.

Finally, Table 2.11, shows the corresponding information for the weight functions 

of Group IV.
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2.2 C haracterisation of Optim al D esigns

22

Let £* be a design measure on [a, b\. £* is D-optimal iff

V(z) =  gr ( z )M - l (C)g(z) < 2 C(z)  =  0

=  2 > 0.

V(z) is known as the variance function. This defines Silvey’s minimal ellipse. 

It is useful to introduce the following set:

We call this an induced design space as did Ford et al. (1992). An alternative

Lucas (1959). In this two dimensional case, Silvey’s geometrical characterization 

can provide us with some insights into the support points of a D-optimal design 

or at least their number. The support points are the points of contact between 

G(Z),  the design space, and the smallest ellipse (SE(G))  centred on the origin 

which contains G{Z).  The idea was first conjectured by Silvey (1972), and proved 

by Sibson (1972), both of these being contributions to discussion of Wynn (1972). 

Pictures of G(Z)  are important.

Our objective is to find D-optimal designs for all possible interval subsets Z  =  

[a, 6] of Z w, where Z w is the widest possible design space.

• C ase 1  : Z  =  Z w

We consider Z  =  Z w initially for all of the above weight functions Beta, 

Gamma, Normal and Binary. The induced design space G is a  closed 

convex curve in 7Z2 for the widest choice of Z  (= Z w). For these cases in 

Figure 2.1 and Figure 2.2 it seems likely that the minimal central ellipsoid 

containing G(ZW) can only touch it twice, in which case the D-optimal 

design has two support points and must be the best two point design.

and probably better name would design locus as orginally as used by Box and
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Consider a design with 2  support points u, v. For this to be D-optimal on 

this support the weights must be 1/2,1/2. Denote this design by £. Then 

the b es t two point design on Z w must maximise

det(M(0)

with respect to u, v. Let a*, b* be the optimal values of u , v. These are 

listed in Table 2.2 and Table 2.3. All of these weight functions w(-) have 

similar properties. In particular they are typically unimodal with one max­

imal Turning Point at zmax (w'(zmax)) — 0, and w'(z) > 0 if z < zmax and 

zu'(z) < 0 if z > Zmax) [see Figure 2.3 and Figure2.4],

In general support points must be found numerically. However for some of 

the weight functions (Beta, Gamma, Normal) there is an explicit solution 

for the support points, see Table 2.3 [Karlin and Stridden (1966) Fedorov 

(1972), Torsney and Musrati (1993)].

In most cases this best 2  point design is the D-optimal design. The Equiv­

alence Theorem is satisfied in all cases except for the double exponential 

and the double reciprocal .

• Case 2  - 5 :

We now consider those weight functions for which the above D-optimal 

design is a two-point design.

• Case 2: Z  =  [a, b] a < a* b > P.

The D-optimal design is the same as above since Z  contains the above sup­

port points.

We now repeat the conjectures of Ford, Torsney, Wu (1992) Ford et al. (1992) 

for three other cases and extend these to the non-binary weight functions listed 

in the Table 2.3.
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We conjecture that the D-optimal designs £ have the two support points listed 

in the following three cases. (We assume a < b.)

• Case 3 : a > a*, b>b*

Supp{£) — {a, min{b, b*(a)}}, (b*(a) > b*)

•  Case 4 : a < a* b < b*

Supp{0  =  {max{a, a*(b)},b}, (a*(b) < a*)

• Case 5 : a >  a* b <b*

Supp(£) =  {a, 6 }

Here b*(a) maximises det(M(£)) with respect to d (over d > a) where f  is the

and a*(6 ) maximises det(M(£)) with respect to c (over c < b) where £ is the 

design

2.2.1 Ju stifica tion  of th e  C onjecture

The D-optimal design must satisfy the Equivalence Theorem. According to the 

theorem (Silvey, 1980), a design £(■) is D-optimal iff

design

f  — ( a d \
^  Vl/2 1/2/ ’

f  =  i c b \ .S D /2  1/27

V z £ Z (2.3)

2  if f (z)  > 0 . (2.4)

This is true iff

< 0 M z e Z

0  if f  (2 ) > 0
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where Q(z) =  (1 ^ is a quadratic function. So for an optim al

design we wish to see v{z) < 0 Vz G Z.  To explore the shape of v(z) we 

analyze its derivatives. The derivative of v(z) can be written as

v'(z) = L(z) — H(z)  , (2.5)

where H(z)  =  and L(z) is an increasing linear function of z because the

coefficient of z  is the second diagonal element of the design Matrix M(£) which is 

positive definite. In fact L(z) = (2 E(w(Z))z  — 2 E(Zw(Z))) /Det(M(£))  where 

Z  is a random variable with probability measure f  since

M(£) =
' E (w{Z)) E (Zw{Z))  '

I E (Zvi(Z)) E(ZJw(Z)) I

The intercept will be negative if E(Zw(Z))  is positive and vice versa. The conse­

quence is v'(z) = 0 iff L(z) =  H(z).  That is, v’(z) =  0 when the line L(z) crosses 

H(z).

A question of interest is : ’’How many tim es can an increasing line L(z) 

cross the function H{z) ?” Plots of H(z) are given in Figure 2.5 and Figure 

2.6 for various weight functions w(-). These plots (appear to) have similar shapes 

and properties. In particular let Z w = [A,B]. Then H(A) = —oo, H(B) = -|-oo 

and H(z)  is concave increasing up to some point and thereafter is convex increas­

ing. Also H f(A) = oo, H'(B)  =  oo, while the second derivative of H(z)  has one 

change of sign for all the weight functions considered. This was observed em­

pirically in most cases. Only a few of them like the logistic and the normal weight 

functions offer an H(z)  function whose change of sign can be seen analytically.

Given such an H(z),  an upward sloping line L(z) can cross it, over the whole 

range of either one or three times. This depends on the slope of the line. 

This means that the derivative of v(z) can have at most 3 zeros in (—0 0 , 0 0 ). 

Further such a line must initially lie above H(z). So if there is only one Turning
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Point it is a maximal one, or if there are three the first is a maximal one and 

hence so is the third while the second is a minimal TP. So v(z) has only one min­

imum turning point (TP) and at most two maximum T P ’s. Hence given three 

solutions to vl(z) — 0 the middle one must be a minimum turning point. (The 

line crosses first from above, then from below, then from above, then from below 

the curve [Figure 2.7].)

Consequently, this implies that there are two support points, because three sup­

port points would need two minimum TPs. As a result of this, all the above 

weight functions have two support points with optimal weights | .  We list the 

W(z), H'{z) and H"(z) functions for the Binary weight functions and those of 

Group III, Table 2.4 and Table 2.5, respectively.

We note that a some upword sloping lines may only cross H  (z) once from above 

in which case v(z) would only have one maximal TP while others might be tan­

gential either to the concave or convex section of H(z)  in which case v(z) has one 

maximal TP and one point of inflexion. In either this means that a horizantal 

line can onty cross v(z) twice. More over v(z) lies above any such line between c 

and d where these are the values of z at which crossing takes place. This cannot 

be the case if v(z) arises under a design which is D-optimal on an interval say 

[c, d]. We must have v(z) < 2  on [c, d].

Hence the lines arising under designs £ must cross the H{z) three times.
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2.2.2 D eterm in ation  o f support poin ts b inary regression  

case

We now need to establish what the support points are of these D-optimal two- 

point designs. We consider the arbitrary design

We take the log function of the d e t e r m i n a n t  which is a concave function of

ln[deiM(£)] — — 2 1 n 2  +  2ln(z2 — z{) -1- In 1 0 (2 1 ) +  ln tu ^ )

We note that we will be interested in the derivatives of this function with respect 

to z\ and/or z2. To find the best two-point design on Z w we need to maximise 

ln[dei(M(f))] w.r.t. z\ and z2\ or if we wish to find the best two point design 

subject to z\ ( or z2) being a support point we need to maximise ln[det(M(£))] 

w.r.t. z2 (or zi). So we consider derivatives w.r.t. z\ and jzr2. A rearrangement of 

the first order stationary conditions introduces a function h(z).

7 =  (zi Z2\ s v 1/2 1 /2 /

Then

det(M(()) -  (1/2 ) 2 (z2 — zi)2w(zi)w(z2) z 1 < z2~

M ( - ) .

c?[ln detM(£)\ — 2  ^ w l(z\)

w(z1)(z2 -  zf) L w’{zi)
+ z2 - z x i f  w ' { z i ) ^  0

<fi[ln detM(Q]
oc w

Furthermore

<9[ln detM (£)]
w(zi)(z2 ~  zi)

^2 -  h(zi) = 0
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N o te  2.1. I f  w'(zi) — 0; =  T'-z! ^  °̂> zmax is not a solution of
9[ln  d e t M( t ■)] _  n 

dzi ~  U'

Similarly,

d [In detM{{f)\ 
dzo

w'(z2) 2

w(z2) z2 -  Zi
w'(z2)

w(z2){z2 -  Z i )  

Wl(z2) 
w(z2)(z2 -  zx)

Z 2 — Z i  +
2  w(z2)' 
w'(z2) . (ifw'(z2) + 0 )

h{z2) -  Z!

where h(z2) = z2 T  2l^ Z2̂ . So d[hidetj\/(£)] ^  w’(Zl)[h{z2) -  zx].
w'[z2) oz2 J

Further,

9 [In detM(£)\ 
dz2

=  0
w’(z2)

h(z2) -  Z! = 0

'i.e.
w(z2)(z2 -  Zi) 

z L =  h(z2) given w'(z2) 0

N o te  2.2. I f  w'(z2) =  0, q ^  ?-5 nQ  ̂ a soiu^ on 0f

<9[ln deiM (£)]   p.
dP2 —

We can be interested in solving one or both of the equations

zi =  h(z2) (2 .6 )

h(zi) = z2 (2.7)

h(z) =  z + ^ j r j  (2 -8 )w'(z)

As we can see it is useful to study h(z) since the solutions to the above equations 

clearly depend on the nature of h(z). Plots of h(z) are shown in Figure 2.8 

and Figure 2.9 for choices of w(z) which are unimodal and stationary at their 

maximum, say zmax. These reveal examples of h(z) which are increasing both 

over z < zmax and over z > zmax with a vertical asymptote at zmax . This proves
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useful to us.

Let’s now consider the single equation in z :

h(z) = c.

An implication of the plots is that there is one solution to this equation say z*L(c) 

in the range z < zmax and one, say 277(c), in the range z > zmax. Moreover since 

w!(zl (c)) > 0  and w'(z^(c)) < 0  we have z*L(c) < c < Zp(c) .

In equations (2.6) and (2.7) we have two versions of equation (2.8). Their joint 

solution with z\ < z2, must be z* =  a*, z\ — b*, a* < b*, a* and b* being the 

support points of the optimal two-point design on Z w as defined in the conjectures 

above.

N ote 2.3. This m,eans that

h(a*) =  6*,  h{b*) =  and zi — zl ( z2 )i z2 ~ zu(zi)-

We can now consider checking these conjectures against the Equivalence Theorem. 

Consider an arbitrary two point design say

8 =  (z 1 2*2 \
 ̂ v1/2 1/2 /

The corresponding design matrix is

(  H x O  + w{z2)\ [zl w{zx) + z 2w{z2) \ \
M (f) =  1 / 2

V [zx w(zx) +  Z2 Ul(Z2)] [z lw {z-l) + z2w (z2)] /  

and the determinant of M(£) is

d e t ( M ( £ ) )  =  ( 1 / 2 ) 2 w ( z i ) w ( z 2 ) { z 2 - z i ) 2 .

The inverse of the above design matrix is therefore

2 (  [zfw(zi) +  z%w(z2)} ~ [ z i w ( z i )  +  z 2 w ( z 2)\

w(z^)w(z2)(z2 Z i )  y  ^  [w(zi) +  w(z2)]
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If the above design is to be D-optimal on a set of values of z, say Z } then we 

must have

v(z) < 0  V 2  £ Z

where v(z) =  ^Q(z) — . In fact v(z) must be maximised at zly z2 as v(z\) =

v(z2) =  0 .

It is of interest to consider the derivative of v(z) at Zi, z2 . Recall that

v'(z) =  L { z ) - H ( z ) ,  

where L(z) =  \Q'{z) and H(z) = .

Q(z) =  ( l z ) M - l (t) (1) .

Here

2

yj(zi)w(z2)(z2 -  Zi)2

^[zlw(Zi) +  zl'w{z2)] -  2[ziw(zl ) +  z2w(z2)]z +  [w(zi) +  w(z2)]z2̂ j .

And

L(z) = i  Q\z)

- 2[z1w(zi) +  z2w(z2)] +  2[w(zi) 4-
w(z1)w(z2)(z2 -  Zi)2 \

Therefore L(zi) and L(z2) can be written as follows:

L { z i )  =  W ( z 1) w ( z ! ) ( z 2 - W 2 Z l [ w ( Z l '> +  tU("2)1 “  2 [ Z l W ( Z l )  +  z M z 2 ) ] )  
2

[{zi -  z2)w(z2)]w(z1)w(z2)(z2 -  Zi)2 
- 2

w(z1)(z2 -  Zi)

L ( z 2 ) =  \  — { 2 z 2 [ w ( z i )  +  w ( z 2 ) ]  -  2 [ z i w ( z i )  +  z 2 w ( z 2 ) } )
w ( z i ) w ( z 2 ) ( z 2 -  z x y

_  2
-  *i)
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Now with

v'(z) = L { z ) - H { z )  
w!(z)

=  £(*) + H z ) 2] ’

we have

Similarly,

v'{Zl) =  L(zi) -  H{z\)

— L(zi) +

- 2 w'(zi)
w(z1)(z2 - z 1) [wiz^2]

w'(zi)
w(zi) {z2 -  Z i )  w(zi)

w'(zi)
[w ( z 1 ) ] 2 ( z 2 -  Z i )

w'(zi) 
[ w { z i ) ] 2 ( z 2 -  Z i )

w'(zi) 
[ i u ( z 1 ) ] 2 ( z 2 -  Z i )

-2w(z\)
w'{z\)

+ { z 2 — Z i )

Z2 -  [zi +

z2 -  h(zi)

2w(zi)
w'(zi)

v'(z2) ~  L(z2) - H ( z 2) 
wf(z2)

=  L ( z 2 ) +
M z2)2]

2 w'(z2)
w{z2)(z2 - z 1) [w(z2)2]

w’(z2)
[w(z2)]2(z2 - z x)

w'(z2) 
[ w ( z 2 ) ] 2 ( z 2 -  Z i )

2 w(z2)
wf(z2) 

h{z2) — Zi

-f (z2 — Z i )

So,

v'(zi) oc w'(zi)[z2 -  h^i)]  

v'(z2) oc w'(z2)[h(z2) ~ z{\.
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2.2 .3  Som e properties o f v(z)

We also enumerate some properties of v(z) on the assumption that for any design 

v(z) is continous and has two maximal and one minimal TP over Z w. This will be 

the case if H(z)  has the properties mentioned above as demonstrated for several 

examples.

Denote the T P ’s by TPL, TP m , TPu  representing the Lower, the Middle and the 

Upper Turning Points respectively so that TPl < TPM < TPu  and 

TPl < zmax < T P u .

Some simple properties of v(z) will therefore be:

(i) v(zi) =  v(z2) =  0

(ii) It is possible that v (TPl ) =  v(TPu) but v (TPm ) /  v(TPjI)1 v{TPu)-

(iii) v'(z) > 0  for z < T P L and TPm < z < T P V

v'(z) < 0 for z > TPu  and TPl < z < TPM

(iv) If v(zx ) =  v(TPu)  then either zx < TPL with v'(zx ) > 0 or

TP l < z x < TP m with v'(zx ) < 0; in the last case v(z) < v(TPu) over

z > zx .

(v) If v (zx ) = v {TPl) then either z x > TPu with v'{zx) < 0  or

T P m < z x < TP u with v'(zx ) > 0 ; in the last case v(z) < v (TPl ) over

z < z x .

(vi) If zi > T P l and v'(z2) > 0 then v'(zi) < 0 i.e. T P L < zi < TP m ;

If z2 < T P u  and v'(zi) < 0  then v'{z2) > 0  i.e. TP m < z2 < TPu .

(vii) Suppose v'(zi) < 0  and v'(z2) > 0 . Then TPl < Z\ < TPM < z2 < TPu

and v(z) < 0, V z E [z1? z2\.

(viii) Suppose v'(zx ) < 0 and v(zx ) — v(TP)  where v'(TP) — 0.

Then T P  = TPu  .
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Suppose v'(zx ) > 0 and v(zx ) =  v(TP)  where v'(TP) = 0. 

Then T P  =  TPL.

33

2.2 .4  C onfirm ation o f D - O ptim ality

We now consider taking z ly z2 to be the support points of the conjectured optimal 

designs of the various cases of Z  =  [a, 6] above. Our primary objective is to 

establish that v(z) < 0  on Z.  The above properties confirm that this will be true 

if v'(zi) < 0  and v ' fa )  > 0 .

First we establish a preliminary result.

T heo rem  2.1. There can only be one solution satisfying Z\ < z2 to

h(zi) =  z2 

h(z2) = z 1

Hence there can only be one solution to the equations

v'(zi) =  0  i =  l , 2

and also d { l n d e t M m  _  Q ^
OZi

Proof. Suppose there are more than two pairs of solutions (2 1 , 2:2 ). Then the 

v—function for each solution satisfies

v(zi) = v(z2) = 0  

v'(zi) = v'(z2) =  0 .

Hence Zi, 2 2 are T P ’s of u(-) with a comman value of zero. Since v(z) only has 3 

T P ’s these must be two maximal ones. So, zi = TP h, 22 = TPu  and v(z) < 0 V 2 . 

Hence the design is D-optimal and so then is any convex combination

of them. Moreover they share a common design matrix and hence a common
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v(z) which therefore must be zero at all support points of these designs. Given 

v(z) < 0  they are all Maximal T P ’s. This conflicts with the assumption that v(z) 

has only 2 max and 1 min TP. □

We now establish results confirming that v'(zi) < 0, u'(z2) > 0 as required. 

Crucially we assume that h(z) is increasing in £ over z < zmax and over z > zmax 

where zmax is the point where the weight function w(z) reaches a maximum.

( Note: Equal weights guarantee v(zj) = v(z2) =  0.)

• Zi =  a > zmax, Z2  = b > a. We show that v’(a) < 0.

// \ (^0 rj 7 / Mv (a) =  r ,  A b - h ( a ) ]
[iy(a)]2(6 -  a)

Now since a > zmax, tu'(a) < 0. So v'(a) < 0  is true if [b — /z(a)] > 0.

i u  \ n \ 2wb — li{a) =  (b — a )  -r-v
tul(a)

The right side of equation is always positive, because a < b and wr(a) < 0. 

Therefore i/(zi) < 0.

• Z2 = b < zmax, zi — a < b. We show v'(b) > 0.

Now w'(b) > 0 . So vr(b) > 0 is true if [/?■(&) — a] > 0.

h ( b ) - a  =  ( & ~ a )  +  5 N

[h(b) — a] is always positive,because a < b and w'(b) > 0. Therefore 

v'(z2) > 0.

2- a* <  a <  zmax <  b <  b* Zj =  a , z2 =  b

Because a < zmax, and b > zmaxi w'(a) > 0  and w'(b) < 0.
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• Since h(z) is increasing over (—oo, zmax], h(a) > h(a*) and since b < b* 

then [b -  h(a)] < [6* -  h(a*)} = 0 . Therefore v'(zi) < 0 .

• Since h(z) is increasing over [zmax> oo), h(b) < h(b*) and then 

[h(b) — a] < [h(b*) — a*] — 0 . Therefore v'(z2) > 0.

Hence the two-point design

is D-optimal for all Z  — [a, 6] where a* < a < zmax < b < b* .

3- Zi — a*, z2 =  b* a* < b*

b* = h(a*) (2.9)

h{b*) = a* ( 2 .10)

From Theorem (2 .1 ), a*, b* is the only possible solution (a* < b*) to equa­

tions (2.9) and (2 .1 0 ). So vf(a*) =  0  vr(b*) =  0. Thus a*, b* identify 

2 max T P ’s of v(z). Moreover they are T P ’s at which v(z) has a com­

mon value of zero since v(z\) =  v(z2) =  0. From property (ii) of v(z) 

the only possibility is that they are the two maximal T P ’s of v(z). i.e. 

z1 = a* = TPL} z2 = b* =  TP jj. Hence the Equivalence Theorem is sat­

isfied. Moreover since v(z) < 0 V z G Z w then v(z) < 0 V z £ Z  = [a,b), 

where [a, b] C [a*, b*]. Hence the two-point design

£ =  fa* b*) •S V 1/2 1/2 /

is D-optimal for all Z  =  [a, b] where a < a* and b > b*.

4- a < a*, b > b* zi = a*, z2 = b*

Same design as for 3.

5- (P < a < Zmax Z b = b*(a) (b*(a) > b*) z\ =  a, z2 — b*(a)

Clearly v'(z2) = 0. First w'(a) > 0. We want vl{z\) =  v’(a) negative. So
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we need to investigate the derivative of v!{a). Here

v'(a) = -—- N “  M°01v J [iw(a)]2 (6*(a) -  a)1 w  WJ

w ' ( a ) r? - i f   ̂ / f m[hR (a) -  hL(a)\
[iy(a)]2 (6*(a) — a)

where h ^ ( z )  is the inverse function of h(z) for z > zmax and h ^ z )  =  h(z)

for z < zmax . Consider d ^ (a )  =  — /ij,(a), and recall that a < zmax.
%

We know from Theorem (I'.l), a — a* is the only solution to cLrL =  0. So 

the functions h ^ (a )  and h ^ a )  cross only once at a* . Further since 

hh{zmax) =  oo while h^1(zmax) < oo. Then h ^1 (a) < hL(a) at a = zmax. 

Hence this inequality is true for a* < a < zmax. Therefore 

vl(zi) =  A (a) < 0. Thus the two point design

£ =  ra b*(aR 
^  V 1 / 2  1 / 2  J

is D-optimal for all Z  =  [a, b\, where a* < a < zmax and b = b*(a). Since 

T(z2) =  0 for z2 = b*(a). This design is also D-optimal for b > b*(a).

6 - a* < a < zmaxj b* < b < b*(a) z\ =  a , z2 = b

First w’(a) > 0 . Secondly [b — h(a)] < b*(a)—h(a) = h ^1(a) — h i  (a) < 0 

by above. So v'(a) < 0 . Also we need to show v'(b) > 0 . Because of 

b > Zmax w'(b) < 0. We assumed b < b*{a) . If h(-) is an increasing 

function, h(b) < h(b*(a)) =  a. Hence h(b) — a < [/i(6*(a)) — a] = 0 . Thus 

v'(z2) = vr(b) > 0  and the two point design

f  =  ( a  b\
S Vl /2  1 /2 /

is D-optimal for all Z  =  [a, 6] where a* < a < zmax and b < b*(a).

7- a =  a*(b) (< a*) < zmax < b < b *  z\ — a*(6), z2 =  b 

(This is the complementary case of 5.)

Now v!(a) =  0. w'(b) < 0 and v'(b) > 0 is true if
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h^l {b) > hR(b) V6 G [zmaXiP]. So we need to investigate the derivative 

of v'(b).

v ' ( b ) =  r n s M Q - a ’ Mv ' [w(b)]2(b -  a*(b)){ w  WJ

= r 1M C  -  h~L(ft)][w(b)]2(b — a*(b))

where h^ ib )  is the inverse function of h(z) for z < zmax and hR(z) =  h(z) 

for z > zmax. Consider di,R{b) — hR{b) — Ii£l {b) and recall b > zmax. We 

know from item 3 that b — P  is only solution to dLR(b) =  0. So the 

functions hR(b) and cross only once at b* and since

hR(zmax) =  -  oo while hL(zmax) > -oo. Then hj^b)  > hR(b) or

hR < h2l {b) at Vb e [zmax,P]. Therefore this inequality is true for

Zmax < b < P. And therefore v 'fa)  =  v'(b) > 0. Thus the two point 

design

f  =  ( a * ( b )
^ V 1 / 2  1 /2  )

is D-optimal for all Z  =  [a, b] where a = a*(b) and zmax < b < P. Since 

v'(zi) = 0 for z\ =  a*(b). This is also D-optimal for a > a*(b).

8 - a*(b) < a < zmax < b < P z\ — a z2 = b 

This is the complementary of case 6 .

Now v'(a) — v'(b) — 0 . First consider w'(b) < 0, v'(b) positive. So we need 

to investigate the derivative v'(b):

where h(b) — a <  h(b) — a*(b) < 0 because of b > zmax. Therefore v!(b) > 0. 

Secondly w'(a) > 0  and v'(a) negative.
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where

h(a) > h(a*(b)) — b 

=> —h(a) < —h(a*(b)) 

=>• b — h(a) < b — h(a*(b)) = b — b = 0

Therefore v'(a) < 0. Thus the two point design

t  =  / a  
S Vl/2 1 /2 /

is D-optimal.
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2.2.5 Some Conclusions

These results confirm that :

Supp(C) =  {a*, b*} a < a * i b>b*

Supp((*) =  {?77,aa;{a, a* (6)}, b} a < a * , b < b *

Supp(^)  ~  {a,min{b, b*(a)}} a > a * ,b > b *

Supp(C) = {a, b} a>a* ,b< b*

So the equivalence theorem is satisfied by our conjectured optimal designs for all 

possible design intervals [a, b\ if the function

/>(*) = w'{z)

is increasing over z < zmax and over z > zmax. We have noted that this appears 

to be true for a range of w(z). Plots of h(z) functions are given in Figure 2 .8  

and Figure 2.9. Interestingly these properties also guarantee that G(ZW) is a 

closed convex set, as Wu (1988) reports. He established them analytically for a 

number of our binary regression weight functions. In some cases he established 

the stronger result that the ratio w(z)/w'{z) is increasing over z < zmax and

over z > zmax (for the logistic, complementary log-log and skewed logistic binary

weight functions). This implies that w(z) is log-concave. For the other cases he 

proved analytically that h(z) is an increasing function (Probit, Double exponen­

tial, Double reciprocal). We report and extend these results. Plots of 

w(z)/w'(z) are given in Figure (2.10) and Figure (2 .1 1 ). We summarize some 

aspects of the functions h(z) and w(z)/w'(z)  for some binary regression weight 

functions and some non-binary weight functions in Table (2.6) and Table (2.7). 

One of the most obvious remarks is that the functions h(z) and w(z)/w'(z) have 

almost the same shape and are increasing over (—oo, zmax) and (zmaXi oo) 

with a vertical asymptote at zmax for the weight functions listed. This confirms 

and extends Wu’s (1988) findings for some of them. Thus we have established 

the final condition needed to satisfy the Equivalence Theorem.
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Recently, Sebastiani and Settimi (1997) established the tru th  of the Ford et al 

(1992) conjecture for Logistic Regression using exactly our approach. Indepen­

dently of Wu they established the necessary property of h(z).

In effect we have established the following theorem:

T heorem  2 .2 . Assume that w(z) is continuous, differentiable and unim.odal 

and suppose Zw =  j/1,13]. Let w(z) be a weight function and

-w'(z)H(z)  =

, . 2w ( z )
h { z )  =  z  +

w'{z)
v(z) — w{z){l z)M~~l (ff)(l z)T.

I f  H{z) is continous with H(A) = —oo, H(B) = oo, differentiable with 

H'(A)  =  H ’(B) =  oo, AND is first concave increasing then convex increas­

ing the function v(z) [or the variance function] can have at most 3 T P ’s two 

maximal ones & one minimal one. In consequence a D-optimal design on any 

Z  =  [a, 6] has 2 support points.

Further if h(z) is increasing over z < zmax and over z > zmax these support 

points are as follows :

i - Z  =  Z w Supp{£} =  {a*,b*}

a* b* maximise det[M{ff)) oc (b — a)2w(a)w[b) and b* = h(a*), a* =

Mb*).

ii - Z  = (/l, b) and b < b* Supp{ =  {max{aJ a*(6)}, 6 }

a*(b) solves h(a) =  b.

in - Z  = (a,B) and a >  a* Supp{f} =  {fl,mm{6 ,ii*(a)}} 

b*(a) solves a = h(b).

iv - Z  = [a, b] and a > a* b < b* Suppfff} =  {a, b}.

This result provides confirmation for the Ford et al. (1992) conjecture.
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Before closing this chapter we also consider the weight functions in Group II and 

IV.

D ouble R ecip rocal & D ouble E xponen tia l B inary  W eight Functions

Our objective is to find D-optimal designs for possible interval subsets of Z w — 1Z 

for two symmetric binary weight functions : the Double Reciprocal & Double 

Exponential weight functions which are presented in Table 2.8 .

• Case 1 : Z  — Z w = 1Z

The first striking remark is that the Double Reciprocal and Double Expo­

nential weight functions are unimodal and both functions reach their max­

imum value at 2  =  zrnax =  0  at which point both are non-differentiable. 

So these are not stationary values [Figure 2 .1 2 ]. For these two weight func­

tions, the induced Design Space G(Z)  is again a closed convex curve in R? 

for the Z  — Z w =  (—oo, oo) [Figure 2.13] . However it has a sharp vertex 

at £ =  0. For these cases it seems likely that the minimal central ellipsoid 

containing G(ZW) will touch more than twice: at z — 0 and also, given the 

sjunmetry of w(z) about zero, at two other points symmetric about zero, in 

which case the D-optimal design has three support points. This impression 

is confirmed by the plots of H{z) for these cases. H{z)  is discontinuous at 

2; =  0. An upward sloping line can cross H(z)  four times. We discuss H(z)  

in more detail below. The distribution of the weights must be symmetric 

too, that is the support is of the form {—2 *, 0 , 2 *} with optimal weights 

(p, 1 — 2p,p) Musrati (1992). 2 * and p maximize the determinant of the 

information matrix det(M (£)) with respect to £ where £ is the design

t — z 0  2
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When there are three support points there is an explicit solution for the 

optimal weights as first reported by Torsney and Musrati (1993). If these 

points are , z2, Z3 , the respective optimal weights P 1 PP2 PP3 are given by

Pi  — A / ( A  +  D 2 +  A ) ,  i  — 1,2,3 (2.11)

where

A  -  A A ( A i  +  Afc +  A fc)5( b i A ) - ( i , 2 , 3 ) , ( 2 , i , 3 ) ( 3 , i , 2 ) ,

Dij =  w(zi)w(zj)(zi -  Z j f ,  ( i t j )  = (1,2), (1,3), (2, 3).

The support points and the optimal weights for both models are as follows 

(Torsney, Musrati (1993)):

Name Support Points Optimal Weights

Double Reciprocal - v A  0, 0.2617,0.4766,02617

Double Exponential —1.5936,0,1.5936 0.2819,0.4362,0.2819

Now we consider the variance function under these optimal designs. The 

implication is that its maximum occurs at three local maxima (at ±z* and 

0 ) while it has two local minima ( at ±z® and z® < z*, for some z 0  ). 

All are stationary values except the local maximum at zero. This is indeed 

the case so that the necessary and sufficent condition of the equivalence 

theorem is satisfied. These designs are globally D-optimal.

• C ase 2 : Z  =  [a, b] =  Z  C [0,0 0 ) or Z  C (—0 0 ,0]

For these cases results similar to the other binary weight functions hold. 

Namely has two support points with equal weights;

i f  a > 0 Supp(£*) =  (o, mm{li*(a),&}}

i f  b < 0 Supp(£*) =  {max{a,  a* (£>)}, b} .
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Justification of the Conjecture

1 - Let’s first consider the function H(z).  We have H(z) = 6sz2 +  10|z| +  4s 

and H(z)  =  2se^  for the Double Reciprocal and the Double exponential 

weight functions respectively where s is sign of z. [see Table 2.9 and Figure 

2.14]. In both cases H(z)  is positive for positive z, negative for negative z 

and discontinous at z = 0. However we only need to consider its behaviour 

in [0, oo) and (—oo,0] separately. As Table 2.9 shows, H'(z)  =  1 2 |̂ r| +  10, 

H"{z) =  12s for the Double Reciprocal and H'(z)  — 2e^ H"(z)  =  2se^ 

for the Double Exponential weight functions . In both cases, it is clear that 

H'(z)  is positive for all z and H"(z) is negative for negative z and positive 

for positive z. Hence H(z)  is concave increasing from —oo over (—oo, 0] 

and H(z)  convex increasing over [0, oo) to +oo [see plots in Figure 2.14], 

An upward sloping line with a negative intercept must cross H(z)  twice in 

[0 , oo) while one with a positive intercept must cross H{z)  twice in (—oo, 0 ]. 

Note that under a design on a subset of [0 , oo) the line L(z) has a negative 

intercept since E(Zw(Z))  > 0 and vice versa for a design with a support on 

(—oo, 0]. Thus v(z) can only have two T P ’s in these intervals. In the case 

of z > 0  an upward sloping line with a negative intercept crossing twice 

must cross from below then from above. So the first TP is a minimum, the 

second a maximum. The converse holds for z  < 0 . So y(^) has onty one 

minimum TP and at most one maximum TP in [a, b\. As a result of this 

there are two support points in which case the optimal weights are | ,

2 - As before the function of h(z) is increasing in both regions. As Table

(2 .1 0 ) shows h'(z) — 1 — for the double reciprocal weight

function and h'(z) — 1 — e~^  for the double exponential weight function 

(Wu 1988). It is clear that the ratio < 1, and that e“ hl < i.

This shows that the derivative h'(z) is positive for both weight functions. 

Interestingly w(z) /wr(z) is not increasing. Plots of w(z)/w'(z)  and of h(z)
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are given in Figures (2.15) and (2.16), respectively. These characteristics 

are summarized in Table (2.10). Since h(z) is increasing the support points 

are as given above.

• Case 3 : Z  =  [a, 5] (a < 0, b > 0)

Torsney & Musrati (1993) and Musrati(1992) showed that in this case some­

times there are two support points with optimal equal weights ( |,  |) ,  some­

times three support points (including z — 0) with optimal weights given by 

equation (1.9); and in each of these cases sometimes neither, or one or both 

endpoints a, b are support points.

G roup  IV  : Two N on-B inary  W eight Functions

Now we are going to apply our theorem to the weight functions listed in Table

(2.11), namely w(z) = ez and w(z) =  zl. Ford et al. (1992) derived the D- 

optimal designs for all Z  =  [a, b] C Z w for the above functions. However it is of 

interest to see that the above approach also works here.

If we look at plots of these weight functions, they have a shape that is different 

from the shape of the previously studied weight functions [Figure 2.17]. Also 

G(Z)  is no longer bounded for all H, [Figure 2.18]. Moreover, unlike before, 

there now exists a one to one relationship between the components of g(z) , namely 

gi =  s/w(z)  and g2 =  zy/w[z),  which can be derived explicitly. These are

g2 = 2 0 i In 0 ! for w{z) = ez
( 2 + Q

92 =  9 i l for w{z) = z .

We consider these weight functions in turn:

a - w(z) = ez

From the definition of g(z), we have

gi = y/w{z) = e2/2 ^  2: =  2 1 n 0 X
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Hence,

9 2  =  z\Jw(z)

-  2 yi In .

If we compute the first and second derivatives of g2 with respect to gi, we 

get the following:

dg2 
dgi 

d2g2 2

2 (In gi +  1 ) 

9i

d2g2 
dg\

vexity of g2 as a function of g\.

Since gi > 0, the second derivative > 0 which establishes the con-

b - w(z)  =  z l

From the definition of g(z) once again, we can write the following:

9i = z t/2 ^  z = g ^ 1

Hence,

Further

2/i (2+i)/ig2 =  zgi = gY‘ g1 = g\

dg2 +  2± i-l f 2 +  t, 2/i
Wi =  (— ) v  = ( - W

2 ft Sg2Now (// > 0 ,  which means that the sign of - — depends only on the sign
orji

of t

Further

d2g2 2 ( 2  +  4) 2 I
dg\ ~  t2 9l ’ t2<}l

Q2
Hence sign(-- ■ ■»■) =  sign(2-\-t). 

dgf
We now consider three distinct ranges of values of t.
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— If t < 0 then 2  + 1 < 0 > 0 and ^  < 0. The weight function
ogi dg{

w(z ) — z l is concave increasing in the interval t  < —2 .
rj j£)2

— If — 2  < /; < 0, — < 0 and .̂2 > 0. The weight function
<3</i dg{

w(z) =  ^  is therefore convex decreasing in the interval — 2 < t < 0 .

dg2 ^  n a —— > 0  and — ^
dgi dg{

convex increasing in the interval t > 0 .

— If t > 0 > 0  and > 0. The weight function w(z) = zl is

Therefore

• G(Z)  is convex increasing for w(z) =  exp (2 ) Z  C  1Z

• G(Z)  is convex increasing for w(z) — z t , t > 0 Z  c  7Z+

• G(Z)  is concave increasing for w( z )  = z1̂ t < 0 Z  c  "RA

• G(Z)  is convex decreasing for w(z) = — 2 < t < 0 Z  c  7Z+

The boundedness of G(Z)  requires the following conditions:

w(z) Z  =  [a, b]

zl-> — 2  > t > 0  a > 0 , b < oo

2^, t < — 2  a > 0 , 6 < oo

zl , t > 0  a > 0 , b < oo

exp(z) a > —oo, 6 < oo

We now show that D-optimal designs on any Z  = [a. b] which guarantees that 

G(Z)  is bounded have similar structure to those of our non-binary weight func­

tions.

We consider again the function H(z),  [Figure 2.19].

• For w(z) = exp(z), H(z) = H"(z)  =  — e~z < 0, H'(z)  =  e~z (see Table

(2 .1 2 )). This means that H( z )  is concave increasing from —oo up to 0  with 

an infinite derivative at z  =  — oo .
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• For w(z) =  z \  H(z)  =  H'(z) =  t(t +  and H"(z)  =

—t(£ +  l)( i +  2 )2:- ^+3}. So for t > 0 H(z)  is concave increasing from —oo to 

zero with an infinite derivative at z =  0 (see Table (2.12)) while for £ < —2, 

H  (z) is convex increasing from zero to oo with a zero derivative at z = 0 .

• For w(z) =  zt7 — 2  < t < 0, H(z)  is convex decreasing.

For these weight functions, H(z),  H'(z) and H"{z) functions are presented 

in Table (2.12).

We can then argue that an upward sloping line can cross H  (z) at most twice in 

the cases w(z) = ez} z l, t > 0; z ti t < — 2  . Hence v(z) has at most two T P ’s, one 

a maximal TP, one a minimal TP. Thus there can be only two support points on 

any Z  =  [a, b] .

In the case w(z) = zl , —2 < t < 0 ( a > 0 , 6 <  oo) an upward sloping line 

crosses H(z)  only once from below. So v(z) has one TP, a minimal TP. The 

implication is again that there can be only two support points. These must be 

the endpoints a and b. In fact the plot of G(Z)  shows a convex decreasing curve. 

The minimal central ellipse containing G(Z)  can only touch it at its endpoints. 

D eterm ination of support points 

We consider the functions h(z) and w(z) /wl(z),

• For w(z) — exp(z), h(z) — z T  2 which means that h(z) is an increasing 

linear function from — oo to oo.

• For w(z) =  2 *, h(z) — z T  y  = (fy^z, which is linear increasing if t > 0 

or t < —2. If — 2  < t < 0, h(z) is decreasing.

w(z)/w'(z)  and h(z) are plotted in Figure (2.20) and Figure (2 .2 1 ), respective^ 

and they are summarized in Table (2.13).
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Implications for support points of the D-optimal design on Z  — [a, b\ are

w(z) Z  =  [a, 6] Supp((*)

zly —2 < t < 0  a > 0 , 6 < oo {a, b}

zl , t < — 2  a, > 0 , 6  < oo {a, mm{6 , 6*(a)}}

z t} t > 0  a > 0 , 6  < oo {{mcu{a, a*(b)}, 6 }

exp(z) a > —oo, 6  < co {max{a,  a*(6 )}, 6 }

In fact since h(z) is linear in 2  there are explicit solutions for a*(6), 6 *(a), i.e. for 

the solutions to the equations

h(a) — b

a = h(b).

These are a*(6) =  6 — 2 for w(z) — exp(z) while for w(z) =  z l, a*(b) =  tb/(t  2) 

(if t > 0) and 6* (a) =  ta/(t  -1- 2) (if t < —2 ). These values are reported by Ford 

et al. (1992).
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Figure 2 .1 : Group : Plot of G(Z)  for Binary Weight Functions Z w — (—0 0 , 0 0 ), 
(Note: 1 represents A).
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Figure 2.2: Group III : Plot of G(Z)  for Non-Binary Weight Functions on Z w, 
(Note: 1 represents A).
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C hapter 3

W eighted R egression M odel 

C onstruction  of D -optim al 

D esign  :

T he Case o f th e Three Param eter  

M odel

3.1 M odel under consideration

We consider a binary regression model in which an observed value T, depends 

on a vector x of 2 design variables x — (a?i, x2) which are selected from a design 

space X  € 7Z2. The outcome Y  is binary, i.e., response or non-response, with 

probabilities

P r ( y  =  0|a;) =  1 — tt(x)  P r (T  =  l|a;) =  7r(x).

Thus, Y  ~  Bi{ l,7r(o:)) . We investigate the relationship between the response 

probability 7t(k) and the explanatory or design variables x — (bp, x 2 ) . We assume 

that 7r(V) =  F(a  + PiXi +  ^ 2 ^ 2 ), where F(-) is a cumulative distribution, so this

82
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is a GLM under which the dependence of

7r on x_ — (^1 ,^ 2 ) is through the linear function

Z\ —  C l '  - f -  Pl% l  T  P 2X 2 

for unknown parameters a, /5j, p2 . So

— 7r(^) — F(a  -I- P\X\ T $2 X2 ) ~~ E ^ i )  

y ( y ^ )  =  7r(x)[i — 7r(^)].

3.2 D esign  for three param eter 

Binary regression

We now apply the theory of section (2.2) - (2.4) of Chapter 2 to this problem. The 

material is similar to that of section (2.4.1). For the above model the information 

matrix can be written as follows

where / f z , ) =  F 'fz, j,

P ( z  1) x  ̂  

\ x 2 j

(1 ,.1-i , x 2),

and

?7 =  7r(z)

=  P(q: +  j3i%i +  P2 X2 ), =  a' +  P\X\ +  @2x 2

= F{z i)

a(x,9) =  V(Y \x)

=  7 r(^ )[ l — 7r(m)]

— F(a  +  P\X\ +  /?2 ’̂2)[l — F[cx +  ( 3 \ X \  +  P2 X2 )} 

=  F (Zl)[l -  F(Zl)].
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Also

dF(zi) dz\ dF(zi) dz\ dF(zi) dz\
dz\ da ’ dzi dpi dzi dp2

T
f { z i ) , f ( z i ) x u f ( z i )x2

(  1 A
= /(z  l) Xi 

\ x2)
Now define the vector

v = dF(zi) dz\ dF(zi) dzi dF(zi) dz\

s / W W )

f ( z  l)

dzi d a J dzi d(31 dz\ dp2

^ F ( z 1) [ l - F ( z l )} X \

\ x 2 J

Clearly, z\ plays a similar role as z = a  +  Px in the two parameter case. It is 

again convenient to exploit this linear transformation. In the two parameter case 

we had

B

1 0 

a  p

'1
x

We now consider the transformation

(  C

Zi

\ Z 2 J

I 1 0 0 \  f  1 \

=  B

a pi p2 

a b c

(  i  ^

X i

\ x 2 j

Xi 

\ X 2  j
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where a, 6, c are arbitrary constants to be chosen by the experimenter. They 

define an extra variable z%. We have transformed to two new design variables 

Z\ , z2• Their design space will be the image of X  under the transformation. 

Denote this by Z  . Hence

and

g(z) =  Bv

/(z  i)
(  1 N

Zl

\ Z 2 J

V  = B Lg(z) .

.D-optimality is invariant under non-singular linear transformations of the design 

space. So, as did Ford et al (1992), we consider the 19-optimal linear design 

problem with design vectors

T (zlt z2) G  Z,

where 1 0(2:1) =  )] 3 which corresponds to a weighted linear regression

design problem with weight function 1 0(2:1).

Therefore these nonlinear design problems transform into linear design problems 

for weighted linear regression in z\ and z2 with weight function 

1 0(2:1) =  > w^ere .fiz 1) — ^ie density of F(-). A geometrical

approach to the construction of D- optimal designs is useful. A crucial role is 

played in this by the induced design space

G =  G(Z) = {gz = (gu 02j 9 3 )T ■ 9i =  9 2  = Zi ^/w{zP): p3 =  z2y /w(z1)} z e Z}.
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3.2.1 Characterization of the Optimal Design

Let be a design measure on Z.  £* is D-optimal iff

<jr ( z i ,  z-i) c r '  ( C ) a  ( T  < 3 C’C?) =  o

=  3 c fe )  > o.

D-optimal designs have as support points the points of contact between G and 

the smallest ellipsoid centred on the origin containing G (Silvey,1980).

Clearly G must be bounded . This will be the case if X  is bounded. However as 

seen in the 2 -parameter case cji and g2 are bounded V zi for the weight functions 

considered. But clearly #3 , and therefore G , will be unbounded if z2 is unbounded. 

So bounds are needed on z2 - Due to the invariance of the D- criterion to linear 

transformations, without lost of generality we assume — 1 < £2 < 1- This implies

Z  =  z w-

Z w =  {(2 1 , z2) : — 0 0  < zi < 0 0  — 1 < z2 < 1 }.

This is an analogue of Z w in the two parameter case. It is the ’largest’ possible

Z  we can consider.

We first consider optimum designs for this space and later consider optimal de­

signs for certain subsets of it.

•  Case 1 : Z  — Z w = {(^1 , z2) : — 0 0  < z\ < 0 0 , —1 < z2 < 1 ).

We consider Z  =  Z w initially for the Beta, Gamma, Normal and Binary 

weight functions. Plots of G(ZW) for these weight functions are given in 

Figure (3.1), Figure (3.2) and Figure (3.3). It is immediately clear that any 

ellipsoid centred on the origin containing G can only touch G on the upper 

and lower ridges. Since the support points of the D-optimal design are the 

points of contact between G and the smallest such ellipsoid we conclude 

that D-optimal support points lie on these ridges and hence have z2 — ± 1 .
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Further, G is symmetric about g3 =  0 (z2 =  0). This leads to the con­

jecture that D-optimal supports are such that if observations are taken at 

a particular value of zi, then these are shared equally between z2 =  ±1 . 

(Sitter and Torsney, 1995a, 1995b)

• Case 2 : Z  — {(^i , z2) : a < z\ < 6, — 1 < ;?2 < 1} (= Z  C Zw). We

now consider the case z\ 6 [a,b] so that

G =  Gab — {g e  7b3 : g =  y/w(zi)  a < zi < 5, - 1  < z2 < 1}

This is the case of a subset of G(ZW) which is a ’vertical’ (in ^-direction) 

portion of G(ZW). We will consider other subsets later. Again we can argue 

that support points can only be on the ridges of G and we can restrict 

attention to weights equally distributed between z2 =  ±1, since G is still 

symmetric about g3 = 0 (z2 — 0). Thus we can restrict attention to the 

simplified designs considered for Gw with the proviso that the ^-values 

must lie in [a,b] .

The next point is : “how many support points are there?” . It is well 

established that (by Caratheodory’s theorem) if there are k parameters, a 

D-optimal design has at least k and at most k(k  +  l ) / 2  support points. 

Since there are k — 3 parameters, there are at least 3 and at most 6 of 

them.

Given the above argument that observations taken at z\ are shared equally 

between z2 = —1 and z2 =  1 the implication is that there are either 4 

or 6 support points. That is, observations are taken at 2 or 3 values z\ 

(as in the case of z in the two parameter models). Considerations of the 

plots of G in Figure (3.1), Figure (3.2) and Figure (3.3) for binary, beta, 

normal, gamma weight functions suggests that the smallest central ellipsoid 

will only touch Gab at 4 points, whereas in the case of the Double Reciprocal
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and Double Exponential weight functions, there are potentially 6 points of 

contact, including two at z\ =  0. Excepting these two cases we assert that 

for any a, b there are only four support points and hence observations are 

taken at only two values of z\. i.e. the design is of the form

 ̂ c c d d, ^

f  =

V

c c d d,

- 1 1 -  1 1

Pc Pc Pd Pd

(3.1)

/
where 2(pc P p d) =  1.

Let Supp(£*) denote these two ^-values and let a*, b* be their values on 

Z w. We further assert that

Supp(C) ~  a < a*,b> b*

Supp(£*) — {max{a} a*(6)},6} a < a*t b < b*

Supp(£*) — {a, b*(a)}} a. > a*, 6 > b*

Supp(£*) =  {a, b} a > a*t b < b*

where ft* (a) (along with pdi pa) maximises det(M(£)) with respect to d (over 

d >  a) where £ is the design

 ̂ a a d d. ^

? =  -1  1 - 1  1

\  P a  P a  P d  P d  J
and a*(b) (along with pc,Pb) maximises det(M(£)) with respect to c (over 

c < b) where £ is the design

c c 6 b

-1 1 -  1 1

Pc Pc P6 Pb



CHAPTER 3. THREE PARAM ETER CASE 89

3.2.2 Ju stifica tion  of th e  C onjecture

To prove the above conjecture we need to confirm the requirements of the Equiv­

alence Theorem. This requires that the following necessary and sufficient condi­

tions (Kiefer and Wolfwitz, 1960) must be satisfied by an arbitrary design £(2 1 , z 2) 

if it is to D-optimal.

w ( z i ) {  1 ,  z 1} z2) M  * ( £ ) z\

V 2 2 )

< 3 V z j ,  z 2 G Z  (3.2)

= 3 if £(2 1 , z 2) > 0 (3.3)

We only need to check this for z 2 =  ±1 and all relevant Z\ , in which case equations

(3.2) and (3.3) imply

w(zi)Qx (zi) < 3 V (zi,3zl) E Z  

= 3 if £(2 1 , dtl) > 0 ,

where Q x(2 1 ) =  (1, z \ ,  ±1)M -1(£)(1, 2 1 , ± l ) r , a quadratic function. That is

3
V * { Z i )  =  Q x ( z i ) ~

w{zi)
< 0 V (2 1 , ±1) e Z  

=  0 if £{z\ , ±1) > 0.

So for an  op tim al design we w ish to  see v x (zi) < 0 in the case

Z  — {(ziz2) : a < z\ < b, — 1 < z2 < 1}. To explore the shape of v x (zi), we ana­

lyze the derivative of ux(;?i). This can be written as follows :

dux (2 1 )
d2i

(3.4)

 2 wr(z; j
where H ^ ( z i )  =  ——-— and L{ z \ )  is an increasing linear function of z\  be­

cause the coefficient of zi is the value of the second diagonal element of the inverse 

of the design matrix M(£) which is positive definitive.
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cl.7J ̂  I  ̂ ^
The consequence is that — ---- - =  0 iff L{zi) =  H^(zi).  That is, —  =  0

dzi azi
when the line L(zi) crosses H£(zi).

The striking point is that H£(zi)  oc H{zx) [Chapter 2, equation (2.3)]. There is 

no difference in the shapes of these functions. Thus L(zi) can only cut H$(zi) 

at most three times as was the case for most of our weight functions in the two 

parameter case.

Therefore we have the same conclusion here (for most of weight functions con­

sidered): namely, H ^ ( —oo) =  —oo, H£(+oo) =  Too and H£(zi)  is concave 

increasing up to some point and thereafter convex increasing.

It follows that u x(^i) has at most 3 turning points at Z w. Because L{zi) first 

crosses H^(zi)  from above, wx(;q) has only one minimum turning point for the 

same reasons as before. Hence for these weight functions there are only two 

support points along each horizontal edge identified by two distinct values of z\ 

with the weight at these shared equally between z2 =  ±1. These give a total of 4 

support points. We now need to determine the two values of z\ and the optimal 

weights. In fact there is an explicit solution for these weights.

3.2 .3  D efin ition  o f w eights

We consider the specific design

(  i 1 2 3 4

Z\i C c d d

Z2i -1 1 - 1 1

\  Pi Pc Pc Pd Pd

where pc, pd  > 0 and 2 (p c -\- Pd)  =  1- The design matrix is
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where

g_. —  \ / w ( z u } { 1 ,  zu , z2i)T z =  1, 2,3,4.

Therefore,

^ 2pcw(c) +  2pdw(d) 2cpcw(c) + 2dpdw(d) 0 ^

M(p) 2 cpcw(c) +  2 dpd,w(d) 2 c2pcw(c) +  2 d2p(i'w(d) 0

y  0 0 2pcw(c) +  2 pdw(b)

The determinant is

=  23 (d -  c)2pcw(c)pdw(b) [pcw(c) Tpdw(d)].

We need to choose c, d, pci pd to maximize the determinant of the design matrix 

!■' 'li-Vr We can find an explicit solution for the weights: First, we get the log of 

the d e t e r m i n a n t  function which is a concave function of M(-) and substitute

P d  =  \  ~ P c  ■

in !" "v /! =  2 In 3 +  2 In(d — c) +  lnpc +  ln(~ — pc) +  lnio(c) +  In tu(d)
1

+ ln[pcu;(c) +  ( -  - p c)w(d)j

dln\M(p)\  X 1 w(c) — w(d)
dpc pc ( |  -  pc) pcw(c) +  (± -  pc)w(d)

_  1 — 4pc w(c) — w(d)
pc( 1 -  2pc) pcw(c) +  ( |  -  P c ) w ( d )

Further,

d In \M(p)\ =  Q 1 ~ 4pc +  w(c) -  w(rf) =  Q
<9pc pc(l -  2pc) pcw(c) +  (~ -  pc)w(d)

3p^[w(c) — iu(cJ)] — pc[iu(c) — 2iy(flE)] — ^nu(6) =  0 (3.5)

[zu(c) — 2w(d,)] ±  \/[u!(c) ~ 2u;(dl)]2 + 3[iu(c) — w(d)]w(d) 
^ c  6 [u j (c )  — w(d,)}

^

96

^
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This is an explicit solution for the values of pc that maximize |M(p)|. Of the 

above two roots, our solution is given by the first root1 :

[iu(c) — 2w(d)] +  v^Iw(c) — 2iu(d)]2 +  3hn(c) — u>(d)l?n(d)
Pc = ----------------------------FTTh------ Tayi---------------------------- 1 (3-6optgc) — w{a)\

Hence pd =  \  -  pc.
w(c)

Further we can express the solution for pc in terms of r — —— , namely:
w(d)

Pc = qs(r) =
(r -  2) +  y ( r  -  2 f  +  3(r - U )

6(7’ — 1)
(3.7)

3 .2 .4  D eterm in ation  o f support points

Still the design is

1  i

z\ 

\  p

1 2  3 4

c c d d

- 1 1 - 1 1  

Pc Pc Pd Pd )

and

In [detM (p)] =  3 In 2 +  2 ln(d — c) +  lnpc +  ln(pd)

+  lnzu(c) +  lnu;(d) +  ln[pciy(c) -f (pd)w(d)], c < d.(3.8)

We now view this as a function of four sub-functions of c, namely tu(c), pc,

Pd (since pd is a function of c through the condition pd +  pc~) and A(c, d) =
Lj

3 In 2 +  2 ln(d — c), so that

In [detM (p)] =  A(c} d) +  lnpc +  ln(p(/) +  hi w(c) +  In w(d)

+ ln[pcw(c) +  (prf)w(d)], c < d (3.9)

=  F(A(c,d),w(c),w(d),pa pd) (3.10)

=  F  (3.11)

1In fact, the use of the second root leads to negative weights which obviously violates the 
constraints on the weights.
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Note that here we have not substituted for pd in terms of pc. If we do not make 

this substitution we need to use a Lagrangian approach to determine the optimal 

values of pc, pd. Some useful formulae emerge if we do this. Since pc + pd — |  

the Lagrangian is

L{PnPd>'\) =  F ~  A(pc +  pd -  1/2).

Having formed our total objective function we now determine the partial deriva­

tives of L(pc,pd, A) with respect to pc, pd and A respectively.

dL(pc,pd,X) dF
dpc dPc

- A

dL(pc,pdi\ )  =  dF  ^ 
dpd dpd

dL(pc,pd, \ )
OX ~{Pc+Pd ~  1/2)

Hence
dL(pc,pd, X) =  Q

dL(pPpd,X) n ^  dPF  . (3'12)
dpd

To determine A we note

-  0

dF dF
Pen =  A (Pc + Pd)dpc dpd

= I x .

Consequently,

Now

A =  2
■ dF dF
Pew - +Prfn— dpc dpd -

(3.13)

dF  1 iu(c) . .
  = ---- 1------------ —--------  (3 14)
dpc Pc [pcw(c) + pdw(d)]

—  =  1 | ( 3 . 1 5 )
dpd Pd [pcw{c)  P  p dw(d)]

Multiplying equations (3.14) and (3.15) by pc pd respectively, and summing the 

resulting equations we can write

dF dF  =  pcw(c) pdw(d) =
Pcdpc Pddpd \pcw(c) + pdw(d)] [pcw(c) P p dw(d)]
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which is constant. And from equation (3.13), A =  6.

Further

dF
dpc

Similarly,

dF
dpd

We note that we will be interested in derivatives of this function with respect 

to c and or d. To find the best four-point design on Z w we need to maximise 

In[detM(p)\ w.r.t. c and d or if we wish to find the best four point design subject 

to c (or d) being a support point we need to maximise F  w.r.t. d (or c).

1
+

u>(c)
Pc  pcw(c) + p dw(d) 

pcw{c)1 +
pcw(c) Ppdw(d) 
pcw(c)

=  6

pcw{c) P p dw(d) 6pt (3.16)

1 w(d)
Pd 

1 +

pcw(c) Ppdw(d) 
w(d)pd

pcw(c) P p dw(d) 
w{d)pd

pcw(c) P p dw(d)

=  6 pd

Qpd -  1 (3.17)

dF dF dA(c,d) dF dw(c) dF dpc dF dpd
dc dA(c,d) dc dw(c) dc dpc dc dpd dc

Now we can substitute the values from equations (3.16) and (3.17) into equation 

(3.18) to obtain the following :

dF = dF dA(cj d) dF dw(c) dpc dpd , .
dc dA(c} d) dc dw(c) dc dc dc

From the definition of pc, pd (pc P Pd = 1/2), we can write the following
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Therefore,

dF dF dA(c, d)
dc dA(c}d) dc

dF dw(c) dpc
dw{c) dc ~9c" ~

dF dA(c,d) dF dw(c) 
dw(c) dc 

pcw'(c)
dA(c,d) dc 

- 2  w'(c)
 +  — r v  +c io(c) pcw(c) + p dw{d) 

pcw(c)— 2  u/(c)
T 1 +d — c w(c) L Pcw(c) + p(iw(d)-

- 2  6 pcw'(c)
0? — c io(c)
- 2 io(c) +  (pcw'(c) 6 ) (of — c) 

io(c)(d — c) 
u/(c) 6pc

w(c)(d — c) 
pcw'(c) 6  

w(c)(d — c)

(id - c ) ~  

d -  hd(c)

w{c)
3pcw'(c)l

i f  w'(c) ^  0

i / n w (c) r, dlhidetMR)} , / mwhere hd(c) = c + -  So ------    oc pcw (z) 6 [of -  hd(c)].
3pcur(c) <72q L J

Further,

mu/frOd r. 2 1 /)(n) iS[lndeiM(p)] _  o ^  pcw'(c) 6  2 tu(c)
9c lo(c)(d— c)L 6 pclo'(c)

i.e. i f  d — hd(c) [given w '(c) ^  0 ] .

/  _t ... v  ̂ . <9[hrdeiM(p) —  2( Note, it pcio (c) =  0 then -------------   =     7  ̂0 . Since w‘ (zmax) =  0 ,
dc cl — c

^nn detAd (59)]
so zmax is not a solution o f   --------- =  0 , where zmax is the value of z 1 whichdc
maximises 1 0(2:1).)

Similarly,

dF dF dA(ct d) dF dw(d) dF dpc dF dpd
dd dA(c,d) dd dw{d) dd dpc dd dpd dd

Now we can substitute the values from equations (3.16) and (3.17) into equation 

(3.20) to obtain the following :

9F  =  dF dA(c,d) dF dw(d) dpc dpd
dd dA(c,d) dd dw(d) dd dd dd
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From the definition of pCl pd (pc P p d — 1/2), we can write the following

dpd , dpd

Therefore,

OF
dd

dd dd 
dPd 
dd

dpd
dd

dF dA(c, d) dF dw(d) dpd _  
dA(ct d) dd dw(d) dd .dd

= o
dF dA(cyd) dF dw{d) 

dw(d) dd 
pdw'(d)

dA(cy d) dd

2 i w' ^  Ii   r
d , ~  C 

2

d — c 
2

w(d) p cw(c) P  pdw(d)

P

+

w'(d)
1 +

pcw(c)
w(d) I pcw{e) P pdw(d) 
Qpdw'(d)

d — c ' w(d)
2w(d) +  (pdw'(d) 6) (d — c) 

w(d)(d — c) 
pdw'{d) 6

w(d)(d — c) 
pdw'{d) 6 

w(d)(d — c)

( d — c) P  

hc(d) -

w(d)
3pdw'(d)\

i f  w'(d) /  0

where hc(d) = d + ^ P . So PdW'(z ) 6 \hc(d) -  cl
o  P ciW  O Z \

Further,

letMivW . vjw'(d) 6 r. . w(d) id[\ndetM(p)] =  Q i f  P* Pdw’jd) 6 r  ̂ w(d)
cM io(d)(rf — c) L 3pdw'(d).

i.e. i f  d =  /ic(d) [given w '{d )p  0].

/at -r- #/ t\ « i d\ln. detM(p)] 2 . _ . .(Note, if pdw id) =  0 then -------—— = - ------  p  0. So (z)max is not a so-
H f i  (1  —  C

d\ln detM(p)] . .
lution o f  —-------- =  0, where zmax is the value of z\ which maximises w(zi).)dd “ y

As a result of this, we can be interested in solving one or both of the equations

c =  hc(d) (3.22)

hd(c) = d (3.23)
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Clearly, the function hc( d) t hd(c) play the role of h(z )  in the two parameter 

case but that has now been replaced by a class of functions. It is useful to 

study ht ( z i ) .  The solution to these equations clearly depends 011 the nature of 

h t (z \ ) .  We consider the same weight functions as in chapter two. For those that 

are unimodal and stationary at their maximum the class of functions ht ( z i )  are 

increasing both over z \  <  z rnax and over z \  >  z max with a vertical asymptote at 

Zmax- Plots in the case of the weight function for binary logistic regression are 

shown in Figure (3.6). Further plots are revealed in Chapter 5, Figures (5.2),

(5.3), (5.4) and (5.5). This again is useful to us.

Now consider the single equation in z \

hZ2(zi )  =  e.

As in the previous chapter there is one solution to this equation say z \  =  z*L{e) in 

the range z \  <  z max and one, say z\ — z\7 (e), in the range z \  > z max. Moreover 

since w' ( z^(e ) )  > 0  and 31/ ( 2 ^ (e)) < 0  we have ^£(e) < e < ^J(e). In equations 

(3.22) and (3.23) we have two versions of the above. Their joint solution, with 

z \  < ^2 > must be z{ = a*, z \  =  6*, a* < b*} a*, b* being the support points 

of the optimal four-point design on Z w as defined in the conjectures above. Note 

this means

h(ci*) =  6*, h(b*) = a* and ~  (^2 )> z 2 — zu(zi)
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3.2.5 E xam ination  o f th e  conjectures against

th e  E quivalence T heorem

We can now consider checking these conjectures against the Equivalence Theorem, 

Consider an arbitrary four point design:

i 1 2 3 4 1
Z \ i bi h b2 b2

Z 2i - 1 1 - 1 1

\  Pi p(b i) P{b i ) P ( h ) P(b2) /

where p(bi), £>(6 2 ) > 0 are the optimal weights for &1} b2 respectively. The infor­

mation matrix is

M( p)  =

where

g. =  y / w { z li) ( l 1z l i j Z2i)T i =  l , 2 , 3 , 4

Therefore,

f  • \
2 p ( b i ) w ( b i )  +  239(6 2 )^ ( 6 2 ) 2 h p ( b i ) i u ( b i )  - \ -2 b2p ( b 2 ) w ( b 2 ) '■ 0

M ( p )  =  2 b i p ( b i ) i u ( b i ) +  2b2p ( b 2) w ( b 2 ) 2 b j p ( b 1) w ( b i )  +  2 b l p ( b 2) w { b 2 ) 0

\  0 0 : 2p( b i  ) w ( b i ) +  2p ( b 2 ) w ( b 2 ) J

M ( p )  =  2

p ( b \ ) w ( b  i )  +  p(b2)w( l )2)  b i p ( b i ) w ( b i )  +  b2p(b2) w ( b 2 )

bip(bi)w(bi) +  b2p ( b 2) w ( b 2 ') b j p ( b i ) w ( b i )  +  bfp(i>2 )w(i>2 ) (3.24)

p(bi)w(bi) + p(b2)w(b2) J

Let the partition of M(p) in Equation (3.24) be represented b}̂
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where S 2 = p(h)w(bi)  +  p{b2)w(b2) and 50 is

S n  —
^ '$011 0̂12 ^

0̂21 >5022 /
where S0n =  p{bi)w{bi) P p(b2)w(b2), cS012 =  bLp(bi)w(bi) P b2p(b2)w(b2) and 

£ 0 2 2  =  b\b(bi)w(bi) P blp(b2)w(b2). Therefore the inverse of the design matrix is

I 0 - 1

M  0 )  =  -
’- i

\

/

from the definition of <So,

 ̂ Sm-2  ■?or2 ^
\So\ |50|

—■S'n2i Son
\  l-Sol |So| )

which yields,

■So32
|5o |

Sn\2 n
\ S o \  U

\
■$021 ■S'oil
\So\ \S0\

\ 0 0

0

2~~ JS r l

If the above design is to be D-optimal on a set Z  of values of z\ for z2 = ±1, 

then, as noted in section (3.2.2), we must have

v x {zi) < 0 Vzi 6 Z

where

»x(*i) =  Qx(*i) w Ol)
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and now

<2x (*i) =  ( § ) ( ! .  Z i ± l )

S0 2 2   ■SIQ I2  f )

l^ol |5o | U

_  5 q 2 i _ - S o n  n
\So\ |5 0 | U

V o o s c 1

\  (  i  \

Zi

\  /
1  I  f  < ^ 0 2 2  —  2 ^ ic S q i 2  +  ^ i < 5 o i l  , 1

{ 2 }  -  6! )» { t6?p(6l)t" (6l) +

- 2 bib2j b i p ( b { ) w( b i )  +  b2p{b2) w( b2)\ +  blb l [p (b i )w(b i )  +  p{b2) w ( b 2) ] j

Z\

\ -p{bi )w(bi )  -\ -p{b2) w( b2). 

Equivalently we must have

where v ( z \ )  =  Q ( z { )  —
w{zi)

v iz i) < 0

with Q ( z i )  =  2 Q x (zi ) .  In fact v ( z { )  must be

maximised at 6 X, b2 over Z,  a maximum of zero since v(bj) — v(b2) — 0. So it 

is convenient to consider the derivative of v(zi) at 6 ls b2. We recall that

«'(*.) =  +

=  L 3(zi) -  H3(zi) 

c 1 ( \
where or L3(zi) =  Q'{zi) and Hs(zi) =  -7 —7—yjy-- Now we can explore L^(zi)

as follows:
[w{zx)\

Lz{zx) — Q ' ( z 1 )
—25o2i + 2zi<Son

i^i

p(bi)p(b2)w(bi)w(b2)(b2 ~~ h ) 2 2[faip(fai)w(6i) +  b2p{b2)w(b2}] +2^i[p(6i)u;(i)i) +  j?(62)tjj(f>2)]  ̂.
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Therefore L(A)  and 1 /(6 2 ) can be written as follows: 
1

p(bi)p(b2)u>(bi)w{b2)(b2 -  &i)2 
2

( 2& i[p ( i> i ) iu (6i )  +  p 0 >2)w(£>2)] — 2 [ & ip (6 i ) - u j ( b i )  +  ^ 233(62) ^ ( 62)])

^3(̂ 2) =

P(bi)p(b2)w(bi)w(b2)(b2 -  &1)2

- 2
p ( & l ) i u ( & i ) ( i>2 -  61) ‘

1
p(bi)p(b2)w{bi)w(b2)(b2 

2

-[(6 1  -  62) p ( 62) ^ ( 62 )]

_  ^ 2  ( 2 ^ 2 [ p ( 6 i ) w ( b i )  + p ( b 2 ) w ( b 2 )]  -  2 [ b ! p { b i ) w ( b i )  +  6 2 3 0 ( 6 2 ) ^ 0 ( 6 2 ) ] )

- [ ( 6 2  -  b i ) p ( h ) w { b i ) ]p(bi)p(b2)w(b1)w(b2)(b2 -  bi)
_   2_______

p(b2)w[\)[' 2 — 61)

We reached the same result in chapter 2. 

So

vr(A) £ 3 (^1) — H3(A)
6 w'(bi)

•M M  +
M M ]2
-2

+
6w'(A)

p{A)w(A){A -  A)  ‘ M M ] 2 

6w'(A)- 2
+

w(bi) Lp(6 i)(62 -  6 1) w(bi)
6 w'(A)

[w(A)]2(b2 -  A) L6 p(6 i)u;/(6 i)
■2w(bi)

6u/(6i)
[w(A)]2(b2 -  6 1) 

6w'(A) 
[w(A)]2(b2 -  6 1)

+  (6 2 — 6 1) 

2wj(6i)
. 2 t 1 6p(6i)u/(6i)J.

[62 -  hb2(A)]-

Similarly,

/ (M  =  L3(b2) ~  H3(b2) 
6w'(b2)Tz{b2) +
M M ]5
2 6w'(b2)

p{b2)w{b2){b2 -  61) +  [w(b2)]2
Qw'(b2)

+
1 0(6 2) Lp(62)(6 2 -  61) w(b2)

6w’(b2)
[w(b2)]2(b2 -  6 1) L6p(62 )io/(62)

%w(b2)
+  (62 -  61)

6u /(62)
[w(b2)]2(b2 -  6j) 

611/(62) 
[w(b2)]2(b2 -  6 1)

2 io (62)

+  6p(62)io'(62)

M ( M  ~  A\.

A

^
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Therefore

v!(bi) cx u /(6 i )[&2 -  hb2(bL)] 

v'(b2) oc -  61]

So the signs of i/(M  i =  1> 2 depend on the signs of w'(A) i =  1, 2 and [62 —M (M L  

[M (M  — 61].
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3.2 .6  Tw o C onditions for th e C onjecture

We can prove our conjecture about the support points if the following two con­

ditions are satisfied:

( i) hu(zi) is increasing in z\ over z\ < zmax and z\ > zmax for each u.

(ii) For all z\ < zmax, hu(zi) decreases in u over u > zrnax, and for all z\ > zrnax 

hu(z\) decreases in u over u < zmax. We only need to consider these cases 

since we are considering desugn intervals contaning zmax.

We can only provide empirical evidence in support of (i). In figure (3.6) we show 

plots of hu(zi) for the Logistic weight function for a range of values of u. It can 

be seen that these functions are all increasing. It is also evident that (ii) is true. 

However, we can provide analytical proof for this.

P ro o f  of condition  (ii). To make our proof easy, we write hu(zi) in the follow­

ing form :

where q$(r) is the expression encountered in equation (3.7).

From the above expression of hu(z\), proving that q$(r) is increasing would be 

sufficient to establish that hu{z\) is decreasing. In appendix A we prove that 

qs(r) is increasing in r.

Thus if w'(zi) > 0, i.e. z\ < zmaXi hu(zi) is decreasing in r, while if z\ > zmax it 

is increasing in r.

Finally, we note that w (u) is increasing in u over u < zmax and decreasing over

u > zmax. Hence r =  

over z\ > zmax- Hence (ii).

is decreasing in u over z i < zmax and increasing in u

'max  ■ □
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3.2 .7  C onfirm ation  of D -O ptim ality

Now we consider ui, u2 to be the two distinct values of z\ which produce the 

support points of the conjectured optimal designs of the various cases of [a, b\. 

Our essential aim is to verify that v{z{) < 0 on [a, b\. The properties of v(z) [see 

(Chapter 2, Section (2.2.4))] confirm that v(zi) < 0 on [a, 6] if v'(ui) < 0 and 

v'(u2) >  0 .

T he confirm ation of D -op tim ality  is sim ilar th a t o f th e  tw o param eter  

case. H ow ever, it is w orth to  detaling som e o f th e  cases:

We now establish results confirming v'(ui) < 0, v'(u2 ] > 0 as appropriate under 

two assumptions. We assume that

( i-) hu(z) is increasing in z  over z < zmax and z > zmax for each u.

(ii-) For all z < zmax, hu(z) decreases in u over u > zmax and for all z > zmax 

hu(z) decreases in u over u < zmax.

We assume observations are taken at zi — Ui, u2.

Case 1 :

• ui =  a > Zmaxy u2 = b > a . We show that v'(a) < 0, where

<( \ 6^ ( a) r/ / r \i
" (a) =  R a ) P ( b - a ) [6~ ,lt(g)1-

Now since a > zmaX) we have w'(a) < 0. So v'(a) < 0 is true if 

[6 -  hb(a}} > 0.

i i ( \ a \ 2u;(a)b - h b(a) =  ( b - a ) - Qp(a)w'{a)

The right side of the equation is always positive, because a < b and 

w’(a) < 0. Therefore v'(a) < 0.

• v_i2 =  b < Zmaxy Ui = a < b. We show that v'(b) > 0 .

”'<l ) -  w o t? - . ) ! * ■ < » > - 4
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Now w'(b) > 0 . So v'(b) > 0 is true if [h(b) — a] > 0.

[h(b) — a] is always positive, because a < b and w'(b) > 0. Therefore 

v'(u2) > 0 .

Case 2 : a* < a < zmax < b < b* u L — a, u2 — b

Because a < zmax and b > zmaX) we have w'(a) > 0 and w'(b) < 0.

•  [b — hb(a)} < [5* — hb(a)] since b < b* .

[6* — hb(a)] < [b* — hb*(a)] since hu(zi) decreases in u by (ii).

[b* -  hb*(a)} < [6* -  /ty*(a*)] by (i)

[6* — hb*(a)] < [6* — hb* (a*)] = 0

Therefore v'(zi) < 0 .

• [ha(b) — n] < [ha(b) ~  a*] since a* < a .

[ha(b) — a*] < [ha*(b) — a*] since hu{zi) decreases in u by (ii).

[ha*(b) -  a*] < [ha*(b*) -  a*] by (i).

Therefore 't/(zi) > 0 .

Case 5 : a* < a < zmax < b = b*(a) (b*(a) > b*) Ui =  a, u2 =  5* (a)

Clearly v'(b2) — 0- First w'(a) > 0 . We want r/(6i) =  v1 (a) to be negative. 

So we need to the investigate the derivative of v'(a). Here

v'(a) (x w'(a)[b*{a) -  /v ( a)(a)]

where re'(a) > 0 since a* < a < zmax. Therefore we need to argue that

D -  b*(a) -  hb*(a)(a) < 0 Va* < a < zmax.

From Theorem (2.1) a = a* is the only solution to D = 0. Further, taking 

a =  Zmax, we get hb*(2max)(zmax) = 0 0  and b*(zmax) is finite. Therefore

v'(bi) — v'[a) w'(a) [b*(a) -  hb*{a)(a)]
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D  < 0 at a = zmax and hence over a* < a < zmax. Therefore 

v'fti) = v'(a) < 0. This design is also D-optimal for b > E(a).

Case 6 : a* < a < zmax b* < b < E(a) Ui — a , u2 =  b

First w'(a) > 0. Secondly [b — hb(a)] < E(a) — hb(a) < E(a) — hb*^(a). 

From above E  (a) — hb*(a) < 0, so v'(a) < 0. Also we need to show that 

v'(b) > 0. Because of b > zmax, w!(b) < 0. We assumed b < b*(a) . If 

ha(-) is an increasing function, ha(b) < ha(b*(a)) = a. Hence 

ha(b) -  a < [ha(b*(a)) -  a] ~  0.

3.2.8 Som e Em pirical R esu lts for D -op tim al designs

The general objective has been to find empirically D-optimal designs when Z  =  

{(^1 ,^2 ) • o, < zi < b, —1 < z2 < 1} for all possible choices of a , b. In section 

(3.2.7) we showed that two distinct values of z\ produce the support points of the 

conjectured optimal designs of the various cases of Z  — [a, b]. Now we will show 

empirically that the Equivalence Theorem is satisfied by our conjectured optimal 

designs for all possible design intervals [a, b]. There are only four support points 

and hence observations are taken at only two values of z\.

Case 1 : Z  — Z w — {(^1 , z2) : —0 0  < z L < 0 0  — 1 < z2 < 1} 

and Supp (p*) =  {—b*, b*}

I11 the case of sym m etric  weight functions w(z\), zi- support points are
1

HE  with z2 =  ±1 and with equal weights of — where E  maximizes
“fc

{detM(p) = 52[w(5)]3}. As did Sitter and Torsney (1995) we found that 

the b* value that maximizes detM(p) is b = ±1.22 for the logistic regression 

model.

We checked for the optimality of this design, by checking the Equivalence 

Theorem for z\ € (—0 0 , 0 0 ), and z2 — ±1. Figure (3.7) presents the vari­

ance function. The design is globally D-optimal on Z w.
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Case 2 : Z  =  {(^1 ,^2 ) : a < z\ < 6, — 1 < £2 < 1}

and Supp(p*) = {max{a, a*(6)}, 6} a < a*, 6 < 6*

Results are very similar with the next case. So we only include empirical 

results for that.

Case 3 ; Z  — {(.zi, Z2 ) \ a ^  z \ Skb — E E: 1} 

and Sh£pp(p*) =  {a, min{bt b*(a)} a >  a*, b > b*

Here we have to choose b*(a)> pai pb for fixed a to maximize det{M(p)) 

where

det(M(p)) — ( b -  a ) 2paPb,uj ( a) w( b) [ paw ( a )  P p bw(b)} .

Recall that there is an explicit solution for the optimal weights pa, pb given 

any a, b for any weight function and assuming a design of the above form, 

namely,

_  [2iu{b) — 'in(a)] ±  y/[2w(b) — w(a)]2 — 3[iu(6) — w(a)]w(b)
^ a 2 * 3[w(&) — w(a)]

So we could substitute for p a and p b in terms of a, b and maximize the 

resultant function with respect to b. This was done using a simple search to 

find P. However, a possible alternative to this is the following alterna ting  

a lgorithm .
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A ltern a tin g  A lg o r ith m  S teps :

1. a fixed.

2. Choose initial value for b.

3. Let p̂a \  pl°  ̂ be the optimal weights for a, b ^ \

4. Keeping p ^ \  pf^ fixed, use the Newton-Raphson Method to maximize 

det(M(p)) with respect to b. Let the solution be b^K

5. Let p̂a \  p ^  be the optimal weights for a} b^L

6. Keeping p^a\ p ^  fixed use the Newton-Raphson Method to maximize 

det(M(p)) with respect to b (using as initial approximation). Let 

solution be b ^ .

The optimal design for b = 3 and a — “ 1.22, —1.20, —1.10, —1.00, —0.90 

• • • 1.10,1.20 were calculated using this a lte rn a tin g  a lgorithm . Results 

are summarized in Table (3.1). Relevant variance functions are plotted 

in Figures (3.8) and (3.9). These show that the necessary and sufficient 

condition of the equivalence theorem is satisfied.

Case 4 : Z  =  {(;q, z2) : a < z\ < h — 1 < z<i < 1} 

and Supp(p*) =  {a, 6} a > a*, b < b*

For this ^-interval, end points are support points, and the equivalence 

theorem is satisfied in the examples considered: a — —1, b = 1; a — —0.75, 

b = 0.75; a =  —0.50, b — 0.50. See Figure (3.10).
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Figure 3.1: Plots of 3-D G (Z ) for the Logistic Weight Function with dif­
ferent orientations obtained by considering different permutations of axes, 
gi = y/w(zi), g2 =  Z\ y/w(zi), </3 =  z2 y/w(zij and -2 0  < zx < 20, - 1  < z2 < 1
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( c l )  L o g is tic

( d )  S k ew ed  L o g is tic  m  =  3

(b) S k ew ed  L o g is tic  m  =  2/3 (c) S k ew ed  L o g is tic  m

( s )  G en era lized  B in a ry  1 =  0 .6 (f) G en er a liz e d  B in a r y  1

( g )  G en er a liz e d  B in a ry  1 = 3 (h) C o m p le m e n ta r y  lo g -lo g  (i) P r o b it

Figure 3.2: Plots of 3-D G(Z) for Group I-binary weight functions.
9i  = V w (z\), 9 2  =  zi  y / w { z i ) ,  g3 = z2y/ w { z l ) and -2 0  < z x < 20, - 1  <  z2 < 1 
(Note : I represents the parameter A of the Generalized Binary case).
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(< l)  B e ta ,a  =  3 , 6 =  3

(c) B e ta ,a  =  0 .9 , b =  0 .3 (d) N o rm a l

( g )  G a m m a  g  =  0 .8  (f) G a m m a  g  =  1 .7

Figure 3.3: 3-D plots of G(Z) for Group III: Density weight functions.
9 l  =  v M 2 l)> 92 =  Zi  y / w ( z i ) ,  g 3 =  Z2 y / w { z ^ ) .
(a  r e p r ese n ts  a ,  b r e p r ese n ts  0 , g r ep resen ts  7  a n d  in terv a l — 1 <  2 1 , 2 2  <  1 ; in terv a l —2 0  <  2 j <  2 0 , — 1 <  2 2  <  1 ; a n d  in terv a l 
0 <  21  <  20 , —1 <  22  <  1 are u sed  to  draw  th e  p lo ts  for B e ta , N o rm a l a n d  G a m m a  w e ig h t fu n c tio n s  r e sp e c t iv e ly ) .
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(a) Double Reciprocal (b) Double Exponential

Figure 3.4: 3-D plots of G(Z) for Group II; Double Reciprocal & Double Exponen­
tial Binary weight functions and g\ = yjw(z{), g2 — Z [ \ / w ( z i ) ,  g3 =  z 2 \ / w ( z i )  

and —20 < z\ < 20, —  1 < z2 < 1.
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Wm A

(a) w ( z ) =  ez (b) w(z) =  z  , t > 0, (t =  0.3)

(c) w ( z ) =  z l , t <  - 2 ,  (t =  -2 .2 ) (d) w(z)  =  z 1,—2 < t < 0, {t =  —0.7)

Figure 3.5: 3-D plots of G(Z) for Group IV weight functions and
9i = \AHzi), g2 =  zi^/w(zi), (jz = z2 \Jw{z\)\ details are:
w(z) =  e2, —4.5 < z\ < 0.3, —1 < z2 < 1;
w(z) = z1, t, > 0, (t = 0.3), 0 < z\ < 1, — 1 < z2 < 1;
w(z) = zl , t < —2, (t = —2.2), 0.1 < Zi < 3, — 1 < z2 < 1; and
w(z) = zl ,—2 < t, < 0, (t = —0.7), 0.1 < Zi < 6, — 1 < z2 < 1.
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O

O

6 4 -2 0 4

Z =  6 :6 /0 .0 0 1

(a) Plot of hy(z)  function for the Logistic Weight Func­

tion, with y = 0 .0,0.05,0.1,0.15,0.20,0.25,0.30,0.35,0.40 

and number of parameter k  is 3.

Z

(b) 3-D Plots of h y ( z )  for the Logistic Weight Function, h y ( z )  =

z +  3 _205  ^  y ^ 195 and ~ 2 < * < 2

Figure 3.6: Two Different plots of hy(z) for the Logistic Weight Function.
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T h ree p aram eter  case: L og istic  w eigh t F u n ction ,

Zi [a, oo) for fixed  a > --b*

o p t i m a l  b Pb{a) and p a(b) value.

fixed  a value b*(a) Pb(a) Pa{b)
-1.22291 1.222905 0.250000 0.250000
-1.20000 1.236604 0.251243 0.248757
-1.10000 1.298286 0.256628 0.243372
-1.00000 1.362882 0.261888 0.238112
-0.90000 1.430150 0.266959 0.233041
-0.80000 1.499816 0.271783 0.228217
-0.70000 1.571598 0.276319 0.223681
-0.60000 1.645228 0.280539 0.219461
-0.50000 1.720466 0.284429 0.215571
-0.40000 1.797109 0.287988 0.212012
-0.30000 1.874993 0.291222 0.208778
-0.20000 1.953995 0.294149 0.205851
-0.10000 2.034021 0.296786 0.203214

0 2.115009 0.299156 0.200844
0.10000 2.196914 0.301281 0.198719
0.20000 2.279705 0.303185 0.196815
0.30000 2.363363 0.304889 0.195111
0.40000 2.447872 0.306412 0.193588
0.50000 2.533219 0.307775 0.192225
0.60000 2.619389 0.308995 0.191005
0.70000 2.706368 0.310085 0.189915
0.80000 2.794137 0.311062 0.188938
0.90000 2.882678 0.311936 0.188064
1.10000 -1.298286 0.256628 0.243372
1.20000 -1.236604 0.251243 0.248757

Table 3.1: For the Logistic weight function: D-optinral support points and 
weights.
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3

2.5

2

N
>

1.5

05
-5 4 -3 -2 0 32 4 5zl

Figure 3 .7 : Plot of the variance function for the global sym m etric D -optim al 
four-point design on 2  =  2 W =  { (z 1? £2) : - o o  <  Zi <  oo — 1 <  z 2 <  1} for the 
logistic weight function. Note this plot is only for z? =  ± 1 .
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2!

(a) (b) (c)

it il

(d) (e) (f)

J I L.

3
Zt

(g) (h) (i)

Figure 3.8:

Some plots of the variance function, V(zL), under an optimal design on 

Z  =  {(2 1 , 2 2 ) '• o. < Zi < b Z2 =  ±1}, a > a*, b > b*(a) for the logistic weight

function, (k — 3).
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(a) (b) (c)

>

n

>

(d) (e) (f )

z\ a

Figure 3.9: Some plots of the variance function, V(^i), under an optimal design 
on Z  = {(2 1 , 2 2 ) '■ a < Zi < b Z2 = ±1} for the logistic weight function (k = 3) 
: a > a*, b > b*(a) in plots (a) to (g); b < b*, a < a*(b) in plots (h), (i).
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zl
IA

(a) (b) (c)

Figure 3.10: Some plots of the variance function, V(^i), of the D-optimal design 
on the Z  = {(^i, z-2 ) : a < Z\ <  b = ±1 a > a*, b < b* for the logistic weight 
function where a, b are support points.



C hapter 4

A design region for z i, Z 2 in th e  

form of a polygon : The Case o f  

th e Three Param eter M odel

4.1 B ounded design spaces

We first transformed X  to the new design space, Z,  with two new design variables 

Z\ =  a  4- PiXi +  ^2^2 , =  cl 4- bx\ +  cx2 where a, 6, c are arbitrary constants to

be chosen by the experimenter. We also considered the further transformation 

Z  — y G = G(Z). This set G needs to be bounded and then we have the 

characterisation that D-optimal designs have as support points the points of 

contact between G and the smallest ellipsoid centered on the origin containing 

G (Silvey,1980). A minimum requirement for G to be bounded is that z2 be 

bounded. Without loss of generality, we assumed that —1 < z2 < 1. Bounds are 

actually not necessaiy on z\.

So initially, we assumed X  such that, Z  =  Z w, Gw — G(ZW), where Z w is the 

widest possible design space. Then we considered the case Z  =  {(^1 ,^2) : a A 

z  1 < 6 , - 1  < z2 < 1} so that zi is potentially bounded. This is the case of a 

subset of Gw which is a !vertical’ (in the ^-direction) portion of Gw.

120
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z2

X
z l

c2

x l

f l

c l d l Z

e2
z l

e l f l

Figure 4.1: Diagram illustrating the transformation from X  design space to Z  
design space, which creates a polygon

Now we consider other possibilities. The most likely scenario is that X  is the set 

of pairs (£1 , 3:2), satisfying Ci < Xi < di, i =  1,2, so that it is rectangular. Thus 

X  =  {(£1 , 0:2) : ci Z %i Z di, i = 1,2}. This transforms T , into a polygon Z  

in the variables z\ = a X jdxi +  ryx2 ) ~  a +  bxi +  cx2 - It is a polygon with at 

most 6 sides [See Figure 4.1]. The number of sides will depend on the choice of 

Zi and z2. For example if z\ ~  x\ ( ifa  =  7  =  0,/? =  l) and z2 = x2 then Z  is a 

rectangle. Of course the definition of z\ is fixed, but Z2 is a free choice for us and 

the number of sides of the polygon may depend on this choice.

Other possibilities are that a bounded set X  may be defined by other linear 

constraints. For example there may be limits on X1 TX 2 if ̂ i, x2 are the component 

values of a mixture of two drugs. These could lead to quadritalerals, pentagons 

or hexagons as the form of Z.

We consider simple cases first. A general point is that if Z  is bounded, finite 

limits will be imposed 011 z \  and z 2 , say e* < Zi <  /̂ , i = 1,2. Thus Z  is 

contained in the rectangle { (z i ,z2) : e» < 2  ̂ < /» i = 1,2}. Again without 

loss of generality we assume e2 =  —1, / 2  =  1. Hence G =  G(Z)  C G(ZW). In
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the following examples we take w(z) to be the binary logistic regression weight 

function.

4.1.1 Examples

E xam ple 4.1. First we recall the global D-optimal design on Gw for Logistic 

regression in the case k — 3. This is :

i 1 2 3 4 \

a* a* b* b*

Z2i - 1 1 - 1 1

Pi i
4

i
4

i
4

L
4 !

where a* =  —1.22 and b* =  1.22 a,re the support, points. The design region for 

Zi, z-2 has the form of a infinite rectangle. We note that this remains the optimal 

design for any finite rectangle Z  = A  < z\ < J5, —1 < < 1} if

A  <  —1.22, B  > 1.22 e.g. A =  —B  =  3. See Figure f .2

(122. - 1)

-3 -2 -1 0 1 2 3

Figure 4.2: Design Region for the case of 
two design variables using the Logistic weight 
function.
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z 2 z2

1

0

(aljrl)1

a 2 b 2

(a) Z  is quadriteral

1

0

■ b , - l )1

0b b-a a
zl

(b) Z  is parallelogram

Figure 4.3:

E xam ple  4.2. Now suppose Z  is the quadrilateral with vertices 

(ai, —1), (ci2 j 1)> (6i, —1)5 (^2 > 1) [See Figure 4-3 a]. The a,hove design is still opti­

mal if (1 1 )0 ,2  < —1.22 and 6 1 ,6 2  > 1.22. So we want to consider a,1 and/or a2 > 

— 1.22 and/or b\ and/or 62 > 1.22. Consider the case 61 — — 62 =  — b} a2 =  —a,i = 

—a.

I f  these 4 corners are the support points the symmetry implies that the structure 

of the design should be as follows:

t  i 1 2 3 4 N

Zu —b —a a 6

** - 1 1 - 1 1  

\  Pi Pb Pa Pa Pb

where pb, pa > 0, 2pb +  2pa =  1; and pa — \  ~  Pb [See, Figure 4-3 b]. The 

information matrix is

M ( 0  = E tptgrf

where

T. J-- 1 — %

Therefore, 

M ( 0  =

g = y /w(zli)vi =  ( l , z lh z2i)T i = 1,2,3,4

I  2pbw(b) +  2paw(a) 0 0 ^

0 2pbb2w(b) +  2paa2w(a) 2pbbw(b) 4- 2paaw(a)

2pbbw(b) +  2 paaw(a) 2pbw(b) +  2paw(a) J0
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The determinant is

|M(£)| =  2s (b + a )2pbpaw(b)w(a){pbw(b) + p aw(a)}

We need to choose pb to maximise This is exactly the same as

|M(£)| in chapter 3, section 3.2.3 . Hence we have the same explicit solution for 

the weights:

[tu(£>) — 2w(a)] +  y/[w(b) — 2w(a)Y +  3[^(&) — w(a)]w(a)
Pk =  ----------------------------6Mb) -  w(a)]----------------------------  (41)

Hence pa — |  — pj,. Now our question is : Is  this design D -op tim a l on  Z

or G ? We need to check the Equivalence Theorem. Given the minimal ellipsoid

characterisation of D-optimalty we only need to check along the edges of Z . Each

edge either corresponds to z2 =  =1=1 (as before) or can be viewed as defining z2

as a linear function of z1} say z2 = mz\ +  c, for some range of values of zi, say

A  < z\ < B. Hence we are interested in checking for A  < z\ < B the value of

V(zq =  gTM ~ l (e)g_

where gT =  y/w(zi)( 1, zi, S(zi)), S(zi) = mz-i +  c and C  is the conjectured 

optimal design. We require V(^i) < 3 for A < z\ < B.

For E xam ple 4.2 we checked the equivalence theorem for the following value(s) 

of b and a :

b = 2, a -  1.22, 1, 0.75, 0.50, 0.25, 0, -0.25, -0.50

Complete plots consist of possibly 4 distinct V(zi)-curves. In Figure (4.10) we 

show plots depicting the four relevant curves simultaneously. It is clear that in 

some cases these curves are partly above 3, and hence the Equivalence theorem 

is not satisfied. Only for b =  2, a =  0 is the ’fou r-co rner’design op tim al [See 

Figure 4.14].

F u rth e r  E xam ple 4.1. In Figure (4-11) we show 6 other quadrilateral choices 

for Z .  Optimal weights under the designs with the four corners as support points 

are given in Table ( f.l) .  These are not optimal for Z; see Figure (j.12). For 

these designs since z\ =  0 there is an explicit solution for the optimal weights as 

above.
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Now a question of interest is e W h a t is th e  op tim al design w hen th e  ’four- 

co rn e r’ design is no t o p tim a l? ’.

4.2 D eterm ination  of design using an algorithm

Initially, we use a class of algorithms ((Torsney, 1983) and (Torsney and Alah- 

madi,1992)) to find these optimal designs. The algorithm is indexed by a function 

which depends on derivatives and a free parameter (say 5) for a constrained max­

imisation problem which requires the calculation of an optimizing probability 

distribution. Such algorithms are needed since in general there is no explicit so­

lution for optimal designs or weights.

First we must establish conditions of optimality. It helps to consider the following 

general problems, of which the design problem is an example.

j
P ro b lem  4.1 (P I ) .  Maximise a criterion Q(p) subject to the constraints E Pj =

j—i
1 and pj > 0 .

P ro b lem  4.2 (P 2). Maximise T(X) over the polygon whose vertices are the 

points G(vi),G(v 2 )i' "  ,G(vj),  where G (j  is a given one to one function and 

V =  {vi,V2 , ' "  ,ty} is a known set of vectors (or matrices) vertices of fixed 

dimension. This is solve (PI) for:

j
® =  ® {^[G («)]}, X  =  E p[G(v)} =  y t y f e ) .

j=i

4.2 .1  O ptim ality  C onditions

We concentrate on Problem (P2) and define optimality conditions in terms of 

point to point directional derivatives.
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4.2 .2  D irection al D erivatives

Let

/(vY,y,0 =  t t { ( i - 0 *  +  c n

Fq,{X,Y) is known as the directional derivative of \h(-) at X  in the direction of

Y, [(Whittle 1973)].

LetFj =  Fq,{X, G(vj)}. We call Fj a vertex directional derivative of \h(-) at X .  

If W(-) is differentiable, then so is the function <L(p) =  and

4.2 .3  C ond ition  for Local O ptim ality

If 4/(-) is differentiable at X  =  Ep{Q(v)}y then v[/(A') is a local maximum of T(-) 

in the feasible region of problem (P2) if,

If T(-) is concave on its feasible region then the first order stationary conditions

(4.2) is both necessary and sufficient for a solution to problem (P2). Indeed this 

is the General Equivalence Theorem in optimal design.

4.2 .4  A  Class o f A lgorithm s

Problem (PI) has a distinctive set of constraints, which are that the variables 

Pi>P2 >' "P j  must be positive and sum to 1. An iteration which preserves these 

and has respectable properties is

j

where d~ =J opj

0 i f  p* > 0

0  i f  P i  =  0

(4.2)

J

(4.3)
i = 1



CHAPTER 4. THREE PARAMETER CASE: POLYGON  127

where S p  = |p-p(r), while f ( d } 5) satisfies the following conditions:

(i) f(d , 5) > 0 ,

(ii) f(dj 5) > 0 is strictly increasing in d for some set of h-values, say <5 > 0,

(iii) the variable 5 is a free parameter.

Properties of the iteration:

a - p ^  is always feasible.

b - F(f,{p(r\  ph+d} > o with equality when the dj corresponding to nonzero pj

is equal (in which case p(r+1) =  p ^ ) .

c - Let v i , n2). . .  nj be the vertices of the feasible region of (PI) and V be the 

induced design space. Let supp(p) = G V : Pj > 0 } denote the support 

of the distribution p. Under the above iteration supp(p^r+1̂ ) C supp(p(P).

d - An iterate p ^  is a fixed point of the iteration if the derivatives d<j)/dpP

corresponding to nonzero p P  are all equal. This is a necessary but not a

sufficient condition for p ^  to solve (PI).
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4.2 .5  R esu lts  o f th e  algorithm  and exp lic it so lu tion  for 

th e  w eights for th is new  design

The optimal support points found using this algorithm in all cases of Example 

4.2 are summarized in Table 4.2 and 4.3.

We note the following:

i - Support points consist of two corners and one point on each of two opposite

sides. [See Figure 4.4]

ii - The designs are symmetric as is to be expected given the symmetry of w(z)

and of Z  about zi ~  0. In fact the designs are of the following form:

where i =  1, ■ • • ,4.

iii- It turns out that we can find an explicit solution for the weights, q and 

p given a, 6 , c, d\ For the above design the determinant |M (f)| has the 

following form (Fedorov 1972 page 83-84):

where Fm , lfi.24 , Fm  and F234 are all possible 3 x 3  minor matrices of 

the above design. For the above design [detF^ ] 2 =  4(be — ad)2 V 

Therefore, the determinant is

%2 i ~ d  —c c d (4.4)

\  Pi Q P P Q J

1-^(01 =  qw(b)p2w2{a)[detVi2 z f

4- q2w2(b)pw(a) [detF^]2

+  q2w 2(b )pw{a) [de tV iM]2 

+  qw(b)p2w2(a)[detV2 34]2

|M (f)| =  8 (6c — ad)2qw(b)pw(a)[qw(b) -\-pw(a)]
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z2

% Support points

Figure 4.4: Support point for optimal design

Note that, as a function of q, p , this is independent of c,d. In fact we have 

exactly the same explicit solution as earlier for the weights for given a,b : 

namely

[w(b) — 2w(a)] + y/[w(b) — 2w(a)]2 + 3[u;(5) — w(a)]w(a)
 ̂ 6[ie(5) — u;(a)]

iv - We note again that to confirm D-optimality of the above designs, we only 

need to check the equivalence theorem along the four edges of the paral­

lelograms. We have again produced ’four cu rve’ plots of V(z\) in Figure 

(4.13), Figure (4.14) and Figure (4.15).

4.2 .6  C onjectured  D -optim al designs for p olygonal Z

The first observation above supports the following assertion for any polygonal 

Z  = [A,B\.

T heorem  4.1. Suppose design space Z  is a polygon and that the function

H (z \) = t—  ̂ 1 ^ . H (—oc) =  —oo, H (oo) = oo and H (z ) is concave increasing 
[w\z \)\

up to some point and thereafter is convex increasing. Then, there can be at most

2 support points along any edge of design space Z.
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4 .2 .7  P ro o f

First, we note that if an edge is vertical, support points can only be at its end­

points since the minimal ellipsoid centered on the origin containing Z  could not 

touch the edge internally.

Any other edge must be defined by a linear equation, say z<i — 5(^i) =  mz\ 4- c 

over some range of values A  < z\ < B. Then if a design is to be D-optimal on 

Z , the equivalence theorem must be satisfied along this edge.

According to the theorem the design is D-optimal iff

Zl

\  J
< 3 V A < z1 < B  (4.5)

=  3 if £(zu 5(^i)) > 0 (4.6)

where S(zi) = mz\ +  c.

Let

V{zi) = w (^ )(l, zu S(2i))M _ i(£*)( 1, z u S(zi))T 

V(zi) =  w(zi)Q(z!)

where Q{z\) =  (1, zi} S(zi))M ~1(£*)( 1, Zi, S(zi))T . So the Equivalence theorem 

is satisfied iff

V{z1) < 3  V A < z i < B

=  3 i f  £(zu S(zi)) > 0.

This is true iff

v{z \ )  < 0 V A < z\ < B

=  0 i f  £{zuS(z i ) )  >  0 .

where v(z\) =  |Q (^i) — So for an op tim al design we w ish to  see

v i z i) ^  0 V Z! G Z  =  [ A , B \ .  To explore the shape of v(zi) we analyze the
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derivative of v{z\). This can be written as follows:

=  L ( z 1) ~ H 3(z1)

where H 2(z{) =  and L{zx) =  \Q'(zi). Now

Q(Zl) = ( l , z u S ( Zl) )M - l ( t){ l i zu S{z1))T

= [(0, Z\ , mzi) +  (1, 0, c)]M-1 (£)[((), z1} m z1) +  (1, 0, c)]T 

=  [2 i(0 , 1, m) +  (1, 0, c)]M_1(£)[;q(0, 1, m) +  (1, 0, c)]T

=  {q>zi  +  b ) M _ 1  ( f )  ( a ^ i  +  6 ) t

where a =  (0, 1, 'm)r  and 6 =  (1, 0, c)T. Hence Q{z{) is the quadratic function:

Q( z  i) =  +  2(aTM - 1 (^)6)2i +  br M ~ l {t;)b

Since the coefficient of zf, (aTM _1(^)a), is positive, L(zl ) is an increasing line. 

As a result, v’(zi) =  0 iff L{z\) — Hj,{zi). That is, v!(zi) — 0 when the line 

L(zi) crosses H3(zi).

A question of interest is “How many tim es can an increasing line L(z\) 

cross the function H^(zi)?n

Recall that, H$(zi) oc H(zi) [chapter 2 equation 2.3 and chapter 3, equation 3.3]. 

The similarity between these H  functions leads to similar conclusions, namely 

that i / 3(—oo) =  —oo, 4/ 3 (0 0 ) =  0 0  and i / 3 is concave increasing up to zmax (or 

on[—0 0 , 2?mfflJ )  then convex increasing if H(z) possesses these properties. So, as 

for the two-parameter case, v(zi) can have, over the real line, at most 3 T P ’s. 

Moreover since L(zi) first crosses i / 3 from above the first TP, and hence the 

third, are maximal T P ’s, leaving the middle one as a minimal TP. Clearly, any 

number of these or none of them may occur in a particular line segment [A,B], 

The various possibilities are depicted in Figure 4.16. These confirm that v(z\) 

can be zero at at most two points in [A,/?].
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Since v(zi) =  0 at support points the theorem is proved.

We do not have recommendations to make about where support points might lie 

along an edge except that they can only be at endpoints of vertical edges. Also 

the minimal ellipsoid characterization may shed light on where support points 

lie.

Clearly it would be possible to make progress in special cases like the symmetrical 

Z  of Example 4.2. There must be a solution in these cases along the lines of 

Theorem (2.2).

However we settle for reporting results in some asymmetrical examples. These 

further support the theorem.

4.3 Som e M ore Exam ples

E xam ple  4.3. Now suppose Z  is the trapezium with vertices (—2, —1)>(—1,1), 

(1,1); (2 ,“ 1). [See Figure 4-5J. Again first consider the design with the four 

corners as support points, namely

f  —b —a a b \

—d —c c d

q p p q J

Zli 

Z2i 

\  Pz

where b = 2, a — 1, d = — 1, c =  1 and i = 1, ■ • ■ ,4 . We note that the symmetry 

about zi = 0 justifies assuming two pairs of equal weights. Correspondingly we 

again have an explicit solution for these weights given afb,c}d. The determinant 

|M (f)| is

|M(£)| =  8(d — c)2qw(b)pw(a)[a2pw(a) +  b2qw(b)].

In this case |M (f)|, as a function of q and p, is independent of c, d. So the

optimal weights depend only on a and b. The solution is

[b2w(b) — 2a2w(a)] +  ^/[b2w(b) — 2a2w(a)]2 +  3 [b2w(b) — a2w(a)]a2w(a)
® Q[b2w(b) — a2ic(a)]

In fact the solution is identical to that in equation 6.6 (chapter 3, q(r)) but with
\ b 2 w ( b )  l  

[a2u>(a)] ’
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Figure 4.5: Trapezium design space I

This design proves to be non-optimal for Z . Therefore we found, the D-optimal 

design using the algorithm in section (f.2). This is summai'ized in Table (4-4)• 

Additionally, we can see relevant variance functions in Figure 4-17. There are 

two support points along three edges, including two vertices.

E xam ple 4.4. Further, we will consider another trapezium with vertices (—2, —0.5) 

( — 2,0.5) (2 ,-1 ) (2,1). [See Figure 4-dJ. A symmetric design with the four cor­

ners as support points

Zu a a b b ^

£ = z2i - c  c —d d.

\  P i P  P  Q (1 J

where a = —2, b = 2, differently from the above example, c =  0.5, d = 1 and 

i = 1, • • ■ ,4.

Note that the structure of the design is similar to the above. Hence there is 

an explicit solution for the optimal weights given the support points. First the 

determinant function for the design is

|M(£)| =  8(a — b)2pqw(a)w(b)[c2w(a)p +  d2i

The optimal solution is

[c2iv(a) — 2d2w(b)] +  \J[c2w(a) — 2 cPw(b)]2 + 3 [c2iu(a) — d2w(b)]d2w(b)
6 [c2iv(a) — d2w(b)]

45
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Figure 4.6: Trapezium design space II

1

3/4

2

____i............ (: 2 i n _______ ...A - .U A .i................ i ................. .................

1/4

s t-3 ;3 /4 i■ •
; \

CUL/4X
1 \ /  ;

O'

-1

! \
! \  ! 
i \  i \  ! 

v :
: (-2 ,-iyv

• /
1 yy y • y  |

y  ;
A c - 1, - 1) i „ ;r 3T.......... ; | 2

: -3 i -2 -1 1 0  | 1 2

Figure 4.7: An arbitrary Polygon, 1

This now depends on c and d. In fact the solution is again identical to that in

equation (3.6) [Chap 3, q(r)1 but with r = ' U f | . Again the resultant design
cl w(a)

is not optimal for Z . Using the algorithm we find the D-optimal design. This is 

summarized in Table (4.4). Also, the variance function can be seen from Figure 

(4.18). Results are similar to Example (4.1). There are two support points on 

the bounds of z2 (or; there are two support points on the top and bottom edge).

Example 4.5. Now suppose Z  is the polygon with vertices 

( - 2 , - 1 ) ,  ( - 1 , - 1 ) ,  (1,1/4), (-1 ,1 ), ( - ‘2,1), (-3 ,3 /4 ) [See Figure 4.7]. For this 

example we found the D-optimal design using the algorithm.. We summarize the
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H / 4 , 3 / 4 )  
'v':......... —

 j------- --------

( - 4 , - 1 / 4 ) :  /
1/4

Figure 4.8: An arbitrary Polygon, 2

results in Table (4-4)- There are three support points with equal weights. Two of 

them are on the vertices and one of them lies on the top horizontal edge. Along 

the six edges it can be seen from the Figure (4-19) that, the equivalence theorem, is 

satisfied only at, these points. There are two edges with, no support points, there 

are three edges with one and one edge with two. Of cour'se, vertices are at, the end 

of two lines. So there is at most two support points along any edge.

E xam ple 4.6. In this example, we consider the design space Z  to be the polygon 

with vertices ( -1 , -1 ), (1/2,0), (-1 /4 , 3/4), (-2 ,1 ), ( -3 , 3/4), ( -4 ,1 /4 )  [See Fig­

ure 4-8]- I71 the same way as in the preceding example we applied the algorithm to 

find the optimal design. The D-optimal design has four support points at vertices. 

See Table 4-4 an(t Figure 4-20. There is at most two support points along any 

edge, including vertices.

E xam ple 4.7. Lastly, we consider any polygon containing the supports on Z w 

then the global optimal design must still be optimal and this only has support, 

points along the horizontal edges of Z , two on each of these; [See Figure 4-9]-
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T h ree p aram eter  case: L ogistic  w eigh t fu n ctio n , 

p o ly g o n  d esign  space  

o p tim a l four-corner d esign  w ith  o p tim a l w eigh ts

V e r t i c e s  o f  d e s i g n  r e g i o n S u p p o r t  p o i n t s H - o p t i m a l  W e i g h t s

1 1 1 1

Zl - 2  - 1 1 2 Zl Z‘2 Pi
Z‘2 - 1  - 1 1 1

- 2 .0 0 0 0 -1.0000 0 .2 1 4 3 4 6

-1.0000 -1.0000 0 .2 8 5 6 5 4

1.0000 1.0000 0 .2 8 5 6 5 4

2 .0 0 0 0 1.0000 0 .2 1 4 3 4 6

1 1 1 1
Zl - 2  - 1 1 2 Zl Z‘2 Pi
Z‘2 1 1 - 1 - 1

- 2 .0 0 0 0 1.0000 0 .2 1 4 3 4 6

-1.0000 1.0000 0 .2 8 5 6 5 4

1.0000 -1.0000 0 .2 8 5 6 5 4

2 .0 0 0 0 -1.0000 0 .2 1 4 3 4 6

1 1 1 1
Zl - 2  - 1 1 2 Zl Z'2 Pi
Z2 - 1  1 - 1 1

- 2 .0 0 0 0 -1.0000 0 .2 1 4 3 4 6

-1.0000 1.0000 0 .2 8 5 6 5 4

1.0000 -1.0000 0 .2 8 5 6 5 4

2 .0 0 0 0 1.0000 0 .2 1 4 3 4 6

1 1 1 1

Zl - 2  - 1 1 2 Zl Z-2 Pi
Z'2 1 - 1 1 - 1

- 2 .0 0 0 0 1.0000 0 .2 1 4 3 4 6

-1.0000 -1.0000 0 .2 8 5 6 5 4

1.0000 1.0000 0 .2 8 5 6 5 4

2 .0 0 0 0 -1.0000 0 .2 1 4 3 4 6

1 1 1 1

Z1 - 2  - 1 1 2 21 ^2 Pi
Z‘2 - 1  1 1 - 1

- 2 .0 0 0 0 -1.0000 0 .2 9 1 5 3 3

-1.0000 1.0000 0 .2 0 8 4 6 7

1.0000 1.0000 0 .2 0 8 4 6 7

2 .0 0 0 0 -1.0000 0 .2 9 1 5 3 3

1 1 1 1

Zl - 2  - 1 1 2 Zl Z'2 Pi
Z‘2 !  _ i - 1 1

- 2 .0 0 0 0 1.0000 0 .2 9 1 5 3 3

-1.0000 -1.0000 0 .2 0 8 4 6 7

1.0000 -1.0000 0 .2 0 8 4 6 7

2 .0 0 0 0 1.0000 0 .2 9 1 5 3 3

Table 4.1: For Logistic Regression model D-optimal support points and weights.
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T h ree  p a ra m eter  case: For L og istic  w eigh t F u n ction , a d esig n  reg ion  for Z \ , Z 2  

in  th e  form  o f  a parellogram : D -o p tim a l w eigh ts and  su p p o rt p o in ts .

V e r t i c e s  o f  D e s i g n  R e g i o n S u p p o r t  p o i n t s D - o p t i m a l  w e i g h t s V a r i a n c e  f u n c t i o n

1 1 1 1
Z l - 2  -1 .2 1.2 2 Z l 22 Pj V(*i )
Z2 - 1  - 1 1 1

-1.2000 -1.0000 0.2509 3.0000
1.2275 0.5172 0.2492 3.0000
-1.2275 -0.5172 0.2492 3.0000
1.2000 1.0000 0.2509 3.0000

1 1 1 1
Z l - 2  - 1 1 2 Z l 22 Pj V(*i)
Z‘2 - 1  - 1 1 1

-1.0000 -1.0000 0.2622 3.0000
1.3773 0.5821 0.2378 3.0000
-1.3773 -0.5821 0.2378 3.0000
1.0000 1.0000 0.2622 3.0000

1 1 1 1
Z l - 2  -0 .7 5 0.75 2 Z l 22 Pj V(*i)
Z2 - 1  - 1 1 1

-0.7500 -1.0000 0.2730 3.0000
1.5040 0.6393 0.2270 3.0000

-1.5040 -0.6393 0.2270 3.0000
0.7500 1.0000 0.2730 3.0000

1 1 1 1
Z l - 2  -0 .5 0.5 2 Z l Z2 Pi V(2l)
Z2 - 1  - 1 1 1

-0.5000 -1.0000 0.2838 3.0000
1.7004 0.7603 0.2162 3.0000
-1.7004 -0.7603 0.2162 3.0000
0.5000 1.0000 0.2838 3.0000

Table 4.2: For Logistic weight function .D-optimal support points and weights.
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T h ree  p a ra m eter  case: For L og istic  w eigh t F u n ction , a  d es ig n  reg io n  for 1̂ ,^2  

in  th e  form  o f  a  parellogram : D -o p tim a l w eigh ts and su p p o rt p o in ts .

V e r t i c e s  o f  D e s i g n  D e s i g n S u p p o r t  p o i n t s D - o p t i m a l  w e i g h t s V a r i a n c e  f u n c t i o n

1 1 1 1

Zl - 2  - 0 . 2 5 0 .2 5 2 Zl Z2 Pj V(* 1)
Z‘2 - 1  - 1 1 1

- 0 .2 5 0 0 -1.0000 0 .2 9 1 6 3 .0 0 0 0
1 .8 7 6 7 0 .8 9 0 4 0 .2 0 8 5 3 .0 0 0 0

- 1 .8 7 6 7 - 0 .8 9 0 4 0 .2 0 8 5 3 .0 0 0 0
0 .2 5 0 0 1.0000 0 .2 9 1 6 3 .0 0 0 0

1 1 1 1

Z l - 2  0 0  2 Z l ^2 Po V(*i)
Z ‘2 - 1  - 1 1 1

- 2 .0 0 0 0 -1.0000 0 .2 0 4 0 3 .0 0 0 0
0 -1.0000 0 .2 9 5 9 3 .0 0 0 0
0 1.0000 0 .2 9 5 9 3 .0 0 0 0

2 .0 0 0 0 1.0000 0 .2 0 4 0 3 .0 0 0 0

1 1 1 1
z  1 - 2  0 .2 5 - 0 . 2 5 2 Zl Z2 Pj V{zi)
£2 - 1  - 1 1 1

- 1 .8 7 6 7 -1.0000 0 .2 0 8 5 3 .0 0 0 0
0 .2 5 0 0 -1.0000 0 .2 9 1 6 3 .0 0 0 0

- 0 .2 5 0 0 1.0000 0 .2 9 1 6 3 .0 0 0 0
1 .8 7 6 7 1.0000 0 .2 0 8 5 3 .0 0 0 0

1 1 1 1

Z l - 2  0 .5 - 0 . 5 2 Zl Z ‘2 Pj V(*i)
Z2 - 1  - 1 1 1

- 1 .7 0 0 4 -1.0000 0 .2 1 6 2 3 .0 0 0 0
0 .5 0 0 0 -1.0000 0 .2 8 3 8 3 .0 0 0 0

- 0 .5 0 0 0 1.0000 0 .2 8 3 8 3 .0 0 0 0
1 .7 0 0 4 1.0000 0 .2 1 6 2 3 .0 0 0 0

Table 4.3: For Logistic weight function D-optimal support points and weights.
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T h r e e  p a ra m eter  case: For L o g istic  w e ig h t F u n ctio n , a  d e s ig n  reg io n  for z i , Z 2 

in  th e  form  o f  a  p o ly g o n : D -o p tim a l w e ig h ts  an d  su p p o r t  p o in ts .

V e r t i c e s  o f  d e s i g n  r e g i o n S u p p o r t  p o i n t s D - o p t i m a l  w e i g h t s V a r i a n c e  f u n c t i o n

1 1 1 1
Z l - 2  - 1 1 2 Z l Z'2 Pj V (* i )
Z'2 - 1  1 1 - 1

-1.2000 1.0000 0.2258 3.0000
1.2000 1.0000 0.2258 3.0000

-1.1363 - 1 .0 0 0 0 0.2741 3.0000
1.1363 - 1 .0 0 0 0 0.2741 3.0000

1 1 1 1
Z l —2 - 2 2 2 Z l Z2 Pj V (z i )
z  2 - 0 .5  0,5 - 1  1

-1.2829 0.5896 0.2040 3.0000
1.2829 0.9104 0.2960 3.0000
-1.2829 -0.5896 0.2040 3.0000
1.2829 -0.9104 0.2960 3.0000

1 1 1 1 1 1
Z l - 2 -1 1 - 1  - 2 - 3 Z l Z'2 Pj V ( 2 l )

Z'2 - 1 - 1  1/4 1 1 3/4
- 1 .0 0 0 0 - 1 .0 0 0 0 0.3333 3.0000
1.0000 0.2500 0.3333 3.0000
-1.3000 1.0000 0.3333 3.0000

1 1 1 1 1 1
Z l -'1 1/2 - 1 / 4 - 2  - 3 - 4 Z l Z'2 Pj V (* i)
z  2 -1 0 3 /4 1 3 /4 1/4

-1.9500 1.0000 0.2894 3.0000
-0.2500 0.7500 0.1127 3.0000
0.5000 0.0000 0.2718 3.0000

- 1 .0 0 0 0 - 1 .0 0 0 0 0.3260 3.0000

Table 4.4: The trapezium and arbitrary polygon 1 and polygon 2. D-optimal 
support points and weights for logistic weight function.
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Figure 4.10: To check ’four corner’ design Variance Function for different a 
value 6  =  2 .
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Figure 4.11: Design Region for the case of two design variables (z\ , z2) using the 
Logistic weight function in the form of parallelogram.
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Figure 4.12: P lots of the Variance function for 6 different parallelograms.
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Figure 4.13: Plots of the variance function for a D-optimal design on a parallel­
ogram and Design space for the Logistic weight function.
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Figure 4.14: Plots of the variance function for a D-optimal design on a parallel­
ogram and Design space for the Logistic weight function.
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Figure 4.15: Plots of the variance function for a D-optimal design on a parallel­
ogram and Design space for the Logistic weight function.
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Figure 4.16: Possible shapes for the variance function V(zi) under an optimal 
design.
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(2 , - 1)
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Figure 4.17: P lot o f the variance function for a D -optim al design on arbitrary 
trapezium I for the logistic weight function.
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Figure 4.18: P lot o f the variance function for a D -optim al design on arbitrary 
trapezium II for the logistic weight function.
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Figure 4.19: Plot of the variance function for a D-optimal design on arbitrary 
polygon 1 for the logistic weight function.
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polygon 2 for the logistic weight function.



C hapter 5

C onstruction  of D -optim al 
D esign  For M ultip le Param eter  
W eighted R egression M odel

5.1 M ultiparam eter Binary R egression

In multiple binary regression, we generally consider a model in which an observed 

value Y  depends 011 a vector of x of I explanatory variables x  =  (®i, ■ • • , x{) 

which are selected from a design space X  G Ft1. The outcome is binary, with 

probabilities

Pr(Y =  0 |m) =  1 — 7t(k) Pr(Y =  l \x)  =  tt{x}-

Namely, Y  ~  Bi(l,ir(x)).  We deal with the relationship between the response 

probability 1r(x) and the explanatory or design variables x = (xi, • ■ • , x{) . We

assume 7r(x) =  F(a-\-(3iX\ -\ I - w h e r e  F(-) is a cumulative distribution.

So this is a GLM under which the dependence of 7r on x  =  ( x \ , - •• , xi) is through 

the linear function

Zi =  ci' T  {3\X\ +  • • • +  fy x i  

for unknown parameters ok, - - * , A . So

E(Y\x)  =  tt(x ) — F(a-\-/3iXi-\ g faxi)

Y(Y|z) =  ?r(s)[l — 7r(x)]

150
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5.2 D esign  for k  param eter B inary R egression

We now apply the theory of section 2.2-2.4 of Chapter 2 and section 3.2 of Chapter 

3 to the multiparameter case. The informaton matrix for the above model is

(  1 ^
P ( z  0

F(Zl)[ 1 -  F(*i)]
Xi

(f  ) X \  1 >

where f (z )  =  F'(z) and

and

?7 =  7T (a;)

=  F(a  +  P\X\ +  • • • -f- j Z\ — a  +  Al^'i ■ T PiXi 

= F W

a(x, 9) = V(y|®)

=  7r(x)[l — 7r(a;)]

=  F[a  -f- PiXi +  ■ • ■ +  PiXi)[ 1 — F(a  +  P\X± +  

= F(z l ) [ l - F ( z 1)}.

Also

+  A  xi)\

dF(zi) dzi dF(zi) dz\ dF(zi) dzi
dz\ da  ’ dzi dpi dz\ dpi

T

f { z i ) , f { z i ) x i , - "  , f { z i ) x i

( i  \

T

/ 0  i)
Xi

\ x ‘ J
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Now let the vector

152

1
v =

s / W ¥ )

d F ( Zl) dz i  d F ( z i )  dz i  d F ( Zl) d F j z ^  d Zl
dzi da  ’ dzi dpi dz\

(  i  A

dzi dpi

f ( z  l) X

\ * l  )

C le a rty , zi plays a similar role as z = a + px  and Zi =  a  +  piX\ +  p2x 2 in the two 

parameter case and three parameter case respective^.

We now consider the transformation

0
 ̂ 1 0 0 0 ^

Z l ot Pi P2 ■ • • Pi Xi

Z2 — &31 3̂2 3̂3 ' - ‘ 3̂k x 2

V Zl J \  h\ h2 bis ■ ■ ■ bik j \  x ‘ J

= B

1

V  ^  /
where k = I +  1 and i =  3, ■ * ■ , I j  — 1, • • • , k are arbitrary constants to be 

chosen by the experimenter. So we have defined further variables Zjt j  =  2, • • ■ , I. 

We have transformed to I new design variables zh ■ ■ ■ , zL . Their design space 

will be the image of X  under the transformation. Denote this by Z  . Hence

g(z) =  Bv

(  i \

f i z  i)

1

\ Z I  )
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and

V =  ■

We consider the D-optimal linear design problem with design vectors 

I  = v M z iH 1, ,zi)T (zi r - , z i ) T e Z

where w(zi) =  which corresponds to a weighted linear regression

design problem with weight function w(z\).

With this transformation the design problem is equivalent to a weighted linear 

design problem with weight function w(zi) = ^ —y  where

f (z i )  = F'(zi),  is the density of F(-). Again it is useful to define the induced 

design space

G = G(Z)  =  {g* = (gu • • ■ , gk)T : gx =  \A ^ i)>  g, = zj - l ^ w { z 1),

j  = 2, * • • , K z G Z}.

5.3 C haracterization of the O ptim al D esign

Let f*, be a design measure on Z.  is D-optimal iff

< k €{z)  = 0 (5.1)

-  k f f e ) > 0

where g^{z) =  zXi z2, • ■ • , zi), and k = 1 + 1.

We once again resort to Silvey’s minimal ellipsoid concept encountered 111 the

previous sections. As we said earlier, G must be bounded. For most of our

weight functions gi =  \/w(z{). g2 =  z\ \Jw(zi) are bounded for all z\ but 

g j  =  Z j - \ ^ / w ( z i )  j  — 3, • ■ • , k will be unbounded if Zj is not restricted to a finite 

set. Without loss of generality we assume —1 < Zj <  1, j  = 2, • • • ,1. So the 

largest possible G is

G = G(Z) = | ^  =  (0 1 , • • • , gk)T : gx = \Zw(zL), g.j = z5- Xy/w{z1),

—00 < Zi  <  00 — 1 < Zj <  1 j  =  2, ■ ■ ■ , fc j .



CHAPTER 5. MULTIPARAMETER CASE 154

We again wish to establish D —optimal designs for all possible design intervals for 

z\. So also of interest is

From this geometrical consideration it is clear that such an ellipsoid will only pass 

through boundary points of G. This intersection can only occur at points where 

Zj =  dbl j  =  2, ■ • • , I. It was possible to see this in the three parameter case. 

Since G was a vertical surface, an ellipsoid centered at the origin which contains 

G could only make contact with it on the upper or lower ridges.

Case 1 : Z  — 2 W — {(^i ■ • • , z{) : — oo < z\ < oo, — 1 < Zj < 1, j  =  2, • • • , /}

We consider Z  — Zw initially for the Binary and Beta, Gamma, Normal 

weight functions.

The design space G induced by this rectangle is then an I dimensional 

hyper-planar object perpendicular to the (<71,(72) plane which tracks the 

trajectory defined by (<fr, #2) over the range of z 1 , and G is a closed region. 

The smallest central ellipsoid can only intersect G on its boundaries. Thus 

the D-optimal design must have support points on the boundary of IT

Case 2 : Z  — Z ab — {(zi • • * , zi) : a < z\ < 6, — 1 < Zj < 1  j  = 2, ■ • • ,/}.

We now consider the case z\ G [a,b] so that

This is the case of a subset of G(ZW), a ’vertical’ portion of G(Z ). We have 

the same argument as in Case 1. Since Gab is also a vertical hyper-planar 

object, the smallest ellipsoid, centred 011 the origin, containing it can onty 

touch it on its boundaries and thus the D-optimal design must have support 

point on the boundary of Z ab<
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The next point is How many support points are there? We claim for Case 

2  that for many of our weight functions we will take observations at only two 

values of zL and that one optimal design consist of dividing the total weight at 

each of these values equally across the 2k~2 combinations Zj =  ±1 j  =  2, • ■ • , I. 

Thus for any interval [a, b] of zr-values we are arguing that the design is of the 

form

'  i 1 2 3 M  N  N  +  l  N  +  2 ■■■

Zu c c c • • ■ c d d d • "  d

z2i - 1  1 -1  ••• 1 -1  1 - 1  1

zu - 1  1 - 1  ••• 1 -1  1 - 1  1

\  Pi Pc Pc Pc Pc Pd Pd Pd Pd

where 2k~2(pc +  Pd)  =  1 and M  = 2fc-2> N  =  2k~2 +  1 and L — 2k~l .

Let f* denote the D-optimal design and let Supp((*) denote the two values of z\ 

at which observations are taken under £*. Further, let a*) b* be their values on 

Zw. We further assert that

Supp{£*) — {a*, b*} a < a * ,b > b *

Supp(£*) = {max{o ,, a*(b)},b} a < a*,b < b*

Supp(C) =  {ci,min{b, 6*(a)}} a >  a*,b > b*

Supp(£*) =  { a ,  b} a > a * ,b < b *

where b* (a) (along with p ^  pa) maximises det(M(f)) with respect to d  (over
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d > a) where £ is the design 

/  •

£
%2i

1 2 3

a a a

-1  1 -1

M  N  N  + l N  + 2 

a d d  d

1 -1 1 -1

L

b

1

zu - 1  1 -1  1 -1  1 -1  1

\  Pi Pa Pa Pa  ‘ ‘ * Pa Pd Pd Pd Pd J

and a* (b) (along with pc,pb) maximises det(M(<£)) with respect to c (over c <b)  

where £ is the design

<e =

i 1 2  3

Zu c c c

z2i - 1  1 -1

M  N  N  + l N  + 2 L

c b b b b

1 - 1  1 - 1  1

zu - 1  1 -1  1 -1  1 - 1  ••• 1

\  Pi Pc Pc Pc ' "  Pc Pb Pb Pb ■ ■ ■ Pb J

5.4 Justification  of the Conjecture

To prove the above conjecture we need to check the Equivalence theorem. Accord­

ing to this a necessary and sufficent condition for a design £(2 ) to be D-optimal 

is

f  i \

*1
tu(zi)(l, Z l ,  • • • ,zi)M  J(f)

\ Z i  J

k V Z\ , * • • , Zi €E Z  (^‘2)

=  k if £{zu - -  ,zi) > 0. (5.3)
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We only need to check this for Zj = ±1 for j  — 2, ■ • • , i, in which case equation 

(5.2) and (5.3) imply

w {zi)Qx {zi) < k V z e Z x

= k if £(z) > 0

where Z x = {z E Z  : Zj =  ±1, j  =  2, • • ■ , £}. i.e.

'»x (*i) =  Q x (^ i)---- < 0 Viy(2i)
=  0 if £(z) > 0

where Q x(zi) =  (1, zl} , ± l)M -1(f)(l, Zi, ±1 • - ■ ,± 1 )T, a quadratic

function. So for an  op tim al design we wish to  see v x (zi) < 0 in the case

Z  ~  {(^i, • • • , zi) : a < zi < 6, -1  < zj < 1, j  =  2, • • • , I}.

Now

= L M _ H * {zi)t (5 .4 )

where H^(zi)  =  and L(z) is an increasing linear function of z\ because

the coefficient of z\ is the value of the second diagonal element of the inverse of
di>x (zi)

the design matrix M R )  which is positive definitive. Consequently, —  ---- - =  0
<± Z \

iff L(zi) = H£(zi).  That is, — -----  =  0 when the line L(zi)  crosses H^(zi).
cLzi

The important point is that H x (zi) oc H£(zi) oc H{z\) (chapter 2 equation 2.3 

and chapter 3). There is no difference in the shapes of these functions. Thus 

L(z]) can only cut H x (zi) at most three times in the case for most of our weight 

functions in the two and three parameter case.

So we have the same conclusion here : H x (—oo) =  —oo, H^(-\-oo) =  Too and 

H^(zi)  is concave increasing up to some point and thereafter convex increasing. 

It follows that nx (zi) has at most 3 turning points on Zw. Further, because L{z\) 

first crosses H x (zi) from above, f x (2 i) has only one minimum turning point 

for the same reasons as before. Hence for these weight functions there are only
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two support points on each of the boundary hyperplanes Zj — ±1, j  =  2, • • • ,i, 

being identified by two distinct values of z L with the weight at these split equally 

between Zj — ±1 j  =  2, • • • , I. We now need to determine these two values of z\ 

and the optimal weights. In fact there is an explicit solution for these weights.

5.5 D efin ition  of W eights

We consider a design of the form :

' i 1 2 3 M N  N  + 1  N +  2 ■■■ t  '

z\i a a a • • • a b b b b

z2i - 1  1 -1  ••• 1 -1  1 -1  1

zu - 1  1 -1  . . .  1 -1  1 -1  1

\  Pi Pa Pa Pa Pa Pb Pb Pb Pb j

under which weight pa is assigned to each of the 2^-2  ̂ design points with z\ — it,

zj — ±1 j  — 2, • • • , I; u =  a, b and M  = 2k~21 N  =  2k~2 -t- 1 and L = 2k~L. So pa,

P b  > 0 and 2̂ k 2\ p a + pb) =  1. 

The design matrix is

k - l

m (P) =

where

Therefore,

M( p )  -  2 (-k ~ 2)

f  p a w ( a )  +  p ( , w( b)  a p a w { a )  +  bpbiu(b ) 0

apa , w( a)  +  bpbw ( b )  b'2p a w ( a )  +  b2p bw ( b )  0

0  0  p a w ( a )  4 -  p bw( b )

V P a w ( a )  + p bw ( b )  /

The determinant is

IM(p)| =  2k(k 2)papbw(a)w{b)(b -  a)2[paw(a) P p bw(b)]{k 2).
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We need to choose a, b, pai pb to maximize the determinant of M(p). We can 

find an explicit solution for the weights: First, we get the log of the determinant 

function which is a concave function of M(-):

ln[M (p)| =  k(k — 2) In2 +  lnpa +  \npb +  lnio(a) H- h\w(b) +  2 ln(6 — a)

+(& -  2) ln[pniy(a) +  Pbw{b)]

Substituting for pb  from

2  {k~ 2 ){ P a + P b )  =  1  P b = - ^ Z q - P a ,

the determinant function becomes

1

In \M(p)\ =  k(k — 2) In2 +  lnpa +  ln( — pa) +  Inw(a) +  Inw(b) +  21n(6 — a) 

+(k  -  2) ln[p„u>(a) +

c?ln|M(p)| _  1  1  (k ~~ 2)['<u(a) — io(&)]
+

d P a  P a  2 ^  ~  P *  \ P*W ( a )  +  ( 2^  “  P a ) W (P)]

Further,

d ln |M (p)| =  Q ^  _1_ _  1 +  {k -  2)[w{a) ~  w(b)] =  Q
d P a  P a  j o t a T  “  [ P a W ( a )  +  ( ^ r y  -  P a ) w { b ) ]

— /c22̂ _2^[iy(a) — w(b)]p2(a) +  2^‘~2)[(A: — 1 )w(a) — (k +  l)w(b)]pa +  w(b) =  0 

(5.5)

k2{h 2)[™(a) -  w(b)]p2(a) -  [(fc -  l)w(a) -  (A: +  l)w(6)]pa -  ^ z ^ w ( b )  -  0

(5.6)

A  ±  v /{A}2 4- 4^2^ 2)bn(a) — w(b)]w(b) 
=  ------------ i8'fc2C*-»)[U,(a)-u,(6)1-------------

where

A  =  [(fc — l)'tc(a) — (k + l)tu(&)].
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This is an explicit solution for the values of pa that maximize \M(p)\. Of the 

above two roots our solution is given by the first root because the second root 

leads to negative weights, namely:

A  +  y ^ A } 2 +  4k2(k~2}[w(a) — w(b)]w(b)
Pa.

where

2h2(k 2)[u>(a) — w(b)]

A = [(& — l)iy(a) — (k +  l)w(b)}.

(5.7)

Then pb
2(*-2) P a ,

w(a)
Further we can express the solution for pa in terms of r = viz) =  —7—f , namely:

w(b)

V =  aM zW  =  ~  -  1) -  2 +  y/(fc -  l ) 2(r(U -  l ) 2 +  4r(z)
Pa q[ [ ) )  2k2(k- 2Kr{z) -  1) ' ( '

5.6 D eterm ination  of support points

Still the design is 

( i 1 2 3 • •

z\i a a a

z2i - 1  1 -1  ■ •

M  N  IV+ 1  N  + 2  ■■■ L

a b b b b

1 - 1  1 -1  . . .  1

zh - 1  1 -1  ••• 1 -1  1

\  P i  P a  P a  P a  P a  Pb Pb

where M  = 2k~2, N  =  2k~2 +  1 and L — 2k~l and

-1  . . .  1

Pb  • • •  Pb J

ln |M (p)| =  k(k — 2) In 2 +  21n(6 — a) +  \npa +  In^6 +  lnic(a) -f- In w(b) 

+(fc — 2 ) ln[pQu;(a) +  Pbw(b)\ a < b.
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We now view this as a function of four sub-functions of a, namely w(a), pa, Pb 

and A(a, b) = k(k — 2) In2 +  2 In(b — a), so that

ln|M (p)| =  A(a, b) +  lnpa +  R p b +  lnw(a) +  In re(6)

+(& — 2) ln[pa«/(a) -j-pbw(b)] a < b 

= F(A(a1b)iw(a),w(b)ipa,pb)

=  F

Note that here we have not substituted for pb in terms of pa. If we do not make

this substitution we need to use a Lagrangian approach to determine the optimal
1

values of pa pb. Some useful formulae emerge if we do this. Since pa -\-pb — ,2\k *
the Lagrangian is

Having formed our total objective function we now determine the partial deriva­

tives of L(pa,pb, A) with respect to pa pb and A respective!}'.

dL(pa,pb, A) 
dpa 

dL(pa,pb, A) 
dpb 

dL(pa,Pb, A) 
dX

dPb

dPa

(5.11)

(5.10)

(5.9)

Hence

(5.12)

To determine A we note

(5.13)

(5.14)

Consequently,

(5.15)
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Now

dF  =  1 ( k -2 )w (a )
9pa Pa [PaW{a) + pbw(b)]
dF  =  1 (fc -  2)u,(6)
dPb Pb \paw(a) + pbw(b)]

Multiplying equations (5.16) and (5.17) by pb respectively, and summing the 

resulting equations we can write

p F + p , F  =  n  ~  V p M o-) n  { k ~  2) p bm(b)  _
a8pa dpb \paw(a) + pbw(b)] [paw{a) + p bw(b)]

which is constant. And from equation (5.15), A =  2 ĥ~2̂ k.

Further

=  J l  +  ( fc ~  2 M ° )  =
dpa Pa p aw (a )  +  p bw(b)

1 (k -  2)Paw(a) =  2 (^ 2),
p aw (a )  +  Pbu>(b)

=► 1 (5.18)paw(a) + p 6u;(5)

Similarly,

=  q  +  (fc -  2 )w(b) =  2k_2k
Opi, pi, Pi,will) + pbvi(b)

(k -  2)w{b)Pu (ifc_2).
pbw(b) T  pbw(b) b

(k -  2)W(6)p, =  2(fc_2) _
p&iu(6) + p bu;(6)

(5.19)

We note that we will be interested in derivatives of this function with respect 

to a and/or b. To find the best four-point design on ZW} we need to maximise 

ln[de£M(p)] w.r.t. a and b or if we wish to find the best four point design subject 

to a (or b) being a support point we need to maximise F  w.r.t. b (or a).

dF _  dF dA{a, b) dF dw{a) dF_dpa dF_dp^
da dA(ayb) da dw(a) da dpa da dpb da,

Now we can substitute the values from equations (5.18) and (5.19) into equation

(5.20) to obtain the following :

dF dF dA(a,b) dF dw(a) (k o^.dpa 2 dpb .
&r =  dA{a,b) - k  + ^ M ^ i + 2 (  )fĉ + 2  fĉ (5-21)



CHAPTER 5. MULTIPARAMETER CASE 163

(ft-2)
From the definition of paj pb (pa -\-pb =

dPa . dPh = n  
da da

dpa =
da

), we can write the following

5pt
5a

Therefore,

dF
da

d F  8A(a, b) dF  dw{a) 9pa,„(J;_2), _  ,(*-2),,
5A(a, 6) 5a dw(a) da 5 a _______________ ",

5A(a, b) dF  dw(a)
da dw(a) da

- 2  w'(a) (k -  2)paw'(a)
+  ■—p—:—r

b — a w(a) paw ( a ) + p bw(b) 
(k -  2)paw(a)■2 w'(a)

1 +b — a tu(a) L paw(a) + pbw(b).
2 ^ ^ ~ 2)^Paw'{a)

b — a ' ^(a)
—2iy(a) +  (pau/(a) 2̂ k~2̂ k) (b — a) 

iy(a)(6 — a) 
w'(a) 2̂ k~2̂ kpa

w(a)(b — a) 
w'(a) 2̂ k~2̂ kpa 

w(a)(b — a) 
paw'(a) 2̂ k~2̂ k 

w(a)(b — a)

( b - a ) -  

( b - a ) -  

b -  hb(a)

2w(a)
2 (k~2)kpaw'(a) 

w(a)
2 k~3kpawr(a)

i f  w'(a) 7  ̂0 

i f  w'(a) /  0

where M *) =  « + ^ (a). So cx paw’( z ) 2 ^ k [ b

Further,

d[lnrief M(p)] , -*=> .  P»w'(g) 2<t~2)fc _  ^(«) =
da ' w(a)(b — a) L 2(̂k~3̂ kpaw,(a)

i.e. i f  b — hb(a) [given in,( a ) ^ 0].

(Note, if paw'(a) — 0, atllldgM(p)] =  ^  ^  0. So, zmax is not a solution of 

I\UJetpi(p)} — q? where zmax is the value of z\ that maximises w ( z \ ) .
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Similarly,

d F  _  dF dA(a,b) d F  dw(b) d F  dpa d F  dpb ( ^ n 9\
db dA(at b) db dw(b) db dpa db dpb db

Now we can substitute the values from equations (5.18) and (5.19) into equation

(5.20) to obtain the following :

w  -  <->

From the definition of pa, p& (pa -\-pb~ ^ fc_2y), we can write the following

dpa , dpb
db db

dpa _  dpb
db db

Therefore,

dF
~db

d A (a , b) +  9 F  9 w (b) + {?Pb r2(*-2)fc _  2(k-Vk]
db dw(b) db vdb

= o
dA{a,b) dF  dw(b) 

db + dw(b) db 
2  w'(&) , (k -  2)pbw'(b)

b — a w(b) paw(a) + pbin(b) 
(k -  2 )paw(a)2  w’(b)

1 +
b -  a w(b) I paw ( a ) + p hw(b)

2 2^  ‘dkpbw'(l?)
 1_ _

o — a w(b)
2 w(b) +  (pbWf(b) 2̂ k~2̂ k) (b — a) 

w(b)(b — a) 
w'(b) (pbiu'(b) 2^k~2̂ k)

w(b)(b — a) 
w1 (b)(pbw' (b) 2^"2lfc)

{b — ft) +
2  w(b)

w(b)(b — ft)
Pb w' (b )  2 (k~ 2^k

(b ~ a) + -^=

2(fc~2) kpbW1 (6) -
w(b)

2 k~3kpbWr(b).

i f  w'(b) =£ 0  

i f  w'(b) ^  0

w(b)(b — ft)
ha{b) -  ft

where ha(b) =  6 +  2 ^ 3f ~ ;( by  So oc p bw ' { z ) 2 ^  2h [ h a(b)
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Further,

d[ln detM{p)] pbw'(b)2^k~2̂ k \  w(b)
i f (6 — a) +

db ' ru(6) (6 - - a) L 2(k~3} k pbw’(b) .

i.e. i f  b = ha(b) [given u / ( & ) ^ 0].

=  0

(Note, if pbw'(b) =  0, atlud̂ Mp)\ _  _jl. ^  gQ̂ Zmasi is not a solution of 
<9 [In detM  (p)]

db
= 0 .)

As a result of this, we can be interested in solving one or both of the equations

a = ha(b) (5.24)

hb(a) =  b (5.25)

Clearty, the function ha(b), hb(a) play the role of h(z) in the two parameter case 

but that has now been replaced by a class of functions as in the three parameter 

case. It is useful to study ht{zi). The solutions to these equations clearly depend 

on the nature of /it(21). We consider the same weight functions as in chapter two. 

Plots in the case of the weight function for binary logistic regression are shown 

in Figures (5.2), (5.3), (5.4) and (5.5). This again is useful to us.

Now consider the single equation in z\

hZ2(zi) =  e.

As in the previous chapter there is one solution to this equation say z\ =  z \  (e) in 

the range z\ < zmax and one, say z\ — z^(e), in the range z\ > zmax. Moreover

since w'(z*L{e)) > 0 and u/(z^(e)) < 0 we have ^ (e) < e < Zy(e). In equations

5.24 and 5.25 we have two versions of the above. Their joint solution with z\ < z2, 

must be z\ =  a*, z\  =  6*, a* < &*, ad, b* being the support points of the optimal 

2k~L design on Z w as defined in the conjectures above. Note that this means

h(a*) =  &*, h{b*) =  u* cmd. 1̂ —^ (^ 2)3 z2 ~ zu(.z \)'
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5.7 E xam ination of the conjecture against the  
equivalence theorem

We now begin to check the conjectures in section (5.3) against the equivalence 

theorem. We consider an arbitrary k parameter design as follows:

( \i 1 2 3 M  N  N + l  N  + 2 ■■■ L

zn a a a a b b b b

z2i - 1  1 - 1  1 - 1  1 - 1  . . .  1

zu - 1  1 -1  1 -1  1 - 1  1

\  P i  P a  P a  P a  ■ P a  Pb Pb Pb  ‘ * * Pb

where pa, Pb > 0 are the optimal weights for a and b and M  — 2fc-2, N  =  2k~~2 +1 

and L = 2k~l . The design matrix is

2fc-i
M(p) =

where

g =  \ /w ( z u ) { l }Zii,Z2i: • • • , zh)t  i -  1, 2, • - ■ ,2 k - l

M(p) = 2tfc-2)

f  p a w(a) -h p biu(b) apaw(a)  +  bpbiu(b) 0
apaw(a)  -f bpi,w(b) bfpatv(a) +  b'2p bw(b) 0

0 0 Paw(a)  +  puw{b)

V o o

The design matrix can partioned as follows:

M(p) = 2(fc~2)

Here is the 2 x 2 matrix

So =
( s  s  ^  1^Oll *->012

(5.26)

paio(a) +  p bw(b) )

*5*021 *5*022

paw(a) +  pbw(b) apaw(a) +  bpbw(b) 

 ̂ apaw(a) 4- bpbw(b) b\paw(a) +  b2pbw(b)
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From the definition of <Sq5

Sq22
|So|

-Sp21
\So\

_ Sn\2 
\So I

■Son
1-Sol

where the determinant of S 0 is :

|<S01 =  [paw ( a )  +  p bw(b) ] [paw ( a ) a 2 +  p bw ( b ) b 2] -  [paw ( a ) a  +  p bw ( b ) ] 2

=  p aPbw{a>)w(b)(b -  a ) 2.

Further, S 2 = c l  where I  is the (k — 2) x (k — 2) identity matrix and c 

paw(a) ~\rpbw(b).

Therefore

(  0̂22  <S'oi2
|5q| |50|

M~l (p) =

0 0

S 021 S'oii n  n
|5o| |So| U U

0 i  0

0 0 1

\

v 0 0 0 0 ••• i  J

If the above design is to be D-optimal on a set of values of z, for 2, j  =  2, • ■ • , i, 

say the set Z,  then, as noted in section 5.4, we must have

ux(zi) < 0  M e  Z ( 5 .2 7 )

where

v x (zr) =  Q U z O -
w ( z -l)

(5.28)
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where

Q x(^)  - 2 ( * - 2)
(1, zu  ± 1, ■ ■ • , ± 1)

(  Sq22 
1-Sot

  5021
\So\ 

0

0

S()12
|5o|

5 p n
l<5oi
0

0

'$022 ~  Zl<SQl2 S q12 +  -ZiiSqI]
2 (fc- 2) So So

A .
c ‘

1 ^022 — 2zi<Soi2 +  ^1^011 1

0 0

f 1 1
Z\

d r l

^ d r l  j

dr-
c j

Z i

d r l

V * 1 /

2 ( * - 2)

1
2(fe-2 )

Equivalently we must have

+  -  +  c +

£022 — 2zi5oi2 +  ^i^on (k — 2) ------------ —.......... — H------------- (5.29)

where v(zi) =  Q(zi)
2{k-2)k

w(zi)

(5.30)

with Q(zi) =  2^ 2̂ Qx(2q). And v(z\) must be

maximised at a, b over a maximum of zero as v{a) =  v(b) = 0. So, we need 

to consider the derivative of u(^i) at a, b. We have to explore the derivative of

Uzi):

/fc2<fc- 2W (zi)
v’(zi) — Q‘(z  i ) + [w(zi)]2

L h {Z l ) -  H k ( Z l )

(5.31)

(5.32)

where or Lt (z,) =  Q'(zi) and H k{Zl) -  - t2<|m(f')]t1>
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Now

Lk(Zl) =  Q'(Zl)

—2(Sqi2 4- 2z\ S qh

In particular,

So

L k(a)
2[paw(a) -j-pbw(b)]a -  2[paw(a)ci +  pbw(b)b]

I |
2pbw(b)(a — b)

papbw(a)w(b)(a, ~~ b)2 
- 2

L k{b) =

{b -  a)paw(a)

2[pgw(q) + p bw(b)]b- 2[paw(a)a +  pbw(b)b]

I S0 I
2pau)(q)(6 — a)

papbw(a)w(b)(a -  b)2 
2

(b -  a)pbw(b)

v'(a) =  Lfc(a) -  H k(a)

fc2<fc“2W (a)
— L k(a) +

paw(a)(b — a) 
1

+
k2 (k- 2)w'(a)

- 2  &2(fc“ 2V ( a )

w{a) Lpa(b -  a) w(a)
k 2 ^ w l{a) r -2w(a)
w(a)]2(b — a) Lk2(k~-2)paw'(a)

+  (b — q)

k 2 ^ w ' ( a )  
[w(q)]2(6 — a) 
k2^k~2̂ w'(a) 

[w(q)]2(6 — a)

b — [a + 

[b -  /ift(a)]

w(a)
k2(k 3)pau)' (q)
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Therefore

v'(b) =  L 3( b ) ~ H 3(b)

k2^-^w'(b)
= L z(b) + 

2
Pbw(b)(b — a) 

1 r 2

+
k2^k 2W (6)

M b)]2
k 2 ^ w ' ( b )

+
w( b)  Lp b(b — a)  ’ w(b)  

k2^k~2^w'(b) r 2tu(&) 
[w(6)]2(& — a) -k2(k~2)pi)w'(b)

+  (J) —  Cl)

fe2(fc-2W(&)
[w(6)]2(6 - a )
fc2<fc~2W (6)

[w(&)]2(6 — a)

[6 +
w{b)

k2(k~s)pi}w'(b) 

[ha {b) -  a]

v ( a )  oc it/(a) [6 — /15(a)] 

v'(b)  oc w ' (b ) [h a (b) — a]

So the sign of v ' (a )  and v'(b)  depend on the signs of w ' ( a )  [6 — h b(a)] and it/(6) 

[ha (b) — a] respectively.
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5.8 P roof of th e Conjecture

The function hy(z) has exactly the same definition as in the th re e  parameter 

case. Hence if it were increasing in z over z < zmax and z > zmax then the proof 

of the conjecture would be identical.

Condition (i) of section (3.2.6) does appear to hold for low dimensions k < 6, but 

for higher dimensions hy(z) can have two T P ’s : a maximal then a minimal one. 

Condition (ii) is satisfied for all dimensions. These assertions are evident from 

the plots of hy(z) in Figures (5.2), (5.3), (5.4), (5.5) (for different values of k, 

the number of parameters), (5.6), (5.7) (for different values of y (the end point- 

support point)) for the Logistic weight function.

What is also evident is that a weaker but still sufficient condition for proof of the 

conjecture is satisfied : namely that for b > zmax, hb{z) > b for a*(b) < z < zmax: 

while for a < zmax, ha(z) < a for zmax < z < b*(a). There is in fact only one

solution in each of the ranges z  < zmax and z > zmax to the equation

hy(z) y .

5.9 S tudy of the function h y ( z )

In this section we will be looking at the function

J ( \ _  1 w ( z )
y k2(k~3) py(z)iu'(z)

We note that there will be pairs of values (2/1, 2/2) of y with 2/1 < zmax < y2 such 

that

V W  = M z) v z-

This follows since w(z) is unimodal. These values must satisfy w(yi) — w(y2)- 

If w(z) is symmetric about zero then y\ — —y2. Otherwise numerical techniques 

will usually be needed to determine y2 say, for given y \ . An exception to the 

above is of course y =  zmax.
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So a given function hy(z) could be labelled with two different y-values. For our 

purposes the most important labels are the higher y-values over z  < zrnax and the 

lower y- values over z > zmax. So first of ail this study leads us to the consideration 

of graphing the function hy(z). Recall that hy(z) is a function of 2: and of y and

k.

We consider the dependence of hy(z) on z, y and k in turn.

We focus on z < zmax throughout.

• Dependence 011 z:

We have to remark that hy{z) is not monotonically increasing, [see Figure 

5.6 and Figure 5.7]. Note that on these figures dzy values are also plotted. 

On both sides of the plot of hy(z) has local minimum and maximum T P ’s. 

Ideally we want to see hy(z) crossing Py  once. (Clearly, this is true if hy(z) 

is increasing in z.) The presence of T P’s implies the possibility of three 

crossings. However the plots suggest that this does not happen. Fortunately 

the T P ’s lie between Py.  Consequently, hy(z) crosses the value Py  once in 

(—00, Zmax] and once in [zmax, 00). As we can see from in Figure (5.1) it 

appears that:

1. z* ( -y )  < z1 < z2 < z*(Py) and tiy(zi) -  tiy(z2) = 0.

max T P  min T P

2 . —y < hy(zi) < y 7 i =  1,2 where h'(zi) = 0  i =  1, 2, z*(c) solves 

h s ( z )  =  c.

Crucially hy(zi) < y and hy(z2) > —y.

Further the graphs of hy(z) for increasing k show that when the number of 

parameters increase the minimum TP approaches the point (—y, —y) but 

never touches it, and this in turn gurantees that we will always end up 

having two support points.

For further insights consider d = d(z) — (k — 1 )(r — 1). Substituting d in
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hy(z) =  h(_y){z)

173

Figure 5.1: Plot of arbitrary hy(z) function.

q(r) gives

q(r) =  qx (d) =

( k - l ) J l d - 2  + \ l d ‘> + - ^  + 4

Hence

hy(Z) 0(d)
d'(z)

(5.33)

where here </(d) — i  ^2  — d-\- d? +  — 1)} .

As means of forming an impression about hy(z), we study g(d). 

We note the following points :

1. d > — (k ~  1) since r > 0. So d e [—{k — 1), oo).

2. g(d) = 0 at d = —(k — 1)

d =  — 5 =y g(d) — 0

w(z)

e.g. if k =  6 =4

3. g(d) is a positive function since g(d) —

4. g(d) — > oo as d —y +oo
Py(z Y
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5. In general, g(d) has 2 T P ’s, first a local m a x im u m  and then a local 

m inimum.  However it seems that there are no T P ’s if k < 5. [see 

Figures (5.8), (5.9), (5.10)].

6. T h e  derivative of g{d) w ith  respect to  d is

dg{d) 1
dd k

with A = ( d2 

So

{2 -  2d -  {k -  1) +  A +  A!(d +  {k -  1))}

_ z _ + 4 j  B n d A = _ ^ M + _ _

( 2  -  2d — {k — 1) +  A  +  —  ( 2d +  j- ) [d +  (A: — 1)]dd

=  — {2 — 2rf — (fc — 1)}
ru

d2 +  d(k -  1) +  2 
k ^ l

+
2d

A(k  -  1)
1

A(k  -  l )k  
1

+ A{k -  1 )k

{{k - 1) [2 - 2 d  - ( k  - !) ]> !}

{A 2(k -  1) +  (k -  1) [<i2 + d(k -  1) +  2] +  2d}

<j [(3 -  k) - 2 d ] A  + 2d2 +

f) (rl\
Now, solving ——— =  0 will lead to 

dd

6 +  ( / c - l ) ; 
k -  1

d T  6

[(3 - k ) -  2d] J d 2 +
4 d

k -  1
+ 4 =  i -  2d2 +

6 +  (k — 1) 
k — 1

21
d +  6

LHS RHS
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and

L H S 2 = {[(3 -  fc) -  2 d] A } 2 where A = J d 2 +  + 4

=  {(3 -  fc)2 +  4d2 +  4(3 -  k)d} Id 2 +  U L  +  4|

4 ' (fcZi;^ { k 2 - 4 k  + 7 } d 3 + i [ ( 3 - k ) 2 + ~ ( k - 2 )=  4d +

+  4 ( f c - 3 ) ^ fc- 3()fc+_ 4l()fc- 1 ) }d + 4 ( f c - 3 g

Hence,

C(d) =  R H S 2 -  L H S 2 = -^ - d 3
/C — JL

+
o, , [(^ — I )2 +  6]2 — (3 — k)2(k — 1): 

+  (A: — l )2

8fc(fc-8)rf +  4fc^ _ fc
K — 1

8/b n 4A r -i .. 1 l9H~ y:---- pry ■{& — 3A; -j- 11} gJ
Jfe- 1  (k — l )2 
8k(k -  8)

k -  1
■d +  4/c(6 — A).

Stationary values of g(d) will be a subset of the roots of the cubic 

equation

C(d) = 0.

Thus C{d) can have at most three T P’s and probably less. Consider 

k =  6 . At this value the constant term of the cubic is zero and

,~ir 7̂ n 48 o 696 2 96C(d) — 0 4 a ~zrd H—7rz~d H——d =  0
5 25 5
12

4= y  [20d2 +  58d +  40] =  0

=>- di(z) = 0  or d ^ z )  =  —1.13 or d3(z) = —1.77.

We note that all the three roots are greater than [—(k — 1)] =  —5, the
Q / J\

lower limit on d. However dUz) is not a solution to =  0 while
dd

di(z) and d2(z) do identify T P ’s of g(d) (■minimal and maximal TP,

d2

32(fc — 2) d2
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respectively). Thus g{d) has two turning points. This appears to be 

the case for k > 6 in general while for k < 5, g(d) is increasing.

7. In fact " ---— > 0, so there are only two T P ’s in [—(k — 1), oo).

[see Figure (5.11) (5.12) (5.13)].

8. It appears that g(d) is an increasing function for k < 5 while for k > 6

it has two TPs as in the case k — 6. See Figures (5.8) (5.9) (5.9).

The above properties of g(d) would appear to induce the same in hy(z) i.e. 

hy(z) increasing in z  for k < 5, while developing two T P ’s for k > 6 .

• Dependence on y :

For all z\ < zmax, hy(zi) decreases in y over y > zrnax, and for all z\ > zmax 

hy (z\) decreases in y over y < zmax. To prove these we write hy(z) in the 

following form:

7 / \ w i z ) w ( z )h y { z )  =  z - h  r  =  — —
q(r)wf(z) w{y)

W ( Zl
where q(r) is the expression encountered in equation (5.8) and r = —r-r.

w{y)
From the above expession of hy(z), proving that q(r) is increasing in y would 

be sufficient to establish that hy(z) is decreasing in y. In Appendix B we 

prove that q(r) is increasing in r.

- Hence hy(z) decreasing in r.

rj w(z) r i- Hence r =  — — increases in y over I z.tnax, oo)
w{y)

- We note that w(y) is decreasing in y over [zmax, oo),

Therefore, hy(z) decreases in y.

• Dependence on k :

— Now we show analytically that the function hy(z) is decreasing in k. 

Substitute d =  {k — l)(r  — 1) in the function g(d).
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Therefore we will have,

hy{z) =  Z+  ( k - l ) J ( z )  (5'34)

where

fl(r, ,£) =  rI t U l  | 2  -  (fc -  l)(7. _  1 ) +  — l)(r — l ) ] 2 +  4rV

Let

g(r, k)
G(r,k)  =

{ k -  1)
= I { 2 - ( * - l ) ( r - l )  + vC4}

where A  — (k — l ) 2(r- — l )2 -f 4r.

Therefore we will have,

, , dr(r, k)
hy(z)  =  Z~h ) / ' .

J r' (z)

dh^ (z)
To show that hy(z) is decreasing in k we need to prove that —A—  < 0.

Oh

Now, let’s take the derivative of hy{z) respect to k:

dhy {z) =  ^  G ( r , k )

dk r’(z) lr '(z )]2

d P  (z )
Now ■— =  0, since r is independent of k. Therefore

dk
dh% (z) dGUk)
— —  =  f .k , . So, taking the derivative of G(r, k) respect to k will 

ok P{ z )
be enough for us to see the behaviour of hy(z) with respect to k.
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The derivative of G(r, k) with respect to k is given by the following 

expression:

dG{r , k) 
dk

( - r )  
k2

r(r  — 1) __

+

{ (k  - l ) ( r -  1 ) / H  - l }

p  1 2  — (k — l)(r -  1 ) +  A* |

r(k  — l)(r  — l ) 2 r(r  — 1) 2r

r(r — 1)(& — 1) r^/A
k2 k T

rk(k  — l)(r  — l )2 rk(r  — 1)\/A
k M / I  ¥ 7 a

2 ry/A r(k — l)(r  — 1) y/A ry /Ay/A
k2\ /A  u Q T

r
k2V I
{k(k  — 1 )(r — l )2 — k(r — 1)a/A — 2 \/A 

+(k — 1 )(r — 1)\/A — A}

^ -^ { /u ( /c  -  l )(r  -  l )2 -  A +  \/A

p - l ) ( r - l ) - / c ( r - l ) - 2 ] }
r

k 2V A

{ k ( k  -  l)(r -  I ) 2 -  [(k -  l )2(r -  I ) 2 +  4r]

—(r + 1)\/A}

{-(fc -  l)(r -  l )2 - 4 r -  (r +  l ) V l}

|  (A; -  l)(r -  I ) 2 +  4r +  (r +  l)vC4 J
k2\ / A  

=  - T

Since T > 0, A 7 *  = T  < 0. Therefore G(r, k)  is decreasing in k. As

a consequence, is decreasing in /c (If r'fz) > 0 as is the case for

% Si %max) •
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W e now consider th e  l imit  of hy(z) as k —> oo 

Let s — (r — 1) r — (s +  1). 

and I = (k — 1) k = (I + 1).

S u b stitu tin g  in G(r, k) we have

hy(z) =  z + % ° ' l)
s'(z)

(5.35)

where Gs(s',I) — |  —Is + 2 +  \ / P s 2 +  4(s +  1) j .  Further,

s +  1
{ 2 -  is +  \ J P s2 + 4(s +  1) J

4(s +  4) |  
P /

4(s +  4) 1s + 1 [2

Hence,

lim Gs(s, I)L—̂00

1 + H 7

(s +  1) { -S +

s +  \ SA +
p

■

s i f  s > 0

- s  i f  s < 0, (—I < s < 0)

0 i f  s > 0 

—2s(s 4-1) i f  s < 0, (— 1 < s < 0)

And lim Gs(sJ)  is always positive since [—2s(s +  1)] is positive on
£— OO

—1 < s < 0.

Therefore, the limit of hy(z) in equation 5.35 is :

lim hy{z)I—̂OO —  Z
0 i f  s > 0

if - i < s < o

Now

s =  0 r — 1 w(z) = w(y) 

z = Ui
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where, assuming z  < zmax, yt < zmax < y and w(yi) = w(y ).

So

( z i f  s > 0 r > 1 i.e. 4 4  > 1
lim /ry(z) =  { w{y)

l ^ ° °  i f  ~ l < s < 0  0 < r < 1

z i f  w{z) > w(yt) 

z ~  K w

So

I % +  777W i f  z  > yi 
lim hv(z) =  <!

1 ~  2 s [ s + l ]  • r  ^

I * _  ~V(z)~ * K lJl

This suggests hy(yi) = yi is a minimum TP.

In particular, for the logistic weight function, zmax = 0 and w(-) is 

symmetric, so that yi =  —y. Hence,

z i f  z > — y
lim hy(z) =
l~̂ °° I r _  2w(g)[w(z)-w(0)1 • f  ^

z w>{z) z ^  y

z i f  z > —y 
2w(*)[u/(z)-H

i f  Z  <  - y
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5.9.1 Explicit Solutions for some weight functions

We extend results of Torsney and Musrati(1993) for the Gamma, Beta, Normal 

weight functions.

We find explicit formulae for the D-optimal design weights for some weight func­

tions

Case 1 : Symmetric Beta Weight Function 

w(b) — (1 — 62)7-1, 7 > 1, — 1 < b < 1.

This weight function is symmetric about the origin, for all 7 . Hence one 

optimal design must put equal weight on the 2k~l points satisfying z\ =  ± 6, 

Zj — ± 1, j  =  2, • ■ • , Z for some b, which can be determined by maximiz­

ing the determinant of the information matrix with respect to 6; that is

maximise

ip(b) =  2 In 6 +  fcln[(l — ft2)7” 1].

Note that b can not assume the values 1 or -1, since w ( —1) =  w(l) =  0.

Therefore the first order conditions for 6 is

5-0(6) 2 26(7 — l )k
= T ±db b ( 1  — b2)

which implies

b = ±  . ===. (5.36)
V'fcfT -  1) +  1

For instance, if we let 7  =  3 and k = 3 in equation (5.36), then the support 

points of the four-point design on Z w =  {(^1 zf) : — 1 < Zj < 1 j  = 1, 2} 

are z\ — ±0.378, ^2 =  ±1 with optimal weights These symmetric 2fc_1 

points design are globally D-optimal because they satisfy the necessary and 

sufficient condition of the equivalence theorem; that is they satisfy equation 

(5.1).
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Case 2 : Normal Weight Function w(b) = e_62y/2, —oo < b < oo.

This weight function is also symmetric about the origin. Hence one optimal 

design must have the same form as in Case 1. Now we have to maximise

For instance, if we let k — 4 in equation (5.37), then the support points of 

the eight-point design on

Zw — {(zi, z2, £3) : —00 < z\ < 00, — 1 < Zj < 1 , j  =  2,3} are

Z\ = ±0.707107, Zj = ±1, j  — 2,3 with optimal weights | .  These symmetric

and sufficient condition of the equivalence theorem; that is they satisfy 

equation (5.1).

Musrati(1992) and Torsney and Musrati (1993) reported these results for two 

parameter model.

5.9.2 Some Empirical Results for D-optimal designs

The general objective has been to find empirical^ D-optimal designs when 

Z  =  { (^ i, • • ■ , z { )  : a <  Zi < 6, — 1 <  Zj <  1 j  =  2, • • • , 1}  for all possible

choices of a, b. In section (5.6) for the most weight functions we showed that 

two distinct values of z \  produce the support points of the conjectured optimal 

designs of the various cases of Z  — [a, 6], Now we will show empirically that 

the equivalence theorem is satisfied by our conjectured optimal designs for all 

possible design intervals [a, 6]. There are only two distinct value of z L and hence 

observations are taken at only two values of Z \ .

-0(5)

Therefore first order conditions for b are

which implies

b (5.37)

2k 1 points design are globally D-optimal because they satisfy the necessary
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Case 1 : Z  ~  Z w =  {(21, ■ • ■ , z{) : —oo < z\ < oo — 1 < Zj < 1 j  = 2, ■ ■ • , 1} 

and Supp(p*) = {—&*,&*}

In the case of sym m etric  weight functions w(zi)> Zi- support points are 

± 6* with z.j =  ± 1, j  — 2, • • ■ , I and with equal weights where b* maximizes 

{detAd(p) =  62[u)(6)]/s}. We found the b* value that maximizes detM(p) 

for the k parameter case with the logistic, probit, normal and symmetric 

beta weight functions. Empirical D-optimal designs for live choices of w(-) 

are listed in the Table (5.1). We checked for optimality of this design, by 

checking the equivalence theorem for zi =  (—oo, oo), Zj =  ± 1, j  =  2, • • • , 8. 

Additionaly, Figure (5.14) represents the variance function for the Global 

D-optimal design on Z w for the Logistic weight function, for the k — 4 

parameter case. We consider further examples for this choice of weight 

function again with k =  4.

C ase 2 : Z  = {(21, 22, 23) : a < 21 < 6 , — 1 < Zj < 1, j  =  2,3}

a < ad, b < b* and Supp(p*) =  {max{a> a*(b)}, 6}

Results are very similar with next step. So we only show include emprical 

results for that.

C ase 3 : Z  = {(21, 22, 23) : a < Zi < 5, — 1 < Zj < 1, j  = 2,3} a > a*,

b > b* and Supp(p*) =  (a, mm{6, 6*(a)}

For the 4 parameter logistic regression model we used as in Chapter 3, 

section 3.2.6, Case 3 an  a lte rn a tin g  a lg o rith m  to determine b*(a) for 

k = 4 and a =  —1.04, —1.00, —0.90 • • • 1.00,1.04. The D-optimal support 

points and weights are summarized in Table 5.3. Figures 5.15 and Figures 

5.16 show that the necessary and sufficient conditions of the equivalence 

theorem are satisfied.
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Case 4 : Z  =  {(^i, z2, z2) : a < zx < b, —1 < 27- < 1, j  = 2, 3}

a > a*, b < b* and Supp(p*) =  {a, b}

For this z\ interval the end points are the support points and the equivalence 

theorem is satisfied. See Figure 5.17.

5.9.3 Efficient Approximations

This section will be devoted to finding the efficiency of D-optimal designs based 

on Probit Regression Model and Normal regression models. To compare different 

designs, we will use a modification of the efficiency measure used by Atkinson 

and Donev (1992) , and proposed by Abdelbasit and Placlcett(1983).

First we look at the ratio between probit regression model support points and 

normal regression model support points. As we can see from the TableS.l the

ratio of the probit model support points and normal model support points are

approximately equal to (1.15

We suggest that the design for the Normal regression model which, although not 

optimal for Probit response model, gives an efficient alternative to the optimal 

design for probit response model. To explore this we investigate the relevant In­

efficiency which is based on the determinant of the information matrix. Let 

be the optimal design for a k  parameter Probit regression model, and be 

the optimal design for the normal density weight function k  parameter model. 

Determinant values under the probit regression model are:

where b*^  identifies the global support points for the normal density weight 

function k  parameter model, bm  identifies global support points for the pro­

bit regression k  parameter model and w2 represents the probit regression model

d e tM (f)  =  {b*m )2[w2(b*m )]h

d e tM ( C )  =
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weight function. Note, there is an expilicit solution for the normal density weight

Note: If D ef f  = is high (e.g. around 90%) then ^  is an approx i­

m ate ly  optimal design for the probit weight function.

Results are given in Table5.2. According to these, the design which is optimal 

for a normal regression model is an efficient alternative to the optimal design for 

the probit regression model.

functions : b*^ — ±  .[See section 5.3.4, case 4]. 

Now we measure the efficiency of relative to as

d e t M ( Z i )
d e tM { ^ \ z i )

(5.38)

(5.39)
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Four p aram eter  case: For L ogistic  w eigh t F u n ction , 

zy — [A, B\ — [i>i, o o )  for fixed  by and by >  —b* 

th e  low er su p p ort p o in t, op tim al b2 P i  and p 2 valu e.

fixed  by value m h ) Pb2 (b i ) P b d h )
-1.04363 1.043625 0.125000 0.125000
-1.00000 1.074189 0.127208 0.122792
-0.90000 1.148056 0.132245 0.117755
-0.80000 1.226839 0.137156 0.112844
-0.70000 1.309847 0.141832 0.108168
-0.60000 1.396236 0.146186 0.103814
-0.50000 1.485121 0.150159 0.099841
-0.40000 1.575692 0.153728 0.096272
-0.30000 1.667281 0.156892 0.093108
-0.20000 1.759399 0.159673 0.090327
-0.10000 1.851721 0.162104 0.087896

0 1.944058 0.164222 0.085778
0.10000 2.036324 0.166066 0.083934
0.20000 2.128502 0.167670 0.082330
0.30000 2.220616 0.169068 0.080932
0.40000 2.312716 0.170288 0.079712
0.50000 2.404861 0.171354 0.078646
0.60000 2.497112 0.172289 0.077711
0.70000 2.589526 0.173110 0.076890
0.80000 2.682153 0.173832 0.076168
0.90000 2.775035 0.174469 0.075531
1.00000 - - -
1.04363 -1.043625 0.125000 0.125000

Table 5.3: For Logistic weight function D-optimal support points and weights.
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Figure 5.2: Plots of hy(z) for the Logistic Weight function, y = 0.0, • ■ ■ ,4.0 for 
each of k = 2,3,4, 5.
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Figure 5.3: Plots of hy(z) for the Logistic Weight function, y =  0.0, ■ • • ,4.0 for
each of k = 6, 7, 8,9.
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Figure 5.4: Plots of hy(z) for the Logistic Weight function, y = 0.0, • • • ,4.0 for
each of k = 10,20, 30,40.
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Figure 5.5: Plots of hy(z) for the Logistic Weight function, y =  0.0, • • • ,4.0 for
each of k — 50,60,70,80.



CHAPTER 5. MULTIPARAMETER CASE

Figure 5.6: Plots of hy(z) for the Logistic Weight function,
k = 3,4,19, 20, 25, • • • , 75,80 for each of y = 0.0,0.2,0.5,1.0.
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<=3,4,5,...19|20.25,30,...,7S,80

Figure 5.7: Plots of hy{z) for the Logistic Weight function, k =
3,4,19, 20, 25, • • • , 75,80 for each of y = 1.5, 2.0,3.0,4.0.
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Figure 5.8: Plots of g(d) for k =  3,4,5, • • • , 10,11 and d > — (k — 1).
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Figure 5.10: Plots of g(d) for A; =  25,30, • • ■ , 75* 80 and d > — (k — 1).
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Figure 5.12: Plots of ^  for k =  12,13, - - - ,19,20 and d > - ( k -  1).
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Figure 5.13: Plots of ^  for k =  25,30, • ■ • , 75,80 and > 1).
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it

(a)

Figure 5.14: Plot of the variance function for the global symmetric D-optimal 
four-point design on Z  — Z w =  {(21, 22,^3) • — 00 < Z \  < 00 — 1 < Z j  < 1, j  = 
2,3} for the logistic weight function(fc =  4).
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Figure 5.15: Some plots for the variance function under an optimal design
on 2  = {(zi,  Z2, Z3) : a < Z\ < b Zj = ±1, j  =  2,3}, a > a*, b > b*(a) for the 
logistic weight function, (k — 4).
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Figure 5.16: Some plots for the variance function v(zi) under an optimal design
on 2  — {(^i, Z2 , £ 3 ) : (i < Z \  < 6  
logistic weight function, (k = 4).

±1, J =  2,3}, a b > b*(a) for the
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2 2
z\

(a) (b) (c)

Figure 5.17: Some plots for the variance function v(z{) under an optimal design 
on Z  =  {(zu z2, £3) 0, < Zi < b Zj ~  ±1, j  = 2,3}, a > a*, b < b* for the
logistic weight function, (k = 4).



C hapter 6 

Som e A dvances in O ptim al 

D esigns in C ontingent 

V aluation Studies

6.1 Introduction

A Contingent Valuation Study is essentially a Sample Survey of a relevant pop­

ulation, the primary aim of which is to estimate that population’s willingness to 

pay (W T P ) for some new (or possible previously free) amenity or it might be 

to estimate what increase in charges the population is willing to pay for an es­

tablished a m e n i ty .  These amenities fall into the category of non-market goods or 

services. Examples of such studies arise in the areas of health or welfare e.g. pay­

ment for (provision) of medical programs see Donaldson (1993); recreation (e.g. 

payment for fishing permits); and the environment (e.g. payment for pollution 

reduction programs).

The first such study focussed on pollution in the Delaware River Basin, USA 

in 1947. A more recent example is seen in Hanley (1989) which reported a study 

into the Willingness to Pay of visitors to a part of the Queen Elizabeth Forest 

Park in Central Scotland. There was interest in four aspects; wildlife, landscape,

205
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recreation and all combined. Four W T P  questions were asked. For the last 

category this was: ’Suppose the government was considering selling the Queen 

Elizabeth Forest Park to a private forestry company. This would mean people 

would no longer be able to visit it. If the only way to prevent this happening was 

for the Forestry Commission to raise revenue by selling day tickets to visitors, how 

much would you be willing to pay, per person per visit?’ This kind of question is 

known as an open ended question.

6.2 Criticism s of CV Studies

An overriding criticism is that a CV question invites a hypothetical valuation, 

particularly if the respondent has not previously considered the issue in question. 

This could lead to biases of various kinds. Bishop and Heberlein (1979) construct 

a list of possibilities. Broadly speaking they fall into three categories: psycholog­

ical, economic and statistical. Psychological biases include ’strategic bias’ arising 

when a respondent ’overestimates’ his/her W T P  if (s)he suspects that payment 

will not become a reality, and ’free-riding’ meaning W T P  is ’underestimated’ to 

keep real fees low. Economic biases include the ’embedding problem’ arising if 

a respondent is unable to recognise other competing demands on a finite (recre­

ational or environmental or health) budget. Finally CV studies are as subject to 

’statistical’ biases as any sample survey. For example length biased sampling is a 

potential problem with the study of Hanley (1989) since respondents were sam­

pled on site. Two styles of enquiry were used : a self completion questionnaire 

and an interview. Those who stayed longer in the park were' more likely to be 

interviewed.
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6.3 Literature

207

These issues have given rise to a great deal of literature. Much of this appears 

in the following journals: Land Economics, American Journal of Agricultural 

Economics and The Journal of Environmental and Economic Management. This 

literature is rich in its use of statistical tools including regression, and binary re­

gression methods since other potentially relevant questions are regularly included 

such as general questions on income and age. We shall also see the need for 

optimal regression designs. One apparent lack seems to be reference to methods 

of analyses developed in the survey methodology arena. The literature also in­

cludes a batch of 8 papers in Volume 34 of the Natural Resources Journal a legal 

publication, arising from contentious litigation concerning the use of CV studies 

in relation to the Exon Valdez Oil Spillage in Alaska.

6.4 Variations of the W T P  question

With a view to resolving some of the criticisms of CV studies a blue ribbon panel 

was set up in the USA chaired by Arrow (the Nobel prize winning economist) 

and Solow. This produced a list of 15 recommendations for the conduct of CV 

studies. One of these stated that a dichotomous choice W T P  question should be 

used, one of several alternatives to the open ended question which have evolved. 

These include:

1. Closed ended format (or payment card):

The respondent is offered a list (possibly on a card) of possible payments 

and asked to identify the one closest to his/her maximum W T P . This 

variation was also used in the Hanley (1989) studj'. It produced higher 

mean W T P  values than the open ended case for all four aspects of interest, 

’significantly so’ in the case of two of them.
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2. Dicliotomous Choice Format

The respondent is offered a single payment or bid and simply responds Yes 

or No according to his/her willingness to pay this bid. This format is also 

known as a Discrete Choice or Single Bounded question.

3. Double Bounded Format

Here the respondent is offered two dicliotomous choice questions. If the 

answer to the first bid is YES, a higher bid is offered in the second ques­

tion, otherwise a lower bid is offered. This is known as a Double Bounded 

question.

4. Iterative Bidding

Here the respondent is offered a sequence of dicliotomous choice questions, 

increasing or decreasing in bid-value offered according as the response to 

the first question is YES or NO respectively. The process stops when the 

response changes or the list of bids is exhausted.

One other variation on any W T P  question is a W T A  question which aims to 

identify^ a respondent’s willingness to accept compensation for removal of a service 

or for foregoing a right to use an amenity. The Arrow panel recommended the 

use of a W T P  question and that this be of dicliotomous choice format.

Clearly the binary responses to such a question require binary data techniques; 

in particular binary regression methods. Also the bids offered must be chosen. A 

distribution of bids across respondents is required; i.e. a binary regression design 

is needed.
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6.5 D esign  o f Single B id D ichotom ous C hoice  

C V  Studies

In a single bid dichotomous choice CV study a bid value, say x , must be chosen 

for a respondent. This is a design variable. An axiomatic assumption is that 

his/her response will be YES if W T P  > x and NO otherwise, where W T P  is 

the respondent’s true willingness to pay. In order to apply the design theory, we 

need to make assumptions about the distribution of W T P  across the population 

of interest. Common assumptions in the CV literature have been that W T P  or 

In W T P  has a logistic or normal distribution. The logistic distribution is given a 

utility function theory justification [See Alberini (1995), Kanninen (1993) Nyquist 

(1992)]. Let G(-) denote the cumulative distribution function of W T P , so that 

<3(a;) =  Pr (W T P  < x). It is convenient to assume that

where h(x) is an increasing function, /j, and a can be interpreted as a location 

and a scale parameter of h(WTP),  and Go(*) is & standardised distribution.

It is natural to focus on modelling the probability of a YES response.

P x (Y E S \B ID  = x) = P r (W T P  > x)

= l - G ( x )

F(aL + /3h(x)) 

F(z)
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where

z — a  +  @h(x) 

a = [i/a, P = (—1/a) 

F(z)  =  1 - G 0{-z) .

Note that the function F(z) satisfies the properties of a cumulative distribution 

function. Also /? should be negative. Thus we have formulated a binary regres­

sion model, with the variable z representing a standardised design variable, like 

that of Chapter 2.

Thus our CV design problem, under the parameter dependent linear transfor­

mation z — a  +  p x t can be transformed to a D-optimal or a c-optimal design 

problem for a weighted linear design problem with weight function

t \ f 2(z )W [ Z )  =  . . ---- -— .
C(z)[l -  F{z)}

Optimal designing here means choosing bids for respondents (possible values of 

W T P ) .  A criterion needs to be chosen. D-optimality is a possibility if both pa­

rameters are of interest, in effect jjl and a. We focus on this. However estimation 

of mean W T P  is usually of primary interest. We should want then to minimise 

the (asymptotic) variance of pi. This is an example of the c-optimal criterion.

The c-optimal criterion aims to minimise the asymptotic value of V(cTA) where 

cTA is a known linear combination of the unknown parameters A =  (ck, fl)r . Un­

der the transformation z — a p f ix ,  this transforms to another c-optimal criterion. 

The geometrical characterisation of a c-optimal design, due to Elfving (1952) (see 

also Chernoff (1979)) is based on identifying the boundary of the convex hull of 

G U {—(7}. The vector c extended if necessary will cut this at a point which is
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a convex combination of points in G and {—£?}. These points are the support 

points and the convex weights are the optimal weights. Algebraic solutions for 

these weights are given in Kitsos, Titterington and Torsney (1988). In the case 

of two parameter models there must exist a design with 1 or 2 support points. 

Ford et al. (1992) derived c-optimal designs for all vectors c and for all choices 

of Z  =  [a, b], identifying, in particular, changes from one to two-point designs. It 

is clear from the convexity of the plots of G that there will be one-point designs 

for many choices of c. Wu (1988) extended this work to percentile estimation as 

noted above. A particular conclusion is that for the choices of F(-) considered, 

the optimal design for estimating the median is a one-point design taking all ob­

servations at the (current provisional estimate) of the median. This transforms 

to z — 0 in the case of the normal and the logistic choices of F(-).

If the criterion is good estimation of the median by minimising the asymptotic 

variance of its estimate the design is to take all observations at the currently 

believed value of the median. If however we wish good estimation of both pa­

rameters of the model the D-optimal criterion could be optimised.

To completely define our problem we need to be clear about the design interval 

for z. Clearly W T P  and hence x is positive. Hence a design interval for x must be 

positive. This in turn could impose restrictions on z, unless the function h(x) of 

section (6.5) is unrestricted. For example h(x) =  ln(x). In this case distributions 

such as the standardised normal or logistic are feasible choices of F(-). This of 

course implies that W T P  is log-normal or log-logistic. However in the early CV 

literature raw W T P  has been assumed to be normal or logistic. This corresponds 

to h(x) = x.

Then z = a + (3x < oi, if /? < 0. So a largest design interval for z  is Z  =  (—oo, b], 

b — a. Possibly this should be further restricted to a finite interval [a, 6] a trans­
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formation of limits c and d on x  (whatever is h(x)t where c is a minimum viable 

charge and d is a maximum politically acceptable price.

However this issue has been ignored in the CV literature on design. These have 

effectively assumed Z  — (—0 0 , oo), in which case the standardised support points 

quoted may not transform back to positive W T P  values. Kanninen (1993) for 

the logistic and Alberini (1995) for the normal report three (classes of) such 

designs namely: a D-optimal design, the design for minimising the asymptotic 

variance of the estimate of the median (c-optimality) and designs (which depend 

on the sample size) for minimising the width of a fiducial interval estimate of 

the median. The c-optimal design is the one point design placing all weight at 

z = 0 and hence at the (currently known) median W T P-value. The others are 

symmetric designs in 2  placing equal weight at values ± 2 *, where z* maximises 

the relevant criterion over such symmetric designs. We have already reported 

such values for the 19-criterion in Chapter 2.

These same authors went on to consider Double Bounded CV studies to which 

we now turn.

6.6 On D esign  of D ouble Bounded CV  Studies

Recall that a Double Bounded CV study presents each respondent with two bids, 

the second being higher or lower than the first according as the response to the 

first bid is Yes or No. Kanninen (1993) and Alberini (1995) report constrained 

optimal designs for these bids under which the first bid is set equal to the currently 

known median i.e 2  — 0 and the second bid is + 2 * or —2 * according as the answer 

to the first bid is Yes or No, 2 * being chosen to optimise the relevant criterion. 

They report the values of 2 * for the criteria for which they reported single bid 

designs, and for the same distribution. A crucial further assumption was that 

this distribution was assumed to be the same at both bids. To distinguish this
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approach from the following we call it the Univariate Approach.

Alberini (1995) relax this assumption. They consider the notion that a respondent

has two WTP-values, WTP\  and WTIN  at the two bids respectively. Hence we 

call this the Bivariate Approach. There would be a justification for this if there 

was a time lag between offering the two bids thereby allowing for a change in 

opinions. Alternatively some argue that the respondent may react to the first 

bid, resulting in a revision of their opinions. The authors assume a bivariate 

normal distribution for (InWTPi, lnWTP2) with a common mean /i, a common 

standard deviation a and a correlation p. Thus exp (pi) is median W T P .  Let x\

and % 2 be the two bids to be offered. Then standardised design variables (w.r.t.
. [(In — jLtl

/J., a) are Zi = --------------- . For fixed or known p then, this is a two-parameter

model. Alberini (1995) determine constrained c-optimal designs under which 

Z\ =  0 for all respondents and for YES responses to this bid

with z* and A* being chosen optimally. Their values depend on p. Note that an 

implication is that some of those who respond YES to the first bid may be offered 

a lower bid and vice versa.

a

z2 =
+z* with probability A*

—£* with probability 1 — A*

while for NO responses

— wi th probability 1 — A* 

+z* with probability A*.

Table 6.1 shows that for low p, the second bids are extremely close to the median. 

If the two W T P  variables are uncorrelated, the design problem reduces to that 

of finding the optimal design for the median of each of the two single-bounded
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Table 6.1: Optimal Variance Minimizing Designs for the Bivariate Probit
Model®. Alberini (1995)

p 0.1 0.2 0.4 0.5 0.7 0.9 0.95 0.9999

z * 0.0054 0.0230 0.1038 0.1812 0. 4956 0.9529 0.9803 0.9816

A* 0.5319 0.5641 0.6310 0.6666 0.7468 0.8564 0.8989 0.9955

"The first bid value is always c =  exp(p ) ; the second bid value are cu p  = exp{z*esa  + p) and 

cDN = exp(—z*esa + p) with probability A* or (1 — A*) depending on the answer to the first 

W T P  question.

models associated with the two payment questions. The single-bounded model 

would be applied in this situation. As p increases to one, the design tends to the 

double-bounded variance-minimizing design : virtually all of those who answered 

“yes” are offered a bid value equal to exp(0.9816<j +  /i), and all of those who 

answered ”no” to the first question are offered a bid value equal to exp(—0.9816(7+

V, ) . 1

6.7 D esigns for Second Bids

The rationale of the approach we now advocate is that a design for the second 

bid of a double bounded CV question should, wherever possible, be based on the 

conditional distribution of W T P  given the response, YES or NO, at the first bid; 

that is the c.d.f. F(-) and p.d.f. /(•) above should take the relevant (standardised) 

conditional forms. We consider both the Univariate and Bivariate approaches.

1 The Optimal design suggested in this section defines four groups of respondents, which are 
described by (”yes” to the first question, second bid lower than the first), (”yes” to the first 
question, higher second bid), ("no” to the first question, lower second bid), and (”no” to the 
first question, higher second bid). Clearly, if the correlation between the first and the second 
W T P  values is high but the sample size is small, the second and the forth of those groups may 
be composed of very few respondents (or none at all), and the emprical frequency of one type of 
response in those two groups may be one. In that case the MLE estimator may not be defined. 
These problems should be absent if the sample size is sufficiently large.
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6.7.1 U nivariate A pproach

Suppose that the first bid is x. Then our standardised design variable is z = 

a  +  j3h(x). Let c = z. Suppose that the answer to the first bid is NO, so that 

W T P  < x. Hence the random variable U =  a  +  (3h{WTP) > c i f  (3 < 0. A 

relevant standardised conditional distribution function is

n v < * \ i / > = )  -  y y g f 11-

~  F(z\z > c) say, 

since F(-) is the marginal c.d.f. of U. The corresponding conditional p.d.f. is

/ ( T > c )  =  i r T ^ I . * > c

Thus the design problem for the second bid transforms to a weighted linear re­

gression design problem with weight function

f 2{z\z > c)
 ̂  ̂ F(z\z  > c)[l — F(z\z > c)

f { z )  z > c (6.1)
[*■(*)- ,F (c ) ] [ l-*■(*)]’

If the response to the first bid is YES the corresponding c.d.f, p.d.f. and weight 

function are

F(z\z < c) =  

f ( z \z  < c) =

n p
F(c)
f ( z )
F(c)

=  j u m b m  ( 6 - 2 )

We note that both equations (6.1) and (6.2) are unbounded at z = c. For the

case of equation (6.1) see plots of y/w(z)  in Figures (6.2) (6.3) (6.4) (6.5) (b) (e)

(h) (k). z — c is not a permissable member of the design interval.
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6.7 .2  B ivariate A pproach

Here we have the concept of potentially different W T P  values, W T P }, W T P 2 at 

the two bids. We consider the following general scenario under which for some 

increasing function /i(-), the pair h(W TPL), h (WTP2) have a joint distribution 

indexed by a common location parameter p., a common scale parameter <j, and 

a third parameter, say p, measuring correlation or possibly some other form of 

dependence. Further we assume that the standardised variables Zi =■ [li{WTPi) — 

lT)/cr , i = 1, 2 have a joint distribution indexed only by p.

In these terms the relevant standardised distributions for the second bid given 

the response YES or NO, at the first bid are those of Z2 conditional on Z\ > c 

or Z\ < c, where c represents a standardised initial bid.

Let X  = Zjj Z  =  Z2. Assume that these have joint c.d.f. Fxz(x,z),  marginal 

c.d.f.’s F (x )7 F ( z )  and respective marginal p.d.f’s f (x ),  f (z).

We want to determine the conditional distribution of Z given X  > c or X  < c. 

The respective c.d.f.s, p.d.f.s and weight functions are:

F(z\z  > c) =  

f ( z \z  > c) =

\F (:■'■) -  Fxz{c,z)\
[1 -  a (c )]  ’

[ / «  -  OFxi(c, z)/dz]
[1 -  ^x(c)]

= __________ l f i z ) -  9Fxz(c, z ) / d z f
-  a ,(c .z )] [  1 -  Fx(c) -  F ( z ) + F xz(c,z)Y (6'3)

-oo < z < oo

and

F(z\z < c) — 

f ( z \z  < c) =

[Fxz (̂ '5-2')]
Fx(c) ’

dFxz(c, z ) /dz  
Fx(c)

. [dFxz{c,z)/dz\2
W{Z) =  Fxz{c; z ) [ l - F xz[c,z)Y  - “ < * < “  (6-4)

A clear added dimension to weight functions at Equations (6.3) and (6.4) are that 

they require calculation of a joint c.d.f. and one of its first partial derivatives. By
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current standards these are not available ’explicitly’ for the standard bearer of 

joint distributions -bivariate normality although there are published programs for 

calculating the joint c.d.f.. This was the distribution used by Alberini (1995) but 

they did not need to calculate these terms. As to the logistic there is no standard 

choice of bivariate extension.Various classes have been proposed, including one 

based on copulas. This is a joint c.d.f. defined as follows:

Fxx{xt z) = H{Fx(x),Fz(z)}>

where H(u,v)  is a joint c.d.f on [0,1]2 with uniform marginals, i.e. H(u,  1) =  it, 

H (1, v) — v. The function H (u, v) is known as a copula. It is a tool for generating 

joint distributions with given marginals; see Hutchinson and Lai (1991) Chapter

10. One example is Plackett’s distribution for which

H  =  H i u  =  [1 +  Y P  - ! ) ( «  +  »)] -  v d i +  ( '0 -  l ) { u  +  v ) } 2 - 4 i l > ( i p - l ) u v  

’ 2('0  — 1 )

The parameter 'ip is a constant global cross ratio since

H(1 — u — v +  PI)
^  = [(u -  H)(v -  H)} ‘

It is a measure of dependence, taking the value 1 when the underlying uniform 

random variables are independent. In the results we report below we adopt this 

particular copula and assume Fx(z) =  Fz(z) =  F(z) — expz/(  1 +  expz)\ i.e. a 

common logistic marginal. This results in the following simplifications of (6.3) 

and (6.4) respectively

w( z )  =  _________ f 2( z ) [ l ~ d H ( u , v ) / d v ] 2_________
{ l [F(z)  -  H( u, v ) } [ l  -  F{c)  -  F( z )  +  H { u , v ) ] ’ { 1

= m ia H M id v Y  
w  LI(u,v)[l ~ H (u:v)Y v

where u =  F(c), v =  F(z).  For the logistic F'(z) = A(^)[l ~  F(z)]. See Figures

(6.1) (b) and (d) for the case (6.3) and Figures (6.1) (f) and (h) for the case (6.4).
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6.7.3 Result for the Bivariate Approach

It is again illuminating to study plots of the set G ; that is of g(z) =  \ /w(z)  (1, z)T 

for the appropriate set of z-values. We consider the Bivariate Approach first. 

Figure (6.1) (a) and (c), depicts a plot of G for case (6.5) of w(z) (see Figure

(6.1) (b) and (d) for the case of (6.6)) with F(z)  the logistic ip = 1.6 c = —5 

and — oo < z < oo. This is typical of the other values of c and ip. The shape is 

similar to that of Figure (2.1) for unconditional binary weight functions. Namely 

it appears to be a closed convex curve in R 2 for the widest choices of Z.  In 

terms of Silvey’s minimal ellipsoid argument we have the same conclusion. The 

minimal central ellipsoid containing G can only touch it twice in which case the 

D-optimal design has two support points. This is indeed the case, the support 

points being -1.544, 1.558. The same conclusion is reasonable for the section of 

G corresponding to the interval a < z < b i.e on the design interval [a, 6] for z. 

Moreover the solution should be the same as that of the conjecture of Chapter 

2 . 2 .

The structure of c-optimal designs should also be similar to those derived in Ford 

et al.(1992) for arbitrary design intervals [a, b\. These are either one point designs 

or two point designs which may comprise both endpoints or include only one of 

them or neither according to rules similar to those for D-optimality. In this case 

the values a**, b** are the support points on (—oo, oo) if, for the vector c defining 

the c-optimal criterion, two points are needed. They are independent of c. It is 

likely that for estimating the median, which should correspond to c =  (1,0) if

z — 0 is a standardised median, the optimal design will be the one point design

2Let a* =  —1.544, b* — 1.55 so that these are the support points on [a, 5] =  (—00, 00). They 
are therefore also the support points on [a, 5], where a < a* and b > b*. Consider a > a* and 
let b* (a ) denote the value of z  which maximises the D-optimal criterion over two-point designs 
with support points a and z subject to z  > a. The points a and b* (a) should be the support 
points 011 the design interval [a, 00) and hence on [a, 5] if b > b*(a). Similarly consider b < b* 
and let a* (b) denote the values of 2 which maximises the D-optimal criterion over two point 
designs with support points 2 and b, subject to z  < b. The points a* (b) and b should be the 
support points on the design interval (—00, &] and hence on [a,b] if a < a*(b). Otherwise the 
support points should be the endpoints a and b. In particular this should be the case if a > a* 
and b < b*
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taking observations at z  =  0.
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6.7 .4  R esu lt for th e  U nivariate A pproach

We turn now to the Univariate Approach which we have studied more extensively 

in respect of D-optimality. Plots of the \ /w(z)  of Equation (6.1), and of z\Jw{z)  

and the corresponding G are shown in Figure (6.2) , Figure (6.3), Figure (6.4), 

and Figure (6.5), with F(z)  the logistic for a range of values of the standardised 

initial bid c. These illustrate various points:

1. First G is no longer bounded, (since w(z) is not bounded : w(z) = oo when 

z = c) at least in the first component of g(z) as z approaches c from above 

since w(z) is infinite at c. Thus we must impose an arbitrary, lower bound 

a on z satisfjdng a > c and ’cu t aw ay’ that part of G corresponding to 

c < z  < a. We focus on D-optimal designs on [a, b] for b = oo.

2. Second the shape of G changes with c.

i. c > 0

For positive c, g(z) —> (oo, oo)T as z —v c from above. In general G 

has the shape of an increasing curve, [see Figures (6.4) and (6.5) (a), 

(d), (g), (h).]

ii. c — 0

For c =  0 it rises to a maximal turning point, and thereafter 

0 2 (2 ) =  zyjw(z)  —> 0 a s £ - ^ c  =  0 from above, [see Figure (6.3) (j).]

iii. c < 0

For negative c, gi(z) —► + 0 0 , <72(2 ) — 0 0  as z -> c from above. For

large enough negative c however G initially begins to exhibit something 

of the ’closed’ convex shapes seen above, before ’tu rn in g ’ to proceed 

to the above limits thereby forming what we call a ’ta i l ’, [see Figures
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(6.4) and (6.5)] Denote by c* the critical value of c for which this first 

happens.

We considered the case where the answer to the first bid is NO. For that reason 

we look at plots of the weight function of Equation (6.1) : For each value of c, 

this weight function is different from those of Chapter 2 which were unimodal. 

But here there can be either no tu rn in g  po in t or two. From Figures (6.2) (6.3) 

(6.4) (6.5) (b), (e), (h), (k) it appears that w(z) is decreasing for large c, but 

below some critical value of c* it possesses two T P’s.

C ritica l value of c*.

Denote by U the value of z at which the maximal turning point occurs. We note 

that there must therefore be a value of a < D such that w(a) = w(z f). The 

critical value c* is the value of c such that F(c) — 1/9 as we now show.

Since f (z )  = D(z)[l — F(z)] for the logistic then

wW  =  {[F -  F(c)}[l -  F] } ’ F  = F ^  > F ^  
F 2[ 1 -  F]
{F -  F(c)]

Hence 1(F) =  ln(tu(z)) =  21n(F) +  ln('l -  F) -  ln(F  -  F(c)) . w ( z )  has T P ’s if 

1(F) has T P ’s. The solution to f ( F )  = 0 are solutions to a quadratic equation in 

F, if they exist. The discriminant of this quadratic function is in turn a quadratic 

function in jF ( c ) ,  which is positive only for 0 < F(c) < 1/9. Calculation of the 

critical c value is summurized in Appendix C.

6.7.5 C onjecture for th e  support points.

CA SE 1 : We conjecture that for c > c*, the D-optimal designs on [a, oo) have, 

for all a, two support points a and b*(a) as defined above. This will be the
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D-optimal design on [a, b\ for b > b*(a). For b < b*(a) we conjecture the 

support points to be a and b.

Support points Supp(p*) Design Interval

{a, ft* (a)} 

{a, 6*0)} 

{a, b}

Z  = [a,b]1 a > c, b =  oo.

Z  = [a, 6], a > c, b>b*(a).

Z  =  [a, 6], a > c, 6 < b*(a).

CASE 2 : For c < c* the situation is more complicated. Sometimes there are 

two support points which may or may not include a and sometimes there 

are three support points including a. For the design interval [a, oo), we 

believe that the solution can be summarised in terms three critical values 

of a, say a(T), a(M), a(U) as follows.

For a < a(L) and a > a(U) there are two support points a and 6*(a). For 

a(L) < a < a(M) there are three support points including a. The other 

two points can be found by maximising the D-optimal criterion subject to a 

being a support and using the explicit formulae for the three weights stated 

Chapter 2, section (2.2.5). For a(M) < a < a(U) there is a fixed two-point 

support consisting of a(U) and 6*{a(?7)}. For c =  —5 values are

(a(L) a(M) a(U)) = (-4.73, -4.60, -1.586).

Range of Value Support points Supp(p*) Design Interval

—c < a < a(L) 

a(L) < a < a(M)  

a(M) < a < a{U) 

a > a(U)

{a, b*(a)} 

{a, z{(a), ^ (a )}  

{ay , b*{a(U))}

{a, 6* (a)}

Z  =  [a, 6], a > c, b — oo

Z  = [a, b], a > c, b = oo

Z  — [a, b), a > c, b =  oo

Z  = [a, 6], a > c, b — oo
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6.7 .6  G eom etrical exp lanation  o f th e  op tim al design

A rationale for the above solution can be found by considering Silvey’s minimal 

ellipsoid argument.

• First we study G for all z > c. We denote this G b}̂  Gc. Each point in Gc is 

defined bjr a unique value of 2 . One can describe Gc as a locus which starts 

at the origin and follows an almost closed convex smoothly changing path, 

which, for large negative c will almost come back to the origin but at some 

point it turns away from the origin developing a ’tail’ in convergence to 

(oo, —oo) as z — » c from above. One exception to this is the case c =  —oo 

when GOoo will come back to the origin as z — > c. In fact this is the G of 

Figure (6.2) a,d,g,j for ordinary logistic regression. For large negative finite 

c the ’almost closed convex ’ part of Gc must be closely approximated by 

this logistic regression case.

• Now consider the case Z  — [a, oo), G =  {g(z) £ Gc : z > a}. For sufficiently 

large values of a, the tail of G extends well out towards (oo, — oo). So that 

g(a) is to the right of and below g(z^). Intuitively the minimal ellipsoid 

touches G at g(a) and at one other point above and to the left of g(z^)t 

that is at a point corresponding to a value of z  say b*(a), above zL

Now think of a increasing so that we are ’cutting away’ more of G. It seems 

plausible that the above solution remains valid at least until the value of a 

such that w(a) = Thereafter from some value a(L) onwards there is

clearly the potential in the case b = oo for the minimal ellipsoid to touch 

at g(a) and at two points corresponding to values of z on either side of zL

A justification for the fixed two-point design over a(M) < a < a{U) can be 

drawn from the approximation, noted above, between G _^ and the almost 

closed convex part of Gc for large negative c. The optimal design for this 

part of Gc and for G_oo must be approximately the same. This would
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mean that the D-optimal design for the ’almost closed convex’ part of Gc 

has two non-extreme support points say a*,b* so that the minimal central 

ellipsoid containing this part of Gc, contains strictly within it that section 

of this ’almost closed convex’ part of Gc corresponding to z < a*. It will 

also contain part of the tail of Gc but only part of it since clearly the tail 

must cross any bounded set. The value of z at which this crossing occurs 

identifies the value of a(M), while a(U) = a,*.

This value a{M) like the value a(L) is a value of a at which there is a change 

from two support points to three or vice versa. Strictly speaking for these 

two values there are two active support points (with equal weight therefore) 

but in addition there is a ’sleeping’ support point with zero weight. In the 

case of a — a(L) the active support points are a(L) and 6*{a(A)} and 

the sleeping point is a value say zu above these. In the case of a(M) the 

support points are a(U) and b*{a(U)} while a(M) is the sleeping support 

point. As a increases from a(L) to a{M) the weight at a decreases from 1/2 

to 0. A set of equations for identifying these values can be derived from 

the fact that if there is a three point design on [a, oo) with a as a support 

point then the variance function kj(^)(1, ^)(M*)-1(1, z ) t  (where M* is the 

optimal design matrix) must have turning points at the two higher support 

points, say z i, and z2. The triplet (a(L), b*{a(L)}, zu) must be the values of 

(a, Z\ , z2) which satisfy the two zero derivative equations plus the equation 

setting the (explicit formula for the) weight at z 2 to zero. The triplet 

(a(M):ci(U),b*{a(U)}) instead satisfies the zero weight at a(M).

These conjectures for c < c* cover the design interval Z  =  [a, oo) for all 

values of a. For the case of a finite Z  = [a, b] we have limited comments. 

If b is greater than the upper support point of the design on [a, oo) then 

that design must also be optimal for Z  =  [a, b]. Otherwise the design must 

differ.
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It is fairly likely that b will be a support point (e.g. when a > a*(U)) but 

this may not always be so. In general there will be designs with 2 or 3 

support points which may include both a and b as support points or only 

one of them.

R em ark 6.1. Plots of the function H (z ) for various values of c are given in 

Figure (6.7). These depict different shapes according to the value of c.

• c > c* : We have shapes similar to those in chapter 2, section (2.5.1). 

H(z) is convex over (c, oo) and convex increasing if c > 0. See plots 

in Figures (6.7) (d), (e), (f), (g), (h), (i), (j), (k), (I). An upward 

sloping line with a negative intercept can cross H(z) at most twice in 

(c, oo).

• c < c* : H(z) has a different shape now; a reflection of the weight 

function, w(z). H (z ) is convex up to the some point concave increasing 

and again convex increasing.

R em ark 6.2. So in the case c > c* the equivalence theorem is satisfied by our 

conjectured optimal designs for all possible design interval [a,b] if the func­

tion h(z) is increasing over z < zmax and over z > zmax. This seems to 

be the case from, the plots of h(z) in Figure (6.6). In fact h(z) seems to be 

increasing for all c. So the best two-point D-optimal design on [a,b\, a >  c 

is possibly given by the conjecture if c < c*.
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(e) (f)
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Figure 6.1: Plots of Gand w (-)for Bivariate Approach : Blackett’s Distribution
with Logistic Marginals for various V and u,0 ”.
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(a) (b) (c)

(d)

a(L)=-4.73. g1 =0.1922. g2=-0.9091 
a(M)=-4.60. g1 =0.1734. g2=-0.79B0 
a(U)=-1.586. al=0.0.3837. g2=-0.6070

Z

(g) (b) 0)

L
4

(j) 00 (i)

Figure 6.2: Plots of G, gi =  yjw(z) and g2 =  zy /w (z ) for Univariate Approach
Logistic Function for various “c” values; 2 >  c, c =  —7, —6, —5, —4.
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(a) (b) (c)

(d) (e) ( f )

(g)

8 8

(b) 0)

(j) (k) (1)

Figure 6.3: Plots of G, g\ =  >/w(z) and g2 =  zyjw(z)  for Univariate Approach
Logistic Function for various “c" values; z > c c =  —3, —2, —1,0.
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Figure 6.4: Plots of G, <?i =  \/w (z)  and </2 =  zy/w(z)  for Univariate Approach
Logistic Function for various “c” values; z  >  c, c =  0.05,0.01,0.1,1.
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c . i< I 1 -2 . 2 < Z -  1
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 a * fr

(k)
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- .....

0 ---- — — — —

(1)

Figure 6.5: Plots of G, gi — \Jvo\z) and g -2 =  Z y / w ( z )  for Univariate Approach
Logistic Function for various “c” values; 2  >  c, c =  2 ,3 ,5 ,7 .
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(<*) (e)
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C=0. 0  < /  « 4
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(g)

s § i

(j) (k) (1)

Figure 6.6: Plots of h(z) for Univariate Approach Logistic Binary Weight Func­
tion, c =  -7 ,  -5 ,  -3 , -2 ,  -1 ,0 ,0 .01,0.05,0.1,1,3,5.
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§I

(d) (e) (f)
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(g)
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(b) (i)

(j) (k) (1)

Figure 6.7: Plots of i f  (2 ) for Univariate Approach Logistic Binary Weight Func­
tion, c -  -7 , “ 5, -3 ,  -2 , -1 ,0 ,0 .01,0.05,0.1,1,3,5.



C hapter 7

C onclusion

7.1 D iscussion  of results

We have derived locally _D-optimal designs for various binary regression prob­

lems. The results discussed so far show that for the binary regression model, 

locally D-optimal designs can be sensible designs if provisional information on 

the true values of the parameters is available from pilot studies.

Our exploration of D-optimality made extensive use of weighted linear regression, 

and this led us to exploiting and applying well established results on optimal de­

signs in linear models.

First of all, we considered D-optimal designs for binary response models with one 

design variable, and we transformed the design problem to one for a weighted 

linear regression model, the weight function being :

(  ̂ _  f 2(z )
W{z) F ( * ) [ l -*-(*)]

where f (z )  =  F'(z) is the density of D(z), and the design interval being Z  =

[a, b]. We also considered various other (non-binary) weight functions.

232
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We established that for many weight functions the optimal design is a two point 

design. The support points for the 2  values are :

Supp(£*) =  {a*, b*} a< a* ,b> b*

Supp{C)  =  {max {a, a*(b)}>b} a <a*,b < b*

Supp(lf 1) =  {a,min{b , 6*(a)}}  a >  a*,b >  b*

Supp(£;*) = {a, b} a > a*,5 < b*

where a*, 6 *, a* (b), b*(a) maximise the determinant over relevant intervals.

These results follow if

—w1 (z )
(i) the function H(z) = -r—7 - ^ 7  is first concave increasing then convex in-

[w{z)\2
creasing,

(ii) the function h(z) = z +  ^w (z \  increasiiig (this also guarantees that
wl(z)

G(ZW) is closed convex). In some cases the ratio w (z)/w ,(z) is also in­

creasing. (Note: G(Z) shows that induced design space and Z w the widest 

possible design space.

Secondly, we studied the more general situation of multiple design variables. 

Multiparameter design problems also tranformed to weighted regression design 

problems in design variables z^, ■ • ■ ,Z[ with rectangular design spaces. Such that 

z i £ [<b b] and — 1 < Zj < 1, j  = 2, • • ■ , I. For many of our weight functions 

optimal designs consist of taking observations at two values of z 1 , the two val­

ues satisfying the above conjecture. One such design consists of dividing the 

total weight at each of these values equally across all combinations of Zj =  ± 1 , 

j  — 2 ,' • • , I).
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We also considered some bounded design spaces. We found optimal designs for 2 

design variables z1 z2 as above when their design space is a polygon. Some of the 

above results extended to this. In particular for many weight functions at most 

two observations can be taken along any edge. We note that Sitter and Fainaru 

(1997) considered the case z2 =  z\.

Possible problems for future consideration are :

• to extend the work of chapter 4 on polygonal design spaces to higher di­

mensions,

• to establish necessary and sufficient conditions on w(z) for guaranteeing the 

above conjecture.

Finally, results from optimal design theory have been used uncritically in the 

CV literature in respect of various design criteria. We made improvements. We 

also reported new results which focus on optimal designs for the second bid of a 

double bounded study given the response at the first bid. These will be useful 

when there is a time gap between offering the two bids.

We reviewed with some minor criticisms the use of optimal designs in the case of 

CV studies with dichotomous choice questions and have offered new designs for 

the 2nd question of a double bounded dichotomous choice question conditional 

on the response to the first bid.

There remains much to do including deriving designs, in respect of ’D-optimal’ 

and ’median’ oriented criteria, of the following kinds :

• designs for both stages of a double bounded CV study-univariate and bi- 

variate cases.This will involve theory of designs for multivariate responses.

• Designs for the bivariate approach when the dependence parameter is treated 

as unknown. This is a consideration for both the univariate and bivariate 

approach.
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• Designs for the bivariate approach to double bounded CV studies when 

different location and scale parameters are assumed at the two bids. This 

would seem a natural extension of the common location/scale case although 

the choice of criterion is possibly unclear. Good estimation of the parame­

ters of the second bid may be of greater importance.

• Designs when finite limits are imposed on bids for both the double bounded 

and single bounded cases.

• Designs for optimal bids when other explanatory variables are included in 

a model for W TP.
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A ppendix  A  

M onotonocity  o f 53 (r)

In this appendix, we prove that 53 (r) is an increasing function of r.

(r — 2 ) +  y/A
6(r -  1)

where A  =  (r — 2 ) 2 +  3(r — 1).
dq3(r)

To prove that <73 (r) is increasing, it suffices to prove that —- —  > 0. Now let’s 

consider the following expression of the derivative of (73(7’) with respect to r:

(6 (r — 1)) — 6  (r — 2) 4- V A
dqsjr)

dr

1 +  [2(r -  2) +  3]

36(r — l ) 2
6(r -  1) +  [2(r -  2) +  3)] [6(r -  1)] 6(r -  2) 6  \ /A

36(r -  l ) 2
1

72(r -  1)2V^4 36(r -  l ) 2 36(r -  l ) 2

72(r -  1 )2V A  

j l2 \ /Z (r  -  1) +  12(r -  l)(r  -  2) +  18(r -  1) -  12(r -  2 ) V J  

-1 2  [()' — 2)2 +  3(r — 1)] }

[r -  !)(?• -  2) +  18(r -  1) -  12(r -  2)2
72(r -  1 )2V A  

—36(r — 1) j

72(r { 12V I +  ^  ~  !) ^  -  2) - 31 -  12(r -  2) 1
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= 72(r -1)»VA i 12VI + 6(r ~ 1)(2r ~ 7) ~ 12(r ~ 2)1

=  - - - - - - - - - —   ( 12y[A  +  12r2 -  54r +  42 -  12r2 +  48r -  48)
7 2 ( r  -  1  ) 2\ f A  I  J

- ---------  --=  I 2 \ / I - ( r  +  l )
12(r -  1)2\ /Z  | >

V ' L LHS RHS

dqs (r)
From the above expression of —-— , all we need to do is to prove that L H S  >

or
R H S  since --------------- -=. > 0. Now, because L H S  > 0 and R H S  > 0, proving

36(r — l ) 2v h
that (LH S)2 > (R H S)2 is equivalent to proving that (LHS) > (RHS). Let 

f(r )  =  L H S 2 — R H S 2. If we expand the expression of / ( r ) ,  then we get the 

following:

f(r )  =  L H S 2 - R H S 2

— 2y / (r -  2)2 +  3(r -  1 )  — (r +  l ) 2

=  4 [(r -  2)2 +  3(r -  1 ) ]  -  (r +  I)2 

=  4 [r2 — Ar H- 4 +  3?’ — 3] — [r2 +  2r +  l]

=  4?'2 — 167’ +  16 +  12r — 12 — r2 — 2r — 1

-  3r2 - 6 r  +  3

=  3(r2 - 2 r  +  l)

=  3 ( 7 - l ) 2

The above expression of f(r )  clearly shows that f(r )  > 0 which is equivalent to 

L H S 2 > R H S 2.



A ppendix  B  

Study of function h y ( z )

B .l  M onotonocity  of q ( r ) .

In this appendix, we prove q(r) is an increasing function with respect to r.

(ft -  l)(r(z) -  1) -  2 +  \ / A  
q( 1 ’’ 2h2(k- 2){r{z) -  1)

where A = (k — l )2(r(.z) — l) 2 +  4r(^).
dq(r)

To prove that q(r) is increasing, it suffices to prove that —- — • > 0. Now let’s
or

consider the following expression of the derivative of q(r) with respect to r: 

dq(r) 1 f (ft -  1) (r -  1) -  [(ft -  1) (r -  1) -  2]
dr 2k2(k- 2> ( (r _  l )2

1 (  |  [(ft ~  I)2 (r -  I)2 +  4r] 2 [(ft -  l ) 2 2 (r -  1) +  4] (r -  1)
2 ft2 (fc- 2> |  (r -  l ) 2

i  r %/A i
2 ft2 (*-2) 1 (r -  I)2 J 

1 (  2 2 [(r -  1) (ft -  l )2 +  2] - /A
2 ft2 (*-2> \  (r -  l ) 2 2 (r -  1) V I  (r -  1 ):

1 f  2 +  (r -  1) (ft -  l ) 2 +  2 _  s/A }
2 ft2 (‘ - 2> |  (r -  l )2 (r -  1) V I  (r -  1)'

1 f 2 (ft -  l )2 2 V I
’ + -— ;=V- +

2ft2<*-2> \  (r -  l ) 2 V I  (r -  1) V I  (r -  1);
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2k2(k~2)(r(z) -  1 )2V A

|2vC4 +  (k — l ) 2 (r  — I)2 +  2 (r — 1) — |

2/c2<t“2)(r(z) -  1 )2V A

{ 2 V A  +  ( k -  I)2 (r -  l ) 2 +  2 (r -  1) -  (k -  l ) 2 (r  -  l ) 2 -  4r}  

2k2(k~2)(r (z)  -  1 )2V A  { 2 V J ~  2r ~  2 )

V a  — ('r +  1 )
k2(k~2)(r(z) -  l )2V J  ,v ' { L H S  RHS

dqiv)
From the above expression of —-— , all we need to do is to prove that L H S  >

1  dr
R H S  since — -—  ---------------- — > 0. Now. because L H S  > 0 and R H S  > 0.

k2(k- 2)(r(z) -  i y V A
proving that ( LHS)2 > ( RHS) 2 is equivalent to proving that (LHS)  > (RHS).  

Let f (r)  = ( LHS)2 — ( RHS) 2. If we expand the expression of f ( r ) : then we get 

the following:

/( r )  =  L H S 2 - R H S 2

^ j 2 - { ( r  +  l)}2

-  A  — (r +  l ) 2 

=  A - [ ( r - l )  +  2]2 

=  A — (r — l )2 -  4?- +  4 — 4 

=  (k — 1)2(?" — l) 2 +  4r — (r — l ) 2 — 4 r 

= (r(z) — l ) 2 {(& — l) 2 — 1}

The above expression of f (r)  clearly shows that f (r)  > 0 which is equivalent to 

( LHS)2 > ( RHS) 2.

□
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C onditional C ontingent 

V aluation.

C .l Critical value of c.

We have shown that the Double Bounded Dichotomus choice Conditional Uni­

variate Model Weight function to be

=  t l _ F W n y (i ) - F ( c ) ]  * > c -

In the case of Logistic Distribution f (z)  = F(z)  [1 — F(z)].  Because of that we 

can rewrite wc(z) as follows:

, . _  {F(z)  [1 -  F(z)]}2
[1 -  F(z)] [F(z) -  F(c)\ Z > € '

To explore the critical value of c, we compute the derivative of the wc(z) with 

respect to z 1. However, before taking the derivative of the wc(z) we can make 

some simplifications on the formulae of wc(z):

_  F 2(z) [1 -  F(z)} 
c ( )  [F(z) -F(c) ]   ̂ >

1 As we can see plots of y /w c(z) at Figures (6.2) (6.3) (6.4) (6.5) (b), (e), (lc), (h), for negative 
value of c (c < — 2) w c(z) changes from being decreasing to having two T P ’s
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Equation C.l can be solved as follows:

1 {F(z) -  F(c)]
■wc(z)

Hence

In
_wc(z)

= hi [F(z) -  F(c)] -  2 InF(z)  -  In [1 -  F(z)],

ln{tuc(z)} =  In [F(^) — F(c)] — 2 \nF(z )  — In [1 — F(z)].

So

din  [wc(z)] 
dz

n * ) 2 f ( z )  +  f ( z )
[F (z )  -  F (c)]  F(z)  1 -  F(z)

f{z) {  [ f w  -  f ( C)] “  W )+1 -  m }
F(z)  [1 -  F(.*)] -  2 [F(z) -  F(c)] [1 -  F(*)] +  F(z)  [F(z) -  F(c)]

=  / w F(z)  [1 -  F(z)\  [F(z) -  F(c)]
f [F(z) -  F 2(z)]  +  [F(z) -  F(c)] [F(z) -  2(1 -  F(»))] ]  

nZ>\  F(z) [1 -  F(*)] [F(*) -  F(c)] /

[F(z) -  F 2(z)] + [F(z) -  F(c)] [3F(z) -  2] |
F(z) [1 -  F(*)] [F(z) -  F(c)] j

F(z) -  F2(z) +  3F{z)2 -  [2 +  3F(z)] F(z)  +  2F(c) 
F{z)  [1 -  F(z)} [F(z) -  F(c)]

<300

= / W

=  f ( z ) S

din [wc(z)]

2F 2 { z )  -  [1 +  3F(c)] F(z)  +  2F{c) 
F(z)  [1 -  F(z)\ [F(z) -  F(c)\

> .

Therefore =  OifQ(z) =  0 where Q(z) =  2F 2(z)—[1 +  3F(c)l F(z)+
oz

2F{c) if Q(z)  has roo ts.

Roots of Q(z)  can be written as follows:

F{Z) 1,2
(1 +  3F(c)) ±  , / ( !  +  3F(c))2 -  16F(c)

(1 +  3F(c)) ±

(1 +  3F(c)) ±  V ( l - F ( C) ) ( l -9 F ( c ) )



APPENDIX

There are three possibilities regarding the discriminant:

[1 -  F(c)] [(1 -  9F(c)] =

=  0 i f  F(c) — 1 orF(c) — 

> 0  i f  0 < F(c] < - 

< 0  i f  F(c) > |

Thus Q(z) has roots iff 0 < F(c) < -  i.e. for c < F  1(l/9). For 

c =  ln(l/8) =  -2.07944.

246

the logistic


