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A bstract

The idea of this thesis is to take some questions about polynomials over finite fields and ‘answer’ 
them using probability theory; that is, we give the average behaviour of certain properties of 
polynomials. We tend to deal with multivariate polynomials, so questions about factorisation 
are not considered. Questions which are considered are ones concerning images and pre-images 
under a random polynomial mapping, and more generic questions which lead to results on the 
distributions of certain character sums over finite fields.

The methods used are based on those used by Odoni (details in Chapter 2). The probability 
space from which our random polynomial is chosen is essentially the set of all polynomials up to 
a given degree d, and we define a random variable associated with this space (for example, the 
number of zeros of a random polynomial). Once we have enough information about the random 
variable in question, we obtain asymptotic results about the distribution of this variable by 
letting both d and the size of the field, g, tend to infinty.

The results in this work tend to rely on comparisons between random polynomials (of degree 
up to d) and random mappings. We therefore do a certain amount of work with random 
mappings, exploiting nice combinatorial properties which they exhibit, and also using some 
non-trivial results from the classical theory of random maps. The resulting theorems for random 
polynomials, when interpreted number-theoretically, are often what one would expect, but every 
once in a while they cough up a surprise.



Introduction

Finite Fields

The theory of finite fields is a meeting point for several branches of mathematical science, 
including number theory, combinatorics, computing science, coding theory and cryptography. 
With their roots firmly embedded in classical number theory, finite fields traditionally been 
thought of as playing a small part in modern pine mathematics. However, since the dawn of the 
computer age in the nineteen-seventies, they have enjoyed a massive resurgence in popularity 
and are now the focus of both pure and applied mathematicians, with applications throughout 
the computer and telecommunications industries.

The study of finite fields can be traced to two brilliant mathematicians - Carl Friedrich 
Gauss (1777-1855), whose work on the arithmetic of congruences laid down the foundations; 
and Evariste Galois (1811-1832) who formulated the abstract notions required to construct these 
objects. In fact, many authors refer to finite fields as ‘Galois Fields’, hence attributing their 
invention to the Frenchman rather than the German.

Galois was interested in the problem of finding roots of polynomials over arbitrary fields. By 
extending the field in question and studying symmetric properties which these roots displayed, 
he was able to invent the theory of field extensions and their automorphisms, known today as 
Galois Theory. A spin-off from this work was the invention of group theory, as his discoveries 
later led mathematicians to formulate the abstract concept of a group.

Since the construction of finite fields arises from polynomials, the study of these two math
ematical objects cannot be separated. Number theorists have, since the time of Galois, been 
examining properties of polynomials and related objects in order to gain insight into the struc
ture of finite fields and their related objects. One important such example is Weil’s study of 
function fields in one variable, algebraic objects closely related to algebraic curves over finite 
fields (see [41]). In 1973, Deligne proved the celebrated Weil conjectures on function fields, 
including the Riemann Hypothesis (see [22]). The latter is an analogue of the classical Riemann 
Hypothesis, which still remains unproved to this day. Deligne’s results are among the most 
important in the classical theory of finite fields, having many applications, including some to 
coding theory (see [19]).
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Probability Theory

For hundreds of years, probability has fascinated both mathematicians and bad gamblers. 
Throughout the seventeen and eighteen-hundreds, the basic theory was developed by the likes 
of Bernoulli, Gauss, Poisson, Chebyshev and many others, while the twentieth century saw an 
introduction of a more rigorous analytical, measure-theoretic approach. The use of probability 
theory is now widespread in discrete mathematics. For example, in number theory, primality 
testing is probabilistic while, in game theory, one often wants to know the ‘chances of winning’ 
a particular game. In combinatorics, there is a well-documented theory of random graphs, in
vented by Erdos et al. (see [6]) and probability theory is used more and more in the theory of 
finite groups, too.

Like number theory, probability theory is a beautiful area of classical mathematics. It can 
also turn out to be a useful tool when not enough is known about a mathematical system, giv
ing a rigorous argument to a heuristic idea and shedding light on the general behaviour of the 
system. The methods involved are usually a combination of clever counting arguments and clas
sical convergence theorems (essentially to do with measure theory). The arguments, therefore, 
are often a mixture of discrete and continuous mathematics, which giving them a certain charm.

This Thesis

In this thesis, we apply probabilistic methods to questions about polynomials over finite fields. 
The main reasons for this is that some interesting questions can be answered and, remarkably, 
few authors have thought of using probabilistic methods in this area.

The idea of applying probability theory to polynomials goes back to Offord and Littlewood 
[31], who did this over the real numbers. Over finite fields, we have authors such as Birch 
and Swinnerton-Dyer [5], Carlitz [9], Cohen [12], Odoni[36] and Knopfmacher [24] who have 
all, in some way, used probability in finite fields. However, there appears to be scope for the 
development of a more coherent and comprehensive theory of random polynomials over finite 
fields, akin to the existing theory of random graphs. Hopefully, this theory would eventually 
have applications in modern areas of research, too, for example in information technology.

In this work, we make a start towards this goal by gathering together and expanding on ex
isting results in the literature. We begin by answering questions about image sizes of polynomial 
maps and stating some asymptotic results. Ultimately, we prove some results on the average 
behaviour of character sums which involve random polynomials, giving examples of different 
types of sum which can arise.

Chapter 1 is a general introduction to the results which we will need from classical prob
ability theory. This is followed in Chapter 2 by a discussion of some of the basic concepts
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associated with random polynomials over a finite field. In Chapter 3, we then go on to give 
asymptotic distributions for the sizes of direct and inverse images of sets under random polyno
mial maps. Finally, Chapters 4&5 are concerned with constructing and finding the behaviour of 
a general complex-valued random variable which mimics character sums over a finite field. We 
conclude the thesis with a short sixth chapter discussing several directions in which the theory 
could go, showing that finite fields (and related mathematical structures) are objects which are 
particularly amenable to probabilistic techniques.



Chapter 1

Background: Probability T heory

1.1 Probability Spaces and Measures

In this chapter we gather together the various pieces of probability theory which will be used as 
‘tools1 in the rest of the thesis. Some of this theory is elementary and some not so elementary. 
We first introduce formally the notion of a probability space.

D ef 1 .1 .1 . Let S  be a set. A a-algebra of sets in S is a collection A  of subsets of S  satisfying 
the following properties:

1 . Q e A

2. T  E A  =» S \T  E A

3. If {Ti : i E N} is a countable collection of elements of A , then

[ J  Ti E A  and p |  Ti E A
i€  N ieN

That is, A  contains the empty set, and is closed under the actions of taking complements 
and talcing countable unions and intersections.

D ef 1.1.2. A probability measure P  on a cr-algebra A is a function P : A  [0,1] such that

1 . P{S) =  1

2. If {Ti : i E N} is a collection of disjoint sets in A , then

\i<EN  /  iE N

D ef 1.1.3. A probability space is a triple (£, A, P), where S is a set, A  is a cr-field of sets in 5, 
and P  is a probability measure on A -
S  is called the sample space, while the sets in A  are called events.

1
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Examples

1. If S  is a finite set, the natural way of making S  into a probability space is to take A  to 
be the power set of S  and to define

P(T) =  VT 6 A

2. Let S  be a compact subset of . Then the natural way of making S  into a probability 
space is to take A  to be the cr-field of Borel subsets of S  and to define P  to be the Lebesgue 
measure on S , normalised so that P{S) — 1.

3. Let K  be a finite extension of the p-adic numbers Qp with ring of integers O. If 7r is a 
local parameter for O and the residue field ^  has degree u over Fp then Haar measure is 
defined by:

Waar(o +  vrnO) =  - ^  Va 6 O

This is the p-adic analogue of Lebesgue measure in EL Thus, to make O into a probability 
space we define A  to be the smallest u-field containing all the cosets a~\~irnQ (a G O, n G 

Z>0) and put P  = flhaar-

A probability space is in reality a mathematical model for the process of randomisation. Given 
a probability space, we will talk about “choosing an element at random” from the sample space. 
The probability measure then gives us an idea of the likelihood that the element chosen lies in 
a particular subset of the sample space.

Since we will be dealing with finite fields, most of our probability spaces will be finite. Thus, 
Example 1 is the one which will occur throughout this work, although example 2 will also crop 
u p .

N o ta tio n  Let (S', A, P) be a probability space and let T  G A- For a random element x of S  
we shall often write Prob(x G T) to mean P (T ), as the former is more intuitive.

1.2 Random Variables and Independence

D ef 1 .2 .1 . Let (S, A, P) be a probability space. A real-valued random variable is a function 
X  : A  —¥ M such that, for each t £ l  the set St = {y G S  : X(y) < t}  is in A.

This means that each St can be assigned a probability P{St), which we shall write as 
Prob(X < t). The function Fx  : M —y [0,1] given by Fx(t) — Prob(X < t ) is called the 
probability distribution function of X .

When dealing with two or more random variables on the same sample space, it is often 
necessary to know whether or not there is any relation between them.
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D ef 1.2.2. Let A ,B  E A  be two events of the sample space S. We say that A  and B  are 
independent if

P {A r\B ) = P{A)P{B)

Now let X  and Y  be two random variables on S  and define A s =  {a E S  : X(a) < s} and 
Bt =  { 6  E S  : Y(b) < t}  (s ,t E M). We say that X  and Y  are independent random variables 
if A s and Bt are independent events for all (a, t) 6 l 2.
We say {X{ : i E X} is a collection of independent random variables if the X{ are pair-wise 
independent.

Often we shall refer of the pair X  =  (X, Y) as a random variable in M2. By the same token, 
we define a complex-valued random variable Z  by

Y =  X  +  iY

where (X, Y) is a random variable in M2.

The j o in t  d is tr ib u tio n  fu n c tio n  of a random variable X E M2 is defined to be

Ex,Y(s,t) — Prob(X < s and Y  < t)

Thus, if X  and Y are independent then Fx ,y {s , t) = Fx(s)Fy(t).

The notion of a random variable in M2 generalises suitably to , but in this work we shall 
only be concerned with real and complex variables.

1.3 Expectation

The expectation or mean of a random variable X is defined in its most general form via the 
Lebesgue-Stieltjes integral

E ( X ) = [  td F x (t)
v

If the distribution function Fx  is piecewise differentiable with derivative f x  we say that X is 
a continuous random variable with density (function) fx -  In this case, the expectation is then 
given by

E ( X ) = f  t f x (t)dt

If, on the other hand, X takes values in a countable subset N  of M (or C) then we say that X 
is a discrete random variable and the expectation is then given by

E(X) - ] T t P r 0 & (X =t) 
teN
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In this case we say that the density function is fx( t )  — Prob(X — t) (Vi € N ).
Note that the integrals/sums above need not converge, in which case the expectation is said to 
be infinite. In our work, however, it will always be finite.

The definition of expectation extends naturally to two variables:

E((X, Y )) =  (E(X), E(Y)) and E(X +  iY) =  E(X) +  iE (Y )

It is often necessary to know the expectation of a function of a random variable, but we first 
need to know when this is well-defined. The function g : M —*■ E is called A-measurable if the 
composition g ° X  is itself a random variable. Similarly, h : R2 —> M is ^-measurable if ho(X,  Y) 
is a random variable.
In these cases, we have

n g ( X ) )  =  [  g( t )  dFx (t)

and E(h(X,Y))  = [  [  fr(ti,t2) dF x,Y(ti,t2)
J JteM2

1.4 M oments, Variance and Covariance

D ef 1.4.1. Let X  be a real-valued random variable on a probability space (5, A , P). Then, for 
each k E N, X k is also a real-valued random variable. The kth moment of X  is defined by

m k -  E{Xk)

The moment sequence of a real-valued random variable is very useful in that knowl
edge of it can yield information about the distribution function. The simplest example of this 
is Chebyshev’s inequality (below) while the most important example is the method of moments, 
explained in § 1.7.

The variance of a real-valued random variable is defined by

Var{X) — E ((X  — E{X))2)

This is always positive and simplifies to

V ar(X ) =  m2 — mf

The standard deviation of X , usually denoted ax , is defined to be the positive square root of 
V(X) and is a measurement of the ‘spread’ of values of X  around the mean. M(X) and Var(X)  
will often be denoted f ix and o \  in our work.
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Theorem 1.4.2. (Chebyshev’s inequality) Let X  be a real-valued random variable with mean fi 
and variance a 2, Then} for t  > 0

Prob ( \X -  /i| >  ta ) < i -  

Proof See [16], pl51 . □

Next, consider a random-variable (X, Y) in M2. We define the covariance of (X, Y) by

CW(X,Y) =  E ((X  -E (X ))(Y  -E (Y )))

This simplifies to
Cov{X,Y) = E(XY) -  E(X)E(Y) -  Cov(Y,X)

X  and Y  are called uncorrelated if Cov{X, Y) =  0. It is easily shown that independent variables 
are uncorrelated but that the converse is false.
The correlation coefficient of (X, Y) is defined by

Cov{X,Y)
P X ,Y  =  ------------------

and it lies in the range [—1, lj. Noting that

Var{X)  =  Cov(X, X)  and Var{Y) =  Cov{Y, Y) 

we define the covariance matrix of (X, Y) by

Cov(X,X)  Cov(X,Y)
Cov{X,Y)  Cov(Y, Y)

This matrix, which is positive semi-definite, contains all the ‘second order’ moment information 
about (X, Y).
The idea of covariance extends naturally to n variables (see [15]).

D ef 1.4.3. Let Z  = X  +  iY  be a complex-valued random variable and let fc, I G N. Then the 
(k , I)th moment of Z  can be defined by

or by
Mk<l = K ( z kz )

However, since X — | (Z + Z) and Y =  \ {Z  — Z), knowing all the moments mk,i is equivalent 
to knowing all the moments (k,l G N). In our work, the M ^i will prove to be easier to
calculate.



CHAPTER 1. BACKGROUND: PROBABILITY THEORY 6

1.5 Characteristic Functions

D ef 1.5.1. The characteristic function of a real-valued random variable X  is defined by

Cx (<)=E(eiiX) =  f  ei t u dFx (u)
JueR

Due to their relation to complex integration theory and, in particular, to Fourier transforms, 
characteristic functions exhibit some very nice properties (see [17], § 5.7) These make them a 
powerful tool in determining the convergence of random variables to certain distributions.

If Z  = X  +  iY  is a complex-valued random variable, then its characteristic function is de
fined via

Cz {t) -  E (e*^) =  f  [  e®t,u dFXiY(Ul, u2)
J Ju£E2

where t  =  ( ti ,£2 ) and t.-Z =  t iX  +  t^Y

The following result is useful when manipulating characteristic functions:

Proposition 1.5.2. I f  S  = X i  +  . . .  +  X*. is a sum of independent random variables, then

k
< M t ) = n c * , ( t )  M

j —1

Conversely, if(*) holds, then S  is identical in distribution to the sum of the independent variables 
X i , . . .  ,X fc.

Proof. See [17], pl64 □

1.6 Some Probability Distributions

What follows is a description of each of the different types of random variable which occur in 
this thesis.

Bernoulli p-trials
Let 0 < p < 1. A Bernoulli p-trial is an experiment which has two results: success and failure. 
This is modelled by the discrete random variable X which takes values in {0,1} and satisfies

Prob(X  =  1) =  jp and Prob(X  =  0) =  1 -  p

This variable has mean p and variance p(l — p).
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Binom ial D is trib u tio n
A discrete random variable X  is said to have the binomial distribution with parameters iV, p if

Prob{X =  fc) =  ~P)N~k

This variable occurs naturally as the sum of N  independent Bernoulli p~ trials. For example,

X =  Yi +  . . .  +  Yjv

where the Y are pairwise independent Bernoulli p-variables.
X  has mean Np  and variance Np( 1 — p).

Poisson Variables
A discrete random variable X  which takes values on the non-negative integers is said to have a 
Poisson distribution with parameter A (A G 1 , A >  0 ) if

\  Aj
Prob(X = k) = e “A— (V& > 0)fci

This variable has mean and variance both equal to A.

G aussian Variables
A real-valued random variable X  is said to have a Gaussian (Normal) distribution if

I f 1 1 2  Fx (t) =  - i =  /  e-5* du
V27T 7 -o o

This variable has mean 0 and variance 1.

B ivariate  G aussian D istributions
Let H  be a positive-definite real 2 symmetric matrix. A random variable (X, Y) in 
to have a bivariate Gaussian distribution with covariance H  if

is said

■jl r x  i rx%

f x ,y Oci,tt2) =  TT,i  /  /  exP
2 7 r(d etH )2  J - o o J - o o

dt\dt2

This is the same as

Fx ,y (x 15^2 ) =
/ au rX2

-00 7—
exp

2(1 - P 2)TlY<Jx 0~Y \ / l  — /0 2 

where p =  px,Y is the correlation coefficient of X  and Y and

is a positive-definite quadratic form in two variables.

Q(tut2) dt\dt2
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This variable has mean zero and we shall say that (X, Y) has parameters ax, &y and p. 
In the case that H =  I we say that (X, Y) has an isotropic M2-Gaussian distribution.

Compound Poisson Variables
Let Z  = {Zi : i 6 N} be a set of independent random variables with a common distribution 
F  and let Y be a Poisson variable with parameter A. We define the compound Poisson variable 
X  with parameters A and F  (or A and Z) by

i=l

Clearly if F  is concentrated at 1 then X reduces to an ordinary Poisson variable.

Weibull Distributions
A real-valued random variable X on [0, oo) has a Weibull distribution with parameters a, b > 0 
if

F x (t) =  1 - e-“l‘
This variable will occur with parameters 2 when looking at the distribution of the mod
ulus of a two-dimensional Gaussian variable with covariance matrix oT.

Bessel Distributions
Here we use terminology which differs from that used in standard texts (e.g. [40]; see Appendix 
E for clarification). We define the Bessel function of order v > — 1, as in [16], by

OO -i f  \ \

f' W = E fclr(fcW  + i ) U )

where T(s) is the Gamma function
POO

r(s) =  I e~ux3~1du (Vs 6  C, 5£(s) > 0)
J  o

If v is an integer, then we get

fC—0

In this case, we further define Iv(A) — 1_„(A) for v e Z , u < - l .  A Z-valued random variable X 
with density function f(v) = e~xIv(A) will be said to have a Bessel distribution with parameter 
A. For more on Bessel functions, see appendix E.
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1.7 Convergence Theorems

D ef 1.7.1. Let X  be a real-valued random variable and let {X,} (j 6  N) be a sequence of 
real-valued random variables. We say that the X j converge in distribution to X  if, for each 
compact interval of continuity I  C ]R of F1,

Fj(x) - 4  F(x) (Va? E l )  as  j  — oo

where F  and Fj denote the distribution functions of X  and Xj  respectively.

For random variables in M2, the definition is analogous to the previous one:

D ef 1.7.2. Let (X , Y ) be a random variable in M2 and let { ( X j ,  Y j)}  (j E M) be a sequence of 
random variables in M2 . We say that the ( X j ,Y j )  converge in distribution to ( X , Y )  if, for each 
compact interval of continuity I  C ]R2 of jF,

Fj(x , y) - 4  F (a ;,  y) (V(a;, y) E l )  a s  j  - 4  oo

where F  and Fj denote the joint distribution functions of (X , Y )  and ( X j ,  Y j) respectively.

As always we shall identify a complex-valued random variable X -fzY with its M2 counterpart 
(X, Y) so that the above definition can be applied to sequences of complex-valued variables.

D ef 1.7.3. Let { X j}  (j E N) be a sequence of real-valued random variables. We say that the 
Xj  converge in probability to zero if, Ve >  0,

Prob{\Xj\ > e) - 4  0 as j  - 4  oo

Lemma 1.7.4. Let { X j}  be as above and suppose that for each j  E N the first and second 
moments rrij^m j^  exist. I f  m j ^ ,  rrijp - 4  0 as j  - 4  oo then the X j converge in probability to 
zero.

Proof. This is a simple application of Chebyshev’s inequality (Theorem 1.4.2). □

The comparison of one distribution to another will be a recurring theme in our work. Indeed, 
we shall often be trying to prove that a given random variable converges to a well-known dis
tribution as certain parameters vary. There are two ways in which this will be done: one using 
moments and the other using characteristic functions.

The M ethod of M oments
The following results essentially say that the convergence of a sequence of distributions is to a 
great extent governed by the convergence of the moments.
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T heorem  1.7,5. Let {X/} [j € N) and X  be as above and suppose that the moments m & of 
X  and irijfi of X j all exist (k E N). Suppose further that no other distribution has the same 
moment sequence as X . If, for each k E N ,

—>■ mjfe as j  go

then the X j converge in distribution to X .

Proof See [16], p269. □

We also have the analogous result for random variables in M2:

T heorem  1.7.6. Let {(Xj ,Yj)} (j E N) and (X , Y) be as above and suppose that the moments 
of X  and m jfij of ( X j ,  Y j) all exist (k, I E N ). Suppose further that no other distribution 

has the same moment sequence as (X , Y ) .  If, for each k ,l G N

rafc,i as j  ^  oo

then the (X j , Y ) ) converge in distribution to (X , Y ) .

Proof. This is a relatively straight forward generalisation of 1.7.5. □

N ote  1.7.7. The problem of two different distributions having the same moment sequence will 
not occur in our work, as all of our standard probability distributions have moment sequences 
which are peculiar to them.

The C ontinuity  T heorem  for C haracteristic  Functions
Unlike moment sequences, characteristic functions have the property that two different distri
butions have different characteristic functions. This is a consequence of the Fourier inversion 
theorem ([17] pl70). The following theorem is therefore more powerful than 1.7.5:

T heorem  1.7.8. (Continuity Theorem) The sequence { X j}  of random variables (in M or K2) 
converges in distribution to the variable X  if and only if the sequence { C j ( i ) }  of characteristic 
functions converges point-wise to C(t), the characteristic function of X .

Proof. A slightly stronger version is proved in [16], p508. □

1.8 Central Limit Theorems

The central limit theorem plays an important role in many areas of probability theory and will 
be used often in this work, in various forms. We begin by stating the most basic version:
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Theorem 1.8.1. Let X i , . . .  ,Xjv be mutually independent random variables with the same 
distribution F, such that K(Xj) =  0 and Var(Xj)  — 1. Define

1 N Q* __  x \  '  \r
S N ~ 7 N ^ Xi

3= 1

Then, as N  —¥ oo, converges in distribution to a Gaussian distribution.

Proof. See [16], p259. □

The next version is concerned with the convergence of the binomial distribution. Note that 
cases (ii) and (iii) are in a sense degenerate cases since ‘freak’ conditions are required for them 
to occur.

Theorem 1.8.2. Let X i , . . .  , X n  be mutually independent Bernoulli p-variables, where p = 
p{N) and put

s " - p >  - j m k

Then, as N  oo we have the following:

1. I f  N p  —)► oo then converges in distribution to a Gaussian variable.

2. I f  N p  —> A >  0 then S m converges in distribution to a Poisson variable with parameter A.

3. I f  N p  -» 0 then Sn  converges in probability to zero.

Proof. 1. See [17], pl75.

2. We calculate the characteristic function of Sn -

C(t) =  E(exp(it»S'jv))
N

=  E(exp(£iX/)) (by 1.5.2)

=  Efexp^tX i))^

=  (l Pp(elt — 1))^ (by Appendix F)

-
-* exp A(ez* — 1)

Since the latter is the characteristic function of a Poisson-A variable (see Appendix F), 
the result follows from the continuity theorem 1.7.8.

3. Follows from 1.7.4.
□
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We shall also need a two-dimensional version of the central limit theorem:

Theorem 1.8.3. Let {X^} =  {(Xj ,Yj)} be a sequence of mutually independent two-dimensional 
random variables with a common joint distribution F. Suppose that, for all j  £ N,

E(Xj-) =  0, Var{Xj) = of, Var{Yj) = o\, Cov(Xj,  Yj) = paxa2

Further, let us define
^  X i +  . . .  +  X jv

N  V N

Then as N  - f  oo, S n  converges in distribution to a bivariate Gaussian distribution with param
eters <7i, <72, and p; that is, a Gaussian distribution with covariance matrix

H  = O'i p i71 <72

£̂7l<72 a\

Proof. See [16], p 260. □

N ote  1.8.4. In the event that all the Xy are real (i.e. cr2 = 0) we get the degenerate case
s*of a one-dimensional Gaussian distribution. More precisely, converges in distribution to a 

Gaussian variable as N  —*■ oo.

1.9 A N ote on Moments

In our work, often the moments E(Xfc) of a discrete random variable X  will be difficult to 
calculate directly. This is why we will revert to the ‘trick’ of calculating the expectation of the 
binomial coefficient:

m*=e ( G
Since X k H- is a non-singular M-linear map on the space M[X] it follows that knowledge 

of the standard moment sequence {m/-} is equivalent to knowledge of the binomial moment 
sequence {M*,}. Hence in Theorem 1.7.5 we may replace ra& with M&.

We also note that we can retrieve the variance of X from M2 and M \ via the formula

( u ,



Chapter 2

R andom  Polynom ials

2.1 A Simple M odel

Let q be a prime power, let Fg be the finite field with q elements and let X  denote an indeter
minate over Fg. To begin with, we wish to pick a polynomial at random from Fg [X] and look 
at a certain property of it. The obvious way to do this is to take a positive integer d and define 
the probability space

X  = X(q,d) = { h £ ¥ g[X]: degh < d }

in the natural way (see §1.1). Clearly, T  has qd+l elements.
In general, we do some enumeration in X  with respect to the property we are looking at (e.g. 

calculation of mean/variance and higher order moments). Once we have have some information 
about the distribution we then let d tend to infinity, thus giving the impression of choosing a 
polynomial at random from the whole of Fg[X]. Hopefully, the probabilistic properties found 
will show some asymptotic behaviour as d tends to infinity.

As a simple example, consider the question: “How many zeros, on average, does a polynomial 
in ¥q[X] have?” (Note that fuller treatments of this problem can be found in [36, 24].)

If C — C(<7> d )  is the number of zeros of the random polynomial /  E T  then we can calculate 
the expectation:

E(C)

Now, by the factor theorem

h(a) = 0 <{=* h(X)  =  (X -  a)hi{X)  for some hi E ¥q[X]

= z l  lt{« e  : =  °}g

=  «) =  0}
aeFg

13
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From this we see that the number of h vanishing at each a E  ¥q is qd. Hence

H aeFg
i.e. E(C)

Similarly we can calculate the second moment of

= 7 m  E  « { h e ^ :M o )  =  ft(6) = 0 }
{o,,6}CF5

kef  

q*

Again, by the factor theorem, for a j - 6 ,

h(a) = h(b) = 0 <^4- h(X) = { X - a ) { X -  b)hi{X) provided degh > 2

From this we get that the number of h in X  vanishing on {a, 6} must be ^d_1, provided d > 2. 
Hence

E } ) )  gd+1 ^  qd '{a,&}CFg

i.e. E , , , , ,
\ 2 j  J q2 \  2 ,

We can now find the variance, using the formula in §1.9:

Far(C) =  1 -  i

We conclude (trivially) that as d —)■ oo,

E(C) ~  1 and Far(C) ~  1 -  i  

There are some points to note from this example:

1. In both the first and second moment calculations, the key step which allows us to do the 
enumeration is the ‘reversal’ of the sum. This will occur again and again in our work.

2 . To calculate the first moment we required d > 1 while the second moment required d > 2. 
We shall see later that knowledge of the kth  moment in this type of problem requires 
d >  k.

3. We can also let q — oo to get that Var(Q ~  1. We shall see later that, for questions of 
distribution, we we will always have to let q tend to infinity as well as d.
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2.2 Several Variables - a Key Lemma

Let r  G N and let X i , . . .  , X T be independent indeterminates over ¥q. Because of the existence 
of a Euclidean algorithm in Fg[X], polynomials in one variable lend themselves to properties 
which multivariate polynomials do not have. In Fg[X i,. . .  , Xr] we therefore turn to some ideal 
theory to overcome this.

Firstly, we define our probability space via

= {h G Fg[Xi,. . .  , X r] : deg h < d}-

where the degree of h is defined to be the maximum degree of all monomials X^X^2 .. .  X£r , 
the degree of such a monomial being ii + . . .  +  «r . Hence T  is a finite set and is made into a 
probability space in the natural way.

The first thing to note about polynomials in several variables is that we have an extension 
to the factor theorem (see [2]):

, . . .  , j — 0 )•* /i G (-AT̂ \ , . . .  , Xj* 1 ■ j

V~ 1 ^ fit ---  (ACj_ . . .  (Afy ' ‘

for some /ii ,. . .  , hT G F?[X i,. . .  , Xr]. We shall abbreviate (a i,. . .  , aT) to a, (X i,. . .  , Xr) to X
and (Xi — a i , . . .  , Xr — ar) to (X — a).

In line with the example of §2.1, we would like to be able to count the number of h in T  
which vanish at a given point a  G F£. For a fixed q and variable i, define

TZi — {h G F?[X i,. . .  , Xr] : deg h < i}

Then ^ i C ^ 2 C . . .  is an increasing chain of ¥q-subspaces of the ¥g-algebra 1Z — Fg[X i,. . .  Xr]. 
Note that the IZi have finite codimension in 1Z (i G N). Also, an ideal I  <11Z is an Fg-subspace 
and so we have the increasing chain

i n n i C i n i z 2 Q . . .

Recall that deg I  is defined to be the codimension of I  in 1Z. Assuming deg I  to be finite, we 
have that the TZi fl I  (i G N) are of finite codimension in 7Z. Define Ai to be the Fg-dimension 
of Since

^  TZj + 1 
T Z i n l ~  I

we have that
Ai < A2 < . . .

is a non-decreasing sequence of positive integers, tending to deg I. The next lemma gives us a 
useful bound on how long it takes for the sequence to reach deg I.
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Lem m a 2.2.1. With the notation above,

Xi — deg I  provided i >  deg I

Proof. The idea is to show that if Ai =  Aj+i for some i 6  N, then Ai = A ^ -  It would then 
follow that the sequence Ai, A2 , . . .  is strictly increasing up to a critical index, and Aj =  deg I  
for all i > io. This would imply that the smallest possible value of io is deg I, occurring in the 
case that all the ‘jumps’ are of size 1. The result would then follow.

Now, the space 7Zi is spanned by the set of monomials of degree at most i. Suppose that 
we have found an i satisfying A * — Aj+i- If M  is a monomial of degree i +  2, then M  = Xj M'  
for some 1 <  j  < r and some monomial M 1 of degree i +  1. Since Aj+i =  Xi there exists an 
h GTZi with M f ~  h mod I. Now, Xj h  G 7Zi+i and so X jh  =  h! mod J, for some h' € TZi. Hence 
M  = h’ mod I  and this means that Aj+ 2  =  A*. □

N ote 2.2.2. This observation, due to P.Vamos, appears in [36] with strict inequality. This is 
why we have reproved it here.

2.3 The General M odel

Let r, s G N and consider the set Fg[X i,. . .  , Xr]s. This consists of all polynomial vectors of the 
form f  =  ( /1 , . . .  , f s) ( / 1, . . .  , f s G Fg[X i,. . .  , X r]) and each of these vectors induces a map 
from F£ to F* via evaluation

a ^ f ( a )  =  ( /i (a ) ,.. .  , / s(a))

We will be looking at certain properties of this map by using random polynomials. Our proba
bility space is defined as follows:

Let <71, . . .  , gs G F q[Xi, . . .  X r] be fixed polynomials and let d\ , . . .  , ds G N. For 1 < j  < s, 
we define

Fj = gj +  7Zdj = {gj +  h : deg h < dj}

and
F  — F\ x • ■ • x Fs C Wq[X i,. . .  , Xr]s

Thus F, as before, is a finite set and is made into a probability space in the natural way. F  de
pends on parameters q ,d \,__, ds and on g\ , . . .  , gs. A random element of F  will be referred to
as a lrandom polynomial (vector) of type (r, s) We now give two results, essentially corollaries 
of 2.2.1, which will allow us to handle polynomial vectors in F.
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Corollary 2.3.1. Let a i , . . .  ,au G be distinct and let b i , . . .  , b„ G Then

}j{h G T  : h(aO =  bi Mi} ==

provided dj > u  (1  < j  < s)

Proof. Let h  G J7 and, for each 1 < i < r, write bi =  (bn, . . .  , bn). Then

h(ai) =  bi (Vi)

 ̂ (hi(®^)j * * ■ ) h s (a i ) )  =  ( 6 f i , . . .  , bn) 0^*)

hj(sii) =  bij (Vi,j)

hj =  b^ mod (X — ai) (Vi,j)

For each j, the Chinese remainder theorem gives us a unique solution modulo I, where
u

-r =  I I ( X -  a«)
i=l

so that deg I  — u. Hence, for each j ,  the number of solutions in Tj  is §(iFj D l) — #(1^. fl I).
By Lemma 2.2.1, this number is q~u§Tj in each case, provided dj > u.

In this case, the total number of solutions is just the product over all j ,  namely

i l < r nm = q - !‘uv :
j=i

as required. □

D ef 2 .3 .2 . In the light of this result, we define d — min{di,. . .  , ds}.

C orollary 2.3.3. Let U C 3F̂ , V  C IÊ be non-empty sets of sizes u and v respectively. Then

| |{ h S ^  : h ( [ / ) C f } =

provided d > u

Proof. Let U = { a i , . . .  , au}. Then

h(?7) C V  

<«=*■ h(ai) G V  (Vi)

h(ai) — bi (Vi) for some b i , . . .  ,h u G V

By corollary 2.3.1, the above has q~su$iF solutions (provided dj > u Vj), for each choice of 
(b i ,. . .  ,b u) in V u. Since there are v11 such choices, the result follows. □

N ote 2.3.4. Later, we shall use the fact that if dj < u for some j , then
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2.4 Random Polynomials versus Random Maps

Let A  and B  be arbitrary finite sets of sizes n  and N  respectively. The set B A of all maps from 
A  to B  is also finite set, of cardinality N n, and so we make this into a probability space in the 
natural way. A random element of this space will be called a 1random map of type (n, N )

The basic idea of this thesis is to compare the random polynomial of type (r, s) with the 
random map of type (qr , qs). That is, we ask a question about a random polynomial vector, try 
to answer it for the random map between F£ and 1B̂ , and then find out under which conditions 
the polynomial vector has a similar behaviour. It is a well-known property of finite fields that, 
given any map from Fg to itself, there exists a polynomial in one variable of degree less than q 
which represents that map (see [30]). There is also an extension of this to r  variables:

P roposition  2.4.1. There is a one-to-one correspondence between mappings <f> G (Fg)3̂  and 
polynomials h in Fg[X i,. . .  , X r] which satisfy degj h < q — 1 (Vj). (Here, degj h means the
degree of h as a polynomial in Xj . )

Proof. Two polynomials g and h give rise to the same map

4=4* 0 (a) = h( a) V aG l^

III mod (Ai — « i , . . .  , X T — ar) Va G FJ

III mod (Ai ~ a i , . . .  , X r — ar)
a

4=^ g — h mod ( X f - A i , . . .  , X q - X r)

Since S  is a complete set of residues modulo (X( — X i , . . .  , Xr ~  X r), two distinct elements 
of S  will give rise to different maps. Finally, note that #5 =  qqV — {{(Fg)1'? and the result 
follows. □

Corollary 2.4.2. There is a one-to-one correspondence between mappings <f> G (IB̂ )3̂  and poly
nomial vectors h =  (h i,. . .  , ha) which satisfy deg j hi < q — 1 (Vz, j ) .

Proof. Immediate. □

These results tell us, that if the degrees involved are large enough, then polynomials and maps 
are interchangeable. This is echoed by our enumeration results, 2.3.1 & 2.3.3, if one looks at 
them carefully. For this reason our problems will usually be formulated with a large q and a 
smaller (but still large) d in mind.

2.5 Independence

After we have looked at the basic image-size problems in Chapter 3, we will go on to explore a 
way of applying random polynomials to character sums in Chapters 4&5. This will involve some



CHAPTER 2. RANDOM POLYNOMIALS 19

tedious moment calculations which will be greatly simplified by means of the next proposition.

Let A  ~  B  = Wq so that n  =  qr, N  — qs and let if : B  —Y C be any complex-valued 
function. If f  is a random polynomial vector of type (r, s) and $ is a random map of type (n, N ) 
then, for each a € A, ^j(f(a))) and ip((f(a)) are complex-valued random variables.

P roposition  2.5.1. For any subset {o i,.. • , a*} of A  (1 < t  <  n), we have

1. The random variables ij)((f)(ai) ) , . . .  ,ip((f(at)) are independent.

2. The random variables ip(f(ai)) ,. . .  , '0(f(at)) are independent, provided d > t .

Proof. 1. We require to show that, given any z i , . . .  , Zt 6  <C,

t
P < Zi Vi)) =  n  p  W #(«*i)) <  2 .)) (2 .1 )

i= l

Note that here, ‘< ’ refers to the natural partial order on C, namely

Wi < 0)2 < 5R(w2 ) and $s(ui) <  Ssfa)

Now, in (2.1) we have

L.H.S. {{{<£ 6 B a : ip(<p(ai)) < Zi Vi}
N n

L  Y  *(<*) =  6, V«}
b  eB*

Vi

b  GB*
ip(bi)<Zi Vi

\

OtD 
\  #(&)<*» /
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On the other hand,

R H S  = VK#*i))<*i}
i= l

N n

t

i= l

n
i= 1

b<EB

( \
4 r  Y  JV” " 1N n “beB

\  4>(b)<zi )

(

= n
i= l

\
-  -  V  1jy

b£B  
\  <}>{b)< z i }

and hence the result.

2. Similarly, in this case we require to show that, given any £ ] ,...  , zt 6  C,

t

P (^(f(d i)) <  î, Vi)) =  J [ P  M M )  ^  **))
i= l

Again, £< ’ refers to the natural partial order on C.
Now, in (2.2) we have

Jt{f e  T  : ^ (f (aj)) <  Zi Vi}
L.H.S. jJJF

=  h  E  f(0 i) =  6»Vi}
b eB 4 

ip(bi)<Zi Vi

— F  9 s*ij^ provided d > i, by 2.3.1JJJ7 '
b eB 4 

Tp{bi)<zi Vi

t

n
i= l

“  y  1/yS
6eB  

\  *(*)<* /
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On the other hand,

R.H.S. = S(
j}{f G 3= < Z i }

7=1

t

n
i= i

*

( \
i  E  §{f6 ^ :  f(ai) =  M

bEB

( \
£  E

bEB
\  m<zi /

\

%—i  ̂ b$zB
\  f(b)<zi J

and so the result is proved.

provided d > 1, by 2.3.1

Corollary 2.5.2. With the same notation as above,

i t  \  t

,7=1 7=1

.7= 1 7=1

Proof. Immediate, from §1.4 □



Chapter 3

Inverse and D irect Im age Sizes

3.1 Definitions

Let f  be a random polynomial vector of type (r, s). Thinking of f  as a map from to we 
can ask the following two questions:

1. “Given a subset C of F^, what is the size of the set

f - 1 (G) =  {ae lB ; :  f (a)GC}

i.e. the inverse-image of G under f  ?”

2. “What is the size of the (direct) image of FJj under f?”

The inverse-image question will turn out to be quite straight forward while the direct-image 
question is a little more involved. For a random map, the latter is known as the 1classical 
occupancy problem3 and is often stated as follows:

“Suppose that n balls are fired randomly into N  boxes, the probability that any particular box is 
hit being for each shot. Find the distribution of the number of empty boxes as n ,N  —>• oo. ”

Note that the idea is to work with the complement of the image set. This problem has been 
studied in great detail by several authors: Weiss [42], Renyi [38], Erdos [14], Bekessy [3, 4], 
Ivchenko & Medvedev [21], Kolchin [26], and Sevastyanov [39]. The results are best summarised 
in [27, 28], and in §3.5 we will adopt the approach of [27].

The direct-image size of a random polynomial in one variable has been studied by Cohen 
[12] and Knopfmacher & Knopfmacher [25], although their approach is different from the one 
we use here. There is also a related paper by Birch & Swinnerton-Dyer [5], involving a different 
type of ‘random polynomial’.

22
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N o ta tion  Throughout this chapter and, in fact, the rest of the thesis, several pieces of nota
tion will remain constant:
f is a random polynomial in F, where is J 7 is as in §2.3. A  and B  are sets of sizes n and N  
respectively while <f> is a random map between them. Often we (tacitly) put A  = , B  — Ŵ
so that n — qr and N  = qs, allowing us to compare f to <j>. C is a subset of B  or 1B̂, of size c.

With the image-size problems above in mind we define

C c  =  and CS =  l t r 1 (C')

r, =  8 (r5\f (I£)) and i f  =  8 (B \K A ))

The idea is to find the behaviours of the random map variables Cc and 77*, then attempt to 
match the moments of each with its polynomial counterpart (Cc and 77, respectively). We begin 
with the inverse-image problem.

3 . 2  The Distribution of Qi

The binomial moments of Cc 9X6 easy to calculate:

Lem m a 3 .2 .1 . For k > 0,

In particular, the moments of Cc depend, only on c =  jJG and not on the actual choice of C.

Proof

E ^ ^ =  E (jj{k-subsets of </>- 1 (C')})

“  ^ 2  }}{k-subsets of
<peBA

=  N ~n J 2  W  € B a : cj>{K) C C}
KCA  
tt K=k

=  N ~n ^ c kN n~k



CHAPTER 3. INVERSE AND DIRECT IMAGE SIZES 24

So from now on, we will write instead of We are now in a position to determine the 
asymptotic behaviour of Q:

Theorem  3.2.2. Let nc —> oo and/or N  oo. Then

1. I f  A > 0 then Q converges in distribution to a Poisson variable with parameter A.

2. I f  ^  > oo then converges in distribution to a Gaussian (normal) random variable
where n =  f , <r2 =  f  (1  -  # ) .

3. I f  —> 0 then Q converges in probability to zero.

Proof. Let A = {<2 1 , . . .  , an}. We can write =  Y± +  . . .  +  Yn where each Y( is a Bernonilli 
variable defined by

y  ' 1  t M e C

0 (j>(ai) £ C

So Q  is the sum of n  independent Bernoulli p-trials, where p — j/. As a consequence, Q  
has a binomial distribution with parameters n and p and so has mean /la =  np and variance 
a2 =  np( 1 — p).
Applying Theorem 1 .8 .2  gives the result. □

3.3 The Distribution of ( c

The key to determining the asymptotic behaviour of (c  as q, d — 0 0  is the method of moments 
(section 1.7). That is, we attempt to match the moments of (c  with the moments of Q:

Lem m a 3.3.1. Let A  = F^, B  = ]F̂  so that n ~ q r, N  ~  qs; we may compare the variables 
and £*. Then, for each k G Z with 0 < k < d we have
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Proof.

¥ . f  (
kE ( ) =  E({}{k-subsets of h  1 (Cf)})

^ 2  ${k-subsets of h " 1 (C')}

f =  Y ,  : h ( K ) Q C }
H K C A  

$ K = k
k

= I ^  ( “7 ^ Ĥ 7 provided d > k , by Gor.2.3.3
^  W JK C A  

$ K = k
j'\ /  \  kq  \ / c

k j  \q  
<*■*
»c
k

provided k < d

® 1 ( ) ) provided k < d

□
Now suppose that we let q tend to infinity. Then n, N  —> oo and Q  whl behave in accordance 
with Theorem 3.2.2. If we also let d tend to infinity, we have by 3.3,1 that the moment sequence 
of Cc tends to that of Q- Hence, by the method of moments, the two variables have the same 
limiting behaviour. We therefore have the main result on inverse-images:

Theorem  3.3.2. Let q -A oo and let d -A oo arbitrarily slowly with q. Then

1. I f  cqr ~ 3 ~A X > 0 then Cc converges in distribution to a Poisson variable with parameter 
A.

2. I f  cqr ~ 3 -A oo then converges in distribution to a Gaussian variable, where fi — cqr~s 
and a2 = cqr~3( 1 — q~s).

3. I f  cqr~s -A- 0 then Cc converges in probability to zero.

3.4 Applications

1. N um ber of Zeros of f
Let us put C — {0 }. Then Cc Is the number of zeros of f. In fact, this problem was solved in 
[36], the paper which originally introduced the probability space T  which we use in this thesis.

Corollary 3.4.1. (Odoni) Let q -A oo and let d-A oo arbitrarily slowly with q. Then

1. I f  r — s then Co converges in distribution to a Poisson variable with parameter 1,

2. I f  r > s then converges in distribution to a Gaussian variable, where ft — qr~s and
a 2 = qr- 3 { l - q - 3).
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3. I f  r < s then Co converges in probability to zero.

Co can be thought of as the number of ¥q-rational points on the variety in defined by 
f  =  0 . This application relates to deep results from algebraic geometry, due to Weil [41] and 
Deligne [13] (see [36] for details).

2. Polynomials Taking Values at Primitive Roots
Let P  — {primitive roots of Fg}3. Then Cf is the number of a 6  IÊ  which are mapped to 
s-tuples of primitive roots under the random polynomial vector f. Since there are ip{q — 1) 
primitive roots in Fg, we have c =  <p(q — l)s.
It is known (see [18], p.267) that

limsup — 1 (3.1)
m —J-oo TL

while

^ m ^ M lo g lo g n  =  K  (where K  > 0) (3.2)
m-t- oo n

It follows that

1)V— I -» oo as q —> oo (3.3)

This gives us the following result:

Corollary 3.4.2. Let q -4 oo and let d -4 oo arbitrarily slowly with q. Then converges 
in distribution to a Gaussian variable, where

li = qr ( y f e - 1) ^ ‘ and g3 =  ?r ^ ( g - l ) ^ * (1  _  g- 3j

Let r  =  s — 1 so that Cf is asymptotically Gaussian with mean (p(q — 1) and variance 
(1 — q~1)(p(q — 1). In [32], Madden proved that, given a fixed d € N ,  then for all q sufficiently 
large, every square-free polynomial in Fg [X] of degree less than d represents a primitive root in 
Wg. This is equivalent to saying that the inverse-image size of P  under a square-free h G Rd 
is not zero. It is known (see [9]) that the proportion of square-free polynomials is 1 — q~l {i.e. 
almost all of them) and so our result is somewhat consistent with Madden’s, although not as 
specific.

3.5 Direct Image Size and Classical Occupancy

We now move on to the more complicated direct-image problem and begin by calculating the 
moments of ??*:

r . =  q r  P k Z
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Lem m a 3.5.1.

Proof.

\ C D )  =  E(tt{k-subsets of B\<j>{A)})

=  JWa X  tt{k-subsels of B\c/>(A)}

=  X  : « A ) n x  =  W
W ICCB

Let us write A — {«i , . . .  , an} and define Ei := {(f) € B A : (f)(A) 6  JC}, where K is fixed for the 
moment.

Then {<f> 6  B A : </>{A) fl K  =  0} =  B A\  E i. By the inclnsion-exclusion principle
we have

N - t { < j , z B A : <j>{A)nK =  Hl} =  X ( - l )*-1 X  t l f l ^
1=1 LC{1,... ,re} i e i

«L=i

-  N  — (N  — k)n

Thus,

k j j  n - kcb
jj K=k

Q K )
n

as required. □

R em ark  The above proof is long-winded in that the inclusion-exclusion principle is not 
needed. Indeed, there is a much more direct method of obtaining the result 
§{(f) £ B a : (f>(A) H K  =  0} =  (N — k)n. However, as we shall soon see, the use of the 
inclusion-exclusion principle is crucial to the estimation of the moments of 77, which is why we 
have used it here.
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Corollary 3.5.2. The variable r f has mean and variance given (respectively) by

H =  N {  1 - ^ ) "  and  cr2 = N ( N - l ) ( l - % ) n +  N ( l - ] j ) n - N 2 ( l - } r ) 2n

Proof. Put k = 1 and k — 2  above (and use the formula from §1.9). □

The study of the asymptotic behaviour of r f  is complicated, splitting into several cases, de
pending on how n  and N  tend to infinity relative to. each other. Heuxistically, if n  is much 
larger than N  then the number of ‘empty boxes’ will be very close to zero, i.e. </> is surjective 
with probability approaching 1. This would lead us to limit ourselves to looking at paths of 
n, N  —» oo in which n  is ‘not too large’ compared with N. We make this idea precise with the 
following lemma:

Lem m a 3.5.3. Suppose n, N  —̂ oo in such a way that N lo g N  = o(n). Then r f converges to 
zero in probability.

Proof. Write n — tN  logiV; then by Cor.3.5.2, we have

(  1log p, — log N  +  n log ( 1 — —

=  log N  (1  + 1 log ( l  — P j  |

~  (1 — i)logJV

—¥ —oo since t —¥ oo

/Li —> 0

Also, by Cor.3.5.2, 0 < a2 < fi so that a —> 0 also. The asserted result now follows from
1.7.4. □

Prom now on, we assume that n ~  0 (N  log N). Chapter 1 of [27] gives a comprehensive account 
of the behaviour of r f  under this condition (it calls this variable AT)), and we summarise 
the results here.

D ef 3.5.4. The behaviour of i f  splits into the following cases:

(a) a__y nN , —y A <C oo, A > Q (Left-hand domain)

(b) —  —*■ 0 ■n2
2N 00 (Left-hand intermediate domain)

(c) 0 <  Cl < ^  <  C2 <  OO (Central domain)

(d) oo, E(^*) — OO (Right-hand intermediate domain)

(®) ^  OO, E(rj*) A < oo (Right-hand domain)

T heorem  3.5.5. In the left-hand domain, the variable r f — (N  — n) converges in distribution 
to a Poisson variable with parameter A.
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Proof. See chapter 1, sections 2 & 4 of [27]. □

T heorem  3.5.6. In the left-hand intermediate, right-hand intermediate and central domains,
T] ^ lL- converges in distribution to a Gaussian variable.

Proof. See Chapter 1, section 3 of [27]. □

Theorem  3.5.7. In the right-hand domain, r f converges in distribution to a Poisson variable 
with parameter A.

Proof See Chapter 1, section 1 of [27]. □

Remarks

1. In the case n ~  qr, N  — q3, the right-hand intermediate domain (d) never occurs, since

n (  1 \ qT”  oo r > s qs ( 1  - J  0  => M(rf) —> 0

2. In (a) and (e) the case A =  0 is allowed, the corresponding random variable then tending 
to 0  in probability.

3.6 The M om ents of 77 and r f

Now that we know the limiting behaviour of r f  we attempt to match this variable with 77, our 
random polynomial equivalent. Prom now on we assume that A — IÊ and B  = W3q and let us 
attempt to calculate the moments for 77:

E fc)) = ^lwmbsetsof K W ) ) }  (3-4)

=  W  E ,  (3.5)
n jtcb*

UJC=fc

=  i  ^  f fl-P provided d > q T (by 2.3.3) (3.6)
V? \  Vs J

$ K = k

© ( - S ' provided d>  qr (3.7)

In [12], Cohen obtained the following expression for the average number of values v(t) taken by 
a polynomial in Fg[X] of degree t:

v(t) =  q [l — (l — g"1)9] for t  > q (3.8)
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Prom this it was deduced that

w(i) ~  q (l — e-1) as q —$■ oo (3.9)

We can generalise 3.8 to polynomial vectors satisfying d > qT by putting k = 1 in 3.7:

E(gs -  rj) =  qs [l -  (1 -  q~s)q (3.10)

If r  =  s, then we get a generalisation of 3.9:

E(q3 — 77) ~  qr (l — e - 1 ) as q -> 00  (3.11)

One can also find asymptotic formulae for other values of r and s but we do not wish to digress
here. The main consequence of 3.7 is the following result:

Lem m a 3.6.1.

e(Q )=e(CQ) vfc- °
provided d > q r

Prom 1.7.5 it follows that the variables r) and r f  will have the same asymptotic behaviour 
as q, d —> 0 0 , provided d > qr always. This last condition however is unsatisfactory, since the 
degree is too large compared with the size of the field. (Recall from 2.4.1 that polynomials 
behave like maps anyway when the degree is large enough). The problem is, however, that for 
lower d we cannot calculate exactly the moments of 77, so we revert to some estimation in the 
next lemma. Prom now on in this chapter, we assume that d < qr.

Lem m a 3.6.2.

where

d~ 1 /_rX / j \  l
D
i= 0

d

Proof. As in equation 3.5, we have

e(0D)= w £ .  # { h e J 7 : H F q ) Q p , w

Let K  be a fixed k-subset of and write

1BJ =  { a i , . . .  , Siqr} and Ei = {h € T  : h(a) e  K }  ( 1  < i < qT)
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Then, by the inclusion-exclusion principle,

t { h £ ?  : h ( l ^ ) C ^ \ i f }  =  lj ^ - ^ ( - l ) ' - l a i

where the non-negative integers otj satisfy

i- 1

Oil =  £  a f l £ i =
LC{l,...,m } i£L

« l =i

i) (if* ioii- d (by2-3-s)
Hence

d -i qT
# {h e .F  : h(]F$)CF,yC} =  +  £ ( - l ) ‘a,

1=1 l=d
 ̂ 1 / / # \ I

( £ )  + («■**)

where

|i2i(g,d,K)\ < ai (by note 2.3.4) 

Applying the Brun-Waring inequality 5.7 gives

\Ri(g,d,K)\ < ( Q  V

so that, finally, we have the equation

E
d- 1

£ ( - i ) '

and, as required,

\R(q,d,k)\ < q * \  (q T

k J \  d

I J  \ q s

m

(3.12)

(3.13)

(3.14)

(3.15)

□

Corollary 3.6.3. Let A  =  IK, B = Wi so that n — qr, N  — qs. Then, for each k > 0

E E
J e J  J  \ \ k

Proof. Recall that, in the proof of 3.5.1, we used the inclusion-exclusion principle (and, at the 
time, it seemed unnecessary). Instead of using the exact value of E ^ ( ^ ) ^ ,  let us truncate the 
alternating sum in the proof of 3.5.1 at d — 1, as we did in the last lemma. This gives
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where d, k)\ <  (<p) ^  Brun-Waring principle (5.7).

Hence,

e (C 0 )  _ e (C 0 ) = R (<i’d’k) -  R *(v>d<k) (3-17)
and result follows from the triangle inequality. □

3.7 The Results for a Polynomial Vector

We are now in a position to state and prove the results for a typical polynomial vector which
correspond to 3.5.5, 3.5.6, and 3.5.7.

T heorem  3.7.1. Let
fi — qs( 1 — q~s)qr and

a 2 =  _  2 qs y r + ^ ( i  _  _  q* ( i  „  g- 8̂

Then, for a random polynomial vector f  of type (r, s), the variable p has the following behaviour 
as q~^ oo:

1 . s — 2 r  p — qr{qr — 1) will converge to a Poisson variable with parameter \  if d oo
arbitrarily slowly with q.

2. r  < s < 2 r  will converge to a Gaussian distribution if d —> oo arbitrarily slowly with q.
3. s =  r  will converge to a Gaussian distribution if d —¥ oo subject to the constraint

log q = o(dlogd).
j .  s < r  p will converge in probability to zero if d —> 0 0  arbitrarily slowly with q.

Proof. Let us make the following definition:

■(G)) -  " ( 0 )2 A {q,d,k)
E O

(3.18)

We shall show that, in each of the above cases, p and p* have the same limiting behaviour 
under the stipulated conditions. For this it is sufficient to prove that A (d, q, k) -> 0 (from 1.7.5). 
Note that, by 3.6.3, we have
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We claim the following:

logRH S  =  (7 s)dlogg -  dlogd -  j ( l  _  I) £ + ( 1  _  | )  * -  +  ... }
+  kqr~3 +  k2qr~2s +  O(log q) +  0 (d ) +  0 ( 9r- 3s) 

To see this, we use Stirling’s formula to obtain:

( d )  =  r^ °& q “  +  W  ~ d) log ^ 1  — +  O(logg) +  O(logd)

where

We also have the following expansions:

log =  dlogk — sdlogq

Combining (3.21), (3.23), (3.24) and (3.25) proves the claim.

We now show that RHS of (3.20) tends to —oo in each of the cases 1-3. This will 
that A(g, d, k) —± 0 and these cases will be proved. Case 4 is dealt with separately.

Case 1 s =  2 r  Equation (3.20) becomes

logA(g,d,fc) <  -rd lo g q  -  dlogd -  j  ( l  -  0  ^  +  Q  -  ^  4 ^  +  . . .  j

+  0 (q~r) +  O(logg) +  0 (d)

Clearly, R H S  -> —oo as g, d —» oo.

Case 2 r  < s < 2r Equation (3.20) becomes

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

ensure

(3.26)

log A(g,d,fc) <  - ( «  -  r)dlogg -  dlogd -  j  ( l  -  0  ^  +  ( i  -  i )  ^  +  . . .  )

+  0(q~r) + O(logg) +  O(d) (3.27)
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Thus, L IIS  —oo as g, d —Y oo.

Case 3 s =  r  Equation (3.20) becomes

log A (q,d,k) < - +  ka i * * * * - { ( i _ | )  ^ + ( 1 - 1 ) ^  +  . . . } '

+  0{q~T) +  0(log q) +  0{d) (3.28) 

Hence, if logg — o(d log d) we have that L H S  —oo as q,d —>■ oo.

Case 4 s < r  In this case we show that fj,, a —¥ 0 as g, d -> oo. This guarantees that g converges
in probability to zero (see Lemmal.7.4).

Recall that, from Theorem 3.7.1, we have

/j, =  g*(l — q~s)qr and 0 < a2 < fj, (3.29)

Hence, since r > s,

log p = s l o g g -  (qr~s + ~qr~2s + ..

—> —oo as g oo

It follows that a 2 —> 0, and this completes the proof of the theorem. □

Remarks

The fact that the sizes of our sets are powers of a natural number g simplifies the random 
map scenario, causing anything ‘right’ of the central domain to be forced to converge to zero 
in probability. Also, going ‘left’ of centre means that, because of the difference in size between 
domain and codomain, the polynomial mimics the map no matter how slowly d grows with g.

The interesting case is the ‘central domain’, where the domain and codomain of our map/ 
polynomial actually have the same size. This leads to the added proviso that d be sufficiently 
large relative to q in order that the polynomial should mirror the map in its behaviour.



Chapter 4

G eneralised Inverse-im age Variables

4.1 First Generalisation

Recall that in Chapter 3, the inverse-image problem was more straight forward than the direct- 
image problem. This was because, in the former, our moment-matching did not depend on q. 
Indeed, we had in Lemma 3.3.1:

E((C*))=E( © )  Vfc- d (41) 

We now go on to explore a whole class of random variables associated with a typical poly
nomial vector of type (r, s) which have properties analogous to (4.1).

With the same notation as before, let A  =  1FJ, B — IBJ so that n — qr, N  =  qs. We first
observe that the variable Qc of Chapter 3 can be written

&  =  ! > ( * ( • ) )  (4.2)

where

f  l, b  e G
io(b) =  I (4.3)

[0, b £ C

A natural way to generalise this is to define the complex-valued variable

Si =  M f)  =  X > ( f (a ) )  (4.4)

where p: B  C satisfies |/o(b)| < 1  Vb E B.
The map analogue of this variable would be

s* = E ^ w )  (4-5)
j4.

35
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As always, f  and <f> denote a random polynomial vector and a random map, respectively.

Our original motivation for studying this type of variable was not, as suggested by the above, 
to generalise C,c-> but to gain insight into the ‘average’ behaviour of certain character sums over 
Fg. Indeed, this will be the main application of these ‘generalised inverse-image variables’, as 
they will be called. However, throughout, we keep in mind that this variable is a generalisation 
of C,c and the moments behave accordingly:

P roposition  4.1.1. For k ,l > 0, the moments of the complex-valued variables S i and S* sat- 
isfy:

E {S\~S?) =  E ^ s f ) Vfc + 1 <  d

Proof We postpone the proof until Proposition 4.7.1 where a more general result is proved. □

4.2 A Simple Example

Let r  — s = 1 so that A = B  ~  Fg and let p be a non-principal additive character of Fg. Then

|p(b)| =  1 Vb e B

In fact, one can say more. If b  is a random element of B  (in the natural way), then /o(b) is
a random variable in C which is uniformly distributed on some finite subgroup of the circle.
(Note that this property will be used later.) Thus we have the trigonometric sum

r t f W ) <46)
aEF9

Using the Riemann hypothesis for function fields over ¥q, Weil [41] proved the following estimate 
for the above sum:

l^il < ( r f - l ) v ^  (4-7)

where d =  deg/,  as always.

Since there is no good uniform bound for d »  yfq (see [35] for examples), one might ask: 
“what is the asymptotic behaviour, as q, d oo, of the real-valued random variable |S i(/) |?” 
In fact, this problem is solved in [35], where the author uses a random walk to model I#*! and 
then matches the moments with those of |5i|.

We shall go one further and ask: “what is the asymptotic behaviour, as q,d —> oo, of the



CHAPTER 4. GENERALISED INVERSE-IMAGE VARIABLES 37

complex-valued random variable 5 i( /)? ”
In fact, we shall ask this question for even more general variables which will turn out to have 
the property described in (4.1).

4.3 Second Generalisation

We now give an alternative generalisation of the variable Cc, where G C B  as in Chapter 3. Let 
A i , . ..  , Am C i b e m  disjoint sets of equal size Then

H (Ai U . . .  U Am) = a < qr

To each Aj we assign a complex number hj and we also define

Ccj— m f-H C O n A ,-) =  J{a e Aj : f  (a) e C }

This allows us to define the following complex-valued sum:
m

S2 = S2(A,h,f) =  Y,hj<Cj  (4-8)
j= 1

where A, h denote the collections {Ai, . . .  , Am} and (h i, . . .  , hm), respectively.

Note that, putting A =  {A} (so that m  ~  1 ) and h\ ~  1 gives S -2 — Cc- Therefore S2 is 
indeed a generalisation of Cc-

Naturally, we define the random map analogue
m

S i  =  S i  ( A ,  M )  =  E  (4-9)
3 = 1

where, by now, the definition of C c ,j should be obvious.

As hoped for, the moments of S 2 also turn out to have nice properties:

P roposition  4.3.1. For k, I > 0, the moments of the complex-valued, variables S2 and S% sat
isfy:

E(S$S^) =  E ( S f s f )  Vk + l< d

Proof. Again, we postpone the proof until Proposition 4.7.1, where a more general result is 
proved. □
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4.4 A Simple Example

Let r = s = 1 so that A ~  B  ~  ,
Suppose that m \ q — If % is a multiplicative character of order m  on Wq then we have,
for each 6 ,̂ &2 £

x(&i) — x(p2 ) &2 — xmbi for some x E 1FJ

Hence, if t  G 1F̂ is an element of order m, then x  takes distinct complex values on the m  cosets 
of t in . Let A i , . . .  , A m be these cosets and let h i , . . .  , hm G C be the distinct values of x(fy-

Finally, let C = {0} so that

Cc,j = i {Zeros of f  in Aj}  1 < j < m

Then we have

&  =  E  *(°) (4-10)
/(a)=0

So this variable is a character sum over the zeros of a polynomial. Of course, we can also have 
the more general case of a character sum over the points of a random variety in F£, namely the 
variety defined by the s polynomials of a random polynomial vector. Such character sums have 
been studied by Bombieri, Adolphson and Sperber; see for example [7, 1].

4.5 Third Generalisation

Our third generalisation of the inverse-image variable will be a combination of the first and 
the second generalisations. It will be for this most general variable that we do the moment
calculations, and ultimately prove our main convergence theorems (5.3.3 - 5.3.5).

First of all recall the definition of S2 '
HI

S2 = J 2 hi<c.i <4'U )
j = 1

Recall also, however, that we can write

b j  =  E  (4-12>
aeAj

where 5c is as in (4.3).
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We replace Sc with the more generic p of (4.4) and then combine the ideas of (4.11) & (4.12)
to get the following variable:

m ___

E =  E (A ,h ,f )  =  J > j  £ > ( f (a)) (4-13)
J=1 aeAj

Putting A =  A  (so that m = 1) and h\ — 1 gives E =  S\. On the other hand, putting p = Sc
gives S =  £2 . Therefore S is a generalisation of both Si and S<2 .

4.6 A Simple Example

Let r  =  s =  1 and let Al, . . .  , Am & h i , . . .  , hm be as in §4.4. Further, let p be an additive 
character of Fg. Then we have

S3 =  X ] xWp(/(«))  (4.14)
OGFg

where x  is a multiplicative character on Wq, so that S 3 is a type of Gauss sum (see [20]).

4.7 Moment Calculations

We have now set the scene for a collection of random variables associated with the probability 
space T  which have applications to, among other things, several different types of character 
sum. In order to be able to determine the asymptotic distributions of these variables it is first 
necessary to match their moment sequences to those of the corresponding random map variables. 
Of course, we stated such results in Lemmas 4.1.1 & 4.3.1, and now we go on to prove the most 
general case, namely that of E.

P roposition  4.7.1. For k, I > 0, the moments of the complex-valued variables E and E* satisfy:

E(EfcS*) =  E(E*fcE^) Vfc +  I < d

Before we can prove the proposition, we need the following preliminary lemma.

Lem m a 4.7.2. Let a  G A  and let G Z>o- Then

E^p(f(a))*p(f(a))J  ̂ =  E ^/o(<£(a))®p(0(a))J'^ provided d > 1
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Proof.

L.H.S. =  L  £  p(h(a))V(ha))

-  J_
w

Mb )V(b ) f  K h G T  : h(a) =  b}

he-F
1

bGB

i  Y ,  P W P W )’ < T V  by Cor. 2.3.1
" bGB

Q-s E
bGB

On the other hand, we have

r .h .s . =  p j  E  p w w f p i m j
<p&BA

=  IKT E  PM V fb)? H* e  S '1 : <£(a) =  b}
bGB

=  E  Mb) W
bGB

=  n - ' Y pW pW ?
bGB

Since B =W* in our case, we have N  ~  qs and the result follows. □

We are now in a position to prove Proposition 4.7.1, although we refer the reader to Appendix 
B for some technical points which occur in the proof.

Proof. Let us rewrite the expression for E in a slightly different way:

£ =  E ^ ( f ( a ) )  (4.15)
aG>V

where A 1 denotes A i LI. . .  U Am.
i2a is defined to be hj (of (4.13)), where j  is the unique integer such that a  6  4 j .

We can therefore write

S*2! =  E  E  E  (i) (!) n t c *  (4.16)
t = l  T C A '  i j  W =1

T={ai,... ,at}

The innermost sum is over all multi-indices i — (i i , . . .  , it) and j  — (ii, - - • , j*) satisfying
11*11 =  i|j|| “  I and (iw, j w) 7  ̂ 0  (Viu). See Appendix B for a full explanation of this.
Similarly, we have



CHAPTER 4. GENERALISED INVERSE-IMAGE VARIABLES 41

Applying the expectation operator to (4.16) & (4.17), and tidying up the constants, we have 

fc+i f t  \
e ( s * s l) = Y  Y ,  T , m , T,hi) - e  (4-i8)

t =  1 T C A ' i j  \ w = l  /
T = { a i , . . . , a t }

fc+i /  t \
E (s‘fcr !) = y^ y . t4-10)

t = l  TC.A' i j  \ i u - l  /
T = { a x , . . . , a t }

where

m ,  T, i, j) =  ( J) ( 1 j n  (4-20)rk \  fV  1

' j / to=l

By Proposition 2.5.1, the variables p(0(au>))z,up(</»(aw))'7ui, where 1 < w < t, are independent 
and so the expectation operator can be taken inside the product sign in (4.19).
By the same result, the variables p(f (aw))Zlup(f {slw))3w (1 < w < t) will be independent provided 
that d > t .  Thus, for k + 1 < d, we can take the expectation operator inside the product sign in 
(4.18) also.
In view of Lemma 4.7.2, we obtain the required result. □

N ote  4.7.3. This also proves Propositions 4.1.1 and 4.3.1 also, since Si and S 2 are both special 
cases of E.

4 .8  S u m m a r y

We have defined the very general variable

m __
E = S(A,h,f) = 5 > J- L > ( f ( a»

j = 1 aCAj-

This is a complex-valued random variable associated with a random polynomial vector of type 
(r, s). It has applications to, most notably, character sums over Fg, and it also generalises the 
variable (c  of chapter 2 .

E has a natural random map analogue E* - a complex-valued random variable associated with 
a random map of type (qT, qs).

The moments of E and E* match up to an order which depends only on the maximum de
gree d that the random polynomial vector f  can have. (Recall that d := min{di,. . .  ,da}.)
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As a result, if we know the asymptotic behaviour of any particular specialisation of E*, we 
can deduce that S has the same asymptotic behaviour, provided d tends to infinity arbitrarily 
slowly with q.



Chapter 5

R andom  Character Sum s

5.1 Characters on Wq

We can now turn our attention to character sums over finite fields which involve one or more 
random polynomials. We saw in chapter 4 that, by construction, the generalised inverse-image 
variable £  has applications to such character sums. If we can determine the asymptotic be
haviour of the map analogue £*, then the moment matching of §4.7 will infer that £  has (in 
general) the same behaviour.

First, however, we must endow the function p (defined in §4.1) with certain specific proper
ties which identify a product of complex characters on ¥q.

Let us define:
Gt = {2£C:/ = l} (k € N)
Goo =  {z e  C : |2 | =  1}

These are precisely the compact subgroups of C*, the former being finite for all k 6  N.

As an example of what we require of p, let us consider the ‘mixed character’ x  : i? -» C 
on B — given by

X(b) =  xi(M-**X»(M^i(&u+i)---W&u+v) iu, v € S>0, u +  u =  s) (5.1)

where Xi 1S a multiplicative character on ¥q (1  < i < u)
and is an additive character on ¥q (1  < i < v).
Then the image of x  will be a finite group of roots of unity, possibly with zero adjoined (if 
u > 1). That is,

x(-B) =  Gt or x{B) — Gt U {0} (some t G N)

43
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Hence, if we restrict x  to the domain C — (F£)“ x Fgu we have

x(B) — Gt (some t E N)

Further, if b is a random element of C (in the natural way), then x(b) is uniformly distributed 
on Gt, so that, in particular, t divides c =  ftC. This leads us to make the following definition:

D ef 5.1.1, We will say that the function p : B  —*■ C is of arithmetic type if

p(b) =  6 c{b)p(b) Vb 6  B  (some C c B )

where Sc is as in (4.3) and p : B  C is such that p{C) =  Gt (some t 6  N) and that /3(b) 
is uniformly distributed in Gt (b a random element of G).

5.2 Restrictions on p  as q -A- oo

A function which is of arithmetic type exhibits the properties of a typical product of characters 
on Fq. Next, consider the sum E as given in (4.15):

S=£haP(f(a))
a  eA '

where A' — A i LI. . .  LI Arn. We assume that g —f 7  < 1 as n, N  0 0 .

In our convergence theorems of this chapter, we will, as always, be letting q —>■ 0 0  through 
any sequence of prime powers. So our sets A , B  will be growing in size and our function p will 
be changing constantly. We must therefore first specify the behaviour of p as q —> 0 0 . Let us
write p(C) ~  Gt q̂y We shall consider two cases:

1 . t(q) —> r  <  0 0  as q 0 0 .
This is the same as saying that, for all q sufficiently large, /3(G) — Gr for some fixed
r  € N.

2 . t(q) —> 0 0  as q —> 0 0 .
This situation is slightly more complicated.

Case 1 is straight forward; we have that /3(b) is eventually uniformly distributed on the finite 
group Gr . For case 2, however, we need to know a result about the convergence of uniform 
distributions on the circle G ^.

T heorem  5.2.1. Let a sequence of discrete complex-valued random variables such
that, for each k £ N, zj. is uniformly distributed on Gt^ . I f t(k) —> 0 0  as k —> 0 0 , then Z}c 
converges in distribution to a uniform distribution on G00.

Proof. See Appendix C □
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5.3 The Asym ptotic Behaviour of £* (and hence of £ )

We wish to know the asymptotic behaviour of E* (q, d -+ oo) which, as always, will depend on 
how certain parameters vary as q tends to infinity. We shall see that the behaviour splits into 
five cases. Finding this limiting behaviour in each case amounts to calculating the limit of the 
characteristic function of a normalised version of E*, and then using the Continuity Theorem 
(1.7.8). i.e. we work with the characteristic function of a variable of the form

E * - / i

<T

where /u, a2 are (resp.) the asymptotic mean and variance of E* in that particular case.

This is the standard technique used to prove the Central Limit Theorem and in fact, our 
theorems will be very much of central-limit-type. Before we dive straight into the theorems we 
must first make several definitions in preparation for our analysis of E*.

D ef 5.3.1. Let us define

<7(t) =  E(exp it.E*) (5.2)

where
t  =  (h, t2) and t.S  -  £i&(E*) +  t23(E*)

C(t) will be used to determine the behaviour of S* in the first two cases, Theorems 5.3.3 and
5.3.4. In the latter, the following variable, P , will occur:

Let Z i , . . .  , Zrn be random variables, uniformly distributed on the sets hiGr , . . .  , hmGT, respec
tively. We define Pj to be the compound Poisson variable with parameters ^  and Zj  (1 < 
j  < m) (see §1.6). Finally, let P  be the sum of the (independent) variables Pj, that is

m
p = T , P j

i=i

In the final three cases, we shall be looking for convergence to Gaussian distributions. These 
will require use of the following characteristic functions:

1 .

C i(t) =  E ^exp«t. ^

where
771cn i , o oivh f . c \

^  h= and =  r t f *  i 1 -  j f )
j - 1
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2 .

C2 (t) =  E ^exp it. ))
where

(Tn cn
rriN 7

3.

Os( t ) = E

where
cnCT

3 “  2m N r ^ l,0jlj=i

Finally, we define the real 2 x 2  matrix H  by

H  — 1 7=i®(hi ) 2 T S . i W i M h j )
Y 3 U  «Cfc#)3(fcj) E r= i» (f tj ) 2

(5.4)

(5.5)

(5.6)

The following lemma tells us what C7(t) looks like: 

Lem m a 5.3.2.

3 =  1

where

E j(t) =  E(exp [it./yp(6)]) -  1 

/or o random variable b & C } uniformly distributed on C. 

Proof.

E(exp it.E*) — E l exp
j = 1 aeA,-

(5.8)

=  e  [ n  n exp ii t -hjp((t,(a))\
\ j = 1 Q6 Aj

m
=  n n  E(exp[«t.hJ-p(^(o))]) (by Prop. 2,5.1)

J = l .  o g A,-

m
= n n  E(exp [?t.hjp(6/)]) (b1 imiformly distributed on B)

j=l a£Aj

= E (exp [ it.h jp ft)]) 
3= 1
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But

E (exp [it.hjp(b')]) -  ^  ^  exP [it.hjp(x)] +  X ) 1 )
Vsec %$c J

1 \  "\ r. . / m N  — c
= ] ^ L exP ll t -hdP W] +  ~ n ~

XEC

= ^ E « P  +  1 -  Jf
sec

=  ~  (E(exp [it.hjp(b))] -  1) + 1

Thus

and so

m
o(t)=n(^w+i)

3=1

m
logC(t) =  X ^ ^ l o g  ( l  +  ^-EjOO) (5-9)

3-1
fft f 2

= E ^ {^ w -^ w 2+-} (6-10>j= i v '

and the result follows. - □

We can now state and prove the five main results which govern the asymptotic behaviour 
of E*. The proofs all rely on the characteristic functions defined above and the Continuity
Theorem (Thm. 1.7.8). Because of our moment-matching of §4.7, the results all hold for E,
provided d -* oo arbitrarily slowly with q.

Theorem  5.3.3. Suppose that cj$ = cqT~s -* 0. Then E* (and hence E) converges to zero in 
probability.

Proof. Under these conditions, logC(t) —J- 0. That is, <7(t) —>■ 1 and the result follows from 
the Continuity Theorem. □

Theorem  5.3.4. Suppose that cj$ — cqr~s -> A > 0. Then E* (and hence E) converges in 
distribution to the variable P, defined in Def. 5.3.1.

Proof. Under the above conditions, we have

7 Am
iogc(t) -+

,— m  j= i
m r ,

C(t) -+ n e x p  ^ E (e<u^ b> ) - 1
J=1 L
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By Proposition 1.5.2, the RHS is the characteristic function of a sum of independent random 
variables having characteristic functions

exp 7 A
rn

(E -  lj  (l < j  < m)

By Appendix F, these variables are the Pj, and the result follows. □

Theorem  5.3.5. Suppose that cjfa = cqT s —̂ 0 0  and r  = 1. Then s  converges in dis
tribution to a 2-dimensional Gaussian distribution with mean 0 and covariance matrix H.

Proof. Let t ' =  and define b ;,b  to be random elements of j3, C  (respectively) in the natural
way. Then we have

C'i(t) =  E ^exp it.

=  E (exp i t1. (£* —

i t' I

j =1

Now, for 1 <  j  < m,

E (exp it'. h j ( p ( b ' ) - ~ )  )

«p “' ■ e e N - ^ ]
.̂7=1 a£/4j 

771 ck

=  JjE^exp^t'. jhj ^p(b') — ~ ) ] ) m ^y ProP- 2.5.1

i  J2 exP *'*'■ h '  (pW  -  £ ) ]  + jf E  exPit '- (pW  -  ^ ) ]
x e c  x$ .c

£ . 1  expit', f a  (p(x) -  £ ) ]  +  ( l  -  £ )  exp
xEC

(expit'. [/* (p(b) -  £ ) ] )  + ( l  -  £ )  exp 

( l  +  t'.h j (p(b) -  |  (t'.fti (p(b) -  ^ ) ) "

+ ( x -  £ )  ( x ~ -  5 2 + ° (|t'|3),

But r  — 1, which means that for n sufficiently large, p(h) is identically 1. This leads to

E (exp it ', [hj (p(b') -  ^ ) ] )  =  1 -  2 ^ 7  (* -  Jj?) +  O flt'|3)

=  1 - 2C-) <tJiP  + 0 ( i r )  (” suff- larse)
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Since a  ~  717 —»■ 00, as n —̂ 00, we get

By inspection, the matrix of the quadratic form
m

j^ ( t  .h j)2
j=l

is H and the result follows from Appendix F and the Continuity Theorem.
□

<72

tion to a 2-dimensional Gaussian distribution with mean 0 and covariance matrix H.
Theorem 5.3.6. Suppose that cj  ̂=  cqr s —>■ 00 and r  =  2. Then converges in distribu-

Proof. Let t' =  ^  and let b7, b be as before. Then we have

=  E(expit7.£*)

=  E j exp it', ( 5 3  5 3  M0(a))
\  \ j =1 aS-Aj

m
=  JJ E (exp it7. [hjp(b7)]) ™ 

j=i

Now, for 1 < j  < m,

E (exp it7, [fyp(b')]) =  ^  5 3  ^P®4'* +  Jf  5 3  ^P®*'- [fypM]
aJGC x$C

° .E (exp it7, [hj-p(b)]) +  ( i  -  -̂ r)JV

( l  + t'.fy/Hb) -  i  (t'.ft3p(b))2 + O ( | t f  ) )  + ( l  -  £ )
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But r  = 2, which means that for n sufficiently large, p(b) is uniformly distributed on {—1,1}. 
In particular,

E (t'.hjpih)) = 0  and E ( (i/.fy/Sfb))2) =  2(t.hj)2

We deduce that

E (exp i t 7. (7ijp(b7)]) =  l - ^ F^ l - ^ ( t ,.ftJ- )2 +  o(|t, |2)

= 1 ” 2 ^ ) ^  + ° (^~) ^  ^  laXĝ

Since a ^  77.7 —f oo, as n —¥ oo, we get

/ \ £Lm /  - \  m
c 2(t ) n ^ _ _ ^ ( t .fc,)aj

n - p  ( - ^ c * - ^ )2)
7 = 13-i

m

=  exp [
3=1

and the result follows from Appendix F and the Continuity Theorem.
□

T heorem  5.3.7. Suppose that c j | — cqr 3 -» oo and r  > 3. Then ^  converges in distribu
tion to a 2-dimensional Gaussian distribution with mean 0 and covariance matrix I.

Proof. Let t 7 — ~  and let b7,b  be as before. A similar argument to that in the previous proof 
produces

^ ( f )  — E^expit .  ^ (5-11)
m

=  n E ^ i t ' [ hM n ) -  (5-12)
3 =1

Again, mimicking the same previous argument gives

E (expit7.hjp(b7)) =  -j^E +  t 7.hj-p(b) -  ^ (t7.A,-p(b) ) 2 +  O ( |t7|3)^ +  ( l  -  ^)(5.13)

=  i  -  ^ E  ( ( t 7./ij/5(b))2) +  0  (n suff* larSe) (5*14)

Since r  > 3, we have that for n sufficiently large,

E ( t 7.hjp(b)) =  0
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and we claim that
m 1 m

5 3  E {(t '-hJp(h ))2) = 2  K ? + *22) 5 3  i^'i2 suff- large) (5-15)
3= 1  i=i

For the moment, let us assume (5.15). Then 5.12 and 5.14 yield

771

<h{t) ~  n { i - £ * ( [ « * , & ) ] * ) ) '
3=1 
m

n  6xp{ - ^ N E {^ ' -h^ 2) )

3= 1  
m

3= 1

ex p |-2 ^ £ E([t' - ^ bfl2)
1 m

= exp (“2 -̂2 + 2̂) 53 N2 ! 5-15)

and the result follows from Appendix F and the Continuity Theorem.

It remains to prove 5.15. This will be an elementary calculation. For 1 < j  < m, let Zj
denote the random variable hjp(b). By definition,

E ((t./yp (b ))2) =  EdixSR^O +  feSf^)])2 (5.16)

=  t?E(3f{(zj)2) + 2 t 1t2E (9 l(x j)a (x j))+ ^ E (9 (2 3)2) (5.17)

where k — r  if r  < oo and A; —)■ oo if r  — oo. Now,

2

SRfe) 2 = 1 /  \
2  \ z 3 Z3 ) =  \  l Z]  +  Z3 2 +  2 IZ3 I2 ] ( 5 - 1 8 )

By the same token, we have

%(zj)2 =  - \ [ * j+  z32 ~ 2\zs\2] (5-19)

and 5R(^-)?y( ĵ) =  — ̂ [ z j  ~%j2] (5.20)

Substituting 5.18, 5.19 and 5.20 into 5.17 gives

4.E((t./ij-p(b))2) =  E(z?)[ l1 - i i 2]2 +  2E(|z3|2)[«f +  « | ] + E ( z J 2)[t i  +  it2]2 (5.21)
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It is easy to see that

® izj )  ~  ® (^J2) “  0 and E ( | ^ | 2) = E ( | h Jf )

whence

E((t./i3p(b))2) =  I e (|fy |2) [if +  i|] (5.22)

Summing over j  gives 5.15 and hence the theorem is proved. □

5.4 First Application

Let p : C be a product of additive and multiplicative characters on ¥q. i. e.

P =  X i ‘ “ X b

Then the natural domain of definition C  for p is the subset C\ x . . .  x Gs C where

_ J Eg, Xw additive Cv — <
IIÊ , Xv multiplicative

Clearly cq~s —> 1 as q —> oo.

We put m  — 1 so that A' — A  (i.e. the trivial partition of A  =  IÊ ) and we also put h\ — 1. 
Then we have, as in § 4.1, the sum

X i { h ( & ) )  • • - X a U s W )  (5 -23 )
a<=]F£

where f  is a random polynomial vector in J7.

As in §5.2 we assume that the order of the character product approaches a limit r  < oo as 
g —> oo. We can then apply Theorems 5.3.3-5.3.7 to S\ to get the following corollary:-

Corollary 5.4.1. Let q oo. Then the character sum Si has the following behaviour as

d oo arbitrarily slowly with q:

1. I f  r  =  1 then qr — Si converges to zero in probability.

2. I f  r  =  2 then ■% converges in distribution to a Gaussian variable.
q*

3. If t  >  3 then 2q~%Si converges in distribution to an isotropic M2 - Gaussian variable.
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Proof. Since cqr s ~  qr —> oo, Theorem 5.3.5 applies. We note that 7  =  1 and cq 3 1.

For r  =  1 we have
M(qr — Si) =  qT — {JLi— qT — cqr ~ s'Y 0

Also,

^  =  « r s7 ( i - « r s)

Hence, by Lemma 1.7.4, Si converges in probability to zero.

For r  =  2 we note that

H =  1 °
0 0

That is, we are dealing with a distribution in EL The result comes from applying part (2) of 
Theorem 5.3.5.
The case r  > 3 is proved in a similar way. □

From this we can deduce the limiting distribution of the real-valued random variable, |<5i|, in 
the case that r  > 3:

C orollary 5.4.2. I f r  > 3, then ^q~^\Si\ converges in distribution to a Weibull distribution 
with parameters — 2. That is,

Prob ^|Si| < f 1 — exp Va; >  0

Proof. We apply the result in Appendix D which says that the modulus of an isotropic M2- 
Gaussian variable has a Weibull distribution with the required parameters. □

A very similar result to the above was proved in [35], but using a slightly different probability 
space and a completely different method.

As mentioned in §4.2, bounds for character sums in one variable are known but only when 
the degree of the polynomial is sufficiently small compared with the size of the field. This 
result gives the average behaviour over all degrees of polynomial and includes the multivariate 
case, which is much more difficult to find estimates for using number-theoretic and geometric 
techniques.



CHAPTERS. RANDOM CHARACTER SUMS 54

5.5 Second Application

Let Xli- “  5 Xr be multiplicative characters of whose product x  has order m. This means 
that x  takes m  distinct values over A! — (Fg)s.

We partition A! into Ai U .. .  U Am according to these m  values and define h i , . . .  , hm to 
be these m values in C. That is,

hj =  x(b.j)

where aj  £ Aj  is any representative.

Putting C =  {0} C IF® and p =  Sc gives us the following sum which is like that of §4.4:

^ 2 =  X )  X i ( a i ) - " X r K O  ( 5 -2 4 )
f ( a ) = 0

Applying Theorems 5.3.3-5.3.7 to this sum gives us the following:

Corollary 5.5.1. Let q —¥ oo. Then the character sum S2 has the following behaviour as 
d —¥ 0 0  arbitrarily slowly with q:

1. I f  r < s then S2 converges to zero in probability.

2. I f r ~ s  then S 2 converges in distribution to the variable
m

Y  = T , hi Yi
3= 1

where the Yj are independent Poisson variables with parameter

3. I f  r > s then converges in distribution to an isotropic M2 - Gaussian variable; here

Proof. The result for r < s follows from Theorem 5.3.3. If r  =  a, we have cqr~3 —¥ 1, whence 
our mixed Poisson variables have parameter A-, from Theorem 5.3.4.

Finally, suppose r > s. Note that 7  =  c =  1, so that in the case r  =  2, we apply Theorem 
5.3.6 with

_ 2 _  n  
2 m N

Also, it can be shown, using the orthogonality relations for characters, that the matrix H  
simplifies to

m 0  
H  =  2 U

. 0  ?_
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It follows that the covariance matrix of ~ is I in this case.

For r  >  3 we have
o cn V—\ . ,2

=  =J=1

n
2N

and the result follows from Theorem 5.3.7. □

We now discuss an interesting example. Consider the character sum

?  (iaeFp 
/(a) = 0

(5.25)

over the prime finite field Fp. Here denotes the Legendre symbol, that is, the quadratic
character on .

To get this sum, we have put q = p, m =  2, h\ — 1, hi — — 1 and r =  s == 1 in the
definition of S2 . By the above corollary, S 2 will converge to

Y  = Yi - Y 2

where Yi and Y2 are independent Poisson variables with parameter However, we can actually 
say more about this variable.

C orollary 5.5.2. Let q 0 0  and let d -» 0 0  arbitrarily slowly with q. Then the character
sum S2 converges in distribution to a Bessel distribution with parameter 1. That is,

Prob{Sr2 = v)-+  e ^ R i l )  (Vw E %)

Proof. From the proof of 5.3.4, we have
m r ,

C(t) -F exp -
1= 1 L m

In this particular case, it reduces to

C (t) -+ exp -  1 exp j^E  -  1

=  CXP f S  (e‘(‘ -  1)1 exP 1  (e l!l “  1

=  exp [cos ti — 1]

By Appendix F, this is the characteristic function of a Bessel distribution with parameter 1 and 
the result follows from Theorem 1.7.8. □
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We also refer the reader to [16], p59 for a discussion on the ‘randomised random walk in one 
dimension’ and its relation to Bessel functions.

Another example along the same lines is the character sum

^2 =  £  x M  (B-26)
aeFp

/(g )=0

where x is a multiplicative character of order 4 on Fp, p =  1 mod 4. Then SQ is a discrete 
random variable taking values in Z[i], the Gaussian integers. Our parameters this time are: 
q — p, r — s — 1, m — 4, hj — P (1 <  j  <  4). According to Corollary 5.5.1, the sum S" 
converges in distribution to the variable

r  =  (y4 - y 2) + * (K i- r3)

where the Yj are independent Poisson variables with parameter | .  Prom the last example,
however, we infer that (Y4 — Y2) and (Yi — Y3) must each be Bessel variables with parameter
Hence we have, for all e Z ,

Prob (S$ = u + iv) -4 e - 1J„ Q ) /„ ( i )  (5.27)

as d —̂ oo arbitrarily slowly with p, p =  1 mod 4.

5.6 Third Application

Let xij • • ■ , Xt and hence A, h be as in §5.5. This time, let p be a product of additive characters 
Xl ' '  * Xs on so that this particular version of £  is a kind of ‘Gauss sum’:

S Z = Y 1  '' ‘ " * Xs(/s(*0)

Of course, this is just a more general version of the example given in §4.6. We assume that the 
products of the Xj and of the if)j are non-trivial characters on IF̂  and IF̂ , respectively. Again 
we apply Theorems 5.3.3-5.3.7:

Corollary 5.6.1. Let q oo. Then converges in distribution to an isotropic M2-Gaussian 
variable; here

Proof. ~N  ~  n = qr — oo and Xi ’ ' '  Xs is non-trivial, so only Theorems 5.3.6 & 5,3.7 apply. 
In the case r  — 2 we have, as in the proof of Corollary 5.5.1, that H  =  ^ 1  and so the result 
is clear in this case. Also, if r  > 3 then Theorem 5,3.7 applies directly to give the result (as in 
proof of Corollary 5.5.1). □

We note that the resulting distribution in this case is the same as that of Corollary 5.4.1, part 3; 
that is, Si and S3 have the same asymptotic behaviour has q, d - f  0 0 , at least in the case r  > 3. 
It follows that 1^31 follows the same behaviour as |jSi |, namely that described in Corollary 5.4.2.
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5.7 Fourth Application

Consider the character sum defined by

S4= Y2 (5-28)
/i(a)=0

where / i ,  are random polynomials in Fg[X], and each of x-> $  can be an additive or a multi
plicative character. Then this sum can be obtained from £  by putting:

1 . r  =  1 and s — 2 .

2. C =  {0} x Fg or C  =  {0} X JFJ, so that cqT~s 1.

3. A i , . . .  , Am to be the cosets in (or 1Ê ) of the distinct values of Xi h i , . . .  , hm to 
be these values (so 7 = 1 ).

4. p — 8cX

Further, if we assume that r  — 0 0 , i.e the order of x  tends to infinity with q. Then Theorem 
5.2.1 applies and Theorems 5.3.3-5.3.7 give:

C orollary 5.7.1. The character sum £4  converges to the compound Poisson distribution with 
parameters 1 and Z } Z  being a complex random variable uniformly distributed on the circle G ^.

Proof. Since cqr~s —> 1, only Theorem 5.3.4 applies in this case. Since r  — 0 0 , hjGT =  Gr and 
hence £ 4  converges in distribution to a sum of m identically distributed compound Poisson- 
(™, Z) variables. This is clearly equivalent to a Poisson-(l, Z) variable, hence the result. □

This is an interesting result, as the compound variable obtained is a random walk in two- 
dimensions with a random number of steps. Each step has length 1 and can be equally likely 
in any direction, and the total number of steps is a Poisson variable with parameter 1. In 
particular, the expected number of steps is 1. A good question might be, “what is the expected 
length of the resulting vector?” or even, “what is the distribution of this length?”.

Let Zn denote the result of a random walk consisting of precisely n steps in M2, each step 
being uniformly distributed on Goo. The distribution of Zn was studied by Kluyver [23] and 
Rayleigh [37] who obtained

poo
Fn(x) = Prob{\ZnI < x ) = x  J^x tyJo it^d t (n > 1) (5.29)

Jo

where Jv denotes the standard Bessel function of order v (see Appendix E). A proof of (5.29) 
can be found in [40], p420.
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From this we deduce the density of \Zn\:

rjjp r°°
f n { x )  — - ^ 7  =  J  Jo(xt)tJo{t)ndt (n > 1) (5.30)

This formula was used by Odoni in [35] to study a random character sum.

Now, let S  denote the compound Poisson distribution described in Corollary 5.7.1. We have

1 00 1 
F (x)= P ro b { \S \< x)  -  e~1 -Fb(a?) +  ^ e " 1— 

k= 1
oo 1 /-OO

=  e 1 + Y l e 1 n  xJ i{x t)jo {t)
k=i Jo

=  e“l +  j™  e - ' x U x t )  ( f j  ^  j  dt

roo
=  e-1 + I x J \(x t) (exp(Jo(£) — 1) — 1) 

Jo
Unfortunately, this integral does not appear to be an elementary function. By a similar calcu
lation, we can obtain the density f (x)  of S:

oo .
f (x)  =  X V 1^ / , . ^ )

fc= 0
roo

— /  tJQ(xt) (exp(J0(t) -  1) -  1) <
Jo

This allows us to get an expression for the expectation of \S\, using
roo

^ ( 1̂ 1) “  I x f (x)dx  Jo

If required to, one could estimate this integral using numerical methods to get an approximate 
value for the expectation.



C oncluding Rem arks

Up to now we have exploited the similarities between mappings and polynomials over finite 
fields in order to prove some convergence results for certain variables associated with random 
polynomials. These results had applications to zeros, primitive roots, image sizes and character 
sums. We shall finish off by suggesting more ways in which the theory could be developed, 
hopefully giving motivation for future research.

Classes of Polynomials

In our work, we have used the probability space F, essentially consisting of all polynomials up 
to degree d. Instead, one could restrict one’s attention to a certain class of polynomials and 
attempt to gain information about them. A typical example might be linearized polynomials, 
defined thus:

D ef 5.7.2. Let F  be a finite extension of Fg. A polynomial /  E F[X] is g-linearized if

f ( X )  =  c d X ^  +  . . .  +  C i X «  +  c „

It is easy to see that

f{a +  b) =  / (« )  +  /(!>) Va, b e  F  

f(Xa) =  Xf{a) V a e ^ A e F ,

so that /  induces an IÊ -linear map from F  to F. Linearized polynomials exhibit some very nice 
properties (see [30]) and would be amenable to probabilistic techniques.

D ef 5.7.3. Another important class of polynomials are the Dickson polynomials (of the first 
kind), defined by:

!?«i ( x ’a) = g  ^ q { d ~jj y - a)j x d ~2i

where d e N  and a G Fg. We also have the Dickson polynomials of the second kind:

r o / w  _  *\
. « j t ,a )  =  £ (  . 3 ) ( - ay x d- v

j = 0 ^ 3 '
There also exist generalisations of these to several variables.

59
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Dickson polynomials were introduced by L.E.Dickson about a hundred years ago. Their 
interesting algebraic properties mean that they have applications in the pure and applied theory 
of finite fields, including an application to cryptosystems (see [34]). We also remark that the 
direct-image size of Dickson polynomials has been studied in [11]. For a full account of the 
theory of Dickson polynomials, see [29].

More on Zeros of Random Polynomials

The results on inverse-image size in Chapter 3 had applications to zeros of random polynomials. 
As in [36], we obtained the asymptotic distribution of the number of zeros of /  in  th e g ro u n d  

f ie ld , Fg. We could ask the same question, but this time allow the zeros to lie in some extension 
field Wgtt.

D ef 5.7.4. Let s  ~  1 so that our random polynomial vector /  consists of a single polynomial 
in Fq[Xu  • • • , X r]. We define

C o .» (/)  =  K a e ® J .  : / (o )  =  0 }

When we try to calculate the moments of Co,u we obtain

^  =  ^  ti{&-sut>sets of zeros of h }

w

i
=  t r  £  K h e F  1 h(K ) = ° >

KCF  
$K=k

Clearly, one would need some generalisation of Lemma 2.2.1 or one of its corollaries in order to 
obtain the full moment sequence for £o,u-

More Character Sums

Our aim in Chapters 4&,5 was to generalise the inverse-image variable of Chapter 3 and to get 
the most general variable possible. Instead, if one had a particular character sum in mind which 
did not fit into the Chapter 5 picture, one could go back and try to construct a specific variable 
which behaved accordingly. For example, consider the sum

/2(a)7i0

where -0 is an additive character on Fg. This cannot be dealt with by our variable E, but one 
could modify the probability space T  to include rational functions and proceed in the usual 
way.



CONCLUDING REM ARKS 61

Another interesting problem would be to study incomplete character sums. That is, char
acter sums over a proper subset of Fg which has size asymptotically ‘smaller5 than q e.g. 

O Such sums have important applications in coding theory (see [19]).

Random Polynomials over Galois Rings

A Galois ring is basically a generalisation of a finite field. It is a finite commutative ring with 
identity, having characteristic pm (p prime, m  € N). The idea behind Galois rings is to have a 
theory which covers both finite fields Fg and the residue class rings This is outlined by 
B.McDonald in [33]:

“It is classically accepted that in certain classes of problems in combinatorial mathematics the 

researcher handles separately the finite field GF(pn) and the prime ring It is our belief 

that both cases should be treated simultaneously in the setting of a Galois ring. ”

Unfortunately, as far as random polynomials are concerned, this statement is perhaps a little 
ambitious, as we shall soon see. We can however say a few things about random polynomials 
over Galois rings. Let us begin with a definition.

D ef 5.7.5. let p  be a prime and m, e 6  N. By the Galois ring GR(pm, e) we mean the unique 
separable extension of of degree e. We have that

GR(pm,e) *

where /  has degree e and is a “basic” monic irreducible polynomial in ~mfjx j a that is, a monic 
polynomial which is irreducible modulo p.

Properties of Galois Rings

1 . #G R{pmie )= p me

2. GR(pm, e) has characteristic pm

3. G R(pm, e) is a commutative local ring, having residue field Fpe

4. The maximal ideal of G R(pm, e) is principal, generated by p  i.e. m =  (p)

5. Every ideal of GR(pm, e) is of the form (pk) for some k € N 

For a fuller account of Galois rings, we refer the reader to [33].
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We define random polynomials over Galois rings in an analagous way to those over finite 
fields. However, we shall stick to the simplest case, namely polynomials in one variable. Let 
R  — GR(pm, e) and define 7Zd — { f  € i?[X] : deg /  < d}. This is a finite subset of R\X] and 
is made into a probability space in the obvious way.
For a random polynomial /  £ lZti we define the random variable Co to be the number of zeros 
of /  in R .

One would like to be able to calculate the moments . However, for k > 3 this appears 
to be combinatorially infeasible, and so we shall calculate only the mean and variance of Co* We 
first need a preliminary lemma and corollary:

Lem m a 5.7.6. Let a ,b  £ R, 6 , and put v =  ordp(a — b). Then, for g £ R[X],

1. g{a) — 0 g e { X - a )

2. g(a) =  g(b) = 0 ^  g  £ { (X  -  a) (X  -  6), pm~v(X  -  a) )

Proof. 1. The first assertion follows from the factor theorem, which holds in S[X] for any 
ring S.

2 . (<=) is easily verified.

(=^) Suppose that f (a)  = f(b)  = 0
Since f (a)  = 0, we have f  = ( X — a)g\ (some gi £ -R[X])
Then 0 =  f (b)  =  (6  -  a)gi(b)

i.e. upvgi(b) = 0 (for some unit u £ R)
i.e. gi{b) =  0  (modpm" u)
i. e. gi =  ( X  -  b)g2 +  Pm~vgs,
from which the result follows.

□
D ef 5.7.7. Let K  C.R. For convenience, we define

Of(K) = { / £ R[X\ : /(c) -  0 Vc £ K }

As common sense would suggest, we abbreviate 3({a}) to 3(a) and 3({a, 6}) to 3(a, b).

C orollary 5.7.8. With a and b as above, we have

1. #  {Ud n 3(a)) =  pmed for d > l

2. #  {n d n 3 (a, b)) =  p<m(d-i)+v) for d >  2

Proof. 1. Each element g of lZd fl 3(a) is uniquely expressible in the form g = (X  — a)gi 

where 51 has degree d — 1 . Since there are pme possibilites for each coefficient of g i , the 
total number is p med.
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2. We claim that in this case, each element of our ideal 3(a, b) is uniquely expressible in the 
form g — (X  — a) (X — b)gi + (X — a)a where a is chosen modulo pv. The result will then 
follow.
To prove the claim, first note that if g is of the above form then it is obviously an element 
of the ideal.

Next, suppose that g G 3(a, 6). Then

g =  ( X -  a ) (X -  b)9l + p m~v { X -  a)g2

for some # i,32 £ R[X\.
By the factor theorem,

g2 =  {X  -  b)g5 +  a  

for some g € i?[X], a  S R .  Therefore

/  =  ( X - a ) ( X - 6)(5 l + p ^ 3 )H-pm“v( ^ - a ) a

which is of the required form. It now remains to prove the uniqueness.

Suppose that

{X  -  a)(X -  6)pi +  pm~v{X  -  a )a i =  {X  -  a)(X -  b)g2 +  pm~v(X -  a)a2

Then
(X -  b)gi + p m~va i =  ( X -  b)g2 + p m~va 2

Taking the degree of both sides we see that degpi =  degp2 =  8, say. We proceed by
induction on 5. Without loss, let us assume that 6 =  0.
When S =  0 we have g i , g2 e  R  and

Xgi T p m~va i  =  X g2 T  pm~vOi2

from which it follows that gi = g2 and ot\ =  a2 (modpu), as required. Assume now that
the uniqueness is true for 8 =  k — 1, (k E N) and let 8 =  k. Then

X 9l -f- pm~vo'i =  X g2 +  pm~va 2 

=» (Coeff. of X kin gi) — (Coeff. of X kin g2)

5l — 92 and a i = a 2 (modpw) by induction

and the claim is proved
□
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We are now in a position to calculate the mean and variance of Co-

T heorem  5.7.9. For d >  2, the random variable £q has mean 1 and variance m ( l  —

Proof. The mean of Co is given by

E(c°) =  A -  £  : / (o) =  0 }
8 d /e  n d 

1

=nr
oE ii

pTne(d-fl)

„ m e (d + l)  X  N { /  : / ( a )  ”  ° }
ir „ r D

J;  rJned
a<=R

^  1

The second moment is given by

E ((?)) =  m = m = o y

= ^ T I )  £  : /W = /(6) = °}
{a,b}CR

1 i
= i ) 5 £ £  £  K / e  * - : / ( « )  =  / ( « +  «*■)=<>}

aER w—0 u modpm v 
p\u

1 1 m—1

pme(d+l) 2
£ £  £  pe(m(d-i)+^) by Goroiiary 5 .7 .3

a£ ii 0 u modpm—v
p\u

1 1 ^  f
p?ne(d+l) 2
y  a eR  u=0

1 -  2™  y '  me y »  / 1  _  l . \
2  Z—w \ y)e /

a E fl V—0 V ^  '

1 A  1=  -m  1 -----
2 V Pe

Hence, by 1.1, we have

K(Co) = m ( l - i )

□

Note that, putting m  — 1 , we have that R  is the finite field ¥q where q = pe and the above 
theorem agrees with our results in Chapter 2.

For Galois rings, it would be nice to be able to prove convergence results analogous to 
Theorems 3 .3 .2  and 3.7.1, that is, results about inverse and direct image sizes. Unfortunately,
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the techniques we have used in studying random polynomials over finite fields seem to fail in 
general for Galois rings. This is because we have been exploiting the fact that every map on a 
finite field is a polynomial (Prop. 2.4.1), while this is far from being true in a general Galois 
ring. We refer the reader to [10, 8 ] for a study of maps and polynomials over Galois rings. It is 
likely that a different approach is required to study random polynomials over such rings.



A ppendices

A. A Combinatorial Sieve

In Chapter 3, we require an estimate of the size of a set which is calculated using the inclusion- 
exclusion principle in which not all the details are known. We have the following notation and 
result: Let £2 be a finite non-empty set and let jEi,. . .  , Em C £2. For 1 <  I < m  put

«<= e  i n *
LC{1,... ,m} i£.L

i l=i

and define cko =  1 so that an > 0 (VZ) . Then, by the inclusion-exclusion principle,

m m
\l-1 .U-bs = E ( - 1)! *“<

i = 1 l - l

Lem m a. (Brun- Waring principle) 
For each 1 < j  < m — 1,

i = i  i = i
< «j+i

Proof. For 1 < i <  m, let us define

1 , X €: Ei
S i { x )  =  {  (Va? 6 ri)

0 , x ^ Ei

Then we have that
( m \  to

n\U* = E IK1-*(*)>
i = l  /  a:Gfl i = l

(5.31)

For the moment, fix x  G O and define f x : W M by

■W*) “  f i d  ~ tSM )
i = 1

(5.32)
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Expanding this out gives

fx(t) =

( \rn
I

1=0

m

e  n*w
L C { 1 ,. . .  ,m }

\  11 L=l J

where

Prom 5.34 we have that

tl a^x)
1=0

Also, differentiating 5.32 I times gives

( - i ) ! / £ > « =  e
L C { 1 ,. . .  ,m }  i$ L  

H L=l

from which we see that ( — 1 )lf x \ t )  is monotone decreasing in [0 , 1].

Applying MacLaurin’s theorem (Lagrange remainder) to f x, we have, for 0 < I < m

3

f x ( t )  =  £ ( - ! ) *  +  r H i(® )
l=o

where

fCH-!) 
% i W  =  7TU + 1) ■

Since (—1 )J+1/ i '?+1^(t) is monotone decreasing on [0 ,1] we have

(—1 )J+1R j+i(x) < ( -1 ) J+ 1  ^  +  1)| =  (from 5.36)

Combining 5.38 and 5.40 gives

(_l)J+i ^ ( t )  _  a*(®)-*^ < aj+i(x )

Summing over all 1 6 O, putting 2 = 1  and using 5.31 & 5.35 gives the result.
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(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41) 

□
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B. A M ultinomial Expansion

Consider the following expression:

z =  (®i +  . . .  +  xv)k(yi +  . . .  +  yv)1 

where u, fc, Z £ Z>o and v > k + 1.

(5.42)

To expand this expression, normally one would use the multinomial theorem twice, and combine 
the answer. That is,

/  ... \  /
z  = E

JU'1 "'*>V
/

?  0 *f vi'

\ j i + - . + h = k J

E  ( ; ) ( ; )

(5.43)

(5.44)
i j  ' - u = l

In the the above, i denotes the multi-index ( i i , . . .  , iv) where iu £ Z>o (1 < u < v) (and 
likewise for j) . The multinomial coefficient is defined by

( k\  _  kl 
\ i /

Also, for convenience we shall define

||l||   ij T . . .  P Zy

Since v > ft +  Z, each summand in (5.44) has at least one of the pairs {iu->ju) equal to zero. This 
is inefficient as far as our moment calculations of Chapter 4 are concerned, and we therefore 
require a better way of writing (5.44), namely one in which none of the (iu->ju) are zero.

Consider a typical, term of the summation:
V

n
u=1

Suppose that, in this summand, the total number of non-zero (iUl j u) is t. Then, certainly t can
lie anywhere in the range of 1 to k +  L We then have a subset T  £ {1,... ,?;} of size i, where
u £ T  if and only if (iu, j u) ^  0.
Finally, for each subset T1, the set of possible products of the xw and yw will now be indexed by 
i =  (iu .. .  , it) & j =  ( ju . . .  , j t) where (Zw, j w) ^  0  for each 1 < w < t.
Hence, we have

/L>\ /1\ ^
z = E E E (i) QII xiurtU (5-45)

t= 1 r e { X , . . . , y }  i j  x  7  V 7  W = 1
T = { s (  1 ) ........s ( t ) }

Note that the innermost sum is over all i, j £ (Z>q)* such that (iw>jw) 7  ̂0 (1 <  ^  <  i).
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C. Uniform Distributions on the Circle

In this section we prove Theorem 5.2.1

Theorem . Let be a sequence of discrete complex-valued random variables such that,
for each feeN, zj* is uniformly distributed on Gt^ . I f  t(k) —¥ 0 0  as k —¥ 0 0 , then converges 
in distribution to a uniform distribution on Goo.

Proof. There is a 1-1 correspondence between the circle G& and the interval [0,1) arising from

e2ixiQ q  mQ(j  1 0  e  M

We can therefore think of our probability distributions as being on [0 , 1) (see [16], p61 for details).

Suppose that X m is uniformly distributed on {0, ^ , . ..  , —p}, the set corresponding to Gm (m  G 
N). Also, let X  be uniformly distributed on [0,1). Then it suffices to show that the X m converge 
in distribution to X  a sm -4 o o .

Continuity Theorem (1.7.8), the X m converge in distribution to X , and the result follows. □

Now

while

ra(elm — 1)

But rn(elm — 1) =  +  o(l) and so E(ezt̂ m) —> E(e*tx") as m  —Y 0 0 . Hence, by the
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D. The M odulus of an Isotropic R2-Gaussian Variable

Suppose that Z  is a Gaussian variable in M2 with covariance matrix crl. Then \Z\ is a random 
variable in M. with the following distribution:

Prob(\Z\ <  «) =  exp ( - ^ ( s 2 +  i2) )  da

n > ph H -

dt

i  r
2tt a2

dO

=  1 — exp i * 2)
That is to say, \Z\ has a Weibull distribution with parameters — ̂ 5-, 2.
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E. A N ote on Bessel Functions

The Bessel function Jv(A) of order v (where v e  S, A G M) is defined by

®pa(t-1) = £) TV„(A) (5.46)
\  /  V = ~ C X )

which leads to the expressions

W= E  JI(Z + t>)! - °) (®-47)

JV(X) = ( - 1  )VJM>) (v < 0) (5-48)

However, the study of random walks in one dimension (see [16]) leads to distributions involving 
a modified version of the Bessel function:

00 /'A\2i+U
'•w =E  (»  ̂°) (s-49)

I„(A) =  I_„( A) (v < 0 )  (5.50)

It is clear that Iv is related to Jv via

Jv( iX)=ivIv( A) * (5.51)

and from this we get the relation

expiA (t- I) = £  (iTYMA) (5.52)
 ̂ '  v = —oo

Putting T  — —i in 5.52, gives
00

e~A Y  J^(A) =  1 (5‘53)
v~ —00

from which it follows that, for a fixed A 6  ®, f(v)  =  e~^Iv(\)  is a valid probability density 
function. Also, putting T  =  —ielt in 5.52 gives

0 3

expA(cost — 1) =  e“A Y ,  eltvIv(ty (5.54)
v= —00

Hence if A  is a Z-valued random variable with density function f (v) = e”AJy(A), the charac
teristic function of X  is

Cx(t)  =  E(exp i tX)  =  exp A (cos t — 1)

We refer the reader to [40], ch.2 for an introduction to Bessel functions.

(5.55)
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F. Table of Characteristic Functions

DISTRIBUTION PARAMETERS C(t) REFERENCE

Bernoulli V 1 — p +  pelt [17], §5.8

Binomial n,p (1  — p F p e lt)n [17], §5.8

Poisson A exp A(eiifc — 1) Below

Gaussian in M exp ( - i* 2) [17], §5.8

Gaussian in M2 TT
X X exp (—gt*Ht) [17], §5.8

Compound Poisson \ F exp A(E(eitJtl) — 1) Below

Bessel A exp A (cos t — 1) Appendix E

Compound Poisson Distribution

Let X  have a compound Poisson distribution with parameters F  and A. So

X  = X \  +  . . .  +  X y  

where the X j  have distribution F, and Y  is a Poisson-A variable. Then

0 0 /  k \
E(e itx) -  e x p i t ^ X j  P ( Y  = k)

k-0 \ j=l J
= e - A^ E ( e ifXl)i!^  (by 1.5.2)

ES fc!
=  exp AE (eltXi)

-  exp A (E (eitXl) — l)

Note that putting F  =  1 gives the result for an ordinary Poisson-A variable.
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G. Index of N otation

NOTATION SECTION DESCRIPTION

A 2.4 the domain of a random map, usually Wq
A f 5.2 a particular subset of A
a 2.4 an element of A
A 1.1 a <r-algebra
B 2.4 the codomain of a random map, usually
b 2.4 an element of B
C 3.1 a subset of B
c 3.1 the size of C

dj 2.3 the degree of f j  (1 <  j  < 5 )
d 2.3 the minimum of the dj

$u 4.1 indicator function of a set U
E 1.3 expectation operator

2.1 finite field with q elements
F 2.3 probability space for random polynomial vector
f 2.3 random polynomial vector

f j 2,3 components of random polynomial vector
Gk 5.1 the group of ktb. roots of unity in C (k € N)
G „ 5.1 the unit circle in C

9j 2.3 fixed polynomials in construction of F
hj 4.3 complex constants varying with F
H 1.4 covariance matrix

5.3 imaginary part
I 5.3 identity matrix
m 4.3 number of subsets in partition of A 1
N 2.4 the size of J5, usually qs
n 2.4 the size of A, usually qr
P 1.1 a probability measure

P 1.6 a probability
Prob{E) 1.1 the probability of an event E
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NOTATION SECTION DESCRIPTION

Q 2 .1 a prime power
r 2 .2 a fixed natural number
5ft 5.3 real part
s 2.3 a fixed natural number

Si 4.1 a character sum
S2 4.2 a character sum

s ^  S'i 5.5 a character sum
S3 5.6 a character sum
Si 5.7 a character sum
a 4.3 the size of A!

7 5.2 the limit of ^

Cc, Cc 3.1 inverse-hnage size
77, 77* 3.1 direct-image size

A 3.2 limit of ^

P 1.4 mean

P 4.1 a function from B  to C
£, S ’11 4.5 generalised inverse-image variable

a 4.1 standard deviation
T 5.2 the limit of a particular parameter

$ 2.4 random map
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