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Preface

Genius is one percent inspiration and ninety-nine percent perspiration

Edison

The above statement is one with which the author heartily concurs, although he is at 

pains to point out that his own research in no way implies genius!

However, the general sentiment of Edison’s statement is certainly borne out by this 

work.

At the core of this research lies a small group of very simple ideas. However, these 

ideas, despite their simplicity, have generated a multitude of non-trivial problems, the 

solutions to which have required a great deal of thought, practical consideration and 

complex software engineering.

It should perhaps be pointed out that simplicity of ideas is not necessarily a bad thing. 

On the contrary, since this research is aimed primarily at musicians who have an 

interest in technology but who may not have an in-depth knowledge of mathematics, 

simplicity of ideas is a positive asset. The author believes that if the reader looks 

beyond this, he or she will recognise the ninety-nine percent that has been duly 

perspired.

In addition to the hurdles thrown up in developing the system, the author has also had 

practical problems to overcome.

For example, the author taught himself to program competently in C++ alongside 

developing his own knowledge of music technology and working on the algorithmic 

techniques described herein. Thus, the computer code used to test the techniques is 

certainly not as neat nor as efficient as it could be.

Also, because the author was implementing these developments on his own, a large 

amount of time which could otherwise have been devoted to system development was 

used to code and test the algorithmic composition software described in this thesis.
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It is unfortunate that time constraints have dictated that several promising 

developmental ideas could not be implemented. However, the author hopes to 

continue this research after his research tenure at the University of Glasgow has 

ended.

Finally, the author would like to point out this research is extremely practical in nature 

and the software described herein is an integral part of it.

This thesis should not be judged in isolation but in conjunction with the music 

software provided on the accompanying CD. It is strongly recommended that the 

reader spends a little time familiarising his or herself with both versions of CAMUS 

so that he or she might better appreciate the problems and solutions detailed in these 

pages.

Also, the measure of the success of the project must lie, at least in part, with the 

compositions it has inspired. The CD also contains a number of compositions created 

with the help of CAMUS.

In order to aid the reader in forming a judgement and so that like compositions may 

be compared, a number of CAMUS-inspired compositions are presented alongside 

compositions created using other algorithmic composition systems. It is important that 

the reader’s lays aside his or her own musical tastes for the moment in order to 

appreciate the compositions on their own merit. We believe that in so doing, he or she 

will recognise the merits of the system and will agree that CAMUS can truly be used 

to create music.
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Abstract

Mathematics and music have long enjoyed a close working relationship: 

mathematicians have frequently taken an interest in the organisational principles used 

in music, while musicians often utilise mathematical formalisms and structures in 

their works. This relationship has thrived in recent years, particularly since the advent 

of the computer, which has allowed mathematicians and musicians alike to explore 

the creative aspects of various mathematical structures quickly and easily.

One class of mathematical structure that is of particular interest to the technologically- 

minded musician is the class of dynamical systems -  those that change some feature 

with time. This class includes fractal zooms, evolutionary computing techniques and 

cellular automata, each of which holds some potential as the basis of a composition 

algorithm.

The studies that comprise this thesis were undertaken in order to further examine the 

relationship between mathematics and music. In particular we explore the notion that 

music can essentially be thought of as a type of pattern propagation: we begin with 

initial themes and motifs -  the musical patterns -  which, during the course of the 

composition, are subjected to certain transformations and developments according to 

the rules dictated by the composer or the musical form. This is exactly analogous to 

the process which occurs within a cellular’ automaton: initial configurations of cells 

are transformed and developed according to a set of evolution rules.

We begin our study by describing the development of the CAMUS v2.0 composition 

software, which was based on an earlier system by Dr. Eduardo Miranda, and discuss 

how best to use the system to compose new musical works.

The next step in our study is concerned with highlighting the limitations of CAMUS 

as it currently stands, and suggesting techniques for improving the capabilities of the 

system.

We then chart the development of CAMUS 3D. At each stage we justify the changes 

made to the system using both aesthetic and technical arguments. We also provide a
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composition example, which illustrates not only the changes in operation, but also in 

interface. The system is then re-evaluated, and further developments are suggested.



1. Algorithmic composition -  a definition

1.0 Introduction

The worlds of art and science seem, at first glance, to be poles apart. For example, 

few people would associate particle physics or mathematics with visual art, and yet 

both scientific disciplines have spawned whole series of works — one only has to look 

at the poster prints of particle trails in cloud chambers, or of fractal spirals that are 

available in any high street art store for evidence of this.

Art too has made inroads to the scientific community, with image processing 

([Schalkoff, 1989]), physical modelling of acoustic instruments ([Sullivan, 1990]) and 

even automated painting ([Holtzman, 1994]) attracting considerable research 

attention.

Musicians, perhaps more so than any other group of artists, have always been quick to 

embrace technology in all its forms. From early attempts at synthesis with the 

Telharmonium ([Roads, 1996]) to the latest digital audio workstations (see, for 

example, [Lehrman, 1997], [Jones, 1996]), musicians have looked to science to 

provide them with new and challenging ways of working. Indeed, in many instances, 

new technology has provided us with somids ([Roads, 1988]) and even compositions 

([Xenakis, 1971]) which, to all intents and purposes, would have been impossible 

otherwise -  surely a case of ‘science begat art’.

One outcome of the acceptance of scientific techniques by the musical community has 

been the flourishing of algorithmic composition techniques.

Algorithmic composition is by no means new, but the advent of affordable and 

powerful computing resources has meant that more and more people, armed with no 

more than a little programming knowledge and some musical ideas, have been able to 

realise their composition algorithms from the comfort of their own desktops.

In this section, we introduce the term algorithmic composition. We define algorithmic 

processes in the strict sense, then loosen the definition slightly to allow the inclusion
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iii our discussion of systems that are generally referred to by musicians as algorithmic, 

even though they do not necessarily meet the chosen criteria.

We must also state what we mean by the act of musical composition. This is not as 

easy as it first seems, since the working techniques of composers have changed 

considerably over the years. Today, a composer is as likely to be found performing 

sonic manipulations behind the controls of a digital editing suite as at a desk writing 

individual instrument lines on manuscript.

The compositions themselves have also changed a great deal as technology has 

developed. New composition tools have given composers greater sonic palettes with 

which to work and more complex tools to transform the sounds. This has resulted in a 

new type of composition that explores sound itself (see [Sutherland, 1994]).

1.1 What is algorithmic composition?

Before we can appreciate fully the development of algorithmic composition, we must 

first form a clear notion of what the phrase actually means. The obvious answer is, of 

course, that algorithmic composition is the technique of applying algorithmic 

processes to compose musical works. This, however, begs the question: What is an 

algorithmic process?

1.1.1 Algorithmic processes

A simplistic notion, though one which, for most practical purposes is perfectly 

adequate, is that an algorithm is a collection of rules or a sequence of operations for 

accomplishing some task or solving some problem ([Loy, 1989]). With this in mind, it 

is apparent that algorithmic composition is by no means new — composers have rigidly 

adhered to formal rule systems almost since the dawn of music itself ([Roads, 1996]). 

Indeed, formal techniques for composing melodies to texts date back to at least 1026, 

when Guido d’Arezzo proposed a scheme that assigned different pitches to vowel 

sounds in liturgical texts ([Loy, 1989]).

Another famous historical example of rule-based composition is the game of 

Musikalisches Wiirfelspiel, or musical dice (see Figure 1.1,1), which was played, by 

amongst others, W. A. Mozart, J. P. Kirnberger and F. J. Haydn ([Cope, 1991]).
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To indulge in the game of musical dice, the composer writes a number of pieces of 

music, designed to slot together to form a complete work. The game proceeds by 

rolling dice, the outcome of which is used to select one of the pieces, which is then 

positioned in the score. A second roll of the dice is then used to select a piece to 

follow the first. The process continues until the component pieces are exhausted.

The results of the musical dice game will depend, of course, on the quality of the 

component pieces and how well they interact with one another. Indeed, part of the 

reason for playing this game was to demonstrate the composer’s skill in writing 

musical passages that would work well together irrespective of the final composition’s 

combinatorial makeup.

As we have seen, many traditional composers have been utilising rule-based 

composition without being considered as using algorithmic techniques. Indeed, during 

the Classical period, rigid adherence to form was all, and composers had to wrestle 

with countless formal constraints when developing a work. It was not until Beethoven 

arrived to challenge this view and usher in the Romantic period that a more 

individualistic style of composition emerged ([Abraham, 1982], [Abraham, 1990]).

However, despite his fondness for parlour games and the rigidity of the formal 

constraints to which he worked, one would not generally consider either the works or 

the working techniques of Mozart as epitomising algorithmic composition.

Clearly, then, by an algorithmic process, we mean a process that exhibits more than 

simply rule-following.
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Zahlentafel

/ I I

1

I I I

. Walzerteil 

I V  V VI VII VIII

2 98 22 141 41 105 122 11 30

3 32 6 128 63 146 46 134 81

4 69 95 158 13 153 55 110 24

5 40 17 113 85 161 2 159 100

6 148 74 163 45 80 97 36 107

7 104 157 27 167 154 68 118 91

8 152 60 171 53 99 133 21 127

9 119 84 114 50 140 86 169 94

10 98 142 42 156 75 129 62 123

11 3 87 165 61 135 47 147 33

12 54 130 10 103 28 37 106 5

2 Walzerteil

I I I I I I IV V VI VII VIII

2 70 121 26 9 112 49 109 14

3 117 39 126 56 174 18 116 83

4 66 139 15 132 73 58 145 79

S 90 176 7 34 67 160 52 170

6 25 143 64 125 76 136 1 93

7 138 71 150 29 101 162 23 151

8 16 155 57 175 43 168 89 172

9 120 88 48 166 51 115 72 111

10 65 77 19 82 137 38 149 8

11 102 4 31 164 144 59 173 78

12 35 20 108 92 12 124 44 131

Figure 1.1.1 — Two numeric tables from a musical dice game by Mozart. The columns 

numbered I — VIII denote the eight parts o f the waltz. The rows numbered 2 - 1 2  

indicate the possible values o f two dice. The table values refer to the bar numbers o f  

four pages o f  musical fragments. [Roads 1996]
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Today, most, if  not all, algorithmic compositions are produced by computer. The 

composer converts his or her algorithm into machine code and uses the computer to 

perform the menial composition tasks, such as ensuring that the musical phrases 

adhere to the composition rules, or the writing of score files, leaving the composer 

free to assume a more supervisory role. Thus, many algorithmic composition systems 

are automated composition systems.

Is this sufficient to constitute an algorithmic process? Unfortunately not -  automated 

processes need not be algorithmic.

For example, the TEolian harp, a stringed instrument with strings of different thickness 

all tuned to the same note, was used in ancient Greece to generate automatic 

compositions ([Cope, 1991]). The instrument was placed outdoors, so that the wind, 

when it caught the strings, caused them to vibrate with various harmonics, depending 

on the wind speed and direction. This is not an algorithmic process, although 

compositional algorithms that simulate the effects of the wind on strings or wind 

chimes certainly do exist ([Syntrillium, 1996]).

Similarly, an algorithmic process need not be automated -  all of the calculations and 

transformations applied by computer could, if so desired, be done manually, although 

it may take a considerable time so to do ([Knuth, 1973]).

It has also become increasingly common to use the terms ‘algorithmic composition’ 

and ‘computer-aided composition’ synonymously. While it is true that algorithmic 

composition can be a form of computer-aided composition, there a great many ways 

in which a computer can aid the composition process without resorting to composition 

algorithms.

For example, using a notation package to produce a score is a form of computer aided 

composition, as is the use of a word processor for making programme notes. It is 

extremely important that one says precisely what one means, so as to avoid 

unnecessary ambiguity.

How then do we formulate a concrete definition of an algorithm? In his book, ‘The 

Art of Computer Programming’ [Knuth, 1973], Donald E. Knuth gives five criteria 

that should be fulfilled if  a process is to be considered algorithmic:
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(i) Each process must be finite. Thus, an algorithmic process must terminate after 

some finite number of steps.

(ii) Each step must be clearly defined. In other words, there must be no ambiguit}'

surrounding any of the stages. Each must give a clear instruction as to the

operation that is to be performed, or of the rule that is to be applied. 

Consequently, a human operator should be able to perform each stage of the 

process manually if so desired.

(Hi) The process may have input. Parameters may or may not be required to solve a

particular problem. For a composition algorithm input could take the form of a

chord progression, a MIDI file, or live input from a musician.

(iv) The process must have output. The algorithm must, when concluded, return a 

result. The process is guaranteed to terminate by (i). The output will depend on 

the nature of the algorithm, but for compositional purposes, it is likely to be a 

musical score, or a MIDI or audio file.

(v) The process must be effective. By effective, we mean that the process must solve 

the problem in a “sufficiently basic” manner, by which we mean that the process 

is, in some sense, irreducible, and cannot be broken down into further sub­

processes.

With these criteria, it is easy to define reasonably closely what we mean by an 

algorithmic process -  it is simply any process that satisfies (i) -  (v) above.

1.1.2 Musical ‘algorithms’

We now relax the definition of algorithm slightly, to allow for processes that do not 

strictly adhere to the five criteria presented above.

For example, although the game of musical dice is generally considered by musicians 

to be algorithmic, it can be argued that the use of dice to control the development of 

the composition contradicts the second of our five criteria -  each step must be clearly 

defined. The non-determinism of the dice roil means that the process is not clearly 

defined, since it depends on the outcome of a random event.
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It can, however, also be argued that the outcome of the dice roll merely provides input 

to the system, and so it is truly algorithmic.

In any case, as was noted at the beginning of Section 1.2.2, a reasonable rule-of- 

thumb guide is that an algorithm is a collection of rules or a sequence of operations 

for accomplishing some task or solving some problem, and this is exactly what the 

game of musical dice is. The problem here is the construction of a complete piece of 

music from a number of musical fragments. The game provides us with a simple set 

of rules that incorporate an element of chance.

For the remainder of our discussion, then, we will use the term algorithm to refer to 

any finite formal system of rules that can be applied to solve the problem at hand.

1.1.3 Musical composition

We must also indicate broadly what we mean by a musical composition. For example, 

many modern compositions are concerned more with tonal structure and development 

than with themes and melodic motifs (see, for example, [Sutherland, 1994] for a brief 

discussion of musique concrete). The instruments of such compositions are often 

sound snapshots recorded from the real world or completely synthetic tones, while the 

development may consist of the splicing together of tapes or the application of digital 

signal processors to sampled sounds.

In compositions such as these, the sounds that constitute the composition are often 

more important than the notes that are played, if, indeed we can speak in such terms. 

Extrapolating this idea, it becomes apparent that programming languages, such as 

CSonnd or Pascal with suitable add-ons, can be considered as algorithmic 

composition systems, since we may use these languages to implement algorithms for 

creating and manipulating sound samples on computer.

We must ask ourselves at what point do we draw the linel

In the discussion that follows, we lean towards the more traditional notions of musical 

composition -  those works that are composed of melodic and harmonic instrument 

lines that are developed as the composition progresses.
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Whilst we do not focus on electroacoustic composition and musique concrete, nor do 

we exclude them from consideration. A good example is Eduardo Miranda's 

Chaosynth system (see Appendix E), which uses cellular automata to generate 

granular sounds1.

Although this system cannot be said to produce complete compositions, the sounds it 

creates can be used to form the basis of an electroacoustic composition. It is also 

possible to use the system as a simple melody generator by altering the granular 

synthesis parameters.

1.2 Composing algorithmically

Now, having examined what constitutes an algorithmic process, we must examine 

how they can be utilised in a musical way.

We begin by considering the processes behind the construction of a new musical 

composition.

1.2.1 A step-by-step guide to making music

The construction of a new musical work, whether algorithmically or manually, can be 

broken down into three stages:

(i) Generating musical ideas.

(ii) Creating a rough sketch o f the composition,

(Hi) Creating the final composition.

Steps (i) and (ii) above are the most likely candidates for the use of an algorithmic 

process. For example, at step (i) an algorithmic composition system could be used to 

generate a number of short melodic lines or rhythmic figures, which the composer 

would select and subject to steps (ii) and (iii) according to his or her own aesthetic 

judgement.

1 For a full discussion on granular synthesis see [Roads, 1978], [Roads, 1988], [Roads 1996], [Jones & 
Parks, 1988] and [Truax, 1988],



Alternatively, a composer may already have a very specific idea as to the form of a 

composition. An algorithm could then be specified and used to generate a rough 

sketch of a work, which could then be fine-tuned by the composer.

The amount of work needed to produce the final composition -  step (///) of the 

composition process -  will depend on how closely the sketch conforms to the 

composer’s ideal. It may range from none at all to a complete rewrite, although in 

practice, it is usually somewhere between these two extremes.

In the subsequent discussion of algorithmic composition systems in general and of 

CAMUS in particular we provide several examples of how various algorithmic 

composers can be used in stages (7) and (ii) of the composition process. We also give 

a particular example of a composition system that produces complete musical works 

from scratch. That is, we present an algorithmic composition system that can 

effectively realise stages (i) -  (iii) of the composition process.

1.2.2 Algorithmic composition as a model for inspiration

Inspiration is a phenomenon that is as difficult to define as it is to obtain. It is far from 

being understood let alone effectively formalised.

Part of the problem may lie with the fact that inspiration is a highly subjective 

phenomenon. Another source of difficulty surly lies with the fact that inspiration 

exhibits itself in such a wide variety of forms; from the germ of an idea which after 

successive refinements becomes a complete work, to a moment of clarity when entire 

symphonies suddenly unfold before the recipient’s ears.

For example, W. A. Mozart is quoted in the Life o f Mozart Including his 

Correspondence ([Holmes, 1878]) as writing of inspiration and his method of 

working:

“All this fires my soul, and provided I am not disturbed, my subject enlarges itself, 

becomes methodised and defined, and the whole, though it be long, stands almost 

complete and finished in my mind, so that I can survey it like a picture or a beautiful 

statue at a glance. Nor do I hear in my imagination the parts successively, but I hear 

them, as it were, all at once. What a delight this is I cannot tell.”
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Algorithmic composition systems are often utilised as 'idea machines’. In other 

words, they provide moments of musical inspiration that the composer can then seize 

and build on. When viewed as such, it is clear that algorithmic composition systems 

provide us with a model for inspiration.

That is not to say, however, that algorithmic composition systems closely mimic or 

even come close to replicating the processes at work in the creative human brain. 

Rather, algorithmic composition may be viewed as an artificial inspiration model in 

much the same way as computers that exhibit artificial intelligence can be said to 

model intelligent beings without necessarily mimicking the low level processes at 

work in their brains.

In spite, or perhaps because of this, algorithmic systems are often seen as being 

something of a cheat -  a cop-out for composers who lack creativity. The author, 

however, considers this to be more than a little unfair. Why should composers be 

denied a source of inspiration because it comes from a machine? Many composers 

and other artists have been inspired by machinery (see, for example, [Lewis, 1935], 

[Honegger, 1994] and [Chaplin, 1936]).

Indeed, it is the author’s opinion that the creative aspects of composition are much 

more relevant when developing initial ideas and sketches into a complete work than in 

generating those ideas in the first place. Thus, an algorithmic composition system that 

provides a starting point for the composer’s own imagination may help to develop the 

composer’s natural creative instincts.

On the other hand, an algorithmic composition system that could reliably perform all 

three stages in the composition system would totally remove the need for human 

intervention. This certainly has applications in the interactive entertainment industry. 

Computer games and virtual environments often require audio that will react to the 

game player or observer in order to create a truly immersive environment (see, for 

example [Microsoft, 1999]). Without the ability to generate such music in real time, 

short segments of sound must be composed beforehand and some sort of selection 

routine employed in order to play the correct segment at the correct time.

As well as the issue of the need for interactivity with human operators, this raises 

important points on the authorship of algorithmic music. We discuss this in Section 7.
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1.3 A general outline of the problem

And so we come to define the problem with which this research is concerned. Below 

we present the main driving force behind our work on algorithmic composition and 

conclude by suggesting the direction we will take.

1,3,1 Music as pattern propagation

Initially, this research project was concerned with dynamical systems and their 

applications to music composition. It was the ultimate aim of the project to explore 

how many different types of dynamical system, such as cellular automata, fractals and 

neural networks could be utilised in the composition process.

However, as the project developed, it was found that the particular case of cellular 

automata provided us with a rich source of material. With each new development 

came new problems and challenges to be overcome.

This had the effect of shifting the emphasis of the research from:

How can we make music with many different dynamical systems?

to:

How can we develop and improve this particular cellular automata system to produce 

interesting and natural sounding music?

In effect, the research has focused on one particular aspect of algorithmic music 

composition and explored its possibilities as a viable source of new musical material.

The research focuses on modelling the composition process as a form of pattern 

propagation -  each theme in a composition may be viewed as a separate pattern. As 

the composition progresses, the patterns are subjected to certain transformations (such 

as straight repetition, transposition, inversion, augmentation and so on) according to 

the formal structure that the composer has chosen for the work. This structure can be 

rigidly adhered to or used as a general guiding principle, but so long as certain design 

constructs are in place to guide the temporal development of the composition, we can

11



say that we have a system of pattern propagation according to some predetermined 

constraints.

Traditionally, composers have intuitively employed pattern propagation when 

composing, but algorithmic composition techniques, such as those described in the 

following chapters, allow the pattern propagation to be formalised, albeit at a much 

higher level. Here, the composer does not, in general, apply specific transformations 

to a particular" pattern. Instead, all of the musical patterns evolve according to the rules 

and constraints that have been specified at the design stage.

We shall see that any common stylistic musical features that emerge from the use of 

cellular automata as music generators can be said to be a Bonification of the emergent 

behaviour of the automaton -  the temporal development arises as a result of the local 

evolution rules and is not fully specified in advance.

1.3.2 Research goals

In the proposal for this research project the following goals were set:

i.) Produce new algorithms for mapping mathematical structures to music.

ii.) Gain knowledge as to what kinds of mathematical structures and mappings 

produce useful results in sound.

iii.) Produce new tools for music composition.

iv.) Produce new compositions.

We shall discuss whether or not these goals have been met in Chapter 7.

12



. A brief History of Algorithmic Composition

2.0 Introduction

In this section we present a brief outline of the history of algorithmic composition 

systems. We then describe seven main algorithm types used in composition. These are 

stochastic algorithms; formal grammars and automata; iterative algorithms; fractal 

algorithms, evolutionary algorithms, serial algorithms and rule-base algorithms. We 

focus on those algorithm classes that have the most significance to our research and 

conclude by proposing a new method of grouping together algorithms that generate 

and perform music in a specific manner.

In this, and subsequent chapters, we provide the reader with short sections of pseudo­

code imder the headings Algorithm x. These ‘algorithms’ are written midway between 

computer code and English and are intended to complement the main body of the text.

2.1 Stochastic Algorithms

2.1.1 What are stochastic algorithms?

Of all the compositional algorithms, stochastic algorithms are undoubtedly the easiest, 

both to comprehend and to implement.

A stochastic algorithm is one that is intrinsically dependent on the laws of probability, 

making it impossible to predict the precise outcome of the process at any point in the 

future ([Roads, 1996]). Stochastic processes may be natural, such as the decay of 

radioactive isotopes, or artificial (that is, man-made), as is the case for certain types of 

dithering employed by many computer graphics and sound synthesis packages (see, 

for example, [Hearn & Baker, 1994] and [Roads, 1996]).

It is partly due to the accessibility of stochastic algorithms that they have become so 

extensively employed for compositional pmposes. Most, if not all, composers 

engaged in algorithmic composition have used stochastic processes in one form or 

another, whether as the basis for an entire composition algorithm or as an incidental 

decision-making routine.

13



2.1,2 Probability Lookup Tables

As mentioned above, the outcome of a stochastic process depends wholly on certain 

underlying probability distributions, a term used to describe the way that the 

probabilities are divided amongst each of the possible outcomes.

The simplest, and most widely utilised method of modelling and implementing these 

distributions is that of probability lookup tables. These are discrete, finite tables of 

values that correspond to the likelihood of occurrence of one or more events. The 

table entries range in value from 0, which indicates that the corresponding event will 

never occur, to 1, which indicates that the event will occur with absolute certainty2. A 

value of 0.25, for example, would equate to a one-in-four chance of occurrence in 

common parlance.

If the sum of all the entries in the probability table is equal to 1, then we say that the 

table is normalised. This is a very desirable state of affairs, because it implies that 

when a decision-making routine is called upon, we can say with absolute certainty 

that there will be some output, since the probability of one of the outcomes being 

chosen (that is, the sum of the probabilities of the individual outcomes) is, by 

definition, equal to 1.

The events will depend on the application of the probability table, but for 

compositional purposes, they are likely to be note events or pre-recorded sequences of 

notes.

We mentioned above that probability tables are discrete and finite, and depend on 

some underlying probability distribution, after which, by convention, we name the 

table. However, a probability distribution may be continuous, and some care must be 

taken when using such a distribution as the basis for a discrete table of values.

2In fact this definition is not strictly correct. It is possible for a single outcome to have probability 0 and 
still occur. However, for the (discrete) stochastic selection routines given below, it is certainly the case 
that a probability of 0 indicates that an event will never take place. It is for this reason we have 
presented the definition as above. For a fiiller discussion on the nature of probability, the interested 
reader is referred to, for example, [Murphy, 1991],
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For a general continuous distribution, p, the probability that x lies between the values 

a and b is defined as:

Thus, the probability that x — a is

J *  £ > ( x ) d x  =  0.

We can see that in order to specify the probabilities of a discrete distribution, we 

cannot simply assign the probabilities of the corresponding values of the relevant 

continuous distribution since these are 0. Instead, we assign the values of the 

distribution itself. This, however, leads to a further problem.

Take, for example, the exponential probability distribution, given by:

Suppose we now wish to construct the discrete probability table, P, using the above 

distribution for the three values, 0, 0.5 and 1. We may do this by letting P(x) = p(x) for 

x = 0, 0.5, 1 as illustrated in Table 2.1.1 below:

for x > 0.

Clearly, this distribution is normalised, since
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0 0.5 1

P to 1 e 03 e '1

Table 2.1.1 -  Discrete probability table, P, based on the exponential distribution,

p(x) =e'x, fo r x > 0.

However, if we now examine the probability values of P, we see that the sum is

1 + e'°-5 + e' 1 > 1.

Thus, P is not normalised. The reason for this is that on discretisation we introduce a 

sampling error because the area under the curve between 0 and 0.5 is not be the same 

as the sum of the function values at those points. This is illustrated in Figure 2.1.1 

below.

2

Figure 2.1.1 -  Care must be taken when creating a discrete probability table from a 

continuous distribution. The lighter region in the foreground represents part o f  the 

probability distribution given by p(x) = e'x for x >0. The darker region in the 

background represents the discrete probability table for x = 0, 0.5, 1 created using 

this distribution. The area under the curve p(x) does not equal the sum o f  the three 

discrete probabilities, leading to a sampling error.
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In order to compensate for this, we scale the probabilities in the discrete table so that 

it is normalised. A normalised discrete table is presented in Figure 2.1.2. Here, the 

continuous distribution is in the background of the graph.

1

0.5

0

2

Figure 2.1.2 -  The normalised exponential distribution on the points x = 0, 0.5, 1.

The simplest type of probability distribution is the uniform distribution (see Figure 

2.1.3). Here, each possible outcome is assigned an equal probability of success. Since 

a normalised table requires the sum of the probabilities of the possible outcomes to be 

equal to 1, this means that if we have N  equiprobable outcomes, the probability of 

each will be 1 IN.

1

§
■s 1/2n  o >_
CL

0

Figure 2.1.3 -  Uniform probability distribution.
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Outcome

17



The uniform distribution is used, for example, when we wish to select an equally 

weighted ‘yes’ or ‘no’ answer -  this corresponds exactly to a uniform distribution 

between two events. However, it is likely that a composer who is using probability 

tables for note selection would wish to use distributions that favour certain outcomes 

over others. There are many alternative distributions that can be used.

Linear distributions (see Figure 2.1.4) give a line of fixed, increasing or decreasing 

probability between two limits. Clearly, the uniform distribution is a special case of 

the linear distribution in which the line of probability has zero gradient and the limit 

points are equal.

1

I '
■§ 1/2 .a 
o
a.

0

Figure 2.1.4 -  Linear probability distribution.

The linear distribution can also be extended to the piecewise-linear distribution (see 

Figure 2.1.5). Here, the distribution can be divided into a number of distinct regions, 

each of which is linear. Note that the distribution may or may not also be piecewise- 

continuous (that is, the endpoint of the ilh region is the startpoint of the i + \ th region). 

However, since the distributions described here are all discrete, we can consider each 

of the data points as being the end or startpoint of the implied linear segment that lies 

between it and the next data point. Thus, we may consider any discrete probability 

distribution as being an extreme case of a piecewise-linear distribution.

i — ■ .  i — i . i  i . i  i i  i i  I . _ _
A B C D E F G 

Outcome
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Figure 2.1.5 -  Piecewise-linear probability distribution.

Exponential distributions (see Figure 2.1.6) give an exponential curve between two 

endpoints.

1/2

E F GC DBA

Outcome

Figure 2.1.6 -  Exponential probability distribution.

As with the linear distribution, the exponential distribution can be used to construct a 

piecewise-exponential distribution with some number of distinct regions, each of 

which is an exponential distribution.

Bell-shaped distributions (see Figure 2.1.7) are one of the most common naturally- 

occuring distributions. Traditionally, the term bell-shaped was used to describe the 

normal distribution. Here, however, we use the term to denote any distribution which 

exhibits a distinctive n-shaped curve. Bell-shaped distributions may or may not be 

symmetrical and have their minima at the endpoints.
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Figure 2.1.7 -  Bell-shaped probability distribution.

U-shaped distributions (see Figure 2.1.8) are essentially upturned bell-shaped 

distributions. They peak at the endpoints, and need not be symmetrical. The arcsine 

and beta distributions are U-shaped.

nre
. aO

1/2

B C D E 

Outcome

Figure 2.1.8 -  U-shaped probability distribution.

2.1.3 Using probability tables

Having now seen what a probability table is, we must devise a method of choosing 

outcomes according to the probability values stored within. This is a relatively simple 

task in the case of the uniform distribution.

The task of choosing one equiprobable outcome from N  is equivalent to the task of 

choosing an integer from 0, 1, — 1. Thus we have the following:
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procedure Uniforin_D.istribution ()
{

select a random integer, i, between 0 and N - 1 
execute ith outcome

}

Algorithm. 2,1,1 - Uniform probability selection routine.

This algorithm assumes that

(i) n, the number of outcomes is known in advance.

(ii) Each of the n outcomes has associated with it a unique procedure, ith outcome, 

for performing the corresponding operations required.

This algorithm is fairly intuitive, but how do we go about extending it to cope with 

non-uniform distributions? For this, we need the notion of cumulative distributions 

([Lorrain, 1980]).

The idea behind this is as follows: Suppose we wish to choose one of N  outcomes, 

labelled xi, x2, . . Then,  since 0 < P(x,-) < 1, and assuming that we are dealing with 

a normalised distribution, we have that

0 < ?(xi) < P(xi) + P(*2) < ... < P(x0 + P(x2) + ... + P(xa9 = 1.

Thus, we have an increasing sequence of non-negative real numbers that lie in the 

range [0, 1]. We can view this as a set of points that divide the real segment [0, 1] into 

smaller segments whose widths correspond to the different probabilities of the 

individual outcomes, as shown in Figure 2.1.9. Thus, in order to select an outcome, 

we randomly choose a real number from [0, 1] and observe into which segment it 

falls.
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Figure 2.1.9 -  Cumulative distribution method for non-uniform distributions. 

Cumulative distributions can be implemented as follows:

void NonUniform_Distribution()
{

Generate a random real number, x, between 0 and 1 
interval = P[0] 
i = 0
while (x < interval)
{

interval = interval + P[i] 
i = i + 1

}
execute ith outcome

}

Algorithm 2.1.2 -  Non-Uniformprobability) selection routine.

Again, we assume that n is known previously, and that each outcome has associated 

with it a unique procedure. We have also assumed that the probabilities are stored in a 

constant global array, p [ ].

It should also be noted at this point that if a probability is defined to be 0 here, the 

implication is that the corresponding outcome will never take place. Thus, it is 

necessary to assign extremely improbable outcomes a small but finite probability.

Now that we have seen an algorithm for selecting non-equiprobable events, we need 

only concern ourselves with assigning probabilities to outcomes according to the 

appropriate probability distribution. We illustrate with the linear distribution.
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Suppose we wish to assign probabilities to events so that the resulting distribution is 

linear between two endpoints, (a, P(«)) and (b, P(b)). This essentially reduces the 

problem to one of linear interpolation. This can be achieved by using the following 

algorithm. We begin by calculating the gradient and y-intercept of the line between 

the points (ia, P(a)) and (b, P(b)), before cycling through each of the intermediate table 

entries, and loading with the corresponding point on the line.

procedure Linear_Distribution(a, Pa, b, Pb)
{

gradient = (Pb - Pa)/(b - a) 
for i = a to b

P[i] = Pa + gradient * (i - a)
next i
normalise probability array

}

Algorithm 2.1.3 — Routine for assigning probabilities according to a linear

distribution.

A procedure whose task is to normalise the probability table can be specified very 

simply.

Recall that a normalised distribution is one in which the sum of the probabilities is 

equal to 1. In order to achieve this, our normalisation routine should calculate the sum 

of the probabilities then divide each of the probabilities in the array by this 

normalisation factor.
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procedure Normalise()
{

Normalisation_Factor = 0 
for i = 0 to N - 1

Normalisation_Factor = Normalisation_Factor + P[i]
next i
for i = 0 to N - 1

P[i] = P[i] / Normalisation_Factor
next i

}

Algorithm 2 .1 .4 - Probability normalisation routine.

This technique can be extended to fill lookup tables with non-linear probabilities. All 

that is required is some method of interpolating points with respect to the appropriate 

distribution.

We now introduce a stochastic process that is, in effect, one complexity level higher 

than the lookup table, that of Markov Chains.

2.1.4 Markov Chains

A Markov Chain is a sequence of trials of the same experiment whose outcomes, 

X \,X 2, ..., satisfy the following ([Lipschutz, 1974]):

i.) We associate with each trial a particular moment in discrete time, and call the 

outcome of the nth trial the state of the system at timestep n.

ii.) The outcome of any trial depends only on the outcome of the immediately 

preceding trial. With each pair of states, (A, T) is associated the probability pxy, 

which is the probability that state Y immediately follows state X. The pxv are 

called transition probabilities.

Throughout this discussion we consider only the case of a finite number of states.

In fact, we can extend the above definition slightly to allow for Markov Chains that 

retain memory of additional past events in order to influence the outcome of future 

events. The number of past events that are taken into consideration at each stage is 

known as the order of the chain. Thus, a Markov Chain in the strict sense is first

24



order, while a chain that considers an event’s predecessor and its predecessor’s 

predecessor is second order and so on. In this thesis we concentrate on zeroJ and first 

order Markov Chains.

In general, an N>h order Markov Chain can be represented by a state-transition matrix 

- a n  N  + 1-dimensional probability table. The state-transition matrix gives us 

information 011 the likelihood of a particular outcome given the previous N  states. 

Figure 2.1.10 shows a possible state transition matrix for a first order Markov Chain.

A B C

A 0.25 0.5 0.25

B 0 1 0

C 1 0 0

0.25 0.5'

0.25

Figure 2.1.10 -  State-transition matrix and graphical representation o f  a (first order)

Markov Chain.

By convention the previous states are listed vertically, and the transition states are 

listed horizontally. Thus, if we wish to find, for example, the probability of state B 

occurring immediately after state A, we simply find state A in the first column (the 

one headed by a blank), and then move horizontally along to the CB ’ column. The 

entry here is 0.5, so there is a 1 in 2 chance of this transition occurring. This can be 

extended to calculating the probability of an event occurring on the /7th transition using 

matrix multiplication.

For example, the state-transition matrix of Figure 2.1.10 can be expressed as a real 

3x3 matrix, M, whose rows correspond to the initial states and whose columns 

correspond to the final states.

Suppose that we are currently in state A, and we wish to calculate the probability that 

we will be in state B 011 the next-but-one transition. This is the probability that we will 

move to state j  on the next step and then from state j  to state B the step after for all

3 A Markov Chain of zero order is one in which the outcome of each trial depends on no previous 
states. That is, the system is independent of the influence of the outcome of previous trials.
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possible choices of j. That is, the element in column / of the first row of the matrix 

(the A row) multiplied by the element in the second column (the B column) of row j  

as j  ranges through the states A, B, C.

More formally, we have

P(A to B in 2 steps) = ^  M A fM m, j  -  A, B, C 

= ( ^ 2)aD

where Mjj denotes the entry in row i, column /  of matrix M, and M2 denotes the matrix 

M-M. With the probability values as given in Figure 2.1.10, this turns out to have 

value 0.625.

This is an immensely useful property of Markov Chains, since it allows us to make 

calculations of probabilities, which can rapidly become confusing, using the more 

familiar and well-understood methods of matrix multiplication. This technique can 

easily be extended to any number of steps — the probability of arriving in state j  after n 

steps, given that we are currently in state i is (M")y -  and so by using computers, it is 

possible to quickly and reliably calculate the probabilities of particular outcomes as 

far into the future as we desire with a minimum of effort.

It should also be apparent that the probability lookup table technique presented in the 

previous section is simply a Markov Chain of order zero, that is, a probability system 

that depends on no previous states.

For any Markov Chain, a state, X, is said to be reachable from a state, Y, if it is 

possible to reach state Y from state X after a finite number of steps. If  state Y is 

reachable from state X and state X is reachable from state Y, then the two states are 

said to communicate.

For example, in Figure 2.1.8 above, states A and C communicate, since clearly C is 

reachable from A and A is reachable from C. However, neither A and B, nor B and C 

communicate, since, although B is reachable from A (and thus also from C), neither 

state is reachable from B, which is always followed by itself.
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It can be shown fairly easily that the communication relation on a Markov chain is an 

equivalence. That is, the communication relation is reflexive, since a state always 

communicates with itself; symmetric, since if a state X communicates with a state Y, 

then clearly, Y communicates with X, and transitive, since if a state X communicates 

with a state Y, and state Y communicates with a state Z, then state X also 

communicates with state Z.

Grouping communicating states together, we can partition the states of the chain into 

equivalence classes of communicating states.

Those states that are certain4 to occur again once they have been reached by the chain 

are called recurrent and the equivalence class they belong to is known as a recurrent 

class. States which may never occur again (i.e. those that are not recurrent) are called 

transient, and the class they belong to is known as a transient class (for a proof of the 

fact that recurrence and transience is a class property see [Freedman, 1971]).

It can further be shown (see, for example, [Freedman, 1971]) that every Markov chain 

consists of at least one recurrent class and some number (possibly none) of transient 

classes.

In Figure 2.1.8 above, these equivalence classes are

/= {A ,C }

and

r = {B}.

The class r is recurrent, since the state B is always followed by itself. Thus once we 

arrive in r, we can never leave. The remaining class, t is transient — we may visit 

states A and C a number of times, but once we have reached state B, we can never 

return to either of the other two states.

4 That is, those that occur again with probability 1 as t —> oo.
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We now illustrate the usage of Markov Chains with an algorithm that is designed to 

play back one of five pre-recorded sequences of notes depending on the outcome of a 

first order state-transition matrix (c. f  [Jones, 1980]).

The algorithm begins by selecting at random one of the five sequences as a starting 

configuration5. From here, the appropriate sequence subroutine is called before a new 

sequence is selected, using the relevant row in the state-transition matrix. This process 

repeats until a user interrupt is received.

procedure MarkovChain()
{

select an integer, i, between 0 and 4 

repeat 
{

play sequence i
select a new integer, i,

using the probabilities in the ith row of the 
state-transition matrix 

until user interrupts
}

}

Algorithm 2.1,5 — Simple Markov composition routine.

Here, we have assumed that the state-transition matrix is known a priori and remains 

constant throughout the composition.

2.1.5 Quality of Results

As mentioned earlier, stochastic algorithms are amongst the easiest to implement. 

This is reflected in the sheer number of systems that incorporate stochastic processes. 

Yet despite, or perhaps because of this, there have been very few stochastically- 

oriented commercial packages. Those that do offer extensive tools for stochastic 

composition are generally composition environments, more akin to programming 

languages than to one-stop music systems.

5 Thus the initial distribution of the Markov Chain is uniform -  each of the states has the same 
probability of being the initial state of the system.
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Pekka Tolonen’s Symbolic Composer ([Tolonen, 1987]) and IRC AM’s Patchwork 

([IRCAM, 1993]) are two such packages. These systems are very much more than 

mere composition systems. They offer modules and a working environment that 

allows composers to explore their own compositional algorithms and mappings 

without having their working techniques dictated to them by the way that a 

programmer has implemented a complete system.

One of the main drawbacks to using composition environments as opposed to ready­

made composition systems is that very much more effort must be expended by the 

composer to get similar' results. This may take the form of learning the composition 

language or spending time designing new composition algorithms. For sheer 

flexibility, however, the effort is often more than worthwhile.

It is undoubtedly also a result of the ease of use and comprehension of stochastic 

algorithms that they were the first to be explored as a method of generating music. We 

saw in the previous chapter, for example, the parlour game of musical dice. The 

similarities between this game and the Markov Chain Algorithm 2.1.5 presented 

above will no doubt be immediately apparent: In musical dice, each of the n sections 

of the piece has an equal probability (in fact, l/n) of exposition at the beginning. 

However, once the first section has been selected, say section i, we can consider the 

composition as having moved into the particular state with section i at the beginning. 

The probability that section i will occur next is 0, since it has already been used, and 

each of the remaining states will occur with probability V„-i. Thus, we have a 

probability system featuring n trials of the same experiment in which the outcome of 

the second trial depends solely on the outcome of the first -  exactly analogous to our 

Markov Chain. Now, however, the analogy breaks down slightly, because the 

outcome of the kth trial depends on the outcomes of the first A: -  1 trials.

The first comprehensive study of stochastic musical processes was due to Iannis 

Xenakis. In his book, Formalized Music ([Xenakis, 1971]), he describes in 

considerable detail the stochastic processes employed by him in his compositions, and 

provides lengthy discourse on the aesthetic implications of using stochastics in music.

The book arrived some year's after the unleashing on the world of the first wave of a 

new mathematical music, characterised by works such as Xenakis’ Metastasis (1954)
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and Pithoprakta (1956) and the Illiac Suite for String Quartet (1956) by Lejaren 

Hiller and Leonard Isaacson, which depended on stochastic processes for the very 

notes from which it was composed.

This new music was very different from anything that had gone before. It was often 

written entirely for synthetic instruments, with many contrasting themes sounding 

simultaneously. Clusters of activity and long periods of silence combined with no 

musical clues as to where the piece was heading all contrived to make the music very 

difficult to listen to.

This does highlight one of the main difficulties of stochastic algorithms -  the inherent 

randomness. Although the use of probabilities does lead to the emergence of long­

term behaviour, the ‘melodies’ produced by stochastic processes often exhibit a lack 

of coherence, seemingly wandering aimlessly from note to note. This can be 

countered to some extent by employing Markov Chains of high order, or by using 

self-adapting probability tables, but these, in turn, raise new problems, namely 

defining the state-transition matrices and the rules by which the tables evolve.

This means that stochastic algorithms are, 011 the whole, unsuited for generating music 

in a particular style6, and it is useful to have a number of different techniques ready to 

be used should the user wish to compose non-random music.

2.2 Formal Grammars and Automata

2.2.1 Music as language

Music is often thought of as a hierarchical structure. At the lowest level we have notes 

that make up the composition. These notes form phrases, which in to n  form melodies 

and themes, movements and finally the entire composition. There is a striking analogy 

here with linguistics -  the notes correspond to individual letters, the phrases words,

6 Throughout this thesis, when talking about musical style, we refer to the taxonomic classes, such as 
Classical or Baroque, into which we group compositions with particular musical characteristics. The 
author is aware of the difficulties that can arise when attempting to pigeonhole music in this way, but 
feels that a discussion on the nature of musical style lies outside the scope of this thesis.
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melodies sentences and so on. This correspondence has led to the use o f language 

theory in music.

Language theory is concerned with the makeup of words, each of which belongs to 

some language. A language is defined to be a subset of the (infinite) set formed by 

talcing all possible combinations of a set of symbols.

For musical purposes, the symbols could correspond to, for example, notes and rests. 

The set of all combinations of notes would then give the universal set o f all possible 

musical compositions. A musical language can therefore be thought of as being a 

collection of musical pieces in one particular style, such as the set of all baroque 

compositions. The motivation behind the theory is to discover the relationships 

between words, how they are formed, and how they can be categorised.

2.2.2 The use of formal grammars in music

There are essentially two ways -  most easily thought of as analysis versus synthesis -  

that the theory of languages can be utilised musically:

(i) The analysis of the syntactic structure of music. By examining the structure of 

musical input, we can hope to recognise and classify it.

(ii) Generation of music that conforms to predefined syntactic structures. Here, the 

composer specifies the syntactic makeup of the musical language that he or she 

wishes to use and generates note data that adhere to this specification.

Although the latter seems to be the more relevant usage of formal grammars, the 

former also has its place, particularly amongst composition systems that aim to 

compose replicatively, that is, in a particular musical style, or in the style of a given 

composer.

One of the most successful applications of formal grammars to music generation is 

undoubtedly David Cope’s EMI system ([Cope, 1991]). This particular system 

combines formal grammars with a device known as an advanced transition network to 

produce pastiche. The system takes as input at least two works in the style that the 

composer wishes to replicate. The system scans the input looking for musical 

signatures -  short musical phrases that are a direct result of and thus indicative of a
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particular composer’s style. The system then produces new phrases incorporating 

variations on the signatures, building up a complete composition piece by piece, 

whilst ensuring that it fits the desired grammatical design.

The system has been used to produce several compositions in a wide range of musical 

styles, from Bach-like inventions to a Joplin-esque piano rag. The results have been 

varied but are generally very convincing. Some example scores are provided in 

Cope’s book, Computers and Musical Style ([Cope, 1991]).

2.2.3 Cellular Automata

Cellular automata are very important to scientists as a modelling and simulation tool. 

They have found applications in many different disciplines, from image processing 

([Preston & Duff, 1984]) and cryptography ([Wolfram, 1985]) to ecology [Hogeweg, 

1988]) and biology ([Ermentrout & Edelstein-Keshet, 1993]).

Cellular automata are dynamical systems, that is, they change some feature with time. 

A Cellular automaton is discrete over both space and time and all quantities take on 

discrete values.

We often view a cellular automaton as an array of elements, referred to as cells, to 

which we apply some evolution rule that determines how the automaton develops in 

time. The cells are updated simultaneously, so that the state of the automaton as a 

whole advances in discrete timesteps.

Each cell can exist in one of p  possible states, represented by the integers 

0, 1,2, . . p  -  1. We often refer to such an automaton as a p-state cellular automaton.

In order to specify fully and run a cellular automaton, we need one further piece of 

information -  an initial cell configuration. When this is specified, the automaton can 

be set to run and the cellular evolution observed.

Any long-term global trends that arise in the automaton’s development are an 

example of emergent behaviour, in the sense that the evolution rules in a cellular

feels that a discussion on the nature of musical style lies outside the scope of this thesis.
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automaton are concerned only with local neighbourhoods around the cell under 

consideration -  global trends are not coded explicitly beforehand.

2.2.4 The Game of Life

The Game of Life ([Gardner, 1971]) is a 2-dimensional cellular automaton that 

attempts to model a colony of simple organisms.

Theoretically, the automaton is defined 011 an infinite square lattice. However, for 

practical purposes we define Life as consisting of a finite m x n array of cells, each of 

which can exist in two states -  alive, represented by 1, or dead, represented by 0.

The states of the cells as time progresses are determined by the states of neighbouring 

cells. There essentially four situations that can arise. These are:

i.) Birth. A cell that is dead at time t becomes live at time t + 1 if and only if exactly 

3 of its neighbours are alive at time t.

ii.) Death by overcrowding. A cell that is alive at time t will die at time /+  1 if 4 or 

more of its neighbours are alive at time t.

iii.) Death by exposure. A cell that is alive at time t will die at time t + 1 if it has 1 or 

fewer live neighbours at time t.

iv.) Survival. A  cell that is alive at time t will remain live at time I 1 if and only if 

it has either 2 01* 3 live neighbours at time t.

Note that rule (iv) holds if and only if rules (ii) and (iii) do not.

These four rules can be expressed as follows:

The environment, E, is defined as the number of living neighbours that surround a 

particular live cell. The fertility, F, is defined as the number of living neighbours that 

surround a particular dead cell. Note that both the environment and fertility vary as we 

move from cell to cell.

For Conway’s Life, the life of a currently living cell is preserved whenever it has 

either 2 or 3 living neighbours. In other words, whenever 2 < E < 3. Similarly, a
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2 < E < 3

and

3 < F < 3 .

Clearly, a number of alternative rule sets exist. The general form for such rule sets is

{Em in 5 ^m axj F F m a x ) >

where

F  ■ <  F <  F■Ljmm ■u max

and

F m in — F  <  F max.

However, although alternative rule sets to R = (2, 3, 3, 3) exist, not all produce 

emergent behaviour that is as worthy of note as Conway’s original.

In the Game of Life characterised by the rule set R above, there are a number of 

interesting initial cell configurations that give rise to notable cell dynamics. Some of 

these are presented in Appendix B.

Table 2.2.1 below describes the main classifications of Conway object.
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Object class Description

Oscillator Any pattern that reappears in the same position after a certain 

number of generations.

Still Life Oscillators of period 1, that is stable patterns.

Ship Any pattern that translates across space.

Spaceship Any pattern that moves, leaving no trail.

Billiard table Any oscillator that is built inside a stable border.

Blinker An oscillator of period two consisting o f three live cells arranged 

in either a horizontal or vertical line.

Breeder Any pattern that grows quadratically by creating multiple copies of 

a second object, each of which creates multiple copies of a third 

object.

Eater Any still life that can repair itself from some attacks.

Flipper Any oscillator or spaceship that forms its mirror image at half its 

period.

Glider Any ship that travels diagonally across space.

Glider gun Any pattern that grows forever by emitting gliders.

Primordial soup Any random initial configuration of cells.

Table 2.2.1 -  Glossary o f  Conway objects.

In order for a rule set, R to be considered worthy of the name Life, we demand that 

the following two conditions are met:
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i.) A glider must exist and occur' “naturally” if  we apply R repeatedly to primordial 

soup configurations.

ii.) All primordial soup configurations when subjected to R must exhibit bounded 

growth.

For reasons of space we do not pursue this further, although we pick up on these ideas 

again in Section 4.1.3. Instead the interested reader is referred to [Dewdney, 1987].

2.2.5 Musical Applications of Cellular Automata

Cellular automata were originally introduced as a means of modelling crystalline 

growth, and as such, may be considered as a system of pattern propagation -  the 

initial pattern (i.e. cell configuration) is transformed and developed according to a set 

of evolution rules. There is a direct analogy here to the processes involved with 

composition -  an initial theme or motif is developed according to a set of composition 

rules specified by the composer or dictated by the musical style. In a sense, cellular 

automata can be considered as a model of the composition process itself.

It should come as little surprise, then, that cellular automata have been successfully 

employed in a number of musical applications.

For example [Miranda 1993], [Miranda, 1994] and [Beyls, 1997] all describe how 

different types of cellular automata can be harnessed as the basis for algorithmic 

composition systems.

The results of these systems vary and depend on the way that the automata are 

utilised. For example, Eduardo Miranda’s CAMUS system (see Chapter 3) generates 

compositions that are free from formal constraints (other than those imposed by the 

MIDI specification) and yet all share elements of a characteristic style, albeit one 

which is new and quite alien.

Peter Beyls’ system on the other hand imposes more pre-defmed structure on the 

compositions, resulting in music that conforms more readily to existing musical 

styles. Automata have also been used in sound synthesis (see, for example, 

[Chareyron, 1990] and [Miranda, 1995]).
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2.3 Iterative Algorithms

We now approach the problem of melody generation from a different angle, and see 

how iterative formulae and fractal techniques can be of use to the mathematically 

minded composer.

2.3.1 What is an iterative process?

One way of constructing musical melodies is to utilise an iterative algorithm. Iteration 

is the process of repeating an action, such as applying a mathematical function, over 

and over again, feeding the output of the action back into the input of the process. 

Figure 2.3.1 demonstrates graphically the process of iteration.

OUTPUT

OUTPUT is fed  back to 
the input o f F

Figure 2.3.1 -  Schematic o f  an iterative process, F.

An iterative process is defined by specifying the action that is to be repeatedly 

applied, and some initial value, x q ,  which we are free to choose.

The set of output values that arises from an iterative process is known as an orbit of

the process. Note that an iterative process may have many orbits depending on the 

initial value, xq, that is fed into the process. We denote the orbit of the iterative 

process F  that arises as a result of the initial value, xq by orbAxo)-

There are essentially three classes of behaviour that the orbits of an iterative system

can fall into7. These are:

* « * » gi.) The points in the orbit tend towards a stable fixed point.

7 Here we consider only those orbits that are bounded -  those in which the orbit points remain finite. 
s That is, a point which is left unchanged by the process.
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For example, consider the iterative function x„+i = xn/2. This will generate orbits of 

the form {xo, xo/2, x o /4, ...}. In general, the nth iterate is of the form x0/2". Clearly, as 

n —> co, the n’h iterate will tend towards 0 , no matter what (finite) value we choose for 

xo. Thus, every finite orbit of this system tends towards the stable fixed point, 0.

ii.) The points in the orbit oscillate between elements of a finite set of points.

For example, consider the system defined by the function x„+i = axu{ 1 -  xn) (see, for 

example, [Peitgen & Saupe, 1988] for a discussion of this, the logistic equation) with 

a = 3.1 and x„ = 0.5 (see Figure 2.3.2), This results in the orbit (0.5, 0.775, 0.540,

0.770, 0.549, 0.768, 0.553, 0.766, 0.555, 0.766, 0.556, 0.765, 0.557, 0.765, 0.557,

0.765, ...}. One can see that after an initial settling period, the orbit settles into 

oscillatory behaviour between the values 0.765 and 0.557.

0

Figure 2.3.2 -  Graphical representation o f the orhit that arises from. 

x,i+j = 3.1x„(l — x j  withxo — 0.5. Note that the orbit quickly settles into oscillatory

behaviour.

iii.) The orbit points behave in a "chaotic' manner. Sometimes, they may seem to 

behave randomly, never visiting the same point twice. At other times, they may 

seem to exhibit near-oscillatory behaviour with sets of almost identical points 

arising one after the other.

It is impossible to state precisely what we mean by the term chaos, due to the fact that 

there is no universally accepted definition. There are, however, a number of texts 

which offer precise, but slightly different definitions. The interested reader is referred 

to, for example [Peitgen & Richter, 1986] and [Peitgen, Jurgens & Saupe, 1992].



For the purposes of this discussion, we consider chaos as referring to a system that has 

gone ‘out of control’ in the sense that although each orbit is deterministic and 

specified in full by its initial value, we cannot predict its long-term behaviour in any 

way other than by setting the system in motion and letting it run ([Peitgen & Richter,

1986]).

For example, if  we compare the orbit obtained from the function defined in (ii) above

with a = 4 and xo = 0,3 with the orbit obtained by setting xo = 0.301 (see Figure 2.3.3),

we see that after only a few iterations they bear little resemblance.
1

0

1

0

Figure 2.3.3 — Graphical representation o f the orbits that arise from x„+i = 4xn(l -  x„) 

withxo ~ 0.3 (top) andxo = 0.301 (bottom). Note the divergence after just 7

iterations.
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2.3.2 Implementing iterative processes musically

When implementing an iterative process to produce musical output, there are a 

number of things that should be taken into consideration, namely:

What iterative system should be used? Generally speaking, the human ear tends to 

enjoy music that sounds familiar enough to keep the listener comfortable, yet contains 

sufficient new material to generate interest and avoid boredom. Hence, an iterative 

process that produces orbits that quickly converge towards stable fixed points may not 

be the best choice for a music generating system, as the output values quickly become 

static.

Oscillatory behaviour offers more scope for generating interesting results, particularly 

if the period is large. However, in many cases, the period is often quite small, and the 

frequent repetition of the basic musical material can quickly become tedious. By far 

the most promising type of behaviour from a musical (and indeed, mathematical) 

point of view is chaotic behaviour.

As previously mentioned, a chaotic orbit will often wander among a fixed range of 

points, visiting similar, though not identical points each time. Thus the material that is 

generated has a degree of correlation with its past, whilst still producing new material. 

In fact, generating music by using chaotic orbits is sometimes viewed as a process of 

theme and variations, or exposition and development, because of the nature of this 

near-repetition.

How are the orbits o f  the process to be mapped to the musical output? This is, 

without a doubt, one of the most important considerations a composer faces when 

creating any algorithmic system that utilises the output of a non-musical process for 

creation of the filial work. Choosing a mapping that is too simplistic may strip a 

potentially rich orbit of its detail, producing music that is dull and uninteresting.

Similarly, a mapping which is too complex may lead to difficulties when coding the 

system for a computer to calculate the compositions. Clearly, a balance must be 

struck.

The form the mapping takes will, to a certain extent, be dictated by the dimensionality 

of the iterative process itself. For example, a two dimensional process would allow
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direct control over two musical parameters (e.g. pitch and duration). It is possible, 

however, to obtain similar levels of control by, for example, calculating several orbits 

of a lower dimensional system in parallel, by using several orbit points from a lower 

dimensional mapping simultaneously, or by using systems of more than one equation 

in a mapping.

It is also important to decide upon the musical parameters that should be controlled by 

the iterative process. The important parameters are likely to vary from composition to 

composition, and will depend to a large extent on the subjective preferences of the 

composer. Some examples include pitch, duration, velocity and timbre.

What starting value is to he chosen fo r  the system? This is important, because, as we 

have seen, even for non-chaotic systems, orbits whose starting values lie close 

together can vary drastically after only a few iterations. This effect can also be used to 

the composer’s advantage, however, and may be employed to produce cycles of 

works, or variations of a work, which begin in a similar* maimer, but which quickly 

diverge.

For further details of the use of iterative processes in music see [Little, 1993] and 

[Johnson, 1997b].

2.3.3 Fractal Algorithms

Fractals are a relatively recent development in mathematics. The term, derived from 

the Latin fractus, meaning broken ([Mandelbrot, 1982]), was coined in 1977 by the 

Polish mathematician, Benoit Mandelbrot. The essence of fractals is that they contain 

an infinite amount of detail at all scales. We illustrate with the coastline analogy:

We ask how long is the coastline o f  Britain? A study is commissioned, and a member 

of the research team duly sets off with his trundle-wheel and measures the length of 

the coastline by walking along the coastal roads. When he makes his report, it is 

pointed out to him that the coastline twists and turns away from the road. In fact, he 

has under-recorded the value.

He sets off again and this time moves away from the roads, measuring the coastline a 

metre from the edge all the way round the country. He records a higher value for the
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distance than on his first expedition. Again, however, when he makes his report, it is 

noted that he has missed much of the finer detail at the coastline’s edge. He sets off 

again, the time armed with a tape measure, and calculates a value higher still than the 

previous two forays, but here he notices that each rocky outcrop contains detail that is 

obscured by the tape measure. His recorded value is still too small! The finer the 

coastline was to be measured, the more detail was discovered.

This is fundamentally different to non-fractal structures, which at sufficient 

magnification look locally like straight lines. Figure 2.3.4 demonstrates the difference 

between successive magnifications of a fractal known as the Mandelbrot set, and a 

graph of the (non-fractal) sin function.
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Figure 2.3.4 a -  The complete Mandelbrot set and two successive magnifications

showing detail at every scale.

43



1

1

Figure 2.3.4 b -  Graph o f sin x and magnification showing that the graph looks

locally like a straight line.

A characteristic feature of many fractal forms, which describes how they appear

similar when viewed under different levels of magnification, is s e lf  similarity.

There are three different kinds of self-similarity ([Peitgen & Saupe, 1988]):

i.) Exact s e lf  similarity, in which magnified small parts of the object in question are 

identical to the whole

ii.) Statistical s e lf  similarity, in which the magnified portion of the image has the 

same statistical properties as the whole object

iii.) Generalised se lf  similarity, also known as s e lf affinity, in which scaled copies of 

the whole figure undergo some affine transformation9.

9 An affine transformation is one that is composed of a linear transformation and/or a translation. In 
two dimensions, an affine transformation, a, has the general form a(x) = Ax + b, where A is an 
invertible 2x2 matrix.
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Figure 2.3.5 below shows a sample of 1 I f  noise (see Section 2.3.5), which 

demonstrates statistical self-similarity. A good example of an exactly self-similar 

figure is the Sierpinski Gasket (see Figure 2.3.6), which is made up of transformed 

copies of a triangle. Figure 2.3.7 shows a fractal spiral, and a skewed and rotated 

detail .

Figure 2.3.5 -  1 //Noise and magnification

Y ? yy ..yy
py

Figure 2.3.6 -  Sierpinski gasket and magnification.

Figure 2.3.7 -  Fractal spiral and detail.

It should be noted that a fractal figure need not exhibit self-similarity, the Mandelbrot 

set, for example, does not, though it does have detail on every scale.

2.3.4 Musical fractals

There are essentially two methods that can be employed when using fractals as a 

means of generating music:
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(i) Using fractal equations10 to generate musical data.

(ii) Using fractal pictures to generate musical data.

Using fractal equations to generate music has a great deal in common with the 

iterative algorithms discussed earlier. Indeed, most fractal equations are iterative. One 

exception to this is l//noise.

2.3.5 1/f Noise

The use of fractal techniques in music composition began when it was discovered that 

almost all musical melodies mimic I l f  noise ([Peitgen & Saupe, 1988]).

I l f  noise is a term which is used to describe any fluctuating quantity in which the 

‘amount’ of frequency,/ varies as I l f

This particular statistical blueprint shows itself in a great many physical situations, 

from semiconductors to ocean flows ([Peitgen & Saupe, 1988]).

There is no simple mathematical model that produces 1 I f  noise, although it is possible 

to generate close approximations. One such method for generating an approximate I l f  

sequence is given in [Roads, 1996].

10 Note here that the term fracta l equations is used to denote an equation (iterative or otherwise) that 
specifies a particular fractal figure. This is a generalisation of the term fractal function, which is used to 
denote any continuous function that is everywhere non-differentiable. The graphs o f such functions are, 
in general, fractal sets,
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2.3.6 The Mandelbrot Set

Perhaps the single most famous mathematical structure is the Mandelbrot set. The 

Mandelbrot set can be considered as a graphical representation of the behaviour of the 

complex plane according to the iterative equation
2

1 ~  Zi +  C

where c is a complex constant. For each c in the plane, the system is initialised with 

zo = 0, and iterated. This results in exactly one of the following mutually exclusive 

outcomes:

(i) | z„| —> go as n —> co.

(ii) | z„\ remains bounded as n —> oo.

Each c is assigned a colour according to the number of iterations required to send the 

point to infinity, or a default colour (usually black) if the point does not increase 

without bound (in practice, we assign a threshold value, T, and a maximum number of 

iterations, MI, and stop the iterative process when either| zn\ > Tn , or when n > M l). 

The Mandelbrot set is then the set of all values of c which are coloured black.

The area of interest occurs within the region bounded by the lines x = -2.5 and x = 1.5 

on the real axis, and y  = -1.5/ and y  = 1.5/ on the imaginary axis.

The Mandelbrot set’s distinctive squashed beetle-like profile is illustrated in the top 

image of Figure 2.3.6a above.

At, and near the boundary of the Mandelbrot set, there is described a structure of 

inconceivable complexity, with curves which spiral onwards for eternity, and detail at 

every scale.

A simplistic (and rather naive) way of harnessing the structure contained within 

Mandelbrot’s equation is to iterate the equation and associate the number of iterations 

required to send a point to infinity with a particular pitch. This is equivalent to 

mapping the colour bands of the set to pitches. An example is presented in Algorithm

2.3.1 below.

11 We generally check to see whether the point z = x + iy lies within the circle a-2 + y  ~ A. If not, we 
can be certain that it will tend to infinity ([Hoggar, 1992]).
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For other applications of fractals in music composition and sound synthesis see 

[Bolognesi, 1983], [Dodge, 1988] and [Monro, 1995].
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procedure Mandelbrot()
{

REM Screen dimensions 
Width = 320 
Height = 240

REM Region of complex plane to be 'played'
MaxReal = 1.5 
MinReal = -2.5 
Maxim = 1.5 
Minim = -1.5

REM Scaling factors
HorizScale = (MaxReal - MinReal)/Width 
VertScale = (Maxim - Minim)/Height

for i = 0 to Width - 1
for j = 0 to Height - 1 

Iterations = 1
RealC = MinReal + i * HorizScale 
ImaginaryC = Minim + j  * VertScale 
x = 0
Y = o
while (Iterations < 256 AND x*x + y*y < 4) 

NewX = x*x - y*y + RealC 
NewY = 2*x*y + ImaginaryC 
x = NewX 
y = NewY
Iterations = Iterations + 1 

end while
Play a note with pitch parameter Iterations

next j

next i
}

Algorithm 2.3.1 — Simplistic fractal music generator.
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2.4 Evolutionary12 Algorithms

2.4.1 Artificial neural networks

The human brain is, without a doubt, the most complex computing device known to 

mankind. Essentially a massively parallel array of simple information processing 

devices known as neurons, it is uniquely responsible for all of the works of art, all of 

the music and all of the scientific breakthroughs that surround us.

Neurons typically operate several orders of magnitude slower than the silicon logic 

gates used in today’s computers (~10~3 seconds as opposed to ~ 1 0 ’9 seconds) 

([Haykin, 1994]). This, however, is compensated for by the sheer volume of and 

massive interconnectivity between them. It is estimated that the human cortex 

contains in the region of 10  billion neurons, connected together by some 60 trillion 

links, known as synapses. As a result, the human brain can perform certain tasks, such 

as pattern or voice recognition many times faster than even the speediest digital 

computer using current methods.

The brain also has the ability to program itself, forming rules and responses to 

situations that it has encountered and extrapolating from experience to deal with new 

phenomena. This process is commonly known as learning.

2.4.2 Modelling neural networks

Since the neuron is fundamental to the operation of a neural network, any attempt to 

model the workings of the brain must offer a satisfactory representation of it. In 

particular, the model must offer the following four attributes:

(i) A set o f connecting links (synapses) between neurons. Each of the synapses 

should have associated with it a weight which scales the signal arriving at the 

input. In particular, a signal, x, at the input to the j h synapse of neuron i is 

multiplied by the synaptic weight, wy. The weight wy is positive if  the associated

12 Here, the term evolutionary refers to the computing techniques employed by these algorithms. The 
algorithms themselves do not evolve.

50



synapse is excitatory (signal boosting) and negative if it is inhibitory (signal 

attenuating).

(ii) An addition unit for summing the weighted input signals of the neuron.

(Hi) An activation function, (j), which scales the output of the neuron to some

prescribed range of values. Typical choices for the normalised output range of a 

neuron are [0 , 1] and [-1, 1].

(iv) An externally applied threshold, 9, which has the effect of lowering the net input

to the activation function. A negative threshold value constitutes a bias term, 

which has the effect of boosting the input to the activation function.

Keeping these four points in mind, we arrive at a neural model as presented in Figure

2.4.1 below.

9

Output, yi

Summing
junction

Activation
function

Figure 2.4.1 -  Model o f an artificial neuron.

We can specify the neuron of Figure 2.4.1 algebraically by the equations

./
= 2 > „ * .

H=0

which corresponds to the summing junction and

y> =0(W/)

which corresponds to the activation function, and by specifying the parameters 

corresponding to the synaptic weights and the threshold and the activation function 

associated with the neuron.
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2.4.3 Types of activation function

The activation function, (f), defines the behaviour of a neuron in terms of its input. 

Three basic types of activation function are used:

(i) Threshold functions are generally of the following form

_ JO,if x < 0  
^  ^ {l, otherwise5

although functions of the form

[ - 1, if x < 0 

^ “ {l, otherwise

are also used.

In those neural models that utilise threshold functions, there is no output from 

the neuron until a prescribed level of input activity is reached. Figure 2.4.2 

shows a typical threshold function.

1 -T-

0.5  - -

0 | . . ■ . . u x x  I ■■ " ■ ■ H----------------------------- 1------------------------------!
- 2 - 1 0  1 2

Figure 2 .4 .2 - Threshold function.
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(ii) Piecewise linear functions. (For a definition of piecewise linearity see Linear 

distributions in the Stochastic algorithms section.) An example of a piecewise 

linear function is

0 , x < 0
x, 0 < x < 1

1, x > 1

A piecewise linear function may be viewed as an approximation to a non-linear 

activation function.

0.5  - -

1 2

Figure 2.4.3 — Piecewise linear function

(Hi) Sigmoid functions are the most widely used form of activation function. A 

sigmoid function is defined to be a smooth, strictly increasing function with 

horizontal asymptotes. Figure 2.4.4 shows the sigmoid function

(/){x) = tanh
l + e'
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0.5 - -

- 0.5  - -

Figure 2 .4 .4 - Sigmoid function.

2.4.4 Graphical representation of a neural network

A neural network is essentially a type of automaton -  a self-contained computing 

machine — and, as such, it is convenient to represent these networks as weighted 

directed graphs, whose nodes represent the individual neurons, and whose weighted 

edges represent the synaptic links. In addition, with each node, /, we associate an 

activation function, which has the effect of scaling the output values to some 

prescribed range. Figure 2.4.5 below shows a simple neural network.

1 ™ 3
v W 3 1  /** "N_̂___ __v /  \ W51

Input layer
W 42

W52 Output layer 

Hidden layer

M x) = <h(x) = M x) = M x) = M x) = <KX) = tanh(x/2 )

Figure 2.4.5 —A simple neural network.

The neural network of Figure 2.4.5 illustrates several important ideas. Firstly, notice 

that the neurons in the network may be grouped into three vertical layers as illustrated 

in Figure 2.4.5. These are the Input, Hidden and Ouput layers. The network is of the
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feedforward type. That is, each of the neurons in any given layer is connected only to 

neurons in higher!j layers. The network is also said to be fully connected, in that each 

node in the ith layer is connected to each node of the i + Xth layer. A network in which 

some of these synaptic links are not present is said to be partially connected. Since 

there are several layers of neurons in this network, we say that it is a multilayer 

network. In fact, we go further and label it a 2-2-1 multilayer feedforward network, 

where the numbers refer to the number of neurons in each of the three layers. The 

middle layer of neurons is referred to as a hidden layer, since these lie out of sight to 

an external observer. The hidden layer performs additional processing on the data 

flow from the input to the output neurons.

2.4.5 Learning in a neural network

Machine learning is, conceptually at any rate, no different to the learning processes 

experienced by, for example, human babies. We identify three key steps in the 

learning process:

(i) The neural network receives stimulus from the environment.

(ii) The neural network changes in some way as a result of the stimulus.

(iii) The neural network now responds differently to environmental stimuli due to the 

changes that have taken place.

The problem can be approached in several ways. We now identify three learning 

paradigms that can be employed.

(i) Supervised learning. This is analogous to the classroom notion of learning, in 

which an external ‘teacher’ supervises the whole of the learning process to 

ensure that the network behaves and progresses in the correct maimer.

(ii) Reinforced learning. Here, a critic that evolves through a trial and error process 

is employed to guide the learning process.

Note that the layers in the network are numbered from left to right. Thus, when we talk of higher 
layers, we mean those layers to the right of the one in question.
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(Hi) Unsupervised learning. As the name suggests, no external teacher or critic is 

employed in learning algorithms of this type. The process is entirely self­

organised.

It is neither practical nor particularly useful to study each of the learning algorithms in 

detail at this point. The interested reader who wishes to read further on alternative 

learning algorithms is referred to [Haykin, 1994] and [Kartalopoulos, 1996].

2.4.6 Neural networks and music

The application of neural networks to musical problems should really come as no 

surprise. After all, creative processes like musical composition are often considered to 

be quintessentially human processes, and neural networks were themselves introduced 

as a means of modelling the human thought processes.

Neural networks have been applied in a number of musical situations. One usage has 

been for pitch detection ([Jenkins & Sano, 1989]).

Here, a sound is fed into the trained neural network. The different partials present in 

the sound excite neurons in the input layer. The weighted outputs from these neurons 

are processed by hidden layers before finally exciting the single output neuron, 

resulting in a single best guess at the input pitch.

Pitch detection networks of this sort have several advantages over more traditional 

pitch detection techniques which try to find periods in the input waveform to guess 

the input pitch. In particular, they are often easier and cheaper to implement once the 

initial training period is complete. Neural-based pitch-detection techniques are also 

not as prone to delays in guessing as traditional techniques, which must wait for the 

initial noisy attack and at least one period of the waveform to complete before 

attempting to determine the pitch. In fact, the neural approach to pitch detection has 

been so successfiil that the technique has been commercialised by Yamaha as the 

basis for their MIDI guitar system ([White, 1996]).
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Neural networks have also been used to compose music (see, for example 

[Dolson, 1989]), to model the human perception of tonality ([Bharucha & Todd, 

1989]) and to generate sounds ([Warthman, 1993])

2.4.7 Genetic Algorithms

We now introduce a parameter optimisation technique known as a genetic algorithm 

(GA). This technique was originally introduced in the field of engineering as a means 

of finding optimal solutions for problems that were not easy to solve using traditional 

optimisation techniques, and operates on a set of binary codewords.

There are four basic types of operation which can be performed on the codewords: 

selection; crossover; mutation and inversion. We shall consider only the first three, 

since inversion can be derived from these. The crossover operation exchanges 

information between a pair of codewords. Mutation alters the value of a single bit in a 

codeword. Typically, the genetic algorithm is used as an optimisation technique, and 

so the selection operation is used to find the ‘best’ possible codewords for some 

predetermined criterion. However, for compositional purposes, an optimisation of this 

sort may be unnecessary if the operations are used solely for the development of the 

compositional parameters. Alternatively, if the composer wishes to search the space of 

compositions for the best melody, some care must be taken over the choice of fitness 

function, since this determines the melodies that are selected and those that are 

discarded.

A typical parameter evolution step is shown in Table 2.4.1.



Explanations Codewords

Consider a set of n codewords which represent the 
values of some musical parameters.

C, : 1 1 0 1 0 1 1 0 
C2 : 1 0 0 1 0 1 1 1

C„ : 0 1 0 0 1 0 0 1

Selection: Codewords are chosen to undergo 
evolution according to some stochastic mechanism 
{c.f. Darwin’s theory of evolution -  chance mutation 
leading to population development ([Darwin, 1981])).

C2 : 1 0  0  1 0  1 1 1 
C7 : 1 1 0 0 0 1 0 1 
Cm : 0 1  1 1 1 0  0  1

Crossover: Some portion of a pair of codewords (in 
this case, C7 and Cm) is exchanged at the dotted 
position randomly specified, producing the two 
offspring C f  and C n ', whose values are then assigned 
to C7 and Cn.. This is applied to some predetermined 
section of the population, specified by the crossover 
rate.

C2 : 1 0  0  1 0  1 1 1 

C7 : 1 1 0 0 0 f 7 01  
Cn : 0  1 1 1 l! 0 0 1I

C f:  1 \ 0 0 0 \ 0 0  I 
C\ f :  0 1 1 1 1 7  9 7

M utation: The bit values of some codewords are 
inverted at a mutation rate of 1 - 5%. The value that 
has been changed as an example is highlighted by an 
underline.

C2 : 1 0 0 1 0 1 1 1 
C7 : 1 1 1 0 0 0 0 1 
Cn : 0 1 1 1 1 1 0 1

Table 2.4.7 -  Typical parameter developtnent step for a GA.

The genetic algorithm can be utilised as a parameter development technique as 

follows: firstly, each parameter is assigned a binary codeword according to its initial 

value. At each timestep, the genetic algorithm is performed on the set of codewords as 

illustrated in Table 2.4.1 above, leading to population development.
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2.4.8 Musical applications of GAs

Genetic algorithms have been applied to the composition problem. One example, 

which uses the simple genetic algorithm to produce an ‘optimal melody’14, is the 

program GAMusic by Software Visions ([Moore, 1994]).

Of course, the problem of how to define an optimal melody is by 110 means trivial. 

The subjective qualities of music are such that a truly objective definition of musical 

worth may remain forever elusive.

GAMusic side-steps the issue slightly by leaving the aesthetic judgement of the 

generated melodies’ fitnesses to the user, who auditions each melody and awards it a 

fitness value. The possible fitness values are poor -  1, average -  2 and good -  3. Each 

melody in the initial population starts out with an average fitness. Following the 

fitness assignment, the GA is iterated once by the user.

The iterative evolution of the codewords, and the mutation and recombination 

frequencies are also controlled by the user. Each series of musical notes is represented 

in binary form by an array of length 128, allowing a maximum of 30 notes per melody 

and providing a solution space with approximately 3.4 x 103S possible melodies. An 

unintelligent search for an ideal melody would require testing every possible solution, 

and even allowing an optimistic estimate, it would take years to search, play and 

evaluate each of these solutions. I11 theory, the GA should be able to find a near 

optimum melody after searching only a fraction of the solution space.

Genetic algorithms have also been used in sound synthesis (see, for example [Horner, 

Beauchamp & Haken, 1993]).

14 It is difficult to specify precisely what is meant by an ‘optimal melody’, since the judging of such is 
necessarily subjective and fraught with difficulty. We cannot hope to offer a concrete definition, but for 
the purposes of this discussion, we use the phrase to refer to a melody that is more pleasant and which 
provides a closer match to the composer’s aesthetic ideals than any other.
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2.5 Serial Algorithms

2.5.1 Serialism

One composition technique that lends itself very well to algorithmic treatment is that 

of serialism. This is the method of composition that derives from Arnold 

Schoenberg’s twelve-note style, which arose from the composer’s experiments in 

writing music that was free from tonal constraints and which did not follow the 

traditional ways of building chords [Schoenberg, 1984].

The essence of serialism is that all chords and melodies are constructed as 

arrangements of the twelve notes of the chromatic scale in a particular order. This is 

referred to as a tone-row or series.

Each tone-row has associated with it 48 different forms, which are obtained by 

subjecting the series to one of the following transformations.

(i) Transposition. The tone-row can begin on any of the twelve semitones.

(ii) Retrograde motion. The tone-row can be played backwards on each of the 

twelve semitones.

(iii) Inversion. The tone-row can be played ‘upside down’. More formally, each of 

the intervals through which the melody proceeds is replaced by its inversion.

(iv) Retrograde inversion. The tone-row can be played backwards and upside down.

Clearly then, there are 12 forms for each of (i) -  (iv) above, resulting in 48 distinct 

transformations of the original tone-row.

There are often further constraints placed on the development of the tone-row 

throughout a composition. For example, the composer may decide that the tone-row is 

not to be repeated after its initial exposition. In addition, the composer may decide to 

permute the tone-row after a number of steps to obtain a new series.

The tone-row can then be thought of as a blueprint for the entire composition. 

Everything that appears subsequently in the composition is derived in some way from 

the original tone-row.
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2.5.2 Implementing a serial algorithm

In order to construct a serial algorithm, the composer must decide upon the following.

(i) How should the initial tone-row be chosen? There are two options here. It can be 

specified manually by the composer, or automatically generated by computer.

(ii) How should the transformations be chosen? For example, the composer may

specify the transformation at each stage in the composition process, or may

employ a decision making routine within the composition algorithm. The

decision making routine could be deterministic, using properties of the tone-row 

to choose which transformation to apply next, or could be stochastic in nature.

(Hi) How should the other composition parameters develop? There are a number of

different methods that could be employed here. One technique, in keeping with 

the serial nature of the notes, is to use formal mathematical series to control the 

parametric evolution. For example, the composer could map the values of a 

geometric series15 to tempo to obtain accelerandi and ritardandi.

(iv) At what stage should the tone-row be permuted? Again, this is a decision that the 

composer may wish to make personally, or which could be handled by a decision 

making routine from within the algorithm.

We illustrate with the following algorithm:

15 A geometric series is a sequence of real (or complex) numbers, s0, s\, s2, ... in which s„+ i, the next 
number in the series is obtained by multiplying s„ by a factor, g. The nih term of the series, sm is 
therefore s0g".
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procedure serial()
{

generate the initial tone-row 
repeat
{

if (MIDI value for last note in series = 0 (mod 4)) 
transpose series to begin on last note 

else if (MIDI value for last note in series = 1 (mod 4)) 
apply retrograde motion to series 

else if (MIDI value for last note in series s 2 (mod 4)) 
apply inversion to series

else
apply retrograde inversion to series 

until user interrupts
}

}

Algorithm 2.5,1 -  Serial composition algorithm.

The algorithm employs a deterministic decision making routine for choosing the 

transformation that is to be applied. There is a danger here, however, in that the 

original tone-row may be repeated before the full cycle of 48 transformations has been 

completed. It is therefore prudent to have a further subroutine which would compare 

the newly-transformed tone-row with the transformations that have already been 

played, and transform it again if it had already been played. If this additional check 

were not applied, we would have formed a cycle of fewer than 48 transformations 

which would cycle indefinitely, since the decision making routine is deterministic.

The generation of the tone-row could be achieved by a routine similar to the 

following:
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procedure tone_row()
{

for i = 0 to 11 
N[i] = i

next i
for i = 0 to 100

a, b = random integers between 0 and 11 
swap N[a] and N[b]

next i
}

Algorithm. 2.5.2 —A simple tone row generator.

Here, we have assumed that the notes of the tone-row are stored in an 11-element 

array, N [ ], and are specified by an integer between 0 and 11.

Transposition is achieved by adding the transposition value to each of the notes in the 

tone-row:

procedure transpose(amount)
{

for i = 0 to 11
N[i] = N[i] + amount

next i
}

Algorithm 2.5.3 -  Algorithm for transposing a tone row.

Retrograde motion is achieved by re-ordering the elements in the array:
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procedure retrograde()
{

for i = 0 to 11
t emp[i] = N [11 - i]

next i
for i = 0 to 11

N [i] = t emp[i]
next i

}

Algorithm 2.5.4 — Algorithm for calculating a retrograde tone wm>.

Finally, inversion is obtained by inverting the interval between the successive notes of 

the tone-row:

procedure inversion()
{

temp[0] = N [0] 
for i = 1 to 11

interval = N[i] - N[i - 1] 
temp[i] = temp[i - 1] - interval

next i
for i = 0 to 11

N[i] = temp[i]
next i

}

Algorithm 2.5.5 -Algorithm for inverting a tone row.

2.5.3 Quality of results

Serial music is not judged by traditional aesthetic criteria. The main objective is not to 

produce pleasing melodies, but to subject the original tone-row to complex 

transformations. Because of this highly mathematical structure, serial composition 

lends itself very well to the algorithmic treatments discussed here, and, with a little 

work, it is possible to create complex compositions that sound convincingly like the 

works of human proponents of this style. After all, Schoenberg, Stockhausen et al 

used exactly the same transformations as we have presented above. The use of a 

computer merely removes the necessity for menial calculation.
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Few algorithmic composition packages have been dedicated entirely to serial 

algorithms. Most often such transformations form part of a larger composition 

environment. Such is the case with Datamusic’s Fractal Music for the Atari ST 

([Sansom, 1992], [Russ, 1992], [Johnson, 1997a]).

Fractal Music is a composition package that uses fractal and iterative techniques to 

drive the generative elements of the system. However, once the program has 

generated a melodic line, it is then subject to serial (and other) transformations. 

Amongst the alternatives to the basic transposition, inversion, retrograde motion and 

retrograde inversion options are:

(i) Quantise, which allows the composer to quantise the note values in a track to a 

specific resolution (say to the nearest semiquaver).

(ii) Stretch/move which allows the composer to alter a track’s position in space (i.e. 

transposition) and time. It is also possible to compress and expand a track in both 

space and time (i.e. augmentation and diminution).

(iii) Reflect/rotate allows the composer to apply precise mathematical 

transformations to the note data. This is simply a generalisation of the more 

traditional inversion (i.e. reflection in the horizontal pitch axis), retrograde (i.e. 

reflection in the vertical time axis) and retrograde inversion (i.e. rotation around 

180 degrees) transformations.

Combining algorithmic techniques like this vastly increases the scope of a system, and 

can aid the composer both with the generation of new musical ideas and with the 

development of these initial ideas into complete musical works.

2.6 Rule-base algorithms

2.6.1 What is a rule-base?

The final class of algorithm that we examine is the class of rule-base algorithms. This 

class of algorithm uses a set of desired responses, known as a rule-base (or 

knowledge-base), which is stored in permanent memory and consulted when the 

system receives input ([Ullman, 1990]).
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The rules essentially define the behaviour of the system, which should have at least 

one desired response for each possible input.

A system of this sort, which contains the coded knowledge of one or more experts in a 

particular field is often referred to as an expert system.

2.6.2 Knowledge representation in an expert system

The way that information is stored in a rule-base depends on a number of factors. For 

example:

i.) For what purpose is the expert system to be used?

Clearly, an expert system whose purpose is to advise medical staff of likely diagnoses 

for given symptoms is unlikely to have the same data storage requirements as an 

expert system for music composition. There may, of course, be certain common 

requirements — both systems may use ASCII text to store certain types of data, for 

example. However, on the whole, different requirements require different methods of 

storage.

ii.) What resources are available for input?

Will the composer be entering composition data manually from a keyboard? Will the 

data be entered as textual information? Perhaps some algorithmic process is at work in 

the background and will generate some other form of composition data. All of these 

will have a direct bearing on the way that the rule-base is stored in memory. Clearly, 

it is desirable to have a reasonably close match with the input data and the rule-base to 

avoid unnecessary translations. For example, if composition data are to be entered as 

text, whilst the rule data are stored as MIDI information, there must be at least one 

translation to ensure that a meaningful comparison can take place.

iii.) What resources are available for output?

Again, this will have a direct bearing on how the responses are to be stored in 

memory. For musical purposes, this is extremely likely to be in the form of short 

MIDI files, or score files for composition languages.
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iv.) What resources ore available for the system?

This is a further consideration that has some relevance on how the rule-base should be 

implemented. For example, suppose that the computer 011 which the system is to be 

implemented offers less storage space than is needed to fully specify the rule-base. 

This would mean either omitting some of the rules or the information associated with 

them, which is not desirable since it alters the behaviour of the system, or finding 

some alternative means of representation which requires less storage space.

2.6.3 Some benefits and drawbacks of rule-base systems

One of the greatest benefits of using rule-base systems of this sort is that the results 

are potentially exceptionally good, because the system draws on the knowledge of 

experts to create new compositions.

Another benefit of the rule-base approach to composition is that it allows the creation 

of ‘hybrid’ works, which would have otherwise been unlikely (or impossible). After 

all, there is no reason why an expert system should refer to the knowledge of only one 

expert.

It is easy to envisage a situation where several experts, each with their own area of 

expertise, have contributed to an expert composition system. On composition, then, 

the system has at hand the combined knowledge of each of the experts, maxing 

possible the creation of a funk-baroque, or classic-blues work.

There are, however, problems, albeit problems which are not insurmountable.

In order to create a truly expert system, one must consult true experts. This makes the 

creation of an expert system both time consuming and costly: One must first find 

experts 011 whatever subject the system is to cover. Having found these experts, their 

entire knowledge of the subject must somehow be discovered and formalised, then 

encoded and stored.

Of course, further problems arise if, for example, there are no living experts 011 the 

particular subject of interest. Thankfully, there is a wide range of musical analysis 

available which may be used to assist in the creation of a knowledge-base.
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For example, if we wish to construct a Mozart algorithm, it would be possible to 

examine the numerous analyses of his work and obtain a clear idea of bow the 

composer dealt with certain situations. This could then be coded and stored just as 

with the knowledge of contemporary experts.

Also, having built an expert system for composition, there is a danger that it will 

respond to similar input in an identical manner. The problem arises if the system has 

been designed to repeat exactly the experts’ responses (i.e. quote verbatim). For 

example, if the system has been designed using an input checking routine of the sort 

shown in Figure 2.6.1 below, there is a real danger that the expert system will become 

little more than an expensive musical quotation machine.

IF INPUT 1 THEN RESPONSE 1 
IF INPUT 2 THEN RESPONSE 2

INPUT t > I----------^>O IITP I JT

IF INPUT n THEN RESPONSE n

RULE-BASE

Figure 2,6,1 — Simplistic expert system that repeats the experts' responses exactly.

One way to avoid this is to employ a subroutine that takes as input an expert’s 

response and returns a variation of that response.

A good example of a composition system which uses a knowledge base is [Cope,

1987].

2.7 Turing Systems: A new means of classification

We now propose a method of classifying certain types of musical algorithm that 

depends not on how the music is created within a composition system, but on how the 

composition system itself behaves.

Recently, with the explosion of interest in the world wide web, a number of music 

generation packages have arisen in order to satisfy the need for music over the
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internet. By far, the most interesting of these packages have been those that allow 

interactive generation of music -  literally jamming via the web. One such system is 

the Rocket Network, which allows composers and audio professionals anywhere in 

the world to work together on the same recording over the Internet, eliminating the 

need for all contributors to be in a common location (see [Wentk, 1995] and [Res 

Rocket, 1999]).

The packages in question allow several musicians to link up via the internet and create 

music together. Some music may be generated algorithmically; some may be played 

by human performers, and some may have been pre-recorded and replayed. The actual 

means by which the music is generated is not, in itself, important. What is important 

is that each individual musician is receiving musical input at their computer terminal 

and is providing musical output in response. The musician does not know (nor 

particularly care) whether the music has come from the fingers of a pianist halfway 

around the world or from the logic gates of a PC on the other side of town.

One can see straight away the similarities between this and the writings of the great 

theoretical computer scientist, Alan Turing, whose infamous test for machine 

intelligence ([Turing, 1950]) states that:

True machine intelligence can be said to have been achieved when a human being can- 

converse via a computer terminal with an unseen operator and a machine and is 

unable to distinguish between the two.

For this reason, we have grouped interactive algorithmic music packages of this sort 

together under the title Turing Systems.

One might imagine that it would be simple to tell the difference between a real 

jamming musician and a computer running algorithmic composition software. In 

practice, though, if a listener is given no additional clues to the origin of a piece of 

music, it is often very difficult to tell -  there may be little difference in the output 

from a poorly designed generative music algorithm and a musician who cannot 

improvise!
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2.8 Summary

We conclude this section by presenting the following table, which highlights the main 

features of the algorithms discussed herein.

It should be noted from this table, that each algorithm has its advantages and its 

disadvantages. There is no ‘right’ or ‘wrong’ algorithm. The composer should 

examine the problems that face him when composing a work and should make an 

informed choice of algorithm accordingly.
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Algorithm Type Key Features Advantages Disadvantages

Stochastic
Driven by the laws 
of probability.
Rely on random 
functions.

Easy to implement 
and understand.

Output is random -  
unsuitable for replicative 
composition.
Impossible to predict in 
advance exactly how the 
composition will sound, 
making it difficult to plan 
compositions.

Form al G ram m ars 

and Automata

Uses language 
theory to specify 
macroscopic 
structure and fine 
detail.

Can generate 
extremely convincing 
music.
Formulation rules 
easy to specify.

Underlying mathematics is 
quite complex and difficult 
for non-mathematicians to 
comprehend.

Iterative and 

Fractal

Uses fractal 
pictures and 
mathematical 
equations to 
generate note data.

High correlation 
between visual and 
sonic representations 
of data.
Chaotic orbits often 
produce interesting 
results.

Very many uninteresting 
orbits.
Complex mathematics may 
be difficult to understand. 
Poor choice of mapping 
often leads to dull or non­
musical results.
Often difficult to predict 
how the system will behave 
for chaotic orbits.

Evolutionary
Neural techniques 
use a model of the 
workings of the 
human brain to 
analyse and 
replicate 
compositions. 
Genetic algorithms 
evolve an initial 
melody to some 
optimum.

Exceptionally 
powerful technique, 
particularly when 
combined with other 
classes of algorithm. 
The composer only 
has to provide the 
building blocks of a 
work, the system can 
complete it.

Extremely complex. 
Neural-based systems often 
have to undergo extensive 
training.
Difficult to define what is 
meant by an optimal 
melody.

Serial
Formalisation of a 
well-established 
composition 
technique.
A series of notes is 
subject to various 
musical
transformations.

Easy to implement 
and understand. 
Output is of a similar 
standard to that 
obtained manually.

Serial composition is not to 
everyone’s taste!

Knowledge-base System responds to 
input from the user 
by consulting an 
expert knowledge­
base.

Convincing results. 
Puts a wide range of 
musical expertise at 
the composer’s 
fingertips.
Fusion of styles 
possible.

Difficult and costly to 
implement.
Danger of straight repetition 
of stored knowledge.

Table 2.8.1 -  Summary o f the six main algorithm types.
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3. CAW1US -  A cellular automata based music 

algorithm

3.0 introduction

In this chapter we introduce the fundamentals of our research work involving the 

application of cellular automata (see Section 2.2.8) to music composition and present 

CAMUS, an algorithmic composition system which uses cellular automata as the 

basis for its control system.

3.1 Cellular Automata MUSic

The CAMUS (Cellular Automata MUSic) system uses the Game o f Life ([Gardner, 

1971]) and Demon Cyclic Space ([Miranda, 1993]) automata to generate 

compositions.

3.1.1 The Game of Life

The Game of Life automaton consists of an m x n array of cells, which can exist in 

two states, alive, denoted by 1, or dead, denoted by 0. The rule which determines the 

development of the automaton is: A cell will be alive at times tep t + 1 i f  and only i f  it 

has precisely 3 live neighbours at timestep t. Figure 3.1.1 shows six successive 

timesteps of the Game of Life. The live cells are shaded in black.
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Figure 3.1.1 — Six successive time steps o f  the Game o f  Life.

3.1.2 The Demon Cyclic Space

The Demon Cyclic Space automaton is an m x n array of cells which can exist in k 

states. The evolution of the automaton is determined by: A cell which is in state j  at 

timestep t will dominate any neighbouring cells which are in state j  - 1, so that they 

increase their state to j  at timestep t + 1.

A very important feature of the Demon Cyclic Space is that it is cyclic. meaning that 

we treat k as 0. This has the effect that cells in state 0 dominate cells in state k — 1. 

Thus the influence that a cell exerts on its neighbours has far reaching consequences, 

often extending beyond the eight cells that immediately border the cell in question. 

This, taken in conjunction with the fact that the cells are checked in parallel, results in 

a self-organising structure as shown in Figure 3.1.2 below. The image on the left-hand 

side is the initial, randomised cell configuration. The image on the right-hand side is 

taken 20 timesteps later and shows how the cells arrange themselves into a 

‘patchwork’ type of pattern.
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Figure 3.1.2 -  Two timesteps o f  the Demon Cyclic Space. The image on the left is the 

initial, randomised state. The image on the right is from the same region taken 20

timesteps later.

3.1.3 The Automata Space

The Game of Life and Demon Cyclic Space automata described in Sections 3.1.1 and 

3.1.2 above inhabit a space which is toroidal in nature. That is to say that the right 

edge of the automata space wraps around to meet the left edge and the top edge of the 

automata space wraps around to meet the bottom edge -  the planar spaces of Figures 

3.1.1 and 3.1.2 are mapped onto a torus (see Figure 3.1.3). For reasons of legibility, 

however, we will continue to present the automata as planar spaces, it being a simple 

enough matter to track the wrapping of cells in one’s own mind.

Mapping the automata spaces onto toruses in this way is not essential. It is possible to 

treat the spaces as being truly planar by imposing boundaries at the edges, just as it is 

possible to map the spaces onto other spaces, such as cylindrical spaces, where the 

space is bent so that only two opposing edges meet.

Whilst these alternative spaces may also produce interesting cell dynamics, the 

toroidal spaces win out for ease of use, since there is no need for extra code to check 

the boundary conditions, and predictability -  both the top and bottom ‘edges' behave 

in an identical manner. It is for these reasons that toroidal spaces have been employed 

here.
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Figure 3.1.3 -  Mapping a 2-dimensional automaton space onto a torus.

3.1.4 The CAMUS algorithm

To begin the composition process, an m x m16 Game of Life automaton is set up with 

an initial cell configuration, the Demon Cyclic Space automaton is initialised with 

random states, and both are set to run.

16 Observe that here we take n = m in our definition.



At each time step, the cells of the Game of Life are analysed column by column17, 

starting with cell (0, 0), and continuing until cell (m, m) has been checked18.

3.1.5 Chords in CAMUS

We define an n-note chord to be a set of n notes which may or may not sound 

simultaneously. Thus we have that

is a 3-note chord, as is

and

and so on.

We can describe an w-note chord by specifying its fundamental pitch , that is the 

lowest note in the chord, and an (n -  l)-tuple that gives its intervallic content, that is 

the width of the intervals between the notes of the chord in semitones. In essence, the 

fundamental provides us with a reference point from which we can calculate the 

remaining notes from the chord’s co-ordinates in an {n -  l)-dimensional Euclidean 

space known as the von-Neumann music space ([Miranda, 1993], [Miranda, 1994]).

We use the notation

■̂(-̂ 1. 2-> -̂*2, 3, - • • _ I, n)

to denote the «-note chord whose fundamental pitch is X, with the semitone interval 

between the lowest and next-lowest pitches being x\t 2, the semitone interval between 

the second lowest and next-lowest pitches being X2, 3 and so on.

17 The automaton is analysed in this way to remain backwardly compatible with Dr Miranda’s original 
system.
18 We use the term checked here to denote the examination of a cell’s state for the purpose of 
generating musical data and not for the updating of the automata. This terminology is retained 
throughout the thesis.
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Thus we have that the three examples of a 3-note chord above may all be described as 

A4(8, 2), since the fundamental pitch is A4 (i.e. the fourth A above C l, the lowest C 

on the piano keyboard), the interval from A4 to F5 is 8 semitones and the interval 

from F5 to G5 is 2 semitones.

In many instances we are concerned only with the chord type, such as major or minor. 

If this is so, we may omit the fundamental pitch from the notation, since this is simply 

a reference point and all the information about the chord type is stored in the (n — 1)- 

tuple that follows.

Table 3.1.1 below shows some common (3-note) chord types and the corresponding 

integer pairs.

Major Minor Augmented Diminished

Root position (4,3) (3, 4) (4, 4) (3,3)

First

inversion

(3,5) (4, 5) (4, 4) (3.6)

Second

inversion

(5,4) (5,3) (4, 4) (6,3)

Table 3.1.1 — Some common 3-note chord types in duple notation.

3.1.6 From automata to music

Converting the cells of the Game of Life to music is accomplished as follows:

When CAMUS arrives at a live cell, its co-ordinates are taken to be the duple 

representation of a 3-note chord.
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The state of the corresponding cell of the Demon Cyclic Space automaton is used to 

determine the instrumentation, that is the instrument that 'plays' the cell, of the piece. 

This configuration is demonstrated in Figure 3.1.4. In this case, the cell in the Game 

of Life at (5, 5) is alive, and thus constitutes a sonic event. The corresponding cell in 

the Demon Cyclic Space is in state 4, which means that the sonic event would be 

played by instrument number four (e.g., using MIDI channel 4). The co-ordinates 

(5, 5) describe the intervals in a triad: the note five semitones above some 

fundamental pitch, and the note ten semitones above the fundamental.

5

Figure 3.1.4 - Configuration for a typical timestep o f the cellular automata 

music algorithm used in CAMUS.

Now, in order to specify fully the triad, we also require a fundamental pitch to use as a 

reference point. CAMUS employs a user-specified parameter list known as an 

articulation for this.
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An articulation consists of a twelve-pitch sequence of notes that serve as the 

fundamental pitches for the triads, and a number of other composition-specific 

parameters. These are:

Speed. This allows the user to specify the tempo of the composition in beats per 

minute (BPM).

Speed Variation. This allows the user to specify a rubato setting which will vary the 

basic tempo by up to ± this number of BPM.

Dynamics. This allows the user to specify the intensity of the generated music. The 

dynamic level is given as a MIDI note velocity in the range 0 -  127.

Dynamics Variation. This allows the user to specify a dynamic range. The dynamic 

level will then vary by up to ± this value.

Random Number Generation. This allows the user to alter the random number 

generation settings used in the calculation of the speed and dynamic variation values 

in the composition. The user can specify the maximum and minimum numbers 

returned by the random number generation and the type of distribution used. The three 

distribution types are uniform, meaning that each real number in the range [0, 1] is 

equally likely; linear19, meaning that real numbers closer to 1 are much more likely 

than those close to 0, and triangular20, which returns numbers close to 0.5 far more 

often than those close to 0 or 1. Note that the uniform and linear distributions 

described above are only one example of each of these distribution types. They are, 

however, hard-coded into the system and are a legacy from CAMUS vl .0 for Atari ST 

([Miranda, 1993]) from which this version was developed.

19 Note that this is a particular example of a linear distribution. This distribution was chosen by Dr. 
Miranda and is hard-coded into the system.
20 Similarly, this is a particular example of a triangular distribution which is coded into the system.
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Number o f Loops. This allows the user to specify the number of loops that CAMUS 

uses in the generation of a composition. A loop is a twelve-triad long section of the 

composition to which the user may assign any articulation. CAMUS allows for up to 

9999 loops.

Use Articulation x fo r  Loop y. This allows the user to associate any articulation with 

any loop.

CAMUS allows for the specification of up to 22 such articulations, which, combined 

with the ability to associate the articulations with any of the available loops gives a 

fairly wide scope for composition.

The articulation system described above, is a development of the system employed in 

CAMUS vl.O for Atari ST. The number of parameters-per-articulation and their usage 

derives from this earlier version.

Once the triad for each cell has been determined CAMUS calculates the note 

velocities for each of the notes by generating a random number in the range specified 

by the user, scaling by the dynamics variation parameter and adding (or subtracting) 

to the dynamics parameter.

Now in order to avoid the composition being composed entirely of block chords, we 

need some method of staggering the starting (and possible ending) times of the notes 

of the triad. CAMUS uses the states of the neighbouring cells in the Game of Life to 

calculate the temporal position and duration of each note as follows:

Suppose we wish to determine the temporal positioning of the cell (v, y). We can 

construct a set of values from the states of the neighbouring cells — the value being 1 

if the cell is alive and 0 if it is dead:
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a = cell (x, y  - 1) b ~ cell (x, y  + 1)

c = cell (x + 1, y) d = cell (x -  1 , y)

m  = cell (x - 1, y  - 1) /i = cell (x + 1, y  + 1)

o = cell (x + 1, y  - 1) p  = cell (x - 1, y + 1)

We then form the four 4-bit words, abed, deb a, mnop and ponm. Next, we perform 

the bitwise inclusive OR operation, to form two four-bit words, Tgg and Dur.

Tgg = abed j dcba 

Dur = mnop \ ponm

From Tgg. we derive the note trigger information, and from Dur, the note duration 

information. With each relevant four-bit word, we associate a code, known as an 

AND (cellulAr geNetic coDe). Note that the AND code is distinct from the bitwise 

AND operator. The author concedes that the terminology may cause some confusion, 

but has been retained here for consistency with Dr. Miranda’s original program. Thus, 

for the sake of clarity, when referring to the AND code throughout this thesis, we use 

bold typeface. Logical operations will always be printed with plain typeface.

Each of the three letters in the AND codeword is used to represent a note in the triad, 

with a denoting the lower pitch, n the middle pitch, and d the upper. The square 

brackets are used to indicate that the note events contained within that bracket occur 

simultaneously. The codewords are assigned as follows:

0000 : a[dn] 0001: [dna] 0010 : adn 0011 : dna 0101 : and

0110 : dan 0111 : nad 1001 : djna] 1011 : nda 1111 : n[da]

Table 3.1.2 -  The AND codewords and their respective numerical values.

With each codeword we associate a particular temporal configuration, as shown in 

Figure 3.1.5.
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and

dan a[dn]

adn nad nda

d[na]

dna

[dna]

Figure 3.1.5 - Ten different temporal codes.

These codes determine the temporal shape of each triad, the actual values for the 

trigger and duration parameters are calculated using a random number generator and 

the distribution and upper and lower bounds specified in the relevant articulation.

Finally, the music is written to a storage file and sent to a MIDI-equipped instrument 

to be played.

Figure 3.1.6 below illustrates the principal steps of the CAMUS algorithm in the form 

of a flowchart.
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NO
Is cell alive?

YE

All cells 
Checked?

NO

YES
Update automata

Read fundamental pitch,

Check next cell

Calculate the notes o.f the triad

Initialisation of parameters

Calculate note orderings and 
individual rhythms

Send note data to MIDI channel 
d, where cl is the state of the 

corresponding DCS cell

Figure 3 ,1 ,6 - The CAMUS algorithm.

Figure 3.1.7 expands further the step labelled Calculate the notes o f the triad.



Top pitch = p 0 + x  + y

Bottom pitch = p 0

Middle pitch = p 0 +x

Figure 3.1.7 -  Algorithm for calculating the notes o f the triad defined by cell (x, y)

and fundamental pitch po.

In Figure 3.1.7, we have used a one-to-one correspondence to map the chromatic 

pitches from C-2 through to G8 onto the integers from 0 to 127. An increase in pitch 

of a semitone corresponds to an increase by 1 of the relevant note number. This 

mapping forms the basis of the MIDI representation and is discussed in more detail in 

Appendix C.

In Figure 3.1.8a below, we illustrate how the parameters a, b, c, d, m, n, o andp  are 

assigned values depending on the states of the cells neighbouring the one under 

examination. The value assigned to the parameter is taken to be 1 if the corresponding 

cell is alive and 0 otherwise.

It is also important to note that the neighbouring cell co-ordinates are calculated 

modulo Size, where Size is assigned the integral value m for an m x rn automaton. This 

ensures that the automaton space is toroidal, that is, each edge of the automaton space 

wraps around to meet the opposite edge.

From these parameters, we form the four four-bit binary words abed, dcba, mnop and 

ponm  and calculate the trigger and duration parameters, Tgg and Dur by performing 

the bitwise inclusive OR operation.
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a = state of (x, (y - 1) mod VSize)

 ________________________
b = state of (x, (y + 1) mod VSize)

 ________________________
c -  state of ((x + 1) mod HSize, y)

 ________________________
d — state of ((x - 1) mod HSize, y)

 ________________________
m  = state o f ((x - 1) mod HSize, (y - 1) mod VSize

   ________________________
n = state o f ((x + 1) mod HSize, (y + 1) mod VSize

________________________i t ------------------------------------
o -  state of ((x + 1) mod HSize, (y - 1) mod VSize

 ^ ________________________
p  ~ state of ((x - 1) mod HSize, (y + 1) mod VSize

   ________________________
Tgg = abed OR dcba

 ________________________
D ur  =  mnop OR ponm

Figure 3.1.8a — Initialisation ofparameters for calcidating the note orderings o f  the 

triad defined by (x, y) in a toroidal Game o f Life automaton o f size (Hsize, Vsize).

In Figures 3.1.8b, c, d and e, we show how the trigger and duration parameters are 

used to select the note orderings and durations according to their respective values. 

The values used in the decision-making routines were chosen subjectively and then 

hard-coded into the system.
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Can first note end 
before second 

begins?

YES

NO

Can first or second 
notes end before 

\ t h i r d  b eg in s? /'

YES

NO

Trigger second note

End next shortest note of triad

End shortest note o f triad

End final note o f triad

Trigger third note

Trigger first note given by 
trigger codeword.

Assign the correct trigger 
ND codeword depending on 

the value o f Tgg.______

Assign the correct duration 
dST!) codeword depending on 

Hie value o f D ur

Figure 3.1.8b -  Decision routine based on the Tgg and Dur parameters.
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YES

NO

Can second 110 te \. ygg 
end before third 

"v begins?

NO

End third note.

End first note.

Figure 3.1.8e

Trigger second note.

Generate a real, x, in range [0, 1].

Figure 3.1.8b

End second note.

Trigger third note.

Figure 3.1.8c — Decision routine based on the Tgg and Dur parameters.
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Generate a real, x, in range [0,1],

x  < ‘/3? YES

|N O

| End first note.

X  <  2/3?
YES

X n o

End second note.

Trigger third note.

End third note.

Figure 3.1.8b

Trigger third note.

4
End second note.

End third note.

Figure 3.1.8d -  Decision routine based on the Tgg and Dur parameters.



YES

NO
End second note.

Generate areal, x, in range [0,1].

Trigger third note.

End third note.

Figure 3.1.8c

Figure 3.1.8e -  Decision routine based on the Tgg and Dur parameters.

It should be noted that this decision making routine also works correctly even if the 

notes are not strictly ordered (i.e. two or more sound simultaneously). Here, we still 

order the notes, but allow starting times and durations of value 0. This works because 

MIDI is serial in nature and commands must be sent one at a time (see Appendix C).

3.2 Composition example

We now illustrate the workings of the CAMUS algorithm by tracing the development 

of a simple composition using CAMUS version 2.0 for Windows95 [McAlpine, 

Miranda & Hoggar, 1997a], [McAlpine, Miranda & Hoggar, 1997b], which was 

developed from CAMUS version 1.0 for Atari ST [Miranda, 1993],

3.2.1 The interface

CAMUS has three main windows from which all of the functionality of the program 

can be accessed. The first of these is the CAMUS toolbar:
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jgjj CAMUS
Fils Automaton Compose

Figure 3.2.1 -  The CAMUS toolbar

This is the main ‘control centre' for CAMUS, allowing the user to load and save files, 

stop and start the composition process, and change all of the available parameters. 

Reading from left to right, the buttons are:

New. Creates a new CAMUS project.

Open. Opens a previously saved CAMUS project.

Save. Saves the current CAMUS project to disk.

Export MIDI file. Saves the current CAMUS composition as type 0 standard MIDI 

file (see Appendix C).

Go. Begins the composition process and plays the generated music in real-time.

Stop. Terminates the composition process and silences any music that is currently 

playing.

Alter Demon Cyclic Space Rules. Allows the user to customise the rules that 

determine the cellular evolution of the Demon Cyclic Space automaton.

Alter Game o f Life Rules. Allows the user to customise the rules that determine the 

cellular evolution of the Game of Life automaton.

Load Demon Cyclic Space with Random Values. Assigns each cell of the Demon 

Cyclic Space automaton a random value between 0 and n — 1, where n is the total 

number of available states.

Load Game o f Life with Random Values. Assigns each cell of the Game of Life 

automaton with a random binary value.

Clear Game o f Life Cells. Kills each cell of the Game of Life automaton.
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Change Instrumentation. Allows the user to associate General MIDI (see Appendix 

C) instruments with each of the cells of the Demon Cyclic Space automaton.

Change Composition Settings. Allows the user to alter the articulation parameters (see 

Section 3.1.6) that control the main musical aspects of the composition.

Step Through. The system updates the automata once and stops, generating and 

playing music as it does so.

The second of the three main windows is the Game o f Life window, which displays 

the states of the cells in the Game of Life automaton:

□□■■□■■■□■■□a
■□□■□□□□■■□□□a

□□□□□□□□□■■a

■■□□■□□■■□□a □■□□■■□■□□□a

r r. g rr’ft 11'ii
■□■■□■□□□■■□□■□□a

■□□■■□■■■□■■■□□■a ■□■■□□■■■□■□■■□■a■■□□□□■□■■□□□□□□a □□□annnnannnnanDB 
■ ■ ■ ■ ■ □ □ □ B B f la a f lD o a
□ B D O dO D nD B D B O B D B B  

B B D D D B B D D D B D nD D B 
□ B B B D B nB D B B B B B B O B B D D  
B flD B D D B D B D flm D D D B D D Q B D D  □□BBBDDDnBnnQDDnBBBBnB 

□ □ □ □ B B n n D B B n n a n n  
B B m Q B B Q O D D D B Q D D  
B B D B B O O B B B B D D B D B  
□ □ B B D B D D D n n n B D D D  
flnB B B B D B B B B D D B D D  
□BDBBDL1DDBDDBBDB 
BD flBO dB B D C IB B B 
□ □ □ □ □ B B B B D B B D D D B  
B B D B D B D D D B D D D O nn 
B B D C flB C D D C B Q D B m

□ B D B D D B D B B  
□ B B B D D B B O D

■ ■

I I
■ ■

BDDBnnnnnnnBDB □□BBDBBBDBBBDB □□□□BBBBBDDBDB □■□■BDBBBDDBDD ■BDDBBBBDBianr
BnnnnnnanBBnBi 

BOD BBBBBC1BDDBBBD 
B D Q m B B B D in B B B D D I 
□ B d flB B D B B B D D B B D B
□ □ □ □ □ □ B D B B D D B Q B B

Figure 3.2.2 -  The Game o f Life window.

A good way to think of this window is as CAMUS’s musical score. This analogy is 

fairly natural in that both a musical score and the Game of Life window display 

information about musical events in a graphical form. Here, though, the live (shaded) 

cells that are responsible for the musical events should be thought of as chords rather 

than individual notes as in a traditional score.
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The state of any cell in the Game of Life window can be altered by clicking on it. In 

addition, the Clear and Randomise buttons described above can be used to alter the 

states of all of the cells in the automata at once.

The last of the three main windows is the Demon Cyclic Space window, wfiich 

displays the states of the cells in the Demon Cyclic Space automaton:

Demon Cyclic Space a
t i  y  say u  u  u  u  u  u  u  

u ii ■ a  t i  ■ h o  u u  u  ■ 
i.i t'jb'By . ■ u  ■ u  ■ a y  ■

B '.’U'BBCBU U S B . .  B B II
B ISta B B .B U B BB

U B I B B  B B U B  BB,’: U B
B M B  B B B B t i U

BB  B B BB  B  B  B B fl fl B 
B B  11 B fl. i H U 2  B B: i

b  y  a  B y  u  u  l b j ^
Li : .B  LJ B . f l  BB Li B

B HUB L.B y  L J  U u  B BB u
B I.B B  U

B DU B B  B B B U  H
B II H B B B B (.3 M B

□ U fl B B id f l li
. B B B .  . B y  B B

BU . Bi-I u  fl.JU flu f l  a  l b  a a  □
B£i fl BB \ U U CJ B iB a fl c i ; a  a u ri■ ■ rj u ; d u b  flu u ra fl

■ LB U B y  B J
ti B B  B U fl f l  II
U B B iiU  L B  LB i.i ES B U B Li

fl UU a  BU
B U fl B B i - f l  U

■ U B  H U B fl fl L.B

■ J■ j l
: | |

Li B U B B  I 
B B U f l l

BE3 P  BB I
B B U B B  U LI

■ B U Q i i l  U
■ BB ■ Id B

b u  u  u u
BU UU U

Figure 3.2.3 -  The Demon Cyclic Space window.

• i 21The state of each cell in the Demon Cyclic Space is indicated by its colour" . The user 

cannot directly alter the states of the cells in the Demon Cyclic Space, but can 

randomise them using the Randomise button described above.

Since the cells in the Demon Cyclic Space determine which instrument plays the notes 

generated by the corresponding cell in the Game of Life, we have that the number of 

states in which a Demon Cyclic Space cell can exist defines the number of 

instruments that will play any music that is generated.

21 Due to the monochrome printing capabilities available to the author, it has been impossible to display 
many figures in colour. Instead we use greyscale to display shades. The computer software, however, 
does display these screens in full colour.
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3.2.2 Changing the Demon Cyclic Space rules

We now begin work on the composition. Let's suppose that we wish to write a short 

piece for four instruments. First of all, we must alter the Demon Cyclic Space rules so 

that each cell can exist in one of four possible states.

The Demon Cyclic Space Rules window (see Figure 3.2.4) is displayed by clicking on 

the Alter Demon Cyclic Space Rules button on the CAMUS toolbar or by selecting the 

corresponding menu option.

"J IF''?1!’ ] - '".':o I y TTf': 1

Figure 3.2.4 -  The Alter Demon Cyclic Space Rules window.

In order to ensure that the music that is generated is played on four instruments, the 

Number o f states parameter is set to 4, as shown in Figure 3.2.5 below.
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Number of s ta tes:
ASi M l  l>

Cells dominated by neighbours in state n + 1*' -.n-'S'̂ -s-Vri'i-.     . > ’ ■ ■, 

Figure 3.2.5 -  Altering the number o f  instruments by limiting the number o f  possible

states in the Demon Cyclic Space.

The other options allow the user to change the way that the Demon Cyclic Space 

evolves. The parameter Cells dominated by neighbours in state n +, displayed in 

Figure 3.2.5 above, can be set to any value between 1 and the total number of states, 

and specifies which cells will dominate their neighbours at each timestep. The 

Neighbouring cells option allows the user to select one of three neighbourhoods to be 

examined at each timestep. The options are:

Check all neighbouring cells examines the states of all the cells surrounding the cell 

currently being examined.

Check perpendicular cells only examines only the cells directly above, below, to the 

left and to the right of the cell currently being examined.

Check diagonal cells only examines only the cells above-left, above-right, below-left 

and below-right of the cell currently being examined.

These options alter the patterns (and thus the music) produced by the automata.
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3.2.3 Changing the Game of Life rules

It also is possible that the user might wish to make changes to the Game of Life rules.

The window. Game o f Life Rules (see Figure 3.2.6 below) is displayed by clicking on 

the Alter Game o f Life Rules button on the CAMUS toolbar or by selecting the 

corresponding menu option.

Alter Game Of Life Rules

)r life: ft

Minimum nelghbi

i '  Check perpendicular cells only 

C  Check diagonal neighbours onl

Figure 3.2.6 -  The Alter Game o f Life Rules window.

The Maximum neighbours for life parameters in the Live cell rules and Dead cell rules 

boxes determine the maximum number of live neighbours that can surround a live or 

dead cell and yet preserve or create life on the next timestep.

Similarly, the Minimum neighbours for life parameters determine the minimum 

number of live neighbours that can surround a live or dead cell and yet preserve or 

create life on the next timestep.

The settings in Figure 3.2.6 above signify that any live cells will continue to live if 

they have either two or three live neighbours (not including the cell being checked), 

and any dead cells become live if they have exactly three live neighbours. All other 

cells will die or remain dead.

95



As with the Alter Demon Cyclic Space Rules window, the Neighbouring cells box 

allows the user to specify precisely which neighbours are examined at each timestep.

3.2.4 Setting the instrumentation

Next, the user should decide on the instruments that will perform the composition. 

The MIDI Instrumentation Setup window (see Figure 3.2.7) can be opened by clicking 

on the Change Instrumentation button on the CAMUS toolbar.

Acoustic GrandAcoustic Grand

Acoustic GrandAcoustic Grand

Acoustic GrandAcoustic Grand

Acoustic GrandAcoustic Grand

Acoustic Grand Acoustic Grand

Acoustic GrandA Acoustic Grand
M M

A\ Acoustic GrandAcoustic Grand
■  •

Acoustic Grandicoustic Grand

Figure 3.2.7 -  The MIDI Instrumentation Setup window.

Suppose that the composer wishes the piece to be performed by piano, string section, 

lead synth tone and synth pad tone. The first four list boxes, corresponding to MIDI 

channels 1 -  4 would then be set to something similar to those of Figure 3.2.8:

y  Bright Acoustic Grand l;
HIMMRMH

String E n sem b le  1 ▼ I

p Chiff Lead

n 1
Figure 3.2.8 -  Changing the MIDI instruments o f the first four MIDI channels.
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Notice, here, that the user is still free to alter the settings for any of the other 

instruments, and indeed, patch change data will be sent for each, but this will have no 

effect on the composition, because only the first four instruments are configured for 

playback.

Note also, that although we are, in effect, assigning instruments to each of the 16 

available MIDI channels, no mention is made of channel assignments in the dialog 

box. The interface was deliberately designed like this so as to make those musicians 

who are uncomfortable with the MIDI protocol feel more at ease with the software. It 

is a simple matter to associate the instrument names with the colours of the 

corresponding Demon Cyclic Space cells. CAMUS then takes care of the channel 

assignments in the background, leaving the user to get on with composing the music.

3.2.5 Setting the articulations

The next step in the composition process is to configure the parameters that determine 

the actual notes that CAMUS performs. To do this, the user must open the Change 

Composition Settings window (see Figure 3.2.9). This can be achieved by clicking on 

the Change Composition Settings button on the CAMUS toolbar or by selecting the 

corresponding menu option.

Figure 3.2.9 -  The Change Composition Settings window.

97



The Change Composition Settings window has a number of parameters that can be 

altered. Let us consider them one at a time.

The first parameter we see is the one marked Articulation in the top left corner of the 

window. An articulation is simply a convenient way of referring to all of the 

parameters that you can set on this page. A single articulation consists of a 12-pitch 

sequence, parameters for controlling the speed and the speed variation, the dynamics 

(i.e. the loudness or softness of the notes) and dynamic variation, and parameters for 

controlling the random number generation employed by the composition algorithm. 

CAMUS allows for up to 22 such articulations which can be played back repeatedly 

and in any order.

The next step for the user is to define the 12-pitch sequence for the first articulation. 

The pitch values are displayed textually in the form X/7, where X denotes the pitch 

name (e.g. C#) and n is an integer denoting MIDI octave number (see Appendix C). 

The values may be changed by clicking on the text and typing in a new value, or by 

clicking on the increment and decrement buttons at the side of each text box to raise 

or lower the pitch by a semitone. The result of such an action may look like Figure 

3.2.10 below.

Figure 3.2.10 -A ltering the twelve-pitch sequence o f  an articulation.

The next parameters we meet are called Speed and Speed Variation. Speed allows the 

user to set the tempo of the generated music in beats per minute (BPM). The Speed 

Variation parameter is a ruhato control which allows the user to vary the speed of the 

composition by up to ± Speed Variation BPM. The values in Figure 3.2.11 below 

indicate that the underlying tempo of the composition is 100 BPM, with a rubato 

parameter of 30 BPM, giving tempos in the range [70, 130] BPM.
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10° S p eed  Variation:
■

EE i
Figure 3.2.11 -  Setting the speed and ruhato parameters.

Again, the values may be altered by either clicking on the text and typing a new value, 

or by clicking on the increment and decrement buttons at the side of the text box.

Next, we meet two parameters named Dynamics and Dynamics Variation, which 

allow the user to alter the dynamic level of the instruments and the amount by which 

this level can vary. The parameters are stored in MIDI volume format, and so range 

from 0 to 127. Thus, setting the values as in Figure 3.2.12 below, we would have a 

base note volume of 90. with a variation of ±40.

Figure 3.2.12 -  Setting the dynamic level and range.

However, since, as mentioned above, the maximum value MIDI allows for note 

volume commands is 127, it means that the dynamic range for the articulation is 

actually [50, 127].

Because of this possible source of integer overflow, boundary checking must be 

employed not only for this particular case, but for all of the composition parameters.

In the top right of the articulation window, we see a box labelled Random Number 

Generation (see Figure 3.2.13). This is where the user can alter all of the settings 

concerned with random number generation.

Figure 3.2.13 -  Random number control.
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Random numbers feature prominently in CAMUS. They form the basis of all of the 

decision-making routines, note start-time and duration routines and dynamic and 

tempo variation routines. The random numbers generated by these variables form the 

starting times and durations of the note events that are generated elsewhere. CAMUS 

works at a note resolution of 120 ppn (pulses per quarter note). That is. each unit of 

time corresponds to 1/120th of a crotchet.

Here, we are presented with three radio buttons marked Uniform Distribution; Linear 

Distribution, and Triangular Distribution, which uses the appropriate distribution to 

generate the random numbers. To the right of these buttons are two edit boxes marked 

respectively Maximum Value and Minimum Value which allow the user to specify the 

maximum and minimum values returned by the random number generation routine.

Thus the settings of Figure 3.2.13 above would result in the random number routine 

always returning a value of 120 (i.e. a crotchet), since the upper and lower bounds for 

the routine are identical.

In the bottom right corner of the screen, there are a set of parameters labelled Number 

o f loops, and Use articulation ... for loop ... (see Figure 3.2.14). These parameters 

allow the user to control the order in which the articulations are performed and are 

independent of the settings of each of the 22 available articulations.

culation 1

Figure 3.2.14 -  Ordering the articulations.

A loop is simply a measure of time which lasts for the duration of one articulation. 

CAMUS allows up to 9999 of these. Let us suppose that the user wishes to have four 

loops in the composition. The Number o f loops parameter would then be set to 4, as 

shown here:
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Number of Loops: A

Figure 3.2.15 -  Changing the number o f loops.

At present, each of the four available loops will have the articulation 1 associated with 

them by default. In order to introduce some movement, the user must associate 

different articulations with each loop. For example, in Figure 3.2.16, we have linked 

articulation 2 with the second loop.

Let us suppose that the user now associates articulation 2 with the third loop, and 

articulation 1 with the fourth in exactly the same way. This means that the order of 

play will be articulation 1 for the first loop, articulation 2 for the second loop, 

articulation 2 for the third loop, and articulation 1 for the fourth. Once the fourth loop 

has been performed, CAMUS will return to the beginning and start again with loop 1.

Once the user has specified the second articulation, as shown in Figure 3.2.17 below, 

the parametric specification of the system is complete.

U se  Articul
1

Figure 3.2.16 -  Altering the articulation order.
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Figure 3.2.17 -  Settings for the second articulation.

3.2.6 -  Initialising the Game of Life

Finally, in order for CAMUS to actually produce music, the user must draw an initial 

configuration of cells in the Game of Life window. As mentioned in Section 3.2.1, 

this is achieved by left-clicking and dragging the mouse over the Game of Life 

window.

Let us suppose that the user draws the following configuration:

i
f0 i i i
■— • ■ 1■ 7
:: : : : : : : : :

Figure 3.2.18 -  Initial cell configuration for the Game o f  Life.
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3.2.7 -  Generating the composition

Once all of the composition parameters have been initialised and the initial cell 

configuration is in place, the composition process can be set in motion.

Once composition is underway, CAMUS begins scanning the Game of Life column 

by column for live cells. Note that the point of origin in the Game of Life is the top- 

leftmost cell. The x-axis runs left-to-right, whilst the y-axis runs top-to-bottom. This 

gives the following cell ordering:

O rder Cell

1 (4, 3)

2 (5,1)

3 (5,3)

4 (6,2)

5 (6, 3)

Table 3,2.1 -  Cell ordering for the configuration o f  Figure 3.2.18.

The first cell that CAMUS encounters is the cell at position (4, 3). By examining the 

first note of the articulation associated with the first loop, we see that the fundamental 

pitch of this chord is C3, resulting in the chord C3(4, 3):

4r-------&—■ Q ■

Figure 3.2.19 — C3(4, 3) chord generated by the first live cell o f the configuration o f

Figure 3.2.18.

Now, CAMUS calculates the note ordering using the AND code.

This results in the parameter values of Table 3.2.2 below.
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Param eter Cell State

a (4, 2) 0

b (4,4) 0

c (5,3) 1

A (3,3) 0

m (3,2) 0

n (5,4) 0

o (5,2) 0

P (3,4) 0

Table 3.2.2 —AND code parameter values.

We now form the trigger and duration codewords, Tgg and Dur:

Tgg = abed | dcba = 0010 | 0100 = 0110

Dur = in nop \ ponm  = 0000 | 0000 = 0000.

Comparing these calculated values with the table of codewords presented in Table 

3.1.2, we see that the trigger codeword is dan, and the duration codeword is a[dn]. In 

other words, the notes are triggered with the order top note, bottom note, middle note, 

and released with the order bottom note, and the middle and top notes simultaneously.

Now CAMUS calculates the start times and durations for each of the notes of the 

chord using the random number parameters defined in the current articulation 

(number 1). These are set to return the value 120 each time the random number 

procedure is called. Also, the dynamic level is set to give a base velocity of 90 with a 

range of 40. This results in start times, durations and note velocities for the first chord 

as given in Table 3.2.3 below.

104



Pitch Start Time Duration Velocity

C 120 480 119

E 240 120 56

G 480 120 105

Table 3.2.3 -  Note Parameters for each o f the notes o f the chord generated by live cell 

(4, 3). Values are given as absolute times.

The resulting chord is presented in Figure 3.2.20 below.

Figure 3.2.20 — The resulting chord obtained from live cell (4, 3) in the Game o f Life.

The corresponding cell of the Demon Cyclic Space is in state 2, meaning that the note 

information is sent to MIDI channel 2 for playback.

Continuing in this manner results in the following:
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Figure 3.2.21 -  Music generated by performing two steps o f  the CAMUS algorithm 

with composition parameters set as described in the text.

3.3 Towards an efficient working procedure in CAMUS

As we have seen. CAMUS relies on the evolution of two deterministic cellular 

automata to generate musical data. Thus, in order for us to discuss the musical output 

of the CAMUS system, it is first necessary to consider the effects that different initial 

configurations and evolution rules have on the system's development and output.

In this section, we consider several different starting configurations, and trace the 

resulting pattern propagation. We then discuss the implications for the musical output.
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3.3.1 Two important considerations

There are essentially two tilings to be considered when examining CAMUS’ output.

Firstly, one must consider the triads that are generated. It is desirable to generate a 

range of triads, both consonant and dissonant in a work. There are many complex 

inter-relations between triads that should be present if the output is to be musically 

pleasing. At present, CAMUS offers no facilities for manually imposing restrictions 

on the output, and so if we are desirous of producing music that exhibits some of these 

triadic relations, it must be through careful choice of our stalling configuration.

Secondly, one must consider the effect that applying different articulations to the 

triadic sequence obtained from a particular configuration has on the output. The music 

generated by CAMUS is essentially atonal. However, by analysing the triadic 

progressions that result from a given configuration, one can choose pitch sequences 

for the articulations such that a tonal quality is imposed on the music. This will be 

discussed at length in Section 3.3.7.

3.3.2 Some terminology

When discussing the musical output that arises as a result of the evolution of the 

automata, it will prove useful to introduce terminology relevant to the control 

mechanism. When composing using cellular automata, we are essentially treating 

music as a means of pattern propagation (see Section 1.3.1). Thus, in using geometric 

terms to describe the states and transformations of the automata, we are also 

describing the transformations that are applied to the musical output. We will speak of 

reflections, rotations and clusters of cells, and associate each with a traditional 

musical device.

3.3.3 Initial states of the game of Life

Here, we introduce a number of different starting configurations for the Game of Life, 

and trace the development of each through to its conclusion. As we saw in Section 

2.2.8, there are essentially three different classes of starting configuration in the Game 

of Life -  configurations that die out completely after a number of timesteps,
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configurations that translate across space, and configurations that reach a steady 

cyclic state. We refer to these categories as doomed, gliders and cyclic respectively.

3.3.4 Doomed cells and their musical legacy

The single cell

Single live cells (see Figure 3.3.1) in CAMUS allow the user complete control over 

the tonality of the resulting composition. By positioning a live cell at position (v, y), 

the user can generate precisely one triad, with exactly the intervallic content that he or 

she desires. With the default evolution rules, this solitary cell will die on the next 

timestep, and so no further note data will be generated until the next live cell is 

selected. Using this single-cell-per-timestep technique, the user can generate lengthy 

chord progressions, which evolve exactly as desired.

Figure 3.3.1 — Single live cell

This high level of control over tonality is, however, not without cost. Recall that the 

temporal aspects of the composition are determined by the states of the neighbours of 

the live cell. Thus, since a single live cell has no live neighbours, this means that both 

the trigger parameter and the duration parameter will have a value of

0000 | 0000 = 0000,

meaning that both the start shape and duration shape will be constant with codeword 

a[dn] for each triad generated.

While it is true that in practice there will be timing variations in the performance of 

the triads due to the random selection routines utilised in the algorithm, the effects are 

negligible when compared to the repetitive nature of the note orderings.

It is, of course, entirely feasible to alter manually the note data generated by CAMUS, 

and impose one’s own note orderings on the composition. However, since the purpose 

of this section is to consider the effect that different cell configurations have on the
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output from the composition system, this technique is outside the scope of our 

discussion.

The use of single live cells as the basis for a CAMUS composition is then a technique 

that offers excellent user controllability over the tonal aspects of the piece, but which 

generates note data that quickly becomes monotonous, due to the constantly repeating 

nature of the note orderings.

Cell pairs

The second type of doomed configuration we consider is a pair of adjacent cells (see 

Figure 3.3.2).

”1”'

Figure 3.3.2 -  Adjacent pair o f live cells

This configuration shares many of the properties of the single cell. For example, in 

both cases, no cells remain living after just one timestep. As mentioned above, this 

allows the user a great deal of controllability over the tonality of the music, since the 

user is free to choose cell positions that fit the general mood of the music being 

composed. This freedom is inhibited slightly, in that here, the user must choose pairs 

of cells, but in so doing, we arrive at one major advantage over dealing with single 

cells, namely that we now have some temporal variation in the triads generated. With 

the vertical arrangement of cells, this would lead to the following temporal 

configuration: for the topmost cell, we would arrive at a trigger parameter of

7^  =  0100  1 0010  =  0110 ,

and a duration parameter of

D u r -  0000 | 0000 = 0000,

corresponding to trigger codeword dan and duration codeword a[dn]. Similarly, for 

the bottom cell, we obtain the trigger codeword d[na] and duration codeword a[dn].
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By changing the alignment of the cell pairs, and carefully choosing the position of the 

cells in the automaton, different temporal effects and musical triad progressions can 

be achieved. Table 3.3.1 below shows the four possible arrangements of cell pairs and 

their corresponding trigger and duration codewords. Cell 1 is always taken to be the 

top-leftmost of the two.

Cell 2 DurCell 2 TggOrientation Cell 1 Tgg Cell 1 Dur

d[na]a[dn]a [dn] dan

d[na] a[dn]dan a[dn]

Table 3.3.1 -  Trigger and Duration codewords for each o f the four possible cell pair

configurations.

It can be clearly seen from the above table that rotating a cell pair through 45 degrees 

has the effect of swapping the temporal ordering of that cell’s trigger and duration 

parameters. The reason for this is that as we rotate through 45 degrees, the 

neighbouring cell in which the live cell falls varies as:

a —> o b —> p c -» n d —> m

m —>• a n —> b o —> c p —> d

Now, since we are dealing with pairs of cells, only one neighbouring cell will be live. 

This means that if we begin with

abed= 0000

and

mnop = 0010
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as in the first row of Table 3.3.1, the above cell mapping results in the parameters

and

for the next row, and

and

abcd= 0010

mnop = 0000

abcd = 0000

mnop = 0100

for the next, and so on. It can be seen easily that when the OR operation is performed 

on these parameters, the swapping motion of Table 3.3.1. is obtained.

3.3.5 Gliders

This configuration of cells is so named because under default conditions, the live cells 

appear to ‘glide’ across the automaton. The cell evolution is shown in Figure 3.3.3.

Figure 3.3.3 -  Cellular evolution for the Glider configuration

Taking the top left cell of this configuration to have co-ordinate (x, y), we get the 

following sequence of chords:
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Frame 1 (.v. v  +  2 ) Frame 2 <,V. V ~  1)

C + l . V ) {x+ \ , y  + 2)

{ . v +  1 , ^  +  2 ) (x +  I, v + 3)

(,y +  2 ,  y  +  1 ) (A- +  2 .  y  +  1)

(„y +  2 ,  y  +  2 ) (.y +  2 ,  v  +  2 )

Frame 3 C , j '  +  2 ) Frame 4 ( a  +  1,  y  +  1)

(x+  I , j '  +  3) ( a  +  h y  + 3)

(.v + 2 , y +  1) (x + 2 , y  + 2)

(x +  2, y  +  2) (a- +  2, v +  3)

(„y +  2, y  +  3) (x +  3, y  +  2)

Table 3.3.2 -  Sequence o f live cells generated by a glider.

When the system reaches frame 5, we return to the same configuration as frame 1, 

with x and y  replaced by x + 1 and_y + 1 respectively.

This glider configuration gives us a cluster of five triads at each timestep. It should be 

noted here that although the triads are generated in clusters, the ultimate note data that 

are performed may be very widely dispersed across the musical range. This is due to 

the mapping technique employed in CAMUS: recall that the system generates only 

chord structures automatically -  the fundamental pitches of the triads are user- 

specified. Therefore, even though two triads are clustered closely together, for 

example the major triad, (4, 3) and the minor triad (3, 4), if the user specifies widely 

separated fundamental pitches, such as Cl and G7, the chords will seem very widely 

spaced.

Every fifth frame, the initial pattern repeats, with the initial co-ordinates incremented 

by one. This corresponds musically to augmentation of each of the intervals within the 

triad. Reflecting and/or rotating the initial configuration of cells leads to a repeating 

pattern of five-triad clusters in which one or both of the internal triadic intervals are 

diminished.
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The actual usefulness of the triad clusters generated here, as for all of the initial 

conditions presented in this discussion, depends on precisely where the cluster is 

positioned to begin with. That is, the desirability of a cell configuration is not only 

pattern-dependent, but also position-dependent.

This is not to say, however, that a given configuration should only be used when 

positioned within a limited region of the screen. On the contrary, the cell 

configurations will generate useable chord sequences regardless of where they are 

positioned on screen, but only a limited range of positions will be useful within a 

given musical context. Therefore, it is important that the composer who has clear 

musical ideas that he or she wishes to realise with this system considers not only the 

triad ordering which is generated, but also the effect that different positionings will 

have on the resulting musical output.

One possible starting position for the Glider and the corresponding triad type and 

fundamental pitch are presented in Figure 3.3.3. The initial position was chosen so 

that x  = 4 and y — 1.
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Cell co-ordinates Chord type Fundamental pitch

(4 ,3) major, root 60 (C4)

(5, 1) p4 and passing note 55 (G3)

(5 ,3) minor, 2nd inversion 57 (A4)

(6 ,2) major 7lh, Ist inversion 59 (B4)

(6 ,3) diminished, 2nd inversion 58 (BM)

(4 ,2) major, root with diminished 5!il 58(BM)

(5, 3) minor, 2nd inversion 57 (A4)

(5 ,4) major, 2nd inversion 55 (G3)

(6, 2) major 7th, Ist inversion 54 (GZ?3)

(6 ,3) diminished, 2nd inversion 53 (F3)

(4 ,3) major, root 48 (C3)

(5 ,4) major, 2nd inversion 48 (C3)

( 6 ,2 ) major 7lh, 1st inversion 47 (B3)

(6,3) diminished 7th 46 (B63)

(6, 4) major, 2nd inversion with diminished 5lh 45 (A3)

(5, 2) augmented, root 45 (A3)

(5 ,4) major, 2nd inversion 45 (A3)

(6 ,3) diminished, 2nd inversion 60 (C4)

(6, 4) major, 2nd inversion with diminished 5th 59 (B4)

(7,3) indeterminate 7lh (major or minor) 55 (G3)

Table 3.3.3 -  One possible chording o f the glider starting configuration.

3.3.6 Cyclic configurations

The broken cross

The broken cross, shown in Figure 3.3.4 below, is a two-state cyclic structure made 

up of four blinkers.
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Figure 3.3.4 -  Cellular evolution for the broken cross

The broken cross is a structure that arises frequently in the Game of Life, as many cell 

configurations ultimately arrive at this state before cyclic behaviour begins. The 

following triadic sequence is obtained from this configuration:

Fram e 1 (x,y + 4) Fram e 2 ( a +  l , y  + 3)

(x+  i , r  +  4) ( a  + 1 , ^  +  4 )

( a  + 2 ,  y  +  4 ) ( A - + l , y  + 5 )

O' + 4, v) (x + 3 , y + l )

( a  + 4, y  +  1) ( a  + 3 ,3 - ’ + 7 )

(x +  4 ,  y  +  2 ) ( a  +  4 ,  >■ +  1)

(a +  4, y  +  6) ( a  + 4, y  + 7)

(x + 4 ,j/ + 7) ( a  + 5 ,  y  +  1)

(x + 4 , y  + 8 ) (x + 5 , y  + l )

(a- + 6, y  +  4) (x + l , y  + 3)

( a  + 7 ,  y  + 4 ) ( a  + 7, y  + 4)

( a  + 8 ,  y  + 4 ) (jc +  7 , ^  + 5 )

Table 3.3.4 -  Sequence o f live cells generated by the broken cross.

This pattern turns out to have some very musical properties. For instance, in each cell, 

there are two groups of three cells arranged in a horizontal line, and two groups of 

three cells laid out in a vertical line. In each case, the horizontal line corresponds to 

the augmentation of the lower interval in the triad, so that if we began with the minor 

triad, (3, 4), we would progress through the augmented triad, (4, 4), and finish at the 

major triad (5, 4). Similarly, the vertical lines correspond to the augmentation of the 

upper interval in the triad.

It should also be apparent from Figure 3.3.4 that as this configuration evolves, the 

horizontal groups of cells become vertical groups of cells, and the vertical groups 

become horizontal. This is essentially a mixture of the familiar musical devices
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known as sequence and inversion, although in this case, the devices are applied to the 

triadic development, rather than to the triads themselves.

To see this, first notice that the act of augmentation of the triads described by the 

horizontal lines and that described by the vertical lines follow a pattern: first we have 

a triad, whose lower interval is augmented twice, then we are presented with a triad 

whose upper interval is augmented twice. This may be thought of as a sequence of 

two augmentations. Now we are given another triad whose upper interval is 

augmented twice and then another whose lower interval is augmented twice. Once 

more, we have a sequence of augmentations, but this time, the sequence is the inverse 

of the first, in the sense that the interval ordering is altered. We now consider this as a 

sequence of augmentations.

In the next frame, we are presented with a further sequence: a triad whose upper 

interval is augmented twice, two triads whose lower intervals are augmented twice, 

and finally, a further triad whose upper interval is augmented twice. It is easy to see 

that this, in turn is simply the inverse of the sequence of four augmentations from the 

previous frame.

One possible drawback to using the broken cross configuration is that we are dealing 

with an arrangement of cells that repeats every two frames. If caution is not exercised, 

it is possible that the system will settle into a routine in which the music generated by 

this configuration repeats note for note. It is, however, possible to utilise this 

repetitive nature in a musical way. For example, the triadic sequence repeats exactly 

every 24 triads. In other words, the period of the triadic sequence is 24. If we choose 

the fundamental pitches in such a way that they repeat with period p, where p  is 

relatively prime22 to 24, the resulting music will evolve in a predictable way, with 

both the triadic movement and the fundamental pitches following a fixed evolutionary 

pattern, but will not repeat exactly until the 24pth triad.

22 Two integers, not both of which are zero, are said to be relatively prime if and only if their greatest 
common divisor is 1.
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Three-quarter cross

The three-quarter cross configuration forms a lengthy sequence of cell clusters which 

eventually settle into the steady cyclic state of the broken cross (see Figure 3.3.5).

_
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Figure 3.3.5 -  Cellular evolution for the three-quarter cross configuration

The triad sequence generated by the three-quarter cross differs from that generated by 

the glider in two ways.

Firstly, the whole glider sequence repeats itself every five frames, whereas the three- 

quarter cross gradually evolves to a cyclic state between two frames. Secondly, as the 

walker evolves, it gradually works its way across the screen. The three-quarter cross, 

on the other hand, evolves centred on the cell (x + 4, y  + 4).

There are also several similarities between the two cell configurations. For example, 

both the walker and the three-quarter cross generate clusters of cells; both are 

sensitive to their position within the automaton, and both configurations, unlike the 

single cell, will generate musical data with a variety of temporal configurations.

Again, taking (x, y) to denote the top-left cell, we get the following sequence of live 

cells:
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Fram e 1 (.v + 4, y  + 3) ( a  +  4. 7  + 5) ( a + 3,7 + 2) ( a  +  6 , v + 4)

(a +  4, y  +  4) ( a  +  5, v + 3) ( a  +  3 , 7  + 6 ) ( a  + 6 , v + 5)

(.y + 4, y  + 5) ( a  + 5, 7  + 4) (a- + 4, 7  + 2) ( a  + 7, 7  4)

(_Y + 5 , 7  + 4) ( a  + 5, 7  + 5) ( a  + 4, v + 6 ) Fram e 10 (a + 1,7 + 3)

Fram e 2 ( a  +  3, y  +  4) Fram e 6 ( a  +  2, 7  +  4) ( a  +  5, 7  +  2) (a +  1.7+4)

(a* +  4, y  +  3) ( a +  3 ,7 +  3) ( a  +  5, 7  +  6 ) (a+ 1,7+5)

(a- +  4, y  +  4) (a +  3,7 +  5) ( a +  6 , 7 +  3) (a +  3,7+ 1)

( a  +  4, y  +  5) ( a  +  4, 7  + 2) ( a  +  6 , 7  +  4) ( a  +  3,v +  7)

( a +  5, 7 +  3) ( a  +  4, 7  +  6 ) ( a  +  6 , 7  +  5) ( a  +  4, 7  +  1)

(.v +  5, y  +  4) ( a +  5, 7 +  3) Fram e 9 (a+ 1,7 +  4) ( a  +  4, 7  +  7)

( a  +  5, y  +  5) (a +  5,7+5) ( a +  2, 7 +  3) ( *  +  5,7+ 1)

Fram e 3 ( a  +  4, y  +  3) ( a  +  6 , 7  +  4) ( a +  2 , 7 +  4) (a +  5,7 +  7)

( a  +  4, y  +  4) Fram e 7 ( a  +  2, 7  +  4) ( a  +  2 , 7  +  5) (jc +  7 ,7  +  3)

( a  +  4, y  +  5) ( a  +  3,7 +  3) (a +  3,7 +  2) { a  +  7, 7  +  4)

( a  +  6 , y  +  3) (a +  3,7 +  4) ( a +  3, 7 +  4) ( a  +  7, 7  +  5)

( a  +  6 , y  +  5) (a + 3,7+ 5) (a + 3,7+6) Fram e 11 ( a ,  7  + 4)

( a  + 7, y  -1- 4) ( a  + 4, 7  + 2) ( a  + 4, 7  +  1) (a + 1,7 +  4)

Fram e 4 ( a  + 2, y  +  4) ( a  + 4 , 7  + 3 ) (a+ 4,7+2) ( a  + 2, 7  +  4)

(a + 3,7 +  4) ( a  +  4, 7  +  5) ( a  +  4, 7  +  3) (a +  4,7 )

( a  +  4, 7  +  3) ( a  +  4, 7  +  6 ) (a +  4,7+ 5) ( a +  4,7 + 1)

( a  +  4, y  +  5) ( a  +  5, 7  +  3) ( a  +  4, 7  +  6 ) ( a  +  4, 7  +  2)

( a  +  5, y  +  4) ( a  +  5, 7  +  4) (a +  4,7 +  7) ( a  +  4, 7  +  6)

( a  +  6 , y  +  4) ( a  +  5,7+ 5) ( a  +  5, 7  2) ( a  +  4, 7  +  7)

Fram e 5 ( a +  3 ,y  +  3) ( a  +  6 , 7  +  4) ( a  +  5, 7  +  2) (.Y +  4, 7  8 )

(a +  3,7 +  4) Fram e 8 ( *  +  2,7 +  3) ( a  +  5, 7  4) ( a  + 6 , y  +  4)

(a +  3,7 +  5) ( a +  2, 7 +  4) (a +  5,7+6) ( a  +  6 , 7  +  4)

(a  +  4 , 7 + 3 ) ( a  +  2, 7  +  5) ( a  +  6 , 7  +  3) (a +  6,7+4)

Table 3.3.5 — Sequence o f live cells generated by the three-quarter cross.
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There are some interesting features to note in the three-quarter cross configuration. 

For example, there is a strong visual correlation between frames 1 and 2. Taking 

x = y  = 0 for illustrative purposes, we have that the initial pattern is reflected in the 

line x = 4, and three extra cells are added: (5, 3), (5, 4) and (5, 5). To interpret this 

musically, first note that reflection in the line x = 4 leaves the cells (4, 3), (4, 4) and 

(4, 5) unchanged. Only cell (5, 4) is altered, becoming (3, 4) after transformation. This 

is equivalent to moving from a second inversion major triad to a minor triad in root 

position, that is, the cell in question undergoes a modulation.

Of course, since the user is free to choose the fundamental pitches for the triads, the 

modulation can begin and end in whatever key the user desires. Therefore, it is 

entirely feasible to choose fundamental pitches so that the triads in the first frame 

relate to the key of C major, and those in the second frame relate to A minor, giving a 

modulation from major to relative minor.

It is important to note that the cell modulation here is a result of the initial 

configuration and the positioning of the initial configuration within the automaton 

space. If, for example, we had chosen the cells so that x = y ~  1, the cell subject to the 

transformation would be (6, 5) -  a combination of the tritone interval and a major 

seventh -  which would have become (2, 3) -  a dominant seventh chord with the 1st, 

3 rd and 7th present.

It should also be noted that the three-quarter cross ends up in the broken cross 

configuration when it reaches its cyclic state. This configuration, as seen above, 

generates triads whose internal intervals are successively augmented. The discussion 

concerning the broken cross will, of course, hold here.

One possible chord sequence for the first few frames of the three-quarter cross are 

shown in Table 3.3.4 below.
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Cell co-ordinates Chord type Fundam ental pitch

(16,15) major, root 50 (D3)

(16, 16) augmented, root 50 (D3)

(16, 17) minor, 1st inversion 50 (D3)

(17, 16) major, 2nd inversion 50 (D3)

(15, 16) minor, root 47 (B2)

(16, 15) major, root 50(D3)

(16, 16) augmented, root 50 (D3)

(16,17) minor, 1st inversion 50 (D3)

(17, 15) minor, 2nd inversion 47 (B2)

(17, 16) major, 2nd inversion 50 (D3)

(17, 17) major, 2nd inversion with augmented 3rd 49 (C#3)

(16, 15) major, root 47 (B2)

(16, 16) augmented, root 47 (B2)

(16, 17) minor, 1st inversion 40 (E2)

(18, 15) diminished 7l1', no third 51 (D#3)

(18, 17) minor, 1st inversion with diminished 3rd 50 (D3)

(19, 16) major 7th, added 5th 49 (C#3)

Table 3.3.6 — One possible chording o f the three-quarter cross starting configuration. 

The bow tie

The final cell configuration that we consider is named the bow tie for obvious reasons 

(see Figure 3.3.6).
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Figure 3.3.6 -  Cellular evolution for the how tie configuration.

The bow tie configuration evolves for 15 timesteps before reaching its cyclic state, 

which is a slight variation on the broken cross. The slight difference between the 

cyclic states of this configuration and, for example the three-quarter cross arises as a 

direct result of the pattern duplication seen in frame 4 onwards. The duplication arises 

because of two things. Firstly, the reflective symmetry in the initial frame ensures that
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all subsequent frames are symmetric, and secondly, as the cells evolve, we obtain a 

dense clustering of live cells around (x + 8, y  + 4), forming a hostile environment for 

this neighbourhood. This in turn causes the central cells to die, and the remaining cells 

evolve symmetrically, but in isolation.

The pattern duplication o f the bow tie configuration can be considered musically in 

several ways. One interpretation is to consider the patterns in frames 7 onwards. Here, 

each of the leftmost patterns exhibit mirror symmetry, and so they are duplicated 

exactly 8 cells to the right. If we consider the leftmost pattern in each frame as a 

theme, we can view this as an exposition step as the theme (i.e. the leftmost pattern) is 

played, and a development step as the developed theme (i.e. the rightmost pattern) is 

played. Here, the development of the thematic material in each frame consists of an 

augmentation of each of the lower triadic intervals by eight semitones, while the 

underlying triadic relationships -  the cell pattern -  remains unchanged.

This view of the configuration is, however, simply a special case of the true behaviour 

of the system. The system is symmetric about the line x = x' + 8 (taking (x', ;/) as the 

top-left cell co-ordinate for each frame), and so remains symmetric about this line for 

all subsequent steps. After the initial pattern has split into two parts, it is only because 

we arrive at a frame in which further symmetry is introduced -  in this case about the 

line x = xf + 4 -  that we obtain exact copies of the component patterns. The system 

itself makes no distinction between the patterns in frames 6 and 7. It is only due to the 

added symmetry that the developmental behaviour appears to change.

The triadic sequence generated by the bow tie configuration is shown below.
( __________________________________________________________________________________

Fram e 1 (x + 5, v + 3) (x + 5 ,y  + 3) (x + 1 l,„v+ 3) (x + 3, y  + 7)

(x + 5, y + 4) (x + 5, y  + 4) (x +  11, y + 4 ) (x + 4. y  + 1)

(x + 5 ,y + 5 ) (x + 5 ,y  + 5) (x + l l , y  + 5) (x + 4 ,y  + 7)

(x + 6, v +  3) (x +  l l , y + 3 ) (x +  1 2 ,y + 2 ) (x + 5 ,y  + 1)

(x + 6, v + 5) (x +  1 l ,y  + 4) (x + 12, y  + 3) (x + 5 ,y  + 7)

(x + 7, y  + 3) (x +  l l , y + 5 ) (x + 12, y  + 5) (x + 7, y  + 3)

(x + 7, v + 5) (x +  12,y + 3) (x +  12,y + 6) (x + 7, y  + 4)

(x + 8, v + 4) (x + 12,y + 4) (x + 13,y + 3) (x + 7 ,y  + 5)
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(.v + 9, v + 3) (a + 12, y  + 5) (a + 13,y + 4) (a + 9, y  + 3)

(.v + 9, v + 5) (a + 13, y  + 4) (a + 13,y+  5) (a + 9, y  + 4)

(.*+ 10,y + 3) Frame 6 (a + 3, y  + 3) (a + 14, y  + 4) (a + 9 ,y  + 5)

(.t+ 10, v + 5 ) (a + 3, y  + 4) Frame 11 (a + 2 ,y  + 3) (a + l l , y +  1)

(.v+ l l , y + 3 ) (a + 3, v + 5) (a + 2, y  + 4) (a + 11, y  + 7)

(.v + 11, y  + 4) ( a  + 5, v + 3) (a + 2 ,y  + 5) (a + 12, y +  1)

(a + 11, V +5) (a + 5, v + 5) (a + 3 ,v  + 2) (a + 12, y  + 7)

Frame 2 (.v + 4, v + 4) (a + 6, v + 4) (a + 3, y  + 6) (a + 13,y + 1)

(a + 5, v + 3) (a + 10, v + 4) (a + 4, y  + 2) (a + 13,y + 7)

(.v + 5, v + 5) (a + I L y  + 3) ( a  + 4, y  + 6) ( a  + 15, y  + 3)

(.v + 6, v + 2) (a + 11, v +  5) (a + 5,y  + 2) (a + 15, y  + 4)

( a* + 6 ,y  + 3) (a + I3 ,y +  3) (A  + 5,y  + 6) (a + 15, y  + 5)

(a + 6, v + 5) (a + 13, v + 4) (a + 6 ,y  + 3) Frame 14 (a, y  + 4)

(a + 6, y  + 6) (a + 13, v + 5 ) (a + 6, y  + 4) (a + l , y  + 4)

(a + 7, y  + 3) Frame 7 (a + 2, v + 4) (a + 6 ,y  + 5) ( a  + 2, y  + 4)

(a + 7, v + 5) (a + 3, v + 4) (a + 10,y + 3) (a + 4 ,  y)

(a* + 8, y  + 3) (a + 4, v + 3) (a + 10, y  + 4) (a + 4 ,y  + 1)

( a* +  8,y  + 5) ( a  +  4, y  +  5) (a +10 ,v + 5) (A  +  4 ,y  + 2)

( a  +  9, v + 3) ( a  + 5, y  + 4) ( a +  l l , y + 2 ) ( a  + 4 ,y  + 6)

( a  + 9, v + 5) ( a  + 6, y  + 4) (a + 1 l , y  + 6) ( a  +4, y  + 7)

(a + 10, v + 2 ) ( a  + 10, y  + 4) ( a  + 12, y  + 2) ( a  +  4, y  +  8)

( a +  10, y + 3 ) ( a  +  11, y  + 4) (a +  12, y  +  6) ( a  +  6, y  +  4)

( a +  10, v + 5 ) ( a  +  12,y +  3) (a +  13, y  +  2) ( a +  7, y  +  4)

(a +  10, y  +  6) ( a  +  12, v +  5) (a +  13,y +  6) ( a  +  9, y  +  4)

( a  +  11, v +  3) ( a +  13, y  +  4) ( a +  14,y +  3) ( a  +  10,y +  4)

( A +  11, v + 5 ) ( a  +  14, v +  4) ( a  +  14,y +  4) (a + 12,y)

( a  +  12, y  +  4) Frame 8 ( a  +  3, y  +  3) ( a +  I4 ,y  +  5) ( a  +  12, y  +  1)

Frame 3 ( a  + 4, v +  4) ( a +  3, y  + 4) Frame 12 ( a  + l , y + 4 ) (a + 12, y +  2)

( a  + 5, v + 2) ( a  + 3 , v  + 5 ) (A  + 2,y  + 3) (a + 12,y + 6)

( a + 5, v + 3) ( a  + 4, y  + 3) ( a  + 2 ,y  + 4) ( a  +  12,y +  7)

( a  +  5, v +  5) ( a  +  4 ,y  +  5) ( a  +  2, y  +  5) (a +  12,v +  8)
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(.v + 5, v + 6) (a + 5, v + 3) (a + 3 , v + 2) (* +  13,y + 4)

(a + 6, y  + 2) (a + 5, v + 4) (a + 3, y  + 4) (a + 14, y  + 4)

(.Y + 6, V' + 3 ) (a + 5 ,y  + 5) (a + 3 ,y  + 6) (a + 15,y  + 4)

(a + 6, v + 5) (A+ 11, y + 3 ) (a + 4,_v + 1) Frame 15 (* +  l , y  + 3)

(.y + 6, v + 6) (a + 11, y  + 4) (a + 4 ,y  + 2) (a + 1, v + 4)

(-Y + 7, v + 3) (a + l l , y + 5 ) (a + 4 , v + 3) (a + l , y  + 5)

(a + 7, y  + 5) (a + 12,y + 3) (A + 4 ,y  + 5) (a + 3 ,y  + 1)

(* + 8, >> + 2) (a + 12, v +  5) (a + 4 ,y  + 6) (a + 3 ,y  + 7)

(.y + 8, v + 3) (a + 13, y + 3 ) (a + 4 ,y  + 7) (a + 4, y  + 1)

(* + 8, v + 5) (a + 13,y + 4) (a + 5, y  + 2) (a + 4, y  + 7)

(.y + 8, v + 6) (a + 13,y + 5) (a + 5 ,y  + 4) (a + 5 ,y  + 1)

(a + 9, v + 3) Frame 9 (a + 2, y  + 4) (a + 5, y  + 6) (a + 5 ,y  + 7)

(* + 9 ,y  + 5) (a + 3 ,y  + 3) (a + 6 ,y  + 3) (a + l l , y +  1)

(* +10, v + 2) (a + 3, y  + 5) (a + 6, y  + 4) (a + 11, y  + 7)

(A- + 10, V+3) (a + 4, y  + 2) (a + 6 ,y  + 5) (a + 12, y +  1)

(a +10, v + 5 ) (a + 4, y  + 6) (a + 7, y  + 4) (a + 12, y  + 7)

(.y + 10, y  + 6) (a + 5, y  + 3) (a + 9 ,y + 4) (a + 13,y + 1)

(a* + 11, y  + 2) (a + 5 ,y  + 5) ( a +  10,y + 3) (*+  13,y + 7)

( a- + 1 l ,y  + 3) ( a  +  6 ,y  + 4) ( a  +  10, y  + 4) ( a  +  15, y  + 3)

(* + 1 l , y  + 5) ( a  + 10, y  + 4) ( a  + 10. y  + 5) ( a  + 15,y  + 4)

(* + 11, v + 6 ) (* + 1 1 ,  y + 3 ) (a + l l , y  + 2) (*+  15,y + 5)

( a  + 12, v + 4) ( a  + 1 l , y  + 5) ( a +  11,y  +  4) Frame 16 ( a ,  y  +  4)

Frame 4 ( a  + 4, y  + 3) ( a  + 12,y + 2) (a + 11, y  +  6) ( a  +  l , y  +  4)

( a  +  4, v +  4) (a +  12,y+  6) ( a  +  12, y  +  1 ) ( *  +  2 ,y  +  4)

(a  +  4, v +  5) ( a +  13,y +  3) ( a  +  12, y  +  2) (A + 4,y)

( a  + 5, v + 2) ( a  + 13,y+  5) ( a  + 12,y + 3 ) ( a  + 4, y  + 1) |

( a  + 5, v' + 6) ( a  + 14,y  + 4) (.v+12,y+ 5) ( a  + 4, y  + 2)

( a  + 8, v + 2) Frame 10 ( a + 2, y  + 4) (a + 12,y + 6) (a + 4, y  + 6)

( a + 8, v + 3) ( A + 3 , y  + 3) ( a  + 12, y  + 7) ( a  +4, y  + 7)

( a  + 8, v + 5) ( a  + 3, v + 4) ( a  + 13,y + 2) ( a  + 4, y  + 8)

(a + 8, y  + 6) ( a  + 3,y  + 5) ( a +  13, y  + 4) ( a  + 12,y)
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( a  +  1 1 ,  y  +  2 ) ( a  +  4 ,  v  +  2 ) ( x  +  1 3 .  v  +  6 ) ( a  +  1 2 ,  v + 1 )

( x  +  1 1 ,  y  +  6 ) ( a  +  4, y  +  3 ) ( a  +  1 4 .  v  +  3 ) ( x +  12, y  +  2 )

( x  +  1 2 ,  y + 3) ( a  +  4 ,  y  +  5 ) ( , t +  1 4 ,  v +  4 ) {a  +  1 2 ,  y +  6 )

(.x +  1 2 ,  y  +  4 ) (.x +  4 ,  y  +  6 ) ( x +  1 4 ,  v +  5 ) ( x +  1 2 ,  v  +  7 )

{ x  + 1 2 ,  y  +  5 ) ( x  +  5 ,  y+  3 ) ( a  +  1 5 ,  y  +  4 ) ( x +  1 2 ,  jv +  8 )

Fram e 5 ( x  +  3 ,  v  +  4 ) ( a  +  5 ,  y  +  4 ) Fram e 13 ( x +  I , } '  +  3 ) ( a  +  3 3 ,  y  +  4 )

( a  +  4 ,  y  +  3 ) (a  +  5,;-’+ 5) ( a  +  1, y  +  4 ) ( a  +  1 4 ,  y  +  4 )

(a- +  4 ,  y  +  4 ) ( a  +  6 ,  y  +  4 ) (a  +  1, „v +  5) ( a  +  1 5 ,  y  +  4 )

( x  + 4 ,  y  + 5 ) ( x +  1 0 ,  v  + 4 ) (a- + 3 ,  y V 1)

Table 3.3.7 -Sequence o f live cells generated by the three-quarter cross.

3.3.7 The process of ‘reverse engineering’

Dming the course of the author’s experimentation with CAMUS, a number of 

different working styles that users tend to adopt when composing with the system 

were observed. However, despite the apparent diversity of working procedures, users 

can essentially all be classed under two distinct headings — dabblers and visionaries.

Dabblers

Dabblers tend to play around with the software. They tend to be more interested in 

what the system does rather than what it can do for them -  they are concerned more 

with the hows and the what ifs than in using the system as a compositional aid. 

Dabblers tend to make random changes to the parameters ‘just to see what happens’ 

but without having any musical or mathematical purpose for so doing.

There is absolutely nothing wrong with this type of working technique. Indeed, it is 

perhaps the best way to get to grips with the functionality of the software and the 

underlying compositional procedures. However, the music that is produced when 

dabbling is seldom noteworthy, and often consists of nothing but unrelated pitches 

and difficult rhythms. It is therefore the latter class of visionaries on which we wish to 

focus for the remainder of this discussion.
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Visionaries

Visionaries are so called because they approach the algorithmic composition process 

with a definite goal in mind. This goal may be the core of a musical work that the user 

wishes to realise with the aid of the system, or it may be that the user simply wishes to 

‘hear’ certain cell configurations. Whatever the ultimate aim of the user, the very fact 

that there is some structure behind the choice of parameters and patterns usually leads 

to music that is of a much higher standard than that which is achieved by dabbling.

Let us suppose, by means of illustration, that the user wishes to produce a 

composition with a particular tonal quality. How can this be achieved when the 

composition system itself has no regard for key? As was mentioned earlier, this can be 

done, but the tonality must be imposed manually through careful choice of the control 

parameters. The most efficient way of doing this is to employ a ‘reverse engineering’ 

technique as follows.

Firstly, one must choose an initial cell configuration for the Game of Life. When 

choosing such a configuration, the user must ask his or herself what design objectives 

are desired. For example, should the composition consist of densely clustered triads or 

should there be a large triadic spread? Flow should the triads evolve? Should the 

composition continue indefinitely, or should it come to an end after a specified time? 

Only when the user is confident that the initial cell configuration is consistent with the 

overall composition plan should he or she progresses to the next stage.

Once an initial pattern has been chosen, the user should then preview the cellular 

evolution of the automaton, noting the live cells of the Game of Life. In so doing, a 

detailed map of the triadic progression is arrived at, although at this stage, the map is 

still in the form of cell co-ordinates, rather than the more musically useful chord 

notation. From here, it is relatively straightforward, if a little time-consuming, to 

analyse the co-ordinate list and convert it to chord notation. Clearly, some co­

ordinates will give rise to more than one possible chord, so that the final chording will 

depend on the tonality that the user wishes to impose upon the work.
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Finally, the pitch sequences for each articulation should be chosen so that the chord 

progressions that arise are consistent with the overall plan. The remaining parameters 

can then be chosen according to the user’s own aesthetic criteria.

One can easily see how this technique can be considered as a form of reverse 

engineering by considering the technique of harmonising for four voices. In this case, 

one begins with a sequence of notes -  either a melody or bass line. A chord sequence 

is then created, and finally the remaining parts are written, adhering to the rules of 

four-part harmony. Here, we approach from the opposite end -  we begin with three 

distinct parts, which have been arrived at by following the composition rules, and use 

these to construct a chord sequence. Then, we analyse the chord sequence, and, 

depending on the tonal qualities that we desire, use this sequence to choose what is 

essentially a bass line.

Using this method, compositions can be created that share tonal aspects with other 

musical forms, thus bringing the comforting familiarity that the human ear finds so 

pleasing, whilst still retaining a high degree of individuality from the stylistic features 

typified by the triadic structure of CAMUS-inspired compositions.

Two examples of this method of working, Sonatina and Minuet and Trio, both for 

woodwind ensemble, are provided on tracks 3 and 4 of the accompanying compact 

disc.
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4. Developing the system

4.0 Introduction

In this chapter we discuss the limitations of the system as it currently stands and 

suggest ways in which they may be overcome. The actual implementation and 

workings of these solutions are presented in later sections.

We also suggest ways in which the system can be extended to take into account, for 

example, different algorithm types and different mappings from the underlying 

control systems to musical output.

4.1 Limitations with the present system

We now identify several features which, although not critical, limit the usefulness of 

the system.

4.1.1 Chord complexity

The first thing that should be noted when discussing the limitations of the system is 

that the use of a two-dimensional von Neumann Music Space to generate triads 

effectively limits the complexity of the resulting music. This is further compounded 

by the serial method that CAMUS uses to check cells (see Section 4.1.5).

It is fair to say that no matter how clever or elegant a composition system is, it is 

unlikely to be genuinely useful as a musical tool unless it generates music or musical 

ideas that end listeners will find pleasant and enjoyable, or that a composer can use 

from which to build complete works.

Although the system can and does generated useful musical ideas which can be built 

upon, the monotimbral three-note chords that form the basis of all CAMUS 

compositions simply do not hold the interest of a listener for more than a short time. 

The system cannot, therefore, be said to produce music that end listeners will find 

pleasant and enjoyable.
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With this in mind, the author proposes two methods for increasing the complexity of 

the chordal events that form the basis of CAMUS compositions. These are:

i.) Extending the von Neumann Music Space to a higher dimensionality, which we 

discuss below.

ii.) Introducing parallel cell checking, which we introduce in Section 4.1.5 below, 

and discuss further in Section 6.1.7.

4.1.2 New dimensions of complexity

Extending the von Neumann Music Space to a higher dimensionality is a fairly logical 

progression of the system, and allows for the development of much more complex 

chordal and temporal structures within each composition.

The work required to implement the extensions to the automata is feasible, though not 

trivial. It involves a corresponding extension of the arrays of cells in the Game of Life 

and Demon Cyclic Space automata, an increase in the number of neighbours whose 

states must be checked at each timestep, and an alteration to the rules that determine 

the evolution of the automata.

The mechanics of the increase in dimensionality are not difficult, rather it is the 

determination o f suitable transition rules for automata of higher dimensionality that 

proves to be most problematic. We discuss this in Section 4.1.3 below.

In addition, two further sources of difficulty present themselves.

The first is due to the increase in the number of calculations brought about by the 

higher dimensionality of the control automata. In general, the ^-dimensional automata 

used by CAMUS require 3" -  1 cell calculations per timestep. One can see that as the 

number of dimensions is increased, the number of calculations required simply to 

update the automata can become quite large. However, today’s processors are more 

than capable of dealing with this number of calculations for arrays of cells which 

would be used in practical cases, and if significant timing problems did arise, it would 

be perfectly feasible to compose off-line, saving the resulting file for editing at a later 

time.
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The second problem, however, does not have such a neat solution. The problem is one 

of human-computer interface -  an issue that has a very real effect on the usefulness of 

any system.

It is desirable to display the data from the control automata in graphical form. The 

reasons for this are twofold. Firstly, visual display of data is often an aid to the 

understanding of a system, by clicking on cells and making general parameter 

changes, and seeing the results implemented immediately onscreen, one can quickly 

develop an intuitive feel for how the system behaves. Secondly, seeing the evolution 

of the control automata helps to correlate what is happening in the system to the 

musical output that is generated. This leads to a better aesthetic feel for the system as 

the user associates different cell configurations with the musical output that they 

generate.

Graphical displays are easily implemented for 2-dimensional automata, but a 

difficulty arises when one considers how to obtain and display the data from an 

automaton of higher dimensionality. The three-dimensional case has a partial solution 

in that it is possible to display an isometric view of a three-dimensional automaton on 

a two-dimensional computer screen, but this has its limitations in that some cells may 

be hidden from view by neighbouring cells. In any case, this is still not a viable 

method for the input of cell data using a two-dimensional input device, such as a 

mouse.

If the dimensionality is increased still further then we hit an intractable problem - the 

human brain can only perceive three spatial dimensions. Some sort of compromise 

must be decided upon, and to this end, we propose the following.

Rather than try to display a two dimensional (or isometric) representation of an 

automaton with dimensionality 3, the user is presented with a series of two- 

dimensional embeddings of the automaton.

For the purpose of this discussion, we take an embedding to be a projection of the 

three-dimensional Game of Life space onto a general plane.
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Let the plane be denoted P, and the 3-dimensional Game of Life be denoted GOL. 

Then a cell, c, on P will be alive if and only if the line tangential to P from c meets at 

least one live cell in GOL. This is illustrated in Figure 4.1.1 below. Note that for 

reasons of legibility this illustrates just one plane of the 3-dimensional automaton 

space. The cells extend into the screen, resulting in a plane embedding rather than the 

line illustrated in the figure.

> ■

> ■
> □
> ■

Figure 4.1.1 -  Constructing an embedding by projecting a plane from the 3- 

dimensional Game o f  Life to a row (or column) o f  cells in a 2-dimensional array.

The embeddings offer the user feedback from the control system as to the current 

states of the automata.

Input from the user can be accomplished in two ways.

The first method is by the direct entry of co-ordinates for cells. This, however, is not a 

particularly intuitive method, and does not aid the user's visualisation of the current 

state of the automaton in question, which must be done in the user's mind's eye.

The second method involves clicking cells in the various embeddings of the 

automaton, which is a more visual, if cumbersome method of input. Here, the user 

clicks on a cell in one embedding, fixing the two co-ordinates described by that 

embedding. Clicking on a cell in the next embedding fixes a further point and so on.

As an example of this input method, consider again the three-dimensional case, in 

which each cell is specified by a co-ordinate of the form (x, y, z) (see Figure 4.1.2).
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The three embeddings with which we will work are the x-y plane (z = 0); the x-z plane 

(y = 0), and the y-z plane (x — 0).

Suppose the user clicks on the point (3,5) on the x-y plane. This would then specify a 

line on both the x-z plane (x = 3) and the y-z plane (y = 5). The user would then click 

on a point on one of these lines (say (3,4) on the x-z plane) to fix the z-co-ordinate as 

z = 4, resulting in the unique point (3,5,4).

y

(3,5)

x = 3

A

y

Figure 4.1.2a — The user clicks on the point (3,5) in the x-y plane, fixing the lines 

x = 3 andy = 4 in the other two embeddings.

y
A

(3,5) (3,4) (5,4)

Figure 4.1.2b -The user clicks on the point (3,4) in the x-z plane, 

point (3, 5, 4) in the three-dimensional space.

y

the unique

This system is very similar to that used by 3-D modelling packages, and serves us 

well as a prototype. Practical experience with the test system indicated desirable 

adaptations, which are discussed in Section 5.2.2.
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4.1.3 -  Rules for life in a 3-dimensional universe

Just as with Conway’s 2-dimensional Game of Life, not every rule set for 3- 

dimensional life produces cellular evolution worthy of the name life (in the sense 

described in Section 2.2.4).

Recall from Section 2.2.4 that the environment, E, is defined as the number of living 

neighbours that surround a particular cell. The fertility, F, is defined as the number of 

living neighbours required to give birth to a currently dead cell. Then, we define the 

transition rule, R , as the quadruple (Emi1„ EmaX} Flllin, Fmax), where

Emin — F — Fmax

and

F ■ < F  <  F1 mm — 1 — 1 max•

Then the rule R defines a Game of Life if and only if the following statements hold:

i.) A glider must exist and occur “naturally” if we apply R repeatedly to primordial 

soup configurations (as defined in Table 2.2.1).

ii.) All primordial soup configurations when subjected to R must exhibit bounded 

growth.

The only way to be completely certain that these statements are satisfied is to perform 

an exhaustive search on the rule space. Unfortunately, this is a very time-consuming 

business. We must test a large number of primordial soup configurations for each rule 

to say that the above criteria have been fulfilled with any degree of conviction.

Now, for a three dimensional automaton, each cell has 26 neighbours other than itself. 

This means that for live cells alone we have the following 351 possible rules:

(Emin, Emax) = (1, 1), (1, 2), ..., (1, 26), (2, 2), (2, 3), ..., (2, 26), ..., (26, 26).

A similar number of rules for dead cells results in a total of 351 x 351 = 123 301 

possible rule sets for the three-dimensional Game of Life.
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We cannot hope to test exhaustively each of these rule sets by hand. Fortunately, we 

can reduce the possibilities to a more manageable number.

Theorem 4.1.1 (Bays, 1987)

Any rule (Emin, Emax, Fmin, Fmax) with Fmin > 10 cannot support a glider.

To see this, note that a dead cell which lies adjacent to a plane of living neighbouring 

cells can have at most nine living neighbours (see Figure 4.1.3). Thus, any formation 

under a rule R of the form (X, Y, 10, Z) will ultimately either shrink and disappear or 

will form a convex blob whose outer surface may continually evolve, but which will 

never translate across the universe.

Figure 4.1.3 -  A dead cell, illustrated here as a wireframe box, which lies next to a 

plane o f  live cells has at most nine live neighbours, shown here as dark grey.

Theorem 4.1.2 (Bays, 1987)

Any rule (Emin, Emax, Fmin, Fmax) with Fmm < 4 leads to unlimited growth.

This can be seen quite easily by considering a starting configuration of four live cells 

arranged in a square (see Figure 4.1.4). Such configurations always grow without 

bound.

In his paper, Candidates for the Game o f Life in Three Dimensions ([Bays, 1987]), 

Carter Bays suggests two candidates for a three-dimensional Game of Life. These are
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R = (4, 5, 5, 5) and R = (5, 7, 6, 6). We discuss these rule systems at length in Section 

5.1.

An alternative to working with life in a true 3-dimensional space is to treat the space 

as a number of stacked 2-dimensional spaces. This is similar in notion to the time- 

space barriers proposed by Bays ([Bays, 1987]). Here, however, we do not depend on 

stable cell constructions to restrict the development of cells in three dimensions. 

Instead, we insist that only the neighbours bordering the cell in the plane of interest 

(which is decided upon by the user) are checked.

This has the significant advantage that the 3-dimensional space now behaves as 

several parallel Conway Games, so that the tried and tested rules and starting 

configurations can be used for the 3-dimensional game. Thus we have the increased 

complexity offered by a higher dimensional control system, whilst still retaining the 

ease of use of the 2-dimensional system.

In addition, the number of neighbours that are required to be checked for each cell is 

reduced from 26 (in the 3-dimensional case) to 8.

This method can also be extended to higher dimensions. For example, suppose we are 

employing cell-checking on the x-y plane in the 4-dimensional case. Then for the cell 

(x, y, z , w), we check the cells (x ± 1, y, z, w), (x, y ±  1, z, w), (x ± 1, y  ± I, z, w) and (x

±1,^ + 1,^ w).
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Figure 4.1.4 -  The rule o f the form (3, 3, 4, 5) leads to unlimited growth.
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4.1.4 Needles in haystacks

A further limitation arises when CAMUS is used as generator of musical ideas.

Here, the system is configured and set in motion. The resulting output is used as a 

rough musical sketch by a human composer. This sketch is then rearranged and 

expanded to give a complete musical composition.

As mentioned in Section 4.1.1 above, rarely, if ever, does CAMUS produce complete 

compositions of any real worth. Nevertheless, the system does produce some 

interesting ideas that can be used to build complete compositions. Several 

compositions have been penned by the author and Dr. Eduardo Miranda in this way.

Of particular note is Dr. Miranda’s, Entre VAbsurde et le Mystere for chamber 

orchestra, which was premiered in Edinburgh in March 1995 by The Chamber Group 

of Scotland, conducted by Martyn Brabbins. This is illustrated, along with other 

CAMUS-inspired23 works on tracks 2 — 9 and 18 -  20 of the accompanying CD.

Genuinely useful musical ideas are relatively few and far between, however, and a 

considerable amount of useless material is also generated. This greatly increases both 

the time taken to build a finished composition and the likelihood that useftil snippets 

are missed because the composer has to trawl through the entire output from the 

system.

The problem is then how best to increase the yield of the system. There is no simple 

solution, but a partial answer may lie in getting the system to behave more musically. 

For example, at present, the method of rhythm generation is very unmusical: A 

random number generator returns an integer value between two limits. This is then 

used as a value for the number of ‘ticks’ of the note event in question. A note event 

may be a note duration, or the length of time before a new note is triggered. The tick

23 We use the term ‘inspired’ here as opposed to ‘composed’ or ‘generated’ because the musical output 
generated by the system was used as a sketch from which the finished compositions were developed. It 
is a matter o f philosophical debate as to the true authors of such works. Does authorship lie with the 
computer that produced the work, with the designer of the algorithm that was responsible, or with the 
human operator who initialised the parameters and arranged the output to create the final output. These 
issues are addressed in a later section. The reader is also directed to ([Miranda, 1997]).
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system has an effect on the temporal resolution of the music and is discussed more 

fully in Appendix C.

This system is very unsatisfactory. It produces rhythmic events that are irregular and 

difficult to listen to (see Figure 4.1.5). The human ear tends to welcome pseudo- 

regularity which, despite the underlying probability distributions at work, are not 

apparent in the musical output.
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Figure 4.1.5 —A typical rhythmic figure produced by CAMUS's rhythm engine.

The musical phrase in Figure 4.1.5 above was generated using the default random 

number selection routines in CAMUS. The phrase was saved as a MIDI file and 

imported into Steinberg’s CUBASE sequencer for scoring. The triads were split into 

three separate rhythm staves in order to render readable the overlapping rhythms. If 

this had not been done, the rhythms would have been unintelligible.

We compare this with Figure 4.1.6, a four-bar phrase from J. S. Bach’s tlu'ee-voice 

Fugue no. 2 in C minor horn the Well-Tempered Clavier ([Bach, 1923]).

20

" t  7 f l U W s x r c r c r r  c r l l t l t  r 7 p m ... f - " l t  r - - ’. r

U U L T  Cf r 7 p .  L T r 7 p -  LT
'U (5 i i p [ f  Cf 7P c r  L 't r r r r 4 - -

Figure 4.1.6 - A  four-bar phrase from Bach’s Fugue no. 2 from the Well-Tempered

Clavier.

The differences in the rhythmic make-up of these two compositions is immediately 

apparent. Whilst each voice in Figure 4.1.6 has a great deal of movement, the ‘voices’
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of Figure 4.1.5, in contrast, are sparse. This is not necessarily problematic in itself, but 

leaves little scope for complex interaction between voices.

We also see that the rhythmic figures in Figure 4.1.6 are relatively simple (mainly 

straight quavers and semiquavers), and that similar figures occur frequently. This 

cannot be said for the rhythms in Figure 4.1.5, which begin on and last for very 

complex fractions of beats.

Even in the four-bar phrase of Figure 4.1.6, there is considerable evidence of 

structural detail that simply does not exist in Figure 4.1.5. Rhythmic figures are 

repeated (for example bars 22 and 23 in all three voices) or altered slightly (for 

example bars 22 of the second voice and 23 of the third).

We discuss these issues and a possible solution in Section 5.2.5.

The rhythmic structure is, unfortunately, not the only unmusical detail that arises as a 

result of the CAMUS algorithm.

Looking back at Figure 4.1.5, we see that the notes of the triad often overlap in a way 

that is more akin to polyphonic writing, whilst the music itself is generated 

homophonically, albeit with spread chords. This results in conflicting signals being 

received by the listener -  on the one hand, the listener may interpret the note overlap 

as several independent voices, but hears music that essentially consists of smeared 

block chords.

Remember also that each triad is played on one MIDI channel, i.e. by a single 

instrument. This raises the possibility that polyphonic note data may be generated for 

an instrument that is only capable of playing monophonically, such as the majority of 

wind instruments, or some synthesisers. This means that music may be generated that 

is unable to be played on the instruments for which it was written. Therefore, it is 

important that this particular issue is addressed. We suggest a practical solution to this 

problem in Section 5.2.7.
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4.1.5 A serial composer

The composition algorithm used by CAMUS can be said to be serial, although not in 

the sense of the algorithms discussed in Section 2. The serial nature of the CAMUS 

algorithm arises because of the cell checking employed by the system.

As it stands, CAMUS scans through the cells of the Game of Life sequentially, 

playing live cells as and when it comes across them. What this means in terms of 

complexity is that no more than one cell is active at any one time, and that the triads 

generated are always played with a fixed order (see Figure 4.1.7).

Interval sequence is fixed as 

^  {(0, 0), (0, 1 ) , ( 0 ,  m - 1),

(U 0), (1, 1), (1, m - 1), ...,

i4
Search begins at cell Search then proceeds to cell

(0,0) and proceeds (1,0) and proceeds through

Figure 4.1.7 - Interval sequence for an (m x  m) array.

To overcome this problem, we may consider cell neighbourhoods of size i as 

contributing one sonic event. By the neighbourhood of a cell, (v, y \  of size i we mean 

those cells that are contained within the square whose corners lie at

(x + i,y  + i), (x -  i ,y  + i),(x + i , y -  i) and (x - i , y -  /).

Figure 4.1.8 shows a cell neighbourhood of size i = 2.
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m nnn

Figure 4.1.8 -  Cell neighbourhood o f  size 2.

At present, the cell checking algorithm is as shown in Algorithm 4.1.1 below.

for each cell in array 
if cell is alive 

play cell
end if 

next cell

Algorithm 4.1.1 -  Standard cell checking routine for the CAMUS algorithm.

The algorithm used to check cell neighbourhoods is very similar. Here, we illustrate 

for a neighbourhood of size i (see Algorithm 4.1.2).

for each (2i + l)th cell in array
for each cell in neighbourhood 

if cell is alive
calculate note data

end if
next cell in neighbourhood 
play calculated note data 

next cell in array

Algorithm 4.1.2 -  Parallel cell checking for a neighbourhood o f size i.

Parallel cell-checking of this sort has a distinct advantage over the present one-cell- 

per-sonic-event technique. Namely that the number of simultaneous notes that the 

system can produce is limited only by the size of the cell neighbourhood being used. 

For example, a neighbourhood of size 2 would allow a maximum of 5 x 5 x 3 = 75 

simultaneous notes.

141



Unfortunately, we are still limited by the fixed cell sequence, although the effect of 

this is lessened because many cells are played at once. However, it is possible to rid 

ourselves of this restriction: If we extend the size of the cell neighbourhood to that of 

the control automaton, then each automaton timestep can be considered as a single 

musical event. Thus a fixed interval series no longer applies because the cells are 

checked in parallel, so that 110 one cell will be played before any another. The 

maximum number of simultaneous notes is also now limited only by the size of the 

control automata.

However, there are two further sources of difficulty which now present themselves.

The first is concerned with real time performance: We are now generating music at a 

higher level, and thus we need considerably more processing power than before. If we 

consider a timestep of x seconds, this means that for real-time output, we must 

calculate the next timestep of the automata, determine the live cells and their 

corresponding instrumentations, sort the cells in temporal order at triad level, sort the 

cells in temporal order at note level, update the score files and output the musical data 

all within the x-second window. Some study must be given to the feasibility of 

producing real-time output using this technique.

The second source of difficulty arises as a result of another limitation of the CAMUS 

system. At present, CAMUS does not, in any way, distinguish between triads. Thus 

each live cell contributes sonically to the composition, whether or not the user desires 

its presence. Therefore, there is an overwhelming likelihood that a sizeable portion of 

the music will sound extremely unpleasant due to the absence of harmonic structure.

We comment further 011 this in Section 6.

4.1.6 Dynamical systems for a dynamic system

There is one more restriction, though not necessarily a limitation, of the system to 

discuss at this time.

At present, CAMUS allows only for one music algorithm to drive the composition. 

System versatility could be improved by offering the user a choice of several 

algorithms, which could be selected at will to best suit the music being composed.
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Possible developments include the provision of alternative mappings from the control 

automata to music and the introduction of new dynamical systems, such as fractal 

zooms and neural networks to generate raw musical data.

One such algorithm, which draws on certain ideas behind the CAMUS system, utilises 

two properties of the fractal classes known as the Mandelbrot set, and Julia sets.

We saw in Chapter 2 that the Mandelbrot set can be considered as a graphical 

representation of the behaviour of the complex plane according to the iterative 

equation

2 i
Zj+1 ~ Z i  + C

where c is a complex constant.

For each c in the plane, the system is initialised with zq = 0, and iterated. This results 

in the following possible outcomes:

i.) | z„| —» oo as n —> oo.

ii.) | zn| remains bounded as n —> oo.

Each c is assigned a colour according to the number of iterations required to send the 

point to infinity, or a default colour (usually black) if the point does not increase

without bound24. The Mandelbrot set is then the set of all values of c which are

coloured black.

The area of interest occurs within the region bounded by the lines x = -2.5 and x = 1.5 

on the real axis, and y  — -1.5/ and y  = 1.5/ on the imaginary axis. At, and near the 

boundary of the Mandelbrot set, there is described a structure of inconceivable 

complexity, with curves which spiral onwards for eternity, and detail at every scale.

Julia sets are determined in much the same way as the Mandelbrot set, using the same 

iterative formula, but in this case, the complex parameter, c, remains fixed. After each

24 In practice, we assign a threshold value, T, and a maximum number of iterations, M l\ and stop the 
iterative process when either | z„\ > T, or when n > M l
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iteration, the initial value, zo, is altered. This gives rise to the Julia set, JCl which is 

defined to be the boundary formed between the set of all initial values, zq, for 

which | | —> co as n —» co, and the set of all initial values for which | z„| remains

bounded.

When c is controlled from within the confines of the Mandelbrot set, say by the user 

clicking 011 a point, which is then passed to the Julia algorithm, one can see a striking 

visual correlation between the region which was clicked, and the type of Julia set 

which is obtained (see Figure 4.1.9). Parameters taken from the exterior of the 

Mandelbrot set result in non-connected “dust” sets, whilst parameters taken from 

within the set itself give rise to connected Julia sets.
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Figure 4 .1 .9 - The Mandelbrot set and two Julia sets with respective regions.

Like the Mandelbrot set, Julia sets exhibit detail at every scale, and it is this feature 

along with the relationship between the two on which the composition system 

proposed by the author is based.

To begin with, the user is presented with a window showing the Mandelbrot set. The 

user then draws a path on the screen, specifying a series of Julia sets, which will be 

calculated in sequence.

Next, a further path, which may involve zooming in or out of the Mandelbrot set, is 

drawn. This defines a sequence of regions of the Mandelbrot set, to be calculated in 

parallel with the Julia sets. The user specifies the number of timesteps required to 

complete the composition, along with other composition specific parameters, such as 

the number of instruments and their timbres.

The sets are then mapped onto the von Neumann Music Space, with each Julia colour
25 aband corresponding to a different instrument, and points on the boundary ‘ of the

25 Here, the ‘boundary’ of the Mandelbrot set is taken to mean the quantised graphical boundary.



Mandelbrot set contributing to the notes of the composition. In order to control the 

notes and dynamics, a set of articulations, similar to those of the CAMUS system 

could be used. Alternatively, a stochastic routine, with user-defined probability tables 

controlling the evolution of the composition, or some other automated parameter 

control routine, such as that described below could be used.

One alternative method for controlling the development of the composition 

parameters is derived from a computation technique known as a genetic algorithm. 

This is an evolutionary algorithm, that is one which is based 011 the various biological 

phenomena associated with evolution, and operates on a set of binary codewords.

There are four basic types of operation that can be performed on the codewords. 

These are selection, crossover, mutation and inversion. We shall consider only the 

first three, since inversion can be derived from these.

The crossover operation exchanges information between a pair of codewords. 

Mutation alters the value of a single bit in a codeword. Typically, the genetic 

algorithm is used as an optimisation technique, and so the selection operation is used 

to find the ‘best’ possible codewords for some predetermined criterion. However, for 

compositional purposes, no such optimisation is necessary, since the operations are 

used solely for the development of the compositional parameters. A typical parameter 

evolution step is shown in Table 4.1.1.
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Explanations Codewords

Consider a set of n codewords which represent the 

values of some musical parameters.

Ci : 1 1 0  1 0 1 1 0

C2 : 1 0  0  1 0 1 1 1 

Cn : 0 1 0 0 1 0 0 1

Selection: Codewords are chosen to undergo 

evolution according to some stochastic mechanism 

(c.f. Darwin’s theory of evolution - chance mutation 

leading to population development ([Darwin, 1981])).

C2 : 1 0 0 1 0 111  

C7 : 1 1 0 0 0 1 0 1 

Cn : 01 1 1 1 0 0  1

Crossover: Some portion of a pair of codewords (in 

this case, C7 and Cn) is exchanged at the dotted 

position randomly specified, producing the two 

offspring CT and C i f , whose values are then assigned 

to C7 and C\\. This is applied to some predetermined 

section of the population, specified by the crossover 

rate.

C2 : 1 0 0 1 0 1 1 1 

C? : 1 1 0 0 0 | 1 01  

C,, : 0 I 1 I \\0 0 I 

CT: 1 1 0 0 0 \0 0 1  

C if: 0 1 1 1 1 / 0 /

Mutation: The bit values of some codewords are 

inverted at a mutation rate of 1 - 5%. The value that 

has been changed as an example is highlighted by an 

underline.

C2 : 1 0 0 1 0 1 1 1 

C7 : 1 1 1 0 0 0 0 1 

Cn : 0 1 1 1 1 1 0 1

Table 4.1.1 — A typical parameter development step.

The author proposes the following as a genetic algorithm for parametric development: 

firstly, each parameter is assigned a binary codeword according to its initial value. At 

each timestep, the genetic algorithm is performed on the set of codewords as 

illustrated in Table 4.1.1 above, leading to population development.
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4.1.7 Alternative mappings

Finally, we consider the effect of many different mappings from both cellular 

automata and fractals onto music.

The technique of mapping co-ordinates to musical triads through the von Neumann 

Music Space has already been described, but several alternatives exist.

For example, we could map cells onto a discrete two-dimensional space defined by 

pitch vs. a musical parameter (see Figure 4.1.10). Similarly, we could combine 

automata with stochastic techniques by using the states of cells to determine 

probability tables from a set held in memory. Once a probability table has been 

established for an individual cell, a random selection routine can then be used to select 

the actual note values and musical parameters with the cell (see Figure 4.1.11).

m usical
param eter

pitch values stored in d iscrete steps

Figure 4.1.10 - An alternative two-dimensional space for use in mapping dynamical

systems to music.
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Probability table stored at array position
(2 ,4 )

y  A

y = 4

x = 2

Figure 4.1.11 - A cell at position (2, 4) determines a probability table associated with 

that note. The actual note values and parameters can then be calculated using a

random selection technique.

D y n a m ic  P ro b a b ility' i  »le v e l
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5. CAMUS 3D

5.0 Introduction

In this chapter we present CAMUS 3D (Cellular Automata MUSic in 3 Dimensions). 

The system is clearly derived from the original 2-dimensional system, but it is the 

author’s belief that there are sufficient differences to allow us essentially to consider 

the 3-dimensional system as a new composition algorithm in its own right.

We continue by illustrating the workings of the new system with a composition 

example, and conclude by highlighting the similarities and the differences between 

the 2-dimensional and the 3-dimensional systems.

5.1 The development of the system

CAMUS 3D has undergone continual revision since the prototype system was 

developed in 1997. In this section we trace the development of the system from its 

initial implementation through to the introduction of the latest composition tools.

5.1.1 Into the third dimension

The CAMUS 3D system is a development of the earlier 2-dimensional system 

([Miranda 1993], [Miranda, 1994], [McAlpine, Miranda, and Hoggar 1997a] 

[McAlpine, Miranda & Hoggar 1997b]), and uses three-dimensional extensions of the 

Game of Life and Demon Cyclic Space automata to generate compositions.

5.1.2 The 3-dimensional Game of Life

The 3-dimensional Game of Life automaton consists of an I x m x n array of cells, 

each of which can exist in two states, alive, denoted by 1, or dead, denoted by 0. As in 

the 2-dimensional case, live cells are shaded black, whilst the dead cells are left 

unshaded.
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5.1.3 Candidates for rules in the 3-dimensional Game of Life

As mentioned in Section 4.1.3. only a small subset of the possible rule sets result in 

games that satisfy the criteria for life. By using Theorems 4.1.1 and 4.1.2. we showed 

how most of the 123 301 possible rule sets can be discarded, whilst Carter Bays, who 

is surely the leading researcher in higher dimensional Life, further reduced the 

number of candidates to just twn ([Bays 1987]) -  the rules R = (4. 5, 5, 5) and 

R = (5, 7, 6, 6). We now discuss these rules in more detail.

5.1.4 The rule R = (4, 5, 5, 5)

The first point to note about R = (4, 5, 5, 5) is that it is obtained simply by adding 2 to 

the standard Conway rule, R = (2, 3, 3, 3).

Before examining this more closely, let us first introduce some terminology that will 

help us to compare configurations of cells in the 2 and 3-dimensional automata.

An expansion of a 2-dimensional Conway cell configuration'0 is formed in three 

dimensions by making copies of all living cells, (x„ 0) into the adjacent z-plane,

(x„ y„ 1). Thus, the expansion of a 2-dimensional cell configuration will have exactly 

twice as many cells as the original object. The behaviour of the expansion will depend 

on the rule set employed by the automaton.

The expansion of one such 2-dimensional cell cluster is shown in Figure 5.1.1.

Figure 5.1.1 -  Expanding 2-dimensional objects to 5-dimensions. The image on the 

left shows a 2-dimensional Conway Life object. The image on the right shows the 

expansion o f this object into the third dimension.

2h We use the term Conway object or Conway’ cell configuration to denote any cell configuration in the 
2-dimensional Game of Life described by R = (2, 3, 3, 3).
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A similar operation can be defined in order to obtain 2-dimensional objects from the 

3-dimensional automaton: we say that a projection o f a 3-dimensional cell 

configuration into two dimensions exists if and only if both of the following are true.

i.) All of the living cells, (x,-, y !y zf) lie in two adjacent planes. For the sake of 

argument let these planes be z = 0 and z = 1.

ii.) The pair of cells (xi} y-„ 0) and (x„ y h 1) are either both alive or both dead.

We may now define an analogue of a 2-dimensional Life object in three dimensions 

as an expansion which, when subjected to appropriate 3-dimensional rules, yields 

after each and every generation a projection identical to the original 2-dimensional 

cell configuration for the same generation under the 2-dimensional rule 

R = (2, 3, 3,3).

Theorem 5.1.1 (Bays, 1987)

A stable 2-dimensional Conway object has an analogue under R = (4, 5, 5, 5) i f  and 

only i f  each living cell in the Conway object has exactly two neighbours.

The proof of this is obtained from Tables 5.1.1 and 5.1.2 below.
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Conway Object (4, 5, 5, 5) Expansion

Number of neighbours, N, 

when cell at (x,-, y,-, 0) is 

alive

Number of neighbours, N, 

of cells at (x„ y h 0) and 

(pci.yh 1)

Number of neighbours, N, 

of cells at (x/, y,-, -1) and 

(Ph yh 2)

N Next State N Next State N Next State

0 dead 1 dead 1 dead

1 dead 3 dead 2 dead

2 alive 5 alive nJ dead

3 alive 7 dead 4 dead

4 dead 9 dead 5 alive

5 dead 11 dead 6 dead

6 dead 13 dead 7 dead

7 dead 15 dead 8 dead

8 dead 17 dead 9 dead

Table 5.1.1 — Comparison o f the number o f  neighbours and the status for live Conway 

cells and 3-dimensional Life (4, 5, 5, 5) cells. For example, suppose that a 2- 

dimensional cell is alive and has 2 live neighbours (the third row in the table). Then 

on the next timestep, the cell will live, as will the pair o f cells in the (4, 5, 5, 5)

expansion.
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Conway Object (4, 5, 5, 5) Expansion

Number of neighbours, N, 

when cell at (x/, y-n 0) is 

alive

Number of neighbours, N, 

of cells at (xj, y-lt 0) and

(Xh Li, 1)

Number of neighbours, N, 

of cells at (x,-, y it -1) and 

(xh y h 2)

N Next State N Next State N Next State

0 dead 0 dead 0 dead

1 dead 2 dead 1 dead

2 dead 4 dead 2 dead

3 alive 6 dead 3 dead

4 dead 8 dead 4 dead

5 dead 10 dead 5 alive

6 dead 12 dead 6 dead

7 dead 14 dead 7 dead

8 dead 16 dead 8 dead

Table 5.1.2 -  Comparison o f the number o f  neighbours and the status for dead 

Conway cells and 3-dimensional Life (4, 5, 5, 5) cells.

Now, in order for a Conway Life object to be stable, it is necessary that it does not die 

off after a number of timesteps. As we saw in Section 3.3.4, those live cells that have 

either one or no living neighbours fall into this doomed category, and so can be 

excluded from consideration. Similarly, objects that contain live cells with four or 

more neighbours tend to lose cells to form a stable object. Of the remaining 

possibilities only the case N = 2 provides us with consistent information — live cells 

that have three neighbours in the 2-dimensional Game of Life will live on the
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subsequent timestep whereas similar cells will die in the 3-dimensional case. Similar 

inconsistencies arise in the table for dead cells.

The following corollary is immediate.

Corollary 5.1.2 (Bays, 1987)

A Conway ob ject that changes from one generation to the next has no analogue under 

the 3-dimensional Life rule R = (4, 5, 5, 5).

The consequence of this is that although R = (4, 5, 5, 5) has an occasional analogous 

form (see, for example, Figure 5.1.2), such objects are rare and the game's behaviour 

is ultimately very different from the more familiar 2-dimensional game.

Figure 5.1.2 -  3-Dimensional analogue o f a stable 4-cell object under

R = (4, 5, 5, 5)

5.1.5 The rule R = (5, 7,6,6)

We saw in the previous section how the three-dimensional Game of Life characterised 

by the rule (4, 5, 5, 5) supports only a very limited number of analogous forms of 

Conway objects. Here we prove a similar, though broader result.

Theorem 5.1.3 (Bays, 1987)

A Conway object has an analogue under the three dimensional Game o f Life rule 

(5, 7, 6, 6) i f  and only i f  the two-dimensional object satisfies the following conditions 

at every timestep:

i.) A dead cell in the neighbourhood o f the object cannot have six living 

neighbours.

ii.) A live cell cannot have five neighbours.
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We prove the result, as before, by examining the behaviour of live and dead cells 

under the two and the three-dimensional rule systems. The results are presented in 

Tables 5.1.3 and 5.1.4 below.

Conway Object (5, 7, 6 , 6 ) Expansion

Number of neighbours, N, 

when cell at (x/, yu 0 ) is 

alive

Number of neighbours, N, 

of cells at (xh y h 0 ) and 

(w T, 1)

Number of neighbours, N, 

of cells at fa, y,, -1) and 

f a  yh 2 )

N Next State N Next State N Next State

0 dead 1 dead 1 dead

1 dead J dead 2 dead

2 alive 5 alive 3 dead

3 alive 7 alive 4 dead

4 dead 9 dead 5 alive

5 dead 11 dead 6 alive

6 dead 13 dead 7 dead

7 dead 15 dead 8 dead

8 dead 17 dead 9 dead

Table 5.1.3 -  Comparison o f the number o f neighbours and the status for live Conway 

cells and 3-dimensional Life (5, 7, 6, 6) cells.
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Conway Object (5, 7, 6 , 6 ) Expansion

Number of neighbours, N, 

when cell at (Xj, y it 0 ) is 

alive

Number of neighbours, N, 

of cells at (xb >7, 0 ) and 

(xhy t> 1)

Number of neighbours, N, 

of cells at (Xj, y it - 1) and 

(*/, yu 2 )

N Next State N Next State N Next State

0 dead 0 dead 0 dead

1 dead 2 dead 1 dead

2 dead 4 dead 2 dead

3 alive 6 alive 3 dead

4 dead 8 dead 4 dead

5 dead 10 dead 5 dead

6 dead 12 dead 6 alive

7 dead 14 dead 7 dead

8 dead 16 dead 8 dead

Table 5 .1 .4 - Comparison o f the number o f  neighbours and the status for dead

Conway cells and 3-dimensional Life (5, 7, 6, 6) cells.

Note here that the behaviour of the expansion in the planes z — 0 and 2  = 1 is identical 

to the two-dimensional game. Only the planes z = -1 and z = 2 affect the analogue, 

and it is these deviations that are addressed by the restrictions imposed by Theorem 

5.1.3.
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Upon examining a number of stable and oscillating two-dimensional Conway objects 

it becomes clear that many of them satisfy the conditions imposed by Theorem 5.1.3. 

Some examples are presented in Figures 5.1.3 -  5.1.5 below.

Figure 5.1.3 -  3-Dimensional analogue o f the Conway glider under R = (5. 7, 6, 6).

Figure 5.1.4 -  3-Dimensional analogue o f a simple three-cell oscillator under

R = (5, 7, 6, 6).

Figure 5.1.5 -  3-Dimensional analogue o f a four-cell stable object under

R = (5, 7, 6, 6).

It seems, therefore, that the 3-dimensional Game of Life characterised by the rule set 

R = (5, 7, 6, 6) is by far the best candidate for our control system. Not only does this 

rule set produce interesting cell development that is worthy of the name life, it is also 

the 3-dimensional system that behaves most like the familiar 2-dimensional game that 

was utilised by the previous version of CAMUS. It is for this reason that the rule set 

R = (5, 7. 6, 6) was chosen as the default rule set for CAMUS 3D, although the user is 

still free to chose whichever legal rule set best suits their compositional ideal.

However, as we shall see in the next section, it is possible to engineer Conway’s life 

in three dimensions by imposing restrictions on the cell checking mechanism.

158



5.1.6 Conway’s Life in 3 dimensions

It is possible to configure a 3-dimensional Game of Life to behave in the same way as 

Conway’s 2-dimensional game. This is a highly desirable state of affairs, since it 

gives us the benefits of a 3-dimensional control system — namely the increased chord 

complexity -  together with the ease of use and well-understood behaviour of the 2- 

dimensional Game of Life.

There are two methods that may be used to achieve this.

The first of these is to treat the 3-dimensional space as a series of parallel stacked 

2-dimensional spaces. This can be done quite simply:

Suppose we wish to treat a 3-dimensional Game of Life as a series of 

2-dhnensional games stacked parallel to the plane x = 0. Then the each of the stacked 

planes have the form x = a, where a e  Z  is a constant. Thus, when we come to

examine the neighbouring cells of an arbitrary cell (a, b, c), where a, b, c e Z , we 

need restrict our attention only to the cells

(a, b+  1, c), (a, b -  1, c), (a, b, c + 1), (a, b, c -  1),

(a, b + 1, c + 1), (a,b + l , c -  1), (a, b -  1, c + 1) and (a, b -  1, c -  1),

since we are concerned only with the neighbouring cells in the plane x = a. This 

means that each of the stacked 2-dimensional games evolves in total isolation -  none 

of the cells from the neighbouring games can exert any influence on the cells in any of 

the other games.

This configuration is illustrated in Figure 5.1.6 below.
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Figure 5.1.6 - A  3-dimensional Game o f Life as a series ofparallel stacked 2- 

dimensional games. The 2-dimensional games in this case are stacked parallel to the 

plane y  = 0. The dark grey cell in the middle layer is currently under examination. 

Since we treat the y  co-ordinate as a constant, only the shaded neighbouring cells in 

the same plane are also examined. Thus, each 2-dimensional game evolves in

isolation.

The second option, proposed by Carter Bays ([Bays, 1987]) involves the construction 

of time-space barriers in the three dimensional space.

Time-space barriers are essentially stable planar structures in which each living cell 

has precisely seven living neighbours (see Figure 5.1.7). This has the effect of 

preventing any births in the two planes adjacent to the barrier -  these planes can be 

thought of as being barren.

Figure 5.1.7 - A  section o f  a time-space barrier. Note that the barrier extends 

infinitely in all directions and that each live cell has precisely 7 live neighbours.

Suppose we construct such a time-space barrier in the plane z = 0. Then this means 

that no glider approaching from a direction perpendicular to that plane can ever
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penetrate the planes z  = ±1. In effect the time-space barrier acts as a shield for its 

neighbouring planes.

To use the time-space barrier technique to force a three-dimensional Conway life, one 

proceeds in the following manner:

Firstly, two infinitely large27 parallel time-space barriers are constructed and placed in 

the universe so that they are separated by four parallel planes (see Figure 5.1.8). Then, 

since the planes adjacent to the barriers are barren, all life must be confined to the two 

middle planes. However, since the three-dimensional analogue to Conway’s life under 

the rule set R = (5, 7, 6, 6) breaks down only because of growth in the z-direction (see 

Tables 5.1.3 and 5.1.4), and we have prevented such growth.

Figure 5.1.8 - Two infinitely large parallel time-space barriers -  

shown here using light-coloured cells -  are constructed and placed in the universe so 

that they are separated by four planes. The planes immediately adjacent to the 

barriers are barren, so that all life is confined to the two middle planes, which here

contain dark-coloured cells.

We conclude that:

27 It is, of course, impossible to use truly infinite time-space barriers. However, since we are dealing 
with an automaton space that is toroidal in nature, the same effect may be achieved by extending the 
barriers to fill the plane in which they exist.
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Theorem 5.1.4 (Bays, 1987)

An analogue to the entire 2-dimensional Game o f Life exists between two infinite 

parallel time-space barriers separated by four planes under the rule set 

R = (5, 7, 6, 6).

5.1.7 The Demon Cyclic Space in three dimensions

The construction of a 3-dimensional Demon Cyclic Space is very similar to the 

construction of a 3-dimensional Game of Life, albeit with a much simpler rule set.

Recall that the Demon Cyclic Space is a /c-state I x m array of cells whose evolution is 

determined by the following rule:

A cell which is in state j  at timestep t will dominate any neighbouring cells which are 

in state j  - I, so that they increase their state to j  at timestep t + 1.

We then define the 3-dimensional extension of the Demon Cyclic Space to be a k-

state / x m x  n array of cells whose evolution is determined by the same rule.

However, as with the two-dimensional Demon Cyclic Space, only a subset of each 

cell’s neighbours is actually examined at each timestep.

Recall that in two dimensions a cell (x, y) requires only the cells (x ± 1, y) and 

(x, y ±  1) to be examined.

By extension, a cell (x, y y z) the 3-dimensional case necessitates the checking only of 

cells (x ± 1,y, z), (x, y ± \ , z )  and (x,y, z ± 1).

As with the 2-dimensional CAMUS system, CAMUS 3D offers scope to alter the 

evolution rules of the control automata in order to fine-tune the system. This is

discussed more fully in Section 5.2.4.

5.1.8 The emergent behaviour of the 3-dimensional Demon Cyclic Space

Due to the higher dimensionality of the automaton, spotting long-term behaviour in 

the cells of the 3-dimensional Demon Cyclic Space is not an easy task. However, by 

examining two-dimensional cross-sections of the system we may hope to discover the
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emergence of self-organising behaviour similar to that seen in the 2-dimensional case. 

An example is shown in Figure 5.1.9 below.

Q01 r 09

a 02 a 10

r- 03 r 11

H04 □ 12

n 05 r 13

n:06 r 14

07 Q 15

n 08 n 16

Figure 5.1.9 -  Self-organising behaviour in the x-y plane o f the 5-dimensional Demon 

Cyclic Space. The image on the left is the initially randomised automaton. The image 

on the right shows the automaton a number o f timesteps later.

Note that the pattern is not as clearly defined as in the 2-dimensional case. 

Nevertheless, such self-organising behaviour clearly exists and should be noted. The 

existence of such behaviour, however, is not critical, and by no means as important as 

the behaviour of the 3-dimensional Game of Life, since the states of the Demon 

Cyclic Space cells determine only the instruments that perform sections of music and 

not the music itself.

5.2 Mapping the control system to music

Now, having seen how the underlying control system has been extended to three 

dimensions, we describe how they are used to generate CAMUS 3D's musical output.

5.2.1 The mapping

To begin the composition process, the Game of Life automaton is initialised with a 

starting cell configuration, the Demon Cyclic Space automaton is initialised with 

random states, and both are set to run.

Demon Cyclic Space Cioss Section View_________ PDemon Cyclic Space Cioss Section View_________ P
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At each timestep, the co-ordinates of each live cell are analysed and used to determine 

a 4-note chord28 that will be played during the corresponding temporal window in the 

composition. The state of the corresponding cell of the Demon Cyclic Space 

automaton is used to determine the instrumentation of the piece.

This configuration is demonstrated in Figure 5.2.1. In this case, the cell in the Game 

of Life at (5, 5, 2) is alive, and thus constitutes a musical event.

The co-ordinates (5, 5, 2) describe the intervals in a 4-note chord: The x cell-position 

(stalling at 0 in the bottom left corner) defines a semitone interval from a fundamental 

pitch to the second-lowest pitch of the chord. The >>-cell position defines a semitone 

interval from the second-lowest to the second-highest pitch in the chord. The z-cell 

position defines a semitone interval from the second-highest pitch to the top note of 

the chord. Note that if  the cell position is 0 (corresponding to the first cell in each 

direction) the ‘higher’ pitch defined by the associated interval will be identical to the 

Tower’ pitch.

The corresponding cell in the Demon Cyclic Space is in state 4, which means that the 

sonic event would be played by instrument number 4 (for example, by using MIDI 

channel 4). Note that for the sake of clarity, the first two layers of the Demon Cyclic 

Space have been omitted in the figure below.

28 A four-note chord is a set of four (not necessarily distinct) notes that may or may not sound 
simultaneously.
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Figure 5.2.1 -  Configuration o f a typical timestep in CAMUS 3D.

The use of a discrete 3-dimensional Euclidean space to represent musical intervals is 

an extension of the 2-dimensional von Neumann Music Space used in an earlier 

version of the system ([Miranda 1993], [Miranda, 1994]).

Having established the intervallic content of the chord associated with a live cell, we 

must establish the fundamental note in order to specify fully each of the pitches in the 

chord. This is done automatically using stochastic selection routines, which allow the 

composer to specify the relative weightings of the pitch values for the fundamental 

pitches (see Section 5.2.6).

Now, in order to avoid a piece being composed entirely of block chords, we must 

implement a routine that staggers the starting (and possibly ending) times of each of 

the notes of the chord.

The temporal structure of each of the chords is represented by a 4 x 4 grid. The 

bottom row of boxes represents the lowest pitch of the chord, the second bottom row 

represents the second lowest note, the second top row represents the second highest 

pitch and the top row represents the highest pitch. The order of the shaded cells from 

left-to-right determines the order in which each of the notes is played.

It is a simple matter to calculate that there are 24 different ways of arranging the 

starting order of these 4 (non-simultaneous) notes. CAMUS 3D uses a stochastic 

selection routine that consults a user-specified table for the associated probabilities of
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each of the 24 possible starting arrangements (see Figure 5.2.2). The routine used to 

select the note order is a variation of the non-uniform cumulative probability selection 

routine detailed in Section 2.1.3.

Note Orderings [X ]

5 ^  f5 ^  [O fo ^  [O ^  [5

■ i l f l  ■ I n  ■TTTj■lxxj ■czn ■ i ■ ip in  p■ 11 j ■11 mtrn ■ i w in i ■ 11 ,rw
p ■ n ptmxl

0 -H 10 -H 0

■ ■'n ■ n  ■■CT1 ■djP » ■ i p i ■ i

[o [o ^  [o 120 -H 10 10

■fTrj ■■M■ 11 ■ I n w
11 i n  p  i m i

■TTfiP n ■ p I ry
5— g  | s ~ 3  | 3 T 3  [o 3  1° d  F°

C an cel

Figure 5.2.2 -  The Note Orderings dialog box.

When a starting arrangement has been chosen, CAMUS 3D calculates the precise note 

durations. This is achieved by means of a first order Markov chain (see Section 5.2.5).

The probabilities in the transition matrix of the Markov chain are, again, user- 

specified. Note lengths are quantised to semiquaver resolution, and simultaneous note 

events are catered for by allowing starting times of duration 0.

CAMUS 3D offers two methods of specifying the probabilities in the Markov state- 

transition matrix. The standard option offers the composer a graphical means of 

viewing and altering the probability values. The probabilities are represented on 

screen by a gradated colour scheme which ranges from pure red (probability value 0) 

to pure green (probability value 1). This scheme is very natural to use, tying in as it
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does with the natural colour schemes of the physical world: red is often signifies a 

warning or danger (impossible), whilst green indicates safety (certain).

When the composition process is started, the music is performed in real time, and can 

be saved as a type 0 standard MIDI file, fixing the composition for all time.

CAMUS 3D also allows the user to save the composition as a set of parameters that 

correspond to the states of the automata and the probability tables for the selection 

routines. Whilst this allows the composer to re-create the ‘same’ composition, the 

resulting music may sound quite different, since although the automata are wholly 

deterministic, and so produce identical chord sequences and instrumentations each 

time they run with identical initial configurations, the stochastic selection routines 

may lead to quite different fundamental pitches, note orderings and note durations29.

This is analogous to the performance of a given piece of music by a musician -  110 

two performances of the same piece will be identical. Indeed, it is likely that over 

time, the performance will change dramatically as the musician reinterprets the work. 

Of course, if a digital recording is made 011 DAT tape, for example, then the 

performance is fixed for all time. This is exactly the case when saving a CAMUS 

composition as a parameter set and as a MIDI file -  the parameter set records the 

musical score which the program will interpret in a different manner each time it 

performs the composition, whilst the MIDI file records the musical performance and 

will not change.

5.2.2 Data entry in the third dimension

As was mentioned in Section 4.1.2, two methods of data entry were initially proposed 

for CAMUS 3D.

29 In fact, the random number generators used by computers are also deterministic and only simulate 
randomness. Thus, a random number generator will produce identical sequences for any given seed. 
This restriction is overcome in CAMUS 3D by using the state of the internal clock on the host PC as 
the seed value for the initialisation of the generator. Since this vaiue changes as time progresses, the 
probability that the random number generator will produce an identical sequence of numbers on two 
successive iterations is quite negligible.
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The first of these involved the direct entry of co-ordinates using a tabular system, 

whilst the second allowed the user to click on a series of embeddings using the mouse.

Upon experimentation with a preliminary system, however, it was discovered that the 

method of clicking on two-dimensional embeddings was cumbersome and often 

confusing for the user. This was then dropped from the final software and the co­

ordinate system was developed.

In order to achieve a user-friendly input method from the co-ordinate system it was 

decided that the 3D modelling analogy would be developed.

3D modelling packages such as Autodesk's 3D Studio Max ([Autodesk, 1999]) often 

offer preset shapes and objects that may be placed in 3-dimensional space and tailored 

to the user's needs. These shapes are often referred to as primitives. Some common 

examples of primitives are cuboids, ellipsoids, toruses and pyramids.

CAMUS 3D uses a similar system of primitives, where the cellular automata 

primitives are preset clusters of cells which can be positioned at any point in the 3- 

dimensional automaton space. The primitives available to the user are Invert Cell, 

Line and Cube.

The Invert Cell function displays the Invert Cell dialog box (see Figure 5.2.3) which 

allows the user to invert the state of the cell at position (x,^, z).

Invert Cell

Invert cell at position: 

x:

y:

* |0

OK. C ancel

Figure 5.2.3 -  The Invert Cell dialog box.
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The routine used for inverting the cell (x, y, z) is presented below. Note that although 

for reasons of consistency we term the procedure an algorithm, we concede that this is 

perhaps too ostentatious a term for a single instruction!

procedure InvertCell(x,y,z)
{

cell(x,y,z) = NOT cell(x,y,z);
}

Algorithm 5.2.1 -  Invert cell.

The Line function displays the Line dialog box (see Figure 5.2.4), which allows the 

user to invert the states of those cells that lie on the unique line between the cells 

(fl, b, c) and (x, y , z).

m m m E

Invert cells  that lie o n  th e line b etw een:

a: [0
_ d

x: |
1° j j

b: [cT and  y: |F ~ j j

c: [o ~ z: |
F " j j

OK C ancel
1

Figure 5.2.4 -  The Line dialog box.

It should be noted, however, that since the Game of Life space is discrete and quite 

small (12 x 12 x 12), the quantisation of the line may cause it to look blocky and, in 

extreme cases, almost like a curve.

The algorithm used to ‘draw’ the line is based on Bresenham's Algorithm ([Burger & 

Gillies, 1989]).

Suppose we wish to draw a line between the points (xi, yi) and (x*2, y{). We may 

assume without any loss of generality that x\ < xj. We may also assume that the error 

at point (xi, jq) is 0, that is, the line passes through the initial point.

The essence of the algorithm is that we step through the x co-ordinates from xi to X2, 

calculating the error made by not drawing the line at its true position. At each step a
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decision is made as to which of the two points that bound the real position of the line 

at that x ordinate is the closest and that pixel is set to ON.

For our 3“dimensional case, however, we need a slightly different approach.

Here we wish to determine which cells in our 3-dimensional Game of Life lie on, or 

rather closest to the line between (a, h, c) and (x, y, z). Again, we may assume that the 

line passes through the point (A, b, c).

Firstly, we calculate the direction numbers of the line, /. These are

xi = x -  a 

y i = y - b

Z i ~ Z - C

Stalling at live cell (a, b, c), we move in a direction (x/, yi, zf) until we leave the cell. 

We now calculate the error made by not drawing the line at its true position as with 

Bresenham’s Algorithm, and invert the state of the cell which minimises the error.

We continue in this manner until we reach the point (x, y, z).

The algorithm is presented below.
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p r o c e d u r e  L i n e ( a , b , c , x , y , z )

{

xl = x - a;
yl = y - b;
zl = z - c;
repeat until cell (x,y,z) is reached 
{

while (still within previous cell) 
move in direction (xl,yl,zl); 

for (all cells immediately neighbouring the true line
position)

e(i) = distance from neighbour i to true
position;

next neighbour
(x',y',z') = coordinates of cell with min(e(i)); 
InvertCell(x',y',z');

}

}

Algorithm 5.2.2 -  The 3-dimensional line algorithm.

The Cube function displays the Cube dialog box (see Figure 5.2.5), which allows the 

user to invert the states of those cells that lie within a cube with sides of length / cells, 

whose top-left-nearmost corner is given by the cell (x, y , z).

P la c e  c u b e  with radius r: |P
at: x: | j j

y ; |F " id
z: |F " F 3

C an cel

Figure 5.2.5 -  The Cube dialog box.

The algorithm used to create the cube is shown in Algorithm 5.2.3 below.
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p r o c e d u r e  C u b e ( r , x , y , z )

{

// We assume that the automaton is of dimension 
// (Size x Size x Size) 
for i = x to (x + r)
{

x' = i mod Size; 
for j = y to (y + r)
{

y' = j  mod Size; 
for k = z to (z + r)
(

z '  = k mod Size;
InvertCell(x',y' , z ');

}
next k ;

}

next j;
1
next i;

}

Algorithm 5.2.3 -  The Cube Algorithm.

From these three basic tools, a wide variety of objects can be produced.

For example, a hollow cube, that is a cube whose boundary cells are live and whose 

interior cells are dead, may be quickly constructed in the 3-dimensional Game of Life 

by splitting the cube into a live boundary and a dead interior. The cells that lie in the 

interior of the cube are brought to life first by an application of the cube primitive. 

Then, the larger boundary is placed 011 top, bringing those cells that lie on the 

boundary to life, and killing those that lie within the interior.

Other tools offered to the user are Clear, Randomise and Extend.

The Clear function kills all cells in the Game of Life, essentially providing a blank 

score 011 which the user can work. The routine for accomplishing this is very simple 

and is identical to Algorithm 5.2.1 with the line

cell(xfy,z) = NOT cell(x,y,z);
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replaced by

cell(x/y,z) - FALSE;.

Two Randomise functions are available. The first randomly assigns each cell in the 3- 

dimensional Game of Life a state, either alive or dead. The second randomly assigns 

each cell in the 3-dimensional Demon Cyclic Space a state 0, 1, 1, where /  is

the total number of states of the automaton.

Again, these algorithms are very simple. For the former we have:

procedure RandomiseGOLCell(x,y,z)
{

i = rand();
if (i mod 2) then

cell(x,y,z) = FALSE;
else

cell(x,y,z) = TRUE;
}

Algorithm 5.2.4 — The Randomise Game o f Life Cell Algorithm.

Algorithm 5.2.5 below shows how the latter may be achieved.

procedure RandomiseDCSCell(x,y,z)
{

i = rand();
cell(x,y, z) = i mod j;

}

Algorithm 5.2.5 — The Randomise Demon Cyclic Space Cell Algorithm.

The Extend function displays the Extend dialog box (see Figure 5.2.6), which copies 

all cells in a user-specified plane to the adjacent plane in the positive direction, thus 

creating an expansion of all objects in that plane.
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Figure 5.2.6 -  The Extend dialog box.

We also intend to support a number of common Conway objects, either as a library of 

shapes or as further primitives.

5.2.3 The display

As was mentioned in Section 4.1.2, displaying data from a 3-dimensional control 

system on a 2-dimensional computer screen presents us with some problems.

An isometric display gives the user the most complete picture of the current state of 

the automaton, although it is accepted that it can be difficult to obtain a sense of depth 

in this way, and that occasionally some live cells may be obscured by those in front.

The problem of depth perception can be overcome by displaying the 3-dimensional 

automaton as a series of embeddings. When used in conjunction with the isometric 

view these provide the user with sufficient visual cues to complete the three

dimensional picture in his or her own mind.

Also, by using certain graphics modes we may overcome the problem of obscured 

cells. In order to do this, a graphics transparency feature offered by the Windows 

operating system was utilised. This allows live cells to be shaded in such a way that

their colours are translucent, like coloured glass, meaning that cells that would

otherwise be hidden may be viewed through the obscuring cells.

Unfortunately, this approach is not suitable for the Demon Cyclic Space in which all 

cells must be visible simultaneously. The reason for this is that even with translucent 

colouring, cells which have one or two layers in front of them quickly become
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obscured, resulting in a large dark mass in the centre of the automaton (see Figure 

5.2.7).

3D D em on Cyclic S p a ce

Figure 5.2.7 -  Cells in the 3-dimensional Demon Cyclic Space very quickly become

obscured by those in front.

However, it is fair to say that a great deal of the information stored within the Demon 

Cyclic Space is redundant, since the states of cells are used by the composition system 

only when there is a corresponding live cell in the 3-dimensional Game of Life. 

Therefore, it was decided that the 3-dimensional Demon Cyclic Space data should be 

incorporated into the 3-dimensional Game of Life display. The states of the Demon 

Cyclic Space cells are then displayed only when there is a corresponding live cell in 

the Game of Life, and this is achieved by colouring the live Game of Life cell with the 

colour associated with the relevant state of the Demon Cyclic Space.

Thus, the user is presented with an isometric display that incorporates the Demon 

Cyclic Space as the main visual feedback (see Figure 5.2.8), but may also open any of 

the three available embeddings (see Figures 5.2.9 -  5.2.11) for a plan, elevation or 

end-elevation view.
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Figure 5.2.8  -  The isometric view o f the 3-dimensional Game o f Life.

0

■

Figure 5.2.9 -  The x-y plane view o f the 3-dimensional Game o f Life.
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Game of Life X-Z View

Figure 5.2.10 -  The x-z plane view o f the 3-dimensional Game of Life.

G am e of Life Y-Z V iew □

Figure 5.2.11 -  The y-z plane view o f the 3-dimensional Game o f Life.

5.2.4 -  Altering the evolution rules

The development of each composition created using CAMUS depends to a great 

extent on the evolution of the two automata that control the system.

In order to provide flexibility within the system, CAMUS allows the user to alter the 

evolution rules for both the 3-dimensional Game of Life and the 3-dimensional 

Demon Cyclic Space.
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If the user wishes to alter these rules, he or she is presented with the relevant dialog 

box that presents all user-changeable parameters.

The Alter Game o f Life Rules dialog box (see Figure 5.2.12) allows the user to 

customise the way in which the 3-dimensional Game of Life evolves.

Alter G am e Of Life R u les

r L i v e  cell rules -

Maximum neighb ours for life:

_______
Minimum n eigh b ou rs for life: | 5  ^

&K-

r  D ea d  cell ru les-------------------------

Maximum neighbours for life:

. . . .  f  ..

M inimum neighbours for life: 16

------

r N eighbouring c e l l s ---------------------------

(* C h e ck  all 

C  C h ec k  c e f

louring ce

A.
e  x = con stan t • I;

C C h eck  ce lls  in p la n e  y .» co n sta n t

C  C h ec k  c e lls  in p lan e  z  *  co n sta n t

——— -— — — -

□

f BIT  ! C a n ce l ...

Figure 5.2.12 -  The Alter Game o f Life Rules dialog box.

The parameters affect the system as follows:

The Live Cell Rules group consists of all parameters that have a direct influence on 

the evolution of live cells.

Maximum neighbours for life is the largest number of live neighbours that a live cell 

may have in order to live on the next timestep.

Minimum neighbours for life is the smallest number of live neighbours that a live cell 

may have in order to live on the next timestep.

The Dead Cell Rules group consists of all parameters that have a direct influence on 

the evolution of dead cells.

Maximum neighbours for life is the largest number of live neighbours that a dead cell 

may have in order to live on the next timestep.
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Minimum neighbours for life is the smallest number of live neighbours that a dead cell 

may have in order to live on the next timestep.

The Neighbouring cells group allows the user to specify how the 3-dimensional 

automaton is treated for cell-checking purposes.

If Check all neighbouring cells is selected, the automaton will behave like a true 3- 

dimensional space and all neighbouring cells will be counted at each timestep.

If Check cells in plane x = constant is selected, the automaton will behave like a 

series of stacked 2-dimensional spaces and only neighbours that lie in the plane 

parallel to theyz-plane will be counted at each timestep.

The remaining two options cause the automaton to behave in a similar manner.

The Alter Demon Cyclic Space Rules dialog box (see Figure 5.2.13) allows the user to 

customise the way in which the 3-dimensional Game of Life evolves.

Alter D em on  Cyclic S p a c e  R ules

r E v o ltu io n  rules -

Num ber of p ossib le  states: 1 6

C ells dom inated by neighbours in sta te  n + : |1

r  N eighbouring c e l ls -------------------------------

(* C h ec k  all neighbouring cells

< C h eck  ce lls  in p lan e  x  »  co n sta n t

C  C h eck  c e lls  in p lan e  y = con stan t

C  C h eck  ce lls  in p lan e  z *  con stan t

10K ~ ] |  Cancel

Figure 5.2.13 -  The Alter Demon Cyclic Space Rules dialog box.

The parameters affect the system as follows:

The Evolution rules group consists of all parameters that directly alter the evolution of 

the automaton.
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Number o f possible states is the total number of states in which each cell can exist.

Cells dominated by neighbours in state n + allows the user to specify the domination 

rule, so that cells may be influenced by neighbours whose state is greater than the one 

under examination by this value, working modulo the total number of states.

The Neighbouring Cells group behaves exactly as for the 3-dimensional Game of 

Life.

5.2.5 -  Choosing rhythms in CAMUS 3D

As mentioned earlier, the use of random generators for rhythm in CAMUS produced 

irregular rhythms that were unnatural and often difficult to listen to. The main reason 

for this is, of course, that the human ear welcomes regularity. Random note durations 

merely serve to confuse the brain as it looks for rhythmic patterns and fails to find 

them.

However, there is always a danger that a rhythm generator will go too far in the 

opposite direction and impose a stifling regularity on the rhythms it generates. Such 

music tends to be very dull and uninteresting and should be avoided if we are to 

succeed in providing composers with a useful compositional tool.

In order to solve the problem, then, we require an easy-to-use system of rhythm 

generation that provides us with semi-regular rhythms. Thankfully, such a system 

exists and is known as a Markov Chain.

We discussed Markov Chains in Section 2.1.4. Recall that a Markov Chain may be 

partitioned into equivalence classes known as a recurrent classes and transient 

classes. It can be shown that every finite Markov chain consists of at least one 

recurrent class, which, once reached can never be left, and some number (possibly 

none) of transient classes.

There are a number of musical applications to which Markov Chains may be applied 

(see, for example [Ames, 1989] and [Jones, 1980]). However, it is the author’s belief 

that Markov processes are particularly well suited for rhythm selection. Rhythmic 

lines often exhibit semi-cyclic behaviour in that short phrases are often repeated
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exactly or slightly altered as the line progresses -  the human ear tends to like this sort 

of regularity. Similar behaviour can be engineered by careful manipulation of the 

recurrent and transient classes within the Markov chain.

CAMUS 3D utilises a first order Markov Chain in the generation of rhythms. The 

probabilities are entered using the Note Lengths dialog box (see Figure 5.2.14).

Note Lengths
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Figure 5.2.14 -  The Note Lengths dialog box.

The column of notes down the left-hand side of the screen indicates the current note 

value. The row of notes along the top indicates the next note in the rhythm with the 

probability of transition given by the cell indexed by the relevant note values.
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For example, in Figure 5.2.14 above, the probability of a dotted crotchet being 

followed by a quaver is found by looking down the column of notes until the dotted 

crotchet is reached, and then by moving along this row to the quaver column. It can be 

clearly seen that the probability of this transition is 100 -  i.e. it occurs with absolute 

certainty.

The algorithm used by CAMUS 3D in the generation of rhythms is illustrated in 

Algorithm 5.2.6 below.

procedure GenerateRhythm()
{

check value of current note 
go to relevant row of table 
x = rand(0, 100)
//Here, P(i) is the probability that 
//the current note will be followed 
//the note indexed by i. 
interval = P (0) 
i = 0
while {x < interval)
{

interval = interval + P(i) 
i = i + 1

}
current note = note value indexed by i 
return current note

}

Algorithm 5.2.6 -  The note generation algorithm employed by CAMUS 3D.

In Figure 5.2.14 the reader will notice that there are two tabs marked Standard and 

Advanced along the top of the Note Lengths dialog box. These allow the user to alter 

the way in which data are represented in the dialog box.

The standard option (see Figure 5.2.15) offers the composer a graphical means of 

viewing and altering the probability values. The probabilities are represented on 

screen by a gradated colour scheme which ranges from pure red (probability value 0) 

to pure green (probability value 1). This scheme is very natural to use, tying in as it
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does with the natural colour schemes of the physical world: red often signifies a 

warning or danger (impossible), whilst green indicates safety (certain).

The advanced option displays all data as numerical values and allows for the direct 

entry of probabilities via the numeric keypad.
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Figure 5.2.15 -  The Standard Note Lengths dialog box.

5.2.6 -  Pitch generation

Recall from Section 3.1.6 that the original CAMUS relied on user-specified lists of 

notes to determine fully the triads that were performed at each step of the 

composition.
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This system worked reasonably well, particularly since the user had the ability to 

control to a very great extent the tonality (or atonality) of the resulting composition. 

This was demonstrated in the 'reverse engineering' method of composition described 

in Section 3.3.7

However, this system is not ideal. For complex or very long lines it is extremely 

tedious to configure the large-number of articulations required to give the desired 

effect, and practical experience with the system has indicated that users are far more 

likely to become bored and give up rather than to persevere to the end. Indeed, it 

seems that this hindrance of interface negates many of the positive aspects of the 

system and contributes greatly to its limited yield.

One possible solution is the use of probability tables to select starting notes for the 

chords.

As with Markov Chains, probability tables allow the user to impose long-term trends 

on the music without having to spend a great deal of time specifying individual notes. 

Probability tables are particularly well-suited for this task because it is simple for the 

user to emphasise the important notes in the composition by assigning them higher 

probability values, whilst limiting or excluding the other notes by assigning them 

small probability values or 0. In addition, the nature of probability tables is such that 

improbable results are often generated in places that would not have been expected by 

the user, thus taking the composition in a new direction.

The probabilities for the note generation table (a 0th order Markov Chain) are entered 

via the Pitches dialog box, shown in Figure 5.2.16 below.
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P le a s e  s e le c t  the probabilities for e a c h  of th e following pitches:

A: 0 - J
_ d

Ctt: 0 —1 F: 0 -A
A#: 0 D: 0 F»: 0 . J

-A
B: 0 D # : |0 -A G: 20 - J

- J

50 " “ J
_ d E:l30 - J G # :|0 . J

C ancel

Figure 5.2.16 -  The Pitches dialog box.

The probability values are entered as integers and are automatically normalised to the 

range [0, 100].

The algorithm used by CAMUS 3D in the generation of pitches is illustrated in 

Algorithm 5.2.7 below.

procedure GenerateRhythm()
{

x = rand(0, 100)
//Here, P(i) is the probability that 
//the pitch indexed by i will be played, 
interval = P(0) 
i = 0
while (x < interval)
{

interval = interval + P(i) 
i = i + 1

}
pitch = pitch value indexed by i 
return pitch

}

Algorithm 5.2.7 -  The note generation algorithm employed by CAMUS 3D.

It is important to note that this system only returns information on the pitch class of 

the note that will be played. In other words, the algorithm only determines that an A.
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G or Bb will be played, not which A, G or B/;. For this we require a further algorithm 

that will specify an octave value for the pitch class, thus tying the root of the chord to 

a precise note.

At present, the octave generator for CAMUS 3D is very rudimentary and does not 

produce musically satisfactory results. It works by adding a randomly selected octave 

value to a predefined base octave, below which no notes can be generated. The 

problem with this routine is that although it indeed generates music that covers a 

range of octaves, the resulting music ‘jumps around’ far too much for it to be valid.

Possible solutions may include the use of a pink noise generator to control the leaping 

motion, since this would limit the frequency of large jumps, or the use of higher order 

Markov Chains, which would take into account the number of large jumps in the 

recent past when calculating the next octave value.

Further development of this routine, presented in Algorithm 5.2.8 below, is planned 

for future work.

procedure GenerateOctave(pitch, range)
{

octave - rand() mod range; 
base_line = 45;
note = 45 + 12*octave + pitch; 

return Note;
}

Algorithm 5.2.8 -  The octave generation algorithm employed by CAMUS 3D.

5.2.7 -  Instrumentation

The final stage in the composition process is the initialisation of the instrumentation.

This is achieved by means of the Instrumentation dialog box, as shown in Figure 

5.2.17 below.
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Figure 5.2.17 -  The instrumentation dialog box.

Along the top of the dialog box are a row of tabs labelled Channel 1, Channel 2, ..., 

Channel 16. Clicking on tab /' displays the parameter set corresponding to state i of the 

Demon Cyclic Space. The composition data generated by the system are then 

transmitted on MIDI channel i.

The coloured box in the top-left corner of the dialog box shows the colour of the 

corresponding state of the Demon Cyclic Space.

The text box to the immediate right of the coloured box allows the user to select the 

General MIDI instrument that will perform the music transmitted on that channel. For 

a complete list of the General MIDI instrument set see Appendix C.

The Mono button in the top-right corner of the dialog box allows the user to specify 

whether the music will be generated monophonically -  that is, one note at a time -  or 

homophonically -  that is, using block chord movement. The default setting. Mono off. 

is indicated by the button being in its unchecked state as shown in Figure 5.2.17 

above.

The Volume parameter allows the user to specify the overall level of the music that 

will be transmitted on the corresponding MIDI channel. Acceptable values range from 

0 to 127 in standard MIDI volume units. This feature may be used as a simple MIDI

MIDI Instrumentation Setup
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mixer in order to balance the levels of the various MIDI channels used in a CAMUS 

composition.

Pan allows the user to position the MIDI channel anywhere in the sonic panorama, 

from 0, denoting hard left positioning, through to 127, denoting hard right positioning. 

The default value of 64 denotes central positioning.

Reverb allows the user to alter the amount of reverb effect (if available) applied to the 

corresponding MIDI channel. A full description of reverberation effects is outside the 

scope of this thesis, but a very good article appears in [Roads, 1996]. Reverb is now 

offered as a standard effect type on most synthesisers. Acceptable values for this 

parameter range from 0 to 127.

Similarly, the Chorus parameter allows the user to alter the amount of chorusing (see 

[Roads, 1996]) applied to the corresponding MIDI channel.

Chord frequency is a parameter that determines how often chord events are generated. 

It is given as a percentage. Thus, the default setting of 50 indicates that a chord event 

may be expected half of the time. It is important to note, however, that this parameter 

will only have an effect provided that the Mono button in unchecked.

Chord depth, an integer between 1 and 4, is the number of notes that combine to form 

a typical chord event.

Chord variance, an integer between 0 and 3, is the number of notes by which the 

chord depth can vary.

Thus, a chord depth of 2 with a chord variance of 1 would mean that 1, 2 or 3 notes 

are all possible values for the number of simultaneous notes in a chord, whilst the 

generation of a 4-note chord is impossibility.

The Rest frequency parameter is very similar in operation to the Chord frequency 

parameter. It is an integer percentage that determines how often rests are generated. 

The remainder of the time, notes begin immediately following the termination of 

those that immediately precede them.
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The general algorithm for controlling the instrumentation of the composition is not 

particularly difficult, as it involves only a check of the relevant Demon Cyclic Space 

cell. However, the algorithm for generating note events is quite complex and is best 

viewed in the form of a flowchart. This is presented in the next section.
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5.3 The CAR/iUS 3D algorithm as a flowchart

Initialisation of parameters

Check next cell

NO

Calculate fundamental pitch, p0

1r

Calculate the notes of the chord
f

Calculate rests, note orderings and 
individual rhythms

f

Send note data to MIDI channel d, 
where d is the state of the 
corresponding DCS cell

NO

YES |
Update automata

Figure 5,3,1 -  The CAMUS 3D algorithm.

All cells 
checked?

Is cell alive?
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As can be seen by comparing Figures 5.3.1 and 3.1.6, the underlying algorithms for 

CAMUS and CAMUS 3D are outwardly very similar. As we shall see, however, the 

algorithms are quite different in detail.

Figure 5.3.2 expands further the steps labelled Calculate fundamental pitch, po and 

Calculate the notes o f the chord. The algorithm makes use of a user-defined 

probability table, p.

r = random integer in range [0,100)

Bottom pitch = pitch indexed by i

interval = interval + p(0

while r < interval

interval = p(0), i — 0

Upper internal pitch = 
bottom pitch + x + y

Top pitch = 
bottom pitch + x + y  + z

Lower internal pitch 
bottom pitch + x

Figure 5.3.2 — Algorithm for calculating the notes o f the four-note chord defined by

cell (x, y, z).

191



As before CAMUS 3D uses the one-to-one correspondence described in Appendix C 

to map the chromatic pitches from C-2 through to G8 onto the integers from 0 to 127.

The next step in the algorithm is the calculation of rests, note orderings and individual 

rhythms. Figure 5.3.3 illustrates the procedure for determining the insertion of a rest.

Is r < Rest 
Frequency?

r = random integer in range [0,100)

Insert a rest of duration d  ticks

Calculate duration, d

Do nothing

Figure 5.3.3 ~~Algorithm for determining the insertion o f rests.

Figure 5.3.4 shows the algorithm used for determining the chord shape given the 

probability table p.

It should be apparent that the algorithm is almost identical to the Calculate 

fundamental pitch, po section of the algorithm described in Figure 5.3.2, the reason 

being, of course, that both algorithms make use of the cumulative distribution method.
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interval = interval + p(z)

r = random integer in range [0,100)

while r < interval

interval = p(0), i = 0

trigger notes using ‘chord’ shape 
indexed by i

Figure 5.3.4 -  Algorithm for determining chord shape.

The next stage of this section of the algorithm is concerned with determining whether 

or not a chord (i.e. a true simultaneous multi-note event) is to be played. As was 

mentioned earlier, this depends on the state of a user-specified binary control device 

and a number of probabilistic parameters. The step used to calculate the number of 

notes in each chord is illustrated in Figure 5.3.5a below.
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YES

NO Is rx < Chord 
^Frequency?

if 3 notes then figure 5.3.5c

Is Mono button 
\  checked? /

Trigger notes individually

if 1 note then figure 5.3.

if 4 notes then figure 5.3.5b

if 2 notes then figure 5.3.5d

r\ ri> r 3 = r^ndom integer in range 
[0,100)

No. of notes in chord = 
[Chord Depth + -C2 x r3/100 x 

Chord Variance]

Figure 5.3.5a -  Decision algorithm for generating chords.
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End all four notes after d  ticks

Calculate duration, d

Check for rest

Trigger all four notes 
simultaneously

Figure 5.3.5 b -  Algorithm for performing four-note chords.

Trigger first note

r ~  random integer in range [0, 1 ]

Calculate duration, d
Calculate duration, d

Check for rest

Trigger fourth note

Calculate duration, d

Check for rest

Calculate duration, d
End first note after d  ticks

End fourth note after d  ticks

i f  r =  1 t h e n

Check for rest

Check for rest

i f  r =  0 th e n

End first, second and third notes 
after d  ticks

Trigger second, third and fourth 
notes simultaneously

Trigger first, second and third notes 
simultaneously

End second, third and fourth notes 
after d  ticks

Figure 5.3.5c — Algorithm for performing three-note chords.
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if r = 2 then figure 5.3.5d.3

figure 5.3.5d.2

if r = 3 then figure 5.3.5d.4

r = random integer in range [0,3]

Figure 5.3,5d -  Algorithm for performing two-note chords.
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Calculate duration, d

Check for rest

End fourth note after d  ticks

Check for rest

Trigger fourth note

Calculate duration, d

Trigger third note

Check for rest

Calculate duration, d

End third note after d  ticks

End first and second notes after d  
ticks

Trigger first and second notes 
simultaneously

Figure 5.3.5d.l -  Algorithm for performing two-note chords.
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End first note after d ticks

Calculate duration, d

Calculate duration, d

Check for rest

Calculate duration, d

Check for rest

Check for rest

Trigger first note

Trigger fourth note

End fourth note after d ticks

End second and third notes after d 
ticks

Trigger second and third notes 
simultaneously

Figure 5.3.5d.2 -  Algorithm for performing two-note chords.
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Trigger second note

Check for rest

End first note after d ticks

Calculate duration, d

Calculate duration, d

End second note after d ticks

Trigger first note

Check for rest

Calculate duration, d

Check for rest

End third and fourth notes after d 
ticks

Trigger third and fourth notes 
simultaneously

Figure 5.3.5d.3 -  Algorithm for performing two-note chords.
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Check for rest

Calculate duration, d

Check for rest

Calculate duration, d

End first and second notes after d 
ticks

Trigger first and second notes 
simultaneously

End third and fourth notes after d 
ticks

Trigger third and fourth notes 
simultaneously

Figure 5.3.5d4 -  Algorithm for performing two-note chords.
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Check for rest

End second note after d  ticks

Trigger fourth note

End first note after d  ticks

Trigger third note

End third note after d ticks

Calculate duration, d

Calculate duration, d

Check for rest

Calculate duration, d

End fourth note after d  ticks

Trigger second note

Trigger first note

Check for rest

Calculate duration, d

Check for rest

Figure 5.3.5e -  Algorithm for performing one-note chords.



Finally, the application of the 1st order Markov Chain is used to calculate each note 

value.

ile r < interval

interval = interval + p(n, i)

r = random integer in range [0,100)

interval = p(n, 0), i = 0

n = index of previous note value

previous note value 
current note value

current note value = 
note value indexed by n

Figure 5.3,6 — Algorithm for determining note values using a first order Markov 

Chain with transition matrix p(x, y).

5.4 Composition Example

As with the 2-dimensional system, it is useful to illustrate the workings of the system 

by providing a worked composition example to show the effects that parametric 

changes have on the resulting musical output.
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As mentioned earlier, CAMUS 3D essentially operates from within two main 

windows. The first of these is the CAMUS 3D toolbar, shown in Figure 5.4.1 below.

DlcSlBl
El

Figure 5.4.1 -  The CAMUS 3D Toolbar.

This is the main ‘control centre' for CAMUS 3D. It allows the user to load and save 

files, stop and start the composition process, and change the composition parameters. 

All of the functions are accessed from either the menu options or by clicking on the 

buttons. Reading from left to right, the icons are described in Table 5.4.1 below.

203



Icon Effect

New Creates a new document.

Open Opens an existing document.

Save Saves an opened document using the same file name.

Step Through Updates the automata once and stops. Musical data is generated and 

performed.

Go Updates the automata continuously until cancelled by the user. 

Musical data are generated and performed.

Halt Halts the composition process and silences any music that is 

currently playing.

Clear Clears the Game of Life of all live cells.

Randomise Randomises the cells in the Game of Life.

Invert Cell Allows the user to invert the state of any cell in the Game of Life.

Line Inverts all cells in the Game of Life that lie on a line between two 

user-specified cells.

Cube Inverts all cells in the Game of Life that lie within a user-specified 

cube.

Extend Creates an extension of all Game of Life objects in a user-specified 

plane into the next adjacent plane.

Help Topics Offers the user an index to topics on which help is available.

About Displays the version number of this application.

Table 5.4.1 — Description and functionality o f the CAMUS 3D Toolbar icons.

The second main window is the 3D Game of Life window, which was illustrated in 

Figure 5.2.6. As was mentioned earlier, this may be thought of as CAMUS 3D’s
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musical score. Recall that the 3D Game of Life window displays information about 

the states of cells in the Game of Life and Demon Cyclic Space. The live cells are 

those that give rise to musical events.

In order to begin a new composition, it is first necessary to create a blank score with 

which to work. This may be done by clicking on the New icon on the toolbar or by 

selecting New from CAMUS 3D’s File Menu. Alternatively, a previously saved 

composition may be opened for further work by clicking 011 the Open icon 011 the 

toolbar or by selecting Open from CAMUS 3D’s File Menu.

Once a file has been created or opened, the user should specify the settings of the two 

control automata, which will determine how the composition unfolds.

The Game of Life rules may be edited by selecting Alter Game o f Life Rules from the 

Automaton/3D Game of Life menu. This action displays the Alter Game o f  Life Rules 

dialog box, which is illustrated in Figure 5.2.10, and whose contents are described in 

Section 5.2.4.

The default settings of the Alter Game o f Life Rules dialog box are given as 

R = (5, 7, 6, 6). That is, in the Live Cell group, Minimum neighbours fo r  life is set to 

5, Maximum neighbours for life is set to 7, and in the Dead Cell group, both Minimum 

neighbours fo r  life and Maximum neighbours for life are set to 6. This is precisely the 

rule set discussed in Section 5.1.5, which was shown to be the 3-dimensional rule set 

that most closely matched the behaviour of the more familial' 2-dimensional game. In 

addition, note that the Check all neighbouring cells is selected, so that the automaton 

behaves like a true 3-dimensional space.

The user may now choose to alter these rules, either by clicking on the required edit 

box and typing a new value, or by clicking 011 the value increment and decrement 

buttons at the right hand side of each edit box. Entries that are outside the permitted 

range of values and those that are invalid generate non-critical error messages and 

cause the system to prompt the user for a new value.

We now alter the automaton settings to the following:
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Alter Game Of Life Rules

r Live cell ru les----------------------- D ea d  cell rules

M aximum neighb ours for life: j 3 - J
ZD

- .v  - -

Maximum neighb ours for life: |3
-zJ

M inimum neighb ours for life: 12 Minimum neighbours for life: |3
• 1 _d

'

l~ N eighbouring c e l ls -------------------------------

C  C h e ck  all neighbouring cells  

» C h e ck  c e lls  in p lan e  x = co n sta n t  

* C h e c k  ce lls  in p la n e  y  »  co n sta n t 

(* iC heck_ceiis in p lan e  z  = constand

■

SMteas

iri

m

-

OK C an cel

Figure 5.4.2 -  Updated settings for the 3-dimensional Game of Life automaton.

By limiting the checking of cells to those neighbours that lie in planes parallel to the 

xv-plane, we are forcing the 3-dimensional automaton to behave like a number of 3- 

dimensional automata running in parallel. Further, changing the rule set to 

R = (2, 3, 3, 3), has the effect of forcing the 3-dimensional automaton to behave as a 

number of Conway games evolving in parallel.

The evolution rules of the Demon Cyclic Space may be edited by selecting Alter 

Demon Cyclic Space Rules from the Automaton/3D Demon Cyclic Space menu. This 

action displays the Alter Demon Cyclic Space Rules dialog box. which is illustrated in 

Figure 5.2.11, and whose contents are described in Section 5.2.4.

The default settings of the Demon Cyclic Space allow each cell to exist in one of 16 

states, each of which is represented by a coloured cell, and which is dominated by 

those neighbouring cells whose state is 1 higher.

Recall that the number of cells of the Demon Cyclic Space corresponds to the number 

of instruments that will perform the composition. Thus, if we set the parameters as in 

Figure 5.4.3 below, the resulting composition will be performed on just one 

instrument.
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Altei Demon Cyclic Space Rules

r E v o ltu io n  rules -
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Figure 5.4.3 -  Updated settings for the 3-dimensional Demon Cyclic Space

automaton.

Note now that since each cell in the automaton can exist in only one state, the other 

parameters will have no effect on the cellular evolution.

The next stage in the process is the initialisation of live cells in the Game of Life. The 

functions involved in this process are described in some detail in Section 5.2.2. A 

typical initialised configuration is:
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3D Game of Life

Figure 5.4.4a -  A typical configuration o f the 3-dimensional Game o f Life.

Game of Life X-Y View H

■ 1
1i

Figure 5.4.4b -  A typical configuration o f the 3-dimensional Game o f  Life viewed as

an xy-plane projection.
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Game of Life X-Z View

■
■■■

■
■■■

■
■■■□

Figure 5.4.4c — A typical configuration o f  the 3-dimensional Game o f  Life viewed as

an xz-plane projection.

Game of Life Y-Z View

■■■
■

■■■_
■

■■■
■_

Figure 5.4.4d — A typical configuration o f the 3-dimensional Game o f Life viewed as a

yz-plane projection.

Next, the instrumentation of the composition should be decided upon. This may be 

achieved using the MIDI Instrumentation Setup dialog box (see Figure 5.2.15), which 

is opened by selecting Instrumentation from the Control menu.

The parameters in this dialog box were described in Section 5.2.7 and are not re­

examined here.
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Since the number of states in the Demon Cyclic Space, that is the number of 

instruments that will perform the composition, was set to 1, we need only alter the 

parameter settings for Channel 1. Suppose we alter the values to those of Figure 5.4.5 

below.

MIDI Instrumentation Setup
. y.vi -.......... ......................

C hannel 1 j C hannel 2 1 C hannel 3 1 C hannel 4

_̂_________________
*  1 M ono

I .......Ill II I
Volum e: \M7 - j j  P en: [ w

\M

.

Reverb.- |1 0 0  ^  Chorus: |

. . .

frequency

t ' 120
; j; pihkni

' \»< •'

I

Figure 5.4.5 -  Updated settings for the MIDI Instrumentation Setup dialog.

The Vibraphone is the instrument that has been selected to perform the piece as it is 

generated. However, since CAMUS 3D is configured to the General MIDI system 

(see Appendix C for further details) of instrument layout, the desired effect will only 

be achieved if the MIDI data are sent to an instrument that is also configured to this 

system. Most computer soundcards fulfil this criterion, meaning that the problem 

really only arises if the host PC is connected to an external sound synthesiser.

As with the original CAMUS system, the user is still free to alter the settings for any 

of the other instruments, and indeed, patch change data will be sent for each, but this 

will have no effect on the resulting composition, since only the first MIDI channel is 

configured for playback.

The Mono button in Figure 5.4.5 is unchecked, allowing for the possibility of both 

homophonic and monophonic note data. The frequency and depth of the chord events 

are determined by the settings of certain other parameters.
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Chord Frequency is set at 75, meaning that on the average, chord events will be 

generated in three out of every four cases. Chord Depth is set at 2 and Chord 

Variance is set at 1, meaning that chords of 1, 2 or 3 notes are possible. Rest 

Frequency is set to 20, which will result in a rest between notes approximately once in 

every five cases.

Finally, the four parameters that determine MIDI effects, Volume, Pan, Reverb and 

Chorus are set to 127, 64, 100 and 60 respectively. This will result in the instrument 

on MIDI Channel 1 being played back at full volume in the centre of the sonic 

panorama with a reverberation setting of 100 and a chorus setting of 60.

The next step in the composition process is the initialisation of the parameters that 

determine the actual notes that CAMUS 3D performs. To do this, the user must open 

the Pitches dialog box, as illustrated in Figure 5.2.14. This may be achieved by 

selecting Pitches from the Control menu.

CAMUS 3D selects pitches for the chords using the probabilities stored in the form of 

a probability table. Acceptable values range from 0, signifying that the associated note 

will never occur, to 100, meaning that the note will occur with absolute certainty.

Suppose the user had set the values to the following:

Please select the probabilities foKeach of ibe’foYowirtg pitches;

A 5 0
— 3 F 5 3

Alt. 0 DC 0 - J m . 0

B:: 0 Dfc 0 -zJ 10
-M

20 - i j
E: 15 1 j

Gtt 0 2Zj

:;0K ; |  C an ce l |

Figure 5.4.6a -  Updated settings for Pitches dialog. 

Upon re-opening the Pitches dialog, the probabilities read:
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P le a s e  se le c t  the probabilities for e a c h  of th e following p itches:

A: 9 _d Ctt: 0 -J
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_d Ftt: 0

_ d

B: 0 -J Dtt: 0 -lA G: 18

3 6
_ d

E: |2 7

> ;4

.....u
-d G «:|1 _d

C ancel

Figure 5.4.6b -  Normalised settings for Pitches dialog.

The reason for this is that CAMUS 3D uses normalised probability tables in all of its 

procedures. Each of the dialogs that deal with probabilities are automatically 

normalised whenever they are changed.

The reader will notice, however, a slight anomaly. In the box labelled G# in Figure 

5.4.6a the entry is 0, whereas in Figure 5.4.6b the entry is 1. This is a side-effect of 

the normalisation procedure used and the quantisation errors accrued during the 

normalisation process. In practice, it makes very little difference to the musical output 

and may be easily overcome with a little careful planning during the data entry stage.

A similar process is involved when altering the probability data stored within the Note 

Orderings dialog box, illustrated in Figure 5.2.2. The dialog box may be opened by 

selecting Note Orderings from the Control menu.

Recall that the temporal structure of each of the chords is represented by a 4 x 4 grid. 

The bottom row of boxes represents the lowest pitch of the chord, the second bottom 

row represents the second lowest note, the second top row represents the second 

highest pitch and the top row represents the highest pitch. The order of the shaded 

cells from left-to-right determines the order in which each of the notes is played.

Typically the values in this dialog box might resemble following:

Pitches
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Figure 5.4.7 -  Typical settings for the Note Orderings dialog.

The final stage in the composition setup process is the initialisation of the probability 

values that determine the rhythm of the composition. This is done via the Note 

Lengths dialog box (see Figure 5.2.12), which is opened by selecting Note Lengths 

from the Control menu.

The Note Lengths dialog box stores the probability data as a first-order Markov 

Chain, and offers two methods of viewing the probability values. The Standard 

window displays the data as a number of coloured boxes that smoothly change in 

colour from pure red (probability value 0) to pure green (probability value 100). The 

colour of the boxes can be changed by clicking on the arrow controls on the right- 

hand side of each box.

This window is probably best used to view the probability data to quickly see which 

note lengths are likely to arise. To actually set the probability values, the Advanced 

window allows direct access to the numerical values.



The user can switch between these windows by clicking on the tabs at the top of the

screen.

Typically, the probability values would be set to something resembling the following:

Note Lengths

S tandard [A d v a n c e d  ||

..........

0
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Figure 5.4.8a -  Typical response for the Advanced Note Lengths dialog.

with the corresponding Standard view resembling:
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.

' «:‘vj

Note Lengths
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Figure 5.4.8b -  Typical response for the Standard Note Lengths dialog. 

The above settings correspond to the following labelled directed graph.
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Figure 5.4.9 -  Labelled directed graph corresponding to the probability settings o f

Figure 5.4.8.

At this point, it is beneficial for the user to save the CAMUS 3D project, so that it can 

be re-loaded at a later date. This is done by selecting Save As from the File menu, or 

by clicking the Save button on the CAMUS 3D toolbar. This action saves all of the 

composition-specific parameters and the states of the control automata. When this file 

is re-loaded and played back at a later date, the music that is generated is likely to 

differ slightly each time due to the random functions which are a part of the CAMUS 

3D compositional process. If the user wishes to preserve a specific performace, the 

Export MIDI File option should be selected from the File menu. It is important to 

note, however, that exporting a MIDI file at this stage in the composition process will 

be of little use, since no musical data have yet been generated. Exporting a MIDI file 

will only have an effect once the musical generation process is underway.

A useful feature that is offered by CAMUS 3D is the Preview option, which may be 

selected from the Compose menu. This function simply runs through the evolution of 

the automata without generating any musical data, thus allowing the user to evaluate 

the automata rule configuration before generating the final composition. If at this 

stage the user decides that the automata rules do not produce the cellular evolution 

desired then he or she is free to revert to the saved project and alter the rules.

The music generation may now be started by selecting Go from the Compose menu, 

or by clicking the Go button on the CAMUS 3D toolbar. The music will become
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audible after a few seconds. The generation of music continues until the user halts the 

composition process.

As an alternative method of music generation, the user may select Step Through from 

the Compose menu. This will step through one timestep of the composition process 

and stop. It is of most use to the composer who wishes to alter either the composition 

parameters or the position of live cells in the Game of Life as the composition 

progresses.

The Step Through function has the additional benefit of allowing the music to keep 

pace with the evolution of the automata. CAMUS 3D generates music faster than real 

time. In particular, if  the Game of Life is particularly densely populated, several 

hours’ worth of music may be generated at each timestep. When using the Step 

Through function, the user can wait -  although possibly for quite some time -  until 

the music has stopped before updating the system. However, when obeying the Go 

command, the system will continue to generate music regardless of the current state of 

the music, meaning that after a few seconds of generation, the system buffer may 

contain more music than it would be physically possible to evaluate.

The above settings result in the following:
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Figure 5.4.10 -  Music generated using the CAMUS 3D algorithm.

The score of Figure 5.4.10 was created in Steinberg's Cubase VST/24 directly from 

the MIDI-file output of CAMUS 3D using the settings described above. Dynamic 

instructions were added manually.

5.5 Comparisons between the 2 and 3-dimensional systems

We conclude this chapter by briefly highlighting the differences and similarities 

between the original CAMUS and the 3-dimensional system.
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5.5,1 Peas in a pod?

At first glance there are several similarities between CAMUS and CAMUS 3D. For 

example, both are algorithmic composition systems that utilise cellular automata as 

the main driving force behind the composition process.

This impression is further enhanced by the ability of CAMUS 3D to behave in an 

almost identical manner to the original system by limiting the evolution of the 3- 

dimensional automata to two dimensions.

However, 011 further inspection, we see that there are sufficiently many significant 

differences between the two to consider CAMUS 3D as a new algorithm, albeit one 

which is clearly derived from the original.

Indeed, a number of differences between the two algorithms -  such as moving from 2 

to 3-dimensional control -  are clearly developments of the earlier system, whilst 

others are improvements in the human-computer interface and thus are excluded from 

consideration. Also, as can be seen from Figures 3.1.6 and 5.3.1, both systems use the 

same underlying algorithms to generate music.

We highlight the main differences in the following sections and summarise in the 

Comparison Table, 5.5.1

5.5.2 Key differences between the systems

There are three major differences between the two composition systems, all of which 

are concerned with note detail, and all of which were implemented after practical 

experience with the original system.
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After a number of users had experimented with the original system, almost all 

commented on how cumbersome and incomprehensible the system of loops and 

articulations, used to calculate the main note detail, were in use.

Clearly, the removal of this system necessitates the introduction of alternative control 

measures, and it is here that the main differences lie.

The first of these is the introduction of the stochastic note generation routine 

described in Section 5.2.1. This was introduced primarily because user reports 

suggested that the original system of setting each subsequent root note for the 

composition was extremely laborious and time-consuming. The new method of using 

probabilities to determine root notes is far quicker and easier, and allows for the 

creation of long-term musical trends without the need to specify individual notes. It 

also overcomes the original system’s limit to the number of root notes which could be 

defined. Previously this was limited to 264 notes since each of the 22 articulations on 

offer contained a single 12-note sequence.

Secondly, there is the stochastic selection routine to determine chord shape. Again, 

this was introduced because practical experience suggested that users wanted more 

control over chord shape than was offered by the AND codes described in Section 

3.1.6. In addition, it was discovered that the commonly-used Conway objects gave 

rise to the same AND codewords time and time again, which can lead to listener 

boredom. The stochastic selection routine allows the user to include or reject chord 

structures as well as expressing a weighted preference for certain shapes.

Finally, and perhaps most importantly, is the Markov routine for pitch calculation. 

This was introduced because the previous method of rhythm generation was based on 

a random number generator, which gave rise to rhythmic structures that were irregular 

and difficult to appreciate. Whilst initialising the Markov chain with a uniform 

probability distribution does allow for irregular rhythms, there is at least some 

structure imposed because of the note duration quantisation that is applied. In 

addition, as was mentioned in Section 5.2.6, it is possible to harness the properties of 

Markov chains to produce structured rhythms in which the ear can detect regularity.
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There are also a number of smaller algorithmic differences in CAMUS 3D. For 

example, fewer control parameters are ‘hard-wired’ into the system, which means that 

the user has more control over the musical output.
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Comparison Table

CAMUS CAMUS 3D

Driving mechanism 2D cellular automaton 3D cellular automaton

M apping type 2D von-Neumann 3D von-Neumann

Decision probabilities Fixed User-selectable

Max. chord depth 3-note 4-note, with control over chord 

depth

Rests Random Automated, user-controlled

Rhythm generation Random 1 st-order Markov

Pitch generation Manual note lists Automated probability tables

Chord shape AND codewords Automated probability tables

Musical parts Default polyphonic Selectable monophonic / 

homophonicj0

Tim brality Mono Mono

O utput Standard MIDI Files Standard MIDI files

Controllable MIDI 

param eters

MIDI instrumentation MIDI instrumentation; channel 

level; spatial positioning; MIDI 

chorus and reverberation levels

Table 5.5.1 -  Table offering comparisons between the CAMUS and CAMUS 3D

algorithms.

j0 In monophonic mode, music is generated to play one note at a time. In homophonic mode, music is 
generated to play block chords.
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5.5.3 Differences in interface

From the beginning CAMUS 3D was designed with the end user in mind, and great 

care has been taken to ensure that the system is as intuitive as possible. For example, 

in the original system, many of the devices, such as the rhythm generator, bore little 

resemblance to the musical properties they controlled. In CAMUS 3D this has been 

overcome to a great extend by using, for example, traditional score notation in the 

graphical interface. The graphics for chord shape also bear a close resemblance to the 

chord charts used by guitarists.

The extension from 2 to 3-dimensional control systems also required considerable 

changes in interface. These are discussed fully elsewhere and are not expanded upon 

here.

5.5.4 Differences in working techniques

In Section 3.3 we examined the ‘reverse engineering’ method of composition and 

showed how it could be used to improve the yield of the original system.

Unfortunately, such a working technique is not currently practical with the 3- 

dimensional system. The main problem is that it is much more difficult to trace the 

evolution of cells using the isometric view of the 3-dimensional Game of Life. It is 

occasionally possible to create a list of cells using a combination of the isometric view 

and the three available embeddings, but such cases only occur for fairly simple cell 

configurations.

This could be overcome by introducing a separate display window to trace cells as 

they are played, however, as we shall see in the next chapter the current development 

of CAMUS 3D takes us towards parallel cell checking. Thus, cell order becomes less 

important, since we consider each timestep as a musical event, rather than each 

individual cell.
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S. Work in progress

6.0 Introduction

In this, our penultimate chapter, we present features and developments of CAMUS 

3D, which for reasons of time have not yet been integrated fully with the system.

As has been noted in previous chapters, there is a gradual progression of the system 

towards parallel cell checking. We begin this chapter by introducing the principal 

development of the system -  an automaton that allows the system to make informed 

choices between groups of triads depending on the user’s own harmonic preference.

We then discuss how this can be put to use as part of a parallel cell-checking routine 

and conclude by speculating on how further developments might be integrated into 

the system.

6.1 An automatic chord classifier

We now present the design of an automaton which takes as input two chords and 

returns an as output an index that corresponds to the dissonance of the resulting 

sound.

6.1.1 The dissonance function

Before we begin to design the automaton, which for our purposes may be regarded as 

a black box function approximator, we must first form a clear notion of the function 

we wish to calculate. Since the ultimate aim of the automaton is to return an index of 

dissonance between two or more chords played together, we call this the dissonance 

function.

The simplest case occurs when we consider chords of 1 note depth, that is, single 

notes. When two such chords are played together we obtain a single 2-note chord, or 

simple interval.

The dissonance of such an interval will depend principally on two things.
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Firstly, and perhaps most importantly, the type of interval formed affects the 

dissonance of the interval. It is a simple matter to consult a text on music theory in 

order to obtain a discussion on the relative consonance and dissonance of the musical 

intervals (see, for example, [Lloyd & Boyle, 1963]). However, such discussions are 

generally based on the harmonic series, and do not take into account individual tastes 

or preferences.

For example, it is quite possible that a musician will have a quite different harmonic 

preference to a non-musician. Similarly, a lover of freeform jazz is likely to have a 

different harmonic preference to a proponent of classical music. We discuss our 

approach to this problem in Section 6.1.2.

Secondly, the amount by which the interval is ‘stretched’ affects the resulting sound. 

Intervals that are stretched over a number of octaves generally sound thinner and less 

pleasant than those whose component notes lie within the same octave. To illustrate, 

consider, for example, the shrill sound formed by a low bass voice and a high soprano 

and compare it with the much warmer sound of an alto and a tenor singing in close 

harmony.

The aim of the dissonance function is to take into account these two factors and return 

an index of dissonance, d, which reflects how pleasant or unpleasant the two single­

note chords sound when played simultaneously.

The index of dissonance is given as a non-negative real number, with lower values of 

d representing consonant sounds and higher values representing dissonant sounds. In 

effect, it may be thought of as a measure of the harmonic distance between two single 

pitches.

The general form of the dissonance function is then:

d(c\, C2) = M1o(jc2 — c,| (m odl2))+M 2

where c\, C2 are single-note chords; M\ and M2 are real constants; O is the order-of- 

preference function and [] denotes the ‘integer part o f . The order-of-preference
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function corresponds to the user’s own harmonic preference and is specified 

separately.

The index of dissonance may be thought of as a measure of harmonic distance 

inasmuch as it provides us with a number that corresponds to the amount by which 

two single notes are separated harmonically. It is important to realise, however, that 

the dissonance function is not a metric. A metric is any function, in, which satisfies 

the following three conditions:

i.) m(x, y) > 0 V x, y

ii.) m(x, y) = m(y, x) V x, y

iii.) m(x, z) < m(x, y) + m(y, z) V x, y, z

Clearly, the dissonance function satisfies the first two conditions. However, as will 

become apparent later, it is possible to specify the order-of-preference function in 

such a way that the third condition, usually referred to as the triangle inequality, does 

not hold.

For example, consider the tritone interval. It is generally accepted that for many this is 

a particularly pleasing interval, whilst for others it is extremely unpleasant. Now the 

tritone is composed of six semitones -  two full minor third intervals, which are 

generally considered to lie in the consonant end of the interval spectrum. It is 

therefore possible that a human listener who finds the minor third particularly

pleasing and the tritone particularly displeasing will return an order-of-preference in

which the tritone has an index of dissonance of more than twice that of the minor 

third. Indeed, the second row of Table 6.1.2 displays just such an order-of-preference.

The dissonance function may be split into three distinct parts.

The first of these, |c2 -  c,| (mod 12) essentially determines the interval type formed

between the single-note chords c\ and cy. The intervals are classified according to the 

difference between the two note numbers, working modulo 12. This is a formalisation 

of the processes at work when a musician calculates the interval between two notes 

and may be explained further as follows:



We may define a relation, p, on the set of pairs of note numbers as follows:

( c i ,  c{) p  (C3 , C4 ) <=> |c2 - C j  | (mod 12) = | c 4 -  c , |  (mod 12),

It is a simple matter to conclude that p  is an equivalence, and so partitions the 2- 

dimensional chord space. It is also easy to see that the equivalence classes here are of 

the form:

Ca = { ( c l ,  ci) e C : \c2 -c ,|(m odl2 ) = a}.

Thus, we associate as equivalent those pairs of single-note chords which, when 

combined form intervals of equal semitone width modulo twelve. In other words, we 

place pairs of single notes into twelve chord classes depending 011 their interval size. 

This is illustrated in Table 6.1.1 below.
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Interval width in semitones Interval class

0, 12, 24, ... Unison

1, 13,25, ... Minor second

2, 14, 26, ... Major second

3, 15,27, ... Minor third

4, 16, 28, ... Major third

5, 17, 29, ... Perfect fourth

6, 18,30, ... Tritone

7, 19,31, ... Perfect fifth

8,20,32, ... Minor sixth

9 ,21,33, ... Major sixth

10, 22,34, ... Minor seventh

11,23,35, ... Major seventh

Table 6.1.1 -  The twelve basic interval classes.

This information may be represented graphically:
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*— CO ■ C1 a -  -C2 ■ C3 ■ C4  C5
■*— C 6  C7  C8 C9 C10 a  C11

1 0  |F-

0 1 2 3 6 9 10 114 5 7 8

Figure 6.1.1 -  Part o f  the twelve equivalence classes formed by the relation p  as

defined above.

The second part of the dissonance function is the application of the order-of- 

preference function, which is discussed more fully in Section 6.1.2.

Finally, the term 

interval is stretched.

r  2 c ‘ i 

12
equals the total number of octaves over which the
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Thus, in order to determine fully the dissonance function with which we will work, 

we must specify three things -  the two real constants, M\ and Mi, and the order-of- 

preference function, O,

We are free to select any real constants, M\ and Mi, which return satisfactory results 

for a human listener. In particular, if we assign the value M\ ~ 1, then Mj should be 

set to the reciprocal of the number of octaves over which an interval may be stretched 

before its harmonic character changes. This may be determined experimentally. The 

final term in the dissonance function then reflects a scaling factor that will only alter 

the input chord’s overall position in the order of preference if it is stretched more than 

the critical value of 1 /M2 octaves.

6.1.2 The order-of-preference function

As was mentioned in the previous section, it is a simple matter to consult a text on 

music theory in order to obtain a discussion on the relative consonance and 

dissonance of the musical intervals. However, these arguments are more often than 

not based on considerations of the harmonic series and do not take into account 

individual preference.

Therefore, in keeping with the practical nature of this research, it was decided that a 

statistical survey would be undertaken in order to determine an ‘average’ harmonic 

preference, taking into account the tastes of both trained musicians and non­

musicians.

The object of this experiment was to try and establish the distribution that underlies 

harmonic preference. In order to achieve this the twelve simple intervals were played 

on piano, and recorded onto CD. The CD was then distributed along with a response 

form (see Figures 6.1.2a and 6.1.2b) to the sample audience, who auditioned the CD 

in private and completed and returned the response forms.

The sample audience was required to assign to each interval an integral value between 

0 and 11 depending on how pleasant (or unpleasant) they thought they sounded. On 

this scale 0 represents the most consonant (pleasant) chords, whilst 11 represents the 

most dissonant. If it was felt that two or more chords were equally consonant, the
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same integer could be assigned to each. This ranking corresponds to the order-of- 

preference function, O.

Thus, we conclude that the order of preference function is any many-to-one function 

of the form,

O'. Z 12 —> Z,2.

Note, however, that the function may not be one-to-many, since each chord must have 

a unique rank.

We may also, if necessary, extend the above definition slightly to allow functions of 

the form:

O: Z 12 -» [0, 12), 

thus allowing for non-integral rankings.

However, for the purposes of this experiment, and in order to keep the values as 

simple as possible we will round the mean rankings for each chord to the nearest 

integer.
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Sound Experiment No. 1 
Harmonic P reference  

Object

The object of this experiment is to try and establish the distribution that underlies harmonic preference. 

Equipm ent

In order to participate in this experiment, you will need a copy of the Harmonic Preference CD, a CD player 
and this response form

Procedure

Retire to a quiet environment where you will not be disturbed. Place the CD in a CD player and listen to 
tracks 1 to 12. You will hear a number of two-note chords played consecutively. Each chord is played twice, 
with the individual notes sounding between playings to help gauge the overall width of the interval.

Once you have listened to the chords, assign to each an integer between 0 and 11 depending on how pleasant 
(or unpleasant) you thought they sounded. On this scale 0 represents the most consonant (pleasant) chords, 
whilst 11 represents the most dissonant. If  you feel that two or more chords are equally consonant, then you 
may assign the same integer to each.

Try to evaluate each chord on its own merit. Do not try to imagine it in a musical context -  all we are 
interested in is the pleasantness of the sound that two notes make when combined.

For example, suppose we have 5 chords, numbered 1, 2, 3, 4 and 5, which are to be labelled on a scale 
running from 0 (most consonant) to 4 (most dissonant). A typical response might look something like:

Chord Number Rank

1 0

2 3

3 3

4 1

5 4

This would mean that the order o f preference is 1, followed by 4, then 2 and 3, and finally 5. Note that we 
have omitted position 2. This signifies that whilst chords 2 and 3 are equally pleasant, they are harmonically 
closer to chord 5 than to chord 4 in the overall order of preference.

When ordering the chords, you may find that it helps to switch between them out of order to correctly judge 
their position in the order o f preference. You can do this by using the track navigation controls on your CD 
player.

Once you have determined your order of preference, complete the response form on page 2 and return it to 
me with the CD.

Remember: There are no right or wrong answers to this experiment. Music appreciation is subjective and 
what some people find pleasant, others find excruciating. For this reason, I would appreciate it if you did not 
ask for the opinions of anyone else, whether or not they are taking part in this experiment — the opinions of a 
third party may skew the data.

Thank you for your time.

Figure 6.1.2a — First page o f  the harmonic preference response form.
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C hord N um ber (Track) R ank (0 -1 1 )

1

2

o

4

5

6

7

8

9

10

11

12

Figure 6.1.2b — Second page o f the harmonic preference response form.
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Intuitively one would expect the traditionally consonant intervals, such as the octave 

and the major third to be assigned the lowest rank, and the traditionally dissonant 

intervals such as the minor second and major seventh to be assigned the highest rank. 

The overall trend of the statistical survey does seem to back up this intuitive feeling.

The results are illustrated in Tables 6.1.2 and 6.1.3 below:
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Table 6 .1 .2 - Rank for each o f the twelve simple intervals.
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Figures 6.1.3 and 6.1.4 below display the data graphically:

Harmonic Preference

□ Mean ■ St. Dev.

Rank

Chord Type

Figure 6.1.3 -  Rank for each o f the twelve simple intervals.
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H arm onic P r e fe r e n c e  H istogram s

q  Octave m M7 □  m7 q M6 gm 6 q P5 ^TT ^ p 4  ^  M3 gm3 qM 2 ^ ^ 2

6 No. of Votes

Rank

Chord Type
O

Figure 6.1.4 -  Number o f  votes cast in each category for the twelve simple chords.

It can be seen from both the histogram and the graph of mean values that the 

underlying trend does seem to favour the traditionally consonant intervals over the
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dissonant intervals, whilst votes for the intermediate intervals, such as the tritone and 

the minor seventh, are spread fairly evenly across the range of values.

It is interesting to note that while the octave interval received more 0 rankings than 

any other interval, as might be expected, it also received four votes for a ranking of 6 

and a single vote for each of the four highest rankings. It is the author’s belief that 

these listeners considered the harmony of the octave interval too ‘pure’. As music has 

developed over time, harmonies have become more and more adventurous -  in 

today’s popular music, grating harmonies and noise are commonplace. An ear that has 

been cultured to such music may find itself unexcited by the natural harmony offered 

by the octave interval.

Note also that the standard deviation for each chord shape is, at present, fairly high. 

This is most likely due to the small statistical sample who agreed to participate in the 

experiment, and would in all probability be reduced with a larger sample set.

Using these data, we construct the following order-of-preference function to use as a 

typical response in the dissonance function:
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Interval w idth in semitones R ank

0 4

1 8

2 6

3 4

4 6

5 4

6 6

7 5

8 4

9 5

10 6

11 8

Table 6 .1 .4 - A typical order-of-preference function.

6.1.3 The dissonance network

In producing a workable computing implementation of the dissonance function 

defined in Sections 6.1.1 and 6.1.2 above, we must consider several possible 

solutions. In deciding with which to proceed we must consider which of the available 

solutions will

® consistently produce reliable results
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° be the simplest to implement in computer code

q provide the user with the most transparent integrated interface 

It is the author’s belief that the pattern classification network described below is the
Ibest solution, since this not only produces provably correct results, but is also simple 

to code and provides the end user with an easy-to-use graphical interface.

We will call the completed automaton the dissonance network.

6.1.4 Constructing the network

We break down the construction of the dissonance network into three parts, 

corresponding to the three sections of the dissonance function, d.

The first stage in the construction is the classification of the input pair, c\, c2 into one 

of the twelve interval classes, Co, C j,... , Cn.

As we saw in Section 6.1.1, this may be reduced to a problem of simple geometry -  

the interval class C,■ consists of all note pairs, (ci, ci) such that working modulo 12, 

(c i, ci) lies on the line y  = jc + /.

Classification is achieved by means of the following network:

31 T hat is, the  netw ork  can be show n to return precisely  the  values predicted by the d issonance function, 
d.
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Figure 6.1.5 -  The chord classi fication stage o f  the dissonance network.

Here, the input pair is fed to the two input nodes on the left, with c\ being fed to the 

upper input node and ci being fed to the lower input node. The output nodes are 

labelled 0, 1,2, 11 from top to bottom.

We desire node i to be active, that is return the value 1, if and only if the input pair 

belongs to equivalence class C A l l  other nodes should be inactive, returning the 

value 0.

Then

The next part of the dissonance function is concerned with ordering the interval 

classes according to their rank. This is achieved by referring to the pre-determined 

order of preference function, O.

In order to apply such a function using the dissonance network, we simply scale the 

output of node i by a factor of O(i).

1, if | c2 - c,|(modl2) = i 
0, otherwise

state of node i



The final part of the function adds a stretching coefficient that corresponds to the 

number of octaves over which an interval can be stretched before its character 

changes and alters its position in the order of preference. This may be achieved by 

summing the scaled outputs from the first layer and applying a bias term, which is the 

weighted width of the interval in octaves.

The complete network then looks like:

0 (0)

c\ Output
c 2

Bias = +M2

0 (11)

Figure 6.1.6 -  Dissonance network for two single-note chords.

The dissonance network now offers an automated computational device for 

calculating the dissonance index of any two-note interval. Further, since it was 

constructed from the function using exact geometric arguments, the network is 

guaranteed to return the correct response.

The dissonance network is actually a simple neural network. It may seem a little 

grandiose to term it thus, given that no learning process -  surely the major feature of 

neural networks -  takes place, but this is because the general form of the dissonance 

function could be specified in this, the simplest of cases. We saw in Section 6.1.1 that 

the problem can essentially be reduced to that of simple pattern classification, which 

is easily solved with the network described above.
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However, it is our ultimate aim to provide a system that will allow for chords of up to 

8-note depth as are currently generated in CAMUS 3D. Given the variable chord 

depth within the system and the large number of component intervals that form such 

chords, it is extremely unlikely that we will be able to express the extended 

dissonance function in such a succinct manner. It is here that the neural approach will 

show its merit, since we may use an order-of-preference response, combined with 

certain adaptations described in Section 6.1.5 below, to provide the network with a 

training set from which it will create an approximation to the dissonance function.

The 2-note dissonance network has been coded and tested and is presented in the data 

section of the CD-ROM that accompanies this thesis.

Figures 6.1,7 and 6.1.8 illustrate the interface.
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Dissonance Network

Figure 6.1.7 -  Main operating window o f the Dissonance Network.
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Network Parameters

r  Order of P referen ce*

Unison: 4 d
Sem itone: 8 d
T one: e £
Minor 3rd: 4 d
Major 3rd: 6 d
P erfect 4th: 4 d

T ritone: 

P erfect 5th: 

Minor 6th: 

Major 6th: 

Minor 7th:

Major 7th: 18

Interval's tonal quality c h a n g e d  after |4  - H  o c ta v e s

Figure 6.1.8 -  Network parameter settings dialog box.

6.1.5 Validity of the index of dissonance

It is important to realise that the index of dissonance is based partly on experimental 

evidence and partly on hypothesis.

The two hypotheses that were made when the general form of the dissonance function 

was proposed in Section 6 .1.1 are as follows:

i.) That a human listener will favour certain interval types over others and that the 

harmonic preference is independent of the actual pitches involved.

ii.) That the number of octaves by which a chord is stretched will influence the 

listener's preference. Eventually there will be a point at which this stretching 

will affect the preference to such an extent that the listener will favour other 

chords that are ranked lower in the order of preference, but which do not 

encompass such a large interval. This point is assumed to be constant for all 

interval types and is independent of the actual pitches involved.

Let us examine these two statements.

In constructing the dissonance function, d we have assumed that a human listener will 

favour certain interval types over others. This is a reasonable assumption to make,
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since it is generally accepted that certain intervals are more pleasing to the ear than 

others.

However, we have also assumed that the harmonic preference is independent of the 

actual pitches involved. In other words we assume that the major third, say, sounds 

equally pleasant throughout the human hearing range. This is unlikely to be the case, 

although it is almost certainly sufficiently close to the truth to be used as a first 

approximation.

There is a considerable body of psycho-acoustic research which shows that the human 

hearing system is more attuned to sounds in the mid-range of frequencies, roughly 

equal to the human speech frequencies (see, for example [Jenkins & Sano, 1989]). 

Indeed, one does not need to venture too far from the mid-range to experience this 

change of harmonic character -  by playing close harmonies at the extremes of the 

piano keyboard one can hear the ‘muddyness’ or shrillness of chords played in the 

extreme bass or treble. This suggests that the dissonance function could be improved 

upon by the introduction of a factor which accounts for the distance of the chord from 

the mid-range of frequencies. This factor, is likely to vary from person to person, and 

thus would have to be determined independently for each user. One solution may be 

to introduce a neural network that learns this parameter by subjecting each user to a 

training set and examining his or her responses. Similar systems are currently in use in 

commercially available speech recognition software, such as FreeSpeech 98 by 

Philips ([Philips, 1999]).

In addition, in making the above assumption, we presume that similar intervals sound 

equally pleasant in different keys. Logically this is reasonable, particularly when we 

consider that the frequency ratios involved are identical in an equal-tempered pitch 

system. However, some human listeners insist that they can detect subtle changes in 

character between key signatures. However, research suggests that there is no 

psychoacoustical basis for these claims ([Corso, 1957]), although it is possible that 

certain physical circumstances (such as the effect of the fixed frequency resonances in 

piano soundboard) can create such changes.

Whether or not these are sufficient to necessitate the introduction of a correction 

parameter requires further study.
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Secondly, we have assumed that the amount by which a chord is stretched will 

influence the listener’s preference. Once more, this is a reasonable assumption and is 

illustrated well in Section 6.1.1.

However, we have also assumed that the stretching factor, M?, is constant for all 

interval types and is independent of the actual pitches involved. Again, this is unlikely 

to be valid. For example, there is evidence that certain pitches actually become more 

consonant as they are stretched — one need look, for example, only as far as the music 

of George Gershwin for evidence of this ([Schwartz, 1973]).

Similarly, to assume that the stretching factor is independent of position in the 

frequency spectrum is to understate the case. For example, an interval stretched over 

several octaves whose lower note is in the bass range will generally sound richer than 

a similar* interval whose lower note is in the mid to treble range. Clearly, these issues 

must be addressed if the present approximation to dissonance is to be improved upon.

6.1.6 Extending the dissonance network

The dissonance network as described above represents the simplest case. Clearly, in 

order to be integrated fully into the CAMUS 3D system, the network must be 

extended in order to cater for the increase in the number of notes produced by the 

CAMUS 3D mapping.

Recall that each live cell in the 3-dimensional Game of Life gives rise to a 4-note 

chord event. Introducing parallel cell checking will thus require the network to be able 

to cope with a minimum of eight notes, this being the total number of (not necessarily 

distinct) notes formed when two 4-note chords are combined.

At present, we can only speculate on what form such a network will take. Time 

constraints preclude us from carrying out the work required to produce detailed 

analysis of the network.

We now present one possible extension of the network. It is hoped that more detailed 

study of the network will be undertaken after the current research tenure is completed.
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Suppose we wish to extend the capabilities of the dissonance network from the current 

limitations of two single-note chords up to two 2-note chords. The first thing to notice 

is that the resulting combined chord will be of 4-note depth.

Let us consider, for a moment, some common chord types available to the composer. 

These are

i.) major triad with octave

ii.) minor triad with octave

iii.) dominant seventh

iv.) diminished seventh

In each of these four chords, there are precisely
v2y

= 6 component intervals.

For example, consider the major triad with octave given by (CEGC'). The component 

intervals are
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Interval formedNotes of chord Index of Dissonance

major thirdCE

perfect fifthCG

CC' octave

EG minor third

minor sixth

perfect fourthGC'

Table 6.1.5 -  Component intervals o f the major triad with octave.

Similarly, the component intervals for the other four chords can be worked out and 

tabulated as in Table 6.1.6 below:

Chord Component intervals

I M3, p5, 8ve, m3, m6, p4

ii m3, p5, 8ve, M3, M6, p4

iii M3, p5, 8ve, m3, TT, m3

iv m3, TT, M6, m3, TT, m3

Table 6 .1 .6 - Component intervals o f the four chord types listed above.
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In the author's opinion-52, the chords listed above are amongst the most consonant. It is 

easy to see that 011 the whole, they are composed of intervals that lie towards the 

consonant end of the harmonic spectrum -  the one exception being the tritone 

interval, which is indeterminate and can sound both consonant and dissonant 

depending on the context.

Similarly, if we consider a chord which, to the author’s ears at any rate, is dissonant, 

such as that formed by the notes (CC#AB), we find that the component intervals -  

m2, M6, M7, m6, m7, M2 -  mainly lie in the dissonant range.

We thus form the hypothesis that those chords that are formed from intervals that are 

consonant will, 011 the whole, sound more harmonious than those formed from mainly 

dissonant intervals. Chords that are formed from intervals which are indeterminate or 

which have a roughly equal mix of consonant and dissonant intervals will tend lie 

between the two extremes of consonance and dissonance and their character will 

depend on the musical context.

It may possible, therefore, to get a measure of the dissonance of a 4-note chord by 

summing the indices of dissonance of the component intervals, thus obtaining a 

combined index for the chord. As before, lower values for the combined index 

(representing chords composed of mainly consonant intervals) represent those chords 

which are considered consonant, and higher values (representing chords composed of 

mainly dissonant intervals) represent those chords which are considered dissonant.

Note, however, that as before, the results depend wholly on the user’s particular 

harmonic preference. A small value of the index of dissonance does not, necessarily 

indicate that the chord will sound harmonious to all listeners, rather that it is 

composed of many of a particular listener’s favourite intervals, and so closely matches 

his or her own aesthetic preferences.

32 These results must remain speculative until such times as statistical data can be accumulated to verify 
the claims.
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The above argument can be extended to the situation of CAMUS 3D, which combines 

two 4-note chords to give a single 8-note chord. An automated network for calculating 

the combined index of dissonance may be constructed by running several networks of 

the type described in Section 6.1.4 in parallel. We illustrate in Figure 6.1.9 below.
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Cl

Cl

combined index of 
dissonance

Figure 6.1.9 -  Automated network for calculating the combined index o f dissonance 

given two 4-note chords, cj and c?. The two chords, cj and ci, are fe d  to the input 

nodes on the left-hand side o f the network. The note numbers for each o f the 

component notes o f the chords are sent in pairs to one o f the 28 processing units in 

the first hidden layer. Each o f these nodes represents a complete dissonance network 

o f the type described in Section 6.1.4, the output from which is the index o f  

dissonance for the input pair. These values are then combined at a summing junction 

to give the combined index o f dissonance for the 8-note chord formed fi'om ci and c?.

6.1.7 Integrating the dissonance network with CAMUS 3D

As has been mentioned earlier, the trend in the development of the CAMUS 3D 

system is towards parallel cell checking and performance so that more than one chord 

can be played at a time. We illustrate the workings of the dissonance network by 

presenting two examples of how the system might be utilised to aid in the production 

of music that performs two chords simultaneously.

Firstly, we suppose that the system scans through the cells row-by-row and column- 

by-column as in the standard CAMUS 3D algorithm until a live cell, cabC, which lies 

at cell position (a, b, c) is reached.
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Now a second scan is performed. The system scans through the 3-dimensional Game 

of Life space, excluding the current cell. In so doing, the system forms a table of data, 

which are the indices of dissonance for each of the cell pairs, (c a b c, C ijk ) , as /, j  and k 

run from 0 to 11, with i *  a ,j  * c, k *  b.

Once the second scan is complete, it is a simple matter to examine the table and 

choose the cell pair that forms the best harmonic mix according to the user’s own 

harmonic preference.

This process is illustrated in Figure 6.1.10.

y _________y

9ZI1
Chord Pair Combined Index

((1,0,0), (1,1,0)) Ii

((1,0,0), (0,2,0)) h

((1,0,0), (2,1,2)) h

Figure 6.1.10 - A n  example usage o f the dissonance network. The algorithm scans 

through the automaton until a live cell is reached. Here, the first cell would be the one 

at position (1, 0, 0). Now a second scan, omitting the current cell, is performed. Live 

cells are also discovered at (1, 1, 0), (0, 2, 0) and (2, 1, 2). The index o f  dissonance 

fo r  each o f  the three chord pairs formed from (1, 0, 0) and one o f  the other three live 

cells is calculated and tabulated. The chord pair that results in the lowest index o f  

dissonance (i.e. that which provides the closest match to the composer’s aesthetic) is 

selected by the algorithm for performance.

In this case, the best harmonic mix is that which most closely matches the user’s harmonic 
preference, that is, the cell pair that has the smallest index o f dissonance.
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Alternatively, we can envisage a system that examines only cells in the immediate 

neighbourhoods of the cell in question.

Suppose, as before, that the system scans through the cells row-by-row and column- 

by-column as in the standard CAMUS 3D algorithm until a live cell, cabc, which lies 

at cell position (a, b, c) is reached.

This time, however, the system only examines the 26 cells that neighbour cabc• Again, 

the system tabulates the indices of dissonance for each of the cell pairs.

Finally, the table is examined and the best cell pair chosen to contribute to the 

composition.

This process is illustrated in Figure 6.1.11.

y
i i

91+
Chord Pair Combined Index

((1,1,0), (0,2,0)) Ii

((1,1,0), (2,1,1)) h

Figure 6.1.11 -  An alternative example usage o f the dissonance network. The 

algorithm scans through the automaton until a live cell is reached. Here, the first cell 

would be the one at position (I, 1, 0). Now the algorithm examines the 26 cells in the 

immediate neighbourhood. Live cells are also discovered at (0, 2, 0) and (2, 1, 1).

Note however, that although the cell at position (2, 3, 2) is live, it does not lie in the 

immediate neighbourhood o f  (1, 1, 0) and so is not considered. The index o f  

dissonance fo r  each o f the two chord pairs formed from (1, 1, 0) and one o f  the other 

two live cells in the neighbourhood is calculated and tabulated. Again, the chord pair 

that results in the lowest index o f  dissonance (i.e. that which provides the closest 

match to the composer's aesthetic) is selected by the algorithm fo r performance.
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This system of chord selection mimics certain traditional composition practices. At 

each stage, there may be several choices of cell pairs (i.e. 2{n + l)-note chords, where 

n is the dimensionality of the system). The system considers each of the possibilities 

in turn and finally decides 011 the one that most closely fits the user’s aesthetic criteria. 

There are clear parallels here with the process of harmonising a bass 01* melody line -  

at each stage there may be several choices of chord available to the composer, who 

must consider each in turn and decide which one best fits a given situation.

However, it is important to note that whilst the composer is free to choose chords, the 

system assigns what it considers to be the best chord based on the index of 

dissonance. This has some significance when one considers that composers often 

introduce dissonances as a compositional device, and so at each stage may introduce 

unexpected chords, or chords which are not necessarily the most consonant available. 

This helps to keep the composition fresh and interesting. It may be worthwhile then, 

to introduce a further mechanism in the above decision routine which selects 

alternative chords to the one with the lowest index of dissonance.

6.2 Further development of the system

We conclude this section by discussing further developments of the system and 

alternative mapping algorithms.

6.2.1 Developing long term trends

It is a consequence of the design of the composition algorithm and the automata 

employed that the music that is generated tends to sound repetitive after a time. The 

author believes that this is one of the strongest arguments for retaining a human 

composer who has overall control of the composition.

As we discussed in Chapter 3, the music that is generated by the CAMUS system is 

best used by the composer as a source of ideas to be developed into a more complete 

and well-rounded composition. Thus, we are essentially using the arranging skills of 

the human operator to control the long-term development of the system.

However, although this setup undoubtedly produces the best overall results, it requires 

a tremendous amount of work on the part of the end user. Frequently the amount of
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work required to produce a finished composition is equal to or exceeds the amount of 

work required to create a composition from scratch, which surely defeats the purpose 

of using the algorithmic composition system as an aid to composition in the first 

place!

The amount of work required to produce the end composition is such that the user 

may feel daunted by the prospect of composing such a piece. Clearly there is a case 

for introducing at least a partial system of automating the long-term development of 

the composition.

Following a talk given by the author to the Department of Computing’s algorithmics 

research group at the University of Glasgow in June of 1998, Dr. Bill Findlay, 

suggested that it might be possible to develop the system to create interesting long­

term development automatically.

He proposed the notion that a third automaton could be made to run alongside the 

Game of Life and the Demon Cyclic Space to control the structure of the music. This 

would work by, say, employing a formal grammar in the background to further 

manipulate the music generated by the system to adhere to a musical style defined by 

the grammar. As the third automaton developed, it would bring new grammatical 

rules into play, which would alter the structure of the music.

However, although this sort of configuration is feasible and has been utilised in other 

systems (see, for example, [Ames, 1983] and [Beyls, 1997]), it is the author’s belief 

that it would remove too many of the human aspects of the composition system. Thus, 

we require some sort of intermediate measure.

To this end, we propose that the use of the system as a musical scratch pad be further 

developed. At each timestep, the music that is generated is fed into a transformer 

module, which allows the composer to apply musical transformations to it.

The transformations will include, but not be restricted to inversion, retrograde motion, 

transposition, and reflection about a note. The composer then decides whether to keep 

the transformed phrase and append it to the permanent music file held in memory or 

discard it and work with a new phrase. This allows for the long-term behaviour to be
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controlled from within the system, whilst still allowing the composer to have overall 

control. Figure 6.2.1 shows how such a system might work.

The music generated at each 
timestep is fed to the transformer.

CAMUS TRANSFORMER
MODULE

- - V

Suitable transformed phrases are 
fed back to the composition 
system and stored in a permanent 
music file.

All other phrases are 
discarded.

Figure 6.2.1 -  The transformer module.

In keeping with the current trend of modularising systems, this functionality would be 

offered in the form of a “plug-in” program that processes the MIDI output of the 

system and then passes it back for storage. This also allows for the possibility of using 

the plug-in system to affect the MIDI output of other software, such as MIDI 

sequencers and so on.

6.2.2 Fractal orbits

In Section 4.1.6, we discussed the limitations imposed by CAMUS fixed order of cell 

playback. Here, we present an alternative system of scanning the automaton space to 

produce a list of cells for playback.

We saw in Section 2 that fractals frequently provide us with natural-looking objects. 

We propose to harness this property to help the system produce natural-sounding 

music as follows.

Once the automata have been updated, the algorithm chooses a cell at random. If this 

cell happens to be live, we choose it as our starting cell, otherwise, we select the 

nearest cell.

From this point, we calculate the successive quantised orbit points of a 3-dimensional 

fractal, such as the Lorenz attractor (see Figure 6.2.2). At each stage, the cell is 

performed if it is live and discarded if it is not. Alternatively, if, as is likely, the
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automaton is fairly sparsely populated, the closest cell to the quantised orbit point 

could be played in order to avoid long periods of silence. This process is then repeated 

until the user decides to progress to the next automaton timestep.

Figure 6.2.2 -  The Lorenz attractor.

Of course, this system may be combined with one of the parallel methods of Section

6.1.7 to give an algorithm that combines the benefits of ffactally-generated cell orbits 

-  namely the generation of constantly-changing self-similar orbits -  with the 

increased complexity of dual cell performances.

6.2.3 The rhythm of Life

In Section 5.2.5, we examined CAMUS 3D’s Markov Chain-based rhythm generation 

routine. The natural-sounding rhythmic lines that are possible are a testament to the 

routine’s improvement upon the original random number generators used to calculate 

the note lengths in the previous incarnation of the system. However, there are still 

areas in which the routine could be improved.

The main problem lies with the long-term trends of the rhythm generator. Although 

the rhythms sound more natural and have a degree more structure, there is still a 

general lack of coherence with the rhythmic lines that are formed. For example, it is
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possible to engineer certain rhythmic figures, such as the dotted quaver-semiquaver, 

by manipulating the probabilities of the state-transition matrix. However, it is virtually 

impossible to specify precisely where and when such events will occur in relation to 

other rhythmic figures.

Two possible solutions to this problem exist.

The first of these is to utilise higher-order Markov chains in the generation of 

rhythmic figures. This would benefit the long-term development of rhythmic lines by 

taking greater account of past events. Moving to, say, a fourth-order Markov chain 

would allow for the development of fairly complex rhythmic motifs.

However, a problem in interface, similar to that described in Section 4.1.2, arises. By 

moving to a fourth-order Markov chain, we require a 5-dimensional state transition 

Matrix to define it. As discussed earlier, there are no simple solutions to the problem 

of displaying visually the data stored in such an array. Solutions, such as separate 

pages of data for each step back in time, certainly exist, but these do not provide the 

user with adequate visual aids to understanding. It is not a trivial matter to visualise 

such structures, and any lack of visualisation may prove to be a hindrance to usage.

In addition there is the issue of specifying the data in such a large array. Supposing 

that the number of states in the matrix remains the same, a fourth-order Markov chain 

would require 8 x 8 x 8 x 8 x 8  = 32768 probability entries.

We should bear in mind that the manual entry of just 64 entries in the first-order case 

can be very time consuming. Combined with the endless possibilities for getting lost 

in a 5-dimensional matrix it is clear that some sort of automated method of defining 

the state-transition matrix is required.

There are several possibilities available to us for this process, most of which, 

however, prove to be quite unsatisfactory.

The simplest method is to assign random probabilities to the matrix. This would be 

easy to code and simple for the user to understand. The musical results, however, 

would be unpredictable, most likely behaving as a random number generator would, 

thus losing us the benefits offered by the Markov chain.
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Another solution is to assign probabilities based on the states of a cellular automaton. 

Although this solution is slightly more acceptable owing to the degree of structure 

imposed by the automaton, the user is still faced with the problem of finding a cellular 

automaton that will give rise to a set of probabilities which match his or her aesthetic 

criteria.

Perhaps the best approach to this problem lies with fuzzy logic and artificial 

intelligence. This would allow the user to define the sort of rhythmic figures that he or 

she would like to be present in the composition using traditional musical language. 

Indeed, it would be perfectly feasible to use MIDI files as a means of inputting 

rhythmic figures. Alternatively, the user could tap rhythms directly into the system 

using a MIDI controller such as a drum pad or MIDI keyboard. AI techniques would 

then be used to analyse the rhythmic figures and adjust the probability values in the 

state-transition matrix accordingly.

The main difficulty with this system is, of course, that it is much more difficult to 

implement than either o f the other two techniques. AI is not particularly well 

understood, and although applications to music theory have been undertaken (see for 

example [Roads, 1980] and [Baird, Blevins & Zahler, 1993]), this is still very much 

new territory.

For the end user, however, a well-implemented system of AI should be virtually 

invisible, and would provide a significantly improved interface for rhythm generation.

The second technique which could be used to improve long-term development of the 

rhythmic figures generated by the composition algorithm is the use of short rhythm 

lines to index the rows and columns of the state transition matrix. This would allow 

the development of complex, coherent rhythm lines whilst still retaining the ease of 

use of the first-order Markov chain.

The system could be made even more flexible if we allow for variable states. In this 

situation, each state would offer several choices of rhythmic motif, between which the 

user would select. By changing the selections as the composition progresses the user 

would be able to retain musical coherence, whilst introducing a gradual change of 

rhythmic direction.
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The choices for each of the variable states would be user-selectable from a library of 

pre-defmed rhythmic phrases, although the possibility for manual specification as in 

the AI analysis described above also exists.
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7. Conclusion

We begin our final chapter by discussing the degree of success we have obtained in 

attaining the research goals, which were introduced in Chapter 1. We conclude with a 

brief debate on the issue of authorship of an algorithmic composition.

7.1 Research goals

In Section 1.3.2 we proposed the following research goals:

i.) Produce new algorithms for mapping mathematical structures to music.

ii.) Gain knowledge into what kinds of mathematical structures and mappings 

produce useful results in sound.

iii.) Produce new tools for music composition.

iv.) Produce new compositions.

In the remainder of Section 7.1, we examine how successful we have been in meeting 

these goals.

7.1.1 Producing new musical algorithms

This research project grew from Dr. Miranda’s CAMUS system.

As we have seen from Chapter 3, the original CAMUS system is a composition 

algorithm that uses the 2-dimensional Game of Life and Demon Cyclic space 

automata to generate music.

During the first year of this research project, the original system was studied in depth 

and its strengths and weaknesses were identified. During this time, the algorithm was 

developed slightly to give a new algorithm that retained the original’s best features 

along with some new ones, which were mainly concerned with interface. These 

changes were detailed in two conference papers -  Dynamical Systems and 

Applications to Music Composition: A Research Report ([McAlpine, Miranda &
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Hoggar, 1997a]) and A Cellular Automata Based Music Algorithm; A Research 

Report ([McAlpine, Miranda & Hoggar, 1997b]).

These changes led to CAMUS version 2.0 for Windows 95, which was published on 

the cover-mounted CD of the Mix magazine, issue 45, and which is presented on the 

data section of the CD-ROM which accompanies this thesis.

Following a period of testing and experimentation with CAMUS version 2.0, the 

system was redesigned from scratch to create the CAMUS 3D algorithm.

Although CAMUS 3D is clearly derived from the original algorithm, there are a 

number of significant differences between it and original. These were detailed in 

Section 5 and highlighted in Table 5.5.1.

In addition, the CAMUS 3D algorithm has been the subject of two papers: Music 

Composition by Means o f Pattern Propagation, ([McAlpine, Miranda & Hoggar, 

1998]) and Making Music With Algorithms: A Case Study System ([McAlpine, 

Miranda & Hoggar, 1999]).

In addition to this, we have proposed, though not implemented a number of alternative 

mappings from cellular automata and fractals to music. Details of these may be found 

in Sections 4 and 6, and in [McAlpine, Miranda & Hoggar, 1997a] and [McAlpine, 

Miranda & Hoggar, 1997b].

7.1.2 what mappings produce useful results in sound?

After its completion, we spent a considerable amount of time working with CAMUS 

version 2.0 in order to see what effect different initial cell configurations had on the 

resulting output from the system. The results were catalogued in Section 3.3.

This work helped to give some insight into the type of music that is produced by 

different cell configurations. Further, although it is impossible to predict the actual 

output from a given cell configuration because of the stochastic methods employed, 

we were able to develop the “reverse engineering” method of composition described 

in Section 3.3.7.
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The effectiveness of this process was ably demonstrated by its use in the development 

of a number of new compositions.

Unfortunately, because of the changes in the underlying algorithm it has not been 

possible to construct a comparable method of working in CAMUS 3D. However, we 

believe that the improvements to the system have been such that notable musical 

output can be produced without the need to indulge in such meticulous planning. 

Further, as we move towards parallel cell checking and the use of Dissonance 

Networks in the generation of multitimbral music (see Section 6.1), such issues 

become less relevant.

In any case, we noted in Section 5.5.4, that with a minimal amount of work, the 

implementation of CAMUS 3D could be altered to trace the playing order of cells.

7.1.3 Producing new tools for music composition

As a direct result of this research, two complete pieces of music software -  CAMUS 

version 2.0 for Windows 95 and CAMUS 3D for Windows 95 -  have been produced. 

Both of items of software have been donated to the public domain and are freely 

downloadable from the research group’s web page:

http://www.maths.gla.ac.ulc/~km/research.htm.

That the former was accepted for publication by the international news-stand 

magazine, the Mix, suggests that the software is genuinely useful as a music tool.

In addition to this, a partially complete implementation of the Dissonance Network is 

available for download at the above site. This software is also included on the 

accompanying CD.

7.1.4 Producing new compositions

CAMUS and CAMUS 3D have been used to compose a number of works.

These are:

Sonatina for Woodwind Ensemble 

Kenny McAlpine, 1997
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Minuet and Trio fo r  Woodwind Ensemble 

Kenny McAlpine, 1997

Calls from  across the Ether 

Kenny McAlpine, 1998

Four's a Crowd 

Kenny McAlpine, 1998

Step by Step by Step 

Kenny McAlpine, 1998

Melancholia 

Kenny McAlpine, 1999

Untitled Sequence 

Campbell MacLean, 1998

Entre TAbsurde et le Mystere 

Eduardo Miranda, 1995

Jazz 3

Eduardo Miranda, 1998

It is significant that Four's a Crowd was used by Jerome Joy as part of his Collage 

Jukebox project [Joy, 1998],

In addition to this, CAMUS 3D is also being used by Dr, Miranda to compose a 

commissioned work for solo piano. The piece, titled Grain Stream is scored for piano 

and sampler with electronic sounds. It was commissioned by Studio Forum, Annecy 

in France and is due to be premiered in February 2000 in Annecy.

All of these compositions, with the exception of Grain Stream, can be auditioned on 

the audio section of the accompanying CD.
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7.2 Authorship of algorithmic compositions

During the course of this research the author has necessarily used and become familiar 

with a number of algorithmic composition systems. Some of these are described in 

Appendix D.

In addition, the author has also come across several different opinions of algorithmic 

composition. One of the most common, particularly amongst traditional musicians is 

that the study of algorithmic composition is not positive because it removes the need 

for human creativity. However, it has been the author’s experience that even the best 

of algorithmic composition systems require the intervention of a human composer to 

produce musically coherent works.

Certainly there is always the danger that a lazy or disinterested composer will abuse 

algorithmic systems, using the formalised methods as a substitute for his or own 

creativity. Used responsibly, though, algorithmic composers can transform the often 

laborious tasks involved in the creation of a new composition.

As Curtis Roads points out in [Roads, 1995], humans have long recognised that 

computers are far better at performing certain types of task, such as repetitive 

calculation. However, surely if composition was merely a puzzle or formal problem to 

be solved then the technical superiority of computers would have long surpassed that 

of humans.

For this reason alone, the author firmly believes that at least an element of human 

interaction should always be retained. Algorithmic composition systems are useful as 

a means of generating musical ideas, but it still requires a great deal of skill and 

creativity to transform these ideas into a coherent whole. This is not a failing of 

algorithmic composition systems. Rather it is a reflection of the fact that such systems 

are just one of several musical tools that are available to the human composer.

However, despite the undoubted benefits of using them, algorithmic composition 

systems give rise to a number of thorny issues concerning the authorship of the 

musical compositions they create.
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Some of the features raised in the following discussion are briefly touched on in 

Eduardo Miranda’s conference paper Who Composed Entre VAbsnrde et le MystEre 

[Miranda, 1997],

In his paper, Dr. Miranda makes the following point:

“Entre VAbsnrde et le MystBre is a piece for chamber orchestra produced by CAMUS, 

a computer system designed by the author ([Miranda, 1993], [Miranda, 1994]). 

CAMUS uses cellular automata-based simulations of biological behaviour to produce 

sequences of music structures (e.g., melodies, chords, clusters, etc.).

The public warmly applauded its performance by The Chamber Group of Scotland in 

1995 in Edinburgh, Martyn Brabbins, the conductor, was reluctant to believe that a 

computer had generated the piece and generally members of the audience found that 

the piece was pleasant. The general wonder of that evening was: “Was the piece really 

composed by a computer?”

This question is debatable and has serious ideological implications. In our point of 

view, a distinction between author and meta-author should be made in such cases. The 

ultimate authorship of the composition here should be to the person who designed 

and/or operated the system. Even in the case of a program that has the ability to 

program itself, someone is behind the design and/or the operation of the system.”

The author would like to expand on this slightly.

Certainly, it cannot be doubted that the authorship of algorithmically-composed works 

is debatable. For example, does the authorship of such a composition belong with the 

designer of the system, with the computer that generated the music or with the user of 

the system who set the composition process in motion? Let us examine the case for 

each.

The original designer of an algorithmic composition system certainly has a legitimate 

claim to at least part-ownership of any music that is generated by the system that he or 

she has designed. Clearly, if the designer had not introduced the system it could not 

possibly have been used to create any compositions. The situation is very similar to 

that of the commercial ‘game designer’ packages that have been popular with home- 

computer users for a number of years (see [Sherman, 1999] for further details).
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Such systems frequently offer a number of tools that allow users to create a ‘new' 

game based on one or more base examples of a particular genre. Using these packages 

fairly complex computer games can be created with little or no programming 

knowledge.

The limitations vary from system to system, but some allow for the possibility of 

stand-alone games to retail standards. When such games are distributed commercially, 

the designers of the system usually demand a royalty payment as part authors.

However, in the case of musical composition, we have seen that frequently, the design 

of algorithmic composition systems results in a new musical style. Thus the designer 

of an algorithmic system can be viewed as the creator of a new musical style. As such, 

the designer has laid the ground rules that characterise this style, and any subsequent 

compositions that adhere to it are surely not his own unless actually physically created 

by him.

Similarly, if a computer is used to compose algorithmically it too has a partial claim 

to the authorship of the work since it was responsible, perhaps wholly, for the 

generation of the body of the music. However, we have already satisfied ourselves 

that computers are used in this way to perform the menial tasks of composition, 

effectively relegating them to the status of composition tools.

There is a strong analogy here to the working practices of traditional composers and 

their copyists. In the past, copyists were employed by composers to perform menial 

composition tasks such as transcribing composition sketches into full score notation. 

In some cases it is believed that the composer would offer a more experienced copyist 

little more than a rough outline of a work, which the copyist would then use to create 

a complete composition. Indeed, this practice continues to this day and echoes 

Stockhausen’s technique of collaborative composition ([Worner, 1973]). In this case, 

the composer holds seminars in which a carefully selected group of composers discuss 

ideas and work together to develop thematic material provided by Stockhausen.

Further, since computers are, at least at present, machines without sentience, can any 

claims of computer authorship be taken seriously? After all, who will fight for the 

computer’s claims to intellectual property?
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Finally, the user has, at least in the author’s eyes, the strongest claim on authorship. 

After all, it was the user’s decision to compose a piece of music. It was the user who 

decided on the composition parameters and who instigated the composition process. 

And if, as is likely, the output from the system was subject to any sort of editing, then 

the user also transformed the musical sketches generated by the computer into a 

finished musical work.

To conclude then, we cannot hope to answer conclusively the problem of authorship 

of an algorithmic composition. Both the system designer and the user of the system 

have claims. So too does the computer itself, although to a lesser extent.

The author believes that the simplest solution is to consider each composition on its 

own merits. Clearly if a user has done little more than installed an algorithmic 

composition system on his computer and used the default settings to create a 

composition which then undergoes no further editing he can surely have little claim 

on its authorship. He is as much an automaton as the computer that produced it.

If, however, the user invests considerable time and effort planning a composition; 

setting the composition parameters, and sculpting and editing the musical output into 

a complete work then he or she is in a much stronger position to claim authorship.

If the designer and the user are one and the same, then much of what has been said 

here is redundant. However, in order to clarify the situation for the composition 

systems described in this thesis, the author hereby waives all rights to any 

compositions created using his results.
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Appendix A

Using the CD

Accompanying this thesis is a dual-format compact disc.

The disc is divided into two partitions, a data section, which is located on track 1, and 

an audio section which fills the remainder of the disc.

It is extremely important that you do not play track 1 on a compact disc player. This 

contains only computer data, which, if played through loudspeakers may cause 

irreparable damage. Most domestic compact disc players filter out such data, but 

please err on the side of caution and skip straight to track 2 when listening to the 

audio tracks.

The audio tracks can all be played quite safely on a compact disc player.

The entire CD can also be used quite freely in the CD-ROM drive of any PC ruiming 

Windows 95 or above. The data section may then be read as normal using Windows 

Explorer, whilst the audio section can be played through the computer’s soundcard 

using Windows CD Player. Each item of software has its own directory on the CD.

In order to make the installation of software as easy as possible, the author has 

provided a software menu on the CD which should run automatically when the disc is 

inserted in your computer’s CD-ROM drive34. Once the menu has opened, each item 

of software may be installed by double clicking on each piece of software’s menu 

entry.

The files may also be installed by executing their installation programs directly from 

Windows Explorer.

The items of software and their installation programs are listed in Table AI below.

34 This feature will only work in Windows 95 or Windows 98 provided that the A ntonin  feature is 
enabled.
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Software Installation Program

CAMUS v2.0 CAMUS/diskl/setup.exe

CAMUS 3D CAMUS 3D/install.exe

Chaosynth Chaosynth/setup.exe

Dissonance Network Dissonance N et work/install. exe

GAMusic GA Music/setup.exe

Musinum Musinum/setup. exe

The Well Tempered Fractal WTF/setup.exe

Table A I — List o f items o f software and their installation files.

Once the installation file is complete, the software should be available to run from the 

Windows Start menu.

Below, we provide a track list for the audio section of the CD.
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Track Number Title Author Assistance

1 CD-ROM Data n.a. n.a.

2 Together in Threes Kenny McAlpine CAMUS

3 Sonatina Kenny McAlpine CAMUS

4 Minuet and Trio Kenny McAlpine CAMUS

5 Calls Across the Ether Kenny McAlpine CAMUS

6 Excerpt from Entre 

I 'Asurde et le Mystere

Eduardo Miranda CAMUS

7 Step by Step by Step Kenny McAlpine CAMUS 3D

8 Melancholia Kenny McAlpine CAMUS 3D

9 Jazz3 Eduardo Miranda CAMUS 3D

1 0 -1 4 Selected incidental 

music from Coenr de 

Chieti

Chris Sansom Fractal Music ST

15 Twinkle Funk Kenny McAlpine Band-in-a-Box

16 Twinkle Rock Kenny McAlpine Band-in-a-Box

17 Twinkle Reggae Kenny McAlpine Band-in-a-Box

18 -2 0 Excerpts from Grain 

Stream

Eduardo Miranda CAMUS 3D

Table A 2 - Audio track list.
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Appendix B

Some common Conway objects

Below we illustrate some common Conway life objects. The list is by no means 

exhaustive and is provided to assist the reader in the construction of compositions 

using the Game of Life.

Name Object

Aircraft Carrier

Beacon

Billiard Table

Bhepto

Blinker

Boat

Bow Tie

Centinal

Cheshire Cat ■□□□□■□■■■■□
□■■■■□■□□□□■
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Clock

Cross ’ ■ a ■
■

■ ¥ ■
■
■
■ i ■

■
■ ■ 1

Cup

Eater

Fence Post

Galaxy □□□□□□■□□□□□□□□■□□■■■■■■■□□□□■■■■■□□□□■■■■■□□□□■■■■■□□□□■■■■■■■□□■□□□□□□□□■□□□□□□

Glider

Glider Gun "“”“""”““““”——“ - —j t rrrir ■
■ ■■ ■ ■■■ ■■ ■■_■'■ ■ ■■■■ ■ *■■ ■■ r __ _

Large Ship V ■
■ ■

■
■ ■
_ rm s ■ ■ ■ ■
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Max ■ ■
■ ■

■■
■

■■ i
■ i
■ ■■ ■

I ■ ■ ■■a
I ■■ a ■ ■ ■ a
■ n ■ ■

■ ■ a
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Appendix C

MIDI

In this section we discuss the MIDI control paradigm. We begin by tracing the early 

development of the system from the gate/CV system, and showing how it led to a 

standardisation in communication between musical equipment. We then explain the 

mechanics of the system, illustrating with connection examples before concluding 

with a list of commonly used control messages and controllers.

What is MIDI?

MIDI stands for Musical Instrument Digital Interface. It is a digital communications 

protocol that allows the transmission of polyphonic note information on up to sixteen 

distinct channels using a single cable ([Loy, 1985]). The communication is in one 

direction only, so if a player wishes an instrument to send and receive MIDI data, it is 

necessary to connect two cables -  one for carrying the data from the MIDI OUT port 

of the transmitter to the MIDI IN port of the receiver, and one for carrying the data to 

the MIDI IN port of the transmitter from the MIDI OUT port of the receiver.

At its simplest, MIDI enables musicians to access sounds on a remote module from a 

master keyboard (see figure C 1 below).

Figure C l -  Simple MIDI connection. The MIDI OUT from the keyboard is connected 

to the MIDI IN on the sound module, enabling the player to access the module's

sounds from the keyboard.

A MIDI connection of the type described in Figure Cl above is quite useful. It allows 

access to a much broader sound palette and enables the layering of sounds -  for 

example, by selecting a nylon guitar patch from the module and a string patch from
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the keyboard one could obtain a warm, sustaining sound with a rich, sharp attack. 

Automating the layering of sounds in this manner is much easier than attempting to 

play the melody simultaneously on two separate keyboards.

The history of MIDI

MIDI is not the only musical instrument communications system that is available. 

Indeed, a control system known as the gate/CV system performed exactly this task for 

many years before MIDI was introduced ([Tucker, 1993]).

The gate/CV system was used to connect analogue synthesisers together. It required 

two cables -  one to carry gate information, which was used to switch notes on and off, 

and one for Control Voltage information, which determined the note that would be 

triggered.

The main problem with this system is that a single gate/CV pair allows only for the 

monophonic triggering of notes, so if, for example, two-note polyphony is required, 

four leads (two gate leads and two CV leads) are needed to carry the note information. 

Similarly, a five-note chord requires ten leads. As the polyphony is increased, the 

system rapidly becomes unwieldy.

Another problem with this control system is that there was a lack of general 

standardisation between manufacturers as to how synthesisers responded to the 

control signals.

In 1982, a consortium of major synthesiser manufacturers, including Roland, 

Oberheim and Sequential Circuits, proposed a new communications standard, so that 

any new instrument that adhered to that standard would be compatible with any other. 

The first MIDI instruments were introduced early in 1983, and the system has 

subsequently been widely implemented on both professional and domestic musical 

equipment and computers.

MIDI has undergone several revisions since its introduction, most notably with the 

introduction of General MIDI (GM) in 1990. This was introduced to supply users 

with a standard setup of 128 preset sounds and two effect types (reverb and chorus),
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so that a MIDI file produced using one GM instrument will sound broadly similar 

(though not necessarily identical) on any other GM instrument.

MIDI transmission

MIDI data are transmitted serially. That is, information is transmitted in a continuous 

stream one piece at a time.

The raw MIDI data are in 8-bit binary form. In other words, each piece of MIDI 

datum consists of 8 l ’s or 0’s, such as 10011100.

There are two different types of MIDI message. The first set of messages is known as 

the channel messages. These deal with the voices (sounds) of an instrument, and each 

channel message is assigned to a specific MIDI channel. Some examples are note on, 

patch change and pitch bend messages.

The general form of a channel message is presented below:

1001  1100  -  0011  1100  -  0111  1111

sets the velocity of 
I the note to 12 

V  (maximum)
defines the note
number as 60
(middle C)

This message tells an instrument to start playing middle C with maximum velocity on 

MIDI channel 12. The sound that is played depends on the voice that receiving 

instrument is set to play on channel 12.

Once the note is triggered, it will continue to play until the instrument receives a 

MIDI note off command. However, unless the MIDI data are being altered at a low 

level, the musician does not generally have worry overly about this -  if the parts are 

being played in by keyboard or entered manually in a sequencer, note off commands 

are automatically inserted at the correct song position.

The table below lists some common channel messages.

MIDI note 
on
command V

defines the 
channel as 12
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Hex Binary Bytes35 Command Range

8X36 lOOOxxxx37 2 Note off 0 -1 2 7

9X lOOlxxxx 2 Note on 0 -1 2 7

AX lOlOxxxx 2 Polyphonic aftertouch 0 -1 2 7

BX 101lxxxx 2 Control change 0 -1 2 7

CX 11OOxxxx 1 Program change 0 -1 2 7

DX 1101xxxx 1 Channel aftertouch 0 -1 2 7

EX 111Oxxxx 2 Pitch bend see below

Table Cl -  Some common channel messages

Pitch bend messages are slightly different from other commands. The centre position 

is set at 2000 (Hex) using a 2-byte 14-bit number (the first two bits of each byte are 

not part of the data). The bend range is usually set on the instrument itself.

System messages, on the other hand, do not carry any channel information -  they 

apply to the system as a whole. This includes the timing information that is used to 

synchronise two sequencers38 together. Table C2 below lists some common system 

messages.

35 The number o f bytes following the initial status byte
36 The ‘X ’ here indicates a number between 0 and F (hex) which defines the MIDI channel
37 The ‘x ’ here indicates a binary value.
38 A sequencer is a device that stores a sequence o f MIDI commands and timing information. The 
sequencer sends these commands to MIDI instruments at the pre-defined times, in effect telling the 
instrument how to play the piece of music. Sequencers can be either hardware or software based.
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Hex Binary Command

FF 11111111 Reset

FE 11111110 Active sensing

FC 11111100 Stop

FB 11111011 Continue

FA 11111010 Start

F0 11110000 System exclusive

F7 11110111 End of exclusive

Table C2 — Some common system messages

An important type of system message is the system exclusive (SysEx) message. These 

are very versatile messages that can be used to set and alter the parameters of specific 

machines. Because MIDI instruments are so varied, SysEx messages are not defined 

by the MIDI standard, but are left to manufacturers to implement in any way they 

wish. Each manufacturer is given a unique identification number that ensures the 

SysEx messages it creates do not interfere with other equipment.

On receiving a SysEx message, the receiver checks the ID byte that follows. If it 

recognises this code as its own it will listen to the subsequent data bytes until it 

receives and End of exclusive message. Otherwise, the message is ignored.

The most common use of SysEx messages is to transfer the data that make up a 

synthetic sound to an external sound library or editor.

MIDI pitch representation

In the MIDI transmission example of the previous section, the note on message is 

immediately followed by a data byte that defines the pitch to be note number 60.
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Pitches in MIDI are always transmitted as 7~bit39 fields in this manner. This gives 

27 -  128 possible pitches that may be addressed by MIDI.

The MIDI specification requires these pitches to be equal-tempered, although it is 

possible to work around this restriction by, for example, pitch bending notes by the 

required amount before they are triggered.

The MIDI pitch range runs from note number 0 (C-2 at 8.17 Hz) through to note 

number 127 (G8 at 12543.89 Hz). Note, however, that MIDI octave numbering is 

non-standard: middle C is generally taken to be C4 in music theory texts, but is 

numbered C3 using MIDI octave numbers.

MIDI modes

The way an instrument responds to MIDI messages depends on the MIDI mode that it 

is operating in. Most often, this will not be a concern -  most instruments default to the 

correct mode when they are turned on — but it is useful to be familiar with the various 

operating modes in case a MIDI instrument does not respond in the way that it is 

expected to.

There are four MIDI modes to choose from:

Mode 1 -  Omni On/Poly

A MIDI instrument that is operating in Omni mode will ignore any channel 

information that it receives. In other words, the synth will play all of the information 

that arrives at the MIDI IN port, regardless of what channel it arrives on.

Poly means that the instrument will respond to notes polyphonically -  that is, more 

than one note at a time.

This mode is not of much use from within a sequencer setup, since all parts will be 

played simultaneously using the same sound. It is, however, useful when linking two 

MIDI instruments together with the intention of layering sounds. Rather than 

matching the output and input channels of the two instruments, all that is required is

j9 The MIDI protocol demands that all data bytes start with 0, leaving 7 bits to carry the information.

282



to set the receiving instrument to MIDI mode 1 and it will play whatever is received at 

its MIDI IN port.

Mode 2 -  Omni On/Mono

This is exactly the same as mode 1, with the exception that the instrument is made to 

perform as a monophonic instrument, which means that it can only play one note at a 

time.

This mode is not used extensively, although it can be of use for monophonic 

synthesisers.

Mode 3 ~ Omni Off/Poly

This is probably the most useful mode as far as sequencer users are concerned. 

Instruments in mode 3 will respond to MIDI messages only if they are set to receive 

data on the track(s) on which the MIDI messages were transmitted, and play notes 

polyphonically.

Mode 4 -  Omni Off/Mono

This is the same as mode 3, except that each channel can only handle one note at a 

time. Some multi-timbral40 synthesisers use this mode, but it is most useful on a MIDI 

guitar system. Here, the MIDI guitar uses a different MIDI channel for each of the six 

strings. The receiving synth is set up in mode 4 with the same sound on each channel. 

This ensures that a player cannot trigger two notes on the same string simultaneously, 

which would sound unnatural on a guitar part.

The MIDI file format

In order to standardise fully the MIDI format, a file system had to be introduced that 

would be compatible not only with the instruments themselves, but also with any 

sequencers or computers that were in the system. Thus, the file format needed to store 

MIDI data in a way that could be read by different machines.

40 A multi-timbral synthesiser is one which can play many different tones simultaneously.
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The MS-DOS file format was decided upon, because there was a vast user-base, and 

because the format was easy to convert to and from, meaning that MS-DOS MIDI 

files could be read easily by other operating systems (such as MAC OS, AmigaDOS 

etc.).

There are three main types of standard MIDI file (SMF):

Type 0 MIDI files store all of the MIDI data in one contiguous block, which contains 

the information for all of the tracks.

Type 1 MIDI files store the MIDI data in a number of discrete blocks, which 

correspond to the musical tracks.

Type 2 MIDI files store a number of independent sequences or patterns in a single 

MIDI file. It is similar to a collection of Type 0 sequences stored in a single file and is 

not as widely supported as either type 0 or type 1 files.

A MIDI file always begins with a header block, also known as the MTlid header, 

because of the four bytes of data that begin the block. An example header block is 

shown below:
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Byte value (Hex) Description

4D ASCII code for M

54 ASCII code for T

68 ASCII code for h

64 ASCII code for d

00 The following four values

00 indicate the length of the header.

00 In this case it is

06 6 bytes long.

00 These two bytes indicate that this

00 is a type 0 MIDI file.

00 These two bytes indicate that there

01 is 1 track in the file.

00 These two bytes indicate that the

78 file is set for a 120ppqn41 sequencer.

Table C3 -  Example o f a MIDI header block.

The MIDI header block (after the header and block length information) is always 6 

bytes long. It is immediately followed by a track, also known as an MTrk block

41 The resolution at which a sequencer works is measured in pulses per quarter note (ppqn). This value 
is the maximum number o f clock ticks into which a crotchet can be divided. 120ppqn is a fairly 
common value, although professional packages work at resolutions o f up to 15360 ppqn.
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because of the values of the first four bytes. The above MThd header is looking for a 

single track. This is of the following form:

Byte value (Hex) Description

4D ASCII code for M

54 ASCII code for T

72 ASCII code for r

6b ASCII code for k

00 The values of these four

00 bytes indicate the length

00 of the track.

04 Here, it is 4 bytes.

00 The values of these four

FF bytes marks the end of

2F the track. This end of track marker

00 must follow every MTrk header.

Table C4 -  Example o f a MIDI track block.

In the MIDI file, the above channel commands would be immediately preceded by up 

to three bytes which define the time that the event is to occur. The MIDI specification 

uses a technique known as delta time — that is, the time specifies the elapsed time 

since the last event, rather than the absolute time in a composition. Thus simultaneous 

note events are specified by setting the delta time to 0. The time commands are also 

stored in variable length format, so that the time is stored as a 1, 2 or 3-byte value.

Figure C2 below shows how a simple one-bar melody translates to a MIDI file.



m
Byte value (Hex) Description

4D ASCII code for M

54 ASCII code for T

68 ASCII code for h

64 ASCII code for d

00 The following four values

00 indicate the length of the header.

00 In this case it is

06 6 bytes long.

00 These two bytes indicate that this

00 is a type 0 MIDI file.

00 These two bytes indicate that there

01 is 1 track in the file.

00 These two bytes indicate that the

78 file is set for a 120ppqn sequencer.

4D ASCII code for M

54 ASCII code for T
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72 ASCII code for r

6b ASCII code for k

00 The values of these four

00 bytes indicate the length

00 of the track.

44 It is 68 (dec.) bytes long.

00 0 time indicates the start of the track.

90 Note on, channel 1

24 Note number is 36 (dec.), corresponding to C2

7F Note on velocity is 127 (dec.)

00 0 time indicates that the new event 
performed concurrently with previous one.

is

90 Note on, channel 1

30 Note number is 48 (dec.), corresponding to C3

7F Note on velocity is 127 (dec.)

00 Next event performed concurrently with 
previous one.

the

90 Note on, channel 1

3C Note number is 60 (dec.), corresponding to C4

7F Note on velocity is 127 (dec.)

00 Next event performed concurrently with 
previous one.

the
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90

40

7F

00

90

43

7F

00

90

48

7F

78

80

24

7F

00

80

30

7F

Note on, channel 1

Note number is 64 (dec.), corresponding to E4

Note on velocity is 127 (dec.)

Next event performed concurrently with the 
previous one.

Note on, channel 1

Note number is 67 (dec.), corresponding to G4

Note on velocity is 127 (dec.)

Next event performed concurrently with the
previous one.

Note on, channel 1

Note number is 72 (dec.), corresponding to C5

Note on velocity 127 (max.)

Next event performed 120 ticks (i.e. one
crotchet beat) after the previous one.

Note off, channel 1

Note number is 36 (dec.), corresponding to C2

Note off velocity is 127 (max.)

Next event performed concurrently with the
previous one.

Note off, channel 1

Note number is 48 (dec.), corresponding to C3

Note off velocity is 127 (max.)
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00

80

3C

7F

00

80

40

7F

00

80

43

7F

00

80

48

7F

78

Next event performed concurrently with the
previous one.

Note off, channel 1

Note number is 60 (dec.), corresponding to C4

Note off velocity is 127 (max.)

Next event performed concurrently with the
previous one.

Note off, channel 1

Note number is 64 (dec.), corresponding to E4

Note off velocity is 127 (max.)

Next event performed concurrently with the
previous one.

Note off, channel 1

Note number is 67 (dec.), corresponding to G4

Note off velocity is 127 (max.)

Next event performed concurrently with the
previous one.

Note off, channel 1

Note number is 72 (dec.), corresponding to C5

Note velocity is 127 (max.)

Next event performed after 120 ticks. Since 
the previous event was a note off, this 
corresponds to a crotchet rest.
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90

47

3C

78

80

47

3C

00

90

48

3C

78

80

48

3C

00

pp

2F

00

Note on, channel 1

Note number is 71 (dec.), corresponding to B5

Note on velocity is 60 (dec.)

Next event performed after 120 ticks 

Note off, channel 1

Note number is 71 (dec.), corresponding to B5

Note off velocity is 60 (dec.)

Next event performed concurrently with the 
previous one.

Note on, channel 1

Note number is 72 (dec.), corresponding to C5

Note on velocity is 60 (dec.)

Next event is performed after 120 ticks 

Note off, channel 1

Note number is 72 (dec.) corresponding to C5 

Note off velocity is 60 (dec.)

The values of these four

bytes marks the end of

the track. This end of track marker

must follow every MTrk header.

gure C2 -  One bar o f music translated to a MIDI file.
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One thing that is not immediately apparent from the above figure is the reason for the 

note off velocity and indeed many instruments do not respond to this at all. There is, 

however, good reason for the parameter.

For example, some instruments allow for additional sounds, such as fret noise 

following a guitar tone) to be triggered when they receive a note off command. The 

note off velocity determines how loudly (or quietly) this is played.

Connectivity

MIDI enables two or more pieces of equipment equipped with MIDI ports to be 

connected together and to communicate (see figure C3).

Individual instruments in the system can be addressed using different channels. MIDI 

channels are distinct data paths along which note information can travel without being 

affected by any information from other channels. This is a very powerful system, and 

one in which the power may not be apparent initially.

Figure C3 -  Simple bi-directional MIDI configuration for a keyboard and a computer

running sequencer software.

The configuration of figure C3 is bi-directional. That is, the keyboard can 

communicate with the PC, and the PC can, in turn, communicate with the keyboard. 

This allows, for example, a musician to play a keyboard part, record and edit it as 

MIDI data on the PC and then play it back.

The configuration of figure Cl is said to be uni-directional, because the 

communication is one-way (from the keyboard to the module).
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In addition to MIDI IN and OUT ports, there is a third type of port, known as MIDI 

THRU. This port monitors the data arriving at the MIDI IN port and re-transmits it. 

allowing several MIDI instruments to be daisy-chained, or connected in series (see 

figure C4). Note that it is the rightmost keyboard that is the master in this setup.

THRU

THRU

Figure C4 -  Several MIDI instruments daisy-chained using THRU connections.

Although theoretically any number of MIDI instruments could be connected together 

in this manner, there is a practical limit to the number of devices that can be so 

connected. This is due to slight timing delays that are introduced to the MIDI chain 

because of the serial transmission of the data. If the total length of the MIDI chain is 

greater than about 15 metres, there will be a noticeable time gap between the MIDI 

data reaching the first and the last instruments in the chain, potentially causing 

synchronisation problems.

Another problem with long MIDI chains (especially if the data are travelling along 

one long cable) is that the signal can become severely degraded and errors may creep 

in.

One solution to these problems is to use a multi-port MIDI interface, or a MIDI 

patchbay to connect the instruments together. These allow the instruments to be 

permanently wired to their own MIDI port using short cables. Routings can be 

controlled from the PC, or from the patchbay.
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G en era l MIDI a n d  b e y o n d

We have seen that MIDI was initially proposed as a means of standardising musical 

instrument communications to allow greater interconnectivity between devices. 

However, although the MIDI instruction set was indeed standardised and widely 

implemented, the way in which it was implemented often varied from manufacturer to 

manufacturer.

The main problem was that there was no standard for the relationship between patch 

numbers (the MIDI information bits corresponding to the different instruments) and 

the order in which preset sounds were actually stored on an external synthesiser. In 

other words, because there was no standardised order for preset sounds, the same 

patch number could, and often did, give rise to different sounds on different 

instruments.

For example, suppose a composer had created a MIDI file that had been configured to 

use patch number 12 on channel 1. On his own synthesiser this patch might 

correspond to an electric organ. If he now takes the MIDI file into a recording studio 

to be played back on a different synthesiser, he may find that patch 12 is a flute, even 

though this instrument may have a perfectly good electric organ tone at some other 

patch number. One can appreciate the frustration involved in having to reprogram a 

MIDI file each time it is required to be played on another instrument.

The General MIDI (GM) specification (see, for example, [Heckroth, 1994a]) was 

introduced to ensure that end users had a standardised layout of sounds and effects no 

matter which particular brand of synthesiser they used.

The specification includes a standardised list of General MIDI instruments (see Table 

C5), which is usually referred to as the GM Sound Set ([Heckroth, 1994b]); a 

standardised list of percussion sounds (see Table C6), referred to as the GM  

Percussion Map ([Heckroth, 1994c]), and a set of performance capabilities, such as 

total number of available channels and types of MIDI message, which are recognised 

by the instrument.

The effect of this standardisation is such that standard MIDI file created for use on 

one GM instrument should play correctly on any other. There will, of course, be
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minor differences due to the slightly different sound samples used in the creation of 

the on-board sounds, but files will not need extensive reprogramming to play back as 

intended.
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Patch Instrument Patch Instrument | Patch Instrument
1 Acoustic Grand 44 Contrabass 87 Fifths
2 Bright Acoustic Grand 45 Tremolo Strings 88 Bass and Lead
<-» Electric Grand 46 Pizzicato Strings 89 New Age
4 Honky-tonk Piano 47 Harp 90 Warm
5 Rhodes Piano 48 Timpani 91 Polysynth
6 Chorus Piano 49 String Ensemble 1 92 Choir
7 Harpsichord 50 String Ensemble 2 93 Bowed
8 Clavinet 51 Synth Strings 1 94 Metallic
9 Celesta 52 Synth Strings 2 95 Halo
10 Glockenspiel 53 Choir Aahs 96 Sweep
11 Music Box 54 Voice Oohs 97 Rain
12 Vibraphone 55 Synth Vox 98 Soundtrack
13 Marimba 56 Orchestral Hit 99 Crystal
14 Xylophone 57 Trumpet 100 Atmosphere
15 Tubular Bells 58 Trombone 101 Brightness
16 Dulcimer 59 Tuba 102 Goblins
17 Hammond Organ 60 Muted Trumpet 103 Echoes
18 Percussive Organ 61 French Horn 104 Sci-fi
19 Rock Organ 62 Brass Section 105 Sitar
20 Church Organ 63 Synth Brass 1 106 Banjo
21 Reed Organ 64 Synth Brass 2 107 Shamisen
22 Accordion 65 Soprano Sax 108 Koto
23 Harmonica 66 Alto Sax 109 Kalimba
24 Tango Accordion 67 Tenor Sax 110 Bagpipe
25 Nylon Guitar 68 Baritone Sax 111 Fiddle
26 Steel Guitar 69 Oboe 112 Shanai
27 Jazz Guitar 70 English Horn 113 Tinkle Bell
28 Clean Guitar 71 Bassoon 114 Agogo
29 Muted Guitar 72 Clarinet 115 Steel Drums
30 Overdrive Guitar 73 Piccolo 116 Woodblock
31 Distorted Guitar 74 Flute 117 Taiko
32 Guitar harmonics 75 Recorder 118 Melodic Tom
33 Acoustic Bass 76 Pan Flute 119 Synth Drum
34 Fingered Bass 77 Bottle Blow 120 Reverse Cymbal
35 Picked Bass 78 Shakuhachi 121 Guitar Fret Noise
36 Fretless Bass 79 Whistle 122 Breath Noise
37 Slap Bass I 80 Ocarina 123 Seashore
38 Slap Bass 2 81 Square Lead 124 Bird Tweet
39 Synth Bass 1 82 Sawtooth Lead 125 Telephone Ring
40 Synth Bass 2 83 Calliope Lead 126 Helicopter
41 Violin 84 Chiff Lead 127 Applause
42 Viola 85 Charang 128 Gunshot
43 Cello 86 Voice

Table C5 -  The GM Sound Set.
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Note Num ber Drum Sound | Note Number Drum Sound

35 Bass Drum 1 59 Ride Cymbal 2
36 Bass Drum 2 60 Hi Bongo
37 Side Stick 61 Low Bongo
38 Acoustic Snare 62 Mute Hi Conga
39 Hand Clap 63 Open Hi Conga
40 Electric Snare 64 Low Conga
41 Low Floor Tom 65 High Timbale
42 Closed Hi-Hat 66 Low Timbale
43 High Floor Tom 67 High Agogo
44 Pedal Hi-Hat 68 Low Agogo
45 Low Tom 69 Cabasa
46 Open Hi-Hat 70 Maracas
47 Low Mid Tom 71 Short Whistle
48 Hi Mid Tom 72 Long Whistle
49 Crash Cymbal 1 73 Short Guiro
50 High Tom 74 Long Guiro
51 Ride Cymbal 1 75 Claves
52 Chinese Cymbal 76 Hi Wood Block
53 Ride Bell 77 Low Wood Block
54 Tambourine 78 Mute Cuica
55 Splash Cymbal 79 Open Cuica
56 Cowbell 80 Mute Triangle
57 Crash Cymbal 2 81 Open Triangle
58 Vibraslap

Table C6 — The GM Percussion Set.

Although General MIDI brought a great improvement in file sharing, it has been 

accused of being restrictive because it offers only a limited sound palette. In response 

to this, Roland introduced the GS standard ([Heckroth, 1994d]).

The Roland GS standard offers a superset of sounds and functionality. All the GM 

sounds are present, but GS also offers a number of additional variations of these 

sounds. Also included are basic reverberation and chorus effects, the depth of which 

are adjustable on each of the sixteen MIDI channels.

Yamaha also offered its own extension to GM, known as XG ([Yamaha, 1999]). As 

with GS, XG is a superset of GM and offers even more sounds and effects than 

Roland’s GS. It has also been implemented in some higher specification computer 

soundcards, such as Yamaha’s own SW1000GX (see [Walker, 1998]).
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Appendix D

An alternative approach to algorithmic composition

The algorithmic composition techniques described elsewhere in this thesis represent 

just one approach to the problem of coaxing musical compositions from a machine. A 

number of alternative approaches exist.

Some broadly follow the same empirical approach as this research, whilst others 

attempt to work replicatively to compose in existing musical styles. Below we present 

a brief review of several of these algorithmic packages.

Please note that this list is by 110 means exhaustive. We merely intend to suggest to the 

reader that a number of alternative approaches exist and compare them with our own 

system.

Chaosynth

Strictly speaking, Chaosynth ([Miranda, 1993]) is not an algorithmic composition 

package. It was designed by Eduardo Miranda and coded for Windows by Joe Wright 

of NYR Sound Ltd, and is a software synthesiser that uses cellular automata to 

generate granular sounds42.

However, as we shall see, it is possible, through the manipulation of the system 

parameters, to use the system as a rudimentary melody generator. In addition, the 

system’s reliance on cellular automata for the generation of sounds has particular 

relevance to our own work.

Chaosynth uses a different cellular automaton to drive the process of sound generation 

from that of CAMUS. The automaton is known as ChaOs, an /7-state automaton that 

was designed to model a particular neurophysiological phenomenon.

'l2 Granular sounds are composed o f many short sonic quanta, which, when played successively form a 
single complex tone. For further details about granular synthesis, please see [Roads, 1978], [Roads, 
1988], [Roads 1996], [Jones & Parks, 1988] and [Truax, 1988],
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The cells in the automaton model nerve cells in the brain. The states of these cells are 

represented by a number between 0 and n - 1.

Those cells in state 0 corresponds to a quiescent state, whilst a ceil in state n - 1 

corresponds to a burned state. All states in between exhibit a degree of depolarisation, 

corresponding to the number of their state. The closer a nerve cell's state number gets 

to n - 1 the more depolarised it becomes.

A transition function, F, is defined by the following three rules, which are selected 

according to the state of the cell currently under examination.

A quiescent cell may or may not become depolarised at the next tick of the clock. This 

depends upon the number of polarised and burned cells in its neighbourhood, and the 

cell’s resistance to being burned.

A depolarised cell has the tendency to become more depolarised as time progresses. 

Its state at the next timestep depends on the capacitance of the nerve cell and the 

degree of polarisation of its neighbourhood. The degree of polarisation of the 

neighbourhood is defined as the sum of the states of the cell’s 8 neighbours divided by 

the number of polarised neighbours.

A burned cell generates a new quiescent cell at the next timestep.

Each sonic particle produced by Chaosynth is composed of several partials43 — a sine 

wave produced by an oscillator. Each oscillator requires three parameters to function: 

the frequency in Hertz; the amplitude in decibels, and the duration in milliseconds of 

the sinewave.

Chaosynth uses the ChaOs automaton to control the frequency and duration values of 

each particle. The amplitude values are configured by the user.

The states of each cell in the automaton are associated to a frequency value. In 

addition, each of the oscillators is associated to a number of cells. The frequency 

values of the partials at time t are established by calculating the arithmetic mean of the

43 In general, a partial is an arbitrary frequency component in a sound’s harmonic spectrum [Roads, 
1996].
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frequencies associated with the states of the cells of the oscillators. Each particle is 

then the result of the additive synthesis (see [Roads, 1996]) of the component sine 

waves.

The duration of the entire sound event is determined by the number of iterations of the 

algorithm and the duration of the sound particles. For example, 50 iterations of the 

process using particles of 10 milliseconds in length results in a sound event of 

duration 0.5 seconds.

This mapping method described above can be thought of as modelling the physical 

properties of some acoustic instruments -  the random initialisation of the automaton 

produces wide distribution of frequency values, which tend to settle to an oscillatory 

cycle. In many acoustic instruments, particularly those that are plucked or hit, the 

sound begins with a burst of frequency-dense noise before the higher partials die off 

and the sound settles into a semi-oscillatory cycle ([Roads, 1996]).

On first executing the program, the user is presented with the main screen, presented 

in Figure D1 below.
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Figure D l -  The main Chaosynth window.

At the top of the window lie the options relevant to the actual creation of sounds. 

These allow the user to audition a sound (either by clicking on the Note On button or 

by playing a note on a MIDI keyboard); create a sound file and matching video clip of 

the automaton using the Render button, as well as altering the overall volume and 

makeup of the sound.

Along the bottom is a tabbed window, which allows the user to alter all parameters, 

detailed description of which we omit. The interested reader is, however, free to 

examine the help files included with the software for the relevant information.

We do, however, illustrate the usage of the system as a melody generator.

In order to use Chaosynth in this way, the user must first alter the size of the 

individual granules. This may be achieved by clicking on the Granule Size tab.
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The Granule Size tab allows the user to control the total number of and the size of 

each of the granules over the duration of the generated sound.

The size of each of the granules over time is controlled by a graph, illustrated in 

Figure D2 below. The graph consists of a piecewise linear curve from which the 

length of each granule, given by the vertical axis, may be calculated as time 

progresses along the horizontal axis.
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Figure D2 -  The Granule Size graph.

In general, long granule lengths result in a more melodic sound, whilst shorter sizes 

produce ‘bubbling’ noises. Thus, in order to generate a sound which is in any way 

melodic, the granule lengths must be sufficiently large to be distinguishable as 

individual tones.

In Figure D2 above, the granules range in size from 0.05 seconds to 0.148 seconds. 

The sound consists of 100 granules, giving a total length of 10.891 seconds, as 

illustrated in the top right-hand corner of the screen. The leftmost node is positioned 

at time t = 0, and the rightmost at time / = 10.891 seconds.

Now, the user must choose the frequencies that will provide the notes of the melody. 

This is achieved by clicking on the Frequencies tab and is illustrated in Figure Dl.

As a sound is generated in Chaosynth, the harmonic spectrum is taken from 

configuration of this tab. For any given granule, a subset of this spectrum will be 

used, as determined by the ChaOS cellular automaton.



Each bar corresponds to a different note ranging from C-2 to B8. and up to 64 

different pitches may be specified. Now. since we are using Chaosynth as a melody 

generator, the harmonic spectrum defined by the bars is the set of pitches from which 

our melody will be constructed. Clearly, defining a greater number of pitches will 

result in a more diverse melody, but the chances of any individual pitch sounding at 

any time will be reduced.

Finally, the user configures the system to produce notes of varying amplitude using 

the Oscillators tab (see Figure D3).
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Figure D3 -  The Oscillators graph.

This is almost identical to the method used by the system for the input of note values. 

Here, however, the values in the bar graph refer to the amplitude of up to 64 

oscillators, each of which can produce any of the pitches defined in the frequency 

spectrum. More oscillators increase both the volume and the complexity of the sound, 

whilst the height of each bar determines the volume of the corresponding oscillator in 

decibels.

The melody may then be auditioned by clicking on the Note On button or by playing a 

note on a MIDI keyboard. If the settings are satisfactory the finished sound is created 

by clicking on the Render button.

In conclusion, as a software synthesiser, Chaosynth is excellent. Not only does it offer 

the user a chance to experiment with a new and unusual form of synthesis, it allows



for the creation of organic sonic textures that would have been difficult, if not 

impossible to create using other methods.

Generally speaking, however, the melodies created by the system are quite different in 

character from those with which the user may be familiar, even those ‘alien5 melodies 

generated by other algorithmic techniques. With their ‘bubbling5 character they are 

similar to the simplistic attempts to sonify the Mandelbrot set by equating the number 

of iterations of a colour band to a particular pitch, such as was offered as an 

interesting aside by software such as Vista Pro.

This is not intended as a criticism of the software, since its functionality as a melody 

generator is also incidental to its intended role, which is as a software granular 

synthesiser -  a role which it performs admirably. However, it is important to note this 

fact, because it does limit the system's usefulness as a melody generator.

Another hindrance to the system's use in this capacity is that it offers few composition 

tools and lacks the ability to export musical data in MIDI format. Thus all editing 

must be performed on sound files, which is not really a viable method for creating 

complex musical compositions in the traditional sense, although it undoubtedly works 

well in an electroacoustic setting, which is, after all, the particular area for which this 

product is intended.

Musinum

Musinum, the music in the numbers ([Kindermann, 1995]) is a formalised melody 

generator designed and implemented by Lars Kindermann.

At the heart of the program lies a very simple mapping which takes as input the value 

obtained from the following formula:

Current note = {{counter div speed) * step) + start.

In the above formula, counter is a computer-controlled counter; speed is a user- 

defined parameter that controls the rate at which counter changes; step is a user- 

defined parameter that controls the amount by which the counter increases, and start 

is a user-defined offset.
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In order to map the resulting integer to a musical note it is first expressed in binary 

notation and the number of Is counted. By default the pitch is chosen according to the 

following table:

Number of Is Pitch

1 c

2 d

3 e

4 f

5 g

6 a

7 b

Table D1 — The mapping from binary numbers to pitch used by Musinum.

The mapping can, however, be altered so that the resulting pitches belong to one of 

several scale types, including major, minor, twelve-tone and pentatonic.

Consider as an example the following:
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Decimal Binary Number of Is Resulting pitch

1 1 1 c

2 10 1 c

nJ 11 2 d

4 100 1 c

5 101 2 d

6 110 2 d

7 111 3 e

8 1000 1 c

9 1001 2 d

10 1010 2 d

11 1011 nJ e

12 1100 2 d

13 1101 2) e

14 1110 o e

15 1111 4 f

16 10000 1 c

Table D2 ~ Examples o f the mapping employed by Musinum.
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The mapping can be further extended by employing a variety of arithmetic operations 

to the integer Current note.

The software interface is clear and relatively straightforward. It should certainly 

present no problems to an experienced operator of the Windows system. The main 

display is presented in Figure D4 below.
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Figure D4 -  The main operating window o f Musinum.

At the top-left of the main window are three buttons, which are respectively used to 

begin and pause the composition process, and to reset the counter, which is positioned 

immediately beside the rightmost of the three buttons.

Below the counter is a slider that is used to control tempo. The indicated range is from 

60 to 600 beats per minute, although the author has discovered that the actual tempo is 

half as fast as that which is indicated.

Towards the top-right of the main window are two more buttons labelled Graph and 

Script.

307



The Graph button displays a graphical display (see Figure D5) of the generated music 

in a format which closely resembles that of the Key Edit window used by Cubase and 

other software sequencers.

1 1 Graphics

Figure D5 -  The Musinum Graphics dialog.

The Script button displays the Script dialog box (see Figure D6), which allows the 

user to specify a list of counter values. By clicking on these counter values the user 

can skip to that counter value -  effectively creating loops in the music.

Counter

00031
♦f  1 5 * ■ V- ■ . 1

a* 1
1 ' Solo |

00051

Dear |

fx Auto

Figure D6 -  The Musinum Script Dialog.

The box titled Voice 1 in the main window corresponds to the first of the 16 available 

voices. These are selected by clicking on the numbers 1 -  16 in the top-right of the 

main window.

Voices can be activated and silenced by clicking the checkbox labelled On in the top- 

left of the box. The default setting is mono-timbral note generation on Voice 1 only.

The Step and Start parameters relate to the values that are substituted into the note 

generation function described above. In addition, the Base and Modulo parameters are
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applied to the value Current Note after the calculation is complete: Current Note is 

taken modulo Modulo before being converted to base Base.

The Mode box allows the user to select between one of five rhythm modes, each of 

which creates rhythms depending on the previous pitch that was generated. For 

example, the default setting, New, plays a new note only if the result of the formula 

has changed: two or more successive equal notes are combined to form one long note.

The Note box allows the user to specify the root note which is played when the value 

of Current Note has a single c 1 ’ digit. The scale onto which the notes are mapped is 

selected using the Scale box.

The Hold option allows the user to control the way in which notes are sounded. The 

options are Normal, which is the default setting; Pedal, which mimics the effect of 

pressing the sostenuto pedal on a piano, and staccato, which performs notes of short 

duration.

The remainder of the parameters are concerned with the MIDI settings of the 

instrument that performs the music.

Setting the system in motion with the default settings results in the following:
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Figure D7 -  12 bars o f  music generated using Musinum’s default settings.

The result of this process, as can be seen from Figure D7, is reasonably pleasant, 

although quite repetitive. This could quickly lead to listener boredom, although in its 

favour the system does offer rudimentary facilities for imposing common musical 

devices such as repetition (through the use of scripts) and transposition (through 

changing the Note and Scale settings).

309



KeyKit

KeyKit, developed by Tim Thompson, is a music-specific programming language 

with a graphical user interface ([Thompson, 1996]). The system was designed 

specifically for manipulating MIDI data. As such, it is perhaps best regarded as a 

composition environment rather than an algorithmic composition system.

The full KeyKit system is similar in notion to the transformer module proposed in 

Section 6.2.1, and can be used for both algorithmic and realtime composition.

At the heart of the system lies the KeyKit language, which is both object-oriented and 

multi-tasking. The latter is particularly useful, since it allows the composer to apply 

several different functions or work with several different parts concurrently.

The system is fully active at all times, meaning that it will respond to MIDI input 

without being told explicitly when it will receive such information. This is particularly 

useful when working with the system in a realtime situation, since it means that if 

inspiration strikes at an awkward moment -  as it so often does! -  the computer will 

capture the performance, which might otherwise have been lost had the composer had 

to prime the system.

When the system is first loaded the user is presented with the main screen, which is 

illustrated in Figure D8 below.
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Figure D8  -  The main KeyKit window.

The prompt at the bottom of the screen is the KeyKit Console, and contains an 

interpreter that reads and executes KeyKit statements.

A complete graphical user interface is implemented in the user-defined library of 

KeyKit. The graphical interface is configured by the user. Elements may be added and 

removed by means of the KeyKit menu (see Figure D9), which is accessed by left- 

clicking with the mouse in the blank area of the window.

Moue____
Resize
Delete
Tools1->
Tools2->
Misc ->
Page ->
Window->

Figure D9 -  The KeyKit menu.

Each element of the interface is known as a tool, and may be accessed from one of the 

two Tools options on the menu.

The largest tool in the user interface is a full-featured multi-track sequencer. 

However, because of the open nature of the system and the large number of tools
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available, we cannot offer a complete definition of the package. Instead, we outline 

four of the tools the author found particularly useful.

The Blocks tool, which allows the user to manipulate a linear sequence of musical 

phrases, which are referred to as blocks.

The Chord Palette allows the user to play a selection of chords using the mouse. By 

left-clicking in a given cell, the user can play chords via MIDI. The rows of the matrix 

are labelled with the chord types, such as major and minor, and the columns are 

labelled with the chord keys.

The Controller tool allows the user to edit and send MIDI controller messages, such 

as volume and pan. The tool consists of 16 sliders, each of which relates to one of the 

16 available MIDI channels. In addition, a pull-down menu allows the user to select 

the type of controller message that is sent when the slider values are altered.

The Markov Maker tool is perhaps the most noteworthy of all the tools available in 

KeyKit. This is allows the user to generate music algorithmically using Markov Chain 

techniques. The actual implementation of the Markov Chain is quite different to that 

of CAMUS 3D’s. Here it is used to replicate existing music rather than generate as 

with CAMUS. The top half of the Markov Maker window displays an existing piece 

of music that is input to the system. KeyKit then analyses the MIDI data and creates a 

state-transition matrix which corresponds to this piece of music. Finally, the system 

uses the Markov Chain to create a ‘similar’ piece of music which is displayed in the 

bottom half of the window.

Figure DIO shows the above four tools in the KeyKit window.
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Figure DIO — The Blocks, Chord Palette, Controller and Markov Maker tools.

The results obtainable from the Markov Maker tool are good, although the 

compositions generally lack the musical structure required to make them truly 

convincing. The reason for this is almost certainly because the routine effectively 

models the statistical properties of the input data, but not the musical properties. Thus, 

although the new composition has similar statistical properties, it wanders aimlessly 

without having any particular direction.

As we saw earlier, this too is a limitation of CAMUS 3D. KeyKit, however, is more 

strongly equipped to counter this problem than our own system, since it is equipped 

with many tools for manipulating MIDI data.

Indeed, because the system operates on MIDI data, it can be used as an external 

transformer module of the type described in Section 6.2.1. Therefore the author 

strongly recommends KeyKit as a complementary package to CAMUS 3D. When 

used in tandem, with CAMUS 3D as a thematic generator and KeyKit as an well- 

specified arranger, the results can be quite powerful. Melancholia, presented on track 

x of the accompanying CD was composed in this way.

Unfortunately, due to licensing restrictions, it was not possible to include KeyKit on 

the accompanying CD-ROM. However, the software is available for download from 

http://www.nosuch.com/keykit.

http://www.nosuch.com/keykit


The Well-Tempered Fractal

The Well-Tempered Fractal ([Greenhouse, 1993]) is an algorithmic composition 

package that utilises fractals to generate compositions.

In terms of conception this package is undoubtedly the closest to CAMUS 3D. Robert 

Greenhouse conceived of the software after several years of experiments in generating 

fractally derived sounds. This led him to the following conclusions ([Greenhouse, 

1993]):

i.) Few people are willing to devote a substantial amount of time to listening to the 

music generated by the tens or hundreds of thousands of points needed to 

construct a fractal image. Generally speaking, a fractal image contains far more 

information than in a typical musical composition if we restrict data to pitch and 

duration. Thus, there is a degree of redundancy built into the system.

ii.) Listeners like some degree of comprehensible order -  music which is devoid of 

recognisable pattern quickly becomes uninteresting to most listeners simply 

because they fail to understand it.

iii.) Listeners do not like music which wildly jumps around or which is too 

predictably correlated, even if there are recognisable patterns present. What is 

needed a careful blend between the predictable and the unpredictable.

These design characteristics are shared to a great extent with CAMUS 3D, which was 

designed with the sole intention of producing pleasant music which is accessible to 

the majority of listeners.

Indeed, the similarities extend further to the philosophy of the system. Greenhouse 

notes:

“Foremost in my mind remains the principle that in the end the composer must retain 

artistic control over what he or she puts down on paper. Without this principle it is 

hard for me to accept what the program produces as art.

With WTF it is possible to produce a new full length composition in score notation in 

about 10 minutes, assuming that the appropriate sequencing and notation software is
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available. Possible, that is, if the user does nothing but convert WTF output into 

musical scores.

That means a total of about 48 new compositions in an average 8 hour day! It would 

not take long to overtake Telemann as the most prolific composer in history going at 

that rate. But the quality of the output would be as good as one could expect with only 

ten minutes work involved.

I have spent as much as perhaps 10-12 hours manipulating the data of a single fractal 

into a final composition before I was satisfied with the result. In the end the music 

was a composition which I could probably never have imagined without the aid of a 

computer, but which the computer could never have produced in such an elaborated 

form.”

When the program is first opened, the user is presented with the main screen (see 

Figure D ll).

Status 
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Figure D ll -  The Well-Tempered Fractal screen.
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The user can choose a fractal type with the function keys FI - F10, The coefficients 

for each function are randomised whenever they are selected to give different orbits 

each time.

The orbit points of the fractals are mapped to one of 21 scales, which include the 

major; aeolean; dorian; whole tone; diminished, and phrygian, and whose name is 

displayed in the lower hand corner of the screen. The user may select alternative 

mappings by using the left and right arrow keys.

The system employs “selective data extraction” in order to reduce the amount of data 

stored in the fractal image to an amount more suitable for a musical composition. To 

control this, the user defines a compression factor, which is the number of data points 

skipped by the mapping on each iteration. In other words, a compression factor of j  

means that only every /th data point will be converted to music.

By pressing the ‘M ’ user may audition the music that is generated in real time. The 

user begins writing a MIDI file, the maximum size of which is 100,032 bytes, by 

pressing CW \

The system also allows for the alteration of a number of other parameters, perhaps the 

most notable of which is Improvise, which allows the system to elaborate on the basic 

musical material that is generated. The function is fairly rudimentary, but is a 

welcome addition and helps to improve the system’s overall usefulness.

The music generated by the system is monophonic, which means that a considerable 

amount of work must be done by the user in order to create a finished composition. 

This is not necessarily a bad thing, particularly when we consider Greenhouse’s 

comments above. However, the monophonic output does mean that it is difficult to 

visualise the fractal music in a fuller context.

On an operating level, the program runs under DOS, and as a result, the interface 

arguably suffers to an extent. To be fair, the system is still very simple to use, and has 

a rudimentary graphical interface, but the DOS front-end gives the software the look 

and feel of a much older program, and the author believes this acts detrimentally.
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In addition, the software assigns filenames and paths (such as the MIDI output) 

automatically, which can make it difficult for the new user to find output files.

Band-in-a-Box

PG Music’s Band-in-a-Box is different from all other systems discussed here in its 

approach to algorithmic composition.

The system is designed to compose replicatively, that is to produce pastiche in a 

variety of preset and user-definable musical styles, and appears to be built around a 

knowledge-base of such styles44. The software is intended primarily as a means of 

auto-accompaniment, and thus does not generate melodies.

Upon launching Band-in-a-Box, the user is presented with the main composition 

screen (see Figure D ll)  from which all the functionality of the system is accessed. 

Along the top of the screen lies a series of buttons which relate to the instrumentation 

of the generated music. Below this is a two-tier keyboard, the top tier of which 

illustrates the melody of the composition in a manner similar to the keys of a player- 

piano. The other tier similarly illustrates the accompaniment. Next is a set of transport 

buttons which enable the user to record and playback music. The area in blue below 

this is a set of composition-specific parameters that relate to the stylistic content of the 

composition. Finally, lies the musical notepad, where information about the harmonic 

structure of the piece is entered and displayed.

44 Band-in-a-Box is a commercial release, and so detailed information about the composition algorithm 
that lies at its heart is not publicly available. The above discussion is based on the author’s experience 
of the software.
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Figure D ll -T h e  main Band-in-a-Box screen.

The interface employed by Band-in-a-Box is excellent and extremely intuitive to use. 

It is essentially a blend of software sequencer, similar in essence to Cubase, for 

example, and a musical notepad. Thus, anyone who has experience of music software 

should immediately feel quite comfortable using the software, and the use of standard 

chord notation to enter the structure of songs, as compositions within the software are 

termed, means that a detailed knowledge of musical score is not required to create 

complex musical pieces. The software has the ability to recognise a wide range of 

common chords.

Band-in-a-Box then uses the chord chart to create an arrangement of up to 7 parts and 

depends on the chosen musical style, key and instrumentation. Several styles, which
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are mainly geared towards contemporary popular music, jazz and blues are included 

with the software, as are facilities to edit existing styles and create new ones.

In order to create a new song, the user must first select, or create a musical style. This 

is done via the Styles menu.

Once a style has been selected for the song, the composer must decide 011 the chord 

structure. This is done by clicking 011 the notepad area of the screen and entering the 

chords in standard notation. Each box in the notepad corresponds to a complete bar of 

the music.

With the outline of the music in place, all that remains is for the composer to select an 

instrumentation and set the process in motion. This will generate a complete backing 

track using the chord structure and instrumentation that the composer has defined. 

Additional tools exist to increase the complexity of the music, such as the ability to 

add lyrics and annotations, and also to specify markers in the song to which the 

system will respond by subtly varying the accompaniment.

In order to complete the process the composer may wish to record a melody line to be 

played over the top of the accompaniment. This may be done in real or step time.

Generally speaking, the results obtainable from Band-in-a-Box are excellent, and 

although it is unlikely that a listener would be fooled into believing that a live band 

was responsible, convincing music can be created quickly and simply. Indeed, were 

the system to be used to create printed parts for a live band, it would be difficult to be 

sure that the piece had not been written in its entirety by a human composer.

The programming of the stylistic features in particular is of an exceptionally high 

standard. Using this package, it is possible for a composer, armed only with a little 

knowledge of instrumentation and arranging, to produce a fairly convincing pastiche 

of almost any type of music.

In addition, because the system offers extensive facilities for stylistic editing, there is 

plenty of scope for experimenting with hybrid styles, performing existing music in 

different styles and creating music with a similar stylistic content to that of, for 

example, CAMUS. Tracks 15 - 17 on the CD were created using a jazz harmonisation
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of Mozart’s Ah, Vons Dirais Je Mctmcml (Twinkle, Twinkle Little Star), and illustrate 

some of the stylistic features of the system.

However, the system is not perfect. One problem in particular is that all the given 

musical styles are fairly pedestrian, and the music tends to lack depth as a result. Of 

course, this can be overcome by defining one’s own styles, but in general, the system 

responds to similar input in similar ways -  rarely, if ever, does the system produce the 

‘happy accidents’ of music that live musicians frequently chance upon when jamming 

together.

Similarly, although the system can compose music in a number of different styles, the 

music is still geared towards the small band. It would be very difficult to create an 

invention in the style of Bach using the system, unless one wished to work a la 

Emerson, Lake and Palmer!

Overall, though, this type of package is invaluable to composers who must work to 

tight deadlines and who have in mind a particular style. The system is undoubtedly 

rooted firmly in jazz music, but is flexible enough to create songs in a much wider 

range of styles.
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Appendix

Publications and papers

Papers published in the proceedings of a refereed conference

Dynamical Systems and Applications to Music Composition and Sound Synthesis: A 

Research Report. Published in proceedings of the Journees d’lnformatique Musicale 

’97.

A Cellular Automata Based Music Algorithm: A Research Report. Published in 

proceedings of the IV Symposium of Brazilian Computer Music.

Music Composition by means o f Pattern Propagation. Published in proceedings of 

XII Colloquium on Musical Informatics.

Papers published in a refereed journal

Making Music with Algorithms: A Case-Study System. Published in Computer Music 

Journal, Vol. 23, No. 2.

Other publications

Review o f Brazilian Electroacoustic Music Concert, University o f Glasgow, Thursday 

13th November 1996. Published in the Computer Music Journal, Vol. 21, No. 2.

Audio Architect Tutorial. Published in ‘Computer Sound Synthesis for the Modern 

Musician’ by Eduardo Miranda (Focal Press, 1998. ISBN 0-240-51517-X).

CAMUS version 2.0 for Windows 95. Published on the cover-mounted CD of The Mix 

magazine, issue 45.

Death o f  a Pusher. Published as part of Jerome Joy’s Collage Jukebox project.

A Scottish Dance. Published as part of Jerome Joy’s Collage Jukebox project.

Four's Company. Published as part of Jerome Joy’s Collage Jukebox project.
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Electro. Released as part of MIT's CSound CD-ROM collection.
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