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Summary

The results in this thesis are organised in four chapters.

Chapter 1 is preliminary. We state the necessary definitions and results in w-
complexes, atomic complexes and products of w-complexes. Some definitions are restated
to meet the requirement for the following chapters. There is a new proof for the existence
of ‘natural homomorphism’ (Theorem 1.3.6) and a new result for the decomposition of
molecules in loop-free w-complexes (Theorem 1.4.13).

In Chapter 2, we study the product of three infinite dimensional globes. The main
result in this chapter is that a subcomplex in the product of three infinite dimensional
globes is a molecule if and only if it is pairwise molecular (Theorem 2.1.6). The definition
for pairwise molecular subcomplexes is given in section 1. One direction of the main
theorem, molecules are necessarily pairwise molecular, is proved in section 2. Some prop-
erties of pairwise molecular subcomplexes are studied in section 3. These properties are
the preparation for a more explicit description of pairwise molecular subcomplexes, which
is given in section 4. The properties for the sources and targets of pairwise molecular
subcomplexes are studied in section 5, where we prove that the class of pairwise molec-
ular subcomplexes is closed under source and target operation; there are also algorithms
to calculate the sources and targets of a pairwise molecular subcomplex. Section 6 deals
with the composition of pairwise molecular subcomplexes. The proof of the main theorem
is completed in section 7, where an algorithm for decomposing molecules into atoms is
implied in the proof.

The construction of molecules in the product of three infinite dimensional globes is
studied in Chapter 3. The main result is that any molecule can be constructed inductively

by a systematic approach. Section 1 gives another description for molecules in the product




of three infinite dimensional globes which is the theoretical basis for the construction.
Section 2 states the inductive process of constructing molecules. The justification for the
construction is given in section 3.

The main result in Chapter 4 is that a subcomplex in the product of four infinite
dimensional globes is a molecule if and only if it is pairwise molecular (Theorem 4.1.4).
In the first four sections, some basic concepts and properties have to be reestablished to
suit more general case. The organisation for the last three sections is parallel to that in
Chapter 2. The corresponding results for sources, targets, composition and decomposition

of pairwise molecular subcomplexes are also achieved.
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Introduction

In this work, we study the w-complexes of products of infinite-dimensional globes.

An n-category is an algebraic structure consisting of objects, morphisms between
objects, 2-morphisms between morphisms, and so on up to m-morphisms, subject to
various composition rules.

The study of n-categories started from 2-categories which generalise the idea that
natural transformations can certainly be thought as morphisms between morphisms. The
theory of bicategories (a generalisation of 2-categories) has successfully been established
by the wonderful work of, for example, Eilenberg and Kelly [10], Kelly [16], Kelly and
Street [17], and Mac Lane and Paré [18].

The concept of w-category or oo-category ([6, 22]) is a generalisation of n-category
with no restriction of ‘up to n’. It was originated by Brown and Higgins in [6], in
connection with homotopy theory. It was not long after the concept was introduced
that the researchers realised that a sort of pasting diagrams representing compositions in
multiple categories should be introduced. There are several approaches in the study of
such pasting diagrams with different names such as parity complexes, pasting schemes,
directed complexes or w-complexes. See Al-Agl and Steiner [1], Johnson [12], Kapranov
and Voevodsky [14], Power [19], Steiner [20, 21] and Street [23, 24]. We follow the
approach in Steiner [21] because the concept of w-complex is certainly the most general
one.

There is a concept of products of w-complexes defined in Steiner [21]. It is natural be-
cause the products of w-complexes give the tensor product of the underlying w-categories.

(For the study of tensor products of multiple categories, see the work of Gray [11], Al-Agl
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and Steiner [1], Crans [9], Joyal and Street [13], and Brown and Higgins [7]). It is shown
in paper [21] that the products of w-complexes are still w-complexes. Since the defini-
tion for the product is given by generators and relations, it is natural to seek explicit
descriptions for the products of w-complexes. This problem is difficult in general, since
the molecules, which are representatives of elements in the underlying w-categories, in
the products are difficult to recognise. We thus consider the solution for the products of
the simplest w-complexes, globes.

An n-dimensional globe u is the an w-complex representing the n-category with exactly
one n-morphism and two m-morphisms u,, and u}, for every non-negative integer m < n
such that the I-source dj u}, and I-target d;u), of uY, are u; and u; respectively for
[ <m < n and v = . The infinite dimensional globe is the obvious generalisation of
n-globes. The globes are basic w-complexes because they serves as the generators in the
standard representation of w-categories. (See Crans [8].) The product of, for example,
three infinite dimensional globes u X v xw is generated by elements of the form u® x vf X Wi
(called atoms) with relations resembling those in homological algebra. Thus an element
(called molecule) in the product of three globes is a union of atoms (called subcomplex).
One of the main result in this thesis characterises molecules in the product of three infinite
dimensional globes, in terms of such subcomplexes.

The study for the product of infinite dimensional globes is important not only because
infinite dimensional globe is a basic w-complex, but also because it may help to understand
the products of general w-complexes. According to the approaches used in paper [21],
it seems that the product of infinite dimensional globes has a sort of universal property
which may be used to study product of general w-complexes, although we have not yet
been able to describe this universal property precisely. Moreover, the explicit description
of products of infinite dimensional globes may also help in better understanding some
work in weak n-categories. (See Baez and Neuchl [4], and Kapranov and Voevodsky
[15.)

For the product of two infinite dimensional globes, there are descriptions in paper

[23] and [21]. The description in [21] is more explicit in the way that the molecules are
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easily recognised and constructed, and there are explicit algorithms to calculate sources
and targets of a molecule and the composites of molecules, there is also an algorithm to
decompose a molecule into atoms. The main work in this thesis is to extend these results
to products of three and four infinite dimensional globes.

As stated above, the construction for the product of two infinite dimensional globes
is fairly clear. So it is natural to reduce the problem for the product of three infinite
dimensional globes to that of two infinite dimensional globes. This consideration leads
to the idea of describing a molecule in product of three infinite dimensional globes by
projecting it to the (twisted) products of two infinite dimensional ones. This results in the
definition of pairwise molecular subcomplezes in the product of three infinite dimensional
globes. It is proved that molecules are exactly pairwise molecular subcomplexes.

A more explicit description for molecules in the product of three infinite dimensional
globes is influenced by [23] and [21]. Some conditions in this description come from the
requirement that a molecule should be well-formed, while some come from the comparison
with the description of molecules in the product of two infinite dimensional globes. A
crucial concept is the adjacency of maximal atoms in a subcomplex. This description has
some new features distinguished from that for the product of two infinite dimensional
globes. Some restrictions must be given because of the middle factor. ¥or example, if
there is a pair of distinct maximal atoms ug' x ufll xwi! and ug? X vf; X w2 in a pairwise
molecular subcomplex such that 4; > iy, min{ji, jo} > 0 and ki < kg , it is required that
there is & maximal atom uf x vf x wf, such that ¢ > 49, 7 > min{j1,jo} — 1 and k& > k.

After the descriptions of molecules in the product of three infinite dimensional globes
are proposed, we have to prove that pairwise molecular subcomplexes are closed under
source and target operations, and they are also closed under composition operations. The
algorithms for calculating the sources, targets and composites of a pairwise molecular
subcomplex are algo studied.

To prove that pairwise molecular subcomplexes are molecules, we have to show that
they can be decomposed into atoms. To do this, a total order, called natural order,

on the set of atoms in the product of three infinite dimensional globes is introduced.
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The natural order is designed so that the maximal atoms of dimensions greater than the
frame dimension p (see paper [20]) in a pairwise molecular subcomplex can be listed as
Aty Az, ooy Ag with Ay Ay C dFA, Ndy A forall 1 < s < ¢ < 5. This means that
the decomposition approach in paper [20] applies. In the proof that pairwise molecular
subcomplexes are molecules, there is also an explicit algorithm to decompose a molecule
into atoms.

At this stage, we have satisfactory descriptions for the product of three infinite di-
mensional globes. However, these are still descriptive. From these descriptions, it is
fairly easy to check whether a given subcomplex is a molecule. But we still cannot
construct all the molecules. Our next goal is to find a systematic way to construct all
molecules. The approach is based on the middle factor. According our results, we can
construct any molecule, inductively, by listing its maximal atoms as A1, Ag, ..., Ag with
Ar = Ui X vﬁ’" x wy” such that j; > .-+ > jr and such that 4, > ¢4y when 1 <r < R
and j, = jp41. In more detail, let maximal atoms Ay, ..., A, be an initial segment of the
list. We can easily determine whether Ay U---U A, is already a molecule and determine
the set of possible next maximal atoms A.1, so that all the molecules can be constructed
inductively.

Up to now, we have a completely satisfactory theory for the product of three infinite
dimensional globes.

Our discussion for the product of four infinite dimensional globes is roughly parallel
to that for the product of three infinite dimensional globes. Since the construction of the
product of three infinite dimensional globes, by our results, is thought to be clear, we
propose that the molecules in the product of four infinite dimensional globes should be
the subcomplexes such that they are projected to the molecules in the (twisted) products
of three infinite dimensional globes. This results in the basic definition for pairwise
molecular subcomplexes in the product of four infinite dimensional globes.

To work out the more explicit description (the one without using projection), some
basic concepts, for example, the definition of adjacency and projection mazimal must

be reestablished because of another middle factor. Compared with the description for




the molecules in the product of three infinite dimensional globes, this description is less
explicit. However, it is good enough to check whether a given subcomplex in the product
of four infinite dimensional globes is a molecule. Best of all, both descriptions for the
molecules in the product of four infinite dimensional globes can easily be stated for those
in the product of more infinite dimensional globes. This may lead us to further study the
product of more infinite dimensional globes.

After the basic concepts and tools are properly established, the rest of the work very
much resembles that for dealing with the product of three infinite dimensional globes: the
closedness of molecular subcomplexes under the source, target and composition operations
are proved, algorithms for the calculations of sources, targets and composites are given,
and in the proof that molecular subcomplexes are exactly molecules, an algorithm for
decomposing molecules into atoms is also established.

Unfortunately, we have not been able to work out the construction of molecules in
the product of four infinite dimensional globes. The difficulty remains that there are two
‘middle’ factors. Thus our theory for the product of four infinite dimensional globes is
not as satisfactory as that for the product of three infinite dimensional globes.

We end the introduction by raising some questions following this work.

1. What are the explicit descriptions for the product of n infinite dimensional globes
with n > 47

We have proposed some fairly reasonable explicit descriptions for the molecules in the
product of n infinite dimensional globes which resembles very much that for the product
of four infinite dimensional globes. Some proofs in the study of the product of four infinite
dimensional globes are already quite complicated, and the problem is how to generalise
them. We feel pretty confident about working this out.

2. How can one construct the molecules in the product of four infinite dimensional
globes?

As stated above, the construction of the product of three infinite dimensional globes
is satisfactory because there is systematic way to construct any molecule in the product

of three infinite dimensional globes. However, we have not yet worked out the analogue
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for the product of four infinite dimensional globes. The difficulty remains how to handle
the two ‘middle’ factors. We still have no idea of what the construction should look like.

3. What about the explicit descriptions for the product of general w-complexes.

As stated at the beginning of the introduction, the study of the product of infinite
dimensional globes may help to understand products of general w-complexes. Following
this idea, for example, the construction of such w-complexes as (u1Fpu2) X v X w, where
U1, Ug, v and w are infinite dimensional globes, must firstly be studied before one can
carry on the study for the general problem.

The following are two questions which we have not had time to think of deeply.

4. What about the construction of the joins of infinite dimensional globes (simplexes)?

5. What about the product of globes in the weak n-categories or weak w-categories?

(for the definition of weak n-categories and weak w-categories, see [2], [3], [5] [22] and

[25]).
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Chapter 1

Preliminaries

In this chapter, we give some basic definitions and discuss some properties of w-complexes
and products of w-complexes which are used throughout the thesis. All the results are
based on papers [21] and [20], although some treatments are different from those in these
two papers. In the last section, we give a new decomposition theorem which will be used
later in the thesis.

Throughout the thesis, non-negative integers are denoted by 4, 7, k, I, m, n, p, g, etc.

We also use «, 8, v, 0, T, €, w, etc, to denote signs +.

1.1 w-complexes

In this section, we define w-complexes and give some local descriptions of w-complexes.
It is well known that a small category can be described purely by its morphism set
by regarding objects as identities.
Informally, an w-category is a set X which forms the morphism set of a small category
Cy, for every non-negative integer n such that every element z in X is an identity in some
Cn and 0b(Cy) C 0b(Ch) C ..., where 0b(C,,) denote the set of objects (identities) of C\,.
We also require that the categorical structures commute for every pair of non-negative

integers. The formal definition is as follows.

Definition 1.1.1. A partial w-category is a set X together with unary operations dj,

df, di, df, ... and not everywhere defined binary operations #g, #1, ... on X such that
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the following conditions hold for all elements z, z', y, ¥’ and z in X, all non-negative

integers m and n, and all signs « and 3:
1. if z#,y is defined, then d}tz = d_y;

2.
ddx ifm<n,
dex i m > n;
3. d z#.z = ztadl x = z;

4. if o4,y is defined, then

d2 (s#ny) = d2x = d%y for m < n,
dy (z#ny) = dyz, d (s#ay) = dly,
d2 (z#,y) = d&z#,.d%y for m > n;

o

(z#nY)#nz = t#n(yFa2) if either side is defined;
6. (2#ny)Fm(T'#0y) = (#Hm ) #n(Y#my') if m < n and the left side is defined;

7. for every x € X there is a non-negative integer p such that djx = z if and only if

n > p.

'The unique non-negative integer p in condition 7 is called the dimension of z, denoted

by dim z.

Example 1.1.2. There is a partial w-category X = {a, b, z,y} such that dima = dimb =

0,dimz =dimy =1, dyz=dfy =a and df z = dyy = b.

Definition 1.1.3. Let X be a partial w-category. If dtz = d_y implies that z#,y
is defined for all elements z, ¥ in X and for all non-negative integers n, then X is an

w-category.

From Example 1.1.2, a partial w-category is not necessarily an w-category.
It is natural to consider representing a partial w-category X by a suitable ‘pasting

diagram’. The ‘pasting diagram’ is a sort of cell complex such that the indecomposable
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elements of X are represented by atoms, the operations d2 are represented by parts
of boundaries, composites are represented by well behaved unions, elements in the w-

category are represented by subcomplexes which are well-behaved unions of atoms.

Example 1.1.4. There is an w-category X with the following presentation: there are

generators a, z, ¥ and relations
dima =1, dimz = dimy =2, dfz =dyy, dfa=dyz = dyy.

Then X has 16 elements which can be represented by subcomplexes of the diagram in

the following figure:

- ™
v
U 2 v z w
iz
. b J

There are three cells a, x, y representing the generators; three additional 0-cells u, v, w
representing dya, dja = dyx = dyy and dfz = dJy; three additional 1-cells b, ¢, d

representing dy 2, df z = di'y and d;}'y; and the seven subcomplexes

zUy, aUb, alUc, aUd, aUz, aUy, aUzUy
representing
z#1y, atteb, affoc, afted, adheT, adtoy, afo(zH1Y).
In this figure, dg, df, di, di are represented by left end, right end, bottom and top

respectively; for example, di @ = a because dima = 1, and

di [ato(x#19)] = di adtodf (z#1y) = a#todiy = akod.

Suppose that z#,y is a composite in a partial w-category, and suppose that z and y
are represented by complexes in a pasting diagram. We then have dtz = d,y = 2, say,

and z must be represented by a subcomplex of the intersection zNy. In fact our intuition
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requires z to be the whole of x Ny. For we want z to be at one extreme of z and at the
opposite extreme of y, so = \ 2z and y \ z should be on opposite sides of z, and therefore
disjoint.

For an example of what can go wrong if this requirement is not satisfied, let X be the

partial w-category in Example 1.1.2. This partial w-category can be represented by the

following diagram

a

x
TN ;
\?/

where the composites z#oy and y#ox do not exist. We argue that the composites like
these, if exist, would lead to an unsatisfactory behaviour in such pasting diagrams. Sup-
pose otherwise that the composites z#¢y and y#£ox both exist. They are distinct because
dy (z#0y) # dg (y#ox), so it is not satisfactory to have them both represented by the
union z U y. This unsatisfactory behaviour arises because x Ny strictly contains a and
strictly contains b.

These considerations lead to the following definition.

Definition 1.1.5. An w-complezis a set K together with a family of subsets called atoms

and a family of subsets called molecules such that the following conditions hold.
1. The molecules form a partial w-category.

2. Let z and y be molecules. Then x#,y is defined if and only if z Ny = dtz = dy;
if x#,y is defined, then z#,y =z Uy.

3. Every atom is an molecule; every molecule is generated from some atoms by applying

composition operations #g, #1, . ...
4. The set K is the union of its atoms.

5. For an atom a and a sign «, let 0%a be given by

- dy_ja ifdima=p >0,
a =

0 if dima = 0;




let the interior of a be the subset Int a given by
Inta=a\ (0 aUd"a).
Then interiors of atoms are non-empty and disjoint.

Example 1.1.6. There is an w-complex ug called 2-dimensional globe. It is a closed
disk. The boundary of the disk consists of two semicircles u; and uj intersecting at two
distinct points ug and ud. The atoms are ug itself, the two semicircles vy and u;, and
the two distinct points uy and ug. The operators df, are such that df uy = uf, for m < 2
and dg uf = ug . It is easy to see that all the molecules in uy are atoms, and they form an

w-category. The w-complex ug can be represented by the following diagram.

Similarly, there is an w-complex us called 3-dimensional globe. It is a closed 3-
dimensional ball. The boundary sphere consists of two hemispheres u, and uj inter-
secting in a circle, and the circle consists of two semicircles u] and u{ intersecting in two
distinct points uy and uf. The atoms are the ball ug itself, the two hemispheres u; and
uy, the two semicircles ] and uf, and the two distinct points uy and ug. The operators
df, are such that d?us = uf, for m < 3 and dfu2 = uf for m < n < 3. It is easy to see
that all the molecules in uz are atoms, and they form an w-category.

As another example of w-complex, let K be a 7 element set {es,e5,e5, e, e, e5, e }-
The atoms are &5 = {es,e;,ed,er,ef,eq,ef}), & = {e;,el,el,er,ef}, &5 =
{e3.er,e 65,65}, & = {er,eq,eq ), & = {ef,eq,eq}, & = {eg}, and & = {ef}-
The operators d2, are such that df,&; = &% for m < 3 and d8e® = &° form <n < 3. It

turns out that all the molecules in K are atoms, and they indeed form an w-category.

Example 1.1.7. There is an w-complex u called p-dimensional globe such that the atoms

in u can be listed as u,, u, 1, w4, ..., uy, ug such that dfu, = uf, for m < p and
déu® = uf for m < n < p. It is easy to check that all the molecules are atoms in

p-dimensional globes. We also denote the p-dimensional globe by wu,.
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For instance, both of the subcomplexes u3 and K described in Example 1.1.6 represent
the 3-dimensional globe. We are going to see that they are equivalent.

Similarly, there is an w-complex u called infinite dimensional globe with exactly two
n-dimensional atoms u; and u} for every non-negative integer n, such that d?u2 = u?,
for m < n. It is easy to see that all the molecules in a globe are atoms, and they form
an w-category.

In the thesis, an atom u{; in an infinite dimensional globe w is also denoted by u[n, ).
We now state some results about local description of w-complexes in [21].

Proposition 1.1.8. 1. Let x be a molecule in an w-complex. Then dzx C z for every

sign o and every non-negative integer n.

2. Let a be an atom in an w-complex. If 3%a # 0, then 0%a 1is a molecule and dim 0%a <

dima for every sign a.

Proposition 1.1.9. Let { be an element in an w-complez. If a s an atom of minimal

dimension such that € € a, then & € Inta.

Proposition 1.1.10. Let x be a molecule and a be an atom in an w-complex. Thena C z

if and only if IntanNz # (.
Proposition 1.1.11. Let x be a molecule in an w-complez. Then

dox = U{a i aCx and dima < n}\U{b\a"‘b: bC z and dimb = n+ 1},
where a and b are atoms.

According to this proposition, we can see that an element £ € d%z if and only if
(1) £ € a for some atom a C z with dima < n; and (2) for every atom b C z with
dimb=n+1,if £ € D, then £ € d5b.

As an example, we use Proposition 1.1.11 to verify that, in Example, 1.1.4
di (afFo(z#1y)) = a#eb. By the above theorem, di (a#to(z#1y)) is the difference of
the union a Ub U cU d and Int d U Int c. Thus di {a#o(z#1y)) = a U b = aFeb.




Corollary 1.1.12. An w-complez is determined by its atoms , their dimensions and the

functions 0~ and 8%,

Definition 1.1.13. Let X and Y be partial w-categories. A homomorphism f: X =Y

is a map such that
1. f(dlz) = d} f(=z) for all z € X, all non-negative integers n and all signs +;

2. f(z#ny) = f(2)#.f(y) whenever z#,y is defined.

Example 1.1.14. Let « be a infinite dimensional globes. Let u, be a p dimensional
globe. It is evident that there is a homomorphism f3' : M(u) = M(u,) of w-categories
such that for all atom u®* € M(u)
ud when i < p,
o (u) =
up When ¢ > p.
We end this section by introducing a definition of equivalence of w-complexes.
Let K be an w-complex. A subcomplez is a subset of K which can be written as a
union of atoms. The set of all subcomplexes of K is denoted by C(K); the set of all atoms

of K is denoted by A(K); The set of all molecules of K is denoted by M (K).

Definition 1.1.15. Let K and L be w-complexes. We say K and L are equivalent if
there exists a map f : C(K) — C(L) called an equivalence of w-complezes such that the

following conditions hold:
1. If a € A(K), then f(a) € A(L). Moreover, f|ax): A(K) — A(L) is a bijection.
2. If Ais a set of atoms, then f(|JA) =J{f(a): a € A}.
3. If a € A(K), then dim f(a) = dima.
4. If a € A(K), then f(0%a) = 98*f(a) for a = +.

It is easy to check that the geometric description and combinatorial descriptions for 3-
dimensional globes in Example 1.1.7 are equivalent. From this, we may use the geometric

model to understand the combinatorial model and vice versa.
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We are going to prove that an equivalence of w-complexes preserves molecules. We

need several technical lemmas.
Lemma 1.1.16. Let K be an w-complez. If c1,¢y € C(K), then c; Ny € C(K).

Proof. It suffices to prove that aNb is a subcomplex of K for every pair a and b of atoms
in K.

Let £ € anb. Let ag be the atom of the minimal dimension with £ € a,. According to
Propositions 1.1.9 and 1.1.10, we have a; C anbd. It follows that anb = J{as : & C anb}.

Thus a N b is a subcomplex of K, as required. a

Lemma 1.1.17. Let f : C(K) — C(L) be an equivalence of w-complezes. If c1,cp € C(K),
then f(01 n (32) = f(Cl) n f(Cg).

Proof. Since f preserves unions of subcomplexes, we have f(c;) C f(cp) for a pair of
subcomplexes ¢; and ¢; in K with ¢; C ¢. Note that f: C(K) — C(L) is a bijection, it

follows easily from Lemma 1.1.16 that f(c; Ne2) = f(e1) N f(ca), as required. O

Lemma 1.1.18. Let f : C(K) — C(L) be an equivalence of w-complezes. If z € M(K)
and f(z) € M(L), then f(d}z) = d} f(x).

Proof. Suppose that b € A(L) and Intd C f(d}z). Then there exists a € A(K) with
b = f(a) such that a C d}z. Thus a C = and dima < p. It follows that b = f(a) C f(z)
and dimb = dim f(a) = dime < p. Now suppose that ¥’ € A(L) with dim¥' = p+ 1
such that Intb C b'. Then there exists a’ € A(K) such that f(a') =¥ It is evident that
dima’ =p+ 1 and a C a’. So we have a C 9%a’. This implies that b = f(a) C f(da') =
07f(a") = @"V'. According to Proposition 1.1.11, we have Intb C d} f(x). It follows that
f(d3z) C dY f(z).
By a similar argument, we can prove the reverse inclusion.

This completes the proof. (W

Proposition 1.1.19. Let f : C(K) — C(L) be an equivalence of w-complezes. If © €
M(K), then f(z) € M(L). Moreover, f|mx): M(K) — M(L) is a homomorphism of

partial w-categories.




Proof. We give the proof by induction.

Firstly, if a € M(K), then f(a) € M(L) by the definition of equivalence.

Suppose that m > 1 and f(z) € M(K) if z can be written as a composite of less then
m atoms. Let z be an atom which can be written as a composite of m atoms. We must
prove that f(z) € M(L).

Indeed, it is evident that = has a proper decomposition & = y#,z into molecules
such that y and z are molecules which can be written as a composite of less than p
atoms. By the inductive hypothesis, we have f(y) € M(L) and f(z) € M(L). To
prove f(z) € M(L), it suffices to show that the composite f(y)#,/(2) exists and that
Fly#o2) = F()#f (2)-

Since x = y#f,z, we have d;,“y = d,z = y Nz By the previous lemmas, we get
A1) = Fldfy) = f(dyz) = dy f(2) = F(u) O f(2). Therefore f(y)#,/(2) is defined
and f(y#p2) = f(yUz) = f(y) U f(2) = f(y)#pf(2), as required.

By a similar argument, we can show that f preserves composition operation. Thus
f i M(K) — M(L) is a homomorphism of partial w-complexes.

This completes the proof. O

1.2 Atomic Complexes

Corollary 1.1.12 shows that it is possible to describe an w-complex by its atoms and
the boundary operators 9~ and d*. This leads us to a concept consisting of atoms and
boundary operators which we call an atomic complex.

In this section, we first define atomic complexes and state some properties of atomic
complexes. Then we state a necessary and sufficient condition for an atomic complex to
be an w-complex. From this theorem, we will see that the results in paper [20] for loop-
free directed complexes can be generalised to loop-free w-complexes. We shall discuss this

in section 1.4.

Definition 1.2.1. An atomic complez is a set K together with a family of subsets A(K)
called atoms and functions dim, 8~ and 8% defined on A(K) such that the following




conditions hold.

1. For every atom a, dima is an non-negative integer called the dimension of a.

2. If a is an atom and « is a sign, then 8%a is a subset of a such that 8%a is a union

of atoms of dimensions less than dim a.
3. K =|JAK).

4. For an atom a, let Int @ = a\ (8~aU8"a). Then the interiors of atoms are non-empty

and disjoint.

Proposition 1.2.2. w-complezes are atomic complezes.

To give the necessary and sufficient conditions for an atomic complex to be an w-
complex, we need to define operators d$ on an arbitrary subset of K. This can be given

by generalising Proposition 1.1.11.
Definition 1.2.3. Let K be an atomic complex.
o If z C K and a = +, then
diz=| J{a: aczand dima <n}\| J{6\6°: bC wand dimb=mn+1},
where ¢ and b are atoms.

e If + C K and y C K, then the composite z#,y is defined if and only if s Ny =
dtz =d y; If z4t,y is defined, then z#,y =z Uy.

e A molecule is a subset generated from atoms by finitely applying the composition

operations #, (n =0,1,...).

With the definition of the operators d$ on an arbitrary subsets of w-complexes, we

can define finite dimensional subcomplezes.
Definition 1.2.4. Let K be an atomic complex.

e [f z is a union of atoms in K, then z is a subcomplez of K.
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e Let z be a subcomplex of K. If there exists an integer n such that ¢ = d;z = d} =,

then x is finite dimensional.

Proposition 1.2.5. Let a and c be distinct atoms in an atomic complez. If Int anec # 0,

then dima < dime and a C 0% for some sign .

Proposition 1.2.6. Let z and y be subcomplezes of an atomic complex. If y C z, then

dex Oy C dy.

Proposition 1.2.7. Let x andy be subcomplezes of an atomic complex. Then d(yUz) =

(diy Ndgz) U (dry \ 2) U (d7z \ ).

Now we can state the necessary and sufficient conditions for an atomic complex to be

an w-complex.

Theorem 1.2.8. Let K be an atomic complex. Then K is an w-comples if and only if

the following conditions hold.
1. If a is an atom and dima > 0, then 0% s a molecule for every sign «.

2. If a s an atom and dima = p > 1, then dg_zd;}_lo; = dg_za for every pair of signs

a and .

Example 1.2.9. Let w’ be the atomic complex with atoms w’[k,e] (k = 0,1,--- and
¢ = =) such that dim w’/[k,e] = k and d]_,w'[k,e] = w'[k — 1, (=)'9] for k > 0. It is
clear that w” satisfies conditions in Theorem 1.2.8. Thus it is an w-complex. It is also
easy to see that the w-complex w’ is equivalent to infinite dimensional globe w under an

obvious equivalence of w-complexes sending w’ [k, (—)’¢] to w(k, €].

Lemma 1.2.10. In an w-complex, if = is a subcomplex, then diz can be wrilten as a

union of interior of atoms.

Proof. Suppose that £ € dfz. Let a; be the atom in z such that { € Intas. Then
dima; < p. We claim Inta; C diz. Indeed, for every n € Intag, we have 7 € a.
Moreover, suppose that n € b for an atom b C z with dimb = p + 1, then { € a; C b.

Hence ¢ € djb by Definition 1.2.3. Since d3b is a molecule, we have a; C d;b. Therefore

11




n € dpb. It follows from Definition 1.2.3 that n € d}z for every n € Inta,. Therefore
Int a; C diz.

Now it is evident that

dow = U Int a;
feddx

which shows that d%z is a union of interiors of atoms.

This completes the proof. 0

Lemma 1.2.11. In an w-complez, let x be a subcompler and a be an atom. Then Inta C

d2z if and only if
1. a Cz and dima < p;
2. Ifa C b C =z for an atom b C o with dimb=p+ 1, then a C d2b.

Proof. This is an direct consequence of Lemma 1.2.10. |

1.3 Products of w-complexes

In this section, we give the product construction for w-complexes. Some treatments are
different from (but of course equivalent to) those in paper [21]. This applies in particular

to structures of products of two infinite dimensional globes.

Proposition 1.3.1. Let K and L be atomic complexes. Then the product K x L of sets

is made into an atomic complez as follows. The atom set A(K x L) is given by
AK xLy={axb: ae€ AK) and b € A(L)};
the structure functions are given by
e dim(a x b) = dima + dimb;
o 87(a xb) = (8% x b) U (a x 8)"""7p),
The atomic complex K x L is called the product of K and L.
Theorem 1.3.2. Let K and L be w-complezes. Then K X L is an w-complet.
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Example 1.3.3. Let u and v be infinite dimensional globes. Then the product u x v of
sets is made into an atomic complex as follows: the atoms are of the form u$ x fuf with 7
and j run over all non-negative integers, and « and £ run over all the signs; the structure

functions are given by

o dim(uf x v; B =i+

o O7(ug x vf) = (u]_, x vf) U (ug x U(-_)iv).
By Theorem 1.3.2, u x v is actually an w-complex.

It is straightforward to verify that the product construction is associative. Therefore
we can write a product of three w-complexes K, L and M as K x Lx M. By Theorem 1.3.2,
The product K x L x M is still an w-complex. In particular, the atom set A(K x L x M)
is given by

AKX Lx M)={axbxc: ac A(K) and b € A(L) and b € A(M)};
the structure functions are given by

e dim(a x b X ¢) = dima + dimb + dim;

o 3(axbxc)=(8"axbxc)U(axdD™ b x c)U(ax b x §OTHImry),
Example 1.3.4. We now consider the product of three 1-dimensional globes u; X v; X w;.
Since the 1-dimensional globe is represented by the closed interval, the product uq x vy X wq
is a cube. Recall that the 1-dimensional globe consists of 3 atoms. So the product
uy X vy X wy consists of 27 atoms. The following figure illustrates the source boundary

O (ur x vy X wy) = (ug X vy X wy ) U (ug X v X wi) U (ug X vf X wy)

of the cube, where A = u; x v X wy, B =1 x v; X wy and C' = ug X v X wy.

\/\

AN




We can identify edges and vertices. For example, the edge
b=BNC=(u; xv Xxwy)N(ug X v Xwy)=1uy Xv Xwy

and the vertex
anb=(uy X vy Xwy)N(ug Xv Xwy) =1y Xvy Xwy.

We can then check that the directions of the edges and vertices are as shown in the figure.

For example, since
07b=0 (ug xv1 Xwy) =uy Xvyg Xwy =anb

and
OFb=0%(uy x v x wy) =uy x vy xwy =bNe,

the direction of b is as shown in the figure. Similarly, since
0"B =07 (ur Xxvy xwy) = (ug X v1 Xxwy) U (ug X v§ Xxwy)=bUe

and
0B = 0wy x vy X wg) = (ug X vy x wy) U (wg X vy X wy) =aU f

Thus the direction of B = u; X v; X wy is as shown in the figure.

From the diagram of u; x v; X wy, we can see that all the subcomplexes in the following

list are molecules.
1. uy X V1 X wq,
2. up X v X wy,
UL X Vg X 'UJ(-;.,
Uy X vy X wi,
U1 X vy X wy,
’U,a X U1 X Wy,
ud X vy X wy,

Uy X vy X Wy,

© L N e T W

uy X vy X wy,

14




10.
11.
12.
13.
14.

16.
17.
18.
19.
20,
21.
22.
23.
24.
25.
26.
27.
28.
29,
30.
31.
32.
33.
34.
35.
36.
37.
38.

g X

X

X

0
(’I,Ll X X w[{

(U X v X W

X ™ X’U)l)U(’lL1 X 'U()_ le))

X v X wy) U (ug X vy X wy),
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39. (ug x v X wy ) U (w1 X vy x wy),
40. (ug X v1 X wy) U (w1 X vy x wg),
41, (ug X vy X wF) U (uy X v x wy),
42. (uf X vy X wy) U (u1 X vy X ,
43. (ug ;

0)
)
wy )
uy X v X wy ) U (u1 X vf X wy)
44. (ug x v X wd) U (ug X vy X wy),
45. (ug X v X wy ) U (ug X vi X wy),
46. (ug X vy X w) U (uf X vy X wy),
47. (uf x v1 X wy) U (ud x vf x wy),

48. (ug X v1 X wy) U (u1 X vy X wy ) U (ug x v§ x wy),
49. (ug x vr X wi) U (w1 X vy X wy ) U (ud x vy x wi),
50. (uy X v1 X wy) U (ug X vg x wi) U (ug X v x wy),

51. (uy x vy X wi) U (ur X vi x wi) U (ug x vy x wy),

52. (ug x vg X wi) U (v x vy x wi) U (ug x vy x wy),

53. (ug X v X wy) U (w1 X vy x wy) U (ug x vy x wy),

54. (uy X vy X wg) U (ug X vy X wy),

55. (w1 X vy X wy) U (uf x vy x wy),

56. (uyp X vi X wi) U (ug X vi x wy),

57. (ug X v§ X wy ) U (ug X v x wy),

For example, from the figure, one can see that the 31st subcomplex AUB = (u X v1 X
wg ) U (ur X v X wq) in the list can be decomposed into atoms as (btgA)#: (B#od) =
[(ug % v1 X wy)#o(ur X vy X wi)]#1[(ur x v1 X wy )Fo(ug x vF x wy)].

One can show that every composite of molecules in the list is still a molecule in the
list. So we have a complete list of the molecules in u; X v1 X wy.

In chapter 3, we will show how this list is compiled and how to compile such lists for

the molecules in the products of any three finite dimensional globes.

Theorem 1.3.5. Let K and L be w-complexes. Let x and y be molecules in K and L

respectively. Then x X y is a molecule in K X L and
(@ x y) = (dlz x d§ "My U (dl_ym x &) U U (dg x dly).
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The following Theorem is implicit in Paper [1]. To avoid introducing more concepts,

we give an independent proof.

Theorem 1.3.6. Let K; and L; be w-complezes such that M(K;) and M(L;) are w-
categories for 1 < i < r. Let f; + M(K;) — M(L;) be homomorphisms of partial
w-categories for 1 <4 <r. If M(Ky x -+ x K,) and M(Ly x - -+ X L,) are w-categories,
then there s a natural homomorphism f : M(Kyx++-x K,) = M(Ly X --x L.} of partial

w-categories such that f(ay x -+ x a;) = fi(a1) x -+ x fu(a,) for all atoms a; x - -- X a,

mn Ky x o x K.

Proof. The arguments for different choices of 7 are similar. We give the proof for r = 2.
Let F': C(K) x K3) — C(Ly1 x L) be the union-preserving map such that F'(a; x ag) =
fi(a1) x fa(ag) for all atoms a; and ay. To prove the theorem, it suffices to show that
| F(M(Ky x K3)) € M(Ly x Ly) and Flar, xxg) @ MK X Kz) = M(Ly x Ly) is a
’ homomorphism of partial w-categories.
Firstly, we verify inductively that F'(z) is a molecule and F'(d}z) = d}F(z) for all
non-negative integers n, all signs v and all molecules z in K; x K.

To begin the induction, let a; x ay be an atom in K; X Ky. Then F(a; X ag) = fi{a1) X
f2(az) by the definition of F. Since f;(a;) C M(K;), we have F(a; x ag) C M(K; x K5)
by Theorem 1.3.5. Moreover, by Theorem 1.3.5, we have

F(d(e % a2))
; = F((dlay x dS7"ag) U (d)_yay x S Tap) U U (dJar x dlas))
= (fuldjen) x fo(d§ " a)) U (Fuld]_y01) X fo(d{" Taz)) U+ U (fa(dfar) x fold]az))
= (d1fi(e1) x A5 fa(@2)) U (A1 faar) x 7" 7 fo(an)) U+ U (0 filar) X d falas))
= d(fi(a1) x fa(az))

= dYF(a; X ag).

Thus F(d}x) = dY F(z) holds when z is an atom in K; X K.

Next, suppose that F'(z') is a molecule and that F\(d)z') = dY F(z') for every molecule
z' in K; x K5 which can be written as a composite of less than ¢ atoms. Suppose also
that z is a molecule in K; x K3 which can be written as a composite of ¢ atoms. We

verify that F'(x) is a molecule in Ly x L, and that F(dlz) = d)F(z). It is evident that
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% can be decomposed into molecules = y#,2z such that y and z can be written as less

than ¢ atoms.
We first verify that F'(z) is a molecule. Indeed, since d} F'(y) = F(d}y) = F(d;z) =
d; F'(2), the composite F'(y)#,F(z) is defined. Moreover, since F' preserves unions of
atoms, we have F(z) = F(yUz) = F(y) U F(2) = F(y)#,F(z). This shows that F'(x) is
a molecule in Ly X Ls.
We next verify that F'(dYz) = d1F(z). Indeed, if n = p, then
F(d,z) = F(d; (y#n2)) = F(d,y) = d, F(y) = d F (=)
and, similarly, F(dtz) = dt F(z). If n > p, then
F(dyz)
= F(d}(y#p2))
= F(dyttpd)z)
= F(diyudlz)
= F(djy) U F(d)z)
= diF(y) UdIF(z)
and
dHdIF(y) = d F(y) = d5 F(2) = dydIF(2);
thus
F(diz) = diF (y)#pd3 F(2) = dY (F(y)#,F (2)) = d] F(z).

If n < p, then
F(dz) = F(dj(y#p2)) = F(dy) = diF(y) = d} F(z).

Therefore, F'(z) is a molecule and F(d}z) = d} F(z).

This shows that F(z) is a molecule and F(d)z) = d}F(z) for all molecules z in
Ky x K5 by induction.

Finally, by arguments similar to that in the proof of F(z) being a molecule above,
we can see that F'|u(x, xx,) preserves composites of molecules. This completes the proof
that F'| sk, xx,) 18 @ homomorphism of partial w-categories, as required.

(|
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Let z be a subcomplex in an w-complex. An atom a is a mazimel atom in z ifa C z

and a C b C z implies a = b for every atom b.

The following result characterises molecules in the product of two infinite dimensional

globes.

Theorem 1.3.7. Let u and v be infinite dimensional globes. Then a subcomplez A of

u X v 18 a molecule if and only if the following conditions hold.

o There are no distinct mazimal atoms ulfiy, a1} X v[j1, B1] and ulis, as] X v[jz, B2] such
that 41 < 19 and j1 < j2, so that the mazimal atom in A can be listed as Ay, ..., Ag

with As = ulis, as) X V[Js, Bs] for 1 < s < S such thatiy > -+ > ig and j; < -+ < jg.

o If As—1 and A; are a pair of consecutive mazimal atoms in the above list, then
ﬁs—l = —(_)iSO{S'
Now we give the construction of dJA for a molecule A in u x v.

Theorem 1.3.8. Let A be a molecule in u X v. Then the set of mazimal atoms in dJA
consists of all the mazimal atoms uli', '] x v[j’, f1] in A with i + j' < p and all the
atoms ult, &) X v[f, B] with i + j = p such that i <" and j < j" for some mazimal atom

uli”, "] x v[5", B"] of A, where the signs o and B are determined as follows:

1. Ifuli”, "] xv[5", B"] can be chosen such that i" > i, then o = y; otherwise, & = ¢ .

2. If ult", "] x v[j", B"] can be chosen such that j" > j, then 8 = (=)%y; otherwise,
IB — IBH )

The composition of molecules in v X v is characterised as follows.

Theorem 1.3.9. Let A~ and A* be molecules of u x v. If dfA~ = dj A*, then the
composite A~ #,AT is defined and the mazimal atoms in A~#,A% consists of all the g-
dimensional common mazimal atoms of A~ and A with ¢ < p together with all the

r-dimensional atoms in either A= and AT with r > p.
Corollary 1.3.10. The molecules in u X v form an w-category.
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Example 1.3.11. Let the subcomplexes

A—:

c C C C

and
AT =

cC C C

U
By Theorem 1.3.7, it is easy to see that A

uz X vg
ug X vy
Uy X V3
ul X vf
uy X vy

+

Ug X Uy

uz X i
us X vF
uy X vF
ug X vy .

~and At are molecules of u x v. Moreover, by

Theorem 1.3.8, we have df A~ and dy A" are both equal to the molecule

— o oyt
ug X Uy

cC C C C C

ug X vy
_l_
X Ug
Uy X Vg
uy X vy

uy X vy

Therefore, by Theorem 1.3.9, the composite A™#5A™ is defined and the composite is the

following molecule.

c C C

U

ug

X vy
ug X vy
ug X vy
Uy ><'U[1"

~ o oF

Example 1.3.12. Let uy be the 2-dimensional globe and let v; be a 1-dimensional globe.

Geometrically, us is a closed disk and v, is

is a cylinder. Since uy has 5 atoms and v;

a closed interval. Therefore the product uy X vq

has 3 atoms, the product us x v; has 15 atoms.
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We calculate the boundaries 8~ (uz X v1) and 8 (ug X v1). By definition, we have
0 (ug x v1) = (uy X v1) U (ug X vy)
and
Ot (u2 x v1) = (uf x v1) U (ug X vy).

If we put the disk uy in a horizontal plane and put the interval 4, in a vertical line and
represent dy and df on v; by bottom and top respectively, then 8~ (uy X v;) is the union
of the bottom disk and half of the curved part of the boundary of the product uy x vy,

as shown in the following figure, where ¢ = u; X vy, b = uf X v;, A = u] x v; and

B =y X vy.

T T

A b
a

< I8_—==

Since
O (u] X v) =ug x v Uuy X vy

and

Ot (uy xv) =uf x vy Uy, Xy,

one can easily see that the direction of A = u] X vy is as indicated in the figure. Similarly,

we can get the direction for B = ug X vy . Moreover, it is easy to check that
0™ (ug X v1) = (uy X v1) U (ug X vy) = (u] X vy)#1[(ug X vy )#o(ug X v1)].

One can also see this graphically from the figure.
Similarly, 8% (ug X v1) is the union of the top disk and the other half of the curved

part of the boundary of the product v x v, and we have
Ot (ug x v1) = (uf X v1) U (ue X vf} = [(uy X v1)Fo(ua X v )]#1 (vl X v1).

Therefore 97 (ug % v1) and 91 (ug X ;) are indeed molecules.

We can similarly workout the boundaries of other atoms.
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Example 1.3.13. Let u be a infinite dimensional globes. Let u, be a p dimensional

globe. Recall that there is a homomorphism fy : M(u) = M (u,) of w-categories such
that for all atom u$ € M(u)

(a7
U;

when i < p,
fo(ui) =

u, wheni>p.
It follows from the Theorem 1.3.6 and Corollary 1.3.10 that there is a natural homomor-
phism f : M(uxv) = M(u, X v,) of w-categories such that f(u@ x vf ) = f(ug) x f2 (vf )

8

for all atoms ug X v5 in u X v.

1.4 Decomposition of Molecules in Loop-Free w-
Complexes

In this section, we prove a decomposition theorem for molecules in an loop-free w-complex.

This theorem will be used later in the thesis.

Firstly, we need to generalise some concepts and results from loop-free directed com-

plexes in paper [20] to loop-free w-complexes.

Definition 1.4.1. A directed precomplez is a set K together with functions dim, 8~ and

0% on K satisfying the following conditions.

1. If o € K, then dim ¢ is an non-negative integer, called dimension of o.

2. If o € K and dimo > 0, then 8¢ and 8% ¢ are subsets of K consisting of dimo —1

dimensional elements of K.

Let K be a directed precomplex. A subset x of K is closed if 0%¢ C z for every ¢ € ©
with dimo > 0 and every sign a. For a subset y of K, the closure Cl(y) of y is the
smallest closed subset of K containing y. The closure Cl{o} of a singleton {c}, denoted

by &, is called an atom.
Definition 1.4.2. Let K be a directed precomplex.
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If ¢ K and oo = =+, then
dix = U{a : 0 €z and dimo < n} \U{'J" \ Cl(0%7) : 7 € z and dim7 =n + 1}.

If z and y are closed subsets of K, then the composite z#,y is defined if and only if
Ny =dte =d;y; If 24,y is defined, then z#,y =z Uy.
A molecule is a subset generated from atoms by finitely applying the composition

operations #, (n=0,1,...).

Definition 1.4.3. A directed compler is a directed precomplex satisfying the following

conditions.

1. If & is an atom with dimo = p > 0, then dj ;5 is a molecule for o = .

2. If o is an atom with dimo = p > 1, then df_,d® 6 = d_,5 for @ =+ and f = =+.

Definition 1.4.4. Let K be a directed complex and n be a non-negative integer. Let a

and b be elements in K.

e An n-path of length % from a to b is a sequence a = ay, . ..,ar = b of elements in K

such that for 1 <7 < k either
dima;—1 <n and dime; > n and a;_; € d;a; \ (d, ,a; Ud}_,a;)
or
dima;—1 > n and dima; < n and a; € d}a@;—1 \ (d,_ @1 U d}_,8;_4).

o A total path of length & from a to b is a sequence a = ay, ..., ar = b of elements in

K such that for 1 <14 < k either a;_; € 0~ a; or a; € 9%a;..q.

e An n-loop is an n-path of positive length from some element of K to itself; A total

loop is a total path of positive length from some element of K to itself.

o A subset of K is loop-free if it does not contain n-loops for any n; A subset of K is

total loop-free if it does not contain total loops.
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We can now generalise the concept of loop-freeness to w-complexes, as follows.

Definition 1.4.5. Let K be an w-complex and n be a non-negative integer. Let a and b

be atoms.

e An n-path of length &k from a to b is a sequence a = ag,...,ar = b of atoms such

that for 1 <17 < k either
dima;—; < n and dima; > n and Inta;—; C d,a; \ (d,,_ ;U d;_a;)
or
dima;—; > n and dima; < n and Inte; C dfa; \ (d_1ai1 Ud}_ja;1).

e A total path of length k from a to b is a sequence @ = ay,...,a; = b of atoms
such that for 1 < ¢ < k either dima;_; = dima; — 1 and a;.;1 C 87 a;, or dima; =

dima;_; — 1 and a; C 0% a;_q.

e An n-loop is an n-path of positive length from some atom to itself; A total loop is

a total path of positive length from some atom to itself.

o A subcomplex of K is loop-freeif it does not contain n-loops for any n; A subcomplex

of K is total loop-free if it does not contain total loops.

For example, the 0-path and total path in a 1-dimensional w-complex is a directed
path, regarded as a sequence of alternate vertices and edges. In Example 1.1.4, the

sequence u, a, v, b, z, ¢ is a total path; the sequence b, z, ¢, y, d is a 1-path.

Lemma 1.4.6. Let K be a loop-free w-complex. Let a be an atom in K with dima =p >

0. Then 8%a is a union of its p — 1 dimensional atoms.

Proof. Suppose otherwise that there is a p-dimensional atom a of K such that 07a is not
a union of its p — 1 dimensional atoms for some . Then 07a has a maximal atom b
of dimension less than p — 1. Let ¢ = dimb. By Lemma 1.2.3, we can see that b is an
maximal atom in both d;8"a = dja and dj87a = dfa which implies that a, b, a is a

g-loop. This contradicts the assumption of the loop-freeness of K. O
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Let K be a directed complex. According to the definition of directed complexes and
Theorem 1.2.8, set K is also an w-complex such that the atoms in the w-complex K
are exactly those in the directed complex K. Note that Int & is a singleton {c} for every
atom &. By Theorem 1.2.3, Definition 1.1.15 and Lemma 1.4.6, it is easy to see that every
loop-free w-complex is equivalent to an w-complex associated with a loop-free directed
complex. Thus all results for loop-free directed complexes can be generalised to loop-free

w-complexes. In particular, we have the following definitions and theorems.

Definition 1.4.7. Let £ be a non-empty finite subcomplex of an w-complex which is not

an atom. Then the non-negative integer
max{dim(a Nb) : a and b are distinct maximal atoms in z}
is called frame dimension of z, denoted by fr dim z.

Definition 1.4.8. A molecule z in an w-complex is split if the following conditions hold.

e Let a be a p-dimensional atom in z. If b is a p — 1 dimensional atom in 8 a and if

¢ is a p — 1 dimensional atom in 8% a, then b and ¢ are distinct.

e If y is a factor in some expression of z as an iterated composite, then there exists
an expression of y as an iterated composite of atoms using the operations #, only

for n < fr dimy.
Proposition 1.4.9. If a subcomplex of an w-complez is total loop-free, then it is loop-free.
Theorem 1.4.10. In a loop-free w-complex, all molecules are split.

Theorem 1.4.11. If the atoms in an w-complex are all total loop-free, then the molecules

are all total loop-free, so that all the molecules are split.

Theorem 1.4.12. Let K and L be w-complezes. If both K and L are total loop-free, then
s0 is I xX L.

According to this theorem, the products of infinite-dimensional globes are total loop-
free. Hence all molecules in products of infinite-dimensional globes are split.

Now we can state the main theorem in this section.
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Theorem 1.4.13. Let = be a molecule in o loop-free w-complex and p = fr dimz. Let q
be an integer with ¢ > p. If there is a mazimal atom ay in x with dima, > p such that
ay Na' CdfayNd a’ for every other mazimal atom o in « with dima' > ¢, then © can
be decomposed into molecules

ok ot
T =z 2T,
where £~ = d;xUay and zt = dfz U J{a" : a" is a mazimal atom in z with o” # a;}.

The decomposition for 8~ (u2 x v1) and 8~ (ug X ;) in Example 1.3.12 is actually

obtained by using this theorem.

The proof is separated into several lemmas.

Lemma 1.4.14. Let x be a subcompler and y =y, U - - -Uwy, be a union of subcomplezes.

Ifz CyandzNy; Cdly; for all1 <1 < n, then z C dJy.

Proof. We give the proof only for n = 2. The general case can be shown by induction.
By Proposition 1.2.7, we have d}y = (dyy1 N dJya) U (dJy1 \ v2) U (dly2 \ y1).
Suppose that § € z. Then§ € y1or € € yo. I € y1 and £ € yo, then & € dJy1Nd]y, C

dyy. If £ € y1 but £ € ys, then £ € dJy; but & ¢ yy; this implies that & € diy. & €y

but £ & y1, then £ € dJy, but & & y1; this implies that £ € dJy. This completes the proof

that © C d}y.

(I

Corollary 1.4.15. Let z =z, U+ 2, and y =y U--- Uy, be a union of subcomplezes.

Ifz Cyandz;Ny; Cdly; for all1 <4 <m and 1< j <n, then x C dly.

Lemma 1.4.16. Let z be a subcomplex of an w-complex and o be a mazimal atom with

dima < n. If dyz is a subcomplez, then a is a mazimal atom in d3x for every sign «.

Proof. This follows straightforwardly from Definition 1.2.3. O

Lemma 1.4.17. Let © be a subcomplex of an w-complex and § € x. Then & € d)z if and

only if & € dya for every mazimal atom a in x with § € a.
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Proof. Suppose that £ € djz. According to Proposition 1.2.6, we have £ € an diz C dla
for every maximal atom a in z with £ € a.

Conversely, suppose that £ € dJa for every maximal atom e in & with £ € a. Then
it is evident that £ € &' for some atom ¢ in z with dima’ < ¢. Moreover, for every
P+ 1-dimensional atom b C = with { € b, we have £ € bNd}b' C d}b by Proposition 1.2.6,
where 0 is a maximal atom containing b . It follows from Definition 1.2.3 that & € dJm,
as required.

This completes the proof. O

| Lemma 1.4.18. Let z, = and z* be as in the statement of Theorem 1.4.18. Then
T =z H#at.
Proof. Recall that
T =d;xUa
and
gt =dfzU U{a” :a" is a maximal atom in z with a” # a;}.
Thus z =z~ U™,

Since z is a molecule, the set {a” : o is a maximal atom in z with a” # a,} is finite.
Moreover, it is evident that z~ and zt are subcomplexes.

Now we trivially have z+ Ndyz C d}d; z; since a; C =, we have dizNay Cdfa; by
Proposition 1.2.6; according to the assumption, we also have a;Na" C dfa;Nd;a” C d}a,
for every maximal atom o" in z with ¢” # a;. It follows from Corollary 1.4.15 that
g~ Nat Cdfz.

On the other hand, suppose that £ € dfz~ and £ ¢ a” for every atom a” distinct from
a; such that dim¢” > ¢. We claim that £ € d}x so that £ € =t and hence dfz~ C z~naz™*.
Indeed, let @ be a maximal atom in & with £ € a. If a = ay, then, by Proposition 1.2.6,
£ € axNdjz~ Cdfay;if a # ay, then dima < ¢ by the assumption; hence £ € a = d]a.
It follows from Lemma 1.4.17 that £ € d} =, as required.

We have now shown that z~ Nz = dfz~. By a similar argument, we can also
get 7 Nzt = dyz™. This implies that ™ #,27 is defined and hence z = z~#4at, as

required.
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This completes the proof.
{ll

Lemma 1.4.19. Let 2~ and =™ be as in the statement of Theorem 1.4.18. Then z~ and

zt are molecules.

Proof. Since z is a molecule in a loop-free w complex, it is split by Theorem 1.4.10. Hence

2z~ and zt are molecules, as required. (]

We have now completed the proof of Theorem 1.4.13.
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Chapter 2

Molecules in the Product of Three

Infinite-Dimensional Globes

In this chapter, we study molecules in the product of three infinite dimensional globes.
We are going to give two equivalent descriptions for the molecules in the product of three
infinite dimensional globes.

Throughout this chapter, infinite dimensional globes are denoted by u, v or w. An
atom u is denoted by u[i,a}. All subcomplexes refer to finite and non-empty subcom-

plexes in the w-complex u X v X w.

2.1 The Definition of Pairwise Molecular Subcom-
plexes

In this section, we first define ‘projection maps’ and prove some of their basic properties.
Then we state one of the main results in this chapter which says that a subcomplex in
products of three infinite dimensional globes is a molecule if and only if it is ‘projected’ to
molecules in (twisted) products of two infinite dimensional globes together with a natural
requirement. This leads to the definition of pairwise molecular subcomplexes of u x v X w.

Let w’ be the atomic complex with atoms w’[k,e] (k = 0,1,--- and € = =£) such

that dim w’[k,e] = k and d]_ w'[k,e] = w/[k — 1,(=)9] for & > 0. It is clear that
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w”’ satisfies conditions in Theorem 1.2.8. Thus it is an w-complex. It is also easy to see

that the w-complex w”’

is equivalent to infinite dimensional globe w under an obvious
equivalence of w-complexes sending w” [k, (—)’e] to w[k,&]. Moreover, it is evident that
this induces a equivalence of w-complexes v X w and u X w’ sending ulz, o] x wlk, €]
to wufi,a] x w/[k,e]. By this equivalence, all the results for products of two infinite
dimensional globes in Section 1.3 can be generalised to u x w”. In particular, we have
dY (ulé, o] x w'[k, €]) = ufi, o] xw'[k, €] if i+k < p, while, if :+% > p, the maximal atoms
in d} (uli, o] x w'[k,€]) consists of u[l, o] x w’/[n,w] such that I <i,n <k and l +n = p;

the signs ¢ and w are determined as follows:
1. if l =+, then 0 = a; if [ < 4, then 0 = 7;
2. if n =k, then w = ¢; if n < k, then w = (—)"*4.

For an atom u[i, o] x v[j, ] x w[k,e] in u x v x w, let

Int(ufi, ] x w'[k,€]), when j > J;
F(Int ) (uli, of [k, €])

0, when j < J.
This gives a map sending interiors of atoms in u X v X w to interiors of atoms in u x w”
or the empty set.

Since interiors of atoms are disjoint, it is clear that the map FY can be extended
uniquely to a map sending unions of interiors of atoms in u X v X w to unions of interiors
of atoms in u x w’ by requiring it preserves unions.

We can similarly define a map F}* sending unions of interiors of atoms in u X v X w
to unions of interiors of atoms in v’ x w! and a map FY¥ sending unions of interiors of
atoms in u X v X w to unions of interiors of atoms in u X v.

It is easy to see that every atom can be written as a union of interiors of atoms. It
follows that F}, F'} and F}’ are defined on subcomplexes of X v X w and preserve unions.

We next prove that F}, F7 and I’ send atoms to atoms or the empty set so that

they send subcomplexes to subcomplexes. We need two preliminary results.
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Lemma 2.1.1.
dy(uli, o] x vj, B} x wlk, €]) = |_Hdfult, o] x 1[4, Bl x dS " Twlk, €] : I+m+n = p}
Proof. According to Proposition 1.3.5,

dg(u[z', a) x v[j, 8] x w[k, €})
= d;[(u['l': a x v[f, B]) x wlk,e]]
= U{d2(uli, 0] x v[j, B]) x & Mwlk,e] : s+t =p}.

Then the result follows easily by applying Proposition 1.3.5 again. O
Proposition 2.1.2. Let A = uli, ] x v[j, ] x w(k, ] be an atom.
o Ifi+j+k<p, thend]A= A\

o If i+ 7+ k > p, then the set of mazimal atoms in dYA consists of all the atoms
uf X v, X wl such that {+m+n=pandl <i, m < j and n < k, where the signs

o, T and w are determined as follows:

1. Ifl =14, then 0 = «; if l < i, then o = 7.
2. If m=j, then = f; if m < j, then T = (—)y.

3. Ifn==k, thenw =¢g; if | <1, then w = (—)F™,

Proof. 1t is evident that dJA = X\ when i+ j + %k < p. We may assume in the following
proof that 7 + 7 + &k > p.

Let Ay denote the union of the atoms described in this lemma. We must show that
dgA = Ay

By the formation of Ay, it is easy to see that every maximal atom u = wu[l,o] x

Tk, €.

v[m, 7] X w[n,w] in Ay can be expressed as u = djuli, o % d,({)lryv[j, G] % dx
By Lemma 2.1.1, we can see that s C dJA, and hence A; C d) .

To prove the reverse inclusion, by Lemma 2.1.1, it suffices to prove that djuls, o] x
dg,;”)wv[j,ﬁ] X dﬁ,,_)mn"w[k,s] C A, for every triple (I, m,n) with | +m + n = p. By the

formation of A, this inclusion is obvious when [ < 4, m < 7 and n < k. So it suffices to
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prove that dfufi, ] X d% )I'Yv[j, Al x ds )l+m7w[if,5] is not a maximal atom in dJA when
[>i,m>jorn>k.

Suppose that [ > 4. Then m < jorn < k. If m < j, then dju[i, ] x dﬁ,?)’"’v{j,ﬂ] X
a5 M wik,e] G diuli, o] x dG Mol 8] x dS T wlk, €] € dIA. IEm > 4, then n < k,
S0 d;’u[i,a]xd&{)‘"’v[j,ﬂ]xd%_)Hm"’w[k,E] G df_yuli, a]xdg,;)'_l"'u[j,ﬂ]xdgﬁ?m—l'rw[k,s] C

d)\. This shows that, in both cases, djufi, o] x dS; "1y14, 8] x d%—)1+m7w[k,s] is not a

maximal atom in dJA. Similarly, the above statement is true if m > j or n > k.

This completes the proof of the lemma. O

Proposition 2.1.3. Let uli, o x v[j, 8] x wlk, €] be an atom in u x v x w. Then

;

I-: I]{;, , A ZI;
1. FF(u[i,a]XU[j,ﬁ]Xw[k;,g]):<v[“7 ,B]Xw[ 5] when 1

@, when 1 < I;
\

¢

uli, o] X wilk,e], when j > J,
2. FY(uli, o] x v[j, 8] x wlk,€]) = <

0, when § < J;

\

;. B, when k> K
3. FE(ult, a] x v[j, B] x wlk,e]) = uli, ] x v[j, 8], when k >

0, when k < K.

In particular, F, F} and Fy send atoms to atoms or the emply set so that they send

subcomplezes to subcomplezxes.

Proof. The argument for the three cases are similar. We only prove the second one. The
proof is given by induction on dimension of atoms.

For an atom A = u[z, o] x v[f, B] x w[k,e] in u X vx w, if dim X = 0, then i = j = k = 0;
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hence
Fy(X)
= F?(Int \)

f

Int(ufé, @] x w/[k,€]), when J = 0;
4

0, when J > 0
>

ult, ] X w’lk,e], when J = 0;

0, when J > 0,
as required.

Suppose that the proposition holds for every atom of dimension less then p. Suppose
also that A = u[i, a] x v[j, f] X w[k, €] is a p-dimensional atom. If § < J, then it is easy

to see that F'¥()\) = 0, as required. If j > J, then we have

)
Int AU~ AU 8+ ))

7(A
#
7(8%A)
Fy(uli, o] x v[j = 1, (<)) x w(k, €])

FY
= FY
D FY
>
= ufi,a] x wk,e]

since ufi, o] xv[j—1, ()] xw[k, €] is an atom of dimension p—1; the reverse inclusion holds
automatically; so F?()) = uli, o] X w’{k, €], as required. Now suppose that j = J. Then,
by Lemma 2.1.2, 87\ is the union of atoms ufé’, o/} xv[j', 8| xw[k', ¢'] with i'+§'+&' = p—1
such that

1. if ¢ =4, then o/ = o if ¢/ =4 — 1, then o/ = 7;

2. if j' =7, then ' = B; if j' = j — 1, then ' = (=)%y;

Cif k' =k, then & = ¢;if ¥’ = k — 1, then &' = (=),

It follows easily from the induction hypothesis that F?(87\) = 87 (u[i, ] x w'[k,€]) for
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every sign . Therefore
F7(A)
= Fy(Int \) UFJ(0~A)UF2(8)\)
= Int(ult, o] x w/[k,e]) U (uli, ] x wlk,e]) Udt(ufi, o] x wk,e])

= ufi,a] x w![k, e,
as required.

This completes the proof of the proposition. O

Now we can state one of the main results in this chapter which says that a subcomplex
in u X v X w is a molecule if and only if it is pairwise molecular, i.e., it is ’projected* to

molecules in (twisted) products of two infinite dimensional globes together with a natural

condition (condition 1).

Definition 2.1.4. Let A be a subcomplex in u X v X w. Then A is pairwise molecular if

the following conditions hold:

1. there are no distinct maximal atoms ulé, @] X v[4, 8] x w[k, €] and

ult', o] x v[j’, B'] x wlk’,€'] in A such that i <4, j < j and k < ¥/,
2. F¥(A) is a molecule in v x w! or the empty set for every integer I;
3. F¥(A) is a molecule in 4 x w’ or the empty set for every integer .J;
4. F¥(A) is a molecule in © x v or the empty set for every integer K.

Example 2.1.5. It is easy to check that the following subcomplex of u X v X w is pairwise

molecular.
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+ -—
X v X wy
— + —
ug X vy X wg
up X vy X wy
X vT X wg
~ o o= 5 ¥
x v x w§
Ug X Uy X Wy
us X vg X w§

uy X vy X wy

c ¢ C ¢ Cc cCc c C cC
e

Uy X Uy X ng
Theorem 2.1.6. A subcomplez of u X v X w is a molecule if and only if it is pairwise

molecular.

We end this section with a property of ‘projection’ maps which is used later in the

thesis.

Proposition 2.1.7. Let A and A’ be subcomplezes of u X v X w satisfying condition 1
for pairwise molecular subcomplezes. If F'(A) = FE(A'), FY(A) = FY(A') and F2(A) =
FR(A) for all I, J and K, then A=A,

Proof. Tt suffices to prove that A and A’ consists of the same maximal atoms.

Let uli, o] x v[j, B] X w[k, €] be a maximal atom in A. Tt is easy to see that v?[j, 5] x
w'[k, €] is a maximal atom in F#*(A) = F#(A’). Thus A’ has a maximal atom ul, o] x
v[j, B] x w(k, €] with @' > 4. Since v'[j, 8] x wi[k,e] ¢ F&,(A) = F&,(A"), we have i’ = 1.
One can similarly get a maximal atom u[i, o] X v[j, #'] x w[k,e] in A’. It follows from

condition 1 for pairwise molecular subcomplexes that ¢ = « and #' = (. This shows

that uft, o] x v[j, f] x wlk, €] is a maximal atom in A’.
Symmetrically, we can see that every maximal atom in A’ is a maximal atom in A.

This completes the proof that A = A'. (|

Remark 2.1.8. The above proposition does not holds without Condition 1 for pairwise
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molecular subcomplexes. This can be seen from the following subcomplexes of u X v X w:

A= uf xvf xwi
U ol X vy Xwy
U up X o xXwy
U up X o7 X wy
and
AN = uf xv xwf

_I_
Uy

C

+ —
X v} X wy

-

U; X Yy Xwy

C

up X vy X wy.
2.2 Molecules Are Pairwise Molecular

In this section, we prove that molecules in u X v X w are pairwise molecular.

Proposition 2.2.1. Let A be a molecule in w X v X w. Then there are no distinct
mazimal atoms ufiy, ] X v[f1, B1] X wlky, €1] and uliz, ag] X v[ja, Ba] X w(ky, €3] in A such

that 1y <9, J1 < J2 and ky < k.

Proof. Suppose otherwise that there are distinct maximal atoms Ay = u[é1, ] % v[j1, B1] ¥
wlky, &1] and Ao = iy, aa] X v[jg, B2] X w[ks, €] in A such that i; < 4z, 51 < jo and &y < k.
Then we have ufia, an] = ufty, —ou], v[j2, B2] = v[j1, —B1] or wky, 2] = w(ky, —&1]. The
arguments for various cases are similar, we only give the proof for the case uliz, an] =
uliy, —ai], 1 < J2 and ky < ky. In this case, it is easy to see that there is a natural
homomorphism f : M(u x v X w) = M(u;, X v X w) of w-categories such that f(uli, o] x
vlf, B] x wlk,e]) = uli, o] x v[f, B] x wlk, ] for i < 4; and f(u[i,a] x v[j, f] x wik,¢]) =
ui, X v[f, B] x wlk,e] for © > i;. We are going to use this homomorphism to get a
contradiction.

Since A; and Ay are maximal in the molecule A, it is easy to see that there is a
composite of molecules Ai#,A2 or Ag#,A, such that A\, is a maximal atom in A; and
Ag is a maximal atom in Ay and Ay ¢ As and Ay ¢ A;. We may assume that A;#, A, is
defined. In this case, we have df Ay = d; Ay = A;NA,. Tt follows from Lemma 1.4.16 that
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n < dim Ay =4; +J1 + k1. On the other hand, since f : M(u X v x w) — M(u;, X v X w)
is a homomorphism, the composite f(A1)#nf(Az2) is defined; since f()\;) C f(A;) and
F(AL) = wiy X w[j1, Bu] x wlky, e1] C ugy X v[f2, Bo] X wlka, 2] = f(A2) C f(Ay), we have
f(A) € f(A1) N f(Ag); this implies that n > dimd;} f(A) = dim(f(A}) N f(Ag)) >

dim f (A1) = 4y + is + 13, a contradiction.

This completes the proof.

O

We have now proved that a molecule satisfies condition 1 for pairwise molecular sub-
complexes. We next prove that F}, F} and F¥ send molecules to molecules or (). The
arguments for the three maps are similar. We only give the proof that F'¥ sends molecules
in u X v X w to molecules in u x w’ or the empty set.

Let vy be a J-dimensional globe. For A a subcomplex in u X vy x w, let g4(A) =
pr{A N (u x {n} x w)], where n € Int(v;) and pr is projection onto the first and third
factors. Then g3(A) C uxw’. We are going to show that g4(A) is a molecule in M (uxw”)
or the empty set for every molecule A.

We first investigate the image of d}A for an atom A in u x v X w under the map gy.

Lemma 2.2.2. Let A = ufi, o) X v;5]7, B] x w(k, €] be an atom in the w-complez u X vy X w

and A, A" € M(u x vy x w). Then
1. g%(\) € A(u x w?) U {0};
2. If A#n ' is defined, then g5(A#nA") = g5(A) U g4(A');

3. g%(A) # 0 if and only if there is a mazimal atom uli, ] X v[j, B] x w[k, €] in A such
that j = J;
dl_;9%(A) whenp>J and j = J,
b gy(dpn) =14 "
0 whenp < J orj < J;
Proof. The proofs of the first three conditions are trivial verification from the definition

of g9. we now verify condition 4.

If p<Jorj<J, then it is evident that g4(d})\) = 0 by the definition of g3.
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Now, suppose that p > J and j = J. Then g%(\) = u[i,a] X w’[k,e]. The set of all
maximal atoms in dJA consists of all u[l, o] x v[m,7] X w[n,w] with [ < i, m < J and

n < k by proposition 2.1.2, where the signs o, 7 and w are determined as follows:
1. if = ¢, then 0 = «; if | < 4, then o = 7;
2. if m =7, then 7 = §; if m < j, then 7 = (—)y;
3. if n =k, then w =¢; if n < k, then w = (=)™,

From this description and the formation of d}_,(u[4, o] x w/[k, €]) in u x w”, it is easy to

see that g3(dj\) = d)_;g5(}), as required.

Now we can prove that g% sends molecules to molecules or the empty set.
Theorem 2.2.3. Let g5 : M(u X v; X w) = P(u x w’) be the map as above. Then

1. ¢5(M(ux vy x w)) C M(ux w’)U {0},

2. For every molecule A in u X v; X w, we have

dy_;93(A)  whenp > J and gy(A) # 0,
HCINEE S

0 when p < J or g4(A) = 0.

3. If A#, A" is defined, then

;

95(M)Fn-sg5(N')  when g4(A) # 0 and g5(A') # 0,

g7 (A#aA) = ¢ gu (A when g4(A) = 0,

gi(A) when gj(A') = 0.

Proof. We are going to prove the first two conditions by induction and then prove the
third condition.
By Lemma 2.2.2, it is evident that the first two conditions hold when A is an atom.
Now suppose that ¢ > 1 and the first two conditions hold for every molecule which can

be written as a composite of less than ¢ atoms. Suppose also that A is a molecule which
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can be written as a composite of ¢ atoms. Since ¢ > 1, we have a proper decomposition
A = A4, A" such that A’ and A” are molecules. According to the induction hypothesis,
we know that the first two conditions hold for A’ and A”. We must show that the first
two conditions in the proposition hold for A. There are two cases, as follows.

1. Suppose that g3(A") = @ or g%(A") = . We may assume that g%(A") = 0. We
have g%(A) = g3(A"). Thus g%(A) € M(u x w’) U {0} as required by the first condition.
Moreover, if p # n, then

95(dgA)
= gy(dIN'Fad]A")
(

dyA') U g3(dgA")

— U
= gyl
4

d7_sg3(A") when p> J and g5(A") # 0,

0 when g4(A") =0 orp < J,
’

dy_;g5(A) when p > J and g4(A) # 0,
)

0 when ¢%(A) =0 or p < J,

\
as required by the second condition. Suppose that p = n > .J. Then g4(dfA’) = 0. So
g5(dy A") = 0. Hence, by the hypothesis, one gets g%(A") = 0. Therefore g4(A) = 0 and
g5(dyA) = 0, as required by the second condition.

2. Suppose that gj(A’) # @ and g%(A”) # 0. Then there is a maximal atom )\ =
uld', o] x v[g’, B'] x w[k’,€'] in A" and a maximal atom N\ = u[i", "] X v[5", 8] x w[k", "]
in A" such that j' = j" = J. We claim that n > J. There are two cases, as follows:

a. Suppose that both A and A" are maximal in A. By Proposition 2.2.1, we have
i #and B #£ K So NNMN CANA =dFA =d A" Since VNN £ @and j =35 = J
and dim(d}fA’) < n, we can see that J < n, as required.

b. Suppose that A’ is not maximal in A. Then A has a maximal atom ] = u[é}, o] x
w[j1, 1] x wlki, &}] distinct from A with ) C A|. Hence j] = J. It is easy to see that A}
is maximal in A”. So we have ' ¢ A'NA" = d}rA' = d;A". Since dim(d}A") < n, we

have J < n, as required.
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Now since g4(A) = g4(A") U ¢4%(A"), and

dy_sg5(A)
= gy(dyA)
= gj(dzA")
= d, ,g5(A"),
we can see that gj(A’)#n_sg5(A") is defined, and g5(A) = g5(A")#n-s94(A"). So gy(A)
is a molecule, as required by the first condition. We now verify that A satisfies the second

condition. If p < J, then g3(djA) = 0, as required. If p=n > J, then

95(dy A)
= gy(dyA)
= ;—Jgg(A,)
= ;—-Jgg(A);

and similarly we have g4(d}A) = d_,g4%(A). If J < p < n, then
J\Yp p—JIJ

93(diA)
= gy(djA)
= dy_;95(N)
= d;—Jgg'(A)

If p> J and p > n, then

gi(dgh)

= g7(djA#ndIA")

= gy(dIA") U g5(d7A”)

= d;’_JQE(A’) U d7 Jg.I(AH)'
and
d JdZ 93(A’)

795 (A

Ay JgJ(A”)
= d;—Jdp—Jgg(AH)i
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thus d)_;95(A")#n—sd)_;95(A") is defined and

g5(d3A)
= d)_;95(N)ffn_sd]_;g5(A")
= d)_;[g3(A ) Fn—sgs(A")]
d;“_JgE (A).

Therefore A satisfies the second condition.

Finally, condition 3 can be easily verified by using condition 2 and the fact that g3

preserves unions.

This completes the proof.

O

Recall that there is a natural homomorphism f% : M(u X v X w) — M(u X v; X w)
of w-categories sending every atom u[4, ] X v[j, 8] X wlk, €] to u[z, ] x v;[§, #] x w[k, €],
where v;[j', 8] = vs[j, f] whenever j < J, and v,[j', #'] = v; whenever j > J. According
to the definitions of g% and f7, it is easy to see that F'} = g%o f}. Thus F} sends molecules
in u X v x w to molecules in u X w’ or the empty set.

We can similarly define maps g% : M(urxvXw) = vf xw! and g% : M(uxvxwy) —
4 X v which send molecules to molecules or the empty set. Moreover, we have natural
homomorphisms f# : M(uy X v x w) and f§ : M(u X v X wg) of w-categories and we

can see that Fy' = g} o ff and Fg = g o f§. Therefore F* and F}¥ sends molecules to

molecules or the empty set.

We have now proved the following theorem

Theorem 2.2.4. Molecules in u X v X w are pairwise molecular.

2.3 Properties of Pairwise Molecular Subcomplexes

In this section, we prove some basic properties of pairwise molecular subcomplexes. In
the next section, we are going to show that some of these properties characterise pairwise

molecular subcomplexes in % X v X w.
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Lemma 2.3.1. Let A be a pairwise molecular subcomplex of u X v X w and let uiy, ay] X

v[j1, B1] X wlky, €1] and uliz, ag] X v[j2, B2] X wlke,£5] be distinct mazimal atoms in A.

1. If 41 = iy and oy = —ay, then A has a mazimal atom u[i, ] X v[j, 8] X wk, €] with

i >4y =1y, v[j, B] D vlja, fr] Nv[jz, Bo] and k > min{ky, ko}.

2. If iy =13 and oy = —ow, then A has a mazimal atom ufi, o] X v[7, B] x wk, €] with

i >4 =1y, § > min{j1, jo} and wlk,e] D wlky,e1] N wlke, £a.

3. If j1 = j2 and By = — [, then A has a mazimal atom ufi, o] X v[j, 8] X w(k, €] with

7> 31 =ja, U[Z, Oﬂ] D u[il,al] N 'u[iz, O!g] and k > min{kl, k)g}

4. If 51 = j2 and 1 = — s, then A has a mazimal atom uli, ] x v[f, B] x w(k, ] with

J > g1 =gz, 1 2 min{iy, s} and wlk,e] D wlky, e1] N wks, 9.

5. If ky = ky and &, = —ey, then A has a mazimal atom u[i, o] X v[j, 8] x wik, €] with

k> kl = kZ; ‘Z,L[?;,Od] ) u[ihal] N u[i27 Clg] a‘ndj ..>~ min{jlajZ}'

6. If ky = ko and 1 = —e,, then A has a mazimal atom uli, o] X v[7, B] x wk, €] with

k> ki = ky, i > min{iy, 42} and v[y, 8] D v[j1, B1] N o[z, Be].

Proof. The proof of these conditions are similar, we only prove the second one. Suppose
that ¢ =4y and o = —aw. Let Ay = ufiy, 1] X v[j1, f1] X wlky, 1] and A2 = ufig, ag] ¥
v[fa, Ba] Xw(ks, €2]. Let J = min{ji, jo}. It is evident that F3 () = uliy, oq]xw’ k1, 1] C
FY(A) and F¥(Ag) = ulis, an] x w’[kg, &3] C F?(A). Since F¥(A) is a molecule in u x w?,
it follows from the formation of maximal atoms in FY(A) that F¥()\;) or F?()\2) is not
maximal in FJ(A), and F¥(A) has a maximal atom p = u[l,0] X w’/n,w] with [ > 4
and wn,w] O wlky,&1] or wn,w] O wlke,es]. By the definition of FY, it is easy to
see that every maximal atom in FJ(A) is an image of a maximal atom in A. Therefore
A has a maximal atom A = ufi, o] x vij, B8] x wk,e] with u[i,a] = u[l,o], 7 > J and
wlk, €] = wn, w]|, as required.

This completes the proof. O
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The next property says that certain signs in a pair of ‘adjacent’ maximal atoms of a
pairwise molecular subcomplexes are related. Before we prove this property, we need to

give the precise definition of adjacency of a pair of maximal atoms.

Definition 2.3.2. Let A be a subcomplex. A pair of distinct maximal atoms A\ =
u[il,al] X U[jl,ﬂll X ’U.)[kl,El] and Ay = U[iz,a’z] X ’U[jg,,@g] X ’U)[]ﬁg,&"z] in A is adjacent
if, for every maximal atom A = uli,a] x v[j, 8] X wlk,e] in A with ¢ > min{i;, 2},

J > min{i, 72} and k > min{k,, ko }, one has

min{iy,%} +min{j;, 7} + min{ky, &}
= min{z’l, 22} + min{jl, jg} + min{k‘l, kg}

or
min{éy, ¢} + min{js, 7} + min{ks,, k}

= min{il, Zz} + min{jl, jg} + min{kl, kg}

The following proposition may be helpful to understand the concept of adjacency.

Proposition 2.3.3. Let A be a subcomples satisfying condition 1 for pairwise molecular
subcomplezes. A pair of distinct mazimal atoms Ay = iy, 1] X v[j1, B1] X wlk1,&1] and
Ao = ulig, ag] X v[f2, Bo] X w[ks, &3] in A is adjacent if and only if the following conditions

hold.

o Ifiy =19, then there is no mazimal atom u[i, ] X v[7, B] X wlk, €] such that i > 4, =

i, § > min{js, j2} and k > min{ky, ko }.

o If j1 = jo, then there is no mazimal atom ufi, o] X v[g, B] x wlk, €] such that j >

Ji = j2, © > min{is, i} and k > min{ky, ky}.

o If ki = ko, then there is no mazimal atom uli, @] X v[j, B] X wk, €] such that k& >

ki = kg, 7> min{iz,iz} Gndj > min{jz,jz}.

e Ifiy > o and ji > ja, then there is no maximal atom uli, ] x v[j, B] x wlk, €] such
that i > g, j > ja and k > ki; and there is no maximal atom ulz, | X vlj, ] X w(k, €]

such that i > i, § > jo and k > k.
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e If1y > 13 and ky > ky, then there is no mazimal atom uli, &] X v[j, 6] x wlk, ] such
thati > 1, j > j1 and k > kg; and there is no mazimal atom uli, o] X v[j, B] X w[k, €]

such that © > 49, § > j1 and k > ks.

o Ifj1 > j2 and ky > ks, then there is no mazimal atom uli, o] X v[j, B] x wlk, €] such
thati > i1, j > jo and k > ko; and there is no mazimal atom uli, &) X v[j, B] X wlk, €]

such that i > i1, § > jo and k > ko.

Proof. The proof is a straightforward verification from the definition of adjacency and

condition 1 for pairwise molecular subcomplexes. O

Example 2.3.4. For the subcomplex in Example 2.1.5, all the adjacent pairs of maximal

atoms are

ug X vy X wi and ug X v,

X vf X w and ug X v x w3;

- vt - = o ot +.
Us X vy X wy and uy X vy X wg;

ug X vy X wy and ug X v X wy;

ug x vy X wy and uy X vp X wg;

ug X v7 X wy and ug X vy X wg;

uy X vy X wy and ug X vy X wy;

uy X vy X wy and ud x v X wi;

ul X vy X wy and uy X vy X wy;

ul X v§ x wg and uf x v}

ul X vy X wg and uy X vy X wg;

X vy X Wy

and ug X Uy X Wy ;
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uy X vy X wg and ul X vy X wy;

ug X v X wy and uy x vy X wg;

ug X vy X wy and uz X vg X wg;
us X vg X wg and up X vy X wi;
ug X vy X wy and uy X vy X wy .

Let A be a subcomplex of u X v X w satisfying condition 1 for pairwise molecular
subcomplexes. Let J be a fixed non-negative integer. A maximal atom u[i, ] X v[4, 8] X
wlk,e] in A is (v, J)-projection mazimal if § > J and there is no maximal atom u[#, /] x
o[, B'] x wlk', €'l with ¢’ >4, J < j' < j and ¥ > k.

Similarly, we can define a maximal atom to be (u, I)-projection mazimal and (w, K)-
projection mazimal.

It is evident that a maximal atom A in A is (v, J)-projection maximal implies that
F7()) is maximal in F}(A). Conversely, for every maximal atom p in F%(A), there is a
maximal atom £’ in A such that F¥(y') = u. The following proposition implies that p' is

actually (v, J)-projection maximal.

Proposition 2.3.5. Let A be a pairwise molecular subcomplez of u X v X w and )\ be a

mazimal atom in A. Then
1. X is (u, I)-projection mazimal if and only if FF(A) is mazimal in FY(A).
2. X is (v, J)-projection mazimal if and only if F¥()\) is mazimal in FY(A).
3. X is (w, K)-projection mazimal if and only if F£()\) is mazimal in FE(A).

Proof. The arguments for the three cases are similar. We only give the proof for the

second one.
Suppose that A is not (v, J)-projection maximal. Let A = u[i, c] x v[4, 8] x w[k, &].
Then there is a maximal atom X = u[’, o/] x v[j’, 8] x w[k’,&'] in A such that J < j' < j

i' > 4 and k' > k. By condition 1 for pairwise molecular subcomplexes, we have i’ > i
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or k' > k. If uli', o] D uli,o] and wlk',e'] O wlk, ¢, then it is evident that Fy(\) G
F37(u) so that F7()) is not maximal in F¥(A). Now suppose that u[i,a'] 2 u[i,a] or
wlk',e'] B wlk,e]. ul,o'] = ufi, —a] or w[k',&'] = w[k, —]. Thus we can get a maximal
atom A" = u[i", o] x v[j", B"] x w[k",&"] such that J < 7" < j and u[i", "] D uli,q]
and w[k", "] D wlk, €] by applying Lemma 2.3.1. It follows that F¥()) is not maximal in
FY(A).

Conversely, suppose that F7(A) is not maximal in F¥()\). It follows evidently from
the definition that A is not (v, J)-projection maximal.

This completes the proof.
O

Example 2.3.6. For the subcomplex in Example 2.1.5, there is no (v, J)-projection

maximal atoms for J > 2. The (v, 2)-projection maximal atoms are
+ ok -
Ug X vy X wi,

—_ + —_
Uy X V3 X wg,
=« o s ot
uy X vy X wy .

The (v, 1)-projection maximal atoms are
ug X vy X wy,
ug X vy X w;,
ug X v; X we,
uy X vy X wy,
ug X v X wy.

The (v, 0)-projection maximal atoms are

ug X vi X wy,

Ug X ¥y X Wg,

=« +
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Ve +
Uy X vy X wy,

uy X vy X wy.

One can similarly work out all the (u,)-projection maximal atoms and all the (w, K)-

projection maximal atoms.

Lemma 2.3.7. Let A be a pairwise molecular subcomplez of uXvXw. Let Ay = ufiy, o] X
v[j1, B1] x wlki, e1] and Ay = uliy, az] X v[jz, Ba] X wlke, 2] be a pair of adjacent mazimal

atoms in A.

1. If iy > 49 and j1 < ja, then there is a pair of adjacent (w, K)-projection mazimal
atoms Ay = uliy, ] X v[j, Bi] X wky, €1] and X; = uliy, o] x vy, B3] x wlks, ey
with K = min{ky, ko} such that ulih, ab] = uliz, an], |5}, 81 = v[j1, B1] and
min{k}, k) = K.

2. If iy > 19 and ki1 < ko, then there is a pair of adjacent (v, J)-projection magzimal
atoms X, = ulit, a4] x oljt, 1] x wlkl, el and Ay = ulsy, ab) x vlj, B x wlkh, e}]
with J = min{j1, jo} such that ulihy, of] = ulis, ), wlki,el] = wlki,&1] and
min{ji, jo} = J.

8. If 51 > j2 and ki < ky, then there is a pair of adjacent (u,I)-projection mazimal
atoms A} = u[iy, o] xvljy, B xwkl, €1 and Ny = uldh, ob] X v[7h, Bs] X wlk, 5] with
I = min{iy, ia} such that v[j}, B5] = v[ja, Ba], wlk}, €] = wlky, 1] and min{é}, i)} =

I.

Proof. The arguments for these three cases are similar. We only give the proof for the
second case.

Let M = uliy, o4] x v[j}, 6] x wlk}, €] and Xy = uliy, o] x w7}, B] x wk, 5] be the
(v, J)-projection maximal atoms such that z; > ¢; and &k} > k; for ¢ = 1, 2. It follows from
Lemma 2.3.1 and the adjacency of \; and Ay that u[ih, ob] = ulia, ], w[k!, 1] = wlk1, 1]
and min{j{, 75} = min{j, jo}, and A} and A} are adjacent, as required.

This completes the proof. O

Now we can prove the sign conditions for pairwise molecular subcomplexes.
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Proposition 2.3.8. Let A be a pairwise molecular subcomplez of u x v X w. Then the
following sign conditions hold.

Sign conditions: for a pair of adjacent mazimal atoms Ay = u[iy, oq] X v[j1, B1] X
wlky, €1] and Ay = uliy, ag) X v[ja, Ba] X wlky, 2] in A, let i = min{iy, 42}, 5 = min{jy, jo}

and k = min{k, ko }.
1. Ifi=1iy <iy and j = jo < ju, then Bp = —(—)'an;
2. ifi=1 <iz and k = kg < ky, then g = —(—)"oy;
| 3. if =141 <Js and k = kg < k1, then o = — (=) ;.

" Proof. Suppose that 4; > 4 and k; < ke, Let J = min{j;,7:}. We must prove g; =
(=) .

According to Lemma 2.3.7, we may assume that A; and Ay are (v, J)-projection max-
imal. It is evident that F'J(A\;) = uliy, a1] X w'[ky, &1] and F¥(\2) = ulia, cg] X w[kg, €3],
and they are maximal atoms in the molecule F'¥(A). Moreover, by the adjacency of )\,
and Az, we can see that F7(A;) and F7()\;) are adjacent maximal atoms in F¥(A). Since

F¥(A) is a molecule in u x w’

, we have g1 = —(—)?" a, as required.
The other cases can be proved similarly.

This completes the proof. O

Compared with the properties for molecules in the product of two globes, there is a

new feature caused by the middle factors, as follows.

Proposition 2.3.9. Let A be a pairwise molecular subcompler of w x v X w. Let Ay =
U[?:l, C\!l] X ’U[jl, ﬁ]_] X w[kl, 61] and )\2 = 'U,[’ig, 052] X ’U[jg, ,62] X ‘lU[kz, 82] be a p(L‘i’T‘ Of a,djacent
mazimal atoms in A. If 4y > i3, k1 < ko and min{jy, jo} > 0, then there is a mazimal

atom A = uli, &) X v[j, B] x wlk, €] such that j = min{j;,ja} — 1, 1 > iz and k > k.

Proof. Let J = min{jy,jo}. According to Lemma 2.3.7, we may assume that A; and Ay
are (v, J)-projection maximal. There are several cases, as follows.

1. Suppose that both A; and Ay are (v, J — 1)-projection maximal. Then Fj_q1(A1)

and Fy_i()\;) are maximal atoms in the molecule F;_;(A) of the w-complex u x w’~1.
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It is evident that Fy_i(Ae) = uliy, o] X w/ " ks, &) for t = 1,2, and &1 = — (=) ay by
Proposition 2.3.8. Hence, according to the formation of molecules in u x w’~!, we can
see that Fy_1(A;) and Fy_;()\g) are not adjacent in  x w’~*, So F_;(A) has a maximal
atom p = uli, ] X w' "k, €] with ¢ > iy and k > k;. It follows that there is a maximal
atom X\ = uli, @] x v[j, B} x wlk, €] such that F;_1(\) = 4 and hence 7 > 4, and k > k.
By the adjacency of A; and Ag, we must have j = J — 1. Therefore ) is as required.

2. Suppose that A; is not (v,J — 1)-projection maximal. Then there is a maximal
atom N, = ufi],o}] x v[s}, 1] x wlk},&}] with 50 > J — 1 such that # > 41, 5} < 5
and ki > ki. It is evident that j; = J — 1. If k] > k;, then A] is as required. Suppose
that k] = &, and €] = —&;. By applying Lemma 2.3.1 to A; and A, one can get a
maximal atom as required. The argument is similar if Ay is not (v, J — 1)-projection
maximal and 5 > 49, or if Ay is not (v, J — 1)-projection maximal, 7 = 12 and o, = —azg,
where A, = u[ih, o] X v[jh, Bh] X w(ky,eh] is a maximal atom with j5 = J — 1 such
that 4, > iy, 75 < jo and k§ > ko. There remains the case that u[ih, ob] = ulia, ] and
wlki,el] = wlky, €1]. In this case, since A} and M} are maximal atoms with j; = 7, = J—1
and &} = —(=)%*/al}, it follows from Proposition 2.3.8 that X} and ), are not adjacent
in A. Therefore A has a maximal atom as required.

This completes the proof. 1

Proposition 2.3.10. Let A be a pairwise molecular subcompler of u X v X w. If A has
three pairwise adjacent mazimal atoms Ay = ulir, o] X v[f, B1] x wlk,e1] A = ulé, ] x
U[jg,ﬁg] X 'w[k,é‘g] and )\3 = ’U.['?:,Qf;;] X 'U[j, 63] X 'w[iﬂg,&"g] with 41 > ‘l:, jg > j and ks > ]ﬂ,

then ap = «g or By = (B3 or €1 = €1.

Proof. Suppose otherwise that ag = —ag and 1 = —f3 and ; = —ey. Applying Lemma
2.3.1 to A; and A, one can get a maximal atom N = u[i, o] x v[f’, f'] X wik', '] with
k' > k, uli', '] D uli, ae] and j' > 7. Since A\; and A3 are adjacent, we must have i’ = ¢
and o = ag = —ag. Since Ay and A3 are adjacent, we also have 7' = j. Note that N
and A; are distinct, we get a contradiction to the first condition for pairwise molecular
subcomplexes.

This completes the proof. O
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Proposition 2.3.11. Let A be a pairwise molecular subcomplez in u X v X w. Let \{ =

ulty, o] X v[g1, B1] X wlky, 1] and Ay = ulig, aa] X v[ja, B2] X wlks,€2] be mazimal atoms

in A.

1. If iy < ig and j1 > ja, and if there is no mazimal atom ufi, ] X v[j, 8] x w[k, €]

such that 1 > 1y, j > jo and k > min{ky, ko}, then By = —(—)"ay;

2. if iy < iy and ki > ko, and if there is no mazimal atom uli, ] x v[j, 8] x wlk, €]

such that i > %1, j > min{j1, ja} and k > ky, then g; = —(—)utmininizly,

3. if j1 < j2 and k1 > ky, and if there is no mazimal atom uli, o] X v[j, B] X wlk, €]

such that i > min{i;, 42}, § > j1 and k > ke, then e = —(=) 5.

Note 2.3.12. We some times say a pair of maximal atoms as in condition 1 to be (1, 2)-
adjacent; a pair of maximal atoms as in condition 2 to be (1, 3)-adjacent; and a pair of
maximal atoms as in condition 3 to be (2, 3)-adjacent. It is evident that two maximal
atoms are (r,s)-adjacent (1 < 7 < s < 3) if they are adjacent. However, in general, the
reverse is not true. For example, in the pairwise molecular subcomplex in Example 2.1.5,
the maximal atoms ug x vd X wy and ug X vy x wy are (1,2)-adjacent, but they are not

adjacent.

Proof. The arguments for the first and the third cases are similar. We give the proof for
the first and the second case.

In the first case, let A = i}, o] x v[j], B1] x w[k], £}] be the maximal atom in A with
i) > 41, g1 > Jo and k] > min{ky, by} such that 7] is minimal; let A = u[zh, o) ><'u[j-’2, B5] %
wlky, €5] be the maximal atom in A with i > 41, 5 > 75 and k5 > min{ky, ko } such that
iy is minimal. According to the assumption and Lemma 2.3.1, we have u[#}, &}] = u[1, o]
and v[jh, 5] = vlja, f2]. It is evident that X} and N, are adjacent. It follows from the
sign condition for A and A, that s = —(—)"ay, as required.

In the second case, we claim that )\; is adjacent to Ay so that g = —(—)a+minlinizlg,
as required. In fact, suppose otherwise that A; and A, are not adjacent. Then j; # ja.
We may assume that j; < jo. In this case, there exists a maximal atom A} = u[#}, o] %

v[j1, B1] % wlk), €] such that 4 > 4, 50 > j; and k| > k;. By the assumption, we
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have 47 = 4;. By condition 1 for pairwise molecular subcomplexes, we have 7| > 4
and ky < ki < k;. It follows from Lemma 2.3.9 that there is a maximal atom p =
ull, 0] x v[m, 7] x wn,w] such that [ > #{ = 4y, m > min{jl,j2} — 1 > j; and n > ks.
This contradicts the assumption.

This completes the proof.

2.4 An Alternative Description for Pairwise Molec-

ular Subcomplexes

In this section, we give an alternative description for pairwise molecular subcomplexes of

u X v X w, as follows.

Theorem 2.4.1. Let A be a subcomplex of u x v X w. Then A is pairwise molecular if

and only if the following conditions hold.

1. There are no distinct mazimal atoms uli, o] X v[j, B] X w(k, €] and u[¢', '] x v[§’, B'] x

wlk',e'] such that i <4, j <j and bk <K',

2. Sign conditions: for a pair of adjacent mazimal atoms Ay = u[iy, 1] X v[j1, B1] X
wlky, e1] and Xy = ulia, ag] X v[j2, Ba] X wlka,e2] in A, let i = min{iy,is}, § =
min{jy, jo} and k = min{k:, ko}. Ifi =iy < iz and j = jo < j1, then Bo = —(—)iay;
ift =1y <ig and k = ko < k1, then ey = —(=)Hay; if j = j1 < j2 and k =ky < Ky,
then eg = —(=)1 ;.

3. Let uliy, o] X v[Jj1, f1] X wlky,e1] and ulia, ag] X v[]2, B2] X wlke, 2] be a pair of
mazimal atoms in A, If 44 = i3 and oy = —aw, then A has a mazimal atom
uli, ) x v[f, B] x wlk,e] with i > 4, = 45, § > min{jy, jo} and k > min{ky, k2}; if
71 = j2 and B = —fa, then A has a mazimal atom uli, ] x v[j, f] x wlk,&] with
J > 1= Ja, ¢t 2 min{iy, i} and k > min{ky, ka}; if ki = ko and 1 = —eq, then A
has a mazimal atom uli, o] X v[j, B] x wlk,e] with k > ki = ko, © > min{iy, 42} and

j = min{ju, ja}.
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4. If A has a pair of adjacent mazimal atoms Ay = u[iy, 1] X v[j1, B1] X w(ky, 1] and
Ao = ufia, (] X v[Jo, Ba] X wlks, £2] with iy < 41, ki < k2 and min{j;, jo} > 0, then
A has a mazimal atom uli, o] X v[j, 8] X wlk, €] with i > iz, j = min{j1,j2} — 1 and

k> k.

&

If A has three pairwise adjacent mazimal atoms Ay = ufiy, ] X v[f, f1] X wlk, &1]
A2 = uli, ag] X v[ja, Ba] X w[k,€2) and Az = uli, az] X v[j, O3] % wlks, &3] with i1 > i,

jo > 7 and k3 > k, then ay = a3 or B = B3 or €1 = €a.

Note 2.4.2. In condition 4, it is easy to see that 8 = —(—)®ay and e, = —(—)?3 by sign

conditions and condition 3.

In the last section, we have proved that the five conditions in the theorem are neces-
sary for a pairwise molecular subcomplexes. The sufficiency is implied by the following
Proposition 2.4.8 and the comments after the proposition.

Some of the following lemmas are preliminaries for the proof of Proposition 2.4.8,

while some of them are designed for better understanding the five conditions in Theorem

2.4.1.

Lemma 2.4.3. Let A be a subcomplex of u X v X w satisfying the five conditions in
Theorem 2.4.1. For a pair of adjacent mazimal atoms Ay = uliy, ] X v[j1, B1] X w[ki, €1]
and Ay = ulig, a] X v[fa, fa] X wlke,€q] in A, let 1 = min{iy,ia}, 7 = min{ji, j2} and

k = min{ki, ks }.
1. Ifi =13 <y and § = 1 < ja, then B = (—)lay;
2. ifi=11 <iy and k = ky < ko, then g1 = (=) ay;
8. ifj =71 <jo and k = ky < ko, then g9 = (=) 1.

Proof. Suppose that ¢ = 7; < i3 and j = j1 < j2. By condition 1, we have ki > ko. It
follows from sign conditions that €2 = —(—)"*q; and e = —(—)B;. Thus B = (—)'au,
as required.

The other cases can be argued similarly. O
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Lemma 2.4.4. Let A be a subcomplez satisfying the five conditions in Theorem 2.4.1.
Let uliy, an] X [y, B1] x wlki, 1] and ulis, ao] X v[ja, Ba] X wlks, 2] be a pair of mazimal

atoms in A.

1o If iy =iy, oy = —an, j1 < J2 and ky > ko, then A has a mazimal atom uli', o] x

vlj’, B'] x wlk', &'] such that &' > iy = iy, v[7', ] D v[j1, B1] and wlk',&'] D wlky, €9);

2.4 J1 = Ja, 1 = P, i1 < iy and k1 > ke, then A has a mazimal atom u[i', o] x

vlj’, B'] x wik', €] such that §' > j1 = ja, u[¢', '] D ulin, cu] and wlk', &'l D wlke, &9);

P 3. if kv = ko, &1 = —&2, 11 < iy and j1 > Ja, then A has a mazimal atom u[i', '] X

vlf’, B'] x wlk', €] with k' > ky = ko, u[¢', '] D ufiy, au] and v[j’, 8] D v[ja, Ba)-

Proof. The arguments for the above three cases are similar. We prove only the first case.

Let Ay = w[iy, 1] X w[f1, B1] x wlky,e1] and Ay = wufig, @] X v[jg, B2] X wiky, ]
Let ¢ = 4; = 43. Suppose that A\; and Ay are not adjacent. Then, by the definition
of adjacency, A has a maximal atom X, = u[i}, of] X v[j], 1] X w[k},€}] with ¢ > 4,
J1 < g1 < Jo ko < K < ki If 4 > 4, then )| is as required by the lemma. If #} = i,
then o} = —a; or o = —ay. By repeating this process, we can get either a maximal
atom as required or a pair of adjacent maximal atoms A} = uli{, &f] x v[41, BY] x w[kY, €]
and Ay = ulig, af] x v[f3, #5] x w[ky, ey with & = i) = iy = 4, of = —af, v[j1,5] C
olgt, BY] Nvlj5, B5] and wlke, o] C wlky,&l] Nwlky, ). In the following proof, we may
assume that A; = u[iy, oq] X v[j1, 1] X wlky,£1] and Ae = ufie, aa] X v[ja, Ba] X wlks, &3]
are adjacent.

Let oy = =, =J1 < Jjo, B =1, k=ky and € = 5. Thus ey =7, k = ky < k; and
e = —(—)?B. By condition 3, A has a maximal atom X = uli’, '] x v[j", 8] x w[k', ']
with ¢' > 4, 7' > 7 and k' > k. We choose X’ such that 7' is minimal. By condition 1, we
have j' < jo and k' < k. Since A\; and Ay are adjacent, we have j' = j or k' = k. Now
there are two cases, as follows.

1. If ' = j and k' > k, we claim that 8’ = # which means that )\’ is as required.

Indeed, suppose otherwise that ' = — 3, then, by condition 3 in Theorem 2.4.1, there

is a maximal atom X" = u[i", "] x v[§", B"] x w[k",&"] in A with 57 > 3, i" > i and
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k" > k' > k. This contradicts the adjacency of A\; and As.

The argument for the case j' > j and k' = k is similar.

2. Suppose that j' = j and &' = k. By the choice of X, it is easy to see that X is
adjacent to both Ay and Ae. So ' = —(=)%y and &' = (—)**. Thus ¢/ = —(—)/F'. Since
A1 is adjacent to Ag, we can see that e, = —(—)?3;. By condition 5, one has ' = 4, or
¢' = 5. Therefore #' = f; and &' = 5 which means that )\ is as required.

This completes the proof of the lemma. O

Lemma 2.4.5. Let A be a subcomplez of u X v X w satisfying conditions 1 and 2 in
Theorem 2.4.1 . Then A satisfies condition 5 if and only if for any triple of pairwise
adjacent mazimal atoms Ay = uliy, c1] X v[j, Bi] xwlk, €1], Aa = uft, ag] X v[ja, Bo) X w[k, €]
and A3 = ufi, ag] X v[J, B3] X wlks, 2] with iy > 4, jo > § and ks > k, there is a mazimal

atom in A containing uli,v] X v[j, (—)*y] X w[k, (=)y] for vy =+ or vy = —.

Proof. Suppose that A satisfies condition 5 in Theorem 2.4.1. Then as = a3 or §; = B3
or £1 = &5.

Suppose that oy = a3 and let v = a; = ap. Then p = —(—)%y and g; = —(—)Hy
by the sign conditions. If 83 = (—)%y, then u[i,y] x v[, (=)*y] x wlk, (=)**7v] C A3 and
ult, —y] x v[f, —(=)*y] x wlk, —(=)¥v] C Ay, as required. If B3 = —(—)*y, then & =
(—)** by the sign condition for A, and A3. Therefore u, ] xv[f, (=)¥y] xwlk, (=)"y] C
Mg and ulz, —y] X v[f, —(=)*y] X wik, —(—)v] C Ay, as required.

The other cases can be argued similarly.

Conversely, suppose that A has a maximal atom X = u[¢, /] x v[f, 8] x w[k', €]
containing uli,y] x v[j, (—)v] x wk, (=)*] for v = + or ¥ = —. By the pairwise
adjacency of A;, A2 and g, it is easy to see that A" must be Ay, As or Az. If ' = A4, then
B1 = (=)'y and €1 = (—)*. Tt follows from the sign condition in Theorem 2.4.1 that
gy = g = —7, as required by condition 5 in Theorem 2.4.1.

The other cases can be argued similarly.

This completes the proof. O

Lemma 2.4.6. Let A be o subcomplex satisfying conditions 1, 2, 8 and § in Theorem

2.4.1. Then A satisfies condition 4 if and only if, for any pair of adjacent mazimal atoms
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)\1 = u[il, ozl] X 'U[jl, /81] X ’UJ[I{}, E] and )\2 = u[z, CM] X ’U[jz,,@g] X ’w[kz,&,'g] with i < ?:1, k <ko
and j = min{ji, jo} > 0, there is @ mazimal atom containing uli, ~a] X v[j —1, —(=)ta] x

wlk, (-)™al.

Proof. The necessity is obvious. We now prove the sufficiency. We can assume that
j =71 < ja, and hence € = —(—)"a.

By the assumption, there is a maximal atom X' = u[¢', o/} xv[j', f'| xw[&', &'] containing
uli, —a] x v[j — 1, —(=)%a] x w[k, (—)"*7a]. Thus &' >4, §' > 5 — 1 and &' > k. We claim
that j' = j — 1 and hence ' = —(-)a.

Indeed, suppose otherwise that j' > j — 1. Then 7' = ¢ by the adjacency of )\; and
Ag. Hence o = —a. Note that the proof of Lemma 2.4.4 does not use condition 4. So,
by applying Lemma 2.4.4 to Ay and X', one can get a maximal atom A3 = ulfis, 3] ¥
v[js, B3} % wlks, 3] with i3 > 4, j3 > j and wlks, e3] D wks, e2] N wlk’,&']. Since ky > k,
wlk',e'l D wlk, (—)"*a] = wlk, —¢] and k; # k', we can see that )3 is distinct from A;
and Ay. This contradicts the adjacency of A; and As.

Now, if ¢/ > ¢ and &’ > k, then )\ is as required. Suppose that 7’ = 7. Then o/ = —«
and k' > k. Thus, by Lemma 2.4.4, A has a maximal atom X' = u[¢", "] x v[5”, 8"} X
wlk”, "] with i > 7, 3" = j — 1 (by the adjacency of A\; and )\y), 8" = ' = —(~)*a and
k" > k' > k, with the required property. The argument for the case k' = k is similar.

This completes the proof of the lemma. O

Lemma 2.4.7. Let A be a subcomplex of u X v X w satisfying the five conditions in

Theorem 2.4.1 . Then
1. Every mazimal atom uli, o) xv[j, B xwk, €] with j = J is (v, J)-projection mazimal.

2. For every mazimal atom ulé, o] x v[j, f] x wlk,e] with § > J, there is a (v, J)-
projection magimal atom uli', ') x v{j’, 8] x wik', &'] such that uli, o] C ulé', '] and

wlk, &) © w[k', ).

3. All the (v, J)-projection mazimal atoms, if ezist, can be listed as Ay, - -+, A\g with
As = ufis, o] X 0[5, Bs] X wiks, €] such that 14 > -+ > ig and k1 < -+ < kg and

£s—1= (=) ay for 1 <s< 8.
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4. For two consecutive (v, J)-projection mazimal atoms A\, and )\, in the above list,
either js_ 1 =J orjs,=J forl <s<S.
Proof. In this proof, all the maximal atoms refer to maximal atoms with dimension of
second factors not less than J.

Condition 1 follows from the definition of projection maximal.

To prove condition 2, suppose that A = u[¢, & x v[j, 8] X w[k, €] is not (v, J)-projection
maximal. Then there is a (v, J)-projection maximal atom A\; = wuliy, o] X v[j1, B1] ¥
w(ki,€1] such that 4; > 4, 51 < j and ky > k. If w[ég, o] D ulf, @] and wlky, &1] D wlk, €],
then A, is as required. Suppose that u[iy,on] P u[é,]. Then ¢y = ¢ and a; = —a.
Moreover, we have k; > k by condition 1 in Theorem 2.4.1. Hence, by Lemma 2.4.4,
there is a maximal atom Ay = ufi, ag] X v[ja, B2] X wlks,€s] in A such that 25 > i,
J2 < 7, vlj1, B1] C v[Je, B2) and w(k,e] C wlks, &2]. This shows that uliz, ap] D u[i, o and
w(ka, €2] D w(k, €] and jo < j. Therefore condition 2 holds by induction. The argument
for the case w[ky,&1] D w(k, €] is similar.

Condition 4 follows easily from condition 4 in Theorem 2.4.1, while Condition 3 follows
easily from the definition of projection maximal and condition 1 and condition 2 (sign
conditions) in Theorem 2.4.1.

This completes the proof. O

Proposition 2.4.8. Let A be a subcompler of u X v X w satisfying the five conditions
in Theorem 2.4.1. Let the (v, J)-projection mazimal atoms in A be listed as Ay, -+ -, Ag
with As = ulis, as] X v[js, Os) X wlks,e5] for 1 < s < S such that iy > -+ > ig and
ky < -+ < ks. Then FY(A) = ulir, 1] X w/[ky,e1] U+ Uulis, as] x w’ ks, eg].

Proof. This is a direct consequence of Proposition 2.1.3 for F} and Lemma 2.4.7. O

Corollary 2.4.9. Let A be a subcomplez of u X v X w satisfying the five conditions in
Theorem 2.4.1. Then FY(A) is @ molecule in u x w’ or the empty set for every non-

negative integer J.

We can similarly show that F#(A) and FE(A) are molecules or the empty set for a
subcomplex A of u x v x w satisfying the five conditions in Theorem 2.4.1. This completes

the proof of Theorem 2.4.1.
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2.5 Sources and Targets of Pairwise Molecular Sub-

complexes

In this section, we study source and target operators dj on pairwise molecular subcom-
plexes in u X v X w. The main result in this section is that dyA is pairwise molecular for

every pairwise molecular subcomplex A of u X v X w.

Recall that dJA is a union of interiors of atoms. We first prove that dJA is a subcom-

plex of A.

Lemma 2.5.1. Let A be a subcomplez of u X v X w and A = uft, o] x v[j, f] X wlk, ] be

a p-dimensional atomn in A with Int A C dJA.

1. If there is an atom X' = u[t', & x v[j', '] x w[k',€'] in A such that A C X and ' > 1,

then a = 7.

2. If there is an atom N = u[i,a'] x v[j’, B'] x w[k',€'] in A such that X C XN and
"> j, then B = (=)

3. If there is an atom X = u[t',o/] X v[§’, 8] x wlk',€'] in A such that A C X and

k' >k, then e = (—)iy.

Proof. Suppose that there is an atom X' = u[¢/, o] x v[j’, f'] x w[k’,€'] in A such that
AC XNand 4 >4 Then XA Cufi +1,¢] x v[j, 8] x wlk,e] C A and dim(u[i + 1, ] x
vlj, Bl x wlk, e]) = p+1. Since Int A C dJA, we have A C d) (u[i+1, o] x v[4, B] x wlk, €]).
It follows easily from Lemma 2.1.2 that o =+, as required.

‘The arguments for other cases are similar. O

Proposition 2.5.2. Let A be a pairwise molecular subcomplex of u x v X w. Let A\ =

uli, o] X vlj, 8] X wlk, €] be a p-dimensional atom such that Int A C dJA.
1. If there is a mazimal atom X' in A such that i >4, j' > §j and k' > k, then a = ~;
2. if there is a mazimal atom X in A such that ' > i, 7' > j and kK" > k, then

57




]

8. if there is a mazimal atom XN in A such that # > i, § > § and ¥’ > k, then

e = (=)".

Proof. The arguments for the three cases are similar. We give the proof for the first case.

Since Int A C A, there is a maximal atom p = u[l, o] X v[m, 7] X w[n,w] such that
A C p. If pcan be chosen such that [ > ¢, then we have & = v by Lemma 2.5.1 , as
required. In the following proof, we may assume that u cannot be chosen such that [ > 4
so that u[l, o] = u[i, a].

Suppose that there is a maximal atom X = wl[i, /] x v[§’, f'] x w[k', '] such that
i >4 3 > jand ' > k. Then we have v[j', f'] = v[j, —8] or w[k',&'] = wlk, —€]. By
applying Lemma 2.4.4, we may assume that v[j', #'] = v[j, -] and m > j, or assume
that w[k',e'] = wlk, —¢] and n > k.

Suppose that wk',&'] = wlk,—¢] and n > k. Then &€ = (~)**J by Lemma 2.5.1.
If min{j’,m} = j, and if X is (1, 3)-adjacent to u, then & = 0 = —(—)"*Jg’ = 4 by
Proposition 2.3.11, as required. Otherwise, by the definition of adjacency or condition 4 in
Theorem 2.4.1, we may chose A’ and g such that min{%', n} > k so that v[j, 8'] = v[4, —0;
according Lemma 2.4.4, we may also assume that m > j; thus § = (—)%y. In this case,
according to the assumptions, X' must be (1, 2)-adjacent to . It follows from Proposition
2.3.11 that & = 0 = —(=)*' = vy, as required.

Suppose that v[j’, 8] = v[j, —f] and m > j. Then we can get @ = v, as required, by
a similar argument.

This completes the proof.

O

Lemma 2.5.3. Let A be a pairwise molecular subcomplez of u X v x w. Let A = uli, a] X

vif, B] X wlk,e] be a p— 1 dimensional atom such that Int X C dJA.

1. If there is a mazimal atom N in A with X' O X\ such that i > i and §' > j, then

o= or f==(=)'n;

2. if there is a mazimal atom N in A with A’ D X such that ©' > 1 and k' > k, then

o= or e = —(-)"ti;
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8. if there is a mazimal atom X' in A with X' D X such that §' > j and k' > k, then
B=()iy ore= (=),

Proof. The arguments for the three cases are similar. We give the proof for the first one.
Suppose that there is a maximal atom X in A with X' D X such that ¢ > ¢ and
j'>j. Then A C ufi +1,a/] x v[j + 1, 8] x wlk,e] C A. Since Int A C dJA, we have
A Cdy(uli+1, ] xvlj + 1, ] x wlk,€]). It follows easily from Lemma 2.1.2 that o =
or f = —(—)%y, as required.
This completes the proof.

O

Proposition 2.5.4. Let A be a pairwise molecular subcomplez of u X v X w. Let A =

uli, o] X v[f, B] X w(k,e] be a p — 1 dimensional atom such that Int A C dYA.

1. If there is o mazimal atom X' in A such that 7 >4, j' > 7 and k' > k, then a = v
or = ~(=);

2. if there is a mazimal atom X' in A such thati' >, §' > § and k' > k, then a = v

ore = _(_)Z'I‘J,.),,

3. if there is a mazimal atom X in A such that ' > 4, 7 > j and k' > k, then

B= (=) ore=—(-)"*y.

Proof. The arguments for case 1 and case 3 are similar. We give the proofs for case 1
and case 2.

1. Suppose that there is a maximal atom X' = u[¢/, &'] X v[§’, f'] x w[k',&'] in A such
that 7' >4, ' > j and &' > k. If X' can be chosen such that A’ D )\, then we have oo = «y or
B = —(~)*y, as required, by Lemma 2.5.3. In the following, we assume that X’ cannot be
chosen such that A’ O A so that w[k', '] = wlk, —¢]. Let Ay = uléy, arl xv[71, 1] X wlky, £1]
be a maximal atom in A such that A C A;. Then uliy, aq] = uli, @] or v[j1, f1] = v[j, G]
by the assumption. According to Lemma 2.4.4, we may assume that &k, > k. Now there

are several cases, as follows.
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Suppose that A; cannot be chosen such that ¢; > 4 or j; > j. According to Lemma
2.4.4, it is easy to see that Ay and X are adjacent. Thus o = v (when € = —(=)"4) or
B = —(=)%y (when € = (—)**7v) by sign conditions, as required.

Suppose that A; can be chosen such that ¢; > 4. Suppose also that & = —y. Then
v[j1, B1] = v[j, f] by the assumptions. According to Lemma 2.5.3, it is easy to see that
g = —(—)", hence & = (—)"y. It is evident that A; and X are (2,3)-adjacent. It
follows from Proposition 2.3.11 that 8 = f§; = —(—)%y, as required.

Suppose that \; can be chosen such that j; > j and that A; cannot be chosen such
that 4, > 4. Suppose also that § = (—)%y. According to Lemma 2.4.4, condition 4 in
Theorem 2.4.1 and the assumptions, it is easy to see that A; and X are adjacent and
min{j’, 71} = j+ 1. It follows from condition 4 in Theorem 2.4.1 that there is a maximal
atom A" = uli", a"} x v[j", f"] x w[k",&"] such that i > 4, 7" = 5 and k" > k. Moreover,
we have " = —(—)'a by Note 2.4.2. By the assumptions, we have 8" = —f = —(—)%y.
It follows that o = -y, as required.

This completes the proof for case 1.

2. Suppose that there is a maximal atom A in A such that + >4, 5 > j and &' > k.
If X' can be chosen such that A’ D A, then we have a = v or € = —(—)%y, as required,
by Lemma 2.5.3. In the following, we assume that A’ cannot be chosen such that ) D X
so that v[j’, f'] = v[j, —fF]. Let Ay = ufiy, a1] X v[j1, B1] x wlki,&1] be a maximal atom
in A such that A C A;. Then ufir, o] = ufi, @] or wlky, ;] = wlk, €] by the assumption.
According to Lemma 2.4.4, we may assume that j; > j. Now there are several cases, as
follows.

Suppose that A; cannot be chosen such that 4, > % or k; > k. Then it is easy to see
that A; adjacent to X'. It follows from sign conditions that @ = v (when ' = —(—)%y) or
e = —(—)"y (when B = (-)%y), as required.

Suppose that A; can be chosen such that 7; > ¢. Suppose also that @ = —y. Then
B8 = —(—)*y by Lemma 2.5.3, and hence ' = —f = (—)*y. Moreover, we can see that \'
and A, are (2, 3)-adjacent. It follows from Lemma 2.3.11 that £ = —(—)*"J, as required.

Suppose that A; can be chosen such that &, > k. By a similar argument as in the
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above case, we can get @ = 7 or £ = —(—)"~, as required.

This completes the proof.

O

Lemma 2.5.5. Let x be a union of interiors of atoms in an w-complez. Then z is a

subcomplex if and only if for every atom a in x with Inta C x and every atom b with

b Ca, one hasIntb C =.

Proof. The necessity is evident. To prove the sufficiency, it suffices to prove that for every
atom a with Int ¢ C z we have a C x. Note that a can be written as a union of interiors

of atoms b with b C a. The sufficiency follows. (]

Proposition 2.5.6. Let A be a pairwise molecular subcomplez of u X v X w. Then diA

s a subcomples.

Proof. From Lemma 1.2.10, we have already known that dJA is a union of interiors of
atoms. By Lemma 2.5.5, it suffices to prove that for every atom A with Int A C dJA and
every atom Ay with Ay C A, one has Int A\; C dgA. It is evident that there is a sequence
A D Al D A2... D ) such that the difference of the dimensions of any pair of consecutive
atoms is 1. We may assume that dim A; = dim A — 1.

Let A = u[t, o] x v[j, B] X w[k,¢]. Since Int A C dJA C A and A is a subcomplex, we
have A; C A C A and dim A; < dim A < p. Suppose that p = u[l, o] x v[m, 7] X w[n,w] is
an atom with dimp =p+1and Ay C p C A. We must prove Ay C d}p.

If A C p, then Ay CACdJpsince A CdJA. Il >i+1orm > j+1orn > k+1, then
we evidently have Ay C dJu by Lemma 2.1.2. In the following, we may further assume
that A ¢ p and that < i+ 1landm < j+1and n < k+ 1. Thus ufi,a] ¢ u[l, o]
or vlj,B] ¢ v[m, ] or wik,e] ¢ wln,w]; moreover, if ufi,c] ¢ u[l,c], then we have
ull, o] = uli, —a] or ull, o] = uli—1, o], we also have v[j, 8] C v[m, 7] and w(k, ] C wn,w];
if v[7, 6] ¢ v[m, 7], then we have v[m, r] = v[j, — 8] or v[m, 7] = v[j — 1, 7], we also have
ult, &) C ull, o) and wlk, e] C wn,w); it w[k, €] ¢ wn,w], then we have w(n, w] = wlk, —¢|
or wn,w] = ulk — 1,w], we also have u[i, o] C u[l,o] and v[j, 8] C v[m,7]; Note that

dimpg = p+1 and dim A < p, we now have 3 cases, as follows.
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1. Suppose that u[l, o] = uli, —a] or v[m, 7] = v[j, —f] or w[n,w] = wk, —¢]; suppose
also that dim A = p. Then only one of the equations [=¢+1,m=j+1landn=%k+1
holds. The arguments for the three cases are similar, we only give the proof for the
case v[m, 7| = v[j, —f] and dimA = p. In this case, we must have p = ufi + 1,0} x
o[, =0 x wlk, €] or pp = uli,a] x v[j, —f] X w[k + 1,w]. Hence )\ is of the form \; =
ufi, ] x v[j — 1, A] x wlk,e].

Suppose that u = u[i + 1,0] x v[j, —0] X wlk,e]. Then there is a maximal atom
¢ = u[ll,o'] x v[m/, 7] x wn',w'] such that I > i, m' > j and n’ > k. It follows from
Proposition 2.5.2 that @ = . This implies Ay C d}u, as required.

Suppose that p = ufi,a] X v[j, —f] X w[k + 1,w]. Then there is a maximal atom
g = ull',o'] x v[m/, 7] X w[n',w'] such that I' > i, m' > j and n' > k. Tt follows from
Proposition 2.5.2 that & = (—)**/v. This implies A\; C d]p, as required.

2. Suppose that l =¢—1 or m = j—1 or n = k — 1; suppose also that dim A = p. The
arguments for these three cases are similar. We only give the proof for the case m = j—1
and dim A = p. In this case, we have [ =441 and n = k + 1 because dimpu = p+1; we
also have \; = uli, ] x v[j — 1,7] x wlk,e]. To get A\; C dJu, by Lemma 2.1.2, it suffices
to prove that o = v or & = (—)*+.

Let N = [, /] x v[j", #'] X w[k’,&'] be a maximal atom in A such that A C X. Let
¢ = ull',o'] x v[m', 7'] x wn',w’] be a maximal atom in A such that u C p'. If X' can be
chosen such that i > ¢ or k' > k, then we have @ = «y or ¢ = (—)#*/ which implies that
A1 C dju, as required. If there is a maximal atom p" = u[l", "] x v[m”, 7"} x wn",w"]
with ¢ D Ay and m” > m such that I > 7 or n" > k, then, by Proposition 2.5.2, we
have o = v or € = (—)"*J which implies that \; C d)u, as required. Now suppose that
A" cannot be chosen such that 4 > 4 or ¥’ > k. Suppose also that there is no maximal
atom p" = u[l",o"] x v[m”, "] x w[n",w"] with p” D A; and m” > m such that I" > 4
or n” > k. Then ul?, &'] = uli, a], w[k',&'] = w[k, €] and v]m/', 7] = v[m, T]. Moreover, it
is easy to see that \' and p' are adjacent. It follows from the sign condition for A’ and
¢ that @ = v (when 7 = —(=)*y) or £ = (=) (when 7 = —(~)®y). This implies that

A CdJu, as required.
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3. Suppose that u[l, o] = u[i, —a] or v[m, 7] = v[j, —f] or w[n,w] = w[k, —¢]; suppose
also that dim A = p—1. The arguments for these three cases are similar. We only give the
proof for the case v[m, 7] = v[j, — ] and dim A = p—1. In this case, we have { = i+1 and
n = k+ 1. Moreover, we can see that A is of the form A, = ufi, a] x v[j — 1, §] x w[k, €].
According to Lemma 2.5.4, we have & =  or & = —(—)""/5. This implies that A, C dp,
as required.

This completes the proof. O

We can now start to prove that djA is pairwise molecular for a molecular subcomplex
| Ain uw x v X w by verifying conditions in Definition 2.1.4.
By Lemma 1.2.10, the maps Fy', F} and F} are defined on d]A for every subcomplex

Aofuxovxw.

Proposition 2.5.7. Let A be a pairwise molecular subcomplez of u X v X w. Ifp > J

and F(A) # 0, then F3(djA) = d} _;F3(A); therefore F§(dJA) is a molecule in u x w”.

Proof. Firstly, we prove that d)_,F7(A) C F}(dJA).

Let uli, o] xw”[k, €] be an atom in ux w” such that Int(uli, o] xw’[k,]) C d]_;F3(A).
We must show that Int(ul4, o] x w/[k, e]) C FJ(dIA). Clearly, we have uli, o] x w’[k, €] C
F3(A). So it is easy to see that u[z, o] x v[J, B] x w[k, €] C A for some sign 8. We are going
to prove Int{uli, o] X v[J, B] x wlk,&]) C dJA by verifying conditions in Lemma 1.2.11.
It is evident that dim(u[i, @] % v[J, 8] x w[k,€]) < p. To verify the other conditions, we
consider two cases, as follows.

1. Suppose that 3 can be chosen such that 8 = (—)%y. Suppose also that there is
an atom ujt’, /] x v[j’, 8] x wk',&'] C A such that u[i, o] x v[g, 8] x w(k, ] C u[i, '] x
vlf', B'] x wlk',&']. Then uli,a] x w/[k,e] C u[i',a’] x w/[k, €] in w x w/. Therefore
ult, o) xw’[k,e] < d1_ (ui', &|xw! [k, &']). Tt follows easily that w4, o] xv[J, 8] x w[k, €] C
dy(uli', o] x v[j', '] x w[k',€]), as required by the second condition of Lemma 1.2.11.

2. Suppose that 8 cannot be chosen such that 8 = (—)*y. Suppose also that there is
an atom u{d, o] x v[j’, B'] x w[k',€'] C A such that u[z, o] x v[j, 8] x wlk,&] C u[¢, '] X

v[f', B'] x wlk',e']. Then j' = J and ' = f = —(—)*y from Lemma 2.5.1. By an
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argument similar to the above case, it is easy to see that u[i, ] x v[J, 8] x w[k,&] C
d¥(uli’, o] x v[j', B'] x w[k',€]), as required by the second condition of Lemma 1.2.11.

We have now shown that Int(u[i,a] x v[J, 8] x w[k,e]) C dJA. It follows that
Int(uli, o] x w’[k,e]) = Fy(Int(uli,e] x v][J, 8] x wk,e])) C F¥(dyA). This completes
the proof that d) ;F7(A) C Fj(djA).

Conversely, let A = u[i, o] x w’[k, €] be an atom such that Int A C F}(d7A). We must
show that Int A C d_;F7(A). It is easy to see that there is an atom u[4, o] x v[j, ] x w[k, €]
in A such that Int(uf, ] x v[4, 6] X wlk,€]) C dYA and § > J. Since d]A is a subcomplex
of uxvxw, we can see that u[i, o] xv[J, f]xw(k, €] C dJA for some sign §'. It follows that
dim A < p—J. Clearly, we have A C F7(A). This shows that the first condition of Lemma
1.2.11 is satisfied. To verify the other condition of 1.2.11, let u = u[l, o] x w/[n,w] be an
atom in F7(A) such that A C p and dim g = p—J+1. We must prove that A C d}_ ;. It
is evident that there is an atom u[l, o] x v[J, 7] X w[n,w] in A for some sign 7/. If [ > i+1
orn > k-1, then it is evident that A C dju, as required. In the following proof, we may
assume that ! <47+ 1and n < k+ 1 so that dimA=p—JordimA=p—J — 1. Now
there are various cases, as follows.

Suppose that f" and 7' can be chosen such that f' = 7. Then ufi, o] x v[J, 8] X
wlk, €] C (dYAN(u[l, o] x [ J, 7] x win, w]) C d}(ull, o} x v[J, 7] x win,w]) by Proposition
1.2.6. It follows easily that A C d)_;pu, as required.

Suppose that 4’ and 7' cannot be chosen such that 5’ = 7'. Suppose also that J > 0.
Since dj A is a subcomplex, we know that u[4, o] x v[J -1, %] x w(k, €] C dJA. This implies
that uli, o] x v[J — 1, 4] x w(k,e] C d)(u[l, 0] x v[J,7'] x w[n,w]). It follows easily that
A C d)_ s, as required.

There remain the case that J = 0 and 8’ and 7' cannot be chosen such that g’ = 7'.
If dim A = p, by Proposition 2.5.2, we can get o = v when [ > i, while ¢ = (~)%y when
n > k; thus A C dJu, as required. If dimA =p—1,then { =i+ 1and n=Fk+1; by
Proposition 2.5.4, we can get o =« or € = —(—)*y; thus A C d}u, as required.

This completes the proof.
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We can prove the following two results by similar arguments.

Proposition 2.5.8. Let A be a patrwise molecular subcomplex of u X vx w. Ifp > I and

FE(A) # 0, then Fr(diA) = d]_ Fp(A).

Proposition 2.5.9. Let A be a pairwise molecular subcompler of u x v x w. If p > K

and Fg(A) # 0, then FR(dJA) = d)_ FR(A).

We also need to show that d]A satisfies condition 1 for pairwise molecular subcom-

plexes for a pairwise molecular subéomplex A.

Lemma 2.5.10. Let A be a pairwise molecular subcomplex. Then there are no distinct
mazimal atoms A = ulg, af x v[j, B] x wlk,e] and X = uli', o] x 0[5, #] x w[k',€'] in dJA

such that 1 <4, <35 and k <k

Proof. Let A = uli, o] x v[j, 6] x w[k,&] and X = u[, &'} x v[j’, B'] x w[k', €'} be a pair of
maximal atom in dJA such that ¢ <4', j < j' and k¥ < k'. We must prove that A = X,
Suppose that dim A < p or dim X' < p. By Lemma, 1.4.16, we can see that A is a maximal
atom in A when dim A < p and X' is a maximal atom in A when dim X’ < p. According to
condition 1 for pairwise molecular subcorplex A of w X v X w, it is evident that A = N,
as required. In the following argument, we may assume that dim A = p and dim A = p so
that ¢ =14, 7 =4 and k = k'

Now suppose otherwise that A ¢ A'. Then o = —a or /' = —f or &’ = —&. We may
assume that o/ = —a. In this case, we have FY(\) C Fy(dJA) = d)_,F}(A) and similarly
FY(XN) C dy_;F7(A) by Proposition 2.5.7. Since dim F}(A) = dim F?(X) = p — j and
dim(dy_;F}(A)) < p — j, we can see that FP(A) and Fy(X') are maximal atoms in the
molecule d)_;F¥(A). Note that F'(A) = ult, o] x w’[k, €] and F} (X') = ufi, —a] xwi [k, '].
We get a contradiction to condition 1 in Theorem 1.3.7.

The arguments for the case ' = —f or ¢’ = —¢ are similar.

This completes the proof.

Now we can prove the main result in this section.
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Proposition 2.5.11. Let A be a pairwise molecular subcomplex. Then so is dJA.

Proof. We have shown that dJA satisfies condition 1 for pairwise molecular subcom-
plexes. Moreover, by Proposition 2.5.7, 2.5.8 and 2.5.9, we have FF(dJA) = d)_,F{(A),
Fy(djA) = dj_;F3(A) and FR(dJA) = d)_p Fi(A) forall I > p, J > p and K > p. Since
FE(A), F3(A) and FE(A) are molecules or the empty set for all I, J and K, we can see
that F(djA), Fy(djA) and F(dyA) are molecules or the empty set for all I, J and K.
It follows that dJA is pairwise molecular.

This completes the proof.

O

The following theorem gives the algorithm of constructing dJ A for a pairwise molecular

subcomplex A in u X v X w.

Theorem 2.5.12. Let A be a pairwise molecular subcomplex. Then the dimension of
every mazimal atom in dyA is not greater than p. Moreover, an atom of dimension less
than p is a marimal atom in dJA if and only if it is a mawimal atom in A; an atom
uli, ] X v[j, B] x w(k,&] of dimension p is a mazimal atom in dIA if and only if there is
a mazimal atom u[i”, o] x v[j", B"] x wk",&"] in A such that 7" > i, 7" > j and k" > k,

and the signs o, B and v satisfy the following conditions:

1. dfuli", o xv[j", 8" x w[k", "] can be chosen such thati" > i, then o = vy; otherwise

o= Oﬁ”;

2. if u[t", "] x v[j", f"] x wlk",€"] can be chosen such that j" > j, then § = (=)y;
otherwise 8 = (";

8. if uli”, "] x v[j", B"] x w[k", "] can be chosen such that k" > k, then € = (=),

otherwise € = &”.

Note 2.5.13. It follows easily from condition 3 in Theorem 4.4.1 that «, # and v are
well defined.

Proof. Evidently, the dimension of every maximal atom in dJA is not greater than p.

Let A; be the union of the atoms as described in this theorem. It is easy to see that
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A4 satisfies condition 1 for pairwise molecular subcomplexes. To prove the theorem, by
Proposition 2.1.7, it suffices to prove that Fy'(A) = Ff(dJA), F7(A1) = Fj(dJA) and
FR(Ay) = FR(dyA) for all I, J and K. The arguments for the three equations are similar,
we prove only the second one. If J > p, then it is easy to see that F}(A;) = 0 = F}(d]A),
as required. In the remaining proof, we may assume that J < p. We have known that
Fy(diA) = d)_;F5(A). we need only to prove that F}(A1) = d)_;F7(A).

By the definition of I}, it is easy to see that F7(A1) and d)_;F(A) are subcomplexes
of uxw”’. We are going to prove that Fy(A;) and dJ_;F7(A) consist of the same maximal
atoms so that they are equal.

Let u = ufi,a] x w/[k,e] be a maximal atom in F¥(A;). Then A; has a (v, J)-
projection maximal atom A of the form A = u[i, @] x v[j, 8] x w[k,e]. Hence A has a
maximal atom A = u[i’, /] x v[j’, f'] X w[k',&'] withi <, j <4 and k < K.

Suppose that j = J and i+j+k = p. Since u[i', o/] xw/[k’, ] is an atom in F¥(A} and
i+k = p—J, we know that d)_,F}(A) has a maximal atom of the form ufi, o] x w’ [k, €"].
Moreover, we can see that there is a maximal atom u[l, o] X v[m, 7] X w[n,w] in A such
that | > 4, m > j and n > k if and only if there is a maximal atom u[l, o] x w/[n,w]
F3(A) such that [ > 4 and n > k; and we can also see that there is a maximal atom
ull, o] x v[m, 7] X w[n,w] in A such that [ >4, m > j and n > k if and only if there is a
maximal atom u[l, o] x w’[n,w] in F¥(A) such that I > i and n > k. It follows from 1.3.7
that & = o and € = ¢". This implies that p is a maximal atom in dj_;F'(A).

Suppose that 7 = J and i+ j+ k& < p. Then X is also a maximal atom in A. Therefore
t = FY()) is a maximal atom in FJ(A). Since i+ k < p—J, we know that p is a maximal
atom in d) ;F'(A).

There remains the case that § > J. In this case, there are no maximal atom u[l, o] x
v[m, 7] X w[n,w] in A with [ > ¢ and m > J and n > k such that [ > i or n > k. So
i=1,a=ca,k=Fk and e = ¢. On the other hand, since u = u[i, ] X w/[k,e] =
uli!, o' x wik', '] = FY(N'), we see that 4 is a maximal atom in F¥(A). Because ' + &' =
i+k<p—j<p-—J,weknow that u is a maximal atom in d;_;F7(A).

This shows that every maximal atom in FJ(A,) is a maximal atom in d]_;F7(A).
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Conversely, let = uli, o] x w”/[k, €] be a maximal atom in dJ_,F7(A). Then Fy(A)
has a maximal atom p' = u[', /] x w’[k',&'] with ¢ <4’ and k < k'. Therefore A has a
(v, J)-projection maximal atom of the form X = u[#/, /] X v[§, #] x w[k',€].

Suppose that ¢ + % = p — J. Then Ay has a (v, J)-projection maximal atom of
the form A = ufi, o] x v[J, §"] x wlk,e"]. We can see that there is a maximal atom
ull, o] x v[m, 7] X wn,w] in A such that { > ¢, m > J and n > k if and only if there is
a maximal atom ull, 0] X w/[n,w] F?(A) such that I >4 and n > k; and we can also see
that there is a maximal atom u[l, o] x v[m, 7] X w[n,w] in A such that [ > i, m > J and
n > k if and only if there is a maximal atom u[l, 0] x w/[n,w] in FY(A) such that [ > 4
and n > k. So o = « and " = ¢. Since F?(\) = ufi, "] x w[k,&"] = u, we can see
that g is a maximal atom in F¥(A;).

Suppose that i+k < p—J. Then p = ui, o] xw’[k, €] is also a maximal atom in F?(A).
So A has a (v, J)-projection maximal atom X = u[i, o] X v[f', 8] x w[k, €]. Now, if j/ = J,
then 7 + j' + &k < p; hence X is also a maximal atom in A; and FY(\) = ufs, ] X w’[k, €]
is a maximal atom in FY(A1). Suppose that j* > J. Then it is easy to see that there
is no maximal atom ul,o] X v[m, 7] X wn,w] in A with [l > ¢ and m > Jand n > k
such that { > i or n > k. Hence A; has a (v, J)-projection maximal atom of the form
X' = ufi, o] x v[5", "] x w|k,e]. Therefore we see that FY(\") = uli, o] x w’/[k,e] = u is
a maximal atom in FY(A;).

This shows that every maximal atom in d)_;F7(A) is a maximal atom in F}(A;).

This completes the proof.
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2.6 Composition of Pairwise Molecular Subcom-

plexes

In this section, we consider composition of pairwise molecular subcomplexes in u x v x w.
We first give the construction of composites of pairwise molecular subcomplexes. Then

we show that composites of pairwise molecular subcomplexes are pairwise molecular.

Lemma 2.6.1. Let A~ and A" be pairwise molecular subcomplezes. If d¥ A~ = dj AT,
then for every mazimal atom A~ = u[i™,a~ | xv[j~, 87| Xw[k™,&~] in A~ and every mazi-
mal atom At = ufit, ot xu[jT, Bt xw[k*, ] in At one has min{s~, i+ }+min{j, 5V} +

min{k~,k*} < p.

Proof. Let | = min{s~,¢*}, m = min{;~, 7%} and n = min{k~, k*}. Suppose otherwise
that [ +m +n > p. Then there is an ordered triple {4, 7, k} with i <1, § <m, k < n and
i+j-+k=p. Since [+m+n >p, we have i <[, j <mork < m. Ifi <[, then d*A~ has
a maximal atom of the form uli, +] X v[j, 6] x w[k, €], while d, A* has a maximal atom of
the form u[i, —] x v[j, '] x wlk,&'] by Theorem 2.5.12. This contradicts condition 1 for

pairwise molecular subcomplex df A~ = d;A*. The arguments for the cases j < m and

k < m are similar. [l

Lemma 2.6.2. Let A~ and A" be pairwise molecular subcomplezes in u X v X w. If
df A~ = d A", then
FPAT) N FP(AT) = Ff(A™ N AT) = FP(dyAT) = Fi'(d, AT),
FI(A™) N F3(AY) = F3(A™ 0 A*) = F}(dFA~) = F3(d, AY)
and
FRAT)NFR(AT) = FR(A™NAY) = FR(dYA™) = FR(ds AT)
forall I, J and K.

Proof. The arguments for the three formulae are similar. We give the proof for the second
one. There are two cases, as follows.

1. Suppose that J > p. We claim that FY(A~) N F¥(A*) = 0.
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Indeed, suppose otherwise that F¥(A™) N FY(AY) # 0. Then it is evident that there
are atoms p~ = u[l”, 07| Xv[m™, 77 X wn",w ] in A” and pt = uflit, o] x v[mt, 7] x
w[n,w*] in At such that m~ > J > p and m* > J > p. According to Theorem 2.5.12,
this implies that there are maximal atoms u[0, of] xv[p, +] x w[0, '] and u[0, &f] X v[p, —] x
w[0,€"]x in df A~ and dj A* respectively. This contradicts the condition 1 for pairwise
molecular subcomplex df A~ = d, A*.
Now we have Fy(dtA~) C F}(A~ N A*) C Fy(A™) N FY(A*) = 0. Therefore
FYdfA™) = FY(A-NAY) = FY(A™) N F}(A"), as required.
) 2. Suppose that J < p. Since dfA™ = dyA*, we have df_;FJ(A™) = Fy(dtA~) =
| Fy(d,A%) = d_;Fj(AT). Because F}(A~) and FJ(AT) are molecules, we can see that
F3(A™)#p-sF3(AY) is defined. Hence F}(A™) N FY(AY) = df_,F3(A™) = F¥(dfA~) C
F3(A~ N AY). Since we automatically have F¥(A~ N At) C FY(A™) N FY(AY), we get
FY(AT)NFF(AT) = F3(A~ 0 A*) = F}(dtA~), as required.
This completes the proof.

(I

Proposition 2.6.3. Let A~ and A" be pairwise molecular subcomplezes. If d;jA“ =

d, AT, then A~ NAT = dtA~(= djAt); hence A #,AT is defined.

Proof. Let M = dfA~ = dAT. It is evident that M C A~ N A*. To prove the reverse
inclusion, it suffices to prove that every maximal atom in A~ N AT is contained in M.
Suppose otherwise that there is a maximal atom A = uli, @] X v[4, 8] X wlk, €] in
A~ N AT such that A ¢ M. Since uli, @] x v[4, 8] = FP()\) C FP(A~ N AT) = Fr(M),
we can see that M has a maximal atom X' = u[,d/] x v[j', f] X w[k',€'] such that
ult, o] C uli', o/] and v[j, B] C v[j’, B'] and &' > k. Because A = uli, a] x v[j, 8] x w[k, €]
is maximal in A" NAY and M € A-N AT, we have k' = k and ¢ = —e. Now we know
that AU XN C A~ and AU XN C A*. By applying Lemma 2.4.4 to A~ and AT, it is easy
to see that there are maximal atoms A~ = w[i™,a”| X v[j~, 87| x w[k™,&”] in A~ and
AT =afit, o] x o[ T, BF] x wlkt,e¥] in AT such that u[i~, 7] Nu[it, at] D ufi, a] and
vli~, A0t 8] D vly, B] and min{k~, k*} > k. Since X is maximal atom in A" NAY,

wehave k- =kt =k+1and e = —¢t.
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Now, we have uli, o] x v[j, 8] C F&4, (A7) N FE L (AT) = FZ (A~ N AT). Therefore
A~ N A" has a maximal atom N = u[i", "] x v[5", B"] X w[k", "] with u[i", "] D u[i, @]
and v[j”, 6] D vlj, B} and k" > k. This contradicts that A is a maximal atom in A~ NA*.

This completes the proof.

O

The following Proposition tells us how to construct the composite of a pair of pairwise

molecular subcomplexes of u X v X w.

| Proposition 2.6.4. Let A~ and At be pairwise molecular subcomplezes of u x v X w. If
df A~ = dj AT, then the mazimal atoms in the composite A=#,A* are the q-dimensional
common mazimal atoms of A~ and AT with g < p and the r-dimensional atoms in either

A~ and AT with r > p.

Proof. Let A be the subcomplex of u X v X w as described in the proposition. We must
prove that A = A~ U A*. Clearly, we have A € A~ U A¥; it suffices to prove that
A7 UA*T C A. By the formation of A, we must prove that, for each maximal atom
A = uli, @] x v, B] X wk,e] in either A~ or AT with i + j + k < p and such that X is
not a common maximal atom in A~ and A%, A C A. It is easy to see that this can only
happen when ¢ + 7 + k = p. Suppose that X is a maximal atom in A” which is not a
maximal atom in A™7. Then A must be a maximal atom in d}f A~ = d;A* which implies
that A C A7 for some maximal atom A™7 = u[i™, a™"] x v[j~7, 7] x w[k~7,&77] with
77+ 577+ k™7 > p. Thus A C A. Therefore, we have A~ UAt C A.
This completes the proof.

O

Now we can show that the composites of pairwise molecular subcomplexes in u X v X w

are pairwise molecular.

Proposition 2.6.5. Let A~ and A be pairwise molecular subcomplezes. If dfA~ =

dy A%, then A~#,At is a pairwise molecular subcomplex of u X v X w.
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Proof. Let A = A~#,A". According to Lemma 2.6.1, it is easy to see that A satisfies
condition 1 for pairwise molecular subcomplexes. Moreover, we have Ff(A~#,A) =
FrA~UAY) = FEA™) U F2(AT).

Now suppose that p > I. We have d F}(A™) = FP(dtA™) = Fp(dAY) =
dy (FE(AY). Thus FY(A~#,A%) = FP{A7)#p—rFp(AY). Therefore FE(A™#,AY) is a
molecule,

Suppose that p < I. Then it is easy to see that FF(A™) = @ or FE(A*) = 0.
(Otherwise, we have F¥(A~ N AY) # (. This would lead to a contradiction to Lemma
2.6.1.) Therefore F}*(A~#,A") is a molecule or the empty set.

We have now proved that FF(A~#,A™) is a molecule or the empty set for all 1.

Similarly, we can see that F7(A~#,A") and F(A~#,A") are molecules or the empty
set for all J and K.

It follows from Definition 2.1.4 that A is a pairwise molecular subcomplex of u x v X w.

D

2.7 Decomposition of Pairwise Molecular Subcom-

plexes

The aim of this section is to prove the main theorem in this chapter.

Theorem 2.7.1. If A is a pairwise molecular subcompler of u X v X w, then A is a

molecule.

It is trivial that the theorem holds when A is an atom. Thus we may assume that A
is a pairwise molecular subcomplex in w X v X w which is not an atom throughout this
section. We are going to show that A is a molecule.

Let
p = max{dim(A N p): A and p are distinct maximal atoms in A}.

Recall that p is called frame dimension of A. It is evident that there are at least two

maximal atoms A and g in A with dimA > p and dimyp > p. By Lemma 2.4.4, it is
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easy to see that p is the maximal number among the numbers min{%;, 12} + min{j;, 52} +
min{kl,k'z}, where /\1 = u[z’l,cul] X ’U[jl,ﬂﬂ X ’LU[lﬁl,El] and )\2 = u[’ig,az] X 'U[jz,ﬁg] X

wlkg, €] run over all pairs of distinct maximal atoms in A.

Lemma 2.7.2. Let A = uli, ] x v[j, f] x wk, €] and X' = u[t', o/] x v[j’, B] x w[k', '] are

mazimal atoms in A with min{z,¢'} + min{7, 7/} + min{k, '} = p.
1. Ifi=1, a=—a and j < §, then B = (=)'a;
2. Ifj=43",B8=—0F and k <k, thene = (—)8;
3 Ifk=FK,e=—¢"and j <7, thene = (=)B;

Proof. The arguments for the three cases are similar, we prove only for the first case.

Suppose that i = ¢, « = —a' and j < j'. According to Lemma 2.4.4, we can get a
maximal atom A = u[i", "] x v[j", 8] x w[k", "] with & > 4, v[§”, 8"] D v[j, f] and
wlk", "] D wlk',€']. Since min{i, '} + min{4, j'} + min{k, k'} = p, we have j” = j and
k" = k'. Hence v[j", 8"] = v[j, 5] and w[k",&"] = wlk',&']. Moreover, it is easy to see
that A, A" and A" are pairwise adjacent by the choice of p. It follows easily from the sign
conditions that 8 = (—)%a, as required.

This completes the proof.

O

We are going to prove that a pairwise molecular subcomplex A in u X v Xw is a molecule
by showing that A can be properly decomposed into pairwise molecular subcomplexes.

'This decomposition depends essentially on the following total order on the set of maximal

atoms in A.

For a pair of atoms A = u[i, o X v[7, 8] X w[k, €] and X' = u[i/, /] x v[j, #] x w[k', €]
in A, we write A < X' if one of the following holds:

ea=ca =—andi <

e a=c =+ and i >

e o= — and o/ = +;
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e i=7areeven, a=c/, =0 =—and j < j;
o ;=1 areeven, a=¢/, =0 =+ and 7' < j;
e i =1¢ areeven, a =c¢, f=—and f =+
ei=¢areodd,a=c, =8 =+ and j < j;
e i=iareodd, a=c, =0 =—and j < j;
e i=¢areodd,a=a/,f=+and §' = —.
It is evident that the relation < is a total order on the set of maximal atoms in A.

Lemma 2.7.3. For any pair of mazrimal atoms A and N i A with dimA > p and

dim A > p, if A <X, then AN XN Cdiand; N,

Proof. Let A = ult, o] x v[j, f] x w[k, €] and X' = u[¢', &/] x v[j’, ] x w[k',&']. According
to the choice of p, it is evident that min{z,4'} + min{j, '} + min{k, &'} < p. We now
consider five cases, as follows.

1. Suppose that min{s,¢'} + min{7, j'} + min{k, &'} = p. Then X and X are adjacent
by the choice of p. According to Lemma 2.7.2 and sign conditions for pairwise molecular
subcomplexes, it is easy to see that AN X C drAn d, A, as required.

2. Suppose that min{z,7'} + min{j, '} + min{k, ¥’} < p — 1. Then it is easy to see
that AN X C dfANd; N, as required.

3. Suppose that min{z,4'} + min{j, '} + min{k, &'} = p — 1 and that A and X\ are
adjacent. There are two case, as follows: (1) i =4'; (2) ¢ # ¢ . In case (1), it is evident
that ANN C dfAnd, X, as required. In case (2), it follows easily from the sign conditions
that AN N C di AN dy_ X5 thus AN A C dFANdy XN, as required.

4. Suppose that min{z, '} + min{j, '} + min{k, &'} = p — 1 and that A and ) are
not adjacent. Suppose also that 2 = ¢/ or j = j' or £k = k’. Then it is easy to see that
ANXN Cdfand; X, as required.

5. Suppose that min{s,#'} + min{j, 7} + min{k, &'} = p— 1 and that X\ and )\ are not

adjacent. Suppose also that ¢ £ ¢’ and j # 4’ and k # k. Then there are several cases,

| 74




as follows. (1) 1 <4 and j < j', oré < and k <k'; (2) 1 < and j > j' and k > k'; (3)
i>dand > ori>¢ and k >k (4) >4 and § < §' and k < k', In case (1), we
have o = —; it follows easily that AN X' C dfANd; N, as required. Similarly, in case (3),
we have o’ = +; this also implies that AN\ C diANd; N, as required. There remain
case (2) and case (4).
To give the proof for case (2), suppose that min{%, '} +min{j, j'} + min{k, &'} = p—1
and that A and A are not adjacent; suppose also that ¢ < +' and j > 7' and k > k'. Then
a = — and there is a maximal atom X' = u[i", "] x v[j", 8"} x w[k",€"] in A distinct
’ from X such that ¢ > i, j” > 7' and k" > k'. By the choice of p, we can see that \" is
adjacent to both X and X, and we have i = i+ 1. According to condition 1 for pairwise
molecular subcomplexes, we have 5" > §' or k" > k'

In case (2), suppose that j” > j. Then min{j”,s} = j' 4+ 1 and k" = &' by the choice
of p. Hence &” = —[—(=)"'+1] = — (=)', If ¢’ = &" = —(=)", then it is easy to see
that AN C dfANd; X, as required. If &' = —&" = (—)"', then we can get &' = (=)',
ie., (=)'B = (=)™ thus f = (—)% this implies that AN X C dfANd; N, as required.

In case (2), suppose that k" > k. Then j” = §' by the choice of p. We can also
have 8" = —(—)'a = (~)* by the sign conditions. If §' = " = (—)¢, then it is easy
to see that AN XN C dfANd; X, as required. If §' = —f" = —(—)?, then we can get
g' = (=)' = —(—)"7"; this implies that AN X C dfANdy N, as required.

This completes the proof for case (2).

To give the proof for case (4), suppose that min{s, %'} + min{j, '} + min{k, '} = p—1
and that A and )\’ are not adjacent; suppose also that 7 > ¢ and j < j' and k < &’. Then
a = o = + and there is a maximal atom A" = ufs’, o] x v[j", f"] x w[k", "] in A distinct
from N such that " > 4/, 7" > j and k" > k. By the choice of p, we can see that \" is
adjacent to both A and ), and we have " = ¢ + 1. According to condition 1 for pairwise
molecular subcomplexes, we have j” > j or k" > k.

In case (4), suppose that 7/ > j. Then min{j",j'} = j + 1 and k" = k by the choice
of p. Hence &" = [—(=)"+H] = (=), If ¢ = ¢" = (—)"*, then it is easy to see that

ANN Cdrand, N, as required. If ¢ = —¢" = —(=)¥*4, then we can get & = (— )8, i.e.,
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()78 = —(—)"*4; thus ' = —(—)¥; this implies that AN XN C df AN dy N, as required.
In case (4), suppose that " > k. Then j” = j by the choice of p. We can also
have 8" = —(=)"a = —(=)" by the sign conditions. If # = f” = —(=)¥, then it is
easy to see that AN XN C dfANd XN, as required. If § = —g" = (=), then we can get
g = (—)7B = (=)¥+J; this implies that AN N C dfAnd; X, as required.
This completes the proof for case (4), thus completes the proof of the lemma.

O

By this lemma, we can arrange all the maximal atoms in A with dimension greater

than p as
ALy Agy ey A
such A; N /\j - d;_Az ﬂd‘;)\j for ¢ < j.
Let A= =d;AUM and AT =dFAU Ay - - A,. We are going to prove that A~ and A

are pairwise molecular subcomplexes and A can be decomposed into A~ and A™.
Lemma 2.7.4. A~ satisfies condition 1 for pairwise molecular subcomplezes.

Proof. We first prove that d, A1 C d; A. Suppose that § € d,; A\;. Then, for every maximal
atom X' in A with £ € X, if ' = A; for some ¢ > 1, then £ € Ay N A C dy Ay = dy N
if dim A" < p, then we automatically have £ € d, N. It follows from Lemma 1.4.17 that
d, A1 C dy A, as required.

We now verify that A~ satisfies condition 1 for pairwise molecular subcomplexes. It
suffices to prove that any maximal atom A = u[i, o] X v[f, 8] x w[k, €] in d; A with ¢ < 4y,
j < j1and k <k is contained in A;. By the formation of d, A1 and d; A, it is easy to see

that A is a maximal atom in d; A1, and hence A C Ay, as required. |
Lemma 2.7.5. A* satisfies condition 1 for pairwise molecular subcomplezes.

Proof. Tt suffices to prove that any maximal atom A = u[4, o] x v[7, B] X w[k,€] in d}f A
with i <4;, 7 < j; and &k < k; for some 2 < ¢ < n is contained in some A; for 2 < s < n.
It is evident that 1 + 7 + k =p.

Let r be the maximal integer between 2 and n such that 1 < ¢, 7 < 7, and k < k,.

Then dt), has a maximal atom A = u[i,a] x v[j, 8] x w(k,&']. By the choice of r, it
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is evident that Int \' N A\, = @ for any ¢ > r. Moreover, for any 1 < s < r, we have
NNA; CANAy CdfA,. By Lemma 1.4.17, it is easy to see that Int X' C d;; A and hence
A C d:j A. So, by condition 1 for the pairwise molecular subcomplex d;,rA, we can see
that A = X C A,, as required.

This completes the proof. I
Lemma 2.7.6. Let p > I and let \y be (u,I)-projection mazimal. Then

1. F¥(A™) and FF(A™) are molecules in v! x w!.

2. dy [Fp(A™) =d, FP(AY), hence Ff(A™ )4, Ff(AT) is defined.

5. FP(A) = FP(A )yt FF(AY).

Proof. Since F} preserves unions, we have FF(A™) = Fp(d; AU N ) = Fp(d; A) U Fp(A)
and FP(AY) = FP(dfAUXNU---UN,) = FP(dFA)UFF(A)U- - -UFP(Ny). If dim FP(A) =
Ji+ki < p— I, then FP(A1) is a maximal atom in d ;FF(A) by Theorem 1.4.16;
hence Fi*(A™) = Fi(d;A) = d; ;FP(A) and similarly Ff*(A") = Ff(A); it follows easily
that Ff(A~) and F{(A*) are molecules and d}_ Fp(A™) = d,_ Fp(A"), as required.
If FE(A) = Ff(A1), then A are not (u,)-projection maximal for s = 2,...,n; thus
FE(Ag) = FF( N ) C FE(dih) = df (Fr(h) = df_ F¢(A); it follows easily that
Fp(AY) = FP(dfA) = dy (FF(A); it is also evident that Fy'(A™) = Fp(\) = FFE(A);
therefore F*(A™) and FF(A*) are molecules and di_, F}*(A~) = d,_, F{(At), as required.
In the following proof, we may assume that dim Fp*(A;) > p — I and FF(A) has at least

two distinct maximal atoms.

Let
g = max{dim(u N ') : p and 1’ are distinct maximal atoms in F}(A)}.

It is clear that ¢ < p — I by the choice of p. Let u = v![m, 7] X w![n,w] be a maximal
atom in FF(A) distinct from FF(A\;). If dim(FF(A) Np) < p— I, then it is easy to see
that Fi'(\) N p C d)_ Ff (M) Nd,_ppe by the construction of molecule FF(A) in v! x w!

(Theorem 1.3.7). Suppose that dim(F#(A;) Np) = p — I. Then there is a maximal atom

XN =i, ] x v[j’, ] x w[k',&'] in A such that FF(N) = p. If4; <4 and j; < j', then
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ty = I by the choice of p, oy = — when 4; < ¢ by the definition of natural order and
k' < k; by condition 1 for pairwise molecular subcomplexes; hence 8, = —(—)! by the
sign conditions for A; and A’ or by the definition of natural order; thus w = &' = (—)*%
by the sign condition for A; and X'; it follows easily that F¥(M\)Nu C di_ Fy(M)Nd; p
If 4, <4 and j; > 7', then it is easy to see that 4y = I, 7= ' = (—)! and &, = —(=)I*™
by the sign condition for pairwise molecular subcomplexes or the definition of the natural
order; it follows easily that Fp(A) Nu C df [Ff(M\) Ndy_ypu. If iy > @/, then, by an
similar argument, one can get FF(A) Np C d;_ F{A1) Nd,_ju. We have now shown
that F¥(A\) Ny C di_ Fp(M) N d,_pp for every maximal atom p in F(A).
Moreover, we have Ff(A~) = d_F#(A) U FP(A1) and

FH(AT) =df [ Ff(A)U U{y, : it is & maximal atom in F7'(A) with u # Ff(A)}

(Notice that it is possible that Fy(A*) = df ;FF(A)). It follows from Theorem 1.4.13
that Fy(A~) and FP(AT) are molecules in v’ x w', d¥ ;FF(A~) = d_F#(A") and
FP(A) = FE(A)#,—1 FE(AT), as required.

This completes the proof.

Lemma 2.7.7. Let p > J and let \; be a (v, J)-projection mazimal atom. Then

1. F¥(A™) and FY(A*) are molecules in u X w”.
2. df ;FY(A7) =d, ;F3(AY), hence FY(A™)#,_sFy(AY) is defined.
5. FY(A) = FY(A )ty s FY(AY).

Proof. Since Iy preserves unions, we have F7(A™) = F}(d, AU A1) = F}(d;A) U F}(\)
and FP(A*) = F3(dAU N U -~ UX) = FY(dFA) U F3(hg) U --- U F¥(\,). If
dim F} (M) = 41 + k1 < p — J, then it is evident that FJ(A™) = Fy(d,A) = d;_;F}(A)
and FY(A*) = FY%(A); it follows easily that FY(A™) and FY(A") are molecules and
dtf ;F3(A7) = d_;F3(A"), as required. If F?(A) = F3()\1), then ), are not (v,J)-
projection maximal for s # 1; thus Fy(\s) = Fy(A N A;) C Fy(di\) = df_ ;F3(M) =
df_;F3(A); it follows easily that F}(AY) = Fj(dtA) = d}f_,;Fj(A); it is also evident

78




that FY(A~) = F}(A) = FJ(A); therefore F¥(A~) and FY(A') are molecules and
dt ;EY(A7) = di_;F3(AY), as required. In the following proof, we may assume that
dim F9(A\1) > p — J and FY(A) has at least two distinct maximal atoms.

Let
g = max{dim(u N p') : p and ' are distinct maximal atoms in F¥(A)}.

It is clear that ¢ < p—J by the choice of p. Let u = u[l, 0] X w’[n,w] be a maximal atom
in F7(A) distinct from F7(Aq). If dim(F¥(\) N p) < p — J, then it is easy to see that
| Ey(M\)np C i F3(A)Nd,_ ;4 by the construction of molecule F¥(A) in uxw’ (Theorem
1.3.7). Now suppose that dim(Fy(A) Np) =p— J. Let X' = u[l, 0] x v[j’, §'] x wln,w]
be the (v, J)-projection maximal atom in A such that FY(X') = u. Then dim X\ > p.
We can also see that min{j1,j'} = J by the choice of p and ) is adjacent to ). Since
F¥(A) is a molecule in u x w”, we have i; # | and k; # n. If 4; < [, then a; = — and
k1 > n; it follows from the sign condition for \; and )’ that w = (—)%+’ which implies
that F7(A\) Np C df_ F7 (M) Ndy_jpu. Similarly, if 4, > I, then o1 = + and k& < n;
it follows from the sign condition for A; and X that &y = —(—)"* which implies that
Fj(a) Np Cdi jF3 (M) Ndy_yp.
Moreover, we have F}(A~) =d,_;F7(A) U F3(\;) and

F3(AY) =d}_;F}(A)U U{,u : 4 is a maximal atom in F'}(A) with u # F¥(\)}.

According to Proposition 1.4.13, we can see that FY(A~) and F¥(A") are molecules in
uxw!, df_;FY(A7) =d_;F}(A") and Fy(A) = FY(A™)#,— s FY(AT), as required.
This completes the proof.

Lemma 2.7.8. Let p > K and M\ be a (w, K)-projection mazimal atom. Then

1. F¥(A™) and FE(AY) are molecules in u X v.
2. d;_KF}g(A_) =d,_ FR(AT), hence F(A™)#,-x Fi¢(AT) is defined.
| 8. FR(A) = FRIA™)#p-r FR(AT).
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Proof. The argument is similar to the proof of Lemma 2.7.7.

Proposition 2.7.9. Let A be a pairwise molecular subcompler. Then
1. A~ and AT are pairwise molecular subcomplezes.
2. dfA~ = ds A, hence the composite A=#,AT is defined.
3. A=A"F#,A,.

Proof. If Ay is not a (v, J)-projection maximal atom in A, then it is easy to see that
F3(A™) = F7(d;A) and F7(A*) = F}(A) by the choice of p and Lemmas 2.7.4 and 2.7.5;
hence F?(A™) and F¥(A*) are the empty set or molecules in v x w”. Similarly, if A is not
(u, I)-projection maximal atom in A, then FF(A~) and F*(AT) are molecules in v! x w!
or the empty set; if A is not (w, K)-projection maximal atom in A, then F¥(A™) and
F¥(AY) are molecules in w X v or the empty set.

According to the above argument and Lemmas 2.7.6 to 2.7.8, we can see that F}*(A™),
F¥(A"), FY(A™), FY(AT), FE(A™) and F¥(At) are molecules in the corresponding w-
complexes or the empty set for all I, J and K. Thus A~ and At are pairwise molecular.

Now, if p > J and A, is not (v,J)-projection maximal, then FJ(dfA~) =
di_FY (A7) = df_;F3(dyA)) = do_,F3(A) = dy_F3(AT) = F3(dyAT); if p < J, then
F3(dtA~) = 0 = Fy(d;A"). Tt follows from Lemmas 2.7.6 to 2.7.8 and Propositions
2.5.7 to 2.5.9 that Fy(dfA~) = Fy(d,A"), F}(dtA~) = Fj(d,A*) and Fg(dtA™) =
F(dy A*) for all I, J and K. By Lemma 2.1.7, we can see that df A~ = d;A*. Hence
A~#,At is defined. Clearly, we have A = A~ U A*. Therefore A = A~#,A™".

This completes the proof. O

We have now proved that a pairwise molecular subcomplex A in u X v X w can be
decomposed into pairwise molecular subcomplexes A = A~#,A ™. It is evident that this is
a proper decomposition. By induction, we can see that A can be eventually decomposed

into atoms. Thus A is a molecule. So we get the proof for Theorem 2.7.1.
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Chapter 3

Construction of Molecules in the

Product of Three

Infinite-Dimensional Globes

According to Proposition 2.2.1, the maximal atoms in a molecule of 4 X v X w can be
listed as Ar, Ag, ..., Agp with A\, = ui” x vf: X wy" such that j; > --+ > jr and such that
i > pp1 When 1 <7 < R and j, = Jpp1.

In this chapter, we aim to construct molecules by listing their maximal atoms as
described above. The point in this chapter is that this is easily achieved inductively. In
more detail, let maximal atoms Ay, ..., A be an initial segment of the list. One can easily
determine whether A; U ---U A, is already a molecule and determine the set of possible
next maximal atoms A1

Throughout this chapter, the (v, J + 1)-projection maximal atoms in a subcomplex of
u X v X w are called the lowest maximal atoms above level J. An atom with dimension of
second factor equal to J is said to be af level J, while an atom with dimension of second
factor great than J is said to be above level J. For the convenience of the statement, we

allow J to be —1.
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3.1 Another Description of Molecules

In this section, we give another description of molecules in terms of the second factor on

which the construction of the molecules is based.

Proposition 3.1.1. Let A be a subcomplex. Suppose that all the mazimal atoms above
level J satisfy all the conditions in Theorem 2.4.1. Suppose also that all the mazimal
atoms at level J together with oll the lowest mazimal atoms above level J satisfy all the
conditions in Theorem 2.4.1. Then all the mazimal atoms above level J — 1 satisfy all the

I conditions in Theorem 2.4.1.

Proof. Let A = uli, o] x v[j, f] X w[k, €] be a maximal atom above level J. Suppose that
A is not lowest above level J. Then § > J + 1 and there is a lowest maximal atom
N =ult, o xvlf’, B} x w[k', €'] above level J such that i’ >4, J < j' < j and k' > k. Let
p = ull,o] X v[J, 7] X w[n,w] be a maximal atom at level J. Note that there are no three
pairwise adjacent maximal atoms as in the hypothesis of the condition 5 such that two of
them are at level J and one of them is above level J and not lowest, hence the condition
b is automatically satisfied by maximal atoms above level J — 1. Now, it suffices to prove
that A and p satisfies the conditions 1 to 4.

The condition 1 for A and p follows easily from the condition 1 for ' and p.

To verify the conditions 2, 3 and 4 for A and pu, suppose that A and p are adjacent.
Then ¢ > [ or k¥ > n. The arguments for these two cases are similar. We only give the
proof for the case ¢ > [.

Suppose that ¢ > [. Then & < n by condition 1 for A and g and k' = k by the
adjacency of A and u. Hence ¢ = ¢ by condition 3 in Theorem 2.4.1 for A and ) and
the adjacency of A and u. Moreover, we can see that 7' > 7 by condition 1 for A and X.
Thus the condition 3 for A and u is automatically satisfied (whenever ¢ ={ and a = —0).
Finally, we can see that the conditions 2 and 4 for A and p follow from the corresponding
conditions for A" and pu.

This completes the proof.
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The following proposition also characterises molecules in u X v X w.

Proposition 3.1.2. Let A be a subcomplex. Then A is a molecule if and only if the

following conditions hold for every non-negative integer J:

1. For every non-negative integer J, all the mazimal atoms u[i, o] x v[j, B] X w[k, €] at

level J, if there are any, can be listed by decreasing i and increasing k.

2. Suppose that uli, o X v[j, 8] X wlk,¢e] is a lowest mazimal atom above level J and

ull, o] x v[m, 7] X wln,w| is a mazimal atom at level J. Ifl < i, then n > k.

3. Let all the lowest mazimal atoms Ay = ulis, 5] X v[js, Bs] X wlks,&s] above level J,
iof there are any, be listed as Ay, +++, Ag by decreasing t; and increasing ks; let all
the mazimal atoms py = ully, o] X v[my, 74 X wlng, wy] at level J, if there are any,

be listed as py, -+ -, pur by decreasing l; and increasing ny.
(o) If 1 < s <8, then there exists py such that l; > i, and ng > ks_y.
(b) If l, > 45 and ny > k1 (1< s<8), then 1y = — (=), = — (=) g1
if Iy > 19, then 1, = —(—)"1041;
if ng > kg, then 7, = —(—)’eg;

if J is the greatest dimension of second factors of mazimal atoms in A, then

T, == Tp.

(c) If 1 <t < T and if there is no Xy such that @5 > Iy and kg > ny_y, then

Wiy = — (*)iH—JJt.

(d) Suppose that ny < ks. Iflyp1 <is (1 <t <T), orifs=S8 andt =T, then

wy = (=) a.

(e) Suppose that Iy < is. Ifmpy < ks (1 <t < T)orifs=1t=1, then
oy = —(—)tHe,,

(f) Suppose that is =1;. If ks >neq (L<t<T), orifs=1t=1, then a; = o;.

(9) Suppose that ks = ns. Ifis >l (1<t <T), orif s=8 andt =T, then

Eg = Wg.
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(h) If 1 <t <T and is = liy1 and ks = ny, then a; = 0yy1 or £, = w;.

Remark. 1. By induction, it follows easily from condition 1 and 2 in the proposition that,
for every integer J less than the greatest dimension of second factors of maximal atoms
of A, all the lowest maximal atoms wu[is, ;] X v[fs, Bs] X w[ks,€s] above level J can be
listed by decreasing is and increasing k;, as required by the assumption in Condition 3.

2. By condition 3b in the proposition, if [; > i, and n, > kg, then 7, = —(—)%ay;
if I, > 4, and ny > ks, then i = —(~)’e,. (Hence l; > i, and n; > k, cannot hold
simultaneously unless g, = (—)%*/q,.)

3. It follows from the first part of condition 3b that £,_; = (—)**/a;, which we have

known from earlier part of construction.

Proof. Suppose that A is a molecule. Then A satisfies all the conditions in Theorem 2.4.1.
We are going to verify all the conditions in this proposition.

Firstly, it follows easily from condition 1 in Theorem 2.4.1 that, for every integer J,
all the maximal atoms uli, o] x v[f, 8] x wlk, €] at level J, if there are any, can be listed
by decreasing ¢ and increasing %, as required.

Next, suppose that u[i, o] X v[j, 8] X wk, €] is a lowest maximal atom above level J
and u[l, o] X v[m, 7} X w[n,w] is a maximal atom at level J. If I < i, then it follows easily
from condition 1 in Theorem 2.4.1 that n > k.

Finally, let all the lowest maximal atoms A\; = u[is, &s] X v[js, Bs] X wlks, €s), above
level J, if there are any, be listed as Ay, -+, Ag by decreasing %, and increasing k,; let
all the maximal atoms p; = u[ly, o] X v[me, 74 X wlng, w;] at level J, if there are any, be
listed as 1, - -+, pr by decreasing I; and increasing n;. (These can be done by condition
1 in Theorem 2.4.1.) We must verify conditions 3a to 3h. By the definition of lowest,
it is easy to see that every pair of consecutive maximal atoms in the list Aq, -+ -, Ag are

adjacent.

3a Condition 3a follows from condition 4 in Theorem 2.4.1.
3b Condition 3b follows from conditions 2 and 3 in Theorem 2.4.1.

84




3¢ Condition 3¢ follows from condition 2 in Theorem 2.4.1 since p; ; and u, are adja-

cent under the hypothesis of condition 3c.

3d Condition 3d follows from condition 2 in Theorem 2.4.1 since A; and pu; are adjacent

under the hypothesis of condition 3d.
3e Condition 3e holds by an argument similar to the proof of condition 3d.
3f Condition 3f follows from condition 3 in Theorem 2.4.1.
3g Condition 3g also follows from condition 3 in Theorem 2.4.1.

3h Condition 3h follows from condition 5 in Theorem 2.4.1.

To prove the sufficiency, suppose that A satisfies all the conditions in the proposition.
It is evident that the maximal atoms at the highest level satisfy conditions 1 to 5 in
Theorem 2.4.1. Suppose that J less than the highest level and all maximal atoms above
level J satisfy conditions 1 to 5 in Theorem 2.4.1. By induction and the proposition
3.1.1, it suffices to prove that all the maximal atoms at level J together with all the
lowest maximal atoms above level J satisfy conditions 1 to 5 in Theorem 2.4.1.

Condition 1. By the conditions 1 and 2 in the proposition, condition 1 in Theorem
2.4.1 is satisfied by all the maximal atoms at level J together with all the lowest maximal
atoms above level J.

Condition 2. By condition 3c in the proposition, a pair of adjacent maximal atoms
at level J satisfies condition 2 in Theorem 2.4.1. Let A, be a lowest maximal atom above
level J and let p; be a maximal atom at level J. Suppose that A, and y; are adjacent.

Case 1. If l; > ¢, and n; > Kk, then condition 2 for A\; and p; is satisfied by remark 2
after the proposition.

Case 2. Suppose that n; < ks;. Then l; > i, and, by the adjacency of A; and p;,
we have l; > i and l;;; < i; whenever t < T. Hence A; and p; satisfy condition 2 in
Theorem 2.4.1 by conditions 3a, 3b and 3d in this proposition.

Case 3. Suppose that [; < ;. The argument is similar to the above case.
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This completes the proof that all the maximal atoms at level J together with all the
lowest maximal atoms above level J satisfy conditions 2 in Theorem 2.4.1.

Condition 3. Suppose that u; and gy are a pair of adjacent maximal atoms at level
J. Suppose also that there is no maximal atom A = u[i, a] x v[j, f] X w[k, €| above level
J with ¢ > l;4; and & > ny, then conditions 3b implies that » = 7y4,, as required by
condition 3 in Theorem 2.4.1.

Indeed, if I;11 > %, or n; > kg, then it follows easily from condition 3b in the proposi-
tion that 7 = 7341, as required. Iflyy < 4; and ny < kg, then k1 < ny and is < ;1 by the
hypothesis, i.e., ts < lzy1 <4 and by < ny < ks. Now let A; be such that 541 <l < 45
Then k; < ny by the hypothesis. So we have iy > l;11 > 4541 and npyq > ng > ks. So by
condition 3b in the proposition, it is easy to see that 7, = 7441, as required by condition
3 in Theorem 2.4.1.

To finish the proof of condition 3, let A; be a lowest maximal atom above level J and
ut be a maximal atom at level J. If ¢, = [, or if k; = ky, then Ay and u; are adjacent.
Therefore, by conditions 3f and 3g in the proposition, it is evident that condition 3 in
Theorem 2.4.1 hold for A; and ;.

Condition 4. By conditions 3a in the proposition, it is evident that condition 4 in
Theorem 2.4.1 is satisfied by a pair of adjacent maximal atoms at level J since they
are consecutive in the list of lowest maximal atoms above level J — 1. Now if A, is a
lowest maximal atom above level J — 1, and if A\; and p; are adjacent, then A, and
are consecutive in the list of lowest maximal atoms above level J — 1. So, similar to the
above case, the condition 4 in Theorem 2.4.1 holds for A; and ;. Suppose that A, is not
the lowest maximal atom above level J — 1. Suppose also that [; < 75. Then n; > k;.
In this case, there must be a maximal atom p' = u[l’, 0’| X v[m/, 7'] x wln',w'] at level J
such that n' = k. Hence {' > 4;. It is evident that u' and u, are adjacent. Since we have
known that condition 4 in Theorem 2.4.1 holds for p' and p;, we can see that condition
4 in Theorem 2.4.1 hold for A; and p;. If n; < kg, then we can see that condition 4 in
Theorem 2.4.1 holds for Ay and p; by a similar argument.

Condition 5. By condition 3h in the proposition, condition 5 in Theorem 2.4.1 is
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satisfied by all the maximal atoms at level J together with all the lowest maximal atoms

above level J.

This completes the proof.

We can now characterise the sets of maximal atoms in molecules of u X v x w.

Let A be a finite and non-empty set of atoms in u X v X w. For a fixed integer J,
An atom u[i, a x v[j, B] x w(k,¢€] above level J in A is lowest above level J if there is no

! atom u[¢', '] x v[j’, f'] x w[k',e] in A with¢' >4, J < j' < jand k' > k.

Suppose that there are no distinct atoms u[z, o] xv[j, 8] xw[k, €] and u[¢', &' x v[§', #'] %
wlk',e'] in A such that ¢ < ¢, 7 < j' and k < k'. Let A be the union of atoms in \A. Then
it is evident that the maximal atoms in A are exactly the atoms in 4. Moreover, it is
easy to see that, for every integer J with J > —1, an maximal atom in A is lowest above

level J in A if and only if it is lowest above level J in A.

Proposition 3.1.3. Let A be a finite and non-empty set of atoms in u X v X w. Then A
is the set of mazimal atoms in a molecule if and only if the following conditions hold for

every non-negative integer J:

1. For every non-negative integer J, all the atoms uli, a] X v[j, 0] x w[k, €] at level J

in A, if there are any, can be listed by decreasing i and increasing k.

2. Suppose that ufi, o] X v[f, B] x wlk, el is a lowest atom above level J in A and

ull, o] x v[m, 7] X w[n,w] is an atom at level J in A. Ifl < i, thenn > k.

3. Let all the lowest atoms A = ulis, 5] X v[fs, Bs] X wlks,es] above level J in A, if
there are any, be listed as Ay, - -+, Ag by decreasing 15 and increasing ks; let all the
atoms py, = ully, 03] X v[my, 7] X wlng, wy] at level J in A, if there are any, be listed

as W, * -+, ur by decreasing l; and increasing ng.

(a) For1 < s < S, there exists u; such that l; > is; and ny > ks—1.
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(b) If l; > 15 and ngy > ks (1 <5< 8), thent, = —(—)oa, = —(~)7e4_1;
if Iy > i, then 1y = —(=)"auy;
if g > kg, then 1, = —(—)’es;
if J is the greatest dimension of second factors of atoms in A, then 7y = -+ =
TT.
(c) If 1 < t < T and if there is no As such that iy > Iy and ks > ny_y, then
W1 = —(—)i*HUt-
; (d) Suppose that ny < ks. Iflyy < i, (1 <t <T), orifs=S5 andt =T, then
wy = —(=)bH .
(e) Suppose that Iy < is. Ifmyy < ks (1 <t <T)orifs=1t=1, then

O3 = —(—)lt+J63.
(f) Suppose that is =1l Ifks >niy (1<t <T), orifs=1t=1, then as = 0y.

(9) Suppose that ks = ng. Ifis > lpyy (1<t <T), orifs =S8 andt =T, then

Eg = Wg.

(h) If 1 <t < T and is = ly11 and ks = ng, then a, = ogyq 0T €5 = wy.

Note: By induction, it follows easily from condition 1 and condition 2 in the proposition
that, for every integer J less than the greatest dimension of second factors of atoms in
A, all the lowest atoms u[is, o] X v[fs, Bs] X w(ks, 5] above level J in A can be listed
by decreasing 75 and increasing k,, as required by the assumption in condition 3 of the

proposition.

Proof. Suppose that A is the set of maximal atoms in a molecule A. Then an atom
uli, @] x v[j, 0] x wlk,e} in A is at level J in A if and only if it is at level J in A;
uli, &) X v[7, B] x w[k, €] is above level J in A if and only if it is above level J in A; while
uli, ] X v[7, B] x wlk, €] is lowest above level J in A if and only if it is lowest above level
J in A. So the necessity follows from the necessity part of Proposition 3.1.2.

Conversely, suppose that a finite and non-empty set A satisfy conditions 1 to 3. It

follows from condition 1 and 2 that A4 is the set of maximal atoms in a subcomplex A.
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As in the proof of the necessity, an atom ui, ] x v[j, 8] X w[k, €] in A is at level J in A
if and only if it is at level J in A; ufi, e x v[7, 8] x wlk, €] is above level J in A if and
only if it is above level J in A; while u[s, o] x v[j, 8] x w[k, €] is lowest above level J in
A if and only if it is lowest above level J in A. Therefore the sufficiency follows from the
sufficiency part of Proposition 3.1.2.

This completes the proof |

3.2 Construction of Molecules

In this section, we propose an approach of constructing all the molecules in u X v X w
based on Proposition 3.1.3. The justification will be given in the next section.

We start at the top level and go down.

First choose top level J and a fixed sign 3 associated with the top level; then choose
a list of atoms of the form ulty, &) x v[J, f] x w[ks, &) for 1 < s < S, where S > 1, such
that 4, > -++ >ig and k; < -+ < kg and &,_; = —(=)*t/a, for 5 > 1.

For an integer J with 0 < J < J, suppose that the atoms above level J are already
constructed. Suppose also that the lowest atoms above level J are ufis, o] X v[js, Bs] X
wlks,e5] with 1 < s < § such that 4y > -+ > ig and k; < .-+ < kg. By condition
1 in Theorem 2.4.1, the atoms at level .J, if there are any, can be listed as a sequence
ulls, o4) X v[J, 1) X wlng, we] with 1 < ¢ < T, where T > 1, such that I; > -+ > Iy and
ny < --- < Ny,

We are going to give all possibilities for the sequence of atoms at level J.

We first determine the possibilities for the sequence (I1,nq,: - ,lr, ny) working from

left to right.

1. We now determine all the possibilities for {; and n,.
We determine [; as follows.
(a) If S = 1, then there may or may not be atoms at level J; if there is at least
one atom at level J, then [; > 0.

(b) If S > 1, then there must be at least one atom at level J and l; > is.
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For a fixed [;, we determine n, as follows.

(a) If I > 4y and g5 = (—)%*/q, for every s, then n; > 0.

(b) If Iy > 4, and if there exists s such that &, = —(=)%+'q, then 0 < n; < ky,,

where s; is the least s with g, = —(—)**/q.
(c) If [} <4y and g5 = ()%, for every s with s > 1, then ny > k.

(d) If Iy < 4; and there exists s with s > 1 such that e, = —(=)%*/q, then

| ki1 < ny < ks,, where sy is the least s with s > 1 and g, = —(—)% "’ q.

2. Suppose that 3 > 1 and that l; and n; for all £ < {y are already constructed. We

are going to determine all the possibilities for {;, and ng,.

We determine /,, as follows. There are various cases.

(a) If ny—1 > ks and l;—1 = 0, then there are no more atoms at level J.

(b) If nyy—q > ks and lz,—; > 0, then there may or may not be another atom at

level J; if there is another atom at level J, then 0 < [;, < l;—1.

(c) Suppose that ny—1 = kg. Then there may or may not be another atom at level
J. Suppose also that there is another atom at level J. If g = (—)**/ g, then

0L ltg < lto_l; ifeg = —(—)is_‘_JCM,S', then 0 < Ztu < ig.

(d) If § > 1 and kg1 < ng-1 < kg, then there may or may not be another atom

at level J; if there is another atom at level J, then 0 < I, < li;—1.

(e) If S =1 and ng—; < ki, then there may or may not be another atom at level

J; if there is another atom at level J, then 0 < ;) < [y;—1.

(f) Suppose that 1 < s < § and ny,_; = k;. Then there must be another atom
at level J. Moreover, if g, = (=)*+/a, then i, < Iy < lgy_1; if 65 =

— (=)t ay, then i, < Iy, < is.

(g) If1 < s < S and ky,_1 < ng_1 < ks, then there must be another atom at level

J and ’i5+1 < lto < lto—-l-
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(h) If § > 1 and ng-1 < ki , then there must be another atom at level J and

g < lto < ltn—l-
For a fixed [;,, we can determine n;, as follows.

(a) If Iy > 4y and g, = (=)%+ @, for every s, then ny, > ng_1-

(b) If l;, > 4y and there is s such that e, = — ()% ay, then Ny < ny < kg,

where s3 be the least s with e, = —(~)*"a.
(¢) If Iy, < ig, then ng > max{ny_1, ks}

(d) IS > 1 and 45, < l;y < 45,1 for some s4, and if €, = (—)**q; for every s

with s > s4, then ny > max{kg,1, 741}

(e) If S > 1 and 4,5, < ly, < 14,1 for some sy, and if there is s such that s > s4 and

gs = —(—)* " a,, then max{ks,_1, M1} < Ny, < ksy, Where sy is the least s
with s > 54 and &, = —(—)%/q.
This completes the construction of the sequence (Iy,ny,- - , Iz, nr).

We now determine the signs oy, 73 and w; for each t.

We can determine 7; for each %, as follows.

1. If l; > 41, then 7, = —(—)"qy.

2. If s> 1 and 4y <l <451, then 7 = —(—)*q.

3. If l; < 4g (in this case, we have n, > kg), then 7, = —(—)”es.

We now determine signs o and w; for each ¢.

We first determine o.

1. If Iy > 4y, then oy is arbitrary.
2. If l1 = 'il, then 01 = Q1.

3. < 1, then ¢ = _(;)11+J81.
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We next determine wy—; and o, for 1 < ¢t < T. Note that there can be at most one
value of s such that ¢; > {; and k; > ny_; by the construction of l;. There are various

cases, as follows.

1. If there is no s such that 4, > I, and ks > m;_,, then w;._; is arbitrary and o; =

— (=),  for a fixed wy_;.

2. If there exists s such that 4, > {; and ks > ny_y, then w;—y = —(—)4+/q, and
op = — (=)t e,
3. If there exists s such that 4, = I; and ks > ns_y, then w; 1 = —(~)**a, and
; Or = Q.
4. If there exists s such that 45 > I, and k, = ny_1, then wy; = €, and 0y = —(— )+,

5. Suppose that there exists s such that i, = [, and k, = n,_y. If £, = (—)%Ha, then
wy—1 is arbitrary and oy = —(— )+ w,_; for a fixed wy_y. If 6, = —(=)%*/qy, then

W1 = €5 and oy = a.
Finally, we determine wr.
1. If ny > kg, then wr is arbitrary.
2. If ny = kg, then wr = ep.
3. If np < kg, then wp = —(—)s qg.
This completes the construction of all the possibilities for the sequence of atoms at

level J. Therefore, by induction, we can construct all the molecules in u X v X w.

Remark 3.2.1. In a subcomplex as constructed in the last section, we verify that the
permitted value of /; and n; form non-empty intervals of integers for each t.

By the construction of atoms at level J, it is evident that a lowest atom above level

J and an atom at level J satisfy condition 1 in Theorem 2.4.1.
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. It is evident that the permitted value of /; and n; form non-empty intervals of

integers.

. In the construction of l;,, it is evident that the permitted values of l;, form a non-
empty interval of integers in (c) part two and (f) part two. If ny—y < kg, then we
have Iy, 1 > ig > 0. Therefore the permitted values of Iy, in (b), (c¢) part one, (d)
and (e) form a non-empty interval of integers. Finally, if s < S and ng_; < ks,
then we have l;,_1 > 45 > 1541 + 1 by condition 1 for ulis, as] X v[js, Bs] X w(ks, &)
and ullyy—1, 0rg—1] X v[J, 7] X W[ng_1,ws,—1]- This implies that the permitted values

of Iy, form a non-empty interval of integers in (f) part one, (g) and (h).

. In the construction of ny,, it is evident that the permitted values of n; forms a

non-empty interval of integers in (a), (¢) and (d).

Suppose that l;, > i, for some s4. Suppose also that there is s with s > s, such
that &, = —(—)*" . Let s5 be the least s with s > s4 and g, = —(=)**a,.

We claim that ng,-1 < ks which implies that the permitted values of ny, forms a

non-empty interval of integers in (b) and (e).

Indeed, since l;,—1 > Iy, > 15, > 15, we have ny,1 < kg, by the construction of
lig—1 and myy—1. If my1 = ks, then [, < 45 < ¢, by the construction of l;,; this

contradicts the assumption on ly;,. Therefore we have n—; < ks, as required.

Therefore, the permitted value of I; and n; form non-empty intervals of integers for each

Example 3.2.2. The the molecule in Example 2.1.5 is really constructed by the approach

in this section. The construction of the example involves most of the above cases.

3.3 Justification

In this section, we prove that the construction in the last section indeed gives molecules

inuXxovxw.
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Lemma 3.3.1. In a subcomplex as constructed in the last section, for every level J, the
atoms ully, oy] X v[J, 7] X wlng, we] with 1 < ¢ < T at level J satisfy Iy > -+ > lp and

ny < - < Ny

Proof. By induction, it suffices to verify that i;, < l;,—; and n;, > ng, 1 in the construction
of l;, and ny,.

In the construction of l;,, we have already required that [,, < l;,_; except in (¢) part
two and (f) part two. Now if n,_; = ks for some s, then i, < l;,_; by the earlier part
of construction (or, more precisely, by the induction hypothesis); hence l;; < I;,—; in (c)
part two and (f) part two, as required.

In the construction of n,, we have already required that n;, > ng_1 in all cases.

Therefore, the atoms u[ly, oy] X v[J, 7] X w[n:, w;] at level J as constructed can be
listed by decreasing [; and increasing n; for each level J, as required.

This completes the proof. O

Lemma 3.3.2. In a subcomplex as constructed in the last section, all the atoms con-
structed satisfy condition 1 in Theorem 2.4.1. Hence all the lowest atoms ulis, a;] X

v[js, Bs] X wks, €5] above level J—1 can be listed such that i, > -+ > ig and ky < -+ < kg.

Proof. We first show that all the atoms constructed satisfy condition 1 in Theorem 2.4.1.
It is evident that all the atoms at the top level J satisfy condition 1 in Theorem 2.4.1.
Suppose that J < J and that all the atoms above level .J satisfy condition 1 in Theorem

2.4.1. We are going to show that all the atoms above level J — 1 satisfy condition 1 in

Theorem 2.4.1.

It follows from the Lemma 3.3.1 that a pair of atoms at level J satisfy condition 1 in
Theorem 2.4.1. Let uli, o] x vij, B8] x w[k, €] be an atom above level J and u[l, o] X v[J, w}] x
wn,w] be an atom at level J. If ufi, o x v[j, 8] X wlk, €] is lowest above level J, then it
is evident that u[z, ol % v[f, 6] x w[k, €] and u[l, o] X v[J,w] X w[n,w] satisfy condition 1

in Theorem 2.4.1 by the construction of atoms at level J. If u[z, o] % vlj, f] x wk, €] is

not lowest above level J, then there is a lowest atom u[, o/] x v[j', 8] X w[k',&'] above
level J with i > 4, j/ < j and &' > k; hence condition 1 for u[i, a] X v[j, 8] x w[k, €]

and u[l, o] x v[J,w] x win,w| follows easily from condition 1 for u[i, o] X v[j, 8] x w[k, €]
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and u[l, o] x v[J,w] x w[n,w]. Thus all the atoms above level J — 1 satisfy condition 1 in
Theorem 2.4.1.

Therefore, all the atoms satisfy condition 1 in Theorem 2.4.1.

Now let ufz, o] xv[j, f] xwlk, €] and u[é', &' xv[j’, F'| X w[k', &'] be a pair of lowest atoms
above level J. By the definition of lowest, we have i 3 i’ and k # k'. Moreover, it follows
easily from condition 1 for pairwise molecular subcomplexes for u[¢, o] X v[7, f] X wik, €]
and ul¢', o] x v[j’, '] X w[k', '] that ¢ > ¢ if and only if k¥ < k’. Hence all the lowest atoms

| ults, ] X v[fs, Bs) X wlks, &s) above level J can be listed by decreasing 7, and increasing

ks, as required. O

Lemma 3.3.3. In a subcomplex as constructed in the last section, let all the lowest
atoms u[ﬁs, @) X v[ﬁ's, ,@s] X w[l%s, &,] above level J —1 be listed such that iy > -+ > 23 and

ky < - <ks. Then min Fotsdst = J and &4y = —(— 28“&5 or every 1 < s < §.
8 Y

Proof. Let u[ﬁs_l, Grs—1] X v[j’s_l, fis_l] X w[l%s_l,és_l] and u[fzs, dus| X v[ﬁ's, 5’3] X w[l?:s,és] be
a pair of consecutive lowest atoms above level J—1. We first show that min{j‘s_l, 35} =J.

Indeed, suppose otherwise that min{j,_1,7,} > J. Then we can see that u[;ls_l, Grg—1] ¥
v[}'s_l, ,33_1] X w[l%s_l, €s—1] and u[zs, &s) x v[}'s, BS] X w[ﬁcs, &;] are lowest atoms above level
J and they are consecutive in the list for lowest atoms above level J. It follows from the
construction that there is an atom w[l, 0] X v[J, f] X w[n,w] at level J with [ > %, and
n > k,_,. Since u[is_l, Q1] xv[}'s_l, Bs_l] xw[l%s_l,és_l] and u[ﬁs, Gus) xv[}'s,,@s] xw[@s,és]
are lowest atom above level J — 1, we have 4,_q > [ > i, and fés_l < n < il{;s. This
contradicts the assumption that u[%s_l, Gig—1] X v[ﬁ‘s_z, ,33“1] X w[l%s_l,és_l] and u[gs, &g X
v[7s, ﬁs] X w[fss, &,] are a pair of consecutive lowest atoms above level J — 1.

Now we are going to show that £,_; = —(—)%3“ G for every 1 < s < S. Note that
either u[gs_l,&s_l] X 'v[ﬁs_l,ﬁs_l] X w[.‘%s_l,és_l] or ufty, éy) x U[ﬁ's,ﬁAs] X w[ll%s,és] is an
atom at level J by the first part of the lemma. Now there are several cases, as follows.

If both wfts_1, Gs_1] X [Ts—1, Bs-1] X wlks_1, £s_1] and ufts, &s] X U[] 5, Bs] X w[ks, &,] are

atoms at level J, then, by the construction of the signs for atoms at level J, it is evident

that &, = —(—)35”&8 for every 1 < s < 5’, as required.

Suppose that uft,_1, s ] X v[ﬁs_l, Bs_l] X w[Es_l, £s_1] is an atom above level J and
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ulis, &s] X v[7s, Bs] X wlks, &) is an atom at level J. Then ulis, &) X v[Js, Bs] X w(ks, &] =
ully, o¢] X v[J, 1] X w[ng, we] for some ¢ in the construction. If ¢ = 1, then we have
u[is_l,&s_l] X 0[33_1,35_1] X w[l:cs_l,ésHl] = ufty, o] X v|[j1, B1] X wlk1,e1] and &_; =
—(—)25“ & by the construction, as required. If ¢ > 1, then it is easy to see that s > 2
and u[is_g, dis_g] X 'u[j's_z,ﬁs_g] X w[fcs_a,és,g] = uf[ly—1,01—1] X V[J, T4—1] X wlng_1,w; 1]
by the first part of this lemma; thus we have &,_; = —(—)25“ & by the construction of
signs, as required.

Suppose that ulis_1, &s_1] X ¥[7s_1, Bs—1] X w[ks_1,&s—1] is an atom above level J and
ults, Gis] X U[7s, Bs] % w[lAcs, €,] is an atom at level J. By an argument similar to the above
case, one can also get £,y = ~(—)25+J &, for every 1 < s < §, as required.

This completes the proof. O

By Proposition 3.1.3 and the remark after the statement of the proposition, it is easy
to see that every molecule can be constructed as above. Now we are going to prove that

every subcomplex of u X v X w constructed as above is indeed a molecule.

Proposition 3.3.4. Let A be a subcomplex whose mazimal atoms are as constructed

above. Then A is a molecule.

Proof. Let A be a set of atoms as constructed above. It suffices to show that A satisfies

all the conditions in Proposition 3.1.3.

By Lemmas 3.3.1 and 3.3.2, it is easy to see that conditions 1 and 2 hold.

Now let all the lowest atoms Ay = u[is, ] X v[Js, Bs] X w(ks,&s] with dimension of
second factors greater than J in A, if there are any, be listed as Ay, - - -, As by decreasing
is and increasing ks; let all the atoms p; = u[ly, o4] X v[my, 7¢] X wing, w;] with dimension
of second factors equal to J in A, if there are any, be listed as p1, - -, ur by decreasing [,
and increasing n;. By the construction of [; and n; for all £, we can see that condition 3a
hold. Moreover, by the construction of signs ¢; and wy, it is easy to see that conditions
3c to 3h hold. To complete the proof, we need only to verify condition 3b.

Suppose that Iy > i, and ny > ks—1 (1 < s < 5). Let § be such that 43 < I, <
i3_1. By the construction, we have 7, = —(—)%q;,. If s = §, then 7, = —(=)"q, =

— (=)t [~ (=)t e,y = —(—)7es_1, as required, since £, = —(—)4+/*1q, by Lemma
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3.3.3. Suppose that § < s. Then l; > iz > --- > 4, and ny > ks_1 > --- > k;. Hence

es = ()4 oy, -+, g, = (=) a,_; by the construction of signs. It follows that

-)’ [_ (‘“)iéﬂ +J+1aié+1]

as required by condition 3b.
The other parts of condition 3b can be seen easily from the construction of the sign
T, for each ¢.

This completes the proof.
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Chapter 4

Molecules 1in the Product of Four

Infinite-Dimensional Globes

In this chapter, we study molecules in the product of four infinite dimensional globes.
Similar to the results for molecules in the product of three infinite dimensional globes,
we are going to give some equivalent descriptions for the molecules in the product of four
infinite dimensional globes. The discussion is in parallel to that in chapter 2. There are
some new features because of the two ‘middle’ factors.

In this chapter, all the subcomplexes refer to finite and non-empty subcomplexes in
the w-complex u; X ug X us X uq, and all the integers refer to non-negative integers.

Recall that the w-complex u! is equivalent to the infinite dimensional globe w. It is
easy to see that this equivalence induces an equivalence u x v x w to uf x v¥ x w¥ of w-
complexes sending every atom u® x v x wf to u’li, (=) a] x v7[4, (=)’ ] x wX[k, (—)¥e].
Thus all the results for the molecules in the product of three globes can be generalised to
the molecules in the product of three ‘twisted’ infinite dimensional globes u! x v’ x w¥X.
In particular, a pairwise molecular subcomplex in u! x v/ x w¥ is defined as the image of
a pairwise molecular subcomplex in % X v X w under the above equivalence of w-complexes
and a subcomplex of u! x v/ x w¥ is a molecule if and only if it is pairwise molecular.

We are not going to make any more comments of this kind.
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4.1 The Definition of Pairwise Molecular Subcom-

plexes

In this section, we define projection maps and give the definition of pairwise molecular
subcomplexes of u; X ug X ug X us. Some proofs are omitted because the arguments are
very similar to that in Chapter 3.

For an atom A = wuq[iy, a1] X ug[ie, ao] X us[is, az] X ugfia, 4] in uy X ug X ug X uy, let

Int(uh ['iz a'z] X ’U,Il [?:3, 053] X ’LLIl [’1;4, a4]), when ‘il 2 I1'
F(Int A) = 2 ’ : ’

0, when j < J.

This gives a map sending interiors of atoms in u; X us X uz X u4 to interiors of atoms in
ug' X uf! X ull or the empty set.

Since interiors of atoms are disjoint, it is clear that the map Fj;' can be extended
uniquely to a map sending unions of interiors of atoms in w; [i1, @] X ug[tz, 2] X usfis, az] X
u4[i4, 4] to unions of interiors of atoms in ul! x ult x uil by requiring it union-preserving.

We can similarly define a map F7* sending unions of interiors of atoms in u; X ug x
u3 X Uy to unions of interiors of atoms in u; X uf? x ul?, a map Fr* sending unions of
interiors of atoms in uy X ug X u3 X U4 to unions of interiors of atoms in uq X ug X u;i‘* and
a map F}'* sending unions of interiors of atoms in uy X ug X ug X u4 to unions of interiors
of atoms in u; X ug X us.

It is easy to see that every atom in u; X ug X ug X ug can be written as a union of
interiors of atoms. It follows that F7, F;.*, F7* and F7,' are defined on subcomplexes of
Uy X Uy X Uz X ug and preserve unions.

We shall prove that F;* sends atoms to atoms or the empty set so that it sends

subcomplexes to subcomplexes for every s. We need a preliminary result.

Lemma 4.1.1. Let A = uq[i1, 0] X uglig, ag] X uglis, as] X ualiq, 4] be an atomn in uy X

Up KX Uz X Ug.

1. If iy + 1y + 43 + 34 < p, then dg)\ = A.
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2. If iy + g + i3 + 44 > p, then the set of mazimal atoms in dg)\ consists of all the
atoms ul[ll, Jl] X Ug[lg,O‘g] X ’U;3[13,0'3] X ’U;4[l4,0’4] such that ll < 7:1, lz < ig, 53 < ig,

lq4 <14, where the signs o1, 09, 03 and o4 are determined as follows:

(a) if Iy =11, then oy = au; If Iy < iy, then oy = 7;
(b) if lo = ia, then oo = ao; If Iy < ig, then og = (=)1v;
(C) T,f l3 = 7;3, then O3 = Qg If l3 < 'ig, then Og = (“)lﬁ_lz’)’,‘

(d) ?,f l4 — ’i4, then 04 = Qg5 If l4 < ’124, then 04 = (ﬁ)l1+12+l3"}’.

Proposition 4.1.2. Let A = uy[iy, o] X uglia, ] X uslis, as] X ugfia, ag] be an atom in

Uy X Up X Uz X us. Then

I ny, Iy, ,
Uy [12, Ce2] X uz'[is, ug] X uy'[ia, o), when iy > Ii;
1. F}Lll (/\) _ 2 ) 3 ’ 4 3 ) )

@, when 1, < Iy;

,

1 , Iafy Iag,: . .
2 F}f (A) iy Ul[%l:al] X Ug [%3,&3] X Uy [14,a4], when ig > Ig;

0, when iy < Ig;

N

r

ul[z'l,al] X ’Lbz[iz, 0!2] X uf"[u, 064], when '1;3 Z I3;
3. Fp3(A) = |

0, when i3 < Is;
\

-

ul[il, O!l] X 'U,g[’ig, 0!2] X ’LL3[i3, Od3], when ?;4 2 I4;

4 L) = 4

Q)) when 14 < Iy,

\

In particular, the maps Fy.*, F1?, F* and Fp;! send atoms to atoms or the empty set.

Proof. The arguments for the four cases are similar. We only prove the second one. The

proof is given by induction on dimension of atoms.

For an atom A\ = uy[iy, 0n] X ugfie, an] X uslis, aa) X uafia, ] in uy X ug X us X uy, if
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dim A = 0, then ’51 = ’1;2 = ’n':g = ?:4 = 0, hence

as required.

()
Fp2(Int A)
rInt(ul[z'l,al] X wi?[ig, oug] X ult[iq, 4]}, when I = 0;
>®, when I, > 0
) uy iy, on] X ul[is, as] X ul[iy, g], when I, = 0;
0, when I, > 0

\

Suppose that p > 0 and that the proposition holds for every atom of dimension less

then p. Suppose also that X = u;[iy, c] X uaia, ig] X us[ts, 3] X uqlis, 4] is a p-dimensional

atom. If 45 < I5, then it is easy to see that F7.*(X) = 0, as required. If i3 > I, then we

have

U u

Il

FE ()
FR(Int AU O~ AU OTA)

F2 (5% ))

F£2(ul[z'1, O!l] X ug[ig - 1, (—)il] X ’ng['a‘;g, 013] X ?,L4['i4, C¥4])

U1 [’il, al] X ‘ugz[’llg, C\(3] X ’U.i2 [’&'4, C}£4]

since uft, @] X v[j — 1, (=) x w[k, €] is an atom of dimension p — 1; the reverse inclusion

holds automatically; so Fj2(A) = uié1, 1] X ui[is, ous] X uj?[ia, ], as required. Suppose

that ig = I;. Then 97\ is the union of atoms ui[ly, o1] X ug[ly, 03] X us|ls, 03] X u4[ls, 04

with Iy 4+ Iy + I3 + 13 = p — 1 such that

1. if ly =4y, then 0y = ay; if Iy =41 — 1, then oy = 7;

2. lf lg = ’i2, then O9 = (Qig; 1f l2 — '[;2 — 1, then 09 = (_)7'1,7,
3. if l3 = ’I:3, then O3 = (3, if l3 = i3 — 1, then 03 = (_)i1+12,},.

4. if ly = 4y, then 04 = ay; if Iy = 14 — 1, then gy = (=)8+ 2+
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It follows easily from the inductive hypothesis and Theorem 2.5.12 that F}*(07)) =
07 (ufiy, 0n] x ul?[is, as] x ul?[ig, a4l for every sign +. Therefore
FE ()
= Fp>(Int \) U F72(07A) U F72(0F))
= Int(wifir, on] x ul?[is, as) X ull[ia, ou]) U8~ (ualir, ] X ul2[ig, as] x ul[ig, ag))U
Ot (uq[ir, cu] x us?[is, o] X ul?[ia, o))
= ufiy, ] X ul[is, oz] X uL[is, cul,
as required.

This completes the proof of the proposition. 0
We now define the concept of pairwise molecular subcomplexes as follows.

Definition 4.1.3. Let A be a subcomplex of u; X ug X uz X ug. Then A is pairwise

molecular if

1. There are no distinct maximal atoms w[é1, o] X ulée, o] X u[is, as] X ulis, 4] and
ug [d), o] X wlih, o] x uldy, o] x uldy, o] in A such that é; <4, 42 <15, 73 < 4% and

1q < 7).
2. Fy*(A) is a molecule in uf! x us' X ujt or the empty set for every integer I.
3. Fp2(A) is a molecule in u; % ug? X ul? or the empty set for every integer I.
4. Fp2(A) is a molecule in u; X up X ul® or the empty set for every integer I.

5. F}:‘(A) is a molecule in w; X ug X uz or the empty set for every integer Iy.

Note. The reason that a subcomplex satisfying the above conditions is said to be
pairwise molecular is made clear in the following Proposition 4.1.6.

One of the main result in this chapter is as follows.

Theorem 4.1.4. A subcomplexr in uy X ug X uz X uq 28 a molecule if and only if it is

pairwise molecular.

Proposition 4.1.5. Let A be a subcomplex of uy X ug X ug X ug. Then Fp*[Fpt(A)] =
Fri[Fpe(A)] for all s and t with 1 < 5,1 < 4 and s # 1.
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Proof. Let A be an atom in u; X ug X us X ug4. It is evident from the definition that
Fre[Fpt(N)] = Frt[Fpe(N)] for all s and ¢ with 1 < 5,% < 4 and s # ¢. Since Fy** and F}*
preserve unions, we can see that Fy*[F7*(A)] = Fp*[Fe(A)], as required.

t

For every finite non-empty subcomplex A of u; X ug X uz x u4, the subcomplex

Fre[Fp(A)] = Fre[Fpe(A)] is denoted by F}“:s’l’f:t (A).

Proposition 4.1.6. Let A be a subcompler of u; X us X uz X uq. Then A is pairwise

molecular if and only if the following conditions hold.

1. There are no distinct mazimal atoms uy [y, 1] X Uglia, o] X uafts, cs] X uafia, 04] and
uq 2], o] % uglih, o] X usliy, af] % uglty, o] in A such that 4y < 4, i2 < i), i3 < 1h

. -t
and iy < %y.

2. If Fpr(A) # 0, then F1* (A) satisfies condition 1 for pairwise molecular subcomplezes

I I I

M Uyt X Ug" X Uy,

8. If Fy2(A) # 0, then F7*(A) satisfies condition 1 for pairwise molecular subcomplezes

in ug X Ul x ul2,

4. If FR.(A) # 0, then F7*(A) satisfies condition 1 for pairwise molecular subcomplezes

in Uy X Uug X UL,

5. If Fi(A) # 0, then Fp;!'(A) satisfies condition 1 for pairwise molecular subcomplezes

N U X Uy X Us.

6. Fr'r?(A) is a molecule in uél'”? X uf”z or the empty set for every pair of integers

I]_ and IQ.
7. FP23(A) is o molecule in ugt X ug™™® or the empty set for every pair of integers I
and I3.

8. Fp'1(A) is a molecule in ud x ull or the empty set for every pair of integers I,

and 1.
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9 U2, U3 Ig+-Ig

Fp2r 2 (A) s a molecule in uy X uy or the empty set for every pair of integers Iy

and Is.

10. Fp2i(A) ds a molecule in uy x ul? or the empty set for every pair of integers I, and

Iy.

11. Fi(A) is a molecule in uy X ug or the empty set for every pair of integers Iy and

1y.

Proof. Suppose that A is pairwise molecular. Then Fy(A) is a molecule or the empty
set for every s. It follows from definition of Fy*7* and Theorem 2.1.6 that conditions 1

to 11 hold.

Conversely, suppose that A satisfies condition 1 to 11. By the definition of F7*1* , we
can see that Fp,! [F7,' (A)], Fr[F7(A)] and Fp2[Fp:# (A)] are molecules in the corresponding
(twisted) products of two globes or the empty set. Since F:*(A) satisfies condition 1 for
pairwise molecular subcomplexes, it follows from Theorem 2.1.6 that F*(A) is a molecule
in w1 X ug X uz or the empty set. Similarly, we can prove that F7;*(A), F7,*(A) and Fy*(A)
are molecules in the corresponding (twisted) product of three globes or the empty set.

'This shows that A is pairwise molecular, as required.

This completes the proof. O
We end this section by a proposition which is used later in this chapter.

Proposition 4.1.7. Let A and A’ be subcomplezes of uy X ug X uz X uy satisfying condition

1 for pairwise molecular subcomplezes. If Fi*(A) = F*(A') for every s and every I, with

1<s5<4, then A = A,

Proof. Tt suffices to prove that A and A’ consists of the same maximal atoms.

Let wuq[i1, 1] X ualia, aa] X uslis, o] X ugfia, 4] be a maximal atom in A. It is easy
to see that wy[ir, ] X uglia, aa] X uslis, 3] is a maximal atom in Fj*(A) = Fj*(A').
Thus A’ has a maximal atom ui[i1, 1] X ualia, aa] X uslis, as] X ualiy, o] with ¢ > 4.
Since wy[i1, 0a] X ugliy, o] X usfis, cs] € Fi4(A) = Fij4,(A"), we have 4) = i4. One can

similarly get a maximal atom wi[i1, 1] X uslia, an] X uslis, o] X walia, ca} of A'. It follows
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from condition 1 for pairwise molecular subcomplexes that oy = a4 and of = a3. This
shows that u;[é1, 1] X uglie, ca] X us|is, 3] X u4[ig, @4] is a maximal atom in A'.
Symmetrically, we can see that every maximal atom in A’ is a maximal atom in A.

This completes the proof that A = A’. O

4.2 Molecules Are Pairwise Molecular

In this section, we prove that molecules in u; X ug X u3 X u4 are pairwise molecular.
The argument is different from that in section 2 of chapter 2. We show that F7* sends
molecules to molecules or the empty set for every value of s without introducing g7° (see

section 2 of chapter 2).

We first show that molecules satisfy condition 1 for pairwise molecular subcomplexes.

Proposition 4.2.1. In a molecule of uy Xug X ug Xuy, there are no distinct mazimal atoms
Uy [il, O.'l] X Uy ['ig, ag] X ’u.3['i3, O!3] X 'u,4[z'4, C¥4] and U1 [’l.’]_, 0{,1] X Ug [’i,f?, ai?] X U3[i’3, Cllé] X Ug [1’4, 0!21]

such that iy <1, for all 1 < s < 4.

Proof. Suppose otherwise that there are maximal atoms A = wuq[i1, o] X ug[ia, @] X
us[is, orz] X Ualta, cta] and A = uy[if, of] X ug[ih, o] X us[ih, o] X ualéy, o] in the molecule
with A # X such that 45 <4/ for all 1 < s < 4. By decomposing the given molecule, one
can get composite of molecules A#,A" or A'4,A such that A C A, A ¢ A, N C A’ and
A ¢ A. We may assume that the given molecule is decomposed into A#,A’. We now
consider two cases, as follows.

1. Suppose that n > 41 + ig + i3 + 24. Then, by Lemma 1.4.16, we have A\ C dtA =
d, A" C A'. This is a contradiction.

2. Suppose that n < 4; + iy + i3 + 44. Consider the (natural) homomorphism F :
Uy X Ug X Ug X Ug —> Uy X Uy, X Uy X U, Since A#, A’ exists, we know that F(A#,A) =
F(A)#, F(A') exists. On the other hand, one can see that u;, X s, X usy X s, C F{A)N
F(X) € F(A) N F(A). Therefore dim[F(A) N F(A')] > i1 + 42 + i3 + %4 > n. Since
dim[d} F(A)] < n, one gets dF(A) # F(A) N F(A"). This contradicts that F(A#,A") =
F(A)#,F(A") exists.
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This completes the proof.
[

We next show that F7* sends molecules to molecules or the empty set for every value

of s. The arguments for different values of s are similar. We only give the proof for s = 2.

Lemma 4.2.2. Let A = uq[i1, on] X ualin, @] X usfis, @3] X walis, a] be an atom in the

w-compler uy X ug X ug X ug and A, A" € M(uy X ug X ug X uq). Then
1. F2(X) € A(ur x u? x u2) U {0};
2. If Afta A" is defined, then Fp” (A#,A") = Fp2(A) U FP2(A);

3, FI“: (A) # 0 if and only if there is a mazimal atom uq[i1, o] X ug[iz, a] X ugliz, as] x

Ug[ta, ] in A such that ia > Ip;

dy_p, F12(N)  when p > I and iz > I,

4. F2(dyX) =
0] when p < Iy or iy < Iy;

Proof. The proof of the first three conditions is a trivial verification from the definition
of F}?. We now verify condition 4.

If p < I; or i3 < I, then it is evident that F7.*(dJA) = (0 by the definition of F72.

Now, suppose that p > I, and iy > I. Then Fy2()) = wiliy,on] x ui?[is, o] x
uiz[i4,a4]. By proposition 4.1.1, the set of all maximal atoms in djA consists of all
wy[ly, o1] X us[la, o9) X us[ls, o] X uylly, 04] with I, < 4, for all 1 < s < 4 such that

L+ Iy + 13+ 1y = p, where the signs o, (s =1,2,3,4) are determined as follows:

1. If Iy = 2;, then oy = ay; if |} < 4y, then oy = 7.

2. If lz = ?:2, then U9 = (¥g; if lz < ’iz, then O9 = (—)ll"}’.

3. If I3 = 13, then o3 = ag; if I3 < i3, then 03 = (H_)l1+127_
4. If l4 = ’1:4, then 04 = G4, if l4 < ’i4, then 04 = (__)l1—|—l2—!—la,},_

Erom this description and the formation of d)_;, (uy[d1, ay] x w2 [ig, o] X ul2[iy, ay]) in ug %

ui? x uf? (Theorem 2.5.12), it is easy to see that F}2 (dIN) = d)_p, F12()), as required. [J

p—I2
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Lemma 4.2.3. Let A be a molecule in u; X us X uz X ug. If A is decomposed into

A= N#,A" and if F2(A') # 0 and Fi2(A') # 0, then n > I.

Proof. Let fr? : M(uy X ug X uz X ug) = M(uy X ug, X ug X ug) be the natural homo-
morphism of w-categories sending every maximal atom wy[é1, o] X ug[iz, an] X us[is, as] X
Ug[ta, g In vy X ug X ug X uy wWith i < Ip to ui[iy, o] X ugta, o] X us[is, as) X ugliq, 4], and
sending every maximal atom wi[é1, on] X uglig, 0] X usis, g] X ua[ta, 4] in uy X ug X ug X uy
with 45 > Ip t0 ui iy, cu] X up, X ualis, a] X ualis, cig]. Then f72(A) = fr2(A)#afr2(A") is
defined. Thus df f72(A") = d fr2(A") = fi2(A) N fi2(A"). Since Fp2(A') # 0 and
F?(A") # 0, we know that there are maximal atoms N = wuq[i}, of] X ualiy, oh] X
ugliy, of] X wugliy, af] and X" = w1}, of] X usliy, of] X uslis, o] X ugfif, af] in A’ and
A" respectively with 4, > I, and 45 > Iy such that f;2(\) and f72(\") are maximal
atoms in f7?(A’) and fr2(A") respectively. If f72(X) is not maximal in f2(A), then it
is easy to see that there is a maximal atom in f;.*(A") containing f7?()'); it follows that
n > dimd, f;?(A") = dim(fz? (A') 0 fr2(A")) > dim f;2(X') > Ip. Similarly, if f72(\") is
not maximal in f7*(A), then n > I, as required. In the following proof, we may assume
that both f7*(\') and f7*(\") are maximal in f}?(A). Now there are two cases as follows.

1. Suppose that f7”(N)Nf22 (") # 0. Then it is easy to see that n > dimd} f7>(A") =
dim(f2(A") N f12(A")) > Iy, as required.

2. Suppose that fr*(\N) N fr2(A") = 0, then we must have ¢} =i{ =0, =14 =0 or
1y = 14 = 0. We may assume that ¢} =4 = 0. Thus o) = —a. In this case, consider the
natural homomorphism fi77* + M(uy X ug X ug X ug) = M(ug X ug, X ug X ug). It is easy
to see that fy2"*(\) and fy7*(\") are maximal in fg7**(A). It follows that @ # 45 and
iy 7 14 and hence fi7"2(A) N fop (A") # 0. Since fi7*(A) = for? (AN)#afor)* (A")
we can see that n > dimd} fi7"* (A) = dim(f7)2 (A) N fo7# (A")) > I, as required.

This completes the proof. O

Proposition 4.2.4. Let F1* : M(ug X up X ug X ug) — C(ug X ui® x ug?) be the map as

above. Then

1. FpP2(M(ug X ug X ug X ug)) C My X ul2 x ul2) U {0};
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2. For every molecule A in uy X ug X ug X ug, we have

dl_,Fi2(A) whenp> I, and F}2(A) # 0,

Fr2(diA) =
0 when p < Iy or Fi2(A) = 0.
8. If A4, A" is defined, then
Fpr(MN#a-nFp2(N')  when FT2(A) # 0 and Fy2(A') # 0,

Fri(Adal) =  Fi2(A') when F2(A) = 0,

0.

L F7 (A) when F2(A)
Proof. We are going to prove the first two conditions by induction and then prove the
third condition.

By Lemma 4.2.2, it is evident that the first two conditions hold when A is an atom.

Now suppose that ¢ > 1 and the first two conditions hold for molecules which can be
written as a composite of less than ¢ atoms. Suppose also that A is a molecule which
can be written as a composite of ¢ atoms. Since ¢ > 1, we have a proper decomposition
A = A#,A" such that A’ and A" are molecules which can be written as composites
of less than ¢ atoms. According to the induction hypothesis, we know that the first
two conditions hold for A" and A”. We must show that the first two conditions in the
proposition hold for A. There are two cases, as follows.

1. Suppose that F7*(A") = 0 or F32(A") = 0. We may assume that F;2(A") = 0. In
this case, we have Fj2(A) = F2(A"). Thus Fi2(A) € M(u1 x uf? x ug?) U{0} as required

by the first condition. Moreover, if p # n, then

G

= Fp (A H#adiA")

= Fp(djA) U Fp (dgA”)

_ dy_p, Fp2(A")  when p > I, and Fp?(A") # 0,
\ 0 when F2(A") =0 or p < I,

’

B dy_p, P2 (A) when p > I, and F*(A) # 0,

W when F{2(A) =0 or p < I,

\
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as required by the second condition. Suppose that p = n > I,. Then F;*(dfA") = 0. So
Fp2(d; A") = 0. Hence, by the hypothesis, one gets F7.2(A") = §). Therefore F2(A) =0
and F7?(dJA) = 0, as required by the second condition.

2. Suppose that F7*(A') # 0 and F;2(A") # 0. By Lemma 4.2.3, we have n > L.
Since F1.2(A) = Fi?(A') U Fp?(A") and

A, P ()
= I (dgd)

= Fpr(dzA")
= dyp, 77 ("),

we can see that Fp* (A)#f,—r, T’ (A") is defined, and F1*(A) = Fp2 (A)#n_r, F72(A"). So
F772(A) is a molecule, as required by the first condition. We now verify that A satisfy the

second condition. If p < Iy, then Fy*(dJA) = 0, as required. If p =n > I, then

Fr2(d;A)
= Fpid,N)
= d, T (A)
= d,_, I (A);

'p—I2

and similarly we have F72(dfA) = df

o P (A). If I; < p < m, then

Fi2(diA)
= Fp2(djA’)

p—1I2
= 47 F(A).

p—12

If p > I, and p > n, then

Fia(dyA)

= FI‘;"“(dgA’#ndgA”)

— FR(dyA) U FE(dIAY)

= d1_, FR(N)Udl_ FE(A")

p—1Ia
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and
di_p. d_, Fia(A)

n—Iy"'p

= dy_p P (N)
= dy_pF(A")
dyr, 12 (A"),

= d p—1I2

'n.—Ig
thus dj_;, F* (A)#n-r,d)_p, Fr2(A") is defined and

Fp2(dYA)
= d;’_fz F; 11? (A') Hniy dz_ Iy F Iqiz (A")
= dy_p,[FR (N ) #n-1, Fp) (A")]
= dy_, Fi2(A).
‘Therefore A satisfies the second condition.

Finally, condition 3 can be easily verified by using condition 2 and the fact that Fp*

preserves unions.

This complete the proof.

[

In particular, we have that F}* sends molecules to molecules in u; X u? X uiz or the
empty set.

We can similarly prove that F7*° sends molecules to molecules in the corresponding
(twisted) product of three infinite dimensional globes or the empty set for every value of

5. Thus we have proved the main theorem in this section.
Theorem 4.2.5. Molecules in u; X ug X uz X ug are pairwise molecular.

We finish this section by a property of molecules in u; X ug X uz X u4. It can be proved

from the results later in this chapter. But the proof here is also interesting.

Proposition 4.2.6. Let A be a molecule in uy X ug X ug X ug. Let Ay = uylfiy, ou] X
Ugig, Cg) X ug[is, ig) X uglia, 2a] and Ag = ui[ir, —ou] X uslia, @] X uslis, cva) X ua[ta, ta]. If
A1 C A and Ay C A, then there is an atom X' = (i}, o] X ug[ih, ah] X us[sh, ] X uq[th, o)

in A with i > iy = iy such that X' D Ay and X' D \,.
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Proof. If A is an atom, then the required property holds automatically.

Suppose that the required property hold for every molecule which can be written as
a composite of less than ¢ atoms. Suppose also that A can be written as a composite of
q atoms.

It is easy to see that there is a composite of molecules A;#,A, with Ay C A; and
A2 C Ag such that both A; and A, can be written as composites of less than ¢ atoms. By
applying the natural homomorphism f;* : M(uy X ug X ug X ug) — M{(us; X ug X ug X ug)

of w-categories, one gets

i (MfEnfa) = fi (M) #a i) (M)
This implies that

(AN Ag) = fir(Ag) N (Ag)).
Since fi;' (A1) = Fiy' (A2) C fi (A1) N f37 (Aa)), we have fi (A1) = fi7 (A2) C fi (A1 NA).
It follows that A3 = wuy[i1, 1] X ua[is, ca] X us[is, az] X vafia, a] T Ay N Ay for some sign S.
Now if i = —a, then one can get an atom in A; as required by applying the induction
hypothesis on A; and Az in Ay; if 01 = «, then one can get an atom in Ay as required by
applying the induction hypothesis on Ay and A3 in A,.

This completes the proof. O

4.3 Properties of Pairwise Molecular Subcomplexes

In this section, we study some properties of pairwise molecular subcomplexes in %y X ug X
uz X u4. In the next section, we are going to prove that some of these conditions are

sufficient for a subcomplex of uy X ug X ug X U4 t0 be pairwise molecular.

Lemma 4.3.1. Let A be a pairwise molecular subcomplexr of uy X uy X ug X uyg. Let
U i1, 1] X ualie, co] X uslis, o] X vafis, ca] and uy 2], af] X ualh, ab] X us[iy, af) X ualiy, o]
be a pair of distinct mazimal atoms in A. Ifi; =1 and a; = —a, for some 1 < 5 < 4, then
for every t with t 5 s, there is a mazimal atom uq[ly, 01] X ug[ly, 0] X us|ls, 03] X uglly, 04]
in A such that ls > 45 = 4, [y > min{i, 34} and w.[ly, 00] D upfir, ] N w2, &l] for all

re{1,2,3,4}\ {s,t}.
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Proof. Let A = uy[iq, ] X uglia, o] X uslis, i3] X ualie, og) and N = uy i}, of ] X uglih, ab] x
uglih, o] X uafiy, @]. The arguments for various cases are similar, we give the proof for
s =1and ¢t =4. Let [, = min{44,%,}. Since A is pairwise molecular, we can see that
F7A(A) is a molecule in uy X up X ug. Since F74(\) = i1, ca] X ualiz, o] X uslis, as]
and F74 () = uy[d], o] X uglih, o] X usliy, og), it follows easily from Lemma 2.4.4 that
there is a maximal atom uq[ly, 01] X ug(l, 02] X ug[ls, 03] such that Iy > iy =4}, ug[le, 2] D
Unia, a2} N unlih, o) and wus(ls, 03] O uslis, as] N uslis, o). Therefore A has a maximal
atom w[ly,01] X wualla, o] X us(ls, 03] X uglly, 4] such that i > 4 = 4, uglly,00] D
uglin, o] M ualih, o], uslls, 03] D uslis, az) Nualih, o) and Iy > Iy, as required.

This completes the proof. [

The following definition of adjacency for a pair of maximal atoms in a subcomplex of

%1 X Ug X Uz X 44 is inspired by Propositions 2.3.3 and 2.3.11.

Definition 4.3.2. Let A be a subcomplex of u; X ug X uz X tq. Let 1 < s <t < 4. A pair
of maximal atoms ui[i1, 1] X Uslia, o] X uglis, ] X uafta, 4] and uq[i], ] X ug[dh, ch] X
us[ty, g X ualiy, o] are (s, t)-adjacent if max{is, ¢, } +max{s;, %t} > max{i;+i;, 7, +14}} and
if there is no maximal atom w1 [j1, 1] X uz[d2, B2] X us|js, Os] X ua[ja, f4] with 7, > min{s,, 7.}
for all 1 < r < 4 such that min{s, js} + min{é, :} > min{s,, 2.} + min{s;, 7} and
min{s}, 7, } + min{s}, j:} > min{%,, ¢, } + min{s;,4;}. A pair of maximal atoms wuq[iy, o] X
Us[ia, 0] X uslis, org] X ua[ia, o] and wui[i, o] X ua[ih, ] X us[iy, o] X ualdy, &} are adjacent
if they are (s,t)-adjacent for all 1 < s < ¢ < 4 such that max{i,, .} + max{s;,i,} >

max{i, + 4, 0} -+ 9}

Example 4.3.3. Suppose that A = u[5, o] X ua[0, ] X ug[l, ag] X ugfl, 4] and p =
u1[0, B1] X ualb, Ba] X ug[l, B3] x 142, B4] are a pair of maximal atoms in a subcomplex. If
A has a maximal atom v = u;[1, €1] X ua[l, €2] X u3[2, 3] X uq[l, 4], then X and p are not

(1, 2)-adjacent.

The following proposition shows that the definition of adjacency is in consistent with

that in Chapter 2.
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Proposition 4.3.4. Let A be a subcomplex of uy X ug X us X ug satisfying condition 1
for pairwise molecular subcomplezes. Then a pair of distinct mazimal atoms uy[i1, o] X
Us[ig, o] X ug[i3, 03] X uaia, ca] and uyliy, o] X ualdh, ah] X us[th, o] X uald}, 0] are adjacent
if and only if there is no mazimal atom ui[j1, B1] X ua[Jz, o] X us[js, Bs] X walja, Ba] with

Jr 2 min{e,, i} for all 1 < r < 4 such that

4 4
Z min{i,, j.} > Z min{%,, 7. }
r=1 r=1

and
4 4
> “min{i, j,} > Y min{i,, i }.
r=1 r=1
Proof. The proof is a straightforward verification from the definition of adjacency. O

The concept of projection maximal can be defined in the similar way as that in chapter

Let A be a subcomplex of u; X ug X uz X u4 satisfying condition 1 for pairwise
molecular subcomplex. Let I, be a fixed non-negative integer. A maximal atom
u1{t1, 01 X ugia, o] X uglis, ) X uafia, 4] in A is (u,, I,.)-projection mazimal if 3, > I, and
there is no maximal atom w4 [#, of | X uofdh, ah] X us[th, o] X ua[iy, o] such that I, < i < 4,
and 4 > i, for all s € {1,2,3,4}\ {r}.

Evidently, if a maximal atom A in A is (u,, I;)-projection maximal, then Fy"(}) is
maximal in Fy"(A). Conversely, for every maximal atom p in F7" (A), there is a maximal

atom g’ in A such that F7"(u') = p. The following proposition implies that x4’ is actually

(ur, Ir)-projection maximal.

Proposition 4.3.5. Let A be a pairwise molecular subcompler of u1 X ug X ug X ug and
A be a mazimal atom in A. Let 1 < r < 4. Then X is (uy, I.)-projection mazimal if and

only if F7()\) is mazimal in Fy7(A).
Proof. The proof is similar to that in Proposition 2.3.5. (I

Lemma 4.3.6. Let A be a pairwise molecular subcompler in uy X us X us X uq. Let

A= ul[?;la al] X u2[é’25 a?] X ’U.3[i3, C¥3] X ’lL4[’1:4, CY4] and H= ul[jl) ;Bl] X UZ[jZH&Z] X U’3[j3) ﬁ3] X

ualja, Ba) be a pair of (s, t)-adjacent mazimal atoms in A for some 1l < s <t < 4. Ifi; > j;
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and iy < j;, then for r € {1,2,3,4} \ {s,t} there is a pair of (s,t)-adjacent and (u,, I.)-
projection mazimal atoms uq[ih, o] X uglth, oh) X us[iy, o] X ualiy, af] and ui[j], B x
ualgy ) X sl B5) X walif, B such that wilj B) = taljes Bul, el @] = i, ] and
min{4,, j/} = min{s,, j, }, where I, = min{i,, 5,}. Moreover, for ¥ € {1,2,3,4} \ {r, s, t},

if s < T < t, then min{é, j.} = min{iz, 5z }.

Proof. Let X' = wyli}, o] x waliy, 0f) X ug(iy, o] x wglt}, o] be the (u,, [,)-projection
maximal atom such that i > 4, 4, > 4, and @& > 4. Let p' = wi[j], 8] % ualsy, B5] %
us[73, O] X u4[jy, B4] be the (ur, I.)-projection maximal atom such that ji > j,, 40 > j;
and j. > jf. It follows easily from Lemma 4.3.1 and the adjacency of A and u that X' and
p' are (s,t)-adjacent and that u,[7;, 8] = us[Js, Bs], weltl, )] = uslis, ou, min{i,, 5.} = I,
and min{s}, 55} > min{iz, 57 }.

Moreover, if s < 7 < ¢, we show that min{s}, j-} = min{i, jz} by contradiction. The
arguments for various choices of r, s and ¢ are similar. We give the proof for s = 1,
t = 4 and r = 3. In this case, we have ¥ = 2. Suppose otherwise that min{z, j5} >
min{iz, fo}. Then F7*(X') and Fp.’(u') are maximal atoms in F7*(A). Note that F7.*(\) =
unlih, 0] X ualiy, @]  ufis, o] and FE(') = wilji, Br] X usliy, B5) x bl B). Since
Fp2(A) is a molecule in u; X ug X ul3, it follows from condition 4 in Theorem 2.4.1 that
there is a maximal atom wuy[ly, 03] X ug[ly, 03] X u[ly, 0] in Fr3(A) such that Iy > ji,
lo = min{i}, 4} — 1 > min{%s, jo} and Iy > 44. Thus there is a maximal atom v =
uylly, 01] X ug[le, 09] X us[ly, 03] X u4ls, 04] in A such that I3 > I3. This contradicts the
assumption that A and u are (1, 4)-adjacent.

This completes the proof. O

Proposition 4.3.7. Let A be a pairwise molecular subcompler of uy X ug X uz X ugs. Let
A = w1, ] X ualta, aa] X uglts, 3] X ualia, ] and N = wy i}, @] X uglih, ah] X uslil, af] %
uqlty, @] be a pair of distinct mazimal atoms in A. If1 <s<r <t <4 and A and X
are (s,t)-adjacent, and if i > i}, min{i,, .} > 0 and 7, > %, then A has a mazimal atom
ug[ly, o1] X uz[la, 03] X us[ls, 03] X wa[ls, 04] such that Iy > 4, I, = min{i,, .} — 1, l; > 4

and Iz > min{iz, it}, where 7 € {1,2,3,4}\ {r, s,¢}.
Proof. The arguments for various cases are similar. We only give the proof for the case
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s=1,r=3and {t = 4.
Let I3 = min{4s,45}. According to Lemma 4.3.6, we may assume that A and X are

(us, Is)-projection maximal so that Fr.*(A) and F7.*(\') are maximal atoms in F:*(A).

Now F72(A) = uali1, ] X walia, as] X uglis, oy} and Fy#(X) = uqli, of] x ualdh, ah] x
ugliy, o). It is easy to see that Fi*()) and Fp2(X') are adjacent in F7*(A). According
to condition 4 in Theorem 2.4.1, there is a maximal atom u;[l;, 1] X ug[ly, 0] X u2[ls, 04)
such that I > 4}, {; = min{is,4,} — 1 and Iy > 44. This implies that there is a maximal
atom wy[ly, o1] X ua[ly, 2] X us[ls, 03] X u4|ly, 04] in A as required.

This completes the proof.

(]

We also need to extend the concept of projection maximal to maximal atoms in
Uy X Us X ug X ug With respect to two factors, as follows.

Let 1 < s <t <4. Let I; and I; be fixed non-negative integers. A maximal atom
uy i1, o) Xuglia, o] X us(ts, cts) X ualia, o] in A is (us, ug; Iy, I) -projection mazimal if iy > I,
and 4; > I, and if there is no maximal atom u4[4}, o] X ua[ih, ] X wus[ih, o] x waliy, o]
such that i, > I, and 4y > I; and such that i% > 4, for all r € {1,2,3,4}\ {s,%} and
i > 1, for some r € {1,2,3,4}\ {s,¢}.

Evidently, if a maximal atom X in A is (us, us; I5, I;)-projection maximal, then Frent (V)
is maximal in F7°7*(A). Conversely, for every maximal atom g in Fy*7*(A), there is a
maximal atom g’ in A such that Fy*7*(u') = p. The following Proposition implies that

w' is actually (ws, u; Is, I;)-projection maximal.

Proposition 4.3.8. Let A be a pairwise molecular subcomplex of ui X ug X ug X ug and A
be a mazimal atom in A. Let 1 < s <t < 4. Then A is (us, ug; Is, It)-projection mazimal

if and only if Fy°7*(A) is mazimal in F7°7*(A).
Proof. The argument is similar to that in Proposition 4.3.5. O

Lemma 4.3.9. Let A be a pairwise molecular subcomplex in u; X tg X uz X uq. Let
A = uafiy, 0a] X sy, o] X usfis, ag] X ualia, ] and p = u[f1, B X ualiz, Ba] X us[fs, fs] X

u4[ja, Ba] be a pair of (s,t)-adjacent mazimal atoms in A for some 1 < s < t < 4. If
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is > Js ond iy < ji, then there is a pair of (s,t)-adjacent and (us,us; Is, It)-projection
mazimal atoms uiliy, o] X ug[ih, ah)] X ugiy, o] X uafiy, &) and wy[j, Bl X ua[fh, B4] ¥
'u'3[.7-§: 165] ! [.7!1’ :lei] such that us{j;: ﬂ.;] = Uy [jsa ﬁs]: Iu’t[":::: G’Q] = ut[ih at] and min{z"g, j.;} 2

Iy and min{i;, j;} > I, where § and t are distinct elements in {1,2,3,4} \ {s,t} and

o)

Is = min{is, js} and Iy = min{i;, ji}. Moreover, if s < 3§ < t, then min{i, ji} = I5; if

s <t < t, then min{i}, ji} = I;.

Proof. Let X' = uq[i}, o] X usih, o] X us[iy, o] x ugliy, o} be the (us, us Is, It)-projection

maximal atom such that i, > 4, and i} > 4;. Let p' = ui[f], 8] X uz[ds, O] X us[7}, B4] %

uq[fy, O3] be the (us, ug; Is, Ir)-projection maximal atom such that j. > 7, and j; > 7;. It

follows easily from Lemma 4.3.1 and the adjacency of A and p that (5%, 8] = usljs, B,

uglty, ] = uefty, o], min{e}, ji} > Is, min{s}, j;} > Iy and X is adjacent to 4/, as required.
The second part follows easily from the adjacency of A and g and Lemma 4.3.7.

This completes the proof. O

Proposition 4.3.10. Let A be a pairwise molecular subcompler in uy X ug X Uz X Uy.

Then the following sign conditions hold.
Sign conditions: for a pair of adjacent mazimal atoms uq[iq, o] X uglis, cg] X ug|is, aiz] X
Uglia, cua] and uq[i}, of] X ugth, ah] X ug[iy, o] X ualdy, ] in A, let I, = min{s,,i.} for

1<r <4,

1. If X and p are (1,2)-adjacent, and if Iy = 4y < i} and Iy = 4, < iy, then «f) =

.._.(.M.)h o ;

2. If X and p are (1,3)-adjacent, and if Iy = 4y < @} and lg = i < 13, then of =

_(f)l1+l2a1;

8. If A and p are (1,4)-adjacent, and if Iy = 41 < ) and ly = @y < 14, then off =

_(*)ll-f--!z-i-laal;

4. If X and u are (2,3)-adjacent, and if lo = iy < i, and l3 = iy < i3, then ay =

—(*)IZC‘Q;
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5. If X and p are (2,4)-adjacent, and if ly = 13 < iy and Iy = i}y < iy, then o), =

_(_)l2+lda2;

6. If X and p are (3,4)-adjacent, and if ls = i3 < @ and ly = @y < i4, then o =

—(—)*as.

Proof. The arguments for the above cases are similar. We only give the proof for case 3.

Let A = ul[il, 041] X T.Lg[’ig, 052] X ’11,3[7:3, 053] X 'U,4['I;4, 044] and X = ’Lbl[’ill, O!'i] X uQ[ii‘Za aré] X
us[ty, ay] X ualty, ] be a pair of (1,4)-adjacent maximal atoms in A. Suppose that i} > 4;
and ¢y < i4. Let min{ip,ih} = ly min{és, i} = l3. We must prove o, = —(—)2+sq,.
According to Lemma 4.3.9, we may assume that A and A" are (ug, us; I3, I3)-projection

maximal atoms.

It is evident that F%"(X) = ufiy, 0q] x u#*[i, o] and Et(XN) = wli, o] x

w3 o4], and they are maximal atoms in the molecule F*%“(A). Moreover, by the
4 [bar Oy Ia,la » Y

adjacency of A and X', we can see that F; %" () and F5*(N) are adjacent maximal

u2,U3

atoms in /7% (A). According to the formation of molecules in u x w™, we get o =

—(=)l2*sqy, as required.

This completes the proof. O

4.4 An Alternative Description for Pairwise Molec-
ular Subcomplexes

In this section, we give an alternative description for pairwise molecular subcomplexes of

%1 X Ug X Ug X Uyg, as follows.

Theorem 4.4.1. Let A be a subcompler of uy X ug X uz Xugq. Then A is pairwise molecular

if and only if

1. There are no distinct mazimal atoms uy[iy, ] X ug(ig, ag] X us[is, as] X ugfiq, o] and
’U,l[?:ll,al'l] X 'U.g['i’z, 05’2] X ’11.3[?%,&3] X ‘Uq[‘ifl, O:fl] in A such that '1:1 S ’L'l, '212 S 2'2, ’113 < ’I,g
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2. Sign conditions: for a pair of mazimal atoms ui[ir, cu] X ug[ia, ae] X us[ts, as] X
Uq[tg, ug] and w1y, o] X ugliy, ah] X uslih, o] X ugléy, o] in A, let I, = min{i,, '}

for1 <r < 4.
(a) If X and p are (1,2)-adjacent, and if Iy = 143 < i) and ly = i, < iy, then
oy = —(=)"on;

() If X and p are (1,3)-adjacent, and if I = 4, < i} and l3 = 14 < i3, then

’3 — __(_)ll-!-lzal;

Q

(c) If X and i are (1,4)-adjacent, and if l; = i1 < 1} and Iy = @), < iy, then

R

51 — _(__)h-l—lz—Haal;

(d) If X and p are (2,3)-adjacent, and if lo = iy < @ and Iz = i} < i3, then
oh = ~(~)cu;

(e) If X and p are (2,4)-adjacent, and if lo = 1a < iy and ly = 1), < i4, then
ay = —(=)*Heay,

(f) If A and p are (3,4)-adjacent, and if ls = i3 < 14 and ly = 7y < iy, then

0} = —()as.

3. Let X = uqiy, cg] X uglia, ag) X uglis, asl X ugliqg, ] and X = uqfil, o] X ugliy, of] x
ugliy, o] X ualty, of] be a pair of distinet mazimal atoms in A. If i, = i\ and
as = —a) for some 1 < s < 4, then for every t € {1,2,3,4} \ {s}, there is a
maztmal atom uq[ly, o1] X uslle, 0a] X us(ls, 03] X u4[ly, 4] in A such that l; > i, = 4.,

I, > min{i, 3} and u.[ly, 0] D urlir, o] Nufil, &) for all T € {1,2,3,4}\ {s,t}.

4. Let A = uqliy, on] X ug[te, o] X uslia, i3] X uglia, ] and X' = uy[if, o] x uglih, ab] x
ug|ty, avg| Xug[iy, o] be a pair of distinct mazimal atoms in A. Forl <s <r <t <4,
if A and X are (s,t)-adjacent, and if iy > i}, min{i,, 7.} > 0 and 7} > 4, then A
has a mazimal atom uq[ly, o1] X uglle, o9] X uslls, 03] X ua[ls, 04] such that l; > 1,

L = min{%,, &} — 1, l; > i and l; > min{is, 5x} for 7 € {1,2,3,4} \ {r, s,%}.
Note 4.4.2. In condition 4, we have a similar relations for the signs o,, o/ and oy as

that in Note 2.4.2. For instance, if s = 1, » = 2 and ¢ = 3, then we have gy = —(—)"a

and oy = —(—)20,.
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In the last section, we have proved that the four conditions in this theorem are nec-

essary for pairwise molecular subcomplexes. We now prove the sufficiency. The proof is

separated into several lemmas.

Lemma 4.4.3. Let A be a subcomplex satisfying the four conditions in Theorem 4.4.1. Let
A = ufi1, an] X ugliy, crg] X uglis, cus] X walis, cu] and p = wilj1, ] X us[j2, Ba] X us[ja, Bs] X
©alJs, Ba] be mazimal atoms in A. Ifis = j; and as = —f; for some 1 < s < 4, then there
is @ mazimal atom v = wy[ly, 01] X uslle, 0] X ug|ls, 03] X u4fly, o4 in A with I > i, = js

such that [y > min{iy, 5:} and welly, 0¢] D wliy, ] Nwlds, ] for all t € {1,2,3,4}\ {s}.

Proof. We first prove the lemma when A and u are adjacent. The arguments for various
cases are similar. We only give the proof for s =1, iy > 7, and i3 < ja.

If ¢4 = j4 and gy = —f4, then we can get the required u simply by applying condition
3 in Theorem 4.4.1. We now suppose that iy £ j4 or that 14 = j; and oy = G4. In this
case, we have uylig, o] N valfs, Ba] = Ua[ia, ] o uafig, o] N ualjs, Ba] = ualjs, Bo]. We
may assume that wuq{ia, oa] N wa[ja, Ba] = walia, cal. According to condition 3 in Theorem
4.4.1, we can get maximal atoms ' = uy[i}, o] X uafiy, ah] X us[th, ay] X ua[t}, af] such
that @ > 44 = j1, 9 > Jo, uslis, @3] C uslih, ] and ugfts, ay] C ugliy, o] Similarly,
we can get maximal atoms p' = ws[j], B1] X ua[fh, B5) X ua[4s, Bi] X walfh, B3] such that
J1 > % = J1, Ja 2 13, Ualde, Bo] C ualjy, B3] and wuylis, o] C uafsy, Byl

Now, suppose otherwise that A does not have a maximal atom v = wu4[l;,01] X

ug(ly, 09| X usglls, 03] X u4[ls, 04] as required. Then i, = j; and ah = —f, and 7§ = i3
and ;5 = —oas. By applying condition 3 in Theorem 4.4.1 to p and X, it is easy
to see that 4 = 43; thus of = as. Similarly, we have 75, = j, and (5 = fs.

By applying condition 3 in Theorem 4.4.1 to X and p', we get a maximal atom
V" = uq[lf, of] % ually, 0f] % us[lf, of] % wa[ly, o} such that If > min{i{, i} > i, = 71,
Iy >y = jgy = ja, I§ > i = j§ = i3, ually, 04] D u4[is, as]. By the hypothesis, we have
l§ =13 and 0§ = —a3. By applying condition 3 in Theorem 4.4.1 to A and v, we can get
a maximal atom A" = u[i], ] X us{ih, o] x usfis, o] X u4[i], of] such that if > i, = 71,
i5 > min{ig, l§ } > ja, 1§ > i3 and 7] > i4. This contradicts the adjacency of A and p.

The other cases can be proved similarly.
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Now we give the proof for the general case by induction.

1. Suppose that $_ min{i,,7.} is maximal among the non-negative integers
S mingil, 37} with ua ), o] x uafi, o) xusli, o] x uafiy, 4] and w7, 6] x ualig, Bl x
uslgh, B3] X waljy, By running over all pairs of distinct maximal atoms in A. It is evident
that )\ is adjacent to u, hence the lemma holds for A and .

2. Suppose that ¢ > 0 and the lemma holds for every pair of distinct maximal atoms
sl 0] X wals, o] x s, 0]  ualiy, @] and w5, A1) X ualih, 4]  wslihy 4] X waldys 5]
with Ele min{i,, 7.} > g. Suppose also that 2321 min{i,, j,} = q.

If A and u are adjacent, then the lemma holds by the first part of the proof.

Suppose that A and p are not adjacent. According to Theorem 4.3.4, there is a
maximal atom v/ = wuy [}, of] X ua[ly, oh] X us[ly, oi] X wy[l}, o4] with I > min{s,, 5.} for
1 < ¢ < 4 such that . .

> " min{ir, i} > > min{i,, i}

r=1 r=1
and

4 4

> min{j,, L} > Y minfi, j,}.

r=1 r=1
By possibly multiple applying the above argument, condition 3 in Theorem 4.4.1, and
the induction hypothesis, we can get either a maximal atom p = u4[ly, 01] X uz[ly, 03] X
us[ls, 03] X ualls, 04] as required, or a pair of maximal atoms A = uy[i}, @] X uz[th, ah] %
uafi, 0] xualdl, af) and g = w7}, Bl xuslh, Byl xuslh, B3] xuali, Bi] with &, = i, = j,
gt and o, = — % such that min{, j;} < min{z, 7.} and wfiz, cx] N wglds, Bi] C weld}, af] N
uyljt, Bl] for all ¢ € {1,2,3,4} \ {s}, and such that 3%, min{é,, 5,} < S+, min{s, j'}.
It follows from the induction hypothesis that the lemma holds for A and wu.

This completes the proof.

O

Note that the proof in Proposition 4.3.5 uses only the definition for projection maxi-
mal, condition 1 for pairwise molecular subcomplexes and Lemma 4.3.1. By condition 1

and condition 3 in Theorem 4.4.1, we have the following two propositions.

Proposition 4.4.4. Let A be subcomplex of uy X ug X uz X uq satisfying the four conditions
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in Theorem 4.4.1 and A be a mazimal atom in A. Let 1 < r < 4. Then X is (u,, I;)-

projection mazimal if and only if Fy™(X) is mazimal in Fi™(A).

Proposition 4.4.5. Let A be a subcomplez of u; X ug X uz X ug satisfying the four
conditions in Theorem 4.4.1 and X be o mazimal atom in A. Let 1 <s <t <4. Then A

is (us, us; L, I)-projection mazimal if and only if Fy°7*(X) is mazimal in F7°}(A).

Proposition 4.4.6. Let A be a subcompler of u; X ug X ug X ug satisfying the four

conditions in Theorem 4.4.1. Let Iy and I3 be fized non-negative integers. Then

1. Every mazimal atom wuy[iy, on] X ugliz, an] X us[is, s X ugfte, og] in A with iy = I

and ig = I3 is (ug, ug; In, I3)-projection mazimal.

2. For every mazimal atom uy[iy, 0q] X ug[ia, o] X usis, s X ualta, 4] with ia > I and
ig > I3, there is a (ug,us; Iz, I3)-projection mazimal atom wui[j1, B1] X uzlje, Ba] X

ug[Js, Bs| X walja, Ba] such that uilir, cu] C uilj1, B1] and uglts, ] C ualja, Ba)-

8. All (ug,us; Iz, I3)-projection mazimal atoms , if exist, can be listed as X, ..,
A with A = wi[il™, ol % ua[il, o] x uail®, ol x ua[i?, o] such that
z'(ll) > e > ig‘g) and ifll) < 0 L iff). Moreover, in this list, if 1 < s <-5, then
i) = Y i and only if 1§ =i in this case, one must also have of” = a{*tV

and affls) = oszﬂ) .

4. For two consecutive (ug, us; I, I3)-projection mazimal atoms A6 and A6HD in the

()  g(s+1)

above list with i > iV one has min{s$”, i} = I, and min{z, i} = I;.

Proof. Condition 1 follows from the definition of projection maximal and condition 1 in
Theorem 4.4.1.

To prove condition 2, suppose that A = u;[iy, 1] X uglia, a] X usg[is, z] X ualis, @] is
not (ug, us; Iz, I3)-projection maximal. Then there is a (ug, us; Io, I3)-projection maximal
atom N = ufi), o] x ua[th, o] X uslty, o] X ugfiy, o] such that ¢ > 4 and @} > i4.
If wiif, ] D walér, cn] and wafil, )] O u4fia, cq], then X is as required. Suppose that
ui[éh, o] 2 uilir, 0q]. Then 7 = 4 and o] = —a;. Moreover, we have i > 44 by the

definition of (ug, us; Iz, I3)-projection maximal. Hence, by condition 3 in Theorem 4.4.1,
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there is a maximal atom p = uy{ly, o1] X us[le, o2] X us[ls, 03] X uslls, 04] in A such that
> =13, lo > I, Is > Iy and uglly, 04] D ualty, of]. If p is (ug,us; Ia, I3)-projection
maximal, then p can be taken as uy[j1, 1] X ua[ja, Ba] X us[js, Ba] X ua[ja, Ba], as required.
If 11 is not (ug, us; Iz, I3)-projection maximal, then one can get a (ug, us; Iz, Iz)-projection
maximal atom g as required by repeating the above argument for A.

To prove condition 3, by the definition of (ug, us; I, I3)-projection maximal, it suffices
to show that A does not have (uq, us; I3, Is)-projection maximal atoms A = uq[i1, a1 X
Ugliz, o] X uglts, ars] X walia, ] and p = u1[ji, 1] X ualja, Pa] X us[Js, Bs] X ualjs, Ba] such
that ¢y = 7, and ay = —p; or such that 74, = j; and aq = — 4. This follows easily from
condition 3 in Theorem 4.4.1.

Finally, condition 4 follows easily from condition 4 in Theorem 4.4.1.

This completes the proof. a

Proposition 4.4.7. In a subcomplez A of u1 X ug X ug X uq satisfying the four conditions in
Theorem 4.4.1, let the (ug, us; Is, Is)-projection mazimal atoms be listed as XY, -, AS)
with A =y [i$, 0] x ua[i8, o) x ug[il), o] x ua[i§, o] such that i > .. > (¥

and igl) < e L z'fl ), taking S = 0 if there are none. Then

L Fpe(A) = wliy”, o] x D, of U Ui, of ) < uf i, of).
2. Fr21.°(A) is a molecule in up X ults or the empty set.

Proof. The first part is a direct consequence of the definition for F7.’7 1., and conditions
2 and 3 in the above lemma. Note that a pair of consecutive (ug,us; Iz, I3)-projection
maximal atoms A() and AC+D with 48 > 5! in the above lemma are (1,4)-adjacent and
min{i{ ,zgﬂ)} = I, and min{:{", 4 (Y = I3, Tt follows from the sign conditions that
o) = _(_)i§r+1)+12+13 a{"™. This implies that Fp2ie(A) is a molecule in u; x ulth o

the empty set, as required.

O

We can similarly prove that FZ’;}"‘:‘ (A) is a molecule or the empty set for every pair
of s and ¢ with 1 < s < ¢ < 4 in the corresponding products of three (twisted) infinite

dimensional globes.
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Lemma 4.4.8. Let A be a subcomplex of uy X ug X ug X uy satisfying the four conditions in

Theorem 4.4.1. Then Fy7(A) satisfies condition 1 for pairwise molecular subcomplezes.

Proof. The argument for various choices of 7 are similar. We only give the proof for r = 4.
Suppose otherwise that F7,*(A) does not satisfy condition 1 for pairwise molecular
subcomplexes. The there is a pair of maximal atoms A = w1[i1, o] X ug[iz, ao] X uslis, as]
and XN = u[d], o] X uglih, oy X ugléh, o] such that i, < i for all 1 < s < 3. Thus
we have iy = i; and oy = —a; for some 1 < ¢t < 3. Hence there is a pair of (u4, [4)-
projection maximal atoms of the form p = wi[i1, a1 X Usiz, o) X us[is, ] X uafis, o)
and ' = u[i}, o] X uglih, ] X uslth, g X u4lfy, o). By condition 1 in Theorem 4.4.1,
we evidently have 44 > @) > I;. It follows from condition 3 in Theorem 4.4.1 that there
is a maximal atom w;[l1,01] X ug[le, 0a] X us[ls, 03] X ually, 54] such that I, > i, for all
1<s <3, 1y >4y > Iy and I > 4;. This contradicts that p is (u4, I4)-projection maximal.
This completes the proof.
0

By the comment after Proposition 4.4.7 and Lemma 4.4.8, we have now completed

the proof for Theorem 4.4.1.

4.5 Sources and Targets of Pairwise Molecular Sub-
complexes

In this section, we study source and target operators d] on pairwise molecular subcom-
plexes in u; X uy X ug X u4. We shall prove that dgA is pairwise molecular for every
pairwise molecular subcomplex A of uy X ug X uz X uU4.

Recall that dgA is a union of interiors of atoms for every subcomplex A of u; X ug X
ug X u4. Hence the maps F" and Fi";ﬂ‘ are defined on dJA.

We first show that dJA is a subcomplex for a pairwise molecular subcomplex A. The

proof is separated into several Lemmas.
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Lemma 4.5.1. Let A be a subcomplex of uy X ug X ug X uq and X = uq[i1, o] X ug[io, ] X
uglts, ag] X uglig, aq) be a p-dimensional atom in A with Int \ C dyA. If there is an atom
f

N = g [i), o] x uglth, o] X uslih, af] X walth, o] in A with X' D X such that i, > i, for

some s, then a; = (—)at-ti-1y
Proof. The proof is similar to that in 2.5.1. O

Lemma 4.5.2. Let A be a pairwise molecular subcomplex of u; X ug X ug X uy. Let
A = ugfir, on] X ugfia, co] X uslis, as] X uslia, au] be a p-dimensional atom with Int A C dIA.
For1 < s <4, if there is a mazimal atom X' = u[i}, )] X ua[ih, ] X us[il, orh] X ua[i}, o]

in A with @, > i, such that il > i, for allr € {1,2,3,4}, then o, = (=)t +s-1y,

Proof. The arguments for various choices of s are similar. We only give the proof for
s=1.

Suppose that there is a maximal atom A = uy{i{, af] % ua[th, ab] X ua[th, ] X ug[dh, o]
such that ¢ > 4y and 4, > 4, for all r € {2,3,4}. If ' can be chosen such that A C ), then
we have a; = v by Lemma 4.5.1 , as required. In the following proof, we may assume that
A" cannot be chosen such that A C N so that w.[d}, a}] = u[is, —cy] for some ¢ € {2, 3,4}.
Since Int A C A, there is a maximal atom p = uy[j1, B1] X uz2[ja, Ba] X us[ds, B3] X walfs, )
such that A C p. By the assumption on the choice of N, we have u;[j1, £1] = w[é1, aql-
By applying Lemma 4.4.3, we may further assume that j; > ;.

1. Suppose that A" and u can be chosen such that min{%., j.} > %, for two value of r €
{2,3,4}. According to condition 4 in Theorem 4.4.1, we may suppose that min{z., j,} > i,
for r = 3 and r = 4, and that j; > 45. Thus ¢, = iy and o/ = —ay. By Lemma 4.5.1, we
have ap = (—)*y, and hence o, = —(—)%y. According to the assumption, it is easy to see
that A’ is (1, 2)-adjacent to u. It follows easily that oy = v, as required.

2. Suppose that A’ and @ cannot be chosen as in case 1. Suppose also that A’ and u
can be chosen such that min{z,, j,} > i, for only one value of r € {2, 3,4}. According to
condition 4 in Theorem 4.4.1, we may suppose that min{z}, j4} > 44, and that jo > iy or
Js > t3. We may further suppose that jo > i3 and @, = 43 and o, = —ay. Note that, in
this case, X' is (1, 2)-adjacent to pu. By an argument similar to that in case 1, we have

o) = 7, as required.
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3. Suppose that A’ and p cannot be chosen as in case 1 and case 2. Then ) is adjacent
to p. By an argument similar to that in case 1, we have o = -y, as required.

This completes the proof.
!

Lemma 4.5.3. Let A be a pairuise molecular subcomplex of 1y X ug X uz X uy4. Let
A = wuyfir, on] X usfta, ) X uglis, @3] X ualia, 4] be a p — 1 dimensional atom such that
Int A C dYA. If there is a mazimal atom X' = u[dy, o] X ug[dh, o] x ug[dy, o] X ugliy, o]
in A with X' D X such that @, > @5 and 1} > i for some 1 < s < t < 4, then a; =

(_)i1+...+i3—1.«y or oy = '—(—")i1+"'+it—1,«y.
Proof. The argument is similar to that in Lemma 2.5.3. (]

Proposition 4.5.4. Let A be o pairwise molecular subcomplex of uy X ug X ug X uyg. Let
A = uqfiy, 0q] X ugfte, ] X uglts, aug] X u4fis, o] be a p — 1 dimensional atom such that
Int A C dYA. If there is a mazimal atom X' = wy[4], o] X us[ih, o] X us[dy, o] X ua[iy, oy
in A with i, > i, and ¢}, > 4 for some 1 < s <t < 4 such that u,[i., ol] D uplir, ] for af

least three values of r € {1,2,3,4}, then a; = (=)t F-1y or gy = — (=)t Hit-14,

Proof. The arguments for various cases are similar. We give the proof for the following
case.

Suppose that there is a maximal atom N = u4[i}, @] X ugth, o] X us(is, of] ¥ uaty, o]
in A such that ¢ > 4, i5 > dg, 95 > 43 and uyfi}, ] D uafis, oa]. If X' can be chosen
such that X' D ), then we have oy = 7 or ap = —(~)"+, as required, by Lemma
4.5.3. In the following, we assume that \' cannot be chosen such that A’ D A so that
us[tg, ] = ualis, —c]. Let = uilf1, Bi] X ualja, Bo] X us[js, Bs] x ualis, Ba] be a maximal
atom in A such that A C u. Then ui[j1, Bi] = w1[i1, au] or us[ja, Bo} = usliz, ag]. According
to Lemma 4.4.3, we may assume that j3 > 43. Now we consider three cases, as follows.

1. Suppose that g cannot be chosen such that j; > 43 or j5 > 4. We claim that
oy = —(—)"*2q; and of = —(—)2a.

Indeed, if X' and p are (1, 3)-adjacent, then we have o} = —(—)"*"2q; by sign con-

ditions. Suppose that A and p are not (1,3)-adjacent. Then there is a maximal atom
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. o o . . . . . )
N = g [if, of] % ug[ty, o] x us[ty, af] x ualéy, )] such that & > 41, & > s, 74 > i3

and 4 > min{#}, 74}. According to the assumptions and Lemma 4.4.3, we can see that
uq[ty, o] = uafiq, —a4). It follows easily from Lemma 4.4.3 that there is a maximal
atom 1’ = uiljf, B1] x ualih, Bh] X walif, BL] X sl By] such that wilff, B] = wilis, aul,
ualjh, By = ualie, as], 74 > 43 and jj > %,. By applying Lemma 4.4.3 and the assumptions,
we can also get a maximal atom v = uy[ky, £1] X ug[ks, €2] X us[ks, €3] X ua[ks,€4] in A such

that ky > i1, ko > 49, uslks, &3] = us[iy, oh] and ky > 44. It is evident that v and ' are

(1,3)-adjacent. It follows from sign conditions that af = —(—)"+2q, as required. We
can similarly show that af = —(—)%2ay.
Now, if af = —(—=)"" 2+, then oy = v, as required; if a3 = (=)"*%2+y, then ay =

—(—)4+, as required.

2. Suppose that p can be chosen such that j; > 4,. Suppose also that a; = —v.
Then ug[je, f2] = usalia, ax] by the assumptions. According to Lemma 4.5.3, we have
az = —(—)"*2y, and hence o} = (=)""2y. By Lemma 4.4.3, it is easy to see that X'
and p can be chosen such that they are (2, 3)-adjacent. It follows from sign conditions
that ceg = B = —(—)™~, as required.

3. Suppose that & can be chosen such that j; > 43 and that ag = (—)+. Suppose also
that 1 cannot be chosen such that j; > 4;. According to condition 4 in Theorem 4.4.1,
Lemma 4.4.3 and the assumptions, it is easy to see that A" and u can be chosen such that
they are (1, 3)-adjacent and min{js, %} = i+1. According to condition 4 in Theorem 4.4.1,
there is a maximal atom A" = uy 17, o] X ug[i5, ay| X us(y, | X uqa[2y, alf] such that & > 4y,
J8 = jo, 1§ > i3 and ¥ > min{s},jsa} > 44. Moreover, we have o = —ay = —(—)"~ by
the assumptions. According to Note 4.4.2, we have off = —(—)"8, = —(—)"qy. This
implies that oy = y, as required.

This completes the proof.

O

Lemma 4.5.5. Let A be a pairwise molecular subcomplexr of uy X ug X ug X uy. Let
A = uqfiy, o] X uslie, ] X uglis, ag) X uglia, ] be a p — 2 dimensional atom such that

Int XA C dYA. If there is a mazimal atom N = uy[4], o] X ualiy, o] X us[dy, o] x ugliy, o]
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in A with X' D X such that @, > i,, @, > i5 and i}, > i; for some 1 <r < s <t <4, then

o = (_)i1+--‘+ir—17 or Qg = _(_)i1+~--+is—1,-}, or oy = (__)i1+"'+it~lry_
Proof. The argument is similar to that in Lemma 2.5.3. O

Lemma 4.5.6. Let A be o pairwise molecular subcomplex of uy X ug X uz X uyq. Let
A = w1, 0n] X uglta, ceg] X usliz, ag] X Ualia, ] be @ p — 2 dimensional atom such that
‘ Int A C dJA. If there is a mazimal atom N = u[i}, o] X ug[th, ah] X uglif, ] X ualty, o]
‘ in A such that i, > i,, i} > i and 1} > i; for some 1 < r < s < t < 4, and such that
i > i for 7 € {1,2,3,4}\ {r,s,t}, then a, = (=)1T"Fo-1y op oy = —(—)at-tis-1y o

R

Proof. The arguments for various choices of 7, s and ¢ are similar. We give the proof for
r=1,s=3and t =4.

Suppose that there is a maximal atom X = w3 [#], o] X ua[ih, ab] X us[th, ch] X ua[th,
such that 4] > 41, 45 > 49, 95 > 43 and 4y > 44. If A’ can be chosen such that us[i}, of] D
ug[ie, aig], then we have aq = v, ag = —(=)""2y or ay = (=) +2+%y as required, by
Lemma 4.5.5. In the following, we assume that A’ cannot be chosen such that ug[i}, af] D
Uiz, Qo] S0 that us[ty, ] = uslis, —aw]. Let p = w4y, bi] Xualja, Bal X us[da, Bs] X ualfa, Ba]
be a maximal atom in A such that z D A. According to Lemma 4.4.3, we can assume
that jo > i5. We consider three cases, as follows.

1. Suppose that g can be chosen such that there are exactly three value of r €
{1,2,3,4} such that j, > 4,.

a. Suppose that p can be chosen such that 75 > 4y, j3 > 43 and j4 > 44. Then

u1[J1, 1] = wi]i1, 1] by the assumptions. We also have ag = (=), az = —(=)1ti2q or
ay = (—)utietiy by Lemma 4.5.5. If a3 = —(=)8%2y or a4 = (=)@, then a3 or
«y is as required. If ap = (—)"~, then of = —(—)"+; moreover, it is easy to see that X'

is (1, 2)-adjacent to y; it follows from sign conditions that oy = £ = 7, as required.

b. Suppose that px can be chosen such that f; > i1, jo > i and j4 > 4. Then we can

get oy = 7, az = —(—)1 Ty or g = (=) 2ty ag required, by similar arguments as

in case a.

127




c. Suppose that p can be chosen such that j; > 41, jo > 42 and j3 > 3. Suppose
also that p cannot be chosen such that j; > 4, jo > iy and j4 > 44. According to the
assumptions, it is easy to see that A" and u are (2,4)-adjacent and min{i}, 73} = i3 + 1.
By condition 4 in Theorem 4.4.1, there is a maximal atom A" = w,[i{, of] X u2[2’2’ , O] X
ugliy, o] X ugliy, of] in A such that 4 > ¢, 1§ > 15, 4§ = 43 and 7 > 44. According to
the assumptions, we have of = —a3. Now, if a3 = —(—)%*%2~, then it is as required. If
ag = (=) T2+, then of = —(—)"2; therefore we have ay = (—)"+2+%8y by Note 4.4.2,
as required.

2. Suppose that 4 cannot be chosen such that there are three value of r € {1,2, 3,4}
such that j, > ¢,. Suppose also that x4 can be chosen such that there are two value of
r € {1,2,3,4} such that j, > 7,.

a. Suppose that 4 can be chosen such that j; > 4; and j, > 4. Then we have
us[J3, B3] = ualis, az] and ug|ja, Ba] = ualis, aq) by the assumptions. Moreover, by Lemma
4.4.3 and the assumptions, we can see that A’ is both (2, 3)-adjacent and (2, 4)-adjacent
to w. It follows easily that ag = —(—)“ V2 or @y = (—)"+%2+ %, as required.

b. Suppose that u can be chosen such that j, > 45 and j4 > i4. We can get a; = «y or
a3 = —(—)"1%2y by similar arguments as that in case a.

c. Suppose that p can be chosen such that jo > 45 and 73 > i3. Then we have
u1[j1, F1) = wair, ou] and wgljs, Bs] = ualis, 4] by the assumptions. According to condi-
tion 4 in Theorem 4.4.1, Lemma 4.4.3 and the assumptions, it is easy to see that \' is
both (1, 2)-adjacent and (2,4)-adjacent to u, and that min{z}, ja} = 43 -+ 1. It follows
easily from sign conditions that ay = 7 or ay = (—)#+2+sy a5 required.

3. There remains the case that p cannot be chosen such that j; > %; or j3 > i3 or
ja > i4. In this case, we have u,[j,, Br] = u,[ir, o] for all r € {1,3,4}. By Lemma 4.4.3,
it is easy to see that A’ and u are adjacent. It follows from sign conditions that c; = 7y
or ag = —(—)""2y or ay = (—)B 2ty as required.

This completes the proof.

O

Proposition 4.5.7. Let A be a pairwise molecular subcomplexr of uy X ug X uz X uy. Then
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diA is a subcomplez.

Proof. We have already seen that d]A is a union of interiors of atoms. By Lemma 2.5.5, it
suffices to prove that for every atom A with Int A C dJA and every atom A, with Ay C A,
one has Int \; C dJA. Tt is evident that there is a sequence A D Al DA D ... D )
such that the difference of the dimensions of any pair of consecutive atoms is 1. We may
assume that dim Ay = dim A — 1.

Let A = wili1, an] X uglia, o] X usliz, 3] X uglig, o). Since Int X C dJA C A and
A is a subcomplex, we have A\; C A C A and dim}A; < dimA < p. Suppose that
o= ually, o1] X uglly, 00) X ug[ls, 03] X ua[ls,04] is an atom with dimpy = p + 1 and
A1 C ¢ C A We must prove Ay C dJp.

If X C p, then Ay C A C dJpsince A C dJA. If I, > ig+1 for some s, then I, > il +1 for
some s; hence we also have A C dJp by the formation of d)u. In the following, we may
further assume that A ¢ p and that [, < ¢, + 1 for every s. Thus ws[t:, ar] ¢ wslls, 03] for
some t, and hence wu[ly, 0] = Uiz, —ou] or wfly, 0¢] = we[iz — 1, &¢]; moreover, we can see
that us[is, 5] C us[ls, 0s] for every s with s # £. Note that dimp = p+ 1 and dim ) < p,
we now have 5 cases, as follows.

1. Suppose that w[ls, o] = wfit, —cy] for some ¢ and I, = i, + 1 for only one value of
s. The proofs for different choices of ¢ and the one value for s are similar. We give the
proof only for the case I; = 41 + 1 and ug[ls, 09] = ua[is, —p]. In this case, we can see
that A; is of the form Ay = w[éy, o] X ualia — 1, @] X ualts, o] X walta, cu]; we also have
dim A = p. According to Proposition 4.5.2, we have «; = . This implies that A\; C da,
as required, by Lemma 2.1.2.

2. Suppose that l; = 4, — 1 and I; = i, + 1 for only two values of s. The proofs for
different choices of ¢ and the two values for s are similar. We give the proof only for the
case lg =iy — 1,1y =14, + 1 and I3 = i3 + 1. In this case, we can see that )\; is of the
form A1 = wi1, o] X uslia — 1, 09] X uglis, ] X uglig, og); we also have dim A = p and
Uy[ly, 04] = uglig, ). To get Ay C d]p, it suffices to prove that oy = 7y or ag = (=) +2y
by Lemma 2.1.2.

Let N = uq[i}, o] X uglih, ah] x us[dh, o] X ugi}, @] be a maximal atom in A such
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that A C N Let g’ = w[If, o] % uallh, o] x us[l§, o%] x wy[l}, o] be a maximal atom in A
such that p C p'. If A’ can be chosen such that ¢ > ¢ or i > i3, then we have oy = 7
or a3 = (—)**%y by Lemma 4.5.1 which implies that \; C dJu, as required. If there
is a maximal atom p" = ui[lf, o] x ugfly, o] x usll§, o4] x wallf, of] with I > 4, for all
r € {1,2,3,4} such that I > %, or I§ > i3, then, by Proposition 4.5.2, we have oy = =y or
a3 = (—)"**y which implies that A, C dJu, as required.

Now suppose that A’ cannot be chosen such that 7] > 4; or # > i3. Suppose also
that there is no maximal atom " = wi[lf,of] x ua[ly, o5] x us[ly, o] X u4[lf, of] with
Iy > i, for all r € {1,2,3,4} such that I{ > 4 or i§ > i3. Then ui[i}, &}] = wifis, aal,
ug[th, o] = us[is, o] and uglh, 05 = ug[le, oa] = ugfie — 1, éy). It is easy to see that X'
is both (1, 2)-adjacent to u’ and (2, 3)-adjacent to . If o5 = —(—)%+, then we can see
that oy = v by sign conditions; if oo = (—)"+, then we can see that g = (—)"+%2+y by
sign conditions. These imply that A\; C d}p, as required.

3. Suppose that u[li, 0y] = ufie, —ay) for some t and I, = %5 + 1 for only 2 value of s.
The proofs for different choices of £ and the 2 values for s are similar. We give the proof
only for the case us[ly, 09 = us[ie, —a], Iy =41 + 1 and I3 = 43 + 1. In this case, we can
see that A; is of the form Ay = wq[iy, an] X wafiz — 1, Ga] X uslis, @3] X uglia, oy]; we also
have dim A = p — 1. According to Proposition 4.5.4, we have a; =y or a3 = —(—)"+i2y,
‘This implies that A; C dJu, as required, by Lemma 4.1.1.

4. Suppose that {; = 7; — 1 and I; = 45 + 1 for the other three values of s. The
proofs for different choices of ¢ are similar. We give the proof only for the case uz[ls, 09) =
uslis — 1, &), Iy = i1+ 1, I3 =43+ 1 and Iy = I; + 1. In this case, we can see that )\ is of
the form Ay = uq[i1, o] X uglia — 1, 02] X us|is, as] X u4lia, cq); we also have dim A =p—1.
To get Ay C dJp, it suffices to prove that oy = 7y or az = (—)%+2y or ay = —(—)atiztiay
by Lemma 4.1.1.

Let u' = wy[l}, o] x wallh, ob] % us[ly, of] x u4lll, oy] be a maximal atom in A such
that g C /. Let N = uqfe}, o] X ualih, ab) X ug[iy, o) X ualth, ofy] be a maximal atom
in A such that A € M. If 4/ can be chosen such that I}, > 45, then we have a; = v or

oy = —(— )12ty a5 required, by Lemma 4.5.4. In the following proof, we may assume

130




that u' cannot be chosen such that I} > 7,. Now there are two cases, as follows.

a. Suppose that A’ can be chosen such that there are exactly two values of s € {1, 3,4}
such that ¢ > 4,. If X' can be chosen such that | > ¢; and @} > 44, or such that i} > i3
and ¢ > i4. Then it is easy to see that a; = or a3 = (—)1%%2y or @y = —(=)a+iztay,
as required, by Proposition 4.5.4. Suppose that X' can be chosen such that #) > 7; and
i3 > i3. Suppose also that oy = —v. By the assumptions, we have ug[é), ofy] = ualiq, 4.
According to Proposition 4.5.4, we also have az = —(—)"%%+, By the assumptions
and condition 4 in Theorem 4.4.1, it is easy to see that X is (2,4)-adjacent to u' and
min{%}, I3} = 93 + 1. According to condition 4 in Theorem 4.4.1, there exists a maximal
atom v = uy[j1, B1] X ualfz, Ba] X usljs, B3] X ualjq, Be] such that jy > 41, jo > iz, 3 > 43
and j4 > 4. If usljs, B3] D uaslis, as], then it is easy to see that cy = —(—)ati2tiay ag
required, by Proposition 4.5.4. If j3 = i3 and f3 = —a3 = (—)“+é2y, then, by Note 4.4.2,
we also have ay = o) = —(—)%2f; = —(—)ati2ti3y as required.

b. Suppose that A’ cannot be chosen such that there are two values of s € {1,3,4}
such that ) > i,. By our assumptions, it is easy to see that i} > i, for at most one value
of s € {1,3,4}.

Suppose that A’ can be chosen such that #{ > 4;. Then us[i}, of] = wus(is, @3] and
ug|ty, o] = u4lis, 0g| by the assumptions. It is also easy to see that u' is both (2, 3)-
adjacent and (2,4)-adjacent to X. It follows easily that oz = (—)"T%2y (when oy =
(—)ti2qg) or ay = —(—)utetiey (when oy = —(—)"%%2y), as required.

Suppose that A’ can be chosen such that i} > i4 or N = A. By arguments similar to
that in the last paragraph, we can get oy = v or a3 = (=) %2y or @y = —(—)+i2tisy,
as required.

Suppose that A’ can be chosen such that 75 > i3. According to the assumptions and
condition 3 in Theorem 4.4.1, it is easy to see that X' and y' are both (1, 2)-adjacent and
(2, 4)-adjacent. By condition 3 in Theorem 4.4.1 again, we can also get min{}, l3} = i3+1.
It follows easily that oy = 7 (when oy = —(=)4%2y) or oy = —(—)*2+%y (when
oy = (—)1*%2y) | as required.

5. Suppose that wly, 03] = ug[is, —c] for some ¢ and I, = 45+ 1 for 3 values of 5. The
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proofs for different choices of ¢ and the 3 values for s are similar. We give the proof only for
the case ug[ly, 09] = ualie, —ap], l1 =41+ 1 and I3 = i3+ 1 and Iy = 14+ 1. In this case, we
can see that A; is of the form A\; = i1, aq] X us[ie — 1, G X usis, ag] X ualia, aa]; we also
have dim A = p — 2. According to Proposition 4.5.4, we have c; = 7 or ag = —(—) T2y
or oy = (—)" 2%y This implies that A; C dJu, as required, by Lemma 2.1.2.

This completes the proof. [

Proposition 4.5.8. Let A be a pairwise molecular subcomplex of uq X ug X ugz X ug. For

1<s <4 ifp> 1, and F{*(A) #0, then Fi=(dyA) = dI_, Fi=(A).

Proof. The arguments for various choices of s are similar. We give the proof for s = 2.

We first prove that d)_; Fp2(A) C Fp2(dyA).

Let ufir, cr] x ug2[is, cs] X u?[ia, ] be a maximal atom in dY_p, Fr(A). We must
show that wi[i1, c] X ui[1s, ] X ug[is, ] C Fp2(dIA). Since wiliy, o] x ug?[is, aug) X
upig, ] C dy_1, F12(A) C Fr2(A), we can see that ui[ir, an] X ua[lz, o] X ualis, as] ¥
Ugliq, cq) C A for some sign a. We now consider three cases, as follows.

1. Suppose that dim(uy[ir, aq) x uiis, o) x ul[is, 4]) < p — Iy, then uyfiy, a] X
ui? [is, crs] X ug?[ia, ca] is 2 maximal atom in F2(A). We claim that wa[i1, cu] X ug[lp, 0] x
uglis, aus) X ugfiy, cg] C dJA. Firstly, it is evident that dim(uy[i1, ] x ug[l2, ap] X uslis, as] X
u4lie, 1)) < p. Moreover, suppose that there is a maximal atom wuy (2], af] X ug[ih, ah] x
us[th, o] X wa[dy, ] in A such that uy[2], @] X us[h, ab] X us[ih, af] X ualdy, o] D uiféy, oq] %
ug[lo, @] X uslis, as] X w4fia, q]. Then it is evident that u.[i, &l] = u.[ir, ay] for all
r € {1,3,4}. According to Lemma 4.1.1, we have uy[i1, 1] X ug[l2, ag] X uslis, az] X
ugliq, ] C dY (ur[iy, o] X ugliy, ay] X usléy, o] X ugfiy, f]). It follows easily from Lemma
1.2.11 that uy[iy, on] X ug[la, ag] X us[is, o] X ualia, ca] C dYA. Hence us[i1, o] X u? [43, i3] X
u?lis, cu] C Fy2(dIA).

2. Suppose that dim(uy[iy, oq] % uitlis, ag] X ul[ig, 04]) = p — Iz. Suppose also
that oy can be chosen such that ay = (—)%y. We claim that wi[iy, a1] X ug[ls, ag) X
us[ts, @3] X ualia, ca) C dJA. Indeed, it is evident that dim(u1[é1, o) X Ug[ Iy, o) X us[is, ag] X
u4[ia, a]) = p. Moreover, suppose that there is a maximal atom wu[2}, 4] X ugléy, 0f] X

uath, af] X ugliy, o] in A such that uy [8, of | X ualih, ah] X us[ih, o] X ualiy, o] D uqliy, @] X
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‘ng[Ig,sz] X U3[’£3,0£3] X '1,64[?:4, 054]. Then ’U,l[’l:l,afl] X u?[ig,ag] X uiz [’1:4, &4] C ’Ull[i’l, a’l] X

ui? [, o] xug2[iy, o] © Fp2(A). Thus uy[iy, o] xull[ia, a] X uil [ig, ag) C dy_ g, (u1[é, 0} x

ug[ib, o4] x ul[é), o4]) by Lemma 1.2.11. It follows easily from Lemma 2.1.2 and 4.1.1
that uy i1, 0n] X ug[la, ] X uslis, as] X ualis, cu] C dY(us[dl, 0] X uglin, ah] X ugfél, of] x
ualty, o3]).  Therefore wifiy, cn] X up[ly, ] X uslis, cs] X wafta, 4] C dJA, and hence
wyfiy, ] X ug?lis, s] X ui[ia, cu] C FP2 (d¥A), as required.

3. Suppose that dim(ui[iy, o1] x u§2 i3, c3] X uf [i4, 0t4]) = p — Is. Suppose also that
ao cannot be chosen such that ap = (=)"q. Then i), = I, and o = ay = —(—)".
By arguments similar to those in case 2, it is easy to see that wui[iy, 0q] X us{lz, ag] X
ualis, e X uglis, 0] C dJA. Therefore u[ir, o] x usfis, aig] X ul[ig, o] C Fi2(dIA), as
required.

This completes the proof that d)_;, Fy*(A) C F72(dJA).

Conversely, let A = u[i1, ] X ul?[is, as] X u[is, g be an atom in ug X ul? x ul? such
that Int A C F*(djA). We must show that Int A C d)_;, F72(A).

It is easy to see that there is an atom uq[ir, o] X ugta, ] X us|is, ag] X walis, o] in A
such that Int(w |21, o] X ug[te, cra] X us[is, cvg] X uglia, ]} C dyA and ig > Ip. Since djA isa
subcomplex of uy X ug Xuz Xuy, we can see that w[41, a1 xua[lo, ] X usg[is, cg] X ugfia, cq] C
diA for some sign oy. It follows that dim(u;[ir, ] x ug? [i, v X us? [44, a]) < p— Is.
Clearly, we have A C F.*(A). To prove that Int A C dg_ nFn (A), it suffices to verify the
second condition in the Lemma 1.2.11. Let p = uy[ly, 01] X u? [l3, 03] X u,? [i4,04] be an
atom in F7.*(A) such that A\ C p and dim p = p—I5+1. We must prove that A C dg_ I,
It is evident that wu[ly, 1] X ug[la, 0b] X us[ls, 03] X u4ls,04] C A for some sign of. If
b >4 +1,03>4+1orly >i+1, then it is evident that A C dJu, as required. In
the following prove, we may assume that I; <14, + 1, I3 <43+ 1 and Iy < 74 + 1 so that
dimA=p— Il ordimA=p— Iy —1ordimA=p— I —2. Now there are various cases,
as follows.

Suppose that o, and o4 can be chosen such that o, = ¢5. Then wu1[i1, ay] X v[I3, ah] X
uslts, ata] X waltia, ca] C AN (urlly, 01] X up[lz, 0] X uslls, 03] X uglla, 04]) C d (urfly, 4] %

ug|fo, 0] X uslls, 03] X wu4lly, 04]). It follows easily from Lemma 4.1.1 and Lemma 2.1.2
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that A C d)_;, 4, as required.

Suppose that of and o} cannot be chosen such that of = o). Suppose also that I > 0.
Since djA is a subcomplex, we know that uy i1, ] X ug[Ip — 1, £] X usis, as] X usfia, aa] C
dyA. This implies that wy[i1, on] x up[la — 1, %] x ug[is, ] X uafis, as] C di (u1[ly, o1] %
uglly, 09 X us[ls, 03] X uslly, 04]). Hence wy[iy, 1] X ug[le, 0h] X uslis, az] X u4fi, ] C
dY(ually, o1] X uglla, 0b] X ug(ls, 03] X u4fly, 04]). It follows easily from Lemma 2.1.2 and
Lemma 4.1.1 that A C dg_ 1,1, as required.

There remains the case that J = 0 and o4 and 7' cannot be chosen such that o, = o3,
By arguments similar to those in cases 1, 3 and 5 in the proof of Proposition 2.5.6, we
can get A C dJ_; 11, as required.

This completes the proof.

O

Lemma 4.5.9. Let A be a pairwise molecular subcomplex. Then diA satisfies condition

1 for pairwise molecular subcomplexes.

Proof. Let A = uy[ty, 0n] X ugia, ag) X uslis, az] X ualia, o] and N = uq[2], o] X ug[ih, ab] X
ualdy, 3] X ugliy, o] be a pair of maximal atom in dJA with 4, < 7, for every value of s.
We must prove that A = M. Suppose that dim A < p or dim X' < p. Then it is easy to
see that A is a maximal atom in A when dim A < p and )\’ is a maximal atom in A when
dim A" < p. According to condition 1 for A, we can see that A = )\, as required. In the
following argument, we may assume that dim A = p and dim A = p so that i, = 7/ for
every value of s.

Now suppose otherwise that A # X. Then wuyé}, )] = wfés, —y] for some . Let r
be such that r # ¢. By Proposition 4.5.8, we have F;"(A\) C F"(dJA) = d)_; F{"(A)
and similarly Fi"(X) C dj_; Fi"(A). Since dim i (A) = dim Fj"(X') = p — 4, and
dimd;_; Fj"(A) < p— 4., we can see that Fj'"()) and F;'"()\') are maximal atoms in the
molecule d)_; Fi(A). It follows from condition 1 for d)_; Fi*"(A) that i (X) = Fpr (X).
This contradicts the hypothesis that w2}, o) = w[ts, —w).

This completes the proof.
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Proposition 4.5.10. Let A be a pairwise molecular subcomplex. Then so is dIA.

Proof. We have shown in the last Lemma that djA satisfies condition 1 for pairwise molec-
ular subcomplexes. Moreover, by Proposition 4.5.8, we have Fp*(dJA) = d] ; Fy*(A) for
all values of s € {1,2,3,4} and all I, with I; < p. Since F7*(A) is a molecule or empty
set for every value of s and every I;, we can see that F;* (d;’A) is a molecule or empty
set for every value of s and every ;. It follows from the definition that dJA is pairwise
molecular.

This completes the proof. O

Theorem 4.5.11. Let A be a pairwise molecular subcomplex. Then the dimension of
every mazimal atom in djA is not greater than p. Moreover, an atom of dimension less
than p is a mazimal atom in d]A if and only if it is a mazimal atom in A; an atom
g [in, 0a] X ugliy, aa] X uslis, as] X ualia, 0] of dimension p is a mazimal atom in dJA if
and only if there is a mazimal atom uy[ky, €1] X ualka, €3] X ualks, €3] X uglks, £4] in A such
that ks > i for 1 < s < 4, and the signs a; (1 < s < 4) satisfy the following conditions:
if uilky, €1] X uglke, €2] X uslks, €3] X uqlks, £4] can be chosen such that ks > i, and k. > 1,

for 1 <r <4, then oy = (=)ut+s-1y: otherwies a, = &,.

Note 4.5.12. It follows easily from condition 3 in Theorem 4.4.1 that a;, are well defined
forall 1 <s < 4.

Proof. By the definition of dJA, it is evident that the dimension of every maximal atom
in dJA is not greater than p.

Let A; be the subcomplex of u; X ug X uz X u4 as described in this theorem. It is easy
to see that Ay satisfies condition 1 for pairwise molecular subcomplexes. By Lemma 4.1.7,
it suffices to prove that Fy* (A1) = Fy*(dJA) for all I; and all 1 < s < 4. The arguments
for different choices of s are similar. We now give the proof for F7*(A) = Fp2(dJA). Tf
I > p, then it is easy to see that F7*(A;) = 0 = F7*(d)A), as required. In the remaining
proof, we may assume that I < p. We have known that F7*(dJA) = d)_;, F7?(A). We
need only to prove that Fp.*(Ay) =d) ;, Fr*(A).

By the definition of F7?, it is easy to see that F7*(A;) and d)_;, F'(A) are subcomplexes
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of u; x ul? x ul?. We are going to prove that Fr*(Ay) and d)_; Fy*(A) consists of the
same maximal atoms so that they are equal.

We first prove every maximal atom in F7?(A:) is a maximal atom in d)_; F7.2(A).

Let p = wy[iy, o) X w2 [is, ors] X ui2[ig, crg] be a maximal atom in F72(A1). Then A; has
a (ug, I2)-projection maximal atom A of the form A = uq[i1, @] X wafiz, as] X usfis, as] x
Uglig, 0y with ip > I, Hence A has a maximal atom A = uy[1], o} X ua[ih, ab] X us[is, ab] x
uglty, o] with 4, <4 forall 1 < s < 4.

Suppose that 45 = I, and dim A = p. Since ui[if, o4] x wg?[i}, of] x ul[i}, o] is a
atom in Fp?(A) and 41 + i3 +iq = p — I, we know that d)_; F7*(A) has a maximal
atom of the form uy[iy, o] x ul?[is, o] X u[iq, of]. Moreover, we can see that for a fixed
t € {1,3,4} there is a maximal atom ui[j1, 1] X uz[Jf2, Ba] X us[js, B3] X ualjs, Ba] in A
with 43 < j, for all s € {1,3,4} such that i; < 7 if and only if there is a maximal atom
wilgi, Bi] X ug?[f2, B3] X ui[ja, Ba) in Fy2(A) with 4, < 4, for all s € {1,3,4} such that
iy < j;. It follows that from Theorem 2.5.12 that «; = «f for all s € {1,3,4}, thus p is a
F(A).

maximal atom in d)_,,

Suppose that is = I3 and dim A < p. Then A is also a maximal atom in A. Therefore
g = Fp*(A) is a maximal atom in Fy*(A). Since 4 + 43 + 44 < p — I, we know that p is
a maximal atom in d]_ F(A).

There remains the case that 43 > I». In this case, there is no maximal atom u1[j1, f1] %
ug72, Ba] X usljs, O3] X ua[ja, Ba) in A with j; > 4, for all s € {1, 3,4} such that j; > i, for
some s € {1,3,4}. So i; =1} and a; = o for all s € {1,3,4}. On the other hand, since
po=ugliy, on] X ul?fis, as] X up[ig, c] = ualif, 0] x wl2[iy, of] x ul2[il, of] = Fp2(X), we
can see that p is a maximal atom in F7*(A). Because dimpy = 4} + 45 + 4} < p — I, it
follows from Theorem 2.5.12 that y is a maximal atom in dj_; F7.*(A).

This shows that every maximal atom in F7:*(A;) is a maximal atom in d)_;, F7*(A).

We next prove that every maximal atom in d”

v, 1. (A) is a maximal atom in F72(A;).

Let u = uy[iy, o] x ul?[is, ] X uy’[iq, ] be a maximal atom in dy_r, Fr7(A). Then
FP2(A) has a maximal atom g/ = uilil, of] X ug[th, o] x u?[é}, of] with 4, < 7 for

all s € {1,2,3}. Therefore A has a (ug, [y)-projection maximal atom X of the form
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N = ug[d], o] ¥ uslih, o] X us[dh, ] X uglty, o).

Suppose that iy + i3 + 44 = p — Io. Then A; has a (ug, I3)-projection maximal atom
of the form A = wy[i1, o] X uglia, ] X uslis, @] X ugfia, af]. It is easy to see that for
a fixed ¢ € {1, 3,4} there is a maximal atom u;[J1, B1] X ua[j2, B2] X us[fs, O3] X wa[ja, Ba]
in A with 4; < j, for all s € {1, 3,4} such that %; < j; if and only if there is a maximal
atom uq[j1, 01] X ug"’[jg,ﬂg] X ul?[fs, Ba] in F2(A) with i < g, for all s € {1, 3,4} such
that iz < j;. 1t follows that af = a5 for s = 1,3,4. Therefore we have Fy*()\) =
uq[i1, o] X uglie, o] X uslis, o] X walés, o] = p. This implies that p is a maximal atom
in Fp*(Aq).

Suppose that i; + 43 + 144 < p — lo. Then p = uyfir, ] X ui[is, @] x wl[ig, o)
is also a maximal atom in F;’(A). So A has a (ug, I3)-projection maximal atom X =
u[B1, o] X ug[iy, ] X uglis, aus] X uq[ia, o] with i > Ir. Now, if i, = I, then dim X < p;
hence )\’ is also a maximal atom in Ay; it follows that p = F72()'), and hence u is a
maximal atom in F7*(A;). Suppose that 4, > I. Then it is easy to see that there is
no maximal atom wu;[j1, 1] X walfe, Ba] X us|js, Ba] X wua[ja, Ba) in A with j, > i, for all
s € {1,3,4} such that j; > ¢, for some s € {1,3,4}. Hence A; has a (ug, I2)-projection
maximal atom of the form X = wy[iy, 1] X ualih, oh] X us[is, as] X ua[ta, 0a]. Hence we see
that p = Fp?(\') and g is a maximal atom in Fp*(A;).

This shows that every maximal atom in d ;, F7*(A) is a maximal atom in F72(A;).

This completes the proof. U

4.6 Composition of pairwise molecular subcomplexes

In this section, we study composition of pairwise molecular subcomplexes in u; X ug X

Uz X U4

Lemma 4.6.1. Let A~ and A" be pairwise molecular subcomplezes. If dfA~ = dj A,
then for every pair of mazimal atoms A\~ = wy[i], o | X ug[iy , oz | X us[ts , o5 | X ualiy, g

in A~ and At = uy[if, of | X uglid, of | X ua[if, of] x wafif, o] in A* one has
4
> min{iy, i} < p.
s=1
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Proof. Let Iy = min{s;,i7}. Suppose otherwise that E‘j:l ls > p. Then there is an
ordered triple {41, %2, 13,42} With 5 < I for every value of s such that Ef is = p. Since
Zi:l ls > p, we have 1, < I, for some ¢. If 7y < Iy, then, by Theorem 4.5.11, we have d} A~
has a maximal atom of the form u;[i1, +] X ug[ta, ] X uglis, arg] X u4[ig, a4, while d, A* has
a maximal atom of the form w,[i), —] X ugia, ] X ug[is, @3] X uglig, @4]. This contradicts
condition 1 for the pairwise molecular subcomplex dfA~ = d; A*. The argument for the
cases 19 < lg, i3 < I3 and 74 < {4 are similar.

This completes the proof. O

Lemma 4.6.2. Let A~ and A™ be pairwise molecular subcomplezes in Uy X Ug X Us X Ug.
If d;jA' = d;A+, then Fre(A™) N Fpe(AT) = Fs(A"NAT) = Fpe(dfA™) = Fye (d;AJ“)

for every value of s and every integer I.

Proof. The proofs for different values of s are similar. We give the proof for s = 2. There
are two cases, as follows.

1. Suppose that I > p. We first claim that Fp*(A™) 0 F72(AT) = 0.

Indeed, suppose otherwise that F7.*(A~) N Fp*(A*) # 0. Then it is evident that
there are atoms u~ = wi[ji, B7] X ualjz, B3| X usljz, B3] X uwaljy, Br] in A™ and p* =
w5, B 1< walds, B 1 X uslds, B ] X uglsi, 6] in AT such that j; > I > p and ji > J >
p. This implies that there are maximal atoms u4[0, &} ] X ua[p, +] X us[0, a§] X u4[0, o] and
u1[0, ] X ua[p, —] X us[0, a5] X ug[0, 0] in df A~ and d A respectively. This contradicts
the condition 1 for pairwise molecular subcomplex d;,'“A“ =d A"

Now we have F7*(dfA™) C Fp2(A~ NAT) C Fp2(A™) N Fp?(AY) = (. Therefore
Fi2(dyA™) = Fp2 (A" N AY) = Fi2 (A7) N Fp2(AY), as required.

2. Suppose that I < p. Since df A~ = d AT, we have df

p—1I2
FU(ds A*Y) = d

p—1Iz

Fi2(A7) = Fi2(dtA™) =
Fi?(AY). Because Fy.’(A™) and F7?(A*) are molecules, we can see
that F72(A™)#,—sF72(At) is defined by Proposition 2.6.3. Hence F72(A™) N F7*(AY) =
di L, Fr2(A7) = Fp2(dfA™) < Fp2(A~ N At). Since we automatically have Fp?(A~ N
AY) C FR2 (A7) N FR2(AY), we get Fp2 (A7) NFR2(AT) = FR2(A~NAY) = Fr2(df A7), as
required.

This completes the proof
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Proposition 4.6.3. Let A~ and At be pairwise molecular subcomplezes. If dfA~ =

dy A%, then A~ NAY = d¥ A~ (= d; A*); hence A=F#,AT is defined.

Proof. Let M = dYA~ = d,A*. It is evident that M C A~ N A*. To prove the reverse
inclusion, it suffices to prove that every maximal atom in A~ N A* is contained in M.

Suppose otherwise that there is a maximal atom A = wy[41, a] X ug[tg, o] X ualis, aiz] X
uglig, o] in AT NAY such that A ¢ M. Since u i1, 1] X us[ia, ] X uslis, as] = Fi;*(X) C
FiA (A~ NA*) = F*(M), we can see that M has a maximal atom X = wuq[#}, ] X
upih, ah] X ug[th, cf] X waliy, ] such that wglis, as] C uslil, af] for s = 1,2,3. Because
A = uifiy, ] X uglte, ao] X uslis, as] X ugfty, ey is maximal in A~ NA* and M C A~ NAT,
we have iy = 44 and & = —cy. Now we know that A\UXN C A~ and AU XN C A*. By
Lemma 4.4.3, it is easy to see that there are maximal atoms A~ = wy[i7, a7 | X ue[iy, a5 ] X
usliz, 5] X uafiy,op ] in A” and AT = wy i, of | X uglid, oF | x walis, @] x uafif, af] in
AT such that u,iy, oy ] Nug[id, at] D uslis, o) for s = 1,2, 3 and min{i;, ]} > 4. Since
A is a maximal atom in A~ N AT, we have iy =4 =is+ 1 and o = —of.

Now, we have uy[i1, 1] X ug[ia, o] X uslis, as] C Fij4 (A7) N (AY) = F4 (A0
At). Therefore A~ N AT has a maximal atom A" = w;[if, off] X ug[iy, af] X usliy, af] x
ugliy, off] with wglsl, ol] D wugil, o] for s = 1,2,3 and ] > 44. This contradicts the
assumption that A is a maximal atom in A= N AT,

This completes the proof.

([

Proposition 4.6.4. Let A~ and AT be pairwise molecular subcomplezes of 1y Xug XUz X Uy.
If &A= = dj A%, then the mazimal atoms in the composite A~#,A* are the common
q-dimensional mazimal atoms of A= and AT for ¢ < p together with the r-dimensional

mazimal atoms in either A= or AT forr > p.

Proof. Let A be the union of the maximal atoms described in the proposition. We must
prove that A = A~ U A*. Clearly, we have A € A~ U A™; it suffices to prove that

A~ UAT C A. By the formation of A, we must prove that A C A for every maximal atom
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A = uyfiy, ap] X ualie, cg] X uslis, ag] X ugfiq, 4] in either A~ or AT with dim A < p and
such that A is not a common maximal atom in A~ and A™*. In this case, it is easy to see
that dim A = p. Suppose that A is a maximal atom in A? which is not a maximal atom in
A™7. Then A must be a maximal atom in dfA™ = d;A* which implies that A C A7 for
some maximal atom A™7 = uy[i77, a7 "] X ugliy ", ap "] X usfiz 7, a5 7] X waliy”, o5 "] with
dim A= > p. Thus A C A. Therefore, we have A~ U AT C A.

This completes the proof.

O

Proposition 4.6.5. Let A~ and A" be pairwise molecular subcomplezes. If d; A =

dy AT, then A=#,A™ is a pairwise molecular subcomplex of uy X ug X uz X uy.

Proof. Let A = A~#,A*. According to Lemma 4.6.1 and Proposition 4.6.4, it is easy to
see that A satisfies condition 1 for pairwise molecular subcomplexes. Moreover, we have
Fpe(A=#,AY) = (A~ UAY) = Fi°(A™) U Fpe (AT) for every value of s.

Now suppose that p > I,. We have di_; Fj*(A™) = Fpe(dtA™) = Fpe(d,A") =
dy p Fre(AT). Thus Fro (A #,AT) = Fyo (A7), Fie(AY). Therefore F7(A~#,AY)
is a molecule.

Suppose that p < I,. Then it is easy to see that Fy*(A™) = 0 or Fy(A*) = 0.
(Otherwise, we have Fy*(A™ N At) # (). This would lead to a contradiction to Lemma
4.6.1.) Therefore Fy'(A~#,A") is a molecule or empty set.

We have now proved that F7*(A~#,A") is a molecule or empty set for every value of
s and every ;. Evidently, A satisfies condition 1 for pairwise molecular subcomplexes. It
follows from the definition that A is a pairwise molecular subcomplex of 11 X ug X uz X uq4.

a

4.7 Decomposition of Pairwise Molecular subcom-
plexes

The aim of this section is to prove the following theorem.
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Theorem 4.7.1. If A is a pairwise molecular subcomplex, then A is a molecule.

It is trivial that the theorem holds when A is an atom. Thus we may assume that A
is a pairwise molecular subcomplex in uy X ug X ug X ug which is not an atom throughout
this section. We are going to show that A is a molecule.

Let

p = max{dim(A N p): A and p are distinct maximal atoms in A}.

It is evident that there are at least two maximal atoms A and g in A with dim A > p and
dim g > p. By Theorem 4.4.3 for pairwise molecular subcomplex A, it is easy to see that
p is the maximal number among the numbers E'j:l min{i, js }, where A = wuy[iy, o] X

ug[ty, ] X uslis, as] X ualta, o) and p = uy[f1, 1] % ualfe, Ba] X us[js, Os] X waljs, Ba] run

over all pairs of distinct maximal atoms in A.

Lemma 4.7.2. Let A = uy[iy, ;] X ugliz, o] X ualis, az] X valia, ] and p = uyl41, Bi] X

’U.2[j2, ﬁg] X ’U.3[j3, ,83] X ’U;4[j4, ,84] be mazimal atoms in A with 2:21 min{is,js} =Dp.

1. Let ?:1 = jl and a; = *,81. If iy < jz, then Qg = (—)ilal; %f 13 < j3, then

053 — (_)i1+min{i2:j2}a1; Z’f 'i4 < j4’ th,efn' a4 — (_)i1+min{’52:j2}+mi“{i3;j3}a1,

2. Let '1:2 = jg and Qg = *,62. If 17 < jl, then Qg — (—)51041; ’&f ’l:3 < jg, then

ay = (—)2ay; if iy < js, then oy = (=)2tmintiadslg,

8. Let iz = j3 and az = —fs. If iy < ji, then ag = (—)atminlizdzly,  if iy < 3y, then

Q3 = (“)i20£2,‘ 2f 2q < j4, then Qg = (—)isﬂlg.

4. Let iy = jy and g = —B4. If i1 < j1, then ay = (—)rtmin{izphmin{isgely, - if

ig < jg, then Qy = (_)i2+min{i3,j3}a,1; Zf ’1:3 < j3, then Gy = (~)i3a¢1.

Proof. The arguments for various cases are similar. We give the proof only for the first

case.
Suppose that i3 = 71, a3 = —f; and 49 < j3. According to Theorem 4.4.3 for
pairwise molecular subcomplexes, we can get a maximal atom v = uy [k, £1] X ua[ks, €] X

U3[k3,83] X ’LL4[1€4,E4] with kl > 4 = jl, u2[k2,82] D ’LLQ[’ig,Q!g], kg > min{ig,jg} and
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kg > min{iq, ja}. Since Z§:1 min{is, js} = p, we have k, = min{i,, 5} for s = 2,3, 4.
Hence uglky, &3] = ug[iz, cp]. Moreover, it is easy to see that A, p and v are pairwise
adjacent by the choice of p. It follows easily from the sign conditions that as = (—)"ay,
as required. The arguments for other cases are similar.

This completes the proof.

O

To decompose A into atoms, we need a total order < on the atoms in the product of
four globes analogous to that on the atoms in the product of three globes. For a pair of
atom atoms X = uy iy, on] X uglia, o] X uslis, cvs] X ua[ta, aa] and g = uq[41, B1] X ua[J2, B2] X

us|7s, B3] X ualja, B1] in up X us X uz X ug, we write A < u if one of the following holds:
e oy = B = — and 4, < Ji;
e oy = 1 =+ and 4; > jy;
e a; = — and () = +;
e i) = j; are even, a = By, ag = Py = — and iy < Jo;
e iy = j; are even, a; = fi, ag = Po =+ and 23 > Jo;
e i1 = j; are even, oy = B, ap = — and Gy = +.
e iy = j; are odd, oy = B, s = 2 = + and iy < Jo;
e iy = j; are odd, a; = By, ag = B2 = — and iy > Ja;
e i = j; are odd, aq = [, ag = + and [y = —.
e iy =j1, a1 = B, J1 = Ja2, L = P, %1 + iz is even, az = ff3 = — and i3 < j3;
® iy =j1, 1 = P, J1 = Ja, B1 = Pa, 11 +12 is even, az = 3 = + and i3 > J3;
® iy =1, cn = P, J1 = J2, B1 = P, 11 + iz is even, a3 = — and f3 = +;

® iy =j1, a1 =, J1 =J2, Br = Pa, 1 + iz is 0dd, a3 = 3 = + and i3 < js;
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® i = j1, a1 = Bi, J1 = J2, B1 = Ba, 11 + iz 15 odd, a3 = B3 = — and i3 > js;
® i =71, a1 = B, 1 =2, P = B2, 11 + 1y is even, a3 = + and fz = —.
It is evident that the relation < is a total order on the set of atoms in u; X ug X ug X ug.

Lemma 4.7.3. For any pair of mazimal atoms A and p in A with dim A > p and dim y >

p, if A< p, then A\ p C dfAnd; p.

Proof. In the proof of this lemma, we use Lemma 4.1.1 without comments.

Let A = wi[t1, on] X usftz, aa] X uslis, s] X uafta, aa] and p = w11, B1] X ua[ja, Ba] X
us|fs, Ba] X waljs, Ba]- We consider several cases, as follows.

1. Suppose that ijl min{%s, 7s} = p. Then X and u are adjacent by the choice of p.
According to Lemma 4.7.2 and sign conditions for pairwise molecular subcomplexes, it is
easy to see that AN pu C dfANd, p, as required.

2. Suppose that 2;1:1 min{is, js} < p — 2. According to condition 1 for pairwise
molecular subcomplexes, it is evident that ANy C d;‘ AN dy; i, as required.

3. Suppose that Z‘:zl min{is, 55} = p — 1 and that A and u are adjacent. There

are several case, as follows: (1) 44 = j; and oy = fy; (2) 41 = J1, @ = =P, B2 < Jo,
ap = (=)"ay; (3) i = J1, ax = =, Bp > o and fo = (=) B; (4) 4 # j; (5) 41 = Ju,
ay = —f1, iz < Ja, @p = —(=)"u, i3 > js and iy < jg; (6) @1 = J1, 01 = =P, G2 < Ja
as = —(=)%aq, 13 > j3 and i < jg; (7) 41 = J1, cu = =B, G2 > Jo o = —(=)"p,

i3 > 43 and 24 < ja; (8) 11 = j1, a1 = =P, @ > Jo P2 = —(=)" P, 43 < 43 and s > Ja.
In the first 4 cases, it follows from the sign conditions that AN u C d;—l)‘ Nd,_4, thus
AN p CdfANd;p, as required. The arguments for cases (5) to (8) are similar, we give
the proof for only case (5). In this case, we have oy = — and hence §; = +, ay = (—)%,
B3 = —(—)"2 and ay = ()T thus AN p C (u1fiy, o] X ugfie, o) X us[js + 1, ds) x
Ualia, ca]) O (ualfn, Br] X waliz + 1, B2} X waljs, Bs] X walia, (—)21245]) C dfAnd,p, as
required.

4. Suppose that Z§:1 min{is, js } = p— 1 and that A and p are not adjacent. Suppose
also that ¢, = j, for two values of s. Then it is easy to see that AN p C dfANdyp, as

required.
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5. Suppose that 2;1:1 min{i,, 7} = p—1 and that A and p are not adjacent. Suppose
also that 41 = ji, 42 # Ja, %3 # Js and %4 7 ja. There are various cases: (1) i < Jo, i3 < j3
and 44 > j4; (2) 42 < Jo, 13 > J3 and 4y < jg; (3) 42 < Ja, i3 > J3 and 44 > jg; (4) i3 > Jo,
i3 > js and iy < ja; (5) iy > Ja, 43 < js and 44 > j4; (3) 49 > Jo, 13 < Ja and 44 < j4. The
arguments for cases (1), (2), (4) and (5) are similar, and the arguments for cases (3) and
(6) are similar. We give the proof for cases (1) and (3).

In case (1), we have i1 = ji, %2 < Jo, i3 < j3 and iy > js. We claim that ay = —(=)4
or az = (—)"*+2 which implies that A N C d¥A N d;p, as required. Indeed, suppose
otherwise that az = ()% and a3 = —(—)%*2, By the definition of <, we must have
ar = —and By = +. If fy = —(—)2 2t then A has a maximal atom v = uy[k;, €] ¥
Unlke, €2] X wuslks, €3] X ualka, 4] With k1 > 4 = 49, ke > 42, ks > 43 and kg > Jg
moreover, we can see that k; = i, min{ks,j3} =43 + 1 and min{k4, 42} = js + 1 by the
definition of p; furthermore, we can see that v is adjacent to both A and y; it follows that
g2 = —(—)"; this contradicts the sign condition for ag and ey, If B4 = (—)@+é+i then A
has a maximal atom ' = uy [k}, e]] X ualkd, €] X us[ky, e4] X ualky, €] with & > 4 = 4o,
kY > 4o, k4 > i3 and kj > ju; moreover, we can see that min{ks, jo} =i + 1, k3 = i3 and
min{k4,%4} = ja + 1 by the definition of p; furthermore, we can see that v is adjacent
to both A and p; it follows that €y = + = —a; when k; = 4;; this contradicts the sign
condition for o and as.

In case (3), we have 4; = j1, %2 < Ja, i3 > J3 and 74 > j4. We claim that B3 = (—)+%
or 4 = —(—)"+=2+5 which implies that AN p C di AN d; p, as required. Indeed, suppose
otherwise that f3 = —(—)"*2 and fy = (=)a+e¥s If ap = —(—)%, then A has a
maximal atom v = u;[ky, €1] X ug(ka, €2] X uglks, €3] X u4[ks, £4] adjacent to both A and p
with &y = 41, min{ks, jo} = 19+ 1, min{ks, i3} = j3+1 and k4 = j4. By the sign condition
for u and v, we have g4 = (—)2t%2%%_ This contradicts the sign condition for oy and 4.
If ay = (—)%, then oy = — and B; = + by the definition of <. According to the sign
conditions for 4 and v, we get €1 = +. This contradicts the sign condition for £, and as.

6. Suppose that Zizl min{%, js} = p—1 and that A and p are not adjacent. Suppose

also that iy # j1, 4o = 2, 13 7# J3 and 44 7 js. There are various cases: (1) @1 < j1, i3 < Js
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and iq > jg; (2) 41 < J1, 93 > Js and iy < jg; (3) 41 < J1, 13 > Js and 44 > jg; (4) i1 > ja,
i3 > jg and ig < ja; (5) 41 > j1, 43 < Js and 24 > 745 (6) 41 > 51, 43 < J3 and i4 < js. The
arguments for cases (1), (2), (4) and (5) are similar, and the arguments for cases (3) and
(6) are similar. We give the proof for cases (1) and (3).

In case (1), we have iy < Ji, 12 = Jo, i3 < 73 and 44 > j4. According to the definition
of <, we get a; = —. It follows easily that AN u C dfANd, , as required.

In case (3), we have i1 < j1, i3 = Jo, 23 > j3 and i4 > j4. According to the definition of
<, we get ap = —. We claim that 3 = (—)+%2 or 8y = —(—)a+%2+ which implies that
ANp C dEAnd; 1, as required. Indeed, suppose otherwise that 3 = —(—)%+% and g, =
(—)nteetis Then A has a maximal atom v = uy[ky, £1] X ug[ks, £2] X uslks, €3] X uq[kq, €4
adjacent to both A and g with min{k,5:} =41 + 1, k2 > 15, min{ks, 73} = js + 1 and
ks = ja. According to the sign conditions for A and v, we have g4 = —(—)"+%2%J3 which
contradicts the sign condition for 83 and g4.

7. Suppose that Zi‘zl min{is, j,} = p— 1 and that A and u are not adjacent. Suppose
also that ¢y # j1, 12 # Jo, i3 = Js and 44 # j4. By similar arguments as in case 6, we can
get AN p C dfANd; p, as required.

8. Suppose that Zi:l min{%s, js} = p—1 and that A and p are not adjacent. Suppose
also that iy 7 j1, %2 # jo, i3 # j3 and 44 = j,. By similar arguments as in case 6, we can
get AN p C dfANdy u, as required.

9. Suppose that A and p are not adjacent. Suppose also that Z§=1 min{i,, js} = p—1
and 4 # j, for all values of s. There are various cases. The arguments for these cases are
similar. We give the proof for two cases.

Suppose that 41 < 71, 12 < J2, %3 > Jj3 and 44 > j4. Then «; = — by the definition of <.
We claim that f3 = (=)%*% or fy = —(—=)"*+2+% which implies that AN pu C d¥ANd;p,
as required. Indeed, suppose otherwise that 83 = —(—)*%2 and g, = (—)®**2*%, Then
A has a maximal atom v = uq[ky, €1] X ug[ke, €9] X us[ks, €3] X u4[k4, €4] adjacent to both A
and g with £y =41+ 1, ko = 2, k3 = j3-+1 and k4 = j4; it follow from the sign conditions
for » and M\ that g4 = —(—)%+2+% which contradicts the sign condition for ; and &,.

Suppose that i1 < j1, 42 > Ja, %3 > j3 and 24 > j4. By similar arguments as that
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in the above case, we can prove that B = (=) and 83 = (—)2%%2, or 8, = (-)&
and By = —(—)atietie or f; = —(=)ut2 and B = —(—)at+i2tie which implies that
A0 p CdfaNd; p, as required.

10. Suppose that E'j:l min{is, js} = p — 2. If 4, = j, for some value of s, then it is
evident that AN C dfANd;p, as required.

Now suppose that i; # js for every value of s. If A and p are adjacent, then we have
AN p Cdy ANds pu C dfANdyp, as required.

If ¢4 < 71 and if 45 < j, for some value of s with s = 2, 3,4, then we have oy = —; it
follows easily that ANy C d; A0dy p, as required. If 43 > j; and if 45 > j; for some value
of s with s = 2,3, 4, then we have §; = +; it follows easily that AN u C d;")\ Nd,u, as
required.

There remain two cases: (1) A and p are not adjacent and 4, < j; and i, > j, for
s = 2,3,4; (2) A and p are not adjacent and i; > j; and 45 < j, for s = 2,3,4. The
arguments for the two cases are similar. We give the proof for the first case.

In the first case, we have @y = — by the definition of <. We claim that 8 = (—)* or
Bz = —(=)2+72 or fy = (=) which implies that A N p C dfA N d; p, as required.
Indeed, suppose otherwise that Bz = —(—)* and B3 = (—)2¥2 and By = —(—)a*2tis,
Then there is a maximal atom v = u1[ki, £1] X ualke, €2] X uslks, €3] X ua[ka, £4) such that
ky > i1, ko > Ja, k3 > j3 and k4 > j4. According to sign conditions and condition 4 in
Theorem 4.4.1, we can see that, for each fixed value of s with s = 2, 3,4, v can be chosen
such that k; > j;. Moreover, by the choice of p, there are at most two values of s with
s = 2,3,4 such that k; > j,. Now there are several cases, as follows.

(a). Suppose that v can be chosen such that there are two values of s with s = 2,3,4
such that k; > js. The arguments for various choices of the two values are similar.
We give the proof for ky > 7, and k3 > j3. In this case, we have ky = j; + 1 and
k3 = g3+ 1 and k4 = j4 by the choice of p, and A and v are adjacent. It follows from sign
conditions that g, = (=)"*+2%3 = — 8, According to Lemma 4.4.3, we can get a maximal
atom u' = ui[j1, B1] % ua[jh, Ba] X ualsh, B % ualjh, By] such that 51 > min{ji, k1 } > 4,

ug[fa, B5) D ualje, Fol, uslis, Bs) D usljs, B3] and 7y > js. If j5 > jp, then it is evident
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that j; = jo + 1 and us[74, B3] = wus[js, As] by the choice of p, and u' is adjacent to A;
this gives a contradiction to the sign condition for £ and «;. Suppose that 75 = 7s.
Then 5 = 2 = —(—)". Thus X and g’ are not (1,2)-adjacent. It follows that there is
a maximal atom X = uq[i], &f] X uo[th, h] X ugliy, aj] X ugfiy, @f] in A such that 7} > 4y,
iy > jy = ja, U5 = j3 and ¢4 > min{j}, 44} > js4. By the choice of p, it is easy to see that
in = Jo + 1, 45 = j3 and 7y = ju + 1, and that )\’ is adjacent to both X\ and y’. This leads
to a contradiction to the sign conditions for ey, of and 5.

(b). Suppose that » cannot be chosen such that there are two values of s with
s = 2,3,4 such that k; > j;. Then, for each value of s with s = 2, 3,4, v can be chosen
such that ks > js. In particular, v can be chosen such that &y > ¢; and ks > j,. Moreover,
we have kg = jo+1 or ks = 72+ 2 by the choice of p. By the assumption, we can see that
A is both (1, 3)-adjacent and (1, 4)-adjacent to v.

Suppose that ks = j; + 1. It follows from sign conditions that g3 = —(—)#172 = —f3g
and g4 = —(—)1+2*ts = B, According to Lemma 4.4.3 and the assumptions, there
is a maximal atom v/ = wuy[k], ]| X uglkh, eh] X uglkl, €] X ualkl, €y such that k] >
min{ji, k1} > 41, ualky,eh] = ualjs, B5], Kt > js and walkl,ey] = waljs, Ba]- It follows
that A and ¢/ are not (1,2)-adjacent. Thus A has a maximal atom " = wuy[kf, €] x
uglky, €4 X uslky, €] x ualky,el] such that k) > i1, ki > k) = ja, k§ > min{k}, i3} > 3
and ki > kj = js. This contradicts to the assumption on the choice of v.

Suppose that kg = jo + 2. Then one can get a contradiction by a similar argument.

This completes the proof.

a

By this lemma, we can arrange all the maximal atoms in A with dimension greater
than p as
b VD VIRTR W
such \; N A; C dfA;ndyA; for i < j. We denote )y in the list by

N = wafi”, o] x uafi”, 0] x uslif?, af] x walif?, f]
Let A~ =d,AU ) and AT =dfAU Xy---U),. We are going to prove that A~ and

AT are pairwise molecular subcomplexes and A can be decomposed into A~ and A™*.
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Lemma 4.7.4. A~ satisfies condition 1 for pairwise molecular subcomplezes.

Proof. We first prove that d; A, C d; A. Suppose that £ € d, A1. Then, for every maximal
atom A" in A with £ € X, if X' = X, for some ¢t > 1, then £ € A, N A C dy A = dy \'s
if dim A" < p, then we automatically have £ € d; X'. It follows from Lemma 1.4.17 that
d, A1 C d,; A, as required.

We now verify that A~ satisfies condition 1 for pairwise molecular subcomplexes. It
suffices to prove that any maximal atom A = u1{iy, oq] X uglia, o] X us[is, 3] X walis, 0] in
d, A with i5; < igl) for s = 1,2, 3,4 is contained in A\;. By the formation of dzj Ay and d; A,

it is easy to see that A is a maximal atom in d; i, and hence A C Ay, as required. O
Lemma 4.7.5. A™ satisfies condition 1 for pairwise molecular subcomplezes.

Proof. It suffices to prove that any maximal atom A = uy[i1, ] X ug[ta, o] X uslis, ag] X
Uqlis, Q] in d; A with i, < i for s = 1,2,3,4 and some 2 < t < n is contained in some
Ar with 2 < r < n. It is evident that dim A = p.

Let r be the maximal integer ¢ between 2 and n such that with 7, < i for s = 1,2,3,4.
Then d A, has a maximal atom of the form X' = uy[i1, 0] X ug[iz, o] X us[is, o] X us[ia, o).
By the choice of r, it is evident that Int X' N Ay = 0 for any ¢ > r. Moreover, for
any 1 < s < r, we have NN A, C A\ N A; C dFA,. By Lemma 1.4.17, we can see
that Int A" C dfA and hence N C d;' A. So, by condition 1 for the pairwise molecular
subcomplex dtA, we can see that A = X' C \,, as required.

This completes the proof. O

Lemma 4.7.6. Let 1 <r < 4. Ifp > I, and X\ is a (u,, I,)-projection mazimal atom,

then
1. Fi"(A™) and Fy7(A™) are molecules;
2. df ; Fi (A7) = dy_; Fy7(AY), hence Fy (A )fp_r, Fpr (AT) is defined;
8 Fpr(A) = Fir (A ) F17 (AY).

Proof. The arguments for various choices of r are similar. We prove only for r = 1.
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Since F7.* preserves unions, we have Fy* (A7) = Fy' (dy AU Ay) = F' (dy A) U F7t ()
and Fp (AY) = FR(dfA U AU - U X)) = Fpr(dbA) U Fpr(Xg) U - U Fpr ().
dim F7' (A1) < p — Ih, then it is evident that Fp'(A™) = Fpi(d,A) = d_; Fi'(A)
and Fp'(A*) = Fp'(A); it follows easily that F7*(A™) and Fj*(A™) are molecules
and d}_; Fp (A7) = d_ Fi*(A"), as required. If F}*(A) consists of only one maxi-
mal atom, then Fy*(A) = Fp'(\); it follows that F7'(A™) = Fy*()\) = Fp*(A) and
FpH(AT) = Fp(dfA) = df_; Fi*(A); hence F1'(A™) and F7*(A*) are molecules and
df_ Frr (A7) = d_; F7*(AY), as required. In the following proof, we may assume that

dim Fp' (A1) > p— I, and F7*(A) consists of at least two distinct maximal atoms.

Let
g = max{dim(p N ') : p and ' are distinct maximal atoms in F7'*(A)}.

It is clear that ¢ < p — I by the choice of p. Let p = ust [, B2] X udl[fs, Ba] X ul[js, Ba]
be a maximal atom in F;*(A) distinct from F}‘Il (A1) such that dimp > p — I;. We first
prove that F7' (M) N p C d ; Fir (M) Nd

Since p is a maximal atom in F7} (A), there is a (uy, [7)-projection maximal atom i
of the form fi = wuy[ji, B1] X ua[ja, B2] X us[js, Bs] X ualjs, Ba]. We consider several cases,
as follows.

1. Suppose that min{é;,5;} = I;. Since \y N ji C df A N d,fi, it is easy to see that
FPr(h) Np € dfp Frr(M\) Nd,_y p, as required.

2. Suppose that min{ii,j1} > [1 + 1. Then min{is, jo} + min{is, j3} + min{%4, js} <

p— Iy — 2. Tt follows easily that F7* (A1) N p C di_p Fpt (M) N dy

o1, 14, S Tequired.

3. Suppose that min{1, j1} = I; + 1. Then min{iy, jo} -+ min{sz, ja} + min{éy, ja} <
p— Iy — 1. If min{is, jo} + min{is, js} + min{és, ja} < p — I — 1, then it is evident that
Fpr(a)Np C d)_p Fit(M)Nd,_; p, as required. If min{dy, jo} +min{és, j3}+min{iy, js} =
p—1I;—1, and if i; = j, for some value of s with s = 2, 3,4, then it is evident that F7* (A1)N

C di_; Fpr(M)Nd,_, 4, as required. If min{dy, jo}-+min{is, js }-+min{is, js} = p—L -1,
and if 4, # j, for s = 2,3, 4, then min{s;, j1 } +min{sg, jo} +min{is, js} + min{s4, ja} = p;
thus A, and [ are adjacent; it follows easily from the sign condition for A; and [ that

Fpr(A) N C dy_p F (M) N dy_p e, as required.
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Now, we have F;' (A7) = d_

p—I1

F¥(A) U F () and

Fir(AT) =di_; Fi(A) U U{u p is a maximal atom in Fy'(A) with u # Fy' (M)}

(Note that it is possible that Fy'(A*) = d ; F7*(A)). It follows from Theorem 1.4.13
that Fi' (A~) and F* (A*) are molecules in uf' X ug' x ug!, di_p Fr (A7) = d_p Frt(AF)
and Fp'(A) = Fr (A7) #fp-r, F' (A1), as required.
This completes the proof.
O

Proposition 4.7.7. Let A be a pairwise molecular subcomplez. Then
1. A= and AT are pairwise molecular subcomplezes.
2. df A~ = ds A, hence the composite A=#,A" is defined.
3. A=A#A,.

Proof. We first prove that A~ and At are pairwise molecular subcomplexes. If \; is not
a (u1, [1)-projection maximal atom in A, then it is easy to see that Fy''(A™) = Fp'(d; A)
and Fp'(A%) = F7'(A) by the choice of p and Lemmas 4.7.4 and 4.7.5; hence F7*(A~)
and Fp* (A™) are the empty set or molecules in ug' X ug! X ugt. If Ay is a (uy, [;)-projection
maximal atom in A, then we have already seen that F7*(A~) and F7*(At) are molecules
in ui! X uf! X uf' from Lemma 4.7.6. Consequently, F{*(A~) and F}*(A*) are the empty
set or molecules in ul! x ui' x ul! for every integer I;. Similarly, F7*(A™) and Fj(AY) are
the empty set or molecules in the corresponding w-complex for every value of s and every
integer I,. It follows that A~ and At are pairwise molecular subcomplex of uy X ug X uz X ug.
Now, if p > I, and A, is not (uy, [;)-projection maximal, then we can see that
Frt(drA™)

= dj nfr (A7)
= 4 L)
= 4 FE)

= dp_, Fi'(AY)
— F(d AT
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if p < I, then F*(dtA™) = 0 = Fp*(dfA™); if p > Ij and A is (wy, [y)-projection
maximal, then F7'(dfA™) = Fp'(d;A*) by Proposition 4.5.8. Consequently, we have
Fyr(dfA™) = Fp(dfA™) for every value of I). Similarly, we can see that we have
Fie(dfA™) = Fj°(d;A") for every value of s and every value of I,. If follows from
Proposition 4.1.7 that dy A~ = d;A*. Clearly, we have A = A~ U AT, Therefore A =

A~#,A™, as required. This completes the proof. O

We have now proved that a pairwise molecular subcomplex A in u; X ug X uz X uq
can be decomposed into pairwise molecular subcomplexes A = A~#,A". It is evident
that this is a proper decomposition. By induction, we can see that A can be eventually

decomposed into atoms. Thus A is a molecule. So we get the proof for Theorem 4.7.1.
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