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Abstract

Survival data arises when there is interest in the length of time until a particular event 

occurs e.g. death due to cancer. Typically, observations are assumed to be statistically 

independent of each other. This assumption however is violated in many situations 

which are not as uncommon as one might think. The overall aim of this thesis is to 

provide practical methods for analysing dependent survival data. All the methods 

described in this thesis are illustrated using paired survival data from an Orthodontic 

study and matched survival data from a Melanoma study.

Chapter 1 gives a brief background to survival data, common censoring mechanisms 

and estimation of the survivor function. A review of some of the standard techniques 

for summarising survival data is given with particular emphasis on non-parametric 

estimators of the survivor function.

A discussion of situations where the assumption of independence between 

observations is likely to be invalid is given in Chapter 2 where M ultiple Event and 

Cluster Survival studies are introduced. This thesis, however, primarily concerns 

analysing dependent survival data from cluster studies (i.e. where a failure process 

acts concurrently on individuals in a cluster). Such studies are of two types, namely 

paired  studies (e.g. time to cataract in left/right eye) and m atched  studies where the 

individuals are matched by design (e.g. comparing time to death ). Both matched and 

paired survival studies will have a pair of observation times recorded which represent



the two ‘arms’ of the primary variable of interest. In addition to these, additional 

information may be recorded also in the form of covariates, or prognostic indicators. 

Matched survival studies will, by definition, have the variables used for the matching 

present and some additional unmatched covariates, or prognostic indicators, may also 

be recorded for each individual. Graphical and analytical methods for assessing the 

quality of matching in matched survival studies were given also. Paired studies, by 

definition, are unlikely to have any matching variables available but may have ‘unit’ 

covariate information recorded for each individual e.g. sex or age.

Two example data sets are introduced (matched survival data from a Melanoma study 

and paired survival data from an Orthodontic study) which will be used to illustrate 

the various methods presented in the following chapters.

Chapter 3 presents techniques for graphically displaying dependent survival data, 

including bivariate survival scatterplots and survival ratio plots. A review of several 

nonparametric estimators of the bivariate survival function is given with methods for 

generating reference ranges for such three-dimensional plots. In addition, two 

methods to graphically assess the independent effect on survival of any continuous 

covariates are discussed. The first uses a form of kernel estimation to construct an 

estimator of a percentile of the survivor function as a function of the covariate while 

the second uses a tree-based approach.

Chapter 4 concerns the comparison of the survival distributions of the two arms of the 

primary variable (i.e. ignoring all covariates but the primary variable) where a review 

of several nonparametric paired ‘log-rank’ tests is given. Two new approaches for



comparing survival in paired/matched survival studies are described and illustrated. 

The first is a simple test of symmetry based on ‘pair performance’. The second is 

based on estimating the distribution of the (pairwise) difference in survival, using a 

parametric approach (by providing an interval estimate for the mean difference in 

survival time) and a nonparametric approach (by providing an interval estimate for an 

appropriate quantile e.g. the median difference).

Methods for incorporating covariates into the analysis, while at the same time taking 

the dependency structure of the data into account are presented in chapter 5. A 

‘covariate adjusted’ comparison of the two ‘arms’ of the primary variable should then 

be less biased and more precise than a ‘covariate free’ comparison.

In matched survival studies the matching covariates are available for inclusion in the 

analysis while in paired studies the covariates representing the degree of similarity for 

the pair are often unobservable, that is, ‘hidden’ from the analysis.

A new approach for modelling ‘pair performance’ which allows for covariates is 

presented. Regression models for the hazard rate are discussed. Several extensions of 

the proportional hazards (PH) model to clustered studies are proposed. The 

conditional PH model ignores the matched structure of the data, however it uses 

information on the matching to correct inferences made on the primary variable. The 

justification is that the model assumes conditional independence by forcing in the 

matching covariates in the final model.



The second extension is similar to the conditional PH in that the regression 

coefficients are estimated assuming independence. The estimated covariance matrix 

however is then ‘corrected5 post fit using a paired-jacknife estimate of the variance.

A further refinement to the PH model for paired/matched survival data is to allow 

each pair to define a separate stratum. The association within each pair is then 

considered a fixed effect. An alternative more elaborate procedure introduces a 

random term for each pair that represents the within-pair association. In a final 

extension to the PH model a random term corresponding to each pair is introduced 

into the model. This random pair effect, often termed a ‘frailty5, generates 

dependency between the survival times of the individuals in a pair. The random 

effects represent unobserved covariates. Random effects are assumed to act 

multiplicatively on the individual5s hazard rate. Survival times of all individuals are 

then assumed to be independent given the random effects (and any observed 

covariates).

In chapter 6, the results of a large simulation study which compare the different 

methods proposed for analysing dependent survival data are presented. A range of 

different degrees of censoring, sample size and primary variable effect size 

combinations are investigated.

Finally chapter 7 outlines the conclusions and suggests some ideas for further work.
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“Those Platonists are a curse," he said, 
"God's fire upon the wane,

A diagram hung there instead, 
More women born than men"

W.B. Yeats
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Chapter 1 

Introduction To Survival Analysis

1.1 Introduction

Many studies in medical science involve studying the time taken until a particular 

event occurs. Survival Analysis is the general term given to describe this type of 

analysis. If the event of interest is death of an individual the resulting data are literally 

survival times. However, in medical applications, this event may be the time to 

development of a disease, response to a treatment, or time to relapse. The term 

“survival time” therefore is a bit ambiguous as it may not directly involve death as the 

event of interest and hence is more accurately defined as time to event. However, in 

the context of medical studies the terms survival time and survival data are used in 

general to represent ‘time to event’ data and the same convention will be adopted for 

the remainder of this thesis.

Survival Analysis is not limited to the biomedical field as the methods involved in 

Survival Analysis are often suitable for applications in industrial reliability, social 

sciences and business. Examples of survival data in these fields are time to failure of 

a particular machine, duration of first marriage and length of subscription to a 

magazine.

I



There are several special features of survival data that preclude the use of standard 

statistical procedures used in data analysis such as t-tests, regression analysis, analysis 

of variance and analysis of covariance.

1.2 Censored Data

The distinguishing feature of survival analysis is that the event times are frequently 

censored where the end-point of interest has not been observed for that individual. 

One would not want to exclude all of those individuals from the study by declaring 

them to be missing data, since most of them represent "survival” in the sense that they 

have not experienced the event of interest yet. Those observations, which contain 

only partial information are called censored observations, the term censoring being 

first used by Hald (1949).

A censored observation is one whose value is incomplete due to random factors for 

each subject. The most commonly encountered form of censoring is one in which 

some subjects in the study have not experienced the event of interest at the end of the 

study or time of analysis. As the incomplete nature of this observation occurs in the 

right tail of the time axis, the observation is termed right-censored. An individual’s 

observation time may be right censored therefore for a variety of reasons: from not 

having experienced the event by the time the study ended or having been lost to 

follow-up or having died due to a cause not related to the treatment under study.

A second censoring mechanism that can occur is left censoring  where the event of 

interest has already occurred when observation begins and the actual event time is
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some time less than that observed. One example of a left censored observation could 

occur in a study relating to time of first cigarette use when an individual has already 

had a cigarette at some time prior to the study which they cannot remember.

Finally, an observation is interval censored if all that is known is that the individual 

experiences the event in some interval of time. For example, the actual time to 

recurrence of a particular disease may have occurred in the interval between 

successive consultation visits.

An observation time can thus be one of two types: an event time (e.g. a death time) or 

a censored time (e.g. left, right or interval censored). In most survival contexts only 

right-censored data is ‘observed’. Lee (1992) gives an excellent description of 

censoring. The main assumption concerning censoring is that the actual observation 

time must be independent of any mechanism that causes the individual event time to 

be censored.

A secondary feature pertaining to the analysis of survival data is that the distribution 

of event times is generally not symmetrically distributed and often tend to be 

positively skewed. This feature will, in most cases, rule out using the normal 

distribution as the underlying distribution from which the data has been generated.

The final assumption for analysing survival data is that the observation times for 

individuals are mutually independent. In many cases this assumption will be justified 

but should this assumption not hold many of the standard methods for the analysis of 

survival data may not be applicable. This independence assumption is violated in
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situations which are not as uncommon as might be thought. A discussion of such 

situations is given later, and the remaining chapters of this thesis deal specifically with 

analysing so called ‘dependent’ survival data.

Some necessary background material outlining the standard methods for analysing 

independent survival data is now given. This will also facilitate in establishing ideas 

and notation essential for later chapters.

1.3 The Survivor Function and Hazard Function

The survivor function is the complement to the cumulative distribution function. It 

allows the evaluation of the probability that an individual survives at least to a 

particular time point, as in most applications interest relates to how long the subjects 

live rather than to how quickly they die. In practice, population survival distributions 

must be estimated from (representative) samples of data.

The hazard function is defined as the rate at which an individual is likely to 

experience the event of interest in the next small time interval given that the 

individual has survived up to that point. The hazard and survivor functions are 

formally related to each other as follows: -

Let T be a positive random variable, with distribution function F(t) and density 

function f(t).
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The survivor function is defined as

S(t) = Pr( T > t) = 1 - F(t) for any t > 0

This is a strictly non-increasing function with a value of 1 at the origin and decreasing 

to 0 at infinity. Survival distributions are usually skewed and hence the most 

appropriate ‘central5 summary of the distribution is provided by the median survival 

time.

For survival data the qth percentile is defined as the time beyond which q% of the 

individuals in the population under study are expected to survive such that the 

survivor function equals q/100. For example, the median or 50th percentile is the 

time for which the survivor function equals 0.5.

The hazard rate or hazard function is expressed as

Pr(t < T < t + At IT > t) f(t)
h(t) = h m --------------------------------= ------

At S(t)

and is defined as the instantaneous rate of failure, or the probability that an individual 

experiences the event in the next small interval of time At given that he/she has 

survived to time t. The hazard rate provides information as to the rate of failure of 

individuals over time. There are many general shapes for the hazard function (e.g. 

increasing, decreasing, ‘bathtub5 shaped) where the only restriction on h(t) is that it is 

non-negative i.e. h(t)> 0.
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The cumulative hazard rate H(t) is written as

H(t) = J h(t)dt = -  log S (f)
o

indicating the relationship between the survivor function and the hazard function. The 

word ‘cumulative’ is used as it represents the “sum total” of the hazard up to time t.

1.4 Estimating the Survivor Function

Two standard approaches are commonly used in estimating the survivor function, 

namely parametric and non-parametric. The parametric approach involves fitting 

specific families of distributions to survival data. The most commonly used models 

are the exponential, Weibull, gamma, log normal, log logistic, Gompertz and 

generalised gamma distributions.

The non-parametric approach allows a more flexible estimate in that no distributional 

assumption is made when estimating the survivor function. This approach is now 

presented.

1.4.1 The Empirical Distribution Estimator

The first method proposed to provide an estimate of the survivor function was the 

empirical distribution function (EDF) estimator.



Given a sample entirely composed of complete data, the EDF is the simplest estimator 

of the survival function and is defined as

- ^  number surviving beyond t
oi:nr\ t )  —

number in the sample

The EDF has some good properties as an estimator of S(t); in particular, it is unbiased 

and consistent for S(t) (Shorack and Wellner 1986). However, in the presence of 

censoring, the EDF estimate is biased and a modification is needed to allow for 

censoring.

1.4.2 The Kaplan-Meier Estimator

The most common non-parametric estimate of the survivor function in the presence of 

right censored data was proposed by Kaplan and Meier (1958).

An indicator function 6 is needed here to distinguish between an event time and a 

censored time and hence to provide ‘event type’ information for each individual’s 

observation time. Let tj denote the observation time for individual i (i=l,..,n) in a 

sample of n individuals. Further define 5i=l if the ith observation time is an event 

time, 8i=0 if the ith observation time is right-censored.

Hence, in survival analysis, each individual provides both an observation time and an 

‘event type’ indicator function such that each individual i contributes (h, 5 j )  to the 

dataset.
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The Kaplan M eier estimator (KM) is a step function estimator of the survivor function 

but unlike the EDF it takes into account the fact that the observation times may be 

right censored.

To define the KM estimator, suppose a sample consists of n observation times ti, tn 

and knowledge as to which of the 11 observations are censored is provided by 

censoring indicators Si, 8n. Denote the subclass of distinct ordered event times in 

the sample by hu < tm  < • • • < ?o») where m < n.

Define for i= l,2 , m

ei = number of individuals with an event at time 

r p  number of individuals still ‘at risk* at time t(i) ,

The number of individuals still ‘at risk’ at time tj is defined to be the number of 

individuals present in the data (not having previously died or been censored) at a time 

just prior to K

The KM estimator is the product of the estimated survival probabilities at each 

distinct event time i.e.
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The function defined by Skm(J) fulfils the requirement of a distribution function in 

that it is a right-continuous non-decreasing function however it does not necessarily 

have total mass 1. The estimator is a step-function with new steps at each observed 

event time and is not well defined beyond the largest event time. If the largest event 

time is censored then the survivor function is undetermined beyond this point. 

Several alternative non-parametric suggestions have been proposed (Efron 1967, Gill 

1980, Klein 1991) to account for this indeterminancy. In the absence of censoring 

§KM(t) is simply the EDF.

A vast literature has grown up concerning the theoretical properties of the Kaplan 

Meier estimator from its conception as a generalisation of earlier actuarial estimators 

(Breslow 1992) to its practical properties (Andersen 1993).

The KM estimator places probability mass only on the (ordered) event times. The 

EDF would place mass 1/n at each censored and uncensored observation producing a 

biased estimate as the mass associated with the censored observations is not 

‘distributed’ correctly amongst the uncensored observations. This leads to the concept 

of ‘redistribution of mass’ (Dinse 1985) which is formulated in the following way:- 

Consider an ordering of the observation times arranged from left (smallest) to right 

(largest) and initially associate mass 1/n with each observation. Beginning at the far 

right, move to the left and distribute the mass 1/n of the first censored observation 

encountered to all the uncensored times to its right (i.e. event times greater than this 

‘censored observation’), in proportion to the masses already accumulated at those 

points. This process is continued until the mass of all the censored observations has
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been distributed. This resulting distribution of masses, or weights, is precisely the 

KM estimator (Dinse 1985). As such, the KM estimator can be likened to the EDF 

but with different weights at the event times where a censored observation time 

contributes information only to larger event times. A similar procedure involving 

‘redistribution to the left’ was formulated by Efron (1967) for estimating the survivor 

function for survival data with left and right censoring present. A more detailed 

discussion of Efron’s method will be given in chapter 4 in an appropriate context.

1.4.3 Estimating the Variance of the Kaplan-Meier Estimate

The KM estimator is an estimator of the population survivor function which can be 

calculated from the sample of observation times. As such, it has an associated 

variance which represents the precision with which it estimates S(t).

The most common estimate of the variance of the KM estimate is provided by 

Greenwood’s formula (1926) and is defined as

i „.

Vg[5(0] = §KM(t)2 V   ----- for td) <t <ta+ i).
i=i r j ( r j - e j )

while Aalen and Johnson (1978) proposed an alternative estimator

' Sj
VA/[5(f)3 = SKM(t)2y \ ~  for ttn < t < ta +1) .

M rj

10



Both Vb[.S(0] and Va/[,$(£)] tend to underestimate the true variance of the KM 

estimator for small to moderate samples, with VG[.S(f)] coming closest to the true 

variance (Klein 1991).

An estimate of the survivor function and accompanying variance estimate can be used 

to provide pointwise confidence intervals for the survivor function at any specified

95% confidence interval for the true population survivor function S(t), at time t, as 

follows

which is based on assuming that the KM estimate is, for each t, approximately 

normally distributed in large samples (Breslow and Crowley, 1974).

However, this estimate may lie outside the range [0,1] and several transformations 

have been suggested to overcome this problem (Borgan and Liestpl 1990) including 

the log-log and the arcsine-square root.

Based on assuming lo g (-lo g (S (t))) being approximately Normal, the log-log 

transform provides the following approximate 95% Confidence Interval for S(t),

time point. In particular Vg[,S(£)] can be used to provide an approximate pointwise

Skm(0 -  l96^Vc[Snn(t)] < S (t) < S km(J') +  1.9 6 ^ V g [ W 0 .I 

l - ( l - S K M(t ) ) eXp
1.96A[log(-log[SKM(t)])] L96Vv[log(-log[S™(t)]
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where

y e /
~ r  - 1 “ f  /  ( i'i ( i j  -  i j) )
v[log(-log[SKM(t)])J =  ;

i iog a - % )

for f ( i)  < t  <! t(i  + 1) .

1.5 Estimating the Cumulative Hazard Function

One estimator of the Cumulative Hazard Function, H(t), proposed by Nelson (1972) 

and Aalen (1978) is defined as

HNA\t) = 7 . — for f(n < t < tu +1) . 
y=i }y

which is a step function that starts at zero and has a step of ei/p at each event time 

point with variance estimator

V[/?am(?)] = 2 —7  f° r £(0 £/ <?( ;  + !) .
j=1 n

This estimate of the cumulative hazard function is used both to provide a crude 

estimator of the hazard rate h(t) and an estimator (Fleming-Harrington 1991) of the 

survivor function as

SfH(t) = e~ .
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An estimator of the variance (and resulting confidence interval) of SW(r) can be 

obtained by substituting §FH(t) for Skm(() in Greenwood’s formula above.

1.6 The Counting Process Approach to Survival Analysis

An alternative way to motivate Survival Analysis from that used above is to recast the 

problem in the Counting Process paradigm (Aalen 1975). This method has been the 

source of many new developments, particularly in terms of proving that the Kaplan- 

Meier estimator (and several functions of it) are asymptotically normal (Anderson, 

Borgan, Gill and Kielding 1993).

The main difference between the ‘traditional’ (as adopted in this thesis) and the 

Counting Theory approach is that the latter approach records, at each time point, 

whether the event of interest has happened or not. The three functions central to the 

Counting Process approach are as follows:

1. The counting process N;(t) = I (Tj< t, 8i=l), where I is an indicator function i.e. the 

process jumps from a 0 to a 1 once an event occurs for subject i . The process

t \

N(t) = ^ N i ( t )  is also a counting process and simply counts the number of deaths
i=l

in the sample at, or prior, to time t.
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2. The “at risk” process Yi(t) = I(Ti > t) and indicates whether subject i is still at risk 

of the event of interest at time t and can be used to provide information on the 

number of individuals still at risk at time t.

and

n
3. The intensity process A(t) = Y(t) h(t), where Y(t) = ^ Y i( t )  and h(t) is the hazard

i=i

function, and can be considered as providing information regarding the “expected” 

number of events at time t. The total expected number of deaths can be estimated 

by integrating A,(t) over time and is defined as A(t), the cumulative intensity 

process.

The counting process therefore provides information on the total number of events 

while the cumulative intensity process provides information 011 the expected number 

of events up to time t. A natural “residual” now emerges, the counting process 

martingale residual M(t) and is defined as M(t) = N(t) - A(t). From the definition 

above, N(t) is a non-decreasing step-function while A(t) is a smooth process and 

hence the martingale can be considered as “mean zero noise” (Klein 1997). This 

property of martingales can be used to check assumptions underlying regression 

models for survival data and will be returned to in chapter 5.

Regardless of whether the ‘traditional’ or Counting Process approach is used, one of 

the main assumptions when analysing survival data is that the survival times for each 

individual are mutually independent. In many cases this assumption will be justified
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but should this assumption not hold many of the standard methods for the analysis of 

survival data may not be applicable. This assumption may be violated if there is some 

natural pairing or constructed matching for subjects in the study. A discussion of such 

situations is given in the next chapter and the remainder of this thesis deals 

specifically with analysing so called ‘dependent5 survival data.

1.7 Chapter Summary

Survival Analysis involves studying the time taken until a particular event occurs. It 

is distinguished from other fields of statistics by the presence of censoring, which is a 

particular form of incomplete data. A review of the common censoring mechanisms 

and some of the standard techniques of analysing survival data were given with 

particular emphasis on non-parametric estimators of the survivor and hazard function.

An important assumption when analysing survival data is that the observations are 

independent of one another and the next chapter deals specifically with situations 

where this independence assumption is brought into question.
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Chapter 2 

Introduction to 

Matched/Paired Survival Studies

2.1 Introduction

As outlined in the previous chapter, one of the main assumptions when analysing 

survival data is that the survival times for each individual are mutually independent. 

This assumption is valid in a variety of studies such as a randomised trial comparing 

the efficacy of a drug where the survival experiences of two or more independent 

groups of individuals are compared. Each individual has his/her own “tolerance” that 

is not influenced by that of any other individual in the trial.

There are however, situations where there is a dependency structure, or degree of 

similarity, present among some individuals in the study, on occasions by design or 

sometimes by natural consequences.

2.2 Dependent Survival Studies

Such studies can be broadly categorised into two main categories, namely Multiple 

Event Studies and Clustered Survival studies, both of which are now introduced.
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2.3 Multiple Event Survival Studies

Multiple events arise when episodes of the same failure/disease process act serially on 

the same individual. Examples of multiple event survival studies include the time to 

exhaustion in repeated exercise testing, or time to successive asthma attacks in the 

same individual. The dependency structure often arises from recording several 

observations on the same individual.

The remainder of this thesis however deals primarily with analysing survival data 

arising from Clustered Studies. A general introduction to Clustered Studies is now 

given,

2.4 Clustered Survival Studies

A Clustered Survival Study can be thought of as a situation where a disease 

mechanism or failure process is acting concurrently on all the individuals in a 

“cluster” . The cluster may have any number of members all of whom are mutually 

associated but each cluster is assumed independent from all other clusters. Hence 

there is assumed a dependency structure within the cluster but an independent 

structure between clusters. Examples of clustered survival studies include situations 

where the time to possible hereditary/genetic disease onset in a number of members of 

a family (or litter) are recorded.

The criteria for cluster membership may be a natural consequence (e.g. family 

membership) and as such may not be measurable. It is assumed that individuals are
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similar in that they share some common genetic or environmental characteristics but 

this degree of association may not be directly measurable.

Clusters however may also be produced by design where individuals are m atched  on 

the basis of certain characteristics to make them as similar as possible in terms of the 

failure/disease process. The consequence of incorporating this dependency in the 

analysis is to usually have the effect of increasing the sensitivity of any appropriate 

statistical tests. In clinical trials, for example, the control of confounding variables 

through matching can also serve to improve the precision of the comparison of 

survival distributions across treatments.

In theory, a cluster may have any number of members, with possibly a different 

number of members in different clusters. This thesis is primarily concerned with 

clusters involving two observation times, either for two distinct individuals in the 

cluster providing one observation each or where one unit/individual has two distinct 

‘survival’ observations associated with it. In order to distinguish between these two 

types of Cluster Studies, the respective terms Matched Survival and Paired Survival 

Studies are used and both are now defined in more detail.

2.4.1 Matched Survival Studies

A matched survival study is a cluster study where individuals have been matched on 

certain characteristics to make them as ‘similar’ as possible in terms of possible 

survival. The most common framework for a matched survival study is the matched 

case-control survival study.
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A case-control, retrospective or cross-sectional study often concerns the comparison 

of two distinct groups in terms of a specific characteristic of interest. Many such 

studies are retrospective involving cases of some relatively rare disease and matched 

controls. Other such studies may involve matching two ‘similar’ individuals in 

advance and then randomising the two individuals to the separate treatments to be 

compared in a prospective trial.

An important additional issue in retrospective/case-control studies is to consider 

whether any variables thought likely to influence survival but are unmatched within 

the ‘pair’ are indeed significant risk factors for the disease and consequently aid in 

identifying high risk subgroups of the population.

A matched case-control study therefore has the feature that each case is matched with 

one or more controls. Variables considered for the matching (i.e. the m atching  

variables) are significant risk factors themselves, an example would be a matched 

case-control cancer study using age and sex as matching variables.

Note, the “case” and “control” terminology here is somewhat arbitrary in that a 

control may not represent a ‘control’ in the true sense of the word in that they may not 

represent a baseline performance or placebo effect but may instead represent their own 

treatment group, hi most instances (and for the remainder of this thesis) the terms 

‘case’ and ‘control’ represent the two ‘arms’ of a prim ary variable under study e.g. 

Treatment A versus Treatment B in a study comparing two treatments.

19



Ill summary, matched case-control survival studies usually involve the comparison of 

the time to event data for two groups of individuals (the cases and controls) which 

have been matched on certain characteristics i.e. the matching variables. These 

matching variables are measurable and are available as part of the study design. This 

will become an important issue in the analysis of such data and will be addressed in 

more detail later.

2.4.2 Paired Survival Studies

Paired survival studies involve the comparison of time to event data where the study is 

based on the comparison of the time to the same failure process on two different sites 

of the same individual or the same process on two distinct family members. For 

example, the study could involve comparing the time to failure in each of the two 

kidneys of an individual at risk for renal failure or the time to heart attack for two 

brothers with family history of cardiac problems.

In paired survival studies usually no matching variables are observed as, in effect, the 

observations are ‘naturally* matched. There may however be some ‘unit’ covariates 

recorded for each individual, for example the individual’s age or sex or brothers’ 

father’s age at time of heart attack.
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2.5 Matched/Paired Survival Data

The previous section introduced both matched and paired survival studies in general 

terms. This section introduces some notation and definitions of the main components 

involved in both of these study designs.

Both matched and paired survival studies will have pairs of observation times 

recorded. Each pair of observation times represent the two ‘arms’ (e.g. treatments) of 

the primary variable of interest and for simplicity will be referred to from here on as 

case and control regardless of the study design or actual context.

Matched survival studies will have available by definition the variables used for the 

matching (i.e. the matching variables), and may have some additional (unmatched) 

covariates, (i.e. potential prognostic factors) recorded for each pair of observations.

Paired studies, on the other hand, by definition will not have any matching variables 

available but may have unit (i.e. pair) covariates recorded for each individual of each 

pair.

2.5.1 Definition of Basic Notation

Let (tip, 5jp5, zip) be the observation time, censoring indicator and covariate vector 

(i.e. primary variable, matching variables and unmatched covariates) respectively for 

the ith individual of the pth pair (where i= l,2 , p= l, P) where P is the number of
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pairs. Let C be the total number of matching variables and unmatched covariates plus 

1 ( i.e. the primary variable). Figure 2.1 below depicts a typical matched case- 

control survival data set with a case-control type identifier variable (Type), two 

matching variables (Site and Tumour Thickness) and one unmatched covariate 

(Ulceration Status).

Figure 2.1 Example o f a Matched Survival Study Data Set

Primary Matching Unmatched
Variable Variables Covariate

\  t /£ h  e  t-- - - - - - - - - - - - - - - - - - - - A    ^
O T v n s  5?i f :a  T n m n n r  TTl r*ip X 0 Type Site Tumour

Thickness
Ulcer

1 1 116 0 1 0 1.70 1
1 2 75 1 0 0 1.80 0
2 1 124 0 1 1 2 .95 0
2 2 102 0 0 1 2 .95 1
3 1 20 1 1 0 3 .30 1
3 2 6 1 0 0 4.00 0
4 1 114 0 1 1 5 .45 0
4 2 86 0 0 1 6.00 1

Note that all the pairs presented in Figure 2.1 are perfectly matched by the binary 

variable (Site) while matching for the continuous variable (Tumour Thickness) is 

taken to some predetermined degree of similarity e.g. to the nearest 10mm in this case. 

The variable representing the individual in a pair (i.e. “i”) is effectively the primary 

variable but both are presented in this form for completeness.

An example of a typical paired survival data set is given in Figure 2.2 with a primary 

variable (Organ, e.g. right or left eye for example) and two covariates (Sex and Age).
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Figure 2.2 Example o f a Paired Survival Study Data Set

Primary
Variable

Covariates

p i O rgan  Sex Age

1 1
1 2
2 1
2 2
3 1
3 2
4 1
4 2

112 1 
23 1

124  0
102  0 

90  1
96  1

124  0
148  1

1
0
1
0
1
0
1
0

1
1
0
0
0
0
1
1

17
17
31
31
23
23
16
16

Note that for the pairs presented in Figure 2.2 there are no matching variables as each 

pair represents one individual. Once again the variable representing the individual in 

a pair (i.e. “i” ) is effectively the primary variable but both are again included for 

completeness.

2.5.2 Assessing the Quality of the Matching

Matching variables can be of two types, namely continuous variables (e.g. age) or 

categorical variables (e.g. sex). The intention in all matched studies is to achieve 

perfect matching between each case and it’s corresponding control but this may not be 

attainable especially where continuous matching variables are concerned. In this 

instance matching is usually to a certain predefined interval (e.g. the nearest decade, 

the nearest 5mm).
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In order to visually assess the quality of all the matching variables simultaneously a 

multivariate icon plot, such as a Chernoff Faces plot, could be used. In the standard 

version of this plot a separate "face" icon could be drawn for each case and control; 

relative values of the selected variables for each case and control are assigned to 

shapes and sizes of individual facial features (e.g., length of nose, angle of eyebrows, 

width of face). In the present context each matching covariate is represented by a 

facial attribute and pairs with a good degree of matching will look ‘similar’ and 

resemble ‘tw ins’.

However, most matched studies rarely use more than a maximum of four matching 

variables and a multivariate Chernoff Faces plot may therefore gave an overly 

optimistic picture of the true quality of the matching. An alternative approach 

therefore is to display a single face per pair with the left and right sides of the face 

determined by the separate members of the pair. An example of such a “Chernoff 

Split-face plot” is given in Figure 2.3 where the degree of matching is good for all but 

the last pair.
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Figure 2.3 Chernoff Split-Face Plot to Assess Matching

Ear level = Binary 1st MC 

Eyebrows Height= Binary 2nd MC 

Nose Length= Continuous 1st MC 

Mouth Length = Continuous 2nd MC

Formally the quality of matching can be assessed by hypothesis tests and confidence 

intervals based on procedures such as the binomial version of M cNemar’s test for 

binary matching variables and paired t-tests for continuous matching variables. These 

simple ideas will be illustrated when introducing the data sets used throughout the 

remaining chapters.

2.6 The Illustrative Data Sets

There are two major data sets used in this thesis. The first is an example of a m atched  

survival study for comparing the survival prospects of melanoma sufferers while the 

second is an example of a paired survival study which aims to compare two cement 

types for bonding orthodontic brackets to teeth.
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For simplicity of presentation the melanoma data set will be referred to as the 

“Melanoma Data” while the orthodontic data set will be referred to as the “Dental 

Data”. These data sets are now introduced.

2.6.1 Melanoma Data

The data used in this study has been supplied by the Scottish Melanoma Group (SMG) 

Database. The SMG maintains a well-validated database that records clinical and 

pathological details of all invasive cutaneous melanomas diagnosed in Scotland since 

1979. The aim of this particular study was to compare survival prognosis of M ultiple  

and Single Melanoma sufferers. An example of a Single M alignant M elanoma is 

shown in Figure 2.4 overleaf.

Note in this instance a ‘control’ is classified by the presence of a Single Melanoma 

and thus should not be confused with the common disease free scenario definition of a 

control. A Multiple Melanoma is a distinct and aetiologically different type of tumour 

from a Single Melanoma, and the study therefore should not be in any way be 

considered as a multiple event scenario. Also note that survival here is compared 

between the time from ‘appearance’ of the first melanoma in both types. Obviously 

Multiple Melanoma cases are not identified until the second melanoma appears which 

could give rise to some suggestion that ‘Single Melanoma’ patients may die before the 

appearance of a second melanoma but because of different aetiology this should not 

be so.
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The cases and controls therefore represent the two ‘arms’ of the primary variable 

called Tum our Group.

Figure 2.4. An Example o f a Single Melanoma

A matched case-control study of melanoma-associated mortality was undertaken in 

which each of 108 Multiple Melanoma sufferers (i.e. the cases) from 1976 to 1996 

inclusive were matched against a Single primary Melanoma patient (i.e. the controls) 

controlling for Age (to the nearest 10 years), Sex, Tumour Thickness (to the nearest 

10 mm) and Tumour Site (of the first melanoma).

Unmatched covariates which might be potential prognostic indicators in this instance 

were Level of Invasion of the tumour into the epidermis (as measured by the Clark 

Level), and Ulceration Status of the first melanoma. Observation time and event type 

(i.e. dead due to melanoma or censored) were recorded also.

The main interest for this data set is to determine if there is a significant difference in 

survival time distributions between the populations of Multiple and “equivalent” 

Single Melanoma sufferers. Summary statistics of recorded observation times for the 

two tumour groups are given in Table 2.1 where ‘complete’ (i.e. an event) refers to
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‘dead due to melanoma’ while censored refers to ‘lost to follow up’, ‘still alive’ or 

dead due to other causes.

Table 2.1 Descriptive statistics fo r  Observation Time by Group 
_________________ fo r  the Melanoma Data__________________

Sample
Sizes

Sample Median 
Observation Time 

(months)
Sample Range 

(months)
Single Melanoma
Complete 21 (19%) 38 6-131
Censored 87 (81%) 69 5-188
Multiple Melanoma
Complete 17 (16%) 32 7 -  174
Censored 91 (84%) 79 0-252

There is a similar and high degree of censoring in both the Single and Multiple 

M elanoma group and the distribution of observation times are similar for both tumour 

types as displayed in the boxplot below.

Figure 2.5.

Boxplot of Multiple and Single Melanoma 
Observation Times for the Melanoma Data
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2.7.1.1 Assessing the Quality of Matching

The Multiple/Single Melanoma pairs were matched by Sex, Age, Tumour Thickness 

and Tumour Site. In general the matching was good as indicated in Figure 2.6 which 

displays Chernoff faces for a small random selection of Multiple/Single Melanoma 

pairs.

Figure 2.6 Chernoff Split-Face Plot to Assess Matching fo r  the Melanoma Data

Ear level = Sex

Nose Length= Tumour Thickness 

Mouth Length = Age 

Eyebrows Height= Tumour Site

Tables 2.2 and 2.3 show the pairs broken down by Sex and Tumour Site both of which 

exhibit perfect matching of Single and Multiple Melanoma patients.

mmtipm m&lanoma Smgle Melanoma
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Table 2.2 Breakdown o f Melanoma Tumour Group Data by Sex 
fo r  the Melanoma Data

Single Melanoma

Female Male

Multiple
Melanoma

Female 75 0

Male 0 33

There is a substantially larger number of females than males corresponding to the 

incidence pattern in the general population of Single Melanomas while the two 

(composite) Site categories have effectively the same frequency of occurrence.

Table 2.3 Breakdown o f Melanoma Tumour Group Data by Site 
fo r  the Melanoma Data

Single Melanoma

Axial Extremity

Multiple
Melanoma

Axial 53 0

Extremity 0 55
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The age distribution is similar for Multiple and Single Melanoma sufferers and 

similarly Tumour Thickness was matched well for practically all pairs with one or two 

exceptions (Table 2.4).

Table 2.4. Mean and 95% Confidence Interval fo r  Age and Tumour Thickness 
by Tumour group and fo r  Pairwise Difference fo r  the Melanoma Data

Variable Multiple Melanoma Single Melanoma
Pairwise Difference 
(Multiple - Single)

Age (Years) 51.8 52.0 0.05
(48.5 -55.1) (48.8 - 55.2) (-1.0 -1.1)

Tumour 2.2 2.1 0.1
Thickness (mm) (1.4-3.0) (1.4-2.8) (-0.1 -0.2)

There was with no significant difference (p=0.72) on average across pairs for Age 

(Figure 2.6) or Tumour Thickness (p=0.21). Boxplots of the pairwise Age and 

Tumour Thickness differences are given below (Figures 2.7).

Figure 2.7

Boxplot of Difference in Age Boxplot of Difference in Tumour Thickness

for the Melanoma Data for the Melanoma Data
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The most extreme pair, in terms of Tumour Thickness, was where the respective 

Multiple and Single Melanoma Tumour Thickness measurements were 41 and 20 mm

31



respectively (excluded from the boxplot). Indeed these two tumours were the largest 

in the sample.

2.6.2 Dental Data

This data relates to a study of bracket bonds in orthodontic practice. Traditionally the 

fixation of orthodontic brackets to the enamel surface of teeth has been achieved using 

a chemically-cured cement (Figure 2.8). Despite its universal use this technique has 

several undesirable consequences including enamel loss and enamel decalcification.

Figure 2.8 An Example o f an Orthodontic Bracket

In an attempt to reduce, or even eliminate, these adverse consequences there has been 

extensive research into developing a replacement adhesive, namely a Glass Ionomer 

Cement which has been shown not to have the undesirable properties of the 

chemically-cured cement.
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A randomised trial was carried out in order to compare the clinical performance, in 

terms of the bonding strength, of the two cement types in 41 patients referred to the 

Department of Orthodontics, Glasgow Dental Hospital between 1995 and 1997. For 

both arches one of the two bonding cements was randomly assigned contralaterally i.e. 

upper right and lower left had the same cement and vice versa (Figures 2.9). All 

brackets used were of the same type and all bonding was carried out by the same 

operator to ensure a high degree of standardisation.

Figure 2.9 An Example o f an Orthodontic Bracket 

with both Cements Assigned Contralaterally

Control Cement

Test Cement

The time to failure of each bracket was recorded where failure is defined as a bracket 

having dislodged during treatment. An individual is deemed censored if they were
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lost to follow-up during the three year study period or if the bracket had not failed by 

the end of the study.

The study is an example of a paired survival study with Cement Type as the primary 

variable with Test (i.e. Glass Ionomer Cement) and Control (i.e. Chemically-cured 

cement) as the treatment arms. Each patient’s Sex, Age and Malocclusion Type was 

recorded as potential covariates. An individual’s Malocclusion Type gives a 

description of how the upper and lower teeth come together in terms of whether they 

protrude inwards or outwards. Malocclusion Type 1 is considered the “best” where 

the upper and lower teeth come together perfectly.

Summary statistics of the failure and censoring times are given in Table 2.5 where it is 

noted that there is an identically high degree of censoring in both the Control and Test 

Cement group.

Table 2.5 Descriptive statistics fo r  Observation Time by Cement Type 
______________________ fo r  the Dental Data______________________

Sample Sizes
Estimated 

Population Median 
Observation Time 

(months)

Sample Range 
(months)

Control Cement
Failure 21 (51%) 2.9 0.1 - 17.9
Censored 20 (49%) 14.5 0.5 - 30.3

Test Cement
Failure 21 (51%) 2.4 0.1 - 17.3
Censored 20 (49%) 15.3 0.5-28.1
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There is an identical and high degree of censoring in both the Test and Control 

Cement groups with similar observation time distributions, as displayed in the boxplot 

below (Figure 2.10).

Figure 2.10

Boxplot of Test and Control Cement 
Observation Times for the Dental Data

Failed —
Control
Cement

Censored _
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Time to Failure (months)

There were 29 females (79%) compared to 12 males (21%) enrolled in the study 

reflecting the population pattern as orthodontic treatment of this type in general is 

more frequent for females than males. The sample mean ages were similar for males 

and females (14.1 and 14.7 respectively), and despite the considerably larger range 

(Figure 2.11) in age for females there was no significant difference in mean age 

(p=0.24) for males and females.
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Figure 2.11

Boxplot of Age by Sex 
for the Dental Data
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For the individuals in this study the Malocclusion Type distribution for males and 

females and (Figure 2.12) was quite similar with no significant difference in their 

distribution for the two cement type groups (%2 test, p-0 .41).

Table 2.6 Distribution o f Malocclusion Type by Sex 
(with row percentages in brackets) for the Dental Data.

Malocclusion Type
1 2 3 4 Total

Sex
Male 4 (45%) 1 (17%) 5 (35%) 2 (3%) 12
Female 13 (41%) 5 (15%) 10 (37%) 1 (7%) 29
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2.7 Chapter Summary

A general discussion of dependent survival studies was given with particular reference 

to Cluster survival studies. In general, a Cluster survival study can be one of two 

distinct types, namely matched and paired survival studies. The main difference 

between these two types of Cluster survival study is that, in matched studies, the 

matching is by design while in paired studies there is ‘natural’ matching between the 

‘individuals’. Regardless of the study design, both essentially involve a ‘case-control’ 

type comparison

Both matched and paired survival studies will provide pairs of observation times and 

censoring indicators. In addition, matched studies will have by definition some 

matching variables and possibly some unmatched covariates present. Paired studies 

on the other hand, may only have ‘unit covariates’ available for inclusion in any 

analysis as the individuals within a pair/unit are ‘perfectly’ matched and thus all 

matching variables are likely to be ‘hidden’ from the analysis. Issues relating to the 

matched case-control study design in terms of assessing the quality of matching were 

discussed and the example data sets (one matched and one paired) that will be used 

throughout the thesis were introduced.

Before any formal analysis is undertaken it is essential to graphically investigate all 

the variables involved in the analysis (in particular the primary variable) in terms of 

assessing their influence/significance on survival. The next chapter will deal
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specifically with graphically displaying survival data, in particular for the matched and 

paired survival studies introduced in this chapter.
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Chapter 3 

Methods for Plotting Matched/Paired 

Survival Data

3.1 Introduction

Before any attempt is made to model data, regardless of the context, it is imperative 

that clear graphs of the data are provided, not only to allow a subjective impression be 

made as to the underlying nature and pattern of the data but also to provide clear 

support for the formal conclusions in reporting the results of a study. The emphasis of 

this chapter is to suggest methods for graphing the ‘survival pattern’ across the 

relevant variables involved in matched and paired survival studies i.e. the primary 

variable, the matching variables and any additional unmatched covariates recorded.

Chapter 2 introduced notation for the general framework of matched/paired survival 

data with (tjp, 5jp) used to represent the observation time and censoring indicator 

respectively for the ith observation in the pth pair where i= l,2 , p -1 , .., P. For brevity, 

let in future the first observation in each pair (i= l) be referred to as the ‘case’ and the 

second observation (i-2 ) the ‘control’.

This chapter begins with a suggested method for graphing bivariate survival data 

using a form of scatterplot. Attention then shifts to providing methods for estimating 

and graphing the bivariate survivor function in order to compare the survival
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prospects of the cases and controls. Initially the case and control marginal survivor 

functions are considered followed by a discussion of various methods proposed for 

estimating the bivariate survivor function. Interest concentrates on practical 

applications of these estimators. Following this, methods for graphically assessing the 

independent effect on survival of each of the matching variables and additional 

covariates are presented.

3.2 The Bivariate Survival Scatterplot

W hen analysing paired data the first step is usually to examine a scatterplot of the two 

‘arms’ of the primary variable (i.e. the cases and controls). Using this plot, a 

subjective impression can be made as to whether there is a suggestion of a possible 

difference in these two variables, using the line of equality as a reference. 

Assumptions regarding the data (e.g. normality for paired comparisons) may be 

visually assessed also.

The fact that there is censoring presents a problem for the interpretation of a 

scatterplot with survival data. That the data are paired or matched provides an 

additional problem in that a pair can have neither, one or both members censored. If 

the censoring is ignored the scatterplot represents only pairs with complete 

information 011 both arms of the primary variable.

Despite the drawbacks posed by the presence of censoring, a scatterplot can still be a 

useful and informative tool when analysing paired/matched survival data, if a separate 

symbol is used to identify the censoring pattern of a pair.
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For example, Figure 3.1 below shows the observation times for each case (i.e. 

Multiple Melanoma) and control (i.e. Single Melanoma) pair labelled by their status. 

The line of equality is used to investigate informally any suggestion in the data as to 

whether survival is better in Multiple or Single melanoma (all other factors hopefully 

being equal).

Figure 3.1

Bivariate Survival Scatterplot for the Melanoma Data
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Assuming the case observation time is displayed on the horizontal axis,

• any symbol containing  a +  below the line of equality represents a pair where the 

case strictly outlives the control

• any symbol containing  a O  above the line of equality represents a pair where 

control strictly outlives the case
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In this case there is a suggestion of a non-symmetry about the line of equality 

favouring Multiple Melanoma survival as there is a slight predominance of +  below 

the line compared to the number of O  above. Two points are worth noting here, the 

first is the predominance of doubly censored pairs and the second is the seemingly 

similar censoring pattern for cases and controls given the symmetry about the line of 

equality in ‘censoring’.

The Bivariate Survival Scatterplot for the Dental Data is given in Figure 3.2 below. 

There is no suggestion of a clear improvement in bonding strength for the Test cement 

over the Control cement as there is a similar number of +  below and O  above the line 

of equality. There are several doubly censored pairs on the line of equality 

representing those individuals where neither the brackets bonded with the Test or 

Control cement failed. The censoring pattern for the Test or Control ‘groups’ is 

similar also.

Figure 3.2

Bivariate Survival Scatterplot for the Dental Data

35

30

25

20
C l=>
I
o

LJL

c
CD
E
CDO
o
£Zo
O 0 10 15 30 3520 255

o F ailed  T est 

C em en t

+ F ailed  Control 

C em en t

• C ensored  T est or 
Control C em en t

C ensored  P a ir

Test Cement Follow Up (Months)

42



3.3 The Bivariate Survivor Function.

The bivariate survival scatterplot is a useful graphical device to visualise the 

“collection” of paired observation time points. The graph enables the reader to 

visually assess whether the assumption of random censoring (for the cases and 

controls collectively) is valid and it allows the reader to make a subjective impression 

as to whether there is any suggestion of a difference in the case and control survival 

prospects.

In survival studies involving the comparisons of independent groups, estimates of the 

survival functions are usually provided using the Kaplan-Meier estimate. However, in 

cluster and multiple event studies an estimate of the joint survival distribution is 

needed due to the dependency structure of the data. When, as in this thesis, matched 

and paired survival studies are the primary interest, an estimate of the bivariate 

survival distribution could be useful. Estimating and graphing the bivariate survivor 

function essentially involves draping a 3D step-function surface plot over the 2D 

Bivariate Survival Scatterplot where the estimated probability of survival is displayed 

on the z-axis.

The bivariate survival function is defined as

S(tI,t2> S 1(t1) S2(t2) R (tht2)

where Sj(ti) and S2(t2) are the marginal survival functions for the cases at time ti and 

controls at time t2 respectively and R(ti,t2) can be considered as a measure of
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dependence between the cases and controls. The marginal survival functions of the 

cases and controls, Si(t) and S2(t) respectively are naturally estimated using the 

Kaplan-Meier estimator using the case and control samples separately.

R (ti,t2) is considered (van del* Laan, 1997) as a cross-ratio of the bivariate survival 

function over the corners of the rectangle [0, t j  x [0,t2] and is defined as

S(t1, t2)S(0,0) 
S .(t)S2(t)

where S(0,0)=1.

It is interpreted in similar fashion to the odds ratio in a 2 x 2 table where if the odds 

ratio is 1 the interpretation is that the rows and columns are independent while a 

deviation from 1 indicates positive or negative association. The argument proposed 

(van der Laan 1997) is that if the mass at each event time point corresponding to S(ti, 

t2), S(0,0), S(ti,0), S(0, t2) were observable, then their cross product is a measure of 

the dependence between the cases and controls.

Before discussing methods for the estimation of the case and control bivariate 

survivor function consideration is first given to estimating the case and control 

marginal survivor functions.

3.4 Estimating the Marginal Survivor function

As a first step consider the marginal survivor functions S i(t) and S2(t) for the cases 

and controls respectively. A plot of the estimates of the marginal case and control
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population survivor functions, S,(t) and S2( t ) , can be provided by using the Kaplan- 

Meier estimates of the respective survivor functions. Note, the Kaplan-Meier 

approach (c.f. Section 1.4.2) assumes that the observations are independent when 

calculating the estimated survivor function. In the case of paired data, this assumption 

is adequate when calculating marginal survival estimates as each pair’s first 

observation time is independent from all other pair’s first observation time and 

similarly for each pair’s second observation time.

The estimated marginal survivor functions for the Melanoma and Dental examples are 

displayed in Figures 3.3 and 3.4 below. From these plots, any large to moderate 

difference in survival between the groups can be identified by observing whether one 

plot consistently lies above the other, where it may be thought of as one of the arms of 

the primary variable having ‘better’ survival prospects over this period of time.

Figure 3.3

Kaplan-Meier Estimates o f the Marginal Survivor Function 

for the Melanoma Study Primary Variable.
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For example, there is a suggestion of slightly improved survival prospects for Multiple 

Melanoma sufferers compared to Single Melanoma sufferers. The estimated marginal 

survivor functions for the Multiple Melanoma sufferers descends sharply initially and 

then tails off gradually to a minimum value of 0.7 at around 16 years. The initial 

descent is due to the many (early) deaths at the beginning of the study period. The 

relatively long right tail is a result of many Multiple Melanoma sufferers having long 

survival times (with respect to melanoma).

The Kaplan-Meier estimated marginal survivor functions for the Test and Control 

cement types are displayed in Figure 3.4.

Figure 3.4

Kaplan-Meier Estimates o f the Marginal Survivor Function 

fo r  the Dental Study Primary Variable.
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From the graph, there is no real suggestion of any (clear) difference between the two 

cement types where the probability of bracket failure appears similar for both cement 

types at all time points.

The interpretation of Kaplan-Meier plots is often difficult, i.e. it is unclear exactly 

where trends lie or hard to identify times where there is a suggestion of a difference in 

survival prospects due to plots overlapping at certain times. There is the possibility 

also that any observed pattern is a result of sampling variation alone. In most, if not 

all, applied settings a confidence interval estimate for the estimated survivor function 

is needed. If confidence intervals for the two ‘arms’ do not overlap over an 

‘extensive’ time period then there is a strong suggestion of a difference in survival 

over at least that period.

Methods for calculating pointwise ( l - a )%  confidence intervals (at the desired 

confidence level a )  for a single sample were discussed in Chapter 2. The limits of the 

(1- a)%  pointwise intervals may be joined to form a “confidence band”, however the 

probability that the ‘band’ contains the true survivor function may be much less than 

(1- a)%. Simultaneous confidence bands for the estimated survivor function have 

been proposed however (Hall and Wellner, 1980) but an alternative method proposed

here is to produce a confidence band for the ratio ^  as a function of time.
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3.4.1 Marginal Ratio Survival Plots

The estimate of the ratio of the estimated marginal survivor functions can be plotted, 

along with a unit horizontal reference line. If the ratio lies above this line then, for 

these times, the survival prospects of the cases appear better than the controls. 

Conversely, if the ratio lies below the reference line the probability of survival is 

higher for the controls at that time.

In order to do decide if any trend observed in the ratio plot is due to a real difference, 

a confidence band for the ratio is needed to indicate the plausible region in which the 

ratio plot would lie if there was indeed no difference in survival between the cases and 

controls. Any points on the plot that are outside the reference range would suggest 

that the pattern is not due to sampling variation and may represent a true effect.

One way of obtaining a suitable reference region would be to estimate the error of the 

ratio estimate using asymptotic theory. Obviously a first order approximation can be 

obtained by considering

10g(SKM, (t)) - log(§KM2 (t)) ± 1 ̂ VatlOgCSKM j (t))] + Vo[IOg(SKM2 (t))]

(or some suitable term to ‘ensure’ simultaneous coverage across all t). Now, if there 

is ‘significant’ association between the survival times within a pair, then this 

interval/band will have an inflated variance term and thus provide intervals for

(t) are <t0° wide’ for practical purposes.
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A different approach to obtain the reference region is to use the mechanics of 

perm utation resampling.

3.4.2 Reference Regions For Bivariate Survival Data

In this context, the ratio of the marginal survivor functions is estimated from the 

sample data. The null hypothesis for a paired or matched design is that the both 

observation times in a pair (across the primary variable) are equally likely for either
i

member of that pair. Based on this hypothesis, suitable ‘equally likely5 permutations
t

of the observed data can be generated. For each of the permuted data sets, the ratio of 

the marginal survivor functions can be calculated and the permutation distribution of 

the ratio constructed. A 100(l-ot)% pointwise reference region is then given by 

[q(1/ 2 a), q ( l-1/ 2 a)] , i.e. the interval bounded by the 1/ 2 a  and the ( l - 1/ 2 0 C)th quantiles of 

the permutation distribution. This reference region represents the region where the 

estimated ratio could fall in if there was indeed no difference in the case and control 

population survival prospects. ^

f

3.4.3 Permutation Envelopes For Ratio Survival Data

In order to calculate an exact reference region all 2P possible permutations (i.e. for P 

pairs) must be used. Rather than examining all possible permutations, a substantial 

reduction in the number of required computations can be achieved by examining a 

smaller, but representative random sample. This process is termed a “Monte Carlo” 

simulation. Each ‘pass5 involves randomly allocating the case and control for the two
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observation times in a pair. One way to achieve this is to randomly generate a 

Bernoulli indicator variable before each pass thus ensuring a random sample of 

equally likely permutations from all possible permutations is chosen for each pass (for 

a predetermined number of passes, e.g. 500). For clarity, the term ‘permutation 

envelope’ is used to distinguish between an exact and an estimated reference range. 

For example, an estimated 95% permutation envelope can be calculated by taking 

upper and lower 2.5% pointwise quantiles of the computed ratios at each observation 

time point.

Such permutation envelopes for the ratio of survival for the Melanoma and Dental 

Examples are given in Figures 3.5 and 3.6 where in each instance 500 simulations 

were used.

Figure 3.5
Marginal Ratio Survival plots fo r  the Melanoma Study Prim aiy Variable.
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There is again a suggestion of improved survival for the Multiple melanoma sufferers 

particularly for the period between 90 and 110 months.

Figure 3.6
Marginal Ratio Survival plots fo r  the Dental Study Prim aiy Variable.
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There is no suggestion of any difference between the performance of the Test and 

Control cements in terms of the time to bracket failure.

3.5 Estimating The Bivariate Survivor Function.

Various semiparametric estimators (Munoz 1980, Campbell 1982, Langberg and 

Shaked 1982, Tsai, Leurgans and Crowley 1986, Dabrowska 1988, Pruitt 1991, 

Prentice and Cai 1992) have been proposed, each of which make little or no 

assumption about the shape of the function but differ in terms of how the empirical 

fractions (i.e. the mass provided by each paired observation) are calculated. Recall
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that the Kaplan-Meier estimator is a product limit approach where the information 

provided by the censored observations is ‘redistributed’ to the right. In the bivariate 

case this redistribution is more complicated primarily in terms of deciding the 

contribution of the half censored pairs (i.e. where one member of the pair is censored).

Two review papers are available (Pruitt 1993, van der Laan 1997) which describe and 

compare the proposed estimators with details of how these estimators are calculated. 

In both papers the Dabrowska and Pruitt estimator are recommended for general use 

and, as this chapter is primarily concerned with presenting practical methods for 

graphing dependent survival studies, only Dabrowska’s and Pruitt’s estimator will be 

considered for application. The methods presented however will be applicable to any 

of the methods referenced above for estimating the bivariate survivor function.

Before considering methods for graphically displaying and interpreting the bivariate 

survivor function, an intuitive description of both the Dabrowska and Pruitt estimator 

is now given. Recall that the main ‘problem’ when estimating a bivariate survivor 

function involves deciding on what mass contribution each pair type (i.e. non, singly 

or doubly censored) will provide.

The Dabrowska and Pruitt estimators are similar in terms of the logic proposed for 

estimating ‘mass contribution’. For both estimators, the ‘information’ from doubly 

censored pairs is redistributed across an upper right quadrant, a half-censored pair can 

be considered as contributing information along a horizontal (or vertical) line while a 

non-censored pair contributes exact information.
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Using Dabrowska’s approach (1988) the contribution made by pairs where either both 

members or neither member experience the event follow a similar logic to that 

proposed in the univariate case while “mass contribution” for the singly and doubly 

censored pairs is dealt with through a counting process.

Pruitt’s approach (1991) on the other hand uses non-parametric smoothing techniques 

rather than product limit ideas. The estimator initially assigns each contribution mass 

the value 1/n and the idea is that, by using kernel-density estimators, mass from singly 

and doubly censored pairs can be redistributed.

A natural approach when comparing paired continuous measurements is to use a 

scatterplot with a line of equality superimposed. In the case of paired/matched 

survival studies the bivariate survival function can be used to provide evidence of any 

departure from symmetry, as assessed by the ‘plane’ of equality. Improved survival 

for either the case or control in general will be accompanied by a less steep decline in 

the surface depicting the bivariate survivor function in one side or other of the ‘plane 

of equality’. The estimated bivariate survivor functions for the Melanoma Data the 

Dental Data are displayed in Figures 3.7 and 3.8. Note, in both instances both 

Pruitt’s and Dabrowska’s estimators gave near identical estimates and hence only one 

plot is provided for each data set.
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Figure 3.7

Surface p lo t o f  the Pruitt Estimated Bivariate Survivor Function

fo r  the Melanoma Study Primary Variable.

Multiple M elanom aS ingle M elanom a

Figure 3.8

Surface plot o f  the Dabrowska Estimated Bivariate Survivor Function 

fo r  the Dental Study Primary Variable.



There is some suggestion that the surface has a sharper decline for the Single 

Melanoma sufferers when compared to the Multiple Melanoma sufferers while there 

is no suggestion of a ‘lack of symmetry’ about the (imagined) plane of equality 

evident in the Dental Data. These suggestions are further confirmed by looking at 

contour plots (using suitable contours) for the two example data sets (Figures 3.9 and 

3.10) where there is a distinct ‘leaning’ in favour of Multiple Melanoma survival 

while no clear ‘leaning’ is evident in the Dental data.

Figure 3.9

Contour Plot o f the Pruitt Estimated Bivariate Survivor Function 

fo r  the Melanoma Study Primary Variable.
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Figure 3.10

Contour p lo t o f  the Dabrowska Estimated Bivariate Survivor Function

fo r  the Dental Study Primary Variable.
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3.5.1 Permutation Envelopes For The Bivariate Survivor Function

In order to determine whether any patterns or differences/asymmetry observed in the 

estimated bivariate survivor function are real and not due to sampling variation alone, 

an extension of the permutation test procedure illustrated for the plot of the ratio of 

survivor functions can be employed. Upper and lower 95% permutation envelopes for 

the bivariate survivor estimate can be obtained using the same permutation and Monte 

Carlo methods presented for the plot of the ratio of survivor functions. The problem 

now involves presenting a method to graphically display the three surfaces 

simultaneously to determine regions where the estimated bivariate survivor function 

crosses either the upper or lower reference ranges.
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One possible method is to graph the three surfaces simultaneously using a solid colour 

for the sample estimate and a light colour for the upper and lower reference ranges. 

Regions where the sample estimate cuts through the references ranges are considered 

regions where there may be a significant difference in survival (Figures 3.11 and 

3.12).

Figure 3.11 
Surface plot with Reference ranges fo r  the 

Melanoma Study Primary Variable.
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Figure 3.12
Surface p lo t with Reference ranges

fo r  the Dental Study Primary Variable.
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There is again a slight suggestion of a significant difference in the survival prospects 

of the two Melanoma types in similar epochs/time periods to those suggested in the 

marginal plot but in general the estimated survivor function is sandwiched within the 

reference range. Note that the surface is very flat at the edges due to the 

predominance of censored observations with long follow ups.

One point worth mentioning is that it is quite plausible that the estimated ratio, or 

surface, could cross the reference ranges (or permutation envelopes) at certain time
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intervals when there is actually no difference in survival. However, when the 

estimated ratio, or surface, are consistently above (or below) the reference ranges (or 

permutation envelopes) then there is more likely to be a true difference in survival.

For example, despite the fact that the estimated survivor function does appear to cross 

the upper 95% reference range at a solitary time point, there is no suggestion of any 

clear difference in the time to failure for either cement type.

An alternative approach (Bowman 1999) to consider is to plot the estimated survivor 

function alone but to colour code the surface at the times where the estimated survivor 

function crosses the upper or lower reference range using different colours to depict 

which reference range (i.e. 90%, 95% and 99%) is crossed.

From the various plots presented in this chapter the following points are evident. 

There is some slight suggestion of a possible difference in survival favouring Multiple 

Melanoma compared to their similar Single Melanoma sufferers. However, this 

difference is evident only over a limited time and therefore may not be strong, or 

consistent enough to suggest a real significant difference. There is no suggestion 

either of any difference in the Cement types in terms of their performance of 

prolonging time to bracket failure.

All of the techniques used so far have effectively assumed that all other factors (i.e. 

matching variables and additional covariates) were ‘equal’ for the cases and controls. 

However, in many analyses (e.g. Analysis of Covariance) it often makes sense to
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correct for significant covariates which might distort the findings of an ‘unmatched5 

analysis. Accordingly graphical methods to attempt to allow for this are required.

3.6 Assessing the Individual Effect of Covariates on Survival

As indicated in Chapter 2 the ‘recorded5 covariates in a matched or paired survival 

analysis study have different roles. In a matched study, some of the covariates are 

used to form the matching and are termed matching variables. Earlier in this thesis 

methods were suggested for assessing the quality of the matching.

Presumably the matching variables have been chosen by virtue of their proven effect 

on survival. However, it may still be useful to identify the effect the matching 

variables have on survival in the current study as a way of validating the method used 

for selecting the controls in terms of how representative they are of the ‘control5 

population in question.

In addition to the matching variables, unmatched covariates are often available which 

may serve as further useful ‘adjusting covariates5 when analysing the effect of the 

primary variable.

Before any modelling approach is considered it is imperative to gain an understanding 

of the univariate effect of each of the covariates in turn. This section deals primarily 

with providing methods for graphically assessing the effect of covariates on survival 

in general, regardless of whether they are matching variables or unmatched covariates.
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The first section deals with categorical covariates while the second considers 

continuous covariates.

3.7 Categorical Covariates

This section is primarily concerned with investigating the effect of categorical 

covariates on survival. The Kaplan-Meier estimator, as illustrated in Chapter 1, 

provides an efficient means of estimating the survival function (for right censored 

data) for each level of the covariate. A graphical comparison of the effect of the 

covariate on survival can be made by plotting the upper and lower pointwise 

confidence intervals (e.g. 95%) or confidence bands in addition to the estimated 

survivor function for each level of the covariate. As previously mentioned, when 

comparing two or more independent groups of survival data, such a graph can appear 

quite cluttered, and it is difficult to accurately identify any clear patterns.

One way around this is to modify the argument presented earlier for generating 

reference ranges for the plot of the estimated ratio of survivor distributions.

3.7.1 Ratio Plots for Independent Survival Data

The marginal ratio survivor plot concerned the estimated ratio of the marginal 

survivor functions and the reference ranges were generated by virtue of permutation 

within pairs (in order to remain true to the ‘within-subjects’ design of such studies). 

For any binary covariate, the technique introduced in Section 3.4.2 can now be
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adapted to the ratio of survivor distributions for the two levels of the covariate (as 

opposed to case/control).

3.7.2 Reference Range Plots for Binary Covariates in Survival Data

In the case of independent binary covariates, reference ranges can be generated by 

considering all the possible permutations of the covariate label. If m and n are the 

number of observations in the two levels of the binary covariate where m+n=P, then

rm  + n ^ ^m + n^
there are m possible permutations of the grouping pattern. There are

, m ,

possible data sets therefore which could have been obtained conditional on any 

subject being equally likely to have arisen from either level of the binary covariate.

If the number of observations is fairly large this will result in a very large number of 

possible permutations and a Monte-Carlo simulation is preferable. A selected 

number (e.g. 500) of simulations is carried out, and the estimated survival ratio is 

calculated for each permuted data set. Lower and upper 2.5% quantiles can then be 

computed at each distinct observation time from the simulated set of ratios to generate 

the permutation envelope as an alternative to the exact reference range. Stratified 

Kaplan-Meier plots by the binary covariate of the estimated survival functions and 

accompanying survival ratio plots (with permutation envelopes) for the various 

categorical covariates recorded in the Melanoma and Dental studies are given overleaf 

(Figure 3.13) where, in each graph, 500 simulations were used.

62



E
st

im
at

ed
 

Su
rv

iv
al

Figure 3.13 

Kaplan-Meier and Ratio Plots For The Melanoma Data
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From the plots (and indeed accompanying Log-Rank tests) presented for the 

Melanoma data it is clear that all the matching variables are significantly associated 

with survival and therefore the matching was worthwhile.

Poorer survival is associated with males compared to females in general with a 

suggestion of strongly improved survival for females from 70 to 170 months. Similar 

survival patterns for both sexes appear from 170 months onwards although this may 

be a function of the small sample sizes beyond this time. One explanation for this is 

that in general females are more likely to report possible tumours much earlier than 

men (Tillman 1998).

Poorer survival is strongly associated with ulcerated tumours with a suggestion of 

dramatically worse survival prospects for individuals with ulcerated tumours from as 

early as 10 months onwards.
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Individuals with tumours presented on an axial site have poorer survival prospects 

compared to those with tumours located on an extremity. There is a suggested region 

(similar to that with sex) corresponding to significantly improved survival for tumours 

located on an extremity from 80 to 180 months again small sample sizes beyond 180 

months may be the cause of this apparent lack of difference after this time.

The last two plots investigated the effect of the Clark Level of Invasion covariate on 

survival. From the stratified Kaplan-Meier plot it is evident that the majority of 

individuals with Clark Level 1 are censored and poorer survival is evident with 

increasing Clark Level. For brevity, in order to prepare the ratio plot only the Clark 

Level 1 and 3 groups were used to highlight the best and worse levels of the covariate. 

Individuals with Clark Levels of Invasion 2 and 3 exhibit similar survival patterns. 

Indeed, on the basis of a ratio plot using these two levels (not shown), there was no 

suggestion of any difference.

Stratified Kaplan-Meier and ratio plots for the categorical covariates involved in the 

Dental study are given below (Figure 3.14). There is no suggestion of any sex effect 

despite males appearing to have slightly longer time to failure in general. Individuals 

with Malocclusion Type 2 have the poorest performance in terms of time to bracket 

failure while arguably Malocclusion Type 1 individuals have in general the best 

performance. A ratio plot was prepared comparing these two levels of the covariate 

and there was a suggestion of a ‘significant’ difference from 19 months onwards.
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Figure 3.14 

Kaplan-Meier and Ratio Plots For the Dental Data
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3.8 Continuous Covariates

In order to assess the effect of a continuous covariate in regression problems, the most 

natural procedure is to plot the covariate against the response variable. The nature and 

strength of the relationship between the response variable and the covariate controls 

the shape of the scatterplot. In survival problems, the shape of the plot often suggests 

a skew along the time axis due a high proportion of individuals experiencing the event 

early compared to a smaller number of individuals with large (right) censoring times.

In the absence of censoring the ‘true’ relationship between the covariate and time is 

clear, however this is not the case when censoring is present as different information 

is provided by the complete and censored observations.

The first method presented is a continuation of those presented in the previous section. 

Simply recode the continuous covariate into a small number of categories chosen to 

best display the ‘true’ effect of the covariate. The categorisation process could be 

based on previous clinical research. For example, previous research in Melanoma 

(Tillman et al 1991, Aitchison et al 1995) has suggested that identified risk groups for 

Melanoma survival are, in increasing order of risk, < 1.5mm, 1.5-3.5mm and > 

3.5 mm.

If however, such ‘classification’ information is not available the following tree-based 

approach could be considered.
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3.8.1 Tree-Based Approaches

Tree-based approaches have become increasingly popular in recent years since the 

publication of CART (Classification and Regression Trees, Breiman et al 1984), In 

essence, the CART procedure is used to gain a better understanding of the dependence 

of the response variables on the structure of the relationships of potential explanatory 

variables (e.g. risk factors) and their combinations, together with their high-order 

interactions. If the response variable is binary the procedure produces a Classification 

tree while a Regression tree is produced if the response variable is continuous. The

procedure involves successive partitioning of the data set by identifying, at each

partition step, which explanatory variable best (and significantly) separates out the 

data in terms of the response variable on the basis of an appropriate test statistic. This 

approach allows for ‘significant interactions’ to be identified in a non-hierarchical 

manner providing insight and understanding into the structure of the data. A tree- 

based analysis results in clearly defined steps with easily interpretable splits of 

individual explanatory variables allowing prediction of the response variable

calculated for different ‘subgroups’ of the explanatory variables. Creation of these

“high risk” subgroups, using recursive partitioning, is likely to aid any decision 

making process.

Regression trees for survival data (i.e. continuous data with censoring) have been 

proposed (Segal 1988) in order to elicit “high risk” subgroups. In regression 

problems, where there is no censored observations, the two-sample t-statistic is often a 

natural candidate for use as the splitting criterion. In survival analysis problems 

however, any member of the Tarone-Ware (1977) class of two-sample statistics (e.g.
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the log-rank test) may be considered. The partitioning ceases when no further (useful) 

splitting of the data can be achieved at any step in the tree, or when the sample size is 

too small (i.e. < 20 observations), or when the proportion of complete observations is 

too small.

In general, tree-based techniques are used to identify important prognostic groups but 

in the application proposed here the tree-based analysis is used to suggest suitable out­

points for recoding the continuous covariate.

Separate tree-based analysis of the Melanoma data, using the log-rank test as the 

splitting criterion suggested the following splits for Tumour thickness: <1, 1-2 and > 

2mm, while the suggested splits for Age were: <40, 40-55 and > 5 5  years. Stratified 

Kaplan-Meier plots of the effect of Age and Tumour thickness on survival categorised 

using these cut-points are given in Figure 3.15.

Figure 3.15. Stratified Kaplan-Meier plot o f the Effect o f  Tree-Based Tumour 
Thickness Risk Groups on Survival fo r  the Melanoma Data.
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Note, as indicated in Chapter 2, there were a few pairs with considerably thicker 

tumours than any other pairs. In order to check whether these pairs had any overly 

influential effect on determining the categories of tumour thickness used above, the 

tree-based procedure was repeated ignoring these pairs. There was no suggestion of 

an alternative re-categorisation than that suggested using all the Tumour thickness 

data (Figure 3.16)

Figure 3.16. Stratified Kaplan-Meier plot o f the Effect o f Tree-Based 

Age Risk Groups on Survival fo r  the Melanoma Data..
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The only continuous covariate in the Dental study is the subject’s age. There is a 

suggestion that improved performance (i.e. delayed time to breakage) is associated 

with older subjects (personal communication with the principal experimenter). Older 

subjects in general, adhere more strictly to the study guidelines in terms of avoiding 

certain food-types known to adversely effect bonding. A tree-based analysis, again 

using the log-rank test as splitting criterion, suggested only two age risk groups i.e. 

under 15 years and older than 15 years of age.
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The effect this re-categorisation of Age has on survival is clear from the stratified 

Kaplan-Meier plot displayed in Figure 3.17.

Figure 3.17. Stratified Kaplan-Meier plot o f the Effect o f  Tree-Based 

Age Risk Groups on Survival fo r  the Dental Data.
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3.8.2 Nonparametric Quantile Regression curves

The method presented in the previous section attempts to present the relationship 

between the covariate and time on the ‘survivor function’ scale but it would be useful 

also to graphically present the relationship, if any, using the original ‘observation 

tim e’ scale.
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One approach adopted by several authors (Beran 1981, Bowman and W right 1998) is 

to add ‘suitable’ regression lines to the scatterplot that depict the effect the covariate 

has on the probability of survival at chosen percentiles. The idea is to ‘run’ across the 

covariate and extract bins, or ‘windows’ of data from which a quantile can be 

estimated based on the Kaplan-Meier survival curve for the data in that bin. These 

running quantiles can then be calculated at many covariate values and when plotted 

should indicate the nature of the relationship between the covariate and observation 

time.

This procedure is referred to in the literature as nonparametric quantile regression 

curve estimation. In particular Bowman and Wright (1998) suggest a technique 

involving a double smoothing process. A weighted Kaplan-Meier estimator is 

proposed using kernel smoothing using nearest neighbour weighting. The resulting 

running quantile curve is a step function and a second smoothing process, applying a 

nonparametric regression procedure to the step positions of the graph, is proposed to 

yield a smooth quantile curve. As with all smoothing procedures, there is a level of 

subjectivity as to what is the ‘best’ value of the smoothing parameter to use. 

Smoothed nonparametric quantile curves are presented therefore for Tumour 

Thickness and Age, at suitable quantiles (Figure 3.18) for the Melanoma data example 

using a value of the smoothing parameter chosen subjectively to avoid ‘over’ or 

‘under’ smoothing the estimated quantile curve.
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Figure 3.18. Smoothed nonparametric quantile curves fo r  Tumour Thiclaiess
fo r  the M elanoma Data.

250

200

(n  
x:

LJL

0.0 0.5 1.0 1.5 2.0 3.02.5

T u m o u r T h i c k n e s s  (mm)

There is again a suggested effect of Tumour thickness on survival where thicker 

tumours are associated with poorer survival (for the 0.80, 0.90 and 0.95 quantiles). 

Once again the influence of two extreme observations were assessed and no undue 

influence of these was noted. For clarity, the range of tumour thickness is restricted in 

order to compare the pattern of the smoothed running quantile plots, in terms of 

suggested turning points, to those identified using the tree based analysis. There is a 

suggestion also that the ‘high risk’ tumours thickness categories of < lm m , 1mm - 

2mm and > 2mm are plausible (Figure 3.18).

The smoothed nonparametric quantile curves for Age (evaluated at the 0.80, 0.90 and

0.95 quantiles) suggests poorer survival prospects with increasing age (Figure 3.19).
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Figure 3.19. Smoothed nonparametric quantile curves fo r  Age
fo r  the Melanoma Data.
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This appears to be in agreement with the Age risk groups suggested by the tree-based 

analysis as there are plausibly three steps in the smoothed nonparametric quantile 

curves corresponding to the splits suggested by the tree-based approach (i.e. 40 for all 

three quantiles and 60 for the 80% quantile).

As indicated earlier, a patient’s age is the only continuous covariate in the Dental 

study. A tree-based analysis suggested that above and below age 15 years constituted 

the most significant “at risk” subgroups. The smoothed nonparametric quantile curve 

(Figure 3.20) also suggests that bracket failure is less likely with increasing age and 

that the proposed age risk groups suggested by the tree approach seem plausible.
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Figure 3,20 . Smoothed nonparametric quantile curves fo r  Age
fo r  the Dental Data.
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Note, if necessary, a permutation test procedure could be adopted here to assess 

whether the non-linear patterns evident in all the above smoothed nonparametric 

quantile curves are due to sampling variation or not. If there was no association 

between the covariate and observation time each covariate is equally likely to have 

‘occurred’ at each observation time. The procedure would therefore involve 

computing a permutation envelope (similar to those proposed in Section 3.6.1.3 

above) by estimating smoothed nonparametric quantile each time using the recorded 

observation times and a random permutation of the covariate values in the sample.
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3.9 Chapter Summary

When analysing matched or paired data a simple scatterplot (with a line of equality 

superimposed) is the most common method to graphically present such data. This 

allows the statistician to make a subjective impression as to whether there is an 

‘average’ difference between the ‘populations’ or indeed if any underlying bivariate 

pattern is present.

When graphing survival data however, the interpretation of a simple scatterplot is not 

as straightforward due to the presence of censoring in the data. One way around this 

is to label each pair by ‘jo in t’ censoring status which gives some indication of the 

‘performance’ of each pair and allows a subjective impression to be made as to the 

pattern of the censoring present.

The most common method for displaying ‘independent’ survival data from two 

distinct populations is the Kaplan-Meier estimate. Extensions of this method have 

been suggested in this chapter for displaying estimates of the marginal survival 

distributions of the cases and controls in the form of a ratio plot. A permutation test 

based method for generating ‘reference ranges’ was proposed which aids in 

determining whether an observed effect may indeed be real and not due to sampling 

variation alone. Following this, a review of proposed methods for graphing the 

bivariate survivor function was given with methods for obtaining suitable reference 

ranges.
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Finally, methods for graphically assessing the independent effect of each of the 

categorical and continuous matching variables and unmatched covariates on survival 

were presented. In order to graphically display categorical variables, an extension of 

the ratio plot was suggested. When graphing continuous variables the first method 

used a tree-based approach while the second method presented uses a form of kernel 

estimation to construct an estimator of a percentile of the survivor function as a 

function of the covariate.

There was a suggestion of a slight improvement in the survival prospects of Multiple 

M elanoma sufferers when compared to matched Single Melanoma counterparts. This 

suggested improvement only appeared during certain epochs and therefore it is not 

clear whether there is an ‘overall’ improvement. There was a strong suggestion 

however that a patient’s sex, tumour thickness and whether their tumour was ulcerated 

or not strongly influenced survival prospects for melanoma.

There was no suggestion however of any difference in the time to bracket failure for 

the Test (i.e. Glass Ionomer) and Control (chemically cured) cement types. The only 

variable which seemed to affect time to bracket failure was the patient’s age.

Having provided mechanisms for displaying data in ‘dependent’ survival contexts 

(and hence providing subjective impressions), the obvious next stage in the analysis is 

to formally test for a difference in survival and this will form the basis for the next 

chapter.
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Chapter 4

Methods for Comparing Matched/Paired 

Survival Data ignoring Covariates

4.1 Introduction

The previous chapter introduced methods to compare graphically the underlying 

population distributions of ‘time to event’ between two distinct populations. These 

methods are essential in providing mechanisms for obtaining a subjective impression 

as to whether there is a difference in survival between the two populations or not.

The next stage in any analysis is to formally assess any possible difference in the 

distribution of survival time between the two populations.

Initially a brief review of formal analytic techniques (mostly in the form of hypothesis 

tests) for the comparison of survival in two independent groups of survival data will 

be presented followed by a presentation of formal methods for comparing the survival 

experience of two groups (i.e. the two arms of the primary variable) of matched or 

paired survival data while ignoring matching variables and all other covariates. 

Illustrations of these formal methods are provided using the Melanoma and Dental 

data sets introduced in Chapter 2.

78



4.2 Comparing Two Independent Samples of Survival Data

In the rare case of survival data with no censoring, the data could be modelled by 

some parametric family (such as exponential) or possibly transformed to normality 

(perhaps using a log transformation) and then the appropriate normal theory analysis 

could be applied (e.g. a two sample t-test). Alternatively a non-parametric approach 

such as the Mann-Whitney test could be used. However, the methods used for 

‘sampling’ survival data are such that censoring is almost always inevitable and hence 

must be accounted for in any analysis.

Most non-parametric procedures involve replacing the actual observations with rank 

statistics and performing a test on the ranks (e.g. the sign and signed-rank procedures). 

In the case of survival data the use of rank procedures is attractive for dealing with the 

asymmetric or heavy tailed nature of the data.

Methods for analysing survival data from two independent groups based on rank 

statistics were introduced in the literature from as early as 1959. The most important 

of these are the:

• Cox-Mantel Test (Cox 1959, 1972; Mantel 1966),

• Gehan’s Generalised Wilcoxon Test (Gehan 1965),

• Cox’s F-test (Cox 1964),

• Peto and Peto’s Generalised W ilcoxon test (Peto and Peto 1972) 

and the

• Log Rank Test (Mantel and Haenszel 1959, Peto and Peto 1972).
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In general, each test has as its basis a test statistic based on the ranks/scores of both 

samples in a ‘combined/pooled’ form. The test statistics basically differ only in the 

choice of such ranks/scores and in the reference distribution used under the null 

hypothesis of ‘no difference’. A full review and comparison of these tests is given by 

Lee (1992) where the Log Rank test and Peto and Peto’s Generalised W ilcoxon test 

are recommended in general.

This thesis however is primarily concerned with analysing survival data when the 

assumption of independence is likely to be inappropriate and hence standard 

hypothesis tests for comparing independent samples of survival data would be 

inappropriate, if not potentially misleading. The main emphasis of this chapter 

therefore is to present methods to analyse dependent survival data from matched and 

paired survival studies.

The first approach presented is a hypothesis test that compares the population survival 

distributions for the case and control group by assessing each pair in terms of whether 

a definite decision can be made in terms of pair performance.

The second approach involves a selection of hypothesis tests for the direct comparison 

of the survival distributions of the case and control groups which allow for the 

dependency in the data. These tests are similar in nature to the tests referenced above 

for comparing independent samples of survival data as they are again based on 

‘translating’ each original observation into a score and the test statistic is based upon 

‘pooling’ these scores in some manner.
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Finally, methods for modelling the difference between the survival time of a case and 

the survival time of its matched/paired control (i.e. modelling the difference in a 

‘typical’ pair) are given. Of these methods, the first involves assuming the family of 

the underlying population distribution of differences is known while the second, a 

non-parametric approach, needs no specific underlying distributional assumption. 

Both methods can be used to provide point and interval estimates of any appropriate 

population quantile (e.g. median) of the difference in survival between the cases and 

controls.

4.3 Comparing Two groups of Dependent Survival Data

Once again, if censoring was not present statistical tests such as the paired-t test, non 

parametric sign and signed rank tests could be used to assess whether the population 

of the differences has zero centre (i.e. the population mean/median difference is 

zero). As mentioned earlier, most survival data, and in particular matched survival 

data, has a degree of censoring present so such standard techniques are unsuitable.

Chapter 2 introduced notation for the general framework of matched/paired survival 

data with (tip, 6jp) used to represent the observation time and censoring indicator 

respectively for the ith individual of the pth pair where i= l,2  and p = l, .., P. Once 

again without any loss of generality let the first individual in the pair (i= l) be referred 

to as the ‘case’ and the second individual (i=2) the ‘control’.
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As this chapter is concerned with comparing the survival distributions of cases and 

controls, while at present ignoring all covariates, all the methods presented involve a 

‘pairwise comparison’ of observation times. Each pair provides two observation 

times each with a censoring indicator. In terms of censoring there are four possible 

‘states’ for each pair namely one, both or neither pair member may be censored. This 

will become an important consideration in later sections.

The bivariate survival scatterplot introduced in Chapter 3 gave a visual impression of 

the performance of each pair in terms of whether or not one pair member outlived the 

other member. Effectively exploiting the information in such a graph, the first formal 

test for deciding if there is a significant difference in pair performance between case 

and control population is now presented.

4.3.1 The Simple Binomial Test

This test is the most basic for analysing matched/paired survival data where the test 

statistic, the number of pairs where the case definitely outlives the control, is used to 

test the Null Hypothesis that P(case outlives control) =V2 .

Define a score statistic Op where

Op =

1 if tip > t2P and <?2P = 1 p =  1, ..,P

0 if tip < t2P and <5iP = 1 p =  1, ,.,P

undefined otherwise
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and thus is an indicator of a pair’s outcome in terms of whether the first member of 

the pair strictly outlives the second member or not. Hence a score of 1 is given if the 

case strictly outlives the control while a score of 0 is given if the control strictly 

outlives the case. Let S (< P) be the number of pairs where Op is defined.

control. Now if all the Op can be considered independent, then O j can be assumed to 

be distributed as Binomial (S, 9), where, under the null hypothesis of equality of the 

distribution of the population of the cases and the matched controls, 0 = V2 . The 

appropriate hypothesis test is then achieved by referring the observed value of Ot  to a 

Binomial(S, Vi) distribution.

Note that the Simple Binomial test uses the overall ‘pair performance’ as the criterion 

for testing for a difference in survival between the cases and controls, however not all 

pairs have definite “outcome” (e.g. both pair members are censored or one pair 

member is censored at a time less than its matched/paired event time) and therefore 

have to be excluded.

The next approach also involves comparing case and control survival using a score but 

in this approach information from all pairs is used. The tests are similar to the Log- 

Rank procedure in terms of using a rank statistic from a combined/pooled order 

statistic.

S
number of pairs where the case strictly outlives the

p = i
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4.3.2 Rank Tests for Matched/Paired Survival Data

As mentioned earlier, a common non-parametric procedure for comparing 

independent groups of survival data involves replacing the actual observations with 

rank statistics and carrying out a hypothesis test on the ranks. Adaptations of these 

procedures have been developed, based on rank statistics, for matched censored 

problem, notably by

• The W oolsen and Lachenbruch test (1980),

• Gehan’s test (Wei 1980),

• The Paired Prentice-Wilcoxon test (O ’Brien and Fleming 1987)

and

• The Akritas test (Akritas 1990).

Briefly, the test developed by Woolsen and Lachenbruch is specifically designed for 

data following a Weibull distribution and incorporates a generalised sign rank test. 

The procedure for the Gehan, Paired Prentice-Wilcoxon and Akritas tests involves 

assigning scores to each member of a pair and then computing the difference in score 

within each pair. For example, in the Gehan test, the score for the ith individual is 

based on the proportion of individuals with observation time known as less than the 

observation time of the individual minus the proportion with observation time known 

as greater. For reasons that will become clear, only a detailed description of the 

Paired Prentice-Wilcoxon and the Akritas tests are given here.
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4.3.2.1 The Paired Prentice-Wilcoxon Test

For the Paired Prentice-Wilcoxon test the following procedure is employed :

1. Order the E case and control event times to obtain ta), j = 1, ... ,E where E < 2P.

2. For j= l to E, let n(jJ be the number of cases and controls with observation times

greater than or equal to the j lh distinct ordered observed death time, tfj).

3. Define Se = TT-----—— , for e= 1, E.
j=, [n(j) +1]

4. Define the Prentice-Wilcoxon score PWi for the cases as follows:

if the case in the pth pair corresponds to the elh distinct ordered observed event 

then assign the score

PW ip= l-2se

while

if the case in the pth pair is censored at some time between the eth event and the 

(e+ l)st event assign the score

PW lp= l-se.

5. In the same manner, define the Prentice-Wilcoxon score PWi for the controls as 

follows:
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while

if the control in the pth pair corresponds to the eth distinct ordered observed 

event then assign the score

PW2p=l-2se

if the control in the pth pair is censored at some time between the eth event and 

the (e+ l)st event assign the score

PW2p= l-se.

6. Let Ap = PWip- PW2p i.e. the pairwise difference in Prentice-Wilcoxon scores

for the pth pair (p = l, .. P).

7. Compute the test statistic Z p p w  =

( \  

p=i

f  ? v  
^A/>

V V >;=1

It is assumed that Z p p w  approximates in distribution to the standard normal.

Note the above procedure assumes that there are no ties in the observed event times. 

If ties are present and, for example, several events occur at t^ , these times are then 

arbitrarily ordered by assigning them distinct values infinitesimally to the left of Iq . 

The scores are calculated as in steps 1-5 above and then each event originally 

occurring at t^  is assigned the average of the corresponding arbitrarily ordered scores.
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4.3.2.2 Akritas’ Test

The Paired Prentice-Wilcoxon described above was based on calculating scores for 

each member of a pair based 011 a ‘pooled’ order statistic and comparing Zppw to 

tables of the standard normal distribution. The Akritas test is similar in nature to the 

Paired Prentice-Wilcoxon in that a score (using a different procedure but still based on 

ranks) is assigned to each member of a pair but differs in that a paired f-test is then 

used on these scores. The test is essentially a combination of both parametric and 

non-parametric approaches in that the original data are ‘translated’ into ranks (similar 

to many non-parametric approaches) while a parametric approach is then applied to 

these ranks.

Akritas (1990) provides a method for estimating the ranks for survival data by 

defining the rank of a complete observation tj through the Kaplan-Meier estimator as

n ( l —S(ti)) and the rank of an censored observation as n [ l —i  S (ti)] . The uncensored

observation rank is justified by remembering that the survivor function is the 

complement to the cumulative distribution function. The censored observation rank 

estimator however is justified by assigning each censored observation the average of 

the ranks of all observations to its right which, in essence, is a reversal of Efron’s (c.f. 

Chapter 1, section 1.4.2) proposed “redistribution to the right” idea.

Akritas (1990) showed that a paired /-test on the ranks is an asymptotically valid test 

procedure for testing the equality of the case and control survivor functions.
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The test mechanism is as follows:

1. Compute Si(t)and Sa(t), the Kaplan-Meier estimated case and control survivor 

functions respectively.

2. Let S(t) be the average of Si(t)and S2O).

3. The rank transformation step involves replacing each observation

tip by t lp* = 2ii((l-S(.))8i,,+[l--tS(.)];i-8i,,))

and

t2p by t2p* = 2 n ((l-S (.))82P+ [l- |S ( .) ] [1 -S 2|,)).

4. A paired £-test is then used on tip*- t2P* to test the equality of the case and control 

survivor functions (i.e. H0: Si(t)=S2(t)).

Note that the Akritas test uses information from all of the pairs while the issue of tied 

observation times is taken care of in step 1 above and therefore poses no additional 

problems.

In order to compare the Woolsen and Lachenbruch, Gehan, Paired Prentice-Wilcoxon 

and Akritas test, W oolson and O ’Gorman (1992) carried out a comprehensive Monte 

Carlo simulation study to compare the size and power of each test. In all simulations 

1000 samples of 30 and 100 pairs of observations times were generated with



censoring distributions specified to achieve 30%, 50% and 80% censoring. Survival 

times were generated for each sample size and censoring configuration initially using 

an exponential distribution and finally an exponential distribution incorporating 

outliers. The dependency structure was generated by adding an exponentially 

distributed random variable to the ‘common’ survival time for the pair. The results of 

Woolson and O ’Gorman showed that the Akritas test and Paired Prentice-Wilcoxon 

test are somewhat more powerful than the Gehan statistic for most of the scenarios 

studied and as such were recommended for general use.

In order to illustrate the Paired Prentice-Wilcoxon and Akritas tests a trivial example 

of the computational steps in both tests is now given using the matched survival data 

displayed in Table 4.1.

Table 4.1. Example Data fo r  Paired Prentice-Wilcoxon and Akritas Test Illustrations
p i t S

(pair) (individual) (observation time) (censoring indicator)
1 1 12 1
1 2 7 1
2 1 10 0
2 2 10 I
3 1 16 0
3 2 14 0
4 1 8 [
4 2 18 0
5 1 9 1
5 2 26 1

Following steps 1-3 of the Paired Prentice-Wilcoxon test give the following results:

Table 4.2 Paired Prentice-Wilcoxon Test Illustration fo r  Example Data.
to 7 8 9 10 12 26

llj* # > 7 # > 8 # > 9 # >  10 # > 1 2 # > 2 6
10 9 8 7 5 1

Se 1*10/11 0.909*9/10 0.818*8/9 0.727*7/8 0.636*5/6 0.530*1/2
0.909 0.818 0.727 0.636 0.530 0.265
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allowing the appropriate calculation of Rppw for each observation:

p
(pair)

i
(l=Case, 2=Control) t 5 P W iD

1 1 12 1 l-2*(0.53) = -0.06
1 2 7 1 1-2^(0.909) = -0.818
2 1 10 0 1- 0.636 = 0.364
2 2 10 1 l-2%636) = - 0.272
3 1 16 0 1-0.530 = 0.469
3 2 14 0 1-0.530 = 0.469
4 1 8 1 1-2*(0.818) = -0.636
4 2 18 0 1-0.530 = 0.469
5 1 9 1 1-2^(0.727)= -0.454
5 2 26 1 l-2^:(0.265) = 0.469

5 5

From the table above Ap = -0.636, Ap2 = 1.748 , ZPPW =0.363 and a p-value of
/>=! p=\

0.72 suggests no significant difference in the population survival distributions of the 

two groups.

The first step in the Akritas test involves calculating Kaplan-Meier estimates of the 

marginal case and control survivor functions, Si(t)and Sa(t) respectively:

t s.(t) S2(t)
7 1 0.80
8 0.80 0.80
9 0.60 0.80
10 0.60 0.60
12 0.30 0.60
26 0.30 0.00

Using these estimates and the censoring information and t* score can be calculated for 

each case and control as illustrated in Table 4.3.
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Table 4.3 Akritas Test Illustration fo r  Example Data.
p i t 6 S(t) t*
1 1 12 1 Vi(0.3+0.60)=0.45 2*5[1- 0.45] -5.5
1 2 7 1 Vi(l.0+0.80)=0.90 2*5[1- 0.90] = 1
2 1 10 0 V6(0.6+0.6)=0.60 2*5 [1-1/2(0.60)] =7.0
2 2 10 1 V2(0.6+0.6)=0.60 2*5[1- 0.60] = 4
3 1 16 0 V4(0.3+0.60)=0.45 2*5[l44(0.45)]=7.75
3 2 14 0 1/2(0.3+0.60)=0.45 2*5[ 144(0.45)]= 7.75
4 1 8 1 V4(0.8+0.8)=0.80 2*5[1- 0.80] = 6
4 2 18 0 Vi(0.3+0.60)=0.45 2*5 [144(0.80)] =7.75
5 1 9 1 14(0.6+0.8)=0.70 2*5[1- 0.70] = 6.5
5 2 26 1 14(0.3+0)=0.15 2*5 [1- 0.15] = 9.25

The result of a paired t-test on the above t* scores gave the following results: t=0.43, 

df = 4, p-value = 0.68. As with the PPW  test this suggests no significant difference in 

the population survival distributions for cases and controls.

4.3.3 Summary of Proposed Tests

The Simple Binomial test compares the case and control populations by comparing 

the performance of the each pair in the sample in terms of whether the case or control 

performed better. No estimate of the marginal survivor functions is used. The Akritas 

test, and the Paired Prentice-Wilcoxon test to some extent do incorporate marginal 

survivor function estimates in their testing procedures. The Akritas test uses the 

average of case and control Kaplan-Meier marginal survival estimates while, in step 3 

of the Prentice-Wilcoxon test, a “product limit” type argument, similar to that of the 

KM estimate, is used.

All three tests provide a mechanism for hypothesis tests of equality of population 

survival distributions for the case and control groups of matched or paired survival
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data which are based on rank statistics rather than the actual survival times directly. 

The next approach considered here however involves trying to estimate the 

distribution of the population case and control survivor functions in order to assess 

whether the population of ‘differences’ is centred around zero (i.e. effectively no 

difference between the case and control survival distributions).

4.4 The Differences in Survival Times

Define the survival time difference dp for a pair p as

dp = tip - t2p where p = l , P .

As stated earlier, in the absence of censoring some appropriate parametric procedure 

such as a paired t-test based on the dp could be used to compare the survival 

distributions of the two populations. However, it is rarely the case that all 

observations are ‘complete’ as censoring is almost invariably present.

For pairs with one member censored the difference in survival time for that pair will 

be at most or at least the arithmetic difference between the event times in that pair 

depending on whether it is the first or second member that is the censored 

observation. In the situation of a doubly censored pair no clear information is 

available as to what the true difference in survival time might be (see Figure 4.1) 

although there may be information in each member about the underlying marginal 

survivor function of each population.
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Figure 4.1. Illustrating the Censoring Indicator fo r  the Difference 

in Survival fo r  a particular Pair.

■ Event Time 
O Censored Time

Non-Ccnsorcti Pair t, Censored t2 Censored t] & t2 Censored
t, C\

-------------------■ ---------------- O

d = t[-t2 d = t,-t2 ci = trt2 cl = ?

Actual D ifference
5d=1

D ifference R ight C enso red
sd=o

Difference Left C en so red  
5d=2

No Inform ation

Using the information provided by the case and control censoring indicators 5iP a 

‘new5 censoring indicator 5P can be formed for dp as follows:

5 p =

1 if Sip = S2P = 1

0 if Sip = 0 and S2P = 1

2 if Sip — 1 and S2P = 0

undefined if SiP = §2P -  0

representing an exact, a right censored, a left censored and an undefined difference 

respectively. The problem now reduces to a univariate estimation problem with both 

left and right censoring possibly present.

One approach would be to make some distributional assumption about the differences 

(e.g. Normality) and simply treat the resulting likelihood of “complete55 and 

“censored” differences in a standard manner. Inferences on some simple summary 

population measure of the distribution of differences could then be made (e.g. mean
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population difference). The other approach drops the specific distributional 

assumption and relies on a non-parametric density estimate for the population of 

differences. Inference can then be concentrated on an appropriate quantile (e.g. the 

median).

4.5 Estimating the Distribution of Survival Time Difference

The aim of this section is to model the distribution of the pairwise difference in 

survival time and to make inferences on an appropriate summary of such a model 

adopting either a parametric or a non-parametric approach. Then, for example, a 

formal test of the population median difference being zero can then be carried out 

based on whether a confidence interval for population median difference contains zero 

or not.

Note that the null hypothesis for all of the tests presented in section 4.3. is Si(t)=S2(t) 

while the null hypothesis for both tests presented in section 4.5 below is that the 

population median difference is zero. This is an important distinction to make.

4.5.1 Parametric Approach

Let dp, p= l, .. P, arise from some distribution of the differences in survival with 

cumulative distribution F(d/0) and probability density function p(d/0) for some

unknown parameters 9.
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The likelihood of such data is

l(9)= nfew0)) no-pw0)) n(mm)
all complete dp all right-censored dp all left-censored dp

where there is no contribution from any doubly censored pairs. In theory, any 

parametric form for the probability density function and the cumulative distribution is 

possible but perhaps the most natural choice is to assume normality.

Assuming that the dp are normally distributed, interest rests on estimating the 

population mean (and hence also median) difference p  and population variance a . 

The appropriate likelihood is

l(̂ )= n f«^>), n
all complete dp \  /all right-censored dp

n
^  /a ll left-censored dp

 —)
a

The maximum likelihood estimate of p., the population mean difference in survival, is 

then the value fi  for which L(/i,<7) is maximised, or more conveniently, the value 

jl for which the natural logarithm of L(/i,cr) is a maximum. An approximation for 

the estimated standard error of j l , along with appropriate confidence intervals based 

on asymptotic normality can as usual be based on the information matrix.

The above approach provides an estimate of the mean difference in survival between 

the cases and controls while incorporating both the paired and censoring structure of 

the data. This approach can then be used to formally test for a difference in survival
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between the two underlying case and control populations by assessing whether the 

confidence interval for the population mean difference contains zero.

4.5.2 Non-Parametric Approach

The parametric approach above assumes that the underlying family of distributions of 

the differences in survival times is known. An alternative non-parametric approach 

for estimating the distribution of the difference in the survival of the two populations 

is now introduced. This approach relies heavily on the method proposed by Turnbull 

(1976) which provides a non-parametric estimate of a density function for univariate 

survival data which consists of complete, right censored and left censored 

observations.

4.5.2.1 The Self-Consistent Approach of Turnbull

Turnbull (1974) developed an approach for estimating the survivor function for 

univariate survival data with both left and right censoring present which can be 

considered a modification of the Kaplan-Meier estimator. In the absence of any left 

censored observations his approach reduces to the Kaplan-Meier estimate of the 

survivor function.

Turnbull’s algorithm extends the idea of self-consistency initally presented (Efron 

1967) for right-censored data, to derive a maximum likelihood estimate of the 

survivor function for data with both left and right censoring.
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Assume a grid of differences do < di < ... < dra (i.e. both actual and censored 

differences). Note that d0 may not necessarily equal zero due to possible negative 

differences but this is immaterial as Turnbull’s method is based on ranks.

Let ej be the number of true differences (i.e. events), ij be the number of right censored 

differences and lj the number of left censored differences at each dj (j— 0,...,m ). The 

only information provided by a left censored difference lj is that the true difference is 

some value < lj . Turnbull’s approach, using a self-consistent estimator, estimates the 

probability that this true difference occurred at each possible dj* (where j* < j ) based 

on an initial estimate of the survivor function. Using this estimate the expected 

number of events (i.e. the true differences) at dj* is calculated which is then used to 

update the estimate of the survival function. The procedure is continued until the 

difference in successive estimates of the survivor function is negligible.

4 .5.2.2 Summary of Turnbull’s Algorithm applied to Paired Difference Problem

1. Calculate an initial estimate of the survivor function, S(d), at each dj, using the 

Kaplan-Meier estimator ignoring all left censored observations.

2. Using the current estimate of S(d), estimate

Pjj*=P[dj_i < D <dj \ D < dj*] where j < j*

by

S(dj-1) -S(dj) ^
------------------   for i < U.

1-S(dj*) J J
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3. Using the results of the previous step, estimate the number of events (i.e. true 

differences) at dj by

m
e.i = ej + £ ljpy* .

j*=j

4. Calculate the Kaplan-Meier estimate based on the estimated right censored data 

with ej events and ij right censored observations at dj ignoring all the left censored 

observations.

5. If the estimates from successive iterations are close for all dj (say to within 0.0001) 

stop the procedure, if not return to Step 2.

In effect, Turnbull’s method involves “redistribution to the right” and “redistribution 

to the left”. The right censored data are accounted for in the Kaplan-Meier estimation 

while the left censored observations are accounted for in Step 2.

The estimator of the survival function based on Turnbull’s algorithm can also be 

derived using a modified EM algorithm (Dempster, Laird and Rubin 1977) approach. 

Several suggestions have been made to speed up the estimation procedure (Wellner 

and Zhan 1998). An additional recommendation by Zhou (1997) is to change the 

smallest and largest observations to event times to make the estimator ‘behave’ like a 

true distribution at the tails. Regardless of the approach taken, the estimators are 

generalised maximum likelihood estimators (Turnbull 1976).



4.5.2.3 Estimating the Variance of S(d).

Turnbull (1976) showed that his proposed estimator is a non-parametric maximum 

likelihood estimator and using maximum likelihood theory presented an estimator for 

the variance of S(d) based on the information matrix as follows:

Define I=[Ii,j] by

J ei ei + i l ' i  l i

[S(di - 1) -S(di)]2 [S(di) -S(di +1)]2 S(dt)2 [1 -S(di)]2

for i = 1, „m -l

j  Cm I'm lm
[S(dm-l)-S(dm)]2 [S(dm)]2 [DS(dm)]2

L + u  = Ii.i + i = — ^ -------- for i = 1, m-1
[S(di) -S(di +1)]

and

L, j = 0 for | i - j | > 2 for i = I , ..., m -1.

The estimated variance covariance matrix V(S(d)) is the inverse of the matrix I and 

the estimated standard error for S(d) is obtained from the appropriate entry in the 

diagonal of V5F".
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An alternative approach to estimating V(S(d)) is to use the non-parametric bootstrap 

(Davison and Hinkley 1997, Zhan, 1998) where separate S(d) estimates (based on 500 

samples for example) are obtained from a repeated sampling (with replacement) of the

original difference data. Using this resampling procedure, estimates of the variance of 

/ \

S(d) can be obtained from the distribution of the resampled estimates.

4.5.2.4 Estimating the Median of S(d).

Once an estimate of the distribution of differences is available, estimating specific 

quantiles of the distribution may be of interest. One important summary measure of 

this distribution is the median. As the estimate of the survivor function is usually a 

step function, the point estimate of the median survival time is almost always an 

‘interval’ but could be formally defined as the smallest time for which the value of the 

estimated distribution of differences is less than 0.5.

An approximate 95% confidence interval which can be constructed for the median of 

S(d) using the asymptotic likelihood properties of S(d) is

{d : S(d) - 1,96Vv[S(d)] < 0.5 < S(d) + 1,96Vv[S(d)] j.

This confidence interval can then be used to assess formally for a difference in the 

survival difference between the two populations by simply considering whether zero 

lies in the interval or not. Note that the various transformations introduced in section

1.4.3 are applicable here also.



4.6 Examples

Examples of the different approaches outlined in this chapter for testing for a 

difference in survival distribution for matched and paired survival data (ignoring all 

covariates) will now be given for both the Melanoma and Dental data sets.

4.6.1 Melanoma Data

From the graphs presented in Chapter 3 there is a suggestion of slightly better survival 

prospects for the Multiple Melanoma sufferers over those suffering from Single 

Melanoma. The number of pairs where the Multiple Melanoma sufferer strictly 

outlived their Single Melanoma counterpart amounted to 15 while there were S pairs 

where the Single Melanoma sufferer strictly outlived the Multiple Melanoma sufferer. 

Using the Simple Binomial test this suggestion of improved survival for the 15 

Multiple Melanoma sufferers proved non-significant (p= 0.21).

Neither the Paired PW test nor Akritas test suggested a significant difference in 

survival for the two Melanoma groups (p= 0.76 and 0.75 respectively).

The approach based on the differences in survival for each pair (i.e. Multiple - Single) 

first requires a plot of the data (Figure 4.2).
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Figure 4.2.
Categorised Boxplot o f the true and censored Survival Time pairwise differences, 
estimated mean difference and 95% Confidence Interval fo r  the Melanoma Data.
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Difference in Survival Time (Weeks)

From this boxplot the assumption that the underlying distribution of the differences is 

normal seems reasonable. Using this normality assumption, an estimate of the 

population mean difference and 95% confidence interval thereof was obtained as 34.5 

weeks and [-2 1 ,9 1 ] weeks and is presented graphically in Figure 4.2. As this interval 

contains zero there is no strong suggestion of improved survival for either the 

Multiple or Single Melanoma sufferers although the interval is mostly positive 

agreeing with the conclusions reached in Chapter 3.

The final approach was to estimate the distribution of the difference in survival using 

Turnbull’s method. The estimated survivor function of the difference with 

approximate pointwise 95% confidence intervals for the differences in Multiple and 

Single M elanoma survival times is given in Figure 4.3.
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Figure 4.3

Estimated Survivor Function and 95% Pointwise Confidence Intervals for the 

Difference in Survival Times fo r  the Melanoma Data.
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The estimated median of the difference in survival times is 27 weeks with a 95% 

confidence interval of [-47, 100] (highlighted on the horizontal axis in Figure 4.3). 

Note, using a bootstrap estimate the resulting confidence interval was [-48, 100]. 

Once again there is no suggestion of a significant difference in survival for the 

Multiple and Single Melanoma sufferers. This is somewhat wider than the confidence 

interval based on normality (i.e. [-21, 91]) and is possibly more skewed to negative 

values perhaps suggesting that the asymmetry seen in the Figure 4.2 for left censored 

differences is not adequately modelled by normality.

In conclusion, when comparing Multiple and Single Melanoma survival while 

ignoring all matching covariates and other potential prognostic factors, there was no
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strong suggestion of a significant difference in survival for the two types of 

Melanoma.

4.6.2 Dental Data

This study aims to compare two different cement types (Test and Control) in terms of 

their bonding strength. There was no clear suggestion of any difference between the 

cement types when looking at any of the relevant graphs presented in Chapter 2.

Of the 41 individuals involved in this study the Test material definitely outperformed 

the Control material in 14 individuals while the Control material outperformed the 

Test material in 9 individuals. Ignoring the 18 individuals where no clear decision 

could be made in terms cement performance, a Simple Binomial test suggested no 

significant difference between the cements (p=0.41). Neither the Paired Prentice- 

W ilcoxon test nor Akritas test suggested a significant difference in the bonding 

strengths of the two Cement Types (p=0.73, p=0.75 respectively).

A categorised boxplot of the true and censored differences in failure time along with 

the estimated mean difference and 95% confidence interval is given in Figure 4.4.
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Figure 4.4.
Categorised Boxplot o f the True and Censored Pairwise Failure Time Differences, 

estimated mean difference and 95% Confidence Interval fo r  the Dental Data.
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The assumption that the underlying distribution of the differences is normal seems 

reasonable, except perhaps for the right censored differences. Assuming normality, 

the estimated mean difference and corresponding 95% confidence interval was 1 week 

and [ “23, 25] weeks respectively as depicted in Figure 4.4. As this interval is 

centered almost exactely at zero there is again no suggestion of improved survival for 

either type of bonding Cement bond.

The results of using Turnbull’s non-parametric approach is presented in Figure 4.5 

whic shows the estimated survivor function of the differences with approximate 95% 

pointwise confidence intervals.
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Figure 4.5.

Estimated Survivor Function and 95% Pointwise Confidence Intervals for the 

Difference in Survival Times for the Dental Data.
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The estimated median difference in time to failure for the two Cement Types is 0

weeks with a 95% interval of [-20, 17] weeks respectively. Note, using a bootstrap

estimate the resulting confidence interval was [-20, 14]. Somewhat surprisingly this is 

a narrower interval than that obtained using normality. As neither interval contains 

zero there is once again no suggestion of a significant difference in the time to failure 

of the two Cement Types.
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4.7 Chapter Summary

Two distinct approaches were considered in order to formally compare two population 

survival distributions based on matched/paired survival data. In this chapter all the 

approaches considered ignore all matching variables and other recorded covariates. 

The first approach presented a collection of hypothesis tests specifically incorporating 

the paired nature of the data. The Simple Binomial test does not utilise all the pairs 

available for analysis, rather only those where a clear decision can be made in terms of 

improved survival prospects. The Paired Prentice-Wilcoxon and Akritas test on the 

other hand do utilise all the pairs available in the data.

The second approach involved estimating the actual distribution of the difference in 

survival time either parametrically or non-parametrically, again using only those pairs 

where a difference could be defined. From these, point and interval estimates of 

relevant summary parameters or percentiles can be obtained. Based on the Melanoma 

and Dental datasets, the non-parametric approach seems more applicable in general as 

it is difficult to formally justify the normality assumption. A simulation study is 

required to assess all these approaches under a variety of different conditions and will 

be considered in a later chapter.

None of the approaches presented in this chapter incorporated the matching variables 

or the unmatched covariates into the analysis. In general, many of these 

variables/covariates are likely to influence survival. The next stage in this thesis is to 

provide methods for the comparison of the two survivor functions incorporating these 

variables/covariates and this will be the emphasis of the next chapter.
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Chapter 5

Methods for Comparing Matched/Paired 

Survival Data incorporating Covariates

5 .11ntroduction

This chapter concentrates on methods for incorporating matching variables and 

potential unmatched (or unit in the case of paired studies) covariates into the analysis 

while at the same time taking the dependency structure of the data into account. The 

comparison of the two ‘arms’ of the primary variable should then be more precise than 

a simple ‘independent treatments’ comparison.

As a first step an extension of the Simple Binomial Test which allows for covariates is 

presented. This extension uses as its basis a comparison of the pairwise performance 

of the cases and controls while adjusting for any significant covariate effects.

Following this, a selection of potential regression models for dependent survival data 

that centre 011 modelling the hazard rate rather than pair performance are discussed, in 

particular the proportional hazards model. This model is an attractive choice in terms 

of the primary goal of this chapter (i.e. assessing the effect of the primary variable on 

survival while adjusting for any covariate effects). Extensions to this approach that 

allow for dependent survival data are presented and examples given for both the 

Melanoma and Dental datasets.
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5.2 The Role of Covariates in Dependent Survival Studies

As discussed in Chapter 2, for matched survival studies, the covariate vector contains 

the primary variable, matching variables and, possibly, some unmatched covariates. 

For paired survival studies on the other hand, it is not possible to record matching 

variables hence the covariate vector contains only the primary variable and, possibly, 

some additional ‘unit’ covariates (i.e. covariates relevant for both observations in any 

pair e.g. sex and age).

In both matched and paired studies the unmatched covariates may be considered as 

‘adjusters’ where interest in these covariates matters only insofar as whether they are 

needed in a final model to adjust the estimates of the survival distribution of the 

primary variable for any imbalance that may exist across these covariates. For 

example, in the Melanoma study, Level of Invasion of a patient’s tumour and a 

patient’s sex may be needed as ‘adjusting’ covariates in the comparison of the survival 

distributions of Single and M ultiple Melanoma sufferers.

The selection of appropriate and relevant/significant covariates may be based on 

partial likelihood ratio hypothesis tests (Klein 1997) and an automated stepwise 

variable selection procedure (Collett 1994). Stepwise procedures allow identification 

of subsets of covariates which are significantly related to survival time and thererfore 

appropriate for inclusion in any final model. Covariates are entered or removed on the 

results of significance tests based on large sample partial likelihood ratio tests.
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As mentioned above, two distinct approaches to modelling matched or paired case- 

control survival data will be considered in this chapter. The first method uses a direct 

pairwise performance of the cases and controls and is now introduced.

5.3 Pair Performance Model

The first method for comparing survival between cases and controls is an extension of 

the Simple Binomial Test introduced in Chapter 4. A pair performance indicator 

variable was defined in Chapter 4 which categorised pairs by whether or not one 

member of a pair clearly survived longer that the other member.

Recall, this pair outcome performance indicator was defined in terms of a score 

statistic Op where

° p =

1 if t lp > t 2p and S2p = 1 p = l , . . ,P

0 if tip < l2P and 5U> = 1 p = l,..,P
undefined otherwise

Note, as discussed in Chapter 4, that for some pairs no value of Op can be obtained 

(i.e. both members of the pair are censored or one member censored before the other 

member died) and hence all such pairs are effectively excluded from this form of 

analysis. By considering only those S pairs where Op is defined, an Op score equal to 

1 represents the case outliving the control while an Op score of 0 represents a pair 

where the control strictly outlives the case.



The Simple Binomial Test uses as a test statistic the number of pairs where the case 

outlives its matched control (i.e. number of “successes”) which, under the null 

hypothesis of identical survival distributions for cases and controls, should behave as 

a Binomial(S, Vi) distribution. In order to incorporate any imbalance that may exist in 

the covariates (both matching and non matched covariates) an extension to the 

approach used in the Simple Binomial Test needs to be provided.

A natural extension in order to incorporate covariates is to calculate a ‘difference’

covariate z*pc for each pair with a “well-defined” value of Op as follows:

*
Z pc Z jpC Z 2pC

where c=2,....C (i.e. excluding the primary variable) and p= l, ...P.

Each new “difference” covariate z*pc is the pairwise-difference between the case value 

and the corresponding control value for the appropriate covariate over the S pairs 

where Op is defined.

This so called “Pair Performance Model” is now presented.

5.3.1 Estimation in the Pair Performance Model

This ‘data’ can be viewed as a form of logistic regression where the response variable 

is the pair performance indicator. Techniques for modelling binary data are well 

established (McCullagh and Nelder 1989, Hosmer and Lemeshow 1989, Cox 1989).



By modelling the probability of the case outliving the control as a logistic regression 

on the covariate differences i.e.

exp(P0 +P z*pc)P(Op = l l z *  )
l + exp(p0 +p z pc)

the likelihood for all S pairs where Op is defined can be written as

Lpi<p0,p) = n
p= i

exp(p0 +p z*pc) °n
1

_l + exp(p0+p z*pc)_ l + exp(p0+p z v )_

l-0„

The constant term P0 in this model is the probability of the case outliving the control

when all other covariates in the final model are equal for a pair (i.e. z*pc=0 for all 

c=2,..,C). Stepwise procedures may be used to determine the “best” final model in 

terms of which “difference covariates” are found relevant for inclusion.

V’V

Maximum likelihood estimates /3 of the regression parameters can be provided using

a Newton-Raphson approach while the asymptotic covariance matrix V  may be 

estimated by the inverse of the negative of the matrix of second partial derivatives 

evaluated at the maximum likelihood estimates.

The role of the case and control survival times in the Pair Performance Modelling 

approach is purely to calculate the performance score (i.e. the response variable) for
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each pair to be used in the logistic regression. The second series of approaches, 

presented below, will involve regression methods where the hazard rate is modelled 

and the full survival information from each pair is utilised.

5.4 Regression Models for Independent Survival Data

Before discussing these approaches to modelling ‘dependent5 survival data it is useful 

to revise regression techniques for ‘independent5 survival data. This will serve two 

purposes, firstly to establish notation and secondly to introduce concepts that will later 

be refined to incorporate the specific features of the problem at the heart of this thesis

i.e. the analysis of dependent survival data.

Due to the nature of survival data and the general properties of the survivor function 

(as discussed in Chapter 1), standard regression techniques are not applicable. Two 

general approaches to the modelling of covariate effects on survival have been 

proposed. The first approach is analogous to classical linear regression but modelling 

some transformation f  (e.g. natural log) of the survival time t in terms of the linear 

model

/ ( t )  = g(Z) + £

where g(Z) is some pre-specified transformation of the covariate vector Z and £ 

represents the additive error distribution. There is a variety of choices for the error 

distribution. By letting the error distribution follow a standard normal distribution the 

resulting model is a log-normal regression model, the extreme value distribution
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yields a Weibull regression while choosing a logistic distribution results in a log- 

logistic regression model. This family of regression models is commonly called the 

Accelerated Failure-Time (ACF) models and, as outlined above, a parametric 

assumption must be made regarding the error distribution on the linear model.

The second approach is to model the event rate in terms of the risk an individual has 

of experiencing the event of interest. The model is intrinsically linked to the hazard 

function and hazard rate by quantifying how a set of covariates influence the hazard 

rate for a particular individual. By specifying a model through the hazard function, 

specific questions such as how survival is related to the primary variable and other 

covariates under study can be addressed.

One of the most common such regression models is to allow the hazard function to be 

multiplied by a “risk score” for each individual. The hazard function is therefore a 

product of two functions: the underlying ‘baseline’ hazard function h 0(t) which 

characterises how the hazard function changes as a function of time, and the risk score 

which characterises how the hazard function changes as a function of the covariates. 

The most popular choice for the risk score is exp(/3 z)(Cox 1972) and the model is 

written as

h(t I z) — h0(t)exp(p z)

w hereh0( t) , represents the baseline hazard function (i.e. the hazard function for the 

“standard” individual and z represents a vector of covariates suitably centered).
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Using the relationship between the survivor function and the hazard function 

discussed in Chapter 2, the proportional hazards model can be written in terms of the 

survivor function as follows

S (tlz )  = S0(t)exP(P 'z)

where S0(t) is the baseline survivor function (i.e. the survivor function for a 

“standard” individual).

The principal assumptions underlying this model are:

1. the assumption of proportional hazards

i.e. the ratio of hazard functions for two individuals

with different covariates does not vary with time.

2. the relationship between the covariates and the hazard function

should be linear in the log space.

3. i) the survival times for each individual should be independent,

ii) the survival times and censoring times are independent

and

iii) the censoring is not affected by the covariates.

The most widely used proportional hazards regression model in survival analysis 

involves leaving the parametric form of the baseline hazard function unspecified (Cox 

1972) resulting in a very flexible model. This model is primarily used when the



emphasis is on estimating the relative effect of the covariates on the survival prospects 

of an individual rather than modelling the survivor function itself (which is often 

assumed to be of secondary interest).

5.5 The Cox Proportional Hazards Model (PH)

The proportional hazards model was first introduced by Cox in 1972 in his seminal 

paper entitled 'Regression models and life tables' which incorporated the idea of 

partial likelihood. The model proposed defines the hazard function h(t I z) of a 

continuous random variable T for an individual with covariate vector z, as

h(t I z) = h ^ e x p ^ 'z )

where p is a vector of unknown parameters and h 0(t) is the (unknown) baseline 

hazard rate.

The proportional hazards model formulation has the specific distinction that no 

parametric form is assumed for the underlying baseline hazard function. In essence 

the model can be considered as a semi-parametric model as a parametric form is only 

assumed for the covariate modelling.

It is assumed that the covariates themselves are not functions of time (or indeed 

change through time), although generalisation to incorporate time-dependent 

covariates in the model can be relatively straightforward (Cox 1975).
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5.5.1 Estimating the regression coefficients p

Based on the notation already developed, ti,t2 , tn are the n observation times with 

Si as the corresponding indicator variables which is zero if the ith survival time tj is 

right-censored, and unity otherwise. Also let zic is the cth covariate (c= l, , C)

associated with the individual whose observation time is tj.

When there are no ties among the survival times, Cox formulated the partial 

likelihood LpHfor his proportional hazards model (Cox 1972) as follows

LPH(P) = n
i=]

exp (P 'z ,)

6 R(t>) exp(P'zj)

where R (tj) is the risk set at time h (i.e. the set of all individuals who are still at risk 

just prior to f  ).

The corresponding log-likelihood function is given by

ln(LpH(p)) =  £  8 j < P % - In X exP ®  'z j)
i = l j e R ( t . )

Although this is not a genuine likelihood, Cox (1975) justified the form of Lph within 

the framework of partial likelihood, and has shown that standard large sample 

maximum likelihood results may be applied with regard to resulting estimators. The
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estimator of P has a large sample C-variate normal distribution with a mean of P and 

variance V, so that Wald, score or likelihood ratio hypothesis tests for global and local 

inference about p can be constructed.

Essentially the likelihood is a comparison of those individuals who experience an 

event at a particular time to those available to experience an event at that time. The 

estimates of p do not depend on the exact times at which the events occur, but rather 

on the rank ordering of the event times. The model adjusts for censored individuals 

by deletion of individuals from the risk sets. When ties occur in the survival times, 

two modifications of the conditional likelihood are available (Breslow 1974, Efron 

1977).

Point estimation of P can be achieved by using the methods of maximum likelihood. 

First and second derivatives of Iii(L ph) are easily obtained and iterative use of these 

through a Newton-Raphson numerical technique will yield parameter estimates. The 

asymptotic covariance matrix V  may be estimated consistently by the inverse of the 

negative of the matrix of second partial derivatives evaluated at the maximum 

likelihood estimates.

In any regression model the estimated coefficient for a covariate represents the rate of 

change of a function of the response variable per unit change in the covariate. In the 

PH model a regression parameter can be interpreted as the logarithm of the ratio of 

the hazard of death for a particular individual with these covariate values to the



baseline hazard. These “ratios” play an analogous role in interpreting the results of a 

CPH model as odds ratios play in logistic regression.

If the covariate is a continuous variable (e.g. tumour thickness) then its estimated 

coefficient from a proportional hazards model is the estimated change in the logarithm 

of the hazard ratio when the value of the covariate is increased by 1 unit. If, on the 

other hand, the covariate is a categorical variable with 2 levels (e.g. sex) then the 

estimated fi coefficient is interpreted as the change in the logarithm of the hazard 

ratio from the first level to the second. In this case therefore, if exp( ft ) is larger than 

1 the second level of the covariate has a higher risk of death while, if exp( /3) is less 

than 1, the first level of the covariate has a higher risk of death.

In any modelling procedure it is important to investigate whether interactions (in 

particular with the primary variable in this context) are deemed necessary for 

inclusion in the model. One approach is to adopt a 0/1 coding system for the primary 

variable (where the case is coded as 0) and all categorical variables (i.e. matching and 

variables and unmatched covariates) in order to facilitate the ease of interpretation of 

the estimated regression coefficients. This coding scheme is particularly attractive 

when fitting interactions (which are the product of the original variables in the model) 

and for creating design variables when comparing specific contrasts. The significance 

of each separate interaction can be assessed (using design variables where necessary) 

by adding it to the main effects model and using partial likelihood ratio tests.



In the last few years the theoretical basis for the model has been solidified by 

formulating the model in terms of a counting process and invoking aspects of 

Martingale theory (Anderson 1993). Structuring the model in terms of a counting 

process essentially involves counting the number of events each subject experiences 

up to a specific and fixed time. This allows the formulation of a Martingale residual 

which can be considered as a difference between the observed number of events for an 

individual and the expected number given the current model (Barlo and Prentice 1988, 

Therneau et al 1990). Other residuals, whose primary function is in checking the 

model assumptions, are derived from the Martingale residuals (Therneau et al 1990) 

are discussed later.

5.6 The Independence Assumption and the PH model

The primary assumption of all the regression models for survival data discussed so far 

is that the survival times for each observation are independent. This limits the use of 

such models in the analysis of dependent survival data as the main assumption is 

automatically violated. However, one could still fit such models to dependent 

survival data ignoring the dependency. This would be analogous to carrying out a 

two-sample analysis (e.g. a two sample t-test) on paired data where the proper test 

would be a paired sample t-test on differences. Clearly if the dependency is ‘weak’ 

this might be ‘perfectly5 acceptable but if the dependency is ‘strong5 then the 

‘independent5 analysis is likely to be very conservative in nature and therefore inferior 

to (and less powerful than) an appropriate ‘dependent5 analysis.



Adaptations to the Cox PH model to allow for dependent data, specifically involving 

matched and paired studies are now introduced.

5.7 Adapting the Cox PH Model to Clustered Data.

As discussed in Chapter 2, studies in Survival Analysis involving clustered survival 

data are primarily of two types, namely matched or paired survival studies.

In matched survival studies the matching variables are available for inclusion in the 

analysis while in paired studies the variables representing the ‘degree of similarity’ for 

the case and control are often unobservable and are thus ‘hidden’ from the analysis. 

In a genetic study for example, family members are considered similar but it may be 

impossible to accurately measure their degree of similarity to include in the analysis.

The main component of both of these types of dependent survival study is the ‘pair’ 

structure. It will often be reasonable to assume that each pair can be considered 

independent of all other pairs while individuals within a pair are ‘clearly’ dependent. 

A crucial point in the analysis is the assumption that pairs themselves can be 

considered nuisance parameters in that no estimate of pair effects are of any real 

importance. The main emphasis is to estimate the regression coefficients of the PH 

model and, principally, the ‘difference in survival between the members of a pair i.e. 

the primary variable comparison.
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The next sections develop extensions of the Cox PH model for both matched and 

paired survival studies.

5.8 Extensions of the Cox PH for Matched Survival Data

Extensions to the Cox PH model for matched survival data (i.e. where information is 

available on the matching variables) are introduced below.

5.8.1 The Conditionally Independent Cox PH Model (CPH)

In these contexts the actual values of the matching variables are available so the 

simplest approach here is simply to

i) ignore the matching structure,

ii) force the matching variables as covariates into the analysis 

and

iii) include any relevant unmatched covariates chosen through some

variable selection procedure.

A standard Cox model PH model is then applied to the data with the key purpose of 

the analysis the estimation of the effect of the primary variable.

Note that the use of ii) above will to some extent correct for any lack of ‘quality in the 

matching’ as it will allow for the actual values of the matching variables in any pair.
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The basis of the conditional model therefore is that even though the matched structure 

of the data is ignored, information on the matching is used to adjust, or correct, the 

inferences made on the primary variable. The main justification of this model is that 

the assumption of conditional independence is balanced out by the use of the matching 

variables in the model.

The CPH model therefore is identical to the Cox PH model except that the strategy for 

variable selection is confined only to the unmatched covariates (i.e. the adjusters) as 

all matching covariates are forced into the model although their ‘significance5 should 

be noted and reported to the ‘client5 for any future studies involving matching in the 

particular context.

The hazard rate for the ith individual in the pth pair with covariate vector zipc (c=l,.., C) 

is modelled as

h ip(t l z iPc ) = h o ( t )exp([J , z ipc)

where the covariate vector contains the primary variable, all matching covariates and, 

possibly, some unmatched covariates are included.

Procedures for estimating p and its corresponding asymptotic covariance matrix Y for 

the CPH model is identical to that for the Cox PH model.
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5.8.2 The Marginal Cox PH Model (MPH)

The CPH model introduced in the previous section assumes that the lack of 

independence is controlled for by the matching variables alone. An extension of this 

approach is to model the data, initially ignoring the dependency structure, producing 

the usual estimates of the regression parameters and then correct the covariance 

structure of the regression parameter estimates to ‘allow’, to some extent, for the 

matching.

The model is identical to the CPH and the regression parameters (3 are once again 

estimated by maximising the partial likelihood L p h (P ). The regression coefficients are 

estimated assuming independence (i.e. dropping the pair subscript and treating all 

observations as independent) while the estimated covariance matrix is then ‘corrected’ 

to account for the matching.

The marginal model was first proposed (Lee 1992) in the context of dependent 

survival studies involving clusters (e.g. litters, families etc.). W hen the number of 

observations in a cluster is small in comparison to the number of clusters Lee et al 

(1992) proposed a method to adjust the usual covariance matrix for the possible 

association within each cluster (this association measure being assumed the same

across all clusters). Using large sample theory they proved that the estimator (3 is 

consistent for the underlying regression parameter p. If the survival times within each 

cluster are indeed independent, the corrected covariance matrix reduces to the 

covariance matrix calculated for fully independent data (Lin & Wei 1989). The 

corrected covariance matrix, defined as V , can be thought of as the summation of the
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squares of all independent contributions to the partial likelihood (King 1996). A 

different derivation of V  is proposed by Therneau (Therneau 1997) by using a paired-

a time is used. In the context of jackknife estimation, the removal of each pair can be 

considered as the removal of an independent ‘observation’ from the data and forms 

the basis of the adjustment matrix. This approach has been shown to give the same 

results as that proposed by Lee et al (Lipsitz and Parzen 1996).

Lee’s variance estimator applied to matched/paired data is calculated as follows. Let 

Yjp(t) indicate, by values 1 or 0, whether or not the ith individual in the plh pair is at 

risk at time t.

jacknife estimate of the variance where the change in on removing the pairs one at

Define

p 2

and

P 2

M lc(t) = Y S YipWz ii* exP $  ' z ip)
p=l i=J

for i= 1,2, p = l , . . . ,P  and c= 1, ... C.

Let

M0(tip)J  ^  M 0(tqw) L il,W
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Define the ah, c element of the c x c adjustment matrix A as

P 2

a„,c = y  y  WipbWipc
p=l i=I

resulting in the adjusted estimator V  of the covariance matrix of p

~  /v

V = VAV

where V  is the standard asymptotic covariance matrix estimate of J3 from the PH 

model (section 5.5.1).

Note that the MPH model allows for the matching by correcting the variance estimates 

post-fit and thus, unlike the CPH model, the matching variables need not be forced 

into the (final) model used. This might well change the other parameter estimates and 

in particular the estimates of the regression coefficients for the primary variable of 

interest.

5.9 Extensions of the Cox PH Model for Paired Survival Data

In such contexts the actual values of the ‘matching variables’ are unavailable so the 

approach here is exploit the paired structure of the data .
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5.9.1 The Stratified Proportional Hazards Model (SPH)

A further refinement to the PH model for paired survival data is to allow each cluster 

to define a separate stratum and employ a PH model within each stratum. In the 

paired framework each pair forms a separate stratum with its own distinct arbitrary 

“baseline” hazard function.

It is further assumed that the effect of other covariates on the hazard function for a 

particular pair p is constant across pairs/strata and thus the model can be written as

h ip(t l z ipc) = h 0p(t)exp(p/z ipc) > i=l,2, p = l  ,P , c = l , C

i.e. the regression parameters are assumed to be identical for each pair but each pair 

has a different baseline hazard function. Note, the covariate vector now includes the 

primary variable and relevant ‘unit’ covariates (as found relevant by an appropriate 

variable selection procedure based on this stratified model).

Estimation and hypothesis testing are the same as described previously for the PH 

model where the partial likelihood function is now given by

Lsph(P) = P J  [Lp (P)]
p=l

where the partial likelihood’s L p(p) for each pair (stratum) are of the standard PH 

model form but using only the data from the pth (p=l, P) pair.
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This model has appeal for paired survival studies when the matching variables are not 

estimable (e.g. studies involving an individual’s eyes) as the dependency structure can 

be incorporated into the analysis by stratifying by pair. If the xnatching variables are 

available (e.g. a matched case-control study) it is not clear whether using the matching 

variables purely to define a cluster is sensible as this may result in a large degree of 

inefficiency in terms of estimating the effect of the primary variable of interest. In the 

matched case-control scenario sensible regression parameter estimates may not be 

possible due to there only being two observation time points in each pair. It is also 

not clear what asymptotic properties Lsph has since each pair adds a new nuisance 

parameter to the model and therefore the number of parameters tends to infinity with 

the number of pairs.

There is a strong similarity between the Pair Performance model (PP) and the SPH 

model. Kalbfleisch and Prentice (1980) show that by assuming a proportional hazards 

model and forming a likelihood based on the ‘pair rank’ (i.e. by looking at which 

member failed first) they arrive at the same likelihood as that presented for the PP 

model (Section 5.3.1 above).

Therefore, despite the fact that the Pair Performance model is essentially a logistic 

regression approach while the SPH model is an extension of the proportional hazards 

model, the interpretation of the regression coefficients in both models should be the 

same (Kalbfleisch and Prentice 1980).

In summary, the stratified PH model incorporates the paired structure of the data by 

considering the association within each pair as a fixed effect. An alternative and
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computationally more elaborate procedure is to introduce a random effect term for 

each pair that represents the within-pair association. This idea is expanded in the 

following section.

5.9.2 The Random Effects PH Model

The final extension to the PH model considered here for analysing paired survival data 

is to introduce a random effect into the model corresponding to each pair. This 

random ‘pair’ effect, often termed a ‘f r a i l t y generates dependency between the 

survival times of the individuals in a pair. The frailty terms represent covariates that 

are unaccounted for in the model. In the PH model these are assumed to act 

multiplicatively on any individual’s hazard rate. Survival times of all individuals are 

assumed to be independent given the frailty values (and any observed covariates).

The term ‘frailty’ originates from the original use of such a survival regression model 

where the random effect was considered to represent an (unobservable) measure of an 

individual’s ‘proneness to failure’ (Vaupel 1979). Some individuals may be more 

prone than others to a particular disease due to some genetic or environmental 

conditions that may not be directly measurable (e.g. they come from the same family 

and are related genetically, or they are exposed to the same environmental conditions). 

The random effects PH model formulates the overall variability of the survival times 

of the individuals as having two components: the first is ‘natural’ variability which is 

modelled by the hazard function, and the second is variability which is common to 

individuals in the same pair as modelled by the frailty.
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Several authors have addressed the estimation of such frailty models for the covariate- 

free bivariate case (Clayton 1978, Oakes 1982, Lee and Klein 1989, Hougaard 1984, 

Hougaard 1986a, Hougaard 1986b). Estimation of the frailty in the presence of 

covariates has been considered (Clayton and Cuzick 1985) using a modified EM 

algorithm (Dempster, Laird and Rubin, 1977).

In the context of paired survival studies, a random effect or frailty can be incorporated 

into a proportional hazards model but in order to ‘estimate’ the ‘frailty’ an assumption 

must be made with regard to its underlying distribution. The most common 

distribution assumed for the ‘frailty’ is the gamma distribution (Clayton 1978, Oakes 

1982, Clayton and Cuzik 1985, Klein 1992, Nielsen 1992) because it is strictly 

positive and provides a tractable solution to the problem of parameter estimation 

(Aalen, 1994). The assumption that the gamma distribution is valid for the random 

effect has been addressed by Lawless (1982) and Conoway (1990) where they 

conclude that the gamma distribution is quite flexible in that it provides a wide variety 

of shapes for the frailty distribution.

Parameter estimation for the Cox PH model with gamma frailties is now described.

5.9.2.1 Estimation for the Gamma Frailty PH Model (GPH)

According to the random effects PH model the hazard for the ith individual in the pth 

pair, given a frailty cop and covariate vector z lpc, is

h ip ( t 1 z ipc - ®p )=  h0 (t)a>„ exp(p'zi|JC)
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where |3 is the regression vector and h 0 (t) is the assumed common baseline hazard

function as before. The GPH model further assumes that the frailty terms, mp ,

p=l,...., P, are independent and identically distributed observations from a gamma 

distribution with density function

with mean 1 and variance 0. Large values of 0 represents strong association within 

pairs. Oakes (1982) and Klein (1997) have shown that the parameter 0 is closely

% (i.e. the measure of association between pairs ) equals 0/0+2.

The frailties for each pair can be considered as missing data, and the EM algorithm, a 

standard approach to parameter estimation in missing data problems, can be used. 

Alternative approaches for parameter estimation that have been considered for the 

GPH model are a partial likelihood approach (Klein 1992), a counting process 

approach (Neilsen 1992) and a penalised likelihood approach (Therneau 1997). For 

continuity with earlier sections the partial likelihood approach will be presented here.

The partial likelihood approach involves writing the full likelihood in terms of the 

observed survival times and the unobserved frailties. The expectation of this 

likelihood with respect to the observable data is carried out in the E-step. A partial 

likelihood is constructed for estimating the regression parameters using a profile

“1} exp(-% )

related to Kendall’s coefficient of rank correlation % where the expected value of
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likelihood technique (Johansen 1983) in the M-step, The algorithm iterates between 

these two steps until convergence. In order to estimate the parameters 0 and (3 a 

modified EM algorithm is used. Following the derivation by Klein (1992), the 

complete data log-likelihood can be written as

ln(L(0, P, H0, c o , c o p)) = L, (6) + L, (P, H0)

where Ho is the baseline cumulative hazard function for each individual. Let Ep be the 

number of events in the pth pair then

Li(0) = - P[(l/0)ln0 + lnr[l/0]] + X K 1/ 0 + Ep - l)lno>i> - cop/0}
p=l

and

L2(P,H c) = X X  [5 iptP'Zjp + lnh„(tip)] - ffipH0(tip)exp(P'zip)].
p = l  i = l

111 order to implement the EM algorithm initial estimates for p, 0, and H0(t) are 

needed. ‘Obvious’ initial estimates for p and H0 can be provided by fitting a Cox PH 

model ignoring the frailty i.e. letting C0p =1 for all p= l, .. ,P, while an initial estimate 

for 0 of 0.25 has been proposed (Klein 1992, Therneau 1997, Hosmer and Lemeshow 

1998).
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To apply the E step of the algorithm it can be shown (Klein 1992, Therneau 1997) 

that, conditional on the observed data, the 00p are independent gamma random 

variables with shape parameter

A P = [1/9+ Ep]

and scale parameter

B p = [l/0  + £ H o(tip)exp(P'zip)] .
i=l

Thus

A n
E(copIData)=—E-

B p

and, after some algebra,

E(ln cnp I Data) = [t|f (Ap) - lnBp]

where i/a (•) denotes the digamma function.

The resulting expectation of L(9, (3, H 0, c o i , C 0 p) given the data and the current 

values of Ap and Bp is

Li(9) = - P[(l/0)lne + lnlU/G]] + J  j[l/0 + Ep - l]ftf (Ap) - lnBp] - ̂ 4

and
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L2(p,H0) = X X
P= 1  i = l

The M-Step of the algorithm involves maximisation of Li(0) and L2(p, H0) with 

respect to the unknown parameters 0 and P in order to provide updated estimates of p 

and Ho (while including the estimated frailty term oj ) in the E step. Maximisation of 

0 involves maximisation of Lj(0) only while maximisation of L^Cp, H0), which 

contains the nuisance “parameter” H0(t), is required to obtain the updated estimate of

p.

A non-parametric estimate (Klein 1992) of Ho(t) (in this case the cumulative baseline 

hazard function which includes the frailty term) is

H o(t)=
t(k) < t

where

h = ----------^ ______
5 > ,  exp(P'Zj)

jeR(tao)

where t(k) is the kth smallest event time, regardless of the pair, e<k) is the number of 

deaths at t(k> for k= l, .... e, R(t(kj) is the risk set of individuals at t(k) and cbj and Zj are

the expected value of the frailty, given the data, and the covariate value associated 

with the j th individual in the sample respectively.
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In summary therefore, initial estimates of p and H0 are provided using a standard Cox 

PH model and are subsequently updated using the M step.

Note that an alternative method for maximisingL2(/3,H») is to fit a standard Cox PH 

model while including ln(d)) as a model covariate with a fixed coefficient of 1 i.e. as 

an offset term.

This completes the M-step.

The full implementation of the EM algorithm is thus:

Initialisation:

1) provide starting values for p and Ho(t) from, for example, a Cox 

PH model ignoring the frailty term

2) provide a starting value for 0, the variance parameter of the

gamma frailty, for example 0=0.25

Estimation Step:

using the current values of p, 0 and H0(t) compute Ap and Bp and 

hence cbp .

Maximisation Step:

i) Update the estimate of 0 based on Li(0),

ii) Update the estimate of P and H0(t) using L2(P, H0)

Iterate between the Estimation and Maximisation steps until convergence is obtained.
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Significance tests for regression coefficients can be performed using Wald tests based

/V A

on the observed information matrix for (0 , f i )  (Klein 1992, Anderson, Klein et al 

1997), or by a likelihood ratio test (Nielsen, Gill and Andersen 1992) based on 

comparing the partial log-likelihood from fitting the ‘full’ model to one where the 

covariate has been excluded.

Several methods for assessing the significance of the frailty parameter 0 have been 

suggested including a score test (Klein and Moeschberger 1997) a likelihood ratio test 

(Nielsen, Gill and Andersen 1992) and a bootstrap procedure (Therneau 1997). In 

particular, under the null hypothesis that 0=0, the likelihood ratio test statistic is 

2[l (0,/3)-L(O,/?)J which has an approximate chi-square distribution with 1 degree of 

freedom.

The gamma frailty proportional hazards model provides a mechanism for modelling 

the dependency structure in paired data by estimating and modelling the 

unmeasureable ‘covariates’ that represent the dependency structure in a pair through a 

proportional hazards model (Kieding et al 1997). The model is very attractive for 

paired studies where the dependency is often unobservable (e.g. familial studies). One 

obvious question for such a model (which will be addressed later) is how effective a 

frailty model is if one incorporates known matching variables in the model.
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5.10 Model Summary

Each of the models presented above are distinctly different in their approach to 

analysing dependent survival data where some are more suited to matched studies and 

others to paired studies. The best model chosen for any specific analysis will be likely 

to be influenced by the nature or design of the study and therefore a summary of all 

the models considered in this chapter is given in Table 5.1 indicating the role of the 

matched variables and unmatched covariates in each modelling approach.

Examples of each of the regression techniques described in this chapter are now 

presented for the Melanoma and Dental datasets.

5.11 Examples

5.11.1 Melanoma Tumour Group Data

Survival for both Multiple and Single Melanoma is likely to be influenced by a 

number of covariates such as tumour thickness, sex, ulceration etc. As mentioned in 

Chapter 2, individuals were matched by Sex, Age, Tumour Thickness and Tumour 

Site, while the unmatched covariates, or potential prognostic indicators, were Level of 

Invasion and Ulceration status.
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Table 5.1 M odel Summary.

Matched
Studies

Matching Variables Unmatched Covariates

Model Role
Criteria for 

Inclusion Role
Criteria for 

Inclusion

Pair Performance 
Model

difference in values 
of non-perfectly 

matched covariates 
in a pair used to 
adjust for Pair 
Performance 
comparison

Forced into Model difference in values of 
unmatched covariates 
in a pair used to adjust 

for comparison of 
primary variable

Variable Selection 
Procedure

Conditional PH 
Model

used to control for 
dependency in the 

comparison of 
primary variable

Forced Into Model used to adjust for 
comparison of 

primary variable

Variable Selection 
Procedure

Marginal PH 
Model

used to control for 
dependency in the 

comparison of 
primary variable 
and later used to 

“correct” variance 
estimates

Variable Selection 
Procedure

used to adjust for 
comparison of 

primary variable and 
later used to “correct” 

variance estimates

Variable Selection 
Procedure

Paired
Studies

Matching Variables Hidden Covariates Unit Covariates

Model Role
Criteria for 
Inclusion Role

Criteria for 
Inclusion Role

Criteria for 
Inclusion

Stratified 
PH Model

used to 
define strata

Not Available Ignored Ignored used to 
adjust for 

comparison 
of primary 

variable

Variable
Selection
Procedure

Gamma PH 
Model

used to 
control for 

dependency 
in the 

comparison 
of primary 

variable

Not Available
used to 

control for 
dependency 

in the 
comparison 
of primary 

variable

Implicitly 
forced into 

model

used to 
adjust for 

comparison 
of primary 

variable

Variable
Selection
Procedure
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From the plots of the data presented in Chapter 3 there is a suggestion of slightly 

improved survival for Multiple Melanoma sufferers while tumour thickness, ulcerated 

tumours and a patient being male all suggest a detrimental effect on an individual’s 

survival prospects.

In order to assess the effect of the primary variable (i.e. Single/Multiple Melanoma) 

on survival while adjusting for both the dependency structure produced by the 

matching and any imbalance in the covariates (both matched and unmatched) all of 

the models presented earlier in this chapter were fitted to this data.

As outlined above, the matching covariates have a distinct role in each of the 

modelling approaches while any unmatched covariates may be included in the final 

model if they proved useful on the basis of a variable selection approach. A summary 

of the steps taken and the results of the final fitted model for each approach are now 

presented.

5.11.1.1 Pair Performance Model (PP)

The Simple Binomial test applied to this data (see Chapter 4) suggested no significant 

advantage in survival for Multiple Melanoma sufferers over Single Melanoma 

sufferers (p=0.21) although there is a larger proportion of pairs (i.e. 15 against 8) 

where the Multiple Melanoma sufferer survived longer than the Single. This test 

ignored all covariates except the primary variable (i.e. Tumour group).
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In fitting a Pair Performance model the role of the covariates was as follows:

1. Tum our Thickness and Age  were both included as neither was perfectly 

matched;

2. Site and Sex were redundant as both were perfectly matched;

3. No other covariates or two-way interactions were deemed necessary for 

inclusion in the final model on the basis of both forward and backward 

stepwise variable selection procedures.

The results for the final model are given in Table 5.2.

Table 5.2 Results o f a Pair Performance Model 
fo r  the Melanoma Data.

Variable
Regression
Coefficient

P
ese(jS)

Exp(/3) 
(95% C.I.) p-value

Tumour Group
(Multiple/Single)

0.48 0.46 1.62 
(0.6 - 4.2)

0.29

Tumour Thickness 0.19 0.37 1.22 
(0.6 - 2.5)

0.59

Age -0.10 0.01 0.90 
(0 .8 - 1.1)

0.24

Again there is no significant difference in terms of pair performance for Multiple 

Melanoma sufferers over Single Melanoma sufferers while adjusting for any 

imbalance in the matching with similar p-values. The resulting effect of tumour group 

is again in favour of Multiple Melanoma having (marginally) better survival.
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The Tumour thickness and Age regression coefficients are both used to adjust the 

primary variable comparison for any imbalance present in the matching of these two 

variables. Since both are non-significant it could be argued that the quality of 

matching (to the nearest mm and 10 years respectively) was adequate to remove the 

actual (known) effects of Tumour Thickness and Age on melanoma survival.

Note, the above model used 23 pairs of observation (15 Multiple, 8 Single) while no 

decision in terms of pair performance could be made for the other 85 pairs (79% of 

the available data) due to the high degree of censoring in both tumour groups.

5.11.1.2 Conditional Proportional Hazards (CPH) Model

A CPH model was fitted which ignored the specific pairing but included all the 

matching variables and whichever of the unmatched covariates were found to be 

significant prognostic factors by means of variable selection techniques.

The following steps indicate how the CPH model was fitted for this co n tex t:

1. The primary variable (i.e. Tum our group) and all matching variables (i.e. Sex, 

Age, Site  and Tum our Thickness) were forced in the model;

2. Ulceration was the only unmatched covariate found necessary for inclusion in the 

final model on the basis of both forward and backward stepwise variable selection 

procedures;
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3. No other covariates or two-way interactions were deemed necessary for inclusion 

in the final model on the basis of the stepwise variable selection procedures.

The results of this approach in terms of the final model are presented in Table 5.3.

Table 5.3. Results o f the fina l CPH Model 
fo r  the Melanoma Data.

Variable
Regression
Coefficient

P
ese( p )

Exp (P )  
(95% C.I.) p-value

Tumour Group 
(Multiple/ Single)

0.39 0.30 1.48 
(0.8 - 2.7)

0.19

Sex
(Female/Male)

1.01 0.30 2.76 
(1.5-4.9)

<0.001

Age 0.01 0.01 1.01 
(0.9- 1.03)

0.22

Tumour Site 
(Extremity/Axial)

0.51 0.33 1.67 
(0 .8-3 .2)

0.12

Tumour Thickness 0.07 0.02 1.08 
(1.0- 1.1)

<0.001

Ulceration
(Non-ulcerated/Ulcerated)

1.02 0.28 2.77 
(1.6-4.8)

<0.001

On the basis of these results one can see that survival is significantly poorer

(i) the greater the Tumour Thickness',

(ii) for ulcerated over non-ulcerated tumours; 

and

(iii) for males over females.
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However, there was still no clear evidence of a significant difference in survival 

between Multiple and Single melanoma sufferers but the p-value was marginally 

reduced, this time to 0.19 compared to 0.29 from the Pair Performance model and

0.21 for the Simple Binomial Test.

5.11.1.3 Marginal Proportional Hazards (MPH) Model

As described earlier the MPH model is identical in approach to fitting a CPH model 

except that the MPH model accounts for the matching by adjusting the variance of the 

regression coefficients post-fit and hence the matching variables need not be forced 

into the final model. However, in order to compare the MPH model to the CPH 

model in terms of the effect of using the adjusted covariance matrix, the same 

estimates as presented above in 5.10.1.2 was fitted and the results are given in Table

5.4 below.

Table 5.4 Results o f a Marginal Proportional Hazards Model 
fo r  the Melanoma Data.

Variable

Regression
Coefficient

P
ese( p ) E xp (P )  

(95% C.I.) p-value

Tumour Group 
(Multiple/Single)

0.39 0.28 1.48 
(0.9 - 2,6)

0.16

Sex
(Female/Male)

1.01 0.32 2.76 
(1 .5 -5 .2 )

<0.001

Age 0.01 0.01 1.01 
(0.9- 1.04)

0.32

Tumour Site 
(Extremity/Axial)

0.51 0.31 1.67 
(0 .9 -3 .1  )

0.10

Tumour Thickness 0.07 0.02 1.08 
(1 .0 -1 .1 )

<0.001

Ulceration
(Non-ulcerated/Ulcerated)

1.02 0.35 2.77 
(1 .4 -5 .5 )

<0.001
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The estimated regression coefficients are of course identical but there is a slight 

reduction in the estimated standard error (ese) of the primary variable and several 

other covariates reflecting the dependency within the data. The results for both 

models suggest that matching by Age and Tumour Site was not fully justified on the 

basis of this data.

When fitting the MPH model there is no necessity to force the matching variables into 

the final model and therefore the primary variable is the only variable that needs to be 

forced into the model while stepwise procedures determine the inclusion or not of 

matching variables and unmatched covariates alike.

The strategy for variable inclusion in this approach for the MPH model is as follows:

1. The primary variable (i.e. Tum our group) was forced in the model;

2. Tum our Thickness and Sex were the only matching variables and Ulceration the 

only unmatched covariate found significant for inclusion in the final model on the 

basis of a stepwise variable selection procedure;

3. No other covariates or two-way interactions were found to significantly influence 

survival and thus no other terms were included in the final model.

On the basis of this strategy, the final model resulting from fitting a M PH model to the 

Melanoma data is given in Table 5.5.
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Table 5.5 Results o f  a Final Marginal Proportional Hazards Model 
fo r  the Melanoma Data.

Variable

Regression
Coefficient

P
ese( p ) Exp ( P)  

(95%  C.I.) p-value

Tumour Group 
(Multiple/Single)

0.38 0.28 1.47 
(0.9 - 2.5)

0.17

Sex
(Female/Male)

1.22 0.30 3.39 
(1 .9 -6 .1 )

<0.001

Tumour Thickness 0.07 0.02 1.08 
(1 .0 - 1.1)

<0.001

Ulceration
(Non-ulcerated/UIcerated)

1.17 0.30 3.23 
(1 .8 -5 .8 )

<0.001

This final model had a slightly lower estimated standard error (ese) for the estimated 

regression coefficient of Tumour Group and consequently a lower p-value in 

comparison to the final CPH model.

When comparing the final MPH model to that presented in Table 5.4 the estimated 

regression coefficients for the variables common to the two models have obviously 

changed with the estimated effect on survival of Ulceration and Sex being increased 

and their estimated standard errors being reduced.

5.11.1.4 Stratified Proportional Hazards (SPH) Model

The SPH model seems more suited to paired studies but for completeness the 

approach will be applied to the Melanoma data for comparison purposes.
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Initially, a SPH model was fitted with the “non-perfectly matched” variables forced 

into the model to adjust for any imbalance in these variables that may exist in each 

pair.

The results of this modelling approach are given in Table 5.6.

Table 5.6 Results o f a Stratified Proportional Hazards Analysis 
fo r  the Melanoma Data.

Variable Regression
Coefficient

A.

P

ese( p ) Exp(/J) 
(95% C.I.)

p-value

Tumour Group 
(Multiple/Single)

0.22 0.35 1.26 
(0.6 - 2.5)

0.52

Tumour Thickness -0.06 0.11 0.94 
(0.8- 1.2)

0.59

Age 0.04 0.05 1.04 
(0.9- 1.2)

0.44

As explained in section 5.9.1 the results are similar to those presented for the PP 

model in terms of magnitude of the regression parameters and their overall effect on 

survival (see Table 5.2 for comparison). It appears that adjusting for both Tumour 

Thickness and Age is unnecessary due to the high quality of matching (though not 

perfect) in these variables.

As presented earlier the SPH model controls for the dependency of the data by fitting 

separate baseline hazard functions for each pair. In effect, the matching variables may 

not be needed as covariates in this model. A further SPH model fitted in this section
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therefore used a variable selection procedure to determine the inclusion of all 

matching variables and unmatched covariates.

A summary of fitting this strategy through an SPH model in terms of the covariates 

chosen and their respective role was :

1. T um our G roup , the primary variable, was forced into the model:

2. No other matching variables or unmatched covariates or their two-way interactions 

were found necessary for inclusion in the final model.

The final model resulting from fitting this strategy to selection of an SPH model is 

given in Table 5.7 below.

Table 5,7 Results o f a Stratified Proportional Hazards Analysis 
fo r  the Melanoma Data,

Variable
Regression
Coefficient

p

ese( p )
Exp( P)  

(95% C.I.) p-value

Tumour Group
(Multiple/Single)

0.30 0.34 1.35 
(0.7 - 2.6)

0.38

Once again there is no strong suggestion of a significant tumour group difference 

when stratifying by pair and indeed, if anything, the estimated effect of Tumour Group 

seems somewhat diluted by this approach compared to the other approaches (Note 

using Tumour Group alone marginally ‘increases’ the effect of the Tumour Group 

coefficient of Table 5.6).
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5.11.1.5 Random Effects (GPH) Model

The gamma frailty model described in section 5.9.2.1 was fitted to the Melanoma 

data. For continuity, the ‘ full’ CPH model used in 5.10.1.2 was fitted with a gamma 

frailty term and the results are given in table 5.8 below.

Table 5.8 Results o f  a Random Effects Proportional Hazards Analysis 
fo r  the Melanoma Data.

Variable Regression
Coefficient

P

ese( p ) Exp( p ) 
(95% C.I.)

p value

Tumour Group 
(Multiple/Single)

0.43 0.30 1.54 
(0.8 - 2.8)

0.16

Sex
(Female/Male)

1.03 0.32 2.81 
(1 .5 -5 .3 )

0.001

Age 0.01 0.01 1.01 
(0.9- 1.04)

0.19

Tumour Site
(Extremity/Axial)

0.54 0.35 1.71 
(0.9 - 3 .4 )

0.13

Tumour Thickness 0.08 0.02 1.08 
(1 .0 -1 .1 )

0.001

Ulceration
(Non-ulcerated/Ulcerated)

1.01 0.30 2.73 
(1 .5 -4 .9 )

<0.001

There was a slight reduction in the estimated standard error of the estimated Tumour 

Group regression coefficient when compared to the CPH model, reflecting the 

dependency of the data. However, once again, this reduction did not change the 

overall conclusion in terms of identifying a significance difference in the survival 

prospects of individuals in the two tumour groups. Including the frailty term added 

little to the model also and indeed would be thought of as unnecessary on the basis of
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the Likelihood ratio test of the significance of the frailty parameter (0=0.32, 

ese(0 )=0.31, p=0.30, see section 5.9.2.1 for details of the test).

Since the preferred strategy for GPH models would be to only include matching 

variables if necessary (i.e. any matching variables included should account for aspects 

of survival not accounted for by the frailty terms), a further fit of the GPH model was 

obtained allowing matching variables and unmatched covariates into the final model 

only through ‘significance’ in a variable selection procedure. A summary of the 

resulting GPH model is given in Table 5.9.

Table 5.9 Results o f a Final Random Effects Proportional Hazards M odel
fo r  the Melanoma Data

V ariab le Regression
Coefficient

A

P

ese( p ) Exp ( p )  
(95%  C.I.)

p  value

Tumour Group 
(Multiple/Single)

0.41 0.30 1.51 
(0.8 - 2.7)

0.17

Sex
(Female/Male)

1.23 0.29 3.44 
(1.9 - 6.2)

0.001

Tumour Thickness 0.08 0.02 1.08 
(1 .0 -1 .1 )

0.001

Ulceration
(Non-ulcerated/Ulcerated)

1.14 0.29 3.14 
(1 .8 -5 .6 )

<0.001

The results are similar in terms of variables included and indeed the estimated 

coefficients to those found in the second (and preferred) MPH model. Again the 

effects of Sex and Ulceration are increased relative to the model fitted in Table 5.8
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while the effect of Tumour Group is also slightly increased (from 1.47 in the MPH 

model to 1.51 here) although the level of significance remains around 0.17.

5.11.2 Melanoma Data Summary

After fitting the models described in this chapter there was no strong suggestion from 

any of these that there was a significant difference in survival for M ultiple and Single 

Melanoma sufferers while adjusting for the matched structure of the data and any 

imbalances that existed in either matched variables or unmatched covariates. The only 

variables significantly effecting the survival of melanoma patients were the Tumour 

Thickness, Sex and Ulceration status of the melanoma sufferer.

A summary of the results of each final model in terms of estimating the effect of 

Tumour Group on survival is given in Table 5.10.

Table 5.10 Tumour Group Effect fo r  each Model fitted  to the Melanoma Data.

Model
Regression
Coefficient

P
ese( p )

Exp(/J) 
(95% C.I.) p-value

Pair Performance 0.48 0.46 1.62 
(0.6 - 4.2)

0.29

Conditional PH 0.39 0.30 1.48 
(0.8 - 2.7)

0.19

Marginal PH 0.38 0.28 1.47 
(0.9 - 2.5)

0.17

Stratified PH 0.30 0.34 1.35 
(0.7 - 2.6)

0.38

Gamma Frailty PH 0.41 0.30 1.51 
(0.8 - 2.7)

0.17
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The Pair Performance (PP) model provided the largest Tumour Group estimated 

standard error. This larger variation is probably due to the considerable number of 

doubly censored pairs excluded from the PP analysis.

In general, all of the proportional hazards models gave similar estimates of the 

regression parameter for Tumour Group except the SPH model which was quite a bit 

smaller as well as having a larger ese. This is probably due to the SPH model being 

not particularly suitable if any (sensible) matching variables are available for 

inclusion, as in this example with Sex and Tumour Thickness.

The Marginal PH and Gamma Frailty PH models provided the same final model in 

terms of ‘included covariates’. The Marginal PH approach resulted in a slight 

decrease in the ese associated with the Tumour Group estimated regression coefficient 

compared to the Conditional PH model, highlighting the dependency structure in the 

data. The Gamma Frailty PH suggested that no further matching variable was needed 

to adjust for the dependency structure of the data when the matching variables were 

already in the model which could be entirely due to over-fitting through the frailty 

terms.

The estimated regression coefficients for each of the other covariates for all models 

considered here are given in Table 5.11.

Once again the proprotional hazards models are similar in terms of the magnitude and 

interpretation of the estimated regression coefficients of the covariates. The Level of 

Invasion of the tumour did not prove significant in any of the models proposed.
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Table 5,11. Estimated regression coefficients (with estimated standard 
error in brackets) fo r  each matching variable and unmatched covariate 

included in fina l preferred model o f each type.

Variable PP CPH MPH SPH GPH

Sex
(Male/ Female)

- 1.01
(0.30)

1.22
(0.30)

- 1.23
(0.29)

Matching
Variables

Age -0.10
(0.01)

0.01
(0.01)

- - -

Tumour
Thickness

0.19
(0.37)

0.07
(0.02)

0.07
(0.02)

— 0.08
(0.02)

Tumour Site 
(Axial/ Extremity)

0.51
(0.33)

— — —

Ulceration
(Ulcerated/ 
Non-ulcerated)

- 1.02
(0.28)

1.17
(0.30)

- 1.14
(0.29)

Unmatched
Covariates

Level of 
Invasion

- - - -

Deprivation
Category

— - - -

Note : a blank space signifies that this variable was not included in the final model.

Remembering that the sample size is moderate (108 pairs with a high degree of 

censoring) one is left with the conclusion that, although, on the basis of the data and 

any of the models used, there is no significant difference in survival between Single 

and Multiple M elanoma sufferers there is a lingering suspicion that patients with 

Multiple Melanomas have moderately better survival prospects than those with Single 

Melanoma which may well be identified in a larger study. However the 108 Multiple 

Melanoma patients used in this study were the only such cases in Scotland between 

1979 and 1997 so a larger catchment area or a much larger time interval would have to 

be used to achieve a sufficiently large enough sample size. W hether this would be



worthwhile either in terms of including other ‘components of variability’ (across 

regions for example) or identifying the moderate improvement in survival for Multiple 

Melanoma sufferers is an open question at present.

5.11.3 Dental Data

As discussed in Chapter 2, the Orthodontic study aims to compare two different 

cements which may be used for bonding orthodontic brackets to teeth. The main 

interest in the study is the effect of the primary variable, Cement type, on the time to 

breakage of the bracket. As both cements are used on each individual the study is a 

paired survival study and hence no matching variables are available for inclusion in 

the analysis. Several “unmatched” or “unit” covariates are available, namely a 

patient’s Sex, Age and Malocclusion Type.

The initial impression of the performance of the two cement bonds (see Chapter 3) 

suggests a slightly improved performance of the Test bond over the Control bond, in 

particular for older patients, males and patients with improved Malocclusion status.

In order to assess the effect of the primary variable (i.e. Cement Type) on survival 

while adjusting for both the dependency structure and any imbalance in the covariates 

each of the models presented earlier in this chapter were fitted.
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5.11.3.1 The Pair Performance (PP) Model

As this is a paired study all ‘difference’ covariates will be identically zero and will be 

redundant in any Pair Performance model. The only approach available is to fit a PP 

model estimating the primary variable only.

Recall from Chapter 4, there are 23 pairs where a definite pair performance score is 

obtained (14 Test material, 9 Control material) while no decision in terms of pair 

performance could be made for the other 22 pairs (48% of the available data) due to 

the high degree of censoring in both treatment groups. The Simple Binomial test 

applied to this data (see Chapter 4) suggested no significant disadvantage (p=0.41) in 

bracket failure for patients treated with the Test material over those treated with the 

Control material.

The results of fitting the Pair Performance model are given in table 5.12 below.

Table 5.12 Results o f the fina l Pair Performance Model 
fo r  the Dental Data.

Variable Regression
Coefficient

js

ese( p ) Exp (/?) 
(95% C.I.)

p-value

Cement Type 
(Test/Control)

0.44 0.42 1.55 
(0.7 - 3.6)

0.31

The estimated regression coefficient for Cement Type is precisely ln(14/9) in 

agreement with the Simple Binomial test. Note that the Simple Binomial Test is an 

exact test, hence the discrepancy in the p-values. As with the Simple Binomial test
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however, there is again no strong suggestion of a significant difference in the 

distribution of bracket failure times between the two cement types.

5.11.3.2 Conditional Proportional Hazards (CPH) Model

Due to the paired nature of this study the CPH model is not appropriate as no 

matching variables are available for inclusion in the final model. However, as an 

exercise to compare the perfromances of the models described in this chapter a CPH

model was fitted based on a variable selection procedure applied to those available

“unit” covariates (i.e. Age, Sex and Malocclusion type).

A summary of the fitted “CPH” model is as follows :

1. The primary variable (i.e. Cement Type) was forced in the model;

2. Age  was the only unmatched covariate found essential for inclusion in the final 

model on the basis of forward and backward stepwise variable selection 

procedures;

3. No other covariates or two-way interactions were found significant for inclusion in 

the final model.

The results of this approach in terms of the final model are presented in table 5.13.
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Table 5.13. Results o f the final “CPH ” M odel
fo r  the Dental Data

Variable
Regression
Coefficient

P
ese( p )

Exp ( P)  
(95% C.I.) p-value

Cement Type 
(Test/Control)

0.05 0.31 1.05 
(0 .6 - 1.9)

0.87

Age -0.24 0.07 0.78 
(0.7 - 0.9)

0.001

On the basis of these results one can see that the risk of breakage decreases with 

increasing age and that there was no significant difference in survival for cement type.

5.11.3.3 Marginal Proportional Hazards (MPH) Model

The estimated standard errors (ese) of the regression coefficients estimates from the 

CPH model fitted above are likely to be incorrect as the paired structure of the data 

was ignored. The next approach taken therefore was to fit an MPH model in order to 

correct the standard errors of the regression coefficients by accounting for the paired 

structure.

Model selection was identical to that described for the CPH model where:

1. The primary variable (i.e. Cement Type) was forced in the model;

2. Age  was the only unmatched covariate found essential for inclusion in the final 

model on the basis of stepwise variable selection procedures;
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3. No other covariates or two-way interactions were found essential for inclusion in 

the final model on the basis of stepwise variable selection procedures.

The results of the final MPH model fitted are given in Table 5.14.

Table 5.14. Results o f the final CPH Model 
fo r  the Dental Data.

Variable
Regression
Coefficient

P
ese( p )

Exp ( p )  
(95% C.I.) p-value

Cement Type 
(Test/Control)

0.05 0.26 1.05 
(0 .6 - 1.7)

0.86

Age -0.24 0.08 0.78 
(0.7 - 0.9)

0.005

The effect of fitting the MPH model was to reduce the ese of the primary variable 

regression coefficient but did not change the overall conclusion in terms of identifying 

a significant difference in the time to bracket failure between the two cement types.

5.11.3.4 Stratified Proportional Hazards (SPH) Model

A SPH model was fitted to the Dental data where, unlike the M elanoma data example, 

no matching variables are available for inclusion. A summary of the strategy for 

fitting such a model is as follows :

1. Cem ent Type , the primary variable was forced into the model:

2. No other covariates or two-way interactions were found essential for inclusion in 

the final model on the basis of stepwise variable selection procedures.
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The strategy for fitting the GPH model was as follows:

1. The primary variable (i.e. Cem ent Type) was forced in the model;

2. A ge  was the only unmatched covariate found essential for inclusion in the final 

model on the basis of stepwise variable selection procedures;

3. No other covariates or two-way interactions were found essential for inclusion in 

the final model on the basis of stepwise variable selection procedures.

The results of the final GPH model fitted are given in Table 5.16.

Table 5.16. Results o f the final GPH Model 
fo r  the Dental Data.

Variable
Regression
Coefficient

P
ese( p )

Exp( P ) 
(95% C.I.) p-value

Cement Type 
(Test/Control)

0.11 0.32 1.11 
(0.6-2.1)

0.74

Age -0.27 0.09 0.78 
(0.6 - 0.9)

0.002

There was a slight increase in the ese of the Cement Type estimated regression 

coefficient while the respective p-value decreased when compared to the MPH model. 

There was a significant contribution to the overall model fit by including the frailty 

term (0  =0.87, ese( 0 )=0.37, Likelihood Ratio Test, p=0.02) suggesting that a random 

effect is needed in the model and that an analysis based on a ‘sim ple’ stratification
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(i.e. the SPH) model may not be adequate. This may also explain the considerable 

difference in the p-values for the Cement Type effect between the SPH and GPH 

models. Adding this frailty term did not however change the conclusion of the study 

that there is no real suggestion of a significant difference in the breaking times for the 

test and control cement compounds.

5.11.4 Dental Data Summary

After fitting the models described in this chapter there was no strong suggestion  of a 

significant difference in breakage time for the Test and Control cement compounds 

while adjusting for the paired structure of the data and any imbalances that existed in 

any of the unmatched covariates. The only variable significantly affecting the time to 

breakage of the bracket was the individual’s age. The study suggests that the Test 

material can be considered ‘equally’ as good as the Control cement in terms of time to 

bracket failure, and given that the Test cement has less side effects (e.g. reduction in 

decalcification) it would appear to be the preferred cement.

A summary of the results of each model in terms of assessing the effect of Cement 

Type on time to breakage is given in Table 5.17.
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Table 5 .17 Cement Type Effect fo r  each M odel f itted  to the Dental Data.

M odel

Regression
Coefficient

P
ese( P )

Exp ( p )  
(95% C.I.) p-value

Pair Performance Model 0.44 0.42 1.55 
(0.7 - 3.6)

0.31

Conditional PH Model 0.05 0.31 1.05 
(0 .6 - 1.9)

0.87

Marginal PH Model 0.05 0.26 1.05 
(0 .6 - 1.7)

0.86

Stratified PH Model 0.33 0.36 1.38 
(0.7 - 2.8)

0.37

Gamma Frailty PH Model 0.11 0.32 1.11 
(0 .6 -2 .1 )

0.74

The Pair Performance and SPH model are quite similar in terms of their estimated 

regression parameter both without correcting for the effect of Age. The results of 

fitting the PP, SPH and GPH models seems to suggest that incorporating a “pair- 

specific” effect has more of an effect on the estimated regression coefficient when 

analysing paired rather than matched survival data. Recall that the MPH procedure 

provides identical estimated regression coefficients as the CPH model and differs only 

in terms of how the respective estimated standard errors are obtained. Indeed, the 

benefit of fitting an MPH model to control for the dependency structure of the data 

(when compared to the clearly inappropriate CPH model) was clear as there was a 

considerable reduction in the estimated standard error for Cement Type under this 

model. The GPH model suggested that a frailty term was needed for the analysis and 

hence an SPH model may not be suitable, further highlighting the dependency 

structure due to the paired nature of the data.



The effects of the other covariates for each of the models are given in Table 5.18 

below.

Table 5.18. Estimated Regression parameter (with ese in brackets) fo r  each 
matching variable and unmatched covariate when included in fina l model.

Variable PP CPH MPH SPH GPH

Unmatched
Covariates

Sex _ — _ _
Malocculsion
Type

- - - - -

Age - -0.24
(0.07)

-0.24
(0.08)

- -0.27
(0.09)

Note : a blank space signifies that this variable was not included in the final model.

The CPH, MPH and GPH models are similar in terms of the magnitude and 

interpretation of Age, the only covariate significantly associated with the time to 

bracket failure. Neither of the covariates representing an individual’s Sex or 

Malocculsion Type were deemed necessary for inclusion in any of the models 

proposed.

5.12 Assessing Goodness-of-Fit

A brief discussion is now given to methods for checking the model assumptions and 

goodness-of-fit for the various models presented in this chapter.

The Pair Performance (PP) model is a binary logistic regression approach to analysing 

dependent survival data. The logistic model is well understood and a good reference 

for logistic modelling is Van Houwelingen (1988). Several types of residuals can be
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obtained from binary logistic model fits (Hosmer and Lemeshow 1989, Collett 1991). 

These residuals may be used to assess the influence of individual pairs on the fit or to 

assess how each 'difference5 covariate may be transformed to linearity on the log odds 

scale. Assessment of fit for the PP model is generally determined using one of several 

global tests for goodness of fit (Hosmer and Lemeshow 1989).

The results of fitting the Goodness-of-Fit tests outlined earlier to the M elanoma Data 

gave the following results:

suggesting that the PP model is an adequate fit for the data. W hile as the Dental data 

contained no terms except for the primary variable no goodness-of-fit tests are needed.

The assumptions for the Proportional Hazards (PH) model can be grouped into those 

relating to the functional form of the regression components (i.e. is it adequately 

described by a linear function) and those relating to proportional hazards.

Residuals in classical regression models are the differences between the observed 

value and that predicted by the model. In survival analysis however, due to censoring, 

the definition of a residual is not as clear, and this has led to the development of 

several different types of residuals each tailored to checking a specific assumption 

underlying the proportional hazards model.

Table 5.19. Goodness-of-Fit Tests fo r  the Melanoma Data .

Method
Pearson 
Deviance 
Hosmer-Lemeshow

Chi-Square DF P
2 2 . 3  20 0 . 3 2
2 7 . 6  20 0 . 1 2

8 . 8  8 0 . 3 6
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In summary, these are

1. Martingale residuals (Barlow and Prentice 1988) defined as

M iP = 5 i p - H 0 ( t i p) e x p ( p / z ipc)

which represent the difference, for an individual i, between the observed number of 

events and the expected number of events given the model. Their primary use is to 

test the functional form of each covariate.

2. Schoenfeld residuals (Schoenfeld, 1982) which are defined as

S ^ = 2 |p-Z(tip)

where z(t) is the mean of z weighted byexp(p z) for all those individuals still in the

risk set at time t. These are used as a method of formally testing the proportional 

hazards assumption (Grambsch and Therneau 1994, Pettitt and Bin Daud 1990) for 

both categorical and continuous variables. If the proportional hazards assumption is 

valid, a plot and ‘lowess smooth’ of the Schoenfeld residuals against time (for each 

covariate) should have non-zero slope. This forms the basis of the formal test 

provided by Grambsch and Therneau (1994).

3. Deviance and score residuals (Schoenfeld 1982), refinements of the Martingale 

and Schoenfeld residuals respectively, may be used to assess which observations are
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not well-fitted by the model as well as to measure the influence of individual 

observations (Cain and Lange 1984, Reid and Crepeau 1985, Storer and Crowley 

1985).

In addition to the residual based tests, there are a number of graphical and analytical 

methods for assessing the proportional hazards assumption (Harrell 1986, Muenz 

1983, Arjas 1988, Gore 1984). The most basic assessment of the proportional

hazards assumption for a binary covariate is provided by a plot of log(-log( S ( t) )) 

against time for each level separately which will yield ‘parallel curves’ if the hazards 

are proportional across the two levels of the covariate. Recently an additional test for 

assessing the proportional hazards assumption (for both categorical and continuous 

variables) with respect to being ‘non-constant’ over time has been proposed (Quantin, 

et al 1996) which amounts to including an interaction term representing the covariate 

being tested and log time. This is formally assessed using a W ald test.

5.12.1 Melanoma Data

When considering the Melanoma data, the linearity assumption of each continuous 

covariate in the final model was assessed by scatterplots of the Martingale residuals 

against each covariate in turn (Figure 5.1). All of these plots suggest that the 

assumption of linearity (in the log hazard function) is reasonable for all of the 

covariates considered.
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Figure 5.1. P lot o f  M artingale Residuals fo r  Age and Tumour Thickness

in the final CPH model fo r  the Melanoma Data.

Tumour Thickness

In order to assess the proportional hazards assumption a plot of the Schoenfeld 

residuals plot (with ‘lowess smooth’) for each covariate over time (Figure 5.2) is 

needed. If the proportional hazards assumption is valid, a plot of |3(t) for each 

covariate would be horizontal. By virtue of these plots, the proportional hazards 

assumption seems plausible for all the variables except perhaps the primary variable 

Tumour Group.
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Figure 5.2

Plot o f  Schoenfeld Residuals over Time fo r  each covariate 

included in the fina l CPH model fo r  the Melanoma Data.
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In order to formally test the proportional hazards assumption the p-values for the 

Grambsch and Therneau (1994) and Quantin test (1990) are as follows:

Table 5.20. Grambsch and Therneau and Quantin test
p-values fo r  the Melanoma Data.

Grambsch and 
Therneau

Quantin

Tumour Group 0.28 0.36
Sex 0.36 0.21
Age 0.71 0.62
Tumour Site 0.76 0.71
Tumour Thickness 0.76 0.58
Ulceration 0.93 0.32

suggesting that the hazard function may be proportional for each these variables.
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5.12.2 Dental Data

When considering the Dental data, as there was no matching variables available for 

inclusion, all model checking relates to the final Marginal Proportional Hazards model 

(MPH). The covariate representing an individual’s Age was the only continuous 

covariate in the final MPH model.

The linearity assumption of the effect of Age was confirmed by looking at a 

scatterplot of the Martingale residuals where Age demonstrated a reasonable degree of 

linearity (Figure 5.3).

Figure 5.3. Plot o f  Martingale Residuals fo r  Age 

in the fina l M PH model fo r  the Dental Data

o
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In order to assess the proportional hazards assumption a plot of the Schoenfeld 

residuals for both of these covariates is given in Figure 5.4.

Figure 5.4. Plot o f Schoenfeld Residuals against Time 

fo r  Cement Type and Age fo r  the fina l M PH Model Dental Data
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The proportional hazards assumption seems reasonable for both Cement Type and 

Age by virtue of the plots and the results of both the Grambsch and Therneau (1994) 

or Quantin tests (1990) displayed in Table 5.21.

Table 5.21. Grambsch and Therneau and Quantin test 
_________ p-values fo r  the Dental Data.________

Grambsch and 
Therneau

Quantin

Cement Type 0.84 0.57
Age 0.99 0.51
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5.13 Chapter Summary

A selection of methods was presented for modelling dependent survival data in the 

presence of covariates. Separate approaches were outlined for matched and paired 

scenarios where the approaches differ in how adjustment is made not only for the 

matching structure itself but also any imbalance that may exist in either the matching 

variables or any unmatched covariates.

The first method presented was an extension of the Simple Binomial test introduced in 

Chapter 4. Following this, a discussion of regression methods for survival data was 

presented with emphasis on the proportional hazards model in particular. One of the 

main assumptions in the proportional hazards approach is that survival times for each 

individual are independent of each other which is clearly violated in both matched and 

paired survival studies. The remainder of the chapter concentrated on extending the 

basic framework of the proportional hazards model to account for this dependency 

structure in the data.

Several extensions of the proportional hazards (PH) model to clustered studies are 

proposed. The Conditional PH model ignores the matched structure of the data but it 

uses information on the matching variables to correct inference made on the primary 

variable. In the Marginal PH model the regression coefficients are estimated 

assuming independence in a manner similar to the CPH model while the estimated 

covariance matrix is then 'corrected’ post fit. A further refinement to the PH model 

for paired/matched survival data is to allow each pair to define a separate stratum 

while the final extension to the PH model presented in this chapter involved
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introducing a random term, corresponding to each pair, into the model. This random 

pair effect, often termed a ‘frailty’, generates dependency between the survival times 

of the individuals in a pair and can be considered to represent unobserved, or ‘hidden’, 

covariates.

Given the results of this chapter, a natural question to ask is which of these models is, 

in general, best suited to Matched and which of these is best suited to Paired survival 

studies. In order to ascertain which of these suggested models might be ‘best’ in 

common practice a simulation study across a range of realistic scenarios is described 

in the following chapter.
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Chapter 6

Analysing Matched/Paired Survival Data: 

A Simulation Study

6.11ntroduction

The previous two chapters described methods for analysing matched and paired 

survival data, first comparing only the two levels of the primary variable but then 

incorporating matching variables and unmatched covariates into this comparison. The 

performance of all these methods was illustrated on the two example data sets.

The aim of this chapter is to investigate the performance of all these methods through 

simulations covering an extensive range of underlying scenarios intended to cover a 

wide range of potential real-life ‘dependent’ survival data problems. One key 

ingredient will, of course, be whether the data arise from a matched survival study or a 

paired survival study. The desired outcome of this simulation study is to provide 

general guidelines, if not specific recommendations, as to which of the methods 

covered in Chapters 4 and 5 are the most appropriate for these two types of 

‘dependent’ survival study with guidelines as to how the level of dependency (i.e. the 

degree of association present) affect the general results of the simulation study.
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6.2 The Aim of the Simulation

The matched and paired studies under consideration in this thesis relate specifically to 

cluster studies involving two measurements per cluster (i.e. a pair). The goal of each 

study is to assess the effect of a primary variable (with two levels) while controlling 

for the dependency structure of the data. The level of dependency is not of primary 

interest, the central issue is that it is present. Therefore, one cannot assume 

independence, and this should be accounted for in the analysis.

In this simulation study, the dependency structure is provided through the design of 

the study (through the matching variables and unmatched covariates) with no 

distributional assumption specifically made regarding the dependency structure and 

indeed no interest in estimating such. The assumption of independence of all 

observations is not valid by virtue of the design; thus any methods that assume 

independence are primarily incorrect and therefore likely to be flawed.

The mechanism for simulating matched and paired survival data in this thesis is 

introduced in Section 6.3. In order to ‘mimic’ a matched scenario, all the covariates 

were available when fitting the models with the covariate vector containing the 

primary variable, all matching variables and unmatched covariates. However, in 

order to ‘m im ic’ a paired scenario, the matching variables were ‘hidden’ when fitting 

models for such with the covariate vector containing only the primary variable and 

unit covariates in such instances.
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In summary, the dependency structure is present by design through the matching 

variables, the study design (for both matched and paired scenarios) is a case control 

cluster survival study and the aim of the simulation is to suggest which models are 

best suited for each scenario in terms of ‘best’ estimating the effect of the primary 

variable.

6.3 The Simulated Data

In both the matched and paired scenarios, a proportional hazards model was used to 

generate the survival times for both individuals in each pair, while a uniform 

distribution was used to generate censoring times. Four additional variables were 

simulated: the primary variable, two matching variables and an unmatched covariate. 

As will become clear later, the dependency structure is a direct consequence of how 

the matching variables are generated.

The PH model is the ‘natural’ model to use in simulating both matched and paired 

survival study data as all but one of the models under investigation assume 

proportional hazards. This then removes any suggestion that poor performance may 

be attributed to the proportional hazards assumption being invalid.

Recall from Section 5.4 that the proportional hazards (PH) model can be written as
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where the survival time for the ith individual (i=l,2) in the plh pair (p= l, P) is a 

product of an underlying baseline survival function SG(t) and a “risk score” (i.e. 

exp((3/z ipc) ) which is a function of that individual’s covariate values (i.e. Z ipc) .

Based on the PH model, a simple method for introducing ‘dependency’ is through the 

covariate vector. Consider the paired scenario first. Clearly, if the values of the 

matching variables are equal for each case and control pair the resulting survival times 

generated through the PH model will be correlated, the larger the number of matching 

variables the ‘higher’ the degree of association. In matched survival studies the 

emphasis on the matching is to make the two individuals in each pair as similar as 

possible in terms of survival. However, as indicated in Chapter 2, for continuous 

variables matching is usually only possible to within a certain range the width of 

which will directly affect the degree of association present.

Once a baseline survivor function and covariate vector are specified, survival times qp 

can be generated for each individual in each pair using the PH model. If there was no 

censoring these survival times are all event times. However, in a survival study, 

censoring is inevitable and for that reason a mechanism is needed to simulate censored 

observations (i.e. right censored).

One method to do this is to make use of the fact that the only information provided by 

a censored observation is that its true event time is some time in the future. Using this 

rationale, a binomial distribution can be used to randomly ‘select’ the specified 

proportion of cases and controls which are to be considered censored. Once an
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‘individual’ with event time tjp has been deemed censored their censoring time can 

then be simulated as U[0, tjP]. This censoring mechanism insures that censoring is 

conditionally independent of survival time and enables the degree of censoring (i.e. 

proportion censored) to be similar for the cases and controls.

In order to investigate the effect the degree of censoring has on the performance of the 

methods presented in this thesis the following three proportions were considered: 0%, 

30% and 60% censoring. These proportions were chosen in order to mirror survival 

studies with no, moderate and large amounts of censoring.

A myriad of choices now present themselves for the simulation strategy in terms of 

how many matching variables should be used and how ‘accurate’ the matching is 

likely be. A discussion of the strategy used to choose the matching variables for the 

matched and paired scenarios is now given.

6.3.1 Simulated Data for Matched Survival Studies

In order to simulate survival data using the PH model several decisions have to be 

made i.e. the components of the covariate vector (i.e. the effect each covariate has on 

survival) and the choice of baseline survivor function.

The covariate vector z-ipc consists of the primary variable, two matching variables (one 

categorical, one continuous) and a single unmatched variable. A description of the 

covariates in terms of how they were simulated and the relative effect they had on
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survival (i.e. did they increase or decrease the risk of ‘death’) is given in Table 6.1 

below.

Table 6.1. Description o f the mechanism fo r  generating the primary variable,
matching and unmatched covariates fo r  Matched Survival Data.

Variable Case Value Control Value Relative
Effect

Primary Variable 0 1 Pt=0,1,3

Matching variables: 

Categorical

Continuous

Bin(l,Vfc)

N ( 1/ 2 ,1/4 )

identical to Case value 

(i.e. perfect matching)

U(Case value -0 .05, Case value +0.05)

(i.e. ‘interval’ matching)

PmC1=1

P M C 2 = 1

Unmatched covariate N(VV/4) N O /2 / / 4 )

(i.e. independent of the Case)
Puc=l

In order to mirror the most ‘real life’ matched survival studies the matching is chosen 

to be perfect for the categorical matching variable and to within a specified range (i.e. 

effectively each pair are matched to within 1/20 of the range) for the continuous 

matching variable.

In order to get an impression of the effect of the matching criterion on the correlation 

between the case and control for the continuous matching variable, consider two 

random variables X and Y where X~N(p,x,c2x) and Y=X + U(-a, a). It can be shown 

that



p ( X ,Y ) =  CoV- X ’>1- 1 ° x
VVar(X)Var(Y)

Using a matching criterion of a=0.05 (as in Table 6.1) results in high correlation 

(p =0.99) between the case and control values for the simulated continuous matching 

variable. In the matched scenario therefore, there is perfect correlation between the 

case and control for the categorical matching variable and nearly perfect correlation 

for the continuous matching variable thereby introducing dependency into the design 

(albeit possibly weakened somewhat by the presence of an unmatched covariate) and 

subsequently making the independence assumption invalid.

Note that one method to ‘quantify’ the degree of association between the cases and 

controls in the simulated data is to estimate 0 (the variance parameter of the gamma 

frailty model) by fitting a GPH model. The approximation between 0 and Kendall’s t 

(i.e. E(t)=0/0+2, see section 5.9.2.1) can then be used. This will be returned to later 

in this chapter when a discussion on the effect of the degree of dependency is given.

From Table 6.1, three different values for the coefficient Pt of the primary variable 

were chosen, namely 0, 1 and 3, in order to mirror survival studies where the primary 

variable has no effect, a moderate effect and a considerable effect. The matching 

variables and the unmatched covariate were all chosen to have the same p coefficient 

(p = 1) representing a ‘moderate’ effect on survival.
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Recall that the PH model estimates the relative effect of the covariates on an 

unspecified baseline hazard function. As the primary variable is coded using 0 for the 

case and 1 for the control, the control will always have poorer survival prospects than 

the case for positive values of Pt- Note also from Table 6.1 that the relative effect of 

the matching variables and unmatched covariate are all positive resulting in poorer 

survival prospects for increasing values of the matching variables and unmatched 

covariate.

Recall also that the PH model is based on analysing ranks, and therefore the 

observation times may be recorded as days, months or years without affecting the 

analysis. In survival models, the exponential distribution is the simplest choice for the 

baseline survivor function and so will be used here. By virtue of the choice of 

regression coefficients in this simulation study, the covariate vector will always 

deflate the baseline hazard function. Given this fact, a suitable large value of 400 for 

the mean parameter of the exponential distribution was chosen so as not to deflate the 

median case and control survivor times to be close to zero. Care was taken also to 

avoid round off error in order to avoid an unnecessarily large number of tied survival 

times.

6.3.2 Simulated Data for Paired Survival Studies

A summary of the components of the covariate vector, in terms of how they were 

simulated and their relative effect on survival, is given in Table 6.2.
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Table 6.2. D escription o f  the mechanism fo r  generating the prim ary variable,
matching and unmatched covariates fo r  Paired Survival Data.

Variable Case Value Control Value Relative Effect

Primary Variable 0 1 M U . 3

Matching Variables: 
Categorical 
Continuous

Bin(l,V4)
N ( l/2 ,V 4 )

identical to Case Value 
identical to Case Value

p M C l= l

PM C 2=1

Unit Covariate:
Continuous N0/2,*74) identical to Case Value Puc=l

In order to mimic a Paired survival study the case and control covariates are identical 

for each pair (i.e. perfect correlation) and were again all chosen to have the same 

coefficient ((3 = 1) but of course will be ‘hidden* in the subsequent analysis. The 

values for the coefficient of the primary variable were chosen in the same manner as 

when simulating data for the Matched study scenario.

Once again the observation times for each pair were generated using a proportional 

hazards (PH) model, where S0(t) was again generated using an exponential 

distribution with mean 400. The desired degree of censoring and the censoring times 

were generated in exactly the same manner as for the Matched study simulations.

6.3.3 Simulation Configurations

To investigate the performance of the competing models under each of the two 

approaches, 1000 simulations of each of a number of configurations were carried out.
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The configurations were defined by the following quantities:

i) The number of pairs of subjects, P, taken as 25 ,100  and 250

ii) The percentage of pairs censored, % Censored, taken as 0%, 30%  and 60%

iii) The true relative effect of the primary variable, pT, taken as 0 ,1  or 3

For illustrative purposes a sample matched survival simulated data set is given in

Table 6.3 with censoring status coded as 1 for complete observations and 0 for 

censored observations.

Note, from Table 6.3, the near perfect matching of the continuous variable, and the 

fact that, although 30% censoring was desired, the actual censoring proportions in this 

simulation were 36% for the cases and 24% for the controls of course, over all the 

simulations the average proportion censored was 30% for both levels of the primary 

variable.
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Table 6.3. An example o f  a sim ulated 25 pairs matched survival data set
using 30% censoring and (3t = 1.

Pair Individual
Primary 
Variable 

(i.e. Case/Control)

Continuous
Matching
Variable

Categorical
Matching
Variable

Unmatched
Covariate

Observation
Time

Censoring
Status

1 1 0 0.29 1 1 1 0
1 2 1 0.31 1 0.85 27 1
2 1 0 0.30 0 0.30 84 0
2 2 1 0.29 0 0.57 0 0
3 1 0 0.65 1 0.93 36 1
3 2 1 0.64 1 0.61 18 1
4 1 0 0.23 1 0.83 25
4 2 1 0.22 1 0.90 25 1
5 1 0 0.45 1 0.35 29
5 2 1 0.47 1 0.79 20
6 1 0 0.13 0 0.50 247 1
6 2 1 0.12 0 0.47 14 1
7 1 0 0.52 0 0.42 21 1
7 2 1 0.52 0 0.60 37 1
8 1 0 -0.16 1 0.24 40
8 2 1 -0.15 1 0.19 119 1
9 1 0 0.60 0 0.15 21 1
9 2 1 0.56 0 0.76 4 1

10 1 0 0.97 1 0.90 56 1
10 2 1 0.95 1 0.13 14 1
11 1 0 0.24 0 0.41 450 1
11 2 1 0.28 1 0.02 15
12 1 0 0.46 0 0.47 27 1
12 2 1 0.43 0 0.28 77 1
13 1 0 0.54 0 0.21 109 1
13 2 1 0.51 1 0.43 42 1
14 1 0 0.29 0 0.44 24
14 2 1 0.32 0 0.58 22
15 1 0 0.55 1 0.40 69 1
15 2 1 0.53 1 0.90 17 1
16 1 0 0.14 0 0.34 1608 1
16 2 1 0.09 0 0.67 3 1
17 1 0 1.14 0 0.52 25 1
17 2 1 1.15 0 0.51 68 1
18 1 0 0.94 1 0.07 178 1
18 2 1 0.90 1 0.44 12 1
19 1 0 0.67 1 0.60 23
19 2 1 0.67 1 0.35 80 1
20 1 0 0.67 1 0.24 43 1
20 2 1 0.69 1 0.24 3 1
21 1 0 0.52 1 0.27 31 1
21 2 1 0.50 1 0.03 17 1
22 1 0 0.54 0 0.49 169 1
22 2 1 0.57 0 0.27 14 1
23 1 0 0.57 1 0.61 21 0
23 2 1 0.53 1 0.73 13 0
24 1 0 0.33 0 0.67 82 0
24 2 1 0.35 0 0.51 18 1
25 1 0 0.75 1 0.90 9 1
25 2 1 0.79 1 0.49 14 0
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In order to illustrate the typical data sets in the paired survival simulations, Kaplan- 

Meier plots of the estimated case and control survivor functions are displayed in 

Figures 6.1, 6.2 and 6.3 for a selection of configurations. Note from these plots the 

effect of simulating data using an exponential baseline distribution and a proportional 

hazards model as well as the effect of the primary variable, matching variables and 

unit covariate on the baseline hazard function.

Figure 6.1 
Sample Paired Simulated Data 

with P=25, 0% censoring and pr-O.
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Figure 6.2 
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Figure 6.3 
Sample Paired Simulated Dataset 

with P -250, 60% censoring and j3r=3.
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6.4 Model Performance Indicators

For each simulation a set of data based on one of the above configurations was 

generated and the performance of each of the various modelling approaches was 

investigated based on a number of statistical criteria described below.

6.4.1 Methods involving the Primary Variable Alone

This section aims to compare the methods outlined in Chapter 4 which compared the 

case and control survival prospects while ignoring all covariates except the primary 

variable.

For each simulation, test statistics were calculated for the Simple Binomial, Paired 

Prentice-Wilcoxon and Akritas tests. An investigation of the parametric and non- 

parametric approaches (involving the pair-wise differences in survival time) in terms 

of their use as hypothesis tests was made also. Recall that the ‘pair-wise differences’
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procedures have the added feature of estimating the distribution of the difference in 

survival time (in units of time) between the case and control populations but for this 

simulation study only their use as hypothesis tests will be under consideration.

As all of the tests presented in Chapter 4 are two-sided tests and all use a normal 

approximation, critical values from a normal distribution for nominal 5% and 1% 

significance levels were used to compare the test’s performance. The performance of 

each of these tests was assessed across all the simulations based on the size (i.e. 

whether the test achieved the nominal significance level) which is illustrated by the 

( 3 t = 0  configuration results and power of the test (i.e. the probability of rejecting the 

null hypothesis when it is false) which is illustrated by the pT= l and pT=3 

configuration results.

6.4.2 Methods incorporating matching variables and covariates

This approach considers all the methods outlined in Chapter 5 which compare the case 

and control survival prospects while incorporating all covariates. For each simulation 

a point and interval estimate of the primary variable regression coefficient was 

calculated for each of the models outlined in Chapter 5. Unlike section 6.4.1, the 

emphasis here is on interval estimates rather than test statistics with the performance 

of each of these models being assessed (across all the simulations) on:

i) bias, the long run average of pT minus P t (the ‘average’ estimated minus true 

value of the primary variable regression coefficient)
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ii) coverage rate, the long run proportion of occasions when the (nominally 95%

confidence) interval estimate contains the true regression coefficient

and

iii) the average width of this interval estimate.

6.5 Simulation Results

The simulation results are in two sections, the first section deals with the methods 

presented in Chapter 4 (involving hypothesis tests on the primary variable alone) 

while the methods proposed in Chapter 5 (involving interval estimates of the effect of 

the primary variable incorporating the effects of the matching variables and 

unmatched or unit covariates) are the subject of the second section.

6.5.1 Methods involving the Primary Variable Alone

Results are presented first for the various ‘covariate free’ methods presented in 

Chapter 4 for the m atched  data simulation configurations. Essentially these are tests 

of pT=0 where pT is the true ‘effect’ of the primary variable.

186



6.5.2 Matched Survival Simulation Study

The performance of each of the following:

• the Simple Binomial (SB) test,

• Paired Prentice-Wilcoxon (PPW) test,

• Akritas test (AKR) test,

• parametric (Dp) ‘differences’ test

and the

• lion-parametric (Dnp) ‘differences’ test

in terms of whether each test made the correct decision in terms of rejecting the null 

hypothesis of px=0 for all the various pair-size, censoring and effect-size 

configurations are displayed in Table 6.4 and Figure 6.4.

The graphs are arranged as follows: a categorised scatterplot of the performance of 

each test (in terms of the percentage of times each test correctly rejects the null 

hypothesis) by the size of the true effect and the degree of censoring is displayed for 

each critical level.

187



Table 6.4.
Proportion o f times each test made the correct decision for all Sample Size, 

% Censoring and Effect Size configurations 
fo r  the Matched Data Simulations.

pT„o 25 Pairs 100 Pairs 250 Pairs
0.05 SB PPW AKR DP DNP SB PPW AKR DP DNP SB PPW AKR DP Dnp

0% 96 95 96 95 94 95 96 96 96 95 97 96 96 94 97
30% 96 94 95 95 94 95 95 94 96 95 95 94 94 94 94
60% 97 95 95 96 93 96 96 96 96 94 96 95 95 95 95

0.01
0% 99 99 99 99 98 100 99 99 99 99 99 99 99 99 99

30% 99 99 99 99 94 99 99 99 100 99 99 99 99 99 99
60% 98 99 99 99 93 99 99 99 100 93 99 99 99 99 99

P t =1 25 Pairs 100 Pairs 250 Pairs
0.05 SB PPW AKR DP Dnp SB PPW AKR DP Dnp SB PPW AKR DP Dnp

0% 61 74 77 76 74 100 100 100 99 100 100 100 100 100 100
30% 41 53 58 44 34 97 99 100 96 93 100 100 100 99 99
60% 18 25 30 17 15 83 90 91 64 59 99 100 100 95 93

0.01
0% 29 40 52 42 48 99 100 100 99 99 100 100 100 100 100

30% 23 17 32 18 28 88 97 97 86 92 100 100 100 99 100
60% 5 3 9 5 7 56 71 74 38 59 98 99 99 84 93

"02 H II 25 Pairs 100 Pairs 250 Pairs
0.05 SB PPW AKR Dp D np SB PPW AKR D p D np SB PPW AKR D p D np

0% 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100
30% 100 100 100 84 95 100 100 100 99 100 100 100 100 99 100
60% 85 91 94 43 52 100 100 100 91 99 100 100 100 99 100

0.01
0% 99 100 100 97 100 100 100 100 100 100 100 100 100 100 100

30% 74 99 99 64 95 100 100 100 99 100 100 100 100 99 100
60% 64 48 72 22 52 100 100 100 78 99 100 100 100 99 100

Key:
SB -  Simple Binomial Test, PPW - Paired Prentice-Wilcoxon Test, AKR - Akritas Test, 

Dp - Parametric Differences Test, DNP - Non-Parametric Differences Test
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Figure 6.4
Performance o f  each test fo r  each M atched simulation configuration.

0.05 Matched Data 0.01

S B  P P W  AK R D P  D N P  S B  P P W  A K R D P  D N P  S B  P P W  AK R D P  D N P S B  P P W  AKR  D P  D N P S B  P P W  AKR  D P  D N P

3 0 %

S B  P P W  A K R D P  D N P

60%

S B  P P W  AK R D P  D N P S B  P P W  AKR  D P  D N P

3 0 %

S B  P P W  AK R D P  D N P

00%

S B  P P W  AKR  D P  D N P S B  P P W  A K R D P  D N P 

3 0 %

S B  P P W  AKR  O P  D N P

60%

PPW AKR DP DNP PPW AKR 
30%

PPW AKR 
00%

S B  P P W  AKR D P  D N P SB  P P W  A K R D P  D N P  S B  P P W  AK R D P  D N P  

3 0 % 6 0 %

For the smallest sample size first (i.e. 25 pairs) all the tests performed well by 

achieving the nominal significance level when there was no simulated effect (i.e. 

P t = 0 )  regardless of the censoring. However, all the tests performed poorly with 

increasing censoring for the ( 3 t = 1  simulated effect with particularly low power at the 

ot= 0.01 level. All the tests performed well for pT=3 except when there was 60% 

censoring where the ‘interval based’ tests performed poorly.
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In general only the PPW and AKR tests maintained their power for a 0.01% 

significance level test when compared to their performance for a 0.05% significance 

level test again excluding the moderate effect size (PT=1) and high censoring 

configuration where all tests performed poorly. The AKR test is recommended as, 

although it sometimes performs poorly, it consistently performs better than all the 

other proposed tests.

W hen considering the 100 pair  simulations, all the tests performed well for all 

configurations with the AKR test showing consistent but slight improvements in 

power over the others. The effect of increasing censoring and a moderate effect size 

(Pt=1) is again evident but is not as severe as that exhibited for the configurations 

with 25 pairs. The Simple Binomial test (SB) performed well when compared to the 

mathematically more “complex” tests at both the nominal significance levels.

W hen the number of simulated pairs increased to 250 , there is effectively nothing to 

choose between any of the tests except for one configuration (namely pT= l and 60% 

censoring) where the D P test performed slightly worse. Once again the SB test 

performed well for all configurations.

6.5.3 Paired Survival Simulation Study

The results of how the ‘covariate free’ methods presented in Chapter 4 performed 

when analysing paired  survival data for the simulation configurations described in 

section 6.3.3. are now given.
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Following the same convention as used with the matched survival data simulations, a 

table (Table 6.5) and categorised scatterplot (Figure 6.5) of the performance of each of 

the tests are displayed. Once again, performance was assessed by the proportion of 

times the test made the ‘correct’ decision in terms of correctly rejecting, the null 

hypothesis of pT=0 (representing no primary variable effect).

For the configurations with 25 pa irs , all the tests performed well (as with the Matched 

simulation) when Pt=0 regardless of the censoring and significance levels (i.e. they 

achieved the nominal significance levels).

Again, all the tests performed poorly with increasing censoring for the case of Pt=1 

with particularly low power at the 0 .01 significance level. The D P test performed 

poorest of all while the SB test and DNP based test had comparable performances for 

most simulation configurations. The AKR test performed best in terms of maintaining 

power at both the 5% and 1 % nominal significance levels although, as to be expected, 

showed poor power for the combination of moderate effect size (px=l) and high 

censoring (60%).
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Table 6.5
Proportion o f times each test made the correct decision fo r  all Sample Size, 

% Censoring and Effect Size Configuration fo r  Paired Data Simulations.

(3 T =0 25 Pairs 100 Pairs 250 Pairs
0.05 SB PPW AKR DP DNp SB PPW AKR DP Dnp SB PPW AKR DP Dnp

0% 94 96 94 95 93 96 96 96 96 95 96 96 96 95 96
30% 94 96 95 96 93 96 95 95 95 93 95 96 95 95 94
60% 94 96 95 96 93 96 95 95 95 91 95 96 95 95 91

0.01
0% 98 99 99 99 97 99 99 99 99 99 99 99 99 99 99

30% 99 99 99 99 94 99 99 99 99 93 99 99 99 99 99
60% 99 99 99 99 92 99 99 99 99 91 98 98 98 98 91

P T =1 25 Pairs 100 Pairs 250 Pairs
0.05 SB PPW AKR DP Dnp SB PPW AKR DP Dnp SB PPW AKR DP Dnp

0% 63 79 80 79 76 99 100 100 99 100 100 100 100 100 100
30% 41 55 59 45 32 99 99 99 96 92 100 100 100 99 100
60% 19 27 33 18 14 82 89 88 61 59 100 100 100 95 93

0.01
0% 33 45 58 45 45 99 100 100 99 99 100 100 100 100 100

30% 22 18 33 16 17 99 97 97 87 92 100 100 100 99 100
60% 12 2 9 4 5 57 70 73 36 59 99 100 100 86 93

P t -3 25 Pairs 100 Pairs 250 Pairs
0.05 SB PPW AKR Dp D np SB PPW AKR DP D Np SB PPW AKR Dp D np

0% 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100
30% 100 100 100 82 94 100 100 100 99 100 100 100 100 99 100
60% 83 92 93 44 52 100 100 100 91 100 100 100 100 98 100

0.01
0% 100 100 100 96 100 100 100 100 99 100 100 100 100 100 100

30% 98 98 99 60 94 100 100 100 99 100 100 100 100 99 100
60% 47 46 71 19 52 100 100 100 77 100 100 100 100 97 100

Key:
SB - Pair Performance Test, PPW - Paired Prentice-Wilcoxon Test, AKR - Akritas Test, 

Dp - Parametric Differences Test, Dnp - Non-Parametric Differences Test
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Figure 6.5
Performance o f each test fo r  each Paired simulation configuration.
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W hen the number of pairs increased to 100, all the tests performed well for all 

configurations with the PPW and AKR test performing consistently as the best. The 

effect of increasing censoring and a moderate effect size (pT~ 1) is again evident but 

once more the SB, Dp and D^p tests performed well for all but the high censoring 

configurations.
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Finally, when considering the simulations with 250 pairs, the only configuration 

where there was any substantial difference in performance between any of the tests 

was the pT=l and 60% censoring configuration where the DP test had slightly poorer 

performance.

6.5.4 Conclusion

Not surprisingly all the tests perform better (in terms of power) as the number of pairs 

increased, and as the relative effect of the primary variable increased. The degree of 

censoring proves important especially for small samples and for moderate effects.

For both matched and paired survival studies, the AKR test is recommended in 

general as this test appears to perform "best” in terms of power for all simulated 

sample size, effect size and censoring configurations.

All the tests performed poorly when detecting a moderate effect in small sample sizes 

with a high degree of censoring. In addition, all of the newly proposed ‘tests5 (i.e. the 

SB, Dp and D np test) had comparable performance when the number of pairs was 100 

and larger and there was no or moderate censoring.

In addition, all of the newly proposed tests had comparable performance to the AKR 

and PPW tests in general except when detecting a small difference in the presence of a 

high degree of censoring. This discrepancy in performance is presumably due to the 

potentially large number of doubly censored pairs excluded from these new tests. It 

should be noted that the "interval based55 procedures ( D P and Dnp) are based on a null
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hypothesis that the median difference in survival is zero while the AKR and PPW  

tests have as null hypothesis that the survival distributions are identical for the two 

levels of the primary variable.

Further it should be noted that the DP and DNP tests are interval estimation driven 

procedures which provide an estimate of the difference in survival between the cases 

and controls and consequently the hypothesis tests are really a by-product. A more 

specific simulation study may be carried out as future work in order to compare these 

‘interval based” procedures more comprehensively, specifically in terms of their 

ability to estimate median difference.

6.6 Methods involving the Matching Variables and Unmatched 
Covariates

Across 1000 simulations for each of the configurations described in 6.3.3, the 

following approaches to estimation of the effect of the primary variable correcting for 

all available matched variables and unmatched covariates were compared in terms of a 

number of criteria.

These approaches were:

• Pair Performance (PP),

• Conditionally Independent Proportional Hazards (CPH),

• Marginal Proportional Hazards (MPH),

• Stratified Proportional Hazards (SPH)

and

• Gamma Proportional Hazards (GPH) Models
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The criteria used to compare the performance of each of the approaches, as outlined in 

section 6.4.2, were bias, coverage rate and the average width of the interval estimate.

6.6.1 Matched Survival Study Simulation

The median of the bias, the percentage coverage and the median interval width for 

nominally 95% confidence interval estimate of the primary variable coefficient px for 

each model across 1000 simulations for each pair size, censoring and effect size 

configuration are given in Table 6.6. Recall that the ‘bias’ for a simulation is 

calculated as j3T minus the true value, pT so negative values represent instances when

that particular model under-estimated the true regression coefficient. The “best” 

model will be one that

1. has no ‘average’ bias

2. gets close to nominal 95% coverage 

and

3. has the smallest interval width ‘possible.

6.6.1.1 Comparing Models in terms of Bias

In order to compare the models in terms of bias, tables and boxplots of the bias for 

each model for the 25, 100 and 250 pairs simulation configurations are given in Figure 

6.6 and Table 6.6.
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As one would expect the bias in general decreases with increasing sample size while 

the variance of the bias increases with increasing censoring. Note that the bias 

distributions for the CPH and MPH models are identical as both methods use the same 

point estimate. From the results relating to the 25 pa irs , there is no suggestion of any 

real bias in any of the configurations based on the models fitted when | 3 t = 0 .  The CPH, 

MPH and GPH all perform in a similar manner where there is no suggestion that any 

of these methods are biased. The PP and SPH models exhibit larger variability than 

these, and this is particularly evident as the level of censoring increases. In particular, 

the PP model showed the largest variability of pT of all the simulation configurations 

for the 25 pairs, 60% censoring configuration.

In many of the simulations with 60% censoring, the PP and SPH model provided 

dubious estimates for the coefficients as the estimation procedure did not converge 

resulting in skewed px estimates (with extremely large estimated standard errors) as 

evidenced in the lower panels of Figure 6.6. There is a suggestion that the estimate of 

Pt from the PP model may be biased as the median bias appears to increase with 

increasing magnitude of pT.
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Boxplot o f Bias fo r  25 pair Matched simulation configurations.
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Table 6.6. Median Bias, % Coverage (% Cov) and Median Interval Width (IW) 
fo r  each Matched Data Simulation Configuration._____________

25 Pairs 100 P airs 250 Pairs
Pt %

C ensored
M odel M edian

B ias
%

C ov
M edian

IW
M edian

B ias
%

C ov
M ed ian

IW
M edian

B ias
%

Cov
M ed ian

IW

0 0 PP 0.029 96 1.75 0.014 95 0.81 0.000 96 0.51
CPH -0.002 93 1.19 0.009 95 0.57 0.000 95 0.35
MPH -0.002 91 1.15 0.009 94 0.56 0.000 95 0.35
SPH 0.080 97 1.58 0.020 95 0.78 0.000 97 0.49
GPH -0.001 92 1.19 0.011 94 0.57 0.000 95 0.35

30
PP 0.075 98 2,46 0.004 95 1.05 0.006 95 0.65
CPH 0.024 93 1.45 -0.001 95 0.68 0.000 95 0.42
MPH 0.024 91 1.41 -0.001 94 0.66 0.000 95 0.42
SPH -0.003 96 2.03 -0.003 95 0.99 0.009 95 0.63
GPH 0.025 92 1.19 0.001 95 0.68 0.000 95 0.42

60
PP 0.026 99 5.95 0.003 96 1.57 -0.016 96 0.94
CPH -0.017 94 2.03 -0.007 95 0.91 0.000 96 0.56
MPH -0.017 92 1.96 -0.007 95 0.89 0.000 96 0.55
SPH 0.008 99 2.99 -0.008 96 1.43 -0.008 96 0.89
GPH -0.017 93 2.03 -0.009 95 0.91 0.000 96 0.56

X 0 PP 0.121 98 2.05 0.036 96 0.93 0.017 95 0.58
CPH 0.052 93 1.30 0,015 95 0 .62 0.000 94 0.39
MPH 0.052 91 1.23 0.015 95 0 .60 0.000 95 0.38
SPH -0.059 97 1.75 -0.045 95 0.87 -0.039 94 0.55
GPH 0.066 93 1.46 0.025 94 0 .62 0.006 95 0.39

30
PP 0.264 98 3.04 0.055 95 1.21 0.022 96 0.74
CPH 0.088 93 1.60 0.018 94 0 .74 0.000 95 0.46
MPH 0.088 92 1.53 0.018 93 0 .72 0.000 95 0.45
SPH -0.033 97 2.26 -0.037 95 1.12 -0 .044 95 0.70
GPH 0.100 92 1.67 0.030 93 0 .74 0.008 95 0.46

60
PP 0.343 99 24.02 0.082 98 1.85 0.0365 94 1.10
CPH 0.077 93 2.22 0.008 96 0.99 0.000 94 0.62
MPH 0.077 91 2.13 0.008 96 0.97 0.000 94 0.61
SPH -0.053 97 3.28 -0.053 96 1.59 -0.069 94 1.00
GPH 0.090 92 2.24 0.012 96 0.99 0.006 94 0.62

3 0 PP 0.092 99 21.07 0.349 99 2 .42 0.204 96 1.35
CPH 0.185 96 2.13 0.016 96 0.97 0.001 95 0.61
MPH 0.185 92 1.99 0.016 94 0 .94 0.001 95 0.59
SPH 0.169 95 4.00 -0.065 94 1.80 -0.172 89 1.08
GPH 0.201 95 5.37 0.038 94 0.98 0.011 95 0.61

30
PP -14.36 99 161.75 0.422 99 3.68 0.269 99 1.87
CPH 0.172 97 2.62 0.026 95 1.39 0.000 95 0.74
MPH 0.172 92 2.45 0.026 94 1.14 0.000 94 0.71
SPH -0.266 95 4.06 -0.111 93 2.31 -0.186 90 1.42
GPH 0.178 96 5.45 0.044 95 1.20 0.016 95 0.74

60
PP -14.56 99 236.24 0.107 99 12.85 0.297 99 3.03
CPH 0.391 98 3.83 0.034 95 1.61 0 .000 95 0.99
MPH 0.391 81 3.21 0.034 94 1.56 0 .000 95 0.97
SPH 7.845 94 320.07 -0.026 92 3.96 -0 .290 88 2.00
GPH 0.426 98 3.84 0.048 95 1.61 0.009 95 0.99
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There was a reduction in the variability of (3T for all configurations when the sample 

size increases from 25 to 100 pairs (Figure 6 . 7 ) .  All of the models performed well for 

the 1 0 0  pair configurations ( 3 t = 0 ,  with the ‘best performance5, in terms of smallest 

median bias, for the CPH and MPH models. The PP model had the largest variability, 

especially for the ( 3 t = 3  and 6 0 %  censoring configuration, with the SPH model the 

next most variable.

A continuing decrease in bias occurred for the scenario of 250 pairs  of observations 

(Figure 6.8). Here, there was no suggestion of any bias for the CPH, MPH and GPH 

models across all the configurations. There was a suggestion however that the PP 

model overestimated P t while the SPH model under-estimated the effect of the 

primary variable for configuration with the largest primary variable effect (i.e. px=3).
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Figure 6.7
Boxplot o f  Bias fo r  100 pa ir  M atched simulation configurations.
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Figure 6.8
Boxplot o f  Bias fo r  250 pa ir M atched simulation configurations.
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6.6.1.2 Comparison of Coverage Rates and Confidence Interval Widths

The percentage coverage (i.e. estimated confidence coefficient) for the interval 

estimates based on each model respectively across the underlying simulation 

configurations are given in Table 6.5. The percentage coverage represents the 

proportion of times in the 1000 simulations that the (nominal 95% confidence) 

interval estimate captured the true value Pt- Scatterplots of the median interval width 

against percentage coverage for each simulation configuration labelled by model are 

given in Figures 6.9,6.10 and 6.11. The best model is that which has attains nominal 

coverage in addition to having the smallest median interval width.

As expected, the median interval width decreases with increasing sample size and 

increases slightly with increasing censoring. From these plots the general pattern 

appears to be that the CPH, MPH and GPH models behave similarly and distinctly 

better that the SPH and PP models which have poorer pattern in both coverage and 

interval width.

The CPH model appears to perform best for the 25 pair configuration where the MPH 

model appears best for the 100 and 250 pair configurations. As the number of 

simulated pairs increases however, the MPH model performs best in terms of having 

good coverage with the narrowest intervals. The GPH model has comparable 

performance to the CPH model for most configurations, with a suggestion of wider 

intervals for the 25 pairs, |3t=3 configuration.
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The PP and SPH models perform poorly in terms of having extremely wide intervals 

(in comparison to the other models) accompanied, not surprisingly, with good 

coverage. The large intervals are particularly noticeable in the case of the high 

censoring configurations.

In conclusion, the CPH model performs best when considering all the simulation 

configurations with the MPH model a relatively close second. The M PH model 

however appears to perform best when the number of pairs is large.

Figure 6.9
Scatterplot o f%  Coverage by Median Interval Width fo r  25 Pair 

Matched Simulation Configurations.
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6.6.1.3 Assessing the Performance of the Estimated Standard Errors for the Primary 

Variable Coefficient Estimate.

A further important area of comparison of the models is in terms of the (estimated) 

standard error of the estimates of the ‘regression’ coefficients which is achieved by 

investigating how well the estimated distribution of the standard error approximates 

the ‘true’ sampling variability of the estimates. This is achieved by direct comparison

a

of the ‘sample’ standard deviation of (3 r across the 1000 simulations with the ‘m ean’ 

of the individual estimated standard errors of PT from each of the 1000 simulations.

A

The estimated standard deviation of PT, and the mean of the estimated standard errors

A
of the pT as well as the ratio of these two quantities are given in Tables 6.7, 6.8 and 

6.9 for all configurations. Note, any value of the ratio greater than 1 suggests that the 

model is under-estimating the ‘true’ sampling variability of pT while a value less than 

1 suggests that the model is over-estimating the ‘true’ sampling variability of pT .

The results from Table 6.7 for the 2 5 pair  configurations suggest that all the models in

A

general underestimate the ‘true’ sampling variability of pT. The PP and SPH models

have the poorest performance in particular for the 60% censoring and pT=3 

configuration.

When the number of pairs increases to 100 there is, as expected, better agreement 

between the estimated and the ‘true’ sampling variability of the estimates for all 

models, with the CPH, MPH and GPH displaying the best agreement.
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Table 6.7. ^/var($T) and, mean estimated standard error fo r  
all Matched simulation configurations with 25 Pairs.

0%  C ensoring 30%  C enso ring 60%  C ensoring

pT M odel Vvar(pT) m ean
ese(P*r)

^/var(PT) 7var(pT ) mean
ese(p-r)

7var(pT ) 7var(p-r) m ean
ese(p-r)

■yjv ar(pT)

m ean ese([3T) m ean e s e (p T) m ean e s e (p T)

0
PP 0.257 0.217 1.18 49.591 2,772 17.89 55.945 5.694 9.83
CPH 0.111 0.094 1.18 0.172 0.141 1.22 0.337 0.280 1.20
MPH 0.111 0.085 1.31 0.172 0.130 1.32 0.337 0.267 1.26
SPH 0.164 0.165 0.99 0.314 0.280 1.12 3.332 11.848 0.28
GPH 0.115 0.094 1.22 0.180 0.141 1.28 0.354 0.282 1.26

1
PP 13.059 0.774 16.87 342.614 40.50 8.46 545.332 253.668 2.15
CPH 0.139 0.112 1.24 0.215 0.173 1.24 0.519 0.353 1.47
MPH 0.139 0.101 1.38 0.215 0.158 1.36 0.519 0.328 1.58
SPH 0.236 0.214 1.10 1.196 1.553 0.77 11.455 191.563 0.06
GPH 0.146 0.113 1.29 0.227 0.174 1,30 0.532 0.356 1.49

3
PP 871.473 434.609 2.01 1369.207 1212.732 1.13 1855.541 1354.658 1,37
CPH 0.535 0.369 1.45 1.688 1.293 1.31 0.519 0.353 1.47
MPH 0.535 0.279 1.92 1.688 1.266 1.33 0.519 0.328 1.58
SPH 12.972 168.973 0.08 18.938 856.489 0.02 11.455 191.563 0.06
GPH 1.132 15.946 0.07 0.345 0.299 1.15 0.534 0.356 1.50

Table 6.8. ^/v ar(p-r) and mean estimated standard error fo r
all M atched simulation configurations with 100 Pairs.

0% C ensoring 30% C ensoring 60% C ensoring

Pt M odel -Jvar(PT) m ean Vvar(pT) ■v/ veu'CPt) m ean i/var(f3T) ■^/var(PT) m ean -y/var(p-r)
ese (P r) m ean e s e (p T) ese(p-r) m ean e s e (p T) ese(PT) m ean e s e (p T)

0
PP 0.043 0.044 0.98 0.075 0.074 1.01 0.193 0.169 1.14
CPH 0.021 0.021 1.00 0.029 0.030 0.97 0.052 0.054 0.96
MPH 0.021 0.020 1.05 0.029 0.029 1.00 0.052 0.052 1.00
SPH 0.038 0.040 0.95 0.063 0.065 0.97 0.131 0.034 3.85

1

GPH 0.021 0.021 1.00 0.030 0.030 1.00 0.053 0.055 0.96

PP 0.060 0.058 1.03 0.130 0.105 1.24 13.309 0.416 31.99
CPH 0.025 0.025 1.00 0.040 0.037 1.08 0.062 0.066 0.94
MPH 0.025 0.024 1.04 0.040 0.034 1.18 0.062 0.062 1.00
SPH 0.049 0.050 0.98 0.088 0.083 1.06 0.182 0,176 1.03

3

GPH 0.026 0.025 1.04 0.043 0.036 1.19 0.064 0.066 0.97

PP 16.416 1.484 11,06 125.566 15.251 8.23 574.487 232.412 2.47
CPH 0.061 0.063 0.97 0.097 0.095 1.02 0.191 0.176 1.09
MPH 0.061 0.058 1.05 0.097 0.088 1.10 0.191 0.168 1.14
SPH 0.505 0.326 1.55 2.503 2.946 0.85 10.154 76,509 0.13
GPH 0.069 0.064 1.08 0.103 0.096 1.07 0.196 0.178 1.10
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Table 6.9. ^jy ar(fW) and mean estimated standard error fo r

all Matched simulation configurations with 250 Pairs.
0%  C ensoring 30%  C ensoring 60%  C ensorin g

pT M odel -\/var(pT) mean y  var(p-r) ■Jv ar(pT) mean ^/vai'CPT) ■yjy ar(PT) mean 7var(j3T)
ese(p-r) m ean e se (P T) ese(p-r) m ean e s e (p T ) ese(PT) m ean e se (P T)

0
PP 0.016 0.017 0 .94 0.027 0.027 1.00 0.059 0.059 1.00
CPH 0.008 0.008 1.00 0.011 0.012 0.92 0.020 0.021 0.95
MPH 0.008 0.008 1.00 0.011 0.011 1.00 0.020 0.020 1.00

SPH 0.015 0.016 0.94 0.025 0.026 0.96 0.052 0.052 1.00

1

GPH 0.008 0.008 1.00 0.011 0.012 0.92 0 .020 0.021 0.95

PP 0.023 0 ,022 1.05 0.035 0.037 0.95 0 .090 0.082 1.10

CPH 0.010 0.010 1.00 0.013 0.014 0.93 0 .026 0.025 1.04

MPH 0.010 0.010 1.00 0.013 0.013 1.00 0 .026 0.024 1.08

SPH 0.019 0.020 0.95 0.029 0.032 0.91 0 .065 0.067 0.97

GPH 0.010 0.010 1.00 0.014 0.014 1.00 0 .027 0.025 1.08

3
PP 0.147 0 .132 1.11 1.405 0.351 4.00 60 .872 7.315 8.32

CPH 0.025 0 .024 1.04 0.037 0.036 1.03 0.073 0.067 1.09
MPH 0.025 0.023 1.09 0.037 0.034 1.09 0.073 0.064 1.14

SPH 0.074 0.079 0.94 0.151 0.136 1.11 1.371 1.018 1.35

GPH 0.025 0.024 1.04 0.038 0.036 1.06 0.075 0,066 1.14

Finally, for the 250 pair  configuration results (Table 6.9) there is again better 

agreement due to the larger sample sizes where, once again, all the models tend to 

overestimate the variability of (3T except perhaps the SPH model.

The MPH and CPH models appear to have the best ‘asymptotic’ performance with the 

MPH model best for the 0% and 30% censoring configurations while the CPH model 

best for the 60% censoring configurations. The PP and SPH models continue to 

perform worst of all the methods presented, in particular for the high censoring, large 

effect size configuration.
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6.6.1.4 Matched Study Conclusion

In general across the range of configurations, the CPH and MPH models appear to 

perform best across all the criteria. The CPH model performs well across all the 

simulation configurations. The MPH model however has, on average, smaller 

estimated standard errors (and subsequently narrower intervals) while still maintaining 

effective 95% coverage/confidence.

The GPH model exhibited comparable if slightly poorer performance in terms of bias 

and coverage to the CPH and MPH models but it is computationally more complex to 

fit than each of these and there is no strong suggestion that it is of real practical value 

for matched studies in conditions similar to the configurations investigated here.

6.6.2 Paired Survival Simulation Study

As indicated earlier, a second simulation study was carried out to compare the 

performance of the models when analysing paired  survival data. The mechanism for 

generating the data was similar to that for the matched study except that in this 

instance both (the perfectly matched) matching variables are 'hidden’ from the 

analysis in order to mimic a real life paired study.

Again, the basis for model comparison will be the bias distribution, coverage, interval 

width distribution and asymptotic performance of each model under each simulation 

configuration. The median bias, percentage coverage and median interval width for
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each model for the various pair size, censoring and effect size configurations are given 

in Table 6.10.

6.6.2.1 Comparing Models in terms of Bias

As in the matched simulation, bias tends to decrease with increasing sample size while 

increasing as the censoring gets larger. Boxplots of the bias distribution for each 

model for all the simulation conditions are given in Figures 6.12, 6.13 and 6.14.

The overall pattern from these graphs is that the ‘bias’ appears normally distributed 

for all models. There is a strong suggestion that the CPH and MPH models tend to 

under estimate |3t for all configurations except px =0 and this under estimation tends 

to increase as px increases. For example, for the 25 pairs configurations with no 

censoring, the CPH model tends to under estimate the true value by 10-15% on 

average when pT = 1.

The SPH, PP and to some extent the GPH model do not appear to be biased across the 

simulation configurations, if indeed biased at all.

When considering the 25 pa ir  simulations, there is no real suggestion of bias for any 

of the models fitted when estimating in the case of Pt=0. The CPH, MPH and GPH 

have similar distributions to each other while the PP and SPH models exhibit larger 

variability.
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Table 6.10. Median Bias, % Coverage (%Cov) and Median Interval Width (IW)
for the Paired Data Simulation Configurations.

25  Pairs 100 P airs 250 Pairs

p % C en M odel M ed ian
B ias

% C ov M edian
IW

M edian
Bias

% Cov M ed ian
IW

M edian
B ias

% C ov M ed ian
IW

0 0
PP 0.000 94 1.60 0.000 95 0.79 -0.008 95 0.50
CPH 0.005 96 1.15 -0.002 98 0.56 -0.003 98 0.35
MPH 0.005 92 1.03 -0.002 95 0.50 -0.003 95 0.31
SPH 0.000 94 1.58 0.000 95 0.78 -0.008 96 0.50
GPH 0.011 95 1.18 -0.001 96 0.58 -0.004 96 0.37

30
PP 0.000 96 2.06 0 .000 95 1.01 0 .000 95 0.64
CPH -0.003 97 1.40 0.006 96 0.67 0 .000 97 0.42
MPH -0.003 93 1.26 0.006 93 0.61 0 .000 96 0.38
SPH 0.000 96 2.03 0.000 95 1.00 0 .000 95 0.63
GPH 0.001 95 1.43 0.009 95 0 .70 0.002 97 0.44

60
PP 0.000 99 2.99 0.000 96 1.43 0 .000 96 0.91
CPH -0.002 96 1.91 0.009 97 0.90 0 .002 96 0.56
MPH -0.002 93 1.76 0.009 96 0.84 0.002 96 0.91
SPH 0.000 99 2.99 0.000 97 1.43 0 .000 96 0.90
GPH -0.002 95 1.95 0.001 96 0.93 0.002 95 0.58

1 0 PP -0.056 96 1.76 0.005 94 0.89 0.008 95 0.56
CPH -0.140 93 1.22 -0.172 81 0.60 -0.172 56 0.37
MPH -0.140 89 1.08 -0.172 75 0.53 -0.172 49 0.34
SPH -0.056 97 1.75 -0,005 94 0.88 -0.016 95 0.55
GPH -0.037 93 1.28 -0.070 90 0.63 -0.066 86 0.40

30
PP -0.061 96 2.32 0.005 95 1.14 0.012 96 0.72
CPH -0.144 94 1.49 -0.171 85 0.72 -0.172 67 0.45
MPH -0.144 89 1.33 -0.171 81 0.66 -0.172 63 0.41
SPH -0.061 95 2.26 -0.002 95 1.13 -0.015 96 0.71
GPH -0.031 94 1.54 -0.070 92 0.75 -0.063 90 0.47

60
PP -0.064 99 3.39 0.009 96 1.63 0.009 95 1.03
CPH -0.137 94 2.04 -0.168 90 0.95 -0 .172 80 0.60
MPH -0.137 90 1.88 -0.168 87.1 0.90 -0 .172 77 0.56
SPH -0.061 97 3.28 0.004 96 1.59 -0.013 95 1.01
GPH -0.034 94 2.10 -0.067 94 0.99 -0.070 91 0.62

3 0 PP -0.558 98 3.99 0.157 98 1.20 0.161 96 1.26
CPH -0.365 86 1.88 -0.413 55 0.89 -0.422 19 0.55
MPH -0.365 81 1.70 -0.143 52 0.83 -0.422 17 0,53
SPH 0.178 95 4.00 -0.156 95 1.80 -0.088 91 1.12
GPH -0.155 90 1.98 -0.171 83 0.96 -0 .182 71 0.60

30
PP -0.563 53 143.97 0.160 99 2.79 0.161 98 1.62
CPH -0.364 88 2.33 -0.406 67 1.08 -0.423 33 0.67
MPH -0.364 81 2.08 -0.406 64 1.02 -0.423 30 0.64
SPH 0.180 99 4.06 -0.054 96 2.31 -0 .080 94 1.42
GPH -0.155 92 2.45 -0.179 85 1.15 -0.179 76 0.72

60
PP -0.563 73 203.61 0.163 100 3.95 0.160 98 2.29
CPH -0.363 89 3.26 -0.410 76 1.46 -0.416 55 0.90
MPH -0.363 72 2.67 -0.410 73 1.37 -0.416 53 0.86
SPH 0.183 66 320.07 -0.059 91 3.96 -0.093 94 2.00
GPH -0.158 92 3.23 -0.181 89 1.53 -0.181 85 0.94
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Figure 6.12
Boxplot o f Bias fo r  25 pa ir  Paired simulation configurations.
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There is a suggestion that the CPH and MPH models are biased when looking at the 

100 pa ir  simulations and this bias tends to increase as (3t increases (Figure 6.13). 

There is a suggestion that the GPH model is also underestimating the true effect 

whereas the SPH and PP models appear relatively unbiased with a suggestion that the 

PP model underestimates the true effect when there was 60% censoring. This could 

be a consequence of the maximisation procedure not converging when fitting the PP 

model (as evidenced by the skewed distribution in Figure 6.13) due to the number of 

observations being small due to censoring.

When considering the performance of all the models for the 250 pa ir  simulations the 

CPH and MPH model again tend to underestimate the true effect (Figure 6.14). The 

GPH model appears to perform marginally better in terms of bias while the SPH and 

PP models do not appear to be biased across any of the simulations. The variability in 

the bias distribution is similar across the CPH, MPH and GPH models while the SPH 

and PP model have similarly large variability to each other.
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Figure 6.13
Boxplot o f  Bias for 100 Pairs Paired simulation configurations.
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Figure 6.14
Boxplot o f  Bias for 250 Pairs Paired simulation configurations.
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6.6.2.2 Comparison of Confidence Interval Widths and Coverage Rates

In order to determine the ‘best’ model (i.e. the model that has the highest coverage 

coupled with the smallest interval width), labelled scatterplots of the median interval 

width against percentage coverage for each simulation configuration are given in 

Figures 6.15,6.16 and 6.17.

There is again a strong suggestion that the CPH and MPH models are not the best 

candidates to consider when analysing paired data as both models have poor coverage 

despite relatively small interval widths. There is a suggestion that the GPH model 

underestimates Pt but is clearly an improvement on both the CPH and MPH as its 

coverage is, in general, much closer to the nominal 95%.

The SPH and PP models have consistently high coverage (except perhaps the PP 

model for the 25 pairs, high censoring configuration). This high coverage is achieved 

by considerably wider intervals with, for example, the median interval width for the 

GPH model being nearly half that of the SPH and PP across most of the 

configurations.
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Figure 6.15.
Scatterplot o f  % Coverage by Median Interval Width fo r  25 Pairs

Paired Simulation Configurations.
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Figure 6.16.
Scatterplot o f%  Coverage by Median Interval Width fo r  100 Pairs 

Paired Simulation Configurations
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Figure 6.17.
Scatterplot o f  % Coverage by M edian Interval Width fo r  250 Pairs

Paired Simulation Configurations.
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6.6.2.3 Assessing the Performance of the Estimated Standard Errors for the Primary 

Variable Coefficient Estimate.

A

The ‘sample5 standard deviation across all 1000 estimates of ( 3 t  and the mean of the

A

estimated standard errors of the pT as well as the ratio of these two quantities are 

illustrated in Tables 6.11, 6.12 and 6.13. This allows a comparison of how well each 

model performs in terms of the estimated standard error compared to the ‘true5 

sampling variability of the estimates for the various sample configurations.
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Table 6.11. «Jvar(p-r) and mean estimated standard error for  
all Paired simulation configurations with 25 Pairs.

0%  C ensoring 30%  C ensoring 60%  C ensoring

Pt M odel ■^var(pT) m ean
ese(|3T)

^/var(P-r) ■\/var(PT) m ean
ese(p-r)

V v “ ’(P t) -J vai'(P’r) m ean
ese(pT)

Vvar(p-r)

m ean e se (p T) m ean ese([3T) m ean cse((3T)

0
PP 0.191 0.169 1.13 0.316 0.289 1.09 3.839 8.338 0.46
CPH 0 .085 0.087 0.98 0.119 0.129 0.92 0.263 0 .246 1.07
MPH 0.085 0.069 1.23 0.119 0.105 1.13 0.263 0 .207 1.27
SPH 0 .186 0 .166 1.12 0.306 0.283 1.08 3.649 15.843 0.23
GPH 0.103 0 .092 1.12 0.147 0.137 1.07 0.305 0.261 1.17

1
PP 0.263 0 .226 1.16 2.778 1.761 1.58 18.282 98.819 0.19
CPH 0 .094 0.099 0.95 0.147 0.148 0.99 0.388 0.321 1.21

MPH 0 .094 0.077 1.22 0.147 0.119 1.24 0.388 0.243 1.60
SPH 0 .244 0.217 1.12 1.668 2 .382 0.70 1 1.503 197.906 0.06
GPH 0.121 0.107 1.13 0.185 0 .162 1.14 0.630 5.153 0.12

3
PP 41.870 116.30 0.36 47.103 498.231 0.09 34.29 1746.590 0.02
CPH 0.553 0 .326 1.70 1.228 0.860 1.43 6 .662 19.546 0.34
MPH 0.553 0 .214 2.58 1.228 0 .334 3.68 6 .662 5.061 1.32
SPH 13.333 180.106 0.07 18.839 897.247 0.02 19.223 3767.409 0.01
GPH 2.048 7 .587 0.27 4 .600 237.723 0.02 30.457 8652 .114 0.00

Table 6.12. -^vav(pT) and mean estimated standard error fo r  
all Paired simulation configurations with 100 Pairs.

0% C ensoring 30% C ensoring 60%  C ensoring

Pt M odel
•^var(PT) mean ■yjv ar(Pr) -\/var(pT) mean -^/var(PT) •^var(Pr) mean -y/var(pT)

ese(pT ) m ean e se (P T) ese(pT) m ean e s e (p T) ese(pT ) m ean e se (P T)

0

1

3

PP
CPH
MPH
SPH
GPH

0.043

0.017

0.017

0.042

0.022

0.041

0.021

0.016

0.040

0.022

1.05 

0.81

1.06 

1.05 

1.00

0.069

0.027

0.027

0.066

0.032

0.067

0.029

0.024

0.065

0.032

1.03

0.93

1.13

1.02

1.00

0.133

0 .045

0 .045

0 .130

0 .052

0.137

0 .052

0 .046

0 .134

0 .056

0.97

0.87

0.98

0.97

0.93

PP
CPH
MPH
SPH
GPH

0 .056

0 .022

0 .022

0 .054

0.031

0 .052

0.023

0.019

0.051

0 .026

1.08

0.96

1.16
1.06

1.19

0.092

0.031

0.031

0.088

0 .044

0.087

0.033

0.029

0 .084

0.037

1.06

0.94

1.07
1.05

1.19

0.360

0.054

0.054

0.297

0.068

0.211

0 .060

0.053

0.220

0.065

1.71

0 .90

1.02

1.35

1.05

PP
CPH
MPH
SPH
GPH

2 .354

0 .052

0 .052

0.503

0 .089

0.487

0.052

0 .046

0 .335

0.061

4.83

1.00

1.13

1.50

1.46

17.105

0.083

0.083

2.581

0.129

5.833

0.078

0.070

3.281

0.089

2.93

1.06

1.19

0.79

1.45

45.152  

0.166  

0.166  

11.096  

0.212

90.959

0.148

0.131

97.629

0 .162

0.50

1.12

1.27

0.11

1.31
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Table 6.13. ^/vapp-r) and mean estimated standard error fo r  
all Paired, simulation configurations with 250 Pairs.

0%  C ensoring 30%  C ensoring 60%  C ensoring

pT M odel ^/var(pT) m ean -Jv ar(|3T) 7  vai-(p-r) m ean 7var(pr) 7  var(pT) m ean
ese(pT)

7var(p-r)
ese(PT) mean ese(PT) ese(p-r) mean ese(j3T) mean ese(pT)

0

1

PP
CPH
MPH
SPH
GPH

0.015
0.006
0.006
0.015
0.008

0.016
0.008
0.006
0.016
0.009

0.94
0.75
1.00
0.94
0.89

0.026
0.009
0.009
0.026
0.011

0,026
0.012
0.010
0.026
0.013

1.00
0.75
0.90
1.00
0.85

0.052
0.019
0.019
0.051
0.023

0.054
0.021
0,018
0.053
0.022

0.96
0.90
1.06
0.96
1.05

PP
CPH
MPH
SPH
GPH

0.021
0.008
0.008
0.021
0.014

0.021
0.009
0.007
0.020
0.010

1.00
0.89
1.14
1.05
1.40

0.031
0.012
0.012
0.030
0.017

0.034 
0.013 
0.011 
0.033 
0.015

0.91
0.92
1.09
0.91
1.13

0.073
0.021
0.021
0.073
0.067

0.071
0.023
0.021
0.071
0.068

1.03 
0.91 
1.00
1.03 
0.99

3
PP
CPH
MPH
SPH
GPH

0.120
0.020
0.020
0.091
0.043

0.107
0.020
0.019
0.084
0.024

1.12
1.00
1.05
1.08
1.79

0.635
0.029
0.029
0.236
0.054

0.215
0.029
0.027
0.160
0.034

2.95
1.00
1.07
1.48
1.59

11.53
0.052
0.052
1.422
0.079

2.45
0.054
0.050
1.112
0.060

4.71
0.96
1.04
1.28
1.32

As with the matched simulation results, all of the models tend to under-estimate the 

‘true5 variability of |3t . However in these simulations there is better agreement than 

for the matched scenario as the sample size increases. The PP, SPH and GPH models 

have poor performance when the number of pairs is small, the censoring high and the 

primary variable effect large.

The MPH and GPH models appear to best estimate the ‘true’ standard error when 

considering the 250 pair results in comparison to the SPH and PP models which 

tended to be slightly under estimate the ‘true’ standard error. The reduction in the 

mean of the estimated standard deviation for the MPH model when compared to the 

CPH model is evident and possibly due to the dependency structure.
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6.6.2.4 Paired Study Conclusions

The CPH and MPH models are shown to be poor candidates for analysing paired 

survival study data as both are substantially biased (possibly due to model mis- 

specification given the ‘hidden’ covariates) and consequently have poor coverage.

The GPH model performs considerably better than both the CPH and MPH models in 

terms of increased coverage while retaining similar interval estimate widths. The SPH 

and PP models, which address the dependency by considering each pair as a separate 

stratum, consistently maintain the nominal 95% coverage but their interval estimates 

are rather wide, in particular for small sample sizes with ‘large’ censoring.

In order therefore to determine the best model there is a trade off between the SPH 

and PP model which have good coverage but wide interval estimates and the GPH 

model which has considerably narrower interval estimates (and subsequently slightly 

poorer coverage), and is not unduly affected by large censoring.
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6.7 Assessing the Effect of The Degree of Association within a ‘Pair '

The primary aim of this chapter is to identify which of the methods proposed in this

thesis are best suited for matched or paired survival studies in order to provide 

guidelines for their general use. An additional question of interest is what role the 

degree of association plays in this comparison. In order to answer this, a strategy for 

simulating matched and paired survival data for predefined degrees of dependency is 

needed.

One such simulation strategy for specifically comparing ‘naturally matched’ cluster 

studies (i.e. familial or litter studies with possibly varying numbers in each cluster) 

with different levels of dependency uses a multivariate survival model (Oakes 1982, 

Clayton 1978, Clayton and Cuzick 1985) to simulate the data.

The model is defined as

where S(ti, ..., tm) is the joint survival function for the m members in any cluster and
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is the marginal survival function for ith individual in a cluster where z* is the vector of 

covariates for an individual having an event at time f. The level of dependence 

between survival times of members in a pair is measured bytj). Note that in the 

multivariate survival time model, independence is represented with (|)=1 while in the 

GPH model a 0=0 represents independence (recall that in the GPH model 0 is the 

variance of the gamma distributed random effect). No guidelines are available in the 

literature however as to what represents low, medium and high dependency although 

as mentioned earlier in section 5.9.2.1, the estimate of 0 in a GPH model can be 

‘translated’ into an estimate of Kendall’s % (Oakes 1982 and Klein 1997).

One simulation study using this multivariate survival model (King et al 1996) was 

carried out to specifically compare the CPH and MPH models for differing levels of 

dependency. King’s simulations strictly concerned cluster studies with varying 

number of individuals in a cluster. This simulation investigated the effect of 

analysing such dependent survival data under the false assumption of independence 

using a PH model compared to using methods (e.g. the Marginal PH model) 

specifically designed to analyse dependent data. In King’s study the level of 

dependency was chosen to as <j)=l, 3 and 5 which, according to the authors, 

represented independence, moderate and finally high dependence.

In order to compare the results and guidelines arising from the simulation study 

presented in this chapter to those suggested by King (1996), an indication of the level 

of dependency from using the strategy outlined in section 6.3 (where the dependency 

is a direct consequence of the matching variables) is needed. For the matched data
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simulations the estimate of 0 from the GPH model across all configurations ranged 

from 0.71 to 1.21 (corresponding to an estimated Kendall’s t of 0.26 to 0.38) while 

for the paired simulations the estimate of 0 ranged from 0.82 to 1.74 (corresponding to 

an estimated Kendall’s t of 0.29 to 0.47) across all configurations. These estimates 

suggest that the degree of dependency for both the matched and paired simulations can 

be considered ‘moderate’ where the lower level of dependency in the matched 

compared to the paired simulations is probably due to the effect of the unmatched 

covariate.

As the results in this thesis relate, in some sense, to matched and paired survival 

studies with moderate dependency a suggestion as to how the various models might 

perform with increasing (and no) dependency can be ascertained from King’s study.

In summary, King’s simulation study showed that both the PH and MPH models 

provide unbiased estimates of the effect of the primary variable but with estimated 

standard errors under-estimated as the level of dependence increased. In particular, 

the PH model showed increasing Type 1 errors as the dependency structure increased 

suggesting possible model mis-specification. The MPH model had high efficiency (in 

terms of the standard deviation of the estimated coefficients across the simulations 

being similar to the mean estimated standard errors of the coefficient across the 

simulations) for Pt=0 but this efficiency decreased as p j increased. In conclusion, 

King suggested that the MPH model should be recommended over the PH model 

when analysing cluster survival studies.
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The simulation study undertaken in this thesis suggested that the MPH model is more 

suited to matched than to paired studies. One reason as to why the MPH model 

performed poorly for the paired study may be that, given the moderate degree of 

dependency present, model mis-specification arises from the ‘hidden’ matching 

variables having a greater ‘influence’ on the estimation of the primary variable than 

the modelling of the dependency alone. This appears to consolidate the results from 

King’s study where the MPH performed well when there was low to moderate 

dependency present but showed evidence of poor performance with increasing 

dependency.

The clear suggestion from both studies however, is that the PH model should not be 

used to analyse dependent survival data as it has no ‘mechanism’ for dealing with 

such, although the PH model will perform quite well when there is a small degree of 

dependency (King 1996).

An additional reason for using the GPH or MPH model over the PH model is that both 

reduce to the PH model when modelling independent survival data thus eliminating 

the issue of the magnitude of the degree of dependency. Furthermore, King’s results 

suggested the somewhat obvious fact that there is no loss in power or efficiency in 

using the MPH and GPH models when modelling independent survival data.

In conclusion, given King’s results and the results of the simulations in this thesis, the 

MPH model appears the best suited approach to analysing matched data while the 

GPH model appears the best suited for paired survival studies.
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6.8 Availability of Proposed Models in Statistical Software

Some final points worth addressing in this chapter are the ‘availability’ of each model 

in ‘standard’ statistical software packages, and the time taken (as assessed by the 

Central Processing Unit) to fit each model.

None of the tests presented in Chapter 4 are available directly in commercial software 

while an indication of the availability of the models in commonly available software is 

given in Table 6.14.

Table 6.14 Availability o f Models for major software packages
PP CPH MPH SPH GPH

Minitab (v 12) ✓
Splus (v 4.5) s / / ✓ *
SAS s / / ✓
Statistica (v 99) s / /
STATA (v 6.0) s / /
SPSS (v 8.0) / / /
:S Frailty M odels (i.e. GPH) will be available in Splus 2000

The simulations described in this chapter were carried out on a Sun Ultra workstation. 

Figure 6.18 displays the average CPU time (in seconds) taken (across all simulations 

configurations) to fit each of the models considered in this thesis. Not surprisingly the 

average CPU increases for all the models with increasing sample sizes. The CPH, 

MPH and SPH take the smallest amount of time to fit while the PP and GPH models 

are the slowest, markedly so for the 250 pair configurations. However, the mean time 

taken to fit any of the models was under 20 seconds and therefore of no great concern 

for practical use in a one-off analysis.
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Figure 6.18.
Mean time taken to fit each

model across all simulation configurations.
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6.9 Chapter Summary

The primary goal of this chapter was an investigation of the various methods proposed 

for analysing dependent survival data from matched and paired studies. A strategy 

was proposed to simulate matched and paired survival data using a proportional 

hazards model across a variety of configurations defined by the number of pairs, the 

effect size of the primary variable and the proportion of censored observations. The 

PH was used to underpin the simulations as all of the models suggested in Chapter 5 

assumed proportional hazards and thus removed any suggestion that poor performance 

may be attributed to this assumption being invalid.

The first half of the chapter dealt with comparing the performance of the ‘covariate 

free’ procedures (Chapter 4) for testing a difference in survival between the two arms
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of the primary variable (i.e. the case and control). For both the matched and paired 

scenarios there was a strong suggestion that Akritas’ test performed best.

The second half of the chapter compared the various modelling approaches presented 

in Chapter 5 for comparing survival between the two arms of the primary variable 

while adjusting for ‘known* covariates and hence the dependency structure of the data. 

The Marginal Proportional Hazards model appeared best suited to analysing matched 

survival data while the Gamma Frailty Proportional Hazards model appeared best 

suited to analysing paired survival problems.

In order however to fully understand the behaviour of the various approaches 

presented in this study, in particular the models presented in Chapter 5, additional 

simulation studies should be conducted and these will be outlined as further work in 

the concluding chapter.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

The main aim of this thesis is to present methods for the analysis of dependent 

survival data, primarily from cluster studies.

Chapter 1 gave a brief introduction to Survival Analysis and presented background 

information for analysing independent survival data in order to provide a basis for 

subsequent chapters. The emphasis of Chapter 2 was to introduce survival designs 

where the common assumption of independence between observations is likely to be 

invalid. Two illustrative examples, involving data from Melanoma and Dental 

studies, were used to illustrate the methods presented in this chapter. The Melanoma 

study, a matched survival study, involved a comparison of the survival prospects of a 

sample of matched Multiple and Single Melanoma sufferers. The Dental study was 

an example of a paired survival study, with the aim of the study being to compare the 

time to orthodontic bracket failure under two different types of bonding cements.

Before any formal analysis is carried out in this, and indeed any context, a graphical 

representation of the data must be carried out not only to check the validity of 

underlying assumptions but to allow some subjective impression of the magnitude of 

the effect on survival of the primary variable and indeed for presentation of results. A
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variety of approaches for displaying matched and paired survival data were reviewed 

or introduced in Chapter 3 including a new non-parametric approach for generating 

reference ranges.

The emphasis of Chapter 4 was to provide formal methods for analysing matched and 

paired survival data where emphasis is on the comparison the primary variable alone. 

A review of the methods available in the current literature and several new 

approaches were presented based on comparing ‘pair performance’ as well as the 

estimation of the distribution of the (pairwise) difference in survival.

A natural extension to the approach adopted in Chapter 4 is to incorporate any 

additional covariates (in the form of matching variables and/or unmatched covariates) 

into the analysis in order to give a more ‘balanced5 assessment of the effect of the 

primary variable on survival. An introduction to the various approaches available for 

modelling survival data, in particular through the proportional hazards model, was 

given in Chapter 5 followed by an extension of the “pair performance” approach and 

several extensions of the proportional hazards (PH) model to analyse survival data 

from clustered studies.

In order to compare the various methods presented respectively in Chapters 4 and 5 

simulation studies were carried out and the results were presented in Chapter 6. 

These suggested that when analysing matched and paired survival data using the 

primary variable alone, the Akritas test is recommended for general use. For the 

methods presented in Chapter 5 (i.e. incorporating the matching variables and 

unmatched covariates), the Marginal proportional hazards models appeared best

2 3 0



suited to matched survival studies while the Gamma frailty proportional hazards 

models appeared best suited to paired survival studies with respect to estimating the 

effect of the primary variable.

The conclusions reached from the applications of the methods in this thesis to the two 

example data sets were that there was a slight but non-significant difference in 

survival between the Multiple and Single Melanoma sufferers, and no significant 

difference in the time to bracket failure between the Glass Ionomer and chemically- 

cured cements.

7.2 Further Work

Methods for graphing and analysing matched and paired survival data using a variety 

of techniques were described in Chapter 3. The following considerations could be the 

subject of further work:

• The methods presented for generating reference ranges in Chapter 3 involved 

Monte Carlo simulation in order to ‘estimate’ the reference range rather than to 

calculate it ‘exactly’ using all possible permutations. The estimation procedure 

was based on estimating (using 2.5% percentiles) the upper and lower reference 

ranges from a random sample of all possible ratios. An alternative reference range 

that could be investigated is one which uses the maximum and minimum 

respectively rather than percentiles.
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• The Simple Binomial and interval based tests presented in Chapter 4 ignore all 

contributions made by doubly censored pairs. This can have serious 

consequences, as illustrated in Chapter 6, when there is a high degree of censoring 

and a small sample size. In particular, when considering the tests based on 

estimating the pairwise difference in survival two approaches worth further 

investigation are:

1) Recast the problem as an interval censored estimation problem by defining an 

upper bound for the possible maximum survival time. For example, in a survival 

study involving human lifetimes a sensible upper bound might be 100 years of life. 

Consider a doubly censored pair with observation times t*i and t*2 respectively 

(Figure 7.1) where a subjective upper bound has been chosen to be U.

Figure 7.1.

Defining an Upper Bound fo r the Difference in Survival Time.

Let Ti and T2 represent the actual (and unknown) event times for the two individuals 

in the pair respectively. Hence, t*i < T i <  U and t*2 < T2 < U allowing an 

interval estimate

t * ! - U <  T i - T 2 < U - t * 2
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of the true doubly censored difference to be obtained.

An estimate of the survivor function of the differences (and hence an interval estimate 

of the median difference) can then be based on the event times, singly censored 

differences and interval censored differences (derived from the doubly censored pairs) 

using Turnbull’s approach (1974). Following this, a sensitivity analysis could be 

carried out to investigate the upper bound on the interval estimate.

2) Use a kernel density estimation approach to provide a smoothed estimate of 

the distribution of differences. The normal distribution is an obvious choice for the 

kernel for actual differences while a positive distribution (e.g. gamma or exponential) 

or negative distribution (e.g. negative gamma or negative exponential) might be a 

good choice for the kernel for right and left censored differences respectively. The 

choice of kernel for doubly censored differences might involve a uniform or normal 

distribution.

• The simulation study compared the performance of the models proposed using 

data simulated from a proportional hazards model. A natural question to consider 

is how well these models behave if the proportional hazards is not valid and what 

alternative models could be used.
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