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Sum m ary

The main aim of this dissertation is to prove a version of the result [Bro98, Proposition 2.3], 
following the outline suggested in that paper. This result has a distinctly homological flavour, 
and unsurprisingly relies quite heavily on homological algebra for its proof. We have also 
drawn upon a wider variety of mathematical techniques, mostly ring theory and Hopf al
gebraic methods in our discussion. As by-products of the proof, we get a condition for 
Galois extensions and Frobenius extensions to be equivalent, and also a generalisation of a 
well-known theorem by Larsson and Sweedier. We discuss this in more detail below.

We state the proposition:

P ro p o sitio n . We let H  be a Noetherian k -Hopf algebra, where k  is an algebraically closed 
field. Let K  be a central affine sub-Hopf algebra of H  with

inj.dimK {K ) — Krull dim(K) — m.

Suppose further that H  is a finitely generated K-module. Then

inj.dimK (H ) ~  inj.dimK {K ) =  m.

Throughout this thesis, inj.dim refers to the injective dimension of the module (defined in 
Definition 3.2) and Krull dim is the Krull dimension of a commutative Noetherian ring which 
we also define in Definition 3.2. We also note the fact that if a commutative Noetherian ring 
has finite injective dimension, then inj.dim(—) =  Krull dim(—), as above. The proof is split 
into four parts, which we summarise briefly here. In the first part, we show that for any ring R  
which is a Frobenius extension over a subring S  the injective dimension of S' as a module over 
itself is equal to the injective dimension of R  as an 5-module. Proof of this is obtained from 
Nakayama and Tsuzuku’s fundamental paper ([NT60]) and some basic facts about projective 
modules. In the second part, we prove that, in the notation above, H  is Frobenius over K .



This requires that we show H  to be a Galois extension over AT, which requires substantial 
preparation as discussed in Chapter 2. The key results come from Kreimer and Takeuchi’s 
paper [KT81] and a paper by Schneider [Sch93]. This step also generalises the Larsson and 
Sweedler result mentioned before, which states that any finite-dimensional Hopf algebra is 
Frobenius over any sub-Hopf algebra. The third part shows that K  is a Gorenstein ring. The 
fourth part uses some simple facts on projective modules to place the required restriction 
on the injective dimension of H  as an iT-module. These steps, taken together, prove the 
proposition. This proof is contained in the second section of Chapter 4.

Chapter 1 is concerned with the basic definition of a Hopf algebra and discusses some of 
their basic properties, including comodules, invariants and coinvariants, and smash products. 
We also introduce Sweedler’s sigma notation and use it to describe many Hopf algebraic 
properties.

As indicated above, Chapter 2 contains the majority of the results needed to prove the 
proposition. We begin by defining and discussing normal sub-Hopf algebras and establish two 
key results which give an if and only if condition for a sub-Hopf algebra to be normal. This 
forms part of the proof of the proposition. The main point of the chapter, however, is to show 
that under certain conditions, Galois extensions are equivalent to Frobenius extensions. A key 
tool in proving this result is the notion of faithful flatness. We are interested in when a Hopf 
algebra is flat, faithfully flat, or free over a sub-Hopf algebra. There has been a substantial 
amount of work done in this area, some of which we discuss in detail, especially results by 
Schneider [Sch93]. This discussion forms the backbone of the chapter and establishes the 
crucial fact that the conditions in the proposition imply that H  is faithfully flat over K .  
Finally, we discuss a result from Kreimer and Takeuchi’s paper, which gives the condition for 
equivalence between Galois and Frobenius extensions that we require.

Chapter 3 deals with the technical homological results required for the first and third parts 
of the proof. We note the well-known fact that Horn# (A, B) — Ext'gfA, F?), for rings B  C A, 
and define the notion of a Gorenstein ring. We also discuss some basic facts about injective, 
projective and global dimension. We also consider a condition for the Krull dimension of a 
ring to equal the injective dimension of the ring as a module over itself, which is vital for the 
last stages of the proof. This chapter concludes with two technical results from ring theory, 
needed in the first part of the proof.

As mentioned, Chapter 4 deals with the proof of the proposition. However, the chapter also 
contains a short discussion on the special case when H  is assumed to be commutative. We 
discuss this case further below.
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Special Cases and a P ossib le U se

One of the most im portant results we need to establish is the faithful flatness of H  over K .  
This requires substantial work in the general case, as discussed in Chapter 2. However, it is 
possible to simplify this situation by assuming a specific finiteness condition on the sub-Hopf 
algebra, namely, tha t the sub-Hopf algebra is finite-codimensional. We can then dispense with 
much of the work in Chapter 2. Instead we can proceed as indicated in [Sch93, Theorem 2 .1], 
which shows tha t for any normal finite-codimensional ideal I  of a Hopf algebra FT, H  is right 
and left faithfully coflat over H / 1. Note that there is also a bijective correspondence between 
the set of all normal Hopf ideals I  of a Hopf algebra FT, such that H  is right faithfully coflat 
over H / I  for all / ,  and the set of all normal sub-Hopf algebras K  of H  such that H  is 
right faithfully flat over FF, which is also proved in Schneider’s paper [Sch93, Theorem 1.4]. 
Therefore, the Hopf algebra H  will be faithfully flat over any normal finite-codimensional 
sub-Hopf algebra K .  Once this is established, it is comparatively straightforward to prove 
that FT is Frobenius over K .

Another special case is the situation indicated above, where we require H  to be commutative. 
This means that we can establish faithful flatness of H  over K  much more simply, as discussed 
in Chapter 4. Again, once we have this, it is relatively easy to show that H  is Frobenius 
over K.

Finally, we might ask how this particular result can be used. One answer is that it can be 
applied to give strong homological conditions on certain classes of k-Hopf algebras, namely 
those which are left and right Noetherian, are k-affine, and satisfy a polynomial identity. The 
homological conditions in question are the Auslander-Gorenstein condition and the Cohen- 
Macaulay condition. We define and briefly discuss these concepts below.



D efin ition . Consider a ring R, and let M  be a right A-module.

(1) The grade of the module M  is

j (M )  = inf{j | Ext3R(M,.R) ^  0}

(2 ) Suppose that M  is a Noetherian A-module, and let N  be any submodule of Ext^(M , R ). 
Then if for all i > 0, we have j (N )  > i, R  satisfies the Auslander condition.

(3) Suppose that R  is Noetherian, has finite right and left injective dimension and satisfies 
the Auslander condition. Then R  is Auslander-Gorenstein.

(4) Let M  be a finitely generated non-zero Noetherian 12-module, and consider the Krull 
dimension, Krull dim(—). Suppose that for all such M,

j (M )  +  Krull dim(M) -  Krull dim(jR).

Then R  is Cohen-Macaulay with respect to the Krull dimension Krull dim.

One can consider the Auslander-Gorenstein and Cohen Macaulay conditions together to be 
the translation of the Gorenstein property (which is defined for a commutative Noetherian 
ring) to the non-commutative case. In particular, the Cohen-Macaulay condition gives a link 
between the homological characteristics of a module and a measure of its size.

These properties are powerful tools in proving results for structure in modules and rings; 
a detailed discussion is not possible here, but the interested reader is referred to [Bjo89] 
and [BE90] for discussion of basic ideas and theory; more details of the way in which these 
results can be used may be found in [GL96] and [SZ94].

We are now in a position to state the result linking the proposition proved in this paper and 
the properties discussed above. This theorem comes from [BG98].

T h e o re m  (B ro w n -G o o d earl). Let H  be a k-affine Noetherian Hopf algebras satisfying a 
polynomial identity, and suppose that H  also has finite left and right injective dimension. 
Then H  is Auslander-Gorenstein and Cohen-Macaulay, and, further,

inj.dim(H) =  Krull dim(H)
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Chapter 1

B asic H op f A lgebra T heory

1.1 Algebras and Coalgebras

This section is concerned with some of the basic definitions needed to build up the notion of 
a Hopf algebra. The familiar definition of an algebra is of a vector space A  over a field k, 
which is a ring where multiplication satisfies the following property:

c(ab) =  (ca)b = a(cb), Vc G k and V a, fr £ A.

We can thus identify k with the subring {A1 | A £ k} of A.

We redefine this to give a definition which initially appears more abstract but is substantially 
easier to dualise.

D efinition  1.1.1. An algebra is a triple (A, //,??), composed of a vector space A over a field 
k and two linear maps fj, : A® A  — > A  and r] : k — > A  (the product and unit respectively), 
such that the following diagrams commute:

1



(1) The Associativity Condition

A®A®A -A®A

id ® ( i  

A® A — &- A

(2) The Unit Condition

r j® id
k® A ------------- A®A

T

A

i d ® p
A ® k----------- ►- A® A

In addition, we say that the algebra is commutative if the following diagram commutes:

A®A- A

We define Tv,W) for any two k-vector spaces V  and W  to be the so-called ‘flip’ map, that is:

T y ,w  : V®W — > W®F, given by v®w w ® v .

An algebra morphism f  : (A,fj,,rj) — > (A7,// ,? /)  is a linear map /  : A — > A 1 such that the 
following conditions hold:

(1 ) p'o( /® /)  =  fopt

(2 ) for] =  rf

We consider a few simple examples of algebras.
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E xam ple  1 .1 .1 . Consider an algebra A  =  (A, p, 77). Now consider an algebra with the same 
vector space, but with multiplication given by p op = p ®ta ,a \ this algebra is the opposite 
algebra A op. Clearly, A  is commutative if and only if p =  p op.

E xam p le  1 .1 .2  (T h e  G ro u p  A lgebra). Let k  be a field and G be a group. We define 
the group algebra to be the k-vector space with G as basis. Elements of k(? have the form 

E Gag9i where ag G lc and only finitely many of the ag are non-zero. The algebra structure 
is given by

where c& =  '52gh=kagbh- We will return to this important example repeatedly in later discus
sion.

E xam p le  1.1.3 (T h e  U n iversa l E nveloping  A lgeb ra). Consider a Lie algebra 0 . This 
is defined to be a k-vector space with a bilinear map [, ] : 0 <g)0 — > 0 , satisfying the following 
two conditions for all x , y , z  G 0 :

(1) (Antisymmetry) [a,2/] =  ~[y,x],

(2) (Jacobi Identity) [x, [y, z]\ +  [y, [z, re]] +  [z, [x, ?/]] =  0.

As an example of a Lie algebra, consider M3 with the usual cross vector product.

We assume for simplicity that 0  is a finite-dimensional k-vector space, so we may fix a basis 
X i,. . . ,xn of 0  and let aiji be the structure constants of the Lie bracket defined by

( £ M ( £  bhh) — ^   ̂ 1

q £ G /i G G fc G G

We define the universal enveloping algebra, t /(0 ), to be the associative k-algebra generated 
by the {a;?}, subject to the relations

n

(1 .1)
1 = 1

We discuss further properties of this example later.

The definition for the tensor product of two vector spaces is well-known. Here, however, we 
re-define it in the language of the definition given above.
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D efin ition  1.1.2. Let A = ( A ^ a ^Va ) and B  — (B , ij,b ,Vb ) be two algebras. We define 
their tensor product to be the algebra A® B  with product given by (a®b)(a! ®b') — aa'®bb'
and unit given by l& l. In terms of the maps defined in Definition 1.1.1, these maps are given
by

h>A®B =  {tJ’A®tJ'B)°{idA®TA,B®idA) and (1 .2 )

VA®B =  {v a®Vb )- (1.3)

We now obtain a new algebraic structure by dualising the definition of an algebra, that is, 
we systematically reverse the direction of the arrows. This produces an object known as a 
coalgebra, which, together with the notion of an algebra, forms the framework out of which 
a Hopf algebra is constructed.

D efin ition  1.1.3. A coalgebra is a triple (C, A, e), where C is a k-vector space and the linear 
maps A : C  — > C®C  and e : C ■— > k, respectively the coproduct and counit, satisfy the 
following commutative diagrams:

(1) The Coassociativity Condition

C®C®Ch- ® ld C®C

id® A

AC®C

(2 ) The Counit Condition

id®£
C® k - ------------C®C

C

e®id
k® C ^ ------------C®C

C

where the isomorphism in the above maps is given by c®X i-  ̂ cA and A®c Ac 
respectively, for c € C  and A 6  k.
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The coalgebra is said to be cocommutative if the following diagram commutes:

A
C® C  -----------  C

TC,C

D efinition 1.1.4. A coalgebra morphism g : (C, A, e) — ¥ (C1, A ^ d )  is defined in the 
‘opposite’ sense to that of an algebra morphism; it is a linear map g : G -— > G' such that 
the following conditions hold:

(!) (g®g)°& =  A'og,

(2 ) d o g  =  e .

We now show that the notion of ideals and factor rings extends naturally to coalgebras.

D efinition 1.1.5. Let /  be a subspace of (C, A, e), and suppose A(J) C  I® C  +  C® I  and 
e(7) — 0. Then I  is said to be a coideal. Further, the k-space C / I  is a coalgebra with 
multiplication and counit induced by A and e, given by A(c +  I) = ((7r®7r)oA)(c), and 
e(c + I) — e(c), where ir : C  — > C / I  is the canonical map. Consistency of these definitions 
is ensured by the fact that J is a coideal.

As for algebras, we define the tensor product of coalgebras.

D efinition  1.1.6. Let C — (C, Ac->£c) &nd D =  (D, A d ,£ d )  be coalgebras. The tensor 
product of C  and D  is defined as the coalgebra C®D with coproduct

Ac®jD : C®D  — > C®D®C®D , given by A c®d ~  {idc®T®idD)o(Ac®Ar>) 

and counit
£C®D • C®D  — y k, given by £c®D(c®d) = e(c)e(d).

We consider a few basic examples of coalgebras.

Exam ple 1.1.4 (The O pposite Coalgebra). We use the flip to dualise the notion of the 
opposite algebra to coalgebras. Let C  =  (C, A ,e) be any coalgebra. Define A cop ~  rc\c°A .  
Then clearly A cop satisfies the coassociativity rule, and (C, Acop, e) is a coalgebra, the opposite 
coalgebra.
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E xam p le  1.1.5 (T h e  C oalgeb ra  of a  S e t). Let X  be a set and define

C — k[X] =  ®a; e xka;.

We can then impose a coalgebra structure on C by defining A (a;) =  x®x  and e(a?) =  1 for all 
x  £ X .  We extend these conditions naturally to (7, so that

We now return to the group algebra, which is the special case X  = G. We may re-define its 
algebra structure as

It is straightforward to show that these satisfy the associative and unit axioms. We show the 
case for /i; tha t for rj is even simpler.

g((/j.®id)o[g<®h®k)) — fi{gh®k) =  ghk and

fi((id®/i)o(g®h®k)) — fi(g®hk) = ghk ,

for all g , h, k € G. We define the coalgebra structure by the following maps:

and

k'(g^k) = gh and r](k) =  1 o-k, V k G k. (1.4)

A(g) =  g®g and e{g) =  1 . (1.5)

where both of these are extended to k& in the natural manner indicated above. As above, 
we check the coassociativity axiom

(A®id)oA(g) = (A®id)(g®g) ~  g®g®g and 

(id®A)oA(g) =  (id®A)(g®g) = g®g®g,

for all g E G. The calculation to show the counit axiom is even easier and is omitted.



1 .1 .1  B a sic  T h eo ry

The R elationship  B etw een Algebras and Coalgebras

We next examine the relationship between coalgebras and algebras, which we do by consid
ering their dual spaces.

D efinition 1.1.7.

(1 ) Let V  be a vector space. Then V* — Homk(V,k) is the dual of V. We note without 
proof that y*® y*C (V W )*.

(2) We use the tensor product of V  and V* to define a bilinear form {,) : V*®V — > k via 
the map { f ,v )  =  f(v ) .

The bilinear form defined above leads to the following definition.

D efinition  1.1.8. Let V  and W  be vector spaces. Let <p : V  — > W  be a k-linear map. We 
define the transpose of <j) to be the map <jA : W* — > V*, given by

0 * (/)(«) =  </>0 (^)) = /W M ) ,  

for all /  £ W* and for all v 6  V.

L em m a 1.1.1. I f  C = ((7, A ,e) is a coalgebra, then C* is an algebra with product p =  A* 
and unit p — e*.

Proof. We use the fact C*®C* C ((7(g)(7)* from above. We can then restrict the map A* to 
a map p  : (7*<g>(7* — > (7*, given by

p{f®g){x) =  A * (/0 p)(®) =  (f® g,A(x)} = (f®g) A(x),

for all / ,  g 6  (7*, and for all x  G G. We let rj = e*. Then ((7, /i, rj) forms an algebra, as may 
be easily verified by looking at the diagram for the associativity condition. □

The converse of this statement is not true in general; if, for example, A  is not finite
dimensional, then A*(g)A* is a proper subspace of (A<g)A)*. This means that the image 
of p* : A* — (A®A)* need not necessarily be contained in A*<g)A*. However, if A  is finite
dimensional, the converse is true. We prove this result shortly when discussing tensor prod
ucts of linear maps. In the general case, however, the best we can do is proceed with the 
so-called finite dual of A:

7



D efinition 1.1.9. The finite dual of an algebra A, denoted by A0, is the set of all /  6  A* 
such tha t / ( / )  — 0 for some ideal I  of A, where I  satisfies the condition dim (A //) < oo. 
We note the following results: A° is a coalgebra if A is an algebra and has coproduct A =  p,* 
and counit e — 77*. Further, if A is commutative then A 0 is cocommutative.

Exam ple 1.1.6 (R eturn to  the Coalgebra o f a Set). We can apply Lemma 1.1.1 to the
previous example of the coalgebra of a set, to get an algebra, C* =  Horrid(C, k ), the algebra 
of functions on X  with values in k. The lemma shows that for / ,  g 6 C* and x  e C,

n(f®g){x) = {f®g){ A(x))

=  f(x)®g(x)

=

Thus the algebra structure in C* is given by pointwise multiplication. Also, for A 6  k

77(A) =  e*(A )  

-  A e * ( l )

-  A.

It is simple to check that fi and r) satisfy the associativity and unit axioms.

E xam ple 1.1.7 (The Group A lgebra). We consider the group algebra, C — kG, first 
as a coalgebra and then as an algebra. By Example 1.1.4, kG has a coalgebra structure, 
given by Equation 1.5. Thus the algebra structure on C* (or on C°) is given by pointwise 
multiplication, as in Example 1.1.6.

In general, C — kG is not a finite-dimensional algebra, so we cannot apply the converse of 
Lemma 1.1.1 in this case. We can, however, obtain the finite dual, which in this case is the 
so-called set of representative functions, R\fiG) on G. The algebra structure on G is given by 
Equation 1.4, so the coalgebra structure on C° is therefore given by

&of{x®y) — y*f(x®y)

=  i f ,y (x® y))

=  f f a y ) -

8



This does not give an explicit formula for A0f  in terms of elements of G°(g>G0, which is in fact 
only possible when G is finite-dimensional. In this case, one would choose a basis {bg \ g G G} 
of G*, dual to the basis of G in kG. Then

T h e  S igm a N o ta tio n

The following discussion considers a very useful form of notation, developed by Moss Sweedler 
and R. G. Heyneman, first published in [Swe69].

Suppose we have an element x  G C = (G, A ,e). Then the element A (a;) G C®G has the 
form A(x) — I*1 Sweedler’s sigma notation, this is written as

hk=g

Afar) =  y xi(&X2-^—JXX

For example, the coassociativity of A may be expressed in this form as

BE
X x

By convention, we identify both sides of this expression with

T > i® a :a3s8.
a;

We extend this inductively to get a similar expression for longer products.

We reformulate the condition for counitality as

7 ,  e(si)*2 = x  = 2_j ®ie(®2)> ( 1 .6 )
*

and the cocommutative condition as

Xi®X2 = Y %2®x l 

9



Finally, the comultiplication of the tensor product of two coalgebras C  and D  can rewritten as 

A c® d(^% ) =  Y ]  ^  {x®y)i®(x®y)2 =  V '  x 1®y1®x2®y2 > (1*7)
z—Jx®y  —<x(g)y

for all a; G C  and y G D. Note that for the remainder of this dissertation, we omit the 
subscript x  on when possible.

Tensor Products o f Linear M aps

We now return to the claim made earlier in this section that if A  is finite dimensional, then 
the converse to Lemma 1.1.1 is true. The following discussion forms an important part of 
the proof.

D efinition 1.1.10. Let 17, U \ V  and V ' be vector spaces, and consider the linear maps 
/  : U — > U' and g : V  ~—> V'. We define the tensor product of /  and g to be the map 
f® g  : U®V  — > U'®Vr, given by (f®g)(u®v) =  f{u)®g(v), for all u  G U and v G V. We 
use this to define a linear map

7  : Hom(17, 17/)®Hom(V, V') — > Hom(U®V, U'®V,)i via 7 {f®g){u®v) = f(u)®g(v).

We are interested in when the map 7  is an isomorphism. The following theorem deals with 
such a condition.

T h eo re m  1 .1 .2 . Let at least one of (17, 17'), (V, V') or (17, V) be a pair of finite dimensional 
k -vector spaces. Then the map 7  given in Definition 1.1.10 is an isomorphism.

Proof. We require the following standard algebraic identities. Let I  be an indexing set.

Horn(©*6/17*, 17') ** J J  Horn(17*, 17') (1.8)
i e I

=  ® iei(Vi® V') (1-9)
U') = J J  H o rn ff./ , f / ' )  (1.10)

i e i  i e i

We consider the case when U and Ur are finite-dimensional; proof of the remaining two
cases is achieved by applying the same technique as discussed below. Since U and U' are
finite-dimensional, we may write U — ® j e jkuy, where e j  is a finite basis of U. Then

Hom(©jkuj, ?7/)<g»Hom(y, W) =  j^J(Hom(ku.j, 17/))®Hom(Vr, V 1) by Equation 1.8.
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Also,

Hom((0 jkUj)(g>y, U '^V ')  =  Hom(®j(huj®V),U/^ V r)

= J"jHom(k«j®T/, U'®V') by Equations 1.8 and 1.9. 
j

Thus, after composition with these isomorphisms, 7  is now a map from

(J^H om (k^ ,H O )® H om (y ,E ') J j H o m f k ^ H ,  H W ') .
3 j

However, J  is a finite indexing set, so Ylj can be replaced by ©j. So, applying Equation 1.9 
once more, we have 0 j(Hom(kWj, f7/)®Hom(E, V')) — » ©jHom(kiij®V, U'®Vr), where
the map j '  sends each j th summand to the corresponding j th summand. It is therefore 
enough to show that 7  is an isomorphism in the special case U = k t h a t  is, the map 
7  : H om (k^, /7/)0Hom(V', V') — > Hom(kuj(g)F, U’®V') is an isomorphism. Since kuj is 
one-dimensional, we only need check that the following map is an isomorphism:

7 ':* / '® Hom(V,H') — > Hom(E, Ur<S>Vf)̂  (1.11)

given by 7 /('u/® /)(u) =  u'®f(v),  for v! £ U \ v £ V  and /  £ HomfVjE'). To prove this, 
we use the fact that U‘ is finite dimensional and so can be written as 0 /̂ G j/k u 7-,, for some 
finite basis {uj,}y <=j>. By using Equations 1.9 and 1.10 in a manner similar to that above, 
we get that

U 'm o m (V ,  V ’) ** © j/ku 'vO H om ^E ')

and that
Horn {V,U'®V') =  J jH o m fV .k tiJ ,® ^) =  ©JvHom(V,kiiJ.,®V/).

o'

We wish to show that the map 7 ' is an isomorphism. To show that it is injective, we consider 
ker(7 /). Let Yly  e J' ^ y u'y® fy> for Xyu'-, £ lux'-,, and f y  £ Hom.k(H, V7), be nonzero. Then 
clearly i { ^ Z y  e j> XyUj,(g>fy) is also nonzero. To show that j r is onto, consider 
g £ 0 j/Hom(V, kn'-,®H'). So g — gi®g2 ® •* • ®gn, for gy £ Hom( V, kn,'-,® V') . Clearly, for 
all such gy we have gy{v) — X'j,Uy®v{r, for some X'yU1-, £ kUy and v'r £ V ' . So there exists 
AyUy®gy £ kn'-,<8>Hom(V, V') such that 'y' {X'yu'y®g'y){v) =  XyUfy(8)v'r . Thus 7 ' is onto, and 
hence is bijective. □

11



We are now in a position to prove the converse to Lemma 1.1.1.

C oro lla ry  1.1.3. Let A  — (A,p,r]) be a finite-dimensional algebra. Then the map 
7  : A*®A* — > (A®A)* is an isomorphism, given by 7 ((/<8><?)(n®&)) — f{a) ®g(b). In this 
case, one may define .A* as a coalgebra via the maps

A =  7 _ 1o //  and

E = 77*,

where the superscript * defines the transpose of the map.

Proof. All that is required here is to take A  — U — V  and U' — V' = k  in Theorem 1.1.2. 
To show that A* is a coalgebra, we need only consider the respective commutative diagrams 
for associativity and the unit condition, and the corresponding diagrams for coalgebras. □

Exam ple 1.1.8 (T he M atrix C oalgebra). We let A =  Mn (k) be the algebra of n x n  
matrices with entries in k. We define Eij to be the matrix with entry 1 at the i , j  position 
and zeros everywhere else. The set of the matrices Eij, for all 1 < i , j  < n, forms a basis for 
Mn {k). Define a basis dual to this one by {377-}. Then we define the dual coalgebra A* by

n

A (x ij) — Y x ik®x kj and e(rr^) =
fc=i

We use Corollary 1.1.3 to check the validity of these definitions. For the counit, we have: 

s ( x i j ) =  X i j ( r j ( l ) )  — x ^ E k k  =  ' y 'yj_djk^kj =

which justifies the choice for e. For A, we need to show that A =  7 - 1OyLi*, that is, that 
7 0 A — p i , where 7  is the map defined in Corollary 1.1.3 above. We have

P  { x i j ) ( E k l & H ' m n )  — {x i j ( p { L J k l ® I ^ m n ) ) )

= (3lmxij{Idkn)) 

i ^ l m^ i k^ jn )

— ( y  ^  k 3 Ip &pm n )

~  Cy  ̂x iy {H*kl)xpj (E'rnn))
V

— 7 (^   ̂Xip&)Xpj') (Ejci(£)Emn)
V

So we must have A [xifi] — Y lk - i  x ik®x kj as shown above. Thus A* does indeed have a 
coalgebra structure given by the maps defined.
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Graded and F iltered  Algebras

We consider the following technical ring theoretic concepts, which will be required in later 
chapters. We also include the corresponding definition of a graded ring for modules.

D efinition 1.1.11. Let A be an algebra. Suppose that there exist subspaces {Ai}jEp*j of A 
with

A =  and A*-Ay C Ai+j

for all i , j  £ N. Then A  is said to be graded. The elements of Ai are said to be homogeneous 
of degree i. The unit 1 of a graded algebra is always assumed to belong to Ao.

E xam ple 1.1.9. Consider a free algebra A  — k{X }. Then A  is graded by the length of the 
words, tha t is, each A^ is defined to be the subspace linearly generated by all monomials of 
degree i. The elements of X  have degree 1.

We now consider the equivalent condition for modules.

D efin ition  1.1.12.

(1) Suppose A is a graded algebra as described above. Consider a right A-module M . Sup
pose tha t M  =  © n e  nM n is a decomposition of Abelian groups, such that M*Ay C  Aj+y, 

for all a, j  £ N. This is a grading of the right A-module M .  A module can have many 
different gradings.

(2) A graded module is a module with a fixed grading. We refer to the nonzero elements of 
each subgroup M n as being homogeneous of degree n. If m  = ^2n e for m n £ M ni 
then we define m n as the n th homogeneous component of m.

D efinition  1.1.13. Let {Aj}j> o be a family of subspaces of the algebra A which satisfy the 
conditions

{0} C  A0 C  • • • C  A i  C  • • • C  A

and
A ^ U j ^ o A i ,  and A^-Aj C  A i+j

A  is then said to be filtered.

Exam ple 1.1.10. The trivial filtration for any algebra is given by the subspace A* — A, for 
all i.

E xam ple 1.1.11. Let A — ©i>oAi by a graded algebra. We can filter A by

Ai — ©o < j <  iA j ,

for all i £ N.
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1.2 Bialgebras

This section is central to all that follows, since Hopf algebras are defined as special cases of 
bialgebras.

Suppose that H is a vector space with both an algebra structure (i?, p, 77) and a coalgebra 
structure ( H ,A , s ) .  Given certain conditions (see Theorem 1.2.1) these two structures are 
equivalent. First we give H ® H  the induced structures of a tensor product of algebras and 
coalgebras; see Definitions 1.1.2 and 1.1.6 respectively. Now recall the definition of a coalgebra 
morphism from Definition 1.1.4.

Theorem  1.2.1. Let H  be a vector space with an algebra and coalgebra structure as given 
above. Then the following two statements are equivalent:

(1) The maps p  and 77 are morphisms of coalgebras;

(2) The maps A  and e are morphisms of algebras.

Proof. This can be seen from an examination of the commutative diagrams associated with 
either statement. We note that p  is a morphism of coalgebras if and only if the following two 
diagrams are commutative (see Definition 1.1.4 for a justification).

H ® H  k®k

id

H k

A

We may also express the fact that 77 is a morphism of coalgebras via the following commutative 
diagrams.

H

id

k®lc

H

id

idktgik -------> k

14



But A is an algebra morphism if and only if the following commutative diagrams hold:

H 0 H  k  ► H

id A

H  — ^  H m  k® k H®H

and s is an algebra morphism if and only if the following commutative diagrams hold:

H

id id

H

But these diagrams are the same as the previous four; hence the result. □

This theorem leads naturally to the following definition.

D efin ition  1 .2 .1 . A bialgebra is a quintuple (H , //, ??, A, e), where (H, fa, 77) is an algebra, and 
(U, A, e) is a coalgebra satisfying the equivalent conditions in the previous theorem, A map 
from H  to H'  is a bialgebra morphism if it is both an algebra morphism and a coalgebra 
morphism.

N o te  1.2.1. The conditions stipulated in Theorem 1.2.1 can be translated into terms of 
algebra morphisms. This requires A and e to satisfy:

A (xy) = A (x )A  (y) (1 .1 2 )

A (lff) =  ljr®  Iff (1-13)

e(xy) =  e(®)e(j/) (1.14)

e(lff) =  Iff- (1.15)

In terms of Sweedler’s sigma notation, A (xy) = A(x)A(y)  can be expressed as

E  (x v)i®(.x y h  =  E ,  ^x iyi®x ^y2 - (1 .1 6 )

The other three relations can be expressed similarly. We will use this expression, and those 
above, freely throughout the rest of the text.
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Clearly, we can define the notion of a tensor product of two bialgebras H  and K  to be the 
object H ® K  with induced structure maps from the tensor product of algebras and the tensor 
product of coalgebras. One might reasonably expect this new structure to be a bialgebra, 
and indeed this is the case. We show this formally in the following lemma.

Lem m a 1.2.2. Let H , K  be bialgebras with A # and Ak , and sh  and the respective
coproducts and counits. Then the tensor product H ® K  is also a bialgebra.

Proof. Since H  and K  are bialgebras, we may define the tensor product as both a tensor
product of algebras and of coalgebras with coproduct given by

A h ® K  =  ( i d H < S > T H , K ® i d K )  O (A h ® A /{-),

and counit given, for h £ H  and k £ K  as

£H®K(h®k) — eH(h)£K (k)

Rather than use Theorem 1.2.1 directly, we will use the requirements for Ah®k  and £h®k  
in Note 1.2.1 instead. We recall Definition 1.1.6 for the tensor product of coalgebras and 
Equation 1.7 which gives the comultiplication in sigma notation. Let h,h'  £ H  and k, k1 £ K .  
We begin by considering Equation 1.13 above. First we note that

A H®i<:(h®k) =  y ^ jhi®ki®h2®k2- 

Now, considering (/i®/c)(h/(8)^) first, we get

®k')) =  A-H®K(hh' ® kk’)

~  X X /  . u (hh,®kk,)i<Si(hh,®kkt)2tilt rvrC

But

'(h)(h')(k)(k')

so therefore A j j ® ^ ( / i /<S>/c/)) — AH$>K(h®k)AH<glK(h,(g)kl). By setting

h =  h' ~  k ~  k’ — 1  h ®k > 

it is clear that A h ^ k ( Ih ^ I /c )  =  ^-h®k®^h®k-
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We now consider the conditions for e. Consider h, h' £ H  and /c, k' G K  as before. Then

£({h®k){ti®k')) = £(hti®kk')

= e(hti)e(kkf)

=  £(h)e(k)e(h,)e(kl) by properties of e 

— £{h®k)e{h! ®k').

It is clear from this tha t =  1 h ®k - Hence A h<%k  and £h ®k  satisfy the equivalent
conditions in Theorem 1.2.1 by Note 1.2.1. □

1.2 .1  E x a m p les

Exam ple 1.2,1 (The Polynom ial Functions on n x n  M atrices). Consider the ring de
fined as

0 (Afn(k)) =  k[Xy : 1 < i tj  < n].

This is a commutative polynomial algebra in the n 2 indeterminates . We want to show 
that it has a coalgebra structure and that the coproduct and counit are algebra morphisms. 
Define

n

Ai^X^j) ^   ̂ and
fc=i

z (X i j ) =  (5ij

Clearly, if these maps are extended multiplicatively and linearly to products and sums of the 
generators, they must also define algebra morphisms. We need to show that (<D(Mn(k)), A, e) 
forms a coalgebra. Coassociativity is clear from:

(A®id)oA(Xij)  — (A<gr i d ) ( ^ 2 x ik® X kj)
k - 1

n

=

fc = l 
n  n

=  E E ^ ® - ^ ) ® - ^
k- 1 1=1

n n

E E  Xu®(Xik®Xkj)
k= 1 1=1 
( id®A)oA(Xij).
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The counit axiom is also easy to prove:

n

(.e®id)oA(Xij) = (e®id) X ik®Xkj)
k= 1

n

— 'y  ̂$ik ® Xkj
k = 1

-  m x i:}

=  (id®e)oA(Xij).

Thus (G(Mn(k)), A,£) is a coalgebra. By definition, A and e  are algebra morphisms, so 
(G(Mn (k)), A ,e) is a bialgebra. We note that this bialgebra is commutative, but not cocom- 
mutative.

E xam ple 1.2.2 (R eturn to  th e Coalgebra o f a Set). Consider C — k[X] =  © a^ k a ; 
once more. This time, we assume further that X  has an associative map ji : X x X  — > X  
with a left and right unit e (that is, a unital monoid structure). This map induces an algebra 
structure on C with unit e. Considering the maps A and s, we see that

A ( x y )  = x y ® x y  — ( x ® x ) ( y ® y )  =  A(x)A(y) ,  and 

E { x y )  -  1 =  e { x ) E { y ) .

So A and e  are morphisms of algebras (by the relations in Note 1 .2 .1).

Exam ple 1.2.3 (The Group A lgebra). As discussed in Example 1.1.7, this already has 
both an algebra and coalgebra structure, given by Equation 1.4 and Equation 1.5 respectively.

To show that this is a bialgebra, we will show that A and e  define algebra morphisms, i.e. 
that they satisfy the conditions given in Definition 1.1.1.

Consider the map A : (kG) — >- (kG 0 kG), where the algebras kG and kG<g>kG are given as 
kG =  (kG ,^, 77), and kG 0 kG =  (kG®kG, (fj,®fj,)(id®r®id), (77077)), where r  is the flip map. 
This is the tensor product of kG with itself (see Definition 1.1.2). We want to show that

((y®y)(id®r®id))o(A®A) — Aoy, and that A 077 — 77077.
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But for g, h G G ,

( ( p ® f i ) ( i d ® T ® i d ) o [ A ® A ) ( g ® h )  =  ( / j , ® p ) ( i d ® T ® i d ) ( ( g ® g ) ® ( h ® h ) )

=  (fi®p)(id® r® id))(g® (g® h)® h)

=  p,®p(g®h®g®h)

— fj,®fj,((g®h)®(g®h))

=  gh®gh — A (gh)  =  A o  p(g®h),

as required for the first condition. The second condition is even easier:

Aorj(k) — A (l) =  l& l =  rj®g(g), V k G k.

Thus A is an algebra morphism. To show that kG is a bialgebra, we need to show that e is 
also an algebra morphism. We do this by noting the following fact:

If $  : G — > H  is a homomorphism of groups, where H  C G, then : kG — > kH, given 

by Y2g gg  ^g9 ^  10/g e g  ^9^(9) an olgebra morphism.

We prove this by noting that kG =  k.(g | g G G), so we need only check for g G G. Let
g , g' G G. Because & =  $  on G, we have

=  $( 9 9 ') =  <9 (<?)?%') =

so is indeed an algebra morphism.

Note that e : kG — > k, given by ^  A5p Xg, is just the case iL =  {1} in the above.
So e is an algebra morphism. Hence kG is a bialgebra.

E x am p le  1.2.4 (T h e  U n iversa l E nveloping  A lgebra). Consider the universal envelop
ing algebra defined in Example 1.1.3. Let {®i,• ■ • ,a?n} be a basis for 5 . This is in fact a 
bialgebra, as may be seen by considering the following maps:

A : U(g) — > U(q)®U(q), given by Xi ^<8)1 +  1® ^ and

e : G(£|) — > k, given by Xi h* 0, Vi — 1, • • •, n.

As usual, we want to extend these maps to all of U(g) in order to make A and e into algebra 
morphisms. Unlike in the previous examples, this is not a trivial matter, since we need to 
show that Equation 1.1 holds under A and e. We show the case for A; that for e is even 
simpler.
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A (xiXj — XjXi) =  A(x i )A(x j )  — A(xj )A(xi )

= ( x i0 l  +  l 0 £j)(:rj<g>l 4 * 1®®j) — (xj® 1 +  l 0 £ j)(£ j0 l  +  10 ®J

=  X i X j ®  1 +  X i ® X j  -f  X j ® X i  +  1 0 2 ^ -  — ( ^ ^ 0 1  +  X j ® X i  +  X i ® X j  +  102^-2^)

=  (XiXj — XjXi)® 1 +  1 0 (2^2 -̂ — 2 -̂2^)
n  n

= ( ^ 2  aijixi)®l +  1 0 ( ^  ctijixi)
1=1 l=i

n

=  A ( ^   ̂CIjj jXj) .

We already know that 17(g) is an algebra from Example 1.1.3. We check that (77(g), A ,e) is
a coalgebra. We do the check for coassociativity; the counit check is similar and is omitted.

{A®id)oA{xi) — (A®id)(xi®l  + 1 0 2 ^)

— (2^ 0101 + 10^01 + l0a:f0l + 10102^).

However,

(id®A)oA(xi)  =  (?d0 A)(a;j0 l +  l 0 rrj)

= (a^0l0l + 102^01 + I0l0a;j + 10102^)
=  (A0irf)oA(a;i).

Since we defined A and e as algebra morphisms, this means that (17(g), A, e) is a bialgebra.

These last two examples illustrate two very important classes of elements.

D efin ition  1 ,2 .2 .

(1) Let C  — (C, A, e) be a coalgebra and let x  G C. We say that x  is group-like if A(a;) =  
x®x,  as for the elements of G in the group algebra k<7. We denote the set of group-like 
elements in C by Q(C). Note that Q(C) is in fact a monoid. Some authors also require 
that e(x) =  1, for all x G Q(C); this is true but not strictly necessary, since e(x) — 1 
holds automatically for all x  G Q(C). We show this in Proposition 1.3.5.

(2 ) Let g,h  G Q{C). The element x  of C is said to be g}h-primitive if
A x  = x®g +  h®x. The set of all g,h-primitives in C  is denoted by Vg}h(C). We denote 
by V(C)  the set {a; | A(x)  =  £ 0 1  +  10a;}; that is, the set of 1,1-primitives in C.
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Remark 1.2.1. Under certain extra conditions, Q{C) is a group. We delay proof of this to 
Proposition 1.3.5, which is part of our discussion of the antipode. We can, however, prove 
the following result immediately. The proof is from [Swe69, Theorem 3.2.1].

L em m a 1.2.3. For a coalgebra C over a field k, the set of group-like elements Q{C) is 
k -linearly independent.

Proof. We proceed via contradiction. Suppose that Q[C) is not linearly independent. Clearly, 
0 $ G(C), since then e(0) =  0, and we show in the proof of Proposition 1.3.5 that e(x) =  1 
for all x  £ Q(C). So any single element of Q(C) will form a linearly independent set. Choose 
n £ Z minimal with respect to the condition that any set of n distinct elements is linearly 
independent, and there are n + 1  distinct elements in Q(C) which are not linearly independent. 
So, for distinct g, hi,  • ■ ■, hn in Q(C) with n  > 1 , we have the following relation:

g — k\h\  H +  knhm for nonzero elements k i , • ■ •, kn £ k.

Thus we have the following two identities for A (g):

n

A(g) =  g®g =  ^  kikjhi®hj
h3= 1 

n n

A(<?) =  J 2 k*A(-h*'> = ' E rkihi®hi (L17)
i= l  i= l

We defined the set {/^} to be linearly independent, and chose /c] , ■ • •, kn ^  0. So {hi®hj}  
must be a linearly independent set, and so n =  1, by Equation 1.17. Therefore, g =  k\hi.  
But then, since we have e(g) = e(hi) = 1, we must have k\ — 1 and g — hi,which is a 
contradiction since g and hi were chosen to be distinct. Therefore, Q{G) must be linearly 
independent. □

E x am p le  1.2.5. Let A  be an algebra and k  a field. Define the algebra

Alg(A, k) =  { /  E A* | f is an algebra map from A to k}

Let (i be the multiplication on Alg(A,k). Now Alg(A, k) C A°, since for all /  £ Alg(A, k) 
and a, b £ A,

g*f(a<8>b) = f{fi(a®b))

= Hab)

=  / ( a ) / ( 6) since /  £ Alg(A,k)

=

-  { /& /, a®b).
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Therefore, p*(f)  =  f ® f  E A*®./!* and so /  E A°. Thus Alg(A, k) C  £(A°). Now consider 
g E £/(A°). This means that p*(g) =  <7® <7. So for all a, b E A

(/A#)(a®b) =  (p®p)(o®6) =g(a)g(b).

But also
(,(J,*g)(a®b) =  =  tf(a&).

Thus g{ab) — g(a)g(b), so <7 E Alg(A, k), thus Alg(A, k) =  Q(A°).

Exam ple 1.2.6. If C = kG, then £7(kG) =  G, since Q(C) is a linearly independent set.

E xam ple 1.2.7 (A  Further E xam ple o f a Bialgebra). Let q E k be nonzero, and define 
G(k2) =  k{&,?/ | xy  =  qyx). We define a bialgebra structure on G(k2) via A (a;) — x®x,  
A (y) — y® 1 + x®y, e(x) = 1 and e(y) =  0. Clearly, x  E G(0(k2)) and y E ,Pi}X( 0 ( k 2)).

1.3 Hopf Algebras

A Hopf algebra is a bialgebra with an additional linear transform, called the antipode imposed 
on it. This class of transform will be defined shortly, but first we require the following 
definitions.

1.3 .1  T h e  A n tip o d e  and  C o n v o lu tio n

D efin ition  1.3.1. Let A  = (A, ^ ,77) be an algebra and G =  (O, A,e:) be a coalgebra, and 
consider / , g E Hom^fC, A). The convolution product, f * g , for all such /  and g , is defined 
to be the composition of the maps

G A  G®C A  A®A A  A.

That is, for all c E G,
A(c),

or in Sweedler’s sigma notation,

(/*flO(c) =  £ / ( A ( c 2). (1.18)
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The convolution map in fact defines an algebra structure on Homk(C, A)^ as can be seen in 
the following proposition, [Kas95, Proposition 111.3.1(a)].

Proposition  1.3.1. The vector space Hom^C^A)  is an algebra under convolution with unit 
given by rjoe.

Proof. We wish to show that the convolution is associative. We use Equation (1.18) and 
the fact that the product and coproduct from A  and G are associative and coassociative
respectively. For / ,# ,  h £ Horn^C, A) and c £ (7, we get

((f*g)*h){c) =  ^ / ( c i ) 0 (c2 )fc(c3) =  (f*(g*h))(c).
c

Now consider rjoe and recall Equation 1.6. Then, for c £ C, we have

((»7°e)*/)(c) =  ^ e ( Cl) l / ( c 2) =  f (% 2  s(ci)c2 ) — /(c), via Equation 1.6.
c  c

Similarly, one shows tha t rjoe is a right unit under convolution. Thus Homk(C, A) is an 
algebra. □

We now consider a special case of this situation. Let H  be a bialgebra and let C  — A  — H.  
This enables us to define the convolution on Endk (H).

D efinition 1.3.2. Consider a bialgebra (if, /r, 97, A, e) and choose S  £ Endk(if). Then S  is
said to be an antipode of the bialgebra H  if

S*idff = idtf*S = 7705,

tha t is, if it is an inverse for the identity, under the operation of convolution. This can be 
rewritten using Sweedler’s notation as

=  e(® )ljr =  C1-19)

D efinition 1.3.3. We can now define a Hopf algebra as being a bialgebra with an antipode. 
We denote a Hopf algebra with antipode S  by (H , ji, 77, A, e, S).

D efinition  1.3.4.

(1) Let A  and B  be two Hopf algebras and let g : A  — > B  be a map. It is a Hopf 
algebra morphism if it is a morphism of the underlying bialgebras and commutes with 
the antipodes, tha t is g(SAa) = SBg{a)-
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(2) Let I  be a subspace of a Hopf algebra A. If I  is a biideal and S I  C I, then /  is a Hopf 
ideal. Clearly, A f l  is then a Hopf algebra with structures inherited from A.

Not all bialgebras are Hopf algebras since not all necessarily have antipodes. However, if a 
bialgebra does have an antipode, then it is unique. To see this, consider two antipodes S  
and S l:

S  =  S*(r)oe) = S*(id*Sf) = (S*id)*S* -  {r}oe)*S' -  S'.

1 .3 .2  S om e P r o p e r tie s  o f  th e  A n tip o d e

The following three results state some of the basic properties of the antipode. In each case, 
the proof is taken from [Kas95, Theorem III.3.4].

T h eo re m  1.3.2. Let H  — (JL,//, 77, A, e, 5) be a Hopf algebra. Then S  has the following 
properties:

(1) S  is an anti-algebra morphism; that is, for all x , y  € H,

S(xy) = S(y)S(x)

S( l)  = 1 ,

(2) S  is an anti-coalgebra morphism; that is

AoS  = (S®S)oAop -  th ,r o (S®S)oA  (1.20)

£oS —  £ .

We note for future reference that Equation 1.20 may be rewritten as:

S(x)i®S(x)2  — S(x2)®S(xi).  (1 .2 1 )
S ( x ) a;
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Proof.

(1) Let a , p  £ H o r n w i t h  ce(x<&y) =  S(y )S (x ) and @{x®y) =  S(xy ), for all 
x , y  6  fJ. To show that these maps are equivalent, it is enough to show that (/3*fi) — 
(ju*a:) =  (??£). For (/3*/j,) we have

({3*fj,)(x®y) = y ^ j /3((x®y)i)fj,((x0y)2) by Equation 1.18
x®y

= ^ 2  P(xi®yi)iJl(x2 <S>y2 ) by the bialgebra structure on H<g)H
(*)(»)

-  X̂  s (x iy i)x 2V2 
(®)(y)

=  iSf(a;j/)i(a;y)2 by Equation 1.16 
(^y)

~  ye(xy) by Equation 1.6.

We proceed in a similar manner to show that n*a  — ye.

(fj,*a)(x®y) =  X^/*((o;®y)i)a((a;®3/)2)
x®y

= S  iLi(x i®yi)a (x 2®y2)
(®)(y)

=  X̂  ^ w i S f e ) ^ ^ )
(« )(» )

X y

— ^ ^ x i y e ( y ) S ( x 2 ) by Equation 1.19
X

= ye(x)ye(y)

= v£(xy)

which proves the identity.

To show that 5(1) =  1, we need only note that 15(1) — (id*5(l)) =  r}e(l) — 1.
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(2) To prove that AoS  = th)h °{S®S)oA^ we first define a  =  AoS  and /? =  th,h °(S®S)°A.
It is sufficient to show that ck*A =  A*/? — (r]®r})£. Let x  G H.  Then for a  we have

(a;*A)(a;) =  ^  a(a:i)A(rc2 ) by Equation 1.18 

=

= AE s(:ci):!:2)
— A (r}e(x)) by Equation 1.6 

=  ((rj®rt)£)(x).

We now consider (3. As before, let x  £ II.

(A*/?) (a?) =  ^  A(a;i)(r o (S®S) qA) ( x2)

= '^2{x i <8x2)(t o (S®S))(X3®X4)

= Y 2 (x i® x 2)(S{xi)®S(xs))

= y^XiS(x4)®X2S(x3)

=  y^ari5 (a;3 )(S)£(x2 )l by Equation 1.19 

=  since £(^2) G k

— by Equation 1.6

=  g(;c)l<g>l by Equation 1.19 

=  (V®r])(£(x)).

We also wish to prove that goS  = e. But this is clear, since for all x G H,

SO S(x) = e ( S ( £  £ ( x i ) x 2 ) )

=

=  e(r}£(x))

= eW ,

by Equation 1.6 and Equation 1.19.

□
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L em m a 1.3.3. Let H  be a Hopf algebra. Then for all x £ H, the following are equivalent:

(1) S 2 — idH

(2) ^ 2 )^ 1  =  2(^)1^ f or all x  £ H

(3) Y^x<i S { x x) =  e(cc)l, for all x  £ H.

Proof. We show that the first and second statements are equivalent; showing that the first 
and third are equivalent follows in a similar fashion.

(1) =4> (2): We suppose (1), and let x  £ H.  Note that S 2(x) ~  id # ^ )  =  x. So

= S 2{ Y ^ S ( x 2)x  1)

=  S (y  ' S (x 1) 1S'2 ( v.)} by properties of the antipode

=  S ( Y . S ( x i )x2)

— 5(e:(a;)l) by Equation 1.19 

=  e(a;)l.

(2 ) =$> (1 ): The inverse is unique under convolution, so it is sufficient to show that S 2 is an 
inverse for S  under convolution. By Theorem 1.3.2(1) and the fact that ^2S(x2)xi  = e (x ) l2 
we have, for x £ U ,

(.S*S2)(x) =
X

=  Y ,  S(S(x2)Xl)
X

=  5 ( ^ 5 ( a r 2)a:i)
X

=  S(e(x)l)

—  er(a;)tS,(l)

=  e(zc)l.

for all x £ H.  So S * S 2 = 7]£. The proof for (3) (1) is similar. □
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Corollary 1.3.4. I f  H  is commutative or cocommutative, then S 2 =  i d j j .

Proof. We recall Equation 1.19:

^ V l5 ( :e 2) =  e(a;)l =  ^S(;& i)a;2, 

for all x  G H . Suppose that H  is commutative. Then we have

y^5(a :2)a:i =  e(ar)l

which, by the lemma proved above, implies that S 2 — id. Similarly, if H  is cocommutative, 
we have X̂ aq(g>2;2 =  1fP x 2 ®xi,  so

^ 2 S ( x2)x i =  e(®).

As before, by Lemma 1.3.3, we then have S 2 =  id. □

We are now in a position to prove the claim made in Definition 1.2.2, i.e that the set of 
group-like elements is in fact a group under certain conditions.

P ro p o s itio n  1.3.5. Let H  be a bialgebra. Then Q(H) is a monoid under the multiplication 
of H  with unit 1. Further, if  H  is a Hopf algebra with invertible antipode S, then G(H) is a 
group, where the inverse of every x  6  G(H) is S(x). Further, e(x) ~  1 for all x  G Q(H).

Proof. It is clear that Q (II) is a monoid. Now suppose that H  is a Hopf algebra. We only
need to show that the inverse of any group-like element is S(x).  Let x € Q(H). First we
want to show that S(x)  is actually in G(H):

A (S(x)) = £  S(z)i<g>S(ic)2
(S(*))

=  S (x 2)®S(xi)  by Equation 1.21
(*)

=  y^xs® s) (x2® xi)
(x)

=  (S<S>S)(t  o A(x))

— (S®S)(x®x )

=  S(x)<S>S(x)
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So S(x)  belongs to G(H). Now by Equation 1.19

x S ( x ) =  S(x)x = 6r(ic) 1

But by definition of A,
(id®e)oA(x) — rc<S>l, V x EH.

Also, for x E G,
(id®e)oA(x) — (id®s)(x®x) — x®e(x) — x<g>l.

So s(x) — 1. We note that this argument may also be applied to coalgebras, so we may 
apply it to Lemma 1.2.3. Finally, xS(x)  = S(x)x = 1 , so a; is invertible with inverse S(x).  
Hence G{H) is a group. □

Definition 1.3.2 is not always particularly useful for detecting Hopf algebras, since attempting 
check the antipode condition for every element of a bialgebra may be quite difficult. The 
following lemma shows that one need only check the antipode condition on a generating set.

L em m a 1.3.6. Let H  — (H, /q 77, A, e) be a bialgebra, generated (as an algebra) by a subset 
X ,  and let S  : H  — Y H op be an algebra morphism, such that

v x € x.

Then S  is an antipode for H.

Proof All that is needed is to show that if the defining relation holds for x  and y, then it 
must also hold for xy. To do this, we need Equations 1.19 and 1.20. Then, for all x , y  E H , 
we have

]P(au/)i£((a;y)2) =  ' Y j t i y i S f a y z )

=  '^2^iyiS(y2)S(x2)

=  J2xi^ZyiS ĵ2̂ s^
= (%2xiS(X2̂ £(y)
=  eM e(y)

=  e(®y).

One may similarly prove that Y l^ ( i x y)i)(x y ) 2  = z{xy)- O
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1 .3 .3  S om e E x a m p les  o f  H o p f A lgeb ras

E xam p le  1.3.1 (T h e  F in ite  D ual). If I f  is a Hopf algebra with antipode S, then so is H°  
with antipode S*. A proof of this can be found in [Mon93, p. 151].

E x am p le  1.3.2 (T h e  G ro u p  A lg eb ra ). We have already shown (Example 1.1.7) that the 
group algebra is a bialgebra. Now define the linear map

S  : kG — > kG; g (-)■ g-1 , V g E G.

Recall the definition of the convolution map (Definition 1.3.2). To show that kG is a Hopf 
algebra, we need to show that S  satisfies S*idji — idu*S  — t]os. But for all g € G, we have:

(/ao(idG®S)oA)(g)  =  g, o {idG®S){g®g) = (i{g®g~1),

which clearly is equal to (g,o[S®idG)oA){g) and (rj®e)(g) — l<y. Thus, by Lemma 1.3.6, S  is 
an antipode for kG, so kG is a Hopf algebra.

E x am p le  1.3.3 (R e tu rn  to  th e  U n iversa l E nveloping  A lg eb ra). We have already shown 
in Example 1.2.4 that U(g) is a bialgebra. As in Example 1.3.2 above, to prove that it is
Hopf algebra, we only need to prove that it has an antipode. Let {a;i, • • • f xn} be a basis
for g. We define the map

S  : U(g) G(g), given by x  s-» - x ,  V x  e g.

This is the antipode, as may be seen by the following computations:

(/jlo(idu ^ ® S ) o A ) ( x i )  =  (i o (idu^ ® S ) ( x i ® l  +  l®Xi)

— fi(xi®l — I®#*)

=  0.

Clearly, this is equal to (fj,o(S®idG)oA)(xi). We also have

(r/o £)(xi) =  r?(0k) =  0.

So, by Lemma 1.3.6, S  is indeed an antipode, and U(q) is a Hopf algebra. An easy check 
shows that it is in fact a cocommutative Hopf algebra, that is, roA(xi)  — A(a;j) for all x^ E g 
where r  is the flip map. We prove this by the following calculation:

t  o  A  ( x i )  — t ( x i ®  1 +  l ® X j )  —  l ® X i  -h  X j ® l  —  X i ®  1  +  l O j C j  —  A  ( x i ) .

However, G(g) is not commutative in general, unless g is Abelian.
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Exam ple 1.3.4 (T he Q uantised Enveloping Algebra of st(2)). Let k be the field of 
complex numbers. The Lie algebra 51(2) is defined as the algebra of 2x2 trace zero matrices 
with complex entries.We define the quantum enveloping algebra of 51(2) to be the algebra

Uq — Uq(&[( 2 )), where q 6  k  and q 7  ̂ 0 ,1 ,—! 

generated by the variables E, F, K  and K ~ x with the following relations:

K R - 1 = K ~ l K  =  1, K E K ~ l = q2E

K F R - 1 -  q~2F  and [E,F] = K ~ K  .
q - q - 1

We now define the algebra maps A : Uq — > Uq®Uq, e : Uq — > k  and S  : Uq — > Uq by:

A(E)  =  1 ®E  +  E® R,  A (F) = R - 1^  +  F®  1,

A { R )  =  R ® R ,  A ( R - ^ ^ R - ^ R - 1, 

e(E) — e(F) = 0, z(R)  =  e (R ~ x) — 1 and

S ( E ) =  - E K ~ \  S(F) = - R F , S (R )  =  R ~ x and S ^ " 1) -  R ,

W ith these maps, Uq is then a Hopf algebra. This is not difficult to prove, but requires 
substantial calculation, so only an outline is given here; full details can be found in [Kas95, 
pp. 141-142]. We first must show that A is indeed a morphism of algebras from TJq to Uq®Uq. 
It is sufficient to check that

A { R ) A { R ~ 1) =  A (K _ 1)A (i^) -  1,

A { R ) A { E ) A { R - 1) = q2A ( E ),

A ( R ) A ( F ) A ( R ~ 1) = q~2A{F),
A ( R )  -  A ( R ~ 1)

[A(E),A(F)}
q - q - 1

We then need to check that A is coassociative; it is sufficient to do this on the four generators. 
We also need to show that e defines a morphism of algebras from Uq to k and satisfies the 
counit axiom. It finally remains to check that S  defines an antipode — to do this, we have 
to check that it is an algebra morphism from Uq to Uqop.

31



This involves verifying that the following four relations hold:

S ( K ~ 1)S (E )S (K ) 

S ( K ~ 1)S(F)S(K)

[S(F),S(E)]

S ( K ) S ( K - 1) = 1

Q2S(E)

q~2S(F)
S(Ii)  -  S ( K  x)

q - q - 1

For example, consider

S ( K ~ 1)S (E )S (K )  =  - K i E K - ^ K - 1 -  - q 2E K ~ l =  q2S(E).

By Lemma 1.3.6, all tha t remains to be done after this is to check that the relation

y~] x LS (x2) = e(»)l =  Y ]  S ( x i)®2,
* — f X

holds when x  is one of E , F , K ,  K ~ l . For example, let x  =  K.  Let fi : Uq®Uq — > Uq, given
by u® v — uv, be the multiplication on Uq for all u ,v  E Uq. Then

fi o (id®S) o A (K)  — fj, o ( id®S)(K®K) = f i (K ® K ~ 1) — 1, 

and similarly for g  o (S®id) o A .  We also consider the case for x — E,  which gives 

jj,o(id®S)oA{E) = fj ,o(id®S){l®E+E®K)  =  //(l<g>(-£,iL -1)+£'<g>iL“ 1) -  - E K ^ F E K " 1 = 0, 

and similarly for g  o (S®id) o A .

This is an example of a Hopf algebra which is neither commutative nor cocommutative.

E x am p le  1.3.5. This example was first given by Sweedier, and describes the smallest non- 
commutative, noncocommutative Hopf algebra. We let k  be a field with characteristic not 
equal to 2. Define

with A(g) ~  g®g, A(a;) =  a;<g)l +  g®x> and e(g) — 1, s(x) = 0. The antipode is given by 
£(ff) = g = <?- 1  and S(x ) = —g%- We note that gE Q{Ha)  and x EV\  We observe that
# 4  has dimension 4 over k.

For further reference, see [Taf71], where an infinite family of finite-dimensional Hopf algebras 
is constructed.

U 4 =  k { l , g , x ,g x  \ g2 =  1 , x 2 =  0 , xg = -g x )
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E x am p le  1,3.6 (A n  E xam ple  o f a  B ia lg eb ra  W hich  is N o t a  H o p f A lgebra). Recall 
Example 1.2.1. We claim that the element det(X) is group-like. Proof of the 2 x 2 case is 
obtained by a similar method to that given in Example 1.3.7 for the quantum determinant; 
proof of the general n x n  case uses the same technique but is computationally tedious and so 
is omitted. Thus the bialgebra of polynomial functions on n x n  matrices is not a Hopf algebra, 
because the group-like element det(X) is not generally invertible in 0 ( M n (k)). However, it 
is possible to construct two related bialgebras which are Hopf algebras, namely

0 ( S L n(k)) =  0 (M n (k ) ) /(d e t (X ) - l) ,

0 ( G L n( k)) =  0(Jtfn (k))[(det(X ))"1].

These both have a bialgebra structure similar to that of 0 { M n{k)) and antipodes defined by
îj].S X  = X  1: where X  denotes the n x n  matrix [Xi

E xam ple 1.3.7 (T he Coordinate R ing o f Quantum 2x2 M atrices). We begin by defin
ing the coordinate ring of quantum M 2 (k ). Choose q € k  such that q is not a root of unity. 
Then

Oq{M2{k)) — k(a, 6 , c, d), subject to the following relations

ba — q~l ab ca =  q~l ac be =  cb

db — q~xbd dc — q_1cd ad — da = {q — q~l )bc.

There are two ways of expressing the coproduct and counit; see [Mon93, p. 219] for details 
of a method different to that shown here. Here, we define a comultiplication and counit as 
follows:

A(a) =  a®a +  6®c, A (b) ~  a®b +

A(c) =  c®a +  d®c, A(d) =  c® 6  +

e(a) = e(d) =  1 , e(b) =  e(c) =  0 .

W ith these maps, Ok{M2(]t)) is a bialgebra. However, it is not a Hopf algebra, as may be 
seen by considering the quantum equivalent of the determinant, the quantum determinant, 

a b
Let X  =  and define the quantum determinant to be detXX) — ad — qbc. We claim

c d
that detq(X)  is a group-like element. We prove this by the following calculation, which uses 
the relations on a, &, c, d given above.
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A (detg(X)) =  A(ad  — qbc)

— A (ad) — qA(bc)

A(a)A(d) -  qA(b)A(c)

(a®a +  b®c)(c®b + d®d) — q(a®b +  b®d)(c®a +  d(g>c)

(ac®ab +  ad®ad +  bc®cb +  bd®cd) — q(ac®ba +  ad®bc +  bc®da +  bd®cd)

(iac®ab +  ad®ad +  bc®cb +  bd®cd) — q(ac®q~lab — ad®bc — bc®da — bd®q~1cd) 

ad®ad +  bc®cb — qad®bc — qbc®da.

Also note that

detg(X)<g>det9 (X) =  (ad — qbc)® (ad — qbc)

=  ad® ad +  q2bc®cb — qad®bc — qbc® ad

— ad®ad +  q2bc®cb — qad®bc — qbc® (da +  (q — g_ 1)c6)

=  ad®ad 4- q2bc®cb — qad®bc — qbc®da — q2cb®cb +  bc®cb

— ad®ad — qad®bc — qbc®da +  bc®cb 

= ad®ad +  bc®cb — qad®bc — qbc®da

— A (detg(X)),

where the third line holds via the relation on ad — da. So detg(X) is a group-like element 
and is not invertible in 0 9 (M2 (k)). Therefore, Oq(M2 (k)) cannot be a Hopf algebra.

It is possible to show that detg(X) is central in Oq(M2 {k))- It is sufficient to prove this on 
the generating set; we do the case for a — those for the remaining generators are similar.

a(ad — qbc) =  a2d — qabc

— a(da +  (q — q~1)bc) — qabc

— ada — aq~l bc 

=  ada — bac

— ada — qbca

= (ad — qbc) a by the relations on (a, 6 , c, d).
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Since detg(X) is central, we may now proceed analogously to Example 1.3.6, and define the 
Hopf algebras

Oq(3L2{k)) =  0„(M 2 (k))/(det,(X ) -  1),

Oq(GL2( k)) =  O ^ M ^ k M d e y x ) ) - 1].

These inherit the bialgebra structure from Oq(M2 (k)): in the first case because (det9 (X) — 1) 
is a biideal. Their antipodes are uniquely determined by the condition

To describe t 

X  =  [Xij] =

X ( S X )  =  ( S X ) X  =  I2x2.

lis, we discuss the quantum determinant of the adjoint matrix. We write 
X u

and let Yji be the scalars obtained by deleting the i th row and
X 21 ^ 2 2

j th column. We then define S(Xij)  — (detg(X))_ 1 (—qY~^Yji. That is, in terms of our original 
definition of X ,

6 1 = M - 9 6c]-1 [ d ~ q~lb
c d —qc a

If we set q — 1 , then we get 0 (M2 (k)), the polynomial functions on 2x2 matrices. As 
one might expect, there is a corresponding definition for Oq{Mn(k)); for details on this, 
see [Mon93, pp. 220-221].

1 .4  M o d u l e s  a n d  C o m o d u l e s

D efin ition  1.4.1. Let A be a k-algebra. We say that a k-space M  is a (left) A-module if
M, such that the following diagrams commute: 

r)®id

there exists a k-linear map a  : A ® M

1
^ A® M k ®MA® A® M

id®a

A ® M

where the map m denotes scalar multiplication. These axioms are the associativity and unit 
diagrams respectively.

A® M

We now dualise the definition of algebras acting on modules to the situation for coalgebras.
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D efin ition  1.4.2. Let C  be a k-coalgebra. We say that a k-space M  is a (right) C-comodule 
if there exists a k~linear map p : M  — > M ® C y such that the following diagrams commute:

M  — M®C  M ^ M ®C

p id® A. id®e

M ® G  ■ H > M®C®C M ®k

These diagrams represent the coassociativity and counit axioms respectively.

D efin ition  1.4.3.

(1) Let C  be a k-coalgebra, and let M, N  be (7-comodules with structure maps p and v 
respectively. A linear map g : M  — > N  is a morphism of <7-comodules if {g®id)op =
vo g,

(2) Consider a right subcomodule D  of C y that is, a subspace such that A (D) C D®C.  
Then D  is a right coideal of G. Similarly, a left coideal E  is a subspace of C  satisfying 
A (E) C C®E.

There is a summation notation for right comodules. Let p be the comodule map. Then 
p(m) — € M ® C y for mo € m and m \  G C.

As one might expect, there is a close relationship between modules and comodules.

L em m a 1.4.1. Let C be a coalgebra. Suppose M  is a right C-comodule. Then M  is also a 
left C*-module.

Proof. Let p : M  — > M ® C  be the comodule map via p{m) = Let h G (7*.
Then one may define M  as a <7*~module via the map

h-m = , mi)mo, where (,) is the bilinear form in Definition 1.1.8.

n

The converse of this lemma is false in general, unless one assumes certain finiteness conditions. 
For example, consider the result [Mon93, Lemma 1.6.4]. This states that if M  is a left A- 
module, it is a right A°  module (where A° is the finite dual) if and only if {A-m} is finite 
dimensional, for all m  G M.  Those modules for which the converse does hold are called 
rational; see [Abe80, p. 127] for further details. We consider such a module in Example 1.4.2.
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1.4 .1  E x a m p les

E xam ple  1.4.1.

(1) Let C  be a coalgebra. Then C  is a right comodule over itself with p =  A. By Lemma 1.4.1, 
we can define a left action of C* on C  via

/ “Ac= X)^’C2)Cl’
for all /  € C* and c G C .

We can also define this action in terms of right multiplication in C *, Recall Equa
tion 1.18, and consider gt h G G* and c G (7. Then

(h^g-^c) = ]P(<7,c2 )(h ,ci) =  (h*g)(c) = (hg,c).

In other words, the action —̂ is the same as the transpose of right multiplication of C* 
on itself. We may similarly define the right action of C* on C , given by

c ' - f  = £ < / ,c i ) c 2.

Following a similar argument to that above, (h,cJ—g) — (gh, c) , so is the transpose 
of left multiplication of C* on itself.

(2 ) One may proceed analogously with an algebra A , by defining the left action a— for 
all a € A  and f  e  A*, which is the transpose of right multiplication on A; that is,

{a-^fyb} =  ( / , 6a), V 6 E A.

If the element /  is contained in the finite dual of A , we can then define A (/) , and in 
a similar way to that above, we get a— — XX./y, «.)/i- Of course, we can make an 
equivalent definition for the transpose of left multiplication by a on A.

E x am p le  1.4.2. Let D  be a left (7*-submodule of the finite-dimensional coalgebra C. Then
D  is a right (7-subcomodule, and so the converse to Lemma 1.4.1 holds in this case.

Proof Fix a basis for C  consisting of a basis {d( {i — 1, • ■ •, m} of D , together with a basis 
{dj | j  = m  +  1, • • •, n} for a vector space complement to D  in C. Let d G D  and write

n

A(d) =
i—l

for suitable d[ G C.
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We say that the dj are linearly independent mod(D). Now for any /  G G*, f - ^ c  — 
f{d'i)di € D. But - - ■ ^dn are independent mod(_D), so f{d!i) =  0 for all i > to.

This holds for all /  G C*, so d̂  = 0 for all i > m; therefore A ( d )  € D ®C . Hence _D is 
indeed a right (7-comodule. □

E x am p le  1.4.3. Let C = kG. Then M  is a (right) kG-comodule if and only if it is a 
G-graded (kG)-module. Recall that a module is G-graded if M  = ® 5 e gM 9.

Proof.
=>: Let m  G M.  We define the comodule map to be p{m) = Y^m g®9' We have

{id® A )  o p{m) — {id® A ) (  m g®g) =  'y~]mg®g®g.
geG

But by the coassociative condition for comodules, this is equal to

{p®id) o p{m) =  {p®id)(^2{mg®g)) — y ^ j{mg)il®h®g.
3 g,h

This implies that {mg)^ =  Sg^rrig. So p{mg) =  8g,hmg®g — m g®g. If we set 
M g = {m g | m g G M}, the sum is then direct. It remains to show that @gMg = M.  We 
do this by using the counit axiom to prove that Y2m g ~  m i f°r ah m g £ M.  We have 
{id®s) o p{m) = Y^gm g®^- But by the counit axiom, this is equal to m<g>l. Therefore, 
fPjTrig =  m as required.

Suppose that M  — ®gE gM 9 is a G-graded (kG)-module. We set p{m) — m®g , for all 
m  G M g. We want to check that the coassociative and counit axioms hold for this map. For 
all m G M g we have

{id® A) o p{m) = {id®A){m®g)=m®g®g,  and 

(,p®id) o p{m) = {p®id){m®g) — m®g®g ,

so the coassociativity axiom holds. We verify the counit axiom via the following calculation:

{id®>e) o p{m) =  {id®e){m®g) — m ® l,

which proves the result. □
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1.4 .2  In varian ts and  C oinvarian ts

D efin ition  1.4.4.

(1) Let A be a Hopf algebra and let M  be a left A-module. The invariants of A  on M  are 
defined to be the set

M a = {m  £ M  | a-m — e(a)m, V a E A}.

(2) Let M  be a right A-comodule with comodule map p. Then the set of coinvariants of 
A in M  is defined as the set

M coA — 1777, £ M  | p(m) = m® 1}.

(3) Let J  be a Hopf algebra and consider its dual J*. The space of left integrals, denoted 
I j , is given as

i j  = {3 e J * \ i j  = E ( i) jV i  e J*}.

The space of right integrals is given by

J l  = { j  e J * \ j i  = e { i ) jV i  e J*}.

We postpone further discussion of these concepts until the next chapter.

(4) We make the observation that if $ : A — > B  is a Hopf algebra morphism, A is a right
and left H-comodule via the maps

p  =

f> =  {'d^id/f) o A

We denote the set of coinvariants for p by A cpoB and the set of coinvariants for f> by 
A C°B. Thus,

JfOB _  e  A  |

A $ b  =  {a e A | <f>(a) = l«g>a}.

We note the following basic fact about invariants and coinvariants.
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Lemma 1.4.2. Let A  be a Hopf algebra. Then A poB and A ĈB are subalgebras of A.

Proof. We consider the case for A C°B. Let y 6  A cpoB. Then

p{x -  y ) =  p(X) -  p(y)

— ( :c ® l)  -  ( y ®  1)

so (x — y) E A poB. We also need to show that A poB is closed under multiplication. We have

p { % y )  =  X > y ) °  ®  ( x y )  i

=  y^xoyo® xiyi

=  ^2{xQ®xi)(yo®yi)

— ( x ® l ) ( y ® l )

= (xij® 1),

so clearly xy  E A cpoB. It is clear that Xx € A poB for all A E k. Thus A poB is a subalgebra 
of A. One uses a similar argument to show that A ĈB is also a subalgebra of A. □

Exam ple 1.4.4.

(1) Let H  = kG, and let M  be a left Lf-module. Consider the set of invariants,

M h  =  {m  E M  | h-rri — V h E H}.

It is sufficient to consider h E G only, since G forms a basis for H. Suppose that 
m  E M H. Then g-m — e(g)m =  m. So M H C M G. which is the set of elements of M  
fixed by G. Now let w! E M G. So g-m! — w! =  lm ' =  e { g ) m since e(g) = 1 for all 
g E G. Thus M h  -  M ° .

(2) W ith H  =  kG as above, let M  be a right H -comodule with comodule map p. This 
means that it is a G-graded module, as shown in Example 1.4.3. Then
M coH =  {m E M  | p{m) — m®l}, which is the identity component of the G-graded 
module M.

(3) Let H  — U (g), and let M  be a left U-module. Then the set of invariants is clearly 
M h  — {m  E M  | g'Tn =  0, V ,9 E g}, since e(g) = 0 for all g E 0 .
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(4) Consider the Hopf algebra H. This is a left i7-module algebra over itself via the 
so-called adjoint action of H  on itself. This is given as 3,df(k)h — for
h ,k  G H. We discuss this important concept further in Definition 2.1.1. This gives 
H h  =  {h G H  | b h  = adi(k)(h) =  e(k)h, V k G H}.  Let Z(H )  be the centre of H. 
We claim that Z{H) = H h . Let h G Z(H). Then for all k G H,

b h  -  adt{k)h  =  hS{k2) = Y l k l S ^ h =  £(k )h

by Equation 1.19. So Z (H ) C H h . Now conversely, we consider h G H H. Let k G H. 
Then

kh  — 'y~]kie(k2)h 

=  Y ^ h h e f a )

— y ^ k ih S ( k 2 ) h

— E &M ki)(h)k2

— Y ^£(k i)hk 2 because h G H h

= h Y £(h)k2  

=  hk.

Hence H h  =  Z(H).

The following result is taken from [Mon93, Lemma 1.7.2],

L em m a 1.4.3. Let H  be a Hopf algebra such that H * is also a Hopf algebra. Let M  be a
right H-comodule with comodule map p : M  — > M ® H , given by p(m) — X)mo<8 >mi. H
is thus a left H*-module, by Lemma l . f . l .  Considering both structures on M , we have that 
M h * = M co11.

Proof We first show that M H* C M coH. Consider m € M n \  Then for all f  G H*,

/•m = e ( f ) m

** E / ( m i)mo =  £U )m  (1.22)

<£> =  f ( l ) m  (1-23)

Now we note that the expression can be written with the {mo} linearly independent
over k. We know that m  = X)e (m i)m o since e G H* and m  G M n *, so this implies that 
/(m i)  =  /( l)e (m i) , for all m i and for all f  G H*. But this is true if and only if m i G k,
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since if m i ^  k, then we can find /  6  H* such that /(m i)  ^  e(mi). Once we know that all 
m i are in k, there is in fact only one; without loss of generality, we can then let m i =  1 . So 
p(m) = Thus M h * C M coH. We now consider the opposite inclusion.
Let m £ M coH. Then p(m) — m®  1 which implies /-m  =  / ( l ) m  =  e(/)m , by Equation 1.22. 
for H *. This implies that m £ M H*, so M coH C . □

1.4 .3  S m ash  P r o d u c ts

D efin ition  1.4.5. Let H  be a Hopf algebra. We say that an algebra A is a (left) H-module 
algebra if for all h £ H  and a} b £ A

(1) A  is a (left) LT-module with structure map h®a i-> h-a

(2) h-(ab) = Y:(hra)(h2-b)
(3 ) h-  1 a  =  e ( h ) l A .

As might be expected, there is a corresponding definition for comodules.

D efin ition  1.4.6. Let H  be a Hopf algebra, and consider an Ff-algebra A  with multiplication 
and unit given by fi and rj respectively. We say that A is a (right) H-comodule algebra if

(1) A is a right ff-comodule, with structure map p : A — y A® H

(2) The maps p  and rj are also right LT-comodule maps.

In other words, we have p(ab) — ^2aobo®aibi for all a,b £ A  and p(l) =  l<g>l.

The notion of Lf-module algebras is used in the following im portant definition.

D efin ition  1.4.7. Let H  be a Hopf algebra, and A a left H -module algebra. Then the smash 
product algebra A f fH  is defined as the algebra satisfying the following conditions:

(1) A f fH  — A<g>U, as k-vector spaces. For a £ A  and h £ H, the element a®h is written 
as ajfh.
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(2 ) Multiplication is defined as

( a # h ) ( i> # f c )  =  ^ a ( / n - b ) # > l2 /c,

for a, b £ A , and /i, k £ H.

Exam ple 1.4.5.

(1) Clearly, A  =  A #1 and H  — 1 so the element a # /i is often written ah.

(2) Trivially, for any H  and any A , the action h-a ~  e{h)a, for all /i 6 H  and a £ A  gives 
A j fH  = A®H,  as algebras.

(3) Let H  be an arbitrary Hopf algebra, and A  an H-module algebra. Consider h £ V{H), 
the set of primitive elements of H. By definition, A (h) = h® 1 +  1 ®h, so

h-(ab) =  (h-a)b +  a(h-b).

Thus h acts as a k-derivation of A. Now suppose H  — H(g), and let A  be an if-module 
algebra. This is clearly equivalent to the requirement that A  is an H-module such that 
elements of g act as derivations on A. So obviously, the action of g must determine that 
of U(g). The resulting smash product A # H  is sometimes referred to as the differential 
polynomial ring. For example, consider the one dimensional Lie algebra, g — k£, where 
x  acts as a derivative 5 of A. In this case, A #U (h x)  = A[:c;<5], which is the Ore 
extension where xa = ax +  5(a).

We now consider some results concerning smash products (taken from [KT81, Lemma 1.3 
and Lemma 1.6]). Let H  be a Hopf algebra, and let k  be a field. Recall from Lemma 1.4.1 
that if a k-algebra A is a right comodule over the k-coalgebra H, then it is also a left module 
over the k-algebra H*. For the remainder of this section, we assume that the k-algebra A  
is a right H-comodule via the k-algebra homomorphism 7  : A — >A®H. We also define the 
subalgebra B  of A  by

B  = {b£A\cf>(b) =u*((f))b V ^ e H * } ,

where u* : H* — > k is the transpose of the unit map u of H , tha t is, the augmentation 
of H*. Thus B  =  A h * , and by Lemma 1.4.3, B  = A coH.

Lem m a 1.4.4. Let H  and H* be Hopf algebras and consider the k -module A. Further as
sume that A  is a right H-comodule algebra. Then A  is also a left H*-module algebra.
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Proof. Since A  is a right U-comodule, it is a left H*-module. Now consider f  E H*. Then 
for all a , b  E A,

if>(ab) =  cf)((ab)i)(ab)Q by definition of the if*-module action in Lemma 1.4.1

=  E M M M M  

=  E M a)M fy ,

for all elements a, b in A, where the second line holds because (ai&i) E H  and f  E H*. Now 
consider the identity element 1 of A. Then

■Ml) =  «*(<K i ) )

=  (1.24)

where the first line holds because (f)(1) = 1 and u*(l) =  1. □

P ro p o s itio n  1.4.5. With A  and B  as defined above, B  is the largest subalgebra of A  such 
that elements of H* act as right B-module endomorphisms of A.

Proof. We let (f) E H* and b E B. Then for all a E A,

<f>(ab) =  (a) • <J>2(b)

— ^^f>i(a)-u*(cf)2 )'b by the definition of B  and because b E  B  

=  E m  a) ■ ^ 2 (1 ) 'b by Equations 1.24 and 1.24 

=  <p(a)‘bt VaEA, by Equation 1.24.

On the other hand, suppose that ^ E i f * and b E A  is such that <5b(ab) = (f)(a)'b for all a E A. 
Then <f)(b) =  <f>(lb) =  <f>(l)-b — u*((f))-b. Hence the result follows. □

The following result is taken from [KT81, Lemma 1.2].

Lem m a 1.4.6. Let A  be a k -algebra, and let H  be an arbitrary k -Hopf algebra. Suppose 
A  is a right H~comodule algebra via a map 7  : A  — > A®H, say 7 (a) = and let
B  be the subalgebra B  — A coH. Now consider the maps a : A ® bA  — > A®H, given via 
a®a' M- 7 (a )  (ar<8>1) and a '  : A ® b A  — > A®H, given via a®a' H>- (a<S>l)7(a/) respectively 
the right and left A-module homomorphisms induced by 7 . Then a  is injective, surjective or 
bijective if  and only if  of is injective, surjective or bijective.
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Proof. Consider the map £ E End(4® if) , given by £(a®h) = 7 (a) (l<g>S(h)), for h in H  and 
a in 4 , Now £oq/ =  a. We prove this in the following calculation.

£0 a'(a<Sa') — <^((<2®l)7(a/))

=  £((a® > l)^(a '® ho0 )

=  tj'y]{aa'®hg!)

=  ® h a >)

=  '^^j(a)'y(a!)((l®S(hai))) since 7  is an algebra homomorphism

“  y ^ 7 (Q) (ar®ha') (1  ®ff ( / y ))

=  7 (a) (a7® 1 ) by properties of the antipode.

Further, £ has inverse £- 1(a,®/i) — (l®j5 - 1(/i))7 (a), and so we obtain the result. □

1 .4 .4  F la tn ess

Finally in this chapter, we define discuss some technical algebraic tools, which will be used 
extensively in the remaining chapters.

D efinition  1,4.8.

(1) Consider an algebra A  and let B  be a right 4-module. Then we say that B  is a flat 
right A -module if it preserves exact sequences; that is, if 0 — > M  -°A N  is an exact 
sequence for any left 4-modules M  and N  then 0 — ► B ® a M  ^ 7  B® a N  is also an 
exact sequence.

In other words, B  is flat if for all injective maps a  : M  — > N  then l® o:: B ® a M  —7 
B® a N  is also injective.

(2) Let B  be a right flat 4-module, and suppose that B  preserves and reflects exact se
quences; that is, 0 — > B® a M  ^ 7  B<S>a N  is an exact sequence if and only if 
0 —7 M  - ^ 7  N  is one too. Then B  is a left faithfully flat 4-module.

As above, we may re-state this in terms of injectivity: if B  is faithfully flat, then 
fl : M  — v N  is injective if and only if /3®1 : B® a M  — > B<S>a N  is injective.

D efin ition  1.4.9. Now consider two Hopf algebras, 4  and J5, and a Hopf algebra homo
morphism /  : 4  — ¥ B.  We say /  is right (faithfully) flat if B  is a right (faithfully) flat
4 -module with module structure given by 6®n 1-7 bf(a).
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Chapter 2

E xtensions and N orm ality

2.1 Normal Hopf Algebras

2 .1 .1  D e fin itio n s  and E xam p les

We begin by defining the notion of a normal sub-Hopf algebra and then dualise this to get 
the definition of a normal Hopf ideal.

D efin ition  2.1.1. Let A be a Hopf algebra.

(1) We define the left adjoint action of A  on itself by

(ad^a)(6) =  ^^ai& S(a2)j V a ,6  E A.

(2) The right adjoint action is defined similarly as

(adra)(6) =  ^ ^ 1S'(ai)6a2 , V a ,6  E A.

(3) If a sub-Hopf algebra B  C A  satisfies

(ad^A)B C  B  and (adrvl)I? C  B  

then B  is said to be a normal sub-Hopf algebra of A.
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The following technical result enables us to give some examples of normal sub-Hopf algebras.

Lem m a 2.1.1. Let B  C  A be a sub-Hopf algebra. Suppose the set X  C A  is a set of algebra 
generators for A. I f  ad^{x)B C B  and adr {x)B C  B  for all x  £ X ,  then B  is a normal 
sub-Hopf algebra of A.

Proof. We consider the case for ad^; the proof for adr is similar. Let x ,y  E X  and b E B. 
Then

&dz{xy){b) =  ^ 2 (xy) ibS ((xy)2)

= T x m b ( S ( x 2y2))

=  YlXlVlbŜ S^
— a,dt(x)8Ldi(y)(b),

and clearly this last line is contained in B. By induction, we get that ad^(a;)(6) £ H, for all 
monomials x  on the generators X .  Finally, we note that

ad^(Ao,)(6) — AadJg(a)(6),

for all A £ k  and a, b E A. The result then follows. □

E xam ple 2.1.1.

(1) (a) Let H  =  kG, where k is a field and G is a finitely generated group. Then for all
g £ G we have

{&dtg)h = Y ]g ihS{g2) = ghg~1i V h £ H.

(b) Let H  — U(q), the enveloping algebra of the Lie algebra 0 . Then for all g £
we have

(adtg )h  =  gh — hg, V h £ H.

(2 ) (a) Let N  be a normal subgroup of the group G. Then by Lemma 2 .1 .1 , it is clear
that kN  is a normal sub-Hopf algebra of kG.

(b) Let H  =  [7(g), as above, and let i be a Lie ideal of the Lie algebra g. Then, as
above, by Lemma 2.1.1, U{i) is clearly a normal sub-Hopf algebra of U (g).

We now dualise Definition 2 .1 .1 .
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D efinition 2.1.2. Let A be a Hopf algebra. Consider the two maps

'tpi : A — > A® A, via a <9 (0.3 ) ®>&2 > and

ij)r : A —* A®A, via a (-»

These maps are respectively the left and right coactions of A on itself and are the duals of 
the respective adjoint actions. We see this by considering ad^ : A® A — > A as a left action, 
via a®a! H- Y lai a>S{a2 )-> for all a, a' € A. This can be written as

ad^ = /j,2  o (id2 ®S)o(id(&T)o(A®id),

where r  is the flip map, and fi2 : A®A®A — > A  is given by o®6®c a&c, for all a, 6, c € A.
But we can write V'e in the following form:

ij)l — (fj,<8 >id) o (id<g>r) o (id2®S) ° A2.

where A 2 (a) = (l®A)oA(a).

50 ad^ and if)g are indeed formal duals. A similar argument gives the same result for adr and 
ipr.

Now consider a Hopf algebra homomorphism h : A — > B. We say this is conormal if for all 
x £  lter(h) (=  h-1 (0))

il*£(x) = y^ x iS (x s )® X 2  £ A® ker(h) (2.1)

ij}r {x) = ^ 2 X2 ® S(xi)xs £ ker(/i)®A. (2.2)

A Hopf ideal I  C A is normal if the canonical map 7r : A — > A /I  is conormal. In this case, 
7T- 1 (0) =  I.

Recall that a Hopf ideal I  is a biideal (that is, an ideal and a coideal) which also satisfies
51  C I. Before we go on to discuss some examples of Hopf ideals, we consider the following 
useful result.
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L em m a 2.1.2. Let I  be a Hopf ideal of the Hopf algebra H, and let tt : H  — y H / I  be the 
canonical map. Therefore, in this case ker(7r) =  I.  Suppose further that I  = YPix %H, some
Xi £ I.  Let X  C I  be the set of all such X{. Then we have the following two results:

(1) I f  f)r {xi) £ I® H , for all Xi, then f)r {I) C I®H, Similarly, if  i>i{xi) £ H ® I, for all 
Xi, then iftiil) C  H®I.

(2) I f  A (xf) £ I® H  +  H®I, for all i, then A (I) C  I® H  +  H® I.

Proof.

(1) W ithout loss of generality, we may take an element j  of I  to be xh, for some x  £ X
and h £ II. We want to show that

ipr (xh) =  (xh)2 ® S(xh)i(xhs) =  'y^X2 h2 ® S(hi)S(xi)xsh^  € ker(7r)®if,

where the second equality holds by the fact that S  is an anti-algebra morphism and by 
Equation 1.21. We know that

'ifrfa) =  ^^a :2®*S,(a;i)a;3 £ ker(n)®H,

so X2 £ ker(?r). But ker(7r) is an ideal, so we must also have X2/12 £ ker(7r) for all /12■ 
Thus ipr (xh) £ ker(7r)®/f. The proof for ip£ is similar.

(2 ) We prove this in much the same manner as above. As before, we may take an element j  
of I  to be xh. Then A (xh) = Y^x ih i® x 2 h2 - But we know that 'fPx\®X2  £ I®H-\-H®I. 
So either x \  £ /  or X2  £ I. Therefore, since I  is an ideal, either aq/ii £ I  or £2 ^2  6  7, 
and so A (J) C I® H  + H®I.

□
E x am p le  2 .1 .2 . Let H  — U{g), the enveloping algebra of a Lie algebra 0 . Suppose i is a 
Lie ideal of 0 . We prove that iU(g) — I aj  £ b uj £ a Hopf ideal of f7(fl)*
Clearly, \U(g)U(g) C iC7(0 ). Now let Ŷ >jaj uj  ^ h By the Poincare-Birkhoff-Witt Theorem, 
17(0) has k-basis X  given by the ordered monomials on a basis of 0 . We wish to show that 
C7(fl)it/(fl) C iU(g). Let p  =  j y jL iP juj £ it/-(5 ), where pi £ i and Uj £ U(g). We note 
that U(g) is generated as a k-algebra by the elements of 0 . Thus, to show that u p  £ iU(g) 
for all u £ U(g), it is sufficient to use it for u — x, for all x  £ 0 .
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We have

x f i  =  Y  x &3u h
3

and for all j ,
x/3j =  PjX  +  [x,Pj] G i1 /(0), 

because j33-x G 117(0) and [x,/3j] G i, since i is an ideal of 0 . Hence iU(g) is an ideal.

To show that this is a coideal, we need to show that the two coideal axioms are satisfied, 
that is, e(il/(0 )) =  0 and A (it/(0 )) C il/(0 )0 l/(0 ) +  17(g)®il7(g). Recall that e(g) =  0 for 
all g G 0 , so clearly (0 )) =  0. By Lemma 2.1.2(2) above, it is sufficient to show that 
A(rr) G if/(0 )0 l /(0 ) +  17(0)101/(0), for all s  G i. Now A(rr) =  a;<g>l +  l 0 >a;; clearly 
A(a;) G il7(0)®17(0) +  17(0)®i?7(0). Thus, by the lemma, A(117(0)) C 117(0)017(0) +  
17(0)1017(0).

Finally, we need to show that 117(0 ) satisfies the antipode condition. Consider S(^2cxjUj)> 
where ay G i and Uj G 17(0) as above. Then

S ( Y ai u^  = Y S â3uj)
— y S ( u 3 )S(aj)  by properties of the antipode 

=  ~ ^ 2 S (Uj ) a3

But S (Uj) G 1/(0), so 5 (E < W )  G U(g)l But C/(g)i =  11/(0 ), so 5(117(0)) =  17(0)1 -  117(0) 
as required.

N o te  2.1.1. In fact, 17(0 )/i!7(0 ) is isomorphic to 17(0 / i ) - To prove this, we first consider the 
map ^ : 1/(0 ) — > U(g/i), induced by the map g f-> p +  i for all g G 0 . Clearly, i C ker(^), 
so iZ7 (0 ) C ker(f/;). Our aim is to show that this is in fact an equality.

Let {aq, • • • , a;^} be a basis for 0 , where we may suppose that a subset of this basis, say 
{aq, • • •, x m} is a basis for 1. Thus, {xm+i + i, • • • ,a;n +  i} is a basis for 0 /i. For t =  t \ t 2 - ■ -tn G 
LP and x — (aqaq-•-a;n) G 0 71, write 2;- G 1/ ( 0 ). Consider u — E f  Â a;- G ker(0). Then

=  Y  A# m +1 ■ ■ ■ ®n =  °»
t

where the sum is over all t  with ti =  — * • • — tm =  0 and Xj — Xj +  i. But the monomials
{^m +i, ' ‘ ' 5 } are all distinct and hence are linearly independent in U(g/\) by the Poincare-
Birkhoff-Witt Theorem for 17(0 /i). Therefore Af =  0 for all t  with t \  — t% — • ■ • =  tm — 0; 
therefore, u G i!7(0 ), so 11/(g) =  ker^.
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It is clear that : U(g) — > U(q/\) is onto, so we may apply the first Homomorphism
theorem to get that U(o)/iU(Q) = U(g/i).

Finally, we consider an example of a normal Hopf ideal.

Exam ple 2.1.3. As in Example 2.1.2, let H  =  17(0), and i be a Lie ideal of the Lie algebra
0 . We claim that 117(0) is a normal Hopf ideal. By Lemma 2.1.2(1), it is enough to prove
that “0r (a;) G iU(g)®U(g) and ^ ( x )  G iU(g)®U(o) fora; G i. Consider the map
7T: U(q) — > U(q)/\U(q), induced by the map g t-> g +  i, for all g 6  0 . Now consider ifr {x)
for some x  E i. Then

( l 0 A)oA(®) =  (1 0 A ) ( ® 0 1  +  I®#) =  ®0 l 0 l  +  10®01 +  1010®. (2.3)

Thus we have

i))r {x) — ^̂ £2C3>(S,(a'i)a'3 — 1<S>(— tf)l +  ( ® 0 l ) l  +  1 0 1 ( ® )  =  ® 0 l .

But ®0 l G 117(0)017(0) since x  G i. We use a similar argument for ipg. As before, let x  G i. 
Applying Equation 2.3 above, we get

ipl{x) ~  y ^ 3?i5 (a;3 )0 a:2 =  (® )1 0 1  +  1 (1)0 ® +  1 (—®)0 (1 ) =  1 0 ®.

But x  G i, so 10® G 17(0)0il7(0).

Thus 117(0 ) is a normal Hopf ideal of 17(0).

2 .1 .2  R e su lts  on  N o rm a lity

In the group theoretic context, one may define the concept of normal in several different 
ways. Amongst other things, this section deals with some of the corresponding Hopf algebraic 
results. The following results are taken from [Mon93, Lemma 3.4.2 and Proposition 3.4.3].

Lem m a 2.1.3.

(1) Let H  be a Hopf algebra over a field k  and K  C H  be a sub-Hopf algebra of H. Define 
the augmentation ideal K + — K  n  ker(e), where e : H  — Y k  is the augmentation 
map. Then if K  is also normal, H K + = K ^ H  is a normal Hopf ideal of H , and the 
canonical map it : H  — > H / H K + is a Hopf algebra morphism.
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(2) Let $  : H  — > J  be a Hopf algebra morphism, and as discussed in Definition 1.4-4: 
consider H  as a right and left J-comodule, where p and <j) represent the respective 
comodule maps. Then HpoJ is stable under adi and H™J is stable under adr — that 
is, (ad£H )H cpoJ C H C°J and (adrH ) H f J C H f J .

Proof.

(1) This proof is from [Mon93, Lemma 3.4.2] with the exception of the proof showing that 
H K + is normal, which is taken from [Sch93, Lemma 1.3], We want to show that 
H K +  — K +H  and that I  — H K +  — K + H  is a normal Hopf ideal. First, note the 
following identity. Let h £ I I  and k £ K .  Then

hk =  ^~^Jiike(h2 ) =  ^ ^ h i k S ( h 2 )hs — ^^(&d^hi)(k)h2  by Equation 1.19.

Now since K  is normal and k £ K ,  we have (&dzhi)(k) £ K .  If in addition k £ K + , 
then e((ad^/ii)(A:)) =  0, so in this case, hk £ K+H.  Thus H K +  C K+H.  By using 
adr , we can get the other containment. Clearly I  is then an ideal. To show that I  is 
a coideal, we need to show that A (I) C I® H  -\-H®I. By Lemma 2.1.2(2), we need 
only show that A (k+) £ I® H  +  H ® I  for all k+ £ K+. But

A (k+) = ^ k f ® k } .

Now iL+ is a Hopf ideal, so by definition A (k+) £ K + ® K  -f K®K+. Therefore, 
either k + or is in K +, and hence we must have A (k +) G I® H  +  H ® I . Thus 
m  C I® H  -j- H®I. By definition, e(J) =  0, so it only remains to prove that 
S I  C l .  Consider an element ^ ^ l_ 1 hj,k+ in I. However, it is enough to consider 
a single summand at a time from this expression, so we define i = hk+ , for some 
h £ H  and k+ £ K+. Then S{hk+) — S(k+)S(h). But K+  is a sub-Hopf algebra, so 
S{k+) £ K+. Therefore, S(hk+) £ K + H  = H K+.  So S(I)  C I.

We now show that I  is a normal Hopf ideal. By Lemma 2.1.2(1) it is enough to show 
that for all k+ £ K + , Equation 2.1 in Definition 2.1.2 holds. Let 7r : H  — > H / I  
be the canonical map. As above, we must have either k+ or k^  contained in K+. If 
&2* C K + , then clearly ij}^{k+) = e -H® ker(7r). We consider the case
when k+ £ K+  and k% is not contained in K+. We first note the following fact: 
if k+ £ K + , then clearly k+ — e(&+) € H K+  = ker(7r); that is, mod(iL)(g>ker(7r), 
—®k+ = ~ ®e{k+). Recall also that e(k+) £ k  for all k+ £ K +, and so may be 
moved freely across the tensor sign.
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Now mod H ® ker(7r),

5 ]A:+S(ft+)®fc+ “  J]/c+S(fc+)®s(fc+)

=  5 > + e(fcpS (fc3+)® l 

=  ' y k t S ( k ± ) ® l/  J J- V ■" '

= X>(&f)®1
^  0 ,

where the final line holds because we assume k f  G K +.

We follow a similar argument to show that Equation 2.2 from Definition 2.1.2 holds. 
As before, since H K + = K +H , we need only consider k + G K +. In this case, if 

G AT+ , then clearly ?/>r (A:+ ) =  e k e r^ )® # . We consider the case
when only G A"+ . Again, mod leer (7r)®IL,

X X ® S ( 4 ) 4  s  ^ e (fc+)®S(ft+)A+ 

=  X > ® S ( 4 M 4 ) 4  

=  X > s ( 4 ) 4

=  £ l ® e ( 4 )

=  0 ,

where the last line holds for the same reason as above. Hence both Equations 2.1 
and 2 .2  hold, so H K + is a normal Hopf ideal.

(2) This proof comes from [Mon93, Lemma 3.4.2]. Choose jeH p°K7 so by definition, p(j) — 
1, where j  =  i9(j). Now let h G II. Then

p((ad£h)j) =  p (Y 2 hd S ( h 2))

=  Y ^ ( h^ n ( S ( h 2 ) ) i ® ( h 1)2]2(S(h2))2

— '^2 (h i) i j i (S {h 2))i® (hi)2j 2(S(h2)2)

— (h i) ®h2S  (fc3)

=  y ^ ^ i£ (h 2)j5(/z3)®T 

=  (ad^)(j)® T,

where the equality on the fifth line holds because Y2h2S(hs) =  £(^2)? and also because 
of Equation 1.19. Also note that e(h2) G k, and so, as before, may be freely commuted 
past elements in the tensor product.
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Therefore, (ad^K)Hp°K C H^oK. One uses a similar argument to get the inclusion 
for H f K.

□
E xam p le  2.1.4. Let H  — kG, and K  — kiV, where N  is a normal subgroup of G. Consider 
the augmentation map e : kG  — > k  given by g t—̂ 1 , for all g E G. Therefore, 
g =  ker(e) =  Y ^i^geG ^-G ig  -  1). So K + =  n  =  g n  k N (n  -  1), which is an ideal
of kTV. Thus H K + = K +H  — X)i e n  KG{n ~  !)■ We want to check that this is a 
normal Hopf ideal, as predicted by the first part of Lemma 2.1.3. Firstly, we note that we 
have e{H K +) =  0 by definition. To prove the remaining two conditions it is sufficient (by 
Lemma 2.1.2(2)) to consider an element n — 1, for 1 ^  n E N .  Now by definition of A for 
kG,

A (n  — 1) =  A(n) — A (l)

— n<8>n — l<g>l

— (n — l)® n +  (l<g>n) — 1<8>1

=  (n — l)(gm +  l® (n — 1) € nkG<g>kG +  kG®nkG

by definition of nkG. Finally, we need to show that S'(nkG) C nkG. But this is clear, since 
for all 1 ^  n  E IV, we have S (n  — 1) =  S (n ) —S'(l) — n _1  — 1, which is clearly contained 
in n. Thus 5(nkG ) C nkG.

It remains to show that nkG  is normal. By Lemma 2.1.2(1), it is sufficient to show that 
Equations 2 .1  and 2.2 in Definition 2.1.2 hold for n — 1 with n E N  only, since 
nkG  ~  — l)kG . To do this, we first define the canonical map ir : kG — >
kG /nkG . We note that A (a:) =  x<&x for any x  E G. So, since A is linear,

(l<E>A)oA(7i  — l) =  (n<g>n®n) — (l<g>l®l)

Thus

ipt{n — 1) =  'y^n iS (ns)® n 2  = (nn~1®n) — (1.1(8)1) =  l® n — 1(2)1 =  1 <g>(n — 1) € kG®nkG. 

We follow the same argument for ipr :

ipr (n — 1) — ^ \n2 ®S(jii)ri3  — ( n ^ n ^ n )  — (1<2>1.1) — n<g)l — 1(g) 1 =  (n — 1)<8>1 E nkG(8)kG. 

Thus nkG  is a normal Hopf ideal of kG.
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E x am p le  2.1.5. Let H  — U(q) and K  ~  U(i). Then n  =  £/(i)+ =  U(i)flker(£:), where 
we take e : U(q) — Y k. But g H>- 0 for all g € g, so n  =  U(i)r\U(o)+ = U{i)+ . So 
U(q)il — nU(g) =  =  IU(q). We already know that this is a normal Hopf ideal by
Example 2.1.3.

The converse to the first part of Lemma 2.1.3 is not true in general, but if one imposes the 
additional requirement that H  be faithfully flat over K ,  then the converse does hold. In order 
to prove this, we need the following definition.

D efin ition  2.1.3, Consider two maps g : M  — Y N  and h : M  — Y N  of right A-modules. 
The equalizer of g and h is defined as ker(p, h) =  {m € M  \ g(m ) =  h(m)}. We say the

i 3equalizer diagram L  — > M  =£ TV is exact if Im(i) = ker{g,h) and i is injective.
h

Remark 2.1.1. This is equivalent to requiring the sequence 0 — > L — M  N  to be exact, 
that is, we require g — h to be injective and Im(i) =  ker(g — h) — {m  € M \ ( g  — h)(m) = 0}.

We also note the following result from [Wat79, Theorem 13.1].

L em m a 2.1.4. Let S  be a subring of the ring R. I f  R  is left faithfully flat over S, then the 
map M  — > M ® s R } given by m  ^  m<8> 1 is injective for all R-modules M .

Proof. Consider a right 5-module N  and an 5-module homomorphism i) : M  — Y N. Since we 
have assumed R  to be left faithfully flat over 5, if the 5-module map $®1 : M ® sR  — * N ® sR  
is injective, then $ : M  — Y N  must also be injective. Thus, it is sufficient to prove that 
M ® R  — Y (M ® R )® R , given by m®r  t-f (m®l)®r  is injective. This is clearly true, since 
the composition of the 5-module map M ® $S® $R  — Y M ® $ R , given by m®a®b m®ab 
with the map M ® sR  — Y M ® sS® sR ,  given by m®r (m<g>l)®r, is the identity on 
M ® sS® sR -  D

We now prove the converse to Lemma 2.1.3(1), following the argument in [Mon93, Lemma 3.4.3], 
which in tu rn  is based on that in [Sch92, 1.2 and 1.3].

L em m a 2.1.5. Let B  be a sub-Hopf algebra of the Hopf algebra A  with A  right or left faith
fully flat over B. Suppose that A B + — B +A, and define A  — A / A B +. .As discussed 
previously, A  has an A-comodule structure. We let ir : A  — Y A  be the canonical map. Then,

(1) B  — A c°a = A c£ a , where A c°a and A™A are the subalgebras given in Definition l.JhJh

(2) B  is a normal sub-Hopf algebra of A.
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Proof, We use the fact that A  is faithfully flat over B  and the definition of A-coinvariants to 
show that two different equalizer diagrams are exact. We then compare these diagrams and 
use them to construct a commutative diagram, which gives B  — A c°a =  A C£ A.

9
First consider the diagram B  C A  =4 A® b A> where g(a) — a®\ and h(a) = l<g>a. We show

h
that these maps are right 5-module homomorphisms. Let 6 6  B, Then clearly, 
h(ab) =  (l®a,6) =  (l®a)5. Now consider g(ab) =  a&®l. Since the tensor product is over 5 ,  
we may move any b G B  across the tensor sign; therefore, g{ab) =  a®b =  (a®l)&. So g and 
h are right 5-m odule homomorphisms.

We need to show that for i : B  — y A, where i is the inclusion map, we have lm(i) = ker(g—h). 
Now ker(^ — h) = {m € M  | g(m) = Let b G 5 .  Since both g and h are right
5-module homomorphisms, we then have

9(b) = g( 1 )^ =  (1®1)& and 

h(b) = h(l)b  =  (1®1)6

Thus, for all b € 5 ,  we have g(b) — h(b), therefore 5  C ker(c/ — h).

We show the opposite inclusion by contradiction. Let K  =  ker(<7 — h) which is a right
5-submodule of A : since (g — h) is a right 5-module homomorphism. Suppose that K  ^  5 .  
Therefore, K / B  7  ̂ 0. Now

0 — > B  — ► K  —■» K / B  — > 0

is exact by the fact that i f  is a submodule. Since A  is faithfully flat, this implies that

0 — y B® b A  — y K ® b A  — > (K /B )® b A  ~—y 0 (2-4)

is exact, so (K /B )® b A ^  0. Now let £ K<S>b A, This implies that

Y k ^ B a i  =

=  ^ ^ (1  <£>&*)«£ since K  = ker (<7 — h )

=

which clearly is contained in B® b A. Thus, we must have K ® b A  =  B® b A, which contradicts 
the exactness of Equation 2.4. Therefore 5  =  K.
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Next we consider the diagram A c°a  c  H  =4 A® A  with the two maps on the right given 
by a I-)- a 0 l  and We have A B + =  B +A , which gives that A  is a Hopf algebra.
Thus, the canonical map A  — > A  is a morphism of Hopf algebras, so, by definition of 
d-coinvariants, the diagram is exact.

Our next step is to combine the two diagrams. First we consider the map [3 : A®b A  — > A ® A : 
given by a®b  t-* Y l a b i® b2 (this is the Galois  map defined in the next section). Consider the 
map a  : .<40.6^4, given via a®b  h-j- We claim that aoft = (3oa — id.

We prove this as follows:

(j3oa)(a®b) = p ( £ a ( b  l)®b2)

=  5 > 5 (M )(&2) i® (62) 2

=  y ^ a S ( b i ) b 2®b3

= y^a£(b2)® h

-  y ^ a ® £ { b i )b 2

—  a ® y ^ e ( b i j b 2

where the second last line holds by the counitality condition on e. For aop: we have a similar 
argument:

(ao (3)(a®b) =  a (^ ^ a b i® b 2)

=  ^ a b ^ i b ^ b s

= y^a£(b2)®b3
= ^2a®e(bi)b2

where the last line holds for the same reason as above. So /3 is bijective.
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We now need to check that B  C A c°a . Then for b £ B,

p(b) — (id<Snr) o A (b)

= {id®Tr)(^2bi®b2)

= X > ® 7r(62)

=

— 6<8 >1 ,

where the fifth line holds because £(62) £ k. To show that the fourth line holds, we note 
that the restriction of tt to 13, that is, 7v : B  — > B , is the same as the augmentation map 
e : B  — > k. Then since B  is a sub-Hopf algebra, we have A(f?) C B®B, so we get 
^ (62) — £(62) as required.

We thus obtain the following commutative diagram:

B

j^coA

A A -> A§§b A

a  A®A

where j  is the inclusion map. Since the two equalizer diagrams are exact, and also since j3 is 
bijective, by the commutativity of the diagram we must have that j  is bijective, and hence 
that B  =  A°p A. By repeating the argument with A ® A: we show that B  — A™a . But then, 
by Lemma 2 .1.3(2), (ad^.A)13 and (adr^4)S are contained in J5; thus B  is normal. □

2.2 Galois and Frobenius Extensions

We now deal with the notion of Galois and Frobenius extensions.

D efin ition  2 .2 .1 . Choose an arbitrary Hopf algebra J ,  and let A  be a right J-comodule 
algebra with structure map given by p : A  A<g>J. Let B  = A cpoJ. Then A  is said to be 
a J-extension over B.

D efin ition  2.2,2. Let B  C A  be a /-extension, where J  an arbitrary Hopf algebra. Suppose 
further that the map f3 : A®&A — » A ^ J ,  defined as a®a' (a® l)p(a;) is bijective for all 
a, a1 £ A. Then A  is said to be a right J-Galois extension of B.
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N o te  2.2.1. At first glance, the definition above seems one-sided; why was a left Galois 
extension not also defined? In fact, this can be done, via the map fir(a<g>a') = p{a){a!® 1). 
However, if the antipode S  is bijective, then the two definitions are equivalent in the following 
way: [3 is injective, surjective or bijective if and only if j3’ is injective, surjective or bijective. 
This was proved in Lemma 1.4.6.

Before discussing any examples, we note the following well-known lemma by Dedekind:

L em m a 2.2.1. (Dedekind’s Lemma) Let E  be afield, and let S  — {<ti • • •, crn} be a finite set 
of automorphisms of E. Let (j> : S  ——>• E  be a function such that

V '.0(o-i)((7i-a) -  0, (2.5)

for all a £ E. Then (f){<Ji) =  0 for all i.

Proof. A proof may be found in [Isa94, p. 346]. □

E x am p le  2 .2 .1 . Let k  C E  be a field, and let G be a finite group acting as k-automorphisms 
on E. Let F  = E G =  {A £ E  \ g-a =  a, V g £ G}. The group algebra kG acts on E , so its 
dual (kG)* coacts by Lemma 1.4.1.

It is a standard result from classical Galois theory that E / F  is classically Galois with group G 
if and only if G acts faithfully on E  if and only if [E : F] = G. We now suppose that G 
does act faithfully. Thus we set |G| — n and let G =  {aq, • • •, £n}. Let be
a basis of E jF .  Define a basis {pi, • ■ • ,pn} of (kG)* dual to the basis {rzq, • • •, x n} of kG. 
Since E  is a left kG-module, by Lemma 1.4.1, it is a right (kG)*-comodule. We may thus 
define the coaction p : E  — > E®k(k.G)*, given by p(a) = Y^i=i(x i'a)®Pi f°r a £ E. 
This is determined by the action of G on E. In order to consider the Galois map, we need 
first to need show that the coinvariants of E , E C0̂ Ĝ , are contained in F. But this is 
clear, since by Lemma 1.4.3, = E kG = {a £ E  \ h-a = e(h)a, V h £ kG}.
Now for all g £ G, e(g) = 1, so clearly if a £ E ^ G, then a £ E G also. We may thus 
consider the Galois map, /? : E 0 p E  — > f?®(kG)*, given by fi(a®b) = ^T  a(xi-b)®pi). Now 
let v — Ylj aj®bj £ ker(/?). Then fi{v) = Y liiY lj aj ( x i'b)®Pi) ~  0- Since the {p,,} are 
independent, we must have

^  aj(xi-bj) — 0 , Vz. (2 .6 )
3
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Now let
E1-&1 X l ' b n

X  =  : :

x n’b\ ' ‘ ' ^n’bn

which is contained in M nxn(E). Let Hi be the i th row of X . If Ya =i ~  0 f°r some
Ai E E : then ^ ix i'bj — 0 f°r all j • Therefore, (X^Li — 0 for all j .  Now
B  — YljFbj  so (X^Li ^ ix i)‘a = 0 for all a E B. Further, Y2Z=i^iXi € Endi?(F7), so by 
Dedekind’s Lemma, we must have ]CiL=i ^ x i — 0) which contradicts the linear independence 
of {a;*}. Therefore, X  must be invertible. Hence, in Equation 2.6 above, since X  has column 
rank of n, we must have aj =  0 for all j .  Hence /? is injective. Also note that both E ® pE  
and E®{kG)* are finite dimensional F -algebras, which gives that [3 is an isomorphism.

E xam p le  2.2.2. This example is from [GP87].

For any K , we define H k  to be the circle Hopf algebra. This has algebra structure given 
by H k  = X[c, s]/(c2 +  s2 — 1 , c.s), where X[c, s] is the polynomial algebra, and coalgebra 
structure given by A(c) =  c®c -  s<g>s, A(s) =  c®s +  s®c, e(c) = 1 , e(s) =  0 , S(c) ~  c and 
S(s) ~  —s.

Now consider F  — Q and E  = F (uj), where to is the real fourth root of two. The extension 
F c B  is not Galois for any group G; however, it is (JT/^-G alois for K  = Q. The action of 
H k  on E  is given below:

• 1 U) U)2 U>3

c 1 0 -UJ2 0

s 0 —U) 0 a;3

A proof of the fact that Q C B  is (Ufc)-Galois can be found in [GP87] and [Chi89].

E xam p le  2.2.3. Let H  = kG, and let N  be a normal subgroup of G. Then k N  C kG is a 
Galois extension.

Consider the canonical map ir : kG — > k(G /N ). Now define the map p =  (id(g>7r)oA, where 
A is the comultiplication map of lcG. Then kG is a right k(G/X)-comodule via p. This is 
justified in Definition 1.4.4.
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Recall tha t A(g) =  g®g for all g G G, so the comodule map is given by p(g) — g®(g + k.N) — 
g®g. Thus, for all x ,y  G G the Galois map /? : kG®kivkG — > kG®k(G/lV) is given by

P{x®y) = (x® l)p(y)

= {x®l)(y®(y + nkN ))

=  xy®(y  +  nkiV)

=  %y®y,

where n  is the augmentation ideal of k N .  Clearly, p  is onto, since for all a®b, where a G G 
and b =  bN  G G/1V, there exists c®d G kG with P(c®d) — a®6; tha t is, we take c =  ab^1 
and d — b. To show that it is also injective, we note that the map g®h gh~i®h) for all 
g®h G kG®k(G/7V) with g G G and /i =  filV G G/1V, is an inverse for /5, and so f t  is 
bijective. Thus, kN  C kG is a k(G/iV)-Galois extension.

Finally, we consider Frobenius extensions. First, however, we require the following lemma.

L em m a 2 .2 ,2 . Let S  C R  be two rings. Then Homs{sR-> sS ) is a (R, S)-bimodule via the 
maps (r'(p)(x) = (f>{xr) and (<j)-s)(x) = <f)(x)s for alls G 5 , r ,x  G it! and G HomsisR-, sS).

Proof. This proof is from [Bea99, Proposition 2.6.7(b)].

Consider the map r-cf): R  — > S  given above. We want to show that this is an 
5-homomorphism, and then that it defines a left R-module structure. Clearly, r - f  is an 
5-module homomorphism, since for all x i , X 2 G R,

r ’<j>(xi+x2) = + x 2)r)

= (j}{x\r -f x2r)

=  <f>(x\r) +  tf>(x2 r)

= r • <f{x\) +  r • <f>(x2)

and for all s G 5  and x  G ii,

s(r • <ft)(x) — s(j){xr)

=  <p(sxr)

— r • <f{sx).
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Let r , r i , r 2,x  6  R  and (p, (pi, (p2 £ Horns(R ,  5). The following computations verify that this 
map defines a left 1?,-module structure on Horns (/?, 5).

( n  +  r 2) • (p(x) =  cf)(x(ri +  r 2))

— <p{xr\ +  x r 2)

— 4>{xri) +  (p{xr2)

=  n. • 0(®) +  r2 • 0 (e )

=  ( n  • <p + r 2 • 0 )(e )

• ( 0 i +  02)0*0 =  (<Pi +  < p 2 ) ( x r )

— 0 i(a:r) +  (p2{xr)

— r  * (pi{x) + r  - (})2{x)

= {r ' <Pi +  r  • (p2)(x)

((ri r 2)-cp)(x) — (p(xrir2)

=  0 ( ( s r i ) r 2)

=  r 2 • ^(®ri)

=  ( r i - ( r 2 - 0 ))(x).

Thus, Horns (-5, S) is a left itl-module.

The proof that the map cp-s : R  — > 5  defined in the lemma is an 5-homomorphism is similar 
to that above. We also need to check that this map imposes a right 5-module structure on 
Homs (R, 5). This follows in a similar manner to the calculations given above; we prove the 
first condition here. Let s i , s 2 £ 5.

(p-(si  +  S2) ( x )  =  < p { x ) ( s i + S 2 )

— <p(x)s 1 +  <p(x)s 2 

=  (4>'Si)(x) +  {(p-s2){x)

=  (<P'Sl +  <j>'S2 ) ( x ) .

The remaining conditions follow similarly. □

D efinition 2.2.3. Let 5  C R  be two rings. Suppose that R  is a finitely generated left 
projective 5-module and that r R s  =  H.oms(sR, sS)  as (R, 5)-bimodules. Then R  is a 
Frobenius extension of 5.
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Before considering any examples, we define the following im portant concept, and also consider 
a useful result for Frobenius algebras.

D efinition  2.2.4,

(1) Let S  be a subring of the ring R. We define an associative form from R  to S  to be a
biadditive map {,) : R x R  — y S  which satisfies

{s r , t) =  s(r,t), {r,ts) = (r,f)s, and {rt>x) =  {r , t x },

for all s G S  and r, t, x  G R.

(2) Let {,) : R x R  — y S  be an associative form. Let X  — {a?i, • • •, and Y  —
{2/1? • * * iVn} be two finite subsets satisfying

n n
r — ^  Vi(xu r) = ]T ^r, yi)x{ for all r G R.

i - i  i=i

We say that X  and Y  form a dual projective pair relative to {,).

Remark 2.2.1. We note that the 5-linear mappings a{ : R  — > S , given by cti(r) =  ( r ,pi), 
together with the set {sq, • • •, arn}, are a projective basis for R  as an ^-module.

The following theorem is taken from [BF93],

T heorem  2.2.3. Let S  be a subring of the ring R. Then R  is a Frobenius extension of S  if 
and only if there exists an associative form  {,) from R  to S , relative to which a dual projective 
pair exists.

Proof.
=4-: Since R  is a Frobenius extension of 5, there exists an isomorphism a  : R  —y Horns (si?,, S )
of (i?, 5)-bimodules. We use this to define a bilinear form (,) : R x R  — y S , given by
(x -> y) — a (y) (%) for all x, y € R. To show that this is an associative form, we must
show that it satisfies the requirements given in Definition 2.2.4. Consider (s x ,y ) =  a(y)(sx), 
where s € S. Then

a(y)(sa:) =  $a(y)(x), since a(y) G Horns (i?, S)

= s(x,y).
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To show that (x ,ys)  =  {x ,y )s , we note that a  is a right 5-module isomorphism. Thus:

(.x ,y s > =  a(ys)(x)

= {a{y)s){x)

= a(y)(x)s  

=  (®,S/)s.

Finally, using the second definition of the bimodule action given in Definition 2.2.4, we show
that (rrr, y) = (x, ry ) for all x,y>r E R.

{x,ry) = a(ry)(x)

~  {r-a(y))(x) since a  is an R-homomorphism

=  a(y)(xr) by Lemma 2.2.2 

=  (%r,y).

So {,) : R® R  — > 5  is indeed an associative form.

Now let x i , - " , x n in R  and in Horns (72,5) form a projective basis for the
5-module 72. We want to show that these sets form a dual projective pair. Since E Horns (R> S ) ,
we can always find an element yi, where l< i< n ,  such that a{yi) — on* Now let r E 72. Then 
for all such r,

n n  n

r  =  ai{r)xi = ^2 a {y i){r)x i =
i= l  i= l  i= l

Now suppose that we have 0 E Horns(72, S).  Applying this to the second equality above 
gives

H r) = <£%2<x(yi)(r)xi =  ^2 ^(a (y i)(r )x i)  =  ]T\r(^)(r)</>(^) since a(yi)(r) E 5.

Then by using the definition of the right 5-action given on Horns(72, 5) in Lemma 2.2.2, we 
get

n

$ ^
i—1

If we further assume that (f> = a (r), this gives o:(r) =  a:(X^Li y%{x^r))] therefore, 
r = r )• Thus {&i, ■ ■ ■, x n} and {cki, • • •, ctn} are a dual projective pair.
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<=: As already discussed in Remark 2,2.1, R  has a finite projective basis as an 5-module,
and so is a finitely-generated projective 5-module. To show that R  is a Frobenius extension of 
5, we thus need to prove that R  =  Horns (72, S)- Consider the map 7  : 72 — > Horns (sR , 
given by r  (—, r). We need to show that this is an isomorphism of (72,5)-bimodules. It 
is clearly a right 5-module homomorphism, since by definition of associative forms,

7 (rs) =  (—, rs) =  < -,r)s ,

for r  E R and s E 5. Now consider a , r  E 72. We have 7 (ar) =  (—,or). If a? € 72, then

(x ,ar) — (x a ,r )

— 7  (r)(xa)

=  a-7 (r)(s),

where • is the action of 72 on Horns (72, S). Thus 7  is also a left 72-module homomorphism. 
Further, suppose that {#, r) — 0 for all x  E 72. By nondegeneracy, this implies that r  — 0. 
Thus leer(7 ) =  0, and so 7  is injective. To show that 7  is onto, we consider h E Horns (s72, S).  
Then for all r  E 72, we have

h{r)  =  h ( ^ 2 { r , y i ) x i )
i

i

=  X )  (r> ^  K X  ̂  ’ Vi) x3)
* i

=

i,3

= ^(^{r .ydxuy^ hix j )
3 *

=  X ^ j ^ m
3

Thus, /i =  7(Z)j yjh(xj))> hence 7  is onto, therefore bijective. So 72 is a Frobenius extension 
of 5. □

Let 72 be a Frobenius extension over 5, and let (,) : 72 —  ̂ 5  be the associative form given 
in Theorem 2.2.3 above. Consider the map 7r : 72 — )- 5, given by 7r(r) =  (r, 1) =  ( l ,r ) .  The 
map 7r is referred to as the Frobenius homomorphism associated to the Frobenius extension.



E xam p le  2.2.4. Let H  = kG, and let be N  a subgroup of G of finite index, so we may write 
G =  Ul—iN gi, where g\ = 1. We show that k N  C kG is a Frobenius extension.

We first need to establish that kG is a projective k N  module, but this is clear, since N  has 
finite index. Then kG is a free kiV-module with basis a set of coset representatives for N  
in G, and hence is a finitely generated projective kiV-module.

Secondly, we need to establish an isomorphism of (kG, kiV)-bimodules between kG and 
Homk7v(kivkG, kN ). First, consider the left klV-homomorphism ir : kG — > k N  given 
by 7  =  Yli=i H 9 i  ^  7i f°r 7£ e klV. We may thus define the map {,) : kG®kG — > kiV, 
given by (,) : (a,/3) h-s- -k{(3a).

We now need to prove that the map 0 : kG — > Homkjv(kG, kN ),  given by a  / a , where 
fa{j3) = 7r((3a) for all a,/3 E kG, is an isomorphism of (kG, kiV)-bimodules. We must show 
that f a is in Homkyy(kG, k N ) , that is, that f a is a left k N -module homomorphism. It is 
clear that the condition for addition holds. Now consider co £ k N . Then

/<*(w/3) =  7T (wpat)

—  ujTr({3a)

=  ^/a(/3),

where the second line holds because 7r is a left kiV-module homomorphism.
So f a £ Homk^(kG ,kiV ).

We must also show t h a t0 is a left kG-module homomorphism and a right kiV-module homo
morphism. We consider the case for kG first. Let a, 7  £ kG. Now 7 a  H- / 7a. Then for all 
(3 £ kG, we have

f'ya =  n(P'ya)
= 0 (a) (£ 7 )

=  7 *0 (a)0 (y3),

where • is the left action of kG on HomkAr(kG, kiV).
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To show that '0 is a right kiV-module homomorphism, we consider aw f au. Then for all 
u  G k N  and for a  G kG,

fatd(P) — 7r(/3au)
t

= 7r (^ ^  UigiUj) where (3a — utgi for U{ G kAT
i= l i

t
—  tt(u iU) +  ^ 2  UigiLo) since g\ =  1.

i=2

Note that each gicu is a linear combination of group elements in uj_2^9 i-  This implies that

t
7v(uiOJ +  UigiU)) — U\U)

*=2

=  7r(0a)(a/)

=  faW )w

= (fa •<*>)(&)•

So is a (kG), kA^-bimodule homomorphism as claimed.

Finally, we show that $ is bijective. We first consider the case for injectivity. Consider 
a  = J2i9ia ii with a'i G k N  for all i and assume a  G ^  0. This implies that there exists at 
least one j  such that a'j ^  0. Then

M g J 1) = &<*»))
i

t
=  7r(ar'-+  n>), where w G E kiVs»

i=2
=  a'j ^  0 .

Thus t? is injective.

We show that $ is also onto. We have

HomkAr(kG,kiV) =  ©J=1Homkiv(kiV^*,kJV) = ©j/^kiV,

where
, f 9% 1

I Srj  ► 0 , j  #  i
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We know that $ is a right kiV-module homomorphism. We also note that Im($) contains a 
kiV-generating set of Homkjv(kG, kN ). Therefore, if we can show that there exists a  G kG 
such that f a  —  f i  for all i, $ is onto. Consider the element g~l . Then

f gM 9 j)  = K{g3g - 1)

=  |  1 j  — i 

\  0  j  ^  i

since in this case gjgl~l £  N . So /  -1  =  f i ; hence '0 is onto and thus bijective.

So we have a (kG, kTVj-bimodule isomorphism between kG and HomkivCk^kG, kJV), and 
hence kG is a Frobenius extension over k N .

The following examples are taken from [BF93].

E xam p le  2.2.5, This example generalises Example 2.2.4 above to the case of any strongly 
G-graded ring. Recall that a ring R  is graded by the group G if R  =  ®g <= oRg where R g 
is an Abelian subgroup of R  for all g, and R gRh C  R git for all g, h G G. If equality 
holds in this expression for all g, h G G, then R  is said to be strongly graded by G. The 
strongly graded condition is equivalent to the existence of the sets C R g
and {yi,g ,"  ‘ ,ym(g),g} C  R g-i  with yi,9 x i>g =  1  for a11 5  G G. Suppose that R  is
strongly graded by G, and also that S  — eiiRg-i where AT is a subgroup of finite index 
in G. Then we claim that R  is a Frobenius extension over 5.

To prove this, we define the Frobenius homomorphism as 7r(Effe G r ff) =  This
means that the associative form is given by

< X) r»> Z) rV> = <( E  r3)( Y, ''V).1) = Vg’
g  €  G  g 1 E G  g  £ ( ?  g f e G  g g ' £  H

Now let AT be a subset of G such that {Hg \ g G AT} is a complete set of right cosets for H  
in G. Then the sets

X  : =  i x i , g  I 9  £  A", 1  <  i  <  m(g) }  C  R g  and 

Y  : =  { V i , g  I 0 € AT, 1 <  i < m( g) }  C  R g - 1

form a dual projective pair, and thus R  is a Frobenius extension of S.
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2.3 Faithful Flatness

2 .3 .1  O verv iew

The main aim of this chapter is to show some of the circumstances under which a Hopf algebra 
is fiat, faithfully flat or free over a subalgebra. We also give a condition for the properties of 
flatness and faithful flatness to be equivalent. There has been a substantial amount of work 
done in this field, and only a small number of results are included here. Before discussing 
these, however, we give the following brief overview of some known results.

T h e  F in ite  D im ensional C ase

Assuming finite dimension substantially simplifies the situation; work by Warren Nichols and 
M. Bettina Zoeller in the late eighties shows that under this condition a Hopf algebra is 
always free over any sub-Hopf algebra. Note that (H, AT)-Hopf modules have not yet been 
defined; we direct the reader to Definition 2.3.2 below.

T h eo re m  2.3.1 (T h e  N ichols-Z oeller T h eo rem ). Let H  be a finite dimensional Hopf 
algebra over a field k, and let K  be a sub-Hopf algebra. Then for any (H, K)-Hopf module 
M , we have that M  is free as a K-module. In particular, since H  is a (H, K )-H opf module, 
H  is free over K .

Proof. This is proved in [NRZ89]. □

T h e  In fin ite  D im ensional C ase

In this case, as might be expected, the situation is much less straightforward. Indeed, it is 
known tha t H  is not generally free over a sub-Hopf algebra K  unless K  is finite-dimensional 
and has certain other properties, as the following example (due to Oberst and Schneider) 
shows.

E x am p le  2.3.1, Let F  be a field, and let E  be a field extension of F  of degree 2 with Galois 
group G =  {l,cr}. The action of a on Z is given by z ~ z. Then G acts on the group 
algebra E Z  by its actions on E  and G. We set H  =  (E Z )G and K  =  (E {nZ ))G C H . If n  
is even, H  is not free over K.
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Proof. See [OS74]; a proof may also be found in [Mon93, Example 3.5.2]. □

We now consider some special cases when H  is free over K . We recall the notion of semi- 
simplicity'. a finite dimensional algebra R  is said to be semisimple if every left R -module 
is completely reducible. The first part of the following theorem is a generalisation of the 
Nichols-Zoeller Theorem for the infinite-dimensional case.

T h eo re m  2.3.2. Let H  be a Hopf algebra as above, and let K  be a finite-dimensional sub- 
Hopf algebra of H . Suppose that one of the following hold:

(1) K  is semisimple,

(2) K  is normal;

then H  is free over K .

Proof

(1) Proved in [NRZ92, Theorem 4].

(2 ) Proved in [Sch93].

□

The case for faithful flatness has been the subject of much interest recently, since this property 
is almost as useful as freeness in many situations. However, it is still an open question 
whether a Hopf algebra H  is always faithfully flat over a sub-Hopf algebra K . It is known to 
be true if H  is commutative (see Lemma 2.3.7 and Lemma 4.1.1), or if the coradical of H  is 
cocommutative, where the coradical is the sum of those subcoalgebras of H  which have no 
proper sub coalgebras. We discuss a further condition for faithful flatness in the remainder of 
this chapter.

2 .3 .2  C o n d itio n s  G iv in g  F a ith fu l F la tn ess

We begin with the following technical result from ring theory.



D efinition  2.3.1. Let R  be a ring. R  is said to be weakly finite if for all finitely generated 
free left ff-modules M  and for all surjective f  G End#(M ), <f> is also bijective.

E xam ple 2.3.2. Let i i b e a  left Noetherian ring. Then R  is weakly finite.

Proof. Let M  be a finitely generated free f?-module. Consider an ff-module homomorphism 
<j> : M  — > M  such that </> is onto. Let K  = ker(0). Suppose that K  ^  0. Then we have 
M /K  = M  by the first Homomorphism Theorem, and there exists K \ ^  K  such that 
'k [/k  — M /K  — M . Therefore, M /K \  S  M. We may continue in this way, producing 
an infinite ascending chain of submodules of M . But this contradicts our initial assumption 
that R  is left Noetherian, hence K  — {0}. Therefore <f is bijective. □

D efinition  2.3.2. Let k be a field. Let K  be a sub-Hopf algebra of the Hopf algebra H  over 
the field k. Consider a right iC-module M . Suppose that M  is also a right H -comodule, via 
the map p : M  — > such that p is a iL-linear structure map, that is,

p{mk) =  y^mo/ui®mifc2 ,

for all m  G M  and k G K . Then M  is said to be a right (if, K )-Hopf module.

E xam ple 2.3.3.

(1) Let M  — if .  Then i f  is a right (if, ii)-IIopf module via the comultiplication map 
A  = p.

(2 ) Let N  be any right if-module. Then M  — N ® H  is a right (if, iQ-Hopf module via 
the map p =  id® A .

We now consider the following technical results, which are taken from [Tak72] and [Sch93] 
and are required for the proof of Theorem 2.3.9.

P roposition  2.3.3. Let B  be a sub-Hopf algebra of the Hopf algebra A. Any right (A,B)~  
module is a filtered union of those of its (A, B)-sub-Hopf modules which are finitely generated 
as right B-modules.

Proof. See [Tak72, Corollary 2.3]. □

Lem m a 2.3.4. Let A  be a Hopf algebra with bijective antipode, and let B  C  A be a sub-Hopf 
algebra. Then if  A  is flat as a right B-module, it is also faithfully flat as a right B-module.

Proof See [MW94, Theorem 2.1]. □
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The following proposition is taken from [Tak72, Proposition 2.4].

P ro p o s itio n  2.3.5. Let 5  C A  be Hopf algebras and suppose that every finitely generated 
right (A, B)-H opf module is flat. Then A  is right faithfully flat over B .

Proof. Proposition 2.3.3 implies every right (A, 5)-module is a flat 5-module, because a

and flat modules in [Rot79]. Since A  is a right (A, 5 ) -Hopf module, it is therefore a flat

any (A, B)-H opf module. We define the central localisation of M  at B + (the augmentation 
ideal of B )  as Mg+ = M ® b B b + • I f  A  is weakly finite, then the central localisation of M  at 
B+ is a flat B-module.

Proof. Consider an (A ,5)-H opf module M . By Proposition 2.3.3, this is a filtered union of 
finitely generated B-modules which are (A, 5)-H opf modules. We may thus assume that M  
is a finitely generated 5-module, since a union of flat modules is also flat. Let r be the rank 
of M /M B + over k. We begin by showing that M ® b A  is free of rank r  as a right A-module. 
Because M  is a Hopf module, we can define the homomorphism of right A-modules

direct limit of flat modules is flat. For a proof of this, see the discussion on direct limits

5-module. Thus, by Lemma 2.3.4, -A is a faithfully flat right 5-module. □

The following lemma is taken from [Sch93, Lemma 3.1].

L em m a 2.3.6. Let A  be a Hopf algebra, and B  C A  a central sub-Hopf algebra. Let M  be

7  : M ® b A  — y M /M B +®A ; m®a y ^m i® m 2Q,

Consider the right A-module homomorphism a : M /M 5+® A  — > M ® b A , given by 
fn®a i-7 ^2mi® S(m2)a. We claim that 7  is an isomorphism. This is proved by showing that 
0-07  =  7  o <7 =  id. Consider 7 0  <j, and let m € M /M B + and a E A. Then

7 (cr(m®a)) — 7 (y~^mi®ff(m2)a)

m®a.
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Let m E M  and a E A. Then for a  o  7  we have

a ( j ( m ® a ) )  =  a { sy ^ r n i ® m 2o)

— y ;  (m i) 10 5 (m i) 2m 2a

= ^ \n i® e {m 2 )a

—  y^m i£ (m 2)(8 >ft

— m®a.

Thus 7  is indeed an isomorphism. So M ® BA  is free of rank r  as a right A-module.

Since M b +/M b +B+ =  M /M B + has dimension r, Nakayama’s lemma gives that the B b +- 
linear map

/  : @rB B+ — y M b+

is surjective. We want to show that this is also injective, which we do by showing that 
there exists a ring extension B b+ c  S  such that f® ls  is injective; that is, the map 
f® ls  : ®vB b +®S — > M b +®S is injective. Consider the surjective right ^4^+-linear map
ping f® B B+ A B+ : © 7 B b+®be+A b+ — y M b -\-®Bb+A b + . Now ©J B b+®Bb+ A b + = ©rAg+, 
since A B+ is the H-module obtained by extension of scalars from B b +. We also have 
that M b+®be+A b+ = (M ® b A )b + =  ©rAjB+, as right 4 s +-modules. This shows
that f® B B+A B+ G End(®rA s +) is surjective, and therefore, since A B+ is weakly finite, 
f® B B+A B+ is bijective. Hence M B+ is free of rank r over B b +, and thus flat over B. □

L em m a 2.3.7. Let A  be a commutative Hopf algebra and let B  be a Hopf subalgebra. Then 
A  is a flat B-module for all such B .

Proof. A proof of this can be found in [MW94, Theorem 3.4]. □

The next lemma is from [Sch93, Lemma 3.2]. To prove it, we need Hilbert’s Nullstellensatz. 
A statement and proof of this can be found in [Rei8 8 , p. 54-56].

L em m a 2.3.8. Assume that k  is an algebraically closed field and let A  be a Hopf algebra 
over k. Let B  C A  be a central affine sub-Hopf algebra, such that M B+ is flat over B  for all 
(A ,B )-H opf modules M . Then any (A, B)-H opf module is flat over B .
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Proof. Let J  be a maximal ideal of B. Then by the Nullstellensatz, we have B f J  =  k. Define 
7r : B  — )■ B f J  to be the canonical map, and let a \ B  — > B , given by b (->■ X/7r(S'(bi))b2 

be the induced automorphism of B  which maps B + onto J.

Let X  be a right 5~module, and j3 be any algebra automorphism of B. We define Xp  to be 
the ‘twisted’ 5-m odule with underlying k-module X  and with 5-module structure given by 
the map xopb — xj3(b) for all x  G X  and b G B. Now let Y  be any left 5-module. Then 
X[i® bY  — X ® B(p-iY ), as can be seen by considering the tensor product. Therefore, if M  
is flat, so is Mp.

Consider an (A, 5)~Hopf module M, and let m  G M  and b G B. For all such m  and 6 , we 
define the map Am<* : M a — > M a®A by A Ma — Am- Then for all m  G M  and b G 5 ,

A m(^ck(^)) — y^mo7r(5(bi))b2®mib3 =  ^Pmoo;(&i)®mib2 =  A

So M a is an (A, 5)-H opf module, where M a is the twisted 5-m odule discussed above. Also 
note that M  — M a as A-comodules. Since M B+ is flat by assumption, so is (Ma)B+ by the 
discussion above. Now we have

(MB+)a-1 ^  M j,

as 5-modules. So M j  is 5-flat by the discussion above. Since J  was chosen to be any
maximal ideal, we therefore have that M  is 5-flat. □

This theorem is from [Sch93, Theorem 3.3].

T h eo re m  2.3.9. Let A  be a left or right Noetherian Hopf algebra, and B  C A  an affine 
central sub-Hopf algebra. Then any (A, B)-Hopf module is flat over B , and so A  is thus a 
faithfully flat B-module.

Proof. Let M  be an (A, 5)-H opf module. Let B{ denote the (A, 5)-sub-Hopf modules from 
Proposition 2.3.3. Now M  is an (A, 5i)-Hopf module for all 5 j, so by Lemma 2.3.6, the 
localisation M B+ is a flat 5i-module. Since 5^ is finitely generated for all i, Lemma 2.3.8

i
gives that M  is 5^ flat. Thus since 5  is a filtered union of the 5 j, M  must be 5-flat. Then
by Proposition 2.3.5, A is a faithfully flat 5  module. □

Remark 2.3.1. In summary, we see that if 5  C A is a central sub-Hopf algebra and A is 
right or left Noetherian, then A is faithfully flat over 5 .  It is possible to eliminate both the 
Noetherian and central conditions; however, it is then necessary to impose the condition that 
5  is finite codhnensional (that is, dim A /A 5 + < oo) and normal instead. This is a particular 
case of the result [Sch93, Theorem 2.1].
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We now show that faithful flatness, together with the condition that B  is normal, gives that 
A  is Galois over B.

L em m a 2.3.10. Let A  be Hopf algebra, and let B  C A be a normal sub-Hopf algebra. Let 
A /A B + — A. Then A  has a right A-comodule structure, since tt : A  — y A  is a Hopf 
morphism. Suppose further that A  is faithfully flat over B. Then A  is right A-Galois over B .

Proof. First we note that B  is normal, so A B + = B +A  by Lemma 2.1.3. This lemma also 
implies that the canonical map 7r : A  — y A  is a morphism of Hopf algebras, and so A  has an 
H-comodule structure, given by the map p = (idA®ft)°A. Since A  is faithfully flat over B, 
Lemma 2.1.5 implies that B  = A coA, so A  is an extension over B . We need to show that the 
Galois map fi : A® b A  — y A®^A, defined as a®a' \-y (a®l)p(af) for all a, a1 G A , is bijective. 
Now

a®b *-y (a®l)p(6) =  (&(g>l)(zcbi®7r)oA(6)

=  (a®l)(idA®w)(5^Jbi®b2)

— {a<&l)y^j{idA<8>Tr){bi®b2)

= (a<8>l)y^5i®52 

=  y (̂aG>l)(6i<2>52)

=  y^abi@b2.

There is an inverse map a  to fi, given by a  : a®b Y^a^(b i)®&2 - These are the maps from 
Lemma 2.1.5, so, following the same argument, we get that f i o a  — a o f i  — id. Thus fi is 
bijective, so A  is an H-Galois extension of B. □

Remark 2.3.2. Most of our results in this section have been for central sub-Hopf algebras, not 
normal ones. However, the central condition implies normality, as the following calculations 
show. Let i f  be a central sub-Hopf algebra of the Hopf algebra H. Choose h € H  and 
k E K . Then

a d  t (h)k  =  y ^ / n / c S f / i j )

=  y > S ( / t2 )A:

=

=  e(h)k.

But e(h) E k, so £(h)k E K . Hence ad ^(if)if C K . One uses a similar argument to show 
tha t adr ( i f ) i f  C if ; thus i f  is normal.
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Remark 2.3.3. If B  C A  is a normal sub-Hopf algebra, and A  is also a finitely generated 
H-module, B  is then finite codimensional. By Remark 2.3.1, B  C A  is thus Hopf Galois.

2.4 The Set of Integrals

Under certain extra conditions, Galois and Frobenius extensions are actually equivalent. 
Theorem 2.4.3 (from [KT81, Theorem 1.7(5)]) below gives one such condition. This is proved 
for algebras in general in [KT81], but we are specifically interested in the special case of 
Hopf algebras over a field k. Before we do so, however, we recall Definition 1.4.4 and discuss 
two important properties of I j .  The following result is a special case of the result [KT81, 
Proposition 1.1], where the ring R  is a field.

P ro p o s itio n  2.4.1. Let J  be a Hopf algebra finitely generated as a k -module, and let A  be 
an algebra which is a J-Galois extension over a subalgebra B . Then the set I j  is a rank one 
projective k -module, and further, I j® J  — J*.

Proof. Since k  is a field, I j  is automatically a projective k-module and a k-module direct 
summand of J*. The fact that I j  is a rank one k-module is proved in [Mon93, Theo
rem 2.1.3(1)]. □

E xam p le  2.4.1. Let B  C 4  be an A-Galois extension, where B  is a finite codimensional 
sub-Hopf algebra of A  and A  ~  A /A B + . Then 1-  ̂ is free of dimension one.

Proof. As in Definition 1.4.4, J j  =  A*°°A C A*. Now A  is finite-dimensional, so A* is 
also finite dimensional, hence free. Thus C A* is free, and since it is of rank one, by 
Proposition 2.4.1, dim (i^) =  1. □

T h eo re m  2.4.2. Let H  be a finite dimensional Hopf algebra, and let the Hopf algebra A  be 
a H-Galois extension of the sub-Hopf algebra B. Then A  is a finitely generated projective 
right B-module and I f f® A ^  H om B (A ,B ) as (B , A)-bimodules.

Proof. A proof can be found in [KT81, Theorem 1.7]. □

We are now in a position to state and prove the result linking Galois and Frobenius extensions.

T h eo re m  2.4.3. Let B  C A be an J-Galois extension of algebras A  and B  (over a field k j, 
where J  is a finite-dimensional Hopf algebra. Then B  C A  is a Frobenius extension.
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Proof. By Theorem 2.4.2, we know that A is a finitely generated right module. We note 
also from Theorem 2.4.2 that I j® A  = Horn# (A, B) as (_£?, A)-bimodules. Let {i} be a basis 
for I j .  Now we can define a homomorphism a  : A  — > I j® A  by a 4  i®a. This is clearly 
injective, and is also onto, since for all ki®a £ ij® A , where k £ k, there exists ka £ A  
such that a(ka) = ki<g>a. Thus A  =  I j® A  and so A  = Horn#(A, B) as (B, A)-bimodules. 
Thus A is Frobenius over B. □

E x am p le  2.4.2. In fact, when k is a field, I j  is always free since it is a finite dimensional 
k-module. In this case, A is automatically a Frobenius extension over B. Thus our previous 
two examples, ?7(i) C C/(g) and klV C kG, for |G : N\ < oo, are both Frobenius extensions.
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Chapter 3

H om ological A lgebra and M odule  
T heory

This is a collection of results from basic homological algebra and module theory which will 
be needed later in the proof of the proposition.

D efin ition  3.1. Let R  be a ring, and let A  be an iT-module with projective resolution

d' d’ d'
Pn P„_! — - l +Po - A  A  — >■ 0

where the Pi are projective 17-modules. Now let B  be an 17-module, and define the sequence

0 —■> Horna (A ,B )  A  HomR(P0,B )  A  . . .  HornR(Pn,B ) ^  •••

We then define ExtR(A ,B ) — ker(dn+i)/Im (dre), for n > 1, with Ext°R{A ,B) = ker(di). 

T h eo re m  3.1. Let A  be an 17-module for some ring R. Then

H o m ^ A -S ) =  Ext$j(A,B). (3.1)

Further, the groups Ext^(/1, B) are independent of the choice of projective resolution of A.

Proof. The first follows from the fact that Hornr (~ ,B )  is left exact. A detailed proof can
be found in [DF99, Proposition 17.1.3]. Proof of the second part can be found in [DF99,
Theorem 17.1.6]. □
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N ote 3.1. One may also calculate Ext-^A, B) by using the injective resolution as follows. 
We let A be an R-module as before with injective resolution

n  v 7i / f  d 1 o. TTi d 1 m Tj\ Ti+iU “ r IVL r H/Q r ~' /  * * ■ —̂ r '

where E{ are injective R-modules for all i. We then let A  be an R-module and apply the 
functor H om ^A , —) to give

0 — > HomB(A,M ) A H o m s (A £ o ) A  • • • A  HomK(A ,S„) A

We can then define Ext^(A, M ) — ker(dn)/Im(d„r_i). These two definitions give the same 
answer; for a proof of this, see [Rot79, Theorem 7.8].

D efinition  3.2.

(1) The injective dimension of the R-modute M , written id(M ), is defined to be the least n  
such that there exists an injective resolution of M:

0 — > M  — »■ E q — > E i • ■ ■ — y E n — > 0

If no such n exists, then we say that id(M) =  oo.

(2 ) We similarly define the projective dimension of M, pd(A), as the least value of n such 
that there exists a projective resolution of M :

0 — y Pn — y Pn - 1  — y • • ■ — y M  — y 0

Again, if no such resolution exists, pd(M ) =  oo.

(3) The Krull dimension of a Noetherian commutative ring R  is defined to be the supremum 
of the length of all chains of prime ideals of the ring.

We discuss a further property of the injective dimension shortly but first consider the following 
result from [Rot79, Theorem 3.12].

Proposition  3.2. Let P  be a projective module, and suppose that the module map 
7  : M  — y P  is onto. Then M  — ker(7 )® P/, where P 1 = P.
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The next result is taken from [NT60, Corollary 10],

P ro p o s itio n  3.3. Let A  be a Frobenius extension over the subring B  such that A — B($X  
for some left and right H-module X .  Then

inj.dimj5 (P) =  inj.dims (vl).

D efin ition  3.3. Let R  be a ring and M  an R-module.

(1) The left global dimension, l.gl.dim(i?) of R  is defined to be sup{pd(M) j r M } .  One may 
also define it in terms of injective dimension: l.gl.dim(i?) =  sup{id(M) | r M } .  This is 
proved in [Rot79, Theorem 9.10].

(2) The right global dimension, r.gl.dimi? of R  is defined similarly, but in terms of right 
i7-modules, as opposed to left ones. Thus, r.gl.dim(jR) =  sup{pd(M) | M r } .  As above, 
we may also define this using injective dimension.

Under certain circumstances, right and left global dimension are equal. The following theo
rem, from [Rot79, Theorem 9.23], gives one such condition.

T h e o re m  3.4. Let R  be left and right Noetherian. Then l.gl.dim(iZ) =  r.gl.dim(_R). 

D efin ition  3.4. Let R  be a commutative Noetherian ring.

(1) R  is said to be smooth if gl.dim(i?) < oo.

(2) If id (77) < oo, then R  is said to be a Gorenstein ring.

It is clear that a smooth ring is also Gorenstein.

The next theorem is an extract taken from [Rot79, Theorem 9.5], which is more general than 
required for our purposes here. The forward implication can be seen from Note 3.1.

T h e o re m  3.5. Let A  be an jR-module, where R  is a ring. Then inj.dim(A) < m < oo if 
and only if E x t^ (—, A) = 0 for all i> m  +  1.

Next, we have a special case of a result involving injective dimension and Krull dim, proved 
in [Bas63, Lemma 3.3].
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T h eo rem  3.6. Let i  be a commutative Noetherian ring and consider it as a module over 
itself. Ifinj.dim(A) < oo, then inj.dim(A) =  Krulldim(A).

Finally, we note the following results from module theory, proved in [NT60] and [Bea99, 
Proposition 2.6.9] respectively. Recall the notion of Frobenius extensions from Definition 2.2.3; 
that is, A  =  HoingfjgA, r B) as (A, R)-bimodules.

T h eo re m  3.7. Let A  be1 a Frobenius extension over B , and let M  be a left ^-module. Then 
A<S>b M  =  H o m g ^ d ^ M )  as (R, 7L)-bimodules.

Proof. First we note that the map 7  : A ® bM  — > Horn^Homsf.g.A, B), 5 M), via 7 (a<g>ra)<̂  =  
0(o)m, for a G A, m  G M  and <f G Hornb {A b ,B )  is a homomorphism of (B, A)-bimodules. 
By [NT60, Proposition 1], this is in fact an isomorphism of (_B, A)-biinodules. Therefore,

7  : =  HomjB(HomJB(s A ,JB ),s M).

But we have b A  = H orn^Tl#, i?); thus

A® b M  =  Horn# (Horn# (A #, jB#),#M ) =  Hornb {b A, b M ). (3.2)

□
L em m a 3.8. Let R  and S  be rings and let s Ur  be a bimodule. For any left R  and 5-modules 
M  and N  respectively, we have the following isomorphism

7  : Korns(U®r M , N )  =  Hom#(M, Homs(17, N ))

Proof. Consider a homomorphism /  G Horns (17(g) #M, N ). Then for all m  G M , we define 
f m : U — > N  by f m(u) — f(u® m )  for all u G U. We then define y ( /)  : M  — > Horns(17, N ) 
by (7 (f))(m ) — fm ■ We are now required to check that f m is indeed in Horns (17, IV), that 
7 ( /)  is an R-homomorphism and that 7  is a group homomorphism. These calculations are 
routine and are omitted. It is also easy to show that 7  is injective; surjectivity is shown 
by constructing an inverse for 7 . The details involve further computations and are also 
omitted. □
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Chapter 4

T he P roposition

4.1 The Commutative Case

This section deals with the special case which arises when the Hopf algebra is commutative.

L em m a 4.1.1. Let A  be a commutative Hopf algebra and let B  be a sub-Hopf algebra, such 
that both have bijective antipodes. Then A  is faithfully flat over B .

Proof. We note that A  is a flat P-module via Lemma 2.3.7. Then by Lemma 2.3.4, it is also 
a faithfully flat l?-module, □

The following definition is needed for Theorem 4.1.2.

D efin itio n  4.1.1. Let R  be a ring as above. We say that R  is reduced if R  has no nonzero 
nilpotent elements.

D efin ition  4.1.2. Let 4̂ be a finitely generated algebra (not necessarily commutative) over 
an algebraically closed field k. Then A  is an affine k-algebra.
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The following theorem is taken from [Wat79, Theorem 11.4 and 11.6].

T h eo re m  4.1.2.

(1) Any commutative Hopf algebra H  over a field of characteristic zero is reduced.

(2) Suppose H  is commutative and affine over any field. Then it is reduced if and only if 
H  is also smooth.

Proof.

(1) This is proved in [Wat79, Theorem 11.4].

(2) This is proved in [Wat79, Theorem 11.6].

□

4.2 Proof of the Proposition

P ro p o s itio n  4.2.1. Let k  be an algebraically closed field, and let H  be a Noetherian k -Hopf 
algebra with a central (hence normal) affine sub-Hopf algebra K  with Krull dimension rn, 
such that H  is a finite K-module. Then H  as a module over K  has finite injective dimension 
m.

Proof.

(1) Claim: For any ring B  C A  which is a Frobenius extension, the left (right) injective 
dimension of A  is bounded above by the left (right) injective dimension of B .

The above claim was proved in [NT60], the first paper on general Frobenius extensions, 
and is essentially done by showing that E x t^(—, A) and E x t^ f—, B) are equivalent 
functors on left A-modules. By Equation 3.1, in the case i — 0 this is reduced to 
showing that Horn a  A) and Horn# (—,.£?) are equivalent functors ,

We thus consider the cases i = 0 and i > 0 separately. We begin with i — 0, since i > 0 
follows from this case. Let M  be a left A-module. Then

H orn^M , A) — Hom^fM, H om e(eA , b B ) )  since A is a Frobenius extension 

= Horn# (A®,4M, B) by Lemma 3.8 

=  Horn# (M, B) since M is a left A-module.
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Therefore,
Hoiria ( - ,A )  = Horn b ( - ,B ) ,  

since M  was chosen to be any left A-module.

Now let i > 0. Consider a left A-module M , and consider an A-projective resolution of 
M,

••• — y Pn — » ••• — y P0 — y M  — y 0.

For all left A-projective Pi, we claim that Pi is also left 5-projective. Since a  Pi is 
projective, it is a direct summand of a free left A module; say a P  — a P%®a N  for 
some right A-module N . But we may then consider both F  and N  as left 5-modules. 
Clearly, F  is a projective 5-m odule since it is a direct sum of copies of the 5-projective 
module A. So we get tha t b P  — b Pi®b N\ therefore Pi is also a left projective 5 -  
module.

So the projective resolution above is also a 5-projective resolution for M. Then apply 
H o m ^ —,A) and Hom_e(—,5 )  to the resolution. But by the case for i = 0, we have 
that Hom>i(—, A) =  H om s(—, 5 ) . Then by definition of E x t^(—, A), we have

E xtji(—,A) «  Ext*B(—,5 ) ,  V* > 0,

since M  was chosen to be any left A-module. Now suppose that inj.dim(5) =  m > 0. 
By Theorem 3.5, E x t^ (—,5 )  — 0 for all i > m  +  1, so E x t^ (—,A) =  0, for all 
i > m  -t-1 . Thus A must have injective dimension equal to or less than m.

(2) Claim: H  is a Frobenius extension of K . Since H  is defined to be a Noetherian Hopf 
algebra, and K  is a central sub-Hopf algebra, we may apply Theorem 2.3.9. Thus H  is 
faithfully flat as an iC-module. Define H  =  H jH K +. We now consider H  as a right 
5-comodule. By Remark 2.3.2, K  is a normal sub-Hopf algebra. We may now apply 
Lemma 2.3.10, which gives that H  is 5-Galois over K . Now, by Example 2.4.2, the set 
of integrals in 5 ,  I-g, is free since k is a field. Thus, by Theorem 2.4.3, H  is a Frobenius 
extension over K .

(3) Claim: K  is a commutative affine k -Hopf algebra, and is therefore Gorenstein.

There are two possible situations to consider: char(k) =  0 and char(k) = p > 0.

When char(k) =  0, the case is trivial, since then by the first part of Theorem 4.1.2, the 
Hopf algebra is reduced. Applying the second part of Theorem 4.1.2 then gives that 
the Hopf algebra is smooth, hence Gorenstein.

Suppose now that char(k) =  p for some positive p. To prove this case, we first define 
the Frobenius map K  — y K  by x xp for x  € K . We show that this is an algebra 
homomorphism by the argument below.
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Let K  = k{£i, • • ■, xt) for some set of generators {aq, • ■ •, xt}  of K . Let P  — k [f i - • ■, x t] 
be the polynomial algebra, so K  = P / I  for some ideal I  of P . Define a map

(j> : P  — > P, given by Xi (£?).

We extend this map linearly to P  and in the obvious way to all monomials; tha t is, 
, ■' ’ i ^  (£1V  ‘ ' 5 ^ t ) P' To show that this is a k-algebra homomorphism, we 

must show that it is a ring homomorphism and that <f : k  — > k  is the identity. Let 
Xi,Xj £ P . Then

(j)(Xi +  Xj) =  (Xi +  Xj)P ~  (XiY  +  (.Xj)P,

where the last equality holds since char(k) =  p. The multiplicative condition is clear. 
It is also clear that (j){k) =  k for all k £ k. Finally, we prove that C I  for
all ideals I. Let yi £ I . Then =  j/f, which must be in I, since I  is an ideal. 
Therefore, 4> induces an algebra homomorphism on P /7  =  K . Thus the Frobenius map 
defined above is an algebra homomorphism.

We use this map to obtain a reduced sub-Hopf algebra of K  and then use this to show 
that K  has finite injective dimension. We do this by choosing n  £ N such that the image 
C  of K  under the n th power of the Frobenius map is reduced. Hence by the second 
part of Theorem 4.1.2, C  is smooth. We now wish to apply the steps above to (7, but 
to do this, we need to show that G is a sub-Hopf algebra of K .

L em m a 4.2.2. Consider the Frobenius map a : K  — y K , given by a(k) ~  kp. Choose 
n  £ N such that an {K ) — C has no nonzero nilpotent elements. Then C is a sub-Hopf 
algebra of K .

Proof. To show that C  is a sub-Hopf algebra, we need to show that

A(C) C C®C  and 

S{C) C C.

We note that for all c £ C, there exists k £ K  such that kpU = c. Thus A(c) =  A (kpn). 
So we have

A(c) =  A (k)pn

-  ( X > l< ^ 2)pn

=  ^ ^ k p because char(k) =  p

Clearly X > f  <g>kf £ C®C. We know that A{k) £ K ® K , so A (k)pU =  A {kpU) £ K pU. 
Therefore, A (K pn) C K pU, that is, A(C) C G , Next we consider the condition for S.

85



Recall that S  is an anti-algebra morphism, so S(hk ) =  S(k)S(h)  for all h, k E if .  As 
above, we let c =  kpn. So we have

S(kpn) = S(& Fn_1) 

=  S(kpn)S(k)

=  S( k) - - -S{k\
p n

=  S { k f \

Since AT is a sub-Hopf algebra, S{k) E K . Therefore, { S { k ) fn =  S{kpU) E AT". Thus 
S (K pU) C K pn, so S(C) C C  as required. So C is a sub-Hopf algebra of AT. □

We may now apply the results (1) and (2) above to show that K  must be Gorenstein. We 
do this by showing that AT is a Frobenius extension over G. Note first K  is commutative, 
and so faithfully flat over C  by Lemma 4.1.1. Commutativity also implies that K C + = 
C +K ; we then apply Lemma 2.1.5 to give that C  is normal. So by (2) above, AT is a 
Frobenius extension of C. Finally, we need to show that inj.dim/^ (AT) — inj.dim/-^(if). 
We have already shown that C  is smooth, hence Gorenstein, and thus has finite injective 
dimension over itself. From (1) above we see that K  must then have finite injective 
dimension as a module over itself and so is also Gorenstein.

(4) We are now in a position to prove that inj.dimj^(if) = inj.dim^(AT). We first note that 
by Theorem 3.6, inj.dim^ (AT) =  Krull dim (AT). By steps (1) and (2) above, we have

Krull dim(A") =  inj.dim^(AT) > i n j . d i m j > inj.dim/i:(if). (4-1)

H  is a flat AT-module, so inj.dim #(if) > inj.dim^f/^AT), since the flatness of H  implies 
that any injective if-m odule is also an injective AT-module. By Theorem 2.4.2, H  is a 
projective AT-module. Also, since K  C if , the identity map i : H  — )■ K  is onto. We 
may thus apply Proposition 3 .2 , which gives us that H  =  ker(z)©AT. Clearly, ker(i) is 
a left and right AT-module. Therefore, by Proposition 3.3, we must have

inj.dim ^(if) — inj.dim^(AT) =  Krull dim(AT) =  m.

But then combining the equation above and Equation 4.1, we must have that

inj.dim# (if) =  inj.dim# (if) =  Krull dim(A') =  m,

which proves the proposition.

□
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