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Summary
Earlier research has demonstrated that excess winter mortality is greater in the countries of
the United Kingdom than in those on comparable latitudes elsewhere in Europe. The
purpose of this thesis was to provide an up-to-date analysis of excess winter mortality in
Scotland. This involved exploring the relationships between mortality, morbidity (as
reflected in rates of emergency hospital admissions), climate, influenza epidemics, and
socio-demographic variables. The majority of the analysis was concerned with temporal
relationships between these variables, however, latterly spatial relationships were also
considered.
Chapter 1 reviews the literature in support of seasonal patterns in health and assesses the
merits of the various statistical techniques that have been used to demonstrate these patterns.
Much of the previous analyses have used simple descriptive statistical methods with few
acknowledging the Poisson time series nature of the data.
In chapter 2 the seasonal pattern of mortality and morbidity from three main disease groups
was described using a generalised linear model with Poisson errors incorporating a cosine
term. The method was used to analyse the seasonal pattern by sex, age group, social class,
deprivation category and health board.
In chapter 3 the effect of climate on mortality and morbidity is explored. This chapter is
chiefly concerned with the comparison of possible methods of analysis. Firstly the problems
with summary methods are demonstrated before the principles of time series methodology
are introduced. The final comparison involves three methods, ARIMA time series methods,
Poisson regression and Zeger’s method. Zeger’s method is as a time series regression
method for Poisson data. The methods are compared by assessing the effect of temperature
on weekly deaths from respiratory disease. Examination of the residuals and the standard
errors of the model coefficients reveal that Zeger’s method is the most appropriate for this

type of analysis.

XX




Zeger’s method is used in Chapter 4 to assess the relationship between temperature and
mortality and morbidity in more detail, by considering the effects of age, socio-economic
deprivation and city of residence. This chapter also includes a detailed examination of the
effects on mortality of a variety of different temperature patterns.

In chapter 5 the spatial aspect of the data is included in the analysis. Space-time variations in
emergency admissions for respiratory disease are assessed at various levels of aggregation.
Overall there is no clear evidence of space-time patterns in emergency respiratory
admissions over the time period, however spatial relationships are demonstrated. Finally,
methods which account for spatial autocorrelation are used in an analysis of the relationship
between emergency admissions and socio-economic deprivation in Glasgow. This analysis
demonstrates, as with the previous temporal analysis, that if autocorrelation exists it is vital
to account for this in any modelling procedure.

Chapter 6 provides a summary of the main findings of the analysis in terms of both the
epidemiological results and the methodological concerns. The limitations of the study
concerning problems associated with the use of routinely collected data are also recognised.
The thesis has demonstrated that seasonal patterns in mortality and morbidity are still a
significant public health problem in Scotland and that Zeger’s method is the most

appropriate method to use when assessing the direct relationship between climate and ill
health.

xx1




Chapter 1 - Introduction

1.1 Introduction

Ever since death records have been examined in an epidemiological manner, seasonal
fluctuations in death rates have been recognised. Some of the earliest work in the UK
was done by Quetelet' in 1842 and William Farr® in 1847. Recent studies in the UK and
the rest of the world have demonstrated that seasonal variation in both mortality and
morbidity exists in most countries. The extent of these seasonal fluctuations varies
considerably around the globe but no consistent method of measurement has been used.
Three studies®” published between 1987 and 1991 identified that the British Isles
experienced greater seasonal increases in mortality than most other European countries
and that this seasonal variation was associated with outdoor temperature and influenza

epidemics.

A study conducted by the General Register Office for Scotland® in 1987 computed the
ratio of the death rate in the 1st quarter (Q1) of the year and the 3rd quarter (Q3) of the
year between 1979 and 1984 in twelve European countries. This study found that
although there was marked seasonal variation in every country studied, the greatest
seasonal increases were in Scotland, England, Ireland, Wales and Italy. Death rates in
Scotland in the 1st quarter of the year were 30% higher than death rates in the 3rd quarter
of the year. In Germany, Netherlands, Denmark, Finland, Norway and Sweden this
figure was between 15% and 20%. In Scotland the Q1/Q3 mortality ratio was greater for

those over 65 years compared to those aged under 65.

A similar study conducted by the Office of Population Censuses and Surveys®, computed
an ‘excess winter deaths index’ (EWDI). This was defined as the percentage of excess
deaths in the four winter months of highest mortality compared with the average of the
numbers in the preceding and following four month periods. The authors compared the
excess winter death index for several countries. It was found that countries in the British
Isles experienced a greater seasonal increase in deaths than other European countries

including the colder Scandinavian countries.




Curwen’ described a regression model that used 3 variables to model the size of the
EWDI in England and Wales from 1949 to 1985. These variables were the mean national
winter temperature, the number of deaths registered as due to influenza and, to account
for time trends, the year. From this model it was estimated that each degree Celsius by
which the winter was colder than average was associated with around 8000 excess winter
deaths. Each registered winter influenza death was associated with 3.5 excess winter

deaths.

The three studies described above, using monthly aggregates, provided the impetus for
an up-to-date and detailed investigation of excess winter deaths in Scotland. The broad
aim of the study was to examine the seasonal variation of patterns of ill health in
Scotland and to assess the direct effect of climate and influenza epidemics on these
patterns. A further aim was to develop a more sensitive approach using appropriate
statistical methods to fully establish the nature of the relationship between mortality,

climate and influenza epidemics.

1.2 Evidence for Seasonality

The majority of the literature on climate related ill health is concerned with deaths or
hospital admissions from respiratory disease, cardiovascular disease or all cause
mortality. Epidemiological studies in this area have been carried out in many countries,
several of which have a climate very different to that of Scotland. Due to the diversity of
the work carried out in this field the relevant studies have been grouped into six semi-
homogeneous groups based on disease group and country (UK or elsewhere). Within
these groups, the statistical methods used range from simple measures of seasonal

variation to more detailed Poisson regression and time series methodology.

1.2.1 UK Studies
1.2.1 (a) All causes

There have been several general studies of seasonal mortality in the UK. These studies
have tended to use fairly crude but different measures of seasonality based on monthly
data. The simplest measure of seasonal variation in death rates is the Q1/Q3 ratio. This
measure provides an effective method of comparing several European countries using

published data available from the UN Monthly Bulletin of Statistics. The Excess Winter
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Deaths Index* provided another fairly simple method for comparing seasonal variation in
death rates between several countries. Using this method, countries in which the number
of deaths did not peak in the same months as European countries can be included in the
analysis. The seasonal variation in deaths in Scotland was again shown to be
considerably greater than most other European countries but not as great as that
experienced in Australia, New Zealand and Israel. The EWDI was shown to vary by sex,
age group, social class and cause of death. However there was little correlation between
the regional EWDI and the regional average winter temperature in England & Wales.
The regional EWDI was more closely related to the regional influenza rate than regional

temperature.

In another OPCS publication® a different method of measuring seasonal variation in
death rates was introduced. The seasonality ratio was computed as the death rate from
January to March expressed as a ratio of the yearly rate. Using data as far back as 1840
the author showed how seasonal variation in death rates has changed over the centuries.
The main focus of the paper was the apparent fall in seasonal variation since the 1960’s.
The author maintained that the fall in seasonality was not solely the product of fewer
severe winters or less severe influenza epidemics but could be attributed in part to an
increase in central heating systems and the fali in air pollution which has occurred since
the 1960’s.

The seasonality of disease in Scotland using both deaths and hospital admissions for
different causes and age groups was assessed by Douglas’ in 1991 using the method of
‘cosinor analysis’. This method involved computing the amplitude of the seasonal curve
from the coefficients of a cosine and sine term in a regression model and expressing this
as a percentage of the mean yearly number of deaths. He found a mean to peak increase
of 12.4% for all causes of death, 14.7% for ischaemic heart disease, 13.3% for
cerebrovascular disease and 32.5% for respiratory disease. The degree of seasonality

experienced increased with age and was greater for deaths than for hospital admissions.

The five papers discussed provide a general overview of the seasonal pattern of ill health

in the UK. Each author has used a different method which makes a direct comparison of




the figures difficult. However, they all demonstrate a substantial seasonal increase in

deaths.

One criticism of the first three methods is that the authors pre-determine the period of the
year for which the peak in deaths is measured. If the peak does not fall exactly in the
middle of the monthly grouping these methods will provide an underestimate of the true
extent of seasonal variation. The method proposed by Douglas removes this obstacle but
as with the other authors he uses monthly data. The data set is reduced to twelve monthly

points, thus losing information.

Much of the work in the field of seasonality of disease has concentrated on specific
diagnostic groups or causes of death. The disease groups which displayed the greatest
seasonal variation, and on which most analysis has been conducted, are diseases of the
respiratory system, cerebrovascular disease and ischaemic heart disease. A review of the

findings and methods used in the different disease categories is now presented.

1.2.1 (b) Respiratory disease and influenza

Deaths from respiratory disease tend to display the greatest seasonal variation. Most
papers concerned specifically with seasonal patterns in respiratory disease concentrated
on the effect of influenza epidemics and of respiratory disease on all cause mortality.
Specific respiratory conditions such as hypothermia and asthma have also attracted
attention in studies of seasonality. Recently the effect of air pollution on deaths from

respiratory disease has been the subject of much media interest.

Curwen® compared the number of deaths in a winter that contained an influenza epidemic
to the number in the previous winter and estimated that the influenza epidemic in the
winter of 1989-1990 was responsible for 25 000 deaths. Curwen used a fairly crude
method to establish a ‘hidden influenza factor’. He subtracted the number of deaths in
the previous winter from the number in the epidemic winter to obtain the excess winter
deaths. He then subtracted from the number of excess winter deaths those that were
recorded as influenza deaths. The remaining excess winter deaths were deemed
attributable to influenza but not recorded as influenza. To obtain a ‘hidden influenza

factor’ he divided the number of deaths attributable to influenza by those recorded as
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influenza. The hidden influenza factor is described as the number of deaths associated
with the epidemic but ascribed to another cause for each death certified as due to
influenza. The winters that contained influenza epidemics in England and Wales were
the winters of 1969/70, 1972/73, 1975/76 and 1989/90 and for each of the epidemic
winters respectively the hidden influenza factor was computed as 1.8, 4.6, 2.3 and 8.9.
Curwen showed that the hidden influenza factor was more pronounced in the 65-74 age

group rather than the very old or very young.

Fleming®’ considered not just the effect of influenza epidemics but the effect of the
incidence of respiratory disease on deaths from all causes in England and Wales.
Fleming proposed that the pattern occurring in all causes of death was driven by the
underlying pattern of respiratory disease. Using four-weekly periods over the years
1986-1990 he removed the trend and seasonality from both the respiratory incidence
series and from the mortality series. He then computed a correlation for the two residual
series. This gave a strong positive correlation from which the authors concluded that
there was a close association between respiratory disease incidence and total deaths.
However, there may also have been serial autocorrelation present in both series and this

autocorrelation may have contributed to the significant correlation.

Another study that associated influenza and respiratory syncytial virus (RSV) to total
mortality in England & Wales was carried out by Nicholson'. Using four-weekly periods
Nicholson demonstrated a relationship between influenza and RSV morbidity reports and
all cause mortality. He concluded that mortality associated with RSV was considerably

greater than that associated with influenza.

While there have been several studies in other countries concerning seasonal fluctuation
in admissions for asthma there have been relatively few carried out in the UK. However,
Khot"' showed that childhood asthma admissions in southeast England peaked in early
summer and again in September/October. The authors suggested that climatic factors
might contribute to this rise in admissions in autumn. A recent editorial in the BMJ*?
reviewed the recent literature on asthma incidence and air pollution. The authors
concluded that asthma is made substantially worse by current concentrations and

combinations of air pollutants.




Intuitively respiratory disease is most likely to vary seasonally and be related to
temperature fluctuations. However, a considerable amount of work has been done
concerning other causes of death. The two other broad disease categories that display a
strong seasonal pattern are cerebrovascular disease (CVD) and ischaemic heart disease

(THD).

1.2.1 (c) Ischaemic heart disease and cerebrovascular disease

Dunnigan® examined the seasonal variation in hospital admissions and mortality from
ischaemic heart disease in Scotland between 1962-1966 by age and sex. The authors
considered three case type categories; non-fatal admissions, fatal admissions and total
deaths. The seasonal mean to peak increase in non-fatal hospital admissions was 7%, this
increased to 17% for fatal hospital admissions and to 27% for total deaths. Dunnigan
used simple correlation methods to assess the relationship between monthly temperature
and monthly deaths. He took no account of the fact that both data series were seasonal
and a correlation between any two seasonal curves is likely to produce a significant
result. Anderson™ in a letter in reply to Dunnigan’s paper showed similar patterns in
Ontario. He considered ‘sudden’ deaths separately from non-sudden deaths and showed a
scasonal increase of around 15% in sudden deaths and a similar increase in non-sudden
deaths. Both studies demonstrated a dicyclic pattern with peaks in deaths in winter and in

spring.

Several studies into the seasonal pattern of cardiovascular disease in the UK have been
published recently. Douglas® looked at the seasonality of coronary heart disease. Using
monthly data from 1962 to 1971, he demonstrated a winter/summer pattern of seasonal
variation in male and female deaths and female admissions. For male admissions he
found a dominant spring peak up to the age of 55, followed by a bimodal pattern with a

winter and a spring peak at older ages.

In a BMJ editorial Wilmshurst'® reviewed the relationship between temperature and
cardiovascular mortality. He commented that excess winter deaths from cardiovascular
mortality are numerically far more important than any other cause of death and suggested

that these excess deaths might be preventable. He discussed several possible mechanisms
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in which environmental temperature would have an effect on cardiovascular mortality,

such as raised blood pressure, peripheral vasoconstriction and blood clotting.

Several replies to this editorial were published in the following editions of the BMJ.
Cooke' comments on how the seasonal pattern of pulmonary embolism is closely related
to that of coronary disease and how the two diseases have similar causal paths. O.L.
Lloyd" discussed the idea of a climate gradient of coronary mortality and commented on
the ‘Scottish Paradox’. He showed that within Scottish geographical regions the high
cardiovascular and cerebrovascular standardised mortality rates (SMR’s) occur in the
milder west and southwest. In reply to this letter E.L. Lloyd"” commented on the fact that
it is not just absolute temperatures that have effects on health but also changes in
temperature. E.L. Lloyd claimed there was no Scottish paradox and blamed the higher
rates of CVD and THD mortality in the west of Scotland on the more changeable climate

which is experienced in the west.

A paper by Rothwell® suggested that previous studies of stroke deaths and hospital
admissions were selective and potentially biased reflecting the seasonal nature of
complications such as pneumonia. Using monthly data from 675 patients in Oxfordshire
the authors computed a chi-square statistic to test for an equal number of events in each
month. They found no significant difference between the monthly number of events in
different diagnostic classifications for stroke, however they did find that primary
intracerebral haemorrhage occurred more often than expected at low temperatures.
Haberman® also used a chi-square test statistic to test for a seasonal pattern in the
number of deaths from CVD occurring in England & Wales in 1975. He showed a clear

winter peak that occurred in both males and females and at all ages.

Bull** used simple correlation and chi-square tests to determine the degree of association
between climate and deaths from respiratory disease and cardiovascular disease. Using
data from Belfast and London he showed that the incidence of cardiovascular disease
was greater in winter and was related to temperature. He also showed that the
relationship with temperature was stronger in older people. Bull commented that on his

evidence it was unlikely that the increased incidence of respiratory and infective disease




in cold weather was causally related to the high incidence of cardiovascular disease in

cold weather.

West® demonstrated that THD mortality was correlated with temperature, rainfall and
water calcium by computing correlation coefficients between IHD mortality and the
three factors in 114 boroughs in England and Wales. Bainton®® also demonstrated a

relationship between mortality and temperature using data for Greater London between
1970 and 1974.

These three studies are among the studies in the UK which have assessed the direct effect
of temperature on cardiovascular mortality, however they use simple correlations to infer
causal associations. Most studies of climate related mortality and morbidity in the UK
have used aggregate measures of temperature such as annual figures for each year of the
analysis. Those studies that have used more detailed information on climate have used

crude methods of relating the climate variables to the mortality data.

1.2.2 International studies

1.2.2 (a) All causes

There have been several studies on winter excess mortality in the Netherlands in recent
years. In his paper on seasonal variation Mackenbach® assessed the seasonal fluctuation
in deaths using a method similar to that used in this thesis, described in Chapter 2. He
used Poisson regression and periodic functions of time to estimate the peak to trough
ratio of the seasonal curve. Machenbach included higher order cosine terms to model
more complicated patterns of variation. He considered all cause mortality and several
specific causes of death. Machenbach estimated that in the Netherlands the trough to
peak ratio for deaths from IHD was 34% and for deaths from cerebrovascular disease
this figure was 25%. By using daily deaths standardised for age and sex he arrived at a
single value for each diagnostic group and therefore an age-related increase or a sex
difference was unidentifiable. For deaths from all causes Machenbach estimated a trough
to peak percentage increase of 22%. An influenza epidemic occurred in the Netherlands
in 1986, and the authors concluded that there were 12 deaths associated with each death

registered as influenza during that year.




In his 1990 paper Kunst®, using monthly deaths in the Netherlands from 1953-1988,
described the changing pattern of excess winter deaths. The authors showed that excess
winter mortality had decreased in the Netherlands throughout the time period. This
decrease was not due to changes in the cause of death composition of total mortality nor
had the effect of influenza declined over the years. The authors proposed that the decline
in winter excess mortality experienced in the Netherlands was due to the decrease in
winter smog and improved housing conditions. They also cite many social factors that
may have affected this decrease, such as improvements in footwear, clothing, working

conditions and transport.

The seasonal variation in mortality in Germany also fell between 1946 and 1995.
Lerchl®” demonstrated a seasonal increase of around 20-30% from the annual mean to the
peak of the seasonal curve in the early years of the study. This fell to around 10% in the
1990’s. The author proposes that increased use of central heating, better clothing and an
improvement in the health care system have contributed to this decline in seasonal

variation in Germany.

Laake™ provided a direct comparison between the levels of excess winter mortality in
England & Wales and Norway in a similar method to that used by Curwen in 1988.
Excess winter mortality between 1970 and 1991 was shown to be 21% in England &
Wales and only 11% in Norway. This paper used a different method of estimating the
seasonal increase but confirmed the findings of the OPCS* study which showed that
countries in the UK had a greater seasonal increase in mortality than those in the rest of

Europe.

More recently McKee* demonstrated that the seasonal increase in mortality in Moscow
between 1993 and 1995 was smaller than that in western countries. The authors
suggested a fall in temperature of 1°C was associated with an increase in mortality of
around 0.7 per cent. The Eurowinter’® group, in a study that compared the change in
mortality with temperature falls in several European countries, showed that the effect of

falling temperature on mortality was greater in countries that had milder winters.




Saez’! used a time series approach to assess the relationship between daily mortality and
increases in temperature in Barcelona. Despite the fact that the main interest of this paper
is increases in temperature rather than decreases in temperature it bears relevance to the
work described in Chapter 4 and covers all cause mortality, cardiovascular mortality and
respiratory mortality. Saez rejected the hypothesis that the data followed a Poisson
distribution, he logarithmically transformed the data to normalise the distribution and
then used ARIMA techniques to model the relationship between mortality and deaths. He
checked the adequacy of his modelling technique using normality checks on the
residuals. The models showed that, in winter, falls in temperature were negatively related
to changes in mortality and unusual periods of temperature were associated with an
increase in mortality. In summer, increases in temperature were associated with an
increase in mortality and again unusual periods of temperature were associated with an

increase in mortality.

1.2.2 (b) Respiratory disease and influenza

As in the case of the UK, there have been few international studies that have constdered
the seasonal variation in respiratory disease. The majority of studies involving the
analysis of short-term fluctuations in respiratory disease are concerned with air pollution

rather than climatic variables. These papers are discussed in section 4.5.1.

Dales® analysed the autumn increase in asthma admissions among pre-school children in
Toronto. Using time series methods, incorporating measures of air pollution, allergens
and meteorological variables, the authors concluded that respiratory infection was the

major identifiable risk factor for the large autumnal increase in asthma admissions.

In a detailed study on the impact of influenza on mortality in the Netherlands, Sprenger™
suggested that more than 2000 people died from influenza in the Netherlands each year
but only a fraction were recognised as influenza deaths. He concluded that for each death
recorded as influenza there were 2.6 other deaths attributable to influenza and that, of all
deaths which were not registered as influenza, 47% were recorded as heart disease, 23%

as Jung disease and 30% as other causes of death.
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1.2.2 (c) Ischaemic heart disease and cerebrovascular disease

In a study conducted in 1979 Anderson®* compared the seasonal fluctuation of ischaemic
heart disease mortality in England and Wales with that in Ontario. He showed a January
peak in deaths existed in both areas, however the mean to peak increase in deaths in
England and Wales was 31% compared with 9% in Ontario. Anderson discounted the
fact that the difference in age structure of the two populations may account for the
difference in mortality patterns by comparing England & Wales with selected counties in
Ontario that had a similar age structure. He also considered increased use of central
heating and an assumption of a lower underlying death rate in Ontario, however neither
of these factors explained the difference in the seasonal fluctuation in mortality between
the two areas. He concluded that the incidence of myocardial infarction was not
increased by low environmental temperature but followed fluctuation in incidence of

severe respiratory disease.

Douglas® used analysis of variance methods to assess seasonality of deaths from
coronary heart disease and cerebrovascular disease in New Zealand between 1980 and
1984. He showed a clear seasonal pattern in both causes of death with a winter
(June/Tuly/August) peak and a summer trough. Previously Marshall®® had demonstrated a
seasonal increase in mortality from coronary heart disease in New Zealand of 35%
between 1970 and 1983. He showed that this figure varied by age group with a greater
seasonal increase occurring in older age groups. A seasonal increase in deaths from
ischaemic heart disease of 33% was shown to occur in Los Angeles County’’. This
analysis was also based on monthly data but was extended to look at weekly patterns
around the seasonal peak. The authors found that deaths peaked most markedly during
the holiday season of Christmas and New Year. Another study®® used monthly data for
the whole of the United States from 1937 to 1991 to look at seasonal variation in
mortality from coronary disease. Seasonal increases in mortality declined from around
38% in early years of the study to under 20% around 1970, the seasonal pattern then
began to increase again to around 25% in the 1990’s. The authors hypothesised that the
initial decline was due to the increase in the use of central heating over the early years
time period and the apparent reversal of this trend could be due to the uptake of air
conditioning systems which began around 1970. The increased use of air conditioning

systems would reduce the number of summer deaths from heat waves.
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Green® carried out a study on excess winter mortality from ischaemic heart disease and
cerebrovascular disease in Israel. He computed a measure of trough to peak percentage
increase for both causes by sex and age group. The seasonal percentage increase in
deaths from IHD in those aged over 45 was around 50% for males and 60% females, for
deaths from CVD the increase was around 50% for males and 40% for females. For both
causes of death there was an increase in seasonal variation with age group. Green also
performed a cosinor analysis, splitting the data into warmer or colder years. He
demonstrated that the amplitude of the cosine curve was greater in colder years than
warmer years for both causes of death. He commented that the contribution of influenza

and pneumonia to the seasonal pattern of deaths was relatively small.

Sheth® showed a 10% seasonal increase in mortality from AMI in Canada during 1980
to 1982 and 1990 to 1992 and seasonal increase in stroke mortality of 14% for the same
time period. The authors also showed that these scasonal increases were significantly

greater at older ages compared to younger ages.

The papers described above have concentrated on measuring the extent of the seasonal
variation, however there have been several papers which have tried to establish a direct
association between climatic conditions and deaths from ischaemic heart disease and
cerebrovascular disease. Statistical methods such as Poisson regression and time series
regression, have been used in some cases, however there have been many studies in

which the distribution of the data and methodological issues have been ignored.

Pan* used odds ratios to establish a risk of dying from CVD at a particular temperature
in Taiwan. The authors took no account of the seasonal pattern existing in both series
and computed an odds ratio between the mean daily mortality at each degree Celsius and
the mean daily mortality at a baseline temperature. They demonstrated that the odds of
death were generally greater at temperatures lower than the baseline temperature. From
the odds ratios they observed a U shaped relationship with temperature and computed a
percentage increase in deaths due to each degree fall in temperature. While the
methodology used in this study cannot establish a causal link it does support findings

from other studies. Mannino* used linear regression to establish a link between mortality
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rates from myocardial infarction and daily temperature in Wisconsin. The regression
coefficients were significant for all age categories except those under 50 years. However
the analysis did not adjust for the fact that both variables followed a seasonal pattern and
could therefore produce significant results in a linear regression analysis when there was
no causal relationship present. Baker-Blocker® used correlation coefficients to determine
the relationship between minimum air temperature and cardiovascular mortality in
Minneapolis-St Paul. She found a significant relationship between mortality and
departures from normal minimum temperature on the days preceding death. She found
that in two out of the five winters studied, snowfalls were significantly correlated to
cardiovascular mortality several days after the snowfall. The limitations of this study are

again failure to account for the seasonal pattern in both mortality and temperature

Using observed to expected ratios, Rogot and Padgett* demonstrated that both stroke and
coronary heart disease mortality were related to snowfall for a period of up to 6 days
after a snow fall in the USA. Anderson®® assessed the effect of cold snaps and snow falls
on deaths from IHD in Toronto over a 15 year period. He defined a cold snap as a day on
which the temperature was at least 4.4°C lower than it was the day before. He considered
the average number of deaths each day in the pair of days and found that deaths
increased by 16% in males aged younger than 65. Similar analysis on snowfall days
recorded an 88% increase in deaths, on pairs of days which experienced both a cold snap
and a snowfall the increase in deaths was 113%. Heunis*® considered the effect of short
term changes in temperature on deaths from cardiovascular disease in people aged over
60 in Cape Town, South Africa for the period 1978-1985. Using t-tests he demonstrated
that a significant increase in deaths occurred two days after a minimum temperature of
below 4°C. He also considered deaths on very hot days associated with berg winds.
These winds herald the approach of a cold front and are extremely hot. They are
characterised by a sudden rise in temperature of at least 5°C and then drop in temperature

of around 10°C. A significant increase in deaths was found two days after a berg wind.

The studies described have used various measures to determine the existence of an
association between temperature and deaths. However, in most cases certain features of
the data have been overlooked and simple summary statistics have been used to infer a

causal relationship.
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Ohlson*” used Poisson regression to relate wind-chill, snowfall, atmospheric pressure and
day of the week to daily admissions for IHD in a Swedish hospital during three winters.
No relationship between the climatic features and IHD incidence was found, however
this study did not consider lag effects and was concerned with climatic features other
than temperature. The authors concluded that weather conditions were not a major
triggering factor for myocardial infarction in Sweden. Enquselassie®® studied fatal and
non-fatal coronary events in New South Wales. Poisson regression analysis was used to
determine the degree of association between the climatic variables and the coronary
events. The main findings from the study were that fatal coronary events and non-fatal
myocardial infarction were 20-40% more likely in winter (June-August) and spring
(Sept-Nov) than at other times of the year. Fatal events were 40% more likely to occur
on cold days than at moderate temperatures. The authors showed the change in deviance
associated with the addition of each variable to the logistic regression model but did not
give parameter estimates. Temperature and rainfall were both significant variables in the

model.

Kunst®” used data on all deaths in the Netherlands from 1979 to 1987 and daily
meteorological data in his study of the relationship between temperature and mortality.
He also had access to data on incidence of influenza-like diseases and air pollution
measurements of sulphur dioxide from six stations. He used a Poisson regression model
and demonstrated the presence of a lag effect. For all cause mortality he found that a 1°C
drop in temperature was associated with a percentage increase in deaths of about 0.5%
one week later. Falls in temperature had the greatest effect on deaths from respiratory
disease and cardiovascular disease. He showed that the relationship between temperature
and mortality was altered very little by the inclusion of sulphur dioxide levels and season
into the model. Influenza incidence however was a significant term in the model. Kunst
also considered hot temperatures and demonstrated a U shaped relationship between

temperature and mortality.

Lanska®® analysed seasonal patterns in stroke mortality in the USA from 1938 to 1988,
concluding that both respiratory disease and temperature influenced the seasonal patterns
in stroke mortality. The authors decomposed each time series into a trend, a seasonal

effect and a residual effect and used cross correlation techniques to assess the
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relationship between the residual time series. The cross correlations were greatest at a lag
of zero indicating that the stroke and respiratory curves peaked at the same time, when
the temperature curve was at its trough. However, the data were aggregated by month

giving little opportunity to further investigate any time lags in the relationship.

Most of the studies described have used fairly simple statistical techniques such as
correlation, chi-square tests and latterly Poisson regression or time series regression; few

studies have recognised that weekly or daily mortality data is a Poisson time series.

1.2.3 The use of time series in epidemiology

Catalano® discussed the underuse of time series methods by epidemiologists stating that
in the five years prior to the publication of his paper, the American Journal of
Epidemiology had only published one article which used time series methods. However,
Catalano failed to recognise that most epidemiological data do not satisfy the normality

assumptions required in a classical time series analysis.

Giles®, using a co-spectral time series analysis technique, found no relationship between
asthma morbidity and daily meteorological data in Tasmania. Hoppenbrouwers™ used a
similar technique, spectral coherence methods, to demonstrate a relationship between
environmental pollutants and cases of Sudden Infant Death Syndrome (SIDS). He
showed that peak levels of pollutants preceded peak levels of SIDS by seven weeks.
Bowie and Prother054, i a study of IHD mortality and temperature, used time series
methods to filter their data and create residual series which consisted of independent
identically distributed random variables before correlating the two series. This technique
is similar to that described in section 3.3.3.

Alberdi® assessed the relationship between temperature and daily mortality in Madrid
using a similar method. The authors removed any deterministic elements of the series
such as trend and seasonal components and also removed autocorrelation using Box-
Jenkins methodology. Several different weather variables and the mortality data were
modelled using ARIMA models and the cross correlation function between the weather
series and the mortality series was examined. The results showed that mortality was

inversely related to cold temperature with a lag of 11 days and directly related to warm
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temperature with a lag of 1 day. This was described as a J shaped relationship by the
authors.

Albert® proposed two models for describing relapsing-remitting behaviour in a series of
counts. The first was in the form of a Poisson time series with a periodic trend and terms
for previous observations; the second model used a hidden Markov chain to describe
relapsing-remitting fluctuations. He found that both were satisfactory models and their
suitability depended on the vagaries of the data to which they were applied. Kuhn*
compared Poisson regression and time series methods to detect changes over time in
rates of child injury following a prevention program. He found that both methods

provided similar parameter estimates and both provided a good fit to the data.

While these studies have applied time series techniques to epidemiological data, none
have been able to deal with the fact that the data follow a Poisson distribution. A paper
by Campbell® used a method developed by Zeger” to investigate the relationship
between sudden infant death syndrome and environmental temperature. The authors
concluded that the rate of SIDS in England and Wales from 1979 to 1983 increased by
4.3% for every 1°C drop in environmental temperature. In this paper the authors assess
the validity of several methods of statistical analysis for time series data which follow a
Poisson process. Zeger’s method was developed to deal with this type of problem and the
authors conclude that the method proposed by Zeger is the most appropriate one to use in

these circumstances.

Zeger’'s method may provide the tool for time series methods to be applied to
epidemiological problems and in this thesis three methods of analysis will be compared;
classical time series methods, Poisson regression methods and Zeger’s method when
assessing the nature of the relationship between mortality and environmental

temperature.

1.2.4 Physiological Hypotheses

Many studies have demonstrated a statistical relationship between seasonal increases in
mortality and seasonal climatic change. However, to establish a causal relationship the
mechanisms by which outdoor temperature affects the body’s physiology need to be
considered. Several studies have examined seasonal variation in three risk factors for
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vascular disease; high blood pressure, high cholesterol levels and fibrinogen

concentration in the blood.

Brennan,” using blood pressure measurements taken during a trial for mild hypertension,
demonstrated that for each age, sex and treatment group, systolic and diastolic pressures
were higher in winter than in summer months. Brennan also showed that seasonal
variation in blood pressure was greater in older than in younger subjects and was related

to daily air temperature measurements.

A study by Dobson® demonstrated a seasonal fluctuation in serum cholesterol with
higher levels in winter than in summer. MacRury®, in a similar trial, also showed some
evidence of a seasonal variation in serum cholesterol levels, however both trials
consisted of very few patients. A study conducted in Belfast by Stout® demonstrated a
23% increase in winter in plasma fibrinogen concentrations as well as significant
seasonal variation in measurements of plasma viscosity and high density lipoprotein
cholesterol. A similar study conducted in Cambridge by Woodhouse® also showed that
fibrinogen levels were greater in winter than summer. Using results from the Northwick
Park Heart Study® the authors estimated that the observed seasonal variation in plasma
fibrinogen could account for 15% of the increase in ischaemic heart disease risk in
winter. Keatinge® demonstrated significant changes in the levels of many cardiovascular
risk factors by comparing healthy student volunteers in an experiment that involved the
student being cooled over a period of 6 hours. He showed that blood viscosity increased
by 21%, arterial pressure rose on average from 126/69 to 138/87 and both blood

cholesterol and platelet count increased.

Donaldson®’, using data from men aged 50-69 attending BUPA health screening
examinations in London, compared haematological and blood pressure data with outdoor
temperatures. Regression analysis using data filtered for long term seasonal patterns
showed that short-term falls in temperature were associated with significant increases in
9 out of the 13 variables recorded. The analyses also included daily mortality rates for
IHD and CVD in London which also demonstrated a significant increase associated with

a short term fall in temperature. The authors concluded that the relationship between
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temperature changes and changes in arterial risk factors are sufficient to cause the

observed increase in arterial disease mortality in winter.

The association between the increase in respiratory disease and outdoor temperature is
more difficult to explain. Respiratory infections such as the common cold are so
common that their importance is not recognised until such time as there is a major winter
influenza epidemic. The respiratory tract is a major site for infections and identifying
which infective agent is associated with a particular outcome is complex. Respiratory
disease can be caused by viral infections and bacterial infections. Some viruses are
temperature dependent and are only able to multiply freely at lower body temperatures of
around 33°C*, Fleming’® proposed that outdoor temperatures of a few degrees above
freezing, together with relatively high humidity might encourage the spread of infection
by the droplet method. Monto® examined the temporal patterns of respiratory syncytial

virus and showed that the virus was prevalent during much of the cold season.

Influenza epidemics occur at cold temperatures and have been shown to be related to a
significant increase in the number of deaths from all causes®. This phenomenon of hidden
influenza deaths has been examined in several other studies™ and it is generally
recognised that an influenza epidemic can produce a significant increase in the number

of deaths which are not recorded as influenza deaths.

1.3 Summary & Aims

Other studies™ have established that seasonal variation in mottality in Scotland is greater
than in most other European countries. The work described in this thesis looks at both
seasonal variation in ill health and the direct effects of changing temperature on iil health
in Scotland. Furthermore the analysis is also concerned with the role of socio-
demographic variables and environmental pollution. The pattern of disease occurrence
over both time and space is also examined by concentrating on hospital admissions for
respiratory disease and examining how these vary over time throughout different

geographical areas of Scotland.

Previous studies of seasonal variation in deaths in Scotland used fairly crude methods of
measurement such as the Q1/Q3 ratio and the EWDI. The initial aim of this work was to
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develop a more accurate method of measuring the seasonal variation in mortality and
morbidity in Scotland. This analysis would then be examined in more detail to determine
the effect of various socio-demographic variables on seasonal variation. The main effects
to be studied were cause of death or hospital diagnosis, sex, age group, area of residence
and social deprivation score. In Chapter 2 a method similar to that used by Douglas’ is
described, but using weekly data, for 1981 to 1993 and a time trend variable. This
provides a more accurate but also generalisable estimate of seasonal variation in deaths
and emergency hospital admissions in Scotland. Douglas’ expressed the seasonal
increase in deaths in Scotland by the percentage increase from the mean to the peak.
Using the amplitude estimate from the sinusoidal curve it is possible to express the
seasonal increase as the percentage increase from the trough to the peak thus providing a

closer comparison to the previous work by OPCS™.

The second main aim of the work was to describe in detail the relationship between
climatic variables and ill health in Scotland, taking into account possible confounding
variables such as influenza epidemics. Within this broad aim there were many potential
areas of interest. These included determining which climatic features were most closely
related to ill-health, determining the level of aggregation at which to assess the
relationships, and incorporating the information obtained from the seasonality analysis
described in Chapter 2. While these are principally matters of interest in terms of
epidemiological analysis, there were also several statistical issues to be addressed. The
data are a time series of events. The general approach to modelling time series data has
in the past been Box-Jenkins methodology, which assumes normality. These data are
counts and, after divisions by the various socio-demographic variables, the numbers may
be small and therefore assumptions of normality may not be justified. When analysing
data in the form of counts Poisson assumptions are usually valid, however in this case,
because the data are a time series there is autocorrelation present in the data and Poisson
regression methods require the counts to be serially independent. Chapter 3 provides a
detailed discussion of the statistical issues and the results of the more detailed

epidemiological analysis.

In Chapter 4 the relationship between temperature and ill health with regard to age

group, socio-economic status and city of residence is assessed. An analysis of the effects
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of changes in temperature, absolute temperatures and sudden cold snaps is described
before concentrating on the effects of air pollution. Data on daily levels of Nitrogen
Dioxide and Carbon Monoxide were available for Glasgow City and this information

was incorporated into the analysis of the effects of climate on health in Glasgow City.

In Chapter 5 the concept of space-time analysis is introduced. The analysis described in
this chapter acknowledges that while the main analysis is concerned with the temporal
aspects of the data the spatial element is also important. The presence of a spatial pattern
is established before the space-time interaction is examined. Finally Chapter 6 provides a
summary of the main findings of the analysis, in terms of both the epidemiological
results and the comparison of the statistical methods as well as a discussion of the

limitations of the study.
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Chapter 2 Seasonality of Deaths and Emergency Hospital

Admissions

2.1 Introduction & Data

2.1.1 Aims of Chapter

The aim of the work of this chapter is to accurately describe the seasonal pattern of
mortality and morbidity in Scotland during the period 1981 to 1993 and to determine
how this seasonal pattern varies according to various demographic features. The method
developed to describe these patterns was straightforward to use and understand, yet
detailed enough to provide a reliable estimate of seasonal variation for which confidence
intervals could be computed. Mortality data were obtained from the General Register
Office, while emergency hospital admissions were used as a measure of population

morbidity.

2.1.2 SMRI and GRO data

The data used in this chapter were supplied by the Information and Statistics Division
(ISD) of the NHS in Scotland and General Register Office (GRO) in Scotland.
Summaries of hospital care have been collected on a 100% basis in Scotland for many
years, these records are collectively known as the Scottish Morbidity Records (SMR).
The database which records information on in-patient stays and day cases is known as
the SMR1 database. ISD supplied computerised records of all continuous in-patient stays
and day cases in general hospitals for the period 1981 to 1993 in Scotland while the
GRO supplied computerised records of all deaths in Scotland for the same period. These
records included demographic information as well as, in the case of the death records, 3
causes of death and in the case of the SMRI1 records, 6 diagnoses, coded according to the
International Classification of Diseases’® (Ninth Revision) (ICD-9). A copy of the SMR1

form and a sample death record are shown in appendix 1.

The further aim of this project was to describe in detail the relationship between climatic
variables and ill health in Scotland (Chapters 3 & 4). The effect of short term climatic
change on the pattern of ill health is likely to be fairly immediate, and for this reason

only emergency admissions were selected for analysis from the SMR1 data base. It is
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unlikely that a waiting list in-patient episode will be related to measurable climatic
features. All death records were included in the analysis. The final data files for analysis
consisted of over 4.3 million emergency hospital admissions and over 800 000 death
records. The data were analysed separately for different causes of death and diagnostic
groups. Weekly data were used in preference to daily data due to the amount of noise in
the daily data. However, one problem with using weekly data was that there were 52
weeks and 1 day in most years and 52 weeks and 2 days in a leap year. In order to
simplify the analysis, the data were adjusted such that each year contained exactly 52
weeks. This was done by making week number 52 contain 8 days in a normal year or 9
days in a leap year then adjusting the number of deaths in these weeks by either 7/8 or

7/9. Table 2.1 shows the distribution of deaths in the different causal groups.

Table 2.1 Total number of deaths in Scotland 1981-1993

Cause of Death ICD-9  Sex Average deaths Total Percent of all
code per week deaths

Cancer 140-239 M 145 98004 25

F 137 92751 22
Ischaemic 410-414 M 183 123838 31
Heart Disease F 155 104881 25
Cerebrovascular | 430-438 M 60 40342 10
Disease F 100 67861 16
Respiratory 460-519 ™M 68 46032 12
Disease F 71 48061 12
Total 001-999 M 580 392298 100

F 616 416075 100

Mortality from cancer and ischaemic heart disease (IHD) accounted for over half of all
deaths in Scotland between 1981 and 1993, with deaths from cerebrovascular disease
(CVD) and respiratory disease (RD) each accounting for around 10% of all deaths.
Overall there were around 1200 deaths per week in Scotland. The patterns were quite
different for emergency hospital admissions. Table 2.2 shows the distribution of

emergency hospital admissions in different diagnostic groups.
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Table 2.2 Total number of emergency hospital admissions in Scotland 1981-1993

Diagnostic ICD-9  Sex Ave emerg. Total Percent of all
Group code admis. per week emerg. admis.
Cancer 140-239 M 172 116476 5
F 160 108103 5
Ischaemic 410-414 M 252 170235 8
Heart Disease F 174 117528 6
Cerebrovascular | 430-438 M 91 61496 3
Disease F 109 73554 4
Respiratory 460-519 M 354 239418 11
Disease F 289 195279 9
Total 001-999 M 3263 2205774 100
F 3105 2099130 100

The majority of emergency hospital admissions were for accidents while respiratory
admissions accounted for around 10% of all emergency admissions. Around 6-8% of
emergency admissions were for THD with 5% for cancer and around 3% for

cerebrovascular disease.

2.1.3 Dividing the data into subgroups

2.1.3 (a ) Cause of death/Hospital diagnosis

The data were split into the main disease groups from the ICD-9 chapter headings. The
decision of which disease groups to concentrate on was made by considering two points;
the proportion of all deaths which were attributable to that cause and the estimated size
of seasonal variation in deaths from that cause. The expected seasonal variation from a
cause was assessed by looking at a plot of the data and from information gained from the
literature. The disease groups for which the seasonal analysis was most relevant were
ischaemic heart disease, cerebrovascular disease, and respiratory disease. These
categories accounted for over half of all deaths and all had demonstrated a seasonal
pattern in a simple plot of the weekly number of deaths. The other disease group that was
considered was cancer, cancer deaths accounted for a quarter of all deaths. Of these four

groups respiratory disease showed the greatest seasonal variation, followed by IHD and
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CVD and there was virtually no scasonal variation in deaths from cancer. From this
preliminary analysis and results from the literature it was decided to concentrate the

detailed analysis on respiratory disease, IHD and CVD.

2.1.3 (b) Age group

The data were split into 5 age groups. The age groups were determined by considering
age groups in which the population is at varying risks of deaths from certain diseases and
with reference to previous studies which showed that seasonal variation is greatest at

older age groups. The age groups were 0-9, 10-59, 60-69, 70-79 and 80+.

2.1.3 (c) Socio-economic status

Deprivation scores were assigned to each case using the Carstairs scoring system.
Carstairs”' attached a score to each postcode sector in Scotland based on (i) the
proportion of male unemployment in the postcode sector, (ii) the proportion of
overcrowding (iii) the proportion of car ownership and (iv) the proportion of the
population classed as social class I & II. The Carstairs scores were divided into 5 groups
ranging from deprived to affluent, with each category containing approximately 20% of
the population. These were then further grouped into 3 categories. The ‘affluent’
category contained the top 20% of the population, the ‘average’ group contained the
middle 60% of the population and the ‘deprived’ group contained the bottom 20% of the
population.

Information about an individual’s occupational social class was provided on death
records but not on SMR1 forms, therefore emergency hospital admissions could only be
assessed by the area-based deprivation score, whereas the death records could also be
analysed according to social class. Occupational social class for females is unreliable as
it frequently is based on the occupation of the spouse, therefore a social class analysis
was only conducted for males aged 16 and over.

The distribution of deprivation and social class amongst the population when compared
by age at death is not even, as shown in table 2.3. For each cause of death, in the younger
age groups the proportion of deaths is greatest in the deprived areas, whereas in the older
age groups the proportion of deaths is greatest in the affluent areas. This is due to the fact
that the population of deprived areas in general die younger than those who live in

affluent areas. The relationship between social class and age group, while not as strong
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as that for deprivation categories, also indicates that the population of social classes III,
IV & V die younger than the populations in social classes 1 & II. From table 2.3 it
appears that there is a clear trend across deprivation categories, whereas with the social
class data there are similar age distributions in social classes III, IV & V which are
different to those in social classes I & II. There has been much work on the inequalities

in health related to social class and socio-economic deprivation’”!

which is beyond the
scope of this thesis. However, these observations suggest that when assessing seasonal
variation according to deprivation categories and social class, the data should be age
standardised to avoid the problems of confounding. Seasonal patterns have consistantly
shown to be greater at older age groups and not standardising for age would mean that,
because affluent areas have higher proportions of older people they may be shown to
experience greater seasonality. This could be wrongly attributed to socio-economic status

when, in fact, it is purely an age association.

Table 2.3 Distribution of age group, social class and deprivation

Cause of  Age Deprivation Category Social Class

Death ~ Group | Aff(%) Ave(%) Dep(%) |I1&I(%) 1IL%) IV & V(%)

HD <65 23.6 29.1 36.3 26.7 30.8 30.1

65-74 32.3 342 34.6 32.4 34.1 35.0

75+ 44.0 36.7 29.0 40.9 35.0 34.8

CvD <65 11.4 14.3 20.5 11.8 15.3 15.7

65-74 24.4 29.5 32.0 26.1 29.8 30.3

75+ 64.2 56.2 47.4 62.1 54.8 54.0

RD <65 9.9 14.0 19.8 10.4 14.0 14.6

65-74 21.3 26.4 29.9 22.1 27.2 28.0

75+ 68.8 59.7 50.3 67.5 58.9 57.4

All Cause <65 242 28.6 35.6 25.6 28.6 28.5

65-74 27.6 302 31.3 28.8 30.9 314

75+ 48.2 41.2 332 45.6 40.5 40.2

Age standardisation was carried out using data from both the 1981 and 1991 censuses.

The population were grouped into 18 quinenial year age groups and three deprivation
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groups ‘affluent’, *average’ and ‘deprived’ for both 1981 and 1991. The data were then
interpolated and extrapolated to provide the weekly population figures for the time
period Jan 1981 to Dec 1993 in each of the 54 (18*3) age/deprivation categories. The
rate for each age/deprivation category was computed by dividing the weekly number of
deaths by the weekly population estimate and this was standardised to the 1991 Scottish
population figures using direct standardisation techniques.

Population figures by social class were not available in the 1981 census, however they
were available in the 1991 census. In order to interpolate and extrapolate the social class
data the percentage change in the overall population for each of the 18 age groups from
1981 to 1991 was applied to each social class group within the age group. This method
assumed that the change in population patterns within a 5-year age group was spread
evenly throughout the social class groups. This may not be the case, but it was the only
method in which the weekly population by age group and social class from 1981 to 1993
could be estimated. Again, the mortality data was divided by the population data and

direct standardisation techniques were used.

2.1.3 (d) Health Board of residence

The data were also analysed according to Health Board of residence. As with the analysis
by deprivation category and social class, age effects may confound a geographical effect,
so the data were age standardised in a similar method. Population data by five year age
group and Health Board were available from both the 1981 and 1991 census. The three
Island Health Boards; Orkney, Shetland and the Western Isles were grouped together as

‘Islands’ to avoid the problems of very small numbers.

2.1.4 Exploratory plots

The weekly number of deaths in Scotland from 1981 to 1993 showed a clear seasonal
pattern (figures 2.1 & 2.2). On average, there were around 1200 deaths per week in
Scotland. This figure increased to over 1400 deaths per week in most winters and, in
summer, fell to around 1000 deaths per week. The pattern is less clear for emergency
hospital admissions (figures 2.3 & 2.4). The weekly number of admissions for all

diagnostic groups showed a clear upward trend. The number of admissions per week was
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around 2600 for females and 2800 for males in 1981, this had increased to around 4000
admissions per week for both males and females by 1993.

Figure 2.1 Weekly deaths from all causes Scotland 1981-1993
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Figure 2.2 Average weekly deaths from all causes, males and females
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Figure 2.3 Weekly emergency admissions in Scotland 1981-1993
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Figure 2.4 Average weekly emergency admissions in Scotland 1981-1993
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When the data were averaged over a year, several peaks and troughs throughout the year
were evident (figure 2.4). There was indication of a trough in the summer months but

little evidence of any peak in winter.
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2.2 Development of Methods

2.2.1 Trend Analysis

Before estimating the seasonal component in weekly deaths and hospital admissions a
simple linear regression was fitted to the data shown in figures 2.1 and 2.3. There was
found to be a decreasing trend in the number of deaths and an increasing trend in weekly
admissions. In order to study the existence of seasonal patterns the linear trend in the
series was removed by fitting a straight line to the data. The residual series from this fit

contained the seasonal and the random variation present in the data.

2.2.2 Spectral Analysis

Spectral analysis of time series describes the fluctuations in the series in terms of
sinusoidal curves. The spectrum of a series is defined by the autocovariance of the series
and when based on the sample autocovariances is known as the periodogram. The
periodogram is a plot of the amount of variation in the series that could be associated
with a cycle at a particular frequency or period. A sharp peak in the periodogram may
indicate the presence of a cycle at the corresponding frequency. It can be used to identify
cyclical patterns in data which may not have been evident in a plot of the data and which
may not have been predictable before the data were examined. Smoothed estimates of
the spectrum which gain precision as » increases can also be used to identify cycles in
data. These smoothed estimates are known as ‘windowed’ estimators for the spectrum.
Once cyclical behavior has been establised harmonic modelling can be used to model

these observed patterns.

If we imagine that our series consists of several sinusoidal components, then the data

series can be written as

m
yt = k§1 k cos(cokt) + ﬁk sm(cokt)}-a- u, t=1nnt 2.1)

where u, is a white noise sequence and each @, is one of the Fourier frequencies. If we

further specify @, =27k /n, for some positive integer £ <n/2 then the regression sum
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of squares assoclated with a particular frequency @ can be computed and the

periodogram ordinates /(@) defined

1

2 2
H{w)= {§ Y, cos(a)t)} +{ % y tsin(a)t)} /n (2.2)
t=1 t=

The periodogram is a plot of the periodogram ordinates (@) against @. The
periodogram will show a peak in the value of /(@) if a cycle of frequency @ results in a

large regression sum of squares. This plot will demonstrate where cycles may be found

in the data.

For example in our data set of 13 years giving a series of 676 weeks an annual cycle

. . 2
would be represented by a peak in the periodogram at the frequency =~—ﬂ£, or
n

w=——-—= — =10.12083.

Cycles at other frequencies that were not predictable before using spectral analysis
would also be identified by a peak in the periodogram. To make identification of these
cycles easier, the periodogram ordinate can be plotted against the periodicity of the curve

rather than the frequency. In this case a yearly cycle would show as a peak at a
periodicity of 52 weeks rather than a frequency of 0.1208 (27/52) and a 6 month cycle
would show as a peak at 26 weeks rather than a frequency 0f 0.24166 (27 /26 ) or 2w .

2.2.3 Harmonic modelling

The all cause male mortality data y, showed a clear yearly cycle and a negative trend.

These features were evident simply from looking at the data (figure 2.1). The yearly
cycle in the data was the cycle of most interest and spectral analysis, to identify any other
patterns in the data, was not necessary at this stage. The model fitted was of the form

y, =a+bt+ Adcos(at + p) t=0),....675 (2.3)

A plot of this curve is shown in figure 2.5
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Figure 2.5 Sinusoidal curve

yt=a+bt+ Acos(wt+p)

y =a+tbt

In this model a represents the constant, b the trend, A the amplitude of the seasonal

curve and p the phase of'the curve. The phase of the curve influences where in the year

the peak occurs. This model gave a basic pattern for the data, incorporating a simple
sinusoidal curve peaking once every 52 weeks and a linear term. The model accounted
for the average number of deaths, the trend in the number of deaths and the yearly cycle.

Spectral methods were then used to look at the residuals from this fitted model. A scatter
plot of the residuals seemed to show a random scatter with a few outliers (figure 2.6). In
order to use spectral methods with time series data the series must be stationary. A time
series can be described as stationary if there is no trend in the data and if the covariance
between two points depends only on the absolute difference between the points and not
their position in the series. The residual series was found to be second order stationary
(see section 3.3.3 for a more detailed description of stationarity). From a spectral
analysis of the residual series other cyclical patterns which had not been accounted for
by the simple yearly sinusoidal model could be determined. Spectral analysis of the
residual series in the form of a periodogram showed that there were still other cycles

occurring within the residuals (figure 2.7).
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Figure 2.6 Residuals from linear regression on all cause male mortality
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Figure 2.7 Periodogram ofresiduals for all cause male mortality
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The plot of the periodogram using period rather than frequency on the x-axis showed a
peak at a period of 26 weeks, indicating an additional 6 monthly cycle.

This apparent cycle appearing at a frequency of 2w was however not a real cycle, this
peak in the periodogram occurs due to the fact that the data follow a non-sinusoidal
curve. The model that had been fitted contained one cosine term to represent the cyclical
nature of the data. The data however did not follow a purely sinusoidal curve, therefore
at a certain time each year the model does not fit well, thus examination of the residuals
from the fit using spectral methods displays evidence of other cycles in the data. The
weekly number of deaths from all causes does not follow a 6 month cycle but the
presence of this other possible cycle in the periodogram indicates that the data deviates
from a straightforward sinusoidal curve. These other ‘pseudo-cycles’ which often appear
in spectral analysis are known as harmonics.

Harmonics occur in a cycle when the cyclical variation in the original series is non-
sinusoidal. If a series has a clear cycle at frequency '@' then if this is a non-sinusoidal
cycle there will be peaks in a periodogram at frequencies 2a',"3®','4w" etc. If there are
peaks at these frequencies in the periodogram they should not be interpreted as separate
cycles in the series but as indicators that the cycle is not sinusoidal.

The harmonic terms can be represented in a model in the same way as the yearly cycle
was represented. The inclusion of these terms in the model leads to the model being a
better fit of the data. By including a term for all the harmonics found in the data the
residual series will show no cyclical features and no trend.

These full harmonic models were of the form

y=a+bt+ A cos(wt+ p,)+ A, cosQart + p,) + A, cos(3wt + p,) +...... (2.4)

This method of modelling the data in such detail was done for both male and female
deaths from all causes, IIHD, CVD and respiratory disease. It provided a good insight into
the form of the data and the fact that the patterns in the data were not straightforward.
However, the information gained from the individual parameters from this type of model
is not easy to interpret. The main problem with the full model containing several cosine
terms is that no simple summary measure of amplitude could be obtained using the

parameter estimates in the model.
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2.2.4 Simple model

The second method of modelling provided a simple summary measure of the amplitude
of the seasonal curve expressed as the average percentage increase in deaths from
summer to winter. The method developed by Halberg, Tong and Johnson” involves
fitting a sinusoidal curve to time series data using least squares regression. Lentz’*

r'> and Faure’®

provides a straightforward description of the technique, while Teiche
discuss the technique in more detail. Bloomfield’” provides a good general introduction
to the sinusoidal analysis of time series.

From (2.1) assuming the presence of only 1 cyclical term, our series can be written as
y, =acos(ar) + Bsin(wt) where  =0.1203 (27/52) (2.5)

using trigonometric expansions this equation can be written as

Y, = Acos(wt + p) (2.6)

where A is the amplitude of the fitted curve and pis the phase of the curve. In this model

A=4a’*+ [ and p = arctan(-fB/ ) .

In the previous section concerned with harmonic modelling the data was modelled using
the non-linear model function in SPSS. However, in this case, when the aim is not to get
the most accurate fit to the data but to develop a method that can provide a summary
measure of seasonal variation with confidence limits, the linear model (2.5) was more

appropriate. Equation (2.5), the trigonometric expansion of (2.6), is equivalent to (2.3)

but without the trend.

The clear trend in the data was modelled using

y,=at bt 2.7
this gave an expected number of deaths per week assuming no seasonal variation was
present. No other structured form was considered for the data, anything greater than
linear terms would introduce potential extrapolation problems. Next a generalised linear

model with a poisson error and a log link of the form

In(y t) =g cos{(wt) + f cos(wt) (2.8)
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was fitted using the expected values a + bt as an offset.

The inclusion of the offset term meant that when 1 =&’ + 8> was computed 1

represented the increase from the mean to the peak of the fitted curve expressed as a ratio
and p = arctan(—-fg/ @) .

The variance of A was given directly in the modelling procedure using equation (2.3),
but when using the expansion necessary for the log-linear analysis (2.8), the variance of

A had to be computed separately. This was done using the result that for a function

Z = H(x,y), where xis N(u,,03)and y is N(u,,073) then

Var(Z) = [%} o’ +[§] O'f, + [%}[%}Cav(x, ¥)

this gives

Rw

2 2
(24 ﬂ 2 aﬁ 2
Var(A) =| ==——=—| o, +| —:——=| o -{————}o-a
L/(auﬁz)] L/(azwz)} Platepr
An S-Plus function was written to estimate A which was then expressed as the

percentage increase from the trough to the peak of the fitted seasonal curve using

. 22 _ o .
= 14l Ik 95% confidence intervals for this estimate were also provided.

This method provided a means of comparing the seasonal increase in mortality between
different populations or different subgroups of the same population. The method was
used to analyse the seasonal pattern of mortality and morbidity by sex, age group, social
class, deprivation category and health board.

A copy of the S-PLUS function is provided in appendix IL

2.3 Mortality Results

As mentioned in section 2.2, two methods of modelling the data were explored. Firstly
the data were modelled using a fairly complex harmonic model, which was later found to
be of little use in the descriptive analysis as it did not provide a simple measure of

amplitude for which a confidence interval could be computed. The second method used a
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simple model, which could be used to provide an estimate of the amplitude expressed as
the percentage increase in mortality from the summer trough to the winter peak. This
method also accounted for the fact that the data were Poisson, which while not of great
concern when considering deaths from all causes, would be important when dealing with
smaller numbers. When describing the seasonal patterns for each cause of death the data
have firstly been examined using simple summaries such as the average pattern over the
13 years and have then been described according to the results from the sinusoidal
model. The results should be looked at bearing in mind that the simple model averages
the data and, as shown by the more detailed modelling in section 2.2.3, the data in fact

follow a non-sinusoidal pattern.

2.3.1 All Causes

As described in section 2.1.4 there was a clear seasonal pattern apparent in the plots of
mortality from all causes over the 13 year period (figure 2.1) and in the average number
of deaths per week averaged over one year (figure 2.2). This section of the thesis reports

on the results from modelling these data using a simple sinusoidal curve.

2.3.1 (a) Results from sinusoidal model for all cause mortality

When modelled using a simple sinusoidal curve with just one cosine term the percentage
increase in deaths from all causes from trough to peak for males was 28.3% with a 95%
confidence interval (27.5,29.0) and 33.8% (33.1,34.6) for females. The confidence
intervals for male and female total deaths from all causes did not overlap, implying that
the difference in amplitudes was significant, the seasonal increase in female deaths from
all causes was significantly greater than the seasonal increase for males. The seasonal
increase in mortality from all causes was greatest at the very young age groups and the
older age groups. These age groups are the more vulnerable members of society, those
who may struggle to keep warm in the winter or who are more vulnerable to infection.
The seasonal increase when the data are split by age and sex is given in table 2.4 and

figure 2.8
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Table 2.4 Seasonal percentage increase in deaths by sex & age group, all causes

Age group

0-9
10-59
60-69
70-79
80+
All Ages

Percent Increase

16.8
11.7
22.1
325
43.7
283

Cl
(11.2,22.4)
(10.2,13.3)
(20.7,23.6)
(31.3,33.8)
(42.2,45.3)
(27.5,29.0)

Percent Increase

22.6
17.9
25.8
31.8
42.7
33.8

Females

Cl
(15.8,29.5)
(15.8,20.0)
(24.0,27.5)
(30.5,33.1)
(41.6,43.8)
(33.1,34.6)

Figure 2.8 Seasonal percentage increase in deaths by sex & age group, all causes
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The assessment of the seasonal increase in mortality from all causes for different
deprivation categories and different social classes was done using age standardised data
to take account of the fact that the age structure of the population varied in different

deprivation categories and social classes. There appeared to be no difference in the
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degree of seasonal variation experienced in each of the deprivation categories. However,
when the data were analysed according to occupational social class the seasonal increase
in male mortality in social classes I & II was considerably smaller than that experienced
in social classes III, IV & V. People in the lower social classes experienced a greater
seasonal increase in mortality than those in the higher social classes. This may be related
to a person’s ability, financial or otherwise, to protect themselves from the effects of cold

winter conditions. The results of this analysis are shown in table 2.5.

Table 2.5 Seasonal percentage increase in mortality by deprivation category and social

class, all causes (age standardised)

Males Females
Deprivation Category % CI % CI
Affluent 30.1 (26.4,33.8) 35.1 (31.4,38.8)
Average 304 (27.0,33.8) 34.0 (30.5,37.5)
Deprived 31.7 (28.5,34.9) 36.6 (33.1,40.0)
All categories 30.6 (27.2,34.1) 34.7 (31.2,38.2)
Social class
1&1 23.2 (18.8,27.7) - -
I 30.2 (27.2,33.3) - -
V&V 30.9 (27.7,34.1) - -
All categories 29.3 (25.9,32.6) - -

In order to assess whether seasonal increases in mortality varied according to
geographical area of residence the data were split into separate Health Board areas. In
general there was little difference in the degree of seasonal variation in mortality
between the health boards however the seasonal increase in male mortality in the Islands
was significantly lower than in all other health boards. The seasonal increase in mortality
was greater in females than in males in each health board. The results of this analysis can

be seen in table 2.6.
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Table 2.6 Seasonal percentage increase in mortality by Health Board of residence, all

causes, (age standardised)

Health Board Percent Males Percent Females
Increase 95%(CI Increase 95%C1
Argyll & Clyde 311 (27.7,34.5) 33.5 (30.0,36.9)
Ayrshire & Arran 25.7 (22.4,29.1) 29.0 (25.6,32.4)
Borders 38.2 (34.3,42.0) 36.6 (32.9,40.3)
Dumfries & Galloway 27.4 (23.8,30.9) 324 (28.8,35.9)
Fife 27.1 (23.7,30.6) 33.1 (29.5,36.6)
Forth Valley | 29.2 (25.8,32.6) 36.0 (32.4,39.5)
Grampian 30.2 (26.6,33.8) 32.0 (28.3,35.7)
Greater Glasgow 30.2 (26.9,33.4) 36.8 (33.4,40.3)
Highlands 252 (21.8,28.7) 332 (29.6,36.9)
Lanarkshire 28.8 (25.4,32.1) 30.6 (27.2,34.0)
Lothian 29.7 (26.2,33.2) 38.0 (34.3,41.7)
Tayside 29.7 (26.2,33.3) 39.6 (35.9,43.2)
Islands 17.2 (13.9,20.6) 29.8 (26.1,33.4)

2.3.1 (b) Summary of seasonal analysis for all cause mortality

The seasonal increase in mortality in Scotland from 1981 to 1993 was 28% for males and
34% for females, these figures were greater in the very young and the older age groups.
There was little variation in seasonal mortality according to area based deprivation
measures, however when the data were grouped according to occupational social class,
social classes III, IV and V experienced a greater seasonal increase in mortality than
social classes I & II. Seasonal increases in mortality were similar in each health board
apart from the Islands which experienced lower male seasonal variation than all the other

health boards.
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2.3.2 Respiratory disease

2.3.2 (a) Exploratory analysis for respiratory disease

There were over 94 000 deaths from respiratory disease (ICD 460-519) during the time
period 1981-1993 and deaths from this cause showed a greater degree of seasonal
variation than any other cause of death. Figure 2.9 shows that the seasonal effect was not
the same each year, there were larger than normal peaks in years 82,83,84,86,90 and 92.
For males the average number of deaths over the full time period was 68 per week, this
decreased to 35 at the minimum and increased to 285 at the peak. For females the
average was 71 deaths per week, the minimum number of deaths in any week was 31 and

this increased to 404 at the peak.

Figure 2.9 Weekly deaths from respiratory disease, Scotland 1981-1993
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When the data were averaged over the 13 years (figure 2.10) the average value of the
trough was 47 deaths per week for males and 46 deaths per week for females. The
average value for the peak was 102 deaths per week for males and 115 deaths per week

for females. It can be seen from these figures that there is a steep peak which is not
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mirrored in the depth of the trough and that this peak was more than double its average
size in the largest peak during Dec 1989 and Jan 1990. From the average figures we can
see that there is approximately a 100% increase in the number of weekly deaths from

trough to peak in males and that this figure is greater in females.

Figure 2.10 Average weekly deaths from respiratory disease, males and females
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2.3.2 (b) Results from sinusoidal model for respiratory disease

When modelled using a simple sinusoidal curve with just one cosine term, the percentage
increase in deaths from respiratory disease from trough to peak was 88.7% (86.1,91.3)
for males and 114.2% (111.5,117.0) for females. The model gives a 95% confidence
interval for each of the parameter estimates. The confidence intervals for male and
female total deaths from respiratory disease did not overlap, implying that the difference
in amplitudes was significant, the seasonal increase in female deaths from respiratory
disease is significantly greater than the seasonal increase for males. The results for

different age groups are shown in table 2.7 and figure 2.11
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Table 2.7 Seasonal percentage increase in deaths by sex & age group, respiratory

disease.
Age group Males Females
Percent Increase Cl Percent Increase Cl
0-9 240.6 (189.5,291.9) 193.1 (137.2,249.1)
10-59 72.7 (63.8,81.5) 80.6 (70.0,91.2)
60-69 89.7 (83.4,96.0) 104.0 (96.3,111.7)
70-79 84.5 (80.3,88.7) 107.1 (101.8,112.5)
80+ 95.6 (91.3,99.9) 123.6 (119.9,127.3)
All Ages 88.7 (86.1,91.3) 114.2 (111.5,117.0)

Figure 2.11 Seasonal percentage increase in deaths by sex & age group, respiratory

disease
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The seasonal increase in mortality from respiratory disease increased with age group
after ages 0-9. Seasonal increases were greater in females at each of these age groups

except for age group 0-9. The greatest seasonal increase, 240% for males and 193% for
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females, occurred in the very young age group. This again is likely to be related to the
fact that the elderly and the very young are those who require more protection from the
effects of cold weather than other members of the population. The figures for the 0-9 age
group are based on small numbers.

Again, age standardised data was used to assess the seasonal increase in mortality from
respiratory disease for different deprivation categories and different social classes. The
results of this analysis are shown in table 2.8. The analysis by deprivation category
appeared to indicate a pattern of greater seasonal variation in the more affluent areas.
However, the estimates have large confidence intervals and the suggestion is that there is
no difference in the size of the seasonal variation in respiratory mortality according to
socio-economic deprivation for both males and females. When the data were analysed by
social class there was again no evidence of a difference in the size of the seasonal

increase 1n mortality experienced by the different social classes.

Table 2.8 Seasonal percentage increase in mortality by deprivation category and social

class, respiratory disease, (age standardised)

Males Females
Deprivation Category % CI % CI
Affluent 96.1 (82.1,110.1) 129.6 (115.3,144.0)
Average 93.2 (80.5,105.7) 117.0 (103.8,130.3)
Deprived 87.1 (76.5,97.7) 114.0 (102.3,125.7)
All categories 92.5 (80.2,1.05) 119.1 (105.4,132.8)
Social class
[&IT 92.3 (72.7,112.0) - -
1 95.3 (84.3,106.3) - -
V&V 88.5 (77.3,99.7) - -
All classes 92.8 (80.3,105.2) - -

The results from the analysis by health board of residence are supplied in table 2.9. The
seasonal increase in mortality for respiratory disease was lower in the Borders than in the
other health boards for both males and females. In the Islands the seasonal increase was

lower for males only. The greatest seasonal increase occurred in Dumfries and Galloway.
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No clear conclusions can be drawn from these results as Borders HB and Dumfries and
Galloway HB border each other, are both rural health boards and yet one experiences
lower than average seasonal increases in respiratory mortality and one experiences

greater than average seasonal increases in mortality.

Table 2.9 Seasonal percentage increase in mortality by health board of residence,

respiratory disease, (age standardised)

Health Board Percent Males Percent Females
Increase 95%CI Increase 95%Cl1
Argyll & Clyde 84.9 (72.8,96.9) 113.0 (99.0,127.0)
Ayrshire & Arran 78.7 (66.6,90.7) 93.3 (80.2,106.5)
Borders 45.2 (38.1,52.2) 343 (26.8,41.8)
Dumfries & Galloway 127.5 (112.1,143.0) 138.6 (123.0,154.2)
Fife 68.6 (56.8,80.4) 101.1 (87.4,114.8)
Forth Valley 110.3 (97.7,122.9) 106.0 (93.1,119.0)
Grampian 103.8 (89.4,118.2) 116.9 (102.1,131.6)
Greater Glasgow 87.5 (76.7,98.3) 119.0 (106.6,131.2)
Highlands 106.0 (91.2,121.0) 100.4 (85.7,115.1)
Lanarkshire 73.4 (62.5,84.4) 102.5 (90.3,114.8)
Lothian 95.3 (82.3,108.3) 132.5 (117.7,147.4)
Tayside 92.3 (79.3,105.3) 125.1 (111.0,139.2)
Islands 434 (31.0,55.8) 117.5 (102.5,132.6)

2.3.2 (c) Summary of seasonal analysis for respiratory disease

Mortality from respiratory disease displayed the greatest amount of scasonal variation,
with male mortality increasing by 89% from summer to winter and female mortality
increasing by 114% from summer to winter. The size of the seasonal increase was
greater at older ages and was very large in the 0-9 age group. There was no variation in
the seasonal mortality from respiratory disease when the data were analysed according to
deprivation categories and occupational social class. Borders Health Board and the
Island Health Boards appeared to experience a lower seasonal increase in mortality from

respiratory disease than the other health board areas.
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2.3.3 Ischaemic Heart disease

2.3.3 (a) Exploratory analysis for ischaemic heart disease

Ischaemic heart disease accounted for 31% of all deaths in males over the time period
and 25% of all deaths for females, the largest single cause of death. There was a total of
228 719 deaths from IHD from Jan Ist 1981 to Dec 31st 1993. Figure 2.12 shows a
similar pattern to the plot for deaths from respiratory disease. There is a clear seasonal
pattern peaking in the winter weeks, however the irregular large peaks every 4 years
were not as prominent for deaths from IHD as they were for deaths from respiratory

disease.

Figure 2.12 Weekly deaths from IHD, Scotland 1981-1993
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The average number of male deaths from IHD was 186 per week, the minimum number
of deaths in any week was 123 and the maximum was 321. For females the average
weekly number of deaths was 156, the minimum was 92 deaths in a week and the
maximum was 265 deaths per week. Again it can be seen from the raw data that the

difference from peak to average is considerably larger than the difference from average
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to trough. When the data were averaged over all years (figure 2.13) the peak for males
was 238 and for females was 200 and the trough was 155 for males and 124 for females.
From this averaged data the estimated values of the percentage increase from trough to

peak was 54% for males and 61% for females.

Figure 2.13 Average weekly deaths from IHD, males and females
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2.2.3 (b) Results from sinusoidal model for ischaemic heart disease

When modelled using the simple sinusoidal curve the percentage increase from trough to
peak was 34.1% (32.8,35.4) for males and 36.1% (34.7,37.6) for females. The seasonal
variation in mortality from [HD was greater in females than for males. Again one has to
bear in mind that the estimate from the averaged data is effected by outliers and that the
estimate from the fitted curve smoothes over the extreme values in each year. As with
respiratory disease this method results in an underestimation of the true value of the size
of the curve due to the fact that it averages out the data and imposes symmetry on the
estimate. This method of modelling, however, provides a good method of comparing

subgroups of the population. Table 2.10 shows the seasonal increase in deaths from IHD
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when the data were split by age group and sex. There were very few deaths from IHD in

the youngest age group 0-9 so this group was excluded from the seasonal analysis.

Table 2.10 Seasonal percentage increase in deaths by sex & age group, IHD.

Age group Males Females
Percent Increase Cl Percent Increase Cl
0-9 _ -
10-59 20.0 (17.0,22.9) 25.7 (20.2,31.3)
60-69 26.9 (24.5,29.3) 32.7 (29.4,36.2)
70-79 41.7 (39.5,44.0) 35.9 (33.5,38.3)
80+ 46.0 (42.9,49.1) 39.3 (37.1,41.5)
All Ages 34.1 (32.8,35.4) 36.1 (34.7,37.6)

A clear pattern of increasing seasonality with increasing age was seen for both males and
females in deaths from IHD. Again those in the oldest age group suffer the greatest

seasonal increase in mortality from IHD. These results are displayed in figure 2.14.

Figure 2.14 Seasonal percentage increase in mortality by sex & age group, IHD
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The results of the age standardised analysis of seasonal variation by deprivation category

and social class are shown in table 2.11.

Table 2.11 Seasonal percentage increase in mortality by deprivation category and social

class, THD, (age standardised)

Males Females
Deprivation Category % CI % CI
Affluent 36.7 (29.9,43.5) 334 (26.2,40.5)
Average 35.9 (29.7,42.1) 38.8 (32.0,45.6)
Deprived 37.2 (31.2,43.3) 429 (36.2,49.6)
All categories 36.3 (30.0,42.6) 38.5 (31.3,45.6)
Social class
[& 1D 25.6 (17.0,34.2) - -
i 36.0 (30.0,42.1) - -
V&V 34.5 (28.1,40.8) - -
All classes 33.7 (27.1,40.4)

There was no difference between deprivation categories for male deaths from IHD.
However, for female mortality it appeared that those people living in affluent areas may
experience a lower seasonal increase in mortality from IHD than those living in deprived
arcas. There appeared to be considerably greater seasonal variation in mortality from
IHD in social classes III, IV & V as compared to social classes I & II. While there are no
significant differences observed in this analysis, the patterns suggest that there may be a

social class/deprivation effect on seasonal increases in mortality from IHD.

The seasonal increase in mortality from IHD by health board is shown in table 2.12. In
general there are no clear patterns between the health boards however for both males and
females the Island health boards display significantly less seasonal variation than several

of the other health board areas.
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Table 2.12 Seasonal percentage increase in mortality by health board of residence, THD,

(age standardised)
Health Board Percent Males Percent Females
Increase 95%CI Increase 95%CI
Argyll & Clyde 35.1 (29.0,41.1) 36.3 (29.5,43.2)
Ayrshire & Arran 35.0 (28.9,41.1) 33.7 (26.8,40.5)
Borders 45.2 (38.1,52.2) 343 (26.8,41.9)
Dumfries & Galloway 27.7 (21.7,33.8) 38.8 (31.8,45.9)
Fife 34.1 (27.9,40.3) 43.0 (35.7,50.2)
Forth Valley 24.4 (18.4,30.4) 37.8 (30.7,44.9)
Grampian 37.1 (30.4,43.9) 339 (26.5,41.4)
Greater Glasgow 38.3 (32.1,44.5) 35.4 (28.4,42.4)
Highlands 34.4 (28.0,40.8) 34.9 (27.4,42.4)
Lanarkshire 31.6 (25.8,37.5) 333 (26.7,39.9)
Lothian 36.8 (30.2,43.4) 40.5 (32.9,48.1)
Tayside 352 (28.7,41.6) 45.8 (38.4,53.3)
Islands 23.5 (17.6,29.3) 26.6 (19.4,33.7)

2.3.3 (c¢) Summary of seasonal analysis for ischaemic heart disease

The ratio from peak to trough in weekly deaths from IHD was around 34% for males and

39% for females and this value increased with increasing age. There was little difference

between deprivation categories for males, however for females those people living in

more affluent areas may have experienced less seasonal variation than those who lived in

deprived areas. Males in social classes III, IV and V experienced greater seasonal

variation in mortality from IHD than those in social classes I & II. There was little

variation by health board although people who lived in the Island Health Boards

experienced lower seasonal increases from IHD than the other health board areas.
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2.3.4 Cerebrovascular disease

2.3.4 (a) Exploratory analysis for cerebrovascular disease

There was a total of over 100 000 deaths from CVD from 1st Jan 1981 to 31st Dec 1993,
these deaths accounted for 10% of all male deaths over the time period and 16% of all
female deaths over the time period. From a plot of the raw data (figure 2.15) a clear
seasonal pattern can be seen, and there is also evidence of increased peaks in years 82,
86 and 92 (as seen in the deaths from respiratory disease). The average number of deaths
per week for males was 60, the minimum number of deaths in a week was 33, rising to
116 as the maximum number of deaths in any week. For females the average number of
weekly deaths was 100, minimum number of deaths in any week was 64 and the
maximum was 189. Again, these figures show that the increase to the peak is greater than
the decrease to the trough and that the data do not follow a symmetric curve. When the
data is averaged over all years (figure 2.16) the trough was 46 deaths per week for males
and 83 deaths per week for females with a peak of 76 male deaths per week and 128
female deaths per week from CVD.

Figure 2.15 Weekly deaths from CVD, Scotland 1981-1993
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Figure 2.16 Average weekly deaths from CVD, males and females
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2.3.4 (b) Results from sinusoidal model for cerebrovascular disease

Analysis using the simple sinusoidal curve gives an estimate of the ratio of average to

trough or peak as 36% for both males (33.4,38.0) and females (34.3,37.9). As with THD

there are very few deaths from CVD per week in the 0-9 age groups and for this reason

the analysis was not performed for this age group. The results from the analysis by age

group are shown in table 2.13 and figure 2.17.

Table 2.13 Seasonal percentage increase in deaths by sex & age group, CVD.

Age group Males Females
Percent Increase CI Percent Increase CI
0-9 - - - -
10-59 284 (20.6,36.1) 26.5 (18.7,34.4)
60-69 23.2 (18.1,28.3) 33.4 (27.8,39.0)
70-79 36.6 (33.0,40.3) 37.5 (34.3,40.8)
80+ 44.0 (40.0,48.1) 36.6 (34.3,39.0)
All Ages 35.7 (33.4,38.0) 36.1 (34.3,37.9)
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Figure 2.17 Seasonal percentage increase in deaths by sex & age group, CVD
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Again, as with respiratory disease and IHD, the seasonal increase in mortality from CVD
increased with increasing age. The results of the age standardised analysis of seasonal

variation by deprivation category and social class are shown in table 2.14.

Table 2.14 Seasonal percentage increase in mortality by deprivation category and social

class, CVD, (age standardised)

Males Females
Deprivation Categoryl % Cl % Cl
Affluent 35.2 (23.8,46.6) 38.7 (30.0,47.4)
Average 39.5 (28.7,50.4) 38.9 (30.6,47.3)
Deprived 35.6 (23.9,45.3) 38.1 (29.6,46.6)
All categories 38.1 (27.1,50.0) 38.5 (29.7,47.3)
Social class
[&1T 36.1 (21.5,50.7) - -
I 34.0 (24.6,43.5) - -
V&V 40.7 (30.3,51.0) - -
All classes 36.2 (25.5,46.9)
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It appears from the social class analysis that the seasonal increase in mortality from CVD

is slightly lower in social class III compared to social classes I & Il and IV & V.

However, the confidence intervals in this analysis are too large to assume that any real

differences between the social classes exists. There was no effect of deprivation on the

size of the percentage searonal increase in mortality from CVD.

There was considerable variability in the seasonal increase in mortality from CVD within

health boards. For males the seasonal variation in the Highlands and Islands was very

low while in the Borders the seasonal increase was very large. The variation between

health boards was not as great for females as males and no real patterns could be

established. The results of this analysis are shown in table 2.15.

Table 2.15 Seasonal percentage increase in mortality by health board of residence, CVD,

(age standardised)

Health Board Percent Males Percent Females

Increase 95%CI Increase 95%CI
Argyll & Clyde 37.5 (27.1,48.0) 40.9 (32.5,49.3)
Ayrshire & Arran 32.9 (22.6,43.2) 27.5 (19.5,35.5)
Borders 70.6 (57.5,83.7) 37.3 (28.1,46.5)
Dumfries & Galloway 42.6 (31.5,53.8) 29.0 (20.7,37.2)
Fife 33.0 (22.7,43.4) 47.8 (39.1,56.5)
Forth Valley 39.7 (28.7,50.6) 38.5 (29.9,47.1)
Grampian 33.9 (22.5,45.3) 31.4 (22.2,40.5)
Greater Glasgow 33.0 (22.2,43.8) 39.7 (30.7,48.7)
Highlands 15.2 (5.4,25.0) 33.8 (25.3,42.4)
Lanarkshire 32.6 (21.9,43.4) 20.8 (12.6,29.1)
Lothian 43.3 (32.0,54.6) 40.1 (31.1,49.1)
Tayside 49.1 (37.1,61.2) 45.9 (36.3,55.6)
Islands 28.1 (17.5,38.6) 52.1 (42.7,61.4)

3.3.4 (¢) Summary of seasonal analysis for cerebrovascular discase

The size of the seasonal increase in mortality from CVD from trough to peak of the

seasonal curve is around 36% for both males and females. This figure varied by age
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group and increased with increasing age, there was no variation by social class or

deprivation category and considerable variation by health board area.

2.3.5 Cancer

Other studies325 have shown that there is very little seasonal variation in the pattern of
deaths from cancer. This was confirmed in this analysis. Cancer deaths accounted for one
in four deaths and so, although they did not appear to show much variation, they are an
important cause of death and for that reason they were included in the descriptive part of
the analysis. There was an average of 145 cancer deaths in males per week over the time
period and an average of 137 deaths from cancer per week for females (figure 2.18).
There was a significant increasing trend in the number of deaths from cancer in both
males and females. When the data were averaged over one year a slight seasonal pattern
was visible but the data were very noisy (figure 2.19). No clear pattern could confidently
be seen in the averaged data. When the data were modelled using a sinusoidal curve the
percentage increase from the trough to the peak of the fitted seasonal curve was 4%
(3.0,5.5) for males and 5% (3.2,5.9) for females. While this seasonal variation is

significantly greater than zero, seasonal patterns in cancer mortality were negligible.

Figure 2.18 Weekly deaths from cancer, Scotland 1981-1993
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Figure 2.19 Average weekly deaths from cancer, males and females
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An analysis by age group showed a pattern of increasing seasonality with increasing age

for males while no pattern was visible for females. These results are shown in table 2.16

Table 2.16 Seasonal percentage increase in deaths from cancer by sex & age group

Age group Males Females
Percent Increase CI Percent Increase CI
0-9 - - - -
10-59 0.9 (-2.1,3.9) 6.2 (3.2,9.2)
60-69 3.5 (1.1,5.8) 5.6 (2.9,8.3)
70-79 5.0 (2.9,7.2) 3.8 (1.5,6.2)
80+ 9.3 (6.1,124) 4.3 (1.7,7.0)
All Ages 4.2 (3.0,5.5) 4.6 (3.2,5.9)
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The overall 5% increase from summer to winter in cancer mortality and the fact that it
was difficult to see even an age effect resulted in the analysis of the seasonal variation in
cancer mortality not being taken any further. It was considered unlikely that there would
be any practical advantage in studying the variation between deprivation categories,
social classes and health boards from cancer mortality as the overall variation was so

small.

2.4 Emergency Hospital Admission Results

The modelling procedure for the emergency admissions data was the same as that for the
deaths data, however on first examination the emergency admissions data appeared to be
considerably more complex than the deaths data (see figures 2.3 and 2.4). In the case of
the mortality data there was a clear seasonal pattern with the number of deaths reaching a
peak in the winter whereas this was not the case for all emergency admissions. It
appeared that there were several significant cycles in the data resulting in about four
cycles per year. When the data were split by age group and by diagnostic group the
patterns observed by simple curves were even more complex. Within each age group
certain disease groups would form the dominant diagnoses. The seasonal pattern
appeared not only to be greater in magnitude in certain age groups and disease groups as
was the case for deaths, but the pattern also peaked at different parts of the year
according to age group and diagnosis. For this reason any analysis of the total number of

emergency hospital admissions using sinusoidal curves was uninformative.

Having already developed the methodology for the deaths data the same techniques were
applied to cause specific emergency admissions data. The diagnostic groups used in the
analysis of admissions data were respiratory disease, ischaemic heart disease and
cerebrovascular disease. Initial results from the analysis of the emergency admissions
data and the previous results concerning deaths meant that the analysis for emergency
admissions and future work reported on in this thesis concentrated on respiratory disease,
IHD and CVD only. In order to reduce the number of tables shown in this chapter,

details of seasonal variation in emergency admissions has been restricted to an analysis
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by age and sex only. The results for the analyses by deprivation category and health

board are given in appendix IIL

2.4.1 Respiratory disease

Unlike the deaths data where the number of deaths showed only a slight decline over the
time period the number of emergency admissions for respiratory disease increased
considerably from 1981 to 1993. In the first week of January 1981 there were 299 male
emergency admissions and 232 female emergency admissions from respiratory disease,
in the same week in 1993 these figures were 575 for males and 564 for females (figure
2.20). Thus if one were to look simply at the average value over the time period, the
maximum value and the minimum value as was the case with deaths, then the trend

would be represented rather than any seasonal variation.

Figure 2.20 Weekly emergency admissions for respiratory disease, Scotland 1981-1993
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Even if the data were averaged over the years the trend would still have an effect in the

estimate of seasonal variation. An increasing trend would result in an underestimate of
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the seasonal effect and for this reason no estimates of the seasonal effect using the raw
data have been computed.

The simple sinusoidal model accounted for the trend and computed the percentage
increase from trough to peak by considering it relative to the mean number of deaths at
that time. From this model the estimate of the seasonal variation accounted for the trend
component in the data. Therefore this model, which was used in the deaths data where a
slight downward trend was evident, was equally applicable in the admissions data where
a much stronger increasing trend was evident.

The percentage seasonal increase from summer trough to winter peak in emergency
admissions for respiratory disease was 49%(47.7,49.7) for males and 64%(62.6,64.9) for
females. When the data were split by age group (table 2.17) there was a similar pattern of

increasing seasonality with increasing age as was the case for the deaths data.

Table 2.17 Seasonal percentage increase in emergency admissions by sex & age group,

respiratory disease
Age group Males Females
Percent Increase CI Percent Increase CI

0-9 74.9 (73.1,76.8) 97.1 (94.5,99.7)
10-59 16.4 (14.6,18.1) 28.5 (26.6,30.4)
60-69 44.5 (42.0,47.2) 56.0 (53.0,59.0)
70-79 57.3 (54.8,59.7) 74.7 (71.8,71.5)

80+ 71.8 (68.5,75.1) 105.3 (101.8,108.8)
All Ages 48.7 (47.7,49.7) 63.8 (62.6,64.9)

As with the mortality data, the size of the seasonal increase in the number of emergency
hospital admissions for respiratory disease was greater at older age groups and in the
very young age group. Overall the seasonal increase for emergency hospital admissions
for respiratory disease is just over half the size of the seasonal increase in deaths from

respiratory disease.
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Figure 2.21 Seasonal percentage increase in emergency admissions by sex & age group,

respiratory disease
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Due to the evidence of an age effect and the assessments of variation in mortality by
deprivation category and social class it was decided to age standardise the emergency
admissions data for further analysis. Social class information, however, was only
available for the death records so the socio-economic analysis for emergency hospital
admissions could only be carried out using deprivation categories. Again, as with the
mortality data, the analysis by health board was also done using age standardised data.
The results from the analysis of seasonal variation in emergency hospital admissions by

deprivation category and health board are given in appendix III.
2.4.1 (a) Summary of seasonal analysis for respiratory disease

The seasonal increase in emergency admissions for respiratory disease is 49% for males
and 64% for females. This is around half the size of the seasonal increase in mortality

from respiratory disease. These figures increase for older age groups and for the very
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young age group but do not vary according to socio-economic deprivation categories.
The seasonal increase in emergency admissions for respiratory disease varies
significantly between health board areas. For both males and females the increase is
significantly higher in the Borders and in Dumfries & Galloway, both rural areas, but it
is considerably smaller in the Island health boards. Overall there is no distinct spatial

pattern.

2.4.2 Ischaemic Heart Disease

As with emergency hospital admissions for respiratory disease, there was a strong
increasing trend in emergency admissions for ischaemic heart disease and the trend

dwarfed any seasonal pattern when the data were inspected graphically (figure 2.22).

Figure 2.22 Weekly emergency admissions for IHD, Scotland 1981-1993
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In week 1 of 1981 the number of admissions was 247 for males and 131 for females, by
week 1 of 1993 this number had risen to 625 for males and 333 for females. The total

number of emergency admissions for IHD over the time period was 287 763.
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Using the model which accounted for the trend, the percentage increase in emergency
admissions for IHD from trough to peak was 10%(9.5,11.5) for males and 8%(7.2,9.6)
for females. Again, as with the deaths data, the degree of seasonal variation increased

with age group.

Table 2.18 Seasonal percentage increase in emergency hospital admissions by sex & age

group, IHD

Age group Males Females

Percent Increase Cl Percent Increase Cl
0-9 - - - -
10-59 8.6 (7.0,10.2) 4.0 (1.4,6.5)
60-69 10.6 (8.8,12.4) 10.7 (8.4,13.0)
70-79 13.8 (11.7,15.9) 9.2 (7.1,11.3)
80+ 184 (14.6,22.2) 14.8 (12.0,17.6)
All Ages 10.5 (9.5,11.5) 8.4 (7.2,9.6)

Figure 2.23 Seasonal percentage increase in emergency hospital admissions by sex & age

group, THD
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2.4.2 (a) Summary of seasonal analysis for ischaemic heart disease

The seasonal increase in emergency admissions for ischaemic heart disease is 10% for
males and 8% for females. These figures are less than a third of the size of the seasonal
increase in mortality from IHD. The size of the seasonal increase is greater at older age
groups but there is little variation according to deprivation categories. Considerable

variation exists among health boards but this is not significant.

2.4.3 Cerebrovascular Disease

The total number of emergency admissions for cerebrovascular disease was just over 135
000. Again, admissions for this diagnosis showed an increase over the time period. In the
first week of 1981 the number of admissions for CVD was 102 for males and 101 for
females, by 1993 these figures had increased to 131 and 119a 20% increase (figure
2.24).

Figure 2.24 Weekly emergency admissions for CVD, Scotland 1981-1993
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Although the increase over time for emergency admissions for CVD was not as great as

for IHD and respiratory disease it was still the most dominant feature in the plot of the
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data, although the seasonal pattern was still evident. The simple sinusoidal model gave a
percentage increase from trough to peak of 9%(7.1,10.4) for males and 12%(10.4,13.5)
for females. Again, this increase varied by age group and the general pattern was an
increase in seasonality with increasing age (table 2.24 & figure 2.25). This pattern was

not as clear as for IHD and respiratory disease.

Table 2.24 Seasonal percentage increase in emergency hospital admissions by sex & age
group, CVD

Age group Males Females
Percent Increase Cl Percent Increase Cl
0-9 - - - -
10-59 6.1 (2.2,9.9) 4.4 (0.1,8.8)
60-69 4.2 (1.0,7.4) 9.5 (5.8,13.2)
70-79 10.7 (7.9,13.4) 134 (10.9,16.0)
80+ 20.8 (16.9,24.8) 14.8 (12.2,17.4)
All Ages 8.7 (7.1,10.4) 12.0 (10.4,13.5)

Figure 2.25 Seasonal percentage increase in emergency hospital admissions by sex & age
group, CVD

Seasonal percentage increase in

emergency admissions for CVD
30 1

tSSSi Males

u] Females

10-59 60-69 70-79 80+ total



2.4.3 (a) Summary of seasonal analysis for cerebrovascular discase

As with emergency admissions for IHD, the seasonal increase in emergency admissions
for CVD is around a third of that experienced for deaths from CVD. There is an increase
in the degree of seasonal variation at older age groups but no association with

deprivation categories or with health board of residence.

2.4.4 Cancer

Cancer admissions were included in this analysis simply for completeness. They were
included in the analysis of mortality because, although they do not show much seasonal
variation, they are an important cause of death. While emergency admissions provided a
reasonable estimate of the incidence of CVD and IHD and an estimate of the incidence
of more serious respiratory events there were relatively few emergency admissions for
cancer due to the nature of the disease. Cancer accounts for 25% of all deaths but only
about 5% of all emergency admissions.

As with deaths from cancer, emergency admissions for cancer did not show a great deal
of seasonal variation. The percentage increase from trough to peak was 2.1%(0.9,3.2) for
males and 3.5% (2.3,4.7) for females. The size of the increase for all emergency
admissions for cancer is barely significant. Since emergency admissions for cancer
account for only 5% of all admissions the analysis of seasonal variation of emergency
admissions for cancer was limited to all ages and not considered by age group,

deprivation category or health board of residence.

2.5 The Effect of Influenza

Influenza epidemics have been shown to affect the seasonal pattern of deaths from
causes of death not recorded as influenza® > % '°_ There were a total of 1524 deaths from
influenza (ICD-9 487) over the 13-year time period, 501 male deaths and 1023 female
deaths. The seasonal pattern in flu deaths is clearly evident from a plot of the deaths from
flu over time (figure 2.26). Virtually all deaths from flu occur in the winter. There were
3081 emergency admissions for influenza, 1451 male admissions and 1630 female
admissions. A plot of emergency admissions for flu displays a very similar pattern to that
for deaths from flu (figure 2.27). There were several flu epidemics apparent from the

plots of the data, these occurred in winters 81/82, 82/83, 85/86, 89/90 and 93/94. During
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the most prominent epidemic in the winter of 1989/90 there were 150 deaths recorded as
flu deaths and around 90 emergency admissions for flu in Scotland. In each of the
smaller epidemics there were between 20 and 30 emergency admissions and deaths per
week at the peak of the epidemic. The emergency admission data shows that in the years
in which the epidemic was less strong there was still a significant seasonal pattern in
emergency admissions for respiratory disease.

The effect of these flu epidemics is reflected in the pattern of deaths from all causes and
in deaths and emergency admissions from IHD, CVD and respiratory discase. There was
evidence of an increase in the number of deaths and emergency admissions from these
causes in the years that there was a flu epidemic. The effect of flu epidemics could be
that the influenza virus acts as a trigger and although the person died from a different
underlying cause of death, contracting influenza may have been a contributory factor to
the patient’s subsequent death from the underlying cause. The presence of flu epidemics
that occur in winter increases the percentage increase in deaths from other causes from
summer to winter. The extent of this effect however is difficult to measure and will be

discussed in more detail in chapter 3.

Figure 2.26 Weekly deaths from influenza, Scotland 1981-1993
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Figure 2.27 Weekly emergency admissions for influenza, Scotland 1981-1993
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2.6 Conclusions & Discussion

2.6.1 Summary of results

There is seasonal pattern in deaths from all causes for both males and females. The
extent of this seasonality results in a 28% increase from summer to winter in male
mortality and a 34% increase in female mortality. The seasonal increase was greatest in
deaths from respiratory disease with an 89% increase from summer to winter for men
and a 114% increase for women. Deaths from CVD and IHD showed a 35% increase
from trough to peak for both sexes, while cancer deaths showed very little seasonal
pattern. The size of the seasonal increase in mortality increased with increasing age
group and particularly for deaths from respiratory disease was greater in thé very young
age group. Several other studies have demonstrated an increase in seasonal mortality in
the older age groups*®**!°, There was little difference in the degree of seasonal variation
experienced when the data were grouped by deprivation category, this finding is
supported by a recent study in London’® which also showed no evidence of an effect of
deprivation on excess winter mortality. Analysis by social class appeared to indicate that
people in social classes I & II experienced a lower seasonal increase in mortality from

IHD and CVD than people in social classes IV & V. The amount of seasonal variation
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experienced by the population varied according to health board of residence. Generally
those people living in the Island health boards experienced less seasonal variation than
those resident in other health boards.

The analysis of seasonal patterns in mortality in Scotland from 1981 to 1993 has shown
that seasonal variation in Scotland was considerable (around 30%) and that this figure
was greater for the more vulnerable members of the population such as the elderly, the
very young and those in lower social classes.

Seasonal patterns in emergency admissions were smaller than those for deaths. The
seasonal increase in emergency admissions for respiratory disease was 49% for males
and 64% for females. Emergency admissions from IHD and CVD showed a seasonal
increase of between 8% and 12%, whereas emergency admissions for cancer showed a
seasonal increase of around 3%. As with the mortality data, seasonal variation in
emergency hospital admissions was greater in the older age groups and in the very
young. There was no difference in the degree of seasonal variation experienced by the
population when areas were grouped according to socio-economic deprivation scores.
Social class data was not available for the SMR1 data and the analysis by health board
did not produce any clear spatial pattern. The issue of how the seasonal pattern in

emergency hospital admissions varies spatially is described in more depth in Chapter 5.

2.6.2 Implications of results

The results described in this chapter further strengthen findings from other work on the
seasonality of disease in Scotland. Using Q1/Q3 ratios for the period 1977-83 GRO(S)?
showed that variation in the degree of seasonal increase in mortality existed by cause of
deaths, age group, and social class. They also commented that with a Q1/Q3 ratio of
around 30% the seasonal increase in mortality in Scotland was greater than in most other
European countries. The work described in this chapter has demonstrated that a seasonal
percentage increase in mortality of around 30% still exists in Scotland and that it is
greater in older age groups, lower social classes and in females. Other work from the
Netherlands® indicates a seasonal variation (percentage increase from trough to peak) of
around 22% implying that at 30%, Scotland is still experiencing greater seasonal
increases than some other European countries.

The seasonal increases in mortality are of concern as it is clear from the demographic
analysis that it is the most vulnerable and the poorest members of society who
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experience the most severe effects of winter. The increase in emergency admissions
during winter puts more demand on the NHS, a system that is running at capacity
throughout the whole year. Almost every year in the UK there are media reports of the
sudden increase in demand for hospital beds in winter and the strain on the health service
that this causes. The work in this chapter, combined with other earlier work carried out
by the GRO in Scotland, indicates that this situation is long standing and should perhaps
be tackled in a preventative manner. If resources were supplied to those who may be
more susceptible to ill health in the winter it may help to reduce the size of the increased
demand on the NHS in winter and reduce the high number of deaths which occur each

winter in Scotland.
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Chapter 3 - The effect of Climate on Mortality and Morbidity

3.1 Introduction & Aims

In Chapter 2 the seasonal pattern in deaths and emergency hospital admissions was
described. Generally when the word ‘seasonal’ is used it refers to weather patterns at a
particular time of year i.e. winter, spring, summer, and autumn. The fact that mortality
follows a seasonal pattern may lead to the hypothesis that there is an association between
climate and mortality, this supposition being strengthened by an established experience
of ill health in winter. Several authors® *** have used correlation methods to assess the
relationship between climate and mortality. In this analysis, however methods which

30; 49 and

establish a causal relationship will be developed. Poisson regression methods
time series methods® have also been used to assess the strength of the relationship
between climate and mortality. The work described in this chapter builds on these results
and assesses the merits of a method that combines both time series and Poisson
regression methods.

In this chapter, Meteorological Office data from January 1981 to December 1993 were
analysed in conjunction with the mortality data and SMR1 data to investigate the
existence of a causal relationship between climate, mortality and morbidity. Section 3.2
describes the data obtained from the Meteorological Office in Edinburgh, while the
development of various methods is described in section 3.3. The methodology used in
section 3.3 includes simple statistics, time series methods, Poisson regression and finally
a method that is a combination of both time series methods and Poisson regression. A
comparison of the methods is given at the end of the section. The majority of the
development work used daily data as opposed to the weekly data used in Chapter 2. The
methods were developed using mortality from respiratory disease and applied to
mortality from all causes, ischaemic heart disease and cerebrovascular disease; the
results are given in section 3.4. Section 3.5 describes the relationship between emergency

hospital admissions and climate and a summary of the chapter is given in section 3.6.
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3.2 Scotland’s Climate

3.2.1 Data

Climate data for Scotland from 1st January 1981 to 31st December 1993 were obtained
from the Meteorological Office in Edinburgh. The data consisted of daily maximum and
daily minimum temperatures, average daily wind speed and total daily rainfall for three
weather stations located at Aberdeen Airport (Dyce), Edinburgh Airport (Turnhouse) and
Glasgow Airport (Abbotsinch). From this data an average daily temperature for Scotland
was computed by calculating the average daily temperature at each station as
(max +min)/2 and then computing a Scottish average (Glas + Edin+ Aber)/3. The
Scottish average daily wind speed and total daily rainfall were also calculated as above.

The average daily temperature in Scotland over the time period 1981 to 1993 was 8.5°C,
the daily maximum temperature was on average 12.17°C and the minimum was on
average 4.77°C. The maximum reached on any day over the time period was 28.07°C
and the minimum temperature reached on any day was -16.5°C. On average there was

2.5mm of rain per day and the wind speed was 8.7 knots.

3.2.1 (a) Temperature

The average daily temperature over the time period was 8.69°C in Glasgow, 8.58°C in
Edinburgh and 8.14°C in Aberdeen. Glasgow experienced a milder climate than
Edinburgh, which in turn experienced a milder climate than Aberdeen, however, these
differences were slight. Temperature summaries for each of the three cities are given in
Table 3.1

Table 3.1 Summaries of daily temperature(°C) in Glasgow, Edinburgh & Aberdeen

Average Average 5%ile of 95%ile of
Average maximum minimum average average
Glasgow 8.69 12.46 491 0.35 16.45
Edinburgh 8.58 12.36 4.80 0.60 16.35
Aberdeen 8.14 11.70 4.59 0.70 15.75
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There were five occasions when the temperature in Aberdeen was less than or equal to
0°C for 7 consecutive days, there were three such occasions in Edinburgh and four in
Glasgow. For all days when temperature was 0°C or below, the average temperature was
around -2.2°C. The average temperature over the three sites (Scottish average) was less
than or equal to 0°C for 7 consecutive days on three occasions. The temperature was
below or equal to zero on 3.5% of days in Aberdeen, 3.9% of days in Edinburgh and
4.3% of days in Glasgow.

So although average temperature, over the time period, was higher in Glasgow than in
the other two sites there were more days in Glasgow when the temperature was below or
equal to zero. However, in Aberdeen the temperature was below or equal to 0°C for 7
consecutive days more often than in Glasgow. Overall Aberdeen was colder for longer
periods while Glasgow’s cold spells were less cold, more frequent and for shorter
periods of time. Edinburgh fell somewhere in the middle of Glasgow and Aberdeen. A
plot of daily temperature over 13 years contained a lot of noise therefore to demonstrate

the seasonal pattern effectively average weekly temperature is used in Figure 3.1.

Figure 3.1 Average weekly temperature(°C) in Scotland from 1981 to 1993.
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The seasonal pattern in the temperature data is clear from figure 3.1 and when these data
were examined using spectral methods (as described in section 2.2.2) the periodogram

identified the presence of a yearly cycle (figure 3.2)

Figure 3.2 Periodogram of average weekly temperature
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3.2.1 (b) Wind Speed

Table 3.2 displays the average wind speed in the three locations and gives the 5% and
95% percentiles of the distribution. Aberdeen experienced the highest average wind
speed and Edinburgh the lowest. A plot of the Scottish average wind speed over the time
period (figure 3.3) did not clearly identify a seasonal pattern, however spectral analysis

determined that a yearly pattern did exist. (figure 3.4).

Table 3.2 Summaries of daily wind speed (knots) in Glasgow, Edinburgh & Aberdeen

Average 5%ile 95%ile
Glasgow 8.70 2.60 17.30
Edinburgh 8.58 2.70 16.80
Aberdeen 8.85 3.30 16.60
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Figure 3.3 Average weekly wind speed (knots) Scotland 1981-1993
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Figure 3.4 Periodogram of average weekly wind speed
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3.2.1 (c) Rainfall

Glasgow experienced much more rain than either Aberdeen or Edinburgh. The average

daily rainfall in each site with the 5% and 95% percentiles is shown in Table 3.3.

Table 3.3 Summaries of daily rainfall (mm) in Glasgow, Edinburgh & Aberdeen

Average 5%ile 95%ile
Glasgow 3.14 0.00 14.40
Edinburgh 2.00 0.00 10.00
Aberdeen 2.18 0.00 10.85

As with the plot of wind speed a plot of the average Scottish rainfall did not display a
clear seasonal pattern, however a closer inspection of figure 3.5 indicates that there is
increased rainfall in autumn. Again, a spectral analysis of the data confirmed the

presence of a yearly cycle (figure 3.6).

Figure 3.5 Average weekly rainfall (mm) Scotland 1981-1993
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Figure 3.6 Periodogram of average weekly rainfall
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3.2.2. Seasonal modelling ofvariables

All three of the weather variables displayed a yearly seasonal cycle, and so a simple

sinusoidal curve of the form y =(a +bt)(1+ 2 cos(cot + p)) was fitted to the data. As

with the models described in section 2.2.4 this model expressed the amplitude of the

seasonal curve as the percentage increase from the mean, the parameter p determines

the time of the year at which the curve peaks and the model adjusts for the trend in the

2a
data. Using X =-—j45 it is possible to express X as the percentage increase from the

trough to the peak of the seasonal curve. The results from applying this modelling
procedure to the climate data were that the percentage increase from the trough to the
peak of the seasonal curve for average temperature was 431%, for wind speed this was
27% and for rainfall this was 66%. These three fitted curves did not peak at the same
time of the year, from the values of p it was computed that the temperature reached its
peak around mid July, wind speeds reached their peak in late January and rainfall was

greatest around mid November.
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There was considerable unexplained variation in the sinusoidal models for wind speed
and rainfall. The model explained only 3.8% of the variation in wind speed and for
rainfall this was 1.2%. For average temperature the simple sinusoidal curve explained

over 70% of the variation. These results are summarised in table 3.4.

Table 3.4 Results of initial sinusoidal models

Seasonal Peak day in Variation
A increase (%) year explained (%)
Average temperature -0.68 431 203 70.7
Wind speed 0.12 27 28 3.8
Rainfall 0.25 66 320 1.2

There was a decreasing trend in size of the seasonal variation in temperature even though
the daily average temperature showed an increasing trend. Having now determined that
the climate data, in particular daily average temperature, and the mortality and morbidity
data follow a yearly seasonal pattern an investigation into the degree of association

between climate, mortality and morbidity was undertaken.

3.3 Development of methods

3.3.1 Introduction

Computation of a simple correlation coefficient between two variables which both follow
a yearly seasonal pattern would result in a correlation coefficient which was statistically
significant. The level of significance could then be used to infer that the two series are
associated with each other when in fact this may not be the case. A paper by Campbell*®
refers to Yule who found a correlation of 0.95 between the standardised annual mortality
rate and the yearly proportion of marriages celebrated in the Church of England for the
years 1866 to 1911. He pointed out it would be incorrect to infer causality from this high

correlation.
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In order to determine an association between two seasonal time series the seasonal
components present in the data have to be removed. There is also the problem in these
data of serial auto-correlation. Auto-correlation refers to the fact that observations close
in time to each other are similar in value i.e. the temperature today is likely to be closely
related to the temperature yesterday. With deaths or hospital admissions the
autocorrelation in the data is more difficult to comprehend, while one death does not
necessarily cause another death there are time periods where many deaths from one
cause occur and periods where very few deaths occur. Because temperatures are
influenced by global weather systems it is easy to believe that today’s temperature has a
direct bearing on tomorrow’s temperature. For deaths and hospital admissions it is likely
that the relationship between today’s death rate and tomorrow’s death rate involves some
other processes which display serial autocorrelation and which affect the daily number of

deaths.

3.3.2 Summary statistics

Results from Chapter 2 indicated that mortality from respiratory disease, ischaemic heart
disease and cerebrovascular disease displayed the greatest amount of seasonal variation.
The more detailed analysis described in this chapter concentrates on these three causes of
death, as it is likely that these three causes will display the strongest relationship with
climate. Scatter plots and simple summary statistics are used in this section with two
objectives, firstly to summarise the data and secondly to highlight the ways in which the
relationship between seasonally autocorrelated time series could be misinterpreted if
inappropriate statistical methods were used. In section 3.3.2(a) the weekly number of
deaths and hospital admissions are plotted against average weekly temperature to give an
overall sense of what the data look like. The other forms of analysis concentrate on the
mortality data and three methods of summarising the relationship between temepratrue
and mortality analysis are described. However, these summary methods summary are
found to be innapropriate for accurately describing the relationships and more

appropriate time series methods are introduced in section 3.3.3.
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3.3.2 (a) Scatter plots of weekly deaths and admissions against temperature

The relationship between mortality and temperature was assessed visually before

considering any more detailed summary statistics. Figure 3.7 shows a scatter plot of

weekly deaths and average weekly temperature

Figure 3.7 Scatter plot of weekly deaths and average weekly temperature
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The plot shows increased weekly mortality at lower temperatures and a curvilinear
relationship between mortality and temperature. The loess curve levels out as average
temperature increases. Several outliers can be seen and these relate to the flu epidemic of
1989/90 where there was a greater than usual winter increase in deaths. This chart also
shows a greater spread in the numbers of deaths when the temperature is lower compared

to when the temperature is between 10°C and 20°C.

It was demonstrated in the exploratory plots of emergency admissions described in
section 2.1.4 that there was little seasonal pattern in emergency admissions for all
diagnostic groups. A similar plot for weekly emergency admissions for respiratory

disease and average weekly temperature is shown in figure 3.8.
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Figure 3.8 Scatter plot of weekly emergency admissions and weekly temperature
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The scatter plot of emergency admissions for respiratory disease against temperature
demonstrates an almost linear relationship for temperatures above 3°C and virtually no
relationship at temperatures <3°C. Again the scatter is greater at temperatures below
10°C compared to at temperatures above 10°C and there are several outliers. The results
from the two plots above combined with the evidence of a smaller seasonal variations in
emergency admissions would lead us to believe that the relationship between
temperature and emergency admissions may not be as strong as that for temeprature and

mortality. Further development of summary statistics is based on mortality data only.

3.3.2 (b) Correlation’s using Q1/Q3 ratios

Before the complex relationship between deaths or emergency hospital admissions and
temperature was analysed some simple relationships were explored. In Chapter 1 the
Q1/Q3 ratio was defined as the ratio between the number of deaths occurring in the first

quarter of the year and the number of deaths occurring in the third quarter of the year.
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This gives a crude measure of the degree of seasonal variation present in the data. It was
felt that these values might be of use in an initial analysis of the relationship between
mortality and temperature. From a Q1/Q3 ratio a rough estimate of the degree of
seasonal variation present for any year can be determined. Q1/Q3 ratios were used to
establish whether years with large temperature swings were associated with years that
displayed large seasonal variations in mortality. Assuming a constant summer
temperature over the years, then in a cold winter the ratio Q1/Q3 would be lower than
when a mild winter occurred. In the case of deaths, assuming a constant summer death
rate over the years, then in a winter where many deaths occurred the Q1/Q3 ratio would
- be greater than in a winter where fewer deaths occurred. Therefore a relationship
between increased seasonal variation in temperature and increased seasonal swing in
deaths could be shown by a negative correlation between the respective Q1/Q3 ratios.
The correlation between the yearly Q1/Q3 ratios for deaths from different causes and the

corresponding yearly Q1/Q3 ratios for temperature is shown in Table 3.5.

Table 3.5 Correlation (r) between Q1/Q3 ratios for mortality and temperature

Males Females
r p-value r p-value
All Causes -0.58 0.037 -0.59 0.035
Respiratory disease -0.41 0.166 -0.46 0.116
Ischaemic heart disease -0.67 0.012 -0.52 0.068
Cerebrovascular disease -0.55 0.051 -0.61 0.027

As can be seen from the table above the correlation is negative in each case and is
significant for deaths from all causes, ischaemic heart disease and cerebrovascular
disease but not for deaths from respiratory disease.

These results indicate that in years when a large seasonal change in temperature occurred
a large seasonal change in the number of deaths also occurred. This may indicate the
presence of a relationship between temperature and deaths. Using Q1/Q3 ratios tells us
about the effect of seasonal swings in temperature on mortality, however a more direct
measure of the effect of climate on deaths can be obtained by considering daily lagged

correlations.
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3.3.2 (c) Lagged correlations

As described previously a simple correlation between two seasonal data series that
displayed auto-correlation will give a statistically significant result. However, lagged
daily correlations between temperature, wind speed, rainfall and mortality provided a
simple method of summarising the relationship between mortality and the three climatic
variables before attempting more detailed appropriate methods. Spearman’s correlation
coefficient was used to estimate the correlation between deaths and the weather variables
at lag days. From this simple measure the effect of the three climate variables on the
three causes of death can be compared. Figure 3.9 shows the lagged correlation of
temperature and the three causes of death while Figure 3.11 shows the lagged correlation

between deaths from all causes and temperature, wind speed and rainfall.

Figure 3.9 Lagged correlation between temperature and deaths
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It can be seen from Figure 3.9 that the relationship between mortality and temperature is
stronger for deaths from respiratory disease than for deaths from IHD and CVD and that
the relationship is strongest for each cause at a lag of a few days. For deaths from CVD

the relationship with temperature is strongest at a lag of 3 days, for deaths from IHD this
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lag period was around 5 days and for deaths from respiratory disease the relationship
between the two variables is greatest up to 15 days apart. This lagged relationship can be
explained by the fact that a change in temperature may not have an immediate effect on
mortality. For example, if the temperature suddenly fell it would take 3 days to notice an
increase in deaths from CVD, 5 days before the greatest increase in deaths from IHD was
observed and up to 15 days for the number of associated deaths from respiratory disease

to peak.

Figure 3.10 Lagged correlation between deaths from all causes and climate variables
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From Figure 3.10 it is clear that the climatic variable which is most closely associated
with mortality is temperature. The correlation between wind speed and rainfall and
deaths was around 0.05 whereas the correlation with temperature was around —0.4. At
this stage of the analysis it was decided to concentrate on the relationship between

mortality and morbidity and temperature only.
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3.3.2 (d) Linear Regression of deaths and temperature

A regression model that related the number of deaths per day to the average daily
temperature may provide a clearer measure of the relationship between the two variables.

A simple linear regression of the form y, = a + B(temp,) + &, was fitted to the data. The

results of this analysis are shown in Table 3.6.

Table 3.6 Results from simple linear regression of deaths and temperature

Males Females
coeff p R square | coeff p R square
Resp -0.40 0.00 18.46 -0.47 0.00 16.98
IHD -0.51 0.00 18.07 -0.48 0.00 17.92
CVD -0.18 0.00 7.70 -0.29 0.00 11.10
All cause -1.34 0.00 26.15 -1.69 0.00 28.84

The coefficients £ are a measure of the degree of association between daily temperature

and daily mortality. The regression coefficients are highly significant, indicating a strong
relationship but the R-square values indicate that the models are not a good fit of the
data.

A simple interpretation of the results would lead us to believe that a drop in temperature
of 1°C in a day is related to an increase in male mortality from all causes of 1.4 deaths
per day. The simple linear regression model depends on three assumptions; constant
variance, independence and normality. The assumption of constant variance means that

for any temperature the population of the potential values of y;, the number of deaths,

has a constant variance which does not depend on the value of the temperature. The

independence assumption assumes that any one value of the dependent variable Y, is
statistically independent of any other value of y ’ The final assumption used in simple

linear regression is that for any value of temperature, the corresponding population of

values of the dependent variable Y has a normal distribution. Residual analysis and

exploratory methods such as probability plots can test the validity of the assumptions.
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Traditional methods of examining the residuals from a fitted model involve plotting the

residuals £( against the fitted values y t, as in Figure 3.9.

Figure 3.11 Scatter plot ofresiduals from the linear model
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Figure 3.11 shows that apart from a few outliers the residuals seem to form a random

scatter about 0. This simple inspection of the residuals may lead us to believe that the
linear regression model is an appropriate model to use with the exception of a few
outliers. However, prior knowledge of the data would lead to a rejection of the
assumptions. Intuitively if the data points are related in time the independence
assumption is likely to be violated; residuals close together in time may be similar.
Another likely reason that the simple linear model is not appropriate is that the
dependent variable is a series of counts; prior to any testing it is likely that these data
follow a Poisson distribution. This feature may not be a problem as a Poisson with a
large mean is well approximated by a Normal distribution, however when the data are
split by cause, age and social class this may become a problem. In order to look at the
residuals in more detail, time series methods were used to assess the presence of
autocorrelation. These methods are described in section 3.3.3. Details of the development
of the methods are provided for male deaths from respiratory disease only, however the
results of the application of the final model are supplied for both male and female deaths

from respiratory disease, IHD and CVD.



3.3.3 Time Series Methods

Diggle” provides an excellent introduction to the use of time series methods for
biological data in which he uses several example data sets. Cox®, Chatfield®, Box &
Jenkins® and Kendall® all provide a detailed and well structured account of time series

methodology.
3.3.3 (a) Autocorrelation, stationarity and differencing

To test for autocorrelation in time series the series must be stationary. The concept of
stationarity in a series is that the probabilistic structure of the values in the series is
unaffected by a shift in the time origin. However, this assumption is, in practice, an
assumption that cannot be checked, and generally a check on second-order stationarity is
carried out. Second-order stationarity occurs if there is no trend in the series and if the

correlation between any two values in the series depends only on their distance apart and

not their actual position in the series. Using algebraic notation a series y, is second-
order stationary if u, =E(y,)=pu for all ¢ and if y(n,m) depends only on |n—m|
where y(n,m) denotes the auto-covariance function and equals Cov(y;_,,,y;_,) -

One method of obtaining a stationary series is differencing. Differencing involves

analysing the differences between the values of adjacent observations rather than the

observations themselves. The first difference of a time series y, written Dy, is defined

by the transformation Dy, =y, — y, . In this thesis stationarity refers to second order

stationarity.
3.3.3 (b) ARIMA models

There are two main classes of time series models. Firstly there are autoregressive (AR)

processes where each y, is defined in terms of its predecessors y, for s <. We have

14
Y=y, +Z (3.1)
=1

where Z, is a white noise sequence with variance o*.
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The other main categories of time series models are moving average (MA) models. A

moving average model is simply a linear filter applied to the white noise process Z, in

q
the form w=Z,+YB,Z,; (3.2)
Jj=l

An autoregressive moving average process combines both equations and gives
P q
Y=oy, tZ +Zﬁjzr—j (3.3)
1= j=1

The clearest way of describing a model of this form is to write y, ~ ARMA(p,q) where
p and g are known as the orders of the process. If either p or ¢ equals zero we can
write y, ~ MA(q) or y, ~ AR(p). This notation can be expanded to include information
on the degree of differencing of the series y, required to obtain a stationary series. If the

series was differenced d times then we can write y, ~ ARIMA(p,d,q).

Currently we have a time series of residuals from a linear regression fit to the data y,,

and we want to determine which, if any, time series model these residuals follow. This is
done using a plot of the auto-correlation function and partial auto-correlation function

over lag times. If the residuals do in fact fall into an ARIMA model category then it is

likely that time series methodology will have to be applied when analysing the data y,.

If the residuals do not display any autocorrelation than we can assume that there is no

need to pursue the time series path in the analysis.

3.3.3 (c) Model Identification

The autocovariance function of a stationary process y, is y(k) = Cov(y; ) and

Yi—k
y(k) does not depend on f. Since y(0) is the variance of each y, then the
autocorrelation function is defined as p(k) = y(k)/y(0). A method of identifying the
properties of a time series is to plot the sample autocorrelation coefficients
o(k) =y(k)/y(0) against the corresponding lags k. For large » the approximate

sampling distribution of each p(%) is Normal with mean zero and variance 1/xn. We can
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create confidence limits to assess the significance of each p(k) but in time series
analysis the values of each p(k) is not as important as the overall pattern of all the
p(k)’s. The simplest pattern to detect from the plot of the autocorrelation function
(ACF) is a cut off. If for all £ greater than some integer ¢, the p(k) are approximately
zero then this indicates an MA(q) process as a possible model for the data. If, the ACF
plot shows exponential decay then this may point us in the direction of an AR(p)
process.

A variant of the autocorrelation function known as the partial autocorrelation function or
PACF provides us with a cut off procedure with which we can identify an AR(p)
process. We define the partial autocorrelation coefficient, a, as the estimate of the value
a, inan AR(p) process. If the underlying process is AR(p) then forall k> p a, =0.
A plot of a, against k& should show a cut off at lag p. Durbin® developed a way to

calculate a, or ¢, using the recursive formula
p p
&p+1,p+] = (Pp+1 - JZzl &jpppﬂ—j) /(1- 12——-11 &jlppj) (3.4)
As with the ACF, interpretation of the PACF involves using the limits to assess the cut
off point.
So we now have a method of classifying a series into an ARIMA(p,d,q) model by

assessing the cut off level in the ACF and the PACF respectively. In practice the cut off
is usually no larger than 2 or 3 lags. If neither cuts off at a sufficiently small lag then we
should consider a mixed process. That is a model that contains both moving average and
autoregressive properties. 1f both the ACF and the PACF show no cut off then the data
may be non-stationary. If this is the case the data should be differenced and a new ACF
and PACF plot produced. Again, in practice it is unlikely that a series will have to be
differenced more than twice before stationarity is obtained. Finally, parsimony of the
model is optimal and if in doubt fewer rather than more parameters should be included in

the final model.

87




3.3.3 (d) Residual analysis

The ACF’s and PACF’s for the residual series from the linear regression of male
respiratory deaths and temperature are shown in figure 3.12.

Figure 3.12 ACF’s and PACEF’s for the residual series from the linear regression
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As can be seen, the ACF plot does not die out after 16 lags and the PACF plot appears to
show exponential decay. These features point to the fact that the series may require to be
differenced. The second two plots in Figure 3.13 are the ACF and PACF for the

differenced residuals.

Figure 3.13 ACF’s and PACF’s for the differenced residual series from the linear

regression
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The ACF plot cuts off at lag 1 and the PACF plot displays exponential decay. This

pattern indicates that the differenced residuals follow an MA{\) process and are therefore

not independent. The simple linear regression model was not an adequate method of
relating the two data sets because the residuals produced from the model were not

independent.

Having established that the residuals from the simple linear fit were not independent they
were then tested to see if they followed the normal distribution. The results of normal
probability tests (figure 3.14) indicate that the residuals do not follow a normal
distribution, again violating one of the original assumptions for the linear regression
model. The histogram of the residuals (figure 3.15) indicates that they follow a Poisson

distribution.

Figure 3.14 Normal and Box plots of the unstandardised residuals from the linear

regression
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Figure 3.15 Histogram ofthe unstandardised residuals from the linear regression
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3.3.3 (e) Lag effects
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A plot of the predicted values and the observed values averaged over a year (figure 3.16)

show that there appears to be a lag effect of temperature.

Figure 3.16 Fitted values from the linear regression and observed values averaged over a

year

800 i

700

600"

500"

400
Jan Apr Jul Oct

Male deaths

Predicted Value



The fitted values anticipate an event to happen earlier than it actually does. If we
consider around autumn time when the temperature is getting colder, say in late October,
the observed data tells us that approximately 580 deaths will occur each week at this
time, whereas the fitted data predicts it will be more in the region of 600 deaths per
week. The observed data indicates that around 600 deaths per week occurs later, in Mid
November. The fitted model is underestimating the number of deaths when the
temperature is getting colder and is overestimating the number of deaths when the
temperature is getting warmer. This is because the fitted model uses the absolute
temperature values with no measure of the lag effects. As was established previously, the
effect of temperature on deaths is not immediate and this was not accounted for in the

simple linear regression.

In this exploratory analysis we have determined that a relationship between temperature
and deaths exists but is complex. There is a lagged effect of temperature on deaths,
which may indicate a causal link. A change in the number of deaths occurs after a change
in temperature. There is autocorrelation in the data that requires the use of time series
models and further the data is in the form of counts, it does not follow a normal
distribution.

Using the ARIMA modelling facilities in SPSS three different methods were tried in the
analysis of the data. The first two methods are essentially details of how progress was

made to reach the final more satisfactory method.

3.3.4 Residual regression (Method 1)

Initial work described in Chapter 2 had established that the number of deaths from
respiratory disease, ischaemic heart disease and cerebrovascular disease followed a
seasonal pattern. An examination of the daily average temperature showed that it too
followed a seasonal pattern. Analysis of the ACF and PACF plots of the residuals from a
linear regression indicated that there was autocorrelation in the residuals and that a
straightforward linear regression analysis would be inappropriate. To establish a
relationship between two series which both display the same general seasonal pattern
short term fluctuations from the identified pattern in one series must be shown to follow
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short term deviations from the identified pattern in the other series. In order to do this
type of analysis the seasonal variation in both series was removed and the residuals

series from both seasonal fits were compared.

The initial methodology involved fitting a detailed Poisson regression model of the
seasonal pattern of deaths with the model containing as many harmonics as were
significant. The motivation behind this procedure was that if one could remove the entire
seasonal pattern within the mortality data and all the seasonal variation in the
temperature data then the two residual series that were left would represent the
deviations from the normal course of events. If there was some relationship between
these two series then we could estimate the way in which temperature influenced the

death rate.

The initial model was of the form
In(y,) = a+ pt +a,(cos(ar)) + b, (sin(at)) (3.5)
where @ =27 %*1/365.25

In this model the coefficients a, and b, can be used to estimate the amplitude and the

phase of a seasonal curve that peaks once a year. The next harmonic term to be included
in the model represented a peak that occurred twice a year. This term
a,(cos(2wt)) + b, (sin(2wt ))

was added to the model and if its addition resulted in a reduction of the deviance which
was significant at the 5% level then the next term to be added was

a, (cos(3at)) + b, (sin(3wr))
which represented a peak three times a year (every four months) and so on until no more
harmonics were required in the model. The harmonics were added in pairs and if either
of the terms was significant both were included in the model. This method of modelling
can model a complicated pattern of variation, however the coefficients cannot be used
directly to compute an amplitude and phase for the seasonal curve. Table 3.7 shows the
results for male deaths from respiratory disease, the terms ‘cos2day’ and ‘sin2day’
indicate the first harmonic after the sinusoid, ‘cos3day’ and ‘sin3day’ the second
harmonic etc.
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Table 3.7 Results from the Poisson harmonic model for male deaths from respiratory disease

Variable Coeff SE t-value
Const 2.2796 0.0230 99.04
Trend -0.0002 0.0001 -1.28
Coslday 0.2768 0.0067 41.46
Sin 1day 0.1269 0.0159 8.00
Cos2day 0.0523 0.0067 7.81
Sin2day -0.0197 0.0099 -1.99
Cos3day 0.0135 0.0067 2.01
Sin3day -0.0175 0.0083 2.11
Cos4day 0.0328 0.0067 4.87
Sindday -0.0161 0.0077 -2.10
Cos5day 0.0218 0.0067 3.24
Sin5day -0.0068 0.0074 -0.92
Cos6day 0.0170 0.0067 2.56
Sin6day -0.0029 0.0072 -0.40

Before the residuals from the above model were related to the residuals from the fit to
temperature they were examined to see whether there was any remaining seasonal
variation which had not been accounted for in the modelling procedure (figure 3.17). The

residual series ~ JV(0,1) did not display any seasonal pattern (figure 3.17).
Figure 3.17 Periodogram of unstandardised residuals from Poisson harmonic fit to male
deaths from respiratory disease.
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The ACF and PACEF plots of the harmonic residuals indicated that the residual series was
not stationary (figure 3.18)

Figure 3.18 ACF’s and PACF’s for residual series from Poisson harmonic model
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When the differenced series was examined (figure 3.19) the ACF plot showed a cut-off
at lag 1 while the PACF plots showed exponential decay, indicating a moving average
process of lag 1. Therefore the model which removed the autocorrelation from the

residual series for male deaths from respiratory disease was an ARIMA(0,1,1) model.

Figure 3.19 ACF’s and PACEF’s for differenced residual series from a Poisson harmonic

model
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The time series model that removed all autocorrelation from the residual series for

temperature was an ARIMA(1,0,1) model.
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Once all seasonality and autocorrelation had been removed from the data it was possible
to investigate any remaining relationship between the two series. A stepwise regression
modelling approach was used with the residuals from the mortality series as the
dependent variable and lagged values of the temperature residuals as the explanatory
variables. This modelling procedure enabled the lag at which temperature had the
greatest effect on mortality for each cause of death to be established. In the first model
the data was lagged by up to eight days.

Table 3.8 shows, for both male and female deaths from the three causes of mortality, the
lagged days in which there was a significant relationship between the temperature
residuals and the mortality residuals.

For most causes of death there was a lag of at least one day before the effect of a change
in temperature was reflected by a change in the number of deaths. The relationship with
temperature was greatest for male deaths from IHD. For deaths from CVD and female
deaths from IHD there was a fairly strong relationship with temperature. Deaths from
respiratory disease however did not appear to show much of a relationship with

temperature within the 8 day period.

Table 3.8 Significance of relationship between deaths and temperature at lag days

Males Females
Lag day Resp CVD IHD  |Resp CVD THD
same day *
1 day later ok * e
2 days later | ** ok e * ek -
3 days later * * ek el o *
4 days later ek *kk
5 days later e esfe s
6 days later ok skl * s
7 days later ok Ak
8 days later ek ok *

“** represents p<0.05, “**’ represents p< 0.01 and ‘“***’ represents p<0.001.

In all of the cases above, the coefficient in the stepwise model was negative, indicating
an inverse relationship between the two residual series. A negative deviation from the
yearly pattern of temperature, a cold spell, was associated with a positive deviation from
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the yearly mortality pattern (an increase in mortality). The model also showed at which

lag the effect was strongest.

This modelling procedure provided an insight into the data, it showed that there was a
negative relationship between deaths and temperature once the seasonal pattern had been
removed from the series and that this relationship was strongest a few days after the day
in which the temperature was recorded.

This method however does not establish the size of the relationship between mortality
and temperature. While we know there is a relationship, we cannot establish how this
relationship affects the population in terms of the number of deaths attributable to short
term temperature changes. The reason that the effect cannot be measured is that we are
dealing with two series that are, in effect, residuals of residuals. It would be almost
impossible to arrive at a sensible interpretation of the results of the stepwise regression
modelling. Other faults that occur in this modelling procedure are that the significance of
the harmonic terms were assessed before any autocorrelation was removed. The effect of
assessing significance before removing autocorrelation may result in terms appearing
significant when in fact they are not strictly significant. Thus a modified version of the

modelling procedure was used to re-model the data.

3.3.5 Residual regression (Method 2)

Although the analysis of mortality using all harmonics appeared to give an insight into
the seasonal patterns present in the data, a more appropriate method would have been to
remove the autocorrelation first, fit the seasonal curves, and then compare the two
residual series. Thus method 2 uses the same procedures as method 1 but they are

performed in a different order.

An ARIMA(0,1,1) was again found to be the best time series model for the mortality data.

Obtaining a time series model for the temperature data however proved more difficult,

all combinations of models up to and including an ARIMA(3,2,3) were fitted to the data

and the residuals were examined, but none of the models gave residual series free of
autocorrelation. A plot (Figure 3.1) of the original data showed a clear seasonal pattern.
It is likely that even if we accounted for the autocorrelation in the data a seasonal pattern

would still be statistically significant. Thus it was felt that fitting the seasonal term
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before accounting for autocorrelation in this case was not a problem as it was clearly
highly significant. Thus for the modelling of temperature a simple sinusoid was fitted to
the data before the autocorrelation was examined. It was found that after accounting for

the sinusoidal fit an ARIMA(1,0,1) model removed the autocorrelation from the residuals.

Now that the autocorrelation had been removed from the mortality data the harmonic
terms which may be significant were entered into the models. For male deaths from
respiratory disease none of the previously significant harmonic terms were significant.
The data could be modelled straightforwardly by an ARIMA (0,1,1) model and a simple
sinusoidal curve. For the temperature data the first harmonic was significant and was
therefore included in the model. Thus in terms of the temperature variable method 2 was
only very slightly different from method 1. It was decided to use the residual series from
method 2 as it used the ARIMA(1,0,1) modelling before the harmonic, thus following
the principle that autocorrelation should be removed first before considering any other
terms. For the mortality data the use of the ARIMA modelling first meant that there were
no significant harmonics. The patterns observed in daily deaths from respiratory disease,
CVD and IHD for both males and females could be described adequately by a moving
average and sinusoidal term. This feature of the data demonstrates the effect of not

accounting for autocorrelation in a modelling procedure.

By removing the autocorrelation first, the data to be modelled by the seasonal curve were

no longer in the form of ‘counts’, therefore a model of the form ro=a + Acos(wt + p)
was fitted to the data where r, are the residuals from the ARIMA model. This model

assumed that the 7 followed a normal distribution. A histogram of the residuals (figure

3.20) showed this assumption to be valid. The residuals » t* from the sinusoidal fit on the
residuals 7y from the ARIMA fit were used for regression analysis with the temperature

residuals. The results are shown in Table 3.9.
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Figure 3.20 Histogram of residuals from ARIMA(0,1,1) fit to male deaths from

respiratory disease
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Table 3.9 Significance ofrelationship between deaths and temperature at lag days

Males Females
Lag day Resp CVD [HD Resp CVD [HD
same day *
1 day later * * *
2 days later Hkok Kk ok Kok
3 days later * * *
4 days later * o
5 days later o *
6 days later * * *
7 days later

skoksk

8 days later

As can be seen from the table one of the effects of removing the autocorrelation first was
that fewer days were significant and that the strength of the significance of the effects
was diminished. The fact that fewer results were significant using this method would
indicate that we were perhaps incurring Type I errors using method 1. However as with

method 1 the interpretation of the results from method 2 is complex. We are relating the
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‘residuals of the residuals of deaths’ to the ‘residuals of the residuals of temperature’. It
is virtually impossible to make any sensible interpretation of the results. A method that
accounted for all the features of the data but still kept the data in its raw form was

required.

3.3.6 Arima Modelling

A method which accounted for the autocorrelation, the non-normality and the seasonal
aspects of the mortality data and which related this data directly to the temperature data
was developed. The data, being in the form of counts, followed a Poisson distribution.
As is the case in most circumstances concerning count data, when the data were
transformed using the log transformation the transformed data did not deviate
substantially from a normal distribution. Thus the modelling procedure was now
concerned only with the logged data. The ACF plot of the logged data showed slow
exponential decline, indicating that the logged data required to be differenced before any
ARIMA models could be fitted. The resulting data set after differencing displayed the
properties of normality (figure 3.21) and stationarity (figure 3.22) with the ACF and
PACEF plots, indicating that the data followed an ARIMA(0,1,1) model.

Figure 3.21 Histogram of logged differenced male respiratory deaths
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Figure 3.22 ACF’s and PACF’s of differenced logged data
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This replicated the model chosen in 3.3.4. Thus an MA(1) model was fitted to the
logged, differenced data.

The inclusion of a sine and a cosine term in the model to represent a simple sinusoidal fit
was significant and so these terms remained in the final model. The lagged temperature
terms were also added to the model. A model that includes differencing of the dependent
variables means that each explanatory term used in the model also has to be differenced.

For example, in the simple case, instead of a model of the form y, =a +J3x¢t we have
yt—ytx=Pt(xt—xt,), the constant term reduces to zero due to differencing. In a

stationary series we would expect the mean value of y7- ytx to equal zero. The fitted

model was therefore ofthe form
In(>?)- In(G*_j)=aj(sin(/) - sin(f-1)) +a2(cos(0- cos(/-1)) + P {xt - xf ™)

(3.6)
+1j(xt_, - xt_2)+ P2(xt-2 “ mI-3 5+ +M xt-,~\Vn-1))+zt+01-1

where the y¢ are the number of deaths at time ¢, x¢ represents the temperature at time

t,and the zt are the error terms which represent a moving average or MA{\) model.
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The model can be thought of as comprising three components, a seasonal part (the sine
and cosine terms), a temperature part and a moving average part. The moving average
part serves to remove all autocorrelation from the model; it has no explanatory value but
is a necessary feature in the model.

The coefficients of the sine and cosine terms describe the amplitude and phase of the
seasonal variation in deaths in the same way as in Chapter 2. In this case the seasonal
part is the seasonal pattern in mortality that is apparent after temperature and
autocorrelation have been accounted for. This could be seen as unexplained seasonality

in mortality. Interpretation of the temperature coefficients is best tackled by considering

four scenarios.

Scenario 1 - If we consider the first scenario of a constant temperature over all lags
except for lag two ‘2 days ago’ where the temperature dropped by 1 degree from its
previous constant temperature. Thus all the changes in temperature from day to day were
zero except at lag 2 where it was -1. If we ignore the moving average term and the

seasonality term then the effect of this temperature drop two days ago is

ln(yr) - ln(yrul) - "182
In(y, / y.) =P,
Yol ¥y =exp(=4,)

To express this as a percentage increase from y, , to y, we have

% increase = ((y, —y,_,)/ y,.,) ¥100
= (! Yo = Yoy ! ¥12) ¥100
= (7 /y4)=1)*100
= (exp(—f,) —1)*100 3.7)

Using this method we can attach a percentage increase in deaths at day ¢ (today) due to a

drop in temperature 2 days ago, day ¢ —2.
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Scenario 2 - In the case of constantly decreasing temperature at a rate of 1°C per day for

the past n days the overall increase in deaths from » days ago to today would be

% increase = (exp(—8, — B, = By —eeeern. -B,)—-1)*100

Scenario 3 - If we had constant increasing temperature we would experience a
percentage decrease in deaths from day to day.

Scenario 4 - If temperature was constant then all the # terms would disappear and the
percentage change in deaths would be determined purely by the underlying seasonal
pattern and the moving average term.

The effect of the seasonal component of the model is that the percentage increase in
deaths from day to day does not depend purely on the temperature changes in previous
days but also on the time of year that these changes are taking place. If the underlying
seasonal pattern is increasing towards its peak then the actual increase in deaths due to a
drop in temperature will be greater than at a time when the seasonal curve is declining.
The seasonal curve represents patterns in deaths which are not temperature dependent, as
does the moving average term. These could be the presence of flu epidemics, national
holidays e.g. Christmas and other seasonally fluctuating variables. Generally, however,
the coefficients of these terms were very small and the actual effect that these terms had
on the percentage change in deaths from day to day was negligible. In the rest of the
analyses scenario 1 is adopted and the effect, on mortality, of a drop in temperature of

1°C at n lag days 1s measured.

3.3.6 (a) Flu deaths

The size of the winter peak in deaths varied considerably from year to year and large
increases in deaths from all causes appeared to correspond with influenza epidemics.

Several authors have described the extent to which an influenza epidemic increases the
death rate from causes not recorded as influenza >>%*, In this analysis the number of
recorded influenza deaths were included in the model in order to reduce the possibility of

confounding. Influenza epidemics tend to occur in winter, and account for an increase in
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deaths from all causes. If influenza deaths were not included in the model we might

attribute more winter mortality to temperature than actually existed.

However, there is also the argument that influenza epidemics are related to climate and if
the epidemic in turn increases the death rate then this increase is also related to climate.
There is no way to separate the effects of influenza epidemics and temperature on the
overall death rate. However, the term for influenza deaths was highly significant in each
model and was included in the modelling procedure. There are, on average over 100
recorded deaths per year from flu while there are on average over 7000 deaths per year
from respiratory disease. It is difficult to estimate the average number of deaths from
respiratory disease that are associated with a flu death. The final model now included a
moving average component, a seasonal component a temperature component and a flu

component and was of the form

In(y,) —In(y t—l) =0y (sin(?) —sin(z —1)) + o (cos(t) —cos(t —1)) + /30 (x; —x t—l)
(3.8)
+/31 (xt-—l “xz—z) + ,82 (xt_2 —xt—3)+""+ﬂ" (X, —xt_n_l))ﬂﬁut +z, + Gzt—l

The residuals from this model were checked for normality, seasonality and

autocorrelation (figure 3.23).

Figure 3.23 Residual checks on final ARTMA model
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Figure 3.23 (cont) Residual checks on final ARIMA model

Residuals from ARIMA(0,1,1) fit to Periodogramofresiduals fromARIMA (0,1,1) fit to
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The residuals were found to display no seasonal pattern, no autocorrelation, were
stationary and normally distributed. This method of modelling the data therefore
accounted for the autocorrelation and provided a model in which the coefficients could
be easily interpreted and converted into a meaningful figure.

Using this model the data were analysed by cause of death and sex. This analysis was
performed for each of the causes of interest, respiratory disease, ischaemic heart disease
and cerebrovascular disease. The lagged temperature up to 20 days was included in the
model. The number of days included was greater than previous analysis because the
previous simple correlation work described in 3.3.2 indicated that the lag effect may be
around 15-20 days for deaths from respiratory disease. All lag days were included in the
model even if they were not significant. This was because of the possible cumulative
nature of the results and because the variables were closely related to each other. It
would be wrong to have a model where the effect of temperature at lags of say 2 and 17
days were the only effects included in the model simply because they were the only ones
which were significant. The model provided a detailed but slightly complicated picture
of the relationship between temperature and deaths. The results from the model applied
to daily male deaths from respiratory disease are shown in table 3.10.

Simply looking at these results in the form of a table it is difficult to appreciate their
implication. The moving average term, the cosine and the sine terms are significant as is
the daily number of flu deaths, however the relationship between daily temperature and
male deaths from respiratory disease is not clear.
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Table 3.10 Results from the ARIMA model for male deaths from respiratory disease

Model term coeff se p-value
MA 0.9568 0.0043 0.0000
cos 0.1682 0.0342 0.0000
sin 0.1025 0.0260 0.0001
day 0 0.0045 0.0041 0.1627
day 1 -0.0006 0.0041 0.8865
day 2 -0.0072 0.0041 0.0754
day 3 -0.0003 0.0041 0.9411
day 4 0.0007 0.0041 0.8705
day 5 -0.0006 0.0041 0.8718
day 6 -0.0044 0.0041 0.2829
day 7 0.0028 0.0041 0.4867
day 8 -0.0038 0.0041 0.3431
day 9 -0.0044 0.0041 0.2801
day 10 0.0013 0.0041 0.7551
day 11 -0.0032 0.0041 0.4273
day 12 0.0043 0.0041 0.2990
day 13 -0.0025 0.0041 0.5266
day 14 -0.0039 0.0041 0.3375
day 15 -0.0014 0.0034 0.6675
day 16 -0.0036 0.0032 0.2484
day 17 0.0093 0.0038 0.0145
day 18 -0.0062 0.0038 0.1033
day 19 0.0044 0.0038 0.2442
day 20 -0.0022 0.0031 0.4660
Flu 0.1359 0.1327 0.0000

Figure 3.24 displays the results from the ARIMA modelling procedure in terms of the
percentage increase in deaths from respiratory disease due to a drop in temperature of

1°C at each lagged day.
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Figure 3.24 Results from the ARIMA model daily male deaths from respiratory disease

Percent change in male deaths from respiratory disease

associated with a fall in temperature of 1 degree
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As can be seen from the graph there is considerable day to day variation. The effect of a
drop in temperature of 1°C appears to result in an increase in male deaths, the most

significant increase in deaths occurs at a lag of 17 days, p=0.015. This is close to the

value of 15 days lag discussed in 3.2.2

There is considerable noise present in the daily data and to try to reduce the amount of
noise in the results various combinations of days were used. These included 3 or 5 day
moving average mortality and temperature data, or simply grouping the days into groups,
for example 0-2, 3-5, 6-8 days etc. However, it was felt that for the purpose of
explanations of patterns and further development of methods it may be more sensible to
use weekly numbers of deaths. Using the weekly number of deaths the pattern arising
from the modelling procedure was clearer and stronger. The cosine and sine terms were
not significant in the model and this made the process more easy to interpret. The
analysis was carried out using the logged differenced ARIMA(0,1,1) method for male
respiratory deaths. The results from this modelling procedure are given in table 3.11 and
are represented graphically in figure 3.25. Tables 3.12 to 3.15 show the results of
applying the model to male and female deaths from respiratory disease, IHD, CVD and
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deaths from all causes. In these models week 0 indicates the week in which the fall in
temperature occurred, this is equivalent to days 0 to 6, week 1 is equivalent to days 7-13

and week 2 is equivalent to days 14-20.

Table 3.11 Results from the ARIMA model weekly male deaths from respiratory disease

Lag week Coeff se prob

WeekO -0.0082 0.0027 0.0031
Week 1 -0.0118 0.0031 0.0002
Week 2 -0.0084 0.0031 0.0069
Week 3 -0.0071 0.0031 0.0228
Week 4 -0.0059 0.0031 0.0560
Week 5 -0.0038 0.0027 0.1649
Flu 0.0307 0.0023 0.0000
MA/AR 0.8390 0.0221 0.0000

Figure 3.25 Results from the ARIMA model weekly male deaths from respiratory

disease

Percent change in male deaths from respiratory disease

associated with a fall in temperature of 1 degree



The interpretation of the weekly results is clearer. Using equation 3.7 a fall in
temperature of 1°C is associated with an increase in male deaths from respiratory disease
of (exp(0.0113)-1)100 = 1.14% one week later. The effect persists for several weeks
however at a reduced level at later lags. One recorded death from flu is associated with
an increase in male deaths from respiratory disease of over 3%. Using the weekly model,
the cumulative effect for each group of seven days is modelled and therefore single days
such as at lag 17 are not identified, but a more general picture of the effect of
temperature on mortality is achieved. The greatest effect for females occurs at a lag of
two weeks, when the increase in mortality associated with a fall in temperature of 1°C is

over 1.5%.

Table 3.12 Results from ARIMA model for weekly deaths from respiratory disease

Males Females

coeff se p coeff se p

Resp  WeekO | -0.0082 0.0027 <0.01 -0.0044 0.0030 ns
Week1 -0.0113  0.0031 <0.01 -0.0105 0.0031 <0.01
Week2 | -0.0086 0.0031 <0.01 -0.0156 0.0031 <0.01
Week3 -0.0067 0.0031 <0.01 -0.0115 0.0031 <0.01
Week4 | -0.0063  0.0031 <0.05 -0.0014 0.0031 ns
Week5 -0.0041  0.0027 ns -0.0062 0.0031 <0.05
Flu 0.0307  0.0023 <0.01 0.0141 0.0013 <0.01
MA 0.8390  0.0221 <0.01 0.5696 0.0328 <0.01

For deaths from ischaemic heart disease (table 3.13) the increases in mortality were
slightly lower than for respiratory disease in the week of the fall in temperature (week 0)
and one week later (week 1). A significant increase in mortality from this cause only
lasted for these two weeks for male deaths and for a further week for female deaths.

Deaths from cerebrovascular (table 3.14) disease showed a different pattern. The
increase in mortality was much less than that for respiratory disease and ischaemic heart
disease. A fall in temperature of 1°C is associated with an increase in male and female
deaths from cerebrovascular disease of around 0.8% one week later. This effect persisted

for longer than that for male deaths from ischaemic heart disease.
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Table 3.13 Results from ARIMA model for weekly deaths from ischaemic heart disease

Males Females

coeff se P coeff se P

IHD  WeekO | -0.0094 0.0016 <0.01 -0.0087 0.0017 <0.01
Weekl -0.0107  0.0020 <0.01 -0.0089 0.0020 <0.01
Week2 | -0.0008 0.0019 ns -0.0047 0.0020  <0.05
Week3 -0.0005  0.0019 ns -0.0034  0.0020 ns
Week4 | -0.0020 0.0019 ns 0.0030 0.0020 ns
Week5 0.0016  0.0016 ns -0.0009 0.0017 ns
Flu 0.0060  0.0012 <0.01 0.0043 0.0006 <0.01

MA 0.9605 0.0112 <0.01 09606 0.0111 <0.01

Table 3.14 Results from ARIMA model for weekly deaths from cerebrovascular disecase

Males Females

coeff se P coeff se p

CVD  WeekO | -0.0057 0.0024 <0.05 -0.0063 0.0020 <0.01
Weekl -0.0066  0.0029 <0.05 -0.0090 0.0024 <0.01
Week2 | -0.0058  0.0029 <0.05 -0.0024 0.0024 ns
Week3 -0.0052  0.0029 ns -0.0024  0.0024 ns
Week4 | -0.0067 0.0029 <0.05 0.0004 0.0023 ns
WeekS5 0.0060  0.0024 <0.05 -0.0044 0.0020 <0.05
Flu 0.0093  0.0018 <0.01 0.0054 0.0007 <0.01

MA 0.9668  0.0104 <0.01 096% 0.0101 <0.01
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An overall summary of the effect of falls in temperature on mortality can be obtained by
considering deaths from all causes (table 3.15). The most significant increase in
mortality occurs one week after the fall in temperature although there is also an
immediate associated increase in deaths. The average increase in mortality associated
with a fall in temperature of 1°C is around 1% however this varies by cause of death and

lag week.

Table 3.15 Results from ARIMA model for weekly deaths from all causes

Males Females

coeff se p coeff se p

All Week0 | -0.0056 0.0010 <0.01 -0.0046 0.0010 <0.01
Weekl1 -0.0080 0.0011 <0.01 -0.0086 0.0011 <0.01
Week2 | -0.0013  0.0011 ns -0.0032 0.0011 <0.01
Week3 -0.0014  0.0011 ns -0.0033  0.0010 <0.01
Week4 | -0.0027 0.0011 <0.05 0.0001 0.0010 ns
WeekS5 0.0011 0.0010 ns -0.0005 0.0010 ns
Flu 0.0104  0.0008 <0.01 -0.0005 0.0004 <0.01

MA 0.7899  0.0249 <0.01 0.6589 0.0304 <0.01

Residual checks on the models involving ACF and PACF plots, histograms and
periodograms implied that the models were good fits of the data. This method overcame
the problem of Poisson data by logging the data and provided an adequate means of
analysis. However a more appropriate way to deal with Poisson data is to use Poisson

regression methods.
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3.3.7 Poisson regression methods

Traditional regression methods for continuous data involve fitting a model of the form
Y = Xf +e where the elements of e are assumed to be independent and identically
distributed, iid N(0,o"), the components of ¥ are independent normal variables with

constant variance o> and

E(y;) = w; whete p1; =x; 8 (3.9)

When dealing with counted data Poisson methods are more appropriate. Poisson
regression models are a specific example of generalised linear models. In the case of

generalised linear models we estimate a set of parameters S such that a linear

combination of the S is equal to a function of the expected value of ¥,. For example
g(u,)=x! B where g is a monotone, differentiable function called the link function and

u; = E(Y,). In the case of Poisson models, the link function g(z;) is the logarithmic

function.

Mortality data can be modelled by considering independent random variables

) AT ,Yy to be the number of deaths occurring at successive time intervals

t=1,......,N where E(Y,)= pu,.If we assume that the deaths among different individuals
are independent events then the number of deaths, Y, in a fixed time period can be
modelled by a Poisson distribution. A histogram of weekly mortality figures for male
deaths from respiratory disease in Scotland showed that the data we are dealing with
followed the Poisson distribution (figure 3.26). However, the variance is considerably
larger than the mean, there were a mean of 68 male deaths from respiratory disease in a
week but variance of the distribution was 554. With Poisson data this feature is known as
overdispersion. In a Poisson process a general assumption is that of constant variance,

which is equal to the mean i.e. E(y,) = g,= Var(y,). Overdispersion occurs when the

variance is in fact greater than the mean i.e. Var(y,) > E(y,).
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Figure 3.26 Histogram of weekly male deaths from respiratory disease
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In a standard Poisson model using the log link we have log{/ui)=x](3, giving
yi=exp(x{/?) +et where E(ei)=0,var(e,) =//,and jui = E{Y\/3). When
overdispersion occurs var(e,.)=rand r > 1. For a more detailed discussion of over-

dispersion in Poisson models see Cox&5, Breslow& and McCullagh & Nelder§7.

Thus the weekly mortality data has been identified as a Poisson time series. Previously,
after transformation, ARIMA time series methods had provided a suitable method of
analysis, but this method did not recognise the Poisson nature of the data. However,
traditional Poisson regression analysis assumes that the events are independent, and,
having identified that the data are a time series, it is clear that the events are not
independent. One possible method would be to use Poisson modelling after removal of
outliers however Zeger9 proposed a method of dealing with time series data when the

data to be modelled were Poisson.
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3.3.8 Zeger’s method

We have a time series of counts i.e. the data follow a Poisson distribution and display
serial autocorrelation. Overdispersion, was found to be a feature of all of the data sets
used in this analysis and tends to be the norm rather than the exception in

epidemiological studies.

Cox® described two types of models for time dependent data, the first ‘observation

driven’ where the conditional distribution of y, is driven by previous values y,_,...., y,

and secondly ‘parameter driven’ where the autocorrelation in the data is introduced due
to some latent process. In the case of this project the parameter driven model is
appropriate. The number of deaths one week does not directly affect the number of
deaths the following week. The data are correlated because they are ordered in time, and
because other factors which may be driving the process, are also ordered in time. This
process introduces both autocorrelation and overdispersion into the mortality data y,. In

the case of climate related deaths the latent process is the unobservable noise process &,

present in the temperature data.

Instead of the usual Poisson regression model (equation 3.9) where

E(y,) =y, =exp(x,f) and Var(y,) =

the y, are no longer independent and the distribution of y, is conditional on ¢,. So we

have

u, =E(y, |5,) =exp(x,f)e, and @, =Var(y,|£,)=u, (3.10)

Suppose &,is an unobserved stationary process with E(g,) =1 and Var(g,) = o* then

#, =E(y,) = exp(x, f) (ERYY)

and

v, =Var(y) = u, +0’ (3.12)




The proof of (3.12) can be found in Williams®. The basis is the identity

Var(y,) = E(Var(yz | 8:)) + Var(E(yr | &, )
=E(u,)+ var(exp(x;ﬁ)é',)

=y +o’yy
The latent process introduces both overdispersion and autocorrelation into y,

To estimate the coefficients S we use a time series analogue to the method discussed by

McCullagh & Nelder® who use the estimating equation
U(B)=D"r"(y-f)=0 (3.13)

to give an approximately unbiased and asymptotically normally distributed estimate of

F.Inthiscase ¥V 1s Cow(y) and D :%L
t

With independent data, V' is diagonal however with time series data V' will contain off
diagonal elements. Liang and Zeger®® proposed a method for dealing with repeated
measures data, the time series case follows a similar development.

The covariance matrix consists of two elements, the variance associated with £ and the

variance associated with &, the autocorrelation.

So we have

U(B)=D"V"(B,0)0y-2)=0 (3.14)
To generalise the estimating equation to be applicable to time series data we specify

R, is nxn with j,k element p (| j—k|)

i.e. the autocorrelation matrix,
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Then in the parameter driven model
V =Var(Y)= A+’ AR,A where A is diag(i,....44,) -
So if there was no autocorrelation present in the data we have
V=p+o’u® =Cov(y)

The estimating equationis D'V ~™'(y—u) if we can estimate & or & when B is
known.

Liang and Zeger* show that

Vy =limn(P V' D) (D7 Cov(x, )V ' D)D"V ' D) (3.15)

N=-reQ

if Cov(Y,)=V then

Vo =1imn@'V'D)Y' DOV v DY D'V D)™

n—w

=limn(D'V DY
1m

N—=yc0

Now to develop an iterative procedure to estimate ,lAi’ for a given value of §(8) we can

refer back to the Newton-Raphson method of quasi-likelihood given in McCullagh &
Nelder”. They show

Bi=p8 +@DV'D)' DV (y-u) (3.16)
from this we can get

B, =(DVIDYN(D'VIDB + DTV (y - p))

=@V DY (DVIDB+(y— 1)
— (DY D) (DY 'Z) (3.17)
where Z = D7 B+ (y— 1)
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From this method we have a simple iterative procedure for estimating ,3 The whole
procedure can be described as ‘given an estimation procedure for 4(8), A is found by

alternately solving above for éﬂ given 9:., then using the updated ,Z;'H to find éjﬂ until

convergence’.
However, an underlying problem is the variance matrix ¥ which is difficult to invert as
it contains off-diagonal elements relating to serial autocorrelation.
To simplify the inversion of V' put

C = diag(p, + 0 u1?)
and approximate ¥ with ¥, = C"*R(a)C""* where R(a) is the autocorrelation matrix
for a stationary autoregressive process.

Now f3 - 15 the solution of the estimating equation

DV (y—)=0

To enable the inversion of ¥, we create a matrix L that applies the autoregressive filter,

1.e. the elements of Ly are

Vi =Yg —O Y g &Yy (t>p)
We have
Ly = 1 0 0] B ylm
-Q, 1 0 0 ¥,
-, -, 1 0 0 Vs
2 T PO a,, —-a, 1 A

Thus we can substitute L'L for R(a) which is our symmetric autocorrelation matrix.
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For example, if we only had a series of 4 times with each displaying autocorrelation then

we have
L= 1 —a,  —a, - 1 o o0 ol
0 1 -, -a, -, 1 0 0
0 0 1 -a, -a, -a, 1 0
0 0 0 1 -, —a, —a, 1
1+ 30, -, +2a,a, —a, +a,a, —a, |
—a, +2a,a, 1+2a? -a, +a,a, -a,
-, +a,a, -, +a,o, 1+a; -a,
-a, -a, -, 1
Thus we have ¥, = C'?R(a)C"?, V;' = C™"* L[ LC™? (3.18)

The iterative weighted least squares procedure now has the form
B =@V D) (DY)
= (DTC—I/ZLTLc—lI2D)—1 (DTc—IIZLTLc-IIZZ)

=[(LC'* D) (LC™> D)™ (LC™2 D) LC™VZ (3.19)

This can be applied to the data using a fairly simple iterative weighted and filtered least

squares algorithm.
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The algorithin involves the following steps -

M

t

(i) weight the current values of D= and Z by the inverses of the standard

Ly —1/2
deviations, C™'";

a

t

(ii) filter the normalised values, C™' and C™V?Z, with a filter for an autoregressive

process of order p

(iii) solve the least squares equations

(iv) iterate (1) to (ii1) to convergence.

The parameters o® the measure of overdispersion and 0, the vector of autocorrelation
coefficients can be estimated from
Var(y,) = p, + 01}

We have o’ =WVar(y,)—p)/ 1
=Z{(y: _ﬂr)"lar}/Z/’lf
=1 t=1
and p,(7) can be estimated as

(D) =6 S D= A Oe — BV S i (3.20)

t=r+] t=1+1

The extra Poisson variation can be removed by fitting a Gamma model. If we have
g(»,)=x] B+, where & ~N(0,7°0*) then we fit to the vector of residuals ¢,, a
Gamma model and get fitted values v, , then the ratio &, /v, =y, ~ N(0,c%). The values

obtained from this ratio are free from overdispersion.

The autocorrelation is removed by filtering. Filtering in time series involves establishing

the form of the autocorrelation and transforming the data to remove the autocorrelation.

The data y, are transformed into z, using a transformation of the form z, = Zgﬁj ¥,
t,j=1

where the ¢, are obtained from the autoregressive fit to , the adjusted residuals.
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An S-PLUS function was written by Scott Zeger to apply this methodology to real data.
The function involved fitting a generalised linear model using the Poisson link function,
estimating the overdispersion by fitting a gamma model to the residuals and removing
the overdispersion as described above. An auto-regressive process of order AR(1) was
then fitted to the adjusted residuals to obtain the filtering parameters. The linear model

was re-fitted to the new data z, and updated estimates of S and V' the covariance

matrix were obtained. The percentage change in the value between the original and the

updated values of £ determined whether the iterative process was repeated again or not.

The results of the above modelling procedure tell the same story as the results from the
ARIMA modelling described in section 3.3.5. The greatest effects of temperature on
deaths from respiratory disease were experienced after 1 week for males and after two
weeks for females and these effects remained significant for up to 4 or 5 weeks. For
deaths from IHD the effect is more immediate for both males (1% increase after 1 week)
and females (0.9%) and for deaths from CVD the relationship with temperature is not as
strong as for the other two disease categories. When considering deaths from all causes
the effect is more immediate in males than in females but there is still strong evidence of
a causal lagged relationship between outdoor temperature and mortality. A more detailed

comparison of the results from the different methods is described in section 3.3.9(b).

3.3.9 Comparison of methods

The modelling procedures can be compared by assessing the validity of the assumptions
made by each modelling procedure and by comparing the results from the various
methods in more detail. In assessing the validity of the assumptions made one can study
the features of the series to be modelled. When comparing results one can look at the
value of the coefficients, the size of the standard errors, the overall fit of the models or

can use various tests on the residuals.

The detailed comparison of methods concerns only the ARIMA method, Poisson

regression and Zeger’s method. The two residual regression methods are not used in the

comparison, as the results from these methods were a stepping stone towards the
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ARIMA method. Figure 3.27 shows the development of the models in the form of a flow

chart.

Figure 3.27 Flow chart of method development
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3.3.9 (a) Validity of assumptions

When assessing the appropriate method to use in the analysis of any data set the first
considerations should be the assumptions about the data that will be made during
analysis. The most common assumption concerns the statistical distribution from which

the data arise and most methodology has been developed for the exponential family of
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distributions. Other frequently made assumptions concern the distribution of the
residuals. The residuals should be normally distributed and display no temporal pattern

such as increasing in value over time or autocorrelation.

ARIMA modelling assumes that the data come from a Normal distribution, which is not
the case for these data. Generally it can be assumed that count data will arise from the
Poisson distribution. McCullagh & Nelder® state that ‘Even with counted data it is often
wise to assume that overdispersion is present unless the data or prior information indicate
otherwise.” The data we are dealing with arise from a Poisson distribution with
overdispersion. Thus the data does not meet the distributional assumptions necessary for
the ARIMA method to be applied appropriately. However, the logged data could be
assumed to be normal and this logged data does meet the distributional assumptions.
This method, however, could not adjust the regression estimates to control for the

overdispersion present in the data.

The Poisson regression method recognised that the data came from a Poisson distribution
and was able to adjust the estimates to account for overdispersion, however this method

could not deal with the autocorrelation in the data.

Zeger’s method was designed specifically to deal with a time series of counts. The
modelling procedure was created for data from a Poisson distribution with
overdispersion and autocorrelation. The assumptions of the method were entirely
appropriate for the data in this case, as the method was developed for data of the type

used in this thesis.

One major difference between the ARIMA method and Zeger’s method is that Zeger’s
method models the data as a AR process, while using the ARIMA modelling techniques
the MA process was found to more adequately describe the data. In the context of this
work the time-series component of the modelling procedure is included to prevent terms
in the model appearing significant when in fact they are just significant due to the
autocorrelation present in both series. While standard statistical tests indicated that the
autocorrelation followed an MA process, either an MA or an AR process will remove the

majority of the autocorrelation and will prevent the likelihood of incwrring Type 1T
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errors. An examination of the results of the modelling procedures and the residuals

demonstrate this.

3.3.9 (b) Comparison of methods & results

The development of the methods concentrated mainly on ARIMA and Zeger’s method.
However, as the Zeger method can be seen as a Poisson time series, results from a
Poisson regression without a time series element were included for comparative
purposes. Sinusoidal terms were not included in the models as these were found to be
non-significant earlier on in the modelling procedure. Table 3.16 provides a comparison

of the results from the three methods.

| Table 3.16 Comparison of methods for weekly male deaths from respiratory disease

Model ARIMA ZEGER Poisson Regression
Term coeff se p coeff se P coeff se p
Const - - - 41892  .0067 <0.01 | 4.1898 .0056 <0.01
Trend - - - 2.6%e-7 3.4%e-5 ns 6.2%-6 .2%e-4  Ns

Week 0 | -.0082 .0027 <0.01 | -.0097 .0026 <0.01 | -.0104 .0027 <0.01
Week 1 -0113 .0031 <0.01 | -.0118 .0030 <0.01 | -.0111  .0032 <0.01
Week 2 | -.0086 .0031 <0.01 | -.0079 .0030 <0.05| -.0076  .0032 <0.05
Week3 | -.0067 .0031 <0.05| -.0062 .0030 <0.05| -.0058 .0032 <0.10
Week4 | -.0063 0031 <0.10| -.0049  .0030 ns -.0044  .0032 Ns

Week 5 | -.0041  .0027 ns .0032 0026 ns -.0034  .0027 Ns

Flu 0307  .0023 <0.01 | .0490 0040 <0.01 | .0555 .0037 <0.01

MA/AR | 0.8390 0.0221 <0.01 | 0.1648 - - - - -

It is clear that there is little difference between the three methods in terms of the size of
the coefficients, the pattern of the coefficients through the weeks, or the size of the
standard errors. However, one difference in terms of the coefficients is that with the
Zeger and Poisson methods a constant and a trend term are included in the model. These
terms are not included in the ARIMA method because the differencing has made the

series stationary with a mean of zero. Thus using Zeget’s or the Poisson method one can

determine the size of the trend and the mean number of deaths per week.
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Firstly, if we consider the p-values we can see that Zeger’s method and the Poisson
regression method are less sensitive; terms which were found to be significant in the
ARIMA analysis were not significant when overdispersion in the Poisson distribution
was accounted for. One term, temperature at week 3 was found to be more significant in
Zeger’s method than the Poisson method. In general, the standard errors were greater in
the Poisson method, slightly lower in the ARIMA method and lowest in Zeger’s method.
Thus Zeger’s method, having accounted for both forms of extra variation, namely auto-
correlation and overdispersion, gave more precise estimates of the coefficients. However,
while the p-values and the standard errors are of interest, the coefficients are the more
relevant measure. It is the coefficients from which estimates of the size of the
relationship between temperature and mortality will be made. Generally, the coefficients
from each model show the same pattern, a fairly large value in week 0 rising to a peak in
week 1 then tailing off through weeks 2-5. Figure 3.28 demonstrates the interpretation of

the coefficients from each model.

Figure 3.28 Percentage increase in male mortality from respiratory disease associated

with a fall in temperature of 1°C
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The Poisson method gives a coefficient that is larger than the other two methods in week
0 but after that the coefficients are always lower. The coefficients from the ARIMA
model are lower than for the Zeger model for weeks 0 & 1, then are consistently higher
for the rest of the time. Figure 3.29 shows a plot of the residuals from each method
averaged over 1 year. The residuals from the ARIMA method are considerably different
to those from the Poisson method and Zeger’s method. The ARIMA residuals appear to
follow the same pattern as the others, but are generally larger. All the methods under-
estimated the size of the unusual peak in male respiratory deaths in the winter of

1989/90. The residuals from these weeks were removed from the data for Figure 3.29.

Figure 3.29 Average value of residuals throughout a year
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Zeger’s method and the Poisson method did not cope well with extreme outliers but on a
comparison of p-values, standard errors and coefficients, Zeger’s method appears to fare
better than either of the other two methods. The residuals from each method appeared to
follow a Normal distribution as shown in figure 3.30.

124




From the histograms the residuals from Zeger’s method have the lowest standard

deviation and have a mean nearer to 0 than the other methods.

Figure 3.30 Distribution ofresiduals from each method
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Zeger’s method was developed to deal with a time series of count data, which is exactly
the data we are dealing with. Overall, there was little to choose between the models, but
due to the lower standard errors and the fact that the method suits the data, Zeger’s

method was the one which was used in the further analysis of climate related ill health.
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In a further comparison of the methods, the effect of including harmonic terms in the
models was assessed. These terms had been found to be non-significant earlier in the
modelling process. They were significant when daily deaths were analysed but when the
analysis changed to focus on weekly deaths they became non-significant. Table 3.17

compares the results from Zeger’s method with and without the harmonic terms.

Table 3.17 Further comparison of Zeger’s model male deaths from respiratory disease

Model Zeger (AR) Zeger (harmonic)

Term coeff se p coeff se P
Const 41892  .0067 <0.01 | 4.1887 0.0066 <0.01
Trend 2.6%e-7 3.4%e-5 ns -8.9%e-6  3.4%e-5 ns
Sin (wt) - - - 0.0147 0.0239 ns
Cos(wt) - - - 0.0547 0.0254 <0.05
Week 0 -0097  .0026 <0.01 | -0.0053 0.0031 ns

Week 1 -0118 0030 <0.01 | -0.0100 0.0032 <0.01
Week 2 -.0079 0030 <0.05 | -0.0061 0.0031 <0.05

Week 3 -.0062 0030  <0.05 | -0.0057 0.0031 ns
Week 4 -.0049 0030 ns -0.0038 0.0031 ns
Week 5 0032 0026 ns -0.0043 0.0030 ns
Flu .0490 .0040  <0.01 | 0.0500 0.0041 <0.01
AR 0.1648 0.0385 <0.01 | 0.1521 0.0385 <0.01

For this particular cause of death one of the harmonic terms was found to be significant.
The harmonic model was also tried for male and female deaths from ischaemic heart
disease and cerebrovascular disease however for both of these causes the harmonic terms
were not significant. The detailed comparison was carried out for male deaths from
respiratory disease as in the previous comparisons. There was no difference between the
constant and the trend term for either of the models in Table 3.17. One of the harmonic
terms is significant but it is difficult to tell if the overall inclusion of both terms
simultaneously is significant. A comparison of deviance is not possible as both models

were modelled separately rather than one being a sub-model of the other.
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The effect of including the harmonic terms is to reduce the size of the coefficients and to
increase the size of the standard errors of the weekly temperature terms. This results in
the effect of temperature in week 0 and week 3 becoming non-significant however the
pattern in temperature effects over the 6 week period remains. The assertion that a 1°C
fall in temperature is associated with a 1% increase in mortality from respiratory disease
one week later and that this effect persists for several weeks is true for both models.

The introduction of the harmonic terms into the model for male deaths from respiratory
disease would indicate that not all the seasonal variation in mortality from this cause is
mediated by temperature. Introduction of these terms reduces the size of the effect of

temperature on mortality.

The serial autocorrelation in the model is still highly significant after including the
harmonic terms although the actual value of the coefficient is slightly reduced.
Introducing the harmonic terms does not negate the use of a term for serial
autocorrelation. However it is possible that the effect of temperature on mortality could
be adequately measured using Poisson regression methods with numerous harmonics to
control for autocorrelation and seasonal patterns not associated with temperature.
Overall, Zeger’s method adjusting for both serial autocorrelation and overdispersion
provides the best method to model these data. The models used in the rest of the section
do not include harmonic terms. This may slightly inflate the temperature coefficients if
significant harmonic terms were excluded but in many of the models they may not have

been significant.
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3.4 The association between mortality and temperature

Having developed a method which was suited to time series data that followed a Poisson
distribution, the method was applied to male and female weekly deaths for respiratory
disease, ischaemic heart disease, cerebrovascular disease and for deaths from all causes
as shown in tables 3.18-3.21.

Table 3.18 Results from Zeger’s method for deaths from respiratory disease

Males Females

coeff se P coeff se p

Resp Constant | 4.1892 0.0067 <0.01 | 4.2167 0.0097 <0.01
Trend 2.55%e-7 3.42%e-5 ns 4.1%e-4  4.9%-5 <0.01
Week0O -0.0097 0.0026  <0.01 | -0.0021  0.0029 ns
Week1 -0.0118 0.0030 <0.01 | -0.0096  0.0030 <0.01
Week2 -.0079 0.0030 <0.01 | -0.0162 0.0031 <0.01
Week3 -0.0062 0.0030  <0.05 | -0.0104 0.0031 <0.01
Week4 -0.0049 0.0030  <0.10 | -0.0031  0.0030 ns
Week5 0.0032 0.0026 ns -0.0054  0.0029 <0.10
Flu 0.0490 0.0040  <0.01 | 0.0432 0.0036 <0.01

AR 0.1648 0.0385 <0.05 | 0.3139 0.0385 <0.01

The results from Zeger’s method can easily be interpreted as the percentage increase in

mortality associated with a fall in temperature of 1°C using equation 3.7: % increase =

(exp(=f )—=1)*100. The results are shown graphically in figures 3.31 and 3.32. The

charts show the percentage increase in mortality associated with a fall in temperature of

1°C occurring at week 0, assuming that the temperature then returns to its previous

value.
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Table 3.19 Results from Zeger’s method for deaths from ischaemic heart disease

Males Females

coeff se p coeff se p
IHD  Constant | 5.2164  0.0039 <0.01 5.0451 0.0043  <0.01
Trend -2.4%e-4  1.9%e-5 <0.01] 4.9%e-5 2.2%e-5 <0.05
Week0 -0.0098  0.0015 <0.01 | -0.0082 0.0017 <0.01
Weekl -0.0103  0.0017 <0.01 | -0.0091 0.0018 <0.01
Week2 -0.0010  0.0018 ns -0.0043 0.0019 <0.05
Week3 -0.0005  0.0018 ns -0.0041 0.0019 <0.05
Week4 -0.0027  0.0017 ns 0.0031 0.0018 <0.10

WeekS5 0.0023  0.0015 ns 0.0007 0.0017 ns
Flu 0.0053  0.0016 <0.01 0.0041 0.0006 <0.01
AR 0.1693  0.0385 <0.05| 0.1928 0.0385 <0.05

Table 3.20 Results from Zeger’s method for deaths from cerebrovascular disease

Males Females

coeff se p coeff se P
CVD  Constant | 4.0843  0.0054 <0.01 4.6075 0.0047 <0.01
Trend 2.3%e-4  2.8%-5 <0.01 1.1%e-4 2.4%-5 <0.01
WeekO -0.0060  0.0023 <0.01 | -0.0063 0.0019 <0.01
Weekl -0.0064  0.0027 <0.05 | -0.0085 0.0022  <0.01

Week2 -0.0060  0.0027 <0.05| -0.0026 0.0022 ns

Week3 -0.0057  0.0027 <0.05| -0.0024 0.0022 ns

Week4 -0.0064  0.0027 <0.05 0.0006 0.0022 ns
Week5 0.0061  0.0023 <0.05| -0.0044 0.0019 <0.05
Flu 0.0093  0.0017 <0.01 0.00064 0.0009 <0.01

AR 0.0835  0.0385 ns 0.1351 0.0385 ns
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Table 3.21 Results from Zeger’s method for deaths from all causes

Males Females
coeff se P coeff se P
All Constant  6.3689  0.0026  <0.01 6.4243 0.0026  <0.01
Trend -0.0001  0.00001 <0.01  0.00002  0.00001 <0.10
WeekO -0.0052  0.0010  <0.01 -0.0039 0.0009 <0.01
Weekl -0.0079  0.0011  <0.01 -0.0091 0.0010  <0.01

Week2 -0.0014  0.0011 ns -0.0029 0.0011  <0.01
Week3 -0.0014  0.0011 ns -0.0029 0.0011  <0.01
Week4 -0.0022  0.0011  <0.05 0.0002 0.0010 ns
Week5 0.0009 0.0010 ns -0.0006 0.0095 ns
Flu 0.0140 0.0017  <0.01 0.0137 0.0011  <0.01
AR 0.2062 0.0385  <0.01 0.2255 0.0385  <0.01

Figure 3.31 Percentage increase in male mortality from cerebrovascular disease,

ischaemic heart disease and respiratory disease associated with a fall in temperature of
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For males, mortality from IHD increases by about 1% during the week in which the fall
in temperature occurred and remains at this increased level for a further week. At two or
more weeks after the fall in temperature there is no further increase in mortality from
IHD. Similar initial increases are observed for deaths from respiratory disease with a
further increase of 0.2% experienced the following week, this increase in mortality falls
away slowly and is still apparent after 5 weeks.

The increase in deaths from CVD is less dramatic, an increase of 0.5% is experienced
and this level remains constant for up to 4 weeks. Over the 6 week period the increase in
male deaths from respiratory disease associated with a fall in temperature of 1°C is over
4%, for IHD the overall increase is 2.5% and this figure is 3% for male deaths from

CVD. This translates into an increase of 3 deaths from respiratory disease, 2 deaths from
CVD and 4.5 deaths from IHD.

Figure 3.32 Percentage increase in female mortality from cerebrovascular disease,

ischaemic heart disease and respiratory disease associated with a fall in temperature of
1°C
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For females, IHD mortality increases by 0.5% on the week that the fall in temperature
occurred, then by 1% one week later and falls away after two weeks. This pattern is

similar to that for male mortality but the increase is not as large. The greatest increase in
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female deaths from respiratory disease occurs two weeks after the fall in temperature,
with an increase in mortality of 1.5%, as with male mortality the increase in deaths from
respiratory disease persists for several weeks. Female deaths from CVD show a similar
pattern to deaths from IHD and unlike male deaths display an increase of around 0.75-
1% in the first weeks which then falls away after two weeks.

Figure 3.33 shows the percentage increase in deaths from all causes for males and
females associated with a 1°C fall in temperature. An increase in mortality of around
0.5% occurs in the week that a fall in temperature occurs and this figure increases to
0.8% one week after the fall in temperature. The effect of temperature on mortality
remains for several weeks but at a much reduced level. The effects are slightly greater

for females than for males.

Figure 3.33 Percentage increase in male and female mortality from all causes associated

with a fall in temperature of 1°C
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3.5 The association between emergency admissions and temperature

Results from Chapter 2 showed that seasonal variation in hospital admissions was not as
great as the seasonal variation in mortality. These results suggest that the relationship
between temperature and emergency hospital admissions will not be as strong as it was
for mortality. Zeger’s method was used in the analysis of the relationship between
temperature and emergency hospital admissions, residual checks such as those done for
the mortality data were carried out and similar results were found. The results of the
weekly fits from Zeger’s method for both male and female emergency hospital
admissions from respiratory disease, ischaemic heart disease and cerebrovascular disease

are given in tables 3.22 to 3.25 and are displayed graphically in figures 3.34 and 3.35.

Table 3.22 Results from Zeger’s method for emergency admissions for respiratory

disease

Males Females

coeff se p coeff se P

Resp Constant | 5.8484  0.0120 <0.01 5.6253  0.0092 <0.01
Trend 0.0007  0.0001 <0.01 0.0010  0.0001 <0.01
WeekO 0.0006  0.0016 ns -0.0043  0.0018 <0.05
Weekl -0.0118  0.0016 <0.01 -0.0117  0.0018 <0.01
Week2 -0.0092  0.0016 <0.01 -0.0106  0.0018 <0.01
Week3 -0.0044  0.0016 <0.01 -0.0045 0.0018 <0.05
Week4 -0.0040  0.0016  <0.05 -0.0029  0.0018 ns
Week5 -0.0005  0.0016 ns -0.0007  0.0018 ns
Flu 0.0045  0.0017 <0.01 0.0134  0.0018 <0.01

AR 0.7202  0.0385 <0.01 0.5966  0.0385 <0.01




Table 3.23 Results from Zeger’s method for emergency admissions for ischaemic heart

disease

Males Females
coeff se p coeff se P
IHD  Constant | 5.5227  0.0033 <0.01 5.1518 0.0042 <0.01
Trend 0.0005  0.0001 <0.01 0.0007 0.0001 <0.01
Week0 0.0030  0.0014 <0.05 0.0022  0.0016 <0.01
Weekl -0.0080  0.0016 <0.01 -0.0115 0.0017 <0.01

Week2 -0.0018  0.0016 ns 0.0009  0.0018 ns
Week3 -0.0020  0.0016 ns -0.0000  0.0018 ns

/ Week4 0.0010  0.0016 ns 0.0010  0.0018 ns

‘ WeeksS -0.0010  0.0014 ns -0.0013  0.0016 ns
Flu -0.0012  0.0009 ns -0.0003  0.0008 <0.05
AR 0.1300  0.0385 ns 0.1980  0.0385 <0.01

Table 3.24 Results from Zeger’s method for emergency admissions for cerebrovascular

disease

Males Females
coeff se P coeff se P
CVD Constant | 4.5066  0.0046  <0.01 4.6870 0.0041  <0.01
Trend 0.0005  0.0001  <0.01 0.0004  0.0001  <0.01
WeekO | -0.0045 0.0020 <0.05 -0.0054 0.0018  <0.01
Weekl |-0.0041 0.0024  <0.10 -0.0064 0.0021  <0.01

Week2 |0.0022  0.0024 ns 0.0012 0.0022 ns
Week3 | -0.0013 0.0024 ns 0.0007 0.0022  ns
Week4 | 0.0022  0.0024 ns -0.0007 0.0022  ns
Week5 | 0.0020  0.0020 ns 0.0008 0.0018 ns
Flu 0.0014  0.0010 ns 0.0021  0.0009  <0.05

AR 0.0603 0.0385 ns 0.0505 0.0385 ns




Figure 3.34 Percentage increase in male emergency admissions from cerebrovascular
disease, ischaemic heart disease and respiratory disease associated with a fall in

temperature of 1°C
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Figure 3.35 Percentage increase in female emergency admissions from cerebrovascular
disease, ischaemic heart disease and respiratory disease associated with a fall in

temperature of 1°C
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The graphs demonstrate the increase in emergency admissions, for the three diagnostic
groups, associated with a fall in temperature of 1°C occurring at week 0 assuming that
the temperature then returns to its previous value. For reasons given in section 2.5.1 the

analysis was not performed on emergency admissions for all causes.

For male emergency hospital admissions increases in emergency admissions for CVD of
around 0.5% are seen in the week that the fall in temperature occurred and one week
later after which there is little effect of temperature on emergency admissions for CVD,
Emergency admissions for IHD increase by 0.7% one week after the fall in temperature
but show little evidence of any other effects of a fall in temperature. For respiratory
disease an increase of around 1.2% is experienced one week after the fall in temperature
and this increase persists (at a reduced level) for up to four weeks. Female increases in
emergency admissions behave in a similar manner to that for males, however in general
the size of the increase is greater in the first 2 weeks and the remaining effects after 2
weeks are reduced. Increases in female emergency admissions occur more rapidly than

male increases in emergency admissions associated with a fall in temperature.

3.6 Summary

Assessing the relationship between ill health and climate and establishing some degree of
causality was problematic due to the fact that many other factors change seasonally. In
order to be able to infer causality we needed to establish that a short-term fluctuation in
temperature was associated with a short-term fluctuation in mortality or morbidity. To do
this an appropriate method had to be developed, accounting for the fact that the mortality
data was not normally distributed and was ordered in time. There has been much
development of time series methods for normally distributed data and many methods for
the analysis of Poisson data, however at the time of this analysis there was only one
method to deal with a time series of count data, Zeger’s method. This chapter was
primarily concerned with the application of time series methods, Poisson regression
methods and Zeger’s method to mortality and morbidity data and temperature data for

Scotland from 1981 to 1993. The methods were applied to male deaths from respiratory

disease and the results compared.




Overall methodological conclusions were that Zeger’s method should generally be used
for this type of analysis, however conclusions as to the nature of the relationship between
ill health and temperature were invariant under any of the three methods. When several
models perform the same purpose all to an adequate degree, as was the case in this
analysis, the choice of model can become a subjective one. In this analysis all three
models gave similar results but, primarily due to the smaller standard errors and the fact
that Zeger’s method was developed specifically for this type of data, it was felt that this
method was the most appropriate to use. Recently, a method based on Zeger’s method
that does not require prior specification of the autocorrelation structure of the time series
has been developed®. This method would be useful in Poisson regression models where

the presence of overdispersion or autocorrelation is less easy to quantify.

The results from the analysis in epidemiological terms can be summarised by
considering the increase in mortality associated with a fall in temperature. Generally, a
1°C fall in temperature was associated with an increase in mortality and emergency
hospital admissions of around 1% one week later. The time lag varied for different
causes of death and for different diagnostic groups. This is equivalent to an increase in
mortality of 3.5 deaths from ischaemic heart disease, 1.6 deaths from cerebrovascular
disease and 1.4 deaths from respiratory disease per week for each 1°C fall in
temperature. Deaths from all causes increased by around 12 deaths per week for each
1°C fall in temperature, indicating that these three causes contributed to over half of the
temperature associated deaths. The models also accounted for the effect of flu epidemics.
Over the full 13 year period one death from flu was associated with an increase in deaths
from all causes by around 1.4%, this is equivalent to an extra 16 deaths not recorded as
flu. The effect was greater during flu epidemics and much reduced at other times of the

year.

These results demonstrate a similar if slightly greater effect of falls in mortality
associated with temperature in the rest of Europe. McKee®® demonstrated an increase in
mortality of around 0.7% for deaths from ischaemic heart disease and cerebrovascular
disease in Moscow during 1993-1995. Kunst*, after controlling for season and influenza

epidemics, showed an increase in mortality in the Netherlands of 0.43% per 1°C fall in
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temperature during the following 3-6 days. While the Eurowinter group® showed that
percentage increases in all cause mortality per 1°C fall in temperature were greater in
warmer regions than colder regions, with Athens showing an increase of 2.15% while
south Finland showed an increase of 0.27%.

Various physiological hypotheses as to why there may be a degree of association
between cold weather and mortality were discussed in section 1.2.4. This analysis has
shown that the lag in the effect is between 0-1 week for deaths from ischaemic heart
disease and cerebrovascular disease and around 1-2 weeks for deaths from respiratory
disease. Other researchers have assessed these relationships using different lag time
periods. The Eurowinter® group used daily data and looked at lags in terms of days,
Kunst* used groups of days from 1-2 days, 3-6, 7-14 and 15-30 days while McKee?’
looked at 4 weekly periods but observed no lag effect and Bowie® looked at monthly
data and observed no lag effect. The analysis performed by Kunst* looking at deaths
from all causes found the greatest effect of temperature to occur at lags of 3-6 and 7-14
days.

The mechanism by which deaths from respiratory disease occur 1 to 2 weeks after a fall
in temperature is fairly straightforward. Respiratory diseases can be both viral and
bacterial. Some viruses survive for longer at colder temperatures and the spread of
respiratory viruses is more easy at colder temperatures because people tend to stay
indoors and are in closer contact with others. The delayed effects can be due to the
incubation period of the virus which usually takes a few days to a week, it is also
possible that after contracting the viral infection a secondary bacterial respiratory
infection may occur.

For deaths from ischaemic heart disease and cerebrovascular disease, causes that show a
more immediate effect of temperature on mortality, the two possible explanations are an
increase in blood pressure and viscosity leading to increased stress on the heart or
possible clotting. This could happen in patients with long standing narrowing of the
arteries and other cardiovascular risk factors. However clots tend to form in a matter of
hours so if the clots were caused by the fall in temperature then deaths that occurred due
to this mechanism would occur within days. A possible hypothesis for the delay of death
for 1 week follows the ‘harvesting’ hypothesis whereby it is those that are already sick

that are dying during cold weather and the fall in temperature simply speeds up the

process by putting more siress on the heart.
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Chapter 4 Other influences on the effect of climate on mortality and morbidity

4.1 Introduction & Aims
The results from Chapter 3 in which three methods of analysis were compared suggested

that Zeger’s method was the most suitable method for the analysis of a time series of counts.
Three weather variables were considered at the beginning of Chapter 3 and only one,
temperature, was associated with the seasonal pattern in deaths and emergency hospital
admissions in Scotland. Deaths from influenza were found to explain a proportion of the
weekly variation in deaths not recorded as influenza deaths.

The aim of this chapter is to build on these results, using Zeger’s methodology on subsets of
the data. This will involve producing separate models for different age groups, socio-
economic groups and for residents of different geographical areas. Specific moments of
interest in the series of daily temperatures will be examined in more detail and other possible
explanatory variables such as air pollution will be considered in the analysis.

One problem with an analysis such as this is that the modelling procedure attempts to
establish an association between two variables, temperature and mortality, using data that
have been collected independently and without thought to this particular application. It is
this reason that sets environmental epidemiology apart from classical epidemiological
studies such as case-control and longitudinal studies, in which the data tend to have been
collected specifically for that particular type of study.

In this study the temperature data have been collected from three sites in Scotland, whereas
the mortality and morbidity data were collected from all over Scotland. In the previous
chapter the temperature data were averaged and applied to the all Scotland mortality data,
producing a relevant analysis of the relationship between the two variables. In this chapter,
however, both the temperature and the mortality data are subdivided into demographic or
climatological categories. As a result, the power of the statistical methods to detect any

association is reduced.
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4.2 Effect of socio-demographic variables on the relationship between climate and ill
health

4.2.1 Age group

In section 2.5 it was shown that the size of the seasonal variation in mortality and morbidity
varied by age group, with older age groups experiencing a greater percentage increase in
mortality and morbidity in winter. Having now established a method of assessing the direct
effect of temperature, it was of interest to see whether the short term effect of temperature
change also varied by age group. The data were split into the same age groups as before and
Zeger’s method was used to assess the effect of temperature on deaths in each age group.
Flu deaths per week in each age group were used as an estimate of the presence of flu
epidemics. The analysis was performed for age groups 0-9, 10-59, 60-69, 70-79 and 80+ for
male and female deaths from all causes, respiratory disease, IHD and CVD. Figure 4.1
shows the successive percentage change in deaths following a fall in temperature of 1°C for
male deaths from all causes in each of'the age groups.

Figure 4.1 Successive percentage change in male deaths from all causes associated with a

fall in temperature of 1°C

All causes, males
1.5

109
110-59
0.0 j60-69
I 170-79
£ -5 I 180+

Lag week

140



On the week that the fall in temperature occurred there was virtually no change in the
number of deaths in age groups 0-9 and 10-59 years, however there was an increase in
mortality of around 0.75% in each of the other age groups. One week after the fall in
temperature there was again little effect in the 10-59 age group, an increase of 0.72% in the
0-9 age group and a pattern of increasing percentage increases in mortality with increasing
age group. The increase in mortality associated with a fall in temperature of 1°C was
significantly different from zero (p<0.05) in week 2 for ages 10-59, weeks 0 and 1 for ages
60-69 and in weeks 0, 1 & 4 for age groups 70-79 and 80+. However, in terms of consistent
patterns there was little effect of temperature on patterns of mortality at two or more weeks
after the fall in temperature.

Figure 4.2 Successive percentage change in male deaths from respiratory disease associated

with a fall in temperature of 1°C
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For male deaths from respiratory disease (figure 4.2) the large increase in mortality in the 0-
9 age group at week 0 and the large fall in mortality in week 1 were not significant. The only
significant increase in mortality in week 0 occurred in the 80+ age group and in week 1 the

significant increases in mortality occurred in the 70-79 and 80+ age groups. Two weeks after
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the fall in temperature an increase of 2% in deaths in the 0-9 age group was experienced, the
size of the increase was lower in the 10-59 age group and then rose to just under 2% in the
60-69 age group and fell away with increasing age. This pattern was similar at a lag of 3
weeks, however the increase in mortality in the 0-9 age group was over 3% after 3 weeks.
The effect of a fall in temperature diminished after 4-5 weeks. The only significant increase
in the later weeks occurred in week 2 for ages 60-69 and in week 4 for ages 80+.

There were very few deaths per week from IHD and CVD in the 0-9 age groups and no
results were estimated for these age groups. Male deaths from IHD (figure 4.3) display a
more immediate increase associated with a fall in temperature. On the week of the fall in
temperature the increase is greatest in the 70-79 age group (1.6%) and 1 week after the fall
in temperature the size of the increase increases with increasing age to around 1.6% in the
80+ age group. The increase is significant in weeks zero and 1 for ages 60-69, 70-79 and
80+ and at weeks 4 and 5 for age 70-79.

Figure 4.3 Successive percentage change in male deaths from ischaemic heart disease

associated with a fall in temperature of 1°C
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With male deaths from CVD (figure 4.4) it was difficult to establish a pattern within the age
groups, there was a greater association between mortality and temperature at older age
groups but only the increase in ages 70-79 was significantly different from zero.

Figure 4.4 Successive percentage change in male deaths from cerebrovascular disease

associated with a fall in temperature of 1°C
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The analysis by age group has shown that for deaths from all causes the effect of
temperature on mortality was most pronounced in the older age groups and occurred
immediately after the fall in temperature. For deaths from each of the three causes;
respiratory disease, IHD and CVD, the effect was similarly greater at older age groups.
However, for deaths from respiratory disease significant results were found several weeks
after the fall in temperature, whereas for IHD the effect was greatest soon after the fall in
temperature. The values of the parameter estimates, with associated standard errors,
obtained from the modelling procedure for male and female deaths and emergency

admissions for each cause are given in appendix IV (I).
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4.2.2 Deprivation category

The analysis in chapter 2 demonstrated that there was virtually no deprivation effect when
considering the degree of seasonality in deaths experienced by different sections of the
population. Zeger’s method was used to determine if the effect of a temporary fall in
temperature on death rates varied by deprivation category. In this case the data used in the
modelling was age standardised to remove any potential bias caused by the effect of age
group. A discussion of age standardisation and the need for it in this case can be found in
section 2.1.3.

Figure 4.5 Successive percentage change in deaths following a fall in temperature of 1°C for

male deaths from all causes by deprivation category
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Figure 4.5 shows the successive percentage change in deaths by deprivation category
following a fall in temperature of 1°C for deaths from all causes. In the week of the fall in
temperature the greatest increase in mortality occurred in the affluent category, with the
smallest increase in the deprived category. The percentage increase in mortality after one
week was similar for all deprivation categories and then in the following weeks the increases

were smallest in the affluent category and greatest in the deprived category. In week O the
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increase was significantly different from zero for the affluent and average categories and in
week 1 the percentage increase in mortality was significantly different from zero in each of
the deprivation categories. It appears from the chart that a fall in temperature effects those
who live in affluent areas more immediately than those who live in deprived areas. During
the week in which temperature falls an increase in mortality of 1% is experienced in the
‘affluent’ category whereas this is around 0.6% in the ‘average’ category and 0.3% in the
‘deprived’ category. Details of the parameter estimates and standard errors from the

deprivation analysis are given in appendix IV (I).

4.2.3 Social class

Social class information was available for the mortality data only and when used in Chapter
2 it was found that while there was no difference in the degree of seasonal variation amongst
deprivation categories, increased excess winter mortality was associated with belonging to a
lower social class. Figure 4.6 shows how the effect of a fall in temperature varies by social
class.

Figure 4.6 Successive percentage change in deaths following a fall in temperature of 1°C for

male deaths from all causes by social class.
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On the week that the fall in temperature occurred the increase in mortality was slightly
greater in social classes I & II compared to social classes III, IV & V. One week after the
fall in temperature the increase in mortality was greater in social classes III, IV and V
compared to social classes I & II. The overall effects were greater in social classes III, IV
and V and the delay in effect was longer in this group, however all the percentage increases
in mortality in weeks 0 and 1 were significantly different from zero.

Carstairs’' deprivation scores and the Registrar General’s social classes are closely related to
each other, both being measures of socio-economic status. In this analysis and the previous
seasonal analysis in Chapter 2 it has been of interest to look at the effects of each measure of
socio-economic status separately. From the outset it was felt that low socio-economic status
would be related to increased seasonal patterns and a more significant effect of temperature
on mortality. Neither the deprivation scores or the social class analysis have demonstrated
this, the implications of these results will be discussed later. The results of the social class
analysis for male deaths from respiratory disease, IHD and CVD are given in appendix IV
(TI).

4.2.4 City of residence

It was also of interest to determine whether the effect of temperature varied by area of
residence. In Chapter 2 the data were analysed by both health board and by city of residence.
In this Chapter an analysis of temperature effects by city seemed more appropriate than by
health board as the temperature data were recorded in three cities Aberdeen, Edinburgh and
Glasgow. In an analysis by health board a decision would have had to be made as to which
temperature series to use for each health board or whether to use the Scottish average. The
results from the seasonal analysis in Chapter 2 indicated that an analysis by health board
might not give a clear picture of any area effects in the relationship between temperature and
mortality. Age standardised mortality rates were computed for each of the three local
government districts of Aberdeen City, Edinburgh City and Glasgow City and age

standardised flu deaths were also computed for use in the models.
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This analysis may also be able to determine the effect of temperature in more detail as we
are no longer averaging temperature over the whole country but are looking at temperature
in a specific area and mortality in the same specific area. The results from this analysis are
shown in figure 4.7.

Figure 4.7 Successive percentage change in deaths following a fall in temperature of 1°C for

male deaths from all causes by city of residence.
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In the week of the fall in temperature the increase in mortality in Edinburgh was twice as
great as the increase in mortality in either Aberdeen or Glasgow, and Edinburgh was the
only city in which the increase was significant. One week after the fall in temperature the
increase in mortality was twice as great in Aberdeen and Edinburgh as it was in Glasgow,
however in all three cities the increase was significant (p<0.05). At two or more weeks after
the fall in temperature the effects on mortality were negligible. It could be suggested from
figure 4.7 that the effect of outdoor temperature on mortality in Glasgow is lower than in
Edinburgh or Aberdeen. The results from the analysis by city of residence for deaths and
emergency admissions from respiratory disease, IHD and CVD can be found in appendix IV
(Iv).
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4.2.5 Change in the seasonal variation in mortality between 1981 and 1993

A paper published in the BMJ in November 1997°° described reductions in excess winter
deaths in South East England from 1979 to 1994. This led to an investigation of the stability
of the observed seasonal increase in mortality in Scotland during our similar time period.
Having developed a satisfactory method of assessing the seasonal percentage increase in
mortality the data was split into two time periods, 1981-1986 and 1987-1993, to examine if
there was any difference in the seasonal pattern between these two time pertods. The results

from this analysis are shown in table 4.1

Table 4.1 Seasonal percentage increase in mortality by time period

Cause of 1981-1986 1987-1993 Percentage
Death % Inc 95% CI % Inc 95% CI Change
All causes 34.6 (33.9,35.4) 26.5 (25.9,27.2) 234

Resp 122.5 (119.6,125.5) 90.9 (88.4,93.3) 258

HD 37.6 (36.2,39.0) 27.9 (26.6,29.2) 258

CVD 40.2 (38.1,42.2) 30.7 (28.8,32.6) 236

As can be seen from the table there was a considerable fall in the size of the percentage
increase in mortality from summer to winter over the two time periods. The seasonal
percentage increase had decreased by around 25%. In order to look more clearly at the
change in seasonal variation over time a seasonal percentage increase in mortality from
summer to winter was calculated for each year of the study. Figure 4.8 shows the seasonal
increase by cause of death and year from 1981 to 1993. The seasonal increase in respiratory
disease in 1989 was around 400%. This figure is not shown on figure 4.8 but exerts an

influence on the fitted regression line. Figure 4.9 shows the same data with the seasonal

increase for 1989 having been recorded as missing.




Figure 4.8 Seasonal increase in mortality each year between 1981-1993
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Figure 4.9 Seasonal increase in mortality each year between 1981-1993 (excl 1989)
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Figure 4.9 shows that there is a clear pattern of a reduction in the size of the seasonal
increase in mortality during the time period 1981 to 1993 in Scotland. Details of the fit of

the regression lines are given in table 4.2,

Table 4.2 Regression coefficients and p-values for fits in Figure 4.9

Cause of death | Coefficient p-value
All causes -0.365 0.093
RD -0.034 0.432
IHD -0.357 0.063
CVD -0.296 0.143

As can be seen from the table, although there is a consistent downward trend in the
regression slopes, none are statistically significant at the 5% level. However, the slopes for
all causes and for deaths from IHD are significant at the 10% level.

The data were then examined to see if the slope was the same in each age group. Figure 4.10
shows the seasonal increase in mortality for each year for males by age group.

Figure 4.10 Seasonal increase in mortality each year for males by age group
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An analysis of covariance indicated that there was no difference between the slopes for each
age group. A similar analysis of covariance to test if the decrease in seasonal variation from
1981 to 1993 in females varied between age groups also showed no difference between age
groups.

Given that this trend over time was consistent, but not significant in itself, and that the size
of the decrease did not vary between age groups, it was felt that it would be unlikely to vary
according to any other socio-demographic variables. Previous work has shown that variation
in seasonal mortality varies very little by deprivation category, social class and city of
residence. Falls in seasonal mortality have been demonstrated in other countries®®’ however
an inconstistancy in methods and the fact that different methods can produce different

results (as demonstrated above) mean the evidence in the UK is at present inconclusive.

4.3 Detailed analysis of temperature effects

4.3.1 Introduction

In this section the relationship between temperature and deaths will be explored in more
detail using both Zeger’s method and simple summary statistics. In chapter 3 the effect of a
change in temperature was the main focus of the analysis, here other features of temperature
will be examined. These include changes in temperature at different average temperatures,
the effect of changes in temperature during trends in temperature change, the effect of
different sizes of temperature change at different average temperatures and the effect of

extreme values or outliers in the temperature series.

4.3.2 The temperature data

In section 2.2, descriptive statistics of the temperature data for each of the three airports
were provided. In this section the average weekly temperature for the whole of Scotland has
been used. The aim of this part of the analysis is to examine the effect of changes in
temperature at different underlying levels of temperature and to evaluate the effect of

temperature change when temperature is generally increasing or decreasing. Both the actual

value of the average weekly temperature and the change in value from one week to the next
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are involved in the analysis at this stage. In order to carry out this analysis a method of
splitting the temperature into categories was required.

There were 3 factors to be considered when determining a suitable range of temperature
values for each category. The most important criterion was to ensure that there was a
reasonable amount of data in each category. The percentiles of the distribution of
temperatures were used to provide indicators of appropriate groupings. Another
consideration was to examine the tails of the distribution and not simply divide the
distribution into quartiles as the most extreme temperature values would then be overlooked.
Two other criteria involved were to have similar temperature ranges in each category and to
try to use whole numbers as category boundaries. Analysis was done using groupings of
three and five categories for both the change in temperature and the absolute temperature for
weekly and daily temperatures. For the weekly data these temperature categories were <2°C,
2-6°C, 6-10°C, 10-14°C and >14°C, and each contained 6%, 27%, 28% 25% and 14% of'the
temperature values in the full series. This categorisation is shown in figure 4.11.

Figure 4.11 Histogram of weekly temperature data
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Most of the analyses described use the categorisation above, however other categorisations

were tried and are described further in section 4.3.5.
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4.3.3 Change in deaths at different temperatures (Zeger’s method)

Analysis of the effect of a change in temperature at different underlying temperatures was
performed using Zeger’s method on weekly data. In order to use Zeger’s method effectively
the lag variables up to 5 weeks were computed before the data were split into temperature
groups. One problem involved in the analysis of the effect of temperature at different
temperature categories was that when the data were split into temperature categories the data
was broken up into five separate series, the time series was no longer continuous. The
autocorrelation structure of the individual series no longer existed in the <2°C and in the
>14°C groups due to the fact that they contained less data and therefore conta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>