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Summary

Let O be an order in an imaginary quadratic number field. This thesis is mainly concerned
with normal subgroups of SLy(©) and of PSLy(O). Suppose that O is a maximal order
then O is the ring of integers in the number field and the group PSL,(O) is a Bianchs
group. In chapter one we discuss the geometric background of these groups and introduce
some fundamental algebraic concepts; those of order and level. We also discuss the
Congruence subgroup problem. Chapter two is a discussion of the fundamental theorem
of Zimmert [93]. In chapter three we discuss PSLy(Q) where O is not a maximal order.
We derive a formula for their index in the Bianchi groups and presentations for some of
these groups. In particular we derive a presentation for P.SL,(Z [\/:_?;]) and using this
presentation get a partial classification of the normal subgroups of PSLy(Z [v/=3)).

Chapter four generalizes a result of Mason and Pride [62] about SLy(%Z) to all but
finitely many SLg(@). This result shows that for an arbitrary normal subgroup of N <
SLy(O) there is no relationship between the order and level of N. This is in distinction
to the groups SL,(®), n > 3, where the order and level of a normal subgroup coincide.
This answers a question of Lubotzky’s.

Let O be an order in an imaginary quadratic number field. Then O is a Noetherian
domain of Krull dimension one and has characteristic zero. Chapter five discusses SLs
over the class of all Noetherian domains of Krull dimension one, including those of non-
zero characteristic. In particular we generalize the work of Mason [58] and derive a
relationship between the order and level of a normal congruence subgroup of SLy(K) for
any Noetherian domain of Krull dimension one, K. In chapter six we apply this work
to SLy(O) and construct a new and vast class of normal non-congruence subgroups of

SLy(O). Finally we take a closer look at some particular PSLy(O).
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“Results! Why man, I have gotten a lot of results. I know several thousand things that

don’t work.”

- Thomas Edison [50] p.121.
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Chapter 1

Introduction

1.1 Geometric Background

We are interested in groups acting on Hyperbolic space. Hyperbolic geometry is the best
known example of a non-Kuclidean geometry. The importance of the parallel axiom and
the development of non-Euclidean geometry in the history of Mathematics, indeed the
history of Western thought cannot be overstated. See [41, 67, 82] for brief and accesible

accounts.

1.1.1 Hyperbolic geometry

Let
H? = {z € C: Im(z) > 0}

and equip H? with the following metric

Y
We now have the Poincaré half plane model for two dimensional hyperbolic geometry.
The geodesics in H? are straight lines and semicircles orthogonal to the real axis. The
historical point is that given a geodesic L and a point P not on L there are infinitely
many geodesics passing through P which do not intersect L. That is Euclids parallel
axiom does not hold. We are interested in distance preserving maps, or rigid motions.

The hyperbolic distance between 21, zo € H? shall be denoted p(z1, 22).
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Definition. A function from H? onto itself which preserves hyperbolic distance is called

an isometry. The group of isometries is denoted Isom(H?).

Consider the following set

M:{ZHGZ+b:a,b,c,dER,ad—bc=1}
cz+d

this is the set of Moebius transformations of C. They map H? onto itself and are all

isometries. M can be identified with the group PSLy(R) via the obvious map.

Theorem. ([38] theorem 1.3.1) Isom(H?) s generated by PSLs(R) and the map z — —Z.
PSLy(R) 4s of index 2 in Isom(H?).

Let X be a metric space and G a group acting on X.

Definition. A family {M, : o € A} of subsets of X is called locally finite if for any
compact set K C X we have M, N K # () for only finitely many o € A.

Definition. We say that a group G acts properly discontinuously on X if the G-orbit of
any point z € X is locally finite.

Definition. A closed connected F C X, with int(F) # 0, is a fundamental region for G
if

1. GF = X.
2. int(F)Ng(int(F) =0 V1#gedG.

The existence of a fundamental region allows us, in particular to find a presentation

for the group (see [49]).

Definition. G £ PSLy(C) is said to be discrete if it contains no sequence of matri-
ces converging elementwise to the identity. Discrete subgroups of PSLy(R) are called

Fuchsian groups.
Example 1.1.1. PSLy(Z) is obviously discrete and therefore a Fuchsian group.

Suppose that G < PSLy(R) is not discrete. So G contains a sequence {g,} such that
gn — 1. Suppose that G has a fundamental region F' C H? and let z € int(F). Then
gnZ — T a8 n — 00. So IN such that Vn > N int(F) N g,(int(F)) # 0. Contradiction.

Hence GG cannot have a fundamental region.
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Let T be a Fuchsian group. Let p € H? be not fixed by any non-trivial element of I".
The Dirichlet fundamental polygon for I centred at p is

D,(T) = {z e H?: p(z,p) < p(Tz,p) VT € T}

Theorem. ([88] theorem 3.2.2) For every Fuchsian group T' and every p € H? not fized

by o non-trivial element of I', D,(T) is a connected convex fundamental region for T
Example 1.1.2. Let I' = PSLy(Z). The set

F= {z €H: |2| > 1, |Re(2)| < %}
is a Dirichlet region for I' centred at k%, some & > 1.

The theory of Fuchsian groups is of great interest and has been extensively studied.

See [6, 7, 38].

1.1.2 Hyperbolic 3-space

The upper half-space in Euclidean three-space gives a convenient model of 3-dimensional

hyperbolic space
W = {(z,r} € CxR:7 > 0}

which we equip with the hyperbolic metric
_dz® 4 dy? + dr?
= 2

The group PSLy(C) acts on H? in the following way. Let M € PSL,(C) where

ds?

mM={“F
v 4
Then
T - A 25 o
.M(z,r)z(((s 7¥zZ){az — ) T’Yoz,_v_)
T T
where

T = |yz — 6> + r?ly[?

Under this action the hyperbolic metric is PSLg(C)-invariant. SLe(C) acts on H® in
exactly the same way. As above we want a class of discrete subgroups of PSLy(C). We

make use of the following
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Proposition. [19] Let A be a discrete subring of C with a one then SLy(A) is a discrete
subgroup of SLy(C).

Proposition. [19] The discrete subrings of C with a one are

1. 7.
2. The ring of integers Oy = Z + wZ in an imaginary quadratic number field.

3. The orders Qg = Z + mwiZ in an imaginary quadratic number field.

where d is a positive square-free integer, m s a positive integer, and

Livd  4rg =3 (mod 4)

Z\/& else
This gives us a class of discrete subgroups of SLy(C) and of PSLy(C). We have
already met the group PSLy(Z). 1t is known as the Modular group. It was Picard who,
in 1883, first studied P.SL,(Z[i]), and this group is known as the Picard group [67, 73].
The groups PSLy(Q4) are called the Bianchi groups. They were first studied by Bianchi
in the 1890s [8, 9] as a natural class of discrete subgroups of PSLy(C). See [23] chapter 7
for a discussion of their action on H® and [25] for a discussion of their algebraic properties.
The groups PSLy(Oy,y) are of finite index in the Bianchi groups. See [23] for a general
treatment of discrete subgroups of PSLy(C) acting on H®. The Modular group and the
Bianchi groups are the first arithmetic examples of such groups and are of great interest
in number theory. We take the opportunity here to introduce three matrices which will

be very important in what follows. Let R be any commutative ring with a one and let

01 11
A= , T'= € SLy(R)
-1 0 01
We will also need the following
1 mw
U= € SLZ(Od,m).
0 1

We denote the corresponding matrices in PSLs by a,t,u. This will be a general conven-
tion.

A description of a fundamental region for the Bianchi groups in H?® can be found in
[23] section 7.3. Swan [84] has used this to derive presentations for the group SLs(0y)
ford=1,2,3,7,11,5,6,15,19. It is then easy to derive a presentation for PSLy(Oy).
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We now look at matrices of finite order in SLy(C) and SLy(Ogm). The results are

well known but the presentation is our own. Let

a b
M= € SLQ(C)
c d

and let tr = a+d be the trace of M. Recall that conjugate matrices have the same trace.

Lemma 1.1.1. If tr = &2 and M # I then M is conjugate to X1 and so is of infinite

order.

Proof. We can suppose that

1 i/
w1t P
7 -«
Now
a b 11 d —b 1—ac a?
¢ d 01 — a —c* 1+4+ac

So letting a = 1/, and ¢ = 1,/7 and then choosing b, d, so that ad — bc = 1 we get the
result. O

Lemma 1.1.2. Iftr® #£ 4 (ie tr # +2) then M is conjugate to

for some o € C.

Proof. Suppose that z € C is a fixed point of M ie

az+b_z
cz+d

So ¢z + (d — a)z — b = 0. The discriminant of this quadratic is (d — a)? + 4bc =
(a+ d)? — 4(ad — be) = tr? — 4. Now tr? % 4 so M has two distinct fixed points z;, and
z9. Let w = (23 — 21)™! and consider

-1
1 —29 a b 1 —2Z

W —zZw c d W —Z W
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Using the fact that cz? + (d — a)z; — b =0, for 4 = 1,2, we can show that this matrix is

equal to

for some o € C. O
Lemma 1.1.3. If |tr| > 2 then M is of infinite order.

Proof. Clearly tr® # 4, so M is conjugate to

for some « € C. Suppose that |a| =1, so |o7!| =1 and |ir| = |a+a7Y < o] +la7!| = 2.
So |tr| £ 2. Contradiction. So |e| # 1, so |a| > 1, or |a™| > 1. So |&*| = oo, or

|o™™ — 0o as n — co. Now

n

So M™ # I for every n € Z. O
Lemma 1.1.4. If |tr| = 2 and tr? # 4 then M is of infinite order.

Proof. Now tr? # 4 so M is conjugate to

for some « € C. As above if || 5 1 then M is of infinite order. So suppose that |a| = 1,
soa”!=a Soa+al=a+a=2Re(a). So2=ir] =|a+al = 2|Re(a)]|, s0

Re(a) = 1. Hence @« = o' =1 and M = I. Contradiction. O
Lemma 1.1.5. Suppose that |tr| < 2. Then if tr ¢ R then M is of infinite order.
Proof. tr* # 4 so M is conjugate to

s 0

0 ot

for some o € C and where a+ a~! = ¢r. Now if |a| # 1 then, as above, M is of infinite

order. So suppose that la| =1 then ™! =@ so tr = o + @ = 2Re(a) € R. O

S




Chapter 1. Introduction 7

Lemma 1.1.6. If tr = 0 then M?* = —1.
Proof. Now M is conjugate to

o 0

0 ot

X =

some o € € such that o+ o™ =0. So a? +1 =0, so o = +i. [t is then easy to verify
that X% = —I. a
Lemma 1.1.7. Iftr =1 then M® = —I and if tr = —1 then M3 = 1.

Proof. Now M is conjugate to

o 0

0 ot

X =

for some a € C such that a+a~! = ¢r. First suppose that ¢ = —1. Then o?+a+1 =0,
so c¢(a® + @+ 1) =0 and so o® = 1. Thus X® = I and so M® = . Similarly if tr = 1

then o® = —1 and so X® = —7. Hence result. O

Theorem 1.1.8. Let I # M € SLy(Oup). Then M is of finite order if and only if
tr =0, or +1.

Proof. Now tr € Oy, so |ir|? € Z. First, if |¢r|? > 4 then M is of infinite order. Suppose
that [tr|* < 4, so [tr|* =0, 1, 2, or 3, but if M is of finite order ¢r € Oy NR = Z, s0
|tr| = 0, or 1. Now if |tr| = 0 then tr = 0 and so M? = —I. If |¢tr|*> = 1 then ¢tr = +1, so
M =1T. O

1.2 The normal subgroups of SL,(R)

Let R be a ring, with a one. Let n € N, n > 2, and form the group SL,(R). It is natural

to ask the following
Question. What are the normal subgroups of SL, (R)?
The case where R is a field is simple; literally:

Theorem. [21] Let F be any field, n € N, n 2 2. Then PSL,(IF) is simple with two

exceptions:
PSLy(Fs) =2 83 and PSLy(F3) = Ay

where Ty denotes the field of d elements.
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By another result of Dieudonné [21] SL,(FF)' = SLy(F), and so the only non-trivial
normal subgroup of SLy(IF) is {£I}. Note that the exceptions are both two dimensional
linear groups. We shall see that the two dimensional case is, in general, more complicated
than the higher dimensional cases. Further, when investigating normal subgroups of
SLy(R) one finds that ideals of index 2 or 3 in R play an important role. When we pass

from fields to rings we no longer have simplicity.

Example 1.2.1. Let m € Z. Consider the following subgroup
I'(m)={M € SLy(L) : M =1 (mod m)}

This is clearly a non-trivial normal subgroup of SLy(L). It is called the Principal congru-
ence subgroup of level m, and is a member of a very important class of normal subgroups,

as we shall see later on.

1.2.1 SL, over a local ring

The next easiest case after that of a field is a local ring,so let R = L, be a commutative
local ring, with maximal ideal m, and let Nm = |L : m|. We introduce two classes of

normal subgroup of SLy(L). Let q <1 L be an ideal in L, then define
I'(q) ={M € SLy(L) : M =1 (mod q)}
this is the kernel of the natural map SL, (L) — SIL,(L/q) and let
H(gq={Mel': M=kl (modq),kecL}

H(q)/T'(q) is the centre of SLy(L)/T'(q). Let S < SLa(L), by the level of S, denoted 1(.9),
we mean the largest ideal, q of L such that I'(q) < S, and by the order of S, denoted
0(.5), we mean the smallest ideal, q of L such that S < H(q). Since I'(q) < H(q) we have
1(S) € o(9).

The first attempt to classify the Normal subgroups of SLy(L) was in 1961 by Klin-
genberg.

Theorem. [42] Let N < SLy(L) be of order q. Then N<SLy(L) < I{N) = o(N) where,

for n =2 we assume Nm # 3, and 2 is a unit.

Lacroix, in 1966 [43], dropped the condition that 2 was a unit and included the case

where Nm = 3 but was unable to deal with the case Nm = 2:
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Theorem. Suppose that Nm > 2, and let N < SLo(L) be of order q. Then N <
SLy(L) < o(N) = I(N) unless Nm = 3, and o(N) = L. If Nm = 3 and N < SLy(L),
o(N) =L then N = SLy(L), or N = SLy(L)".

However Lacroix provided examples of non-normal subgroups of SLs(L) of order L.

The case where Nm = 2 appears to be very complicated in general (see [43]). Mason
[57] has investigated the case where Nm = 2, m is principal and every ideal of L is a
power of m. In section (5.3) we investigate the normal subgroups of SLs(L) and introduce
techniques which allow us to deal with the case Nm = 2 and m nilpotent.

Klingenberg showed (roughly) that N <1 SL,(L) < I(N) = o(N). This leads to the

following

Definition. Let S < SLy(L). If [(S) = o(S) we say that S is standard.

This gives rise to the standard criterion:
N 2 SL,(L) < N is standard

With slight modification these concepts carry over to the case of an arbitrary ring. We
remark that Costa and Keller [18] have characterized the normal subgroups of GLy(A)
for an arbitrary commutative local ring A in terms of certain commutator groups. Their
solution reduces to that of Klingenberg and Lacroix in the relevant cases. We mention it
only in passing here because we are mainly interested in the standard criterion, or, where

that fails the relationship between the order and level of a normal subgroup.

1.2.2 SL, over an arbitrary ring
We introduce the following subgroup of SL,(R):
E(R)=<I+re;j:1€R,i#] >

It is well known that when R = F' is a field, SL,(F') = E,(F). This remains true for

some rings. Firstly, in light of the previous section

Proposition. (/3] corollary 5.9.2) Let L be a semilocal ring. Then Vn 2 2 E,(L) =
SLa(L).

Proposition. ([33] proposition 2.4) Let R be o euclidean ring. Then Vn =z 2 E,(R) =
SLn(R).
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As Z is euclidean we have
Proposition. ([51] lemma 3.1) SLy(Z) = FEx(Z).

Let Oy be the ring of integers of Q(y/—d). The Bianchi groups are the groups
PSLy(0y), we have already mentioned them in section (1.1.2). Now Oy has a euclidean
algorithm < d = 1,2,3,7,11 ([13] p.21), so if d = 1,2,3,7,11 then SLy(O,) = Eo(Oy).
In fact

Proposition. ([14] Theorem 6.1)
SLz(Od) = EZ(Od) Sd= ]_, 2, 3, 7, 11

The groups PSLy(04), d = 1,2,3,7,11 are called the Fuclidean Bianchi groups. We

can now ask the following which is obviously related to our original question
Question. What are the E,(R)-normalized subgroups of SL,(R)?

We now introduce an important concept, the SR,-condition. Let R be a ring. If
ai,...,an € Rsuch that } Ra; = R then 3by,...,b,_1 € Rsuch that > R(a;+ba,) = R
then we say that R has stable range n, and we write SR,(R) or say R has SR,,. The
S Ra-condition is particularly important so we describe it separately: If Ra; + Ras = R
then 3¢ € R such that a; + tag is a unit. See [16, 29, 85, 87, 88] for examples of rings
with SR,.

Proposition. (/3] Proposition 5.3.4) Semilocal rings are SRg-rings.
Proposition. [8] If R is an SRy-ring then SLy(R) = FE3(R).

We remark that Dedekind domains have SRz ({3] theorem 3.5 page 239). We must
also modify our concept of level because, famously, in general not every normal subgroup

of SL,(R) contains a principal congruence subgroup. Let q <1 R. Let

E (R,q) =<I+ae;: acql<ij<nis#j>"0

H.(R,q)={M € SL,(R): M =kI (mod q),k € R}

Let S € SL,(R). By the level of S, denoted I(S), we mean the largest q < i such that
E.(R,q) < S. This is well defined because E,(R, q1)Ew(R, q2) = En(R,q1 + q2). By the
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order of S, denoted o(S) we mean the smallest q <1 R such that S < H,(R,q). As before,

we say S is standard if I(S) = o(S). We define a Principal congruence subgroup as before
SLy(R,q) ={M € SL,(R): M =1 (mod q)}

clearly E,(R,q) < SL,(R,q). As in the case of a local ring H,(R,q)/SL,(R,q) is the
centre of SL,(R)/SL,(R,q). In the case of a local ring our two concepts of level are the

same because:

Proposition. (/5] corollary 5.9.2) Let L be a local ring. Then ¥n > 2 E,(L,q) =
SLn(L,q).

Any subgroup of SL,{R) which contains a principal congruence subgroup is known as
a congruence subgroup. The question of whether every subgroup of finite index in SL,,(R)
is a congruence subgroup or not is of great interest and is known as the Congruence
Subgroup Problem. We discuss it in the next section.

Most attempts to understand the normal subgroups of SL,(R) are centred round the

standard criterion, and we now describe some of these attempts.

Theorem. Let H < GL,(A). Then forn = 3, if A has SRy [3], or is commutative [86],

or is a Banach algebra [88], or is von-Neumann regular [89] then
H is E,(A)-normalized < H 1is standard

We remark that there exist examples of rings for which the standard criterion fails for
n 2= 3 (See [28, 90] ). We now focus exclusively on commutative rings and ask how are
the Ey(R)-normalized subgroups and the standard subgroups related? It turns out that

the answer depends very much on E.

Theorem. [8]IF R has SRy and S < SLy(R) then S standard = S is Eo(R)-normalized.
Costa and Keller ([17] theorem 2.6) have provided a partial converse

Theorem. Let R be an SRy ring with 6 € R*. Then N <1 SLy(R) => N is standard.

The cases R = Fy, or F3 show that 6 € R* is necessary. Suppose now that A is a
Dedekind domain of arithmetic type (see the section at the end of this chapter on number
theory) so A has SRs, and suppose that A has infinitely many units. Serre has shown
([80] Prop 2 p. 492)
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Theorem. Let A be a Dedekind domain of arithmetic type and suppose that A* is infinite.

Then SLy(A) has no Ey(A)-normalized subgroups of level zero and non-zero order.
Mason has proved the following

Theorem. [55] Let A be a Dedekind domain of arithmetic type with infinitely many units
then every standard subgroup of SLy(A) is FEo(A)-normalized.

we also have

Theorem. [75] Let A be a Dedekind domain of arithmetic type with infinitely many units.
Then the Ea(A)-normalized subgroups of SLq(A) are precisley the standard subgroups if
and only if the following three conditions hold for A:

1. All residue class fields of A have more than 3 elements.
2. 2 € A* or 2 is unramified in A.
3. Ey(A,a) = [E2(A), Ex(A, a)] for every a <1 A.

However Mason has shown that when A* is infinite the order and level of an Fo(A)-

normalized subgroup are closely related.

Theorem. ([58]) Let N < SLy(A) be Ey(A)-normalized. Let q = o(N), and q* = I(N).
Then

1. If A is contained in a number field and is not totally imaginary then 12q < g*.
2. If A is contained in a number field and is totally imaginary then 12uyq < q*.
3. If A is contained in a function field in one variable over a finite field then q° < q*.

where Uy 18 defined as follows. Let m be the total number of roots of unity in A, and let u
be the A-ideal generated by u? — 1 where w € A*. If m =2 Let ug = u+ 24 and if m > 2

then let ug = .

So we can see that in the two dimensional case the unit structure becomes important.
What happens to the standard criterion when the unit group is finite? Consider first the

group SLs(Z), here we see that not only does the standard criterion fail but it fails badly:

Theorem. [56, 62] The group SLy(Z) has 2™ non-normal standard subgroups and 20

non-standard normal subgroups.
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In fact a more precise result is achieved. Let let (2, Z; q) denote the set of normal

subgroups of SLy(Z) of level zero, and order g.
Theorem. [62] Let 0 # q <1 Z then |Ey(2, Z; q)| = 2%e.
The situation in the groups SLy(0y) is similar

Theorem. [60] For every positive square-free integer d, the group SLy(Oy) has 2%° non-

normal standard subgroups.

The obvious question now is

Question. Does every group SLy(Q;) have 2% non-standard normal subgroups?

Mason has shown

Theorem. [59] For every positive square-free integer d, the group SLz(0y) has 2% nor-

mal subgroups of level zero.

The only normal subgroup of SLs(Og4) with order {0} is the trivial subgroup. Thus
there are uncountably many non-standard normal subgroups in the groups SLo(Og).
Later we extend this to show that for all but finitely many (d,m), and all 0 # q < Ogm,
|€0(2, Oum; q)] = 2%. The exceptions are almost certainly due to an inadequacy in
our proof. Mason has obtained similar results in the final case. Let C be a Dedekind

domain of arithmetic type contained in a function field and with finitely many units. Let

I = SLy(C).

Theorem. (/53] theorem 3.1) There exist 2% normal subgroups of finite index in T which

have level zero.

Theorem. ([55] theorem 3.2) Let q <1 C be such that Nq > ¢y, some constant cg. Then

T contains 28 non-normal standard subgroups of level q.

1.2.3 The Congruence Subgroup Problem

Let R be a commutative ring with a one.

Congruence Subgroup Problem. Does every subgroup of SL, (R) of finite index con-

tain a principal congruence subgroup?
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This question can, with some care, be made to make sense in PSL,(R), the details
can be found in section (6.4). The Congruence Subgroup Problem has a long history and
has its origins in the work of Fricke and Klein, and Pick in the 19th century (see [34]
section 4.3 and [11] chapter 1.6 section B). Klein [39] pointed out, at a meeting of the
Munich Academy on 6th December 1879, that the Modular Group, PSLy(Z), contains
subgroups of finite index which do not contain a principal congruence subgroup. This was
later proven simultaneously and independently by Fricke [27] and Pick [74]. We outline
the proof, which can be found in [51]. Chandler and Magnus [11] assert, without any
evidence, that it may be pre-1914.

Lemma.

PSLy(Z)

PSLy(Z,nZL) — PSLa(Zn)

Where Z,, denotes the ring of integers mod n.

Lemma. The only non-abelian quotient groups that can appear in a composition series

of PSLy(Z,) are the groups PSLy(Z,), where p is prime.

Lemma. A is a quotient of PSLy(Z), and Ay is not isomorphic to any of the groups
PSLy(Zy,).

The kernel of the map PSLy(Z) — Aj; is then a normal non-congruence subgroup
of PSLy(Z). It is then a simple matter to see that SLy(Z) must also contain non-
congruence subgroups. The positive solution of the problem in the n > 3 case was proved
simultaneously in 1965 by Mennicke [66] and Bass-Lazard-Serre [4] in the context of
SLy(Z):

Theorem. Let n > 3. If H < SL,(7Z) is of finite index then SLy(Z,nZ) < H for some
n # 0.

Again we see that in the two dimensional case the normal subgroup structure of
SLy(Z) is much more complicated than the higher dimensional cases. In fact the situation
is a lot more complicated than may at first appear because “most” subgroups of the
Modular group are non-congruence subgroups. We now outline two different ways in
which this idea is made precise.

The Modular group has the following presentation PSLy(Z) =< a,t;a?, (at)® >
Cy x C5 [25, 51, 70, 81]. Newman [71] has derived an asymptotic formula for the number
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of subgroups of a given index in the free product of finitely many cyclic groups. Applied

to the Modular group we get

Theorem. [71] Let a,(G) denote the number of subgroups of G of index n. Then

%uwhm»~umwaﬁ%m(mf”-g+ﬁ+naﬁfn)

Now let v,(PSLy(Z)) denote the number of congruence subgroups of PSLy(Z) of

index at most n. A special case of a theorem of Lubotzky [47] is

Theorem. There exists positive constants C1, Cy such that
ncl logn/loglogn < ’}’n(PSLQ(Z)) < nC’2logn/loglogn.

So it can be seen that

Yo (PSLo(Z))

‘m—)oaﬁﬂ—)(}o

and in this sense most subgroups of the modular group are non-congruence subgroups.
Again it is now simple to see that in SLy(Z) most subgroups are non-congruence. We

now outline another interpretation. Let
F = {8 < SLa(Z) : |SLo(Z) : S < 00}
and
C ={C < SLy(Z) : C a congruence subgroup}

These constitute bases for neighbourhoods of the identity for two topologies on SLy(Q).

Let SL2(Q) be the completion relative to F and let SLy(Q) be the completion relative
to C. Since C C F we have a natural surjection

e —

We denote the kernel of this map by C(SLs,Z) and call it the non-congruence kernel.

The Congruence Subgroup Problem now becomes the following
Question. Is C(SLs,Z) trivial?

Theorem. [45]
C(SLy, 7) = I,

where E., is the free profinite group of countable rank.
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That is the congruence kernel is enormous, and so again most subgroups of SLy(Z) are
non-congruence. It is simple to see that the same is true in the modular group PSLs(Z).
So far we have looked at the congruence subgroup problem in SL,(Z). What about more
general rings?

Let K be a global field (see section on number theory at the end of this chapter),
S0 €S CQ, S #0and O = Og the ring of S-integers. Form the group SL,(0). Clearly
the congruence subgroup problem makes sense in this group and we can construct the
congruence kernel C(SL,, Q) in exactly the same way as C(SLy,Z). The congruence
subgroup problem then becomes to determine the structure of C(SL,, ©). Bass-Milnor-

Serre [5] proved the following

Theorem. With the above notation suppose that O is a Dedekind domain of arithmetic
type, andn = 3. Then C(SLy,, Q) = 1 unless K is a number field which is totally complex
and O is the ring of integers, in which case C(SLy, O) =2 u(K), the (finite cyclic) group
of all roots of unity in K.

The n = 2 case was dealt with by Serre [80].
Theorem. With the above notation and n = 2 then

1. If |S| = 2 and it is not the case that K is a totally complex number field and © its
ring of integers then C(SLs, O) = 1.

2. If|S| = 2 and K is a totally complez number field and O is its ring of integers then
C(SLs, 0) = p(K).

8. If |S| = 1 then C(SLe, Q) is infinite.

Thus the Congruence Subgroup Problem fails completely only in the case where n = 2
and |S| = 1. So again we see that the two dimensional case is more complicated than the
higher dimensional cases, and in the two dimensional case the unit structure of the ring
becomes important. There are three families of rings O for which |S| = 1: Z , Oq4, and

C (see section on number theory). We have already seen Lubotzky’s characterization of

C(SLs,Z). He also proved

Theorem. [45] With the above notation let O = Oy, or C. Then C(SLg, O) contains

~

F,, the free profinite group of countable rank, as a closed subgroup.
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So the Modular group and the Bianchi groups contain a great many non-congruence
subgroups. We have already mentioned that Fricke [27] and Pick [74] gave examples of
non-congruence subgroups of the modular group (see also [40]). Reiner [77] generalized
their construction and many authors have produced classes of non-congruence subgroups
(see [37] and [70]). Stothers has shown [83] that the minimal index of a non-congruence
subgroup in the Modular group is 7. McQuillan has classified the normal congruence
subgroups of the Modular group [65]. Drillick [22] has adapted the approach in Magnus
[51] outlined earlier to the Bianchi group PSLy(O;), known as the Picard Group. Britto
[10] generalized Drillicks arguments to construct an infinite family of non-congruence
subgroups in PSLs(Oy) for d = 1,2,3,7,11, 5,6, 15. Since the basis of this construction
is a surjection of PSLy(Qy) onto A,, n > 7, all of the normal non-congruence subgroups
constructed by these methods are of index 6k, for some k € N. It is also the case that
these normal non-congruence subgroups are torsion free.

In chapter five we extend the work of Mason in [58] and derive a relationship between
the order and level of a normal congruence subgroup of PSLy(Oyym). We then use this
relationship in chapter six to show that nearly every normal subgroup in PSLy(Ogpm)
of index not divisible by 6 is a non-congruence subgroup. Further they all have torsion.
Thus our normal non-congruence subgroups are all different from those constructed by

Drillick and Britto.

1.3 Some Number Theory

For more information see [34] section 2.2E and the references therein.

Let K be any field. Let

v: K —R
Consider the following four conditions:
1. v(a) 2 0,and v(a) =0 & a = 0.
2. v(ab) = v(a)v(b).
3. v(a+b) < v(a)+v(b).

4. v{a + b) < max(v(a),v(b)).




Chapter 1. Introduction 18

Clearly 1 and 4 =- 3. If v satisfies 1, 2, and 3 we say v is a valuation on K. If v also satisfies
4, v is non-Archimedean, and if not it is Archimedean. If v(a) = 1 Va € K — {0} then v
is the trivial valuation. We say that a field is global if it is a finite separable extension of
Q or of the quotient field of a polynomial ring Fy[X], where ¥, is a finite field of order
d. In the first case K is a number field, in the second a function field. We say that two
valuations vy, and v, are equivalent if for every a € K we have v1(a) < 1 & v(a) < 1.
Let K be a global field. Let €2 be a complete set of inequivalent non-trivial valuations
on K and let Soo C €2 be the set of Archimedean valuations. Suppose S, € S C © and
S # () then

Os={ze€K:v(z)<1Vv¢S}

is called the ring of S-integers of K. Og is a Dedekind domain. If S is finite then we say
Qg is a Dedekind domain of arithmetic type. If K is a number field and S = S, then Og
is the ring of integers of K.

The completion of K with respect to an Archimedean valuation, v, is isomorphic (as
a topological field) to R, or C and we say v is real or complez accordingly. The number

field K is totally real if all valuations in S, are real, and totally complez if they are all

complex.

Theorem. Let O = Og be a Dedekind domain of arithmetic type. Suppose |S| =1 then

one of the following s the case
1. O=274.
2. O = Oy the ring of integers in Q(v/—d), d a positive square free integer.

3. O = C, the coordinate ring of an affine curve obtained by removing a point from a

projective curve defined over a finite field.

farther these are precisely the Dedekind domains of arithmetic type with finitely many

units.

Example 1.3.1. Let d € N be square free. Let O be the ring of integers in Q(+v/d). Then
O is a Dedekind domain of arithmetic type, and by [13] theorem 11.4, O* is infinite.




Chapter 2

Zimmert’s Theorem

In this chapter we describe a topological method invented by Zimmert [93] and its ex-
tension due to Grunewald and Schwermer [32]. It concerns the action of SLo(R) on
hyperbolic 3-space H?, where R is an order in an imaginary quadratic number field. See
also [23] chapter 7 section b for a discussion of this method.

Recall that the Bianchi groups are PSLy(O,4) where Oy is the ring of integers in the
imaginary quadratic number field Q(v/~—d), and recall that

% ifd=3 (mod4)
Oy = Z + wZ where w —

Z\/a else

and where d is a positive square-free integer. Now let m € N and let
Oum =7+ mwZ

where w is as above. The Og,, are the orders in the imaginary quadratic number field
Q(v—d). 1t is clear that Oy = Oy and that |Og4 : Oym| = m. We can form the groups
SLo(Odm). Since mOq C Ogm we have SLy(Og,mOy) < SLa(Oyyp) s0 that SLe(Ogm)
is of finite index in SLy(O4). Similar comments can be made to show that PSLy(Oym)

is of finite index in PSLy(O,4). The aim of Zimmert’s method is to prove the following

Theorem. For every d there exists m such that SLy(Oy,) has a free non-abelian quo-

tient.
As PSLy(Ogm) = SLa(Oym)/ < —I > the following theorem is clear

Theorem. For every d there exists an m such that PSLy(Ogyum) has a free non-abelian

quotient.

19
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We say that a group G is §Q-Universal if every countable group can be embedded in
a quotient of G. It follows from a result of P. M. Neumann [69] and the above theorem

that
Theorem. [32] Every Bianchi group PSLy(Oy) is SQ-universal.

Thus the Bianchi groups may be considered “large” [76]. It follows from SQ-Universality
that every Bianchi group has 2% normal subgroups [69] and it is this that is the source of

the extremely complicated normal subgroup structure described in the previous chapter.

2.1 Hyperbolic 3-space

The upper half-space in. Euclidean three-space gives a convenient model of 3-dimensional

hyperbolic space
H? = {(2,r) e CxR:7 > 0}

which we equip with the hyperbolic metric

_dz? + dy® + dr?

2
ds 2

The group SLy(C) acts on H? in the following way. Let M & SLy(C) where

M = g

v 4

Then

_— P

M(zr) = ((6 ¥E2)(az — B) —r 7 f)
T T

where

T=|yz — 6>+ ¥y

Under this action the hyperbolic metric is SLy(C)-invariant. The group SLs(C) is gen-

erated by the matrices

where a € C. These generators operate on H? in the following way

el =Gaan, | 0T (z,r):( 7 r )

0 1 1 0 2|2+ 727 |22 + 12
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2.2 Zimmert’s Method

Let D be the discriminant of Q(+v/—d). It is well known that [52]

—d ifd=3 (mod4)
—4d else

D=

Definition. The Zimmert Set Z(d, m) is the set of all n € N such that
1. 4n? < m?|D| - 3.

2. D is a quadratic non-residue modulo all the odd prime divisors of n, and if D # 5

(mod 8) then n is odd.
3. n>0, ged{n,m) =1 and n # 2.

It is easy to prove that Z(d,m) = 0 & (d,m) = (1,1), or (3,1), and if Z(d, m) # 0
then 1 € Z(d,m). We let r(d,m) = |Z(d, m)|. Zimmert’s theorem is

Theorem. [32] SLy(Oum) has a free quotient of rank r(d,m).
Zimmert [93] proved the m = 1 case. We now outline the proof. Let
By, = {(z,r) €H®:7 > 1V coprime «,d € Od,m}
where, <y, coprime means that yOg, + 0y m = Oy, and, as before

T = |yz — 6> + r?ly|?

Every point of H? is equivalent to a point of By, under the action of SLy(Oy,,) and so

the natural map
Bym — SLy (Odm)\]H[?’
is surjective. Let
D = {(s1 + samw, ) € By, : 51,52 € [0,1]}
D is a fundamental domain for SLy(O4,m) [84, 93].

Proposition 2.2.1. ([84] Proposition 3.9) Every h € H3 has a neighbourhood U such
that cU O D # 0 for only finitely many o € SLy(Ogm).

l\
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Let n € Z(d,m), t € Z such that (n,t) = 1. Let

Fryp = {(z,r) € Bym : ’Im (z — tmw)

n

< 1
= m4\D|2

By condition 1 in the definition of the Zimmert set we have Fy, 1, N\ Fo, 1, # 0 < nq = no,

and &; = ¢,.

Lemma 2.2.2. (/93] Hilfssatz 1) Let (z,7) € Foy, let 0 € SLy(Ogm) such that o(z,r) =
(#',7") € Bam. Then 3t' € Z such that ged(n,t') =1 and

!
Im(z—m—w) zfm(z'~t—m£‘~)~).
b2 n

Further

5
> -
"2 9m2D|

Now for each n € Z(d, m) define @, : Bym — S*, where S' ={z € C: |z| =1}, by

Lot (Z, 'f‘) ¢ U(n,t):], Fn:t

O ST .
exp27i (—2- + 22 Im (2 — T)) if (z,7) € F,,
There is a unique factorization of ¢, over SLy(Oy.m)\H? by a continuous map

fa 1 SLoy(Ogm)\H? — S*

This is well defined by lemma (2.2.2) and continuous by proposition (2.2.1). Suppose
that Z(d,m) = {n,...,n.}. Let ¥ denote the one point union of r(d, m) copies of S*

with base point 1 ie
Y ={(z,...,2) €5 x- xSz #1 for at most one i}
Now define

I SLQ((9,;,1;,—,‘-,,)\]H[:3 — Y

(z) lr) }_> (fl(z7 ’r)) e f?‘(z’ T))
where f; denotes f,,. Now f induces a homomorphism

f* e (SLz(Od,m)\HS) — M (Y, ].)
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Now let g € SLy(Ogm) and let hy € H?. Let P be any path from hg to ghy. The image
of P in SLy(Oyum)\HP is a loop and therefore represents some cy € w1 (SLa(Ogm) \H?).
Define

0 : SLy(Ogym) — 1 (SLa(Ogym) \H?)
by g +— a,. This map is well defined. We now have
0 : SLy(Ogm) — 1 (SLa(Oypm)\H®) — m (V) & F,
where r = r(d, m). Now consider the natural map
v B —» 7"

Zimmert shows ([93] Satz 2(z)) that o1 is surjective. So 1 # imo < Fy, also SLy(Oam)
is finitely generated, so imo is a free group of rank s, where » < s < oo and so maps onto

a free group of rank r. Thus
Theorem 2.2.3. SLy(Oy,m) maps onto a free group of rank r(d, m).
so clearly

Theorem 2.2.4. PSLy(Oy,,) maps onto a free group of rank r(d, m).

2.3 Explicit result about the free generators
We have just seen that

01 SLe(Ogpm) » m(Y) 2 F,
where r is the order of the Zimmert Set.

Lemma 2.3.1. The image, under o, of the matriz

1 nmw

0 1

U=

can be taken as a free generator of m(Y).
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Proof. Let 2z, = ;n—ﬁ%lﬁ,zl = zy + mw, and let h; = (2;,1). So uhg = h;. Now define
a path P from hg to hy by P = {(2(s),1) : s € [0,1]}, where z(s) = (1 — s)z + s21 =

zp + smw. Now

Pﬂ (U Fl,t) — (POFL()) U {hl}

te7

and h; € F1 1. So f1(P) = S'. Now recall that
Y ={(z1,...,%) € S" x - x §" iz # 1 for at most one i}

Let S} denote the i circle of Y. Then S} gives rise to g; € m1(Y) and {g1,...,¢,} is a

set of free generators of m (Y) = F,. So

filo(u)) = g1g0 ==

where go €< gs,...,9, >. By Tietze transformations we can take {z,g2,...,9,} to be a

set of free generators of 71 (Y), as required. |
Lemma 2.3.2. o(u) is a free generator of imo.

Proof. Clearly o(u) € imo. We can then apply Proposition 2.10 on page 8 of [48] to get
the result. ]

2.4 Unipotent matrices

Let R be any commutative ring with a one. Recall that a matrix M € GLy(R) is
unipotent it (M — I)* = 0. Let Uy(R) denote the normal subgroup of SLy(R) generated
by the unipotent matrices. Clearly Ey(R) < Us(R) and so NEy(R), the normal subgroup

generated by the elementary matrices is contained in Uy (R).

Lemma 2.4.1. Let M € GLy(R). Then

M s unipotent < det M =1 and trM = 2

14+«
& M= 7 where o + By = 0,0, 3,7 € R.
f 1—«a

Proof. Let

T+ M= (“ b) € GLy(R)
c d
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be unipotent. Let ¢ =trM = a + d. Then

0= (M — 1) = (a—1)%+bc b(t — 2)
c(t—2) (d—1)2+10bc
Now suppose that ¢ # 2,80 b=c =0, 50 (a — 1) +bc = (a— 1)? = 0, so a = 1, similarly
d=1,s0 M = I. Contradiction. So ¢t =2, and d =2—aq, so det M = a(2 —a) — bc =
—(a®=2a+1)+1—-be=—((a—1)2+bc)+1=1.
Conversely suppose that det M =1 and trM = 2. So

a b
M=
c 2—a

(@ —1)* +bc 0
0 (1-a)®+bc

S0
(M—-1)*=

and (a —1)?+bc=a*~2a+1—bc=—(a(2—a)—bc)+1=—-1+1=0. So M is
unipotent.

Now suppose that det M = 1 and tr M = 2. It is clear that M can be written in the

form
1+ a v
f 1—a
where a2+ fy = 0, some «, 8,77 € R. So conversely suppose that M is of this form. Then

2_|_ i~
(M — 1) = o'+ fy ay—oay _ 0
af —af o+ By

so M is unipotent. (]

Lemma 2.4.2. Let 6 € R. Then every conjugate of

14
01

in SLy(R) is unipotent.

a b 1 6 d —b B 1—acs a*§
c d 01 - @ —c2§ 1+ acs

Proof.
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Lemma 2.4.3. Suppose that R is an integral domain and let «, 3 € R then aR + SR 1s
principal if and only if 3a/, ' € R such that o/, and B’ are coprime and ac’ + B8 = 0.

Proof. Suppose first that R + R = dR. So « = dry, § = dry, § = ars + Bry, where
r, € R, 1 =1,2,3,4. So d = §(rirs + ror4), and because R is an integral domain and
0 # 0, we have r173 + 7974 = 1. Let o = rq, and ' = —ry. So ¢, and (' are coprime,
and a + P = 0.

Conversely suppose that 3 coprime o', #' € R such that ad’ + 88 = 0. Now ao’ =
—pBF', and o' and B’ are coprime, so « = 4", and § = &'a”. So 0 = ac/ + BB =
o'f(a" + 3"), and as R is an integral domain and o' # 0 # ' we have o = —f". So

C\iR—l—,BRz,B'ﬂ"R-}-C\!'O!”R:C}!”(Q{’R-l-ﬁ’R):O!”R. 0
Lemma 2.4.4. Suppose that R is an integral domain and let

1+« ¥
g 1—«

M =

be unipotent. Then M is conjugate in SLq(R) to

146
01

if and only if R + QR s principal.
Proof. Suppose that

1+ acd a%é 1+a o
—c%0 1 —acs g 1—a

So a = acd, f = —c?§, v = a®. Clearly aR + SR C ¢dR. Now let € R and consider

com.

cdz = cdz(ad — be) as ad —bc =1
= acéxd — 26bx |
= axd + pbx as a = ach, f = —c*S
€ aR+ (R

So aR + BR = 6cR, ie is a principal ideal.
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Conversely suppose that R + SR is principal. Now

a b 1+ ao 0% d —b
c d 6 1—a - a
1—I—%(aa+bﬂ) (ca + dp) —“ﬁ—l(aa-i-b,@)2

L{ca+dB)’ Z(ac+bB) (ca + dp)

and R+ SR is principal so, by (2.4.3), 3¢/, 8’ € R such that o/, and 8’ are coprime and
da+ 3 =0. Let c=a, and d = ' so Ja, b such that ad —~bec =1 and ca +df = 0, so

1 6
] Y=
I (0 1)

where § = Z(ac -+ bB)?. O

Having set out the basics that we require in the context of an arbitrary commutative ring
we now turn to the case where R = Oy, is an order in an imaginary quadratic number

field. Let 7 be the order of the Zimmert Set and
. SLQ(Od,m) — F,-
be the map given in the previous section. Let K = kero.

Lemma 2.4.5. (/93] Hilfssatz2) Let O = Oy, and let M € SLy(0), and o, B € O such
that O + BO is not a principal ideal. Let €,t € R such that 0 < e < 1, and |¢| < e. Let

W =(zr)= (%H, I—;—P/m)

and suppose that MK = (2',r"). Then
r < |B1V2 — €2
Proof. Suppose that

a b
c d

M =

so r' =r/7, where 7 = |cz — d|* + r*|c|*. Now

—a+1
c—— —d
B

T =

2 1 2 1
_ g2 -
+(|ﬁ|“26 ) "> 15E
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For equivalently
(c—a—Bd)+ct]+ (2¢— ) P > 1

Now ¢ and d are coprime and SO + «O is not a principal ideal so, by (2.4.3), 0 #
—ca— fd € O, 80 | — ca — Bd| = 1. Thus

[(—ca — Bd) + ct* + (2¢ — €) |e]* = (1 — |et])® + (26 — &) |¢?

Suppose that |ct| > 1. Clearly (1 — |ct|)* > 0. Also |c| > 1/|t| = 1/¢ and so (2¢ —
< 1. First of all observe that

e?)|c|? = (2 — 1) |c|?* > 2 — 1 > 1. Now suppose that |ct|
2

2e—e2 22—t e (e~ [th)(2—€—t]) 2 0, and as 0 < |t| < € < 1, this is true, so

2 > 2] — |t]*. Now

Z
2e — € 2

(1 — |ct])? + (26 — ®)|c|> = 1 — 2|ct| + |ct|* + (2e — €2)|¢)? = 1
& et]? = 2ct| + (2 — €¥)|c* = 0

Now if |¢| = 0 then this is certainly true, so suppose that |c| # 0, so as ¢ € O we have

le| = 1. Now

|t — 2let] + (2¢ — €*) cf?
=lel (lellel® = 2[¢] + (2¢ — €)lcl)
el (lellel* — 21t + (2[¢] — [¢)le])

olelll(le] — 1) > 0.
Sor' =r/T< |ﬁ|2(1/|ﬁ|)\/2€—e2-f—|ﬂ]\/26—-62. O

Theorem 2.4.6. ([93] Satz 2(ii)) Let o, B,y € Oym such that o + By = 0 and
aO4m + BO4m is not principal. Then

1+
M = 7 e K

f 1l+a

Proof. Let € € R and let

hi = (21,7m1) = (%Ea%—'\/ 25*€2>
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and suppose that Mh; = hy = (22,72). Now

2
—a 4 €
(-
g U9 |ﬁ|2
=|—a+e—1+af*+2—¢

T=|8 (2¢ — €*) |81

=(e—1)*+2e—¢

=1
So ro =7y, and

e (ST 005 )

After some algebraic manipulation we see that

z_—oz—e
B
SO
—ax—e¢ 1
hy = __,_\r—ze_ez)
’ ( Y]
Now let

={h’: (O‘TH, l;lx/Ze—ez) eH?’:teR,—egtge}

so P is a path in H?® from hy to hy. Let h' € P and My € SLy(O). Then, by (2.4.5), if
Mah! = (2, ") we have 1’ < |B|v/2e — €2. Now choose ¢ so that |8]v/2¢ — €2 < 5/(2m?|D|).
So, by (2.2.2), Myh' ¢ I, for every n € Z(d, m) and t € Z coprime to n. Thus ¢, (k') =1
and it follows that M is in the kernel of the Zimmert map. O

Theorem 2.4.7. With the above notation, there ezists an epimorphism

. SLQ(Od,m)

: — F§
T U2 (Od,m)

where s =r — 1.

Proof. We have already seen, in the previous section that SLq(Og.) has a free quotient

of rank s + 1 where
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can be taken as a free generator. Now consider a unipotent matrix

1+a vy
B 1—a

M =

where a? + By = 0. Now either «R + SR is principal or it isn’t. If it is not principal
then, by theorem (2.4.6), M € K. If aR + SR is principal then, by lemma (2.4.4), M is
conjugate, in SLy(Og,) to

14
01

for some § € Ogp. Nowd = 21 + mwze, 2 € Z, but T' € SLy(Z) < K, so we can
suppose that M is conjugate to some power of U. So either M is in the kernel of the
map SLy(Oym) — Fr or it is conjugate to a power of U, which can be taken as a free

generator of F,.. So clearly

SLy(Oum) L, STy B>
UQ(Od’m) < U >

2L By, Ty >= F

Corollary 2.4.8.

SLZ (Od,m)
NE, (@d,m)

has a free quotient of rank s = r — 1.

Let R be any commutative ring and let ¢ <t R. Then let
SL,(R,q) = ker(SL,(R) — SL,(R/q))

and let U, (R, q) be the normal subgroup of SL,(R) generated by all unipotent matrices
in SL,(R,q), let E,(R,q) denote the normal subgroup of E,(R) generated by all q ele-
mentary matrices and NE, (R, q) denote the normal subgroup of SL,(R) generated by q

elementary matrices.

Corollary 2.4.9. Let 0 # q < Ogyn. Then

SLQ(Od,m) q)
UZ(Od.,m: q)

has a free quotient of rank s =r — 1.

lf
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Proof. Now
SLo(OQgm: 0)U2(Oam) 2 SLa(Odgm, 1) Ea(Oam) = SLa(Ogm)
S0
SLz(Od,m,Cl) o SLZ(Od,m) o F
Us(Ogm) N SLa(Ogmya)  Ua(Oagm) °
thus
SL?(OCZ my q)
s dm Y s By
U2(Od,m)q) -

2.5 Computation of Zimmert Sets

Given the definition of the Zimmert Set Z(d, m) it is a simple matter to write a computer
program to calculate any Zimmert Set. We have written such a program in GAP [24].
Since we are interested in free non-abelian quotients it would be useful to know values
of (d, m) such that 7(d, m) < 1. Consider first the Zimmert sets Z(d,1) which we denote
Z(d), let r(d) = r(d,1). Mason, Odoni and Stothers [61] have proved

Theorem. For all but finitely many d r{d) > 2.

Obviously we would like a list of the d such that r(d) = 1. By means of a computer
search Mason et al [61] establish that up to 2 x 10'® the only values of d for which 7(d) = 1
are: 2,5, 6, 7, 11, 14, 15, 17, 19, 21, 23, 26, 29, 30, 31, 35, 39, 41, 47, 51, 59, 66, 69, 71,
87, 89, 95, 101, 105, 110, 111, 119, 129, 159, 161, 191, 194, 209, 215, 230, 231, 255, 285,
311, 321, 335, 341, 374, 399, 426, 455, 479, 546, 591, 615, 671, 831, 959, 1095, 1119, 1239,
2415 and they conjecture that these are the only values of d for which r(d} = 1. Recall
that r(1) = r(3) = 0.

We extended this work by using our computer program to calculate pairs (d, m) such
that r(d,m) = 1. For every square free d € N and every m € N we checked every pair
(d,m) such that m?|D| < 107 and found 104 pairs (d,m) such that 7(d, m) = 1. Exclud-
ing those mentioned above these are : (1,2), (1,3), (1,6), (2,2), (2,3), (3,2), (3,3), (3,4),
(3,10), (5,2), (5,3), (5,4), (6,2), (6,3), (6,4), (6,5), (7,2), (7,3), (10,3), (11,2), (11,4),
(14,2), (15,2), (15,3), (21,2), (23,2), (26,2), (31,3), (35,2), (35,4), (35,6), (39,2),
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(41,2), (55,3), (59,2), (66,2), (111,2), (119,2), (131,2), (195,2), (231,2), (341,2). No-
tice that, perhaps surprisingly, 7(d,1) > 1 does not imply 7(d,m) > 1, for m > 1, for

example 7(10,1) = 2, yet r(10,3) = 1. It seems very reasonable to make the following
Conjecture. The only pairs (d, m) such that r(d, m) = 1 are those listed above.

It can be seen from the data above that for most d such that r(d) = 1, r(d,2) > 1,
so that Zimmert’s theorem only just fails to give a free non-abelian quotient. However
Zimmert’s theorem is not best possible; for 7(5) = 1 yet PSLy(Os) has a free quotient of

rank 2. With this in mind make the following
Definition. Let p(d,m) be the largest rank of a free quotient of SLy(Oym)-

p(d, m) is well defined as P.SLy(Oy,y,) is finitely generated. Let p(d) = p(d, 1). Clearly

p(d,m) = r(d,m). If we have a presentation for PSLy(O4,m) we can compute p(d, m):

Theorem. ([61] theorem 6, and [78])

p(d) | 0 1 2 3 5 7 8
d |1,3]2,7,11,19 | 5,6,15,43 | 10,13,67 | 22 | 21,163 | 37

Mason et al [61] have the following
Conjecture. p(d) > 1 for all d > 19.

We have no reason to doubt this. The only square free d < 19 missing from the above

are 14, and 17, we partially close this gap
Proposition 2.5.1. 4 < p(14) <5

Proof. The following presentation for P.SLy(Oy4) can be found in [30] Proposition 3.5.

< 915 925 93> 94> G5 G6, 97 ; s (9192)°, 1039795 %, 920495 97 %
9595 9795 9695 9397, 96949195 969196 9391 0195 01,
5’196919296_1919519391951951967
9297 9695 ' 9195 - 91959295 97929195 ' 969195 - g3 >
From this it is easy to compute that PSLy(04)® & Zg x Z°, and so p(14) < 5. It is

also easy to see that by setting g, = g2 = gs95* = 1 we get the free group of rank 4. So
p(14) = 4. O
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Proposition 2.5.2. p(1,2) = p(3,2) = 1.
Proof. We have the following presentations from (3.5.1) and (3.3.1)

PSLy(01) =< a,t,z,w;a% 2%, (at)?, (atz)?, [t, w], (atw ™ zw)? >

PSLy(050) =< a,t,w;a? (at)?, (w awa)®, [t, w] >

from which it is easy to see PSLy(O12)® = Zy x Z, and PSLy(034)% = Zg X Z. So
p(1,2) = p(3,2) = 1. O

Proposition 2.5.3. p(7,2) = 2.

Proof. We have from section (3.5)

PSLy(Ors) =< a,t,w,z,y; a*, 7% [t,w], (az)?, (at)®, y = teyzt ™, (ytay ™' =)?,

myat‘ly“lwt_law_lt >

Now suppose that PSLy(Oy5)/N is free then N contains the normal closure of all el-
ements in PSLy(Oy4) of finite order, so N(a,z,t) < N. It is easy to calculate that
PSLy(Or2)/N(a,z,t) 2 Fy. So p(7,2) = 2. O

Proposition 2.5.4. 3 < p(11,2) < 4.

Proof. We have from section (3.5)

PSLy(Or1) =< a,t,w, k,l,m,n;a? k% [m,n], [t,w], (at)®, thikt 1172,

1

Em ™ Htat™ m, nlat ™ In " bmwaw ™ Hm !

m” Ykl mwt taw 1 >

so the kernel of a free quotient of PSLy(011,2) must contain a, k, . It is easy to compute
that PSLy(O112)/N(a, k,t) =< z,1,m,n;[m,n] >. This maps onto the free group of
rank 3, so p(11,2) > 3, and it abelianization is Z* so p(11,2) < 4. O

Given the evidence presented above it seems reasonable to make the following

Conjecture. The only values of (d, m) for which PSLy(Oy,,) does not have a free non-

abelian quotient are: (1,1}, (1,2), (2,1), (3,1), (3,2), (7,1), (11,1), (19,1).
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There are results later on in this thesis which depend on the fact that PSLy(Oq,,) has
a free non-abelian quotient. Usually we then attempt to deal with the cases mentioned
in the conjecture. We are quite certain that the conjecture is true and so the idea is that
we have a proved a theorem (or a version of it) for all Bianchi groups. For example it
is not yet proven that PSLy(Os2) has a free non-abelian quotient, so strictly speaking
our theorem which depends on PSLy(Oy,,) having a free non-abelian quotient has not
been proved for PSLy(0ss), although we are quite certain that it is true and all that
is required is a presentation of PSLy(Oq2) to verify it. Contrast this with PSLy(O3)
where a slightly different technique may be required or with P.SLy(O3) where a radically
different technique is perhaps needed. For this reason we do not consider PSLy(Os) to
be a “true” exception and we refer to the pairs mentioned in the conjecture as the “true
exceptions”. The conjecture could (and probably will) be proved by means of a computer
search. See the comments at the end of section (3.5).

Recall theorem (2.4.7). To get a free non-abelian quotient we require that r(d, m) > 3.
In exactly the same way as above we have used our GAP [24] program to get a list of pairs
(d, m) such that r(d,m) = 2. Again for every square free d € N and every m € N we
checked every pair (d,m) such that m?|D| < 107 and found 215 pairs (d, m) such that
r(d, m) = 2. These are: (1,4), (1,5), (1,7), (1,9), (2,4), (2,5), (2,7), (3,5), (3,6), (3,8),
(3,12), (5,5), (6,6), (7,5), (7,6), (7,9), (10,1), (10,2), (10,6), (10,9), (11,3), (11,6),
( ), (13,3), (13,6), (14,3), (14,4), (15,4), (15,5), (17,2), (17,3), (17,4), (17,5),
(19,2), (19,3), (19,4), (19,6), (19,12), (21,3), (21,4), (21,5), (21,6), (22,1), (26,3),
(29,2), (29,3), (30,2), (30,3), (30,7), (31,2), (33,1), (33,2), (33,5), (34,1), (38, 1),
(38,5), (39,3), (39,4), (39,5), (41,1), (43,1), (46,1), (47,2), (47,3), (51,2), (51,4),
(51,6), (51,8), (55,1), (55,2), (55,6), (61,1), (62,1), (62,2), (65,1), (65,2), (66,3),
(69,2), (69,3), (70,1), (71,2), (74,1), (77,1), (77,2), (79,1), (79,3), (83,1), (83,2),
(86,1), (87,2), (87,3), (87,4), (94,3), (95,2), (95,3), (101,2),
(129,2), (131,1), (134,1), (138,1), (143,1

El

(105,2), (110,2), (114,1),
) ), (143,2), (145,3), (146,1), (149,1), (151,1),
(155,1), (159,2), (165,1), (167,1), (167,2), (173,1), (179,1), (182,1), (183,1), (185,1),
(186,1), (195,1), (195,4), (199,1), (206, 1), (215,2), (222,1), (230,2), (231,3), (237,1),
(239,1), (251,1), (251,2), (255,2), (266,1), (269,1), (271,1), (285,2), (287,1), (290, 1),
(299,2), (314, 1), (327,1), (329,1), (339,2), (359,1), (383,1), (390,1), (395,2), (399,2),
(431, 1), (446,1), (447, 1), (455,2), (458, 1), ( (497,1), (503,1), (

471,1), (494,1), (497,1), (503,1), (506, 1),
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(519,1), (545,1), (551,1), (563,2), (569,1), (623,1), (654,1), (659,2), (689, 1), (699,2),
(705, 1), (719,1), (755,2), (759,1), (770,1), (789,1), (791,1), (815,1), (831,2), (854,1),
(887,1), (935,1), (1031,1), (1055,1), (1151,1), (1169,1), (1190,1), (1199,1), (1209,1),
(1223,1), (1271,1), (1326,1), (1335,1), (1407, 1), (1511,1), (1551,1), (1599, 1), (1751, 1),
(1767,1), (1823,1), (1895, 1), (1959,1), (1991,1), (2015, 1), (2159, 1), (2435, 2), (2639, 1),
(2679, 1), (2735,1), (3119, 1), (3311,1), (3471,1), (4479, 1), (6215, 1), (6815,1), (8655, 1).

Again it seems reasonable to make the following

Conjecture. The only pairs (d,m) such that r(d,m) = 2 are those listed above.




Chapter 3

The groups PS L2(©d,m)

In chapter two we saw that almost all of the groups PSLs(Oy,) had a free non-abelian
quotient. In this chapter we take a closer look at these groups. For completeness we

restate the definition.
Let m,d € N, d square-free then the orders in the imaginary quadratic number field
Q(v/—d) are
Ll ifd=3 (mod 4)
ivd else
The maximal order Oy is the ring of integers in Q(v/—d) and is denoted O,.

Oam = 7+ mw? where w = {

| Oa © Oy | = m. We are considering the groups PSLy(Ogm). Since mOy C Oy,
we have PSLy(O4,mOy) < PSLy(Ogpm), 50 PSLy(Ogm) is of finite index in PSLy(Oy).

We now compute this index.

3.1 Computation of |PSLy(Oy) : PSLy(Ogm)|

First observe that

|PSL2(Od) : PSL2(Od’m)| = IPSLZ(Od) : PSL2(Od,p1)l e |PSL2(Od’plmp,._l) . PSLQ(Od,m)l

where m = p;...p, and p; are not necessarily distinct primes. So for m,p € N, p prime,

we compute |PSLe(Oum) : PSLa(Oymp)|- We need the following well known lemma.

Lemma 3.1.1. Let R be any commutative ring. Let q <A R such that R/q is an S Ry-ring.

Then the natural map
SLy(R) — SLa(R/q)

36
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s onto.
Proof. R/qis SRy so SLy(R/q) = F2(R/q) and clearly

1 « 14q a+q

— .

0 1 q 1+q
So the map is onto. O
Lemma 3.1.2. For any d, m,p € N such thal d is square free, and p is prime

|SL2(Od’m) : SLQ(Od’mp)| = |PSL2(Od,m) : PSLQ(Od,mp)l
and so
|SL2(Od) : SLz(Od,m” = |PSL2(O¢) N PSLQ(Od,m)|

Proof. First observe that

. |PSL2(Od,m) : PSLZ(Od’m,pOd’m”

PSLo(Ogm) : PSLa(Ouom)| =
1PSL2(Ouim) (o) 1PSLy(Odmp) : PSLa(Opmy 2Oanm)]

Now

|PST3(Oum) : PSTa(Ouymy pOam)| = 1PSL2 (o)
d.m

Now, for any ring R and any ideal q of R such that R/q is finite, we have |PSLy(R/q)| =
p|SLe(R/q)|, where p=1if2€ qand p=1/2if 2 ¢ q. So

PSL : SL :
‘ ? <p0d,m 2 pod,m

where p=1ifp=2and p=1/2if p# 2. Also, as |Oymp : POum| = P,

=p

\PSLy(Oamp) : PSLa(O,m, pOuym)| = |PSLa(Fp)| = p|.SLa(Fy)]

where p is as above (this follows from [79] theorem 8.14). Thus

lPSLg(Od,m) : PSLZ(Od,m,pOd’m)I _ PlSLZ(Od,m/pOd,m)l
|PSLy(Oump) : PSLa(Ogpm, 2Oaim)| p|SLa(Fy)|
_ S L2(Ouym/pOaym)|
|5 Lo ()|
_ |SL2(od,m) : SLQ(Od,m:pOd,m)|
lSLQ(Od,mp) : SLz(Od,m)pod,m)l

= |SL2(Od,m) : SLZ(Od,mp)|
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In what follows we work with S Ly as it makes the proofs a little simpler. Observe that

_ ISLg(Od,m) : SLZ(Od,m:pOd,m)l
|SL2(Od,,mp) : SL2(Od,mapOd,m)|

Lemma 3.1.3. |SLy(Oump) : SLa(Ogmy pOam)| = |SL2(F,)| = p(p? — 1).

ISLQ(Od’m) : SLQ(Od,mp)I

Proof. Observe that |Ogmp : pPOam| = p so

SL2 (Od)mp)
SL2 (Od,'n‘u pod,m)

= SLy(IFy).
This group has the required order by [79] theorem 8.8 and 8.14 O

Now

Oum
lSLZ(Od)m) : SLZ(Od,m:pOd,m)l = \SLZ (—i—>‘
pod,m

So we need to have some understanding of the structure of Ogm/POam.

Lemma 3.1.4. If p | m then p%iﬂl is local with mazimal ideal m = (mw).

Proof. Let R = O4pm/vO4m. We compute R*. Now
R={r+mws:rs=0,1,...,p—1}
Let u; = +mws; € R, 1 =1,2. Then
Uty = T17Te + (T15y + 1981 )mw + miw?s; sy
suppose first that d = 1,2 (mod 4), so w? = —d. Then

Uty = 1179 — dMs15y + (189 + Ta51 )Mw

= 1179 + (1182 + 7281 ) MW

since p | m. Now suppose that d =3 (mod 4), so w? =w — (d + 1)/4. Then

U1Ug = 7179 — m2 8189 + (7‘15‘2 + 71981 + mslsg)mw

= 71Ty + (T132 + 7'281)’)7?,(4)

again as p | m. Now suppose that r; # 0 and let 7y = 7', 89 = —ry%s1, 50 wyug = 1.
So ry # 0 = ul! exists. Hence {r +mws:r #0} C R*. But if r; = 0 then wjuy =

resymw F#* 1. So r; = 0 = w4 is not a unit. Hence

R* ={r+mws:r # 0}
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We now show that R—R* = {mws:s=0,1,...,p— 1} = (mw). Clearly R—R* C (mw).
Now if d = 1,2 (mod 4) then
mw(r + mws) = rmw + m2w?s
= rmw — dm’s
=rmw € R — R
similarly if d = 3 (mod 4) then

mw(r + mws) = rmw + m*w?s

= rmw +m23 (w — é;)

d+1
4

= (r + ms)mw — m?s
=rmw € R~ R

Hence R — R* = (mw). So R is a local ring with maximal ideal m = (mw) of index p. O

Lemma 3.1.5. If ptm then

Oam o &
POuqm 104

and the isomorphism is given by
T+ (mw)s == 7 + (ms)w

Proof. Tt is a trivial matter to verify that the map is a homomorphism. Now let r + sw €
O4/pOy. As ptm, m™! exists and r + (m~1s)mw +— r + sw. So the map is onto. Now
suppose that r -+ mws = 1,50 r + (ms)w = 1 in Og/pOy, so r =1 and ms =0 (mod p).

But ptm, so s =0. So 7 +mws = 1. So the map is injective. Hence result. O

The structure of Oy/pQ, is well known and can be found in any book on algebraic number

theory. See, for example, [52] page 108. First recall the definition of the discriminant of
K = Q(v )

~d ifd=3 (mod 4),
—4d else.

D=

Now X, the quadratic character of K is defined as follows. If p | D then xx(p) =0,

1 ifD=1 (mod8),
-1 if D=5 (mod8).

xx(2) =
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and if p 3 2 then

1 ifD=g2* (modp),
xx(p) =
-1 else.

Theorem. [52] Let p € Z be prime then

P12 for xk(p) =1,
pOq = p for xx(p) = —1,
p? for xx(p) = 0.

where P, p; are prime ideals of Oq.
Lemma 3.1.6. If p | m then |SLy(Oum/pOum)| = p°|S L2 (Fp)].
Proof. Now Oy um/pQOym is local with maximal ideal m, of index p, so
o) |-l (5|l o 0|
SL . = |SL : SLy | —>—, .
l ? (pod,m 2 m 2 pod,m pOd,m

and |SLo(Oyym/m)| = |SL2(F,)|, and by lemma (4.2.9) 'SLZ (0“”” n )‘ =p’. O

POd,m * POdm

Thus
Lemma 3.1.7. Ifp | m then

1SL2(Oam) : SLa(Ogmp)| = p°
Lemma 3.1.8. If p{tm then

O P* -1 if xx(p) =1
\S L (péidi)) = P -1 ifxxlp) =0,
(' —1) if xx(p) = —1.

Proof. If xx(p) = —1 then Oypm/pOum = Fpe and |SLa(Fpe)| = p?(@* — 1), by [79]
theorem 8.8 and the comments at the bottom of p.157. Now suppose that xx(p) =1, so
that R = Ogum/pOdm has two ideals my, and my of index p. So, by (6.4.4), SLy(R) =
SLy(R/my) x SLy(R/my) and |SLe(R)| = |SLa(F,) 2 = p?(»* — 1)%, by [79] theorem
8.8 and the comments at the bottom of p.157. Finally suppose that xx(p) = 0, so
L = Oym/0pOum is a local ring and, as before |SLy(L)| = p*|SLa(F,)| = p(p? — 1). O

Thus
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Lemma 3.1.9. Suppose that ptm then

p(®—1)  ifxx(p) =1

|SL2(Od.m) t SLo(Ogmp)| = p® if xx(p) =0,

p(@*+1) i xx(p) = ~1.

Now observe that, from the above, if ptm
|SL2(Od’m) : SLQ(Od,mp“)l = ‘SLQ(Od . SLQ(Od’pn)l

so that

1SL5(Ou) : SLay(Oum)l = [ [ 1SL2(0O0) : SLy(O )]

=1
where m = p{" ...p% and
ISL?,(Od) . SLQ(Od’pL\')I = lSL‘Z(Oa’.) : SLg(Od’p)HSLg(Od’p) . SLQ(Od,pa)l
= p¥ OV |SLy(O4) 1 SLy(Ouy)l.

Thus

Theorem 3.1.10.
1
|PSL3(04) : PSLy(Oapm)| =m* [ | = |PSLy(O4) : PSLy(O4,)|,
=1 i

where m = pi* ... p%, and

p(P2 —-1) if XK(IJ) =1
|PSLo(O4) 1 PSLy(Oap)| = P ifxx(p) =0

p(P*+1)  if xx(p) = —1.

?

3.2 A miscellany of results

Theorem 3.2.1. Let my,my € N be distinct, and suppose msy | my, $0 PSLy(Ogm,) <
PSLy(Oamy)- Then PSLy(Ogm,) 4 PSLa(Om,)-

Proof. Let

a B
X = € PSLy(Odmy),
v &
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and let
1 14+ mw
M= ) € PSLy(O4m,)
0 1
S0
1 1—ay o?
XMX = ( mod mwM2(Oy)).
% 14+ ay

Now suppose that d = 1,2 (mod 4). Let p be a rational prime such that p { d and p { m,,
so p { dmZ. So 3z,y € Z such that pz + dmiy = 1 ie pz + mow(—wmsy) = 1. Let

o = myw, v = p then

Mol —Z
X = € PSLy(Ogmy)
P —muwy

and XMX~1 ¢ PSLy(Ogym,)

Now suppose that d = 3 (mod 4), so w? =w—(d+1)/4, s0 (d+1)/4 = w(l —w). Let
p be a rational prime such that pt (d+1)/4 and ptmq, so pt mi(d+1)/4. So Iz, y € Z
such that pz - miy(d+1)/4 = 1 ie pz + mow(may(l — w)) = 1. Then

Mol —X
X = 2 € PSLy(Ogpm,)

p (1 —w)maey

and XM X' ¢ PSLy(Oym,). Hence result. O

Theorem 3.2.2. Let N 4 PSLy(Oyym) be of index n. Then if 6 4 n then o(N) = Oup

and N has torsion.

Proof. Suppose that 6 {n, so 2{n or 3{n. If 2t n then

0 -1
a = €N,

and a? = 1 so NV has torsion. Also a = kI (mod q) = 1 € qie q = Ogm, 50 o(N) = Ogm.

If 34 n then
0 -1
at = eN

50, as above N has torsion and o(N) = Ogn,. O
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3.3 A presentation for SLy(Z [v/-3])
Dennis has shown [19]
Theorem. SLy(Z [v/=3]) = E5(Z [/=3]).
Following Fine [25] we apply the following, due to Cohn [15]

Theorem. Let R be o subring of C with the usual absolute valuation. Suppose that if
a € R, and |a| <2 then a =0, or |a| =1, or |a| = /D, where p = 2,3. Then Ex(R) is
generated by E(x) with the following complete set of relations:

1. E(z)E(0)E(y) = —E(z +vy)

2. B(z)D(p) = D(u~) E(pzp)

3. (B(@)E(a))? = —I Ya € R such that |o| = \/p, where p = 2,3.
4. BE(u)E(p~)E(p) = D(—p)

Where z,y € R, 1 € R*, and

E(w)—( i 0)@@)-(“ 0)
-1 0 0 u

Let @ = Z + iv/3%. Now OF = {#£1}, and the only elements of norm between 1 and
2 are =iv/3. So we get for SLy(Z [v/=3])

Generators:
E(z), where z € R
Relators:
E(z)E(0)E(y) = —E(z +y), (3.1)
~1I central, (—=1)* =1, (3.2)
(E(iV3)E(—iv3))® = —I, (3.3)
EQ)*=~I,E(-1)*=1. (3.4)

Using (3.1) we can reduce the generators to F(0), E(+1), E(+iv/3), as follows. Let 2 € Z,

and suppose z > 0. Then
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and

E(izV/3) = —E(i(z — 1)V3)E(0) E(iv/3).
We get similar formulas for z < 0. Putting these together we get

E(z +i2V3) = —B(21) E(0) E(iz3V/3).
If &,y = 0 then it is easy to see

E(0)* = -1 & E(z)E(0)E(y) = —E(z + y)

and (3.1) certainly implys the following

E(1)E(0)E(iV3) = E(:v/3)E(0)E(1)
E(1)E(0)E(—iV3) = E(—ivV/3)E(0)E(1)
E(-1)E(0)E(iv3) = E(iv/3)E(0)E(-1)

E(-1)E(0)E(—iV3) = E(-iv/3)E(0)E(-1)

and we also get

E(-1)=-EO)E(1)*E(0)™*
E(—iV3) = —E(0)E(#V/3) ' E(0) ™

44

(3.6)
(3.7)
(3.8)
(3.9)

(3.10)
(3.11)

Using (3.10), and (3.11) we can eliminate the generators E(—1), and E(—iv/3), so
SLy(Z [/-3]) is generated by E(0), E(1), and E(i+/3). We can show that (3.7), (3.8), (3.9)

can be deduced from (3.6) as follows. RTP
E(1)E(0)E(—iV3) = E(—iv/3)E(0)E(1)
now, using (3.10), and (3.11)

LHS = E(1)E(0)(—E(0)E@V3) " E(0)™Y)
= E(1)EGV3) E(0)™

and

RHS = —E(0)E(iv/3)*E(0) " E(0)E(1)
= —E(0)E(iV3) *E(1)
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now

E(1)E(ivV3)1E(0)"Y(~E(0)E(iv/3) " E(1))™
=— E()EGV3) 1 E0) ' E(1) " E(GV3)E(0)™
=—EQ)EQ)EO) ' EGV3) EGV3)E(0) ™"
=—E(0)*=1

and so LHS = RHS. The others are done in a similar manner.

And so a presentation for SLy(Z [v/=3]) is:

Generators:
E(0), E(1), E(iV3), I
Relators:
E(1)? =—I
E(0)* = -1
—1I central, (1) =1
(BE(iV3)E(0)EGV3) ' E(0) ) =1
E(1)E(0)E(iv/3) = E(:v/3)E(0)E(1)
Letting
A= E(0) = ( 01 ) , T = E(0)E1)™" = ( b
-1 0 0 1
U=-E0)E(1)E(0)E@{#V3) ™! = ( ; 2°: ) :
We get
Generators:
ATU,J
Relators:
A? = (AT)® = J,

J central, J2 =1
(UT'\TAT'UA ™Y = [T, U] =1

Let W = T~'U and set J = I to get

45
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Theorem 3.3.1.

PSLy(O39) = PSLy(Z [\/ —3]) =< a,t,w;a’, (at)®, (wtawa)?, [t, w] >

3.4 The Group PSLy(Os5)

First of all observe

Theorem 3.4.1.
PSLy(039)% =< t,w; 15, [t,w] >= Ze X Z

Letting N = N(w), the normal closure of w in PSLy(Osz), we see that I(N) =0 and

PSLy(0s5)

N =< a,t;a?, (at)® >= M.

We aim to decompose PSLy(O35) as a non-trivial free product with amalgamation
and as an HNN group. We do here for PSLy(O52) what Fine did in [25] for PSL.(O3),
PSLQ(O'r), PSLQ(OH)

3.4.1 HNN and amalgam decomposition

Theorem 3.4.2. PSLy(0s5) is an HNN extension of Ko with the Modular group as-
sociated, where Kyo = Ss *z, D(3,3,3), and D(3,3,3) =< =z,y;2%, 9%, (zy)® > is one of
von Dyck’s groups (see [36]). ‘
Proof. We start with the presentation

1

< a,t,w;a? (at)?, (w™tawa)?, [t, w] >

Letting v = w™'aw, the presentation becomes
< a,t,v,w;a?, (at)?, (av)?,v?, ()3, t = w™Hw, v = waw >
Let
Kao =< a,t,v;a? (at)?, (av)?, v?, (tv)® >

We claim that PSLy(Os2) is an HNN extension of K3, with < a,t >= M =< v,t >

associated. First of all we show that < a,t > M. Now as a® = (at)® = 1 it is clear that
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M —»< a,t >. But < a,t >< Kap, and K3y — M via the map t + ¢, @ — a, and
v > a. We see from this that < a,t >— M, and so that M =< a,t >. We can show that
< v,t >= M in exactly the same way. Let 6 be the automorphism of K3 5 given by a +— v,
v — a, and t — t. We must show that (< a,t >) =< v,t >. Now f(a) = v €< v,t >,
and 0(t) =t €< v,t >, so clearly §(< a,t >) << v,t >. Similarly (< v,t >) << a,t >.
Now < v, >=8(0(< v,t >)) < 6(< a,t >), and s0 (< a,t >) =< v,¢ >.
Now consider K34 and let s = at, m = av, so t = as, and v = am. Thus
K39 =< a,s,m;a, s°,m® (am)?, (sm?)® >
Recall that
< a,m;a’,m?, (am)? > Sy
and
< s, m; 80,0, (s ) > D(3,3,3)

So

K3,2 = 83 *m=m D(3: 37 3)

We have the following theorem

Theorem 3.4.3. [/8] If G maps onto o free product then G can be decomposed as an
amalgamated free product. More precisely if 6 : G —» Ax B and H = 07 (A) N §~(B),
Ga and Gg are disjoint copies of 071(A) and 071 (B) respectively and H,, Hp are copies
of H in G4 and Gg respectively Then G is isomorphic to the amalgamated free product

Ga *Hao=Hp Gpg.

As PSLy(Os,) maps onto PSLy(Z) which is the free product of a 2-cycle and a 3-
cycle, we immediately get that PSLy(Q;2) is an amalgamated free product. However if

we do some direct calculations we get a nice decomposition.

Theorem 3.4.4.
PSL2(03’2) = G]_ *g G2

where G1 is an HNN eztension of Ss, Go is an HNN esztension of D(3,3,3), and
H=17x Z3.
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Proof. We start with the presentation

< a,t,w;a?, (at)?, (wlawa)?, [t,w] >
Letting ¢ = as, £ = w'sw, m = w™law the presentation becomes

< a,w,s,z,m;a’, 8%, (am)®, . = wlsw,m = w law, am = sz, 2%, m?, (sz71)® >

Now let
G1 =< a,m,w; a®,m?, (am)*, m = wlaw >
and
Gy =< W, s,2;8°,2°, (sx 1),z =w 'sw >
and
Hy =< w,am >< Gy
and

Hy =<W,sz ! >< Gy

Using the normal form theorem for HNN extensions ([12] chapter 1 theorem 31) it can
be shown that Hy, = Hy =2 7 « Zs. We can now combine the presentation for G; and Go,

adding the relations w = W and am = sz}, to get
< a,m,w, s,z,W,a%,m?, (am)?, m = wlaw, s*, 2%, (sz71)%, x = wlsw >

after applying Tietze transformations to eliminate w we get the earlier presentation for

PSLy(Os). Thus

PSLy(O30) = Gy % Gy
Now recall that

Sz =< z,y; 2%, 9%, (zy)® >
It is clear that

< a,m;a’,m? (am)® >< Gy
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and that < a >= Zy Z< m >. It is very easy to see that under the automorphism, 8, of
S3 where 6 : @ — m and 0 : m — a, we have f(< a >) =< m > and so G; is an HNN

extension of S3 with two 2-cycles associated. Again it is easy to see that
D(3,3,3) =< s,2;5%, 2%, (s271)% >< Gy

and that under that automorphism of D(3,3,3) given by ¢ : s +— z, and @ :  + s,
we have (< s >) =< & >= Z3 and so G5 is an HNN extension of D(3,3,3) with two

3-cycles associated. i

Now recall that PSLy(O3) does not decompose as a non-trivial free product with
amalgamation or as an HNN group. However the above gives us a natural example of a

subgroup of finite index in PSZLy(Os) which does. Hence

Theorem 3.4.5. PSLy(Q3) is virtually a non-trivial product with amalgamation and
virtually an HNN group. More precisely |PSLy(Os) : PSLy(039)| = 10 and PSLy(Os5)

decomposes as a non-trivial free product with amalgamation and as an HNN group.

Contrast this with Fine’s [25] rather artificial construction of a subgroup of index 144
which decomposes as a non-trivial free product with amalgamation. We can pose the

following
Question. Is 10 the least index of a subgroup of PSLy(O3) which decomposes as a free

product with amalgamation or as an HNN group?

3.4.2 Some Consequences

First recall that in an HNN group a torsion element must be conjugate to a torsion

element in the base ([12] chapter 1 exercise 22). We need the following

Lemma 3.4.6. Every element of finite order in D(3,3,3) is conjugate to one of:
z,2%,y,9% vy, (zy)?

all of which have order 3.

Proof. This is easy to see by making D(3,3,3) act on the infinite lattice in Euclidean

2-space made up of regular hexagons and triangles as given in [36] p.93. O
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Theorem 3.4.7. In PSLy(Os) every element of finite order is conjugate to one of:

1

a, at, (at)?, aw taw, (cw™aw)?, wtawt, w tawt™!

where a has order 2 and the rest have order 3

Proof. Recall that PSLy(Os2) is an HNN extension of K34 and K32 = S3 *z, D(3,3, 3).
Let g € PSLy(Os,) be of finite order. So g is conjugate to an element of finite order in
K39 and so g is conjugate to an element of finite order in S3 or D(3, 3, 3). Now suppose
that g has order 2, then, as all the elements of finite order in D(3, 3, 3) have order 3, g is

conjugate to an element of order 2 in Ss, recall
Ss =< a,m;a*, m*, (am)? >

and S3 has exactly one conjugacy class of order 2. So g is conjugate to a.
Now suppose that ¢ has order 3, so as S5 has only one conjugacy class of order 3 and

it is represented by m we have that g is conjugate to one of:

s, 8% m,m?, sm™ s”im

The result follows, as s = at, and m = aw ™ law. |

Theorem 3.4.8. Let 7 € PSLy(Os2) be a torsion element. Write x ~ y if x and y are

conjugate. Then

1. If 7 ~ at, (at)?, wlawt, wlawt™! then ij;‘\?((gi") > 7 x 7

2. If’rwathenﬁ?\?((g—ﬁ"ﬂ_‘—’zgxz

3. If T ~ aw™law, (aw taw)? then ﬁ?\?((%saz_)_ ~ 7w M

Proof. Recall
PSLy(032) =< a,t,w;d?, (at)®, [t,w], (w awa)® >

set a =1, 50 t3 =1, so we get

PSLz(Og}g)

— L3 ~
N(a) =< tw;t, [t,w] >X Zg X Z

The others are similar O
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Theorem 3.4.9. Let T' be the set of all torsion elements in PSLy(Os5). Then N(T) =
N(M).

Proof. N(T) = N(a,at,aw  aw,w lawt,w tawt™), and N(M) = N(a,t). Clearly
N(M) C N(T). Now suppose that ¢ =t = 1. So a = at = aw taw = wlawt =
wlawt™ = 1. So N(T) € N(M). O

Lemma 3.4.10. Let N < Z, x Z =< x,y >, be of index n , where p is a rational prime.
Then if pt n then

N = N(z,y")
if p | n then
N = N(z,y"), N(z™y")
where n = pk, and m=0,1,...,p— 1.

Proof. Suppose p{n. Then z € N and it is clear that N = N(z,y").

Suppose that p | n, so n = pk, say. If, as above z € N then N = N(z,y™) so suppose
that z ¢ N. Let ! be the order of y mod N, so [ | pk. Suppose that [ | k£, and [ # k, so
y* =1, and [ < k, but then there are < pk distinct cosets of N. Contradiction. So if [ | &
then [ = k, and as [ | pk we must have | = k, or pk.

Suppose that [ = k. Then N(y*) < N. But N(y*) is of index pk = n, so N =
N(y*) = N(2%"*). Now suppose that | = pk. So y,42,...,yP* are pk = n distinct cosets
representatives of N. Now z ¢ N,so z = ¢" some r, 1 < 7 < pk, and 1 = 2P = y#",
sopk | prsok |7 sor=k2k,...,pk. If r = pk then z = y?* = 1. Contradiction,
as z ¢ N. Sor # pk, so x = y® y?* ... y®=Y% Hence, using the fact that Z/pZ is a.
field y* = 2™ where m = 1,...,p — 1. So N(z™y*) < N. But N(z™y*) is of index n, so
N = N(a™y*).

We now show that these groups are distinct. Suppose that
N(z,y") = N(z™y")
then y* € N(z,y?*). Contradiction. Suppose that
N(z™y*) = N(s™y*) = N

where 0 € my,my < p— 1. Then a™yby=* 272 € N, so 2™~™ & N, so m; = my

(mod p) so my = my. Hence all the groups are distinct. O
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Theorem 3.4.11. Let N < PSLy(Os2) be of index n. Then if (n,6) =1
N = N{a,t,w")
if 2| n, and 3¢ n then N is one of
N(a,t,w™), N(at,w™?), N(at, aw™?)
if 24 n, and 3 | n then N 1is one of
N{a,t,w™), N(a,w™?), N(a, tw™?), N(a, t2w™/?)

Proof. Suppose that (n,6) = 1, so working mod N,a=at =w ‘awa = 1,s0a =t =1,
so N = N{a,t,w™). Now suppose that 2{n, and 3 | n, so a = 1. So PSLy(0s5,)/N is
a factor of < ¢, w; %, tw = wt > Zz x Z. So, by (3.4.10), N = N(a,t,w"), N(a,w™?),
N(a,tw™?®), N(a,t?>w™?). Now suppose 2 | n, and 3 { n, so at = w™lawa = 1. So
PSLy(032)/N a factor of < a,w;a* aw = wa > Zy x Z. So, by (3.4.10), N =
N(a,t,w™), N(at,w™?), N(at,aw™?). ]

Theorem 3.4.12. Let n € N. Lel H = PSLy(O32)/PSLy(Os39)". Then
1. If (n,6) =1 then H 22 Z,, and PSLy(O32)" = N(a,t,w").
2. If3{n and 2|n then H = Zg X Zy, and PSLy(055)" = N(at,w™).
8. If2tn and 3|n then H = 7y X Zy and PSLy(O32)™ = N(a,w™).
Proof. Recall
PSLy(03,) =< a,t,w;a?, (at)®, [t,w], (v awa)® >

Suppose that (n,6) = 1 then, working mod PSLy(032)", a =at =1,s0a =1 =1,
and w™ = 1. So H = Z,,. Now suppose that 3{n and 2 | n then at = 1, so a = ¢, and
(w™lawa) =1 so [a,w] = 1, and w" = 1, so H & Zy x Z,. Suppose that 2{n and 3 | n

thena=1s0t* =1, and w” = 1. So H & Zsg X Z,,. O

Theorem 3.4.13.

PSLz(OS,Q)I < PSLQ(OS’Z)Z N PSLQ(Og,Q)g
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Proof. Obviously PSLy(Os5) < PSLy(033)* N PSLy(O35)°. Consideration of index

shows that the inclusion is strict. |

Remark. It is well known [70] that, in the Modular group PSLy(Z) = PSLy(Z)* N
PSLy(Z)3. Fine ([25] Corollary 4.5.4.3) shows that if d = 2,7,11 then PSLy(0,)" <
PSLy(0g)? N PSLy(Oy)3.

3.5 Presentations for some other PSLy(Oy4p).

Using GAP [24] we find the following presentation for a subgroup of PSL,(©;) of index 8

< a,t,w,z;a?, 2% (at)?, (at2)?, [t, w], (atw zw)? >

01 11 1 2¢
a = 0= , W = ,
(—1 0) (0 l) (0 1)

1—2¢ 1—-24¢

where

z = (uat)a(uat)™' =
-2 21-1

Since all the generators lie in PSLy(O;2), and, by (3.1.10), |[PSLe(O1) : PSLo(O1 )] = 8,
the group given by this presentation must be PSLy(0;2). Hence

Theorem 3.5.1.
PSLy(0y2) =< a,t,w, z; a2, 22, (at)®, (at2)?, [t, w], (atw ™ zw)? >

We can show that PSLy(0;2) decomposes as an HNN group and as a non-trivial
amalgamated free product in the same way as we did for PSLy(O;35).

Using GAP [24] we find the following presentation for a subgroup of PSLy(Oy;) of
index 10

< a,t,w,k,1,m,n;a® (at), k2, [m,n], [t,w], thikt™" Y km ™ tat ™ " tm,

nlat~ U tmwaw ™ m T, mT kT  mawt taw T >

1 2 —-1+4+2 )
w = “ k= (uat)a(uat) ! = N :
0 1 2 1—-2w

Where
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! (s = ( T4+ 6+ dw ) |

2w 5 — 2w

—8+ 6w 214 6w
3+ 2w 10 — 6w

m = (uaua)u(uaua) ! =

, 7T+ 6w 26— 14
n = (ua)uuatat tou ' ua) ! = “ “ .
6 —2w —5-—06w
Since all the generators lie in PSLy(O119), and, by (3.1.10), [PSLa(O11) : PSLy(O112)] =
10, the group given by this presentation must be PSLy(Oy;0).

Again using GAP [24] wefind the following presentation for a subgroup of index 6 in
P SLQ(O'f)I

< a,t,w,T,9; 0, 3% [t w], (ax)?, (at)?,y = toyxt ™, (ytay'z)?,

gyat~ly lwtawt >

where

1 2w 1 2w -3
W= == (uat)a(ua,t)"l =
0 1 -2 142w

= (ua(ua)! = ( 542w —4— 20
2w 3 —2w

Since all the generators lie in PSLy(Or ) and, by (3.1.10), |PSL(Or) : PSLy(Or5)| = 6

the group given by this presentation must be PSLy(Or5).

The method of this section ie getting GAP [24] to list all subgroups of I'y of the
relevent index and then labouriously checking whether the generators for each lay in
PSLy(Oym) is very unsophisticated and consequently of use in only very few cases. Swan
{84] has developed a method for computing presentations for PSLy(0,) which can easily
be extended to the PSLy(Ounm) ([78] page 628). However the computations rapidly
become unwieldy as d becomes large. Riley (78] developed a computer package (written
in Fortran) called the Poincaré File which he used to find presentations for P.SLy(04)
for 10 < d < 37 and d = 43,67,163. Such an approach can be used to find presentations
for PSLy(Oypm). The implementation of this in GAP [24] could be an interesting future

project.




Chapter 4

Non-standard normal subgroups of

SL2(Od,m)

Let R be a commutative ring with a one. Let n € Nsuch that n > 2. Let 1 < 4,7 < n

then e;; denotes the n x n matrix with a 0 in every position except (2, j), where it has a

1.
E (RYy=<I+re;:1<4,j<n,i#j>
Let q< R
Eo(Ryq) =<I+ae;:acq,1<i,j<nisj>"0E

the largest q such that F,(R,q) < S is the level of S and is denoted I(S). This is well
defined because E, (R, q1)En (R, q2) = En(R, q1 + q2).

Ho(R,q) ={M € SL,(R) : M = kI (mod q), some k € R}

the smallest g such that S < Hy(R, q) is the order of S and is denoted o(S). S < SL,(R)
is said to be standard if 1(S) = o(S).

&(2, B;q) = {N A SLy(R) : o(N) = q,1(N) = 0}

4.1 Non-standard normal subgroups of SLy(Z)

Here we describe the proof of the following theorem, mentioned in chapter one. This

proof appeared in [62].

55
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Theorem. Let 0 # q <1 Z then |&(2,7Z; q)| = 2.

First recall that the Modular group, PSL4(Z), has the presentation < z,v;z%,13° >
(see [81]).

Theorem. [62] Every countable group can be embedded in an infinite simple group gen-

erated by =,y of order 2,3 respectively, and where xy has infinite order.
Corollary. [62] 32% N <1 SLy(Z) such that SLy(Z)/N is simple, and [(N) = 0.

Lemma 4.1.1. [62] Let X,Y be sets, X infinite. Let f: X — Y be a surjection. For
yeY let ¢, = |f(y)|- Then if Ao such that ¢y < ¢y < |X| Vy €Y then | X| =|Y|.

Proof. Obviously Y| < |X]. Now |X| = >} v ey < [Y]ey < [Yeo, and ¢, £ |1X] 50

-

X< Y. O
Theorem. [62] Let 0 # q <1 Z then |Ey(2,Z;q)| = 2%.

Proof. Let
S ={N < SLy(Z) : I(N) =0, SLy(Z)/N simple }

so |S| = 2", We show that if N € & then o(N) = Z and so |£y(2,%,Z)| = |S| = 2%,
Let N € 8, let qo = o(N). So, since N < H(qo) < SL2(Z) H({qo) = N or SLy(Z).
Suppose H(qo) = N then go = [(H(q0)) = I(N) = 0 s0 o(N) = 0, but o(N) =0 &
N =1or {I,-I} and PSLy(Z) is not simple, so o(N) # 0. Hence H(qo) = SL2(Z) so
qo = I(H(qo)) = I(SLs(Z)) = Z i.e. o(N) =Z.

Now suppose q # Z. Let & = {H(q)NN:N € S8}. Define p - § — & by
p(N) = H(q)NN. Let X € S;, and let S; = p~}(X) € S. Suppose Y € S 50 SLy(Z)]Y
is simple and o(Y) = Z. Now YH(q) =Y, or SLy(Z). Suppose that YH(q) =Y, so
H(q) €Y. So q < (YY) =0. Contradiction. Hence Y H(q) = SLy(Z), so

V:X|=Y:H@NY|=|SLy(Z): H(q)| < o0

e

50 |Sy] € V. Now & is infinite, p is a surjection and |Sy| < Ng < 2% = |S|, so by the
lemma |S;| = |S| = 2%.

We now show that if M € 8; then [(M) = 0 and o(M) = g, and so |Ey(2, Z; q)| = 2%,
as required. Let M € &,s0 M = H(q) N N, some N € §. Now M < N, so {(M) <
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I(N) =0, so [(M) = 0. Let q; = o(M). Now M < H(q) so o(M) = q; < q. Let N be
the image of N in PSLy(Z), so, as —] € N
SLy(Z) ., PSLy(Z)
N N
since N is of infinite index in PSLy(7Z), N is free and so contains elements of infinite

order. So N contains elements of infinite order. Now, as before
IN:M|=|N:H(g)NN|=|SLy(Z): H(q)| < o0

so M contains elements of infinite order, so q; = o(M) # 0. Now, as before, NH(q;) =

SLy(Z), s0
H(q) = H(q) " NH(q)
= H(q,)(N N H(a))
= H(q:)M
= H(q).
50 g, = q. Hence result. O

4.2 Non-standard normal subgroups of SLy(Oym)

In this section we aim to extend the results proved above to the groups SLs(O4). This
answers a question of Lubotzky’s (MR92¢ : 20088). In fact we extend it to all SLy(Oym)
with a free non-abelian quotient, more precisely what we require is that the group maps
onto the Modular group, M in a “nice” way. Recall from chapter two that it is conjectured
that the only SZLs(Ogm) which do not have a free non-abelian quotient are SLy(0,),
SLy(O12), SLa(Oz), SLo(Os), SLy(Os2), SLa(Or), SLa(O11), and SLa(O1g). We show
that in fact SLy(O1,2), SLa(O2), and SLy(O52) map onto the Modular group in a “nice”
way and so the result goes though for these groups as well, leaving only 5 true exceptions.
We prove an unsatisfactory version of the result for SLy(Oy), SLy(O11), and SLy(Osg)
(which relies on the fact that they have an infinite cyclic quotient) but we were unable

to make any progress with SLy(O;) and SLy(Os).

Lemma 4.2.1. Let N < SLy(Oypm). Then

1 11 1 mw . )
IIN)=0& or has infinite order mod N.

01 0 1
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1 1 I mw
and
(0 1) (0 1)

1 s 1 tmw
, € N, some s,t € N.

01 0 1

Proof. Suppose that
have finite order mod N i.e.

Let M = st, let q = (M) <t Ogm, s0 q # 0. Let a € q, so
a=(z1 +mwz)M = z1M + mwz,M,

some 2y, 2 € Z. So

Zi 22
1 « 1 M 1 mwM
= € N.
0 1 0 1 0 1

Hence Eo(Ogym,q) < N, so I(N) #0.
Conversely suppose [(N) # 0. So Ea(Oym,q) < N, some q # 0. Now |Ogp 2 q] < 00,

and so 1 + g has finite (additive) order i.e. s € q, some s € N. Similarly tmw € q, some

t € N. So

1 s 1 tmw

, and EN

0 1 0 1

i.e.
1 1 1 w
, and
( 0 1 ) ( 0 1 )

have finite order mod N. 0

Recall the following result from lemma (2.3.2).
Theorem 4.2.2. Suppose r =r(d,m) = 1 then there exists a surjective homomorphism

[ SL2(Oti,m) — Ft =< P10, T >

1 mw
= ‘IE].
0 1

such that
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Now consider the case r(d, m) > 1.

Lemma 4.2.3. Ifr(d,m) > 1 then 32% N 1S Ly(Oym) such that SLy(Oy.m)/N is simple,

I(N) = 0, and N contains elements of infinite order.

Proof. We have

01 SLy(Ogm) = Fp —< @1, T2; 75, (2122)° > PSLy(7)

1 mw
U = T
0 1

Now by a result of Mason and Pride [62] mentioned in the previous section the Modular

and

group PSLy(Z) has 2% normal subgroups N such that PSLy(Z)/N is simple and ¢ has
infinite order mod N. Pulling these subgroups back to SLy(Ogm) we get 280 normal
subgroups N of SLy(Ogm) such that SLy(Ogpm)/N is simple and u has infinite order
mod N. Further, as ker ¢ contains SLs(Z), N contains elements of infinite order. Hence

result. O

We can now generalize almost word for word the corresponding proof for the Modular

group.
Theorem 4.2.4. Suppose r(d,m) > 1 and let 0 # q < Oy then |Eo(2, Ogm; q)] = 2%°.

Proof. Let
S ={N < 5Ly(O4pm) : I(N) =0,S5La(Z) < N, SL2(Oym)/N simple }

s0, by (4.2.3), |S| = 2%. We show that if N € S then o(N) = Oy, and 50 |€0(2, O my Oum)| =
IS| = 2%, Let N € S, let q¢ = o(N). So, since N < H(qo) < SLz2(Oyym) we have
H(qo) = N or SLy(Oym). Suppose H(qo) = N then qo = I(H(q0)) = I(N) = 0 so
o(N) =0, but o(N) = 0 & N = lor {I,—I} and PSLy(Oy,) is not simple, so
o(N) # 0. Hence H(qp) = SLa(Oym) s0 qo = UH(qo)) = USL2(Oam)) = Oum lLe.
o(N) = Ogm.

Now suppose q # Ogm. Let & = {H(q)NN: N € S}. Define p: § — 8; by
p(N) = H{g)NN. Let X € &, and let S; = p~}(X) € §. Suppose ¥ € S, s0
SLy(Oam)/Y is simple and o(Y) = Oypm. So YH(q) =Y, or SLy(Oy,,). Suppose that
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YH(q)=Y,s0 H(q) <Y, s0 q < {(Y) =0. Contradiction. Hence YH(q) = SLa(Oym)-

Now
Y : X|=|Y:H(q)NY|=|SLa(Ogm) : H(q)| < o0

s0 |S2| € Ng. Now & is infinite, p is a surjection and |Sz| < Ny < 2% = |8, so by lemma
(4.1.1), || = | S| = 2.

We now show that if M € S; then {(M) = 0 and o(M) = q, and so |Eo(2, Oym; q)| =
2%, as required. Let M € S, 50 M = H(q) NN, some N € §. Now M < N, so
(M) <I(N)=0,s0 (M) =0. Let q = o(M). Now M < H(q) so o(M) = q; < q. Now

N contains elements of infinite order. So, as before,
IN:M|=|N:H(@NN|=|SL:(Oum) : H(g)| < 00

so M contains elements of infinite order, so q; == o(M) # 0. As before, NH(q;) =
SLo(Oam), s0

so q; = q. Hence result. O

We have already seen in chapter two that when r(d,m) = 1 we may still have a free
Lemma 4.2.5. For (d,m) = (5,1), (6,1), (15,1), (14,1), (7,2), (11,2), SLy(Oum) has

a free quotient of rank 2 and the image of
Lemma 4.2.5. For (d,m) = (5,1), (6,1), (15,1), (14,1), (7,2), (11,2), SLe(U4m) has

a free quotient of rank 2 and the image of

o)

can be taken as a free generator. Further the kernel of this map contains an element of

infinite order.

Proof. Here we work with the presentations for PSLy(Qyr), as these are a homomorphic

images of SLo(Ogym) this is sufficient. In the following the presentations for d = 5,6, 15
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are taken from [84], and for d = 14 from [30]. The presentations for PSLy(Oz5) and

PSLy(O1,2) can be found in (3.5). a,t,u have the usual meanings.
PSLy(05) =< a,t,u,b,¢;a?, (at)?, [t,u] , b?, (ab)?, (aubu™)?, aca = tet™, ubu~"ch = et~ >
so PSLy(Os)/N(a,t,b) =< u,c; > Fy.
PSLy(0s) =< a,t,u,b,¢;0% (at)®, [t,u] , 1% [a, c], (ath)®, t ™ ctubu ™" = be, (atubu™?)® >
so PSLe(Og)/N(a,t,b) =< u, c; > Fy.
PSLy(015) =< a,t,u,c;a% (at)*, [t,u], [a, d] , ucuat = taucu >
so PSLy(O15)/N(a,t) =< u,c; > Fy.

PSLy(On) =< a,t,u,b,¢,d, e;a%, (at)®, [t,u], [a, ], cd b~ dc™the™?

dav v dad *bauda,
adtad tad bt rab™1d,

at™tae 'dat™ d  acatad L eatb  dac™tb >
after some calculation we see that PSLy(O14)/N(a,t,b,e,d) =< u, c; > F.

PSLy(O113) =< a,t,w, k, 1, m,n; a?, (at)®, k%, [m, n], [t, w], tklkt ™ 7L km ™ tat™ 1 m,

nlat ™ n mwaw m Y, mT ki Y mawt taw T >

50 PSLo(O112)/N(a, k,t,m,n) =< w,l; > F;.

PSLy(O75) =< a,t,w,z,y; a* 2%, [t,w], (az)?, (at)?,y = twyzt™, (ytay > z)?,

1

zyat ™y twtraw ™ >

s0 PSLy(Or2)/N(a,z,t) =< w,y; > Fy. O

It is clear from the proof of theorem (4.2.4) that it is sufficient for SLy(Ogym) to map
onto the Modular group with kernel of level zero. We remark that P.SLy(Os)/N (b, ¢, u) =
PSLy(Og)/N(b,c,u) =
< a,t;a%, (at)® >= PSLy(Z).
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Lemma 4.2.6.

N(u) =< a,t; 6%, (at)® >= PSLy(Z)
PSLZ(OB,Z) o L2 3 v

N (w) =< a,t;a%, {at)’ >= PSLy(Z)
PSLy(01,2)

it N L s 72 3 sov
N(o.t, (70)%) < zyw; 2%, (zw)” >=2 PSLy(Z)
Clearly the kernels contain elements of infinite order.

Proof. This is obvious given the following presentations

PSLy(0;) =< a,t,u;d?, (at)?, (v taua)?, [t, u] >

PSLy(055) =< a,t,w;a?, (at)?, (w tawa)?, [t, w] >

PSLy(012) =< a,t,w, z;0% 2%, (at)?, (atz)?, [t,w], (atw ™ zw)? >

The presentation for PSL,(O;) can be found in [25]. The presentation for PSLy(O; 2)
can be found in (3.5.1) and for PSLy(O5z) in (3.3.1). O

Thus we have

Proposition 4.2.7. Let (d,m) = (1,2), (2,1), (3,2), (5,1), (6,1), (14,1), (15,1). Let
0 # q < Oy then |E5(2, Oqm; q)| = 2%,

The only “true exceptions” not covered above are SLy(O1), SLa(O3), SLa(O7), SLa(O11),

and SLy(O19). The results we can achieve are very unsatisfactory. When we have an in-

finite cyclic quotient we get the following result

Theorem 4.2.8. Suppose SLy(Ogm)/K = 7 and (K) =0 then V0 # q < Oy, 3N <
SLy(Ogm) such that I(N) =0 and o(N) = q.

The following lemma was proved in [63] as Theorem 4.1 for any n > 2 and any

Dedekind domain of arithmetic type, A.
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Lemma 4.2.9. Let R be a commutative ring with a one, q;,qs < R such that R/qs is an

SRa-ring qo < q1. Then

SLZ(Rv ql)
SL2(R) q2)

Furthermore, if SLy(R, q1)/SLa(R, q2) is abelian then SLqy(R, q1)/SLa(R, q2) = a3, where

a = q1/qs, and the isomorphism is given by:

142 T
3 (2,9, 2).
y 1l—2z

Proof. Denote SLs(R,q;) by I'(q;). Now suppose that q? < ¢z and let X,Y € ['(qy).
Then X —I,Y — I =0 (mod ¢;) and so we have

is abelian < g2 < ¢y

X-DY-D=Y-IDNX~I)=0 (mod q?)

It follows that XY = Y X (mod q3) and so I'(q;)" C T'(a2). Conversely suppose that
I'(q1) / T'(ge) is abelian. Let z,y € q; then

* *

[ + zer, I +yey] =
* 1 —ay

) =1 (mod qs)

and s0 zy € qq hence q2 C ¢ps.
Recall that by lemma (3.1.1), ¢ : SLo(R) — SLo(R/q2) is surjective, and ['(qe) =Kerp.

Let v(q1) = ©(T'(g1)) and observe that ¥(q1) = T'(q1)/T'(q2). We show that y(q1) & a.
Define 0 : a® — SLy(R/q2) by

1+ 2z T
(z,9,2) — :
y 1—=z

We first show that 0 is a homomorphism. Let z;,9;, % € a where 4 = 1,2. Then since

q% < 92,

1+Zl+252 1 -+ o

0 (ml) ", 21) 9 (‘(‘Czu Yo, 22) = (

=0 (21 + T2, Y1 + Yo, 21 + 22)
y1+y2 11—z — 2

So 8 is a homomorphism.

We now show that @ is injective. Suppose that 6 (z,y,2) =1 i.e.

1+=2 T
=1 (mod gs)
y 1—2z
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so (z,y,2) = 0 and so @ is injective.

We now show that imf = (q1). Let X € imf. Since X € SLy(R/qe) and
@ is surjective Y € SLy(R) such that ¢ (Y) = X. We show Y € I'(q;) and so
X = ¢ (Y) € y(a1 ). Now X € 9mb so

some z,Y,z € a. Let

a b
Y =
where a,b,c,d € R. Soa€l+z b€z, cey del—z s0a,d=1 (modq;) and

b,c=0 (mod q1), 80 Y =1 (mod q;) i.e. Y € T'(q1). Hence im8d C v(a1).
Now we show that y(q1) C imd. Let X € y(q1), so X = ¢(Y) some Y € I'(q;). RTP

142 ;
X = ’
y 1—=z

a b
c d

some x,y, 2 € a. Let
Y =

where a,b,¢,d € R. Now Y = I (mod q;) so a,d = 1 (mod ¢;) and b,¢ = 0 (mod qy).
Let £ = b+qs,y = c+qa so that z,y € a. Now let 2 = (+qs = (a—1)+q2 and sincea =1
(mod ¢;) we have z € a. We show that d+ g, =1 —2. Now (a—1)(d—1) € ¢ < g2 and
soa+d=2 (mod qz). Sonow 1l —z=1-(+qg=1—(a—1)+qe=2—a+qs = d+qs.

+ b+ 142 T
X:(,D(}f):: @ q2 q2 =
C+Cl2 d+C[2 Y 1—2z

some z,¥, 2 € a. Hence y(q;) C im#. Hence result. O

Hence

Theorem 4.2.10. Suppose that SLy(Oypm)/K = Z and ((I{) =0. ThenV 05 q < Ogm
AN < SLy(Oyy,) such that 1 (N) =0 and o(N) = q.

Proof. Let 0 # q1 <0 Ogm and consider H (q1) N K. Let g2 = o (H (q1) N K), s0 42 < .
Clearly I (H (qi)NK) = 0. We show q; = qo. Suppose not. Now I'/K & Z so
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H (q1) / H (q2) is cyclic, so ' (q1) /T (q1) N H (q2) is eyclic. Also T (q1) N H (q2) /T (q2)
is central in I" (q1) /T (q2). So T (aq1) /I (q2) is central by cyclic, and so abelian. Hence
9% < g2. Let a =q1/qz- So ' (q1) /T (q2) = a®. Where

14z z
— (3,9,2)
y 1—2
We show a® < T' (q1) /T (q1) N H (qz). Define
I (q1)

T Y
v T (qu) N H (q)

w@wﬁ=(1$)-
y 1

¢ is clearly a homomorphism. Now suppose that ¢(z,y) = 1. So

1 z
€T (q) N H (92),
y 1

SO Z,Y € qa, 50 (z,y) = 0 in a?, hence ¢ is injective. So a2 is cyclic, so a is trivial i.e.

41 = 2. [

The only (d, m) excluded from the above theorem are (1,1), and (3,1). Neither SLy(0;)
nor SLy(Os) have infinite cyclic quotients and so using the above techniques we are unable
to say anything about &(2, Oy;q) for d =1, 3.

However despite the difficulties mentioned above we feel confident in making the

following

Conjecture. V(d,m) and V0 # q < Ogm, |E0(2, Oum; q)| = 2%e.




Chapter 5

Order and level of a normal

congruence subgroup

We have seen that in general there is no relationship between the order and level of a
normal subgroup of SLy(Oym). However if we restrict ourselves to normal congruence

subgroups we do find a nice relationship. Mason [58] has proved

Theorem. Let N <1 SLy(Oy4) be a congruence subgroup of level q* and order q. Then
129 < g%

Suppose that N<15Ly(0y) is a congruence subgroup of order @y then SLy (04, 120;) <
N. We use this fact to show that a large class of subgroups of the SLy(Q,) are non-
congruence subgroups. First of all we aim to extend the above results to SLy(Oyrm). In
fact we extend it to SLs over a larger class of rings. The material in this chapter is the
most technically complex and perhaps the hardest to follow in this thesis, so we apologize

to the reader for the Cimmerian night which is about to descend.

5.1 Primary decomposition in Noetherian domains

The material in this section has been lifted from chapters four, seven, and eleven of Atiyah

and MacDonald [2]. Let A be any commutative ring.
Definition. q <t A is primary if q # A and zy € g = z € q or y™ € q, some n 2> 0.
Definition. Let q <t A. Then the radical of q is

r(q) ={z € A: 2" € q,some n = 0}

66
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Proposition 5.1.1. (/2] Proposition 1.14) The radical of q <t A is the intersection of all

prime tdeals which contain q.
Proposition 5.1.2. (/2] Ezercise 1.13) Let a,b <1 A. Then
r(ab) =r(anb) = r(a) Nr(b)

Proposition 5.1.3. (/2] Proposition 4.1) Let <1 A be primary. Then r(q) is the smallest

prime ideal containing q.

Definition. Let a < A. A primary decomposition of a is

n
a= m Y
i=1
where ¢; <1 A is primary.
Definition. If p = r(q) we say that g is p-primary.

Lemma 5.1.4. ([2] Lemma 3.1) Let q; < A, 1 < i < n be p-primary. Then q = N%,q; s

p-primary.

If in a primary decomposition, all the r(q;) are distinct and M;zq; € a5, 1 =1,...,7n
then we say that the decomposition is minimal. All primary decompositions discussed
here shall be minimal.

Recall that a ring A is Noetherian if it satisfies three equivalent conditions:
1. Every nonempty set of ideals in A has a maximal element.
2. Every ascending chain of ideals in A is stationary.
3. Every ideal in A is finitely generated.
From now on let A be Noetherian.
Definition. We say that a <t A is irreducible if a=bNc¢=a=>b, or ¢c.

Lemma 5.1.5. (/2] Lemma 7.11) Every ideal in A is a finite intersection of irreducible

ideals.
Definition. Let z € A. Then the annihilator of z is Ann(z) = {a € A : ax = 0}.

Lemma 5.1.6. (/2] Lemma 7.12) Every irreducible ideal in A is primary.
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Thus we have proved the following

Theorem 5.1.7. ([2] Theorem 7.13) In a Noetherian ring, every ideal has a primary

decomposition.

Proposition 5.1.8. (/2] Proposition 7.14) In a Noetherian ring A, every ideal contains

a power of its radical.

Let R be a commutative ring. A proper chain of prime ideals
O<dpr <+ <P, < R

is of length n. The Krull dimension of R is the maximum length of chains of prime ideals
in R. Thus a domain is of Krull dimension one, if and only if all non-zero prime ideals

are maximal. From now on K shall denote a Noetherian domain of Krull dimension one.

Theorem 5.1.9. Let K be a Noetherian domain of Krull dimension one. Let 0 # q<1 K.
Then

q="p...m

where P; s o primary ideal. Furthermore, for each i, v(p;) = my, a mazimal ideal;

m;t < p;, for some n;; and p; +p; = K, fori#j.

Proof. The radical of a primary ideal is prime, and so, as K is of Krull dimension one, is

maximal. Suppose that

¢
q= ﬂ Pi
i=1
is a minimal primary decomposition. Now r(p;) = m; is maximal and, as the decompo-
sition is minimal, m; # m; if ¢ # j. Further m{* < p;, as every ideal contains a power of

its radical. Thus p; + p; = K if ¢ # j. So q is an intersection of coprime ideals. Hence a

product

q=">p...p»
O

Lemma 5.1.10. Let K be a Noetherian domain of Krull dimension one. Let q* < q be
ideals in K such that 0 # q* # K. Suppose that q* = pi ... p} 15 a primary decomposition.
Then q = py1 ... py where p; = K or r(p;) = r(pf) and pi < p;.
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Proof. If q = K then the result is trivial, so suppose that K # q = p;...ps is a primary
decomposition. We can suppose that r(p1) = r(p}) = my. Let g5 = p5... 95, do = pa. .. Ps.
So q* = piqg, and g = p1go. Now p} + q5 = K = p1 + qo. Since 7(p}) = r(p1) we have
p1+q5 = K. So pi(p1 +a5) = pi, so pipy + piag = pi. Now pigf = " < g < py, and
pip1 € p1, so p} < pi. Now for those p; which have a radical distinct from all the 7(p;)

we let p; = K. O

Example 5.1.1. Let D be a Dedekind domain. Then by definition ([2] chapter 9) D is
a Noetherian domain of Krull dimension one. In this case every primary ideal is a prime

power.

Example 5.1.2. Let Oy,, = Z + mwZ be an order in an imaginary quadratic number
field. Then Oy, is a Z-module of finite rank and so, by Hilbert’s basis theorem (see [2]
Theorem 7.5) is Noetherian. Now Oy, is of finite index in Oy and Oy is a Dedekind
domain and so a Noetherian domain of Krull dimension one. Thus by theorem 20(1)
on page 81 of [64], Qg is a Noetherian domain of Krull dimension one, it is clearly
of characteristic zero. Note that maximal orders are Dedekind domains. However in
non-maximal orders not every primary ideal is a power of a prime ideal.

For example consider the order O3y = Z + iv/3Z. Let m = (2,1 +4v/3). Then m is
a maximal ideal of O3 of index 2 and m* < 2035 < m. So the ideal 2055 is a primary

ideal which is not a power of a prime ideal.

Example 5.1.3. Let p € Z be a rational prime and let K = Z/pZ. Let R = K [X] and
let ¢ < R be of finite index. R is Noetherian by Hilbert’s basis theorem. Consider the
subring S = K -+ q, of B. We show that S is a Noetherian domain of Krull dimension
one. By theorem 20(1) on page 81 of [64], if S is Noetherian then it is of Krull dimension
one, so it suffices to show that S is Noetherian. Now R is a PID so q = (f) where
deg f =d. Let g = > a;X* € R and consider fg == byf + - - -+ 0 X*f, which is in the
K-module generated by fK,XfK,..., X*fK. Suppose that ¢t > d, so deg X*f > 2d =
deg f2. So, as R has a Euclidean algorithm, X*f = hf? + r, where degr < deg f2 = 2d,
and degh < deg X'f — 2d < deg X*f. So that fg is in the K-module generated by
K, XfK,...,X"1fK. Repeat the above until we see that fg is in the K-module
generated by fK,XfK,..., X% 'fK. So S = K + q is generated as a K-module by
K, fK,XfK,..., X% fK and so is Noetherian, by Hilbert’s basis theorem. S is thus an

example of a Noetherian domain of Krull dimension one and non-zero characteristic.
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5.2 Wohlfahrt’s Theorem

Wohlfahrt [91] showed that if S is a subgroup of SLy(7Z), of level m then S is a congruence
subgroup if and only if SLy(Z, mZ) < S. That is he extended Klein’s concept of the level
of a congruence subgroup of the Modular group to an arbitrary subgroup of the Modular
group. This concept of level and Wohlfahrt’s theorem have been of great use in the
construction of non-congruence subgroups of the Modular group. We have seen how the
concept of level can be extended to SL,(R) where R is any ring with a one. In this section

we extend Wohlfahrt’s theorem to all Noetherian domains of Krull dimension one.

Definition. R is said to be an SRy-ring if a,b € R such that ged(a,b) =1 = 3t € R
such that a +tb € R*.

Lemma 5.2.1. Let A be any commutative ring with a one. Let a,b € A such that

ged(a,b) = 1. Let q <0 A such that A = A/q is an SRy-ring. Then 3t € A such that
(a+bt)A+q=A.

Proof. As a,b are coprime 3s,? € A such that as+bt = 1. Now 1 = ¢(1) = p(as + bt) =
@5 + bt, where @ : A — A is the natural homomorphism. So @, b are coprime. So, as A is
an SRy-ring 3 € A such that (@ +0%) = @, where T € A, s0 (a + bt) = u (mod q), so
u = (a+ bt) — ¢, some ¢ € q. Hence (a + bt)A + q = A. O

Theorem 5.2.2. Let A be any commutative ring. Let q; < A, i = 1,2. Suppose that
A= A/q, is an SRy-ring. Then

SLy(A,q2) < Ey(A, q2)SLa(A, q1)

Proof. Denote SLy(A,q;) by I'(q;) and E2(A, q;) by A(g;). Let

a b
X = c P(QQ)
c d

Now ad—bc = 1 so a, b are coprime, and A is an S Ry-ring, so by the lemma, (5.2.1) 3t ¢ A
such that (a -+ bt)A is prime to ¢;. Let
10

T = € A(A)
t 1
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S0

a+bt x
T-IXT = ( ) € T(q2)

kK

so wlog aA and q; are coprime. Let 2 € A such that az =1 (mod ¢;). Now let

10 1 z(l—a—0)
T12 JX1: 3
1 1 0 1
1 a—-1
Xo = .

a=1 (mod g3), so Xy € A(qp), and 1 — a,b € g2 so X; € A(q). Now

10
Tl_lXX]_T]_Xg = (mOd ql)
qg 1
where ¢ € qo. So TT'XX 1 T1 X, € A(q2)(q1). Hence X € A(qa)T(q1), as X1, X, €

A(gz), and T € A(A), and A(qs) < A(A4). O

The following corollary is the classical form of Wohlfahrt’s theorem and is equivalent to

the theorem.

Corollary 5.2.3. Let G < SLy(A) have level q. Then G is a congruence subgroup if and
only if SLa(A, q) < G.

Corollary 5.2.4. Let A be an SRy-ring. Let q << A. Then SLy(A, q) = Ea(A,q). So in
particular SLo(A) = Ey(A).

Proof. Take q; = 0 in the theorem. O

Corollary 5.2.5. Let A be any commutalive ring. Let q; Q A, © = 1,2. Suppose that
A= A/qy is an SRy-ring. Then

SLy(A, 91+ q2) = Ea(A, q1)SL2(4, q2)
Proof. Obviously T'(q1)I"(q2) < (g1 + g2). Then

I'(ar 4+ q2) < A(gr +q2)T(q2) by theorem (5.2.2)
= Ag1)A(92)T(42)
< A1) (q2)
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Lemma 5.2.6. [3] Semilocal rings are SRy rings.

Proof. Let R be a semilocal ring,and let my,...,m; be the maximal ideals of R. Let
a,b € R such that ged(a,b) = 1. RTP 3t € R such that a +tb € R*.
Vi=1,...,t suppose

Vs €R, a+bs=0 (modm;)

Then, taking s = 0, we get ¢ € m;, and, taking s = 1, we get b € m;. But a,b are
coprime. Contradiction. So Vi J¢; such that a -+ ¢;0 # 0 (mod m;). Then, by the Chinese
Remainder Theorem, 3¢t € R such that ¢ = ¢; (mod m;) Vi. So

a+th= a+tib7‘é 0 (mod mz)‘v’z
So a + th € R*, as required. [

Lemma 5.2.7. Let K be a Noetherian domain of Krull dimension one. Let 0 £ q <1 K.

Then K/q is semilocal and therefore an SRy-ring.

Proof. As K is Noetherian we have a primary decomposition ¢ = Ni_;p;. As K has
dimension one this is a product p;...p; and r(p;) is maximal. Let m; = r(p;). So
Vi 3n; € N such that ml* < p;. So m7*...m{"* < q. Now suppose that % < K/q is a
maximal ideal. So m = m/q, some maximal ideal m > q. Suppose that m # m; Vi. Then
m+mit . ompt = K, but m{' ... m* < g, so m+q = K. Contradiction. Hence K/q has

only finitely many maximal ideals and so is semilocal and therefore SRs. &

Thus

Theorem 5.2.8. Let K be a Noetherian domain of Krull dimension one. Let q; < K,
i=1,2, q1 #0. Then

SLo(K,q1 + q2) = Eo(K, q2) S Lo (K, q1)

SLZ(I{7 q: + q2) = SL2(K7 ql)SL2(I{) q2)

Let O be an order of an imaginary quadratic number field. So @ is a Noetherian
domain of Krull dimension one, so we have a Wohlfahrt theorem in these rings. We
remark that maximal orders are Dedekind domains and in this case the result has already

been proved [63].
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5.3 Preliminary results about SLs(L)

Let L be a commutative local ring with maximal ideal m. Let N <1.SLy(L). Let o(N) = q,
and {(N) = q*. We are interested in how q and q* are related. It will turn out that whether
2 is a unit or not is of critical importance. The case 2 € L* is easier to handle than 2 ¢ L*.
When 2 ¢ L* we have two cases, o(N) = L and o(N) # L both of which split into two
subcases, |L : m| > 2 and |L : m| = 2, with the latter case being the most difficult. Here

we present a complete account; the results up to lemma (5.3.15) are known.
Lemma 5.3.1. [8] Let L be a commutative local ring and let q <1 L. Then
SLay(L,q) = Ez(L,q)
and so, in particular
SLy(L) = E5(L)
Proof. This follows from (5.2.4) and (5.2.6) O

Lemma 5.3.2. Let N < SLy(L). Then o(N) is generated by

%k
ce L : eEN
c %

Proof. o(N) is generated by b,¢,a — d for all

a b
c d

€ N.

The result follows as

) ()= ) e

and
. 1 d —c
VI—XTvVv " = e N
d—a4+c—b a—c
where
1 0 -1
T = V=
01 1 0
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Corollary 5.3.3. Let L be any local ring. Let N < SLy(L) such that o(N) = L. Then

* ok
1X = ( ) € N, such that ¢ is a unit.
c %

We make use of the following notation.

1 = 10
Erp(z) = ( _ ) , B (y) = ( )
01 y 1

The following lemma is a slight generalization of lemme 3.3 part (ii) of [44].

Lemma 5.3.4. Let A be a commutative ring. Let t € A, and u € A*, and let

U 4
Y = - € N < SLy(A).
U

Then Ep((u — v Ha) € N Va € A.

Proof.

Lemma 5.3.5. ( [54] lemma 1.1 ) Let A be a commutative ring. Let N <t SLy(A) and

suppose that

a b
M= € N.
c d

Then Yu € A* such that v? = 1( mod c), u* — 1 € I(N).

U t
M, =

where u € A* such that u? = 1( mod ¢), and t € A. Then

Proof. Let

[My, M] = My M~ MyM = ( o« F ) ,
v o0
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where

a= (ud + ct)(ua + tc) — u c(bu™t + at),
v = ac — ulac — utc?,

§ = ad — u?bc — uted.

Now if ¢ — v?a — utc = 0 then v = 0 and a — w?a — utc = 0 & a(l — v?) = utc.

Since 2 = 1( mod ¢), u* — 1 = kc, some k € A. So let t = u~lak, so v = 0. Now
tc = u~ta(l — u?), substituting this into the expressions for @ and § and simplifying we

see that o — d = u* — 1 and so by (5.3.4) we get u* — 1 € [(N). O

Lemma 5.3.6. Let L be a commutative local ring with mazimal ideal m. Let N <15 Ly(L),

o(N) =q < m. Then 8q < I(N).
Proof. Let

a b
M= €N
c d

by (5.3.2) it is enough to show that 8c € [(N). Let uy =1+ c¢,us =1—c¢. Aso(N)#£L,
u; € L*, and u? = 1( mod ¢), so by (5.3.5) uf —1 € I(N), so (ut —1) - (uf —1) =
8c(c? +1) € I(N), and 1+ ¢® € L* so 8c € [(N). O

Lemma 5.3.7. Let L be a commutalive local ring with mazimal ideal m. Let N<1SLq(L).

Suppose that 2 € L* and o(N) # L. Then o(N) = I(N).
Proof. As 2 € L*, 8 € L* and so this follows from (5.3.6). O

Lemma 5.3.8. Let L be a commutative local ring with mazimal ideal m. Suppose that

2=0. Let N <t SLy(L) and suppose that o(N) = q < m. Then
qW =<a*:aeq><IUN)
Proof. Consider

* %
eN

C ®

as o(N) # L, c € m. Let w3 =1+ zc, ug = 1+ yc¢, some z,y € L. Now, as 2 = 0,

Azt —yt) = ul —uj € I(N), by (5.3.5). Pick 3,y € L such that z = y+1, s0 z* —y* = 1.

Hence result. 0O
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When |L : m| > 2 we can improve the above results. First we need Whitehead’s lemma

Lemma 5.3.9. Let R be any commutative ring with a one. Let u € R*. Then

( : 0 )
€ Ey(R).
0 wt

Proof. Let v € R*. Then

a

Lemma 5.3.10. ([43] Proposition 1.3.6 ) Let A be any commutative ring. Let q<tA. Let
['=SLy(A), A= BE(A4), Alq) = E(A,q), T(q) = SL2(A,q), H(q) = Ha(A,q). Then

L', H(q)] < T(q)

1A, A9)] < A(q)

and if Ju € A* such that u*> — 1 € A* then

[A, A(g)] = A(q)

Proof. Let My € ', My € H(q). So [My, My] = MyMyM;*M;' = MikIM7 k™ = 1
mod q. So [I', H(q)] € I'(q). Now, as A, A(q) are both normal in A, [A;A(g)l € AN
A(q) = Afa)-

Now let ¢ € A and suppose that u € A* such that u? — 1 € A* and consider

o) G-

By Whitehead’s lemma (5.3.9)
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Now let & € q and let t = (u? — 1)} € ¢, so that

(1Q)=(1m_m>GMA@]
0 1 0 1

Lemma 5.3.11. ([54] lemma 1.2 ) Let L be a commutative local ring with mazimal ideal

m. Suppose that |L :wm| > 2 and 2 ¢ L*. Let N <1 SLy(L) have order q < m. Let

a b
M = € N,
¢ d

Then 2¢%,¢* € I(N) = 2¢,c? € I(N).

(]

Proof. Now

My=mrmr—| ¢ Yen
g h

where e = 1 + ac and ¢ = ¢?. Note that 2g, and g% € I(N) = q. Now let

1+ get (1 —e?+ get
m:%ﬂﬁmﬁ@:( get 1 g))

gt 1 — get+ g*t?

where ¢t € L. Let r = 1+ get and s = #(1 — €?) + get®. So

D(T,T)T(T"ls)=(r O) (1 'r‘ls)z(r s)
0 r 0 1 0 r

and g2,2g € q so
Mz = D(r,r)T(r *s)( mod q)

Let g=1—17? € q and let

then det My = r*(1+q) +¢* = r*(2—7r*) + (1 — )% =1, so My € SLy(L). Clearly
M, € H(q). Now

r 0 r s r? rs
MyM;3 = = ( mod q)
0 7 0 r 0 r?
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and ¢ =1—7% € g,50 r2 = 1( mod q). Now rs = s--tegs = s+t%eg(l —e?) +3e?g?, and
9% € q, s0 t?e®g? € q. Also 1 — e* = —(2ac + a?g), so t?eg(l — €*) = —t%e(2gac + a’g?),
and 2¢,¢° € q, so rs = s( mod q). Hence SR = T'(s)( mod q). So T(s) = T(t(1 —
e?))T (t*eg) € NH(q). Now

0 u g h 0 ut u?g h

and repeat the above argument with this matrix to get T(¢(1 — e2))T (’eu’g) € NH(g),
Yu € L* Vit € L.
Now, as |L : m| > 2 we can find v € L* such that v — 1 € L*. Now consider the above

with u =v,v — 1. So
T(t(1 — )T (t*ev?y) € NH(q)
and
T(#(1 — )T (t2eg)T (t*egv®)T(—t*e2gv) € NH(q)
Now 2g € q, so T'(—2t*e2gv) € NH(q) and so it follows from the above that
T(t(1 —€?)) € NH(q)

Vt € L. Hence e* — 1 € {(NH(q)). Now €> — 1 = (1 +ac)? — 1 = a(2¢c + ac?), and
ad —bc=1,c€m,soa,d€ L* so 2c+ac? € [(NH(q)). Now, again using the fact that
|L:m| > 2, let w € L* such that w? — 1 € L*, so

o) G

Repeating the above argument we see that 2w?ct+aw*c? = w?(2c+aw?c?) € I(NH(q)). So,
as w? € L*, 2c+aw?c® € [(NH(q)). So 2c+aw?c? — (2¢+ac?) = ac*(w?—1) € (NH(q)),
and a,w® —1 € L*, so ¢ € I(NH(q)), and 2¢ € [(NH(q)).




Chapter 5. Order and level... 79

So I'(2¢ + ¢*) < NH(q). Let qp = (2¢) + (c?). Now

I'(q0) = [T, T(qo)] by (5.3.10) and (5.3.1)
< [T, NH(q)] as I'(q0) < NH(qgo)
< [0, NYT, H(g))
< NT(q) by (5.3.10)
<N as I['(q) < N

]

Lemma 5.3.12. ( [54] theorem 1.3 ) Let L be a commutative local ring with mazimal

ideal m. Suppose that |L :m| > 2, 2 ¢ L*, and 2 # 0. Let N <1 SLy(L), o(N) = q £ m.
Then 2q < I(N).

Proof. We show that 2¢*, ¢® € I(N) and apply (5.3.11). Let
a b
M= eN
c d
so ¢ € m. Let z,y € L and consider 1 + z¢,1 + yc € L*, so by (5.3.5),
(1+zc)* = (1 +ye)* = de(z — y) + 6% (2% — y?) + 4P (2 — ¢°) + *(z* — yY)

=(z—y)c(2+ (z+ y)c) (2 +2(z +y)e+ (2% + y2)c) e l(N)

Now, using the fact that |{L : m| > 2 choose z = u, y = v such that u,v € L*, u+v =1,
sou—v=1—-2veL*as2¢L* So

e(2+¢)(24 2¢+ (1 — 2uv)c?) € I(N)
Choosing z = 1,y = 0, we see that
c(2+¢)(2 + 2¢+¢?) € I(N)
so that
2¢3(2 + ¢) € I(N)

Now, again using the fact that |L : m| > 2 choose v € L* such that v? —1 € L*.
Conjugating X by D(u,u ') and repeating the above argument shows that

2¢°(2 + u’c) € I(N)




-
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so, since u? — 1 € I(IV), we see that
2¢* € I(N)
Now, with z = 1,y = 0, we see that
¢t +4c® + 6¢% + dc € I(N)
so, multiplying by ¢* we get
¢® +4e” + 6% +4c® = ® + 2¢*(2¢® + 3% + 2¢) € I(NN)
50
c® € I(N)
Hence result. O

Lemma 5.3.13. ( [54] theorem 1.3 ) Let L be a commutative local Ting with mazimal
ideal m. Suppose that |L @ m| > 2, and 2 = 0. Let N < SLy(L) and suppose that
o(N) =q < m. Then q® <I(N).

Proof. By (5.3.8) 2¢*,¢* € I(N). Hence by (5.3.11), 2¢,c? € I(N). Clearly 2¢ = 0. Hence
result. |

Lemma 5.3.14. Let L be a commutative local ring with mazimal ideal m. Let N <

SLy(L). Suppose that o(N) =L and |L:m| > 3. Thenl(N) = L.

*
eEN
c %

such that ¢ € L*. Now let v € L*, so u? — 1 = cc™}(u? — 1), so u? = 1( mod c). So by

Proof. Let

(5.35) ut —1 € l(N). NowifVu € L* w* — 1 €m, |L: m| < 5. Soif |L:m| > 5 then we
are done.

Suppose that |L:m| =5. Les o € m, and let uy =1+ @, up =1 — a, 50 u; € L* and
u? =1 (mod c), so, by (5.3.5), 8a(l + a?) = u} —uj € [(N). Now |L:m| =550 2 € L*,
so 8 € L*, and 1+ a® € L*, so @ € I(N), hence m < I(N). Now let M <1 SLy(Fs) be
the image of N under the natural map SLs(L) — SLy(F5), so o(M) = Fs, M # {+I},
and as PSLy(Fs) is simple, M {1} = SLy(F5). So M is of index 1 or 2 in SLy(Fs) but
SLy(F5)' = SLy(IFs) [72), so M = SLy(IF5). So N = SLy(L) and {(N) = L. Now suppose
that |[L:m|=4. Let u € L* — {1}. Thenu* —1=u—1¢m,so [(N) = L. O
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Lemma 5.3.15. Let L be a commutative local ring with mazimal ideal m. Let N <

SLy(L). Suppose that o(N) =L and |L : m| = 3. Then m < I(N).

* %
= €N
¢

such that ¢ € L*. Lete e mand let ug = 1+ o, ug =1 — @, s0 u; € L* and u? = 1(

Proof. As o(N) = L, by (5.3.3),

mod ¢). So 8a(l + a?) = ul —uj € I(N) by (5.3.5). As |L : m| =3, 2 is a unit and, as
@€ m, 1+ o? is also a unit. So « € [(IV). Hence m < I(N). O

Lemma 5.3.16. Let L be a commulative local ring with nilpotent mazimal ideal m of

index 2. Then |SLo(L)| = 2%3.

Proof. Let n € N be minimal such that m™ = 0. Let I' = SLy(L), and I'(4) = SLy(L, m?).
Then

0| =T :TM)TQ) : T@)]...[F(n—2) : T(n—D|II'(n — 1) : T'(n)]

First, as m of index 2, T'/T'(1) = PSLy(F;) = S5, s0 [I': T'(1)| = 6. Now, I'(i — 1)/I'(5) &
Z3 by lemma (4.2.9), so [T'(i — 1) : T'(4)| = 8. Hence |I'| = 23*~1U+13 Hence result. [

Lemma 5.3.17. Let L be a commutative local ring with nilpotent mazimal ideal m of

index 2. Let N <t SLy(L). Then
o(N)=L & |SLy(L) : N| =2°

Proof. Let T denote SLy(L). Suppose first that o(N) = L. If I'(m) < N then, as
[/T(m) = S5, |I': N| =1, or 2. So suppose that I'(m) £ N and suppose that 3 | |T*: N|.
Now NI'(m) =TI, or is of index 2 in I" so 3 | [NT'(m) : N| and 3 | |[NT'(m) : I'(m}| so
9T NnT(m)|. So 9| ||, contradicting lemma (5.3.16). So 3¢ | : N| ie |[I': N| = 2%,

Now suppose that o(V) # L. So N € H(m) =T'(m) and [I': I'(m)] = 6,503 | |T": N|.

Hence result. |
Now observe the following consequence of (5.3.17)

Corollary 5.3.18. Let L be a commutative local ring with mazimal nilpotent ideal m of

index 2. Let N 1 SLy(L), o(N}) =L and M € SLy(L) of order 3. Then M € N.
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Lemma 5.3.19. Let L be a commutative local ring with nilpotent mazimal ideal m of

index 2. Let N <4 SLy(L), o(N)=L. ThenT* € N, and T? € N & —1 € N.

Proof. AT is of order 3 s0 AT € N,s0 A=T"Y mod N), and A* =TI, s0 T* € N. Also
A%*=—~Ts0oT?=—I( mod N). O

Lemma 5.3.20. Let a € L, u € L*. Then

—cu™t! —(1+a) )

is of order 3, where c =a? +a+1¢& L*,
Proof. Tedious calculation. O

Lemma 5.3.21. Let L be a commutative local ring with nilpotent mazimal ideal m, of

index 2. Let o € m and Let N < SLy(L) be of order L. Then

1 4o
eN

1 U
eN
—3u~l —2

for every unit u. Let @ € m , u = 1+, and suppose that v~ = 14 3, some § € m. Now

1w 1 u 1 ot 1 3u 1 —ut
= A AL A Al
—3u~l =2 01 0 1 0 1 0 1
frire fraes) st [1-1-p)
0 1 0 1 0 1 0 1

1 « 10 AL 1 3a AL 1 -8 1
0 1 0 1 0 1 0 1

Proof. By lemma (5.3.20)

and AT € N, A”'T3 = A7'T-' = J( mod N), AT'= ATT2=T"?( mod N), so

T(l 4a+ﬂ)T2(1 —ﬁ)A“leN.
0 1 0 1
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1 4o
AT e N
0 1
1 4o
eN
0 1

as required. O

S0

and A~1T-1 € N. Hence

Theorem 5.3.22. Let L be a commutative local ring with nilpotent mazimal ideal m of

index 2. Let N < SLo(L) be of order L. Then AL < I(N).

Proof. We show Fy(L,4L) < N. Recall that Ey(L,4L) is generated by conjugates of

Elg(:z:)=(1 m)
01

where z € 4L. Let x € 4L, so z = 4y, some y € L. Now y € L* or y € m. Suppose that
y € L* soy =14, where « € m. So & = 4y = 44 4q, so

1 =z 1 4 1 4o
Eiy(z) = = € N.
01 01 0 1

If y € m then similarly e1a(z) € N. So Ey(L,4L) < N, as required. O

Since we are also interested in PSLy(R), for commutative rings R we consider normal

subgroups of SLy which contain —1.

Lemma 5.3.23. Let L be a commutative local ring with nilpotent mazimal ideal m of

index 2. Let N <0 SLo(L) have order L and let o € m. Suppose that —I € N. Then
1 2«
eN

Proof. —I € N so by (5.3.19), T% € N. Now, by (5.3.20), Vu € L*,

0 wu 1 u 1 w7t L1 2u
= A A eEN
—y7t —1 0 1 0 1 0 1

and so 2L < I(N).
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Let « € m, let u =1+« € L* and suppose that u=! =1+ o/, o € m. So that

1
0 1 0 1 0 1

1w 1 o 1 92
T “ N oar ¢ A “NVen
01 0 1 0 1

but, as AT, T? € N,

1 1+a 1 1+af 1 242
A A- “Nen

SO

1 a+d 1 2«
€N
0 1 0 1
Now, by (5.3.20), and since —I € N,
1 u 1wt 1w
=A A™ eEN
—ut 0 1 0 1

SO

1 1+ 1 1+a
A Al eN
0 1 0 1

ie

1 o 1 o

AT AT EN
0 1 01
hence, as AT, T% € N, we have
1 at+a
€ N.
0 1
Hence
1 2«
eEN
0 1

Now using the fact that 7% € N and arguing in exactly the same way as in theorem

(5.3.22), we see that Ey(L,2L) < N, ie 2L < I(N). O

Lemma 5.3.24. Let L be a commutative local ring with mazimal nilpotent ideal m of

indezx 2 and suppose that 2 =0 in L. Let N < SLy(L) have order L. Then

m® =< o?:acm><I(N)
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Proof. By lemma (5.3.20), and since 2 =0,

a (7
eN
—cut 1+a

| 1 au 1 —au™t L
A A A A~
0 1 0 1 0 1 0 1

and this matrix equals

Now let @, 8 € m, let u =1+, a = 14§, and suppose that u™! = 1+ o/, where o/ € m.
Thenau=1+a+B8+af, and au™! =1+ o' + 8+ 'S, and so

1 14+« A 1 1+« e 1 14+a+8+af A 1 —(1+a+8+d0)
0 1 0 1 0 1 0 1

A—-l

lies in N, and so, as AT € N, and 2 =0, we get
1 (a—do
@-a ) _
0 1
Now (l+a)(1+a') = 1,50 a+a'+aa’ =0,80,a8 2 =0, a— ¢ = aa’, and o/ = a(1+a'),
so o — o =ca?u~t So
1 o®ulp

0 1

eEN

Now let z € L, if x € m then

1 ?(1+a) s
e N.
0 1

Now if ¢ m then z =1+ (3, some B € m, and

1 ?(Q+e) 'z [ 1 ?(1+a) 1 ?(1+a)'p
0 1/ \o 1 0 1

1 w 1 ut 1w
=A A~ e N
—u 10 0 1 0 1

by lemma (5.3.20). So using the fact that u =1+, ™' =1+ o, and AT € N we get

(1 a+a
eEN

Now

0 1
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and so, as o+ o' + ac’ =0 we get

( 1 o:2(1—l—cy)1) e N

0 1

( 1 (l+a) s ) c N
0 1

Hence a?(1 + )™t € [(N) Va € m, and so o? € [(N) Va € m. Hence result. a

and so

5.4 Order and level of a normal congruence subgroup

Throughout this section K shall be a Noetherian domain of Krull dimension one, so K
has primary decomposition and a Wohlfahrt theorem. Let N <1 SLy(K), and suppose N
is a congruence subgroup. Let q* = [(N) # 0, and g = o(N). We ask how g* and q are
related. We are particularly interested in the case where ¢ = K. The following 3 lemmas

can be proved using elementary group theory.
Lemma 5.4.1. Let G be any group and let A, B,C < G. Then [BA,CA] < [B,C| A.
Lemma 5.4.2. Let A,B<1G. Then [A,B] < AN B.

Lemma 5.4.3. Let G be a group and let A, B,C G where C < A. Then ANBC =
(AN BY(ANC).

The following lemma is a generalization of [58] lemma 3.3.

Lemma 5.4.4. Let NaSLy(K) =T, I(N) = q* = qfq} # 0, where qi+q5 = K, and qy is
primary. Then by (5.1.10), o(N) = q = 14, where q} < q1. Let No = (NNT(g5))I(a}),
q' = l{Ny), and N = NT'(q}). Then

1. o(N) = q
2. [I,N] < Ny

*

8 q =qj
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Proof. Now

o(N) = o(NT(q7))
= o(N) +q
=q+dq]
= Q2 + 41
= (91N g2) + (g1 N g3)
=q1 N {q2 +q7) by the modular law (see [2] p.6)

:qlﬂK:ql

Now, as K has a Wohlfahrt theorem and gj+q5 = K, we have, by (5.2.8),T' = I'(qi+q3) =
[(a1)T(q3), so
[T, ] = [C(a3)T(a3), NT(a5)]
< [P(a3), N1 T(q1) by lemma (5.4.1)
< Ny by lemma (5.4.2)
Now I'(q}) < No, so g < (V) =¢'. RTP ¢’ < qi. Now N is a congruence subgroup of
level ¢, so by Wohlfahrt (5.2.3) T'(q") < Ny, so
L(q'az) = ['(a') NT(q3) asq' +0; =K
< No N I(g3)
= ((NNT(g3))T(a1)) N T(a3)
= (NN T(a3))T (") by (5.4.3)
< NI(q")
=N
So q'q3 < UN) = qiq5. Now q'+ a3 = a7 + 45 = K, so ' N g5 = q'q3 < qi95 = g1 N a3,
and g} < q', 80 q; Ngs < g’ Ngs. Hence g’ Nas =qi Ngs. So
q =4q 0 (a7 +q3)
= (¢'Nq3) +ai
= (@1 Na3) +ai

=y




——
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The following lemma is a generalization of [58] lemma 3.4.

Lemma 5.4.5. Let N < SLy(K), I(N) = q* = qip* # 0, where p* is primary and
45 + 9" = K, so by (5.1.10), o(N) = q = qop, where p* < p. Let Ng = (N NT{q5))T(p*),
and N = NI'(p*). Let L denote the local ring K/p*. Let ¢ : SLy(K) — SLy(L) be the
natural homomorphism. Let My = ¢(Ny), and M = @(N). Then

1. My <1 SLy(L)
2. 1I(My) =0

3. o(M) = p/p*

4. [Ba(L), M] < My

Proof. 1 is obvious. For 4 recall that [SLZ(K ),7\—/’] < Ny, on applying ¢ we see that
[SLa(L), M| < Mp. Now as L is local so an SRy-ring we have Ey(L) = SLy(L). For 3,
as M = ¢(N), and o(N) = p we get o(M) = p/p*. Now suppose that (M) = @ # 0.
So Ey(L, @) = SLy(L,d) < My, so Ey(K,a) < Ny. So, as [(INy) = p*, we have a < p*, so
a=yp, so a = 0. Contradiction. Hence {(M;) = 0. O

Lemma 5.4.6. ([57] lemma 2.1) Let L be any local ring. Let N <0 SLa(L) such that
o(N)= L. Then 3X € N of the form

Proof. By (5.3.3)
such that ¢ is a unit. Now

1 ¢ d a b 1 —cid x —c L
= =M,e N
0 1 ¢ d 0 1 c 0

Let
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Then

14+ ¢
[T, Ms) = T M5 ' T M, = EN
tc? 1

Choose t = ¢™2 to get the result. O

Let L be a local ring, with maximal ideal m, and residue field X = L/m. The following

theorem is a slight generalization of [58] theorem 2.2.

Theorem 5.4.7. Let L be a commutative local ring. Let N QSLy(L), M < GLy(L) such
that N < M, and [Es(L), M] < N. Let q = o(N),q* = I(N),q0 = o(M), so q* < q < qo.
Then q = qo, unless K = Fy, and qo # L in which case mqy < q < o-

Proof. Let

x={*")enm
c d

Let 6§ = ad — bc € L*. Then, as [Eo(L), M] < N, [T(r),X] € N and so (d? — §)ré1 +
r?edd~t € q Vr € L. SoVu € L*, (d*—§)§ * +ucdé ™! € g, so (u—1)cd € q. Suppose that
qo < m. Then c € m, as o(M) = qo. Now ad —bc=d € L* and c€ m, s0o bc € m. So if a
or d € m then § € m. Contradiction. Hence a,d ¢ m ie a,d € L*. So, as (u — 1)cd € q,
(u—1)c € q. When |K| > 2 we can choose u € L* such that v —1 = 1 (mod q). So
c € . Hence, by (5.3.2), g0 = o(M) < q. So qp = q. If |K| = 2 then u = 1 + «, where
aem,sou—1=acm,soac€ g, so, by (5.3.2), mqe < .

Now suppose that qo = L, so 3Xg € N C M of the form

¥ %
11

So(w—1)c=u—1¢€ qVu € L*. Thus if | K| > 2 then q = L = qo. Suppose that | K| = 2,
leteem,sou=1+ac L*soa=u—1¢€q,som<x< ¢ Suppose that m = q and
consider the natural homomorphism f : SLy(L) — SLy(IF3). Now o(N) =g so f(N) =1,
and Xy € M and [SLy(L), M] < N, so f(Xo) is central. But SLy(Fs) has trivial centre,

* ok
so f(Xy) = 1. But Xy = . 50, under the map L — Fy, 1 — 0. Contradiction.
11

Hence q = L.
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We are now in a position to address the main problem of this chapter; to derive a re-
lationship between the order and level of a normal congruence subgroups of SL, over
a Noetherian domain of Krull dimension one. We deal first with the case of a normal
subgroup of order K. This is for two reasons, first we are able to obtain a better bound in
this case, in fact our bound is best possible, and second, when we apply these results to
the construction of non-congruence subgroups of the Bianchi groups we do so by showing

a large class of normal subgroups has order Qg .

Theorem 5.4.8. Let K be a Noetherian domain of Krull dimension one and suppose that
charK # 2, or 3. Let N < SLy(K) be a congruence subgroup. Suppose that o(N) = K
and that [(N) = q*. Then 12K < q*.

Proof. Let q* = p}...p; be a primary decomposition. Fix ¢ € {1,...,¢} and consider p;}.
Let q = NP}, p* = p;, and so we can apply (5.4.5) let qo = p = K. Let L; = K/p} and
denote the maximal ideal of L; by m;. By an abuse of notation we also use m; to denote
the corresponding maximal ideal of K, ie 7(p}) = m;. Let ¢; : SLo(K) — SLo(L;) be the
natural homomorphism. Let Ny = (N NT(g3))T(p*), N = NT(p*). Let My = ;(Ny),
M = ¢;(N). Then by lemma (5.4.5) [(Mp) = 0, o(M) = p/p* = L;, and [Ez(L;), M] <
My. Now by theorem (5.4.7), as o(N) = K then o(M,) = o(M) = L;.

Suppose that 2 € L. Then, by (5.3.14) o(My) = I(My) unless |L; : my| = 3, in
which case, by (5.3.15), m; < I[(M)). If o(My) = I(My) then L; = 0 and so pf = K. If
|L; : m;| = 3 and m; < {(Mp) then L; is the field of 3 elements and 3K < pi.

Now suppose that 2 ¢ L¥. If |L; : m;| > 3 then, by (5.3.14), {(M,) = o(M,) and so
pf= K. If |L; : my| = 3 then, by (5.3.15), m; < {(Mp) and so L; is the field of 3 elements
and 3K < pZ If |L; : my] = 2 and 2 # 0 in L; then, by (5.3.22), do(My) < I(My) and
so 4K < pf. If |L; :my| =2 and 2 = 0 in L; then 2 € pf so 2K < pi. So, in all cases
12K < pf. Now q* = pi...pF =iz, pf = 12K. Hence result. O

Note from the proof above that the 12K comes from ideals of index 2 and ideals of index

3. When one or both of these are not present we get a better bound.

Corollary 5.4.9. Let K be a Noetherian domain of Krull dimension one. Let N <
SLy(K) be a congruence subgroup. Suppose that o(N) = K and [(N) = q*. Then

1. If K has no ideals of indez 2, then 3K < q*.
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2. If K has no ideals of index 3 then 4K < q*.
3. If K has no ideals of index 2 or 3 then q* = K.

Corollary 5.4.10. Let K be a Noetherian domain of Krull dimension one and suppose
that charK = 0. Let N <1.SLy(K) be a congruence subgroup which contains —I. Suppose
that o(N) = K, and I(N) = q*. Then 6K < q*.

Proof. This follows from (5.4.8) and (5.3.23). O

Lemma 5.4.11. Let K be a Noetherian domain of Krull dimension one. Let p € Z be a

rational prime. Then K has only finitely many mazimal ideals of index p.

Proof. Let m <« K be a maximal ideal of index p. Now Vz € K 2P — z € m. So consider

the ideal
q= Z (a? —2) K
zeK
So g < m. Now, by (5.1.9), ¢ = py..., where p; is primary, r(p;) = m;, a maximal
ideal; m;* < p;, for some n;; and p; + p; = K, for ¢ # j. Suppose that w is distinct
frommg, ¢ =1,...,¢. Nowm* <p;so K =m+m<<p;+m SoVi p;+m= K, so
m-4q=m+ (pl...pt) = K. But q £ m. Contradiction. So m = m;, some 7 = 1,...,¢

Hence result. 0
In light of this lemma make the following

Definition. Let X be a Noetherian domain of Krull dimension one. Let p € Z be a

rational prime. Let
My =[V{m <K :|K :m|=p}
and if K has no ideals of index p let M, = K.

Lemma 5.4.12. Let R be a commutative ring of characteristic 2. Let q1,qs << R. Then

(9202)" = (a5,

Proof. First recall that q; =< o : « € q; > and q§4)qg4) oa'fliacq,B€q>. Let
a € qy, and 8 € q3 50 o*f* = (af)* € (q192)™. So ¢i¥¢Y < (qr1g0)@

Conversely let v € qiqq, so v = Y. a;0r; where o; € q1,0; € qa,75 € R. So v* =
(O aifir)! = St fir? as R is of characteristic 2. So v* € q{%q$". Hence result. O
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Recall that if char K = p, some prime p then any other rational prime, ¢ is a unit in K.

Using this fact we get the following

Theorem 5.4.13. Let K be a Noetherian domain of Krull dimension one and suppose
that charK = p, for some prime p. Let N <1 SLy(K) be a congruence subgroup. Suppose
that o(N) = K and I(N) = q*. Then

1. If charK > 3 then q* = K.
2. If charK = 3 then M3 < q* and if K has no ideals of index 3 then q* = K.
8. If charK = 2 then M2 < q* and if K has no ideals of index 2 then q* = K.

Proof. Part 1 follows from (5.4.8). For part 2 consider the setup in the proof of theorem
(5.4.8). As charK = 3 then 2 is a unit in K and L; so, by (5.3.14), o(Mp) = I(M,) unless
|L; - my| = 3, in which case, by (5.3.15), m; < [(My). If o(Mp) = I(My) then p} = K. If
|L; : m;| = 3 and m; < I(My) then m; < pi. The result follows.

For part 3 we use the same setup as theorem (5.4.8) but in this case, as charK = 2
then 2 ¢ L. Now if |L; : my| > 3 then pf = K, as before. Also |L; : my| # 3 for
if |L; + m;{ = 3 then 3 € m; but as charK = 2 then 3 is a unit. Now suppose that
|L; - m;] = 2, as 2 = 0 we have, by (5.3.24) mz(.z) < (M) and so m® < pr. The result
follows. o

We now deal with case of a normal congruence subgroup of order di stinct from K.

Theorem 5.4.14. Let K be a Noetherian domain of Krull dimension one and suppose
that charK # 2, or 3. Let N <t SLy(K) be a congruence subgroup. Suppose that o(N) =
q# K, and [(N) = q*. Then 48q < q*.

Proof. Let q* = p}...p; be a primary decomposition. Then, by (5.1.10) q = p1...ps,
where pf < p;. Fix i € {1,...,t} and consider p}. Let q5 = N;zp}, p* = b}, qo =
Myzib;, and let p = p;. Let L; = K/pf and let ; 1 SLy(K) — SLo(L;) be the natural
homomorphism. Let No = (NN (q3))T(p*), N = NT'(p*). Let My = @i(No), M = @;(N).
Then by lemma, (5.4.5) I(My) = 0, o(M) = p/p*, and [Fa(L;), M| < M.

First suppose that |L; : m;| > 2, so by theorem (5.4.7) o(My) = o(M). Now suppose
that 2 € L}. So, by (5.3.7), and (5.3.14), o(My) = [(Mp) = 0 unless |Z; : m;| = 3 and
o(Mp) = L;, in which case, by (5.3.15), m; < [(My). If o(My) = I(Mp) then p; = pi.
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If |L; : my] = 3 and o(Mp) = L; then wmy < pf ie 3p; < pf. Now suppose that 2 ¢ LF.
If o(My) = L; and |L; : my;| > 3 then, by (5.3.14), I(M,) = L; and so p} = K. Also
|Li : m;| % 3 for if |L; : m;| = 3 then 3 € m; and, as 2 € m;, 1 = 3 — 2 € m;. Suppose that
o(Mg) # L; and 2 # 0 in L;. Then as |L; : my| > 2, by (5.3.12), 20(Mp) < I(Mp) = 0, and
50 2p; < p}. Finally if 2 =0 in L; then 2 € pj, so 2p; < p;.

Now suppose that |L; : m;| = 2. So if o(M) = L; (ie p; = K ) then, by (5.4.7),
o(Mp) = o(M) and if o(M) # L; (ie p; # K ) then, by (5.4.7), mo(M) < o(Mj). Now
|Li : my| = 2802 ¢ LY and 2 # 0. If o(M) = L; then, by (5.4.7), o(M) = o(M,) and,
by (5.3.22), 4o(Mp) < U{My) so 4p; < pi. If o(M) # L; ( and so o(Myg) # L; ) then, by
(5.4.7), mio(3) < o(Mp) and, by (5.3.6), 8o(My) < (My) so 16p; < pf. T2 =0 in L;
then 2 € p;, so 2p; < pr.

So in all cases 48p; < p; and so, as before 48q < q*. O
Again, when ideals of index 2 or 3 are not present we can improve the bound

Corollary 5.4.15. Let K be a Noetherian domain of Krull dimension one and suppose
that charK # 2, or 3. Let N < SLy(K) be a congruence subgroup. Suppose that o(N) =
q# K, and I[(N) = q*. Then

1. If K has no ideals of index 2 then 6q < q*. In particular if 6 is a unit then q* = q.
2. If K has no ideals of index 3 then 16q < q*.
3. If K has no ideals of index 2 or 3 then 2q < g*.

Example 5.4.1. Let K = 7Z [—é] So charK = 0, and 6 is a unit in K further, K is a
Noetherian domain of Krull dimension one, in fact K is a Dedekind domain of arithmetic

type. Recall the material in the section on number theory (1.3). Let p € Z be prime and
define

Q=R

as follows. Let x € Q, so x = p®% where p { a, and p { b. Then let vy(z) = p™.
Let vy, denote the usual Archimedean valuation and let S = {veo,v2,v3} and form Og
as indicated in section (1.3). We claim that K = Og and so is a Dedekind domain of
arithmetic type. Let z € Os, so z = a/b where a,b € Z are coprime. Suppose that a

prime p # 2,3 divides b, b = p?"¥', v 2 0, p 1 b’ say. Now a and b are coprime so p{ a, so
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z=p "%, 50 vp(x) =p7" > 1,857 20, 50 z ¢ Og. Contradiction. Hence Og C K. Now
consider 5%z € K and let p 5 2,3 be prime. So v,(5%7) = vp(;’%%) =p 7K 1,asv =0,

SO zags € Os. So K € Og and so K is a Dedekind domain of arithmetic type.

Theorem 5.4.16. Let K be a Noetherian domain of Krull dimension one and suppose

that charK = p, for some prime p. Let N <1 SLy(K) be a congruence subgroup. Suppose
that o(N) = q # K, and [(N) = q*. Then

1. If charK > 3 then q* = q.
2. If charK = 3 then qM3 < q*.
8. If charK =2 then WM < ¢

Proof. Part 1 is obvious. For part 2 we use the same set up as before. As charK = 3
then 2 € K* and so, by examining the above proofs it is obvious that p; = p} unless
|L; - my| = 3 and o(My) = L;, in which case, by (5.3.15), m; < I(Mp). In this case
m; < pi. Hence q* = pi...p5 =(pf = gMs.

Now suppose that charK = 2 so that 2 == 0 and 2 ¢ L¥. Again we use the usual setup.
First suppose that |L; : m;| > 3 so, by theorem (5.4.7), o(My) = o(M). If o(M,) = L; ( ie
p; = K') then, by (5.3.14), I(My) = o(My) and so pf = p; = K. If o(My) # L; (ie p; # K)
then, by (5.3.13) o(My)® < (M) and so p® < pr. Now |L; : my| # 3 for if |L; : my| = 3
then 3 € m; and 3 is a unit. Now suppose that |L; : my| = 2. If o(M) = L; (ie p; = K)
then, by (5.4.7), o(My) = o(M) = Ly, so by (5.3.24), m{? < I(Mp), so m? < pr. If
o(M) # L; (so o(My) # L;) then, by (5.4.7), m;o(M) < o(Mp) and so, as o(My) # L;, by
(5.3.8) o(My)™ < 1(My) so, applying (5.4.12), m§4)p§4) = (mp:)™® < pr. Tt follows that
g = pr < MO NP = g M (again using (5.4.12)).

(W}

In [57] Mason dealt with the case of a normal subgroup of SLs(L) where L is a
commutative local ring with principal maximal ideal m of index 2. This meant that in
[58] he was only able to derive a relationship between the order and level of a normal
congruence subgroup of SLs over a Dedekind domain. By dropping this condition in
section (5.3) we were able to generalize Mason’s work to a normal congruence subgroup

of SLy; over any Noetherian domain of Krull dimension one. For comparison we state

Mason’s results
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Theorem. (/58] theroem 3.6) Let A be a Dedekind domain of arithmetic type (see section
(1.3)) and suppose that A is contained in o number field and is not totally imaginary. Let

N <18Ly(A) be a congruence subgroup. Suppose that o(N) =q, and I(N) = q* # 0. Then
1. If A has no ideals of index 2 or 3 and 2 is unramified in A then q = q*.
2. If A has no ideals of index 2 and 2 is unramified in A then 3q < q*.
3. If A has no ideals of index 2 or 3 then 2q < q*.

4. If A has no ideals of index 2 then 6q < q*.

h&

If A has no ideals of index 3 then 4q < q*.

6. Otherwise, 12q < q*.

Theorem. (/58] theorem 3.14) Let A be a Dedekind domasn of arithmetic type and sup-
pose that A is contained in a function field in one variable over a finite field k. Let

N <1SLy(A) be a congruence subgroup. Suppose that o(N) = q, and [(N) = q* # 0. Then

1. If charK > 3 or |k| = 3%, where a > 1 then q = q*.
2. If |k| = 3 then M3 < q*.

3. If |k| = 2%, where a > 1 then q% < q*.

4. If |k| = 2 then ¢® M2 < q*.

So when N has order K we get the same results as Mason. However when N has
order distinct for K our results are not as good as Mason’s. It is clear from comparing
the above with our theorems that the problems arise when K has an ideal of index 2 and
when the characteristic is 2. It is not known whether our results are best possible or not.

Our results are definitely an extension of Mason’s for consider the following argument

Lemma 5.4.17. Let L be a commutative local ring with principal mazimal ideal m. Then

if 4 <0 L such that m*! < q < mif then q = mit!, or mt.

Proof. Suppose that m = aL, so m* = o*L. Let k = L/m, so m**! /m’ is a k-vector space.
Let z +mit!t € mt/m*!) where £ € m?, so z = o'y, wherey € L. Let =y +m € k. So
7(at + miFl) = z + mitl, So mi/mi+! is generated by of + m**! as a k-vector space and

5o is one dimensional.
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Suppose that m**! < g < m'. So g/mi*! is a subspace of m*/m*1. So, as m?/m‘*! is

one dimensional q = m?, or m**+!. |

Lemma 5.4.18. Let L be a commutative local ring with principal mazimal ideal m. Sup-

pose that (o, m* = 0. ThenVO0#q<L, q=m", some a > 1.

Proof. o € N such that q < m®, otherwise ¢ = 0. Consider q + m®*!. By (5.4.17),
q+mett = matl or me, If g+m®*t! = mo+! then q < m®*!, contradicting the maximality
of @. So g+ m*™! = m* Now let M = m®/q, so M is a finitely generated L-module.
Then mM = (q +m**!)/q = m®/q = M. So, by Nakayama’s lemma ( see [2] page 21 ),
M =0, ie g =m°. [

Now, again consider @ = O35 = Z + 1+/3%. Let m = (2,1 +4v/3). Then, as in example
(5.1.2), m is a maximal ideal of O of index 2 and m? < 20 < m. Let L = O/m", any
n 2 2, so in L the ideal 2L is not a power of the maximal ideal and so L has a maximal
ideal of index 2 which is not principal. In a Dedekind domain ideals are %—generated.
That is let q be an ideal in a Dedekind domain and let z € q, then 3y € q such that q is
generated by z and y. As a consequence of this every local image of a Dedekind domain

has a principal maximal ideal.

Example 5.4.2. In this chapter we have derived a relationship between the order and
level of a normal congruence subgroup. What about non-normal congruence subgroups?
Here unfortunately there is no relationship. Let d,p € Z such that p is a rational prime
and d > 0is square free. Consider the groups SLy(Qy,). By (3.2.1), SLy(Oap) 4 SLa(O4),
and clearly S Ly (Oq4, pO4) < SLa(Oyp) 80 SLy(Oyyp) is a non-normal congruence subgroup
of SLy(Og). However A, T € SLy(Oyp), 80 0(SLa(Oyp)) = Og and Og,/pO4 = T, so
I(SL2(Oup)) = pO,.




Chapter 6

Non-congruence subgroups of the

Bianchi groups

We now apply the results of the previous chapter to the Bianchi groups PSLy(Ogpm).
We take two view points. First we look at the growth of non-congruence subgroups.
Then we look at normal subgroups of small index, showing that all but finitely many
normal congruence subgroups are of index divisible by 6. Further we classify the normal
congruence subgroups with torsion in PSLy(0q), d = 7,11,19, and PSLy(O12) and the
normal congruence subgroups of index not divisible by 6 in PSLy(Os) and PSLy(O35).
Normal subgroups of PSLy(Oym) of index not divisible by 6 all have torsion. In [25] Fine
shows that for d = 2,7,11 all principal congruence subgroups of PSLy(0y) are torsion
free with the exception of PSLQ(OQ,(A)IOQ). Let z; € (G, we use the notation N(z;) to

denote the normal closure of the elements z; in G.

6.1 Counting finite index subgroups

In this section we introduce some basic notions about counting subgroups of finite index.
The material has been lifted from the survey article of Lubotzky [46]. Let G be any
group. Let a,(G) denote the number of subgroups of G of index exactly n. Ideally we
would like to get a formula for a,(G). The first attempt to do this was by M. Hall in
1949 [35] in which a recursive formula for the number of subgroups of finite index in a
free group of finite rank was given. This method was extended and simplified by Dey [20]

and Wohlfahrt [92].

97
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Proposition 6.1.1. [46] Let t,(G) be the number of transitive permutation representa-
tions of G on n objects. Then

tn(G)

an(@) = (n—1)!

Proof. Let H < GG be a subgroup of index n. G acts in an obvious way on G/H. Identify
G/H with the set {1,...,n} such that H is identified with 1. There are (n — 1)! ways
of doing this. BEach of these gives rise to a homomorphism ¢ : G — S,, such that (&)
is transitive and Stab(l) = {y € G :p(y)(1) =1} = H. Conversely every transitive

permutation representation of G on n objects give a subgroup Stab(l) of index n. Thus
(n — Dla, (@) = t,(GQ). O

Let h,(G) denote the number of homomorphisms from G to S,.

Lemma 6.1.2. [/6]

ha(G) = ”1 (n : 1) t(G) (@)

—1
Proof. Suppose that the orbit of 1 is of length k, 1 € & < n. There are (Z 1) ways
of choosing such an orbit, ¢;(G) ways of acting on it, and h,_x(G) ways of acting on its

complement. a

Theorem 6.1.3. [46] Let G be any group then

1 =
an(G) = G:“r Z (n — h'n k )a'k(G)
Proof.
hn(G) = (’: B 1) (e (e by (6.1.2)
- i (Z )(k — Dlap(G) hni(G) by (6.1.1)
k=1
_ N~ (n=1)!
=2 ( i 0 (GY P (G)
(’I’I, - 1 !CLn(G) + S Cl,,x‘,(G hn~h(G)

k=1
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Therefore

1 n—1

Ay (G) = -(—m—h.n Z

hn k(G)ax(G).

O

Now consider the free group on r generators. Since each generator of F, can be mapped

to one of n! elements of S,, we see that h,(F;) = (n!)". Thus

Theorem 6.1.4. [35] Let F, be the free group on r generators. Then

an(Fy) = n(nl)™ = "[(n— &) ar(F).
From this it follows [71] that

Theorem 6.1.5.
an(Fy) ~ n(nl)™!
In [20] Dey extended this work to free products

Theorem 6.1.6. Let G =+, A; be a free product of groups. Let hi = h,(4;). Then

an(G) = (H b ) —Zl ax(@) (H o )

Proof. This follows from (6.1.2) and the fact that h,(G) =[], h O

i=1""n"

Recall that the Modular group PSLs(Z) = Zs * Zs. So we can apply the above theorem

from which we get

Proposition 6.1.7. [71]

1 1
an(PSLy(Z)) ~ (12me?) M2 exp (n (()ign - % +n2 4 nt/3 4 —()—gﬁ) .

6.2 The growth of non-congruence subgroups in the
groups SLy(Ogn)

Recall the following results
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Theorem. (2.2.3) There exists a surjective homomorphism

SLy(Oupm) — F
where 7 = r(d, m) the rank of the Zimmert Set and a,t lie in the kernel.

Theorem. (5.4.8) Let N <1 SLa(Oypm) be a congruence subgroup of order Oup. Then
SLo(Ogm, 1204m) < N.

Recall that Zimmert’s theorem was not best possible; r(5) = 1, but SLy(Os) — F.
So, as before, let p(d, m) denote the largest rank of a free quotient of SLg(Oyym). Let FK
denote the kernel of the map from SLy(Ogm) onto Fymy. Let N <1SLy(Oy,m) containing
FK. Ast € FK then N has order Oy,,. Therefore if N is a congruence subgroup it
must contain SLy(Ogm, 120g,,). Observe that S < SLy(Og,y) is a congruence subgroup
if and only if coreS is a congruence subgroup, where by the core of S we mean the largest

normal subgroup contained in S. Thus

Proposition 6.2.1. Let S < SLy(Oym) and suppose that FK < S. Then with finitely

many exceplions S is a non-congruence subgroup.
Using Newmans result (6.1.5) we get

Theorem 6.2.2. Asymptotically, the number of non-congruence subgroups in the group,
SLy(Ouym), of index precisely n is at least n(n!)P~t where p = p(d, m) = r(d, m), the rank
of the Zimmert Set.

The vast number of non-congruence subgroups in the above theorem all come from
the largest free quotient, all have order Oy, and all contain elements of finite order.
Are most non-congruence subgroups like this? It would be interesting to know about the
growth of non-congruence subgroups of order q # Oy, or of torsion free non-congruence
subgroups.

We now take the opposite view and look at normal subgroups of the Bianchi groups
PSLy(Oym) of small index with the aim of determining whether they are congruence or

non-congruence. First, we have to take a look at SLy(L) where L is a local image of

Odm.

)
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6.3 SLy(L) where L is a local image of Oy,

Let L be a finite local homomorphic image of Oy,, with maximal ideal of index 2. Then

we can apply (5.3.22) to get

Theorem 6.3.1. Let L be a finite local homomorphic image of Oqpm with a mazimal ideal

m of index 2. Let N <1 SLy(L) be of order L. Then 4L < I(N).

We now classify all normal subgroups of SLy(L) with order L by means of the com-

mutator subgroup viz

Theorem 6.3.2. Let N 9 SLy(L). Then o(N) =L < SLy(L) < N.

(o)) )

so (<) is obvious. First we describe the ideals of Oy, of index 2.

Now o(SLs(L)) = L, as

[4,T] =

Theorem 6.3.3. If m =0 (mod 2) then Oy, has ezactly one ideal of index 2, namely
(2,mw). If m =1 (mod 2) then the ideals of indez 2 are:

7

(2,1+mw) ifd=1 (mod 4)

(2,mw) ifd=2 (mod 4)
T (2,mw), (2,1 +mw} fd=7 (mod 8)
none 4fd=3 (mod 8)

Proof. The m =0 (mod 2) case follows from lemma (3.1.4). If m = 1 (mod 2) then we
use the isomorphism given in lemma (3.1.5) ie Ogm /204, = O4/20,; where mw < w.
So we can assume that m = 1. The generators of the maximal ideals can now be found

using the theorem on page 107 of [52]. Let

X?+d ifd=1,2 (mod4)
folX) = .
X?— X +4d ifd=3 (mod 4)

We decompose f, (mod 2) then if g; is a factor of f, (mod 2), an ideal of index 2 in Oy
is given by (2, gi(w)) (see p. 107 of [52]). First, if d =3 (mod 8) then D =5 (mod 8), so
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Xx(2) = —1 (see chapter 3 for the definition) so O;/20; is a field and Oy, has no ideals
of index 2. Now suppose that d = 1,2 (mod 4) so

(X4+1)* (mod2) ifd=1 (modA4)

fo(X)=X24d=
{ X? (mod?2) ifd=2 (mod4)

So if d = 1 (mod 4) then (2,1 + mw) is the only ideal of index 2 in Oy, and if d = 2
(mod 4) then (2, mw) is the only ideal of index 2 in Oym,. Now suppose d = 7 (mod 8),
so (d+1)/4 =0 (mod 2), 50 f,(X) = X?*-X = X(X+1) (mod 2). So Oy, has exactly
two ideals of index 2, namely (2, mw), and (2,1 + mw). O

We compute SLs(L)® using a method developed by P. M. Cohn in [15] which we now

describe.

Theorem 6.3.4. Let L be a commutative local ring. Then
SLy(L)® & (L/M)*

where M 1is the additive subgroup of L generated by {(u?— 1)z :z € L,u € L*} and
Bu+1)(w+1):u,ve L*}, and (L/M)* is understood to be an additive group. The

1somorphism is given by

E(z) = ’ 1)1——)m—3 (mod M)
-1 0

Proof. This follows from [15] theorem 2, [14] theorem 4.1, and the fact that SLs(L) =
By(E) [3]. O

First, ignore the case d = 7 (mod 8) and m =1 (mod 2) and let L denote the local ring
Oim /404 m.

Lemma 6.3.5. If m =0 (mod 2) then SLy(L)® = Zy X Zy.

Proof. L = {r+mws:rs=0,1,2,3}, and it is easy to show that
L* ={r+mws:r=1 (mod 2)}. Let u € L* then u* — 1 = 0, or 2mw. Now 2mw(r +
mws) = 0, or 2mw. So {(u? — 1)z} = {0,2mw}. Let u,v € L*, it is trvial to show that
3(u+1)(v+1) € {0,2mw}. So M ={0,2mw}, so (L/M)* = Zy x Z4. Hence result. O

Similarly we can prove:
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Lemma 6.3.6. Suppose that d = 1,2 (mod4) and m = 1 (mod?2). Then
SLQ(L)ab = Z2 X Zg.

Consider the following two matrices

11 1 mw
T= ,U:
01 0 1

Under Cohn’s map SLy(L) —» SLy(L)® they behave as follows

T=E(-1)EQ0)™" —(-1-3)—(0—-3)=—1

U=E(-mw)E0)™"' = (~mw —3) — (0 = 3) = —muw

and so, from the proofs of the above lemmata we see that SL,(L)® is generated by the
images of T' and U ie if m =0 (mod 2) then SLy(L)* X Zy x Zy =< U, T; U, T*,TU =
UT' > and if d = 1,2 (mod 4) and m = 1 (mod 2) then SLy(L)® 2 Zy x Zy =<
U, T;U%T%TU = UT >. It follows from this that only one of the normal subgroups of
SLy(L) of index 2 contains T. We will use this observation in the next section and we

record it as a lemma.

Lemma 6.3.7. Supposem =0 (mod 2) ord=1,2 (mod 4) and m =1 (mod 2). Then
AN <1 SLy(L) of index 2 which does not contain T.

We now deal with the case d =7 (mod 8) and m =1 (mod 2). In this case Oy, has
two ideals of index 2, s0 Oy /404 m is not local. Instead we let m be one of the ideals of

index 2 and L = Oy, /m®. We need to describe m3.
Lemma 6.3.8. If m = (2, mw) then m3® = (8, mw), (8,4 + mw), or (8, £2 + mw).

Proof. First we calculate generators for m?, Clearly m? = (4, 2mw, (mw)?). Now (mw)? =
m(mw) — m?4L. Now d = 7 (mod 8) so (d+1)/4 = 0,2 (mod 4) and m =1 (mod 2)

som? =1 (mod 4) so

) mw (mod m?) ifd=15 (mod 16)
2+ mw (modm?) ifd=7 (mod 16)

and 2(2 + mw) = 2mw (mod 4) so m? = (4, mw), or (4,2 + mw).
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Now m® = mm?. First suppose that m? = (4, mw), so d = 15 (mod 16). So m® =
(8, 2mw, (mw)?). Again (mw)? = m(mw)—m?*(d+1)/4. Nowm =1 (mod 2) so m(mw) =
mw (mod m?). Sincem? =1 (mod 8) and (d+1)/4 = 0,4 (mod 8), so m*(d+1)/4=0,4
(mod 8). So (mw)? = mw, or 4+ mw (mod m3). So m® = (8, mw), or (8,4 + mw). Now
suppose that m? = (4,2 + mw). So m® = (8,4mw,2(2 + mw), mw(2 + mw)). Now
2 x 2(2 + mw) = 4mw, and we can show that (mw)? = £2 + mw. Also 2(+2 + mw) =
4 4+ 2mw. So m® = (8,£2 + mw). Hence result.

O

In a similar way we can prove
Lemma 6.3.9. Ifm = (2,14 mw) then m® = (8, £1 + mw).

Lemma 6.3.10. Suppose that d =7 (mod 8) and m =1 (mod 2). Let m <1 Oy, be an
ideal of index 2, so m = (2,mw), or (2,1+mw). Let L = Oypn/m3. Then SLy(L)* = Zy.

Proof. Suppose first that m = (2, mw), so m® = (8, mw), (8,4 + mw), or (8, £2 + mw).
Suppose r + mws € L, we can assume that 0 < r,s < 7. Then r + mws = r + mws —
s(mw) = r (mod (8, mw)), or r + mws = r + mws — s(4 + mw) = r — 4s (mod (8,4 +
mw)), or ¥ + mws = 1+ mws — s(£2 + mw) = r £ 2s (mod (8,£2 + mw)). So L =
{0,1,2,3,4,5,6,7} = Zs. Applying Cohn’s method we see that SLy(L)* & Z,.

Now suppose that m = (2,1 + mws), so m* = (8, £1 + mw). As above we can show

that L = {0,1,2,3,4,5,6,7} and so SLy(L)% 2 Z,. (I
We now present the proof of theorem (6.3.2) as a series of lemmas.

Lemma 6.3.11. Suppose that d = 7 (mod 8) and m = 1 (mod 2). Let N <1 SLy(L).
Then o(N) = L < SLy(L) < N.

Proof. Let I" denote SLy(L). Now o(I") = L, so (<) is obvious. Conversely suppose
that o(N} = L and I £ N. So, by (5.3.17), |I' : N| = 2% and T'/N is non-abelian, so
a = 3. So I'/N is a 2-group of order > 8, so IM <1 T such that N < M and |T': M| =38,
and o(M) = L. Now I'* = Z,, so I'/M is non-abelian, so T/M 2 Qg, or Dg, the only
non-abelian groups of order 8 [68]. Now Qg = D§ = 7, x Zy, so (T'/M)® =2 Zy X Zs.
But T —» I'/M, so I'®* —» (T'/M)®, so Zy —» Zy X Zq. Contradiction. Hence result. [

Unfortunately this technique does not work in the other cases. Instead we use the obser-

vation (5.3.18) that if N <1 SLy(L) is of order L then N contains every matrix in SLq(L)
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of order 3. Let N(3) denote the normal closure of all elements of order 3. We attempt to
show that SLy(L) = N(3). Note that because we have shown (5.3.22) that if o(N) = L
then SLy(L,4L) < N we can work mod 4. Recall that STo(L) = Eo(L) and let

Elz(fﬂ):(l m):Ezl('y)=(l O)-
0 1 y 1

So SLy(L) is generated by Fis(x) and Fe(y) where x,y = 1, mw. It is easy to compute
that

zy: 1 —ay

[Eia(z), B (y)] = (

L+ay+ (zy)? -2y )

we want to show that [E12(z), B2 (y)] € N(3) for (z,y) = (1,1), (1, mw), (mw, 1), (mw, mw).

We make frequent use of lemma (5.3.20) without comment.
Lemma 6.3.12. [E5(1), By (1)]° = 1.

Lemma 6.3.13. Suppose that d = 1,2 (mod 4) and m = 0 (mod 2). Then SLy(L)" =
N(3).

Proof. In this case (mw)? = ~dm? = 0 as m = 0 (mod 2) and we are working mod 4.

This shows that [Fya(mw), By (mw)] = I. Now

[E12(1), Eoi(mw)] = ( Ltme —mw ) _ ( -1 1 ) ( | 0 —(1—mw) ) .
0 1—mw -1 0 1+ mw —1

Slmllaﬂy for [E12 (mw), Egl(l)] (M

Lemma 6.3.14. Suppose that d = 3 (mod 4) and m = 0 (mod 2). Then SLo(L) =
N(3).

Proof. First note that if m = 0 (mod 4) then (mw)? = 0, and if m = 2 (mod 4) then
(mw)? = 2mw. This renders the m = 0 (mod 4) case identical to the d = 1,2 (mod 4)

cases above. So suppose m = 2 (mod 4). Then

[E12(1), B (mw)] = ( 1 —mw —TMw )
2mw 1 — mw

(—1 —1) ( 2mw l—mw)
€ N(3)
1 0 —(1+mw) -1+ 2mw

and this equals
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Similarly [Eyz(mw), B (1)] € N(3). Now

[Er2(mw), By (mw)] = ( 1+ 2mw 0 )
0 1+ 2mw

and this equals

—1 4 mw —1 -1 14+ mw -1 —142mw
€ N(3)
1+mw —mw 1 —mw 0 1+ 2mw 0

O
Lemma 6.3.15. Suppose that d = 1 (mod 4) and m = 1 (mod 2). Then SLy(L) =
N(3).
Proof. In this case (mw)? = —1, so
mw 1
[Elz(mw), Egl(l)] =
mw 1 —mw
and this equals
2
-1 1 0 —mw
€ N(3).
-1 0 —muw -1
similarly [Elg(mw), Egl(l)] € N(3) Also
1 —mw
[Era(mw), Eoy(mw)] =
T 2
so [Erz(mw), }_7,'21(717,w)]3 = I. Hence result. O

Lemma 6.3.16. Suppose that d = 2 (mod 4) and m = 1 (mod 2). Then T? € N(3),
and so —I € N(3).

Proof. By lemma (5.3.20)

0 14+mw
€ N(3)
3+ mw -1
and this equals

1 1+ 1 34+ m 1 24 2mw
mw 4 w e
0 1 0 1 0 1
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_ 1 mw AT 1 24 nw -l 1 34 2mw
0 1 0 1 0 1
so, as AT, A~*T~! € N(3), and 4 = 0, we see that 7% € N(3). O

Lemma 6.3.17. Suppose that d = 2 (mod 4) and m = 1 (mod 2). Then SLy(L) =
N(3).

Proof. In this case (mw)? = 2, so

[E12(1), Bat (mw)] = —1l+mw  —mw )
2 1—mw

and this equals

€ N(3)

-1 1—-mw 24+2mw 1-2nmw
14+ mw 0

1 14 2nmw
Similarly [Eo(mw), Ea(1)] € N(3). However
-1 2mw
(B2 (mw), Egy (mw)] = ( )
2mw —1

and this equals

2mw 1 -1 -1+ 2mw
—TI e N(3)
—142mw —14+2mw 14 2mw 0

Hence result. O

We have now proved theorem (6.3.2). From the above we can get an improved lower

bound for the level in some cases

Theorem 6.3.18. Suppose thatd = 1,2 (mod 4) andm =1 (mod 2). Let L = Oy /404 m.-

Let N <1 SLy(L), o(N) = L. Then 2L < I(N).

6.4 Non-congruence subgroups of small index in the
Bianchi groups

Here we need to be very clear about the differences between Sy and PSL,; so we restate

the relevant definitions. Let O = Oy, be an order in an imaginary quadratic number
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field. Let 0 £q < O.
SLy(0,q) ={M € SLy(O): M =1 (modq)}

SLy (0, q) is the principal congruence subgroup of level q. Let S < SLp(O0). We say that
S is a congruence subgroup if SLy(O,q) < S for some q < O. If q is the largest O-ideal
such that SL,(OQ,q) < S we say that S is of level q. Otherwise S is a non-congruence

subgroup. Let
@ : SLy(O) — PSLy(0)
be the natural homomorphism. Let q <1 O, then
PSLy(O,q) = p(SLx(0, 1))

PSLy(0,q) is the principal congruence subgroup of level q. Let S < PSLy(0). We
say that S is a congruence subgroup if PSLy(O,q) < S, for some q < O. If g is the
largest O-ideal such that PSLs(O,q) < S we say that S is of level q. Otherwise S is a

non-congruence subgroup.

Lemma 6.4.1. Let N <1 SLy(Q) such that —I € N. Let N = @(N). Then
N is a congruence subgroup <> N is a congruence subgroup

Further N and N have the same level.

Proof. Suppose that N is a congruence subgroup. So SLy(0,q) < N, some 0 # q < O.
So PSLy(0,q) = ©(SLy(O,q)) < ¢(N) = N ie N is a congruence subgroup.

Conversely suppose that N is a congruence subgroup. So PSIy(0,q) < N, some
q < O. Suppose that SL,(O,q) £ N, so My € SLy(0O,q) such that M; ¢ N. But
(M) € p(SLe(0,q)) = PSLy(0,q) < N = ¢(N). So M, € N such that o(M;) =
w(Ms). So MiM;* € kerp = {£I}, so M, = +M,. Now M; # My, as My ¢ N, and
My e N. So My = —M; = —IM,, but —I € N and M, € N, so M; € N. Contradiction.
So SL3(0O,q) < N ie N is a congruence subgroup. O

So the normal congruence subgroups of SLy(O) of level q that contain —I are in one to
one correspondence with the normal congruence subgroups of PSLy(Q) of level q and they
clearly have the same index. So we attempt to classify the normal congruence subgroups
of PSLy(0O) of index n by classifying the normal congruence subgroups of SLy(O) of

index n which contain —1.
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Lemma 6.4.2. Let O = Oy, and suppose that N <t SLy(0). Let n € N. Then if T™,
and U™ € N then Eo(O,nO) < N.

Proof. Recall that
Ey(0,n0) =< I +ae;aenQ,i#j ~B2(0)

Let a € nO, so @ = n(z; + mwz,), where z1, z; € Z. Now

1 nzy + nmwzs
I+ teig =
0 1

= (I"»(U™)** € N.
Similarly I + ces; € N. So, as N is normalized by FE»(O) then E5(O,nO) < N. a
Recall the following results

Theorem. (3.2.2) Let O = Oyy. Let N < SLy(O) be of index n and suppose that 6 { n.
Then N s of order O.

Theorem. (5.4.10) Let O = Oy, Let N < SLy(O) be a congruence subgroup of order
O that contains —I. Then SLy(0,60) < N.

So that any normal congruence subgroup of SLy(Oy ) of index not divisible by 6 and
containing —/ must contain SLy(Ogm,60gm). This gives us a method to classify the

normal congruence subgroups of SLs(Og,,) of index not divisible by 6. In fact we can be

more precise.

Lemma 6.4.3. Let O = Oy, Let N <9 SLy(O) be of index n that contains —I and
suppose that 6 1 n. Then

1. If 2| n and 3t n then N is a congruence subgroup < SLo(O,20) < N.
2. If2¢n and 3 | n then N 14s a congruence subgroup < SLo(0,30) < N.
3. If (6,n) =1 then N is a non-congruence subgroup.

Proof. Now, N is a normal congruence subgroup of index n, so using (6.4.2) and (5.2.5),
SLy(O,n0) < N. Applying Wohlfahrts theorem (5.2.3) we see that
SLy(0,n0)SLy(O,60) = SLy(O, ged(6,n)O) < N from which the result follows. O
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Let Ngm(n) denote the number of normal congruence subgroups of PSLy(Oy.p) of
index precisely n. So by the above lemma. if (6, n) = 1 then Ngm(n) = 0. If SLy(Oy,m) has
an infinite cyclic quotient then it has a normal subgroup of every index. In contrast the
Modular group has only two normal subgroups which are not of index 6k, some k£ € N
([70] theorems 8.6 and 8.7). However by (6.4.3), with only finitely many exceptions,
every normal congruence subgroup of SLy(Oy,) 18 of index 6k, some k € N. We need

the following lemma

Lemma 6.4.4. Let K be a Noetherian domain of Krull dimension one. Let q1,q2 << K
such that q1 +q2 = K. Then

SLQ(I(/qqu) & SLQ(K/C[l) X SLQ(I(/C[Q)

Proof. By the Chinese remainder theorem K/q1qs = K/q1 % K/qe where the isomorphism

is given by z+qids = (2401, 2+d2) = (21, 22). Define ¢ : SLy(K/q1q2) — SLo(K/q1) %
SLy(K/qz) by

2
<

ay b1 az b2

b
c1 dy ¢y dy

ol
=

where @ = a+ q1qs — (a1, a9) ete. It is simple, if tedious to check that ¢ is an monomor-
phism (indeed it is true for any commutative ring). To show that ¢ is onto we need
Wohlfahrt’s theorem (5.2.5). By Wohlfahrt SLy(K, q1)SLa(K, q2) = SLa(K,q1 + q2) =
SLy(K). Also SLs(K,q1) N SLy(K, q2) = SLa(K, q192). So in the group SLo(K/q1q2) =
G we have two normal subgroups H, K, say such that HK = G and HN K = 1. So by
[79] theorem 4.1 we have G & H x K. Hence result. O

Lemma 6.4.5. Let O = Oy,,. Let n € N and suppose that 2 | n and 3t n. Then
1. If O has no ideals of indez 2 then Nym(n) = 0.
3 ifn=2
2. If O has an ideal of index 2 then Nym(n) =< 1 ifn=4
0 else

Proof. Let N <1 SLy(Q) be a congruence subgroup of index n that contains —I. Then by
(6.4.3) SLy(©,20) < N. There are 3 cases, depending on how many ideals of index two
O has. If O has no ideals of index 2 then SLy(0)/SLs(O,20) =2 SLy(Fy) but —1 € N
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and PSLy(IFy4) is simple, 50 Nym(n) = 0. Now suppose that O has exactly one ideal of
index 2. Let L denote the local ring O/20, so SLy(O)/SLo(O,20) 2 SLy(L). Now
corresponding to N is N <1 SLy(L), o(N) = L. So, by (6.3.2), SLy(L) < N. Now
—I € N so, by (5.3.19), (6.3.5) and (6.3.6), SLy(Q)/N is a factor of Zy X Zy which, by
(3.4.10), has exactly 3 non-trivial normal subgroups, all of index 2. The result follows
in this case. Finally suppose that O has two ideals of index 2. In this case, by (6.4.4),
SLy(O)/SLy(O,20) = S x S3, 50 |SLa(O) : SLy(O,20)| = 223%. So N is of index 2 or
4,50 SLy(O)/N is abelian. Now (SLy(0)/SLy(0,20))% = 3 x S35 2 7, x Zy and so

the answer is as the previous case. O
Lemma 6.4.6. Let O = Og,,. Let n € N and suppose that 24 n and 3 | n. Then

1. If O has no ideals of index 3 then Nym,(n) = 0.

_ . 1 ifn=3
2. If O has ezactly one ideal of index 3 then Ny, (n) =

0 else

4 ifn=3
3. If O has esactly two ideals of index 3 then Nym(n) =< 1 ifn=29

0 else

Proof. Let N <1 SLy(O) be a congruence subgroup of index n that contains —I. Then
by (6.4.3), SLy(0,30) < N. First suppose that O has no ideals of index 3. Then
SLy(0)/SLa(0,30) =2 SLy(Fy) but —I € N and PSLy(IFg) is simple, so Ny (n) = 0.
Now suppose that () has exactly one ideal of index three, m, say and let L denote the local
ring O/30. So, by passing to SLg(L) and applying (5.3.15) we see that SLy(O,m) < N.
Now SLy(0)/SLy(O,m) = SLy(TF3), —I € N and, by [79] exercise 8.11, PSLy(F3) = A4
which has exactly one normal subgroup, which is of index 3. Hence result in this case.
Finally suppose that @ has exactly two ideals of index three, m;, ¢ = 1,2, say. Now, by
(6.4.4),
SLs(0)

SLy(0,30)
and |SLy(F3)| = 24 (this follows from [79] theorem 8.8), so |SLy(O) : SLy (O, 30)| = 2832.
So N is of index 3 or 9 and so SLy(Q)/N is abelian. Now SL,(IF3)% & Zs so

SLy(O0) \
(SLQ(O, 30)) = s X s

= SLQ(]F:_:,) X SLQ(]Fg)
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and, —I1? =T so —I € SLy(O/30)". Now, by (3.4.10), Z3 x Z3 has exactly 4 non-trivial

normal subgroups, all of index 3. Hence result in this case. O

In [31] Grunewald and Schwermer determine the minimum index of a non-congruence

subgroup of a Bianchi group. Let ncs(d) denote the minimum index of a non-congruence

subgroup of PSLy(O,4). Their main result is

Theorem.
(5 ifd=1
4 ifd=2
nes(d) =< 22 ifd=3
3 ifd=7
2 else

.

In the Modular group the least index of a non-congruence subgroup if 7 ([83] theorem
5.4). There is considerable overlap with Grunewald and Schwermer’s theorem and what

follows but our techniques are completely different. First recall the following

Theorem.

SLy(Oum)
: —_ s FS
2 U(O0m)

where s =71 — 1, and r = r(d,m), the rank of the Zimmert Set and U € ker .
Theorem 6.4.7. If r = r(d,m) 2 2 then SLy(Oym) has a normal non-congruence sub-
group containing —I of every index.

Proof. Since r > 2 we have

0 SLy(Odm)
. UZ(Od,m)

and clearly —I € ker . Suppose that NV <1.SLy(Oy,) such that ker o < N, so T,U € N,
50 {(N) = Ogm- So, if N is'a congruence subgroup then N = SLy(Oym). Thus SLo(Oym)

Y/

has a normal non-congruence subgroup containing —7 of every index. 0

Corollary 6.4.8. Ifr =r(d,m) > 2 then PSLy(Oqm) contains a normal non-congruence

subgroup of every indez.
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Not included in the above theorem are the cases d =1,2,3,7,11,19, and m = 1 and
(d,m) = (1,2),(3,2). We are unable to deal with the cases (d,m) = (1,1),(3,1) but we
take a closer look at the others later. Recall that it is conjectured that these are the only
values of (d, m) such that PSL(Oy.,) does not have a free non-abelian quotient.

All the non-congruence subgroups produced above contain the Zimmert kernel and so
have torsion. We now show that in any Bianchi group the number of normal congruence

subgroups with torsion is finite. Recall
Theorem. (1.1.8) I # M &€ SLy(Oym,) ts of finite order if and only of trM = 0, or 1.
We now show that the order of a subgroup with torsion is severely restricted. Let

a b
M € SLy(Oy,n) and recall that the order, o(M), of the matrix M = is the
c d

ideal of Oy, generated by b,c,a — d. The order of any subgroup containing M contains
o(M).

Lemma 6.4.9. Let M € SLy(Oqm). Then if trM =0 then 2 € o(M).

Proof. a +d =0,80 a = —d. Now a —d = 2a € o(M). Also 1 = ad — bc == —a? — bc,
so 1+ a* € o(M). Thus 2a® + 2 € o(M) and, because 2a € o(M) we have 2a® € o(M).
Hence 2 € o(M). O

Lemma 6.4.10. Let M € SLy(Oup). Then if trM = +1 then 3 € o(M).

Proof. First suppose that trM = —1,s0 a+d = —1and a = -1 —d. Now a —d =
2a+1€oM). Alsol=ad—-bc=—-a—a®>~bc,s0a®+a+1= —bc € o(M). So
2a° +1=2(a’+a+1) — (2a+1) € o(M). Further 1 —a = 2a*+ 1 — (2a + 1)a € o(M).
S03=2(1—a)+2a+1 € o(M). Similarly if trM = 1. O

Theorem 6.4.11. There are only finitely many normal congruence subgroups with tor-
sion i SLa(Ogpm)-

Proof. Let N <1.SLy(Oy,) and suppose that N has torsion and is a congruence subgroup.
So N contains a matrix M, say with trtM = 0, or &=1. So 2, or 3 € o(N), so 6 € o(IV).
Now N is a normal congruence subgroup so, by (5.4.14), SLy(Oym,28804m) < N and

there are only finitely many such subgroups. O

Example 6.4.1. There are infinitely many non-normal congruence subgroups with tor-

sion in SLy(Ogm). The groups SLa(Oymn), for n € N, are an example.
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Recall that it is conjectured that PSLy(Og4m) has a free non-abelian quotient for all
values of (d,m) except for (1,1), (2,1), (3,1), (7,1), (11,1), (19,1), (1,2), and (3,2).
The normal subgroups of PSLy(O;) were studied in [26] where, in particular, the normal
subgroups of index < 60 were classified and it was shown that for a wide collection of n,
PSLy(0;) had no normal subgroups of index n. The normal subgroups P.SLy(03) were
studied in [1] where the normal subgroups of index < 960 were classified and shown to

all be congruence subgroups. We now take a closer look at the others.

6.5 The groups PSLy(Oy), d = 2,7,11 and PSLy(Os5)
and PSLQ(OLQ)

In this section we deal exclusively with PSLy(Ogy), which we denote by PSLy(Ogpm),
or PSLy(Oy), if m = 1. We look first at the groups PSLy(Oy), for d = 2,7,11. In [25]
section 4.5.3, Fine attempts to classify the normal subgroups of PSLy(Qy), d = 2,7,11
but his classification is incomplete. We first of all correct his errors. Recall the following

presentations

Theorem. ({25] theorem 4.3.1)

PSLy(0y) =< a,t,u;a?, (at)?, (v aua)?, [t,u] >
PSLy(0y) =< a,t,u;a? (at)?, (v lauat)?, [t, u] >

PSLy(01) =< a,t,u;a? (at)?, (v auat)?, [t, u] >
We now state and prove the correct version of Fine’s results

Theorem 6.5.1. Let N < PSLy(Oy) be of index n and suppose that 6 + n. Then if
(n,6) =1

N = N(a,t,u")
if 2| m and 31 n then N is one of
N(a,t,u™), N(at, u™?), N{at, au™?)
if 24n and 3 | n then N is one of

N(a,t,u™), N(a,u"?), N(a, tu™?), N(a, t*u™?)
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Proof. Suppose that (n,6) = 1s0 a =at =u"taua = 1,50 a =t =1, so PSLy(Oy)/N
is a factor of Z. So N = N(a,t,u™). Suppose that 2 | n and 3 { n, so at = 1, so
PSLy(O,)/N is a factor of < a,u;a?,au = ua > Zy x Z. So, by (3.4.10), N =
N(a,t,u"), N(at,u™'?), N(at,au™?). Now suppose that 2{n and 3 | n, so a = v 'aua =
1, so PSLy(0,)/N is a factor of < t,u;t3, tu = ut > Z3 X Z. So, by (3.4.10), N =
N(a,t,u™), N(a,u™?), N(a, tu™?), N(a, t2u™?). O

Fine ([25] section 4.5.3) correctly classified the normal subgroups of P.SLqy(O;) of index
coprime to 6, didn’t deal with the cases 2 | n and 3{n or 2{n and 3 | n, and erroneously
claimed to have classified the normal subgroups of PSLy(QO;) with torsion of index 6k.
As can be seen above we have dealt with the case of a normal subgroup of index not
divisible by 6 but the case of an index divisible by 6 is very complicated and we have
been unable to deal with it. The complications arise because if N <t PSLy(O3) is of index

6k and has torsion then PSLy(O,)/N is a factor of Z X PSLy(Z) ([25] theorem 4.5.3).

Lemma. ([25] theorem 4.5.3) If N QPSLy(Oy) has torsion then PSLy(Oy)/N is a factor
Of Zg X Z..

Theorem 6.5.2. Let N <t PSLy(Oy) be of indez n. Then if 24 n
N = N(a,t,u")
if 2| n and N has torsion then N is one of
N(a, t,u™), N(at,u™?), N(at, au™?)

Proof. Suppose that 2t n so a,u " auat € N, so a,t € N, so PSLy(O7)/N is a factor of
<u>27Z. So N = N(a,t,u?).

Now suppose that 2 | n and N has torsion, so PSLy(Oy)/N is a factor of Zg x Z so,
by (3.4.10), N is one of

N{a,t,u™), N(at, u™?), N(at, au™?)

Missing from Fine’s classification were the groups N(at, au™?).

Lemma. ([25] theorem 4.5.3) If N <« PSLy(Oy1) has torsion then PSLy(011)/N is a
factor of Zg X Z.
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Theorem 6.5.3. Let N <« PSLy(O11) be of index n. Then if 31 n then
N = N(a,t,u")
if 2tn, and 3 | n, or 6 | n and N has torsion then N is one of
N(a,t,u™), N(a,u™?), N(a, tu™?®), N(a, t>u™?)

Proof. Suppose that 3 {n, so at = v tauat = 1,s0a =t =1,s0 N = N(a,t,u"). Suppose
that 2t n, and 3 | n,s0a =1,s50¢° =1, 80 PSLy(O11)/N is a factor of < ¢, u; 3, [t, u] >
Zsg x Z. Similarly, if 6 | n, and N has torsion, then PSLy(011)/N is a factor of Zs X Z.
So that, by (3.4.10), N = N(a, t,u"), N(a,u™?), N(a, tu™?), N(a, t?2u"?). O

Missing from Fine’s classification were the groups N(a, tu™?®) and N(a, t2u™?).

6.5.1 Normal congruence subgroups of PSLy(O)

Now consider O, and let w = iv/2. By (6.3.3), O, has one ideal of index 2, namely w®,
and two ideals of index 3, namely (1+w)0Oz, and (1 —w)O,. Thus, by (6.4.5) and (6.4.6),
if n € N such that 6 { n then

3 ifn=2

4 ifn=23
Nz(’n) = <

1 ifn=4,9

LO else

and so from (6.5.1) all the normal subgroups of PSL4(03) of index 2
N(a,t,u?), N(at,u), N(at, au)
are congruence subgroups, and all the normal subgroups
N(a,t,u%), N(a,u), N(a,tu), N(a,t*u)
of index 3 are congruence subgroups. Exactly one of the normal subgroups
N(a,t,u*), N(at,u?), N(at, au?)
of index 4 is a congruence subgroup and exactly one of the normal subgroups
N(a,t,4°), N(a,u?), N(a, tu®), N(a, t?u?)

of index 9 is a congruence subgroup. All other normal subgroups of PSLs(0;) of index

not divisible by 6 are non-congruence subgroups.
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Lemma 6.5.4.
PSLy(Os,wOs) < N(at,u)

Proof. PSLy(O3)/PSLy(Oq,w0s) 22 Sy, 80 PSLy(Os) has a normal congruence subgroup
of index 2. By (6.5.1), the normal subgroups of PSLy(O;) of index 2 are:

N(a,t,v?*), N(at,u), N(at, au)

Now u € PSLy(Oz,w®,), so u € N. So, clearly, N # N(a,t,u?), N(at,au). Hence
N = N(at, u). O

Lemma 6.5.5.
N(a,t,u"), N(at, au?)
are non-congruence subgroups, and
PSLy(0,,20;) < N(at,u?), N(a,t,u?), N(at, aw)

Proof. Suppose N is one of these groups. Then PSLy(O0y)/N is abelian. Suppose N is a
congruence subgroup, so because N is of index 2, or 4 we have PSLy(05,20;) < N. Now
(PSLy(03)/ PSLy(02,205))®™ =~ Zy X Zs. Suppose N = N(a,t,u*), N(at,au?). Then
PSLy(Oz)/N = Zy. So N is a non-congruence subgroup. By (6.5.1), the only other
normal subgroup of PSLy(O5) of index 4 is N(at,u?). Thus PSLa(Os,20;) < Nlat,u?).

Now, by (3.4.10), Zy x Z5 has 3 normal subgroups of index 2. By (6.5.1), the normal
subgroups of PSLy(Os) of index 2 are

N(a,t,u?), N(at,v), N{at, au)
and we have already seen that PSLq(Os, wOs) < N(at,u). O
Lemma 6.5.6.
PSLy(Og, (1 +w)0;) < N(a,tu)

Proof. PSLy(O2)/PSLy(Os, (1+w)O;) & Ay, and A4 has a normal subgroup of index 3.
By (6.5.1), the normal subgroups of PSLy(O,) of index 3 are:
N(a,t,u°), N(a,u), N(a, tu), N(a, t*u)

Now tu € PSLy(Os, (1+w)0s), so tu € N. So, clearly N # N(a,t,v?), N(a,u). Suppose
that N = N(a,t?u). Then ¢t = t?uu*t"! € N, so a,t,u € N. Contradiction. Hence
N = N(a, tu). O
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Lemma 6.5.7.
PSLy(Os, (1 — w)O,) € N(a, t?u)

Proof. PSLo(Oq)/PSLy(Os, (1 — w)Oy) = Ay, so, as above, PSLy(O;) has a normal
congruence subgroup, N, of index 3. So, by (6.5.1), NV is one of

N(a,t,u%), N(a,u), N(a,t*u)

Now tu™! € PSLy(Os, (1 — w)Osy), so tu™* € N. So clearly N # N(a,t,u®), N(a,u).
Hence N = N(a, t*u). O

Lemma 6.5.8.
N(a,t,%’), N(a,tuv?), N(a, t*u®)
are non-congruence subgroups, and
PSLy(0s,30;) € N(a,u?), N(a,t,u*), N(a,u)

Proof. Let N be one of these groups and suppose that N is a congruence subgroup.
Then because N is of index 3, or 9 we have PSL3(05,30,) < N. Now if N =
N(a,t,u®), N(a,tu3), N(a,t?u®) then PSLy(Os)/N = Zg, so as (PSLy(02)/PSLy(Og,30;))% =
Z3 x Z:3, N is a non-congruence subgroup. The only other normal subgroup of index 9 is
N(a,u?). Hence PSLy(0s,30,) < N(a,v?).

Now, by (3.4.10), Z3 x Z3 has 4 normal subgroups of index 3. By (6.5.1), the normal
subgroups of PSLy(Os) of index 3 are

N(a,t,v*), N(a,u), N(a,tu), N(a, t*u)

and we have already seen that PSLy(Os, (1 + w)O3) < N(a,tu), and PSLy(O, (1 —
w)O3) < N(a,t*u). Hence result, O

Hence

Theorem 6.5.9. The normal congruence subgroups of PSLy(Os) of index not divisible
by 6 are precisely:
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Group Level | Indez | Abelianization
N(at, ) w 2 73 x Z
Nfa,t,uv*) | 2 2 23 x Ty X Z
N (at, au) 2 2 Ziy X 7
N(a,tu) 14w 3 73 x 7.
N(a,t?u) {1—w| 3 72 x 7
N{a,u) 3 3 Z3 X Z
N(a,t,u®) 3 3 Z4 X Ty X Z
N(at,u?) 2 4 72 x 7,
N(a,u?) 3 9 Zh x Z

Proof. Presentations for each of these groups were found using GAP [24]. These presenta-

tions were then abelianized by hand. ]

Remark. So we have shown that every subgroup of PSLy(02) of index 2 is a congruence
subgroup and we have an example of a (normal) non-congruence subgroup of P.SLy(O5)
of index 4. Now PSLy(O3)/PSLy(Os,w;) &2 Sy and S3 has a non-normal subgroup of
index 3. Thus PSLy(O,) has a non-normal congruence subgroup of index 3. Tt is a simple
matter to use GAP [24] to show that PSLy(O,) has exactly one non-normal subgroup of
index 3. Thus all subgroups of PSL,(Os) of index 3 are congruence subgroups. So
the least index of a non-congruence subgroup of PSLy(O,) is 4. This replicates part of

Grunewald and Schwermer’s theorem ([31] proposition 3.1)

6.5.2 Normal congruence subgroups of PSLy(07), PSLy(O11),
PSLZ(O&Q), and PSLQ(OLQ)

In exactly the same way as we did for PSLy(Oy) we can classify Normal congruence

subgroups of PSLy(Oy), PSLy(O11), PSLy(Os), and PSLy(O42). However we do have

Lemma 6.5.10. Let N <APSLy(Oy) be of indexn. Suppose that 6 | n and N has torsion.

Then N is a non-congruence subgroup.

Proof. Suppose that N is a congruence subgroup. By (6.5.2) a, or at € N, so by (6.4.1)
there is a normal congruence subgroup of SLy(Oy) corresponding to N, of order @;. By

applying (5.4.9), (5.3.19) and then (6.4.1) again we see that PSLy(07,2) < N. From
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(6.5.2) we can see that PSLy(Or)/N is abelian. Now (PSLy(O7)/PSLy(07,2))%0 =

Zg X Zs, s0 6 | 4. Contradiction. Hence N is a non-congruence subgroup.
and in a similar way we can prove

Lemma 6.5.11. Let N<APSLy(Oy1) be of indez n. Suppose that 6 | n and N has torsion.

Then N ts a non-congruence subgroup.

Lemma 6.5.12. Let N < PSLy(O12) be of index n. Suppose that N has torsion and

6 | n. Then N is a non-congruence subgroup.
So that we get:

Theorem 6.5.13. The normal congruence subgroups of PSLo(Oy) with torsion are pre-

cisely:
Group Level | Index | Abelianization
N(at,u) w 2 Zig X 7.
N(at,au) |1-w| 2 Zy X Z
N(a,t,u?) 2 2 Zo X 7
N(at,u?) 2 4 72 x 7.

Remark. So we have shown that all subgroups of PSLy(O7) of index 2 are congruence
subgroups and we have given an example of a (normal) non-congruence subgroup of index
31in PSLy(Oy). So 3 is the least index of a non-congruence subgroup of PSLy(O7). This

replicates a part of Grunewald and Schwermer’s theorem ([31] proposition 3.1).

Theorem 6.5.14. The normal congruence subgroups of PSLq(O11) with torsion are pre-

cisely:
Group Level | Index | Abelianization
N(a,u) w 3 73 x 7
N(a,t?u) |1—w| 3 VARY/
N(a,t,u?) 3 3 Z3 X Z
N{a,tu) 3 3 73 x 7.
N(a,u?) 3 9 ZS x 1.

Remark. As stated earlier the unique subgroup of PSLy(O11) of index 2 is a non-
congruence subgroup so clearly 2 is the least index of a non-congruence subgroup. Again

this replicates a part of Grunewald and Schwermer’s theorem ([31] proposition 3.1).




Chapter 6. Non-congruence subgroups 121

Theorem 6.5.15. The normal congruence subgroups of PSLy(Os2) of index not divisi-
ble by 6 are precisely:

Group Level | Index | Abelianization
N(at,aw) | mg 2 7: % 7
N(a,t, w?) 2 2 Tig X Ty X L

N(at, w) 2 2 72 X 7
N(a,tw) | ms 3 Zo X L
N(at,w?) | 2 4 Z3x 7

where Mg = (2, 1+144/3) is the ideal of indez 2 in Osy, and mg-= (3,2+ 2iv/3) is the ideal

of indez 3 in Oy.

Remark. So we have shown that every subgroup of PSLy(Os9) of index 2 is a congruence
subgroup and we have given an example of a (normal) non-congruence subgroup of index
3 in PSLy(032). So 3 is the least index of a non-congruence subgroup of PSLy(Oys).

This is an extension of Grunewald and Schwermer’s theorem ([31] proposition 3.1).

Theorem 6.5.16. The normal congruence subgroups of PSLy(O12) with torsion are pre-

cisely
Group Level | Index | Abelianizalion
N(at,tz,w) | my 2 Zs x 72
N(a,t, z,w?) | 2 2 743 x 7.
N(at,aw, tz) 2 2 72
N(at,tz,w?) | 2 4 Z: x Z

where mg = (2, 2i) is the ideal of index 2 in Oy 4.

Remark. So there are exactly three congruence subgroups of index 2 in PSLy (O 3). It is
a simple matter to use GAP [24] to show that there are exactly 8 subgroups of PSLy(O, 2)
of index 2. So there are exactly 5 non-congruence subgroup of index 2 in PSLy(0, 2) and
2 is the least index of a non-congruence subgroup of PSLy(O; ). This is an extension of

Grunewald and Schwermer’s theorem ([31] proposition 3.1).
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