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Abstract

The principal part of this thesis starts with Chapter 2, Chapter 1 containing pre-
liminary material.

In Chapter 2, we give an exposition of the classical Alexander ideals of a group
presentation whose set of generators is finite. These Alexander ideals are a group
invariant; the chain of ideals calculated from presentations for isomorphic groups
being equivalent. We also consider some classes of presentations whose groups cannot
be distinguished by their Alexander ideals.

In Chapter 3, we define a chain of ideals, the B-ideals, which are calculated from
a 3-presentation with finite set of generators and relators. We show that these too
are a group invariant and, moreover, that they can distinguish groups which the
Alexander ideals cannot.

In Chapter 4, we define for the class of groups of type F'P, another new group
invariant, the F,-ideals. These are calculated from a free resolution of type FP,
for the group. We show that these generalise the Alexander and B-ideals. The
E,-ideals of a group are actually a special case of an invariant for group modules
of type FP,. In the remainder of Chapter 4, we derive some properties of these
module invariants and their equivalents for groups, including the connexion of these
new invariants with the integral homology of a group.

In Chapter 5, we consider the classes of modules and of groups whose E,,-ideals
are simple in a certain sense, the FE-trivial modules and groups. In particular, we
show that projective modules are E-trivial and, consequently, that groups of type
FP are E-trivial. We consider how this relates to a question of Serre’s concerning
groups of type F'P and of type F'L. We then consider a larger class of groups, the E-

linked groups, whose E,-ideals are linked in adjacent dimensions in a certain sense.
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Abstract iii

For a subclass of these groups we define an Euler characteristic, which extends the
definition of Euler characteristics of Serre, Chiswell and Brown. We then study the
closure properties of these classes of groups and the behaviour of the new Euler
characteristic when graphs of these groups are constructed. Extensions of certain
E-trivial groups are considered next, and we then demonstrate that, for every n > 1,
the E,-ideals can distinguish groups which have the same Ej-ideals for ¢ < n and
the same integral homology.

In Chapter 6, we extend the definition of these new invariants to monoids and
their modules, distinguishing a right- and a left-hand version. We consider some of
the properties of the monoid invariant, in particular, showing how the E,-ideals of
certain groups can be obtained from those of a submonoid. Finally, the E,-ideals
of monoids with a zero element are studied and we consider further the question of

Serre.




Statement

Chapter 1 covers some basic material, such as presentations of groups and monoids,
pictures over a group presentation, Tietze transformations of presentations, the Fox
and picture derivatives, elementary ideals of matrices, resolutions of modules, ranks
of projective modules, Euler characteristics of groups, graphs, Coxeter groups and
graphs of groups. With the exception of §1.3.2, which covers the picture derivative,
this material can be found elsewhere, such as in [16], [22], [23], [25], [33], [36], [41],
[47], [52], [58], [66], [71], [85].

Chapter 2 includes material on Alexander ideals which can be found, for example,
in [33] or [41]. Theorem 2.6 is an unpublished result of S. J. Pride. In Chapter 3,
the definition of the B-ideals of a 3-presentation and Theorem 3.1 is unpublished
work of S. J. Pride. The remainder of these chapters is the author’'s own work.

Chapters 4, 5 and 6 are the original work of the author, with the exception of
instances indicated in the text as well as §5.1, §5.4 and Theorem 5.32, which are

joint work with S. J. Pride.
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Introduction

Given two groups, a natural question to ask is whether or not they are isomorphic.
This problem was raised as early as 1908 by Tietze [83] and was famously formulated

by Dehn as the isomorphism problem:

Two groups are given. To decide whether they are isomorphic or not (and
also whether a given correspondence is an isomorphism). [34] (Translated

in [28].)

A group could be given by a set of matrices or permutations, or by a presenta-
tion. We will consider groups given by presentations. Thus, we want to be able to
determine whether two presentations define isomorphic groups. Now, while solutions
to this problem have been found for some classes of groups (see, for example, [61],
[63] and [75]), it is known to be unsolvable in general; for finitely presented groups,
this was shown by Adyan [1] and, independently, Rabin [72].

In the absence of a single method for distinguishing groups, we must instead
rely on a variety of invariants. Suppose that an object or quantity f(P) can be
calculated from a presentation P for a group G. For f(P) to be a group invariant, if
Py is a presentation for a group Gy which is isomorphic to G, then the object f(Py)
calculated from Py must be equal to f(P), or equivalent in some sense.

The integral homology H.(G) of a group G is such an invariant. This takes
the form of an infinite sequence of abelian groups and can be calculated from any
projective resolution for G.

Various Euler characteristics have been defined for certain classes of groups.
These can be calculated in a variety of ways, and usually take values in Z or Q. See,

for example, [22], [29], [76] and [79].




Introduction 2

Another example is the chain of Alexander ideals, defined by Fox [41]. These are
calculated from a matrix which can be readily obtained from a presentation P, and
take the form of an ascending chain, A(P), of ideals A)(P) (A € Z) in a commutative
ring.

In this thesis, we define a family of new group invariants which are calculated in
a similar way to the Alexander ideals.

Firstly, in Chapter 2, we review the definition of the Alexander ideals and we give
the usual proof, using Tietze transformations of presentations, that they are a group
invariant (Theorem 2.1). We show how these invariants can be used to distinguish
non-isomorphic groups and also consider groups which cannot be distinguished in
this way (Lemma 2.5 and Theorem 2.6).

In Chapter 3, we define a new group invariant, the B-ideals; if 7 is a 3-pre-
sentation with finite sets of generators and relators, we can readily obtain a matrix
from which an ascending chain, B(T), of ideals By(7) (A € %) in ZG(T)® can
be calculated. We prove, using Tietze transformations on 3-presentations, that,
if 7 and 7, are 3-presentations for isomorphic groups, then the chains B(7) and
B(7Ty) are equivalent (Theorem 3.1). The B-ideals are thus a group invariant. We
also show that the B-ideals are sometimes able to distinguish groups which the
Alexander ideals cannot.

In Chapter 4, we define, for a group G of type F'P,, an ascending chain, E,(G), of
ideals F, »(G) (A € Z) in ZG®. These are calculated from a matrix associated with
the (n+ 1)-st boundary map of a free resolution of type F'P, for G. These generalise
the Alexander and B-ideals, since A(P) = E1(G(P)) and B(T) = Ey(G(T)). We
also define EY (@) and E¥®(G) to be the images of the chain E,(G) in the rings
ZG* and Z respectively, where G%/ is the largest torsion-free quotient of G.

In order to prove that the E,-ideals of a group are well-defined and a group
invariant, we define, for a ZG-module M of type F'P,, a chain, FE,(M), of ideals
Ep (M) (X € Z) in ZG®, which is calculated from a free resolution of M. When M
is the trivial module Z, E,(Z) = E,(G). By using an analogue of Tietze transforma-
tions, we show that the choice of free resolution is immaterial, and so the E,-ideals

of a module are well-defined (Theorem 4.7). We then consider some properties of
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the E,-ideals of a group module, such as their behaviour when the co-efficient ring,
Z@G, changes. As a consequence, we prove that, if G and Gy are isomorphic groups of
type F'P,, then E,(G) and E,(Gp) are equivalent, and so the E,-ideals are, indeed,
a group invariant (Theorem 4.1).

We also define associated invariants,

Vn(M) = min{\ € Z : B, \(M) = ZG"},
6o(M) = min{\ € Z : E, ,(M) # 0}

and, similarly, we define v,(G), 6,(Q), vif, V'™, etc. We then consider how the
invariants of modules in a short exact sequence are related and how the integral
homology, H.(G), is related to EX®(G) and 67 (G) (Theorem 4.24).

In Chapter 5, we first consider E[m,n]-trivial groups and modules; a module
M of type FP, is E[m,n]-trivial if »;(M) = 6;(M) for i =m,...,n and if §;(M) +
dip1(M) = 0form < i < n. A group G is E[m, nl-trivial when the trivial ZG-module
Z is. We show that finitely generated projective ZG-modules are E[0, oo]-trivial
(Theorem 5.5) and, consequently, that groups of type F'P are Efcd G, ool-trivial
(Theorem 5.10). However, we also show that, if we consider Q-coefficients rather
than Z-coefficients, as we may, then this need not be the case. In particular, we
show that, although finitely presented CA groups are of type FP over Q (Lemma,
5.12), a large family of them are not of type F'L over Q (Proposition 5.13). We then
consider how this relates to a question of Serre’s [76].

We next consider those groups and modules whose E%/-ideals are linked in ad-
jacent dimensions; if, for m < i < n, 8 (M) + 84, (M) = 0, M is said to be
E¥Y[m,n]-linked. A group is said to be E*[m,n]-linked if the module Z is. We
consider how the invariant 6%/ behaves for short exact sequences of such modules
(Proposition 5.14).

If a group G is E¥[l, oo]-linked for some I, we define a new Euler characteristic,
84 (Q) = (=1)'6¥(G). This extends Euler characteristics of Serre [76] and Brown
[21]. We then consider how E-linked and E-trivial groups behave when a graph of
groups is constructed from them. We also look at the behaviour of 6/ under this

construction and extend a result of Chiswell’s [29].
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Finally, in order to show that these new invariants are useful, we look at the
E,-ideals of extensions of E[0,n|-trivial groups. For every n > 1, we are then
able to construct an infinite family of pairwise non-isomorphic groups which can be
distinguished neither by their integral homology, nor by their E;-ideals for ¢ < n,
but which have distinct E,-ideals (Theorem 5.33).

In the final chapter, the definition of the F,-ideals is extended to monoids. We
must, however, distinguish a left- and a right-hand case. If S is a monoid of type
FPY, we define a chain, EY (9), of ideals in ZS® and, if S is a monoid of type
FPT(LT), we define a chain, B (9), of ideals in ZS®. We consider to what extent the
properties of the E,,-ideals for groups extend to monoids and are able to show how
the F,-ideals of certain groups can be obtained from the EY ideals of a submonoid
(Proposition 6.8) .

The invariants of a monoid which contains a zero element are considered next,
in particular, the E®- and E()-ideals of a monoid to which a zero has been added
(Proposition 6.9 and Theorem 6.12). Finally, we return briefly to the question of

Serre.




Chapter 1

Preliminaries

1.1 General

All rings are assumed to have an identity element, 1, which all ring homomorphisms
respect.

Although we will treat both left and right modules, we predominantly consider
left modules. Thus, except where otherwise stated, we assume that all modules are
left modules.

If {c1,¢cq,...} is a set of elements of a ring C, then we write (c1,¢cp,...) for the
(two-sided) ideal of C' generated by this set, C.(c1,cq,...) for the left ideal and
(¢1,¢2,...).C for the right ideal. We will make frequent use of the fact that if, for
some ¢ € C, 1 — c is a generator of a two-sided ideal of C, then we may substitute
1 for any further instances of ¢ in the other generators. For instance, if 1 — ¢ and
14+c¢+--++cP! are both generators of an ideal, we may replace them with the pair
1—e¢p.

Let C be a ring with the invariance of rank property, that is, the rank of a free
C-module is well-defined. If F' is a finitely generated free C-module, we denote its

rank by rko(F). If r = ke (F), then F & C", where

C"=CeCo --aC.

7 times

If C is a principal ideal domain (pid) and if M is any finitely generated C-module,
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then it can be written uniquely in the form
M=o (65.,0/()) (1.1)

for some integers p,¢ > 0 and some non-zero, non-unit ¢; € C (well-defined up to
multiplication by a unit) such that c¢;|c;+;. We define rko(M) to be the rank, g, of
the free part of M.

The group algebra, KG, of a group G with coefficients in a commutative ring
K consists of all formal sums }_ . keg, where k;, € K and k, is non-zero for only
finitely many g € G. If ¢ : G — U(C) is a group homomorphism from a group G
to the group of units, U(C), of a K-algebra C, then it extends uniquely to a ring

homomorphism

a: KG— C;Zkgg = Zkga(g)

geG geG

(the use of & to denote the induced map is a convenient abuse of notation). In
this way, any group homomorphism « : G — Gy extends to a ring homomorphism
o : KG — KGy. For instance, the trivial group homomorphism G — 1;9 — 1
induces a ring homomorphism
aug : KG = K; Y kog— Y kg,
geQ ge@
the augmentation map. When K = Z, we call the kernel of this map the augmenta-

tion ideal of G' and denote it IG. We then have a short exact sequence
0>IG—>ZG—~Z—0. (1.2)

As a Z-module, IG is freely generated by the set {1 —g: g € G}.

The preceding paragraph applies also to monoids and monoid algebras and we
have a monoid version of the short exact sequence (1.2).

If H is a subgroup of a group G, then KG is a free K H-module of rank [G : H],
the index of H in G. If M is any K H-module, we have the induced K G-module

M 1= KG ®xg M.

For any group G, the abelianisation of G, G®, is the quotient G/G' of G by its
derived subgroup G' = [G, G.
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If G is a finitely generated group, then we denote by d(G) the minimum number
of generators of G.

If e € {1, -1}, then we define

E*:E:_l: 0 821
2

-1 e=-1

1.2 Presentations and pictures

A word on a set x consists of a finite sequence of symbols from the set x.

If x is a non-empty set, then the free monoid [x] on x is the set of words on x,
with multiplication given by concatenation. The identity of [x] is the empty word,
denoted 1.

If x is a non-empty set, we define x™! to be a set {z~! : z € x} in one-one
correspondence with x. The free group (x) on the set x consists of words on xUx 1,
subject to the relations z°z7° =1 (z € x, € = £1). Although (x) is thus the set of
equivalence classes of words modulo these relations, we identify an element of the
free group with any word which represents it.

Two words on x Ux~! will be said to be freely equal if they represent the same
element of (x}. A word on x Ux~! will be said to be reduced if it does not contain
a subword of the form zfz7¢. Every word on x U x~! is freely equal to a unique

reduced word [58]. A word on x U x™! will be said to be eyclically reduced if it is

reduced and if its last symbol is distinct from the inverse of its first.

1.2.1 Presentations of groups

A group presentation

P = (x;r) (1.3)
consists of a set of generating symbols, x, the generating set, together with a set r
of non-empty, cyclically reduced words on x Ux~!, the defining relators. The group
G(P) defined by P is then the quotient of the free group (x) on x by the normal

closure < r > of r in (x). We have the natural quotient map

TP (xX) > G(P); W > WL >,
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Notation. When the context is clear, we will often write vp(W) as W or simply as

W. We will also denote the image of any ¢ € Z{x) in ZG(P) as & or simply as &.

If G =2 G(P), then we say that P is a presentation for G. Note, however, that G
and G(P) are distinct groups.

Instead of defining relators, we sometimes use defining relations of the form
U =V for some distinct words U, V on x Ux ! which start and end with distinct
symbols. This relation is equivalent to the (non-empty, cyclically reduced) relator
vv-—i

We will say that a word W on x U x™! is a consequence of rif W € < r>» =
ker yp.

A presentation is said to be finite if the sets x and r are both finite.

When x is a finite set, we define
x1(P) =[x| -1
and, when P is finite, we define
xe(P) = Ir| — [x| + 1

If it is clear which presentation we are referring to, we abbreviate these to 1, Xa,
respectively.

Associated with a presentation P is a ZG(P)-module, M (P), the relation module
of P, defined to be the abelianisation, < r »%, of < r >, written additively. The
action of G(P) is given by

WULr>» =WUWlgr s/,
for W e (x), U € «r>». If U € € r>>», then it may be written as
U=][wiriw;*
for some W; € (x), R; € r and ¢; = 1. Thus

Ugr>»' = (H Wz-Rf"ng) Lr>»' =Y eW.Ri<rs,
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so M(P) is generated as a ZG(P)-module by the set
{R«r>»': Rer}

The module M (P) embeds in a free ZG-module of rank |x|, with cokernel IG,

giving an exact sequence [25]
0= M(P) = @gexZG — IG— 0 (1.4)

(we define the maps of this sequence in §1.6.3, below).

1.2.2 Presentations of monoids

A monoid presentation (or rewriting system)
P = [x;r]

consists of a set x of generating symbols, together with a set r of ordered pairs
(RT, R™) of words on x, the relations. We often write Rt = R~ instead of (R, R™).

The monoid S(P) defined by P is then the set of equivalence classes {W : W €
[x]} of the congruence on [x] induced by r. More explicitly, if W is a word on x
which is of the form UR*V for some U,V € [x] and some (R*,R™) € r, then an
elementary transformation on W replaces R™ by R™, giving the word UR™V. The
inverse of an elementary transformation replaces a word of the form UR™V with the
word UR™V. Two words on x will be said to be equivalent (relative to r) if one can
be obtained from the other by a finite number of elementary transformations and
their inverses. Multiplication is given by W.W' = WW' and is well-defined, so we

have a surjective monoid homomorphism
v : [x] = S(P); W — W.

Notation. If it is clear that we are considering elements of S(P) rather than [x],

we will write W rather than W.

Associated with any monoid S we have the opposite monoid, S°PP, which has the
same underlying set as S and where the product s.s' for s, s’ € S? is defined to be

the product s's € S. There is a set map

opp: S — S5 s,
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such that opp(ss’) = §'s (s,s' € S). If P = [x;r] is a presentation for S, then
PoPP = [x; x°PP| is a presentation for S°PP, where r°? is obtained from r by reversing

the words in each (R*, R™) € r. For example, if
P = [a,b; (a5, 1), (ba, a®b)],

then
PP — [a, b; (CL5, 1), ((Lb, baz)]

is a presentation for S(P)%?.

1.2.3 Pictures, m and 3-presentations of groups
A picture P over a presentation P = (x;r) consists of the following:
1) An ambient disc D, with a basepoint Op on its boundary.

2) Discs Ay,...,An in the interior of D, each of which has a basepoint 05, on
its boundary. To avoid confusion, when we refer to the discs of P we mean the

discs Ay, ..., Ap, not the ambient disc D.

3) A finite number of disjoint arcs in the closure of D \ |J; A;, each of which is
either a simple closed curve or a simple curve joining two distinct points on
0D | J; OA;, neither of which is a basepoint. Each of the arcs has an orientation,
indicated by a transverse arrow, and is labelled by a symbol from x. A closed

arc which encircles no discs or arcs is a floating circle.

4) For a disc A of P, if we travel around JA in a clockwise direction, then we can
read off a word from the successive labels of the arcs we cross; if we cross an
arc labelled z in the direction of its orientation, we read the symbol z and, if
we cross in the direction opposite to its orientation, we read x~!. The word
thus produced must be R}* for some Ra € r and ea = +1. We call R the
label of A and we say that A has positive orientation if ep = 41 and that A

has negaiive orientation if e = —1.

We define 0P to be 8D. If we read clockwise around 0P from Op, then we obtain
a word Wp on x Ux™!, which is termed the (boundary) label of P.
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Figure 1.1: Some pictures over (a,b;a3,bab la 2)

A picture is said to be spherical if no arc intersects dF. If a picture is spherical,
we often omit dP and Op.

Some examples of pictures over the presentation V' = (a, bla3, bab~ia~2) are
given in Figure 1.1. Note that, in places, a number of arrows have been amal-
gamated into one, whose label is the word consisting of the labels of the indi-
vidual arrows. This will be common practice. The picture P2 is spherical and
connected, that is, it contains only one connected component, while Pi contains
a number of components, one of which is a spherical subpicture. Notice that

Wpj = ab~laa~Ibb~labb~laa~Ibb~1b G ker7 p.

Theorem 1.1 (Van Kampen’s Lemma [66]). Let V = (x3r) and let W be a
word on x Ux-1. Then W —1 G G(V) if, and only if, there is a picture P over V
with Wp = W.

We now consider spherical pictures. Consider the following operations on a

spherical picture:

(51) Make a bridge move on two adjacent arcs with the same label, but opposing

orientations, as illustrated in Figure 1.2.

(52) Insert or delete a cancelling pair, that is, a spherical subpicture with exactly

two discs, each of which has the same label, but which have opposite orien-
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FASPS

Figure 1.2: A bridge move

Figure 1.3: A cancelling pair

tations, and whose basepoints are in the same region, as illustrated in Figure

1.3.

(S3) Insert or delete a floating circle.

We will say that two spherical pictures over a presentation P are equivalent if
we can transform one to the other by a finite number of the above three operations.
We denote the equivalence class of a spherical picture IP under this equivalence by
[P]. If P; and P, are two spherical pictures over P, then P; + P, is defined to be the
picture consisting of P, and P, side by side. We then obtain a well-defined addition
on the set of equivalence classes given by [IPy] + [Py] = [Py +Ps]. If we let —P denote
the mirror image of P, then [IP1] + [-IP;] = [Py + (—P1)] = [0], the equivalence class
of the empty picture. We write [—P] as —[P] and P; + (—P,) as P; — P5. The set
of equivalence classes of pictures over P with this addition thus forms an abelian
group.

There is an action of (x) on this group; for W € (x), W.[P] = [PV], where P¥
is obtained from P’ by surrounding it by a number of simple closed arcs whose total
label, read from the outside in, is W. See Figure 1.4, where the spherical picture P
is contained within the dotted line. This action is well-defined, since z°z7° (z € x,
€ = 1) acts trivially modulo (S1) and (S3). Indeed, the elements of r act trivially
modulo (81), (S2), (S3) [66], and so we obtain a ZG(P)-module, m2(P), the second
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Figure 1.4: The action of the word W on the spherical picture P

co

Figure 1.5: A generating set of pictures for (a,b;a3,bab la 2)

homotopy module of V.

We will say that a set d of spherical pictures over a presentation V' is a generating
set of pictures for V if the set {[D] : D Gd} generates %2(¥) as a ZG(7?)-module.
Alternatively [s6], d is a generating set if every picture over V' can be transformed

to the trivial picture by operations (SI), (S2) and (S3) along with the operation:
(S4) Insert or delete a subpicture eD for e —+1, D Gd.

For example, it can be shown that the spherical pictures in Figure 1.5 constitute
a generating set for (a, 5; a3, bab~la~2) [9].
If d is a generating set of pictures for a presentation V = (x; r), then we call the
triple
T=(7>; & = (x;r;d) (1.5)
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a 3-presentation for G(P). We will also write G(T) = G(P) and set v+ = 7p,
x1(T) = x1(P) and x2(7T) = x2(P) (when defined). We call P = (x;r) the under-
lying presentation of T. When X, r and d are finite, we will say that T is finite.
The ZG-module m5(P) embeds in a free ZG-module of rank |r|, the cokernel of
the embedding being isomorphic to the relation module M(P). We therefore have

a short exact sequence [66]
0 — m2(P) = BrerZLG — M(P) = 0 (1.6)

(we return to describe the maps of this sequence in §1.6.3, below).

Much work has been devoted to calculating generating sets of pictures for pre-
sentations. For example, in [9] the authors show how a 3-presentation for a group
extension can be obtained from 3-presentations for the normal subgroup and the
quotient group. In a similar vein, (generalised) graphs of groups (see §1.8.3, be-
low) are considered in [10] and [20], where it is shown how a 3-presentation can be
obtained from 3-presentations for the constituent groups.

The second homotopy module of a presentation in which each relator involves at
most two generators is considered in [64], [67], [65] and [70].

When an extra generator and an extra relator are added to a presentation, giv-
ing a so-called relative presentation, the additional generating pictures required are
determined for certain cases in [8], [19], [38] and [49].

See also [48] and [66] for interesting alternative definitions of mo(P). We remark
that there is also a concept of a picture over a monoid presentation and that the

definition of m3(P) can be extended to monoid presentations [68], [69].

1.2.4 Asphericity and combinatorial asphericity

Certain presentations have particularly simple generating sets of pictures.
A presentation P for which m(P) = 0 is said to be aspherical. For example, a
one relator presentation (x; R) is aspherical if the word R is not a proper power.
In general, each relator R € r of a presentation P = (x;r) can be written as
R = RB® for some integer pgp > 0 and some word Ry which is not a proper power.

We call Ry the root of R and pp the period. If pg > 1, then there are associated
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Figure 1.6: The dipole Dgs

spherical pictures, called dipoles, which have two discs labelled R, with opposite
orientations, whose basepoints are in different regions. There are then pg(pr — 1)
dipoles for each relator R, corresponding to the different choices of basepoints. We
define Dy to be the dipole in which the basepoint of the positively oriented disc is
in the outer region and the path from that basepoint to the basepoint of the other
disc has label Ry. Such a dipole for the relator (ab)? is shown in Figure 1.6. Modulo
the operations (S1), (S2), (S3) and inserting or deleting Dg, all other dipoles are
trivial.

For any presentation P = (x;r), we set
r'={Rer:pg>1}.

The presentation P is said to be combinatorially aspherical (CA) if the set of dipoles
{Dg : R € r'} is a generating set of pictures. A group will be said to be CA if it
has a CA presentation. For example, a finite cyclic group is CA by virtue of the
CA presentation P = (z; 2F), as are all groups with a one relator presentation. CA
presentations have been extensively studied [25], [31], [51], [67], [66]. See [20] for
some tests to determine whether a presentation is CA.

The following result describes fully the torsion elements of a CA group.

Theorem 1.2 ([51]). Let P = {x;r) be a CA presentation and let G = G(P). An
element g € G is of finite order if, and only if,

g=URIU-!

for some R € r, some word U on xUx~! and some integer q such that 0 < q < pg.
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1.2.5 Tietze transformations

Let P = (x;r) be a group presentation as in (1.3). We define the following Tietze

transformations on P:

(T) P = Po=(x,y;r,y=W,(y €y)) for some set y with yNx =0 and
some W, € (x).
(T2) P Py = (x;1,8) for some set s of cyclically reduced

consequences of r.

If the set y or the set s is finite, then the corresponding transformation is termed
finitary.

In each case the group Go = G(Pp) is isomorphic to G = G(P). Indeed, in
the case of the transformation (T2) the groups G and G are identical, since G =
(x)/< r,s > and K r,s > = K r>. If P, is obtained from P by a transformation
(T1), then there is an induced isomorphism ap : G — Gy given by z +» z (for z € x),
which has inverse given by z — z (z € x), y = W, (y € y).

We will say that two presentations are Tietze equivalent if one can be obtained
from the other by a finite number of Tietze transformations and their inverses. This
is an equivalence relation. If two presentations are Tietze equivalent, then they

define isomorphic groups. Conversely:

Lemma 1.3 ([58]). Let P = (x;r) and Q = (y;s) be two group presentations. If
there is an isomorphism o : G(P) — G(Q), then P and Q are Tietze equivalent and
o is the isomorphism induced by the Tietze transformations. If both P and Q are
finite presentations, then they are Tietze equivalent by finitary Tietze transforma-
tions. If x and y are finite, then any transformation (T1) in the equivalence of P

and Q can be taken to be finitary.

Proof. Initially, we assume that x and y are distinct sets. For each z € x, let W,
be a word on y Uy ™" such that a(z} = W, and, for each y € y, let Uy be a word

1

on x Ux " such that o(U,) = y. We can then apply Tietze transformations of type

(T1) to P and Q to give presentations

Po=(xy;r,y=U(y€y)), Qo=(xy;s,z=Wy(zx€x).
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The isomorphism g : G(Po) — G(Qy) induced by « is then given by z — z (z € x),
y—y (y € y) and so it is clear that

LryU; (y ey) > =<s8,23W, (z € x) > < (x,y).

Thus, we may apply a Tietze transformations of type (T2) to each of Py and Qy to

give the presentation
R=xy;r,y=Uy(y €y),sz =Wz € x)).

Hence, the presentations P and Q are Tietze equivalent.

The isomorphism induced by these Tietze transformations is the composition
ar 10} oz
G(P) — G(Py) — G(R) — G(Qo) — G(Q).
Now, for = € x,
05'ldg dp,ap(z) = ag'ldg Idp, (x)
= ag (z)
= ag'(Ws)

= afz),

so o = ay'ldg Idp, crp, as required.

If xNy # 0, then let y’ be a set, distinct from x Uy, in one-one correspondence
with y. This correspondence induces an isomorphism 8 : (y) — (y'). Let Q' =
(y';{6(S) : S € s}). The groups G(Q) and G(Q') are clearly isomorphic. We
then apply the first part of the proof twice; first to show that Q and Q' are Tietze
equivalent and then to show that P and Q' are.

If the sets x, y are finite, then each of the transformations (T'1) above are finitary
and, if the sets r, s are also finite, then all of the Tietze transformations undertaken

above are finitary. O

We wish to extend the definition of Tietze transformations to 3-presentations.
Tn order to do this, we must first consider the effect on a generating set of pictures

of a Tietze transformation on a presentation.
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Figure 1.7: The picture Qg

If Py is obtained from P by a transformation (T1) as above, then any spherical
picture over Py is equivalent to a spherical picture P over P; if the picture includes
a disc A with label yW, ! for some y € y, then, since yW, 1 is the only relator of
Py which includes the symbol y, P must include a second disc labelled yW,~ ! with
opposite orientation, joined to A by an arc labelled y. It is then an easy matter to
use bridge moves to create a cancelling pair with these two discs and remove them.
Thus, any generating set of pictures for P is also a generating set of pictures for Py.

Now suppose that Py is obtained from P by a transformation (T2) as above.
Since each S € s is a consequence of r, by Theorem 1.1 there is a picture Pg over P
with boundary label 5. We can therefore construct a spherical picture Qg over Py
by joining the arcs meeting the boundary of —Pg to a disc labelled S, as in Figure
1.7. Any picture over Py is equivalent modulo the set {Qs : S € s} to a picture over
P; if a picture includes a disc A with label S, insert a picture —eAQg in the same
region as the basepoint of A, use bridge moves to make a cancelling pair of the discs
labelled S and then delete them. Thus, if d is a generating set of pictures for P,
then dU {Qg : S € s} is a generating set of pictures for Py.

Let 7 = (x;r;d) be a 3-presentation as in (1.5). We define Tietze transforma-

tions of ‘T as follows:

(T1) T = To = (x,y;1,y = Wy(y € y); d) for some set y with yNx =0 and
some W, € (x).

(T2) T — To = {x;1,8;d, Qs (S € 8)) for some set s of cyclically reduced
consequences of r.

(T3) T To = (x;1;d,€) for some set e of spherical pictures
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over {x;r).

Each of these induces an isomorphism ag : G(T) — G(Tp), which is the identity
in the case of (T2) and (T3). We will say that a Tietze transformation on a 3-
presentation is finitary if, in the case of (T1) and (T2), the underlying transformation
of presentations is finitary or, in the case of (T3), if e is finite.

We will say that two 3-presentations are Tieize equivalent if one can be obtained
from the other by a finite number of Tietze transformations and their inverses. Tietze

equivalent 3-presentations define isomorphic groups and, conversely:

Lemma 1.4, Let T = (x;r;d) and S = (y;s;e) be two 3-presentations. If there is
an isomorphism o : G(T) = G(S), then T and S are Tietze equivalent and o is the
tsomorphism induced by the Tielze transformations. If x and y are finite, then any
transformation (T1) in this equivalence can be taken to be finitary. If, in addition,
r and s are finite, any transformation (T2) may also be taken to be finitary. If T
and S are finite, then all the Tietze transformations in the equivalence can be taken

to be finitary.

Proof. By Lemma 1.3, (x;r) and ({y;s) are Tietze equivalent and the equivalence
induces .. We therefore need only show that, if d, dy are two generating sets of
pictures for a presentation (x;r), then the 3-presentations (x;r;d) and (x;r;dy) are
Tietze equivalent. But these are both equivalent by a single transformation (T3) to

(x;r;d,dp), and the result follows. 0

1.3 Derivatives

1.3.1 Derivations and the Fox derivative

If G is a group and M a KG-module, then a derivation from KG to M is a K-
module homomorphism d : KG — M satisfying the additional property that, for
9,90 € G,

d(gg0) = d(g) + g-d(go)- (1.7)

The following properties of derivations are immediate from the definition.
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Lemma 1.5 ([40]). Ifd: KG — M is a derivation, then

i) fork € K, d(k) =0;

i) for g € G, d(g) = —g7Yd(g); and, more generally,

i) for g € G, n € Z,
.

(1+g+---+g"Nd(g) n>0
d(g") =140 n=0-

L—(g“ +g" 4o+ g Dd(g) n<0

Lemma 1.6 ([40]). A derivation d : KG — M is uniquely determined by its values

on any generating subset of G.

Example 1.1. Take M to be the ZG-module IG and d : ZG — IG to be the
Z-linear map induced by d(g) = g — 1. Since, for g, g € G,

d(gg0) = g0 — 1
=g—1+g(g0o—1)
= d(g) + gd(go),

this defines a derivation, which extends to d(§) = & — aug(£), for £ € ZG. ¢

We now consider derivations from the group ring Z(x) of the free group on a set
x to the Z(x)-module Z(x). By Lemma 1.6, to define a derivation d : Z({x) — Z{x)
we need only specify d(z) for each z € x and ensure that (1.7) holds. Indeed, the

following result shows that any choice of d(z) determines a derivation.

Lemma 1.7 ([40]). For any set {&; : © € x} C Z(x) there is a unique derivation
d : Z{x) — Z(x) with d(z) = &, for © € x.

We now define a family of derivations, the Fox derivatives, with a certain uni-

versal property. For z € x, let 2 : Z({x) — Z(x) be the unique derivation with

Oz 1 o=z

Oz 0 otherwise
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This definition extends to (x); Lemma 1.5(ii) gives

— —1 —

= —Tp—— =

oz Foin

0 otherwise

1

If W is a word on x Ux™!, we can write this word as

W = WQ.’EEOWlfDElWZ N ane“Wn+1,

where each W;, 0 <i < n+1, is a (possibly trivial) word on xUx~!\ {z,z'} and
g; = 1. Then, using (1.7), the Foz derivative of W with respect to x is

ow  _ Ox® corpy 0T e ozt
*(%—WOE"{'WCW W]_ 9z +"'+(WQ$ W1Wn)~?9?

= ggWoz® + &1 Woz®Wia® + + -« + e, (Woz™® Wy ... Wy, )2

This defines ;9% for words on x U x~!. To demonstrate that this is well-defined on
(x}, we show that the derivatives of freely equal words are equal. Let U, V be words

on xUx™! and let z, 5 € x, € € {1,—1}. Then, since

0, | B =g =0 s
a..wody T 3
Oz 0 ToF X
we have
0 . . ou ozizy® OV
— ?y_ + U8_V
T oz oz
a
= _—UV.
oz V.

For example, if x = {z,y} and W = z?ya2y~!, then
ow

T = 14z —2ys ! — z?yz™2,
ow
e 2 — aPyz2y L,

These Fox derivatives are the universal derivations from Z(x) to Z(x) in the

following sense.
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Proposition 1.8 ([40]). If d : Z{x) — Z(x) is a derivation, then, for £ € Z{x),
0
a() = Y Sed(a).

TEX
We can apply this to the derivation d : Z{x) — I{x) < Z(x) given in Example
1.1:

Corollary 1.9. For § € Z(x),

0
£~ aug(e) =Y o (a 1)
TEX
For a word W on xUx ! and for z € x, the ezponent sum of z in W, exp (W), is

defined to be the number of occurrences of z in W minus the number of occurrences

of 271. From the definition of the Fox derivative we then have

aug (?g) = exp,(W). (1.8)

In due course, we will have cause to consider the Fox derivatives of the relators

of a presentation P = (x;r) and their image in G = G(P), that is, the composition
7 2 )

5 - Z(x) = L{x) — LG.

If P is given by defining relations rather that relators, then these can still be used

to find the derivative of the corresponding relator:

Lemma 1.10. If U =V is a defining relation of P, then

UV U BV
Ox Ox Oz’

Proof. By (1.7) and Lemma 1.5,
-1 -1
UV _ou oV

Oz —5:;:_+ oz
ou UV“lﬂ,

and UV-1 =1. |

When S is a consequence of r, then, applying Corollary 1.9, we have

XS 9
ox

zEX

z—-1)=0. (1.9)

Also, gg is a ZG-linear combination of the elements 2% (R € r), that is:
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Lemma 1.11. If S = [, WiRiW;! € < r>>, for some W; € (x), some R; € ¢
and some g; € {1, -1}, then

Proof. By (1.7),

ZS o eWiR Ty e O,
Ox Ox

where S; = [T'2% W; R7W;'. Since S; = R; = 1, the result follows. O

j=1
We consider one final property of the Fox derivative.
Proposition 1.12 (Chain rule. [40]). Ifa: (y) — (x) is a homomorphism, then,

for W e (W) oW\ daly)
oz :Za(ay) ox

yey

1.3.2 The picture derivative

Let P = (x;r) and G = G(P). For each R € r, we define a map ;2 from the set of
pictures over P to Z(G. While this is certainly not a derivation, it shares many of
the properties of the Fox derivatives, so we will call it the picture derivative.

Let P’ be a picture over P, with ambient disc D and discs Ay, ..., A,,. For each
disc A of P, choose a simple path B4 in the closure of D\ U;A; from Op to 0o which
intersects the arcs of I’ only finitely many times and does so by crossing the arc, not
just touching it. By reading along this path, we obtain a word W(8a) on x Ux.

We define

oP —_
@ = Z EAW(ﬁA)J

A:RA=R
the sum over those discs of P whose label is R.

Lemma 1.13. The map 5% is well-defined.

Proof. If we choose a different path g% from Op to 0a, then we obtain a possibly
different word W (5, ). However, W(8a) and W () represent the same element of

G, as we now show.
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If Ba and [}, intersect only in their endpoints, then the region of P enclosed by

Ba and (Y is a picture over P whose boundary label is

(W (Ba)W (Ba) )

for some ¢ € {—1,1}. Thus, by Theorem 1.1,

W(Ba) = W(Bp)-

If Ba, B} intersect, then, assuming (as we may) that they do not intersect on an
arc, the regions of IP enclosed by fa and f), are a number of pictures Py, Py,...,P,

over P, with boundary labels U3 V2, VaUs B, UsVy Y, . L, Tespectively, where

W(ﬁA) = U1U2 e Un,
W(a) =ViVs... Va

(or vice versa). Thus each U; = V;, and so W(Ba) = W(8}). g

For example, consider the pictures over (a, b; a3, bab=1a2) of Figure 1.1. Denot-

ing the relators a® and bab~a~? by R and S respectively, we have

oy gl =1 a2 1771

B8R a " +a —a - b
=928 —g—a%b |,

81?1 _ 171 =1

35 — & b ab
=—a%  —ab

0P -

— =141~

BT +1—-b

Now suppose that IP is a spherical picture. If we make a bridge move on P, or
insert or delete a cancelling pair or a floating circle, giving an equivalent picture I,

then it is easy to see that
oP _ o
OR  OR’
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Also, if W € (x), then

OR ~ ' OR
and, if QQ is another spherical picture,

OP+Q) _ 0P Q

OP" 9P

R  OR ' OR

a

Thus, we have a well-defined ZG-homomorphism, also denoted 2%,

0 oP

We consider some properties of the maps 5‘%, the first of which could be thought

of as an analogue of Corollary 1.9.

Proposition 1.14. For a picture PP over P = (x;r) and for z € x,
OWp OP OR
8r Z

Proof. We use induction on the number of discs in P. If P has no discs, then

oP

ﬁ—-O

for each R and, since Wp is freely equal to 1,

oo s
for each z. The proposition then holds in this case.

Now suppose that the proposition holds for pictures with m discs (for some
integer m > 0) and that P is a picture with m + 1 discs. Choose a disc A of P. The
picture P is then of the form illustrated in Figure 1.8, where we have divided IP into
two subpictures, one including A, a small area around A and a small region around
a path from Op to O and the other, Q, including the remaining n discs (note that

the dotted line indicates the boundary between the two subpictures and that P and
Q share a basepoint). Now, Wg = WpUS™#U!, so

BWQ _ oWp _OUS—eU-1
oz Oz +We Oz
W 0%
Y SUBE’
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Figure 1.8: A picture P with m + 1 discs
by Lemma 1.11 and since Wg = 1. On the other hand, since

P —g% R#S
OR — ’
% 1eU R=S
we have
BIP’BTQ_ 0QOR .05
2 pRds  220R0z 0w
cr Rér
_OWg . 05

o +€U£,

which gives the required result.

In particular, if IP is a spherical picture, then

26

(1.10)

For a picture I’ over P and for R € r, the ezponent sum of R in P, expg(P), is

defined to be the number of discs of P labelled R with positive orientation minus

the number of discs of P labelled R with negative orientation. It is then easy to see

that

JP
aug (ﬁ) = expg(P)
(cf. (1.8)).
As with Lemma 1.11, we will find the following useful.
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Lemma 1.15. If d is a generating set of pictures for P = (x;r) and if P is a

oP

spherical picture over P, then, for R € v, 5 is a ZG-linear combination of the

elements & (D € d), that is, if

[P} =" &(D]
Ded
for some &y € ZG, then
oP oD
= - Ep—.

Proof. The map 2, : my(P) — ZG is a ZG-homomorphism, and & = 901, O

Proposition 1.12, the so-called chain rule, has a picture analogue. Let @ = (y; s)
and P = (x;r). If & : G(Q) — G(P) is a group homomorphism, then it lifts to a
homomorphism @ : [y,y '] — [x,x7!] of free monoids such that, for W € [y,y 1],
@&(W) = a(W). There is also an induced map from the set of pictures over Q to
the set of pictures over P, also denoted «, defined as follows: since, for every S € s,
@(S) = 1, by Theorem 1.1, there is a picture P over P with boundary label &(S).
Let Q be a picture over Q. For each arc of Q, if it is labelled by y € y, then replace
it by a number of arcs with total label @(y) and for each disc A of Q, if it is labelled

by S € s, then replace it with 5, Ps, putting Op, where 05, was, and matching up

the arcs on the boundaries, as we may.

Proposition 1.16 (Chain Rule). Let Q, P, « and & be as above. Then, for R € v

9a(Q) _ <~ (0Q) oPy
oR _;&“(as) oR"

Proof. Suppose that Ag is a disc of Q with label S and that f8a, is a path from Qg

and a picture Q over Q,

to 0a,. Let 8%, be the path in (Q) which takes the same course as fa, from O
to Opg. Thus the label on this path is

W(BZ,) = a(W (Ba,))-

For each disc A of €,Ps, let 84 be a path from Op, to Oa. By composing g% with
B, we obtain a path 8% Ba from 04q) to Oa with label

W (Ba,8a) = &(W (Ba,))W (Ba).
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Since the orientation of A in a(Q) is a,&a, if we apply this to each disc A of a(Q),

we obtain the result. O

Remark. Note that the map « of pictures depends on the choice of pictures Pg
(S € s). Note also that if Q is spherical, then so is @(Q) and so « induces a map of

second homotopy modules « : 12(Q) — ma(P).

1.4 Matrices, chains of ideals and elementary ide-

als of matrices

1.4.1 Matrices
If X is a matrix over a ring C, whose rows are indexed by an ordered set u and
whose columns are indexed by an ordered set v, then we write

X = I:c‘""v] u€u

VeV
or X = [cu),s Where ¢y, € C is the (u,v)-th entry of X. We say that X is a
lu| % |v| matrix. If |u| = |v]|, then we say that X is square.
fu={1,...,m},v={1,...,n}, then we write
X = [Cw] 1<i<m
1Z5%n
or, simply, X = [c;;] ;5 Here, we allow m or n to be infinite.
A choice of subsets uy C u, vo C v defines a |ug| X |vo| submatriz

[cuv] wE1g

VEVY

of X. If X = [cy), ;, then we write

[Ciljl Cigjo - ]
for the square submatrix of X with rows 4y, 1s,... and columns 7y, js,... of X.
A diagonal matriz [dij]'j,j is a square matrix for which d;; = 0 when ¢ # j. The

entries dj;, i = 1,2, ..., are the diagonal entries. If {dy,...,d,} is a set of elements

of C, then we write Diag,(dy,...,d,) for the n x n diagonal matrix with diagonal
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entries dy,...,dp. If dy = dy = -+ = d, = d, then we will write Diag,(d) for
Diag, (d,...,d).

The n X n identity matriz over C is the diagonal matrix
I, = Diag,(1).

If {dy : u € u} is a set of elements of C indexed by an ordered set u, we write
Diag,c,(dy) for the diagonal matrix with diagonal entries d,, (u € u). If, for u € u,
X, is an m, X n, over C, then Diag, (X,) is the diagonal matrix of matrices,
thought of as a (3,c. Mu) X (X 4eu ) matrix over C.

If X = [Cun)y,v» then the transpose of X is the |[v| x [u| matrix

Xt = [dw] vev !

ueEn

where dy, = Cy,.
If o : C — Cy is a ring homomorphism and if X = [Cuv]u,v is a matrix over C,

then
X% = |afcu)

is the matrix over Cj obtained by applying « to each entry of X.

u,v

1.4.2 Chains of ideals

Let K be a commutative ring.
An ascending chain of ideals in K is a set of ideals I = {I}ez, indexed by Z,
such that, for x € Z,

I, C I,

A descending chain of ideals in K is a set of ideals I = {I; } ez such that, for x € Z,
In. 2 In+1-

We will say that a chain of ideals I is trivial if I, = 0 or K for every k € Z.

If I = {I,}xez, J = {Jx}xez are two chains of ideals in K (either both ascending
or both descending) for which I, C J for each # € Z, then we will write I C J.

If I = {I.}xez is a chain of ideals in K and if @ : K — K| is a ring homomorphism

to another commutative ring K, then we will write (al) for the chain {(al)}xez
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of ideals in K generated by the sets al,. If v is onto, then (al,) = aly, so we will
denote the chain (af) simply by al.
If I is a chain of ideals in K and J a chain of ideals in Ky, we will write I = J

if there is an isomorphism « : K — Kj such that J = al.

Notation. In the special case where K = K'G, Ky = K'Gy for some commutative
ring K’ and abelian groups G, Gy, we will write I 2% J if, in addition, the ring
isomorphism « : K'G — K'G) is induced by a group isomorphism « : G — Gy. The

same notation will also apply for monoid algebras.

If I = {I;}xez, J = {Jx}xez are two chains of ideals in K (either both ascending
or both descending), then, for A € Z, the convolution of I and J, suspended by A, is

the collection of ideals

Y Lyt (KED).

€T
This collection is a chain, since, if I, J are both ascending, J,—; C Jy1—; for each
jEZ,so

Inidio—i © Doyt
The case when I, J are both descending chains is similar. We denote this chain by
Ix™N J. If A =0, then we omit the superscript ™.

If, for k € Z, I, is generated by the set {k, : u € u,} C K and J; by the set

{k, :v € v} C K, then (I+™ J) _is generated by the set

{kuky 1 j € Zyu € Uy, v € Vi_j}.

We can, in fact, form the convolution of more than two chains of ideal. If, for
u € u, I, is a chain of ideals in K, all of which are ascending or all of which are
descending, then, for A € Z, *SL)‘E)qu is the chain of ideals in K whose x-th ideal is

(*ggufu)nz I E

Ju€Z(ucu) LEU
D ondu=r+A

Again, when A = 0, we omit it. We could even have |u| = 1, in which case
(*S»)guI>ﬂ = Iu,fc—l—)u




1. Preliminaries 31

1.4.3 Elementary ideals of matrices

Let X be an m x n matrix over a commutative ring K. We permit one of m,n to

be infinite, but not both. For k € Z, the s-th elementary ideal of X is

)
0 & > min{m, n}

the ideal of K generated
Jo(X) = { by the determinants of all 0 < k < min{m,n} - |
K X Kk submatrices of X

K k<0

\

If Xy is a £ X & submatrix of X, then its determinant, det(Xy), is a K-linear
combination of (¥ —1) x (x — 1) submatrices of X,. Thus J,(X) C J,—1(X), and so
J(X) = {Ju(X) }ez is a descending chain of ideals.

We consider some properties of the elementary ideals. Throughout, X is an mxn

matrix over K.
Lemma 1.17. If a : K — Ky is a ring homomorphism, then
J(X?) = (aJ(X)).

If a is surjective, then

J(X%) = aJ(X).

Proof. Every k X # submatrix X, of X defines a x X x submatrix X§ of X%, so
adg(X) € Jo(X%). On the other hand, if X is a x X k submatrix of X%, then
Xy = X@ for some £ X  submatrix X of X and det(X,) = a(det(Xp)), so J(X®) C
(ade(X)). 0

Lemma 1.18. J(X*) = J(X).

Proof. If Xy is a k X x submatrix of X, then X{ is a & X & submatrix of X* and

det(X§) = det(Xop), so J(X) C J(X?). Also, (X?)* = X, giving the result. O

‘We now consider matrices of the form

-
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where X is an m X n matrix, Y and m' x n’ matrix and Z an m’ X n matrix over
K and 0 represents an m X n’ matrix of zeroes. For 0 < x < min{m + m',n + n'},

every & X i submatrix of this matrix must be of the form
Xo 0
Zy Yy
where X is a k1 X k9 submatrix of X, Y a k3 X x4 submatrix of Y and Z; a k3 X K2

submatrix of Z, with 1, kg, k3,64 > 0 and Ky + k3 = K2 + k4 = k. The following

observations prove useful when dealing with the determinants of such matrices:
I) If K1 = Ko, then

Xy O
det = det(Xj) det(Yp).
Zy Yo

Note that k; = kg if, and only if, kK3 = k4.

11) k> Ko, then

Xo O
det =0
Zy Yy

Note that x; > k9 if, and only if, k4 > &3.
These follow from the elementary properties of the determinant [2].
Proposition 1.19. For XY, Z as above,

X 0
J S J(X) * J(Y),
ZY

with equality when Z = 0.
Proof. Let k,j € Z. When j <0, J;(X)=K and & — j > K, so

X 0
Ji(X)Jj(Y) = Jo—y(Y) € Ju(Y) C Js :
ZY
since every submatrix of Y is certainly a submatrix of [§ $]. Similarly, for j > &,

Je—j(Y) = K, s0

(4]
Ji(X)Je—i(Y) = J3(X) C Je(X) G Jie :
Z'Y
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For j < k —min{m'n'}, J,—;(Y) = 0 and for j > min{m,n}, J;(X) = 0, so, in

0= V) €, ([X OD |
7Y

This leaves max{1,x —m',k —n'} < j < min{m,n,x —1}. For such a j, if X; is

either of these cases,

any j x j submatrix of X and ¥j any (x — j) X (k — j) submatrix of Y, then there

is a (5 — §) x j submatrix Zg of Z such that [%° ) ] is a & X & submatrix of [§ 2].

det ([X" OD = det(Xp) det(Yp),
Zy Yo

we must have J;(X)J,—;(Y) C J. ([£ 2]).

Since

If Z =0, then any submatrix of [ % $] with non-zero determinant must be of the

form [)g“ 190 }, where X, Yj are square submatrices of X, Y respectively. Thus

J([X OD:J(X)*J(Y). O
0 Y

Corollary 1.20. For matrices X;, X, ..., X, over K,
J (Diagy(Xy, ..., X)) =+ J(Xa).
Proposition 1.21. Let X be an m x n matriz over K.

i) IfY is an m'xn matriz over K, each of whose rows is a K -linear combination
of the rows of X, then
J(Y) C J(X);

i) If Z is an m x n' matriz over K, each of whose columns is a K-linear

combination of the columns of X, then

J(Z) C J(X).

Proof. We prove (i), the other result following with an application of Lemma 1.18.
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For k <0, Jo(Y) = J.(X) = K. For £ > 0, if Yp is a & X k submatrix of Y, then
det(Y}) is a K-linear combination of determinants of k x k submatrices of X, and so
J.(Y) C J.(X) (note, in particular, that if k > min{m,n}, then det(¥y) = 0, since

X has no k x k submatrices). O

Corollary 1.22. If X is an m X n mairiz and Y an I X m matriz over K, then

J(YX) C J(Y) and J(YX) C J(X).

Proof. The rows of Y X are a K-linear combination of the rows of X and the columns

a K-linear combination of the columns of Y. O

If Y is an m' x m matrix, then a left inverse of Y is an m x m' matrix Y such

that YY = I,,. We define right inverses similarly.

Corollary 1.23. Let X be an m x n matriz over K. IfY is an m' X m matriz with

a left inverse and Z an n X n' matriz with a right inverse, then
JYXZ)=J(X).
Proof. If Y is a left inverse for Y and Z a right inverse for Z, then
JYXZ)CJX)=JYYXZZ)CJ(YXZ). O

We can also conclude that, if X = [c’“-"‘f]u,v’ then the orderings of the sets u, v
do not affect the elementary ideals of X. More generally, consider the following

elementary row operations on a matrix X over K:

(ERO1) swap two rows of X;

(ERO2) add a K-multiple of one row of X to another;
(ERO3) multiply each entry in a row of X by a unit of K,
and the following elementary column operations:

(ECO1) swap two columns of X;

(ECO2) add a K-multiple of one column of X to another;

(ECO3) multiply each entry in a column of X by a unit of K.
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Lemma 1.24. If X’ is obtained from X by a finite number of elementary row and

column operations, then J(X') = J(X).

Proof. Each of the above operations may be accomplished by multiplying by an
invertible matrix.

For 1 <4,7 <m, let Iz.(,?) be the m x m matrix over K, all of whose entries are
0 with the exception of the (i, f)-th entry, which is 1. To swap rows ¢ and j of X,
multiply X on the left by the matrix I,,, — Ie-(;") -1 J(ZZ) +1 (,T) + I_g’). For k € K, to
add k times row i to row j, multiply X on the left by I, + lsI](-’T). To multiply row
1 of X by a unit ¥ € K, multiply X on the left by I, + (k — l)Iz-ET). Since each of
these matrices is invertible, the elementary ideals of X are unchanged.

Similarly, the elementary column operations can be equated with multiplication

on the right by invertible matrices such as these. O

Corollary 1.25. If X is an m X n matriz and Z an | X n matriz over K, then, for
K € Z,
X 0

J. = Joos(X).
Z I

Proof. By elementary column operations, we can obtain the matrix ({,‘ ﬂ) from

£ g ) Now, applying Proposition 1.19, since

0 w>I

K <l

Jo(I}) =

we have

X 0 X 0
J,

Z I 0 I
=Y I(X) Jej( i)
JEZL

=) LX)

j2e—l

= n—l(X)- O
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1.5 Abelianising functors

We will be interested in certain (covariant) functors from the category of groups to
the category of abelian groups.

We define an abelianising functor, *, on groups to be a natural transformation
from groups to abelian groups which assigns to each group G an abelian group G*
together with a surjective group homomorphism 7& : G — G7T and which has the
property that, if & : G — Gy is a group homomorphism, then there is an induced

homomorphism of : GT — GF such that the diagram
G —— Gy
SR
leaNyey
commutes. Note that a, o, 7& and 7% will each induce homomorphisms of group

rings such that 75 o = a¥'7§ still holds.

We now give some examples of abelianising functors on groups.

Example 1.2 (Trivialisation, “®). For any group G, let G*® be the trivial
group 1 and let 7&% be the trivial map. For any homomorphism o : G — Gy, let
. GPW — GE™ be the (necessarily) trivial map. Note that 75% : KG — KG'™

is the augmentation map, aug. ¢

Example 1.3 (Abelianisation, ). For any group G, we have the abelianisa-
tion G = G/G'. Let 7@ be the natural surjection. If o : G — Gy is a group

homomorphism, then « carries G' to Gy, so we have an induced homomorphism
a®: Q% — Q8 9G" > a(g) G, ¢

Example 1.4 (n-abelianisation, "~%). For any group G, let G*~® be the quotient

G/G"G' and let 75" be the natural surjection. For any map a : G — G,
Q" GIGMG = Go/GRGY

is the induced homomorphism. O
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Example 1.5 (Torsion-free abelianisation, ). For any group G, let G¥ be
the quotient of G® by its torsion subgroup. Thus, if G® is finitely generated, Gt/
is (isomorphic to) the free part of G®. We let 75/ be the composition of 7& with
the quotient map G® — G¥. If & : G = Gy is a group homomorphism, then
a® will carry torsion elements to torsion elements, and so we have an induced

homomorphism
oG G 0

Example 1.6 (Factoring out m-torsion, "*f). Let 7 be a set of primes. If, in
the preceding example, we take the quotient of G* only by those torsion elements

whose orders are m-numbers, then we obtain a functor =%/, O

% is universal in that G® is the largest

Of all possible abelianising functors,
abelian quotient of G. Thus, for any functor T, 7% factors through G, that is,

& = Br& for some B : G — GT.

Notation. The abelianising functor ®, being universal in this way, will be the most
frequently used. To avoid clutter, we will often omit ?* from the terminology where
the abelianising functor in use is usually specified. Therefore, when it is clear
that we are using an abelianising functor, but no functor is specified, then

we assume that it is 2,

The functor ¢/ is universal in the same way amongst functors 7 where G7 is
torsion-free. At the other end of the spectrum, 4% factors through GT for every T
and 787 = r8RTE.

If X is a matrix over K@, we will write X7 for the matrix X"& obtained by

applying 7% : KG — KGT to each entry.

Notation. Let P = (x;r) and W € (x). If we wish to distinguish the image of W
in G(P) from the image of W in G(P)T, we write W for the former and W for the
latter. Thus W = yp(W) and W = 15 (W) = 7&y»(W). For simplicity, where
the context permits no confusion, we will write W to represent its own

image in whichever group we are considering.




1. Preliminaries 38

We can also define abelianising functors on monoids in an analogous manner
to abelianising functors over groups. Then, any abelianising functor over monoids
always restrict to give an abelianising functor over groups. The most useful such
functors are %, where S is the largest abelian quotient of a monoid S, and ¥,

where S is the trivial monoid.

Notation. An analogous convention to the one above will apply to mon-

oids.

1.6 Resolutions and homology

1.6.1 Resolutions

Let C be a ring and let M be a (left) C-module. A resolution of M is an exact

sequence of C-modules

NNy RN o R e RN N NN LN V)

We call F = (F;, 8;) a resolution of M. A partial resolution of M is a sequence
61 01
=Py —- RN PR 1 Fo D M — O

which is exact at M, Fy, ..., Fj_;.

If each F; is projective, then F is called a projective resolution. If, in addition,
each F; is free, F is called a free resolution. Every module has a free (and thus
projective) resolution [22].

A projective resolution F = (Fj}, 8;) of M is said to be of type F'P, if F; is finitely
generated for i < n. It is said to be of type F Py, if F; is finitely generated for all s.
If M has a resolution of type F P, then M is said to be of type FF,.

Lemma 1.26. If M is of type F'P,, then M has a free resolution of type FP,.

Proof. Let P = (P, &;) be a resolution of M of type F'P,. Since each P; is projective,
there is a projective module @; such that P; = B; @ Q; is free. The composition

of the projection map «; : P; — P, with the inclusion map ¢; : B, — P; gives
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an idempotent endomorphism m; = ¢; 0 oy : P; — P;. Similarly, the projection
o : P; = @; and the inclusion ¢} : Q; — P; give rise to an idempotent endomorphism
m=oal: P;— P,

We turn P into a free resolution as follows. Set Fy = P,. The chain complex
PO = (PO &), where

's r

F[] 'l,"-:-"‘-.O 800(]{0 i:O

PO=Sp@q, i=1, e=3 (poe) @t i=1>
P, 5> 1 & 1>1
\ \

remains a projective resolution of M. Setting F} = P,® Py = (P,® Qo) ® (@19 Fy),
we obtain a new resolution P® = (P, e), where

4
( €0 © Oy i=0
2 i=0,1
1 L (woerom)dmy i=1
Pz():<P2@(P()@Q1) i=2 55): .
(L10€2)$L{1€BLQ 1 =2

P i>2
. \Ei t>2

Continuing in this way, we obtain a free resolution F = (F;, 8;) of M, where

Fll: = @§=0Pj7

O = &g © g, and
0;=(ti106;,005) ® 7rz'-_1 DD 7r5_3 D

If P; can be finitely generated for ¢ = 0,1,...,n, then the P; can be chosen to be of
finite rank, and so F is of type F'P,. O

Notation. Throughout this thesis we will assume, without further com-

ment, that any resolution of type F P, is a free resolution.

This is an abuse of the notation in that we should more correctly refer to reso-
lutions of type F'L, or to free resolutions of type FP,.

We also require the following result, which is an extension of Schanuel’s Lemma.




1. Preliminaries 40

Lemma 1.27 ([22]). If M is of type F'P, and F = (F},8;) is a resolution of type
FP,, of M, m < n, then ker 0y, is of type F Py_ 1.

A resolution F = (Fj}, ;) of M is said to be of finite length if, for some I > 0,
F;=0fori> 1. If F; 0, we call [ =[(F) the length of F.

A module M is of type F'P if it has a resolution F = (F;, ;) of finite length such
that each F; is a finitely generated projective module. Such a resolution is said to
be of type F'P. If, in addition, each F; is free, then M and the resolution are said
to be of type F'L. In contrast with Lemma 1.26, not every module of type F'P is of
type F'L (see, for instance, [55] or Proposition 5.13, below).

Suppose now that C has the invariance of rank property. If F = (F;,8;) is a
free resolution of M of type F'P,, then we define the n-th directed partial Euler

characteristic of F to be
X'n(}-) = I‘kc(Fn) -_ I‘kc(anl) +ee 4 (—1)”rkg(F0),

abbreviating it to x, when the context allows.
For a free resolution F = (Fj}, 8;), choose ordered bases z and e for the free
modules F,, and F,,,; respectively, so F,, & ®,,,Cz and F, 1 & DeceCe. For each

ece,

On+1 (e) = Z Ce,z2,

ZEZ

for some ¢, , € C. We can then associate with the map 8,,1 a tko(Fpy1) X tke(Fy)

matrix

Dy(F) = [Ce,z] ece

zZEzZ

over C. Notice that Dy (F)D,(F) =0.

There are analogous definitions of resolutions, projective/free resolution, types
FPB,, FP,, FP, FFL and x,, for right C-modules. Lemma 1.26 also holds for right

C-modules.

Notation. We adopt the convention that, if F = (F}, ;) is a free resolution of a

right C-module M, then D, (F) is the rtko(F,) X rko(Fp41) matrix over C associated

with 8n+1 .
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Thus, in the right-hand case, D, (F)Dp1(F) = 0.

An anti-isomorphism of rings C and Cy is a map * : C — Cy; ¢ — ¢* which is an
isomorphism of the underlying additive groups such that (cc')* = ¢*¢* for ¢, ¢’ € C.
There is then an induced (covariant) functor, also denoted x, from the category of
left Cp-modules, ¢,M, to the category of right C-modules, M¢; if M € ¢, M, then
M* is the right C-module with the same underlying abelian group as M and with
right C-action given by

mec=cm (meM,ceC)

and, if & : M — M is a left Cp-homomorphism (that is, a morphism of ¢, M), then

* gives the right C-homomorphism
a*: M* = My;me— a(m) (me M).
This is a right C-homomorphism, since, for m € M, c € C,
a*(m.c) = a(c'm) = c*a(m) = o*(m).c.

Similarly, there is a functor * : Mg, = ¢ M.
The inverse mapping, also denoted *, is also an anti-isomorphism and induces
functors * : Mg — ¢, M and % : ¢ M — Mg,. For any Cy-module M and any Cy

homomorphism ¢, we have M** = M and o™ = a.

Lemma 1.28. If M is of type F'P, or FL, then so is M*. Indeed, if F = (F;, ;) is
a free resolution of M of type FP,, then F* = (F},0F) is a free resolution of type
FP, of M* and Dp(F*) = (Dp(F)*)* (for appropriate bases).

Proof. The first part of the lemma is due to F}* being free of finite rank when F; is
and F* remaining exact.

We prove the last part in the case when M is a left C-module. If z and e are
ordered bases for the free left C-modules F,, and F,; respectively, then they are

also bases for the free right Cy-modules F}¥ and F, . If

Ont1(e) = Z Ce,z%

2CE
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for some ¢, € C, then

o — _ *
Opia(e) = Zce,zz = che,z,

ZEZ ZEZ
and so
D, (F*) = [cz,z] sz
. O\t
B ([c] E)
= (Du(F)")". O

We now consider the case when C = K@, the group ring of a group G with
coefficients in the commutative ring K. The ring KG has the invariance of rank
property. If M is a K-module, then we obtain a KG-module, ¢M, upon which G
acts trivially. More precisely, ¢ M is obtained from M by restriction of scalars via
the map aug : KG — K. In particular, the K-module K induces a KG-module,
¢K. If it is clear that we are considering K as a KG-module, then we omit the
subscript G.

More generally, if S is a monoid, then any K-module M induces a left KS-
module ¢ M and a right KS-module Mg. In particular, we have the left K. S-module
sK and the right K'S-module K.

We will say that a monoid S is of type FP,g” over K if the module gK is of type
FP, and that S is of type FP{" over K if K is of type FP,. We define monoids
of types FPY, FPY, FPO, FPW, FLO and FL") over K in a similar fashion.
A resolution of type FPY of sK is called a resolution of type FP" over K for S,
and similarly for FP", FPY, etc. When K = Z, we often omit mention of it.

The opposite map opp : S — S%P; s > s extends to an anti-isomorphism opp :
KS — KS°P Lemma 1.28 then tells us, for example, that a right K'S-module M is
of type F'F, if, and only if, the left K.S°P-module M°? is. Thus, since K¢ = gom K,
S is of type FP{ if, and only if, S is of type FPY.

Results of Cohen [32] and of Guba and Pride [45] show that monoids can have
very different properties on the left and right. For example, Cohen [32] gives an

example of a monoid which is of type FPY, but not of type FP",
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However, when the monoid is a group G, there ceases to be a distinction between
left and right: the map g — ¢g7! (g € G) extends linearly to an anti-automorphism
inv : KG — KG, and so, since (Kg)™ = K, a group is of type FP over K if,
and only if, it is of type FPY over K. We therefore say that a group G is of type
FP,, FPy, FP or F'L over K if the left KG-module ¢K is.

For some rings K, a group of type F'P over K need not be of type F'L over K.
Lee and Park in [55] give a family of groups which are of type F'P over Q but not of
type F'L over Q, and we will give a larger such family below. However, it remains
an open question, Serre’s question [76], whether a group of type FP (over Z) must

also be of type F'L.

1.6.2 Homology and the partial directed Euler characteris-

tic of a group
If M is a right C-module and M’ a left C-module, then, for 7 > 0,
TOI‘?:C(M, M’) = H;(M ®c FI) = H;(F ®¢ M'),

where F is any projective resolution of M and F' is any projective resolution of M.

The homology of a group G with coeflicients in a right KG-module M is
H;(G, M) = Tor;*°(M, ¢K).

If M = K¢, we write H¥(Q) for H;(G, Kg). If K = Z, we omit it, writing If;(G)
for the integral homology of G. We write HX(G) for the totality of the homology
groups HX(G) (i > 0). It is sufficient, in the following sense, to consider only the

integral homology of G:

Theorem 1.29 (Universal Coefficients Theorem, [47]). For any coefficient
ring K and for n > 0,

HE(G) = (K @ Hy(C)) ® Tor“(K, Hot(G)).

For every group G,
Hy(@)="Z
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and

Hi(G) = G,

The cohomological dimension, cd G, of a group G is defined to be the length of

the shortest projective resolution for G.

Lemma 1.30 ([22]). A group G is of type F'P if, and only if, it is of type F Py
and cdG is finite.

Let G be a group of type FP, (over Z). In [82], Swan defines the n-th directed
partial Fuler characteristic of G to be

Xn(G) = min{x,(F) : F is a resolution of type F'F, for G}

and shows that it has a finite lower bound, since

d(H,(G)) — rkg(Hp_1 (@) + rky(Hp—o(G)) — - - -
o (=1)"kg (Ho(G)) € xa(G). (1.11)

1.6.3 Efficiency and a partial resolution for groups

Let P = (x;r) and G = G(P). If d is a generating set of pictures for P, let
T = (P;d).

If we compose

®peaZGep 222 1o(P) - 0

with the short exact sequences (1.2), (1.4) and (1.6), then we obtain a partial reso-
lution Fr of ¢Z [25], [66]

BpeaZGen 2 GrerZGer 2 BpexliGey 2 TG 2 G2 — 0, (1.12)
where 0y = aug,

Oi(eg) =1—-7 (z €x),

OR
O (er) = g (BET),

rEX

oD
Byfen) = pren (D d).
Rer
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The formulse (1.9) and (1.10) then just say that 8,0, = 0 and 9,05 = 0.

Notice that x;(Fr) = x:i(7T) = x:(P) for i =1,2.

Every group is thus of type F'F,. If a group can be finitely generated, then it is of
type I'P;. In fact, a group is of type F'P; if, and only if, it can be finitely generated
(see [22], for example). If a group can be finitely presented, then it is of type F'P;.
The converse of this last statement is, however, false; Bestvina and Brady [15] have
found a group of type F'P, which cannot be finitely presented.

There is an analogue of (1.12) for monoids [69].

By (1.11), if P is finite,

x2(P) 2 d(Ha(G)) — tkg(H1(G)) + rhz(Hy(G))
= d(HQ(G)) — I'kz(Gab) 4+ 1.
If P achieves this lower bound, then P is called an efficient presentation and G is
said to be efficient [39].

If P is a finite presentation for G such that x2(P) < x2(@Q) for all other finite

presentations @ for GG, then P is said to be a minimal presentation for G.

1.6.4 Resolutions for short exact sequences of modules

Let
0+M HS3M3IM' =0
be a short exact sequence of C-modules. In this section we show how, given free

resolutions for any two of M’, M, M”, we obtain a resolution for the third. In doing

so, we prove the following result.

Lemma 1.31 ([16]). Let 0 > M' — M — M" — 0 be a short ezact sequence of

C-modules.
i) If M' and M" are of type FB,, then so is M.

i) If M is of type FP, (n > 0) and M' is of type FP,_;, then M" is of type
FP,. If M is of type F Py, then so is M".

i) If M is of type F'P, and M" is of type FP,.,, then M' is of type FP,.
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In what follows, we will make use of the so-called Snake Lemma.

Lemma 1.32 (Snake Lemma, [73]). If

0 > M’ sy M — M" —— 0
ICR LR
0 y N > N >y N > 0

s a commuting diagram with exact rows, then there is an exact sequence

0 — ker @ — ker ¢ — kertp — cokerf — coker¢ — cokeryp — 0.

The horseshoe construction

Let F' = (F},0}), F" = (F!',0) be free resolutions of M', M" respectively. We
construct a free resolution of M (see [73, p187], for example, for fuller details).

First consider the “horseshoe”

F m
5 .
0 » M —— M 25 M" —— 0

Since Fy is free and « is onto, there is a C-homomorphism ¢ : Fy — M, such that

a¢y = 0. Set Fy = F} @ Fy and

8o = Fo = M; (fo, o) = 100(fo) + do(fo)-

This map is onto. Now, by the Snake Lemma, the bottom row of
K K
| J«
0 —— kerdy —— kerdy — kerdj —— 0

is exact. Proceeding as above, if we set F; = F] © FY', we obtain a surjection
0y : Fi — ker 0p. Carrying on in this way, we construct a resolution F = (F}, 8;) of

M, where, for n > 0, F, = F} & F) and

D, (F") 0

Dn(]:) = X, Dn(f")

for some matrix X, over C.
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The mapping cylinder construction

Let F' = (F},8})), F = (F;,8;) be free resolutions of M’', M respectively. We
construct a free resolution of M" (see [76] for fuller details).
The map ¢ : M’ — M lifts to a chain map ¢ : F' — F. The mapping cylinder of

this chain map is the complex F" = (F}', 8}), where

Fz:" — ,
and, for f; € F;, f] € F},
OL(f1) + w(fg) i=1

Bgl(fia 5—1) - .
(Gi(fi) + e (fi1), =01 (fi_)) i>1

The complex F" is exact at F}’ for ¢ > 0 and coker 8{ & M", so F” becomes a free
resolution of M"” via the map

0y + Fy = Ey = M"; fo — ado(fo)-
If, for n > 0, X,, is the matrix of the map ¢, : F;, = F,, then

Do(F") = [Df;i}—)

and, for n > 0,
Dy (F) 0
X  —Dnpa(F)

Dn(]:”) — I:

Proof of Lemma 1.31. (i) and (ii) follow from the above constructions.
(iii) If 9y : Fo — M is a surjection, with Fy a free module of finite rank, then we
have the commuting diagram

0 —— 0 — Iy Id}F()

| o
0 y M’ sy M —Z 5 M” y 0

with exact rows. The Snake Lemma, then gives the exact sequence

w
<o

0 — ker 8y — kerady = M' — 0. (1.13)
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Now, by Lemma 1.27, if M is of type F'P, (n > 0), then ker d, is of type FP,_; and
if M" is of type FPp,y1, then ker ady is of type FP,. Thus, by (ii), M’ is of type
FP,. If M is of type F'FPy and M" is of type F Py, then ker a0, is of type F' Py, and
so M’ is of type F'F, too. O

Remark. Part (iii) above is actually a slightly stronger result than that stated in
[16].

1.6.5 Resolutions for extensions of groups

Let G be an extension of the normal subgroup H by its quotient Gy, so there is an

exact sequence

15>H—>G%5Gy— 1.

In his paper [85], Wall shows how, given a free resolution Q@ = (Q;,d;) for H and
a free resolution P = (B, ;) for Gy, a free resolution F = (F;, d;) for G can be
constructed.

Since H is a subgroup of G, Z@G is a free ZH-module, and so ZG ®zy Q is a free
resolution of the ZG-module ZG ®z g gZ = ZGy.

Let r; = rkggo(P;). We define C; to be the direct sum of r; copies of ZG ®zx Q,
so C; is a free resolution of 7; copies of ZGy, which we identify with P;. If we let Ci;j
be the sum of r; copies of ZG ®zp @, then C; = (C; ;, B,E?j)), where 6§3) :Ciy = Cij
is the map induced by 7; copies of §; : Q; = Q1.

For j > 0, we let F; = ®_,C; ;.

By defining ZG-homomorphisms 8}? : Cij = Ci_gjyx—1 for each £ > 1 and for
each i > k, j > 0, we obtain maps dj4, = Y0 S 0% 1 Fyy — By

For k =1, let 35,10) be a Z(G-homomorphism such that

8y
Ty
Oz',O —— Ci—l,ﬂ

o9 | |80
P, — Py
commutes (such a map exists, since Cjp is free and 8%-(2)1’0 is surjective). For j > 0,

6§}} is defined by induction on j; if we know oY . choose 62-(3) to satisfy

%,J—1r
852,89 + 89, 0l = 0. (1.14)
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For k£ > 1, suppose that each 653 is defined for I < k. The maps 62-(”;) are defined by

induction on j; for j = 0, choose Bgf)) such that
k3

9 -(ffi))aﬁl) + ai(fgi)ai(,%) +et zgi)k-i-l,k—zaz(,’gl_l) + 3§2)k,k—1az'(,l§)) = 0. (1-15)

For j > 0, if 6@?:';-)_1 is defined, choose 32-(”;-) such that

k .
kL !
Zaz‘(_l’j)_l_l_laz‘(’} = 0. (1.16)
=0
The existence of such maps is proved in [85].
Theorem 1.33 ([85]). F = (F;, 8;) is a free resolution for G.
Corollary 1.34. If both H and Gy are of type F'P,, then so is G.

If we choose bases for each free module @;, then we can induce bases for the free
modules C; ; and thus for each F;. With respect to the bases for C;j, C;_g j1x—1 (£ >
0) we can write the map 82%) : Cij = Ci—pjrk—1 as an rivkg (@) X ri—ptkz g (Qj45—1)
matrix Dg;.) over ZG. With respect to the induced bases for Fy, Fj_;, the matrix
D;(F) for 8;44 is of the form

-Dl(l?y)‘-u 0 0
pf) b o

D‘g?ﬂ—i Dz(zgﬂﬂ D§3)+1_i 0
: : 0
p® oy ... ... DY DY

I R Y

In these terms, the requirement that (1.14), (1.15) and (1.16) hold is equivalent to
Dj1(F)D;(F) = 0.

We note that, if D;(Q) is the matrix for 6, : Q; — @,—1 with respect to the choice
of bases, then the matrix for ngf}j) : Gy — Cyjoi is the rirkya(Q;) X rirkzp(Qj-1)
matrix D} = Diag,, (D;(Q)).

of bases, then the matrix for 6&? : G5 — Cij-1 is the rirkgg(Q;) X rirkzp(Q;—1)

matrix D = Diag,, (D;(Q)).
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Example 1.7. Let H = (t) be an infinite cyclic normal subgroup of G, generated
by t, and suppose that G is a central extension of (t) by Gy (so Gy acts trivially on
t). We choose the resolution Q for (t) to be

0 —= Z(t) 275 7y 225 42 — 0.

If P = (P;,¢;) is a resolution for Gy, with r; = rkge,(F;), Wall’s method gives a
resolution F = (F;, 8;) for G with rkyg(Fo) = ro and rkge(F;) = r; +rj—1 (5 > 0).
We find the maps 32(’01), Bzg,lo), 81-(,11), 65,20) (in that order) in terms of their matrices, all
other maps being trivial.

As in the general case, Dg)l) =(1—-1¢)IL, (z>0).

We now choose 6&) (¢ > 0) such that 8@1,06&,) = sia§f3,). Let §: Gy — G be a
section (that is, £ is a set map such that af = Idg,) and extend it linearly to a map

B : ZGy — ZG. Since the map
853 : (ZG gy Qo)™ & (ZG)" — P, = (ZGy)"

is induced by (r; copies of) «, we can choose Bz%) such that ng,lo) = D;_1(P)~.
For 6&), we require
DD + D D®, | =o0.
But Dz(,ul) = (1 —t)I,, and ¢ is central, so (1 — t)Dg}l) = —(1 — )D;-1(P)*, and thus
DY = —D;_,(P)P.

Finally, we require matrices D,§?3 such that

DYDY, o+ DEDY,, = 0.

—2,1

Since D;_1(P)D;—2(P) = 0, each entry of DSO)DG)I,O = D;_1(P)?D;_3(P)? must be

b
in kera = ZG.(1 —t). There is then an r; X r;_» matrix X; over ZG such that

Di1(P)PDi3(P)P = X;(1—t) = X;D{%,,, and we set D) = —X;. Thus, fori > 1,

Dz(j:) = —Dihl(P)ﬂ (1 - t)I”:I
—Xip1 D;(P)P
and
DO(-'F) — (1 - t)I’i‘O . o

Dy(P)?
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1.6.6 Resolutions for monoids with complete presentations

Let P = [x;r] be a monoid presentation. For U,V € [x], we will write U — V if V
can be obtained from U by a single elementary transformation (relative tor), U = V
if V' can be obtained from U by a finite number of elementary transformations and
U S VifU and V oare equivalent relative to r.

The presentation P is said to be terminating (or Noetherian) if there is no infinite
sequence

Wl—‘rWQ—)W?,"-}"'.

The presentation P is said to be confluent if, for any U, Vi, V; € [x] such that
U5 Vi and U 5 Vs, there exists a word W such that V4 > W and Vo > W. The
presentation P is said to be complete if it is both terminating and confluent.

A word U on x is said to be irreducible (with respect to P) if there is no word
V such that U — V. Otherwise, U is said to be reducible.

If P is complete, then for each word W on x there exists a unique irreducible
word W such that W > W (we can then identify the elements of S(P) with the
subset of [x] consisting of the irreducible words).

If a monoid presentation P = [x;r| is terminating, then it is confluent if,
and only if, the following two conditions are satisfied [35], [44], [60], [78]: for all
Uy, Us, V, R, RS € [x],

(C1) if (hV, Ry), (VU,, Ry) € r, then there is a word W on x such that Ry Uy = W
and Ui Ry 5 W,

(C2) if (U1VUy, Ry), (V, Ry) € r, then there is a word W on x such that Ry = W
and Uy Ry Uy 5 W.

Monoids which can be presented by a finite complete presentation are of types
FPY and FPY 6], [23], [43], [54], [78]. We show how a resolution F® = (Fz-(l), 62@ )
of type FPY and a resolution F) = (F,:(T) , 375(7”)) of type FPE) for § = S(P) can be
obtained from a finite complete presentation P.

Let F{" be the free left ZS-module with basis consisting of all ordered n-tuples
(Wi, ..., W,) of irreducible words on x such that:
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(L1) W, e x;
(L2) W;W;4, is reducible for 1 < ¢ < n;

(L3) any proper terminal subword of W;W;,, is irreducible (i.e., there are no words

UV, with U # 1, W; = UV and VW;;; reducible).

The second and third conditions imply that, for 1 <4 < n, W; is an initial subword
of R* for some (R*, R™) € r. Since r is finite, the set of all such n-tuples is finite,

and so F{" is of finite rank. The boundary map o . Fy(f) — F,gll is given by

a‘.‘(zl)(Wh -1W'n.) :—VW(W%.. .,Wn) — (WIWZ,WB,-- 7W’n) 4
oot (D)W, W,y o WiWiga, o, W) 4 - -
r b (S (W, Wa L, Weg, Wa ).

Now, it could be that one of the (n—1)-tuples in the above formula do not satisfy
(L1)-(L3), and so is not a basis element of F,(Llll These, however, can be rewritten
as a combination of basis elements, as described in [23]. Since we avoid this in the

examples we encounter, we do not give details.

Similarly, the module F{" is free on all ordered n-tuples (W1,...,W,) of irre-

ducible words on x such that:
(R1) Wy € x;
(R2) W;W;1 is reducible for 1 <1 < n;
(R3) any proper initial subword of W;W;, is irreducible.
The boundary map 8 : F{" — F,i’;)l is given by
BN (Wh,..., Wy) = (Way ..., Wa) — (WiWa, W, ..., Wy) + -

oot (1) (W, Way oo 2 WiWagg, e, W) + -+ -
iy (_1)n(W1) W2 ey Wn—-ﬁ: Wnn—l)—W—;-
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Example 1.8. The presentation
P= [371 g; (Bms 6): (99: 0)}

is terminating, since the right-hand side of each relation is shorter than the left. To
verify confluence, we note that there are two instances of (C1) (and none of (C2)),

namely, the overlap of #z and 8¢ and the overlap of 80 with itself. Since
6(0z) — 60 — 0, (00)z — 6z — 0

and
(66)0 — 80, 9(66) — 60,
the presentation is confluent. The monoid S = S(P) is thus of type FPY and of
type FPO(Z.,'}.
The left resolution F® as above has Fg(l) free on the 0-tuple e; = () and F®
(n > 0) free on the n-tuples

The boundary maps are

3 (ef) = (z — 1)eq,
oY (ed) = (6 — L)eq

and, for n > 1,

n—2

80 (ef) = 0ef_, + Z(‘"l)iem—i + ()" ey + (—1)"eh_y

i=1

(0 —1)ez_; modd
Oes_; n even

0l (ef) = 0ef_, + Z(*l)ieﬂ_l
i=1

(6 —1)ef_, nodd

el _, n even
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The right resolution F) has F{"” free on the same basis as F) and, for n > 0,

n—2
8 (ef) = Z(_l)iﬁﬁA + (1)l + (1)) iz
=0
e (1—ux) n odd

]
e2_1+el_(x—1) neven

n—1
o0 (eh) = Y (—1)ef_y + (—1)"eh 10
=0

82_1 (1 - 6) n Odd

e, 10 n even
1.7 Ranks and Euler characteristics

1.7.1 Ranks of projective modules

Throughout this section, P and @) are finitely generated projective modules.

There are a number of ways in which the rank of a finitely generated projective
module can be defined in order to generalise the rank of a free module. They all
have the following properties: for an arbitrary ring C, a rank is a function p on
finitely generated projective C-modules which takes values in an additive abelian

group with a distinguished element 1, such that
a) p(P & Q) = p(P)+ p(Q);
b) p(C) =1.

When C = ZG for some group G, Z ®z¢ P is a finitely generated projective

Z-module. Since all projective Z-modules are Z-free [47], we define
ﬁg(P) = I‘kz(z Rza P)

If G is finite, then P is finitely generated and projective as a Z-module, and [81]

Fe(P) = rklzcgf) ‘

For an arbitrary ring C, P is a direct summand of a free C-module F' of finite

rank. There is then the projection 7p : F' — F, with im7wp = P. If we choose a basis




1. Preliminaries 55

for F', let D(wp) be the matrix of wp. The Hattori-Stallings rank of P, pc(P), is
defined to be the image of the trace of D(7p) in the abelian group C/[C, C] (where
[C, C] is the additive subgroup of C' generated by {cc — ¢ : ¢, € C}). So, if
D(rp) = leyg); 4, then
po(P) =Y e +[C,Cl.

The rank po(P) depends neither on the2 choice of F, nor on the choice of basis for
F [79].

A useful property of the Hattori-Stallings rank is:

Lemma 1.35 ([29]). If @ : C — Cy is a ring homomorphism, then there is an
induced homomorphism & : C/[C,C] — Cof[Co,Col. If P is a finitely generated
projective C-module, then Cy ®c P is a finitely generated projective Cy-module and

a(pc(P)) = pcy (Co ®c P).

When C = KG, a group ring, [KG, KG| is the K-submodule generated by

7

99' ~9'9=49(g'9)g™" ~ g'g
=g99"9"" - ¢,
where g,¢' € G and g" = ¢'g. Thus, KG/[KG, KG) is K-free on the conjugacy
classes of G. We can therefore think of pxg(P) as a K-valued function on G, with
finite support, which is constant on each conjugacy class. For g € G, we denote the
coefficient of the conjugacy class [g] of g by pra(P)(9g).
In [12], Bass conjectured that, if K is a subring of C, the complex numbers,

intersecting QQ only in Z, then

pra(P)(g) =0if g # 1.

This conjecture has been found to be true for a large class of infinite torsion-free
groups [12], [56], [74], [80]. It is also true for abelian groups [22, Chapter IX] and
finite groups [81]. In fact, if G is a finite group, then [11]

pza(P) = pe(P) +|ZG, ZG).

More generally, we can apply Lemma 1.35 to the augmentation map aug : ZG — Z

for any group G.
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Lemma 1.36. If P is a finitely generated projective Z.G-module, then

aug(pza(P)) = pa(P).

Here, aug will be the map from ZG/[ZG,ZG] to Z/[Z,Z] = Z, which sends
1 Malg] to 31 nyg-

When G is abelian, in giving a formula for determining the Hattori-Stallings rank
of a projective ZG-module P from the entries of the matrix D(7p), it is shown in [22,
§IX.3] (see also [5]) that, if a; is the coefficient of #* in the polynomial det(I+¢D(mp)),
then

3 (1) (3) o = b i=paelP) (1.17)

g>i ! 0 otherwise
Note that, if D(rp) = [&;]; ;, then [2]
@i = _ Z det ([fjljl Sads ++ - g.’iiji]) :
F1<g2 < <gi
Whenever we have a well-defined rank function p for finitely generated projective
C-modules, we can extend it to a rank function for C-modules of type F'P as follows:

if M is a C-module of type F'P, let P = (P;, ;) be a resolution of M of type FP.
We define

p(M) = (-1)'p(Py),

i>0
although we must ensure that this does not depend on the choice of P. This is the
case for po and for pg, so we duly extend their definition. These ranks have the

following property.

Lemma 1.37 ([12]). If 0 > M’ — M — M" — 0 is a short exact sequence of
C-modules of type F P, then

pc(M) = pe(M') + po(M").

If C =ZG, then
Fo(M) = Fa(M') + pa(M").
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1.7.2 FEuler characteristics of groups

An FEuler characteristic is a function on a class C of groups, usually taking values
in Q or Z. For example, x,,(G) is defined for all groups G of type F'P, (see §1.6.2)
and takes values in Z.

For a class of groups C, we will say that a group is virtually in C, vC, if it has a
subgroup of finite index in C. For instance, we will say that a group is of type vF'L
if it has a subgroup of finite index of type F'L.

Let C be a class of groups for which H € C whenever H is a subgroup of finite
index of a group G € C. Suppose that x¢ is an Euler characteristic on C with the
property that

xe(H) =[G : H]xe(G) (1.18)

whenever G € C and H is a subgroup of finite index [G : H] in G. Then X can be
extended to the class vC by

Xoe(G) = ﬁXc(H )

when @ is virtually in C and H is a subgroup of G of finite index which is in C. This

is well-defined [84], since, if H' is another subgroup of G of finite index which is in

C, then, setting Hy = HN H',

Xe(H) _ xe(Ho)/[H : Hol
[G:H] [G: H]
_ Xc(Ho)
[G : Hy

and, similarly,
xc(H') _ xc(Ho)
[G:H' [G:Hy

Note that x, cannot be extended in this way.

For groups G of type F'L, Serre [76] defines

XFL(G) = Z(—l)il‘kzg(ﬂ) & Z,

>0

where (F}, 0;) is a resolution of type FL for G. For large enough n,

xri(G) = (=1)"xn(G).
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Since (1.18) holds here, this can be extended to an Euler characteristic x,rr for
groups of type vF'L, taking values in Q. Brown showed in [21] that, if G is torsion-
free and of type vF'L, then x,ri(G) € Z.

Stallings [79] defines for a group G of type F'P over K

xre) (G) = pre(aK) € KG/[KG, KG.

When K = Z, we omit it.
If G is torsion-free and of type vF'L (and so of type F'P), then

xrr(G) = Xorr(G).

In [29], Chiswell defines, for a group G of type F'P over K, Xrp(x)(G) € K to be
the sum of the coefficients in xrpx)(G). That is, if xrp)(G) = 2o kiglg], then
Xrp(x)(G) = Z[g] Eig)-

The property (1.18) does not hold for Xrpx). For example, finite groups are
of type F'P over Q and, for any finite group G, xrpg(G) = |—Cl;—| > seclgl; and so
xrp@)(G) = 1.

When K = Z, Lemma 1.36 gives

Xrp(G) = pe(cZ)

for a group G of type FF/P. When K is a pid, there is an alternative definition of

XFP(K); ViZ.:

Lemma 1.38 ([29]). If G is of type F'P over a pid K, then

Xrpu)(G) = Y _(~1)irk (HE(G)).

i>0

If G is torsion-free and of type vF'L, then

Xrp(G) = xrp(G) = Xuri(G).

We will say that a group G is of type F'R if its rational homology, H2(G), is of
finite rank, that is, if each H(G) is of finite rank and is trivial for large i. Brown
[21] defines, for a group G of type FR,

%rr(G) =) _(—1)ko(HX(G)).

>0
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If G is of type F'P, then it is of type F'R and, by Lemma 1.38,
Xrr(G) = Xrp(G).
Thus, if G is torsion-free and of type vF'L, then
xrr(G) = Xrp(Q) = xrp(G) = Xorr(G).

This Euler characteristic satisfies (1.18) only under certain conditions (see, for in-

stance, [22, §1X.5]).

1.8 Graphs and some associated groups

1.8.1 Graphs

A graph ' = v U e consists of two disjoint sets, the vertices, v, and the edges, e,

along with three functions

L:e—v,
T:€ >V,

”1:e—>e,

called, respectively, the initial, terminal and inverse functions, which satisfy the

conditions
e™) =7(e),
(€)= ufe),
e #e,
for e € e.

We will say that I' is finite if both the sets v and e are.
An orientation et of I is a choice of one edge from each of the pairs {e,e™'} for

ece.

Notation. Since e ! € e whenever e € e, we often omit mention of the edges of

e \ e* when describing or drawing a graph.
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An edge e of T" is called a loop if 7(e) = t(e). We will say that I' has multiple
edges if there are distinct edges e, e’ € e such that i(e) = «(¢') and 7(e) = 7(€').
When I' has no multiple edges, if t(e) = u, 7(e) = v, then we identify the edge e
with the ordered pair (u,v).

A non-empty path B in T’ is a finite sequence of edges

€1,€2,...,€n,

where, for 1 < ¢ < n, u(e;1) = 7(e;). We write ¢(08) = t(e;) and 7(8) = 7(e,). If,
for1<i<n, et #e !, then we will say that G is reduced. For every v € v, there
is also the empty path, 1,, which has no edges and has «(1,) = 7(1,) = v.

A non-empty path 3 is called a cycle if 7(8) = «(8). If 8 is reduced and if, in
addition, e; # e, !, then {3 is said to be a reduced cycle.

A subgraph Ty of T consists of a subset vy of the vertices of I' together with a
subset e of the edges of I' such that, if e € e, then i(e), T(e) € vy and e™! € e,.

The graph T is said to be connected if, for every two vertices u,v € v, there is a
path 8 with ¢(§) = u and 7(8) = v. The connected components of I" are the largest
connected subgraphs of T

A graph is called a forest if it has no non-empty, reduced cycles. A free is a
connected forest. A subforest of I' is a subgraph which is a forest. A connected
subforest is a sublree. A spanning subiree of I" is a subtree which includes every
vertex of I'. If I' = v U e is a finite tree, then |e*| = |v| — 1.

An extremal edge of I' is an edge e € e such that either there is no other edge
¢ of T' with ¢(e') = ¢(e), or there is no other edge €' with 7(e') = 7(e). Thus, if e
is extremal, then so is e™'. A finite forest with non-empty edge set must have an

extremal edge.

1.8.2 Coxeter groups

Let I' == v U e be a finite, connected graph, without loops or multiple edges and let
1 : @ = Z* be a map assigning to each edge e € e an integer 1(e) > 1, such that
Ple™) = 1h(e). We call 9(e) the weight of e. Associated with the pair T, + and
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with a choice of orientation et is a finite group presentation.
Pry = {(v;v3(v € V), (u0)?@) ((u, v) € e*)). (1.19)

The group Cry = G(Pr,y) defined by this presentation is called a Cozeter group and
the pair I', ¢ a Cozeter system. Notice that the choice of orientation does not affect
the resulting group, the two presentations arising from two choices of orientation
differing only by two Tietze transformations (T2).

Consider the graph obtained from I' by removing all the edges with an even
weight. Let T'y,...,[,. be the connected components of this graph. The abelian-
isation of Cry is then the direct product of nr cyclic groups of order two, that is,
O, = (B1) X +++ X (Upp) & Z3F, where 3; is the image of each generator of Cry
corresponding to a vertex of I';.

If, for each e € e, 9(e) is odd, then we will say that I', % is an odd Cozeter
system and that Cry is an odd Cozeter group. The abelianisation of an odd Coxeter
group is then a cyclic group of order 2.

A Coxeter system I', ¢ is said to be aspherical if the subgroup generated by the
images in Cr  of any three distinct vertices is infinite [3], [71]. This is equivalent to

the condition that, for any three edges ey, es, e3 of ' which form a triangle,
1 + 1 + 1
PYler)  lex)  les)

The group Cry is called an aspherical Cozeter group. For such groups, a generating

<1l

set, dry, of pictures for Pry is given in [71]. It consists of a dipole D2 for each
v € v and for each e = (u,v) € e a dipole Diuyys» together with a picture I, as
illustrated in Figure 1.9, with two positively orientated discs with label (uv)¥() and
(e) negatively oriented discs for each label u? and v2.

More generally, we could also consider Coxeter systems I', ¥, where I is not
a connected graph. However, Cr, is then the free product of the Coxeter groups
corresponding to the connected components of I'. For simplicity, we will treat free

products separately, and consider only the connected case.

1.8.3 Graphs of groups

A graph of groups consists of:
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Figure 1.9: The picture Be for e = (u,v) £ e+

—_

. a connected graph T = v Ue, together with an orientation e+;

N

a group Hv for each v £ v;
3. for each e £ e, a subgroup He of fft(e); and
4. for each e £ e+, an isomorphism (fe : ffe —ife-i.

The fundamental group Gr of this graph of groups is the quotient of the free product
Hyv) * (*eeet(*e»
by the normal closure of the set
{t~lhteffle(h)~] e £ e+, h £ He} U {te:e £ T fl e+},

where T is a choice of spanning subtree of T. A different choice of orientation or
spanning subtree gives an isomorphic group. There are natural embeddings

H: —»Gr- See, for example, [36], [77]. There is also a more generalconcept of a
graph of groups (see [10], [20]), which we do not consider here, butwhichadmits
the same treatment.

Two special cases of a graph of groups are free products with amalgamation
and HNN extensions. If if is a subgroup of Hi and if there is a monomorphism
: H —W»H2 then G = Hi *Hif2, the free product of Hi and H: amalgamating
if, arises as the graph of groups of the graph with two vertices 1,2 joined by an
edge, with associated group H. An HNN extension G = ifi*//," arises as a graph
of groups with one vertex, with associated group ffi, and a loop, with associated

group H < Hi and monomorphism (f): H —Hi.
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Associated with a graph of groups G- is a short exact sequence of ZGr-modules
[30], [36]
0 = BoeetZ 15 BuevZ 155 7 — 0., (1.20)

If we write — ®, — for — ®zx, —, then the maps are
L(l ®.1)=1 ®ue) 1 — e @) 1

and

a(l®,1) =1
Applying Lemma 1.31(ii) to (1.20) gives:

Lemma 1.39 ([30]). If T is a finite graph of groups and if each edge group is of
type F'F,_1 and each vertex group is of type FP,, then Gr is of type F'P,. If each
edge group and each vertex group is of type F'L, then so is Gr.

If G = Hy %y H, is a free product, as above, then this sequence becomes
0= Z1GH Z1G, @L G, Z.— 0, (1.21)

where ;(1®1) = (1®;1,-1®;1) and ¢(1®; 1,0) =1 = (0,1 ®2 1).

If G = Hy*p4 is an HNN extension, as above, then 1.20 becomes
021§ 2GS Z — 0, (1.22)

where 1(1® 1) =(1-¢)®; 1 and o(1 ®; 1) = 1.
Derived from (1.20) is a long exact Mayer-Vietoris sequence in homology [30],

[47]

o = Hpy1(Gr) = @+ Hy(H,) = ©vH,(H,) = Hy(Gr) — - -
-or = Hy(Gr) — e+ Hi(He) = ®vHi(H,) = Hi(Gr) —
Dot T — DL > Z 0. (1.23)




Chapter 2

Alexander ideals: Group

invariants from a presentation

Alexander [4] defined for knots an invariant which takes the form of a polynomial
and is calculated from a matrix. This is known as the Alexander polynomial of a
knot. Later, Fox [41] defined invariants for finitely generated groups, which are also
calculated from a matrix obtained from a presentation. These take the form of an
ascending chain of ideals in ZG®, which are known as the Alexander ideals, and a
sequence of Laurent polynomials, the Alexander polynomials. For a knot group, the
Alexander polynomial of the knot occurs as the generator of one of these ideals and
in the sequence of polynomials.

In this chapter, we review the definition of the Alexander ideals and polynomials.
Note, however, that the chain of ideals and the sequence of polynomials defined here

are indexed slightly differently to those of [41].

2.1 Definition of the A-ideals

Let P = (x;r) be a group presentation, as in (1.3), with a finite set of generators,

x, and let G = G(P). Giving some order to the sets x and r, let

D(P) = [2] e

64
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an |r| x |x| matrix over ZG. This matrix is called the Jacobian matriz of P. When
no confusion can arise, we abbreviate D(P) to D.
Now choose an abelianising functor I\ For A € Z, we define the A-th AT -ideal of

P to be
AY(P) = Jy,my-x (D(P)T) .

The chain AT(P) of ideals AT(P) (A € Z) is then an ascending chain of ideals in
the ring ZG7.
Throughout, if no T is specified, assume that it is ®. Thus, we denote A%(P)

simply by A(P). We will write %; for the composition of the maps
8 +T
Z{x) & Z(x) I 7.G -5 67,

80

D(P)" = |22E] e
The ideal A5(P) is the (A+1)-st Alexander ideal of P (see [4], [33], [41], [42], for
example). The reason for our shift of indices should become apparent in Chapter 4.
By Lemma 1.24, the ideals are independent of the choice of order given to x and

r. In addition, they have the following invariance property.

Theorem 2.1 ([4], [33]). Let P, Py be two group presentations with finite gen-
erating sets. If there is an isomorphism o : G(P) — G(Py), then the induced
isomorphism o : ZG(P)T — ZG(Po)T carries AT(P) onto AL (Py) for each A € Z.
So, if G(P) 2 G(Py), then AT(P) 2O AT(Py).

Proof. By Lemma 1.3, the presentations P and P, are Tietze equivalent and «
is induced by this equivalence. Indeed, we may transform P to Py by a finite
number of transformations (T2) and finitary transformations (T1). Thus, to prove
the theorem, we need only consider the case when P, is obtained from P by a single
Tietze transformation and « is the induced isomorphism.

Suppose that Py = (x,y;r,y = Wy(y € y)) is obtained from P = (x;r) by a

finitary Tietze transformation of type (T1), so y is a finite set. Here @ = aip, so, for
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z € X, ayp(x) = yp,(x). Giving orderings to x, y and r, we obtain

7 (38 s
[ 'm(

W)
_ IJ

where X = [-om: (%) ]y . So
D(P)&® 0
Xt I

= n-—lyl(D(P)aTTé‘)
= o Ju_y)(D(P)"),

D(Py) =

]y@

MM%W=%(

since 7¢, @ = af'r% and o is onto. Thus, since x1(Po) = x1(P) + |y,

A3 (Po) = Jyymo)-»(D(Po)T)
= a’ -2 (D(P)T)
= aT AL (P).

Now suppose that Py = (x;r,s) is obtained from P = (x;r) by a Tietze trans-
formation of type (T2). Since each S € s is a consequence of r, by Lemma 1.11 the

last |s| rows of

S8R
dz | Rer
D(’PD) — - TEX
Bz | Ses
TEX

are a linear combination of the first |r|. Hence, by Proposition 1.21(i) and since

x1(Po) = x1(P),

AF(P) = Jyywo)-r(D(Po)T)
= Sy (p)-A(D(P)T)
= A3 (P),

and the result follows, o™ being the identity map here. O
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Remarks. 1. In proving this theorem, we only require the property that 'rg;oa =
Tr& when o is an isomorphism. It is when we come to compare the AT-ideals
of non-isomorphic groups that we require that this holds for all homomor-

phisms.

2. The second part of the above proof actually shows that, if P = (x;r) and if s
is an alternative set of normal generators for < r > = ker yp, then AT(P) =
AT (Py), where Py = (x;s). Thus, for a given finite generating set x, any choice

of defining relators gives exactly the same chain of A-ideals.
We give an example of how the A-ideals may be used to distinguish groups.

Example 2.1. For [ =1,2,..., let
Py = (a,b, t;a® %, (ab)", t'at'a™")
and let Gy = G(P,). Then, for each I,
G = (a) x (t) 2 Z3 x Z,

where b = a?. The Jacobian matrix of 7, is

1+a+a® 0 0
Do 0 140+ 02 0
(@)t Y8 o(ab)ia 0 ’
R 0 Yit(i-a)
S0 3 }
1+ a+ a? 0 0
Db 0 1+ad®>+a 0
7 Ta 0
| i1 0 Yot —a)]
From this we obtain
4
0 K>2

(1+a+a®%71+a+a?), (1 +a+a?)(t —1),

Je(D®)=q 7 - 1), 75561 - a)) k=2,
(1+a+a,78-1 Zi_ot‘(l—a)) k=1
| Z({a) x (1)) K<0
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which gives (after some simplification)

Z({a) x (£)) A>2
1+a+a?, 7,3t A=
AN(Pr) = 4 ( %) | :
(1+e+a,7( - 1), 75 (1 —0)) A=0
|0 A<0

It proves more convenient to consider

7t A>1

AP) = (3.#-1) r=0.
0 A<0
\

Suppose [ #I'. If G; & Gy, then there is an automorphism of Zfo = ZGf,f = Z(t),
induced by an automorphism of (), which carries AY(P,) to A (Py) for each A.

However, neither of the possible automorphisms
Z(ty — T{t); t v ¢+
carries AY (P)) = (3,# — 1) to A (Pyp) = (3,# — 1), so Gy 2 Gy ¢

When T = ¥/ the ring ZG¥ is a ring of Laurent polynomials which, in particular,
is a greatest common divisor (ged) domain (that is, any set of elements of ZG* has
a ged [33]). Thus, every ideal of ZGY is contained in a smallest principal ideal.
For A € Z, we define the A\-th a-polynomial of P, ax(P), to be a generator of
the smallest principal ideal containing A% (P). Such a generator is unique up to
multiplication by an element of the unit group +G* of ZG* and, since A (P) C
AY L (P), ary1(P)|aa(P). If ty,... 1, is a set of free generators for GYf, then the a-
polynomials are Laurent polynomials a)(P) (¢, ..., %) on t1,. .., t;. The polynomial
ax(P) is the (A - 1)-st Alexander polynomial of P ([4], [33], [42]).

That these polynomials are well-defined is a consequence of Theorem 2.1.

Corollary 2.2. Let P, Py, o be as in Theorem 2.1. For each X € Z, ax(Py) may

be chosen such that

o (ax(P)) = ax(P).
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A common use of Alexander ideals and polynomials has been to distinguish
(tame) knots. The group of a knot in 3-dimensional space R? is the fundamental
group of its complement in R®. There are a number of ways of obtaining a pre-
sentation of the group of a knot, one of which, using a projection onto R?, gives a
Wirtinger presentation [33] which has the same (finite) number of relators as gen-
erators. In fact, each of the relators of such a presentation is a consequence of the

others, and so we can assume that a knot group is given by a presentation
Q=(y;s) (2.1)

with |s] = |y| — 1. We call such a presentation a deleted Wirtinger presentation.
These presentations have the additional property that G(Q)® is infinite cyclic with
a generator ¢ which is the image of each of the generators y.

The following result applies not only to knot groups.

Lemma 2.3. If P = (x;x), T are such that G(P)T = (t) ¥ Z and t is the image of

each x € x, then

TEX

for each R € r. The columns of D(P)T thus sum to zero.

Proof. By Corollary 1.9, R—1 =3 %&(z —1), so

BEX Gz
TR
——(t—1)=0.
D g t-D=0
TEX
But Z(t) is an integral domain, and the result follows. O

So, if @ is a presentation of a knot group as above, D(Q)% is a (ly| — 1) x |y|
matrix over Z(t) whose columns sum to zero. Thus A_;(Q) = 0 and A4y(Q) is a
principal ideal, generated by the determinant of any (Jy| — 1) X (J]y| — 1) submatrix
of D(Q)®. This determinant can then be taken to be ag(Q). This polynomial,
which is relatively easy to obtain, was the original invariant polynomial defined by
Alexander [4] and is often called the Alexander polynomial of the knot.

The Alexander polynomial of a knot has some interesting properties:

Proposition 2.4 ([33]). If ao(Q)(t) is the Alezander polynomial of a knot as above,
then
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Figure 2.1: The clover-leaf knot
i) it is of even degree;
i) it is reciprocal, that is, ag(Q)(t™1) = t"ay(P)(t) for some n € Z;
i) ag(Q)(1) = +1.

We show how (iii) can be proved in §4.4. Properties (ii) and (iii) actually char-

acterise the Alexander polynomials of knots [33].

Example 2.2. a) The clover-leaf knot, as illustrated in Figure 2.1, has Wirtinger

presentation

1

(T, y, 2,0 = yay ',y = zzz ', 2 = zyz ).

Using Tietze transformations, this simplifies to

P = (z,y; zyz = yzy).

The matrix
D* = [1—t+t2 —1+t—t2]
then gives ap(P) =1 — ¢+ ¢2.

b) The figure-eight knot, as illustrated in Figure 2.2, has Wirtinger presentation

1

(€Y, z,w;8 = 2 'wz,y = wzw™, z = 57 yz, w = yay L),

which simplifies to
P =z, y;yz lyzy ™! =z yzy ).

This gives
D = [t—3+t‘1 —t+3-t_1]
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Figure 2.2: The figure-eight knot

and ap(P) =t* — 3t + 1.
Since no automorphism of Z{¢) induced by an automorphism of {t) takes the
Alexander polynomial of the clover-leaf knot to that of the figure-eight knot, their

respective knot groups are non-isomorphic. Hence, the two knots are distinct. ¢

We now consider some circumstances where the A-ideals are unable to distinguish

groups.

Lemma 2.5. If G is a finitely generated perfect group, so G® =1, then

for every presentation P for G.

Proof. Every finitely generated perfect group G has a presentation of the form

P = <$1:---;mn;mlRI>-~-aanmRn—l-l:"')v

where exp, (R;) = 0 for each i, j, called a preabelian presentation [58]. Since G* =
Gtriv — 1,

I,

0

D(PY" =

Thus

Z A>-1
AN(P) = Jpo1a(I) = .
0 A<-1

If Py is another presentation for (7, then, since the only automorphism of Z induced

by an isomorphism G(P)7® — G(P,)¥® is the identity, A(Py) = A(P). a
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The A-ideals, therefore, cannot distinguish perfect groups. Also, consider the

following example.
Example 2.3. For{=1,2,..., let
Py, = {a, b, t; a®, 8%, (ab)", tatta™1)

and let G; = G(P;). Notice that these presentations differ from those in Example
2.1 only by the power of b and that the subgroup generated by a and b is perfect.

For each [,
Gt = (t) 2 Z,
where b =a = 1. Now, i i
3 00
0 2 0
D(’Pl)ab = )
7 7 0
t—1 00
and so )
Zty A>0
AN(Pr) = < .
t0 A<O
for each 1. 0

This example is illustrative of the following situation: let Q@ = (y;s) be a pre-
sentation for a perfect group H = G(Q), let x be a set disjoint from H and choose

a set r of cyclically reduced elements of H * (x) \ H. We set
G=(Hx{x))/<r>.
A presentation for G is then given by
P = (x,y;F,s), (2.2)

where ¥ = {R : R € r} C (x,y) is obtained by replacing each term from H of each
R €r by a word on y U y~! representing it.
Also, for each R € r, let Ry be the word on xUx ™! obtained from R by deleting

each occurrence of a term from H and cyclically reducing. We set

Po = (x; Ro(R € 1))
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and Gy = G(P,). Thus Gy = G/< tH >, where ¢ : H — @ is the natural map
yey (Y Ey)

If @ : G — () is the natural surjection, then
a® : G — G2, Q' = a(g)GY
is an isomorphism, since

Ge = Go/G
> (G/<1H »)/(G/< tH >)
= (G/< H >) /(G /< tH >)

Theorem 2.6. For P, Py, o as above, with X, y finite,
A(Po) = a“bA(’P).

Proof. Note that ¥ = 1 for each y € y, that a(%) = T for each z € x and that, if
R= I1; UsVi, where each U; € (x) and each V; € (y), then
aabR i—1 AA 8 U
=2 v~
i j=1
)| et
= Uj
ey oz

_ 3abRD
-z’

eb [ 8BRY _ 8%Ry
S0 & (—5:!3—) = The Thus

[expy(S')] ses 0
[oa“b (a@a_‘;}"z>] e D(Pg)*

Now, by elementary row and column operations and by discarding any resulting

(D(P)™)*" =

rows of zeros, the matrix [exp,(S)] can be transformed to the identity matrix Iy.




2. Alexander ideals 74

Applying these operations to the first |s| rows and first |y| columns of the above

matrix, we obtain the matrix

IIyI 0
X D(Py)e

for some matrix X over ZG2. Thus, by Corollary 1.25,

a® A\(P) = Tyymy-r((D(P) ™))

= Jil+lyl-1-2 w0
= Jisllyl—1—
Y X D(Py)®
= Jyy (Po)-A(D(Po)®)
= A.)\(‘PO)y
as required. 0

So, if we have two presentations P, P arising from perfect groups H, H respec-
tively in the above manner, then, if the A-ideals cannot distinguish G(P) from
G(Py), they cannot distinguish G (P) from G(P). In the next chapter we define new
group invariants which are (sometimes) able to do this. Before doing so, we look at

some further computations of A-ideals.

2.2 Some examples

2.2.1 The A-ideals of the braid groups

For n > 3, the braid group on n sitrings, B,, is given by the presentation

By = (a1, ..., 00-1;0i0i410; = @i418:0:41(1 <3 <n—1),

aig; =0a;(1<i<n—-2,i+1<j<n—1)).

A full exposition of the properties of braid groups is given in [17]. In particular, the
abelianisation of each braid group is infinite cyclic, with generator ¢ the image of
each a;.

We calculate the A-ideals of the braid groups and show that:
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Theorem 2.7. Forn = 3,4,

Z{t) A2l
A\Br) =S (1—t+12) A=0,
0 A<0
and forn > 5
Z{ty A>0
Ay\(B,) = .
0 A<0

Proof. If, for 1 <i< j <n-—1, we set

-1 ,~1,-1 . __
@il 1GiQ @ Gy J=1+1

R”:sj = ’
az-aja{la;"l J=1>1
then .

1—t+8 j=i+1,k=1
—~1+t—8 j=i+1,k=j

G“bR;j

P Y A 4 _ L — .

Ba, 1-1¢ j—i>1,k=1

—1+t j—i>1,k=j
\0 otherwise

Ordering the relators so that R; ; precedes Ry, if j <l orif =1 and 4 < k, we find

5

that )
D(B,_1)® 0
1-t 0 0 t—1
D(B)® =1 0 ,
1—1 0 t—1
| 0 ... 0 i1 ~1+t—¢

for n > 3, and
.M&W:h—rwz—u¢—ﬂ.

By Lemma 2.3, the columns of D(B,)* sum to zero.
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Manual calculation gives

¢

Z(t) A>1

A)\(Bn)= 4 (1—t+t2) A=0,

0 A<0
\
for n = 3,4, and
Z{ty A>0
AN(Bs) = .
0 A<0

We now show inductively that, for n > 5,

5> X1 (Bn)

JE(D(Bn)ab) = .
Z{t) & < x1(Bn)

Suppose that this holds for n — 1. Since the columns of D(B,)* sum to zero,

Jo(D(B,)®) = 0 for 5 > n — 2. For k < n — 2, by Proposition 1.19,

t—1
Te(D(Ba)®) 2 Jg-1(D(Bp1)™) 1 4
-1+ - t2_
= Z(t),
from our assumption, which gives the required result. O

2.2.2 The A-ideals of odd Coxeter groups

Let ' =vUe, 9 be an odd Coxeter system. We use the presentation Pr (1.19) to

calculate the A-ideals of an odd Coxeter group, showing that:

Theorem 2.8. If T, ¥ is an odd Cozeter system, then

4

L (%) Az |v[-1

Ax(Prp) = (L4 T, fpyj-1-a) —1<A<|v] -1,

0 A< -1
\
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where

b = ged H ble) : D is a subforest of

ecd®net I’ with & edges

Proof. For v € v,

O 1+v v =w
—-—T o
o1 0 otherwise

and, for e = (u,v) € e™,

]
L+uv+ -+ (uo)¥E-1 v =u

A(uv)?e)
—(_6;)’—— =Qutuvu+--+ ()@ y v =v

0 otherwise
\

Before giving the Jacobian matrix of Pr,, we must choose an ordering on v and on
et (which will also induce an ordering on the set of relators). It proves convenient

to show that:

Claim. For any v; € v we can chose an ordering < on v and an orientation e* such
that u < v whenever (u,v) € et and such that, for each v € v \ {v1}, v1 < v and

there is an edge e € et with 7(e) = v.

Proof of Claim. We proceed by induction on the number of vertices in I". This is
trivial when |v| = 1. Suppose that |[v] = n and that the claim holds when there
are fewer than n vertices. Let v; € v. The graph obtained from I' by removing
vy along with all the edges incident at v; will be a graph each of whose connected
components I' has fewer than n vertices. Each component I'® will have a vertex

v&i) connected to v; by an edge of I'. Applying the inductive hypothesis, we obtain

orderings on the vertices of I'®, with v?) the first, and an orientation of the edges
of T® such that for every vertex v of I'® other than v{") there is an edge e with
7(e) = v. Giving an ordering to the components induces an ordering on v \ {1}
and we then set v; < v for each v € v\ {v1}. We next replace the edges incident at
vy, orienting then appropriately and note that these include edges e with 7(e) = 'ugi)

for each ¢. This establishes the claim. O
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Given such an ordering, we have

Do — Dia'g|v|(1 + 771)
X H

where X is the |e*| x |v| matrix with a row

.. 0 %@ 0 .. 0 YEF 0 ...

for each e € e™. We will call this the e-th row. If we call the column corresponding
to the vertex v the v-th column, then the non-zero entries 1(e) and t(e)d; in the
e-th row occur in the ¢(e)-th and 7(e)-th column respectively.

We now show that

r

0 k> |v]|

J(D") =3 (148,60 0<r<|v]-

Z (1) k<0
\

Clearly, for 0 < % < |v],
det(Diag, (1 + %)) = (1 + %31)* = 2°71(1 + 41) € Jo(D™).

For a vertex v, let e, be the first edge e € et with 7(e) = v. Let L, be the

(s — 1) x (k — 1) submatrix of X consisting of columns 2,..., s, corresponding to
vertices vy, ..., U, and the ey,-th, ..., e, -th rows. This is then a lower triangular
matrix with diagonal entries ¥(e,, )01, ..., ¥(e,, )01. The & X & submatrix consisting

of L, together with the first row and first column of D is then a lower triangular

matrix with determinant
(ﬁ gb(e,,,.)> (L+ 1) € Jo(D™).
=2
Since each %(e) is odd, we then have
1L+ 4) € Jo(D®)

for 0 < k < |v|.
As the determinant of any submatrix which includes rows from Diagy, (1 + 1)

will be divisible by 1 4 %7, we need only now consider submatrices of X.
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Let Y be a k X £ submatrix of X. The x rows of Y give a set ey of edges, so,
if we set vo = {1(e),T(e) : € € e}, then Ty = v U (eg U ey ') is a subgraph of I
Let Y) be the & x |v| submatrix of X consisting of the e-th row for each e € e;. We
distinguish two cases:

Case 1. I'y has a non-empty, reduced cycle ejes...e,. By rearranging the rows
and columns of Yy and multiplying rows by 97 where appropriate, we can obtain a
matrix of the form

Y, O

where

Ple) Yle)di 0
0 tles) ()i O
o= 0 - g
0 : Plen—1) Y(en—1)?
Y(en) 0 0 p(en)l |

Y" is some (x — n) x n matrix and Yj” some (k — n) x (k — n) matrix. So, by an

observation in §1.4.3, if Y doesn’t include the v-th column of ¥} for each vertex v of
the cycle, det(Y) = 0. On the other hand, if Y does include each of these columns,
then det(Yy)|det(Y). But, by adding columns 2,...,n of ¥j to column 1, we see
that 1+ 01| det(Yy). Thus, if det(Y') is non-zero, it is a multiple of 1 + @i, and so
adds nothing more to the generation of J, (D).
Case 2. I'y has no non-empty, reduced cycles, that is, Iy is a forest. Since ¥(e)
is a common factor of each entry of the e-th row, we have
IT w(e)l det(y).
eceq
We now show, by induction, that there is a k¥ X « submatrix of Yy with determi-
nant [[oc., ¥(€) or (I[L,ee, ¥(€)) #i. Once we have shown this, we have proven the
theorem.
Clearly, when x = 1, there is such a submatrix. Now let x > 1 and suppose
that, for every (x — 1) x |v| submatrix of X defining a subforest ® of I, there is a
submatrix with determinant [T, %(e) or ([T cq, ¥(€)) 71. Since Iy is a forest, it has

an extremal edge ey € ep. Suppose v, is the end point of ¢ incident with no other
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edge, then the only non-zero entry in the vy-th column is the entry 1(eq) or ¥(eg)o1
in the gg~th row. Now, removing ey from I'y leaves a x — 1 edged subforest, so, by the
inductive hypothesis, there is a (k—1) x (k—1) submatrix of Y, which doesn’t include
the eo-th row, with determinant [T ...\ (e, ¥(€) or (HBEGD\{EO} 'gb(e)) ;. Since the
vp-th entry of the e-th row for each e € 9\ {eg} is zero, this submatrix cannot include
the vp-th column. The x X & submatrix consisting of this smaller submatrix along
with the eg-th row and the vp-th column will then have the required determinant.

This exhausts all possible submatrices of D, O




Chapter 3

B-ideals: Group invariants from a

3-presentation

In the spirit of the Alexander ideals and polynomials, we now define new group
invariants, a chain of ideals and a sequence of polynomials. Analogous to the way
in which the A-ideals and a-polynomials are calculated from the Jacobian matrix
obtained from a presentation, these new invariants are calculated from a matrix

which is obtained from a 3-presentation.

3.1 Definition of the B-ideals

Let 7 = (x;r;d) be a 3-presentation with x, r finite and let G = G(T). Giving

some order to the sets r and d, let

R |ed ?

o(r) = [2]

a {d| x |r| matrix over ZG. We abbreviate D(7) to D when the context is clear.

Now choose an abelianising functor 7. For A € Z, we define the A-th BT -ideal of
T to be

BY(T) = Jyom-» (D(T)T) -

The chain BT(T) of ideals BT (T) (A € Z) is then an ascending chain of ideals in
the ring ZG*. Again, if no functor 7 is specified, we assume that it is .

These B-ideals have the same invariance property as the A-ideals, viz.:

81
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Theorem 3.1. Let T, Ty be two 3-presentations with finite underlying presentations.
If there is an isomorphism o : G(T) — G(Ty), then the induced isomorphism oF :
ZG(T)T — ZG(To)T carries BL(T) onto B} (To) for each A € Z. So, if G(T) &
G(Ty), then BT(T) =© BT(T;).
Proof. By Lemma 1.4, we need only show that the Theorem holds when 7; is ob-
tained from 7 by a single Tietze transformation (T1), (T2), (T3), finitary in the
cases (T1) and (T2), and « is the induced isomorphism.

If To = (x,y;1,y = Wy(y € y);d) is obtained from P = (x;r;d) by a finitary
Tietze transformation of type (T1), then

D(To) = Ug‘%]mea 0}
Rer
= [y ],
since 75|y = ayr. As x2(7T) = x2(7o), this gives
BY(To) = Jxa(7)-2(D(To)")
= O‘Tsz(T)—A(D(T)T)
= aTB)‘(ﬂ,
as required.

Now suppose that Ty = (x;r,s;d,Qs(S € s)} is obtained from 7 = (x;r;d) by
a finitary Tietze transformation of type (T2). Since, for 5,5’ € s,
8Qs 1 §=8
o =
o8 0 otherwise

and since « is the identity here, we have

ok 0 D(T) o
o |l 0] [P
X Iy X Iy

for some |s| x |r| matrix X. Noting that xa(7) = x2(7) -+ |s|, we obtain
By (To) = Jxs(r)-+(D(To)")

= Jxa(1e)—lel-A(D(T)T)
= B«\ (T):
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as required.
Finally, suppose that 7o = (x;r;d,e) is obtained from 7 = (x;r;d) by a Tietze
transformation of type (T3). Then, since {[I] : D € d} generates me((x;r)), by

Lemma 1.15 the last |e| rows of

[ o0 ]
| 3R | Ded
D (76) = ReR
OE
|:b_1§ Ece
Rer
are a linear combination of the first |d|, which constitute D(7). Noting that x2(7o) =
x2(7), the result follows. -

Remarks. 1. As in Theorem 2.1, in proving this theorem we only require that

T,@ = o’ 75 when « is an isomorphism.

2. The last part of the above proof shows that, given a finite group presentation,
any choice of generating set of pictures for that presentation will give exactly
the same ideals. Thus, for a finite presentation P, we define BT (P) to be
BT((P; d)) for any generating set of pictures d for P. In fact, the proof shows
that, for a fixed generating set x, any choice of normal generators for the kernel
of the map (x) — G and any generating set of pictures for the corresponding

presentation give exactly the same ideals.

For a 3-presentation 7 with finite underlying presentation we define, for A € Z,
the A-th b-polynomial of T, by(T), to be a generator of the smallest principal ideal
containing Bﬁf (T). As with the a-polynomials, these are unique up to multiplication

by a unit. We thus obtain a sequence of Laurent polynomials with by (7)|0x(7).

Corollary 3.2. Let T, Ty, @ be as Theorem 3.1. For each X € Z, by(Ty) may be

chosen such that

o (bA(T)) = ba(To).

Returning to Example 2.3, where the A-ideals failed to distinguish a family of

groups, we find that these new B-ideals can be useful.

Example 3.1 (Example 2.3 continued). Recall that, for [ =1,2,...,

Py = (a,b,t;a®, 6% (ab)", tat'a™),
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Figure 3.1: The picture D4 over V|

Gi = G(Vi) and G'b = (t) = Z. A generating set d/ of pictures for Vi, obtained
using the methods of [10], consists of a dipole for each of the first three relators,
together with an extra picture D/, as illustrated in Figure 3.1 for / = 4. (For general
I, Dy differs from the illustrated picture by having 7 arcs labelled by ¢+ where D4 has
4.) Setting 71 = (Vi ;di) gives

—a 0 0
0 1—6 0
D(Tt)
0 0 1- ab
-t 0 1|- T @
whence
0 o o
ib 0 00
0 00
1-¢7 0 3
and
Z(t) X>2

= <(1-t*,3) A= 1+
0 A< 1

Thus, if 7~ /', then G/ * G”, so, while the "4-ideals cannot distinguish these groups,
the 5-ideals can. 0

When we can find a generating set of pictures for a presentation, which is the case

for an everincreasing number of groups, as discussedin §1.2.3, these 5-ideals are just
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as readily calculated as the A-ideals. For example, we know that a CA presentation
has a generating set of pictures consisting of dipoles. Recall from §1.2.4 that for a

presentation P = (x;r), for R € r we write R = R)* and set ' = {R € r:pgp > 1}.
Proposition 3.3. If P = (x;r) is a finite CA presentation, then
ZG(P)T A > x2(P)

B (P) = 4 (Maes(I1—Ro):sCr'lsl=x2—A) x2— | <A< xa-

0 A< x2(P) — |¢']

Proof. Taking the set of dipoles {Dg : R € r'} as a generating set of pictures for P,
we have

a]D)R 1-— Rg R =R

- =

OR 0 otherwise
Thus

D= [Dia’gREr' (]. - RQ) 0]
and the required result follows. O

Corollary 3.4. If P is a finite asphericol presentation, then

sy — LGP A2 a(P)
0 A < xa2(P)

For example, the deleted Wirtinger presentation (2.1) for a knot group is known
to be aspherical [62], and so the B-ideals can give only limited information.

This last result then gives a test for whether a group has an aspherical presen-
tation; if a presentation has a B-ideal distinct from 0 and the whole ring, then the
group it defines can have no aspherical presentation. One form of Whitehead’s con-
jecture [86] states that if @ = (y; s) is a subpresentation of an aspherical presentation
P = (x;r) (that is, y C x and s C r), then Q itself is aspherical. If H = G(Q),
G = G(P), then the inclusion y C x induces a homomorphism o : H — G;y — y.

Proposition 3.5. If Q is a subpresentation of o finite aspherical presentation P as

above, then

ZGT A > x2(Q)

0 A< XQ(Q)

(@"BY(Q) =
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In particular, BL, (Q) = ZH" and B}, o ,(Q) # ZH" for every T

Proof. Let d be a generating set of pictures for Q, then, since mo(P) = 0, d also

constitutes a generating set of pictures for P. Now

D((P; ) = [D((@; )= 0],

and so

ZGT A > x(Q)
(" BE(Q)) = B eyatp)-xa(@)(P) = e
0 A< Xg(Q)

By definition, BY, 5(Q) = Jo(D") = ZH". Also,
0= B;fz(’P)—l (P) = (QTB;(QH(Q)) )
SO B;fz(g)_l(g) Ckero® C IHT c ZHT, O

In the next chapter, we will derive many more properties of these new group
invariants in a much wider context. Before moving on, however, we consider the

B-ideals of two families of groups.

3.2 Some examples

3.2.1 The B-ideals of odd Coxeter groups

IfT =vUe, 9 is an odd Coxeter system, then, since /(e) > 3 for each e, Cry
is aspherical. We use the 3-presentation 7r, = (Pry;dry) of §1.8.2 for Cry to

calculate the B-ideals of an odd Coxeter group, showing that:

Theorem 3.6. IfT', ¢ is an odd Cozeter system, then

(2.(5) A> et - [v]+2
By(Toy) — (1 —3i,1+ %) A=let|—[v]+1

j (2le+l~lvl+1—/\(1 + a)) 1<A< et —|v|+1

k0 A<l
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when |e*| > |v| and
Lty  A>1
Bx(Trw) = T (1-8) A=0

0 A<O

\

when I' is a tree.

Proof. For e = (u,v) € et

[T+t @O Ry

oD, —(@+wa+ -+ (@)?@ g R =1?

OR ~ 1+7 R = (uv)¥®) ,
0 otherwise

s0, using the same orderings on v and e* as in §2.2.2, we have

Diagj,/(1 ~ ) 0
Dab — 0 0 ,
-X Diag|e+|(1 + 75\1)

where X is as in §2.2.2. We now show that, if |e*| > |v|, then

;

0 k> |et|
(2=M1+5)) v <s < et
Jo(D®) = 3 )
(L=F1+6) s=|v]
| Z(51) K< |v|
and, if |e*| = |v| — 1, then
0 K> |v]

Jo(D®) = 1 A=8) w=]v|-

|Z{5)  k<lv|

For k > max{|v|,|e*|}, any s x & submatrix of D® without a column or a row of
zeros must have a row whose only non-zero entry is 1 — 9; and a column whose only

non-zero entry is 14 4;. Thus, since (1 — @)(1 + 41) = 0, Jo(D®) = 0.
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As for the A-ideals, using the submatrix —L,, of —X gives
1—ay,1+ 8 € J.(D%)

for 0 < & < min{]v|,|e"|}. So 2 = (1 - @)+ (1 +91) € J(D®). But, for
0 < k& < min{|v|, |e*|}, we also have

&+1

det(Les1) = [ [ #(ew) € Jo(D®).

=2

Since this is an odd number, we have
Je(D™) = Z(t1)

for k < min{|v|, |e*|}.

To determine Ji,(D®) for min{|v|,|e*|} < k& < max{|v|,|et|}, we distinguish
two cases:

Case 1. |et| > |v|. For |[v|] < k < |e*|, a k x & submatrix has non-zero
determinant only when it either takes all its columns from the first |v| or all its rows
from the last |et]. When & = |v|, we already know that 1 — &}, 1+ € Jiy(D¥), so
we need only consider submatrices of —X. But the columns of X sum to a multiple
of 1+ 97, whence

T(D®) = (1= 6,1 +).
For k > |v| we need only consider submatrices of
[—X Diagje+|(1 + 771)] :

Any such submatrix must include at least 1 — |v| columns from Diagje+((1 + 1), so
(14 @)~ M = 25=MI=1(1 4 5}) divides each determinant. A s X & submatrix which
includes exactly £ — |v| non-zero columns from Diagj.+ (1 + 41) must include all |v|

columns from —X, so will have determinant
(1 + @) M det(Yp) = 25 M1 + 57) det(Yp)
for some |v| x |v| submatrix Yj of —X. But 1+ ) divides det(Yp), so

Jo(D®) € (257 M1+ @)
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Now consider the s X k lower triangular submatrix consisting of —L;y| along with
% — [v| +1 more rows and the corresponding columns of Diagje+ (1 +41). This has

determinant

Ivl
(H qp(e,,i)) 25 M1+ 51) € Ju(D®).

i=2
Since there is also a submatrix of Diag.+ (14 71) with determinant 2% (1 +47), we
have shown that J(D®) = (25=M(1 + 5;)) for |v| < & < |et).
Case 2. |e™| = |v| — 1, so [' is a tree. For k = |e*| = |v| — 1 we have

[v|

(1= @M, (L + 8)M, det(Lyy) = [ [ wlew) € Jivi-1(DD).

=2
So, since det(Ljy)) is odd and 2V1=! = (1 — G)VI-L 4 (1 + 5)M1 € Ty 1 (D®), we
have J,,(D%) = Z(1%;) for x < |v| ~ 1.

For £ = |v| we need only consider submatrices of

-X

Since these must include at least one row from Diag,(1 — 41), we have Ji, (D) C

(1 - 91). We also have
det (Diagy (1 — ) = 271-1(1 — &), (1 — &) det(Lyy)) € Jy (D)
S0 (D) = (1 - 5). 0

Example 3.2. Consider the Coxeter systems given in Figure 3.2. Applying the

results of this section and of §2.2.2, we have

AQY A>2
(1+47,3) A=1
AX(Pry ) = Ax(Pryy,) = S 1+#%,9) A=0

1+6)  A=-1

0 A< 1

\
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and

3 3 3
3 3 3 3 5
Figure 3.2: Three odd Coxeter systems
4
Z{10y) A>1

Ax(Pry ) = S

B)\(Pl"l,'l!fl) = 4 (1 — Q')E) A=0,

BA(Pras) = Ba(Praws) = $ (1= 6,1+ %)

0

“

(1+51,3) A=0

b

(1+6) A=-1

{0 A< —1

A>2

A=1-

A<l

90

Thus, the A-ideals are unable to distinguish the first and second of these, while the

B-ideals can. On the other hand, the B-ideals cannot distinguish the second and

third, whereas the A-ideals can. Both the A- and the B-ideals can distinguish the
first and the third.

3.2.2 The B-ideals of triangle groups

Triangle groups (i m are groups given by a presentation of the form

Pk,l,m = (a, b; ak, bl, (ab)m)

¢
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for some integers k,l,m > 2. Since Gy mt = Gim whenever (K',I',m') is a per-
mutation of (k,l,m), we may assume that 2 < k <[ < m.

When
1 1 1
Sht4s<1
PRI
Pr,m is CA (this can be shown, for example, by the star graph test of [20]). In this

case, using Proposition 3.3, we have

rZG,‘g?l,m -
(1-al=-b)=1IG,, A=
Ba(Papm) = 4 (1 —a)(1 —b), (1 — a)(1 — ab), (1 — b)(1 — ab))
= (16, )" o
(1 —a)(1 —b)(1 - ab)) _
\O A< -1

The distinct triples (k, I, m) whén T+ % > 1 are:
1. (2,2,m), m > 2;
2. (2,3,3);
3. (2,3,4);
4. (2,3,5).

In each of these cases, there is a tessellation of the sphere by k-, [~ and 2m-gons. The
dual of this tessellation gives a spherical picture Dy, over Py, which, together
with a dipole for each relator, gives a generating set of pictures [18], [20]. We use
the associated 3-presentation Tim to calculate the B-ideals.

1. (2,2,m). The group G2, is an aspherical Coxeter group, whose graph has
two vertices joined by an edge. The picture Dy 9, is then of the form of Figure 1.9,
with u = a, v = b, 9¥(a,b) = m.

When m is odd, Ga, is an odd Coxeter group, so, by Theorem 3.6, Ggfg,m = (a)
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and
f

Zia) A>1
Ba(Pagm) = I{a) A=0-

\0 A<O0
When m is even, G35, = (a) X (b) = Zy X Zy and
[ 1-a 0 0 |
D('E,z,m)“b _ 0 1-—-b 0 .
0 0 1—ab
i —2(1+ab) —2(a+b) 1+a

Thus, since
| Jo (D) = (1 —a1— b,%(l +ab), 1 +a)
=(1-a,1-5,2),
J(D®) = ((t — a)(1 = b), (1 — a)(1 — ab),
%(1 — a)(1+ab), (1 — b)(1 — ab),
%‘(1 —b)(1+ab), (1 - b)(1+ a))
= (I{{a) x (b))%,
J3(D®) =0,
we have )
Z{{a) x (b)) A =2
1-a,1-02) A=1
B(Paom) = 4

(T((ay x ) A=0
0 A<0

\

2. (2,3,3). The picture Dy is illustrated in Figure 3.3. Here G§% 3 = (b) = Zs,

where ¢ = 1, and

[ 0 0 o |
0 1—b 0
D(Taaa)” = 0 0 1—b |’
—2(1+b+0) —(24+b+b*) 1+0b+20°
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Figure 3.3: The picture Dy 33

S0 )
Z(b) A>2
(1—=0,2+b+0"2(1+b+0%)=(2,1-b) A=1
By (Pa3,3) = < .
(T=0)2% 1 —=b)(2+b+b%) =I{b) A=0
|0 A<O

3. (2,3,4). The picture Dy 34 is illustrated in Figure 3.4. Here G5, = (a) with
b=1and

l—-a 0 0
0 0 0
D(7§,3,4)ab - ’
0 0 1—a
—12a —(4+4a) 3+ 3]
S0 )
Z{a) A>2
(1-a,12¢,4(1+a),3(1+a)) =(2,1—a) A=1
By(Pyas) = 4 |
(2(1—a),12(1 — a)) = 2I{a) A=0
0 A<0

\
4. (2,3,5). The picture Dy is illustrated in Figure 3.5. Since G§% s = 1, we only

need to know expgp(IDos5) for each relator, so we have omitted the labelling and
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Figure 3.4: The picture 02 3.4

orientations from the arcs and the basepoints of the discs. Note that the orientation
of each disc labelled a2 and b is negative, while those labelled (ab)s is positive and

there are, respectively, 30, 20 and 12 discs with these labels. Thus

0 0 0
0 0 0
0 0 0
=30 20 12
and so
y/ A> 2

B\(V23) = <@ A=1
0 A< 1

For the sake of completeness, we calculate the ,4-ideals of the presentations Vk,i,me

For every such presentation,

D (V k,m) = 0
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Figure 3.5: The picture €235

where
Ss=1+6+ eeet *1,
Sa&= 1 + ab+ *+++ (05)m 1,
SO
A>1
(£a, 65 "aft) A= 0
(Ma~6i ~'ar-abj “b™ab) A = —1
0 A< -1
For the four cases distinguished above, we have
Z((a) x (5)) A>1
(1+a,1+s,m) A=0
22,m) — < (m even),

(+ayl+p) A=

0 A<

95
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4
Z{a) A>1
(14+a,m) A=0
A\(Pa2m) = 4 (m odd),
(1+a) A=-1
0 A< -1
Z4b) A>1
2,1+b6+0%) A=0
Ax(Pajs3) = § ,
(1+b+8%) A=-1
L0 A< -1
4
Z{a) A>1
(3,1+a) A=0
Ax(Pa34) = § )
(1+a) A=-1
0 A< 1
\
Z A> -1
Ax(Pas5) = 4 :
\U A< -1




Chapter 4

E-ideals: Invariants from a

resolution

In this chapter, we define a family of new invariants for groups, which includes the
A- and B-ideals. As for the A- and B-ideals, these new invariants are calculated

from a matrix, which we obtain from a free resolution.

4.1 The E-ideals of a group

For n > 0, suppose that G is a group of type FP, over K and that F = (F;, &;)
is a KG-free resolution of type F'P, for G. Recall that, if we choose free bases
for the free modules F,;1, F,, then associated with the (n + 1)-st boundary map
Ont1 : Fny1 — Fy of F is a matrix D,,(F). If r; is the rank of F;, then D, (F) is an
Tpt1 X Tp, matrix over KG. For an abelianising functor ¥, we define, for A € Z, the

A-th ET-ideal of G over K to be
Ep\(G, K) = Jyu(7)-2(Dn(F)7).

The chain E} (G, K) of ideals ET (G, K) is then an ascending chain of ideals in the
ring KGT. When K = Z, we omit it, setting EX (G) = EI(G,Z) and, as usual, we

fail to specify the functor T when it is .

Theorem 4.1. The ideals EX (G, K) are well-defined and are invariants of the group

G up to isomorphism, that is,
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i) the ideals depend neither on the choice of resolution F, nor on the choice of

bases for F,, and F,y1; and
it) if G & Gy, then EL(G, K) 2O ET(Gy, K).

We defer the proof of this theorem to the next section.

If K is a gcd domain, then so is KGY/, so, for a group G of type F'P,, we define
the A-th ey-polynomial of G with coefficients in K, e, z(G, K), to be a generator of
the smallest principal ideal containing EZ{ A\(G, K). We write e, (G, Z) as e, (G).
We then have an infinite sequence of Laurent polynomials with K-coefficients, each
of which divides its predecessor. A consequence of Theorem 4.1 is that these are
well-defined (up to multiplication by a unit) and are group invariants in the sense

of the following corollary.

Corollary 4.2. If o : G = Gy is an isomorphism, then, for each A € Z, e, 3(Go, K)

can be chosen such that
oztf(en,;\(G, K)) = e, 2 (Go, K).

Recall that, if G is of type F'F,, then it is of type F' P, over K for any commutative
ring K. The following result shows that, if we know the chain EX(G), then we can
easily obtain the chain ET(G, K). For any group G, let i : ZG — KG be the ring
homomorphism induced by 1 = 1€ K, g g (g € G).

Theorem 4.3. If G is of type F'P,, then
EX(G,K) = (1erBL (@),
for any commutative ring K.

Proof. It F = (F;,0;) is a ZG-free resolution of type FP, for G, then K ®z F
(which G acts on diagonally) is a KG-free resolution of K ®z Z = K of type FP,
(see, for example, [16]). A choice of bases for F,1, F, induces a choice of bases for

K ®z Fi1, K @ F,, with respect to which

Dn(K ®z F) = D,(F)*s.
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We then have

ET (G, K) = Jy,kenr)-2(Dn(K ®2 F)")
= Ja(F)-A((Dn(F)")'e7)
= (['GTEZ,A(G)) )

since T&ie = Lgr7g and X (K ®z F) = xu(F). L]

For this reason, we tend to consider primarily the invariants with Z-coefficients,
although a group could be of type F'P, over some K # Z, but not of type F'P,.

We now relate these new FE-ideals to the A- and B-ideals of Chapters 2 and 3.
Let 7 = (x;r;d) be a 3-presentation for G = G(7) and let P = (x;r). Consider
the associated partial resolution JFr for G as in (1.12). With respect to the bases
{ex:z € x} and {eg: R € r}, we have

Dy(Fr) = %] . = D(P),

TEX
the Jacobian matrix of P, and, with respect to the bases {eg: R € r} and {ep: D €
d},
Dy(Fr) = ||<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>