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A bstract

The purpose of this thesis is to explore, apply and develop statistical tools in 
the area which has been called Spatial Statistics. Through all of this work, a 
key link is the use of smoothers. Specifically, loess and splines are used in the 
second chapter and kernel smoothers in the rest. Smoothing techniques are 
now widely used in a variety of modelling problems. It is their application to 
the specific area of spatial statistics which is the focus of this thesis.

One particular application involves the modelling the mackerel egg density in 
the eastern Atlantic This led to the proposal of a generalized additive model 
for these data. Due to lack of distributional theory for estimators and methods 
of selection of a model, the proposed model is the result of an analysis which is 
analogous to th a t used in the context of generalized linear models. To assess 
and compare this model with others proposed in the literature, from the point 
of view of the estimation of the to tal number of mackerel eggs, the technique 
of the bootstrap is used.

The spatial processes considered in each chapter are of the form:

Y(si )  =  /(*(«»)) +e (s i ) ,  i =  l , . . . , n

where x  =  (aq, £2, . . . ,  x m) is a vector of covariates and s*, i — 1, . . . ,  n  are 
the locations where the process {Y( s )  : s  e  D}  is observed, and e(s;), i =  
1, . . .  , n  is the process of errors at the observed locations which is assumed 
gaussian, stationary and isotropic through the whole work.

Checking the covariance structure of this kind of spatial processes led to the 
development of a test statistic for the null hypothesis of constant variogram. 
Because of the lack of distributional theory for the residuals of a generalized 
additive model, the test is proposed for the case where the function /  of the 
covariates is a linear function.



A test for checking homoscedasticity in a linear model is also proposed as a 
preliminary study of th a t for the constant variogram. In both  cases, reference 
bands are also proposed as graphical tools to check constant variance and 
constant variogram, respectively.

The block-bootstrap approach is analyzed to build confidence intervals for 
the variogram when it is generated from a regular grid in M2. The percentage 
coverage of these intervals is compared with a technique proposed in the 
literature under more restrictive assumptions.

Techniques of resampling and simulation are employed through the whole 
work, and the available methods in this area are reviewed and compared as a 
separate exercise. Further suggestions are also made.
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Or like the borealis race 
that flit ere you can point their place;

Or like the rainbow’s lovely form  
Evanishing amid the storm.

Nae man can tether time nor tide;
Robert Burns

Inconmesurable silencio de las noches en Los Andes 
que permite escuchar a las estrellas
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C hapter 1

Introduction

Aqui me pongo a cantar 

al compas de la viguela....

Jose Hernandez

1.1 Spatial data and sm oothing techniques

Spatial da ta  arise when observations on random variables are related to lo­

cations in a set of two or more dimensions and their properties referred to 

this spatial set. In other words, spatial data are realizations of a stochastic 

process (T (s )  : s € D }  where D  is a subset of with m >  2 and T (s) can 

be a vector or a single random variable. Through this work it will be a single 

variable. N atural examples of spatial data are those dealing with resource 

assessment, environmental monitoring, medical imaging, etc.

1



C H APTER 1. INTRODUCTION 2

The set D can be assumed to have different properties. Throughout this work 

it will be considered a fixed subset of which contains an m-dimensional 

rectangle of positive volume. Nevertheless, most of the results obtained here 

can be extended to other kind of sets, such as regular or irregular lattices in 

Mm. The observed set of data in the examples and applied work will display 

different characteristics such as regular grids in R2 in the simulations, regular 

but not rectangular set as in mackerel data, and irregular and not rectangular 

as in the examples dealing with spatial monitoring in chapter 4. All these 

different set of data are shown in Figure 1.1.

0.5
X

15

10

5

0
6040

60

50

40

50 </>1
-C
troc

20

100 200 300
east-west

Figure 1.1. On the left a set of spatial data on a regular grid in [0,1]J is shown. 
In the middle, a regular set of data in the modelling mackerel data. On the right, 
the irregular locations of billabongs as discussed in chapter 4.

A preliminary question to modelling a spatial process is dealing with its 

mean and variance-covariance structure. When the parametric tools, so few
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in this context, are not suitable to give an answer to these questions, the 

non-parametric ones can offer a flexible alternative to them. Both problems, 

modelling the mean and the variance-covariance m atrix are tackled in this 

work. These questions are im portant because the presence and type of spa­

tial correlation present in data can markedly affect the type of analysis which 

it is necessary adopt.

Modelling the mean is studied through an exercise in which smoother splines 

and loess (locally-weighted running smoothers) are used to fit a generalised 

additive model to a set of data as explained in the next section. In the 

second problem, the variance-covariance structure is modelled and here kernel 

smoothers are used. Also these tools are suggested as a way to simulate a 

isotropic stationary process.

As is widely known, the price paid for the flexibility of the non-parametric 

techniques is the difficulty to find the distributions and properties of the 

statistics involved in the analysis.

1.2 A pplied  work

One particular applied statistical problem dealing with spatial data  has been 

tackled. A brief summary of it is given now.

The estimation of the total number of mackerel eggs from a survey as described 

in chapter 2 has been carried out. In this case, the original set of data was 

manipulated in order to make it more homogeneous, given the different criteria
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under which parts of the survey were conducted.

A generalised additive model was fitted to the data. The response variable is 

the logarithm of the density of mackerel egg and the covariates are latitude, 

longitude, bottom  depth and distance to the two hundred meters contour, 

as suggested in previous studies. Different nested generalised additive models 

were considered and a model with all of these covariates was chosen, following 

an examination of deviances as suggested by Hastie and Tibshirani (1990). 

These models were also compared with the model of Borchers et al.(1994) 

from the point of view of their behaviour in estimating the to ta l number of 

mackerel eggs.

The main aim in this approach was to propose a model to estimate the total 

number of mackerel eggs which also can take into account the nature and 

meaning of the way in which these variables are introduced into the model.

This exercise was also a very useful introduction to the manipulation of spatial 

data. The exploration of techniques of re-sampling such as the bootstrap, 

and the awareness of the necessity to have a tool to analyse the structure of 

dependence or covariance was observed.

1.3 A n exercise to  check hom oscedasticity

W ith the idea of searching for tools for checking for a constant variogram, a 

preliminary exercise has been carried out. The model considered was a simple 

linear model Yi — +  j3\Xi +  e*, i = 1, . . . ,  n  where Si are normal random



C H APTER 1. INTRO DU CTIO N 5

variables with zero-mean and variance of, i = 1 , . . . , n  and the statistical 

hypotheses to be considered were

H 0 : of =  tjg, i =

Hi : of =  smooth function of i =  1, . . . ,  n

To check these hypotheses, tools from the context of smoothing techniques 

were used to compare the behaviour of the variables s* =  \ri\1/2 i =  1, . . . ,  n, 

where the ?V s are the least squares residuals from fitting the data  to the linear 

model under the null hypothesis. A kernel smoothed version of the variables 

Sj, i =  1, . . . ,  n, was considered, in order to check their behaviour under the 

null and the alternative hypotheses.

A quadratic form in the variables s*, i = 1 , . . . ,  n  arose as a natural test 

statistic. The distribution of this quadratic form was approximated by the 

distribution of a shifted and scaled x 2 random variable by matching their 

moments.

A simulation study was performed in order to check the power and size of 

the test proposed. The approximate distribution of the test statistic was also 

compared with the empirical bootstrap distribution following a simulation 

study.

This approach provided useful preparation from the point of view of the knowl­

edge of methods of approximation of the distribution of quadratic forms and 

of investigating smooth versions of the square root of residuals, which have 

the attractive property of having approximately normal distribution.
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1.4 Techniques for checking covariance struc­

ture

W ith the knowledge and training provided by the previous exercise, a search 

for tools to check for a constant variogram, or independence of the variables 

in a spatial process, was begun.

Under the assumption of second order stationarity and isotropy, the assump­

tion of constant variogram leads naturally to the assumption of independence 

of the variables in the process.

The idea of considering least squares residuals if the process is modelled by 

a linear model was again considered. In this case the ’’pilot” variables to 

check constant variogram were not precisely the least squares residuals but 

their differences for each value of the distance between two points in the set 

of data. These variables are also normal and, consequently, the square root 

of their absolute values are again approximately normal. This property has 

been used in the literature also in the context of spatial estimation (see, for 

instance, Hawkins & Cressie (1984)).

W ith these variables and the resource of the kernel smoothers, a test statistic 

for the hypothesis:

H 0 : 2 ^(hi) =  a%, z =  1, . . . ,  n

H\ : 2j(h i)  — smooth function of hi, i =  1, . . . ,  n

where 27(h) =  var(Y (s) — Y( t )  for (s , t )  such tha t || s — t  ||=  h was built
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by using the the variables and smoothers described before. The test statistic 

here is again a quadratic form and despite the singular covariance m atrix of 

the variables, its distribution can also be approximated by a x 2 distribution.

A modification of this statistic is also proposed for the case of a data  set on 

a regular grid with the aim of doing more efficient calculations.

Bootstrap and perm utation techniques are also employed in order to study 

the power and size of the test. Simulated examples, and the application of the 

test to data dealing with indicators of pollution in the area nearby the river 

Clyde in Glasgow, and indicators of the quality of water of some billabongs 

in Australia, are also considered.

As a graphical tool to check the structure of a covariance or variogram, ref­

erence bands are built and displayed for the examples mentioned.

1.5 A lgorithm s for sim ulation and re-sam pling

In the context of spatial statistics, the algorithm for simulating a process effi­

ciently is an indisputable tool. A review of the different approaches proposed 

in the literature is given in chapter 5.

An idea for simulating a dependent Gaussian process, starting from an inde­

pendent one by using smoothing techniques is also suggested.

Different approaches to re-sampling are also considered and the method of 

moving block-bootstrap is used to build confidence intervals for the variogram
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of a Gaussian process. A simulation study was carried out to calculate the 

coverage of these intervals. A comparison of the coverage percentages of this 

method and of the confidence intervals from a distribution for the classical 

estim ator of the semi-variogram as calculated under a more restrictive as­

sumption (Baickowsky &, Mardia, (1994)), is performed.

The behaviour of this block-bootstrap method under an assumption of non­

normality is considered.

1.6 Sum m ary of chapters

1. C h a p te r  2 is an exercise of applied work whose theoretical background 

is in the context of generalized additive models and the ordinary boot­

strap.

2. C h a p te r  3 investigates a proposal of a test statistic for homoscedastic- 

ity in a linear model. Kernel smoothers and the distribution of quadratic 

forms are used in this test. Graphical tools are also proposed.

3. C h a p te r  4 investigates a proposal for a test for constant variogram for 

a spatial process under the assumption of second order stationarity and 

isotropy. Different versions for the test are considered. A simulation 

study to calculate the power and size of the test is performed under 

different options for the calculation of the distribution of the test statis­

tic. Reference bands as graphical tools are proposed and applications 

to examples are gRen.

4. C h a p te r  5 reviews methods of simulation and re-sampling for spatial
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data and makes new proposals. A particular case of the block-bootstrap 

method in its version of ” moving windows” is used to build confidence 

bands for the variogram.

5. C h a p te r  6 is a chapter of reflections about further work and extensions 

of the methods proposed in this study.



C hapter 2

A nalysing the d istribution of 

M ackerel egg biom ass

2.1 Introduction

The necessity of modelling the biomass of different species of fish has been a 

preoccupation of several scientists around the world. The data considered in 

this chapter refer to the biomass of mackerel found near the costs of Spain, 

France, Ireland and the United Kingdom. Different models have been studied 

and compared in order to estimate this biomass.

The param eter of interest here is the ”total number of mackerel eggs” which 

can be defined as:

10
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n
T = a Y , E ( D i )  (2.1)

i=1

where Di is the density of mackerel-eggs (as above) at the point i and a is 

constant related to the volume of the set where the to tal is required to be 

estimated.

Previous work has identified a small number of variables which are related to 

the variation in egg density. For a spatial approach it seems to be convenient 

to model the response variable (density of eggs or a transformation of it) as an 

additive function of some relevant covariates. Parametric models do not seem 

to be flexible enough to capture the relationships with some covariates such as 

bottom  depth. In this context, the generalised additive models considered by 

Hastie and Tibshirani (1990) offer an attractive tool. Some of these previous 

works are described in section 2.2.

The data were collected at one particular time, which led to this study being 

carried out with a simple spatial model. It was also necessary to carry out 

some initial manipulation of the data. Large numbers of zero-values for the 

density of eggs is not unusual in samples of this type. The geographical 

position of the zero-valued points can easily change if the sample is collected 

at different times, as is explained later. Also, the different countries involved 

used different methodologies. This results in very different densities of points 

in some sub-areas of the region. For these reasons the original sampled points 

were transformed to a regular grid and the points corresponding to zero-values 

for egg density of mackerel were omitted. The way in which the sample is 

m anipulated before fitting a model to them is explained in section 2.3.
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The use of generalised additive models (GAM’s) is not new in the literature 

on estimation of fish-biomass. However, some previous works have tackled 

the problem with models in which the functional dependence of the response 

variable on covariates such as latitude and longitude is rather complex. Some 

general background and the notation is outlined in section 2.4.

A natural model which uses the variables latitude and longitude pooled to­

gether in a relationship which is thought of as a smooth combination of both 

is explored. Because of the lack of inference theory for comparing different 

nested plausible models, a descriptive methodology has been used, by analogy 

with the tools from generalised linear models theory. The selection of an ade­

quate generalised linear model for the variable log density of eggs is analysed 

in section 2.5.

The descriptive approach for model selection is then checked with tools pro­

vide by the bootstrap environment. In fact, the distributional theory for 

estimators in a G.A.M has still not been developed even when there are as­

sumptions of normality on the variables involved. Hence, an estimated value 

for the to tal biomass of mackerel in the sampled area has been calculated 

by bootstrapping the distributions of this total. This has been carried out 

for a variety of generalised additive models and the results compared. These 

models are compared with a previous model due to Borchers et al. (1994). 

The results are shown in section 2.6 .

Some conclusions and comparisons with a previous model are outlined in 

section 2.7.
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2.2 Previous literature

A large proportion of zero-values is a common situation in fish surveys and 

especially in multi-species fish surveys. In fact, sometimes the area in which 

a specific species is to be found generally is not well known and the sample 

may overlap a considerable part of unoccupied ’’habita t” . However, dealing 

with the zero-values separately may lead to inefficient estimators of abun­

dance because a suitable habitat might change from time to time for different 

reasons or an area may be unoccupied simply because of a low population 

level. These ideas motived the work of Pennington (1983) on the the problem 

of the biomass estimation of Mackerel. It is assumed th a t X is a random 

variable so that, P r ( X  ^  0) =  p, ^  0) =  fi, v a r ( X \ X  ^  0) =  a2 and

E ( X )  =  a ,  var {X)  =  / ? .

Let x i ,X 2 , • • •, x mt Xm+i, . . . ,  x n be a sample from X where the first m values 

are non-zero. It was shown by Aitchison (1955) th a t if for m  > 0, a(m), e(m) 

and /(m) are unbiased estimators for /j,, /i2 and a2, respectively, then

T f i
c = —a,(m) if m  > 0 and c =  0 if m  — 0

n v '

TY l 777, / t t , — T Y l \
and d — — f im) -|---- ( --------— ) etm\ if m  > 0 and d — 0 if m  =  0

n n \  n — 1 J v }

are unbiased estimators of a  and (3 respectively. One param eter of interest 

in the applications is, in fact, var(c) and, hence, a good estimator of this

param eter is very useful. Using an unbiased estimator of the sample mean

for the non-zero values, a minimum variance unbiased estim ator of var(c) is 

given in this paper. Pennington applied these ideas to the case in which the 

distribution of the random variable X conditioned on the non-zero values is
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log-normal. In this context the distribution of X is called the A distribution 

and expressions for c, d, and a minimum variance unbiased estimator for 

var(c) were calculated and applied to estimate the total egg production of 

Atlantic mackerel. The total estimate of spawning stock size based in the 

to tal egg production compared favourably with other estimates using other 

methodologies. This methodology was adopted by the 1993 Mackerel/Horse 

Mackerel Egg Production Workshop.

Another approach to biomass estimation is to model the egg density as a 

function of some covariates. Some of the ideas underlying this approach are 

th a t at least some of the variation in the egg density is due to the variation 

in covariates (such as latitude, longitude, time, bottom  depth, etc) and these 

models provide an objective mean of interpolating into UN-sampled areas. 

In this context, the works by Pope and Woolner (1985) and Bochers et al. 

(1994) should be mentioned.

Pope and Woolner (1985) fitted quadratic response surfaces to latitude, longi­

tude and time. They combined a non-parametric estimate of mean egg abun­

dance with a variance estimator based on the assumption of a log-normal 

distribution for egg density.

Borchers et al. (1994) considered the egg density (for Mackerel) as a function 

of latitude, longitude, bottom -depth and distance from 200m contour. In this 

work, the emphasis is on the selection of a good model which focuses on its 

efficiency as a predictor model and its simplicity. They used the tool of the 

generalised additive model as proposed by Hastie and Tibshirani (1990). The 

log of density is expressed as an additive function of these covariates. This
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model is:

log(D) = j3o+S(lat)-\-S(lon)-\-S(BDp)+S(D200)+Pi(lat.lon)-\-{32(lat.BDp)+£

where lat is the latitude, Ion is the longitude, D200 is the distance from 200 m 

contour and BDp is the bottom  depth. S is a spline smoother and /30 and A  are 

constants. An analysis of the deviance for the estimated model was performed. 

The distribution of errors e is assumed to be over-dispersed Poisson. The 

variability of the total estimated is studied via the parametric bootstrap. 

It was assumed th a t for each point i in the sample grid, Tj =  log{Dj) is 

an over-dispersed Poisson random variable with mean equal to the modelled 

estimated abundance in this point. The residuals Ti are also over-dispersed 

Poisson random variables with cumulative distribution function A- Then, the 

transformed residuals Ri  =  A  Ai) are identically distributed (uniform if there 

is no over-dispersion) random variables and a bootstrap methodology can be 

applied in order to estimate the variance of the estimate. The steps in the 

paper can be written as follows:

1. Calculate the residuals =  yi — yi for each point i in the sampled area.

2. Transform the residuals by using their cumulative distributions to obtain 

identically distributed (uniform if there is no over-dispersion) random 

variables Ri =  A A A

3. Generate values R\  from the distribution Fi (a perm utation of the values 

Ri  and a corresponding assignment to points in the sampled area is 

enough).

4. Calculate back transformed values by using the inverse function of A ,
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e.g., r? =  ^ ' ( 1? )

5. Obtain a bootstrap estimation by adding r* to the estimated value

y-h y* = yi +  r*

6. Repeat steps 3 to 5 a reasonable number of times.

7. Calculate a bootstrap estimation of the variance of ^  with the bootstrap 

values yi*.

The bootstrap methodology as described above was adjusted because of nu­

merical problems with the behaviour of the distributions of residuals and, 

as a consequence, it led to a high and non-trivial computational effort. The 

zero-values for density were not considered in this model.

Even though this model is useful as a tool of exploratory analysis, the way 

in which the covariates are introduced is rather complex. As was mentioned 

in the introduction, tools provided by G.A.M.’s are considered here in order 

to build a more suitable model. The lack of the corresponding distributional 

theory for G.A.M. is also addressed by an appropriate bootstrap technique. 

A confidence interval for the biomass of egg mackerel is calculated from the 

empirical distributions of the total biomass as estimated with different models.

2.3 The data

The data considered for the study here were collected by Dr I.G. Priede 

Dept, of Zoology, University of Aberdeen, U.K.. They were obtained with the
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assistance of Professor Steve Buckland of the Wildlife Population Assessment 

Research Group, University of St Andrews,U.K. The observed sample is a 

set of five variables: density of eggs, longitude, latitude, bottom  depth and 

distance from 200m contour observed in 634 sample units.

The geographical extension of the sample is on a band between 44.25 and 

57.75 northern latitude and 1.25 and 14.75 western longitude. This band 

covers part of the coasts of Spain, France, Ireland and Great Britain as is 

shown in Figure 2.1.

8

•15 -5 0 5•10

Figure 2.1. The points indicates places where values for mackerel egg density 
and values for others covariates as bottom depth and distance from 200m contour 
were taken.

The variable ” distance from 200m contour” is the shortest distance, in metres, 

from the sampled points to a line drawn to follow the depth of 200m. It is 

negative if the sampled point is between the coast and the 200m contour 

line and positive if it is on the opposite side. Its values are between -173km 

and 165.8km with an average of 48km, a median of 5.15km and a standard 

deviation of 44.27km.
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Bottom Depth is the depth (in meters) at the sampled point. Its values are 

in the range of 42m to 4450m with an average of 836.378, a median of 171.5m 

and a standard deviation of 128.6m for this sample.

The response variable is the density of mackerel eggs. Its values were obtained 

as a conversion of observed eggs at a specific stage into daily egg production. 

Its values are in the range of 0 and 601.708 with an average of 38.22, a median 

of 5.125 and a standard deviation of 2.8. A transformation to the logarithm of 

this variable is considered for the statistical analysis to normalise this variable 

as advised in previous studies.

2.3.1 T h e zero-valued data

A suitable habitat for mobile populations may change from time to time due 

to many factors including the timing of the survey. Also an area may be 

unoccupied simply because of a low population level (Pennington (1983)).

In this study the zero-valued data were concentrated mostly in the areas 

corresponding to the lowest latitudes. As shown in the Figure 2.2, they were 

in areas at the border of non-zero values. From 634 points in the original 

sample, 265 had a zero-value for the density of eggs. However, these values 

were mostly concentrated in a small area compared with the whole sampled 

area (Figure 2.2).

This geographical distribution, the considerably large number of points with 

this feature, and the snapshot time characteristic of the sample led to the 

decision of ignoring the zero-values data at least in a preliminary approach.
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T33

■10 *5•15 0 5
long tluda

F ig u re  2.2. The points correspond to places with zero value for mackerel egg 
density

2.3.2 T he sam ple grid

The original sample grid (Figure 2.1) has been made from samples taken 

under different criteria depending on the country which designed it. In the 

areas near to Spain the density of points is considerable higher. This is also 

the area with the highest density of zero-values for the density of eggs and it 

is, jointly with other smaller areas, on the border of the whole region under 

consideration.

These reasons led to the construction of a regular grid in order to simplify 

the treatm ent and analysis of the data.

In this context ’’regular grid” means a grid in which the absolute difference
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between two consecutive values of latitude is 0.5 degrees and the same rule 

is used for longitude (Figure 2.3). The average values of the covariates and 

the response variable were considered in each cell of the regularized grid. 

The new extreme values for the response variable were 0.6 and 365.88 for 

the minimum and maximum respectively. This transformation of the data 

removes the out-lier of 601.708 for this variable.

The distribution of the variable ” density of eggs” is approximately log-normal. 

This led to the log-transformation of this variable.

8

11

■15 -10 -5 0 5

Figure 2.3. The regular grid built from equally spaced values for latitude and 
longitude
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2.4 A  m odel for density  of m ackerel-egg

2.4.1 In trodu ction

To search for an estimator of the parameter ” total number of egg mackerel” as 

defined in 2.1, the model for the random variable "density of mackerel-eggs” 

was assumed as:

Di = d(xi)rjii £ =  1 , . . . , n (2.2)

where d is a function of the covariates latitude (lat), longitude (long), bottom  

depth (BDp) and distance to 200m contour (D200), xi  =  (lati, longii B D p i , D200j),

1. . . . ,  n  and r) =  (771, 772, . . . ,  rjn) is a vector of independent and identically dis­

tributed log-normal variables pi with a constant mean fi and constant variance 

v. This model can be written as:

Vi =  log(Di) = log(d(xi)) +  logfa),  £ =  l , . . . , n  (2.3)

or yi = f ( x i )  +£i where yi =  log(Di), /(a?*) =  log(d(xi)) and e* =  log(pi), 1 =

1. . . .  , n  is a zero-mean normal variable with variance a 2 — 2ln(/j,). For the

function f an additive model of the form

long, B D p , D200) =  long) +  f 2 (BDp) + f^(D200)

seems to be adequate according to biological and historical reasons (see section
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2 .2).

Under these assumptions, the parameter r  to be estimated, or more precisely 

To = a (given th a t a is known), can be expressed as:

n n n

r 0 =  E  £ (A ) =  E  d f r i M n )  =  E  d(x i)»  (2-4)
i=l i=l i=l

W ith this approach in view, tools from the Generalised Additive Models will 

be employed.

A natural estimator for r 0 is:

=  Tb =  exp(Yi) = 5^  exp(log(Di)) (2.5)
i=l i= 1

where Yi is the fitted value from the model to be chosen.

Consequently, some general ideas about Generalised Additive Models will be

considered now and then the challenge to build an appropriate generalised

additive model will be faced.

2.4 .2  G eneralised  A d d itive  M odels (G .A .M .)

Biological reasons lead naturally to the consideration of the density of eggs as a 

function of covariates such longitude and latitude, bottom  depth and distance 

from a line in the contour map. In this context, the generalised additive model 

as developed by Hastie and Tibshirani (1989) offers an attractive tool because
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it is possible to build a very general model under very general assumptions. 

Nevertheless, there are some different ways to cope with the idea of building 

a generalised additive model.

The Generalised Additive Model as proposed by Hastie and Tibshirani (1989) 

can be written as:

k
yj =  YI j =  i »  ■ • ■,n

i=1

where /x is an unknown parameter, A is a smooth function of the covari- 

ate (vector of covariates) X*, Xij is the value of the variable Xi  at the point 

j  i =  1, . . . ,  fc, and ej is a random variable with zero-mean, j  =  1, . . . ,  n. 

Therefore, in terms of mean values, and under the assumptions th a t the co­

variates are non-random (otherwise, expectation should be replaced by con­

ditioned expectations) this model can be written as:

k
E(Yj) = E A ( * « )

i = l

W ithin this general form of the model, estimated values for the functions A 

can be calculated. One of these numerical methodologies is the widely known 

back-fitting algorithm. Different approaches to the underlying theory for this 

algorithm can be considered. One of these deals with the idea of minimisation 

of the expression:

E(Y -  g ( X ))2

over the space of the functions g (X ) ,  where X  =  (Xl, A 2, . . . ,  X m) so th a t
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g ( X )  = f i(Xi)  belongs to the space H  = Hi  +  H 2 +  * • ■ +  H m and fa 

to Hi i ~  1 , . . . ,  m. Each set Hi is the space of the functions ®i(Xi) with 

expected value zero, finite second-order moment and an inner product defined 

for each pair of functions as the expected value of its product. The minimum 

exists and is unique because H is a closed space, but the terms fa(Xi) may 

not be uniquely determined. As in the case of ordinary linear regression, 

one way to find a solution is through a characterisation of residuals Yj — 

JliLi j  =  1) ■ ■ ■»n - In fact, the observed vector Y  =  (y1; Y2, . . . ,  Yn)

does not belong to H because of the error €j (Yj = f i (x ij) +  £j )j >3 —

1, . . .  , n  but it is possible to search for a solution g ( X )  = YliLi fa(Xi) in H, 

the orthogonal projection of Y. Because H is generated by Hj, j  = 1, . . . ,  m,  

Y  — g ( X )  should be orthogonal to for j  =  1 , . . . ,  m. It implies tha t the 

projection Pj of the residual vector Y  — g ( X )  for j  = 1, . . . ,  m  should be the 

null vector. These results can be written as:

rn
P j i y  -  g(X) )  =  Pj(V -  D  =  Oj, for j  =  1, . . . .  m

1

where Oj is the null vector in H j . and, the equality Pj( fj(xj ))  =  f j ( x j) implies

f j ( x j) = Pj(Y  -  IC /ife ))*  for j  =
* 7 - J

At this point it is necessary to define a projection Pj , j  =  1, . . .  ,m.  One 

method suggested by Hastie and Tibshirani (1990) is to represent a projection
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Pj by a linear smoother Sj. This leads to a system:

I  S 1 Sx . . .  S 1 A S { Y

S2 I  s2 ... s2 A
—

s 2y

S-rn $m Sm . . .  I frn . s m Y .

where Sj,  for j  — 1 is the matrix for the selected linear smoother.

Therefore, if the sample size is n, the matrix of the system above is an 

(nmxnm)-matrix. This system could be thought as a generalisation of the sys­

tem which leads to the normal equations in a linear regression model (Buja, 

Hastie and Tibshirani (1989)). Moreover, this system has the same shape 

corresponding to the widely known method of Gauss-Seidel for an algebraic 

system of equations and this idea has been used in order to find a ’’good” 

numerical solution for the said system. The algorithm can be formalised as 

follows:

1. Consider initial vectors . . . ,  fj{%nj))T , for j  = 

1, . . .  m .

2. Calculate the vector  ̂ = S j ( Y  — Y,i^j f f  ^) for j  =  1 , . . . ,  m.

3. Repeat 2 from 1=1 to the value of 1 for which the numerical vectors 

converge.

It is possible to prove th a t the system above is consistent under quite wide as­

sumptions for the smoothers S{, i =  1 , . . . ,  m  (see Buja, Hastie and Tibshirani 

(1989)).
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The linear smoothers used to model the data here are smoothing splines and 

locally-weighted running-line smoothers (loess). A linear smoother can be 

defined as follow:

Consider data  of the form (xi} y^), i =  1, . . . ,  n  if x  =  (sq, . . . ,  x n) and y  = 

(l / i , . . .  ,yn) and suppose the aim is to estimate locally, at a point scq, the 

dependency of y  on x.  This dependency can be expressed, for a fixed point 

Xq and a fixed vector a? as a function L XOtx  which is defined for y  in some set. 

When this function is linear, the smoother is called a "linear smoother” and 

its values can be expressed as: L XQtX{y) ~  S y  for a m atrix S which does not 

depend on y.

1. Smoothing splines

These splines are usually characterised as the solution of the minimisa­

tion of the functional:

n  /■+00

p{9) =  “  9ix i))2 +  A /  [y” (u)]2du
i=1 J~°°

Hence a spline smoother, for a fixed value of the constant A, is the 

function L in the Sobolev space W of functions g with absolutely con­

tinuous derivative and squared-integrable second derivative, such tha t 

p(L) = m m gew p(g). The parameter A is concerned with the ” amount 

of smoothing” for the spline. For A =  0, the solution is any interpo­

lating line and for A =  00 the solution is the least squares regression 

line. These kind of splines are also linear and it can be proved tha t the 

associated m atrix S is S  — (J +  AK ) ~ l where K  =  A TC~1A. A and 

C are tridiagonal matrices. If hi =  Xi+i — Xi for i =  1 , . . .  ,n,  A is a
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(n-2)xn m atrix with entries an =  1 /hi, a^i+i — — (1/hi +  l//ii+ i), and 

=  l//ij+ i, and C is a (n-2)x(n-2) symmetric m atrix with entries 

Q—i,i Q,z-“i — ^ i/6  and Qj — (/ij T  /^_|-i)/3.

2. Locally-weighted running-line smoothers (loess)

These smoothers can be considered as a particular case of those which 

are usually referred in the literature as ”kernel smoothers” . The kernel 

smoothers are smoothers such that, the i?-entry, say s# in the m atrix 

S are simple functions of weights w(a;o; a;) which decrease as a function 

of |a:o ~  ^ilj where x ^ i  = 1, . . . ,  n  are the components of the vector x.  

These weights are generally called "kernel functions” .

Several kinds of kernel functions can be found in the specific literature 

and a good choice of them is usually concerned with the context. An 

example considered several times in this thesis is th a t concerning with 

kernel functions of the form

The locally-weighted running smoothers (loess) combine the idea of

smoothness features of the kernel smoothers. Let the target point be 

s 0, k a  positive integer number to define the number of nearest neigh­

bours of x0, N ( xq) the set of these k nearest neighbours and A(aj0) the 

maximum distance from each point in N ( x o) to xq. The weight Wi is

dealing with the density of points close to the target point and the
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assigned to each point Xi using the function:

Wi(x0; a?) ~  < if  ||a:o -  r c j | |  >  A ( a : 0 )c

0 otherwise

where c is a normalising constant.

These weights then define the smoothing matrix as described in 1 above. 

The loess smoothers are easily applied to more than one variable prob­

lems as in the case studied here.

If a smoother can be expressed as L XOiX(y) = S y  (linear smoother), its d e ­

grees o f freed o m  is defined as:

The G.A.M. is implemented in the Splus software environment with smooth­

ing splines and locally-weighted running-line smoothers, and with the possi­

bility of extension to other smoothers. Because of its flexibility to extend to 

more than one dimension, the loess smoothers offer a very useful tool in this 

work. Nevertheless models which involve other smoothers were also built.

One of the difficulties with the selection of an appropriate generalised additive 

model involving smoothers is dealing with their degrees of freedom. Figure 2.4 

shows plots of smoothing splines with different degrees of freedom for bottom  

depth (BDp). For smoothing splines the higher the value of the degrees of 

freedom the more flexible the result. The notation s(x, l)  will be used to 

indicate ’’smoothing spline on the variable x with 1 degrees of freedom” For

n

df = tr(S)  = Yy  A>: (2 .6)
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loess smoothers the degrees of freedom are more complicated to interpret but 

they are quite flexible and have the very important possibility to be used for 

more than one dimensional covariates.

smoothing spline, degree of freedom = 2
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Figure 2.4. The fitted values of log(density of mackerel) to G.A.M. models where 
the only c.ovariate is bottom depth are plotted against this covariate. Different 
smoother was used in each panel.

Figure 2.5 shows similar plots to those in Figure 2.4 but for the variable 

distance from 200m contour. The plot on the right bottom  corner of the 

Figure 2.4 seems to be very similar to other alternative spline smoothers. 

This graphical exploration supports the decision of considering a loess for a 

term in the model for the covariate bottom depth. An analogous conclusion 

can be drawn from the Figure 2.5 for the variable distance from 200in contour.
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Figure 2.5. The fitted values of log(density of mackerel egg) to G.A.M. models 
where the only covariate is distance from 200m contour are plotted against this 
covariate. Different smoother was used in each panel.

The variables latitude and longitude are considered jointly below in one term 

of an appropriate additive model. Hence, in this case the most convenient 

smoother to resort to is loess. The selection of loess as the smoother for each 

term  in the model will also simplify the interpretation of the selected additive 

model.
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2.5 Selection  of m odels

In the context of generalised additive models, the response variable of interest 

here is density of mackerel eggs. A plot of the logarithm of this variable is 

shown in Figure 2.6 for each spatial location on the regularized grid. This

S 2.

0-

56

50
46

longitude latitude

Figure 2.6. The observed values of log(densit,y of mackerel eggs) at each point 
on the regularized grid.

study was started by exploring graphically the dependency of the response 

variable on each of the mentioned covariates under the assumption tha t the 

mackerel data come from a population in which the log (density) of eggs can be 

modelled as a sum of functions of the covariates latitude, longitude, bottom- 

depth and distance from 200 m. contour, plus an error.

Figure 2.7 shows the values of log(density) replaced by those from the loess. 

In fact, it is necessary to consider the dependence of log(density) on the 

covariates latitude and longitude jointly rather than separately. The loess
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Figure 2.7. The values of log(density of mackerel eggs) fitted to the Generalised 
Additive model (G.A.M.) log(densi ty) =  loess(lati tude,  longitude) at each point 
on the regularized grid .

smoother offers possible means of doing this, allowing the use of a term in a 

generalised additive model.

The selection of suitable smooth terms for the model is carried out by analysis 

of deviance. This, as suggested by Hastie and Tibshirani (1990), is based on 

the analogous approach for the generalised linear models. The most general 

ideas are introduced briefly now. In this work we have tackled this problem 

by using the analysis of the deviances as an approximation to compare nested 

models and a simulation methodology in order to check different models is 

used as suggested by Hastie and Tibshirani (1990) by analogy with generalised 

linear models.

In fact, it is widely known that the discrepancy or goodness of fit of a model 

can be assessed by the deviance. This statistic is based on the comparison



CH APTER 2. D ISTRIBU TIO N  OF M ACKEREL BIO M ASS 33

between the estimated model whose goodness of fit is under investigation 

and the saturated model which is, intuitively speaking, the model with the 

maximum number of parameters allowed by the data. The deviance for the 

estimated model 77 is defined as:

D{y, fj) =  2 (l(r)max, y) -  l(fj, y))

where l(rjmax, y)  is the maximum log-likelihood achievable for the given data, 

and 1(f), y)  is the value of the log-likelihood for the estimated model.

The deviance for normal linear models has an interesting feature which other 

measures of goodness of fit do not have. This feature is its additivity under 

maximum likelihood nested models because of the orthogonality of the terms 

in the models. Under generalised additive models this feature is not neces­

sarily valid but the difference of deviances for two nested models can still be 

used in order to perform informal tests to compare two nested models with 

some heuristic justification.

Let rfi and r)2 now be two nested generalised additive models with rji nested 

within 772- Under the null hypothesis tha t the model 771 is correct the statistic:

D(rj2 , 771)  =  D( y ,  771)  -  D( y ,  rj2)

would have an asymptotic y 2 distribution with degrees of freedom equal to 

the difference in the dimensions of the two models if the generalised linear 

model theory applied. Although the asymptotic distribution is not x 2 in 

context of G.A.M., it has been shown by Hastie and Tibshirani th a t this can 

still be used as an approximation for screening generalised additive nested
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models.

The degrees of freedom for the x 2 distribution here is related to the degrees 

of freedom for the smoothers involved in the additive model. For the model 

y — f  +  £ if /  =  f \  + f 2 +  - • ■ +  fk and S is the m atrix for the smoothers 

corresponding to the sum f so tha t f  = Sy,  the degrees of freedom for the 

distribution of a statistic which could be associated with the deviance is:

df (error) = n — tr(2S — S S T)

A more useful statistic to compare models is the difference of deviances of two 

nested models. The distribution of this difference could also be approximated 

by a x 2 distribution. If is the matrix corresponding to S when the j th 

term  is removed from the model so tha t /  =  S(j)y-i the degrees of freedom 

corresponding to the x 2 distribution for the difference of deviances is:

A  f t  {err or) = tr(2S ~  S S T) -  tr (2SU) -  S ^ S f ^ )

Therefore, this quantity could be considered as the expected value of the 

increase in the residual sum of squares (up to a scale factor) if the j th predictor 

is excluded from the model, assuming its exclusion does not increase the 

bias. Then, under the assumption tha t 77! is nested within 772, and if the 

null hypothesis of 771 correct is true, the increase in the deviance D(rj2,rji) 

when one (or more) variable(s) are cancelled from the model rj2 in order to 

obtain the model 771 should be ’’small” e.g. the p-value should be greater than 

0.05. Therefore, the rule to reject the null hypothesis tha t the model 771 is 

correct could be expressed as: Reject the null hypothesis if the observed value 

of D (772, 771) is greater than the corresponding quantile of the x 2 distribution
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with the degrees of freedom identified above. In other words, there not enough 

evidence to  remove the predictor f j  from the model if the p-value is greater 

than 0.05 or some other appropriately chosen value.

In this work, different models involving the covariates latitude, longitude, 

bottom  depth and distance from the two hundred meters contour have been 

considered and the different possibilities for nested models have been analysed 

under the criterion described above. Some of these models were investigated 

in order to explore the effect of the degrees of freedom param eter which is 

shown as a second argument of each term. The results are shown in Table

2.1. This table shows ” significant” differences between the nested models 

fitted with different smoothing splines. In fact, in all of these models there 

is not enough evidence to remove one or any of the covariates. For example, 

between the models,

log(density) =  s(lat, 6) +  s(long, 6) +  s (B D p } 6) +  5(11200, 6) +  e

and

log(density) =  s(lat , 6) +  s(long, 6) +  s (BD p , 6) +  e

the difference in deviances is 32.82 which can be compared with a quantile of 

the x 2 distribution with 5 degree of freedom. Indeed, 32.82 is considerably 

greater than the 95% corresponding quantile of the x 2 distribution.Then, from 

the point of view of this methodology by analogy to th a t built in the context 

of the generalised linear models, there is not enough evidence to ignore the 

variable "distance to 200m contour” (D200).

The same conclusion can be extracted from the model (1) above and the
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model

log(density) =  s(laty 6) +  s(long, 6) +  £(£>200, 6) +  e

In fact, the difference of deviances in this case is 21.51 with 5 degrees of 

freedom. The last model in the first part of the table can also be compared 

with models (1), (2) and (3) given tha t it is sub-model of them. Also in this

case the differences of deviances are too big to have any reasons (even by

analogy) to accept the last model as the more adequate one.

The five first principal models, and all their possible nested sub-models in 

table 1 have been built by using spline smoothers with identical degrees of 

freedom. However, terms in a generalised additive model need not have this 

feature. To illustrate this, the last model in the table has been constructed 

with different degrees of freedom for the smoothers. This produces the same 

results as in the other cases.

2.5.1 A  m odel for d ensity  of m ackerel eggs

On the question of the selection of a smoother for the variables BDp and 

D200, figure 2.4 and figure 2.5 show that there is no evidence to prefer a 

smoothing spline instead of a loess smoother. Since the la tter is the only 

convenient choice for the case of two-dimensional covariates, it is particularly 

convenient to use loess in the one dimensional case too.
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ANALYSIS OF GENERALISED ADDITIVE MODELS
model deviance df D(dev) D(df)

Jog(density)
df
chisq

= s(lat,6) 
5.00 
29.71

+ s(long,6)
5.00
48.38

+ s(BDp,6)
5.00
39,65

+ s(D200,6)
5.00
59.01

176.82 20

Jog(density)
df
chisq

s(lat,6)
5.00

28.09

+ s(long,6)
5.00
47.49

+ s(BDp,6)
5.00

118.28
209.65 15 32.82 5

Jog(density)
df
chisq

s(lat,6)
5.00
43.58

+ s(long,6)
5.00
80.43

+ s(D200,6)
5.00

117.84
198.34 15 21,51 5

Jog (density) 
df
chisq

s(lat,6)
5.00
60.80

+ s(long,6)
5.00
72.39

295.83 10 119.00 10

Jog(density)
df
chisq

= s(lat,5)
4.00
22.88

+ s(long,5)
4.00
41,04

+ s(BDp,5)
4.00
42.42

+ s(D200,5)
4.00
51.85

187.96 16

Jog (density) 
df
chisq

s(lat,5)
4.00
20.44

+ s(long,5)
4.00
40.23

+ s(BDp,5)
4.00

107.50
221.30 12 33.34 4

Jog (density) 
df
chisq

s(lat,5)
4.00
36.54

+ s(long,5)
4.00
68.85

+ s(D200,5)
4.00

104.45
211.52 12 23.56 4

Jog(density)
df
chisq

s(lat,5)
4.00
53.19

+ s(long,5)
4.00
67.32

303.01 8 115.05 8

Jog(density)
df
chisq

s(lat,4)
3,00
14.45

+ s(long,4)
3.00
29.42

+ s(BDp,4)
3.00
46.55

+ s(D200,4)
3.00
40.53

202.94 12

Jog(density)
df
chisq

s(lat,4)
3,00
13.71

+ s(long,4)
3.00
32.55

+ s(BDp,4)
3.00
97.18

234.64 9 31.70 3

Jog(density)
df
chisq

s(lat,4)
3.00
25.80

+ s(Iong,4)
3.00
49.72

+ s(D200,4)
3.00

80.98
231.55 9 28.61 3

Jog(density)
df
chisq

s(lat,4)
3.00
44.41

+ s(long,4)
3.00
57.77

311.84 6 108.90 6

Jog(density)
df
chisq

~ s(lat,3)
2.00
6.21

+ s(long,3)
2.00
16.21

+ s(BDp,3)
2.00

49.60

+ s(D200,3)
2,00
28.00

223.67 8

Jog(density)
df
chisq "

s(lat,3)
2.00
8.91

+ s(iong,3)
2.00
25.26

+ s(BDp,3)
2.00
88.85

250.55 6 26.88 2

iog(density)
df
chisq

s(lat,3)
2.00
12,48

+ s(long,3)
2.00
28.32

+ s(D200,3)
2.00
52.00

260.54 6 36.87 2

iog(density)
df
chisq

s(lat,3)
2.00
32.25

+ s(Iong,3)
2.00
43.69

323.94 4 100.27 4

Jog(density)
df
chisq

s(lat,2)
1.00
1.31

+ s(long,2)
1.00
6.63

+ s(BDp,2)
1.9

58.96

+ s(D200,2)
1.00
14.98

242.29 4.9

Jog(density)
df
chisq

s(lat,2)
1.00
5.29

+ s (long,2) 
1.00 
16.28

+ s(BDp,2)
1.90

97.00
261.13 3.9 18.84 1

Jog(density)
df
chisq '

s(lat,2)
1.00
2.82

+ s(long,2)
1.00
11.99

+ s(D200,2)
1,00

26.65
294,23 3 51.94 1.9

Jog(density)
df
cldsq

s(lat,2)
1.00
24.05

+ s(long,2)
1.00

31.15
345.92 2 103.63 2

Jog(density)
df
chisq

= lo(lat,long)
5.68
29.13

+ s(BDp,6)
5.00
68.24

+ s(D2G0,2)
1.00
9.66

207.95 11.7

iog(density)
df
chisq

lo(lat,long)
5.68
53.36

+ s(D200,2)
1.00
23.97

256.06 6.7 49.01 5

Jog(density)
df
chisq =

lo(lat,long)
5.68
45.67

+ s(BDp,6)
5.01
91.76

214.59 10.7 41.47 1

Jog(density)
df
chisq

lo(lat,long)
5.68

126,30
279.30 5.7 71.8 6

T ab le  2 .1, Analysis of deviances for different generalised additive mod­
els (G.A.M.) with the common response variable log(density of mackerel eggs) 
(log(density) and some or all the covariances latitude (lat), longitude (long), bottom 
depth (BDp) and distance from 200m contour (D200).
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In choosing an appropriate model it is important to consider the context of 

the data and associated non-statistical criteria. In fact, there are very clear 

intuitive reasons for building a model in which the variables latitude and 

longitude are pooled together. On the other hand, there are no reasons not to 

consider the variables BDp and D200 as covariates for an appropriate model. 

Following this idea, the model involving the biggest number of covariates 

considered here was:

log(D) =  /?o +  lo(lat, Ion) +  lo(BDp) +  Zo(D200) +  e 

where lo is the locally-weighted running-line smoother (loess).

Results about deviances, degrees of freedom, difference of deviances and dif­

ferences of degree of freedom are shown for different nested models in table 

2 .2 .

ANALYSIS OF GENERALISED ADDITIVE NESTED POSSIBLE MODELS
model deviance df I D(dev) D(df)

loff(density)
df
chisq

= lo(lat,long) 
5.68 
35.48

+ lo(BDp) 
4.00 
34.67

+ lo(D200) 
3.70 
45.73

193.65 13.4

log(deiisity)
df
chisq

= lo(lat,long) 
5.68 
61.74

+ lo(D200) 
3.70 
95.66

210.75 9.1 17.10 4.01

log(density)
df
chisq

= lo(lat,long)
5.68
45.68

+ lo(BDp) 
4.00 
96.99

212.88 9.7 19.23 3.70

iop(density)
df
chisq

= lo(lat,long) 
5.68 

126.36
279.01 5.7 85,36 7.7

T ab le  2.2. Analysis of deviances of the generalised additive model log(density 
of mackerel eggs)=loess(latitude,longitude)+loess(bottom depth)-t-loess(distance 
form 200m contour)+e, and all of its possible nested models.

From Table 2.2 there is not enough evidence to remove covariates from the 

initial model. Between the models in the first and second rows in this table, 

the difference of deviances is 19.23 with 3.7 degrees of freedom which is indeed
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too high to drop the term lo(D200) from the first model even in an approx­

imate approach. Similar conclnsions can be derived from the term  involving 

the covariate bottom  depth for which the difference of deviances is 17.10 with 

approximated 4 degrees of freedom for a x 2 distribution.

Following the analogous methodology for generalised linear models, there is 

not enough evidence to remove variables from the model in the first row of 

Table 2. It could be argued tha t the variables bottom  depth (BDp) and 

distance to two hundred meters contour (D200) are themselves functionally 

dependent on longitude and latitude and therefore these variables may not 

contribute much additional information. However, these variables do clearly 

contain highly relevant information on egg density and so they should be 

included.

2.5 .2  D ifficu lties w ith  G A M  inference

The difficulty concerned with the selection of the degrees of freedom for each 

smoother in the model was simplified here with the use of loess for each 

covariate. As explained in section 2.4, the selection of this smoother con­

tributes to the homogeneity of the terms of the model. The previous analysis 

performed for different possible nested generalised additive models is indeed 

based mostly on analogous methodologies for generalised linear models. In 

fact, the distribution of the deviance may not be x 2 even asymptotically.

The lack of inferential tools for specific estimators and their distributions leads 

to a search for alternative approaches to check the validity of this kind of 

model. In this case the aim is the estimation of the total number of mackerel
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eggs. Consequently, an appropriate methodology should take into account 

the efficiency of the model regarding this objective. A very attractive tool to 

resort to, because of its generality, is the bootstrap.

2.6 B ootstrap  A nalysis of tota l

The analysis of the estimated value for the total number of mackerel eggs was 

carried out by using a bootstrap technique. In fact, the lack of distributional 

theory for estimators in a context of generalised additive models, even under 

normality assumptions, leads to a search for more general tools (such as the 

bootstrap) in order to estimate the number of eggs in the area. The selected 

model and all their possible nested models are checked from this point of view.

Under the assumptions considered here, the parameter r  to be estimated, or 

more precisely, To is,

n n n

To =  J 2 E (D i)  = l L l d ( X i ) E ( 7 ] i )
i = l  i = l  i = l

using the model (2) Di — d(xi)r)i i — 1, . . . ,  n.

The estim ator proposed in this approach is:

n n

To  =  fo  =  ^ e a ^ Y * )  =  Y ^ e x P ( l o 9 { D i ) )
i = l  i = l

where % is the fitted value from the G.A.M.:

Yi =  lo(lati, longi) +  lo(BDpi) +  ffi(_D20(fi)
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or, simply: A  =  exp(Y;) =  exp (/(# ;))

It will be assumed tha t these estimators are invariant under logarithmic and 

exponential transformations, i.e.,

f ( x i )  =  l o g ( d { x i ) )  =  l o g ( d ( X i ) )

and

E ( f ( x i ) )  =  E( l og{ d ( Xi ) ) )  =  E ( d ( x i))

This property was not demonstrated in the context of G.A.M. estimators, but 

it is enjoyed by smoothers because of their approximately linearity when a 

Taylor series is considered. Another estimator, the simplest one is the statistic 

T  defined simply as:

n n n

T  = Y s  A  =  J 2  exp{log(Di)) = exp ty )
2=1 2=1 i —1

A factor for scale correction has been introduced. In fact:

Hr Tb TL 71

E(T0) = J2E(exp{log(D)i)) = J2E(exp(log{d(xi)))) = Y ,E ( d { x i ) )  -  J 2 d (x i )  
2=1 2=1 2=1 2=1

assuming th a t the estimators for the means are unbiased and invariant as 

explained above.

n n
E(T)  =  y  E(exp{Yi)) = Y J E(d(xi)rh)

2 = 1  2 = 1

n 1 n
=  I1 Y ,  d(Xi) =  Y ,  d(Xi)

2=1 Z 2=1
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because of standard properties of the log-normal distribution. Then, in or­

der to compare the estimators T0 and T, they will be re-scaled through the 

constant |<j2.

The distribution of the variable T0 is then bootstrapped and its empirical 

distribution is calculated. The observed total number of mackerel eggs to is, 

indeed, the observed value of the random variable To for the sampled grid 

(the observed value of To is 8995.38 and it is marked in figure 9).

After the data are fitted to the selected model,

log(Di) =  lo(lati, longi) +  lo(BDpi) +  lo(D200i)) -T i =  1, . . . ,  n  (2.7)

new values from this model are obtained to calculate the empirical distribution 

of the estimator T0 to tal number of mackerel eggs, To via bootstrap.

This distribution is obtained by adding independent normal variables with 

zero-mean and an estimated variance to the fitted values from the model. 

Because of the lack of theoretical results in the context of generalised additive 

models, this variance is estimated as: £2 =  E f e  -  Vi)2/{n  -  df) and & is the 

fitted value from the model 2.7, i =  l , . . . , n .  The degrees of freedom, df, in 

the denominator of the estimated value of the variance of errors is equal to 

the total degrees of freedom for the fitted model, for analogy with the linear 

models with constant variance.

If the model for the population were the chosen model and the total is esti­

m ated from other nested models, empirical distributions for the corresponding 

versions of T0 can be calculated via the bootstrap. If one of these models whose
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corresponding estimator is, say, Ti, is ”close” to the chosen model, from the 

point of view of its capacity to produce similar estimators for the parameter 

r  then, the distribution of Ti is expected to be similar to the distribution of 

T0. The bootstrap methodology can be, consequently, used to compare the 

distributions of the brother estimators of T0 as coming from different G.A.M 

models (Ti, T2, and T3 for the models in the second, third and forth rows 

in table 2, respectively, and T4, for the model of Borchers et al) under the 

assumption of validity of the selected model. This criterion can be also ap­

plied to compare the distributions of To and the raw estim ator T. Therefore, 

this procedure could be used as alternative way to compare the models. The 

corresponding random variables for the total as estimated from the different 

models (in the order of the Table 2) are called Ti, T2 and T3 respectively.

This bootstrap methodology can be summarised in the following steps:

1. Consider th a t the model for the population of mackerel eggs is 2.7:

2/i =  lo(lati, longi) +  lo(BDpi) +  lo(D200i) +  e*, i =  1 , . . . ,  n

where ^  is the observed value for log(density) in the population and 

e ~  N(0,cr2).

2. F it the model 2.7 to the values Let these fitted values be yoi: i — 

1, . . .  ,n.  The parameter To can be calculated from this model: To — 

TZ=i exp(2/oi)

3. Generate values from the model
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where e ~  N (  0, o'2), a2 = J2(yi ~  Vi)2/{n  — df) and yi is the fitted value 

from the model ( 2.7), i = 1 , . . . ,  n. The degrees of freedom, df, in the 

denominator of the estimated value of the variance of errors is equal to 

the to tal degrees of freedom for the fitted model, by analogy with the 

linear models with constant variance.

4. F it the model ( 2.7) to the values y*. Let these fitted values be yQi) i =  

1 , . . . ,  n  and calculate values T0* =  £"_i expyo^ of the estimator To from 

the chosen model.

5. F it the model:

Di =  lo(lati, longi) +  lo(D200i) +  £ =  l , . . . , n  (2.8)

to the values y*.

Let these fitted values be i =  1 , . . . ,  n  and calculate an estimated 

value of the to tal number of mackerel eggs from this model: T* =

£ ? = i exP Vh

6. F it the model:

2/i =  lo(laL, longi) +  lo(BDpi) +  i = 1, . . . ,  n  (2.9)

to the values yf.

Let these fitted values be y2i} i =  l , . . . , n  and calculate an esti­

mated value of the total number of mackerel eggs from this model:

T f  =  E"=i exp y2i
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7. F it the model:

2/i =  lo{lath longi) +  i = 1, ■ ■ •, n  (2.10)

to the values y?. Let these fitted values be 2/3*, i =  1, and

calculate an estimated value of the total number of mackerel eggs from 

this model: TJ =  exp y3i

8. Finally, and in order to compare with the model from Borchers et ah, 

fit the model

Ui =  /3oTS(lati)TS{loni)-\-S(BDpi)TS(D200i)-\-/3i(lati.loni)+/32(lati-BDpi)+£

(2 .11)

to the values y? and calculate an estimated value of the to tal number 

of mackerel eggs from this model: T4* =  Y%=i exP 2/4*

9. Repeat 1) to 8) a reasonable number of times in order to calculate the 

empirical distribution of the estimators of the total number of eggs.

10. Compare some quantiles of these distributions.

Figure 2.8 shows the box-plots for the empirical bootstraps distributions of 

T*, T*, T |,  T3*, and T4*.

The corresponding 95% confidence intervals for the parameter r ,  as calculated 

from these empirical distributions, are: [7319.80,10.645.05], [6827,9671.23], 

[7320,10669.84], [6433, 9556.48], and [7388.24,10719.68].

All the empirical distributions can be considered approximately symmetric.

Their means are 8916.35, 8165.15, 8887.57, 7756.52, and 8878.41 and their
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Figure 2.8. The box-plots for the empirical distributions (via bootstrap) of the 
estimators Tq (selected model), T*, (model 1), (model2), T3* (model 3) and T4* 
(Borchers et al.’s model) for the parameter r  are shown in this figure.

medians are 8900.23, 8138.80, 8864.91, 7748.06, and 8838.41 respectively. 

Their interquartile ranges are also not significantly different. In fact, they 

are: 2119.85, 1782.37, 2076.07, 1737.61 and 2002.63 respectively.

From Figure 2.8 it is also clear that the empirical distributions of T0* and 

T-2 for the total number of mackerel eggs are not substantially different. This 

result agrees with the stronger functional dependency of the response variable 

on the covariate bottom depth than the variable distance from 200m contour, 

even though there was not enough evidence from the study of the deviances 

to eliminate it.
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Otherwise, the corresponding distributions for T* and T3* have their quantiles 

below the corresponding quantiles for T0*, T2* and T4*. Particularly, the model 

based only on the covariates latitude and longitude produces quantiles much 

lower than those calculated from the other models.

The distribution of T4* corresponding to the model from Borchers et al. (1994) 

is very similar to th a t of the selected model here, T0*. This characteristic also 

confirms the fact tha t the selected model offers a very good option to model 

the density of mackerel.

Figure 2.9 shows a box-plot of the bootstrapped estimator T* corrected by 

exp{0.5<j2) and the bootstrapped raw estimator T*. This figure shows tha t 

even though the mean of these two distributions are very similar (14607.27 and 

14711.8, respectively), the dispersion (standard deviation) of the values when 

they are fitted to a model (under the assumption of validity of it) decreases 

considerably (from 1829.98 to 1340.66).

Figure 2.10 is a plot of the frequencies of the bootstrap estimators T0* and 

T*. The sharper shape of the curve corresponding to the first estimator is 

also highlighted in this figure. The value of the parameter tq (corrected by 

exp(0.5a2)) , under the assumption tha t this is the model of the population, 

is marked on the horizontal axis and a dotted vertical line through this point 

is drawn to show the symmetry of these curves respect to this line.

In figure 2.9 a comparison of T0* and T* is performed via a scatter plot. This 

graph shows the larger dispersion of the values of T * than those of T0*. This 

characteristic is highlighted in Figure 2.12 where the distribution of T* — T0 

is represented. The mean of this distribution is 104.5356 and the standard
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bootstraped chosen estimator bootstraped raw estimator

Figure 2.9. The box-plots for the empirical distributions (via bootstrap) of the 
total biomass of mackerel T0* (selected model) and the same variable when no fitted 
model is considered are shown in this figure.

0.25

chosen estimator 
raw estimator

0.2

0.15

0.1

0.05

mackerel-egg density x 104

Figure 2.10. The bootstrap frequencies of chosen estimator To and the raw 
estimator T are shown in this plot. The point indicated as ”tv” is the value of the 
parameter To if the model for the population is the chosen model. The vertical line 
through tv highlights the symmetry of both curves respect to this line.
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deviation 1180.017. The number of outliers visible in this plot is not surprising 

because of the more variable behaviour of the raw estimator T.

x 10*
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++ **■
f  1-7

■*>#• +
. + +_ut.
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5  1.4

1.1 1.2 1.4 1.5
bootstraped chosen estimator

1.3 1.6 1.7 1.8
x 104

Figure 2.11. A plot of the bootstrapped chosen estimator,T*, against the boot­
strapped raw estimator, T, is shown in this figure. The line ”y=x” is also displayed.

o

CvJ

bootstraped raw estimator - boostraped chosen estimator

Figure 2.12. A box-plot of the bootstrap distribution of the difference T* — T  is 
shown in this figure.
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2.7 C onclusions

The tools provided by generalised additive models offer an attractive way to 

model density of mackerel eggs as a function of covariates such as latitude, 

longitude, bottom  depth (BDp) and distance from the two hundred meters 

contour (D200). Even though formal inference tools have not been developed 

yet, an analysis analogous to th a t constructed for generalised linear models 

can be used as a first step to select an appropriate model. Probabilistic 

investigations such as distributions for the estimates of total through different 

models can be carried out with the bootstrap.

A first non-statistical selection of adequate covariates should take into account 

the nature and meaning of these variables in relation with the phenomenon 

they try  to explain. This chapter has attem pted to extend the model of 

Borchers, Buckland and Ahmadi (1993) by considering the variables latitude 

and longitude in a single joint term of the model. This was done in an 

attem pt to construct natural combinations of covariates. Both models, the 

model from Borchers et al. (1993) and the model selected in this work, have 

produced similar results from the point of view of the aim for which these 

models were built,i.e.,an estimation of the density of egg mackerel. These 

results would justify the use of the model proposed here given its simplicity 

and more straightforward interpretation.

Modelling the density of egg mackerel as it was done here can help to detect 

which covariates have more influence and which can be discarded in the case 

where there are restrictions on resources or time. The variable "distance from 

two hundred meters contour" is an example in this case. In fact, even when
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there is not enough evidence to withdraw this variable from the model from 

the point of view of the analysis of deviances, the bootstrap study shows little 

difference in the estimated to tal number of mackerel eggs from models with 

and without this variable. On the other hand, the variable bottom  depth is 

shown to be highly relevant to this estimate.



C hapter 3

T esting for C onstant Variance 

in a Linear M odel

3.1 Introduction

It is a very common assumption in linear regression models th a t the variance 

of the error term  is constant. It is also very common for this assumption 

to be checked informally by using an appropiate graphical method, such as a 

residual plot. However, plots of this kind do not always allow clear conclusions 

to be reached. It is the objective of this chapter to explore more formal tests 

of the assumption of constant variance.

The research literature contains a variety of work on heteroscedasticity taking 

different approachs and using different tools. This work can be classified 

into papers where the main aim is to estimate the linear parameters under

52
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an assumption of heteroscedasticity, and those whose interest is focussed on 

checking this assumption.

Several works dealing with the estimation of the variance function, and linear 

regression parameters under the assumption of heteroscedasticity appeared 

during the last two decades. Puller and Rao (1977) proposed an estimator for 

a model in which the variances of errors are assumed to have different constant 

values, i.e. v a r f e ) =  of where of is a positive real number for i =  1, . . .  ,n.  

The estimators are calculated in two steps in an iterative procedure.

Carroll (1982) considered a model in which the variances of errors are smooth 

functions of the design points. For these models, he proved also th a t these 

estimators are equivalent (asymptotically) to the weighted least squares esti­

mators with known variances. Also, in some of these papers, the problem of 

finding ”good” estimators has been tackled by using nonparametric smoothing 

techniques and specifically those concerned with kernel smoothers. A work 

of this type is the paper by Muller and Stadtmiiller (1987) who have used 

kernel smoothers to obtain estimators of the variance function in the general 

regression model.

Work concerned with checking homoscedasticity using both parametric and 

nonparametric tools can be found in the recent statistical literature. Since this 

problem is the main focus of this chapter detailed references are considered 

here.

In the context of nonparametric regression models, Muller and Zhao (1995)
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proposed a methodology to estimate parametric and nonparametric compo­

nents of the model. They considered the model:

Vi = gfa)  +  A, f o r  0 < t i < l  and i =  1, n

where 5* are independent errors with E(5i) = 0, E(5f) = var(yi) = cr2(ti)} for 

1 <  i <  n. No other distributional assumptions are made; g is assumed to be 

smooth, while g and a 2 follow the generalized linear model:

G(a2(t)) =  90 +  ^2QjHj{g(t))  
j=i

where G and for 1 < i < (p — 1) are known link functions and <9*, 0 <  i < 

(p — 1), are unknown parameters.

In this context, the authors have considered estimators for the nonparametric 

parts of the model, g and <r2, and the parametric ones, namely the vector 

P =  (do, 0 i , i)T. The estimators proposed for g and cr2 are:

n
g(t) =

i=1

n n n
a 2(t) =  Y,W i( t )y f  -  (J2wi(t)yi)2 =  -  g2(t)

i=1 i—1 i=l

where the functions Wi are defined by using appropriate kernel functions. An 

estimator for the parameter vector (3 = (do,di,..., dp- i ) T is obtained through 

weighted least-squares as

0 = ( 8 o , 8 u - , V i )  =arg  min(8oA V l)  £  gfc)
i = l

G(a2(ti)) -J2 0 iH i (g { t i ) )
1=0
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where q is a Lipchitz-continuous weight function. The param eter estimate 

can be expressed as:

P =  (X t Q - 1X ) ~ 1X t Q - 1Z  

where X  = (Xij), 1 < i < n, 1 < j  < p, X  — (% ), 1 < i < n, 1 < j  <p\

%ij H j—i (p(^i)) > l(p(^i))

Z =  (G(a2(t1) ,G(a2(t2),. . . ,G(o2(tn))T, Z =  ( ^ ( a 2^ ) ,  G(&2(t2) , G ( & 2(tn)) 

Q~l =  diag(q(ti), q(t2) , q ( t n))

The authors also suggested an iterative method of simultaneous estimation of 

parametric and nonparametric components under some assumptions on the 

representation of G, g, and /?. In this scenario, the estimators are obtained as 

the convergence of the corresponding sequences. The asymptotic distribution 

of p  is particularly interesting from the point of view of testing homoscedas- 

ticity. The null hypothesis corresponding to homoscedasticity is:

H 0 : 9X =  Q2 — ... =  9p-i =  0

or, equivalently, Ho : Ap  =  O , where A =  (A^), 0 < % <  (p — 2); 0 <  j  <  (p — 

is defined as:

_ I  1 ^ 3  =  i +  1Ay — <
I 0 otherwise

Under i f 0) and under some assumptions of regularity for the functions G and 

iA, i= l,..,p - l, and for the kernel K and sequence of bandwiths bn, where 

bn is the bandwith corresponding to a sample size n used to estimate g and 

<j2, it has been proved that: \ f n ( k (3) -4 jV’(OjE) where E =  E j^ E iE o 1,
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S 0 =  [pki] S i =  [rki] , 0 <  k } I < p -  1, and

Pki = [  f  (t) H k (g (t)) Hi (g (£)) q (t ) dt

Hi = f  f ( t ) H k(g(t))Hi(g(t))q2(t){G,(a2(t))}2{ijli( t ) ~ a A(t)}
Jo

+2 G'{a2(t)) 0-2 {t)dt

where p,3(t) = ~  {£M }3 “  3g(t)a2(t)
i=1

M *) =  -  {£M }4 -  -  6g(t)d-2(t)
i—1

This hypothesis is a particular case of a general one which can be expressed 

as: Bp = £0} where H is a (mxp)-matrix of rank m (m <  p) and £o is a 

m-vector. The test statistic proposed is:

Tn = n [ E p -  e0]T [SEE] [BP -  f 0] 

where E =  E0 ^ iE q  \  So =  [pki] Ih  =  [ f / J , 0 < k t I < p -  1,

h i  = { l / n ) J 2  f (U )H k(g(ti))Hi(g{ti))q2(ti){Gr(cr2(ti))}2{fiA(ti) -  cr4(^)}
i—1

' p - i  I  ( p ~  i

t i )) l

2

+2G'((72(ii)) e 3 H j ( 9 { t i ) ) j  f J * { k )  + j  0-2(*i)

Under H q and some assumptions for the functions G and Hi i= l,..,p - l; the
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kernel K and sequence of bandwiths (bn) it has been also showed that:

Tn -4  x 2 ( m )

For the null hypothesis of homoscedasticity, 5  =  A, the test statistic becomes 

Tn =  ri [Aj§] [AEAt ] [A/?], and the test for homoscedasticity can be defined 

as: reject H 0 if Tn >  Xm;a where Xm]a IS the 100(1 — a)%  quantile of the 

X2-distribution with m degrees of freedom.

The idea of using nonparametric smoothing techniques in order to check as­

sumptions about the form of a parametric model has produced various works 

in the statistical literature. One of these works is the paper by Azzalini 

and Bowman (1993) who tackled the problem of checking linear trend in a 

regression model. In this work, they started from the informal checking of 

linearity through the analysis of residual plots and they built a formal test 

statistic based on nonparametric kernel estimation to identify patterns in the 

residuals. They considered the null hypothesis of linear trend against the 

alternative one of a smooth non-linear trend given by a smooth function of 

the independent variable. The test statistic proposed for this hypothesis is 

to comapre the residual sums of squares of the raw residuals and a smoothed 

version. This is defined initially as F  — (y 'M 0y  —  y ' M \ y ) / y ‘M \ y , where y 

is the response variable, M0 =  I  — X { X ' X ) ~ lX '  with X the design matrix, 

and Mi =  (I  — W ) ' ( I  — W )  with W the (nxn)- m atrix of the weights wij in 

the estimation of the regression function g as g(%i) =  TAJ-i WijVj- The form 

of F follows the methodology of a pseudo-likelihood ratio for the considered 

hypotheses of interest. However, the distribution of this test statistic depends 

on the unknown linear regression parameters under the null hypothesis. This
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problem was sorted out by reformulating the hypothesis in terms of residu­

als. Hence, the least squares residuals are compared with a smooth version 

of them through the test statistic F  = (e’e — e' M xe) /  e’ M xe. The idea of ana­

lyzing the residuals for checking these hypotheses led to a test statistic whose 

distribution can be approximated straightfowardly.

Plots of residuals are one of the most traditional informal methods for checking 

homoscedasticity in the context of linear regression models. This approach is 

also the base of the test of Cook and Weisgberg (1983). They have considered 

a linear model such as y* =  /?o +  Pi%i +  e* where e*, i= l,.,n , are independent 

and normally distributed with variance var{ti )  =  a 2(exp(XT Zi ) ) ,  where A 

is an unknown vector of parameters and Zi is a known vector th a t may be 

different for each i. For example, Zi may be the response variable yi  (or a 

function of it), the vector of predictors x i} etc. The variance of errors is, 

therefore, assumed to be a monotonic function in each component of z .̂ The 

hypotheses in this case are:

Ho : A =  0 against Hi  : A /  0

This test statistic is also based on the idea of analyzing the behaviour of 

the residuals £*, % — 1, . . . ,  n in the regression of y on X. In this approach 

the squares of the least squares residuals (divided by a2 — ( E i^?)/?"1 ) are 

regressed on i =  1 , . . . ,  n. The sum of squares due to the la tter regression 

SSreg (divided by two) is the statistic for this test, i.e., S=SSreg/2  where

SSreg  = (U -  U)T (U -  U) -  {U -  Z j ) T {U -  Z f )

and ( U -  U)T = (uXiu2, ..,u„) -  ((1 /n)  E?=i ^ X 1) X ■-> 1)> ui =  where
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i i  is the i— residual in the regression of y on X, i= l,...,n ; Z is a nx (q+ l)- 

m atrix whose row is (1, Zi), and 7 is the estimated vector of the parameter 

vector 7 T =  (7 0 , 7i> 79) in the regression of U on z ly.., z n. The test statistic

S has an asymptotic x 2 distribution under the null hypothesis and the test 

is: Reject H 0 if the corresponding observed value of S is greater than the 

(1 — ci')-quantile of the %2 -distribution with q degree of freedom.

The test statistic of Cook and Weisberg (1983) for the hypothesis of ho- 

moscedasticity in a linear model belongs to the class of statistics which have 

been called ”score statistics” (see for example Simonoff and Tsai (1994)). The 

common assumption for this kind of test is tha t the errors are normal and 

independent with variance-covariance matrix a 2W  where W has diagonal en­

tries wa — w (z i : <5), i — 1 , . . . ,  n, z[ is the ith row of the nxq m atrix Z  of 

variance predicting variables and <5 is a qxl vector of unknown parameters. 

The score statistic was proposed originally by Rao (1947). It has the form 

S  =  V qI0V q, w h ere ^ 0  =  d / 3 6  is the first-derivative (score) vector, 0 is the 

vector of parameters and Iq — E ( —d 2l / d 0 d O ' ), where 1 is the likelihood func­

tion is the expected information matrix, both evaluated at the null hypothesis. 

Also, S is a first-order approximation to the likelihood ratio statistic. This 

statistic was not only proposed by Rao (1947) and Cook & Weisberg but also 

by Godfrey (1978) and Breusch & Pagan (1979) apparently independently.

An effort to improve the robustness of the score statistics when the distri­

bution of errors is not normal was done by Koenker (1981). He proposed 

to ”studentize” the statistic S when the variance is hypothsesized to be a 

function of the fitted values. The resultant statistic is S'* =  2ai S/(f) where 

<f> =  Y,i(£i2 ~~ d4)2/n . Unlike S, S* is asymptotically x \  f°r a large class of 

error distributions.



C H APTER  3. TESTING FOR CO NSTANT VARIANCE 60

Other versions of the score statistics S and S* are their derivations from the 

modified profile likelihood ratio statistic as suggested by Simonoff and Tsai 

(1994). They are, respectively,

where ha is the ith diagonal element of the matrix H  =  X ( X ’X )  lX ‘,

evaluated at A =  A0, ra a = 1 , . . . ,  q are the components of the vector t  =

dij = dw(zi , A)/dXj  and u  is the vector with components u* =  e^/cr2, i = 

1, . . .

Another approach for test statistics for homoscedasticity under the assump­

tion of the same structure for the variance-covariance m atrix of errors is the 

likelihood ratio statistic. Rutemiller and Bowers (1968) seem to be the first 

people associated with the derivation of an expression for this statistic under 

the asssumption of a specific form for the function w, w(z,  A) =  z '  A. However 

this expression may be negative and therefore inappropriate for a variance. 

This idea led Harvey (1976) to consider a positive expression for the variance, 

as assumed by Cook & Weisberg (1983), and to derive a corresponding like­

lihood ratio statistic for the test under this assumption. The corresponding

and

(D1 D) 1d ' u  where D = (I ~  11' / n )D  and D is the nxq m atrix with entries
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test statistic is: L  =  nlog(a2/a l )  — where a2 = e ' e / n  and e is the vec­

tor of least square residuals. Simonoff and Tsai (1994) derived a modification 

of this statisitic by using the profile log-likelihood statistic which is:

Various of the test statistics for heteroscedasticity in a linear model under 

the assumption of independent errors with variance-covariance m atrix a2W  

where W has diagonal entries wa = w(z{, 6), i = 1 , . . . ,  n, were compared 

by Simonoff and Tsai (1994) through Monte Carlo simulations. Even though 

these test statistics deal with a specific form for the variance-covariance ma­

trix of errors, this form is quite general and matrices of this type occur, for 

example, in the area of time series analysis with its applications in bussiness 

and economics.

In the remainder of this chapter, a nonparametric approach, based on non- 

parametric smoothing techniques from the area of kernel estimation, is used 

to build a formal test of constant variance. As shown in the simulations stud­

ies, one of the most im portant advantages of this approach is its capacity to 

detect heteroscedasticity under very general assumptions for the shape of the 

variance functions. An approximation to the distribution of the test statistic 

is created by matching the moments of a quadratic form to those of a shifted 

X2 distribution. A simulation study of the power for the test is carried out. 

A bootstrap study of the empirical distribution of the test statistic is also

where X m = G l/2X  and G is the diagonal matrix with ith  entry
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performed. A graphical follow-up to the global test is also proposed. This is 

refered to as ’’reference band” . Several examples are used as illustrations.

3.2 A  description of the test

3.2.1 T h e te s t  sta tistic

As a first approach we consider the simple linear model:

Vi =  A) +  PiXi +  £i i= l,...,n  (3.1)

where e* has a normal distribution with mean 0 and variance of for i= l,..,n , 

and covfei, £j) — 0 for i ^  j .  The ideas to be developed can be easily extended 

to the general linear model. The hypothesis to be tested can be written as:

H 0 : a 2 = a 2

Hi : a2 =  a 2 = smooth function of Xi, i= l,...,n

Using least squares, the fitted regression model jfe =  /?o +  produces the 

residuals ri =  yi — yi. Under the assumption of Normally distributed errors, 

these residuals are also Normally distributed with mean zero. It would be 

natural to examine the behaviour of the variables |ri| or r2 in order to check 

scale changes in the errors. However, these variables have skewed distribu­

tions and nonparametric smoothing techniques are more stable when the un­

derlying distributions are approximately Normal. Cleveland (1993) observes
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th a t the transformation i* =  | r ^ 1/2 induces approximately Normality. This 

transformation has the same basic shape as the function $ ~ 1F  which pro­

vides an exact means of creating a Normal random variable, with distribution 

function cf>, from a Chi-squared random variable, with distribution function 

F. Since the all have slightly different variances, even when the variance 

of £{ is constant, it is more appropriate to deal with the adjusted variables 

s* =  |u |1//2 — jSbd^!1/2), where the subscript 0 denotes tha t the calculation 

is carried out under the null hypothesis. The expectation E o ^ r ^ 1/2) can be 

calculated easily, and an explicit expression is given in Section 2.2 below.

Under H q the values of Si will lie close to their average s, whereas under Hi  

local variations in the scatter about the average are to be expected. If it is 

reasonable to assume th a t these local variations change in a smooth manner, 

then it becomes natural to employ nonparametric smoothing to identify the 

trends in a more powerful way, without making any assumptions about the 

shape of these trends. The kernel method of nonparametric regression pro­

vides a simple means of doing this. Wand & Jones (1995) give an introduction 

to this technique. In its simplest form, a smooth curve is defined across the 

design space as
n

Kx) = YjwAx)s3 (3 -2)
j =i

where the weights Wj(x) are defined by the kernel function and sum to 1 to 

provide a weighted average. In this paper a Normal kernel function is used, 

giving weights

Wj{x) ~ --------------------------
E L i ^ p ( - ( ^ ) 2)

for j  =  1, . . . ,  n  and h the bandwidth. If the values s(x{) of the smooth curve 

at each design point are denoted simply by then a suitable test statistic
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to assess the degree of scale variation in the data is

t  -  g = i ( s »  ~  g )2 -  £ f e i ( s i  -  s j )2
TZ=1(si-~SiY ( ’

Under the null hypothesis, there will be little difference in the size of the

terms — s)2 and — s*)2. Under the alternative, the first of

these terms should become systematically larger than the second and so the 

test statistic will tend towards large positive values. A formal test will take 

the form

Reject H q iff T  > to 

where to is determined by the size of the test:

a  =  P{reject  ATqI H q is true) =  P ( T  > to\<j2 — a2)

3.2 .2  T he d istrib ution  o f T

The smoothing parameter h controls the degree of smoothing which is applied 

to the data. For the approximation of the T-statistic distribution, it is im­

portant to realize tha t expression 3.2 is linear in the variables si, s2, • ■ ■, sn. 

Then, if s — (si, s2, ■ ■., sn)T, s =  (si, s2). . . ,  sn)T, and W is the nxn m atrix 

with entries Wij, we can write: s =  W s  and the quadratic form ]CK=i(si — h ) 2 

can be expressed as ]C5Li(s* — Si)2 =  (s — TTs)t (s — W s) =  sTB s , where B is 

the m atrix (I  — W ) T{I — IT), with the nxn identity m atrix I. The proposed 

statistic 3.3 can therefore be written as:
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? A s  -  sTB s
sTB s  { V

where A is the m atrix I  — -  and L is the nxn matrix with all of its entries 

equal to one. This shows tha t T  is the ratio of two quadratic forms, e.g., 

T  =  with C=A-B.

The distribution of the ratio of two quadratic forms in normal variables has 

been widely discussed in the literature (see for example M athai and Provost, 

1992). In this case, the random variables in the quadratic forms are approxi­

mately normal and so, following the ideas of Azzalini and Bowman (1993), the 

distribution of T  can be accurately approximated. In fact, if A is an observed 

value of T, the corresponding p-value for the test can be w ritten as:

sTCs
p — P(  T  > ti | H0 true) =  P( > t x | <J2 =  cr02) (3.5)

s1 Bs
=  P(sT(C — t iB ) s  >  0 | cr2 =  cr02) (3.6)

Hence, in order to calculate the p-value, we can calculate the distribution of 

Qti (s) — sT (C — t i B ) s } which is again a quadratic form in the approximately 

normal variables Sj, i = l , . .. ,11.

The quadratic form Qtx (s ) can be expressed as a quadratic form in indepen­

dent approximately normal variables by:

Qtl (s) = sT (C — i xB)s  = zTV T (C -  t xB ) V z  = z t A z  =  Q{z)

where V is the m atrix of the eigenvectors of C — t xB,  A the diagonal m atrix 

of its eigenvalues, Ai , . . . ,  An, and z  =  V Ts. Then, the quadratic form Qtx{s)
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can be expressed as Q(z) — Aj£2 where the variables z ^ i  = 1, ..,n  are 

approximately normal and independent. The distributions of these quadratic 

forms can be approximated by the distribution of a linear combination of x2 

random variables, by matching the first cumulant of both random variables. 

The cumulant generating functions, -Kq(z) and I<u of Q(z) and U = a~f6t/1(c) 

where a,b, and c are constants and U\ (c) is a x 2 random variable with c degree 

of freedom, respectively, are:

n  oo n j

=  (-1/2) E  M l  -  20A,.) = E
3 = 1  3 = 1

where a5 =  2 ^ \ j  -  1)! \ {  =  2^ 1(i -  1 )!tr(E (C  -  h B ) Y

°o  0 3

Kxj(6) — 9a — (c/2)log(l — 29b) = E  bj —
3 = 1  3 '

where bi = a +  cb, and bj — 2cb^(j — 1)!, fo r  j  > 1, see, for instance, 

Jonston & Kotz (vol.2), 1975.

Then, from the equation system aj =  bj, j  =  1,2,3,  and, calling dj =

tr (E(C  — t i B ) Y , j  =  1, 2,3, the p-value for an observed value t\ of the test

statistic T  can be calculated as:

p =  P(st (C — t iB )s  > 0 | o-2 =  do2)

«  P(U  >  0 | u2 =  fj02)

=  -P(?7i(c) > \a/b\ \ a2 = a02)

=  P((C/x(c) >  | a 2 =  cr02)

where U\ is a x 2 random variable with c = d\/{Ad^) and aq =  (2did2d^ — 

^2) /  (4d§)
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The constants c and x\ depend on the variance-covariance m atrix of s. The 

entries of this m atrix can be calculated from the exact distribution of each 

variable ^  i — 1, . . .  , n  and the joint-distribution of each pair of

residuals (r^, Tj), i =  1, . . . ,  n } j  — 1, . . . , n, and i y  j .

The explicit expression for the density function of U = is:

A r p  nr. 4

eXP^ 2 a f )

where o% is the variance of the residual r*; for i—l,..,n.

The expected values and variances are:

E{U) =  r(3/4) var(ti) = -  (Vx -  T2(3/4))
V7T 7r

Then, the entries a^  of E are: an = var(si) = var(ti), for i= l,...,n „  and 

Gij =  c o v ( s i : Sj) -  E(tit j)  ~  y 2c7j»% r 2(3/ 4) i ^  i = i }..jn; j= l,.. . ,n

where Efa tj )  can be calculated by numerical integration by using the joint 

distribution of In fact, under the null hypothesis, the vector r  of

residuals has a normal distribution with null mean and variance-covariance 

m atrix a^H,  where H  = I  — X ( X TX ) ~ 1X T. Hence, a pair (r^r^) has a 

bivariate normal distribution with null mean and variance-covariance m atrix 

a^Hij where Hij is the corresponding 2x2 submatrix of H. Then,

=  f  f  y / W M 2 * o * y / \ W v \ ) )  exp ( - ( 1 / ( 2 ^ ) ) ) +  2 1]xy  +  /ij- • l]y2))dxdy 
J  —oo  J  — oo

=  V 2 a 0 j  ^  j  ^  ^ j ^ ( l / ( 7 r i / j # ^ ) )  exp ( - ( h ^ x 2 +  2h \ j1)xy  +  h ^ l)y2)dxdy
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— \/2cr q dj/j

where i,j;l—i,j are entries of the inverse m atrix of Hij  and dij  is

the value of the last integral. Certainly, the constant ctq is unknown but 

it can be estimated by cjq =  (Y2=i rf ) / (n ~  2). Although, this estimation 

is not necessary because cov(si,Sj) =  y/2ao{dij — r 2(3/4)), i , j  =

1 , . . . 3n; var(s i )  ~  V ^ c r o ^ { V ^ ~ F2 (3/4)), i =  1 , . . .  ,n,  where hij} «,j =

1 , . . . ,  n are the entries of the projection m atrix H and, consequently, the con­

stant cr0 is canceled in the calculations of the degree of freedom c and the 

(1-p) quantile x\.  This integral was calculated numerically by using Nag 

subroutines.

3.2 .3  T hree exam ples

In order to illustrate the practical implementation of the test, three examples 

are considered. The two first examples have been taken from the literature in 

this area and the third has been generated with an appropriate dependence 

for the variances of the errors. In the first, the functional dependence from 

the design points is quite marked, in the second and third a visual inspection 

does not identify clearly whether or not the variance is constant.

E xam ple X: Snow geese

This example is taken from Cook & Jacobsen (1978). It is also described by 

Weisberg (1987; page 102). In the experiment, the aim is to estimate the 

number of snow geese in their summer range areas west of Hudson Bay in 

Canada. An observer estimates the number Xi of geese in a flock spotted
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from a small aircraft. Simultanously a photo of the flock is taken and the 

number yi of geese is accurately assessed. This procedure was repeated for 48 

flocks. The plot of the points and the fitted line is shown in Figure 3.1.

H
% 8
£
.5

l
0 100 300 500200

F ig u re  3.1. D ata and fitted line for the snow geese data

A test of non-constant variance for these data was proposed by Cook and 

Weisberg (1983). A specific parametric alternative, where the variance is as­

sumed to be of exponential form a 2exp(Xxi)  was used. The null hypothesis 

can then be expressed as A =  0. The test statistic has an asymptotic x 2 

distribution. The p-value produced by this test is very small, providing clear 

evidence th a t the variance is not constant. In the nonparametric test pro­

posed in this paper, where the alternative hypothesis is expressed simply as 

a smooth function of x, the observed value of the test statistic is t0 =  81.72 

and the value of the approximate x 2 quantile with 48 degree of freedom was 

79.804. Therefore, the p-value is less than 0.00025 and the null hypothesis is 

convincingly rejected.

As an example where the change in variance is not so extreme, a subset of the 

data  corresponding to cases where x  < 100 was also analysed. These data are
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plotted in Figure 3.2 where the change in variance with x is less extreme. The

|

20 40 Q0 10060
number of g e e a ^ m ^ ie  Hock from an  aircraft

F ig u re  3.2. D ata and fitted line for the subset of the snow geese data

nonparametric test produces a p-value of 0.035 and so the change in variance 

is still detected.

In this analysis the smoothing parameter was chosen to be one eighth of the 

range of the x-values. Since this value refers to the standard deviation of the 

Normal kernel function, each kernel covers approximately half the observa­

tions from tail to tail.

E xam ple 2: B o d y  w eight and heart w eight o f cats

Fisher (1947) describes a dataset which includes the heart weights and body 

weights of a group of cats. Venables & Ripley (1994) also analyse these data. 

Figure 3.3 shows a plot of these variables for the male cats and the fitted 

line.

Aitchison (1986) suggested th a t a log transformation of both variables is ap­

propriate. Such a transformation is often necessary in comparing weights of
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Figure 3.3. Data and fitted line for the male cats data

this kind. The nonparametric test applied to these data, again with a smooth­

ing parameter equal to one eighth of the range of the data, produces a p-value 

of 0.084. In this case, the mild change in variance for large body weights does 

not, of itself, provide convincing evidence of changing variance. A decision on 

whether to adopt log scales for these data will depend on other factors.

E xam ple 3: Sim ulated linear variance dependence

For the simulated example, the model yt = 1 +  2Xi + Ei was used, where Xi is a 

design point in [0,1] and £{ has a normal distribution with mean zero and stan­

dard deviation a(xi) = (0.5 +  2^)0.25, i =  1 , . . . ,  50. The 2+  i = 1 , . . . ,  n 

are equally spaced. The estimated model was y = 0.9888741 +  1.9549832;. 

A plot of the generated points, and the estimated regression line is shown 

in Figure 3.4. The values of the square root of the absolute value of the 

residuals do not offer clear evidence of nonconstant variance for errors. The 

p-value calculated by using a bandwidth of one fifth was 0.047.
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F ig u re  3.4. Simulated data from the model yi =  1 + 2xi +  £i was used, where 
Xi is a design point in [0,1] and Si has a normal distribution with mean zero and 
standard deviation o-(xt) = (0.5 + ^)0.25, i — 1, . . . ,  50.

3.3 A lternative versions

3.3.1 Ignoring th e  correlation of th e  residuals

It is widely known that, under the assumptions of the proposed linear model, 

the variance-covariance m atrix of the residuals has a dominant diagonal. This 

behaviour leads to the possibility of considering this m atrix to be approxi­

mately diagonal, and hence considering the residuals to be approximately in­

dependent. The assumption of approximate independence of residuals implies 

the independence of the variables U = \J\rj\ ,  i= l. ■. ,n, and so the calculation 

of their variance-covariance matrix, E, does not require numerical approxi­

mations. The centred variable s = (51, 52, . . .  ,57l)T, where Si ~  U ~  E( t i ), 

then have a diagonal variance-covariance matrix E with the i ~  diagonal en­

try  given by the expression for var(ti). Under the null hypothesis these values
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are an = o0 V?iuV2(y/w -  r 2(0.75))/7r =  a^ky/hii. Then, regarding the resid­

uals as independent residuals, and under the null hypothesis, the variance- 

covariance m atrix of s =  (sl3 s2, . . . ,  sn)T is S =  aokD: where k is a constant 

and D is the diagonal m atrix whose diagonal is equal to the square root of 

the diagonal of the projection m atrix H. In this case:

dj =  tr{(C  -  =  a0ktr( (C -  t xB)D)  =  <r0fcd*

d>2 =  tr ((C — tiB)T,)2 =  a lk 2tr((C  — t xB ) D )2 =  (Tq̂ 2^  

d3 =  tr ((C  -  t i £ ) £ ) 3 =  ^ / ^ ( ( C  -  tijB)!))3 =  cr*k3d$ 

where d* — tr (AD )%, for i=l,2,3. Then,

n
d\ — 0"gk 'y Ujj 

i = l

n n

d’2 = r f k 2 Y  Y  ° l j \ lha \ lh3:i
i ~  1 j = l

n n n_________________ __ _ _
4  =  4 T E E  ^ i k  &k j \ j  h j j  y  hfck

i = l  k ~  1

where A =  (o^) =  I  -  l / n  -  (1 +  t x){I  -  TT)r (J - W ) } H  = (/ty) = I  -  

X ( X TX ) ~ 1X T and t\  is the observed value of the statistic T. Therefore, the 

expressions for the degree of freedom c =  dl/(4df)  =  /{Adlf) of the x 2 

distribution used as approximation and the 1 — p quantile x x =  (2 dxd2 d3 — 

cZ§)/ (4<i§) =  {2 d\d2 d^ — d ^ ) I depend only on the residuals (through ti), 

the m atrix W  of weights and the m atrix X (through H) and, consequentely, 

their calculations are straightforward. Hence, the price payed for the adoption 

of independence is a further approximation in the calculation of the p-values.
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In order to illustrate th a t the approximation of the variance-covariance matrix 

of the residuals by a diagonal-variance matrix does not pay too high a cost in 

the calculations of p-values for the test, a small simulation study was carried 

out. The results are tabulated later.

3.3.2 A  b ootstrap  approach

Another possible tool, which has been widely used in the statistical literature 

during the last decade, is the bootstrap. Even though the idea underlying the 

bootstrap principle is very old and simple, it was Efron (1979) who made the 

statistical world aware of its promising features. In fact, this tool is based on 

the following simple idea. If F is the distribution function of a population, 

a param eter (the word ” parameter” is used because of a lack of any other 

more appropriate) 9 is a function of F, say, 6 = 9(F ) , an estim ator of 9 is 

a function of F , or, equivalently, a function of x  where F  is a distribution 

function calculated from a sample x  drawn from the population, e.g., 9 = 

9(F) =  9(x). If a sample x* is drawn randomly from x  with replacement, 

a new version for 9 could be calculated by regarding the new sample, say, 

<9* — 9(F*) = 9(x*), where F* is a distribution function calculated from the 

sample x*- The usefulness of the bootstrap is based on the idea tha t 9* is to 

19 as the la tter is to 9

Since the first work by Efron (1979), many efforts have been made to develop 

the theory dealing with this methodology and its applications. Some of these 

results can be found in Bickel & Freedman (1981), Freedman (1981), Singh 

(1981) among others as well as in the books from Efron and Tibshirani (1993),
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and Hall (1993). In some cases, the distribution function of the population 

is completly unknown whereas in other cases it is known up to a (vector of) 

parameter(s). In the former situation, F  is the empirical distribution function 

of the sample x> and F* is the empirical distribution function of the sample (or 

resample) x*- W hen the distribution function of the population F is known 

up to a (vector of) parameter(s) A, say, F  =  F(a)» then F  — F ( A), where A 

was obtained from x? and F* = F ( A*), where A* was obtained from x*-

In the setting of the problem presented here, the bootstrap methodology 

is used to calculate the p-values of the test statistic for a simulated linear 

model. Under the null hypothesis the underlying distribution function is 

considered known up to a parameter. In fact, with the notation above, F is 

the cumulative normal distribution function with mean X(3, A is the common 

variance of errors, and 9 is a value of the test statistic T.

One advantage of this methodology is th a t the empirical distribution of the 

test statistic can be generated directly, without the use of moment approxi­

mations. The numerically intensive approach of the bootstrap is likely to lead 

to slower execution of the test. It does however provide a helpful means of 

checking on the accuracy of the proposed test.

An algorithm to implement the bootstrap in the present setting is as follows:

1. Simulate of a set of observed values y£,yj, ...,yj from the fitted model

3.1.

2. Obtain the corresponding least squares fitted values y*, y£ and the 

corresponding residuals r j ,  r j , r j .
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3. Calculate the observed value t* of the test statistic T.

4. Repeat steps 1 to 3 a large number of times.

5. Calculate the value of p from the empirical distribution of T.

The performance of the bootstrap test is analyzed through simulation and 

the results are described in Section 3.4 below.

3.4 A  power study

A small simulation study was carried out in order to analyze the perfor­

mance of the test. Different values of the sample size n as well as different 

functions for the variance of the errors were considered. A design based on 

equally-spaced values of the explanatory variable in the interval [a,b]=[0,l] 

was considered. The values for the regression parameters were Po=l, (3i=2 

and the simulated model was yi — /?0 H- ftiCi +  e*, i= l,...,n  where ei: i= l,..,n  

were independent normal with zero mean. In each case 500 samples were gen­

erated by using NAG subrutines and the number of times th a t the observed 

significance was below 0.05 was counted.

The values of the bandwith to estimate the variance function as a smooth 

curve were h=0.08(b-a)} 0.16(b-a) and 0.32(b-a). The functions considered for 

the variances were <7i(rc) — 1, cr2(x) =  (0.25+:r)} 03(2;) =  0.25 +  (a; — 0.5)2oo/2, 

and 04(2;) =  0.25exp(xln(5)). All of these functions have the same minimum 

and maximum to make comparison easier. The simulation was also performed 

for different values of sample size.
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In table 3.1 and table 3.2, results when an independent structure for the 

variance-covariance m atrix of residuals is adopted, and the test of Cook & 

Weisberg, are also shown.
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04 0 ) =- 1 <r2 (x ) =  0.25 +  x

non-ind. indep. boots­ C. k non-ind. indep. boots­ C. k
resid. resid. trap W. resid. resid. trap W.

n h % % % % % % % %
0.08 5.6 5.8 6.0 41.0 41.2 47.4

30 0.16 5.2 6.0 5.2 3.8 52.8 53.8 59.4 63.2
0.32 3.6 4.2 5.2 61.4 62.4 70.2
0.08 5.4 5.2 6.8 48.6 47.6 66.6

35 0.16 5.0 4.4 6.4 4.0 62.2 64.2 70.2 78.0
0.32 3.0 3.2 8.2 72.0 71.6 80.4
0.08 2.8 3.4 8.2 51.2 54.8 62.6

40 0.16 4.2 4.6 8.2 5.2 69.0 72.0 78.0 86.4
0.32 4.4 5.0 9.8 78.4 79.4 87.0
0.08 6.2 6.2 6.8 60.0 60.4 72.6

45 0.16 5.8 6.2 6.0 5.4 75.8 75.8 83.0 88.0
0.32 5.6 5.6 6.0 84.0 85.2 90.4
0.08 3.6 3.6 7.0 71.4 72.8 75.6

50 0.16 4.8 3.6 4.6 5.0 85.6 86.0 89.6 92.1
0.32 4.0 4.6 6.4 89.6 90.0 93.8
0.08 4.6 4.4 6.4 76.6 76.8 79.4

55 0.16 5.0 4.4 7.4 5.4 89.0 88.4 91.4 94.6
0.32 4.6 4.6 6.8 92.8 92.4 95.6
0.08 5.4 5.4 6.8 75.8 76.6 83.0

60 0.16 4.6 5.6 8.4 4.4 88.0 88.6 92.4 96.8
0.32 3.6 3.8 8.8 95.2 95.4 98.0
0.08 5.0 5.8 6.8 84.4 86.0 87.6

65 0.16 5.0 6.0 7.4 4.8 92.6 93.6 94.6 98.8
0.32 5.6 5.2 9.2 95.4 95.8 97.2
0.08 6.4 6.0 7.2 87.8 88.0 88.0

70 0.16 5.6 5.4 6.2 5.8 94.2 94.4 96.4 97.6
0.32 6.4 6.0 7.0 96.2 96.0 98.2
0.08 4.4 4.4 7.0 90.6 90.6 91.8

75 0.16 4.2 4.6 7.2 3.6 96.8 96.6 96.8 99.2
0.32 4.8 5.6 7.0 98.2 98.4 99.0
0.08 5.6 5.2 6.8 93.2 93.0 94.4

80 0.16 5.4 5.0 6.8 4.4 98.0 97.4 97.8 99.8
0.32 6.6 6.2 8.8 98.6 99.0 98.4
0.08 4.8 6.0 6.6 91.4 92.6 94.8

85 0.16 4.4 5.0 6.6 5.6 97.4 97.0 94.4 99.8
0.32 5.4 5.2 7.8 98.4 99.0 94.4

T ab le  3.1. Size and power for the three versions of the nonparametric test of 
Cook & Weisberg (1983), using simulated data from a linear model y* = 1 + 2a;*+££, 
where Si is normal with zero-mean and standard deviation cri(a;i) and 02 (a;*), 1 = 
1, . . . ,  n, with a variety of sample size n and smoothing parameters h.
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Prom the simulation studies, some of whose results are shown in Table 3.1 

and Table 3.2 is possible to conclude:

1. In all cases, the size of the test, indicated by the results for cqfz), is 

close to the target value of 5%. In addition, there is very little differ­

ence between the performance of the bootstrap and the other two tests. 

Since the bootstrap provides a direct means of generating the empir­

ical distribution of the test statistic T, these results therefore provide 

confirmation th a t the approximation considered in this paper for the 

distribution of T  is effective.

2. The approximation of the variance-covariance m atrix of the residuals by 

a diagonal m atrix can be considered an adequate approximation since 

its effect on the performance of the test is very slight. Even in the 

case of non-independent residuals the computer time necessary for the 

calculation of the p-value is not an obstacle, but the approximation in 

the independence case avoid the calculation of non-diagonal covariance 

m atrix entries by numerical integration.

3. The boostrap technique to obtain the empirical distribution of the test 

statistic T, as it was used here, confirms th a t the approximation used 

for the distribution of the test statistic is reasonably good.

4. The most relevant parameters related with the power of the test are the 

sample size n and the shape of the functional dependency of the variance 

on the design points. In fact, for the same functional dependence for the 

variance in Table 3.1 and Table 3.2, the power increases considerably 

for increasing values of n and, for the same value of n, the power of the 

test increases from the function 02(2;) =  (0.25+ 2) to the corresponding
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one for the function <7 4 ( 2:) =  0.25exp(xln(5)) which are both monotonic 

in the interval of design.

5. For the monotonic functions a 3 and <74 the power of the test is quite 

good even though it is lower than the power for the Cook & Weisberg 

test. However for the non-monotonic function <74 this power is better 

than the power of the latter test.

6. The range of smoothing parameters considered is very large, changing 

by a factor of four. Despite this, the change in power is relatively small 

with a small increase as h increases for cr2 and a small decrease for 03.

The idea of smooth kernel estimation can also be used as a tool in order to 

check the local behaviour of the variance in a linear regression model. When 

the null hypothesis is rejected, it could be interesting to check how different the 

variance at a particular fixed point x is from a constant variance. The variable

design point x, can be used to build reference bands. These are very useful 

tools in graphical exploration and they allow comparison of the variances of 

errors at different design points. In fact, because of the approximate 0-mean 

normality of s(ar), the random variable

3.5 A  reference band

s(s) =  ^\r{x)\  -  E{\J\r(x)\),  where r(x) is the least squares residual at the

yjvar(s(x) — s)
(3.7)
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has a standard normal distribution under H q . Then, for each value of x in 

the interval and under the null hypothesis of homoscedasticity, it is expected 

with an approximate probability of 95% that

—1.96hjvar(s(x) — s) < s(x) — s <  1.96yjvar(s(x) — s (3.8)

Therefore, if qi(x) =  —1.96\fvar((s)(x) — s) and q%(x) — 1.96^var(s (x )  — s), 

the 95%-reference band is defined as:

-Rfro.95 =  {(x ,y) \a < x < b]qi(x) < y < g2(^)} (3.9)

Under the null hypothesis it is expected tha t each point (x,y), where a < x < b 

and y— s(a;) — s, must belong to the jR&o.95 with a probability of 95% and, 

therefore, this methodology can be used as an approximate graphical tool for 

checking homoscedasticity.

Explicit expressions for q± and g2 can be calculated because their values de­

pend only on the variances and covariances of the variables Sj, i = 1, . . . ,  n. 

In fact,

TI

var(s(x) -  s) =  J 2 ( wk(x ) ~  (1 /n ) )2var(sk(x)) 
k=l

n n

+  J 2  (wi(x ) -  (l/n ))(u jm(x) -  (1 /n))cov(si, sm)
1= 1  m = l

and, in terms of the moments of the variances of residuals,

n  _________
var(s(x) -  s) = a&(:r)20.12yTar(rk(x))

k=1
n n  ...______ _

+  E E  al{x)am(x)(E(sism) -  0.68\ fvar(ri)var(rm))
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where a* =  Wk{x) — (1 /n ) , and Wk(x) is the kernel normal function evaluated 

at x.

Under the null hypothesis, var(rjb) =  hkk is the kth entry in the diagonal of the 

m atrix {I — X ( X TX ) ~ 1X T) multiplied by <7%, k — 1 , . . . ,  n; and cov(sit sm) in 

the second term  of the expression below can be calculated through the joint 

distribution of l,m = l,..,n  by numerical integration. If the residuals

are considered approximately independent, the second term  in the expression 

for the variance below is zero and the reference band can be easily calculated.

Figure 3.5 shows the 95%-reference bands for the different examples given 

before.

Plots (a) and (b) in this figure are the reference bands for the snowgeese 

data and the snowgeese data with x  <  100, as explained in the first example. 

In (a), the p-value was less than 0.003 and, consequently, the points on the 

smooth curve are far outside of the reference band for almost every value of 

the independent variable. In (b) the p-value for the test was considerably 

greater than th a t for the whole data set as considered in (a). However, it was 

still small enough to identify significant heteroscedasticity in the linear model. 

Again the reference band contains only a small arch of the observed curve. 

Plot (c) presents the 95% reference band for the male cats data  from the 

second example. In this case the p-value for the test is 0.084 and the evidence 

of heterocedasticity is not conclusive. The smooth curve strays outside the 

band only for a small proportion of x-values.

In (d), the 95% reference band for the simulated data in the example 3 is 

shown. In this example, the null hypothesis of homoscedasticity is rejected
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a: Snowgeese data b: Snowgeese data, for x<=10
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F ig u re  3.5. This figure shows the 95%-reference bands, the smooth curve s, 
and the values of the variable s = \/\r\ — E(y/\r\), where r is the corresponding
residual, for each example in the text. The shadow areas are the 95% reference
bands. The curve in each panel is the smooth curve s, and the dots are the values
of the variables s, for each residual r.

with a p-value of 0.048.

Figure 3.5 reflects once again the relationship between the observed curve 

and the reference band.
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3.6 Som e remarks

One of the most im portant advantages of using nonparametric techniques 

to check constant variance is th a t no particular shape of variance pattern  is 

assumed. This widens the scope of the available tools. However this gen­

eralization will necessarily lead to some reduction in power over parametric 

methods when the parametric assumptions provide a good description of the 

true pattern. The results of Section 3.4 show th a t the power of the nonpara­

metric test can reach very reasonable levels even in cases where changes in 

variance are not marked, and not always easily identified visually.

Reference bands are very useful graphical resources for checking homoscedas- 

ticity in a linear model. As was shown in the examples, they may be a very 

good illustrative complement of the formal test statistic performed in this 

approach.

The bandwith h is an im portant parameter in smoothing techniques. Bowman 

& Young (1996) reviewed a number of nonparametric tests. In the present 

case the bandwidth seems to have little influence on the power of the test for 

reasonable large sample sizes (n — 70 in table 3.1). For smaller values of n, 

the power of the test may be affected by the shape of the variance function 

under the alternative hypothesis as illustrated in 3.1. Large h gives the 

highest power for cj2 and <74 whereas h — 0.16 seems to be best for cr3.

Reference bands for the simulated data, corresponding to a wide range of 

smoothing parameters are shown in the Figure 3.6. The values used are 

h =0.16, 0.32, 0.48 and 0.64. In each case the information conveyed by the
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F ig u re  3.6. Reference bands for a range of smoothing parameters with the 
simulated D ata

reference bands is the same, demonstrating that the particular choice of this 

parameter is not crucial. There will, of course, be cases, where the conclusion 

does change with h. As an automatic technique, a ” plug-in” bandwidth selec­

tion technique, such as the one described by Gasser et al (1991), could be used. 

These techniques assume independent observations. However, it has already 

been demonstrated in Section 3.4 tha t the adoption of this approximation 

does not greatly affect the results.

In Figure 3.7 plots of reference bands and smooth curves are shown for
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number of design points = 36 p-value= 0 .479167 number of design points = 46  p-value= 0 .0116877
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F ig u re  3.7. Reference bands for different number of design points. The data 
were obtained by simulation. The variances of errors follow linear function of Table
3.1.

the case where the functional dependence of the variance of errors as a linear 

function of the design points for different sample sizes in the interval [0,1]. The 

corresponding p-values for the test are printed. This graph is an illustration 

of the dependence of the power of the test on the number of design points and 

the relationship with the relative position of the points on the smooth curve 

and the reference bands. The variance of errors was the same linear function 

for the simulation and bootstrap studies on table 3.1 and 3.2. The value for 

the smoothing parameter here was 0.32. As expected, the power of this test
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has a strong dependence on the number of design points. However from this 

figure and the simulation studies it is possible to conclude th a t for a reasonable 

number of design points the test has good power to detect heteroscedasticity. 

Even in cases such as those of Figure 3.7, where the dependence of variance 

on the design points is not obvious, the test can warn about changes in the 

variance.

Even though the assumption of indepndent errors was used for the linear 

model here, this assumption might be relaxed in a further study. This ex­

tension would include a large number of different linear models as those in­

volving time series and spatial linear processes. In these cases the concept of 

heteroscedasticity can be extended to the concept of dependence. This will 

be explored in the following chapter.
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<T3(£) =  0.25 -f- 4(2; — 0.5)2 =  0.25e^(/n(5)a;)

non-ind. indep. boots­ C. & non-ind. indep. boots­ C. &
resid. resid. trap W. resid. resid. trap W.

n h % % % % % % % %
0.08 55.8 56.2 69.2 49.4 50.6 50.2

30 0.16 63.2 64.6 75.0 30.0 63.0 64.8 55.8 63.2
0.32 32.0 35.4 45.2 73.6 75.4 82.0
0.08 66.4 65.2 78.4 56.4 55.2 67.4

35 0.16 74.0 73.4 85.6 32.4 72.8 73.0 81.8 92.8
0.32 45.0 44.4 70.0 82.6 82.6 89.4
0.08 76.8 77.6 80.0 64.0 66.4 72.4

40 0.16 82.4 84.2 87.8 29.2 78.4 80.6 85.8 95.8
0.32 54.0 56.4 75.0 87.2 87.6 92.8
0.08 84.2 85.0 86.2 70.4 70.4 80.8

45 0.16 86.0 86.4 92.0 31.4 84.4 84.8 90.8 95.6
0.32 63.8 64.4 82.2 90.4 90.4 94.2
0.08 88.2 88.4 93.2 81.4 82.2 84.4

50 0.16 92.0 92.2 96.4 30.4 89.0 89.6 92.6 98.6
0.32 69.2 70.4 89.2 94.0 94.2 96.6
0.08 90.4 90.6 93.6 85.0 84.8 88.8

55 0.16 93.6 93.8 97.8 30.6 93.2 93.2 96.0 98.8
0.32 75.0 75.4 94.0 96.4 96.0 98.0
0.08 91.4 92.2 94.8 86.4 87.4 89.6

60 0.16 95.2 96.4 97.2 32.0 95.4 95.6 96.4 99.6
0.32 77.4 78.8 93.4 98.0 98.0 98.6
0.08 93.8 94.4 97.0 90.0 91.0 93.4

65 0.16 96.8 97.2 99.8 29.0 96.4 97.0 97.8 99.8
0.32 83.2 84.6 99.8 97.2 98.2 99.6
0.08 97.2 97.2 97.8 93.4 93.8 93.0

70 0.16 98.4 98.2 98.4 35.6 96.8 96.6 98.8 99.6
0.32 90.4 90.8 97.6 98.2 98.2 94.2
0.08 97.8 97.8 99.2 94.4 94.6 97.4

75 0.16 99.2 99.2 99.8 33.4 97.6 97.4 98.8 99.8
0.32 91.2 91.6 96.8 99.0 99.2 99.8
0.08 99.0 99.2 99.8 97.8 97.4 96.6

80 0.16 99.2 99.2 99.8 31.4 99.4 99.4 99.0 99.8
0.32 93.6 93.8 99.2 99.4 99.4 99.8
0.08 98.8 98.8 99.8 96.8 97.0 98.0

85 0.16 99.8 99.8 99.6 34.4 99.0 99.0 99.0 99.8
0.32 94.6 95.8 99.8 99.6 99.6 99.8

T ab le  3.2. Power for the three versions of the nonparametric test of Cook & 
Weisberg (1983), using simulated data from a linear model yi =  1 +  2x{ +  where 
Ei is normal with zero-mean and standard deviation as(xi) and 04(3̂ ), 1 =  1, . . . ,  n, 
with a variety of sample size n and smoothing parameters h.



C hapter 4

T esting for C onstant Variogram

4.1 Introduction

Spatial phenomena are usually represented in the statistical context by a pro­

cess {T (s) : seD}  where D is a suitable set in M.q. Assumptions on the process 

are necessary in order to build an adequate model for the specific phenomenon 

to be analyzed. If a model can be proposed , then it will be possible to carry 

out inference on its parameters when a set of data is available. From the 

statistical point of view one of the most basic and im portant feature of a pro­

cess is its correlation or covariance structure. Independence of the variables 

involved in a spatial model a is very common and convenient assumption be­

cause it makes the modeling distribution theory easier and more manegeable. 

However, the assumption of a suitable dependence or correlation structure 

is often more realistic. At least this feature should be checked at the initial 

steps of a statistical analysis. The variogram is the traditional quantity whose

89
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values show how strongly correlation is linked to spatial locations.

The way followed traditionally in order to study the variogram of a particular 

process when a set of data is available is to estimate the variogram, to choose 

a particular family for the variogram with the information given for this esti­

mate, and finally to fit a particular member of the family with the data. The 

tools to resort to for checking the estimated variogram in order to choose an 

adequate family to fit it, are traditionally graphical tools.

W hen examining correlation structures, an initial and very im portant question 

to be answered is whether the variables in the process are correlated or not. 

The methodology proposed here is an attem pt to answer this question.

For a second-order stationary process, the covariance function and the var­

iogram depend on the relative positions between each pair of points in the 

domain. Also, if its variance is constant (i.e. a2 ) through the domain, the 

covariance function and the variogram are related one to each other by:

2j ( h )  = 2a 2 -  2C(h)

where 2q (h) is the variogram at h  = Sx — s 2 and C(h)  is the covariogram. 

The v a rio g ra m  of the process as defined by Matheron (1962) is:

27(^1 — s 2) =  v n r ( y ( s i )  -  y ( s 2)), fo r  all s 1, s 2eD (4.1)

and the function 7 is called sem i-v ario g ram  of the said process. Then, a 

constant variogram implies a constant covariogram and, particularly interest­

ing is the case of a null covariogram or uncorrelated process. If, aditionally,
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the process is isotropic, the variogram is a curve in the plane and its properties 

can be assessed as those for a real function. Also, the local variation of the 

variogram as a curve is expected to be smooth. Hence, one natural approach 

to checking if the variogram is constant is to compare it as a function to a 

constant.

The general assumptions of a linear model, where the trend is a linear function 

of covariates which depend on the spatial locations or on other variables and 

the errors are normal zero-mean, may also be adopted. Transformed differ­

ences of square residuals are used as a measure of how much deviation from a 

constant the variogram displays. For this goal, it is shown here th a t nonpara­

metric smoothing techniques are adequate. Among these techniques, those 

dealing with kernel estimation of smooth functions are considered, as in the 

case of homoscedasticity for the linear model. The test statistic proposed for 

the hypothesis of constant variogram, and, its approximated distribution, are 

similar (at some stages) to those described for the test for homoscedasticity 

in the linear model.

Reference bands for the kernel smoothed version of a transformation of dif­

ferences of residuals under the null hypothesis of constant variogram are also 

built. These reference bands are constructed with the square root of abso­

lute differences of residuals for each distance in the set of observed locations. 

They are again very useful graphical tools to check whether there is evidence 

of spatial correlation, and to assess its size.

The test and reference bands are applied to some data concerned with some 

chemical substances used as indicators of pollution in rivers and billabongs.
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4.2 Previous literature

Traditionally, the subject concerned with the study of models for spatial data 

has been included in the discipline known as Geostatistics. Even though its 

early origin can be attributed to Matheron in the sixties, it was in the eighties 

when several contributions dealing with the development of specific statistical 

tools for problems coming from Geology and Mining Engineering gave these 

tools a distintict identity. W ith the passing of time, several of these tools have 

been used in other scientific contexts but still nowdays some of them  keep their 

original names. One example is an approach used for spatial prediction which 

is recognized as kriging as it was called by Matheron in honour of Krige, a 

mining engineer who developed empirical methods for determining empirical 

ore-grade distributions.

From the statistical point of view one of the most im portant distinguishing 

features of the models traditionally considered as a part of Geostatistics deals 

with the characterization of the set of indexes for the spatial process to be 

modelled. In fact, the processes {F (s) : seD}  usually modelled in Geostatis­

tics assume the set D  to be a non-zero volume set in W ,  or the spatial index s 

varies continuously over a subset of RT However methods usually associated 

with processes defined on sets of indexes with other characteristics, such as 

point-pattern or lattice processes, can be borrowed from a different type of 

process. In the approach presented here the set D is assumed to be a non-zero 

volume set in RT The whole work is fixed in a set in two-dimensional lattice 

even though some of the tools used to develop are in R2 all the results can be 

extended straightforwardly to higher dimensions.
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Another distinguishing feature for the models dealing with Geostatistics and 

which is the subject of the approach considered here is the capacity of the 

model to recognize spatial variability at both large and small scale. In other 

words, geostatistical models are usually able to include both trend and spatial 

correlation.

One of the first people to stress the importance of modelling spatial correlation 

was Watson (1972). He compared two different approaches, with and without 

spatial correlation structure, and pointed out tha t most geological problems 

exhibite strong positive correlation between data at nearby spatial locations.

The hypothesis of independence in spatial models when the "real” data are 

dependent or correlated can distort considerably results on estimation, predic­

tion and designs as pointed out by Cressie (1991). He considered an example 

of Z ( l ) , . . . ,  Z(n)  independent and identically distributed Gaussian variables 

with unknown mean and known variance Oq. The minimum-variance and 

unbiased estimator of p, is the widely known sample mean Z  which is also 

Gaussian with mean p  and variance Oq jn.  If the data are not independent 

but they are positively correlated and cov(Z(i), Z( j ) )  = i , j  —

1, . . .  ,n,  0 <  p < 1 then the variance of the sample mean is: var(Z) —

W M I 1 +  H p / i 1 ~  P)}{! ”  (Vn)} -  W ( !  “  p f i 1 “  P”-1) / ^  If n=10 and 

p — 0.26 the variance of Z  for the correlated data is var(Z) — (crl/n) 1.608,

i.e. 1.608 times the variance of the same estimator under the assumption of 

independence. Other interesting examples of the effect of dependence (under 

the assumption of indendence) on prediction and experimental designs can be 

found in this excellent book by Cressie.

Also in the context of estimation, Haining (1988) compares the variance of
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the sample mean assuming independence with its variance assuming posi­

tive dependence for random variables in R2 which are conditionally specified 

autoregressions and simultanously specified autoregressions and moving aver­

ages.

In the context of estimation, a natural estimator for the variogram of a process 

with constant mean, based on the method of moments is:

2^ h) =  DvTTTT £  (r(Si) ^
'N (h >' N(h)

where N ( h )  =  {(sj,S j) : — Sj = h ; i , j  = l , . . . , n }  (Matheron (1962)).

This estimator is unbiased if the process (Y (s) : s  £  D }  is intrinsically

stationary (constant mean and second-order stationary). If the process is 

also gaussian the squared differences (Y(sj) — Y ( s j ) )2 are distributed as 

27(/i).x2(l),  where x 2(l) is the chi-square distribution with one degree of 

freedom. Then, E((Y(s i )  — Y (s^))2) =  2'y(h). But in this case (gaussianity 

and intrinsic stationarity), the distribution of these squared differences are 

highly skewed.

On the other hand, the distribution of the square root of the absoluted value 

of these differences, |Y(s$) — Y (s j)!1/2 is approximately normal in the sense 

th a t it has a skewness and kurtosis closer to those of a normal distribution 

(see, Cressie and Hawkins (1980)). These properties encouraged Cressie and 

Hawkins (1980) to propose an estimator for the variogram of a process {Y (s) : 

s  e  19} which is based on the variables |Y(sf — Y(sj-)!1/2 for Si,Sj £ D.  This
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estim ator is:

where the constant 0.457 + is the correction for bias. Another impor­

tan t reason to resort to this transformation rather than the classical squares 

of the previous differences is their behaviour under dependence of the vari­

ables in the process. In fact, if the normal variables X l, X 2 have a correlation 

coefficient p — corr(X i ,X 2), then the square variables have correlation co­

efficient co rr(X 2,X |)  =  p2 whereas the corr{\Xx\1!2, |X 2|1//2) is less than p2. 

This property increases the efficiency of the averaging of these variables in 

estimating the variogram.

Chauvet (1989) suggested that the plot of the variogram-cloud in a given 

direction e is a very usuful graphical tool. The variogram-cloud is a two- 

dimensional x-y plot where x is the distance h between two points and y is 

the value of ( Y f a  4- he) — Y ( s j ) ) 2, where Si +  he  =  Sj and (i, j )  € N (h )

Following this direction, Cressie (1991) suggested to resort to a square-root- 

differences cloud as a more efficient graphical tool.

Robinson (1990) gave a stringent condition for the existence of the variogram 

rather than  the covariogram. In fact, there is a quite widely known example, 

which is the model to describe Brownian motion which has variogram but not 

covariogram. The variogram for this case is: 27 (h) =  ( l / 2)cr2/i where a2 is 

the constant variance of the process. However the covariance for two variables 

Z ( t  +  h) and Z(t)  is: cov(Z(t  +  h) ,Z(t) )  — (1/ 2)cr2t. This function depends
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on t and, consequently the covariagram is not defined.

The variogram is a crucial parameter also in the estimation procedure called 

kriging. This method is a minimum-mean-square method which usually de­

pends on the second-order properties of the process involved, i.e. on the 

variogram and/or covariogram. More precisely, kriging is a method to search 

for an optimal predictor for the value of a function g of the process Z at the 

point s 0. In a general approach, kriging is the procedure followed to calculate 

a predicted value p(Z; s 0) = A'Z ,  where s 0 is a spatial location, Z  a vector 

of a realization of a spatial process, and A depends on the variogram or co­

variogram. Either the covariogram or the variogram used in kriging should 

be fitted to a valid family rather than be estimated directly because the es­

tim ators do not often verify properties of non positive definiteness (for the 

variogram) or non negative definiteness (for the covariogram).

These are, among others, more than enough reasons to justify and also encour­

age the search for adequate tools to check properties of the variance-covariance 

structure of a stochastic process.

4.3 A  test statistic

Suppose the spatial data  {Y(sx), Y( s 2) , . . . ,  Y (sn )} observed at known spa­

tial locations { si, s 2, . . . ,  s n } hi a set D  C Rg with positive q-volume are 

modelled as a collection of random variables generated by the random pro­

cess:
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y (s )  -  J 2 /3iXi(s) P e ( s )
i=i

where se£>, x ^ i  = is a collection of m non-random explanatory

variables which may or not depend on the spatial locations s  and e(.) is an 

error random process with zero-mean and finite variance. An example of this 

model is the case in which the explanatory variables are a constant o;i(s) =  1

and the coordinates of spatial locations, a;2(s) =  si and x$(s )  =  s2, where

( s i ,s 2) =  s .

It is useful to write the model for the observed data in m atrix notation:

Y  = X 0  + e

where X is a nxm m atrix whose (ij)th entry is Xj(si) the observed value of 

the variable Xj at the location s*, (3 is a m-vector of unknown parameters, 

0  =  . . .  , p m)T and e( s )  = (e(si), e (s2) , .. . , s ( s n))T, the n-vector of

errors at each location Si , i = l , . .. ,n.

The process s ( s )  is assumed here as a seco n d -o rd e r s ta t io n a ry  process,e.g.,

E ( e ( s ) )  =  0 , fo r  all s e D  (4 .2)

con(e(s1) ,e ( s 2)) =  C ( s i ~ a 2) i fo r  all s 1, s 2eD  (4 .3)

Furthermore, it is assumed in this study tha t the covariance of two random 

variables T ( s i )  and Y ( a 2) in the process is a function only of the distance
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h u  = ||Si — 1|• In other words, the process Y is assumed isotropic

C on(Y (si), Y ( s 2)) =  C ( ||s i — s 2||), f o r  all s u s 2eD (4.4)

As a consequence of the latter property, the variance of each variable Y(s) in 

the process is constant,

var(Y(s))  ~  cr2, f o r  each seD  (4.5)

The variogram  of the process 4.1:

2y(si — s 2) =  va r (Y (s1) — Y (s2)), fo r  all s 1?32eD

is also a function of the distance between points in D if the process is isotropic.

In this case:

2 7 ( s x — s 2) = v a r ( Y ( s 1) -  Y (s2)) =  2a2 -  2cov(Y(s1) , Y ( s 2))

=  2cr2—2 C ( s i  — s 2) =  2cr2—2C '( | | ^ X — s 3 ||) =  2 7 ( | | s i  — s 2 [|), f o r  all S i , s 2eZ)

If the variogram is constant for each value of h = ||s ! — s 2|| then the covari­

ogram cot^Yfsx), Y ( s 2)) =  cov (h)  is also constant.

For the distribu tion  of the vector of errors,

( e ( s i ) , e : ( s 2) , . . . , e ( s Tl) )T ,
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a m ultivariate normal distribution N ( 0 } Eg) is considered. 

The hypothesis to be tested can be written as:

H q  : 2 y ( h )  =  2 <Tq

H i : 27(h) =  smooth function of h, f o r  all h.

where a 2 is a constant.

If a 2 — a2 = var(s(s )) then con((F (si), y ( s 2))=0 and, under the normality 

assumption, the process e is a white-noise process.

If the null hypothesis is true but <7q a2 the covariance is a non-zero constant 

(c—a 2 __ a 2 j ancj £pe process shows a particular correlation structure.

Hence, under the null hypothesis, the variance-covariance m atrix of errors can 

be w ritten as:
C  T  O r

c c T  o'.

C+ Oq

where c is the constant value for the covariance.

The case in which c =  0 is particularly interesting because it implies diagonal 

variance-covariance m atrix of errors, Eg, and consequently under the hypoth­

esis of normality, it means independence of errors. On the other hand, the
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case 0 suggests an extremely particular and unusual covariance structure. 

Hence, from now and up to be explicitly expressed, the case considered here 

will be c =  0. In other words, a null hypothesis which is equivalent to in­

dependency of errors will be considered. Then, the least squares estimated 

values for the linear model (1) under the null hypothesis are:

0  =  ( X t X ) - 1X t Y

The least square residuals are r  — Y  — Y  where Y  — Xj3.

Because the variogram is defined as the variance of the difference of two 

variables in the process, a linear model based on these differences will be 

built now. Through this model a natural way will be shown in which the 

tools applied to testing homoscedasticity in a linear regression can be suitably 

modified to be applied in this context.

For each value h of the distance between two observed locations Sx^s^tD^ 

h — ||/i|| =  ||s i  — S2II) the differences

U(h)  -  Y { s  +  h) -  Y{s)

can be modelled as

m
U{h) = ^2Pi(x i(s +  h ) ~  %i(s )) +  (^(s +  h) -  e(s))

Z=1

H I

or U(h)  =  5 ]  P1V1 (h ) +  e* (h)
1=1

where Vi(h) — xi(s  +  h) — Xi(s) and e*(h) =  e(s  +  h) — e(s).
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For the observed spatial points {si, s 2, . . . ,  s n} in a set D  C K9, the corre­

sponding differences between them are hij — Si — s j : for i . j  = 1. . . .  , n  and 

the observed values U(hij)  can be expressed as:

U  = V/3 + e*

where U  =  {U{h12) . . . . ,  U (h l n ) , . . .  ,U {h 2 3) , . . . ,  U{h2n) , . . . . . . . ,  U{h(n_ 1)n))

V is a Nxm (TV =  n(n ~  l ) /2)  matrix whose (i j ) th entry is Vj(hf~i) for some 

k,l such th a t (hki) is the vector between the two observed points s & and 81 in 

D such th a t 1 <  k < I < n  and e* is the vector:

£* =  (e*(^lx) , .. . .e* (h ln ) . . . .  ,s*(h23) , . . .  ,e*(h2n) , . . . . . . .  i )n))

In order to simplify the notation, one subcript for the differences between 

observed points and their norms will be used afterwards. Then, each vector 

hij = hi — h j  will be expresed as h k for some k as the result of a bijection 

between the set of pairs {(1 ,2) , . . . ,  (1, n). (2, 3 ) , . . . ,  (2 , n ) , . . . . . . . .  (n — 1, n)}

and the set of positive integers {1 , 2 , . . . ,  TV} with TV =  n(n — 1)/2  as mentioned 

before. W ith this notation, the new vector of errors is

has a normal distribution TV (0,£e *). The variance-covariance m atrix 

has entries of,- where:LJ

<rj =  var(£*) =  va,r(e(s +  hi) — e(s)) =  2o-2 — 2 cov(\\hi\\)

ct*. =  cov{e*,£*) =  E((e{sk +  hi) -  e(sk)){£(si +  hj) -  e{si)) =
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=  E(e(sk  +  hi)e(si  +  h j ) ) ~ E ( £ ( s k +  hi)e(si))— E(s(s i  +  hj)s(sk))+E(£(s fi)s(si) =

= co?;(||/ii — /ij H- s fc — si\\)~cov(\\hi +  (a*. — S i)||)-con(||sfe — si — hj \ \)~cov(\ \sk

= cov(\\hi — h j  +  h\\) -  cov(\\hi +  h\\) -  cov(\\h — hj\\)  +  cou(||/i||)

for each value of h  such th a t h — ||/i|| is the distance between two points in D.

Under the null hypothesis, the covariance function of e is constant and cou(||h\\) = 

a 2 — Uq, for h  ^  0 and ccw(||/i||) =  var(e) = a 2, for h  =  0 . Hence, the 

variance-covariance m atrix of £*, under the null hypothesis has entries,

2cr02 i f i = j

O 
to i f Sk + hj. = s i -h  h j  or s fc =  si

9- a l i f s k *T hi = Si or s t +  h j  = s k

0 otherwise

In terms of U, the hypotheses considered before can be rewritten as:

Ho : var(U(hi)) =  2<Tq, fo r  1 < i < N

Hi  : var(U(hi)) =  smooth function of f o r  1 <  i < N

Then, in terms of the linear model U  = V (3 +  e* the statistical hypotheses 

are the same as those for the linear regression model considered in another 

chapter. However the assumptions in both cases are rather different. In 

fact, the variance-covariance m atrix of errors under the null hypothesis for 

the simple linear model is diagonal. It is not diagonal for the new model. 

This problem could be sorted out a t least in a theoretical way by looking for 

a different estim ator for the linear regression parameters (such as weighted 

least squares). However, in practice, the sizes of the matrices involved are 

very big even for a moderate number of sampled points.
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As in the approach for testing homoscedasticity in a linear model, the be­

haviour of a function of the least squares residuals is considered in checking 

the hypotheses above. The presence of the linear regression parameters (3 

then be handled easily by constructing the least squares residuals from the

model Y  = Xj3  +  £. In fact, if U — Vft  where (3 =  the

vector of residuals residuals here is R  =  U  (h) — U  (h ) and each component 

Ri = R(hi) can be expressed as a function of the residuals r  =  Y  — Y . In 

fact,
771

Ri  =  R(hi) =  U(ht) -  U(hi) = U(hi)
!=1

771 771

=  y ( s  +  hi) -  y (s )  -Y ^ i3 iX i ( s +  hi) + ^ 2  PiXi(s )
1 = 1  1 = 1

= Y ( s  +  hi) -  Y ( s  +  hi) -  Y ( s )  +  Y(s )  -  r{s +  hi)  -  r(a)

for i ~  1 , . . . ,  N  and s a point in D such th a t s  +  hi 6 D. The vector R

has a normal distribution iV (0, E#) where the entries aRij of the m atrix E# 

can be calculated, under the null hypothesis, from the variance-covariance of 

residuals, a 2H  =  a2(I — X ( X TX ) ~ 1X T) by the expressions:

cov(Ri , Rj) — cov(r(s +  hi) — r (s ) , r ( t  +  hj) — r(t))  =

cov(r(s-\-hi) J r ( t+ h j ) ) —cov(r(s), r(t-\-hj))—<cov(r(s+hi), r(t))+cov(r(s) , r(t))

where each term  of the last expression is an entry of the m atrix H multiplied 

by a 2, and s , t  6 D.

Each component Ri of R  has a normal distribution N(0, cr%.) where

g2r . =  var(r(s  +  hi) — r(s))  =  2 a2 — cov((r(s +  hi)>r(s))
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Hence, again the distributions of the variables Si =  \f\Rj] — where

E q indicates the expected value calculated under the null hypothesis, are 

approximately normal and they can be used to build the test statistic:

T =  m s i - S i ) '   (4 6 )

or, as a ratio of two quadratic forms:

T  ^ A S -  
3 TB S

As in the case of the test for homocedasticity in a linear model, for each 

observed value to of T  the p-value of this test can be calculated as:

p = P(  S TA S  — t 0S TB S  > 0 | H0 true) = P(  Q (t0) >  0 | H 0 true)

where the distribution of the quadratic form Q(t0) = S TA S  — toSTB S  = =  

S T ( A —toB)S  is approximated by a shifted x2 distribution as in the test statis­

tic for homoscedasticity in a linear model. As pointed out in th a t occasion, 

the moments of the shifted x 2 distribution can be matched to the moments of 

the quadratic form Q(t0). The moments of Q(to) are available from the traces 

of powers of the product (A — toB)Es  where is the variance-covariance 

m atrix of the vector S.

It is to be noticed tha t in this approach the variance-covariance m atrix 

can be singular. Even though, the approximation used in the case of the 

test for the linear model, by matching the moments of this quadratic form 

in approximately normal variables and a random variable V=a-fbU(c) where 

a and b are constants and U(c) is a x 2-r^ndom variable with c degrees of
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freedom, is known to be still valid (see, for instance, M athai & Provost (1992)).

4.3.1 A d ap tin g  th e  te st  sta tistic  for a process defined  

on a regular grid

Let the sampled locations be the set of points : i =  1 , . . . ,  1} and suppose 

they are the vertices of a regular grid. In this case, the entries <7 -̂ — 2<r2 — 

2<y(hij)1 i tj  =  1 , . . . ,  I for the same value of hij are all equal. In this case 

the size of the variance-covariance matrix of S (necessary to calculate the 

aproximate distribution of the test statistic) could be reduced considerably.

In fact, the number of distinct distances between two points on a grid of this 

type is considerably less than the total number of distances between them. 

This reduction is also substantial in the calculation of the variance-covariance 

matrix of the variables S in the test statistic. For example, for a 10x10 grid, 

this m atrix has size 10000x10000. If only different distances between points in 

the grid are considered, the corresponding matrix would have a size of 50x50.

Suppose hi is a distance between two points on the grid and n* the number of 

times th a t this distance is repeated 1 <  i < k. Then there exists 71* pairs of 

points (Sjt)  on the grid such th a t the variable Ri  =  R( h i )  as defined above 

has rii observed values, say, Ri = r(s)  — r(t) for m  pairs of points (s, s) on 

the grid such th a t s  G D , t  E D  and || s — t  ||=  hi

Suppose there are N  different distances between the points on the sampled 

grid. Then, if a perm utation is applied to the components of the vector:
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(hi, h2, . . . ,  /ijv) such tha t the order of the components is not decreasing, the 

resultant vector has the first n i equal components, the following n 2 equal 

components and so on. Perhaps with abuse of notation the different values 

of these distances will be called: h i, h2, . . . ,  hjy. Suppose now th a t the same 

perm utation is applied to the vector with components Ri for i =  1 , . . . ,  N,  so 

th a t the first m  values of Ri = r(s) — r(t)  correspond to points s ,t  £ D  such 

th a t || s — t  ||=  hi, the following n 2 values of Ri = r(s) — r(t)  correspond to 

points s , t  £ D  such tha t || s — t  ||=  h2, and so on. In order to distinguish 

the values Ri as coming from a difference of residuals associated with points 

at equal or different distances, a new subscript will be introduced. Then:

■Sdj > 3 f ) ■ • • ) > 2 =  1 , . . . ,  N

The new variables Si and Si corresponding to Si and Si, respectively, are 

defined as:

s  = :r £  [ i^ r /2-£o(i% n],  i ~ i , ...,n (4.7)
j=m-i+i

and
~ n  exp — f E~El \ 2
S'i =  5 3 wijSj  where Wy = --------^ —-—— , i = l , . . . , N

3=1 E " = l  Wij

where b is the bandwidth. W ith this notation the new test statistic is:

T x £ i  nj(Si -  Sf  -  T.L UijSj -  §)2

where S  — T  JliLi Si- The variables Si, i =  1 , . . . ,  N  are also approximately
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normal with zero-mean and variance-covariance matrix with entries:

1 n i n 3

coviSi, S,) = —  £  £  [M\Rid1/2\Rju\l/2) -  B0(\Ran E 0(\Rjun }
n n̂ 3 Z = i « = l

for i j  =  1, . . .  ,N .

The expected values ^o(|-Ri/|1/,2|i£jti|1//2) can be calculated by numerical in­

tegration by using the bivariate joint density distribution of (Ru,Rju),  I =

1 , . . . ,  n,i\ u = 1 , . . . ,  rij] i j j  — 1 , . . . ,  N  as explained above. More generally, 

when the correlations induced by the correlation of residuals are ignored, the 

covariance of Si and Sj  can be calculated exactly using the hypergeometric 

function, as reported by Cressie (1993), page 76.

Even though the number of calculations of E o ^ R n ^ l R j ^ 2) is still quite 

large, the advantage of this procedure for points on a regular grid is tha t 

these values do not need to be stored. In fact, only the values of cov(Si ,  Sj ) ,  

i j j  =  1 , . . . ,  N  are necessary to obtain the p-value for the test.

Under the null hypothesis, as in the case for the test for homoscedasticity for 

the linear model, the residuals can be considered approximately independent 

without loss of accuracy. However, in this case the variance-covariance Y,s 

necessary to calculate the p-values for the test is still not diagonal in the 

general approach of the random process with a linear trend depending on the 

spatial locations. Despite this, the number of numerical calculations can be 

reduced considerably. Details of this approach are given now.
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4.3 .2  In depend en t residuals

The approximate by independent residuals were found to be a very good ap­

proximation in the context of the test statistic for homoscedasticity in the 

linear model. In this case the advantage of this approximation was the big 

increasing in the efficiency of calculations to obtain a p-value for the test. In 

fact, under the assumption of independent residuals, the variables used to cal­

culate the final quadratic form were also independent given th a t each of those 

variables were a function of a single residual. This independence produces a 

diagonal variance-covariance m atrix of these variables whose diagonal entries 

can be calcualted straightforwardly. In the approach presented here for test­

ing constant variaogram, improving the efficiency of the calculations is even 

more im portant because the nature of the problem requires a larger number 

of calculations and space of storage in its implementation in the computer.

In this case, the variables for the final quadratic form are: Si =  \r(s +  hi) — 

r ( s ) |1/2 =  |jRi|1//2. Then, each variable Sj, used here is not a function of each 

residual but a function of the difference of two residuals and, consequently, 

independent residuals do not imply independence of these variables. Never­

theless, these covariances achieve simpler expressions than in the general case 

and again the calculations of the entries of the variance-covariance m atrix can 

be done straightforwardly when some assumptions are added to those for the 

original model.

As explained before, if i ^  j  and 1 < i < N  and 1 < j  < N  the covariance 

between the differences of residuals Ri, Rj  can be written as: cov(Ri,Rj)  =  

cov(r(s-\-hi), r (t+hk))~cov(r(s) ,  r ( t R h k))— cov(r(s+hi),  r(t))+cov(r(s) , r(t))
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for some s, t  e  D  and h h k vectors between two points in D.

Then,

t  + h k (a2u = var(r(s  + h t)))

=  v a r(r(s))

s +  hi — t  (a2u =  var(r(t))  

or

t  + h k ~  s (a2u = var(r(s))

0 otherwise

for 1 < i, j  <  N.

var(Ri)  =  var(r(s  +  fy)) +  v ar(r(s)) =  a 2 +  cr2k 1 < i < N

Under the null hypothesis, the variances of residuals are diagonal ele­

ments of the projection m atrix I  — X ( X T X ) ~ 1 multiplied by the constant 

variance of the process which can be assumed equal one because its value 

is cancelled in the expression for the test statistic. It is straightforward to 

proof th a t the cov(Si,Sj)  =  coufljRjl1/2, iRjl1/2) has the same value when 

the cov(Ri,Rj)  has a different sign. The variances var(Si) = var(\Ri\1!2) =

V “ 1 (V 7r~"T2(3/ 4)) — ^ ^------ ( i / 7r—T2(3/4)) as explained in the chapter

for the linear model. Then, if the sample size is n, the number of numerical 

calculations needed for the variance-covariance matrix is only n 2 — n  and 

the test is very efficient from the point of view of its implementation in a

cov(RijRj)  =  <

■cr2 i f

i f  <

s + h i

or

s = t
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computer.

An interesting case in which the assumption of independent residuals is very 

useful is the case in which the process is assumed to be stationary in mean. 

Suppose th a t the process {V(s) : s  G D } } observed at the points {si, S2, • • •, C 

D  is stationary, isotropic and has a normal distribution with zero-mean. In 

this case the differences of residuals Ri are the differences of the observed val­

ues, say, Ri — Yi ~  Y/,, for some 1 and k, 1 < l,k  < N  and 1 < i < N.  

Hence, under the null hypothesis of constant variogram or independence, 

the covariances cov(R^ Rj),  1 < i , j  < N } have values as explained be­

fore but where now the values erf! are all equal to the constant variance cJq 

and the variance var(Ri)  are also all constant and equal to 2 Oq. Then, 

the joint distribution of each pair (i^ , Rj) is normal bivariate zero mean 

and variance covariance matrix with entries crn  =  <722 =  2<Jq and

012 =  oo or (712 =  — Oq or cr12 — 0. Then, the variance-covariance m atrix 

of the vector (5i, 52> • . . ,  Spj) has all the elements on the diagonal equal to 

var(Si) ~  ~  r (3 /4 )2) == 0.1724015 and all the elements out of the

diagonal equal to zero or to E 0(SiSj) — E0(Si)E0(Sj) — E 0(SiSj) — E ^ S i )  —

0o (c— ^ v ^ ^ p ( 3/ 4)^ j =  (jo(c —0.9559776) where c is the common value of 

Eo(SiSj), 1 <  i, j  < N  and can be calculated by numerical integration. This 

value , as obtained by using Nag subroutines is found to be approximatly 

c—0.9868. Then, cov(Si}Sj )  = cr00.031.
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4.4 Sim ulation results

The size and power of the test were analyzed through a simulation study. In 

order to do this procedure more efficient from the computational point of view 

and without any loss of generality, the linear model considered was:

Y ( s i) — Po 4- s(si)

where the points Si, i = 1, . . . ,  n  were points on a regular grid in [0, l )2 and 

where £(s*), i =  1, . . . ,  n  are gaussian random variables with zero-mean and 

covariance function of the form c(h) ~  exp(—ch) and c(h) =  exp(—ch2), for 

each distance h between two points on the grid. The ’’degree of dependence” 

was controlled considering different values for the constant c. In fact, the 

case c =  0 corresponds to the null hypothesis of constant variogram or in­

dependence as explaned before. The shapes of the semivariogram with these 

covariance functions for the different values of c are shown in Figure 4.1.

For c = 2 in the exponential model, the process presents quite a long-range 

dependence compared to the other extreme considered case of c =  50 where, 

as displayed in Figure 4.1, two variables in the process at a distance equal or 

greater than 0.2 are ’’almost” independent.

In each case 1000 samples were generated by using the simulation method 

proposed by Wood and Chan (1995) and the subroutine by Chan and Wood 

(to appear) under the alternative hypothesis. Different approaches for the 

distribution of the test statistic were also considered. As shown in tables 4.1, 

4.2 and 4.3. One of the options was the x 2 approximation for the distribution
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Exponential semivariograms G aussian semivariograms

distance between two points distance betw een two points

F ig u re  4.1. Display of the different models for the gaussian semivariogram used 
in the simulations. On the left, the exponential model: 7  (h) =  a 2 — exp (—ch). On 
teh right, the gaussian model: 7  (h) =  o 2 — exp (—ch2) The corresponding curves 
for different values of c and a variance a 2 = 1 are shown in this figure.

of the test statistic, another the ordinary bootstrap and the third one was the 

resampling ideas by using permutations of one random sample to generate 

others.

In the perm utation test, the observed responses are permuted around the 

spatial locations. Under the null hypothesis of no spatial correlation this 

permutation will not affect the distribution of the test statistic. An empirical 

p-value for the test can, therefore, be calculated by counting the number of 

statistics from permuted data which are larger than the observed statistic.

In the bootstrap test, the mechanism is very similar. The difference is tha t 

at each location a response from the original set is sampled with replacement 

from the entire collection of responses.

Both of these techniques are described in grater detail in chapter 5.
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The simulation was also performed for different grid sizes and different band- 

widths. From the simulation studies, some of whose results are shown in Table 

4.1 and Table 4.2 and 4.3 is possible to conclude:

1. In all cases, the size of the test, indicated by the results for c =  0, is 

close to the target value of 5%. In addition, there is very little difference 

between the performance of the bootstrap, perm utation test and the 

approximation of the distribution of the test statistic by x 2 distribution.

2. Under the general assumption of a general linear model, the calcula­

tion of the variance-covariance m atrix of the random variables in the 

quadratic form of the test statistic is highly time-computer comsum- 

ing because, even for a small number of spatial points, the number of 

all the possible distances is usually big. Nevertheless, under the null 

hypothesis, the approximation of this matrix to th a t corresponding to 

independent residuals is very good in the case considered in chapter 3. 

This possibility makes the test for constant variogram a useful tool even 

in cases where the number of different distances is big.

3. Despite the large computing effort when the procedure of resampling is 

based on the idea of permutation of one realization of the process, this 

method has the advantage of generality. The size and power of the test 

calculated with this approach are reasonably similar to those calculated 

with the x 2-&PProximation.

4. The most relevant parameters related to the power of the test are the 

grid size n  and the ’’strenght of dependence” of the underlying process. 

This degree of dependence is, indeed, measured by the value of the
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constant c in the expression for the gaussian variogram used in this 

simulation study.

5. The value of the smoothing parameter does have some effect on the 

power and size of the test. However, in contrast to the case of the test 

for constant variance in a linear model, the more common and applicable 

variogram models are naturally not-decreasing monotonic functions of 

the distances between points.

Exponential variogram: 7 (h) =  1 — exp (—ch)
c =  50 c =  10 c = 2

x 2~ boots­ x 2- boots­ x*- boots­
approx. trap approx. trap approx. trap

n h % % % % % %
0.15 4.00 4.50 7.70 8.60 48.30 45.00

5 0.25 5.20 5.80 8.40 9.40 49.10 43.20
0.35 5.60 6.50 8.20 10.20 50.80 47.50
0.15 6.50 8.40 19.80 23.50 84.60 83.00

7 0.25 6.80 7.00 16.40 20.10 77.00 70.20
0.35 5.00 6.50 14.70 18.50 71.40 72.00
0.15 19.80 25.30 44.50 46.00 97.80 95.00

10 0.25 16.40 15.00 35.50 38.70 91.00 90.80
0.35 14.70 13.50 30.00 35.00 85.30 84.20

T ab le  4.1. Size and power of the test for constant variogram as calculated from 
the x 2 and the bootstrap approximations for constant variogram for a gaussian 
isotropic stationary process. The data were generated on a n x n regular grid in 
[0, l]2. Different grid sizes n and bandwidths h were also considered. The data 
were generated under an exponential model for the variogram.
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Gaussian variogram: 7 (h) =  1 - exp (—ch1)
c = 0 c =  50 c =  10

x 2- boots­ x 2- boots­ x 2- boots­
approx. trap approx. trap approx. trap

n h % % % % % %
0.15 3.80 4.50 5.80 6.90 55.70 52.00

5 0.25 4.30 5.00 8.30 8.50 46.70 53.50
0.35 4.50 4.80 8.00 10.50 44.70 41.00
0.15 5.20 5.10 27.50 32.00 94.00 91.00

7 0.25 5.10 4.80 17.20 25.00 77.60 87.40
0.35 5.80 5.40 14.80 15.60 69.40 65.00
0.15 7.90 4.50 78.00 79.80 100.00 98.00

14 0.25 7.10 5.60 44.80 51.20 95.00 90.00
0.35 7.20 6.50 36.40 35.00 86.20 87.50

T ab le  4.2. Size and power of the test for constant variogram as calculated from 
the x 2 and the bootstrap approximations for constant variogram for a gaussian 
isotropic stationary process. The data were generated on a n x n regular grid in 
[0, l]2- Different grid sizes and bandwidths were also considered. The data were 
generated under a gaussian model for the variogram.

4.5 Exam ples

In order to illustrate the performance and application of the test statistic for 

the constant variogram, three examples will be now given. In the first exam­

ple two simulated sets of data from a stationary and isotropic process on the 

points on a regular grid in M2 are considered. One of them assumed a gaus­

sian model for the covariance function of the form c(h) = exp(—h2) and in the 

other the covariance function is null, implying independence and consequently 

constant variogram. The second and third examples are concerned with ap­

plying the method proposed here to data coming from the ’’real world” . In the 

second example the data are the measures of two chemical substances, P 0 4  

and NO2, which are indicators of pollution in an area nearby the Clyde river
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Exponential variogram 1T-1II - exp(—ch)
c =  10 c =  2

x 2~ boots­ permut. x 2- boots­ permut.
approx. trap test approx. trap test

n h % % % % % %
0.15 15.50 16.50 17.50 * 81.40 85.00 81.00 *

6 0.25 17.80 15.20 16.00 * 72.40 74.50 72.00 *
0.35 14.50 19.80 15.60 * 65.00 68.30 67.00 *
0.15 19.80 23.50 25.00 * 84.60 83.00 85.00 *

7 0.25 16.40 20.10 22.00 * 77.00 70.20 78.00 *
0.35 14.70 18.50 19.00 * 71.40 72.00 72.00 *
0.15 44.50 46.00 52.00 * 97.80 95.00 92.00 *

10 0.25 35.50 38.70 45.00 * 91.00 90.80 99.00 *
0.35 30.00 35.00 32.00 * 85.30 84.20 85.00 *

T ab le  4.3. Power of the test for constant variogram as calculated from the x 2 
and the bootstrap approximations for constant variogram for a gaussian isotropic 
stationary process. The data were generated on a n x n regular grid in [0, l]2. 
Different grid sizes n and bandwidths hw ere also considered. The results in the 
table for the permutation test version are over 100 simulations. The rest over 1000.

in the U.K. The third example is concerned with data which are residuals of 

linear models where the response variables are measures of three variables of 

the water column and surface sediments. In this case the spatial locations are 

points in some billabongs in Australia.
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Exponential variogram: 7 (h) =  1 - exp (—ch2)

0 II j—1 0

0LOIIO

x 2- boots­ permut. x 2- boots­ permut.
approx. trap test approx. trap test

n h % % % % % %
0.15 55.70 50.50 58.00 * 5.80 6.40 5.00 *

5 0.25 56.70 55.30 67.00 * 8.30 9.00 15.00 *
0.35 42.30 41.10 56.00 * 5.60 5.00 3.00 *
0.15 94.00 91.00 90.00 * 27.50 20.10 10.00 *

7 0.25 77.60 76.50 85.00 * 17.20 15.40 21.00 *
0.35 69.40 65.80 62.00 * 15.40 12.30 12.00 *

T ab le  4.4. Power for the three versions of the test for constant variogram for 
an isotropic stationary process. Using simulated data from the model yi — fi +  
£i i =  1, . . . ,  n, where e = (ei, £2, . . . ,  en) is normal with semivariogram 7 (h) = 
1 — exp(—ch2) for c =  10 and c = 50. The data were generated on a n x n regular 
grid in [0, l ]2 for different values of n. The results in the table for the permutation 
test version are over 100 simulations. The rest over 1000.

Constant variogram: 7 (h) = 1
x l -

approx.
boots­
trap

permut.
test

n h % % %
0.15 5.70 4.80 4.00 *

6 0.25 4.50 5.10 5.00 *
0.35 5.20 4.90 5.50 *
0.15 5.20 5.00 4.50 *

7 0.25 5.10 4.80 3.70 *
0.35 5.80 5.40 5.20 *

T ab le  4 .5 . Size for the three versions of the test for constant variogram for an 
isotropic stationary process. Using simulated data from the model yi — p +  si 1 — 
1,. . .  ,n, where e — (£1, 62, • ■ ■ j£n) is normal with semivariogram 7 (h) — 1. The 
data were generated on a n x n regular grid in [0, l ]2 for different values of n. The 
results in the table for the permutation test version are over 100 simulations. The 
rest over 1000.
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4.5 .1  E xam ple 1: S im ulated  data

E xp on en tia l sem ivariogram

A process considered here was:

Y  (si) = fa +  er(si), i =  1, . . . ,  n

where s i} i =  l , . . . , n  are points on a regular grid in R2. In this case, 

the grid was a 10 x 10. The variables e*, i =  1, . . .  , n  are jointly normal, 

zero-mean with variance-covariance matrix £  whith entries:

p (~2 || Si — Sj ||) i f

for i , j  — 1 , . . . ,  10. The generated data in their corresponding 1 ocations are 

displayed on the left of Figure 4.2.

In the top left panel of Figure 4.3, the classical estimator of the semivariogram 

(in dashdotted line) and the thoretical semivariogram are displayed. The p- 

value for the test of constant variogram was p=0.0001. In fact, the strenght 

of dependence given by the covariance function of this generated process was 

expected to imply a significantly small p-value. In the top right panel of 

Figure 4.3, the observed values of ”raw s” , defined as the average of all the 

squared root of absolute differences E (si) — Y(8j) ,  for each pair (s*, Sj) such 

tha t || — Sj ||=  h y for each h which is a distance between two points on the

grid, and the smooth version, or kernel-weighted average of these differences 

are shown. The bandwidth of the these kernels functions was 0.25. This
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Simulated p rocess with gaussian  variogram (c=1) Simulated process with constant variogram

Figure 4.2. Simulated normal processes on a 10 x 10 regular grid in [0, l]2. On 
the left panel, the theoretical variogram is 7 (h) = 1 — exp(—2/i), for each distance 
h. On the right, it is a constant.

scatter plot also shows the expected increasing tendency of these variables.

4.5 .2  C onstant sem ivariogram

As an example where there is 110 spatial dependence or in terms of the vari­

ogram, it is constant, a stationary isotropic gaussian process zero mean and 

diagonal varaiance-covariance was generated. The grid and bandwidth of the 

kernel functions considered were as in the previous example. The generated 

data are displayed in th right panel of Figure 4.3. The p-value for the test 

of constant variogram was p = 0.80. In the left botton panel of Figure 4.3, 

the estimated semivariogram and the theoretical semivariogram are displayed. 

On the right the observed values of the variables ’’raw s” as explained above 

and the its smooth version are displayed. Both curves illustrate the ’’constant
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behaviour” of the underlying variogram.

estimated and theoretical semivar. raw s and smooth s
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Figure 4.3. On the left, scatter plots of the estimated and theoretical semivari- 
ogram of the simulated processes in Figure 4.2 are shown. On the right values of 
”raw s” and "smooth s” as defined in the text are displayed. The two scatter plots 
on the top corresponding to the gaussian semivariogram, and those on the bottom 
to the constant semivariogram.

4.5 .3  E xam ple 2: In areas nearby th e  C lyde R iver

The Clyde River Purification Board has the responsibility of monitoring pollu­

tion levels in the river and sea areas within its sphere of operation. These data 

shown in this example were collected by the Board vessel based at Greenock
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which routinely collects water samples from the positions in the area of the 

River Clyde and its stuary.

A variety of pollutants and other indicators are assessed on each sample. In 

this example, two indicators of pollutions are considered, P 0 4  and S102 form 

a single survey in November 1994. Their observed values are shown in Figure 

4.4.

SI02 P 04

25,

20 .

550.95
50

0.9 45
longitude 0 85 40 latitude

2.5

o
CL

0.5

0.95

longitude „ 85 4Q la titu d e

F ig u re  4.4. This figure shows the values of the two indicators of pollution in 
the area nearby the Clyde river. On the left, the values of S102 and, on the right, 
the values P 04  are displayed.

One question of interest is whether there is scope for reducing the number of 

sampling points if the spatial correlation between neighbouring observations 

is sufficiently large. To answer this question and others concerned with the 

statistical behaviour of the variables of interest, a preliminary exploratory 

study of the most elemental parameter involved in the joint distribution of 

these variables is compulsory to perform. W ith this aim, the structure of the
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variance-covariance patterns of two indicators of pollution has been carried 

out. These indicators have been assumed to be random gaussian processes 

with constant mean. The model for each indicator Y at the location s , say, 

Y (s) is considered as:

Y  (8i) = n + e(si) z =  l , . . . , n

where e =  (e(si, e (s2, ■ • ■, s ( sn)) is normal zero-mean and variance-covariance 

matrix S  whose entries depend on the distances between the pairs of the 

locations, and n, is the number of locations. In this case n = 15. The 

simplest question to be answered here is whether or not the m atrix E is 

diagonal, for each indicator. In other words, whether or not the variogram of 

the underlying processes are constant.

Because all the locations are on a non-regular grid, the number of different 

distances is high enough to consider an estimation of the variogram by averag­

ing the square differences not only for each distance but for a set of distances 

in a ’’tolerance” (as called by Cressie, (1991)) region. Then,

2 j ( h i )  -  { Y ( s i )  -  Y ( s j )  : ( s u Sj )  G N ( h ) ] h  G T ( h i ) }

where T ( h i )  =  { h  :|| h  — hi  ||<  hf,} and where the value of hb considered 

here was the bandwidth for the kernel weighted variables for the quadratic 

form of test statistic. In this context the estimated variogram is calculated 

for graphical purposes and consequently more details are irrelevant in this 

context. On the left of Figure 4.5 these estimated semivariograms for both 

indicators, S102 and P 0 4 , are displayed.
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Estimated semivariogram raw s and smooth s
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F ig u re  4.5. On the left, scatter plots of the estimated, semivariogram of the 
data corresponding to the indicators of pollution S102 and P04 are displayed. On 
the right values of ’’raw s” and ’’smooth s” for both indicators are shown. The two 
scatter plots on the top corresponding to S102 and those on the bottom to P04.

On the right of Figure 4.5, the ’’raw s” and ’’smooth s” variables for both 

indicators, with the same meaning through the approach for testing constant 

variogram, are shown. In this case, the p-values were, p — 0.0001 for S102, 

and p =  0.04 for P 04 . These p-values were calcualted with a bandwidth, hb 

equal to the range of distances over the number of different distances. For 

other values of bandwidths, 2hb and 3 t he respective p-values are 0.0008 

and 0.0015 for S102 and 0.048 and 0.05 for P04.
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Hence, there is not enough evidence of independence of the variables at differ­

ent locations in both cases and this premise should be present in any further 

study involving these variables.

4.5 .4  E xam ple 2: In som e billabongs

Billabongs are standing water bodies on the surface of floodplains, and in 

Australia, as with the rest of the world, they have received little scientific 

attention in spite of broad-scale modifications resulting from human land-use 

practices. The natural environment of the study region has been extensively 

modified by farming practices and the construction of dams, which has altered 

the flow and flood regimes of the rivers which replenish billabongs.

The purpose of this study is to characterise the regional ecology of eastern 

Murray Valley billabongs, and see if there are any differences between the ecol­

ogy of billabongs on farms versus more ” pristine” sites in forest, and between 

billabongs on regulated and unregulated sections of the region’s rivers. The 

study is composed of two parts: an ecological survey of 43 sites, measuring 

variables of the water column and surface sediments, and an historical survey 

examining changes through time in the sedimentary history of ten billabongs. 

The data were kindly supplied by Ralph Ogden and Ross Cunningham of the 

Australian National University.

The data  analyzed here were the residuals of the linear model:
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300

n o rth -so u th east-w est

norlh-south

300

300

F ig u re  4.6. Observed values of the processes of residuals in linear models for the 
of Values of phosphorus, nitrogen and turbidity in some billabongs in Australia, as 
explained in the text.

where the factors correspond to low (j = 1) and high (j =  2) levels 

of farming in sections of the region’s rivers. The response variables were 

nitrogen and phosphorus. A third variable, turbidity, was also examined, 

using a model which also contained factors for regulated/unregulated water 

flow and for different river system.

The residuals — Yi — Y ^ i  = 1 , . . . ,  n  of the models corresponding to these 

three variables are displyed in 4.6.

The motivation to consider the study of the structure of dependence of the 

process of residuals on their spatial locations is supported by the interest in 

the geographical characterization of these billabongs.

As in the previous example, the spatial locations here are not on a regular grid. 

This results in a large number of different distances. Hence, an appropriate 

estimator of the variogram is again of the form considered in the example
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2. These estimated semivariograms are displayed on the left of Figure 4.7. 

On the right, the scatter plots of ’’raw s” and ’’smooth s” are shown for each 

substance. These graphs illustrate the results obtained for the p-values of 

the test of constant variogram. In fact they were, p = 0.90, 0.87, and 0.91 

for phosphorus, nitrogen and turbidity, respectively, showing tha t there is no 

evidence of spatial correlation in the data.

estimated semivariogram raw s and smooth s
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F ig u re  4.7. On the left, plots of the estimated semivariograms of the residuals 
in the fitted models for phosphorus, nitrogen and turbidity are displayed. On the 
right values of ’’raw s” and ’’smooth s” for the residuals in the three models are 
shown.
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4.6 R eference bands

As in the approach for checking homoscedasticity in a linear model, refer­

ence bands for checking indendence or constant variogram in a graphical ap­

proach can be built. The reference bands here are based on the variables 

S(h) = |i^(/r) |x/2 where R(h) is the difference of residuals for a given value 

h of the distance between two points on the domain. The idea is based on 

the estimated smooth function S. This function is calculated for each value 

of h in the interval [a,b] of the distances between all the points in the sample 

as before. For each value of h the random variable S(h) is, under the null 

hypothesis, approximately normal. Then, the random variable Q(h)

S { h ) ~ S
Q(h) = . -  A !  (4.8)

\]var{S(h) -  S)

is ap proxim ately  standard normal. T hen, th e 7 1 0 0 % -reference band for the

smooth function S  can be defined as:

Rb7 — { (h ,y ) | a < h < b ; qi{h) < y < q2(h)} (4.9)

where q\(h) ~  —qQ^Jvar(S(h) — S), 32(h) =  qoy/var(S(h) — S),  where go is 

the (1 +  t ) / 2  - quantile of the standard normal distribution. The expression 

var(S(h) — S)  can be calculated as:

N

var(S(h)  — S) = v a rQ r { wi(h) ~  ( V - ^ 0 ~
2=1

= E E f a W  -  (l /iV))K(h) -  (l/N))coo(St,Sj)
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where Wi(h)  is the kernel function corresponding to the weight for Si and 

calculated at the point h, 1 <  I < N.

Under the null hypothesis it is expected tha t each point h, where a < h < b, 

the variable y=  S(h)  — S , should belong to the i ?&7 with a probability of 

7100%. This methodology can be used as an approximate graphical tool for 

checking constant variogram (independence).

The reference bands and their ability to show whether, in a graphical and 

consequently approximate way, there is or is not evidence of spatial depen­

dence or correlation (under the hypothesis of normality) are now calculated 

for the examples considered above. In Figure 4.7 the 95% reference bands for 

the two simulated examples are shown. As in the conclusions drawn from the 

p-values for the test statitstic  in both cases, the 95% reference band of the 

simulated process with gaussian variogram (top panel) does not contain the 

smooth curve, as expected, whereas the 95% reference band of the simulated 

process with constant variogram (bottom panel) includes this curve.

Reference bands for the sample of the indicators of pollution P 0 4  and S102 are 

displayed in Figure 4.9 where there is some evidence of spatial correlation. In 

fact, in both cases the p-value to test independence of the underlying processes 

are less than 0.05.

The third example of reference bands corresponds to the example concerned 

with data  from some billabongs in Australia. In all the three models studied 

above, the p-values for the test of spatial dependence were reasonably big. 

This characteristic is once agin coherent with the graphical approximation 

of the reference bands. Figure 10 illustrate the 95%-reference band for each
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F ig u re  4.8. 95%-reference bands for the simulated processes in the example 1 
are shown. In the top, the semivariogram is exponential with c =  2, in the botton 
is constant.

case.

4.7 C om m ents

In parametric modelling the estimation of the parameters of the underlying 

distribution is essential. The translation of this sentence to the language of 

spatial statistics in its simplest approach is the estimation of the mean and 

variogram or covariance-function of the underlying process. In this chapter an 

attem pt to develop a tool to check the most basic property of the variogram
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F ig u re  4.9. The 95%-reference bands for two indicators of pollutions as taken 
from the area nearby the Clyde river, U.K. are shown in this figure. On the left, the 
reference band corresponds to P04, and on the right the reference band corresponds 
to S102 are displayed.

has been made. Some general comments can be summarized as follows:

1. The reference bands can be considered as an useful and adequate graph­

ical tool to search for the behaviour of the spatial dependence.

2. The test proposed here for the null hypothesis of constant variogram 

can be an appropriate tool to resort to, under the assumptions of second 

order stationarity and isotropy.
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phos., pvalue=0.90

nitro., pvalue=0.87

turb., pvalue=0.91
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Figure 4.10. The 95%-reference bands for the process of residuals taken form the 
linear model as explained in the text, for phosp., nitr. and turb. for the example 
on the billabongs, Australia. In all of these cases the corresponding underlying 
processes show a structure of independence from their locations. These three graphs 
remark again the usfulness of this graphical tool.

3. Under the assumption that the mean of the underying spatial process is 

a linear function of the locations, the \ 2 approximation for the distribu­

tion of the test statistic may be computationally not very efficient. In 

this case, the empirical distribution of the test statistic under the null 

hypothesis is more efficient.
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4. Under the assumption of constant mean, the approximation of the dis­

tribution of the test statistic to a x 2 distribution is straightforward.

5. If the set of spatial locations is a regular grid, or there are many equal 

distances between these points, the version of averaging the variables 

considered here is an appropriate approach either in the version for the 

test statistic or for the graphical approach of the reference bands.

6. The ideas of the reference bands under the null hypothesis of constant 

variogram might be extended to build reference bands under the null 

hypothesis of a specific model or smooth curve for the variogram. These 

ideas have been considered in the context of noparametric checking of 

models by Bowman & Young (1995).
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Sim ulating and re-sam pling  

m ethods for spatial data

5.1 Introduction

The generation of a spatial process with a specific model for the variogram 

is a tool of indisputable necessity in the context of spatial statistics. In fact, 

a good algorithm to simulate realizations coming from a model with specific 

characteristics encourages the development of tools for inference such as test 

statistics, estimators for parameters of a spatial process, etc. An example 

of this requirement is the test statistic proposed in the previous chapter for 

testing for a constant variogram.

The simulation of a process with a specific model for its variance-covariance 

structure sometimes leads to numerical difficulties at the computational stage.

133
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It usually happens, for instance, th a t the variance-covariance m atrix is pos­

itive definite but some eigenvalues are negative when they are calculated in 

practice, due to numerical problems.

Even when a realization of a process with a given variance-covariance m atrix 

can be obtained by using one of the algorithms proposed in the literature, 

the generated result may not be a good approximation for the problem which 

originated its simulation. In fact, many of these algorithms are based on 

approximations and the accuracy of the approximation should be analysed in 

each context.

Some of the algorithms proposed for simulation of a process require such 

a large amount of space to store matrices tha t they are not very useful in 

practice. Even when all of the disvantages explained above can be sorted out, 

the computer time required may be extremely high. In the context of spatial 

data, as in time series, the necessity of an algorithm to generate a realization 

of a process efficiently is indisputable.

These are among the reasons which have made some researchers think and 

write about different ways to generate this kind of process. Most of these 

methods combine different tools, but they are usually constructed by focusing 

on one particular characteristic. W ith this criterion in view, the work dealing 

with algorithms to generate a process can be classified into three categories: 

methods which are based on a factorisation of the variance-covariance m atrix 

(similarity or LU factorisation), methods concerned with a projection onto 

a space of lesser dimensions (the turning band m ethod), and methods based 

on properties of circulant matrices (embedding the covariance m atrix in a 

circulant matrix) dealing with spectral approaches. Several modifications in
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order to improve or/and to extend their respective scopes have been made in 

all cases.

The first approach has been widely used because of its generality and sim­

plicity. In fact, it is based on the property of positive definiteness of the 

variance-covariance m atrix and does not require assumptions about station- 

arity. Davis (1986) is among the people who have worked on it.

The idea of simulating a process in several dimensions through its projection 

on one dimension seems to be due to Matheron (1973). Journel (1974) has 

worked with turning bands and their applications on mining in his doctoral 

thesis. He also worked with Huijbregts (1981) on a posterior analysis of the 

properties and other details in this approach. Afterwards, Brooker (1985), 

Luster (1985), Mantoglue (1987) and Christakos (1987) deserve to be men­

tioned for their contributions in this direction. The turning bands algorithm 

has enjoyed great popularity in the mining environment.

Under the assumption of second order stationarity, another characteristic of 

a process generated on a regular grid which can be exploited for simulation is 

the Teoplitz (in one dimension) or block Teoplitz (more than one) structure 

of the variance-covariance matrix of the process. This leads to tools available 

in spectral theory and its humble requirement of computer memory has a t­

tracted several investigators to adopt it. Some of them are Borgman, Taheri, 

and Hagan (1984), Davis, Hagan and Borgman (1981), Mejia and Rodriguez 

Iturbe (1974), Shinozuka and Jan (1972) and Wood and Chan (1994).

Some of these approaches are explained in section 5.2.
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A spatially correlated Gaussian process, simulated from an independent Gaus­

sian process by using two-dimensional kernel averaging is proposed. In this, 

the covariance function is not specified in advance but the strength of depen­

dence can be controlled through the kernel functions. It is the two dimen­

sional analogue of the concept of a moving average process for time series. 

This method is outlined in section 5.3.

Re-sampling methods for the analysis of a single set of observed data are 

also discussed. They are the non-parametric bootstrap approach and the 

perm utation technique. These approaches are very attractive because it is 

not necessary to make assumptions about the distribution or specific structure 

for the variance-covariance matrix. Both techniques are considered here as 

useful tools under the assumption of independence. An example in which this 

assumption is valid is tha t for the distribution of the statistic proposed in the 

previous chapter under the null hypothesis. Some general ideas are given in 

section 5.4.

It is known th a t the ordinary bootstrap is not appropriate under an assump­

tion of dependence of observations from the underlying distribution. In an 

effort to amend the bootstrap to apply to dependent data, some modifications 

have been proposed. They have led to the method which is called the block 

(or moving) bootstrap. To study the behaviour of this statistic and build local 

confidence intervals the technique of block bootstrap is used. The coverage of 

these intervals is then analysed. This approach, as well as a small simulation 

study, is presented in section 5.5.

A general discussion on techniques to simulate a process is summarised in 

section 5.6,
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Some more general comments are considered in section 5.7.

5.2 Sim ulation m ethods

W hen a process is simulated to check properties of its variogram, as is the 

case in the study in the previous chapter, the nonnegative definiteness of its 

variance-covariance m atrix can be guaranteed under some circumstances. To 

analyse this property, the two general situations of constant and non-constant 

variogram are now considered.

Under the assumption of constant variance,

2 'f(h) =  2 var(Y(s ))  — 2 cov(Y(s  +  h ) ,Y ( s ) )  = 2 a2 — 2(7(||fo||) =  2<Tq

. Hence, the covariance function is constant and C(h) = 2a 2 — 2a% ~  c =  

constant  and the variance-covariance m atrix Ee has constant diagonal entries 

a 2 and constant off the diagonal entries c. Then the determinant of this m atrix 

is:

I He | =  (a2 — c)(n_1)(c72 +  (n — l)c) =  (a2 — c)n +  nc(cr2 — c)

(see Graybill (1983), page 231). Therefore, if cr2 > c then |He| >  0 and He is 

positive definite. Clearly, if c= 0, He is diagonal with positive elements on it 

and, consequently, it is positive definite.

If the variogram is not constant, the non-negative definiteness of the variance- 

covariance m atrix can be guaranteed if the variogram q(., 0 ) is a member of
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a ’’valid” family:

S(0)  =  {7 (., 9) : 6 =  (c0, cs, as)'t c0 > 0, cs > 0, and as > 0} 

as, for example, the family known as spherical:

7 ( M )  =  (co +  cs ((3 /2 )(V a s) -  ( l/2 )( /i/a 5)3))) /(oA ](/») +  (co +  cs) /K ,oo](/l)

or the ex p o n en tia l:

7 (h,6)  =  c0 +  cs (l -  e xp ( - ( h /a s))) I(0,oo){h)

for each h > 0 which is a distance between two points in the set where the 

process is defined.

These families, as well as others (see for example, Cressie, 1991, page 60), 

guarantee the conditional negative definiteness of the variogram. This prop­

erty can be written as:

i i
^ 1 CLitij27(^i ®j) — ^
i=lj=l

for any finite set of spatial locations {s* : i =  1, . . . ,  1} and any finite set of 

real numbers : i = 1 Thus, if the variance-covariance m atrix of

errors is E e =  (0#) where =  2a2 — 27 (/i„) and where 27 is a member of a

family as above and hij is the distance between the points i and j, then the 

variance-covariance m atrix E e is positive definite (Matheron 1971).

Hence, the nonnegative definiteness of the variance-covariance m atrix for a 

process as studied here can be guaranteed at least from a theoretical point of
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view. Despite these theoretical considerations, numerical problems can occur 

in the implementation of a simulation in a computer.

If {Yi, Y2, . . . ,  1^} are the observed values of a realization of a stationary pro­

cess on a regular grid in M, its variance-covariance m atrix has the characteris­

tic th a t all the elements on each super-diagonal are equal and all the elements 

on each sub-diagonal are equal. In other words, the variance-covariance ma­

trix  of a realization of a stationary process in R  is Teoplitz. If the process 

is defined in M2, there exists an order of the points on the grid for which 

its variance-covariance m atrix can be split in Teoplitz sub-matrices. In other 

words, the variance-covariance m atrix of a stationary process defined in M2 is 

block-Teoplitz. It is widely known tha t a Teoplitz m atrix can be embedded 

in a symmetric circulant m atrix (a fox A’-matrix with elements such th a t 

if the rest of i+ j-2 (module k) is equal to the rest of p+ q-2 (module k), then 

a>ij — Upq) and a block-Teoplitz m atrix can be embedded in a block circulant 

matrix. The symmetric (block) circulant matrices can be factorized in the 

complex field by using the fast Fourier transform in a very convenient way 

in order to simulate the required process. This simulation can be reduced 

finally to the simulation of independent random variables as in the algorithm 

which uses the similarity and Cholesky factorisation of the variance-covariance 

matrix.

The description of some of the algorithms for simulating a process will now 

be described. For the methods presented in this section the common char­

acteristic will be th a t the process has a specific variance-covariance matrix. 

Also the properties of isotropy, normality and zero-mean will be assumptions 

even though for many of these procedures some or all of these assumptions 

can be relaxed.
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The algorithms will be described for processes in M2. Nevertheless all the 

methods in this section can be extended, with more or less computational 

difficulty, to more than two dimensions.

5.2.1 U sin g  a sim ilarity transform ation  o f th e  covari­

ance m atrix

Let { y (s )  : s £  D}, D  C I 2 be such tha t a realization {Yi, Y2, . . . ,  Ŷ ,} at 

the locations Sj G L , l =  1, . . . ,  n  is to be simulated. Suppose th a t a specific 

N  x  N  variance-covariance m atrix Ey, where N  = n(n  — l) /2  is constructed 

from a valid family for the variogram. Then, Ey is positive definite and an 

orthogonal m atrix P exists such that: P TE £P  =  A where A is the diagonal 

m atrix with the eigenvalues of Eg in the diagonal. Let Ai, A2, . . . ,  Xn  be 

the characteristic roots of Eg. These values are all positive because Ee is a 

positive definite matrix. Multiplying by P T in the equation Y  = X(3 +  e, 

this model is transformed in the model,

P t Y  =  P TX(3 +  P Te = P TX 0  +  7]

where rj =  P Te has a normal distribution with zero-mean and variance- 

covariance m atrix

Ev  =  P t E£P  =  A

Therefore rj is a n-normal vector with components 77̂  i = 1 , . . . ,  n  zero-mean 

independent normal variables with variance A i =  1, . . .  ,n.  Hence, this al­

gebraic theory can be used in order to generate a spatial process Y with a 

m atrix E e given above. The steps followed for this generation are:
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1. Consider a variogram 27 from a specific valid family and calculate its 

values 2 7 (h) ,  for every vector h  which is the difference between two 

points in D.

2. Calculate the charactistic roots Ai , . . . ,  Ajv and the m atrix P with columns 

the corresponding characteristic vectors for the m atrix Sg with entries 

a1 in the diagonal.

3. Generate normal independent random variables rji ~  1V(0, A<), i =  

1 , . .  . , n .

4. Calculate e =  P t} which has normal distribution with variance-covariance 

matrix: — P A P T, and the values of Y  =  X(3 +  e

5.2.2 LU triangular d ecom position  of th e  covariance  

m atrix

The method by Davis (1986) is based on the idea tha t if a set of data on a 

grid are lodged, they are smoother than reality. Then, one way to reproduce 

the spatial variability is to predict (or krige) one value on each point on the 

grid, to subtract the predicted value from the original (non-conditional) value 

in order to obtain a correlated error. These errors are then added to the 

unconditioned kriged data on the grid to obtain a conditional simulation. 

These ideas can be summarised as follow:
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1. Given a data vector Z  =  (Zi, Z2, . . . ,  Zn)t a predicted (kriged) value at

the point so is given by: Z*{a^) =  d K ~ xZ  where c =  (cov(s0, s i ) , . . . ,  cov(s0, s n))' 

and I< is the covariance m atrix of the vector Z if simple kriging with 

zero-mean is assumed (see for instance, Cressie (1991),page 123).

2. Suppose th a t Z  is a vector of data values and Y  is a simulated vector 

at the data locations, then the equation U* = C 'K ~ 1{Z  — y), where C 

is the m atrix whose columns are the vectors c as explained previously, 

can be expressed as U* =  Z cs — Z us with Z cs vector of conditioned 

simulated values and Z us a vector of unconditioned simulated values.

3. The previous equation can be solved directly and a vector Z cs can be 

found. To this aim a m atrix C given by:

q  _  ^ 12
C21 C22

where C n  is the covariance matrix of the data points (K), C 12 is the 

covariance m atrix between the data points and the grid points, C21 =

C i2 and C22 is the covariance matrix between the grid points.

4. By using a Cholesky decomposition, the matrix C can be w ritten as

' C n c12' L u 0 Un Ul 2 '+
_c21 Jp to 1 L21 L22 0 U22 _

5. W ith the notation below a required vector can be w ritten as: Z cs =  

L 2 i L p 1Z T L 22 W  where Z  is the vector of data (previously transformed 

so th a t its components are independent standard normal distributed) 

and so is W .
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This technique can be applied, among others, to simulate realizations of a 

process in a part of the grid. It has the disadvantage th a t its implementation 

requires matrices of quite big proportions. In order to sort out this problem, 

the same author has introduced a modification of this methodology (Davis, 

1986(b)). He proposed to approximate the square root of the covariance ma­

trix by a minimax m atrix polynomial and to use the block Teoplitz structure 

of the covariance m atrix to minimise storage.

5,2.3 E m bedding th e  covariance m atrix  in a circulant 

m atrix

Wood and Chan (1994) have created a methodology to generate a process 

{V(«i) : 1 <  j  <  n, Sj € with a specific covariance function C  : M.d — > M. 

The assumptions for the covariance function here is stationarity with respect 

to translation in R d. The assumption of isotropy is not necessary in this ap­

proach. The general idea behind this procedure is based on the fact tha t the 

variance-covariance m atrix of a stationary process defined on a regular grid in 

M.d is Teoplitz when d = 1, block Teoplitz when d = 2 and nested block Teo­

plitz when d >  3. This property guarantees tha t this m atrix can be embedded 

in a symmetric circulant m atrix when d =  1, block symmetric circulant ma­

trix  when d = 2, and nested block symmetric circulant m atrix when d > 3. 

The main idea is to simulate from a longer vector whose covariance m atrix is 

the circulant, and then select the sub-vector whose covariance m atrix has the 

appropriate Teoplitz form. The properties of circulant matrices are used to 

seek for an adequate factorisation of the covariance matrix. This factorisation
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leads to a linear transformation of independent normal variables which pro­

duce a process with the required variance-covariance matrix. The description 

of this algorithm is presented below for the case of a process defined on a 

two-dimensional grid. Its extension to higher dimensions is straightforward.

Let the set of points on the regular grid be

D  =  { ( n ~ ’ n~)  ” i-1’ 1 ~  * -  2’ 1 ~  1 ~  2} G

where =  J  and (n i,n 2) =  N  are elements of Z2, Z being the set

of integer numbers. In order to simplify the notation, the pairs 

in D are defined as the result of the component-wise fashion division in 

Z 2' Jt = W ith notation, it is required to simulate a pro­

cess jV  : jj  £ I?} such tha t its covariance function is a known function 

C  : — > R , C  (T  ( £ )  , Y  ( ^ ) )  = C  ( ^ )  or, more generally, C (sh a5) =

c(&i — Sj) for an appropriate function c and Si,Sj 6 D.

It is widely known th a t the points on a regular grid can be ordered in such a 

way tha t the variance-covariance m atrix £ y  of the process is block-Teoplitz 

( a partition of Ey exists such tha t each block on it is a Teoplitz matrix). 

It is also well known tha t each block-Teoplitz matrix can be embedded in a 

block-circulant matrix.

If the process Y is isotropic and its covariance function c is defined as:

c(h) — a2 — 7 (/i), /i £ M2
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where the semi-variogram 7 belongs to a valid family, then the variance- 

covariance m atrix EY is non-negative definite ( see, for instance, Cressie 

(1990)). For these families it is also valid that:

is strictly positive for all t  E [0,1]2. Then, there exists an integer uq = 

u q( N ,  G) such th a t for all M  = (mi, m 2) tha t satisfy m m {m i,m 2} > u0 the 

m atrix EY can be embedded in a positive definite m atrix of order m  = m i m 2.

For each pair of positive integer numbers K  =  (kY k2) the sets I(K) and I*(K)  

are defined as:

a bijection b between this set and the set 1% “  0, 1, 2 — 1. One of the 

possible bijections is bk : I {K)  ^  Tk, b(ju j 2) =  J1+&U2 for each (ju j 2) e  K.  

This notation is used now to define a circulant variance-covariance m atrix (and 

its corresponding stochastic process) such tha t it contains as a sub-matrix the 

variance-covariance m atrix £y .

and the spectral density:

g (t) = (2?r) 2 Y ,  C  ( ^ )  exp { -2 M J Tt) 
j e Z 2

I ( K)  -  I ( k u k2) = {{31J2) : 0 < A < h  -  1,1 <  i <  2}

I*(K ) = I ( k u k2) = { ( ju j 2) : 0 < |j;| < h  -  1,1 <  i <  2}

The set I ( K)  = I ( k i t k2) has k =  kik2 elements. Consequently, there exists
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W ith the notation above, let the pair M  =  (mi, m 2) be one of the pairs th a t 

verifies th a t m m {m i,m 2} >  u0 (as defined before). For this M it is possible 

to define a m atrix of order f h x f h  with entries — c(i —j)  where c is function

defined as: c(h) = C  with N  = (n1,n 2) where n i , n 2 are the numbers of

points on each side of the grid and h  is defined as follow:

h  i f  0 ^  hi

h  = 1 h  — M  i f  ^  <  hi < rrii — 1,1 <  i < 2

h  +  M  i f  ^  <  —hi < rrii — 1,1 < i < 2

for each h, h  G I*(M).  The matrix E with entries <7̂ , i , j  = 1 , . . . ,  m defined 

as explained before has the matrix Ey as a sub-matrix and is a circulant 

matrix. At this stage, the idea is to build a process Z such th a t the m atrix E 

is its variance-covariance matrix, in other words, E 2 =  E.

Because E 2 is a circulant matrix, there exist a f h x f h  m atrix Q such tha t E 2 — 

QAQ* (see, for instance, Brillinger (1981), pag.73) where A is the diagonal 

m atrix with the latent values Ai , i  =  1 , . . . ,  fh of Ez on the diagonal, Q is the 

m atrix with the latent vectors of Ez, and Q* is the conjugate transpose of Q. 

The latent values and the latent vectors can be calculated very efficiently by 

using the finite Fourier transform:

Afc1+mifc2 =  ^   ̂ c{J)exp ( - 2 m

where K  =  (&i,/c2), J  — (jiMf)  £ I (M )  and the j th column qj of Q has 

components

Qu — fh~1̂ 2expi—2'Kv^r) A =  0, . . . ,  in — 1 
m

for j  = 0 , . . . ,  fh — 1. Another im portant property of these matrices is th a t its
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square root can be straightforwardly calculated as S ^ lj/2 =  QA1/2^*. Hence, 

if a random vector U  = (Ho, Hi, , Um-i) with components Ui independent 

and identically distributed as standard univariate normal is generated, then 

the vector Z  — Ez lf2U  — Qh}l2Q*U has zero-mean, m-normal distribution 

with variance-covariance m atrix Ez .

W ith this procedure, the vector Y  ( - 0  — Z  ( 0  for each J  G I{N )  has 

variance-covariance m atrix E Y given originally.

The Wood & Chan algorithm exploits the efficiency of the fast Fourier trans­

form. Also, it is not necessary to store big matrices even in cases where the 

size of the grid is big. In fact, the vector U  is not calculated in the fortran 

program by Chan & Wood. Other complex-random vectors are used in their 

places and the resource of the fast Fourier transform is then used.

Figure 5.1 shows simulations of two different processes simulated with a 

program from Chan & Wood (1996).

The steps to be followed to apply this algorithm to generate a set of data can 

be summarised as follows:

1. Given a specific covariance function C defined for each point on the grid 

in [0, l ]2 with rq x n 2 points, calculate a pair of positive integer num­

bers (mi, m 2) =  M , the sets I ( M )  and I*(M)  and the new covariance 

function c(h) — C ( j f ) t where N  =  (n i ,n 2)

2. Calculate the latent values Xkl+rjllk2 for (/ci,/c2) € 7(M ) and the latent 

vectors qj, for j  — 1, . . . ,  m  — 1 with components <3̂ ; I = 0, . . . ,  m — 1
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c(h)=exp(-2h)

c(h)=exp(-50*hA2)

Figure 5.1. Two examples of simulated spatial normal data on a regular grid 
with Wood & Chan’s algorithm. On the top panel, the variogram is 27(h) = 
2 — 2exp(—2h). On the bottom, the variogram is 27(h) = 2 — 2exp( —50h2). In 
both, the variance is a1 = 1

of the covariance function c by using the fast Fourier transform.

3. Generate a vector U  = (f/0, U2 , • • •, Ufh-i) with random independent 

normal components.

4. Do the transformation Z  = Q A l^2Q*U , where Q is the matrix with 

entries qij and A the diagonal matrix of the latent values, to calculate 

a realization of the process Z with covariance function c.

5. Extract a subset of the data Z obtained in the latter step.
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5.2 .4  T he turn ing  bands m ethod

This method is based on the idea of simulating a process originally defined in a 

higher dimension through the simulation of several adequate one-dimensional 

projected processes. The general ideas of this approach are due to Matheron 

(1973). Journel (1974) has given a detailed development and applications 

in the context of mining in his doctoral thesis. Brooker (1985) has worked 

with the simulation of a two-dimensional process and found explicit relation­

ships between two and one-dimensional covariances functions. The concept of 

space transformations and some of its properties are explored in Christakos 

(1987). He has also considered an extension of this approach to anisotropic 

and integrated processes.

The general theoretical background of the turning bands method deals with 

the Radon projection (Christakos, 1987). The main basic ideas are now ex­

plained.

If f is a function f A  R, where A is a subset of Rn, the R a d o n -p ro je c tio n  

of /  over the hyper-plane H  C  R" is defined as:

where u  =  (ui, U2 , . . . ,  un) is a unit vector defining the orientation of the 

hyper-plane in Rn, x . u  is the inner product of the vectors x  and u,  and dm 

is the Euclidean measure on H, provided the integral exists.

This definition and some of its properties lead to two operators, and
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which assign to a function defined in R n a function defined in a hyper­

plane of R n and vice versa. They have been defined as:

gn-k,u(X ‘Uk) -  Tn~k[fn{v)] = JRn fn{x)5(x .U  -  t)dx

where f n is a function defined in R” , t  is the inner product between x  and u  

which defines the position of the hyper-plane H k in and the delta function 

5 allows to selected the hyper-plane H k from Mn.

Another operator is given by:

f n(x) ~  =  /  v ( u ) fn- kiU(x .u )d u
J6n

where the integration is carried out over any closed surface 9n enclosing the 

origin u  =  0 in M71, and f n- kiu  is a function defined on the union of a 

collection of hyper-planes H n^k of This operator assigns to a function 

f n-k,u  a function f n in R n.

W ith a view towards the simulation of a two-dimensional process starting 

from the simulation of a one-dimensional process, when a covariance function 

of the two-dimensional process is given, it is useful to consider how to obtain a 

covariance function for the one-dimensional process. In terms of the operators 

given above, the inverse operator of for k = n  — 1 and u{s) equal to the 

volume of the n-sphere of unit radio is:

/.,«(<) =  C l I / w W ]  = £ r h +1 lhm+l (»)]
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if n  =  2m  +  1 is odd, and, for n =  2m even, it is:

„  ( d f
I ,ir2(2w)2m~1 i{S^TLlhU*)]}

where t = x . u  and H  is the Hilbert transform defined as: H[f(z)]  =  ^ G ~ ^ d y

where G indicates th a t the Cauchy value should be taken (Sneddon, 1972) ).

Suppose, a covariance function C2 for a two-dimensional Gaussian isotropic 

process is given and a process {V(s) : x  € D  C  5ft2} is required to generate 

with the condition th a t C2 is its covariance function. The procedure of turning 

bands reduces the simulation of this process to the one-dimensional process, 

say,

where N is a number of hyper-planes (lines for this case) to be determined 

and s f t  is the projection of a point s  on the hyper-plane if*, as indicated in 

the 5.2. If the covariance function of this one-dimensional process is called 

ci, the idea here is to  find ci such tha t the operator =  d/2 applied to 

the function cj results in the function C2- If, 9n in the definition of T  is a 

circle 62 which contains the origin in R2, Ui is a unitary vector on Hi and the 

weighted function v is the constant v =  1 /area  of the united circle =  I  then,

where h = || h  || If ci is even and, because the two-dimensional process is 

isotropic it gives:

C\[hcos(j>)d(j>
i  r

(5 .1)
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This operator should be inverted to find the appropriate function cx to sim­

ulate realizations of the one-dimensional process. Applying the expression 

above, for n even (n=2.m), the function ex is (Broolcer, 1985):

d(fi) =  c2( 0 ) +  j  h(h2 — t2) 1/2 ~ [ c 2(t)]dt (5.2)

W ith the covariance function cx is possible to simulate a one-dimensional 

process Z on a line (hyper-plane) through the origin in 5ft2.

Now consider N lines Hi for i — 1 , . . . , iV with corresponding directions 

u x, u 2, .. ■, Un  uniformly distributed over the unit half circle. Suppose it

is required to simulate a process Y(s) for s x, s 2, . . . ,  s n . These points are

projected on the lines Hi for i = 1 , . . . ,  N  and one-dimensional processes 

{Z(sf f i) : sHi £ Hi , Hi line C D , i — 1 , . . . ,  N }  with covariance function c\ 

are simulated independently on each line.

Suppose now tha t s  is one of the points {si, s 2, . . . ,  sn} (the subscript is

omitted for simplicity), and sj-q, Sh2, . . . ,  sHn are its respective projections on 

the lines H i , H 2y. . . ,  H N, the value of Y ( s )  at s  is defined as:

1  N
n°)  =

The covariance function c2 of the process Y  at h = || h  ||, the distance between 

the points s  and s  +  h  is:

i  J V  J V  I  N
c2{h) =  cov (Y (s+ y(Ji)),s) =  — ^ 2 ^ 2 C0V(Z ((s ^ h ) ’Uj)^Z{s.Ui)) = - ~ Y , ci (h ’u i)

i=ij=i iV
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because Z ( ( s  + h) .Ui )  and Z( s , Uj ) )  are independent by construction when 

hJ  = 1, - . . , ^

In practice, instead of the projections s.Ui , for i — 1 , . . . ,  IV, each line Hi is 

divided in segments of equal longitude, and, simultaneously, the whole area 

is divided in bands (the tu rn in g  b an d s) with width equal to this longitude. 

Then, one value of the realization of Z is generated at the middle point of this 

segment. When passing to the two-dimensional realization Y { s ) ,  the value 

for the unidimensional process generated in this middle point, Zs in 5.2, is 

given to all points in two dimensions which lie within this band.

F ig u re  5.2. The points on the grid where the two dimensional process Y  is 
required to be simulated (indicated with one of the hyper-planes Hi, and the 
turning bands corresponding to this hyper-plane. The value Zs of the simulated 
one dimensional process is assigned to all the points on the corresponding turning 
band as a value of T(s).

Then, the procedure is repeated for all the hyper-planes in a uniform distri­

bution of them  within the unit circle (see Figure 5.3).

The steps to simulate a two-dimensional zero-mean Gaussian isotropic process 

by using turning bands can be sumarized as follow:
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F ig u re  5.3. An example of hyper-planes H \,H 2, He, H^^Hs and He uniformly 
distributed in the unit circle in R2. For each hyper-plane Hi , the turning bands 
are built as shown in Figure 5.2.

1. Given a covariance function o2 , calculate the corresponding covariance 

function C\ for a one-dimensional process by using the equations 5.1 or 

5.2 above.

2. Given a set of spatial locations {si, s i , . . . ,  C R 2, consider a rect­

angle, say R, which contains this set of data. The centre point of this 

rectangle will be considered the origin in R2.

3. Consider a positive integer N and calculate the angle <j> =  tt/N .

4. Trace a line Hi through the origin O and divide this line in segments of 

equal longitudes. Consider also an unitary vector Ui in the direction of 

Hi .

5. Trace perpendicular lines to the line Hi by the extreme points of the 

segments and define a tu rn in g  b a n d  as the intersection between the 

band between two of these perpendicular lines and the rectangle R.

6. Simulate an univariate normal zero-mean process a t each middle point
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of the segments in the line Hi with covariance function c\. Call this 

process Z^..

7. Repeat the steps 3 to 5 below in such a way tha t the angle between two 

consecutive lines is <fi.

8. For each point s in the given set {si, « i , . . . ,  s re} define as the value 

at s for a realization of the two-dimensional process Y, N 1/2 times the 

average of the simulated values of all the unidimensional processes which 

are in the same turning bands as s :

where s.Ui indicates the middle point of the turning band where s  is 

intersection Hi.

The approximation of the distribution of the generated two-dimensional pro­

cess to a normal distribution is justified by the central limit theorem. It is 

therefore im portant to consider an adequate minimum value of the number N 

of turning bands. Journel (1974) gives an experimental minimum number of 

N for a specific model (spherical) for the covariance function. In fact, some ex­

perience is required to select an appropriate value of N. The influence of small 

changes on the one-diinensional covariance function is translated into impor­

tan t changes on the two-dimensional covariance function. This property gives 

a warning th a t it is necessary to look for a way in which the one-dimensional 

processes can be simulated with good accuracy.

This method can be applied to simulate data in three (or more) dimensions 

as is often required in problems dealing with mining. Also, this method has
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been extended to anisotropic and integrated processes (see Christakos, 1987).

5.3 Incorporating dependence w ith  kernel sm oothers

When a specific variogram or variance-covariance m atrix for a process is not 

required, but it is required to generate processes with varying degrees of de­

pendence, smoothing techniques can offer useful tools.

Suppose {Ei,  Z 2). . . ,  Zn} are observations at locations {si, s 2, . . . ,  coming 

from a white noise process. Then, the smoothed variables:

n
1 i  ̂ ) ra ij Z j , i =  1, . . . ,  n

j=i

where Wij are weights which depend only on the locations Sj, are correlated 

and the ” degree” of dependence is controlled by the weight functions.

Let Y  =  (Ti, I 2, . . . ,  Yn)T and Z  = (Zi, Z 2, . . . ,  Zn)T be the vectors of the 

variables Y and Z, and W  the m atrix with entries w#, i — 1 , . . . ,  n; j  =  1 , . . . ,  n  

as defined above. Then, the n-equations above, can be written as: Y  = W Z  

and Y  has a normal distribution with zero mean and variance-covariance 

m atrix T>y  given by Z y  = W W ' . Then, if the weighting functions are 

chosen as functions of a distance between the points Si ,S j , say, == iu(|| 

s i ~  s j II) covariance function of Y  will be a function of the distances 

between the locations. In fact,

n n

COv(Yi, Yj) =  =  X) W(\\ Si ~  Sk ll)W(ll -  s j II)
fc= l  k = 1
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This expression shows tha t the simulated process may be not stationary if 

the kernel does not have compact support and the grid is, in fact, a compact 

set in K2. It implies a non regular distribution of the weights assigned by 

the kernel functions to two pair of points even when they can be at the same 

distance. Then, the covariance depends not only on the distance between the 

points but also on the positions of the points on the grid.

To illustrate the statem ent above, suppose the tha t the kernel functions wi 

are proportional to the normal density centred at the point Si, i = 1, . . . ,  n. 

Then,
x - X i \ *  f y -  xjiWi{s) = c exp ( — o v

A  y V o2

where (x,y)  are the coordinates of s and (x i f yi) are the coordinates of s* and 

c is a constant to make the sum of the weights equal one:

X  —  X i
+ y - V i

Then, for a grid as in figure 4, the points s 12 =  (0.1,0.1) and s 13 =  (0.2,0.1) 

and the points s 33 =  (0.2, 0.3) and S34 =  (0.3,0.3) are at the same distance 

li s 12 — sis ||= || s 33 — S34 ||=  0.1 whereas the covariances are ccw(Yi2, Y13) =

0.0496 and cow(y33, >34) =  0.0339. This is a result of the so called ”edge- 

effects” of smoothing techniques.

The idea of smoothing a white noise process to obtain a dependent one is a 

generalisation of the moving average procedure, or more generally speaking 

with the filtering of a series, in the context of time series.
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indepedent data
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smoothed data
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Figure 5.4. On the top panel a realization of a white noise process is shown. From 
these data a realization of a process with non diagonal variance-covariance matrix 
is generated through the application of a kernel smoother with weighted functions 
proportional to independent normal density functions with standard deviations 
bl=b2=0.15

One way to build a stationary process by using the ideas of smoothing tech­

niques is to consider kernels with compact support. This approach can be 

thought of a tapering procedure in the time series scenario (see, for instance, 

Brillinger, 1981). To illustrate this method, suppose the kernel functions 

are as considered before, and ’’tapers” or ’’windows” of the form

1 i / | | i i | | < &

0 otherwise

are used.
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Then, a kernel with compact support can be constructed as the product of 

these two functions. For example; let bi and bi take the same value b — b± =  

&2) hi(u) — h The functions ki,

_  I  C.exp ( - 1  II ||2) i f  || | |<  1

0 otherwise
ki(u) = h ( - -jj —)  -Wi(u)

where c =  ki{s j) f°r j  =  1, . .  ■, n  have support:

S(ki) =  {u :|| u  — S{ ||<  b} = circle in M2 with centre at and radius b.

Figure 5.5 shows some contours of the kernels ^  and kj where = (0.5,0.5) 

and Sj = (0.1, 0.1), a point close to the border of the rectangle [0, 1] x [0, 1] 

in which the grid is included. The function Ki  has support included in the 

rectangle R but the support S(kj)  of the function K j  is not included in this 

rectangle and, consequently, the data at the points in the neighbourhood of 

the point Sj are receiving different weights from those which are a t the same 

distance but in the neighbourhood of the point s^. This characteristic leads 

to a loss of stationarity.

This border effect can be eliminated if a subset of the simulated data is 

considered. Suppose, a set of data is generated on a m  x m  grid in R  = 

[0, 1] x [0, 1] with compact support kernels k{ with support set a circle with 

centre at s*, i = 1, . . . ,  m  is simulated. Suppose also th a t k is the minimum 

positive integer such th a t k / ( m  — 1) >  b and n — m  — 2k, then the support of 

ki is included in R for (j — l )m+(fc +  l) <  i < ( j ~  l ) m + m  — k and 1 < j  < n. 

Consequently, if the subset of the simulated data (Y (si), y ( s 2) , .. ■, h ( s mm)} 

at the points s* with (j — l)m  +  (k +  1) <  i < (j — l)m  +  (k +  1) +  n  and
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Compact support kernels and their contours

160

1

F ig u re  5.5. This figure shows two kernels with compact support centred at the 
points (0.1,0.1) and (0.5,0.5). They were built from a normal normal densities 
with means at these points and standard deviations 6 i =  62 =  0.15 multiply by a 
tapering function h as described in the text with b = 0.15.

k + 1 < j  <  (k +  n) is extracted from that set, it will enjoy the property 

of stationarity and isotropy. The variance-covariance m atrix of this subset is 

the m atrix V V '  where V is the sub-matrix of W (as explained above) which 

contains the rows with the same subscripts that the selected data. From this 

m atrix is also possible to extract the values of the covariance function. One 

example of this procedure is shown in figure 5.6.

In conclusion, the use of kernels with compact supports, and the extraction 

of data from the interior of the region, enables stationary, dependent data to 

be simulated.

The symmetry of kernels used will guarantee isotropy.
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Simulated data with a compact support kernel

1

0 0 0.2 0 4  
An stationary subset of simulated data

estimated covariance function
0.06

0.04
- C
a

0.02

0.1 0.2 0.3 0.4
h

0.5 0.6 0.7 0.8

Figure 5.6. On the top panel a realization of a process simulated by using a 
normal kernel smoother on a 16 x 16 grid from a white noise process. The kernel 
smoother is proportional to the product of two independent normal densities with 
standard deviation b\ =  b2 =  0.15. On the middle panel a stationary subset of data 
is shown. On the bottom panel the observed covariance function c from the latter 
set at each value of the distance between two points is graphed.

In terms of computation, the simulations are very straightforward to perform, 

both from the point of view of the calculations and storage capacity.
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5.4 R e-sam pling m ethods for hypothesis te s t­

ing

Perm utation or randomisation techniques have great attractions because of 

some of their properties. In fact, one of their more attractive properties is 

tha t they do not require assumptions about the distribution which the sample 

values were taken from. Another is the very simple idea of perm utation or ran­

domisation they are based upon. These ideas are also supported by a usually 

quite satisfactory efficiency. The popularity of this method is increasing along 

with the computer power which makes implementation straightforward. Most 

of the impetus to use distribution-free methods was originally in hypothesis 

testing as used here.

A method based on perm utation of the values of a realization of a process was 

used here in order to calculate the empirical distribution of the test statistic 

for constant variogram. This approach is very similar to th a t of the non- 

parametric bootstrap in which a set of data is generated from the original 

set. The difference between these two approaches is tha t in the bootstrap 

approach every new set of data is obtained as a sample with replication form 

the first one.

As an example of an application of the permutation method the calculation 

of the p-value for the test statistic for constant variogram is considered now. 

In this case the steps followed were:

1. Calculate the value of the test statistic for the set of data.
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2. Permute the spatial locations associated with the individual observa­

tions. This represents the null hypothesis of absence of spatial correla­

tion.

3. Calculate the observed value of the test statistic with the permuted 

values.

4. Repeat steps two and three a large number of times to calculate the 

empirical distribution of the test statistic under the null hypothesis.

5. W ith the distribution calculated in the latter step, calculate the corre­

sponding quantile for the observed value of the statistic obtained in the 

first step.

5.5 B uild ing local confidence intervals for the  

variogram  through block-bootstrap

5.5.1 In trodu ction

If the observations are independent the bootstrap methodology is quite useful 

to calculate the empirical distribution of a statistic based on these obser­

vations. However a similar statement cannot be made for dependent ob­

servations. The independent and identically distributed re-sampling scheme 

associated with the method fails to capture the underlying dependence in the 

joint distribution of the observations.

For this reason, some efforts have been made to extent this methodology
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to the case of dependent observations. One technique which deals with the 

estimation of distributions under the assumption of dependence is the ’’block- 

bootstrap” .

A statistic of interest in the context of spatial processes, and particularly 

in their applications to geostatistical data, is an estimator of the variogram. 

When the underlying distribution is Gaussian, some efforts have been made 

in the literature to approximate the distribution of the classical estimator of 

the variogram. However, these approximations usually assume normality and 

are based on large sample sizes.

Standard errors bars are sometimes displayed on top of estimated values of 

the variogram. There is a danger of misinterpreting these, because the under­

lying points are not independent. A motivation for the block-bootstrap is to 

attem pt to represent the variability in the estimator of the variogram more 

accurately.

An algorithm based on a subsample or window due to Hall and Jing (1994) 

is explored here, to assess its effectiveness in calculating confidence intervals 

for the variogram. A Gaussian second order stationary and isotropic process 

with a specific variogram is generated. Local confidence intervals for the semi- 

variogram are calculated via this block-bootstrap approach and the coverage 

accuracy is calculated for some particular variogram models. These confidence 

intervals are also compared with those based on the approximate distribution 

for the classical estimator given by Baczkowski & Mardia (1987) under the 

assumption of normality.
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5.5.2 P rev iou s L iterature

The bootstrap methodology as introduced by Efron (1979) to estimate the 

underlying distribution of a statistic when the observations are independent, 

fails when they are dependent. Singh (1981) (Remark 2.1) gave a simple 

example to show that, even in the case of weak dependendent processes, the 

bootstrap sample mean is not a consistent approximation to the sample mean.

The problems under the assumption of dependence have been recognised and 

several efforts have been made to extend the bootstrap methodology to the 

case of dependent observations. In fact, a re-sampling tool like this would be 

invaluable in the field of statistical inference.

Perhaps the first works concerning with bootstrap under assumptions of de­

pendence are those due to Davis (1977), Feedman (1984) and Efron and 

Tibshirani (1986). In these three works the bootstrap method is applied to 

ARM A models by reducing consideration to innovations which are indepen­

dent and identically distributed. Modifications of the classical bootstrap for 

specific autoregressive models have been tackled by Bose (1988) and Besawa 

et al (1989).

Carlstein (1985) has considered the use of sub-series of a stationary sequence 

to estimate the variance of a general statistic. The general idea is to calculate 

the values of a statistic from non-overlapping sub-series. These values are 

used to model the sampling variability of the statistic. The variance of the 

statistic is the sample variance as calculated from the sub-series.
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The method known as "moving block bootstrap” has been independently for­

mulated by Kiinsch (1988) and Liu and Singh (1991) in a significant break­

through. The first one considered an extension of the bootstrap and jackknife 

methods of estimating standard errors to the case where the observations 

come from a general stationary sequence. The general idea about the boot­

strap approach proposed by Kiinsch can be sumarized as follow.

Suppose th a t W, W, . . . ,  Kv are observations from a stationary process and 

Tn  is a statistic of the form:

Tn (Y1,Y2, . . . , Y n ) = T ( p%)

where p^  is the empirical m-dimensional marginal given by:

N —m

Pn  = (N  — m  +  I )” 1 Y ,
t = 0

where Sx is the point mass at rr € Rm. If a block of observations is denoted 

by: B t =  ( lj , >*+1, . . . ,  l̂ _|_Tyt_1) and n= N -m + l, then the empirical marginal 

can be written, in terms of blocks of length 1 (n—kl) as: p™ =  n~l l $Bf 

Then, for a given k E N,  Kiinsch considers the random selection of k blocks 

through k-random numbers Si, 52, • ■ ■, Sk uniform and identically distributed 

on 0 , 1 , . . . ,  n  — I. W ith this notation, the bootstrap m-dimensional marginal 

can be w ritten as:
k  S j + l

PT = n-1E  E  Sb,
j = l t = S j + l

and the bootstrap statistic TJr — T(p™*) with the bootstrap variance defined 

as:

ahoot =  var'{TN.) =  E * [ (3 *  -  E'[T‘] f]
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Usually a%oot and the distribution of TJJ— TV has to be evaluated by simulation.

The distribution of the statistic TV depends on the unknown distribution of 

(hi, 1-2, . . . ,  Yn ) and it is impossible to estimate this distribution from a finite 

marginal. For m = l, the case in which the statistic TV is a function of univari­

ate marginals, the proposed estimate for the distribution of (FA F A . . . ,  FV) is 

(plN)®k (the product of measures) which coincides with Efron’s bootstrap esti­

m ate (independent observations) if each block contains only one point (1= 1). 

When m > 1, the idea is to estimate the distribution of TV- as explained 

before.

An im portant remark here is th a t the use of observations from independent 

blocks are not convenient for the calculation of the marginal pV* anci a smooth 

transition between observations left out and observations with full weight is 

suggested. These ideas led to an empirical estimator of the form:

PN* = ( i b w m )  Ewmsa,
\ t=1 /  t=1

where (PF(i))tese is a positive stationary process with continuous covariance 

function R(t) independent of (Ft), for instance, cov(W(t), W (s)) =  m a x( l  — 

\ t -  s\/l ,0).

Kiinsch also performed a simulation study where the statistics TV are the least 

squares estimators of the parameters for autoregressive models, AR(p), for 

p —1,2, and moving average models, MA(1). For these statistics, the moving

block bootstrap is found to be more efficient than the method from Carlstein

based on nonoverlaping sub-series (the highly nonlinearity of these statistics
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requires much longer sub-series to achieve similar efficiency). The distribu­

tions of these statistics are also better approximated by a normal than those 

from the Efron and Tibshirani’s method (Efron and Tibshirani (1986)).

Lahiri (1991) analysed second-order optimality (as in the case of independent 

bootstrap) for the approach proposed by Kiinsch for stationary dependent 

data. She found that, for statistics based on the sample mean and, under 

appropriate conditions, the overlapping or moving block bootstrap enjoys a 

second order optimality. This work is based on the assumption of weakly 

dependent observations. However, in another paper (1993), Lahiri considered 

the assumption of long-range dependent observations and showed th a t the 

moving block bootstrap provides a valid approximation to the distribution of 

normalised sample mean if and only if it is asymptotically normal.

Politis and Romano (1990, 1994) have proposed a bootstrap method by re­

sampling blocks of random length. This method produces stationary boot­

strap data but the selection of the probability function to choice randomly the 

bootstrap samples is its major barrier. Also Politis and Romano (1992,1993) 

introduced a a generalised moving block method to set a confidence interval 

for the spectral density of a stationary process.

5.5.3 T he m eth od o logy

One of the methodologies used here is this from Hall and Jing (1993). It 

is called the ”sampling window” . The general idea is to build windows or 

sub-blocks from the whole sample. It can be summarised as follow.
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Let the observed process {Y(s )  : s E D}  where D is a lattice whose dimensions 

are m i x m 2 x .... x A point s* E D  has the form =  (s^, si2, . . . ,  Sjd)

where 1 < ij < rrij, 1 <  j  < d. Therefore, if I is the set of indices:

I  =  {(A, A, • • ■ Ad) : 1 <  ij < rrij; 1 < j  <  d}

and y (s j)  =  Li, i G / ,  the observed process can be w ritten as: T  =  {L* : % E

/}  and the sample size is n  =

Following this notation, a sampling window for n' =  fli=i observed points 

can be defined as a set of indices:

W  =  {0, • • ■, mi -  1} x ■ ■ • x {0, . . . ,  m'd -  1}

where 1 <  ml <  rrij\ 1 <  j  < d and the ratios m ljm i  are similar to one 

another. This window is placed onto the set of indexes I to obtain the subset 

of indexes:

Ii = i~ b W  = {«+ j  : j  E W }

where i E J  =  {1, . . . ,  m i — m[  +  l}rrr * • • x { l , . . . ,  m^ — m'd +  1} W ith this 

notation a rectangular subset of data can be written as =  {Yj : j  E A}.

Let {L (s) : s E D}  be a process with covariance function C(h) =  <j2 — 7 (h), 

for each distance h between two points in D, where the variogram 27 belongs, 

as a function, to an adequate specific family.

The classical and unbiased estimator of the variogram is th a t from Matheron:
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where N(h)  =  { ( ^ j )  : I I ~  s j II =  and |77(/i)|=number of elements in 

N(h).

The idea here is to estimate via block-bootstrap the distribution functions 

Eo(h) of G(h) for each h as a distance in D:

“  P(G(h) < x), fo r  each real x.

If Gi(h) is the estimated variogram in h as calculated from the subset Y*, 

then a natural estimated distribution function for the estimated variogram at 

h is the average over all the subsets Yp

i W * )  =  Y £ j ( G 4(fc) <  x)
IU iej

An appropriate calibration of F is the function F  as suggested by Richardson 

(1991):

FG(h)(x) = {1 -  (nf/n)}{2$(x) -  1} +  (nf/n)F(x)

where $  is the standard normal distribution function. These empirical distri­

bution functions were used to build confidence intervals for the variogram of 

a process under the assumptions mentioned previously.

A /?100%-confidence interval for the value 2j(h) of the variogram 2y at the 

point h is defined as the interval

{ x  : £ ( i—j0)/2 <  £  <  X(1+J0)/2}

where X(i-p)/2 and X(i+py2 are the (1 — (f)/2 and (1 + 13)/2 respective quan- 

tiles of the distribution Fo(h)-
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Under the assumptions of second-order stationary and isotropy, the variables

v * =  an d  v  = where is th e  version of
the estimated variogram from the subsetset of data T * at the distance h,

and a(Gi(h)) is its corresponding asymptotic estimated variance, i e  J , have

asymptotical normal joint distribution (Hall Sc Jing, (1994)) and correlation
( / \ i/2coefficient of order r =  ( ^ )  =  nf . The order of magnitude of the re­

mainder is minimised by taking nf of size n 1/1 in which case the remainder is 

of order n “ 8/7.

5.6 Sim ulation results

5.6.1 N orm al processes

Tables 5.1 and 5.2 show simulation results of coverage percentages from 

500 simulations for each model for the exponential semi-variogram and each 

indicated window size. These percentage coverages were calculated as the 

number of times (divided by 500) tha t the parameter 7 (h) belonged to the 

95%-confidence intervals for it. In all these cases, the realizations were from 

a zero-mean normal distribution. Two different methods of building confi­

dence intervals were considered. One is the block-bootstrap approach in its 

” sampling window” variant, as suggested by Hall and Jing (1993).

Another approach shown in tables 1 and 2 is the calculation of confidence 

intervals for the semi-variogram under the assumption of a log-normal distri­

bution for the classical estimator for the semi-variogram, when the process
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is normal. Backowski & Mardia (1987) have considered this approach under 

the additional assumption tha t the differences Ui — 1* — Yj, for each pair 

of indexes (i, j)  such tha t | | — Sj|| =  hi are independent. Under these as­

sumptions, the classical estimator for the semi-variogram a t the distance hi, 

=  N(hl) — ^j‘)2 f°r N(h{)  the number of pairs ( i , j )  as explained

before, has an asymptotic normal distribution N('y(hi ) , 2j 2(hi ) /N(hi ) ) .  These 

ideas led them to conclude tha t logftQii)) has a normal distribution with 

mean equal to l og^ f o i ) )  and variance 2/N(h{) .  Hence, a /?100%-confidence 

interval for the semi-variogram at the distance h, 7 (h) is given by:

where qa is the o:-quantile of the standard normal distribution.

From the simulation results it is possible to conclude:

1. The coverage percentage slightly depends on the different models for the

variogram, both in the block-bootstrap approach and the log-normal 

approach.

2. The coverage percentage slightly increases with the value of h. This is 

not a surprising result given tha t the number of overlapping windows 

taking into account for the interval estimator of the semi-variogram

increases as the value of h increases.

3. The coverage percentage for the block-bootstrap approach increases as 

the size of the window decreases from nw  =  8 to nw ~  5 and decreases 

as the size of the window decreases form nw  =  5 to nw = 3, for a spe­

cific value of h. In fact, nw  =  8 is too big compared with a grid side

j (h )  , exp tf(1+Jg)/2exp -<Z(i+0)/2
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size of ns = 10. It implies tha t the number of windows is too small to 

estimate the distribution of the semi-variogram estimator even when the 

sub-grids give highly correlated information in this case. When the win­

dow size decreases to nw — 5, the number of windows increases (respect 

to the previous size) and the dependence of the underlying distribution 

is still gathered in the three models of dependence structure considered 

here. W hen the window size decreases to nw  — 3, the number of win­

dows increases and the variance of the empirical distribution decreases, 

bu t its bias increases (see Hall & Jing (1994)) and its capacity to gather 

the underlying dependence is reduced.

4. Despite the asymptotic result (a window side size equal to the seventh 

root of the whole grid side size) from Hall and Jing (1992) about an 

optimum estimator for the block-bootstrap sampling, the simulation 

results for the models considered here show a reasonably good coverage 

for a window side size of a half of the whole grid side size in the case of 

a 10 x 10 grid.

5. In the approach of the log-normal distribution, the coverage percentages 

are similar over all ranges of h,-values. These coverages are all under the 

95%, the real level of confidence. In fact, the log-normal distribution is 

a result of the assumption of independence of the differences T (si) — 

Y (s j) ,  i t j  = 1, . . . ,  n  which does not hold for the models considered 

here. For the smallest window side size (nw  =  3) the coverages are 

very similar to those in the bootstrap approach, where the dependence 

of the underlying distribution is broken because of the large number of 

non-overlapping windows.
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Figure 5.7 shows the block-bootstrap distribution of the estim ator of the 

semi-variogram for a window side size equal to 5 (side grid size of 10) for 

three different values of h. As remarked above its dispersion increases as h 

increases. The line on the horizontal plane joints the values of the theoretical 

(population) semi-variogram. In Figure 5.8 the block-bootstrap distribution
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F ig u re  5.7. The window block-bootstrap distribution of the classical estimator 
of the variogram at the distances h=0.1, 0.3 0.5 between points on a regular grid 
in [0, l ]2 is shown in this figure. The line in the horizontal plane is the variogram 
of the simulated process.

for the same window and grid side sizes and the log-normal distribution for 

the estimator of the variogram at the distance h =  0.50 is shown.
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F ig u re  5.8. The window block-bootstrap distribution of the classical estimator 
of the semi-variogram at the distances h — 0.5 between points on a regular grid 
in [0,1]2 is shown in this figure. The corresponding log-normal distribution is also 
shown in the figure. The process simulated is Gaussian with semi-variogram given 
by 7(^0 =  4 — exp(—lOh).

In figure 5.9, the extremes of the confidence intervals as calculated from the 

block-bootstrap approach and the log-normal distribution is graphed. The 

values of the theoretical semi-variogram, 7 (h) =  4 — exp(—10h) is also repre­

sented.

5.6 .2  N on-norm al processes

When the distribution of the underlying process is not normal, the bootstrap 

methods are even more attractive because they are one of the few tools to 

resort to in many cases. Some examples about confidence intervals for the 

variogram of a non-normal stochastic process are analysed now. As explained

......block-boots.distrib.

• lognormal distrib.

’ \

1 ....'■ : 1 >



C H APTER 5. SIM ULATING AND RE-SAM PLING 176

12

block-bootstrap

10 lognormal

theoretical

8

«g 6

4

2

0L
0.1 0.15 0.2 0.25 0.3 0.35 0.4

distance
0.45 0.5 0.55 0.6

Figure 5.9. Local confidence intervals of the semi-variogram as calculated with 
the moving window block bootstrap method and the log-normal distribution of 
its classical estimator. The theoretical semi-variogram is given by 7 (h) =  4 — 
exp(—lO/i), for each distance h between the points on the 10 x 10 grid in [0 , l ]2

earlier in this chapter some approaches for the simulation of a Gaussian pro­

cess have been developed in the literature. There are no works concerning 

with the simulation (in more than one dimension) of a non-Gaussian process. 

This reason leads to the search for a construction of non-Gaussian process 

from a Gaussian one. In fact, even when the distribution is not im portant for 

the bloc.k-method followed here, the study of the coverage percentage for the 

confidence intervals requires the knowledge of the variogram (semi-variogram) 

of the process.

Following the notation used above, it is required to generate a process {F (s) : 

s G D} where D is a subset of M2 (it might be Rm, for m  < 2 but it is consid­

ered m =  2 for simplicity). It is assumed that the rectangle [0, l ]2 is included 

in D, and a realization Y  =  (y(sx), Y( s 2) , . . . ,  Y (sn)T =  ( F ,  y2, • • •, Ki))7 of 

this process at the points {si, s 2, . . . ,  s„} G D  is required.
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Let Z  = Z (s 2 ) ,. • •, Z (s n))T7 be a realization of the Gaussian process

{Z {s)  : s at the same points {si, S2 , . . . ,  E D. where Z  has a normal 

distribution iV(0 ,i;^ )  whose i j ih entry is

= O'2 -  7z(|| Si -  S j  II)

and where 72 is the variogram of the process defined in the same set D.

It will be assumed here tha t the realization of the process Y  is obtained 

from the process Z  through a transformation H  : Mn —> Rn where H ( Z ) =  

H ( Z U Z 2, . . . 7 Z n) = (H1(Z ) ,H 2( Z )7. . . ,  Hn(Z).

E x a m p le

Let the transformation H above be defined as

H(Z)  =  ( 7 ,  Zknf  =  (Yu Y2, . . . ,  Yn)T

where k is a positive integer. To calculate the variogram 7y it is necessary 

to  calculate the first and second-order moments: E(Yi) and E (Y iY j)t % — 

1 , . . ' , n 7j  — l 5. . . , n .  Prom this point of view, this distribution has the 

advantage th a t recursive formulas for E(YjYj) = E ( Z f Z lj )  can be found in 

the literature (see, for instance, Cramer (1970)). Prom these expressions and 

for k =  2, is:

E{YiY j )  =  E ( Z ? Z ] )  =  E ( Z 2i ) E ( Z %j ) + 2 E 2{ZiZ j)  =  v a r 2( Z i ) + 2 c o v 2{Zi, Z j )  =

=  o-4 +  2 (a2 -  7 z (|| s ;  -  Sj  ||)2 =  3<j4 +  2 7 |( || Si -  Sj  ||) -  4 < t 2 7 z ( | |  s 4  -  Sj  | | )
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for % ~  1 , . . . ,  n\ j  = 1 , . . . ,  n  and E(Yi) — E ( Z f) =  cr2, for z =  1 , . . . ,  n. 

Then,

cov{Yh Yj) =  E(YA^j ) - E ( Y i)E (Y:j) =  2a 4+ 272(|| | |)~ 4<727 z (|| ||)

i =  1, . . . ,  n; j  =  1, . . . ,  n. Consequently, for i =  j ,

^ar(Yi) =  2cr4, i =  1, . . . ,  n.

Then, the values of the variogram, 7y, of the process (T(s) : s  G 17}, at each 

distance h between the points on the grid can be calculated from the values 

of the variogram 7z and the variance <r2 of the process {Z (s)  : s G J7} with 

the expression:

7y (h) =  4cr27^(h) -  27|( /i)  

where h is the distance between two points on the grid.

Tables 5.3 and 5.4 show the coverage percentage of confidence intervals for 

the variogram at each distance h between the points on a 10 x 10 grid in [0, l]2. 

The same window side sizes as for the normal case in tables 5.1 and 5.2 are 

considered. The to tal number of simulations is again 500. Some conclusions 

to be drawn from these simulations are:

1. From table 5.3, for a window 8 x 8, the coverage percentage is very small 

for almost all values of h as a result of the additional (to the normal 

case) non-normality of the underlying distribution (see Lahiri (1993))

2. Similar conclusions can be pointed out for the window side sizes of table
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5.4. Nevertheless, the coverage percentage increases for the same values 

of h over those considered in table 5.4.

3. For each window side size, the coverage percentage increases as h in­

creases as a result of the larger number of overlapping windows taken 

into account in the calculation of the corresponding confidence interval 

for 7 (h).

5.6.3 Som e rem arks

The technique of block-bootstrap is an interesting tool for the estimation 

of confidence intervals for the variogram even in the case of normality of 

the underlying process. Nevertheless, some open problems of accuracy and 

adjustments are still remain:

1. Under normality of the underlying process, the selection of an adequate 

window side size could be obtained as a compromise between the number 

of windows and the size of it. As in the context of non-parametric kernel 

estimation the selection of the bandwidth is a compromise between bias 

and variance, the selection of the window size for the estimation of 

empirical distributions of a statistic, for a specific variogram model, is 

a compromise between these two parameters.

2. The dependence structure of the underlying process is another factor to 

take into account for the window side size selection. Even though, in 

the study here a window side size of a half of the whole grid side size 

was adequate, the relationship between the ’’degree of the dependence”
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(as defined by Davis & Borgman (1979), for instance) and the window 

side size can simplify its choice. In fact, if the degree of the dependence 

is, say m, and m  < n s (ns is the side size of the whole grid), then a 

window side size of m  (or greater) will be big enough to capture the 

underlying dependence. In the context of processes defined on points in 

one dimension, Leger, Politis and Romano (1992) have found th a t when 

the sample size is n = 100, the bootstrap estimators for independent 

data  (block-size equal to one), seriously underestimate the variance and 

a large block-size (greater or equal to twenty) produces an estimates 

with a bias which is larger than the bias with size equal to  one.

3. If the process is not Gaussian, a healthy advice is : ”Do not use block 

bootstrap unless the distribution of the data is not ”very” different 

from normal, and the whole grid side size is much bigger than the one 

considered here so th a t the relashionship between the window side and 

the grid size can be guided by the asymptotic results of Hall & Jing 

(1994)” .

5.7 Som e general com m ents

The simulation of a process with specific covariance m atrix in a region of R2 

or M3 is an invaluable tool in the area of spatial statistics. If the process is 

Gaussian some approaches have been proposed and analysed in the literature. 

The most widely known methods have also been described in this chapter. 

Some of these algorithms assumed a regular distribution of the points in the 

region (as the Wood and Chan). Others, even when this assumption is not
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made, are not able to be used in practice because of their computational 

performance (LU-decomposition of the covariance matrix, turning bands).

The method of using kernel smoothers to generate a more general process from 

a white noise process is an alternative way to build an algorithm to generate 

a process in a non-regular grid. The tools coming from Fourier analysis can 

provide useful material to resort to in order to start with a specific variance- 

covariance matrix. This method can be easily extended to more than two 

dimensions and to weighted combinations of independent random variables 

not necessarily normal.

Building confidence intervals for the variogram of a Gaussian process was an 

aim in this chapter. In the environment of non-Gaussian processes this is still 

an open problem, given the behaviour of the block-bootstrap method under 

the relaxation of this assumption.

More generally, in the context of block-bootstrap methods and even for the 

case of a normal underlying process, its extension to non-rectangular grids 

is a challenge and a necessity. Most of the problems coming from the ”real 

world” are not constrained to a rectangular region.

Despite the fact tha t the simulation methods shown in this chapter have 

been targeted to model characteristics of spatial processes, they can be easily 

adapted to the environment of time series modelling. For example, confidence 

intervals for the variogram and/or the CO-variogram of a process defined in 

points 011 a subset of the real line.
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7 (h) — 4 — exp(—ch)
c = 3 c =  10 c =  100

block-boot. logn. block-boot. logn. block-boot. logn.
Tlw h % % % % % %

0.1000 63.00 80.20 63.60 80.00 63.20 79.80
0.1414 65.20 81.60 65.60 81.20 64.80 81.00
0.2000 65.00 82.80 65.20 82.40 65.60 81.60
0.2236 63.60 68.20 63.80 66.80 63.20 66.60
0.2828 65.00 83.40 65.40 81.40 64.40 83.00
0.3000 68.00 86.00 67.80 85.40 67.60 85.00
0.3162 64.80 70.80 64.20 70.80 64.60 70.60
0.3606 69.60 71.00 68.40 70.60 67.20 71.00
0.4000 68.60 86.40 68.40 88.20 68.20 88.20
0.4123 65.00 72.60 67.60 73.60 67.00 77.20
0.4243 68.60 83.40 70.20 83.20 71.00 82.40
0.4472 67.80 73.60 70.00 74.80 68.00 76.80
0.5000 66.00 66.20 68.40 69.80 67.80 71.60
0.5099 69.80 72.80 70.60 76.40 71.00 77.80

8 0.5385 72.00 77.60 74.40 80.00 73.40 80.80
0.5657 70.80 87.20 71.20 88.80 72.00 89.40
0.5831 69.40 81.00 72.40 82.80 72.00 83.80
0.6000 75.80 85.80 77.00 89.20 77.60 89.40
0.6083 74.80 76.40 76.60 78.20 76.40 82.20
0.6325 73.00 78.00 76.00 82.20 75.40 82.80
0.6403 70.00 81.20 72.40 85.00 74.20 86.80
0.6708 74.40 83.20 77.40 86.60 79.60 87.60
0.7000 82.60 88.80 82.60 90.20 84.40 91.00
0.7071 75.40 71.60 76.60 77.80 78.20 80.60
0.7211 73.60 82.60 76.00 86.20 77.60 88.00
0.7280 82.20 81.60 83.60 85.80 86.00 88.40
0.7616 82.40 83.20 85.60 88.40 85.80 88.20
0.7810 77.20 82.20 80.60 89.00 81.20 90.20
0.8062 82.60 92.40 87.20 94.40 88.00 94.40
0.8485 84.40 72.80 85.80 79.80 86.80 80.20
0.8602 81.60 85.40 85.60 87.20 85.40 90.20
0.9220 85.60 92.00 87.80 94.20 89.40 95.20
0.9899 91.00 88.00 92.00 89.80 91.20 89.20

T ab le  5.1. Coverage percentages for the block-bootstrap 95% confidence in­
tervals of a simulated process with a exponential semi-variogram. The process is 
simulated on a regular grid with n — 10 x 10 locations. The window size is nw = 8. 
The coverage percentage for the confidence intervals of the variogram as calculated 
from a log-normal distribution of its classical estimator is shown in this table.
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j(h )  =  4 — exp(—ch)
c =  3 c =  10 c =  100

block-boot. logn. block-boot. logn. block-boot. logn.
Ttyj h % % % % % %

0.1000 86.80 81.00 86.00 79.80 84.20 79.60
0.1414 89.40 80.80 89.80 80.00 87.00 79.60
0.2000 88.60 83.00 89.00 82.00 86.80 81.40
0.2236 89.00 67.80 88.20 66.00 87.20 65.60
0.2828 91.20 83.60 90.40 81.40 87.80 82.20
0.3000 93.80 84.40 93.40 84.60 89.00 84.00
0.3162 93.40 70.40 92.60 71.00 90.40 70.20

5 0.3606 92.00 71.20 92.20 71.40 93.00 70.60
0.4000 97.20 86.40 97.60 88.00 95.60 87.40
0.4123 96.40 71.60 97.20 74.00 95.20 76.00
0.4243 96.40 83.80 96.20 83.20 97.40 82.20
0.4472 97.00 74.20 97.00 74.20 97.40 76.40
0.5000 98.60 67.00 98.20 70.00 98.20 71.40
0.5657 99.00 74.20 99.10 76.60 99.00 77.80
0.1000 80.00 81.40 79.80 79.60 79.40 79.40
0.1414 82.40 81.20 80.40 80.40 78.60 79.60

3 0.2000 85.60 83.40 85.40 81.60 84.80 81.40
0.2236 86.40 68.20 85.80 65.80 84.80 65.60
0.2828 83.00 83.60 83.60 81.40 85.00 81.80

T ab le  5.2. Coverage percentage for the block-bootstrap 95% confidence intervals 
of a simulated process with a exponential semi-variogram. The process is simulated 
on a regular grid with n =  10 X  10 locations. Different windows sizes nw are 
considered. The coverage percentage for the confidence intervals of the variogram 
as calculated from a log-normal distribution of its classical estimator is shown in 
this table.
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l v { h ) =  I 67z (h) -  27%(h) 7z(/i) =  4 -  exp(-cfi)
c — 3

01—1II0 001—1IIu

nw h % % %
0.1000 2.00 2.00 2.20
0.1414 1.60 1.00 1.40
0.2000 2.60 2.20 2.80
0.2236 2.00 1.60 2.20
0.2828 3.60 2.60 3.20
0.3000 5.60 4.00 3.40
0.3162 3.40 2.80 2.80
0.3606 5.60 3.80 3.60
0.4000 5.40 4.80 4.40
0.4123 4.20 4.20 3.20
0.4243 6.40 5.20 4.40
0.4472 6.00 5.00 3.80
0.5000 6.80 6.20 5.00
0.5099 8.60 6.60 6.40
0.5385 9.40 7.40 8.40

8 0.5657 7.00 7.00 6.00
0.5831 8.20 7.00 6.80
0.6000 17.80 18.60 20.20
0.6083 14.60 15.00 15.40
0.6325 13.60 13.60 13.40
0.6403 12.20 10.80 12.00
0.6708 18.20 18.00 19.20
0.7000 40.80 41.80 44.00
0.7071 27.40 30.40 30.00
0.7211 22.60 23.60 24.20
0.7280 36.40 38.60 38.80
0.7616 41.00 44.60 44.80
0.7810 32.20 33.60 34.00
0.8062 46.00 47.60 50.40
0.8485 46.80 50.80 52.60
0.8602 54.60 60.60 62.20
0.9220 68.80 74.60 76.00
0.9899 88.80 91.40 90.80

T ab le  5.3. Coverage percentage for the block-bootstrap 95% confidence intervals 
of simulated processes Y  obtained from quadratic and exponential transformations 
to normal processes Z  with a exponential semi-variogram j z  as indicated on the 
top. The processes are simulated on a regular grid with n =  10 x 10 locations. The 
window size is nw =  8.
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7 v(h) =  I 67z (h) -  27|( h )  7z {h) =  4 -  exp(-ch )
c =  3 c =  10 c =  100

nw h % % %
0.1000 16.20 17.80 18.80
0.1414 19.20 19.60 19.60
0.2000 24.60 25.20 25.80
0.2236 25.40 27.00 26.00
0.2828 35.00 33.00 35.20
0.3000 33.20 34.20 34.40
0.3162 35.00 35.80 36.40

5 0.3606 35.80 37.00 36.20
0.4000 57.60 59.20 60.20
0.4123 53.00 53.80 54.80
0.4243 52.60 52.60 53.20
0.4472 61.20 64.60 66.00
0.5000 72.20 73.80 77.00
0.5657 89.60 93.00 92.80
0.1000 55.80 58.60 59.40
0.1414 65.40 66.60 69.00

3 0.2000 74.40 75.40 77.60
0.2236 73.80 77.60 79.60
0.2828 81.20 92.00 93.40

T ab le  5.4. Coverage percentage for the block-bootstrap 95% confidence inter­
vals of simulated processes Y  obtained from a quadratic transformation to normal 
processes Z  with a exponential semi-variogram 7z  as indicated on the top. The 
processes are simulated on a regular grid with n =  10 x 10 locations. Different 
window sizes nw are considered
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R eflections

Nothing is concluded.

Everything is the begining of a new way.

6.1 Introduction

At this stage, some general reflections can be made. Most of these thoughts 

will be about open problems in the context of the subjects which were tackled 

here.

The aim of this chapter is to motivate everyone who reads these pages to 

think about these problems.

186
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6.2 G eneralized linear m odels

1. The Generalized Additive Models approach provided a very attractive 

tool to modelling the density of mackerel egg as a spatial process whose 

mean at each location is a non-linear function of some covariates like 

latitude, longitude, bottom  depth and distance to two hundred metres 

contour.

2. On the other hand, and as explained in chapter 2, the lack of a dis­

tributional theory for the estimators of these models led to the use of 

an ” anology” with the generalized linear models as proposed by Hastie 

& Tibshirani in the book which is up the moment the only instrument 

available to learn their music. Indeed, as in the exercise presented here, 

under the assumption of independent errors, the bootstrap techniques 

can be applied to introduce some confidence in this analogy.

3. In the context of these models, a crucial question to  be answered is: 

W hat is the distribution of the residuals, even under the simplest as­

sumption of non-random covariates and independent normal distribu­

tion for the errors of the model?

4. After this question can be answered, a cluster of new open problems will 

be available to tackle, such, for instance, what is the variance-covariance 

structure of the underlying process? Can the tools developed here, in 

the context of the variogram, be extended to these models?

5. In fact, in the scenario of spatial statistics, the necessity of ’’good” (well 

developed) tools to fit data to models where a spatial random process 

is a non-linear function of covariates is indisputable.
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6.3 Linear m odels

1. In fact, because the statistical theory of linear models is old and vastly 

developed, the starting point to tackle spatial problems where the data 

are fitted to a linear model is settled on better known territory. Conse­

quently, the challenge of searching for new tools to check independence 

or constant variogram as considered in chapter 4, or to build confidence 

intervals for it as analyzed in chapter 5, may be less frustrating.

2. Nevertheless, also in the context of spatial processes (gaussian, second 

order stationary, isotropic) which are linear functions of other variables 

(covariates), the point reached in the way followed to look for tools 

to tackle problems dealing with the study of the covariance structure 

(variogram) of the underlying process is not very far from the begining.

3. Despite the work developed here for checking constant variogram and, 

consequently, independence of the variables in the underlying process, 

the distributions of estimators of the variogram or means to do inference 

about its shape and values at a specific distance between points is a very 

im portant problem to think about. In this work, the latter problem was 

considered in the approach proposed in chapter 5. Indeed, the block- 

bootstrap methodology was used to generate these intervals under the 

assumption of normal distribution of the underlying process.

4. The formal test and the graphical tool of the reference bands, could be 

also interesting ideas to extend to checking the null hypothesis tha t the 

variogram has a particular shape or belongs to a particular family 70 as 

defined by Cressie (1991), say, exponential, gaussian, spherical, etc.
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If the statistical hypotheses are:

H 0 : 7(^») =  Jo(K)> i =  1, ■ • •, n

H i : 7 (hi) = smooth function of h ,̂ i — 1 . . . ,  n

then, the residuals r(hi) =  7 (hi) — 7 (/i*), 1 =  1, . . . ,  n from the fit­

ted variogram under the null hypothesis can be used to check these 

hypothese. In fact, under the null hypothesis, the variables

Si =  \r(hi)\1/2, i =  l

are expected to be approximately constant, and, consequently, the smooth 

versions
n

S ~ l> 2 Wi3S3> i = 1
j = l

are expected to be approximatly equal to the average s.

Otherwise, if H 0 is not true, the variables s* =  |r(h j) |ly/2, i=  1, . . . ,  n,

where r(/^), i = are the residuals from the data  to the fit­

ted variogram under H0, and the corresponding smooth curve §i =  

E " = i j  ~  1 are expected to be more ”different” from a

constant than those corresponding to H a true.

In other words, the statistic,

T  g =1 -  S f  -  E ?=1 (Sj -  Sj)2

EJU  (*  -  SO2

is expected to be ’’small” under H 0 and ’’big” under H i. Then, the test 

statistic presented in chapter 4, and the associated methods of inference, 

may be extended to these hypotheses.
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5. If the assumption of normality is relaxed (non-gaussian geostatistics), 

the attem pt to build confidence intervals for the variogram through 

block-bootstrap or any other appropriate technique or modification of 

block-bootstrap is still an open problem as showed in chapter 5.

6.4 R esam pling

1. Not many problems in spatial statistics can reach the happy (or un­

happy) end without a simulation of a spatial process. Hence, a good 

method to simulate a spatial process (gaussian, stationary, isotropic) is 

an invaluable tool for every statistician, consultant or researcher, who 

is involved in this area of statistics. Unfortunately, experience tells us 

th a t all the algorithms proposed until now fail in one or another model 

for the covariance function. For example, the algorithm proposed by 

Wood and Chan (1995) is a very interesting approach from the point of 

view of its efficiency in time and memory storage of a computer. Nev­

ertheless this algorithm, or more precisely its implemenatation in the 

computer, cannot handle some combinations of covariance functions and 

grid sizes. Consequently, another algorithm to simulate a spatial pro­

cess or a modification of the some methods proposed previously would 

be very welcome to our library.

2. The bootstrap environment also offers fresh herbs for those who like 

the taste of these approachs. In fact, when they can be applied, they 

offer a big help because of their generality. The modification of the 

block-bootstrap is a very useful tool when an appropriate block-size 

(under a fixed grid-size) can be found succesfully. Some other problems
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also come across in its implementation, mostly for cases of long-range 

dependence and particularly, as shown in chapter 5, when the underlying 

distribution is not normal. But still, if it is normal there are some 

works in the literature concerned with the pour behaviour of the block- 

bootstrap (see, for instance, Lahiri (1983))

3. The behaviour of the block-bootstrap under the assumption of station- 

arity is another problem to improve when the block-bootstrap is used. 

There is also in this context some work, due to Politis and Romano 

(1990,1994), as an effort to give an answer to the best ’’design” for 

block-bootstrap in order to keep the underlying stationarity. There are 

some theoretical answers in this approach but also some unsolved prob­

lems which makes its current application poor.

4. The block-bootstrap method is designed for a regular grid. An extension 

for a non-regular set of points would be a very useful tool. In fact, most 

of the sets of data  of the real world have this characteristic.
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