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Summary

The aim of the project was to study two questions [unpublished] of R.W.K. Odoni, to
discuss which we introduce the following terminology and notation.

Let G be a linear algebraic group defined over an algebraic number field K. We will
say that G has property (Z) if there exists a finite Galois extension [ of K such that the
Hasse-Weil zeta function (G, K, s) of G is an alternating product of Artin L-functions
for characters of Gal(l/K).

Odoni’s questions can then be formulated as follows.

(Q1) Which G have property (7Z) (and for which Galois extensions ! of K)?
(Q2) For which G does ((G, K, s) have a functional equation?

While neither question was settled completely, the following progress was made.
Main Result
(A) If G is connected and solvable, it has property (Z) [6.2.2.1].
(B) For each K-group G, there is a finite extension M of K such that the M-group G has
property (Z) with Gal(l/M) trivial, and {(G, M, s) has a functional equation [6.3].
(C) If every connected almost K-simple K-group had property (Z), then all connected
K-groups would too [6.2.2.1]. Among the former, those for which the Dynkin diagram has
at most two components all have property (Z) [7.1.0.1].
(D) In particular, every almost simple K -group J has property (Z). Further, {(J, f,s) has

a functional equation for an extension f of K of degree at most 2 [6.4].




In all cases, explicit expressions are given or can be easily reconstructed. Part (A) has
almost certainly been known for a long time, though no statement of it was found.

That there should seem to be so little in the literature about zeta functions for algebraic
groups is quite surprising. The case in which G is a torus is dealt with in [Seb9]; the
connected solvable case (A) follows readily from this.

In chapter (1) the necessary absolute algebraic geometry is introduced, until a definition
of the notion of complete variety can be given [1.12]. In chapter (2), an account of the
relative theory appears. While all of this material has been known for a long time, there is
a. paucity of convenient reference. The points of view of topology and algebra (especially
Galois theory) are considered. The Weil restriction functor [2.8] is a key concept.

Chapter (3) is an exposition of the standard theory of (linear) algebraic groups as far as
that of connected groups [3.4]. In chapter (4) is expounded the theory of root systems [4.1]
and that of connected reductive groups. Rationality questions are then treated, especially
for connected semisimple groups.

In chapter (5) will be found a resumé of the algebraic number theory [5.1] and notions
of zeta function [5.2] required. The heart of the chapter [5.3] is the notion of reduction (of
a variety) modulo a prime ideal. In [5.4] will be found some results relating to preservation
of properties under reduction modulo a prime. In the cases of some of these properties,
an assertion of the result (though not a proof) was found in the literature. In other cases
the result may be new.

In chapters (6) and (7) the results announced above are obtained. In (6) will be found
the proofs of parts (A), (B) and (D). The proof of (C) is deferred to (7) to avoid a very
long chapter (6) which there seems no natural place to break.

I would like to thank my supervisor, Professor R.W.I{. Odoni, for his suggestion of
and interest in the topic, the Department of Mathematics at the University of Glasgow
for its help and the use of its facilities, and the University of Glasgow itself for financial

support.

ii




Contents

1 Background from Algebraic Geometry

1.1  Affine varieties

1.2 Affine subvarieties

1.3 Projective varieties and the exterior algebra

1.4 Sheaves
1.5 Prevarieties and varieties
1.6 Dimension, degree and dominance
1.7 Finite morphisms
1.8 Constructibility
1.9 Tangency

1.10 Local rings
1.11 Differentials

r 1.12 Completeness

2 Relative Algebraic Geometry
2.1 Notation and notions

2.2 Algebraic criteria, [

2.5 Components and separable points

L

2.6 Galois-theoretic criteria for rationality

ii

..................................
.....................................
...................................

-----------------------------------

...............................

................................

2.3 Topolagical criteria . . . . . . . . .. o e

2.4 Algebraic criteria, IT . . . . . .o o v o o e s

.....................

.....................

4
4

11
12
15
15
16




2.7 Unirationality . . . . . .« . e e e e e

2.8 Waeil restriction . . . . . . . . e e e e e e e e e e e

Linear Algebraic Groups
3.1 General remarks . . . .. e e e e e
3.2 Some constTUCHIONS +» v v v v v v v e e e e e e e e e e e e e e e e

3.2.1 Quotients

.................................

3.2.2 Lie algebras and the adjoint representation . ... ..........
3.2.3 Jordan decomposition . . . . . ... . 0 e e
3.3 Some standard groups . . . . . .o Lo e e e
3.3.1 Connected one-dimensional groups . . . . . . ... ... L.
3.3.2 Unipotent groups . . . . . v v v v v e e e e
3.3.3 Torl . . . . e e e e

3.3.4 Connected solvable groups and the Borel fixed point theorem . . . .

3.4 Connected groups

.................................

3.4.1 General remarks and the density theorem . . ... .. ... ... ..
3.4.2 Parabolic subgroups . . . . .. .. .. e
3.4.3 Effect of morphisms on Borel subgroups . . . ... ... ... . ...
3.4.4 The radical and unipotent radical . . ... .. .. ... ... ...
3.4.5 Reductive and semisimple groups . . . . . . ..o Lo
3.4.6 Regular, semiregular and singular tori . . . ... ... ... 0oL,
3.4.7 Subtori of connected groups . . . . .. .. o0 oo

Roots, Reductivity and Rationality

4,1 ROOLSYSIEMS . . . o v i o e e e e e e e e e e e e e
4,2 Connected reductive groups . . . . .« . . .. e
4.2.1 Therootsystemof G . . ... ... .. .. oo
4,2.2 Bruhat decomposition . . . . . . . . ..o e
4.3 Quasisplit and split groups . . . . . . ... oo
4.4 Groupsoverfinitefields . . . ... .. ... .. o o oo

iv




4.5 Connected semisimple groups . . . . . . ..o o oo oo
4.5, Structure . . . . .. oo e e e e e
4.5.2 The x-action and k-index . . . .. ... .. ... ... ...
4.5.3 Classification theorems . . . . . . . .. . . .. e
4.5.4 Almost simple groups . . . . . . ..o .o e e
4.5.5 Almost k-simple connected semisimple k-groups. . . . . .. ... ..

5 Reduction modulo Primes

5.1 Algebraic number theory . . . . . . . ... o oo oo

5.1.1 Algebraic number fields . . . ... ... . 00000

5.2 Zetaand L-functions . . . . . . . ... o o e

5.2.1 Dedekind zeta functions . . . . . ... oo oL

5.2.2  Artin L-functions . . . . . ... ... ..o

5.2.3 Weil and Hasse-Weil zeta functions . . . . .. .. ... .. ... ...

5.3 Reductionmod p . . . . . . . e

5.3.1 Definitions . . . . . . e e e

5.3.2 Basicfacts . . . . . . . . e e

i 5.4 Preservation theorems . . . . . .. ... o e
5.4.1 Irreducible components . . . . . .. ... o e

5.4.2 Exactness and isogenies . . . . . . . .. 0 e

54.3 Centralizersof tori . . . . . .. . .. L oo e

’ 5.4.4 The radical and unipotent radical . .. ... ... ... ... ...,
5.4.5 Rootsand weights . . . . .. ... ... ... o0

6 Zeta Functions: Split and Simple Groups

6.1 Preliminaries and notation . . . . . . . .. .. . o oo oo

6.1.1 Reductification . ., . .. ... e

6.1.2 General remarks about reductionmod p . . . . .. .. L

6.2 Connected solvable groups

L

6.1.3 Property (Z) for K-

BLOUPS « v v v v v v v e e e

............................

65
65
65
67
67
68
70
71
71
72
74
74
74
76
77
79

82
82
83
83
84
86




6.3
6.4

6.2.1 Tori over finite fields

6.2.2 Tori over K and connected solvable groups . . . . ... .......

SPIt groups - .« . . e e e

Almost simple groups . . . . . . . o o e e

6.4.1 Notations and statement of the Main Result (4S) ... ... .. ..
6.4.2 Dependenceon{and Xpalone . .. ... ... ... ... ... ...
6.4.3 Proof of (AS) for groups of inner type . . . . ... ... .. ... ..

6.4.4 Unification of rationality formulas . . . ... ... ... . ... ...

6.4.5 General remarks about (AS) for cases in whichg=2. ... .. ...

6.4.6 Verification of (AS) for the cases *A4,, . . . . . . o o oL
6.4.7 Verification of (AS) for the cases 2Dy . -« v o v v v v v i
6.4.8 Verification of (45) forthe cases *Fg, . . . . . .. ... .. ... ..
6.4.9 Verification of (AS) for cases in whichg=3. ... ... ... . ...
6.4.10 Verification of (AS) for cases in whichg=6..............
7 Two Dynkin Components and Future Work
7.1  Virtual characters and notation . . . . .. ... .. .. oo
7.2 The case where M has inner f-type . .. ... .. .. ... ...
7.3 The case where M has f-type X, « v v v v v v i v it
74 Thecase where M ~p 3Dy, o o000 o i il i
7.5 Thecase where M ~;®Dy, .. . oL oL L e
7.6 Remarks about further work . . . . . . . .. .. o oo
References

Index of Definitions

vi

102
102
104
106

107
107
108
110
112
114
116

118

121




Chapter 1

Background from Algebraic

Geometry

We start with enough algebraic geometry to enable definition of affine and complete vari-
eties. The treatment here follows [Bor91] and [Hu75] quite closely.

All rings are associative and commutative; their modules and mutual morphisms
thereof are also assumed unital. A ring will be called entire if it is also an integral
domain - this seems to be a coinage of Serge Lang,.

We begin with a review of the absolute case. Let E be an algebraically closed field: it
will be tacitly assumed throughout to be ‘sufficiently big’. (In Weil [We46], one would posit
[E a ‘universal domain’ or ‘universal field’, assumed to have infinite transcendence degree
over any proper subfield of interest.) We suppose that all fields subsequently considered

in this thesis are contained in E, and make no assumptions about the characteristic until
[2].
1.1 Affine varieties

Denote by A" the product ExX -+ x E (n copies). By an affine variety, we mean the set of
common zeros (in A") of a subset S of E[T},...,Ty]: clearly we need only consider subsets

which are actually ideals. We will have a more intrinsic definition later. The latter ideals




are all finitely generated by the Hilbert Basis Theorem. Define a pair of maps as follows:
let 7 : {subsets of A"} — {ideals in E[T},...,T,]} take a set X to the ideal Z(X) in
E[Ty,...,T,] of functions vanishing thereon, and let ¥ be the map in the reverse direction
taking an ideal I to the subset V(I) of A® on which all its elements vanish. Then we
clearly have X C V(Z(X)) and [ C Z(V({)). Indeed it is easy to see that in the latter
inclusion we can actually write nil(I} C Z(V(I)), where nil([]) is the radical of the ideal I,
namely
wil(l) .= {f € E[Ty,...,T,] : [ € I for some r > 0}.

In fact, we now have equality [Bor91, 3.8].

Theorem 1.1.0.1 (Hilbert’s Nullstellensatz)
Let I be an ideal in B[Ty,...,Ty). Then nil(I) = Z(V(I)).

Recall that a topological space is said to be irreducible if it cannot be written as a
union of two proper closed subsets (equivalently, every nonempty open set is dense). An
irreducible space is connected. One can readily verify that the affine varieties as defined
above can be regarded as the closed sets of a topology on A", the Zariski topology, in
which points are closed. Moreover, it follows that A™ is quasicompact (viz. compact but
not Hausdorff), as the Hilbert Basis Theorem shows that the space has the ascending
chain condition on open sets: that is, it is a Noetherian space. Clearly this is true of affine
varieties too, with the induced topology. It is not hard to show that a Noetherian space is
a union of finitely many maximal irreducible subspaces, its irreducible components, which
are closed. A couple of convenient notations: A C, B and A C. B will respectively mean
that ‘A is open (closed) in B’.

It turns out that the closed subsets in A" which are irreducible are precisely those
whose associated ideals are prime. Further, we can verify that, for an affine variety X,
the irreducible components thereof are the affine varieties associated to the minimal prime
ideals containing Z(X) (there being finitely many minimal primes in any Noetherian ring).

We need the notion of the product of two affine varieties. Specifically, if we have

the affine varieties X C. A™ and Y C. A", with associated (radical) ideals Z(X) <«




E[Ty,...,Tn] and Z(Y) < E[U;,...,U,], then the Cartesian product X x Y is also an
affine variety with corresponding ideal in E[T},..., Ty, Uy, ..., U] given by

I(X XY)=I(X)QEU, ..., U + BTy,..., Tn] @ Z(Y),

which is also radical (the tensoring being over E of course).

The most important remark to make about this situation is that the topology on X xY
is weakly finer than the product topology thereon - here all topologies are those induced by
the ambient affine spaces. For example, the complements of curves in A? are Zariski-open,
but not usually product-open.

To define (regular) morphisms of affine varieties, we return to polynomial maps (that
is, the restrictions to affine varieties of polynomial maps of affine spaces): it is easy to see
that these are continuous in the Zariski topology, for if ¢ : X — Y is such a map, with
C a closed subset of Y, then ¢~!(C) is the vanishing set of {f o ¢}, where the f are the
elements of the ideal of functions vanishing on C.

Consider now, for an affine variety X C A™, the possible polynomial functions X —»
E. It is easy to see that these correspond bijectively to elements of E[TY,...,T]/Z(X).
The latter F-algebra is called the affine algebre of X, and we will denote it by E[X]: it
is reduced (has no nongero nilpotents) and finitely generated. In fact, it is not hard to
see that every E-algebra with these properties is the affine algebra of some affine variety.
Clearly a polynomial mapping ¢ : X — Y induces an E-algebra homomorphism ¢* in the
opposite direction by sending an element g of E[Y] to the element g o ¢ of E[X]. Indeed it
turns out that every E-algebra homomorphism between them corresponds to a polynomial
mapping from X — Y - to see this just take generating sets for the algebras. When X
is also irreducible, E[X] is a domain, and its field of fractions is called the function field
E(X) of X. This notion of morphism gives an antiequivalence between the categories of
affine varieties and (regular) morphisms thereof, and the category of affine F-algebras and
E-algebra homomorphisms. Either of the maps ¢ or ¢* may be called the comorphism of

the other.




1.2 Affine subvarieties

If V, W are two affine varieties, with V' C W, then, as Z(W) C Z(V), the quotient of these
will be the ideal in E[W] of functions vanishing on V. If this latter ideal is principal, we
say that V is a hypersurface in W, and its complement is called a principal open set of
W. For any affine variety, the principal open sets form a basis for the topology.

It may be worth remarking that the image of a morphism may fail to be closed: for
example, take the embedding of the multiplicative group E* of E into E itself. One easily
shows that E* can be identified with a closed subvariety of A%, but that its complement

{0} in E is not open therein. A morphism ¢ : X — Y is called a closed embedding if it

is injective, with ¢(X) closed in Y.

Proposition 1.2.0.1 Let ¢: X — Y be as above.
(i) ¢* is injective iff $(X) is dense inY.

(ii) If ¢* is surjective, then ¢ is a closed embedding.

1.3 Projective varieties and the exterior algebra

We define P™ as usual, to be the set (E**1\{0})/R, where R is the relation that identifies
two points if one is a nonzero scalar multiple of the other. We can identify P" with the
set of lines through the origin of E**!. Points in P™ may be described by homogeneous
coordinates Xy, ..., X}, also defined only up to nonzero scalar multiplication. To define
an analogue of the affine variety in this situation, we will therefore have to consider
homogeneous polynomials only (those for which all monomials have the same total degree)
in Xo,..., X A setof such polynomials generates a homogeneous ideal (one closed under
the operation of taking homogeneous pieces). We topologize P™ by decreeing that the
closed subsets will be those which are the sets of common zeros of some homogeneous
ideal. Just as in the affine case, one finds that there is an inclusion-reversing bijection
between these closed subsets (the projective varieties), and the homogeneous radical ideals
of E[Xo, ..., X,)] other than (Xg,..., X,) - the latter would correspond to the (excluded)

origin of E**!, It turns out that the principal open sets are again a basis for the Zariski

4

o




topology on P™. Particularly useful are the principal open sets of the form {X; # O} - the
so-called affine pieces of P™. These can not only be readily identified with the affine space
I, but are homeomaorphic thereto also. This means that a subset of P™ is closed therein
iff its intersection with each of the specified principal open sets is closed in the latter. This
is an ‘affine criterion’ for closure.

The Cartesian product of two projective varieties can also be shown to have a structure
of projective variety, via the Segre embedding P™ x P —s P(m+1)(n+1)~1 given by sending
(Xoyo ooy Xy Y0,...,Y) to

(XoYo, XoY1, .. ., XoYu, X1Yo, X1Y1, .., X1¥s oo, XYo).

Let V' be a vector space over E of dimension n. We define the exterior algebra on
V thus: we begin with the tensor algebra on V, namely the direct sum ®,»oV", where
the powers of V are tensor powers (use the usual canonical identification of V" ®@g V*
with V7+¢). This is graded (by N), with V° identified to E, and we have a product
defined by convalution. To get the exterior algebra AV on V, form the quotient by the
(homogeneous) ideal generated by {2% : = € V}, so that AV is also graded - we define
the graded part to be zero on negative integers to get grading by Z. One can show that
AV is anticommutative, and indeed more generally that if 2,y € AV are such that their
homogeneous decompositions are @ = X;2; and y = X;y;, then 2;y; = (—1)ijyja:i, as a
consequence of the definition of AV, and in fact the &** homogeneous part (zy); of zy is
given by (2y)r = Ej2;yk—;. The graded part A4V of degree d has dimension (as E-module)
(z’) The construction passes in a natural way to subspaces. Now, let Sy be the set of all
d-dimensional subspaces of V. Define a map ¢ therefrom to the space P(A%V) by sending
each subspace D to the point in P(A%V) corresponding to A%D. It is readily verified that
¢ is injective, and one shows that its image is closed in P(A%V). The Sy are called the

Grassmann varieties of V.,




1.4 Sheaves

Let A be an irreducible afline variety now. For & € A, the ideal
my = {f € E[A] : f(z) = 0}

is of course maximal in F[A], and the localization of E[A] thereat is called the local ring
O, of x. Clearly E[A] C O, C E(A) for all € A. Note that O, is unchanged by passing
to any principal open set of A which contains 2. One can show that E[A] = Nye4Oy. Now
let U be an open subset of A. Define an F-algebra O4(U) = Nyey Oy (or just E(A) if
U = ¢). In fact, the assignment U — O4(U) makes the collection {O4(U) : U open in A}

into a sheaf of E-algebras on A. This means that the following two axioms are satisfied:

(¢) whenever V' C U, both of these being open in A, and f € O4(U), then the
restriction of f to V is in O4(V);

(¢¢) whenever we have U = U;eU;, all of these open in A, and a choice of an f; € Q4 (U5)
for each ¢ € I such that f; = f; on U; N U; for every 4, , then thereis an f € O (U) with
f = fi on U; for each 1.

For irreducible A {not necessarily affine), with & € A, we define the local ring at z to

be

@A,:x = lim @A(U)

UCoAizglU

- we will often omit the name of the variety. The corresponding maximal ideal will be
denoted 9M,.

Next for a general A (not necessarily irreducible or affine), with irreducible components
A;, we define a sheaf of E-algebras on A thus: for U open in A, put U; = A;NU, and then
take O4(U) to be

{f:U-—=RE: flu € 04(Us) Vi}.

This formula clearly generalizes that just given for the irreducible case.
Note that a morphism f : X — Y of affine varieties induces a morphism of sheaves

[+ Oy — Ox as follows: the comorphism f* of f induces an obvious map Oy () —

6




Ox foreach @ € X. Nowif V C, Y and U C, X, with f(U) C V, we get a mapping
Oy (V) — Ox (U) by composing with f. This mapping is compatible with the restriction
maps - in other language, one can regard a sheaf as a certain kind of contravariant functor,

and then the mapping we have just defined will be a natural transformation of two such.

1.5 Prevarieties and varieties

, An irreducible prevariety X will be an irreducible Noetherian topological space X, together
with a sheaf of E-valued functions thereon, such that X is a finite union of open sets U;,

: each isomorphic to an affine variety when equipped with the induced sheaf Oy

v, Then
we will call a Noetherian space X a prevariety if its irreducible components {X;} are
irreducible prevarieties in this sense, together with a condition that Oy, and OXJ induce
the same sheaf of functions on X; N X;. Just as in the affine case, one finds that there is
a unique sheaf extending the Ox,. For U C, X, the elements of Ox (U) will be called the
regular functions on U, and any ¥ C, X which is (with its sheaf) isomorphic to an affine
variety will be called an affine open subset of X - for example, the U; as above. Finally,

the elements of Ox (U), for U C, X, will be called regular functions on U.

A locally closed subset of a prevariety will be called a subprevariety of X (recall that
locally closed means ‘open in its closure’ - for example, open or closed sets are locally
closed}. Finally, a subprevariety of a projective variety is called quasi-projective. Just as
in the affine case, the function field of an irreducible prevariety is that of any of its affine
open subsets.

Let g : X — ¥ be a mapping of prevarieties. We will say that it is a morphism if
it is continuous and satisfies the condition that, whenever V C, Y and f € Oy (V), then
fog € Ox(g~t(V)). This is equivalent to the earlier definition in the affine case. We have

the following ‘affine criterion’ for a mapping to be a morphism.

Proposition 1.5.0.1 [Hu75, 2.3] Let ¢ : X — Y be a mapping of two prevarieties, and
suppose that there is a covering of Y by affine open sets Vi, for i € (finite) I, and a

covering of X by open sets U; such that




(a) g(U;) CV; for each i € I; and
(b) fog e Ox(U;) whenever [ € Oy(V;).

Then g is a« morphism of prevarieties.

If g: X — Y is a morphism of irreducible prevarieties, and so induces a morphism
of function fields ¢y : E(Y') —» E(X), we say that it is a birational equivalence if gy is an
isomorphism. This is a strictly weaker notion than that of being an isomorphism.

It can be shown that, if X and Y are two prevarieties, the Cartesian product X x Y
can be made into a categorical product.

A prevariety X will be called a wariety if the diagonal {(z,z) : @ € X} is closed in
X x X. Some examples: affine varieties, subprevarieties of varieties, products of varieties,
and projective varieties. (This extra condition would be the Hausdorff axiom if we were

considering the product topology.)

1.6 Dimension, degree and dominance

By the dimension of a variety we mean the maximum of the dimensions of its irreducible
components. For an irreducible variety X, with function field E(X), the dimension will be
defined to be the transcendence degree of this latter field over E. We note that dimension
cannot increase if we pass to a closed subset, and that it is preserved (in the irreducible

case) by passage to a nonempty affine open subset.

Theorem 1.6.0.1 [Hu75, 3.4] LetY be a closed irreducible subset of an irreducible variety
X, of codimension r therein. Then there exist closed irreducible subsets Y; in X, of

codimension i therein, such that Y, DY, D --- 2 Y, =Y.

Let g : X — Y be a morphism of varieties. If ¢ maps each component of X onto a
dense subset of a component of Y, and g(X) is dense in Y, we say that g is dominant. For
W closed and irreducible in ¥, a component of g~1(W) for which the restriction thereto

of ¢ (as map to W) is dominant is said to dominate W.




For irreducible X, to say that g is dominant means exactly that g(X) is dense in Y.
In this situation, we clearly have that dim X > dim Y. If, further, these dimensions agree,
the extension B(X)/g*E(Y") of function fields is finite, and the degree of this extension is
called the degree of g. Naturally, the separable (inseparable) degrees of the extension are

called the separable degree and the inseparable degree of the morphism.

Theorem 1.6.0.2 [Hu?75, 4.1] Let g : X — Y be a dominant morphism of irreducible
varieties, with r = dim X —dimY, and let W be a closed irreducible subset of Y. Suppose
that Z is an irreducible component of g~ (W) which dominates W; then dim Z > dim W +

r. In particular, for y € g(X), each component of g7 ({y}) has dimension at least r.

1.7 Finite morphisms

A morphism g : X — Y of affine varieties is said to be finite if E[X] is integral over
g™ (E[Y]).

Proposition 1.7.0.1 [Hu75, 4.3] Let ¢ : X — Y be a finite dominant morphism of
affine varieties.

(a) If Z C. X, then g(Z) C. Y, and the restriction of g to Z is finite; further g is
surjective.

(b) If W is a closed irreducible subset of Y, and C' is any component of g~ (W), then
g(C)=W.

Proof: Putting R = F[X] and S = E[Y], we can view S as a subring of R as g* is
injective. For an ideal I <« R, R/I is an integral extension of S/(I N .S).

We prove {a): take I to be the ideal of Z (noting that Z is an affine variety). Now I’ = INnS
is radical in S, and so I' is the ideal of a closed subvariety Z’, into which ¢ maps Z. The
corresponding affine algebras are S/I' and R/I,so g : Z — Z’ is again dominant and
finite. (@) will follow once we have shown that any finite dominant morphism is surjective.
Pick y € Y: then there exists an @ € g7 ({y}) iff g*(90,) C M,, - where the notation refers

as usual to the maximal ideal in .S (respectively R) vanishing at y (respectively z). Thus




we need only show that 9, is contained in a maximal ideal of I2: but as R is integral over
S, this follows from the well-known ‘Going-Up’ theorem [AM69, 5.11]. This proves (a).
(b) We have just shown that the restriction of g to C is again finite, and so g(C) is
closed and irreducible. Now we need only show that dim C' = dim W. For I and J the
ideals corresponding to C' (respectively W), then I NS = J, and both are prime. Just as
before, R/I is integral over S/J, so the corresponding field extension is algebraic, and the

dimensions coincide. [J
We use the following version of the Noether normalization lemma.

Theorem 1.7.0.2 (Noether normalization lemma) [Hu75, {.8] Let S C R be inte-
gral domains, with R finitely generated as S-algebra, and both finitely generated as E-
algebras. Then there exists f # 0 in S, and yy,...,ym in R, such that the {y;} are
algebraically independeni over S, and Ry is integral over S[yi,...,ym)s, the subscript

denoting localization at f.

This is used to prove the following.

Theorem 1.7.0.3 [Hu75, 4.3] Let g : X — Y be a dominant morphism of irreducible
varieties, and r = dim X — dimY. Then there exists ¢ # U C, Y such that

(a) U C g(X), and

(b) whenever W C. Y with WNU nonempty and W irreducible, and Z is a component
of g Y (W) with Z 0\ g~ (U) nonempty, then dim Z = dim W + r.

Proof: We can suppose that Y is affine, for if U is an affine open subset of ¥ which
meets W, then U N W is dense in W, and we can consider the restriction of g to g=1(U)
instead. Moreover, we can assume that X is affine, for having found suitable open sets U;
for the restrictions of g to each of a (finite) cover by affine open sets of X, then we can
take U = M;U;. Next identify E[Y] =: S C R := E[X] via g*, and use the normalization
lemma above to find an f € S and yy,...,¥, in B with the properties asserted therein.

Clearly, this m is the same as r. Then Sy and Ry are the affine algebras of principal open
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sets Y5 and Xy of ¥, X. Further, we can regard Syly,...,4,] as the afline algebra of

Yy x A", and can factor the restriction of g to X as

Xr by x a2y

with both of these maps being surjective using [1.7.0.1]. Putting U = Y}, we note that
Xy =g~'(U), and that U C g(X), verifying (a).

To verify that this choice of U satisfies (b), we may as well suppose that U =Y =Y}
and X = Xy: keeping the same factorization g = pry o h, with h finite, suppose that
W C. Y with W irreducible, and Z a component of g~}(W), so Z is a component of
h=1{(W x A") - as h is surjective, h{Z) = W x A", and r +dim W = dim h(Z) = dim Z as
h is finite. O

1.8 Constructibility

If one takes the Boolean algebra generated by the open (or the closed) subsets of a topo-
logical space X - (using finite unions (or intersections) and complementation), the subsets
of X of this form are called constructible. Equivalently, the subset S of X is constructible

if it is a finite union of locally closed subsets.

Theorem 1.8.0.1 (Chevalley) [Hu75, 4.4] Let g: X — Y be a morphism of varieites:

then g maps constructible sets to construclible sets.

Proof: A locally closed subset of X is a subvariety, and thus a constructible set is
also. Hence it suffices to show that g(X) is constructible. Semblably, we can suppose
that X and Y are irreducible, and f)roceed by induction on dimY, taking the case of
dimension zero as read. By induction, we can suppose g dominant, and by [1.7.0.3], we
can choose a nonempty set U C ¢(X), with U C, Y. Then the irreducible components
Wi,...,W; of Y \ U have lower dimension than Y. By induction, the restrictions of g to
the various components Z;; of g~!(W;) have images constructible in W;, and so in Y. But

g(X) =U U, ; g(Zi;) and we are done. [J
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Proposition 1.8.0.2 (Upper Semicontinuity of Dimension) [Hu75, 4.4]
If g : X — Y is a dominant morphism of irreducible varieties and x € X, let e(z) be
the mazimum dimension of a component of g~'(g(z)) which passes through x. Then for

each n € N, the set X, 1= {2 € X :e(x) > n} is closed in X.

Proof: By induction on dim Y. O

One situation in which one draw a stronger conclusion is the following, which is impor-

tant in the construction of the so-called ‘geometric quotient’ of a variety by an algebraic

group [3.2.1].

Theorem 1.8.0.3 [Hu75, 4.5] Let g : X — Y be a dominant morphism of irreducible
varieties, with »r = dim X — dim Y, and suppose that for each irreducible W C. Y, each

irreducible component of g~ (W) has dimension r 4+ dim W. Then g is an open map.

Proof: By hypothesis, g is surjective, and the irreducible components of g~ (W) all
dominate W.

Ife e X,and z € U C, X, we have to show that y = g(z) is an interior point
of V = ¢g(U); if not, then y is in the closure of Y \ V: now V, and hence Y \ V are
constructible, and thus y lies in the closure C of some locally closed ONC - where O C, Y,
and we can suppose C' irreducible, so ONC is dense in C. The irreducible components of
C' := g~ 1(C) all have the same dimension, and dominate C. Next, O’ := ¢g~}(O) meets
each such component, so C’ N O is dense in C’. But C'N O’ = g~1(C NO) is contained
in the closed set X \ U, so C! C X\ U. But 2 € C": contradiction. O

1.9 Tangency

For an affine variety X C. A*, with v € X, ¢ = (2y,...,2,) and f € HI,...,Tx],
define dpf = 370, 0f/0T;(2)(T; - x;) where the notation means that the derivative
is evaluated at z; then if Z(X) = (f1,...,fi) is the ideal corresponding to X, define

the geometric tangent space to X at 2 to be Tan(X),, the (linear) variety given by the
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vanishing of the ideal (dyfi,...,dsf:). For a general variety X, we could pick an affine
open subset of X, and proceed as above, but would like a more intrinsic description.

To get this, again suppose firstly that we have * € X C, A", with R := E[X],
and let M := T({z}) be the maximal ideal of R which vanishes at . Now M/M? is
a finite-dimensional E-module, performing the identification E = R/M. Then any f €
E[Ty,...,T,) defines a linear function d,f on A", and so on T'an(X);. Since dgf is
determined by f mod Z(X) we can suppose f € R. Then d,f : R — (Tan(X)g)*
is a surjective linear map: moreover, since R = E @& M, and d,f|lg = 0, we can take
dof + M — (Tan(X)z)*, and it is readily shown that the kernel of this map is M2
This enables identification of (M/M?)* with Tan(X),. Now if we localize R at M, and
use exactness of localization, we can identify the R/M-module M/M? with the O, /9,-
module 90, /92, and finally define the tangent space T(X), to X at @ to be (9, /MMZ)*.
Moreover, this now works for any irreducible variety X, and in general provided that we
define O, correctly.

An equivalent way of looking at the tangent space is the following: with the same
notation, let D, be the E-module of F-linear mappings ¢ : O, — E satisfying 6(fg) =
§(f)g(x) + f(x)d(g) - the so-called point derivations of Op. One can verify that D and
T(X)g are naturally isomorphic as E-modules.

To pass to the general case now is easy: if # € X, and lies on a unique irreducible
component Y, then define 7(X), = T(Y),: otherwise, with an appropriate definition of
Oz, we can use (M,/M2)* as before. It is also now easy to see that if x € X and y €Y,
then Ty ) (X X Y) = To(X) & Ty (Y).

A point z € X for which dim 7(X); = dim X is said to be simple (on X) - X is said
to be smooth if all its points are simple. In fact the following holds.

Recall that a field extension A/B is separably generated if A is a separable algebraic
extension of a purely transcendental extension of B: for finitely generated extensions, the

notion is equivalent to that of being separable.

Theorem 1.9.0.1 Let X be an irreducible variety. Then dim 7 (X), > dim X Ve € X,

with equality holding for all ¥ in some dense open subset of X.
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Proof: The equality condition for the case in which X is an irreducible hypersurface in
A" is easy. As E(X)/E is separably generated (E being perfect), we have E(X)/L finite
and separable, where I = E(T,...,Ty) with d = dim X, and the T; being algebraically
independent over E. We can find y € E(X) such that E(X) = L(y), with f(T) € L[T] (say)
its minimal monic polynomial over L. Then we have f(7,Ty,...,Ty4) € E[T,Ty,..., T4
defined on some affine open subset of A*t!, whose set of zeros is a hypersurface Y therein
with E(Y) isomorphic to E(X) - Y is irreducible as f is. Thus X and Y are birationally
isomorphic, so one can find nonempty open sets in each which are isomorphic. By the
hypersurface result, the desired conclusion holds for Y, and therefore for X: thus we have
equality in a dense open subset.

For an arbitrary @ € X, to determine the dimension of 7(X);, we can replace X by
an affine open neighbourhood of &. Thus let X C. A" for some n, and regard the tangent
spaces as linear varieties. Consider pairs (z,y) € X x A" with y € Tan(X),. These
form a closed subset A of the product: projection onto the first factor defines a morphism

h:A— X, with 27!(z) having the dimension of 7(X),. We have seen that
Xig:={2 € X :dim T(X); > d}

is dense in X, and so it only remains to show that Xy C. X, which follows from ‘upper

semicontinuity of dimension’ {1.8.0.2] applied to h. O
The next result is a version of Zariski’s Main Theorem.

Theorem 1.9.0.2 [Bor91, AG 18.2] Let g : V — W be a dominant morphism of smooth
irreducible varieties, such that, for each w € W, g~ ({w}) has (finite) constant cardinality

n. Then n is the separable degree of (the extension of function fields associated to) g.

Corollary 1.9.0.3 If g is birational, it is an isomorphism; if g is bijective, the extension

is purely inseparable.
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1.10 Local rings

We need now a few facts about the following situation: let £ be a Noetherian local ring,
with maximal ideal M. The Krull dimension of R is the greatest & € N such that there is
a chain of prime ideals P; in R of the form 0 G Py G --- & Pr = M. For the local ring O,
(z € X, with X irreducible), the Krull dimension is just dim X (as one sees by taking X
affine). One can consider also the minimal number of generators of the R-module M: a
standard result [Bor91, AG3.9] shows that this is the same as the dimension of the R/M-
module M/M?. An R which has the property that this latter dimension equals its Krull
dimension is said to be regular. A regular (Noetherian) local ring is an integral domain,
and integrally closed [AM69, Ch.11] - in fact, it is even a UFD [Bor91, AG3.9], but we
do not need this fact. Thus, the last theorem shows that dim X is the same as the Krull
dimension of @, for all simple points € X, and so that @, has all of the properties just

discussed for simple .

1.11 Differentials

For the morphism ¢ : X — Y of irreducible varieties, with @ € X and y = g(a), the
comorphism ¢* of g is a local ring morphism meaning not only that ¢* : @, — O but also
that g*(9My,) = M,. Thus composition with ¢* induces a mapping M, /M> — M, /M2,
which one verifies to be E-linear. Making the usual identification of these modules with the
duals of the tangent spaces gives us a linear map d¢ : 7(X )z — T (Y')y, and this behaves
functorially. In fact, in the affine case, we can give an explicit description of it, so: suppose
X C A™ and Y C,. A", 80 ¢ = (g1,.-.,0n), each g; a coordinate function. Identify the
tangent spaces at @ € X and y = g(2) € ¥ with subspaces of E™ and E* respectively; this
identifies @« = (ay,...,a,) € E™ with the point derivation O, — E given by ¥;a;0/9T;
(followed by evaluation at ). Then dg,(a) = (b1,...,bn), where b; =3 . a;09;/0Ti(2).
Example: det : GL, — GLy, the map taking each (invertible) matrix to its de-
terminant. We take z to be the identity matrix I. The tangent space to GL, can be

identified with E") - which we take as M, the n x n matrices. The above formula gives,
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for a = (a;;) € GLy, 0(det)(a) =, ai;, which is the trace of the matrix a. O
We will need the following theorem later, which is a composite of those cited in its
heading. Note how information about g is deduced from the existence of an & and g(z)

with the asserted properties.

Theorem 1.11.0.1 [Hu75, 5.5/[Bor91, AG 17.3] Let g : X — Y be a morphism of
irreducible varieties, with ¢ € X and y = g(x) € Y both being simple points. Then

gy : T(X)g — T(Y)y is surjective iff g is dominant and separable.

1.12 Completeness

A variety X is complete if the projection map pg : X X ¥ — Y is closed for all varieties
Y - this would be a compactness criterion (if we had the product topology) in a suitable
category of topological spaces. It is easy to show that X is complete iff this is true of each
of its irreducible components, and that we need only consider affine irreducible Y.

It turns out that complete varieties and their geometry are central to the understanding

of algebraic groups (even though these are affine).

Proposition 1.12.0.1 Let X and Y be varielies.

(a) IfY C. X and X is complete then Y is complete.

(b) If X and Y are both complete, so is their product.

(c) Ifg: X — Y and X is complete, then g(X) is closed and complete.
(d) If Y is a complete subvariety of X, then it is closed.

(e) If X is complete and affine, then dim X = 0.

(f) If X is complele and quasiprojective, it is projective,

Proof: (a) and (b) are trivial. To verify (c), note that the graph I'y C; X x Y, where
[y :={(z,9(z)) € X xY :2 € X} - because I'; is the inverse image of the diagonal of ¥
under the morphism X x ¥ — ¥ x Y which sends (2,y) to (g(2),y) (recall that Y is a
variety). The projection X X ¥ — Y takes I'y to g(X), which is therefore closed in ¥

by the completeness of X. Now we can assume that g{X) =Y. Let W C. Y x Z for any
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variety Z, and ¢o : Y X Z —+ Z the canonical projection map; write p» for the projection
map X x Z — Z. Then q(W) =pgo (g x 1z)" (W) as g(X) =Y, and ¢o(W) is closed
in Z by the completeness of X. (d) follows from (c).

To prove (e), suppose that X is also irreducible to begin with. Note that any morphism
g: X — Al has a closed complete image by (c): but Al is not complete, as (for example)
the closed subset {(2,y) € A? : 2y = 1} of A? projects onto the nonclosed subset E* of Al.
Thus g is constant and hence E[X] = E (as g must factor via the inclusion map into Al of
a one-point variety). If X is not irreducible, its irreducible components are complete and

affine, and this verifies (e). Finally (f) follows from (d). OJ
The most important examples of complete varieties are given by the next result.

Theorem 1.12.0.2 Projective varieties arve complete.
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Chapter 2

Relative Algebraic Geometry

We now turn to the more delicate question of ‘relative’ algebraic geometry, and retain the
previous notation. Suppose now that & is a subfield of E: we will use standard notations
like &°, k¢ and k® for the separable (algebraic), inseparable or perfect, and algebraic closures
of k. These are of course also subfields of E. &' is the field often denoted by &~ : recall
that k is called perfect if k = k°.

We write p for the characteristic exponent of E - namely max(charE,1). This turns

out to be a more convenient notion than that of the characteristic.

2.1 Notation and notions

Note that any subfield k& of E induces a topology on A™ (the latter still being defined to
be E x ---x E). Specifically, we define a subset S C A" to be k-closed if it is

(%) closed in the previous sense, and

(1t) there is an ideal I « E[T},...,T,] such that S is the subset of affine space on
which I vanishes, and that I is generated by its intersection I with k[T%,...,Ts], where
the polynomial ring over % is of course identified with a subring of that over E. Thus
Z(S) = nil(I). Topological terms unqualified by a field name will be assumed to refer to
the E-topology. We will write A C, B (respectively, A C.r B) to mean A is k-open
(k-closed) in B.
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Note we did not specify that I be radical. This leads to the notion of a subset defined
aver k1 S C A" is said to be defined over k, or to be an affine k-variety, if it is k-closed,
and in condition (i) above, we can take / = Z(.5). This is a stronger condition, but turns

out to be a more valuable property. We will verify shortly that:

Proposition 2.1.0.1 If X is k-closed, it is defined over (a finite subextension of ) k*.

Example: The following S C Al is k-closed but not defined over k. Take p > 1, and
let 2? € k F @ (so we are supposing that k is not perfect). Take I = (Y? —a?) < E[Y].
Then I, = (Y? — aP) < k[Y]; cleatly S = {2}; however nil(I) = (Y — 2), and this is not
generated by nil(I); = I. O

It is clear that the E-topology is 71, but those induced by proper subfields are not,
in general. Clearly, if Fi C I% are two subfields of E, then the Fi-topology is (weakly)

coarser than the Fy-topology. More precisely

Proposition 2.1.0.2 Let [, Iy be any two subfields of E. Then the Fy-topology coincides
with the Fy-topology iff F} = Fi.

Proof: Asany f € E[T1,...,T,] has the same zeros as f?, it follows that for any subfield
H of E, the H-topology and H'-topology coincide. Hence we can suppose that [y and Fy
are perfect, and moreover this verifies the ‘if* part.

Conversely, let t € F} \ Fy, and write f{T') for the minimal (monic) polynomial for t
over Fy (we take f = 0 if ¢ is transcendental over F3). Put S = (£,0,...,0), which is a
closed set with T = (T} — t,Ty,...,Ty) as ideal. Clearly S is Fy-closed. The result will
follow once it is verified that S is not Fy-closed, for which it suffices to show that Ip,
vanishes at at least one other point.

Put J = (f(T1), T2, ..., Ty); clearly J C Ig,, and in fact J = Ip, since if
g(TlaTZa - aT‘n) € IFQ,

then we can write g(Ty, T3, ..., Tn) = A(Ty) + (T, ..., T},) where h and ! are polynomials

with coefficients in Fy, and all monomials which occur in [ contain at least one of T, ..., T),.
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Evaluating at the point in S gives 0 = h(t) + 0, so f(Ty) divides h(T}) (in £5[11]), and
thus ¢ € (f(T1),T%,...,Ty). This gives an expression for Ig,. Further, all elements of
Ir, will vanish at every point (s,0,...,0) such that f(s) = 0. If f =0, we can choose s
arbitrarily; otherwise f has distinct roots as Fj is perfect (and its degree is more than one
as t ¢ Iy).

In either case, we have found a point outside S at which all generators of I, vanish,

s0 S is not Fy-closed. [

2.2 Algebraic criteria, I

We now examine this idea using more algebra. Let V' be an E-module. A k-structure on
V is a k-submodule V;, € V such that the canonical map Vi, @ E — V is an isomorphism
of Frmodules. Elements of Vi are said to be rational over k.

Suppose now that V has a k-structure V, and U is an E-submodule thereof. We say
that U is defined over k if Uy = U NV}, is a k-structure on U. (This condition is readily
seen to be equivalent to the condition ‘Uj spans U as E-module’.) Put W = V/U and
write W), for the projection of V. onto W; then Wy, is a k-structure on W iff U is defined
over k.

Next, let f:V — W be a linear map, where V, W are E-modules with k-structures.
f is said to be defined over k, or to be a k-morphism, if f(Vi) C Wi. The collection of
all k-morphisms from V to W is a k-submodule Homg(V, W), C Homg(V,W): if W is
finite-dimensional (in particular if W = E) then this is a k-structure on Homg(V, W).

One readily verifies that, with the same V, W that V. ®; Wy is a k-structure on VQg W,
and we get k-structures induced on the tensor, exterior and symmetric algebras of V.

Now let A be an E-algebra (recall our conventions). A k-structure on A is then a
k-structure Ay (as above) which is also a k-subalgebra.

A few properties: given such a structure, with J <1 A, one verifies that J is defined
over k iff J, = A J generates J (as ideal). If S is a multiplicative set in Ay, then the

localization S™!(Ay) is a k-structure on S™(A). Finally, if A, B are two such there is
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a natural bijection from Homyg_qi4(Ag, B) to Hompg_q1 (A, B)g, where the latter denotes
the set of F-linear maps which are defined over k (in the previous sense), also required to
be E-algebra. homomorphisms.

From above, one sees that if E[X] is the affine algebra of an affine variety X, then E[X]
has a k-structure in the last sense iff X is defined over k. There is an analogous condition
for X to be k-closed. One can easily verify that a product of two k-closed affine varieties

(respectively affine k-varieties) has the same property.

2.3 Topological criteria

In fact, we will say that the E-variety X has a k-structure if the following axioms are

satisfied.

(a) It has a k-topology weakly coarser than the E-topology, containing an affine open
cover of X.

(b) For each k-open U, Ox (U) has a k-structure, and the restriction maps (between
pairs of k-open subsets) are defined over &.

(¢) Whenever U is affine and k-open in X, a k-structure on U is induced by a k-
structure on Ox (U) thus: a subset Y of U is k-open iff it is complementary to the set on

which an ideal of E[U] which is defined over & vanishes.

Condition (c) tells us that every k-open subset of an affine k-variety X is a finite union
of principal k-open sets. The requirement in (@) that an affine open cover be included,
though not in [Bor91, AG11.3], appears to be necessary to exclude such cases as that of
the indiscrete topology on P,

Example: If V is a vector space with A-structure Vi, the image of ¥\ {0} under the
usual projection gives a k-structure on P(V). O

A morphism g : V — W of k-varieties is just a morphism of the underlying E-varieties.
It will be a k-morphism (or defined over k) if it is k-continuous, and such that whenever
AC,rVand B G, W with g(A) C B, then ¢* : Ow(B) — Ov(A) is defined over k.

The latter condition is that the restriction to the k-topology of g induces a morphism of

21




‘sheaves of E-algebras with k-structures’. Clearly the condition that g be a k-morphism

necessitates k-structures on V and W.

2.4 Algebraic criteria, II

Now we look at a subvariety Z of the affine k-variety V. Suppose Z is given by the

vanishing of an ideal J < E[V']. Then the exact sequence of E-modules

0—J —=EV]—>EZ -0

becomes, after pulling back along the ring homomorphism & — E, an exact sequence

of k-modules (say)

0 —=Jp = k[V]—k[Z] =0

(as this is an exact construction). Note that no assertion has been made about whether
or not Z is k-closed. While £[V] is a &-structure on E[V], k[Z] simply denotes the restric-
tion of k[V] to Z, which is reduced, and Jj is just J N&[V]. We can tensor the last short

exact sequence through by E (which is a flat k-module) to get the result that

E @ k(2] = E[V]/J) - E[V]

Hence the kernel of the obvious (surjective) map

E @ k[Z] —» E[Z]

is exactly J/Jy - E[V]. Thus Z is k-closed iff J = nil(Jy - E[V]), and if this does hold,
the kernel mentioned is the nilradical of k[V] @i E. Then clearly, Z is defined over k iff

J = Ji - E[V] as expected. We summarize all this in the next theorem.

Theorem 2.4.0.1 The following are equivalent (for Z and V' as first mooted):
(a) Z is defined over k;
(b) E and k[Z] are linearly disjoint over k in E[Z);
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(c) k[Z) @1 E is reduced; and
(d) k(Z) @ E is reduced (where k(Z) means the full ring of fractions of k[Z]).

(The equivalence of the last pair follows from the fact that a ring is reduced iff any of
its localizations at a set of non-zero divisors thereof is reduced.)

What if we now allow V to be a general k-variety (not necessarily affine) and Z to be
a k-closed subvariety? Let U be k-open in V', and put k[Z N U] for the restriction to U of

k[Z]. Then we get the ring of rational functions on Z defined over k by forming

k(Z) = lim KZnU)

?
{U:ZNU dense in Z}

and it can be shown from this, that just as in the affine case, Z is defined over & iff
E ®) k(Z) is reduced. It is not hard to see that k(Z) is a finite direct sum of finitely
generated field extensions of k; by standard arguments from field theory [Bor91, AG2.2],

we get the following, which proves the assertion [2.1.0.1].

Theorem 2.4.0.2 The following are equivalent.
(a) Z is defined over k.
(b) EQ® k(Z) is reduced.
(c) k' @, k(Z) is reduced; and
(d) Each direct summand of k(Z) is separable over k.

2.5 Components and separable points

For a ring A (recall the conventions in force), we write D4 for the set of zero divisors of
A (including zero), and nil A for the nilradical of A (namely the radical of the ideal (0)
as at [1.1]). We recall a couple of standard facts, as the argument in [Bor91, AG12.3] is
slightly incomplete.

Lemma 2.5.0.1

(i) D4 is a union of prime ideals and contains nil A.

23




(ii) nil A is the intersection of all prime ideals of A, and consists of the nilpotent elements
of A.

(iii) If D4 = nil A, then Dy is the unique minimal prime ideal of A.

Proposition 2.5.0.2 [Ja64, TV,§11, Theorem 24]
Let A, B and F be subfields of E, with B C ANF, and B separably closed in A (viz.
B°NA=DB). Write S=AQpl". Then Dg=nil§.

Corollary 2.5.0.3 Let C be a B-subalgebra of E whose field of fractions is F. Write
R=A®p(C. Then Dgr is the unique minimal prime ideal of R.

Proof: Clearly B C C. Since we have an embedding of C into F, and A is a flat
B-module, there is an embedding f: R — 5, and so f(Dgr) C Ds. The result follows by

the theorem. UJ
We now verify that

Proposition 2.5.0.4 The irreducible components of a k-variety V' are defined over k*.

Proof:  To prove our result, we can assume that & = £°, and that V is affine (as
it is enough to verify that it works on each member of a cover of V by k-open affine
subvarieties). Otherwise expressed, we need to show that if P,..., P, are the minimal
primes of k[V], then P; - E[V] is prime in E[V]. By [2.5.0.3], A; := E[V]/P,; - E[V] (which
is exactly E ®p (K[V]/F;)) has a unique minimal prime, so it only remains to verify that
A; is reduced. As k[V] is reduced, we have &[V] C @;(k{V]/F;): both have the same full
ring of fractions £(V). But as E(V) = k(V) @« E is reduced, it follows that A; is reduced,

and therefore a domain, as required, [J

Now let V' be an affine k-variety: the Nullstellensatz [1.1.0.1] shows that we have

bijections

V & HOI‘A]E_,&[E. (E[V], ]E) &+ Homk;azg (A,[V], E)
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Note that the first of these bijections matches points of V' with evaluations thereat:-
2 & (f — f(2)). The second holds because the well-known ‘tensor product-Hom’ ad-
junction verifiably preserves algebra structures and not just module structures. TFor
any k-algebra B, write V(B) = Homy_q,(k[V], B); if B has a k-structure By, then
V(By) is just the subset of V(B) corresponding to the k-algebra morphisms which are
defined over k. Points of V(B) are called B-rational, if £ € B C E. In particular
Vik) C V(k°) C V(k*) C V. Elements of V(k®) are called separable. Thus V can be
regarded as a representable functor from E-algebras with k-structure to the category Set.
Indeed, the construction is functorial in V also in a sense one can make precise. We will
usually only be concerned with k-algebras which are contained in E; there are however
circumstances (such as when studying isogenies of algebraic groups [3.1.0.2]) in which one
needs the more general concept.

The above can be generalized mutatis mutandis to general k-varieties.

Theorem 2.5.0.5 [Bor9l, AG13.2-13.3] Let g : V — W be a dominant separable k-
morphism. Then there is an open dense Wy in W, Wy C ¢(V), such that for each z €
Wo(k®), the fibre g~ () has a dense set of separable points. Hence V (k®) is dense in V
(take W to be a single point).

2.6 Galois-theoretic criteria for rationality

Let V be a k-variety and write I" for the absolute Galois group Gal(k®/k) of k. An action
of I" on V is given thus: we will suppose that V is affine, as U(k®) will be stabilised for each
k-open affine U in V, and so can identify V(£°) with Homps_q14 (£°[V], £°) by the usual
evaluation @ ¢ (ey : f = f(z)). Moreover, I" clearly acts on k°[V] = k® @ k[V] through
the first factor, and we will denote this action by f — oy for o € T'. For 2 € V(k®) and
o €T, o(e) is defined by e,(;y = 0 0ez 007!, In terms of the action on &°[V], one can
rewrite this as op{z) = o(f(o}(x))). Writing V' (f) for the subvariety of V given by the
condition {z € V|f(z) = 0}, we see that each o induces a bijection between the separable

points of V(f) and V(7 f), and similarly, for any ideal J < k*[V], enabling definition of
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the notion of the conjugate variety W of any (closed) k*-subvariety of V. It can be shown
that each such o € I" can be extended to a k*-isomorphism of varieties ¢, : W — W,

More generally, given a k®-variety V and an automorphism o of k°, ¢ can be extended
to an isomorphism ¢, : V. — V7, where V7 is obtained by ‘patching together’ k*-open
affine subsets. In the affine case, this amounts to applying ¢ to the coefficients of the
polynomials defining V' over k°.

Next, let & : V — W be a k*-morphism of k-varieties. Then for each o € I', one
defines a k*-morphism “a(z) = o(a(c™*(z))) for each x € V (k°). While there obviously
cannot be more than one o with this property, its existence must be settled explicitly. To
do this, it suffices to exhibit a comorphism (“a)* : k5[W'] — k°[V'] for each pair V' C, 1 V
and W' C, 1, W such that «(V') C W’. But we already have o* : k5 [W'] — k°[V'], so

1

need only form o~ o o* o ¢. This gives an action of I' on Hompg_yar (V, W)s.

Theorem 2.6.0.1 For the k*-morphism « : V. — W of k-varieties V, W, the following
conditions are equivalent.

(1) « is defined over k;

(2) a: V(k*) — W (k®) is '-equivariant; and

(3) @ € Homp—qr (V, W)L,

Theorem 2.6.0.2 Let Z be a closed subvariety of V.. The following are equivalent.
(1) Z is defined over k.

(2) Z is defined over k° and Z(k*) is I'-stable.

(8) There exists a subset E C Z NV (k®) such that E is I'-stable and dense in Z.

Proposition 2.6.0.3 If o: V — W is a k-morphism, then «(V') is defined over k (we

are not asserting that it is closed, of course).

Proof: Since V(k°) is dense in V', a(V{k®)) is dense in the closure of a(V'), and so one

can apply criterion (3) of the last result. 0
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2.7 Unirationality

An irreducible k-variety V is said to be k-unirational if there is an injective field map
(V) — L for some field L, where L/k is a finitely generated purely transcendental

extension.

Proposition 2.7.0.1 [Bor91, AG13.7] If V is k-unirational and k is infinite, then V (k)

15 dense in V.

2.8 Welil restriction

Suppose we have fields k° 2 [ 2 & with [/ : k] = d. Then there is a mapping Ry, called
‘Weil restriction’ which takes [-varieties to k-varieties; indeed R;/; is a functor right adjoint
to the obvious ‘base extension functor’ in appropriate categories [DG70, 1,1,6.6]. We will
only be concerned with afline varieties here. Let I be as before, and put I'; = Gal(k®/1);
take o1,...,04 as a set of (left) coset representatives of I'; in T,

Now we define Ry (W) (for an affine {-variety W) to be a pair (V,p), where V is a
k-variety, p is a surjective (regular) l-morphism V — W, and the map f = p°' x -+ X
PP Vo o— W9 x .o x WO is a k®-isomorphism of varieties. Clearly R/, multiplies
dimensions by d. It is instructive to see how one verifies the existence of R/, as some
rationality information is obtained as a by-product of the working. An example of the

whole construction will follow at the end.

Proposition 2.8.0.1 [Sa71, I §3.3] For every affine l-variety W, there exists Ry, (W),

defined as above, which is unique up to k-isomorphism.

Proof: This is achieved in three stages: the affine line, products of pairs for which
the result is already known, and subvarieties of those for which it is already known.
Suppose firstly that W = A!, and u,...,%q is a k-module basis for [, take V = A?, and
p: A% — Al given by p(wy,...,wg) = Zi'f w;u;y then obviously p is defined over [, and
P2 (wy, .. wg) = Yo% wu?. Then f (as above) is a polynomial map from A? to itself

. . a . . . . . . . .
with matrix (w;”); this matrix is invertible, as [/k is separable, and this case is done.
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Secondly, we consider the product of two affine [-varieties Wy, Wy for which Ry (W)
and R/, (Wy) are known to exist; but that Ry, (W1 x Wy) exists and is k-isomorphic to
Ry (W) x Ry (Ws) is obvious from the adduced adjunction.

Thirdly, given that R/, (W) exists, and that Y is an [-subvariety of W, one verifies
that Ry (Y) exists thus: as B =Y x .- x Y9 is a subvariety of W' x --. x W¥4, it
follows that C' := f~1(B) is a subvariety of Ry, (W). To show that R,/ (Y) = (C,plc),
it remains only to show that C' is defined over k. As B is clearly defined over the Galois
hull (normal closure) of /&, and f is defined over k°, we have that C is defined over
k*. Now we can use Galois theory: recall the notion of conjugate variety, and that any
automorphism ¢ of £° induces a k®*-isomorphism ¢, from an affine k°-variety V to the afline
kS-variety V. We observe too that (f~1)° = f~lo ¢;l. For o € T, C° = (f~1)7(B°),
and (f~1)? = f~lo ¢;!; applying this to B” gives f~}(B), by definition of ¢,, and so
C? = C'. This concludes the proof of the existence of R;/r(W) for any affine [-variety W.

The uniqueness follows from an obvious universal property [Sa71, I §3.2]. O

Proposition 2.8.0.2

(1) For (V,p) = Ry(W), p induces a bijection from V (k) to W (l).

(2) If W is irreducible, so is V.

(3) If W is an algebraic group over [, then V' is an algebraic group over k. (For the theory
of algebraic groups, see [3.1]).

Proof: We prove (1). Clearly p(V(k)) C W(I) since p is defined over {. For y € W (),
z = Ry({y}) € V(k) and p(z) = y so there is a surjection onto W(l). On the other
hand, = is determined by the conditions & € V (k) and p(2) = v, so p|y ) is also injective.

a

We wish to generalize the bijection in (1) of the last proposition to get information
about the m-rational points of V, for a finite separable extension m of k. To this end,
note firstly that the set ¥ := {k-embeddings of / in £°} has cardinality d, and there is
an action on ¥ by the absolute Galois group [, = Gal(k®/m), by o2 — oz. U X,

denotes the set of orbits of this mapping, then one can show that V is m-isomorphic to
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[Taes,, Biom/m (W), where the notation ought to be clear. We record some special cases
of this.

In particular if {/k is Galois, then {* =1 and W* = W for each o - then V is m-
isomorphic to R;m/m(VV#E"‘) using the adjunction again, and consequently one has a

bijection V(m) < W#En (Im), and indeed, #5,, must be the same as [{ : &k]/[lm : m].

Proposition 2.8.0.3 Suppose (with the above notation), we have k =Ty, | = Fpa, m =
F.o. Then

#V(Fqb) = #W(a,b) (Fqlcm(a,b) )-

Proof: It is astandard fact about finite fields that the compositum Fye Fqb is ]Fqlcm(a.b) -

and hence in this case #X,, = (a, b), the greatest common divisor of @ and b.

Example: Take [ to be a quadratic extension of & = Q, say [ = Q(a) so that {1, a}
is a @-basis for [. The variety 5L, can be regarded as defined over ! (and indeed over @,
though we will ignore this), as the vanishing of the (prime) ideal ] = (WZ - Y X — 1) «
C[W, X, Y, Z]; the corresponding algebra clearly has an [-structure. We will show how to
construct the underlying Q-variety of Ry/qg(SLs), though will ignore the algebraic group
structure.

With the decomposition I' = Gal(Q®/Q) = [[,Tf; where I't = Gal{Q®/l), 1 the
identity of I, and f2(a) = —a, we proceed by analogy with the proof of the existence of
Ry in the general situation [2.8.0.1].

We begin with the ambient spaces, a..d use the notations above. Define p : A> — A?
by (z1,...,28) = (21,...,24) + a(ws, ..., vg); if we are to have (A%, p) as RI/Q(A“), then

we must have that the map f : A® — A* x (A*)?2 given by

S, o xs) = (21, .. 24) + a(@s, ..., z8), (B1y - -, Ty) — (s, ..., T8))

must be a Q%-isomorphism of varieties: but this is so, as f is a Q°-linear map with invertible
matrix. This parallels the first stage of [2.8.0.1] - the rest of this example parallels the

third stage.
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Now we look at the variety SL, itself. Note that if SLo is defined by the van-
ishing of (WZ — YX — 1), then (SLg)® is the vanishing of (W'Z' — Y'X' — 1) (say)
where these are names we give to the second quadruple of coordinates. Putting B =
{W, X, Y, Z, W XY Z') WZ-YX=1=W2Z~Y'X'} we see that B is obviously
defined over . Then we must have Ry/g(SLa) = f~'(B), referring to the third stage of
[2.8.0.1]. Explicitly, after some manipulations, we get that (up to a unique Q-isomorphism)

Ryg(SLz2) = (V,plv), where p is as before and

Vo= {(21,...,28) : @124 — 2923 + o (zs2g — 2e27) = 1}.
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Chapter 3
Linear Algebraic Groups

3.1 General remarks

Let G be a linear algebraic group defined over k (or a k-group), k being a subfield of E,
and I' = Gal(k®*/k). This means that we have a quadruple (G, p, 7, €) where G is an affine
k-variety, and pu,1, € are regular k-morphisms of k-varieties as follows:

(i) p: G x G — G - a ‘product’ map

(il) ¢ : G — G - an ‘inverse’ map and

(iil) ¢ : % —> G - a ‘choice of identity’, where % is a one-point k-variety.

These are to satisfy the usual group axioms (for example, the right inverse axiom is
expressible as yt o (1g,1) = €0 (* ¢— G) ). The morphisms and conditions above can
be equivalently recast as defining a Hopf algebra structure on E[G] (with appropriate k-
structures), and this is the way to realise algebraic groups as representable functors (viz.
as ‘affine group schemes’).

By a subgroup of a k-group we will always mean an E-closed subgroup, though not
necessarily one which is k-closed. [Any more general subgroup will be so described explic-
itly.] We say that the mapping f: G — H is a morphism only if G and H are E-groups,
and that f is simultaneously a group homomorphism and a regular morphism of varieties:

to say that f is defined over k (or is a k-morphism) has the obvious meaning and obliges

G and H to be defined over k.
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Proposition 3.1.0.1 [Bor9{, 1.4]
For any k-morphism f: G — H, ker f is a k-closed subgroup of G and f(G) a k-subgroup
of H. Further, dim G = dim ker f 4+ dim f(G).

We will call a short exact sequence 1 — A LBE&HC s1of k-groups a k-sequence if
the groups and morphisms involved are all defined over k. Given this, we say that B is a
semidirect product of A by C, written B = A x C if there is also a morphism of algebraic
groups ¢ with goo = 1¢ - however ¢ may fail to be defined over k even if everything else
is. More generally, if Hy,..., H, are connected subgroups of a connected group H, we say
that H is directly spanned by the H; if, for some ordering iy, ..., i, of the H;, the obvious
product map H;, X .-+ X H;, — H is an isomorphism of varieties.

An algebraic group over E is not usually a topological group (inverse images of open
sets by p, though Zariski open, need not be open in the product topology) :- indeed, it is
a standard result [Hi74, I1,§5,Prop.3] that a 73 topological group is T3, and G is clearly T}
with respect to the F-topology, but not T3 unless of dimension 0. [Recall that 7% means
‘Hausdorff” and 77 means ‘all points are closed’] The k-group G fails to be a topological
group with respect to the k-topology too, at least if it is irreducible (the inverse image of
the identity under p is k-closed but not product-closed).

The morphism [ : G — H will be called an isogeny if G is connected, f is surjective
and ker f is finite (and therefore central in G). f is called central if one also has, for each

k-algebra A, that the induced group homomorphism
fa : homg_qiy (k[G], A) — homp_q, (K[H], A)

has a central kernel. (Sat sapienti: Note the appearance of scheme-theoretic ideas here.)
Then we say that two connected groups (G; and Gy are strictly isogenous or strictly F-
isogenous (which we write as Gy ~p Gq) if there exist a connected group H and central
isogenies f; : H — G for i = 1,2 where F' is any common field of definition for the f;.
This is an equivalence relation (to verify transitivity form the obvious pullback square).

Note that several notions of isogeny appear in the literature.
Proposition 3.1.0.2 [Bor91, 22.11,22.3,AG18.2]
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Let f: G — H be an isogeny.

(1) f is central iff there is a morphism of varieties & : f(G) X f(G) — G such that
ko(fx f):Gx G — G coincides with the commutator map (z,y) — eya~ty~ L

(2) If f is separable, it is central.

(8) The separable degree of the (finite) field extension E(H)/E(G) is ezactly # ker [.

It turns out that the irreducible and connected components of G coincide, and are the
cosets of a certain normal subgroup G°, called the identity component of G. We write
#G for the number of components: this of course coincides with the cardinality when
this latter is finite. Though we will also use notation such as #G(k) (cf. the discussion
preceding [2.5.0.5]) for the number of k-rational points of a k-group G, there ought to be
no confusion as all references are to finite quantities. G° is itself a k-group, although the

other components need not be k-varieties. It is true, however, that

Proposition 3.1.0.3 There is a finite separable extension L of k such that the components

of G are defined over L and pairwise L-isomorphic as varielies.

Proof: Choose an L such that each component has an L-rational point. Clearly,
each point of G is rational over some finitely generated extension of k: but by density
of separable points [2.5.0.5], one can choose a k*-rational one in each component. Then
the L-isomorphisms mentioned are composites of left translations by such points and their

(group) inverses. O

By an action of G on a (non-empty) k-variety V', we mean of course that V is a G-set
in the usual sense, and that the ‘action map’ v : G x V — V is a regular morphism of
varieties: to say that it is k-morphic has the obvious meaning. For a closed subset M of

V', we define the normalizer of M in GG to be

Ng(M) :={g € GlgM C M}
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and the corresponding centralizer

Z6(M) := NgemNa({2}).

Both of these are closed submonoids of G and the latter is even a subgroup: the
notions have the expected meaning when V = G and « is ‘action by conjugation’ thereon.
In the latter case, we write Z(G) for the centre Zg(G) of G. If G acts (in the above
sense) on both ¥V and W, a morphism ¢: V — W is said to be G-equivariant if one has
d(g.2) = g.¢(z) Ve € V, ¥g € G. An important technical result is the following ‘closed
orbit lemma’ [Bor91, 1.8].

Proposition 3.1.0.4 For the action o : G XV — V, with (G and) V defined over k,
the orbits are locally closed (in'V' ) smooth subvarieties of V', whose boundaries are orbits

of strictly lower dimension.

In particular, orbits of least dimension are closed, and G is itself a smooth variety.

A principal result is, for each &, the existence of a k-isomorphism to some k-subgroup
of GL,(E) for some n (this being one reason to suppose E sufficiently large). More
exactly, we can express this by supposing that there is a separable &-morphism which is
a bijection from G (k%) to the separable points of the image. This ‘concrete’ realization of
G is sometimes useful.

We say that G is solvable (nilpotent) if this is true of the abstract group G: it turns out
[Bor91, 2.3] that the commutator subgroups appearing in the derived series (descending
central series) for G are closed, and indeed are defined over k. After a couple of sections

outlining some needed constructions, we discuss the classification of algebraic groups.

3.2 Some constructions

3.2.1 Quotients

A k-morphism 7 : V' — W (of varieties) is called a quotient (or g-quotient with ‘g-’ for

geometric) morphism (over &) if
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(1) 7 is surjective and open; and
(2) For any U €, V, the comorphism 7* induces an isomorphism from E[x(U)] onto

the set {f € E[U] : f constant on fibres of |y }.

Next, suppose that a k-group G acts morphically on a k-variety V: an orbit map is then
a surjective morphism 7 : V. — W of varieties whose fibres are the orbits of G'in V. Then
a g-quotient of V' by G over k is such an orbit map which is also a g-quotient morphism
in the previous sense. The condition is stronger than that of (categorical) quotient. In
particular, a necessary condition for the existence of a g-quotient of V by G over k is that
all orbits must have the same dimension (and so are closed in G [3.1.0.4]). Clearly also, a
g-quotient is unique up to a unique k-isomorphism, so we are justified in using notation
like V/G or G\V. As we will not be concerned with quotients in any other sense than

that just described, we drop the qualifying ‘g-’.

Proposition 3.2.1.1 [Bor91, 6.8] Lel H be a k-subgroup of the k-group G. Then the
quotient © : G — G/ H ewists over k, and G/H is a smooth quasi-projective variety. If,

further, H is normal in G, then G/H is a k-group and w a k-group k-morphism.

It is not usually true that the existence of a quotient over &k implies that the obvious

map of k-rational points is surjective.

3.2.2 Lie algebras and the adjoint representation

For each © € G, one has the k(2)-automorphisms of the (variety) G given by y — 2.y and

Y= y.::;"i

, called left iranslation and right translation respectively. We will denote their
comotrphisms respectively by A; and p,.

We define the Lie algebra of G, denoted g or L{G), to be the E-vector space g of left-
invariant E-derivations of E[G], with bracket operation [Dy, Dy] := Dy Dy — Dy Dy. Thus

one has

g=1{B € Derg(E[G],E[G]) | Bo Az = A 0op Vz € G}
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This is a ‘restricted Lie algebra’ in the sense of Jacobson [Bor91, 3.1] with ‘p**-power’
as p-operation, and it can be shown that g has a natural k-structure induced by that of
G. Further dim g = dim @, and each L-morphism f : G — G of k-groups induces a
corresponding L-Lie algebra homomorphism f: g; — go of the (k-structures on the) Lie
algebras.

For each & € G, we have the inner automorphism Int(z) of G, given by conjugation by
@3 the differential of this is called Ad(z), and we get a map Ad : G — GL(g), the adjoint
representation of G; clearly the image of Ad consists of Lie algebra automorphisms, and in
fact Ad is a k-morphism of k-groups [Bor91, 3.13]. Note that this also gives us, for every

k-subgroup H of G, a k-action (in the sense above) of H on g.

3.2.3 Jordan decomposition

It is well known that each @ € G'L,(E) is uniquely expressible in the form 2 = 2,2, = 2.2,
where z, is ‘semisimple’ (viz. is conjugate to a diagonal matrix in GL,(E)) and z, is
‘unipotent’ (viz. has all of its eigenvalues equal to 1). Further, one shows that any
(closed) subgroup H of GL,(E) containing @ also contains z, and z,. We can extend
the definition to a general E-vector space V, at least for those endomorphisms f of V
which are ‘locally finite’ (meaning that V is expressible as a union of finite-dimensional
f-stable subspaces). If W is such a subspace, we write flw = (f|lw)s(flw). and this
gives a well-defined decomposition of f. Moreover if a subspace U of V' (not necessarily
finite-dimensional) is f-stable, then it is fs-stable and f,-stable too.

One wishes to do this as it transpires that the E-vector space E[G] has the property
of being a union of finite-dimensional subspaces which are not only defined over &, but
are pg-stable for every & € G (viz. the same subspace decomposition works for every 2.)
Hence we have p; = (pu)s(pz)w for each @ € Gt as each of these factors is a (vector space)
automorphism of E[G], provided we know that they also preserve multiplication (which
follows from the commutation of Jordan decomposition with tensor product [Bor91, 4.3])
the assignment f — (pz)sf(1) defines an E-algebra homomorphism E[G] — E, and so an

25 € G by [1.1.0.1]; similarly we get an 2, € G.
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One verifies that these commute, and that (p;)s = Pxs)s and similarly for x,. Further,
this decomposition is preserved by morphisms, so it really is intrinsic, and coincides in
matrix groups with that described before. The obvious rationality question is answered
[Bor9l, 4.2] by a statement that if @ € G(L) for some field L, then both z, and z, are
in G(L*). There are intrinsically defined subsets G, and G, in G, namely the subsets
{z € G|z = a,} and {2 € G|o = x,} respectively, though they are not usually subgroups

and G5 need not be closed.

3.3 Some standard groups

3.3.1 Connected one-dimensional groups

The following turn out to be the only connected groups of dimension 1, up to k*-isomorphism
[Bor91, 10.9]: the additive group G, of E, and the multiplicative group Gy, , or E*. Clearly
these are realised over the prime field and abelian. One also has G, = Autgy.gp.(Ga),
acting by multiplication.

A character of a k-group G is a morphism from G to Gy, .

Proposition 3.8.1.1 [Ros57, Prop.3] Let f : G — Gy, be a regular morphism of vari-

eties, where G is a connected k-group and f(eg) = 1. Then f is a character of G.

3.3.2 Unipotent groups

G is called unipoient if G = G, (G, as above). Unipotent groups are nilpotent [Bor91,
4.8], and have no non-zero characters. For p = 1 they are connected, and for p > 1
all elements are p-torsion. Good examples are the group U, of n X n upper triangular
matrices in G'L,,(E} having ones on the diagonal, or closed subgroups thereof. The Lie-

Kolchin theorem [Bor91, 10.5] shows that every connected example is of this form.

3.3.3 Tori

The k-group S is a torus if it is isomorphic to G, for some r (equivalently, G = G and is

connected). The set of characters of S (viz. the character module of S), will be denoted
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R - - =

X(S) or just X. Connected subgroups of tori are also tori, and indeed are direct factors
[Bor91, 8.5].

We now describe the ring of (algebraic group) endomorphisms of a standard torus.
Proposition 3.3.3.1
There is a ring isomorphism My (Z) = Homag.cp. (G, , G, ) where My (Z) denotes the
n % n integer matrices. The isomorphism is given by sending the matrix M = (my;) to the

mapping M : G}, — G, which takes (x1,%g,...,%,) to ([]; @7, T 2™, .. [ 2™).

Of course, this gives the underlying abelian group of G, a structure of My, (Z)-module.
This will be useful later, though we will write the action additiv:ly - thus 0 will mean the
element (1,1,...,1) of G},.

Actions of tori on E-vector spaces (wiz. finite-dimensional representations of tori) are
diagonable, in the sense that if we have § : § — GL(V) (this of course to be a morphism),

then 8(S) can be conjugated into a diagonal subgroup of GL(V) (with respect to some

basis for V), and we therefore have
V = Bacx e where g = {2z € V:a(t)e = 0(t).x YVt € S}

the o € X for which g, # 0 are called the weights of S in V. The nonzero weights are
called the roots of S in V. Note in particular the case where S acts on a group G (usually
S < G and by conjugation) and so on g via the adjoint representation. The resulting
weights (roots) are called the weights (roots) of S in G. This set of roots will be denoted
®(5, G): these will play a critical role in what follows, as in the whole theory. The space go
will be denoted g% and called the infinitesimal centralizer of S in g. g° is a Lie subalgebra
ol g: the root spaces g, need not be subalgebras, though they often will be. A result we

need is the correspondence of global and infinitesimal centralizers of tori.

Proposition 3.3.3.2 [Bor91, 9.2/
Let G be a k-group, and S a k-torus acting thereon. Then g° = L(Zg(S)).

A cocharacter (or multiplicative one-patameter subgroup) is of course a morphism in
the opposite direction. The set of these (the cocharacter module) will be denoted X*(5)

or just X™.
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We define the following operations: for xi,x2 € X and aq, as € X7,
(X1 + x2) (=) == x1(2)xa(2) for @ € T and (a1 + @2)(y) := a1 (y)az(y) for y € Gp.

X and X are free abelian groups of rank equal to the dimension of S [Bor91, 8.6], and
indeed are shown to be in duality by the following construction: if y € X and o € X*
then yoa € homig.gp.(Gm, Gn) s0 xoo : Gy, — Gy, is the map @ — z™ forsome n € Z
[3.3.1]. This gives a surjective homomorphism of abelian groups X x X* — Z,which we
will write as (o, A) »<a, A>.

Consider now subtori of the group G. An important property of these is their ‘rigidity’
[Bor91, 8.10], viz. that if S is a subtorus of G, then Ng(9)° = Z¢(5)°% in other words, S
has ‘few’ non-trivial automorphisms. The finite group Ng(S)/2¢(S) is the Weyl group of
G with respect to S. For S maximal, we just call it the Weyl group W of G. Weyl groups
are Coxeter groups (are generated by finitely many involutions). All maximal tori of G
are conjugate, and this shows that W is independent (up to algebraic group isomorphism)
of the choice of maximal torus. One gets a different geometric interpretation of the Weyl
group by introducing the notion of a root system [4.1].

For the next result, recall that p is the characteristic exponent of k.

Proposition 3.3.3.3 [Bor9!, 8.12,8.5]
There is an antiequivalence of categories between k-tori (and k-morphisms thereof) and
finitely generated free abelian groups which are p-torsion-free T'-modules (where I' acts

continuously via the Krull and discrete topologies).

The last result will be refined in [4.3.0.2].

3.3.4 Connected solvable groups and the Borel fixed point theorem

Let H be connectled, solvable and defined over k.

Proposition 3.3.4.1 [Bor91, 10.6]

(i) Hy is a k-closed connected normal subgroup of H which contains H' = (H, H).
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(i) H/Hy is a k-closed torus, and indeed H &« H, % T for any mazimal torus T'.

(iii) All mazimal tori of H are conjugate, and the Weyl group of H is trivial.

We now come to the principal theorem in the theory of algebraic groups.

Theorem 3.3.4.2 (Borel fixed point theorem) [Bor91, 10.4] Suppose the connected
solvable k-group H acts k-morphically on a complete k-variety V, with V nonempty. Then

the action has a fized point.

We will not make use of the theorem explicitly, but a general algebraic k-group H is
studied via its maximal connected solvable subgroups (its Borel subgroups), such being

necessarily closed.

3.4 Connected groups

We pass now to a general connected k-group G.

3.4.1 General remarks and the density theorem

We begin with some results collected from [Bor91, 11.1-4].

Proposition 3.4.1.1

(i) All Borel subgroups of G are conjugate, and G/B is a projective variety.

(ii) The maximal connected unipotent subgroups of G are the unipotent parts of Borel
subgroups (and are therefore mutually conjugate).

(iii) The maximal tori of G are maximal tori of Borel subgroups (and are therefore mutually
conjugate).

(iv) If an automorphism of G fixes a Borel subgroup, it fixes G.

(v) G has a maximal torus defined over k [Bor91, 18.2].

It is important to note that G may have no Borel subgroup defined over & [Ti66, Table
1].

Proposition 3.4.1.2 (Density Theorem) [Bor91, 11.10] Suppose B and T are respec-
tively a Borel subgroup and a mazimal torus of G, and write C for Zg(T)®. Then C is
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S —— L

nilpotent, and the union of the conjugates of B (respectively B, T', C) is G (respectively
Gy, Gs, contains a dense open subset of G).

Corollary 3.4.1.3

(i) Zg(B) = Z(G), and Z(G), is the intersection of all of the maximal tori of G [Bor91,
11.11].

(ii) For any torus S in G, Z5(S) is connected [Bor91, 11.12].

The centralizer of a maximal torus is called a Cartan subgroup. Its dimension is called

the rank of G.

3.4.2 Parabolic subgroups

A parabolic subgroup of G is one such that G/P is complete. By [Bor91, 11.2], G/P is

complete iff it is projective.

Theorem 3.4.2.1 [Bor9l, 11.16,11.17] Let P be a parabolic subgroup of G.
(1) [Chevalley] P coincides with Ng(P) and is connected;
(2) For any Borel group B, there is a unique parabolic subgroup ¢} which is conjugate to

P and contains B.

3.4.3 Effect of morphisms on Borel subgroups

Proposition 3.4.3.1 [Bor91, 11.4] (For any connected group G'.)

(1) If f : G — H is a surjective morphism, with B = B, x T Borel in G, then f(B) =
f(B)y ® f(T) is Borel in H, and every Borel subgroup of H is so obtained. Further, for
any torus S of G, f(Z2¢(S)) = Zu(f(9)).

(2) If A is a connected subgroup of G, and By is a Borel subgroup of A, then Bg = (ANB)°
for some B Borel in G, if, further A is normal in G, every Borel subgroup of A is so
obtained. The analogous resulls for mazimal tori, and for mazimal connected unipotent

subgroups also hold, mutatis mutandis.

Proposition 8.4.8.2 [Bor9l, 11.15] If G acts transitively on a variety D so that the
isotropy groups of points of D are Borel in G, and S is a torus in G, then Zg(S) stabilizes
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and acts transitively on each irreducible component of that subvariety of D consisting of
the fized points of S.

Further, if B is Borel in G,and S C Ng(B), then Zp(S) is Borel in Z£5(S), and every
Borel subgroup of 25(S) is so obtained.

The collection B of Borel subgroups of GG can itself be given a structure of projective
variety via the map ¢ described below. Fix any C' € B, and let 7 : G — G/C' be the
obvious quotient map. For each g € G, put @ = w(g). Then the map ¢ : G/C — B

!is a bijection by [3.4.2.1]. For any connected subgroup H of G,

given by ¢(z) = gCg~
put B = {C ¢ B:C 2 H}: then this is the set of fixed points of H in B (or, of course
in G/C) - BY is nonempty iff H is solvable. We write [(H) := (NgepuB)°. Thus for a
maximal torus T, I(T) = I(T), x T.

Recall the Weyl group W = Ng(T)/Za(T) of G.

Proposition 3.4.3.3 [Bord!l, [1.19] Let B be Borel in, and T' a mazimal torus in, G.
(1) W acts simply transitively on BT (and so the latter is finite).
(2) BOT iff B2 2Zg(T).

Proposition 3.4.3.4 [Bord1, 11.20] Let G and G' be two connected k-groups.

If a: G' — G is a surjective morphism, with T' a mazimal torus in G', and o(T') =
T, then T is mazimal in G and surjective maps are induced B'T — BT and W' — W
where the notations W' and B’ refer to corresponding quaniities in G'. The second map
is @ morphism of abstract groups.

Further, if kerae C B’ VB’ € B/, the laiter two mappings are bijective.

3.4.4 The radical and unipotent radical

We define the unipotent radical u(G) to be the maximal connected normal unipotent
subgroup of G, and the radical #(G) of G to be the maximal connected normal solvable

subgroup of G. These notions are well-defined, and both are k-closed. We have

PG) Zpe u(G) % C
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where C' (which is also k-closed) is a maximal normal torus of G which rigidity shows cen-

tral. One can alternatively characterise () as the identity component of the intersection

of all Borel subgroups.

3.4.5 Reductive and semisimple groups

We saw above that for connected solvable H, u(H) = H,. If G has positive dimension,
it is called reductive if u(G) is trivial and semisimple if r(G) is trivial. The obvious
quotients G/u(G) and G/r(G) are called the reductification and semisimplification of G
and are k-closed. The rank of the latter quotient is the semisimple rank of G. Clearly if
G is reductive, r(G) coincides with Z(G)?. If G has no infinite proper connected normal
subgroup, it is called almost simple. We will say that G is almost k-simple if it has no
infinite proper connected normal subgroup defined over k. We summarize this information.
Proposition 3.4.5.1

We have the following chain of implications among connected k-groups.

‘Almost simple’ implies ‘almost k*-simple’ implies ‘semisimple’ implies ‘reductive’.

3.4.6 Regular, semiregular and singular tori

Let S now be a subtorus of G, and T a maximal torus of G containing S. For any s € §,
we have dim Zg({s}} > rankG: S is sald to be regular if we can choose s such that
we get equality here (in which case s is said to be a regular element of G). A general
element g € G is called regular if g, is. S is said to be semiregular (singular) if B is
finite (infinite). We collect together a few salient properties. Recall the notations I(7')
for (Ngeyr)®B and (T, G) for the set of roots of T in G (vie the adjoint representation

[3.3.3]). For o € ®(T, &), write T,, = (ker «)?, each of these having codimension one in T'.

Proposition 3.4.6.1 [Bor91, 12.2,158.1,13.2] Let S, T' and G be as just introduced.
(1) T is reqular: indeed the regular elements of T form a dense open subset of T'.
(2) Regular tori are semireqular.

(8) The following are equivalent.
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(a) S is regular. (b) 25(S) is nilpotent.
(4) The following are equivalent.

(a) S is semireqular. (b) Z2¢(S) is contained in I(T). (¢) Zc{S) is solvable.
(5) The following are equivalent.

(a) S is singular. (b) S C Ty for some o € ®(T,G). (¢) Z¢(S) € I(T).
(6) For ¢ X(T), B € ®(T,G) < Za((ker 8)°) is not solvable.

3.4.7 Subtori of connected groups

The next results make a hypothesis of reductivity for a connected group tractable.
Theorem 3.4.7.1 [Bor91, 13.16] If T is a mazimal torus in G, then I(T), = u(G).

Corollary 3.4.7.2 [Bor9l, 13.17] Let S be a subtorus of T.

(a) u(Zg(5)) = Zu(c) ().

(b) If S is semiregular then Z¢(S), coincides with the groups in (a).
(c) Z2a(T) = Zye)(T) = T.

Corollary 3.4.7.3 [Bor91, 13.17]

Suppose further that G is reductive and that S is a subtorus of T.
(a) Z25(S) is reductive,
(b) If S is semiregular, then Z2q(S) =T, and in particular, S is regular.
(c) The Cartan subgroups of G are the maximal tori.

(d) The intersection of all the mazimal tori of G' is Z{G)°.
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Chapter 4

Roots, Reductivity and

Rationality

In this chapter, we draw together the standard theory regarding the root system of a
connected reductive group, and treat of rationality questions, including the classification

theory for semisimple groups.

4.1 Root systems

We refer here to [Bor91, 14.7]. Let V be a finite-dimensional vector space over a subfield
R of R, with dual V*. A reflection with respect to a (nonzero) & € V is an r € GL(V)
with »(e) = —a which fixes pointwise a hyperplane. (Hence r(2) = x— <&, A> «, where
A€ V* with <a,A>=2 and ker A is the given hyperplane.) A root system in V is a finite
spanning set ¢ of nonzero elements of V such that for each @ € ® Ir,, a reflection with
respect to v which stabilizes ® (this being so uniquely determined), and further, that for
each o, 8 € @ we have ro(8) = § — ng oo With the ngo € Z. The elements of ® are then
called roots.

Suppose now that @ is a root system in V. A A € V* will be called regular if <o, A\>#0

for all o € ®. For such a A, we write
dt(A) i={a e ®| <a,A> > 0}
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and

A(X) :={o € @ (A)|ov is not a sum of two elements of ®F(A)}.

A basis for ® is a subset A thereof which is a basis for V such that each 8 € @ is
writable as a linear combination f = £} .\ mqa with the m, € NVa. Then the positive
roots (with respect to A) are those for which we take the ‘4’ sign in the last sum, and

we denote this set by ®*. The Weyl chamber of A (or equivalently of ®1), to be denoted
WC(A), is defined to be

{Ae V<o, A> > 0Vae A},

and this clearly consists of regular elements.

® is called reduced if o € ® and rav € ¢ forsomer e R —> r ¢ {+1}. The root
system @ in V is called irreducible if there do not exist nonzero subspaces V; and V, with
V=V&V,and ®; (viz. NV;) being a root system in V; for each i. A subset A of a
root system @ is called closed if the conditions o, ¢ A and o+ € @ imply o+ 3 € A.
Note what this means if ® is not reduced.

We also have a notion of Weyl group W = W(®) for & :- W is the group of auto-
morphisms of ¢ generated by the reflections ro. Any W-invariant scalar product on V or
on V* will be called admissible, Clearly W is a finite Coxeter group - it is generated by
finitely many involutions r,, and is contained in the group of permutations of ®.

For o, 3 € & write
(,B) = {y € ® 1y =ra+spb for some r, s € Zt}.

Clearly (a, ) may be empty. Similarly, if ¥, ¥ are subsets of &, we write (¥, ') for
Uaew gew (@, 8). We call ¥ special if (¥,¥) C ¥, and there exists A € X* such that

<, A> is greater than zero Vo € U,

Theorem 4.1.0.1 Let ® be a root system in V.

(1) For any reqular A € V*, A(X) is a basis of ©, and is the unique basis contained in

I+()).
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(2) A subset ¥ C @ is special iff U is closed and is contained in ®t for some ordering on
b,

Let @ be reduced, and A any basis thereof.
(8) W(D) acts simply transitively on the set of bases of ® (or equivalently on the set of
Weyl chambers).
(4) ® = Uyew(a)wA.
(5) The vy for o € A generate W(®), and there is a well-defined length function | : W —

N given by

l(w) = min{t € N: there is an expression w = rg,Ta, .. .ra, With each a; € A}

=#{pcdwpecd ).
Further, there is a unique element wqy of mazimal length #&.

The possible root systems are classified (up to isomorphism) by the Dynkin diagrams,
defined thus. For the root system & with basis A, the Dynkin diagram D = Dyn(®, A) is
a graph with (say) { = #A nodes. Fix any ordering {aq,...,a;} on A, and write n;; for
the integer nq,,q, defined before (these are the Cartan integers of @).

Join a; and «; by ni;nj; edges (in fact, one always has 0 < nyjn;; < 3), and finally,
if we have bonds from «; to aj,-with n;; 7 —1, we assign this direction thereto. As is
well known, there is in each (connected) component, at most one arrow, and at most one
multiple bond. The short roots are those towards which any arrow points, and the long
roots those away from which any arrow points. (By convention, they are all long if there
is no arrow.)

Further, these components correspond exactly to the irreducible root subsystems of ®.
The irreducible reduced root systems are to be found in the usual list 4; for { > 1, B; for
[>2,Ciforl >3, Dyforl >4, Eg, B, Fg, Fy and Gg. The only irreducible nonreduced
system is that of type BC, (n > 1). This last is (as root system) the union of a B, with
a Cy, (identifying long roots in one with short roots in the other).

For further discussion of this see [Bou68, VI,§4.14]. Non-reduced root systems can

arise in the relative theory of algebraic groups [Bor91, §21].
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There is a convention for numbering the nodes, for details of which we refer to {4.5.5]

where it will be more topical.

4.2 Connected reductive groups

In this section G is a connected reductive k-group, and T is a maximal torus in G. For
any T-stable subgroup H of G, we write ®(H) for ®(T,H). If @ € ®&(T,G) then I, is
defined to be (ker @)?, G4 := Z5(T,). Finally, we write U for the set of roots of G outside
I(T), namely

U ={aec®(T,G): aa T LUT))}.

4.2.1 The root system of &G

Theorem 4.2.1.1 [Bord1, 15.18,13.20,13.21]
(j) U =2Q, 'C’(T) = gT and g = QT Dacd Ja-
(2) The Ty are the singular subtori of T' of codimension [ in T, and

(NaceTa)’ = Z2(G)° = r(G).

(8) ® generates (over Z) a subgmuptof finite index in X (T/Z(G)Y) C X(T). Further, if
o, € ® are linearly dependent (over Z), then a = £f.
(4) For each o € ®, G, is reductive of semisimple rank 1, —a € ®, L(Gy) = 8 BB Oma,
and (o has dimension 1 (so is in particular a Lie subalgebra of g). Furthermore, there is
a unique connected unipotent subgroup Uy in G with L(Uys) = ga-
(5) For each B € BT, ®(T,GoNB) = ®(B)N{xa} is a singleton, so &(B) [[(—®(B)) = .
Further L(B) = g7 @ Iaco(s) 8as and there is a total ordering on X(T') such that ®(B)
is exactly the set of positive elements in ®.
(6) Let H, H' be any two connected T-stable subgroups of G.

(a) LUH) = £ 1 H) @ [ Lucoqr.m 9o

(b)) H=<(TNH)® Usae€ ®(T H)>.

(¢) LLHNH) = L(H)NL(H).
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The groups U, as in (4) are called the root subgroups of G' with respect to 7.

Proposition 4.2.1.2
(1) For o, B € ® with o # %0, the following set is special.

[,y i ={y€P:v=ra+sf forr,s € Z with s > 0}

Let T C ® be special.
(2) The set {Us|lov € T} directly spans (in any order) a T-stable subgroup Uy of G.
(3) For any o € ® such that (¢, T) C Y, U, normalizes Uy.

Proposition 4.2.1.3 [Bor91, 18.7] G is k-unirational, and so (for infinite k) G(k) is

dense in G.

Theorem 4.2.1.4 [Bord1, 14.8] Pui V = X(T'/r(G)) @z Q, identified canonically with
a subspace of X(T')®@z Q. Then ®(T,G) is a reduced root system in V, with Weyl group
W(®) = W, where W is Ng(T)/2a(T), and W acts simply transitively on BT,

Further r(G) = Z(G)? is the (identity component of the) intersection of all root kernels.

Note the appearance of r(G): this signifies that this is essentially a theorem about
semisimple groups. However GG and its semisimplification G/r(G) have the same root

system and Weyl group, by [3.4.3.4], or as verified in the proof of [5.4.5.1].

Corollary 4.2.1.5 For any B € BT, put A for the set of a € ®(B) which are not sums
of two elements of ®(B). Then A is a basis of © (the set of simple roots determined by B
and T ), and, further, G is generated by {Gq|a € A}.

4.2.2 Bruhat decomposition

We need the following result, whose hypotheses are seen to be satisfled in our situation
with 7" a maximal torus in G, U = B, for some Borel subgroup B containing 7', and

action by conjugation.

Lemma 4.2.2.1 [Bor9{, 14.4]
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Let a torus T act on a connected unipotent group U, with ®(H) denoting ®(T, H) for
any T-stable subgroup of U. For each o € ®(H) define Uy = {z € U : (kera)’.z = z},
and suppose that:

(i) LIU) = aeoq) ta with dimug =1 for each «; and

(ii) whenever a and B are distinct elements of ®(U) then (ker a)® # (ker 8)°.

Then the following hold.

(a) Uy is the unique T-stable subgroup of U such that L(Uy) = tq.

(b) Any T-stable subgroup H of U is connected, and directly spanned by {U,|a € ®(H)}
wm any order.

(c) If H and xHz~"! are both T-stable subgroups of U they coincide.

Fix B € BT, put U = B,, ®* = ®(B) and A for the basis of ® in ®*. Similarly, put
B~ for the opposite Borel subgroup to B (viz. that associated to —®%), and U~ for its
unipotent radical. It is convenient to write o > 0 for @ € &%, or @ < 0 for —x € .

For y € G, and a subgroup H of G, we denote by YH the conjugate yHy™!. In
particular, for any w € W, we have U and “U~, respectively the images of U and U~
under w - recall that w is regardable as a (any) representative of T' = Z¢(T") in Ng(T),
acting on & by conjugation. Then if we write Uy, := UN¥U and U}, := UN¥(U~), these
are T-stable subgroups of U (so are connected and directly spanned by the U, for v > 0
which they contain - in any order [4.2.2.1]). Put @3 for the set of v with U, C U,,.

Proposition 4.2.2.2 Suppose ®} = @j for w,y e W. Then w =y.

Proof: If n is a representative of w in Ng(7'), then the obvious actions of w on X and
X* are given by composition with conjugation by n. Thus if @ € X and A € X*, we
have a¥ o A = o o ¥\ in a notation which reflects the order of that composition. Since
G is reductive, every regular A € X* lies in a Weyl chamber, and this latter chamber
is determined by the signs of the < o, A > for @ € ®+. We saw a moment ago that
<a¥, A>=<a,¥\>, so that if we suppose A in the Weyl chamber determined by B (wiz.
defined by the condition < a, A > € Z* Vo € @), for such positive @, < @,”A > > 0

precisely when o € ®}. Then the hypothesis implies that ¥\ and YA lie in the same Weyl
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chamber: but W acts simply transitively on these chambers, so w = y. O

It also follows from [4.2.1.2, 4.2.2.1] that U = U,.U}, = U!.U, as the two sets of
positive roots involved are closed and partition ®*.
Theorem 4.2.2.3 (Bruhat and cellular decompositions)

(1) [Bruhat decomposition of G] G = [ e BwB = [[,ew UwB, and, for each w € W,

there is an isomorphism of varieties
fw : U, x B— BwB given by mapping (z,y) — zwy.

(2) [Cellular decomposition of G/B] G/B is the disjoint union of the U-orbits Uwzq (for
w € W) where zq is the fixed point of B in G/B. Similarly, the map U, — Uwz, given

by u — wwag Is an isomorphism of varieties.

Proof: We include a proof, as this decomposition is central for what follows. Since
BwB = UwB and Bwzg = Uwxo, the statements (1) and (2) are equivalent. Thus it is
enough to show the following.

(a) w,y € W and Uwazg = Uyzo imply w = y.

(b) G = BWB.

(c) The map f,, of (1) is an isomorphism of varieties.

By the last proposition, to prove (a), we need only show that @}, = @;T. Suppose we
have yao = uwwap with w € U, Then Uy (viz. U NYB), the stability group in U of yzg,
is the same as that of wwao, namely Uy, = “U,. Then U, and U, are both T-stable
subgroups of (unipotent) U, which are moreover conjugate in /. But two such groups
must coincide by [4.2.2.1], and we get that &F = @}, proving (a).

We prove (b) in stages. (i) Suppose that G has semisimple rank ! (so that #W = 2).
Then, by (a), BiWzp consists of two U-orbits, so it suffices to show that G/ B consists of
at most two U-orbits. Consider the morphism (of varieties) U — G/B given by u +— uy
(where y is not a fixed point of U). Noting that U is isomorphic as variety to G,, so
regardable as P! minus a point, and that any morphism ¥V — C from an irreducible

smooth curve V' to a complete variety C' can be extended to a morphism V. — C where




Ve is the (unique) complete smooth curve in which V is open [Bor91, AG 18.5], we get a
morphism ¢ : P! — G//B. The image is one-dimensional as y is not a fixed point of U, and
is closed by [1.12.0.1]. Thus ¢ is surjective; but the image consists of (some) fixed points of
U and a one-dimensional orbit {as U has dimension 1). Fixed points correspond to Borel
subgroups of G normalized by U. The Normalizer Theorem [3.4.2.1] guarantees that if
C' is a Borel subgroup, C' C Ng(U) iff U C Ng(C) = C. Hence fixed points correspond
bijectively to the Borel subgroups of M = Ng(U)°. But this last group is actually equal
to B, verifying (i).

(ii) For « € ® and = € (G/B)7T, Ga = (Uaz) U (Uaraz).

Recall that r, denotes the simple reflection corresponding to a. To verify the claim,
consider (Gy)w = Go N By. Recall that this is Borel in G, by [3.4.3.2], and we get a
bijective and Gy-equivariant morphism Go/(Ga)z — Gat. As G, has semisimple rank
1, and Weyl group < ry|r2 > with respect to T the result follows from (3).

(tii) If now o € A and ¥ = &%\ {a}, ¥ is special, so the Ug for B € ¥ directly span
a group Uy, which is normalized by G, and U = U, Uy = UgU,.

That ¥ is special, and that (o, ¥) C ¥ is easy. Moreover, (—a, ¥) C ¥, since if
v = r(—a) + sf with r,s € ZT and B € ¥, then § = ) 54 msé with ms, > 0 for some
do # « as @ is reduced. Then the 50-;1001‘dinate of 7is 865 > 050y € &1, and is distinct
from o Then the claim about direct spaunning follows from [4.2.1.2]; that Uy is normalized
by U, and U_,, and hence by GG, is clear. Hence the asserted equalities hold.

(iv) For o € A and @ € (G/B)T, GoBzx = (Uz) U (Uraz).

Now B = UT = U,UyT by (iii), so

GoBr = G U UuwTr = GuUgz = UgGa

by (i), which is
Ug((Ua) U (Uaraw)) by (it).

But this is just (Uz) U (Urae) as required.
(v) Finally, if « € A, GoBwB C BwB U BrowB for any w € W. This holds as

GoBwB = (UwB) U (UrqwB) € (BwB) U (BrewB).
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Since G is generated by the G, for @ € A by [4.2.1.5], so G{(BW B) C BW B, proving (b).

(c) Finally, as U, = UNYB = UNwBw™! = U NwUw™!, it follows that U,w C U,
and similarly, U, w C wU~. Thus B = UT = U,,U,T so BwB = U,U,wB = U, wB and
hence the given map f,, is surjective. Then U/, w C wU~ and U~ N B = {e} implies that
it is injective also. Clearly f,, is a morphism of varieties, so it is now enough to show that
it is separable by [1.9.0.2]. But £(U~) intersects £L{B) = g @ 2 a0 Uo trivially, so dfy is

surjective, and hence f, is separable. (I

4.3 Quasisplit and split groups

G is a connected k-group in this section. G is k-quasisplit if it has a Borel subgroup
defined over k.

A connected solvable k-group B is k-split if it has a composition series B = Bop> B1 b
-++> B, = {e} consisting of connected k-groups such that B;/B;; is k-isomorphic to G,
or @, for each j € {0,...,7 — 1}, G is k-split if it is k-quasisplit, and it has a Borel
subgroup B which is defined over & and k-split.

Any extension m of k such that G is m-split is called a splitting field for G (or the

splitting fleld if it is the least sucl_l).

Theorem 4.3.0.1 (Splitting for connected k-groups)

(1) G is k*-split.

(2) If G is reductive, then it is k-split iff it has a maximal torus T which is k-split. When
this holds, every component of Ng(T') has a k-rational point [Bor91, 18.7, 21.2].

(3) If G is unipotent, it is k*-split.

(4) If Hy and H, are connected reductive k-groups which are k-split and isomorphic, then
they are k-isomorphic [BTG5, 2.13].

(5) If k is finite, G is k-quasisplit [4.4.0.2].

A connected reductive k-group is said to be k-anisotropic if it has no k-split subtorus

of positive dimension. For the following results we refer to [Bor91, §8].




Proposition 4.3.0.2 (Splitting for k-tori)
Let T be a k-torus of dimension n and [ an algebraic Galois extension of k.
(1) T is k-quasisplit and k*-split.
(2) The following are equivalent.
(i) T is k-split.
(ii) T is k-isomorphic {(as k-group) to G, .
(iii) The group X (T') of characters defined over k spans the E-module E[T].
(3) Every (closed) subgroup of a k-split torus is k-split.
(4) There exist unique k-subtori Ty, T, of T such that Ty is k-split, T, is k-anisotropic,
TaNT, is finite, and T = TyT,.
(5) The antiequivalence [3.3.3.3] induces a bijection between the k-isomorphism classes of

[-split k-tori of dimension n and the Z-inequivalent representations of Gal(l/k) in GL(n, Z).

We will formally define Z-inequivalent representations in [5.2.2].

Theorem 4.3.0.3 [Bor91, 15.13] If H is connected, solvable and k-split, acting k-morphically
and transitively on an affine variety V, then V is k-isomorphic (as variety) to G2 x GS,.
The numbers b and e are the numbers of factors of the corresponding type in the compo-
sition series for H, less those for (mg} isotropy subgroup.

Corollary 4.3.0.4 )

(1) If A is a k-group such that A = H, then a component of A is defined over k iff it has

a k-rational point.

(2) If G is a connected unipotent k-group, then G is ki-isomorphic (as variety) to affine

space of the same dimension.

4.4 Groups over finite fields

There are several special features about these facilitating work therewith, resting on the
theorem of Lang below, to describe which we first discuss Frobenius maps. That for the
finite field Fy, of g elements can be defined thus. Take an nxn matrix 4 = (a;;) with entries

in E 2 F,. Then the image of 4 under the Frobenius map Fj is the matrix Al = (agj)
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- as distinct from A?. Now if A lies in an algebraic group which is defined over F, the
same will be true of A, To make this intrinsic, we say that, for an Fy-group G, a map
i: G — G is a Frobenius map on G (for Fy) if there is an Fy-embedding j : G — G'L,(E)
for some 7 such that (F;)°oj = joi for some s € Z+. Clearly any j determines at most
one ¢, and any Frobenius map ¢ is bijective. Of course, the property of Frobeniusness is
also independent of the Fj-embedding chosen. Note that the differential dj of j is also
injective, so di is zero.

Theorem 4.4.0.1 (Lang)

Let H be a connected Fg-group, and let i : H — H be a Frobenius map (for ;) on H.

Then the map ¢g : H — H given by x + 27! - i(2) is a separable surjection.

Proof: This uses a few simple facts about differentials which can be found in [Bor91,
3.2]. ¢ fixes the identity e of G. Note that (dépy).(X) = —X + (di)X, so (don). is
surjective. I being irreducible, it follows that ¢ is dominant and separable by [1.9.0.2).
Next, pick y € H, and consider the map ¢t : H — H,

trze 27l oy -i(2).

Then (dt)e maps the tangent space at e into that at y and is also surjective (as it has the
same differential as z — 27! - y),"and so t is also dominant. We have shown that each of
¢ (H) and t(H) contains a nonempty open subset of H. The images therefore intersect,
and so there exist g1, g2 € H such that g7 -i{g1) = g5 -y - 4(g2). Thus y = g~ - i(g)
where ¢ = ¢1 - g;l. |

Corollary 4.4.0.2

(1) If f+ H — Ais an Fy-isogeny then H and A have the same number of Fy-rational
points, and the same zeta function over K.

(2) [Serre] H is quasi-split over I,.

(3) If V is an Fy-variety on which H acts Fy-morphically and transitively, then V has an
F,-rational point.

(4) If1 = A — B —C — 1 is a short exact sequence of connected groups over F,, then
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Vr > 1, the induced sequence 1 — A, — B, — C, — 1 of Fyr-rational points is a short

exact sequence of abstract groups.

Proof: All of these facts are standard. We just remark that the proof of (1) consists

in observing that fo ¢y = ¢4 o f, and equating the degrees [1.6] of these maps. O

4.5 Connected semisimple groups

4.5.1 Structure

Let G be a connected semisimple k-group. We write A for the group of algebraic group
automorphisms of GG, and Inn(G) for the group of inner automorphisms of G (namely
G/Z(G)). Further, let Ap 1 be the subgroup of A stabilizing both B and T', where we fix
a maximal k-torus T" and a Borel subgroup B therecontaining. We also write D for the
Dynkin diagram of (7 - recall the correspondence between bases for ® and Borel subgroups
of G containing T": the present basis of ® will be denoted A.

Proposition 4.5.1.1

(1) There is & homomorphism Ap 7 — Aut(D) whose kernel is Ap 1 N Inn(G);

(2) A= Inn(G).Ap.T; .

(3) A/Inn(G) injects into Aut(D) and so is finite.

Proof: (1) For § € Apr, as @ stabilizes T, it induces an automorphism of ® - as
§ stabilizes B, it stabilizes A, and so induces an automorphism 6’ (say) of D. Now if
8 € Apr N Inn(G), say € is conjugation by y € G, then y € Ng(BYNNg(T) =T, s0 0
induces the identity map on .

Conversely, if § € Agr with §' (defined as before) being the identity map of @, then
note that 4 stabilizes U, for each o € A, where the U, are the usual root subgroups.
As there is an isomorphism f, : G, — U, for each «, there is a ¢, € E*such that
8o fo(z) = falcar) for all 2 € G, [Bordl, 10.10]. Hence there exists ¢ € T such that
a(t) = ¢o for each a € A, because the o are linearly independent over Z. Since, for such

a t, conjugation by t has the same effect as 6 on each U, (o € A), we can, replacing 4
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by 6, = Inn(t)™! o 6, assume that each ¢, = 1, so that 8, fixes all these U,. For z € T,
af(z) = aoby(z) for each o € A: but A spans a subgroup of X (7') of finite index therein,
so 8y actually fixes T too. Hence 6, fixes the Borel subgroup T.U, of G, = Zg((ker a)?),
and so by [3.4.1.1}, fixes G,. But by [4.2.1.5], the G, generate G, so 6, is the identity.
Hence # must have been inner.

(2) Recall that the maximal tori of B are mutually conjugate, and that so are the
Borel subgroups of G. For a € A, there is ¢ € G such that ¢cB = B where ¢ = Inn(g) o a.
Also, dT' = T, where d = Inn(b) o ¢ for some b € B. Then d = Inn(b) o Inn(g) o a as
required.

(8) This follows from the earlier parts. O

We come now to the major structure theorem (G as above).
Theorem 4.5.1.2
(1) f 7 : G —> Gy is a surjective morphism, G is semisimple.
(2) Let H be a connected normal subgroup of G, and write H' = Z5(H)°.
(i) H is semisimple.
(i) G = HH and HN H' C Z(G).
(iii) H is defined over k*.
(3) Let {G;}i € I} be the minimal connected normal subgroups of G of positive dimension.
(i) The G; are almost simple, and distinct G; centralize each other.
(ii) I is finite (say I = {1,...,n}), and the product map G1 X -+ X G, —> G is a
central isogeny.
(iii) H is generated by {G;|G; C H}.
(4) G is almost simple iff ¢ is irreducible.

Proof: Only the proof of (2)(i#), and the centrality in (§)(%) are not given in [Bor9l,
14.10]. To verify (2)(i), we can assume k = k°. Then G and some maximal k-torus T are
both k-split, and the latter normalizes H. For each @ € ®(T, H), the group T, is defined
over k (as T is k-split), and hence so is its centralizer H, in H. But H is reductive by

(2)(i) and so generated by the H, by [4.2.1.5]. For (8)(ii), we quote [Bor91, 22.9]. O
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Corollary 4.5.1.3

(1) G is strictly k*-isogenous to a product Gy X --- X (G, of connected almost simple k°-
groups.

(2) The G; are permuted by I', and for each orbit J C I, the product Gy, in any order,
of {G;: 1 € .J} is a connected semisimple almost k-simple k-group. Further, in each orbit,

the G; which occur all have the same Dynkin diagram.

4,5.2 The *-action and k-index

Let T be a maximal k-torus of &, and S a maximal k-split torus of . The dimension
of S is the (relative) k-rank of G. We can suppose S C T with compatible orderings
chosen in X(S) and X(T) [Bor9l, 21.8]. Having chosen a basis A for (7T, &) which
has this property, we put Ap for the subset of A which vanishes on S, and Ay for the
corresponding simple roots in ®(S,G). Of course, the elements of A\ Ag need not be
Z-~independent when restricted to 5.

Each ¢ € T' induces an automorphism of X (1), as T is k*-split, and so of T'. Further,
o(A) is also the set of simple roots in ® (T, G) for some ordering, so there is a unique
w € W such that woe(A) = A. We say then that o induces the permutation o* :=woo
of A, so I acts on the nodes of D. -‘But in fact, the Cartan integers are preserved too,
so [' acts by (directed) graph axftomorphisms. This is the x-action. & is said to be of
inner type if the *-action is trivial, and otherwise of outer type - of course, all this is with
respect to k.

Recall that a group action is said to be effective if distinct group elements induce
distinct permutations. Clearly, there is a normal subgroup I'; of finite index in T such
that the quotient acts effectively on D - the intersection of all isotropy groups: we will call
the (finite Galois) extension of k& corresponding to I'; the inner field | of G. Any extension
of [ will be called an inner field for . For example, splitting fields are inner.

The triple {4, Ap, x-action} is called the k-indez of G. It is independent (up to iso-
morphism of I'-graph) of the choices of S and T. Note that Ag is a union of %-orbits: the

distinguished orbits are those in A\ Ap.
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4.5.3 Classification theorems

The derived group Z¢(S)’ of Z5(S) is the anisotropic kernel An(G) of G (with respect to
k). An(G) is a connected, semisimple k-group and k-anisotropic, and again independent
up to k-isomorphism of the choices of .5 and T'. The terminology reflects an analogy with
Witt’s classification of non-degenerate quadratic forms in characteristic # 2 [Ja74, 6.5].
Proposition 4.5.3.1

(1) G is k-split iff it is k-quasisplit and of inner type.

(2) G is k-quasisplit iff An(G) is trivial, in which case Ag is empty.

The following theorem appears in [Ti66, 2.7.1] - at least it appears in a more precise

formuwlation which does not concern us.

Theorem 4.5.3.2 Let G be a connected semisimple k-group.
(1) G is determined up to k-isomorphism by the following data: the k*®-isomorphism class,
the k-index, and the k-isomorphism class of An(G).
(2) G is determined up to strict k-isogeny by the following data: the strict k*-isogeny class.
the k-index, and the strict k-isogeny class of An(G).
Corollary 4.5.3.3 4 connected semisimple k*-group is determined up to strict k*-isogeny
by its Dynkin diagram. In pa'rti;ular, the strict k°-isogeny classes of almost simple k*-
groups correspond bijectively to the connected Dynkin diagrams.

Further, there exist, in a given sirict k®-isogeny elass, only finitely many k®-isomorphism

classes (described below).

In the strict &*-isogeny class containing G, the k*-isomorphism classes can be described
thus [T166, 1.5.4]: we put Z® for the Z-span of @ (in X (T')), and  for the lattice of weights
of G with respect to T', namely the dual of the lattice of coroots. Then we have inclusions
Zd C X C Q of free abelian groups, all of the same finite rank. If X = Z®, we say & is
adjoint, and if X = 2, we say (7 is simply connected. The k°-isomorphism class of & is
determined by the location of X' between the root lattice and the weight lattice (although

distinct .X will not necessarily yield distinct A*-isomorphism classes).
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In principle, [4.5.3.2] affords a classification up to k-isomorphism: however the deter-
mination of the possible An(G) which can occur is in general difficult. For general &, it
does not seem to be known if a given strict k-isogeny class can correspond to infinitely
many k-isomorphism classes. In [Ti66, Table II] are enumerated the possible indices for
almost simple k-groups, with more specific information in the cases of number fields and

finite fields (among others).

4.5.4 Almost simple groups

Let G now be an almost simple A-group, and put g = [I : k], where [ is the inner field
of G. Then G is connected, and has a connected Dynkin diagram 9X,, . (say), where n
is the rank, and »r is the k-rank. We will omit the symbol g when its value is 1: clearly
g€ {1,2,3,6}.

The possible such G have been classified, at least up to strict Fy-isogeny, for the finite
field Iy, [Ti66, Table II]. In this situation, by [4.4.0.2], G has the property that #G(FF,) is
determined by the strict Fp-isogeny class of G.

The data in the following table is based on [Ti66, Table II] (and the polynomials P(X)
given can be found in [Ca85, p75]). -

Theorem 4.5.4.1 Let G be an almost simple Iy -group.

Then G 1is strictly Fy -isogenous to one of the following types, and #G(Fy) = P(#Fy,)
where P(X) € Z[X] is as given.

The degree of P is the dimension of G, and the multiplicity of 0 as a root of P is

dmGon (the number of positive roots in the root system for G ).
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Type P(X) Conditions on n
Apn XD/ (XD ) forn > 1
Bnn X T (XT -1 forn>2
Chan XTI, (X%~ 1) forn >3
D XN - D IESH (X% - 1) for n > 4
XPX2 - (X - 1)(X*-1)-
Ees .
(X0~ 1)(X° = 1)(X? - 1)
5 _XBB(XL%_ l)(_XlLl— 1)(X12 _ 1) .
77
(XM - 1)(X®~ 1)(X ~ 1)(X? - 1)
‘YLZO(X&) _ l) (){24 _ 1)(X20 _ 1) (‘XIS _ l) R
Esg .
(XM - (X)X - )X - 1)
Fia XX - 1)(X5 - 1) (X6~ 1)(X? - 1)
Ga2 XO(XS~ )(X?2-1)
2A, [241] XPAD2TTR (XL - (—1)iF) forn>2
2Dy net xr=D () TSN - 1) for n > 4
3Dy X203 4 X4 4 1)(X6 - 1) (X2 - 1)
XX (X (X8 -1)-
2, )

(X% — 1)(X° 4+ 1)(X%-1)




We will call a formula like P(X) a rationality formule for the corresponding group.
One must bear in mind that the rationality formulas for outer types only apply to the
field of definition: groups split over extensions in general. Thus P(#Fue) = #G(Fy:) may
have coefficients which depend on t.

Over Fy, a notable fact is that » is completely determined once X, and g are known.
Over number fields, there may be several corresponding values of r; one can find the
possible indices in [Ti66, Table II}, and there is one additional possibility, viz. ®Dy,,

which cannot be realised over Fy, as S3 cannot be a Galois group thereover.

4.5.5 Almost k-simple connected semisimple k-groups

We recall the notations S, T, X, &, A, Ao, Ak, D, An(G), x-action. Let G be a group as in
the heading: we assume it to be of adjoint type.

Let m be the least Galois splitting field for &, and [ the inner field [4.5.2] for G. All
fields introduced subsequently in this subsection lie between & and m. If f is such a field
we write I'y for Gal(k°/ f), and Hj for the left coset space I'/Ts. If f/k is normal, we take
Hy as Gal(f/k). Note that we have I'y, C Iy C ' = 'y, both normal in T, and I';/T'p,
is isomorphic to the kernel of the obvious map H,, - H;. One more useful notation: for
c € Zt, we write I, for {1,..., ¢},

Since T is m-split, H,, acts on X, and so on A wia the +-action. Further, H; acts
effectively on A via the same action, so acts on Z® by linearity, and hence on X, as G is
of adjoint type.

Recall that the connected components of D are (directed-)graph isomorphic, of type
X, say, where X, is one of the usual symbols. We will suppose that there are a such
Dynkin components.

We use, on each component of D, the standard aumbering of the nodes, which we now
describe.

For unbranched diagrams A,, B,, Cn, Fy or Ga, the nodes are numbered 1 to n along

th

the chain, with the n'* node being drawn at the right-hand end (so is short for B, and

long for C,, Fy and G4).
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For branched diagrams, we number the nodes 1 to n — 1 from left to right, and the nt"
node is then attached to the (n — 2)* for D,, or to the (n — 3)** for the E,.

Thus we have D = []%_, X,; we will write (r, s) for the s** node of the r** component,
and D, for the r** component itself.

The following can be found in [Ti66, 3.1.2]. Recall the Weil restriction functor Ry
for finite separable f/k [2.8].

Theorem 4.5.5.1 (For connected semisimple almost k-simple adjoint k-group G.)

There exist a field f, separable over k with [f : k] = a, and a connected almost simple
f-group H, such that G is strictly k-isogenous to Ry (H). Further, An(G) is strictly
k-isogenous to Ry (An(H)}, and the k-index of G can be deduced from the f-index for H
by the procedure described in detail below. By taking the adjoint form of H we can suppose

that both these isogenies are actually k-isomorphisms.

The theorem implies that we have a known action of I'y on D;. We will extend this to
an action of I' on D: then Ag (respectively, the distinguished orbits) for G with respect
to k will be the transforms under I' of Aq (respectively, of the distinguished orbits) for i
with respect to f.

The systematization which follows ought to render possible explicit calculations of
Hasse-Weil zeta functions for all ;01111ected semisimple groups over number fields, though
the general case remains out of reach at the time of writing.

We choose a set ay,..., 0, in I' such that T' =[], o, Iy, with @y = 1. In fact we will
choose the o, in a particular way. First, suppose that
Nr‘(rf) = H pil'y, with py = e.
tely
Next, we write

I'= H oiNr(Tf) with oy = e.
Jely

Thus bd = @, and d is the number of distinct fields which are k-conjugate to f (equivalently,

distinct subgroups of I' containing I',, and conjugate to I'y). Finally, we define a, for

r € Iy, by o, = ojp;, where j € Iy, ¢ € Iy and r» = id + j — d. One verifies that this
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assignment defines a bijection I, «— I X Iy, and that the resulting left cosets are distinct,
as required. For ¢t € [,, we write I'; for the subgroup a’tl"fat“l of T' (so I'y is the same
as 'y, but there should be no confusion). We make the further observation that the set
{a'joutaj‘l 1t € I, } gives an exactly analogous set of left coset representatives for I'; in I'.

We define an action of I' on I, thus: for 2 € I and j € {,, z.j is defined by the relation
o ;I f = z.0;f - this amounts to the obvious action of I' on the left coset space I'/I'.
We note that the stabilizer of ¢t € I, with respect to this action is I, and the action is
independent of the coset representatives «, chosen.

We are now able to define the whole action of I' on A. For x € T, we define z.(j,r) to
be (k(5),y(4).r) where & = ay(;)y(j)(e;) ™" for some (uniquely determined) k(j) € I, and
y(j) € I'y. One can verify straightforwardly that this is a well-defined group action and
has all the desired properties. It does depend on the «,., though this does not matter.

We record the above construction in the following result.

Proposition 4.5.5.2 (With the above notation.)
The x-action of I' on D is given in terms of that of I'y on Dy and the coset representatives
o, by the formula

@.(5,7) = (k(7),y(5).r)

foreacha €T, j €I, andr € I, where v = ozk(j)y(j)(ozj)‘l

Elementarily, each orbit O intersects each (Dynkin) component D;, and by symmetry,
does so in the same number of nodes. Furthermore, if (j,7) € OND;, then the orbit under
action by I'; which contains (j, r) equals OND; :- in other words, D; NT.(4,7) = Ty.(5, 7).
Hence the cardinality of @ is one of «, 2a, or 3a.

If Dy is not of type Eg, we will call the orbit containing (1, n) the main orbit M of the
action: this is an orbit of maximal cardinality, and case-by-case verification shows that
the action is determined completely by its restriction to M. (In the case of Fg, we take

for M the orbit containing (1,1).) Thus we have an effective transitive action of H; on M.

Proposition 4.5.5.8 If 'y <A T, then fory € I'y, y.(4,7) = (J,y(r)) where y(r) is inde-

pendent of j. (Viz. Ty stabilizes all components and acts the same way on each D;.)
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Chapter 5

Reduction modulo Primes

5.1 Algebraic number theory

5.1.1 Algebraic number fields

We recall here some standard properties of and notations for algebraic number fields
(henceforth ‘number fields’) which we will require. A suitable reference for this section is
[MaT7T7].

A number field K is a finite extension of @. The subset Zy consisting of elements
which satisfy monic polynomials with coeflicients in Z is called the ring of integers of K.
Z is a Dedekind domain with field of fractions K, but not necessarily a principal ideal
domain. In particular, all nonzero prime ideals of Zj are maximal, and there is unique
factorization of nonzero ideals into products of maximals. We will often call such maximal
ideals K -prime, as there could rarely be confusion with the zero ideal of K, and the set of
all K-primes will be denoted My . Bach K-prime p induces a discrete valuation ||, on K
vig the localization (Z )y of Z g, and the units of the localized ring are called p-units. The
(finite) residue fleld Z x/p corresponding to p will be denoted Fy, and the cardinality of this
field by Np. Recall that the absolute norm map N just defined extends multiplicatively
to all nonzero ideals in Zx. We often use the fact that for each x € K \ {0}, there are

only finitely many I{-primes p such that @ is not a p-unit.




Of interest in general is the behaviour of K-primes p under an extension I of degree
n over K. It can be shown that pZy, is a proper ideal of Zjy, and that (as the latter
is Dedekind) p = q1°'...q.°", where the g; are L-primes, each with a corresponding
ramification index e;, and residual degree f;, this latter being the degree of the extension
Zr/q; 2 Zg/p. Further, one has the relation n = :ZI e; f;. The q; are said to lie above
p. Some terminology (all relating to the extension L/K): pis split if r = n, inert if r = 1
and fi = n, and unramified if each e; = 1. We often say that an L-prime q is unramified
if the unique K-prime p satisfying g Zx = p is unramified in L. If not unramified, it is
ramified, and it is a standard fact that only finitely many K-primes are ramified in L (for
each fixed L).

We now suppose in addition that L/K is Galois, with A = Gal(L/K). Then for each
fixed p the e; = e are all the same, and the f; = f are all the same (though not the same
for all K-primes p). It can be shown that A acts transitively on the g; which lie above a
given p, and one defines the decomposition group D; of q; to be its isotropy group with
respect to this action. Clearly, the various q; have conjugate decomposition groups of
order ef. One also has an induced surjection D; — Gal(ly, /Fy), whose kernel is called
the inertia group of g;. In particular, if p is unramified, then D; is cyclic of order f, and,
further, there is a distinguished g‘enerator of D;, the Frobenius element of g;. To describe
this, we note that Gal(F,/F,) is generated by the mapping @ — 2™VP. The element of
D; corresponding to this is called the Frobenius element of g;. Then the Frobenius class
Frpof p is the conjugacy class in A containing this element, and this does not depend on
2.

We will refer later to the next two results. The (Dirichlet) density of a subset S of

M is defined to be
N -8
D= lim Z_”Gf_l_p_
se1t  log o=y

if this limit exists (in which case 0 < D < 1}. We only need to know that the density

of finite sets S exists and is zero. For more details we refer to [La70, VIII,§4].

Proposition 5.1.1.1 If A is an intermediate extension, Galois over K, then the image of
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D; under the obvious map from A to A/Gal(L/M) is the decomposition group for q; NZ s

over p.

Theorem 5.1.1.2 (Cebotarev) [La70, VIIL§4, Thm.10]
Let A be the Galois group of the extension L/K of number fields. Then, for each
conjugacy class C' in A, the set of K-primes whose Frobenius class is C' has a density, and

this density is #C/#A.

5.2 Zeta and L-functions

Here we recall the definitions of the standard types of zeta function which we will require
(and the pertinent properties thereconcerning). K is a number field throughout. The first
thing to note is their independence of the choices of algebraically closed overfields made.

For & € R, we write I, for {z € C: Re(z) > a}.

5.2.1 Dedekind zeta functions

The Dedekind zeta function of K is that function of the complex variable s defined by

Gl = 3 N (s € Hy)

0RAIZ 5
We refer to [He67, §2] for the following. The series converges absolutely on Hy, and
extends to a meromorphic function on C with a simple pole at s = 1. Furthermore, there is
an Fuler product of the sum, which converges absolutely (and locally uniformly) to (x (s)

on Hiy, given (wia the multiplicative property of V) by

I - np=)=t

pEMEK
There is a functional equation relating (x (s) to (x(1 — s) via the gamma function T'.

We record this as




Proposition 5.2.1.1 [La70, XIIK3]

. s (Y2172 = 5/2) | [ (2m) B0 — 5) \ ™
- s / s g — 8
el =11 ( [(s/2) ) ( r(s) ) ot =)

where 11,1y are the numbers of real (respectively complex) embeddings of K, and |D|
is the (absolute value of its) discriminant.
We write the functional equation as (x{s) = Y (s){x (1 —s), though it could clearly be

put in the form X (s) = X (1 — s) with X' meromorphic.

5.2.2 Artin L-functions

Let X be a finite group and R be a principal ideal domain, assumed to be a subring of C.
For our purposes, an R-representation of X is a group homomorphism ¢ : X — Autg(V)
for some finitely generated free R-module V' whose rank is the degree of #. We recall that
Autr(V) 2 GL(rank V, R) as abstract groups.

The character of 0 is the map x : X — C given by a — (the trace of) 6(z). The
fibres of y are unions of conjugacy classes of X. The conjugate ¥ of x is also a character
of X, that of the contragredient representation to 8, of which we need know no more than
the existence. .

8 is called trivial (and the corresponding character principal) if X acts trivially on V.
@ is said to be reducible if V = V| @ V5 with the V; being nonzero X-stable R-submodules
of V. Otherwise # is irreducible (and the corresponding character is simple). The R-
representations 0; : X — GL(V;) (i = 1,2) are R-equivalent if there is an R-isomorphism
[ Vi — Vo such that 63(z) = fo by (2)o f7 ¥z € X.

We will need the cases in which R is C or Z, and adopt the convention that omission
of mention of R signifies its adoption as C. Finally, the r** exterior power A”8 of a
representation 6 is defined by A"8(x) = 6(z) A --- A 6(2).

The following is well-known.

Proposition 5.2.2.1

(i) Two irreducible representations of X are equivalent iff they have the same character.

68




i1) There is a bijection between the conjugacy classes in X and its distinct simple char-
J 8 P

acters.

Next, let M be a finite Galois extension of K with group Z. For a representation
§:Z — GL,(C)

of = with character v, we define the Artin L-function by

L(Z,x,s) ot L(M/K,x,s)=(}) H det(] = §(Frp YNp=*)~?
pEM ¢ (s € Hy)

p unramified in M

L

where (1) is a product of modified factors for the K-primes which ramify in M, while
I 1s the n X n identity matrix. These modified factors will not concern us. Note the
simplification when = is abelian, and that the principal character simply gives us (x(s),
or at least that part of it corresponding to the primes unramified in M.

It can be shown [He67, Thm 7] that L(M/K, x, s) is holomorphic on Hj, and extends
to a meromorphic function on C. If x is simple, L(M/K, x, s) is nonzero on the closure of
Hy unless y is principal (in which case there is a simple pole at 1). A famous conjecture

of E. Artin (loc.cit.) asserts the non-existence of any other pole for any simple .

Proposition 5.2.2.2 [He67, 3.10,Thm.7 ff] Let M be o Galois extension of K.
(1) The (Dedekind) zeta functions for M and K are related by

Cu(s) = [ [ LM/ E, x, 5)x0) (s € Hy)
X

where x runs through the simple characters of Z.

(2) L{M/K, x, s) satisfies a functional equation relating it to L(M/K,¥X, 1~ s).

Note that this last strictly only makes sense (as formulated so far) for the local factors
corresponding to unramified A-primes, but the modified factors are so constructed as to

make [5.2.2.2] hold in general (loc.cit.). We shall not need such a refinement.
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5.2.3 Weil and Hasse-Weil zeta functions

The Weil zeta function is defined for ‘schemes of finite type’ over a finite field I, of ¢
elements [Se65], but we will only need it for affine varieties over F,, when it is defined
thus: recall [2.5] that if we have F, C F,r C E, and an affine variety V over F,, the
F,r-rational points of ¥ can be identified with the finite set Homp,_q1y (Fy[V], Fyr). If N,
denotes the cardinality of this set, then the Weil zeta function for V' over F, is defined to

be

[ee]
Z(V,Fy,t) =exp »_ N&"/r

r=1

and it is easily seen that Z(V,F,,t) € Q[[t]] (a power series in ¢ over Q). There is
an obvious extension of the notion to projective V' over F,. One also has the following
elementary ‘base-change’ formula

5—1

Z(V,Fye, t°) = [ [ 2(V, Ty, ')

j=0
where p is a primitive s*' root of unity.
To form the Hasse-Weil zeta function of a K-variety V, one performs the operation
of ‘reducing it mod p’ for each pin My (this process is described separately in [5.3]), so
obtaining a variety Vj over the residue field Fy, and forms the product of the corresponding

Weil zeta functions, wviz.

CV,K,s):=(1) [I 2V F, (V)™
V¥ eMpy

where

(a) the convenient notation V*p means ‘for all but finitely many p’; and

(b) we denote by (i) factors corresponding to a finite subset of M g which it is necessary
to omit.

Implicit in the definition is the identification of Hasse-Weil zeta functions whose local

factors are the same V*p.




5.3 Reduction mod p

5.3.1 Definitions

Given an affine K-variety V where K is a number field, we define, for each discrete
valuation ring Ry of K, where p is the corresponding K-prime, a variety V} over the
residue class field F,. We note that one often has that properties of V' pass to V, V*p [viz.
there may be finitely many primes for which the property does not hold], rather than for
every . We will ignore the archimedean primes of K completely.

Though the process of reduction mod p has an intrinsic description as a fibre product
of schemes [Mu88, IL.4], this does not seem well suited to calculation, and we will present
an earlier approach due to Shimura [Sh55]. His terminology has been superseded, so a
little care is needed in reading his paper.

Shimura defines reduction mod p as follows (we specialize his construction to the case
of number flelds). Pick a universal domain over K and over each of its residue fields
Fp. Denote these by S and X, respectively. (Following Shimura, we use Roman letters
in number flelds and Greek letters in finite fields.) We take all of our varieties as being
embedded in affine spaces over these fields and of course assume that all fields considered
are contained in these latter.

Take now a point z € 5™, SZL}: = (T1,..., %), and & = (&1,...,&) € (Xp)". We say
that & is a specialization of ¥ (over Rp) if the natural map Ry — F, has an extension to

a ring morphism
Rplzg, . 2] = Fplér, .., &) with oy = & Vi e {1,...,n}.

We will again follow Shimura in using the convenient notation (2) =% (£) to describe this

situation.

This property is equivalent to the following: whenever
g(X) € Ry[X1, ..., X,] satisfies g(z1,...,2,) = 0, then v(&1,...,&) =0,

where v denotes the class of g mod p. Clearly this shows that the transcendence degree of

K{z1,....2,) over K is at least that of Fy(&y,...,&) over Fy. In other words, dimension
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cannot increase along a specialization. An essential tool in Shimura's formulation is the

R
specialization ring [(2) —» (£)], namely

{F(21, ... 20)/G (21, ... 2p) : F,G € Ry[z1,..., 2] such that Gp(&1,...,8&) # 0}

which is just the maximal localization of Rp{ey,...,®,] via which the extended ring
homomorphism above will factor. This characterizes (for a given specialization) the ratio-
nal functions H[{z;}] which reduce mod p to the corresponding Hy[{{;}]: note that this
holds in particular for polynomials satisfied by {®1,...,2n}.

Next, given a variety V (C S™) as above, we define its reduction mod p , denoted V;,
to be that subset of X} consisting of all points which are specializations of points of V'
over R,. We remark that V; may be empty even if V is not.

Analogous to the above is the notion of a generic point (over K ), where one uses
the zero ideal of Zx: note that X' = Ky in our notation. Taking (x) € S™, the affine
variety in which = is generic (over K) is the subset of S™ consisting of all points which
are specializations of ¥ over Rg. This is the approach which is adopted in [Wed6]. Weil
specializes over fields: Shimura extends Weil’s theory to local domains (which we can

always take as Noetherian).

5.3.2 Basic facts

We will use the following elementary result.

Proposition 5.3.2.1 [Sh55, §1] (With the above notations.)
() If we have (2) RN (y) and (y) B, (n) then (z) Lo, (m).

(b) If we have () Rk (n) and () LN (v) then (z) LiiN (v).

We now start to assemble the properties of reduction mod p required, and will either
prove or adduce a source of proof in each case. In fact, most of the properties of linear
algebraic groups which we will require are almost always preserved by reduction mod p .
The best source of proofs of this sort of result known to the author is [Ono58], though we

will also need some results merely asserted in the literature.
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Proposition 5.3.2.2 [Sh55]

Let V and W be non-empty affine K -varieties (K a number field) (and K -subvarieties
of ambient spaces S™, S™ as necessary for the hypotheses of the statements following).

(i) If V is absolutely irreducible, so is Vi, ¥*p [§6, Thm.26[Sh.

(ii) If the components of V' all have the same dimension d, then all components of V,
have dimension d also ¥V*p [Shé5, §8, Prop.19].

(i1i) If L is a finite extension of K, and q a prime of L, with p its resiriction to Zf,
then Vy, and Vg coincide as varieties over Ly, [Sha5, §3,Thm.7].

(1v) Reduction mod p commutes with the formation of finite products and unions [Sh535,
§3, Prop.18].

(v) (VOW), CV,0NW, [Sh55, §3,Prop.18].

(vi) If f : V. — W is a K-morphism of varieties, then V*p, f, is an Fy-morphism

from Vj, to W,.
Part (vi) of the last result is not in [Sh55], but is easily seen.

Proposition 5.3.2.3 [Ono8]

Let G and H be K-groups (which we take as K -subgroups of GL,(C)), and A a K-
subgroup of GG.

(i) For almost all p of My, C.r‘p is an algebraic group over Fy [Onob8, 1.1].

(it) If G is unipotent, so is G [Ono58, 1.10].

(iii) dim (G N H,) = dim(G N H), = dim(G N H) ¥*p [Onos8, 2.9].

(iv) Za(A)p C 2, (Ap) and Ng(A)p C Nag, (4p) Y*p [Onob8, 1.2 and 1.4].

(v) If G is solvable (respectively, nilpotent), so is Gy [Ono58, 1.8].

(vi) If A is a torus (respectively, a mazimal torus) in G, so is Ay in Gy V*p [Onoss,
2.4,2.15].

(vii) If A is a Borel subgroup of G, so is Ay in G\, V*p [Ono58, 2.10].

Many of the converses [at least ¥V*p] to the statements above are also true , though we
will not need them. One should note that, in (i), the existence of such Borel subgroups

cannot be guaranteed.




5.4 Preservation theorems

We include here some results and some proofs which do not appear to be in the literature.

Recall that #G denotes the number of components of the group G.

5.4,1 Irreducible components

Proposition 5.4.1.1 (Preservation of components)

If G is a K-group, then #Gy = #G V*p.

Proof: We write G = [[;¢; a;G°. By (finitely) extending I, we can assume that each a;
is K -rational, and that each of these components reduces V*p to an irreducible Fy-variety,
of the same dimension as G°, and these latter are components of Gy. It only remains
to show them disjoint, for which it suffices to show (taking an affine embedding) that if
w,v € K™ satisfy up = vy V*p, then v = v. But if  # v, then for some ¢ (say) the it

coordinates of u, v cannot agree mod § for infinitely many p. O

5.4.2 Exactness and isogenies

The first clause of the following is assérted in [Ono65, 1.2], but the present author has not

been able to locate proofs of either part in the literature.

Proposition 5.4.2.1 (Preservation of exactness and isogenies)
Let1 AL BLSC S1bea K -sequence.

(i) If A and B (therefore also C') are connected, then 1 — A, ELN By 2 Cp —1is an
Iy -sequence, V*p .

(i) If B is connected and g is a K-isogeny, g, is a central Fy-isogeny Y*p, and, further,
# kerg = # kergy, V*p.

Proof: (i) Ignoring finitely many p, we can suppose that Ay, By and Cj are connected,
have the same dimensions as 4, B, C (respectively), and that f, and g, are Fy-group
homomorphisms. Clearly f; is injective, and trivially gy o f;, is the zero map V*p. We

prove first that g, is surjective. To do this, we introduce the corresponding sequence of




Lie algebras, namely
0—£(4) 2 £(B8) 2 £(c) —o0.
We first prove that this latter sequence is exact.

Firstly, as ¢ is a dominant morphism of irreducible varieties, we know [1.11.0.1] that
dg is surjective iff g is separable: since char K = 0, this is automatic.

It is easy to see that, if 2 : V' — W is a K-morphism of K-groups, then (9h), = 9(hy)
V*p - to see this note that a linear map (which we can suppose is given by a reduced echelon
matrix) will reduce mod p to a linear map; moreover the bracket operations on £(V) and
L(W) (I-bilinear, anticommutative maps satisfying the Jacobi identity) certainly can be
reduced mod p, and we get structures of Lie algebra on each of £(V), and L(W),, and
of a homomorphism thereof on (9h),. Indeed, considering the non-singular minors of the
reduced echelon matrix, we see that the rank and nullity of the map are also preserved
V*p.

Applying this last result to f and g, we get that, V*p,

0= £(4p) 20 £,y 28 £y -0

is exact, and so dim gp(By) = dim CY, for if these were different then the linear map dg,
would have to factor via a linear nm;; to a space of dimension lower than the rank of dgy.
Thus g is surjective, and also (kéz‘g)p has finite index t, (say) in ker(gp) ¥*p.

To verify that we can ¥*p take t, = 1, we argue as follows: if we have (for any field
F) an F-isomorphism of F-varieties f : X —> Y, then, as is readily verified, V2 € X, we
have a specialization (x) Rl (f(2)).

Fix any of the remaining primes p, and suppose the residue field F}, extended so that
each component of ker(gy) has a rational point. Thus these components are pairwise
Fp-isomorphic. If a : (kerg), — X is such an isomorphism for some component X of
ker(gp) then we clearly have, for each point £ € X, a specialization (7) Ep—> (&) from some
n € (ker g)p by definition of (ker g},. But then we have () Lo, (n) for some z € kerg, so
we can use part (i7) of [5.3.2.1] to get (z) RN {€) and so ker(gy) C (ker g)p, proving (i).

(1¢) Under the hypothesis of (i1), a similar argument gives the surjectivity of dg, =

d(gp) and so of gy: that gy is central ¥*p follows from (1) of [3.1.0.2]. By passing to a finite
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extension of I, we may assume that ker g consists of K-rational points, so that, V*p, each
of them has a unique reduction mod p and is in the kernel of gy, while these points are

distinct: hence # kerg < # kerg, V*p. Conversely, we use [1.9.0.2] to get that
#kergy < [Fy(Bp) : Ty (Cy)] € [K(B) : K(C)] = #kerg.

g

Corollary 5.4.2.2

Under the hypothesis of {ii), B and C have the same Hasse-Weil zeta function.

Proof: This now follows from the corresponding local statement, which is given in

[4.4.0.2]. O

5.4.3 Centralizers of tori

Let G be a connected I{-group, and S a K-torus acting I{-morphically thereon. Recall

that if ® denotes the set of roots of S in G, then there is a decomposition

0=19°® (Pacota)
where g, and g° are as at [3.3.3].

Proposition 5.4.3.1 (Preservation of centralizers of tori)

V*p of K, Z¢,(Sp) = Za(S)y

Proof: Since G is connected, so is 2g(S) [3.4.1.3], and, ¥*p, so are Gy, Sp, Za(9)p
and Zg, (Sp): we will henceforth assume these so. By part (iv) of [5.3.2.3], we know that
25,(5p) 2 Za(S)p so need only show that these two groups have the same dimension.
Recall too the correspondence between global and infinitesimal centralizers of tori [3.3.3.2].

Thus g5 = £(26(S)) and gy° = L(Zg, (Sp)) ¥*p. We write g5 as

¥ =[){X €a:(Adds)X =X)

SES




Note that, for each s € .5, {X € g: {Ad s)X = X} is a connected unipotent (additive)
K-subgroup of g (regarded merely as vector space). It follows from part (747) of [5.3.2.3]
that, provided we can replace the intersection over S by intersection over a finite subset

A of S(K), then ¥V*p

@y =(({Xca:(Ads)X =X}),= [ {X €gp:(4dd 0)X = X}
s€A cEAy

2 ﬂ {.Y € fp: (Ad 0) X = _X} = gpSP
TES)y

so dim Zg(5) > dim Zg, (Sy) and we will be done. It remains to verify that we can

find such an A C S(K). Let us write

(= [ {Xe€g:(Ads)X = X}
s€S(K)

so clearly [ D g% and [is a connected unipotent subgroup of g. There is a map
h:S x| -—+ ggiven by h(s, X) = (4d s)X ~ X,

fors € 5, X € g. Thus h(S(K)xT) - 0. K being perfect, it follows that [is K-isomorphic
to an affine space, and so K-unirational [4.3.0.4]. S being connected and reductive, with
K infinite, it follows that .5 is also K-unirational and so S(K) is (globally) dense in S
[2.7.0.1]. Then C':= S x [is again K-unirational, so C(K) = S(K) x [(K) is dense in C.
Hence S(K) x lis dense in C, so h(S(K) x [) is dense in the closure of h{C). So h is the
zero map, and [ = g°. That we can choose a finite subset A of S(K) with the claimed

property simply follows by induction. O

5.4.4 The radical and unipotent radical

The following is asserted in [Ono66, p122], but not proved.

Proposition 5.4.4.1 (Preservation of radicals)

Let G be a connected K-group. Then. V*p, the following hold.
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(i) u(G)p = u(Gy).
(ii) r(G)p = r(Gp).

Proof: That u(G)y and »(G)y are connected normal subgroups of the connected group
G, with the former unipotent and the latter solvable, ¥*p , follows from [5.3.2.3]. Thus
u(G)y € u(Gyp) and r(G)y C r(Gp). By making a finite extension of K, we may assume
[4.3.0.2] that G has a K-split maximal torus T, that all elements of BT are defined over
K, that T, is an Fy-split maximal torus of Gy, and that By is a Borel subgroup of G} for
each B € BT [5.3.2.3]. For any connected group H, we have the standard theorem [3.4.7.1]
that w(H) = u(I{5)), where S is a maximal torus of H and
15)=([) B°
Bens

as usual. Applying this to G and T}, we get that

w(Gp) = w((Ty)) Cul( [} B)Y)
BeB(Tp)

s.6. ICeBT
with B=C}

the inclusion passing to unipotent parts because the groups are connected and solvable.
Now, V*p, each C € BT passes to some B ¢ B(T») by reduction mod p: thus, V*p, all

the elements of BT are in the last index set. By [3.4.7.1] again, one gets that

dim u(Gy) < dim u(G)

verifying (2).
For (7¢), observe first that we can suppose that G is reductive, for if this case is done,

we have that

dim (@) = dim r(G/u(G)) + dim w(G) = dim r(G,/u(G)y) + dim u(G),

and know that u(G)p = u(Gy), so have dim »(G) = dim r{Gy).
We henceforth assume that G is reductive. Under this hypothesis, let ®(G,T) be the

(finite) set of roots of G with respect to T, so that for @ € X(T) with Ty := (ker )°,
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a € ®(G,T) & Zg(T,) is not solvable

by [3.4.6.1]. Recall that the Z5(T,) are connected reductive K-subgroups of G which
strictly contain 7' [3.4.7.3]). Dimensional considerations, (4), and the finiteness of ®(T, G),

then guarantee that Z¢(T},), is not solvable for any o, ¥*p. Qur result [5.4.3.1] says that

Za (Ta)p = ZGp ((Ta)p)

so the latter are all nonsolvable ¥*p, and thus for each a € ®(G,T)

(To)p = (ker 8)°
for some § € ®(Gyp,Ty), Gy being reductive. We use now the last assertion of [4.2.1.4]

r(H)=( (] Sa)°

ac®(H,5)

(for any connected reductive group H with maximal torus S). Applying this to Gy, T}

we have
0 0
Q
r{(Gy) = N 7Ta| ¢ N T.| € N T
CXG@(Gp,Tp) ﬂE@(Gp,Tp) CYE@(Gp,Tp)
and Ta=5) To=8y for some ST
for some ST and Zz(S) nonsolvable

and the argument above shows that all the (connected components of the) kernels of
roots of G with respect to T actually occur in this last index set. So by [4.2.1.4] again, we

get dim r(G)p) < dim»(G), V*p and are done. O

5.4.5 Roots and weights

Proposition 5.4.5.1 (Preservation of root systems)
Let G' be a connected reductive K-group with maximal K-torus T', with © as the set

of weights of T' in ' and ® as the corresponding set of roots. Then, identifying © and
8 P 8 yig
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® with subsets of X' = X (T"), one has, V*p, ©, (respectively, ®,) as the set of weights
(respectively, roots) of the maximal torus Ty of G,.
Furthermore, V*p, @y is a root system in X (T,/r(G},)) @z Q, and these root systems

are isomorphic to © ¥*p.

Proof: By [3.4.3.4], T'= T'/r(G') is a maximal torus of the connected semisimple
group G = G'/r(G"), and (loc.cit.) there is an isomorphism induced from the Weyl group
W' associated to ®(T",G’) to the Weyl group W of ®(T, ). Since r(G') is contained in
the kernel of each root of 7' in G’, a map is induced from ®(7", ") to ®(T, G). These are
sets of the same cardinality by {4.2.1], and the map is certainly an injection (considering
kernels of roots) so is a bijection. Indeed, it extends to an isomorphism of root systems
(as the Cartan integers are preserved too). As Zg(T) = Z5(T")/r(G') by [3.4.3.1], by
preservation of the radical [5.4.4.1], preservation of centralizers of tori [5.4.3.1], and the
correspondence of global to infinitesimal centralizers of tori [3.3.3.2], it follows that we
need only prove the result for 7" and G.

The subalgebra gg" of gp has the same dimension as g¥ V*p, so the rank and cardinality
of ® are preserved V*p.

We extend K to a splitting field 'L for G, and work in L henceforth. Recall [4.3.0.1]
that each component of Ng(T') then has an L-rational point, and these reduce mod p to
the same number of distinct irreducible components of Mg, (T}) - the dimension of the
normalizer being preserved mod p V*p by rigidity. Thus we get #W, < #W, where these
are the obvious Weyl groups. The reverse inequality follows from the fact that these groups
act simply transitively on the sets of Borel subgroups of G' (resp. Gy) containing T (resp.
T,) [4.2.1.4).

Given a, # € ®(G,T), one has

< C“'?AB* >=< Crp, (ﬂ*)i’ >

¥*p , where the coroot o™ of o and < o, * >€ Z are defined by the usual relations
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oGy — Gy
z — gplft>

and < @, > =2,

Put Ty = (kera)® as usual: this is defined over L as T is L-split. Clearly, V*p, ay
is well-defined, and is a character of the maximal torus T}, of the connected semisimple
group Gp. Moreover, by [3.4.6.1], for § € X = X(T), 8 € ® iff 25(T;s) is not solvable.
Now, Z2¢(Tp)y = Z¢,((Tp)p,) V*p by [5.4.3.1], s0 when § € @, fy € B, V*p.

Clearly, V*p, one gets (8%), = (By)*, and so the coroots are also preserved V*p. This
proves preservation of the Cartan integers V*p, which demonstrates that all of the following
are preserved: root lengths, orthogonality of roots (and so irreducibility of subsystems),
and the (abstract) Weyl group because the relations in a {Coxeter) presentation thereof
are derived therefrom. This verifies that ®, is V*p, the set of roots of Gp. Then [5.4.3.1]

implies preservation of the weights, and the final assertion follows from [4.2.1.4]. O

In particular, the Dynkin diagram is preserved V*p.




Chapter 6

Zeta Functions: Split and Simple
Groups

6.1 Preliminaries and notation

The key idea in the passage from the number field case to the local case is an action by
decomposition groups on characters. Except where otherwise specified, we only consider
connected groups. Moreover, we confine our attention to connected reductive groups, not
only because there is no loss of generality in doing so, as we will see in a moment, but also
because such a group is split iff it has a split maximal torus.

The following notation is fixed throughout this chapter. K is a number field. G always
denotes a connected semisimple /-group with inner field / and splitting field m. For any
field n such that K C n C K° ', := Gal(K*/n) and H, denotes the left coset space
['/T,. We omit the subscript n when n = K. H, is identified with Gal(n/K) when n/K
is normal.

T is a maximal torus of &, defined over K, of dimension n and with character module
X. The Dynkin diagram of G will be dencted D, and its (graph) components Dy, D, ...
or by notation like 9.X, .. as at {4.5.4]. We also use [4.5.2], [4.5.3] the notations An(G) and
‘)-action’, for various groups. By default their use is relative to K. Finally we introduce

the convenient notation = for dim G + #®1 (where ®F is the set of positive roots with
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respect to some ordering).
Occasionally additional hypotheses will be imposed. We remark that the zeta function

of the trivial group (over K) is the Dedekind zeta function (x (s) for K.

6.1.1 Reductification

Proposition 6.1.1.1 IfJ is a connected K -group, with dim u(J) = b, and reductification
R, then ((J, K,s) = ¢(R,K,s—b).

Proof: This is immediate from the preservation of u(J) [5.4.4.1], exactness of Fy-
rational points for Fy-sequences [4.4.0.2], and the Fy-isomorphism of u(J) with Ab [4.3.0.4],
all ¥*p of course. O

In particular, for connected unipotent J, we have ({J, KX, s) = (i (s —dim J) - or more

precisely almost all of their local factors agree.

6.1.2 General remarks about reduction mod p

As usual [5.3.2.3], [5.4.4.1}, if p € M, and has residual degree f; in m, then we may
assume that T} is a maximal Fy-torus in the connected semisimple F, s, -split Fy-group Gy,
and that p is unramified in m. Thus X is isomorphic to X, := X(T}) (say) as abelian
groups, V*p. )

If ¢ € M,, lies above p, then D denotes the corresponding decomposition group in

Hp.

Proposition 6.1.2.1 Reduction mod p induces an isomorphism (of abelian groups)
Gp : X — X, V.
If p is a K-prime, unramified in m, for which 8, is an isomorphism, then 0, is also

Dy-equivariant for each q above p.

Proof: We choose a basis @1,...,2, for X. Since any two such bases are related
by an integer matrix of determinant 1, the following discussion does not depend on the

basis chosen. Thus X = Y, Zuay, and, V*p, (), € X} for each i.
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We only consider such primes subsequently. Clearly there is a group homomorphism
from X to Xjp. Since both are free abelian groups of rank n, it is enough to show surjectivity
(as the kernel will then be of rank zero and so trivial).

Choose o € Xy. So a0 : Ty — Gy, and « is defined over Fy (this being a splitting field
for Ty). Hence there is an m-morphism s : T — Gy, of varieties such that s, = a and
s(er) = y (say) with y € Gy, (m). Now take t : T — Gy, given by t(z) = y~!s(z). Again
t is an m-morphism of varieties while ¢, = « still holds ¥*p. But then by [3.3.1.1], ¢t € X.

Under the hypothesis of the second clause, we recall that we have a canonical isomor-
phism of Dy with Gal(Fy/F,), so we can regard 6 as a bijection of Dy-sets. If ¢ is a

generator for Dy and @ € X then 6,(0.2) = 0.6,(2) since o stabilizes q. O

6.1.3 Property (Z) for K-groups

We will say, for a I{-group J, and a finite Galois extension n of K, that J has property (Z)
forn, or for n/K if ¢(J, K, s) is an alternating product of Artin L-functions for characters
of H,. We will say that J has property (Z) if there exists some finite Galois extension n
of K such that J has property (Z) with respect to n. We write this down in a slightly

more convenient form.

-

Proposition 6.1.3.1 Let C be the set of simple characters of H,.

The K-group J has property (Z) for n iff there ezist, for each x € C, integers a; for
7 > 0 (almost all of which are zero) such that

#Ip(Fy) = D D ax,iNo"'X([Fro]"). (Ve ¥p)
xeC i

We now assemble some simplification theorems for the problem of determining which
connected groups have property (Z).
Proposition 6.1.3.2
(1) Let D L Ebea K -isogeny of connected K-groups. Then {(D, K,s) = ((FE, K, s).
(2) Let 1 — 4y — B — Ay — 1 be a K-sequence, with all groups connected. Suppose

that each A; has property (Z) for n;. Then B has property (Z) for n = nins.
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(3) If Ay, ..., Ay are such that each A; has property (Z) for n;, then A = Ay x -+ x A,
has property (Z) for n = ny...n;.

Proof: (1) By [6.4.2.1),V*p € Mg, D, EiN Ey is a central Fy-isogeny. But then the
corresponding local factors in ¢(D, K, s) and ((F, K, s) are the same by [4.4.0.2].

(2) That n is a finite Galois extension of K is a standard and elementary result. By
Galois theory, each Gal(n;/K) is a quotient group of H,, say 6; : H, —» Gal(n;/K). Put
C; (respectively, C) for the set of simple characters of Gal(n;/K) (respectively, of H,).
By [4.4.0.2], we have

#(Al)p(Fpt)#(Az)p(Fpt) = # By (Fye ) (Vi V*p )

and by hypothesis, for each ¢ = 1,2
#(A)p(Fp) = D D aiix([Frpl)Np
X€C; §
for some collection of integers a;,y,;. The elements of each C; can be lifted to elements
of C' without changing their degrees - wiz. x € C; passes to X' € C via the definition

X' (y) = x(0:(y)). Thus one can write

H(B)p(F) = D3 ay;x([Frol)Npit

x€C j
for some collection of integers a, ;, and the result follows from [6.1.3.1].

(3) This follows from (2) and induction. O

Recall [4.5.1.3] that a connected semisimple K -group is an almost direct product of
connected (semisimple) almost K-simple normal K-subgroups, its almost K-simple fac-

tors.

Corollary 6.1.3.3 Suppose that the almost K-simple factors Gq,...,Gy of G are such
that each G; has property (Z) for the extension n;.

(a) G has property (Z) for n=1nq...n4.

(b) If n; is the inner field for G; for each i, then n is the inner fleld for .

85




Proof:  Recall [4.5.1.2] that the product map Gy x -« X Gy — @ is a central
I -isogeny. Then (a) follows from (1) and (3) of {6.1.3.2].

Recall that the Dynkin diagram D of G is the disjoint union of the Dynkin diagrams
&; for the G; and each & is a union of orbits under the x-action. If e is any field such
that I C e C K*, then e is an inner field for G iff T, acts trivially on D. Equivalently, iff
I'e acts trivially on each of the &;. Thus any inner field for G contains all the n;, and the

converse is clear. [J

6.2 Connected solvable groups

By [3.3.4.1], if we have a connected solvable K-group J, then we have a K-sequence

1 —— u(J) > J > R y 1

where R is a K-torus - (that this is a semi-direct product decomposition for J is not
germane, and the section J +— R would not necessarily be defined over K anyway). By
[5.4.4.1], the decomposition is preserved under reduction mod p V*p. By [6.1.1.1}, we can
actually assume that J is a K-torus T of dimension n, with Galois splitting field m (say).

We now look more closely at this situation.

x

6.2.1 Tori over finite fields

We consider in this subsection, a torus T' of dimension n defined over Fy = I, and F,-split
for some a > 1, where F,, = Fya. We write M, (Z) for the n x n integer matrices, identified
with the ring of (algebraic group) endomorphisms of G?, [3.3.3.1]. Fix an F,-isomorphism

§:T — G}},. We use the following well-known result.

Theorem 6.2.1.1 (Smith normal form (for Z)) [Ja?{, Thm 3.8/

Let A" € My(Z). Then there exist P, Q and A, all in M,(Z), with A = QA'P™1,
tdet@| = |det P| = 1, and A diagonal, with diagonal entries ay,...,a, satisfying the
following condilions.

(1) for 1 <1< r=rank ', a; > 1 and further ay|as| .. .la,.
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(2) Qpy] = Qppz = =0 = 0.

A is uniquely determined by A’ and these conditions.

In the notation of the theorem, A is the Smith normal form of A’, and the a; are the
invaeriant factors of A’.

Now if G' is a Frobenius map on T' (for F}), we have the set of Fj-rational points of
T(Fy) = {2 € T : G'(z) = «} - this does not depend on the choice of G'. Since G’ is
also an endomorphism of T', it follows that # 0 G' 0 87 =: G € M, (Z); also G* = ¢*I
where [ is the n x n identity matrix since T is Fy-split. An argument in Serre [Se59,
§V1.2] shows that in fact G' = q.M where M € M, (Z) (and therefore M® = I). We now
use @ to transform the determination of T'(F}) into a problem in the standard torus G7,.
Identifying G to the corresponding matrix M shows that we require to find the solutions
of {y € G, : M.y = qy} where gy means (¢/).y. Returning to additive notation (recall
that G7, is a module over M,(Z)) we see that we require to find the set S (say) which

results from solving the ‘linear system of equations’
S:={xeqG : Nx =0}

where we have written N for M — ¢l.
A necessary condition for some y = (ya,...,y.) € G%, to lie in S is the following. If
vy € S, then (det N)y = 0, as one sees by multiplying the system through by the adjoint

matrix to N. Hence each y; is a (det N)*

root of unity - note that det N = 41 mod ¢,
so there exists some minimal & € Z* such that all coordinates y; of all ¥ € S lie in
GZ (Fy). More exactly, we take b to be the least positive solution of the congruence
¢® = 1mod (det N). Let o be a primitive element of F, (that is, a generator of its
multiplicative group Fy). Then, taking discrete logarithms with respect to o, we see that
for each « € I} there is a unique integer iy € {1,2,...,¢" — 1} such that o’ = x. As we

can now restrict our attention to elements of G7, (F}), putting m = ¢® — 1 and Z,, for the

integers modm, we see that now we can identify S with the set

{y=Wiy- s ¥n) EZm X -+ X Zipy : Ny =0mod m}.
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Of course the vector congruence here simply means componentwise congruence mod m.
We seek now the cardinality of S. For the purpose of counting the solutions, we can also
assume that NV is in its Smith normal form, with invariant factors n; (say) - these are all
nonzero. Suppose first that m were a prime power p*. Then the number of solutions of
the system would be [[;(n;, p%).

Return now to the case of a general m - we use here a version of the Chinese remainder
theorem. Since (T]; n;)|m and p* is the highest power of p which divides m, it follows that
[L(ni,p*) = (IL; 7, p%) = [(det N, p%)|, and taking the product over the prime powers
which exactly divide ¢* — 1 gives (| det N|,m) = | det N| for the total number of solutions.

Similarly, the number of Fi-rational points of 7" will be | det(M© — ¢°T)| for each ¢ > 1.

6.2.2 Tori over K and connected solvable groups

The discussion in this subsection appears in [Se59, VI1,§1,n0.3]: we return to the general
notation of the chapter. Since H, acts on X, each element induces an automorphism
of Z", yielding a representation A : H, — GL(n,Z) [4.3.0.2]. The discussion [6.1.2.1]
shows that V*p, the corresponding representation for T}, is Z-equivalent to the restriction
of A to the decomposition group (since the various decomposition groups for primes above
p are mutually conjugate, one obtains Z-conjugate representations therefrom).

We have seen in the last subsection how to find the number of Fyn-rational points of
Ty: this is | det(M™ — ¢"I)| where ¢ = Np and M is A(Fryp). We can now write down
the zeta function of T}, V*p.

Let Ay,..., A, be the set of eigenvalues of A(Frp) (in some order: these are roots of
unity as H,, is finite); let 7 be an appropriate identity matrix, and ®, the A*" exterior
power [Ja74, 7.2] of the diagonal matrix whose entries are Ay,...,\,. Then the zeta

function [5.2.3] for T, over Iy is
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h=n

2080 =TT T @2k d @)ty 0™
h=0 %1 <ia <<ty

h=n

= T det(7 — (Wp)»=Pi@,) D™
h=0

If we write Ly (s) for the Artin L-function corresponding to the h** exterior power A* 4

of (the representation) A, then the Hasse-Weil zeta function for 7" over K [5.2.3] is

(T, K, s)= (1) [ [ Z(T By, (VD))
P
HHdet (Np)r—h=sg,) (-1
h=0 ¥
=N ] Zals+h— 0"
h=0

= (ﬂ H L(Hma Ah,\’, s+ h— n)("l)h
h=0

where we denote by A"y the character of A*A. From this, and [6.1.1.1], one can in
principle write down the Hasse-Weil geta function for a connected solvable K-group, and
so of r{G).
Proposition 6.2.2.1
(1) Every connected solvable I-group has property (Z) for the splitting field of some
maximal K-torus over K.
(2) If every connected almost K -simple K-group has property (Z) over K, then every

connected K-group has property (Z) over K.

Proof: (1) has just been shown. Let .J be a connected K-group, so there is a K-
sequence of connected groups 1 —r(J) = J — 5 — 1, with S semisimple. By hypothesis
the almost K -simple factors of S have property (Z) over K, and so by [6.1.3.3], S has
property (Z) over I also. But then by (1) and [6.1.3.2], J has property (Z) over K. O
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6.3 Split groups

While we do not need to consider these cases separately, the formulas obtained are of

interest, and we will use them later.

Proposition 6.3.0.1 Let J be a K-group. Then there is a finite extension M of K, and
P(X) € Z[X] such that ¥*p of M, Vr > 1, P((Np)") is the number of Fny)r-rational
points of Jp.

Proof: We can extend K to an M so that (1) each component of J has an M-rational
point, (it) r(J) is M-split, and (iii) for some maximal K-torus T of I := J%/r(J), T is
contained in a Borel subgroup B of I with B split over M. Fach of these requirements can
be realized over some finite extension of K [3.1.0.3], [4.3.0.2] and [4.3.0.1]. If [ is trivial,
we are finished (see the end of this proof); otherwise it is a connected semisimple M-split
group, and this we henceforth assume. Our choice of M guarantees that the (absolutely)
almost simple factors of I are (defined over M and) M-split. Write W for the Weyl group
of I with respect to T', namely the finite group Ny(T)/2(T). Then W is also preserved
by reduction mod p V*p [5.4.5.1], and our choice of B and T' gives a canonical basis for ®
and corresponding length function oit W, t: W — N [4.1.0.1].

The above hypotheses are sudficient to guarantee that each double coset BwB (for

w € W) in the Bruhat decomposition [4.2.2.3] for I, namely

I= H BwB

weW

(disjoint union) can be taken as defined over M, and further that the canonical isomor-
phism of varieties [4.3.0.4] BwB = B x A'*) is also defined over M (for each w € W). As-
sembling all of the above, we introduce the notation a = #J, b = dim u(J), ¢ = dim u(B),

d=dim 7T, e = dimr(J)/u(J), and take

P(X) = aX’ (X — 1)dte E xlw)
welW
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The group W is also the Weyl group of the root system ®(7,7) which is associated
to 7, and is the direct product of the Weyl groups corresponding to the irreducible root
subsystems of ®(7,T). We can show from this that the polynomial 3, . X' is the
product of those corresponding to these irreducible subsystems: these latter polynomials
can be found in the earlier part of table after [4.5.4.1] (except that we have incorporated
powers of X — 1 and of X into the expression aX’*¢(X — 1)¢*+¢). This gives an explicit
description of P(X): it is interesting that the nonzero roots of P are roots of unity. [Had

I been trivial, we would have had ¢ = d =0 and ZwEI’V Xiw) = 1.] 0

Corollary 6.3.0.2 The (Hasse-Weil) zeta function for J over M is an alternating product
of integer translates of (pr(s) (and in particular J has property (Z) for M/M ).

Explicitly,

t=dimJ

C(LMys) =) [ Culs =i

i=btc
where P(X) = 3, ;X% O

Corollary 6.3.0.3 ((J, M, s) has a functional equation relating it to ¢(J,M,1 4+ r — s),
where r = b+ c4dim J.

Proof: Let ®;(X) denote the (monic) irreducible polynomial over Q for the primitive
t*h roots of unity: its degree is ¢(t). It is implicit above that the sum Y wew X Hw)
in the expression for P(X) is a product of such factors for ¢ > 1. One easily verifies
that X¢W®,(X~1) = &(X) for t > 1, (for ¢ = 1, a minus sign is needed). Hence,
X"P(X™') = CP(X) where C' = {—=1)%*¢ and so we have the relation a; = Cap_; among
the coefficients of P. Recalling the functional equation [5.2.1.1] for the Dedekind zeta
function, which we write as (s — i) = Y (s —9)Cmr(1 + ¢ — 8), with Y meromorphic, we

have

91




1=dimJ

(M5 =) [T Vs ~ddul+i-s)™

i=btc
i=dimJ j=dim J
— ) [ Ye-9= [ ull+r—j-s%
t==b-c j=b+te
then we get
t=dim J
CJ, M, s) = (1) [ 1 Y(s—i)"“} (M, 1+ 7 — )

i=b+c

We can of course choose the finitely many hitherto undetermined factors to fit into

this pattern. O

Note that the » which occurs in the last corollary is equal to dim u(J) + Z: this is a

paint which will recur later.

6.4 Almost simple groups

Throughout this section [6.4], G is an almost simple K-group.

6.4.1 Notations and statement of the Main Result (AS)

Recall [4.5.4] that G is connected and has a connected Dynkin diagram 9.X,, . (say) [loc.cit].
We write again n for the rank, and » for the K-rank. Recall that H; & Gal(l{/K) acts
effectively on Y.X,, . [4.5.2]. For p € M, p unramified in [, let Frp be its Frobenius class
in H;. Recall the notation = for dim G + #®T: observe that for a split almost simple
group, we would have, in the notation of [6.3], XSP(X~1) = CP(X) where P(X) is the
rationality formula and C'is (—1)™.

By [6.1.2.1], we can identify the strict Fp-isogeny class of Gy V*p. (The fact that we
are now dealing with the inner field rather than the splitiing field is a minor detail, settled
by [5.1.1.1].) The table following gives, for each diagram of outer type ¥ X, ., the density

of that subset S5 of Mg which is defined by the condition that (9.X, ), has type h X, for
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p € 5. The entries in the table were found by applying the Cebotarev density theorem

[5.1.1.2] to [6.1.2.1]. The corresponding cardinalities are given too.
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K-type | Density | F,-type Cardinality
1/2 1An,n qn(n+1)/2 H?:l (qi-i—l _ 1)
2Anr
12 124, rsa) g T (¢ = (-1))
1/2 "Dpm (g — ) TIS (6% - 1)
Dy
1/2 | *Dppy gD (g + 1) [T (6% - 1)
1/2 YBes | —1)(® - 1)(® = 1)(® = 1)(¢® = L)(¢® — 1)
2E1G,r
1/2 *Eoa | (¢ = 1)(a® + 1)(¢® = 1)(¢® — 1)(¢° + 1) (¢* — 1)
1/3 1Dy 4 gt - 1) T (6% - 1)
3D4,r
2/3 3Dy B+ ¢+ 1) (e - 1)(* - 1)
1/6 'Dyq (gt - 1) TI (g% - 1)
5Dy | 1/2 2Dyg ¢ (q* + 1) Tli=y (¢* - 1)
1/3 3Dya B+ ¢t + 1)(¢® - 1)(¢* - 1)
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The rest of [6.4] is devoted to the proof of the following result.

Theorem 6.4.1.1 (For G an almost simple K -group.)

(1) G has property (Z) for |/ K.

(2) There is a field f, with K C f C 1l and [f : K] equal to 1 or 2, such that ((G, f,s)
satisfies a functional equation relating it to (G, f,1+Z~s). We can choose f = K unless

9Xny 15 one of 2An . for n =2 or 3mod 4, 2D, for any n > 4, or 8Dy,

6.4.2 Dependence on [ and X, alone

The first observation to make is the following.

Theorem 6.4.2.1 (For G an almost simple K -group.)
The Hasse-Weil zeta function ({(G, K, s) depends only on |l and X,,.

Proof: We begin by considering an almost simple Fy-group J, with 9.X,, given. In
fact, we claim that the strict F,-isogeny class of J is already determined by this informa-
tion. Recall [4.5.3.2] that to show this, we must prove that the strict Fy-isogeny class, the
Fp-index and the anisotropic kernel are determined uniquely (up to Gal(Fy/Fy)-set iso-
morphism or Fy-isomorphism as appropriate). The relative Fy-rank » of J is well-defined
by [4.5.4.1], though we do not need this explicitly.

J is Fy-quasisplit, so the anisotropic kernel is trivial by [4.5.3.1]. Further, the strict Fy-
isogeny class of J is just that of X,,. Finally, the Fy-index is determined by the following
data. All orbits are distinguished, since J is Fy-quasisplit. The inner field for J is the
(unique) extension /; of F, of degree g. The group C = Gal(l/F,) acts effectively on
X,,. But elementary considerations regarding possible (directed-)graph automorphisms of
X, show that there is a unique structure of C-(directed-)graph which can be put on X,
which is effective in the sense of C-sets, This lifts to a unique action of Gal(F; /F,) on
Xn, such that Gal(F} /l1) acts trivially. Hence the Fy-index is also uniquely determined
by the data 9.X,.

This verifies the claim that the strict Fy-isogeny class of J is specified by the data

{9, X,.}: the Weil zeta function of J depends only on this, by [4.4.0.2]. This justifies
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notation like Z(9.X,,Fy,t) for Z(J,Fy,t).

We return to the almost simple I{-group G. Recall that the Dynkin diagram is pre-
served under reduction mod p V*p [5.4.5.1]. We also observe that if Frp is the identity
class of Hy, then G, is Fy-split: thus for g = 1, G}, is necessarily F,-split and almost simple
(V*p), so the local factors are known.

Next suppose g = 2. If F'rp is not the identity class of H;, Gy is (for almost all
such primes) strictly Fy-isogenous to an F,-group of type 2X,, (for the same X, as G,
and r as in the table [4.5.4.1]); the Hasse-Weil zeta function is again determined by this
information, in which knowledge of I is implicit.

For g = 3, if Fryp is either of the non-identity classes, then Gy must have the same
Weil zeta function as the group 3D, .

Finally for ¢ = 6, it Frp has elements of order 2, then we have the local factor

Z(*Dy,Fy,t). If Frp has elements of order 3, then we get Z(3Dy, Fy,t). O

The above result suggests that the Hasse-Weil zeta function is in some sense a rather
‘crude’ invariant of the group.

Next is an elementary result for which the author does not know a source: it will be
used in some of the existence proofs for functional equations. A special case was used

already in [6.3]. .

Lemma 6.4.2.2 Let A(X) € C[X], A £ 0, of degree d. For z € C, let m, be the
maultiplicity of z as a root of A. Suppose further that there exist o € Z and C' € C such
that CX*A(X~!) = A(X). Then a =d+mp and C = (=1)™.

Proof: Write A(X) = X™0(X — 1)™@Q(X) where Q(0)Q(1) # 0. Then
CXex ™o (;Y—l . l)le(_X_I) = X0 (zY - 1)m1Q(X),

S0
C=1)™ Xm0 (X~ 1™ Q(X 1) = (X = 1)™Q(X).

Dividing by (X — 1)™!, and evaluating at X = 1 gives C' = (~1)™!, and the assertion

about « follows by comparing terms of degree zero. O
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6.4.3 Proof of (AS) for groups of inner type

The computations here almost follow from those in [6.3]. If G is of inner type over K so
that [ = K, then so is Gy V*p, and thus G}, can be taken as Fy-split (being necessarily Fj-
quasisplit). Hence one takes for rationality formula the polynomial P(X) given in [4.5.4.1],
giving (G, K, s) as an alternating product of translates of Dedekind zeta functions [6.3.0.2]
(so G has property (Z) for K/K) with a functional equation over K as at [6.3.0.3].

6.4.4 TUnification of rationality formulas

In the next few subsections, we record again the explicit expressions [4.5.4.1] for numbers
of Fy-rational points for the various almost simple Fy-groups of outer type, and ‘unify’
these formulas to get at the number field case by introducing characters of (the current
group) Hj, which we recall can be identified with Gal(l/K).

We recall that H; is isomorphic to a subgroup of S5. For convenience, we refer below to
the presentation <o, r|o?, 73, (o7)?> for S5 and subgroups Cy :=<olo?>, Ca :=<7|7°>
thereof.

Subsequently in this section, y, sundrily annotated, denotes various simple non-principal
characters of H; (which we recall are constant on conjugacy classes), and e denotes the
identity element of H;. We use A(X) and B(X), sometimes annotated, to denote (various)
elements of Z[X], and use C' to denote various combinations of the functions which appear
in the functional equations for Artin L-functions. The exact form of C is not important:
it could readily be written down in any given case if required.

Recall that the rationality formula to be used for P(Np') in the case of an Fp-group of
outer type depends on the degree ¢ of extension being considered. In all subsequent cases,
an expression for #Gy(Fy:) is obtained which is valid for all £ > 1 and V*p. We will see

that characters of H; are involved, and the formulas are found by a little experimentation.

6.4.5 General remarks about (45) for cases in which g =2

We use here the character x of Cy such that x(¢) = ~1 and x(e) = 1. We note that

x(e®) = x(0)* for each @ € Z as y is linear, and that x(c?)? = 1. The three types of
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diagram are considered separately: in each case, the ‘unifying’ formula is readily verified.
We will see that, in each of the three cases, we can choose polynomials A(X) and B(X) in
Z[X], with coefficients independent of ¢, such that #Gp(Fype) = A(NpY)+x([Frplt)B(Np®)
for all ¢ and V*p. The calculations for the case ?A,, will be carried out in full, as these

are the most complicated: the others will be abridged.

6.4.6 Verification of (AS) for the cases A, ,

NptrH D2 (Nptlit) 1) if1e Frp or

#(2An,r)p(Fpt) = 4 (G' € FIIJ and (2,t) = 2),

Npt(+D/2 T (Nptl+) — (~1)+1) if o € Frp and (2,8) = 1.

— vatn(n-i-l)/? H(vat(‘i+1) . X([F'P p]t(i-i-l))) (Vt, v*p )

=1

As only the parity of the exponent to which Fr p is raised is significant, we can simplify

this to R
n : n
]\rpin(n+l)/2 H (IVP (i+1) _ H N’ t(7+1) _ ([F?’ p]t))
(¢ odd) (7 even)
and so

#( A )p(Foe) = A(NDY) + x([Frp]") B(Ny)

with 4(X) and B(X) being in Z[X] (and independent of ). We write A(X) = 3, a; X*
and B(X) =), b; X7
Hence, by the definitions [5.2.3] of the Artin L-function and Hasse-Weil zeta function

we get
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—st
CCAnr K, 5) He\p(z ANy Np He\p(z x([Frel) Np) P )

p

HCI\. s —1) HL(HI,X, - ).

verifying (1) of [6.4.1.1] for this case. We can clearly get a functional equation of the

required form over [; however if we can find ¢ € Z and w € C such that
XeA(X™Y = wA(X) and X°B(X ™) = wB(X)

we get a functional equation over K of the form

CCAny, K, 8) = C(8)(An,, K, 14+ ¢ —8)Y

as follows. Observe that y is a real character. We use the functional equations for

Cre(s) and L(H), x,s) [5.2.1.1, 5.2.2.2].

(CAny, K, 9) Hc,ﬁ (s—1) HL(HJ,X,S-J')bj

Hcf\ Lti=s)® [ L(HL X1 - s+ )"

i
Now wae—; = a; and wbh,; = b; for all 1,7 € Z: furthermore, ¢ runs through the
same index set as ¢ — ¥, and j runs through the same index set as ¢ — 7 by construction.

Replacing ¢ by ¢ — ¢ and j by ¢ — 7 in the last expression gives

CCAL K, 8) = (HNC()C(CAny, K, L+c— )Y
as required. (Recall that w is £1.)
We now seek sufficient conditions for the existence of ¢ and w with the required prop-
erties. Recall that, by [6.4.2.2], we necessarily have ¢ = deg A + mg(A) = deg B + mo(B)
and w = (=1)™A) = (~1)™(B) where (almost as before) m,(Q) denotes the multiplicity

of z as a root of the nonzero polynomial Q(X)} € C[X].
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We can certainly find such a ¢, w for the polynomial T, (X) (say) with constant coef-
ficients

n

TH(.X) — Xn(n-l—l)/? H (.XH-I _ 1)
(i'odd)
whose degree is d (say), and which has 1 as a root of multiplicity [2] - namely

n{n + 1)
2

ﬂ_+_1]

c=d- sz(—l)[z

Ty divides both A and B, so we can remove this common factor, and suppose that A(X)

and B(X) are such that

J
(7 even)

AN+ x([Fro])B(Np') = (Np'U+D) — x([Frp]") (*)

Write
I ={j € Z|j is even and 1_<_j§n},@;@c:#[+2j
Jel

- thus ¢ is the degree of (*) (the degree in Np?). We note next that (with our new A and
B), mi(A) = my(B) = 0 for all n. We know, of course, that both A4 and B have integer
coefficients, but in fact both A and —B (are nonzero and) have nonnegative coefficients
so cannot have 1 as a root. To see this, observe that as y([Frp]%)?% = 1, on expanding (*),
terms coming from the product of an even (respectively, odd) number of x([Fr p]*) terms
only contribute to the expression for A (respectively, B). Hence the nonnegativity of A
and —B, and we must take w = 1 for the new A and B.

We write y for x([F'r p]!) from now on in this subsection, and recall again that y = y~1.

Then we have (in which all subscripts j run over I)
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AX)+yB(X) = [T —y) = XeJT(1 — yX771) = (—pH X[ (X7 - y)

3 J J

= ()P XA +yB(X ™)
X[AX Y+ yB(X™H]  for #I even,

Xe[—yA(X~YY — B(X™1)] for #I odd.

For #17I even (equivalently, n = 0 or 1 mod 4) we have
A(X) +yB(X) = XTTAX ™) +yBX )]
since this must hold for both y =1 and y = —1, we get
A(X) = X°AX™Y) and B(X) = X°B(X™1).

Adding this value for ¢ to the value 21 + d obtained for the polynomial 7T,(X) and
g 3 P

n{n+1)

multiplying w by w’ gives ¢ = dim G + =5

= = as required, and we have a functional

equation for n =0 or 1 mod 4 as claimed in [6.4.1.1]. We record this explicitly.
ntl
(-ol)

(n=0o0r1 mod4)

CCAnr K 5) = (NC(8)C(CAny, K, L+ E — 8)

For #1I odd, (equivalently, n = 2 or 3 mod 4), we get similarly,
A(X)=-X°B(X™") and B(X) = -=X°A(X Y.

However deg 4 + mo(A4) = ¢+ 3 and deg B + mg(B) = ¢ — 3, so we cannot ‘reciprocate’
A and B simultaneously and therefore cannot find a functional equation over K by this
method, also as claimed [loc.cit.].

This verifies all of the assertions of [6.4.1.1] about groups of type 24, ..
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6.4.7 Verification of (AS) for the cases *D,,

Nptrr=D(Npt» — ) [P (Np?t —1) if1e Frp or

=1

#CDp ) p(Fpe) = (¢ € Frp and (2,t) = 2),

‘Npt“(”‘l)(Np‘” + 1) [T (V¥ — 1) ifo € Frp and (2,8) = 1.

n—1

- j\rptn(n—-l)(jvptn _ X([F?,p]t)) ]:[(!VpZit _ 1)

=1
all of this holding V¢, V*p of course. By a similar, but easier argument, we get

polynomials A and B such that

#(2Dna‘)p(Fp‘) = A(Np") + x([Frp]") B(Np")

and hence that

CCDnpy K 8) = (1) [ [ (s =) - T L(Hi x5 — 5)
) i

This time, we find that -

n—1

AX)= XV T[x%-1) = (1) X mAx)
=1
n-1

B(X) = N_‘Yng—n H(_X'Zi 1) = (_l)n—1‘X3n2—3nB(X—l)

1=1
so that no functional equation over K can be found by the method above. However,

we do again have a functional equation over [.

6.4.8 Verification of (AS) for the cases 2Fg,

Due to constraints of space, this time we write the actual conditions for the two different

rationality formulas after the formulas themselves.
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{Nn“t(wpm VR = 1) (V™ ~ 1) ot
1
(Np® — 1)(Np® — 1)(Np* - 1)
#(2E6,r)p(Fpl) = )
Np®SH(Np'2 — 1)(NpP 4+ 1) (Np® - 1) - -
1
(NpS = 1)(Np™ + 1) (Np* — 1)
where

‘Aist 1€ Fry or (o€ Frp and (2,t) =2); and
‘B’is: 0 € Frp and (2,t) = 1.

We unify the formulas as
Np®(Np' = 1) (Np™ = x([Frp])) (Np™ — 1)(Np® = 1) (Np* ~ x([Frp]")) (Wp* — 1)
Vt, V*p. The same argument again gives
#(Eo)p(Fye) = ANDY) +x([Fr p)B(N)

with

AX)= X¥XVP-D(XE- )X - -1 XM 41) = XM x
BX)=-X"X2 - )X - DX - (X -D(X*+1) = XM

and hence

Q( EGM-K S ]_—‘[QI\. §—1 a,_H (HhX)S—j)bj

J
in an obvious notation.

The constant 114 which appears is the value of = = dim G + #®&™* as usual. Thus
((Es,, K,s) = C(s)¢(*Es,, K, 115~ 5)

where C'(s) is meromorphic. We have now verified [6.4.1.1] for g = 2.
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6.4.9 Verification of (AS) for cases in which g = 3

We write here w for exp 2% and use the following characters ¥’ and x” of Cs.

Class i e T T¢
¥ |1 w w?
Yol W ow
Nput(Np‘“ _ 1) .
3 . ifle Frp or
H(szn _ 1)
1=1
(re Frp and (3,t) =3) or
#(CDy)p(Fpe) = (r2 € Frp and (3,t) = 3),
IV 12t N Sf+N 4t 1 .
{ P (Npst-l—li(\f w_y) if (re€ Frp and (3,t) =1)
P = 1)vVpT -
(r? e Frp and (3,t) = 1).

=

= Np**(Np® — 1)(Np — 1)(Np® — [ ([Frp])) + X ([Frp])INe* + 1)

Vt, V*p as usual.
This time we have #(®Dy, ) (Fye) = A(NDY) + X' ([Frpl)) B(Np!) + X" ([Fr p1H) B(Nph)
with the same function B(X') multiplying each of x’ and x” so that we only have to

consider the real character y' + x”. Explicitly,

AX)= XB(XC-1)(X?-1)(X¥+1) = X¥4(xY
B(X)=-X5(X®-1)(X?-1) = X1p(xh

with = = 40 for this case, and we get

104

or




C(CDyy, K, 8) = (1) H Cro(s — i)

'HL(HhX,lS_ j)bJ ° HL(H.E)X”VS '"j)b'?

i 3

Hence we get the functional equation over K

((®Dyp, K, 5) = C(5)C(Dyp, K, 41 — 5),

and this verifies [6.4.1.

1} for g = 3.

6.4.10 Verification of (AS) for cases in which g =6

This time we use the following characters x; and y9 of Ss.

#( D )p(Fpe) =

|

which is Vi, V*p as usual,

j\rplﬁ(lvpﬁt .

Class l e o T

X1 1 -1 1
X2 2 0 -1
]\rpl‘Zt(prlt _ l) .
‘-ﬁ(szit n ifle Frp or
. =]
(0 € Frp and (2,t) = 2) or
(r € Fry and (3,t) =3),
.ZVIJIZt(Np4t + 1) .
]_i_[(V 1) if o€ Frp and (2,t) =1,
Np“® ~1

i=1

[\TPIQt(NpSt+le4t+ 1) .

if 7€ Frp and (3,t) = 1.
(NpS — 1)(Np? - 1)

|

LY(Np® — 1)(Np® — xa ([Frp] )N + x1([Frp]h)
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In the usual way we can find A, By and Bs such that
#(°Dyr)p(Fpe) = AND) + x1([Frp]") By (Np') + x2{[Frp]") B2 (Np).
with

AX)= XP(X®-1)(X?-1) = XBAX™]
B (X)

X'™(X®—1)(X?-1) = X32By (XY

By(X) = ~X"(X® - 1)(X? - 1) = X¥By(X7Y)

For the record, we get

CCDap, K, 5) = (D) [ [Cr (s =0 - [ [ L(Hixa, s = ) - [ L(H x20 5 = F)Pes

i k
in a notation which should be self-explanatory. Thus we do not have (by the above method)
a functional equation over K: however, by passing to a quadratic extension f such that
G has type 2Dy« (lor some r/ > r) over f, we can get a functional equation over f. Such
an extension exists by the fundamental theorem of Galois theory.

This verifies the assertions for the case ¢ = 6, and indeed concludes the proof of

[6.4.1.1].
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Chapter 7

Two Dynkin Components and

Future Work

7.1 Virtual characters and notation

Z-linear combinations of characters of a finite group J are usually called virtual characters
of J. In particular, the virtual characters of J then form a commutative ring with unit.
Though not in general characters of representations of J, some of the formal theory of
characters still applies. A character which is afforded by a representation is said to be
effective. If x is effective and J is a Galois group then L(J, —x, s) = L(J, x,s) .

In [7], we use again the 2-element group Cy =< o|o?> with simple characters {xo, x},
Xo being principal. We also put ZC for their Z-span, which in this case consists of Z-
valued functions on Cq. In addition to the usual notations and hypotheses at the start of
the last chapter, all of which we retain, suppose that G is almost K-simple (and therefore
semisimple), such that its Dynkin diagram D has two components, both X,,. The nodes
of these components will be denoted {1,...,n} and {1/,...,n'}.

By [4.5.5.1] there is a quadratic extension f of K, and a connected almost simple
f-group M such that G ~x Rg/i(M). We will often use the fact that f is a normal

extension of K, and contained in the inner field /. The main result is as follows.




Theorem 7.1.0.1 (For G connected almost I -simple with two Dynkin components.)
C(G, K, s) is an alternating product of Artin L-functions for characters of H; (viz. G
has property (7) for l/K).

7.2 The case where M has inner f-type

We suppose that M has Dynkin diagram X, . and corresponding rationality formula

P(X) (viz. P(Npt) = #M,(Fye) for all ¢ > 1, V*p).

Lemma 7.2.0.1 There exvists (a unique) Q(X) € ZC[X] such that the induced map Q :

Cy — Z[X] given by evalualing the coefficients at elements of Cy satisfies

P(JY2) lr - ]_,
Qo) =
P(X)? i=2,

Proof: We construct Q(X) directly. We want (if possible) to find Q(X) = Y~ (aixo+
b; ,\/)X'i such that ¢ satisfies the hypotheses above, with each a; and b; being integers. We
have P(X) = Z?Es p; X7 (say) with d=dim M and s = dmd=n a5 ysual [4.5.4.1].

By our hypotheses, we must have 3. (a; +0;)X* = P(X)? and Y, {a; — ;) X = P(X?),

so that the relations
> 20Xt = P(X)? + P(X?)
> 26X = P(X)? - P(X?)

show the existence of a unique @Q(X) € CC[X] with the required properties: it remains
to show that the a; and b; are all integers. Now P(X?%) = Z‘;:s p; X% and P(X)? =
ii?s Xk Z;Y':s PiPk-j.- The summation range s,..., & in the inner sum is not minimal,

but this will not matter (of course p; is taken as zero for j ¢ {s,...,d}).
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Z}:s PiPi-j + P( £) for ¢ even,
2a; =

Zj‘:s DiDi—j for ¢ odd.

Z}:s Pipi-; — Ps) for ¢ even,

Zj’:s DiPi—j for 7 odd.

Since 2a; — 2b; is an even integer for all 7, it follows that a; is an integer iff b; is. We only
consider the {a;} from now on, and take the cases ‘i odd’ and ‘i even’ separately.
For 2 odd:
i St i
2a; = ijpi—j = ijpi—j + Z DiPi—j
i=s =g jziﬂ
2
These summation ranges are all nonempty by construction; replacing the dummy j by
¢ — 7 under the fast summation sign shows that the last two sums are the same. Hence
a; € Z for all odd 4.

For i even: This time, we have

i -1 i
2a; = ijpz'—j + Diiy = Pd) + (P(;.'))Z + ijpi—j + Z PjiPi-j
j=3 j:s .?':%“I‘l

Interchanging j and ¢ — j under the second summation sign again gives the result. Hence

a; is an integer for all even ¢. O

Proposition 7.2.0.2 With the already established notation in this section, we have that,

o, Qo) (Np") = #G,(Fpr), where o' = Frp and this holds ¥r > 1.

Proof: Fori =2, we know that G, ~p, M, x My, verifying this case. Otherwise, i =

1, and we have then Gy ~p, Ry /¥, (M), and so by [2.8.0.3], #Gp(Fyr) = P(ghem(27))(27)
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with ¢ = Np as usual. But for i = 1, Q(¢™)(¢") = P(¢")? when r is even, and is P(¢*")

when r is odd, as required. (]

Theorem 7.2.0.3 (G as at the start of the chapter.)
The Hasse-Weil zeta function ((G, K, s) is

(Jl-) HL(f/I(: iy S — "’)a

where Q(X) = 3, ¢ X*.

Proof: This is now an elementary calculation. O

7.3 The case where M has f-type %X,

We recall that f/K is Galois. Suppose that the main orbit M (whose definition is im-
mediately before [4.5.5.3]) is {u,v,u/,v'}. We note that any subgroup of T'; which acts
trivially on one Dynkin component (via the x-action) does so on the other as well because
by [4.5.5.3] T’y acts in the same way on the components (more precisely, the components
are isomorphic T's-sets). Thus (1‘ecaﬁ the inner fleld { for G) [l : K] = 4, and moreover,
H; = Cy x Cy (and not Cy) since it must contain (regarded as permutations on the un-
derlying set of M) o = (uv)(u'v"), which generates T's/T; = Gal(l/f) (a subgroup of Hj),
and p = (uv')(vv’) which interchanges the components.

We can just about identify the strict Fy-isogeny class of G} immediately, as given
in the following table. We remark that the uniqueness of the quadratic extension of Fy
has been used. Let P(X) be the rationality formula for X, ; recall that by [6.4.5] there
exist A(X) and B(X) (with constant coefficients) such that P(X) = A(X) 4+ B{(X) and
#2 X (Fpe) = A(NDY) + (—1)"B(Np?) (where 2X,, temporarily denotes a group over ).
Using this and [2.8.0.3] gives the table which follows.

In this table, and subsequent similar ones, the second column gives either an almost
Fy-simple Fy-group, or the Dynkin diagram of such a group, which is strictly Fy~isogenous

to Gp. The third column gives a rationality formula.
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Frp =e Xo 1l Xn P2(Np)
Frp =o  2Xn, [12Xn, [A(NpY)+ (=1)'B(Np")]?
Frp =p Ry ,r,(Xn) PO (Nplem(2t))
Fryp =ap Rszle (Xn) PRA(Nplem(2:0)
The absence of RFPQ/Fp(z‘X'n,r) is due to the noncyclicity of H;. We now need to

reconcile these with the character table, and settle on the following simple characters of

H,.

Classje o p op

Xo {1

X1 1 1 -1 -1
xo |1 -1 1 -1
x3 [1 -1 -1 1

We then put 4 and B into the rationality formulas, to obtain

Frp =e X 11X A%(Np?) + 2A(NpY) B(Npt) + B?(Np?)
Frp =0 2X,,.[1%X., A?(Nph) + 2(=1)'A(Np?) B(Npt) + B3(Np?)
A(Np?) + B(Np%) for ¢ odd,

Frp =p R;pbz/urp (Xn)
A?(Nph) + 2A(NpH)B(Npt) + B2(Npt) for ¢ even.

A(Np¥) + B(Np*) for ¢ odd,
Frp =op RFPQ/]Fp (Xa)
A2(Npt) + 24(NpY) B(Npt) + B2(Npt) for ¢ even.

We have seen already in [7.2.0.1] how to find integers a; and a} such that A(X?) =
(e — a) X and A?(X) = 3. (a; + a}) X%, and similarly b; and b} for B(X). We now
observe that we require an A(X?) or a B{(X?) precisely when xi{[Frp]t) = —1. Hence

the terms which do not involve AB are

Z(“i + x1([Frpl))al) Np* and Z_(bi + x1([Frp]))ol) Ny,

111




Finally, to get the terms involving AB, inspection shows that we should take
Dea([Frp]") + xa([Frp])]A(Np") B(N).

The final rationality formula is then

#Gp(Ep) = D (as+ bV + 3 (af o+ Wxa ((Frp YN o+

(3

De([Frol) + xs((Fr p])JA(ND) B(Np")
vielding zeta function
(G, K, s) = (D) [T ¢rels = i) - T L(Hy xa, 5 — 5)%7% -
i i
[ Z2(HL X205 = k)™ - T LU, X305 = k),

k k

where 3, cx X% = A(X)B(X).

7.4 The case where M ~;3D,,

Since I'y < T, we have [l : K] = 6, and indeed H; & Cy X Cy & Cg since H; contains
(134)(1'3'4") (generating Gal(l/f)), (11')(33")(44") which interchanges the components,
and their product {say) p = (13'41'34). As usual we seek to classify G} according to Frp.
Let P(X) = X2(X* - 1) T[_, (X% — 1) be the rationality formula for Dy = 1Dy 4. We

use the following notation for the simple characters of H;, where we write 7 = exp 2—;.’-2

Class|e p p* p* p* p°
Xo |1 11 1
xt |1 1 -1 7 45
x2 |1t ot 1 2o
X3 1 -1 1 -1 1 -1
¢ |1 7 2 1 7 72
vs |1 7 Y -1 2 ¢




2m

Counsidering the various conjugacy classes in H;, putting w = exp 2& = 72, and abbre-
g jugacy , Putting p <L :

viating lem(2,t) by L we get

Frp =e Dy 1T Dy P*(Nyp)

[Ny 2E(NpOF = 1)(Np*E = 1) -
Fr h =p Rﬂq‘pg /Fy (3D4,2) )
(NpSL__(wL + w?b)jvp‘lL + 1)](2,1&)

Np™2(Np® — 1)(Np? - 1) -
Frp =p* 3Dys[1*Dyy [ ( )
(Np¥ —(w' + W) Np* + 1))

Frp =p°> R ,w,(Da) [Np12E(NptE — 1) [T;(Np*E — 1))

NpIZt A;-th -1 IVth —1) -
Fr p = ,04 S.Dq,z H 3D472 [ ( )( )
(N']JSt—(wt + w?t)N-pM + 1)]2

5 , NP - 1)(Np® - 1) -
Frp =p° Rszlm‘p( Dy,)
. (!VpSL—-(wL + sz)Np“L 1+ 1)]{2,t)
where the formulas corresponding to p* are the same.
We note that V¢, w+w? = wl 4wl = 72 4 +4 Looking at the factors in the various
rows which correspond to the factor Np® — (78 4+ 72 ) Np** 4 1 in the third row of the last
table, and comparing with the character table shows that we should take this in general

as
Np® — Da([Frpl) + xa([Frp])INp™ 4 1.
We will adjust this now to take account of the parity of t. Define

RQIX,Y,Z)= XX - 1)(X2 - 1)(XB = (Y + 2)X*+1) = A(X) + (Y + 2) B(X)

(say), so suitable evaluations of ¢ will give numbers of rational points. By an obvious

extension of [7.2.0.1], there exist a finite set 7 C NxNxNand integers ¢; and d; (2 in I) such
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that Q(X,Y, 2)? = ¥ o (ci+di) X1 Y2 2% and Q(X?,Y?, Z?) = Soier(ci—di) XYz,

Then by inspection, (recall that all the x; are linear characters), we get

QINY:, x2([Frol), xa([Frp]))*  when xs([Frp]t) = +1,
#Gp(Fye) =

QN xa([Frp1%), xa([Frp]*))  when xa([Frp]') = 1.

= Z(cs + Xa([Frp)) i) Nooxa ([Fr p ) 2 xa ([Fr p 1)
€] (Vt, V*p)

verifying that (G, K, s) is an alternating product of Artin L-functions for characters

of Hy - seiz. has property (Z) for [/ K.

7.5 The case where M ~;%D,,

By the usual argument, we get H; =2 SsxCy, with Cy generated by o := (117)(33')(44"). We
observe that o(= {1} x o) is central in Hj, so that the conjugacy classes in H) are those of
S3 x {1} and their translates by o. leus Hj has six simple characters. Now the characters
of the direct product A x B of ﬁl{fte groups are readily determined as induced characters
from A and B: the simple characters of A x B are the characters of representations 8; @c ¢;,
where {#;} (respectively, {¢;}) runs over the irreducible representations of A (respectively,
B). Thus the character table for A B is the Kronecker product of those for A and B (viz.
tensor product as matrices), with respect to a suitable ordering on the simple characters.
Hence we have the following character table for H; (where we merely list an element of

each conjugacy class).
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Class | e (13)(1'3") (134)(13'4") | o (13){(1'3")o (134)(1'3'4)o
xo |1 1 1 1 1 1
i |1 -1 1 1 1 1
X2 |2 0 -1 2 0 -1
x3 |1 1 1 -1 -1 -1
o |1 =1 1 -1 1 -1
s |2 0 -1 9 0 1

We write again w = exp =3t

2w

3

and [ = lem(2,1); as usual P(X) is the rationality formula

XP(xt- ][ -1

=1

of Dy, and P(X) = A(X) + B(X) where A and B are as in the rationality formula for

*Dys.

Fry =e

Fro = (13)(1'3)

Frp = (134)(1'3'4)

I'rp =0

Frp = (13)(1'3)¢

Frp = (134)(1'3'4)e

D41 Dy

2Dys]1%Dis

3D4,2 H 3D4,2

R /¥, (Da)

Ry , /¥, (*Da;3)

Ry 5r, (*Da2)

P%(Npt)

(AN + (1) B(Np"))?

[Np #(Np® — 1)(Np? - 1) -

(I\TIJSt—((JJt + w2t)j\']'p4t e 1)]2

P(Np')EH)

[A(ND') + (=1)'B(Nyp")] )

[VR!2(Np® — 1)(Np* ~ 1) -
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We observe that the top half of the last table is the same as that for the case 6Dy,

[6.4.10] (except for the squaring of the rationality formula). In [6.4.10], we had
#(°Dar)p(Fy) = AN9Y) + X' ([Frp]") Bi(No®) + X" ([Frp]') Ba(Np?)

where X' and x” are the simple characters of S3 denoted y; and xo there, and A(X),
Bi(X) and By(X) are polynomials with constant coefficients. Now put Q(X,Y,Z) =
A(X) + Y B (X) + ZB3(X). By the usual method, we apply [7.2.0.1] to find integers c;

and d; such that

QIX,Y, 2)* =) (ei+d) XY=z

1

QUIX%LY? 2% =) (e - d) XY z®

)

and observe that
QINp  xa([Frol®), xa([Frplh))®  if xs([Frplf) =41,

#GP(FPt) =
QNP xa ([Frp ]2, xa[Fro]h)?)  if xa([Frpl) = —1.

Hence we again get ((G, K, s) as an alternating product of Artin L-functions for char-

acters of H,.

7.6 Remarks about further work

We have seen that, to verify that all connected K-groups have property (Z), it would
suffice to verify that every connected almost K-simple group has property (Z) [6.2.2.1].
In this chapter, we have verified that every such group which has up to two components
in its Dynkin diagram has this property. The simplifying feature in this situation is
that for such a group G, there exists a connected almost simple f-group M such that

G ~r Rg/i (M) with f being normal over K.
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However, the general case ought not to be intractable in view of the systematization
outlined in [4.5.5], which will hopefully form the basis of future work. There may be

consequences for the Langlands program.
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Index of Definitions

Absolute norm, 65
Action

diagonable, 38

effective, 58

of group on variety, 33
Additive group, G,, 37
Adjoint group, 59
Adjoint representation, 36
Adimissible scalar product, 46
Affine algebra, 3
Affine piece, &
Algebraic group, 31
Almost k-simple k-group, 43
Almost simple k-group, 43
k-Anisotropic, 53
Anisotropic kernel, 59

Artin L-function, 69

Birational equivalence, 8
Borel fixed point theorem, 40
Borel subgroup, 40

cpposite, 50

Bruhat decomposition, 51

Cartan integers, 47
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Cartan subgroup, 41
Centralizer, 33
infinitesimal, 38
Character
effective, 107
of algebraic group, 37
of finite group, 63
virtual, 107
Character module, 37
Characteristic exponent, 18
k-Closed, 18
Closed embedding, 4
Closed orbit lemma, 34
Cocharacter, 38
Comorphism, 3

Constructible set, 11

Decompasition group, 66
Degree

of morphism of varieties, 9
Density

Dirichlet, 66
Dimension

Krull {of ring), 15

of variety, 8




Direct spanning, 32 strictly k-isogenous, 32

Distinguished orbits, 58 .
Jordan decomposition, 36
Dynkin diagram, 47

numbering of nodes, 62 Length (of Weyl group element), 47

Lie algebra, 35
ntire ring Lies above (of prime ideals), 66
Euler product, 67 i
Local rings, 6
Exterior algebra, 5 g
xterior algebra morphism of, 15

Frobenius regular, 15

class, 66 Main orbit, 64
lement
element, 66 Morphism

map, 55 . .
map, dominant (of varieties), 8

Function field, 3 finite (of affine varieties), 9

Galois group, absolute, 25 k-morphism
Generic point, 72 of k-groups, 31
k-Group, 31 k-morphism

of k-varieties, 21
Homogeneous ideal, 4
omegEnets ideal, < regular (of affine varieties), 3
Hypersurface, 4 e
yp e Multiplicative group, Gy, , 37

Identity component, 33
k-Index, 58

Nilpotent group, 34
Normalizer, 33

Inertia group, 66 Number field, 65

Inner field, 53
Inner type, group of, 58 Orbit map, 35
Invariant factors Outer type, group of, 58

of integer matrix, 87 Parabolic subgroup, 41

Irreducible, 2 Perfect field, 18

Isogeny, 32 Point derivation, 13

central. 32 Prevariety, 7
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K-Prime, 65 reduced system of, 46

Principal open set, 4 short, 47
Projective space, 4 special set of, 46
Property (Z), 84

Segre embedding, 5

for n, 84

Semidirect product, 32
k~Quasisplit group, 53 Semisimple group, 43

Semisimple rank, 43
Radical, 42

Semisimplification, 43
Radical of ideal, 2

Separably generated, 13
Ramification index, 66

k-Sequence, 32
Rank

Sheaf, 6
of algebraic group, 41
Simple point, 13
k-rank of k-group, 58
Simply connected group, 59
k-Rational points, 25
Smith normal form, 87
Rationality formula, 62

Solvable group, 34
Reductification, 43

Specialization
Reduction (modulo a prime), 72
ring, 72
Reductive group, 43
. of point over ring, 71

Regular functions, 7
k-Split group, 53

Splitting field, 53

Residual degree, 66

Rigidity (of torus), 39
Structure
Root subgroups, 49
k-structure
Roots

on E-module, 20
abstract system of, 45

k-structure
closed set of, 46
on variety, 21
irreducible system of, 46

long, 47 Tangent space, 13
of torus in group, 38 geometric, 12
positive, 46 Topology, Zariski, 2
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Torus, 37
regular, 43
semiregular, 43
singular, 43

Translation, left or right, 35

Unipotent group, 37
Unipotent radical, 42
p-Unit, 65

Universal domain, 1

Variety, 8

affine, 1
affine k-variety, 19

complete, 16
conjugate, 26
Grassmann, 5
projective, 4
quasi-projective, 7
quotient (by group), 34
smooth affine, 13

k-unirational, 27

Weights, 38
Weil restriction, 27
Weyl chamber, 46
Weyl group

for root system, 46

for torus, 39

Zeta function

Dedekind, 67
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