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Summary

The aim of the project was to study two questions [unpublished] of R.W.K. Odoni, to 

discuss which we introduce the following terminology and notation.

Let G be a linear algebraic group defined over an algebraic number field K . We will 

say that G has property (Z) if there exists a finite Galois extension I of K  such that the 

Hasse-Weil zeta function (](G,K, s) of G is an alternating product of Artin L-functions 

for characters of G al(l/K ).

Odoni’s questions can then be formulated as follows.

(Q l)  Which G have property (Z) (and for ‘which Galois extensions I of I()?

( Q2) For which G does C(G, I\, s) have a functional equation?

While neither question was settled completely, the following progress was made.

M ain R esult

(A) I f  G is .connected and solvable, it has property (Z) [6.2.2.1].

(B) For each K-group G, there is a Unite extension M  of K  such that the M-group G has 

property (Z) with G a l(l/M ) trivial, and ( (G ,M ,s) has a functional equation [6.3],

(C) If every connected almost K-simple K-group had property (Z), then all connected 

K-groups would too [6.2.2.1]. Among the former, those for which the Dynkin diagram has 

at most two components all have property (Z) [7.1.0.1].

(D ) In particular, every almost simple K-group J  has property (Z). Further, (](J, / ,  s) has 

a functional equation for an extension f  of K  of degree at most 2 [6.4].



In all cases, explicit expressions are given or can be easily reconstructed. Part (A) has 

almost certainly been known for a long time, though no statement of it was found.

That there should seem to be so little in the literature about zeta functions for algebraic 

groups is quite surprising. The case in which G is a torus is dealt with in [Se59]; the 

connected solvable case (A) follows readily from this.

In chapter (1) the necessary absolute algebraic geometry is introduced, until a definition 

of the notion of complete variety can be given [1.12]. In chapter (2), an account of the 

relative theory appears. While all of this material has been known for a long time, there is 

a paucity of convenient reference. The points of view of topology and algebra (especially 

Galois theory) are considered. The Weil restriction functor [2.8] is a key concept.

Chapter (3) is an exposition of the standard theory of (linear) algebraic groups as far as 

that of connected groups [3.4]. In chapter (4) is expounded the theory of root systems [4.1] 

and that of connected reductive groups. Rationality questions are then treated, especially 

for connected semisimple groups.

In chapter (5) will be found a resume of the algebraic number theory [5.1] and notions 

of zeta function [5.2] required. The heart of the chapter [5.3] is the notion of reduction (of 

a variety) modulo a prime ideal. In [5.4] will be found some results relating to preservation 

of properties under reduction modulo a prime. In the cases of some of these properties, 

an assertion of the result (though not a proof) was found in the literature. In other cases 

the result may be new.

In chapters (6) and (7) the results announced above are obtained. In (6) will be found 

the proofs of parts (A), (R) and (D). The proof of (C) is deferred to (7) to avoid a very 

long chapter (6) which there seems no natural place to break.

I would like to thank my supervisor, Professor R.W.K. Odoni, for his suggestion of 

and interest in the topic, the Department of Mathematics at the University of Glasgow 

for its help and the use of its facilities, and the University of Glasgow itself for financial 

support.
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C h a p ter  1

Background from Algebraic 

G eom etry

We start with enough algebraic geometry to enable definition of affine and complete vari­

eties. The treatment here follows [Bor91] and [Hu75] quite closely.

All rings are associative and commutative; their modules and mutual morphisms 

thereof are also assumed unital. A ring will be called entire if it is also an integral 

domain - this seems to be a coinage of Serge Lang.

We begin with a review of the absolute case. Let E be an algebraically closed field: it 

will be tacitly assumed throughout to be ‘sufficiently big’. (In Weil [We46], one would posit 

E a ‘universal domain’ or ‘universal field’, assumed to have infinite transcendence degree 

over any proper subfield of interest.) We suppose that all fields subsequently considered 

in this thesis are contained in E, and make no assumptions about the characteristic until 

[2],

1.1 A ffine varieties

Denote by An the product E x  • • • x E (n copies). By an affine variety, we mean the set of 

common zeros (in An ) of a subset S  of E[Ti, . . . ,  Xn]: clearly we need only consider subsets 

which are actually ideals. We will have a more intrinsic definition later. The latter ideals
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are all finitely generated by the Hilbert Basis Theorem. Define a pair of maps as follows: 

let X : {subsets of An } — > {ideals in E[Ti,.. . ,Tn]} take a set X  to the ideal X(X)  in 

E[Ti, . . Tn] of functions vanishing thereon, and let V be the map in the reverse direction 

taking an ideal I  to the subset V(/) of An on which all its elements vanish. Then we 

clearly have X  C V (J(X )) and /  C Z(V(/)). Indeed it is easy to see that in the latter 

inclusion we can actually write nil (I) C J(V (/)), where nil (I) is the radical of the ideal / ,  

namely

nil(/) := { /  £ E[Ti, . . . ,  Tn] : f r £ I  for some r > 0).

In fact, we now have equality [Bor91, 3.8].

Theorem  1.1.0.1 (H ilbert’s Nullstellensatz)

Let I  be an ideal in E[Tu  . . . ,  Tn]. Then nil(J) =  X{V{I)).

Recall tha t a topological space is said to be irreducible if it cannot be written as a 

union of two proper closed subsets (equivalently, every nonempty open set is dense). An 

irreducible space is connected. One can readily verify that the affine varieties as defined 

above can be regarded as the closed sets of a topology on An , the Zariski topology, in 

which points are closed. Moreover, it follows that An is quasicompact (viz. compact but 

not Hausdorff), as the Hilbert Basis Theorem shows that the space has the ascending 

chain condition on open sets: that is, it is a Noetherian space. Clearly this is true of affine 

varieties too, with the induced topology. It is not hard to show that a Noetherian space is 

a union of finitely many maximal irreducible subspaces, its irreducible components, which 

are closed. A couple of convenient notations: A C0 B and A Cc B  will respectively mean 

that ‘A is open (closed) in B \

It turns out that the closed subsets in An which are irreducible are precisely those 

whose associated ideals are prime. Further, we can verify that, for an affine variety A, 

the irreducible components thereof are the affine varieties associated to the minimal prime 

ideals containing X(X)  (there being finitely many minimal primes in any Noetherian ring).

We need the notion of the product of two affine varieties. Specifically, if we have 

the affine varieties X  Cc Am and Y  Cc An , with associated (radical) ideals X(X)  <3
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E[Xi, . . . ,  Tm) and T{Y)  <1 E[Ui, . . . ,  Un], then the Cartesian product I x Y  is also an 

affine variety with corresponding ideal in E[Ti, . . . ,  Tm, C/i,. . . ,  Un\ given by

X (X  X y ) =  X(X)  ® EP7X, . . . ,  u n] +  e [ t \ , . . . ,  r m] ® I ( y ) ,

which is also radical (the tensoring being over E of course).

The most important remark to make about this situation is that the topology o n l x f  

is weakly finer than the product topology thereon - here all topologies are those induced by 

the ambient affine spaces. For example, the complements of curves in A2 are Zariski-open, 

but not usually product-open.

To define (regular) morphisms of affine varieties, we return to polynomial maps (that 

is, the restrictions to affine varieties of polynomial maps of affine spaces): it is easy to see 

that these are continuous in the Zariski topology, for if cf> : X  — y Y  is such a map, with 

C  a closed subset of Y, then 4>~1{C) is the vanishing set of { /  o <£}, where the /  are the 

elements of the ideal of functions vanishing on C.

Consider now, for an affine variety X  C A”1, the possible polynomial functions X  — > 

E. It is easy to see that these correspond bijectively to elements of E [2 \,. . . ,  Tm]/T(X) .  

The latter E-algebra is called the affine algebra of X ,  and we will denote it by E[X]: it 

is reduced (has no nonzero nilpotents) and finitely generated. In fact, it is not hard to 

see that every E-algebra with these properties is the affine algebra of some affine variety. 

Clearly a polynomial mapping <f>: X  — y Y  induces an E-algebra homomorphism <f>* in the 

opposite direction by sending an element g of E[Y] to the element gof> of E[X]. Indeed it 

turns out that every E-algebra homomorphism between them corresponds to a polynomial 

mapping from X  Y  - to see this just take generating sets for the algebras. When X  

is also irreducible, E[X] is a domain, and its field of fractions is called the function field 

E(X) of X . This notion of morphism gives an antiequivalence between the categories of 

affine varieties and (regular) morphisms thereof, and the category of affine Ealgebras and 

E-algebra homomorphisms. Either of the maps <f> or (f)* may be called the comorphism of 

the other.
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1.2 Affine subvarieties

If V, W  are two affine varieties, with V  C IT, then, as X{W)  C Z(V),  the quotient of these 

will be the ideal in E[W] of functions vanishing on V.  If this latter ideal is principal, we 

say that V  is a hypersurface in W , and its complement is called a principal open set of 

W . For any affine variety, the principal open sets form a basis for the topology.

It may be worth remarking that the image of a morphism may fail to be closed: for 

example, take the embedding of the multiplicative group E* of E into E itself. One easily 

shows that E* can be identified with a closed subvariety of A2, but that its complement 

{0} in E is not open therein. A morphism <f> : X  — > Y  is called a closed embedding if it 

is injective, with 4>(X) closed in Y .

P ro p o sitio n  1.2.0.1 Let (f>: X  — > Y  be as above.

(i) (j'y is injective iff <p(A) is dense in Y .

(ii) I f  (j)* is surjective, then (j) 'Is a closed embedding.

1.3 P ro jective  varieties and the exterior algebra

We define P n as usual, to be the set (En+1 \{0})/i? , where R  is the relation that identifies 

two points if one is a nonzero scalar multiple of the other. We can identify P n with the 

set of lines through the origin of En+1. Points in P n may be described by homogeneous 

coordinates A0, . . . ,  A n, also defined only up to nonzero scalar multiplication. To define 

an analogue of the affine variety in this situation, we will therefore have to consider 

homogeneous polynomials only (those for which all monomials have the same total degree) 

in Ao , . . . ,  X n. A set of such polynomials generates a homogeneous ideal (one closed under 

the operation of taking homogeneous pieces). We topologize P n by decreeing that the 

closed subsets will be those which are the sets of common zeros of some homogeneous 

ideal. Just as in the affine case, one finds that there is an inclusion-reversing bijection 

between these closed subsets (the projective varieties), and the homogeneous radical ideals 

of E[Ao, . . . ,  X n] other than (Ao, . . . ,  An) - the latter would correspond to the (excluded) 

origin of En+1. It turns out that the principal open sets are again a basis for the Zariski

4



topology on P n. Particularly useful are the principal open sets of the form {X; yf 0} - the 

so-called affine pieces of These can not only be readily identified with the affine space 

Eu , but are homeomorphic thereto also. This means that a subset of P n is closed therein

Let P  be a vector space over E of dimension n. We define the exterior algebra on 

P  thus: we begin with the tensor algebra 011 V, namely the direct sum ©nXoPP where 

the powers of P  are tensor powers (use the usual canonical identification of P ’’ V s 

with P r+S). This is graded (by N), with P° identified to E, and we have a product 

defined by convolution. To get the exterior algebra AP on P , form the quotient by the 

(homogeneous) ideal generated by {.t2 : x £ P}, so that AP is also graded - we define 

the graded part to be zero on negative integers to get grading by %, One can show that 

A V  is anticommutative, and indeed more generally that if x ,y  £ A V  are such that their 

homogeneous decompositions are x =  E;.^ and y — E j y3, then Xjijj ~  (—1)lJy3x i , as a 

consequence of the definition of AP, and in fact the kth homogeneous part (xy)k of xy  is 

given by {xy)k =  S  jXjy^-j-  The graded part AdV  of degree d has dimension (as E-module) 

Q). The construction passes in a natural way to subspaces. Now, let Sd be the set of all 

d-dimensional subspaces of P . Define a map (j) therefrom to the space P(ArfP) by sending 

each subspace D to the point in P(ArfP) corresponding to AdD.  It is readily verified that 

0 is injective, and one shows that its image is closed in P(AdP ). The Sd are called the 

Grassmann varieties of P .

iff its intersection with each of the specified principal open sets is closed in the latter. This 

is an ‘affine criterion’ for closure.

The Cartesian product of two projective varieties can also be shown to have a structure 

of projective variety, via the Segre embedding P m X Fn — > p(m+i)(n-i-i)-i gjven by sending 

(Affi,. . . ,  X m, Y0, . . . ,  Yn) to
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1.4 Sheaves

Let A be an irreducible affine variety now. For x € A, the ideal

mx := { / € E[A] : / ( z )  =  0}

is of course maximal in E[A], and the localization of E[A] thereat is called the local ring 

Ox of x. Clearly E[A] C Ox C E(A) for all x E A. Note that Ox is unchanged by passing 

to any principal open set of A which contains x. One can show that E[A] =  flxEa Ox . Now 

let U be an open subset of A. Define an E-algebra Oa (U) — Dx^]jOx (or just E(A) if 

U = 4>)' In fact, the assignment U Oa (U) makes the collection {Oa {U) : U open in A) 

into a sheaf of E-algebras on A. This means that the following two axioms are satisfied:

(•i) whenever V  C f/, both of these being open in A, and /  E O a ( U ), then the 

restriction of /  to V is in O a{Y );

(ii) whenever we have U ~  U ie/fA, all of these open in A, and a choice of an fi  E Oa {U{) 

for each i E /  such that /j =  f j  on Ui fl Uj for every i , j , then there is an /  E Oa {U) with 

f  — fi  on Ui for each i.

For irreducible A (not necessarily affine), with x E A, we define the local ring at x to

be

Oa* = Hm Oa (U)
U C 0 A : v € U

- we will often omit the name of the variety. The corresponding maximal ideal will be 

denoted STC.

Next for a general A (not necessarily irreducible or affine), with irreducible components 

Aj, we define a sheaf of E-algebras on A thus: for U open in A, put Ui = At- n  U, and then 

take Oa {U) to be

{ f : U — G O At (Ui )  V*}-

This formula clearly generalizes that just given for the irreducible case.

Note that a morphism /  : X  — > Y  of affine varieties induces a morphism of sheaves 

f  : O y  — > O x  as follows: the comorphism /* of /  induces an obvious map O y j ^  — >
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Ox,x for each x £ A. Now if V  C0 Y  and U Q0 X , with f (U)  C V, we get a mapping 

Oy(V)  — * Ox{U)  by composing with / .  This mapping is compatible with the restriction 

maps - in other language, one can regard a sheaf as a certain kind of contravariant functor, 

and then the mapping we have just defined will be a natural transformation of two such.

1.5 P revarieties and varieties

An irreducible prevariety X  will be an irreducible Noetherian topological space A , together 

with a sheaf of E-valued functions thereon, such that X  is a finite union of open sets £/;, 

each isomorphic to an affine variety when equipped with the induced sheaf O x\u t- Then 

we will call a Noetherian space X  a prevariety if its irreducible components { A J are 

irreducible prevarieties in this sense, together with a condition that Oxi and O x3 induce 

the same sheaf of functions on A.; fl Aj. Just as in the affine case, one finds that there is 

a unique sheaf extending the Ox, - For U C0 A , the elements of Ox[U)  will be called the 

regular functions on 17, and an}' Y  C0 X  which is (with its sheaf) isomorphic to an affine 

variety will be called an affine open subset of A - for example, the Ui as above. Finally, 

the elements of Ox{U),  for U CG A, will be called regular functions on U.

A locally closed subset of a prevariety will be called a subprevariety of A  (recall that 

locally closed means ‘open in its closure’ - for example, open or closed sets are locally 

closed). Finally, a subprevariety of a projective variety is called quasi-projective. Just as 

in the affine case, the function field of an irreducible prevariety is that of any of its affine 

open subsets.

Let g : A  — > Y  be a mapping of prevarieties. We will say that it is a morphism if 

it is continuous and satisfies the condition that, whenever V  C0 Y  and f  € Oy (V),  then 

/ o i j  £ (9a'(7-1 (F)). This is equivalent to the earlier definition in the affine case. We have 

the following ‘affine criterion’ for a mapping to be a morphism.

P ro p o sitio n  1.5.0.1 [Hu75, 2.3] Let g : X  — )■ Y  be a mapping of two prevarieties, and 

suppose that there is a covering of Y  by affine open sets Vi, for i € (finite) I , and a 

covering of X  by open sets U{ such. that

7



(a) g{Ui) C Vi for each i £ I; and

(b) f  og e Ox(Uj)  ■whenever f  £ Oy(Vi).

Then g is a morphism, of prevarieties.

If g : X  —  ̂ V  is a morphism of irreducible prevarieties, and so induces a morphism 

of function fields g\ : E(Y) —  ̂ we say that it is a birational equivalence if g\ is an

isomorphism. This is a strictly weaker notion than that of being an isomorphism.

It can be shown that, if X  and Y  are two prevarieties, the Cartesian product X  x Y  

can be made into a categorical product.

A prevariety X  will be called a variety if the diagonal {(a, a) : .t £ X} is closed in 

X  X X . Some examples: affine varieties, subprevarieties of varieties, products of varieties, 

and projective varieties. (This extra condition would be the Hausdorff axiom if we were 

considering the product topology.)

1.6 D im ension , degree and dom inance

By the dimension of a variety we mean the maximum of the dimensions of its irreducible 

components. For an irreducible variety X , with function field E(X), the dimension will be 

defined to be the transcendence degree of this latter field over E. We note that dimension 

cannot increase if we pass to a closed subset, and that it is preserved (in the irreducible 

case) by passage to a nonempty affine open subset.

Theorem  1.6.0.1 [Hu75, 3.4] L e tY  be a closed irreducible subset of an irreducible variety 

X , of codimension r therein. Then there exist closed irreducible subsets Y) in X ,  of 

codimension i therein, such that Yi D Y2 D • • ■ D Yr =  Y .

Let g : X  — > Y  be a morphism of varieties. If g maps each component of X  onto a 

dense subset of a component of Y, and g{X)  is dense in Y, we say th a t g is dominant. For 

W  closed and irreducible in Y, a component of g~1(W)  for which the restriction thereto 

of g (as map to W)  is dominant is said to dominate W .
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For irreducible X , to say that g is dominant means exactly that g(X)  is dense in Y . 

In this situation, we clearly have that dim X  > dim Y.  If, further, these dimensions agree, 

the extension E(X) /g*E(Y)  of function fields is finite, and the degree of this extension is 

called the degree of g. Naturally, the separable (inseparable) degrees of the extension are 

called the separable degree and the inseparable degree of the morphism.

T h eo re m  1,6.0.2 [Hu75, Jt .l] Let g : X  — y Y  be a dominant morphism of irreducible 

varieties, with r = dim X  — dim Y , and let W  be a closed irreducible subset o f Y .  Suppose 

that Z  is an irreducible component of g~l {W) which dominates W ; then dim Z  > dim W +  

r. In particular, for y £ g(X) ,  each component of g~x{{y}) has dimension at least r.

1.7 F in ite  m orphism s

A morphism g : X  — y Y  of affine varieties is said to be finite if E[Af] is integral over

P ro p o sitio n  1,7.0.1 [Hu75, 4-3] Let g : X  — V Y  be a finite dominant morphism of 

affine varieties.

(a) I f  Z  Cc X , then g{Z)  Cc Y , and the restriction of g to Z  is finite; further g is 

surjective.

(b) I f  W  is a closed irreducible subset of Y , and C is any component of g~l {W),  then 

g{C) = W.

P roof: Putting R = E[A] and S  — E[Y], we can view S  as a subring of R  as g* is

injective. For an ideal I  O R, R / I  is an integral extension of S / ( I  ft S).

We prove (a): take I  to be the ideal of Z  (noting that Z  is an affine variety). Now V  =  IDS  

is radical in S , and so I ! is the ideal of a closed subvariety Z ’, into which g maps Z.  The 

corresponding affine algebras are S/ I '  and R/ I ,  so g \ Z  — y Z ' is again dominant and 

finite, (a) will follow once we have shown that any finite dominant morphism is surjective. 

Pick y e Y:  then there exists an x e g~l ({y}) iff #*(9Jly) C 3Jlx - where the notation refers 

as usual to the maximal ideal in S  (respectively R) vanishing at y (respectively x). Thus
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we need only show that 9Jty is contained in a maximal ideal of R : but as R  is integral over 

S, this follows from the well-known ‘Going-Up1 theorem [AM69, 5.11]. This proves (a).

(b) We have just shown that the restriction of g to C  is again finite, and so g(C)  is 

closed and irreducible. Now we need only show that dim C  =  dim W.  For I  and J  the 

ideals corresponding to C  (respectively VF), then I D S  = J , and both are prime. Just as 

before, R / I  is integral over S/ J ,  so the corresponding field extension is algebraic, and the 

dimensions coincide. □

We use the following version of the Noether normalization lemma.

T h eo rem  1.7.0.2 (N o e th e r norm aliza tion  lem m a) [Hu75, 4-3] Let S  C R  be inte­

gral domains, with R finitely generated as S-algebra, and both finitely generated as E- 

algebras. Then there exists f  /  0 in S, and in R, such that the {?/;} are

algebraically independent over S, and R f is integral over S[yi , . . . ,  ym)f, the subscript 

denoting localization at / .

This is used to prove the following.

T h eo rem  1.7.0.3 [Hu75, 4-3] Let g : X  — > Y  be a dominant morphism of irreducible 

varieties, and r =  dim X  — dimT.  Then there exists fi /  U C0 Y  such that

(a) U C g{X),  and

(b) whenever W  Cc Y  with W  n  U nonempty and W  irreducible, and Z  is a component 

of g~l (IF) with Z  fl g~l (U) nonempty, then dim Z  =  dim W  +  r.

P roof: We can suppose that Y  is affine, for if U is an affine open subset of Y  which

meets W , then U fl W  is dense in W , and we can consider the restriction of g to 5” 1(t/) 

instead. Moreover, we can assume that X  is affine, for having found suitable open sets Ui 

for the restrictions of g to each of a (finite) cover by affine open sets of X , then we can 

take U = r\iUi. Next identify E(Y] =: S  C R  := E[X] via g*, and use the normalization 

lemma above to find an /  6 S  and y\ , .. . , ym in R  with the properties asserted therein. 

Clearly, this m  is the same as r. Then Sf  and Rj  are the affine algebras of principal open
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sets Yf  and X j  of Y, X .  Further, we can regard Sj [yi}. .. ,yr] as the affine algebra of 

Yj  x Ar , and can factor the restriction of g to X j  as

X j ^ Y j x N ' ^ Y j

with both of these maps being surjective using [1.7.0.1], Putting U — Yy, we note that 

X j  — g~l {U), and that U C g(X) ,  verifying (a).

To verify that this choice of U satisfies (6), we may as well suppose that U = Y  = Yj  

and X  — X f .  keeping the same factorization g = pr\ o h, with h finite, suppose that 

W  Cc Y  with W  irreducible, and Z  a component of <7-1 (IY), so Z  is a component of 

h~1(W  x A ' j -  as h is surjective, h(Z ) =  W  X Ar , and r +  dim W  =  dim h(Z)  =  dim Y as 

h is finite. □

1.8 C onstruct ib ility

If one takes the Boolean algebra generated by the open (or the closed) subsets of a topo­

logical space X  - (using finite unions (or intersections) and complementation), the subsets 

of X  of this form are called constructible. Equivalently, the subset S  of X  is constructive 

if it is a finite union of locally closed subsets.

T h eo re m  1,8.0.1 (C hevalley) [Hu75, 4 -4]  Let g : X  — ¥ Y  be a morphism of varieties: 

then g maps constructible sets to constructible sets.

P roof: A locally closed subset of X  is a subvariety, and thus a constructible set is

also. Hence it suffices to show that g(X) is constructible. Semblably, we can suppose 

that X  and Y  are irreducible, and proceed by induction on dimY, taking the case of 

dimension zero as read. By induction, we can suppose g dominant, and by [1.7.0.3], we 

can choose a nonempty set U C g(X),  with U C0 Y. Then the irreducible components 

W i , . . . ,  Wt  of Y \  U have lower dimension than Y. By induction, the restrictions of g to 

the various components Z;j of g~1{Wi) have images constructible in W{, and so in Y. But 

g(X)  = U U g{Zij) and we are done. □
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P ro p o sitio n  1.8.0.2 (U p p er Sem icontinuity  of D im ension) [Hu75i 4>4]

If  g : X  — > Y  is a dominant morphism of irreducible varieties and x £ X , let e(x) be 

the maximum dimension of a component of g~1(g(x)) which passes through x. Then for 

each n £ N, the set X n : =  {a: £ X  : e(x) > is closed in X ,

P roo f: By induction on dim Y . □

One situation in which one draw a stronger conclusion is the following, which is impor-

tan t in the construction of the so-called ‘geometric quotient’ of a variety by an algebraic

group [3.2.1].

T h eo rem  1.8.0.3 [IIu75, 4-5] Lei 9 • X — Y Y  be a dominant morphism of irreducible 

varieties, with r = dim X  — dimY, and suppose that for each irreducible W  Cc Y , each 

irreducible component of g~1(W) has dimension r +  dim W . Then g is an open map.

P roof: By hypothesis, g is surjective, and the irreducible components of g~1(W)  all

dominate W.

If x £ X } and x £ U Ca X , we have to show that y — g(x) is an interior point 

of V  =  d{U)\ if not, then y is in the closure of Y  \  V: now V,  and hence Y  \  V  are 

constructible, and thus y lies in the closure C of some locally closed O n C  - where O CD y ,  

and we can suppose C  irreducible, so O f i C  is dense in C . The irreducible components of 

C'  g~l {C) all have the same dimension, and dominate C. Next, O'  := g~l { 0 ) meets 

each such component, so C'  H O'  is dense in C' . But C' C\ O'  = g~l {C H O) is contained 

in the closed set X  \  t/, so C  C X  \  U. But x £ C'\ contradiction. □

1.9 Tange ncy

For an affine variety X  Cc An , with x £ X,  x — (a: 1 , . . . ,  ,Tn) and /  £ E[l j , . . . ,  Tn], 

define dxf  Lf /dTj (x){Tj  -  x ,•) where the notation means that the derivative

is evaluated at ,t; then if T{X)  =  ( / i , . . . , / t )  is the ideal corresponding to X, define 

the geometric tangent space to X  at x to be T a n ( X )x, the (linear) variety given by the
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vanishing of the ideal (dxf i ,  . . .,  dxf t ). For a general variety X , we could pick an affine 

open subset of X ,  and proceed as above, but would like a more intrinsic description.

To get this, again suppose firstly that we have x E X  Cc An , with R  := E[X], 

and let M  :— Z( {.?:}) be the maximal ideal of R  which vanishes at x. Now M / M 2 is 

a finite-dimensional E-module, performing the identification E — R / M.  Then any /  E 

E [T i,. . . ,T n] defines a linear function dxf  011 An , and so on T a n ( X) x . Since dxf  is 

determined by /  mod X(X)  we can suppose f  e R.  Then dxf  : R  — > (Tan( X) x)* 

is a surjective linear map: moreover, since R  = E © M, and dxf  |e =  0, we can take 

dxf  : M  — > ( Tan(X)x)*, and it is readily shown that the kernel of this map is M 2. 

This enables identification of ( M / M 2)* with Tan( X) x. Now if we localize R  at M, and 

use exactness of localization, we can identify the _R/M-module M / M 2 with the Qx/$Jtx- 

module 9JliT/9Jt(:, and finally define the tangent space R ( X ) x to X  at x to be (97t;c/91t^)*. 

Moreover, this now works for any irreducible variety X , and in general provided tha t we 

define Ox correctly.

An equivalent way of looking at the tangent space is the following: with the same 

notation, let V x be the E-module of E-linear mappings 5 : Ox — > E satisfying S(fg) = 

5(f)g(x)  +  f (x)S(g) - the so-called point derivations of Ox . One can verify that V x and 

T ( X ) x are naturally isomorphic as E-modules.

To pass to the general case now is easy: if x € X ) and lies on a unique irreducible 

component Y, then define T ( X ) x — T ( Y ) X: otherwise, with an appropriate definition of 

0 X) we can use (991̂ /9X1̂ )* as before. It is also now easy to see tha t if x G X  and y E Y, 

then 7 ^ iy)(X x Y) =  % ( X ) ® T y(Y).

A point x G X  for which dim l~(X)x — dim X  is said to be simple (on X) - X  is said

to be smooth if all its points are simple. In fact the following holds.

Recall tha t a field extension A /B  is separably generated if A is a separable algebraic

extension of a purely transcendental extension of B: for finitely generated extensions, the 

notion is equivalent to that of being separable.

T h eo rem  1.9.0.1 Let X  be an irreducible variety. Then dim7~(X).T > dim X  Vx E X , 

with, equality holding for all x in some dense open subset of X .
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Proof: The equality condition for the case in which A is an irreducible hypersurface in

An is easy. As E(A )/E  is separably generated (E being perfect), we have E( X ) / L  finite 

and separable, where L = E(Xi, . . . , Td) with d =  dim A , and the Tt- being algebraically 

independent over E. We can find y E E(A) such that E(A) =  L(y),  with f (T)  E L[T] (say) 

its minimal monic polynomial over L. Then we have f (T,  X\ , . . . ,  Td) E E[T, T i , . . . ,  Td] 

defined on some affine open subset of Ad+1, whose set of zeros is a hypersurface Y  therein 

with E(K) isomorphic to E(A) Y  is irreducible as /  is. Thus X  and Y  are birationally 

isomorphic, so one can find nonempty open sets in each which are isomorphic. By the 

hypersurface result, the desired conclusion holds for Y,  and therefore for A: thus we have 

equality in a dense open subset.

For an arbitrary x E A, to determine the dimension of T ( X ) x , we can replace A by 

an affine open neighbourhood of x. Thus let A  Cc An for some and regard the tangent 

spaces as linear varieties. Consider pairs (x,y)  E A  X An with y E Ta n ( X) x . These 

form a closed subset A of the product: projection onto the first factor defines a morphism 

h : A X , with h~l (x) having the dimension of T (X ) x. We have seen that

X d := {x E A : dim T { X ) x > d}

is dense in A", and so it only remains to show that X d Cc A , which follows from ‘upper 

semicontinuity of dimension’ [1.8.0.2] applied to h . □

The next result is a version of Zariski’s Main Theorem.

T h eo rem  1.9.0.2 [Bor91, AG 18.2] Let g : V — > W  be a dominant morphism of smooth 

irreducible varieties, such that, for each i d  E W , f/_1 ({u;}) has (finite) constant cardinality 

n. Then n is the separable degree of (the extension of function fields associated to) g.

C oro lla ry  1.9.0.3 If g is birational, it is an isomorphism; if  g is bijective, the extension 

is purely inseparable.
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1.10 L ocal rings

We need now a. few facts about the following situation: let R  be a Noetherian local ring, 

with maximal ideal M . The Krull dimension of R  is the greatest k £ N such that there is 

a chain of prime ideals Pi in R  of the form 0 G Pi G • ■ • ^  Pk = M . For the local ring Ox 

(x £ X , with X  irreducible), the Krull dimension is just d imX (as one sees by taking X  

affine). One can consider also the minimal number of generators of the _R-module M: a 

standard result [Bor91, AG3.9] shows that this is the same as the dimension of the R /M -  

module M / M 2. An R  which has the property that this latter dimension equals its Krull 

dimension is said to be regular. A regular (Noetherian) local ring is an integral domain, 

and integrally closed [AM69, Ch. 11] - in fact, it is even a UFD [Bor91, AG3.9], but we 

do not need this fact. Thus, the last theorem shows that dim X  is the same as the Krull 

dimension of Ox for all simple points x £ X ) and so that Ox has all of the properties just 

discussed for simple x.

1.11 D ifferentials

For the morphism g : X  — Y  of irreducible varieties, with x £ X  and y = g{%), the 

comorphism g* of g is a local ring morphism meaning not only that g* : Oy — > Ox but also 

that </*(9Jty) =  Thus composition with g* induces a mapping — > 971 /̂971 ,̂

which one verifies to be E-linear. Making the usual identification of these modules with the 

duals of the tangent spaces gives us a, linear map dg : P ( X ) x — > T ( Y ) y, and this behaves 

functoriaily. In fact, in the affine case, we can give an explicit description of it, so: suppose 

X  Cc Am and Y  Cc An , so g =  (gq,. . . ,  gn), each a coordinate function. Identify the 

tangent spaces at x £ X  and y ~  g(x) £ Y  with subspaces of Em and En respectively; this 

identifies a =  ( a i , .. . , am) £ Em with the point derivation Ox — > E given by Yiiaid/dTi 

(followed by evaluation at a1). Then dgx (a) =  (6j , .. . ,6n), where bj =

E xam ple: det : GLn — GLi ,  the map taking each (invertible) matrix to its de­

terminant. We take x to be the identity matrix I. The tangent space to GL n can be 

identified with E ^ 2  ̂ - which we take as Mn, the n x n matrices. The above formula gives,
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for a = (ciij) £ GL n, d(det)i(a) — ani which is the trace of the matrix a. □

We will need the following theorem later, which is a composite of those cited in its 

heading. Note how information about g is deduced from the existence of an x and g(x) 

with the asserted properties.

T h eo rem  1.11.0.1 [Hu75, 5.5][Bor91} AG 17.3] Let g : X  — > Y  be a morphism of 

irreducible varieties, with x £ X  and y — g{x) £ Y  both being simple points. Then 

dgx : T ( X ) x -—> T { Y ) y is surjective iff g is dominant and separable.

1.12 C om pleteness

A variety X  is complete if the projection map p2 : X  x Y  — > Y  is closed for all varieties 

Y  - this would be a compactness criterion (if we had the product topology) in a suitable 

category of topological spaces. It is easy to show that X  is complete iff this is true of each 

of its irreducible components, and that we need only consider affine irreducible Y .

It turns out that complete varieties and their geometry are central to the understanding 

of algebraic groups (even though these are affine).

P ro p o sitio n  1.12.0.1 Let X  and Y  be varieties.

(a) I f Y  Cc X  and. X  is complete then Y  is complete.

(b) I f X  and Y  are both complete, so is their product.

(c) I f  g : X  — > Y  and X  is complete, then g(X)  is closed and complete.

(d) I f Y  is a complete subvariety of X , then it is closed.

(e) I f  X  is complete and affine, then dim X  =  0.

(f) I f  X  is complete and quasiprojective, it is projective.

Proof: (a) and (b) are trivial. To verify (c), note that the graph T5 Cc X  X Y, where

r 3 := {(3,ffW ) 6 X  x Y : x £ X }  - because Tg is the inverse image of the diagonal of Y 

under the morphism X  x Y — > Y x Y which sends (x ,y ) to (g(x) , y) (recall that Y is a 

variety). The projection X  X Y — > Y  takes r fl to g(X) ,  which is therefore closed in Y 

by the completeness of X.  Now we can assume that g(X)  — Y.  Let W  Cc Y x Z  for any
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variety Z, and <72 *Y  X Z — > Z  the canonical projection map; write P2 for the projection 

map X  x Z  — > Z.  Then <fe(W) =  P2 0  id x l z ) _1( ^ )  as g{X) = Y,  and q2{W)  is closed 

in Z by the completeness of X . (d) follows from (c).

To prove (e), suppose that X  is also irreducible to begin with. Note that any morphism 

g : X  — > A1 has a closed complete image by (c): but A1 is not complete, as (for example) 

the closed subset {(.r, y) € A2 : xy  =  1} of A2 projects onto the nonclosed subset E* of A1. 

Thus g is constant and hence E[X] =  E (as g must factor via the inclusion map into A1 of 

a one-point variety). If X  is not irreducible, its irreducible components are complete and 

affine, and this verifies (e). Finally (/)  follows from (d). □

The most important examples of complete varieties are given by the next result. 

Theorem  1.12.0.2 Projective varieties are complete.
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C h a p ter  2

R elative Algebraic G eom etry

We now turn to the more delicate question of ‘relative’ algebraic geometry, and retain the 

previous notation. Suppose now that k is a subfield of E: we will use standard notations 

like &s, k% and ka for the separable (algebraic), inseparable or perfect, and algebraic closures 

of k. These are of course also subfields of E. kl is the held often denoted by kp recall 

that k is called perfect if k = k'1.

We write p for the characteristic exponent of E - namely max(char E, 1). This turns 

out to be a more convenient notion than that of the characteristic.

2.1 N o ta tio n  and notions

Note tha t any subheld k of E induces a topology on An (the latter still being defined to 

be E x - • - x E). Specifically, we define a subset S  C An to be k-closed if it is

(j) closed in the previous sense, and

(u) there is an ideal I  <3 E[Ti, . . . ,  Tn] such that S  is the subset of affine space on 

which I  vanishes, and that I  is generated by its intersection A with k[T \,. . .  ,Tn], where 

the polynomial ring over k is of course identihed with a subring of that over E. Thus 

1{S)  =  nil (/). Topological terms unqualified by a held name will be assumed to refer to 

the E-topology. We will write A CG  ̂ B  (respectively, A CC)/. B ) to mean A is k-open 

(k~closed) in B.
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Note we did not specify that I  be radical. This leads to the notion of a subset defined 

over k: S  C An is said to be defined over k, or to be an affine k-variety, if it is fc-closed, 

and in condition (it) above, we can take I  = X(S). This is a stronger condition, but turns 

out to be a more valuable property. We will verify shortly that:

P ro p o sitio n  2.1.0.1 I f  X  is k-closed, it is defined over (a finite subextension of) k l .

Example*. The following S  C A1 is /c-closed but not defined over k. Take p > 1, and 

let xp E k $ x (so we are supposing that k is not perfect). Take I  = (Yp — .rp) <\ E[Y]. 

Then If. — (Yp — .tp) <1 k[Y}\ clearly S  — {.t}; however nil (I) =  (Y — &), and this is not 

generated by nil (J)^ =  /&. □

It is clear that the E-topology is Ti, but those induced by proper subfields are not, 

in general. Clearly, if Fi C F2 are two subfields of E, then the Fi-topology is (weakly) 

coarser than the F2-topology. More precisely

P ro p o sitio n  2.1.0.2 Let F\, F2 be any two subfields of E. Then the F\-topology coincides 

with, the F2-topology iff F{ ~  F2.

P roof: As any /  E E[Fi, . . . ,  Tn) has the same zeros as / p, it follows that for any subfield

H  of E, the F-topology and fF-topology coincide. Hence we can suppose that F\ and F2 

are perfect, and moreover this verifies the ‘if5 part.

Conversely, let t E Fj \  F2, and write f (T )  for the minimal (monic) polynomial for t 

over F2 (we take /  =  0 if t is transcendental over F2). Put S = (£ ,0 ,.. .,0), which is a 

closed set with I  — (7\ — £,T2, . . .  ,Tn) as ideal. Clearly S  is Fi-closed. The result will 

follow once it is verified that S  is not F2-closed, for which it suffices to show that Ip2 

vanishes at at least one other point.

Put J  — (/(T i), ? 2 ) • • \ clearly J  C Ip2, and in fact J  — Ip2 since if

g(Ti,T2> - • -ffin) € / f 2>

then we can write g(Ti, F2, . . . ,  Tn) =  h(Ti) +  / (T i,. . . ,  Tn) where h and I are polynomials 

with coefficients in F2, and all monomials which occur in I contain at least one of T2, . . . ,  Tn.
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Evaluating at the point in S  gives 0 =  h{t) +  0, so f(T{)  divides h(Ti) (in i^ p i] ) ,  and 

thus g £ ( /(T i) ,T2}. . . ,  Tn). This gives an expression for Ip2- Further, all elements of 

Ji?2 will vanish at every point (s ,0 ,.. .,0) such that f(s )  = 0 .  If /  — 0, we can choose s 

arbitrarily; otherwise /  has distinct roots as F2 is perfect (and its degree is more than one 

as t £ F2).

In either case, we have found a point outside S  at which all generators of i>2 vanish, 

so S  is not i^-closed. □

2.2 A lgebraic criteria, I

VYe now examine this idea using more algebra. Let V  be an E-module. A k-structure on 

V  is a /c-submodule 14 C V  such that the canonical map 14 E — )■ V  is an isomorphism 

of E-modules. Elements of 14 are said to be rational over k.

Suppose now that V  has a fc-structure 14, and U is an E-submodule thereof. We say 

that U is defined over k if Uk — U fl 14 is a ^-structure on U. (This condition is readily 

seen to be equivalent to the condition ‘L4 spans U as E-module’.) Put W  ~  V /U  and 

write Wk for the projection of Vf- ont° W ! then ^ 4  is a ^-structure on W  iff U is defined 

over k.

Next, let /  : V — > W  be a linear map, where V, W  are E-modules with ^-structures. 

/  is said to be defined over k, or to be a k-morphism, if / ( V f )  C W . The collection of 

all fc-morphisms from V  to W  is a Ai-submodule HomE(Vr,W')jt C HomE(F, W): if W  is 

finite-dimensional (in particular if W  =  E) then this is a ^-structure 011 HomE(W W).

One readily verifies that, with the same V, W  that 14®k Wk is a L-structure on V ®e W 5 

and we get ^-structures induced on the tensor, exterior and symmetric algebras of V.

Now let A be an E-algebra (recall our conventions). A k-structure on A  is then a 

/c-structure A/, (as above) which is also a A;-subalgebra.

A few properties: given such a structure, with J  <1 A, one verifies that J  is defined 

over k iff Jk =  A/, n  J  generates J  (as ideal). If S  is a multiplicative set in A&, then the 

localization 5 - I (Ajt) is a ^-structure 011 5 -1 (A). Finally, if A,i3 are two such there is
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a natural bijection from Hornk-aig(Ak> B^) to HomjE-aig{A,B)k, where the latter denotes 

the set of E-linear maps which are defined over 7 (in the previous sense), also required to 

be E-algebra, homomorphisms.

From above, one sees that if E[X] is the affine algebra of an affine variety X ,  then E[X] 

has a 7-structure in the last sense iff X  is defined over 7. There is an analogous condition 

for X  to be 7-closed. One can easily verify that a product of two 7-closed affine varieties 

(respectively affine 7-varieties) has the same property.

2.3 T opological criteria

In fact, we will say that the E-variety X  has a k-structure if the following axioms are 

satisfied.

(a) It has a 7-topolog3' weakly coarser than the E-topology, containing an affine open 

cover of X .

(b) For each k-open 17, Ox{U) has a 7-structure, and the restriction maps (between 

pairs of 7-open subsets) are defined over k.

(c) Whenever U is affine and 7-open in X t a 7-structure on U is induced by a 7- 

structure 011 Ox{U) thus: a subset Y  of U is 7-open iff it is complementary to the set on 

which an ideal of E[C7] which is defined over k vanishes.

Condition (c) tells us that every k-open subset of an affine 7-variety X is a finite union 

of principal k~open sets. The requirement in (a) that an affine open cover be included, 

though not in [Bor91, AG 11.3], appears to be necessary to exclude such cases as that of 

the indiscrete topology on P n.

E xam ple: If V  is a vector space with 7-structure V/.> the image of Vk \  {0} under the 

usual projection gives a 7-structure on P(Vj. □

A morphism g : V  — y W  of 7-varieties is just a morphism of the underlying E-varieties. 

It will be a k-morphism (or defined over 7) if it is 7-continuous, and such that whenever 

A C0ik V  and B C W  with f/(A) C then g* : Ow{B) — > Ov{A) is defined over 7. 

The latter condition is that the restriction to the 7-topology of g induces a morphism of

21



‘sheaves of E-algebras with ^-structures’. Clearly the condition tha t g be a fc-morphism 

necessitates ^-structures on V and W.

2.4 A lgebraic criteria, II

Now we look at a subvariety Z  of the affine fc-variety V. Suppose Z  is given by the 

vanishing of an ideal J  <1 EjV], Then the exact sequence of E-modules

0 -* J  —►E[^] -» E [Z\ - yO

becomes, after pulling back along the ring homomorphism k  — Y E, an exact sequence 

of ^-modules (say)

0 J k k[V] -Y k[Z] 0

(as this is an exact construction). Note that no assertion has been made about whether 

or not Z  is ^-closed. While fc[V] is a /^-structure on E[V], k[Z\ simply denotes the restric­

tion of &[V] to Z, which is reduced, and Jk is just J  Pi &[V]. We can tensor the last short 

exact sequence through by E (which is a flat fc-module) to get the result that

E ®k k[Z] =  E[V]/Jk • E[y]

Hence the kernel of the obvious (surjective) map

E 0k k[%] E[Z]

is exactly J /Jk  ■ E[V']. Thus Z  is fc-closed iff J — nil(J/; • E[V]), and if this does hold, 

the kernel mentioned is the nilradical of k[V) 0k  E. Then clearly, Z  is defined over k iff 

J  — Jk • E[V] as expected. We summarize all this in the next theorem.

T h eo rem  2.4.0.1 The following are equivalent (for Z  and V  as first mooted):

(a) Z  is defined over k;

(b) E and k[Z] are linearly disjoint over k in E[Z];
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(c) k[Z] <g>k E is reduced; and

(d) k (Z ) <S>k IE is reduced (where k (Z ) means the full ring of fractions of k[Z]).

(The equivalence of the last pair follows from the fact that a ring is reduced iff any of

its localizations at a set of non-zero divisors thereof is reduced.)

W hat if we now allow V  to be a general ^-variety (not necessarily affine) and Z  to be 

a /c-closed subvariety? Let U be A;-open in V , and put k[Z D U] for the restriction to U of 

k[Z]. Then we get the ring of rational functions on Z  defined over k by forming

k(Z) :=  lim k[ZHU]
{ u - . z n u  d e n s e  in Z }  ^

and it can be shown from this, that just as in the affine case, Z  is defined over k iff 

E 0k  k{Z)  is reduced. It is not hard to see that k ( Z ) is a finite direct sum of finitely 

generated field extensions of k\ by standard arguments from field theory [Bor91, AG2.2], 

we get the following, which proves the assertion [2.1.0.1].

T h eo rem  2.4.0.2 The following are equivalent.

(a) Z  is defined over k.

(b) E ®k k(Z) is reduced.

(c) kz ®k k{Z) is reduced; and

(d) Each direct summand of k(Z) is separable over k.

2.5 C om ponents and separable points

For a ring A  (recall the conventions in force), we write Da for the set of zero divisors of 

A (including zero), and nil A for the nilradical of A (namely the radical of the ideal (0) 

as at [1.1]). We recall a couple of standard facts, as the argument in [Bor91, AG12.3] is 

slightly incomplete.

L em m a 2.5.0.1

(1) Da is a union of prime ideals and contains nil A.
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(ii) nil A is the intersection of all prime ideals of A, and consists o f the nilpotent elements 

of A.

(iii) I f  D a — nil A, then D a is the unique minimal prime ideal of A.

P ro p o sitio n  2.5.0.2 [Jci.64, IV ,§11, Theorem 24]

Let A, B  and F  be subfields of E, with B  C A n  F, and B separably closed in A (viz. 

B s D A =  B). Write S  = A F. Then Ds =  nil S.

C oro llary  2.5.0.3 Lei C be a B-subalgebra of E whose field of fractions is F. Write 

R = A <%>b C . Then D r  is the unique minimal prime ideal of R.

P roof: Clearly B  C C. Since we have an embedding of C  into F , and A is a flat

F-module, there is an embedding /  : R  — > S, and so f (DR)  C D s . The result follows by 

the theorem. □

We now verify that

P ro p o sitio n  2.5.0.4 The irreducible components of a k~variety V  are defined over ks.

Proof: To prove our result, we can assume that k = ks, and that V  is affine (as

it is enough to verify that it works on each member of a cover of V  by &-open affine 

subvarieties). Otherwise expressed, we need to show that if P i , . . . ,P r are the minimal 

primes of k[V], then P{ ■ E[F] is prime in E[V]. By [2.5.0.3], A; := E[V]/P{ • E[P] (which 

is exactly E (&IY]/Pi))  iias a unique minimal prime, so it only remains to verify that 

Ai is reduced. As k[Y] is reduced, we have k[V] C ®i(fc[P]/F'): both have the same full 

ring of fractions k(V).  But as E(V) =  k{V) (g)jt E is reduced, it follows that A{ is reduced, 

and therefore a domain, as required. □

Now let V  be an affine A;-variety: the Nullstellensatz [1A.0.1] shows that we have 

bijections

V «  HomE- o!s(E[K],lE) «  Honu._0,s (fc[V],E)
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Note that the first of these bijections matches points of V  with evaluations thereat 

x ( /  i-4 /(.t)). The second holds because the well-known ‘tensor product-Hom’ ad­

junction verifiably preserves algebra structures and not just module structures. For 

any /c-algebra B, write F(B) = Homfc_0jfl(fc[V], B); if B has a ^-structure B^, then 

V(Bk)  is just the subset of F(B) corresponding to the ^-algebra morphisms which are 

defined over k. Points of F(B) are called B-rational, if k C B C E. In particular 

V(k)  C V( k s) C V( k a) C V.  Elements of V{ks) are called separable. Thus V  can be 

regarded as a representable functor from E-algebras with ^-structure to the category Set. 

Indeed, the construction is functorial in V  also in a sense one can make precise. We will 

usually only be concerned with fc-algebras which are contained in E; there are howrever 

circumstances (such as when studying isogenies of algebraic groups [3.1.0.2]) in which one 

needs the more general concept.

The above can be generalized mutatis mutandis to general varieties.

Theorem  2.5.0.5 [Bor91, AG13.2-13.3] Let g : V  — V W  be a dominant separable k~ 

morphism. Then there is an open dense Wq in W , Wo C g(V),  such that for each x € 

I/Fo(fc's), the fibre g~l (x) has a dense set of separable points. Hence F(A;S) is dense in V 

(take W  to be a single point).

2.6 G alois-theoretic criteria for rationality

Let V  be a k-variety and write T for the absolute Galois group Gal(ks/ k ) of k. An action 

of T on V  is given thus: we will suppose that V  is affine, as U(k8) will be stabilised for each 

A;-open affine U in V,  and so can identify F(fts) with Homfcs_a/5(A:s[Vr]) ks) by the usual 

evaluation x (e.r  : /  *-$■ f{x)).  Moreover, T clearly acts on ks[V) = ks k[V] through 

the first factor, and we will denote this action by /  Of for a 6 T. For x G V( ks) and 

<7 G T, cr(3,’) is defined by ea^  = <j o ex o o~l . In terms of the action on fcs[F], one can 

rewrite this as (Jf{x) =  c7(/(<7“ 1(a;))). Writing V( f )  for the subvariety of V  given by the 

condition {.r G V\ f (x)  = 0}, we see that each <7 induces a bijection between the separable 

points of V( f )  and F (CT/) ,  and similarly, for any ideal J  <3 Ari[V], enabling definition of
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the notion of the conjugate variety W a of any (closed) &s-subvariety of F . It can be shown 

that each such a E V can be extended to a ^-isomorphism of varieties <j)a : W  — >■ IF F  

More generally, given a fcs-variety F  and an automorphism a of ks, a can be extended 

to an isomorphism <fa : F  — Y V a, where V G is obtained by ‘patching together’ fcs-open 

affine subsets. In the affine case, this amounts to applying a to the coefficients of the 

polynomials defining F  over ks.

Next, let a- : F  — - Y IF be a /es-morphism of ^-varieties. Then for each cr E f ,  one 

defines a fc5-morphism 0’a,(.x>) — o-(a'(o-_1(.r))) for each x E V ( ks). While there obviously 

cannot be more than one aa  with this property, its existence must be settled explicitly. To 

do this, it suffices to exhibit a comorphism (°'ce)* : ks[W'] — Y /cs[F'j for each pair V 1 CDjk V  

and W  Qotk IF such that ®{V') C W 1. But we already have a* : — Y A:-5[Wr], so

need only form a -1 o cv* o a. This gives an action of T 011 HomE-var (F, IF)jt*.

Theorem  2 .6 .0.1 For the ks-morphism a  : F  — Y W  of k-varieties V, W, the following 

conditions are equivalent.

(1)o: is defined over k;

(2) a  : V ( k s) — Y T'F(A;s) is P-equivariant; and

(3) a  £Uomw.-mr(V,Wfk,.

Theorem  2 .6 .0.2 Let Z  be a closed subvariety o f V .  The following are equivalent.

(1) Z  is defined over k.

(2) Z  is defined over ks and Z (k s) is T-stable.

(3) There exists a subset E  C Z  D F(A:S) such that E  is T-stable and dense in Z.

Proposition  2 .6 .0.3 I f  a : V  — Y IF is a k-morphism, then ce(F) is defined over k (we 

are not asserting that it is closed, of course).

Proof: Since V (k s) is dense in F , a(V(ks)) is dense in the closure of ct(F), and so one

can apply criterion (3) of the last result, □
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2.7 U  nirat ionality

An irreducible fc-variety V  is said to be k-unirational if there is an injective field map 

k(V)  -—> L for some field L, where L/ k  is a finitely generated purely transcendental 

extension.

Proposition 2.7.0.1 [Bor91, AG 13.7] I f V  is k-unirational and k is infinite, then V(k)  

is dense in V .

2.8 W eil restriction

Suppose we have fields ks D I D k with [/ : k] = d. Then there is a mapping Ri/k called 

‘Weil restriction’ which takes /-varieties to A-varieties; indeed R ^ k is a functor right adjoint 

to the obvious ‘base extension functor’ in appropriate categories [DG70, 1,1,6.6]. We will 

only be concerned with affine varieties here. Let T be as before, and put T/ — Gal{ks//); 

take <Ti,. . . ,  cfd as a set of (left) coset representatives of F; in T.

Now we define Ri/k{W) (for an affine /-variety W)  to be a pair (V,p), where V  is a 

k-variety, p is a surjective (regular) /-morphism V  — > W,  and the map /  := pai x • * * x 

pad : V  — V W ai X ■ • • x W °d is a /^-isomorphism of varieties. Clearly Ri/k multiplies 

dimensions by d. It is instructive to see how one verifies the existence of Ri/ki as some 

rationality information is obtained as a by-product of the working. An example of the 

whole construction will follow at the end.

P roposition 2.8,0.1 [Sa71, I  §3.3] For every affine I-variety W , there exists f^/^W ), 

defined as above, which, is unique up to k-isomorphism.

Proof: This is achieved in three stages: the affine line, products of pairs for which

the result is already known, and subvarieties of those for which it is already known. 

Suppose firstly that W  =  A1, and u i , . . . ,  Ud is a fc-module basis for /, take V = Ad, and 

p : Ad — > A1 given by p(twi,. . . ,  Wd) =  5ZEi wiui\ then obviously p is defined over /, and 

p<T̂ (w i , .. .,Wd) = ]C Ei wiuV • Then /  (as above) is a polynomial map from Ad to itself 

with matrix (wy1); this matrix is invertible, as l /k  is separable, and this case is done.
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Secondly, we consider the product of two affine /-varieties W \,W 2 for which Ri/k{Wi)  

and Rt/kO'^2 ) are known to exist; but that X W 2 ) exists and is fc-isomorphic to

R<t k (Wi)  x  R l/ic(W2 ) is obvious from the adduced adjunction.

Thirdly, given that Ri/k(W)  exists, and that Y  is an /-subvariety of W,  one verifies 

that R{/k{Y) exists thus: as B = Yai X • ■ ■ X Y ad is a subvariety of W <Tl X ■ ■ • x  VFad, it 

follows tha t C := f ~ 1{B) is a subvariety of R ^ k(W).  To show tha t R ^ ^ Y )  = [C,p |c)> 

it remains only to show that C  is defined over k. As B  is clearly defined over the Galois 

hull (normal closure) of l /k,  and /  is defined over ks, we have that C  is defined over 

ks. Now we can use Galois theory: recall the notion of conjugate variety, and that any 

automorphism a of ks induces a /^-isomorphism 4>a from an affine /cs-variety V  to the affine 

P-variety V ° . We observe too that ( / “ 1)ff =  f ~ l o 0 " 1. For a  € T, C°  =  { f~l Y { B a), 

and (f ~ l Y  =  f ~ 1 0  1 i aPPbnng this to B a gives f ~ 1(B ), by definition of </>a , and so

C a — C. This concludes the proof of the existence of for any affine /-variety W.

The uniqueness follows from an obvious universal property [Sa71, I §3.2]. □

P ro p o sitio n  2.8.0.2

(1) For (V,p) =  Ri/k{W), p induces a bijection from V(k) to W(l).

(2) I f W  is irreducible, so is V.

(3) I f W  is tin algebraic group over I, then V is an algebraic group over k. (For the theory 

of algebraic groups, see [3.1]).

Proof: We prove (1). Clearly p(V(k )) C W(l)  since p is defined over /. For y E W(l),  

x := Ri/k{{y})  £ and P(x ) — V so there is a surjection onto W(l).  On the other 

hand, x is determined by the conditions x E V(k)  and p(x) =  y , so p |k (/c) is  ak>° injective. 

□

We wish to generalize the bijection in (1) of the last proposition to get information 

about the 777-rational points of V , for a finite separable extension m  of k. To this end, 

note firstly that the set £  := {fc-embeddings of / in ks} has cardinality d, and there is 

an action on £  by the absolute Galois group Tm =  Gal(ks/m) ,  by cr.x ^  ax. If E m 

denotes the set of orbits of this mapping, then one can show tha t V is m-isomorphic to
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r u Era R[am/m( Wa), where the notation ought to be clear. We record some special cases 

of this.

In particular if l /k  is Galois, then la =  I and W a = W  for each a - then V  is m- 

isomorphic to ^ /m/m(kE#Sm) using the adjunction again, and consequently one has a 

bijection V(m)  f* W ^Sm(/m), and indeed, must be the same as [/ : k]/[lm : m\.

P ro p o sitio n  2.8.0.3 Suppose (with the above notation), we have k = Wq, I — F?a, m  =  

¥qb. Then

P roof: It is a standard fact about finite fields that the compositum FgaF?6 is F jCm(a,t>) -

and hence in this case =  (a, b), the greatest common divisor of a and 6. □

E xam ple: Take / to be a quadratic extension of k — Q, say I =  Q(ot) so that {l,cr} 

is a Q-basis for /. The variety S L 2 can be regarded as defined over I (and indeed over Q, 

though we will ignore this), as the vanishing of the (prime) ideal I  = (W Z  — Y X  — 1) <1 

C[iy, JY’jY’, Z]\ the corresponding algebra clearly has an /-structure. We will show how to 

construct the underlying Q-variety of Ri/q(SL 2 ), though will ignore the algebraic group 

structure.

With the decomposition T =  Gal{Qs/ Q) =  II; G A where Tj =  Gal(Qs/l),  Pi the 

identity of T, and p 2 {oi) = —a, we proceed by analogy with the proof of the existence of 

Rl/k m the general situation ['2.8.0.1].

We begin with the ambient spaces, and use the notations above. Define p : A8 — > A4 

by (a.*!,. . . ,  ,t8) (aq ,. . . ,  ,t4) +  Grf&'s,. . . ,  ms); if we are to have (A8,p) as R ^ q (A4), then 

we must have that the map /  : A8 — > A4 X (A4)^2 given by

/(.x’l ,. . ., .x*g) 1 y ((^T j • • '̂4 ) T  ,. . ., ,Tg), (^'li • ■ ■ j 2*4 ) o>{x5, .. ., a;g))

must be a QMsomorphism of varieties: but this is so, as /  is a QMinear map with invertible 

matrix. This parallels the first stage of [2.8.0.1] - the rest of this example parallels the 

third stage.
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Now we look at the variety S L 2 itself. Note that if S L 2 is defined by the van­

ishing of (W Z  -  Y X  -  1), then (S L 2)02 is the vanishing of (W'Z* -  Y ' X '  -  1) (say) 

where these are names we give to the second quadruple of coordinates. Putting B = 

{(W, X,  Y, Z, W \ X Y \  Z ‘) : W Z  -  Y X  = 1 =  W 'Z '  -  Y ' X 1} we see tha t B is obviously 

defined over I. Then we must have R ^ q (S L 2 ) = f~'1(B)} referring to the third stage of 

[2.8.0.1). Explicitly, after some manipulations, we get that (up to a unique Q-isomorphism) 

R i/q (SL 2 ) =  (Y,p|y), where p is as before and

V — {(a-’l, ■ • Xs) : !t'l&4 — %2%3 +  Ck2(x5X8 ~ XqXj ) = l}.
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C h ap ter  3

Linear Algebraic Groups

3.1 G eneral rem arks

Let G be a linear algebraic group defined over k (or a k-group)1 k being a subfield of E, 

and T =  Gal(ks/ k ) , This means that we have a quadruple (G, p, i, e) where G is an affine 

^-variety, and /a, a, e are regular /c-morphisms of fc-varieties as follows:

(i) p  : G X G — > G - a ‘product’ map

(ii) i : G — > G - an ‘inverse’ map and

(iii) e : * — > G - a ‘choice of identity’, where * is a one-point k-variety.

These are to satisfy the usual group axioms (for example, the right inverse axiom is 

expressible as p  o (1g ,'0 = e ° (* <—  G) ). The morphisms and conditions above can 

be equivalently recast as defining a Hopf algebra structure on E[G] (with appropriate k- 

structures), and this is the way to realise algebraic groups as representable functors (viz. 

as ‘affine group schemes’).

By a subgroup of a fc-group we will always mean an E-closed subgroup, though not 

necessarily one which is fc-closed. [Any more general subgroup will be so described explic­

itly.] We say that the mapping f  : G — > H  is a morphism only if G and H  are E-groups, 

and tha t /  is simultaneously a group homomorphism and a regular morphism of varieties: 

to say tha t /  is defined over k (or is a k-morphism) has the obvious meaning and obliges 

G and H  to be defined over k.
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P ro p o sitio n  3.1.0.1 [Bor91, l . f]

For any k-morphism f  : G — > I I , k e r / is a k-closed subgroup of G and f (G)  a k-subgroup 

of I I . Further, dim G — dim ker /  +  dim f {G) .

We will call a short exact sequence 1 —)■ A -U B C —>- 1 of ^-groups a k-sequence if 

the groups and morphisms involved are all defined over k. Given this, we say that B is a 

semidirect product of A by C, written B = A >i C if there is also a morphism of algebraic 

groups a with g o a  — 1 q - however a may fail to be defined over k even if everything else 

is. More generally, if 7 f i,. . . ,  IIr are connected subgroups of a connected group 77, we say 

tha t 77 is directly spanned by the 77* if, for some ordering « i,. . . ,  ir of the 77;, the obvious 

product map 77q X • ■ ■ X 77ir — > II  is an isomorphism of varieties.

An algebraic group over E is not usually a topological group (inverse images of open 

sets by /i, though Zariski open, need not be open in the product topology) indeed, it is 

a standard result [Hi74, II,§5,Prop.3] that a T\ topological group is T2 , and G is clearly T\ 

with respect to the E-topology, but not T2 unless of dimension 0. [Recall that T2 means 

‘HausdorfT and T\ means ‘all points are closed’] The Txgroup G fails to be a topological 

group with respect to the 7-topology too, at least if it is irreducible (the inverse image of 

the identity under p is 7-closed but not product-closed).

The morphism /  : G — > 77 will be called an isogeny if G is connected, /  is surjective 

and ker /  is finite (and therefore central in G). f  is called central if one also has, for each 

/c-algebra A, that the induced group homomorphism

f  a : honu-a/fl(&[£], A) — ► homfc_0/fl (&[#], A)

has a central kernel. (Sat sapienti: Note the appearance of scheme-theoretic ideas here.) 

Then we say that two connected groups G 1 and G2 are strictly isogenous or strictly F- 

isogenous (which we write as Gi G2 ) if there exist a connected group H  and central 

isogenies fi : H — > G[ for i — 1,2 where F  is any common field of definition for the f{. 

This is an equivalence relation (to verify transitivity form the obvious pullback square). 

Note that several notions of isogeny appear in the literature.

P ro p o sitio n  3.1.0.2 [Bor91, 22.FI,22.3,AG 18.2]
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Let f  : G — > II be an isogeny.

(1) f  is central iff there is a morphism of varieties k : f ( G ) X /(G ) — > G such that 

K o ( /  x /)  : G x G — >• G coincides ■with the commutator map (x, y) i—> xyx~ly~1.

(2) I f  f  is separable, it is central.

(3) The separable degree of the (finite) field extension W>(H)/E(G) is exactly ker / .

It turns out that the irreducible and connected components of G coincide, and are the 

cosets of a certain normal subgroup G°, called the identity component of G. We write 

ffG  for the number of components: this of course coincides with the cardinality when 

this latter is finite. Though we will also use notation such as f fG(k) (cf. the discussion 

preceding [2.5.0.5]) for the number of fc-rational points of a k-group G, there ought to be 

no confusion as all references are to finite quantities. G° is itself a k-group, although the 

other components need not be Ai-varieties. It is true, however, that

P ro p o sitio n  3.1.0.3 There is a finite separable extension L of k such that the components 

of G are defined over L and pairwise L-isomorphic as varieties.

P roof: Choose an L such that each component has an Irrational point. Clearly,

each point of G is rational over some finitely generated extension of k : but by density 

of separable points [2.5.0.5], one can choose a /cs-rational one in each component. Then 

the L-isomorphisms mentioned are composites of left translations by such points and their 

(group) inverses. □

By an action of G on a (non-empty) k-variety V , we mean of course that V  is a G-set 

in the usual sense, and that the ‘action map5 a  : G X V  — > V  is a regular morphism of 

varieties: to say that it is k-morphic has the obvious meaning. For a closed subset M  of 

V, we define the normalizer of M  in G to be

N g ( M )  : =  {g €  G\gM  C M }
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and the corresponding centralizer

Z g { M ) n-ceM-A/f?(W)-

Both of these are closed submonoids of G and the latter is even a subgroup: the 

notions have the expected meaning when V  = G and a  is ‘action by conjugation’ thereon. 

In the latter case, we write Z(G)  for the centre Z q {G) of G. If G acts (in the above 

sense) 011 both V  and W, a morphism : V  — > W  is said to be G-equivariant if one has 

4>(g.x) =  g.<j>(x) V:x G V, \fg G G. An important technical result is the following ‘closed 

orbit lemma’ [Bor91, 1.8].

P ro p o sitio n  3.1.0.4 For the action a  : G X V  — > V, ■with (G and) V  defined over k, 

the orbits are locally closed (in V ) smooth subvarieties o f V ,  whose boundaries are orbits 

of strictly lower dimension.

In particular, orbits of least dimension are closed, and G is itself a smooth variety.

A principal result is, for each G, the existence of a ^-isomorphism to some /j-subgroup 

of GI/n (E) for some n (this being one reason to suppose E sufficiently large). More 

exactly, we can express this by supposing that there is a separable fe-morphism which is 

a bijection from G{ka) to the separable points of the image. This ‘concrete’ realization of 

G is sometimes useful.

We say that G is solvable (nilpotent) if this is true of the abstract group G: it turns out 

[Bor91, 2.3] that the commutator subgroups appearing in the derived series (descending 

central series) for G are closed, and indeed are defined over k. After a couple of sections 

outlining some needed constructions, we discuss the classification of algebraic groups.

3.2 Som e constructions

3 .2 .1  Q u o tien ts

A ^-morphism 7r : V  — > W  (of varieties) is called a quotient (or g-quotient with for 

geometric) morphism (over k) if
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(1) 7r is surjective and open; and

(2) For any U C0 V, the comorphism 7r* induces an isomorphism from E[tt([/)] onto 

the set { /  E E[£/] : /  constant on fibres of 7r|[/}.

Next, suppose that a fc-group G acts morphically on a k-wariety V : an orbit map is then 

a surjective morphism tt : V  — > W  of varieties whose fibres are the orbits of G in V. Then 

a g-quotient of V  by G over k is such an orbit map which is also a g-quotient morphism 

in the previous sense. The condition is stronger than that of (categorical) quotient. In 

particular, a necessary condition for the existence of a g-quotient of V  by G over k is that 

all orbits must have the same dimension (and so are closed in G [3.1.0.4]). Clearly also, a 

g-quotient is unique up to a unique ^-isomorphism, so we are justified in using notation 

like V /G  or G \ V . As we will not be concerned with quotients in any other sense than 

tha t just described, we drop the qualifying ‘g-5.

Proposition 3 .2 .1.1 [Bor91, 6.8] Let II  be a k-subgroup of the k-group G. Then the 

quotient tt : G — > G /H  exists over k, and G /H  is a smooth quasi-projective variety. If, 

further, II is normal in G, then G /H  is a k-group and n a k-group k-morphism.

It is not usually true that the existence of a quotient over k implies that the obvious 

map of ^-rational points is surjective.

3.2.2 Lie a lgebras  an d  th e  ad jo in t rep re se n ta t io n

For each x E G, one has the /c(.x‘)-automorphisms of the (variety) G given by y (-> x.y and 

y t-> y.x~l , called left translation and right translation respectively. We will denote their 

comorphisms respectively by X x  and px .

We define the Lie algebra of G, denoted g or C(G),  to be the E-vector space g of left- 

invariant E-derivations of E[G'], with bracket operation := D 1D 2 — D 2 D 1 . Thus

one has

=  {13 E £>erE(E[G], E[G]) \ / 3 o \ x = \ x of3 V* E G]
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This is a ‘restricted Lie algebra’ in the sense of Jacobson [Bor91, 3.1] with lpth-power’ 

as ^-operation, and it can be shown that g has a natural ft-structure induced by tha t of 

G. Further dim g =  dim G, and each L-morphism /  : Gi — ¥ G 2 of ft-groups induces a 

corresponding L-Lie algebra homomorphism f : gi — y 9 2  of the (fc-structures on the) Lie 

algebras.

For each x £ G, we have the inner automorphism Int(x)  of G, given by conjugation by 

x] the differential of this is called Ac/(m), and we get a map Ad : G — > GL(g), the adjoint 

representation of G; clearly the image of Ad consists of Lie algebra automorphisms, and in 

fact Ad  is a fc-morphism of ^-groups [Bor91, 3.13]. Note that this also gives us, for every 

^-subgroup H  of G, a fc-action (in the sense above) of H  on g.

3.2.3 J o r d a n  decom posit ion

It is well known that each x £ G Ln(E) is uniquely expressible in the form x = x sx u = xux s 

where x s is ‘semisimple’ (viz. is conjugate to a diagonal matrix in GLn(E)) and xu is 

‘unipotent’ (viz. has all of its eigenvalues equal to 1). Further, one shows that any 

(closed) subgroup H  of GLn(E) containing x also contains x s and xu. We can extend 

the definition to a general E-vector space V, at least for those endomorphisms /  of V  

which are ‘locally finite’ (meaning that V  is expressible as a union of finite-dimensional 

/-stable subspaces). If W  is such a subspace, we write f \w  =  ( f \w)s( f \w)u  and this 

gives a well-defined decomposition of / .  Moreover if a subspace U of V  (not necessarily 

finite-dimensional) is /-stable, then it is / s-stable and /^-stable too.

One wishes to do this as it transpires that the E-vector space E[G] has the property 

of being a union of finite-dimensional subspaces which are not only defined over fc, but 

are p^-stable for every x £ G (viz. the same subspace decomposition works for every x.) 

Hence we have px — (px)s (Px)u for each a; £ G: as each of these factors is a (vector space) 

automorphism of E[G], provided we know that they also preserve multiplication (which 

follows from the commutation of Jordan decomposition with tensor product [Bor91, 4.3]) 

the assignment /  1—>• (px)sf ( l )  defines an E-algebra homomorphism E[G] —¥ E, and so an 

x s £ G by [1.1.0.1]; similarly we get an xu £ G.
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One verifies that these commute, and that (px)s — P(xB), and similarly for x u. Further, 

this decomposition is preserved by morphisms, so it really is intrinsic, and coincides in 

matrix groups with that described before. The obvious rationality question is answered 

[Bor91, 4.2] by a statement that if x G G(L)  for some field L, then both x s and x u are 

in G(I4). There are intrinsically defined subsets Gs and Gu in G, namely the subsets 

{x G G|.t =  x s} and {.t G G \ x  = respectively, though they are not usually subgroups 

and Gs need not be closed.

3.3 Som e standard groups

3.3.1 C o n n ec te d  one-d im ensional groups

The following turn out to be the only connected groups of dimension 1, up to ^-isomorphism 

[Bor91, 10.9]: the additive group Ga of E, and the multiplicative group Gm, or E*. Clearly 

these are realised over the prime field and abelian. One also has Gm =  A ut^.Gp.fGa), 

acting by multiplication.

A character of a /e-group G is a morphism from G to Gm .

Proposition 3.3.1.1 [Ros57} Prop.3 ]  Let f  : G — > Gm be a regular morphism of vari­

eties^ where G is a connected k-group and /(e c )  =  1- Then f  is a character of G.

3.3.2 U n ip o te n t  g roups

G is called unipotent if G =  Gu (Gu as above). Unipotent groups are nilpotent [Bor91, 

4.8], and have no non-zero characters. For p ~  1 they are connected, and for p > 1 

all elements are p-torsion. Good examples are the group Un of n x n upper triangular 

matrices in GLn(E) having ones on the diagonal, or closed subgroups thereof. The Lie- 

Kolchin theorem [Bor91, 10.5] shows that every connected example is of this form.

3.3.3 Tori

The fc-group 5  is a torus if it is isomorphic to G„[ for some r (equivalently, G = Gs and is 

connected). The set of characters of S (viz. the character module of S), will be denoted
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X ( S )  or just X .  Connected subgroups of tori are also tori, and indeed are direct factors 

[Bor91, 8.5].

We now describe the ring of (algebraic group) endomorphisms of a standard torus. 

P ro p o sitio n  3.3.3.1

There is a ring isomorphism Mn(Z) =  Hom^.Gp.(C]?\ , G]ln ) where Mn{Z) denotes the 

n x  n integer matrices. The isomorphism is given by sending the matrix M  = (niij) to the 

mapping M  : G” — y G” which takes (xl t x2, . . . ,  x n) to ([1; ^ M I *  x ? 2i i • • •« Tli x? n')-

Of course, this gives the underlying abelian group of G]n a structure of Mn(Z)-moduie. 

This will be useful later, though we will write the action additivdy - thus 0 will mean the 

element ( L, 1 , . . . ,  1) of .

Actions of tori on E-vector spaces (viz. finite-dimensional representations of tori) are 

diagonable, in the sense that if we have 9 : S  — y G L(V ) (this of course to be a morphism), 

then 9(S) can be conjugated into a diagonal subgroup of GL(V)  (with respect to some 

basis for V), and we therefore have

V ~  ©aeA'flo where ga =  {.t g V  : a(t)x =  9(t).x \ft e S};

the a G X  for which /  0 are called the weights of S in V. The nonzero weights are 

called the roots of S  in V. Note in particular the case where S  acts on a group G (usually 

S  < G and by conjugation) and so on g via the adjoint representation. The resulting 

weights (roots) are called the weights (roots) of S  in G. This set of roots will be denoted 

d>(5', G): these will play a critical role in what follows, as in the whole theory. The space go 

will be denoted g5 and called the infinitesimal centralizer of S  in g. g5 is a Lie subalgebra 

of g: the root spaces gQ need not be subalgebras, though they often will be. A result we 

need is the correspondence of global and infinitesimal centralizers of tori.

P ro p o sitio n  3.3.3.2 [Bor9It 9.2]

Let G be a k-groupt and S a k-torus acting thereon. Then gs =  C{Zq {S)).

A cocharacter (or multiplicative one-parameter subgroup) is of course a morphism in 

the opposite direction. The set of these (the cocharacter module) will be denoted X*(S) 

or just X*.
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We define the following operations: for X\iX2 £ X  and aq, a 2 G X *,

(AT +  X2 )(«) := Xi(*)X2 (a:) for x G T  and (aq +  ct2)(y) := a x{y)a2{y) for y G Gm .

X  and X* are free abelian groups of rank equal to the dimension of S  [Bor91, 8.6], and 

indeed are shown to be in duality by the following construction: if x  G X  and a  G X * 

then yocr G h o m ^ .G p .^m , <&m) so x o a  ' Gm — > ls the maP x v n for some 

[3.3.1]. This gives a surjective homomorphism of abelian groups X  X X*  — y Z,which we 

will write as (cv, A) h*<q:, A>.

Consider now subtori of the group G. An important property of these is their ‘rigidity’ 

[Bor91, 8.10], viz. that if S  is a subtorus of G, then A ^fS1)0 — 2 q (S)°: in other words, S  

has Tew1 non-trivial automorphisms. The finite group N g {S)/ Z q{S) is the Weyl group of 

G with respect to S. For S  maximal, we just call it the Weyl group W  of G. Weyl groups 

are Coxeter groups (are generated by finitely many involutions). All maximal tori of G 

are conjugate, and this shows that W  is independent (up to algebraic group isomorphism) 

of the choice of maximal torus. One gets a different geometric interpretation of the Weyl 

group by introducing the notion of a root system [4.1].

For the next result, recall that p is the characteristic exponent of k.

Proposition 3.3.3.3 [Bor9J, 8.12,8.5]

There is an antiequivalence of categories between k-tori (and k-morphisms thereof) and 

finitely generated free abelian groups which, are p-torsion-free T-modules (where F acts 

continuously via the Krull and discrete topologies).

The last result will be refined in [4.3.0.2].

3.3.4 C o n n ec ted  solvable g roups  and th e  B ore l fixed p o in t  th e o re m

Let H  be connected, solvable and defined over k .

Proposition 3.3.4.1 [Bor91, 10.6]

(i) H u is a k-closed connected normal subgroup of H  which contains H 1 = (H,H) .
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(ii) H / H u is a k-closed torus, and indeed 11 Hu ^  T  for any maximal torus T.

(Hi) All maximal tori of II are conjugate, and the Weyl group of H  is trivial.

We now come to the principal theorem in the theory of algebraic groups.

T h eo rem  3.3.4.2 (B orel fixed po in t theo rem ) [BorQl, 10.4] Suppose the connected 

solvable k-group II acts k-morphically on a complete k-variety V , with V  nonempty. Then 

the action has a fixed point.

We will not make use of the theorem explicitly, but a general algebraic k-group H  is 

studied via its maximal connected solvable subgroups (its Borel subgroups), such being 

necessarily closed.

3.4 C onnected  groups

We pass now to a general connected /.-group G.

3.4.1 G en era l  r e m a rk s  an d  th e  density  th e o re m

We begin with some results collected from [Bor91, 11.1-4],

P ro p o sitio n  3.4.1.1

(i) All Borel subgroups of G a re conjugate, and G fB  is a projective variety.

(Ii) The maximal connected unipotent subgroups of G are the unipotent parts of Borel 

subgroups (and are therefore mutually conjugate).

(Hi) The maximal tori of G are maximal tori of Borel subgroups (and are therefore mutually 

conjugate).

(iv) I f  an automorphism of G fixes a Borel subgroup, it fixes G.

(v) G has a maximal torus defined over k [Bor91, 18.2],

It is important to note that G may have no Borel subgroup defined over k [Ti66, Table

II].

P ro p o sitio n  3.4.1.2 (D ensity  T heorem ) [Bor91, 11.10] Suppose B an d T  are respec­

tively a Borel subgroup and a maximal torus of G, and write C  for Z q (T)°. Then C is
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nilpotent, and the union of the conjugates of B (respectively Bu, T, C) is G (respectively 

Gu, Gs, contains a dense open subset of G).

C oro llary  3.4.1.3

(i) Z q {B) — Z(G),  and Z(G)S is the intersection of all of the maximal tori o f G [Bor91, 

1 1 . 1 1 ] .

(ii) For any torus S  in G, Z q (S) is connected [Bor91, 11.12],

The centralizer of a maximal torus is called a Cartan subgroup. Its dimension is called 

the rank of G.

3.4.2 P a ra b o l ic  subgroups

A parabolic subgroup of G is one such that G fP  is complete. By [Bor91, 11.2], G /P  is 

complete iff it is projective.

T h eo rem  3.4.2.1 [Bor91, 11.16,11-17] Let P  be a parabolic subgroup of G.

(1) [Chevalley] P  coincides with AfcjiP) and is connected;

(2) For any Borel group B, there is a unique parabolic subgroup Q which is conjugate to 

P and contains B.

3.4.3 Effect of m o rp h ism s  on B orel subgroups

P ro p o sitio n  3.4.3.1 [BorQl, 11.4] (For any connected group G.)

(1) I f  f  \ G — > H is a surjective morphism, with B = Bu XI T  Borel in G, then f {B)  =

xt f (T )  is Borel in H , and every Borel subgroup of H  is so obtained. Further, for 

any torus S  of G , f { Z G(S)) =  Z H(f(S)).

(2) I f  A is a connected subgroup of G , and B q is a Borel subgroup of A, then B q =  (AflB)0 

for some B Borel in G; if, further A is normal in G, every Borel subgroup of A is so 

obtained. The analogous results for maximal tori, and for maximal connected unipotent 

subgroups also hold, mutatis mutandis.

P ro p o sitio n  3.4.3.2 [BorQl, 11.15] If G acts transitively on a variety D so that the 

isotropy groups of points of D are Borel in G, and S is a torus in G, then Z G(S) stabilizes
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and acts transitively on each irreducible component of that subvariety of D consisting of 

the fixed points of S.

Further, if  B is Borel in G,and S  C N G(B), then Z b  (S) is Borel in Z G(S), and every 

Borel subgroup of Z q (S) is so obtained.

The collection B of Borel subgroups of G can itself be given a structure of projective 

variety via the map described below. Fix any C £ B, and let tt : G -—> G fC  be the 

obvious quotient map. For each g G G, put x =  7r(c?) . Then the map <f> : G /C  — > B 

given by < f> {x) =  gCg~l is a bijection by [3.4 .2.1]. For any connected subgroup H  of G , 

put Bh  =  {C £ B : C Z H}:  then this is the set of fixed points of H  in B (or, of course 

in G / C ) - Bh is nonempty iff H  is solvable. We write 1(H)  := J5)°. Thus for a

maximal torus T , I ( T ) =  I ( T) U Xi T.

Recall the Weyl group W  =  MG( T ) fZ G(T) of G.

Proposition  3.4.3.3 [Bor91, 11.19] Let B be Borel in, and T  a maximal torus in, G.

(1) W  acts simply transitively on BT (and so the latter is finite).

(2) B D T  iff B D Z g (T).

Proposition 3.4.3.4 [Bor91, 11.20] Let G and G' be two connected k-groups.

If a  : G" — > G is a surjective morphism, with T' a maximal torus in G', and <y(Tr) — 

T, then T  is maximal in G and surjective maps are induced B,T — > BT and W '  — > W  

where the notations W  and B' refer to corresponding quantities in G’. The second map 

is a morphism of abstract groups.

Further, if ker cv C B' \fB' G B', the latter two mappings are bijective.

3.4.4 T h e  rad ica l  an d  u n ip o te n t  rad ical

We define the unipotent radical u(G) to be the maximal connected normal unipotent 

subgroup of G, and the radical r(G) of G to be the maximal connected normal solvable 

subgroup of G. These notions are well-defined, and both are fc-closed. We have

r(G) u(G) xi C
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where C  (which is also fc-closed) is a maximal normal torus of G which rigidity shows cen­

tral. One can alternatively characterise r(G) as the identity component of the intersection 

of all Borel subgroups.

3.4.5 R e d u c t iv e  an d  sem isim ple  g roups

We saw above that for connected solvable H ) u(H) = Hu. If G has positive dimension, 

it is called reductive if u(G) is trivial and semisimple if r(G) is trivial. The obvious 

quotients G/ u(G ) and Gjr(G)  are called the reductification and semisimplification of G 

and are fc-closed. The rank of the latter quotient is the semisimple mnk of G. Clearly if 

G is reductive, r(G) coincides with Z(G)°. If G has no infinite proper connected normal 

subgroup, it is called almost simple. We will say that G is almost k-simple if it has no 

infinite proper connected normal subgroup defined over k. We summarize this information. 

P ro p o sitio n  3.4.5.1

We have the following chain of implications among connected k-groups.

‘Almost simple’ implies ‘almost /^-simple’ implies ‘semisimple’ implies ‘reductive’.

3.4.6 R eg u la r ,  sem ireg u la r  an d  singu lar to r i

Let S  now be a subtorus of G , and T  a maximal torus of G containing S. For any s 6 5, 

we have dimiA?({s}) > rank(7: S  is said to be regular if we can choose s such that 

we get equality here (in which case s is said to be a regular element of G). A general 

element g <G G is called regular if gs is. S  is said to be semiregular (singular) if Bs  is 

finite (infinite). We collect together a few salient properties. Recall the notations I{T)  

for (rigeg'r)0P  and 4>(T, G) for the set of roots of T  in G (via the adjoint representation 

[3.3.3]). For a  € 4>(T, G), write Ta — (kera)0, each of these having codimension one in T.

P ro p o sitio n  3.4.6.1 [Bor91, 12.2,13.1,13.2] Let S, T  and G be as just introduced.

(1) T  is regular: indeed the regular elements o fT  form a dense open subset o fT .

(2) Regular toi'i are semiregular.

(3) The following are equivalent.
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(a) S  is regular, (b) Z G(S) is nilpotent.

(4) The following are equivalent.

(a) S  is semiregular, (b) Z G(S) is contained in I (T) .  (c) Z G(S) is solvable.

(5) The following are equivalent.

(a) S  is singular, (b) S  C Ta for some a e $ ( r , ( 7 ) ,  (c) Z G(S) <2 I(T) .

(6) For (3 £ X(T)> (3 € 4?(T,(?) Z G{(kei: f3)°) is not solvable.

3.4.7 S u b to r i  of co n n ec ted  groups

The next results make a hypothesis of reductivity for a connected group tractable. 

Theorem  3.4.7.1 [Bor91, 13.16] I f T  is a maximal to7'us in G, then I ( T ) U = u(G).

Corollary 3.4.7.2 [Bor91, 13.17] Let S  be a subtorus o f T .

( a )  u (ZG(S)) =  Z u{G)(S).

(b) I f  S  is semiregular then Z G(S)U coincides with the groups in (a).

(c) Z g (T) = Z u{g)( T ) m T.

Corollary 3.4.7.3 [Bor91, 13.17]

Suppose further that G is reductive and that S  is a subtorus o f T .

(a) Z G(S) is reductive.

(b) I f  S  is semiregular, then Z G(S) = T, and in particular, S  is regular.

(c) The Cartan subgroups of G ore the maximal tori.

(d) The intersection of all the maximal tori of G is Z(G)°.
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C h a p ter  4

R oots, R eductiv ity  and 

R ationality

In this chapter, we draw together the standard theory regarding the root system of a 

connected reductive group, and treat of rationality questions, including the classification 

theory for semisimple groups.

4.1 R oot system s

We refer here to [Bor91, 14.7]. Let V  be a finite-dimensional vector space over a subfield 

R  of 3R, with dual V*. A reflection with respect to a (nonzero)  cv E L is  an r € GL{V)  

with r(cv) =  —a  which fixes pointwise a hyperplane. (Hence 7’(.t) =  x — < x , \ >  ce, where 

A G V * with < cv, A > =  2 and ker A is the given hyperplane.) A root system in V  is a finite 

spanning set 4? of nonzero elements of V  such that for each a  6  4> 3ra , a reflection with 

respect to cv which stabilizes $  (this being so uniquely determined), and further, that for 

each a,/3 G $  we have ra (p) =  p -  ngjaa  with the npta £ %. The elements of 4> are then 

called roots.

Suppose now that $  is a root system in V . A A € V* will be called regular if < cv, A > 7  ̂ 0  

for all cv £ 4b For such a. A, we write

$+(A) := {a  £ <h| < cv, A > > 0}
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and

A(A) := {a E $ + (A)|cv is not a sum of two elements of <f>+ (A)}.

A basis for d> is a subset A thereof which is a basis for V  such that each (3 E is 

writable as a linear combination (3 =  ±  ma«  with the m a E N Vc*. Then the positive

roots (with respect to A) are those for which we take the sign in the last sum, and 

we denote this set by The Weyl chamber of A  (or equivalently of 3>+), to be denoted 

W C {A),  is defined to be

{A € V"*i < a , A> > 0 Va G A},

and this clearly consists of regular elements.

$  is called reduced if a E $  and ra  E $  for some r E R =>• r E {±1}. The root 

system 3? in V is called irreducible if there do not exist nonzero subspaces Vi and V2 with 

V  =  V\ © V2 and <I>t- (viz. T n Vf) being a root system in Vt for each i. A subset A of a 

root system d> is called closed if the conditions a-, (3 E A and a  +  (3 E $  imply cv +  j3 E A. 

Note what this means if <f> is not reduced.

We also have a notion of Weyl group W  =  W ($) for <3> W  is the group of auto­

morphisms of generated by the reflections ra. Any W-invariant scalar product on V  or 

on V* will be called admissible. Clearly W  is a finite Coxeter group - it is generated by 

finitely many involutions ra , and is contained in the group of permutations of <&.

For a.', (3  E $  write

(cv, (3) { 7  E $  : 7  =  rot +  s{3 for some r, s E Z +}.

Clearly (cv,/?) may be empty. Similarly, if are subsets of $ , we write (ifbtld) for

Uae$ii3 6 xir'(a’, (3). We call T' special if (\P,W) C \h, and there exists A E A* such that 

< cv, A> is greater than zero Vcv E 47

Theorem  4.1.0.1 Let &  be a root system in V .

(1) For any regular A E V*, A (A) is a basis of (I>, and is the unique basis contained in 

$+(A).
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(2 ) A subset \I/ C 4? is special iff J/ is closed and is contained in for some ordering on

Let 4> be reduced, and A any basis thereof.

(3) W(3?) acts simply transitively on the set of bases of 4? (or equivalently on the set of 

Weyl chambers).

(4)  $  =

(5) The ra for a  G A generate W (4>), and there is a well-defined length function I : W  — > 

N given by

l(w) ■ min{£ G N : there is an expression w =  rai ra2. . .  rat with each aj  G A}

=  # { { 5  E G $ " } .

Further, there is a unique element iuq of maximal length

The possible root systems are classified (up to isomorphism) by the Dynkin diagrams, 

defined thus. For the root system 4? with basis A, the Dynkin diagram V  = Dynffb, A) is 

a graph with (say) I =  f fA  nodes. Fix any ordering {au ,. . . ,  a/} on A, and write n t-j for 

the integer naita defined before (these are the Cartan integers of 4?).

Join a{ and aj by n^nji  edges (in fact, one always has 0 < n-ijnp < 3), and finally, 

if we have bonds from ct; to a*j,*with n{j f=- —1, we assign this direction thereto. As is 

well known, there is in each (connected) component, at most one arrow, and at most one 

multiple bond. The short roots are those towards which any arrow points, and the long 

roots those away from which any arrow points. (By convention, they are all long if there 

is no arrow.)

Further, these components correspond exactly to the irreducible root subsystems of <f>. 

The irreducible reduced root systems are to be found in the usual list A\ for I > 1 , B{ for 

I > 2, Ci for I > 3 , Di for I > 4, Eg, Eh, Es , E4 and G2 . The only irreducible nonreduced 

system is tha t of type BC n (n > 1 ). This last is (as root system) the union of a B n with 

a Cn (identifying long roots in one with short roots in the other).

For further discussion of this see [Bou6 8 , VI,§4.14]. Non-reduced root systems can 

arise in the relative theory of algebraic groups [Bor91, §2 1 ].
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There is a convention for numbering the nodes, for details of which we refer to [4.5.5] 

where it will be more topical.

4.2 C onnected  reductive groups

In this section G is a connected reductive k-group, and T  is a maximal torus in G. For 

any T-stable subgroup H  of G, we write <&(H) for <&(T, iT). If a  G F(T, G) then Ta is

defined to be (kera)0, Ga '= ZQ{Ta). Finally, we write T for the set of roots of G outside

I(T),  namely

4' =  { a € 4 > (T ,G ):0 a £ T (/(T ))} .

4 .2 .1  T h e roo t sy ste m  o f G

T h eo re m  4.2.1.1 [BorQl, 13.18,13.20,13.21]

(1 ) T =  C(T) = qt  and q = ©qG$ Qa .

(2) The Tq. are the singular subtori o fT  of codimension 1 in T, and

( n ^ n f  = Z(G)° = r(G).

(3) T generates (over Z ) a subgroup of finite index in X (T /Z (G )°)  C X{T). Further, if 

ci',/3 G F are linearly dependent (over Z), then a- =  X{3.

(4) For each a  G 4b Ga is reductive of semisimple rank 1 , —ex. G 4>, C(Ga) = 0 T® 0 a© 0 -a ,  

and ga has dimension 1 (so is in particular a Lie subalgebra of g). Furthermore, there is 

a unique connected unipotent subgroup Ua in G with C(Ua) =  0 a .

(5) For each B  G BT, <3?(T, GaC\B) =  F (5)n{± a '}  is a singleton, so 4>(T) U (—4>(5)) =  

Further C{B) = gT © rLe<&(B) Sa, and there is a total ordering on X {T )  such that 4>(jB) 

is exactly the set of positive elements in T.

(6) Let H ,H f be any two connected T-stable subgroups of G.

(a) C(H) =  £ ( T  n H)  ® Uae^T.H) Sc

(b) ff =< (T n H)°,  Ua \a € $(T, H ) > .

(c) C(H n if') = C { H ) n C { H ‘).
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The groups Ua as in (4) are called the root subgroups of G with respect to T. 

Proposition  4.2.1.2

(1) For a, (3 £ 4? with a ^  dt/3, the following set is special.

[a-, /? ) := {  7  G $  : 7  =  ra  -f s(3 for r, with s > 0}

Let Y C 4? be special.

(2) The set {C/0.]cv £ T} directly spans (in any order) a T-stable subgroup U~r of G.

(3) For any a  £ 4? such that (cv, T) C Y, Ua normalizes Ur-

Proposition  4.2.1.3 [Bor91, 18.7] G is k-unirationcil, and so (for infinite k) G (k) is 

dense in G.

Theorem  4 .2 .1 .4  [ Bor91, I f . 8 ] Put V  = X (T /r (G ))  <S>zQ> identified canonically with 

a subspace of X (T )  %% Q. Then 4?(T, G) is a reduced root system in V, with Weyl group 

1/17(4?) =  W } where W  is jVq (T )/ Z q (T )} and W  acts simply transitively on BT .

Further r(G) =  Z(G)° is the (identity component of the) intersection of all root kernels.

Note the appearance of r(G): this signifies that this is essentially a theorem about 

semisimple groups. However G and its semisimplification G /r(G ) have the same root 

system and Weyl group, by [3.4.3*.4], or as verified in the proof of [5.4.5.1].

Corollary 4.2.1.5 For any B  £ BT , put A for the set of a  £ 4?(H) which are not sums 

of two elements o f$ {B ) .  Then A is a basis of §  (the set of simple roots determined by B 

and T ), and. further, G is generated by {G^lcv £ A}.

4.2.2 B r u h a t  d e co m p o s it io n

We need the following result, whose hypotheses are seen to be satisfied in our situation 

with T  a maximal torus in G, U =  B u for some Borel subgroup B  containing T, and 

action by conjugation.

Lemma 4.2.2.1 [Bor91, lf-4]
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Let a torus T  act on a connected unipotent group U, with § (H ) denoting 4?(T, H) for 

any T-stable subgroup of U. For each a' £ §(H ) define Ua =  {x £ U : (kerce)0 .a; =  x}, 

and suppose that:

(i) C(U) — U ae$(y) Ua dim ua — 1 f or each a7 and

(ii) ‘whenever a  and (5 are distinct elements of <&(U) then (kercv) 0 /  (ker/3)°.

Then the following hold.

(a) Ua is the unique T-stable subgroup of U such that C(Ua) = ua .

(b) Any T-stable subgroup II  ofU is connected, and directly spanned by {Ua\a £ $ ( i? )} 

in any order.

(c) I f  H  and x H x - 1  are both T-stable subgroups o fU  they coincide.

Fix B  £ Bt , put U = B u, <3?+ ~  <3?(P) and A for the basis of in <3>+ . Similarly, put 

B~  for the opposite Borel subgroup to B (viz. that associated to — and U~ for its 

unipotent radical. It is convenient to write a > 0 for cv £ or cv < 0 for — cv £ 3?+ .

For y £ G, and a subgroup H  of G, we denote by yH  the conjugate y H y " 1. In 

particular, for any iv £ W,  we have mU and WU~, respectively the images of U and U~ 

under w - recall that iu is regard able as a (any) representative of T =  -2 g(T) 'm AFg (T), 

acting on G by conjugation. Then if  we write Uw := U n wU and U'w := U these

are T-stable subgroups of U (so §,re connected and directly spanned by the U7  for 7  > 0 

which they contain - in any order [4.2.2.1]). Put <3>+ for the set of 7  with C Uw.

P ro p o s itio n  4 .2 .2 . 2  Suppose <3?̂  =  <3?+ for w ,y  £ W . Then w — y.

P roo f: If n is a representative of w in A/g(T), then the obvious actions of w on X  and

X*  are given by composition with conjugation by n. Thus if a- £ X  and A £ X * , we 

have cv™ o A — a  o ™A in a notation which reflects the order of that composition. Since 

G is reductive, every regular A £ X*  lies in a Weyl chamber, and this latter chamber 

is determined by the signs of the < a, A > for cv £ <3?+ . We saw a moment ago that 

<cv™, A > = <  a’, WX >, so that if we suppose A in the Weyl chamber determined by B (viz. 

defined by the condition < a-, A > £ ’Z + Vcv £ 4?+), for such positive cv, < cv, w\  > > 0 

precisely when a- £ <3?*. Then the hypothesis implies that ™A and yX lie in the same Weyl
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chamber: but W  acts simply transitively on these chambers, so w =  y. □

It also follows from [4.2 .1 .2 , 4.2.2.1 ] that U = UW.U'W =  U^.U^ as the two sets of 

positive roots involved are closed and partition 4>+ .

Theorem  4,2.2.3 (Bruhat and cellular decom positions)

(1) [Bruhat decomposition of G] G — Ilioetv B w B  — V'wB> and, for each w G W, 

there is an isomorphism of varieties

X B  — -> B w B  given by mapping (x, y) t-f xwy.

(2) [Cellular decomposition of G /B] G /B  is the disjoint union of the U-orbits Uwx0 (for 

w G W ) where xq is the fixed point of B in G / B . Similarly the map U'w — y Uwx0 given 

by u uwxo is an isomorphism of varieties.

Proof: We include a proof, as this decomposition is central for what follows. Since

B w B  = UwB  and Biux0 =  Uwx0) the statements (1) and (2) are equivalent. Thus it is 

enough to show the following.

(a) w ,y  G W  and Uwxo =  UyxQ imply w =  y.

(b) G =  B W B .

(c) The map f w of (1) is an isomorphism of varieties.

By the last proposition, to prove (a), we need only show tha t =  4?+. Suppose we 

have yxo =  uwxo with u G U . Then Uy (viz. U n  yB), the stability group in U of yxo, 

is the same as that of uwx0, namely Uuw =  UUW- Then Uw and Uy are both T-stable 

subgroups of (unipotent) U) which are moreover conjugate in U. But two such groups 

must coincide by [4.2.2.1], and we get that <£>+ =  4?*, proving (a).

We prove (b) in stages, (i) Suppose that G has semisimple rank 1 (so that # W  — 2 ). 

Then, by (a), B W x o consists of two ?7-orbits, so it suffices to show that G /B  consists of 

at most two 17-orbits. Consider the morphism (of varieties) U — y G /B  given by u uy 

(where y is not a fixed point of 17). Noting that U is isomorphic as variety to Ga , so 

regardable as P 1 minus a point, and that any morphism V  — y C  from an irreducible 

smooth curve V  to a complete variety C  can be extended to a morphism Vc — y C  where
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Vc is the (unique) complete smooth curve in which V  is open [Bor91, AG 18.5], we get a 

morphism t : P 1 — y G /B .  The image is one-dimensional as y is not a fixed point of U, and 

is closed by [1.12.0.1]. Thus t is surjective; but the image consists of (some) fixed points of 

U and a one-dimensional orbit (as U has dimension 1). Fixed points correspond to Borel 

subgroups of G normalized by U. The Normalizer Theorem [3.4.2.1 ] guarantees that if 

C  is a Borel subgroup, C  C j\fo(U) iff U C M g { C )  — C. Hence fixed points correspond 

bijectively to the Borel subgroups of M  = AfoiU)0. But this last group is actually equal 

to B , verifying (i).

(ii) For a  E 4> and x E [G /B)T, Gax =  (Uax) U (Uarax ).

Recall tha t ra denotes the simple reflection corresponding to a. To verify the claim, 

consider (Ga)x = Ga D B x . Recall that this is Borel in Ga by [3.4.3.2 ], and we get a 

bijective and (?a-equivariant morphism Ga./(Ga)x — > Gax. As Ga has semisimple rank 

1 , and Weyl group < r a |r^.> with respect to T  the result follows from (i).

(Hi) I f  now a  E A and 4/ =  \  {a1}, 4/ is special, so the Uy for fl E 4/ directly span

a group Uy, which is normalized by Ga , and U =  UaUy ~  UyUa.

That 4/ is special, and that (cv, 4/) C 4/ is easy. Moreover, (—a ',1®) C 4/, since if 

7  =  r ( —a*) +  s(5 with r ,s  E Z+ and (5 E 4/, then ft = m S$ wifh m$Q > 0 for some

$Q ^  a  as $  is reduced. Then the ^-coordinate of 7  is sJq > 0 so 7  E 4?+ , and is distinct 

from a-. Then the claim about direct spanning follows from [4.2.1.2]; tha t Uy is normalized 

by Ua and U -a , and hence by Ga is clear. Hence the asserted equalities hold.

(iv) For a E A and x E (G /B)1- , GaBx — (Ux) U (Urax ).

Now B  =  UT — UaUyT  by (in), so

GaB x — GaUaUyTx = GaUyx — UyGax

by (in), which is

Uy{ (Uax ) U ( UQ ra x )) by (ii).

But this is just (Ux) U (Urax ) as required.

(v) Finally, if a  E A, GaB w B  C B wB U Bra wB for any w E W . This holds as

GaBwB  =  (UwB) U  (Uraw B ) C (BivB) U (B raw B ).
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Since G is generated by the Ga for a- G A by [4,2.1,5], so G {BW B)  C B W B , proving (b).

(c) Finally, as Uw =  U D w B  =  U fl wBw~x =  U fl wUw~x, it follows that Uww C U, 

and similarly, U'ww C wU ~. Thus B = UT — U!^UWT  so B w B  =  U'wUwwB  =  U^wB  and 

hence the given map f w is surjective. Then U!ww C wU~ and U~ fl B  — {e} implies that 

it is injective also. Clearly f w is a morphism of varieties, so it is now enough to show that 

it is separable by [1.9.0 .2 ]. But £(U ~ ) intersects j£(B) =  trivially, so dfw is

surjective, and hence f w is separable. □

4.3 Q uasisp lit and split groups

G is a connected &-group in this section. G is k-quasisplit if it has a Borel subgroup 

defined over k.

A connected solvable fc-group B is fc-split if it has a composition series B = B q > B\ > 

• ■ •> B r =  {e} consisting of connected fc-groups such that Bj/B j+ i  is fc-isomorphic to Ga 

or Gm for each j  G — 1 ). G is k-split if it is fc-quasisplit, and it has a Borel

subgroup B  which is defined over k and &-split.

Any extension m of k such that G is m-split is called a splitting field for G (or the 

splitting field if it is the least such).

Theorem  4.3.0.1 (Splitting for connected fc-groups)

(1 ) G is ka-split.

(2) I f  G is reductive, then it is k-split iff it has a maximal torus T  which is k-split. When

this holds, every component of jVq (T) has a k-rational point [Bor91, 18.7, 21.2].

(3) I f  G is unipotent, it is k l-split.

(4) I f  Hi and H 2 are connected reductive k-groups which are k-split and isomorphic, then 

they are k-isomorphic [BT65, 2.13],

(5) I f  k is finite, G is k-quasisplit [4.4.0 .2 ].

A connected reductive k-group is said to be k-anisotropic if it has no Ar-split subtorus 

of positive dimension. For the following results we refer to [Bor91, §8 ].
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Proposition  4,3.0.2 (Splitting for &-tori)

Let T  be a k-torus of dimension n and I an algebraic Galois extension of k.

(1 ) T  is k-quasisplit and k s-split.

(2) The following are equivalent.

(i) T  is k-split.

(ii) T  is k-isomorphic (as k-group) to .

(iii) The group X (T )k  o f  characters defined over k spans the E-module E[T].

(3) Every (closed) subgroup of a k-split torus is k-split.

(4) There exist unique k-subtori T(i, Ta o f T  such that Td is k-split, Ta is k-anisotropic,

Td H Ta is finite, and T  = TdTa.

(5) The antiequivalence [3.3.3.3] induces a bijection between the k-isomorpliism classes of 

I-split k-tori o f dimension n and the 7,-inequivalent representations o fG a li l /k ) in GL(n, %).

We will formally define Z-inequivalent representations in [5.2.2].

Theorem  4.3 .0 .3  [Bor91, 15.13] I f  I f  is connected, solvable and k-split, acting k-morphically 

and transitively on an affine variety V, then V  is k-isomorphic (as variety) to <G£ X G®n .

The numbers b and e are the numbers of factor's of the corresponding type in the compo­

sition series for H , less those for any isotropy subgroup.

Corollary 4.3.0.4

(1) I f  A is a k-group such that A0 =  II, then a component of A is defined over k iff it has 

a k-rational point.

(2 ) I f  G is a connected unipotent k-group, then G is k l-isomorphic (as variety) to affine 

space of the same dimension.

4.4  G roups over finite fields

There are several special features about these facilitating work therewith, resting on the 

theorem of Lang below, to describe which we first discuss Frobenius maps. That for the 

finite field Fg of q elements can be defined thus. Take an n x n  matrix A = (aty) with entries 

in E D  F,r  Then the image of .4 under the Frobenius map Fq is the matrix := (a?-)
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- as distinct from A q. Now if A lies in an algebraic group which is defined over Fq, the 

same will be true of To make this intrinsic, we say that, for an Fq-group G , a map

i : G —  ̂ G is a Frobenius map on G (for Fq) if there is an Fq-embedding j  : G — »• GTn(E) 

for some n such tha t {Fq)s o j  = j  o i for some s E Z +. Clearly any j  determines at most 

one i, and any Frobenius map i is bijective. Of course, the property of Frobeniusness is 

also independent of the Fq-embedding chosen. Note that the differential dj of j  is also 

injective, so di is zero.

T h eo rem  4.4.0.1 (Lang)

Let H  be a connected Wq-group, and let i : H  — 5- H be a Frobenius map (for Fq) on H. 

Then the map <bjj : II  — > H given by x i-> x~ [ • i(x) is a separable surjection.

P roof; This uses a few simple facts about differentials which can be found in [Bor91, 

3.2]. 4>h  fixes the identity e of G. Note that (d(f>H)e{X) =  —X  +  (di)eX ,  so {d4>n)e is

surjective. H  being irreducible, it follows that 4>h  is dominant and separable by [1.9.0.2].

Next, pick y E II, and consider the map t : H  — y II,

t : z \-+ * - 1  • y ■ i{z).

Then (dt)e maps the tangent space at e into that at y and is also surjective (as it has the 

same differential as z z - 1  • y),-and so t is also dominant. We have shown tha t each of 

&H[H) and t{H) contains a nonempty open subset of H . The images therefore intersect, 

and so there exist pi, <72 £ H  such that f/]-1 • i(gi) = gif1 • y ■ i{gf)- Thus y = g~x • i(g) 

where g =  <71 ■ g f 1. □

C oro lla ry  4.4,0,2

(1) I f  f  : H  — > A is an Wq-isogeny then H and A have the same number of Fq-rational 

points, and the same zeta function over Fq.

(2) [Serre] H  is quasi-split over Fq.

(3) I f V  is an Fq-variety on which H acts Fq-morphically and transitively, then V  has an 

Fq-rational point.

(4) I f  1 —J- A —¥ B —¥ C —¥ l i s a  short exact sequence of connected groups over Fq, then



Vr > 1 , the induced sequence 1  —)■ A r —)■ B r Cr —£ 1 of UTgr-rational points is a short

exact sequence of abstract groups.

Proof: All of these facts are standard. We just remark that the proof of (1 ) consists

in observing tha t /  o <j>H — <pA o f ) and equating the degrees [1 .6 ] of these maps. □

4.5 C onn ected  sem isim ple groups

4 .5 .1  S tru ctu re

Let G be a connected semisimple fc-group. We write A for the group of algebraic group 

automorphisms of G, and Inn(G) for the group of inner automorphisms of G (namely 

G /Z(G)).  Further, let A b ,t  be the subgroup of A stabilizing both B  and T , where we fix 

a maximal &-torus T  and a Borel subgroup B  therecontaining. We also write V  for the 

Dynkin diagram of G - recall the correspondence between bases for 4> and Borel subgroups 

of G containing T: the present basis of <I> will be denoted A.

P ro p o sitio n  4.5.1.1

(1 ) There is a homomorphism A b ,t  t— > Aut('P) whose kernel is A b ,t  Li Inn{G);

(2 ) A  ~  Inn{G) .Ab t!

(3) A /Inn(G ) injects into Aut(V) and so is Unite.

P roof: (1)  For 9 £ A b ,t > as & stabilizes T, it induces an automorphism of $  - as

6  stabilizes B, it stabilizes A, and so induces an automorphism df (say) of V. Now if 

9 E Abj:  Li Inn(G),  say 9 is conjugation by y E G) then y E Afo{B) C\jVg{T) = T, so 9 

induces the identity map on 4*.

Conversely, if 9 E A b ,t  with & (defined as before) being the identity map of <F, then 

note that 9 stabilizes Ua for each ce E A, where the Ua are the usual root subgroups. 

As there is an isomorphism f a : <Ga — > Ua for each ct, there is a ca E E*such that 

9 o foc(x) = f a {ca%) for all x E Ga [Bor91, 10.10]. Hence there exists t E T  such that 

a'(£) =  ca for each a E A, because the a are linearly independent over Z. Since, for such 

a t, conjugation by t has the same effect as 9 on each Ua (a  E A), we can, replacing 9
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by 0i =  /w if t )" *1 o 0, assume that each ca =  1, so that 0i fixes all these Ua. For x E T, 

ct(a') =  ci'o 0i(.t) for each a' E A: but A spans a subgroup of X{ T)  of finite index therein, 

so 0i actually fixes T too. Hence 0i fixes the Borel subgroup T.Ua of Ga — ^ ( ( k e r  a )0), 

and so by [3 .4.1 .1 ], fixes Ga . But by [4.2 .1.5], the Ga generate G, so 0 x is the identity. 

Hence 0 must have been inner.

(2) Recall tha t the maximal tori of B  are mutually conjugate, and that so are the 

Borel subgroups of G. For a E A, there is g E G such that cB = B  where c = Inn(g)  o a. 

Also, dT  =  T, where d =  Inn{b) o c for some b E B. Then d = Inn(b) o Inn(g)  o a as 

required.

(3) This follows from the earlier parts. □

We come now to the major structure theorem (G as above).

Theorem  4,5.1.2

(1 ) If tv : G — / Gx is a surjective morphism, Gi is semisimple.

(2 ) Let H  be a connected normal subgroup of G , and write H ' =  Z q {H )q.

(i) H  is semisimple.

(ii) G = H .H 1 and H  n  H* C Z{G).

(Hi) H  is defined over ks .

(3) Let {Giji E /}  be the minimal' connected normal subgroups o fG  of positive dimension.

(i) The Gi are almost simple, and distinct Gi centralize each other.

(ii) I  is finite (say I  — { 1 ,. . . ,  and the product map Gx X ■ ■ • X Gn — > G is a 

central isogeny.

(Hi) H  is generated by {G.,jG; C H}.

(4) G is almost simple iff 4  is irreducible.

Proof: Only the proof of (2) (Hi), and the centrality in (3)(ii) are not given in [Bor91,

14.10]. To verify (2)(Hi), we can assume k =  ks. Then G and some maximal ft-torus T  are 

both Axsplit, and the latter normalizes H. For each a  E 3>(T, H), the group Ta is defined 

over k (as T is fc-split), and hence so is its centralizer Ha in H. But H  is reductive bjr

(2)(i) and so generated by the Ha by [4.2.1.5]. For (3)(ii), we quote [Bor91, 22.9]. □
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Corollary 4.5.1.3

(1) G is strictly k s-isogenous to a product G\ x ■ • • X Gn of connected almost simple k s- 

groups.

(2) The G{ are permuted by T, and for each orbit J  C I, the product G j, in any order, 

of {Gi : i £ J}  is a connected semisimple almost k-simple k-group. Further, in each orbit, 

the G{ which occur all have the same Dynkin diagram.

4.5.2 T h e  *-action  and k - in d ex

Let T be a maximal /e-torus of G , and S  a maximal /c-split torus of G. The dimension 

of S  is the (relative)  k-rcmk of G. We can suppose S  C T  with compatible orderings 

chosen in X ( S ) and X( T)  [Bor91, 21.8], Having chosen a basis A for 3?(T, G) which 

has this property, we put Ao for the subset of A which vanishes on S , and A*, for the 

corresponding simple roots in $(S , G). Of course, the elements of A \  A 0 need not be 

Z-independent when restricted to S.

Each a E V induces an automorphism of X( T) ,  as T  is Ars-split, and so of T.  Further, 

<j(A) is also the set of simple roots in <f>(T,G) for some ordering, so there is a unique 

w E W  such that to o c7 (A) =  A. We say then that a induces the permutation <7 * := w o o 

of A, so F acts on the nodes of V. But in fact, the Cartan integers are preserved too, 

so T acts by (directed) graph automorphisms. This is the ^-action. G is said to be of 

inner type if the ^-action is trivial, and otherwise of outer type - of course, all this is with 

respect to k.

Recall that a group action is said to be effective if distinct group elements induce 

distinct permutations. Cleari}r, there is a normal subgroup T/ of finite index in T such 

that the quotient acts effectively on V  - the intersection of all isotropy groups: we will call 

the (finite Galois) extension of k corresponding to T? the inner field I of G. Any extension 

of I will be called an inner field for G. For example, splitting fields are inner.

The triple {A, Ao, *-action} is called the k-index of G. It is independent (up to iso­

morphism of T-graph) of the choices of S  and T. Note that Ao is a union of *-orbits: the 

distinguished orbits are those in A \  Aq.
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4 .5 .3  C lassifica tion  th eo rem s

The derived group Z g(S) '  of Zq(S)  is the anisotropic kernel An(G ) of G (with respect to 

k ). An(G) is a connected, semisimple A-group and A-anisotropic, and again independent 

up to A-isomorphism of the choices of S  and T. The terminology reflects an analogy with 

W itt’s classification of non-degenerate quadratic forms in characteristic ^  2 [Ja74, 6.5]. 

Proposition  4.5.3.1

(1 ) G is k-split iff it is k-quasisplit and of inner type.

(2 ) G is k-quasisplit iff An(G) is trivial, in which case Ao is empty.

The following theorem appears in [Ti6 6 , 2.7.1] - at least it appears in a more precise 

formulation which does not concern us.

Theorem  4.5 .3 .2  Let G be a connected semisimple k-group.

(1 ) G is determined up to k-isomorphism by the following data: the ks-isomorphism class, 

the k-index, and the k-isomorphism, class of An(G).

(2 ) G is determined up to strict k-isogeny by the following data: the strict ks-isogeny class. 

the k-index, and the strict k-isogeny class of An(G).

Corollary 4.5.3.3 A connected semisimple ks-group is determined up to strict ks-isogeny 

by its Dynkin diagram. In particxdar, the strict ks-isogeny classes of almost simple ks- 

groups correspond bijectively to the connected Dynkin diagrams.

Further, there exist, in a given strict ks-isogeny class, only finitely many ks-isomorphism 

classes (described beloxu).

In the strict AMsogeny class containing G, the AMsomorphism classes can be described 

thus [Ti6 6 , 1.5.4]: we put for the Z-span of (in X  (T)), and Q. for the lattice of weights 

of G with respect to T, namely the dual of the lattice of coroots. Then we have inclusions 

Z<3? C I C f i  of free abelian groups, all of the same finite rank. If X  = Z<h, we say G is 

adjoint, and if A" =  f2, we say G is simply connected. The AMsomorphism class of G is 

determined by the location of X  between the root lattice and the weight lattice (although 

distinct X  will not necessarily yield distinct AMsomorphism classes).
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In principle, [4.5.3.2] affords a classification up to ^-isomorphism: however the deter­

mination of the possible An{G) which can occur is in general difficult. For general k, it 

does not seem to be known if a given strict fc-isogeny class can correspond to infinitely 

many ^-isomorphism classes. In [Ti6 6 , Table II] are enumerated the possible indices for 

almost simple ^-groups, with more specific information in the cases of number fields and 

finite fields (among others).

4 .5 .4  A lm o st s im p le  groups

Let G now be an almost simple A;-group, and put g — [I : k], where / is the inner field 

of G. Then G is connected, and has a connected Dynkin diagram 9 X n>r (say), where n 

is the rank, and r is the fc-rank. We will omit the symbol g when its value is 1 : clearly 

g € {1,2, 3, 6 }.

The possible such G have been classified, at least up to strict Fp-isogeny, for the finite 

field Fp [Ti6 6 , Table II]. In this situation, by [4.4.0.2], G has the property that # G (F P) is 

determined by the strict Fp-isogeny class of G.

The data in the following table is based on [TI6 6 , Table II] (and the polynomials P{X)

given can be found in [Ca85, p75]). .

T h eo rem  4.5.4.1 Let G be an almost simple Wp-group.

Then G is strictly Fp -isogenous to one of the following types, and #G '(Fp) =  P ( ^ F p) 

where P{X)  £ L[X] is as given.

The degree of P  is the dimension of G, and the multiplicity of 0  os a root of P  is

climy—--- (the number of positive roots in the root system for G).
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Type P{X) Conditions on n

An,n jrn(n+l) / 2  JJJl_ 1 (Xti+1i -  1 ) for n > 1

Bn,n * n2 i r = i ( * * - i ) for n > 2

Cn,n ^ n2 n ? =1 ( ^ - i ) for n > 3

Dn,n X n(n-l)(X n _  ^  ] - [ n - l  ^ for n > 4

Eq ,6

f X 3 6 (X 12 -  1 )(X 9 -  1 )(X 8 -  1 ) • 1 

|  (X 6 - l ) ( X 5 - l ) ( X 2 - l ) j

f X 6 3 (X 18 -  1 )(X 14 -  1 )(X 12 -  1 ) • 1 

[ (X 10 -  1 ) ( X s -  1 ) (X 6 -  1 ) (X 2 — 1 ) J

-S's ,8
( x i20(X30 -  1 )(X 24 -  1 )(X 20  -  1 )(X 18 -  1 ) • 1 

[ (X 14 -  1 )(X 12 -  1 )(X S -  1 )(X 2 -  1 ) J

^4,4 X 2 4 (X 12 -  1)(X 8 -  1 )(X 6 -  1)(X 2 -  1)

^ 2 ,2 X 6 (X 6 -  1 )(X 2 -  1)

2 A » . m
j n ( n + l ) / 2 j j n  1 (X ' + 1  -  ( - l ) i+1) for n > 2

2 V i
_Y n ( n - l ) ( Y n +  ^  -  1 ) for n > 4

s D , a X 1 2 (X 8 +  X 4 +  1 )(X 6 -  1 )(X 2 -  1 )

2 B e ,  4
( x 36( X 12 -  1 )(X 9 +  1 )(X 8 -  1 ) • 1 

[ (X 6 - 1 ) ( X 5 +  1)(X 2 - 1 ) J



We will call a formula like P( X)  a rationality formula for the corresponding group. 

One must bear in mind that the rationality formulas for outer types only apply to the 

field of definition: groups split over extensions in general. Thus P(ffFpt) =  # G (F pt) may 

have coefficients which depend on t.

Over Fp, a notable fact is that r is completely determined once X n and g are known. 

Over number fields, there may be several corresponding values of r; one can find the 

possible indices in [Ti6 6 , Table If], and there is one additional possibility, viz. 6 -D4jr, 

which cannot be realised over Fp as S 3 cannot be a Galois group thereover.

4 .5 .5  A im o st fo-simple co n n ected  sem isim p le  fc-groups

We recall the notations S , T, A, <F, A, Ao, A*,, P , Xn(G), ^-action. Let G be a group as in 

the heading: we assume it to be of adjoint type.

Let m  be the least Galois splitting field for G, and I the inner field [4.5.2] for G. All 

fields introduced subsequently in this subsection lie between k and m. If /  is such a field 

we write T/  for Gal(ks/ / ) ,  and H f  for the left coset space T/Tf .  If f j k  is normal, we take 

Hj  as Gal ( f f k) .  Note that we have f m C f |  C T =  IT, both normal in T, and Vi/Vm 

is isomorphic to the kernel of the obvious map Hm -» H\. One more useful notation: for 

c € Z +, we write I c for { 1 ,. .. ,  c}.

Since T  is ?n-split, Hm acts on X,  and so on A via the *-action. Further, Hi acts 

effectively on A via the same action, so acts 011 Z<4> by linearity, and hence on A , as G is 

of adjoint type.

Recall that the connected components of V  are (directed-)graph isomorphic, of type 

An, say, where X n is one of the usual symbols. We will suppose that there are a such 

Dynkin components.

We use, on each component of V } the standard numbering of the nodes, which we now 

describe.

For unbranched diagrams Ani B n, Cn, F4 or G2 , the nodes are numbered 1 to n along 

the chain, with the nth node being drawn at the right-hand end (so is short for B n and 

long for Cn, F4 and G 2 ).
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For branched diagrams, we number the nodes 1 to n — 1 from left to right, and the nth 

node is then attached to the (n — 2)th for Dn, or to the (?i — 3)th for the En.

Thus we have V  =  I I - i X  n; we will write (r, s) for the sth node of the rth component, 

and V r for the rth component itself.

The following can be found in [Ti6 6 , 3.1.2]. Recall the Weil restriction functor Rj /k  

for finite separable f f k  [2 .8 ].

T h eo rem  4,5.5,1 (For connected semisimple almost k-simple adjoint k-group G.)

There exist a field f ,  sepai'able over k with [ / :& ]  =  a, and a connected almost simple 

f  -group H, such that G is strictly k-isogenous to Further} An{G ) is strictly

k-isogenous to Rf /k{An{H)) ,  and the k-index of G can be deduced from the f-index for H  

by the procedure described in detail below. By taking the adjoint form of H  we can suppose 

that both these isogenies are actually k-isomorphisms.

The theorem implies that we have a known action of T /  on V\.  We will extend this to 

an action of F on V: then A0 (respectively, the distinguished orbits) for G with respect 

to k will be the transforms under T of Ao (respectively, of the distinguished orbits) for II  

with respect to / .

The systematization which follows ought to render possible explicit calculations of 

Hasse-Weil zeta functions for all connected semisimple groups over number fields, though 

the general case remains out of reach at the time of writing.

We choose a set a 'i , . , . ,  ay in T such that T — JJr ayT/,  with a i  =  1. In fact we will 

choose the ay in a particular way. First, suppose that

■A/r(r / )  =  ]J w i t h  p l  =  e '
ieib

Next, we write

T =  ]J <TjA/r ( r /) with a'i — e.

Thus bd =  a , and d is the number of distinct fields which are fc-conjugate to /  (equivalently, 

distinct subgroups of T containing Tm and conjugate to Tj).  Finally, we define ay, for 

£ Pai by a,. =  cry/?;, where j  G Id) i £ h  an^ r =  id +  j  — d. One verifies tha t this
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assignment defines a bijection Ia <— y 1  ̂x  Id> and that the resulting left cosets are distinct, 

as required. For t G / a, we write Tt for the subgroup a tT jc t f 1 of T (so F / is the same 

as Ti, but there should be no confusion), We make the further observation that the set 

: t G Ia} gives an exactly analogous set of left coset representatives for Tj in T. 

We define an action of T on Ia thus: for x G T and j  G / a, x .j  is defined by the relation 

O'aj.jrf  =  a’.a'jTf  - this amounts to the obvious action of T on the left coset space F /F j.  

We note tha t the stabilizer of t G Ia with respect to this action is T*, and the action is 

independent of the coset representatives a r chosen.

We are now able to define the whole action of V on A. For x G T, we define x.(j,  r) to 

be (&(j), y{j).r) where x = a k^ y ( j ) ( a j ) ~ l for some (uniquely determined) k(j)  G Ia and 

y{j) € Ti. One can verify straightforwardly that this is a well-defined group action and 

has all the desired properties. It does depend on the civ, though this does not matter.

We record the above construction in the following result.

Proposition  4.5.5.2 (With the above notation.)

The *-action o fT  on V  is given in terms of that o fT  f  on V \ and the coset representatives 

civ by the formula

x.(j~r) = (k(j ) ,y(j ) . r)  

for each x G F, j  G Ia and r G ln where x =  aii^ y ( j ) ( a j ) ~ 1

Elementarily, each orbit O intersects each (Dynkin) component V j , and by symmetry, 

does so in the same number of nodes. Furthermore, if ( j} r) G then the orbit under

action by Tj which contains (j , ?’) equals O d V j  in other words, Vj  n r . ( j ,  7’) =  Tj.(j,  ?’). 

Hence the cardinality of O is one of a, 2a, or 3a.

If Vi  is not of type we will call the orbit containing (1 , n) the main orbit M  of the 

action: this is an orbit of maximal cardinality, and case-by-case verification shows that 

the action is determined completely by its restriction to M. (In the case of if6, we take 

for M  the orbit containing (1 ,1 ).) Thus we have an effective transitive action of Hi on M.

Proposition  4.5.5.3 If T  j  <3 T, then for y G Tj, y. ( j }r) =  (j, y(r)) -where y(r) is inde­

pendent of j .  (Viz. T /  stabilizes all components and acts the same way on each Vj . )
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C h a p ter  5

R eduction  m odulo Prim es

5.1 A lgebraic num ber theory

5 .1 .1  A lg eb ra ic  n u m ber fields

We recall here some standard properties of and notations for algebraic number fields 

(henceforth ‘number fields5) which we will require. A suitable reference for this section is 

[Ma77].

A number field A  is a finite extension of Q. The subset Z/f consisting of elements 

which satisfy monic polynomials with coefficients in Z is called the ring of integers of I i .  

Zjy is a Dedekind domain with field of fractions K , but not necessarily a principal ideal 

►. domain, in particular, all nonzero prime ideals of Zjv- are maximal, and there is unique

factorization of nonzero ideals into products of maximals. We will often call such maximal 

ideals K-prime, as there could rarely be confusion with the zero ideal of K ,  and the set of 

all A'-primes will be denoted M k - Each A’-prime p induces a discrete valuation ||p on A  

via the localization (Z/fyp of Z k , and the units of the localized ring are called p-units. The 

(finite) residue field Z/c/p corresponding to p will be denoted Fp, and the cardinality of this 

field by N p. Recall that the absolute norm map N  just defined extends multiplicatively 

to all nonzero ideals in Z^-. We often use the fact that for each x € A  \  {0}, there are 

only finitely many A'-primes p such that x is not a p-unit.
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Of interest in general is the behaviour of A'-primes p under an extension L of degree 

n over A’. It can be shown that pZjr is a proper ideal of Z l, and that (as the latter 

is Dedekind) p =  qiei . ..q,.er, where the q* are L-primes, each with a corresponding 

■ramification index et-, and residual degree fi, this latter being the degree of the extension 

^ l / ^ i 2  ^A'/p- Further, one has the relation n =  Xa=i eifi- The qt- are said to lie above 

p. Some terminology (all relating to the extension L / K ): p is split if 7’ =  n , inert if r = 1 

and f i  — n, and unramified if each e; — 1 . We often say that an L-prime q is unramified 

if the unique A'-prime p satisfying q fl "Lk  =  p is unramified in L. If not unramified, it is 

ramified, and it is a standard fact that only finitely many A-primes are ramified in L (for 

each fixed L ).

We now suppose in addition that L / K  is Galois, with A = Gal (L/K) .  Then for each 

fixed p the et- =  e are all the same, and the fi = f  are all the same (though not the same 

for all A'-primes p). It can be shown that A acts transitively on the q; which lie above a 

given p, and one defines the decomposition group Dj of qt- to be its isotropy group with 

respect to this action. Clearly, the various q* have conjugate decomposition groups of 

order ef.  One also has an induced surjection Di — > Gal(Wqi/Wp), whose kernel is called 

the inertia group of q.;. In particularv if p is unramified, then Di is cyclic of order / ,  and, 

further, there is a distinguished generator of _D;, the Frobenius element of qt-. To describe 

this, we note that Gal(WqifFp) is generated by the mapping x xNp. The element of 

Di corresponding to this is called the Frobenius element of qt-. Then the Frobenius class 

Fr  p of p is the conjugacy class in A containing this element, and this does not depend on 

i.

We will refer later to the next two results. The (Dirichlet) density of a subset S  of 

M.k  is defined to be

D =  lim ^ pesNP
ŝ i+  log i

if this limit exists (in which case 0  < D < 1 ). We only need to know that the density 

of finite sets S  exists and is zero. For more details we refer to [La70, VIII,§4],

P ro p o sitio n  5.1.1.1 I f  M  is an intermediate extension, Galois over K ; then the image of
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D{ under the obvious map from A to A/ Ga l ( L / M) is the decomposition group for  qz- fl Zm 

over p.

T h eo re m  5 .1 .1 . 2  (C eb o ta rev ) [La70, VIII}§4> Thru AO]

Let A be the Galois group of the extension L /K  of number fields. Then, for each 

conjugacy class C in A, the set of K-primes whose Frobenvus class is C has a density, and 

this density is ]]C/f]A.

5.2 Z eta and L -functions

Here we recall the definitions of the standard types of zeta function which we will require 

(and the pertinent properties thereconcerning). K  is a number field throughout. The first 

thing to note is their independence of the choices of algebraically closed overfields made. 

For x £ K, we write Hx for {z £ C : Re(z)  > a;}.

5 .2 .1  D ed ek in d  z e ta  fu n ctio n s

The Dedekind zeta function of K  is that function of the complex variable s defined by

d - ( s ) =  £  N ( I )-» ( a e f f i )
0

We refer to [He67, §2] for the following. The series converges absolutely on Hi, and 

extends to a meromorphic function on C with a simple pole at s — 1 . Furthermore, there is 

an Euler product of the sum, which converges absolutely (and locally uniformly) to Ca'(s ) 

on Hi,  given (via the multiplicative property of N ) by

n  ( i - i v r V -
p e m k

There is a functional equation relating Ca'(s) to Ca'(1 ~ s) via the gamma function P. 

We record this as
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P r o p o s it io n  5 .2 .1 .1  [La70, XIII§3]

C a ' ( s )  =  \D\l ' 2- s
k s- 11 2 V{1 / 2 ~ s / 2 ) 

T (s/2 )
(27r)2, - l r ( l _  s) 

V ( 3 )
Cat(i  -

where r\,V2 are the numbers of real (respectively complex) embeddings of K , and \D\ 

is the (absolute value of its) discriminant.

We write the functional equation as ( k { s ) =  Y ( s ) O r ( l  — s), though it could clearly be 

put in the form X(s)  = X ( I  — s) with X  meromorphic.

5 .2 .2  A rtin  E -functions

Let X  be a finite group and E be a principal ideal domain, assumed to be a subring of C. 

For our purposes, an R-representation of X  is a group homomorphism 9 : X  — y Autp(V)  

for some finitely generated free E-module V  whose rank is the degree of 6 . We recall tha t 

AutR.(V) =  GE (rank F, R) as abstract groups.

The character of 9 is the map x  ' X  — y C given by x i-A (the trace of) 9(x).  The 

fibres of x  are unions of conjugacy classes of X.  The conjugate y of y is also a character 

of A , that of the contragredient representation to 9, of which we need know 110 more than 

the existence.

9 is called trivial (and the corresponding character principal) if X  acts trivially on V. 

9 is said to be reducible if V  =  Vj © V2 with the Vi being nonzero X-stable E-submodules 

of V*. Otherwise 9 is irreducible (and the corresponding character is simple). The R- 

representations 9{ : X  — y GL{Vf) (i = 1,2) are R-equivaleni if there is an E-isomorphism

We will need the cases in which E  is C or Z, and adopt the convention that omission 

of mention of E  signifies its adoption as C. Finally, the r th exterior power Ar9 of a 

representation 9 is defined by Ar9(x) =  6?(m) A • • * A 9(x).

The following is well-known.

Proposition 5.2.2.1

(i) Two irreducible representations of X  are equivalent iff they have the same character.

f  : Vi — y V2 such that 6*2 (s) =  /  o 9[(x) o f  1 V.t € X.
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(ii) There is a bijection between the conjugacy classes in X  and its distinct simple char­

acters.

Next, let M  be a finite Galois extension of K  with group E. For a representation

e : S  — > G L n (C)

of S with character x, we define the Artin L-function by

L(H,x,s)orL(M/if,X,s) = (t) f l  det(/ -  0(Fr p JAp"8) - 1
p e ^ A '  ( q i t  \p unramified in M  W c  1 1 1)

where (j) is a product of modified factors for the A'-primes which ramify in M , while

I  is the n X n identity matrix. These modified factors will not concern us. Note the 

simplification when H is abelian, and that the principal character simply gives us ( k (s), 

or at least tha t part of it corresponding to the primes unramified in M.

It can be shown [He67, Thm 7] that L ( M/ K , x , s )  is holomorphic on Hi,  and extends 

to a meromorphic function on C. If x  is simple, L ( M / K , y, s) is nonzero on the closure of 

Hi unless x  IS principal (in which case there is a simple pole at 1 ). A famous conjecture 

of E. Artin (loc.cit.) asserts the non-existence of any other pole for any simple x-

Proposition  5 .2 .2.2 [He67f 3,10,Thm.7 jf] Let M  be a Galois extension of K .

(1) The (Dedekind) zeta-functions for Ad and K  are related by

0*00  =  \ { L ( M l K , x , * ) xW  (s e -ffi)
X

where x  runs through the simple characters of E.

(2) L ( M / K , x , s) satisfies a functional equation relating it to L { M/ K , x ,  1 — s).

Note that this last strictly onty makes sense (as formulated so far) for the local factors 

corresponding to unramified Iv-primes, but the modified factors are so constructed as to 

make [5.2 .2 .2 ] hold in general (loc.cit.). We shall not need such a refinement.
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5 .2 .3  W eil and H asse-W eil ze ta  fu n ction s

The Weil zeta function is defined for ‘schemes of finite type’ over a finite field Fg of q 

elements [Se65], but we will only need it for affine varieties over Fg, when it is defined 

thus: recall [2.5] that if we have Wq C Wqr C E, and an affine variety V  over ¥q, the

-rational points of V  can be identified with the finite set Homip9_ a /5 (F ,[V ],F ,0 . IfiVr 

denotes the cardinality of this set, then the Weil zeta function for V  over Wq is defined to 

be

CO
Z (y ,F „ i)  =  e x p ^ iV ,.t7 r

r=l

and it is easily seen that Z (y ,F g,£) G Q[[£]] (a power series in t over Q). There is 

an obvious extension of the notion to projective V  over Fg. One also has the following 

elementary ‘base-change’ formula

s - l

Z(V,Wq. , n  = H z ( V , V q,pit)
3 -  0

where p is a primitive sfch root of unity.

To form the Hasse-Weil zeta function of a it-variety V, one performs the operation 

of ‘reducing it mod p ’ for each p in M k  (this process is described separately in [5.3]), so 

obtaining a variety Vp over the residue field Fp, and forms the product of the corresponding 

Weil zeta functions, viz.

av,l<,s)~(  t) n  Z (V ,,,F p ,(iV pr8)
v*p

where

(a) the convenient notation V*p means ‘for all but finitely many p’; and

(b) we denote by (f) factors corresponding to a finite subset of M k  which it is necessary 

to omit.

Implicit in the definition is the identification of Hasse-Weil zeta functions whose local 

factors are the same V*p .
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5.3 R ed u ction  m od p

5 .3 .1  D efin itio n s

Given an affine A'-variety V  where K  is a number field, we define, for each discrete 

valuation ring Rp of A’, where p is the corresponding A'-prime, a variety Vp over the 

residue class held Fp. We note tha t one often has that properties of V’ pass to Vp V*p [viz. 

there may be finitely many primes for which the property does not hold], rather than for 

every p. We will ignore the archimedean primes of K  completely.

Though the process of reduction mod p has an intrinsic description as a fibre product 

of schemes [Mu8 8 , II.4], this does not seem well suited to calculation, and we will present 

an earlier approach due to Shimura [Sh55], His terminology has been superseded, so a 

little care is needed in reading his paper.

Shimura defines reduction mod p as follows (we specialize his construction to the case 

of number fields). Pick a universal domain over K  and over each of its residue fields 

Fp. Denote these by S  and S p respectively. (Following Shimura, we use Roman letters 

in number fields and Greek letters in finite fields.) We take all of our varieties as being 

embedded in affine spaces over these fields and of course assume that all fields considered 

are contained in these latter.

Take now a point x € S n, say x = (3 7 , . . . ,  xn), and £ =  (£ i,.. 6  (Dp)n. We say

tha t £ is a specialization of x (over Rp) if the natural map Rp Fp has an extension to 

a ring morphism

ApOi, • • •, £tJ -» Fp[6 , • ’ ■ ,G] with Xi -» & V? € { 1 , . . n}.

RWe will again follow Shimura in using the convenient notation (x) —^  (£) to describe this 

situation.

This property is equivalent to the following: whenever

g(X)  e AP[AG,.. •, X n] satisfies <7(3:1 , . . . ,  xn) =  0, then y(G , • ■ - ,£n) =  0,

where 7  denotes the class of g mod p . Clearly this shows that the transcendence degree of 

R'(a,‘i , .. . . . t?1) over K  is at least that of Fp(G, ■ • - over Fp. In other words, dimension
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cannot increase along a specialization. An essential tool in Shimura’s formulation is the
-Rpspecialization ring [(a:) — (£)], namely

■{Afa.*!, . . . ,  xn)/ G (x^, . . . ,  xn) • F} G (E. i?p[x^, . . . ,  x^j such that t?p(£j, . . . ,  £n) ^  0 }

which is just the maximal localization of i 2p[xi,. . . ,  xn] via which the extended ring 

homomorphism above will factor. This characterizes (for a given specialization) the ratio­

nal functions iJ[{x.j}] which reduce mod p to the corresponding 77p [{&}]: note that this 

holds in particular for polynomials satisfied by { x i, . . . ,  xn}.

Next, given a variety V  (C £ n) as above, we define its reduction mod p , denoted Vp, 

to be that subset of ££ consisting of all points which are specializations of points of V  

over Rp, We remark that Vp may be empty even if V  is not.

Analogous to the above is the notion of a generic point (over Ii ) ,  where one uses 

the zero ideal of Z k : note that K  = R q in our notation. Taking (x) 6  S n, the affine 

variety in which x is generic (over K)  is the subset of S n consisting of all points which 

are specializations of x over R q. This is the approach which is adopted in [We46j. Weil 

specializes over fields: Shimura extends Weil’s theory to local domains (which we can 

always take as Noetherian).

5 .3 .2  B a sic  facts

We will use the following elementary result.

P ro p o sitio n  5 .3 .2 . 1  /57?,55, §i/ (With the above notations.)

(а) I f  we have (x) -^4 (y) and (y ) (77) then (x) (77).

(б ) I f  we have (x) (77) and (77) (v) then (x) (v).

We now start to assemble the properties of reduction mod p required, and will either 

prove or adduce a source of proof in each case. In fact, most of the properties of linear 

algebraic groups which we will require are almost always preserved by reduction mod p . 

The best source of proofs of this sort of result known to the author is [Ono58], though we 

will also need some results merely asserted in the literature.
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P ro p o sitio n  5 .3 .2 . 2  [Sh55]

Let V  and W  be non-empty affine K-varieties (K a number field) (and K-subvarieties 

of ambient spaces S m, S n as necessary for the hypotheses of the statements following).

(i) I f V  is absolutely irreducible, so is Vp V*p (§6,Thm.26]Sh.

(ii) I f  the components of V  all have the same dimension d, then all components o fV p 

have dimension d also V*p [Sh55, §3,Prop.19].

(in) I f  L is a finite extension of K , and q a prime of L, with p its restriction to %k ,

then Vp and Vq coincide as varieties over Ep [Sh55, §5, Thrn. 7].

(iv) Reduction mod p commutes with the formation of finite products and unions [Sh55, 

§5, Prop. 18].

(V) (V  n W )p C Vp n Wp [Sh55, l3,Prop.l8].

(vi) I f  f  : V  — > W  is a K-morphism of varieties, then V*p , f p is an Fp - morphism,

from Vp to W p.

Part (vi) of the last result is not in [Sh55], but is easily seen.

P ro p o sitio n  5 .3 .2 .3 ]Ono58]

Let G and H  be K-groups (which, we take as K-subgroups of GLn (C)). and A  a K -  

subgroup of G.

(i) For almost all p of M k , G p is an algebraic group over Wp [Ono58, 1.1].

(U) I f  G is unipotent, so is Gp [Ono58, 1.10].

(Hi) dim(Gp H Hp) =  dim (G n H )p = dim (G n H ) V*p [Ono58, 2.3],

(w) Z g {A)p C Z gp(Ap) and A/g(A)p C Mgv {Ap) V*p [Ono58, 1.2 and l.Jfi].

(v) I f  G is solvable (respectively, nilpotent), so is Gp ]Ono58, 1.8].

(vi) I f  A is a torus (respectively, a maximal torus) in G, so is A p in Gp V*p [Ono58, 

2.4,2.15].

(vii) I f  A is a Borel subgroup of G, so is in Gp V*p [Ono58, 2.10].

Many of the converses [at least V*p] to the statements above are also true , though we 

will not need them. One should note that, in (vii), the existence of such Borel subgroups 

cannot be guaranteed.
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5.4 P reservation  theorem s

We include here some results and some proofs which do not appear to be in the literature. 

Recall that denotes the number of components of the group G .

5.4.1 I r re d u c ib le  co m p o n en ts  
Proposition  5.4.1.1 (Preservation o f com ponents)

I fG  is a K-group, then #GP = #G' V*p .

Proof: We write G =  U ie /a^ 0, ^  (finitely) extending If, we can assume tha t each a; 

is K -rational, and that each of these components reduces V*p to an irreducible Fp-variety, 

of the same dimension as G°, and these latter are components of Gp. It only remains 

to show them disjoint, for which it suffices to show (taking an affine embedding) that if 

u ,v  £ K n satisfy up = vp V*p , then u = v. But if u v, then for some i (say) the i th 

coordinates of u,v  cannot agree mod p for infinitely many p. □

5 .4 .2  E x a ctn ess  and isogen ies

The first clause of the following is asserted in [Ono65, 1.2], but the present author has not 

been able to locate proofs of either part in the literature.

Proposition 5.4.2.1 (Preservation of exactness and isogenies)

Let 1 —̂ A — B  —̂ G —y 1 be a K-sequence.

(1) I f  A and B (therefore also C) are connected, then 1 —y Ap Bp -^r Cp —> 1 is an

Fp -sequence, V*p .

(ii) I f  B  is connected and g is a K-isogeny, gp is a central Wpdsogeny V*p, and, further, 

# k e v g  = #ker£rp V*p .

Proof: (?) Ignoring finitely many p, we can suppose that A p, B p and Gp are connected,

have the same dimensions as A, B , C  (respectively), and that / p and gp are Fp-group 

homomorphisms. Clearly fp is injective, and trivially gp o f p is the zero map V*p . We 

prove first that gp is surjective. To do this, we introduce the corresponding sequence of
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Lie algebras, namely

0 -*  C(A) %  £{B) %  C{C) 0.

We first prove that this latter sequence is exact.

Firstly, as g is a dominant morphism of irreducible varieties, we know [1.11.0.1] that 

dg is surjective iff g is separable: since char K  = 0 , this is automatic.

It is easy to see that, if h : V  — )■ W  is a F-morphism of K -groups, then (dh)p ~  d(hp) 

V*p - to see this note tha t a linear map (which we can suppose is given by a reduced echelon 

matrix) will reduce mod p to a linear map; moreover the bracket operations on £{V)  and 

£{W )  (F-bilinear, anticommutative maps satisfying the Jacobi identity) certainly can be 

reduced mod p , and we get structures of Lie algebra on each of £(V)p and £(W )p, and 

of a homomorphism thereof on (dh)p. Indeed, considering the non-singular minors of the 

reduced echelon matrix, we see that the rank and nullity of the map are also preserved 

V*p .

Applying this last result to /  and we get that, V*p ,

0 -► C(Af) C(Bp) C(Cp) -A 0

is exact, and so dimgp(Bp) = dimCp, for if these were different then the linear map dgp 

would have to factor via a linear map to a space of dimension lower than the rank of dgp. 

Thus gp is surjective, and also (kerg)p has finite index tp (say) in ker(gp) V*p .

To verify that we can V*p take fp =  1 , we argue as follows: if we have (for any field 

F ) an F~isomorphism of F-varieties /  : X  — » Y, then, as is readily verified, Va: € A", we
p

have a specialization (.t) —V (f(x)).

Fix any of the remaining primes p, and suppose the residue field Wp extended so that 

each component of ker((/p) has a rational point. Thus these components are pairwise

Fp-isomorphic. If a : (kerg)p — > X  is such an isomorphism for some component X  of
F p

ker(</p) then we clearly have, for each point £ 6  X ,  a specialization (77) —* (£) from some 

77 E (ker<7)p by definition of (ker #)p. But then we have (x) —^  (77) for some x E ker^, so 

we can use part (it) of [5.3.2.1] to get {x) - -h  (^) and so keT(gp) C (ker^)p, proving (?').

(7*7') Under the hypothesis o f  ( h i ) ,  a similar argument gives the surjectivity of dgp = 

9{gp) and so of gp\ that gp is central V*p follows from (1) of [3.1 .0 .2 ]. By passing to a finite



extension of K, we may assume that ker g consists of A-rational points, so that, V*p , each 

of them has a unique reduction mod p and is in the kernel of #p, while these points are 

distinct: hence #  ker g < ^ker^p  V*p . Conversely, we use [1.9.0.2] to get that

#  kerr/p < [Fp(Sp) : FP(CP)] < [I<(B) : K (C )] = # k e r g .

□

C oro lla ry  5 .4 .2 . 2

Under the hypothesis of (ii), B and C have the same Hasse-Weil zeta function.

Proof: This now follows from the corresponding local statement, which is given in

[4.4.0.2], □

5 .4 .3  C en tra lizers o f tor i

Let G be a connected A-group, and 5  a A'-torus acting A'-morphically thereon. Recall 

that if $  denotes the set of roots of S  in G, then there is a decomposition

fl — ® (®a6 $ 0 a)

where g Q, and g^ are as at [3.3.3],

P ro p o sitio n  5.4.3.1 (P rese rv a tio n  o f cen tra lizers o f to ri)

V*p o f K , Z Gp(Sp) ^ 2 G(S)p

P roof: Since G is connected, so is Z q {S) [3.4.1.3], and, V*p , so are Gp, 5p, Z g (S)$

and ZGp{Sp)\ we will henceforth assume these so. By part (iv) of [5.3.2.3], we know that 

2 <3 p(Sp) T %g{S)p so rieed only show that these two groups have the same dimension. 

Recall too the correspondence between global and infinitesimal centralizers of tori [3 .3 .3.2 ]. 

Thus g 5  =  C (2g(S))  and g pp =  £ (2 g p (Sp)) V*p . We write g 5  as

flS =  f |  {X  6 9 = (4 <i s)X = X}
sES
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Note that, for each s £ 5, { X  £ g : (Ad s )X  =  X ) is a connected unipotent (additive) 

A'-subgroup of g (regarded merely as vector space). It follows from part (Hi) of [5.3.2.3] 

that, provided we can replace the intersection over S  by intersection over a finite subset 

A  of S (K ) ,  then V*p

(sS)f =  ( n  e 0 : (Ad S)X  =  A'})p =  n  e  Sp : (Ad a)X =  X }
3 E A  o-EAp

2  D  i X  e  Bp : (Ad <r)X =  X }  =  f l / ’

so dimZ(3!(5 ') > dim (Ap) and we will be done. It remains to verify tha t we can 

find such an A  C S(K ).  Let us write

i =  n  t Y 6  3 ; (m  s)x = x i
s E S { K )

so clearly 1 D g5  and 1 is a connected unipotent subgroup of g. There is a map

h : S  X I — ¥ g given by h(s, X )  =  (Ad s )X  — X ,

for s £ iS, X  £ g. Thus h(S(K)  x  1) =  0. K  being perfect, it follows tha t I is A'-isomorphic 

to an affine space, and so A’-unirational [4.3.0.4]. S  being connected and reductive, with 

K  infinite, it follows that S  is also A-unirational and so 5(A ) is (globally) dense in 5  

[2 .7.0.1]. Then G S  X 1 is again A-unirational, so C(A') =  5(A") x  l(A') is dense in C. 

Hence S (K )  x  I is dense in C, so h (S (K ) X 1) is dense in the closure of h(C). So h is the 

zero map, and I = g5 . That we can choose a finite subset A of S (K )  with the claimed 

property simply follows by induction. □

5 .4 .4  T h e  ra d ic a l  a n d  u n ip o te n t  ra d ic a l

The following is asserted in [Ono6 6 , pl22], but not proved.

Proposition  5.4.4.1 (Preservation of radicals)

Let G be a connected K-group. Then. V*p . the following hold.



( i)u (G )p = u(Gp).

(ii) r (G) t  =  r(G p).

P roof: That w(G)p and r(G)p are connected normal subgroups of the connected group

Gp, with the former unipotent and the latter solvable, V*p , follows from [5.3.2 .3]. Thus 

u(G)p C w(Gp) and r(G)p C r(Gp). By making a finite extension of A”, we may assume 

[4.3.0 .2 ] that G has a A'-split maximal torus T, that all elements of BT are defined over 

A , that Tp is an Fp-split maximal torus of Gp, and that Bp is a Borel subgroup of Gp for 

each B  £ 5 T [5.3.2 .3]. For any connected group H } we have the standard theorem [3.4.7.1] 

that u(H) = ii(7(5)), where S  is a maximal torus of H  and

a s ) = ( n  b)°
B £8$

as usual. Applying this to Gp and Tp, we get that

u(Gp) = «(/(Tp))C«(( p |  B)°)
b <=b (t  p)

s.fc. 3CE13t  
with B = C p

the inclusion passing to unipotent parts because the groups are connected and solvable. 

Now, V*p , each C  £ passes to some B £ by reduction mod p  : thus, V*p , all

the elements of RT are in the last index set. By [3.4.7.1] again, one gets that

dim u(Gp) < dim u(G)

verifying (i).

For (ii), observe first that we can suppose that G is reductive, for if this case is done, 

we have that

dim r(G) — dim r(G/u(G)) +  dim u(G) =  dim r(G p/ii(G)p) +  dim w(G')p 

and know that n(G)p =  u(Gp), so have dim?*(G) =  dim r(G p).

We henceforth assume that G is reductive. Under this hypothesis, let <3?(G,T) be the 

(finite) set of roots of G with respect to T, so that for a’ £ X (T )  with Ta := (ker a-)0,



a  E ^(G , T ) Z G(Ta) is not solvable

by [3.4.6.1]. Recall that the Z G(Ta) are connected reductive If-subgroups of G which 

strictly contain T  [3.4.7.3]. Dimensional considerations, (i), and the finiteness of 3?(T, G), 

then guarantee that Z G{Ta)p is not solvable for any a, V*p . Our result [5.4.3.1] says tha t

Z G(Ta)p = Z Gv((Ta)p)

so the latter are all nonsolvable V*p , and thus for each a  6  $(<2, T)

(Ta)t = (ker 0)°

for some j3 E cl? (Gp, Tp) , Gp being reductive. We use now the last assertion of [4.2.1.4]

r(IJ) =  ( P | Sa)°
a e $ { H , S )

(for any connected reductive group H  with maximal torus S). Applying this to Gp, Tp 

we have

i G f) n t -
Kae$(Gp,Tp)

a I c n T„
a 'G $ (G p ,T p )
and ‘Tn—S-n

c

\ °

n TX Q,

cv S $ (G p  ,T P) 
T a—Sp for some S < T  

and 2 q (S) nonsolvable /
i and X cx—̂'p \
\  for some S < T  )

and the argument above shows that all the (connected components of the) kernels of 

roots of G with respect'to T  actually occur in this last index set. So by [4.2.1.4] again, we 

get dimr(Gp) < dim r(G )p V*p and are done. □

5.4.5 R o o ts  an d  w eights
Proposition  5.4.5.1 (Preservation of root system s)

Let G1 be a connected reductive K-group with maximal K-torus T ' , with 0  as the set 

of weights o fT '  in G' a.nd $  as the corresponding set o f roots. Then, identifying 0  and
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4> with subsets of X 1 =  X (T ') ,  one has, V*p , 0 p (respectively, <I>pj a.s the set of weights 

(respectively, roots) o f the maximal torus Tp of G( .

Furthermore, V*p , is a root system in X(T(/r(G ())  0 z  Q, and these root systems 

are isomorphic to <3? Y*p .

P roof: By [3.4.3.4], T ~  T '/ i^ G 1) is a maximal torus of the connected semisimple

group G — G' jr{G'), and (loc.cit.) there is an isomorphism induced from the Weyl group 

W  associated to to the Weyl group W  of 4>(T, G). Since r(G') is contained in

the kernel of each root of T ‘ in G', a map is induced from <§>(T‘, G') to <!?(T, G). These are 

sets of the same cardinality by [4.2.1], and the map is certainly an injection (considering 

kernels of roots) so is a bijection. Indeed, it extends to an isomorphism of root systems 

(as the Cartan integers are preserved too). As Z q (T) = Z G,(T')/r(G')  by [3.4.3.1], by 

preservation of the radical [5.4.4.1], preservation of centralizers of tori [5.4.3.1], and the 

correspondence of global to infinitesimal centralizers of tori [3 .3.3.2 ], it follows that we 

need only prove the result for T  and G.

The subalgebra of has the same dimension as V*p, so the rank and cardinality 

of <& are preserved V*p .

We extend K  to a splitting field 'L for G, and work in L henceforth. Recall [4.3,0.1] 

that each component of Nq{T)  then has an T-rational point, and these reduce mod p to 

the same number of distinct irreducible components of ;Vgp(Tp) - the dimension of the 

normalizer being preserved mod p V*p by rigidity. Thus we get # W p < #W , where these 

are the obvious Weyl groups. The reverse inequality follows from the fact that these groups 

act simply transitively on the sets of Borel subgroups of G (resp. Gp) containing T  (resp. 

Tp) [4.2.1.4].

Given oi,(5 £ <&((?, T), one has

< a , / r  > = <  a p,(/T )p >

V*p , where the coroot cr* of a- and < a,p* >£ Z are defined by the usual relations
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a' o p* : Gm — > Gm

x i— >■ x <a'P ^ 

and < a, ci* > =  2 .

Put Ta =  (ker ci')° as usual: this is defined over L as T  is T-split. Clearly, V*p , a p 

is well-defined, and is a character of the maximal torus Tp of the connected semisimple 

group G'p. Moreover, by [3.4.6.1], for P 6  X  = X (T ) ,  0 6  $  iff Zo{Tp) is not solvable. 

Now, Z q  (Tp) p =  Z q v ( ( T p ) p v )  V*p by [5.4.3.1], so when 0  6  P p G $ p V*p .

Clearly, V*p , one gets (/?*)p =  (/3p)*, and so the coroots are also preserved V*p . This 

proves preservation of the Cartan integers V*p, which demonstrates that all of the following 

are preserved: root lengths, orthogonality of roots (and so irreducibility of subsystems), 

and the (abstract) Weyl group because the relations in a (Coxeter) presentation thereof 

are derived therefrom. This verifies that 4>p is V*p , the set of roots of Gp. Then [5.4.3.1] 

implies preservation of the weights, and the final assertion follows from [4.2.1.4]. □

In particular, the Dvnkin diagram is preserved V*p .

/
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C h a p ter  6

Zeta Functions: Split and Sim ple  

Groups

6.1 P relim inaries and n otation

The key idea in the passage from the number field case to the local case is an action by 

decomposition groups on characters. Except where otherwise specified, we only consider 

connected groups. Moreover, we confine our attention to connected reductive groups, not 

only because there is 110 loss of generality in doing so, as we will see in a moment, but also 

because such a group is split iff it has a split maximal torus.

The following notation is fixed throughout this chapter. K  is a number field. G always 

denotes a connected semisimple it-group with inner field I and splitting field m. For any 

field n such tha t K  C n C K s, Fn := G al(Ks/n)  and Hn denotes the left coset space 

r / I V  We omit the subscript n when n — K. Hn is identified with G a l(n /K ) when n / K  

is normal.

T  is a maximal torus of G, defined over K , of dimension n and with character module 

X .  The Dynkin diagram of G will be denoted V ) and its (graph) components X>i,£>2 > • • • 

or by notation like 9X n>r as at [4.5.4]. We also use [4.5.2], [4.5.3] the notations An(G) and 

‘^-action’, for various groups. By default their use is relative to K .  Finally we introduce 

the convenient notation E for dim G +  (where is the set of positive roots with
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respect to some ordering).

Occasionally additional hypotheses will be imposed. We remark that the zeta function 

of the trivial group (over K) is the Dedekind zeta function Ca'(s) f°r K-

6 .1 .1  R ed u c t ifica tion

P ro p o sitio n  6 .1 .1 . 1  I f  J  is a connected K-group, with d im u(J) =  b, and reductification 

R, then ((J, K, s) =  If, s — b).

P roo f: This is immediate from the preservation of u(J) [5.4.4.1], exactness of Fp-

rational points for Fp-sequences [4.4.0.2], and the Fp-isomorphism of u(J) with Ab [4.3.0.4], 

all V*p of course. □

In particular, for connected unipotent J , we have £(J, Jv, s) =  Ck (s — dim J ) - or more 

precisel}' almost all of their local factors agree.

6 .1 .2  G enera l rem arks ab ou t red u ction  m od  p

As usual [5.3.2.3], [5.4.4.1], if p E A4/y, and has residual degree / p in m, then we may 

assume tha t Tp is a maximal Fp-torus in the connected semisimple Fp/P -split Fp-group Gp, 

and tha t p is unramified in m. Thus X  is isomorphic to A"p := X (T P) (say) as abelian 

groups, V*p .

If q £ M.m lies above p, then denotes the corresponding decomposition group in

B m.

P ro p o sitio n  6 .1.2.1 Reduction mod p induces an isomorphism (of abelian groups)

9P : X  — ► X p V*p .

If  p is a K-prime, unramified in m, for which 0p is an isomorphism, then 9p is also 

Dq-equivariani for each q above p.

P roof: We choose a basis x L, . .  , , x n for X ,  Since any two such bases are related

by an integer matrix of determinant ± 1 , the following discussion does not depend on the 

basis chosen. Thus X  = and, V*p, (.r,-)p £ A”p for each i.
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We only consider such primes subsequently. Clearly there is a group homomorphism 

from X to X p. Since both are free abelian groups of rank n, it is enough to show surjectivity 

(as the kernel will then be of rank zero and so trivial).

Choose Q' £ Xp. So a : Tp — y , and a  is defined over Fq (this being a splitting field

for Tp). Hence there is an 772-morphism s : T  — y Qm of varieties such that sp =  a- and 

s(er) =  y (say) with y £ Now take t : T  — y given by t(x) =  y~1s(x). Again

t is an 772-morphism of varieties while tp — a  still holds V*p . But then by [3.3.1.1], t £ X .

Under the hypothesis of the second clause, we recall that we have a canonical isomor­

phism of Z)q with <j?a/(Fq/Fp), so we can regard dp as a bijection of D q-sets. If a is a 

generator for and x £ X  then 0p(cr.a;) =  <r.0p(a;) since a stabilizes q. □

6 .1 .3  P r o p e r ty  (Z) for K -groups

We will say, for a A'-group J , and a finite Galois extension n of K ,  that J  has property (Z) 

for n, or for n / K  if £(J, A’, s) is an alternating product of Artin //-functions for characters 

of H n. We will say that J  has property (Z) if there exists some finite Galois extension n 

of K  such that J  has property (Z) with respect to n. We write this down in a slightly 

more convenient form.

P ro p o sitio n  6 .1.3.1 Let C he the set of simple characters of H n.

The K-group J  has property (Z) for n iff there exist, for each x  € C f integers axj  for 

j  > 0  (almost all of-which are zero) such that

# J p ( F f < )  =  ]T  y  a X i j N p ^ x { [ F r p Y ) . (W V*p)
xec j

We now assemble some simplification theorems for the problem of determining which 

connected groups have property (Z).

P ro p o sitio n  6 .1 .3 . 2

(1) Let D M- E  be a K-isogeny of connected K-groups. Then f  (D, K, s ) =  K, s).

(2) Let 1 —y Ai —y B —y A2 —>■ 1 he a Ii -sequence, with all groups connected. Suppose 

that each has property (Z) for . Then B has property (Z) for n =  ?2i?22.
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(3) I f  A i , . . . ,  At are such that each A{ has property (Z) for ft;, then A =  A \  X ■ • • X A t 

has property (Z) for n — n \ . . .  nt .

P roo f: (1) By [5.4.2.1], V*p € M r , Dp Ep is a central Fp-isogeny. But then the

corresponding local factors in £(D, A', s) and £ (£ , A’, s) are the same by [4.4.0.2].

(2) That n is a finite Galois extension of K  is a standard and elementary result. By 

Galois theory, each G al{ni/K ) is a quotient group of Hn, say (?; : Hn -» Gal(n{/A ). Put 

Ci (respectively, C) for the set of simple characters of Gal[nijK)  (respectively, of H n). 

By [4.4.0.2], we have

# (A 1)p(Fp0 # (A 2 )p(Fpt) =  #S p(F p.) (Vi V*p)

and by hypothesis, for each i — 1 , 2

#(a;)p(ifpo = E
xeCi i

for some collection of integers a;)Xj .  The elements of each C; can be lifted to elements 

of C  without changing their degrees - viz. x  £ C* passes to ^  6  C via the definition 

x'(y) — x{@i{y))' Thus one can write

#(S)p(FpO =  E E ^ x ,  j X d F r p ^ N p *  
xec j

for some collection of integers aXiJ-, and the result follows from [6 .1.3.1].

(3) This follows from (2) and induction. □

Recall [4.5.1.3] that a connected semisimple A'-group is an almost direct product of 

connected (semisimple) almost Ii -simple normal A'-subgroups, its almost K-simple fac­

tors,

C o ro lla ry  6 .1.3.3 Suppose that the almost K-simple factors G \ , . . .  ,Gt of G are such 

that each Gi has property (Z) for the extension n ;.

(a) G has property (Z) for n = n ; . . .  n t .

(b) I fn i  is the inner field for Gi for each i, then n is the inner field for G .
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P roof: Recall [4,5.1.2] that the product map G\ X • • • X Gt — y G is a central

A'-isogeny. Then (a) follows from (1) and (3) of [6 .1.3.2 ].

Recall tha t the Dynkin diagram V  of G is the disjoint union of the Dynkin diagrams 

Si for the Gi and each Si is a union of orbits under the *-action. If e is any field such 

tha t K  C e C A's, then e is an inner field for G iff Te acts trivially on V . Equivalently, iff 

Te acts trivially on each of the Si. Thus any inner field for G contains all the rq-, and the 

converse is clear. □

6.2 C onn ected  solvable groups

By [3 .3.4.1], if we have a connected solvable K -group J , then we have a A'-sequence

1  y u(J) -------► J   ► R   y 1

where A is a /1 -torus - (that this is a semi-direct product decomposition for J  is not 

germane, and the section J  <—  R  would not necessarily be defined over K  anyway). By

[5.4.4.1], the decomposition is preserved under reduction mod p V*p. By [6.1.1.1], we can 

actually assume tha t J  is a A-torus T  of dimension n, with Galois splitting field m  (say). 

We now look more closely at this situation.

6.2.1 T ori over fin ite  fields

We consider in this subsection, a torus T  of dimension n defined over F\ =  and Aa-split 

for some a > 1 , where Fa = Fq<t. We write Mn(Z) for the n x n  integer matrices, identified 

with the ring of (algebraic group) endomorphisms of <Gr™ [3.3.3.1]. Fix an Aa-isomorphism 

9 : T  — y We use the following well-known result.

T h eo rem  6 .2 .1.1 (S m ith  n o rm al fo rm  (for S )) /Ja74, Thm 3.8]

Let A' 6  M n(Z). Then there exist P , Q and A, all in Mn(Z), with A  =  Q A 'P ~ l ,

[ det <Q | =  |detjP | =  1, and A diagonal, with diagonal entries a i , . , . , a n satisfying the 

following conditions.

(1) for 1 < i < r = rank A1, > 1 and further a i |a 2 | . . .  jar .
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(2) — ®r+ 2  — ‘ — — 0 *

A is uniquely determined by A! and these conditions.

In the notation of the theorem, A is the Smith normal form of A', and the ai are the 

invariant factors of A '.

Now if G' is a Frobenius map on T  (for Fi), we have the set of Fi-rational points of 

T{F\) =  {a: £ T  : G'(x) = .t} - this does not depend on the choice of G'. Since G' is 

also an endomorphism of T, it follows that 0 o G' o 6~l =: G £ M n (Z); also Ga =  qaI  

where I  is the n X n identity matrix since T  is Fa-split. An argument in Serre [Se59, 

§VI.2] shows that in fact G =  q.M  where M  £ Mn (h) (and therefore M a =  I). We now 

use 19 to transform the determination of T(F{) into a problem in the standard torus <G .̂ 

Identifying G to the corresponding matrix M  shows that we require to find the solutions 

of {y £ G^ : M.y =  qy) where qy means (ql) .y . Returning to additive notation (recall 

tha t G^ is a module over Mn (Jf)) we see that we require to find the set S  (say) which 

results from solving the ‘linear system of equations5

S' := {x e G^ : iV.x =  0 },

where we have written N  for M  — ql.

A necessary condition for some y =  (?/*,..., yn) £ GĴ  to lie in S  is the following. If 

y € S', then (det iV)y =  0 , as one sees by multiplying the system through by the adjoint 

matrix to N.  Hence each yi is a (detiY)f/l root of unity - note that det N  =  ±1 mod g, 

so there exists some minimal b £ Z + such that all coordinates y{ of all y £ S  lie in 

G^(Fb). More exactly, we take b to be the least positive solution of the congruence 

qb = 1 mod (detiV). Let a  be a primitive element of Fb (that is, a generator of its 

multiplicative group F£). Then, taking discrete logarithms with respect to cu, we see that 

for each x £ F&* there is a unique integer ix £ {1 , 2 , . . . ,  qb — 1 } such that a lx = x. As we

can now restrict our attention to elements of G^ (Fb) , putting m =  qb — 1 and Zm for the

integers mod?n, we see that now we can identify S  with the set

{y =  (s/1 , • ■ ■ > Vn) E Z m x ■ • • x lira '■ N y  =  0  mod m}.
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Of course the vector congruence here simpl}' means componentwise congruence mod m. 

We seek now the cardinality of S . For the purpose of counting the solutions, we can also 

assume that N  is in its Smith normal form, with invariant factors im (say) - these are all 

nonzero. Suppose first that m  were a prime power pa. Then the number of solutions of 

the system would be YliiniiPa)*

Return now to the case of a general m - we use here a version of the Chinese remainder 

theorem. Since ( ^  7i;)|m  and pa is the highest power of p which divides m, it follows tha t 

r i i ( 7b’,p a) =  ( n i nbP c) =  |(det/V ,pa)|, and taking the product over the prime powers 

which exactly divide qb -  1 gives (j det Ar|, m) = | detiYj for the total number of solutions. 

Similarly, the number of ^ -ra tiona l points of T  will be | det(M c — qcI) | for each c > 1 .

6.2.2 T ori over K  an d  c o n n ec ted  solvable g ro u p s

The discussion in this subsection appears in [Se59, VI,§1,no.3]: we return to the general 

notation of the chapter. Since Hm acts on X , each element induces an automorphism 

of Z n, yielding a representation A : Hm — + GL(n, Z) [4.3.0.2]. The discussion [6.1.2.1] 

shows that V*p , the corresponding representation for Tp is Z-equivalent to the restriction 

of A  to the decomposition group (since the various decomposition groups for primes above 

p are mutually conjugate, one obtains Z-conjugate representations therefrom).

We have seen in the last subsection how to find the number of Fp™-rational points of 

Tp\ this is | det(M n — qnI)\ where q =  Np and M  is A(Fr  p ). We can now write down 

the zeta function of Tp V*p .

Let A i,. . . ,  An be the set of eigenvalues of A(Fr  p ) (in some order: these are roots of 

unity as H m is finite); let I  be an appropriate identity matrix, and 3?̂  the hth exterior 

power [Ja74, 7.2] of the diagonal matrix whose entries are A j^ .^ A n . Then the zeta 

function [5.2.3] for Tp over Fp is



A—7T

Z(Tp,Fp,i) = n  n  (! -  • • ■Aih(^p)"-'!t)(- I)'‘+1
A = 0 i i < i 2 < - " < h i

h —n

=  d e t ( / -  (ATp)n-'*t$ft)(-1>',+'
A—0

If we write Ljx{s) for the Artin L-function corresponding to the hth exterior power AhA 

of (the representation) A, then the Hasse-Weil zeta function for T  over If [5.2.3] is

C(r, Ji', s) = (t) n  ̂ (TP, Fp, (iVp)-s)
p
n

= (t) n i i det(/ -  (Np)n- k- , 9 h)(-- i^ i
/ i= 0  p 

n

=  (t) n  Lh{s +  h -  n)(~l)h
A = 0
n

-  (f) Y [  L(Hm, A/lx, 5  +  h -  n)(~1)h 
A = 0

where we denote by Ahx  the character of A hA. From this, and [6 .1.1.1], one can in 

principle write down the Hasse-Weil zeta function for a connected solvable If-group, and 

so of r(G).

P ro p o sitio n  6 .2 .2 . 1

(1) Every connected solvable K-group has property (Z) for the splitting held o f some 

maximal K-torus over Ii.

(2) I f  every connected almost K-simple K-group has property (Z) over If, then every 

connected K-group has property (Z) over If.

P roo f: (1) has just been shown. Let J  be a connected If-group, so there is a If-

sequence of connected groups 1 —y r(J)  — J  —*-5 — 1, with S  semisimple. By hypothesis 

the almost If-simple factors of S  have property (Z) over If, and so by [6 .1.3.3], S  has 

property (Z) over If also. But then by (1 ) and [6 .1.3,2], J  has property (Z) over If. □
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6.3 Split groups

While we do not need to consider these cases separately, the formulas obtained are of 

interest, and we will use them later.

P ro p o s itio n  6 .3 .0 . 1  Let J  be a K-group. Then there is a finite extension M  of K , and 

P (X ) £ Z[X] such that V*p of M, \fr > 1, P ((N p)r) is the number of W^py-rational 

points of Jp.

P roof: We can extend K  to an M  so that (i) each component of J  has an M-rational 

point, (ii) r(J) is M-split, and (hi) for some maximal 77-torus T  of I  J ° /r (J ) ,  T  is 

contained in a Borel subgroup B of I  with B  split over M. Each of these requirements can 

be realized over some finite extension of K  [3.1.0.3], [4.3.0 .2 ] and [4.3 .0 .1 ]. If I  is trivial, 

we are finished (see the end of this proof); otherwise it is a connected semisimple M-split 

group, and this we henceforth assume. Our choice of M  guarantees that the (absolutely) 

almost simple factors of I  are (defined over M and) M-split. Write W  for the Weyl group 

of I  with respect to T, namely the finite group Afj(T )/Z j(T ).  Then W  is also preserved 

by reduction mod p V*p [5.4.5.1], and our choice of B  and T  gives a canonical basis for 4? 

and corresponding length function oh' W, / : W  — > N [4.1.0.1].

The above hypotheses are sufficient to guarantee that each double coset B w B  (for 

w £ W) in the Bruhat decomposition [4.2.2.3] for 7, namely

7 = 1 J  Bw B
w E  W

(disjoint union) can be taken as defined over M, and further that the canonical isomor­

phism of varieties [4.3.0.4] BtoB = B x A i s  also defined over M (for each w £ W). As­

sembling all of the above, we introduce the notation a =  # J ,  b =  dim tt(J), c = dim u(B), 

d =  dim T, e =  dim r ( J ) /u ( J ), and take

P (X )  = a X b+c(X  -  l ) d+e V  X lW
■u/G W
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The group W  is also the Weyl group of the root system <&(/, T) which is associated 

to / ,  and is the direct product of the Weyl groups corresponding to the irreducible root 

subsystems of <$>(/, T). We can show from this that the polynomial J2w<=W is the

product of those corresponding to these irreducible subsystems: these latter polynomials 

can be found in the earlier part of table after [4.5.4.1] (except that we have incorporated 

powers of X  — 1 and of X  into the expression aX i+c(X — l ) d+e). This gives an explicit 

description of P(X):  it is interesting that the nonzero roots of P  are roots of unity. [Had 

I  been trivial, we would have had c =  d = 0 and Xmevy =  1-] □

C oro lla ry  6 .3.0.2 The (Hasse-Weil) zeta function for J  over M  is an alternating product 

of integer translates of Cm(s) (and in particular J  has property (Z) for M /M ).

Explicitly,

■t=dim J

C0/,M,s) =  (t) n  - < ) “■'
■£=f>+e

where P (X )  =  a t-X \ □

C oro lla ry  6 .3.0.3 £(J, M, s) has a functional equation relating it to ([(J, M, 1 +  r  — s), 

where r = b T  c +  dim J ,

P ro o f: Let denote the (monic) irreducible polynomial over Q for the primitive

t th roots of unity: its degree is f( t) .  It is implicit above that the sum 

in the expression for P [X )  is a product of such factors for t > 1. One easily verifies 

that =  4>t(X) for t > 1, (for t =  1, a minus sign is needed). Hence,

X 7’P (X _1) =  C P (X )  where C — (—l ) rf+e and so we have the relation oti = C a r_/ among 

the coefficients of P. Recalling the functional equation [5.2.1 .1 ] for the Dedekind zeta 

function, which we write as Cm(s ~ >■) = Y (s  — i)(m (1 +  i — s) , with Y  meromorphic, we 

have
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i= d im  J

c ( j ,M ,S) = ( t )  n  ix (s - * K M ( i + t - s ) ] ai
{= 6 + c

i^dimJ j=dimJ
= (t) n Y ( s - i T ‘ - n <M(l  + r - j - s r ' - >

i=zb + C j  = b+c

then we get

“i—dim  J

n »-*)■
.  i—b-{-c

£{J, 1 +  r — s)(

We can of course choose the finitely many hitherto undetermined factors to fit into 

this pattern. □

Note that the r which occurs in the last corollary is equal to dim u(J)  +  Eh this is a 

point which will recur later.

6.4 A lm ost sim ple groups

Throughout this section [6.4], G is ant almost simple K -group.

*

6 .4 ,1  N o ta tio n s  and s ta te m e n t o f th e  M ain  R esu lt ( A S )

Recall [4.5.4] that G is connected and has a connected Dynkin diagram 9X Uir (say) [loc.cit]. 

We write again n for the rank, and r for the il-rank. Recall that Hi = G a l( l /K ) acts 

effectively on 9X n r̂ [4.5.2]. For p € M k , p unramified in I, let Fr  p be its Frobenius class 

in H{. Recall the notation E for dim 4? +  observe that for a split almost simple

group, we would have, in the notation of [6.3], X ^ P ( X ~ 1) ~  C P ( X ) where P( X)  is the 

rationality formula and C  is ( — l ) n.

By [6 .1.2.1], we can identify the strict Fp-isogeny class of V*p . (The fact that we 

are now dealing with the inner field rather than the splitting field is a minor detail, settled 

by [5.1.1.1].) The table following gives, for each diagram of outer type 9X n,r> the density 

of tha t subset Sh of M k  which is defined by the condition that (5 2fnir)p has type kX n for
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p £ Sh- The entries in the table were found by applying the Cebotarev density theorem

[5.1 .1 .2 ] to [6 .1.2.1]. The corresponding cardinalities are given too.
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I<-type Density Fp-type Cardinality

2 A
1 / 2

1 / 2

-4n,n

2A.,[=±i]

7’,(n+1)/2II?=1(?i+i - 1) 

?n(”+ i)/2 n r = i (? i+ i -  ( - i ) i+ i)

2 d-^n,r

1 / 2

1 / 2

1DJ-yn,n

2 n■̂71,71—1

_ i) n r^ i1 (<?2i - 1 )

?"<n- i } ( < r + i ) n r =~ v i - i )

2 rp ^6,r

1 / 2

1 / 2 2B6,4

<Z3 6 ( g 12 -  l ) (g 9 -  1)(?8 -  1)(?6 -  l ) ( e 5 -  l ) (g 2 -  1)

g3G{q12 -  l ) (g 9 +  l ) (g s -  l ) (g 6 -  l ) (g 5 +  l ) ( g 2 -  1 )

3Diir
1/3

2/3

' %

3-D4,2

g12(?4 - l ) n t i ( ? 2<- l )

g12(?8 +  g4 +  i ) (g 6 - i ) (« 2 - 1)

1 / 6 l D4,4 ?1 2 (g4 - i ) n L ( « 2i - i )

SX?4,,- 1 / 2 2 £>4,3 ?1 2 (g4 +  i ) n t i ( ? 2i - i )

1/3 3D4,2 ?1 2 (gs +  ? 4  +  i)(g 6 - 1)(?2 -  i)
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The rest of [6.4] is devoted to the proof of the following result.

T h eo re m  6 .4 .1 . 1  (For G an almost simple K-group.)

(1) G has property (Z) for l /K .

(2) There is a field f ,  with K  C /  C I and [f : A] equal to 1 or 2} such that ( ( G , f , s )  

satisfies a functional equation relating it to (,{G, / ,  1 +  E —s). We can choose f  =  K  unless 

9X n,r is one o f 2AUyr for n =  2 or 3 mod 4, 2Dn r̂ for any n > 4, or GDiir.

6 .4 .2  D e p e n d e n c e  on  I a n d  X n a lo n e

The first observation to make is the following.

T h eo rem  6 .4 .2 , 1  (For G an almost simple K-group.)

The Hasse-Weil zeta function £(G, 2v, s) depends only on I and X n .

P roof: We begin by considering an almost simple Fp-group J , with 9X n given. In

fact, we claim that the strict Fp-isogeny class of J  is already determined by this informa­

tion. Recall [4.5.3.2] that to show this, we must prove that the strict F^-isogeny class, the 

Fp-index and the anisotropic kernel are determined uniquely (up to Ga/(Fp/Fp)-set iso­

morphism or Fp-isomorphism as appropriate). The relative Fp-rank r of J  is well-defined 

by [4.5.4.1], though we do not need this explicitly.

J  is Fp-quasisplit, so the anisotropic kernel is trivial by [4.5.3.1]. Further, the strict Fp- 

isogeny class of J  is just that of X n. Finally, the Fp-index is determined by the following 

data. All orbits are distinguished, since J  is Fp-quasisplit. The inner field for J  is the 

(unique) extension of Fp of degree g. The group C ~  Gal(l\/Wp) acts effectively on 

X n. But elementary considerations regarding possible (directed-)graph automorphisms of 

X n show tha t there is a unique structure of C-(directed-)graph which can be put on X ni 

which is effective in the sense of C-sets. This lifts to a unique action of <?a/(Fp/Fp) on 

X n, such that Gal(¥p/li) acts trivially. Hence the Fp-index is also uniquely determined 

by the data 9X n.

This verifies the claim that the strict Fp-isogeny class of J  is specified by the data 

{ g ,X n}\ the Weil zeta function of J  depends only on this, by [4.4.0 .2 ]. This justifies
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notation like Z(9X n,Wp,t) for Z{J, Fp,i).

We return to the almost simple Jf-group G. Recall tha t the Dynkin diagram is pre­

served under reduction mod p V*p [5.4.5.1]. We also observe that if F rp  is the identity 

class of Hi, then G p is Fp-split: thus for g ~  1 , Gp is necessarily Fp-split and almost simple 

(V*p), so the local factors are known.

Next suppose g =  2. If F rp  is not the identity class of Hi, Gp is (for almost all 

such primes) strictly Fp-isogenous to an Fp-group of type 2X n<r (for the same X n as G , 

and r as in the table [4.5.4.1]); the Hasse-Weil zeta function is again determined by this 

information, in which knowledge of I is implicit.

For <7 =  3, if F rp  is either of the non-identity classes, then Gp must have the same 

Weil zeta function as the group 3D4^-

Finally for g =  6 , if F rp  has elements of order 2, then we have the local factor 

Z{2D4,Wp,t). If F rp  has elements of order 3, then we get Z (3D4,Wp,t). □

The above result suggests that the Hasse-Weil zeta function is in some sense a rather 

‘crude’ invariant of the group.

Next is an elementary result for which the author does not know a source: it will be 

used in some of the existence proofs- for functional equations. A special case was used 

already in [6.3]. *

L em m a 6.4.2.2 Let A(A) E C[X], A  ^  0, of degree d. For z E C, let m , be the

multiplicity of z as a root of A. Suppose further that there exist a  E ’Z and C  E C such

that C X aA ( X ~ l) =  A{X) .  Then a = d F m 0 and C = ( - l ) mF

P ro o f: Write A(X) =  X m° ( X -  l )miQ(X) where Q(0)Q(1) ^  0 . Then

C X aX ~ m° (X - 1  -  l )miQ (X _1) =  X mo( X ~ 1 )miQ{X) ,

so

c ( ~ i ) mix 0f“ 2mo“ m i( x  -  i ) miQ ( x ~ 1) =  { x  -  i ) miq ( x ) .

Dividing by ( X — l ) mi, and evaluating at X  — 1 gives C = (—l) 7711, and the assertion 

about ci' follows bj' comparing terms of degree zero. □
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6 .4 .3  P r o o f  o f ( A S )  for groups o f inner ty p e

The computations here almost follow from those in [6.3]. If G is of inner type over K  so 

that I — A", then so is Gp V*p, and thus Gp can be taken as Fp-split (being necessarily Fp- 

quasisplit). Hence one takes for rationality formula the polynomial P{X)  given in [4.5.4.1], 

giving £(G, A”, s) as an alternating product of translates of Dedekind zeta functions [6.3.0.2] 

(so G has property (Z) for K / K )  with a functional equation over K  as at [6.3.0.3].

6 .4 .4  U n ifica tio n  o f ra tio n a lity  form ulas

In the next few subsections, we record again the explicit expressions [4.5.4.1] for numbers 

of Fpt-rational points for the various almost simple Fp-groups of outer type, and ‘unify’ 

these formulas to get at the number field case b)̂  introducing characters of (the current 

group) if;, which we recall can be identified with Gal{l /K).

We recall that Hi is isomorphic to a subgroup of 5 3 . For convenience, we refer below to 

the presentation < cr, rjcr2, r 3, (crr)2> for S3 and subgroups C2 :=< crjcr2 >, C3 : = < r |r 3 > 

thereof.

Subsequently in this section, y, sundrily annotated, denotes various simple non-principal 

characters of Hi (which we recall are constant on conjugacy classes), and e denotes the 

identity element of Hi- We use A pf) and A(X), sometimes annotated, to denote (various) 

elements of Z[X], and use C  to denote various combinations of the functions which appear 

in the functional equations for Artin A-functions. The exact form of C  is not important: 

it could readily be written down in any given case if required.

Recall that the rationality formula to be used for P ( Np t) in the case of an Fp-group of 

outer type depends on the degree t of extension being considered. In all subsequent cases, 

an expression for # G p(Fpt) is obtained which is valid for all t > 1 and V*p . We will see 

that characters of Hi are involved, and the formulas are found by a little experimentation.

6 .4 .5  G enera l rem arks ab ou t ( A S )  for cases in  w hich  g =  2

We use here the character y of C -2 such that y(cr) =  — 1 and y(e) =  1. We note that 

X{aa) =  \'(cr)a for each a 6  Z a s  y is linear, and that y(cra ) 2 =  1 . The three types of
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diagram are considered separately: in each case, the ‘unifying’ formula is readily verified. 

We will see that, in each of the three cases, we can choose polynomials A(AT) and B ( X)  in 

Z[X], with coefficients independent of £, such that #<j?p(Fpt) =  A(iYpf)d-x([-P1/’ 

for all t and V*p . The calculations for the case 2 A„)r will be carried out in full, as these 

are the most complicated: the others will be abridged.

6 .4 .6  V erifica tion  o f ( A S )  for th e  cases 2An)r

if 1 € Fr  p or 

(cr £ Fr  p and (2 , t) =  2 ),

N p tn(n+l)/2YY}^N pt(i+l) _  (_ l)i+ l) [f a £ £V p and (2 , t) =  1 .

=  iYp^ ( n + 1 ) / 2 n w > “ (Vt, V*p)
*=1

As only the parity of the exponent to which Fr  p is raised is significant, we can simplify 

this to ^

n n
]yptn(n+l) / 2  n (iVp<(<+1) -  1) ■ n { N p t U + l ) - x ( [ F r ? Y ) )

i= 1[i odd)
j = 1 

(j even)

and so

# ( 2An,r) p(Fp.) =  A[Npt) + x(lFrp]t)B(Npt)

with A(A) and B( X)  being in Z[„Y] (and independent of t). We write A(V) =  Y l i ai X % 

and B{X)  = bjXF

Hence, by the definitions [5.2.3] of the Artin L-function and Hasse-Weil zeta function 

we get
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<c a „ ,  .  m n ^ p i E  i f i M i E i ) . n < * p E
p i= 1 p t = 1

= tt) n M s  -  *)ai - n ^ . *■5  -  •
i i

verifying (1) of [6.4.1 .1 ] for this case. We can clearly get a functional equation of the 

required form over /; however if we can find c £ Z and w £ C such that

X ' A i X - 1) = wA( X)  and X ^ i X ' 1) = w B { X ) 

we get a functional equation over K  of the form

C(2 / W > ^  s ) ~  C ( s ) ( {2An,r ,K ,  1 +  c  -  s)™

as follows. Observe that x  'ls a reaI character. We use the functional equations for 

Ck (s ) and Li H^ i y, s) [5.2.1.1, 5.2.2.2].

c(2 An.r , i i - ,s ) = (t) n  ax (s -  o  - n  ^  -  i ) 6j
i j

= (tjcw n  oc(i+«- «)■“ ■ n  ̂  w . x, i -  s + i t ’
i j

Now wac—i — cii and wbc„j — bj for all i , j  £ Z: furthermore, i runs through the

same index set as c — i, and j  runs through the same index set as c — j  by construction.

Replacing i by c -  i and j  by c -  j  in the last expression gives

C(2A„,,., K, s ) =  (t)C (s)C (2An,,., I(, 1 +  c — s)w

as required. (Recall that it) is ± 1 .)

We now seek sufficient conditions for the existence of c and w with the required prop­

erties. Recall that, by [6 .4.2.2], we necessarily have c =  deg A +  rao(A) =  degB +  tyiq{B) 

and w — (—l) mih4) — (—1 y711(s )? where (almost as before) m z (Q) denotes the multiplicity 

of as a root of the nonzero polynomial Q(X) £ C[A"].
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We can certainly find such a ct w for the polynomial Tn( X ) (say) with constant coef­

ficients
n

Tn(X) =  X n (n + 1 ^ 2 {X i + 1  -  1)
i=1 

(i odd)

whose degree is d (say), and which has 1 as a root of multiplicity - namely

n(n + 1 ) . . . rn+ii
c = d + ---- ~  and w =  (—1 ) 1- 2 -I

Tn divides both A  and B , so we can remove this common factor, and suppose that A(X) 

and B ( X )  are such that

71

A(Npt) +  X([Frp]i)B(Npt) =  ^  ( iV p^+1> -  X([Fr p]')) (*)

J = 1 (j even)

Write

I  =z {j  € Z |j  is even and 1 < j  < n}, and c =  # /  +  j
jei

- thus c is the degree of (*) (the degree in Np*). We note next that (with our new A  and

£ ) , mi(A)  =  mi(B)  = 0 for all n. We know, of course, that both A  and B  have integer

coefficients, but in fact both A alid —B  (are nonzero and) have nonnegative coefficients 

so cannot have 1 as a root. To see this, observe that as x([F'p P] * ) 2 =  on expanding (*), 

terms coming from the product of an even (respectively, odd) number of x ([^ r  P]*) terms 

only contribute to the expression for A  (respectively, _B). Hence the nonnegativity of A 

and —B,  and we must take w = 1 for the new A and B.

We write y for y([TV p]f) from now on in this subsection, and recall again tha t y = y~ l . 

Then we have (in which all subscripts j  run over I)
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A(X)  + yB{X)  =  I K ^ 11 - y )  = A - n t 1 -  y X - ^ 1) =  (-</)# /A<: ]][(X -> -1 -  y)
J j  j

=  +  y B i X - 1)}

A^IAfX” 1) + y I M X - 1)} for # /  even,

A ^ -y A fA " 1) -  B (A -1)] for # /  odd.

For even (equivalently, n = 0 or 1 mod 4) we have

A(X) +  yB(X)  = X ' W X - 1) +  S /B ^ " 1)];

since this must hold for both y = 1 and y — —1 , we get

A(A) =  A CA (A _1) mid B{X)  = A ^ A " 1).

Adding this value for c to the value — 2+ 1 '1 +  d obtained for the polynomial Tn(X)  and 

multiplying w by wl gives c =  dim G +  ?1-n2+ ̂  ^  as required, and we have a functional

equation for n = 0 or 1 mod 4 as claimed in [6 .4.1.1]. We record this explicitly.

C(2 A„,„ K, s )  =  (t)C (sX (2 A„,r , I i , 1 +  E -  s) ( <_1) " )

(n = 0 or 1 mod 4.)

For odd, (equivalently, n ~  2 or 3 mod 4), we get similarly,

A(A) =  ~ X cB ( X ~ l ) mid B{X)  =  - A CA (A -1).

However deg A +  mo(A) — c -j- 3 and degH 4- mo(B) — c — 3 , so we cannot ‘reciprocate’ 

A and B  simultaneously and therefore cannot find a functional equation over K  by this 

method, also as claimed [loc.cit.].

This verifies all of the assertions of [6 .4.1.1] about groups of type 2 An>r.
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6.4 .7  V erification of ( A S )  for th e  cases 2DnjT

# ( 2 ^ n , r ) p (  F p. )  =  I

Nptn(n~ 1) (Nptn _ ^  j jn - l  ^ p2it _  j) [f ± £ p r p ^

(cr E Frp  and (2, £) =  2),

Nptn{n-i)(Nptn +  ^  {lVp2ii -  1) if cr <= Fr  p and (2,£) =  1.

n —1

= N p t^ n- i \ N p ,n -  xCC-F’rp]*)) n  (iVp2,f -  1)
i= 1

all of this holding Vi, V*p of course. By a similar, but easier argument, we get 

polynomials A  and B  such that

# ( 2£ n,, .« * > )  =  A( Np ‘) +  X([JF r p ] ') f l ( A y )

and hence that

a 2Dn,r, k ,  s ) = ( t x n  c k ( s - * ) “■•• n x , * -  i ) 6j
i j

This time, we find that

n —1

A ( X )  =  V 71" Y[ {X2t -  1) =  ( - l f - h Y 3" 2- 71̂ - 1)
i= 1 

n — 1
B ( X)  =  ~ X n2~n -  1) =  ( - l ) n’̂ 1 X 3 n2 ~3nB ( X ~ 1)

i = l

so tha t no functional equation over K  can be found by the method above. However, 

we do again have a functional equation over I.

6 .4 .8  V erifica tion  o f ( A S )  for th e  cases 2f?6,r

Due to constraints of space, this time we write the actual conditions for the two different 

rationalitv formulas after the formulas themselves.
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# ( 2£ 6,,.)p(Fpl) =  {

if ‘A’

if 4B’

N p 3 6 t(Np12t -  l ){Npgt -  l ) {Npm -  1 ) ■

(iVp6f -  1) (Npst -  1 ) (Np2t -  1)

Np 3Qt(Npnt  -  l ){Npm +  l)(iYpst -  1 ) •

{NpQt -  1 ) (Np5t +  1) (Np2t -  1)

where

‘A ’ is: 1 € Fr  p or (cr € Fr  p and (2, t) =  2)\ and

4B’ is: cr e Fr p  and (2, £) =  1 .

We unify the formulas as

N p 3 6 t (Np12t -  l)(W p9* -  x([TVpf))(W pst -  1) (Np6t -  l)(iVp5* -  x ([Fr p]f))(iVp2* -  1)

Vt, V*p . The same argument again gives

# ( 2B 6,r)p(Fpl) =  A(Np‘) + x ([Frp]t)B(Npt)

with

A(X)  = X 3 6 { X 12 -  1 ) (A^8  -  1)(A 6 -  1 )(A 2 -  1)(X 14 +  1) =  A'114A (A -1)

B{ X )  = - A 4 1 (A 1 2 - 1 ) ( A s - 1 ) ( A 6 - 1 ) ( A 2 - 1 ) ( A 4 + 1 ) =  X U4 B (X _1)

and hence

C ( 2 £ 6 l , ,  i f ,  s )  =  ( f )  [ J  C a t ( s  -  * ) “ ■' • I I  * - s  -

* 3

in an obvious notation.

The constant 114 which appears is the value of E =  dim G +  #4>+ as usual. Thus

c (2£ 6,,-, K, s) =  C t f t f E e s ,  if , 115 -  s)

where C(s)  is meromorphic. We have now verified [6 .4.1 .1 ] for g =  2.
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6.4 .9  V erification of ( AS )  for cases in which g ~  3

We write here u> for exp and use the following characters x! and x!' of C3 .

Class e T  T 2

x' 1 UJ UJ2

x" 1
0

UJ UJ

N p 1 2 t {Np4t-  1 ) ■
3

l [ ( N p 2it-  1)
t = l

# ( 3 D 4 ,,-) p ( F p « ) =  <

jVpm (iYpSi+iVp4l( +  1 ) •

(Np6t — l ) (Np2t — 1 )

if 1 € Fr  p or

(r G F r  p and (3, t) = 3) or 

( r 2 G F rp  and (3,t) =  3),

if (r G F r  p and (3, t) =  1) or 

( r 2 G F rp  and (3,t) = 1).

=  iYp (iYp -  l)(iVp2t -  l)(iVp8‘ -  bd{[Frpy)  + x " ( [F rp ] t)]lVp4t +  1) 

Vi, V*p as usual.

This time we have # ( 3 D4 ir)p(Fpt ) =  A{Npt) X x >{[Frp]t)B{Npt) T y ^ ^ F r  p]t) B( Np t) 

with the same function B ( X)  multiplying each of Xf and x"  8 0  that we only have to 

consider the real character X* T  x" ■ Explicitly,

A(X) = A 1 2 (A 6 -  1) (A 2 -  1 ) (A 8 +  1) =  A 4 0 A (A "1) 

5 (A ) =  - X 1 6 (X 6 -  1 ) (A 2 -  1 ) =  A 4 0 B (A _1)

with 5 =  40 for this case, and we get
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C ( 3 I> 4 , , - ,  k , S )  =  ( t )  1 7 c A - ( s  -  * ) “ ’  ■ n L i H >> x ' ,  *  -  f f 1 ■ n  L ( H ‘ >x " ,  s  -  i ) 6'

■' j j

Hence we get the functional equation over K  

c ( U V ,  I(, s )  = C(s)((3D4,r , I i ,  41 -  s ) , 

and this verifies [6.4.1.1] for g = 3.

6.4 .10 V erifica tion  of ( A S )  fo r cases in  w hich g  — 6

This time we use the following characters Xi and X 2 of S 3 ,

Class e cr r

Xi 1 - 1 1

X.2 2 0 - 1

N p i 2t {Np4t -  1 ) •
3

■ JJ(iVp2rt -  1)
1

N p 12t (Np4t +  1 ) •

H ( N P2ii ~ 1 )
i=l

N p 1 2 t (Npst +  N p 4t +  1 ) 

{Npm -  l ) {Np2t -  1 )

if 1 € Fr  p or

(cr G F rp  and (2,t) = 2) or 

(r G F rp  and (3,f) =  3),

if <r G F r  p and (2, t) =  1, 

if r  G F r  p and (3, t) = 1.

which is Vf, V*p as usual,

iVp12f{iVp6t -  l ) (A rp2t -  l ) ( iV p 8! -  X2 ([Frp]‘)Np it + X i( [J Y p ] ‘))
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In the usual way we can find A, B i and B 2 such that

# ( 6D 4,r)p(F1,0  =  A(Np‘) +Xi([Frpf)B1(Npt) +  X'2 ([F r p ]t)B 2(iVpi).

with

A(A) =  A 20(X 6 -  1)(X2 -  1) =  X ^ A i X - 1)

B x{X) =  X 1 2 ( X 6 -  1)(X2 -  1) =  X 32B i(X _1)

B 2 {X) = - X 1 6 {X6 -  1)(X 2 -  1) =  X ^ B ^ i X - 1)

For the record, we get

c(8J5V . - * c s ) = ( t ) n < K ( * - ,')a<
i  j  k

in a notation which should be self-explanatory. Thus we do not have (by the above method) 

a functional equation over K : however, by passing to a quadratic extension /  such that

G has type 3jD4i,./ (for some rf > r ) over / ,  we can get a functional equation over / .  Such

an extension exists by the fundamental theorem of Galois theory.

This verifies the assertions for the case g — 6, and indeed concludes the proof of
v

[6 .4 .1 .13.
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C h a p ter  7

Two D ynkin  C om ponents and  

Future W ork

7.1 V irtu a l characters and n otation

Z-linear combinations of characters of a finite group J  are usually called virtual characters 

of J . In particular, the virtual characters of J  then form a commutative ring with unit. 

Though not in general characters of representations of J ,  some of the formal theory of 

characters still applies. A character which is afforded by a representation is said to be 

effective. If y  is effective and J  is a Galois group then L (J , —y, 5 ) =  L (J , y, s)-1 .

In [7], we use again the 2-element group C2 ~<<j\cr2> with simple characters {yo)X}i 

yo being principal. We also put h C  for their Z-span, which in this case consists of Z- 

valued functions on C2. In addition to the usual notations and hypotheses at the start of 

the last chapter, all of which we retain, suppose that G is almost A-simple (and therefore 

semisimple), such that its Dynkin diagram V  has two components, both X n. The nodes 

of these components will be denoted n) and { l7, . . . ,  rz'}.

B}r [4.5.5.1] there is a quadratic extension /  of K , and a connected almost simple 

/-group M  such that G ~ k  We will often use the fact that /  is a normal

extension of K , and contained in the inner held I. The main result is as follows.
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T heo i'em  T.1.0.1 (For G connected almost K-simple with two Dynkin components.)

£ (G ,/l, s) is an alternating product of Artin L-functions for characters of Hi (viz. G 

has property (Z) for l / K ).

7.2 T h e case w here M  has inner /- ty p e

We suppose that M  has Dynkin diagram 1X n,r and corresponding rationality formula 

P ( X)  {viz. P(Np*) = #M p(Fp0  for all t > 1, V*p).

L em m a T.2.0.1 There exists (a unique) Q(X)  € ZC[X] such that the induced map Q : 

C -2 — > 'Z>[X] given by evaluating the coefficients at elements of C'2 satisfies

=

P ( X 2) i =  l,

F ( X ) 2 i =  2.

P ro o f: We construct Q(X)  directly. We want (if possible) to find Q{X)  =  X /(a jXo +  

b i x )X l such tha t Q satisfies the hypotheses above, with each a,- and b{ being integers. We 

have P(X)  =  Pjx ~* (say) with d =  dim M  and s = dimi/ ~ n as usual [4.5.4.1].

By our hypotheses, we must have S t-(a; +  6i)X* =  P(W )2 and Y2iiai~  bi )X% = P { X 2), 

so that the relations

2aiX i = P { X ) 2 + P { X 2)
i

2bix i  =  p {x )2 -  p { x 2)
i

show the existence of a unique Q{X)  G CCpf] with the required properties: it remains 

to show tha t the a.; and b{ are all integers. Now P ( X 2) ~  Y ^ ^ s P ^ 2̂  an<̂  P { x ) 2 =  

YYHz2s x k  Y2j-s PjPk-j'  The summation range s , . . . ,  k in the inner sum is not minimal, 

but this will not m atter (of course pj is taken as zero for j  £ { s ,. . . ,  d}).
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£}=« P j P i - j  +  p(i) for i  even
2Uj --

E  )=s p m - j for i odd.

/
T,)=s p m -3 -  P(i) for * even

26*- =  <

E  )=s PjPi-j for i odd.

Since 2a* — 26t- is an even integer for all j, it follows that a; is an integer iff is. We only 

consider the {a*} from now on, and take the cases H odd’ and ‘z even’ separately.

These summation ranges are all nonempty by construction; replacing the dummy j  by 

i — j  under the last summation sign shows that the last two sums are the same. Hence 

a-i £ Z for all odd i.

For i even: This time, we have

Interchanging j  and i — j  under the second summation sign again gives the result. Hence 

ai is an integer for all even i. □

P ro p o sitio n  7.2.0.2 With the already established notation in this section, we have that, 

V*p , Q{&ir) (Npr) = #Gp(Wpr), where <r% = F rp  and this holds Vr > 1.

P roof: For i =  2, we know that Gp Mp x Mp, verifying this case. Otherwise, i =

For i odd:
i—i

1, and we have then Gp ~ fp and so by [2.8.0.3], # G P( I »  =
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with q =  Np  as usual. But for i = 1 , Q(cru')(qr) — P(q ’ ) 2 when r is even, and is P(q2r) 

when v is odd, as required. □

T h eo re m  7.2 .0.3 (G as at the start of the chapter.)

The Hasse-Weil zeta function ((G , Ii,  s) is

(t )l[L(f/K,qi,S-i),
i

where Q( X)  =  QiX1.

P ro o f: This is n o w  a n  elementary c a l c u l a t i o n .  □

7.3 T h e case w here M  has /- ty p e  2X n r

We recall tha t f / K  is Galois. Suppose that the main orbit M  (whose definition is im­

mediately before [4.5.5.3]) is {n, v, u', i?'}. We note that any subgroup of Tj  which acts 

trivially on one Dynkin component (via the *-action) does so on the other as well because 

by [4.5.5.3] Tj  acts in the same way on the components (more precisely, the components 

are isomorphic T/ - sets). Thus (recall the inner field I for G) [/ : K] — 4, and moreover, 

Hi =  C 2 X C2 (and not C4 ) since it must contain (regarded as permutations on the un­

derlying set of M) a — (zzu)(u/u/), which generates Tj /Ti  = Gal( l / f )  (a subgroup of Hi), 

and p = (uv!) (vv1) which interchanges the components.

We can just about identify the strict Fp-isogeny class of Gp immediately, as given 

in the following table. We remark that the uniqueness of the quadratic extension of Fp 

has been used. Let P( X)  be the rationality formula for X n\ recall that by [6.4.5] there 

exist A(X) and B( X)  (with constant coefficients) such that P(X)  ~  A(W) +  B ( X)  and 

^ 2 W?li?.(Fpt) =  A(iYp*) +  (—l ) tB ( N p t) (where 2 X n,r temporarily denotes a group over Fp). 

Using this and [2.8 .0.3] gives the table which follows.

In this table, and subsequent similar ones, the second column gives either an almost 

Fp-simple Fp-group, or the Dynkin diagram of such a group, which is strictly Fp-isogenous 

to Gp. The third column gives a rationality formula.
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F rp  = e  A '„LIXn P 2(JVp')

F rp  = a  2X n,r l l 2Xn,,. [/1(/Yp‘) +  ( - l ) 'B (X p ') ]2 

F rp  = p  F Fp2/Ft(X„) p(2,i)(jVp'c'"(2.‘))

F rp  =<jp J?Fpa/Fp(X„) p(W)(^plom(2,i))

The absence of 2 / f p ( 2j^ n , r )  is due to the noncyclicity of Hi. We now need to 

reconcile these with the character table, and settle on the following simple characters of 

Ht.

Class e a P op

Xo 1 1 1 1

Xi 1 1 -1 -1

X2 1 - 1 1 -1

X3 1 - 1 _1 1

We then put A and B  into the rationality formulas, to obtain

A2 (iYp*) +  2A{Npt) B( Np t) +  f?2(iYp*)F r p = e  X n U X n 

F r p  = O’ 2X n t r U 2X n ,r A2 (iYp*) +  2(-l)*A(lVp*)£(iYp*) +  B 2 {Npt)

Fr p — p /pp (Xn)
A(iYp2*) +  B{Np2t) for t odd,

A2(iYp*) +  2A{Npt)B{Npt) +  F 2(iVp*) for t even.

Frp  = ap R w /¥p{Xn)
A{Np2t) + B{Np2t) for t odd,

A2(iYp*) -f 2A(Npt) B( Np t) +  B 2 {Npt) for t even.

We have seen already in [7.2.0.1] how to find integers a; and a\ such tha t A (X 2) =  

Y liiai ~ a'i)X l and A2(X) =  X^(a.i +  an<̂  similarly bi and b\ for B( X) .  We now

observe th a t we require an A (X 2) or a B ( X 2) precisely when Xi([Frp]*) =  — 1. Hence 

the terms which do not involve AB  are

2 2  (ai +  *i([Frp]*X)iYp* mcL Y ^ ( bi + Xi ([Frp ]*)&•) iYp*.
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Finally, to get the terms involving AB,  inspection shows that we should take

L\'2 ([i?r p ] i) +  /Y3([F rp ]‘)M (iVp()B(iVp*).

The final rationality formula is then

# G P( Fpl) =  ^ ( a i +  6i)iVp‘ +  y ] ( a ;  +  i>'i)Xi([i;’i-p]‘)iVpi +
t i

+  x 3 ( [ B r p ] * ) ] A ( W p * ) B ( i V p * )

yielding zeta function

a G j< ,s )  = ( i ) ] i o<( S - i r ' +b' ■
i j

H  L(H,, X2 , S -  ky* • [ J  L{I-IU X3, s -  k f -,
k k

where £ *  ck * h -  A{X)B{X) .

7 A  T h e case w here M  j.1 3D4)r

Since T/ <3 T, we have [/ : XX] =  6, and indeed Hi = C2 X C3 =  Cq since Hi contains

(134)(l/3/4/) (generating Gal ( l / f )), ( l l /)(33/)(44/) which interchanges the components,

and their product (say) p — (IS 'd l^d7). As usual we seek to classify Gp according to Fr  p . 

Let P( X)  =  X 12(JX4 — X) U U i X *  — 1) be the rationality formula for D 4 — 1 1 X4 ,4 . We 

use the following notation for the simple characters of Hi, where we write r  =  exp

Class e P P2 A3 PA P5

Xo 1 1 1 1 1 1

Xi 1 T r 2 - 1 r 4 r 5

X2 1 T 2 r 4 1 2T r 4

X3 1 - 1 1 - 1 1 - 1

*4 1 7*4 9
T ~ 1 r 4 r 2

X5 I r 5 r 4 - 1 r 2 r
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Considering the various conjugacy classes in Hi, putting u  — exp =  r 2, and abbre­

viating lcm(2, t)  by L we get

F rp  = e  Da I ]  ^ 4  F 2(JYp*)

F rp  = p  FiF^/Fp (3F 4i2)

F rp  - p 2 3F 4,2 U 3F 4 ,2

[Np12L(Np6L -  1 )(JVp2L -  1) •

(Np8L~ (u L +  cFL)iYp4L +  1)](2>*>

[iVp12*(iVp6* -  l)(ATp2* -  1) •

(Yps<- ( F  + oF)iYp4* + l )]2

F r  p =  p3 F f  /Fp (F 4) [Np12L(Np4L -  1) Ui(NP2iL ~  1)](2 >̂

F rp  = p 4 _D4|2J_J F 4 ,2
[AXp12f(iVp6i — l)(JVp2* — 1) ■

(lVp8t—(u>* +  oj2t)Np4t +  l)]2

F rp  =  p5 /Fp(3F 4)2)
'.[iYp12i(iYp6L -  l)(W p2L -  1) ■

(iVp8L-(w L +  w2L)iVp4L +  l)]<2*f>

where the formulas corresponding to p±a are the same.

We note tha t V£, cF +  oj2* =  ajl + u 2L = r 2t - f r 4i. Looking at the factors in the various 

rows which correspond to the factor iVp8t -  (F  +  r 2t)iYp4* +  1 in the third row of the last 

table, and comparing with the character table shows that we should take this in general 

as

N p s t  -  [X2 ([Fr p]‘) +  X 4 ( [ F r p]*)]2Vp4‘ +  1.

We will adjust this now to take account of the parity of t. Define

Q(X, Y, Z) = A'12(.Y6 -  1)(.Y2 -  1)(.YS -  (Y +  Z ) X 4 + 1) =  A(Y) +  (Y  +  Z) B( X)

(say), so suitable evaluations of Q will give numbers of rational points. By an obvious 

extension of [7.2.0.1], there exist a finite set /  C N xN xN and integers C{ and d* (i in I) such
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tha t Q( X, Y, Z) 2 = ’£ iel (ci +  di)Xi‘Y » Z i> and Q( X2, Y 2, Z2) =

Then by inspection, (recall that all the Xj are linear characters), we get

#G p(FP0  =  {

Q{ Np t , X2([Frp]t) , Xi ( [ Fr p] t))'2 when ,\'3([-Fr'p]‘) = +1,

Q{N? 2 \ x 2 ([FrV]2 t) ,Xi([Fr$]2‘)) when =  - 1 .

^J^iCi + XstiFrpfWNp^x^Frpfyix^FrpYy*
*€/

(Vi, V*p)

verifying that £(G, iv, s) is an alternating product of Artin T-functions for characters 

of Hi - sciz. has property (Z) for l / K.

7.5 T h e case w here M  ~ f

By the usual argument, we get Hi = S 3 XC2 , with C2 generated by a := ( l l /)(33/)(44/). We 

observe tha t cr(= { 1 }  x  cr) is central in Hi, so tha t the conjugacy classes in Hi are those of 

S3 X {1} and their translates by cr. Thus Hi has six simple characters. Now the characters 

of the direct product A X B  of finite groups are readily determined as induced characters 

from A and B: the simple characters of .4 x 5  are the characters of representations 9i<g>£(bj, 

where {^} (respectively, runs over the irreducible representations of A  (respectively,

B ). Thus the character table for A x  B  is the Kronecker product of those for A and B  (viz. 

tensor product as matrices), with respect to a suitable ordering on the simple characters. 

Hence we have the following character table for Hi (where we merely list an element of 

each conjugacy class).
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Class e (13)(1'3') (134) (1 W ) cr (13)(l/3/)cr

X o 1 1 1 1 1 1

X i 1 -1 1 1 -1 1

X 2 2 0 - 1 2 0 - 1

X 3 1 1 1 _1 -1 -1

X 4 1 -1 1 -1 1 -1

X 5 2 0 -1 - 2 0 1

We write again u> =  exp and I = lcm{2, £); as usual P{X)  is the rationality formula

3

W12(X 4 - l ) J J ( W 2i- l )
i=x

of F 4, and P( X)  = A(W) +  B( X)  where A  and B  are as in the rationality formula for

2£>4,3.

Fr  p =  e 

F rp  = (1 3 ) ( l /3/)

F r  p =  a

D , U D ,

2 d 4 , s U 2 d 4i3

F rp  = (1 3 4 )( l/3/4/) 3F 4,2I ] 3F 4i2

2 /Fp ( A l )

F rp  =  (13)(1/3/)ct Rf /¥p (2F>4,3)

F rp  =  (134)(1'3'4')* F Fp2/Fp(3F 4,2)

P 2{Npt)

[A(iVp*) + (-l^FfTVp*)]2

[iYp12t(iYp6* — l ) ( W p 2i — 1) • 

(Arps* - ( u / +  u>2i)iVp4* +  f ) ]2

P (JV p ')M

[^(iVpO +  (—l)^(A^pO](2,t)

[JVp12'( iVp6 , - l ) ( i Y p 2' - l )  ■

{Np8t — (u)1 + w 2/)iYp4/ +  l ) p 2’f>
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We observe that the top half of the last table is the same as that for the case ®D±<r 

[6.4.10] (except for the squaring of the rationality formula). In [6.4.10], we had

where x ' ancl X" are ^ ie simple characters of S 3 denoted x i  and X2 there, and A(X), 

B x(X)  and ^ ( X )  are polynomials with constant coefficients. Now put Q(X, Y,Z)  = 

A(X)  +  Y-BifX") +  Z B 2 (X).  By the usual method, we apply [7.2.0.1] to find integers c; 

and di such that

Hence we again get C((7, X, s) as an alternating product of Artin L-functions for char­

acters of Hi.

7.6 R em arks about further work

We have seen that, to verify that all connected K -groups have property (Z), it would 

suffice to verify that every connected almost X-simple group has property (Z) [6.2.2.1].

In this chapter, we have verified tha t every such group which has up to two components 

in its Dynkin diagram has this property. The simplifying feature in this situation is 

tha t for such a group (7, there exists a connected almost simple /-group M  such that 

G ~ k  R f / K {M)  with /  being normal over K.

# (6ZV) p(Fp.) =  A(Np‘) + / ( [ J Y p p B ^ A y )  +  X"([fVp]<).B2(;Vpi)

Q(x2, y 2, z2) =  -  d , ) x iiy ’j y ‘3

and observe that

Q X'l P ]‘), X2 ( [^ ' P ]p )2 if X'3 ( [e rp ] ‘) =  + 1 ,

# G p ( F p. )  =  ^

if x 3( [ f > p ] f) =  - 1 .V
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However, the general case ought not to be intractable in view of the systematization 

outlined in [4.5.5], which will hopefully form the basis of future work. There may be 

consequences for the Langlands program.
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Index o f D efinitions

Absolute norm, 65 

Action

diagonable, 38 

effective, 58 

of group on variety, 33 

Additive group, <Da , 37 

Adjoint group, 59 

Adjoint representation, 36 

Admissible scalar product, 46 

Affine algebra, 3 

Affine piece, 5 

Algebraic group, 31 

Almost ^-simple fc-group, 43 

Almost simple A;-group, 43 

^-Anisotropic, 53 

Anisotropic kernel, 59 

Artin L-function, 69

Birational equivalence, 8 

Borel fixed point theorem, 40 

Borel subgroup, 40 

opposite, 50 

Bruhat decomposition, 51

Car tan integers, 47

Cartan subgroup, 41 

Centralizer, 33

infinitesimal, 38 

Character

effective, 107 

of algebraic group, 37 

of finite group, 68 

virtual, 107 

Character module, 37 

Characteristic exponent, 18 

/c-Closed, 18 

Closed embedding, 4 

Closed orbit lemma, 34 

Cocharacter, 38 

Comorphism, 3 

Constructible set, 11

Decomposition group, 66 

Degree

of morphism of varieties, 9 

Density

Dirichlet, 66 

Dimension

Krull (of ring), 15 

of variety, 8
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Direct spanning, 32 

Distinguished orbits, 58 

Dynldn diagram, 47

numbering of nodes, 62

Entire ring, 1 

Euler product, 67 

Exterior algebra, 5

Frobenius 

class, 66 

element, 66 

map, 55 

Function field, 3

Galois group, absolute, 25 

Generic point, 72 

fc-Group, 31

Homogeneous ideal, 4 

Hypersurface, 4

Identity component, 33 

AMndex, 58 

Inertia group, 66 

Inner field, 58 

Inner type, group of, 58 

Invariant factors

of integer matrix, 87 

Irreducible, 2 

Isogeny, 32 

central. 32

strictly fc-isogenous, 32

Jordan decomposition, 36

Length (of Weyl group element), 47 

Lie algebra, 35

Lies above (of prime ideals), 66 

Local rings, 6

morphism of, 15 

regular, 15

Main orbit, 64 

Morphism

dominant (of varieties), 8 

finite (of affine varieties), 9 

fe-morphism 

of ^-groups, 31 

fc-morphism 

of ft-varieties, 21 

regular (of affine varieties), 3 

Multiplicative group, <Gm, 37

Nilpotent group, 34 

No'rmalizer, 33 

Number field, 65

Orbit map, 35

Outer type, group of, 58

Parabolic subgroup, 41 

Perfect field, 18 

Point derivation, 13 

P re variety, 7
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K -Prime, 65 

Principal open set, 4 

Projective space, 4 

Property (Z), 84 

for n, 84

/b-Quasisplit group, 53

Radical, 42 

Radical of ideal, 2 

Ramification index, 66 

Rank

of algebraic group, 41 

fc-rank of k-group, 58 

A;-Rational points, 25 

Rationality formula, 62 

Reductification, 43 

Reduction (modulo a prime), 72 

Reductive group, 43 

Regular functions, 7 

Residual degree, 66 

Rigidity (of torus), 39 

Root subgroups, 49 

Roots

abstract system of, 45 

closed set of, 46 

irreducible system of, 46 

long, 47

of torus in group, 38 

positive, 46

reduced system of, 46 

short, 47 

special set of, 46

Segre embedding, 5 

Semidirect product, 32 

Semisimple group, 43 

Semisimple rank, 43 

Semisimplification, 43 

Separably generated, 13 

^-Sequence, 32 

Sheaf, 6

Simple point, 13 

Simply connected group, 59 

Smith normal form, 87 

Solvable group, 34 

Specialization 

ring, 72

of point over ring, 71 

A>Split group, 53 

Splitting field, 53 

Structure

^-structure 

on E-module, 20 

^-structure 

on variety, 21

Tangent space, 13 

geometric, 12 

Topology, Zariski, 2
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Torus, 37

regular, 43 

semiregular, 43 

singular, 43 

Translation, left or right, 35

Unipotent group, 37 

Unipotent radical, 42 

p-Unit, 65 

Universal domain, 1

Variety, 8 

affine, 1 

affine variety, 19 

complete, 16 

conjugate, 26 

Grassmann, 5 

projective, 4 

quasi-projective, 7 

quotient (by group), 34 

smooth affine, 13 

fc-unirational, 27

Weights, 38 

Weil restriction, 27 

Weyl chamber, 46 

Weyl group

for root system, 46 

for torus, 39

Zeta function 

Dedekind, 67

124

UNIVERSITY

Hasse-Weil, 70 

Weil, 70


