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A bstract

The purpose of this thesis is to give insight into major problems arising in 
the theory of mixture distributions, and, more importantly, to improve and 
extend some of the results tha t are given in the literature. We especially fo­
cus on the problem of estimating the number of components th a t underlie the 
probability distribution of a data sample. This is among the most difficult 
problems encountered in this area.

In principle, there are two main approaches to the problem; the theoretical 
approach studies the asymptotic distribution of the likelihood ratio test under 
the null hypothesis for testing for k\ versus k2 components, where k\ < k%, 
and the algorithmic approach uses simulations in order to overcome some of 
the theoretical difficulties. In this work, we use both methodologies, and we 
give illustrations of the methods' performances in some practical examples. 
We emphasise, now, the approaches tha t we adopt for dealing with this prob­
lem.

In a Monte-Carlo context, we propose a technique tha t uses an information 
theory criterion inside a parametric bootstrap procedure. The performance of 
this technique is then assessed, and comparison is made to a method using a 
similar type of bootstrap procedure, but where the decision criterion is based 
on likelihood ratio inference, and to W indham and Cutler’s (1992) informa­
tion theory based method. Another combined approach is also suggested.

Using a stochastic algorithmic methodology, Celeux (1987) proposes a test 
for the number of components, and claims tha t it follows a Hotelling’s distri­
bution. We argue about the reasons why this does not hold, and we derive 
the asymptotic distribution of this test statistic. This theoretical investiga­
tion leads us to studj^ some problems tha t go beyond the scope of the mixture 
framework, since they are related to the theory of autoregressive processes. 
Some simulation results are also provided in some simple situations.



In the case where the mixing proportions are known, there is a result in the 
literature (Goffinet et al, 1992) tha t provides the asymptotic distribution of 
the likelihood ratio test under the null hypothesis. However, this result is not 
useful in some cases, corresponding to some values of the proportions. Using, 
then, theoretical arguments supported by simulation results, we provide this 
distribution in those cases.

Thus, in summary, there are three main directions in this thesis: the in­
formation based approach tha t mainly uses computational tools arising from 
recent developments in the theory of the EM algorithm; the stochastic ap­
proach th a t uses mathematical tools from the theory of stochastic processes; 
and the study of the likelihood ratio test for known proportions, whose gen­
eral techniques arise from the theory of asymptotic statistics.
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C hapter 1

Introduction

1.1 D efin ition  of th e problem  and generalities

In order to define mixture distributions and, subsequently, the theoretical 

problems pertaining to them, we first give a brief description of the general 

missing data  context, which is as follows.

Let us consider two sample spaces, T  and S, and two sets of data, Y  and 

X , which are respective realisations from the above sample spaces, and sup­

pose that, instead of observing ’’complete data” Y, ’’incomplete da ta” X  are 

observed. Then, we can assume that there is a mapping T  from T  onto S, 

defined by Y  — T (Y )  — X .  If q is a parameter such th a t the probability 

density of Y  is f ( y )  = f(y\q),  and tha t of X  is f ( x )  = f (x \q ), then these two

1



Chapter 1. Introduction 2

densities are connected by the equation

f(x \q)  =  ^ ,_ 1(Y) f ( y k ) K d Y ) (1 .1)

where p(dY )  denotes a dominating measure.

We now direct attention specifically at the mixture problem itself. For a sam-

the components of the complete data Y  can be written in a mixture model 

as Yi =  (Xi, Zi) with % — 1,..., VV, where each Zi =  (2 ^ ), f°r & — 1> K-> 1S

an indicator vector such tha t Z ^  takes the value 1 if Xi belongs to the the 

kth category and the value 0 otherwise. Then, T  =  S x Z, where Z is the 

sample space for Z. It is clear, then, th a t mixture models can be regarded as 

a particular case of the missing data model.

Now, we can write

Now, Z  is & finite set with K  elements; if 1 is the k th component of Z i: f(zi\q) 

will be denoted by Pk and will be the probability tha t an observed variable X i  

arises from a probability distribution Fk with density f(Xi\Ok). So, qkl which 

is the kth component of q, will be written as (ph,@k) where the pk s are the 

mixing weights and the 9k s the component parameters.

pie size N ,  if we set Y  =  (Y i,..., Yjv), X  = (X1}..., X N) and Z  =  ( Zi y Z N)

so th a t equation (1.1) becomes

(1 .2)
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Equation (1.2) then becomes

f ( x ik )  =  \9k)- (1-3)
fc=i

For k — 1 , K , Pk is a probability, and therefore 0 < pk < 1 and ]CjfcLi Pk = 1-

Let us now suppose th a t the observed data arise from a probability distri­

bution whose density f ( x )  has the form of equation (1.3); then, the main 

problem th a t we shall concentrate on, in the present work, will be to estimate 

the number of mixture components K . There has been a substantial amount 

of publications concerning this area. Extensive overviews of the techniques 

used to deal with the problem can be found in Titterington et al (1985), 

McLachlan and Basford (1988), and towards the end of the monograph by 

Everitt and Hand (1981). A more recent compendium of techniques can be 

found in T itterington (1997a).

Before going more deepty into the mathematical theory th a t is used to deal 

with these models, we first digress to mention briefly some of their applica­

tions.

One of the most prominent applications concerns medical diagnosis; in this 

case, the observed data X  consist of a series of clinical tests performed on 

some patient, and the missing data Z indicate the disease category; it is then 

crucial to identify the number of underlying disease categories. Another field 

of interest is related to image analysis; in this case, the observed data X  are 

the colours of a blurred image made up of a number of pixels, and the missing
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data Z  indicate the true colours of each pixel (Titterington, 1990). In gen­

eral, then, the missing data are two-dimensional and are assumed to follow 

a Markov Random Field; this type of modelling occurs in remote sensing as 

well. A last area of interest tha t we describe is related to fisheries studies; for 

example, the observed data X  might describe the length of the fish, and the 

missing data  Z  denote the underlying age category.

In another well known field of application, speech recognition, the element 

of interest is tha t the missing data follow a Markov chain.

There are many other applications concerning mixture models. The brief 

description th a t we give here is not meant to cover the very wide range of 

applications, but rather to give a flavour of the field, illustrate the connec­

tion between the general missing data problem and the mixture models, and 

emphasise how im portant it is to know the number of underlying categories 

in an unclassified set of data. A detailed account of examples of applications 

can be found in Titterington et al (1985).

We now return to the mathematical considerations of these problems. We 

shall assume in the sequel tha t the mixtures tha t we study here are identi­

fiable, th a t is, distinct parameter values determine distinct members of the 

family. In a more formal way, a class of mixture distributions is said to 

be identifiable if and only if the fact tha t any two members of tha t family 

)Cfc=i Pk^k and X/kLiPk^k are eclual implies tha t K  = K '  and there is a per­

m utation of the indices (1,..., K )  such tha t pk =  p'k and Fk = Fj..

An im portant theorem is as follows: a necessary and sufficient condition for 

a class of distributions to be identifiable is that the component distributions
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be a linearly independent set over the field of real numbers, K.

This result comes from Yakowitz and Spragins (1968). Identifiability problems 

have also been discussed in Teicher (1963). We shall use the identifiability 

notion later in this work.

1.2 T he m axim um -likelihood approach and the  

EM  algorithm

In order to solve the problem of the estimation of the number of components, 

a most attractive way is to use the usual maximum-likelihood technique; tha t 

is, if we consider first the likelihood function of the sample X , l (q\X) — 

Hf Li f i xM) )  the log-likelihood function can be written as

N

L { q )  = L { q \ x )  = ^ l o g / t e k ) ,
£=1

and the method consists of taking as estimator a value q of q th a t solves the 

likelihood equations
9L{n) __ n.

dq

q is a maximum likelihood estimate (MLE) of the param eter q. In general, 

this technique works quite well in the case of single-component distributions, 

and the asymptotic theory based on it is well developed. However, the situ­

ation is not so simple when dealing with mixtures and we shall describe the 

main difficulties in the sequel.
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From the literature, the main asymptotic theorem states tha t, under some 

assumptions, th a t we present below as the standard regularity conditions 1,

2, 3 and 4, and N  sufficiently large, there is a unique strongly consistent 

solution qw of the likelihood equations, and this solution locally maximises 

the log-likelihood function. Furthermore, if we denote the true param eter by 

go, \ZN{qn — Qo) is asymptotically normally distributed with mean 0, and 

variance-covariance m atrix [E(91°q̂  81̂ ^ )]~1, which is the inverse of the 

Fisher information matrix. We now give these conditions;

1) g0 is interior to the parameter space £2, where £2 C

2) For i, j ,  k =  1, ,..,p, the partial derivatives d f / d q i , d2f/dqidq.j and d3 f  /dqidq3dqk 

exist and satisfy
.d f ( x ) , , r / x

>d2f{x)
dqidqj

d3 log f ( x)
dqtdq3dqk

3) The functions Mi(x) and Mij(x)  are integrable and the function M tj k(,t) 

satisfies

J  M ijk{x)f (x\qQ)dfj,{x) < oo.

4) The Fisher information matrix is well defined and positive definite at g0. 

Furthermore the following relationships are verified:

E  a i o | / w  =
oq

log f { x ) d l o g f { x ) 1 _  ^ d 2 \og f (x)^
[ dq dqT J [ dqdqT
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These equations are a natural consequence of the previous conditions. These 

assumptions are very well known and can be found in most of the texts on 

statistical inference (for example, Zacks (1971), Cox and Hinkley (1974), Red- 

ner and Walker (1984)).

Now, the problem th a t one encounters when applying this method to estim at­

ing parameters of mixture densities is that, usually, the likelihood equations 

are non-linear, and analytic computation of q is, thus, typically impossible. 

Therefore, one has to resort to iterative procedures; we shall concentrate on 

one of the most popular, the Expectation-Maximisation (EM) algorithm. We 

now describe how this algorithm works, first in the missing data case, and 

secondly in the more particular mixture model case.

The EM algorithm starts with an initial point g°; if we denote by qm an 

estimate of the parameter q at the m th iteration, then iteration m  +  1 is:

E-STEP: Determine Q{q\qm) =  E[logf (y\q) \Xy qm] =  f  log(f (y\q)) f (z\x,  q =  

qm)dz

M-STEP: Find qm+1 which maximises Q(q\qm)- 

(E stands for expectation and M stands for maximisation.)

The idea tha t lies behind this algorithm is the following. Ideally, one wants to 

maximise the function logf(y\q)  using a maximum likelihood technique, but 

since the random variable Y  is partially unobserved, its expectation given the 

data X  and the parameter gm, Q(q\qm) =  E\\og f  (y\q)\X, qm\ is computed; 

then qm+l is the parameter value which maximises Q(q\qm)-
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Let us now consider a finite mixture problem, where the observed data  have 

the probability density

f ( x k)  =
k=1

The EM algorithm then becomes (Celeux and Diebolt (1988), or Aitkin and 

Rubin (1985))

E-step: for k — 1,..., K  and i — 1,..., N , compute t™(xi) where

Pf f ( x i \ 0k )
Ef=iP r /M 0 rr

■which is the posterior probability that X i has been drawn from the k lh compo-

nent.

M-step: Compute

p r ^ E c t e ) .
i=1

and solve the equations

for k ™ 1,..., K , where N  is the sample size and K  the number of components.

The EM algorithm has been extensively studied by Dempster et al (1977); 

one essential result tha t they derived was tha t the log-likelihood is increased 

at each iteration, and this feature makes it very attractive for applications. 

The log-likelihood limit is a stationary point of the log-likelihood, and it can 

also be a local maximum, but it is pointed out in Wu (1983) th a t this may
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be difficult to verify; since the choice of a starting point for the algorithm in­

fluences this convergence, Wu (1983) suggests trying different starting points. 

In the mixtures context, since, in general, mixture log-likelihoods are multi­

modal, the algorithm can converge to a point tha t is not global maximum. 

One suggestion for overcoming this problem, was by Thode et al (1987), where 

a set of starting points is proposed in the case of two-component univariate 

mixtures.

It is worthwhile to mention briefly a result in the general theoretical context 

by Wu (1983), namely tha t the EM sequence does not in general converge to 

one point but to a compact, connected component of either the set of sta­

tionary points or the set of local maxima in the interior of the param eter 

space; we do not know if these points are local maxima, but it is pointed out 

in Wu (1983) th a t this feature is not as im portant as the behaviour of the 

log-likelihood.

Another problem tha t arises with EM is that, sometimes, convergence is very 

slow. For instance, the degree of separation between the components can be 

a major factor in tha t context. We shall discuss the speed of convergence in 

more detail in Chapter 2.

A useful local asymptotic result, which is the version, for EM, of the main 

asymptotic theorem stated previously when dealing with mixtures from the 

exponential family (that is, where each component density is a member of 

an exponential family with density f (x\0k) = b(x) exp[(q{0k))TTk{x))]/a>(9k), 

where a(0*) is a normalising constant), is given in the following theorem (Red- 

ner and Walker, 1984).
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THEOREM

Under the assumption that the true mixing proportions are strictly positive, 

and under condition 4 stated above, the strongly consistent solution qn of the 

likelihood equations is well defined for N  sufficiently large, with probability 1. 

Furthermore, there exists a certain norm ||.|| on the parameter space Q, in 

which the EM  sequence qm converges linearly to qm whenever q° is sufficiently 

near q^; that is, there exists a constant r, with 0 <  r < 1, for which

||gm+l - 9 w | | < r | | ? m - SN||,

whenever qQ is sufficiently near q^.

This result is then twofold: it suggests first that, if the starting points are 

close to the MLE, then, for a reasonable sample size, the algorithm will al­

ways converge towards the MLE, thereby avoiding the stationary points tha t 

we mentioned previously. On the other hand, it states th a t EM converges 

linearly, and defines its rate of convergence r.

In order to apply EM, one has to know the number of components of the 

mixture in question, because of the assumption that the true proportions are 

strictly positive. This is one of the major drawbacks of this algorithm, espe­

cially in cases which are of paramount interest in this work, th a t is, where the 

correct number of components is unknown and has to be estimated. In fact, 

in those cases, there has been a considerable amount of work in the literature, 

but still much remains to be solved. In the next section, we define the test 

tha t the asymptotic theory proposes in tha t regard, we emphasise the major 

problems, and we give a flavour of various attem pts to tackle them.
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1.3 M ajor problem s that arise w hen testin g  

for th e  num ber of com ponents

We have seen in the previous section the problems tha t arise when we want 

to estimate the parameters in a mixture distribution. We shall now see tha t 

a much worse problem is posed when we try  to use the asymptotic theory for 

assessing the number of components. Indeed, the most natural test th a t we 

use for testing for the number of components in a mixture, and which is based 

on param eter estimation via the likelihood equations, is the Likelihood Ratio 

Test (LRT). The LRT tests between the hypotheses H 0: q E Clo C Rpo and 

H\: q E Cli C where £20 is the parameter space corresponding to the null 

hypothesis H q, f2i the parameter space corresponding to the alternative Hi, 

and Oo is a subset of fb- It can be defined in the following way:

r m  =  SUPggSii

suPggno '

Then H q is rejected if 21ogT(X) is larger than a constant c.

The main asymptotic result concerning T ( X )  is the following (Wilks, 1963)

THEOREM

Under Ho, and under the standard regularity conditions,

2 logT ( X )  -» x 2(p~Po)  

in distribution as N  —> oo.

The main problem th a t arises in the mixture case is th a t the conditions
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underlying the above theorem do not hold. The reason for this is th a t H q 

corresponds to a boundary for Hi, and this breaks condition 1. On the other 

hand, as pointed out in Aitkin and Rubin (1985), under H q the log-likelihood 

is not of full rank: therefore, problems arising with mixture distributions are 

non-regular maximum likelihood problems (Cheng and Traylor, 1995). The 

problem is that, even if the mixtures are identifiable, the parameters are not. 

An account of these problems is also given by Ghosh and Sen (1985), who 

propose in a theoretical context a method based on the supremum of a nor­

mal process; these techniques are further investigated by Berdai and Garel 

(1996) and by Garel (1996). For testing between a single distribution and a 

mixture of two, in the case tha t the components are known, T itterington et al 

(1985) prove th a t T (X ) is asymptotically distributed as 0.5y2(0) +  0.5y2(l), 

whereas, if the regularity conditions were valid, one should obtain a y 2(l). 

This result has been extended to testing K  versus K  +  1 components, by 

Chen and Cheng (1992). This type of asymptotics have also been derived in 

the context of some special mixtures by Bohning et al (1994), who use some 

techniques from Lindsay (1983).

We give in the sequel a brief description of some of the alternatives pro­

posed in the literature for tackling these irregularities. This description is by 

no means extensive, since it is not meant to give a full overview of the tech­

niques th a t have been used by very many authors, but, instead, to highlight 

the various difficulties tha t one has to grapple with in dealing with these types 

of problem. The techniques th a t are mainly used in the present work will be 

presented in the next section.

We first present an approach by Aitkin and Rubin (1985). In an attem pt
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to move the parameters away from the boundary under the null hypothesis, 

they proposed to place a prior distribution h(p) on the mixing proportions, 

and considered maximising the log-likelihood function

l ' (e\X) = J  l(q\X)h{p)dp.

In order to do tha t, they derived a more complicated version of EM. Then, 

supposing th a t the null hypothesis is defined by a common 0, they proposed 

the likelihood ratio statistic

r m  = Tl*)
 ̂ ' maxonilj/pfilO'

However, as shown by Quinn et al (1987), even after this modification, there 

is a break in the standard regularity conditions, so tha t 21ogT/(X) does not 

follow a x 2 distribution. This problem is also very relevant to the difficulties 

th a t we are faced with in Chapter 5.

Among other suggestions, we mention those tha t use simulations in order 

to detect the number of degrees of freedom of the x 2 distribution for T( X) .  

In an example where a single normal is tested against a mixture of two, Thode 

et al (1988) showed th a t the usual asymptotic theory holds only for very large 

samples, and that, if samples of moderate size are used, strict application of 

the standard theory will lead to overestimating the significance levels. In the 

same spirit, Wolfe (1971) suggested approximating 21ogT(W) b}̂  a x 2 with 

degrees of freedom equal to twice the difference in dimensionality between the 

component parameters under Hi  and under H q. Aitkin et al (1981) showed 

th a t this approximation was not correct.
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Another type of technique arising from cluster analysis is Akaike’s Informa­

tion Criterion AIC (Bozdogan and Sclove, 1984). The problem is then the 

lack of theoretical justification since the conditions underlying these types of 

criterion are the same as those for the LRT (Titterington et al, 1985). In 

a simulation exercise, W indham and Cutler (1992) showed that, for a poor 

separation of the mixture components, AIC always overestimates the correct 

number.

Finally, a class of very im portant approaches which has been used more re­

cently, with the advent of computers, are the Monte-Carlo based methods 

(Hope, 1968). Aitkin et al (1981) showed how bootstrap replications can be 

used to provide a test of size a-, and applied this technique to reject Wolfe’s 

suggestion. This type of approach has been brought further by McLachlan 

(1987), for the test of a single normal distribution versus a mixture of two 

normals. The validity and theoretical properties of the bootstrap likelihood 

are discussed by Feng and McCulloch (1996).

It follows from this discussion tha t the determination of the number of compo­

nents in a mixture distribution constitutes a very difficult problem, which has 

only been partly solved. The present work deals with a variety of techniques 

th a t have been used in the statistical literature, and will consist of improving 

existing methodology and extending some theorems. Simulation results will 

be presented for all envisaged problems.
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1.4 D escription  of chapters

C h a p te r  2 : We present here an information ratio technique proposed by 

W indham and Cutler (1992), and discuss some validity problems concerning 

it. In order to improve this methodology, we propose a modification of their 

method which we believe is better supported by the theory. These methods 

are implemented in a Monte-Carlo computational scheme. More specifically, 

our modified method computes the same values as do W indham and Cutler, 

but uses these values inside a different decision-making criterion. Further­

more, we propose to combine our procedure with the LRT for dealing with 

data from one-component distributions.

C h a p te r  3: We present here a stochastic version of the EM algorithm, 

namely the SEM algorithm (Celeux and Diebolt, 1988). Formal theory serves 

to back up an asymptotic theorem, and we compare it with the theory th a t lies 

behind EM. Following Celeux (1987), we give a test statistic for the number 

of components th a t is based on random variables following an autoregressive 

process. However, there are serious theoretical problems when we consider it 

to be a standard Hotelling’s test, because the random variables th a t underlie 

it are not mutually independent.

C h a p te r  4: We derive here a result for the asymptotic distribution of the 

statistic presented in the previous chapter. Then, using simulations, we pro­

vide some numerical results in order to assess the performance of this statistic. 

We also construct a new statistic based on the residuals of the autoregressive 

process in hand, which seems to yield similar kind of results as the statistic 

under consideration.
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C h a p te r  5: In this part we consider a theorem by Goffinet et al (1992), 

who derive the limiting distribution of the LRT statistic for testing between a 

single component and a mixture of two, in the case where the mixing propor­

tions are known. The limiting distribution depends discontinuously on the 

proportion parameter, and huge sample sizes are needed, near the discontinu­

ity, in order to obtain the asymptotic results predicted by the theorem. We 

give some heuristic insight to th a t intricate area, and we compute character­

istics of the LRT under the null hypothesis. In doing that, we use a technique 

for the detection of the zeroes of the LRT which is more formal than the 

ad-hoc approach of Goffinet et al (1992). Thus, we find the distribution of 

the LRT statistic in those cases, for reasonable sample sizes.

C h a p te r  6 : This part is mainly twofold: on the one hand, it describes the 

conclusions of our work, and, on the other hand, gives some directions for fur­

ther investigation in the area of the estimation of the number of components 

in a mixture.



C hapter 2

On th e  D eterm ination  of th e  

N um ber of C om ponents using  

Inform ation R atio Techniques

2.1 Inform ation ratios and the EM  rate of  

convergence

2.1.1 T he E M  algorithm  and its con n ection  to  infor­

m ation  ratios

We have defined ”complete” and ’’incomplete” data in the introductory part 

of the present work, as preliminaries to the presentation of the mixture prob­

lem. In this chapter, we analyse further these ideas, as they will be used to 

derive some criteria for the identification of the number of components.

17
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For th a t purpose, let us now define I x  to be the observed-data observed in­

formation m atrix evaluated at the MLE, ly  the conditional expectation of 

the complete-data observed information matrix evaluated at the MLE, and 

I y \x  H ie  information matrix for the conditional density f ( z \ x , q )  evaluated 

at the MLE (equation 2.1 below will show tha t Iy \x  characterises the loss of 

information in observing X  instead of Y ).

If we denote by q  the maximum likelihood estimator of the parameters in­

volved in our problem, then

Then, these three matrices are related by the following equation, called also 

’’missing information principle” , by Orchard and Woodbury (1972).

d2 log/feltf) x ,  q)] ,=i  = [ f
d2 lo g /(y  Iff) 

dqdqT
f  l)dz\q—q.

d2 log f{x\q) 
dqdqT k=*'

82 log f(z \x ,q )
X,q) ] , l=„ =  [ f

I x  — l y  — Iy\x- (2 .1)

This result is easy to obtain; indeed we can write

f ( y \ l )  = ,f(x\q)f(z\x,q),
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so tha t

L(q) = log f(x\q) = log f ( y \q ) ~  log f(z \x ,q );

taking then the second derivatives of this expression with respect to g, aver­

aging over f ( z \x ,q ) ,  multiplying it by (-1), and evaluating it a t q = q yields 

the result. This result has also been given in Sundberg (1974).

In order to obtain q we use the Expectation-Maximisation (EM) algorithm, 

th a t we described in Chapter 1 . This algorithm defines then a mapping M: 

q i—y M(g), from the parameter space to itself.

Let D M  be the Jacobian m atrix of M . Then a useful formula connecting 

D M  with the information matrices is the following (Dempster et al, 1977):

DM{q) = I r lx I y l . (2.2)

Since this result is essential for the theory presented in this chapter, we give 

an idea of the proof. This is as follows. Using a Taylor expansion, about the 

MLE g, of the function ^J5[log  f(y \q ')\X ,  g], and substituting q — and 

q' =  g(m+1)j we obtain in the limit (i.e as m  —Y oo)

D M ( q ) I y  T- ==

where [0] denotes the m atrix with elements all equal to 0 , and Q(g'|g) =  

E[\og f{y\q ')\X ,  g]. On the other hand, from the expression log f(y\q') = 

L(q') + lo g f ( z \x ,q !), we obtain

£ [ i ° g / t e | g ' ) l A">g] =  H i ' )  +  D[iogf {z \ x ,q ' ) \ x , q]
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so tha t, taking first derivatives with respect to (/, and evaluating this expres­

sion at q — (7, we obtain

=  [^EQ°E{f(z\x><l')\X,q)]q=q

and therefore

D M (q )Iy  +  [ ^ [ ^ ( l 0g(/(« |* ,9 ') |-y ,g )]p j]^=4 =  [0].

The conclusion comes using Lemma 2 of Dempster et al (1977) (the second 

term  of the left-hand side of the above equality equals —Iy\x)-

D M (q)  is also called m atrix of fractions of missing information, since Iy \x  

measures the loss of information due to missing data (by the Missing Infor­

m ation Principle), and ly  measures the information for the complete data. 

Combining equations 2.1 and 2.2, we obtain

DM(q) = I d -  I x I y \  (2.3)

where Id  denotes the identity matrix.

2.1.2 Som e th eoretica l resu lts concerning th e  m inim um  

in form ation  ratio (M IR )

Let us suppose th a t we consider the general case of missing data, whose dis­

tribution belongs to the exponential family. Then a root q is called point of 

attraction for the iterative process qm+1 =  M  (qm) if, for a starting point q° for
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th a t process, which is in the neighbourhood of q> the above process converges 

to 17, and q satisfies the equation q — M(q) (Ostrowski, 1960); then the main 

criterion, as defined in Ostrowski (1960) and Sundberg (1976), is the following.

For a root q to be a point of attraction, it is necessary that the absolute value 

of the largest eigenvalue of D M  at q — q, that we call r, is less than or equal 

to 1 and sufficient that it is strictly less than 1; this value is the factor (rate) 

of convergence.

These results are of general interest, since they can be applied to any it­

erative algorithm for the general missing data case.

More particularly, in the case of the EM algorithm, the same ideas are also 

expressed in the papers by Dempster et al (1977), and by Meng and Ru­

bin (1994), again for the missing data situation: indeed, denoting by q the 

maximum likelihood estimator (MLE) of the parameters, it is stated  tha t the 

eigenvalues of DM(q)  all lie in [0,1[, if I x  is positive definite, and this is a 

sufficient condition for q to be a local maximum likelihood estimate. Then, 

in the case th a t the eigenvalues of DM(q)  are all less than 1 , the largest such 

eigenvalue gives the rate of convergence of the algorithm.

Now, since I x  is the Fisher information m atrix for the unclassified (incom­

plete) sample, and l y  the Fisher information matrix for the classified (com­

plete) sample, it results tha t the information ratio m atrix I x l y 1 measures 

the proportion of information about q from the unclassified sample. Hence, 

W indham and Cutler (1992) use the term  m in im um  in fo rm a tion  ratio , or 

M I R , for the smallest eigenvalue of I x l y 1- From 2.3, we see th a t the MIR
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can also be considered as 1 minus the largest eigenvalue of DM(q).

Hence the MIR can be written as 1 minus the rate of convergence of EM, 

which can also be defined as the speed of convergence of EM (Meng 1994), 

and takes values between 0 and 1. Moreover, a key remark in Dempster et al 

(1977) is that, if the information loss due to incompleteness is small, then the 

algorithm converges rapidly. This idea appears also in Redner and Walker 

(1984), for mixtures of densities from exponential families, as a consequence 

of their main theorem concerning EM, which has been stated in the introduc­

tory part of this work. The conclusion they come to is that, if the mixture 

components are well separated, then EM converges rapidly, whereas, in cases 

where the components are poorly separated, the convergence of EM is slow. 

In view of these results, one should expect tha t large values of MIR suggest 

a good clustering of the data, whereas small values suggest a poor cluster­

ing. On the other hand, if we had observed the complete sample, we would 

have obtained in theory th a t I x  = iy , and thus DM(q)  =  [0], so tha t the 

largest eigenvalue of DM(q)  would have been 0, implying tha t M IR =1 ; this 

argument suggests th a t big values of MIR point towards the right number of 

components.

On the basis of this analysis, the method suggested in W indham and C utler’s 

paper is to fit to the data  mixture models with different numbers of compo­

nents, the smallest number being 2 , and choose the model th a t provides the 

largest MIR; this is called the estimation step.

The implementation of the estimation step of MIR in W indham and C utler’s 

paper is as follows.

a) Choose k\ and k2 with 2 < Aq < k2.
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b) For each k, with ki < k <  k2, obtain the MIR(k), assuming the mixture 

has k components.

c) Estimate the number of components to be k, the value of k for which the 

M IR(k) is largest.

Remark: W indham and Cutler choose k\ =  2 and k2 =  5, in applying their 

method. We will use the same values in the present work, for the sake of 

comparison.

In the sequel, we will call this method basic M I R , in order to differenti­

ate it from the other approaches tha t we introduce and which also include 

computation of the MIR values.

In addition to the estimation step, Windham and Cutler propose, as a second 

step in their methodology, to define a ” confidence measure” of the reliability 

of the estimation step, called p\ to do that, the following validation step is 

applied.

a) Obtain m  bootstrap samples from the original data.

b) Repeat the estimation procedure for each one of these samples, and derive 

the bootstrapped k i, . . . ,km.

c) Calculate the probability p that the maximum MIR occurred at the estimate 

of the number of components k, given by the estimation step, using the for­

mula p=  (number of times kj = k ) /m , for j  = m.

However, as is stressed at the conclusion of their paper, there is an open 

problem concerning the theoretical validity of this measure.
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This whole method, including estimation step and validation step, is called 

the m in im u m  in form ation  ratio estimation and validation {M IR E V )  pro­

cedure.

2.1 .3  A p p ly in g  th e  inform ation  ratio to  accelerate EM

Louis (1982) derives equations (2 .1) and (2.3) in a slightly different context. 

Equation (2.1) allows us to compute the observed information using the EM 

algorithm. Using his methodology in a practical example where the data arise 

from a mixture of two univariate normal distributions, Louis calculates com­

plete and observed Fisher information matrices, in the EM, along with the 

EM convergence rate. This rate can also be used in some applications, and 

we briefly report a few, in order to emphasise the importance of the area. The 

first example comes from Louis (1982), where, from equation (2.3), he uses 

DM{q) to speed up the EM algorithm, in the following procedure:

?„cc = qm + (1 -

where qm is the parameter estimate at iteration m  of EM, qacc the accelerated 

estimate, and DM (q)  is an estimate of DM {qm)\ this procedure is a special 

case of Aitken 's  acceleration method, A second slightly different example 

comes from Bohning et al (1994), where they use the same type of procedure 

in order to find a "good” stopping rule for the EM algorithm, as a by-product. 

Some other examples of procedures th a t accelerate EM are the methods pro­

posed in Peters and Walker (1978); applied to mixture models, these methods 

can be written in the following way.
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If qm is the parameter estimate at iteration m  of EM, then the accelerated 

estimate takes the form

Qacc =  (1 -  e )q m +  e M ( g m ) .

It has been shown in Peters and Walker (1978) that, with probability 1, as the 

sample size tends to infinity, the above iterative procedure converges locally 

to the strongly consistent maximum-likelihood estimate whenever the param ­

eter e is strictly between 0 and 2, For well separated mixtures, the optimal e 

is close to 1 , and rapid local convergence is expected asymptotically, whereas 

for poorly separated mixtures the optimal e is close to 2 , and slow convergence 

has to be expected. In drawing these conclusions, the role of DM (q)  is cru­

cial: indeed, as for Redner and Walker’s theorem, it is the largest eigenvalue 

of E[DM(qo)], where q0 is the true parameter Â alue to be estimated, th a t will 

be used to determine the rate of convergence of the algorithm.

2.1 .4  A  m easure for th e  global rate of convergence

From a practical point of view, one uses the relationship M IR= 1-rate of con­

vergence of EM, to compute numerical values of MIR, since, by definition 

(Meng and Rubin (1991), W indham and Cutler (1992), Meng (1994)), if qm 

is the param eter estimate given at the m th iteration of the EM algorithm, 

then the formal definition of r  is

r = lim JFyiziii
m —v c o  | | g ” > - g | |  ’
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provided this limit exists. Now, for practical reasons, the formula used to 

compute this ratio is

and the norm ||.|| used by W indham and Cutler has not been clearly specified; 

they just stated th a t it is ”any convenient norm on Euclidian space” . Thus, 

here the problem is how to choose the ‘global5 norm, ||.||, tha t we are going 

to use in order to compute the global rates of convergence. It is obvious then 

th a t we should somehow use the component-wise rates to compute the global 

rate; for th a t purpose, we give the formal definition of the component-wise 

rate, as follows.

The j th component-wise rate of convergence is defined as

provided this limit exists. |.| denotes the classical absolute value.

These definitions are valid for the general missing data problem. Certainly, in 

our case the global rate will be found for the more special mixture model case. 

Again, for practical reasons, the formula used to compute the component-wise 

rates in the mixture problem th a t we are dealing with, is the following:

777—7 0 0

m^°° | qj1 — q_j |

|f7™+1 -  I ijill — ---- — —
->oo -  q™

,771+1

Tj = lim
m — Vc y ,777— 1 I ’
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where q™ denotes the value of the j th parameter at iteration m. All the above 

definitions concerning global and component-wise rates of convergence are 

stated in Meng (1994).

In order to give a satisfactory answer to this problem, we start by mentioning 

first the following remark from Dempster et al (1977): ’’the fraction of in­

formation may vary across different components of qy suggesting th a t certain 

components of q may approach q rapidly using EM, while other components 

may require many iterations” . An example, from Little and Rubin (1987), 

where this situation may occur is where the sample arises from a univariate 

contaminated model of the form f (x \p ,  a2) =  (1 — tt)N ( x : /i, a 2) +  tyN ( x : 

/q a2/ A), where 0 < tt < 1, A > 0, and both n and A are known. The problem 

is to compute the maximum likelihood estimator q of q =  (^, a2). In order to 

do that, the EM algorithm is implemented in Little and Rubin (1987). The 

same example is considered by Meng and Rubin (1994), and the component­

wise rates of convergence of EM are computed; the m atrix of fractions of 

missing information DM(q)  is found to be asymptotically diagonal, where 

in general the diagonal elements representing these rates are different. How­

ever, it is also stated in Meng and Rubin (1994) that this is most unlikely to 

happen: ”in most practical situations, all components converge at the global 

rate, which equals the largest eigenvalue of the m atrix of fractions of missing 

information” -unless the m atrix D M (q ) has the special form of Little and 

Rubin’s example. In general, DM(q)  is not diagonal, and an example of tha t 

is found in Louis (1982), and has been mentioned previously: to be specific, a 

mixture of two normal distributions is considered, where the parameters are 

the means and the mixing weights (the variances are considered equal and
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known); using EM, Louis computes D M (q): which is found not to be diago­

nal.

In the same context, it is worthwhile mentioning briefly a more recent tech­

nique introduced by Meng and Rubin (1991), and called the Supplemented  

E M  algorithm  (to differentiate from the Stochastic EM algorithm th a t we 

use in other chapters) where the authors take these ideas a step further. In­

deed, in order to compute numerically the asymptotic variance m atrix of the 

param eter in question, one has to know the values of the elements of the 

fractions of the missing information matrix, DM(q)\ this algorithm computes 

these elements iteratively using the EM algorithm.

In this chapter, the examples tha t we will deal with are completely differ­

ent from Little and Rubin’s example, so that, from what was said before, the 

component-wise rates of convergence are the same. On the other hand, as 

a consequence of a proposition in Meng and Rubin (1994), it is stated tha t 

’’the global rate of convergence should be equal to the component-wise rate of 

convergence of the slowest component(s), since the whole algorithm converges 

if and only if all components converge” . Now, in our case, since the parameter 

th a t we need to estimate is a vector, and since all components converge at the 

same rate, the global rate is calculated as the average of the component-wise 

rates; tha t is

where s is the dimension of the parameter space.
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2.1.5 Perform ance o f th e  basic M IR  procedure

The MIR seems to be fallible; indeed, Windham and Cutler mention a case 

where the MIR validates a two-component model whereas the data arise from 

a four-component model (they compute exact values of MIR, using numer­

ical integration). In the afore-mentioned case, the validation step gives the 

four-component model as the second best choice, since 60 per cent of the 

bootstrap samples indicated two components and 32 per cent indicated four 

components. In order to cope with these problems, we will try  and improve 

this methodology.

The numerical experiments tha t we use in the sequel, in order to illustrate the 

estimation step in their method, as well as the subsequent modifications tha t 

are derived, are based on the same example as that used by W indham and 

Cutler. In the example, samples of size 100 are drawn from equalty weighted 

mixtures of 3 bivariate circular normal distributions. The means are 4 units 

apart, forming an equilateral triangle. The parameter q consists of the means 

and the mixing weights; the standard deviation a associated with the circular 

component densities is assumed known, and experiments are carried out for 4 

different values of <7 , namely for <7= 1.5 , 1.33, 1.0 and 0.67. For each case, 100 

replications are carried out. The tables tha t we obtain, using the basic MIR 

and its various modifications, give the number of times a particular value of 

k was chosen.

Remark: the identification of the number of components will depend heav­

ily on the value of cr, as we will see in what follows. Indeed, the more a  is 

reduced, the more the components are well separated so tha t, in decreasing 

the value of a, one increases the number of times tha t the right number of
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components is detected.

Figures 2 .1, 2.2 and 2.3 produced at the end of this chapter, represent data 

corresponding respectively to the cases a = 1.5, 0.67, 1. The difference be­

tween first and second cases is striking; indeed, in the first case it is impossible 

to make out any separation into classes, whereas three clusters clearly appear 

in the second case. In between those two extreme degrees of separation, we 

have the intermediate degrees a =  1.33 and a =  1; even in the latter case, 

where the spread is small, it is not very obvious to identify, from Figure 2.3, 

a three-component clustering.

Table 2.1 measures the performance of Windham and C utler’s basic MIR. 

Note th a t the results given here are somewhat different from those presented 

in their paper; this is because we had to reproduce their experiment, since the 

same datasets as those used in Table 2.1 will be considered for the different 

modifications th a t we present.

k = 2

COII II =  5
a = 1.50 55 42 3 0
a = 1.33 48 47 5 0

q II o o 38 62 0 0
ct =  0.67 25 75 0 0

Table 2.1. Frequencies of Identification of the Number of Components using 
basic MIR.

Two remarks are stimulated by Table 2.1:

1) As predicted, decreasing a from 1.5 to 0.67 increases the frequencies of 

detection of the true underlying model (k — 3) from 42 to 75. Moreover, for 

the poorly separated cases, more than half of the times the method does not
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detect the right model, and even for the well separated cases the frequencies of 

correct model detection are not as good as might be hoped, since for instance, 

in the case a =  0.67, Figure 2.2 shows clearly 3 clusters, but, nevertheless, 

one time out of four, the method fails to detect the right model.

2) In general, the MIR does not overestimate the number of components. 

From Table 2.1 one can see tha t in the well separated cases the method never 

validates a model with more than 3 components, and in the poorly separated 

cases overestimation occurs only a very few times; this behaviour of MIR is 

also reported by W indham and Cutler. The reason for this behaviour, as 

stated towards the end of their paper, is that, as soon as a mixture with too 

many components is fitted, the observed Fisher information m atrix I x  gets 

close to singular, so th a t the MIR gets close to 0.

Finally, it is also worthwhile mentioning that, in their experiment, W ind­

ham and Cutler (1992) find this method to be more reliable than the AIC 

and the Partition Coefficient (Bezdek, 1981).

2.2 On bootstrapping th e  MIR: th e  M odified  

M IR  procedure

2.2.1 M ain  th eory  and sim ulation  resu lts

We obtain the same result as the one given by remark 2 , by putting the ques­

tion in a more general way: when the model is overfitted, the setup obtained 

is not identifiable any more. We give an example of this situation.

Let us suppose th a t the data arise from a mixture with probability density
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j=1

and we fit to th a t data the mixture model with probability density

I<+1
9(x\q2 ) =  X^

i = 1

Suppose th a t the (/>’s and 0’s are scalars and are ordered according to increas­

ing indices, th a t is, <j>\ < (j)2 < ... < 4>k  and 9\ < 92 <  ... <  0#+i- 

Clearly, if in model g we set pi =  7Ti ,...,p k - l = Q\ =  0 iv>0/<-i =

(j>K-u — 9 r +1 =  then density g is equivalent to density /  for any pK, 

P k + i such tha t

P k  + P k + i  — ^ K -

This means tha t there is an infinite number of representations of the true 

mixture density in terms of qp, this establishes the non-identifiability.

This result implies that, when the model is overfitted, the observed Fisher 

information m atrix I x  is singular in theory (Silvey, 1975, pp. 81-82), and 

therefore the MIR is in theory 0. Based on this argument, our idea is there­

fore to consider the smallest value of &, for which the corresponding eigenvalue 

of I x  is theoretically 0 and to select k — 1 as the true number of components. 

This choice will correspond to an observed eigenvalue which is close to 0, so 

th a t one should observe a sudden drop in the value of MIR when the true 

number of components is increased by 1 ; the problem will certainly be, then, 

how to quantify at what point this happens. In order to account for the drop 

in the MIR value, we first adopted the following approach.

Suppose th a t a G M is small, and k\ < k <  k2 — 1. Then, if <• a?

choose k to be the right number, otherwise choose argmax/■t(M IR (k )) .  In our
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case, this becomes

a) I f  < a> choose the two-component model and stop.

b) I f  <  a, choose the three-component model and stop.

c) I f  <  ft, choose the four-component model and stop.

d) Otherwise, go to the estimation step of the basic MIR algorithm.

The problem now is how to choose the value of a. In order to assess the 

influence of a , we performed the experiment on 100 replicates as before, for 

four different values of a, namely, 0 .1, 0 .2 , 0.3 and 0.4. Table 2.2 gives the 

results.

a k -  2

COII II k — b
O- =  1-50 0.1 38 47 15 0

0.2 26 58 16 0
0.3 16 61 23 0
0.4 15 63 22 0

COCOT---1IIb 0.1 35 43 22 0
0.2 18 58 24 0
0.3 11 66 23 0
0.4 9 69 22 0

cr =  1.00 0.1 14 69 17 0
0.2 8 75 17 0
0.3 4 82 14 0
0.4 2 89 9 0

cr - - 0.67 0.1 10 72 18 0
0.2 5 77 18 0
0.3 3 86 11 0
0.4 0 91 9 0

Table 2.2. Frequencies of Identification of the Number of Components chosen 
for Different Values of a.
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Since is not expected in theory to be small, using this methodology,

one should be able to decrease the frequency of selecting a two-component 

model. Indeed, comparison of Tables 2.1 and 2.2 shows th a t this is the case 

for all four values of a  and a. On the other hand, the more a is increased, the 

more the three-component detection takes on, thus automatically decreasing 

the two-component validation. Certainly, three-component model detection 

increases as a increases, so tha t there exists a minimum value of a, min(a), 

such tha t, for any a > min(a), this methodology performs better than the 

basic MIR. The problem now is that, because this is an ad-hoc methodology, 

it is not straightforward to see which value of a to select for each of the cr 

values. However, the main idea expressed in Table 2.2 will be at the centre 

of the more formalised approach tha t we now describe.

2.2.2 Im plem en tin g  th e  M odified  M IR: m eth od o logy  

and sim ulation  resu lts

The procedure th a t we will use to identify the number of components is based 

on two concepts, the first being the idea developed in the previous section, 

th a t is, to consider ratios of the form , and the second being the

parametric bootstrap (a general reference about the bootstrap can be found 

in Efron and Tibshirani (1993)). Then, our modification of the basic MIR 

method is a Monte-Carlo approach, with the following general computational 

scheme:

a) For 2 <  k <  4, estimate the parameters by q^, compute M IR (k )  as in 

the estimation step of basic MIR and evaluate at ~
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b) For k = 2, generate 99 bootstrap samples from the k-component model with 

parameters q^, and, compute a& for each one of them.

c) I f  a,k is ”atypically large” as compared to the bootstrapped d k ’s, that is, a& is 

larger than 94 values ofdk, increase k by 1 and repeat steps b and c (the max­

imum value o fk  is 4); otherwise choose the present k as the solution and stop.

We call this method the M odified  M I R  procedure (Polymenis, 1997), and 

we present some simulation results, in order to compare it to  the basic MIR 

of W indham and Cutler. Table 2.3 gives the results of Modified MIR, based 

on 100 replications of data from the three-component distribution used pre­

viously.

From Table 2.3, one can see tha t there is a distinct improvement in using 

the Modified MIR. Indeed, for every value of <r, the frequency of detection of 

the true underlying model by Modified MIR is larger than th a t of basic MIR. 

For a large spread, corresponding to poor separation of the data  (cr =  1.5), 

more than half of the times one obtains the right detection, and there is a 

fairly quick increase in the frequency of correct detection, as a decreases (as a 

decreases from 1.5 to 1.33, the correct detection frequency increases from 54 

to 67). In the case of basic MIR, this increase is slower (from 42 to 47). On 

the other hand, for the smaller spreads (corresponding to better separation of 

the components), one can be confident tha t Modified MIR will almost always 

detect the right model. This is very encouraging, especiall}'' when one consid­

ers the case a  =  1 where, as noticed previously, the separation into clusters 

is not clear-cut.
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COII A; =  4

liOII

a — 1.50 45 54 1 0
a  =  1.33 29 67 4 0
a  =  1.00 3 94 3 0
cr =  0.67 0 94 6 0

Table 2.3. Frequencies of Identification of the Number of Components using 
Modified MIR.

In summary, the Modified MIR procedure improves on basic MIR. This tech­

nique provides a new approach for estimating the number of components 

in a mixture, based on matrices of information ratios (see also Titterington 

(1997b)). Furthermore, it has another nice feature, in th a t it is easy to im­

plement for multivariate data.

We have, until now, applied this procedure to the example used by W ind­

ham and Cutler, for the purpose of comparing their method to ours; in tha t 

example, the parameters were the component means and the mixing weights; 

we can certainly apply this method, considering also the component vari­

ances as parameters to estimate. In order to apply this concept in practice, 

we implemented the Modified MIR procedure on the following example from 

Marron and Wand (1992).

The data arise from the following well separated univariate mixture distri­

bution

f ( x )  =  0.5iV(—1.5, (0.5)2) +  0.51V(1.5, (0.5)2),

where the parameters are the mixing proportions, the component means and 

the component variances. Then, generating 50 replications of data  with sam­

ple sizes 100 and 250, the Modified MIR procedure detects the correct model
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in 48 of these replicates, for both cases. Thus, we see th a t the method per­

forms very well in this example.

For the rest of this chapter, the example used to illustrate the different m eth­

ods is the three-mixture model used in Windham and Cutler (1992).

2.2.3 Som e different approaches

Since this procedure is based on the idea that the value of MIR slumps sud­

denly when the true number of components is increased by 1, one could wonder 

what should happen if, instead of considering the ratio a*, corresponding to 

a relative decrease in the MIR value, one considers its absolute value, th a t is, 

taking a& to be M I R ( k  +  1). Then a procedure similar to the Modified MIR 

yields the results of Table 2.4. Comparison with Table 2.3 shows superiority 

of the Modified MIR, especially in the poorly separated component cases cor­

responding to cr =  1.5 and 1.33; in the case a — 1.5, the performance of this 

method is even worse than th a t of basic MIR, since on a clear m ajority of oc­

casions a two-component model is selected. Thus, the method does not work 

well, and is inappropriate. However, one should note that, conversely, for the 

two other values of cr, corresponding to much better separated components, 

the method performs as well as Modified MIR.

Until now, we have used these techniques for cases where the underlying dis­

tribution of the data is a true mixture, in the spirit of W indham and Cutler’s 

paper. Suppose now tha t we want to include the possibility th a t the data 

could arise from a single-component distribution. Then, from Table 2.4, it
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k = 2 II CO II*45 k =  5
a = 1.51) 65 32 2 1
o = 1.33 47 47 3 3
a = 1.00 1 93 5 1
a 0.67 0 95 2 3

Table 2.4. Frequencies of Identification of the Number of Components using 
the Absolute Decrease Criterion.

seems th a t these techniques do not work well in tha t case. Indeed, considering 

the absolute decrease criterion and incorporating in it the case of a single­

component model, we obtain for the poorly separated cases (which are the 

cases of interest in a test for a single distribution), an overwhelming amount 

of single-component validations, and very few three-mixture detections: these 

results are reported in Table 2.5. We conclude tha t this method is inappro­

priate. Another approach tha t combined estimation of the single-component 

distributions as before with estimation of the true mixtures by Modified MIR 

led to approximately the same results as those of Table 2.5.

k =  1 k = 2 k =  3 k =  4 k =  5
a = 1.50 85 12 3 0 0
a = 1.33 64 13 23 0 0
(7 — 1.00 13 2 82 3 0
a = 0.67 0 0 98 2 0

Table 2.5. Frequencies of Identification of the Number of Components using 
the Absolute Decrease Criterion, when allowing for the Possibility th a t the 
Underlying Distribution is not a Mixture.
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2.3 Com bining the bootstrap likelihood ratio  

w ith  th e M odified M IR

2.3.1 On b ootstrap p in g  th e  likelihood ratio: m eth o d ­

ology and sim ulation  results

Following the ideas of McLachlan (1987) and Feng and McCulloch (1996), we 

use here a Monte-Carlo procedure similar to tha t of the Modified MIR, but 

in the log-likelihood context, including the identification of single distribu­

tions. Denoting the likelihood ratio statistic by Tjf"f l (g|X) =  2[L(^fe+1|X) — 

L(qk\X)}, where qk is the parameter estimate derived for the fc-component 

fitted model, we present now this procedure:

a) For 1 <  k <  4, evaluate the parameters qk, and compute T k+1(qk \X) =  

2[L(qk+1\X) -  L(qk \X)].

b) For k =  1, generate 99 bootstrap samples from the k-component model with 

parameters qk, and compute T^+1(qk\X) for each one of them, where X  and 

qk stand, respectively, for a bootstrap sample and a bootstrap parameter esti­

mate under the hypothesis of a k-component model.

0  I f T k+1(qk\X) is ”atypically large” as compared to the 99 bootstrap values of 

T k+1(qk\X), that is, the former is larger than 94 values of the latter, increase 

k by 1 and repeat steps b and c (the maximum value of k is 4); otherwise 

choose the present k as the solution and stop.

We call this method the Bootstrap Likelihood Ratio (B LR )  procedure. We 

applied the BLR to the three-component model used for basic and Modified 

MIR, and the results are presented in Table 2.6. The method gives excellent
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results, in the sense tha t it detects the right number of components almost 

always, and for all degrees of separation corresponding to the four values of a.

k  =  1 11 to

COil k  = 4 k  = 5
<J = 1.50 0 0 95 5 0
a  = 1.33 0 0 96 4 0
a  = 1.00 0 0 99 0 1
a  = 0.67 0 0 95 5 0

Table 2.6. Frequencies of Identification of the Number of Components using 
the BLR Procedure.

2.3.2 U sin g  th e  B L R  inside th e  M odified  M IR  proce­

dure

Since the techniques based on MIR can only be applied when the data arise 

from a true mixture, and, in view of the results of Table 2.6, one might use, as 

a first step, the bootstrap likelihood to identify the single distributions, and 

as a second step, the Modified MIR to identify the mixtures, all in the same 

procedure. Thus, if the underlying distribution is a three-component mix­

ture, one should expect similar results to Table 2.3. Furthermore, this good 

behaviour of the bootstrap likelihood has to be the same for any underlying 

distribution of the data, so that, if the data arise from a single normal dis­

tribution, this should be detected before the Modified MIR is used. Indeed, 

Table 2.7 presents results in an example when the data arise from a sin­

gle normal distribution; ^-component models are fitted to th a t data, where 

1 <  k  < 5. The results show again excellent performance of the method. 

Thus, we use this combination of bootstrap likelihood and Modified MIR, 

for W indham and Cutler’s (1992) example where the underlying distribution
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was a three-component mixture, and the results are shown in Table 2.8; as 

predicted, these results are very close to those given in Table 2.3.

k = 1 II to

C
OII II L-OII
a  =  1.50 97 3 0 0 0
a = 1.33 97 3 0 0 0
a  =  1.00 95 5 0 0 0
a — 0.67 95 5 0 0 0

Table 2.7. Frequencies of Identification of the Number of Components using 
the BLR Procedure, when the Real Distribution is a Normal.

k = 1 k = 2 k — 3 II k = 5
O- =  1.50 0 47 51 2 0
a  =  1.33 0 37 62 1 0
a =  1.00 0 1 97 2 0
a — 0.67 0 0 93 7 0

Table 2.8. Frequencies of Identification of the Number of Components using 
the Combined BLR and Modified MIR Procedure.

Thus, in the case k > 2, BLR must be preferred to the Modified MIR, espe­

cially for small sample sizes. However, for larger sizes, it would seem th a t the 

performance of these methods is very similar, since simulation results show 

tha t in the case where the sample size equals 300, MIR detects the three- 

component distribution 97 per cent of the times for a = 1.50, and 98 per cent 

of the times for a = 1.33. In the case tha t the possibility k =  1 is included, 

again BLR does better than the combined BLR and MIR for small sample 

sizes, bu t for larger sizes these two methods should be very similar.
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C hapter 3

On a Test for the N um ber of  

C om ponents based on th e  

Stochastic EM  A lgorithm

3.1 The stochastic EM  algorithm

3.1.1 G eneralities

We study, in this chapter, a stochastic version of the EM algorithm, called 

Stochastic E M  or S E M  (Celeux and Diebolt (1985), Celeux and Diebolt 

(1986a), Celeux and Diebolt (1988), Diebolt and Ip (1996)). We also describe 

some technical assumptions underlying an asymptotic theorem, and provide 

theoretical justification of the reasons why a test proposed in the literature 

cannot formally be considered as a ’’standard” test.

44
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The main idea of the SEM methodology is to insert a stochastic step S  be­

tween the E-step and the M-step of the EM algorithm. In the sequel, the 

symbol r will denote the SEM iterations. The SEM algorithm can then be 

described as follows.

Let us define an upper bound K  for the unknown number of components, 

and a threshold c(N)  lying between 0 and 1 (where N  is the sample size). 

The SEM iteration qr -P qr+l is

E-step: for k = 1,..., K  and i =  1,..., N  compute t k(xi) as before.

S-step: for every observed Xi, draw the pseudo-complete sample yi =  (as*, 3*), 

by replacing each missing quantity zi by a value drawn at random, according to 

the probabilities f k(xi). This amounts to drawing a single multinomial obser­

vation z r (xi) with probabilities (fk(xi) ,k  =  1,..., K). I f  ~  S £ i  z l ( x i) <  c(-^0; 

draw at random new values of Zi from a preassigned distribution on Z, such 

that jj  S i l i  zl i x i) — C(N) and go to the M-step.

M-step: compute the ML estimates qr+1 based on the pseudo-complete sample 

constructed at the S-step. This amounts to computing

1 N
p’4 1=jj1bzi(xi)-

The estimation of the 0'ks depends on the nature of the underlying mixture 

density.

Remarks:

1) We give the main idea tha t underlies the S-step. This step creates a parti­

tion of the data sample into K  classes. The idea is then that, if there exists
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a class k such th a t the number of observations tha t fall into it is ” small” , 

then this would mean tha t the parameter has reached the boundary of the 

param eter space (by "small” it is meant tha t the number of observations is 

smaller than Nc(N);  if the data vector is of dimension d, we typically choose 

(Celeux and Diebolt, 1985) c(N) — c(N:d) = ^y-).

2) In practice, instead of going through the tedious procedure generated by 

the S-step, the alternative suggested (Celeux, 1987) in the case th a t the class 

k contains very few elements is to delete the k th component and run the algo­

rithm  on the basis of the remaining K  — 1 components. This approach gives 

very good results for large sample sizes.

So, the main difference with EM is that, instead of maximising an expected 

log-likelihood, the SEM algorithm simulates the missing data and, in this 

way, creates a pseudo-complete sample whose log-likelihood is then directly 

maximised to 3deld the next estimator. Since, in general, the expression of 

the complete-data log-likelihood can be put into a closed form, the M-step 

is easy to implement; in these situations, the SEM algorithm is very attractive.

Points a, b and c below give a quick comparison between the EM and the 

SEM algorithms.

a) The SEM algorithm allows misspecifications of the number of components 

in a mixture model: indeed, one need only know an upper bound of this 

number; the SEM algorithm will always find the exact number provided the 

sample size is large enough. This is a general propert}r of this algorithm 

(Celeux and Diebolt, 1988), and one can easily see this idea from the practi­

cal implementation of the S-step.
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b) The random im putation principle implemented at the S-step deletes a nice 

feature th a t one finds in EM, namely tha t the observed log-likelihood is in­

creased a t each iteration; however, at the same time, in contrast to EM, it 

allows SEM to avoid saddle-points and local maxima.

c) The initial values of the parameters are not im portant any more. Provided 

th a t the samples are big enough, the sequence generated by SEM, will con­

verge in distribution to a stationary distribution approximately concentrated 

around the MLE. However, for small samples, the results depend on the ini­

tial values, and it would be more appropriate, then, to use a variant of SEM, 

the so-called Simulated Annealing E M  (S A E M ) algorithm. If T'saem is ^ ie 

param eter estimate at iteration r of the SAEM algorithm, then the (?’ +  l ) th 

iteration step of SAEM can be written as q 'sA E M  = T t Qs i s m  +  (1  ~ 

where (fsEM ancl ^em are ^ ie respective parameter estimates using SEM and 

EM, and (yr) is a sequence of positive numbers decreasing slowly from 1 to 

0. The main reference for this method can be found in Celeux and Diebolt 

(1992), but the method is also discussed in other papers (for example Robert 

(1992), or Celeux, Chauveau and Diebolt (1995)).

The conclusion tha t can be drawn from points a, b and c, is tha t, in practice, 

for a reasonably large sample size, SEM improves EM; the la tter should be 

preferred only in cases where the components of the mixture model are well- 

separated, and the number of components known beforehand.

It is im portant to emphasise tha t a new factor (complication) introduced 

by the SEM algorithm is th a t we have now two probability spaces, as follows.

1) The sample space (D,A,P) where Q,=(Rd)N (d is the dimension of the 

sample data), A =  Borel sets associated with the product topology of D,
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P =:riieA'‘ Fu where F  is the distribution of the mixture under consideration.

2) The space of random drawings (£, J3(£), 7r): when we fix the sample (X l r ..)Xjv), 

we get at each iteration j  =  of SEM, N  independent drawings from

with i — The probability space of this sequence of drawings is

called the space o f  random drawings  (Celeux and Diebolt, 1986b).

3.1 .2  Som e th eory  in th e  one-param eter case

Let us first consider the one-parameter case, that is, where only the true mix­

ing weight p in a two-component mixture is unknown.

If we denote by prN the successive iterates of the SEM algorithm for the mixing 

weight parameter, p, and by p ^  the maximum likelihood estimate of p, the 

SEM iteration (r) —» (r +  1) can be written

P n 1/2 =  T n { P n ) +  V/v(P/V> Zr) ,  

where T/y and V/v are defined below.

Define now c(AT) to be a sequence of thresholds such th a t GN =  [C{N ) , 1 — 

c(IV)]. Then we have

if prx 1/2 e  [c(iV), 1 -  c(N)} then p7̂ 1 =  p ^ 1/2,

otherwise, draw p^+1 from a preassigned distribution supported in [c(IV), 1 — 

c(N)] and go to the E-step (this is a consequence of the S-step).
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The deterministic part of the above equation, due to the EM methodology, is

T n {p'n ) = j f f y t e ) -

Note tha t, in the calculation of only the proportion param eter is up­

dated.

Also,
1 N

VN(prN,z T) =
2 = 1

Vn (p tn , zr) can be w ritten as N ~ l/2sN(prN)rfNH (prN, zr) with

N  N

r i rN l { p rN ^ Z r )  =  E K ^ i )  -  -  tri ( x i ) ) ] ~ 1 / 2 ,
2 = 1  2 = 1

and sm is a function defined on [0,1] by

si (p )  =  4  z ) ti(® i)( i  -  ti{xi))
1 V  2 = 1

for p G [c(iV), 1 — c(7V)]; s%(p) is a non-negative constant if x  0 [c{N)) 1 

c(iV)].

It has been shown that

lim sN(pN) =  s, 
N - t  oo

with s /  0, and on the other hand that Sat(0) =  s ^ ( l )  =  0 (Celeux and 

Diebolt, 1986b).
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3.1 .3  T h e general case

We consider now the general case where all the mixture parameters are un­

known.

Let q=(pi,--‘,PK-it9iy-',QK) Li with p =  K  — 1 +  IK,  be the vector pa­

rameter th a t we want to estimate. Let qN be the asymptotically convergent 

solution of the EM algorithm under the assumptions of Redner and Walker’s 

theorem.

We need now introduce some assumptions as in Celeux and Diebolt (1986b):

(A l) The assumptions of Redner and Walker’s Theorem (1984) hold.

(A2) For h =  1/JV > 0 consider a decreasing family G/t of Borel sets of MP 

such th a t the following holds:

let G  =  Uh>oGh be a fixed Borel set of MP; there exists a real number 5, with 

0 <  b < 1, such th a t the ball B  of MP with centre 0 and radius b is included 

in all Borel sets G/l? for h small enough.

We digress here to say tha t the variables and functions used in the sequel 

are centred, for simplicity. We then have

X rh —  Qn  — <lN

and, for x  £  G,

Th(x) = T n (x £- qN) -  qN 

sh(x) =  sN(x + qN)
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f7?+i(z, z) = +  qN,z).

(A3) We consider real numbers A(h)  with 0 < A(h)  <  1 such tha t

l imh^ QA(h) = 1,

where A(h) is a decreasing function.

(A4) The functions Th(x) are such that \/x E Gh we have

\Th(x)\ < A(h)\x\,

where |.| is the norm on M,p introduced in Redner and Walker’s theorem.

(A5) For x ^  Gh, Th(x) = th, where A is a constant and th E A(h)Gh-

(A6) There exists a real w, with 0 <  w < 1, a m atrix a E (i.e

the set of square p x p matrices with real entries) and, for all positive h, a 

m atrix ah E Mp(M) such that:

1) For all positive h, Ha^H < w where ||.|| is the operator norm associated 

with the norm of (A4).

2 )

lim ah = a./i-> o

x  E B  => \Th(x) — ahX | <  c|m|2,

where c is a constant.

(A7) Let Sh be the mapping: > Mv{\R). Then, for all positive h and

for all x Gh, we have tha t Sh{x) = V)h is a constant matrix.
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(A8) sup(||s/,,(:r)||, h > 0 ,£  £ IF ) = C  with C < oo.

(A9) There exists a m atrix 5 £ Mp(R) such that

1)

lim (0) =  s
h.-> 0

2)

x e  ||sfc(ar) -  S;,(0)|| <  c\x\,

where c is a constant.

(A10) For r a positive integer, h > 0 and x £ IF , let the r.v’s 77̂ (3; , jz) 

and the normal r.v .’s er(z) on (f, £ (f),7 r) take values in IF ; we have then 

that, for h > 0 and x  £ IF  both fixed, the r.v’s 77̂  (m,.) (resp. er (z)) are i.i.d.

(All)

1)

E z(r)r(x,z)) =  E z(e,.(z)) =  0.

2)

Ez ( W ; f )  = Ez ((e r( z ) f )  = 1.

3) ?7̂.l(m, z) converges in distribution to er(z) as h —> 0.

The Markov chain ( S E M ) h  can be written as

K \ x/2 = Th(X'r') + h ^ s ^ x M ^ X ^ z ) .
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Then, =  X^+lj2) if X*l+r/2 G Gh, and X^l+1 = Tr+i otherwise, where Fr+1 

is a realization of a r.v. drawn independently of the r.v.’s X f , ...jX/! and of 

T}r+i ( X ^+ l i .), according to a preassigned distribution 7  ̂ with support in the 

Borel set A{h)Gh\ this results from the S-step.

(A12)

X q and i]i(x) .) are independent.

(A13)

E .{ (X S )2) < 00 .

(A14) The support of the distribution of Xq is a subset of Gh- 

(A15) The associated Markov chain (Z!^\r > 0) is defined as

Z r + l  =  a /> X r  +  s /).(0 ) e r + l ( z )

and

7  =  r f -

This is a linear AR(1) with normal white noise, and it is assumed that, for 

small h, the chain (Z ^;r > 0) is ergodic.

(A16) The associated Markov chain (Zr ; r  > 0) is defined as

Zr+1 — aZr +  se7.+i(^).
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This also is a linear AR(1) and it is assumed that the chain (Zr\r > 0) is 

ergodic. We denote its stationary distribution by A. Thus, A is the normal 

distribution on W  with mean vector zero and non-singular covariance m atrix 

(from (A16)), defined by
oo

Y  alssT (aT)1, 
i=o

where sT and aT are the transposes of s and a respectively. This sum is con­

vergent according to (A6) .

Remark: the main restriction here is tha t each function T/?, has a unique fixed 

point which in this case is taken to be the point zero (because the variables 

are centred), for simplicity. However, this restriction does not seem to be a 

problem since, as h goes to zero, the consistent estimator becomes prominent 

(Diebolt and Celeux, 1992).

The main asymptotic theorem is the following (Celeux and Diebolt (1986), 

Celeux (1987)).

SEM THEOREM:

Let <f)h be the stationary distribution of the chain (S E M ) i l} and let i/)h be the 

stationary distribution of the normalized chain [h~l^2X!f\r  > 0 ).Then, under 

assumptions (A l )  to (A16) and under the condition limh^-oh**(1 — A(Zz))" 1 =  

0, where b = 2(i+a) f or anV a  £ ]0 ,1], converges to A as h tends to 0.

This amounts to saying that, if X?j is a r.v. defined on GN and distributed 

according to the stationary distribution of the Markov chain generated by 

SEM, then, under assumptions (Al) to (A16), we have tha t N 1/2^ ^  — q^) —¥ 

77(0, T) in distribution as N  —)■ oo, and the matrix F can be expressed in terms
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of the true parameter q. This theorem is the equivalent, for the SEM algo­

rithm, of Redner and Walker’s theorem for the EM algorithm.

3.2 Problem s w hen considering a te st  for th e  

num ber of com ponents based on SEM

3.2.1 C onstruction  o f th e  test

It has been proposed (Celeux, 1987) to use the SEM algorithm in order to 

assess the quality of an estimate given by some classification method; for tha t 

purpose, a test based on the SEM iterates is proposed, and its distribution is 

derived; this test is also used by Soromenho (1994).

We assume here tha t the estimate is given by the EM algorithm, and con­

struct the test in the following way:

Let us consider the uncentred r.v’s q^  tha t we denote by qr for notational 

simplicity. In addition, let us denote by the MLE given by EM and let qn 

be the unique strongly consistent solution of the likelihood equations whose 

existence is guaranteed thanks to Redner and Walker’s theorem.

The null hypothesis {Ho) is th a t the correct number of components is known 

and th a t c[n  = Qn -

Let us consider now the above qm as a starting point, and, from this posi­

tion, run r iterations of the SEM algorithm and consider the empirical mean 

Qr — £ ^5=i T  and covariance m atrix M r =  £ {q:j ~  ~  flr )T ■
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Then, it has been claimed in Celeux (1987) that, thanks to (H0), the sta­

tionary state has been reached at iteration zero of the SEM algorithm, and 

so, using the SEM Theorem, the sequence of SEM estimates (qr) of the mix­

ture parameters can be considered as a sequence of independent realizations 

of a normal distribution with mean qn  and some covariance m atrix 7V- 1/2r ; 

therefore, the statistic defined as T 2 =  “ y(<pv — Qr)TM ~ l (q^ — qr) can be 

considered to be distributed as a Hotelling’s statistic with (r — 1) degrees of
m 2

freedom, and the statistic F  =  is distributed as a Fisher F{p,r  — p)\

p is the number of parameters and r the number of SEM iterations, and p < r.

The main purpose of this work is to show the following:

1) it is not true th a t the r.v’s generated by SEM are mutually independent; in­

deed, they show a ’’weak dependence” on each other and constitute asymptot­

ically (as the sample size N tends to infinity), a linear autoregressive Markov 

chain of order one (AR(1)), so that, from a mathematical viewpoint, the above 

T 2 statistic is not a Hotelling’s statistic;

2) it is possible to derive the limiting distribution (as r  —> oo) of T?2.

The remainder of this chapter deals only with the first point; the next chapter 

will deal with the second point.

3.2.2 On som e properties of th e SEM  iterates

First, when considering the SEM Theorem, it is not correct to speak in terms 

of independent r.v’s since, in the one-parameter case, for example, we would 

obtain by assumption (A16) tha t the covariance of the stationary measure A 

of the chain (Zr\r  > 0) would be, for i < j ,  cov(Zi , Zj)  = a ^ ^ j ^  which is 

not equal to 0.
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As for the technical assumptions underlying the SEM Theorem, we now need 

to centre the r.v.’s for simplicity. Furthermore, as we did for qrN, we will de­

note the centred variables X-1 by where i — 1 , for simplicity. Thus, 

Xi — qi — qN for i — and the null hypothesis (H0) becomes _A0 =

0 = Qn - For X r+i/2 G Gh the Markov chain generated by the SEM algorithm 

satisfies the following recurrence equation:

,Yr+1 =  Th(X,.) +  h}/2sh( X T) ^ ( X r,z) .

W ith the change of variables x — hl/2y we use Lemma 2 of Celeux and Diebolt 

(1986b), which is as follows.

For all x = h lGy and all a  with 0 <  a* < 1, the following two inequalities 

hold:

\h~l/2Th(hl/2y) -  ahy ) \ < c / G 2 [y |1+“ 

lls ( i ( V /2J/) -  * * (0 ) | |  <  c h a/2\y\a,

where c is a constant.

These are proved using assumptions (A6) and (A9).

The normalized chain Yr is constructed as follows, for X r G Gjp

h l<2Yr+l = Th(hl ' 2Yr) +  V / 2s ft( V / 2y r ) ^ + 1( V /2y r ) z ) .

We multiply both sides by h r 1' 2 to obtain

ir+: =  h ~ l / 2 T H( h l / 2 Y r ) +  s h { h ^ 2 Y , . ) v l \ i ( h 1 / 2 Y , . , z ) ,
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so that, for small h, we have

h~1!2Til(h1t2Yr) «  ahYr.

Moreover, by (A6), lim/^o ah — a- 

On the other hand, for small fi, we have

sk(h1/2Yr) zs sh(0).

Moreover, by (A9), lini/^o Sh(0) — s.

Thus, using assumption (A ll) , we obtain asymptotically (as h —» 0) th a t the 

normalized chain Yr satisfies the recurrence equation

Since h1̂ 2 is just a normalizing value, we can multiply both sides of the above 

equation by it to get back to our original chain X r so that, asymptotically,

X r+i — a X r lA^2 ser-̂ i ■

On the other hand, the subsets Gh of G increase towards G as h goes to 0, 

and, asymptotically, X r E G so tha t the above equation is valid everywhere.

Consequently, the null hypothesis (H0) tha t we consider will be as follows. 

As the sample size N  tends to infinity, the sequence (Xr E Mp) of the esti­

mates of the parameters of the mixture density can be considered as a linear 

AR(1) Markov chain, satisfying
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— a X r +  JV 1̂ 2ser+i, (3-1)

for r  > 0, and X Q =  0, where a E Mp(R), ||a || < 1 and ||.|| is the operator 

norm associated with the norm of assumption (A3); in the univariate case 

this norm is just the absolute value. Also, s E Mp(M), s is non-singular and 

er ^  N ( 0 , 7), where 0 is the null vector of Rp and I  is th e p x p  identity matrix.

Furthermore, equation 3.1 shows a weak dependence among the SEM iter­

ates and therefore it is not straightforward to see how the proposed T72 should 

approximate a Hotelling’s statistic. An im portant fact th a t we have to em­

phasise is that, when N  is fixed, the Markov chain (S E M )/,, is ergodic. This 

result is stated in Celeux and Diebolt, 1986b. Hence the Markov chain sat­

isfying equation 3.1 is ergodic and therefore has a stationary distribution. 

General results about Markov chains can be found in Doob (1953), Kemeny 

and Snell (1974) and Grimmett and Stirzaker (1992) among others.

In the univariate case there is also a result by Broniatowski and Diebolt 

(1987) concerning the general AR(1):

X r+i =  T ( X r) +  er with T  : R R. They proved that, in the linear case 

where T(y)  =  ay, the necessary and sufficient condition for this chain to be 

ergodic is th a t |a| < 1, and, if this is true, the chain X r has a stationary 

distribution.

Another im portant result is tha t the chain (SEM)h  is uniformly strongly 

mixing (Diebolt and Celeux, 1992). A similar result has also been proved by 

Athreya and Pantula (1986) for an autoregressive process, where the ei’s need
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not be Gaussian any more, under some technical assumptions.
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3.3 C onnection w ith  the theory of stationary  

random  variables

3.3.1 A n  ex ten sion  o f th e  central lim it th eorem

We consider in the sequel the univariate case. We will show then tha t the 

results here generalize, for our case, the central limit theorem (CLT) for sta­

tionary random variables (Theorem 18.5.3 of Ibragimov and Linnik, 1971), 

and we have to stress the fact that, as for this theorem, the main factor un­

derlying the result in our case is a strong mixing property.

We recall first the definition of strongly and uniformly mixing processes. A 

process (X,.) is said to be strongly(ck) mixing (resp. uniformly(</>) mixing) if, 

defining by F7n the cr-algebra o{X 3\ r < j  < n ) , we have for all A  £ FJ and 

B  e  F™n tha t

a(n)  =  supA£F̂ B£Fco jP(A  n  B) -  P (A)P(B) \  0

and respectively

<j>(n) =  supAeFS,BEF~JP{B\A) -  P{B)\  -> 0

as n  —y oo.

Some theoretical results concerning these processes are given in Athreya and
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Pantula (1986), Bradley (1986), Davydov (1973) and Kolmogorov and Rozanov 

(1960).

Remark: a (j) — mixing  process is a  — mixing  (Athreya and Pantula (1986), 

Bradley (1986)).

These definitions are valid for stationary and non-stationary processes. In 

our case, the process defined by equation 3.1, is defined as stable in the 

sense given by Anderson (1959); however, since its auto covariance function 

depends on r, it is not stationary in ’’full strength” . Nevertheless, we will 

see th a t a central limit theorem still applies. We state now the central limit 

theorem (CLT). There is a version of the CLT concerning a — mix ing  sta­

tionary processes and a version concerning </> — mixing  stationary processes 

(Ibragimov and Linnik, 1971). They both say roughly that, under some con­

ditions on the absolute moments and the mixing coefficients, the quantity 

cr2 =  E ( X o) + 2  YlpLi E ( X qX j) is finite, where E ( X q) is the common variance 

and E ( X 0Xj)  the covariance of the centred variables. Also, if a ^  0, then

ff- V - 1/2 j 2 x j -> N ( 0,1)
i=i

in distribution, as r - f  oo.

By ‘stationarity5, we mean tha t we consider a sample A’1,...,Wr , of the sequence 

of SEM iterates, once the stationary state has been reached (we suppose tha t 

X i  is the first such iterate). Then, X{ =  ^== ei - j j f°r  ̂ =  !)•••>

whose distribution is the stationary probability measure of our Markov chain 

(SEM)h-  Thus, the expressions tha t we compute in the stationary case are
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derived from our stable case, by taking r to tend to infinity. This, will allow 

comparison between asymptotic results obtained for our case and for the sta­

tionary case.

At stationarity, the SEM iterates then satisfy the assumptions of these CLT’s, 

and we obtain

E {'  U /  i r t o--►«> N(1 — a2) N ( l  — a2) ’

and

Then

• s2(l — a2r) s'
' — aJ.

2
3E ( X 0X j )  =  lim ^v ?■—>oo 7V (i _  a2) N (  1 -  a2)

OO
£ E ( X 0X j ) =

s2a

j —l iV(l — n2)(l — a ) 5

and we obtain

Hence

2 S
& ~   To <  OO.N(1  -  a)2

-> JV(0,1)
cr/^/r

in distribution as r —> oo.

The assumptions of the CLT being satisfied, we will have at stationarity th a t 

» N ( 0 , 1) in distribution as r —Y oo.

We will obtain an analogous result in the case of the chain (X,.); indeed, this 

result is a univariate specialization of the lemma presented in the next chap­

ter, so th a t we can consider tha t the above CLT’s extend to our case.
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3.3.2 D efin ition  o f th e  te st  sta tistic

If we define X  = £ T,Tj=i Xj ,  and M r =  -  X ) { X j  ~  X )T, as be­

fore, the statistic th a t will be used to evaluate the solution given by the EM 

algorithm is defined as

p .  =  ( X 0 -  X ) r M p  ( X 0 -  X ) .

This is in fact equivalent to the statistic used in Celeux (1987) and Soromenho 

(1994), and mentioned before, with the difference tha t the r.v .’s considered 

here are centred. Since Xo =  0, T 2 can be written as

T 2 =  X TM ~ lX .

For finite r, T 2 obviously cannot be a standard Hotelling. Thus, the above 

comments, and the facts that, in proving the SEM Theorem, r is considered 

to tend to infinity as N  tends to infinity and tha t in our case stationarity is 

reached as r —> oo, suggest trying the case where r is large.

Again, let us consider the univariate case; then

•v-2
rp 2 __ ______________________

The denominator can also be w ritten as J XLu X f  — X 2.

In the case where r is large, algebraic calculations show th a t the distribu­

tions of  ̂X)i=i X 2 and jV̂1̂ a2)r TiLi ei are n°t ^ ie same; this is the subject 

of the next section.
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3 . 4  T 2 is not a standard H otelling sta tistic

We consider here, the case where the parameter is one-dimensional. The 

asymptotic calculations performed in this section assume th a t the sample size 

N  is fixed, and tha t the number of iterations r  is large. Let us now compute 

the first two moments of the expression - x X f .  In the independence case 

this expression can be written as ~ , where V  is distributed like a x 2(r )> and 

the variance of this expression equals two times its expectation divided by r; 

in our case, some algebraic calculation yields

I  E  x i  =  4 ~ D r + 2 £  -  a2’- 23'+2)6iei ],
i= l V / 2=1 i<_j

where

Dr =  a2rel +  ... +  a4ej-i +

Now let us denote by B r the r.v.

^ [ 2 E a H ( l - a ^ ) £i, - Drl.

We have tha t

s'2 a2 (1 — a2r \̂s2c' ( n \ — Trfn \ v )
E { B r )  ~  ~ N { 1  -  a* ) E { D r )  “ W ( l - a T r ’
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which yields

e A £ x 2) =  s2 a2( i - a 2- > 2 „. s2
, i=1 JV(1 -  a2) JV(1 -  a2)2r  JV(1 -  a2) ’

for large r. Also,

s4
va,r{Br) =  N 2 ^  __ a2y r2\var(2 ] £ V  i ( l - a 2r 2?+2)eje.,) +  var(DT)

-2cov{2^2,a^ l{l — a2r 2j+2)eie7, Dr)].
i<j

It is easily seen th a t

covQ^oP l (l — a2r 2'7+2)eieJ,-, Dr) =  0,
i<j

and tha t
s4 1:var(Dr)

2N 2(l  — a2)2r2 7

(since var(Dr) =  2a ^). We now calculate

s4
jV2(i _ a 2) V [t,ar(2L a2 i ( 1 ~ a2r 2j'+2)£i£i)]-

and, after some algebra, we find it to be 

4a2s4
IV2 (1 — a2)3r 2

[(1 -  a2)2(l -  a2r~2) +  (1 -  a4)2(l -  a27'"4) +  ...

+(1 -  a2r- 2)2(l -  a2)] ~  1

since every term  inside the square brackets is greater than (1 — a,2)3, 

conclude th a t var(Br) ~  A
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On the other hand, var (^ X f )  can be written as

Var(W ^ ) l  E  ) +  ■E ( B >2 ) +  2EtiN { 1 1  a 2) r  g  ^  ~ N i l -a > ) )Br]-

After some algebra we find tha t the third term of the above sum can be 

w ritten as — ~  and the first term is, as in the independence

case, AT2p2̂ 2p ;.- The second term  is of order A Thus, for large r, we obtain

v a r ^ t x ? ) *  2** + 0 ( b -
r JNZ{1 — az)zr r

Since this variance is not equal to two times the expectation divided by r, 

r K = i X f  has not the same distribution as in the independence case. The 

main purpose of the next chapter, will then be to find a limiting (as r —> oo) 

approximation of T72.



C hapter 4

On th e  L im iting D istribution  of

4.1 Introduction

We consider here the case where the parameter is a vector. It is well known 

th a t if the random vectors of dimension p in hand were independent, rT 2 

would follow a x 2(p) distribution, as r —> oo, and thus, for r  large, one can 

consider th a t the rescaled T 2 is a x 2{p) divided by r. The main interest of this 

chapter will then be to derive the distribution of T72 for r large. Some simu­

lation results will also be produced th a t will demonstrate the performance of

As derived previously (equation 3.1), the null hypothesis th a t we consider is 

as follows: the Markov chain (S E M )h  satisfies the autoregressive equation

a X , .  +  jV_I/2ser+i, (4.1)

67
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where X r e  a is a p x p m atrix with spectral radius ?’(a) <  1, s is a non 

singular p x p matrix, er G M.p and er ~  N(Ot I)  where 0 is the vector with p 

coordinates equal to 0 and I  is the p x p identity matrix.

4.2 T he lim iting result

4.2 .1  A  resu lt for th e  sam ple variance-covariance m a­

tr ix

The statistic th a t will be used to test for the number of components in a 

mixture will be

T2 =  X t M ~ 1X ,

where M r = £ X !-1 fX: — X ) (X.x — X ) T . We are interested in the asymptotic

behaviour of M r. The main result here is based on the following theorem 

(Theorem 5.5.2., Anderson, 1971).

THEOREM

I f  X r is defined by (4 -1), with a having eigenvalues less than 1 in absolute 

value, if  the er }s are i.i.d. with E(er) =  0 and E{erefi) =  E, then

- 1 7 ’ OO

X x t X f ^ Z a ' Z  (ary
r  i= 1 t o

in probability as r —> oo.

The assumptions of this theorem are satisfied in our case; indeed, on the 

one hand, the m atrix norm defined by r(a) is the norm used by Redner and
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Walker in their theorem, so tha t the eigenvalues of a are less than 1 in absolute 

value, and on the other hand the conditions on the moments of the er ’s are
T

also satisfied. The m atrix S  is in our case, and according to the techni­

cal assumptions underlying the SEM Theorem, the limiting constant matrix
I Tf T\l

a ss > exists and is non-singular. We remark that, as in Brockwell 

and Davis (1991), p. 408, convergence in probability of a random m atrix will 

mean convergence in probability of all the components of the matrix.

On the other hand, let us compute the variance of X  for r large. The follow­

ing lemma can then be derived.

LEMMA

Under {Hq)} for large r, the variance-covariance matrix of the vector X  can 

be written as

Var (X)  =  ( /  -  a)~lssT {I  -  a r ) _ 1 T  +  o f ) .

Proof

X  = .— ( /  — a)-1 [(/ — a,r)sei +  ... +  ( /  — a)ser]
V N r

and E ( X )  =  0 because E(ei) = 0 for i — 1, ...,?\ Also,

V a r (X )  =  E ( X X t ) =  ~  a)_1[(-f — af)sE(eieJ)sT (I  — ar)T +  ...

+ ( /  — a)sE(ere^)sT (I — a)T](I — aT)-1 .
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Since E f e e f )  =  / ,  we obtain

V a r { X )  = - D ( i  _  _  a’ )ssT {I -  ( a T ) r ) +  ...

+  ( /  — a)ssT (I  — aT)](7 — aT)_1.

After some algebra, the term  inside the square brackets can be put in the 

form

(r — l)s s T +  N V  a r (X r) — ssTaT (I — aT)~l (I — (aT)r) — a(I  — a)~l (I — ar)ssT .

y r aks s T (aT )kNow, according to the technical assumptions, N--------  converges to a

constant m atrix C  as r goes to infinity. We may therefore consider tha t, for 

large r, V a r ( X r) =  C. On the other hand, since the spectral radius of a is less 

than 1, it follows th a t l imr^t00ar =  [0] so tha t we consider ar — {aT)r = [0] 

for large r. We therefore obtain

V  ar(X)  =  ■—̂—x ( I —a)~1\(r—l)s sT+ N C —ssTar ( I —aT)~1—a ( I —a)~1ssT](I—aT) 
N r 2

The lemma follows. Thus, approximately,

X  -  iV(0, -  a)~~1ssT (I -  aT)_ i).

Some algebra shows tha t this result is equivalent to Theorem 5.5.8. of An­

derson (1971), which is as follows, using our notations.

THEOREM

I f  X T is defined by equation (4-1) where the eigenvalues of a are less than 1 

in absolute value, and if  the A “ 1/2seRs are i.i.d. with expectation equal to the
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vector 0 and variance-covariance matrix equal to N  1/2S S T, then s f r X  has 

a limiting normal distribution with mean 0 and variance-covariance matrix 

C ( I - a T)~l + { I - a ) - l C ~ C .

Now, on the one hand, the convergence of X  to 0 in probability is equiv­

alent to the convergence of [X)Li(A^)2]1/2 to 0 in probability by Proposition 

6.1.2 of Brockwell and Davis (1991), where X z are the components of the 

vector X , and on the other hand, applying Markov’s inequalit}^ we obtain

P { \ x l \2 >  6) <  - E ^ X * ) 2)

and since P((X *)2) =  v a r{X l), we obtain, using the previous Lemma, tha t 

for each e > 0, P ( \ X Z\2 > e —>■ 0 for each i — 1, ...,p. It results tha t

in probability as r —̂ oo. (Another way is to sa}̂  tha t the expectations of 

every component of X  are equal to 0, and the corresponding variances tend 

to 0 by the previous Lemma, so tha t by Proposition 6.2.4. of Brockwell and 

Davis (1991), each component of X  tends to 0 in probability.)

We first use Lemma 3.2.1 of Anderson (1958), stating tha t

M r  =  -  V  X i X f  -  X X T . 
r 7=i

We need now to derive the limit in probability of X X T; for th a t purpose we 

use the following Proposition 6.1.4 of Brockwell and Davis (1991).
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PROPOSITION

I f  (Xr) is a sequence of p-dimensional random vectors such that X r X  in 

probability and if  g \ W  Rm is a continuous mapping, then g (X r) —> g(X)  

in probability.

Thus, every linear combination of elements of X  tends in probability to 0, 

and every element of the m atrix X X T tends in probability to 0. It follows 

tha t X X T tends in probability to the m atrix with elements equal to 0. (An­

other way of obtaining this result is the following: every component of X  and 

subsequently X T tends to 0 in probability and thus, from Proposition 6.1.1. 

of Brockwell and Davis (1991), so does any product of these components.)

In order to conclude, we use now the following Proposition 6.3.8 of Brockwell 

and Davis (1991).

PROPOSITION

If  (X r) and (17) are sequences of random p-vectors such that X r —y X  in 

distribution and Yr —±b in distribution, where b is a constant, then +  —>

X  -\-b in distribution.

In our case, the elements of the matrix M r tend, thus, in probability, to 

the corresponding elements of the m atrix C , and hence M r —> C in probabil­

ity.

It follows tha t

m ; x -> c ~ l

in probability as r —» 00 .
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4.2 .2  D eriv in g  th e  lim iting  d istribution  o f T 2

From the previous paragraph, we have tha t for large r, r T 2 can be ap­

proximated in distribution by r X TC~lX  which we call V.  Then, V  can 

be written as (y/rC~ 1̂ 2X ) T (y/rC~ 1̂ 2X ) ,  where y f r C ^ ^ X  is a normal vec­

tor, which we call IT, with mean 0 and variance-covariance m atrix Fr =  

rC~ 1/ 2V a r ( X ) C ~ 1/2. Now, Tr being symmetric, there is an orthogonal ma­

trix Q such th a t A =  QTTrQ is diagonal where Si will denote the (I, l)th 

element, for I =  1, ...,p, and since Tr is positive definite, the elements of y fK  

are positive. Setting A  = Q V A, we obtain Tr — A A T, with rank of A  equal 

to p. Hence, there is a m atrix A  and a standardized normal vector Z  such 

tha t W  — A Z .  We have then

W T W  = Z t A t A Z  

where ATA — A, so th a t we obtain

TTt TT =  Z t A Z  =  6i Z \  +  ... +  SPZ I ,

where Z 2 ~  x l  f°r I — 1,

Now, A is the m atrix of eigenvalues of I\. or, equivalently, those of C~l V  ar(y/rX) ,  

The following theorem then obtains.

THEOREM

Under the null hypothesis H q, for r large, the statistic T f ,  used in order to 

estimate the number of components in a mixture model, is approximately dis- 

tributed as t=[r— L, where the Z 2,s are i.i.d. y 2(l) variates and the 60s are 

eigenvalues of C ~ lVar{-\/rX).
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4.3 A nother approach for deriving th e  lim it­

ing distribution  o f T2

4.3 .1  A n oth er form  for th e sta tistic  T2

We use here first, an algebraic approach similar to the one used by Anderson 

(1958), in order to derive the distribution of T 2. So, let us consider an or­

thogonal m atrix Q{ptp) such tha t

qu — for I — 1, ...,p. Let us set U = Q X  and B  =  rQ M rQT where,

before, M r =  \  E L i W  -  -  X ) T- Then we have

P _  V T  _  v T  y T  Y  ,______

«i =  E  =  X  - X i  + ■■■+ - x r =  =  ^ x TxU. Vx^x %/Wx v VWx

as

and for j  /  1 we have

A w ' ®  =  =  o,
(=1 1 = 1 1 = 1

since Q is orthogonal. 

Thus we have tha t

T? =  X t M ~ 1X  =  rU1 B ~ l U,T  r?—l;

where U — (t/i, 0 ,..., 0)T and

B ~ l =

f  511 612 . . .

621 622 . . .

bpl bp2 . . .

. . .  6lp >\

b2p

. . .



Chapter 4• On the Limiting Distribution ofT'2 75

Thus
rj-i 2

2  7,11=  Uib

Now, set B  to be the inverse m atrix of B  x, write B  =  (6^) and let us 

partition B  as

B  = b n  (6(i))T ^

y 6(i) b 22 y

where 6(X) — (6X2> ■■■, 6iP) and

(  b

Boo —

22

132

• • ■ 62p

• • • 63p

\  bp2 ............  bpp J

We partition B  1 in the same way:

B ~ l =
bn  { b ^ )T

&(i) B 22

From Theorem 8 .2 ,1 , result 1(d) of Graybill (1969) we obtain

6U -  b T n B ^ b ^  = (611) 1

If we write 6n .2,...,p =  jrr =  fcn — {b(\))T our  statistic becomes

rj~\ 2 __ X T X
bn.2,...,p

On the other hand

B  =  r Q M r Q T  =  £ (Q (;K, -  X ) ) { Q { X i  -  X ) ) T .
i= 1
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Setting then V* =  Q(Xi — X ) ,  we obtain

B  = jZ V iV P
i = 1

Now, partition Xi  and Vi into two sub-vectors with 1 and (p — 1) components, 

respectively, so th a t Xi = ( X ^ \ ( X ^ ) T)T and Vi = ( V ^ \  ( V ^ ) T)T , with 

x V  e  R, x | 2) e Rp_1, ^ (1) e R, V(2) 6 Rp_1.

Since &n  e R and ((V(1))2 +  -  +  (V(1))2) e  R we have

b n  =  ± ( C }f -
i= 1

We compute now the term b ^ B 22b(p.

'(i)'For this purpose we set bT1)B 221 — G and B 22 =  H  and we have

(since B 22 is symmetric).

(.H  is a (p — 1) x (p — 1) m atrix and G a row vector of dimension p — 1.)

Now, G =  E L i  V (1)U / 2)f  f f " 1 and H  =  E U  W ’F - 

Defining V ^  =  (V/1̂ , V ^ )  and

/  v i ?
f/(2) :

. .  V™ }

T / ( 2 ) T / ( 2 )
y  * i,p—1 • • * * ?',p—l J

we then obtain

G H G t  =  V m ( v W ) T H - l v W { V m f
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Now, we use Theorem 6, appendix 1 of Anderson (1958), which states that, 

i f  C is a p  x p positive semidefinite matrix of rank r(< p), then there is a 

non-singular matrix A  such that

T (  I
a c a t  =

\ o  o )

where the identity is of order r.

Consequently, in our case, we can find a non-singular m atrix F  such tha t 

F H F T =  J(p_ i)P_i) (here H  is of full rank), and so

Let E 2 =  FV*2) so th a t = F ~ lE 2; we have

E 2{E2)t  =  F V (2){V(2))t F T =  F ( i 2 v h }(Vi 2))T ) F T

-  F H F t  =

Thus, the (p — 1) rows of E 2 are orthogonal and their norm is equal to 1 (E2 

is a (p — 1) x r matrix).

We now use Lemma 2, appendix 1 of Anderson(1958), which states tha t, if 

A  is an n  x m  matrix (with n  > m )  such that A TA  — I , then there exists an 

n  x (n — m ) matrix B  such that (A  B) is orthogonal.

Hence, in our case, it is possible to find an (r — p + 1) x r  m atrix Ei  such tha t
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and E  is an r x r orthogonal matrix.

Let us now set Ki = Y]p=i eipVp (where the e ^ ’s are the entries of the m atrix 

E)  so tha t, setting =  ( i L ^ , K ^ ) ,  we have

/•sf > =  eu y,(1) +  ... +  elrV ? \  I<W =  er lv ,m +  ... +  errVrm ,

so tha t

(JC(1))r  =  E ( V (l))T .

Thus = l/fL) /tT, which is equivalent to V’(iJ =  K ^ E  since E  is orthog-

onal, and

G H G t  =  K ^ E { E 2)T { F - l )TH - lF ~ lE 2E T { K {1))T .

However, on the one hand ( F ^ ^ H ^ F -1 — 7(p_ i)P-i), and 011 the other hand 

E i ( E 2)t  is the (r — p +  1) x (p — 1) m atrix [0] because E  is orthogonal and 

E 2(E2)T = I(p-ijj-i). Thus we obtain

G H G t  =  /L ^([0]t , / ) t ([0]t , J )(JL ^ )t ,

where

and

( [ o r . c ^ f ^ / e u - w ^ r .

We obtain finally

g h g t  =  ( i g  %+2, , . . ^ b ) ( x (- U > - w y



Chapter 4■ On the Limiting Distribution of I,f 79

=  ( * £ U ) 2 +  •■■ +  ( W  =  £
i ~ r — 73+2

Now, since iQ =  Z)Jj=i ei(3Yp) we use Lemma 3.3.1 of Anderson (1958), stating 

th a t if C = (cap) is orthogonal then Ea=i X aX'^ =  Y4a=̂i YoY^ ,  where Ya =

Yf/3=1 CapXp.

In our case, AT^ =  X)i=i where the AT^’s and the V ^ ’s are real

numbers, so tha t

E A 11)2 = E (^‘1))2,
i=l 7=1

for any r.

Finally we obtain

&11.2,...lP =  611 -  &(i)

7- 7’ 7 '—p + 1

= E ^ L 2 - E X X  = E t̂ 1’)2
i= l  i —r —p+2 i —1

so th a t the statistic T 2 takes the form

v T v
rj-i 2 __ ^

i E ’'“f+1( /4 1))2'

Note th a t 7’2 is a generalisation of the one-dimensional case with p = 1 and 

/ 4 1' =  X  -  X .
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4.3 .2  T h e lim itin g  result

From the previous paragraph, it results tha t

tT? =
s r c r w 1)2'

Now, since p  is finite, the orders of magnitude of E(~ J2iZi+1 { K ^ ) 2) and 

!Ci=i+1(^ 't1̂ )2) are the same for every p. But for p — 1,

r ,tT N ( l - a 2)

and it can be shown that

var(~ ~  X ) 2) 0.
i=1

It follows tha t
i 7‘—p+i 1
-  E  CA)2 -► \
1 i=L u

in probability, as r  —y oo, where b is the (1, l ) th element of the m atrix 

QC~l QT. A similar argument as the one used in the previous section leads 

then to the following result: if rj. is the variance-covariance m atrix of VbyO X,  

and A; the m atrix of eigenvalues of TJ., there exists a standardized normal 

vector J  such th a t T 2 is approximately distributed as

h' T2 2^=1 °Ci

for r large. This result is then equivalent to the Theorem derived in the pre­

vious section.
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4.4 Sim ulation results

81

In this section we give some simulation results based on simple examples in 

order to highlight the performance of T 2. We then compare T 2 to a statistic 

T 2 obtained by letting a = [0], in equation 4.1. The statistic T 2 is then based 

on independent random variables. We notice that, for reasonably large sam­

ple sizes, these statistics validate (or invalidate) a model in the same way.

We first explain how T 2 can be computed in practice. From equation 4.1, 

we can construct a new process (X,.), based on the SEM iterates, in the 

following way: for 1 < i <  r, let us denote by X- the random variables 

X[ — X i  — X '2 — X 2 — aXi  =  ^ € 2,...,X ' — X r ~  a X r_i =  ^%er-

We estimate a by ar =  £T=i (Anderson, 1959; Hall

and Heyde, 1980), which is the maximum likelihood estimate of a; some dis­

cussion is also given by Hurwitz (1950), and the consistency of ar in the 

unstable case is discussed by Rubin (1950) and some asymptotic results are 

derived bj' Anderson (1959).

The empirical mean is

x ' D X x i
1 i= i

and the empirical variance-covariance m atrix is

M ' = l j r ( x i - x ' m - x ' ) T.
1 i-1

Then, the statistic T 2 used to test for XI =  X 0 =  0 can be written as follows
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As in Celeux (1987), the general criterion is tha t small values of T?2 (resp. 

T 2), suggest th a t the method has found the correct model. This is because, 

in the case th a t H q is satisfied, the chain generated by SEM will always stay 

around 0 thus producing low values of T 2, whereas in the opposite case, the 

chain will deviate from the starting point, thus producing high values of T 2.

In the sequel we describe the experiments and compare these two statistics 

under the null hypothesis (i.e. EM has found the MLE); the SEM algorithm 

always starts from the solution given by EM.

We first consider samples of sizes 50, 100 and 500 from the well-separated mix­

ture model 1/2JV(0, l)  +  l/2 jV (4 ,l) denoted by Two-mixture(l) in Table 4.1, 

and from the moderately-separated mixture model l/2 iV (0 ,1) +  1/2N (3,1) 

denoted by Two-mixture(2) in Table 4.1, where the parameters are the mix­

ing proportions and the means. We then fit to those data a mixture of two 

normals, taking the true values of the parameters as starting points; in these 

examples, we run 3000 iterations of EM and 200 iterations of SEM.

We then consider the case where the data arise from a iV(0,1) distribution 

and we fit a mixture of two components to those data, with starting points 

m eanl=0, mean2—3, for sample sizes 50 and 100, and m eanl=0, mean2=2.75, 

for sample size 500, and proportions p i  = p2 — 0.5. For sample size N  =  50 

we run 50 EM iterations and 15 SEM iterations; for N  — 100 we run 200 EM 

iterations and 30 SEM iterations, and for N  = 500 we run 5000 EM iterations 

and 60 SEM iterations.
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The results are reported in Table 4.1. In both cases, the EM algorithm finds 

the right answer, and the values of the two statistics are small and close to 

each other.

H 0 N=50 N=100 i

II Cn O o

Normal T 2 =  0.867 
Tr2 =  0.821

T 2 =  0.248 
T 2 =  0.192

T 2 =  3.652 
T 2 =  3.896

T wo-mixture (1) T 2 =  0.143 
T 2 =  0.110

T 2 =  9.03 x 10~2 
T 2 =  7.26 x 10“2

T 2 =  9.48 x 10“ 3 
T 2 =  7.52 x 10~3

Two-mixture(2) T 2 -  0.102 
T 2 =  7.60 x 10-2

T 2 =  1.57 x 10~3 
T 2 =  1.26 x 10~3

T 2 =  0.108 
T 2 =  9.64 x 10”2

T ab le  4.1. Values of T 2 and T 2.

Table 4.1 suggests tha t in the case tha t the sample size is small, both statistics 

give satisfactory results. We consider now an even smaller size, for instance, 

the case of 25 data  arising from a 1V(0,1) distribution to which we fit a mix­

ture of two normal distributions with starting points mean 1—0, mean2=0.5, 

p i — p2 — 0.5. Then, running 1000 EM iterations from these starting points 

and 37 SEM iterations, we obtain T 2 =  1.214 and T 2 =  0.985; the values of 

these statistics are small and close to each other, thus validating the result ob­

tained by EM, which is m ean l—0.338, mean2=0.338 (duplicates), p i  =  0.492, 

p2 =  0.507. Hence, these methods work quite well in practice even for small 

sizes.

It is worthwhile noting tha t some care is needed in choosing the number of 

SEM iterations: indeed, considering the previous example where N  = 25, and 

starting the EM algorithm at m eanl=0 and mean2=3, one cannot perform 

more than 6 SEM iterations, because of numerical singularities th a t occur 

when one of the proportions gets close to 0; in this case T 2 =  48.077 and
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T 2 =  72.954, and the high values of these statistics can lead to misleading 

conclusions.

Therefore, one has to ensure tha t enough SEM iterations are run before these 

statistics are obtained. We should also add that this problem always occurs 

when the model is overfitted, independently of the sample size.

Considering again the case where ( H q) corresponds to a N ( 0,1), let us sup­

pose th a t the algorithm used to estimate the parameters (either EM or any 

other method) does not find the solution, so tha t the starting points for SEM 

are far from the true parameters, for example, meanl=-0.365, mean2=0.491, 

and weights p i  =  0.606, p2 — 0.393; the sample size considered is 500. Then, 

running 155 SEM iterations we obtain T 2 =  12.789 and T 2 =  10.370; we 

see th a t both statistics are large, suggesting tha t we should reject ( H q ) ,  and 

different from each other.

Finally, we outline the danger tha t one can run if SEM does not find the 

solution, and this is shown in the following example. We fit a mixture of 

two normal distributions to 500 data arising from a mixture of three normal 

distributions, for example, l/3 iV (—2,1) +  l/3 iV (0 ,1) +  l/3 iY (2 ,1); then SEM 

(like EM) points wrongly towards the two-mixture model. However, in the 

same way as before, we run 1000 EM and 500 SEM iterations and obtain 

T 2 =  0.030 and T 2 =  0.032, so tha t these statistics are very close to each 

other and have small magnitudes, thus validating the two-mixture model.

In consequence, one has to make sure that SEM has found the right answer 

before using any of these tests. A way of doing this is to fit the highest- 

component model believed to be compatible with the data, since SEM works
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well when an upper bound of the actual number of components is available, 

and a large sample size is used.



C hapter 5

On th e D istribution  of th e  

Likelihood R atio Test S tatistic  

w hen th e M ixture P roportions  

are known

5.1 Introduction

5.1.1 G eneralities

Following Goffinet et al (1992), we study, in this chapter, the asymptotic 

behaviour of the Likelihood Ratio Test Statistic (LRTS) under the null hy­

pothesis of a single-component distribution versus the hypothesis of a mixture 

of two components in the particular case where the mixing proportions are 

known a priori. In fact, for cases where the component parameters are known,

86
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the problem simplifies considerably: the authors mention a paper by Duraira- 

jan and Kale (1982), where a local test for testing for a single-component 

distribution against a mixture of two components is derived. In the same 

context, the asymptotic distribution of the LRTS, under the null hypothesis, 

is derived in T itterington et al (1985), and a generalization of this result is 

given in Chen and Cheng (1992). (This has been mentioned in the introduc­

tory part.) For the case tha t we study here, the known parameters are no 

longer those tha t specify the component densities, but those specifying the 

mixing proportions. The general problem here, then, is to find the asymptotic 

distribution of the LRTS under the null hypothesis when testing between a 

single-component distribution and a mixture. The authors mention tha t the 

problem studied here is similar to the one faced by Aitkin and Rubin (1985), 

which we discussed in the introduction, and which has been theoretically es­

tablished by Quinn et al (1987). Because of this similarity, we mention here 

the nature of th a t problem. Under the null hypothesis, Quinn et al (1987) 

proved th a t the Fisher information matrix has positive probability of not be­

ing positive definite, and therefore the regularity assumptions are not fulfilled 

for the standard asymptotic theory to apply. We shall first verify that, here 

too, the Fisher information m atrix is singular under the null hypothesis (as 

done in Goffinet et al, 1992) and therefore the usual theorem mentioned in 

the introductory part does not apply for the LRTS to be asymptotically dis­

tributed as a x 2(l).

We now define the problem in a more formal way, in order to state the main 

theorem derived by Goffinet et al (1992) concerning the asymptotic distribu­

tion of the LRTS. Let X  = (X i , ..., X Ar) be N  independent univariate r.v .’s 

with common probability density function
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h(x;6u 92,a) = p f ( X;Ou a) +  (1 -  p ) f ( x \ 62i cr),

where f ( x \  0*, a) ~  N(9i , a) and p is assumed to be known.

We study here, under the null hypothesis f f Q: 9\ = 62 or equivalently h{x\ 0i, 02, 

f (x ;  0i,cr), the behaviour of the likelihood ratio test statistic (LRTS)

N  N

T (X ) =  2[sup01>O2]l7 J^ lo g  h(Xf, &i, &2, cr) ~  5up01)(T̂ lo g /(A ^ ;0 i,c r) ] .
i='l i=l

Goffinet et a l’s result is as follows.

THEOREM

Under H q, the limiting distribution o f T ( X )  is:

1) a x 2(l) distribution if a is unknown and p ^  0.5;

%) 0.5y2(0) +  0.5x2(1) otherwise.

This theorem gives two possibilities for the asymptotic distribution of T ( X )  

depending on some assumptions on the parameters. Our main objective will 

be to investigate the form of the distribution of T ( X )  in cases where p 7  ̂ 0.5 

but p is close to 0.5, for sample sizes N  which are useful in practice. We study 

the behaviour of T ( X )  in those cases, theoretically and by simulation results.

In the sequel, we follow the calculations of Goffinet et al, since we use the 

same type of argument. We also highlight some inaccuracies in the proof of 

their theorem.
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5.1.2 Failure o f th e  standard regularity con d itions

The first step is to show, following Goffinet et al’s reasoning, th a t the Fisher 

information m atrix under H q is singular. The statistic T ( X )  being invariant 

under translation and linear transformations of X , we can take for simplicity 

the true value of 9i to be 0, and tha t of a  to be 1. We use the notation

K lm(Xi i a,b) =  a '+"Mog h(Xi;e1,62, a ) / d a ‘dbm,

where a and b can be 6*i, #2, a or some functions of these parameters.

When the density of Xi  is f ( x \  9\> a) with 9\ =  0 and a =  1, we obtain

K1{xi]el)=pxh 

K l ( x i -e2) = ( i - P) x i

and

Indeed, we can write

K 1{Xi- c ) = X f -  1.

K ^ X t ,  &,) =  L ( X i  -  0i) /(yYii 6u a)l / h ( X i -,e1, e 2, a ) '

however, under Ff0, h(Xi', Qi, 02, cr) =  f (X i \  0i, a) so that

Since 9\ = 0 and u — 1, we obtain

K 1(Xi ,6l ) = p X i .
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In the same way

K l ( x i;e2) = D p { X i _ o 2y f { x ' M
a 2 v h(Xi-t 9u 92,o)

However, under H q, Oi =  #2, so tha t

K 1(xi-,g2) = ± - P ( X i - g 2),

and, for 6h — 0 and a =  1, we obtain

i<i(xi]e2) = ( i - P)xi.

The same type of calculation yields a).

We have then

E i K ^ X f ,  BJKxiXi-, 9x)) = p W ( X f )  = p \

EiKxi Xi -B^KxiXi -  e2)) = p( 1 -  p ) E( Xf )  = p( 1 -  p), 

E( Ki ( X i ;  0 i)JC (V ; o-)) = p E ( X f )  -  p E { X i) = 0, 

EiKxiXp,  02) K 1(Xi; a)) = (1 -  p ) E( Xf )  -  (1 -  p ) E { X i) = 0, 

E i K x i X i - a j K x i X ^ a ) )  = E(X?)  -  2E { X f )  +  1 =  2, 

E i K ^ e ^ K x i X f ^ ) )  = (1 - p ) 2E(X?)  = (1 - p f .
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We obtain finally

and det(I) =  0. Thus, the information m atrix is singular and hence the clas­

sical development leading to the asymptotic distribution of the LRTS is not 

applicable.

5.2 Case 1: a known

5.2.1 M ain  resu lts

This case has been thoroughly investigated by Goffinet et al (1992). Never­

theless, we will give some quick proofs. We recall tha t the result in this case 

concerns the second part of their theorem.

In order to prove this, the authors made the following change of variables:

For 0i =  62 = 0 we have (1 = 0 and 5 = 0; let us compute K i(X i \5 )  at the 

point pi — 0, 5 = 0.

From the above system of equations, we obtain

01 — p> T  (1 — p)5

02 =  (JL -  p5
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and thus we obtain

K i ( X i ] 6) =  d log h(Xi; p + (1 - p ) 5 , p  — p5, a ) / 85.

After some algebra, this quantity can be written in the form > where

N u m  denotes a numerator and Den  a denominator, such tha t, a t p = 5 = 0, 

we obtain Ar(0, 0) =  0 and D (0 ,0) =  exp(—~ s X f ) .  Thus, a t p  = 5 =  0, 

Ki ( X i  \ 5) =  0. (For reasons of clarity we do not write out N u m  and Den  in 

detail.)

Hence,

E [ K 1( X i;5)K1(Xl]5)} = 0 ,

and

so th a t the information m atrix is singular.

Thus, as in Cox and Hinkley (1974, page 304), the authors expand the log- 

likelihood function th a t we denote, following Goffinet et al’s notation, by 

L ( X)  (which, here, is a function of the two variables p  and 6) up to order 

4. For this, they rescale the parameters as ft =  p N 1!2 and <5 =  A/V1/4.- Since 

8 L{ X) / d5  = Z ^ i K i { X i \ 8 )  =  0, and T , ^ i K u ( X i\6i p) =  0, then, under H 0i 

L ( X)  can be written-as

1 N  N

L ( X )  = L(X-, 0,0) +  - N - 1' 2 Y  I M X r ,  S)S2 +  N - l<2 Y  K i ( X i; n)ji
1 i =1 i = 1

+ ^ Ar' 1E ^ ( X i;5)54 +  0p(l),
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where op(l) denotes a random variable tha t is o(l) in probability (Cox and 

Hinkley, 1974, pp. 281-282); in other words, under J70, the term  op(l) tends 

to 0 in probability as the sample size A1 goes to infinity. Goffinet et al (1992) 

then derive the following equalities:

E[ K21{Xiy 5, i j l ) ]  =  - E [ K 2{Xp 5 ) 1 ^ ;  //)],

E[K3(Xi ‘5)] = 0,

E[/Gi(Xi ;5)] =  -3£[/C(A ;;<5)2].

5.2.2 P ro o f o f th e  above resu lts

Since these are well established results, we only give an idea of the proofs. 

We denote, for simplicity, h(X i y 0i, 62, c) by h, the order of the partial deriva­

tives n  by (n) in the superscript, and the variables with respect to which we 

differentiate in the subscript in the usual way. We have then

1 (i) /t(2)
and, a t p  =  5 = 0, =  Ki(Xi] p) and = K 2(X{; £).

After some algebra, we obtain

h{3)
- ^ = p ( l - p ) ( X ? - 3 X , ) ,
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whose expectation is 0 since Xi  ~  N ( 0 ,1) under Hq. The first equality follows. 

For the second equality, some algebra yields

h3hp + 2/l(4 1))3 -
—  ------------------------------------------------- J J --------------------------------------------------- ;

now, at n  =  5 =  0, 4  =  0 so tha t

/;(3)
K s{Xi- 6) = - £ - = p (  1 -  p ) [(3p2 -  3(p -  l)2)Xi +  ((p -  l ) 2 -  p2) X 2},

whose expectation is 0. The equality follows.

For the third equality,

„,v „ - 4 h 44 1)4 ?  +  - 3h“( 4 2))2 +  h u f - 6 (4 1))«h*
J-U[Xu o)  ------------------------------------------—— — -------—  —,

and under H 0 this can be written as

Q(/7(2h2 /? (4)
I U ( X i-,S) =  - ^ L  + l̂ L .

however, a t the point p = 5 = 0,

1?(4)
- ^ - = p ( 1 -  p )[-3 (p  -  l ) 3 +  3p3 +  (6(p -  l ) 3 -  6ps) X f  +  O 3 -  (p -  I )3) # ] ,  

whose expectation is 0. The equality follows.

Now, the term  in 43 is op(l), since its expectation is 0 and its variance is 

smaller than th a t of the terms in jX and 42, and therefore we obtain

L ( X )  =  L(X;  0,0) +  B(fi,  S2)T + (fi, 52)C{p,, S2)T +  o„( 1),
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where B  =  ( N~1/2 E £ i  K^X,- ,  M), e " ,  K 2(XV, 5))T ,

c

and

^ I ^ - 1 E £ i  K 21(Xi- 5, ti) ± N - 1 E t !  5)

£;(C ) =

this result is a direct consequence of the three equalities derived previously. 

Furthermore, it is straightforward to verify tha t

E( B)  =  0.

Remarks:

1) The term  in 52fi can also be considered as op(l), in the same sense as for 

the term  in d3, since E[K2i{^i] 5, /i)] =  0, but this should not affect the result 

since this term  is not on the diagonal of the matrix C. The same argument as 

in Cox and Hinkley (1974, page 321), with the constraint 52 > 0, leads then 

to the second result of Goffinet et al’s theorem.

2) The authors note th a t in the case p =  | ,  the same result can be obtained 

more simply, using the fact tha t K ^ X ^ d )  =  0 and applying the general re­

sults (Case 5) of Self and Liang (1987).
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5.3 Case 2: a unknown and p — 0.5

5.3.1 Som e th eoretica l argum ent

Here, Goffinet et al (1992) obtain the same limiting distribution for T ( X ) t as 

for case 1.

We shall go through the calculations to show first tha t the change of variables 

introduced in the paper is not adequate. For p =  we have

01 — p  +  |2
5 
2

so tha t

02 =  !>

h _  — -—  exp(— ~ ^  ^))2\ +  _ ^ expf_ ( ^ - ( M - D ) 21
2a v ^ F  1 2a2 2cr\/27r 2a2

In the same way as before, K i ( X p  5) — 0 at the point p — 0, 5 =  0, and

1
4\/27r

so tha t
h{2) 1

A-2(X4;5) =  - £ -  =  5 (J C ? - l) .

On the other hand,

* « ( * ;  S) =  l ( - | x 4 +  \ x f  + l x t -  \ x f )  =  0
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under i f 0, after some algebra; in the same way, under i70,

t-s f y  . x\ _  y  1^  v*3 , 1 y 5 15 Y  4- 10 Y 3 1 Y 5 — 0A ;, 5) -  —  -  - A ;  -  - A ,  +  -  - A ,  +  - A , ; -  - A ,  -  0.

Indeed, in general for any k odd,

/C (xj;<5) = o,

and this result is proved in Goffinet et al (1992). The change of variables used 

here is e =  \ 5 2 instead of 5, since all terms in 5 are in powers of 52. Denoting 

J  by w, we can prove now that

I i 1(X i-e) = - h < 1(X i -u).

Note th a t in their paper, Goffinet et al (1992) do not find exactly the same 

equality; they find instead, itypQ je) ~  —ity p ty w ).

We first prove now that, again, the Fisher information m atrix is singular. 

Indeed, from the above change of variables, we obtain

h =  T +  \/e

?2 = // -  -s/e, 

so th a t h becomes

/l =  exp(“ i (Xi “ + ^ ) ) 2 + d ™  exp(" i (Xi -  ~ ^ ))2'

Taking a  =  1, for simplicity, we then compute lYi(Jty;e); this type of cal­

culation is similar to the calculations done previously in this chapter, and



Chapter 5. Distribution of the LR TS for known Mixing Proportions 98

yields
/ d 1) i

K 1(X i -,*) = -*r  = - ( X } -  1),

for p  =  e — 0.

On the other hand, by replacing a  by ~ in the expression for h, we obtain

h  = 2 exp[_ 5w2^  “  ( f i +  + exP[“ ^ 2(^i -  (m- v'e))2],

so tha t
/̂ C1)

/<1(Xi;a;) = - | -  = l-X ,2

at p — t — 0, w =  1.

We then derive the information matrix

( E[K\(Xi\ ii)2) E l K ^ X i - . ^ K ^ e ) ]  E[K,(Xi-, ^K^X.-w)]  ^

/ =  E[Ki{Xi\ e)Ki(Xi] £i)] ElK.iXi-e)2}

y E l K ^ ^ K ^ / j , ) ]  E \ K l (Xt; oj) K i p p e ) ]  E [ K t ( X r< w)2} J

1 ElKriXi-ii)2} -lElK^Xu^K^Xi-uj)] E l K ^ X u ^ K ^ c o ) } ^
- i E ^ i X i - ^ K ^ i J , ) ]  i f i p G p P w ) 2] - i f i ^ p p a , ) 2]

 ̂ E l K r i X n ^ K ^ t i , ) ]  - \ElK. iXi -uj )2] ElK^Xf,  w)2]

The determinant of I  is found to be 0, so tha t I  is singular.

5.3.2 Solving th e  problem

A new variable 4> is then introduced by the authors, using the change of vari­

able (j) =  (td —1) —e, and the parameters are rescaled as p  =  p N 1/2, f, — ( fN1!2, 

to =  (cd — 1 )Ad/4. We now show tha t this change of variable does not work 

properly. Indeed, we obtain the following system of equations:
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J $1 — T H-

( 62 — /a yh; “ 1 - ^ ,

so tha t

^ =  ^ ^ = c je x p [ - - ( X ~ y a ;  -  1 -  0 - / i ) 2] +  ̂ - ^ a ;  exp[--(vYi+ v/cj - 1 - 0 -  

We now prove tha t the random variable ifyfyQ; </>) /  0, and E[Ki(Xi \  (/>)] = 0.
/icl)

We have th a t Ki(Xi;<fi) = using then a Taylor expansion around 0, we 

find that

h* } = ~  X h  exP ( G At)>v  I'K O  2

and, on the other hand,

h = - j = ^ z x v { ~ \ x ' t ) \
V27rcr 2

it results that, under i f 0j 0) =  =  ~-KhPC; e), an^ E[Ki(Xi] <f>)) =

0. This is related in fact, to one of the problems tha t we mentioned in the 

beginning of this chapter, namely that, in their paper, Goffinet et al (1992) 

find K \ ( X i ; <j>) to be 0, which is not obviously the case according to our cal­

culations. We, then, cannot apply the same arguments as in Case 1 to infer 

about the distribution of T( X) .  Therefore, the change of variables used by 

them is not very interesting. Our proposal is to have /i, S and lj as variables. 

Now, since K i( X i  \ 5) =  0, as in the previous case, we consider the expansion 

of L ( X )  up to order 4, and the only difference from Case 1 is th a t we have 

a third variable to to take into account in the expansion; it is clear tha t the 

fact th a t K k( X i ; 5) =  0 for k odd, will not affect the expansion L ( X )  of case

1. We then rescale to fi =  /aN1/2, 5 = 5 N 1//4, and u) =  (to — l^ Y 1/2, and verify
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th a t the information m atrix I  is singular. Indeed

E i K ^ X p ,  £)ify(Ah; p)] E [ K i ( X , - d)2] X,; (5)Jfy(A ;̂ u)]
[ E l K ^ X i - ^ K ^ p ) ]  E l K ^ X i ^ K ^ S ) ]  £[iG(Afy cu)2] J

At /i =  5 — 0, oo — 1 we obtain, after some algebra,

and we know from previous calculation tha t =  1 — A 2; it results

th a t

E[K,  (Xu /*)#, (Xi-, w)] =  E ( X t -  X f )  =  0, 

J5[(/iT1(.Yi ;<5)K1(Xi ;W)] =  0>

since K i ( X t : 5) = 0, and

E [ K 1{Xi -,5)Kl (Xi -,/i)} =  0

for the same reason. Thus the determinant of I  is 0. Again L ( X )  will have 

to be expanded up to order 4; we then obtain

L ( X )  = L { X - 0,0,1) + N - 1' 2 £  K ^ X u  /*)£ + W 1/2 £  CV; *)&
£=1 i= 1

1 JV i N  -i N

+ x « - 1/2 £  K 2( x i; 5 ) P  +  - N ~ l E  M X i i  ^  £  K 2( X i; co)w2
Z i= l  Z i= 1 Z i= 1

V i  V -t JV
1 y :  AnCW; M) aj)/2o>+—IV 1 ^  IfyiCAy J, /i)52/i-l-—AT 1 y~] A 21 (Ay A co)h2a)

i= l  ̂ i= l  ̂ i= l
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+ W - 1 E ^ ( * i;S F 1 +  op(l).
i = l

Thus,

E{X)  — L( X\  0, 0,1) +  5 , uj)  +  (/Li, 5 , lo) C {J l, 5 , uj)  +  G>(1),

where B  =  (N~V* E "  r K,  (Ai; /r), \ N ~ W  E " , K 2(Xi\ S ) , N ~V 2 E ,E  c a ) f ,

and

'  AJV-1 E ^ i  /*) \ N - l T , h K z  1{Xi iS,ft) i N - ' Z l j C n i X i ^ ^ ) ' '

C= iE,=i^2i(Ai;5,M) ^ - ‘E E ^ C V ^ ) p V ^ E g u ^ i ^ M

v l N - l E L K n ( X i - , i i , u j )  jA^1 EjL, IY2i(Aj; 5,uj) jA''-1 E," i AT2(A'i;a)) y

As in Case 1, we have th a t E[C) = ~ ^ E ( B TB).  This is because we have

E [ K n (Xi-,n,w)] --- 0 =  E l K ^ X i - ^ K ^ X ^ w ) } ,

E[ K2l(Xi-,5,iJ,)] =  0 =  - E l K z i X ^ S U ^ X n i J , ) ] ,  

E[K21(Xi-,S,u)] = - E l I ^ X . - S ^ i X i - L o ) ]

/,(3) m /h2) lX̂  fil
(since K 2l( X i;5,uj) = - f -  -  V " f  > E ( ^ t )  = ^  K i ( X i \ » )  = T  aad

/ i . ( 2 )

iF2(Ay 52) =  and, as in the previous case,

E l K i i X t S ) ]  = S E [ K 2(Xi;5)2}-

also

E[ K2(Xi;uj)] = - E [ K 1(Xi;uj)2].

Furthermore the expectation of the score vector B  is 0. The conclusion will
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then be the same as for Case 1.

(Remark: we verify th a t all terms in L (X)  are non-zero).

Very recent information th a t we obtained from Goffinet confirmed our feel­

ings about the change of variable used in Goffinet et al’s paper. Indeed, the 

correct change of variable would be, in tha t case, to replace in their paper e 

by e/2 so th a t we obtain (f> =  (to — 1) — e/2, yielding Ki(Xi\ to)  =  0; (the other 

parameters are left unchanged). Then, Goffinet et aPs theorem is proved us­

ing the same argument as for Case 1.

5.4 Case 3: a  unknown and p ^  0.5

5.4.1 M ain  resu lts

The result in this case concerns the first part of their theorem. In this case, 

K<i{Xi\(T) is proportional to Ki (Xi \u ) \  indeed, using the same kind of calcu­

lation as in the previous cases yields

K 1(Xi]a>) =  l - X f

at fj. =  5  =  0 and uj =  1 ,  and, on the other hand,

K 2(Xi-,5) =  -p(l -p)(l -  X?) =  - p i l - p ^ X i - i o ) .

Thus, Goffinet et al (1992) consider the following parameters: 5 — (p —

p2)^(9]_ — 02) } e — (tu — 1) — 62. Then, for the purpose of expanding L(X) ,  

they rescale the parameters as fi =  p N 1/2, 6 = S N 1/6, and e =  e N 1/2.
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We first show that, again, there is a similar problem here as for the pre­

vious case, concerning an inaccuracy in Goffinet et al’s paper, in the sense 

th a t this change of variable does not lead to the result. Indeed, we compute
/ i (2)

K 2(Xp 5) — we find it to be equal to 1 — X f  at p = 5 =  e =  0. This 

contradicts Goffinet et a l’s result stating tha t K 2(Xi\5) = 0. This is an im­

portant problem since K 2(Xi]5) plays a crucial role in the expansion of the 

log-likelihood function. However, as for the previous case, recent information 

obtained from Goffinet is tha t the correct change of variable comes by replac­

ing 52 by 82/ 2 in the expression of e so tha t we obtain e =  (u) ~  I) — 52/2  

and leave the other parameters unchanged. W ith this change of variable, it 

becomes then true th a t K 2(Xp8) = 0.

We give now the basic relationships concerning this case (these are valid when 

using the new change of variable tha t we reported hereabove):

K 1{Xi -i 5) =  K 2(Xi -i 5) =  0i 

E [ K e(Xi-,5)} = - lO B ^ O ^ ) 2],

E[Ki(Xi-, 5)] = E[ IQ( Xt -5)] = E [ K n  (Xi; 5,0] = 0, 

£[/Y31(Xi;(5,£)] =

where f  stands for p  or e.

The main result of Goffinet et al (1992) in this case is the following.

L { X )  =  L(X; 0,0,0) + JV"1/2 £ " ,  K ^ X *  ,j)p, + N - 1/2 e)e

+ \ N - 1 E£i X2(Xi; »)p? + p V 1 £ £ i K 2(Xf> e ) f  + iV 1 E£i e)^

+ iN - 1/2 E £ x K 3{Xt] <5)53+|iV_l X3I(Xi; 5, ^ K 3l ( Xi; <5,
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+  720iV” 1 K ^ X i\ $)&  +  0„(1).

Some terms do not figure in this expansion; they are considered as op(l) for 

the same reasons as for Case 1.

Thus, L ( X)  can be written as

L ( X )  = L(X-, 0 ,0 ,0) +  B(£l, S \  ~ef + (fi, 5s , e)C(jl, 5 \  e)T +  o„(l), 

where B  = ( N~ 1/2 E " ,  M X {- jj), | N ~ V 2 E h  K 3( X * 6 ) , N ~ ^ E ^ i  K t ( <=)),

and

(
iiV-'E'li^C^iiM) \ N ~ 1Y,?=1K l l {Xi - tJ,,e)

T2N-1 T. iLiKn(Xi- ,8,vl) ^ N - ' Z ^ K ^ X i - J )  E " , K 31( X {] 6, e)

y |iV-1 E£i K u  (Xi \n,  e) ± N - ' - Y $ L 1K 31(Xi-,6,e) ijV"1 E£i I M X ^  e)

satisfy the relationship E(C)  — — ̂ E ( B TB ) i and E( B)  =  0. The result then 

follows by the classical development of Cox and Hinkley (1974, pp. 313-314).

5.4.2 Our resu lts for p  close to  0.5

In their paper, Goffinet et al (1992) point out that, in view of their simulation 

results, the convergence of the estimated means of T ( X )  to the theoretical 

ones is very slow in the case p = 0.51. We also find the same behaviour (see 

next section), and we give a heuristic explanation for it. Since, for p — 

Kk{Xi\6)  =  0 for k odd, which is a key factor underlying the asymptotic 

distribution of T (X ), we shall investigate here the case where p is close to ~, 

th a t is, p =  \  +  A, where A is small compared to ~, and we shall calculate 

Kk{Xi\5) .  We shall find Kk(Xi \8)  = Op(A), and this result may account for 

the slow convergence.
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Prom the expressions of fi and 5, we obtain

^  =  m + ( — )1/25,
P

and

92 =  m - 1 — p

now, replacing p by |  +  A, we can use the Taylor expansion to approximate 

these expressions, for small A, by

$i = / i + ( l - 2 A ) h  

92 = fi -  (1 +  2A)5.

We verify, thus, th a t 9\ and 02 are as in Case 2 for A —̂ 0 (also, note that, for 

A —y 0, the 6 used here corresponds to taking 25 in Case 2); hence, we verify 

that, by letting A go to 0, we obtain the same parameters as for Case 2.

Let us now consider the general case

0i - M + ( ^ ) 1/25 

for which h becomes

h =  ^ (e +  ?  +1} exp[ - 5 « £ +  j  +  ^ Xi  ~ ^  + ( y r ) 1/2*)))2l

+ S (e +  ?  +1} exp[4 ((e +  y  +  i ) ( x 4 -  0* -  ( j ^ ) 1̂ ) ) ) 2],

and we are more particularly interested in the behaviour of Kk(Xi \5)  for k 

odd.
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At  p — 6 ~  e ~  0, some algebra shows tha t

K ^ X f ,  6) =  P( ^ ) I/2 -  (i -  p X j - r ^ ) 172 =  o.

This is a general result, valid whatever the value of p. We now compute 

Ks(Xf ,  5) at p = 5 = e =  0. Some algebra shows tha t this can be w ritten as

K ( X  • ril =  ^  ~  1) fo y  _  y 3n|h p l / 2 ^ i _ py / 2 ^ X  ̂ X i )•

For p = we obtain

K 3 (Xi ' t 5) =  0 t

and (Xp 5) ^  0 for p /  For p =  |  +  A,

2A
K * ^  =  ( i    A 2) l/2 (3^  -  * ! ) -

Since A is small, using a Taylor expansion of order 1, we obtain

K 3{Xi; 5) ps 12AW; -  4A A 3.

On the other hand,

E [ K 3 ( X i - 5 ) ]  =  0,

which is true for any p, and

va r [ Kz ( X i ] 5 ) ]  ps 9 6 A 2,

thus yielding th a t the standard deviation cr[î r3(^ri; A)] p s  4 a/ 6  A; it results 

th a t

K , ( X i]5) = Op( A).
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We now turn  to K 5(Xi\ 5). Some algebra yields

K s i X t - S ) ^  0,

at [i =  5 =  e =  0, for p = and the same kind of properties as for Ks(Xi \  5) 

apply here, yielding, for p close to | ,

I U ( X i]5) = Op( A).

Thus, a property similar to the one for Case 2 is found: for k odd, Kk{Xi  \ 5) = 

0 for Case 3 whenever we take p =  and, for any small enough A,

K k {Xi -5)  = Op(A).

We make clear th a t terms tha t are Op( A)  are larger than terms th a t are op(l) 

since the latter tend to 0 in probability as the sample size N  increases. Thus 

the asymptotic result holds even for A small.

Now, the more A increases or equivalently p moves away from the faster 

the distribution of T ( X )  approaches tha t of Case 3. The problem certainly is 

tha t, for p close to ~, we may need a huge sample size before the theoretical 

result on T ( X )  is useful in practice. In the next section, we shall investigate, 

using simulations, the form of the distribution of T ( X )  for reasonable sample 

sizes.
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5.5 Sim ulation results

We present now some simulation results for cases 2 and 3 (where a  is un­

known), in order to investigate in practice the difference in the distribution 

of T (X ), according to how close p is to 0.5; Table 5.1 presents results for the 

distribution of T ( X )  under W0, estimated from 500 simulations for different 

values of p and N.

We emphasise the result tha t comes out of our study: we find that, in the 

cases where p is in the neighbourhood of 0.5 and where p = 0.5, the val­

ues of the respective estimated expectations of T ( X )  are very close to each 

other, and, in the same way, the values of the respective estim ated variances 

of T ( X )  are very close to each other, independently of the size N.  This is 

natural since Kk(Xi \5)  — Op(A) for k odd, independently of N.  Since, for p 

close to 0.5, these values are far from the theoretical values tha t we expected, 

and for p =  0.5, they are close to the theoretical values th a t we expected, we 

verify practically the validation of the Goffinet et al (1992) theorem, for the 

la tte r case, and the fact of very slow convergence to the theoretical results in 

the former case.

We notice tha t, as N  increases, the expectations of T ( X )  in these two cases 

tend to 0.5 (for p = 0.5) and to a value close to 0.5 (for p close to 0.5); sim­

ilarly, the variances of T ( X )  tend to 1.25 (for p = 0.5), and to a value close 

to 1.25 (for p close to 0.5); here again this is because Kk(Xi] 6) ~  Op(A), so 

th a t the smaller the A, the closer to each other are the two first moments in 

these two cases. (Certainly, for huge iV, this would not be the case any more.) 

It results tha t, for values of p close to 0.5, the distribution of T ( X )  is close



Chapter 5. Distribution of the LR TS for known Mixing Proportions 109

to the distribution of T ( X )  for p =  0.5, and that, the more A increases, the 

more the distribution of T ( X ) tends asymptotically faster towards a X2(l). 

Table 5.1 shows the results for three characteristic values of p , used also by 

Goffinet et al (1992) in their paper, but we performed some more simulations 

for other values of p, in order to investigate further the intermediate (or tran­

sition) stages of the distribution of T( X) .  The results are given in Table 5.2, 

where a sample size of 3000 is used; for p < 0.51, expectation and variance 

are closer to the respective expectation and variance for case p = 0.5, than 

to those for case p =  0.51; in the case where p increases from 0.501 to 0.65, 

the expectation and variance of T ( X )  approach 1 and 2 respectively. Fur­

thermore, in practice, it seems tha t, for p 0.65, the distribution of T ( X )  is 

already a x2(l).

Remark about the rate of convergence: we note that, for p = 0.75 (which 

is far from 0.5), a sample size of 500 only is needed to obtain th a t the esti­

m ated expectation of T ( X )  is close to 1, whereas for p — 0.5 a sample of size 

3000 has to be considered in order to obtain tha t the estimated expectation 

of T ( X )  gets close to 0.5. As for p close to 0.5, even for a sample size of 

3000, the distribution of T ( X )  is far away from the theoretical one. There­

fore, there is quite fast convergence towards the theoretical results in the case 

p = 0.75, a medium convergence in the case p = 0.5 and an excruciatingly 

slow convergence in the case p close to 0.5.

We now draw some histograms of the data based on the 500 simulations 

th a t we carried out (Figures 5.1-5.8), for some values of p and for various 

sample sizes, in order to visualise the distribution of T( X) .  We are certainly 

interested in the cases described in Table 5.1, but we focus even more in
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those of Table 5.2, since, for p roughly between 0.5 and 0.60, the distribution 

of T ( X )  is clearly not a y 2(l). We actually find, using our results, tha t, if 

the expectation of T ( X )  is 7r, then its variance is close to 7r(3 — 7r), for a 

sufficiently large sample (see Table 5.3): these characteristics are those of a 

(1 ~  7r)x 2(0) +  vrx2(1) distribution.

Figures 5.1 and 5.2 represent data for the case where p = 0.75 and for sample 

sizes N  =  100 and N  =  500. Figure 5.3 deals with the case p =  0.51 and 

N  — 3000. Figure 5.4 deals with the case p = 0.5 and N  =  3000. Figures 5.5, 

5.6 and 5.7 deal with the intermediate situations p = 0.52, p = 0.55, p — 0.6 

and N  = 3000 respectively. Figure 5.8 deals with the case where p =  0.65 

and N  =  3000. In Figures 5.1 and 5.2 one can roughly recognise the shape 

of a x 2(l) distribution density, whereas, in Figures 5.3, 5.4 and 5.5, there is 

on the one hand a concentration of values around 0, and on the other hand 

the x 2(l) distribution density: this corresponds roughly to a distribution of 

T ( X )  of | x 2(0) +  2X2(1)- If is obvious from Figures 5.6 and 5.7 th a t the 

distribution is not a x 2(l) in the corresponding cases (though, in the case of 

the latter, the distribution is close to a x 2(l))- Finally, Figure 5.8 shows clear 

features of a x 2(l)-

Goffinet et al (1992) choose the number of zeroes to be the number of results 

smaller than 10~9; this is certainly an ad-hoc approach. We shall proceed in 

a more objective way: from the data, we calculate 27 ct-significance levels; 

we then plot these estimated levels against the 27 theoretical levels under the 

X2(l) distribution. The cases considered are those defined previously as cases 

2 and 3, corresponding respectively to p = 0.5 with a unknown, and p ^  0.5 

with a unknown. In theory, we should obtain a straight line through the data
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covering the whole range of values on the X-axis and on the X-axis, tha t is, 

from (0, 0) to (1,1), for the case where p 0.5; this is shown in Figures 5.9, 

5.10, 5.11, and 5.19 corresponding to values of p far from 0.5; for p = 0.75, 

the line obtained is fairly straight in every one of these plots, including the 

case where the sample size is only 25. On the other hand, in the case where 

p =  0.5, we should obtain a straight line through the data  from (0,0) to 

(1, 0.5), and a vertical line from (1, 0.5) to (1,1); this is shown in Figures 5.12 

and 5.13. For cases where p is close to 0.5, we do not obtain the theoretical 

result, th a t is, the same type of plots as those for p ^  0.5 described hereabove, 

because of the very slow convergence mentioned previously; we obtain instead 

the intermediate situations described in Table 5.2, and shown in Figures 5.14, 

5.15, 5.16, 5.17 and 5.18, which, then, confirm the conclusion obtained from 

the histograms and from Table 5.3: since in these cases we obtain a straight 

line through the data from (0,0) to (l,7r), and a vertical line from (l,7r) to 

(1,1), the distribution of T ( X )  is of the form

(1 -7 r )x 2(0) + ttx2(1),

and this is certainly true for all cases; for instance, in the case p =  0.55 and 

sample size N  =  3000, the distribution of T ( X)  is 0.23x2(0) +  0.77x2(l), and 

the proportion of zeroes is 23 per cent. For practical reasons, this result is 

then more useful than  the theoretical one.
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p N Th. expect. Est. expect Th. var. Est. var.
0.75 25 1 1.50 2 4.28

100 1 1.22 2 2.66
500 1 1.04 2 2.23

0.51 25 1 0.92 2 3.20
100 1 0.68 2 1.58
500 1 0.68 2 1.92
3000 1 0.59 2 1.51

0.50 25 0.5 0.88 1.25 3.09
100 0.5 0.64 1.25 1.45
500 0.5 0.64 1.25 1.79

3000 0.5 0.54 1.25 1.39

T ab le  5.1. Characteristics of T ( X )  under H0 in cases 2 and 3.

V N Est. expect. Est. var.
0.501 3000 0.55 1.40
0.505 3000 0.57 1.45
0.52 3000 0.63 1.59
0.55 3000 0.77 1.85
0.60 3000 0.91 2.03
0.65 3000 1.01 1.97

T ab le  5.2. Characteristics of T ( X )  under H q for the transition stages be­
tween case 2 and case 3.

P Est. var. ?r(3 7T)
0.501 1.40 1.35
0.505 1.45 1.39
0.51 1.51 1.42
0.52 1.59 1.49
0.55 1.85 1.73
0.60 2.03 1.90
0.65 1.97 2.01

T ab le  5.3. Variance of (1 — 7r)x2(0) +  7rx2(l)- The sample size is 3000.
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Figure 5.11. Estim ./Theor. Significance Levels for p = 0.75 and N  = 500.
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Figure 5.12. Estim ./Theor. Significance Levels for p = 0.50 and N  = 500.
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Figure 5.18. Estim ./Theor. Significance Levels for p = 0.55 and N  = 3000.
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C hapter 6

D iscussion

6.1 Introduction

In this last chapter, we give some impressions about the methods and results 

th a t we have presented, as well as as some indications for further work along 

with some new directions in the area of estimating the number of components. 

There are certainly open problems in this area; here, we will state some of 

them th a t are related to the methods tha t we presented in this work. We will 

also comment on a very recent Bayesian approach th a t has been proposed in 

the literature. We hope tha t this discussion will stimulate further research.

We now briefly recap the main points achieved in the present work. We 

have presented two algorithmic techniques tha t are based, respectively, on a 

stochastic variant of the EM algorithm and on information theory. The third 

technique, is based on a more theoretical approach, to derive the distribution 

of the likelihood ratio test.

123
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6.2 A  Bayesian Approach

In this section, we discuss a Bayesian methodology. Even though this type of 

approach is not directly related to our work, we believe th a t it constitutes a 

substantial breakthrough; indeed, for the first time, this methodology is able 

to include the estimation of the number of components in a mixture.

In a paper recently read at the Royal Statistical Society, Richardson and 

Green (1997) presented a new type of Monte Carlo Markov Chain (MCMC) 

method, the so called ’’Reversible Jum p” MCMC for mixtures, which has the 

advantage over the usual MCMC, in tha t it takes into account the fact th a t the 

number of components is unknown. In this context, Richardson and Green 

(1997) derive the Bayes factors B klk2 for testing ki versus k2 components, 

where B klk2 — {p{h)  and p(k2) are the priors on the number of

components), and this factor can then be considered as Bayesian information 

provided by the sample about the number of components, somewhat in the 

same way as W indham and Cutler’s information ratio. We now explain how 

this factor is used in a practical example.

In a draft version of their paper, Richardson and Green (1996), present the 

results of a simulation exercise for the identification of the number of compo­

nents. The true data  distribution arise from a two-component mixture and, 

thus, k2 is set equal to 2, and k\ is taken between 1 and 6. The mean Bayes 

factors B i2,...^Bq2 are derived for 50 replications, and the number of compo­

nents is then estimated by /c, such tha t B^2 is the highest mean Bayes factor. 

We briefly report the results here, since they are not quoted on the paper they 

presented to the RSS, They considered sample sizes of 50 and 250 of data  from
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the well-separated univariate model tha t we studied in our second chapter, 

and from a moderately-separated univariate model with two equally weighted 

normally distributed components (m eans=-l and 1, and variances=4/9). For 

the first model and for a sample size of 250 of the second model, the re­

sults were very encouraging, since the two-component model was preferred 

to the single- and the three-component models at least 94 per cent of the 

time. However, in the moderately-separated case with sample size of 50, the 

two-component configuration was detected only 44 per cent of the time, while 

the single-component configuration was detected 56 per cent of the time. In 

this case, therefore, the small sample size has severely influenced the outcome.

It seems then th a t this methodology yields encouraging results, and is cer­

tainly more flexible than  the usual MCMC, since it includes the estimation of 

the crucial number of components. We believe tha t it is worthwhile to study 

it further and to generalise it to multivariate mixtures.

We finally note, in passing, tha t we implemented the BLR technique described 

in the second chapter, for the moderately-separated model, with sample size 

50, in order to compare the results to those provided by Richardson and 

Green’s method. It is interesting to see tha t BLR detects the correct model 

42 per cent of the time, a single component model 56 per cent of the time 

and a three-component model 2 per cent of the time. We believe then th a t 

the BLR performance can be considered as satisfactory.
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6.3 A  Test based on Stochastic Techniques

The EM algorithm has been, over recent years, a very popular deterministic 

technique for estimating the MLE in mixture problems, since it allows us to 

overcome the difficulty of solving non-linear maximum likelihood equations, 

and has some nice characteristics in addition. However, since at the same time 

it has some well-known disadvantages, there have been in the literature many 

attem pts for improvement; the stochastic versions are among those, and the 

SEM algorithm is a typical example of that. It seems tha t this algorithm cor­

rects some of the problems tha t one encounters when using EM, but, on the 

other hand, there are some theoretical complications, in tha t the successive 

iterates are realisations of random variables which converge in distribution to 

the MLE.

Now, our main aim in th a t context was to study the m athem atical prop­

erties of a test statistic for the number of components based on the SEM 

algorithm, which was proposed in the literature (Celeux, 1987). We showed 

th a t this statistic cannot be formally considered as an asymptotic Hotelling’s 

statistic, and we derived its actual asymptotic distribution. Then, we pro­

posed a similar type of test statistic derived in a different way from iterates 

of the SEM algorithm.

These tests measure the stability of a partition of the data  in hand into, say, 

K  distinct classes, and, thus, their application differ, as we have seen, from 

the way they are usually applied in the literature. Comparison of these two 

tests showed a rather peculiar behaviour: they provided fairly similar results 

under the null hypothesis. However, since the simulations th a t we conducted
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were used only for univariate mixtures with a small number of parameters, 

it might be interesting to perform extensive simulations in order to compare 

these two test statistics in the case of multivariate mixtures. The complexity 

of the calculations involved in using T 2 for inference is certainly higher, but, 

nevertheless, in most situations encountered in practice the true number of 

components is not larger than three, and the data are at most bidimensional. 

Hence the complexity of the calculations tha t are involved in using T 2 should 

not pose a big problem.

6.4 T he Inform ation Theory Techniques

We have seen tha t these techniques are closely related to the rate of con­

vergence of the EM algorithm. It is worthwhile noting th a t although, as we 

described in the second chapter, it has been well known for some time in the 

literature th a t the rate of convergence of EM is connected to the degree of 

separation of the mixture components, it is only quite recently (Windham and 

Cutler, 1992) th a t this concept came to be used for estimating the number of 

components in a mixture model.

In W indham and Cutler’s MIREV procedure, a validation measure was used 

to provide an indicator of the m ethod’s reliability. We would like to emphasise 

here what W indham and Cutler point out at the conclusion of their paper, 

th a t is, th a t this measure has not been as yet theoretically justified, and thus 

there is an open problem as far as this m atter is concerned.

Our contribution to the estimation of the number of components by using
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this methodology was to apply the information concept in a different way: 

since, for an overestimated mixture, we are in the presence of singularity 

problems concerning the information m atrix (event E), we consider the min­

imal number of components K  such tha t event E  occurs, and estimate the 

actual number by K  — 1. For good component separation, the Modified MIR 

was found to yield very good results, and, for every degree of separation, it 

was found to compare favourably to Windham and Cutler’s basic MIR pro­

cedure. As for W indham and Cutler’s basic MIR, the Modified MIR is a 

Monte-Carlo approach. Further research concerning this area would then be 

to develop a more general theoretical tool tha t would remove the need for 

Monte-Carlo work.

6.5 A sym p totic  T heory for known M ixing P ro­

portions

A very im portant class of mixtures are those of two normal components. 

Goffinet et al (1992) study (Chapter 5) these types of mixture where the mix­

ing proportions are assumed known. We will assume, in this section, tha t 

the data  in hand arise from these tj^pes of mixture, and will look at open 

problems related to th a t case.

In the case th a t the data  sample arises from a univariate mixture, we have 

seen, from Goffinet et al’s theorem (1992), how the distribution of the Likeli­

hood Ratio Test Statistic (LRTS) behaves as the sample size tends to infinity. 

The question then is how the LRTS behaves when the mixture is multivari­

ate; for instance, can the results of the univariate case generalise directly to
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multivariate mixtures, or can we at least find the shape of the asymptotic 

distribution for the LRTS?

In th a t context, we will report a multivariate result from Goffinet et al (1992); 

this result concerns the case where the data arise from a bivariate mixture, 

and is as follows.

Under Hq, the limiting distribution o f T( X) ,  if  the common variance-covariance 

matrix is known, is | x 2(0) +  \ V 2, where V  — V? +  V ^ 2> and where V\ is a 

JV(0,1) r.v.} V2 is a y 2(2) r.v., and V\ and V2 ore independent

From the above result, one can see tha t the generalisation to the multivariate 

mixture case is not obtained directly from the results of the univariate mix­

ture case, and th a t the LRTS distribution might take a more complex form, 

even for a bivariate mixture with known variance-covariance matrix.

On the other hand, Goffinet et al (1992) state that, when the common 

variance-covariance m atrix is unknown, they have to cope with very complex 

likelihood equations, and thus could not find any analytical result. Conse­

quently, there are many questions to be answered in th a t case, concerning 

the asymptotic distribution of the LRTS, even for a bivariate mixture: for 

instance, is it still possible to find the asymptotic distribution of the LRTS, 

and how do the values of p influence the shape of this distribution?

This is certainly an open problem, and some further research could be done 

to derive this distribution, at least for the bivariate mixture case.



R eferences

Aitkin, M., Anderson, D., and Hinde, J. (1981), ” Statistical Modelling of D ata 

on Teaching Styles (with discussion),” J. R. Statist. Soc. A, 144, pp. 419-461.

Aitkin, M. and Rubin, D. (1985), "Estimation and Hypothesis Testing in 

Finite Mixture Models,” J. R. Statist. Soc. B, 47, pp. 67-75.

Anderson, T.W . (1958), ”An Introduction to Multivariate Statistical Analy­

sis,” Wiley.

Anderson, T.W . (1959), ”0 n  Asymptotic Distributions of Estimates of Pa­

rameters of Stochastic Difference Equations,” Ann. Math. Statist., 30, pp. 

676-687.

Anderson, T.W  (1971), ’’The Statistical Analysis of Time Series,” Wiley.

Athreya, K, and Pantula, S. (1986), ’’Mixing Properties of Harris Chains 

and Autoregressive Processes,” J. Appl. Proba., 23, pp. 880-892.

Berdai, A. and Garel, B. (1996), ’’Detecting a Univariate Normal Mixture 

with Two Components,” Statistics and Decision, 16, pp.35-51.

130



References 131

Bezdek, J.C. (1981), ’’Pattern  Recognition with Fuzzy Objective Function 

Algorithms,” New-York: Plenum.

Billingsley, P. (1968), ’’Convergence of Probability Measures,” Wiley.

Bohning, D., Dietz, E., Schaub, R., Schlattmann, P., and Lindsay, B.C. 

(1994), ’’The Distribution of the Likelihood Ratio for Mixtures of Densities 

From the One-Parameter Exponential Family,” Ann. Inst. S tatist. Math., 

46, pp. 373-388.

Bosq, D. (1996), ”Non-Parametric Statistics for Stochastic Processes,” Es­

tim ation and Prediction, Lecture Notes in Statistics 110, Springer.

Bozdogan, H., and Sclove, S.L. (1984), ’’Multi-Sample Cluster Analysis Using 

Akaike’s Information Criterion,” Ann. Inst. Statist. Math., 36, P art B, pp. 

163-180.

Bradley, R. (1986), ’’Basic Properties of Stong Mixing Conditions,” E. Eber- 

lein and M.S. Taqqu (Eds.), Dependence in Probability and Statistics, pp. 

165-192, Birkhauser.

Brockwell, P.J., and Davis, R.A. (1991), ’’Time Series: Theory and Meth­

ods,” Second Edition, Springer-Verlag.

Broniatowski, M., and Diebolt, J. (1987), ”Loi Stationnaire et Loi des Fluc­

tuations pour le Processus Autoregressif General d ’ordre un,” C. R. Acad.Sci.



References 132

Paris, t. 305, pp. 203-206.

Celeux, G. (1987), ”Reconnaissance de Melanges de Densities de Probabilite 

et Applications a la Validation des Resultats en Classification,” These d ’E tat, 

Universite Paris 9-Dauphine.

Celeux, G., Chauveau, D., and Diebolt, J. (1995), ”Stochastic Versions of 

the EM Algorithm: An Experimental Study in the Mixture Case,” Paper 

presented at the International Workshop on Statistical Mixture Modelling, at 

Aussois, France.

Celeux, G., and Diebolt, J. (1985), ”The SEM Algorithm: a Probabilistic 

Teacher Algorithm derived from the EM Algorithm for the Mixture Prob­

lem,” Comp. Statist. Quart., 2, pp. 73-82.

Celeux, G., and Diebolt, J. (1986a), ”L’algorithme SEM: Un Algorithme 

d ’Apprentissage Probabiliste pour la Reconnaissance de Melange de Den- 

sites,” Revue de Statistique Appliquee, 34, No. 2, pp. 35-52.

Celeux, G., and Diebolt, J. (1986b), ”Etude du Comportement asymptotique 

d ’un Algorithme d ’Apprentissage Probabiliste pour les Melanges de Lois de 

Probabilite,” Rapports de Recherche INRIA, No. 563.

Celeux, G., and Diebolt, J (1988), ”A Random Im putation Principle: The 

Stochastic EM Algorithm,” Rapports de Recherche INRIA, No. 901, Pro­

gramme 5.



References 133

Celeux, G., and Diebolt, J. (1992), ”A Stochastic Approximation Type EM 

Algorithm for the Mixture Problem,” Stochastics and Stochastics Reports, 

41, pp. 119-134.

Chen, J., and Cheng, P. (1992), ”A New Approach of Testing the Number of 

Components in Finite Mixture Models,” Technical Report.

Cheng, R.C.H., and Traylor, L. (1995), ”Non-Regular Maximum-Likelihood 

Problems (with discussion),” J. R. Statist. Soc. B, 57, pp. 3-44.

Cox, D.R., and Hinkley, D.V. (1974), "Theoretical Statistics,” London: Chap­

man and Hall.

Davydov, Y. (1973), ’’Mixing Conditions for Markov Chains,” Theory of Prob­

ability and its Applications, 18, pp. 312-328.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977), ’’Maximum Likelihood 

Estim ation from Incomplete D ata via the EM Algorithm (with discussion),” 

J. R. Statist. Soc. B, 39, pp. 1-38.

Diebolt, J., and Celeux, G. (1992), ’’Asymptotic Properties of a Stochastic 

EM Algorithm for Estim ating Mixing Proportions,” Rapports de Recherche 

INRIA, No. 1591, Programme 5.

Diebolt, J., and Ip, E. (1996), ’’Stochastic EM: Method and Application,” 

Markov Chain Monte Carlo in Practice, W.R. Gilks, S. Richardson and D.J. 

Spiegelhalter (Eds.), pp. 259-273, Chapman and Hall, London.



References 134

Doob, J. (1953), ’’Stochastic Processes,” Wiley, New-York.

D urairajan, T.M. and Kale, B.K. (1982), ’’Locally Most Powerful Similar 

Test for the Mixing Proportion,” Sankhya A, 44, pp. 153-161.

Efron, B., and Tibshirani, R.J. (1993), ”An Introduction to the B ootstrap,” 

Chapman and Hall.

Everitt, B., and Hand, D. (1981), ’’Finite Mixture Distributions,” Chapman 

and Hall.

Feng, Z.D., and McCulloch, C.E. (1996), ’’Using Bootstrap Likelihood Ra­

tios in Finite Mixture Models,” J. R. Statist. Soc. B, 58, pp. 609-617.

Garel, B. (1996), ’’Asymptotic Theory of Likelihood Ratio Test for the Iden­

tification of a M ixture,” Technical Report.

Ghosh, J.K., and Sen, P.K. (1985), ”On the Asymptotic Performance of the 

Log-Likelihood Ratio Statistic for the Mixture Model and Related Results,” 

Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, 2, 

L.M. Le Cam and R.A. Olshen (Eds.), pp. 789-806, Monterey: Wadsworth.

Goffinet, B., Loisel, P., and Laurent, B. (1992), ’’Testing in Normal Mix­

ture Models when the Proportions are known,” Biometrika, 79, pp. 842-846.



References 135

Graybillj F.A. (1969), ” Introduction to Matrices with Applications in Statis­

tics,” Wadsworth Publishing Company, CA.

Grimm ett, G.R., and Stirzaker, D.R. (1992), ’’Probability and Random Pro­

cesses,” Oxford University Press.

Hall, P., and Heyde G.C. (1980), ’’Martingale Limit Theory and its Appli­

cations,” Academic Press, New-York.

Hope, A. (1968), ”A Simplified Monte-Carlo Significance Test Procedure,” 

J. R. Statist. Soc. B, 30, pp. 582-598.

Hurwitz, L. (1950), ”Least-Square Bias in Time Series,” Statistical Inference 

in Dynamic Economic Models-Cowles Commission Monograph 10, T. Koop- 

mans (Ed.), pp. 365-383, Wiley and Sons, New-York.

Ibragimov, I., and Linnik, Y. (1971), ”Independent and Stationary Sequences 

of Random Variables,” Walters-Noordhoff, Groningen.

Kemeny, J., and Snell, J. (1974), ’’Finite Markov Chains,” Springer-Verlag.

Kolmogorov, A.N., and Rozanov, Y. (1960), ”On Strong Mixing Conditions 

for Stationary Gaussian Processes,” Theory of Probability and its Applica­

tions, 5, pp. 204-208.

Lindsay, B.G. (1983), ’’The Geometry of Mixture Likelihoods: a General 

Theory,” The Annals of Statistics, 11, pp. 86-94.



References 136

Little, R.J.A., and Rubin, D.B. (1987), ’’Statistical Analysis with Missing 

D ata,” Wiley, New-York.

Louis, T.A. (1982), ” Finding the Observed Information M atrix when Using 

the EM Algorithm,” J. R. Statist. Soc. B, 44, pp. 226-233.

Marron, J.S., and Wand, M.P. (1992), ’’Exact Mean Integrated Squared Er­

ror,” The Annals of Statistics, 20, pp. 712-736.

McLachlan, G.J. (1987), ” On Bootstrapping the Likelihood Ratio Test Statis­

tic for the Number of Components in a Normal Mixture,” Applied Statistics, 

36, pp. 318-324.

McLachlan, G .J., and Basford, K.E. (1988), ”Mixture Models: Inference and 

Applications to Clustering,” Marcel Dekker, New-York.

Meng, X.L. (1994), ”On the Rate of Convergence of the ECM Algorithm,” 

The Annals of Statistics, 22, pp. 326-339.

Meng, X.L., and Rubin, D.B. (1991), ’’Using EM to O btain Asymptotic 

Variance-Covariance Matrices: The SEM Algorithm,” J. Amer. Statist. As­

soc., 86, pp. 899-909.

Meng, X.L., and Rubin, D.B. (1992), ’’Recent Extensions to the EM Algo­

rithm  (with discussion),” Bayesian Statistics 4, J.M. Bernardo, J.O. Berger, 

A.P. Dawid and A.F.M. Smith (Eds.), pp. 307-320, Oxford University Press.



References 137

Meng, X.L., and Rubin, D.B. (1994), ”0 n  the Global and Componentwise 

Rates of Convergence of the EM Algorithm,” Linear Algebra and its Appli­

cations, 199, Special Issue in Honour of Ingram Olkin, pp. 413-425.

Orchard, T., and Woodbury, M.A. (1972), ”A Missing Information Princi­

ple: Theory and Application,” Proceedings of the 6th Berkeley Symposium 

on M athematical Statistics and Probability, Vol. 1, pp. 697-715.

Ostrowski, A.M. (1960), ’’Solution of Equations and Systems of Equations,” 

New-York: Academic Press.

Peters, B.C., and Walker, H.F. (1978), ” An Iterative Procedure for Obtaining 

Maximum-Likelihood Estimates of the Parameters for a Mixture of Normal 

Distributions,” SIAM J. Appl. Math., 35, pp. 362-378.

Polymenis, A. (1997), ’’Discussion of the Paper: On Bayesian Analysis of 

Mixtures with an Unknown Number of Components (by S. Richardson and 

P.J. Green),” J. R. Statist. Soc. B (to appear).

Quinn, B.J., McLachlan G.J., and Hjort, N.L. (1987), ”A Note on the Aitkin- 

Rubin Approach to Hypothesis Testing in Mixture Models,” J. R. Statist. 

Soc. B, 49, pp. 311-314.

Redner, R.A., and Walker, H.F. (1984), ’’Mixture Densities, Maximum Like­

lihood and the EM Algorithm,” SIAM Review 26, pp. 195-239.



References 138

Richardson S., and Green, P.J. (1997), ”On Bayesian Analysis of Mixtures 

with an Unknown Number of Parameters (with discussion),5’ J. R. Statist. 

Soc. B (to appear).

Robert, C.P. (1992), 55Discussion of the Paper: Recent Extensions to the 

EM Algorithm (by X.L. Meng and D.B. Rubin),” Bayesian Statistics 4, J.M. 

Bernardo, J.O Berger, A.P. Dawid and A.F.M. Smith (Eds.), pp.315-318, Ox­

ford University Press.

Rubin, H. (1950), ” Consistency of Maximum-Likelihood Estimates in the 

Explosive Case,” Statistical Inference in Dynamic Economic Models-Cowles 

Commission Monograph 10, T. Koopmans (Ed.), pp. 356-364, Wiley and 

Sons, New-York.

Self, S.G., and Liang, K.Y. (1987), ”Asymptotic Properties of Maximum 

Likelihood Estim ators and Likelihood Ratio Tests Under Nonstandard Con­

ditions,” J. Arner. Statist. Assoc., 82, pp. 605-610.

Silvey, S.D. (1975), ”Statistical Inference,” Chapman and Hall.

Soromenho, G. (1994), ” Comparing Approaches for Testing the Number of 

Components in a Finite Mixture Model,” Computational Statistics 9, pp. 65- 

78.

Sundberg, R. (1974), ”Maximum Likelihood Theory for Incomplete D ata from 

an Exponential Family,” Scand. J. Statist., 1, pp. 49-58.



References 139

Sundberg, R. (1976), ”An Iterative Method for Solution of the Likelihood 

Equations for Incomplete D ata from Exponential Families,” Commun. S tatist.- 

Simula. Gomputa. B, 5, pp. 55-64.

Teicher, H. (1963), ”Identifiability of Finite Mixtures,” Ann. Math. Statist., 

34, pp. 1265-1269.

Thode, H.C., Finch, S.J., and Mendell, N.R. (1987), ’’Finding the MLE in 

a Two-Component Normal Mixture,” Proc. Statist. Compu. Sec., Amer. 

Statist. Assoc., Washington DC, pp. 472-475.

Thode, Ii.C., Finch, S.J., and Mendell, N.R. (1988), ’’Simulated Percent­

age Points for the Null Distibution of the Likelihood Ratio Test,” Biometrics, 

44, 1195-1201.

T itterington, D.M. (1990), ’’Some Recent Research in the Analysis of Mixture 

Distributions,” Statistics, 21, pp. 619-641.

Titterington, D.M. (1997a), ’’Mixture Distributions (Update)” , Encyclope­

dia of Statistical Sciences Update, Vol. 1, S. Kotz, C.B. Read and D. Bunks 

(Eds.), pp. 399-407, Wiley: New-York (to appear).

T itterington, D.M. (1997b), ’’Discussion of the Paper: On Bayesian Anal­

ysis of Mixtures with an Unknown Number of Components (by S. Richardson 

and P.J. Green),” J. R. Statist. Soc. B (to appear).



References 140

Titterington, D.M., Smith, A.F.M., and Makov, U. (1985), ’’Statistical Anal­

ysis of Finite Mixture Distributions,” Wiley, New-York.

Wilks, S. (1963), ”M athematical Statistics,” Wiley, New-York.

W indham, M.P., and Cutler, A. (1992), ’’Information Ratios for Validating 

Mixture Analyses,” J. Amer. Statist. Assoc., 87, pp. 1188-1192.

Wolfe, J.H. (1971), ”A Monte-Carlo Study of the Sampling D istribution of 

the Likelihood Ratio for Mixtures of Multinomial Distributions,” Technical 

Bulletin STB 72-2, Naval Personnel and Training Research Laboratory, San 

Diego, CA.

Wu, J. (1983), ” On the Convergence Properties of the EM algorithm,” The 

Annals of Statistics, 11, pp. 95-103.

Yakowitz, S., and Spragins, J. (1968), ”On the Identifiability of Finite Mix­

tures,” Ann. Math. Statist., 39, pp. 209-214.

Zacks, S. (1971), ’’The Theory of Statistical Inference,” Wiley.


