PRIME SUBMODULES

DİLEK PUSAT-YILMAZ

A thesis presented to the
University of Glasgow
Faculty of Science
for the degree of
Doctor of Philosophy
APRIL 1997
(C) D. PUSAT-YILMAZ

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13834258
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
\begin{aligned}
& \text { Theis } \\
& 10835 \\
& \text { Capy }
\end{aligned}
$$

Contents

Statement iii
Acknowledgement iv
Summary v
1 PRELIMINARIES 1
1.1 Conventions and Basic Definitions 2
1.1.1 Modules over a General Ring 2
1.1.2 Modules over a Commutative Ring 5
1.2 Historical Background and Recent Developments 9
2 PRIME SUBMODULES OF MODULES 29
2.1 Modules over Special Rings 30
2.2 Cyclic Submodules of F 31
2.3 2-Generated Submodules of F 35
3 RADICALS OF SUBMODULES OF FREE MODULES 44
3.1 Characterization of the Radical 46
3.2 The Radicals of Particular Submodules 56
4 MODULES WHICH S.T.R.F. AND ENVELOPES IN FREE
MODULES 64
4.1 Modules Which Satisfy the Radical Formula 65
4.2 The Envelopes in Free Modules 74
5 CHAIN CONDITIONS IN MODULES WITH KRULL DIMEN- SION 87
5.1 On Krull Dimension 88
5.2 Prime Submodules 91
5.3 Semiprime Submodules 100
Bibliography 104
Index 108

STATEMENT

This thesis is submitted in accordance with the degree of Doctor of Philosophy in the University of Glasgow. It presents the results of research undertaken by the author between October 1993 and November 1996.

Chapter 1 covers basic material concerning prime submodules and modules which satisfy the radical formula. Similar material can be found in [7], [11], [16], [17], [20], [22], [25], [27] and [33] with the exception of Theorem 1.2.28 and its corollary.

Chapters 2-5 are my own work, with the exception of 5.1 and as well as the other instances indicated within the text.

ACKNOWLEDGEMENT

I am most grateful to my supervisor, Professor Patrick F. Smith, for supervising this research and for his tireless assistance and encouragement. I am also grateful to him for his kindness and consideration to my life in Glasgow.

I would like to thank Prof. K.R. Goodearl for the idea which led to Theorem 5.2.6.

I would also like to thank the members of the Mathematics Department at the University of Glasgow for their friendship and their help during the study reported in the thesis.

My special thanks go to my husband, Oğuz Yılmaz for his emotional support.
Finally, the financial support from Abant İzzet Baysal University is gratefully acknowledged.

SUMMARY

Let R be a ring. A proper submodule K of an R-module M is called prime if whenever $r \in R, m \in M$ and $r R m \subseteq K$ then $m \in K$ or $r M \subseteq K$. It is clear that prime submodules generalize the usual notion of prime ideals. The radical of a submodule N of M, denoted by $\operatorname{rad}_{M}(N)$ is defined to be the intersection of all prime submodules of M containing N. Now let R be a commutative ring. Let I be an ideal of R. As is well known, the radical of I, defined as the intersection of all prime ideals containing I, has the characterization $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$, for some $\left.n \in \mathbb{Z}^{+}\right\}$. A natural question arises, whether there is a somewhat similar characterization for the radical of a submodule, in particular, a characterization in which the knowledge of prime submodules (indeed even prime ideals) is not necessary. Under certain conditions such a characterization is provided by the concept of the envelope of a submodule.

The envelope of $N, E_{M}(N)$, is the collection of all $m \in M$ for which there exist $r \in R, a \in M$ such that $m=r a$ and $r^{n} a \in N$ for some positive integer n. Always $E_{M}(N) \subseteq \operatorname{rad}_{M}(N)$. We say that M satisfies the radical formula (M s.t.x.f.) if for every submodule N of $M \operatorname{rad}_{M}(N)=<E_{M}(N)>$, the submodule of M generated by $E_{M}(N)$. A ring R s.t.r.f. provided that every R-module s.t.r.f.. In [25] McCasland and Moore proved that a commutative ring R s.t.r.f. provided that every free R-mod ule F s.t.r.f.. Accordingly, in chapter 2, prime submodules of free modules over commutative domains are investigated.

A fundamental question in the study of prime submodules is how to describe $\operatorname{rad}_{M}(N)$ for a given submodule N of a module M. In the first section of chapter $3, \operatorname{rad}_{F}(N)$ is described where N is is a finitely generated submodule of the free module F. In the second section the radicals of some non-finitely generated submodules of free modules are studied.

Let M_{1}, M_{2} be R-modules such that $M_{1} \oplus M_{2}$ s.t.r.f.. Then M_{1} and M_{2} both s.t.r.f.. The converse is not true in general. For example, if R is a Noetherian domain which is not Dedekind then the R-module R s.t.r.f. but the R-module $R \oplus R$ does not. But it is true in some cases and this is considered in the first section of chapter 4. For example, if R is a commutative ring and M_{1}, M_{2} are R-modules such that M_{1} s.t.r.f. and M_{2} is semisimple, then $M_{1} \oplus M_{2}$ s.t.r.f.. Also if A is a finite direct sum of cyclic Artinian R-modules, then the R-module $R \oplus A$ s.t.r.f.. The aim of the second section is to describe $E_{F}(N)$ in a nice way, where N is a finitely generated submodule of a free module F of finite rank.

For six different cases, results are tabulated in the following table, considering the following properties of $N:$ " N is prime", " N is semiprime" and "the form of submodule generated by the envelope of $N "$. This table is given for the convenience of the reader. The cases are the following:
(i) Let R be a UFD and let $a_{i} \in R(1 \leqslant i \leqslant n)$ not all zero. Let N be the submodule $R\left(a_{1}, \ldots, a_{n}\right)$ of $F=R^{(n)}$.
(ii) Let R be a UFD, let $n \geqslant 3$ be a positive integer and $a_{i}, b_{i} \in R(1 \leqslant i \leqslant$ n) such that $R=R b_{1}+\cdots+R b_{n}$. Let N be the submodule $R\left(a_{1}, \ldots, a_{n}\right)+$ $R\left(b_{1}, \ldots, b_{n}\right)$ of $F=R^{(n)}$.
(iii) Let R be a commutative ring and let $a_{i}, b_{i} \in R(i=1,2)$ such that $R=R b_{1}+R b_{2}$. Let N be the submodule $R\left(a_{1}, a_{2}\right)+R\left(b_{1}, b_{2}\right)$ of $F=R^{(2)}$.
(iv) Let R be a commutative domain, let n be a positive integer and I be an ideal of R. Let N be the submodule $I(1, \ldots, 1)$ of $F=R^{(n)}$.
(v) Let R be a UFD, let n be a positive integer and I be an ideal of R. Let N be the submodule $R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)$ of $F=R^{(n)}$.
(vi) Let R be a domain, let n be a positive integer, let $a_{i j} \in R(1 \leqslant i, j \leqslant n)$, let $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in F=R^{(n)}(1 \leqslant i \leqslant n)$ and let N be the submodule $R \mathbf{a}_{1}+\cdots+R \mathbf{a}_{n}$ of F.

	N is PRIME	N is SEMIPRIME	$\left\langle E_{F}(N)\right\rangle$
(i)	Theorem 2.2.7	Corollary 3.1.11	Proposition 4.2.1
$(i i)$	Theorem 2.3.2	Corollary 4.2.5	Theorem 4.2.4
$(i i i)$	Proposition 2.3.4	Corollary 4.2.5	Theorem 4.2.4
$(i v)$	Lemma 2.3.10	Corollary 4.2.8	Proposition 4.2.3
(v)	Theorem 2.3.12	Corollary 3.2.7	Theorem 3.2.5
$(v i)$	Proposition 2.3.9	Proposition 4.2.11	Proposition 4.2.11

In [9] Gordon and Robson proved that any ring with Krull dimension satisfies the ascending chain condition on semiprime ideals, but this result does not hold for modules in general. In particular, if R is the first Weyl algebra over a field of characteristic 0 then there are Artinian R-modules which do not satisfy the ascending chain condition on semiprime submodules. The aim of chapter 5 is to investigate when Gordon and Robson's result holds for modules. It is proved that if R is a ring which satisfies a polynomial identity then any R-module with Krull dimension satisfies the ascending chain condition on prime submodules, and, if R is left Noetherian, also the ascending chain condition on semiprime submodules.

Chapter 1

PRELIMINARIES

In this chapter we will give basic definitions and some well known results which will be needed in the following chapters. In particular we will define prime submodules, the radical of a submodule and what it means for a module to satisfy the radical formula. We will give fundamental properties as well as recent developments.

Several authors in [4], [5], [6], [7], [14], [17], [18], [19], [25] and [26] have extended the notion of prime ideals of R to prime submodules of M. Following work of McCasland and Moore [24], [25], [26] and of Jenkins and Smith [11], in a series of recent papers Man [20], [21], [22] and Man and Leung [16], have characterized which commutative Noetherian rings satisfy the radical formula (s.t.r.f.). In particular, Man showed that a commutative Noetherian domain R s.t.r.f. if and only if R is Dedekind (see Theorem 1.2.19). Theorem 1.2 .27 gives Man and Leung's general result. We also prove that for a commutative (not necessarily Noetherian) domain R the polynomial ring $R[X]$ s.t.r.f. if and only if R is a field (see Theorem 1.2.28). It follows that for any commutative ring R and indeterminates X, Y the polynomial ring $R[X, Y]$ does not satisfy the radical formula.

1.1 Conventions and Basic Definitions

Let R be a ring with identity and M a unital left R-module. We shall write ' $N \leqslant M$ ' to indicate that N is a submodule of M.

For any non-empty subset X of M, the annihilator of X in R will be denoted by $\operatorname{ann}_{R}(X)$, or simply $\operatorname{ann}(X)$, i.e. $\operatorname{ann}(X)=\{r \in R: r x=0(x \in X)\}$. If A is a non-empty subset of R we set $\operatorname{ann}_{M}(A)=\{m \in M: a m=0(a \in A)\}$. Note that $\operatorname{ann}_{M}(A)$ is a submodule of M if A is a right ideal of R. For any submodule N of M we shall denote $\operatorname{ann}(M / N)$ by $(N: M)$, i.e. $(N: M)=\{r \in R: r M \subseteq N\}$ which is an ideal of R.

We define the spectrum of R to be the set of all prime ideals of R and denote it by $\operatorname{Spec}(R)$.

1.1.1 Modules over a General Ring

Let R be a ring and let M be a left R-module.

Definition 1.1.1.1 A proper submodule K of M is called prime if whenever $r \in$ $R, m \in M$ and $r R m \subseteq K$ then $m \in K$ or $r \in(K: M)$. A submodule S of M is called semiprime if S is an intersection of prime submodules of M.

It is not difficult to see that N is a prime submodule of M if and only if $(N: K)=(N: M)$ for all submodules K of M properly containing N. Clearly any prime (two sided) ideal of the ring R is a prime submodule of the left R module R. However it is not difficult to give examples of modules which have no prime submodules. For example, if \mathbb{Z} denotes the ring of rational integers then, for any prime p, as a \mathbb{Z}-module, the Prüfer group $\mathbb{Z}\left(p^{\infty}\right)$ has no prime submodules. Moreover, the zero submodule is the only prime submodule of the \mathbb{Z}-module \mathbb{Q} of rational numbers.

Definition 1.1.1.2 A left R-module M is called fully faithful if every non-zero submodule of M is faithful.

Proposition 1.1.1.3 [27, Proposition 1.1] A submodule N of a left R-module M is prime if and only if $\mathcal{P}=(N: M)$ is a prime ideal of the ring R (and we say N is a \mathcal{P}-prime) and the left (R / \mathcal{P})-module M / N is fully faithful.

Proof. (\Rightarrow) Suppose first that N is a prime submodule of M. Let $a, b \in R$ such that $a R b \subseteq \mathcal{P}$ then $a R b m \subseteq N$ for every $m \in M$. Since N is prime, this implies either $a M \subseteq N$ or $b m \in N$ for every $m \in M$. Thus $a \in \mathcal{P}$ or $b \in \mathcal{P}$. Hence \mathcal{P} is a prime ideal. Let K be a submodule of M such that $N \subsetneq K$. Let $(r+\mathcal{P})(K / N)=N$ i.e. $r K \subseteq N$ for some $r \in R$. This implies $r \in \mathcal{P}=(N: M)$ or $K \subseteq N$. But $K \subseteq N$ gives a contradiction. Hence $r \in \mathcal{P}$ and K / N is faithful for every submodule K of M properly containing N.
(\Leftarrow) Now let $(N: M)=\mathcal{P}$ be a prime ideal of R and M / N be a fully faithful (R / \mathcal{P})-module. It is sufficient to prove that $(N: K)=(N: M)$ for every submodule K of M properly containing N. Let $r \in(N: K)$. Since M / N is a fully faithful (R / \mathcal{P})-module $r \in \mathcal{P}$. Thus $(N: K) \subseteq(N: M)$. Hence $(N: K)=(N: M)$.

Note: When R is a commutative domain, fully faithful modules coincide with torsion-free modules.

A prime submodule N of M is called minimal over a submodule K of M if, $K \subseteq N$ and there does not exist a prime submodule L of M such that $K \subseteq L \subset N$.

Lemma 1.1.1.4 [27, Theorem 4.2] Let R be a ring, and let M be a Noetherian left R-module. Then M contains only a finite number of minimal prime submodules.

Proof. Suppose that the result is false. Let Λ denote the collection of proper submodules N of M such that the module M / N has an infinite number of minimal prime submodules. The collection Λ is nonempty, because $0 \in \Lambda$ and, hence, has a maximal member K. Clearly, K is not a prime submodule of M. Thus, there exists a submodule L of M properly containing K and an ideal A in R such that $A L \subseteq K$ but $A M \nsubseteq K$. Hence $K \subset K+A M$. Let V be a submodule of M containing K such that V / K is a minimal prime submodule of M / K. Then $A L \subseteq K \subseteq V$. It is easy to see that, in this case V is a prime submodule of M. Hence $A M \subseteq V$ or $L \subseteq V$. This implies $V /(K+A M)$ is a minimal prime submodule of $M /(K+A M)$ or V / L is a minimal prime submodule of M / L. But by the choice of K, both the modules $M /(K+A M)$ a nd M / L have only finitely many minimal prime submodules. Thus, there are only a finite number of possibilities for the module V and, hence, also for V / K, a contradiction.

Definition 1.1.1.5 Given a submodule N of a module M, the prime radical $\operatorname{rad}_{M}(N)$ is the intersection of all prime submodules of M containing N, and in case N is not contained in any prime submodule then $\operatorname{rad}_{M}(N)$ is defined to be M; in particular $\operatorname{rad}_{M}(M)=M$.

Lemma 1.1.1.6 [11, Lemma 4] Let R be a ring and M be an R-module. If $L \subseteq N$ are submodules of M then $\operatorname{rad}_{N}(L) \subseteq \operatorname{rad}_{M}(L)$.

Proof. Let P be any prime submodule of M with $L \subseteq P$. If $N \subseteq P$ then $\operatorname{rad}_{N}(L) \subseteq P$. If $N \nsubseteq P$ then it is easy to check that $N \cap P$ is a prime submodule of N, and hence $\operatorname{rad}_{N}(L) \subseteq N \cap P \subseteq P$. Thus in any case, $\operatorname{rad}_{N}(L) \subseteq P$. It follows that $\operatorname{rad}_{N}(L) \subseteq \operatorname{rad}_{M}(L)$.

1.1.2 Modules over a Commutative Ring.

Throughout this subsection all rings will be commutative.
Definition 1.1.2.1 Let R be a ring. The envelope of $N, E_{M}(N)$, is the collection of all $m \in M$ for which there exist $r \in R, a \in M$ such that $m=r a$ and $r^{n} a \in N$ for some positive integer n. Obviously, $E_{M}(M)=M$. We say that M satisfies the radical formula (M s.t.r.f.) if for every $N \leqslant M$ the radical of N is the submodule generated by its envelope, i.e. $\operatorname{rad}_{M}(N)=<E_{M}(N)>$. A ring R satisfies the radical formula (R s.t.r.f.) provided that every R-module s.t.r.f..

Lemma 1.1.2.2 Let R be ring and let N be a submodule of an R-module M. Then $N \subseteq E_{M}(N) \subseteq<E_{M}(N)>\subseteq \operatorname{rad}_{M}(N)$. In particular, if N is semiprime then $N=E_{M}(N)=<E_{M}(N)>=\operatorname{rad}_{M}(N)$.

Proof. It is clear that $N \subseteq E_{M}(N)$. Let $x \in E_{M}(N)$. Then $x=r m$ for some $r \in R, m \in M$ such that $r^{k} m \in N$ for some positive integer k. In this case $r^{k} m \in P$ for every prime submodule of M containing N. Hence $r^{k-1} m \in P$ or $r M \subseteq P$, and in any case $r^{k-1} m \in P$. By induction, it follows that $r m \in P$. Hence $r m \in \operatorname{rad}_{M}(N)$. Thus $E_{M}(N) \subseteq<E_{M}(N)>\subseteq \operatorname{rad}_{M}(N)$.

If N is semiprime then $N=\operatorname{rad}_{M}(N)$. Thus $N=E_{M}(N)=<E_{M}(N)>=$ $\operatorname{rad}_{M}(N)$.

Note that in Lemma 1.1.2.2, $E_{M}(N)$ is a submodule of M in case N is a semiprime submodule of M. The following example shows that in general $E_{M}(N)$ is not a submodule of M.

Example 1.1.2.3 Let M denote the free \mathbb{Z}-module $\mathbb{Z} \oplus \mathbb{Z}$ and let N denote the submodule $\mathbb{Z}(4,4)+\mathbb{Z}(9,18)$ of M. Then $E_{M}(N)$ is not a submodule of M.

Proof. Note that $(2,2)$ and $(3,6)$ both belong to $E_{M}(N)$ because $(2,2)=2(1,1)$, and $2^{2}(1,1) \in N,(3,6)=3(1,2)$ and $3^{2}(1,2) \in N$. Suppose that $(5,8)=$
$(2,2)+(3,6) \in E_{M}(N)$. There exist $r, a, b \in \mathbb{Z}$ such that $(5,8)=r(a, b)$ and $r^{k}(a, b) \in N$ for some positive integer k. Now $5=r a, 8=r b$ gives that $r=\mp 1$, so that $(a, b) \in N$, i.e. $(5,8)=x(4,4)+y(9,18)$, for some $x, y \in \mathbb{Z}$. Hence $5=4 x+9 y, 8=4 x+18 y$ and $3=9 y$, a contradiction. Thus $E_{M}(N)$ is not a submodule of M.

The first part of the following lemma is a generalized version of Lemma 6 in [11].

Lemma 1.1.2.4 Let R be a ring and M be an R-module such that $M=\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is a direct sum of submodules $M_{\lambda}(\lambda \in \Lambda)$. For each $\lambda \in \Lambda$, let N_{λ} be a submodule of M_{λ} and let $N=\bigoplus_{\lambda \in \Lambda} N_{\lambda}$. Then
(i) $\operatorname{rad}_{M}(N)=\bigoplus_{\lambda \in \Lambda} \operatorname{rad}_{M_{\lambda}}\left(N_{\lambda}\right)$,
$(i i)<E_{M}(N)>=\bigoplus_{\lambda \in \Lambda}<E_{M_{\lambda}}\left(N_{\lambda}\right)>$.
Proof. (i) Let K be a prime submodule of M such that $N \subseteq K$. For each $\lambda \in \Lambda, N_{\lambda} \subseteq K \cap M_{\lambda}$ where $K \cap M_{\lambda}=M_{\lambda}$ or $K \cap M_{\lambda}$ is a prime submodule of M_{λ}. It follows that $\operatorname{rad}_{M_{\lambda}} N_{\lambda} \subseteq K \cap M_{\lambda} \subseteq K$ for all $\lambda \in \Lambda$ and hence $\bigoplus_{\lambda \in \Lambda} \operatorname{rad}_{M_{\lambda}}\left(N_{\lambda}\right) \subseteq K$. Thus $\bigoplus_{\lambda \in \Lambda} \operatorname{rad}_{M_{\lambda}}\left(N_{\lambda}\right) \subseteq \operatorname{rad}_{M}(N)$.

Let $m \in M$ and suppose that $m \notin \bigoplus_{\lambda \in \Lambda} \operatorname{rad}_{M_{\lambda}}\left(N_{\lambda}\right)$. There exists $\mu \in \Lambda$ such that $\pi_{\mu}(m) \notin \operatorname{rad}_{M_{\mu}}\left(N_{\mu}\right)$, where $\pi_{\mu}: M \rightarrow M_{\mu}$ denotes the canonical projection. There exists a prime submodule P of M_{μ} such that $N_{\mu} \subseteq P$ and $\pi_{\mu}(m) \notin P$. If $L=P \oplus\left(\bigoplus_{\lambda \neq \mu} M_{\lambda}\right)$ then it is easy to check that L is a prime submodule of M, $N \subseteq L$ and $m \notin L$. Thus $m \notin \operatorname{rad}_{M}(N)$. Hence $\operatorname{rad}_{M}(N)=\bigoplus_{\lambda \in \Lambda} \operatorname{rad}_{M_{\lambda}}\left(N_{\lambda}\right)$.
(ii) Let $m \in<E_{M}(N)>$. Then $m=r_{1} x_{1}+\cdots+r_{n} x_{n}$ for some positive integer n, elements $r_{i} \in R, x_{i} \in M$ such that $r_{i}^{k} x_{i} \in N(1 \leqslant i \leqslant n)$, for some positive integer k. Let $1 \leqslant i \leqslant n$. There exists a finite subset Λ^{\prime} of Λ such that $x_{i} \in \bigoplus_{\lambda \in \Lambda^{\prime}} M_{\lambda}$, so that $x_{i}=\sum_{\lambda \in \Lambda^{\prime}} y_{\lambda}$ for some $y_{\lambda} \in M_{\lambda}\left(\lambda \in \Lambda^{\prime}\right)$. Now

$$
r_{i}^{k} x_{i}=\sum_{\lambda \in \Lambda^{\prime}} r_{i}^{k} y_{\lambda} \in N=\bigoplus_{\lambda \in \Lambda} N_{\lambda} .
$$

Thus $r_{i}^{k} y_{\lambda} \in N_{\lambda}\left(\lambda \in \Lambda^{\prime}\right)$. Hence $r_{i} y_{\lambda} \in E_{M_{\lambda}}\left(N_{\lambda}\right)\left(\lambda \in \Lambda^{\prime}\right)$. Therefore

$$
\left.r_{i} x_{i}=\sum_{\lambda \in \Lambda^{\prime}} r_{i} y_{\lambda} \in \oplus_{\lambda \in \Lambda^{\prime}}<E_{M_{\lambda}}\left(N_{\lambda}\right)>\subseteq \oplus_{\lambda \in \Lambda}<E_{M_{\lambda}}\left(N_{\lambda}\right)\right\rangle,
$$

for each $1 \leqslant i \leqslant n$. It follows that $m=r_{1} x_{1}+\cdots+r_{n} x_{n} \in \bigoplus_{\lambda \in \Lambda}<E_{M_{\lambda}}\left(N_{\lambda}\right)>$. Hence $<E_{M}(N)>\subseteq \bigoplus_{\lambda \in \Lambda}<E_{M_{\lambda}}\left(N_{\lambda}\right)>$.

Conversely, it is clear that $E_{M_{\lambda}}\left(N_{\lambda}\right) \subseteq E_{M}(N)$ and hence $<E_{M_{\lambda}}\left(N_{\lambda}\right)>\subseteq$ $<E_{M}(N)>$ for all $\lambda \in \Lambda$. Thus $\bigoplus_{\lambda \in \Lambda}<E_{M_{\lambda}}\left(N_{\lambda}\right)>\subseteq<E_{M}(N)>$. It follows that $<E_{M}(N)>=\oplus_{\lambda \in \Lambda}<E_{M_{\lambda}}\left(N_{\lambda}\right)>$.

Let \mathcal{P} be a prime ideal of R and $S=R \backslash \mathcal{P}$ which is a multiplicatively closed subset of R containing $1 . M_{\mathcal{P}}=S^{-1} M$ will denote the localisation of M at \mathcal{P}. Let $f: M \rightarrow M_{\mathcal{P}}$ be the natural map defined by $f(m)=m / 1$ for all $m \in M$. For any submodule N of M, we define

$$
N^{e}=\left\{\lambda \in M_{\mathcal{P}}: \lambda=n / s \text { for some } n \in N \text { and } s \in S\right\}
$$

and we identify N^{e} with $N_{\mathcal{P}}$. For any R_{P}-submodule Q of M, we define $Q^{c}=$ $\{m \in M: f(m) \in Q\}$.

Lemma and Definition 1.1.2.5 [34] Let R be a ring and I be an ideal of R. Then

$$
\sqrt{I}:=\left\{r \in R: \text { there exists } n \in \mathbb{N} \text { with } r^{n} \in I\right\}
$$

is an ideal of R which contains I, and is called the radical of I and

$$
\sqrt{I}=\bigcap_{\substack{\mathcal{P} \in S p \operatorname{spc}(R) \\ \mathcal{P} \supseteq I}} \mathcal{P}
$$

Proposition 1.1.2.6 ([20]) Let R be a ring and M be an R-module and \mathcal{P} be a prime ideal of R. Let
$A=\{P: P$ is a prime submodule of the R-module M with $S \cap(P: M)=\varnothing\}$, and
$B=\left\{Q: Q\right.$ is a prime submodule of the $R_{\mathcal{P}}$-module $\left.M_{\mathcal{P}}\right\}$.
Then the map $P \mapsto P^{e}$ is a bijective order preserving map from A to B. Its inverse map is given by $Q \mapsto Q^{c}$.

Proof. Elementary.

Lemma 1.1.2.7 [20, Corollary 2.3] Let N be a submodule of the R-module M and $\mathcal{P}, M_{\mathcal{P}}$ be as above. Suppose furthermore, M is a Noetherian R-module. Then $\left(\operatorname{rad}_{M}(N)\right)_{\mathcal{P}}=\operatorname{rad}_{M_{\mathcal{P}}}\left(N_{\mathcal{P}}\right)$.

Proof. If $N_{\mathcal{P}}=M_{\mathcal{P}}$, then $\operatorname{rad}_{M_{\mathcal{P}}}\left(N_{\mathcal{P}}\right)=M_{\mathcal{P}}=\left(\operatorname{rad}_{M}(N)\right)_{\mathcal{P}}$. Now suppose $M_{\mathcal{P}} \neq N_{\mathcal{p}}$. As M is a Noetherian R-module, by Lemma 1.1.1.4, there are only a finite number of minimal prime R-submodules, P_{1}, \ldots, P_{k}, in M containing N. Now it can easily be checked that

$$
\left(\operatorname{rad}_{M}(N)\right)_{\mathcal{P}}=\left(\bigcap_{i=1}^{k} P_{i}\right)_{\mathcal{P}}=\left(\bigcap_{i=1}^{k} P_{i}\right)^{e}=\bigcap_{i=1}^{k} P_{i}^{e}
$$

Without loss of generality, we may assume each $P_{i}^{e} \neq M_{\mathcal{P}}(1 \leqslant i \leqslant k)$. By Proposition 1.1.2.6, $P_{1}^{e}, \cdots, P_{k}^{e}$ are all the minimal prime R_{p}-submodules of $M_{\mathcal{P}}$ which contains $N_{\mathcal{P}}$. It follows that $\operatorname{rad}_{M_{\mathcal{P}}}\left(N_{\mathcal{P}}\right)=\bigcap_{i=1}^{k} P_{i}^{e}$ as required.

Proposition 1.1.2.8 [17, Proposition 2] If N is a proper submodule of an R module M such that ($N: M$) is a maximal ideal of the commutative ring R then N is a prime submodule. In particular, $\mathcal{M} M$ is a prime submodule of the R-module M for every maximal ideal \mathcal{M} of R such that $\mathcal{M} M \neq M$.

Proof. Since $(N: M)=\mathcal{P}$ a maximal ideal, M / N is a vector space over the field R / \mathcal{P}, so a torsion-free R / \mathcal{P}-module. Hence N is prime by Proposition 1.1.1.3.

Proposition 1.1.2.9 [17, Proposition 4] If N is a maximal submodule of an R module M, then N is a prime submodule and ($N: M$) is a maximal ideal of R.

Proof. N is a maximal submodule if and only if M / N is a simple R-module. Hence M / N is a cyclic R-module $R \bar{x}$ where $\bar{x}=x+M \in M / N$ and $\operatorname{ann}_{R} \bar{x}=\operatorname{ann}_{R}(M / N)=(N: M)$ is a maximal ideal of R by [34, Lemma 7.32]. It follows that N is prime from Proposition 1.1.2.8.

1.2 Historical Background and Recent Developments

Lemma 1.2.1 Let I be a proper ideal of a commutative ring R such that R s.t.r.f. Then the ring R / I s.t.r.f.

Proof. Let M be an (R / I)-module. Then M is an R-module and the (prime) R-submodules and (prime) (R / I)-submodules of M coincide. The result follows.

Proposition 1.2.2 Let n be a positive integer and let $R_{i}(1 \leqslant i \leqslant n)$ be commutative rings. Then the ring $R=R_{1} \oplus \cdots \oplus R_{n}$ s.t.r.f. if and only if R_{i} s.t.r.f. for all $1 \leqslant i \leqslant n$.

Proof. (\Rightarrow) By Lemma 1.2.1.
(\Leftrightarrow) Let M be an R-module. Let $M_{i}=R_{i} M(1 \leqslant i \leqslant n)$. Then M_{i} is an R-submodule of M for each $1 \leqslant i \leqslant n$ and $M=M_{1} \oplus \cdots \oplus M_{n}$. By Lemma 1.1.2.4,

$$
\operatorname{rad}_{M}(0)=\operatorname{rad}_{M_{1}}(0) \oplus \cdots \oplus \operatorname{rad}_{M_{n}}(0)
$$

For each $1 \leqslant i \leqslant n$, the R-module M_{i} has the same (prime) submodules as the R_{i}-module M_{i} and hence $\operatorname{rad}_{M_{i}}(0) \subseteq<E_{M_{i}}(0)>$. It follows that $\operatorname{rad}_{M}(0) \subseteq$ $<E_{M}(0)>$ by Lemma 1.1.2.4 and hence $\operatorname{rad}_{M}(0)=<E_{M}(0)>$.

Proposition 1.2.3 [20, Proposition 2.4] Let M be a Noetherian R-module. Then M s.t.r.f. if and only if $M_{\mathcal{M}}$ s.t.r.f. as an $R_{\mathcal{M}}$-module for every maximal ideal \mathcal{M} of R.

Proof. Let N be a submodule of M. It is not difficult to check that $<E_{M}(N)>_{\mathcal{P}}=<E_{M_{\mathcal{P}}}\left(N_{\mathcal{P}}\right)>$ for any prime ideal \mathcal{P}. The result follows from Lemma 1.1.2.7.

Definition 1.2.4 A commutative ring R which has exactly one maximal ideal, \mathcal{M} say, is said to be quasi-local. By a local ring we shall mean a commutative Noetherian ring which is quasi-local.

Theorem 1.2.5 [33, Theorem 1.12] Let R be a commutative Artinian ring. Then R s.t.r.f..

Proof. Let R be a commutative Artinian ring. Then by [34, Exercise 8.50], R is isomorphic to a direct sum of Artinian local rings. By Proposition 1.2.2, we can suppose without loss of generality that R is local with unique maximal ideal \mathcal{M}. So $\mathcal{M}^{n}=0$ for some $n>0$ (see [3, p.90]). Thus if N is a submodule of $M, \mathcal{M}^{n} M \subseteq N$ which implies that $\mathcal{M} M \subseteq<E_{M}(N)>$. That is, $\mathcal{M} \subseteq$ $\left(<E_{M}(N)>: M\right)$. Thus $<E_{M}(N)>$ is a prime submodule or $<E_{M}(N)>=M$ by Proposition 1.1.2.8. Therefore $\operatorname{rad}_{M}(N)=<E_{M}(N)>$.

Lemma 1.2.6 [25, Results 1.2, 1.3, 1.4] Let R be a commutative ring. Let A and A^{\prime} be R-modules with $\varphi: A \rightarrow A^{\prime}$ an R-module epimorphism and $B \leqslant A$ such that $B \supseteq K=$ ker φ. Let B^{\prime} be any submodule of A^{\prime}. Then
(i) if P is a prime submodule of A containing B then $\varphi(P)$ is a prime submodule of A^{\prime} containing $\varphi(B)$;
(ii) if P^{\prime} is a prime submodule of A^{\prime} containing $\varphi(B)$ then $\varphi^{-1}\left(P^{\prime}\right)$ is a prime submodule of A containing B;
(iii) $\varphi\left(\operatorname{rad}_{A}(B)\right)=\operatorname{rad}_{A^{\prime}}(\varphi(B))$;
(iv) $\varphi^{-1}\left(\operatorname{rad}_{A^{\prime}}\left(B^{\prime}\right)\right)=\operatorname{rad}_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)$;
(v) $\varphi\left(E_{A}(B)\right)=E_{A^{\prime}}(\varphi(B))$;
(vi) $<\varphi^{-1}\left(E_{A^{\prime}}\left(B^{\prime}\right)\right)>=<E_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)>$.

Proof. (i), (ii), (iii), (iv) and (v) are routine.
(vi) Given $r \in R, a \in A$ and $r a \in E_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)$ such that $r^{n} a \in \varphi^{-1}\left(B^{\prime}\right)$ for some positive integer n, then $r^{n} \varphi(a) \in B^{\prime}$. Hence $\varphi(r a) \in E_{A^{\prime}}\left(B^{\prime}\right)$ and thus $r a \in \varphi^{-1}\left(E_{A^{\prime}}\left(B^{\prime}\right)\right)$. Now let $x \in \varphi^{-1}\left(E_{A^{\prime}}\left(B^{\prime}\right)\right)$. Since $\varphi(x) \in E_{A^{\prime}}\left(B^{\prime}\right)$, there exist $s \in R, a^{\prime} \in A^{\prime}$ and a positive integer m such that $\varphi(x)=s a^{\prime}$ and $s^{n} a^{\prime} \in B^{\prime}$. Also there exists $y \in A$ such that $\varphi(y)=a^{\prime}$. Thus $\varphi\left(s^{n} y\right) \in B^{\prime}$ so that $s y \in E_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)$. Hence $x \in<E_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)>$ since $x-s y \in k e r \varphi \subseteq$ $<E_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)>$.

Proposition 1.2.7 [25, Theorem 1.5] Assume the hypothesis given in Lemma 1.2.6.
(i) If $\operatorname{rad}_{A}(B)=<E_{A}(B)>$ then $\operatorname{rad}_{A^{\prime}}(\varphi(B))=<E_{A^{\prime}}(\varphi(B))>$.
(ii) If $B^{\prime} \leqslant A^{\prime}$ and $\operatorname{rad}_{A^{\prime}}\left(B^{\prime}\right)=<E_{A^{\prime}}\left(B^{\prime}\right)>$, then $\operatorname{rad}_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)=$ $<E_{A}\left(\varphi^{-1}\left(B^{\prime}\right)\right)>$.

Proof. It is routine to prove it by using the above results and the fact that if $0 \in S \subseteq A^{\prime}$, then $\varphi^{-1}(<S>)=<\varphi^{-1}(S)>$.

Theorem 1.2.8 [25, Theorem 1] Let R be a commutative ring. Then R s.t.r.f. provided that any one of the following is satisfied:
(i) every free R-module F s.t.r.f.,
(ii) every faithful R-module M s.t.r.f.,
(iii) for every R-module $M, \operatorname{rad}_{M}(0) \subseteq<E_{M}(0)>$.

Proof. (i) and (ii) suffice by recalling that every R-module A is the image of both a free R-module and a faithful R-module. Note that if $B \leqslant A$, the preimage of B (in each case) satisfies the conditions of Lemma 1.2.6. Now we can apply Proposition 1.2.7(i).
(iii) For a given $N \leqslant M$, apply Proposition 1.2.7(ii), letting $A=M, A^{\prime}=$ M / N and $B^{\prime}=N$.

Let \mathcal{P} be a prime ideal of R and suppose M is an R-module. We define $K(\mathcal{P})=\{m \in M: c m \in \mathcal{P} M$ for some $c \in R \backslash \mathcal{P}\}$.

Next, we recall a result which was proved both in [1] and [27].
Proposition 1.2.9 Let R be a commutative ring and M be an R-module. Let \mathcal{P} be a prime ideal of R such that $K(\mathcal{P}) \neq M$. Then $K(\mathcal{P})$ is a \mathcal{P}-prime submodule of M and $\operatorname{rad}_{M}(0)=\bigcap K(\mathcal{Q})$, where the intersection is taken over all prime ideals \mathcal{Q} of R.

Proof. Let $r \notin(K(\mathcal{P}): M), m \in M$ and $r m \in K(\mathcal{P})$. Then $r \in R \backslash \mathcal{P}$ and $r c m \in \mathcal{P} M$ for some $c \in R \backslash \mathcal{P}$. Since $r c \in R \backslash \mathcal{P}$, we have $m \in K(\mathcal{P})$. This proves that $K(\mathcal{P})$ is a prime submodule of M. Clearly $\mathcal{P} \subseteq(\mathcal{P} M: M) \subseteq$ $(K(\mathcal{P}): M)$. Now suppose that there is $s \in(K(\mathcal{P}): M)$ such that $s \notin \mathcal{P}$. Then $s M \subseteq K(\mathcal{P})$. Consequently, for each $y \in M$, we have $s c y \in \mathcal{P} M$ for some $c \in R \backslash \mathcal{P}$. But $s c \in R \backslash \mathcal{P}$ gives $y \in K(\mathcal{P})$. Hence $K(\mathcal{P})=M$, a contradiction. Therefore we have $(K(\mathcal{P}): M)=(\mathcal{P} M: M)=\mathcal{P}$ and $K(\mathcal{P})$ is a \mathcal{P}-prime submodule of M.

Moreover, for any prime ideal \mathcal{Q} of R, if N is a \mathcal{Q}-prime submodule of M, then $K(\mathcal{Q}) \subseteq N$. Therefore $\operatorname{rad}_{M}(0)=\bigcap_{\mathcal{Q} \in S p e c(R)} K(\mathcal{Q})$.

Our next aim is to prove that any Dedekind domain s.t.r.f.. In order to prove this result we require a number of lemmas.

Lemma 1.2.10 [16, Lemma 3.3] Let R be a commutative Noetherian ring with $\operatorname{dim} R \leqslant 1$ and M be an R-module. Then $\operatorname{rad}_{M}(0)=\bigcup \operatorname{rad}_{L}(0)$, where the union is taken over all finitely generated submodules L of M.

Proof. By Lemma 1.1.1.6, $\operatorname{rad}_{L}(0) \subseteq \operatorname{rad}_{M}(0)$, for any finitely generated submodule L of M. Now let $m \in \operatorname{rad}_{M}(0)$. Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ be all the minimal prime ideals of R. By Proposition 1.2 .9 for each $1 \leqslant i \leqslant n$ there exist $c_{i} \in R \backslash \mathcal{P}_{i}$ with $c_{i} m \in \mathcal{P}_{i} M$. There are only finitely many maximal ideals of R which contains both c_{i} and \mathcal{P}_{i}, say $\mathcal{M}_{i 1}, \cdots, \mathcal{M}_{i n_{i}}$. By Proposition 1.2.9, $\operatorname{rad}_{M}(0)=\bigcap K(\mathcal{P})$, where all \mathcal{P} 's are prime ideals of R. Since $\operatorname{dim} R \leqslant 1$ it follows that $\operatorname{rad}_{M}(0)=[\cap K(\mathcal{P})] \cap[\cap \mathcal{M} M]$ where the intersection is taken over all the minimal prime ideals \mathcal{P} and all the maximal ideals \mathcal{M} of R. Hence $m \in \mathcal{M}_{i j} M$ for every $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant n_{i}$. Together with $c_{i} m \in \mathcal{P}_{i} M$ $(1 \leqslant i \leqslant n)$, we see that there exists a finitely generated submodule L of M such that
(i) $c_{i} m \in \mathcal{P}_{i} L(1 \leqslant i \leqslant n)$,
(ii) $m \in \mathcal{M}_{i j} L\left(1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n_{i}\right)$.

Now let \mathcal{M} be any maximal ideal of R such that $\mathcal{M} \notin\left\{\mathcal{M}_{i j}: 1 \leqslant i \leqslant n, 1 \leqslant\right.$ $\left.j \leqslant n_{i}\right\}(1 \leqslant i \leqslant n)$. Without loss of generality we may assume $\mathcal{P}_{1} \subseteq \mathcal{M}$. Then $R=R c_{1}+\mathcal{M}$ and hence $R m=R c_{1} m+\mathcal{M} m \subseteq \mathcal{M} L$ since $c_{1} m \in \mathcal{P}_{1} L \subseteq \mathcal{M} L$ and $m \in L$. By Proposition 1.2.9, $m \in \operatorname{rad}_{L}(0)$. Hence $\operatorname{rad}_{M}(0) \subseteq \bigcup \operatorname{rad}_{L}(0)$.

Lemma 1.2.11 [11, Lemma 7 and Corollary] Let R be any ring and M any projective R-module. Then $\operatorname{rad}_{M}(0)=<E_{M}(0)>$.

Proof. We already know that $<E_{M}(0)>\subseteq \operatorname{rad}_{M}(0)$. There exists a free R module F such that M is a direct summand of F, say $F=M \oplus A$, for some submodule A of F. There exists an index set Λ and cyclic submodules $F_{\lambda}(\lambda \in \Lambda)$ of F such that $F=\bigoplus_{\lambda \in \Lambda} F_{\lambda}$. By Lemma 1.1.2.4,

$$
\operatorname{rad}_{F}(0)=\bigoplus_{\lambda \in \Lambda} \operatorname{rad}_{F_{\lambda}}(0)=\bigoplus_{\lambda \in \Lambda}<E_{F_{\lambda}}(0)>=<E_{F}(0)>
$$

Now let $m \in \operatorname{rad}_{M}(0)$. By Lemma 1.1.1.6, $m \in \operatorname{rad}_{F}(0)$. Then there exist n, $k \in \mathbb{N}$ and elements $r_{i} \in R, m_{i} \in F$ such that $r_{i}^{k} m_{i}=0(1 \leqslant i \leqslant n)$, and $m=r_{1} m_{1}+\cdots+r_{n} m_{n}$. For every $1 \leqslant i \leqslant n$, there exist elements $x_{i} \in M$ and $a_{i} \in A$ such that $m_{i}=x_{i}+a_{i}$. Clearly, $m=r_{1} x_{1}+\cdots+r_{n} x_{n}$, and $r_{i}^{k} x_{i}=0$ $(1 \leqslant i \leqslant n)$. Thus $m \in<E_{M}(0)>$. Hence $\operatorname{rad}_{M}(0) \subseteq<E_{M}(0)>$. \square

Now we prove that any Dedekind domain s.t.r.f..
Theorem 1.2.12 [11, Theorem 9] Let R be a Dedekind domain and M any R module. Then $\operatorname{rad}_{M}(0)=<E_{M}(0)>$.

Proof. We know $<E_{M}(0)>\subseteq \operatorname{rad}_{M}(0)$. Let $m \in \operatorname{rad}_{M}(0)$. By Lemma 1.2.10, $m \in \operatorname{rad}_{L}(0)$, for some finitely generated submodule L of M. Now $L=L_{1} \oplus \cdots \oplus$ L_{k}, for some $k \in \mathbb{N}$ and submodules $L_{i}(1 \leqslant i \leqslant k)$ of L such that L_{i} is either projective or cyclic for each $1 \leqslant i \leqslant k$ [13, Section 4]. By Lemma 1.1.2.4 and Lemma 1.2.11,

$$
\begin{aligned}
m \in \operatorname{rad}_{L_{1}}(0) \oplus \cdots \oplus \operatorname{rad}_{L_{k}}(0) & =<E_{L_{1}}(0)>\oplus \cdots \oplus<E_{L_{k}}(0)> \\
\subseteq & <E_{L}(0)>\subseteq<E_{M}(0)>
\end{aligned}
$$

Thus $\operatorname{rad}_{M}(0)=<E_{M}(0)>. \square$

We now aim to prove that any commutative Noetherian domain that s.t.r.f. is Dedekind. We begin with the following result.

Lemma 1.2.13 [7, Lemma 4] Let R be a commutative domain and a_{1}, \ldots, a_{n} be elements of R, not all zero where $n \geqslant 2$. Let $F=R^{(n)}$ and

$$
K=\left\{\left(r_{1}, \ldots, r_{n}\right) \in F: r_{i} a_{j}=r_{j} a_{i}, 1 \leqslant i, j \leqslant n\right\} .
$$

Then K is a prime submodule of F minimal over $R\left(a_{1}, \ldots, a_{n}\right)$ and $(K: F)=0$. Moreover $a_{i} K \subseteq R\left(a_{1}, \ldots, a_{n}\right)$ for all $1 \leqslant i \leqslant n$.

Proof. Clearly K is a proper submodule of F. Let $r, z_{i} \in R(1 \leqslant i \leqslant n)$ and suppose that $r\left(z_{1}, \ldots, z_{n}\right) \in K$. Then $r z_{i} a_{j}=r z_{j} a_{i}$, for all i, j. If $r=0$ then $r F \subseteq K$. If $r \neq 0$ then $z_{i} a_{j}=z_{j} a_{i}$, for all i, j, so that $\left(z_{1}, \ldots, z_{n}\right) \in K$. Thus K is a prime submodule of F. Clearly $(K: F)=0$ and $R\left(a_{1}, \ldots, a_{n}\right) \subseteq K$. Suppose that $a_{1} \neq 0$. Let $I=\left(R a_{1}: R a_{2}+\cdots+R a_{n}\right)$. Then it can easily be checked that

$$
K=I\left(1, a_{2} / a_{1}, \ldots, a_{n} / a_{1}\right)
$$

and hence $a_{1} K \subseteq R\left(a_{1}, \ldots, a_{n}\right)$. If $a_{1}=0$ then clearly $a_{1} K \subseteq R\left(a_{1}, \ldots, a_{n}\right)$. It follows that $a_{i} K \subseteq R\left(a_{1}, \ldots, a_{n}\right)$, for all $1 \leqslant i \leqslant n$.

Now suppose that N is a prime submodule of F such that $R\left(a_{1}, \ldots, a_{n}\right) \subseteq$ $N \subseteq K$. There exists $1 \leqslant i \leqslant n$ such that $a_{i} \neq 0$ and $a_{i} K \subseteq R\left(a_{1}, \ldots, a_{n}\right) \subseteq N$. Since $a_{i} \neq 0$ it follows that $a_{i} F \nsubseteq K$, and hence $a_{i} F \nsubseteq N$. Thus $K \subseteq N$ and K is minimal over $R\left(a_{1}, \ldots, a_{n}\right)$.

Theorem 1.2.14 [20, Theorem 3.2] Let (R, \mathcal{M}) be a commutative Noetherian local domain of dimension 1. Suppose $F=R \oplus R$ s.t.r.f. as an R-module. Then R is a DVR (Discrete Valuation Ring).

Proof. Choose $x \in \mathcal{M} \backslash \mathcal{M}^{2}$. It suffices to show that $\mathcal{M}=R x$. As $\operatorname{dim} R=1$ and $x \neq 0, \mathcal{M}$ is the only associated prime ideal of $R / R x$. Hence every element of \mathcal{M} is a zero divisor in $R / R x$. We now show $\mathcal{M} \subseteq R x+\mathcal{M}^{2}$.

Let $s \in \mathcal{M}$. By the above discussion, there exist $y \in R \backslash R x$ and $r \in R$ with $s y=x r$. If $s \in R x$, then $s \in R x+\mathcal{M}^{2}$. Suppose $s \in \mathcal{M} \backslash R x$. Then y is not a unit and hence $y \in \mathcal{M} \backslash R x$. Since $x \in \mathcal{M} \backslash \mathcal{M}^{2}$ and $y \in \mathcal{M} \backslash R x, x \notin R y$. By Lemma 1.2.13, $K=\left\{\left(r_{1}, r_{2}\right) \in R \oplus R: r_{1} y=r_{2} x\right\}$ is a minimal prime submodule of $R \oplus R$ over $R(x, y)$. Let P be a prime submodule of $R \oplus R$ containing $R(x, y)$. Then $\mathcal{P}=\operatorname{ann}((R \oplus R) / P)$ is a prime ideal.

Clearly $\mathcal{P}=0$ or $\mathcal{P}=\mathcal{M}$. If $\mathcal{P}=\mathcal{M}$, then $\mathcal{M} \oplus \mathcal{M} \subseteq P$. As $y \in \mathcal{M} \backslash R x$ and $x \in \mathcal{M} \backslash R y$, we have $K \subseteq P$. Suppose that $\mathcal{P}=0$. Since $P \neq R \oplus R$, we may assume $(1,0) \notin P$. Let $\left(r_{1}, r_{2}\right) \in P$ be given. Then $\left(y r_{1}-r_{2} x\right)(1,0)=y\left(r_{1}, r_{2}\right)-$ $r_{2}(x, y) \in P$. Since P is a prime submodule, it follows that $y r_{1}-r_{2} x \in(P: F)=$ 0 , i.e. $y r_{1}-r_{2} x=0$. Thus $P \subseteq K$. By minimality of $K, P=K$. Hence K is the only minimal prime submodule containing $R(x, y)$. Thus $\operatorname{rad}_{R \oplus R}(R(x, y))=K$. By hypothesis, $K=<E_{R \oplus R}(R(x, y))>$. Clearly $(s, r) \in K$. Hence there exist $s_{1}, \ldots, s_{k} \in R \backslash\{0\},\left(c_{1}, d_{1}\right), \ldots,\left(c_{k}, d_{k}\right) \in R \oplus R \backslash\{(0,0)\}$, and positive integers, n_{1}, \ldots, n_{k} such that
(i) $(s, r)=\sum_{i=1}^{k} s_{i}\left(c_{i}, d_{i}\right)$, and
(ii) $s_{i}^{n_{i}}\left(c_{i}, d_{i}\right)=f_{i}(x, y)$ for some $f_{i} \in R,(1 \leqslant i \leqslant k)$.

Since each $s_{i} \neq 0$ and R is a domain, by $(i i) c_{i} y=x d_{i}(1 \leqslant i \leqslant n)$. Recall that $y \in \mathcal{M} \backslash R x$. Consequently, each $c_{i} \in \mathcal{M}$. If s_{i} is a unit, then (ii) gives $s_{i} c_{i} \in R x$. If $s_{i} \in \mathcal{M}$, then $s_{i} c_{i} \in \mathcal{M}^{2}$. Hence $s_{i} c_{i} \in R x+\mathcal{M}^{2}$ for all $1 \leqslant i \leqslant k$. Now by (i) $s \in R x+\mathcal{M}^{2}$. Therefore $\mathcal{M}=R x+\mathcal{M}^{2}$. Hence $\mathcal{M}(\mathcal{M} / R x)=\mathcal{M} / R x$. By Nakayama's Lemma, $\mathcal{M}=R x$.

Theorem 1.2.15 [20, Theorem 3.3] Suppose R is a commutative Noetherian domain of dimension 1 and $R \oplus R$ s.t.r.f. as an R-module. Then R is a Dedekind domain.

Proof. Clear by Proposition 1.2.3 and Theorem 1.2.14. For, by [10, Theorem VIII.6.10], $R_{\mathcal{P}}$ is a DVR for every non-zero prime ideal \mathcal{P} if and only if R is a Dedekind domain.

Theorem 1.2.16 [16, Theorem 2.2 and Corollary] Let R be a commutative Noetherian ring. Suppose $F=R \oplus R$ s.t.r.f. as an R-module, $\operatorname{dim} R \geqslant 1$ and \mathcal{P} is a minimal prime ideal of R. Then \mathcal{P} is the only \mathcal{P}-primary ideal of R and R / \mathcal{P} is a Dedekind domain. In particular, if R is a domain then R is a Dedekind domain.

Proof. First assume R is local with maximal ideal \mathcal{M} and 0 is \mathcal{P}-primary. We need to show R is a DVR.

As $\operatorname{dim} R \geqslant 1, \mathcal{M} \neq \mathcal{P}$. Thus we can choose $a \in \mathcal{M} \backslash\left(\mathcal{M}^{2}+\mathcal{P}\right)$, by Nakayama's Lemma. If $\mathcal{M} \neq R a$ we can choose $b \in \mathcal{M} \backslash R a$. Consider the submodule $J(a, b)$ of $R \oplus R$ where $J=R a+R b$. Let L be any prime submodule of $R \oplus R$ such that $J(a, b) \subseteq L$. It follows that $(a, b) \in L$ or $J F \subseteq L$. If $J F \subseteq L$ then $(a, b)=$ $a(1,0)+b(0,1) \in L$. In any case, $(a, b) \in L$. Hence $(a, b) \in \operatorname{rad}_{R \oplus R} J(a, b)$ so $\operatorname{rad}_{R \oplus R}(J(a, b))=\operatorname{rad}_{R \oplus R}(R(a, b))$. As $R \oplus R$ s.t.r.f., we have $\operatorname{rad}_{R \oplus R}(R(a, b))=$ $<E_{R \oplus R}(J(a, b))>$. Hence $(a, b) \in<E_{R \oplus R}(J(a, b))>$. Then there exist positive integers k, n_{1}, \ldots, n_{k} and $r_{1}, \ldots, r_{k} \in R \backslash\{0\},\left(c_{1}, d_{1}\right), \cdots,\left(c_{k}, d_{k}\right) \in$ $R \oplus R \backslash\{(0,0)\}$ such that
(i) $(a, b)=\sum_{i=1}^{k} r_{i}\left(c_{i}, d_{i}\right)$, and
(ii) for each $1 \leqslant i \leqslant k, r_{i}^{n_{i}}\left(c_{i}, d_{i}\right)=f_{i}(a, b)$ for some $f_{i} \in J$.

By $(i) a=\sum_{i=1}^{k} r_{i} c_{i}$. We are done if we can show that each $r_{i} c_{i} \in \mathcal{M}^{2}+\mathcal{P}$. Let $1 \leqslant i \leqslant k$ be given.
(1) If r_{i} is a unit, then from (ii), we have $r_{i} c_{i} \in J a \subseteq \mathcal{M}^{2}$.
(2) If $r_{i} \in \mathcal{P}$, then $r_{i} c_{i} \in \mathcal{M}^{2}+\mathcal{P}$.
(3) If $r_{i} \in \mathcal{M} \backslash \mathcal{P}$ then we show $c_{i} \in \mathcal{M}$. Suppose not. Then from (ii), we have $r_{i} \in \sqrt{R a}$ and $r_{i}^{n_{i}}\left(a d_{i}-b c_{i}\right)=0$. Hence $b \in R a+\left[\operatorname{ann}_{R}\left(r_{i}^{n_{i}}\right) \cap(R a+R b)\right]$ where $r_{i} \in \sqrt{R a} \backslash \mathcal{P}$. Thus $b=r a+c$, for some $r \in R$ and $c \in \operatorname{ann}_{R}\left(r_{i}^{n_{i}}\right) \cap(R a+R b)$. This implies $c r_{i}^{n_{i}}=0$. If $c \neq 0$, since \mathcal{P} is the set of all zero divisors of $R, r_{i}^{n_{i}} \in \mathcal{P}$ i.e. $r_{i} \in \mathcal{P}$, a contradiction. If $c=0$ then $b \in R a$, another contradiction. Therefore $c_{i} \in \mathcal{M}$ and $r_{i} c_{i} \in \mathcal{M}^{2}+\mathcal{P}$.

In any case, $r_{i} c_{i} \in \mathcal{M}^{2}+\mathcal{P}$ for all $1 \leqslant i \leqslant k$. Hence $a \in \mathcal{M}^{2}+\mathcal{P}$, but this contradicts our choice of a. Therefore $\mathcal{M}=R a$ and hence R is a DVR.

For the general case, let I be a \mathcal{P}-primary ideal. By Lemma 1.2.1, $R / I \oplus R / I$ s.t.r.f. as an R / I-module. By the earlier argument, we see that $I=\mathcal{P}$ and R / I is a Dedekind domain. The result follows.

The next result is immediate from the above theorem.

Corollary 1.2.17 [16, Corollary 2.4] Let R be a commutative Noetherian ring. Suppose $R \oplus R$ s.t.r.f. as an R-module. Then $\operatorname{dim} R \leqslant 1$.

Proposition 1.2.18 [16, Theorem 3.4] Let R be a commutative Noetherian ring. Then the following are equivalent:
(i) R s.t.r.f.,
(ii) $R_{\mathcal{M}}$ s.t.r.f. for any maximal ideal \mathcal{M} of R,
(iii) every finitely generated $R_{\mathcal{M}}$-module s.t.r.f. for any maximal ideal \mathcal{M} of R, (iv) every finitely generated R-module s.t.r.f.

Proof. $(i) \Rightarrow(i i)$ By Proposition 1.2.3. $\quad(i i) \Rightarrow(i i i)$ Obvious. (iii) $\Rightarrow(i v)$ Follows from Proposition 1.2.3. (iv) \Rightarrow (i) Follows from Corollary 1.2.17, Lemma 1.2.10 and Theorem 1.2.8(iii).

Now the following theorem can be written:

Theorem 1.2.19 Let R be a commutative Noetherian domain which is not a field. Then the following are equivalent:
(i) R s.t.r.f.,
(ii) $R \oplus R$ s.t.r.f. as an R-module,
(iii) R is a Dedekind domain.

Proof. $(i) \Rightarrow(i i)$ Obvious. $(i i) \Rightarrow(i i i)$ By Corollary 1.2.17 and Theorem 1.2.15. (iii) \Rightarrow (i) By Theorem 1.2.12.

The above theorem has a general form in [16]. Before we give it we require a number of lemmas.

Lemma 1.2.20 [16, Proposition 2.5] Let R be a ring. Suppose
(i) $R / \sqrt{0}$ s.t.r.f. as a ring and
(ii) there exist maximal ideals \mathcal{M}_{i} and positive integers $k_{i}(1 \leqslant i \leqslant n)$ with

$$
\sqrt{0} \cap \mathcal{M}_{1}^{k_{1}} \cap \cdots \cap \mathcal{M}_{n}^{k_{n}}=0
$$

Then R s.t.r.f..

Proof. We can assume all the k_{i} 's are equal to a common value k. Let M be an R-module. By Theorem $1.2 .8(i i i)$ it suffices to show $\operatorname{rad}_{M}(0) \subseteq<E_{M}(0)>$. Clearly, $\sqrt{0} M \subseteq<E_{M}(0)>$. Let $m \in \operatorname{rad}_{M}(0)$. Then $m+\sqrt{0} M \in \operatorname{rad}_{M / \sqrt{0} M}(0)$. Since $R / \sqrt{0}$ s.t.r.f., we have

$$
m+\sqrt{0} M=\sum_{i=1}^{n} r_{i} m_{i}+\sqrt{0} M
$$

where $r_{i} \in R, m_{i} \in M$ and $r_{i}^{n_{i}} m_{i} \in \sqrt{0} M$ for some positive integer n_{i}. Hence $m=y+\sum_{i=1}^{n} r_{i} m_{i}$ for some $y \in \sqrt{0} M$. We need to show each $r_{i} m_{i} \in<E_{M}(0)>$.

Suppose first that $r_{i} \in \mathcal{M}_{1} \cap \cdots \cap \mathcal{M}_{n}$, then by (ii) we have $r_{i}^{n_{i}+k} m_{i}=$ $r_{i}^{k}\left(r_{i}^{n_{i}} m_{i}\right) \in\left(\mathcal{M}_{1}^{k} \cap \cdots \cap \mathcal{M}_{n}^{k}\right) \sqrt{0} M=0$. Hence $r_{i} m_{i} \in E_{M}(0)$. Now suppose that $r_{i} \notin \mathcal{M}_{j}$ for some $1 \leqslant j \leqslant n$. Without loss of generality we may assume $r_{i} \in \mathcal{M}_{1} \cap \cdots \cap \mathcal{M}_{\ell}$, and $r_{i} \notin \mathcal{M}_{\ell+1} \cup \cdots \cup \mathcal{M}_{n}$ for some $1 \leqslant \ell \leqslant n$. Then $R=R r_{i}^{n_{i}}+\mathcal{M}_{\ell+1} \cap \cdots \cap \mathcal{M}_{n}$. Write $1=s r_{i}^{n_{i}}+x$ for some $s \in R$ and $x \in$ $\mathcal{M}_{\ell+1} \cap \cdots \cap \mathcal{M}_{n}$. Then $r_{i} m_{i}=s r_{i}^{n_{i}+1} m_{i}+r_{i} x m_{i}$. Since $r_{i}^{n_{i}} m_{i} \in \sqrt{0} M, s r_{i}^{n_{i}+1} m_{i}$ and $\left(r_{i} x\right)^{n_{i}} m_{i}$ are also in $\sqrt{0} M$. In particular, $s r_{i}^{n_{i}+1} m_{i} \in<E_{M}(0)>$. On the other hand, $r_{i} x \in \mathcal{M}_{1} \cap \cdots \cap \mathcal{M}_{n}$. By an earlier argument, $r_{i} x m_{i} \in E_{M}(0)$. This proves $r_{i} m_{i} \in<E_{M}(0)>$. \square

Lemma 1.2.21 [16, Proposition 2.6] Let R be a Noetherian ring. Suppose $\operatorname{dim} R=1$ and every minimal prime ideal \mathcal{P} of R is the only \mathcal{P}-primary ideal in R. Then condition (ii) of Lemma 1.2.20 is satisfied.

Proof. Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{\ell}$ be all the minimal prime ideals of R, for some positive integer ℓ. Since R is Noetherian, 0 has a reduced primary decomposition which can be written as follows

$$
0=J_{1} \cap \cdots \cap J_{\ell} \cap I_{1} \cap \cdots \cap I_{n}
$$

for some positive integers ℓ and n where each J_{i} is a \mathcal{P}_{i}-primary ideal and each I_{j} is \mathcal{M}_{j}-primary ideal for some maximal ideal \mathcal{M}_{j}. By assumption, $J_{i}=\mathcal{P}_{i}$ $(1 \leqslant i \leqslant \ell)$. Therefore, we get $0=\sqrt{0} \cap I_{1} \cap \cdots \cap I_{n}$. For each $1 \leqslant j$ since I_{j} is $\mathcal{M}_{j^{-}}$primary, we have $\mathcal{M}^{k_{j}} \subseteq I_{j}$ for some large enough natural number k_{j}. The result follows.

Corollary 1.2.22 [16, Corollary 2.7] Let R be a commutative Noetherian ring. Suppose $\operatorname{dim} R=1$ and there exists a unique minimal prime ideal \mathcal{P} in R. Then R s.t.r.f. if and only if R / \mathcal{P} is a Dedekind domain and \mathcal{P} is the only \mathcal{P}-primary ideal in R.

Proof. By Theorem 1.2.16, we only need to prove sufficiency. That follows from Lemmas 1.2.20 and 1.2.21.

Lemma 1.2.23 [22, Theorem 2.5] Suppose that R is a Noetherian ring with ideals I and J such that
(i) $I \cap J=0$,
(ii) $R /(I+J)$ is semisimple Artinian,
(iii) R / I s.t.r.f. and R / J is a Dedekind domain.

Then R s.t.r.f.

Proof. Let M be an R-module. We first prove that $I M \cap J M \subseteq<E_{M}(0)>$. Since $R /(I+J)$ is semisimple Artinian, $I+J=\mathcal{M}_{1} \cdots \mathcal{M}_{n}$ where \mathcal{M}_{i} are distinct maximal ideals of $R(1 \leqslant i \leqslant n)$. Let $S=R \backslash\left(\mathcal{M}_{1} \cup \cdots \cup \mathcal{M}_{n}\right)$ which is a multiplicatively closed subset of R. For short $S^{-1} M, S^{-1} \mathcal{A}$ will be denoted by M_{S}, \mathcal{A}_{S} respectively where \mathcal{A} is an ideal of R. First of all note that R_{S} / J_{S} is a principal ideal domain. $I_{S} \cap J_{S}=0$ gives $\left(I_{S}+J_{S}\right) / J_{S} \cong I_{S}$ and hence we can identify I_{S} as an ideal of R_{S} / J_{S}. In this case $I_{S}=R_{S}(a / 1)$, for some $a \in R$. Let $u \in I M_{S} \cap J M_{S}=a M_{S} \cap J_{S} M_{S}$. Then $u=(a / 1)\left(m^{\prime} / s^{\prime}\right) \in J_{S} M_{S}$, for some $m^{\prime} \in M, s^{\prime} \in S$. Thus $(a / 1)^{2}\left(m^{\prime} / s^{\prime}\right) \in(a / 1) J_{S} M_{S}=0$ and $u \in<E_{M_{S}}(0)>$. Th erefore $I M_{S} \cap J M_{S} \subseteq<E_{M_{S}}(0)>$. Now for a given $v \in I M \cap J M, v / 1 \in$ $<E_{M_{S}}(0)>$. Hence there exists $s \in S$ such that $s v \in<E_{M}(0)>$. Note that $R=R s+I+J$. Thus we can write $1=r s+x+y$ where $r \in R, x \in I$ and $y \in J$. Since $v \in I M \cap J M$ and $I \cap J=0$, we have $v=r s v$. It follows that $I M \cap J M \subseteq<E_{M}(0)>$.

Note that, since R / I s.t.r.f., we have $\operatorname{rad}_{M / I M}(0)=<E_{M / I M}(0)>$. Also by Theorem 1.2.12, R / J s.t.r.f. and it follows that $\operatorname{rad}_{M / J M}(0)=<E_{M / J M}(0)>$. To prove that R s.t.r.f. it suffices to show $\operatorname{rad}_{M}(0) \subseteq<E_{M}(0)>$. Let $m \in$ $\operatorname{rad}_{M}(0)$. Then $m+I M \in \operatorname{rad}_{M / I M}(0)=<E_{M / I M}(0)>$. In this case there
exist $r_{1}, \ldots, r_{k} \in R, m_{1}, \ldots, m_{k} \in M$, and positive integers $\alpha_{1}, \ldots, \alpha_{k}$ such that $m+I M=\sum_{i=1}^{k} r_{i} m_{i}+I M$ and $r_{i}^{\alpha_{i}} m_{i} \in I M$ for all $1 \leqslant i \leqslant k$.

Claim: $r_{i} m_{i} \in I M+\left(J M \cap E_{M}(0)\right)$ for $1 \leqslant i \leqslant k$.
It suffices to show the claim holds for r_{1}. Suppose $r_{1} \in \dot{I}+J$. We may assume $r_{1} \in J$. Now, $r_{1}^{\alpha_{1}} m_{1} \in I M$ and $I \cap J=0$ gives $r_{1}^{\alpha_{1}+1} m_{1}=0$. It follows that $r_{1} m_{1} \in J M \cap E_{M}(0)$.

From now on, we suppose $r_{1} \notin I+J$. Then $r_{1} \notin \mathcal{M}_{i}$ for some $1 \leqslant i \leqslant n$. After renumbering the \mathcal{M}_{i} 's, we may assume $r_{1} \notin \mathcal{M}_{1} \cup \cdots \cup \mathcal{M}_{\ell}$ and $r_{1} \in \mathcal{M}_{\ell+1} \cdots \mathcal{M}_{n}$. Since $R=R r_{1}^{\alpha_{1}}+\mathcal{M}_{1} \cdots \mathcal{M}_{\ell}$, we have $r_{1}=w r_{1}^{\alpha_{1}+1}+r_{1} t$ for some $w \in R$ and $t \in \mathcal{M}_{1} \cdots \mathcal{M}_{\ell}$. Note that $r_{1} t \in I+J$, and so we may write $r_{1} t=x_{1}+y_{1}$ for some $x_{1} \in I, y_{1} \in J$. Now $r_{1} m_{1}=w r_{1}^{\alpha_{1}+1} m_{1}+x_{1} m_{1}+y_{1} m_{1}$. To complete the proof of the claim, it remains to show $y_{1} m_{1} \in J M \cap E_{M}(0)$. Since $I \cap J=0$, $\left(r_{1} t\right)^{\alpha_{1}}=x_{1}^{\alpha_{1}}+y_{1}^{\alpha_{1}}$. Recall that $r_{1}^{\alpha_{1}} m_{1} \in I M$. Hence $\left(r_{1} t\right)^{\alpha_{1}} m_{1}=x_{1}^{\alpha_{1}} m_{1}+y_{1}^{\alpha_{1}} m_{1} \in$ $I M$. Thus $y_{1}^{\alpha_{1}} m_{1} \in I M$ and $y_{1}^{\alpha_{1}+1} m_{1}=0$. Therefore $y_{1} m_{1} \in J M \cap E_{M}(0)$. The claim has been justified.

By the above claim, $m=u_{1}+v_{1}$ where $u_{1} \in J M \cap<E_{M}(0)>, v_{1} \in I M$. Using the above argument, we also get $m=u_{2}+v_{2}$ where $u_{2} \in I M \cap<E_{M}(0)>$, $v_{2} \in J M$. Then $u_{1}-v_{2}=u_{2}-v_{1} \in I M \cap J M$. But we proved earlier that $I M \cap J M \subseteq<E_{M}(0)>$. Hence $m=\left(v_{1}-u_{2}\right)+u_{2}+u_{1} \in<E_{M}(0)>$. Therefore $\operatorname{rad}_{M}(0) \subseteq<E_{M}(0)>$.

Lemma 1.2.24 [16, Theorem 5.1] Let R be a commutative Noetherian ring and I_{1}, \ldots, I_{n} be prime ideals in R, for some positive integer $n \geqslant 2$. Suppose that
(i) $I_{1} \cap \cdots \cap I_{n}=0$,
(ii) $R=I_{i}+I_{j}$ or $R /\left(I_{i}+I_{j}\right)$ is semisimple Artinian, for any $1 \leqslant i<j \leqslant n$,
(iii) R / I_{i} is a Dedekind domain for all i, and
(iv) $I_{k+1}+\bigcap_{i=1}^{k} I_{i}=\bigcap_{i=1}^{k}\left(I_{k+1}+I_{i}\right)$, for $1 \leqslant k \leqslant n-1$.

Then R s.t.r.f.

Proof. We will proceed by induction on $n \geqslant 2$. The case $n=2$ follows from Lemma 1.2.23. Suppose $n \geqslant 3$. By induction $R /\left(I_{1} \cap \cdots I_{n-1}\right)$ s.t.r.f.. In view of Lemma 1.2.23, it suffices to show R / L is semisimple Artinian where $L=$ $I_{n}+\left(\bigcap_{i=1}^{n-1} I_{i}\right)$. By (iv), $L=\bigcap_{i=1}^{n-1}\left(I_{n}+I_{i}\right)$. Note that, by (ii), each $I_{n}+$ $I_{1}, \cdots, I_{n}+I_{n-1}$ is a product of distinct maximal ideals of R. Since R / I_{n} is a De dekind domain, L is also a product of distinct maximal ideals of R. Hence R / L is semisimple Artinian.

Notation: Let (R, \mathcal{M}) be a commutative Noetherian local ring. Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ be all the minimal prime ideals of R and $n \geqslant 3$. We define

$$
I_{i}=\bigcap_{\substack{k=1 \\ k \neq i}}^{n} \mathcal{P}_{k} \text { and } I_{i j}=\bigcap_{\substack{k=1 \\ k \neq i \\ k \neq j}}^{n} \mathcal{P}_{k}
$$

for all $1 \leqslant i, j \leqslant n$ with $i \neq j$.

The above notation will be be fixed throughout the rest of this section.

Lemma 1.2.25 [16, Theorem 4.1] Suppose $n \geqslant 3$ and $\mathcal{M}=I_{i j}+\mathcal{P}_{i}$ for all $1 \leqslant i, j \leqslant n$ such that $i \neq j$. Then the following are equivalent:
(i) $\mathcal{M}=I_{i}+\mathcal{P}_{i}$ for some $1 \leqslant i \leqslant n$,
(ii) $\mathcal{M}=I_{i}+\mathcal{P}_{i}$ for every $i=1, \ldots, n$,
(iii) $I_{i j}=I_{i}+I_{j}$ for all $1 \leqslant i, j \leqslant n$ with $i \neq j$,
(iv) $I_{i j}=I_{i}+I_{j}$ for some $1 \leqslant i, j \leqslant n$ with $i \neq j$.

Proof. $(i i) \Rightarrow(i),(i i i) \Rightarrow(i v)$ Obvious.
(i) \Rightarrow (iii) Suppose $\mathcal{M}=I_{i}+\mathcal{P}_{i}$ for some $1 \leqslant i \leqslant n$. Let $1 \leqslant j \leqslant n$ with $j \neq i$ be given. By the modular law, $I_{i j}=I_{i j} \cap \mathcal{M}=I_{i j} \cap\left(I_{i}+\mathcal{P}_{i}\right)=I_{i}+\left(I_{i j} \cap \mathcal{P}_{i}\right)=$
$I_{i}+I_{j}$. Now $\mathcal{M}=I_{i j}+\mathcal{P}_{j}=I_{i}+I_{j}+\mathcal{P}_{j}=I_{j}+\mathcal{P}_{j}$, because $I_{i} \subseteq \mathcal{P}_{j}$. Now by the argument we have just given $I_{j k}=I_{j}+I_{k}$ for all $1 \leqslant j, k \leqslant n$ with $j \neq k$.
(iii) \Rightarrow (ii) Let $1 \leqslant i \leqslant n$ and $j \in\{1, \ldots, n\} \backslash\{i\}$. By assumption $\mathcal{M}=I_{i j}+\mathcal{P}_{i}$ and hence $\mathcal{M}=I_{i}+I_{j}+\mathcal{P}_{i}$. Since $I_{j} \subseteq \mathcal{P}_{i}$ we have $\mathcal{M}=I_{i}+\mathcal{P}_{i}$.
$(i v) \Rightarrow(i)$ Suppose $I_{i j}=I_{i}+I_{j}$ for some $1 \leqslant i, j \leqslant n$ with $i \neq j$. By hypothesis $\mathcal{M}=I_{i j}+\mathcal{P}_{i}$. Hence $\mathcal{M}=I_{i}+I_{j}+\mathcal{P}_{i}$ and $\mathcal{M}=I_{i}+\mathcal{P}_{i}$ because $I_{j} \subseteq \mathcal{P}_{i}$.

Lemma 1.2.26 [16, Theorem 4.2] Let (R, \mathcal{M}) be a one dimensional Noetherian local ring and $n \geqslant 2$. If $R \oplus R$ s.t.r.f. as an R-module, then there exist $x_{1}, \ldots, x_{n} \in R$ such that

$$
I_{i}=R x_{i}+\sqrt{0}, \mathcal{P}_{i}=\sum_{\substack{k=1 \\ k \neq i}}^{n} I_{k} ; \text { and } \mathcal{M}=\mathcal{P}_{i}+I_{i}=\sum_{k=1}^{n} I_{k}
$$

for all $1 \leqslant i \leqslant n$.

Proof. Without loss of generality we may assume $\sqrt{0}=0$. Hence R is semiprime and $\bigcap_{i=1}^{n} \mathcal{P}_{i}=0$. By Theorem 1.2.16, R / \mathcal{P}_{i} is a DVR for all $1 \leqslant i \leqslant n$.

Let $1 \leqslant i \leqslant n$ be given. Since R / \mathcal{P}_{i} is a DVR, we can write $\mathcal{M}=R y+\mathcal{P}_{i}$ for some $y \in \mathcal{M}$. Note that $I_{i} \neq 0$ and $I_{i} \nsubseteq \mathcal{P}_{i}$. Hence $I_{i}+\mathcal{P}_{i}=R y^{\ell}+\mathcal{P}_{i}$ for some $\ell \geqslant 1$. There exist $x_{i} \in I_{i}$ and $p_{i} \in \mathcal{P}_{i}$ such that $x_{i}=y^{\ell}+p_{i}$. We now show x_{i} generates I_{i}. Let $z \in I_{i}$. Then $z=r y^{\ell}+q_{i}$ for some $r \in R$, and $q_{i} \in \mathcal{P}_{i}$. It follows that $r x_{i}-z=r p_{i}-q_{i} \in I_{i} \cap \mathcal{P}_{i}=0$. Hence $z=r \dot{x_{i}}$. Therefore $I_{i}=R x_{i}$.

Suppose $n=2$. In this case $I_{1}=\mathcal{P}_{2}$ and $I_{2}=\mathcal{P}_{1}$. It remains to show that $\mathcal{M}=\mathcal{P}_{1}+\mathcal{P}_{2}$. Since R / \mathcal{P}_{2} is a DVR, we have $\mathcal{M}=R a+\mathcal{P}_{2}$ where $a \in \mathcal{M} \backslash \mathcal{P}_{2}$. If $R a \subseteq \mathcal{P}_{1}$, then $\mathcal{M}=\mathcal{P}_{1}+\mathcal{P}_{2}$. Suppose $\mathcal{P}_{1} \subset R a$. Then $\mathcal{P}_{1}=\mathcal{P}_{1} a=\left(\mathcal{P}_{1} a\right) a=\mathcal{P}=\cdots \subseteq \bigcap_{i=1}^{\infty} \mathcal{M}^{n}=0$ by Krull's intersection Theorem, i.e. $\quad \mathcal{P}_{1} \nsubseteq R a$. Hence we can choose $b \in \mathcal{P}_{1} \backslash R a$. Let $x \in \sqrt{R a} \backslash\left(\mathcal{P}_{1}+\mathcal{P}_{2}\right)$. Since $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ contains all zero divisors of R, we have $\operatorname{ann}_{R} x^{n}=0$ for all positive
integers n. By the standard argument given in the proof of The orem 1.2.16, $a \in \mathcal{M}^{2}+\mathcal{P}_{1}+\mathcal{P}_{2}$. It follows that $\mathcal{M}=\mathcal{M}^{2}+\mathcal{P}_{1}+\mathcal{P}_{2}$. By Nakayama's Lemma, we get $\mathcal{M}=\mathcal{P}_{1}+\mathcal{P}_{2}$.

Suppose $n \geqslant 3$. For each $1 \leqslant i \leqslant n, R / I_{i}$ is a one dimensional semiprime local ring. By Lemma 1.2.1, we also know that each R / I_{i} s.t.r.f. as an R / I_{i}-module. By applying induction to each R / I_{i}, we get
(i) $\mathcal{M}=\sum_{\substack{k=1 \\ k \neq i}}^{n} I_{i k}$ for all $1 \leqslant i \leqslant n$,
(ii) $\mathcal{P}_{i}=I_{j}+\sum_{\substack{k=1 \\ k \neq i}}^{n} I_{j k}$ and $I_{i j}=R x_{i j}+I_{j}$ for some $x_{i j} \in \mathcal{M}$ and for all $1 \leqslant i, j \leqslant n$ with $i \neq j$.

Clearly, if i, j, k are all distinct then $I_{i k} \subseteq \mathcal{P}_{j}$. By this observation, (i) gives

$$
\begin{equation*}
\mathcal{M}=I_{i j}+\mathcal{P}_{j}=R x_{i j}+I_{j}+\mathcal{P}_{j} \text { for all } i \neq j \tag{1.1}
\end{equation*}
$$

Suppose $\mathcal{M} \neq I_{n}+\mathcal{P}_{n}$. By Lemma 1.2.25,

$$
\begin{gather*}
\mathcal{M} \neq I_{i}+\mathcal{P}_{i} \text { for all } i, \tag{1.2}\\
I_{i j} \neq I_{i}+I_{j} \text { for all } i \neq j \tag{1.3}
\end{gather*}
$$

By (ii) and (1.3), we get $x_{12} \in I_{12} \backslash\left(I_{1}+I_{2}\right)$. Let $x \in\left(\sqrt{R x_{12}}\right) \backslash\left(I_{1}+I_{2}\right)$. Since R is semiprime, $\operatorname{ann}_{R} x^{n}=\operatorname{ann}_{R} x$ for any positive integer n. Note that $x \in$ $I_{12} \backslash\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ since $\sqrt{R x_{12}} \subseteq I_{12}, I_{12} \cap \mathcal{P}_{1}=I_{2}$ and $I_{12} \cap \mathcal{P}_{2}=I_{1}$. Therefore, $\operatorname{ann}_{R} x \subset \mathcal{P}_{1} \cap \mathcal{P}_{2}$. Clearly, $R x_{12}+R x_{23} \subseteq \mathcal{P}_{4} \cap \mathcal{P}_{5} \cap \cdots \cap \mathcal{P}_{n}$. Hence

$$
R x_{12}+\left(\operatorname{ann}_{R} x\right) \cap\left(R x_{12}+R x_{23}\right) \subseteq R x_{12}+I_{3}
$$

Suppose $x_{23} \in R x_{12}+\left(\operatorname{ann}_{R} x\right) \cap\left(R x_{12}+R x_{23}\right)$. Then $x_{23} \in R x_{12}+I_{3}$. By (1.1), $\mathcal{M}=R x_{23}+I_{3}+\mathcal{P}_{3} \subseteq R x_{12}+I_{3}+\mathcal{P}_{3}=\mathcal{P}_{3}+I_{3}$, and hence $\mathcal{M}=\mathcal{P}_{3}+I_{3}$, which contradicts (1.2). Therefore $x_{23} \notin R x_{12}+\left(\operatorname{ann}_{R} x\right) \cap\left(R x_{12}+R x_{23}\right)$. Now, by the standard argument in the proof of Theorem 1.2.16, $x_{23} \in \mathcal{M}^{2}+I_{1}+I_{2}$.

By (1.1), $\mathcal{M}=R x_{23}+I_{3}+\mathcal{P}_{3} \subseteq \mathcal{M}^{2}+I_{1}+I_{2}+I_{3}+\mathcal{P}_{3}=\mathcal{M}^{2}+I_{3}+\mathcal{P}_{3}$. Thus $\mathcal{M}=\mathcal{M}^{2}+I_{3}+\mathcal{P}_{3}$. By Nakayama's Lemma, we have $\mathcal{M}=I_{3}+\mathcal{P}_{3}$, which contradicts (1.2). Therefore $\mathcal{M}=I_{n}+\mathcal{P}_{n}$. By Lemma 1.2.25 $I_{i j}=I_{i}+I_{j}$ for all $i \neq j$. The required result follows from (i) and (ii).

Theorem 1.2.27 [16] Let R be a commutative Noetherian ring and $\mathcal{P}_{1}, \cdots, \mathcal{P}_{n}$ be all the minimal prime ideals of R. Then the following are equivalent:
(i) R s.t.r.f.,
(ii) $R \oplus R$ s.t.r.f. as an R-module,
(iii) R is one of the following:
(a) R is Artinian, or
(b) the following conditions are satisfied:
(1) $\operatorname{dim} R=1$ and R / \mathcal{P}_{i} is a Dedekind domain and \mathcal{P}_{i} is the only $\mathcal{P}_{i}-$ primary ideal, for every $1 \leqslant i \leqslant n$,
(2) $\left(\bigcap_{i=1}^{k} \mathcal{P}_{i}\right)+\mathcal{P}_{k+1}=\bigcap_{i=1}^{k}\left(\mathcal{P}_{i}+\mathcal{P}_{k+1}\right)$, for every $1 \leqslant k \leqslant n-1$, if $n \geqslant 2$.
(3) $R=\mathcal{P}_{i}+\mathcal{P}_{j}$ or $R /\left(\mathcal{P}_{i}+\mathcal{P}_{j}\right)$ is semisimple Artinian, for every $1 \leqslant i<$ $j \leqslant n$, if $n \geqslant 2$.

Proof. (i) $\Rightarrow($ ii) Obvious.
$($ ii $) \Rightarrow($ iii $)$ Let $R \oplus R$ s.t.r.f. as an R-module. By Theorem 1.2 .5 we can suppose R is not Artinian. Thus by Corollary 1.2.17, we may assume $\operatorname{dim} R=1$. We may also assume $n \geqslant 2$ by Corollary 1.2.22.

By Theorem 1.2.16 (1) is satisfied. Under localization at any maximal ideal \mathcal{M} of R if $\mathcal{P}_{i} \nsubseteq \mathcal{M}$ then $\mathcal{P}_{i} R_{\mathcal{M}}=R_{\mathcal{M}}$ and $\mathcal{P}_{i} R_{\mathcal{M}}$ remains prime otherwise. By Lemma 1.2 .26 , (3) holds in $R_{\mathcal{M}}$, and that both sides of the condition (2) becomes $\mathcal{M} R_{\mathcal{M}}$ if \mathcal{M} contains \mathcal{P}_{k+1} and \mathcal{P}_{i} for some $1 \leqslant i \leqslant k$. Otherwise both sides will equal to $R_{\mathcal{M}}$ Hence (2) and (3) hold globally.
$(i i i) \Rightarrow(i)$ Suppose (1), (2) and (3) hold. $R / \sqrt{0}$ satisfies the conditions of Lemma 1.2.24 and hence it s.t.r.f.. By Lemma 1.2.21, R satisfies (ii) in Lemma 1.2.20. Hence R s.t.r.f..

It is not entirely clear to us which non-Noetherian rings s.t.r.f.. But at least for a polynomial ring $S[X]$ where S is a commutative domain we can say the following:

Theorem 1.2.28 Let S be a commutative domain. Then the polynomial ring $R=S[X]$ s.t.r.f. if and only if S is a field.

Proof. (\Rightarrow) Suppose R s.t.r.f.. Then the R-module $F=R \oplus R$ s.t.r.f.. Let $0 \neq a \in S$ and let W be the ideal $\sqrt{R a+R X}$ of R and N be the submodule $W(a, X)$ of F. First we will show that $N=E_{F}(N)$. Let r, s_{1}, s_{2} belong to R such that $r^{k}\left(s_{1}, s_{2}\right) \in N$ for some positive integer k. There exists $w \in W$ such that $r^{k}\left(s_{1}, s_{2}\right)=w(a, X)$, i.e. $r^{k} s_{1}=w a, r^{k} s_{2}=w X$. It follows that $r^{k} s_{1} X=r^{k} s_{2} a$. If $r=0$ then $r\left(s_{1}, s_{2}\right) \in N$. Suppose that $r \neq 0$. Then $s_{1} X=s_{2} a$. Since $a \neq 0$ it follows that $s_{2}=X h$ for some $h \in R$. Then $s_{1} X=s_{2} a=X h a$ gives $s_{1}=h a$. Now $r^{k}\left(s_{1}, s_{2}\right)=r^{k}(h a, h X)=r^{k} h(a, X)$ and hence $r^{k} h \in W$. Clearly $(r h)^{k} \in W$ and hence $r h \in W$. Thus $r\left(s_{1}, s_{2}\right)=r h(a, X) \in N$. It follows that $E_{F}(N) \subseteq N$ and hence $E_{F}(N)=N$. Since F s.t.r.f. $N=E_{F}(N)=<E_{F}(N)>=\operatorname{rad}_{F}(N)$. Now let K be a prime submodule of F such that $N \subseteq K$. Then $W(a, X) \subseteq K$ gives $W F \subseteq K$ or $(a, X) \in K$. In any case $(a, X) \in K$. Thus

$$
R(a, X) \subseteq \operatorname{rad}_{F}(N)=N=W(a, X)
$$

There exists $q \in W$ such that $(a, X)=q(a, X)$. In particular, $a=q a$ so that $q=1$. It follows that $W=R$ and hence $R=R a+R X$. There exist $f(X)$, $g(X) \in R$ such that $1=f(X) a+g(X) X$. Then $1=f(0) a$ and hence a is a unit in S.
(\Leftarrow) If S is a field then $S[X]$ is a principal ideal domain and hence a Dedekind domain. Thus $R=S[X]$ s.t.r.f. by Theorem 1.2.12.

Corollary 1.2.29 Let R be a commutative ring. Then the polynomial ring $R[X, Y]$ does not s.t.r.f..

Proof. Suppose $R[X, Y]$ s.t.r.f.. Let \mathcal{P} be any prime ideal of R. Then the ring $(R / \mathcal{P})[X, Y] \cong R[X, Y] / \mathcal{P}[X, Y]$ s.t.r.f., by Lemma 1.2.1. Let $S=(R / \mathcal{P})[X]$. Then $S[Y] \cong(R / \mathcal{P})[X, Y]$, so s.t.r.f. but S is not a field, a contradiction.

Chapter 2

PRIME SUBMODULES OF MODULES

The aim of this chapter is to investigate prime submodules of modules over commutative domains in some special cases. For example, if R is a Dedekind domain and M is a finitely generated R-module then prime submodules of M are either certain direct summands of M or submodules N such that M / N is annihilated by a maximal ideal of R (Proposition 2.1.3). On the other hand if R is a UFD, n a positive integer and a_{1}, \ldots, a_{n} elements of R which are not all zero then it is shown in Theorem 2.2.7 that $R\left(a_{1} \ldots, a_{n}\right)$ is a prime submodule of the free R-module $R^{(n)}$ if and only if every common divisor of a_{1}, \ldots, a_{n} is a unit in R.

Again for a UFD R and $n \geqslant 3$, given $a_{i}, b_{i} \in R(1 \leqslant i \leqslant n)$ such that $1=s_{1} b_{1}+\cdots+s_{n} b_{n}$ for some $s_{i} \in R(1 \leqslant i \leqslant n)$, the submodule $R\left(a_{1}, \ldots, a_{n}\right)+$ $R\left(b_{1}, \ldots, b_{n}\right)$ of $R^{(n)}$ is prime if and only if either $a_{i}=c b_{i}(1 \leqslant i \leqslant n)$ or every common divisor of $a_{i}-c b_{i}(1 \leqslant i \leqslant n)$ is a unit in R, where $c=s_{1} a_{1}+\cdots+s_{n} a_{n}$ (Theorem 2.3.2). As an application we show in Theorem 2.3.12 that if R is a UFD and I is a non-zero ideal of R then the submodule $N=R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)$
of $R^{(n)}$ is prime if and only if (a) $I=R$ and every common divisor of the elements $a_{i}-a_{1}(2 \leqslant i \leqslant n)$ is a unit in R or $(b) N=R(1, \ldots, 1)$.

2.1 Modules over Special Rings

Proposition 2.1.1 Let R be a 0 -dimensional ring and let M be an R-module. Then a proper submodule N of M is prime if and only if $\mathcal{P} M \subseteq N$ for some prime ideal \mathcal{P} of R.

Proof. By Proposition 1.1.2.8.

A commutative domain R is called Prüfer if every finitely generated non-zero ideal is invertible. Given a commutative domain R it is well known that any finitely generated torsion-free R-module is projective if and only if R is a Prüfer domain (see [32, Theorem 4.22]).

Proposition 2.1.2 Let R be a Prüfer domain and let M be a finitely generated R-module. Then a proper submodule N of M is a 0 -prime submodule if and only if $M=N \oplus N^{\prime}$ for some torsion-free submodule N^{\prime} of M.

Proof. Suppose first that $M=N \oplus N^{\prime}$ for some torsion-free submodule N^{\prime} of M. Then $M / N \cong N^{\prime}$ so that M / N is torsion-free. Thus N is a 0 -prime submodule of M.

Conversely, suppose that N is a 0 -prime submodule of M. Then the R module M / N is finitely generated torsion-free so that M / N is projective and hence $M=N \oplus N^{\prime}$ for some submodule N^{\prime}. Clearly N^{\prime} is torsion-free.

Dedekind domains are precisely Noetherian Prüfer domains and have the property that every non-zero prime ideal is maximal. Combining Propositions 1.1.2.8 and 2.1.2 we have the following result.

Proposition 2.1.3 Let R be a Dedekind domain and let M be a finitely generated R-module. Then a proper submodule N of M is prime if and only if $M=N \oplus N^{\prime}$ for some torsion-free submodule N^{\prime} of M or $\mathcal{P} M \subseteq N$ for some maximal ideal \mathcal{P} of R.

2.2 Cyclic Submodules of F

We now fix the following notation. Let R be a commutative domain, $n \geqslant 3$ be an integer and F be the free module $R^{(n)}$.

Lemma 2.2.1 Let N be an m-generated submodule of F for some positive integer $m<n$. Then $(N: F)=0$.

Proof. Suppose that $(N: F) \neq 0$, i.e. $r F \subseteq N$ for some $0 \neq r \in R$. Let $S=R \backslash\{0\}$ and let K denote the field of fractions of R. Then the n-dimensional K-vector space $K^{(n)} \cong S^{-1} F=S^{-1} N$ and $S^{-1} N$ is generated by m elements as a vector space over the field K. Thus $n \leqslant m$, a contradiction.

Corollary 2.2.2 Let N be an m-generated submodule of F for some positive integer $m<n$. Then N is a prime submodule of F if and only if the R-module F / N is torsion-free.

Proof. By Lemma 2.2.1, $(N: F)=0$. Let F / N be a torsion-free R-module. Then N is a 0 -prime submodule of F. Conversely, if N is a prime submodule of F then the module F / N is torsion-free by Proposition 1.1.1.3 and Lemma 2.2.1.

Proposition 2.2.3 Let $a_{i} \in R(1 \leqslant i \leqslant n)$ such that $R=R a_{1}+\cdots+R a_{n}$. Then $R\left(a_{1}, \ldots, a_{n}\right)$ is a direct summand of the free R-module $F=R^{(n)}$. Moreover $R\left(a_{1}, \ldots, a_{n}\right)$ is a 0 -prime submodule of F.

Proof. There exist $s_{i} \in R(1 \leqslant i \leqslant n)$ such that $1=s_{1} a_{1}+\cdots+s_{n} a_{n}$. Let

$$
N=\left\{\left(x_{1}, \ldots, x_{n}\right) \in F: s_{1} x_{1}+\cdots+s_{n} x_{n}=0\right\}
$$

Then N is a submodule of F. For any $r \in R, r\left(a_{1}, \ldots, a_{n}\right) \in N$ implies that $s_{1} r a_{1}+\cdots+s_{n} r a_{n}=0$, i.e. $r\left(s_{1} a_{1}+\cdots+s_{n} a_{n}\right)=0$, i.e $r=0$. Hence $R\left(a_{1}, \ldots, a_{n}\right) \cap N=0$. Moreover, for each $1 \leqslant i \leqslant n$, the element \mathbf{e}_{i}, the n-tuple in which the i th component is 1 while the others are 0 , belongs to $R\left(a_{1}, \ldots, a_{n}\right)+N$. For, consider the element

$$
\mathbf{e}_{i}-s_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(-s_{i} a_{1}, \ldots,-s_{i} a_{i-1}, 1-s_{i} a_{i},-s_{i} a_{i+1}, \ldots,-s_{i} a_{n}\right)
$$

and note that $\mathbf{e}_{i}-s_{i}\left(a_{1}, \ldots, a_{n}\right) \in N$ because
$s_{1}\left(-s_{i} a_{1}\right)+\cdots+s_{i-1}\left(-s_{i} a_{i-1}\right)+s_{i}\left(1-s_{i} a_{i}\right)+s_{i+1}\left(-s_{i} a_{i+1}\right)+\cdots+s_{n}\left(-s_{i} a_{n}\right)$ is equal to $-s_{i}\left(s_{1} a_{1}+\cdots+s_{n} a_{n}\right)+s_{i}=-s_{i}+s_{i}=0$. Thus $\mathbf{e}_{i} \in R\left(a_{1}, \ldots, a_{n}\right)+$ $N(1 \leqslant i \leqslant n)$. It follows that $F=R\left(a_{1}, \ldots, a_{n}\right)+N$ and hence $F=$ $R\left(a_{1}, \ldots, a_{n}\right) \oplus N$. Since F is free it is torsion-free and the factor module $F / R\left(a_{1}, \ldots, a_{n}\right)$ is torsion-free. This implies $\left(R\left(a_{1}, \ldots, a_{n}\right): F\right)=0$, and hence $R\left(a_{1}, \ldots, a_{n}\right)$ is a 0 -prime submodule of F.

Corollary 2.2.4 Let $a_{i} \in R(1 \leqslant i \leqslant n)$ such that at least one of the elements $a_{i}(1 \leqslant i \leqslant n)$ is a unit in R. Then $R\left(a_{1}, \ldots, a_{n}\right)$ is a prime submodule of F.

Proof. By Proposition 2.2.3.

Corollary 2.2.5 Let $a_{i} \in R(1 \leqslant i \leqslant n)$ and let \mathcal{P} be a prime ideal of R such that $R=R a_{1}+\cdots+R a_{n}+\mathcal{P}$. Then $R\left(a_{1}, \ldots, a_{n}\right)+\mathcal{P} F$ is a \mathcal{P}-prime submodule of F.

Proof. The module $F / \mathcal{P} F$ is a free module over the domain R / \mathcal{P}. Let $N=R\left(a_{1}, \ldots, a_{n}\right)+\mathcal{P} F$. Then $N / \mathcal{P} F=R\left(a_{1}+\mathcal{P}, \ldots, a_{n}+\mathcal{P}\right)$. By Proposition 2.2.3, $N / \mathcal{P} F$ is a \mathcal{P}-prime submodule of the (R / \mathcal{P})-module $F / \mathcal{P} F$. Clearly it follows that N is a \mathcal{P}-prime submodule of F.

Let $a_{i} \in R(1 \leqslant i \leqslant n)$, not all zero. By a common divisor of the elements a_{i} $(1 \leqslant i \leqslant n)$ we mean an element $d \in R$ such that $a_{i}=d b_{i}(1 \leqslant i \leqslant n)$ for some elements $b_{i}(1 \leqslant i \leqslant n)$. Clearly d is a common divisor of $a_{i}(1 \leqslant i \leqslant n)$ if and only if $R a_{1}+\cdots+R a_{n} \subseteq R d$. Corollary 2.2 .2 has the following consequence.

Lemma 2.2.6 Let $a_{i} \in R(1 \leqslant i \leqslant n)$, not all zero, such that $N=R\left(a_{1}, \ldots, a_{n}\right)$ is a prime submodule of $F=R^{(n)}$. Then every common divisor of $a_{i}(1 \leqslant i \leqslant n)$ is a unit in R.

Proof. Let d be a common divisor of $a_{i}(1 \leqslant i \leqslant n)$. For each $1 \leqslant i \leqslant n$ there exists $b_{i} \in R$ such that $a_{i}=d b_{i}$. Clearly $d \neq 0$ and $d\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{n}\right) \in$ N. By Corollary 2.2.2, $\left(b_{1}, \ldots, b_{n}\right) \in N$, i.e. $\left(b_{1}, \ldots, b_{n}\right)=r\left(a_{1}, \ldots, a_{n}\right)$ for some $r \in R$. It follows that $a_{i}=d r a_{i}(1 \leqslant i \leqslant n)$ and hence $d r=1$, i.e. d is a unit in R.

Theorem 2.2.7 Let R be a UFD and let $a_{i} \in R(1 \leqslant i \leqslant n)$, not all zero. Then $N=R\left(a_{1}, \ldots, a_{n}\right)$ is a prime submodule of $F=R^{(n)}$ if and only if every common divisor of $a_{i}(1 \leqslant i \leqslant n)$ is a unit in R.

Proof. The necessity is proved in Lemma 2.2.6.
Conversely, suppose that every common divisor of $a_{i}(1 \leqslant i \leqslant n)$ is a unit in R. Let $0 \neq r \in R, b_{i} \in R(1 \leqslant i \leqslant n)$ such that $r\left(b_{1}, \ldots, b_{n}\right) \in N$, i.e. $r\left(b_{1}, \ldots, b_{n}\right)=s\left(a_{1}, \ldots, a_{n}\right)$ for some $s \in R$. Hence $r b_{i}=s a_{i}(1 \leqslant i \leqslant n)$.

There exists $1 \leqslant j \leqslant n$ such that $a_{j} \neq 0$. Suppose that a_{j} is a unit in R. Then $s=r b_{j} a_{j}^{-1}$ and hence $r b_{i}=r b_{j} a_{j}^{-1} a_{i}$ giving $b_{i}=b_{j} a_{j}^{-1} a_{i}(1 \leqslant i \leqslant n)$. In this case

$$
\left(b_{1}, \ldots, b_{n}\right)=b_{j} a_{j}^{-1}\left(a_{1}, \ldots, a_{n}\right) \in N
$$

Now suppose that a_{j} is not a unit in R. Let p be any prime divisor of a_{j}. There exists $1 \leqslant k \leqslant n$ such that p does not divide a_{k}. However $r b_{k}=s a_{k}$ and $r b_{j}=s a_{j}$ together give $r a_{j} b_{k}=r a_{k} b_{j}$, so that $a_{j} b_{k}=a_{k} b_{j}$ and hence p divides b_{j}. Now $r b_{j}=s a_{j}$ gives $r\left(b_{j} / p\right)=s\left(a_{j} / p\right)$. Repeating this argument we conclude that a_{j} divides b_{j}, i.e. $b_{j}=c a_{j}$ for some $c \in R$. For each $1 \leqslant i \leqslant n, r a_{i} b_{j}=r a_{j} b_{i}$ gives $b_{i}=c a_{i}$. Hence $\left(b_{1}, \ldots, b_{n}\right)=c\left(a_{1}, \ldots, a_{n}\right) \in N$. It follows that N is a prime submodule of F.

We shall call a submodule N of F a cyclic prime if N is a prime submodule of F and N is a cyclic R-module.

Corollary 2.2.8 Let R be a UFD and let N be any prime submodule of $F=R^{(n)}$ with $(N: F)=0$. Then N is a sum of cyclic prime submodules of F.

Proof. Let $a_{i} \in R(1 \leqslant i \leqslant n)$, not all zero, such that $\left(a_{1}, \ldots, a_{n}\right) \in N$. Let d be a greatest common divisor of the elements $a_{i}(1 \leqslant i \leqslant n)$. Then $a_{i}=d b_{i}$ $(1 \leqslant i \leqslant n)$ for some elements $b_{i}(1 \leqslant i \leqslant n)$ of R. Clearly any common divisor of the elements $b_{i}(1 \leqslant i \leqslant n)$ is a unit in R. By Theorem 2.2.7, $R\left(b_{1}, \ldots, b_{n}\right)$ is a cyclic prime submodule of F. Moreover, $R\left(a_{1}, \ldots, a_{n}\right) \subseteq R\left(b_{1}, \ldots, b_{n}\right) \subseteq N$ by Corollary 2.2.2. The result follows.

Remark: Let F denote the free \mathbb{Z}-module $\mathbb{Z} \oplus \mathbb{Z}$ and let p be any prime in \mathbb{Z}. Then $p F$ is a prime submodule of F such that $(p F: F)=(p)$ but $p F$ is not a sum of cyclic prime submodules by Corollary 2 in [7].

2.3 2-Generated Submodules of \mathbf{F}

In this section we are interested when $N=R\left(a_{1}, \ldots, a_{n}\right)+R\left(b_{1}, \ldots, b_{n}\right)$ is a prime submodule of $F=R^{(n)}$, where $R=R b_{1}+\cdots+R b_{n}$. Consider the submodules

$$
L=R\left(b_{1}, \ldots, b_{n}\right) \text { and } L^{\prime}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in F: s_{1} x_{1}+\cdots+s_{n} x_{n}=0\right\}
$$

of F, where $s_{i} \in R(1 \leqslant i \leqslant n)$ and $1=s_{1} b_{1}+\cdots+s_{n} b_{n}$. Note first that $F=L \oplus L^{\prime}$ by Proposition 2.2.3. Now $N=N \cap\left(L \oplus L^{\prime}\right)=L \oplus\left(N \cap L^{\prime}\right)$. Let $c=s_{1} a_{1}+\cdots+s_{n} a_{n}$. Then $N \cap L^{\prime} \supseteq R(\mathbf{a}-c \mathbf{b})$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots b_{n}\right)$, and $N=R(\mathbf{a}-c \mathbf{b}) \oplus R \mathbf{b}$, so that $N \cap L^{\prime}=R(\mathbf{a}-c \mathrm{~b})$.

Lemma 2.3.1 Let R be a commutative domain and let N be a submodule of an R module M such that the module M / N is torsion-free. Let L be a proper submodule of N. Then L is a 0-prime submodule of N if and only if L is a 0 -prime submodule of M.

Proof. Suppose first that L is a 0 -prime submodule of M. Then the module M / L is torsion-free and hence the module N / L is torsion-free, i.e. L is a 0 -prime submodule of N. Conversely, suppose that L is a 0 -prime submodule of N. Then N / L and M / N are both torsion-free R-modules, so that M / L is torsion-free and L is a 0 -prime submodule of M.

Theorem 2.3.2 Let R be a UFD, let $n \geqslant 3$ be a positive integer and $a_{i}, b_{i} \in R$ $(1 \leqslant i \leqslant n)$ such that $R=R b_{1}+\cdots+R b_{n}$. Let $c=s_{1} a_{1}+\cdots+s_{n} a_{n}$ where $s_{i} \in R$ $(1 \leqslant i \leqslant n)$ and $1=s_{1} b_{1}+\cdots+s_{n} b_{n}$. Then $N=R\left(a_{1}, \ldots, a_{n}\right)+R\left(b_{1}, \ldots, b_{n}\right)$ is a prime submodule of $F=R^{(n)}$ if and only if either $a_{i}=c b_{i}(1 \leqslant i \leqslant n)$ or every common divisor of $a_{i}-c b_{i}(1 \leqslant i \leqslant n)$ is a unit in R.

Proof. With the above notation, N is a prime submodule of F if and only if $N \cap L^{\prime}$ is a prime submodule of L^{\prime}, because $F=L \oplus L^{\prime}$ and $N=L \oplus\left(N \cap L^{\prime}\right)$ together give $F / N \cong L^{\prime} /\left(N \cap L^{\prime}\right)$. Moreover, $\left(N \cap L^{\prime}: L^{\prime}\right)=(N: F)=0$ by Lemma 2.2.1. By Lemma 2.3.1, $N \cap L^{\prime}$ is a prime submodule of L^{\prime} if and only if $N \cap L^{\prime}$ is a prime submodule of F. Now $N \cap L^{\prime}=R(\mathbf{a}-c \mathbf{b})$. Thus $N \cap L^{\prime}$ is a prime submodule of F if and only if $N \cap L^{\prime}=0$, i.e . $a_{i}=c b_{i}(1 \leqslant i \leqslant n)$, or every common divisor of $a_{i}-c b_{i}(1 \leqslant i \leqslant n)$ is a unit in R by Theorem 2.2.7.

Remark: Note that if $N=R\left(a_{1}, \ldots, a_{n}\right)+R\left(b_{1}, \ldots, b_{n}\right)$ where $a_{i}, b_{i} \in R$ $(1 \leqslant i \leqslant n)$ and $R=R a_{1}+\cdots+R a_{n}=R b_{1}+\cdots+R b_{n}$ then in general N is not a prime submodule of F as the following example shows.

Example 2.3.3 The submodule $N=\mathbb{Z}(2,3,5)+\mathbb{Z}(2,1,3)$ of the free \mathbb{Z}-module $F=\mathbb{Z}^{(3)}$ is not prime.

Proof. Suppose that N is a prime submodule of F. The element $(4,4,8)=$ $(2,3,5)+(2,1,3) \in N$. Thus $4(1,1,2) \in N$ and hence $(1,1,2) \in N$ by Lemma 2.2.1. It is easy to check that $(1,1,2) \neq s(2,3,5)+t(2,1,3)$ for any $s, t \in \mathbb{Z}$, a contradiction. Thus N is not prime.

Theorem 2.3.2 deals only with the case $n \geqslant 3$. If $n=1$ then $N=R a_{1}+R b_{1}=$ R which is not prime. We now deal with the case $n=2$.

Proposition 2.3.4 Let R be a commutative ring and let $a_{i}, b_{i} \in R(i=1,2)$ such that $R=R b_{1}+R b_{2}$. Then $N=R\left(a_{1}, a_{2}\right)+R\left(b_{1}, b_{2}\right)$ is a prime submodule of $F=R^{(2)}$ if and only if $R\left(a_{1} b_{2}-a_{2} b_{1}\right)$ is a prime ideal of R.

Proof. There exist elements $s_{1}, s_{2} \in R$ such that $1=s_{1} b_{1}+s_{2} b_{2}$. Then $F=$ $L \oplus L^{\prime}$ where $L=R\left(b_{1}, b_{2}\right)$ and $L^{\prime}=\left\{(x, y) \in F: s_{1} x+s_{2} y=0\right\}$. Clearly $R\left(-s_{2}, s_{1}\right) \subseteq L^{\prime}$. Moreover,

$$
(1,0)=s_{1}\left(b_{1}, b_{2}\right)+\left(-b_{2}\right)\left(-s_{2}, s_{1}\right) \text { and }(0,1)=s_{2}\left(b_{1}, b_{2}\right)+b_{1}\left(-s_{2}, s_{1}\right)
$$

together imply $F=L+R\left(-s_{2}, s_{1}\right)$. It follows that $L^{\prime}=\left(L \cap L^{\prime}\right)+R\left(-s_{2}, s_{1}\right)=$ $R\left(-s_{2}, s_{1}\right)$.

As before, $N=L \oplus\left(N \cap L^{\prime}\right)$ and $N \cap L^{\prime}=R\left(a_{1}-c b_{1}, a_{2}-c b_{2}\right)$ where $c=s_{1} a_{1}+s_{2} a_{2}$. Note that $\left(a_{1}-c b_{1}, a_{2}-c b_{2}\right)=\left(a_{2} b_{1}-b_{2} a_{1}\right)\left(-s_{2}, s_{1}\right)$ because

$$
\begin{aligned}
-s_{2}\left(a_{2} b_{1}-b_{2} a_{1}\right) & =-s_{2} a_{2} b_{1}+s_{2} b_{2} a_{1} \\
& =-s_{2} a_{2} b_{1}+\left(1-s_{1} b_{1}\right) a_{1} \\
& =a_{1}-\left(s_{1} a_{1}+s_{2} a_{2}\right) b_{1} \\
& =a_{1}-c b_{1}, \text { and } \\
s_{1}\left(a_{2} b_{1}-b_{2} a_{1}\right) & =s_{1} a_{2} b_{1}-s_{1} b_{2} a_{1} \\
& =\left(1-s_{2} b_{2}\right) a_{2}-s_{1} b_{2} a_{1} \\
& =a_{2}-\left(s_{1} a_{1}+s_{2} a_{2}\right) b_{2} \\
& =a_{2}-c b_{2} .
\end{aligned}
$$

Note also that if $r \in R$ and $r\left(-s_{2}, s_{1}\right)=0$ then $r s_{2}=0, r s_{1}=0$ and hence

$$
r=r 1=r\left(s_{1} b_{1}+s_{2} b_{2}\right)=\left(r s_{1}\right) b_{1}+\left(r s_{2}\right) b_{2}=0
$$

Let $d=a_{1} b_{2}-a_{2} b_{1}$. Now $F=L \oplus L^{\prime}$ and $N=L \oplus\left(N \cap L^{\prime}\right)$ give that

$$
F / N \cong L^{\prime} /\left(N \cap L^{\prime}\right)=R\left(-s_{2}, s_{1}\right) / R d\left(-s_{2}, s_{1}\right) \cong R / R d
$$

Thus N is a prime submodule of F if and only if $R d$ is a prime ideal of R.

In Proposition 2.3 .4 it is crucial that $R=R b_{1}+R b_{2}$. For, let N denote submodule $\mathbb{Z}(6,6)+\mathbb{Z}(10,10)$ of the free \mathbb{Z}-module $\mathbb{Z} \oplus \mathbb{Z}$. Then $N=\mathbb{Z}(2,2)$ and $2(1,1) \in N,(1,1) \notin N$, so that N is not prime (Corollary 2.2.2). However $a_{1}=a_{2}=6, b_{1}=b_{2}=10$ gives $\mathbb{Z}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0$ which is a prime ideal of \mathbb{Z}.

We fix the following notation. Let n be a positive integer, let $a_{i j} \in R$ $(1 \leqslant i, j \leqslant n)$ and let $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in R^{(n)}=F$ for all $1 \leqslant i \leqslant n$. Let $N=R \mathbf{a}_{1}+\cdots+R \mathbf{a}_{n}$ be a proper submodule of F. Let A denote the $n \times n$ matrix ($a_{i j}$) over R. Proposition 2.3.4 suggests that it might be the case that N is a prime submodule of F if and only if $R(\operatorname{det} A)$ is a prime ideal of R, provided that

$$
R=R a_{i 1}+\cdots+R a_{i n} \quad(2 \leqslant i \leqslant n) .
$$

The next two examples show that in fact neither of these implications is true.
Example 2.3.5 With the above notation, $\mathbb{Z}(3,5,7)+\mathbb{Z}(0,2,1)+\mathbb{Z}(0,1,2)$ is a prime submodule of $F=\mathbb{Z}^{(3)}$ but $\operatorname{det} A=9$.

Proof. Note that $A=\left[\begin{array}{lll}3 & 5 & 7 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$ so that clearly $\operatorname{det} A=9$. Moreover,
$3(1,0,0)=(3,5,7)-(0,2,1)-3(0,1,2) \in N$, $3(0,1,0)=0(3,5,7)+2(0,2,1)-(0,1,2) \in N$, $3(0,0,1)=0(3,5,7)-(0,2,1)+2(0,1,2) \in N$, and $(1,0,0) \notin N$. Thus $3 F \subseteq N \neq F$. It follows that N is a prime submodule of F by Proposition 1.1.2.8.

Example 2.3.6 With the above notation, $\mathbb{Z}(3,5,7)+\mathbb{Z}(0,2,1)+\mathbb{Z}(0,2,1)$ is not a prime submodule of $F=\mathbb{Z}^{(3)}$ but $\operatorname{det} A=0$, which is a prime ideal of \mathbb{Z}.

Proof. In this case, $A=\left[\begin{array}{lll}3 & 5 & 7 \\ 0 & 2 & 1 \\ 0 & 2 & 1\end{array}\right]$ and clearly $\operatorname{det} A=0$.
Since $N=\mathbb{Z}(3,5,7)+\mathbb{Z}(0,2,1)$, it follows that $(N: F)=0$. Suppose that N is a prime submodule of F, i.e. the \mathbb{Z}-module F / N is torsion-free. Now $3(1,1,2)=$
$(3,3,6)=(3,5,7)-(0,2,1) \in N$ gives that $(1,1,2) \in N$, i.e. $(1,1,2)=a(3,5,7)+$ $b(0,2,1)$ for some $a, b \in \mathbb{Z}$ and hence $3 a=1$, a contradiction. Thus N is not prime.

We note the following general fact.
Proposition 2.3.7 Let R be commutative ring, let n be a positive integer, let $a_{i j} \in R(1 \leqslant i, j \leqslant n)$, let $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in F=R^{(n)}(1 \leqslant i \leqslant n)$ and let $N=R \mathbf{a}_{1}+\cdots+R \mathbf{a}_{n}$. Let A denote the $n \times n \operatorname{matrix}\left(a_{i j}\right)$ over R. Then

$$
R(\operatorname{det} A) \subseteq(N: F) \subseteq \sqrt{R(\operatorname{det} A)}
$$

Proof. Let $B=\operatorname{adj} A$, the adjugate of the matrix A. Then $(\operatorname{det} A) I_{n}=B A$, where I_{n} denotes the $n \times n$ identity matrix over R. Suppose that B is the $n \times n$ matrix $\left(b_{i j}\right)$ over R. Then

$$
(\operatorname{det} A) \mathbf{e}_{i}=b_{i 1} \mathbf{a}_{1}+\cdots+b_{i n} \mathbf{a}_{n} \in N
$$

for each $1 \leqslant i \leqslant n$. It follows that $(\operatorname{det} A) F \subseteq N$, i.e. $R(\operatorname{det} A) \subseteq(N: F)$.
Let $r \in(N: F)$. There exist elements $c_{i j} \in R(1 \leqslant i, j \leqslant n)$ such that $r \mathbf{e}_{i}=c_{i 1} \mathbf{a}_{1}+\cdots+c_{i n} \mathbf{a}_{n}$ for all $1 \leqslant i \leqslant n$. Let C denote the $n \times n$ matrix ($c_{i j}$) over R. Then $r I_{n}=C A$. Taking determinants we have

$$
r^{n}=\operatorname{det}(C A)=(\operatorname{det} C)(\operatorname{det} A) \in R(\operatorname{det} A)
$$

It follows that $(N: F) \subseteq \sqrt{R(\operatorname{det} \mathrm{~A})}$.

Corollary 2.3.8 With the above notation, if $R(\operatorname{det} A)$ is a maximal ideal of R then N is a prime submodule of F.

Proof. By Propositions 1.1.2.8 and 2.3.7.

Next we consider what happens when $R(\operatorname{det} A)$ is a prime ideal of R. We have the following result.

Proposition 2.3.9 With the notation of Proposition 2.3.7, let R be a domain and let $R(\operatorname{det} A)$ be a non-zero prime ideal of R. Then N is a prime submodule of F.

Proof. Let $r \in R, x_{i} \in R(1 \leqslant i \leqslant n)$ such that $r\left(x_{1}, \ldots, x_{n}\right) \in N$. Then

$$
r\left(x_{1}, \ldots, x_{n}\right)=s_{1} \mathbf{a}_{1}+\cdots+s_{n} \mathbf{a}_{n}
$$

for some elements $s_{i} \in R(1 \leqslant i \leqslant n)$. In matrix notation, we have

$$
r\left[x_{1} \cdots x_{n}\right]=\left[s_{1} \cdots s_{n}\right] A
$$

Let $B=\operatorname{adj} A$. Then

$$
r\left[x_{1} \cdots x_{n}\right] B=\left[s_{1} \cdots s_{n}\right] A B=d\left[s_{1} \cdots s_{n}\right]
$$

where $d=\operatorname{det} A$. If $B=\left(b_{i j}\right)$ then

$$
r\left(x_{1} b_{1 j}+\cdots+x_{n} b_{n j}\right)=s_{j} d \in R d
$$

for all $1 \leqslant j \leqslant n$. Since $R d$ is prime it follows that $r \in R d$ and hence $r F \subseteq N$ by Proposition 2.3.7, or there exist $t_{j} \in R(1 \leqslant j \leqslant n)$ such that $x_{1} b_{1 j}+\cdots+x_{n} b_{n j}=$ $t_{j} d(1 \leqslant j \leqslant n)$. In matrix terms, we have

$$
\left[x_{1} \cdots x_{n}\right] B=d\left[t_{1} \cdots t_{n}\right]
$$

and hence

$$
\left[x_{1} \cdots x_{n}\right] B A=d\left[t_{1} \cdots t_{n}\right] A
$$

i.e.

$$
d\left[x_{1} \cdots x_{n}\right]=d\left[t_{1} \cdots t_{n}\right] A
$$

Since R is a domain and $d \neq 0$ it follows that $\left[x_{1} \cdots x_{n}\right]=\left[t_{1} \cdots t_{n}\right] A$ and hence $\left(x_{1}, \ldots, x_{n}\right)=t_{1} \mathbf{a}_{1}+\cdots+t_{n} \mathbf{a}_{n} \in N$. It follows that N is a prime submodule of F.

Note that Example 2.3.5 shows that the converse of Proposition 2.3.9 is false in general, and Example 2.3.6 shows that in general Proposition 2.3.9 is false in case $\operatorname{det} A=0$.

We now consider 2-generated submodules N of F of the form

$$
N=R\left(a_{1}, \ldots, a_{n}\right)+R(b, \ldots, b)
$$

where $b, a_{i} \in R(1 \leqslant i \leqslant n)$. More generally, we shall consider when a submodule N of the form $R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)$ is prime, where I is an ideal of R. First we prove a result which deals with the case $a_{i}=0(1 \leqslant i \leqslant n)$.

Lemma 2.3.10 Let R be a commutative domain. Let I be an ideal of R. Then $I(1, \ldots, 1)$ is a prime submodule of $F=R^{(n)}$ (where $n \geqslant 2$) if and only if $I=0$ or $I=R$.

Proof. Suppose that $I=0$. Then $I(1, \ldots, 1)=0$ and hence $I(1, \ldots, 1)$ is a 0 -prime submodule of F. If $I=R$ then $I(1, \ldots, 1)$ is a 0 -prime submodule of F since $F=I(1, \ldots, 1) \oplus G$, where $G=0 \oplus R^{(n-1)}$.

Conversely, suppose that $N=I(1, \ldots, 1)$ is a prime submodule of F. Now $I(1, \ldots, 1) \subseteq N$ implies that $R(1, \ldots, 1) \subseteq N$, so that $N=R(1, \ldots, 1)$ and hence $R=I$, or $I F \subseteq N$. Suppose that $I F \subseteq N$. Let $a \in I$. Then there exists $b \in I$ such that $a(1,0, \ldots, 0)=b(1, \ldots, 1)$. Hence $a=b=0$. It follows that $I=0$.

We now suppose that R is a commutative domain, $a_{i} \in R(1 \leqslant i \leqslant n)$, not all zero, I is a non-zero ideal of R and $N=R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)$.

Lemma 2.3.11 Suppose that N is a prime submodule of $F=R^{(n)}$ (where $n \geqslant$ 2). Then either
(i) $I=R$, or
(ii) $a_{1}=\cdots=a_{n}$ and $R=R a_{1}+I$.

In any case, $N=R\left(a_{1}, \ldots, a_{n}\right)+R(1, \ldots, 1)$.
Proof. Note first that $I(1, \ldots, 1) \subseteq N$ gives that $I F \subseteq N$ or $(1, \ldots, 1) \in N$. Suppose first that $I F \subseteq N$. Let $0 \neq c \in I$. Then

$$
(c, 0, \ldots, 0)=c(1,0, \ldots, 0)=r\left(a_{1}, \ldots, a_{n}\right)+s(1, \ldots, 1)
$$

for some $r \in R, s \in I$. Since $c \neq 0$ it follows that $r \neq 0$. Then $c=r a_{1}+s$, $0=r a_{i}+s(2 \leqslant i \leqslant n)$, and hence $0=r\left(a_{2}-a_{i}\right)$, for all $2 \leqslant i \leqslant n$. It follows that $a_{2}=a_{3}=\cdots=a_{n}$. By considering $(0, c, 0, \ldots, 0) \in N$, we obtain $a_{1}=a_{2}$. Thus $a_{1}=a_{2}=\cdots=a_{n}$. But we now have

$$
(c, 0, \ldots, 0)=r\left(a_{1}, \ldots, a_{1}\right)+s(1, \ldots, 1)
$$

which implies $c=0$, a contradiction. Thus $I F \nsubseteq N$. Hence $(1, \ldots, 1) \in N$, and hence

$$
(1, \ldots, 1)=x\left(a_{1}, \ldots, a_{n}\right)+y(1, \ldots, 1)
$$

for some $x \in R, y \in I$. If $x=0$ then $y=1$ and hence $I=R$. Suppose that $x \neq 0$. Then $x\left(a_{i}-a_{j}\right)=0(1 \leqslant i<j \leqslant n)$ and hence $a_{i}=a_{j}(1 \leqslant i<j \leqslant n)$. Moreover, $1=x a_{1}+y \in R a_{1}+I$. Thus $R=R a_{1}+I$.

If $I=R$ then clearly $N=R\left(a_{1}, \ldots, a_{n}\right)+R(1, \ldots, 1)$. Now suppose that $a_{i}=a_{j}(1 \leqslant i<j \leqslant n)$ and $1=x a_{1}+y$ (as above). Then

$$
(1, \ldots, 1)=x\left(a_{1}, \ldots, a_{n}\right)+y(1, \ldots, 1) \in N .
$$

Thus $N=R\left(a_{1}, \ldots, a_{n}\right)+R(1, \ldots, 1)$.

Theorem 2.3.12 With the above notation let R be a UFD and $n \geqslant 3$. Then $N=R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)$ is a prime submodule of F if and only if
(a) $I=R$ and every common divisor of the elements $a_{i}-a_{1}(2 \leqslant i \leqslant n)$ is a unit in R, or
(b) $a_{1}=\cdots=a_{n}$ and $R=R a_{1}+I$.

Proof. Suppose first that N is a prime submodule of F. By Lemma 2.3.11, $I=R$ or $a_{1}=\cdots=a_{n}$ and $R=R a_{1}+I$. Suppose that $I=R$ then

$$
N=R\left(a_{1}, \ldots, a_{n}\right)+R(1, \ldots, 1)
$$

By Theorem 2.3.2, $a_{1}=\cdots=a_{n}$ or every common divisor of $a_{i}-a_{1}(2 \leqslant i \leqslant n)$ is a unit in R.

Conversely, if (b) holds then $N=R(1, \ldots, 1)$ and if (a) holds then $N=R\left(a_{1}, \ldots, a_{n}\right)+R(1, \ldots, 1)$ where any common factor of $a_{i}-a_{1}(2 \leqslant i \leqslant n)$ is a unit. By Corollary 2.2.4 and Theorem 2.3.2, N is a prime submodule of F.

Chapter 3

RADICALS OF SUBMODULES OF FREE MODULES

The aim of this chapter is to describe $\operatorname{rad}_{M}(N)$ for a given submodule N of a module M in some special cases. If $M=R$ then N is an ideal of R and $\operatorname{rad}_{M}(N)=\sqrt{N}$. If $M \neq R$ it has proved difficult to characterize $\operatorname{rad}_{M}(N)$.

Throughout this chapter all rings will be commutative with identity. We fix the following notation. Let R be a ring. Let n be a positive integer and let F be the free R-module $R^{(n)}$. Let $\mathbf{x}_{i} \in F(1 \leqslant i \leqslant m)$, for some positive integer m. Then

$$
\mathbf{x}_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)(1 \leqslant i \leqslant m)
$$

for some $x_{i j} \in R(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$. We set

$$
\left[\mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right] \in M_{m \times n}(R)
$$

Thus the $j^{\text {th }}$ row of the matrix $\left[\mathrm{x}_{1} \cdots \mathrm{x}_{m}\right.$] consists of the components of the element x_{j} in F.

Let $A=\left(a_{i j}\right) \in M_{m \times n}(R)$. Let $t \leqslant \min (m, n)$. By a $t \times t$ minor of A we mean the determinant of a $t \times t$ submatrix of A, that is a determinant of the form

$$
\left|\begin{array}{ccc}
a_{i(1) j(1)} & \cdots & a_{i(1) j(t)} \\
\vdots & \ddots & \vdots \\
a_{i(t) j(1)} & \cdots & a_{i(t) j(t)}
\end{array}\right|
$$

where $1 \leqslant i(1)<\cdots<i(t) \leqslant m, 1 \leqslant j(1)<\cdots<j(t) \leqslant n$. For each $1 \leqslant t \leqslant \min (m, n)$, we denote by A_{t} the ideal of R generated by the $t \times t$ minors of A. Note that $A_{1}=\sum_{j=1}^{n} \sum_{i=1}^{m} R a_{i j} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots \supseteq A_{k}$, where $k=\min (m, n)$.

Let F be the free R-module $R^{(n)}$, for some positive integer n. Let $N=$ $\sum_{i=1}^{m} R \mathbf{x}_{i}$ be a finitely generated submodule of F . Then $\mathbf{r} \in \operatorname{rad}_{F}(N)$ if and only if $\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}}$ for all $1 \leqslant t \leqslant \min (m+1, n)$ (Theorem 3.1.5). As an application it is proved in Theorem 3.1.9 that if $N=\sum_{i=1}^{m} R \mathrm{x}_{i}+I F$ for some positive integer m and elements $\mathbf{x}_{i} \in F(1 \leqslant i \leqslant m)$, then $\mathbf{r} \in \operatorname{rad}_{F}(N)$ if and only if $\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left(\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}+I\right)}$ for all $1 \leqslant t \leqslant \min (m+1, n)$. On the other hand if R is a UFD, n a positive integer, a_{1}, \ldots, a_{n} elements of R not all zero and N the submodule $R\left(a_{1}, \ldots, a_{n}\right)$ of $F=R^{(n)}$, then it is shown in Proposition 3.1.10 that $\operatorname{rad}_{F}(N)=R\left(b_{1}, \ldots, b_{n}\right)$ where $b_{i}=\left(p_{1} \cdots p_{m} a_{i}\right) / d$ $(1 \leqslant i \leqslant n), d$ is a greatest common divisor (gcd) of a_{1}, \ldots, a_{n} and p_{1}, \ldots, p_{m} are the pairwise non-associate prime divisors of d.

In particular, for a not necessarily finitely generated submodule N of F of the form $R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)$ for an ideal I of $R, \operatorname{rad}_{F}(N)=R\left(a_{1}, \ldots, a_{n}\right)+$ $\sqrt{I}(1, \ldots, 1)+W F=<E_{F}(N)>$ if the ideal $\sum_{i=1}^{n} R\left(a_{1}-a_{i}\right)$ is equal to R (Theorem 3.2.5).

3.1 Characterization of the Radical

In this section we describe $\operatorname{rad}_{F}(N)$ where N is a finitely generated submodule of the free module F. First we make a general observation.

Let N be a proper submodule of any R-module M. Let \mathcal{P} be a prime ideal of R. Then we shall denote by $K(N, \mathcal{P})$ the following subset of M :

$$
K(N, \mathcal{P})=\{m \in M: c m \in \mathcal{P} M+N, \text { for some } c \in R \backslash \mathcal{P}\}
$$

It is clear that $K(N, \mathcal{P})$ is a submodule of M and $\mathcal{P} M+N \leqslant K(N, \mathcal{P})$.
Lemma 3.1.1 With the above notation, $K(N, \mathcal{P})=M$ or $K(N, \mathcal{P})$ is a prime submodule of M with $\mathcal{P}=(K(N, \mathcal{P}): M)$.

Proof. Suppose $K(N, \mathcal{P}) \neq M$. Apply Proposition 1.2.9 to the module M / N.

Corollary 3.1.2 With the above notation, for any submodule N of M, $\operatorname{rad}_{M}(N)=\bigcap\{K(N, \mathcal{P}): \mathcal{P}$ is a prime ideal of $R\}$.

Proof. Clear by Lemma 3.1.1 and the fact that $K(N, Q) \leqslant L$ for every prime submodule L of F containing N, where $Q=(L: M)$, a prime ideal of R.

Lemma 3.1.3 Let R be a ring and F be the free R-module $R^{(n)}$, for some positive integer n. Let $N=\sum_{i=1}^{m} R \mathbf{x}_{i}$ be a finitely generated submodule of F where $m<n$. Then
$\mathbf{r} \in \operatorname{rad}_{F}(N)$ if and only if $\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}}(1 \leqslant t \leqslant m+1)$.

Proof. Suppose that $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right) \in \operatorname{rad}_{F}(N)$ where $r_{i} \in R(1 \leqslant i \leqslant n)$. Let \mathcal{P} be any prime ideal of R. By Corollary 3.1.2, there exist $c \in R \backslash \mathcal{P}, s_{i} \in R$ $(1 \leqslant i \leqslant m)$ and $p_{i} \in \mathcal{P}(1 \leqslant i \leqslant n)$ such that

$$
c \mathbf{r}=s_{1} \mathbf{x}_{\mathbf{1}}+\cdots+s_{m} \mathbf{x}_{m}+\mathbf{p}
$$

where $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$; that is, if $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)$ where $x_{i j} \in R(1 \leqslant i \leqslant$ $m, 1 \leqslant j \leqslant n$) then

$$
\begin{equation*}
c r_{i}=s_{1} x_{1 i}+s_{2} x_{2 i}+\cdots+s_{m} x_{m i}+p_{i} \quad(1 \leqslant i \leqslant n) \tag{3.1}
\end{equation*}
$$

Suppose that $1 \leqslant t \leqslant m+1$ and $\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \subseteq \mathcal{P}$. Let $1 \leqslant i(1)<\cdots<i(t-1) \leqslant$ $m, 1 \leqslant j(1)<\cdots<j(t) \leqslant n$. Let

$$
X_{t}=\left|\begin{array}{ccc}
r_{j(1)} & \cdots & r_{j(t)} \\
x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\
\vdots & \ddots & \vdots \\
x_{i(t-1) j(1)} & \cdots & x_{i(t-1) j(t)}
\end{array}\right|
$$

which is a $t \times t$ minor of $\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]$. Then by (3.1),

$$
\begin{aligned}
& c X_{t}=\left|\begin{array}{ccc}
c r_{j(1)} & \cdots & c r_{j(t)} \\
x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\
\vdots & \ddots & \vdots \\
x_{i(t-1) j(1)} & \cdots & x_{i(t-1) j(t)}
\end{array}\right| . \\
& =\left|\begin{array}{ccc}
\sum_{k=1}^{m} s_{k} x_{k j(1)}+p_{j(1)} & \cdots & \sum_{k=1}^{m} s_{k} x_{k j(t)}+p_{j(t)} \\
x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\
\vdots & \ddots & \vdots \\
x_{i(t-1) j(1)} & \cdots & x_{i(t-1) j(t)}
\end{array}\right| \\
& =\sum_{k=1}^{m} s_{k}\left|\begin{array}{ccc}
x_{k j(1)} & \cdots & x_{k j(t)} \\
x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\
\vdots & \ddots & \vdots \\
x_{i(t-1) j(1)} & \cdots & x_{i(t-1) j(t)}
\end{array}\right|+\left|\begin{array}{ccc}
p_{j(1)} & \cdots & p_{j(t)} \\
x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\
\vdots & \ddots & \vdots \\
x_{i(t-1) j(1)} & \cdots & x_{i(t-1) j(t)}
\end{array}\right| \in \mathcal{P} .
\end{aligned}
$$

Thus $X_{t} \in \mathcal{P}$. It follows that

$$
\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}}
$$

Conversely suppose that $\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left[0 \mathbf{x}_{\mathbf{1}} \cdots \mathbf{x}_{m}\right]_{t}}$ for every $1 \leqslant t \leqslant$ $m+1$. Let \mathcal{P} be any prime ideal of R. It is enough to show that $\mathbf{r} \in K(N, \mathcal{P})$, by Corollary 3.1.2. If $\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{1} \subseteq \mathcal{P}$ then $r_{i} \in\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{1} \subseteq \mathcal{P}$ and hence $\mathbf{r}=\left(r_{1}, \ldots, r_{m}\right) \in \mathcal{P} F \subseteq K(N, \mathcal{P})$. Suppose that $\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{1} \nsubseteq \mathcal{P}$. Note that $\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{m+1}=0 \subseteq \mathcal{P}$. Thus there exists $1 \leqslant t \leqslant m$ such that

$$
\left[0 \mathrm{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \nsubseteq \mathcal{P} \text { but }\left[0 \mathbf{x}_{\mathbf{1}} \cdots \mathbf{x}_{m}\right]_{t+1} \subseteq \mathcal{P}
$$

There exist $1 \leqslant i(1)<\cdots<i(t) \leqslant m, 1 \leqslant j(1)<\cdots<j(t) \leqslant n$ such that

$$
d=\left|\begin{array}{ccc}
x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\
\vdots & \ddots & \vdots \\
x_{i(t) j(1)} & \cdots & x_{i(t) j(t)}
\end{array}\right| \notin \mathcal{P}
$$

By hypothesis, for each $1 \leqslant j \leqslant n,\left|\begin{array}{cccc}r_{j} & r_{j(1)} & \cdots & r_{j(t)} \\ x_{i(1) j} & x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\ \vdots & \vdots & \ddots & \vdots \\ x_{i(t) j} & x_{i(t) j(1)} & \cdots & x_{i(t) j(t)}\end{array}\right| \in \mathcal{P}$.
Expanding this determinant by the first column we find that

$$
d r_{j}+a_{i(1)} x_{i(1) j}+\cdots+a_{i(t)} x_{i(t) j} \in \mathcal{P}
$$

where $a_{i(k)}=(-1)^{k}\left|\begin{array}{ccc}r_{j(1)} & \cdots & r_{j(t)} \\ x_{i(1) j(1)} & \cdots & x_{i(1) j(t)} \\ \vdots & \ddots & \vdots \\ x_{i(k-1) j(1)} & \cdots & x_{i(k-1) j(t)} \\ x_{i(k+1) j(1)} & \cdots & x_{i(k+1) j(t)} \\ \vdots & \ddots & \vdots \\ x_{i(t) j(1)} & \cdots & x_{i(t) j(t)}\end{array}\right|$, for each $1 \leqslant k \leqslant t$.

Note that d and $a_{i(k)}(1 \leqslant k \leqslant t)$ are independent of j. Thus

$$
d r_{j}+a_{i(1)} x_{i(1) j}+\cdots+a_{i(t)} x_{i(t) j} \in \mathcal{P}(1 \leqslant j \leqslant n)
$$

i.e. $d \mathbf{r} \in R \mathbf{x}_{1}+\cdots+R \mathbf{x}_{m}+\mathcal{P} F=N+\mathcal{P} F$, and hence $\mathbf{r} \in K(N, \mathcal{P})$.

Lemma 3.1.4 Let M_{1} and M_{2} be R-modules and let $M=M_{1} \oplus M_{2}=\left\{\left(m_{1}, m_{2}\right)\right.$: $\left.m_{i} \in M_{i}(i=1,2)\right\}$. Let N be a proper submodule of M_{1}. Then $m \in \operatorname{rad}_{M_{1}}(N)$ if and only if $(m, 0) \in \operatorname{rad}_{M}(N \oplus 0)$.

Proof. Suppose first that $m \in \operatorname{rad}_{M_{1}}(N)$. Let P be a prime submodule of M such that $N \oplus 0 \subseteq P$. Let $P^{\prime}=\left\{x \in M_{1}:(x, 0) \in P\right\}$. It can easily be checked that $P^{\prime}=M_{1}$ or P^{\prime} is a prime submodule of M_{1} and $N \subseteq P^{\prime}$. Thus $m \in P^{\prime}$ and hence $(m, 0) \in P$. It follows that $(m, 0) \in \operatorname{rad}_{M}(N \oplus 0)$.

Conversely, suppose that $(m, 0) \in \operatorname{rad}_{M}(N \oplus 0)$. Let Q be a prime submodule of M_{1} such that $N \subseteq Q$. Then $Q \oplus M_{2}$ is a prime submodule of M with $N \oplus 0 \subseteq$ $Q \oplus M_{2}$. Hence $(m, 0) \in Q \oplus M_{2}$ so that $m \in Q$. It follows that $m \in \operatorname{rad}_{M_{1}}(N)$.

Theorem 3.1.5 Let R be a ring and let F be the free R-module $R^{(n)}$, for some positive integer n. Let $N=\sum_{i=1}^{m} R \mathbf{x}_{i}$ be a finitely generated submodule of F. Then

$$
\mathbf{r} \in \operatorname{rad}_{F}(N) \text { if and only if }\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left[\mathbf{0} \cdot \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}}
$$

for all $1 \leqslant t \leqslant \min (m+1, n)$.
Proof. Let $k=\min (m+1, n)$. Suppose first that $k=m+1$, i.e. $m<n$. By Lemma 3.1.3, $\mathbf{r} \in \operatorname{rad}_{F}(N)$ if and only if $\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left[0 \mathbf{x}_{\mathbf{1}} \cdots \mathbf{x}_{m}\right]_{t}}$ for all $1 \leqslant t \leqslant k$.

Now suppose that $k=n$, i.e. $n \leqslant m+1$. Let $G=R^{(m+1)}$. Let $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$, $\mathbf{x}_{i}=\left(x_{i 1}, x_{i 2}, \cdots, x_{i n}\right)$ for some $r_{j} \in R, x_{i j} \in R(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$. By Lemma 3.1.4,

$$
\mathbf{r} \in \operatorname{rad}_{F}(N) \text { if and only if }\left(r_{1}, \ldots, r_{n}, 0, \ldots, 0\right) \in \operatorname{rad}_{G}\left(N^{\prime}\right),
$$

where $N^{\prime}=\sum_{i=1}^{m} R\left(x_{i 1}, \ldots, x_{i n}, 0, \ldots, 0\right)$. Now we can apply Lemma 3.1.3 to obtain the result.

Remark: If M is a Noetherian module over a ring R then Lemma 3.1.3 can be used to calculate $\operatorname{rad}_{M}(0)$ in the following manner. By replacing R by R / A, where A is the annihilator of M in R, we can suppose that M is a faithful R-module. In this case R is a Noetherian ring [34, Exercise 7.27].

Now M is a finitely generated R-module, say $M=R m_{1}+\cdots+R m_{n}$ for some positive integer n and elements $m_{i} \in M(1 \leqslant i \leqslant n)$. There exists a homomorphism

$$
\begin{aligned}
\varphi: F=R^{(n)} & \longrightarrow M \\
\left(r_{1}, \ldots, r_{n}\right) & \longmapsto r_{1} m_{1}+\cdots+r_{n} m_{n} .
\end{aligned}
$$

Denote $K=K e r(\varphi)$ which is a finitely generated submodule of F. Then

$$
\operatorname{rad}_{M}(0)=\varphi\left(\operatorname{rad}_{F}(K)\right),
$$

by Lemma 1.2.6.
In practice, the above results can be used explicitly to.calculate $\operatorname{rad}_{F}(N)$, as we now demonstrate in a number of examples.

Example 3.1.6 Let R be any ring, let $m<n$ be positive integers and let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix with entries in R such that A contains an $m \times m$ submatrix whose determinant is a unit in R. Let $\mathbf{a}_{i}=\left(a_{i 1}, \cdots, a_{i n}\right) \in F=R^{(n)}$
$(1 \leqslant i \leqslant m)$ and let $N=R \mathbf{a}_{1}+\cdots+R \mathbf{a}_{m}$. Then

$$
\begin{aligned}
\operatorname{rad}_{F}(N) & =\left\{\mathbf{r} \in F:\left[\mathbf{r} \mathbf{a}_{1} \cdots \mathbf{a}_{m}\right]_{m+1} \in \sqrt{0}\right\} \\
& =N+\sqrt{0} F
\end{aligned}
$$

Moreover, N is a semiprime (respectively, prime) submodule of F if and only if R is a semiprime ring (respectively a domain).

Proof. For the matrix $B=\left[0 \mathbf{a}_{1} \cdots \mathbf{a}_{m}\right]$, we have $B_{m}=R$ and hence $\sqrt{B_{i}}=R$ $(1 \leqslant i \leqslant m)$. By Lemma 3.1.3,

$$
\mathbf{r} \in \operatorname{rad}_{F}(N) \text { if and only if }\left[\mathbf{r} \mathbf{a}_{1} \cdots \mathbf{a}_{m}\right]_{m+1} \in \sqrt{B_{m+1}}=\sqrt{0}
$$

There exist integers $1 \leqslant j(1)<\cdots<j(m) \leqslant n$ such that

$$
C=\left[\begin{array}{ccc}
a_{1 j(1)} & \cdots & a_{1 j(m)} \\
\vdots & \ddots & \vdots \\
a_{m j(1)} & \cdots & a_{m j(m)}
\end{array}\right]
$$

has determinant u which is a unit in R. Then C has an inverse $D \in M_{m}(R)$. Consider the matrix $D A=\left[\mathrm{b}_{1} \cdots \mathrm{~b}_{m}\right]$ where

$$
\mathbf{b}_{i}=\left(b_{i 1}, \ldots, b_{i n}\right) \in F(1 \leqslant i \leqslant m) .
$$

Since $A=C(D A)$ it follows that

$$
N=R \mathbf{b}_{1}+\cdots+R \mathbf{b}_{m}
$$

Note that $D A$ contains the $m \times m$ submatrix $D C=I_{m}$, the $m \times m$ identity matrix. Thus $F=N \oplus L$ where L is the free submodule of F with basis consisting of the $n-m$ elements $(0, \ldots, 0,1,0, \ldots, 0)$ with the 1 as the i th component for all $i \in\{1, \ldots, n\} \backslash\{j(1), \ldots, j(m)\}$. It follows that

$$
\operatorname{rad}_{F}(N)=N \oplus \operatorname{rad}_{L}(0)=N+\sqrt{0} F .
$$

Moreover, $F / N \cong L$ so that N is a semiprime (respectively, prime) submodule of F if and only if 0 is a semiprime (prime) submodule of the free module L and this happens precisely when R is semiprime (a domain).

Example 3.1.7 Let R be any ring, let m, n be positive integers and let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix of rank 1 with entries in R. Let $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{\text {in }}\right) \in F=R^{(n)}$ $(1 \leqslant i \leqslant m)$ and let $N=R \mathbf{a}_{1}+\cdots+R \mathbf{a}_{m}$. Then $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right) \in \operatorname{rad}_{F}(N)$ if and only if
(i) $r_{i} \in \sqrt{\sum_{j=1}^{m} \sum_{k=1}^{n} R a_{j k}}(1 \leqslant i \leqslant n)$, and
(ii) $r_{i} a_{k j}-r_{j} a_{k i} \in \sqrt{0}(1 \leqslant i<j \leqslant n, 1 \leqslant k \leqslant m)$.

Proof. Let

$$
B=\left[\begin{array}{ccc}
r_{1} & \cdots & r_{n} \\
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \text { and } C=\left[\begin{array}{ccc}
0 & \cdots & 0 \\
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

Then $B_{t}=0$ for all $3 \leqslant t \leqslant k$ and $C_{t}=0$ for all $2 \leqslant t \leqslant k$, where $k=$ $\min (m+1, n)$. Now we can apply Theorem 3.1.5.

As a further application of Theorem 3.1.5, we now calculate the radical of the submodule $W(a, X)$ of Theorem 1.2.28. Let $J=R a+R X$. Let $w \in W$. Then $w^{k} \in J$ for some positive integer k. If P is a prime submodule of F containing $J(a, X)$ then $w^{k}(a, X) \in P$ gives $w(a, X) \in P$. It follows that $\operatorname{rad}_{F}(W(a, X))=$ $\operatorname{rad}_{F}(J(a, X))$. Note that

$$
J(a, X)=R\left(a^{2}, a X\right)+R\left(a X, X^{2}\right)
$$

By Theorem 3.1.5, given $r_{1}, r_{2} \in R$,

$$
\begin{aligned}
\left(r_{1}, r_{2}\right) \in \operatorname{rad}_{F}(J(a, X)) & \Leftrightarrow\left\{\begin{array}{l}
r_{1}, r_{2} \in W \\
a X r_{1}=a^{2} r_{2} \text { and } X^{2} r_{1}=a X r_{2}
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
r_{1}, r_{2} \in W \\
X r_{1}=a r_{2}
\end{array}\right. \\
& \Leftrightarrow\left(r_{1}, r_{2}\right) \in R(a, X) .
\end{aligned}
$$

Thus $\operatorname{rad}_{F}(J(a, X))=R(a, X)$.
We can extend Theorem 3.1.5 and to do so we first prove an elementary lemma.

Lemma 3.1.8 Let A, B, I be ideals of a ring R. Then $A \subseteq \sqrt{B+I}$ if and only if $(A+I) / I \subseteq \sqrt{(B+I) / I}$.

Proof. Suppose first that $(A+I) / I \subseteq \sqrt{(B+I) / I}$. Let \mathcal{P} be a prime ideal of R such that $B+I \subseteq \mathcal{P}$. Then \mathcal{P} / I is a prime ideal of the ring R / I and $(B+I) / I \subseteq \mathcal{P} / I$. By hypothesis, $(A+I) / I \subseteq \mathcal{P} / I$ and hence $A \subseteq A+I \subseteq \mathcal{P}$. It follows that $A \subseteq \sqrt{B+I}$.

Conversely, suppose that $A \subseteq \sqrt{B+I}$. Any prime ideal of the ring R / I containing $(B+I) / I$ is of the form \mathcal{Q} / I where \mathcal{Q} is a prime ideal of R containing $B+I$. Now $B+I \subseteq \mathcal{Q}$ gives $A \subseteq \mathcal{Q}$ and hence $(A+I) / I \subseteq \mathcal{Q} / I$. It follows that $(A+I) / I \subseteq \sqrt{(B+I) / I}$.

Theorem 3.1.9 Let R be a ring and let F be the free R-module $R^{(n)}$, for some positive integer n. Let I be an ideal of R and let $N=\sum_{i=1}^{m} R \mathbf{x}_{i}+I F$ for some positive integer m and elements $\mathbf{x}_{i} \in F(1 \leqslant i \leqslant m)$. Then

$$
\mathbf{r} \in \operatorname{rad}_{F}(N) \text { if and only if }\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left(\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}+I\right)}
$$

for all $1 \leqslant t \leqslant \min (m+1, n)$.

Proof. Let R^{*} denote the ring R / I and, for each element r in R, let r^{*} denote the element $r+I$ of R^{*}. For each element \mathbf{f} in F with $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$, let \mathbf{f}^{*} denote the element $\left(f_{1}^{*}, \ldots, f_{n}^{*}\right)$ of the free (R / I)-module $(R / I)^{(n)}$. Note that $(R / I)^{(n)} \cong F / I F$. It will be convenient to identify these two modules and denote this module by F^{*}. For any submodule K of F, we set $K^{*}=\left\{k^{*}: k \in K\right\}$ which is a submodule of F^{*}. Suppose first that $N=F$. Let $\mathbf{r} \in F$. There exist elements $b_{i} \in R(1 \leqslant i \leqslant m), \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in I F$, where $a_{i} \in I(1 \leqslant i \leqslant n)$ such that

$$
\mathbf{r}=b_{1} \mathbf{x}_{1}+\cdots+b_{m} \mathbf{x}_{m}+\mathbf{a}
$$

Then $\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}+I$ for all $1 \leqslant t \leqslant \min (m+1, n)$ by standard properties of determinants. The result follows in this case.

Next suppose that $N \neq F$. Let K be a prime submodule of F such that $N \subseteq K$. Then $I F \subseteq K$ and hence $K^{*}=K / I F$ is a prime submodule of F^{*} such that $N^{*}=R \mathbf{x}_{1}^{*}+\cdots+R \mathbf{x}_{m}^{*} \subseteq K^{*}$. Conversely, any prime submodule of F^{*} containing N^{*} is clearly of the form L^{*} for some prime submodule L of F containing N. Thus

$$
\left(\operatorname{rad}_{F^{*}}\left(N^{*}\right)\right)=\left(\operatorname{rad}_{F}(N)\right) / I F .
$$

In particular, $\mathbf{r} \in \operatorname{rad}_{F}(N)$ if and only if $\mathbf{r}^{*} \in \operatorname{rad}_{F^{*}}\left(N^{*}\right)$. By Theorem 3.1.5,

$$
\mathbf{r}^{*} \in \operatorname{rad}_{F^{*}}\left(N^{*}\right) \text { if and only if }\left[\mathbf{r}^{*} \mathbf{x}_{1}^{*} \cdots \mathbf{x}_{m}^{*}\right]_{t} \in \sqrt{\left[0 \mathbf{x}_{1}^{*} \cdots \mathbf{x}_{m}^{*}\right]_{t}}
$$

for all $1 \leqslant t \leqslant \min (m+1, n)$, and by Lemma 3.1.8, this holds if and only if

$$
\left[\mathbf{r} \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t} \in \sqrt{\left(\left[0 \mathbf{x}_{1} \cdots \mathbf{x}_{m}\right]_{t}+I\right)}
$$

for all $1 \leqslant t \leqslant \min (m+1, n)$.

For particular submodules, the radical can be expressed in a simple form. Recall that in Theorem 2.2.7 we proved that if R is a UFD and $a_{i} \in R(1 \leqslant i \leqslant n)$,
not all zero, then $N=R\left(a_{1}, \ldots, a_{n}\right)$ is a prime submodule of $R^{(n)}$ if and only if every common divisor of $a_{i}(1 \leqslant i \leqslant n)$ is a unit in R.

Proposition 3.1.10 Let R be a UFD, let n be a positive integer, let $a_{i} \in R$ $(1 \leqslant i \leqslant n)$, not all zero, and let N be the submodule $R\left(a_{1}, \ldots, a_{n}\right)$ of $F=R^{(n)}$. Then $\operatorname{rad}_{F}(N)=R\left(b_{1}, \ldots, b_{n}\right)$ where $b_{i}=\left(p_{1} \cdots p_{m} a_{i}\right) / d(1 \leqslant i \leqslant n), d$ is a greatest common divisor (gcd) of a_{1}, \ldots, a_{n}, and either d is not a unit and p_{1}, \ldots, p_{m} are the pairwise non-associate prime divisors of d, or d is a unit and $p_{1}=\cdots=p_{m}=1$.

Proof. Suppose that d is a gcd of $a_{i}(1 \leqslant i \leqslant n)$. If d is a unit in R then N is prime by Theorem 2.2.7 and hence $\operatorname{rad}_{F}(N)=N=R\left(a_{1}, \ldots, a_{n}\right)$. Now suppose that d is not a unit in R. Then $d=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$ for pairwise non-associate primes $p_{i}(1 \leqslant i \leqslant m)$ and positive integers $k_{i}(1 \leqslant i \leqslant m)$. For each $1 \leqslant i \leqslant n$ there exists $x_{i} \in R$ such that $a_{i}=d x_{i}$. Thus $\left(a_{1}, \ldots, a_{n}\right)=d\left(x_{1}, \ldots, x_{n}\right)=$ $p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}\left(x_{1}, \ldots, x_{n}\right)$.

Let K be any prime submodule of F such that $N=R\left(a_{1}, \ldots, a_{n}\right) \subseteq K$. Then $p_{1}^{k_{1}} \cdots p_{m}^{k_{m}} R\left(x_{1}, \ldots, x_{n}\right) \subseteq K$ and hence $p_{1} \cdots p_{m} R\left(x_{1}, \ldots, x_{n}\right) \subseteq K$. But $p_{1} \cdots p_{m} R\left(x_{1}, \ldots, x_{n}\right)=R\left(p_{1} \cdots p_{m} x_{1}, \ldots, p_{1} \cdots p_{m} x_{n}\right)=R\left(b_{1}, \ldots, b_{n}\right)$. We have proved that $R\left(b_{1}, \ldots, b_{n}\right) \subseteq \operatorname{rad}_{F}(N)$. Note also that $N \subseteq R\left(b_{1}, \ldots, b_{n}\right)$.

Next we prove that

$$
R\left(b_{1}, \ldots, b_{n}\right)=R\left(x_{1}, \ldots, x_{n}\right) \cap p_{1} F \cap \cdots \cap p_{m} F
$$

Clearly $R\left(b_{1}, \ldots, b_{n}\right) \subseteq R\left(x_{1}, \ldots, x_{n}\right) \cap p_{1} F \cap \cdots \cap p_{m} F$. Conversely, let $r \in R$ such that $r\left(x_{1}, \ldots, x_{n}\right) \in p_{1} F \cap \cdots \cap p_{m} F$. For each $1 \leqslant i \leqslant m, p_{i}$ divides $r x_{j}$ $(1 \leqslant j \leqslant n)$ and hence p_{i} divides r, because x_{1}, \ldots, x_{n} have no common prime divisor. Since p_{1}, \ldots, p_{m} are pairwise non-associates it follows that $p_{1} \cdots p_{m}$ divides r. Thus $r\left(x_{1}, \ldots, x_{n}\right) \in R\left(b_{1}, \ldots, b_{n}\right)$, as required.

Since $\left(p_{i} F: F\right)=\left(p_{i}\right)$ is a prime ideal of R and $F / p_{i} F$ is a torsion-free $R /\left(p_{i}\right)$ module, by Proposition 1.1.1.3, $p_{i} F$ is a prime submodule of $F(1 \leqslant i \leqslant m)$. By Theorem 2.2.7, $R\left(x_{1}, \ldots, x_{n}\right)$ is prime. Hence the proof is completed.

A non-zero element r of a UFD R will be called square-free if there does not exist a prime p in R such that $r=p^{2} s$ for some $s \in R$. Compare the next result with Theorem 2.2.7.

Corollary 3.1.11 Let R be a UFD, let n be a positive integer, let $a_{i} \in R(1 \leqslant$ $i \leqslant n)$, not all zero, and let N be the submodule $R\left(a_{1} \ldots, a_{n}\right)$ of $F=R^{(n)}$. Then N is a semiprime submodule of F if and only if any greatest common divisor of $a_{i}(1 \leqslant i \leqslant n)$ is square-free.

Proof. Let d be a greatest common divisor of $a_{i}(1 \leqslant i \leqslant n)$. Suppose that d is square-free. If d is a unit then N is prime by Theorem 2.2.7. Suppose that d is not a unit. Then in the notation of Proposition 3.1.10, $d=u p_{1} \cdots p_{m}$ for some unit u in R and hence $b_{i}=u^{-1} a_{i}(1 \leqslant i \leqslant n)$. In this case, $N=\operatorname{rad}_{F}(N)$, by Proposition 3.1.10, and hence N is semiprime.

Conversely, suppose that N is semiprime. If d is a unit then square-free. Suppose that d is not a unit. Then Proposition 3.1.10 gives $N=\operatorname{rad}_{F}(N)=$ $R\left(b_{1}, \ldots, b_{n}\right)$ where $b_{i}=\left(p_{1} \cdots p_{m} a_{i}\right) / d(1 \leqslant i \leqslant n)$. There exists $r \in R$ such that $\left(b_{1}, \ldots, b_{n}\right)=r\left(a_{1}, \ldots, a_{n}\right)$ and there exists $1 \leqslant j \leqslant n$ such that $a_{j} \neq 0$. Hence $\left(p_{1} \cdots p_{m} a_{j}\right) / d=r a_{j}$, so that $p_{1} \cdots p_{m}=d r$ and hence d is square-free.

3.2 The Radicals of Particular Submodules

In the previous section we gave a description of the radical of a finitely generated submodule of a free module. In this section we shall show how to find
the radical of not necessarily finitely generated submodules of free modules. Now suppose that R is a ring and F is a free R-module. We begin with a very easy case.

Proposition 3.2.1 Let I be any ideal of R. Then

$$
\operatorname{rad}_{F}(I F)=\sqrt{I} F .
$$

Proof. Let $r \in \sqrt{I}$. Then $r^{k} \in I$ for some positive integei k. Let K be a prime submodule of F such that $I F \subseteq K$ and $x \in F$. Then $r^{k} x \in I F \subseteq K$ and it follows that $r x \in K$. Thus $r F \subseteq K$. This implies that $r F \subseteq \operatorname{rad}_{F}(I F)$. Hence $\sqrt{I} F \subseteq \operatorname{rad}_{F}(I F)$.

Conversely, note first that if $I=R$ then $\sqrt{I} F=\operatorname{rad}_{F}(I F)=F$. Suppose that $I \neq R$. Note that

$$
\sqrt{I} F=\left(\bigcap_{\mathcal{P}_{\in \Omega}} \mathcal{P}\right) F=\bigcap_{\mathcal{P} \in \Omega}(\mathcal{P} F)
$$

where Ω is the collection of prime ideals of R such that $I \subseteq \mathcal{P}$. Now by Proposition 1.1.1.3, $\mathcal{P} F$ is a prime submodule of F and $I F \subseteq \mathcal{P} F$ so that $\operatorname{rad}_{F}(I F) \subseteq \mathcal{P} F$ for all $P \in \Omega$. Hence $\operatorname{rad}_{F}(I F) \subseteq \bigcap_{\mathcal{P}_{\in \Omega}}(\mathcal{P} F)=\sqrt{I} F$. It follows that $\operatorname{rad}_{F}(I F)=$ $\sqrt{I} F$.

Corollary 3.2.2 Let R be a ring with prime radical W, let I be an ideal of R and let N be a direct summand of F. Then

$$
\operatorname{rad}_{F}(I N)=\sqrt{I} N+W F
$$

Proof. There exists a submodule N^{\prime} of F such that $F=N \oplus N^{\prime}$. Note that

$$
F /(\sqrt{I} N+W F)=F /\left(\sqrt{I} N \oplus W N^{\prime}\right) \cong(N / \sqrt{I} N) \oplus\left(N^{\prime} / W N^{\prime}\right)
$$

By Proposition 3.2.1, $\operatorname{rad}_{F}(W F)=W F$. But $W F=W N \oplus W N^{\prime}$. Hence $\operatorname{rad}_{N^{\prime}}\left(W N^{\prime}\right)=W N^{\prime}$ by Lemma 1.1.2.4. Thus $\operatorname{rad}_{N^{\prime} / W N^{\prime}}(0)=0$. Similarly
$\operatorname{rad}_{N / \sqrt{I} N}(0)=0$. Again using Lemma 1.1.2.4 we find that $\operatorname{rad}_{F /(\sqrt{I} N+W F)}(0)=0$, i.e. $\sqrt{I} N+W F$ is a semiprime submodule of F. Since $I N \subseteq \sqrt{I} N$ it follows that $\operatorname{rad}_{F}(I N) \subseteq \sqrt{I} N+W F$.

Let $r \in \sqrt{I}, x \in N$. There exists a positive integer k such that $r^{k} \in I$. Let K be any prime submodule of F such that $I N \subseteq K$. Then $r^{k} x \in I N \subseteq K$ and it follows that $r x \in K$. Hence $r x \in \operatorname{rad}_{F}(I N)$. It follows that $\sqrt{I} N \subseteq \operatorname{rad}_{F}(I N)$. A similar argument shows that $W F \subseteq \operatorname{rad}_{F}(I N)$. Hence $\sqrt{I} N+W F \subseteq \operatorname{rad}_{F}(I N)$. Thus $\operatorname{rad}_{F}(I N)=\sqrt{I} N+W F$.

Combining Corollary 3.2.2 and Proposition 2.2 .3 we have the following result.
Corollary 3.2.3 Let R be a ring with prime radical W, let n be a positive integer, let $a_{i} \in R(1 \leqslant i \leqslant n)$ such that $R=R a_{1}+\cdots+R a_{n}$ and let a be the element $\left(a_{1}, \ldots, a_{n}\right)$ of the R-module $F=R^{(n)}$. Then $\operatorname{rad}_{F}(I \mathbf{a})=\sqrt{I} \mathbf{a}+W F$ for any ideal I of R.

Corollary 3.2.4 With the notation of Corollary 3.2.3, the submodule Ia is a semiprime submodule of F if and only if I is a semiprime ideal of R and $W F \subseteq I \mathbf{a}$.

Proof. Suppose first that I is a semiprime ideal of R, i.e. $\sqrt{I}=I$, and $W F \subseteq I$ a. Then clearly

$$
\operatorname{rad}_{F}(I \mathbf{a})=I \mathbf{a}+W F=I \mathbf{a},
$$

i.e. I a is a semiprime submodule of F.

Conversely, suppose that I a is a semiprime submodule of F. Then

$$
I \mathbf{a}=\operatorname{rad}_{F}(I \mathbf{a})=\sqrt{I} \mathbf{a}+W F
$$

so that $W F \subseteq I \mathbf{a}$. Let $x \in \sqrt{I}$. Then $x \mathbf{a}=y \mathbf{a}$ for some $y \in I$. It follows that $(x-y) \mathbf{a}=0$, i.e. $x \in I$. Hence $\sqrt{I}=I$, i.e. I is a semiprime ideal of R.

This brings us to the main result of this section.
Theorem 3.2.5 Let R be a ring with prime radical W, let n be a positive integer and let $F=R^{(n)}$. Let $a_{i} \in R(1 \leqslant i \leqslant n)$, let I be an ideal of R and let N be the submodule $R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)$ of F. Let A be the ideal $\sum_{i=1}^{n} R\left(a_{1}-a_{i}\right)$ of R. Then

$$
\operatorname{Arad}_{F}(N) \subseteq R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F \subseteq \operatorname{rad}_{F}(N)
$$

In particular, if $A=R$ then

$$
\operatorname{rad}_{F}(N)=R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F=<E_{F}(N)>
$$

Proof. Clearly $R\left(a_{1}, \ldots, a_{n}\right) \subseteq N \subseteq \operatorname{rad}_{F}(N)$. If $r \in \sqrt{I}$ then $r^{k} \in I$ for some positive integer k. Hence $r^{k}(1, \ldots, 1) \in I(1, \ldots, 1) \subseteq N$. It follows that $r(1, \ldots, 1) \in \operatorname{rad}_{F}(N)$. Thus $\sqrt{I}(1, \ldots, 1) \subseteq \operatorname{rad}_{F}(N)$. Moreover, $W F \subseteq$ $\operatorname{rad}_{F}(N)$ since W is a nil ideal of R. Thus $R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F \subseteq$ $\operatorname{rad}_{F}(N)$.

Next, let $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right) \in \operatorname{rad}_{F}(N)$ and let $2 \leqslant i \leqslant n$. We shall prove that

$$
\left(a_{1}-a_{i}\right) \mathbf{r} \in R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F
$$

Let \mathcal{P} be any prime ideal of R such that $I \subseteq \mathcal{P}$. By Corollary 3.1.2, there exists $c \in R \backslash \mathcal{P}$ such that $c \mathbf{r} \in N+\mathcal{P} F$, i.e.

$$
c\left(r_{1}, \ldots, r_{n}\right)=s\left(a_{1}, \ldots, a_{n}\right)+t(1, \ldots, 1)+\left(p_{1}, \ldots, p_{n}\right)
$$

for some $s \in R, t \in I, p_{i} \in \mathcal{P}(1 \leqslant i \leqslant n)$.
Hence $c r_{i}-s a_{i}=t+p_{i} \in \mathcal{P}(1 \leqslant i \leqslant n)$. In particular,

$$
c\left(a_{1} r_{i}-a_{i} r_{1}\right)=a_{1}\left(s a_{i}+t+p_{i}\right)-a_{i}\left(s a_{1}+t+p_{1}\right) \in \mathcal{P} .
$$

It follows that $a_{1} r_{i}-a_{i} r_{1} \in \mathcal{P}$ for every prime ideal \mathcal{P} containing I. Hence $a_{1} r_{i}-a_{i} r_{1} \in \sqrt{I}$ for all $1 \leqslant i \leqslant n$. Let $1 \leqslant i \leqslant n$. Consider the element
$\left(w_{1}, \ldots, w_{n}\right)=\left(a_{1}-a_{i}\right)\left(r_{1}, \ldots, r_{n}\right)-\left(r_{1}-r_{i}\right)\left(a_{1}, \ldots, a_{n}\right)-\left(a_{1} r_{i}-a_{i} r_{1}\right)(1, \ldots, 1)$.
Let $1 \leqslant j \leqslant n$. Then

$$
w_{j}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
r_{1} & r_{i} & r_{j} \\
a_{1} & a_{i} & a_{j}
\end{array}\right|
$$

Let \mathcal{Q} be any prime ideal of R. There exists $d \in R \backslash \mathcal{Q}$ such that $d \mathbf{r} \in N+\mathcal{Q} F$, i.e.

$$
d\left(r_{1}, \ldots, r_{n}\right)=x\left(a_{1}, \ldots, a_{n}\right)+y(1, \ldots, 1)+\left(q_{1}, \ldots, q_{n}\right)
$$

for some $x \in R, y \in I, q_{i} \in \mathcal{Q}(1 \leqslant i \leqslant n)$. Now $d r_{i}=x a_{i}+y+q_{i}(1 \leqslant i \leqslant n)$. Consider

$$
\begin{aligned}
d w_{j} & =\left|\begin{array}{ccc}
1 & 1 & 1 \\
d r_{1} & d r_{i} & d r_{j} \\
a_{1} & a_{i} & a_{j}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
x a_{1}+y+q_{1} & x a_{i}+y+q_{i} & x a_{j}+y+q_{j} \\
a_{1} & a_{i} & a_{j}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
q_{1} & q_{i} & q_{j} \\
a_{1} & a_{i} & a_{j}
\end{array}\right| \in \mathcal{Q} .
\end{aligned}
$$

Thus $w_{j} \in \mathcal{Q}$ for every prime ideal \mathcal{Q}. It follows that $w_{j} \in W$. Hence $w_{j} \in W$ $(1 \leqslant j \leqslant n)$. Thus

$$
\begin{gathered}
\left(a_{1}-a_{i}\right) \mathbf{r}=\left(r_{1}-r_{i}\right)\left(a_{1}, \ldots, a_{n}\right)+\left(a_{1} r_{i}-a_{i} r_{1}\right)(1, \ldots, 1)+\left(w_{1}, \ldots, w_{n}\right) \in \\
R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F
\end{gathered}
$$

as required. It follows that

$$
\left(a_{1}-a_{i}\right) \mathbf{r} \in R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F
$$

for all $1 \leqslant i \leqslant n$. Hence

$$
A \mathbf{r} \subseteq R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F
$$

for all $\mathbf{r} \in \operatorname{rad}_{F}(N)$, i.e.

$$
\operatorname{Arad}_{F}(N) \subseteq R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F
$$

Now suppose that $A=R$. Clearly

$$
\operatorname{rad}_{F}(N)=R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F
$$

Let $\mathbf{r} \in \operatorname{rad}_{F}(N)$. Then

$$
\begin{aligned}
\mathbf{r} & =u\left(a_{1}, \ldots, a_{n}\right)+v(1, \ldots, 1)+\left(z_{1}, \ldots, z_{n}\right) \\
& =u\left(a_{1}, \ldots, a_{n}\right)+v(1, \ldots, 1)+z_{1}(1,0, \ldots, 0)+\cdots+z_{n}(0, \ldots, 0,1)
\end{aligned}
$$

for some $u \in R, v \in \sqrt{I}, z_{i} \in W(1 \leqslant i \leqslant n)$. There exists a positive integer m such that $v^{m} \in I, z_{i}^{m}=0(1 \leqslant i \leqslant n)$. Note that $u\left(a_{1}, \ldots, a_{n}\right) \in N$, $v^{m}(1, \ldots, 1) \in N$ and $z_{i}^{m}(0, \ldots, 0,1,0, \ldots, 0) \in N(1 \leqslant i \leqslant m)$. Thus $\mathbf{r} \in$ $<E_{F}(N)>$. It follows that $\operatorname{rad}_{F}(N) \subseteq<E_{F}(N)>$ and hence

$$
\operatorname{rad}_{F}(N)=<E_{F}(N)>.
$$

Corollary 3.2.6 Let R be a ring with prime radical W and let $F=R^{(n)}$ for some positive integer n. Let $a_{i} \in R(1 \leqslant i \leqslant n)$, let $b \in R$, let I be an ideal of R and let N be the submodule $R\left(a_{1}, \ldots, a_{n}\right)+I(b, \ldots, b)$ of F. Let A be the ideal $\sum_{i=1}^{n} R\left(a_{1}-a_{i}\right)$. Then

$$
\operatorname{Arad}_{F}(N) \subseteq R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I b}(1, \ldots, 1)+W F \subseteq \operatorname{rad}_{F}(N)
$$

In particular, if $A=R$ then

$$
\operatorname{rad}_{F}(N)=R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I b}(1, \ldots, 1)+W F=<E_{F}(N)>
$$

Proof. Clear by Theorem 3.2.5.

It is natural to ask what is the radical $\operatorname{rad}_{F}(N)$ of a submodule of the form

$$
N=R\left(a_{1}, \ldots, a_{n}\right)+I\left(b_{1}, \ldots, b_{n}\right)
$$

where $a_{i}, b_{i} \in R(1 \leqslant i \leqslant n), I$ is an ideal of R and $R=\sum_{i=1}^{n} R\left(a_{1}-a_{i}\right)$. The only cases we know are the ones dealt with above.

We now give another consequence of Theorem 3.2.5.

Corollary 3.2.7 With the notation of Theorem 3.2.5, suppose that $A=R$ and N is a proper submodule of F. Then N is a semiprime submodule of F if and only if $\sqrt{I}=I$ and $W F \subseteq N$.

Proof. Suppose first that $\sqrt{I}=I$ and $W F \subseteq N$. Then by Theorem 3.2.5,

$$
\operatorname{rad}_{F}(N)=R\left(a_{1}, \ldots, a_{n}\right)+I(1, \ldots, 1)+W F=N
$$

Conversely, suppose that N is semiprime, i.e. $N=\operatorname{rad}_{F}(N)$. By Theorem 3.2.5, $W F \subseteq N$. Let $a \in \sqrt{I}$. Again applying Theorem 3.2.5, we have

$$
a(1, \ldots, 1)=r\left(a_{1}, \ldots, a_{n}\right)+s(1, \ldots, 1)
$$

for some $r \in R, s \in I$. Clearly $r a_{i}=a-s(1 \leqslant i \leqslant n)$. Then $1=s_{2}\left(a_{1}-a_{2}\right)+$ $\cdots+s_{n}\left(a_{1}-a_{n}\right)$ for some $s_{i} \in R(2 \leqslant i \leqslant n)$ and this gives that

$$
r=r 1=s_{2} r\left(a_{1}-a_{2}\right)+\cdots+s_{n} r\left(a_{1}-a_{n}\right)=0
$$

It follows that $a=s \in I$. Hence $\sqrt{I} \subseteq I$, i.e. $\sqrt{I}=I$.

The following example shows that the condition $A=R$ in Corollary 3.2.7 is necessary.

Example 3.2.8 Let $R=\mathbb{Z}, N$ be the submodule $\mathbb{Z}(1,3,5)+\mathbb{Z} 2(1,1,1)$ of $F=$ $\mathbb{Z}^{(3)}$. Then $\sqrt{I}=\sqrt{\mathbb{Z} 2}=\mathbb{Z} 2=I$ and $W F=0 \subseteq N$ but N is not a semiprime submodule of F because $(0,2,4) \in \operatorname{rad}_{F}(N) \backslash N$.

Proof. By Theorem 3.1.5,

$$
\left(r_{1}, r_{2}, r_{3}\right) \in \operatorname{rad}_{F}(N) \Leftrightarrow\left\{\begin{array}{l}
3 r_{1}-r_{2}, 5 r_{1}-r_{3}, 5 r_{2}-3 r_{3} \in 2 \mathbb{Z} \text { and } \\
-2 r_{1}+4 r_{2}-2 r_{3}=0
\end{array}\right.
$$

Hence $\operatorname{rad}_{F}(N)=\{(a, a+2 b, a+4 b): a, b \in \mathbb{Z}\}$. Thus $(0,2,4) \in \operatorname{rad}_{F}(N)$.
Suppose that $(0,2,4) \in N$. Then there exist $s, t \in \mathbb{Z}$ such that $(0,2,4)=$ $s(1,3,5)+t(2,2,2)$. Hence $s=1$ and $t=-1 / 2$, a contradiction.

Now, one can ask whether $A=R$ is a necessary condition for

$$
\operatorname{rad}_{F}(N)=R\left(a_{1}, \ldots, a_{n}\right)+\sqrt{I}(1, \ldots, 1)+W F
$$

As the following example shows this is not the case.
Example 3.2.9 Let $R=\mathbb{Z}, F=\mathbb{Z}^{(3)}$ and let p be a prime number. Let N be the submodule $R(p, 0, p)+R p(1,1,1)$ of F. Then $\operatorname{rad}_{F}(N)=R(p, 0, p)+$ $\sqrt{R p}(1,1,1)=R(p, 0, p)+R p(1,1,1)=N$ but $A=R p \neq R$.

Proof. By Theorem 3.1.5

$$
\left(r_{1}, r_{2}, r_{3}\right) \in \operatorname{rad}_{F}(N) \Leftrightarrow r_{1}=r_{3}, r_{1}, r_{2} \in R p
$$

so that

$$
\operatorname{rad}_{F}(N)=\{(r, s, r): r, s \in R p\}=R(p, 0, p)+R p(1,1,1)
$$

since $(r, s, r)=(u-v)(p, 0, p)+v p(1,1,1)$, where $r=u p, s=v p(u, v \in R)$.

Chapter 4

MODULES WHICH S.T.R.F.

AND ENVELOPES IN FREE

MODULES

Throughout this chapter all rings will be commutative. Let M_{1}, M_{2} be R-modules such that M_{1} and M_{2} both s.t.r.f.. Then $M_{1} \oplus M_{2}$ does not have to s.t.r.f. in general. The aim of section 4.1 is to investigate when $M_{1} \oplus M_{2}$ s.t.r.f.. For example, it is proved in Theorem 4.1.10 that if M_{1} s.t.r.f. and M_{2} is semisimple, then $M=M_{1} \oplus M_{2}$ s.t.r.f.. Also it is proved in Theorem 4.1.18 that if A is a finite direct sum of cyclic Artinian R-modules, then the R module $R \oplus A$ s.t.r.f.. An application of Theorem 4.1.18 gives that the R-module $R \oplus\left(R / \mathcal{M}_{1}^{k(1)}\right) \oplus \cdots \oplus\left(R / \mathcal{M}_{n}^{k(n)}\right)$ s.t.r.f. for all positive integers $n, k(1), \ldots, k(n)$ and maximal ideals $\mathcal{M}_{i}(1 \leqslant i \leqslant n)$ (Theorem 4.1.19).

The aim of section 4.2 is to describe $E_{M}(N)$ for some submodule N of an R-module M. But since $E_{M}(N)$ is not a submodule in general, it makes the job harder. Hence the envelope is described in some special cases. For example, if R is a UFD and F is the free R-module $R^{(n)}$ for some positive integer n and N is
a cyclic submodule $R\left(a_{1}, \ldots, a_{n}\right)$ of F for some elements a_{1}, \ldots, a_{n} of R, not all zero, then $E_{F}(N)=\sqrt{R d}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right)$ where $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$. Corollary 4.2.2 shows that actually this coincides with $\operatorname{rad}_{F}(N)$.

4.1 Modules Which Satisfy the Radical Formula

We begin this section with the following simple observation. We give the proof for completeness.

Lemma 4.1.1 Any cyclic module s.t.r.f.. Moreover, if N is a submodule of a cyclic module M then $\operatorname{rad}_{M}(N)=E_{M}(N)$.

Proof. Let M be a cyclic R-module. Then $M \cong R / I$ for some ideal I of R, and without loss of generality we can suppose that $M=R / I$. Let N be any submodule of M. Then $N=J / I$ for some ideal J of R containing I. It is not difficult to check that $\operatorname{rad}_{M}(N)=\sqrt{J} / I=E_{M}(N)$. Thus M s.t.r.f.. \square

Lemma 4.1.2 Let M be an R-module such that M s.t.r.f.. Then every homomorphic image of M s.t.r.f.

Proof. Since M s.t.r.f., $\operatorname{rad}_{M / N}(0)=<E_{M / N}(0)>$ for every submodule N of M. Let K be a submodule of M. Hence $\operatorname{rad}_{(M / K) /(N / K)}(0)=<E_{(M / K) /(N / K)}(0)>$ for every submodule N containing K. Thus M / K s.t.r.f..

Corollary 4.1.3 Let M_{1}, M_{2} be R-modules such that $M_{1} \oplus M_{2}$ s.t.r.f.. Then M_{1} and M_{2} both s.t.r.f.

The converse of the above Corollary is false. For example, if R is a Noetherian domain which is not Dedekind domain then the R-module R s.t.r.f. but the R module $R \oplus R$ does not, by Theorem 1.2.19. But it is true in some cases. Before we prove that we require a number of lemmas and propositions.

First for the sake of brevity and convenience we define the following:

Definition 4.1.4 We will call a submodule N of an R-module M good if

$$
\operatorname{rad}_{M}(N)=<E_{M}(N)>.
$$

Note that M is a good submodule of M. Moreover every prime (or, more generally, semiprime) submodule of M is good. Note also that the module M s.t.r.f. if and only if every submodule is good.

Proposition 4.1.5 Let R be any ring and M be an R-module such that $M=\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is a direct sum of submodules $M_{\lambda}(\lambda \in \Lambda)$. For each $\lambda \in \Lambda$ let N_{λ} be a submodule of M_{λ} and let $N=\bigoplus_{\lambda \in \Lambda} N_{\lambda}$. Then N is a good submodule of M if and only if N_{λ} is a good submodule of M_{λ} for all $\lambda \in \Lambda$.

Proof. By Lemma 1.1.2.4.

Lemma 4.1.6 Let N be a submodule of an R-module M. Then N is a good submodule of M if and only if the zero submodule is a good submodule of the R-module M / N.

Proof. By Proposition 1.2.7.

Corollary 4.1.7 Let M_{1}, M_{2} be R-modules and let N_{i} be a submodule of M_{i} for $i=1,2$ such that $M_{1} / N_{1} \cong M_{2} / N_{2}$. Then N_{1} is a good submodule of M_{1} if and only if N_{2} is a good submodule of M_{2}.

Proof. Suppose that N_{1} is a good submodule of M_{1}. Then the zero submodule is a good submodule of M_{1} / N_{1}, by Lemma 4.1.6. It follows that the zero submodule is a good submodule of M_{2} / N_{2} and hence N_{2} is a good submodule of M_{2}, also by Lemma 4.1.6.

Before proceeding to consider when certain direct sums s.t.r.f. we prove the following elementary result.

Lemma 4.1.8 Let N be a direct summand of a module M and let L be a submodule of N such that L is a good submodule of M. Then L is a good submodule of N.

Proof. Let $x \in \operatorname{rad}_{N}(L)$. By Lemma 1.1.1.6, $\operatorname{rad}_{N}(L) \subseteq \operatorname{rad}_{M}(L)=<E_{M}(L)>$ and hence $x=r_{1} m_{1}+\cdots+r_{n} m_{n}$ for some positive integer n and elements $r_{i} \in R$, $m_{i} \in M$ with $r_{i}^{k} m_{i} \in L(1 \leqslant i \leqslant n)$, for some positive integer k. There exists a submodule N^{\prime} of M such that $M=N \oplus N^{\prime}$. For each $1 \leqslant i \leqslant n$, there exist $y_{i} \in N, z_{i} \in N^{\prime}$ such that $m_{i}=y_{i}+z_{i}$. Then

$$
x=r_{1} m_{1}+\cdots+r_{n} m_{n}=\left(r_{1} y_{1}+\cdots+r_{n} y_{n}\right)+\left(r_{1} z_{1}+\cdots+r_{n} z_{n}\right)
$$

so that $x=r_{1} y_{1}+\cdots+r_{n} y_{n}$ and $r_{i}^{k} y_{i} \in L(1 \leqslant i \leqslant n)$. It follows that $x \in<E_{N}(L)>$. Hence L is a good submodule of N.

Corollary 4.1.9 Let M be a module such that 0 is a good submodule. Then every direct summand of M is a good submodule.

Proof. Let N be a direct summand of M. Then $M=N \oplus N^{\prime}$ for some submodule N^{\prime} of M. Now 0 is a good submodule of N^{\prime} by Lemma 4.1.8 and $M / N \cong N^{\prime}$. By Lemma 4.1.6, N is a good submodule of M.

Theorem 4.1.10 Let M be an R-module with submodules M_{1} and M_{2} such that M_{1} s.t.r.f., M_{2} is semisimple and $M=M_{1} \oplus M_{2}$. Then M s.t.r.f.

Proof. Let $\pi_{2}: M \rightarrow M_{2}$ denote the canonical projection. Let N be any submodule of M. Then $\pi_{2}(N)$ is a submodule of M_{2} and hence $M_{2}=L \oplus \pi_{2}(N)$,
for some submodule L. Now $M=M_{1} \oplus L \oplus \pi_{2}(N)$ implies that $M=\left(M_{1} \oplus L\right)+N$ and hence $M / N \cong\left(M_{1} \oplus L\right) /\left(\left(M_{1} \oplus L\right) \cap N\right)$. By Corollary 4.1.7, to prove that N is a good submodule of M it is sufficient to prove that $\left(M_{1} \oplus L\right) \cap N$ is a good submodule of $M_{1} \oplus L$. Let $\pi: M_{1} \oplus L \rightarrow L$ denote the canonical projection. Then $\pi\left(\left(M_{1} \oplus L\right) \cap N\right) \subseteq L \cap \pi_{2}(N)=0$, so that $\left(M_{1} \oplus L\right) \cap N \subseteq M_{1}$. By hypothesis $\left(M_{1} \oplus L\right) \cap N$ is a good submodule of M_{1}. Since 0 is a semiprime submodule of L it follows that 0 is a good submodule of L. By Proposition 4.1.5, $\left(M_{1} \oplus L\right) \cap N$ is a good submodule of $M_{1} \oplus L$. Hence N is a good submodule of M. It follows that M s.t.r.f..

Corollary 4.1.11 Let M be any semisimple R-module. Then the R-module $R \oplus M$ s.t.r.f.

Proof. The R-module R s.t.r.f.. Apply Theorem 4.1.10.

In particular, Theorem 4.1.10 gives that every semisimple module s.t.r.f.. This fact is clear, however, because if N is a proper submodule of a semisimple module M then N is an intersection of maximal submodules of M and every maximal submodule of M is prime. Thus every proper submodule of M is semiprime and so is good.

Lemma 4.1.12 Let N be a submodule of an R-module M and let \mathcal{M} be a maximal ideal of R. Then $\operatorname{rad}_{M}\left(\mathcal{M}^{k} N\right)=\mathcal{M} M \cap \operatorname{rad}_{M}(N)$ for any positive integer k.

Proof. Let P be any prime submodule of M such that $\mathcal{M}^{k} N \subseteq P$. Then $\mathcal{M} M \subseteq P$ or $N \subseteq P$, i.e. $\mathcal{M} M \cap \operatorname{rad}_{M}(N) \subseteq P$. Thus

$$
\mathcal{M} M \cap \operatorname{rad}_{M}(N) \subseteq \operatorname{rad}_{M}\left(\mathcal{M}^{k} N\right)
$$

Conversely, $\mathcal{M}^{k} N \subseteq \mathcal{M} M$ and $\mathcal{M} M=M$ or $\mathcal{M} M$ is a prime submodule of M. Thus $\operatorname{rad}_{M}\left(\mathcal{M}^{k} N\right) \subseteq \mathcal{M} M$. Also clearly $\operatorname{rad}_{M}\left(\mathcal{M}^{k} N\right) \subseteq \operatorname{rad}_{M}(N)$.

Lemma 4.1.13 Let M be an R-module and let \mathcal{M} be a maximal ideal of R such that for each $x \in M$ there exists a positive integer k such that $\mathcal{M}^{k} x=0$. Then the zero submodule of M is good.

Proof. Let $y \in \operatorname{rad}_{M}(0)$. Then $\mathcal{M} M=M$ or $\mathcal{M} M$ is a prime submodule of M. In any case $y \in \mathcal{M} M$. There exist a positive integer n and elements $r_{i} \in \mathcal{M}$, $y_{i} \in M(1 \leqslant i \leqslant n)$ such that $y=r_{1} y_{1}+\cdots+r_{n} y_{n}$. For each $1 \leqslant i \leqslant n$ there exists a positive integer $k(i)$ such that $\mathcal{M}^{k(i)} y_{i}=0$. Let $k=\max \{k(i): 1 \leqslant i \leqslant n\}$. Then $r_{i}^{k} y_{i}=0(1 \leqslant i \leqslant n)$. It follows that 0 is a good submodule.

Corollary 4.1.14 Let M be an R-module and let \mathcal{M} be a maximal ideal of R such that for each $x \in M$ there exists a positive integer k such that $\mathcal{M}^{k} x=0$. Then M s.t.r.f.

Proof. Let N be any submodule of M. Applying Lemma 4.1.13 to the R-module M / N, we see that the zero submodule of M / N is good. By Lemma 4.1.6, N is a good submodule of M. It follows that M s.t.r.f..

Lemma 4.1.15 Let $L \subseteq N$ be submodules of an R-module M such that L is a good submodule of M and $\operatorname{rad}_{M}(N)=\operatorname{rad}_{M}(L)$. Then N is a good submodule of M.

Proof. Let $m \in \operatorname{rad}_{M}(N)$. Then $m \in \operatorname{rad}_{M}(L)$. There exist positive integers n, k and elements $r_{i} \in R, m_{i} \in M$ such that $m=r_{1} m_{1}+\cdots+r_{n} m_{n}$ and $r_{i}^{k} m_{i} \in L \subseteq N(1 \leqslant i \leqslant n)$. It follows that N is good.

Lemma 4.1.16 Let R be a quasi-local ring with unique maximal ideal \mathcal{M} and let k be a positive integer. Then the R-module $R \oplus\left(R / \mathcal{M}^{k}\right)$ s.t.r.f.

Proof. Let $M=R \oplus\left(R / \mathcal{M}^{k}\right)$ and let $\pi_{1}: M \rightarrow R$ and $\pi_{2}: M \rightarrow R / \mathcal{M}^{k}$ denote the canonical projections. Let N be any submodule of M. If $\pi_{1}(N)=R$ then $M=N+\left(0 \oplus R / \mathcal{M}^{k}\right)$ so that $M / N \cong\left(0 \oplus R / \mathcal{M}^{k}\right) /\left(N \cap\left(0 \oplus R / \mathcal{M}^{k}\right)\right)$ which is a homomorphic image of R / \mathcal{M}^{k} and hence also of R. By Lemma 4.1.2, M / N s.t.r.f. and hence N is good by Lemma 4.1.6. If $\pi_{2}(N)=R / \mathcal{M}^{k}$ then a similar argument shows that M / N is a homomorphic image of R. Thus again N is good.

Now suppose that $\pi_{1}(N) \neq R$ and $\pi_{2}(N) \neq R / \mathcal{M}^{k}$. Thus $\pi_{1}(N) \subseteq \mathcal{M}$ and $\pi_{2}(N) \subseteq \mathcal{M} / \mathcal{M}^{k}$. Hence $N \subseteq \pi_{1}(N) \oplus \pi_{2}(N) \subseteq \mathcal{M} \oplus\left(\mathcal{M} / \mathcal{M}^{k}\right)=\mathcal{M} M$. Clearly $\mathcal{M}^{k} N \subseteq R \oplus 0$ so that $\mathcal{M}^{k} N$ is good in $R \oplus 0$. Since R / \mathcal{M}^{k} is cyclic it follows that R / \mathcal{M}^{k} s.t.r.f. and hence the zero submodule is good. By Proposition 4.1.5, $\mathcal{M}^{k} N$ is a good submodule of M. Since $N \subseteq \mathcal{M} M$ and $\mathcal{M} M$ is a prime submodule of M it follows that $\operatorname{rad}_{M}(N) \subseteq \mathcal{M} M$ and, by Lemma 4.1.12, $\operatorname{rad}_{M}\left(\mathcal{M}^{k} N\right)=\operatorname{rad}_{M}(N)$. Thus N is good by Lemma 4.1.15.

Lemma 4.1.17 Let R be a quasi-local ring with unique maximal ideal \mathcal{M} and let $n, k(1), \ldots, k(n)$ be positive integers. Then the R-module $R \oplus\left(R / \mathcal{M}^{k(1)}\right) \oplus \cdots \oplus\left(R / \mathcal{M}^{k(n)}\right)$ s.t.r.f.

Proof. Let $M=R \oplus\left(R / \mathcal{M}^{k(1)}\right) \oplus \cdots \oplus\left(R / \mathcal{M}^{k(n)}\right)$. Let $M_{0}=R$, and let $M_{i}=R / \mathcal{M}^{k(i)}(1 \leqslant i \leqslant n)$, so that $M=M_{0} \oplus M_{1} \oplus \cdots \oplus M_{n}$. For each $0 \leqslant i \leqslant n$, let $\pi_{i}: M \rightarrow M_{i}$ denote the canonical projection. We prove the result by induction on n. If $n=1$ then the result is proved by Lemma 4.1.16. Suppose that $n>1$.

Let N be any submodule of M. If $\pi_{0}(N)=M_{0}$ then the proof of Lemma 4.1.16 shows that M / N is a homomorphic image of the R-module $M_{1} \oplus \cdots \oplus M_{n}$. By Corollary 4.1.14 and Lemma 4.1.2, M / N s.t.r.f. and by Lemma 4.1.6 the submodule N is good. If $\pi_{i}(N)=M_{i}$ for some $1 \leqslant i \leqslant n$ then the proof of Lemma 4.1.16 shows that M / N is a homomorphic image of the R-module
$M^{\prime}=M_{0} \oplus M_{1} \oplus \cdots \oplus M_{i-1} \oplus M_{i+1} \oplus \cdots \oplus M_{n}$. By induction on n, M^{\prime} s.t.r.f. and hence N is good by Lemma 4.1.6.

Now suppose that $\pi_{i}(N) \neq M_{i}$ for all $0 \leqslant i \leqslant n$. Then

$$
N \subseteq \bigoplus_{i=0}^{n} \pi_{i}(N) \subseteq \mathcal{M} M
$$

By the proof of Lemma 4.1.16 it follows that N is good. Hence M s.t.r.f..

Theorem 4.1.18 Let A be a finite direct sum of cyclic Artinian R-modules. Then the R-module $R \oplus A$ s.t.r.f.

Proof. By Exercise 8.49 in [34], it is sufficient to prove the result when R is a quasi-local ring with unique maximal ideal \mathcal{M}. Since A is a finite direct sum of cyclic Artinian submodules, we can write A in the form $R a_{1} \oplus \cdots \oplus R a_{n}$. Note that for every $a_{i}(1 \leqslant i \leqslant n), R a_{i} \cong R / \operatorname{ann}\left(a_{i}\right)$ as R-modules, by Lemma 7.24 in [34]. Thus the ring $R / \operatorname{ann}\left(a_{i}\right)$ is Artinian and hence Noetherian for all $1 \leqslant i \leqslant n$. Therefore A is a Noetherian module and has a finite composition length. There exists a positive integer k such that $\mathcal{M}^{k} A=0$. By Lemmas 4.1.2 and 4.1.17, $R \oplus A$ s.t.r.f..

The same argument proves the next result.
Theorem 4.1.19 The R-module $R \oplus\left(R / \mathcal{M}_{1}^{k(1)}\right) \oplus \cdots \oplus\left(R / \mathcal{M}_{n}^{k(n)}\right)$ s.t.r.f. for all positive integers $n, k(1), \ldots, k(n)$ and maximal ideals $\mathcal{M}_{i}(1 \leqslant i \leqslant n)$ (not necessarily distinct).

Theorem 4.1.20 Let R be a one dimensional Noetherian domain. Then
(i) the R-module $R \oplus R$ s.t.r.f. if and only if R is a Dedekind domain,
(ii) the R-module $R \oplus(R / \mathcal{A})$ s.t.r. f. for every non-zero ideal \mathcal{A} of R.

Proof. (i) By Theorem 1.2.19.
(ii) Let \mathcal{A} be any non-zero ideal of R. Since R is one dimensional it follows that the ring R / \mathcal{A} is Artinian. Thus the R-module R / \mathcal{A} is cyclic Artinian. Now we can apply Theorem 4.1.18.

Note that if S is a Noetherian domain which is not Dedekind and R is the polynomial ring $S[X]$ then the R-module $R \oplus(R / R X)$ does not s.t.r.f.. For if $R \oplus(R / R X)$ s.t.r.f. then so too does its homomorphic image $(R / R X) \oplus(R / R X)$. In this case the S-module $S \oplus S$ s.t.r.f. and hence S is a Dedekind domain by Theorem 1.2.19, a contradiction.

The same argument gives the following result.

Lemma 4.1.21 Let R be a Noetherian ring and let \mathcal{P} be a non-maximal prime ideal of R such that the R-module $R \oplus(R / \mathcal{P})$ s.t.r.f.. Then the domain R / \mathcal{P} is Dedekind.

The converse of Lemma 4.1.21 is false. We now give an example of a twodimensional local Noetherian domain R and a prime ideal \mathcal{P} of R such that the ring R / \mathcal{P} is a PID (hence Dedekind) but the R-module $R \oplus(R / \mathcal{P})$ does not s.t.r.f..

Example 4.1.22 Let F be a field and let $R=F[[X, Y]]$, the ring of formal power series in indeterminates X, Y over F. Then R is Noetherian local domain with unique maximal ideal $\mathcal{M}=R X+R Y$. Let M denote the R-module $R \oplus(R / R Y)$. Then M does not s.t.r.f..

Proof. Let $\bar{R}=R / R Y$. Then $\bar{R} \cong F[[X]]$ which is a PID. For each $r \in R$, let \bar{r} denote the element $r+R Y$ of \bar{R}. Let N be the submodule $\mathcal{M}(Y, \bar{X})$ of M. We shall show that $\operatorname{rad}_{M}(N)=R Y \oplus R \bar{X}$. Let P be a prime submodule of M such that $\mathcal{M}(Y, \bar{X}) \subseteq P$. Then $\mathcal{M} M \subseteq P$ or $(Y, \bar{X}) \in P$. In any case,
$(Y, \bar{X}) \in P$. Thus, $L=R(Y, \bar{X}) \subseteq \operatorname{rad}_{M}(N)$. Since $N \subseteq L$ it follows that $\operatorname{rad}_{M}(N)=\operatorname{rad}_{M}(L)$.

Let \mathcal{Q} be a prime ideal of R such that $Y \notin \mathcal{Q}$ and let Q be any \mathcal{Q}-prime submodule of M (i.e. $(Q: M)=\mathcal{Q})$. Then $\mathcal{Q} M=\mathcal{Q} \oplus((\mathcal{Q}+R Y) / R Y) \subseteq Q$ and also $Y(0 \oplus(R / R Y))=0 \subseteq Q$ implies that $0 \oplus(R / R Y) \subseteq Q$. Thus $\mathcal{Q} \oplus(R / R Y) \subseteq$ Q. Since $M /(\mathcal{Q} \oplus(R / R Y)) \cong R / \mathcal{Q}$ it follows that $Q=\mathcal{Q} \oplus(R / R Y)$. Thus $L \nsubseteq Q$ since $Y \notin \mathcal{Q}$.

Let \mathcal{Q} be a prime ideal of R such that $Y \in \mathcal{Q}$. Then $\mathcal{Q}=R Y$ or $\mathcal{Q}=\mathcal{M}$ because $R Y$ is prime and $R / R Y \cong F[[X]]$. Thus $\operatorname{rad}_{M}(L)=K(L, R Y) \cap K(L, \mathcal{M})$ by Corollary 3.1.2. Since $L \subseteq \mathcal{M} M=\mathcal{M} \oplus(\mathcal{M} / R Y)$, we have $K(L, \mathcal{M})=\mathcal{M} M$.

Let $a, b \in R$ such that $(a, \bar{b}) \in K(L, R Y)$. Note that for all $c \in R \backslash R Y$ there exist $0 \neq f(X) \in F[[X]]$ and $r \in R$ such that $c=f(X)+r Y$. Moreover, $f(X)=X^{k} u$ for some integer $k \geqslant 0$ and unit u in $F[[X]]$. Thus we can suppose that $X^{k}(a, \bar{b}) \in L+(R Y) M=L+Y M=R(Y, \bar{X})+(R Y \oplus 0)=R Y \oplus R \bar{X}$, i.e. $X^{k} a \in R Y$ and $X^{k} \bar{b} \in R \bar{X}$, i.e. $a \in R Y$. Thus $K(L, R Y) \subseteq R Y \oplus \bar{R}$. But $X(R Y \oplus \bar{R}) \subseteq R Y \oplus R \bar{X}=L+(R Y) M$ gives that $R Y \oplus \bar{R} \subseteq K(L, R Y)$. Thus $K(L, R Y)=R Y \oplus \bar{R}$. Now

$$
\begin{aligned}
\operatorname{rad}_{M}(N)=\operatorname{rad}_{M}(L) & =K(L, R Y) \cap K(L, \mathcal{M}) \\
& =(R Y \oplus \bar{R}) \cap \mathcal{M} M \\
& =R Y \oplus R \bar{X}
\end{aligned}
$$

Now $(Y, 0)=Y(1,0)$ and $Y^{2}(1,0)=Y(Y, \bar{X}) \in N$. Thus $(Y, 0) \in<E_{M}(N)>$. Suppose that $(0, \bar{X}) \in<E_{M}(N)>$, i.e. $(0, \bar{X})=r_{1}\left(s_{1}, \bar{t}_{1}\right)+\cdots+r_{n}\left(s_{n}, \bar{t}_{n}\right)$ where $r_{i}^{k}\left(s_{i}, \bar{t}_{n}\right) \in N$, for some positive integers n, k and elements $r_{i}, s_{i}, t_{i} \in R$ $(1 \leqslant i \leqslant n)$. Suppose that $r, s, t \in R, m \in \mathcal{M}$ and $r^{k}(s, \bar{t})=m(Y, \bar{X})$ for some positive integer k. Then $r^{k} s=m Y$ and $r^{k} \bar{t}=m \bar{X}$. If r is a unit then $(s, \bar{t}) \in N$. Suppose $r \in \mathcal{M}$. Then $m s \bar{X}=r^{k} s \bar{t}=m Y \bar{t}=\overline{0}$ so that $m s \in R Y$, since $R / R Y$
is a domain. If $m \in R Y$ then $r^{k} \bar{t}=0$ gives $r \bar{t}=\overline{0}$. Suppose $m \notin R Y$. Then $s=Y s_{1}$ gives $r^{k} Y s_{1}=m Y$ so that $m=r^{k} s_{1}$, hence $r^{k} \bar{t}=r^{k} s_{1} \bar{X}$. Either $r \in R Y$ and $r \bar{t}=\overline{0}$ or $r \notin R Y$ and $\bar{t}=s_{1} \bar{X}$ gives $r \bar{t} \in \mathcal{M} s_{1} \bar{X} \subseteq \mathcal{M} \bar{X}$. Thus in any case $r \bar{t} \in \mathcal{M} \bar{X}$. It follows that $r_{i} \bar{t}_{i} \in \mathcal{M} \bar{X}(1 \leqslant i \leqslant n)$ and hence $\bar{X}=r_{1} \bar{t}_{1}+\cdots+r_{n} \bar{t}_{n}=u \bar{X}$ for some $u \in \mathcal{M}$. Then $(1-u) \bar{X}=0$ so $\bar{X}=0$, i.e. $X \in R Y$, a contradiction. Thus $(0, \bar{X}) \notin<E_{M}(N)>$. It follows that M does not s.t.r.f..

Note that $L=R(Y, \bar{X})$ is good because $(Y, 0)=Y(1,0)$ and $Y^{2}(1,0)=$ $Y(Y, \bar{X}) \in L,(0, \bar{X})=(Y, \bar{X})-(Y, 0)=1(Y, \bar{X})+(-Y)(1,0)$ where $1^{2}(Y, \bar{X}) \in L$, $(-Y)^{2}(1,0)=Y(Y, \bar{X}) \in L$.

4.2 The Envelopes in Free Modules

Let F be a free module of finite rank and let N be a finitely generated submodule of F. One can ask if we can describe $E_{F}(N)$ in some nice way. This will be the aim of this section.

It seems sensible to begin with the case of a UFD R and a cyclic submodule N.

Proposition 4.2.1 Let R be a UFD and let F be the free R-module $R^{(n)}$ for some positive integer n. Let $a_{i} \in R(1 \leqslant i \leqslant n)$, not all zero, and let N be the submodule $R\left(a_{1}, \ldots, a_{n}\right)$ of F. Then $E_{F}(N)=\sqrt{R d}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right)$ where $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$.

Proof. If $n=1$ then $F=R, N=R a_{1}, d=a_{1}$ and $E_{F}(N)=\sqrt{R d}=\sqrt{R d}\left(\frac{a_{1}}{d}\right)$.
Now let $n \geqslant 2$ and $r \in \sqrt{R d}$. Then $r^{k}=s d$ for some $s \in R$. Hence

$$
r^{k}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right)=s\left(a_{1}, \ldots, a_{n}\right) \in N
$$

and it follows that $r\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right) \in E_{F}(N)$. Thus

$$
\sqrt{R d}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right) \subseteq E_{F}(N)
$$

Conversely let $t, x_{i} \in R(1 \leqslant i \leqslant n)$ such that

$$
t^{m}\left(x_{1}, \ldots, x_{n}\right)=w\left(a_{1}, \ldots, a_{n}\right)
$$

for some positive integer m and $w \in R$. If $t=0$ then

$$
t\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)=0\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right) \in \sqrt{R d}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right)
$$

Suppose that $t \neq 0$. Now $t^{m} x_{i}=w a_{i}(1 \leqslant i \leqslant n)$ so that

$$
t^{m}\left(x_{i} a_{j}-x_{j} a_{i}\right)=0
$$

and hence $x_{i} a_{j}=x_{j} a_{i}(1 \leqslant i<j \leqslant n)$, because $t^{m} \neq 0$. Let $b_{i}=\frac{a_{i}}{d}(1 \leqslant i \leqslant n)$. Then

$$
x_{i} b_{j}=x_{j} b_{i}(1 \leqslant i<j \leqslant n)
$$

There exists $1 \leqslant i \leqslant n$ such that $a_{i} \neq 0$ and hence $b_{i} \neq 0$. Consider the equations $x_{i} b_{j}=x_{j} b_{i}(1 \leqslant j \leqslant n)$. Let p be any prime which divides b_{i}. Because b_{i} $(1 \leqslant i \leqslant n)$ are coprime, there exists $1 \leqslant j \leqslant n$ such that $p \nmid b_{j}$. Then $x_{i} b_{j}=x_{j} b_{i}$ gives p divides x_{i}. Now consider the equations

$$
\left(\frac{x_{i}}{p}\right) b_{j}=x_{j}\left(\frac{b_{i}}{p}\right) \quad(1 \leqslant j \leqslant n) .
$$

Repeating this argument we find that b_{i} divides x_{i}, i.e. $x_{i}=y b_{i}$ for some $y \in R$. For each $1 \leqslant j \leqslant n, x_{j} b_{i}=x_{i} b_{j}=y b_{j} b_{i}$ which gives that $x_{j}=y b_{j}$. Hence

$$
\left(x_{1}, \ldots, x_{n}\right)=y\left(b_{1}, \ldots, b_{n}\right)
$$

Now $t\left(x_{1}, \ldots, x_{n}\right)=t y\left(b_{1}, \ldots, b_{n}\right)$ and

$$
t^{m} y\left(b_{1}, \ldots, b_{n}\right)=w\left(a_{1}, \ldots, a_{n}\right)=w d\left(b_{1}, \ldots, b_{n}\right)
$$

In particular, $t^{m} y=w d$. Hence $(t y)^{m} \in R d$ and $t y \in \sqrt{R d}$. Thus

$$
t\left(x_{1}, \ldots, x_{n}\right)=t y\left(b_{1}, \ldots, b_{n}\right) \in \sqrt{R d}\left(b_{1}, \ldots, b_{n}\right)=\sqrt{R d}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right) .
$$

It follows that $E_{F}(N) \subseteq \sqrt{R d}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right)$.

Corollary 4.2.2 Let R be a UFD and let F be the free R-module $R^{(n)}$, for some positive integer n. Then every cyclic submodule N of F is good. Moreover,

$$
\operatorname{rad}_{F}(N)=E_{F}(N) .
$$

Proof. Let $a_{i} \in F(1 \leqslant i \leqslant n)$ and let $N=R\left(a_{1}, \ldots, a_{n}\right)$. If $a_{i}=0(1 \leqslant i \leqslant n)$ then $\operatorname{rad}_{F}(N)=0$ and hence $\operatorname{rad}_{F}(N)=E_{F}(N)$. Suppose that $a_{i} \neq 0$ for some $1 \leqslant i \leqslant n$. Let $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{rad}_{F}(N)$. Then

$$
x_{i} \in \sqrt{R a_{1}+\cdots+R a_{n}}
$$

and $x_{i} a_{j}=x_{j} a_{i}$ for all $1 \leqslant i, j \leqslant n$, by Theorem 3.1.5.
Let d denote the gcd of a_{1}, \ldots, a_{n} and $b_{i}=\frac{a_{i}}{d}(1 \leqslant i \leqslant n)$. Then $x_{i} b_{j}=x_{j} b_{i}$ for all $1 \leqslant i<j \leqslant n$. By the argument given in the proof of Proposition 4.2.1 we have, $\left(x_{1}, \ldots, x_{n}\right)=w\left(b_{1}, \ldots, b_{n}\right)$ for some $w \in R$. Let p be any prime divisor of d. Then $a_{i} \in R d \subseteq R p(1 \leqslant i \leqslant n)$ gives $R a_{1}+\cdots+R a_{n} \subseteq R p$ and hence $\sqrt{R a_{1}+\cdots+R a_{n}} \subseteq R p$, because $R p$ is a prime ideal. Thus $x_{i} \in R p$ for all $1 \leqslant i \leqslant n$. But $x_{i}=w b_{i}(1 \leqslant i \leqslant n)$ so that p divides $w b_{i}$ for all $1 \leqslant i \leqslant n$. Since the elements $b_{i}(1 \leqslant i \leqslant n)$ are coprime, there exists $1 \leqslant j \leqslant n$ such that p does not divide b_{j} and hence p divides w. Thus $w \in R p$ for every prime divisor p of d and it follows that $w \in \sqrt{R d}$. Thus

$$
\left(x_{1}, \ldots, x_{n}\right) \in \sqrt{R d}\left(b_{1}, \ldots, b_{n}\right) \subseteq E_{F}(N)
$$

by Proposition 4.2.1. Therefore $\operatorname{rad}_{F}(N) \subseteq E_{F}(N)$. But it is well known that $E_{F}(N) \subseteq \operatorname{rad}_{F}(N)$, and so the result is proved.

Proposition 4.2.3 Let R be a UFD, let F be the free R-module $R^{(n)}$, let $a_{i} \in R$ $(1 \leqslant i \leqslant n)$, not all zero, let \mathcal{B} be an ideal of R and let N be the submodule $\mathcal{B}\left(a_{1}, \ldots, a_{n}\right)$ of F. Then $E_{F}(N)=\sqrt{\mathcal{B} d}\left(b_{1}, \ldots, b_{n}\right)$, where $b_{i}=\frac{a_{i}}{d}$ and $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$.

Proof. Let $x \in \sqrt{\mathcal{B} d}$; then $x^{k}=b d$, for some $b \in \mathcal{B}$ and positive integer k. Hence

$$
x^{k}\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right)=b\left(a_{1}, \ldots, a_{n}\right) \in N
$$

and it follows that $x\left(\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}\right) \in E_{F}(N)$. Hence $\sqrt{\mathcal{B} d}\left(b_{1}, \ldots, b_{n}\right) \subseteq E_{F}(N)$. Let $r, x_{i} \in R(1 \leqslant i \leqslant n)$ such that $r^{m}\left(x_{1}, \ldots, x_{n}\right)=b\left(a_{1}, \ldots, a_{n}\right)$ for some $b \in \mathcal{B}$. If $r=0$ then $r\left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)=0\left(b_{1}, \ldots, b_{n}\right) \in \sqrt{\mathcal{B} d}\left(b_{1}, \ldots, b_{n}\right)$. Suppose that $r \neq 0$. Now $r^{m} x_{i}=b a_{i}, 1 \leqslant i \leqslant n$. Thus $r^{m}\left(x_{i} a_{j}-x_{j} a_{i}\right)=0$ $(1 \leqslant i, j \leqslant n)$. Since $r^{m} \neq 0, x_{i} a_{j}=x_{j} a_{i}(1 \leqslant i<j \leqslant n)$. Thus $x_{i} b_{j}=x_{j} b_{i}$ $(1 \leqslant i<j \leqslant n)$. By the argument given in the proof of Proposition 4.2.1, we find that $\left(x_{1}, \ldots, x_{n}\right)=y\left(b_{1}, \ldots, b_{n}\right)$. Thus $r\left(x_{1}, \ldots, x_{n}\right)=r y\left(b_{1}, \ldots, b_{n}\right)$. Hence

$$
r^{m} y\left(b_{1}, \ldots, b_{n}\right)=b\left(a_{1}, \ldots, a_{n}\right)=b d\left(b_{1}, \ldots, b_{n}\right)
$$

Thus $r^{m} y=b d$ and $(r y)^{m} \in \mathcal{B} d$. Therefore $r y \in \sqrt{\mathcal{B} d}$ and $r y\left(b_{1}, \ldots, b_{n}\right) \in$ $\sqrt{\mathcal{B} d}\left(b_{1}, \ldots, b_{n}\right)$.

Next we show that if R is a UFD then certain 2-generated submodules of free R-modules of finite rank are good.

Theorem 4.2.4 Let R be a UFD, let $n \geqslant 3$ be a positive integer and $a_{i}, b_{i} \in$ $R(1 \leqslant i \leqslant n)$ such that $R=R b_{1}+\cdots+R b_{n}$. Let $c=s_{1} a_{1}+\cdots+s_{n} a_{n}$ where $s_{i} \in R(1 \leqslant i \leqslant n)$ and $1=s_{1} b_{1}+\cdots+s_{n} b_{n}$. Let d be any gcd of the elements $a_{i}-c b_{i}(1 \leqslant i \leqslant n)$ if $a_{j}-c b_{j} \neq 0$ for some $1 \leqslant j \leqslant n$, and otherwise let $d=1$. Let N denote the submodule $R\left(a_{1}, \ldots, a_{n}\right)+R\left(b_{1}, \ldots, b_{n}\right)$ of $F=R^{(n)}$. Then $\operatorname{rad}_{F}(N)=<E_{F}(N)>=R\left(b_{1}, \cdots, b_{n}\right)+R\left(f_{1}, \ldots, f_{n}\right)$ where
$f_{i}=\left(p_{1} \cdots p_{m}\right)\left(a_{i}-c b_{i}\right) / d(1 \leqslant i \leqslant n)$ and either d is not a unit and p_{1}, \ldots, p_{m} are the pairwise non-associate prime divisors of d, or d is a unit and $p_{1}=\cdots=$ $p_{m}=1$. In particular, N is a good submodule of F.

Proof. Suppose first that $a_{i}-c b_{i}=0(1 \leqslant i \leqslant n)$. Then $N=R\left(b_{1}, \ldots, b_{n}\right)$ which is a direct summand of F and hence is prime by Proposition 2.2.3. The result follows in this case.

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ and $L=R \mathbf{b}$. Then $F=L \oplus L^{\prime}$ where L^{\prime} is the submodule $\left\{\left(x_{1} \ldots, x_{n}\right) \in F: s_{1} x_{1}+\cdots+s_{n} x_{n}=0\right\}$, by Proposition 2.2.3. It follows that $N=N \cap F=L \oplus\left(N \cap L^{\prime}\right)$. By Lemma 1.1.2.4, $\operatorname{rad}_{F}(N)=$ $\operatorname{rad}_{L}(L) \oplus \operatorname{rad}_{L^{\prime}}\left(N \cap L^{\prime}\right)=L \oplus \operatorname{rad}_{L^{\prime}}\left(N \cap L^{\prime}\right)$. Moreover, by Lemma 3.1.4,

$$
\operatorname{rad}_{L^{\prime}}\left(N \cap L^{\prime}\right)=L^{\prime} \cap \operatorname{rad}_{F}\left(N \cap L^{\prime}\right)
$$

By the remarks at the beginning of section 2.3, $N \cap L^{\prime}=R(\mathbf{a}-c \mathbf{b})$ and by Proposition 3.1.10,

$$
\operatorname{rad}_{F}\left(N \cap L^{\prime}\right)=\left\{\begin{array}{cc}
N \cap L^{\prime} & \text { if } d \text { is a unit } \\
R\left(f_{1}, \ldots, f_{n}\right) & \text { otherwise }
\end{array}\right.
$$

where d is a gcd of $a_{i}-c b_{i}(1 \leqslant i \leqslant n)$, and, in case d is not a unit, $f_{i}=$ $\left(p_{1} \cdots p_{m}\right)\left(a_{i}-c b_{i}\right) / d$ where p_{1}, \ldots, p_{m} are the pairwise non-associate prime divisors of d. Thus $\operatorname{rad}_{F}(N)=R\left(b_{1}, \ldots, b_{n}\right)+R\left(f_{1}, \ldots, f_{n}\right)$, as required.

If d is a unit in R then

$$
\operatorname{rad}_{F}(N)=R \mathbf{b}+R(\mathbf{a}-c \mathbf{b})=R \mathbf{a}+R \mathbf{b}=N \subseteq<E_{F}(N)>
$$

so that $\operatorname{rad}_{F}(N)=<E_{F}(N)>$. Suppose that d is not a unit in R. Then $\left(p_{1} \cdots p_{m}\right)^{k}=s d$ for some positive integer k and element $s \in R$. Therefore $\left(p_{1} \cdots p_{m}\right)^{k-1}\left(f_{1}, \ldots, f_{n}\right)=s(\mathbf{a}-c \mathbf{b}) \in N$. It follows that

$$
\left(f_{1}, \ldots, f_{n}\right)=\left(p_{1} \cdots p_{m}\right)\left(\left(a_{1}-c b_{1}\right) / d, \ldots,\left(a_{n}-c b_{n}\right) / d\right) \in E_{F}(N)
$$

and hence $\operatorname{rad}_{F}(N) \subseteq<E_{F}(N)>$. Thus $\operatorname{rad}_{F}(N)=<E_{F}(N)>$ and N is a good submodule of F.

Compare the following result with Theorem 2.3.2.
Corollary 4.2.5 With the notation of Theorem 4.2.4, $N=R\left(a_{1}, \ldots, a_{n}\right)+$ $R\left(b_{1}, \ldots, b_{n}\right)$ is a semiprime submodule of F if and only if either $a_{i}=c b_{i}$ $(1 \leqslant i \leqslant n)$ or every common divisor of $a_{i}-c b_{i}(1 \leqslant i \leqslant n)$ is square-free.

Proof. Suppose first that $a_{i}=c b_{i}(1 \leqslant i \leqslant n)$. Then N is a direct summand of F, by the proof of Theorem 4.2.4, and hence a prime submodule of F. Suppose that $a_{j}-c b_{j} \neq 0$ for some $1 \leqslant j \leqslant n$ and d is a greatest common divisor of $a_{i}-c b_{i}(1 \leqslant i \leqslant n)$ where d is square-free. By Theorem 4.2.4,

$$
\begin{aligned}
\operatorname{rad}_{F}(N) & =R\left(b_{1}, \ldots, b_{n}\right)+R\left(f_{1}, \ldots, f_{n}\right) \\
& =R \mathbf{b}+R(\mathbf{a}-c \mathbf{b}) \\
& =R \mathbf{a}+R \mathbf{b}=N .
\end{aligned}
$$

Thus N is a semiprime submodule of F.
Conversely, suppose that N is a semiprime submodule of F. Suppose that $a_{i} \neq c b_{i}$ for some $1 \leqslant i \leqslant n$. By the proof of Theorem 4.2.4, $N \cap L^{\prime}=\operatorname{rad}_{F}\left(N \cap L^{\prime}\right)$, and hence

$$
R\left(a_{1}-c b_{1}, \ldots, a_{n}-c b_{n}\right)=\frac{p_{1} \cdots p_{m}}{d}\left(a_{1}-c b_{1}, \ldots, a_{n}-c b_{n}\right) R
$$

(in the notation of Theorem 4.2.4). Since $a_{i}-c b_{i} \neq 0$ it follows that $d=u p_{1} \cdots p_{m}$ for some unit u, i.e. d is square-free.

Next we give an example to show that in Theorem 4.2.4 the condition $R=R b_{1}+\cdots+R b_{n}$ is necessary.

Example 4.2.6 Let R be the $U F D \mathbb{Z}[X]$ and let N be the submodule $R(4,2 X)+$ $R\left(2 X, X^{2}\right)$ of the free R-module $F=R^{(2)}$. Then N is not a good submodule of F.

Proof. Let J denote the (maximal) ideal $R 2+R X$. Then $N=J(2, X)$. We saw on page 52 that $\operatorname{rad}_{F}(N)=R(2, X)$. On the other hand, in Theorem 1.2.28 we proved that $<E_{F}(N)>\subseteq E_{F}(\sqrt{J}(2, X))=\sqrt{J}(2, X) \neq R(2, X)$. Thus N is not a good submodule of F.

Proposition 4.2.7 Let R be a domain and let I be an ideal of R. Let $F=R^{(n)}$ for some positive integer n and let N be the submodule $I(1, \ldots, 1)$ of F. Then $\operatorname{rad}_{F}(N)=\sqrt{I}(1, \ldots, 1)=E_{F}(N)$.

Proof. Let K be any prime submodule of F such that $N \subseteq K$. Then $I(1, \ldots, 1) \subseteq$ K so that $I F \subseteq K$ or $R(1, \ldots, 1) \subseteq K$. By Proposition $2.2 .3, R(1, \ldots, 1)$ is a prime submodule of F. Hence

$$
\operatorname{rad}_{F}(N)=R(1, \ldots, 1) \cap \operatorname{rad}_{F}(I F)=R(1, \ldots, 1) \cap \sqrt{I} F
$$

by Proposition 3.2.1. Hence

$$
\operatorname{rad}_{F}(N)=\sqrt{I}(1, \ldots, 1)
$$

Let $x \in \sqrt{I}(1, \ldots, 1)$; then $x=s(1, \ldots, 1)$ for some $s \in \sqrt{I}$. Now $s^{m} \in I$ for some positive integer m and hence $s^{m}(1, \ldots, 1) \in N$, i.e. $x \in E_{F}(N)$. It follows that $\operatorname{rad}_{F}(N) \subseteq E_{F}(N)$ and hence $\operatorname{rad}_{F}(N)=E_{F}(N)$.

Corollary 4.2.8 Let R be a domain and let I be an ideal of R. Then the submodule $I(1, \ldots, 1)$ of the free R-module $F=R^{(n)}$ is semiprime if and only if $\sqrt{I}=I$.

Proof. By Proposition 4.2.7.

The situation for 2 -generated submodules is more complicated. Let R be a UFD and let F be the free R-module $R^{(2)}$. Let $a_{i j} \in R(1 \leqslant i, j \leqslant 2)$ and let
N be the submodule $R\left(a_{11}, a_{12}\right)+R\left(a_{21}, a_{22}\right)$ of F. Suppose first that $a_{11} a_{22}-$ $a_{12} a_{21} \neq 0$. Let d denote the gcd of the elements $a_{i j}(1 \leqslant i, j \leqslant n)$. Let $b_{i j}=\frac{a_{i j}}{d}$ $(1 \leqslant i, j \leqslant n)$ and let X denote the set of elements $\left(r_{1}, r_{2}\right)$ in F such that $R\left|\begin{array}{cc}r_{1} & r_{2} \\ b_{11} & b_{12}\end{array}\right|+R\left|\begin{array}{cc}r_{1} & r_{2} \\ b_{21} & b_{22}\end{array}\right| \subseteq R \Delta$, where $0 \neq \Delta=\left|\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right|=\frac{1}{d^{2}}\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$.

Proposition 4.2.9 With the above notation,

$$
\begin{gathered}
E_{F}(N)=\left\{r\left(s_{1}, s_{2}\right): r, s_{1}, s_{2} \in R, r^{k}=t d \text { and }\left(t s_{1}, t s_{2}\right) \in X\right. \text { for some positive } \\
\text { integer } k \text { and some } t \in R\} .
\end{gathered}
$$

Proof. Let $r, u, v \in R$ where $r^{k}(u, v) \in N$ for some positive integer k. Let e denote the gcd of u and v. Thus

$$
r(u, v)=r e\left(\frac{u}{e}, \frac{v}{e}\right) \text { and }(r e)^{k}\left(\frac{u}{e}, \frac{v}{e}\right) \in N .
$$

Hence without loss of generality u and v are coprime. There exist $x, y \in R$ such that

$$
\begin{aligned}
r^{k}(u, v) & =x\left(a_{11}, a_{12}\right)+y\left(a_{21}, a_{22}\right) \\
& =x d\left(b_{11}, b_{12}\right)+y d\left(b_{21}, b_{22}\right)
\end{aligned}
$$

i.e.

$$
r^{k} u=d\left(x b_{11}+y b_{21}\right) \text { and } r^{k} v=d\left(x b_{12}+y b_{22}\right)
$$

Thus d divides both $r^{k} u$ and $r^{k} v$. Since u and v are coprime it follows that d divides r^{k}, i.e. $r^{k} \in R d$ and hence $r^{k}=t d$, where $t \in R$. Then

$$
t u=x b_{11}+y b_{21} \text { and } t v=x b_{12}+y b_{22} .
$$

Thus $t u b_{22}-t v b_{21}=x \Delta$, i.e.

$$
t\left|\begin{array}{cc}
u & v \\
b_{21} & b_{22}
\end{array}\right|=x \Delta \text { and similarly } t\left|\begin{array}{cc}
u & v \\
b_{11} & b_{12}
\end{array}\right|=-y \Delta .
$$

Thus r, u, v have the required properties.
Conversely suppose $f \in F$, where $f=r\left(s_{1}, s_{2}\right), r^{k}=t d$ for some $k \geqslant 1, t \in R$ and $t\left(s_{1}, s_{2}\right) \in X$. Then

$$
\left|\begin{array}{cc}
t s_{1} & t s_{2} \\
b_{11} & b_{12}
\end{array}\right|=x \Delta \text { and }\left|\begin{array}{cc}
t s_{1} & t s_{2} \\
b_{21} & b_{22}
\end{array}\right|=y \Delta
$$

for some $x, y \in R$. Thus

$$
t s_{1} b_{12}-t s_{2} b_{11}=x \Delta, \text { and } t s_{1} b_{22}-t s_{2} b_{21}=y \Delta
$$

This implies that

$$
t s_{1}\left(b_{12} b_{21}-b_{22} b_{11}\right)=\left(x b_{21}-y b_{11}\right) \Delta \text { and } t s_{2}\left(b_{12} b_{21}-b_{11} b_{22}\right)=\left(x b_{22}-y b_{12}\right) \Delta
$$

Since $\Delta \neq 0$, we have $t\left(s_{1}, s_{2}\right)=y\left(b_{11}, b_{12}\right)-x\left(b_{21}, b_{22}\right)$. Now

$$
r^{k}\left(s_{1}, s_{2}\right)=d t\left(s_{1}, s_{2}\right)=y\left(a_{11}, a_{12}\right)-x\left(a_{21}, a_{22}\right) \in N
$$

Thus $f \in E_{F}(N)$ and the result is proved.

Now we consider elements $a_{i j} \in F(1 \leqslant i, j \leqslant 2)$, not all zero, such that $a_{11} a_{22}-a_{12} a_{21}=0$. Then there exist coprime elements b, c in R (possibly $b=0$ or $c=0$ but not both) such that ($\left.a_{11}, a_{12}\right)=u(b, c)$ and $\left(a_{21}, a_{22}\right)=v(b, c)$ for some $u, v \in R$. Thus

$$
\begin{aligned}
R\left(a_{11}, a_{12}\right)+R\left(a_{21}, a_{22}\right) & =R u(b, c)+R v(b, c) \\
& =(R u+R v)(b, c)
\end{aligned}
$$

and so we can deal with the case in Proposition 4.2.3.

Dauns [4], [5] defines a submodule N of M to be semiprime if $N=E_{M}(N)$. Recall that when N is semiprime $\operatorname{rad}_{F}(N)=E_{F}(N)$ is proved in Lemma 1.1.2.2. In fact the converse of Lemma 1.1.2.2 is false as the following result shows. The result is based on an example in [11].

Proposition 4.2.10 Let S be a domain, let $R=S[X]$ and let F be the free R module $R^{(2)}$. Let $0 \neq a \in S$, let $W=\sqrt{R a+R X}$ and let N denote the submodule $W(a, X)$ of F. Then $N=E_{F}(N)$. Moreover, N is semiprime if and only if a is a unit in S.

Proof. $N=E_{F}(N)$ by the proof of Theorem 1.2.28. If N is semiprime then $N=\operatorname{rad}_{F}(N)=E_{F}(N)=<E_{F}(N)>$. Again by the proof of Theorem 1.2.28, a is a unit.

Suppose that a is a unit in S. Then $W=R$ and $N=R(a, X)=R\left(1, a^{-1} X\right)$ which is a direct summand and hence a 0 -prime submodule of F, by Proposition 2.2.3. Thus N is semiprime.

Let R be a domain and let $F=R^{(n)}$ for some positive integer $n \geqslant 2$. Let $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)(1 \leqslant i \leqslant n)$ and let N denote the submodule $R \mathbf{a}_{1}+\cdots+R \mathbf{a}_{n}$ of F.

Proposition 4.2.11 With the above notation, let A denote the $n \times n$ matrix ($a_{i j}$) over R and let $\Delta=\operatorname{det} A$. Suppose that $R \Delta$ is a non-zero semiprime ideal of R. Then $N=E_{F}(N)$.

Proof. Let $r, s_{i}(1 \leqslant i \leqslant n)$ be elements of R such that $r^{k}\left(s_{1}, \ldots, s_{n}\right) \in N$ for some positive integer k. There exist elements $x_{i} \in R(1 \leqslant i \leqslant n)$ such that

$$
r^{k}\left(s_{1}, \ldots, s_{n}\right)=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}
$$

We can write this equation in matrix notation as follows:

$$
r^{k}\left[s_{1} \cdots s_{n}\right]=\left[x_{1} \cdots x_{n}\right] A
$$

Let $\operatorname{adj} A$ denote the adjugate of A and recall that $A(\operatorname{adj} A)=(\operatorname{adj} A) A=\Delta I_{n}$, where I_{n} is the $n \times n$ identity matrix. Then

$$
r^{k}\left[s_{1} \cdots s_{n}\right] \operatorname{adj} A=\left[x_{1} \cdots x_{n}\right] \Delta I_{n}=\left[\left(\Delta x_{1}\right) \cdots\left(\Delta x_{n}\right)\right] .
$$

Let $\left[t_{1} \cdots t_{n}\right]=\left[s_{1} \cdots s_{n}\right] \operatorname{adj} A$. For each $1 \leqslant i \leqslant n, r^{k} t_{i}=\Delta x_{i}$ gives $\left(r t_{i}\right)^{k} \in R \Delta$ and hence $r t_{i}=\Delta z_{i}$ for some $z_{i} \in R$. Thus

$$
r\left[s_{1} \cdots s_{n}\right] \operatorname{adj} A=r\left[t_{1} \cdots t_{n}\right]=\Delta\left[z_{1} \cdots z_{n}\right]
$$

Now

$$
r\left[s_{1} \cdots s_{n}\right](\operatorname{adj} A) A=\Delta\left[z_{1} \cdots z_{n}\right] A
$$

gives $r \Delta\left[s_{1} \cdots s_{n}\right]=\Delta\left[z_{1} \cdots z_{n}\right] A$, so that $r\left[s_{1} \cdots s_{n}\right]=\left[z_{1} \cdots z_{n}\right] A$. In other words,

$$
r\left(s_{1}, \ldots, s_{n}\right)=z_{1} \mathbf{a}_{1}+\cdots+z_{n} \mathbf{a}_{n} \in N
$$

It follows that $E_{F}(N)=N$.

Note that in Proposition 4.2.11 the condition $R \Delta$ is non-zero is necessary, as the following example shows.

Example 4.2.12 Let N denote the submodule $\mathbb{Z}(4,0,4)+\mathbb{Z}(0,4,4)+\mathbb{Z}(4,4,8)$ of $F=\mathbb{Z}^{(3)}$. Then $E_{F}(N)=<E_{F}(N)>=\operatorname{rad}_{F}(N) \neq N$.But $\mathbb{Z} \Delta=0$ which is a semiprime ideal of \mathbb{Z}.

Proof. By Theorem 3.1.5,

$$
\left(r_{1}, r_{2}, r_{3}\right) \in \operatorname{rad}_{F}(N) \Leftrightarrow\left[\begin{array}{ccc}
r_{1} & r_{2} & r_{3} \\
4 & 0 & 4 \\
0 & 4 & 4 \\
4 & 4 & 8
\end{array}\right]_{t} \in \sqrt{\left[\begin{array}{ccc}
0 & 0 & 0 \\
4 & 0 & 4 \\
0 & 4 & 4 \\
4 & 4 & 8
\end{array}\right]_{t}} \text { where } 1 \leqslant t \leqslant 3
$$

Hence

$$
\operatorname{rad}_{F}(N)=\{(2 a, 2 b, 2(a+b)): a, b \in \mathbb{Z}\} .
$$

For any element $x=(2 a, 2 b, 2(a+b)) \in \operatorname{rad}_{F}(N)$, note that $2^{2}(a, b, a+b)=$ $a(4,0,4)+b(0,4,4) \in N$. Hence $x \in E_{F}(N)$. On the other hand, for example $(2,2,4) \in \operatorname{rad}_{F}(N)$, but $(2,2,4) \notin N$. Therefore

$$
E_{F}(N)=<E_{F}(N)>=\operatorname{rad}_{F}(N) \neq N .
$$

Proposition 4.2.13 With the notation of Proposition 4.2.11 with $R \Delta$ is nonzero semiprime, suppose that R is a one-dimensional Noetherian domain and $\Delta \neq 0$. Then N is a semiprime submodule of F.

Proof. By Proposition 2.3.7, $R \Delta \subseteq(N: F)$. But the $R / R \Delta$-module F / N is semisimple and hence N is an intersection of maximal submodules, i.e. N is semiprime.

Definition 4.2.14 Let R be a commutative ring and M be any R-module. A submodule Q of M is called primary if whenever $r \in R, m \in M$ and $r m \in Q$ then $m \in Q$ or $r^{k} \in(Q: M)$ for some positive integer k.

Proposition 4.2.15 Let R be a commutative ring. Let M be any R-module and Q be a \mathcal{P}-primary submodule of M. Then

$$
<E_{M}(Q)>=Q+\mathcal{P} M
$$

Proof. Note first that for any submodule N of M,

$$
\sqrt{(N: M)} \subseteq\left(<E_{M}(N)>: M\right)
$$

Thus $Q+\mathcal{P} M \subseteq<E_{M}(Q)>$.
Conversely, suppose $r m \in E_{M}(Q)$. Then there exists a positive integer k such that $r^{k} m \in Q$. Since Q is \mathcal{P}-primary this implies that either $m \in Q$ or $r^{k} \in \sqrt{(Q: M)}=\mathcal{P}$. If $m \in Q$ then $r m \in Q$. If $r^{k} \in \sqrt{(Q: M)}=\mathcal{P}$ then $r \in \mathcal{P}$ and hence $r m \in \mathcal{P} M$. In any case $r m \in Q+\mathcal{P} M$. Thus $E_{M}(Q) \subseteq Q+\mathcal{P} M$. Therefore

$$
<E_{M}(Q)>=Q+\mathcal{P} M
$$

Chapter 5

CHAIN CONDITIONS IN
 MODULES WITH KRULL
 DIMENSION

In this chapter rings are not assumed to be commutative. Gordon and Robson proved that any ring with Krull dimension satisfies the ascending chain condition (ACC) on semiprime ideals (see Theorem 5.1.9). But this result does not hold for modules in general. In particular it is proved in Theorem 5.2.6 that if R is the first Weyl algebra over a field of characteristic 0 then there are Artinian R-modules which do not satisfy the ACC on semiprime submodules. The aim of this chapter is to investigate when Gordon and Robson's result holds for modules. For example, if R is a $P I$-ring then any R-module with Krull dimension satisfies the ACC on prime submodules (see Theorem 5.2.11), and if R is left Noetherian, also the ACC on semiprime submodules (see Theorem 5.3.2).

5.1 On Krull Dimension

Let R be a ring and M be an R-module. The Krull dimension of M will be denoted by $k(M)$. The Krull dimension of a ring R is defined to be the Krull dimension of the left R-module R and will be denoted by $k(R)$.

In this section we will give some relevant properties of Krull dimension which will be used later. For the definition and other basic properties of Krull dimension see [8], [9] and [29].

Definition 5.1.1 An element c in R is called regular (or a non-zero-divisor) provided $c r \neq 0$ and $r c \neq 0$ for every non-zero element r in R. If I is a proper ideal of R then $\mathcal{C}(I)$ will denote the set of elements c in R such that $c+I$ is a regular element in the ring R / I. Clearly $c \in \mathcal{C}(I)$ if and only if for any $r \in R, c r \in I$ or $r c \in I$ implies $r \in I$.

Proposition 5.1.2 [29, 6.3.5 Proposition] A semiprime ring with Krull dimension is a left Goldie ring.

Lemma 5.1.3 [8, Ex.13F] Let R be a ring with Krull dimension. If \mathcal{P} is a prime ideal of R, and I is an ideal with $I \supset \mathcal{P}$ then $k(R / I)<k(R / \mathcal{P})$.

Proof. The non-zero ideal I / \mathcal{P} of R / \mathcal{P} is essential in the prime right Goldie ring R / \mathcal{P}. So I / \mathcal{P} contains a regular element $c+\mathcal{P}$ in R / \mathcal{P}. Since in the - chain $\left\{(c+\mathcal{P})^{n}(R / \mathcal{P}): n\right.$ is a positive integer $\}$ the factors are all isomorphic to $(R / \mathcal{P}) /((c R+\mathcal{P}) / \mathcal{P})$, we have

$$
k(R / I) \leqslant k((R / \mathcal{P}) /((c R+\mathcal{P}) / \mathcal{P}))<k(R / \mathcal{P})
$$

Theorem 5.1.4 [9, Theorem 7.1] Any ring R with Krull dimension has the ascending chain condition (ACC) on prime ideals.

Proof. Suppose $\mathcal{P}_{1} \subset \mathcal{P}_{2}$ are prime ideals of the ring R. By Lemma 5.1.3, $k\left(R / \mathcal{P}_{2}\right)<k\left(R / \mathcal{P}_{1}\right)$. Therefore an ascending chain of primes in $R, \mathcal{P}_{1} \subset \mathcal{P}_{2} \subset$ \cdots, gives a decreasing sequence of ordinals, $k\left(R / \mathcal{P}_{1}\right)>k\left(R / \mathcal{P}_{2}\right)>\cdots$, which is not possible.

Lemma 5.1.5 [9, Proposition 1.4] A module with Krull dimension has finite uniform dimension.

Proof. Suppose the result is false. Amongst the modules for which it fails, choose one, M, of minimal Krull dimension, α say. Clearly $\alpha \geqslant 0$. Suppose that $M \supseteq \bigoplus_{i=1}^{\infty} A_{i}$ for non-zero submodules A_{i}. For each non-negative integer n set $M_{n}=\bigoplus_{j=1}^{\infty} A_{\left(2^{n} j\right)}$ and consider the infinite chain $M_{0} \supset M_{1} \supset M_{2} \supset \cdots$. Each factor M_{i} / M_{i+1} is an infinite direct sum and yet has Krull dimension less than or equal to α. By minimality of $\alpha, k\left(M_{i} / M_{i+1}\right)=\alpha$. Hence, by the definition of Krull dimension, $k(M)>\alpha$, a contradiction.

The following lemma is needed to prove Theorem 5.1.8.

Lemma 5.1.6 (König's unendlichkeitslemma)[15, Chapter VI] Let S_{1}, S_{2}, \ldots be an infinite sequence of disjoint non-empty finite sets and \prec be a relation in $S_{1} \cup S_{2} \cup \cdots$ such that whenever n is a positive integer and $x \in S_{n+1}$, there exists $a y \in S_{n}$ such that $y \prec x$. Then there exists an infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ such that $x_{n} \in S_{n}(n=1,2, \ldots)$ and $x_{1} \prec x_{2} \prec x_{3} \prec \ldots$

Proposition 5.1.7 [9, Proposition 7.3] In a ring R with Krull dimension there are only finitely many prime ideals minimal over any ideal. In particular each semiprime ideal is a finite intersection of prime ideals.

Proof. Let I be an ideal of R and S be the intersection of all prime ideals of R containing I. Then since R / S has Krull dimension, R / S is a semiprime left

Goldie ring, by Proposition 5.1.2. Therefore, as is well known, the zero ideal of R / S is a finite intersection of primes of R / S. Hence there are only finitely many minimal primes over S and S is their intersection.

Theorem 5.1.8 [9, Theorem 7.7] Any ring with ascending chain condition (ACC) on prime ideals has ACC on finite intersections of prime ideals.

Proof. Let R be the ring and $S_{0} \subset S_{1} \subset S_{2} \subset \cdots$ an infinite strictly ascending chain of ideals, each being a finite intersection of primes. Let S_{i}^{\sharp} denote the set of primes of R minimal over S_{i}. From the assumption on S_{i}, it follows that the set S_{i}^{\sharp} must be finite and $S_{i}=\bigcap_{\mathcal{P} \in S_{i}^{\sharp}} \mathcal{P}$.

The aim is to apply Lemma 5.1.6 to a suitable directed graph G, producing an infinite ascending chain of primes. The vertex set of G is $V=\bigcup_{i=0}^{\infty} S_{i}^{\sharp}$. The set V is clearly infinite. An edge in G is an ordered pair (\mathcal{P}, \mathcal{Q}) where $\mathcal{P} \subset \mathcal{Q}$ and $\mathcal{P} \in S_{i}^{\sharp}, \mathcal{Q} \in S_{i+1}^{\sharp}$ for some i. The index i is uniquely determined when it exists; for if $\mathcal{P} \in S_{j}^{\sharp}$ and $j>i$ then $S_{i+1} \subseteq S_{j} \subseteq \mathcal{P} \subset \mathcal{Q}$, contradicting the description of \mathcal{Q}. This same argument shows that every vertex has finite index. Also note that G has no closed paths.

Consider the finite paths from some vertex in S_{0}^{\sharp} to a vertex \mathcal{P}. Since the set $\bigcup_{j \leqslant i} S_{j}^{\sharp}$ is finite for any fixed i, it follows that there is a longest such path; say it has length n. Then we call n the height of \mathcal{P}. If $\mathcal{P} \notin S_{0}^{\sharp}$ then the set $\{\mathcal{Q} \in V:(\mathcal{Q}, \mathcal{P})$ is an edge $\}$ has finite cardinality greater than 0 . An easy induction now shows that there are only finitely many vertices of height n. Hence Lemma 5.1.6 asserts the existence of an infinite path, which is similar to the existence of an infinite strictly ascending chain of primes.

The following theorem is the result of Theorem 5.1.8.

Theorem 5.1.9 [9, Theorem 7.6] A ring with Krull dimension has the ACC for semiprime ideals.

5.2 Prime Submodules

Recall that for any submodule N of M ann (M / N) is denoted by $(N: M)$, i.e. $(N: M)=\{r \in R: r M \subseteq N\}$. Thus a proper submodule N of M is prime if and only if $(N: M)=(N: L)$ for any submodule L of M properly containing N.

Before we extend Gordon and Robson's result which was given in Theorem 5.1.9, we note the following.

Lemma 5.2.1 Let R be any simple ring. Then the following statements are equivalent for an R-module M.
(i) M is Noetherian.
(ii) M satisfies $A C C$ on semiprime submodules.
(iii) M satisfies $A C C$ on prime submodules.

Proof. $(i) \Rightarrow(i i) \Rightarrow(i i i)$ Clear.
$(i i i) \Rightarrow(i)$ It is easy to check that every proper submodule of M is prime. Thus (iii) implies (i).

Let R be any ring. An R-module M will be called uniserial if M has a unique finite composition series. The next two lemmas are presumably well known but we give their proofs for convenience.

Lemma 5.2.2 Let R be any ring. Let M be an R-module with a maximal submodule N and a simple submodule $S \varsubsetneqq N$ such that N and M / S are both uniserial. Then M is uniserial.

Proof. Let $0=N_{0} \subset S=N_{1} \subset \cdots \subset N_{k}=N$ be the unique composition series of N. Then $0=N_{1} / S \subset N_{2} / S \subset \cdots \subset N_{k} / S \subset M / S$ is the unique composition series of M / S. Clearly M has finite composition length. Let L be any non-zero submodule of M. Suppose that $L \cap S=0$. Then $L \cap N=0$ since S is essential in N. Thus $L \nsubseteq N$ and hence $M=L+S$. In this case, $N=(N \cap L)+S=S$, a contradiction. Thus $L \cap S \neq 0$, so that $S \subseteq L$ and hence $L / S=M / S$ or $L / S=N_{i} / S$, i.e. $L=M$ or $L=N_{i}$ for some $1 \leqslant i \leqslant k$. Therefore M is uniserial.

Lemma 5.2.3 Let R be any ring. Let M be an R-module such that there exists a chain of submodules $0=M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq \bigcup_{n \geqslant 1} M_{n}=M$ with M_{n} / M_{n-1} simple and M_{n} uniserial for all $n \geqslant 1$. Let N be any proper submodule of M. Then $N=M_{n}$ for some $n \geqslant 0$.

Proof. There exists a positive integer k such that $M_{k} \nsubseteq N$. Let n be the least integer such that $M_{n} \nsubseteq N$. Then $n \geqslant 1$. Thus $M_{n-1} \subseteq N$ so that $M_{n-1} \subseteq$ $N \cap M_{n} \subset M_{n}$. Since M_{n} / M_{n-1} is simple it follows that $N \cap M_{n}=M_{n-1}$. Suppose that $N \cap M_{s} \neq M_{n-1}$ for some $s>n$, and choose s as small as possible. Then $N \cap M_{s-1}=M_{n-1}$ gives $N \cap M_{s} \nsubseteq M_{s-1}$. Because M_{s} / M_{s-1} is simple and M_{s} is uniserial, we have $N \cap M_{s}=M_{s}$. Thus $M_{n} \subseteq M_{s} \subseteq N$, a contradiction. It follows that $N \cap M_{s}=M_{n-1}$ for all $s>n$ and

$$
N=N \cap M=N \cap\left(\bigcup_{s \geqslant 1} M_{s}\right)=\bigcup_{s \geqslant 1}\left(N \cap M_{s}\right)=M_{n-1} .
$$

Let k be any field of characteristic 0 . Then $A_{1}(k)$ denotes the first Weyl algebra consisting of polynomials over k in indeterminates x, y subject to $x y-y x=1($ see $[8],[29])$.

Lemma 5.2.4 Let k be a field of characteristic 0 and let $R=A_{1}(k)$. Let $p \in k[y]$. Then the R-module $R / R(x-p)$ is simple.

Proof. Let L be a left ideal of R properly containing $R(x-p)$. Since $R=k[y]+k[y] x+k[y] x^{2}+\cdots$ it follows that $R=k[y]+R(x-p)$. Thus there exists an element $0 \neq f(y) \in L$. Now

$$
f^{\prime}(y)=x f(y)-f(y) x=(x-p) f(y)-f(y)(x-p) \in L
$$

Repeating this argument we obtain $L \cap k \neq 0$, i.e. $L=R$. Thus $R(x-p)$ is a maximal left ideal of R and hence $R / R(x-p)$ is a simple R-module.

The next result is due to McConnell and Robson [28]. We give here an elementary proof.

Lemma 5.2.5 Let k be a field of characteristic 0 and let $R=A_{1}(k)$. Let p, q be distinct members of $k[y]$. Then the R-module $R / R(x-p)(x-q)$ is uniserial if and only if $p-q \notin k$.

Proof. Suppose first that $p-q \in k$. Then

$$
\begin{aligned}
(x-p)(x-q) & =((x-q)-(p-q))(x-q) \\
& =(x-q)^{2}-(p-q)(x-q) \\
& =(x-q)^{2}-(x-q)(p-q) \\
& =(x-q)((x-q)-(p-q)) \\
& =(x-q)(x-p) .
\end{aligned}
$$

In this case,
$R / R(x-p)(x-q)=(R(x-p) / R(x-p)(x-q)) \oplus(R(x-q) / R(x-p)(x-q))$.

Thus $R / R(x-p)(x-q)$ is not uniserial.

Conversely, suppose that $p-q \notin k$. Note that

$$
(x-q) y-y(x-q)=(x y-y x)+(y q-q y)=1
$$

so that we can make the change of variable $x \mapsto x-q$ and suppose without loss of generality that $q=0$. Note that in this case $p \notin k$. By Lemma 5.2.4, $R x$ and $R(x-p)$ are both maximal left ideals of R. Moreover, $R x / R(x-p) x \cong R / R(x-p)$. Thus the R-module $R / R(x-p) x$ has length 2 . Suppose there exists a left ideal L such that

$$
\begin{equation*}
R=R x+L \text { and } R x \cap L=R(x-p) x \tag{5.1}
\end{equation*}
$$

Then $1-f x \in L$ for some $f \in R$.
We now claim that

$$
\begin{equation*}
x^{n} \in k[y] x+R(x-p) x \tag{5.2}
\end{equation*}
$$

for all positive integers n. Note that $x=1 x+0 x$ and $x^{2}=p x+(x-p) x$ so that (5.2) holds for $n=1,2$. Suppose that $m \geqslant 2$ is a positive integer such that (5.2) holds for $1 \leqslant n \leqslant m$. Consider

$$
\begin{aligned}
x^{m+1} & =x^{m-1}\left[\left(x^{2}-p x\right)+p x\right] \\
& =x^{m-1}\left(x^{2}-p x\right)+x^{m-1} p x \\
& =x^{m-1}\left(x^{2}-p x\right)+\left(p x^{m-1}+a_{0}+a_{1} x+\cdots+a_{m-2} x^{m-2}\right) x
\end{aligned}
$$

for some $a_{i} \in k[y](1 \leqslant i \leqslant m-2)$. Thus

$$
x^{m+1} \in R(x-p) x+k[y] x^{m}+k[y] x^{m-1}+\cdots+k[y] x \subseteq R(x-p) x+k[y] x
$$

by the induction hypothesis. Hence (5.2) holds for all positive integers n.
Combining (5.1) and (5.2) gives $g \in k[y]$ such that $1-g x \in L$. Now $x(1-g x) \in$ L so that $x-\left(g x+g^{\prime}\right) x \in L$, i.e. $\left(1-g^{\prime}\right) x-g x^{2} \in L$, where g^{\prime} is the derivative
of g in $k[y]$. Now

$$
\left(1-g^{\prime}-g p\right) x=\left(1-g^{\prime}\right) x-g x^{2}+g\left(x^{2}-p x\right) \in R x \cap L
$$

and hence $\left(1-g^{\prime}-g p\right) x \in R(x-p) x$. This implies that $1-g^{\prime}-g p \in R(x-p) \cap k[y]=$ $\{0\}$. Since $p \notin k$ it follows that $1-g^{\prime}-g p \neq 0$, a contradiction. Thus there does not exist a left ideal L of R satisfying (5.1). This proves that $R / R(x-p) x$ is a uniserial R-module, as required.

Theorem 5.2.6 Let k be a field of characteristic 0 and let $R=A_{1}(k)$. Let $\left\{p_{n}: n \geqslant 1\right\}$ be any collection of elements of the polynomial ring $k[y]$ such that $p_{m}-p_{n} \notin k$ for all $1 \leqslant n<m<\infty$. For each positive integer n let B_{n} denote the submodule $R\left(x-p_{n}\right)^{-1} \cdots\left(x-p_{1}\right)^{-1}$ of Q, the quotient division ring of R, let $B=\bigcup_{n \geqslant 1} B_{n}$, and let $M=B / R$. Then
(i) R is a simple Noetherian domain,
(ii) $0 \subseteq B_{1} / R \subset B_{2} / R \subset \cdots \subseteq \bigcup_{n \geqslant 1} B_{n} / R=M$ are all the submodules of M,
(iii) M is Artinian, and
(iv) M does not satisfy $A C C$ on prime submodules.

Proof. It is well known that R is a simple Noetherian domain (see [8, Corollaries 1.13 and 1.15] or [29, 1.3.5]). Clearly

$$
R=B_{0} \subseteq B_{1} \subseteq B_{2} \subseteq \cdots \subseteq \bigcup_{n \geqslant 1} B_{n}=B
$$

Moreover, $B_{1} / R=R\left(x-p_{1}\right)^{-1} / R \cong R / R\left(x-p_{1}\right)$ which is a simple R-module by Lemma 5.2 .4 , and for any $n \geqslant 2$,

$$
\begin{aligned}
B_{n} / B_{n-1} & =R\left(x-p_{n}\right)^{-1} \cdots\left(x-p_{1}\right)^{-1} / R\left(x-p_{n-1}\right)^{-1} \cdots\left(x-p_{1}\right)^{-1} \\
& \cong R / R\left(x-p_{n}\right)
\end{aligned}
$$

which is simple. Now for each $n \geqslant 1$,

$$
B_{n} / R \cong R / R\left(x-p_{1}\right) \cdots\left(x-p_{n}\right) .
$$

If $n=2, R / R\left(x-p_{1}\right)\left(x-p_{2}\right)$ is a uniserial R-module by Lemma 5.2.5. If $n \geqslant 3$ then $B_{n} / B_{1} \cong R / R\left(x-p_{2}\right) \cdots\left(x-p_{n}\right)$ which is uniserial by induction on n and B_{n-1} / R is also uniserial by induction on n. By Lemma $5.2 .2, B_{n} / R$ is uniserial for all $n \geqslant 1$. Now Lemma 5.2 .3 gives (ii). Clearly (iii) follows and by Lemma 5.2 .1 so too does $(i v)$.

Contrast Theorem 5.2.6 with the following result.

Theorem 5.2.7 Let R be a ring such that every left primitive homomorphic image is (left) Artinian. Let M be an Artinian R-module. Then M satisfies $A C C$ on semiprime submodules.

Proof. If M does not contain any prime submodules then the result is true vacuously. Now suppose that M contains a prime submodule. Let Φ be the set of all submodules of M which can be expressed as an intersection of a finite number of prime submodules. By the minimal condition, Φ has a minimal member K, say. There exist prime submodules K_{1}, \ldots, K_{n} such that

$$
K=K_{1} \cap \cdots \cap K_{n}
$$

Let L be any prime submodule of M. Then

$$
K=K_{1} \cap \cdots \cap K_{n} \supseteq L \cap K_{1} \cap \cdots \cap K_{n} \in \Phi .
$$

By the minimality of K we have $K=L \cap K_{1} \cap \cdots \cap K_{n}$. Hence $K \subseteq L$. Thus K is contained in any semiprime submodule of M.

Consider K_{1}. Now $K_{1} \neq M$ and hence there exists a submodule U of the Artinian module M, containing K_{1}, such that U / K_{1} is simple. Let $\mathcal{P}=\operatorname{ann}\left(U / K_{1}\right)$.

By hypothesis, the ring R / \mathcal{P} is simple Artinian. But $\mathcal{P}\left(M / K_{1}\right)=0$, because K_{1} is prime, and hence M / K_{1} is semisimple. Thus M / K_{i} is semisimple for all $1 \leqslant i \leqslant n$. Being Artinian, M / K_{i} is Noetherian for all $1 \leqslant i \leqslant n$. Hence M / K is Noetherian. It foll ows that M satisfies ACC on semiprime submodules.

Recall that if R is a ring which satisfies a polynomial identity, i.e. a $P I$-ring for short, then every left primitive image of R is Artinian [29, 13.3.8]. For the definition and basic properties of $P I$-rings see [29]. In particular, note that if \mathcal{P} is a prime ideal of a $P I$-ring R then the ring R / \mathcal{P} is (left) Goldie [29, 13.6.6]. Our next aim is to show that if R is a $P I$-ring then any R-module M with arbitrary Krull dimension satisfies ACC on prime submodules.

Definition 5.2.8 Let R be a prime left Goldie ring. Let M be a left R-module. Then the singular submodule of M is given by

$$
Z(M)=\{m \in M: c m=0 \text { for some } c \in \mathcal{C}(0)\}
$$

M is called a torsion module if $M=Z(M)$, and M is called torsion-free if $Z(M)=0$.

Definition 5.2.9 A proper submodule N of M is called strongly prime if $\mathcal{P}=(N: M)$ is a prime ideal of R such that the ring R / \mathcal{P} is (prime) left Goldie and the left (R / \mathcal{P})-module M / N is torsion-free.

Lemma 5.2.10 (See [27, Proposition 2.1 and Corollary 2.8]). For any ring R, any strongly prime submodule of an R-module is prime. Moreover, the converse holds if R is a PI-ring.

This brings us to the main result of this section.

Theorem 5.2.11 Let R be a PI-ring and let M be an R-module with Krull dimension. Then M satisfies $A C C$ on prime submodules.

Proof. Let $K_{1} \subseteq K_{2} \subseteq K_{3} \subseteq \cdots$ be any ascending chain of prime submodules of M. For each $i \geqslant 1$ let $\mathcal{P}_{i}=\left(K_{i}: M\right)$, so that \mathcal{P}_{i} is a prime ideal of R and M / K_{i} is a torsion-free module over the prime Goldie ring R / \mathcal{P}_{i}. Without loss of generality, $K_{1}=0$ and $\mathcal{P}_{1}=0$.

Suppose that $k(M)=\alpha$, for some ordinal $\alpha \geqslant-1$. We prove that M has ACC on prime submodules by induction on α. If $\alpha=-1$ then $M=0$ and there is nothing to prove.

Now suppose that $\alpha \geqslant 0$ and that the result holds for R-modules of Krull dimension less than α. Note that $0=\mathcal{P}_{1} \subseteq \mathcal{P}_{2} \subseteq \mathcal{P}_{3} \subseteq \cdots$ is an ascending chain of prime ideals of R. Suppose that $\mathcal{P}_{t} \neq 0$ for some $t \geqslant 2$. By [29, 13.6.4] \mathcal{P}_{t} contains a non-zero central (and hence regular) element c. Now

$$
M \supseteq c M \supseteq c^{2} M \supseteq \cdots
$$

is a descending chain of submodules of M and hence $k\left(c^{s} M / c^{s+1} M\right)<\alpha$ for some $s \geqslant 1$. Note that because M is torsion-free (Lemma 5.2.10), $c^{s} M / c^{s+1} M \cong$ $M / c M$ and hence $k(M / c M)<\alpha$. But $c M \leqslant K_{t}$, so that $k\left(M / K_{t}\right)<\alpha$. Now

$$
0=K_{t} / K_{t} \subseteq K_{t+1} / K_{t} \subseteq K_{t+2} / K_{t} \subseteq \cdots
$$

is an ascending chain of primes in M / K_{t}. By induction on α,

$$
K_{n} / K_{t}=K_{n+1} / K_{t}=K_{n+2} / K_{t}=\cdots
$$

and hence $K_{n}=K_{n+1}=K_{n+2}=\cdots$ for some $n \geqslant t$.
Otherwise, $\mathcal{P}_{i}=0(i \geqslant 1)$. Thus M / K_{i} is a torsion-free R-module for all $i \geqslant 1$ by Lemma 5.2.10. Now $K_{1} \subseteq K_{2} \subseteq K_{3} \subseteq \cdots$ is an ascending chain of submodules of a module M with finite uniform dimension by Lemma 5.1.5, and hence there exists $q \geqslant 1$ such that K_{i} is essential in K_{i+1} for all $i \geqslant q$. But this implies that K_{i+1} / K_{i} is torsion and hence $K_{i}=K_{i+1}$ for all $i \geqslant q$, i.e.
$K_{q}=K_{q+1}=K_{q+2}=\cdots$. Therefore M satisfies the ACC on prime submodules

Modifying the proof of Theorem 5.2.11 somewhat we have the next result.
Theorem 5.2.12 Let R be a ring which satisfies $A C C$ on prime ideals and let M be an R-module with Krull dimension. Then M satisfies $A C C$ on strongly prime submodules.

Proof. Let $K_{1} \subseteq K_{2} \subseteq K_{3} \subseteq \cdots$ be any ascending chain of strongly prime submodules of M. With the notation of the proof of Theorem 5.2.11, $\mathcal{P}_{1} \subseteq$ $\mathcal{P}_{2} \subseteq \mathcal{P}_{3} \subseteq \cdots$ is an ascending chain of prime ideals of R. By hypothesis, $\mathcal{P}_{t}=\mathcal{P}_{t+1}=\mathcal{P}_{t+2}=\cdots$ for some positive integer t. There exists $s \geqslant t$ such that K_{i} is essential in K_{i+1} for all $i \geqslant s$. But M / K_{i} is torsion-free as a module over the prime left Goldie ring R / \mathcal{P}_{i}. Thus $K_{i}=K_{i+1}$ for all $i \geqslant s$.

Corollary 5.2.13 Let R be a ring with left Krull dimension and let M be an R-module with Krull dimension. Then M satisfies $A C C$ on strongly prime submodules.

Proof. By Theorems 5.1.4 and 5.2.12.
In particular, if we take $M=R$ in Corollary 5.2 .13 we have the following result:

Corollary 5.2.14 Let R be a ring with left Krull dimension. Then R satisfies $A C C$ on strongly prime left ideals.

If R is a ring with left Krull dimension and \mathcal{P} is a prime ideal of R then R / \mathcal{P} is a left Goldie ring (Proposition 5.1.2) and the left (R / \mathcal{P})-module R / \mathcal{P} is torsion-free. Thus every prime ideal of R is a strongly prime left ideal of R. Thus Corollary 5.2.14 generalizes Theorem 5.1.4. We do not know if rings with Krull dimension satisfy ACC on prime left ideals.

5.3 Semiprime Submodules

In this section we shall be concerned with when a module with Krull dimension satisfies ACC on semiprime submodules. Nagata [30, Proposition 34 Corollary] (see also [12, Theorem 87]) proved that a ring R which satisfies ACC on semiprime ideals has the property that every non-zero homomorphic image has only a finite number of minimal prime ideals, equivalently every semiprime ideal of R is a finite intersection of prime ideals. If R is a general ring and M an R-module such that every non-zero homomorphic image has only a finite number of minimal prime submodules then every semiprime submodule of M is a finite intersection of prime submodules by [27, p.1059]. We do not know if the converse is true in general, but it is true in the following special case.

Theorem 5.3.1 Let R be any ring. Then the following statements are equivalent for an R-module M.
(i) M satisfies $A C C$ on semiprime submodules.
(ii) (a) M satisfies $A C C$ on prime submodules, and
(b) every non-zero homomorphic image of M has only a finite number of minimal prime submodules.
(iii) (a) M satisfies $A C C$ on prime submodules, and
(b) every semiprime submodule of M is a finite intersection of prime submodules.

Proof. $(i) \Rightarrow(i i)$ Clearly M satisfies (ii)(a). Suppose that (ii)(b) does not hold. There exists a proper submodule N of M such that M / N has an infinite number of minimal prime submodules. Then

$$
\operatorname{rad}(N)=\bigcap\{K: K \text { is a prime submodule of } M \text { and } N \subseteq K\}
$$

is a semiprime submodule of M and $M / \operatorname{rad}(N)$ has an infinite number of minimal prime submodules.

Let S be a semiprime submodule of M chosen maximal such that M / S has an infinite number of minimal prime submodules. Then S is not prime. There exist $r \in R$ and a submodule L of M such that $S \varsubsetneqq L, r L \subseteq S$ and $r M \nsubseteq S$. By the choice of S, the modules $M / \operatorname{rad}(L)$ and $M / \operatorname{rad}(\operatorname{Rr} M+S)$ both have only a finite number of minimal prime submodules. Let K be a prime submodule of M with $S \subseteq K$ such that K / S is a minimal prime submodule of. M / S. Then $r L \subseteq K$ so that $L \subseteq K$ or $\operatorname{Rr} M+S \subseteq K$. Thus $\operatorname{rad}(L) \subseteq K$ or $\operatorname{rad}(\operatorname{Rr} M+S) \subseteq K$. If $\operatorname{rad}(L) \subseteq K$ then $K / \operatorname{rad}(L)$ is one of the finite number of minimal prime submodules of the module $M / \operatorname{rad}(L)$. Similarly if $\operatorname{rad}(\operatorname{Rr} M+S) \subseteq K$ then $K / \operatorname{rad}(\operatorname{Rr} M+S)$ is one of the finite number of minimal prime submodules of $M / \operatorname{rad}(\operatorname{Rr} M+S)$. It follows that M / S has only a finite number of minimal prime submodules, a contradiction. Thus M satisfies $(i i)(b)$.
(ii) \Rightarrow (iii) Let $K \subseteq N$ be submodules of M. Then it is easy to check that N is a prime submodule of M if and only if N / K is a prime submodule of M / K. Now suppose S is a semiprime submodule of M. Now M / S has only a finite number of minimal prime submodules $S_{1} / S, \ldots, S_{n} / S$ for some positive integer n where $S \subseteq S_{i} \subseteq M(1 \leqslant i \leqslant n)$. Then S_{i} is a prime submodule of M for all $1 \leqslant i \leqslant n$ and $S=\bigcap_{i}^{n} S_{i}$.
$(i i i) \Rightarrow(i)$ By the proof of Theorem 5.1.8.

We have been unable to settle for a general $P I$-ring R whether every R module with Krull dimension satisfies ACC on semiprime submodules. We have the following special case.

Theorem 5.3.2 Let R be a left Noetherian PI-ring and let M be an R-module with Krull dimension. Then M satisfies $A C C$ on semiprime submodules.

Proof. Suppose that the result is false. Let $\alpha \geqslant-1$ be the least ordinal such that there exists a left Noetherian PI-ring R with $k(R)=\alpha$ and an R-module
M with Krull dimension but M does not satisfy ACC on semiprime submodules. Clearly $\alpha \geqslant 0$. By Theorems 5.2.11 and 5.3.1, we can suppose without loss of generality that M contains an infinite number of minimal prime submodules.

Since R is left Noetherian, there exist a positive integer s and prime ideals $\mathcal{T}_{i}(1 \leqslant i \leqslant s)$ such that $\mathcal{T}_{1} \cdots \mathcal{T}_{s}=0$ [29, 2.2.17]. If K is a minimal prime submodule of M then $\left(\mathcal{T}_{1} \cdots \mathcal{T}_{s}\right) M \subseteq K$ gives $\mathcal{T}_{i} M \subseteq K$ and $K / \mathcal{T}_{i} M$ is a minimal prime submodule of $M / \mathcal{T}_{i} M$ for some $1 \leqslant i \leqslant s$. There exists $1 \leqslant j \leqslant s$ such that $M / T_{j} M$ has an infinite number of minimal prime submodules. Hence we can pass to the ring R / T_{j} and suppose without loss of generality that R is a prime ring.

Let $Z=Z(M)$. Then Z is a prime submodule of M (Lemma 5.2.10). Clearly $Z \neq 0$. There exist a positive integer n and uniform submodules $U_{i}(1 \leqslant i \leqslant n)$ of Z such that $U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of Z. For each $1 \leqslant i \leqslant n$, let $\mathcal{P}_{i}=\operatorname{ass} U_{i}=\left\{r \in R: r V=0\right.$ for some non-zero submodule V of $\left.U_{i}\right\}$. Note that \mathcal{P}_{i} is a non-zero prime ideal of R for each $1 \leqslant i \leqslant n$ by [8, Lemma 4.22] and [29, 13.6.6]. By [29, 13.6.4] there exist a non-zero central element c of R such that $c \in \mathcal{P}_{1} \cap \cdots \cap \mathcal{P}_{n}$. Now $\operatorname{ann}_{Z}(c)$ is an essential submodule of Z and hence $c^{t} Z=0$ for some positive integer t, by [29, 4.2.2 and 4.2.6].

Let K be a minimal prime submodule of M. If $Z \subseteq K$ then $K=Z$. Suppose that $Z \nsubseteq K$. Then $c^{t} Z=0 \subseteq K$ gives $c M \subseteq K$ and $K / c M$ is a minimal prime submodule of the $(R / R c)$-module $M / c M$. But $k(R / R c)<k(R)=\alpha$ [9, Corollary 7.2] so that, by the choice of $\alpha, M / c M$ has only a finite number of minimal prime submodules by Theorem 5.3.1. This contradiction proves the result.

Another special case is the following result.

Theorem 5.3.3 Let R be a PI-ring with Krull dimension and let M be a finitely generated R-module with Krull dimension. Then M satisfies $A C C$ on semiprime
submodules.

Proof. We follow the proof of Theorem 5.3.2. By Proposition 5.1.7 we can suppose without loss of generality that R is a prime ring. Let $Z=Z(M)$. By Zorn's Lemma, there exists a submodule W of M maximal with respect to $Z \cap W=0$. Then $M /(Z \oplus W)$ is torsion and hence M / W is torsion. Because M is finitely generated, there exists a non-zero central element c such that $c M \subseteq W$. Then $c Z \subseteq Z \cap W=0$. The result now follows by the proof of Theorem 5.3.2.

Corollary 5.3.4 Let R be a commutative ring and let M be a finitely generated R module with Krull dimension. Then M satisfies $A C C$ on semiprime submodules.

Proof. Without loss of generality M is faithful. Now $M \doteq R m_{1}+\cdots+R m_{k}$ for some positive integer k and elements $m_{i} \in M(1 \leqslant i \leqslant k)$. Define $\theta: R \rightarrow M^{(k)}$ by $\theta(r)=\left(r m_{1}, \ldots, r m_{k}\right)$ for all $r \in R$. Then θ is an R-monomorphism and hence the ring R has Krull dimension. The result now follows by Theorem 5.3.3.

Bibliography

[1] S. Abu-Saymeh, On dimensions of finitely generated modules, Comm. Algebra 23(1995), 1131-1144.
[2] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (SpringerVerlag 1974).
[3] M.F. Atiyah and I.G. Macdonald, An Introduction to Commutative Algebra, Reading, Mass. Addison-Wesley Publishing Company, Inc. 1969.
[4] J. Dauns, Prime modules, J. Reine Angew. Math. 298(1978),156-181.
[5] —, Prime modules and one sided ideals, in Ring theory and algebra III, Proceedings of the Third Oklahama Conference (B.R. McDonald, ed.), Dekker, New York, 1980, 301-344.
[6] Z.A. El-Bast and Smith, Multiplication modules, Comm. Algebra 16(1988), 755-779.
[7] S.M. George, R.L. McCasland and P.F. Smith, A Principal Ideal Theorem analogue for modules over commutative rings, Comm. Algebra 22(1994), 2083-2099.
[8] K.R. Goodearl and R.B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Math. Soc. Student Texts 16 (Cambridge Univ. Press, Cambridge 1989).
[9] R. Gordon and J.C. Robson, Krull dimension, Memoirs of Amer. Math. Soc. 133(1973).
[10] T.W. Hungerford, Algebra, (Holt, Rinehart and Winston, 1974).
[11] J. Jenkins and P.F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20(1992), 3593-3602.
[12] I. Kaplansky, Commutative rings (Allyn and Bacon, Boston 1970).
[13] I. Kaplansky, Modules over Dedekind rings, Trans. Amer. Math. Soc. 72(1952), 327-340.
[14] K. Koh, On one sided ideals of a prime type, Proc. Amer. Math. Soc. 28(1971), 321-329.
[15] D. König, Theorie der endlichen und unendlichen graphen, Akademische Verlagsgesellschaft M.B.H., Leipzig, 1936; reprinted by Chelsa, New York, 1950.
[16] K.H. Leung and S.H. Man, On commutative Noetherian rings which satisfy the radical formula, To appear.
[17] C.P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli 33(1984), 61-69.
[18] —, M-radicals of submodules in modules, Math. Japon. 34(1989), 211-219.
[19] -, M-radicals of submodules in modules II, Math. Japon. 35(1990), 9911001.
[20] S.H. Man, One dimensional domains which satisfy the radical formula are Dedekind domains, Arch. Math., 66(1996), 276-279.
[21] -,A Note on Radicals of Noetherian Modules, preprint
[22] —, Using Pullback to Contruct rings which Satisfy the Radical Formula, preprint
[23] H. Matsumura, Commutative Ring Theory, Cambridge studies in advenced mathematics 8 .
[24] R.L. McCasland and M.E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29(1), 1986, 37-39.
[25] --, On radicals of submodules, Comm. Algebra 19(1991), 1327-1341.
[26] —, Prime submodules, Comm. Algebra 20(1992), 1803-1817.
[27] R.L. McCasland and P.F. Smith, Prime submodules of Noetherian modules, Rocky Mtn. J. 23(1993), 1041-1062.
[28] J.C. McConnell and J.C. Robson, Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra 26(1973), 319-342.
[29] J.C. McConnell and J.C. Robson, Noncommutative Noetherian rings (WileyInterscience, Chichester 1987).
[30] M. Nagata, On the theory of radicals in a ring, J. Math. Soc. Japan 3(1951), 330-344.
[31] D. Pusat-Yılmaz and P.F. Smith, Chain conditions in modules with Krull dimension, Comm. Algebra 24(13)(1996), 4123-4133.
[32] J.J. Rotman, Notes on Homological Algebra, Litton Educational Publishing 1970.
[33] H. Sharif, Y. Sharifi and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71(1996), 103-108.
[34] R.Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts 19, Cambridge University Press 1990.
[35] O. Zariski and P. Samuel, Commutative Algebra Volume I, The University Series in Higher Mathematics, Van Nostrand, Princeton, 1958.

Index

annihilator, 2
common divisor, 33

Dedekind domain, vi, 1, 13-15, 17$23,26,28,30,31,65,71,72$

Discrete Valuation Ring (DVR), 15, $17,18,24$
element
regular, 88,98
square-free, 56, 79
module
fully faithful, 3
torsion, 97, 98, 103
torsion-free, $3,8,30-32,35,38$, 56, 97-99
uniserial, 91-93, 95, 96
non-zero-divisor, 88

Prüfer domain, 30
radical formula, v, 5
ring
local, 10, 15, 17, 23-25, 72
quasi-local, 10, 69-71
spectrum, 2
submodule
cyclic prime, 34
envelope of $\mathrm{a}, \mathrm{v}, 5$
good, 66-71, 74, 76
minimal prime, $3,4,8,15,16$, 100-102
prime, $\mathrm{v}, 2$
semiprime, vii, $2,51,52,56,58$, $62,63, .66,68,79,80,83,85$, 87, 91, 96, 97, 100-103
singular, 97
strongly prime, 97,99
Weyl algebra, 92

