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SUMMARY

Let R be a ring. A proper submodule K of an RB-module M is called prime if
whenever r € R, m € M and rRm C K thenm € K or rM C K. It is clear that
prime submodules generalize the usual notion of prime ideals. The radical of a
submodule N of M, denoted by rad(N) is defined to be the intersection of all
prime submodules of M containing N. Now let R be a commutative ring. Let T
be an ideal of R. As is well known, the radical of I, defined as the intersection of
all prime ideals containing I, has the characterization /I = {r € R:r" € I, for
some n € Z1}. A natural question arises, whether there is a somewhat similar
characterization for the radical of a submodule, in particular, a characterization
in which the knowledge of prime submodules (indeed even prime ideals) is not
necessary. Under certain conditions such a characterization is provided by the
concept of the envelope of a submodule.

The envelope of N, Ep(N), is the collection of all m € M for which there
exist r € R, a € M such that m = ra and r"a € N for‘some positive integer
n. Always Eap(N) C radpy(N). We say that M satisfies the radical formula (M
s.t.1.f.) if for every submodule N of M radp(N) =< Ep(N) >, the submodule of
M generated by Ea(N). A ring R s.t.r.f. provided that every R-module s.t.r.f..
In [25] McCasland and Moore proved that a commutativering R s.t.r.f. provided
that every free R-mod ule F' s.t.r.f.. Accordingly, in chapter 2, prime submodules
of free modules over commutative domains are investigated.

A fundamental question in the study of prime submodules is how to describe
radpr(INV) for a given submodule NV of a module M. In the first section of chapter
3, radm(N) is described where N is is a finitely generated submodule of the free
module F. In the second section the radicals of some non-finitely generated

submodules of free modules are studied.




Let M,;, My be R-modules such that M; & M, s.t.r.f.. Then M; and M; both
s.t.r.f.. The converse is not true in general. For example, if R is a Noetherian
domain which is not Dedekind then the R-module R s.t.r.f. but the R-module
R @ R does not. But it is true in some cases and this is considered in the first
section of chapter 4. For example, if R is a commutative ring and M;, M, are
R-modules such that M; s.t.r.f. and M; is semisimple, then M; © M, s.t.r.f.
Also if A is a finite direct sum of cyclic Artinian E-modules, then the R-module
R @ A s.t.rf.. The aim of the second section is to describe Er(N) in a nice way,
where N is a finitely generated submodule of a free module F' of finite rank.

For six different cases, results are tabulated in the following table, consid-
ering the following properties of N: “N is prime”, “IN is semiprime” and “the
form of submodule generated by the envelope of N”. This table is given for the
convenience of the reader. The cases are the following;:

(z) Let R be a UFD and let ¢; € R (1 € ¢ € n) not all zero. Let N be the
submodule R(ay,... ,a,) of F = R,

(21) Let R be a UFD, let n > 3 be a positive integer and a;, b; € B (1 < €
n) such that R = Rby + .-+ + Rb,. Let N be the submodule R(ay,...,a,) +
R(by,...,b,) of F = R(®.

(132) Let R be a commutative ring and let a;, b; € R (1 = 1,2) such that
R = Rby + Rby. Let N be the submodule R(as,as) + R(by,by) of F' = R(®),

(1v) Let R be a commutative domain, let n be a positive integer and I be an
ideal of R. Let N be the submodule I(1,...,1) of F = R,

(v) Let R be a UFD, let n be a positive integer and I be an ideal of R. Let
N be the submodule R(ay,... ,a,) + I(1,...,1) of F = R(®,

(vi) Let R be a domain, let n be a positive integer, let a;; € R (1 < 4,5 < n),
let a; = (a;1,...,am) € F = R™) (1 £ 7 € n) and let N be the submodule
Ray; 4+ +--+4+ Ra, of F'.

vi



Nis PRIME | Nis SEMIPRIME | < Ep(N) >

() | Theorem 2.2.7 Corollary 3.1.11 | Proposition 4.2.1

(¢7) | Theorem 2.3.2 Corollary 4.2.5 Theorem 4.2.4

(21¢) | Proposition 2.3.4 | Corollary 4.2.5 Theorem 4.2.4

(iv) | Lemma 2.3.10 Corollary 4.2.8 | Proposition 4.2.3

(v) | Theorem 2.3.12 Corollary 3.2.7 Theorem 3.2.5

(vi) | Proposition 2.3.9 | Proposition 4.2.11 | Proposition 4.2.11

In [9] Gordon and Robson proved that any ring with Krull dimension satisfies
the ascending chain condition on semiprime ideals, but this result does not hold
for modules in general. In particular, if R is the first Weyl algebra over a field
of characteristic 0 then there are Artinian R-modules which do not satisfy the
ascending chain condition on semiprime submodules. The aim of chapter 5 is to
investigate when Gordon and Robson’s result holds for modules. It is proved that
if R is a ring which satisfies a polynomial identity then any R-module with Krull
dimension satisfies the ascending chain condition on prime submodules, and, if R

is left Noetherian, also the ascending chain condition on semiprime submodules.




Chapter 1

PRELIMINARIES

In this chapter we will give basic definitions and some well known results
which will be needed in the following chapters. In particular we will define prime
submodules, the radical of a submodule and what it means for a module to
satisfy the radical formula. We will give fundamental properties as well as recent
developments.

Several authors in [4], [5], (6], [7], [14], [17], [18], [19], [25] and [26] have
extended the notion of prime ideals of R to prime submodules of M. Following
work of McCasland and Moore [24], [25], [26] and of Jenkins and Smith [11],
in a series of recent papers Man [20], [21], [22] and Man and Leung [16], have
characterized which commutative Noetherian rings satisfy the radical formula
(s.t.r.f.). In particular, Man showed that a commutative Noetherian domain R
s.t.rf. if and only if R is Dedekind (see Theorem 1.2.19). Theorem 1.2.27 gives
Man and Leung’s general result. We also prove that for a commutative (not
necessarily Noetherian) domain R the polynomial ring R[X] s.t.r.f. if and only if
R is a field (see Theorem 1.2.28). It follows that for any commutative ring R and
indeterminates X, Y the polynomial ring R[X,Y] does not satisfy the radical

formula.




1.1 Conventions and Basic Definitions

Let R be a ring with identity and M a unital left R-module. We shall write
‘N £ M’ to indicate that N is a submodule of M.

For any non-empty subset X of M, the annihilator of X in R will be denoted
by anng(X), or simply ann(X), i.e. ann(X)={re R:rz=0(z € X)}. If A is
a non-empty subset of R we set anny(A) = {m € M : am =0 (a € A)}. Note
that annpr(A) is a submodule of M if A is a right ideal of R. For any submodule N
of M we shall denote ann(M/N) by (N : M),ie. (N:M)={re R:vM C N}
which is an ideal of R.

We define the spectrum of R to be the set of all prime ideals of B and denote
it by Spec(R).

1.1.1 Modules over a General Ring

Let R be a ring and let M be a left R-module.

Definition 1.1.1.1 A proper submodule K of M is called prime if whenever r €
R,meM and rBm C K thenm € K orr € (K : M). A submodule S of M is

called semiprime if S is an intersection of prime submodules of M.

It is not difficult to see that N is a prime submodule of M if and only if
(N : K)=(N: M) for all submodules K of M properly containing N. Clearly
any prime (two sided) ideal of the ring R is a prime submodule of the left R-
module R. However it is not difficult to give examples of modules which have
no prime submodules. For example, if Z denotes the ring of rational integers
then, for any prime p, as a Z-module, the Priifer group Z(p*) has no prime
submodules. Moreover, the zero submodule is the only prime submodule of the

Z-module Q of rational numbers.
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Definition 1.1.1.2 A left R-module M is called fully faithful if every non-zero
submodule of M is faithful.

Proposition 1.1.1.3 [27, Proposition 1.1] A submodule N of a left R-module M
is prime if and only if P=(N:M) is a prime ideal of the ring R (and we say N is
a P-prime) and the left (R/P)-module M/N is fully faithful.

Proof. (=) Suppose first that N is a prime submodule of M. Let a,b € R
such that aRb C P then aRbm C N for every m € M. Since N is prime, this
implies either aM C N or b € N for every m € M. Thus a € Por b € P.
Hence P is a prime ideal. Let K be a submodule of M such that N % K. Let
(r+PYK/N)= N ie. rK C N for somer € R. This impliesr € P = (N : M)
or K € N. But K C N gives a contradiction. Hence r € P and K/N is faithful
for every submodule K of M properly containing V.

(<) Now let (N : M) = P be a prime ideal of R and M/N be a fully
faithful (R/P)-module. It is sufficient to prove that (N : K) = (N : M) for
every submodule K of M properly containing N. Let r € (N : K). Since M/N
is a fully faithful (R/P)-module r € P. Thus (N : K) C (N : M). Hence
(N:K)=(N:M). O

Note: When R is a commutative domain, fully faithful modules coincide with
torsion-free modules.

A prime submodule N of M is called minimal over a submodule K of M
if, K € N and there does not exist a prime submodule L of M such that
KCLCN.

Lemma 1.1.1.4 /27, Theorem /.2] Let R be a ring, and let M be a Noetherian left

R-module. Then M contains only a finite number of minimal prime submodules.




Proof. Suppose that the result is false. Let A denote the collection of proper
submodules NV of M such that the module M/N has an infinite number of minimal
prime submodules. The collection A is nonempty, because 0 € A and, hence, has
a maximal member K. Clearly, K is not a prime submodule of M. Thus, there
exists a submodule L of M properly containing K and an ideal A in R such
that AL C K but AM ,,G’:L K. Hence K C K + AM. Let V be a submodule of
M containing K such that V/K is a minimal prime submodule of M/K. Then
AL C K C V. It is easy to see that, in this case V is a prime submodule of
M. Hence AM CV or L C V. This implies V/(K + AM) is a minimal prime
submodule of M/(K + AM) or V/L is a minimal prime submodule of M/L.
But by the choice of K, both the modules M/(K + AM) a nd M/L have only
finitely many minimal prime submodules. Thus, there are only a finite number

of possibilities for the module V and, hence, also for V/ K, a contradiction. O

Definition 1.1.1.5 Given a submodule N of a module M, the prime radical
rady(N) is the intersection of all prime submodules of M containing N, and

in case N is not contained in any prime submodule then rady(N) is defined to be

M; in particular rady (M) = M.

Lemma 1.1.1.6 [11, Lemma 4] Let R be a ring and M be an R-module. If
L C N are submodules of M then rady(L) C radp(L).

Proof. Let P be any prime submodule of M with L Q P. If N C P then
rady(L) C P. If N ¢ P then it is easy to check that NN P is a prime submodule
of N, and hence rady(L) € NN P C P. Thus in any case, rady(L) C P. It
follows that rady(L) C radps(L). O




1.1.2 Modules over a Commutative Ring.

Throughout this subsection all rings will be commutative.

Definition 1.1.2.1 Let R be a ring. The envelope of N, Ey (N), is the collection
of all m € M for which there exist r € R, a € M such that m = ra and r™a € N
for some positive integer n. Qbviously, Exyf(M) = M. We say that M satisfies the
radical formula (M s.t.r.f.) if for every N < M the radical of N is the submodule
generated by its envelope, i.e. rady(N) =< Epy(N) >. A ring R satisfies the
radical formula (R s.t.r.f.) provided that every R-module s.t.r.f..

Lemma 1.1.2.2 Let R be ring and let N be a submodule of an R-module M.
Then N C Ep(N) C< Epm(N) >C rady(N). In particular, if N is semiprime
then N = EM(N) =< EM(N) === mdM(N)

Proof. It is clear that N C Ep(N). Let & € Ep(N). Then ¢ = rm for some
r € R, m € M such that r*m € N for some positive integer k. In this case
r*m € P for every prime submodule of M containing N. Hence r*~'m € P or
rM C P, and in any case r*~'m ¢ P. By induction, it follows that rm € P.
Hence rm € radp(N). Thus Ep(N) C< Ep(N) >C radp(N).

If N is semiprime then N = radpy(N). Thus N = Ey(N) =< Ep(N) >=
radp(N). O

Note that in Lemma 1.1.2.2, Ep(N) is a submodule of M in case N is a

semiprime submodule of M. The following example shows that in general Epr(N)

is not a submodule of M.

Example 1.1.2.3 Let M denote the free Z-module Z ® Z and let N denote the
submodule Z(4,4) + 7Z(9,18) of M. Then En(N) is not a submodule of M.

Proof. Note that (2,2) and (3, 6) both belong to Ear(N) because (2,2) = 2(1,1),
and 2%(1,1) € N, (3,6) = 3(1,2) and 3%(1,2) € N. Suppose that (5,8) =

5




(2,2) 4 (8,6) € Ep(N). There exist 7, a, b € Z such that (5,8) = r(a,b) and
r*(a,b) € N for some positive integer k. Now 5 = ra, 8 = rb gives that r = F1,
so that (a,b) € N, i.e. (5,8) = z(4,4) + y(9,18), for some z, y € Z. Hence
5 =4z 4+ 9y, 8 = 4z + 18y and 3 = 9y, a contradiction. Thus Ep(N) is not a
submodule of M. O

The first part of the following lemma is a generalized version of Lemma 6 in

[11].

Lemma 1.1.2.4 Let R be a ring and M be an R-module such that M = @, , M
is a direct sum of submodules My (A € A). For each A € A, let Ny, be a submodule
of My and let N = @, Nv. Then

(i) rady(N) = Den radi (N2),

(i) < BEpm(N) >= DByep < Em(NVs) >

Proof. (i) Let K be a prime submodule of M such that N C K. For each
A€ A, Ny C KN M, where KN M) = M) or K N M) is a prime submodule
of My. It follows that radp, Ny € KN My, C K for all A € A and hence
Daearadn, (Ny) € K. Thus ¢, raday, (Na) C rada(N).

Let m € M and suppose that m ¢ P, radar, (Na). There exists 4 € A such
that «,(m) ¢ radas, (N,), where m, : M — M, denotes the canonical projection.
There exists a prime submodule P of M, such that N, C P and w,(m) ¢ P. If
L =P ® (D)., M) then it is easy to check that L is a prime submodule of M,
N C L and m ¢ L. Thus m ¢ rady (V). Hence radpr(N) = €D o radas, (V).

(13) Let m €< Ep(N) >. Then m = rzy + -+ + rpa, for some positive
integer n, elements r; € R, x; € M such that rfz; € N (1 €4 < n), for some
positive integer k. Let 1 < ¢ < n. There exists a finite subset A’ of A such that
z; € Pyepr M, s0 that @; = Y7, 4 ya for some yy € My (A € A'). Now

ko — W —
riwi =) en TiYr € N = @ycp Na-.

6




Thus rfyy € Ny (A € A'). Hence r;y\ € Epr,(Ny) (A € AY). Therefore

7% = D nen Y € Daenr < Eann(Na) >C @iep < Eny(Ny) >,

for each 1 ¢ < n. It follows that m = ryzy + -+ + 120 € Pycp < B (Ny) >.
Hence < Ep(N) >C @,cp < Eniy (N3) >.

Conversely, it is clear that Eus (Ny) € Em(N) and hence < Ep, (N,) >C
< Ep(N) > for all A € A, Thus Pyep < Ear, (V) >C< Eyg(N) >. It follows
that < Ep(N) >= @yep < Ery (V) >. O .

Let P be a prime ideal of R and S = R\'P which is a multiplicatively closed
subset of R containing 1. Mp = S~'M will denote the localisation of M at P.

Let f: M — Mp be the natural map defined by f(m) = m/1 for all m € M.
For any submodule N of M, we define

Ne={A€ Mp:X=n/sforsomen & N and s € S},

and we identify N¢ with Np. For any Rp-submodule @ of M, we define Q° =
{m e M : f(m) € Q}.

Lemma and Definition 1.1.2.5 [3/] Let R be a ring and I be an ideal of R.
Then

VI :={r € R: there exists n ¢ N with r* € I}

is an ideal of R which contains I, and is called the radical of I and

Vi= (] P

PeSpec(R)
P2I

Proposition 1.1.2.6 (/20]) Let R be a ring and M be an R-module and P be a
prime ideal of R. Let
A ={P: P is a prime submodule of the R-module M with SN (P : M) = ¢},

and




}

B ={Q : Q is a prime submodule of the Rp-module Mp}.
Then the map P — P° is a bijective order preserving map from A to B. Iis

inverse map is given by Q) — ()°.

Proof. Elementary. [J

Lemma 1.1.2.7 [20, Corollary 2.3] Let N be a submodule of the R-module M

and P, Mp be as above. Suppose furthermore, M is a Noetherian R-module.
Then (rady(N))p = radp, (Np).

Proof. If Np = Mp, then radpr, (Np) = Mp = (I’a.dM‘(N))'p. Now suppose
Mp # Np. As M is a Noetherian R-module, by Lemma 1.1.1.4, there are only a
finite number of minimal prime R-submodules, P, ..., P, in M containing N.

Now it can easily be checked that

(radm (N))p = (ﬂ?=1 P)p = (ﬂi‘czl I ﬂf=1 Py

Without loss of generality, we may assume each P? # Mp (1 < 7 < k). By
Proposition 1.1.2.6, Pf,--- , P are all the minimal prime Rp-submodules of Mp

which contains Np. Tt follows that radas, (Np) = (i, Pf as required. I

Proposition 1.1.2.8 [17, Proposition 2] If N is a proper submodule of an R-
module M such that (N:M) is a mazimal ideal of the commutative ring R then N

is a prime submodule. In particular, MM ts a prime submodule of the R-module

M for every maximal ideal M of R such that MM # M.

Proof. Since (N : M) = P a maximal ideal, M/N is a vector space over the field
R/P, so a torsion-free R/P-module. Hence N is prime by Proposition 1.1.1.3. O




Proposition 1.1.2.9 [17, Proposition 4] If N is a mazimal submodule of an R-

module M, then N is a prime submodule and (N:M) is a mazimal ideal of R.

Proof. N is a maximal submodule if and only if M/N is a simple R-module.
Hence M/N is a cyclic R-module RT where T = z + M € M/N and
annpT =annp(M/N) = (N : M) is a maximal ideal of R by [34, Lemma 7.32].
It follows that N is prime from Proposition 1.1,2.8. [J

1.2 Historical Background and Recent Develop-

ments

Lemma 1.2.1 Let I be a proper ideal of a commutative ring R such that R s.t.r.f..
Then the ring R/I s.t.r.f..

Proof. Let M be an (R/I)-module. Then M is an R-module and the (prime)

R-submodules and (prime) (R/I)-submodules of M coincide. The result follows.
a

Proposition 1.2.2 Let n be a positive integer and let R; (1 < i < n) be com-
mutative rings. Then the ring R= R, ® - & R, s.t.r.f. if and only if R; s.t.7.f.

foralll <1< n.

Proof. (=) By Lemma 1.2.1.

(<=) Let M be an R-module. Let M; = R;M (1 < 7 € n). Then M; is an
R-submodule of M foreach 1 € i< nand M = M; & N M,,. By Lemma
1.1.2.4,

radar(0) = radag (0) @ - - - @ radpy, (0).




-~

For each 1 < ¢ € n, the R-module M; has the same (prime) submodules as the
Ri-module M; and hence rada, (0) €< Ep(0) >. It follows that rady(0) C
< Ep(0) > by Lemma 1.1.2.4 and hence radp(0) =< Epr(0) >. O

Proposition 1.2.3 [20, Proposition 2.4] Let M be @ Noetherian R-module. Then

M s.t.rf. if and only iof Ma s.t.r.f. as an Ry-module for every mazimal ideal

M of R.

Proof. Let N be a submodule of M. It is not difficult to check that
< Epm(N) >p=< En,(Np) > for any prime ideal P. The result follows from
Lemma 1.1.2.7. O

Definition 1.2.4 A commutative ring R which has ezactly one mazimal ideal,
M say, is said to be quasi-local. By a local ring we shall mean a commutative

Noetherian ring which is quasi-local.

Theorem 1.2.5 [33, Theorem 1.12] Let R be a commutative Artinian ring. Then
R s.t.r.f..

Proof. Let R be a commutative Artinian ring. Then by [34, Exercise 8.50],
R is isomorphic to a direct sum of Artinian local rings. By Proposition 1.2.2,
we can suppose without loss of generality that R is local with unique maximal
ideal M. So M” = 0 for some n > 0 (see [3, p.90]). Thus if N is a submodule
of M, M®"M C N which implies that MM C< Ep(N) >. That is, M C
(< Epm(N) >: M). Thus < Ep(N) > is a prime submodule or < Ep(N) >= M
by Proposition 1.1.2.8. Therefore rady(N) =< Ep(N) >. O

10



Lemma 1.2.6 [25, Results 1.2, 1.3, 1.4] Let R be a commutative ring. Let A
and A' be R-modules with ¢ : A = A' an R-module epimorphism and B < A
such that B D K = kery. Let B’ be any submodule of A’. Then

(t) if P is a prime submodule of A containing B then o(P) is a prime sub-
module of A’ containing p(B);

(ii) if P' is a prime submodule of A’ containing p(B) then p~1(P') is a prime
submodule of A containing B; -

(i5i) p(rada(B)) = rada(p(B));

(iv) ¢~ (radu (B')) = rada(o(B);

() $(Ea(B)) = Ealo(B));

(vi) < ™ (B (B') >=< Ea(¢™}(B")) >.

Proof. (1), (42), (241), (2v) and (v) are routine.

(vi) Given r € R, a € A and ra € Es(p™'(B')) such that r"a € ¢~ (B’)
for some positive integer n, then r"p(a) € B'. Hence ¢(ra) € Ex(B') and
thus ra € @ ' (Ex(B')). Now let z € ¢ ' (Ea(B')). Since ¢(z) € En(B'),
there exist s € R, o' € A’ and a positive integer m such that ¢(z) = sa’ and
s"a' € B'. Also there exists y € A such that ¢(y) = a’. Thus ¢(s"y) € B’ so
that sy € E4(p'(B")). Hence v €< Ea(¢~'(B')) > since 2 — sy € kerp C
< Eale™(B)) >. O

Proposition 1.2.7 [25, Theorem 1.5] Assume the hypothesis given in Lemma
1.2.6.

(Z) IfradA(B) =< EA(B) > then TadAl(ga(B)) =< EAI((,O(B)) >.
(i) If B' < A" and rada(B') =< Eu(B') >, then rada(p™'(B")) =
< Ea(p™(B)) >.

Proof. It is routine to prove it by using the above results and the fact that if

0€S5CA, then p7(< 5 >) =< ™ 1(5) >. O
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Theorem 1.2.8 [25, Theorem 1] Let R be a commutative ring. Then R s.t.r.f.
provided that any one of the following is salisfied:

(i) every free R-module F s.t.r.f.,

(i1) every faithful R-module M s.t.r.f.,

(tii) for every R-module M, radp(0) C< Ep(0) >.

Proof. (i) and (it) suffice by recalling that every R-module A is the image of
both a free R-module and a faithful R-module. Note that if B < A, the preimage
of B (in each case) satisfies the conditions of Lemma 1.2.6. Now we can apply
Proposition 1.2.7(%). _

(272) For a given N < M, apply Proposition 1.2.7(i7), letting A = M, A’ =
M/N and B'=N. O

Let P be a prime ideal of R and suppose M is an R-module. We define
K(P)={m &€ M : cm € PM for some ¢ € R\P}.

Next, we recall a result which was proved both in [1] and [27].

Proposition 1.2.9 Let R be a commutative ring and M be an R-module. Let P
be a prime ideal of R such that K(P) # M. Then K(P) is a P-prime submodule
of M and rady(0) = (] K(Q), where the intersection is taken over all prime ideals
Q of R.

Proof. Let r ¢ (K(P) : M), m € M and rm € K(P). Then r € R\P and
rem € PM for some ¢ € R\P. Since r¢ € R\P, we have m € K(P). This
proves that K(P) is a prime submodule of M. Cleatly P C (PM : M) C
(K(P) :+ M). Now suppose that there is s € (K(P) : M) such that s ¢ P.
Then sM C K(P). Consequently, for each y € M, we have scy € PM for
some ¢ € R\P. But s¢c € R\P gives y € K(P). Hence K(P) = M, a contra-
diction. Therefore we have (K(P) : M) = (PM : M) = P and K(P) is a
P-prime submodule of M.
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Moreover, for any prime ideal @ of R, if N is a Q-prime submodule of M,
then K(Q) & N. Therefore radn(0) = (N gespeqr) K (Q)- O

Our next aim is to prove that any Dedekind domain s.t.r.f.. In order to prove

this result we require a number of lemmas.

Lemma 1.2.10 [16, Lemma 3.8] Let R be a commutative Noetherian ring with
dimR < 1 and M be an R-module. Then rady(0) = |J rads(0), where the union
is taken over all finitely generated submodules L of M.

Proof. By Lemma 1.1.1.6, rad(0) C radas(0), for any finitely generated sub-
module L of M. Now let m € radp(0). Let Py,...,P, be all the mini-
mal prime ideals of K. By Proposition 1.2.9 for each 1 < ¢ < n there exist
¢ € R\P; with ¢;m € P;M. There are only finitely many maximal ideals of
R which contains both ¢; and P;, say My, , My,,. By Proposition 1.2.9,
radps(0) = [ K(P), where all P’s are prime ideals of R. Since dimR < 1 it
follows that radas(0) = [ K ('P)] N [V M M] where the intersection is taken over
all the minimal prime ideals P and all the maximal ideals M of R. Hence
m € M;;M for every 1 € 1+ < nand 1 € 5§ € n;. Together with ¢;m € P;M
(1 € 7< n), we see that there exists a finitely generated submodule L of M such
that
(2) eem € PiL (1 €1 < n),
(i) me MyuL (1€i<n,1<j<n).

Now let M be any maximal ideal of R such that M ¢ {M;;:1<i<n, 1<
7 < n;} (1 €¢<n). Without loss of generality we may assume P, C M. Then
R = Re¢; + M and hence Rm = Reym + Mm € ML since ey € P L C ML
and m € L. By Proposition 1.2.9, m € radz(0). Hence rada(0) C |Jradz(0). O
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Lemma 1.2.11 [11, Lemma 7 and Corollary] Let R be any ring and M any

projective R-module. Then radar(0) =< Ep(0) > .

Proof. We already know that < Ep(0) >C radas(0). There exists a free R-
module £ such that M is a direct summand of F, say FF = M @ A, for some
submodule A of F'. There exists an index set A and cyclic submodules F (A € A)
of F' such that F' = P, F. By Lemma 1.1.2.4,
radp(0) = @radFA(O) = GB < Er,(0) >=< Er(0) > .
AeA AEA

Now let m € radp(0). By Lemma 1.1.1.6, m € radp(0). Then there exist n,
k € N and elements r; € R, m; € F such that rfm; = 0 (1 < 7 < n), and
m =rymy+ -+ rp,m,. For every 1 < 7 < n, there exist elements z; € M and
a; € A such that m; = &; + a;. Cleatly, m = rizy + -+ + rpa,, and rfz; = 0

(I €2< n). Thus m € < Ep(0) >. Hence radp(0) C< Ep(0) >. O
Now we prove that any Dedekind domain s.t.r.f..

Theorem 1.2.12 [11, Theorem 9] Let R be a Dedekind domain and M any R-
module. Then radpy(0) =< Ep(0) >.

Proof. We know < Ej(0) >C rada(0). Let m € radp(0). By Lemma 1.2.10,
m € radz(0), for some finitely generated submodule L of M. Now L =L, @®---®
Ly, for some k € N and submodules L; (1 < 7 € k) of L such that L; is either
projective or cyclic for each 1 < ¢ < k& [13, Section 4]. By Lemma 1.1.2.4 and
Lemma 1.2.11,

m €rads, (0) @ - Prads, (0) = <Ep(0)>@ & < Ep,(0) >

C < EL(0) >C< Epm(0) > .

Thus radp(0) =< Ep(0) > . O
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We now aim to prove that any commutative Noetherian domain that s.t.r.f.

is Dedekind. We begin with the following result.

Lemma 1.2.13 [7, Lemma 4] Let R be a commutative domain and a1,... ,a, be

elements of R, not all zero where n > 2. Let F = R and
K ={(r1,...,ma) € F 1 1ra; = 1;a;,1 < 1,7 < n}.

Then K is a prime submodule of I' minimal over R(ay,...,a,) and (K:F)=0.

Moreover a; K C R(ay,... ,a,) forall 1 €i < n.

Proof. Clearly K is a proper submodule of F. Let r,z; € R (1 < ¢ < n) and
suppose that r(z1,...,2,) € K. Then rza; = rzja;, for all 4,7. If r = 0 then
rF C K. If r # 0 then za; = zja;, for all ¢, 7, so that (2,...,2,) € K. Thus
K is a prime submodule of F. Clearly (KX : F) = 0 and R(a1,...,a,) C K.
Suppose that a; # 0. Let I = (Ray : Rag + -+ + Ra,). Then it can easily be
checked that

K =1(1,a2/01,...,an/a1),

and hence a1 K C R(ai,...,a,). If a; = 0 then clearly a1 K C R(aq,... ,a,). It
follows that a; X C R(a1,...,an), for all 1 € < n. _

Now suppose that NN is a prime submodule of F' such that R(a1,...,a,) C
N C K. There exists 1 <2 < n such that a; # 0 and ;K C R(ay,...,a,) C N.
Since a; # 0 it follows that a;#" € K, and hence ¢;F ¢ N. Thus K C N and K

is minimal over R(ay,...,a,). O
Theorem 1.2.14 [20, Theorem 3.2] Let (R, M) be a commutative Noetherian

local domain of dimension 1. Suppose F'= R&® R s.t.r.f. as an R-module. Then
R is a DVR (Discrete Valuation Ring).
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Proof. Choose x € M\ M?2. It suffices to show that M = Rz. As dimR=1 and
x # 0, M is the only associated prime ideal of R/Rz. Hence every element of
M is a zero divisor in R/Rz. We now show M C Rz + M?2.

Let s € M. By the above discussion, there exist y € R\Rz and » € R with
sy = ar. If s € Rz, then s € Rz + M?. Suppose s € M\Rz. Then y is not
a unit and hence y € M\ Rz. Since x € M\M? and y € M\ Rz, z ¢ Ry. By
Lemma 1.2.13, K = {(r1,m2) € R® R : rjy = roz} is a minimal prime submodule
of R® R over R(z,y). Let P be a prime submodule of R @ R containing R(z,y).
Then P =ann((R @ R)/P) is a prime ideal.

Clearly P=0or P=M. fP =M, then M M C P As y € M\ Rz and
r € M\ Ry, we have K C P. Suppose that P = 0. Since P # R &® R, we may
assume (1,0) ¢ P. Let (ry,r2) € P be given. Then (yry — rez)(1,0) = y(r1,72) —
r2(%,y) € P. Since P is a prime submodule, it follows that yry —rqz € (P : F) =
0, 1.e. yry —rez = 0. Thus P C K. By minimality of K, P = K. Hence K is the
only minimal prime submodule containing R(z,y). Thus radrgr(R(z,y)) = K.
By hypothesis, K =< Ergr(R(z,y)) >. Clearly (s,r) € K. Hence there exist
8150+ ,8x € R\{0}, (e1,dv),. .., (cr,d) € R® R\{(0,0)}, and positive integers,
N1,... ,ng such that

(1) (s,7) = S5, si(ci, d;), and

(1) 87 (i, di) = fi(z,y) for some f; € R, (1 < i < k).

Since each s; # 0 and R is a domain, by (i) ¢y = zd; (1.< ¢ < n). Recall that
y € M\ Rz. Consequently, each ¢; € M. If s; is a unit, then (¢1) gives s;c; € Raz.
If s; € M, then s;c; € M?. Hence s;c; € Re + M? for all 1 <7 < k. Now by
(1) s € Rz + M?*. Therefore M = Rz + M2 Hence M(M/Rz) = M/Rz. By

<

Nakayama’s Lemma, M = Rz. O

16




Theorem 1.2.15 [20, Theorem 3.3] Suppose R is a commutative Noetherian
domain of dimension I and R® R s.t.r.f. as an R-module. Then R is a Dedekind

domain.

Proof. Clear by Proposition 1.2.3 and Theorem 1.2.14. For, by [10, Theorem
VIIIL.6.10], Rp is a DVR for every non-zero prime ideal P if and only if R is a
Dedekind domain. O

Theorem 1.2.16 [16, Theorem 2.2 and Corollary] Let R be a commutative Noethe-
rian ring. Suppose F = R @ R s.t.r.f. as an R-module, dimR > 1 and P is a
minimal prime ideal of R. Then P is the only P-primary ideal of R and R/P is a

Dedekind domain. In particular, if R is a domain then R is a Dedekind domain.

Proof. First assume R is local with maximal ideal M and 0 is P-primary. We
need to show R is a DVR.

AsdimR 2 1, M # P. Thus we can choose a € M\(M?+P), by Nakayama’s
Lemma. If M # Ra we can choose b € M\Ra. Consider the submodule J(a,b)
of R® R where J = Ra + Rb. Let L be any prime submodule of R @ R such
that J(a,b) C L. It follows that (a,b) € L or JF C L. If JF C L then (a,b) =
a(1,0) + 6(0,1) € L. In any case, (a,b) € L. Hence (a,b) € radprgrJ(a,bd) so
radrgr(J/(a,b)) = radrgr(R(a,b)). As R® R s.t.r.f., we have radrgr(R(a, b)) =
< FEpgr(J(a,b)) > . Hence (a,b) € < FEgrgr(J(a,b)) >. Then there exist
positive integers k,nq,...,nx and r,...,rx € R\{0}, (e1,d1), -+ ,(ck,dr) €
R @ R\{(0,0)} such that
(i) (a,b) = 3o, ri(ei, ds), and
(12) for each 1 <1 < k&, v (c;, d;) = fi(a,b) for some f; € J.

By (i) a = E§=1 ric;. We are done if we can show that each r;c; € M? 4 P,
Let 1 <i < k be given.
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(1) If r; is a unit, then from (i), we have r;¢; € Ja C M2,
(2) If r; € P, then ric; € M? 4 P.
(3) If r; € M\P then we show ¢; € M. Suppose not. Then from (i7), we have
r; € VRa and 7 (ad; — be;) = 0. Hence b € Ra + [anng(r™) N (Ra + Rb)] where
r; € VRa\P. Thus b = ra+c, for some r € R and ¢ € anng(r™)N(Ra+ Rb). This
implies cri* = 0. If ¢ # 0, since P is the set of all zero divisors of R, v € P i.e.
r; € P, a contradiction. If ¢ = 0 then b € Ra, another contradiction. Therefore
¢; € M and r;e; € M2+ P,

In any case, r;c; € M2+ P for all 1 <7 € k. Hence a € M? 4+ P, but this
contradicts our choice of a. Therefore M = Ra and hence R is a DVR.

For the general case, let I be a P-primary ideal. By Lemma 1.2.1, R/T ® R/I
s.t.rf. as an R/I-module. By the earlier argument, we see that [/ = P and R/I

is a Dedekind domain. The result follows. [

The next result i1s immediate from the above theorem.

Corollary 1.2.17 [16, Corollary 2.4] Let R be a commutlative Noetherian ring.
Suppose R® R s.t.r.f. as an R-module. Then dimR < 1.

Proposition 1.2.18 [16, Theorem 8.4] Let R be a commutative Noetherian ring.
Then the following are equivalent:

(1) R s.t.r.f.,

(1) Rpm s.t.r.f. for any mazimal ideal M of R,

(itt) every finitely generated Rp-module s.t.r.f. for any mazimal ideal M of R,
(iv) every finitely generated R-module s.t.7.f..

Proof. (i) = (i¢) By Proposition 1.2.3. (i¢) = (i27) Obvious. (4iz) = (iv)
Follows from Proposition 1.2.3. (iv) = (z) Follows from Corollary 1.2.17, Lemma
1.2.10 and Theorem 1.2.8(z42). O

18




Now the following theorem can be written:

Theorem 1.2.19 Let R be a commulative Noetherian domain which is not a
field. Then the following are equivalent:

(i) R s.t.r.f.,

(it) R® R s.t.r.f. as an R-module,

(iii) R is a Dedekind domain.

Proof. (i) = (¢7) Obvious. (ii) = (427) By Corollary 1.2.17 and Theorem 1.2.15.
(#5t) = (¢) By Theorem 1.2.12. O

The above theorem has a general form in [16]. Before we give it we require a

number of lemmas.

Lemma 1.2.20 [16, Proposition 2.5] Let R be a ring. Suppose
(i) R/\/0 s.t.r.f. as a ring and

(ii) there exist mazimal ideals M; and positive integers k; (1 < i < n) with
Vonmbn...nmbs =,
Then R s.t.r.f.

Proof. We can assume all the k;’s are equal to a common value k. Let M be
an R-module. By Theorem 1.2.8(%iz) it suffices to show rada(0) C< Ep(0) >.
Clearly, VOM C< Ep(0) >. Let m € radp(0). Then m ++/0M € rad ;. g (0).
Since R/v/0 s.t.r.f., we have

m 4+ VOM = Z?‘imi +vOM
1=1

where r; € B, m; € M and r]"m; € VOM for some positive integer n;. Hence

m=y+ ., rim; for somey € vOM. We need to show each rym; €< En(0) >.
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Suppose first that 7y € My N -+ N M, then by (ii) we have r}tFm; =
ré(r¥m;) € (MEN - N ME)WOM = 0. Hence rym; € Ep(0). Now suppose
that r; ¢ M; for some 1 € j < n. Without loss of generality we may assume
ri € MyOeo N Mg, and 7, ¢ Mpypg U--- UM, for some 1 < £ < n. Then
R=Rr 4+ Mpa0---NM,. Write 1l = sr/* + z for some s € R and z €
Mz NN M,,. Then rym; = st m; + ryem;. Since rm; € VOM, sritim;
and (r;z)"™m; are also in v/OM. In particular, st *'m; €< Ep(0) >. On the
other hand, r;z € My N---NM,. By an earlier argument, r;zm; € Ep(0). This
proves rym; €< Ep(0) >. O

Lemma 1.2.21 [16, Proposition 2.6] Let R be a Noetherian ring. Suppose
dimR=1 and every minimal prime ideal P of R is the only P-primary ideal in

R. Then condition (i1) of Lemma 1.2.20 is satisfied.

Proof. Let Py,...,P: be all the minimal prime ideals of R, for some positive
integer £. Since R is Noetherian, 0 has a reduced primary decomposition which

can be written as follows
O=J0n---ndenhjn---nli,

for some positive integers £ and n where each J; is a P;-primary ideal and each
I; is M -primary ideal for some maximal ideal M;. By assumption, J; = P;
(1 € i < £). Therefore, we get 0 =+0N L N---N 1, Foreachl < j since I; is
M - primary, we have M* C I; for some large enough natural number k;. The

result follows. O

Corollary 1.2.22 [16, Corollary 2.7] Let R be a commutative Noetherian ring.
Suppose dimR=1 and there exists a unique minimal prime ideal P in R. Then

R s.t.r.f. if and only if R/P is a Dedekind domain and P is the only P-primary
ideal in R.
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Proof. By Theorem 1.2.16, we only need to prove sufficiency. That follows from
Lemmas 1.2.20 and 1.2.21. O

Lemma 1.2.23 [22, Theorem 2.5] Suppose that R is a Noetherian ring with
ideals I and J such that

(i) INJ =0,

(i) R/(I + J) is semisimple Artinian,

(iit) R/I s.t.r.f. and R/J is a Dedekind domain.
Then R s.t.r.f..

Proof. Let M be an R-module. We first prove that JM N JM C< Ep(0) >.
Since R/(I + J) is semisimple Artinian, [ + J = Mj--- M, where M; are
distinct maximal ideals of B (1 € ¢ € n). Let § = R\(M; U---U M,) which
is a multiplicatively closed subset of R. For short S~1M, -S ~1 A will be denoted
by Ms, As respectively where A is an ideal of R. First of all note that Rg/Js
is a principal ideal domain. Is N Js = 0 gives (Is + Js)/Js & Is and hence we
can identify Is as an ideal of Rs/Js. In this case Is = Rg(a/1), for some a € R.
Let w € IMs N JMg = aMg N JsMs. Then u = (a/1)(m'/s') € JsMg, for some
m' € M, s € S. Thus (a/1)*(m'/s") € (a/1)JsMs = 0 and v €< Ep(0) >.
Th erefore IMs N JMs C< Epg(0) >. Now for a given v € IM N JM, v/l €
< Epg(0) >. Hence there exists s € S such that sv €< Ep(0) >. Note that
R =Rs+ I+ J. Thus we can write 1 = rs+ 2 + y where r € R, 2 € [ and
y € J. Sinceve IMNJM and INJ = 0, we have v = rsv. It follows that
IMNJM C< Ep(0) >.

Note that, since R/ s.t.r.f., we have radaym(0) =< Enar/in(0) >. Also by
Theorem 1.2.12, R/J s.t.r.f. and it follows that radassam(0) =< Eaygam(0) >.
To prove that R s.t.r.f. it suffices to show radas(0) C< En(0) >. Let m €
radas(0). Then m + IM € radpym(0) =< Enymag(0) >. In this case there
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exist ry,... ,rx € R, my,... ,m € M, and positive integers oy, ... , ay such that
m+IM =35 rim; + IM and r¥m; € IM for all 1 < i < k.

Claim: r;m; € IM 4+ (JM N Ep(0)) for 1 €4 < k.

It suffices to show the claim holds for r;. Suppose ry € I +J. We may assume
ry € J. Now, r{*my € IM and I N J = 0 gives 7'?‘+1m1 = 0. It follows that
rimy € JM N Ep(0).

From now on, we suppose ry ¢ I+J. Then r; ¢ M, for some 1 < ¢ < n. After
renumbering the M;’s, we may assume r; ¢ M U---UMpand ry € Myyq -+ M,
Since R = Rr{* + M, -+ M,, we have ry = wri*** 4 it for some w € R and
t e My - M, Note that mt € I+ J, and so we may write mt = x; + y; for
some 1 € I, y1 € J. Now rymy = wr{t'my + 2ym; + yymy. To complete the
proof of the claim, it remains to show yym; € JM N Epr(0). Since INJ = 0,
(rit)® = 27 +y1*. Recall that r{*my € IM. Hence (rit)*'m,; = 23 m;+yiimy €
IM. Thus y{*m; € IM and y{**'m; = 0. Therefore yym; € JM N En(0). The
claim has been justified. .

By the above claim, m = u; + vy where vy € JMN < Ey(0) >, v, € IM.
Using the above argument, we also get m = uy + v, where us € IMN < Ep(0) >,
vy € JM. Then uy — vy = ug — v € IM N JM. But we proved earlier that
IMNOJM C< Ep(0) >. Hence m = (v1 — ug) + us + ug €< Epr(0) >. Therefore
rad(0) C< Ep(0) >. O

Lemma 1.2.24 [16, Theorem 5.1] Let R be a commutative Noetherian ring and
L,..., I, be prime ideals in R, for some positive integer n 2= 2. Suppose that
(i) Ln---NIL,=0,
(i) R = I; + I; or R/(I; + I;) is semisimple Artinian, for any 1 <1< j < n,
(tit) R/I; is a Dedekind domain for all i, and
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(ZU) Ik'l'l + n?‘:l Ii = ﬂ?=1(1k+1 + I‘i)’ for 1 < k \’<'~ n— 1.
Then R s.t.r.f..

Proof. We will proceed by induction on n > 2. The case n = 2 follows from
Lemma 1.2.23. Suppose n 2 3. By induction R/(I; N -+ [,1) s.t.r.f.. In view
of Lemma 1.2.23, it suffices to show R/L is semisimple Artinian where L =
L + (N L) By (iv), L = oy (In + L). Note that, by (i7), each I, +
Ii,--- ,In+ I, is a product of distinct maximal ideals of R. Since R/I, is a De
dekind domain, L is also a product of distinct maximal ideals of R. Hence R/L

is semisimple Artinian. O

Notation: Let (R, M) be a commutative Noetherian local ring. Let Py,... , P,
be all the minimal prime ideals of R and n > 3. We define
L; = ﬂ:=1 ka and I@‘j = ﬂ:=1 Pk
Tk kgi
k#3
for all 1 4,7 < n with @ # j.

The above notation will be be fixed throughout the rest of this section.

Lemma 1.2.25 (16, Theorem 4.1] Suppose n 2 3 and M = I; + P; for all
1< t,7 € n such that i # 7. Then the following are equivalent:

(i) M = I; + P; for some 1l <1< n,

(i) M = I; +P; for everyi=1,... ,n,

(itt) I;; = I; + I; for all 1 < 1,5 < n with i # j,

(iv) I; = I; + I; for some 1 <1,7 < n with 1 # 3.

Proof. (it) = (¢), (121) = (iv) Obvious.
(2) = (219) Suppose M = I;+P; forsome 1 <i < n. Let 1 < j < nwithj#1

be given. By the modular law, I;; = [;; " M =I;N (L +P) =L+ (I; NP;) =
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Li+1I;, Now M = I;; + P; = I; + I; + P; = I; + P;, because I; C P;. Now by
the argument we have just given Iz = I; 4+ I}, for all 1 < j, &k < n with j # k.
(138) = (13) Let 1 € 7 € nand j € {1,...,n}\{z}. By assumption
M = [;; + P; and hence M = I; + I; + P;. Since I; C P; we have M = I; + P;.
(iv) = (i) Suppose I;; = I; + I; for some 1 € 1,7 < n with 7 # j. By
hypothesis M = I;; + P;. Hence M = I; + I; + P; and M = [; + P; because
LCP. O

Lemma 1.2.26 [16, Theorem 4.2] Let (R, M) be a one dimensional Noethe-
rian local ring and n 2 2. If R® R s.t.r.f. as an R-module, then there exist
ZTiy... Ty € R such that

L =Re; +0, Pi=3" Lyyand M=Pi+ L=, I

ok
foralll £ 1< n.

Proof. Without loss of generality we may assume /0 = 0. Hence R is semiprime
and (_, P; = 0. By Theorem 1.2.16, R/P; isa DVR for all 1 <7 < n.

Let 1 € 7 € n be given. Since R/P; is a DVR, we can write M = Ry + P;
for some y € M. Note that I; # 0 and I; g P;. Hence I; + P; = Ryt + P; for
some £ > 1. There exist @; € I; and p; € P; such that z; = y* + p;. We now show
x; generates I;. Let z € I;. Then z = ry® + ¢; for some r € R, and ¢; € P;. It
follows that re; — 2z = rp; — ¢; € I; N P; = 0. Hence z = ra;. Therefore I; = Rz;.

Suppose n = 2. In this case I; = Py and I; = P;. It remains to show
that M = P; + P,. Since R/P; is a DVR, we have M = Ra + P, where
a € M\P;. If Ra C Py, then M = P; + P,. Suppose P; C Ra. Then
Pr=Pia=(Pia)a=P = C (2, M® =0 by Krull’s intersection Theorem,
ie. P; ¢ Ra. Hence we can choose b € P;\Ra. Let x € vRa\(P, + P2).

Since P; U P, contains all zero divisors of R, we have anngz™ = 0 for all positive
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integers n. By the standard argument given in the proo-f of The orem 1.2.16,
a € M?+ Py + P It follows that M = M2+ P, + P;. By Nakayama’s Lemma,
we get M =P, + Ps.

Suppose n = 3. For each 1 < ¢ < n, R/I; is a one dimensional semiprime local
ring. By Lemma 1.2.1, we also know that each R/I; s.t.r.f. as an R/I;-module.
By applying induction to each R/I;, we get

() M= E:=1 I for all 1 <7 < n,

ki
(1) Py = I; + E:—l Iy and I;; = Rxy; + I; for some z;; € M and for all
ki
1< 4,5 <nwithi 7,

Clearly, if ¢, 7, k are all distinct then I;; C P;. By this observation, (7) gives
M=1L;+P; = Ry + I + P; for all 7 # 7. (1.1)
Suppose M # I, + P,. By Lemma 1.2.25,

M # I + P; for all 4, (1.2)

By (ii) and (1.3), we get 12 € L12\({1 + I2). Let = € (vVRz12)\({1 + o). Since
R is semiprime, anngpz™ = anngpe for any positive integer n. Note that z €
L2\(P1 U Py) since /Ra1z C 1z, 1 NPy = I and I;o NPy = ;. Therefore ,
annpz C P10 Py. Clearly, Rzig + Raes CPsNPsN---NP,. Hence

R$12 + (&IlllRIE) n (RZE12 + Rmzs) g R$12 + I3.

Suppose 23 € Rz12 + (anngz) N (Rzia + Raas). Then T93 € Rzyg + I3. By
(1.1), M = Rags+ I3+ Ps C Re12+ Is+ Py = P3+ I3, and hence M = Pz + I,
which contradicts (1.2). Therefore x93 ¢ Ra1z + (anngz) N (Rz1z + Rzas). Now,

by the standard argument in the proof of Theorem 1.2.16, x93 € M? 4 I; + I,.
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By (1.1), M=Raos + Is+ Ps C M?*+ 1 + b+ I3 + Ps = M? + I3 + Ps. Thus
M = M? + I3 + P;s. By Nakayama’s Lemma, we have M = I3 + P3, which
contradicts (1.2). Therefore M = I, 4+ P,. By Lemma 1.2.25 I;; = I; + I; for all
¢ % j. The required result follows from (z) and (i¢). O |

Theorem 1.2.27 [16] Let R be a commutative Noetherian ring and Py, -+ , P,
be all the minimal prime ideals of R. Then the following are equivalent:
(i) R s.t.r.f.,
(ii)) R@ R s.t.r.f. as an R-module,
(i7i) R is one of the following:
(a) R is Artinian, or
(b) the following condilions are satisfied:
(1) dimR=1 and R/P; is a Dedekind domain and P; is the only P;—
primary tdeal, for every 1 <1 < n,
(2) (Neer Pi) + Prar = Ny (Pi + Pioga), for every 1 <k <n—1, if
n = 2.
(3) R = P;+P; or R/(P;+P;) is semisimple Artinian, for every 1 <1 <
jEn,ifn =2

Proof. (z) = (22) Obvious.
(72) = (4i7) Let R ® R s.t.r.f. as an R-module. By Theorem 1.2.5 we can

suppose R is not Artinian. Thus by Corollary 1.2.17, we may assume dimR=1.

We may also assume n 2 2 by Corollary 1.2.22.

By Theorem 1.2.16 (1) is satisfied. Under localization at any maximal ideal
M of Rif P ,¢_ M then P;Rap = Raq and P;Raq remains prime otherwise. By
Lemma 1.2.26, (3) holds in Raq, and that both sides of the condition (2) becomes
MBEp if M contains Ppyy and P; for some 1 € 7 € k. Otherwise both sides will
equal to Rar Hence (2) and (3) hold globally. |

26



(433) = (i) Suppose (1), (2) and (3) hold. R/+/0 satisfies the conditions of
Lemma 1.2.24 and hence it s.t.r.f.. By Lemma 1.2.21, R satisfies (i7) in Lemma
1.2.20. Hence R s.t.rf.. O

It is not entirely clear to us which non-Noetherian rings s.t.r.f.. But at least
for a polynomial ring S[X] where S is a commutative domain we can say the

following:

Theorem 1.2.28 Lel S be a commutative domain. Then the polynomial ring

R = S[X] s.t.r.f. if and only if S is a field.

Proof. (=) Suppose R s.t.r.f.. Then the R-module FF = R @ R s.tr.f.. Let
0 # a € S and let W be the ideal v/Ra + RX of R and N be the submodule
W(a, X) of F'. First we will show that N = Er(N). Let r, sy, s2 belong to R such
that r*(s1,s2) € N for some positive integer k. There exists w € W such that

ksi = wa, r¥sy = wX. It follows that r*s; X = rks,a.

r8(s1,82) = w(a, X), i.e. 1
If r = 0 then r(s1,s2) € N. Suppose that r # 0. Then s.X = sza. Since a # 0
it follows that s = Xh for some h € R. Then $1.X = sqa = Xha gives s; = ha.
Now r¥(sy, 83) = r®(ha, hX) = r*h(a, X) and hence r*h € W. Clearly (rh)* € W
and hence rh € W. Thus r(s1,s;2) = rh(a,X) € N. It follows that Er(N) C N
and hence Er(N) = N. Since F s.taf. N = Ep(N) =< Eg(N) >= radp(N).
Now let K be a prime submodule of F' such that N C K. Then W(a,X) C K

gives WF C K or (a,X) € K. In any case (a,X) € K. Thus
R(a,X) Cradp(N) =N = W(a, X).

There exists ¢ € W such that (a,X) = ¢(a,X). In particular, a = ga so that
g = 1. It follows that W = R and hence R = Ra + RX. There exist f(X),
9(X) € R such that 1 = f(X)a + g(X)X. Then 1 = f(0)a and hence ¢ is a unit
in 5.
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(<) If S is a field then S[X] is a principal ideal domain and hence a Dedekind
domain. Thus R = S[X] s.t.r.f. by Theorem 1.2.12. O

Corollary 1.2.29 Let R be a commutative ring. Then the polynomial ring R{X,Y]

does not s.t.r.f..

Proof. Suppose R[X,Y] s.t.r.f.. Let P be any prime ideal of R. Then the ring
(R/P)[X,Y] & RIX,Y]/P[X,Y] s.t.rf, by Lemma 1.2.1. Let S = (R/P)[X].
Then S[Y] 2 (R/P)[X,Y], so s.t.r.f. but S is not a field, a contradiction. O
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Chapter 2

PRIME SUBMODULES OF
MODULES

The aim of this chapter is to investigate prime submodules of modules over
commutative domains in some special cases. For example, if R is a Dedekind
domain and M is a finitely generated R-module then prime submodules of M
are either certain direct summands of M or submodules N such that M/N is
annihilated by a maximal ideal of R (Proposition 2.1.3). On the other hand if
R is a UFD, n a positive integer and a,,... ,a, elements of R which are not all
zero then it is shown in Theorem 2.2.7 that R(ay...,ay) is a prime submodule
of the free R-module R™ if and only if every common divisor of ay,... ,a, is a
unit in R.

Again for a UFD R and n 2 3, given a;, b; € R (1 < ¢ € n) such that
1 =s1by 4+ 8pby for some s; € R (1 € ¢ < n), the submodule R{ay,...,a,)+
R(by,...,b,) of R(™ is prime if and only if either a; = ¢b; (1 < i < n) or every
common divisor of a; — ¢b; (1 < ¢ < n)is a unit in R, where ¢ = 8101+ + + Snn
(Theorem 2.3.2). As an application we show in Theorem 2.3.12 that if R is a UFD
and I is a non-zero ideal of R then the submodule N = R(ay, ... ,a,)+I(1,...,1)
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of R™ is prime if and only if (a) I = R and every common divisor of the elements

a;i—ar (2<i<n)isaunitin Ror (b) N = R(1,...,1).

2.1 Modules over Special Rings

Proposition 2.1.1 Let R be a 0-dimensional ring and let M be an R-module.
Then a proper submodule N of M is prime if and only if PM C N for some
prime ideal P of R.

Proof. By Proposition 1.1.2.8. O

A commutative domain R is called Prifer if every finitely generated non-zero
ideal is invertible. Given a commutative domain R it is well known that any
finitely generated torsion-free R-module is projective if and only if R is a Priifer

domain (see [32, Theorem 4.22]).

Proposition 2.1.2 Let R be a Prifer domain and let M -be a finitely generated

R-module. Then a proper submodule N of M is a 0-prime submodule if and only
if M = N @ N’ for some torsion-free submodule N' of M.

Proof. Suppose first that M = N @ N’ for some torsion-free submodule N’ of M.
Then M/N = N’ so that M/N is torsion-free. Thus N is a 0-prime submodule
of M.

Conversely, suppose that N is a 0-prime submodule of M. Then the R-
module M/N is finitely generated torsion-free so that M/N is projective and
hence M = N @ N’ for some submodule N’. Clearly N’ is torsion-free. O

Dedekind domains are precisely Noetherian Prifer domains and have the
property that every non-zero prime ideal is maximal. Combining Propositions

1.1.2.8 and 2.1.2 we have the following result.
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Proposition 2.1.3 Let R be a Dedekind domain and let M be a finitely generated
R-module. Then a proper submodule N of M is prime if and only if M = N @ N'
for some torsion-free submodule N' of M or PM C N for some maximal ideal P

of R.

2.2 Cyclic Submodules of F

We now fix the following notation. Let R be a commutative domain, n > 3

be an integer and F' be the free module R™.

Lemma 2.2.1 Let N be an m-generated submodule of F for some positive integer

m <n. Then (N :F)=0.

Proof. Suppose that (N : F) # 0, i.e. 7F' C N for some 0 # r € R. Let
S = R\{0} and let K denote the field of fractions of R. Then the n-dimensional
K-vector space K(™ & §~'F = S~N and S™'N is generated by m elements as

a vector space over the field K. Thus n < m, a contradiction. O

Corollary 2.2.2 Let N be an m-generated submodule of F' for some positive

integer m < n. Then N is a prime submodule of F' if and only if the R-module
F/N is torsion-free.

Proof. By Lemma 2.2.1, (N : F) = 0. Let F/N be a torsion-free R-module.
Then N is a 0-prime submodule of F'. Conversely, if N is a prime submodule of

F' then the module F'/N is torsion-free by Proposition 1.1.1.3 and Lemma 2.2.1.
t

Proposition 2.2.3 Leta; € R (1 € ¢ € n) such that R = Ray+---+ Ra,. Then
R(ai,...,a,) is a direct summand of the free R-module ' = R, Moreover

R(ai,...,a,) is a O0-prime submodule of F'.
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Proof. There exist s; € R (1 < ¢ < n) such that 1 = sya; 4+ -+ + spa,. Let
NZ{((El,... }xn) € F:31$1+"'+5n$n=0}~

Then N is a submodule of F. For any r € R, r(ay,...,a,) € N implies that
siray + -+ spra, = 0, le. r(sia1 4 -+ + spa,) = 0, e v = 0. Hence
R(ay,... ,a,) N N = 0. Moreover, for each 1 € 7 < n, the element e;, the
n-tuple in which the ith component is 1 while the others are 0, belongs to

R(ay,...,a,) + N. For, consider the element
e; — Si(ah s 7an) - (_Siala ey T8, 1- 8iQiy —&iQi41y .- - 7'—Sian)

and note that e; — s;(ay,... ,a,) € N because

si{(—sia1) + -+ A+ sica(—siaion) + si(1 = sia;) + sip1(—siai41) + o + sa(—sian)
is equal to —s;(s1a1+ -+ + span) + si = —s; +8; = 0. Thus e; € R(ay,... ,a,) +
N (1 € ¢ £ n). It follows that F = R(ay,...,a,) + N and hence F =
R(ay,...,a,) ® N. Since F is free it is torsion-free and the factor module
F/R(ai,...,ay,) is torsion-free. This implies (R(ay,...,as) : F') =0, and hence

R(ay,...,a,) is a O-prime submodule of F. O

Corollary 2.2.4 Let a; € R (1 < i < n) such that at least one of the elements

a; (1 <1< n)is aunit in R. Then R(ay,...,a,) s a prime submodule of F.

Proof. By Proposition 2.2.3. [

Corollary 2.2.5 Let a; € R (1 <1 < n) and let P be a prime ideal of R such
that R = Ray+---+ Ra,+P. Then R(ay,... ,a,)+PF is a P-prime submodule
of I.
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Proof. The module F/PF is a free module over the domain R/P. Let
N = R(ay,... ,a,)+PF. Then N/PF = R(a1+P,...,a,+P). By Proposition
2.2.3, N/PF is a P-prime submodule of the (R/P)-module F/PF. Clearly it
follows that N is a P-prime submodule of F. O

Let a; € R (1 <1 < n), not all zero. By a common divisor of the elements a;
(1 €4 < n) we mean an element d € R such that a; = db; (1 <7 € n) for some
elements b; (1 < ¢ < n). Clearly d is a common divisor of a; (1 € ¢ < n) if and

only if Rai + -+ + Ra, C Rd. Corollary 2.2.2 has the following consequence.

Lemma 2.2.6 Leta; € R (1 <1 < n), not all zero, such that N = R(ay,. .. ,a,)
is a prime submodule of F = R™. Then every common divisor of a; (1 <1 < n)

is ¢ unil in R.

Proof. Let d be a common divisor of a; (1 € ¢ < n). For each 1 < ¢ € n there
exists b; € R such that a; = db;. Clearly d # 0 and d(by,...,b,) = (a1,... ,as) €
N. By Corollary 2.2.2, (by,...,b,) € N, ie. (b1,...,b,) = r(aq,...,a,) for
some r € R. It follows that a; = dra; (1 < ¢ < n) and hence dr = 1, ie. dis a

unit in K. O

Theorem 2.2.7 Let R be a UFD and let a; € R (1 < i < n), not all zero. Then
N = R(ay,... ,a,) is a prime submodule of F = R™ if and only if every common

divisor of a; (1 <t < n) is ¢ unit in R.

Proof. The necessity is proved in Lemma 2.2.6.
Conversely, suppose that every common divisor of a; {1 < i < n) is a unit
in R. Let 0 #r € Rb; € R (1L €1 < n)such that r(by,...,b,) € N, lLe.

r(b1,... ,bs) = s(ai,... ,a,) for some s € R. Hence rb; = sa; (1 £ ¢ < n).
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There exists 1 < 7 < n such that a; # 0. Suppose that a; is a unit in R.
Then s = Tbja;I and hence rb; = 'rbja;"}ai giving b; = bjajflai 1€ign) In

this case

(bl,. N ,bn) = bjcfl(a,l,. . ,(Ln) € N.

7

Now suppose that a; is not a unit in R. Let p be any prime divisor of a;. There
exists 1 < & < n such that p does not divide a;. However rb, = say, and rb; = sa;
together give ra;by = ragb;, so that ajby = azb; and hence p divides b;. Now
rb; = sa; gives r(b;/p) = s(a;/p). Repeating this argument we conclude that a;
divides b;, i.e. b; = ca; for some ¢ € R. For each 1 € i € n, ra;b; = ra;b; gives
b; = ca;. Hence (by,...,b0,) = c(as,...,a,) € N. It follows that N is a prime
submodule of F. O

We shall call a submodule N of F' a cyclic prime if N is a prime submodule

of F'and N is a cyclic R-module.

Corollary 2.2.8 Let R be a UFD and let N be any prime submodule of FF = R(™
with (N : F) = 0. Then N is a sum of cyclic prime submodules of F.

Proof. Let a; € R (1 < ¢ < n), not all zero, such that (ay,...,a,) € N. Let
d be a greatest common divisor of the elements a; (1 < ¢ < n). Then a; = db;
(1 £ ¢ < n) for some elements b; (1 < i < n) of R. Clearly any common divisor
of the elements b; (1 < ¢ € n) is a unit in R. By Theorem 2.2.7, R(by,... ,b,)
is a cyclic prime submodule of F'. Moreover, R(ay,...,a,) € R(by,... ,b,) TN
by Corollary 2.2.2. The result follows. I

Remark: Let F' denote the free Z-module Z @ Z and let p be any prime in Z.
Then pF' is a prime submodule of F' such that (pF : F) = (p) but pF' is not a

sum of cyclic prime submodules by Corollary 2 in [7].
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2.3 2-Generated Submodules of F

In this section we are interested when N = R(a,...,an) + R(b1,... ,b,)
is a prime submodule of FF = R, where R = Rb; + --- + Rb,. Consider the

submodules
L= R(by,...,bs) and L' = {(z1,... ,2n) € F: 8121+ -+ + $pzy = 0}

of F', where s; € R (1 € ¢ < n)and 1 = 815y + -+ + s,b,. Note first that
F =L@ L' by Proposition 2.23. Now N=NN (L L) =L@ (NNL). Let
¢ = 81a1 + + -+ + Span. Then NN L' D R(a — cb), where a = (ai,...,a,) and
b = (by,...b,), and N = R(a — ¢b) @ Rb, so that N N L' = R(a — cb).

Lemma 2.3.1 Let R be a commutative domain and let N be a submodule of an R-
module M such that the module M/N is torsion-free. Let L be o proper submodule

of N. Then L is a 0-prime submodule of N if and only if L is a 0-prime submodule
of M.

Proof. Suppose first that L is a 0-prime submodule of M. Then the module
M/L is torsion-free and hence the module N/L is torsion-free, i.e. L is a 0-prime
submodule of N. Conversely, suppose that L is a 0-prime submodule of N. Then
N/L and M/N are both torsion-free R-modules, so that M/L is torsion-free and
L is a 0-prime submodule of M. O

Theorem 2.3.2 Let R be a UFD, let n 2 3 be a positive integer and a;,b; € R
(1 €1<n) suchthat R= Rby+---+ Rb,. Letc= sya1+---+3pa, where s; € R
(1<i<n)andl =s1by + -+ spby,. Then N = R(ay,... ,an) + R(by,... ,b,)
18 ¢ prime submodule of F' = R(®) if and only if either a; = ¢b; (1 <t < n) or

every common divisor of a; — cb; (1 < ¢ < n) is a unit in R.
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Proof. With the above notation, N is a prime submodule of F' if and only if
N N L'is a prime submodule of I/, because F = L & L' and N = L & (N N L)
together give F/N = I//(N N L'). Moreover, (NNL' : L") = (N : F) =0 by
Lemma 2.2.1. By Lemma 2.3.1, N N L' is a prime submodule of L’ if and only if
N N L'is a prime submodule of F'. Now NN L' = R(a—c¢b). Thus NNL'is a
prime submodule of F' if and only if NO L' =0, ie. a; = cb; (1 <4 < n), or

every common divisor of a; — ¢b; (1 < ¢ < n) is a unit in R by Theorem 2.2.7. O

Remark: Note that if N = R(ai,...,a,) + R(by,... ,b,) where a;,b; € R
(1 <:<n)and R= Ray + -+ Ra, = Rby + --- + Rb, then in general N

is not a prime submodule of F' as the following example shows.

Example 2.3.3 The submodule N = Z(2,3,5) + Z(2,1,3) of the free Z-module

F =7 is not prime.

Proof. Suppose that N is a prime submodule of F'. The element (4,4,8) =
(2,3,5) + (2,1,3) € N. Thus 4(1,1,2) € N and hence (1,1,2) € N by Lemma
2.2.1. It is easy to check that (1,1,2) # s(2,3,5) +¢(2,1,3) for any s,t € Z, a

contradiction. Thus N is not prime. O

Theorem 2.3.2 deals only with the case n > 3. If n = 1 then N = Ra; + Rb; =

R which is not prime. We now deal with the case n = 2.

Proposition 2.3.4 Let R be a commutative ring and let a;,b; € R (i = 1,2)
such that R = Rby + Rby. Then N = R(a1,a2) + R(b1,b2) is a prime submodule
of F = R® if and only if R(a1by — aghy) is a prime ideal of R.

Proof. There exist elements s{,s; € R such that 1 = 5,b; + 8205. Then F =
L @ L' where L = R(by,b) and L' = {(z,y) € F' : s12 + sy = 0}. Clearly

R(—s3,51) € L'. Moreover,
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(1, 0) = S]_(bl,bz) + (—‘bg)("—'SQ,Sl) and (0, 1) = Sz(bl, bg) —|— bl(—SQ, 81)
together imply F' = L + R(—s3,s1). It follows that L' = (LN L') + R(—s3,81) =
R(—s3,81).

As before, N = L@ (NN L) and NNL = R(a; — cby,as — cby) where

¢ = 8101 + s2a2. Note that (a; — by, ay — cby) = (agby — boay)(—s2, 51) because
—sg(aghs — baa1) = —sa3b1 + sabeay
= —Saasby + (1 — s1b1)ay

= ay — (s1a1 + S2a2)by

= a; — cby, and

51(a261 — bglll) = 8161,21)1 — Slbzaq
= (1 — Sgbg)ag —_ Slbgal
= a9 — (8101 + 8202)b;

= ay— cby.
Note also that if » € R and r(—s2,8;) = 0 then rs; =0, rs; = 0 and hence
r =1l =r(s1d + s3b2) = (r51)b1 + (rs2)by = 0.
Let d = a1by — asbh,. Now F = L@ L' and N = L@ (N N L') give that
F/N 2 L'/(N O L') = R(—s3, 1)/ Rd(—s3, 1) & R/Rd.
Thus N is a prime submodule of F' if and only if Rd is a prime ideal of R. [

In Proposition 2.3.4 it is crucial that R = Rb; + Rby. For, let N denote
submodule Z(6,6) 4 Z(10,10) of the free Z-module Z @ Z. Then N = Z(2,2)
and 2(1,1) € N, (1,1) ¢ N, so that N is not prime (Corollary 2.2.2). However

a1 = az = 6, by = by = 10 gives Z(a1b; — azb;) = 0 which is a prime ideal of Z.
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We fix the following notation. Let n be a positive integer, let a; € R
(1 €4,7 € n)andlet a; = (¢jgy... ,a,) € R™ = Fforall 1 € i< n. Let
N = Ra; + .-+ + Ra, be a proper submodule of F'. Let A denote the n x n
matrix (a;;) over R. Proposition 2.3.4 suggests that it might be the case that N
is a prime submodule of F' if and only if R(detA) is a prime ideal of R, provided
that

R=Ra; +- -+ Ra;, (QQEQR)
The next two examples show that in fact neither of these implications is true.

Example 2.3.5 With the above notation, Z(3,5,7) + Z(0,2,1) + Z(0,1,2) is a
prime submodule of F = Z®) but detA=9.

3 57
Proof. Note that A= | 90 2 1 | so that clearly detA=9. Moreover,

0 1 2
3(1,0,0) = (3,5,7) — (0,2,1) — 3(0,1,2) € N,

3(0,1,0) = 0(3,5,7) +2(0,2,1) — (0,1,2) € N,

3(0,0,1) = 0(3,5,7) — (0,2,1) +2(0,1,2) € N,

and (1,0,0) ¢ N. Thus 3F C N # F. It follows that N is a prime submodule of
F' by Proposition 1.1.2.8. O

Example 2.3.6 With the above notation, Z(3,5,7) +7Z(0,2,1)+ Z(0,2,1) is not
a prime submodule of F' = Z®) but detA=0, which is a prime ideal of Z.

3 5 7
Proof. In this case, A= | 0 2 1 | and clearly det A=0.

0 21
Since N = Z(3,5,7)+%(0,2,1), it follows that (N : F') = 0. Suppose that N is

a prime submodule of F', i.e. the Z-module F/N is torsion-free. Now 3(1,1,2) =
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(3,3,6) = (3,5,7)—(0,2,1) € N gives that (1,1,2) € N,ie. (1,1,2) = a(3,5,7)+
5(0,2,1) for some a,b € Z and hence 3a = 1, a contradiction. Thus N is not

prime. [
We note the following general fact.

Proposition 2.3.7 Let R be commutative ring, let n be a positive integer, let

ai; € R (1 €i,5 < n), let a; = (ai,...,am) € F = R(®) (1 <3< n)andlet

N = Ray + -+ + Ra,. Let A denote the n x n matriz (a;;) over R. Then
R(detA) C (N : F) C \/R(detA)

Proof. Let B=adjA, the adjugate of the matrix A. Then (detA)l, = BA, where

I, denotes the n X n identity matrix over R. Suppose that B is the n X n matrix

(b;;) over R. Then
(detA)e; =bjas + -+ +bina, € N

for each 1 <4 < n. It follows that (detA)F C N, i.e. R(detd) C (N : F).
Let 7 € (N : F). There exist elements ¢;; € R (1 € 7,7 € n) such that
re; = ciray + o0+ cppay for all 1 <2 < n. Let C denote the n x n matrix (¢;;)

over R. Then rI, = C A. Taking determinants we have
r* = det(C'A) = (detC)(detA) € R(detA).

It follows that (N : F') C /R(detA). O

Corollary 2.3.8 With the above notation, if R(detA) is a mazximal ideal of R

then N is a prime submodule of F.

Proof. By Propositions 1.1.2.8 and 2.3.7. O

Next we consider what happens when R(detA) is a prime ideal of B. We have

the following result.
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Proposition 2.3.9 With the notation of Proposition 2.3.7, let R be a domain

and let R(detA) be a non-zero prime ideal of R. Then N is a prime submodule
of F'.

Proof. Let r € R, z; € R (1 < ¢ < n) such that r(z1,... ,z,) € N. Then

T(Z1y. 00 3 Tp) = 8181 + -+ + Sp8y
for some elements s; € R (1 < ¢ < n). In matrix notation, we have

rler- - 2,) = [81 - a]A.
Let B = adjA. Then
rley - @n)|B=1[s1" 8, ]AB = d[s1 -+ 83],

where d = detA. If B = (b;;) then

r(21by; + -+ + €nbyj) = s;d € Rd

for all 1 € j € n. Since Rd is prime it follows that » € Rd and hence rF' C N by
Proposition 2.3.7, or there exist t; € R (1 < 7 < n) such that @1by;+ -+ @by =

t;d (1 € j € n). In matrix terms, we have
and hence

[z1: - ax)] BA=d[ty - 1,]A
i.e.

d[IEl v 11271] = d[tl T tn]A

Since R is a domain and d # 0 it follows that [¢1--:2,] = [t1 -+ t,]A and hence

(21,...,2,) = ty@y + -+ + tpa, € N. It follows that NV is a prime submodule of
F. O
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Note that Example 2.3.5 shows that the converse of Proposition 2.3.9 is false
in general, and Example 2.3.6 shows that in general Proposition 2.3.9 is false in

case detA = 0.

We now consider 2-generated submodules N of F' of the form
N = R(aq,... ya,) + R(b,... ,b)

where b,a; € R (1 <t £ n). More generally, we shall consider when a submodule
N of the form R(ay,...,as)+ I(1,...,1) is prime , where [ is an ideal of E.

First we prove a result which deals with the case a; =0 (1 < ¢ < n).

Lemma 2.3.10 Let R be a commutative domain. Let I be an ideal of R. Then
I(1,...,1) is @ prime submodule of F = R™ (where n > 2) if and only if I=0
or I=R.

Proof. Suppose that I = 0. Then I(1,...,1) = 0 and hence I(1,...,1) is a
0-prime submodule of ['. If I = R then I(1,...,1) is a 0-prime submodule of F
since F' = I(1,...,1) ® G, where G = 0@ R,

Conversely, suppose that N = I(1,...,1) is a prime submodule of F. Now
I(1,...,1) € N implies that R(1,...,1) € N, so that N = R(1,...,1) and
hence R = I, or IF C N. Suppose that IF C N. Let @« € I. Then there exists
b € I such that «(1,0,...,0) = b(1,...,1). Hence a = b = 0. It follows that
I=0.0

We now suppose that R is a commutative domain, a; € R (1 < ¢ € n), not

all zero, I is a non-zero ideal of R and N = R(ay,...,a,)+ I(1,...,1).

Lemma 2.3.11 Suppose that N is a prime submodule of F = R™ (where n >
2). Then either
(i) I=R, or
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(i) a1 =+ - =a, and R = Ra; + I.
In any case, N = R(ay,...,a,) + R(1,...,1).

Proof. Note first that I(1,...,1) C N gives that /F' C N or (1,...,1) € N.
Suppose first that IF C N. Let 0 # ¢ € I. Then

(¢,0,...,0)=1¢(1,0,...,0) =r(a1,... ,an) +s(1,...,1)

for some r € R, s € I. Since ¢ # 0 it follows that r £ 0. Then ¢ = ra; + s,
0 =ra;+s (2 <:<n), and hence 0 = r(a; — a;), for all 2 < 7 < n. It follows
that a3 = a3 = -+ = a,. By considering (0,¢,0,... ,0) € N, we obtain a; = as.

Thus ¢ = a9 = -+ = a,. But we now have
(6,0,...,0) =r(ay,...,a1) +s(1,...,1),

which implies ¢ = 0, a contradiction. Thus I¥ & N. Hence (1,...,1) € N, and

hence
1,...,1) =z(at,... ,an) +y(1,...,1)

for some x € R,y € I. If = 0 then y = 1 and hence I = R. Suppose that
¢ #0. Then @(a; —a;) =0(1<i<j<n)and hence a; = a; (1 <i < j<n)
Moreover, 1 = za; +y € Ray + I. Thus R = Ra; + 1.

If I = R then clearly N = R(ay,...,a,) + R(1,...,1). Now suppose that
a;=a; (1<1<j<n)and 1 =2za; +y (as above). Then

(1,...,1) ==z(at,... ,a,) +y(l,...,1) € N.

Thus N = R(a,...,a.) + R(1,...,1). O

Theorem 2.3.12 With the above notation let R be ¢ UFD and n = 3. Then
N = R(ay,...,a,)+ I(1,...,1) is a prime submodule of F' if and only if
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(a) I=R and every common divisor of the elements a; —a; (2 <4< n) isa
unit in R, or

(b) a;=---=a, and R= Ra; + I.

Proof. Suppose first that NV is a prime submodule of F. By Lemma 2.3.11,
I=Rora;=--=a, and R = Ra; + I. Suppose that I = R then

N =R(ay,... ,as) + R(1,... ,1)

By Theorem 2.3.2, a; = -+ = ay, or every common divisor of a; —a; (2 < ¢ < n)
is a unit in R.

Conversely, if (b) holds then N = R(1,...,1) and if (a) holds then
N = R(ay,... ,an)+ R(1,...,1) where any common factor of a; —a; (2 < ¢ < n)
is a unit. By Corollary 2.2.4 and Theorem 2.3.2, N is a prime submodule of F.
a
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Chapter 3

RADICALS OF SUBMODULES
OF FREE MODULES

The aim of this chapter is to describe radp(N) for a given submodule N
of a module M in some special cases. If M = R then N is an ideal of R and
rady(N) = v/N. If M # R it has proved difficult to characterize radas (V).

Throughout this chapter all rings will be commutative with identity. We fix
the following notation. Let R be a ring. Let n be a positive integer and let F' be
the free R-module R™. Let x; € F (1 €4 < m), for some positive integer m.

Then
X; = (3}1‘1,3),;2,. . e ,’Lm) (]_ g 7 g m)

for some z;; € R (1<t <m,1 <7< n) Weset

11 Tz '+ Tin
To1 T2 - T2
[xl . 'xm] = ] . . ‘n S Man(R)
L Tm1 Tmz Tmn
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Thus the j* row of the matrix [x;---X,] consists of the components of the
element x; in F.
Let A = (aij) € Myyn(R). Let t < min(m,n). By a t xt minor of A we mean

the determinant of a ¢ X ¢ submatrix of A, that is a determinant of the form

i) o Gia)i)

@i()i(1) "t @i

where 1 < #(1) < -+ < i(t) < m, 1 € j(1) < ++- < j(¢) € n. For each
1 € t € min(m,n), we denote by A; the ideal of R generated by the ¢ x ¢
minors of A. Note that A; = };1 wiRai;; O Ay D Az 2 --+ D Ay, where
k = min(m,n).

Let F be the free R-module R, for some positive integer n. Let N =

w1 Bx; be a finitely generated submodule of F. Then r € radp(N) if and only
if 010+ Xnle € /[0%1 -+ Xn]; for all 1 < £ < min(m + 1,n) (Theorem 3.1.5).
As an application it is proved in Theorem 3.1.9 that if N = Y ", Rx; + I F for

some positive integer m and elements x; € I' (1 < ¢ < m), then r € radp(N) if

and only if [F %1+ Xnlt € V/([0%1 - Xpls + I) for all 1 € t € min(m + 1,7n).
On the other hand if R is a UFD, n a positive integer, a4, ... ,a, elements of R
not all zero and N the submodule R(ay, ... ,a,) of F = R, then it is shown
in Proposition 3.1.10 that radz(N) = R(by,...,b,) where b; = (p1- - pna;)/d
(1 €4 < n), dis a greatest common divisor (ged) of ay,... ,a, and p1,...,pp
are the pairwise non-associate prime divisors of d.

In particular, for a not necessarily finitely generated submodule N of F of the
form R(ai,...,an)+ I(1,...,1) for an ideal I of R, radp(N) = R(a1,... ,a,) +
VI(1,...,1) + WF =< Ep(N) > if the ideal 31, R(a; — a;) is equal to R
(Theorem 3.2.5).
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3.1 Characterization of the Radical

In this section we describe rady(N) where N is a finitely generated submod-

ule of the free module F'. First we make a general observation.
Let N be a proper submodule of any R-module M. Let P be a prime ideal
of R. Then we shall denote by K(N,P) the following subset of M:

K(N,P)={m e M :em &€ PM + N, for some ¢ € R\P}.
It is clear that K(N,P) is a submodule of M and PM + N < K(N,P).

Lemma 3.1.1 With the above notation, K(N,P) = M or K(N,P) is a prime
submodule of M with P = (K(N,P) : M).

Proof. Suppose K(N,P) # M. Apply Proposition 1.2.9 to the module M/N.
O

Corollary 3.1.2 With the above notation, for any submodule N of M,
rady(N) = ({K(N,P): P is a prime ideal of R}.

Proof. Clear by Lemma 3.1.1 and the fact that K(N,Q) < L for every prime
submodule L of F' containing N, where @ = (L : M), a prime ideal of R. O

Lemma 3.1.3 Let R be a ring and F be the free R-module R™, for some positive

integer n. Let N = )" | RX; be a finitely generated submodule of F where m < n.
Then

r € radp(N) if and only if [t X1+ Xp]: € /[0X1 - Xp]t (1 SE< M+ 1).

Proof. Suppose that r = (ry,...,r,) € radp(N) where r; € R (1 <1< n).
Let P be any prime ideal of R. By Corollary 3.1.2, there exist ¢ € R\P,s; € R
(1<:<m)and p; € P (1 << n)such that
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r = 81X1 + + $puX;y + P

where p = (p1,...,pa); that is, if x; = (24,...,24) where z;; € R (1 €4 £

m,l £ 7 € n) then

ori = 81%1; + SeT2i + + SmTmi + 0 (1 2K n).

3.1)

Suppose that 1 <t <m+land [0x1+ %X, CP. Let 1 <4(1) <+ <i(t—1) <

m,1 € j(1) < -+ < j(t) € n. Let

Xy =

D ket SETES(1) T+ Pi()

Ti()i(v)

Ti(e-1)3(1)

Tki(1)

Ti(1)5(1)

i(1-1)i(1)

Thus X; € P. It follows that

i)

Ti(1)i(1)

Ti(t-1)i(1)

eri(1)

Ti(1)i1)

Ti(t-1)i(1)

> he1 SkTkj() T Pice)

Tki(2)

Ti)i()

Ti(t-1)5(2)
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Ti(2)

Li(1)s(1)

Li(t—1)5(¢)

which is a ¢ X ¢ minor of [rx; - --Xp]. Then by (3.1),

Cri(r)

Zi(1)5(2)

Ti(e-1)i(2)

Ti(1)1(2)

Ta(t-1)i(2)

Pi(1)

Ti(1)i(1)

Ti(:—-1)7(1)

Pi()

Ti(1)i(®)

Ti(t-1)5(t)

eP.




[I'Xl"'Xm]tE [Oxl"'xm]t

Conversely suppose that [rx; -+ Xu,]: € 4/[0%1 -+ Xp]; for every 1 < ¢
m + 1. Let P be any prime ideal of R. It is enough to show that r € K(N,P),

by Corollary 3.1.2. If [0 %1+ X,)1 € P then r; € [P X1+ Xp]i € P and hence
r=(ry,...,rm) € P C K(N,P). Suppose that [0x; ---Xm]1 € P. Note that

[0x; - Xm]ma+1 = 0 € P. Thus there exists 1 € ¢ < m such that
[0x1 "'xm]t ,¢_ 7:) but [0x1 "‘Xm]t.;q Q 73
There exist 1 < (1) < -+ <i(t) <m, 1 < j(1) <--- < j(t) € n such that

Ti)i() T FT)i)

d= : : ¢P.

Ti(i() Tt TiE)i)

T Tiy o Ti)

iy Ty o T

By hypothesis, for each 1 € 7 € n, eP.

Tie); Ti@)i(n) 0t T

Expanding this determinant by the first column we find that
dri + a;)Ti); + * + e Ti); € P
() v Ti(e)

Ti)i) 7 T

where ai(k) = (_l)k mi(k-—l)j(l) e m‘i(k—l)j(t) s for each 1 § k < t.

Tik+1)i() " Ti(kH1)i(2)

Ti(t)3(1) cee Ti(1)7(2)
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Note that d and ar) (1 < k < t) arve independent of j. Thus
drj + aia)Tiq); + - + aigyTie); € P (1< J < n),

ie. dr € Rx; +---+ Rx,, + PFF= N+ PF, and hencer € K(N,P). O

Lemma 3.1.4 Let My and M, be R-modules and let M = My@® M, = {(m1,ms) :
m; € M; (1 =1,2)}. Let N be a proper submodule of My. Then

m € rady, (N) if and only if (m,0) € radp (N @ 0).

Proof. Suppose first that m € radag, (V). Let P be a prime submodule of M
such that N ®0 C P. Let P' = {z € M, : (2,0) € P}. It can easily be checked
that P’ = M; or P’ is a prime submodule of M; and N C P’. Thus m € P’ and
hence (m,0) € P. It follows that (m,0) € radp (N & 0).

Conversely, suppose that (m,0) € rada (N @ 0). Let @ be a prime submodule
of M, such that N C . Then @} ® M, is a prime submodule of M with N0 C

@ ® M,. Hence (m,0) € Q & M, so that m € Q. It follows that m € raday, (N).
[l

Theorem 8.1.5 Let R be a ring and let F be the free R-module R™, for some

positive integer n. Let N = Y " Rx; be a finitely generated submodule of F.
Then

r € radp(N) if and only if [t X1+ Xt € \V/[0-X1 +* X ¢
for all1 <t < min(m 4+ 1,n).

Proof. Let k& = min(m + 1,n). Suppose first that & = m + 1, i.e. m < n. By

Lemma 3.1.3, r € radp(N) if and only if [rx; -+ Xpu]: € v/[0%g -+ Xp]; for all
1<t<k.
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Now suppose that k = n,i.e. n < m+1. Let G = R™) Letr = (ry,...,7m),
X; = (@1, Tig," " ,Tin) for some r; € Ryzi; € R (1 <1 < m,1 € Jj < n). By

Lemma 3.1.4,
r € radp(N) if and only if (ry,... ,74,0,...,0) € radg(N'),

where N' = > " R(zi,.-. ,%in,0,...,0). Now we can apply Lemma 3.1.3 to
obtain the result. O

Remark: If M is a Noetherian module over a ring R then Lemma 3.1.3
can be used to calculate radas(0) in the following manner. By replacing R by
R/A, where A is the annihilator of M in R, we can suppose that M is a faithful
R-module. In this case R is a Noetherian ring [34, Exerciée 7.27].

Now M is a finitely generated R-module, say M = Rmgy + -+- + Rm, for
some positive integer n and elements m; € M (1 < ¢ < n). There exists a

homomorphism
p:F=R™ — M
(PiyeeeyTa) > Timp+ o+ Tamg.
Denote K = Ker(y) which is a finitely generated submodule of F'. Then
radas(0) = p(radr(K)),

by Lemma 1.2.6.

In practice, the above results can be used explicitly to.calculate radg(N), as

we now demonstrate in a number of examples.

Example 3.1.6 Let R be any ring, let m < n be positive integers and let
A = (ai;) be an m x n matriz with entries in R such that A contains an m x m

submatriz whose determinant is a unit in R. Let a; = (a;1, - ,am) € F = R(™
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(1<i<m)andlet N= Ra; +---+ Ra,,. Then

radr(N) = {re F:[ra, - -amlm € VO}

= N++VOF

Moreover, N is a semiprime (respectively, prime} submodule of F if and only if

R is a semiprime ring (respectively a domain).

Proof. For the matrix B = [0 a; : -+ a,], we have B,, = R and hence v/B; = R
(1 €£i<m). By Lemma 3.1.3,

r € radp(N) if and only if [ra; -+ am]ms1 € v/ Bmet = V0.
There exist integers 1 < j(1) < -+ < j(m) < n such that

Qrj(x) *r @15(m)

Amji(1) *°*  Gmg(m)
has determinant « which is a unit in R. Then C has an inverse D € M,,(R).
Consider the matrix DA = [by -+ - by,] where

bi = (bil,--- ,bm) eF (1 <t é,m)
Since A = C(DA) it follows that
N = Rby + -+ 4+ Rby,.

Note that DA contains the m xm submatrix DC' = [, the m xm identity matrix.
Thus F' = N @ L where L is the free submodule of F' with basis consisting of
the n — m elements (0,...,0,1,0,...,0) with the 1 as the ith component for all
te{l,...,n}\{7(1),...,7(m)}. It follows that

radp(N) = N @ rad;(0) = N + VOF.
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Moreover, F/N 22 L so that N is a semiprime (respectively, prime) submodule
of F'if and only if 0 is a semiprime (prime) submodule of the free module L and

this happens precisely when R is semiprime (a domain). O

Example 3.1.7 Let R be any ring, let m, n be positive integers and let A = (ay;)
be an m xn matriz of rank 1 with entries in R. Let a; = (ai,. .. ,ain) € F = R(™
(1<i<m)andlet N=Ra;+---+ Ray. Thenr = (r1,...,m,) € radp(N) if
and only if

(i) ri € /X7y Yo Rage (1<

(zz) Tty — TGk € \/6 (1 1<y

n), and

<
<n,l<k<m).

Proof. Let
] . Tn 0 ‘e O
ain o CQin Qi1 -0 Qin
B = and C' =
Ami *** Gmn A1l . Qmn

Then By = 0 for all 3 € ¢t € kand C; = 0 for all 2 < ¢t < k, where § =

min(m + 1,n). Now we can apply Theorem 3.1.5. J

As a further application of Theorem 3.1.5, we now calculate the radical of the
submodule W(a, X) of Theorem 1.2.28. Let J = Ra + RX. Let w € W. Then
w* € J for some positive integer k. If P is a prime submodule of F' containing
J(a,X) then w¥(a, X) € P gives w(a, X) € P. It follows that radp(W(a, X)) =
radp(J(a, X)). Note that

J(a,X) = R(a* aX) + R(aX, X?).
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By Theorem 3.1.5, given 71, 19 € R,

,re € W
(r1,72) € radp(J(a, X)) & { o

aXr: = a*ry and X%r; = aXr,y

™,T3 < W
&

Xry = arg
& (r1,r2) € R(a,X).

Thus radp(J(a, X)) = R(a, X).
We can extend Theorem 3.1.5 and to do so we first prove an elementary

lemma.

Lemma 3.1.8 Let A, B, I be ideals of a ring R. Then A C /B + I if and only

if (A+ D)1 S BFD/L.

Proof. Suppose first that (A + I)/I C m Let P be a prime ideal
of R such that B4+ I C P. Then P/I is a prime ideal of the ring R/I and
(B+1)/I CP/I. By hypothesis, (A+I)/I C P/I and hence AC A+1C P.
It follows that A C /B + I.

Conversely, suppose that A C +/B+1. Any prime ideal of the ring R/I
containing (B + I)/I is of the form Q/I where Q is a prime ideal of R containing
B+ 1. Now B+1I C Q gives A C Q and hence (A+1)/I € Q/I. It follows that

(A+D)/I S/ B+D/I. O

Theorem 3.1.9 Let R be a ring and let F be the free R-module R™, for some
positive integer n. Let I be an ideal of R and let N = 3" Rx; + IF for some

positive integer m and elements x; € F (1 <1< m). Then

r € radp(N) if and only if [rX; -+ Xp)t € \/([0%1 -+ X )t + 1)
forall 1 <t < min(m+1,n).
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Proof. Let R* denote the ring R/I and, for each element r in R, let r* denote
the element r + I of R*. For each element f in F with f = (fi,..., fs), let f*
denote the element (f7,..., f:) of the free (R/I)-module (R/I)™. Note that
(R/I)™ = F/IF. It will be convenient to identify these two modules and denote
this module by F*. For any submodule K of F, we set K* = {k* : k € K}
which is a submodule of F™*. Suppose first that N = F. Let r € F. There exist
elements b; € R (1 <7 < m), a=(ay,...,a,) € [F,wherea; € [ (1 £i < n)
such that
r=>bx;+- - +b,%, +a.

Then [rx; - Xpl: €[0X1 - Xyt + T forall 1 € ¢ < mz'n(‘m + 1,n) by standard
properties of determinants. The result follows in this case.

Next suppose that N # F. Let K be a prime submodule of F' such that
N C K. Then IF € K and hence K* = K/IF is a prime submodule of F*
such that N* = Rxj + -+ + Rx}, C K*. Conversely, any prime submodule of

F* containing N* is clearly of the form L* for some prime submodule L of F

containing N. Thus

(radg=(N*)) = (radp(N))/IF.
In particular, r € radz(N) if and only if r* € radp+«(N*). By Theorem 3.1.5,
r* € radp(N*) if and only if [r*x}. - x%]; € /[0x% - x* ];

for all 1 <t < min(m+1,n), and by Lemma 3.1.8, this holds if and only if

[PX) Xp]: € \/([Oxl---xm]t—l—l)
foralll <t < min(m+1,n). O

For particular submodules, the radical can be expressed in a simple form.

Recall that in Theorem 2.2.7 we proved that if Risa UFD and a; € R (1 € ¢ € n),
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not all zero, then N = R(ai,... ,a,) is a prime submodule of R™ if and only if

every common divisor of a; (1 € ¢ < n) is a unit in R.

Proposition 3.1.10 Let R be a UFD, let n be a positive integer, let a; € R
(1 <% < n), not all zero, and let N be the submodule R(ay,... ,a,) of ' = R™,
Then radg(N) = R(by,...,b,) where b; = (p1++ pmas)/d (1 <1 < n), dis

a greatest common divisor (ged) of ai,...,a,, and either d is not a unit and
Py .-+ ,Pm are the pairwise non-associate prime divisors of d, or d is a unit and
plz---:pmzl,

Proof. Suppose that d is a gcd of a; (1 < ¢ < n). If d is a unit in R then
N is prime by Theorem 2.2.7 and hence radp(N) = N = R(ay,...,a,). Now
suppose that d is not a unit in R. Then d = pf1 ... phm for pairwise non-associate

primes p; (1 £ ¢ < m) and positive integers k; (1 <7< m). Foreach 1 i< n

there exists z; € R such that a; = dz;. Thus (ay,...,a,) = d(z1,... ,2,) =
p]fl o .p’icnm(m]-’ e 7mn)'

Let K be any prime submodule of F' such that N = R(a4,...,a,) C K.
Then pi“ coopkm R(zy,... ,2,) € K and hence py -+« pp R(21, ... ,2,) € K. But
P PmB(T1, .0 ,%0) = R(pre pm@i,.e. 3 D1 PmTn) = R(b1,...,b,). We
have proved that R(by,...,b,) C radr(N). Note also that N C R(by,... ,b,).

Next we prove that
R(bl,... ,bn) :R(a:l,... ,wn)ﬂplFﬂu-ﬁme.

Clearly R(bi,...,bn) € R(z1,...,2,) Np1 FN--- N pyr F. Conversely, let r € R
such that r(z1,... ,2s) € ptF N--- NpuF. For each 1 < ¢ € m, p; divides rz;
(1 € j € n) and hence p; divides r, because 2y,... ,z, have 0o common prime
divisor. Since py,...,pn are pairwise non-associates it follows that p; - pm

divides r. Thus r(@y,... ,z,) € R(b1,... ,b,) , as required.

85




Since (p; F : F) = (p;) is a prime ideal of R and F'/p; F' is a torsion-free R/(p;)-
module, by Proposition 1.1.1.3, p;F is a prime submodule of F' (1 < i < m). By

Theorem 2.2.7, R(21,... ,2y,) is prime. Hence the proof is completed. O

A non-zero element r of a UFD R will be called square-free if there does not

exist a prime p in R such that r = p%s for some s € R. Compare the next result

with Theorem 2.2.7.

Corollary 3.1.11 Let R be a UFD, let n be a positive integer, let a; € R (1 <
i < n), not all zero, and let N be the submodule R(a; ... ,a,) of F = R™. Then
N is a semiprime submodule of F if and only if any greatest common divisor of

a; (1 <t < n) is square-free.

Proof. Let d be a greatest common divisor of a; (1 <7 < n). Suppose that d is
square-free. If d is a unit then N is prime by Theorem 2.2.7. Suppose that d is
not a unit. Then in the notation of Proposition 3.1.10, d = up; - - - p, for some
unit w in R and hence b; = u™la; (1 € ¢ < n). In this case, N = radp(N), by
Proposition 3.1.10, and hence N is semiprime.

Conversely, suppose that N is semiprime. If d is a unit then square-free.
Suppose that d is not a unit. Then Proposition 3.1.10 gives N = radp(N) =
R(by,... ,b,) where b; = (p1---pmai)/d (1 < ¢ € n). There exists r € R such
that (b1,...,bn) = r(as,... ,a,) and there exists 1 € 7 € n such that a; # 0.

Hence (p1 -« -« pma;)/d = ra;, so that p, - - pn, = dr and hence d is square-free. O

3.2 The Radicals of Particular Submodules

In the previous section we gave a description of the radical of a finitely

generated submodule of a free module. In this section we shall show how to find
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the radical of not necessarily finitely generated submodules of free modules. Now

suppose that R is a ring and F'is a free R-module. We begin with a very easy

case.
Proposition 3.2.1 Let [ be any ideal of R. Then
radp(IF) =+/IF.

Proof. Let r € v/I. Then r* € I for some positive integer k. Let K be a prime
submodule of F such that [F C K and ¢ € F. Then rfz € IF C K and it
follows that rz € K. Thus »F C K. This implies that rF' C radp(I/F'). Hence
VIF C radp(IF).

Conversely, note first that if / = R then VIF = radp(IF) = F. Suppose
that 7 # R. Note that

\/—TF = (ﬂpen P)F = ﬂPeQ(pF)

where Q is the collection of prime ideals of R such that I C P. Now by Proposition
1.1.1.3, PF is a prime submodule of F' and I F C PF so that radp(I/F) C PF for
all P € Q. Hence radp(IF) C (\peo(PF) = VIF. 1t follows that radp(/F) =
VIF. O

Corollary 3.2.2 Let R be a ring with prime radical W, let I be an ideal of R
and let N be a direct summand of F. Then

radp(IN) = /IN + WF,
Proof. There exists a submodule N! of F such that ' = N @& N'. Note that
F/(VIN + WF) = F/(WVIN @ WN') = (N/VIN) & (N'/WN").

By Proposition 3.2.1, radp(WF) = WF. But WF = WN @& WN'. Hence
rady/(WN') = WN' by Lemma 1.1.2.4, Thus radyywa(0) = 0. Similarly
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rady,/7n(0) = 0. Again using Lemma 1.1.2.4 we find that radp (/7w wi)(0) = 0,
ie. VIN +WF isa semiprime submodule of F'. Since IN C +/IN it follows
that radr(IN) C VIN + WE.

Let v € v/I,z € N. There exists a positive integer & such that r* € I. Let K
be any prime submodule of F' such that IN C K. Then rfz € IN C K and it
follows that rz € K. Hencera € radp(IN). It follows that v/IN C radz(IN). A
similar argument shows that W F C radr(IN). Hence v IN 4+ W F C radg(IN).
Thus radp(IN) = VIN + WF. O

Combining Corollary 3.2.2 and Proposition 2.2.3 we have the following result.

Corollary 3.2.3 Let R be a ring with prime radical W, let n be a positive integer,
let a; € R (1 €1 < n) such that R = Ra; + -+ + Ra, and let a be the element
(@1,... ,as) of the R-module F = R™. Then radp(Ia) = vTa+ WF for any
tdeal I of R.

Corollary 3.2.4 With the notation of Corollary 3.2.3, the submodule Ia is a

semiprime submodule of F if and only iof I is a semiprime ideal of R and

WF C Ia.

Proof. Suppose first that I is a semiprimeideal of R, i.e. VI = I,and WF C Ia.

Then clearly
radp(la) = la+ WF = Ia,

i.e. Ia is a semiprime submodule of F'.

Conversely, suppose that [a is a semiprime submodule of F. Then
Ia = radrp(Ia) = VIa + WF,

so that WF C Ia. Let € v/I. Then za = ya for some y € I. It follows that

(z—y)a=0,ie x €l HenceI=1I,ie. Iisa semiprime ideal of R. OJ
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This brings us to the main result of this section.

Theorem 3.2.5 Let R be a ring with prime radical W, let n be a positive integer
and let F'= R™. Let a; € R (1 i < n), let I be an ideal of R and let N be the
submodule R(ay,...,a,)+ I(1,...,1) of F. Let A be the ideal 3 . | R(a; — a;)
of R. Then

Aradp(N) C R(ay,... ,a.) +VI(1,...,1) + WF C radp(N).
In particular, if A= R then
radp(N) = R(ay,... ,a,) +VI(1,...,1) + WF =< Ep(N) > .

Proof. Clearly R(ai,...,a,) € N C radp(N). If r € /T then r* ¢ I
for some positive integer k. Hence r*(1,...,1) € I(1,...,1) € N. It follows
that r(1,...,1) € radp(N). Thus VI(1,...,1) € radg(V). Moreover, WF C
radr(N) since W is a nil ideal of R. Thus R(ay,... ,an) +VI(1,...,1)+ WF C
radp(N).

Next, let v = (r1,... ,m,) € radp(N) and let 2 € ¢ € n. We shall prove that
(a; — a;)r € R(ay, ... ,an) +VI(1,...,1) + WF.

Let P be any prime ideal of R such that I C P. By Corollary 3.1.2, there exists
¢ € R\P such that cr € N + PF, i.e.

e(rey. o ,mp) =8(ary . yan) + {1, .., 1)+ (p1y. oo 4 Pa)

for somese Rt l,p,€P (1<i<n).

Hence c¢r; —sa; =t+p; € P (1 €7 < n). In particular,
clair; — a;r1) = a1(sa; +t + p;) — ai(say +t + py) € P.

It follows that a;r; — a;r; € P for every prime ideal P containing I. Hence

ar; — a;my € VI for all 1 <7 < n. Let 1 <4 < n. Consider the element
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(Wiye vy wn) = (@1 —ai)(r1,. .. )= (r1=7:) (@1, . -« yan)—(@rri—air)(1, ..., 1).

Let 1 £ 7 < n. Then

1 1 1
W =1r Ty
ay a; aj

Let @ be any prime ideal of R. There exists d € R\@ such that dr € N + QF,
ie.

d(ry,...,me) =2(a1,. .. ,an) Fy(1, oo, D)+ (q1y- -« 3 )

forsomez € R,yel, g€ Q(I1<i<n). Nowdr; =za;+y+¢ (1 i< n).

Consider
1 1 1 1 1 1
dwj = \dry dr; drj |=|eat+y+a se+y+a za;jty+g
a1 a4 ag a1 a; a;
1 1 1
= la ¢ ¢ |€<
ay a; a;

Thus w; € Q for every prime ideal Q. It follows that w; € W. Hence w; € W

(1 <7< n). Thus

(ar —a))r = (re —r)(ay, ... ,as) + (@r; — air)(1, ..., 1) + (W, .0, wy) €
Rlai,...,a,) +VI(,...,1) + WF,

as required. It follows that
(a1 — a;)r € R(ay, ... ,an) +VI(1,...,1) + WF,
for all 1 € ¢ < n. Hence

Ar C R(ay,. .. ,a,) +VIQ,... 1)+ WF,
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for all r € radr(NN), i.e.
Aradp(N) C R(ay,... ,an) +VI(1,...,1) + WF.
Now suppose that A = R. Clearly

radp(N) = R(ay,... ,a,) +VI(1,... 1)+ WE.

/ Let r € radr(N). Then

ro= ular,... a)+o(l,..., 1)+ (21,... ,20)

= u(ay,...,a,) +0(1,..., 1) +2(1,0,...,0)+ -+ 2,(0,...,0,1)

for someu € R,ve VI, z € W (1 £ i € n). There exists a positive integer
m such that v™ € I, 2 = 0 (1 € ¢ < n). Note that u(ay,...,a,) € N,
v™(1,...,1) € N and 2™(0,...,0,1,0,...,0) € N (1 € i < m). Thusr €
< Ep(N) >. It follows that radp(N) C< Ep(N) > and hence

radp(N) =< Ep(N) >.

Corollary 3.2.6 Let R be a ring with prime radical W‘and let F = R™ for

some positive integer n. Let a; € R (1 <1< n), let b € R, let [ be an ideal of

R and let N be the submodule R(ay,... ,a,)+I1(b,...,b) of F. Let A be the ideal
iy Rlay — a;). Then

Aradp(N) C R(ay,... ya,) +VIb(1,... 1) + WF C radp(N).
In particular, if A= R then

rade(N) = R(ay,... ,a,) + VIb(1,... ,1) + WF =< Ep(N) > .
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Proof. Clear by Theorem 3.2.5. O

It is natural to ask what is the radical radp(NN) of a submodule of the form
N = R(ay,... ,a,) + I[(by,...,0,)

where a;, b; € R (1 <¢ < n), I isanideal of R and R= . R(a; — a;). The
only cases we know are the ones dealt with above.

We now give another consequence of Theorem 3.2.5.

Corollary 3.2.7 With the notation of Theorem 3.2.5, suppose that A = R and
N is a proper submodule of F'. Then N is a semiprime submodule of F if and
only zf\/_?: I and WF C N.

Proof. Suppose first that v/ = I and WF C N. Then by Theorem 3.2.5,
radr(N) = R(a,... ,an) + I(1,..., 1) + WF = N.

Conversely, suppose that N is semiprime, i.e. N = radp(N). By Theorem
3.2.5, WF C N. Let a € v/I. Again applying Theorem 3.2.5, we have

a(l,...,1)=7r(a1,... ,as) +s(1,...,1)

for somer € R, s € I. Clearly ra; =a —s (1 <7 <n). Then 1 = s9(ay — a2) +

-+ + sy(a; — a,) for some s; € R (2 € 7 < n) and this gives that
r=rl=sor(ar —az) + -+ sur(a; — a,) = 0.
It follows that ¢ = s € I. Hence /I C 1,ie. VIi=1.0

The following example shows that the condition A = R in Corollary 3.2.7 is

necessary.
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Example 3.2.8 Let R = Z, N be the submodule Z(1,3,5) + Z2(1,1,1) of FF =
7)., Then VI =vZ2=72=1 and WF =0 C N but N is not a semiprime
submodule of F' because (0,2,4) € radp(N)\N.

Proof. By Theorem 3.1.5,

3ry — rg,bry — 13, bry — 3ra € 2Z and

(7"1,7"2,7'3) € ].‘a.dF(N) =
—2ry + dry — 27 = 0.

Hence radr(N) = {(a,a +2b,a 4 4b) : a,b € Z}. Thus (0,2,4) € radg(N).
Suppose that (0,2,4) € N. Then there exist s,t € Z such that (0,2,4) =
5(1,3,5) +1(2,2,2). Hence s =1 and t = —1/2, a contradiction. OJ

Now, one can ask whether A = R is a necessary condition for
radp(N) = R(ay,... ,a,) +VI(1,...,1) + WF.
As the following example shows this is not the case.

Example 3.2.9 Let R = Z, F' = Z©® and let p be a prime number. Let N
be the submodule R(p,0,p) + Rp(1,1,1) of F. Then radr(N) = R(p,0,p) +
\% Rp(17 171) = R(p,O,p) + Rp(L 1, 1) =N but A= Rp# R.

Proof. By Theorem 3.1.5

(ri,r2,73) € radp(N) & r; = r3,m1,72 € Rp,

so that
radp(N) = {(r,s,7) : r,s € Bp} = R(p,0,p) + Rp(1,1,1),

since (r,s,r) = (u —v)(p,0,p) + vp(1,1,1), where r = up, s = vp (y,v € R). O
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Chapter 4

MODULES WHICH S.T.R.F.
AND ENVELOPES IN FREE
MODULES

Throughout this chapter all rings will be commutative. Let M;, M; be
R-modules such that M; and M, both s.t.r.f.. Then M1 @ M, does not have
to s.t.rf. in general. The aim of section 4.1 is to investigate when M; & M,
s.t.r.f.. For example, it is proved in Theorem 4.1.10 that if M; s.t.r.f. and
M is semisimple, then M = M; & M, s.t.rf.. Also it is proved in Theorem
4.1.18 that if A is a finite direct sum of cyclic Artinian R-modules, then the R-
module R® A s.t.r.f.. An application of Theorem 4.1.18 gives that the R-module
R (R/IM N ...q(R/ME™) st.rf. for all positive integers n, k(1),. .. , k(n)
and maximal ideals M; (1 € 7 < n) (Theorem 4.1.19).

The aim of section 4.2 is to describe Ep(N) for some submodule N of an
R-module M. But since Ep(N) is not a submodule in general, it makes the job
harder. Hence the envelope is described in some special cases. For example, if R

is a UFD and F is the free R-module R(™ for some positive integer n and N is
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a cyclic submodule R(ay,... ,a,) of F' for some elements ay, ... ,a, of B, not all
zero, then Ep(N) = VRd(%,... ,%) where d = gcd(ay, ... ,a,). Corollary 4.2.2
shows that actually this coincides with radg(N).

4.1 Modules Which Satisfy the Radical Formula

We begin this section with the following simple observation. We give the

proof for completeness.

Lemma 4.1.1 Any cyclic module s.t.r.f.. Moreover, if N is a submodule of a

cyclic module M then rady(N) = Ep(N).

Proof. Let M be a cyclic R-module. Then M £ R/I for some ideal I of R,
and without loss of generality we can suppose that M = R/I. Let N be any
submodule of M. Then N = J/I for some ideal J of R containing I. It is not
difficult to check that rada(N) = v/ J/I = Ep(N). Thus M s.t.r.f.. O

Lemma 4.1.2 Let M be an R-module such that M s.t.r.f.. Then every homo-

morphic image of M s.t.r.f..

Proof. Since M s.t.r.f., radpyn(0) =< Epyn(0) > for every submodule NV of M.
Let K be a submodule of M. Hence rad/x)/v/x)(0) =< Eag/x)yv/x)(0) > for
every submodule N containing K. Thus M/K s.t.x.f.. O

Corollary 4.1.3 Let My, My be R-modules such that My @ My s.t.r.f.. Then M,
and M, both s.t.r.f..

The converse of the above Corollary is false. For example, if R is a Noetherian
domain which is not Dedekind domain then the R-module R s.t.r.f. but the R-
module R @ R does not, by Theorem 1.2.19. But it is true in some cases. Before

we prove that we require a number of lemmas and propositions.
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First for the sake of brevity and convenience we define the following:
Definition 4.1.4 We will call a submodule N of an R-module M good if
rady(N) =< Ep(N) > .

Note that M is a good submodule of M. Moreover every prime (or, more
generally, semiprime) submodule of M is good. Note also that the module M

s.t.r.f. if and only if every submodule is good.

Proposition 4.1.5 Let R be any ring and M be an R-module such that
M = @ycp My is a direct sum of submodules My (A € A). For each X € A
let Ny be a submodule of My and let N = ., Na. Then N is a good submodule
of M if and only if Ny is a good submodule of My for all X € A.

Proof. By Lemma 1.1.2.4. O

Lemma 4.1.6 Let N be a submodule of an R-module M. Then N is a good sub-

module of M if and only if the zero submodule is a good submodule of the R-module
M/N.

Proof. By Proposition 1.2.7. O

Corollary 4.1.7 Let My, M, be R-modules and let N; be a submodule of M; for
i=1,2 such that My/Ny; = My/N;. Then Ny is a good submodule of M, if and
only if N3 is a good submodule of M,.

Proof. Suppose that N is a good submodule of M;. Then the zero submodule is
a good submodule of M; /Ny, by Lemma 4.1.6. It follows that the zero submodule
is a good submodule of M;/N; and hence N is a good submodule of Ms, also by
Lemma 4.1.6. O
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Before proceeding to consider when certain direct sumis s.t.r.f. we prove the

following elementary result.

Lemma 4.1.8 Let N be a direct summand of a module M and let L be a sub-
module of N such that L is a good submodule of M. Then L is a good submodule
of N.

Proof. Let z € rady(L). By Lemma 1.1.1.6, rady (L) C radp(L) =< Ep(L) >
and hence & = rymy +- - - +r,m, for some positive integer n and elements r; € R,
m; € M with r,f“mZ € L (1 £ i € n), for some positive integer k. There exists
a submodule N’ of M such that M = N @ N’. For each 1 € 7 < n, there exist
y; € N, z; € N’ such that m; = y; + 2;. Then

$=T1m1+'~-+rnmn=(T1y1+“'+Tnyn)-I-(le_l—l—---—l—rnzn)

so that @ = ry; + - + rayn and rfy; € L (1 < ¢ € n). It follows that
z €< En(L) >. Hence L is a good submodule of N. OJ

Corollary 4.1.9 Let M be a module such that 0 is a good submodule. Then every
direct summand of M is a good submodule.

Proof. Let N be a direct summand of M. Then M = N@ N’ for some submodule
N' of M. Now 0 is a good submodule of N’ by Lemma 4.1.8 and M/N = N'. By
Lemma 4.1.6, N is a good submodule of M. O

Theorem 4.1.10 Let M be an R-module with submodules M, and M, such that
M, s.t.r.f., My is semisimple and M = My ® M;. Then M s.t.r.f..

Proof. Let m3 : M — M, denote the canonical projection. Let N be any
submodule of M. Then my(N) is a submodule of M, and hence My = L @ m2(N),
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for some submodule L. Now M = M;® L@&m2(N) implies that M = (M1 ® L)+ N
and hence M/N = (M & L)/({M1 & L) 0 N). By Corollary 4.1.7, to prove that
N is a good submodule of M it is sufficient to prove that (M; @ L)N N is a good
submodule of M1 @ L. Let w : M1® L — L denote the canonical projection. Then
7(My® L)NN) C LNm(N)=0,so that (M; & L) N C M;. By hypothesis
(My ® L)N N is a good submodule of M;. Since 0 is a semiprime submodule of
L it follows that 0 is a good submodule of L. By Proposition 4.1.5, (M; & L)N N

is a good submodule of M; @ L. Hence N is a good submodule of M. It follows
that M s.t.r.f.. O

Corollary 4.1.11 Let M be any semisimple R-module. Then the R-module
R& M s.tor.f.

Proof. The R-module R s.t.r.f.. Apply Theorem 4.1.10. U

In particular, Theorem 4.1.10 gives that every semisimple module s.t.r.f.. This
fact is clear, however, because if N is a proper submodule of a semisimple module
M then N is an intersection of maximal submodules of M and every maximal

submodule of M is prime. Thus every proper submodule of M is semiprime and

so is good.

Lemma 4.1.12 Let N be a submodule of an R-module M and let M be a mazimal
ideal of R. Then rady(MFN) = MM N rady(N) for any positive integer k.

Proof. Let P be any prime submodule of M such that M*N C P. Then
MM C Por NCP,ie. MM Nrady(N) C P. Thus

MMﬂl‘adM(N) g l‘adM(MkN).

Conversely, M*N C MM and MM = M or MM is a prime submodule of M.
Thus radp(M*¥N) C MM. Also clearly radpy(MFPN) C radp(N). O
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Lemma 4.1.13 Let M be an R-module and let M be a mazimal ideal of R such
that for each x € M there exists a positive integer k such that M*z = 0. Then

the zero submodule of M is good.

Proof. Let y € radps(0). Then MM = M or MM is a prime submodule of M.
In any case y € MM. There exist a positive integer n and elements r; € M,
y: € M (1 <1< n)suchthat y = ryy1+- - +7r,y,. Foreach 1 < i < n there exists
a positive integer k(z) such that M*@y; = 0. Let & =max{k(i) : 1 < i < n}.
Then ri-‘y,- =0 (1 €17 < n). It follows that 0 is a good submodule. O

Corollary 4.1.14 Let M be an R-module and let M be a mazximal ideal of R
such that for each x € M there exists a positive integer k such that MFz = 0.
Then M s.t.r.f..

Proof. Let N be any submodule of M. Applying Lemma 4.1.13 to the R-module
M/N, we see that the zero submodule of M/N is good. By Lemma 4.1.6, N is a
good submodule of M. It follows that M s.t.r.f.. O

Lemma 4.1.15 Let L C N be submodules of an R-module M such that L is a
good submodule of M and rady(N) = radp(L). Then N is a good submodule of
M.

Proof. Let m € rady(N). Then m € radp(L). There exist positive integers
n, k and elements r; € R, m; € M such that m = rym; + -+ + rp,m, and

rfm; € LC N (1 <1< n). It follows that N is good. O

Lemma 4.1.16 Let R be a quasi-local ring with unique mazimal ideal M and

let k be a positive integer. Then the R-module R & (R/M*) s.t.r.f..
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Proof. Let M = R@® (R/M?*) and let my : M = R and w3 : M — R/M? denote
the canonical projections. Let N be any submodule of M. If m1(N) = R then
M = N+ (0® R/MF) so that M/N = (0 & R/MF¥)/(N N (0 @ R/ M*)) which
is a homomorphic image of R/MF* and hence also of R. By Lemma 4.1.2, M/N
s.t.r.f. and hence N is good by Lemma 4.1.6. If ma(N) = R/MP* then a similar
argument shows that M/N is a homomorphic image of R. Thus again N is good.

Now suppose that m((N) # R and m(N) # R/M*. Thus m(N) € M and
mo(N) C M/MF. Hence N C my(N)@mo(N) C M@ (M/M*) = MM. Clearly
M*N C R&0 so that M*N is good in R&0. Since R/ MF is cyclic it follows that
R/ M?* s.t.r.f. and hence the zero submodule is good. By Proposition 4.1.5, M*N
is a good submodule of M. Since N C MM and MM is a prime submodule of M
it follows that radp(N) € MM and, by Lemma4.1.12, radar(MFN) = radps (V).
Thus N is good by Lemma 4.1.15. [

Lemma 4.1.17 Let R be & quasi-local ring with unigue mazimal ideal
M and let n,k(1),...,k(n) be positive integers. Then the R-module
R® (RIMH ) @ ... (R/M*")) s.trf.

Proof. Let M = R@ (R/M*) @ ... @ (R/MH™). Let My = R, and let
M; = R/M*D (1 <7< n)sothat M = Mo®d My & --- ® M,. For each
0 << n,let m: M — M, denote the canonical projection. We prove the result
by induction on n. If n = 1 then the result is proved by Lemma 4.1.16. Suppose
that n > 1.

Let N be any submodule of M. If mo(N) = My then the proof of Lemma
4.1.16 shows that M/N is a homomorphic image of the R-module M; & - - - & M,.
By Corollary 4.1.14 and Lemma 4.1.2, M/N s.t.r.f. and by Lemma 4.1.6 the
submodule N is good. If m;(N) = M; for some 1 € 7 & n then the proof

of Lemma 4.1.16 shows that M/N is a homomorphic image of the R-module
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M=M&M®& - ®M_1®My @ - M,. By induction on n, M’ s.t.r.f.
and hence N is good by Lemma 4.1.6.
Now suppose that m;(N) # M; for all 0 < 7 < n. Then

N g @?___0 71'2‘(N) g MM

By the proof of Lemma 4.1.16 it follows that N is good. Hence M s.t.r.f.. O

Theorem 4.1.18 Let A be o finite direct sum of cyclic Artinian R-modules.
Then the R-module R ® A s.t.r.f..

Proof. By Exercise 8.49 in [34], it is sufficient to prove the result when R is a
quasi-local ring with unique maximal ideal M. Since A is a finite direct sum of
cyclic Artinian submodules, we can write A in the form Ra; @ - -+ @ Ra,. Note
that for every a; (1 <1 < n), Ra; = R/ann(e;) as R-modules, by Lemma 7.24 in
[34]. Thus the ring R/ann(a;) is Artinian and hence Noetherian for all 1 < ¢ < n.
Therefore A is a Noetherian module and has a finite composition length. There
exists a positive integer £ such that M*A = 0. By Lemmas 4.1.2 and 4.1.17,
R Astaf. O

The same argument proves the next result,

Theorem 4.1.19 The R-module R ® (R/ M) @ ... @ (RIME™) s.t.rf. for
all positive integers n,k(1),... ,k(n) and mazimal ideals M; (1 € 7 < n) (not

necessarily distinct).

Theorem 4.1.20 Let R be a one dimensional Noetherian domain. Then
(i) the R-module R ® R s.t.r.f. if and only if R is a Dedekind domain,
(ii) the R-module R @ (R/A) s.t.r.f. for every non-zero ideal A of R.
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Proof. (i) By Theorem 1.2.19.
(22) Let A be any non-zero ideal of R. Since R is one dimensional it follows

that the ring /A is Artinian. Thus the R-module R/A is cyclic Artinian. Now
we can apply Theorem 4.1.18. O

Note that if S is a Noetherian domain which is not Dedekind and R is the
polynomial ring S[X] then the R-module R ¢ (R/RX) does not s.t.r.f.. For if
R®(R/RX) s.t.r.f. then so too does its homomorphic image (R/RX) & (R/RX).
In this case the S-module S @ S s.t.r.f. and hence S is a Dedekind domain by
Theorem 1.2.19, a contradiction.

The same argument gives the following result.

Lemma 4.1.21 Let R be a Noetherian ring and let P be a non-mazimal prime

ideal of R such that the R-module R @ (R/P) s.t.r.f.. Then the domain R/P is
Dedekind.

The converse of Lemma 4.1.21 is false. We now give an example of a two-
dimensional local Noetherian domain R and a prime ideal P of R such that the

ring R/P is a PID (hence Dedekind} but the R-module R @ (R/P) does not
s.t.r.f..

Example 4.1.22 Let F be a field and let R = F[[X,Y]], the ring of formal power
sertes in indeterminates X, Y over F. Then R is Noetherian local domain with
unique mazimal ideal M = RX + RY . Let M denote the R-module R® (R/RY').
Then M does not s.t.r.f..

Proof. Let R = R/RY. Then R = F[[X]] which is a PID. For each r € R,
let 7 denote the element r + RY of R. Let N be the submodule M(Y,X) of
M. We shall show that radys(N) = RY @& RX. Let P be a prime submodule
of M such that M(Y,X) C P. Then MM C P or (Y,X) € P. In any case,
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(Y, X) € P. Thus, L = R(Y,X) C radpy(N). Since N C L it follows that
radas(N) = rada(L).

Let @ be a prime ideal of R such that ¥ ¢ Q and let @ be any Q-prime
submodule of M (i.e. (Q: M) = Q). Then OM = Q@ ((Q+ RY)/RY) C @ and
also Y(0®(R/RY)) = 0 C @ implies that 0&(R/RY) C Q. Thus Q®(R/RY) C
Q. Since M/(Q®(R/RY)) = R/Q it follows that Q = Q@®(R/RY). Thus L € Q
since Y ¢ Q.

Let @ be a prime ideal of R such that Y € Q. Then Q@ = RY or Q = M be-
cause RY is prime and R/RY = F[[X]]. Thus radym (L) = K(L, RY)N K(L, M)
by Corollary 3.1.2. Since L & MM = M@®(M/RY), we have K(L, M) = MM.

Let a, b € R such that (a,b) € K(L,RY). Note that for all ¢ € R\RY
there exist 0 # f(X) € F[[X]] and r € R such that ¢ = f(X) + rY. Moreover,
f(X) = X*u for some integer k > 0 and unit v in F[[X]]. Thus we can suppose
that X*(a,b) € L+ (RY)M = L+YM = R(Y,X)+ (RY ®0) = RY ® RX,
i.e. X*a € RY and X*b € RX,i.e. a € RY. Thus K(L,RY) C RY & R. But
X(RY @ R) C RY ® RX = L + (RY)M gives that RY @ R C K (L, RY). Thus
K(L,RY) = RY @ R. Now

radp(N) = rady(L) = K(L,RY)NK(L, M)
= (RY @ R)n MM

= RY & RX.

Now (Y,0) = Y(1,0) and Y%(1,0) = Y(Y, X) € N. Thus (Y,0) €< Ep(N) >.
Suppose that (0,X) €< Ey(N) >, ie. (0,X) = ri(s1,%1) + -+ + ru(sn, tn)
where r¥(s;,%,) € N, for some positive integers n,k and elements i, 8,4 € R
(1 < ¢ < n). Suppose that r,s,t € Rym € M and r¥(s,7) = m(Y, X) for some
positive integer k. Then r¥s = mY and % = mX. If r is a unit then (s,%) € N.
Suppose r € M. Then msX = r*st = mYT = 0 so that ms € RY, since R/RY
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is a domain. If m € RY then r*f = 0 gives rt = 0. Suppose m ¢ RY. Then
s = Ys; gives 7*Ys; = mY so that m = r¥s, hence r*7 = r*s; X. Either
re RY andrt =0orr ¢ RY and { = 5; X gives rt € Ms; X € MX. Thus
in any case rt € MX. It follows that rif; € MX (1 € i < n) and hence
X =rify 4+ + oty = uX for some u € M. Then (1 —u)X =0s0 X =0, i.e.
X € RY, a contradiction. Thus (0,X) ¢< En(N) >. It follows that M does
not s.t.r.f..

Note that L = R(Y,X) is good because (Y,0) = Y(1,0) and Y?(1,0) =
Y(Y,X) € L, (0,X) = (Y, X)—(Y,0) = 1(Y, X)+(=Y)(1,0) where 12(Y, X) ¢ L,
(-Y)}(1,0)=Y(V,X) e L. O

4.2 The Envelopes in Free Modules

Let F' be a free module of finite rank and let N be a finitely generated
submodule of F. One can ask if we can describe Ep(N) in some nice way. This
will be the aim of this section.

It seems sensible to begin with the case of a UFD R and a cyclic submodule

N.

Proposition 4.2.1 Let R be @ UFD and let F be the free R-module R™ for some
positive integer n. Leta; € R (1 <1 < n), not all zero, and let N be the submodule

R(ai,...,a,) of F. Then Ep(N) = VRd(%,...,%) where d = gcd(ay, ... ,an).

Proof. If n = 1 then F' = R, N = Ray, d = @y and Er(N) = VRd = vV Rd(%).
Now let n 2> 2 and r € vV Rd. Then r* = sd for some s € R. Hence

r(, ..., %) = s(ay,...,a,) €N

<

and it follows that r(%,... %) € Ep(N). Thus
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v Rd(g&l_a >§f) C EF(N)
Conversely let £,z; € R (1 < i € n) such that
t(T1y e 5 @) = W(A1, .00y ap)

for some positive integer m and w € R. If ¢t = 0 then

#(21y- - 5 @a) = (0,...,0) = 0(%,..., %) € VRA(Y,...,

p..lf‘
~

Suppose that ¢ # 0. Now t™z; = wa; (1 <7 < n) so that
tm(miaj — :nja,;) =0

and hence z;a; = zja; (1 <i < j < n), because t™ #£ 0. Let b = 4 (1 <7< n).
Then
.'l)ibj = ﬂ)jb,; (1 1< < n)

There exists 1 € 1 < n such that a; # 0 and hence b; # 0. Consider the equations
@:b; = z;b; (1 € j < n). Let p be any prime which divides b;. Because b;
(1 € @ € n) are coprime, there exists 1 € j < n such that p{b;. Then z;b; = z;b;

gives p divides z;. Now consider the equations

&g

p

(

b :
Jbi=2i(2) (I<j<n).

Repeating this argument we find that b; divides x;, i.e. z; = yb; for some y € R.

For each 1 < 7 < n, z;b; = x;b; = yb;b; which gives that z; = yb;. Hence
(1, 5 T0) = y(b1, ... ,bn).
Now t(z1,... ,&n) = ty(by,... ,b,) and
"y (b1, . b)) = w(ar, ... yan) = wd(by,. .. ,by).
In particular, t™y = wd. Hence (ty)™ € Rd and ty € v/Rd. Thus
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t(t, ..y @n) = ty(by, ... ,b0) € VRA(byy. .. ,ba) = VRA(S, ..., %),

It follows that Ep(N) C vV Rd(%,...,%). O

Corollary 4.2.2 Let R be a UFD and let F be the free R-module R™, for some

positive integer n. Then every cyclic submodule N of F' is good. Moreover,
radr(N) = Ep(N).
Proof. Let a; € F (1 <1< n)andlet N =R(ay,...,a,). fa;=0(1 <7< n)

then radp(N) = 0 and hence radp(N) = Ep(N). Suppose that a; # 0 for some
1< 1< n Let (z1,...,2,) € radp(N). Then

miE\/Ral-l--u-kRan

and z;a; = z;a; for all 1 < 4,7 < n, by Theorem 3.1.5.

Let d denote the ged of ai,... ,a, and b; = % (1 <7 < n). Then w;b; = «;b;
for all 1 € ¢ < j < n. By the argument given in the proof of Proposition 4.2.1 we
have, (z1,...,2,) = w(by,...,b,) for some w € R. Let p be any prime divisor

of d. Then a; € Rd C Rp (1 < i € n) gives Ray + -+ + Ra, € Rp and hence

v/ Ray + -+ Ra, C Rp, because Rp is a prime ideal. Thus z; ¢ Rp for all
1 <1< n. But 2; = wb; (1 <7< n)so that p divides wh; for all 1 € ¢ < n. Since
the elements b; (1 < ¢ < n) are coprime, there exists 1 < 7 < n such that p does

not divide b; and hence p divides w. Thus w € Rp for every prime divisor p of d

and it follows that w € v/ Rd. Thus
(@1, 12) € VEd(bs ... ,b) € Fr(N)

by Proposition 4.2.1. Therefore radg(N) C Ep(N). But it is well known that
Er(N) Cradp(N), and so the result is proved. U
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Proposition 4.2.3 Let R be a UFD, let F be the free R-module R™, let a; € R
(1 € ¢ < n), not all zero, let B be an ideal of R and let N be the submod-
ule Blay,... ,an) of F. Then Ep(N) = /Bd(by,...,b,), where b; = % and
d = ged(aq,...,an).

Proof. Let = € v/Bd; then z* = bd, for some b € B and positive integer k. Hence
ak(&,..., %) =blay,... ,a,) € N -

and it follows that z(%-,...,%) € Ep(N). Hence vBd(by,...,b:) € Er(N).
Let ryz; € R (1 £ ¢ < n) such that »™(2y,... ,z,) = b(a1,...,a,) for some
be B.Ifr =0thenr(zy,...,2n) = (0,...,0) = 0(by,... ,b,) € VBd(by,... ,by).
Suppose that r # 0. Now r™z; = ba;, 1 € ¢ £ n. Thus r™(2¢; — zja:) = 0
(1 €14,5 < n). Since r™ # 0, zia; = zja; (1 €t < j € n). Thus z;b; = ;b
(1 €7 < j < n). By the argument given in the proof of Proposition 4.2.1, we find

that (z1,...,2,) = y(b1,...,bs). Thus r(zy,...,2n) =ry(br,... ,b,). Hence
by, e ba) = b(as, ... an) = bd(bys .- 1 ba).

Thus ™y = bd and (ry)™ € Bd. Therefore ry € VBd and ry(b,... ,b,) €
VBd(by,... ,b,). O

Next we show that if R is a UFD then certain 2-generated submodules of free

R-modules of finite rank are good.

Theorem 4.2.4 Let R be a UFD, let n 2 3 be a positive integer and a;, b; €
R (1 € i € n) such that R = Rby + -+ + Rb,. Let ¢ = syay + -+ + spa,
where s; € R (1 < ¢ < n) and 1 = s1by + -+ + 8,0,. Let d be any ged of
the elements a; — ¢b; (1 < 1 € n) if a; — cb; # 0 for some 1 < j < n, and
otherwise let d = 1. Let N denote the submodule R(aq,... ,a,) + R(bi,... ,bs)
of F = R™, Then radp(N) =< Ep(N) >= R(by,--- ,b,) + R(fi,--- , fn) where
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fi=(p1 pm)(a; —cbi)/d (1 < i < n) and either d is not a unit and py,... ,pm
are the pairwise non-associate prime divisors of d, or d is @ unit and py = -+ =

Pm = 1. In particular, N is a good submodule of F'.

Proof. Suppose first that a; —cb; = 0 (1 <7 < n). Then N = R(by,...,b,)
which is a direct summand of F' and hence is prime by Proposition 2.2.3. The
result follows in this case.

Let a = (a1,... ,an), b = (by,... ,b,) and L = Rb. Then F = L @ L' where
L' is the submodule {(zy... ,2,) € F' : sy21 + -+ + spz, = 0}, by Proposition
2.2.3. It follows that N =NNF =L@ (NNL'). By Lemma 1.1.2.4, radr(N) =
rady,(L) @ radp(N N I') = L @ rad (N N L'). Moreover, by Lemma 3.1.4,

ra,dLr(N N L’) =I'nNn l‘a.dF(N N L').

By the remarks at the beginning of section 2.3, N N L' = R(a — ¢b) and by

Proposition 3.1.10,
NnL if d is a unit
radp(N N L) =
R(fi,...,fn) otherwise

where d is a ged of a; — ¢b; (I € ¢ € n), and, in case d is not a unit, f; =
(p1 - pm)(a; — cb;)/d where py,... ,pm are the pairwise non-associate prime di-
visors of d. Thus radr(N) = R(b1,... ,bs) + R(f1,.-. , fn), as required.

If d is a unit in R then
radp(N) = Rb+ R(a —cb) = Ra+ Rb = N €< Er(N) >,

so that radp(N) =< Ep(N) >. Suppose that d is not a unit in B. Then

(pr-+pm)® = sd for some positive integer k and element s € R. Therefore

(1 Pn)* H(f1s- -, fu) = s(a— cb) € N. It follows that

(FireeerFa) = (21 pm) (@1 — cbi)/dy.... , (an — cb)/d) € Br(N)
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and hence radp(N) €< Erp(N) >. Thus radp(N) =< Erp(N) > and N is a good
submodule of F. O

Compare the following result with Theorem 2.3.2.

Corollary 4.2.5 With the notation of Theorem 4.2.4, N = R(ai,...,a,) +
R(by,...,b,) is a semiprime submodule of F if and only if either a; = cb;
(1 <4< n) or every common divisor of a; — cb; (1 £ i < n) is square-free.

Proof. Suppose first that a; = ¢b; (1 < i < n). Then N is a direct summand of
F', by the proof of Theorem 4.2.4, and hence a prime submodule of F'. Suppose

that a; — ¢b; # 0 for some 1 € 7 € n and d is a greatest common divisor of

a; — ¢b; (1 < ¢ < n) where d is square-free. By Theorem 4.2.4,
radp(N) = R(bi,...,b,) + R(f1,... 5 fn)
= Rb+ R(a— cb) ‘

Ra+ Eb = N.

Thus N is a semiprime submodule of F.
Conversely, suppose that N is a semiprime submodule of F. Suppose that
a; # cb; for some 1 < ¢ € n. By the proof of Theorem 4.2.4, NNL' = radp(NNL'),

and hence

R(ay —cby,... ,an, — cby) = Pl"d'}?m(al —cbyy ... yan —cby)R

(in the notation of Theorem 4.2.4). Since a;—cb; 5 0 it follows that d = upy -« -+ prm

for some unit u, i.e. d is square-free. [

Next we give an example to show that in Theorem 4.2.4 the condition

R = Rby + -+ + Rb, is necessary.

Example 4.2.6 Let R be the UFD Z{X] and let N be the submodule R(4,2X) +
R(2X, X?) of the free R-module F = R®). Then N is not a good submodule of F.
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Proof. Let J denote the (maximal) ideal R2+ RX. Then N = J(2,X). We saw
on page 52 that radp(N) = R(2, X). On the other hand, in Theorem 1.2.28 we
proved that < Er(N) >C Ep(vJ(2,X)) = VJ(2,X) # R(2,X). Thus N is not
a good submodule of F'. [0

Proposition 4.2.7 Let R be a domain and let I be an ideal of R. Let F' = R™
for some positive integer n and let N be the submodule I(1,...,1) of F. Then
radp(N) = VI(1,...,1) = Ep(N).

Proof. Let K be any prime submodule of F such that ¥ C K. Then I(1,...,1)
K so that IF C K or R(1,...,1) € K. By Proposition 2.2.3, R(1,...,1) is a

prime submodule of F'. Hence
radr(N) = R(1,...,1) Nradr(IF) = R(1,... ,1) NVIF
by Proposition 3.2.1. Hence
radr(N) = VI(1,...,1).

Let = € vI(1,...,1); then & = s(1,...,1) for some s € v/I. Now s™ € I for
some positive integer m and hence s™(1,...,1) € N, i.e. z € Ep(N). It follows

that radp(N) € Ep(N) and hence radp(N) = Er(N). O

Corollary 4.2.8 Let R be a domain and let I be an ideal of R. Then the sub-
module I(1,...,1) of the free R-module F' = R™ is semiprime if and only if

VI=1I.
Proof. By Proposition 4.2.7. O

The situation for 2-generated submodules is more complicated. Let R be a

UFD and let F' be the free R-module R®. Let a;; € R (1 € 4,5 € 2) and let
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N be the submodule R((lu,alg) + R(Ggl,azz) of F. SHPPOSB first that ay11a99 —
aizaz1 # 0. Let d denote the ged of the elements a;; (1 < 2,7 < n). Let b; = 2

(1 <1,7 < n)and let X denote the set of elements (r1,72) in F' such that

R +R C RA, where 0 # A = =

L T2 Ty T biy bi2 1{au a2
g2
b11 512 521 522 521 522 az1 Q33

Proposition 4.2.9 With the above notation,

Ep(N) = {r(s1,s2) : 1, 81,82 € R,v* = td and (ts1,1s;) € X for some positive

integer k and some t € R}.

Proof. Let r,u,v € R where r*(u,v) € N for some positive integer k. Let e

denote the ged of u and v. Thus

r(u,v) = re(%,2) and (re)*(%,2) € N.

e?

Hence without loss of generality u and v are coprime. There exist ¢,y € R such

that

T'k(uv v) = z(ay,are) +ylas,az)’
= xd(byy, biz) + yd(ba1, ba2)
ie.
rfu = d(zby; + ybei) and rFv = d(xbiz + ybss)

Thus d divides both r*u and r*v. Since u and v are coprime it follows that d

divides r*, i.e. * € Rd and hence r* = td, where t € R. Then

tu = .’l)bu + ybgl and tv = Zl)blz + ybgz.

81
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Thus tubgy — tvbyy = zA, i.e.

u v o u v
t = aA and similarly ¢ = —yA.
b21 bgg bll bl?

Thus r, u,v have the required properties.
Conversely suppose f € F, where f = r(s;,s;), r* = td for some k > 1,t € R
and #(sy,s2) € X. Then

ts1 ts tsy ts
P —eAand | T = yA
bll blz bZl b22

for some z,y € R. Thus
181019 — t83b11 = x A, and ts1bag — £52091 = YA.
This implies that
81 (b12bar — baabi1) = (wbar — yb11) A and tsg(bizber — bi1bag) = (wbag — ybia)A.
Since A # 0, we have £(s1,82) = y(b11, b12) — ©(ba1, ba). Now
7*(s1,82) = dt(s1, $2) = y(ai1, a12) — z(ag1, asy) € N.

Thus f € Er(N) and the result is proved. O

Now we consider elements a;; € F (1 < 1,7 < 2), not all zero, such that

a11G22 — @12621 = 0. Then there exist coprime elements b, ¢ in R (possibly b = 0
or ¢ = 0 but not both) such that (a11,a12) = u(b,c) and (ag1,as2) = v(b,¢) for

some u,v € R. Thus

R(ay1, a12) + R(as1,a9:) = Ru(b,c)+ Ru(b,c)
= (Ru+ Rv)(b,0)

and so we can deal with the case in Proposition 4.2.3.
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Dauns [4], [5] defines a submodule N of M to be semiprime if N = Ep(N).
Recall that when N is semiprime radp(N) = Er(N) is proved in Lemma 1.1.2.2.
In fact the converse of Lemma 1.1.2.2 is false as the following result shows. The

result is based on an example in [11].

Proposition 4.2.10 Let S be a domain, let R=S[X] and let F be the free R-
module R®). Let0 #a € S, let W = /Ra + RX and let N denote the submodule
W(a,X) of F. Then N = Er(N). Moreover, N is semiprime if and only if a is a
unit in S.
Proof. N = Eg(N) by the proof of Theorem 1.2.28. If N is semiprime then
N =radp(N) = Ep(N) =< Ep(N) >. Again by the proof of Theorem 1.2.28, a
is a unit.

Suppose that « is a unit in S. Then W = R and N = R(a,X) = R(1,a7*X)
which is a direct summand and hence a 0-prime submodul;e of F', by Proposition

2.2.3. Thus N is semiprime. [J

Let R be a domain and let F' = R™ for some positive integer n > 2. Let
a; = (@1, .. ,8in) (1 < ¢ < n)and let N denote the submodule Ra; + - -+ + Ra,
of F.

Proposition 4.2.11 With the above notation, let A denote the n xn matriz (a;;)

over R and let A = detA. Suppose that RA is a non-zero semiprime ideal of R.
Then N = Er(N).

Proof. Let r, s; (1 < i < n) be elements of R such that r*(sy,...,s,) € N for

some positive integer k. There exist elements z; € R (1 < 7 < n) such that
(815000 5 80) = Tyay -0 v F TpAp.
We can write this equation in matrix notation as follows:
sy 8] = [X1 - - 4] A
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Let adj A denote the adjugate of A and recall that A(adjA) = (adjA)A = AL,

where [,, is the n X n identity matrix. Then
Flsy e spladjA = [y 2] AL = [(Azq) -+ - (Azy)).

Let [ty -+ ta] = [s1---sa]adjA. For each 1 €1 < n, r¥%; = Az, gives (rt;)* € RA

and hence rt; = Az; for some z; € R. Thus
rlsy-e-spladjA = rltr - tn] = Az - 2.
Now
r[s1-+-su](adjA)A = Alzy -+ 2, ] A

gives TA[sy - 8p] = Alzy-++ 2,)A, so that r[s1---s;] = [21---24]A. In other
words,

P(Sty..« »8) = 181 + -+ + z,4, € N.

It follows that Er(N) = N. O

Note that in Proposition 4.2.11 the condition RA is non-zero is necessary, as

the following example shows.

Example 4.2.12 Let N denote the submodule Z(4,0,4) + Z(0,4,4) + Z(4,4,8)
of F = ZO)., Then Er(N) =< Er(N) >= radp(N) # N. But ZA = 0 which is

a semiprime ideal of Z..

Proof. By Theorem 3.1.5,

T Tg T3 0 0O
4 0 4 4 0 4
(r1,79,73) € radp(N) & € where 1 <t < 3.
0 4 4 0 4 4
I 4 4 8 1, \ I 4 4 8 1,




Hence

radp(N) = {(2a,2b,2(a + b)) : a,b € Z}.

For any element z = (2a,2b,2(a + b)) € radp(N), note that 2%(a,b,a +0) =
a(4,0,4) + 5(0,4,4) € N. Hence ¢ € Ep(N). On the other hand, for example
(2,2,4) € radp(N), but (2,2,4) ¢ N. Therefore

EF(N) =< EF(N) >= chdF(N) # N.

Proposition 4.2.13 With the notation of Proposition 4.2.11 with RA is non-
zero semiprime, suppose that R is a one-dimensional Noetherian domain and

A #0. Then N is a semiprime submodule of F'.

Proof. By Proposition 2.3.7, RA C (N : F'). But the R/RA-module F/N is
semisimple and hence N is an intersection of maximal submodules, i.e. N is

semiprime. [

Definition 4.2.14 Let R be a commutative ring and M be any R-module. A
submodule Q@ of M s called primary if whenever r € R, m € M and rm € @
then m € Q or r* € (Q : M) for some positive integer k.

Proposition 4.2.15 Let R be a commutative ring. Let M be any R-module and
Q@ be a P-primary submodule of M. Then

< En(Q) >= Q + PM.
Proof. Note first that for any submodule N of M,
(N : M) C (< Eq(N) >: M).
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Thus @ + PM C< Em(Q) >.

Conversely, suppose rm € Ep(Q). Then there exists a positive integer k
such that r*m € Q. Since Q is P-primary this implies that either m € Q or
e (Q:M)=P. fmeQthenrme Q. Ifr* € /(Q: M) =P thenr € P
and hence rm € PM. In any case rm € Q + PM. Thus En(Q) C @ + PM.
Therefore

< Em(Q)>=Q+PM.
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Chapter 5

CHAIN CONDITIONS IN
MODULES WITH KRULL
DIMENSION

In this chapter rings are not assumed to be commutative. Gordon and Rob-
son proved that any ring with Krull dimension satisfies the ascending chain con-
dition (ACC) on semiprime ideals (see Theorem 5.1.9). But this result does not
hold for modules in general. In particular it is proved in Theorem 5.2.6 that if
R is the first Weyl algebra over a field of characteristic 0 then there are Artinian
R-modules which do not satisfy the ACC on semiprime submodules. The aim of
this chapter is to investigate when Gordon and Robson’s result holds for modules.
For example, if R is a PI-ring then any R-module with Krull dimension satisfies
the ACC on prime submodules (see Theorem 5.2.11), and if R is left Noetherian,

also the ACC on semiprime submodules (see Theorem 5.3.2).
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5.1 On Krull Dimension

Let R be a ring and M be an R-module. The Krull dimension of M will be
denoted by k(M). The Krull dimension of a ring R is defined to be the Krull
dimension of the left R-module R and will be denoted by k(R).

In this section we will give some relevant properties of Krull dimension which

will be used later. For the definition and other basic properties of Krull dimension

see [8], [9] and [29].

Definition 5.1.1 An element ¢ in R is called regular (or a non-zero-divisor)
provided cr # 0 and rc # 0 for every non-zero element r in R. If [ is a proper
ideal of R then C(I) will denote the set of elements ¢ in R such that c+I is a regular
element in the ring R/I. Clearly ¢ € C(I) if and only if for any v € R,cr € I or
rc € I implies r € 1.

Proposition 5.1.2 [29, 6.3.5 Proposition] A semiprime ring with Krull dimen-

sion is a left Goldie ring.

Lemma 5.1.3 /8, Ez.18F] Let R be a ring with Krull dimension. If P is a prime
ideal of R, and I is an ideal with I D P then k(R/I) < k(R/P).

Proof. The non-zero ideal I/P of R/P is essential in the prime right Goldie
ring R/P. So I/P contains a regular element ¢ + P in R/P. Since in the

= chain {(¢ + P)"*(R/P) : n is a positive integer } the factors are all isomorphic to

(R/P)/((cR+ P)/P), we have
k(R/I) < k((R/P)/((cR +P)/P)) < k(R/P).

O

Theorem 5.1.4 [9, Theorem 7.1] Any ring R with Krull dimension has the as-

cending chain condition (ACC) on prime ideals.
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Proof. Suppose Pi C P, are prime ideals of the ring R. By Lemma 5.1.3,
kE(R/P2) < k(R/P1). Therefore an ascending chain of primes in R, P; C Py C
-, gives a decreasing sequence of ordinals, k(R/P;) > k(R/Pz) > - -+, which is
not possible. [0

Lemma 5.1.5 [9, Proposition 1.4] A module with Krull dimension has finite

uniform dimension.

Proof. Suppose the result is false. Amongst the modules for which it fails,
choose one, M, of minimal Krull dimension, a say. Clearly « 2> 0. Suppose that
M 2 @2, A; for non-zero submodules A;. For each non-negative integer n set
M, = ;?‘;1 Anjy and consider the infinite chain Mo D My O My D ---. Each
factor M;/M;y, is an infinite direct sum and yet has Krull dimension less than
or equal to a. By minimality of o, k(M;/M;11) = . Hence, by the definition of

Krull dimension, k(M) > «, a contradiction. O

The following lemma is needed to prove Theorem 5.1.8.

Lemma 5.1.6 (Konig’s unendlichkeitslemma)[15, Chapter VI] Let
S1,5%,... be an infinite sequence of disjoint non-empty finite sets and < be a
relation in S; U Sa U+ such that whenever n is a positive integer and & € Spq1,
there exists a y € S, such that y < z. Then there e:vz';sts an infinite sequence

%1, To, L3,... Such thatz, € S, (n=1,2,...) and w1 <@z < T3 < ....

Proposition 5.1.7 [9, Proposition 7.3] In a ring R with Krull dimension there
are only finitely many prime ideals minimal over any ideal. In particular each

semiprime ideal is a finite intersection of prime ideals.

Proof. Let I be an ideal of R and S be the intersection of all prime ideals of

R containing I. Then since R/S has Krull dimension, R/S is a semiprime left
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Goldie ring, by Proposition 5.1.2. Therefore, as is well known, the zero ideal of
R/S is a finite intersection of primes of B/S. Hence there are only finitely many

minimal primes over S and S is their intersection. OJ

Theorem 5.1.8 [9, Theorem 7.7] Any ring with ascending chain condition (ACC)

on prime ideals has ACC on finite intersections of prime ideals.

Proof. Let R be the ring and So C Sy C 53 C --- an infinite strictly ascending
chain of ideals, each being a finite intersection of primes. Let Sf denote the set
of primes of R minimal over S;. From the assumption on S;, it follows that the
set S’E must be finite and 5; = ﬂPeS}‘ P.

The aim is to apply Lemma 5.1.6 to a suitable directed graph G, producing
an infinite ascending chain of primes. The vertex set of G is V = [J2, S!. The
set V is clearly infinite. An edge in G is an ordered pair (P, Q) where P C Q and
Pesl Qe st +1 for some ¢. The index ¢ is uniquely determined when it exists;
for if P € Sju and 7 > ¢ then S;41 € 5; CP C Q, contradicting the description of
Q. This same argument shows that every vertex has finite index. Also note that
G has no closed paths.

Consider the finite paths from some vertex in S} to a vertex P. Since the
set | J i<i 5’? is finite for any fixed 1, it follows that there is a longest such path;
say it has length n. Then we call n the height of P. If P ¢ S! then the
set {@ € V : (Q,P) is an edge} has finite cardinality greater than 0. An
easy induction now shows that there are only finitely ma,n‘y vertices of height n.
Hence Lemma 5.1.6 asserts the existence of an infinite path, which is similar to

the existence of an infinite strictly ascending chain of primes. O

The following theorem is the result of Theorem 5.1.8.
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Theorem 5.1.9 [9, Theorem 7.6] A ring with Krull dimension has the ACC for

semiprime tdeals.

5.2 Prime Submodules

Recall that for any submodule N of M ann(M/N) is denoted by (N : M),
ie. (N:M)={r€R:rM C N}. Thus a proper submodule N of M is prime
if and only if (N : M) = (N : L) for any submodule L of M properly containing
N.

Before we extend Gordon and Robson’s result which was given in Theorem

5.1.9, we note the following,.

Lemma 5.2.1 Let R be any simple ring. Then the following statements are
equivalent for an R-module M.

(i) M is Noetherian.

(it) M satisfies ACC on semiprime submodules.

(1it) M satisfies ACC on prime submodules.

Proof. (i) = (it) = (411) Clear.
(731) = (¢) It is easy to check that every proper submodule of M is prime.
Thus (¢2¢) implies (z). O

Let R be any ring. An R-module M will be called uniserial if M has a unique
finite composition series. The next two lemmas are presumably well known but

we give their proofs for convenience.

Lemma 5.2.2 Let R be any ring. Let M be an R-module with a mazimal sub-
module N and a simple submodule S G N such that N and M/S are both uniserial.

Then M is uniserial.

91




Proof. Let 0 =Ny C 5 = N; C -+ C Ny = N be the unique composition series
of N. Then 0 = Ny/S C Ny/S C --- C Ni/S C M/S is the unique composition
series of M/S. Clearly M has finite composition length. Let L be any non-zero
submodule of M. Suppose that LN S = 0. Then L N N = 0 since S is essential
in N. Thus L € N and hence M = L + S. In this case, N = (NN L)+ S5 = 5,
a contradiction. Thus LN S # 0, so that S C L and hence L/S = M/S or
L/S = N;/S,ie. L = M or L = N; for some 1 < i €< k. Therefore M is

uniserial. O

Lemma 5.2.3 Let R be any ring. Let M be an R-module such that there exists a
chain of submodules 0 = My C My C My; C .-+ C Un>1 M, = M with M, /M,
simple and M, uniserial for all n > 1. Let N be any proper submodule of M.
Then N = M, for some n = 0.

Proof. There exists a positive integer k& such that My € N. Let n be the least
integer such that M, g N. Then n > 1. Thus M,.; € N so that M,_; C
NN M, C M, Since M,/M,_; is simple it follows that N N M, = M,_;.
Suppose that N N M, # M,_, for some s > n, and choose s as small as possible,
Then NN M,y = M, gives NN M, ¢_ M,_,. Because M,/M;._, is simple and
M, is uniserial, we have N N M; = M,. Thus M,, C M, C N, a contradiction. It
follows that NN M, = M,,_; for all s > n and

N=NOM=NnUs M)=U:(NNM) =M1,

Let k& be any field of characteristic 0. Then A,(k) denotes the first Weyl alge-
bra consisting of polynomials over k in indeterminates z, y subject to

zy —yz = 1 (see [8], [29]).
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Lemma 5.2.4 Let k be a field of characteristic 0 and let R = Aq(k). Letp € k[y].
Then the R-module R/R(x — p) is simple.

Proof. Let L be a left ideal of R properly containing R(z — p). Since
R = kly] + klyle + kly]z® + --- it follows that R = k[y] + R(z — p). Thus
there exists an element 0 # f(y) € L. Now

f'(y) ==f(y) - fy)z = (z — p)f(y) - fF()(=—p) € L.
Repeating this argument we obtain L Nk # 0, i.e. L = K. Thus R(z — p) is a

maximal left ideal of R and hence R/R(z — p) is a simple R-module. O

The next result is due to McConnell and Robson [28]. We give here an ele-

mentary proof.

Lemma 5.2.5 Let k be a field of characteristic 0 and let R = Ay(k). Let p, q be
distinct members of kly]. Then the R-module R/R(z — p)(z — q) is uniserial if
and only if p—q ¢ k.

Proof. Suppose first that p — ¢ € k. Then
(z=piz—q) = (e-9)~(-a)(z—~q)
= (e-9)"~(p-a)(z—q)
= (@-¢f'-(z-qp—0)
= (e=q)((z—q)—(p—4))
= (z-q)(z~p)

In this case,
R/R(z — p)(z — q) = (R(z — p)/ R(z — p)(z — q)) @ (R(z — q)/ R(z — p)(z — q)).

Thus R/R(z — p)(x — ¢) is not uniserial.
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Conversely, suppose that p — g ¢ k. Note that

(z—qy—ylz—q) = (zy —yz) + (yg — qy) = 1,

so that we can make the change of variable z +— z — ¢ and suppose without loss
of generality that ¢ = 0. Note that in this case p ¢ k. By Lemma 5.2.4, Rz and
R(z—p) are both maximal left ideals of R. Moreover, Rz/R(z—p)z & R/R(z—p).
Thus the R-module R/R(z — p)z has length 2. Suppose there exists a left ideal
L such that

R=Rx+ L and RzeNL=R(z—p).- (5.1)

Then 1 — fz € L for some f € R.

We now claim that
2" € klylz + R(z — p)z (5.2)

for all positive integers n. Note that # = 1z + 0z and z? = pz + (z — p)z so that
g
(5.2) holds for n = 1,2. Suppose that m > 2 is a positive integer such that (5.2)

holds for 1 € n € m. Consider

™t — :cm"l[($2 —-p.’l)) +p€l)]
—_ :cm_l(cv2 _ p:l?) + St)m_lp&?

= 2™ (2 —p2) + (pe™ " t a0+ @z 4+ amaz™ )

for some a; € k[y] (1 €7 < m—2). Thus
g™ € R(z — p)o + Elyla™ + klyle™ " + - + klyle C R(z — p)e + k[y]e

by the induction hypothesis. Hence (5.2) holds for all positive integers n.
Combining (5.1) and (5.2) gives g € k[y] such that 1—ga& € L. Now z(1—gz) €

L so that z — (g + ¢')z € L, i.e. (1 —g')z — ga* € L, where ¢’ is the derivative
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of g in k[y]. Now
(I1-9¢ —gp)z=(1-¢)z—g2*+g(z*—pz) € Rz L

and hence (1—¢'—gp)z € R(z—p)z. This implies that 1—g¢'—gp € R(z—p)Nkfy] =
{0}. Since p ¢ k it follows that 1 — ¢’ — gp # 0, a contradiction. Thus there does
not exist a left ideal L of R satisfying (5.1). This proves that R/R(z — p)z is a

uniserial R-module, as required. [

Theorem 5.2.6 Let k be a field of characteristic 0 and let R = Ai(k). Let
{pn : n 2 1} be any collection of elements of the polynomial ring kfy] such that
Pm — Pn & k for all 1 £ n < m < co. For each positive integer n let B, denote
the submodule R(z —p,)™' -+ (z —p1)7! of @, the quotient division ring of R, let
B =,31 Bn, and let M=B/R. Then .

(i) R is a simple Noetherian domain,

(it) 0 C By/RC By/RC -+ C Un}l B./R =M are all the submodules of M,
(iii) M is Artinian, and

(iv) M does not satisfy ACC on prime submodules.

Proof. It is well known that R is a simple Noetherian domain (see [8, Corollaries

1.13 and 1.15] or [29, 1.3.5]). Clearly
R=Bo§Blng§---£ UBn=B~
nzl1
Moreover, B;/R = R(z — p1)"!/R = R/R(z — p;) which is a simple R-module

by Lemma 5.2.4, and for any n = 2,

Bu/Bnoy = R(z—pa)™ (e —p1) 7 [R(& = pu-t) ™ o (@ = p1) 7
R/R(:B - pn)v

14
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which is simple. Now for each n = 1,
Bu/R = B[R(z — 1)+ (z — pn).

If n =2, R/R(x — p1)(z — p2) is a uniserial R-module by Lemma 5.2.5. If n > 3
then B,/B; & R/R(z — pg) - -+ (x — p,) which is uniserial by induction on n and
B,-1/R is also uniserial by induction on n. By Lemma 5.2.2, B,,/R is uniserial
for all n 2> 1. Now Lemma 5.2.3 gives (i¢). Clearly (4¢:) follows and by Lemma
5.2.1 so too does (wv). O

Contrast Theorem 5.2.6 with the following result.

Theorem 5.2.7 Let R be a ring such that every left primitive homomorphic
image is (left) Artinian. Let M be an Artinian R-module. Then M satisfies ACC

on semiprime submodules.

Proof. If M does not contain any prime submodules then the result is true
vacuously. Now suppose that M contains a prime submodule. Let ® be the set of
all submodules of M which can be expressed as an intersection of a finite number
of prime submodules. By the minimal condition, ® has a minimal member K,

say. There exist prime submodules Ki,... , K, such that
K=K n0---NnkK,.
Let L be any prime submodule of M. Then
K=Kin---0K,2LNnK,n---NK, €.

By the minimality of K we have K = LNK;N---NK,. Hence K C L. Thus K
is contained in any semiprime submodule of M.

Consider K;. Now K; # M and hence there exists a submodule U of the Ar-
tinian module M, containing K7, such that U/K; is simple. Let P =ann(U/K).
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By hypothesis, the ring R/P is simple Artinian. But P(M/K;) = 0, because
K is prime, and hence M/K, is semisimple. Thus M/K; is semisimple for all
1 €7 € n. Being Artinian, M/K; is Noetherian for all 1 € 7 € n. Hence M/K

is Noetherian. It foll ows that M satisfies ACC on semiprime submodules. [J

Recall that if R is a ring which satisfies a polynomial identity, i.e. a PI-ring
for short, then every left primitive image of R is Artinian [29, 13.3.8]. For the
definition and basic properties of PI-rings see [29]. In particular, note that if P
is a prime ideal of a PI-ring R then the ring R/P is (left) Goldie [29, 13.6.6]. Our
next aim is to show that if R is a PI-ring then any R-module M with arbitrary

Krull dimension satisfies ACC on prime submodules.

Definition 5.2.8 Let R be a prime left Goldie ring. Let M be a left R-module.

Then the singular submodule of M is given by
Z(M)={m & M :cm =0 for some c € C(0)}.
M is called a torsion module if M=Z(M), and M is called torsion-free if Z(M)=0.

Definition 5.2.9 A proper submodule N of M is called strongly prime if
P = (N : M) is a prime ideal of R such that the ring R/P is (prime) left
Goldie and the left (R/P)-module M/N is torsion-free.

Lemma 5.2.10 (See [27, Proposition 2.1 and Corollary 2.8]). For any ring R,

any strongly prime submodule of an R-module is prime. Moreover, the converse

holds if R is a Pl-ring.
This brings us to the main result of this section.

Theorem 5.2.11 Let R be a Pl-ring and let M be an R-module with Krull di-

mension. Then M satisfies ACC on prime submodules.
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Proof. Let Ky C Ky, C K3 C -+ be any ascending chain of prime submodules
of M. For each ¢ > 1 let P; = (K; : M), so that P; is a prime ideal of R and
M/ K; is a torsion-free module over the prime Goldie ring R/P;. Without loss of
generality, K; =0 and P; = 0.

Suppose that k(M) = «, for some ordinal a 2 —1. We prove that M has
ACC on prime submodules by induction on a. If @ = —1 then M = 0 and there
is nothing to prove.

Now suppose that o = 0 and that the result holds for R-modules of Krull
dimension less than a. Note that 0 =P, C P, CTPs C -+ - is an ascending chain
of prime ideals of R. Suppose that P; # 0 for some ¢t = 2. By [29, 13.6.4] P;

contains a non-zero central (and hence regular) element c¢. Now
MDeM2DcEMD---

is a descending chain of submodules of M and hence k(c°M/c*t' M) < « for
some s 22 1. Note that because M is torsion-free (Lemma 5.2.10), c° M/t M =
M/cM and hence k(M/cM) < a. But ¢cM < K, so that &(M/K;) < «. Now

0 = I{t/I{t C_: I(t—l-l/-[(t (_: I(t+2/I{t g e
is an ascending chain of primes in M/K;. By induction on «,
I{H/I(t = I{n-l-l/I{t - I{n+2/~[{t =y,

and hence K, = K41 = Kpqg =+ for somen 2 t.

Otherwise, P; = 0 (¢ 2 1). Thus M/K; is a torsion-free R-module for all
¢ 2 1 by Lemma 5.2.10. Now K; € K; C K3 C -+ is an ascending chain of
submodules of a module M with finite uniform dimension by Lemma 5.1.5, and
hence there exists ¢ = 1 such that K; is essential in K;y; for all 7 > g. But

this implies that K;y;/K; is torsion and hence K; = K;y; for all 1 > g, i.e.
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K, = Ky41 = Ky = - ++. Therefore M satisfies the ACC on prime submodules
O

Modifying the proof of Theorem 5.2.11 somewhat we have the next result.

Theorem 5.2.12 Let R be a ring which satisfies ACC on prime ideals and let M
be an R-module with Krull dimension. Then M satisfies ACC on strongly prime

submodules.

Proof. Let K; C K; € K3 C -+ be any ascending chain of strongly prime
submodules of M. With the notation of the proof of Theorem 5.2.11, P; C
Py € Ps C .-+ is an ascending chain of prime ideals of R. By hypothesis,
P = Piy1 = Pipa = - -+ for some positive integer t. There exists s 22 ¢ such that
K; is essential in K4 for all ¢ 2> s. But M/K; is torsion-free as a module over

the prime left Goldie ring R/P;. Thus K; = K;4, for all i > s O

Corollary 5.2.183 Let R be a ring with left Krull dimension and let M be an
R-module with Krull dimension. Then M satisfies ACC on strongly prime sub-

modules.

Proof. By Theorems 5.1.4 and 5.2.12. I

In particular, if we take M = R in Corollary 5.2.13 we have the following

result:

Corollary 5.2.14 Let R be a ring with left Krull dimension. Then R satisfies
ACC on strongly prime left ideals.

If R is a ring with left Krull dimension and P is a prime ideal of R then
R/P is a left Goldie ring (Proposition 5.1.2) and the left (R/P)-module R/P is
torsion-free. Thus every prime ideal of R is a strongly prime left ideal of R. Thus
Corollary 5.2.14 generalizes Theorem 5.1.4. We do not know if rings with Krull

dimension satisfy ACC on prime left ideals.

99




5.3 Semiprime Submodules

In this section we shall be concerned with when a module with Krull di-
mension satisfies ACC on semiprime submodules. Nagata [30, Proposition 34
Corollary] (see also [12, Theorem 87]) proved that a ring R which satisfies ACC
on semiprime ideals has the property that every non-zero homomorphic image
has only a finite number of minimal prime ideals, equivalently every semiprime
ideal of K is a finite intersection of prime ideals. If R is a general ring and M an
R-module such that every non-zero homomorphic image has only a finite number
of minimal prime submodules then every semiprime submodule of M is a finite
intersection of prime submodules by [27, p.1059]. We do not know if the converse

is true in general, but it is true in the following special case.

Theorem 5.3.1 Let R be any ring. Then the following statements are equivalent
for an R-module M.

(1) M satisfies ACC on semiprime submodules.
(i) (a) M satisfies ACC on prime submodules, and

(b) every non-zero homomorphic image of M has only a finite number of

minimal prime submodules.
(tii) (a) M satisfies ACC on prime submodules, and

(b) every semiprime submodule of M is a finite intersection of prime submod-
ules.
Proof. (i) = (¢i) Clearly M satisfies (i1)(a). Suppose that (¢z)(b) does not hold.
There exists a proper submodule N of M such that M/N has an infinite number
of minimal prime submodules. Then

rad(N) = ({K : K is a prime submodule of M and N C K}

is a semiprime submodule of M and M /rad(/N) has an infinite number of minimal

prime submodules.
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Let S be a semiprime submodule of M chosen maximal such that M/S has an
infinite number of minimal prime submodules. Then S is not prime. There exist
r € R and a submodule L of M such that S G L, 7L C S and rM ¢ S. By the
choice of .5, the modules M/rad(L) and M /rad(RrM +S) both have only a finite
number of minimal prime submodules. Let K be a prime submodule of M with
S € K such that K/S is a minimal prime submodule of M/S. Then rL C K
so that L € K or RrM + S C K. Thus rad(L) € K or rad{RrM + S) C K.
If rad(L) € K then K/rad(L) is one of the finite number of minimal prime
submodules of the module M/rad(L). Similarly if rad(RrM + S) C K then
K/rad(RrM + S) is one of the finite number of minimal prime submodules of
M/rad(RrM + S). It follows that M/S has only a finite number of minimal
prime submodules, a contradiction. Thus M satisfies (i7)(b).

(¢7) = (i17) Let K C N be submodules of M. Then it is easy to check that
N is a prime submodule of M if and only if N/K is a prime submodule of M/K.
Now suppose S is a semiprime submodule of M. Now M/S has only a finite
number of minimal prime submodules S;/5,...,5,/S for some positive integer
n where § C 5; € M (1 € ¢ < n). Then S; is a prime submodule of M for all
I1<ig<nand S={)5:.

(132) = (2) By the proof of Theorem 5.1.8. O

We have been unable to settle for a general PI-ring R whether every R-
module with Krull dimension satisfies ACC on semiprime submodules. We have

the following special case.

Theorem 5.3.2 Let R be a left Noetherian Pl-ring and let M be an R-module

with Krull dimension. Then M satisfies ACC on semiprime submodules.

Proof. Suppose that the result is false. Let a 2 —1 be the least ordinal such
that there exists a left Noetherian PI-ring R with k(R) = « and an R-module
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M with Krull dimension but M does not satisfly ACC on semiprime submodules.
Clearly o 2 0. By Theorems 5.2.11 and 5.3.1, we can suppose without loss of
generality that M contains an infinite number of minimal prime submodules.

Since R is left Noetherian, there exist a positive integer s and prime ideals
T: (1 € ¢ < s)such that 77---7; = 0 [29, 2.2.17]. If K is a minimal prime
submodule of M then (7;---7T;)M C K gives ;M C K and K/7; M is a minimal
prime submodule of M/7; M for some 1 £ 7 & s. There exists 1 € 7 < s such
that M/T; M has an infinite number of minimal prime submodules. Hence we can
pass to the ring R/T; and suppose without loss of generality that R is a prime
ring,.

Let Z = Z(M). Then Z is a prime submodule of M (Lemma 5.2.10). Clearly
Z # 0. There exist a positive integer n and uniform submodules U; (1 £ ¢ £ n)
of Z such that Uy @ -- ® U, is an essential submodule of Z. For each 1 €7 € n,
let P; = assU; = {r € R:rV = 0 for some non-zero submodule V of U;}. Note
that 7; is a non-zero prime ideal of R for each 1 <7 € n by [8, Lemma 4.22] and
[29, 13.6.6]. By [29, 13.6.4] there exist a non-zero central element ¢ of R such
that c€ Py N---NP,. Now annz(c) is an essential submodule of Z and hence
¢Z = 0 for some positive integer ¢, by [29, 4.2.2 and 4.2.6].

Let K be a minimal prime submodule of M. If Z C K then K = Z. Suppose
that Z Q K. Then ¢!Z =0 C K gives cM C K and K /cM is a minimal prime
submodule of the (R/Rc)-module M/cM. But k(R/Rc) < k(R) = « [9, Corollary
7.2] so that, by the choice of @, M/cM has only a finite number of minimal prime

submodules by Theorem 5.3.1. This contradiction proves the result. O

Another special case is the following result.

Theorem 5.3.8 Let R be a Pl-ring with Krull dimension and let M be a finitely

generated R-module with Krull dimension. Then M satisfies ACC on semiprime
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submodules.

Proof. We follow the proof of Theorem 5.3.2. By Proposition 5.1.7 we can
suppose without loss of generality that R is a prime ring. Let Z = Z(M).
By Zorn’s Lemma, there exists a submodule W of M maximal with respect to
ZNW =0. Then M/(Z @& W) is torsion and hence M/W is torsion. Because M
is finitely generated, there exists a non-zero central element ¢ such that cM C W.

Then ¢Z C ZNW = 0. The result now follows by the proof of Theorem 5.3.2. [

Corollary 5.3.4 Let R be ¢ commutative ring and let M be o finitely generated R-

module with Krull dimension. Then M satisfies ACC on semiprime submodules.

Proof. Without loss of generality M is faithful. Now M = Rmy +- - -+ Rmy, for
some positive integer k and elements m; € M (1 <1 < k). Define 6 : R — M®
by 0(r) = (rmy,...,rmg) for all r € R. Then 6 is an R-monomorphism and

hence the ring R has Krull dimension. The result now follows by Theorem 5.3.3.
O
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