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Sum m ary

This thesis employs analytical and numerical techniques to investigate the stability 

of m ulti-com ponent convection-diffusion problems.

In chapter 1 the physical importance of these problems is discussed and a brief 

review of the relevant literature is given. The ideas of linear and nonlinear stability 

are introduced here via a simple one-dimensional example.

The second chapter presents linear and classical energy stability analyses for 

a system consisting of an infinite layer of a fluid-saturated porous medium with 

two salt fields present, using the Darcy-Oberbeck-Boussinesq scheme of equations. 

The linear stability analysis produces highly unusual neutral curves and it is the 

investigation of these curves tha t motivates the rest of this thesis. The nonlinear 

stability analysis in chapter 2 produces a nonlinear boundary th a t may be far from 

the linear boundary, highlighting a weakness of the energy method when the onset 

of linear instability is by an oscillatory mode. However, this problem is somewhat 

ameliorated in the third chapter by a generalised energy analysis which produces far 

more satisfactory results.

In the fourth chapter a non-Boussinesq buoyancy law is employed in this m ulti- 

component porous problem, introducing the phenomenon of penetrative convection. 

A numerical investigation of the linear stability of the problem is given, using a 

Chebyshev tau  method, and the effect of the non-Boussinesq buoyancy law on the 

neutral curves is shown. A weighted energy method is used to obtain an uncondi

tional nonlinear stability boundary

In the fifth chapter rather than the fluid-saturated porous medium of previ

ous chapters attention is turned to an infinite layer of viscous fluid. An internal 

heat source is introduced as an alternative model of penetrative convection. The

v



linearised version of this problem is shown to be the adjoint of previous work by 

Straughan and Walker (1997). The linear stability of the problem is again investi

gated numerically.

Finally an appendix gives details of the Chebyshev tau  method employed in 

chapters 4 and 5.

vi



C hapter 1

Introduction

In this thesis linear and nonlinear energy stability analyses are presented for a va

riety of multi-com ponent convection-diffusion problems in fluid dynamics. The 

phrase “m ulti-com ponent” refers to the presence of one or more salt fields dissolved 

in the fluid. Alternatively, the problems will be referred to as “double diffusive” 

(fluid plus one salt concentration), “triple diffusive” (fluid plus two salt fields), etc. 

The introduction of these salt fields produces a variety of interesting convective 

phenomena not found in the single component (i.e. fluid only) problem. We will 

investigate multi-com ponent convection-diffusion in both viscous fluid and fluid- 

saturated porous media.

The subject of double diffusive convection has been actively researched for the 

last 40 years, particularly in the viscous fluid case. Comprehensive reviews of the 

viscous flow problem can be found in Turner (1979) and Huppert and Turner (1981). 

Research has been mainly driven by oceanographers but other engineering fields 

have found use for the double diffusive phenomenon, for instance in sewage disposal 

(Fischer (1971)) or, in a particularly interesting example, the storage of solar energy 

(Tabor (1979)). Tabor (1979) describes the collection of solar radiation in a shallow 

(about lm  deep) black-bottomed pond. Normally the increased tem perature at 

the bottom  will eventually lead to the onset of convection. In order to increase 

the tem perature difference between the top and bottom  of the pond a stabilising 

salt field is imposed This inhibits the onset of convection and consequently greater 

amounts of solar energy are able to be stored. The hot brine is then piped out from
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the pond and the therm al energy extracted. Tabor (1979) predicts a pond of area 1 

km2 as producing annual energy output equivalent to 43 000 tonnes of fuel oil.

Workers in porous media fluid mechanics have been attracted  to the double diffu

sive problem by the many geophysical applications such as the geothermal reservoirs 

found in the Imperial Valley in California (Cheng (1978)), near Lake Kinnert in Is

rael (Rubin (1973)) and the Wairakei geothermal system in New Zealand (Griffiths 

(1981)). Reviews of the theoretical treatm ent of the porous problem can be found 

in Cheng (1978) and Nield and Bejan (1992).

There has been comparatively little work on the effect of a third diffusing agent, 

i.e. a second salt field. There are many physical situations where a second salt field 

is present, for instance the oceans contain many salts other than sodium chloride. 

O ther applications may be found in the growth of crystals (Coriell et al. (1987)), in 

cloud physics (Kaye and Rood (1989)) or in the area of contam inant transport (Celia 

et al  (1989), Allen and Curran (1993), Allen and Khosravani (1992)). Another 

possible motivation for investigating triply diffusive convection occurs in experiments 

on double diffusive convection where the effect of dyes or small tem perature gradients 

should be considered. It is the intention of this thesis to investigate further the 

influence of a second salt field.

In this introductory chapter the concepts of stability and the energy method are 

introduced through a simple one-dimensional example. The energy method yields 

sufficient conditions for the nonlinear stability of a chosen steady state, usually 

through a critical Rayleigh number. For values of the Rayleigh number less than 

this critical value the basic state will be nonlinearly stable, i.e. all perturbations to 

this basic state will decay to zero in time.

In the second chapter the physical relevance of multi-com ponent convection- 

diffusion problems is further discussed, as are the previous analytical investigations. 

Linear and classical energy stability analyses are presented to investigate the sta

bility of a system consisting of a fluid-saturated porous layer with two salt concen

trations present, using the Darcy-Oberbeck-Boussinesq scheme of equations. The 

analytical linear stability analysis presented there produces highly unusual neutral 

curves.
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The application of the energy method in chapter 2 produces a nonlinear stability 

boundary th a t may be far away from the linear stability boundary. In order to 

improve upon these results a generalised energy method is presented in the third 

chapter for the triple diffusive porous problem.

the Boussinesq approximation). In chapter 4 penetrative convection is introduced 

to the triple diffusive porous problem by employing a non-Boussinesq buoyancy 

law, namely one where the tem perature appears as a quadratic term. A numerical 

investigation of the linear stability is given by making use of the Chebyshev tau 

method. Particular emphasis is given to the effect th a t the change in buoyancy law 

has on the unusual neutral curves found in chapter 2. A weighted energy m ethod is 

then used to investigate the nonlinear stability of the problem.

An alternative model of penetrative convection is the introduction of an internal 

heat source. In chapter 5 this model is used for the multi-com ponent viscous flow 

problem. The Chebyshev tau method is again used here to look at the linear stability^ 

of this problem. The influence of adiabatic sidewalls is also investigated here.

Finally, an appendix describes one of the numerical methods employed in this 

thesis, namely the Chebyshev tau method.

Standard notation is employed throughout this thesis. Partial derivatives are
Qll

denoted in the usual way, e.g. —  or by subscripts e.g.,
( / 6

Standard vectorial and indicial notation is also used in conjunction with the Einstein 

summation convention, e.g.,
dui

^  =  £ ^ 7 -  
i=1 UJj%

In order to introduce the stability analyses used in this thesis a simple application 

is now given.

Consider the following one-dimensional equation,

In chapters 2 and 3 the density is assumed to be linear in tem perature (i.e.

du d2u

(1 .1)

for x e  (0,1) with boundary conditions u(0,£) =  u (l,£ ) =  0, Vi >  0.
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The zero solution u = 0 is a solution to (1.1). In order to show th a t the zero solu

tion is stable, it must be shown th a t the solution is stable against any perturbation 

to which it is subjected. This can be accomplished by showing th a t all disturbances 

decay to zero as tim e advances. The energy method can give a stronger criterion 

than  this as it usually ensures exponential decay of the perturbations.

On the other hand, to show instability of the zero solution one need only find a 

single disturbance tha t grows in amplitude in time. A linear instability analysis for

(1.1) is given first. Equation (1.1) becomes, upon linearising,

ut = + n. (1.2)

A perturbation to the zero solution of the form

u(x ,i)  =  efftsin kx  (1.3)

is considered. Although this appears to be a special choice of perturbation it allows 

the instability of the zero solution against any ^-periodic disturbance to be studied. 

The reason behind this is an assumption tha t u is periodic in x t bu t allowing any 

periodic behaviour. This allows u to be written as the following Fourier series:

oo
u(x ,t)  = y\neanteiknX.

n—0

The cosine terms of this Fourier series do not individually satisfy the boundary 

conditions and consequently the perturbation reduces to

oo
u(x ,t )  = ^ 2  A neant sin knx. (1.4)

0

As only one destabilising perturbation is sufficient to cause instability only equation 

(1.3) need be considered, since by varying k over all admissible values the most 

destabilizing mode will be picked up. Note tha t the boundary conditions restrict k 

to

k = nir, n = 1 ,2 , . . .

For a disturbance of form (1.3) equation (1.2) gives

k2 ,
(j =  +  1.

R
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Linear stability is ensured if o <  0 since this guarantees th a t the perturbations will

decay in time. This requires R  < k2. However k ^ in =  tt2. The linear instability

boundary is then given by

R  — 7r2.

i.e., the zero solution is linearly unstable for R >  t t 2 .

An energy argument is now used to study the stability of the zero solution to

(1.1). The first step is to multiply equation (1.1) by u and integrate over (0,1), 

resulting in
r l  r i  t  E  E
/ u u t d x +  / u2ux dx = — / uuxxdx + / u dx. (1-5)
Jo Jo ' R  Jo Jo

Write IMI2 — Jq u2dx and set E(t)  =  § ||u ||2. After using integration by parts, 

equation (1.5) becomes

f  =  (1.6)

since
d 1 „ dE
* 2 IM |2=  dT

f 1 j  [ l l ( 2\ j  d 1 f 1 2 ,/ u u t d x — / -{u  )t dx = — -  / u dx 
Jo Jo 2 J dt2Jo

[  u2ux dx — [  \{it?)x dx =  i [ u 3(l) -  u3(0)] =  0 , 
Jo Jo 6  6

[  uuxx dx =  uux\l — [  uxux dx 
Jo Jo

Equation (1.6) may be rewritten as

- I tu J I2,

f  = +

= 1 i  ~ S )  ■ (IK
II M9 I 1 ^< — it J n  — — max

12 7*0), (1.7)

33 I 79 II 119 I ’\ R  n  llu^ll2^

where % is the space of admissible functions over which a maximum is sought and 

is here selected as

% =  jti  E C 2(0,1) | u  =  0 when x = 0, l}  .

By defining
1 Hull2

-- max
R e *  I K F

the energy inequality (1.7) may be written



Clearly, if R  < R e  then — — ~~~ = a > 0 and so
R  R e

dE
dt

(1.8)

The Poincare inequality is ||wx||2 > 7r2||ii||2 for u satisfying u =  0 a t x  — 0,1. Using 

this in equation (1 .8) gives

~T~ ^  — ewr2|M |2 =  —2a7r2E , dt

which can be integrated to yield

Equation (1.9) shows th a t the decay is at least exponential in time. The zero solution 

to (1.1) is therefore nonlinearly stable for R  < R e -

The problem now is to find R e } which was defined as

Define I± =  ||u ||2, / 2 =  IK-c||2- The Euler-Lagrange equations for this maximum are 

derived from

E(t) < E(0)e~2a7r2t (1.9)

Hence, if R  < R e , then

E(t)  =  - | |u ||2 —> 0 as t  —7- 0 .
z

d Ii (u +  €77) j _  
de I 2(ux +  erjx) |e==0

2 max

Clearly then

5 h  -  R s i 2 =  0 .
JtCe

(1.11)

Here

where rj is an arbitrary C2(0 , 1) function tha t vanishes at the endpoints.
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Equation (1.11) here results in

f 1 1/ (urj -  s - r } xux) dx = 0,
Jo H e

which can be integrated by parts to show that

I 'd{uxx +  R e u) dx — 0.
Jo

However, 77 is an arbitrary function and consequently

'uxx +  R e u =  0, u(0) =  u(l) =  0. (1.12)

Equation (1.12) is the Euler equation and constitutes an eigenvalue problem for R E. 

Its general solution is

u =  A  sin \ [R ex  +  B  cos \Jr e x )

where A  and B  are constants yet to be determined. The boundary condition u(0) =  0 

forces B  to be zero and the boundary condition u (l) =  0 yields

\ j R E  — 7T-7T, n  =  ±1, ± 2 , . . . .

This is an infinite sequence of values for R E . The stability criterion is R  < ^ ( m i n )  

and R e (min) =  tt2. The nonlinear stability boundary is then

R  =  7T2 .

Notice th a t this boundary, found by employing an energy technique, is the same as 

the linear instability boundary.
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C hapter 2

M u lti—com ponent 

convection-d iffusion  in a porous 

m edium

2.1 Introduction

The subject of double diffusive convection of a viscous fluid, or of a fluid-saturated 

porous layer, has been an active area of research for many years. In the viscous fluid 

case in particular there is a considerable body of work. Reviews of this subject can 

be found in Turner (1979) and Huppert and Turner (1981). In the area of porous 

media fluid mechanics there are many physical problems th a t can be modelled as 

fluid-saturated porous layers stratified by heat and salt concentration, such as the 

geothermal reservoirs found in the Imperial Valley in California (Cheng (1978)), 

near Lake Kinnert in Israel (Rubin (1973)) and the Wairakei geothermal system in 

New Zealand (Griffiths (1981)).

Reviews of the theoretical treatm ent of the double diffusive porous problem can 

be found in Cheng (1978) and Nield and Bejan (1992). The linear stability of a fluid- 

saturated porous layer stratified by heat and salt concentration was first studied by 

Nield (1968) and Taunton et al  (1972) who considered the onset of salt fingers. 

The formulation of Nield (1968) has been extended by Rubin (1973) to introduce a 

nonlinear salinity profile, by Patil and Rudraiah (1980) who included the effect of



therm al diffusion (the Soret effect) and by Murray and Chen (1989) to account for 

the effects of tem perature dependent viscosity and volumetric expansion coefficients 

and a nonlinear basic state salinity profile. There has been very little experimental 

work in double diffusive convection in porous media. Griffiths (1981) obtained values 

of heat and salt flux through a thin “diffusive” interface between two layers of fluid 

with different tem peratures and salt concentrations while Murray and Chen (1989) 

incorporate a nonlinear time-dependent basic-state salinity profile in considering 

the onset of double diffusive convection in a finite box of porous medium.

In comparison there has been very little study of the effect of a third diffus

ing component on the onset of convection. Given the number of double diffusive 

problems there must be many examples where more than one salt concentration is 

present. There are many fluid system containing more than two components. For 

example, Degens at al (1973) have described the waters of Lake Kivu in East Africa 

as having a salinity which is the sum of many salts and the oceans contain many 

salts with concentrations much less than the sodium chloride concentration. One 

particular application of triple diffusive convection can be found in experiments on 

double diffusive porous convection in which the effect of dyes or small tem perature 

gradients should be considered.

Further applications may be found in the area of contam inant transport. Celia 

et al. (1989) present a new numerical procedure, an optimal test function method, 

for the problem of reactive transport in porous media while Allen and Curran (1993) 

employ a finite-element method to model transport of a single contaminant in porous 

media. Chen et al. (1994) use a finite difference method to investigate biofilm growth 

in tortuous porous media and solute transport has been studied by Curran and Allen 

(1990) and Allen and Khosravani (1992) using finit e-element collocation methods.

The linear stability of triple diffusive porous convection has been studied bj  ̂

Rudraiah and Vortmeyer (1982) and Poulikakos (1985). They adapt the method 

of Griffiths (1979) who considered the effect of a third component in the viscous 

fluid case. Since then the triple diffusive viscous flow problem has been studied by 

Pearlstein et al. (1989). They found tha t the results of Griffiths (1979) were not 

always true. In particular the conclusion of Griffiths (1979) th a t “marginal stability

9



of oscillatory inodes occurs on a hyperboloid in Rayleigh number space but the sur

face is very closely approximated by its planar asymptotes for any diffusivity ratios” 

is shown to be incorrect. Pearlstein et al. (1989) show th a t for some fixed values 

of the diffusivity ratios, Prandtl number and two of the three Rayleigh numbers, 

three values of the third Rayleigh number may be required in order to specify the 

linear stability criteria. The effect of this is tha t the fluid is linearly unstable in 

two sections of the Rayleigh number domain and stable in the intermediate section. 

These novel results can be attributed to the existence of disconnected oscillatory 

neutral curves lying below the stationary neutral curve. In addition Pearlstein et al  

(1989) find th a t the oscillatory neutral curve can be heart-shaped which those au

thors claim offers the possibility of simultaneous onset of instability a t two different 

horizontal wavenumbers but the same Rayleigh number.

The results of Rudraiah and Vortmeyer (1982) and Poulikakos (1985) are similar 

to those of Griffiths (1979). Rudraiah and Vortmeyer (1982) also claim th a t the 

stability boundary for oscillatory convection is a hyperboloid in Rayleigh number 

space th a t is closely approximated by its planar asymptotes. Motivated by the 

fact th a t Pearlstein et al  (1989) have shown the results of Griffiths (1979) to be 

incomplete, a systematic investigation of the topology of the neutral curves of the 

porous problem is presented here and the results of Rudraiah and Vortmeyer (1982) 

and Poulikakos (1985) are reconsidered.

The linear stability analysis given here clearly does not yield any information on 

the effect of nonlinear terms. In section 2.6 the possible effects th a t nonlinear terms 

may have on the experimental realisation of the unusual results predicted by the 

heart-shaped oscillatory curves are discussed. Of particular relevance is the work of 

Proctor (1981) and Hansen and Yuen (1989). Both consider subcritical instabilities 

in the double diffusive fluid problem and show tha t subcritical instability can occur 

at values of the thermal Rayleigh number much less than th a t predicted by the linear 

theory. Rudraiah, Srimani and Friedrich (1982) consider the nonlinear stability of 

finite-am plitude convection of a two-component fluid-saturated porous layer using 

truncations of Fourier series. These authors also find th a t finite-am plitude insta

bility is possible at subcritical values of the thermal Rayleigh number. Rudraiah,
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Shivakumara and Friedrich (1986) use a similar method to investigate the effect of 

rotation on the double diffusive problem. Kaloni and his co-workers (Qin et al  

(1995), Guo and Kaloni (1995a), Guo and Kaloni (1995b), Kaloni and Guo (1996), 

Kaloni and Qiao (1997)) have recently produced several papers applying the energy 

method to the double diffusive problem.

There has been no work on the triple diffusive problem, however, and hence 

the need for the present analysis. One very im portant advantage of the application 

of the energy method given in the present work is th a t it provides unconditional 

results, i.e. nonlinear stability is guaranteed for initial perturbations of arbitrary 

sized amplitude.

The layout of this chapter is as follows. In section 2.3 a linear stability analysis of 

the triple diffusive problem in a porous medium is presented in the vein of Pearlstein 

et al. (1989). The problem is formulated for heat and two salt concentrations 

as the three stratifying agencies. In section 2.4 the energy method is applied to 

this problem for two distinct cases. Firstly, when all three stratifying agencies are 

destabilizing and secondly the case corresponding to heating from below with one 

salt field destabilizing and the other stabilizing. In section 2.5 numerical results for 

both the linear and nonlinear analyses are presented and in the final section the 

difficulties of reproducing these results experimentally are discussed.

This chapter has essentially appeared as Tracey (1996).

2.2 G overning equations

Consider a fluid-saturated porous layer lying in the infinite three-dimensional re

gion 0 < z < d. The boundaries z — 0 and z = d are maintained a t tem peratures 

Ti and Tu respectively. Suppose further tha t the fluid has dissolved in it two dif

ferent chemical components or “salts” . Denote the concentration of component a  

by C a (a =  1,2). The concentration of component a  a t the lower and upper 

boundaries is held constant at Cf* and C “ respectively.

The equation of state is given by

p = Po ( l  — A ( T  — T0) +  Ai [Cl — Co) +  A 2 (C 2 — Cq)) ,

11



where Pq,T q and Cq (a =  1,2) are reference values of density, tem perature and 

salt concentration respectively. The constants A  and A a (a' =  1, 2) represent the 

therm al and solute expansion coefficients respectively.

The equations of motion which govern flow in a porous medium are largely based 

on a relation which is a generalisation of empirical observations (c.f. Joseph (1976). 

This relation is known as Darcy’s Law and can be written

—-j f-b

~fcV + ̂ g3
where the variables p, p, k, v  and g represent pressure, dynamic viscosity, permeabil

ity, velocity and gravity. In addition to Darcy’s Law the governing equations consist 

of the incompressibility condition and the equations of conservation of tem perature 

and solute. Combining these equations with the Darcy law and the equation of state 

the following system of governing equations is obtained:

P,i =  ~ V i ~  gpQ( l - A ( T - T 0)

+ A i (C'1 — Cq) +  A2(C2 — Co))ty, (2.1)

Viti =  0 , (2 .2)

T j V i T }i = ftAT, (2-3)

C^t+ViCS = K,aA C a} (a =  1,2), (2.4)

where indicial notation and the Einstein summation convention have been employed. 

The vector lc is the unit vector in the ^-direction. The variables k and K,a (a  =  1,2) 

represent therm al and solute diffusivities respectively.

The boundary conditions considered are

T ( Q ) = T h T(d)  — Tu,

C“(0) =  C“ , C“( d ) = C J ,  (a = 1 , 2 ) ,  (2.5)

v3 = 0 at z — 0, d.

The experimental realisation of prescribing these boundary conditions, especially 

those on the concentration fields, is discussed in section 2.6.

Consider a steady solution (vj,p, T, Ca) of (2.1)-(2.5) where Vi = 0 and T  and 

C a are functions of z. Equations (2.3) and (2.4) show that, utilising (2.5),

12



d

O
A C c

C f - — s, ( ACa = C ? - C S ) .

The steady state pressure p can be obtained from (2.1) which shows tha t

dp
dz -9Po l - A W - p z - T ^ + A d C l

A C 1
i r z ~ c l

+A 2 I C? -  A T  -  Cl

and so,

V =  Po9z
A(3 „ A C 1 , A C 2
- r + A ' - 2 T + A > - w

~Po9z  [l — A(T i — To) +  Ai(Cf  — C 1) +  A2(Cf  — A2)] +  po,

where p0 is constant.

In order to investigate the stability of this basic solution perturbations 

(uii7r,0,4>a) are introduced to the steady solution ( v i ,p ,T ,C a) via

Vi = Vi + ui) p — p + TY, T ~ T - \ - 6 , C a = C a +  (j)a.

The resultant perturbation equations are non-dimensionalised using the follow

ing scalings:
. ,*d2t = t -- , 1 1 1 1  — 7r = 7T — , X  =  X  ri,k  d  k

e = e*T*, <t>a =  (#*)*$“,

T #  =  =  A C a | \ 1/2 ^
\ A p 0g k d )  ’ V A a p 0g k d  J

R _  { Ap0gkd\5T\\ 1/2 R  _  f A aPogkdPa\ A  C a |
p K j  \  fAK

5T = T, — Tu, H  =  sgn(ST), H a = sgn(A C a), Pa

1 /2

K
Kr

Here R  and R a are the therm al and salt Rayleigh numbers and Pa are salt Prandtl 

numbers.

The nonlinear perturbation equations are then, in non-dimensional form (drop

ping the asterisks),

13



7r,i =  -Ui  +  [JIB -  R] <il — R'i'ip h , (2.6)

«i,< =  0, (2.7)

e,t +  Ui84 =  HRw +  AB, (2.8)

Pi i^ t  +  urfl)  =  ffiU itu +  A ^1, (2.9)

P2( $  +  U i$ )  =  H2R2w +  A<t>2. (2.10)

where w = u^. The boundary conditions which follow from (2.5) for the perturbed 

quantities are

w =  9 = 4>l = (j)2 =  0 on z = 0,1. (2.11)

2.3 Linear stab ility  analysis

A linearised stability analysis on (2.6)-(2.11) in the vein of Pearlstein et al. (1989) 

is now given. Firstly, equations (2.6)-(2.10) are linearised by neglecting term s con

taining products of the perturbed quantities. A time dependence of eat is introduced 

by substituting

u(x, t) =  u(x)e(rf,

0(x,£) =  9(x)eat,

#*(x,£) -  (j)a{x)eat (a = 1,2).

The pressure term  is eliminated by taking curlcurl of equations (2.6) and then choos

ing the third component. This gives

A w  -  RA*9  -  R i A * ^ 1 -  T 2A*02, (2.12)

aO = H R w  + AB, (2.13)

P 1G(j>1 — H iR iw  + A(f)1, (2.14)

P2a $  =  H 2R 2w + Acf>2, (2.15)

14



where A* =  - +  —— is the horizontal Laplacian.
ox1 oy2

In order to obtain an equation in w alone eliminate 6, 01 and <fi2 from equation 

(2 .12) by operating on (2 .12) with (o — A)(Pi<r — A )(P2<t — A) and then using 

equations (2.13) -  (2.15). The resultant equation for w is found to be

(a — A )(Pi(j — A )(P2cr ™ A) Au; =  A*w { H R 2(Picf — A ) (P 2cr — A)

—H iR l (o  — A )(P 2£t — A)

- H 2Rl{o  -  A ) (P 1cr -  A)} (2.16)

A normal mode representation is assumed, i.e.

w =  W (z)e i{-mx+ny).

In order to put equation (2.16) into a similar form to equation (2.3) of Pearlstein 

et al. (1989) the following transformations are introduced:

HR?  —y P , Pq,P2 —y —Raj =  1T 2)*

Equation (2.16) becomes

(a -  (D 2 -  k2))(Pio -  (D2 -  k2))(P2o -  (D2 -  k2)) (D2 -  k2) W  

-  - k 2 {R(P1o -  (D2 -  k2))(P2o -  {D2 -  A;2))

+Ri{a  -  (D2 -  k2))(P2o -  (D2 -  k2))

P R 2{o -  {D2 -  k2))(Pi<j -  {D2 -  k2)) } W,

where k2 =  rn2 +  n2 is a wavenumber and D = — .
az

The boundary conditions on w imply tha t W(z) = sinmrz.  Putting  yn — n2ir2 +  

k2 yields

{o' +  yn)(PlO +  yn){P20 +  yn)yn = k2 {R{PiO H- yn)(P2o  +  yn)

-\-Ri(o + yn)(P2o yn) (2*17)

+ P 2(<j +  yn){Pio  +  yn) } -

In order to use this equation to obtain information about the stability of the basic 

solution one can consider yn,P i ,P 2,P i  and R,2 to be known while R  can be varied 

until a neutral solution (i.e. Re{o) = 0) is obtained. Rewrite (2.17) as

15



0  ( °  + yn\  D o  T  yn D +
P  =  ?2 -  P i -5---- —  “  #2  p — - — • (2.18)V k2 J Pi 0 +  yn P2o  +  yn

In order to find neutral solutions set the real part of 0 equal to zero, i.e. let o  =  0+iu>. 

Then (2.18) becomes, upon removing complex quantities from the denominators,

R  =  R ± PlU)2 +  PiUj2 +  ^
+Z(U?/n

which is rewritten as

fc2 " P l ^  +  J/2
1 p 1 - f i  p  1 - ^ 2
fc2 V v  +  y,2, “A V  +  JSn  J

(2.19)

P = /i(&, cu, Pi, P2, Pi, P2) + wyn/ 2(/c,cj,Pl5P2,Pi,P2).

The quantity P  is real so equation (2.19) implies th a t either w =  0 or f 2 = 0.

The case u  =  0 corresponds to stationary onset of convection. Setting to = 0 in 

(2.19) yields

ii2
P  =  P B =  f 5 - P 1 - P 2. (2.20)

k l

So, for stationary neutral solutions P  is a single-valued function of the wavenumber. 

The critical value of k which gives the minimum value of P s can be found by setting

the derivative of (2.20) with respect to k equal to zero, to find k — rwr. So the

critical Rayleigh number for steady onset is

ps,crit __ 4?{.2 __ p x _  p 2 , ( 2 .21 )

since n  =  1 clearly gives the minimum value.

For oscillatory onset u  7  ̂ 0, so equation (2.19) requires th a t f 2 — 0, i.e.

1 ?? 1 _ j P l  7? 1 - P 2
1 Pi <jj2 + y2 ~  2P22w2 +  i/2 _  ■>n

,2Rewrite this as a quadratic dispersion relation in o r,

^ P f P i  +  w2 [y„(P? +  P22) +  -  1)P22 +  R2(P2 -  1)U2)]

+ v l  [vl +  ^2( P i ( P i  - 1 )  +  W  - 1))] =  o,
or as

a{Pu P2)uji +  l3(k,R1,R2 ,P1,P2)io2 +  1 (k ,Ru R2,P1,P2) =  0. (2.22)
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where
a  =  P?P%>  0,

P =  y l {P l  +  P i ) + k 2{Rl {Pl - l ) P l  +  R2{P2 ~ l ) P 2), (2.23)

7  =  ^ [ ^  +  fcs( i M A - i )  +  J M P 2 - i ) ) ] -

The fact th a t this is a quadratic in ca2 means tha t it may give rise to solutions

with more than  one positive value of <n2 for fixed Pi, P2, P i, R 2, k. This has impor

tan t consequences for the linear stability of the basic solution and attention is now 

concentrated on finding such solutions.

Firstly, necessary conditions for the existence of multiple oscillatory neutral so

lutions are obtained.

If two real positive roots of (2.22) exist then @ <  0 and 7  >  0, i.e.,

v l ( P 2 + Pi)  +  k \ R x(Pi -  1 )P l +  P2(P2 -  1 )7 ) < 0. (2.24)

and

y l  +  ^ (P r fP i -  1) +  R2{P2 -  1)) >  0. (2.25)

Multiplying (2.25) by P 2 and adding to —lx(2.24) gives

vl{Pi -  P\ -  Pi) +  fc2 [Ri(Pi - 1  ) ( 7  -  Pi) +  W  - 1  ) ( 7  -  p?)} > 0,

i.e.

R d P l - l ) { F l - P I) > ¥ 0 ^ ) >O.

Similarly, multiplying (2.25) by P22 and adding to —lx(2 .24) yields

W _ l ) ( P 2 _ P l ) > _ g _ > 0 .

So, necessary conditions for the existence of two frequencies on the oscillatory curve 

are

R 1{Pi - 1 ) { P i - P 2) > 0 ,  (2.26)

P 2 ( P 2 - l ) ( P 2 - P i ) > 0 .  (2.27)

For fixed P i , P2 satisfying (Pi — 1) (P2 — 1) (Pi — P2) ^  0, i.e. the three diffusivities 

being distinct from each other, (2.26) and (2.27) are satisfied in exactly one quadrant

of the (P i, P 2)-plane. For the case of P i < 0 and P 2 <  0 (i.e. both salt fields
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stabilizing) then (2.26) and (2.27) imply that one cannot have two onset frequencies 

at one wavenumber, so in order to have two onset frequencies a t one wavenumber 

one of these stratifying agencies must be destabilizing. This is in apparent contrast 

with Pearlstein et al. (1989) who claim tha t two destabilizing effects cannot give 

rise to two onset frequencies at one wavenumber. However, examination of the sign 

convention used by Griffiths (1979) and subsequently by Pearlstein et al. (1989)

shows th a t the effects th a t Pearlstein et al. (1989) claim are destabilizing are actually

stabilizing.

Now look for values of P , P°, on the oscillatory (R , k) neutral curve corresponding 

to two different onset frequencies at one wavenumber. To do this, rewrite the real 

and imaginary parts of (2.17) as

- w 2 [ylf i  -  fc2(iJ°/2 +  /a)] +  v l  [vl -  k2(R° + f i) \  =  o, (2.28)

—w3/2 +  w [iJnfs ~  k2(R°f<s +  /r)] =  0 , (2.29)

where

f i  — Pi +  P2 +  P\P2i f2 — P1P2, fa — P1P2 +  P2PU =  P i  +  P21

/s  =  1 +  Pi +  P3, /e — Pi +  P21 h  ~  ^ i ( l  +  P2) 4- i?2(l 4- Pi).

On the oscillatory (P, k) neutral curve u) = 0 only at the bifurcation points 

with the stationary (P, k) neutral curve. Here a bifurcation point is one at which 

the oscillatory and stationary neutral curves intersect and the frequency u  tends to 

zero as the bifurcation point is approached. So, away from the bifurcation points 

equation (2.29) can be divided by to, yielding

LJ Vih  -  k2{R°h +  h )
h

Substitute (2.30) into (2.28) to get

y i n  , y n

(2.30)

k4JO k2

where

f | / 8 + %{R°S9 +  / 10) -  (R°f6 +  fr)(R°.h +  h )  = 0. (2.31)

fs — — / 1/5 4- f rj,i fa — h f a  4- fafa — fa, fio — f i fa  4- fafa — fafti-
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Equation (2.31) is satisfied on the oscillatory neutral curve. It can be used to locate

extremal points on the oscillatory curve (i.e. points on the neutral curve where the

gradient is zero) in the (R, /c)-plane. To find these points differentiate (2.31) with 
dR°

respect to k and set — — =  0 to get
ok

2y„(2fc2 -  yn)(2y2J s +  k2(R°f,  +  / 10)) =  0.

So the extremal values of R° occur at either

2k2 -  yn =  0, (2.32)

or

2tt l h  +  k2(R°f<, +  /,„ ) =  0. (2.33)
y 2

Equation (2.32) corresponds to the case k =  mr. From (2.32), — 4n27r2 which

is substituted into (2.31) to obtain

{R°)2f 2h  +  R°{.f2/7 +  /s /e  -  4n 27r2/ 9) +  ( /3/ 7 -  16n47r4/ 8 -  4n2ir2f 10) = 0 . (2.34)

For fixed P i , P2, R i , R-2 this is a quadratic in R° which has zero, one or two real 

solutions. For each solution the sign of a;2 in (2.30) must be checked (to is real, con

sequently its square must be positive). So there may be zero, one or two physically 

meaningful extremal values of R° on the oscillatory neutral curve corresponding to 

k =  mr.

In the other case (k mr) substitution of (2.33) into (2.31) yields

(R°)2(fg +  4 /2/ 6/ a) +  JR°(2/ 9/ 10 +  4 /2/7/s +  4 /3/ 6/ 8) +  ( / 20 +  4/ 3/ 7/s) =  0. (2.35)

Again this is a quadratic in R° which may have zero, one or two physically meaning

ful (u2 > 0) solutions at wavenumbers other than k — mr. In this case some more 

information can be deduced. Define

f — -^°/9 /10
1 1 1  ~  2 / 8 ’

then (2.33) may be rewritten as

(n2ir2 +  k2)2 -  f n k2 =  0 ,
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i.e.

kA +  (2n2Tr2 — f u ) k 2 +  n47T4 =  0.

This has zero or two positive real roots. So, for each physically meaningful value 

of R° satisfying (2.33) there are two extrema on the oscillatory neutral curve with 

k mr. So there may be two extrema at one R° (from (2.33)) and two extrema at 

k — n 7r (from (2.32)) in which case the oscillatory neutral curve is heart-shaped.

2.3.1 L ocating  th e  oscillatory  neutral curves

The existence of closed oscillatory curves can be decided by locating any bifurcation 

points and points of infinite slope on the oscillatory neutral curves. The advantage 

of this approach is th a t it eliminates the need to search for the oscillatory curves in 

the (R, &;)-plane.

Bifurcation points are the only points on the oscillatory curve at which cj =  0. 

They can be located by setting to =  0 in (2 .22). This yields 7  =  0, i.e.,

v l  + -  1) +  R 2(P2 -  1)) =  0.

Set 5 — Ri(Pi  — 1) +  ^ 2(^2 ~  1) and rewrite this as a quadratic in A;2,

kA +  k2(2n27r2 +  5) +  n47r4 =  0.

This has zero or two real positive solutions, corresponding to zero or two bifurcation 

points. The value of R°  corresponding to k can be found by setting u) — 0 in (2.28). 

This gives

R ° =  % -  h -

At points of infinite slope the number of branches on the oscillatory curve changes 

from zero to two or vice-versa. Consequently, at these points the number of positive 

roots of (2 .22) changes from zero to two, so points of infinite slope may be determined 

by solving

/32 — 4q7 =  0 

from (2.22). Rearranging this yields a quartic in k2

A k 8~\~k6(4n27r2A + B ) + k A(6ni irAA-\-2n2'iv2B-\-C) + k2(4n67rGA-\-ni'ir4:B)-\-An87rs =  0,
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where

A  = ( f ?  -  P% f  > 0,

B =  - 2 (P1 +  P2) [PZR^Pt -  1)(Pi -  P2) + P?R2(P2 -  1 )(P2 -  Pi)] ,

c  =  [P i(P i - 1 ) p |  +  p 2(p2 -  i)P i2] 2 >  0 .

This has four possible sign changes and so, by Descartes’ rule of signs, four possible

positive real roots. However, it can be shown tha t there are at most two physically

meaningful positive roots and consequently at most two points of infinite slope.

The value of R  on the oscillatory curve at the point of infinite slope can be found
dk

by differentiating (2.31) and setting =  0. This yields

■no _  ( / 2A  +  hfa )k2 ~ Vnf9
2fc2/ 2/6

Again for each pair (R°, k) the sign of to2 in (2.30) must be checked.

2.3 .2  T opology  o f th e  neutral curves

The possible combinations of bifurcation points and points of infinite slope allow us 

to determine the shape of the neutral curves. If there are 110 bifurcation points and 

no points of infinite slope then there is no oscillatory curve, since the oscillatory 

curve must be either connected to the the stationary curve (and so there are two 

bifurcation points), or disconnected from the stationary curve and closed (and so 

there are two points of infinite slope).

If there are two bifurcation points and no points of infinite slope then the neutral 

curves look like fig 2.1(i). The oscillatory curve is single-valued between hn  and kj>2 

and does not exist for any other values of k.

If there are two points of infinite slope and two bifurcation points then the 

neutral curves look like fig 2.1(ii). The oscillatory curve is double-valued between 

ks 1 and kbi and between /q,2 and ks2 and single-valued between kn  and k^ .  This 

has no bearing on stability as the single critical Rayleigh number still occurs at the 

minimum of the oscillatory curve.

If there are two points of infinite slope and no bifurcation points then the neutral 

curves will look like fig 2.1(iii) or fig 2.1(iv). In fig 2.1 (iii) the oscillatory neutral
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curve does not lie entirely below the stationary curve and so still only one critical 

Rayleigh number is required to describe linear instability. The points where the 

stationary and oscillatory curves meet are not true bifurcation points. As the point 

of intersection is approached along the oscillatory curve the frequency, cu, does not 

tend to zero. In fig 2.1(iv) the oscillatory curve lies wholly below the stationary curve 

and now three values of R  are required to specify the linear instability criteria. 

The fluid is linearly unstable for R l < R  < R 2 and for R  > R 3 and stable for 

R 2 < R <  R 3.
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Figure 2.1: Topology of the neutral curves, (i) Two bifurcation points, no points 

of infinite slope, (ii) Two bifurcation points, two points of infinite slope, (iii) No 

bifurcation points, two points of infinite slope, (iv) No bifurcation points, two points 

of infinite slope.
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2.4 N onlinear stab ility  analysis

In this section we present an analysis of the nonlinear stability of the basic solution 

by use of the energy method. The nonlinear perturbation equations are, from (2.6)- 

(2 -10),

7T* — — Ui +  [R6 — Rj(p — R 2ip\ h ,  (2.36)

=  0, (2.37)

0 ,i+ ti i0>i =  H R w  + AO, (2.38)

■Pi (0,t +  ik<P,i) = H iR iw  +  A0, (2.39)

P 2 +  Wi^,j) =  H 2R 2w +  Aip, (2.40)

where, for later convenience, the following transformations have been used

4>l f  if),

Let V  denote a period cell for the solution. The boundary conditions we consider

are

w = 6 = (f) = ip = 0 on z = 0,1,

and further th a t it*, 0, <p, ip and i t  are periodic 011 the lateral boundaries of V.

To commence multiply (2.36) by Ui, (2.38) by 0, (2.39) by cp and (2.40) by ip an(l 

integrate over V. Integration by parts and use of the boundary conditions yields

0 =  — ||u ||2 +  R(6, w) — Ri(<pt w) — Rz^tpi w), (2.41)

2 = H R ( w , 8 ) — ||V0 ||2, (2.42)

f y M 2 = (2-43)
| f  IMP = H 2R 2( w ^ )  -  IIWII2, (2.44)

where || • || denotes the L 2( V )  norm and (/,<?) =  / f g d V .
J  v

Now form (2.41) +  A (2.42) 4- £ (2.43) +  /x (2.44), where A,£ and 11 are positive 

coupling parameters to be selected at our discretion, then
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| ( | l W  + ^ M a + ^ M a)
=  (AH + l)R(w, 9) + (f£fi -  l)Ri(w, </>) +  (fiH2 -  l )R 2(w, ifi) 

~  (Ilu l|2 +  A||V0||2 +  f  ||V ^||2 +  £i||V^)||2) .

Define an energy
£ ( i )  =  ^ | | C  +  ^ M 2 +  ^ M I 2,

then (2.45) shows tha t
dE  n- ^—  — X — V  
dt

where

X =  (XH +  l )R(wt 9) +  (£HX -  l)Ri(w, <f)) +  (iiH2 -  1 )R2{w,

v  = nun2 + a iiv 0 ||2 + ?iiv.aii2 + H iv e ’ll2.

By rearrangement,
d,E ^  ^  ^  /  X \
—  = Z - V  =  - V [ l -  — ).  
dt V V )

Now define
1 max X  
A =  u  V '

where % is the space of admissible functions. In this case

n  =  {«i, e,4:,i>\ui e L2(V),9, H l (V),ui%i =  o } .

Then

d4 < - v { i - i ) .
dt A

If now

then

and so

A > 1,

1 — =  a > 0,
A

dE ^
- r  < ~ a V - dt

(2.45)

(2.46)

(2.47)
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The Poincare inequality is (see e.g. Straughan (1992)

l|V0||2 >  A,||0||2

where A* > 0, with similar results for <f> and 0. Application of this gives th a t 3c >  0

So, if A > 1 then E(t)  0 as t —*■ oo at least exponentially fast and so the steady 

solution is stable.

The problem remains to find the maximum in (2.46).

In order to clear the denominator of the maximisation problem of coupling pa

rameters we make the following transformations

such th a t

V  > cE.

Therefore,

(2.48)

which can be integrated to yield

E{t) < E{0)e~act.

y/X0 —> 0, —> 0, y/Ji'ip —> '0-

The resultant maximisation problem to be considered is

1 max
A u||2 +  |v6*||2 +  ;;” ;;;2 +  ||v^ ||2 , '"2 , ||W)I|2

The Euler-Lagrange equations for this maximum are derived as follows

V  max

where

26
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with Wi standing for it*, 0 ,0  or 0 . Therefore,

51  -  L d  =  0. (2.49)
A

Since R  is restricted to those functions tha t are divergence free, the solenoidal 

condition =  0 must be added into the maximisation problem by means of a 

Lagrange multiplier. This is done by adding a term

' V

in the maximisation. W ith the above condition included, the Euler-Lagrange equa

tions are

A h  -  Ui — TT,i (2.50)

A E ^ t 1)  Rw  +  A0 =  0, (2.51)

'A I 1 1  ) Riw  + A<f> = 0, (2.52)

-A. R i w +  =  0. (2.53)

At the stability limit A -¥ 1. Setting A =  1 in the Euler-Lagrange equations 

(2.50)—(2.53) will then yield the optimum results. The equations to be solved are 

now

2v x  j  \  2V ? ;  v

f \ H + l

ki ~ u i = (2.54)

Rw  +  A9 = 0, (2.55)
 ̂ 2\/A

( ~ T 7 ' ~ ) R l W  +  A , f ,  =  0 '  ( 2 ' 5 6 )

1 ~  RiV) +  Al/. =  0. (2.57)
2 VP J

At this point Ri  and R 2 are considered to be fixed and the variation of R  is inves

tigated, where now

R  = R ( A, fa a2),

where a, is a wavenumber.
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Two special cases are considered, Firstly,

H  =  I , # ,  =  H 2 = -1 .

This corresponds to heating from below and salting from above with both salt fields. 

In this case all three effects are destabilizing. Equations (2.54)-(2.57) become

/A  + 1

f i ± A \  n . A -  /4 ±I)
. v / v

Rw  +  A 6 =  0,

k i  ~  U i  —  7T

1 2 ^

R\v> +  =  0,

{1 +  1 
. 2 \/F  .

R 2w +  Aip — 0.

(2.58)

(2.59)

(2.60) 

(2.61)

Now vary each of A, f  and j i  in turn  and find the optimum values of these coupling 

parameters. Firstly, consider £, /i, Ri  and R 2 to be fixed and investigate the optimum 

value of A by using parametric differentiation. Let now superscripts 1 and 2 refer to 

a solution of (2.58)-(2.61) corresponding to parameters A1 and A2 respectively. The 

inner products ((2.58)1, u2), ((2.58)2, u 1), ((2.59)L, d2), ((2.59)2, 9x), ((2.60)1, <̂2), 

((2.60)2, <p1) i ((2.61)1, ip2) and ((2.61)2, ip1) are formed. Putting

„ A +  1 £ + 1  / i+ 1
f  =  — r ? i h

2\/A 2V?

gives rise to the following equations

2-x/M

R  f  (9\  w 2) ~  Rig{<pl , w2) -  R 2h(ip , w ) =  (u , u ),

(2.62)

(2.63)

R 2f 2(9 ,u / )  - R i g ^ . w 1) -  R 2h{ip ,w  ) =  (u ,u  ), (2.64)

f R ^ w ^ e 2) = D ( e \ 9 2), 

f R 2(w2,91) = D ( 9 2,91),

(2.65)

(2 .66)

- R ^ w 1, ^ 2) = 
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- R i g i w 2^ 1) =  D((f)2, (p1), (2.68)

R 2h(w1,ij)2) =  D (ip1 tip2), (2.69)

- i ^ f i ^ 2, ^ 1) =  D ^ 2, ^ 1), (2.70)

where D ( a yf)) — (Vet, V/?).

To proceed, form (2.63) +  (2.65) -  (2.64) -  (2.66) +  (2.67) -  (2.68) +  (2.69) -  (2.70) 

to find

(iJ2/ 2 -  -R1/ 1) [(02,™1) +  (0 \™ 2)] =  o.

Divide this by A2 — A1 and rearrange to find

R z 2 - / 1 , ci R 2 ~ Rl+ 1A2 -  A1 A2 -  A1 

Letting A2 —> A1 then produces

02V )  +  ( 0 \ w2)| = 0 .

However, from (2.55)

*S+/f() {d' w ) = o -

R f ( 9 , w ) ^ D ( 9 , 9 )  =  \\V9\\2. 

dR
At the optimum value of A, =  0 and so, from (2.71) and (2.72),

o A

=  0 ,dX R f

d fand since /  >  0, clearly —  =  0. Prom (2.62),
u X

d f  _  X — l  
dX 4A§

So,
d R
~dX

— 0 =>■ A ~  1.

(2.71)

(2.72)

(2.73)

By fixing A and p  and varying f  a similar argument to the above will show th a t

dR
=  0 = K = 1 ,
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and similarly, for fixed A and £  the optimum value of (jl is 1.

W ith A =  £ =  fi — 1 the equations (2.58)-(2.61) are identical to the linearised

versions of (2.36)-(2.40) with a time dependence &at assumed and a set equal to 

zero. So, if a can be shown to be real, the linear instability and nonlinear stability 

boundaries will coincide.

The linearised perturbation equations are, from (2.36)—(2.39) with a time depen

dence eat assumed,

7r * =  — Ui +  [jR<9 — R i f  — R 2ip\ (2.74)

@9 =  Rw + /\9, (2.75)

Pi<j(f) =  —Riw  +  A (2.76)

P2<nl> = - R 2w + A'ijj. (2.77)

Multiplying (2.74) by u* (the complex conjugate of (2.75) by 9*, (2.76) by </>*, 

(2.77) by <ip*, integrating each over V and making use of the boundary conditions 

yields

0 =  - | |u | |2 +  R(9,w*)  -  Ri(<t>t w*) -  R 2{'ip,w*), (2.78)

o-ll l̂l2 =  (2-79)

P . a U f  = (2.80)

P2c j \ M 2 = - R 2( w , P )  -  (2.81)

where now ||a ||2 =  (a, a*). Adding (2.78) +  (2.79) +  (2.80) +  (2.81) yields

• q W  +  J W r  +  J W )

=  H[(ff,tu*) +  (0*,tU) ] - R 1[(^in*) +  (0*.'w)]
(2.82)

- R 2 [{tp.w*) +  {ip*,w)}

-  ( I M I 2  +  | | V 0 | | 2  +  | | V 0 | | 2  + 1 | v ^ | ! 2 ) ,

The right hand side of (2.82) is real and so letting a — <rT +  icr*, then taking the 

imaginary part of (2.82) yields

o-i(ll«ii2 + R illz ii2 +  a w i 2) =  o.

Hence,

<J% =  0.
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Therefore the growth rate is real and so the linear instability and nonlinear stability 

boundaries coincide in this case. This is an important result and demonstrates tha t 

when iJ  =  1, H\ — H2 =  —1 there can be no subcritical instabilities.

The next case considered is

H  = H l = l , t f 2 =  - l .

This corresponds to the situation studied in section 2.3 where the layer is heated 

from below, salted from below in component 1 but salted from above in component 

2. This means th a t heat and component 2 are destabilizing but component 1 is in 

competition and acts as a stabilizing agent. Since the differential equations (2.6)- 

(2.10) do not form a symmetric system one does not expect agreement between the 

linear and nonlinear stability results. In this case the Euler-Lagrange equations 

(2.54)-(2.57) become

ki -  Ui =  7r,- (2.83)

Now set

v̂ Tl)Rw + Ae = 2̂'84̂
-  R ^w +  ^  = ° ’ (2-85)

-(fy£Kw + Â = °- (286)
/  =  1 ^ , 3 =  t z l  / i =  ^ i ± l .  (2.87)

2a/X  2 V ? ’ 2 k 7
Again, if one uses parametric differentiation to find the optimum values of A, £ and

/i, then a similar argument to tha t leading to (2.73) will show that

d R  n  x ,  d R  n

8 A = 0 ^ A =  1’ ^  =  0 ^ A‘ = 1 -

However, applying this argument for A and /i fixed and considering the variation in

£ produces, with A =  p. =  1,

d R , „  . _ do
—  (9, w) -  R i — {(f), w) = 0,

which can be w ritten as, using equations (2.84), (2.85) and (2.87),

| |V0| |a 8 J I _  dg  IIV^I2 f  +  1 2
~1 T  9? -  7 S T  = ■
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where || ■ || once again denotes the L 2( V )  norm. So the system is singular at £ =  1.
dR

While one cannot find a solution for — - =  0 note tha t

 ̂ i ^  n .  , d R  n£ < i = ^ > o ,  e > i ^ ^ < o .

This suggests th a t the best value of f  is one. W ith this value of £, equations (2.83)- 

(2.86) become (the <p equation dropping out),

ROki — R 2'ipki — Ui — TTij (2.88)

Rw + A9 — 0, (2.89)

—R 2w + Aip =  0. (2.90)

These equations are now solved for R 2 fixed. The ir^ term  is eliminated by taking 

curlcurl of equations (2.88) and selecting the third component to leave

RA*9 -  R 2A*ip -  A w  =  0,

AO =  —R w ,

Aip =  Row,

where A* is once again the horizontal Laplacian. Eliminate 9 and \p to obtain a 

single equation in w,

R 2 A*w +  Rl A*w +  A 2w =  0.

Now assume w =  sinmrz  el(mix+m2y'i to find

+ Rl =  .("25.2_ + ii2)2,
a2

where a2 = m \ +  m 2 is a wavenumber. The right-hand side is now minimised over 

n  and a to find the least value is 47t2. So, the nonlinear energy boundary is

(R2 + R 2) . = 4 ?r2. (2.91)V v m m  v '

2.5 R esu lts

2.5.1 Linear in stab ility

All results are for the case n =  1. Although there is no proof tha t n — 1 yields 

the minimum critical Rayleigh number, both the present work and the results of 

Pearlstein et al. (1989) suggest this to be so.
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The case where Pi =  4.545454 and P2 =  4.761904 yields similar results to those 

of Pearlstein et al. (1989). These values for P\ and P2 correspond to the values 

for KjKi and tt2 chosen by Pearlstein et al. (1989). Figure 2.2 shows the stability 

boundary P cnt as a function of P i  for fixed P 2 =  261.0. There are three regions 

of interest. To the left of the cusp (P i < —285.28) there is a region of oscillatory 

onset. Here oscillatory instability first occurs at a smaller value of P  than does 

stationary instability and there is a single critical value of P . To the right of the 

point of infinite slope (P i >  —284.92) instability occurs with real growth rate. Here 

oscillatory instability does not occur and again there is one critical value of P . The 

intervening region is the most interesting and is shown in the right-hand graph of 

figure 2.2. Here three values of P cnt are required to fully specify the linear instability 

criteria. Oscillatory instability sets in first at the lowest critical Rayleigh number. 

Then there is a region of oscillatory instability until the middle critical Rayleigh 

number is reached. At this point the system becomes linearly stable again until 

the th ird critical Rayleigh number is reached. Here stationary instability sets in 

and the system remains linearly unstable for all higher values of P . These stability 

boundaries are identical to those of Pearlstein et al. (1989) in tha t each of P cnt and 

P i  can be a multi-valued function of the other for fixed P 2, Pi and P2.

Figure 2.3 shows the (P cnt, P 2) stability boundary for the same values of P x 

and P2 with P i =  —284.0. Clearly P cnt and P 2 can be multi-valued functions of 

each other. Again three values of P cnt may be required to fully describe the linear 

stability criteria.

Figures 2.4 and 2.5 show the (P, k) neutral curves for P 2 — 261.0, Pi =  4.545454, 

P2 =  4.761904 and various P i. For P i  =  —320.0 the oscillatory curve is connected to 

the stationary curve at two bifurcation points and the single critical Rayleigh number 

occurs a t the minimum on the oscillatory curve. As P 2 is increased t o —310.0, —305.0 

and —300.0 the bifurcation points move closer together. At P i =  —288.5 the curve 

has lost its single-valued nature and there are two points of infinite slope. However, 

still only one critical Rayleigh number occurs. At a value of P x lying between 

—288.5 and —287.0 the bifurcation points move together and coalesce and a closed 

oscillatory neutral curve is formed. At P i — —287.0 the oscillatory curve has become
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detached from the stationary curve. The graphs of Ri  =  —286.0 show the heart- 

shaped curve more clearly. As Ri  is increased the oscillatory curve moves entirely 

below the stationary curve and now three critical values of R  are required. For the 

larger values of R\  shown the oscillatory curve becomes increasingly smaller until at 

a value of R\  between —285.1 and —284.9 the oscillatory curve collapses to a point 

and disappears. At Ri = —284.9 the oscillatory curve is no longer found and the 

single critical Rayleigh number occurs at the minimum on the stationary curve.

The case where P\ =  0.5, P2 =  1.5 and R\ — 115.0 is of interest as the results 

correspond to heating the fluid from above while the two salts are gravitationally un

stable. Similar results to the case where R 2 =  261.0, P\ =  4.545454, P2 — 4.761904 

are found. The stability boundary is shown in figure 2.6. As before there is a mul

tivalued region where three critical Rayleigh numbers occur. The neutral curves in 

figures 2.7 and 2.8 show similar behaviour to the previous numerical example. At 

R 2 =  10.0 the oscillatory curve is single-valued and connected to the stationary 

curve at two bifurcation points. The single critical Rayleigh number occurs a t the 

minimum on the oscillatory curve. As R 2 is increased to 20.0 the bifurcation points 

move closer together and the oscillatory curve loses its single-valued nature. As R 2 

is increased further the bifurcation points move closer together until a t a value of 

R 2 between 35.0 and 41.0 they coalesce and a closed oscillatory curve is formed. 

This closed curve then moves below the stationary curve and three critical Rayleigh 

numbers are required. The closed curve is heart-shaped over a small range of values 

(approximately R 2 =  41.0 — 43.0). At R 2 =  44.0 the curve has lost its heart shape 

and is now a convex curve. For increasing values of R 2 this convex curve decreases 

in size until it eventually collapses to a point and disappears. At R 2 — 50.0 only the 

stationary neutral curve is found and the single critical Rayleigh number occurs at 

the minimum of this curve.

2.5.2 N onlinear stab ility

Figure 2.9 shows the nonlinear stability boundary for the case H  = Hi = 1, H 2 =  — 1 

from equation (2.91) plotted with the linear instability boundary for fixed values of 

Ri  =  —284.0, Pi — 4.545454, P2 = 4.761904. In addition, the linear instability
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boundaries for P i — —184.0 and Ri = —130.5 are shown. For larger values of Ri  

than  —130.5 one does not find closed oscillatory neutral curves. Since these curves 

are the main interest of this thesis no larger values of R\ are considered. As can 

be seen from the figure, the larger the value of Ri  the closer the nonlinear energy 

boundary is to the linear instability boundary and the smaller the region of possible 

sub critical instabilities. This is not surprising as the equation corresponding to Ri  

(the (j) equation) drops out of the analysis in section 2.4 and so does not provide 

any information. However, these results do have the im portant advantage th a t they 

are unconditional, i.e. nonlinear stability is guaranteed for initial perturbations of 

arbitrary sized amplitude.

2.6 C onclusions and discussion

In the case where Pi =  4.545454, P2 =  4.761904 it has been shown th a t the im

portant results of Pearlstein et al. (1989) have carried over to the porous case. In 

particular the existence of stability boundaries in the (P, P 2) (or (P, P i))-p lan e  tha t 

are multi-valued functions of both P  and P 2 (or both P  and P i) shows th a t the 

conclusion of Rudraiah and Vortmeyer (1982) tha t “marginal stability of oscillatory 

modes occurs on a hyperboloid in Rayleigh number space but the surface is very 

closely approximated by its planar asymptotes for any diffusivity ratios” is incor

rect. In addition the existence of heart-shaped oscillatory neutral curves resulting 

in the onset of oscillatory instability at a given value of P  for two different horizontal 

wavenumbers is a feature not seen before in multi-component porous convection.

In the case where Pi =  1.5, P2 =  0.5 one can find positive values of P i and P 2 

th a t give rise to heart-shaped oscillatory curves. These values correspond to the 

case of having both salt fields destabilizing. In the work of Pearlstein et al. (1989) 

they claim (erroneously) tha t when the stratifying agencies corresponding to P i and 

P 2 are destabilizing then it is impossible to have two onset frequencies a t the same 

wavenumber. As explained in section 2.3 the necessary conditions (2.26) and (2.27) 

derived here show tha t having both salt fields stabilizing rules out the possibility of 

having a m ulti-valued oscillatory curve.
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In equations (2.5) both the temperature and normal component of velocity were 

regarded as being prescribed at the boundaries. These boundary conditions are 

discussed by Joseph (1976). In a porous medium the fluid will stick to a solid 

wall but this effect is confined to a boundary layer whose size is measured in pore 

diameters. As the wall friction does not overtly affect the motion in the interior it 

is reasonable to replace the true wall with a frictionless wall in this analysis.

Pearlstein et al. (1989) discuss the experimental problems of prescribing con

stan t concentration at the boundaries. They suggest the use of semi-permeable 

membranes as boundaries through which solute can pass into the working fluid vol

ume. If the fluid outside the membrane is maintained at a constant concentration 

then the solute boundary condition could be realised to within a good approxima

tion.

There is some doubt as to whether the onset of instability at two wavenumbers 

and the same Rayleigh number would be seen experimentally. In a situation where 

a heart-shaped oscillatory neutral curve arises, the initial onset of instability occurs 

a t the minimum on the oscillatory curve. The value of R  corresponding to onset at 

two different frequencies is, however, not a minimum and this instability lies in the 

range where nonlinear effects are likely to be important. Work by Proctor (1981) 

and Hansen and Yuen (1989) on finite amplitude double diffusive convection and 

by Rudraiah, Srimani and Friedrich (1982) on the equivalent problem in a porous 

medium have shown th a t subcritical convection could occur at values of the therm al 

Rayleigh number much less than tha t predicted by the linear stability theory and 

hence the need for the nonlinear analysis presented here. As explained in section 2.4, 

the fact th a t the stabilizing salt field terms drop out of the analysis leads to energy 

results th a t may be far away from the linear results. To overcome this a generalised 

energy method is presented in the next chapter tha t yields superior results.

In addition there is the physical relevance of the equation of state. McKay and 

Straughan (1992) argue tha t the density of a fluid is never a linear function of 

tem perature. In chapter 4 a nonlinear buoyancy law is adopted. The effect of this is 

th a t the closed oscillatory neutral curves are no longer perfectly heart-shaped but 

instead are slightly skewed. The phenomenon of onset of instability at two different
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wavenumbers and the same Rayleigh number is no longer seen.

f f  Stability boundary for R^261 R* Stability boundary for R=261 (enlarged)

6 3 .5 -

6 3 .0 -

6 2 .0 -

6 1 .5 -

■285.2 ■285.0•285.4■280 ■270■300•310

R , R,

Figure 2.2: (Rcnt,R i )  stability boundary for R 2 = 261.0, P\ =  4.545454, P2

4.761904. The right-hand graph shows the multi-valued region in more detail.
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Stability boundary for R ,= -284 Stability boundary for R ,= -284  (enlarged)

2001000 260.5 261.0260.0259.0 259.5

Figure 2.3: (Rcnt,Ro) stability boundary for Ri  =  —284.0, Pi = 4.545454, P2

4.761904. The right-hand graph shows the multi-valued region in more detail.
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Figure 2.4: Neutral curves for i ?2 =  261.0, Pi =  4.545454, P2 =  4.761904
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Figure 2-5: Further neutral curves for R 2  =  261.0, P i — 4.545454, P 2 =  4.761904
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F f  Stability boundary for R ,= 115 f  Stability b ou nd aiy  for R ,= 115 (enlarged)

■IIS-

150100 200 30 40 45 50 55 600 50

Figure 2.6: (i^cnt,i?2) stability boundary for R\ — 115.0, Pi =  0.5, P2 =  1.5. The 

right-hand graph shows the multi-valued region in more detail.
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Figure 2.7: Neutral curves for R i =  115.0, Pi =  0.5, P2 =  1.5
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Figure 2.8: Further neutral curves for R \ — 115.0, P \ =  0.5, P 2 =  1.5

43



Rclil Linear and energy stability boundaries
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Figure 2.9: Linear instability and nonlinear stability boundaries. The linear insta

bility boundaries are shown for three values of R\.
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C hapter 3

N onlinear stab ility  of  

m ulti—com ponent 

convection—diffusion in a porous 

m edium

3.1 Introduction

In chapter 2 interesting original results were found in considering the linear stability 

of a fluid-saturated porous layer with two salt fields dissolved in it. In particular it 

was shown th a t the earlier work of Rudraiah and Vortmeyer (1982) and Poulilcakos 

(1985) was incomplete. Specifically, it was shown tha t for some fixed values of the 

diffusivity ratios, Prandtl number and two of the three Rayleigh numbers, three 

values of the third Rayleigh number may be required to fully describe the linear 

stability criteria. The reason for this is an unusual, symmetric, heart-shaped oscil

latory neutral curve lying entirely below the stationary neutral curve (see figures 2.5 

and 2.8). One interesting effect predicted by this heart-shaped curve is the onset 

of linear instability at the same thermal Rayleigh number but different wavenum- 

bers. However, the Rayleigh number at which this occurs is not a minimum but 

instead lies in a region where nonlinear effects are likely to be of importance. Work 

by Proctor (1981) and Hansen and Yuen (1989) on the double-diffusive fluid prob
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lem shows th a t subcritical instability can occur at values of the thermal Rayleigh 

number much less than th a t predicted by linear theory. Rudraiah, Shivakumara 

and Friedrich (1986) find a similar result in considering the effect of rotation on 

the double-diffusive porous problem. Consequently an investigation of the nonlin

ear stability of the triple-diffusive porous problem was needed. In section 2.4 an 

application of the classical energy method is presented which yields unconditional 

exponential nonlinear stability. However, the results are somewhat unsatisfactory. 

W hen the optimum values of the coupling parameters are found one of the equations 

drops out of the analysis and so does not provide any information and as a conse

quence the results are rather disappointing, in the sense th a t the nonlinear stability 

boundary may be far from the equivalent linear one.

Mulone (1994) presents a generalised energy method for the problem of a fluid 

layer heated and salted from below. Rather than work with the salt concentration 

perturbation he introduces a new variable formed from a linear combination of the 

tem perature and solute perturbations. He obtains a globally nonlinear exponential 

stability theorem and for certain values of the Schmidt and Prandtl numbers shows 

coincidence of the linear and nonlinear stability boundaries.

In the present chapter we study the situation concentrated on in chapter 2, i.e. 

where the layer is heated from below, salted from below in the component with 

larger salt diffusivity and salted from above in the other salt field. From a m athe

matical point of view the competition between the heat and salt fields means th a t 

the operator associated with the linear stability is not symmetric. Indeed, in chapter 

2 oscillatory convection is found. When the operator is not symmetric it is usually 

hard to develop a nonlinear stability analysis to give a sharp nonlinear threshold. 

Here we have been able to construct a suitable generalised energy (Lyapunov func

tional) which does yield a useful stability threshold. This is a great improvement 

on results found by employing a standard “kinetic energy” .

This chapter has essentially appeared as Tracey (1997a).
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3.2 G overning equations

Consider a fluid saturated porous layer lying in the infinite three-dimensional region 

0 < z < d. The boundaries z =  0 and z  =  d are maintained at temperatures T) 

and Tu respectively. Suppose further tha t the fluid has dissolved in it two different 

chemical components. Denote the concentration of component a  by C a (a  =  1, 2). 

The concentration of component a  at the lower and upper boundaries is held at C f 

and C7“ respectively.

An equation of state which is linear in both the tem perature field and the salt 

concentration is assumed, i.e.

p =  Po ( l  -  a  (T  -  To) +  A l (C 1 -  Co1) +  A2 (<72 -  C2) )  ,

where po,T0 and C f (a =  1, 2) are reference values of density, tem perature and 

salt concentration respectively. The constants A  and A a (a  =  1,2) represent the 

therm al and solute expansion coefficients respectively.

The equations of motion which govern flow in a porous medium are largely based 

on a relation which is a generalisation of empirical observations (c.f. Nield and Bejan 

(1992)). This relation is known as Darcy’s Law and can be written

Vp =  - £ v  +  pg,

where the variables p, /q k, v and g represent pressure, dynamic viscosity, perme

ability, velocity and gravitational acceleration respectively. In addition to Darcy’s 

Law we have the incompressibility condition and the equations of conservation of 

tem perature and solute. Combining these equations with the Darcy law and the 

equation of state we obtain the following system of governing equations

P,i =

Vi,i

r£\t, +  UiTj

c «  +

— jL* — SPo(l — A(T  — To)

+ / l 1(C 1 - C 01) + A 2(C2 - C 02))fci ,

0,

kAT,

KaA C a (a  =  1,2),
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where indicial notation and the Einstein summation convention have been employed. 

The vector k is the unit vector in the ^-direction. The variables k and Ka represent 

therm al and solute diffusivities respectively.

The boundary conditions we consider are

T ( 0) =  Tt, T{d) =  Tu,

C“(0) =  c r , C a{d) = C“ (a  =  1,2), (3.5)

i?3 =  0 at 2 =  0, d.

The experimental realisation of prescribing these boundary conditions for the salt 

concentrations has been investigated by Krishnamurti and Howard (1983).

Consider a steady solution (iJi,p,T,Ca) of (3.1)—(3*5) where V( — 0 and T  and 

C a are functions of z. Equations (3.3) and (3.4) show that, utilising (3.5),

f  =  T , - P z ,  =
A fia .

C<* =  C ?  J - Z ,  (&Ca = C ? - C ° ) .
Co

and the steady state pressure p  can be obtained from (3.1).

In order to investigate the nonlinear stability of this basic solution we introduce 

perturbations (i^, tt, #, </>“) to (vi)p , T , C a) via

Vi — Vi+Ui, p — p + 7r, T  — T  + 9, C a =  C a +  (j)a.

The resultant perturbation equations are non-dimensionalised using the follow

ing scalings:
. ,*d2t  =  t  — , U  =  U. — , 7T =  7T — X  =  X  Ct,

k, a k

e = e * T 4 > a = ((pay § a}

r #  =  / H 5 T |  y /2 =  i p,Kp a\ & c “\y /2 _
\ A p 0gkd)  ’ y A ap0gkd )

R  __ f  Ap0gkd\5T\\ 1/2 R  / A aPogkdPa\ A C a\\ l/2

V )  ’ a  V J
ST = T , ~  Tu, H  =  sgn(ST), H a = sgn(A Ca), Pa = — .

K,a

Here R  and R a are the thermal and salt Rayleigh numbers and Pa are salt Prandtl 

numbers.
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The nonlinear perturbation equations are then, in non-dimensional form (drop

ping the asterisks),

7T* = - U i  +  -  i?2<A2] h ,  (3.6)

0, (3.7)

+  ^i^,{ — H R w  + AO, (3-8)

+  =  H.Run + A p 1, (3.9)

P2( ^  +  Ut^i) =  H2R 2w + A p 2. (3.10)

The boundary conditions which follow from (3.5) for the perturbed quantities

are

^3 =  uj — 0, 9 — p1 — p2 =  0, on z  — 0,1. (3-11)

For the nonlinear analysis which follows we further assume tha t u^O^p1 , p 2 and 7r 

are periodic on the lateral boundaries of a period cell V.

3.3 N onlinear stab ility  analysis

The classical energy method leads to results which may be far from the linear sta

bility boundary, as can be seen from curves (a) and (c) in figures (3.1)-(3.3). To 

take account of the fact th a t there is competition between the heat and salt effects 

we must modify the basic functions in which we seek nonlinear stability. To this 

end replace the salt perturbation fields p1 and p2 by the new generalised variables 

ip and p  defined by

'ip — p1 +  p2, p ~ p l — p2. (3.12)

From (3.11) the boundary conditions for ip and (p are p — ip = 0 o n 2 =  0,1 and 

also th a t p and ip are periodic on the lateral boundaries of the period cell V.  

Equation (3.6) can be rewritten in terms of the new variables as

7r ; =  -Ui  + h .  (3.13)
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We also need evolution equations for ip and <j> and equations (3.9) and (3.10) can 

easily be rearranged to give

/ I ( R-lR\ H2R 2 \  1 / 1  1 \ / 1 / 1  1 \  , /o 1 /t\
*  +  UiAi =  ( - p r -  +  — )  »  +  2 {-p, +  T j  ^ +  2 ( *  -  T J  ( 3 -14)

and

( R \ R \  R-2-R2\ 1 / 1  1 'N * 1 1 / 1  1 \  . ,
<pt +  =  ( ^ - - - - - - - J f )  V, +  2 -  j r )  ^  +  2 ( f T  +  p-J ^  ( 3 -15)

We wish to form the basic “energy” identities in L 2 combinations of Ui, 9, ip and 

(p. Thus, we now multiply (3.13) by Ui, (3.8) by 6, (3.14) by (3.15) by <p and 

integrate over V.  Integration by parts and use of the boundary conditions yields

~ ( R i -& )(<,t ,w)  (3.16)

2 d t n 11
HR(w, <0 -  IIV0II2•>

1 II , 11 Q (H \R \ H 2R 2 'N 1 /
2 * W  = ( *

+
P2 )

(w:ip) --
2 (

i , /  1
2 '

1 11 > 110 f H i R i R-2R2\ {w,(p) 1 (
2 dt = ( A P2 ) --

2 (
1
2 1VPi

(3.17)

1

)(V ^ V V 0 , (3-18)

1

) r / : : 2, (3 .19)

where || • || denotes the L 2(V) norm and (/, g) =  / f g d V .
J  ̂

Now form (3.16) +  70 (3.17) +  71 (3.18) +  72 (3.19), where 70, 7i and 72 are 

positive coupling parameters to be selected at our discretion. If we define an energy 

E(t)  by

m  = | l | 0 | | 2 +  y M i 2 +  ^ W 2,

then it follows tha t

r f  TP
-  =  (3.20)

where the indefinite term X  and the dissipation V  are given by
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V =  ||u||2 +  7o||V0||2 + 'D1(’M )- (3 .2 2 )

In (3.22) the function T>i is given by

V M , * )  =  7l(pi  +  •P2) ||V^||2 + (71 + 7f f  -  Fl) (V<̂», V fl

, 7 2 ( K  +  P 2 ) ik^ m2
IIV^II2. (3 .2 3 )

2Pi P 2

In order to show nonlinear stability in a similar manner as the argument leading 

to equation (2.48) we need V \  to be definite positive. Clearly the middle term  in 

equation (3.23) may be positive or negative. However, completing the square in V i  

yields,

-  _  7 i(^ i +  P 2)
V l  ~  21', l ’j

( 7 i  +  7 2 )2

( 7 l  +  7 2 H-F2 -  A )  A  tl2

\ m f
P 2 ~  P i ) 2 — 4 7 i7 2 ( P i  +  P 2) 11V7 jl 112

47? (Pi + P2)2

So, the condition

(71 +  72)2(P2 -  Pi)2 -  47 i72(P l +  P2)2 < 0 (3.25)

implies tha t V \  is a definite positive function of ip and </>. In the arguments below

we select 71 and 72 to ensure this is so. W ith this condition enforced then nonlinear

stability can be obtained as follows. By rearrangement of (3.20),

=  x  - V  =  - V  ( l  -  ^ r )  . 
dt  V V J

If we now define

=  max —, (3.26)
A u  V

where % is the space of admissible functions, then



If now A > 1 then 1 — -  =  a > 0 and so
A

dE_
dt

< ~aV.

The Poincare inequalities 7r||0 || < ||V0||, 

used in the inequality above to deduce

dE

Tv\\ip\\ < ||V ^ ||, 7r ||0 || <  ;; . / “ may be

dt
< air

Co

where Co is a positive computable constant depending on 70, 71, 72, P\ and P2. This 

last inequality can then be integrated to show nonlinear exponential stability.

The problem remains to find the maximum in (3.26).

In order to clear the denominator of the maximisation problem of the coupling 

param eter 70 the transformation 9 —Y 9 is made and the Euler-Lagrange equa

tions for this maximum are then 

R{1 + 7oH)
VTo
+

+

(,Ri  — R 2) +  71

1 , . f  H1R 1
2 ( ^  + ^ 2) +7r ( ^  + ^ 7 - )

H 1R 1

Pi

i?(l + 'YqP -)  
VTo

h 2R 2
Po

if)

(f>\ h i
A

Ui ~  tu

+  - A 9 =  0, 
A

1 tr> , c   ̂ , ( R \ R \  , H2R 2
-(Hi + Ri) + 71 {-p^ ~  + -pT-

+
1 1 \  1 

7! I pT + p~J + 2 (7l + 72̂

w
1

P~i

1
P2

+
1

R 2) +  72
H 1R 1 H2R 2

A 72
Pi P2 1 1 \  1 

—  +  j p - J  A (j> +  - ( 7 ! +  72) (A “AW

= o5

=  05

(3.27)

(3.28)

(3.29)

(3.30)

where tu is a Lagrange multiplier introduced because u  is divergence free.

If H  = l , i ? i  =  H 2 — — 1, then all effects are destabilizing and the nonlinear 

energy boundary is the same as the linear stability boundary, see section 2.3. The 

focus of this chapter is the situation where salt concentration 1 is stabilizing and 

the other effects are destabilizing in the conduction state. This is the case H  =  

H\ =  1 , H2 =  — 1. This was studied according to linear stability methods and the 

standard kinetic energy method in chapter 2.
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To draw conclusions from equations (3.27)—(3.30) consider iA, R 2, Pi, P2, 7 i and 

72 to be fixed and use parametric differentiation to investigate the variation of R  

with 7q. Denote by f , g  and h the functions

/ ( 70) =  (3.31)
V7o

<?(7i) — _  2 ^  +  ^  +  71 (  5 (3.32)

=  +  (3-33)

At the stability limit A —> 1. Setting A — 1 in (3.27)—(3.30) will therefore yield the 

optimum results. In tha t case

[fRO +  gtp +  h(j>] hi -  2ui -  (3.34)

R f w  +  2A 9 =  0, (3.35)

gw +  71 Â > +  i ( 7x +  72) (J^- -  A(f> = 0, (3.36)

hw +  72 ( ^ -  +  ^  A</> +  ^ (7 ! +  72) Aip = 0. (3.37)

Using parametric differentiation on (3.34)—(3.37) it can be shown that

/S +ijS ) (̂ )=o- ( 3 - 3 8 )

dR
At the optimum value of R , - — =  0 and it can also be shown that, from (3.35),

$7o
R f { w J9) = 2 ||V(9||2. So, equation (3.38) becomes

d f 2\ \ v e r
dio f

Q f
and since /  > 0 we must have - — =  0 at the optimum value of 70. From (3.31)

d j 0

d f  70 -  1
<Tyo 27(2

and so 70 =  1 at the optimum value.

If we now set 70 — 1 in (3.34)-(3.37) we obtain

[2R9  +  gip +  h(j)\ k{ — 2ui =  zu>i: (3.39)
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Rw + A$ — 0, (3.40)

gw +  71 ( JT +  J r )  Aip +  ^(71 +  72) -  J r )  A <̂ =  0 , (3.41)

Aw 4- 72 ^ +  -(71  +  72) (yp—  — ^ Aip = 0. (3.42)

Taking the third component of the double curl of (3.39) and then assuming a normal 

mode representation results in

2Ra2& +  g a H  +  ha2$  +  2(D2 -  a2) W  =  0,

R W  +  (D 2 -  a2)& =  0, 

g W  +  l i ( y i +  y P  (D 2 -  a2)’*' +  | ( - n  +  72) ( y  ~  i )  {E>2 -  a2) <B =  °>

+  72 ( ^  +  y )  (.D2 -  a2)#  +  l ( 7 i  +  72) -  ^ )  (-D2 -  a2)*  =  0,

where a2 is a wavenumber and D =
az

From the boundary conditions (3.11), the appropriate ^-dependence for W, 0 , 4/ 

and <f> is sinnirz. We are left with

2 P a 2© +  ga2T +  ha2® +  2 ( n V  +  a2)W  =  0 , (3.43)

R W  -  ( n V  +  a2)© =  0 , (3.44)

g W - ' r i  (n27r2 +  a2)4/ - i ( 7 ! +  72) ^  ~  (n2?r2 +  a2)$  =  0, (3.45)

h W  72 (jgr +  j r )  ( ^ V  +  a2) ^ - i ( 7l +  72) ^  ^  ( n V  +  a2)T  =  0 . (3.46)

For non-zero solutions of (3.43)-(3.46) to exist the determinant of system (3.43)- 

(3.46) must be zero. We find

{R2o2 -  y2n)A +  2P1P2a2(P1 +  P2)(g2j 2 +  h27 l) -  2P xP2g h a2{P2 -  Px)(7l +  7s) =  0,

(3.47)

where we have set yn =  n27r2 +  a2 and the term A  is defined by 

A = 47!72(Pi +  P2)2 — (71 +  72)2 (P2 — P i)2-

Notice tha t, from (3.25), A > 0. Upon rearranging, equation (3.47) becomes,

y l  , 2P1P2(P1 +  P2)(g272 +  A27 i) S P ^ / i ^  -  P i)(7 i +  72) , 0
R  = - 2 + ------------------ ^ ------------------------ :--------------- ^ ----------------- . (3.48)
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Now the right-hand side is minimised over n and a to find the following energy 

boundary,

o p  p
R 2 =  47f2 H----- —— [gh(P 2 — -Pi)(71 +  7 2 ) — (Pi +  P2)(<?272 +  ^27i) ■ (3.49)

3.4 R esu lts

In chapter 2 the following sets of parameter values were shown to give rise to the 

unusual neutral curves described in the introduction:

p 1 =  4.545454, P2 =  4.761904, =  a/284, a/184, a/130.5

(in the present notation).

The classical energy method presented in section 2.4 yields the following nonlin

ear stability boundary:

P 2 +  P 2 — 47T2. (3.50)

The new nonlinear stability results are given in curves (b) of figures (3.1)-(3.3). 

They represent nonlinear stability for all initial data values and are thus very useful. 

To obtain curves (b) we fix P 2 and plot the curve in (3.49) for 7! and 72 satisfying 

the constraint (3.25). The envelope of all such curves gives rise to each of curves (b) 

in figures (3.1)—(3.3). In addition the linear stability boundary from section 2.3 and 

the “standard” energy curves given by equation (3.50) are also plotted, as curves (c) 

and (a), respectively, in figures (3.1)—(3.3). The multi-valued region on the linear 

instability curves (c), i.e. the “kink” region is due to the existence of the isolated 

heart-shaped oscillatory neutral curves described in the introduction.

In figures (3.1)—(3.3) the region below curves (b) represents the region where 

the conduction solution is always stable. Above curves (c) the solution is always 

unstable, the region between (b) and (c) is where possible subcritical instabilities 

may occur. These are to be expected from the work of Proctor (1981) and Hansen 

and Yuen (1989).

The present work can be seen to be a considerable improvement on the nonlinear 

results of section 2.4. In particular the energy boundary has been extended to include 

the region along the P 2-axis tha t pertains to the isolated oscillatory curves.
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Figure 3.1: (a) Energy boundary from chapter 2 (equation (3.50)). (b) Energy

boundary from equation (3.49). (c) Linear instability boundary from chapter 2. For

all curves Pi =  4.545454, P2 =  4.761904, R f =  284.
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Figure 3.2: (a) Energy boundary from chapter 2 (equation (3.50)). (b) Energy

boundary from equation (3.49). (c) Linear instability boundary from chapter 2. For

all curves -  4.545454, P 2 =  4.761904, R \  =  184.
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Figure 3.3: (a) Energy boundary from chapter 2 (equation (3.50)). (b) Energy

boundary from equation (3.49). (c) Linear instability boundary from chapter 2. For

all curves P { =  4.545454, P2 =  4.761904, R \ = 130.5.
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C hapter 4 

P enetrative convection and 

m ulti—com ponent diffusion in a 

porous m edium

4.1 Introduction

In chapters 2 and 3 the stability (linear and nonlinear) of triple diffusive porous 

convection was investigated. Highly unusual linear stability results were obtained, 

notably the fact tha t, for some fixed values of the diffusivity ratios, P randtl number 

and two of the three Rayleigh numbers, three values of the third Rayleigh number 

may be required in order to specify the linear stability criteria. This is due to the 

existence of an isolated, symmetric heart-shaped oscillatory curve lying below the 

stationary curve. One consequence of the perfect heart shape of the oscillatory neu

tral curves is th a t instability could occur at the same thermal Rayleigh number but 

different wavenumbers. There are two factors tha t cast doubt over the experimental 

observation of this result. Firstly, nonlinear effects. Instability has been predicted 

as occurring at the twin maxima of the “lobes” of the oscillatory neutral curve. 

However the critical Rayleigh number at which this occurs is not a minimum but 

instead lies in a region where nonlinear effects are likely to be of importance. Work 

by Proctor (1981) and Hansen and Yuen (1989) on the double diffusive fluid prob

lem shows tha t subcritical instability can occur a t values of the thermal Rayleigh
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number much less than tha t predicted by linear theory. Rudraiah, Shivakumara 

and Friedrich (1986) find a similar result in considering the effect of rotation on the 

double diffusive porous problem. In order to investigate the nonlinear stability of 

the triple diffusive problem an application of the classical energy method th a t yields 

unconditional nonlinear stability is presented in chapter 2. A generalised energy 

method th a t yields sharper results is given in chapter 3. Secondly, there is the rel

evance of the equation of state. In chapters 2 and 3 an equation of state in which 

the density is linearly dependent upon temperature is adopted, i.e. the Boussinesq 

approximation. The density of a fluid will not be a linear function of tem perature 

in reality and so in the present chapter an equation of state tha t is quadratic in 

tem perature is adopted in order to investigate the triple diffusive problem. This 

quadratic tem perature law allows the introduction of the phenomenon of penetra

tive convection ■— a term used to describe the situation when a stable layer exists 

next to an unstable layer. When convection begins in the unstable layer the motions 

penetrate into the stable layer. Penetrative convection has applications in stellar 

regions (see e.g. Veronis (1963)) and in geophysical problems including modelling 

thawing subsea permafrost (see e.g. Payne et ai  (1988)) and patterned ground 

formation (see e.g. Ray et al. (1983), George et at. (1989)). Other occurrences of 

penetrative convection are cited in Veronis (1963), Straughan (1992) and Nield and 

Bejan (1992).

The analytical method of section 2.3 cannot be used in the present situation 

as the differential equations tha t arise in the eigenvalue problem here have coeffi

cients th a t are functions of the spatial variables. Instead a Chebyshev tau  method 

is employed. This provides quick and accurate results and in addition yields as 

many eigenvalues as are required, allowing the behaviour of the growth rate and the 

instability mechanism to be investigated in detail.

The reasons outlined above tha t necessitated the nonlinear stability analyses of 

chapters 2 and 3 are equally relevant here. Consequently, the energy method is again 

used in this chapter to investigate the nonlinear stability of the basic motionless 

state. The nonlinear equation of state gives rise to quadratic tem perature terms in 

addition to convective nonlinearities. To deal with these a weight is introduced to
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the tem perature part of the energy, the effect of which is to cancel out the quadratic 

tem perature term. The results presented here have the im portant advantage tha t 

they are unconditional i.e., nonlinear stability is guaranteed for initial perturbations 

of arbitrary sized amplitude.

This chapter has essentially appeared as Tracey (1997b).

4.2 G overning equations

Consider a fluid-saturated porous layer lying in the infinite three-dimensional region 

0 <  z  < d. The lower boundary z  =  0 is held at the fixed tem perature T  =  0°C while 

the upper boundary z =  d is held at a tem perature T\  >  4°C. If the fluid under 

consideration is water then penetrative convection can occur in the fluid layer. This 

is due to the fact th a t water has a density maximum at 4°C and so the lower part 

of the layer is gravitationally unstable while the upper part is gravitationally stable. 

W hen convection occurs in the lower part of the layer the motions will penetrate 

into the upper part. Suppose further that the fluid has dissolved in it N  different 

chemical species. Denote the concentration of component a  by C a (a = 1 , . . .  ,N ) .  

The concentration of component a  at the lower and upper boundaries is held at Q* 

and respectively. The density is taken to be quadratic in the tem perature field 

and linear in the salt concentration, i.e.

concentrations Cq ( q : =  1 , . . . ,  N).  The constants A  and A a (a  =  1 , . . . ,  N )  represent 

the therm al and solute expansion coefficients, respectively.

The equations of motion which govern flow in a porous medium are largely based

where the variables p, p, ft,v  and g represent pressure, dynamic viscosity, perme

ability, seepage velocity and gravitational acceleration, respectively. In addition to

where po is the value of the density at a temperature 4° C  and some reference salt

on a relation which is a generalisation of empirical observation (c.f. Nield and Bejan 

(1994)). This relation is known as Darcy’s Law and can be written

V p =  - ^ v  +  pg,
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Darcy’s Law we have the incompressibility condition and the equations of conserva

tion of tem perature and solute. Combining these equations with the Darcy law and 

the equation of state gives the following system of 5 + N  governing equations:

^  SPo ( l  -  A(T  -  4)2 +  f ;  A a(Ca -  C ^ k i ,  (4.1) 

=  0, (4.2)

P ,i  — - - U i

T t  + ViTi -  kAT, (4.3)

C J +  UiC? =  KaAC*  (a  =  1 , . . . ,  iV), (4.4)

where indicial notation and the Einstein summation convention have been employed. 

The vector k  is the unit vector in the ^-direction while the variables k and Ka repre

sent thermal and solute diffusivity, respectively. The boundary conditions considered 

are

at 2 =  0, T  = 0°C, C a =  C? {a = 1 , . . . ,  N),  v3 =  0,
(4.5)

at z = d, T  =  Ti >  4°(7, Ca =  (a  =  1, . .  .,7V), u3 =  0.

The experimental realisation of prescribing these boundary conditions for the salt

concentrations has been investigated by Krishnamurti and Howard (1983).

The steady solution (v^pyTf Ca) of (4.1)-(4.5) on which we will perform a linear 

stability analysis is given by

Vi =  0,

f  =  (4.6)
A  s~ia

c °  = (ACa = C? - C %t a = l , . . . , N) ,

and the steady pressure p can be obtained from (4.1).

In order to investigate the linear stability of this basic solution we introduce 

perturbations (rt$, 7T, 0, <fia) to ( v i ,p ,T ,C a) via

Vi =  Hi +  Ui,p = p +  7T?T  — T  +  0, Ca =  Ca +  4>a.

The resultant perturbation equations are non-dimensionalised using the follow

ing scalings:
+ +*d2t  —  t  — -, u  =  u  — , 7r =  7T —— , X  =  X  a ,

k a k
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6 =  B‘T* ,  <pa =  (4>a)*$a , f  =  ■=-,

Ap0gkd)

1/2

, $ £
> « P “ | A C c 1/2

j R =

\  A ap0gkd 

' A ap0gkdPa\ A C a\ \ l/2
jJLK j

H a =  sgn(A C“), Pa =

/IK
AC
K>a

Here R  and R a are the Rayleigh and salt Rayleigh numbers and Pa are salt Prandtl 

numbers.

The nonlinear perturbation equations are then, in non-dimensional form (drop

ping the asterisks),

N

2R{£ - z ) d + ' £ t Ra<t>° -
a = l

j

Uiti

@,t T  Ui9^ 

P v f y + i H f i )

0,

—Rw  +  A 0,

H aR aw +  A cf)a (a =  1 , . . . ,  N ) .

(4.7)

(4.8)

(4.9) 

(4.10)

where w — u3. The boundary conditions which follow from (4.5) for the perturbed 

quantities are

w =  9 — (f)a (a =  1 , . . . ,  N)  =  0 at z =  0,1. (4.11)

4.3 Linear stab ility  analysis

Equations (4.7)-(4.10) are linearised by neglecting terms containing products of the 

perturbed quantities. A time dependence of eat is introduced by substituting

u  (x, t) =  u fx je0’*,

0(x ,i) =  6(x)eat,

^a (x, t) =  ^Q(x)e°’t (a — 1 , . . . ,  N).
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The pressure term  is eliminated by taking curlcurl of equations (4.7) and then se

lecting the third component. This gives

N

Aw  = - 2R(£  -  z)A*9 -  ^  R«A*<i)a, (4.12)
Q=1

aO =  — Rw  +  A 6, (4-13)

Pacx(j)a =  H aR aw + A(j)a (a  =  1 , . . . ,  AT), (4.14)

d2 d2
where A* =  7—77 +  ttw  is the horizontal Laplacian. 

oxA oyl
A normal mode representation is assumed, i.e.

w — W{z) exp[i(mx + ny)]t 

9 =  ©(2) exp[i(ma; +  ny)],

(f)a  =  <$a (2;) ex p [i(m a ; +  n y ) ] ,  ( a  =  1 , . . . ,  JV),

and the following transformations are made in order to put the equations in a form 

like chapter 2 ,

R9  0 , R a<i>a -+ 0a , R 2 R, H aR l  -> ~ R a- (4.15)

Attention is now focussed on the case of two salt fields, i.e. N  = 2 . The resultant

equations are

( D2 - k 2) W - 2 { £ - z ) k 2e - k 2$ 1 - k 2®2 =  0, (4.16)

( D2 — &2)0  — R W  =  (70, (4.17)

( D2 - k 2) $ 1 - R 1 W  =  (4.18)

(D2 - k 2)®2 -  R 2W  = i V $ 2, (4.19)

d
where k2 =  m 2 +  n2 is a wavenumber and D = — . The appropriate boundary

dz
conditions are, from (4.11),

W  = 0  =  S 1 =  $ 2 =  0 , z = 0 , 1. (4.20)

The presence of a z-dependent term in (4.16) rules out the possibility of using

the analytical method of chapter 2 . Instead, a Chebyshev tau method was used 

to solve system (4.16)-(4.20). This method is described in appendix A. Numerical 

results are presented in section 4.5.
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4.4  N onlinear stab ility  analysis

An analysis of the nonlinear stability of the basic solution is now presented by 

making use of the energy method. The nonlinear perturbation equations are, from 

(4.7)-(4.10),

7T,i =  -Ui -  [2A(£ — z)0 +  Ri4> +  — #2] ki} (4.21)

Wi,i =  0, (4.22)

9,t +  UiQ,i = —Rw  +  A 0, (4.23)

Px ((j)j +  Ui(j)^ — H iR iw  +  A <p, (4.24)

P2 (ipit +  Uiipj) =  H2R 2W +  A-0, (4.25)

where, for later convenience, the following transformations have been used

(j)1 -» </>, (p2 ip.

Let 1/ denote a period cell for the solution. The boundary conditions considered 

are,

‘tu =  0 =  0 =  i/> =  O on2; =  0 ,1, (4.26)

and further tha t it*, 9, (p: ip and n are periodic on the lateral boundaries of V.

To commence multiply (4.21) by Uj, (4.24) by cp, (4.25) by ip and integrate over 

V.  Integration by parts and use of the boundary conditions yields

0 -  - | |u | | 2 -  2R((£ -  z)0w) -  Ri{(pw) -  R 2(ipw) +  {92w), (4.27)

=  H & i w f i -  ||V ^ ||2, (4.28)

4 y ! l ^ | | 2 =  H 2R 2(wtI>) -  IIVV-II2, (4.29)

where || ■ || denotes the L 2(V) norm and ( /)  =  J  f  d V . In order to deal with the 

(92w) term  in equation (4.27) a technique used by Payne and Straughan (1987) is 

introduced. A weighted energy relation is formed by multiplying (4.23) by (/j, — 2z)9y 

where j i>  2 is a coupling parameter to be selected at our discretion, and integrating
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over V. Selecting ji > 2 ensures th a t p, — 2z > 0. The weighted relation is 

^ { i ( / r  -  2z)92) +  ({fi -  2 2 )0 1 ^ )  =  ((p, -  2z)0(-itou +  AO)).

Integration by parts and use of the boundary conditions then gives

= ->02> -  R (p™e ) -  <A|V0|2>, (4.30)

where p =  p — 2z.

If we now form (4.27) 4- (4.30) +  Ai(4.28) +  A2(4.29), where Ai and A2 are 

positive coupling parameters, then,

5  0 ^ ' )+ 4 w i + 4 w ’)
=  - R ( M 0 vj) +  (Aii?! -  1 )Rl {w(f>) +  (A2iJ2 -  1)S2W )  ('4'31^

-  (||u[|2 +  (£|V0|2) +  AxllV^I2 +  Aj IIVV’II2) ,

where M(z)  =  p  4- 2£ — 4z. The effect of the weight is th a t the problematic (92w) 

term  in equation (4.27) is cancelled out by the —{w92) term tha t arises in equation 

(4.30).

If we now define an energy

m  =  \ ( W 2) + LylWI2 + ^pM I2, (4-32)

then (4.31) shows tha t
dE
—  — X — V
dt

where

X = - R ( M 9 w )  +  (AiiJi -  1 )Ri(w<l>) +  (A2i?2 -  1 ) ^ W ) ,

V =  11 u  112 +  (A|V0|2) +  Ai|| V 0||2 +  A2||V ^ ||2.

By rearrangement,
dE  o- ^  X \
dt \  V }

If we now define

-5- =  max ^4, (4.33)
A n  V  K

where 77 is the space of admissible functions, then



If now

A > 1 (4.34)

then

A

and so

(4.35)

Use of the Poincare inequality (see e.g. Straughan (1992)) results in

V  > cE.

where c is a positive constant that arises from the use of the Poincare inequality. 

Therefore,

So, if A >  1 then E(t)  —»■ 0 as t  —y oo at least exponentially fast and so our steady 

solution is stable. This fact, together with (4.32), shows tha t ||0 ||,||0 ||, 11*011 0-

be obtained for ||u ||. However, if equation (4.35) is integrated with respect to time 

then

So ||u ||2 E L l (0, oo). This ensures “practical decay” even though the solution u  may 

“peak” over vanishingly small intervals as t -+ oo. It is difficult, though, to conceive 

of such a situation physically.

The problem remains to find the maximum in (4.33).

In order to clear the denominator of the maximisation problem of the coupling 

parameters Ai and A2, the following transformations are made,

(4.36)

which can be integrated to yield

The lack of a time derivative in Darcy’s law means tha t a similar result cannot easily

which means that, in particular,
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Consider now the case Hi = 1, iT2 =  —1- This corresponds to the situation consid

ered in section 4.3 where component 1 is stabilizing while component 2 is destabi

lizing. The resultant maximisation problem to be considered is

1 -R{Mffw) + X̂i H r
— =  max 
A n

•\Ai
llu||2 + (/i| v 0 |2> + ';2 + n v îp

The Euler-Lagrange equations for this maximum are as follows

A

R  dO
—A—M w  +  ll/A9 — 2—  =  0, 

2 oz

A( v t ) ■RiW+â  = 0’

A ( Ri W +  =  o

k i  — U ,  —  TD (4.37)

(4.38)

(4.39)

V 2 W  )  (4-40)

where w  is a Lagrange multiplier introduced because u  is divergence free. At the 

stability limit A —> 1. Setting A =  1 in the Euler-Lagrange equations (4.37)-(4.40) 

will then yield the optimum results. The equations to be solved are now

+  Rigcj) -  R 2hip ki — Uj =  w

where

(4.41)

(4.42)

(4.43)

(4.44)

9 nr'"~  9 nr' 4̂'45)Z \ f  A \  Z y  /\2

We now consider Ri  and R 2 to be fixed and investigate the variation of R , where

R  „ 30
~ M w  +  f iA9 -  2—  =  0, 
2 oz

Rigw  +  A (f) =  0, 

—R 2hw +  A if) = 0,

Ai — 1 A2 +  1 
9 = -x- r r - ,h  =

now

R — 7?(/i, Ai, A2, &2),

where k is a wavenumber.

We will now vary each of X \, X2 and /i in turn and find the optimum val

ues of these coupling parameters. Firstly, we consider A i,/i,R \  and R 2 to be
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fixed and investigate the optimum value of A2 by using parametric differentia

tion. Let now superscripts 1 and 2 refer to a solution of (4.41)-(4.44) corre

sponding to parameters Aj and A§ respectively. We now form the inner products

{(4.41)1.u2), ( ^ l ) 2.!!1), ((4.42)1(92)> {(4.42)2#1), {(4.43)V2),

((AAS)2^ 1}, ((4.44)1,i/?2) and ((4.44)2, ip1) and obtain the equations

— ~ ( M 9 lw2) +  Rig{4>1w1) — R2hl {rtplw2) =  (u b u 2), (4.46)
id

~ ^ ~ { M 9 2w 1) Rig((j)2w l ) — R 2I12( ^ w 1) =  (n2.*!1), (4.47)

- — (1Mwxe2) =  (p ,Ve \V 82), (4.48)

=  (AV^.Vfl1), (4.49)

R M w V )  =  ( V ^ .v ^ 2), (4.50)

R 1g(w2lj>1) =  (V ^ .V ^ 1), (4.51)

- i J 2/i1(u)1V>2) =  (Vipl .V ‘<p2), (4.52)

- R 2h2(w2ipl ) = (Vi/>2.ViI)1). (4.53)

To proceed, form (4.46) +  (4.48) — (4.47) — (4.49) 4- (4.50) — (4.51) +  (4.52) — (4.53) 

to find

— ̂ { M ( R 1 — R 2)(91w2 +  92w 1)) — R2{hl — h2)(w1'ip2 +  'ip2w l ) — 0.

Divide this by AJ — A| and then let Aj —> ASj to obtain,

r) f? r ) h
~ —  {M9w) -  2R2^ —(wip) =  0. (4.54)

C/A 2 OA2
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However, using (4.42) and (4.44) it can be shown that

< « * >

dR
At the optimum value of A2, 7-— =  0 and so from (4.55),

0X2

n 9 h m \\2 n
d \ 2 h

dh
and since h > 0 , we have — - =  0. From (4.45),

uXn

dh X2 — I

So,
dR
—-  =  0 =» A2 =  1. (4.56)
OX2

If we now fix A2 and fi and vary Ai then a similar argument to the above shows 

th a t

- ^ - ( M 9 w )  +  =  0.

Using equations (4.41), (4.43) and (4.45), this can be rearranged to show

2 / r.\x7Q\2\d R  _  Ax +  1 ------- ,2
r ^ 91 }W ,  ~  ~ x , ( x ^  i y  ■ ■

d R
So the system is singular at Ai =  1. While we cannot find a solution for —— =  0,

0 X1

note th a t
d R  _ d R

Ax > 1 =7* ^ < 0 , Ax < 1 ^ > 0,
dX\ dX\

which suggests th a t the best value is Ax =  1.

If now Ai and A2 are held constant and the variation in fj, is considered an 

argument such as the above does not lead to a result for the optimum value of /i. 

Instead, the value

maxmini2(jLi, k2) (4-57)
2 k2

is found numerically.

The optimum values Ax =  A2 =  1 are substituted into equations (4.41), the effect

of which is tha t the 0 equation drops out. This means tha t the 0 equation does not

provide any information and tha t the energy results are unlikely to be close to the
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linear stability results when the terms involving 4> are of any significance. We are 

left with three equations

( R  \
— — M O  -  R 2ip) k i - U i  -  z u t i , (4.58)

R  09
-  M w  -  + flAO =  0, (4.59)

2 oz

—R 2w +  A ip - 0. (4.60)

The solenoidal term  is eliminated by taking curlcurl of equation (4.58) and then 

selecting the third component. Normal modes are assumed and the transformations 

(4.15) are made, resulting in the system

(£>2 — k2) W  =  - M k 2Q + lc2>J, (4.61)

(D2 - k 2) e  =  1 .D 0 +  —  W, (4.62)j l  2(1
{D2 - k 2YV = R 2W, (4.63)

where D — ~  and k2 = m2 +  n2 is the wavenumber. The boundary conditions on
az

W, 0  and T  follow from (4.26) and are

W  =  0  =  T =  0 at 2 =  0,1. (4.64)

For fixed values of R 2 equations (4.61)-(4.64) form an eigenvalue problem with 

eigenvalue R . The compound matrix method was used to solve this. Details of 

this method may be found in e.g. Straughan (1992). For the maximisation and 

minimisation problems in (4.57) the golden section search was employed (see e.g. 

Cheney and Kincaid (1985)). Numerical results are presented in section 4.5.

4.5 N um erical results

4.5 .1  Linear S tab ility

The main interest of the linear stability analysis is the nature of the disconnected 

oscillatory neutral curves described in the introduction. In the problem where the 

equation of state is linear in the temperature field (chapter 2) an analytical solution 

may be obtained which allows the various parameter ranges to be searched in a much
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less time-consuming manner than solving the equations numerically. In the present 

work attention is focussed on the situation where the salt concentration with the 

larger diffusion coefficient (salt field 1) is gravitationally stable while the salt field 

with the smaller diffusion coefficient (salt field 2) is destabilising. In chapter 2 the 

following parameters were shown to give rise to the disconnected oscillatory neutral 

curves:

P i G (—287, -285), P 2 G (259,261), P1 =  4.545454, P2 =  4.761904.

Figure 4.1 shows the (P cnt, R 2) stability boundary for T\ = 4°C, Ri = —286, Pi —

4.545454, P2 — 4.761904. There are three regions of interest. To the left of the cusp 

(P 2 <  260.4) there is a region of oscillatory onset. Here oscillatory instability first 

occurs at a smaller value of R  than does steady instability and there is a single critical 

value of R.  To the right of the point of infinite slope (R2 >  261.67) instability occurs 

with real growth rate. Here oscillatory instability does not occur and again there 

is one critical value of R. The intervening region is the most interesting and is 

shown in the right-hand graph of figure 4.1. Here three values of P cnt are required 

to fully specify the linear instability criteria. Oscillatory instability sets in first at 

the lowest critical Rayleigh number. Then there is a region of oscillatory instability 

until the middle critical Rayleigh number is reached. At this point the system 

becomes linearly stable again until the third critical Rayleigh number is reached. 

Here stationary instability sets in and the system remains linearly unstable for all 

higher values of R. At higher temperatures (figure 4.2) a similar (P cnt,P 2) stability 

boundary is seen, with the presence of a multi-valued region (the “ldnk-region”). A 

similar multi-valued curve is found when considering R 2 fixed and varying Ri.  An 

explanation for these stability boundaries can be obtained by considering the P , k 

neutral curves.

Figures 4.3 and 4.4 show a selection of (P, k) neutral curves for Ti = 4°C, P 2 =  

261, Pi — 4.545454, P 2 =  4.761904. Setting T\ — 4°C  means tha t the whole of the 

layer is destabilising in the conduction state. For P i =  —287, —286.6 the oscillatory 

curve is attached to the stationary curve at two bifurcation points. As the bifurcation 

points are approached along the oscillatory curve the frequency tends to zero. At 

P i =  —286 the bifurcation points have moved closer together and finally coalesced
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and a disconnected oscillatory neutral curve has been formed. As Ri  is increased 

further the oscillatory curve moves wholly beneath the stationary curve and becomes 

increasingly smaller until it collapses to a point and disappears. At Ri  =  —285.1 

(not shown) only the stationary curve is found. These results are similar to those 

found in chapter 2. However, in tha t chapter the disconnected oscillatory curves were 

perfectly symmetric heart-shapes. It can be clearly seen th a t the oscillatory curves 

in the present work are not perfectly heart-shaped —- the maximum of the left hand 

lobe is greater than tha t of the right hand lobe. For values of Ri = —285.4, —285.3 

the oscillatory curve can be seen to lie wholly below the stationary curve and so three 

critical values of the thermal Raleigh number are required to fully specify the linear 

stability criteria. Oscillatory instability sets in first at the lowest critical therm al 

Rayleigh number. Then there is a region of oscillatory instability until the middle 

critical therm al Rayleigh number is reached. At this point the system becomes 

linearly stable again until the third critical thermal Rayleigh number is reached. 

Here stationary instability sets in and the system remains linearly unstable for all 

higher values of R.

Figure 4.5 shows two neutral curves for T\ =  5°C. The departure from a perfect 

heart shape is clearly more pronounced than for 7\ =  4°C. Figure 4.6 shows th a t 

for Ti — Q°C the skewness has again increased. For T\ — 7°C (figure 4.7), the 

increased skewness results in a new effect at smaller values of R\.  At values of 

Ri  =  —292, —291.5 the minimum on the oscillatory curve is clearly less than the 

minimum on the stationary curve. At Ri  =  —290.1 the role of minimum has been 

reversed and now the minimum on the stationary curve is smaller than the minimum 

on the oscillatory curve. At a value of R\  between —291.5 and —290.1 the minimum 

on each curve occurs a t the same value of R . This value was computed to be

Ri = -291.067,

with minimum thermal Rayleigh number

Rmin =  228.0107,

and corresponding wavenumbers

kosc =  3.77, /cstat =  4.62.
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[ In fact, for

R x =  -291.066,

R °^n =  228.0131, kosc =  3.77,

=  228.0090, /cstat =  4.62,

while, for

R x =  -291.067,

iC n  =  228.0107, kosc = 3.77,

=  228.0111, /cstat =  4.62. ]

These results predict the onset of oscillatory instability and the onset of stationary 

instability at the same value of R  but different wavenumbers.

As the upper tem perature is increased, the minimum on the oscillatory curve 

occurs at increasingly smaller values of the wavenumber while the minimum on the 

stationary curve moves to the right as Tx is increased.

One considerable advantage of the Chebyshev tau — Q Z  algorithm method 

employed here is tha t it yields more eigenvalues than just the leading one. This 

allows us to investigate the behaviour of the growth rate in more detail. Over the 

range of values of R  indicated in figures 4.3-4.6 the leading three eigenvalues always 

consist of a complex conjugate pair and a real eigenvalue. The behaviour of the real 

part of the growth rate a = crr 4- icri is shown in figures 4.8 and 4.9. In both figures 

the complex conjugate pair is initially the leading eigenvalue. As R  is increased ar 

reaches a maximum for the complex conjugate pair and then starts to decrease. The 

real eigenvalue then takes over and becomes the leading eigenvalue.

The Chebyshev tau  method also yields the eigenfunctions. Figure 4.10 shows the 

eigenfunctions for the case T x — 7°C,R  = 228.0107, R x = —291.067,172 =  261, k =  

4.62, i.e. at the minimum on the stationary curve when the minima on the stationary 

and oscillatory neutral curves coincide. The normalised eigenfunctions <£1 and <f>2 

are the same as the © eigenfunction. T hat this should be so can be seen from 

equations (4.17)-(4.20) with a ™ 0. These three equations can be solved to show 

tha t

0  -  RG{z) t $ a =  R aG{z) {a =  1, 2),
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where
s -r-,/  ̂ x sinh kz

G W  =  F ( Z) - F (  1)— ,

with

F(z) = f  e * ^  [  e ^ - ^ W U )  dfid^.
Jo Jo<0 J O

So, when 0  and 4?a are normalised they will be identical. At the minimum on the 

oscillatory curve the eigenfunctions for W  and 3?“ (shown in figui'e 4.11) are similar 

but not identical. This can be seen by setting aT — 0 in equations (4.17)-(4.20), 

obtaining

((D 2 -  k 2)2 +  <7?)©r =  R ( D 2 -  k 2)W r -  OiRWi,

((.D 2 -  k 2)2 +  =  R a (D 2 -  k 2) W r -  <JiPaR aW i,

while similar equations exist for ©*, .

In figures 4.10 and 4.11 the penetrative effect (W becoming negative) can be 

clearly seen.

4.5 .2  N onlinear resu lts

In figure 4.12 the solution of the eigenvalue problem (4.61)-(4.64) for T\ =  4°C 

is plotted together with the ( R , R 2) linear stability boundary for Ri = —261 and 

R x =  —100. The energy results are clearly closer to the linear results for smaller (in 

modulus) values of Ri.  This is not surprising as the terms involving the first salt 

concentration drop out of the energy analysis and so do not yield any information. 

Whenever the stabilizing salt field is of any consequence the energy results may be 

far from the linear results. Also at Ri  =  —100 the disconnected oscillatory curves are 

not found. The energy results do have the advantage that they are unconditional, i.e. 

for perturbations of any initial amplitude nonlinear exponential stability is assured.

At higher temperatures (figures 4.13-4.15) a similar result can be seen. The 

energy results are closer for smaller absolute values of iifi, however at the smaller 

values of Ri  the disconnected oscillatory curves are not found.
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4.6 D iscussion

In the present work a linear stability analysis is presented tha t yields several inter

esting results. The existence of disconnected oscillatory neutral curves produces a 

finite interval of stable values of R , the thermal Rayleigh number, as well as the nor

mal semi-infinite range. The penetrative effect has skewed these oscillatory curves 

away from the perfect heart-shaped curves found in chapter 2. There it was stated 

tha t oscillatory instability could occur at the same thermal Rayleigh number but 

differing wavenumbers at the maxima on the lobes of the heart-shaped curve. The 

skewed nature of the oscillatory curves produced here by the quadratic equation of 

state means th a t this effect is not seen. McKay and Straughan (1992) argue that 

the density of a fluid is never a linear function of temperature. Consequently the 

perfect heart-shapes are unlikely to be observed experimentally.

An alternative result which may be seen experimentally is observed here. The 

effect shown in figure 4.7 whereby oscillatory and stationary instability set in at 

two different wavenumbers but the same thermal Rayleigh number is a completely 

original phenomenon in porous convection. By increasing Ri  one should see in

stability change from being initiated by oscillatory convection with wavenumber 

k — 3.77 to a stationary instability with wavenumber k = 4.62. For values of 

R  — 228.0107, R\ =  —291.067 the present analysis predicts tha t one should find 

instability occurring in two different cell sizes.

There are two factors in the present problem that could give rise to subcritical 

instabilities. Firstly, the nonlinear term that arises in the velocity equation from 

the quadratic equation of state, and secondly the competition between the different 

stratifying effects. These factors show the need for the nonlinear stability analysis of 

section 4.4. Unconditional nonlinear stability is obtained and L 2 decay is shown for 

the tem perature and solute perturbations. Although the use of Darcy’s Law means 

th a t L 2 decay for the velocity cannot be easily proved, in section 4.4 it is shown 

th a t the velocity satisfies a condition which ensures “practical decay” .

The classical kinetic energy results presented here are somewhat disappointing 

in th a t the energy boundary may be far away from the linear stability boundary. As 

explained in section 4.5 this is due to the terms involving the stabilising salt field
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dropping out of the analysis. To overcome this a generalised energy method in the 

vein of chapter 3 may be constructed. Work to this end is in progress.

ff t

261 263262100 200 300 4000

Bj R2

Figure 4.1: (i?cnt,i?2) stability boundary for T\ =  A°C,R\ =  —286.0, Pi =

4.545454, P2 =  4.761904. The right-hand graph shows the multi-valued region 

in more detail.

77



RT T,=5#C,R,=-2 R* T,=6*C,R,=-287.5

150-

300 400100 2000 400200 3001000

R- TrftRr

100 200 300 4000

Figure 4.2: (i?cnt, R2) stability boundaries for 7\ =  5°C, R\ = —286,T\ =  6°C, i?i 

-287.5  and Tx =  7 ° , ^  =  -291

7 8



R Rp-287

3.0 3.5 4.02.5

k

R R,=-286

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

R  R,=-286.6

4.03.02.5 3,5

k

R Rr-285.8

2,4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Figure 4.3: ( R ,k )  neutral curves for T\ =  4°C, P 2 =  261, Pi =  4.545454, P2 =

4.761904.
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R,=-285.6 R,=-285.5

6 4 -

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

R,=-285.4 R,=-285.3

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Figure 4.4: (R , k) neutral curves for 7\ =  4°C, i?2  =  261, Pi =  4.545454, P>

4.761904.
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R  R,=-286

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

R  Rp-285,9

2.6 2.8 3,0 3.2 3.4 3.6 3.8 4.0

Figure 4.5: (P,/c) neutral curves for Ti =  5°C ,R 2 =  261, Pi =  4.545454, P2 =

4.761904.
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R  Rp-287.9
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3.5 4,0 4.52.5 3.0

R  R,=-287.5

4.0 4.53.0 3.52.5

Figure 4.6: (R ,k)  neutral curves for T\ =  6°C, i?2 =  261, Pi =  4.545454, P2

4.761904.
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R,=-291.1 R,=-290.1
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Figure 4.7: (R , k) neutral curves for T\

4.761904.

=  7°C, R-2 =  ‘261, P[ =  4.545454,^2 =
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real

68 7060 6662 6458

R

Figure 4.8: Graph of or against R  for T\ = 4°C, R\ = — 285.6, R 2 = 261. Pi

4.545454, P2 =  4.761904, k =  2.4.
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Figure 4.9: Graph of or against R  for 7\ =  4°C, R\ = — 285.6, Ro =  261. Pi

4.545454. P 2 =  4.761904, k = 3.1.
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Figure 4.10: Plot of eigenfunctions for T\ — T C , R  = 228.0107, R\ =

“ 291.067.6, P 2 =  261, Pi =  4.545454, P2 =  4.761904, A; =  4.62, i.e. a t the mini

mum of the stationary curve. The 4?1 and <&2 eigenfunctions are identical to the 0  

eigenfunction.
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Figure 4.11: Plot of eigenfunctions for Ti — 7°C ,R  = 228.0107, Ri  =

—291.067.6, P 2 =  261, Pi -  4.545454, P2 =  4.761904, A; =  3.77 i.e. at the mini

mum on the oscillatory curve. The <&2 eigenfunction is very similar to the § l curve.
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Figure 4.12: Plot of the energy stability boundary for 7 \ =  4°C  together with the lin

ear instability boundaries for R \ = —261 and R \ =  —100. Also Pi =  4.545454. P2 =

4.761904.
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- R,=-100
-  energy results
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Figure 4.13: Plot of the energy stability boundary for T\ =  5°C  together with the lin

ear instability boundaries for R \ =  —261 and R \ =  —100. Also P\ =  4.545454. P i =

4.761904.
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Figure 4.14: Plot of the energy stability boundary for T\ =  6°C together with

the linear instability boundaries for R \  =  —287.5 and R \ =  —100. Also P\ =

4.545454. P 2 =  4.761904.
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Figure 4.15: Plot of the energy stability boundary for 7\ =  7°C  together with the lin

ear instability boundaries for R i =  —291 and R \ =  —100. Also Pi =  4.545454, Po =

4.761904.
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C hapter 5

M ulti—com ponent

convection—diffusion w ith  internal

heating or cooling

5.1 Introduction

In the previous chapter penetrative convection was introduced into the m ulti- 

component porous problem by having the equation of state quadratic in tem per

ature, i.e.

p = p0 ( l - A ( T - T 0)2) (5.1)

where T  is the tem perature and pQ and T0 are reference values. If the tem perature at 

the lower boundary is held fixed at a temperature T  < T0 and the upper boundary 

is fixed at a tem perature greater than T0 then a gravitationally stable layer will 

be created above a layer of gravitationally unstable fluid. When convection occurs 

in the lower layer the motions will penetrate into the upper layer. One of. the 

motivating factors for the previous chapter was the paper of Straughan and Walker 

(1997) where a quadratic buoyancy law was used in the analogous fluid problem to 

th a t studied in chapter 4.

An alternative model of penetrative convection can be constructed by introducing 

an internal heat source. One can again produce an unstable layer next to a stable 

layer. An internal heat source has been employed in various fluid problems, for
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instance, in modelling the motion of the plates tha t form the E arth ’s crust. A 

suggested source of the energy required to maintain the movement of these plates 

is from the radioactive decay within the E arth’s mantle of Uranium and Potassium 

isotopes (see, e.g. McKenzie, Roberts and Weiss (1974)).

In this chapter we will use an internal heat source model of penetrative con

vection to investigate the stability of the motionless state in a triple diffusive fluid 

layer. Here a viscous fluid layer, rather than the fluid-saturated porous layer of 

previous chapters, is considered. The reason for this change is tha t we wish to make 

comparisons with the quadratic buoyancy law model of penetrative convection used 

by Straughan and Walker (1997). Straughan and Walker (1997) were partly  moti

vated by the numerical technique of removing the boundary condition rows in the 

Chebyshev tau  method first used by Haidvogel and Zang (1979) (and employed here 

in chapter 4). As noted in Appendix A, this method only works for free boundary 

conditions and consequently Straughan and Walker (1997) only considered the case 

of an infinite layer with free upper and lower boundaries. A more physically realistic 

problem can be obtained by using fixed boundaries and so the cases of “fixed-free” 

and “fixed-fixed” boundary conditions will be studied here. Clearly this extends the 

problem beyond th a t studied by Straughan and Walker (1997). The effect of rigid 

boundaries on the non-penetrative triple diffusive fluid problem has already been 

studied by Lopez et al. (1990). Those authors found tha t the perfectly symmetric 

neutral curves found by Pearlstein et al  (1989) were slightly skewed away from 

symmetry in a similar manner to the penetrative effect described by Straughan and 

Walker (1997).

In this chapter it will be shown th a t there is a strong connection between the 

linearised internal heat sink problem and the linearised quadratic buoyancy law 

model — namely th a t one is the adjoint of the other. The connection between the 

heat source and sink problems is also discussed.

A further enhancement tha t would make the problem more physically realistic is 

the inclusion of adiabatic sidewalls and so this chapter concludes by including such 

sidewalls and considering their stabilizing effect.

93



5.2 G overning equations

The problem to be considered is tha t of the onset of convection in an incompressible 

fluid confined to the infinite horizontal layer z  E (0, d). The fluid has dissolved 

in it two different chemical species and also contains an internal heat source. The 

lower and upper boundaries z — 0 and z — d are held at fixed temperatures TJ and 

Tu, respectively. Denote the concentration of component a  by C a (a == 1, 2). The 

concentration of component a  at the lower and upper boundaries is held at C* and 

C J respectively.

The equation of state is assumed to be linear in both the tem perature and salt 

concentrations, i.e.

where poj^o and C* ia  “  1, 2) are reference values of density, tem perature and 

salt concentration respectively. The constants A  and A a (a =  1, 2) represent the 

therm al and solute expansion coefficients respectively.

This situation can be described by seven partial differential equations for the 

velocity, pressure, tem perature and salt concentrations. The density is assumed 

constant, p0j everywhere except in the body force and the equations are

where indicial notation and the Einstein summation convention have been employed. 

The vector k  is the unit vector in the z-direction and the variables v , p, k, and 

ka represent velocity, pressure, viscosity, gravity, thermal diffusivity and solutal 

diffusivity, respectively. Q(z) is the internal heat source term.

These equations are supplemented by boundary conditions on z = 0 and z =  d. 

Three separate cases are considered, namely 1. free lower and upper surfaces, 2. rigid 

lower and free upper surfaces and 3. rigid lower and upper surfaces. A discussion of

p =  pa ( l  -  A (T  -  To) +  Ai (C 1 -  C0l ) +  A2 (C 2 -  C 2) )  ,

Po (v,,t +  V j V i j )  -  - P j  +  povAvi - gpoil  -  AIT -  T0) 

+ J4i(C1 — Cq) 4- /I2 CC2 — Co))fct,

0)

T\i 4- =  kAT +  Q(z),

<4“ +  ^ “ =  K«&C“ (a =  1, 2).

(5.2)

(5.3)

(5.4)

(5.5)
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these boundary conditions may be found in, e.g., Drazin and Reid (1981) pp. 40-44, 

Here these boundaries are held at fixed temperatures and salt concentrations. The 

boundary conditions are then

1. free-free boundaries

On z  =  0, u3 =  0, vi,z =  v2,z =  0, T  — Th C a =  C? (a =  1, 2),

on z  =  dt v3 -  0, vi tZ ~  v%z =  0, T  =  TUi C a =  C* (or =  1, 2),
(5.6)

2. fixed-free boundaries

On 2? =  0, v(x) = 0, T  =  Ca =  C f (a  =  1,2),

on z =  d, u3 =  0, viiZ = u2jz — 0, T  = TUy C a ~  CJ (a  =  1, 2),
(5.7)

3. fixed-fixed boundaries

On z =  0, v(x) =  0, T  =  Th C a = C? (a =  1, 2), 

on z = d, v(x) =  0, T  =  Tu, C a =  (a =  1, 2).
(5.8)

We consider a motionless steady solution (u^p, T, (7“) of (5.2)—(5.8) in which T  and 

C a are functions of z  only. From (5.4) and (5.5),

-Ip,* = - s  ( l  -  A (? -  r 0) + A l  (c1 -  Co1) + A l  ( c 2 -  Co)) . (5-9)
d2f  1
y i  =  “ «(*)■ (5-10)

d2C a
=  °- (5-n )

At this point attention is restricted to the case where Q(z) — Q, a constant.

Consider the integral form of the conservation of heat equation, namely,

d_
dt

[  T d V ^ - i  q.ncL4 +  [  Q d V ,, 
J V  Jdv Jv

where V  is the fluid layer z 6 (0,1) and q and n  are the heat flux into and the unit 

normal to this volume. Notice that, in the absence of any heat flux into the volume, 

a positive value of Q will give rise to an increase in the temperature of the layer 

and so describes an internal heat source. Clearly a negative value of Q describes an 

internal heat sink.
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W ith Q assumed constant the basic state considered is, from (5.9)—(5.11),

f  = Q f i  f z  z2
k \  2d 2d2

&  -  c °0  — G, — d ’

where 5T = TJ — TU)5Ca — C f  — C®. From (5.9), the steady pressure p  is also a 

function of z only, namely

^  =  -p o s  ( l  -  A ( f  -  To) +  Ai  (C 1 -  Cq) +  A2 (C 2 -  C l ) )  .

Figure 5.1 shows sketches of the steady-state tem perature for fixed T),Tu,k , d 

and various values of Q.

+  T,
5T

*2,
(5 .12)

Steady-state temperature protiles - heat sink

Q=-3.330.8-

0.6- Q=-2

Q=-14
0 .2 -

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Steady-state temperature profiles - heat source

0 .8 -
0=14

\ /
Q=3.330,6-

0 .4-
Q=6Q=2

0 .2 -

1.0 1,2 1.4 1.6 1.8 2.0 2.2 2.4

Figure 5.1: Steady-state temperature profiles for T} =  2, Tu — 1, d =  1, k =  2. In 

the left-hand graph negative values of Q are plotted, corresponding to an internal 

heat sink  The right-hand graph shows positive values of Q, corresponding to an 

internal heat source.

In order to investigate the linear stability of this basic solution we introduce 

perturbations (m, 7r, 0, 0a) to (vi,pt T, C a) via

Vi = Vi  +  uh p =  p  +  7T,T =  T  +  d, C a =  Ca +  4>a. (5.13)
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The resultant perturbation equations are non-dimensionalised using the follow

ing scalings:

, ,*^2 *v2Po
t  =  t  ---- , U  =  U 7 T =7 T  x  =  X  a ,

k  d  d

0 =  g*T*, <j>a =  0 £ “ ) * $ “ ,
1 / 2  / , 3 l r / - . a l \  1 / 2|<5Ca | \

\AgK,d*)  ’

f i = / A g d W | ) 1/2 (A«g#\5Cr| \ 1/2
\  V K  )  ' a  \  U K  J

P i =  - ,Q  =  Q * ^ , r a = — ,
Z2 GT f t

5T = Tt -  T„, i f  =  sgn(ffT), =  sgn(5Ca).

Here R and are thermal and solute Rayleigh numbers and P r  is the P randtl 

number.

The non-dimensional nonlinear perturbation equations are then (dropping the 

asterisks),

P t  1 Uitt +  v-jUij = —7r,j +  AUi +  [R9 -  R\(f)1 -  R2<£2] h ,  (5.14)

uiyi — 0, (5.15)

fl.i +  PrUifl.i =  H R w ( l  -  h(z)) + A6>, (5.16)

^ t +  P r ^  =  +  (5.17)

+ Pr  Ui4>̂ = H2 R 2 W +  r2A</>2, (5.18)

where h(z) =  ? ( 1  — 2z) and w =  U3. The perturbation boundary conditions are
Li

1. free-free boundary conditions,

Cp’li)
w =  — 5- =  0 =  $2 = 0 a t £ =  0 ,1, (5.19)

a;?2

2 . fixed-free boundary conditions,



3. fixed-fixed boundary conditions,

w =  =  9 = (f)1 — 4>2 — 0 a t z = 0,1. (5.21)
oz

5.3 Linear stability  analysis

Equations (5.14)—(5.18) are linearised by neglecting terms containing products of 

the perturbed quantities. A time dependence of eat is introduced by substituting

u ( x ,  t) = u ( x ) e c r i ,

6 > ( x , t )  =  &(x)eat,

0 a ( x ,  t) =  ^ a ( x ) e c r t  ( a  =  1 , 2 ) .

In order to put the resulting system in a form like tha t of Pearlstein et al. (1989) 

the following transformations are made

RB -> 6, R a4>a -+ H R 2 R, H aR l  - R a>

resulting in

Pr  1 <7Ui = —‘K%i Jr& U iJr9ki  — 4>1ki — (f)2ki> (5.22)

a6 =  R w { l - h { z ) )  + A9> (5.23)

c7(f)1 =  — Riw  +  TiAijf)1, (5.24)

cr̂ >2 =  — R 2w + T2&(f)2, (5.25)

It will now be shown th a t the present system is the adjoint of the linearised 

version of the nonlinear buoyancy law problem studied by Straughan and Walker 

(1997). The adjoint, A *, of an n x n  matrix A  is defined by the following relation

(x, Ay) =  (A*x, y),

for all n -vectors x  and y. The inner product (x, y) is formed by multiplying together 

the corresponding elements of x  and the conjugate of y, y, summing the results and



integrating over the fluid layer z G (0,1). If the two systems can be shown to 

be adjoint then the eigenvalues of the present problem will be identical to th a t of 

Straughan and Walker (1997).

Equations (3.6) of Straughan and Walker (1997) are (specialising to the case of 

2 salt fields)

Pr  1 aui — —/K)i-\-Aui — 2M0ki — (f)1ki — (i>2ki, (5.26)

170 =  - R w  + Al9, (5.27)

acf)1 =  — R i w  +  (5.28)

a(f)2 =  — R 2w +  72A</>2, (5.29)

4
where M (z)  =  f  — 2 , with f  =  — .

Notice first th a t the term  R{ 1 — h) in equation (5.23) can be rearranged as 

follows:

R(  1 -  h) = R{ 1 -  | ( 1  -  2z)) =  H(1 -  |  +  Qz).

It will be shown shortly tha t only negative values of Q (i.e. an internal heat sink) 

allow the present system to be identified as the adjoint of the Straughan and Walker 

(1997) system . So, if we restrict attention to the case Q < 0 and set J  =  — Q > 0 

then
R ( 1 - Q  +  Q z ) =  ? ± { l  +  l - 2 z )

= i j ( 2 ? - 2 z )

=  2 M R

if we set

2? =  §  + 1 . R  =  J~ Y -  (5-3°)

If we make the identifications from equation (5.30) and then apply the transforma

tion 0 —»■ —0 to equations (5.22) and (5.23) we get the following system

Pr~~l <7Ui — — 7r.j +  Aui — Oki — 4>l ki — 4>2ki, (5.31)

a0 = ~ 2 M R w  + A0, (5.32)
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crcf)1 = — (5.33)

cr(f)2 =  —R 2w + T2A<f)2. (5.34)

The following transformations are made to equations (5.26)—(5.29) and also to 

equations (5.31)-(5.34) in order to allow us to identify one system as the adjoint of 

the other:

e -»  b} N ,  <t>1 . f  -4  R l /2<i>2,

and then

R lf 2 -4  R, R{/2 -4  J?!, i?2/2 -4 i?2-

The resultant equations can then be written as, for the Straughan and Walker (1997) 

system,

a B ^  = Ar ^  (5.35)

where B  — diag(0, P r _1I , P r " 1!,  P r " 1! , ! ,  I, !) ,^f  ~  (tt ,  u , v , w , 9, ( j )1 , 4>2)T and

j4y2 —

A 0 0
dx

4  0 A 0
oy

—7  0 0 A
oz
0 0 0 - #

0 0 0 - R i

\  0 0 0 - R 2

\

-2 M R  —R\  —R 2 

A 0 0

0 7*1 A 0

o o 7*2 a  y

while for the present internal heat sink system we have

crB^ = An'S/, (5,36)

with B  and as before, and

/  _ A
dx  
d 

dy 
_ _ d _  

dz  
0

0

0

A q =

A 0

0 A

0 0 

0 0 

0 0 

0 0

0

0

A - R  -&>

■2 M R  A 

~ R l 0

- # 2  0

0 

7*! A 

0

0 

0

72A )
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Now let subscripts (1) and (2) refer to two different solutions of equations (5.26)- 

(5.29) or (5.22)-(5.25). We form the inner product ( ^ ( i), (with the inten

tion of equating this to (A g ^ i) ,  '£(2)), thereby showing th a t A q is the adjoint of 

A x 2). Integration by parts then yields

( % ) ,  4 ^ ( 2 ) )  =  — (VU(i), VU(2)) — 2R(w(\), M 6(2)) ~  Rv(w(lh <t>(2 ))

- i? (0 ( i ) , W( 2 ) )  -  (V0(i), V0(2))

~-Rl(0 (l),^(2)) -n(V<£[1)} V<£[2))

-^2(^(1), w(2)) - r 2( v ^ 1}j V<^2)).
(5.37)

In a similar manner it can be shown that

(A s 'P (i).’P(2)) =  —(V u(1)lV u(2)) -  R{6m ,wi2)) -  Ri{<p\1),w {2)) -  R2(0f1),w (2)) 

-2 R (w (l)M ,0(2)) -  (VSa h V0(2)) 

-R i(w (1), t f 2)) -  Ti(v</>y v y 2)) 

~ R 2(w(1), ^ 2)) - r 2( V ^ 1):V ^ 2)).
(5.38)

Close inspection will show equations (5.37) and (5.38) to be identical. So, by 

making the identifications in (5.30) we have shown the linearised version of the 

nonlinear buoyancy law problem of Straughan and Walker (1997) to b e th e  adjoint 

of the present linearised internal heat sink problem. Equation (5.30) allows the 

following table of comparisons to be deduced:

Upper tem perature in T 2 problem Strength of heat sink in Q problem

4 -2

5 -3.33

6 -6

7 -14

8 no equivalence

The method used to solve equations (5.22)-(5.25) is now described. The pressure 

term  is eliminated by taking curlcurl of equations (5.22) and then selecting the third
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component. This gives

—P r ^ a A w  =  —A 2w — A *9 + A*^1 + A *02, (5.39)

g 6  =  R w ( l - h { z ) )  + A9,  (5.40)

(j(f)1 — — + r\ A^1, (5-41)

g  (f>2  = ~ R 2 w  +  r 2 ^ ( f ) 2 . (5.42)

A normal mode representation is assumed, i.e.

w = W(z) exp[i(mx +  ny)], (5.43)

Q =  ©(z) exp[i(ma;+ ny)]j (5.44)

(f)1 =  ^ x(^) exp[i(m£ +  ny)], (5.45)

cj)2 = § 2(z) exp[z(?7i£ +  ny)], (5.46)

and the system becomes

P r - 1a { D 2 - k 2) W  =  (D2 -  k2)2W  -  k2S  +  k2®1 +  k2®2, (5.47)

cr© =  R W ( l - h ( z ) )  +  ( D 2 - k 2) e t (5.48)

_ / c2 )^ i; (5-49)
n  n

— &̂2 -  ~ ^ V 7  +  (P 2 - f c 2) ^ 2, (5.50)
r2 7*2

where D — ~  and k2 = m 2 +  n 2 is a wavenumber. The boundary conditions are 
az

1. free-free boundary conditions,

VF -  D 2VF =  © =  ^  =  $2 =  0 at « =  0,1, (5.51)

2. fixed-free boundary conditions,

0  =  ̂  2 =  0 at z  — 0,1,

W  =  D W  =  0 at z =  0, (5.52)

W  = D 2W  =  0 at 2 =  1,
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3. fixed-fixed boundary conditions,

W  =  D W  = © =  &1 =  <f>2 -  0 at z  =  0,1. (5.53)

A Chebyshev tau  method was used to solve this system. Details can be found 

in Appendix A. Numerical results follow in the next section.

Before we present the results notice that it is straightforward to show th a t equa

tions (5.47)-(5.50) remain unchanged under the transformations Q —¥ —Q and 

z  1 — z . For free-free and fixed-fixed boundaries the z  —> 1 — z  transform a

tion has no noticeable effect — the boundaries may have interchanged but since 

the boundary conditions are identical this does not m atter. So, in the free-free and 

fixed-fixed cases one can expect identical results whether working with a heat source 

or a heat sink. However, for the other case, fixed-free, the transformation z  —» 1 — z 

does have a discernible effect. The boundary conditions transform as

W(0) =  D W ( 0) =  0 W (  1) =  D W {  1) =  0,

while

W {  1) =  D 2W {  1) =  0 -+ W(0) =  D 2W ( 0) -  0.

Clearly the transformed system is different from the original, the boundary con

ditions being for a free-fixed rather than fixed-free problem.

So, to summarise the work of this section, we have shown the present linearised 

internal heat sink problem to be the adjoint of the linearised quadratic buoyancy 

law problem of Straughan and Walker (1997). We have also shown th a t the heat 

source and sink problems are equivalent when the boundary conditions at the upper 

and lower boundaries are identical. The heat source and sink problems are not 

equivalent, however, when dealing with mixed boundary conditions. The numerical 

results following reflect these facts.

5.4 R esu lts

5.4.1 Free—free boundary conditions

As described in section 5.2 this problem is precisely analogous to tha t of Straughan 

and Walker (1997). Clearly, identical results would be expected. In order to check
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the veracity of the numerical method some of the results of Straughan and Walker 

(1997) are reproduced.

Straughan and Walker (1997) use the following parameters, first investigated by 

Pearlstein et al. (1989):

R 2 =  814.1119, n  =  0.22, r 2 =  0.21, Pr  =  10.2.

In the non-penetrative work of Pearlstein et al. (1989) these values, with 

R ± == —945, give rise to a perfectly symmetric heart-shaped oscillatory neutral 

curve lying beneath the stationary curve. These values result in a steady state tha t 

is gravitationally stabilising in the first salt field and destabilizing in the second salt 

field. Here, Ri  =  —945 and Q = 2 (analogous to Ti =  4°C) give an oscillatory curve 

th a t is slightly skewed away from symmetry (shown in figure 5.2). As in chapters 2 

and 4, three critical Rayleigh numbers are required to describe the linear stability 

criteria. The skewing tha t has resulted from the internal heat source term  means 

th a t the situation envisaged by Pearlstein et al. (1989) whereby oscillatory convec

tion occurs at a given thermal Rayleigh number but differing wavenumbers at the 

twin maxima on the heart-shaped curve is not recovered here.

As the penetrative effect is increased (by increasing Q) the skewing effect becomes 

more noticeable (figures 5.2 and 5.3). At Q =  14 an effect similar to tha t found by 

Straughan and Walker (1997) (and described in chapter 3 for the equivalent porous 

problem) at Tf =  7°C is found. For Ri  =  —956 the minimum on the oscillatory 

curve is less than the minimum on the stationary curve but at Ri  =  —950.5 the 

minimum on the stationary curve is smaller. At some value of R\  € (—956, —950.5) 

the minima should occur at the same Rayleigh number. This value was calculated 

to be

Ri = -950.965

with

Rmm -  822.6

and

&osc =  2.27, &stat — 2.66.
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[ In fact, for

R 1 =  -950.965,

R °^n =  822.593, kosc =  2.27,

=  822.598 &stat -  2.66,

while, for

R l = -950.964

R °^a =  822.605, kosc =  2.27,

R ŝ  =  822.595, /cstat -  2.66. ]

By scaling the Rayleigh number here by the factor J /2  described in 5.2, identical 

results to Straughan and Walker (1997) may be obtained.

As expected the sign of Q has no effect on the critical Rayleigh numbers — the 

heat source and sink problems are equivalent. The W  and 0  eigenfunctions shown 

in figure 5.4 reflect this equivalence — the transformation z —> 1 — z  interchanges 

the source and sink eigenfunctions.

5.4.2 F ix ed -free  boundary conditions

The lower boundary z — 0 is now held fixed. In order to find disconnected oscillatory 

curves lower values of Ri  than in section 5.4.1 have to be investigated, i.e. the 

stabilising effect of the first salt field needs to be greater to produce the disconnected 

curves. The thermal Rayleigh numbers at which instability occurs are also greater 

than for the free-free case.

Similar results to section 5.4.1 are found, namely the existence of disconnected 

oscillatory neutral curves. These curves (figures 5.5 and 5.6) are clearly skewed 

again. As the penetrative effect is increased the departure from a symmetric shape 

becomes more pronounced. At Q — 14, as before, the parameters can be arranged so 

tha t the minima on the oscillatory and stationary curves are at the same Rayleigh 

numbers. For this problem the minima on the oscillatory and stationary curves 

coincide for

R x =  -979.758
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with

R m in =  909.9

and

ôsc =  2.62, ŝtat — 2.87.

[ In fact, for

E i =  -979.758,

RZn =  909.930, kosc = 2.62,

E £ £  -  909.935 /cstat =  2.87,

while, for

E i =  -979.757

iC n  =  909.947, &osc =  2.62,

ESS =  909.933, /cstat =  2.87. ]

For all values of Q considered, the wavennmbers at which instability occurs are 

larger than  for the free-free problem.

Here, as expected, the heat sink results are different from the heat source prob

lem. Some sink R - k  neutral curves are shown in figures 5.7 and 5.8. It is noticeable 

th a t the oscillatory curve is more skewed than in the source problem and the twin 

minima effect can be recovered for Q = —6, i.e. the sink does not have to be as 

strong as the source to produce this effect.

5.4 .3  F ix ed -fix ed  boundary conditions

Now both lower and upper boundaries are held fixed. For the same values of E 2,Ti 

and 72 as before disconnected oscillatory neutral curves are not found (see figures 5.9 

and 5.10). The oscillatory curve is a single-valued curve attached to the stationary 

curve at two points. As Ri  is increased these points move closer together until 

eventually the oscillatory curve disappears and only stationary instability is found. 

As the penetrative effect is increased the oscillatory curves can be seen to become 

more and more skewed but disconnected curves are still not found. The critical 

thermal Rayleigh numbers and wavenumbers at which instability occurs are greater
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then in sections 5.4.1 and 5.4.2. This is to be expected from the work of Lopez et 

al. (1990). For values of the transport parameters close to those of Pearlstein et 

al  (1990) they obtained instability at a thermal Rayleigh number of approximately 

3000 as compared to the free-free values of about 1000 from Pearlstein et al. (1990).

As in the free-free case the eigenvalues are identical for both the heat source and 

heat sink problems.

5.5 C onvection in a box

In order to produce a problem which may be able to be replicated experimentally, 

the effect of adiabatic impenetrable sidewalls is now investigated. We will investigate 

the internal heat source problem in a rectangular box where the fluid is allowed to 

slip on the sidewalls. Following the method of Rosenblat, Homsy and Davis (1982), 

the boundary conditions on the sidewalls are, for perturbation variables defined as 

in (5.13),

u — wx =  vx = 9X = <j>l — <j?x =  0 on x =  0, oq, 0 <  y < a,2, 0 <  z < 1,

(5.54)

v =  vjy =  uy =  By =  (f>l — — 0 on y =  0, a2, 0 < x < ai, 0 <  z < 1.

(5.55)

Rather than the normal mode expansion of (5.43)—(5.46) we now seek separable 

solutions of form

w  =  w { z )  cos cos , (5 .56)

g  =  0(z) cos ( ~ p )  cos (~ ^ { p ) . (5-57)

^  =  & {z)coJ ^ \ coJ V W V \ t (5.58)
\  f l i  /  V « 2  /

^  =  $ 2(z) cos ( ^ p )  cos ( p ~ )  > (5-59)

where m i  and m 2 run over all non-negative integers.

The inclusion of the sidewalls produces the same governing equations, namely
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(5.22)—(5.25), but with k replaced by an effective wavenumber A defined by

Numerically, we fix a* and a2 and restrict the wavenumber to values satisfying 

(5.60) for some pair of values (7711, 7712).

5.5.1 C onvection  in a box -  results

W ith a view to future work (including the effects of surface tension at the upper 

boundary) attention is focussed on the fix-free sink problem.

Figure 5.11 shows the critical Rayleigh number, minimised over the wavenumber, 

as a function of a\ for fixed a2 =  1. The other parameters are held fixed at Q =

shows the sequence of modes m2 =  0 ,m i =  1 ,2 ,3 ,4 . The mode having the lowest 

critical Rayleigh number is clearly dependent on box size. The “kink” region at the 

minima on each of the curves indicates the mode of instability switching between 

stationary and oscillatory onset. Notice that the minima on these curves occurs at 

1975.2 — the value for an infinite layer. Away from these minima the sidewalls have 

a stabilizing effect.

For sufficiently large box sizes one can recover the twin minima effect. Figure 

5.12 shows a section of the R -A neutral curve for ai =  a2 =  6 and Q =  — 6, P r =

10.2, R i — —987.03, J?2 =  814.1119, Ti =  0.22, r2 =  0.21. The twin minima effect is 

again recovered at

C onclusions

In this chapter it has been shown the linearised internal heat sink problem is the 

adjoint of the linearised quadratic buoyancy law problem studied by Straughan and 

Walker (1997). The relationship between the heat source and sink problems has also 

been explained. It has been shown tha t the inclusion of adiabatic sidewalls will have 

a stabilizing effect and tha t the twin minima effect can be recovered. This last result

(5.60)

—6, P r  = 10.2, R i =  -987.271, R 2 =  814.1119, n  =  0.22, r 2 =  0.21. The figure

R  =  1976.5, Aosc =  2.6698, Astat =  3.0531.
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is, I believe, worthy of experimental investigation. It is unlikely tha t one would be 

able to obtain the critical values of the stability parameters to sufficient accuracy 

as to observe convection occurring simultaneously at two different wavenumbers. 

However, it should be possible to set up an experiment where increasing R i causes 

the mode of instability to change from oscillatory convection a t a small wavenumber 

to stationary convection at a larger wavenumber.
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Q=2.R,=-945

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2,6

Q=2,R,=-943.5

2.1 2.15 2.2 2,32.25

Q = 3 .3 3 ,M 4 5

1.9 2.0 2.1 2.2 2.3 2.4 2.5

Q=3,33,R,=-944

1.9 2.0 2.1 2.2 2.3 2.4 2.5

Figure 5.2: Some R - k  neutral curves for free-free boundary conditions for the pa

rameters R 2 — 814.1119,7i =  0.22,r2 =  0.21, P r  =  10.2. The positive values of Q

denote an internal heat source.
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R  Q=6,R,=-946

1.9 2.0 2.1 2.2 2.3 2.4 2.5

R  Q=6.R,=-945.3

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

Q=14,R,=-950.5Q=14,R,=-956

k k

Figure 5.3: Some R - k  neutral curves for free-free boundary conditions for the pa

rameters R 2 =  814.1119, T\ =  0.22, r2 =  0.21, P r  =  10.2. The positive values of Q

denote an internal heat source.
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W eigenfunctions ©eigenfunctions

Q=14Q=-14

0.6-

0.4-

0.2 -

0.2-

1.00.8 1.0 0.0 0,2 0.4 0.6 0.80.2 0.4 0.60.0

Figure 5.4: W  and 0  eigenfunctions for free-free boundary conditions for the pa

rameters k =  2.27 ,R  = 822.606, R \ =  -950.965, R 2 = 814.1119, n  =  0.22, t 2  =  

0.21, P r  =  10.2. Notice th a t the source and sink eigenfunctions interchange under 

the transformation z —» 1 — z.
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Q=2,Rr-978

2.3 2.4 2.5 2.6 2,7 2.8 2.9 3.0

Q=2,R,=*977

2.3 2.4 2,5 2.6 2.7 2.8 2.9 3.0

Q=3.33,R,=-977

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Q=6,R,=-977

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Figure 5.5: Some R - k  neutral curves for fixed-free boundary conditions for the

parameters R 2  =  814.1119, T\ =  0.22, 7 2  =  0.21, iV  =  10.2. The positive values of

Q  denote an internal heat source.
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R Q=14,Rt=-979

2.3 2.4 2.5 2,6 2.7 2,8 2.9 3,0

R CM 4,R,=-978.7

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Figure 5.6: Some R -k  neutral curves for fixed-free boundary conditions for the 

parameters R% =  814.1119,7i =  0 . 2 2 , =  0.21, P r  =  10.2. The positive values of 

Q denote an internal heat source.
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Q=-2,R,=-979.4 Q=-3.33,R,=-981.3

2.4 2.5 2.6 2.7 2.8 2.9 3,0 2.4 2.5 2.6 2.7 2.8 2.9

Q=-6.R1='987.1 Q=-6,R,=-987.5

2.4 2.5 2.6 2.7 2.8 2.9 3.0 2.4 2.6 2.8 3.0 3.2 3.4

Figure 5.7: Some R -k  neutral curves for fixed-free boundary conditions for the

parameters =  814.1119, T\ — 0.22, r 2 =  0.21, P r  =  10.2. The negative values of

Q  denote an internal heat sink.
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R  Q=-14,R,=-1027 R  Q=-14,R,=-1027

2.0 2.5 3.0 3.5 4.0

2400-

3.0 3.5 4.02.0 2.5

k k

Figure 5.8: Some R-k  neutral curves for fixed-free boundary conditions for the 

parameters Ro = 814.1119, T\ =  0.22, r 2 =  0.21, P r  =  10.2. The negative values of 

Q denote an internal heat sink.
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0 = 2 ,R p l Q=2,R,=-1017.5

3,0 3.5 4.02.5 3.5 4.02.5 3.0

Q=3,33,R,=-1030 Q=3.33,R,=-1020

4.03.0 3,52.5 4.03.0 3.52.5

Figure 5.9: Some R -k  neutral curves for fixed-fixed boundary conditions for the

parameters R 2 =  814.1119, t \ =  0.22, r 2 — 0.21, P r  =  10.2. The positive values of

Q  denote an internal heat source.
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Figure 5.10: Some R -k  neutral curves for fixed-fixed boundary conditions for the

parameters R 2 — 814.1119,7i =  0.22, r 2 =  0.21, P r  =  10.2. The positive values of

Q  denote an internal heat source.
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'mma
2040

Q=-6 R,=-987.271

2020 -

2000 -

1980-
(1,0)

(2 ,0)
(3,0)

\ /

! \
! \

V  v

4

/  V

Figure 5.11: Plot of the critical Rayleigh number, minimised over the wavenum- 

ber A against box dimension a\ for fixed a2 =  1 and Q = —6 , P r = 10.2, R\ = 

—987.271,i?2 =  814.1119, Ti =  0 .22,72 =  0 .21. The pairs (m i ,m 2) denote the inte

gral number of cycles in (a i ,a 2).
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R Q=-6, R,=-987.38
2010

0 Oscillatory onset
0  Stationary onset

2000-

1 9 9 0 -

1 9 8 0 -

1970
2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

k

Figure 5.12: A section of the R -A neutral curves for a\ =  a% = 6 and Q — — 6 , P r

10.2 , R \  =  —987.03, R 2 =  814.1119, n  -  0.22, r2 =  0 .21 .
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C oncluding remarks

In this thesis analytical and numerical techniques have been employed to investigate 

the stability of a variety of multi-component convection-diffusion problems. The 

most intriguing result is the effect seen in chapters 4 and 5 whereby the onset of linear 

instability occurs via stationary and oscillatory modes at two differing wavenumbers 

but the same therm al Rayleigh number. It is an interesting question whether this 

effect would be seen experimentally.

There is considerable scope for further extension of this work. The internal heat 

source problem of chapter 5, in particular, can be investigated in much more detail. 

One could include the effect of surface tension in the upper boundary. The number of 

parameters involved -  three Rayleigh numbers, the Prandtl number, two diffusivity 

ratios, three Marangoni numbers and three radiation constants -  clearly make a full 

investigation of this problem a time-consuming affair. Recently Chen and Su (1992) 

have considered this problem with one salt field. They find two distinct regimes, one 

where double diffusive effects dominate and another in which the effect of surface 

tension is more prevalent. The inclusion of surface tension and sidewalls would 

produce a physically realistic problem. If the numerical results again predicted the 

twin minima effect then this may merit experimental investigation.

One could also attem pt to replicate the generalised energy stability analysis of 

chapter 3 for the penetrative convection problems in chapters 4 and 5. Indeed, the 

results of chapter 3 themselves may possibly be improved by alternative choices for 

the generalised variables.

Another avenue for future exploration is to include further salt fields. For the 

non-penetrative fluid problem Terrones and Pearlstein (1989) have considered the 

effect of four salt fields. Interestingly, they find two disconnected oscillatory neutral
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curves as well as the stationary onset curve. This offers a variety of possibilities when 

extended to include penetrative convection. For instance, one could find instability 

occurring at three different wavenumbers, two via an oscillatory mechanism and one 

stationary.

As we have considered both porous and fluid problems one could find further 

research studying a fluid layer lying above a fluid-saturated porous layer. This 

would have applications in modelling the beds of seas and lakes. Would the twin 

minima effect still be found here?

1 2 2



A ppend ix  A  

T he C hebyshev tau m ethod

The Chebyshev tau  method gained much prominence after the seminal paper of 

Orszag (1971), who obtained accurate solutions of the Orr-Sommerfeld equation. 

Since then the method has found widespread use in solving eigenvalue problems. 

One weakness of the Chebyshev tau method is the possible occurrence of spurious 

eigenvalues and several papers have attem pted to resolve this problem, e.g. Gardner 

et a l (1989), McFadden et al. (1990), Lindsay and Ogden (1992) and Straughan 

and Walker (1996). In section A .l the method of Straughan and Walker (1996) is 

applied to the eigenvalue problem (4.16)-(4.20). However, this method is restricted 

to free boundary conditions. Consequently, another method is required for chapter 

5 where fixed boundaries are considered. This method is similar to th a t of Orszag 

(1971) and is described in section A.2 .

A .l  A  C hebyshev tau  m ethod for system  (4 .16)— 

(4.20)

The technique used to solve system (4.16)~(4.20) is described in detail in Straughan 

and Walker (1996).

Commence by defining the operators L x, L2, L3 and L* by
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L lU -  (D2 - k 2) W - 2 { t - z ) k 2B - k 2®1 - k 2®2,

U u  =  (D 2 - k 2) Q ~ R W - a Q , /A .
(Al)

L4u =  {D2 -  k2) § 2 -  R 2W  -  P2<?§2, 

where u denotes the vector (W, 0 , Î?1, $ 2)T. The system is transformed to the in

terval (-1,1) and the problem to be solved is now

Lau — 0 , a  = 1,2, 3,4, (A2)

with the boundary condition

W  = e  = &  = <S>2 = 0 at * =  - 1 ,1 .  (A3)

Straughan and Walker (1996) advocate writing the equations as a system of second 

order equations. This lowering of order reduces the problem of round off error due 

to the growth of m atrix terms. In the present work the individual equations in (A2) 

are already second order and so this problem does not arise.

Next, the variables W t 0 , 3?1, 4>2 are represented as finite series of Chebyshev 

polynomials
N + 2

W  =  Z w m i z ) ,
1=0 

N + 2

o  =  E 6 ^ ) .
jV+2 ( A 4 )

(51 =  E s f r t o .
1=0 

N + 2
d>2 =  E < W ) ,

1=0

where it is understood tha t (A4) are truncations of infinite series. Due to this 

truncation the problem to be solved is now

L i u  =  r iT v + i +  T2Xjv+25

L 2U =  ATjV+l +  f 2TiY+2, / A r .
(A5)

L3U =  Ti Tn+i -1- T2TN+2̂

L±U =  f iT iv + l +  f 2^ V + 2 )
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where the tau  coefficients may be used to indicate the size of the error associated 

with the truncation in (A4) c.f. Gardner et al. (1989).

As a brief aside, it has been brought to my attention by Dr Kenneth Lindsay 

th a t equation (A5)i should perhaps contain another residual term, i.e.

L iu  — tiTm+i +  T2TN+2 +  TsTpr+s. (A6)

His argument arises from the zQ  term in equation (A l)i. W ith the approximation 

of (A4)2 this is

JV+2 1 N+2

zQ = Y ,  zQiT M  = ©oToTi + Q1T1 + -  E  ^  P i-1 + Ti+i) ■
(= 0  1 1=2

The problem arise from the very last term i.e.

zQ  =  0 oToTi +  . . .  +  -Qn+2 (Tjv+i +  Tn+3)

In the absence of the extra residual term one can then form (L iU ,T ^+s) = 

|@iv+2||^iV+3||2 — 0 and so ©at+2 =  0 which is not desirable. To overcome this 

one could indeed include another residual term as in (A6), however I have not seen 

this in other literature. Instead one can argue tha t since (A4)x is a truncation of an 

infinite series, i.e.
00

0  =  £ 6 ,3 1  (*)
/=0

which is then truncated at N  -f 2, then one can apply the same logic to z 0 , i.e.

00

1=0

and this is also truncated at N  +  2. W ith this argument no TV+3 term  arises and I 

believe th a t equation (A5)i is now valid. This is the argument tha t I employ.

Returning again to equations (A5) the next step in the procedure is to take the 

inner product of each of (A5) with T* in the weighted L 2{—1,1) space with the inner 

product defined by

(TmiTn) =  f  dz.  (A7)
l - i  y l  — z2

The Chebyshev polynomial are orthogonal in this space and so equation (A5) yields 

the 4(IV +  1) equations
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(Lau,Ti) — 0, a — 1 ,2 ,3,4, i =  0, 1 , . . . ,  JV, (A8 )

together with eight further equations,

(Lilt, T N+j) =  \\TN+j\\2Tj, j  =  1,2,

(L2u ,T N+j) = \\TN+j\\2Tj, j  — 1,2, ^

(Lsu,T n +j) =  ||2iv+j | |2fj*, i  =  1,2,

(LiU ,TN+j) =  \\TN+j\\2fj, j  = 1, 2 ,

where || • || represents the norm associated with the inner product (A7). Equations 

(A9) may be used to determine the tau coefficients and used in error analysis c.f. 

Gardner et al. (1989). However, normally one does not calculate these coefficients 

and instead eight further equations are obtained from the boundary equations (A3) 

which are (since Tn(±  1) =  (A’l )n , Orszag (1971)),

N + 2  N + 2

£  ( —i ) ' w i  =  o, £ w ,  =  o,
I- 0 I- 0
N + 2  N + 2

E  ( - ! ) ' © «  =  o, £ © <  =  o,
r +2 (A10)

£ ( - i ) ‘* }  =  o,  £  =  o,
/= 0  1=0

N + 2  N + 2

£  ( - 1) '$?  =  o, £ ® ?  =  o.
1=0 1=0

So, equations (A8) and (A10) yield a system of 4(iV+3) equations for the 4(JV+3)

unknowns Wi, ©*, i =  0 , 1 , . . . ,  iV H- 2. Using the properties of Chebyshev

polynomials (Orszag (1971)) one can show that

N + 2
r(2)

v v

1=0

where

D 2W  =  £ W i(2,T!(.z), (A ll)

p—JV+2
w [ 2) =  -  £  p(p2 - l 2)Wp, (A12)

Cl
p — 1 + 2

p + 1 e v e n

with Co = 2, Ci = l , i  = 1, 2, . . . .  Analogous expressions exist for D 20 , D 2^ 1 and 

D2®2. If the coefficients of the second differentiation m atrix (the matrix th a t arises 

from the Chebyshev representation of D 2) are denoted by D 2p  then equations (Al l )
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and (A12) may be used to show that

D h i  =  ^ (2j ) 3, J > 1 , (A13)

-°i,i+23 =  4i(* +  j)(* +  2i) . * > > !■

This m atrix is started at (0,0) and truncated at column TV +  2.

It follows then tha t equations (A8) and (A10) represent a matrix equation of

form

Ax — cri?x, (A14)

with x  =  (Wo, . . . ,  Wjv+2, Bo, • ■ •, B/v+2, $o, ■ ■ ■ > ^!v+2> $o> ■ • ■ j ^w+2)T-

As already described, one problem with previous applications of the Chebyshev 

tau  method has been the existence of spurious eigenvalues. Gardner et al (1989) 

attribute  the existence of these spurious eigenvalues to the fact tha t the m atrix B  in 

(A14) will be singular as a result of the inclusion of the boundary conditions in A. 

The method of Straughan and Walker (1996) overcomes this problem by removing 

the IV +  1, N  +  2 rows from the (N  +  3) x (N  +  3) m atrix D 2 and then eliminating 

the IV +  1, IV +  2 columns by making use of the boundary conditions, a device tha t 

seems to have been used first by Haidvogel and Zang (1979). This results in a 

(TV +  1) x (TV +  1) m atrix D 2. Details are given in Straughan and Walker (1996). 

The removal of boundary condition rows in the matrix A  above and consequently 

the removal of extraneous rows of zeros in the B  m atrix stabilises the numerical 

eigenvalue problem and eliminates the occurrence of spurious eigenvalues. In the

present problem A  and B  are 4(TV +  1) x 4(IV +  1) matrices of form

A

D 2 -  k2I Z k 2 +  (1 --  2£)/c2i - k 2I 1 to

—R I D 2 — k2I 0 0

- R J 0 D 2 - k 2I 0

~ r 2i 0 0 D 2 -  k2I  j

(  0 0 0 0 \

0 I 0 0
B  =

0 0 P2I 0

U 0 0

1—
1 )
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where D 2 is the second differentiation matrix with the N  +  1 and N  + 2 columns 

removed using the boundary conditions and Z  is the Chebyshev representation of z.

The eigenvalues a  in (A14) were found by using the Q Z  algorithm of Moler 

and Stewart (1973). The underlying idea of the Q Z  algorithm is tha t there exist 

unitary matrices Q and Z  such tha t Q A Z  and Q B Z  are both upper triangular. The 

algorithm yields values and f t  which are the diagonal elements of Q A Z  and Q B Z .

The eigenvalues can then be obtained from the relation cq =  -p  for f t  ^  0. When
P i

the m atrix B  is singular (as it is in the present problem) some of the f t  will be zero 

and these must be filtered out. A formulation of the Q Z  algorithm is available in 

the NAG library routine F02BJF.

A .2 A  C hebyshev tau  m ethod for system  (5 .47)— 

(5.53)

As described in the previous section, Straughan and Walker (1996) advocate writing 

equations (5.47)—(5.50) as a system of second order equations in order to reduce the 

problem of round-off error. Here, this produces

(D 2 -  k 2) W =  A, (A15)

-  k 2) A  -  k 2B  +  k 2^ 1 +  fc2$ 2 11 73 I J-
1

(A16)

(.D 2 -  k 2)Q  +  flW (l -  h(z)) =  (J0 , (A17)

( D 2 -  h2)®1 -  — TV
n

=
7l

(A18)

(D2 -  k2)®2 ~  ~ w
72

=  —  $ 2. 
?2

(A19)

For free-free boundaries one can use the method of removing the boundary 

condition columns as in the previous section. However, when fixed boundaries are 

considered this method cannot be used, as pointed out by McFadden et al. (1990) p. 

232, since the boundary conditions are all on W  and none are on A. Consequently 

an alternative method must be used and is described in this section.
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The boundary conditions for fixed-free boundaries are

© =  <3̂  — =  0 at z  =  0 , 1,

W  — D W  =  0 at z ~  0,

W — A =  0 at z =■ 1,

while for fixed-fixed boundary conditions,

W  = D W  = 0  =  -  $ 2 =  0 at s  =  0,1

(A20)

(A21)

We transform to the interval (-1,1) and the above system reduces to the m atrix 

system

Ax =  crBx,

where A and B  are the following b(N  +  1) x 5(iV +  1) matrices 

/  D 2 -  k2I

(A22)

A W  -  O f )

Ti

T2

- I 0 0 0

- k 2I - k 2I k2I k2I

0 to 1 to 0 0

0 0 D 2 ~  k2I 0

0 0 0 D 2 ~  k2I

\

B  =

(  0 0 0 0

° T r ° °
0 0 / 0

0 0 0 —  n
^ o o o o

0 

0 

0 

0

L  
D J

and x  =  (Wo, . . . ,  Wjv, Aq, . . . ,  A^r, ©o> ■.., ©w> $o> • • • » ■  j ^Ar)T- % xs the 

Chebyshev representation of z. The problem remains to incorporate the boundary 

conditions. An alternative approach is to write in the boundary conditions as rows 

of the matrices A and B , a technique employed by Orszag (1971). Rows N ,N  +  

1 , 2JV, 2N  +  1 , . . . ,  5JV, 5iV +  1 are replaced with boundary information. The result 

is a generalised eigenvalue problem like (A22) where
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D 2 -  k2I  

B C l  

BC 2

0

BCS

BCA

B C  5 

B C 6

n
B C l

BC S

r2
B C  9 

BCIO

- I

B C l

BC 2

D 2 -  k2I  

BCS  

BCA

0

BC S

BCS

0

B C l

BC S

0

BC9

BCIO

0

BCl
BC2

- k 2I

BCS

BCA

D 2 -  k2I  

BCS  

BCS

0

B C l

BCS

0

BC9

BCIO

0

B C l

BC 2

k2I

BC S

BCA

0

BCS

BC S

D 2 -  k2I

B C l

BC S

0

BC9

BCIO

0  ̂

B C l 

B C 2

k2I

BCS

BCA

0

BC S

BCS

0

B C l

BCS

D 2 -  k2I  

BC9  

BCIO
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B

0
I

0 . . . 0

0 . . . 0

0 0

0 0

I

0 . . . 0

0 . . . 0

0

0 0

I_
n

0 . . . 0

0 . . . 0

0

V

L
r2

0 . . . 0

0 . . . 0

and x  =  (Wo, . . . ,  W N, A 0t. . . ,  A N, @0, , . . ,  QN, . . . ,  &N, . . . ,  $ ^ ) T- The rows

of the m atrix A  labelled B C  1 , . . . ,  PCIO refer to the discrete versions of the bound

ary conditions (A20) or (A21). These are written with the aid of the properties 

Tn(± l)  =  ( ± l) n , T^(dzl) =  ( ± l) n -1n2 (see Orszag (1971)). As an explicit exam

ple consider the row B C l  which in both problems corresponds to the boundary 

condition W (—1) =  0. For definiteness assume N  to be even. The row B C l  is then

1 -  1 . . . -  11 0 0 . . .  0 00 . . .  0 0 0 . . .  0 0 0 . . .  0

where each block contains N  +  1 terms.

To help describe more concisely the other boundary conditions we introduce the 

four (N  -f- l)-dim ensional vectors p, q, r  and s defined by

pn = 1, qn -  ( - l ) n, rn = n2, sn =  ( - l ) n_1u 2 n  =  0 , 1 , . . . ,  N.

The following tables show the exact nature of all the boundary condition rows. For 

the fixed-free problem,
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Condition Label
...

Row Overwrites

W { -1 )  =  0 B C l N (q, 0 , 0 , 0 , 0 )

OII BC2 N  + l (p, 0 , 0 , 0 , 0 )

D W ( - 1) = 0 BCS 2 N (s, 0 , 0 , 0 , 0 )

D 2W { 1) =  .4(1) = 0 BCA 2N  + 1 (0 ,p , 0 , 0 , 0 )

OilT—!

CD BCQ SN (0 , 0 , q, 0 , 0)

0 (1) =  0 BCQ 31V +  1 (0 , 0 , p , 0 , 0 )

=  0 B C l AN (0 , 0 , 0 , q, 0

^ ( l )  = 0 BCS AN + 1 (0 , 0 , 0 , p , 0 )

$ 2( - l )  =  0 BCS QN (0 , 0 , 0 , 0 , q)

$ 2(1) =  0 BCIO 51Y+ 1 (0 , 0 , 0 , 0 ,p )

while for the fixed-fixed problem

Condition Label Row Overwrites

W { - 1) =  0 B C l N (q, 0 , 0 , 0 , 0 )

W (l) =  0 BC2 N  + l (p, 0 , 0 , 0 , 0 )

D W {-1 )  = 0 BCS 2 N (s, 0 , 0 , 0 , 0 )

D W {  1) =  0 BCA 2N  +  1 (r, 0 , 0 , 0 , 0 )

© ( - 1) =  0 BCQ SN (0 , 0 , q, 0 , 0 )

0 (1) = 0 BCQ SN  + 1 (0 , 0 , p , 0 , 0)

^ ( - l )  - 0 B C l AN (0 , 0 , 0 , q, 0

c&^l) = 0 BCS A N + 1 (0 , 0 , 0 , p , 0)

<L2( - 1) - 0 BCS QN (0 , 0 , 0 , 0 , q)

<I>2(1) =  0 BCIO 51V+  1 (0 , 0 , 0 , 0 ,p )

As before, the eigenvalues a in (A22) were found by using the Q Z  algorithm of 

Moler and Stewart (1973). Straughan and Walker (1996) find th a t this method may 

give rise to spurious eigenvalues. However, in this problem no spurious eigenvalues 

appear to occur.
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