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Sum m ary

Magnetohydrodynamics and its use in understanding the E arth ’s magnetic field has 

enjoyed much attention in the last fifty years. This has much to do with the recent 

explosion in computer technology which has allowed the formulation and numerical 

solution of model problems which are not immediately analytically tractable. In 

this thesis, we approach the hydromagnetic dynamo problem from a stability point 

of view. We do not concern ourselves with the generation of the main (or basic) 

field, but consider its stability to small perturbations. Any instabilities found are 

im portant since they give constraints on the unknown field and sustaining motions 

in the core.

After the introduction in Chapter 1, Chapter 2 formulates a linearised hydro- 

magnetic stability problem as an eigenvalue problem. For a hydromagnetic system 

in the geometry of an infinite cylindrical annulus, we have revealed the presence 

of double eigenvalues at various locations in the parameter space. We show that 

tracking a particular eigenvalue around a closed path in parameter space need not 

necessarily return the original eigenvalue. This phenomena was first examined by 

Jones (1987), in the context of Poiseuille flow. In the hydromagnetic problem, we 

find that the most unstable mode (i.e. the mode we are most interested in) often 

behaves in this manner. We show that classifying magnetic instabilities as being 

either of the resistive or ideal class is not possible at geophysically relevant field 

strengths.

In a nonlinear eigenvalue analysis, Fearn, Lamb, McLean & Ogden (1997) demon­

strated qualitative differences between the viscid and the inviscid (magnetostrophic) 

approaches indicating that finite viscosity models cannot yet reach a parameter 

regime characteristic of the E arth ’s core.

In Chapters 3 and 4 we present a nonlinear hydromagnetic stability analysis in a
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bounded annular model of the E arth ’s core. We adopt the magnetostrophic approx­

imation in the fluid main body but incorporate viscous effects from the boundary 

layers in the form of the geostrophic flow. The nonlinear problem is then solved 

numerically using a time-stepping method.

Chapter 3 corroborates and extends the work of Fearn et al (1997) and Chapter 

4 considers the stability and nonlinear development of more geophysically relevant 

basic fields that depend not only on the radial coordinate, but also on the axial 

coordinate. This work is then compared with the viscous analyses of Hutcheson & 

Fearn (1995a,b, 1996, 1997).



C hapter 1

Introduction

Recently, there has been considerable interest in the subject of magnetohydrody­

namics as it applies to the E arth ’s core. The first scientific treatise on the subject 

was by W. Gilbert in the monograph “De Magnete” in 1600. Gilbert performed a 

series of experiments measuring the direction of the field on the surface of a spherical 

magnet. Upon comparing the results with observations on the Earth, Gilbert con­

cluded tha t the Earth behaved like a giant magnet. It was not until the beginning 

of this century tha t remanent magnetism was challenged as a possible explanation 

for the geomagnetic field. The Curie temperature, beyond which permanent mag­

netism vanishes, is reached at a depth of 30km below the E arth ’s surface. Also, 

paleomagnetic records in ancient lava flows and in sediment layed down on the sea 

floor indicate the existence of a geomagnetic field which has maintained its strength 

over a very large number of diffusion timescales. A diffusion timescale

rv =  L 2/r], (1.1)

is a typical length of time a magnetic field may exist given no mechanism for field 

regeneration.. Here we use the core radius £  as a lengthscale (C =  3.486 x 106m) and 

take t] =  l/fjLcr = lm 2s-1 [corresponding to fj, =  47t x 10“7Hm -1 and a — 8 x 105Sm-1 

(Secco & Schloessin, 1989) where fi is the permeability of free space and a  is the 

electrical conductivity]. This gives t v  — 3.9 x 105 years. Thus, the existence of the 

geomagnetic field cannot be explained by permanent magnetism nor by an ancient 

fossil field.

Seismic measurements of the E arth ’s interior show the existence of a solid iron
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inner core extending to a radius of 1221 km, a liquid outer core comprised of iron and 

some lighter admixture extending to 3480 km all encased in a rocky mantle and thin 

crust at 6371km. Larmor (1919) conjectured that the observed geomagnetic field 

could be produced by the motion of a homogeneous electrically conducting fluid. To 

this day it is believed tha t the flow of molten iron in the E arth ’s outer core and the 

associated feedback of the magnetic field on the flow constitutes the geodynamo; a 

nonlinear mechanism that converts mechanical energy into magnetic energy.

The geodynamo must be fuelled by an energy source (or sources) if the magnetic 

and flow fields are to overcome losses incurred through ohmic and viscous diffusion. 

Many energy sources have been postulated. For example, internal heating in the 

core due to the decay of radioactive isotopes may provide enough energy to maintain 

dynamo action. Alternatively, a geodynamo driven by convective motions associated 

with the freezing of a solid inner core and the subsequent release of latent heat has 

been proposed by Verhoogen (1961). Braginsky (1963) later introduced the idea of 

buoyant material liberated at the inner-core-boundary (ICB) giving rise to composi­

tional convection. Another source may result from the gravitational influence of the 

Sun and Moon on the Earth. This results in the precession of the E arth ’s rotation 

axis. Kerswell (1994, 1996) has shown that precessional energy may provide enough 

energy to maintain dynamo action. In short, there are many viable energy sources 

for the geodynamo and the precise details of which sources are dominant is far from 

certain. Detailed discussions are given by Lister & Buffett (1995) and Fearn (1997).

Recently, considerable effort has been expended in trying to understand the geo­

dynamo and the fluid motions tha t perpetuate it, see for example, Soward (1991), 

Roberts & Soward (1992). Various assaults on modelling the full nonlinear geo­

dynamo problem are underway. Depending on the complexity of the model, this 

typically involves solving a nonlinear system of coupled partial differential equa­

tions in a frame co-rotating with the E arth ’s mantle, n 0 =  Here we use

(15, 1.0, l z) to represent the cylindrical polar base vectors and ( l r , 1#, 1^) to repre­

sent the spherical polar base vectors. Suppose time is nondimensionalised on the 

magnetic diffusion timescale rv defined in (1.1), length on the core radius £ , speed 

on C / tVj the magnetic field on (2fl0MPo??)l//2 and the tem perature on /?£ (where 

/3 is the maximum of the temperature gradient). Then a typical set of governing
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equations includes the momentum equation

- V n - g i ? a T g  +  E V 2V  +  (V x B) x B ,  (1.2)

where we have adopted the simple linear relationship between density p and temper­

ature T, p =  po[l — cu(T —T0)]. Here, a  is the volume coefficient of thermal expansion 

and T0 is a reference temperature at which p = pQ. A further simplification has been 

made by using the Boussinesq approximation where the density is seen to vary only 

where it multiplies the thermal buoyancy term. The magnetic induction equation 

governs the evolution of the magnetic field B,

where e is a heat source term. Finally, many models simplify the mass continuity 

equation by assuming tha t the core fluid is incompressible. This leads to

The above system is then closed on application of appropriate boundary conditions 

on the field B and flow V  at the core-mantle-boundary (CMB) and at the ICB 

[although it is now common for models to solve for the magnetic field in the inner 

core, see for example Hollerbach & Jones (1993a,b,1995)]. Examples of boundary 

conditions for the magnetic field might be that B must match to an external poten­

tial field. For the flow, the correct boundary conditions to apply are the no-fluid-slip 

conditions where V  =  0 although some authors have used stress free boundary con­

ditions for numerical convenience. Here the tangential stress along with the normal 

component of the flow must vanish on the CMB and at the ICB [see, for example, 

Kuang & Bloxham (1997), submitted].

In (1.2), (1.4) the following dimensionless numbers appear: the Rossby number

- r -  =  V x (V  x B) +  V 2B , 
at

(1.3)

and the thermal equation governs the temperature T,

+  V  ■ VT -  q V2T +  e .
at

(1.4)

v- v  = o. (1.5)

(1 .6 )
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the Roberts number

the modified Rayleigh number

~ (1.7)
V

g0a P £ 2 ^
Ra = ~ 2 n ^ '  (1 '8)

and the Ekman number

* = S 5 - 1191

The gravitational term g from (1.2) has been written as —gorlr. The Rayleigh 

number Aa, prescribed in dynamo calculations, is used to control the strength of 

the thermal forcing when the dynamo energy source is due to thermal buoyancy. If 

compositional buoyancy were to be modelled, then another time-evolution equation, 

identical to (1.4), for the mass fraction C of the light constituent would be needed. 

An analogous “compositional Rayleigh number” would then multiply the additional 

term  due to compositional buoyancy in (1.2).

The Rossby number, i?o, is the ratio of the magnetic diffusion timescale to the 

inertial timescale (Dj-1). Consequently, it is very small and is of O(10-8). On 

these grounds, the inertial term [RoDV/Dt]  is usually neglected in calculations. 

The Roberts number, measures the ratio of thermal to magnetic diffusivities. 

It is believed th a t q =  O(10”5). Dynamo calculations have not yet approached 

such small values and q has usually been taken between 0.1 and 10. The Ekman 

number is the nondimensional measure of viscosity in the core and is very small. 

Its value may lie between 10-15, if molecular diffusivities are used, and 10~8, if 

turbulent values are used. The computational problems associated with trying to 

resolve the consequent narrow viscous boundary layers leads us to consider the case 

where E  =  0. This, along with setting Ro identically equal to zero, is called the 

magnetostrophic approximation.

By the numerically intensive nature of dynamo calculations, today’s parallel com­

puters are stretched to their absolute limit. Glatzmaier & Roberts (1995a,b,1996a,b) 

have been particularly successful in integrating the governing equations in their geo­

dynamo model through a number magnetic diffusion timescales and have obtained 

a field reversal. In their time evolution calculations they observed tha t the inner 

core was rotating, on average, 3° per year faster than the mantle. Together with the



recently established anisotrophy of the inner core, Song & Richards (1996), and later 

Sit & Dziewonski (1996), examined seismic records extending over the last 28 years. 

Song &; Richards were able to infer tha t the inner core is rotating at a rate of 1.1° 

per year faster than the mantle. This finding was corroborated by Su & Dziewonski 

who found the slightly faster rate of 3° per year. This has certain implications for 

core dynamics as suggested by Whaler & Holme (1996). If changes in core angular 

momentum have zero average over long periods of time, then the observed secular 

variation or westward drift of the magnetic field at the CMB [consistent with west­

ward travelling fluid beneath the mantle] could be explained by eastward travelling 

flow at the ICB.

The main problem experienced by Glatzmaier & Roberts (1995a,b, 1996a,b) and, 

indeed, by anyone writing and running computer models of the geodynamo is that 

the geophysically relevant parameter regime is computationally difficult to reach. 

Even the most modest of calculations will take several months to complete a very 

few diffusion timescales so it is obvious that we have little opportunity to explore the 

parameter space. Most physical insight into such problems is usually obtained by a 

thorough examination of the parameter space and if this is not practical, then the 

results from full dynamo calculations need to be complemented by simpler model 

problems th a t are much less numerically intensive and focus on one aspect of the 

physics.

There are several paths tha t one may take to simplify the problem in order 

to make it manageable yet retaining essential physics. The evolution of magnetic 

instability is one such path. The Elsasser number

A =  B 2M/2£l0(ip0ri (1.10)

is a nondimensional measure of the magnetic field strength B m (where B m is the 

maximum amplitude of the magnetic field B) and an inverse measure of the magnetic 

diffusivity 77. In a cylindrical geometry, Fearn (1983b,1984,1985 and 1988) examined 

the linear stability of various s-dependent basic state magnetic fields. This, together 

with later work in a spherical geometry and in spherical shells (Zhang & Fearn, 

1994, 1995) has shown that the field strength at the onset of instability corresponds 

to A =  0(1). This value is not inconsistent with a dynamo of the strong field 

type. Although the observed field at the E arth ’s surface is weak, strong field theory
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predicts the field is comprised of a strong toroidal component [A =  0(1)], vanishing 

at the CMB, and by a weaker poloidal part [A < 0(1)] which can be measured at the 

E arth ’s surface. Thus, magnetic instabilities play an im portant role in constraining 

(by extracting energy from) the mean magnetic field.

Magnetic instabilities in a rapidly rotating system, such as the E arth ’s outer 

core, generally fall into one of two categories: the ideal or ‘field gradient’ instability 

and the resistive instability. Early analytical work, in the absence of diffusion, 

by Acheson (1972) [see also Acheson (1973),(1983)], led to the discovery of ideal 

instabilities that result from gradients in the magnetic field. Later numerical work, 

in particular by Fearn (1983b), not only confirmed the existence of such an instability 

but also uncovered a class of instability, hitherto unseen in a rapidly rotating system, 

dependent on diffusion for its very existence. The term ‘resistive instability’, as used 

in non-rotating systems, was used for this class.

In the perfectly conducting limit, magnetic field lines become ‘frozen’ into the 

fluid. Here, in the absence of diffusion, under favourable conditions, ideal instabili­

ties may form. Such an instability cannot, therefore, violate the frozen flux criterion 

and so is constrained by it. Acheson (1983) has found th a t a curved magnetic field 

is required for the ideal instability and furthermore, tha t the magnetic field strength 

should increase sufficiently quickly with the radial coordinate s -  hence the term  

‘field gradient instability’.

Any instability requires the movement of field lines and if those lines are con­

strained to be frozen into the fluid then any such movement must be accompanied 

by a fluid motion. However, the introduction of magnetic diffusion, 77, allows for the 

movement of field lines relative to the fluid and the reconnection of field lines. This 

gives the system a greater freedom and so facilitates extraction of energy from the 

basic field. The resistive instability requires the presence of diffusion before it can 

draw any energy.

A criterion tha t is often used to distinguish between the two types of instability 

is the trend exhibited by an instability’s growth rate and frequency as the Elsasser 

number A -» 00 . In the case of the ideal instability, the growth rate is directly related 

to the magnitude of the magnetic field. When A is high, diffusive effects are negligible 

and much energy contained in the field is available for the instability. Therefore,
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in the perfectly conducting limit, A -» oo, both growth rate p and magnitude of 

frequency |s| tend to constant, positive, nonzero, values. For A < oo diffusion is 

introduced into the system and consequently, some of the energy tha t was available 

to the instability is now diffused away. Also, low values of A correspond to weak 

fields and little energy is available to instabilities. As A is reduced from oo, the 

growth rate of will fall until eventually the instability becomes marginally stable 

(p =  0), at some critical value Ac of A. For A < Ac the mode is stable (p < 0). An 

example of this behaviour is shown in Figure 2.3(a).

Diffusion is the catalyst by which the resistive instability extracts energy from 

the magnetic field. Since A is an inverse measure of the diffusivity, then at high 

values of A there is little diffusion present in the system and it is difficult for the 

resistive instability to extract energy from the field. Consequently, the growth rate 

and frequency of such an instability is very small and approachs zero as A —> oo. As 

A decreases, diffusive effects become more and more pronounced and any resistive 

mode may extract more and more energy and its growth rate increases. Eventually, 

as A decreases further, diffusion will begin to inhibit the growth of the resistive 

instability until an optimum growth rate is achieved. As A —> 0 , diffusive effects 

become stronger and energy tha t may have been previously available (at higher A) 

is now diffused away. When diffusion is strong enough, corresponding to A =  Ac, 

airy instabilities become marginally stable and for A < Ac the system is stable. An 

example of this behaviour can be found in Figure 2.3(b).

In Chapter 2 we consider classifying magnetic instabilities as either being of 

the resistive or of the ideal class. Formulating a linear stability analysis of an s- 

dependent basic state field, typical of those investigated by Fearn (e.g. 1988), as 

an eigenvalue problem for the complex growth rate, we show tha t it is not possible 

to distinguish between the two instability classes when A — 0(1). This work has 

appeared in publication by McLean & Fearn (1996).

Much work has been done in understanding magnetic instabilities in the linear 

regime. However, less nonlinear work has been done and, consequently, it is poorly 

understood. The main problem lies with the (almost) negligible viscosity of the 

outer core.

Taylor (1963) found tha t a peculiarity arising from the purely inviscid case is tha t
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the magnetic torque must vanish over all cylinders C(s) coaxial with the rotation 

axis. Making the magnetostrophic approximation [i.e. both viscous and inertial 

terms are neglected from the momentum equation (1.2)] gives

1, x V = - V n  +  ( V x B ) x B .

Taking the ^-component of (1.11) and integrating over any cylinder C(s)  coaxial 

with the rotation axis, we obtain

The term  on the left side of (1.12) measures the total volume of fluid passing across 

the cylindrical surface C(s). Since the fluid is inviscid, then by mass conservation 

this quantity must vanish. Thus we have

which is known as Taylor’s constraint. '

In addition to Taylor’s constraint, under the magnetostrophic approximation, 

there is an undetermined component of the flow. If we take the curl of the momentum 

equation, V x (1.2), then

Integration of (1.14) leaves an undetermined x-independent component of the flow 

V o(s,$). In the spherical geometry, the no-normai-flow conditions will determine 

the s- and ^-components of V 0. For non-axisymmetric systems, the divergence free 

condition (1.5) determines the ^-component. However, the axisymmetric, azimuthal 

^-component of Vo remains undetermined and is called the geostrophic flow Vq [see, 

for example, Fearn (1997) or Hollerbach (1996) and the references contained therein]. 

The undetermined component of the flow Vq  is purely azimuthal and may only vary 

between the geostrophic contours C(s) which are concentric circles centred on the 

axis of rotation.

A completely inviscid approximation of the fluid in the core is, however, a poor 

approximation. Although viscosity is small, it will become im portant in the narrow

I' | ( V x B ) x B ) y S
JC(s)

( 1 .12)

(1.13)

-  =  - V x [ ( V x B ) x  B].
oz

(1.14)



Ekman layers adjacent to the boundaries. Instead of a completely inviscid fluid, we 

consider a fluid of very low viscosity where viscous effects are negligible except in the 

boundary layers. Setting 0 < E  <C 1 and solving analytically for the boundary layer 

flow we then obtain a condition which is more general than (1.13). The viscous drag 

in the boundary layers can balance the magnetic torque. This viscous drag can be 

related to the mean azimuthal flow (or geostrophic flow) in the fluid main body via a 

boundary layer analysis (see, for example Fearn, 1994). The nature of the resulting 

modified Taylor’s expression is different than (1.13). The latter is a constraint on 

the system and is satisfied by choosing the appropriate Vq which will “stretch out” 

meridional field lines in precisely the right manner so tha t Taylor’s constraint is 

satisfied. The expression for the geostrophic flow in the spherical geometry is

=  2 X B ) X B1* d S ' (L 15)

Let us consider the cylindrical geometry under the magnetostrophic approxi­

mation. There, Taylor’s constraint (1.13) still holds and taking the curl of the 

momentum equations (1.11) once again leads to (1.14). However, using the method 

of applying the no-normal-flow and divergence free conditions to find V 0(s, <p) up to 

a mean, undetermined, azimuthal flow fails. The parallel bounding plates together 

with (1.14) show tha t Vo may depend on cj) as well as s. Hence the geostrophic 

contours need not necessarily be concentric circles and in general, V 0 will have a 

component in the radial direction which will necessarily have a non-axisymmetric 

dependence (so tha t incompressibility is not violated). This is seen from the two 

no-normal-flow conditions on the parallel bounding plates. These conditions are no 

longer linearly independent, both showing tha t the ^-component of V 0 must vanish. 

This gives the following form for the geostrophic flow

Vg(s, 0 , t ) l s +  [Vg(s, 0 , t) +  (s, t)]l<p (1.16)

where Vq is the non-axisymmetric ^-component of the geostrophic flow and Vq 

is the corresponding axisymmetric component. This axisymmetric ^-component, 

Vq (s, t) 1 >̂, can be derived in the same way as in the spherical case but modified 

for the cylindrical geometry. Thus, if we restore viscosity into narrow Ekman layers 

next to the parallel bounding plates then

9*{s't]= /cw[(v x b) x B]*ds' (li7)
9



where C(s)  represents any coaxial cylinder.

Determination of Vq 18 +  Vq I^, is not done in this thesis. The reason for its 

exception is two-fold. Firstly, we examine the cylindrical geometry in the hope 

tha t it will give us some insight into the stability of the geo dynamo. The true 

geophysical geometry is the spherical shell geometry and geostrophic flows of the 

form Vg(s, 0 , t ) l a +  VJj(s, 0, t ) l ^  are not permitted there. As noted above, the 

geostrophic flow is necessarily one dimensional and purely azimuthal in the spherical 

case. Thus, in Chapters 3 and 4 we neglect the non-axisymmetric component of the 

geostrophic flow and enforce Vq only through (1.17).

The second reason for neglecting the non-axisymmetric geostrophic flow is m ath­

ematical. A main reason for considering the (simpler) cylindrical annular geometry 

over the more realistic spherical shell geometry is tha t the former geometry is less 

numerically intensive. However, if we were to include the term  VJ51a then the prob­

lem would necessarily become three dimensional (the non-axisymmetric components 

of Vg coupling with other axisymmetric and non-axisymmetric components). In this 

event, no advantage is to be gained in using the cylindrical geometry and one would 

be better employed solving the corresponding two dimensional problem in a spherical 

geometry.

Let us now consider the impact of Vq on an initially infinitesimal solution to the 

linearised problem as it grows in the nonlinear regime. As the solution grows and 

approaches an amplitude |B |, |V | =  0 (E 1/4) the amplitude of the geostrophic flow 

approaches 0(1). However, all other nonlinear effects are quadratic in the variables 

B and V , so are O (E 1?2). At this finite amplitude, Vq is the dominant nonlinear 

effect. When the magnetic field becomes equilibrated at these amplitudes we say 

th a t the system has evolved to an Ekman state.

Under the magnetostrophic approximation ( E t Ro = 0) a Taylor state is an invis­

cid state satisfying (1.13). Fearn & Proctor (1987) had some success in approaching 

Taylor states using an optimization technique. In their hydromagnetic problem, the 

poloidal part of the magnetic field, supported by an imposed emf, sustained the 

zonal field through a differential rotation. This differential rotation was imposed 

except for the geostrophic flow and a minimization technique was then employed on 

Taylor’s integral [left side of (1.13)] to determine Vq - For certain choices of initial
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fields, states approaching Taylor’s condition were found. This, along with exam­

ples from other model problems, provided some of the first numerical evidence that 

Taylor states were possible.

One should realise, however, that directly obtaining Taylor states in a time step­

ping code is complicated by the fact that one must step in such a fashion as to 

select structures appropriate to (1.13). Retaining viscosity in Ekman boundary lay­

ers allows a modified version of Taylor’s condition to be satisfied via an explicit 

determination of the geostrophic flow. Taylor states can then be characterised by 

flow and field strengths which are 0 (1) and where the geostrophic flow, as deter­

mined via (1.15), is also 0(1). This is achieved by large internal cancellation in the 

Taylor integral [left side of (1.13)]. This property of internal cancellation leads to 

numerical difficulties in computing Vq as a Taylor’s state is approached.

Malleus & Proctor (1975) proposed a trend for the equilibrated amplitude of 

magnetic field in a mean field dynamo. In our magnetic stability analysis, the El- 

sasser number A is the appropriate measure of imposed (maximum) field amplitude, 

B m - The Malleus & Proctor (1975) scenario describes neatly the evolution of the 

magnetic field from infinitesimal amplitudes at critical onset (A =  Ac) through to 

Ekman states [|B| =  0 ( E ly/4)] and on to Taylor states [where |B | =  0(1)]. Shortly 

after linear onset, there is a clearly marked plateau where the solution is viscously 

limited in the vicinity of |B | =  O ( E 1̂ )  before the curve rises steeply to level off, 

finally, a t 0(1). For A just in excess of Ac the geostrophic flow varies quadratically 

with |B |. However, as A increases further, Vg does not increase accordingly. This is 

an early indication of the progression toward a Taylor state where internal cancella­

tion in the Taylor integral has begun to occur so tha t eventually Taylor’s condition 

is satisfied.

Zhang (1995) has shown in a magneto convection problem tha t given an unstable 

basic field along with an unstable temperature gradient, thermal instabilities evolve 

into purely magnetically driven instabilities as the Rayleigh number Ra  (1.8) is de­

creased and the Elsasser number A (1.10) is increased. In short, thermal and mag­

netic instabilities are both part of the same instability mechanism. Consequently, 

a hydromagnetic system may then be examined in the absence of buoyancy forces 

to concentrate on purely magnetic instabilities. If the only nonlinear effect is the
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geostrophic flow Vqj it is possible to scale the dependent variables with E 1̂ 4 in order 

to remove the explicit appearance of the Ekman number from the governing equa­

tions. Axisymmetric basic state fields depending on both the s and z  coordinates 

are geophysically realistic. By including an axial dependence, one may incorporate 

basic field configurations which contain symmetry or antisymmetry about the equa­

tor. Also, any ^-dependent basic field can be shown to drive a magnetic wind Vm 

(see Chapter 4). If a basic field is chosen which is independent of z, then Vm =  0 

and this is certainly unrealistic in view of the results from the dynamo models of 

Glatzmaier & Roberts (1995a,b) or Kuang & Bloxham (1997).

Fearn, Lamb, McLean & Ogden (1997) [hereafter referred to as FLMO] used an 

imposed differential rotation in firstly a linear study and then a nonlinear eigenvalue 

analysis to investigate the possibility of subcriticality induced by the geostrophic 

flow. In the linear study, it was found that an imposed differential rotation V(s) 

could lower Ac depending on the choice of V(s). The results from their nonlin­

ear eigenvalue analysis showed that the geostrophic flow can destabilise the system. 

Hutcheson & Fearn (1995a,b; 1996, 1997) looked at the full nonlinear stability prob­

lem with viscous effects included. They took E  =  O(10~4) and made an exhaustive 

search which revealed no subcritical instabilities. FLMO have therefore concluded 

th a t there must be some critical Ekman number below which the geostrophic flow 

dominates and subcriticality is possible. This im portant qualitative difference be­

tween finite E  (taken as small as computational resources will permit but still very 

much larger than geophysical values) and magnetostrophic calculations emphasizes 

the continued importance of pursuing the latter despite the difficulties associated 

with Taylor’s constraint.

In Chapters 3 and 4 we consider the stability of purely s-dependent and then 

s- and ^-dependent basic fields to small, but finite perturbations in a time stepping 

calculation under the magnetostrophic approximation. The nonlinear effect of the 

geostrophic flow is considered in each chapter and its ability to induce subcriti­

cality is assessed. The work in Chapter 3 complements and extends the nonlinear 

eigenvalue analysis of FLMO whilst the results of Chapter 4 may be compared with 

the similar, but viscous analyses of Hutcheson & Fearn (1996, 1997). It should be 

stressed th a t the introduction of an axial dependence into the basic fields considered

12



in Chapter 4 required an extensive modification to the numerical code of Chapter 

3. This was necessary to model the coupling of the axial modes introduced through 

the non-autonomous presence of z in the governing equations.
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C hapter 2 

C lassification of M agnetic  

Instabilities

2.1 Introduction

In many astrophysical applications we find ourselves in the regime of an almost 

perfectly conducting fluid. Here, field strengths are high, or the conductivity is 

so great [A $̂> 0(1)] that the distinctions between ideal and resistive modes of 

instability are clear. However, in a geophysical situation A is thought to be of 0(1). 

Can we still make a distinction between ideal and resistive instabilities at such low 

field strengths? In this chapter we investigate this question and show tha t the nearby 

presence of double eigenvalues has a profound influence on any such distinction.

The linear stability problem can be formulated as an eigenvalue problem for 

the complex growth rate p + is. This typically depends on several non-dimensional 

parameters. In the case we examine, these are the Elsasser number A and the axial 

wavenumber n. Jones (1987) has completed an investigation into double eigenvalue 

points arising from the stability analysis of plane parallel flow (Poiseuille flow). In his 

paper, Jones locates many double eigenvalue points and discusses the implications of 

their existence on mode classification. He also showed th a t the existence of nearby 

multiple eigenvalue points can have an effect on the path  to instability of some 

‘promising5 modes. Jones writes, “The neighbourhood of a double eigenvalue point 

is ... a place where sharp changes of direction are likely to occur in the eigenvalue 

paths .55
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Although we have homed in on the precise location of some double eigenvalues 

we have been more concerned with the behaviour of unstable modes as A and n are 

varied. By examining the trends exhibited by a mode’s growth rate and frequency 

as A —y oo we investigate whether or not magnetic instabilities can be categorized 

as being of resistive or of the ideal type when A ~  0(1). We will also show that it is 

often the case tha t marginally stable eigenvalues are associated with nearby double 

eigenvalues th a t occur at geophysically relevant values of A and n.

2.2 M odel and Problem  Set U p

The hydromagnetic problem is formulated in terms of cylindrical polar coordinates 

(s}c/))Z) and our model consists of an infinite cylindrical annulus (inner radius 

outer radius sG) containing an incompressible conducting fluid and permeated by 

a toroidal magnetic field. Either insulating or perfectly conducting boundary con­

ditions will be applied to the inner and outer cores. A more realistic geophysical 

model would use a spherical geometry with the inclusion of buoyancy forces and 

under a prescribed differential rotation. Whilst this model is more representative 

of the geodynamo, a simpler model, such as the one we employ, permits a clearer 

and quicker exploration of the parameter space whilst retaining most of the essential 

physics.

2.2.1 P erturbation  equations and th e  basic sta te

Here, following on from the work done by Fearn (1983a,b;1984,1988), we perform a

linear stability analysis on our rapidly rotating hydromagnetic system. In a reference 

frame rotating with the Earth, O0 =  the evolution of the hydromagnetic

system is governed by the Navier-Stokes and magnetic induction equations and by 

the incompressibility constraint. Here we make the magnetostrophic approximation 

and neglect both viscous and inertial forces in the momentum equation (2.1) as 

they are judged to have little effect over our chosen timescale (2.5). The linearised, 

perturbation equations are, in the absence of differential rotation and buoyancy:

1* x v =  - V n  +  [(V x B0 x b  +  (V x b) x B 0], (2.1)

-  =  V x ( v x B 0) +  A - V b ,  (2.2)
at
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V • v  =  0. (2.3)

where it is understood tha t the magnetic B and flow U  fields take their following, 

perturbation form:

B (s, (f), z) =  B 0(5) -f b(s, </>, z),

V (s ,« M  =  V 0 + v ( 3, ^ 2). (2.4)

We have non-dimensionalised length on the outer cylindrical radius sQ and on the 

‘slow’ magnetohydrodynamic timescale ts

ts =  2 where =  B M/ s oy/]Ip (2.5)

so called because events on this timescale are slow compared with the ‘fast’ in­

ertial timescale (^o-1). Here, Qm is the Alfven frequency. Velocities are non- 

dimensionalised on s0/ r s and the magnetic field on B m , see (2.6). The basic state 

we impose on the system takes the form

B 0 =  B m 3 F ( s }1^ and V 0 =  0 (2.6)

where B m is a typical magnitude of the magnetic field, 1^ is the azimuthal unit 

vector, and we have here chosen the function F  to be:

F{s) =  [2/(1 -  S“b)]2( l  -  S“ )(s“  -  S?b) (2.7)

Here, the basic state can be changed by choosing different values of a. In this 

investigation we look at the cases a  =  1,2. The basic state (2.6) has already been 

used extensively by Fearn (1983a,b, 1984,1988) and is believed to be representative 

of tha t in the Earth since it vanishes at the inner and outer core boundaries s — Sib =  

Si/s0 and s =  1. The field F  is also known to be susceptible to both resistive and ideal 

types of instabilities, Fearn (1983b,1988). The term s\b is the non-dimensionalised 

inner boundary radius and in this investigation, =  0.35.

2.2 .2  T he eigenvalue problem

The perturbation equations (2.1),(2.2) and (2.3) along with the basic state (2.6) and 

either perfectly conducting or insulating, rigid boundary conditions are separable in 

</>, z  and t, so a modal expansion of the form

V(s,  4>i z, t) =  n(s) exp[i(m<f> -\-nz — wi)] (2-8)
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may be substituted for the pressure II and any of the components of the perturbation 

magnetic or flow fields. The variables II, b<p and v$ are eliminated from the equations 

[using equations (2.1)-l0 and (2.3)]. The resulting equations then reduce to a fourth- 

order system, see Fearn (1983a), of two ordinary differential equations in s upon 

using the first two components of the momentum equation (2.1) to eliminate vs and 

vz . The annular region Sjb < s < 1 was then divided up into N  intervals and fourth 

order finite difference operators were substituted for the differential operators and 

we obtained the m atrix eigenvalue problem

A x — Fax (2-9)

where, as a result of the difference operators, the matrix A  is an [2(N — l )]2 banded 

n-diagonal m atrix (with n  -C N)  and the eigenvector x  has the form

x  =  [bSii , . . . ,  bStN- U bZtl, . . . , bZijv_i]T (2 .10)

with bS)i = bs(s\h 4- iAs) and As =  (1 — s-ih) /N .  The m atrix eigenvalue problem 

was then solved using two methods: the LR algorithm, and the method of inverse 

iteration. Each method has its own merits: inverse iteration requires a rough es­

tim ate of the eigenvalue and converges to the eigenvalue closest to this guess; the 

LR algorithm requires storage space for the entire m atrix and computes the en­

tire eigenvalue spectrum. Consequently, for a general [2(N  — l )]2 matrix, complete 

spectrum calculations become very expensive for large N.  However, in the case of 

inverse iteration, as A  is an n-diagonal matrix, the required storage space is linear 

in N  as is the cost. For a more detailed description of both methods, see either 

Fearn (1979b) or Fearn and Proctor (1983a,b). The ‘Two Phase M ethod’, discussed 

in the next section, utilizes both of these methods in identifying and locating double 

eigenvalue points.

2.3 Identification and Location of  

D ouble Eigenvalues

Certain pairs of eigenvalues, distinct at a particular set of param eter values, coalesce 

into one double eigenvalue (both eigenvalues equal) when viewed from another point
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in the parameter space. For example, suppose that 1i and t2 are such a pair of 

distinct eigenvalues found at the point (Ao,no) and suppose further tha t when t\ 

and t 2 are viewed at the parameter values (Ad, n^) they coalesce to form the double 

eigenvalue O- If ti is subsequently tracked around a closed contour starting and 

ending at (A0, n0) which encloses (Ad, nd), then traversing this contour will result in 

the continuous deformation of t\ into t2. If one now takes t2 and tracks it around the 

same contour, then the original eigenvalue, tj, is returned. If more than one double 

eigenvalue is enclosed, then more than one permutation of eigenvalues may occur 

on successive journeys around the loop. For example, t\ may deform into t2 and t2 

into t3 before is deforms back to t i . On the other hand, if no double eigenvalues are 

enclosed by the contour, then the tracked eigenvalue will smoothly change back into 

itself. This change is not a spurious result generated by our numerical procedure, it 

is a true mathematical phenomena and a full treatm ent is given by Jones (1987).

Here we chose our contours to be rectangles and used the following cTwo Phase 

M ethod’ to identify and then, when necessary, actually find the precise location of 

a double eigenvalue to within a specified tolerance (typically, three decimal places). 

The Two Phase Method is, in many ways, much like the bisection method followed 

by Newton-Raphson technique for finding zeros in simple calculus. However, because 

our parameter space is two dimensional, instead of halving our interval of interest 

at each ‘bisection-step’ we quarter our region at each iteration.

2.3.1 F irst Phase: Tracking and Q uartering

The method of inverse iteration as described by Fearn (1990), was used to track 

eigenvalues around closed contours in the parameter (A, n)-space. Jones (1987) 

pioneered the use of rectangles in his treatment. Such a rectangle looks like:

(A0,no) i—  (10Ao, ?ro)

;  t

(Ao, 0 .1n 0) -—> (10Ao, 0 .1n 0)

Each side of the rectangle was split up into NSTEPS  divisions (typically, N S T E P S =  

201). On the first three steps the ‘corner’ eigenvalue is used as an estimate for its 

tracked value at the next three nodes along one side of the rectangle. Once a guess 

is given, inverse iteration attem pts to converge to a better estimate of the eigenvalue
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at th a t point in (A, n)-space. After the first three nodes, quadratic interpolation is 

used to estimate the next successive eigenvalue. The process begins afresh a t each 

corner and the original and final eigenvalue are noted and compared for change on 

completion of a rectangle.

Once a rectangle has been traversed and the eigenvalue is observed to deform 

into another, th a t rectangle is then cut into four smaller rectangles and each is then 

examined individually in the manner described. Once the appropriate ‘quarter’ 

(during the traversal of which, the eigenvalue deforms) has been identified, the 

process begins again by quartering the quarter.

2.3.2 Second Phase: N ew ton-R ap h son

As the First Phase proceeds we steadily home in on the region of parameter space 

containing the double eigenvalue and the eigenvalues which permute into one another 

grow closer and closer together. When they are sufficiently close to one another, in 

the same spirit as in the elementary calculus, we switch to a Newton-Raphson type 

procedure to home in more rapidly on the double. We define the quantities

a(A,re) =  (P1-P2)2, 

/3(A,n) =  ( s i - s 2)2,

(2 .11)

(2 .12)

where pi and s* are the corresponding growth rates and frequencies of the two 

eigenvalues (i = 1, 2). A 2D Newton-Raphson technique is then applied to these 

quantities. The technique fails when simply applied to (pi — £>2) or (si — S2) as these 

functions are not analytic in the parameters (cf. the square root function at the 

origin). A more detailed explanation is given by Jones (1987). The steps in the 

Newton-Raphson method are:

a(Ai,ni) =  (A; -  At+i) 

j3(Aii rii) =  (Ai -  A*+i)

da
3A
dp
dA

+  (n* -  n i+i) 

+  (ni -  n i+i)

da
dn
dP_
dn

(2.13)

(2.14)

where all the values at the ith  iteration are known. Equations (2.13) and (2.14) are 

easily inverted to give Aj+i and nj+1 explicitly.

For this stage in the process, we must obtain our eigenvalues using the more 

expensive LR algorithm. This is necessary since inverse iteration is not able to
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distinguish between the two eigenvalues as they grow closer and closer together. 

When sufficient stages of the First Phase have been completed, the eigenvalues are 

close enough so tha t we can readily pick them out as being the pair of eigenvalues 

tha t are closest together in the complete spectrum given by LR.

2.3 .3  Labelling D ouble Eigenvalues

Once a double eigenvalue has been identified either to finite numerical precision (3 

decimal places) at particular values of the parameters (Ad)n d) or as residing within 

some closed ‘perm utation’ contour we then wish to label tha t double eigenvalue 

by the behaviour exhibited as A  —»■ oo. It must be emphasized tha t we are not 

classifying the double eigenvalue. The labelling will later serve as an illustration of 

the problems associated with any attem pt at mode categorisation which is subject 

to the distribution of double eigenvalue points. This problem is addressed in the 

final section.

The double eigenvalues are labelled by their behaviour as both eigenvalue parts 

(i.e., the parts th a t when followed to (Ad, rid) constituted the double) were individu­

ally tracked with increasing A from the starting corner of the permutation contour. 

It was necessary to track each part from this location since inverse iteration would 

not have been able to separate each mode as A increased from Ad.

The labelling was done as follows depending on which eigenvalue part resembled 

an ideal or resistive mode as A —>■ oo:
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® R R  -  both eigenvalue parts appeared to be of the resistive type,

•  I I  -  both eigenvalue parts appeared to be of the ideal type,

• R I / I R  -  first/second eigenvalue part appeared ideal, second/first appeared 

resistive.

In the mixed case, above, we have distinguished between doubles of type R I  and I R  

since the ordering of the letters will match to the order of the eigenvalues in Tables

2.3 and 2.4 below, and allow us to indicate which part exhibited which trait.

2.4 R esults

Before we tabulate and discuss results gathered with various fields and azimuthal 

wavenumbers we detail the discovery of a particularly interesting double eigenvalue 

th a t illustrates the search process well.

2.4.1 A cquiring a R esistive-Ideal T ype D ou b le  E igenvalue

In the case of insulating boundary conditions, Fearn (1988) discovered th a t for the 

non-monotonic basic state given when a  =  1, see (2.6), and an azimuthal wavenum- 

ber m  — 2 the first marginally stable, ideal mode occurs at (A, n) = (501, 9.601) with 

an eigenvalue of —0.9358L We track this eigenvalue around the closed, rectangular 

path given by

II  = {(A, n) : 28.17 < A < 501.0, 0.5399 <  n  <  9.601} (2.15)

in a clockwise manner as described in Section 2.3.2. The tracking of each eigenvalue 

around IZ was observed to be smooth and continuous with each inverse iteration 

step never needing more than six iterations to converge. The results are recorded in 

Table 2.1, below:



Table 2.1: Tracking the marginally stable eigenvalue around the contour 1Z.

A n Eigenvalue

(i) 501.0 9.601 -0.0000 -  0.9358?

(ii) 501.0 0.540 -1.5162 -  0.3034?

(hi) 28.17 0.540 -9 .5 7 7 7 -  0.5776?

(iv) 28.17 9.601 -7.9206 -  0.4347?

(v) 501.0 9.601 -0.7437 +  0.0276?

Starting with the eigenvalue (v), at (A, n) =  (501.0,9.601), we track this ‘partner’ 

eigenvalue, clockwise, around the contour 1Z. The corner information is tabulated 

in Table 2.2, below:

Table 2.2: Tracking the partner eigenvalue around the contour 1Z.

A n Eigenvalue

(v) 501.0 9.601 -0.7437 +  0.0276?

(vi) 501.0 0.540 -4.9155 +  9.1482?

(vii) 28.17 0.540 -1 1 .8 6 0 +  19.025?

(viii) 28.17 9.601 -5.4318 -  0.8546?

(ix) 501.0 9.601 -0.0000 -  0.9358?

Thus, appealing to the results of the previous section, a double eigenvalue point 

must reside somewhere within the rectangular region 1Z. The eigenfunctions corre­

sponding to the perturbed axial flow vz and radial magnetic field bs at each corner of 

TZ during the two loops are reproduced in a series of eighteen “snapshots” in Figures 

2.1 and 2.2. The eigenfunctions have been normalised by dividing through by the 

quantity 6^(s) +  iblz(s) which has been evaluated at s = smax giving the maximum 

of its modulus over s £ [sib, 1].
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<i) (")

0.4 0.5 0.70.6 0.8 0.9 1,0 0.5 0.6 0.7 0.8 0.9 1.00.4

(iii) (iv)

0.70.4 0.5 0.6 0.8 1.0 0.5 0.7 0..8 0,9 1.00,4 0.6

(v) (vi)

0.70.4 0.5 0 6 0.8 1.00.9 0.5 0.7 0.8 1.00.4 0.6

Figure 2.1: The first 6 of 9 snapshots showing the perturbed axial flow at each 

corner of TZ as the marginally stable eigenvalue — 0.9358z is tracked twice around TZ. 

Each frame corresponds to the eigenfunction at the successive ‘corner’ of TZ. The 

full line is the real part of the eigenfunction and the dashed line the imaginary part. 

The numerals correspond to the numerals on Tables 2,1 and 2.2.
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(vii)

Figure 2.1 continued.

24



(')

0 4 0.5 0 6 0 7 0.8 0 9 1.0

(iii)

0 4 0 5 0 6 0 7 0.8 0 9 1 0

(v)

0 4 0 5 0 6 0.7 0 8 0.9 1.0

(ii)

0 4 0.5 0.70.6 0 8 0 9 1 0

(iv)

0 4 0 5 0.6 0 7 0 8 0 9 1 0

(vi)

0.4 0.5 0.6 0 7 0 8 0 9 1.0

Figure 2.2: Similarly to Figure (2.1), the first 6 of 9 snapshots showing the perturbed 

radial magnetic field at each corner of 1Z.
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(vii)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

(ix)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2.2 continued.
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Although the main thrust of this work did not require us to discover the exact 

location of any one double eigenvalue point, 011 this occasion we illustrate our ‘Two 

Phase M ethod’ for locating such points. The region 72- is first ‘cu t’ into the following 

four ‘quarters’

72-11 =  {(A, re): 28.17 < A < 118.8, 0.540 < re < 2.277},

72-12 =  {(A, n) : 118.8 < A < 501.0, 0.540 < n < 2.277}.

72-21 =  {(A ,re): 28.17 < A < 118.8, 2.277 < re <  9.601}, (2.16)

72-22 =  {(A, re): 118.8 < A < 501.0, 2.277 < re < 9.601},

Because of the nature of the prior tracking and because the marginally stable eigen­

value and its partner reside at the top right hand corner of 72.22 then the next step 

in locating our doublet requires us to track each part around this contour. Here, 

we observe no interchange in eigenvalues and, indeed, on returning to the starting 

point, each eigenvalue continuously deformed back into itself. This leads us to the 

conclusion th a t no double eigenvalue lies within 72.22, but more importantly, because 

there are no doubles present in this region then we have successfully tracked each 

part right around the contour. We are now able to confidently track either partner 

around each of the remaining contours 72-n,72.i2 and 72.21- Once we have located the 

appropriate contour whose traversal produces a change in eigenvalue then we have 

a new and better estimate of where the doublet actually lies.

As the process of quartering and traversing contours is continued the tracked 

marginally stable eigenvalue and its partner grow closer and closer together. Even­

tually, eigenvalue and partner are close enough together so th a t we may use the 

Newton-Raphson technique of Section 2.3.3 in our search process. In this particular 

example, the Newton-Raphson procedure was able to give an estimate of the double 

eigenvalue to within three decimal places at the point A =  28.89, n = 3.472 with 

value —4.79 +  0.8214.

This particular double eigenvalue can be labelled R I  using our criterion of ex­

amining the growth rate and frequency of both partners as they are tracked with 

increasing A. In this example, both parts were tracked from their values at the point 

(A, n) =  (501.0, 9.601) in parameter space. Figures 2.3(a) and (b), below, reproduce 

the trends for the resistive and ideal instabilities’ growth rates and frequencies. Ob­

serve how the growth rate and frequency of the eigenvalue in (a) levels off at around
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p = 0.133 and s =  —0.481 as A —» oo. This is indicative of an ideal instability. 

On the other hand, in (b) the magnitude of the growth rate and frequency can be 

seen to steadily decay towards zero as A increases. This is typical of the resistive 

class of instability. One point which is worth noting is tha t the trend for the ideal 

mode is analogous to the trend of growth rate versus magnetic Reynolds’ number 

(measuring the strength of the shear flow) for a fast dynamo [see Hollerbach et al 

(1995)]. The trend for the resistive mode is similar to tha t of a slow dynamo.

Another point of interest associated with this particular double eigenvalue is 

that it shares the same ideal mode as another double eigenvalue in close prox­

imity. Fearn (1988) located the first marginally stable resistive mode under the 

same boundary conditions, basic state and azimuthal wave number as the above 

example. The marginal, resistive-type mode occurs at (A, n) = (28.95, 9.487) with 

eigenvalue —0.928i. Using the Two Phase Method it was found tha t this resistive 

eigenvalue is associated with the R I  double eigenvalue point —6.72 -  0.605i located 

at (A, n) — (24.88,10.91). The ideal part of this double is actually the ideal part 

of the previous double but seen at a different point in the parameter space. This is 

best illustrated in conjunction with Figure 2.3(c). If we track the ideal part of the 

double eigenvalue Di occurring at Si around the closed rectangle S 1P S 2Q S 1 then on 

completion of a loop, 110 change is observed. More importantly, on arrival at S2l the 

ideal eigenvalue has continuously deformed into the ideal component of the double 

eigenvalue _D2- If we similarly take the resistive component of Di  occurring at Si 

and track it around the loop S 1P S 2Q S 1 then no change is observed. However, on 

arrival at S2, the resistive eigenvalue has not deformed into the resistive component 

of D 2 and so the resistive components of Di and D 2 are distinct.
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(a) (b)

n (c)

30.0-

9.60-

9.49-

0.54-
D ix

,5i

Q

9.15 28.2 29.0 501. A

Figure 2.3: Top figures: the growth rates and frequencies of the (a) ideal and (b) 

resistive instabilities associated with the double eigenvalue —4.79 -+- 0.821i as they 

are tracked with increasing A from the point (A,n) =  (501.0,9.601) plotted against 

x  where x is given in A =  501.0 x 10A The solid line represents the growth rate 

p and the dashed line, the frequency s. (c) Bottom figure: an illustration of the 

relative positions of the two permutation contours (shown as one dashed and one 

full rectangle), with starting points Si  and S%. The marginally stable resistive mode, 

—0.9280i, found by Fearn (1988) occurs at the point S 2 whereas his marginally stable 

ideal mode, —0.9358'i, occurs at Si. Both double eigenvalues D\  and D 2 share the 

same ideal component but different resistive components.
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2.4 .2  Sum m ary of other results

When we began this study we did not know where double eigenvalues were located in 

parameter space or even if they existed at all for our hydromagnetic stability prob­

lem. It was decided tha t a suitable starting point for our investigation lay in the 

region of parameter space tha t had A, n ~  0(1) as these values are directly relevant 

to the geophysical problem. Fearn (1983b, 1988) conducted a linear stability analysis 

into the location of marginally stable eigenvalues for perfectly conducting and insu­

lating boundary conditions. We follow on from that work and investigate whether 

any of those marginally stable eigenvalues are associated with double eigenvalues 

in their close proximity. Using the non-monotonic basic state (2.6) we examine 

two cases, a  =  1,2. We also look at the two values of the azimuthal wavenum- 

ber: m  — 1,2. As already noted, it was not the main thrust of this work to locate 

the precise points at which the double eigenvalues occur. In the results, tabulated 

below, we cite the rectangle within which the double eigenvalue was contained, its 

type and the values of the two ‘partner’ eigenvalues that were seen to interchange on 

traversing th a t rectangle. From this data, it is readily seen tha t double eigenvalues 

are not uncommon and tha t they are associated with marginally stable modes.

(i) Perfectly Conducting Boundaries:

Table 2.3: Results found for perfectly conducting boundary conditions.

Eigenvalues Rectangle Double

a 771 A n 1st Part 2nd Part Traversed Type

1 1 126.0 3.790 -1.04* -"0.425 -  0.901* 126.0 < A < 1260, 

0.379 < n < 3.790

IR

1 2 1250. 15.00 —0.959z -0.198 4-0.0557 1250. < A < 12500, 

1.500 <  n  < 15.00

I I

*2 1 28.15 2.235 -1.90i —3.425 — 0,170i 890.2 < A < 2815, 

0.707 < n <  2.235

R I

2 2 1146. 11.61 -0.775? -0.156 + 0.048i 114,6 < A < 1146,

1.161 < ?i < 11.61

R I
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In the search for doubles it frequently arose that in tracking eigenvalues around 

some rectangular contours more than one change was seen. In this event, it was 

found to be the case tha t more than one double was present within th a t region of 

parameter space. This could easily be remedied by further dividing tha t particular 

region into smaller and smaller pieces, as in Section 2.3.2, until tracking the appro­

priate eigenvalue around any such sub-region yielded only one such change. This 

occurred in the case * where the closed loop followed consisted of firstly tracking the 

marginally stable eigenvalue at constant n to the top left hand corner of the rect­

angle cited, then traversing this rectangle in a counter-clockwise direction before 

finally returning to the start point (along the reverse of the initial path) at constant 

n. Successive completions of this closed contour yielded the interchange of the two 

partner eigenvalues in *.

(ii) Insulating Boundaries:

Table 2.4: Results found for insulating boundary conditions.

Eigenvalues Rectangle Double

a 771 A n 1st Part 2nd Part Traversed Type

*1 1 133.3 5.838 0.049? -1.102 +  0.670? 42.17 < A < 133.3, 

5.839 < n <  18.46

R I

t l 2 501.0 9.601 -0.936? -0.744 +  0.028? 28.17 < A < 501.0, 

0.540 < n < 9.601

I R

t l 2 28.95 9.487 0.160? -5.196 +  0.288? 9.154 < A < 28.95, 

9.487 < n < 30.00

R I

2 1 103.6 2.250 —0.004? -1.052 +  0.442? 103.6 < A < 1036, 

0.225 < n < 2.250

RR

2 2 16.60 3.000 -0.163 i -4.719 +  1.318? 16.60 < A < 52.49, 

3.000 < n < 9.487

RR

Once again, in the case of * and the marginally stable eigenvalues were tracked 

to the appropriate corner of the rectangle and tracked around tha t rectangle from
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there as in the perfectly conducting example. The results f and X are the cases 

already discussed in Section 2.4.1.

2.5 D iscussion  an d  C onclusions

In this investigation we have discovered double eigenvalues at every combination 

of basic state and azimuthal wavenumber we have tried. In one particular case, 

the a  =  m  = 1 case, we produced the complete eigenvalue spectrum from our 

LR algorithm with a mesh size, or truncation of N  = 100. We then automated 

Section 2.3.2 of our rectangular search pattern taking each eigenvalue, in turn, and 

tracking it around various rectangles in the plane. Many double eigenvalues were 

found to lie within our ‘test’ region

V  =  {(A,n) : 1 <  A < 104, 0.05 < n <  5}. (2.17)

We believe tha t it is not unusual for double eigenvalue points to occur often, and tha t 

they are not simply restricted to one particular basic state. Indeed, as Jones (1987) 

has discovered, they do exist in other physical problems such as plane Poiseuille 

flow. It is also im portant to note that, in the hydromagnetic problem, they are not 

confined to a small region of the parameter space and they do occur at geophysically 

relevant values of A and n.

It is now obvious tha t following eigenvalues along contours in parameter space 

is heavily path dependent in a similar way to flow fields which are potential every­

where except a t singularities. In fact, for stability analyses in general, extreme care 

must be taken to ensure tha t whilst tracking eigenvalues in param eter space, the 

nearby presence of double eigenvalue points do not ‘swap’ one eigenvalue (and hence 

the eigenvector) for another. This could have the effect of overestimating critical 

parameter values. The method used by Fearn (1983b, 1984,1988) to find the critical 

parameter values was to firstly produce a complete list of the eigenvalue spectrum 

using the LR algorithm at low truncation (say, N  — 50), then to reduce A until only 

one mode was unstable. At this point all eigenvalue calculations have been done 

using the LR algorithm and are free from the problems so far discussed involving 

double eigenvalues. The next step involved increasing the level of truncation consid­

erably (to perhaps N  =  500) using inverse iteration. This was necessary to better
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resolve the instability and to ensure that it was not a spurious result due to the lack 

of resolution. The instability was then tracked along a path in parameter space to 

find Ac (i.e. p =  0) and then to minimise Ac(n). This involves following a path in 

(A, n)-space. As we have already seen, this is fraught with difficult}'. The proximity 

of double eigenvalue points could lead to a wrong conclusion about such critical 

parameter values. This problem can be circumvented by frequently producing the 

complete eigenvalue spectrum via the LR algorithm. However, when we consider 

the cost involved in complete spectrum calculations, especially at high truncation, 

it is unclear how often we should produce such lists.

We note immediately that this problem extends to our method of labelling mag­

netic instabilities. Our work clearly shows tha t at A ~  0(1) we cannot make a 

distinction between the ideal and the resistive instability. This phenomena is well 

illustrated in the a = m  = 1 perfectly conducting boundary result, see Figure 2.4. 

When we try to track the partner of the marginally stable eigenvalue to the critical 

value of its parameters (the point in parameter space giving rise to instability first) 

we discover tha t the partner has changed from its resistive character to tha t of an 

ideal mode. Although we never completed a closed loop in parameter space, this 

eigenvalue, and hence its character, have continuously deformed into another eigen­

value with, perhaps, a different character. The method of labelling an eigenvalue 

by its behaviour as A —̂ oo cannot therefore be considered as providing a useful 

method of magnetic mode classification.

In our study of the double eigenvalues and their effect in the hydromagnetic 

stability problem we have tried to provide a concise set of results tha t clearly illus­

trate  the problems associated with following eigenvalues across parameter space. We 

have shown tha t it is not unusual for marginally stable modes to be associated with 

double eigenvalues and we have shown that this phenomena occurs for a variety of 

basic states and azimuthal wavenumbers. Although the true spherical problem per­

mits only discrete values of the axial wavenumber there are many more continuous 

parameters tha t we may vary (such as the Rayleigh number) in the geophysically 

relevant spherical geometry to establish the reality of this problem.
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Figure 2.4: An illustration showing tha t by simply traversing the £L’ shaped contour 

of (b) from (126,3.79) to (584,1.38) the resistive instability of (a) changed character 

to one of ideal type in (b). The dashed rectangle contains a double eigenvalue.
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C hapter 3 

T he G eostrophic Flow and 

M agnetic Instability

3.1 Introduction

In this chapter we consider the nonlinear stability of axisymmetric basic fields which 

depend only on the cylindrical radial coordinate s. The rapidly rotating hydromag- 

netic system is considered in the absence of buoyancy forces to concentrate on purely 

magnetic instabilities. The only nonlinear effect is tha t of the geostrophic flow Vq , 

and the dependent variables have been scaled with E 1//4 in order to remove the ex­

plicit appearance of the Ekman number from the governing equations. Since Vq is 

a function of radius and time only, the problem remains separable in (j) and z and 

hence computational requirements remain light. In this way, we examine (i) the pos­

sibility of the geostrophic flow inducing subcriticality [i.e. A(nonlinear onset) < Ac] 

and (ii) Ekman states as stepping stones to Taylor states.

We find that, under the magnetostrophic approximation and with the geostrophic 

flow as the only nonlinearity, subcriticality exists for the most unstable mode in 

many basic field configurations and aspect ratios tha t are considered. Where this 

subcriticality occurs, however, the Ekman branch is unstable. For other choices of 

basic field we find tha t field equilibration by the geostrophic flow can exist. These 

stable Ekman solutions are supercritical in nature.

The chapter is ordered as follows: in Section 3.2 we set up the magnetic sta­

bility problem. Section 3.3 describes the linear and nonlinear methods tha t were
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employed in the time-stepping calculations and also details the various tests tha t 

were performed to check the computer program. Section 3.4 contains the results, 

linear and nonlinear, and we conclude with a discussion in Section 3.5.

3.2 M odel and Equations

3.2.1 C ylindrical A nnular M odel

Using cylindrical polar coordinates (s*,4>,z*) we model the Earth by a cylindrical 

annulus A* of inner and outer radii S{ and s0, respectively, bounded in axial extent 

by the flat, horizontal plates =  ±d.  The annular region

X  =  {($*,&**) : Si < s ' < s0, \z*\ <  h} (3.1)

is filled with an incompressible, isothermal conducting fluid of constant density po 

and rapidly rotates with angular frequency Qq about the £*~axis. The cylindrical 

annular model was chosen over the more realistic geometry of the spherical shell for 

a number of reasons. Firstly, this work represents a progression from previous work 

completed in the annular geometry [see, for example, FLMO or Hutcheson & Fearn 

(1995a,b, 1996,1997)]. We, like FLMO, will consider purely s-dependent basic states 

[see (3.8)] and as a result, retain separability in the azimuthal and axial directions. 

This allows the 0- and ^-dependences to be parametrised by their azimuthal and 

axial wavenumbers, respectively. Consequently, the numerical resolution can be 

completely focussed on the radial dependence and this makes computation far less 

numerically intensive than with similar fields in the spherical geometry. It is worth 

noting th a t the cylindrical polar co-ordinate system is the natural co-ordinate system 

for evaluation of the geostrophic flow. If a spherical geometry were adopted, a 

transformation between the spherical and cylindrical grids would be required for 

every evaluation of the geostrophic flow.

W ithin the framework of a cylindrical annulus, the governing equations are not 

numerically intensive and a thorough exploration of the parameter space is possi­

ble. We believe tha t the cylindrical geometry retains much of the essential physics 

although, clearly, some features are missing [e.g., the difference in the flow field in­

terior and exterior to the tangent cylinder of the E arth ’s inner core as analysed by
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Hollerbach (1994) and Hollerbach & Proctor (1993)].

3.2.2 G overning E quations and th e M agnetic  B asic S tate

The time-evoiution of an isothermal, electrically conducting fluid V* and its asso­

ciated magnetic field B* is governed by the Navier-Stokes and magnetic induction 

equations. These, together with the fluid incompressibility constraint and the di­

vergence free condition for the magnetic field complete our hydromagnetic system. 

In dimensional form, these are:

'0V*
Pa dt

+ V* ■ VV* + 2O0 x V* = -v n *  + vV 2V* +  M-1(V X B*) x B*, (3.2) 

<9B'
dt

=  V x (V" x B*) +  77V B*, (3.3)

V • V* =  V • B* =  0. (3.4)

We nondimensionalise length on the outer annular radius sa. The conducting fluid 

is then confined to the annular region A  — {(s,</>, z) : sib <  s < 1, \z\ < £} where 

Sjb =  S i / s 0 and £ =  d / s Q. In this work we take Sib =  0.35 and (  =  7t/2. Time is 

scaled with the slow magnetohydrodynamic (or dynamo) timescale

rs =  2S7q/^m> ~  B m / s<oPP- (0-5)

Here £Im  is the Alfven frequency. The magnetic field is scaled by its maximum 

amplitude B m as B* =  B MB and the flow as V* =  s0V / r s. We make the decom- 

postions

B(s,<f>,z,t) = B 0(s) +  b (s ,^ ,z , t) (3.6)

V (s ,0 ,2 ,t)  =  [V0(s) +  VrG(s ,£ )l0] + v ( s ,0 ,z , i )  (3.7)

where b and v  are small, but finite, perturbations to the flow and magnetic fields. 

Here, l s, 1^ and 1* are the cylindrical polar base vectors. The imposed basic fields 

are defined as

B 0 =  sF(s) 10 , (3.8)

Vo =  77mVo(s)l^. (3.9)
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Figure 3.1: Profiles for the s-dependence F(s)  in the basic imposed fields (3.8) where 

(a) corresponds to (3.10), (b) to (3.11) and (c) to (3.12).

The geostrophic flow, V c ( s , t )  1^, is dynamically determined through the modified 

Taylor’s condition (1.15). Although we have decomposed the axisymmetric flow 

into an imposed field V 0 and geostrophic flow V q I we never enforce both 

simultaneously. Here we consider the effect of an imposed differential rotation or 

geostrophic flow separately. The forms we chose for F  are

F(s)  =  [2/(1 -  sib)]2(s -  sib)(l -  s) (3.10)

F(a) = [2/(l-Bfb) ] V - 4 ) ( l - « 4) (3-H)
F(s)  =  [2/(1 -  4 ) ] 2[(1 +  5ib -  s)4 -  s4b][l -  (1 +  sib -  s)4] (3.12)

where (3.11) concentrates field to the CMB, (3.12) to the ICB and (3.10) to the 

middle of the annular gap. These choices of s-dependence were made so th a t B 0 

would vanish on the cylindrical surfaces s — s;b and s =  1 which is consistent 

with the hidden toroidal component of the E arth ’s field. The fields (3.10), (3.11) 

have been used extensively in the past by, for example, Fearn (1983b), FLMO. The
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Geodynamo model calculations of Glatzmaier & Roberts (e.g. 1995a,b) show field 

tha t tends to concentrate towards the ICB. The basic field (3.12) was included so 

tha t the stability of fields which concentrate to the ICB could be examined. Field 

profiles showing the various forms of F(s)  can be found in Figure 3.1.

Substituting the perturbation forms (3.7) and (3.6) into the nondimensionalised 

governing equations and neglecting all nonlinear terms except where Vq is involved, 

yields the perturbation equations

<9v
A Ro +  (V q +  VgI^) • V v  +  v  • V (V q +  VgI^) t h x v

=  -V ?r +  E V 2v  +  (V x Bo) x b +  (V x b) x Bo , (3.13)

~  = V x (v x B 0) +  V x (Vo x b) +  V x {VaU  x b) +  A ^ b ,  (3.14)
dt

V • b =  V • v =  0 (3.15)

where Ro = ?]/2Qqd2 is the Rossby number. Given the smallness of Ro  and E  we 

employ an approximation which is almost magnetostrophic: Ro — 0 and 0 <  E  <C 1. 

This allows us to neglect fluid inertia from (3.13) and an order analysis allows us 

to neglect the viscous term. However, viscosity remains im portant in the boundary 

layers and this is accommodated via the modified Taylor’s condition. Thus, we 

obtain a solution which implicitly incorporates the viscous effects from the boundary 

layers and is valid everywhere in the inviscid mainstream.

3.2 .3  B oundary C onditions

We impose no-normal flow, perfectly conducting boundary conditions on the hori­

zontal plates, giving

12 • v  =  0, l z • b =  0 and l z x e =  0 on z = ±C- (3.16)

where e is the perturbed electric field. In component form these are equivalent to

U2 =  0) 6, =  0, 9±  = s ^  and f  A  on ,  =  ±C. (3.17)

The use of perfectly conducting boundary conditions is made for numerical conve­

nience; for a purely s-dependent B 0, the problem remains separable in z and good 

resolution in radius is then inexpensive. We use a Galerkin-type method to satisfy
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the boundary conditions on the horizontal plates z — ±£  by making the substitu­

tions

X  =  X n(s, t) cos n(z  +  £)eim  ̂+  CC (3.18)

Y  =  Yn(s,t) s inn(z  +  £)e?;m<i6 +  CC (3.19)

where X  represents any of vSiv ^ b s or b$ and Y  stands for either vz or bz. Here, 

GC stands for “complex conjugate” . All functions with subscript n 6 [1,2,...) are 

complex. Here n = mv/2C and since we have chosen £ =  7r/2, then n = n. This gives 

an aspect ratio (cylindrical diameter to height) of 1 : 7r/2 in our model. In general,

choosing £ =  7r/2k restricts the range of possible n  to the multiples kn. Because

the most unstable mode in this model always corresponds to the mode with lowest 

n  [see Fearn (1988)] then concentrating our attention on the kth mode allows us to 

consider the most unstable mode in the system where £ =  rc/2k. This allowed us 

to study the effect of variation in height of our annulus without resorting to further 

calculations.

For the curved annular side walls we wish to impose perfect electrical insulating 

conditions as the E arth ’s mantle, to a very good approximation, acts as an insulator. 

Since the perturbed current density j  =  V x b  vanishes in the regions s <  Sib and 

s > 1 then the magnetic field may be described by a magnetostatic scalar potential 

U(s,<j)i z ) such tha t

b<e> =  - V i7. (3.20)

On the surfaces s = Sib and s = 1 the interior field b  must match to the exterior 

potential field Upon applying the divergence free condition to b ^  we find tha t 

U satisfies Laplace’s equation V 2U =  0. If, for U , we associate an expansion similar 

to tha t given in (3.18) then one can show

bStn =  7 A ,n  n  € [1,2,...) (3.21)

where

(3.22)
An+l (^Sib)//rn(^tSib) Vfl/lflS\b if S — Sjb;

K m+1(n ) /K m(n) -  m / n  if s =  1.

(see Fearn, 1988). Here, Jm and K m are modified Bessel functions [see Abramowitz 

& Stegun (1965), Ch. 9].
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Since each boundary s =  Sjb, 1 is a perfect insulator, the normal component of 

current density j s must vanish at those boundaries

. _  1 dbz db#
E  ~  ~~ET — ~  ^ on 3 =  sib, 1. (3.23)s d(p oz

Upon using V b  =  0, (3.21) and the expansions (3.18), (3.19) we can rewrite (3.23) 

in the form

[s +  s 2D  +  (n2s2 +  m 2)/7„n]6J)n =  0 n e [ l , 2 , ...) (3.24)

on s =  s^ , 1 and where D  =  d/ds.

The differential order, in s, of our system has dropped from being tenth order 

to fourth order upon neglecting fluid inertia and viscosity and so the six boundary 

conditions (3.21), (3.24) and vs =  0 associated with the curved annular surfaces 

cannot all be accommodated by the inviscid mainstream. However, Fearn (1983a) 

has shown that in the limit of vanishing viscosity v —> 0 the no-normal flow condi­

tions are supported by the viscous boundary layers. There must be large flows in 

the viscous boundary layers since, wherever fluid flows into the layer, fluid must flow 

out elsewhere in order tha t mass be conserved. We do not concern ourselves with 

this boundary layer flow and solve for the mainstream flow only. In order to close 

our hydromagetic problem, we enforce the four boundary conditions (3.21), (3.24).

As explained in the introduction, we then enforce the nonlinear geostrophic flow 

Vq  modified from its spherical representation (1.15) to the cylindrical form (1.17). 

We do not include the non-axisymmetric component of the geostrophic flow as this 

is not geophysically relevant and leads to a problem which is fully three dimensional 

and not so numerically tractable.

The perturbed flow and magnetic field are scaled with E 1̂  in order to remove 

the explicit appearance of the Ekman number from (3.13) and (3.14). Using the 

expansion functions (3.18), (3.19) we can write (1.17) in terms of the components 

of the perturbed field. This gives

Va =  (21/2()SR {(s_16Si„ +  &.,„£> -  n b ^ b ^ }  (3.25)

which is equivalent to the form given for the geostrophic angular velocity f lc  — Vg/ s 

found by Skinner & Soward (1988, 1990). For a derivation of (3.25), see Appendix C. 

W ith Vq now given in its component form we can implement our numerical scheme.
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3.3 P ro g ra m  D esign, Im p le m e n ta tio n  an d  T esting

3.3.1 D esign

In the governing equations (3.13), (3.14) and (3.15) the <fh and ^-dependences were 

separated and parametrised by their azimuthal and axial wavenumbers m  and n, 

respectively. The radius was then split up into tV +  1(= 101) equally spaced grid 

points amenable to a (fourth-order) finite difference scheme in space. The discretized 

governing equations, reduced to 2 prognostic induction equations and two diagnostic 

momentum equations in the variables ba, bZ} vs and vz , were then solved using a semi- 

implicit time stepping method utilising a Crank-Nicholson scheme for the diffusive 

terms and an Adams-Bashforth treatment for the remaining terms. The method of 

solution proceeded in the following manner:

(i) the perturbed magnetic field b was evolved using the prognostic induction 

equation (3.14),

(ii) the perturbed flow field v was evaluated explicitly from the diagnostic mo­

mentum equation (3.13),

(iii) the geostrophic flow was then computed via (3.25).

Step (i) reduced to solving a linear system which, as a result of the finite difference 

scheme, involved a system m atrix which was pentadiagonal. Since the system m atrix 

remained constant throughout any computational cycle the stability problem was 

solved using an LU-decomposition. The initial conditions for the instability were 

either arbitrarily chosen, taking the form of an impulse

bs,z(s =  iAs) = 5 VI =  0 ,1,..., N  (3.26)

at time t = 0 whose magnitude was modulated by 5 [generally, 5 =  0(0.001 — 0.1)] 

or a previous solution was used as a starting point. When a such a previous solution 

6^] was used, its amplitude was often stretched by a param eter T:

6s,2(s =  iAs)  =  rq°> Vi =  0 , 1 , JV. (3.27)

It was found th a t in many calculations for a chosen basic field and fixed m, n, the 

solution varied with increasing A by growing in amplitude but preserving the same
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overall structure. Once a solution was known at moderate A, it was often possible 

at higher A to find a value F > 1 tha t gave an excellent approximation to the new 

solution. This process considerably reduced computational time.

Step (ii) involved explicitly evaluating the flow field at each of the radial node 

points and Step (iii) similarly required calculation of the geostrophic flow at each of 

those node points so, ■■■> s n -

3.3.2 M easure

It is im portant to realise tha t when the field configuration is varied, the basic state 

energy budget will also vary. Let the energy of a vector valued function f*, defined 

over the annular volume A *, be

m * l L r - r '‘ v ' <“ s |

where Vol*(v/t*) =  2£7r(l — sfb)Sg =  Vol(.A)s^ is the (dimensional) volume of the 

annulus A *. Here, starred variables represent dimensional quantities and unstarred 

variables represent non-dimensional quantities. The energy of the basic field B b =  

B m B o is then
1 n D  2  /*

™  =  V bFC *) L  B » ' B° d l / ‘ =  Vol(k) L  B° ' B ° d l/ =  B 2m E ( B 0). (3.29)

The energies associated with each field configuration are given in Table 3.1 

T a b l e  3.1: Dimensionless field energies E (B q).

Basic Field Total Field

Dependence, F(s) Energy, E ( B 0)

(3.10) 0.299

(3.11) 0.267

(3.12) 0.105

Based on the total dimensional energy E* of the basic field, let us define the “ener­

getic Elsasser number” Af as

A' -  S r  -  £ ( B ")A - 13801

Although we quote our stability results in terms of A for consistency with the results 

of Fearn (1988), a redefinition of A in terms of the basic field energy E(Bo) facilitates
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a realistic comparison between the different field configurations defined by (3.10),

(3.11) and (3.12). To this end, results for the most unstable modes will also be 

tabulated in terms of A'. Note tha t A'c values can be found from Ac upon using 

(3.30) and Table 3.1.

3.3 .3  Im plem entation

The linear and nonlinear stability results were gathered in three stages. Firstly, 

critical parameter values Ac for the onset of magnetic instability were found for a 

variety of m  and n  by repeating only Steps (i) and (ii) of the scheme above (with­

out calculating the geostrophic flow). The procedure for determining Ac required 

following the trend in magnetic energy F'(b) and observing the growth rate of the 

field. In order to calculate the complex growth rate, A =  a  +  we use a Taylor 

series. Suppose tha t b represents any of the components of the perturbed magnetic 

field. For the linear problem, we may write b =  bo(s)e~lXt and obtain our eigenvalue 

A upon observing tha t — iX =  b~ldb/dt  and then using a Taylor series truncated at 

0 (A t)2 to approximate db/dt. Then, for A t  <C 1

b{ti+1)
A = -T- A t

1 (3.31)
b{U)

In the second stage, and after the critical values of A had been found, the 

geostrophic profile was computed once [using (3.25)] from the linear eigensolution 

at A =  Ac. After being modulated to have a maximum amplitude of unity, this 

structure, V<<» , was then imposed as the (steady) differential rotation

V 0 = f t mV y V  (3-32)

For infinitesimal values 0 < 7Zm <C 1 and amplitudes of the perturbed field close to 

Ac this differential rotation coincides arbitrarily closely with the geostrophic flow. 

Thus, for small values of 7Zm and A close to Ac [i.e. on a neighbourhood of (7Zm, Ac)] 

we can expect the behaviour of the geostrophic flow to be reproduced by (3.32). 

Enforcing the geostrophic structure as a differential rotation at A =  Ac successfully 

identified the sub/supercritical nature of the magnetic instability.

In the final stage, the geostrophic flow was dynamically updated a t every 

time step and the equilibrated solution (b, v, Vq) found as a function of A. The
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geostrophic flow has the potential to quench the exponential growth of linear eigen- 

solutions. If | |b|| was seen to converge with the growth rate of the field tending to 

zero, the solution was said to have become equilibrated in an Elcman state. At that 

point, the frequency, field and geostrophic amplitudes were noted. This allowed us 

to plot the stable Ekman branch bifurcating from its linear critical value.

When no stable solutions were found, it was possible to track the unstable Ekman 

branch by varying 5 in (3.26) or T in (3.27). By examining the trend in growth rate 

and field amplitude, it was possible to determine values 5 = SC(A) or T =  TC(A) 

above which field growth was slightly positive and below which, field growth was 

slightly negative (typically, ±10“5, respectively). As the example in Figure 3.10(a) 

typifies, careful choice of T led to a separation of the timescales over which initial 

transient features decayed and exponential growth/decay ensued. We found tha t the 

transient features completely vanished after the first slow dynamo timescale in any 

calculation. Use of the logarithmic scale for time in Figure 3.10(a) and good upper 

and lower bounds for Fc showed tha t exponential growth or decay could be delayed 

almost indefinitely (but limited by numerical precision). This made it possible to 

sandwich the structure and amplitude of the singular, unstable Ekman solution 

between marginal growth and marginal decay. The computations were carried out 

beginning with either arbitrary initial data (3.26) or, as illustrated by example in 

Figure 3.10(a), upon using the modulated linear eigenfunction found at A =  Ac, 

(3.27). After a number of slow timescales had passed (typically 100), solutions 

showing very small growth were indistinguishable from solutions showing very small 

decay [corresponding to “I” and “II” , respectively, in Figure 3.10(a)]. Both types 

of initial condition, i.e. either (3.26) or (3.27), gave the same solution; the only 

difference being th a t the initial transient features were stronger in amplitude when 

arbitrary initial data was used.

3.3 .4  T esting

We tested our numerical code in two ways: firstly, we investigated a linear problem 

with a prescribed differential rotation; and secondly, we checked our nonlinear code 

against the work of FLMO.

In the linear part of our testing, we imposed a differential rotation Fo(s) =  sQ(s)
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and time evolved our solution. For the choice n =  3 and m  =  2 we investigated the 

differential rotation

n(s)  =  -77ms2 (3.33)

with basic field given in (3.10). Here 7Zrn =  Vmts/ s0 =  Rm/A is the modified 

magnetic Reyn old s' number and VM is the maximum amplitude of our velocity 

field. Fearn (1988) found, using an eigenvalue analysis, tha t the critical onset of 

instability in the absence of differential rotation (77m =  0) occurred at Ac =  28.9 

with eigenvalue loc — 0.160. Our results are in good agreement with this: Ac =  28.9 

and ujc — 0.159.

For the same problem, FLMO considered 77m > 0 and obtained the critical 

curve for the onset of linear instability. This may be compared with our results in 

Figure 3.2.

We checked the nonlinear part of our program with the corresponding results of 

FLMO by comparing our geostrophic profiles generated by the m  ~  2, n — 3 mode 

and for the imposed fields given by setting a  =  1 ,2 ,3  and 4 in (3.10). Here, we 

computed the geostrophic structures obtained from the linear eigenfunctions at the 

onset of instability (A =  Ac). Excellent agreement was found with FLMO (see their 

Figure 5) and the geostrophic flow profiles are shown in Figure 3.2.

3.4 R esults

Further to the results of Fearn (1988) and FLMO, in Tables 3.2 and 3.3 we have 

tabulated the critical parameter values for the basic fields given by (3.10) and (3.11) 

along with their associated critical frequencies wc. In Table 3.4, we show the results 

for the basic field given in (3.12).

T a b l e  3.2: Ac and  ojc (italicised) pa ram ete r values for th e  basic field (3.10).

n =  1 n =  2 n =  3 n -= 4

m  =  1 5.950 -1.031 20.89 -1.049 58.00 - 1.182 73.52 -1.259

m  =  2 4.394 -.1328 11.78 -.0516 28.94 .1594 71.47 .4223

m  =  3 8.744 2.063 19.49 1.956 36.33 1.831 64.68 1.699

m  =  4 27.28 2.544 57.73 2.442 96.17 2.287 146.0 2.110
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T a b l e  3.3: As Table 3.2 but for the basic field (3.11).

n =  1 n =  2 n =  3 n =  4

m — 1 4.652 - 1 . 0 2 4 10.10 -1.036 16.37 - 1.043 23.69 -1.050
3 11 to 2.308 -.8122 5.146 -.8828 9.160 -.8970 15.05 -.8497

m  =  3 1.876 1.198 4.082 1.137 7.083 1.187 11.34 1.350

II(S’
r— 1.959 5.372 4.108 5.209 6.742 5.060 10.19 4.995

T a b l e  3.4: As Table 3.2 but for the basic field (3.12).

n -= 1 n  == 2 n =  3

m =  1 7.775 -1.202 27.64 -1.711 47.49 -1.872

m =  2 6.919 -1.159 52.94 -2.599 > 60 -

m =  3 > 60 - > 60 - > 60 -

Comparing Tables 3.2, 3.3 and 3.4 it would appear that, in every case of m  and n, the 

imposed field (3.11) is more unstable than (3.10), which is in turn more unstable 

than (3.12). This comparison may be misleading, however, as the three different 

fields each have different basic field energies A (B 0) associated with them (see Table 

3.1). Table 3.5 shows a selection of the most unstable modes (i.e. those for which 

n =  l) across the different fields.

T a b l e  3.5: A'c values for the basic fields (3.10)-(3.12).

F(s) 777, =  1 771 =  2 m  ~  3 m  =  4

(3.11) 1.392 .6909 .5615 .5864

(3.10) 1.589 1.174 2.336 7.288

(3.12) .8138 .7242 > 6.5 > 6.5

Table 3.5 shows tha t the field (3.11) concentrating near the CMB is the most 

unstable field. As instability tends to form around where the basic field is strongest, 

we expect field which concentrates to the ICB to become more stable (diffusion is 

more effective on instabilities forming over shorter lengthscales). This stabilising 

effect is observed in field (3.12) for modes m  > 2. For the modes m  =  1 and m  =  2, 

diffusion is not so effective and as all the energy from the basic field is concentrated 

over a smaller volume, field (3.12) is more unstable than  (3.10).
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The linear eigenfunctions at linear onset from the most unstable modes in each 

of fields (3.11) and (3.12) can be found in Figures 3.3 and 3.4, respectively. The 

associated geostrophic flows are shown in Figure 3.5 where they may be compared 

along with the geostrophic profile from the most unstable mode under field (3.10).

Using the method of imposing the structure of the geostrophic flow at A = A c as 

a differential rotation (3.32), it was found tha t the most unstable mode, for each n 

in Table 3.2, was of the subcritical class. As explained in Section A .l, consideration 

of the most unstable mode in each of n = 1,2,3 and 4 is equivalent to considering 

the most unstable mode for the annular half-heights £ =  tt/2, 7t/4, 7t/6 and tt/8, 

respectively. Further to the work of FLMO, we have found tha t for the field (3.10) 

and for every case of £ considered, the geostrophic flow reduced Ac for the most 

unstable mode. In contrast to this, the field (3.11) produced only supercritical 

results for the most unstable mode irrespective of the annular half-height. The field

(3.12) produced a mixture of sub- and supercritical bifurcations. The most unstable 

mode (m = 2, n =  3) was of the subcritical class under an aspect ratio of 1 : tt/2. 

Upon reducing £ to 7t/4 and then to 7r/6 the most unstable modes (m  =  1, n =  2 

and then m  — 1, n — 3, respectively, on Table 3.4) became supercritical in nature.

From Figure 3.5 we found a tendency for VG to concentrate where the basic 

field was strongest. This is not immediately obvious as Vq depends on the basic 

field implicitly through b in (3.25). It is apparent, from Figure 3.5(b), tha t the 

geostrophic flow associated with the supercritical instability of the field (3.11) with 

m =  3 and n  =  1 contains only modest negative outward gradient compared with 

Figures 3.5(a) or (c). The eigenfunction (see Figure 3.3) shows field concentration 

close to the CMB leaving negligible field in the remainder of the annular gap. This 

leads to geostrophic flow which is likewise concentrated near the CMB with little 

chance for negative outward gradient which FLMO have shown to be a common 

feature of subcritical instability.
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Figure 3.3: The linear eigenfunctions at Ac =  1.876 for the most unstable mode 

(m  =  3, 7i =  1) under the basic field (3.11) which concentrates field to the CMB 

(see Figure 3.1(b)). The critical frequency ujc = 1.198.
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Figure 3.4: The linear eigenfunctions at Ac =  6.919 for the most unstable mode 

(m =  2, n =  1) under the basic field (3.12) which concentrates field to the ICB (see 

Figure 3.1(c)). The critical frequency luc = —1.159.
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Figure 3.5: Corresponding to (a),(b) and (c) in Figure 3.1, profiles of Vq  at A =  

Ac for each of the most unstable modes from the fields (3.10), (3.11) and (3.12), 

respectively. Observe how Vq  concentrates where the basic field is strongest.

In the remainder of this section we focus on the nonlinear development of two 

particular examples from Tables 3.2 and 3.3 above. We consider the two most 

unstable modes from the fields (3.10) and (3.11): firstly, we examine the supercritical 

example m  =  3, n  =  1 from field (3.11) [on Table 3.3); and secondly, we investigate 

the subcritical example m  — 2, n ~  1 from field (3.10) [on Table 3.2]. In each case, 

£ is considered fixed at 7r/2.

3.4.1 Supercritical Case

Under the basic field defined by (3.11) the onset of instability for the most unstable 

mode (m  = 3, n  — 1) case occurs at Ac =  1.876 with an associated frequency of 

— 1.198. We begin by investigating the effect the geostrophic flow has by imposing 

its structure as a differential rotation in a linear problem and modulated by the 

modified magnetic Reynolds’ number lZm. Figure 3.6 shows th a t for small values of 

T im (typically 10~3) V 0 stabilises the system. Therefore, in the nonlinear problem,
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the dynamics of the geostrophic flow will have a stabilising effect. Also plotted on 

Figure 3.6 is the trend for the frequency.

In the nonlinear calculation, where the geostrophic flow is dynamically deter­

mined at each time step, Figure 3.7(a) shows the trends of the field and geostrophic 

amplitudes against time at A =  1.885. One immediately sees the effect the 

geostrophic flow has on an initially exponentially growing solution. As the field 

amplitude increases, so does the geostrophic flow, until, eventually, after 500 slow 

timescales, the field growth is almost completely quenched. The frequency of the 

instability has converged to 1.260 and the geostrophic flow has attained a steady 

profile with time. It is well worth noting that the geostrophic flow and the field struc­

ture do not appreciably change over the period of equilibration. The z-component 

of the equilibrated field is reproduced in Figure 3.7(b). Although the nonlinear 

problem contains an amplitude as part of its solution, bz in Figure 3.7(b) has been 

normalised so that the maximum modulus is unity and the value of this maximum 

modulus stated. This was done to focus on the underlying structure rather than 

reproduce a snapshot of a rapidly vacillating solution.

While Figure 3.7 shows one computational run, Figure 3.8 summarises several 

similar runs. Here, we have varied A from its critical value of 1.876 to 1.894. Figure 

3.8(a) shows the equilibrated amplitudes of b  and Vq where each bullet/circle point 

represents one computational run and the results have been interpolated linearly for 

clarity. For values of A close to 1.876 the field and geostrophic flow grow sharply 

from zero and their profiles with A are concave down. However, at around A =  1.884, 

the field amplitude undergoes an inflexion and begins to increase more and more 

rapidly. The geostrophic flow undergoes no such change and maintains a concave 

down profile. This is indicative of an increasing amount of internal cancellation in 

the Taylor integral [see lhs of (1.13)] since otherwise, the geostrophic flow would 

grow in proportion to the square of the field. For high values of A this is clearly not 

the case and it should come as no surprise tha t calculations become more and more 

stiff as A was set to higher and higher values. Figure 3.6 shows how the structure 

of the geostrophic flow changes between values of A =  Ac =  1.876 and A =  1.894. 

The maximum amplitude of Vq grows to 5.894 whilst the change is the geostrophic 

profile is more subtle.
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Figure 3.6: For the basic field (3.11) and m  = 3, n = 1, (a) Top figure: critical curve 
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(scaled by 3.082) and at A =  1.894 (scaled by 5.894). Vg has been normalised so 

tha t | maxs6[s.b)1] F j | =  1.
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We stress tha t all results here lie in the Ekman regime although we have shown 

an increased amount of internal cancellation in the Taylor integral suggestive of a 

progression towards a Taylor state. The trend for the field in Figure 3.8(a) is in good 

agreement with the trend proposed by Malleus & Proctor (1975) for the progression 

from infinitesimal field amplitudes through Ekman states towards Taylor states. 

Figure 3.8(b) shows the corresponding (converged) frequencies of the equilibrated 

fields as A is increased. Observe that at first, the frequency increases linearly with 

A. As more and more internal cancellation begins to occur in the Taylor integral and 

we approach higher values of A, the frequency begins to level off (near A =  1.891). 

This feature has been observed by Ogden (1997) in a similar nonlinear stability 

calculation including the geostrophic flow. There the instabilities were driven by 

thermal buoyancy forces rather than by energy from the magnetic basic state.

3.4.2 Subcritical Case

In the second of two examples, we consider the basic field (3.10) and where m  =  2, 

n =  l. This mode is the most unstable mode for the basic field (3.10). The critical 

parameter value is Ac =  4.394 with corresponding frequency —0.1328.

By computing the linear eigenfunction at A =  Ac we may use (3.25) to deter­

mine the corresponding geostrophic structure Vq \ s). We normalise the geostrophic 

profile to have a maximum amplitude of unity and, as in Section 3.4.1, we be­

gin by considering the purely linear problem with an imposed differential rotation 

Vo =  7^V q^(s)10 . The geostrophic profile Vq used is identical to tha t shown 

as dashed in Figure 3.9(b). For small values of the magnetic Reynolds’ number, 

=  10-3 , we find tha t the geostrophic flow has a destabilising effect on the sys­

tem. Having established the destabilising effect of this differential rotation, it is 

worth observing th a t as 7Zm is increased, the critical curve reaches a minimum at 

K m =  7 and Ac =  4.029. From this point, Ac increases, passing through A =  4.394 

at 7Zm =  12 after which it has a stabilising effect on the system. The frequency, also 

plotted on Figure 3.9(a), exhibits a roughly linear, decreasing trend from 0.1330 at 

Km = 0.

56



1.875 1.88 1.885 1.89 1.895

r8

h77H

he

h5

p-4

h3

h22H

M

1.8951.891.8851.881.875

A

1.875 1.88 1.885 1.89 1.895
1.321.32

hl-31 .3 h

H -2 81.28-1

M .2 6

hi-221 .2 2 -1

1.2
1.8951.88 1.885 1.891.875

A
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Figure 3.9(b) shows the geostrophic profiles at A =  Ac =  4.394, A =  4.375 and 

A =  4.355. As seen from Figure 3.11(a), ||Vb|| greatly increased from infinitesimal 

amplitudes at A =  Ac to 0(1) values at A — 4.355 whilst the underlying structure 

has changed only subtly, becoming smoother. In accord with FLMO who showed 

tha t large outward negative gradients of differential rotation V (s ) could reduce the 

onset of instability, we find a large region negative gradient of Vq for s  G (0.5, 0.85) 

(see Figure 3.9) which leads to subcriticality.

As one would expect, the Ekman branch bifurcating from Ac was found to be 

an unstable branch. For A < Ac and any value of 6 (or T) in excess of some critical 

value 5C (or Fc), the resulting solution suffered exponential growth and for any 

smaller value, exponential decay. In Figure 3.10(a) we set A =  4.375 and by taking 

the critical linear eigenfunction modulated by a stretching parameter T as initial 

conditions, then using Section 3.3.3, we were able to determine the structure and 

amplitude of the singular Ekman solution on the unstable branch. As can be seen 

from Figure 3.10(a), transient features decayed over the period of one timescale after 

which we were able to bound the marginal Ekman state between very small growth 

and very small decay. (Refer to Section 3.3.3 for a more detailed explanation.) The 

solution for bz is reproduced in Figure 3.10(b) (normalised by 0.2590 so th a t the 

maximum modulus of bz has amplitude one).

Figure 3.11(a) represents a number of computational runs which collectively al­

lowed us to track the subcritical (unstable) Ekman branch which bifurcates from 

the linear onset of instability at Ac =  4.394. We have plotted both the field ampli­

tude and the geostrophic flow amplitude for a number of values of A ranging from 

4.355 to 4.394. This was achieved as described above and in Section 3.3.3. The 

trend exhibited in Figure 3.11(a) is quite similar to tha t in Figure 3.8(a) but in the 

reverse direction. Here, the bifurcation curve separates the character of the solution 

and gives an idea of by how much Ac may be reduced and still get instability. We 

have not extended the diagram back further due to stiffness problems requiring a 

reduced time step but it does appear plausible that the critical parameter value may 

be reduced below A =  4.35.

Finally, in Figure 3.11(b) we have plotted the frequencies corresponding to the 

unstable Ekman states.
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3.5 Rem arks

111 this chapter we discussed the stability of three different examples of radially 

dependent basic state. The configurations (3.11) and (3.12) each concentrated field 

to the CMB and to the ICB, respectively, whereas (3.10) concentrated to the middle 

of the annular gap. The field (3.12) has not been studied before and is new. In 

order to compare critical parameter values it was necessary to redefine the Elsasser 

number A in terms of the basic state energy. The stability results showed tha t the 

new field was unstable but not unstable as (3.11), Since magnetic instabilities tend 

to concentrate wherever the basic field is strongest, the limiting effects of diffusion 

damped all but the two lowest order azimuthal modes m  =  1, 2 for (3.12).

The linear eigenfunction was used at marginal stability to construct a differential 

rotation with the structure of the geostrophic flow. This was then used to deter­

mine if an instability would follow a supercritical or subcritcial bifurcation into the 

nonlinear regime without actually having to compute in the nonlinear regime. The 

results showed tha t Vq could induce subcriticality for the most unstable mode in 

some instances. FLMO found that, when subcriticality occurred, it was accompa­

nied by large negative gradients in the shear flow. We have shown examples tha t 

corroborate their finding.

We investigated the full nonlinear development of the most unstable modes from 

the basic states (3.11) and (3.10). The first lead to a stable Ekman state, consistent 

with a Malleus & Proctor (1975) type development for equilibrated field amplitude. 

The full Malleus & Proctor scenario could never be realised in our calculations as we 

were limited to the Ekman regime. However, a corresponding profile of ||Vg || showed 

th a t as A increased, ||b || began to increase more and more rapidly whilst ||Vd|| Aid 

not. This was indicative of internal cancellation occurring within the Taylor integral 

and of the approach to a state where, although we are always in the Ekman regime, 

Taylor’s constraint is being more closely satisfied.

In a second example we found a way to obtain the unstable Ekman branch for the 

most unstable mode for the basic field configuration (3.10). This bifurcation diagram 

showed a similar profile to the Malkus & Proctor scenario when field amplitude was 

plotted against A. This time, however, the bifurcation curve moved off right to left 

from Ac.
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One point which is worth noting is the small range in A covered by the Ekman 

state. For example, the bifurcation diagram in Figure 3.8 for the supercritical ex­

ample shows considerable progression in the Ekman regime toward a Taylor state 

(where A > At ) yet A has only varied between Ac =  1.876 and 1.894. Skinner & 

Soward (1990), investigating a magnetic stability problem driven by thermal buoy­

ancy, found a similar result. Their modified Rayleigh number Ra  [see Chapter 1, 

eq. (1.8)], was found to vary over a small parameter range in the nonlinear regime 

before approaching R clt. This similarity between thermal and magnetical instabil­

ities is consistent with the result of Zhang (1993), i.e. both types of instability are 

part of the same mechanism.

A similar but viscous stability analysis completed by Hutcheson & Fearn (1995b) 

found no subcritical bifurcations. A possible explanation for the qualitative dif­

ference, discovered by FLMO, between viscous and magnetostrophic analyses in 

the cylindrical geometry is tha t the viscous analysis implicitly includes the non- 

axisymmetric component of the geostrophic flow. This work, along with all other 

magnetostrophic calculations in the past which used a cylindrical geometry, did not 

include the non-axisymmetric component of the geostrophic flow. It may be this dif­

ference, rather than a geophysically unrealistic Ekman number taken in the viscous 

calculations, tha t will eventually explain the qualitative difference.
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C hapter 4

T he Stability  of D ipole and  

Q uadrupole Fields

4.1 Introduction

W ith a view to assessing the stability of the geomagnetic field, we study the sta­

bility of s- and 2-dependent axisymmetric field configurations to non-axisymmetric 

perturbations. As in the previous chapter, the cylindrical polar coordinate sys- 

tem (s, 0, z) is used. This work represents a natural progression from the stability 

analyses of Chapter 3 which considered only radially dependent basic fields. The ad­

dition of a z-dependence to the basic field configuration is geophysically realistic but 

it does lead to a more complicated problem formulation since the axial modes may 

no longer be considered in isolation as in the previous chapter. Now the presence of 

the independent variable 2 in the perturbation equations (3.11, 12, 13) couples the 

axial modes together and the problem becomes fully two-dimensional. As a result, 

extensive modifications have been made to the computer program so tha t it may 

accomodate a wider range of basic, toroidal fields.

Zhang & Fearn (1994) assessed the linear stability of toroidal field configurations 

in the spherical shell geometry. There, problems of resolution were encountered and 

the annular geometry is the logical alternative that is more tractable. Our magne­

tostrophic study complements the work of Hutcheson & Fearn (1995a,b, 1996, 1997) 

[hereafter referred to as HF1-4, respectively] who solved essentially the same prob­

lem but at a finite Ekman number. They did not use the magnetostrophic approx­
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imation and included many other nonlinear interactions neglected in our analysis. 

HF1,2 considered the stability of radially dependent basic state fields which are best 

compared with results in Chapter 3 whereas HF3,4 examined s- and ^-dependent 

basic (azimuthal) fields

B 0 =  sF(s )G(z) l^  (4.1)

which we consider in this chapter.

The radial dependencies are prescribed by the function F(s)  of which we examine 

two basic types

F(s)  =  [2/(1 — s!b)]2(l — s“)(s“ — s^) (4.2)

F(s)  =  [ 2 / ( l - s“ ) f ( l - ( l  +  Slb- s)“)( ( l  +  Sib- s )“ - sfb). (4.3)

and a value of a  =  4 is used in this chapter.

The function G(z) contains the ^-dependence of the basic field. Therefore, the z- 

independent fields of Chapter 3 correspond to taking G(z) =  1. In this chapter G is 

varied to give either equatorially symmetric or antisymmetric field symmetries about 

the equator z  ~  0. Using the nomenclature of Gubbins & Zhang (1993), a scalar 

function if) G E s if '0(s, 0, — z) =  i/)(s,(f)^z) and if) G E A whenever ip(s,<f>,-~z) = 

—if)(sj 0, z). For a vector quantity, the description is a little more involved. A vector 

function =  (if)Sl ip<p, ipz) is equatorially symmetric if, in terms of its components,

ipSi %  G E s and if)z G E A (4.4)

and is said to be equatorially antisymmetric if

'05! 00 € E A and if)z G E s . (4.5)

The types of basic fields examined, which all satisfy the magnetic boundary condi­

tions on z = ±C and s — Sjb, 1) can be categorised by their symmetry about the

equator. We consider both equatorially symmetric and antisymmetric field depen­

dencies contained in the function G(z):

G(z) =  c o s ^ ( z  +  C), (4-6)

G{z) = co s^ (z  +  C)- (4-7)

The E a basic field, when accompanied by its associated E s magnetic wind [see 

below, (4.11)] is certainly consistent with a dynamo mechanism of the cun-type.
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There, a large zonal differential rotation (likely to be a symmetric, thermal wind) 

winds lines of force about the inner core resulting in an antisymmetric field con­

figuration. This argument certainly seems simplistic in the light of recent dynamo 

calculations [see, e.g., Glatzmaier & Roberts (1995a,b)] which show that field and 

flow structures interior to the core are highly complex and do not clearly indicate 

E a or E s preferences. It should be noted that although we use pure dipole or pure 

quadrupole basic fields here, our problem has been formulated so tha t any basic 

field may be considered.

The magnetic stability problem that we formulate is governed by the set of non- 

axisymmetric equations (3.13, 3.14, 3.15) which have been separated from their 

axisymmetric parts [see, for example, Fearn (1997)]. We then prescribe the mean 

magnetic field as a basic state B 0. In general, the mean field takes the form

where B q(s , z) is the toroidal field and A(s, z) is the poloidal scalar. Although we do 

not prescribe A , it can be generated from the cj) component of the mean electromotive 

force (see Appendix D). In the Ekman regime A = 0 ( E 1̂ 2) and so its effect may be

However, A  makes an 0(1) contribution to Vg- We have not included the effect of A  

in our geostrophic flow since a similar analysis to ours but in a sphere (Fearn, Proctor 

& Sellar, 1994) showed that the effect of A  in the geostrophic flow was negligible. 

Future work is planned tha t will include the effect of A  in the geostrophic flow.

In general, any basic field B 0 tha t is at least a function of both the radial and 

axial coordinates will drive a magnetic wind V m - This can be seen from the curl 

and azimuthal average of the momentum equation (1.11):

where B is the axisymmetric part from the sum of the basic field Bo and perturbed 

field b. The solution for the flow, as already seen in the previous chapter, is the 

sum of the magnetic wind VR/ and geostrophic flow Here

B — B qI^  +  V x (Al^) (4.8)

ignored in the non-axisymmetric equations [since the instabilities are of 0 (E ,1,/4)].

—  =  - V  x [(V x B) x B] 
oz

(4.9)

(4.10)
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and Vcl<f> is given in Chapter 3. Now, the contribution to V m  from b is of 0 ( lN /4) 

and may be neglected in an order analysis. After some computation

d { B 2\
V x [(V x B0) x Bo] = -  — ( “ )  1*.

Thus

v *  = - [ s- ‘b 2] A
=  s~l { B 2(s,z)  -  B 2(s,C)}1^

and if G takes one of the forms (4.6) or (4.7) then

V M = s F 2(G2 -  1)1*. (4.11)

The stability results for the basic state Bo with its associated magnetic wind V m  

can then be found for both the E A and jS^-fields. In each case, the magnetic wind 

is symmetric about the equator 2 =  0 and is westward travelling.

Since we fix the outer core radius at s =  1 then our aspect ratio of cylindrical 

radius to half-height will always be of the form 1 : £. In future, then, we will also 

refer to £ as being the aspect ratio.

In order to make a comparison between the results of the previous chapter and 

with the results of FLMO, we have used an aspect ratio of outer annular radius 

to half-height of £ =  7r/2. However, in the viscous analyses of HF3,4, an aspect 

ratio of 1 was used. For both E A and A5-fields, we rework the stability problem for 

the aspect ratio of £ =  1 to directly compare our magnetostrophic results with the 

viscous results of HF3.

In each stability analysis conducted in the past, either by Fearn (1983b, 1984, 

1985, 1988), HF1-4, or FLMO the s-dependence has always been taken in the form 

(4.2). Referring to Figure 3.1 (i), as the parameter a  is increased, the field becomes 

more and more concentrated towards the core-mantle-boundary (CMB). Recent ev­

idence from the dynamo calculations of Glatzmaier & Roberts (1995a,b, 1996,1997) 

suggests tha t field concentration towards the inner-core-boundary (ICB) may be 

im portant. To this end, we also consider the stability of s- and 2-dependent basic 

fields whose radial dependence is given in (4.3). The choices (4.2) and (4.3) allow us 

to compare the stability results arising from similar field profiles: one concentrat­

ing towards the CMB and one towards the ICB. Contour plots showing meridional 

sections of the (axisymmetric) basic fields are shown in Figure 4.1.
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In the previous chapter, we defined the “energetic Elsasser number” A1 =  E ( B 0)A 

[(3.30)]. Here jE?(B0) is the dimensionless field energy, see (3.29), associated with the 

basic field B 0. For the s — and 2—dependent basic fields considered in this chapter, 

values for E ( B 0) are given in Table 4.1

T a b l e  4.1: Dimensionless field energies E ( B 0)

Radial Axial Total Field

Dependence, F ( s ) Dependence, G(z) Energy, £ ( B 0)

(4.2) (4.6)/(4.7) 0.150

(4.3) (4-6)/(4.7) .0523

In this chapter, all critical Elsasser numbers are quoted for the energetic version A1. 

The only cases where we use the traditional Elsasser number A are in Sections 4.3.4 

and 4.4.4. This was necessary to compare our results with the viscous work of HF3.
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Figure 4.1: Meridional sections of the basic field B(). Top row: Dipole fields using 

G from (4.6). From left to right: (i) using F  from (4.2), (ii) using F  from (4.3). 

Bottom row: Quadrupole fields using G from (4.7). From left to right, the same 

order of s-dependencies F (s ) as used in the top row.
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This chapter is concerned with determining the linear stability of s- and z- 

dependent basic fields and then analysing the impact of the (nonlinear) geostrophic 

flow on the instabilities. FLMO showed that for simple s-dependent basic fields, 

certain imposed differential rotations can lower Ac. In the previous chapter, we 

showed that the geostrophic flow induced subcritical behaviour in the most unstable 

mode for some combinations of basic fields and aspect ratios. Here, the linear results 

are new; previous eigenvalue analyses only considered basic fields of the form Bq(s). 

We also investigate whether subcriticality exists for the most unstable mode under 

dipolar and quadrupolar field configurations, problems (in which case Vq is identical 

between the problems) and

4.2 Problem  Set Up

4.2.1 E xpansions

Our model problem is identical in many respects to th a t discussed in the previous

chapter. The main difference between this work and Chapter 3 is in the choice of

basic field (4.1) which now provides for a 2-dependence.

Working in the same annular geometry A , using the same nondimensionalisa- 

tion (3.5), governing equations (3.13, 3.14, 3.15) and field and flow decompositions 

(3.6, 3.7), the non-autonomous presence of the axial co-ordinate creates a coupling 

between the axial modes. This then requires solution expansions of the following 

form

N Z

X  = ]T  A M (s,t)cosn (2 +  C K m  ̂+  CC (4.12)
n=0 
N Z

Y  = £ r„ (s .f ) s in n (z  +  C)eim,#, +  CC (4.13)
71=1

where X  represents any of or b$ and Y  stands for either vz or bz and N Z

is the axial mode truncation. A value of N Z  =  8 and a finite difference radial 

node truncation of N  =  101 gave well converged solutions. As before, CC stands 

for “complex conjugate’1. All functions with subscripts n & [1,2,...) are complex. 

Here n  =  rm/2(  where we have chosen either f  =  x /2  in order to compare our 

results with FLMO and Chapter 3, or £ =  1 in order to compare with HF3,4.
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The boundary conditions remain unchanged from the previous chapter as they are 

autonomous in the variable z. Consequently, (3.21) and (3.24) are enforced at the 

FD node points corresponding to s =  su,, 1 over all the axial modes N Z .  The perfect 

electrical conductor and no-normal flow conditions are once again enforced by using 

a Galerkin technique.

It should be pointed out that, under the magnetostrophic approximation, the 

governing equations do not determine the radial flow component corresponding to 

the zeroth axial mode vS)0 [see (4.12)]. As discussed in the introduction, this zeroth 

axial mode is actually the non-axisymmetric part of the radial geostrophic flow [see 

( 1.16)]

«»,o = V S -  (VS) (4.14)

where (■) =  (27t)-1 J027r • d$. Further work is needed to resolve Vq and hence v s < q. At 

present, however, we set u5j0 =  0, since our motivation for examining this magnetic 

stability problem is tha t much of the physics will carry over to a similar problem in 

a spherical shell geometry.

4.2 .2  S ym m etry  and Solution

The choice of basic E A or E s field leads to a partitioning of the linear stability 

problem into solutions of the dipole type and of the quadrupole type. This can 

be seen in the perturbation equations (3.11,12,13) from the particular choice of G. 

Although the equations are not separable in z, the (linear) instabilities manifest 

themselves through the following symmetries. As illustrated by Gubbins & Zhang 

(1993), when B 0 € E A then either the dipolar symmetry arises

V  : b e  E A and v  G E s (4.15)

or the quadrupolar symmetry arises

Q : b e E s and v  G E A . (4.16)

Similarly, if Bo G E s  then either a dipolar instability appears

V ’ : b and v  G E A (4.17)

or a quadrupole type instability appears

Q1 : b and v  e  E s . (4.18)
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Strictly speaking, both symmetries are present in any problem, but one symmetry 

will dominate the other by being more unstable. In terms of the basic field Bo (and 

the magnetic wind V m ) we may think of our basic configuration as being dipolar 

in the case of an equatorially antisymmetric Bq or quadrupolar in nature when

For the linear problem, and by virtue of our choice of basic field symmetry, two 

problems are being solved simultaneously and independently. However, as one moves 

into the nonlinear regime, it is not clear if the symmetries from the linear problem 

will be maintained. It is very possible that a symmetry-breaking bifurcation may 

take place where one symmetry excites the other through the nonlinear action of 

the geostrophic flow.. As shown in the Appendix, Vq is dependent on the various 

contributions from each axial mode

Here, Vq is as implemented in Chapter 3. In the cases where we examine the effect 

of the finite ageostrophic magnetic wind, Appendix C also shows tha t V m does 

not alter the axial mode interaction in the linear regime. The magnetic wind is 

implemented by setting V 0 =  Vm =  s F 2(G2 — 1)1^ from (4.11) in the induction 

equation (3.12).

The stability problem was then solved by an LU-decomposition method applied 

to a part spectral and part fmite-difference discretization of the governing equations. 

As in the previous chapter, a semi-implicit method was employed incorporating the 

Crank-Nicholson scheme for the diffusive terms and an Adams-Bashforth method 

for the remaining terms. The main difference between this chapter and the last lies 

in the fact tha t the axial modes remain coupled and the solution must be sought 

for each axial mode simultaneously. Using the Crank-Nicholson/Adams-Bashforth 

allowed us to deal with the terms coupling individual axial modes to explicitly. This 

resulted in a block-banded system matrix where each axial mode i =  0,..., N Z  has 

an associated (2N — 1 ,27V —1) block over the real numbers. The block-banded struc­

ture was made use of to quickly LU-decompose the system m atrix by individually 

decomposing each block in turn. This proved highly efficient.

B 0 g E s .

N Z

VG =  2l/2^ J 2 a nis lbs,n + bSinD ~  nbz,n)bli7l (4.19)

where a n (4.20)
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4.2 .3  C onsisten cy  C ondition

Consider the perturbation form of the magnetostrophic momentum equation

l z x V =  -V t t  +  (V x B 0) x b +  (V x b) x B 0. (4.21)

If one takes the ^-component of the curl of (4.21) then

dvz
dz

{ V x [(V x B 0) x b +  (V x b x Bo)]}, (4.22)

Now, the no-normal-flow boundary conditions require th a t vz =  0 on z =  ±C- 

Therefore
"C dv.

d z  =  [uz] 0.
J-S dz  L “J-C 

Consequently, any solution we find must satisfy the consistency relationship

-C 

-t
I  {V x [(V x Bo) x b +  (V X b x B 0)]}2 dz =  0 (4.23)

< 1 5  
~C s  9 s

b ^ s B o )

1 db,h d

l d _  
s ds

sb.
OBr
dz

(sB0) + ■{sb*) ~
Bo d2b.

dz =  0. (4.24)
s2 dcj) ds w ' s2 d s d ( j ) v/ s2 d<p2 

Where we have written B 0 =  B q 1^ for the basic state field. Immediately, we see 

th a t if the basic field is ^-independent as in Chapter 3 [Bo =  sF(s)] then (4.24) will 

always be satisfied. This can be verified upon substituting the expansion forms for 

b and integrating in 2). Since the term involving bz vanishes from (4.24) because B q  

is ^-independent, then the remaining terms are all proportional to cosn(z +  () (with 

n  >  0). On integration between z =  — Q and f  (4.24) vanishes.

However, if we take B q =  sF(s)G(z)  as is done in this chapter with G(z)  selected 

from (4.6) or (4.7), then it is not clear upon making the substitutions (4.12), (4.13) 

tha t (4.24) will be satisfied. This issue can partly be resolved in the following way. 

Each term  in (4.24) will be proportional to either

G(z) cosn(z  +  () =  ~[cos(n +  l)(z T C) +  cos(n — I)(z +  C)]

G'(z) sinn(z -f () = — ̂ [cos(n +  I)(z +  £) — cos(n — l)(z + £)]

where n =  mr/2£, n  € [0,1,2,...) and a prime indicates the ^-derivative. Consider 

the dipole field configuration created by choosing I =  1 [see (4.6)] for G(z).  Provided
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the most unstable instability is quadrupolar in nature, then it is the even modes n 

which are selected and consequently (4.24) must vanish. A similar result exists if 

one chooses I =  2 [see (4.7)] and the dipolar instability. However, it is not clear as to 

whether (4.24) will or will not be satisfied if either of the other two combinations of 

basic field and instability are selected. In this event, we cannot say anything about 

our results and they are not quoted.

This represents a serious deficiency in cylindrical models under the magne- 

tostrophic approximation in the linear regime. In order to address this problem, 

further work is needed. The restoration of a some form of viscosity to the right 

hand side of the magnetostrophic momentum equation (4.21) may help to resolve 

the problem (Hollerbach, private communication).

4.3 D ipole Field R esults

In this section we examine the stability results for a number of basic field configura­

tions of the dipole type (4.1). Throughout this section, the form (4.6) is chosen for 

G(z).  We will then refer to the field whose s-dependence F  is chosen from (4.2) as 

being the dipole field. In Section 4.3.3 we use the form (4.3) for F. In tha t section 

only, we will refer to the basic state as being the dipole field concentrating to the 

ICB.

The results are organised as follows. Firstly we consider magnetic instabilities 

arising from the basic state field with annular aspect ratio of ^ =  7r/2. Then, in 

the same problem, the impact of the consistent magnetic wind is assessed. For the 

third case, we investigate field concentration to the ICB. Finally, the stability for 

the basic field is reworked for the new aspect ratio of 1.

4.3.1 C om parison w ith  th e  ^-Independent R esu lts

The stability results for the dipole field are detailed in Table 4.2 below. A field 

profile for the dipolar axisymmetric basic state can be located in Figure 4.1.
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T a b l e  4.2: Critical parameter values for the dipole field.

m 1 2 3 4

A c 2.381 0.8159 0.5256 0.4955

U)c -0.8963 0.6835 -5.227 -11.93

Modes Q Q Q Q

Bifurcation Sub Sub Sub Sub

The results for the first four azimuthal modes, considered in isolation due to the sepa­

rability in 0, are shown. The higher azimuthal modes are significantly more damped 

by ohmic diffusion than those shown here and are consequently not quoted. In Ta­

ble 4.1 we have already demonstrated tha t the 2-dependent basic fields have weaker 

average field strengths than their z-independent counterparts of Chapter 3. Use of 

the energetic Elsasser number allows a realistic comparison across ^-independent 

and ^-dependent basic fields. The values of A'c corresponding to the 2-independent 

field using (4.2) (see Table 3.5) are the correct comparison with the results in this 

chapter. Here, the only difference between the basic fields is in the form for G: the 

2-dependent case (4.6) versus the 2-independent case where G(z) = 1. On inspec­

tion of Tables 4.2 and 3.5, we see tha t the introduction of a 2-dependence has had 

a destabilising effect.

The most unstable mode for the dipolar basic field is the m  — 4, quadrupolar Q- 

instability with frequency —11.93. Further, the instability would appear to resist the 

formation of columnar convection cells which are equatorially symmetric in nature 

(Busse, 1970). Comparison of our most unstable m  = 4 mode contrasts with the 

similar but viscous results of HF3 which suggest tha t m  = 2 is the preferred mode. 

This has prompted us to rework our problem for their aspect ratio of £ =  1 later in 

the chapter.

In the manner of Chapter 3, we use the linear eigenfunction at A — Ac (or 

equivalently A' — A'c) to generate the geostrophic flow V ^ ^ s) through (4.19). Nor­

malising th a t flow and modulating it with the modified magnetic Reynolds5 number 

and enforcing the flow as the differential rotation

V 0(s) =  72ml4 0>l*  (4.25)
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allows us to determine the initial effect of Vq on the solution in the nonlinear 

regime. [Typically, 7Zm =  10“3.] In contrast with the results of HF4 who did 

not find subcritical instability, we find that the geostrophic flow has an inherently 

destabilising nature with the most unstable modes forming subcritical instabilities. 

The subcritical effect was verified in the fully nonlinear regime (i.e., by calculat­

ing the geostrophic flow at every time step) and instability was found at value of 

A; =  0.4875 (Ac =  0.4955). Unfortunately, due to the subcritical nature of the 

bifurcation, we expect and find that the Ekman branch is unstable. At A1 =  0.4875 

we found exponentially growing solutions and no field equilibration.

The real and imaginary parts of the linear solution b  and v  [see (4.12) and (4.13)] 

are represented in Figures 4.2 and 4.3. Meridional sections, drawn as contour plots, 

show the structure of the most unstable, m  =  4, mode at A'c =  0.4955. The 

eigenfunctions for b  and v  have been normalised separately but in the same way. 

For example, the field was normalised by dividing by the quantity

evaluated at the point P  — (smax, <j>max, zmax). Here, a superscript r / i  refers to the 

real/im aginary part. P  was found as the point which maximised the real part of bz, 

i.e. P  is the point for which

is a maximum.

The first observation that can be made is that the instability, as one intuitively 

expects, tends to concentrate in the region close to the CMB (towards the right hand 

side of the plots). The quadrupolar nature of the instability is also evident. The 

plots are well resolved showing large scale structure occurring on lengthscales over 

the radius of the annulus. The corresponding geostrophic flow structure is shown in 

Figure 4.4.

We reserve comparing the field (3.12) from Chapter 3 with the dipole field con­

centrating to the ICB until Section 4.3.3.

N Z

E  + ibU )  sin "(z + O e"'14’ (4.26)

N Z

K ,n C0S -  K n sin m0) sin n(z  +  C) (4.27)

where 0 (4.28)
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Figure 4.2: The perturbed magnetic field b. Meridional sections maximising over 

0 for the most unstable m =  4 mode under the dipole field configuration in Fig­

ure 4.1 (i). Top row, from left to right: the real part of (i) bs, (ii) b$ and (iii) bz. 

The bottom  row is as the top row but shows the corresponding imaginary parts. All 

figures use the same contour interval.
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Figure 4.3: The perturbed flow field v. Meridional sections maximising over (f> for 

the most unstable m  — 4 mode under the dipole field configuration in Figure 4.1(i). 

Top row, from left to right: the real part of (i) vSy (ii) v# and (iii) vz . The bottom  

row is as the top row but shows the corresponding imaginary parts. All figures use 

the same contour interval.
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Figure 4.4: Profiles of the geostrophic flow at A' =  A'c. In the annular container 

with £ =  t t/2 , Vq  is shown as it arises from the most unstable mode resulting from 

perturbations to the following basic fields: (a) the ^-independent field with F(s) 

taken from (4.2); and for the following dipolar basic fields with (b) F(s) taken as in 

(4.2) and G (z) taken in (4.6), (c) as part (a) but with the consistent magnetic wind 

V A/ in place, (d) where basic field concentrates to the ICB, and (e) the aspect ratio 

is modified to £ =  1 for case (b).
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4.3 .2  T he Effect of th e M agnetic W ind

Along with the basic D-field configuration, we add the equatorially symmetric mag­

netic wind into the stability analysis. Here, with (  = 7r/2, we implement (4.11) with 

F  and G taken as in (4.2) and (4.6), respectively. This is achieved in the problem 

by setting V 0 =  Vm in the perturbation equations (3.11, 12, 13). The results, in 

the same form as Table 4.2, are given in Table 4.3.

T a ble  4.3: Critical parameter values for the T> basic field with Vm-

m 1 2 3 4

K — 0.8661 0.5394 0.5027

a>c — -1.355 -4.688 -11.49

Modes - Q Q Q

Bifurcation — Sub Sub Sub

The crucial question regarding the effect of the magnetic wind is does it change the 

results of the previous section? The effect of V m is very slight indeed and the same 

qualitative features are seen in the eigenfunctions with and without the presence of 

V m - We do not reproduce these here since the eigenfunctions appear identical to 

the plots in Figures 4.2 and 4,3.

In general, the magnetic wind has a mildly stabilising influence and raises the 

critical A'c for the most unstable mode from A'c =  0.4955 to A'c =  0.5027 whilst pre­

serving its quadrupolar symmetry. One of the few changes induced by the magnetic 

wind occurs for the m  — 1 mode. Here, this mode becomes more stable, exchanges 

its quadrupolar symmetry for a dipolar symmetry under Vm, and the nonlinear 

effect due to the geostrophic flow leads to a supercritical bifurcation. The presence 

of the magnetic wind, here, changes the nonlinear development of the instability. 

Although the introduction of Vm has altered some of the frequencies, it has changed 

the frequency of the most unstable mode only slightly.

In the light of the (almost) identical eigenfunctions with and without the mag­

netic wind, it comes as no surprise that the geostrophic flow profiles are very similar. 

The profile for Vq can be seen as graph (c) on Figure 4.4.
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4.3 .3  T he Effect o f F ield C oncentration  Towards th e  IC B

Prior to this work, studies of the stability of field profiles in the annular domain 

have been primarily restricted to certain choices of basic state. In particular, those 

basic states were initially only chosen to be 5-dependent as this led to a problem 

separable in x. The main aim of this chapter has been the introduction of an axial 

dependence, and its associated symmetries, into the basic field configuration.

The s-dependencies of our basic states have, at this point, lain unchanged from 

those first studies [e.g., Fearn (1983b)]. The particular form for F  was chosen so 

tha t the basic toroidal field would vanish on the inner and outer core boundaries 

whilst a parameter a  allowed variations on this theme (see Figure 3.1 for examples). 

It was then possible to gain some insight into how results depended on the choice 

of basic field. However, the function F , tended to concentrate field away from the 

ICB (Figure 3.1). We now investigate the form (4.3) for F  in a field concentrating 

to the ICB. The structure of the new basic state can been seen in Figure 4.1(iii).

T a ble  4.4: Critical param eter values using F  in (4.3).

m 1 > 2

K 1.633 > 2.6

10C 1.318 x 10~3 —

Modes Q —

Bifurcation Sub —

W hat is immediately obvious from the stability results in Table 4.4 is tha t those 

modes tha t were most unstable when the “traditional” form for F , (4.2), was used 

have now been completely damped by ohmic diffusion. For the azimuthal modes 

having m  > 2, the energetic Elsasser number A’ now lies in excess of 2.6 (corre­

sponding to A >  65) and the most unstable mode is now the m  = 1 mode.

The difference can be explained in the following way. We know that any in­

stability will tend to concentrate where the basic field is strongest and our new 

choice of 5-dependence has forced the instability towards the ICB. Now, ohmic dif­

fusion acts on modes which contain a lot of structure (essentially, it is there that 

the ohmic diffusive V 2b term can become large). Consider an instability with az­

imuthal wavenumber m  forming at a radius s =  a and then consider the same
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non-axisymmetric mode appearing at a radius s =  b < a. The wavelength of the 

azimuthal mode forming at s = b is 2?rb/m  and must be less than its corre­

sponding wavelength at s — a. However, the instability still contains m  oscillations 

a t s = b and ohmic diffusion “sees” a more compact structure th a t it can damp 

quite effectively. This is explains why the higher order m  modes have been heavily 

damped for field concentration towards the ICB. The most unstable mode is the 

m  =  l instability and A'c =  1.633. This is as opposed to m  =  4 and A'c =  0.4955 in 

the case of field concentration towards the CMB. So the effect of field concentration 

to the ICB has stabilised the system. However, the actual m  =  1 mode itself, which 

is a quadrupole instability, has been destabilised by the new field concentration.

The eigenfunctions for the field and flow may be seen in Figures 4.5 and 4.6. One 

immediately notices tha t both field and flow concentrates towards the ICB boundary 

and tha t the azimuthal flow now fills the length of the annulus.

Although the most unstable mode retains its quadrupolar symmetry, the simple 

effect of concentrating field to the ICB has slightly increased A'c, swapped the most 

unstable mode and drastically reduced the frequency from —11.93 to 3.284 x 10~3 

-  the instability is now almost stationary. The nonlinear effect of the geostrophic 

flow still remains subcritical.

It is worth observing that the addition of this section’s dipolar modulation to a 

previously ^-independent basic field [i.e. in Chapter 3, field (3.12)] has stabilisied 

the system. This contrasts the destabilising result of Section 4.3.1.
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Figure 4.5: For basic dipolar field concentration to the ICB: Top row, the real parts

of (i) bs, (ii) b<p and (iii) bz. The corresponding imaginary parts are shown in the

bottom row. All plots share the same contour interval.
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Figure 4.6: For basic dipolar field concentration to the ICB: Top row, the real parts

of (i) v8i (ii) v  ̂ and (iii) vz . The corresponding imaginary parts are shown in the

bottom row. All plots share the same contour interval.
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4 .3 .4  C om parison w ith  th e A sp ect R atio  (  =  1

Thus far, we have considered only aspect ratios of (  = tx/2  We now modify the 

aspect ratio to £ =  1.

This modification facilitates a closer comparison of our magnetostrophic results 

with the viscous analyses of HF3 who used an aspect ratio of £ =  1 and took the 

Ekman number E  — 10-4 . Choosing our basic state as in Section 4.3.1 we rework 

the magnetostrophic stability analysis for the new aspect ratio. The results along 

with the comparable viscous analysis (shown italicised and courtesy of HF3) are 

presented in Table 4.5 below.

T a b l e  4.5: Critical values for the aspect ratio f  =  1. [HF3 italicised.]

m 1 2 3 4

Ac — 13.98 7.082 5.871

1.85 1.67 2.86 —

IUC - -2.939 -5.722 -11.45

-0.28 -0.27 0.20 —

Modes — Q Q Q

D D D —

Bifurcation — Sub Sub Sub

Super Super Super —

The critical parameter values in Table 4.5 are given in terms of A and without 

recourse to the energetic Elsasser number Ah This was done since we used precisely 

the same basic field as HF3 and their results were given in terms of A.

It is immediately obvious tha t the viscous analysis shows a basic field which 

is far more unstable than its corresponding magnetostrophic counterpart. This is 

somewhat surprising since the presence of viscosity might be expected to provide a 

stabilising influence. This was observed when HF2 compared their (linear) viscous 

results for B 0 — B 0(s) with the corresponding magnetostrophic results of Fearn 

(1988). The unknown role of the zeroth and undetermined axial mode vS)q may well 

be the cause of the discrepancy or there may be no discrepancy at all since we were 

unable to find the corresponding dipolar instability [see Section 4.2.3]. A viscous
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analysis in an annular geometry allows determination of vs>0 but, as already stated, 

further work will be required to determine r>Si0-

Let us now describe the effect of changing the aspect ratio between our two 

magnetostrophic cases. As in Section 4.3.1, the most unstable mode is the m  =  4 

azimuthal mode, the instability remains quadrupolar and the bifurcation due to the 

geostrophic flow is still subcritical. The frequency of the most unstable mode has 

changed only slightly: from a value of -11 .93  to —11.45 for C — 1- The frequencies 

of the m  =  1 and m  — 2 modes have changed and these modes are considerably more 

damped. The results for the energetic Elsasser number AJ. are shown in Table 4.6.

T a b le  4.6: Comparison of A' between aspect ratios.

Aspect Ratio £ m — 1 771 =  2 m  = 3 m  =  4

1 — 2.097 1.062 0.8807

7t/2 2.381 0.8159 0.5256 0.4955

One can see from Table 4.6 that the critical parameter values have become stabilised 

on decreasing £ from vr/2 to 1. Again, the increase in A'c can be understood in 

terms of diffusion acting with greater vigour on axial modes now compressed into an 

annulus of smaller height. Note tha t the symmetry of each mode remains unchanged 

on changing the aspect ratio except for the m  =  1 mode. The components of the 

most unstable mode are shown in Figure 4.7 and 4.8. The nonlinear development 

due to Vq has remained the same, again with the exception of the m  =  1 azimuthal 

mode which has become supercritical in the new aspect ratio.

4.4 Quadrupole Field R esults

In a similar fashion to the previous section, we examine the stability of a number 

of quadrupolar basic states (4.1). The results are organised in an analogous way to 

Section 4.3 and unless otherwise stated, we set £ =  tt/2 . We consider the stability 

of (4.1) with G taken from (4.7) and refer to it as the quadrupole field. Similarly 

to the stability analyses for the dipolar basic field in Section 4.3, we consider the 

ageostrophic magnetic wind and then field concentration towards the ICB [refer­

ring to this configuration as the quadrupole field concentrating to the ICB] before 

concluding with a stability analysis of the quadrupole field where £ =  1.
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Figure 4.7: As for Figure 4.2 but for (  =  1 and where F(s)  is taken from (4.2) and 

G(z) is taken from (4.6). Top row, the real parts of (i) 6S, (ii) b<p and (iii) b2. The 

corresponding imaginary parts are shown in the bottom  row. All plots share the 

same contour interval.
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Figure 4.8: Similarly to Figure 4.7 but for the flow field v. Top row, the real parts

of (i) vai (ii) Vtf, and (iii) vz. The corresponding imaginary parts are shown in the

bottom row. All plots share the same contour interval.



4.4.1 C om parison w ith  z-Independent R esu lts

The stability results for the quadrupole field are detailed in Table 4.7. A meridional 

section showing the basic state can be seen in Figure 4.1 (iii).

T a b l e  4.7: Critical parameter values for the Q basic state.

m 1 2 3 4

K 1.761 0.9101 0.6447 0.6216

U)c -0.4679 -1.177 -4.231 -10.20

Modes V' V V V

Bifurcation Sub Sub Sub Sub

As in Section 4.3, the results for the first four azimuthal modes are shown (the 

higher azimuthal modes being significantly more damped than those shown here).

The most unstable mode for the quadrupolar basic field is the m  = 4, dipolar 

^^instab ility  with frequency —10.20. The viscous stability analysis of HF3 suggest 

tha t the m  =  2, quadrupole Q' instability is the preferred mode. However, they 

worked with £ =  1 and our results are for £ =  7r/2. In Section 4.4.4, we rework our 

problem for their aspect ratio.

It is possible to compare the results of Table 4.7 directly with the independent 

results of the previous chapter. In terms of the energetic Elsasser number A', Tables 

3.5 and 4.7 show that the quadrupolar modulation (4.7) to the ^-independent basic 

field is stabilising. This contrasts with the result where the modulation of a dipolar 

axial dependence destabilised the system.

The real and imaginary parts of the solution are represented in Figures 4.9 and 

4.10. Meridional sections (see Section 4.3.1 for an explanation of the normalisation 

procedure used) as contour plots show the most unstable, m  = 4, mode at A;c =  

0.6216.

The nonlinear effect of Vq on every mode considered was to destabilise the sys­

tem. A profile for the geostrophic flow corresponding to the most unstable mode 

may be found in Figure 4.11 and compared with the ^-independent result. The effect 

of the geostrophic flow on the most unstable mode from the ^-independent case gave 

a supercritical bifurcadon. The most unstable mode for the quadrupole field was 

subcritical due to Vq - One can clearly see tha t Vq corresponding to the quadrupole
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field (b) possesses a strong amount of negative in the vicinity of s =  0.9 whilst 

(a) does not. This is consistent with the findings of FLMO who suggest negative 

outward gradient in the shear flow leads to subcriticality.

We compare (3.12) from Chapter 3 with the ^-dependent, quadrupole field con­

centrating to the ICB at the end of Section 4.4.3.

4.4 .2  T he Effect o f th e M agnetic W ind

Along with the quadrupolar field we add the consistent) symmetric magnetic wind 

(4.11) into the stability analysis of the basic Q-field. Here, V m is implemented by 

setting Vo =  V m from (4.11) in the equations (3.11, 12, 13). The results are given 

in Table 4.8.

T a b l e  4.8: Critical parameter values for the Q-basic field with V m -

m 1 2 3 4

K 1.818 0.9189 0.6513 0.6251

-0.1393 -0.7138 -3.785 -9.786

Modes V V V V'

Bifurcation Sub Sub Sub Sub

On comparing the results from this Section with the results of Section 4.4.1 there is 

very little difference indeed. We do not reproduce the eigenfunctions here as they 

are very similar to those already given in Figure 4.9 and 4.10 in the absence of Vm- 

The critical energetic Elsasser numbers for the most unstable m  =  3 modes are 

very similar at A'c =  0.6251 including Vm to A'c =  0.6216 without. All the solution 

symmetries remain the same and the nonlinear development of the geostrophic flow 

retains the same bifurcation sequence for each mode. The only difference between 

the cases with and without Vm is where the critical frequencies are concerned. It 

appears th a t the instability is carried along by the magnetic wind.
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Figure 4.9: As Figure 4.2, the perturbed magnetic field b  for the most unstable 

m  = 4 mode under the quadrupole field configuration in Figure 4.1(h). Top row: (i) 

b8i (ii) and (iii) bz. The corresponding imaginary parts are shown on the bottom  

row. All plots share the same contour interval.
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Figure 4.10: Similarly to Figure 4.9, the most unstable mode now showing the 

perturbed flow field v under the quadrupolar field configuration. Top row: (i) vs, 

(ii) v  ̂ and (iii) uz. The corresponding imaginary parts are shown on the bottom 

row. All plots share the same contour interval.
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Figure 4.11: Profiles of the geostrophic flow at A' =  A', as in Figure 4.4 but where 

a quadrupolar 2-dependence (4.7) is used in the basic state magnetic field.
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4.4 .3  T he Effect o f F ield  C oncentration  Towards th e  IC B

We now consider the stability of the quadrupole field concentrating to the ICB 

[see Figure 4.1 (vi)]. In the absence of the magnetic wind, the stability results are 

tabulated in Table 4.9 below.

Table 4.9: Critical parameter values using F  in (4.3).

m 1 > 2

A' 1.803 > 2.6

u}c -0.1026 —

Modes V —

Bifurcation Sub —

Field and flow solutions for the most unstable mode can be seen in Figures 4.12 

and 4.13.

Immediately, and as with the similar dipolar basic field result, we see tha t all 

azimuthal modes are heavily damped for m  >  2. Appealing to Section 4.3.3 this 

phenomenon can be explained by ohmic diffusion. Unlike the corresponding case of 

Section 4.3.3, the m  = 1 mode has been stabilised in the new field configuration.

The most unstable mode has retained its nonlinear development due to the 

geostrophic flow. The two Vq profiles (see Figure 4.8) for the quadrupole field 

and for the quadrupole field concentrating to the ICB are entirely different. For 

instance, the maximum modulus of Vq is attained at a radius of s =  0.46 unlike 

in Section 4.4.1 where the maximum occurs at s — 1, It would appear th a t the 

geostrophic flow tends to concentrate where the basic imposed field is strongest.

Observe th a t the addition of this section’s quadrupolar modulation to a previ­

ously ^-independent basic field [i.e. in Chapter 3, field (3.12)] has stabilised the

system as was the case for basic field concentration to the CMB.

4.4 .4  C om parison w ith  th e  A sp ect R atio  (  =  1

For the quadrupolar fields considered thus far, we have considered only aspect ratios 

of d =  ?r/2. As in Section 4.3.4 we modify the aspect ratio to C =  1 in order for a

more realistic comparison with the similar but viscous work of HF3.

94



//

Figure 4.1*2: The perturbed field b is shown for the quadrupole field concentrating 

to the ICB: Top row, the real parts of (i) bs, (ii) b<f, and (iii) bz. The corresponding 

imaginary parts are shown in the bottom row. All plots share the same contour 

interval.



Figure 4,13: The perturbed flow field v  is shown for the quadrupole field concentrat­

ing to the ICB: Top row, the real parts of (i) va, (ii) and (c) vz. The corresponding 

imaginary parts are shown in the bottom  row. All plots share the same contour in­

terval.
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Our basic state is the quadrupole field. The only difference between this section 

and Section 4.4.1 is that C — 1- The results are tabulated in Table 4.10 along with 

the viscous parameter values which are reproduced courtesy of HF3 (italicised).

T a b l e  4.10: Critical values for the aspect ratio 1:1. [HF3 italicised.]

m 1 2 3 4

Ac 17.73 10.10 7.984 7.878

349 2.06 3.02 6.80

LOc -0.3820 -0.8397 -3.269 -8.699

-0.29 -0.28 0.25 1 . 0 4

Modes V V V V

Q' Q' Q' Q'

Bifurcation Sub Sub Sub Sub

Super Super Super Super

On inspection of Table 4.10 we see what appears to be a qualitative difference 

between the viscous analyses at small Ekman number [E = O(10-4)] and the mag- 

netostropliic results. Like the dipole basic field results, we find the opposite solution 

symmetries for all our modes. This is consistent with the consistency condition 

(4.24). Had we been able to find the quadrupolar instability then the discrepancy 

between our results and those of HF3 may well have been resolved. As it is, in our 

model the most unstable mode is m  =  4, whereas a viscous analysis shows m  = 2 

to be most unstable.

Let us now turn our attention to Table 4.7 and compare our magnetostrophic 

results across the aspect ratios. In changing £ from tt/2  to 1 there has only been a 

subtle change in the solution structure with the most unstable mode remaining the 

same. All the azimuthal modes have retained the same symmetry structure. For 

the most unstable mode, see Figures 4.7 and 4.8.
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T a b le  4.11: Comparison of A'c between aspect ratios.

Aspect Ratio £ m  — 1 m  — 2 771 =  3 m  ■ 4

1 2.660 1.515 1.198 1.182

7t / 2 1.761 0.9101 0.6447 0.6216

Changing the aspect ratio has had a strong stabilising on all the azimuthal modes 

(ohmic diffusion “sees” more structure over the smaller half-height) and the fre­

quency has changed very little. Similarly, Figure 4.11 shows th a t after changing £ 

from 7r/2 to 1, there has been little change in VG. The geostrophic structure is more 

or less the same with, perhaps, a little more pronounced oscillation near s =  0.95.

4.5 D iscussion

The work done in this chapter analysed the linear and nonlinear stability of a variety 

of dipolar and quadrupolar basic state fields. The magnetostrophic approximation 

was employed insofar as viscous boundary layers were retained on the flat bounding 

plates at z — ±£. The viscous drag from these boundary layers is balanced by the 

magnetic torque over concentric circular cylinders leading to a determination of the 

geostrophic flow. We showed in the Chapter 3 tha t the geostrophic flow is the first 

nonlinear effect to act on an exponentially growing solution to the linear problem. 

For 2-independent basic field configurations we discovered subcritical instabilities 

for certain cases of basic fields and aspect ratios. In the viscous analyses of HF1,2 

at finite Ekman number, E  — 10-4 , no subcritical instabilities were found.

In this work we showed that a new constraint on the basic state field and magnetic 

instability must be satisfied. The axial component of the curl of the linearised 

Lorentz force must vanish when integrated over the height of the annular container. 

This is satisfied by any s-dependent basic state and its associated instability but 

only by certain s- and ^-dependent basic fields and their associated instabilities. For 

example, a quadrupolar instability must accompany a dipolar azimuthal basic field 

and a dipolar instability must accompany a quadrupolar basic field to be certain 

th a t the consistency condition (4.24) is satisfied. For the other combinations of basic 

field and instability, any results obtained may or may not be consistent with (4.24)
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Figure 4.14: The perturbed field b for the most unstable mode of the quadrupole 

field with F(s)  taken from (4.2) and G(z) taken from (4.7). Here £ =  1. Top row, 

the real parts of (i) 6S, (ii) b$ and (iii) bz. The corresponding imaginary parts are 

shown in the bottom  row. All plots share the same contour interval.
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Figure 4.15: The perturbed flow field v for the most unstable mode of the quadrupole 

field with F(s)  taken from (4.2) and G(z) taken from (4.7). Here £ =  1. Top row, 

the real parts of (i) u5, (ii) v$ and (iii) vz. The imaginary parts are shown in the 

bottom  row. All plots share the same contour interval.
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and the restoration of some form of viscosity in the perturbation equations will be 

needed to resolve this problem.

In this work, we ask the question: do the magnetostrophic results of FLMO 

and Chapter 3 carry over to more geophysically realistic field configurations, and if 

so, how do the results compare with the corresponding viscous problem considered 

by HF3,4? To answer these questions, we used the energetic Elsasser number A' 

defined on a field’s total magnetic energy [see (3.30)]. This allowed us to consistently 

compare the different basic fields of this work and the Chapter 3. The energetic 

Elsasser number A' is defined in.

Most of the computations carried out here ran on a Silicon Graphics R10000 

Workstation. Although run times lasted, at most, half an hour, it usually took 

several runs to determine a single critical parameter value. Such values were found 

by starting with either arbitrary or “previous solution” initial conditions and time 

stepping long enough to establish growth or decay of the solution. Once the ap­

propriate trend had been determined, the parameter values were varied and the 

process repeated. After two such computations were completed, a secant method 

could be applied in the remaining cycles to find the zeros A'c of the growth rate of 

the magnetic energy a = a (A1).

The introduction of an axial dependence on to a ^-independent basic field was 

found to have a destabilising effect for dipolar basic fields concentrating to the 

CMB and a stabilising effect for the dipole fields concentrating to the ICB and all 

quadrupolar basic fields. This result is intriguing in tha t the observed geomagnetic 

field exhibits a dipolar-type symmetry which can be more susceptible to magnetic 

instabilities than the quadrupole type. In each case of V-  and Q-basic fields, given 

in sections 4.3.1 and 4.4.1, the most unstable mode was the m  =  4 mode and its 

nonlinear bifurcation due to Vq was found to be subcritical.

Further to a stability analysis of just the basic dipolar or quadrupolar field 

symmetries, we introduced the ageostrophic magnetic wind into the problem, driven 

by the basic state field. The addition of V m made no effect whatsoever except to 

mildly stabilise the instabilities and carry them along. For the most unstable mode, 

the solution structure with V m was very similar to that without and the nonlinear 

development was unchanged.
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A modification of £ =  7t/2 to 1 had an overall stabilising effect and the nonlinear 

bifurcation, due to Vg, of the most unstable mode remained unchanged under any 

basic field.

For stability analysis in the past, only certain forms of basic field have been 

considered. Specifically, those that concentrate field to the CMB. We have shown 

that V -  and Q-fields concentrating to the ICB changes the most unstable mode. 

We have shown th a t the m  = 1 instability becomes preferred as field concentrates 

more towards the ICB. This can be understood in terms of the amount of ohmic 

diffusion perceived by a mode as it approaches the axis of rotation. On comparison 

with the equivalent basic field concentrating to the CMB, fields concentrating to the 

ICB showed azimuthal modes becoming heavily damped by ohmic diffusion. The 

structure of these modes (apparently) increases by being compressed into a smaller 

region closer to the axis. W hat was surprising was tha t as the higher order modes 

were becoming stabilised, the m  =  1 mode was destabilised under the TTbasic field.

One of the questions tha t we posed was as to whether the im portant qualitative 

difference between the viscous analysis of HF3 and the inviscid, magnetostrophic 

analysis of Chapter 3 or FLMO would carry over to more relevant field configu­

rations. We must proceed cautiously at this point. We have neglected the effect 

of the induced mean poloidal field in the geostrophic flow where it can make an 

0 (1) contribution. Future work will include this effect. The qualitative difference 

between our magnetostrophic results and the results of HF3 does still need resolu­

tion, however. Under the s- and 2-dependent basic field configurations, only one 

instability parity could be examined (quadrupolar instabilities under a dipolar field 

or dipolar instabilities under a quadrupolar field). This problem is very serious in 

th a t it manifests itself in the linear regime. In order to find a resolution, some form 

of viscosity will need to be restored to the perturbation equations.

The non-axisymmetric geostrophic flow, which was implicitly calculated by HF3, 

has been neglected in our magnetostrophic analysis. In fact, the non-axisymmetric 

component of the geostrophic flow has never been included in a cylindrical, magne­

tostrophic analysis in the past. This fact alone may resolve the qualitative difference.

Although a cylindrical geometry initially seems more numerically tractable than 

the spherical geometry, we have found that it leads to hidden complications (in
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both the linear and nonlinear regimes) tha t do not arise in the geophysically relevant 

spherical shell. The usefulness of cylindrical models in understanding the geodynamo 

is therefore a t an end.

103



C hapter 5

Conclusions

In this thesis we have investigated three different problems. In Chapter 2 we for­

mulated a linear hydromagnetic eigenvalue problem in the geometry of an infinite, 

cylindrical annulus. We focussed on purely 5-dependent basic fields with no buoy­

ancy forces to concentrate on purely magnetic instabilities. We explained two mech­

anisms tha t can lead to magnetic instability: the resistive instability and the ideal, 

or field gradient, instability. The former instability mechanism relies on magnetic 

diffusion for its existence and the latter works independently of diffusion and is 

driven by large gradients in the magnetic field. Much effort has been expended in 

the past in classifying magnetic instabilities as being of one or other class. However, 

we found tha t any mode classification is complicated due to the proximity of double 

and multiple eigenvalue points existing in the parameter space.

Jones (1987) examined and rigorously classified multiple eigenvalue points in a 

plane parallel (or Poiseuille) flow problem. He found th a t following an eigenmode 

around a closed path in the parameter space could lead to a change in eigenmode 

upon returning to the paths’ starting point if tha t path enclosed a double eigenvalue 

point. We found tha t this phenomenon occurs in our simple magnetic stability 

problem. Furthermore, we found tha t tracking modes (and importantly, the most 

unstable modes) around closed loops in parameter space did not return the original 

eigenmode. In fact, we found numerous examples where resistive modes could be 

exchanged for ideal modes and vice versa. This means th a t any attem pt at mode 

classification at geophysically relevant field strengths is not possible.

Chapters 3 and 4 examined the hydromagnetic stability of a variety of geophys­
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ically relevant field profiles in a time stepping calculation. In Chapter 3 we verified 

and extended the magnetostrophic results of FLMO. There, in a finite cylindrical 

annular geometry with perfectly conducting top and bottom  bounding plates and 

insulating cylindrical sidewalls, they used a linear and nonlinear eigenvalue method 

to examine the effects of a prescribed differential rotation and then of the nonlinear 

geostrophic flow on the onset and evolution of magnetic instability. Using their sim­

ple s-dependent basic fields and flows, we were able to verify tha t subcriticality can 

be achieved by choosing an appropriate differential rotation. FLMO found one case 

of subcriticality induced by the geostrophic flow. We found many examples where 

the geostrophic flow induced subcritical behaviour in the most unstable mode.

The im portant qualitative difference between the simple s-dependent work of 

Chapter 3 (and FLMO) and the viscous stability analysis of s-dependent basic 

states done by HF1,2 is that the presence of viscosity does not lead to subcriti­

cality. In Chapter 4 we completed extensive modifications to our numerical code 

used in Chapter 3 in order to study the stability of basic fields depending on height 

as well as radius. We chose exactly the same field configurations as HF3,4 in our 

magnetostrophic analysis. Firstly, every calculation we executed found solutions 

th a t were (linearly) more stable and which exhibited the opposite parity to HF3. 

Secondly, and most importantly, subcritical behaviour was found for the most un­

stable mode in every example we looked at. In fact, in the twenty four examples 

investigated none exhibited supercritical behaviour. This has meant th a t no stable 

Ekman states could be found for the most unstable modes.

In Chapter 4 we discovered a new constraint tha t has to be satisfied in the 

cylindrical geometry in the linear regime. We showed that this consistency con­

dition was always satisfied for s-dependent basic fields, but not always for s- and 

^-dependent basic states. The constraint is an im portant result in itself since, as 

we saw in the Introduction and Chapter 3, in the cylindrical geometry there was a 

non-axisymmetric component of the geostrophic flow. In the appropriate spherical 

geometry of the Earth, a non-axisymmetric component of the geostrophic flow is 

not perm itted. This component, if included in our calculation, would have lead to a 

fully three dimensional problem by coupling the azimuthal modes. We decided that 

from a mathematical and geophysical viewpoint, little was to be gained by including
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Vq ( s , 0, t ) l s +  Vq {s , 4), t ) l ^  and consequently we set it to zero. It seems tha t the 

cylindrical geometry contains many hidden complications tha t do not carry over to 

the geophysically relevant spherical shell geometry and its usefulness as a tool in 

understanding the physics of the geodynamo may be at an end.

On comparison with the 5-dependent work of Chapter 3, we found tha t in 

most cases the addition of a dipolar or quadrupolar modulation to a previously 

^-independent basic field was stabilising. The only exception to this result occurred 

when a dipolar modulation was given to the ^-independent basic field (3.11) con­

centrating to the CMB.

It is perhaps not surprising that basic field morphology, such as field concentra­

tion to the inner core, should lead to variations in the onset and mode of instabilitjc 

By introducing the “energetic Elsasser number” A' based on a field’s total energy 

[see (3.30)] we were able to more realistically compare critical parameter values. 

Glatzmaier & Roberts (1995a,b) found in their dynamo calculations tha t much of 

the main magnetic field is strongest inside what is known as the “tangent cylinder” 

(an imaginary cylinder tangent to the E arth’s inner core and parallel to the rotation 

axis). Upon examining the stability of basic fields which concentrate towards the 

ICB in our model, we found tha t magnetic instability is confined, by magnetic dif­

fusion, to the lowest order azimuthal modes. Other effects, such as the inclusion of 

the ageostrophic magnetic wind (driven by the basic state) and variation in aspect 

ratio had little effect on magnetic instability (linear and nonlinear). In the end, the 

manifestation of instability is a trade-off between the effective amount of diffusion 

and the local energy density. We found instabilities present for geophysically rel­

evant field strengths (A < 0(10)) and consequently, they must play an im portant 

role in the evolution of the main magnetic field.

More work is still needed to explain the qualitative difference between viscous 

and magnetostrophic results. The main difficulty with viscous calculations lies with 

the computationally small value of viscosity in the E arth ’s core. As computing 

power increases, it may now be possible to formulate a realistic viscous stability 

problem in a spherical geometry with no inner core. The absence of the inner core 

means tha t only one viscous boundary layer need be resolved and Ekman numbers 

of the order 10~8 may be approached. It still remains to be seen if this value will
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lie in the correct asymptotic limit, but it might help begin to explain the qualita­

tive difference. As regards other effects, it has not yet been ascertained whether 

or not restoring fluid inertia to the mean momentum equation (Jault, 1995) or 

incorporating thermal/compositional effects will lead to the same qualitative dif­

ferences already observed in the magnetic stability problem. Certainly, subcritical 

behaviour has been discovered by Ogden (1997) who studied s-only or z-only depen­

dent tem perature profiles with a stable basic state field using the magnetostrophic 

approximation. A topic for future investigation would be to combine both unstable 

basic state  fields and unstable temperature profiles in the more realistic spherical 

shell geometry.
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A ppendix  A  

B oundary C onditions

In solving the nonlinear problem in chapters 3 and 4, we expanded the field and flow 

in terms of an axisymmetric basic state and a non-axisymmetric perturbation

B(s,(j),z>t) = B0(s,2)-t-b(s,0,2,i),

V{s,(j),z,t)  = V0(s,2) + v(s,<M,t).

These were then substituted into the momentum and induction equations retaining 

the geostrophic flow Vq as the only nonlinearity.

Under the magnetostrophic approximation the governing equations drop from 

being tenth order in s to fourth order. This complicates the choice of boundary 

conditions along the curved annular sidewalls. Firstly, all normal components of 

the flow must vanish along the surfaces s — Sib, 1. Secondly, for the magnetic field, 

perfect electrical insulators inhabit the regions exterior to the annulus: s < sib and 

s > 1. Thirdly, along the insulating sidewalls there must be no normal current and 

the field interior to the annulus must match to an external potential field. This 

requires six conditions to be satisfied on s — Sjb, 1 when the differential order in 

s is only 4. Fortunately, Fearn (1983a) has shown tha t the two no-normal-flow 

conditions on the sidewalls can be met with the addition of a viscous layer. This 

leaves us free to enforce no-normal-current flow and to match the interior field to 

an external potential field at s =■ Sib, 1.

On z  =  ±Cs the boundary conditions are the no normal flow and perfect electrical 

conductor conditions:

n  • v  =  0, n  ■ b =  0 and n x e  =  0 on z =  (A-l)
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W ritten here in its dimensional form, Ohm’s law allows us to eliminate the pertubed 

electric field e*:

e* = -  v* x BJ = 77V* x b* -  v* x B;,

where a is the electrical conductivity and j* is the perturbed current density. From 

the boundary condition on the electric field, we then have

1 /  dbz dbA  
s { d t - s - d 7 j +u ‘Bo = °-

However, at either top or bottom boundary the normal component of flow must 

vanish. Therefore
dbz __ db^ 
d<j> ~  S dz '

For the boundary conditions on the perfectly conducting plates at z ~  a 

Galerkin technique is employed,

N Z

X (s, 0, z t t) — cosn(z +  +  CC, (A.2)
n = n o  

N Z

Y(s, </>, z, t)  =  Y2 sin 71(2: +  +  CC (A.3)
n —no

where X  represents any of bs or b<p and Y  represents either vz or bz. The

variable n  =  n7r/2C where 0 < nQ < n < N Z .  In Chapter 3 we set N Z  = ti0 > 0 in 

order to consider purely s-dependent basic states whereas in Chapter 4 uq — 0 and 

N Z  =  8 with s- and ^-dependent basic fields under examination.

Consider the regions exterior to the annular volume. The regions 0 <  s <  Sjb and 

s  >  Sib are solid insulators and there can be no flows or currents present. Therefore, 

from Maxwell’s equations we find V x b =  0 in s < s;b and s > 1. Consequently, 

the exterior magnetic field be may be described by a magnetostatic scalar potential 

field U = U(s , 0, z)

be = - W .  (A.4)

Using the divergence free condition, U must satisfy Laplace’s equation V 2U — 0.

d2U ( I d U  1 d2U t d2U _  n (K ^

Let

U(s,<j>i z) = Un(s) cosn(z  +  Q ezm<i). (A.6)
71—710
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Then (A.5) reduces to solving the N q — 7i0 +  1 o.d.e’s

[,s2D 2 +  sD  — (m2 +  ff2s2 )][/„(<$) =  0 for 0 < n 0 < n < N q . (A.7)

First of all, let us consider the case where n = 0 as it is a little different from the 

cases n  > 0. Here (A.7) becomes

[s 2D 2 sD — m 2]UQ =  0 . (A.8)

Thus, seeking solutions of the form Uq(s) a  s7 yields the condition

7(7  — 1) +  7 — m 2 =  0 44- 7  =  ± m .

Hence the general solution of (A.8) must be

UQ(s) =  -F Bs~m •

Now, for s € (0, s;b) the solution must remain finite in the limit s —>■ 0 and so 

Uq(s) =  Asm (B  =  0). The potential t/ 0 is related to the field via

Ko = ~ D Uo

and so 0 =  —A m s m~l which leads to sb® 0(= — Arris771) =  —mC/o- Differentiating 

and eliminating Uq leads to the boundary condition on the zeroth axial mode. An 

exactly similar analysis on the region s > 1 gives the match condition on the surface 

3 =  1. The conditions are

sDbS)Q +  (1 — m)bSj0 =  0 on s =  s^ , (A.9)

sDbSj0 +  (1 +  m)bSt0 =  0 on s =  1. (A.10)

For n > 0 the o.d.e’s (A.7) have solutions

— -AjjAn (ns) +  C7n/j7i(Tis) (A.11)

where and Cn are constants and / m and K m are modified Bessel functions. In

the region 0 <  s < s,b we require Cn =  0 and in s >  Sjb we need A n = 0 to ensure a

physical solution.

On either annular surface we require tha t the interior magnetic field b  match to 

the external potential field b e. From (A.4) we have,



Using (A.6) we have for nQ < n < N 0

bs,n{s,t) = —DUn(s), b^n(s,t) =  - imUn(s) and bZin{s,t) = nUn(s). (A.13)

Using the identity
m (A.14)

(see Abramowitz and Stegun, 1965, Ch.9, p376) where £  stands for either of Im or 

eim7rK m (or any linear combination) then it is easy to see th a t the match condition 

following from (A. 14) becomes

k ,n (s ,t) = 7A ,n ( s , t) for 1 < n 0 < n < N 0. (A.15)

where
f \ l m+1(nsih) m

'In ~  S
/An+i(h) m

if s = sib,

if s =  1

(A.16)

Am(^) fWibJ 

where =  mr/2( ,  n0 < n  < N q.

For the condition that there be no normal current flow across either boundary, 

j s = (V x b )s =  0 requires that

1 dbz db$
=  0 on s =  Sib, 1- (A.17)

s dtp dz

Using V • b  =  0 to obtain an expression for b$ in terms of bs and bz we substitute 

this back into (A. 17) and obtain

s2DbSJl +  sbS;n +  [n2s2 +  ?772]&JJiTl/h  =  0 on s =  sib, 1 for 1 < n0 <  n < N 0.

(A.18)
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A ppendix  B 

Perturbation  Equations

The equations governing the evolution of nonaxisymmetric magnetic field and flow 

perturbations b  and u  to an axisymmetric basic state B 0 =  i3(s,z)l<£ and Vq =  

V(s, z ) l ^  are

l z x v =  — V 7r +  (V x  Bo) x b  +  (V x b) x B 0,

Xf =  V X  (v X  Bo) + V X  (V0 X  b) + A_1V 2b
d t

where the basic state field is decomposed as B  =  sF(s)G(z).  The term Vo =  

V (s ,z ) l0 represents either a basic state flow, V =  s F n (s)Gri{z) or the geostrophic

flow V  =  Vg(s) depending on whether the linear or nonlinear problem is being

solved. The incompressibility and solenoidal equations are:

V ■ v = 0, V • b = 0.

In their component form, the perturbation equations are then:

© The s-momentum equation:

f a  ^  /  a  d& \  &dbs .^=aJ + f r  + sar)-7# + BaF' (B1)
® The ^-m om entum  equation:

1 d-K b, (  - d B \  , dB
V- = - - s 6 $  + T [ B  + ' t o ) + b ‘ t e -  (B'2)

® The 2-mom entum equation:

dir dB  B  dbz ~ db$ , ^
° = ir + 6*a i d  +  B i r -  (B-3)dz dz s o<p dz
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The s-induction equation:

dbs B  dvs V  dbs 1 f  1 dbs d2bs 1 d2bs d2bs bs 2 db.
dt s d<f> s dtp A \ s  ds ds2 s2 dp2 dz2 s2 s2 dp j

(B.4)

The ^-induction equation:

dbtj, dB  ~dvs dB  ~dvz d y d y

1 /1  ^  (926,a 1 6̂  2 dbs

® The ^-induction equation:

db1 = B d v 1 _V_db1 1 / 1 5 6 ,  9 ^  f R n
dt s dp s dp A \ s  ds ds2 s2 dp2 dz2 J

• The incompressibility and solenoidal conditions:

vs dvs 1 dvA> dvz
— H   H * ----- - =  0 (B 7)
s ds s dp dz  ’ [ }
bs dbs 1 db* dbr _

+  7 T  +  -75X +  1T1 =  °- a ss as s dp dz

Firstly, we take the linearised perturbation equations (B.1)-(B.8) and eliminate the 

(perturbed) variables n, v# and b^. More precisely, 7r is eliminated by differentiating 

the ^-induction equation, (B.2), w.r.t. s and z and then differentiating (B .l) and 

(B.3) by p and subtracting. In the resulting two equations, any reference to v$ or b$ 

is eliminated on using the incompressibility and solenoidal conditions, respectively. 

In the same manner, we take (B.4) and (B.5) and eliminate any reference to v$ or b^. 

The ^-induction equation is ignored, the justification being tha t we have eight gov­

erning equations (three scalar momentum equations, three scalar magnetic induction 

equations and one solenoidal equation) and only seven unknowns (7r, vs, v#, vz, bs, b^ 

and bz). Our system of equations is thus linearly dependent. We therefore choose 

to ignore the p induction equation in favour of the solenoidal equation (B.8).

On elimination of 7r, v$ and b$ we have the following equations:



dV8
dz

dbg_
dt

dbz_
dt

d2B  7 d2B t
S - ^ - 7 r - b s +  S - z —z-b

dsdz

B  dvs 
s dp

B  dvz 
s d(j)

-sB

dz2 
d2bs

 ,±  f r B d h
S dz ds S ds dz

dB_db.< 
: ds 
d %

B  d2bz 
s dcj)2

dsdz
sB

dz*
V d F  
s d<p

_L.I ( I +
A I s  ds ds2 s2 d<p2 dz2

d2b' s , b ±  2 ®bz 
s2 s dz

(B.10)

V d h  
s dtp

1 f  I dbz d2bz 1 d2bz d2bz
~^A I s ds ds2 +  s2 dp2 dz2

(B.12)

By making substitutions of the form w(s) p> z, t) =  w(s, z, t)ezm<$ for vs, vz, bs and 

bz we eliminate the ^-dependence from (B.9)-(B.12). Dropping the hats, the results 

are:

dvz
dz

dvs
dz

dbs
dt

dK
dt

B_
77

I d B  d2B ' I d B  d2B \ 3 - dB  1
s ds ds2

bs -
s dz dsdz bz + - B  + -—  

s ds

+■ s ds dz ds ds2 dsdz

dbz
dz

(B.13)

d2B
dsdz

bs - f -

m 2B  d2B
—v - + dz2
„ d2b * d2b 

_  B z

dB_dlh
dz ds ds dz

B
i m —v<

s

B
i m —Vi

s

dsdz
■ V"i m —bs 

s
3 db

dz2

~^A ds ds2 

• V- i m —bz 
s

1 f  I dbz d2bv m

d2bs 1 2 d2b
+  ~w(l — m  )bs +  sl

2 db,
 i  _j------------ £
dz2 s dz

(B.14)

(B.15)

A I s ds ds2 - — Asz dz2
(B.16)

The form we choose for the s -  and ^-dependent basic state field Bo =  J5(s, z ) l$  

is B (s , z )  =  sF(s)G(z)  and for the flow V(s ,z )  — s F a (s)Gn (z) for real valued 

functions F, F n and G, Gn . Note that in the case V =  Vq then Gn =  1. Results 

th a t are required involving the derivatives of B  are:

A  =  G(z)[F(s) + sDsF(s)}, 

dB
dz

=  s F ( s ) D zG(z),

(B.17)

(B.18)
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q 2  6

=  G (z)[2PsF (S) +  S£ 2F ( S)], (B. 19)

923 F { s ) D zG(z) + sDaF { s ) D zG(z), (B.20)
dsdz
d2BQz2 =  sF(s) DzG(z). (B.21)

where D s and D z represent d/ds- and d/dz, respectively. The momentum equations

(B.15) and (B.16) can then be written in the following forms

Dv
p -  =  C ^ G & b ,  + C2(s)DzG(z)bz
o z

+C2,{s)G{z) - ^  +  Cl\ { s )G { z ) - ^  T  C>s{s)DzG { z ) - ^

Fp h Fp h
+ { - £ 5 ) ( s )G{z )~7^- +  (—Cs)(s)G(z)-^Gj- (B.22)

where, for simplicities sake, we have written

C i ( s )  = - h s 2D 2sF(s) + 3sDsF(s) + (m2 -  l)F(s)],

C2{s) =  -[2 F(s) + sD sF(s)},

C3{s) =  4 F ( s ) + s D sF(s),

A(s) =  3 F(s), Cs(s) =  - sF ( s ) .

The 2nd (diagnostic) momentum equation is

d v s

d z
£ 6(s)DzG(z)bs +  C7(s){m G(z) +  s D zG(z)]bz 

-\rC5D zG(z)-~-  4- CqG(s) -~-

+CbG{z)§ i z +CbG{z) w -  ( B , 2 3 )

where

C6(s) =  D s[sF(s)}, C7(s) = F(s) /s .

The basic state field and basic state flow (or geostrophic flow) appear once each in

both the induction equations. In the first term on the right hand side of (B.15) and

(B.16), these terms become, respectively

imF(s)G(z)vs and imF(s)G(z)vz . (B.24)

Similarly, also, where the basic state flow Vo is concerned:

~ i m F n {s)Gn {z)bs and -  imF^{s)G^(z )bz . (B.25)
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In order to obtain the governing equations in a computationally tractable form, 

it was necessary to compute some useful integrals.

for 0 <  no <  m, n  < N Z .

We obtain the final form for the perturbation equations (prior to their fourth 

order finite difference discretization) by multiplying (B.22) and (B.15) by cos f  (z+C) 

and then integrating between z =  ~C and (.  Similarly, (B.23) and (B.16) are 

multiplied by sinfifz +  £) and integrated in 2 .

mn

mn
(B.27)

(B.26)

Also, define the integral quantities Amn, Cmn, Emn, H„ln and K mn by

■mn

mn

mn

For (B.22):

N Z

) \E\bs n̂ "6 z ,11) T sbs,n

(B.28)

The 2nd (diagnostic) momentum equation (B.23) becomes:

N Z

0  ^'s,r(,-b i) ~  ^ T Z'^Dsbs n̂)Ern
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-\-[C7m 2bZin -  CenbBin

£,§7%D sbs,n JZ^ti bz n̂]H rj

£,bbZjlKrn
(B-29)

The induction equations are quickly obtained. For (B.15):

d b .

dt

im N Z
vA m  ~~ F abSin^-m)

C n ~  no

+ l \ - D sbs,r + D sb‘’r
A Ls

+

s

( “JC  -  ™2) - f2)  bv  +  “ k .
(B.30)

For (B.16):

d b z ,r

d t
(s,t)

f y  Aa - i - iO  j T t r W  \

—  52 ( F U z j i H r n  -  F  b ZjnF£r n )

C n = n o
+ A

-D ^ z .r +  
.S

m (B.31)
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A ppendix  C

D eterm ination  of V q  for th e  

Interaction of Several A xial M odes

Given the form for the geostrophic flow as in Chapter 1, eq. (1.17)

(2E)~1/2 r 
VG = {— t  /  [ ( Y x B ) x B ] 0 dS

An s J c(s)

we derive the component form for the geostrophic flow (4.19) tha t is used in the 

nonlinear time-stepping code in Chapter 4 [with the form (3.25) of Chapter 3 as 

a special case]. Let us make the decompositions for the perturbed magnetic field

b  =  s 1/“b =  £;1/4(6s ii (i, y

B =  Bo +  b =  B q { s ,  z )  1 ^  +  JF1̂ 4b

where E  is the Ekman number defined in the Chapter 1, equation (1.9). Since the 

azimuthal basic state B 0 makes no contribution to Vq we may write

VG = 2 "1/2 / C ((V x b) x b)<£ d z .
7 —£

The azimuthal average of a vector function f  =  f  (s, </>, x, t) is defined as

( f ) ~ ( 2 ? r ) “ 1 / f d  (f>.
70

As in (4.12) and (4.13), let the components of b  have expansions
N Z

6s(s, <j>,z,t) =  2 Y2 [bs,n{s, t)emi<t> +  6*>n(s, t)e~im4i} cos n{z  +  ()
n = 0 

N Z

b<p{s, <j>,z,t) =  2 Y ,  £)e*m  ̂+  6J|n(3, t)e~lTn(p] cos n(z  +  ()
n —0 
N Z

bz (s, </>, z, t) =  2 ]T  [bz,nis > t)eim4> +  b*Zill{s, t)e~imcf>] s in n(z  +  C)
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where the superscript * represents the complex conjugate, m  is the azimuthal wave 

number, £ is the annular half-height, n =  w r/2£ and N Z  is the axial mode trunca­

tion.

Observe tha t

((v ,  „ „  „>, .  ( » )  + ( ^ )  -  ( i * )  - ( * * )  + ( , £ >  .

Consider

N Z

b ,b 4, = X) +  bs ,r b’̂  +
?\n=0

x cos r (2 +  £) cosn(x -f £).

Averaging over 0 then gives

N Z

i bs h )  -  5 2  ( h r b f r n  +  K , r b4>,n) C0S f  (Z +  0  C0Sn(2 +  £). 
r , n = 0

For the term bsdj)(i} we have 

r)h NZ
b‘ 7T  =  F  { K r D b ^ ™ *  +  bSx,.Db;>n + b ^ D b ^  +  b ^ d b ^ e - 2̂ )

ClS r , n = 0

x cos r{z +  C) c o s  n(z  +  £)

On taking the azimuthal average

N Zdf}
bs~Z^ )  =  ^ 2  ( A , r D b l , n  +  K , r D b 4>,n) COS f  { z  +  £) COS f l ( z  +  £) 

a S  / r,n=0

For the term we have:

N Zdh
&.-S4 =  -  E  fi( M * n e ata* + + 6; A » e_Wm*)

r , n—Q

x  sin r (z -f- £) sin n(z  +  £)

in which case

bz —F ) -  -  n{bZiTbltn +  K trh,n) s in f(z  -F C) sinh(x +  £)
° Z / r,n=0

For the terms bgd^bs and bzd<pbz we have



and in both cases the azimuthal average yields:

db* db.
d(p /  \  d(j)

Thus, the geostrophic flow V q  takes the form

=  0 .

where

Vg (s ) 2 1/2 /  ((V x b) x b)^ds:
J  — £

i I b A
+  ( b,

db0 
ds

+  ( b.
db$ 
dz

dz

2 —1/2 N Z

an[bs,nb<pin "b
S n=0

N Z
+2~l/2Y :anKnDblin + blnDb^

n = 0
N Z

—2~1/2 ^  a„n[6Zin&J)n +  ^ ,A ,7

N Z

21/2̂  I ]
n=0

■/s,n +  bs n̂D -  nb z , n b,n'

Q ',
2C if n =  0 

C if n > 0

For the simpler case in Chapter 3 involving only one axial mode, the above expression 

for V q  should be modified by removing the summation symbol. The dummy variable 

n  must now be prescribed and represents the axial wavenumber (scaled by 7r/2C).
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A ppendix  D

The Induced M ean Poloidal Field

Cowling’s theorem (1934) shows tha t a purely axisymmetric flow cannot sustain a 

purely axisymmetric field. This means that the full geo dynamo problem is neces­

sarily three dimensional. Let us decompose the magnetic and flow fields into their 

respective axisymmetric and non-axisymmetric parts

B (s ,0 , 2, t) = B (s, z, t) +  b(s, 0, z, t) (D-l.)

V(s ,0,z ,£)  — V (s, z, t) +  v(s, 0 ,2 , £) (0.2)

with (b) =  (v) =  0 (0.3)

and where {■) is the azimuthal average defined in Appendix C. The hydrody­

namic dynamo equations (1.2, 1.3, 1.4, 1.5) can then be separated into a coupled 

set of axisymmetric and non-axisymmetric equations [see Fearn (1994)]. In the 

linear regime, it is possible to consider each part in isolation if one prescribes an 

appropriate electromotive force (axisymmetric equations) or mean basic state B, V  

(non-axisymmetric equations).

We consider the evolution of non-axisymmetric instabilities b and v under a

mean basic field in the Ekman regime [i.e. b, v =  0 ( E 1̂ 4), see Chapter 1]. The

imposed mean basic state is

B0(s, z) =  sF(s)G(z)  V  (D.4)

Taking Bo =  0(1) will, in general, result in a mean poloidal field Bm of O (E 1̂ 2) 

through the action of the 0-component of the electromotive force. The mean part
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of the magnetic field is then

B =  B q(s , z)l<p +  Bjv/ =  Bo(s, z)l<p +  V x (A l^ )  (D.5)

where we have written the induced poloidal field B M in terms of the poloidal scalar 

A. The evolution of A  is described by
B A  / I  \
d t  +  ( ?  “  v 7 A =  x b>* (D'6)

[see Fearn (1994)]. Consequently A = 0 (E 1/2) and may be neglected in the lin­

ear problem. Whilst A  is 0 ( E lA)  smaller than the amplitude of the instabilities 

[|b|, |v| =  O fF11/4)], the induced poloidal field cannot, in general, be neglected in 

calculating the geostrophic flow.

Vo =  (2E)-'/* ( ( ( V x B )  x B ) f dZ
J~ C

=  [(V x B) x B]^ dz +  / ( { ( V  x b) x b ) ^ d z | (D.7)

In our instability calculations we sought instabilities b and v  in the Ekman regime. 

This means tha t the second term on the right side of (D.7) contributes at 0(1) to 

the geostrophic flow. Fearn (1994) has shown that the integrand in the first term 

on the right side of (D.7) may be written as

upon using (D.5). Since A  =  O (E 1/2) then the mean poloidal field must also, in 

general, make an 0(1) contribution to Vq .

Firstly, observe tha t if B q is ^-independent as in Chapter 3, then

A  BA I d  d B 0 I d  .
/ T— +  “d w"(s/l) d^ -<-<; dz s ds dz s os - | - ( W C

s  OS
=  0

upon applying the boundary conditions A  =  0 on z — ±£- This result is independent 

of the form for F. However, if B 0 is also z-dependent then the calculation is more 

involved depending on the specific choice of G(z).

Firstly, we must find the form of the expansion for A. From (D.6) 

d 1 „\ ~
M + 7 ~ V ) A  =  (* x b > *

=  (Vzbs) -  {vsb2) 
oo

=  1 2  frn(s) s i n  r{z +  C) COS n(z  +  C)
r , n—0
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where f rn(s) =  vz,rb^n -f v*trbs,n ~  vs,nK:r ~  ^rfiz.r- Tluis

d 1 
+

d2 I d  d2
dt s2 ds2 s ds dz2

= ~ £  fm(s)  [sin(r -T n)(z +  C) -T sin(r n)(z  d- C)]. (D.9)

A

r , n = 0

Seeking solutions of the form

A=z ^2 A k sink(z  + 0
k=L

(D.10)

satisfies the boundary conditions on the poloidal field and leads to a consistent 

determination of A  through solving

( d 1 d2 I d  72\
\  dt s2 ds2 s ds " J  k

oo

X /rn{^fc-n,r “1"
1 J’,7 1 — 0

for all k > 1 and where 5k- n,r is the Kronecker delta symbol and

(D. l l )

7k,

1 if f  ^  71 — k and f  ^  h-\ -k

-1 if f  =  n — k and f  ^  n + k

0 if f  /  n — k and f  =  n ■+ k

The contribution to (2E ) 1I2Vq induced from the mean poloidal field is of the form

/  [ ( V x B ) x B ] # d* = - /
•C dA  1 d d B 0 I d  n
-c a ^ (sBo) + 1 7 I & M )d z

A d _  
s ds

(.s2F G )
(< A  d

and let us take G(z)  =  cos l(z + Q  (where, respectively, I =  7r/2( or tt/ (  cor­

responds to the dipolar or quadrupolar basic states of Chapter 4) and write 

A  =  i4jt(s) s in k(z  -f £). Then, continuing from (D.12) we have

=  I
o

sin k(z  +  C) sinZ(z +  C) dz

d
s  d s ^ F ) - F t A ^

J  [cos(k +  l)(z + () ~  cos(k — l)(z +  ()j dz.

(D.12)

Provided k ^  I then (D.12) will vanish. When I ~  7r/2C (which represents the dipolar 

basic state example) then the solution parity for a dipole(quadrupole) require tha t
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the odd (even) modes be selected for b and the even (odd) modes be selected for v  

in the solution expansions (4.12) and (4.13). Therefore, when k  =  / (D.12) becomes

(D.13)

where 1 = 1. The case for the quadrupole basic field runs parallel to the above and 

the contribution to the geostrophic flow is obtained in tha t case by replacing I by 2.

In the spirit of enforcing a differential rotation with the geostrophic structure 

computed from the linear eigenfunction at A =  Ac [see Chapter 3, eq. (3.32)] we 

sketch how the contribution from the mean field may also be included as in the 

differential rotation.

The steady state version of equation (D .ll)

is then solved with the linear eigenfunctions b and v  substituted into f r n . In our 

calculation, this just requires us to solve (D.14) for the values k  = 1 in the case of 

the dipolar field and k  =  2 in the case of the quadrupolar field. Once the Ak has 

been obtained it can be substituted into (D.13) to obtain the mean poloidal field 

contribution to Vq. This would then be added to the non-axisymmetric contribution 

to the geostrophic flow and the sum would be scaled by the magnetic Reynolds’ 

number ready to be input as a differential rotation.

1 d2 I d
s2 ds2 s d s +  k 2 ) A k — -  ^  f r n { 5 k ~ n , r  +  7*,n,r} (D.14)


