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SUMMARY

The subject of this thesis is that part of nonlinear functional analysis which deals
with the solvability of semilinear differential equations and the study of spectral theory

for nonlinear operators.

Chapter one is an introduction to the concepts used through the thesis, including mea-
sures of noncompactness, (p, k)-epi mappings and related properties, Fredholm operators
of index zero, coincidence-degree theory for semilinear operators, L-k-set contractions,

A-proper operators and so on.

The work in chapter two is based on the study of [16]. In [16], a spectrum for nonlinear
operators was introduced by Furi, Martelli and Vignoli. Their spectrum need not contain
the eigenvalues [9]. We establish a new spectral theory for nonlinear operators which
contains all eigenvalues as in the linear case. We compare the new spectrum with that
of [16] and the one of [48] and prove that all three spectra may be empty, which answers
one of the open questions in [48]. Some applications of the new theory, including the
generalization of three well known theorems, the study of the solvability of a Cauchy
problem and a Hammerstein integral equation, are obtained in the last section of this

chapter.

In chapter three, by generalizing the concept of (0, k)-epi mappings to that of (0, L, k)-
epi mappings, we introduce the definition of spectrum for semilinear operators (L, N),
where L is a Fredholm operator of index zero, N is a nonlinear operator. When L is
the identity map, this spectrum reduces to the spectrum defined in Chapter 2. We prove
that it has similar properties with the spectrum of nonlinear operators. Also in the last
section, by using this theory, we discuss the solvability of semilinear operator equations

and extend some existence results.

In chapter four, we obtain some surjectivity results on the mapping AT — .5, where T'
is a homeomorphism and S is a nonlinear map. We generalize one of the results of [12]

in finite dimensional space to infinite dimensional space, which solves the open question
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of [12]. We also apply our theorems to the study of a nonlinear Sturm-Liouville problem
on the half line following the work by Toland [66] and to prove the existence of a solution
for a second order differential equations which was studied in [29].

Much of the work in this Chapter is joint work with J.R.L. Webb and has been
published in [21).

Chapter five is related to some recent work by Gupta, Ntouyas, Tsamatos and Laksh-
mikantham [24}-[30]. They proved existence results for m-point boundary value problems
for second order ordinary differential equations under nonresonance assumptions and
they also assume that the nonlinear part has a linear growth. We obtain results for these
boundary value problems in the resonance case. Moreover, our assumptions allow the
nonlinear part to have nonlinear growth. Some examples show that there exist equations
to which our theorems can be used but the previous results do not apply.

Much of the work in this Chapter is joint work with J.R.L. Webb and part of this
chapter will be published in [18], [22], [23].

In chapter six, we study second order ordinary differential equations subject to Dirich-
let, Neumann, periodic and antiperiodic boundary conditions. We make use of an abstract
continuation type theorem {56}, [57] for semilinear equations involving A-proper mappings
to obtain approximation solvability results for these boundary value problems. The re-
sults in this chapter generalize the results of [60], [61]. Also we give examples to show
that our theorems permit the treatment of equations to which the results of [4], {32], [57]
can not be used.

Part of this chapter has been submitted for publication, [19].
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Introduction

In view of the importance of the spectral theory for linear operators, it is not surprising
that various attempts have been made to define and study the spectrum also for nonlinear
operators. Clearly, a good definition should preserve as many properties of the spectrum
for classical bounded linear operators as possible and reduce to the familiar spectrum in
the case of linear operators. Spectra of nonlinear operators have been defined and studied
by many authors, in particular, {1], [12], [16]. The spectrum introduced by Furi, Martelli
and Vignoli has found many interesting applications (see [16]). This spectrum is defined
by using three extended real numbers o f),w(f), d(f), and the concept of stably-solvable
operators, (the detailed definitions will be given later). In [16], it was proved that this
spectrum preserve many properties of the spectrum of linear operators. For example, it is
closed; the boundary do(f) C or(f) (A € o(f) ifand only if d(A—f) = 0 or w(A—f) =0,
when f is a bounded linear operator, o,(f) is the approximate point spectrum of f); it is
bounded when f is quasibounded and a-Lipschitz; it is upper semicontinuous and so on.
However, in [9], it was indicated that this spectrum does not contain the eigenvalues in
some cases. In fact, it may be disjoint from the eigenvalues, which is an important part
of the spectrum in the linear case.

In chapter two, a new spectrum for nonlinear operators, which contains all the eigen-
values, as in the linear case, will be introduced. We shall do this by using the three
real numbers, w(f),m(f) and v(f). We shall prove that this spectrum is compact, and
upper semicontinuous. It is also contains all bifurcation points and asymptotic bifurca-
tion points. Moreover, the nonlinear resolvent also has properties similar to the linear
resolvent.

In section 2.2, we obtain some properties for the eigenvalues in the spectrum of a
positively homogeneous operator. We shall prove that if f is a positively homogeneous
operator and A € o(f) (the spectrum of f) with [A| > a(f), then there exists to € (0, 1]
such that A/#o is an eigenvalue of f [Theorem 2.2.8]. This result can be used to discuss

the existence of solutions for nonlinear operator equations (see section 2.5). Furthermore.
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we obtain the result that when f is odd and positively homogeneous, A € o(f) with
|A| > «(f), then A is an eigenvalue of f [Theorem 2.2.9]. This theorem is a generalization
of the results of [48], [70]. In this section, we also obtain the result about the estimation
of the radius of the spectrum for a positively homogeneous operator. We will give an
example to show that our estimate is best possible.

In section 2.3, we shall compare our new spectrum with the spectrum introduced by
Furi, Martelli and Vignoli and the Lipschitz spectrum introduced in [39]. We shall prove
that our spectrum lies properly between the other two spectra. Then, in section 2.4, a
counterexample will show that all spectra may be empty, which answers one of the open
questions of [48].

In the last section of chapter two, we shall discuss applications of the new theory.
By using this theory, we shall study the solvability of some nonlinear operator equations,
including a global Cauchy problem, a Hammerstein integral equation and Urysohn opera-
tors. A result on conditions for a compact, positive operator to have a positive eigenvalue
and eigenvector will also be obtained. In section 10 of [16], three well known theorems:
the Birkofl-kellogg theorem, the Hopf theorem on spheres and the Borsuk-Ulam theorem,
were proved by applying their spectral theory. We shall show that our new theory en-
ables us not only to prove, but also to generalize these theorems. We shall also obtain a
generalization of Theorem 10.1.2 of [16].

The aim of chapter three is to extend the theory in chapter two to semilinear oper-
ators, (L, N), where L is a linear operator that is Fredholm of index zero, and N is a
nonlinear operator. To do this, firstly we introduce the L-stably solvable mappings, which
is a generalization of the stably-solvable operators defined in [16]. We shall show that
some properties of stably-solvable operators hold true for L-stably solvable mappings, for
example, the Continuation Principle. Then, in section 3.2, we shall extend the notion
of (0, k)-epi mappings, which were defined in [65}, to (0, L, k)-epi mappings for semilin-
ear operators. Some properties of the (0, L, k)-epi mappings, such as existence results,
normalization property, localization property, homotopy property, will be proved. These

results generalize the results of [17], [43] and [65].
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In section 3.3, we define ¢(L, N), the spectrum of semilinear operators (L, N). We
shall prove that this spectrum contains all eigenvalues of (L, N) and it is closed. When
L is the identity map, this spectrum reduces to the spectrum defined in Chapter 2.

Section 3.4 is dedicated to the study of the decomposition of the spectrum of (L, N).
According to the decomposition of the spectrum o ppmy(f), we can decompose o(L, N) into
os(L,N),om(L,N),0,(L, N)and o-(L, N). We shall prove that if N is a continuous L-k-

set contraction and an odd map, A € o(L, N) with |A

> k, then A € o, (L, N) [Theorem
3.4.1]. We shall also study the boundary of the spectrum and show that if A is in the
boundary of the spectrum, then either AL — N is a surjective map or A € o,(L, N). At the
end of this section, we shall prove a theorem which gives information about the structure
of o(L,N) when N is a continuous L-compact map defined on an infinite dimensional
Banach space [Theorem 3.4.6]. The results will be used in section 3.6.

In section 3.5, we shall study eigenvalues of (L, N) when N is an asymptotically linear
operator or a positively homogeneous operator.

In the last section of this chapter, we obtain some applications of this theory. By
applying this theory, we can extend some existence results for semilinear operator equa-
tions. A different condition for the existence of a solution of the equation AL —1" = 0 can
be obtained from that given in [31]. Also, Theorem 2.2 of [46] on the existence results of
Leray-Schauder type can be generalized by using this theory.

The authors of [12] gave theorems for operators of the form AT — S of Fredholm
alternative type under the assumptions that T is an odd (K, L, a)-homeomorphism and
S : X — Y is an odd compact (completely continuous) operator. Iurthermore, they

showed the existence of a solution of the nonlinear operator equation

AT(z)—S(z)=f (0.1)

for each f € Y provided A # 0 if T' is an odd a-homogeneous and S is an odd b-strongly
quasihomogeneous with @ > b. In the case a < b they proved the same assertion in finite

dimensional spaces but said it was unsolved in the infinite-dimensional case.




In chapter 4, we shall obtain some surjectivity results on the mapping AT — 5 under
weaker conditions. Our assumptions do not assume that 5 is an odd map. We employ
different methods which allow us to answer some of their open questions. By introducing
the concept of a-stably solvable operator and proving the Continuation Principle for this
kind of map, we can obtain a result which generalizes the result of existence of a solution
of (0.1) in case a < b to the infinite-dimensional case. These results seem not to be able
to be proven by their methods.

In section 4.2, we give some examples of ordinary differential equations for which the
existence of a solution can be obtained by applying the theorems. It is possible to give
simple examples that show that our results are real extensions of the earlier ones, but we
prefer to give more substantial applications. We shall discuss a nonlinear Sturm-Liouville
problem on the half line following the work by Toland [66]. He studied eigenvalues and
asymptotic bifurcation points whereas we obtain surjectivity when A is not one of these
eigenvalues.

We also discuss existence of solutions to a three point boundary value problem recently
studied by Gupta, Ntouyas and Tsamatos [29]. The boundary conditions are of the type
z(0) = 0,2(1) = az(n). Those authors assume that o < 1/n but we suppose only that
a # 1/n. We obtain a different criterion for existence which improves on Theorem 4 of
[29] in some cases but is less good in others.

Chapter 5 follows the recent work done by Gupta, Ntouyas, Tsamatos and Laksh-
mikantham [24]-[30]. They studied the so-called nonlocal boundary value problems, which
were studied also by II'in and Moiseev [37] and S.A. Marano [47].

Let f : [0,1] x R? —» R be a function satisfying Carathéodory’s conditions and e :
[0,1] — R be a function in L'(0,1), a; € R with all of the a}s having the same sign,
£€(0,1),1=1,2,...,m—2, 0 < § <& < ... <€p_g < 1. Consider the following second

order ordinary differential equation:

2"(t) = f(t,2(8),2'(t)) +e(t) L€ (0,1), (0.2)



with one of the following boundary value conditions:

d(0)=0, (1) =2 ae(f), (0.3)
z(0) =0, 2(l) = ﬂ:- a;z(&;). (0.4)

It is known that the problem of the existence of a solution for these boundary-value
problems can be studied respectively via the existence of a solution for equation (0.2)

subject to one of the following three-point boundary-value conditions (see [29], [30]):

z'(0) =0, z(1) = az(n), (0.5)

z2(0)=0, (1) = azx(y), (0.6)

where o € R and » € (0,1) are given.

In [30], the existence results for the BVP (0.2), (0.5) with the condition « 5 1 were
proved and in [29], results for the BVP (0.2), (0.6) were obtained when an < 1. These
assumptions ensure that the linear part L is invertible. They assume also that the non-
linear part f has a linear growth. The method they used is Leray-Schauder Continuation
theorem and Wirtinger type inequalities.

In section 5.1, we also assume that f has a linear growth. We shall prove the existence
results for BVP (0.2), (0.5) with the condition e = 1 and (0.2), (0.6) with the condition
a = 1/n. In these cases, L is noninvertible, the so-called resonance case. The Leray-
Schauder degree theory can not be used. Our results make use of the coincidence degree
theory of Mawhin [46].

In section 5.2, we shall obtain two uniqueness results for these kind of boundary value
problems.

In section 5.3, we shall prove existence results for BVP (0.2), (0.5) and BVP (0.2),
(0.6) which allow f to have nonlinear growth. We do this by imposing a decomposition
condition for f and by showing that the growth of certain nonlinear terms is not restricted
provided they satisfy a sign condition. We obtain appropriate a priori bounds and apply

degree theory. Moreover, by using the coincidence degree theory of Mawhin, we also able
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to give existence results when the linear operator L is non-invertible and f has nonlinear
growth. This allows us to treat the BVP (0.2), (0.5) with o = 1, and the BVP (0.2),
(0.6) with « = % without the restriction that f has a linear growth.

We shall give examples of equations which can be treated by our results but the results
of [24], [25], [29], [30], [61] cannot be applied.

In section 5.4, we shall prove existence results for BVP (0.2), (0.5) with |a| < 1 and
f has a different nonlinear growth with that in section 5.3. As a special case, we allow f
to have quadratic growth. Moreover, as a corollary of our theorem, we obtain a result on
the Neumann boundary value problem which generalizes one of the results of [57]. We
also prove a similar result for the m-point BVP (0.2), (0.3) when | Y% ai] < 1.

For our results in this chapter, it is important that all the a;’s have the same sign and
our result for the m-point BVP makes use of the estimates obtained in the proof for the
three point BVP. Gupta [27] has considered a different m-point boundary value problem
where the ¢;’s do not have the same sign and this technique cannot be used.

Finally in chapter 6, we shall establish some new existence results on the solvability

of the following second order ODE’s of the form
o' = (0, (0.7)

subject to one of the following boundary conditions:

2(0) = 2(1) = 0, (0.8)
2'(0) = 2'(1) = 0, (0.9)
2(0) = 2(1), 2'(0) = (1), (0.10)
2(0) = —a(1), 2'(0) = —a'(1). (0.11)

The solvability of (0.7) subject to various boundary conditions has been extensively stud-
ied by many authors([4], [32], [54]-[62], [64]). In a recent paper [4], a decomposition
condition for f is imposed to ensure the solvability of (0.7) with the boundary condition
(0.8). The theorems of [4] were proved by using the transversality theorem.

In section 6.1, by applying the abstract continuation type theorem of W.V. Petryshyn

on A-proper mappings, we obtain approximation solvability results for BVP (0.7), (0.8).
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These results include the result of {4]. Then, in section 6.2, under the assumption that f
can be suitably decomposed, some feebly a-solvability results for (0.7) with the boundary
conditions (0.9-0.11) are obtained.

Applying our theorems to the following BVPs, which were studied respectively in [60)
and [61]:

" +g(z)e’ + ft,z,2',2") = y(t), (0)==2(1), 2(0) = 2'(1), (0.12)
and
(p(W)a") + f(t,z,2',2") = y(t), 2'(0)=2'(T)=0, (0.13)

we can show that certain assumptions made in [60] and [61] are redundant. Our results
are therefore substantial generalizations of the results in [60], [61]. Some examples will
show that our theorems permit the treatment of equations to which the results of [4],

[32], [57] do not apply.
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Chapter 1

Preliminaries

In this chapter, we collect some of the notions and definitions that we shall often use
in this thesis. We shall recall some known results without proof, but the references are

given.

1.1 Generalities

The symbol K will stand either for the field of complex numbers C or for the field of real
numbers R.

The capital letters E, F', X and Y, unless otherwise stated, will be used to denote
Banach spaces over C or R. Spheres, open and closed balls centered at the origin and

with radius r > 0 are denoted by
S,={zeE:|zll=r}, O,={ze E:|z|<r}, Br={ze€ E:|z|| <},

respectively.

Given a map f : £ — F we denote the image of f by im(f) and the kernel of f by
ker( f) which is the set of all z € F such that f(z) =0. A continuous map f: E — ' is
said to be quasibounded if there exist two constants A, B > 0 such that || f(z)|| < Aljz||+B

for all z € E. If f is quasibounded, then it sends bounded sets into bounded sets and

i1/ ()l

|f] = limsup ———— < 400
lell-roo ]




| f] is called the quasinorm of f. A continuous map f: E — F' is called asymptotically
linear if there exists a bounded linear operator 7' : &5 — F' such that |f — 7| =0. T is
called the asymptotic derivative of f. [ is said to be positively homogeneous if for any
r&Fandt>0,

J(t) = 1f(2).

Following {16], we call f stably-solvable if and only if given any compact map A : B — F
(that is, a continuous map such that A(2) is relatively compact whenever Q C E is
bounded) with zero quasinorm, there is at least one element = of £ such that f(z) = h(z).
Note that if f is stably-solvable, it is clearly surjective. If f is linear, it is stably-solvable
if and only if it is surjective.

The following Continuation Principle for stably-solvable maps was proved in [16].

Theorem 1.1.1. Let f : E — F' be stably-solvable and h : E x [0,1] = F be compact
and such that h(z,0) =0 for all x € E. Let

S ={z € E: f(z) = h(z,1) for some t € [0,1]}.
If f(S) is bounded then the equation

f(2) = h(z,1)

has a solution.

In chapter 4, we shall generalize the concept of stably-solvable map to that of a-stably-
solvable map and prove that for a-stably-solvable maps, the Continuation Principle holds
true.

We also recall that f is called a sirong surjection if the equation f(z) = h(z) has a
solution for every continuous map h : E — F with A(E) compact.

Let f : E — F be a continuous map. A € C is said to be an eigenvalue of f if
there exists ¢ € E, ¢ # 0 such that f(z) = Az. Suppose that f(0) = 0, A is said to

be a bifurcation point of f if there exist sequences \,, z, # 0 such that f(z.) = Anza,

2




An = A, &y — 0 as n —> 00. A is called an asymptotic bifurcation point of f if there exist

sequences A, and z, # 0 such that f(z,) = Az, Ay = A, ||2a]| — 00 as n — co.

1.2 The measure of noncompactness and definitions

of a(f),w(f),d(f)

Definition 1.2.1. Let X be a metric space and 2 C X a bounded subset. The measure

of noncompactness of Q, a(2), is defined by (see [7])

a(f) =inf{d > 0: Q can be covered by a finite number

of subsets of X of diameter at most d}.

This notion of measure of noncompactness was introduced by Kuratowski [40].

Let A and B be bounded subsets of a metric space X. Then

1. a(A) =0 if and only if A is compact, where A denotes the closure of A;
2. A C B implies a(A) < a(B);

3. a(A) = a(A);

4., a(AU B) = max{a(A), a(B)}.

Furthermore, if X 1s a normed space, then

(2§

a(AA) = [Ma(A), A e K
6. a(co(A)) = a(A), where co(A) denotes the convex hull of A;
7. |a(A) — a(B)| € a(A+ B) < o(A) + o B).

For the proof of these facts we refer to {7] , [42] or [48].

The concept of an «-Lipschitz mapping is of importance in this thesis. It is defined

by the following (see [7]).




Definition 1.2.2. Let @ C F and f: Q — E continuous. f will be called a-Lipschitz
if a(f(B)) € ka(B) for some & > 0 and all bounded B C Q. If £ < 1, f is called a

strict a-contraction or k-set contraction. f is said to be a condensing mapping if for each

noncompact bounded subset B of Q, o f(B)) < o B).
In the sequel, we shall use the following lemma for the measure of noncompactness.

Lemma 1.2.3. ([66], lemma 4.8) Let [ be a real-valued function defined on the Banach
space E, which is bounded on bounded subsets of E. For uw € E, define F: E — E by
Fu= f(u)u. If Q is a bounded subset of E, then

a(F(Q)) < la(Q)

where

[ = sup | f{u)].
uEQ

We recall that a continuous mapping f : &£ — F'is called proper if for every compact
subset K of F, f~}(K) is compact. The concept of k-proper mappings was defined in
[65]. Let k& > 0. A mapping f from a subset  of E to F', written f: Q — F, is said to

be k-proper if f is continuous and
o f7H(8)) < ka(S)

for each bounded set S C F. By the property of the measure of noncompactness, if f is
k-proper for some k > 0, then f is proper.

Given a continuous map f from a subset D(f) of E to F. The three real numbers
o f),w(f) and d(f), which were used in [16] to define the spectrum, are defined by the

following;:

ka(Q?) for every bounded Q C D(f)},

a(f) = mf{k>0:a(f(Q)) <
) > ka(9) for every bounded 2 C D(f)},

w(f) = Sup{k > 0: CE(f(Q)
d(f) = lim inf [1f ()]

lel~coweD(s) |lz||




Let f,g: £ — E be continuous. The main properties of a(f),w(f) and d(f), which
were proved in [16], are contained in the following.
Proposition 1.2.4. 1. a(Af) = |Ma(f), r € K.

2. |a(f) — alg)l < a(f +9) < of) + a(g).

3. a(f) =0 tf and only if f is compact.

4. If dim(E) = +oo and f is compact, then a() — f) = |]|.

Proposition 1.2.5. 1. w(Af) = [Aw(f), A e K.
2. w(flw(g) £ w(fg) < o(f)wlg).

3. If w(f) > 0, then f is proper on bounded closed sets. If moreover, d(f) > 0, then f

is proper.

4. If dim(E) = +oo then w(f) < a(f), and w(f) = +oo if dim(E) < +oo.
5. w(f) —w(g) Sw(f +9) S w(f) +alg).

6. |w(f) —w(g)l < a(f — g).

7. If f is a homeomorphism and w(f) > 0, then a(f~1)w(f) = 1.

8. Ifdim E = co and f is compact, then w(X — f) = |A|.

Proposition 1.2.6. 1. 0 <d(f) <|fl.
2. d(\f) = |\d(f), N € K.
3. d(f) =gl < d(f +g) < d(f) +lgl-
4. 1d(f) —d(g) < If — gl

5. If f is a homeomorphism with quasibounded inverse, then d(f) = |f~*|*.
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1.3 Spectra for nonlinear operators

In this section, we recall the different spectra for nonlinear operators. In chapter 2, we
shall compare the spectrum we introduce in section 2.1 with these. In the following, £
is a Banach space and f : £ — E is a continuous (nonlinear) operator. a(f),w(f) and
d(f) are as in section 1.2.

The following definition was given in [16].

Definition 1.8.1. f is said to be regular if it is stably-solvable and d(f) and w(f) are

both positive. Let

prmu(f) = {X € C, A — f is regular},

be the resolvent set of f and let ¢ pmu(f) = C\psmw(f) be the FMV-spectrum of f.
The following result was proved in [16].

Theorem 1.8.2. Let r(f) = sup{|A| : A € ofmu(f)} and q(f) = max{a(f),|f|}. Then
r(f) < q(f)-

According to [16], o fmu(f) can be decomposed into the following two parts.

or(f) = {DeK:dA=f)=0o0rw(A—-f) =0}
os(f) = {AeK:X— fisnot stably-solvable}.

They proved that o (f) is closed and the boundary of the spectrum 0o sy (f) is contained

in o, (f). More precisely, o.(f) can be regarded as the union of the following two sets
co(f)={ eK:wA—f)=0}and Z(f) = {A € K:d(X - f) = 0}.

In Chapter 3, we will discuss the corresponding decomposition of the spectrum for semi-
linear operators.
The following proposition gives information about the structure of o sm.(f) when f is

a compact map.




Proposition 1.3.3. ([16], p.272) Let f : E — E be a compact map defined on an infinite

dimensional Banach space I£. Then
1. o (f) =0, therefore o (f) = {0} U X(f);
2. f(E) #£ E. In particular, 0 € os(f);

3. 0 ¢ ZL(f) implies that the connected component of K\ X(f) containing zero lies

entirely in og(f). In particular, 0 is an inierior point of os(f);
4. If moreover [ is positively homogeneous, then

LHN{0} ={A e K: Az = f(a) for some x # 0}.
In [39], a spectrum for Lipschitz continuous operators was introduced by Kachurovskij.

Definition 1.3.4. Let Lip(F) be the space of all Lipschitz mappings. For A € Lip(E),

the Lipschitz constant

(=) — f()ll
= -yl
is finite. Then the Lip-spectrum for A is defined by

|A|liip := sup
TEY

aup(A) = {2 : (A — A)™" does not exists or (A — A)™" ¢ Lip(E)}.

Definition 1.3.4 implies that A & o7;,(A) only in case (A — A) is bijective.

Many properties for oy,(A) can be found in [48]. An open question in {48] is whether
oup(A) is nonempty. In section 2.4, we shall give an answer to this question by giving an
example where o;,(A) is empty.

For a continuous linear operator, the two spectra above coincide with the usual def-
inition of the spectrum. If f is nonlinear, o, (f) may be disjoint from eigenvalues of
f, which can not happen in the linear case. The spectrum oy;,( A) contains all the eigen-
values of A and is compact. However, it may be empty (see the example in section 2.4).
The spectrum we will introduce in Chapter 2, which applies to all continuous nonlinear

operators, is compact, upper semicontinuous and contains all eigenvalues. However, it

too may be empty.



1.4 (p,k)-epi mappings

The notion of p-epi mappings was introduced by Furi, Martelli and Vignoli [17] as follows:

Definition 1.4.1. If E and [I” are normed linear spaces, {2 C E is a bounded open set
and p € F then a continuous mapping f : Q — F with f(z) # p for any = € 9 is called

p-epi if for each compact mapping b : @ — F with A = 0 on 99, the equation

f(2) = h(=) +p

has a solution in .

Then, in [65], this concept was generalized to (p,k)-epi mapping by allowing the
mapping h to be a k-set contraction rather then just a compact mapping and requiring
E and F to be Banach spaces. Thus the class of (p, k)-epi mappings is smaller than that
of p-epi mappings.

In the following, 2 is an open bounded subset of F.

Definition 1.4.2. A continuous mapping f : ) — F is said to be p-admissible (p € F)
if f(z) # p for @ € 0Q.

Definition 1.4.3. A 0-admissible mapping f : @ — F is said to be (0, k)-epi if for each
k-set contraction h : @ — F with A(z) = 0 on 9 the equation f(z) = h(z) has a solution
in Q. Similarly, a p-admissible mapping f : @ — F is said to be (p, k)-epi if the mapping
f — p defined by

(f—p)(l‘):f(w)—p, (L‘EQ,

is (0, k)-epi.

(p, k)-epi mappings also were defined in the whole space in [65]. Let f: E — F be
a continuous mapping of E into F. For p € F, f is said to be p-admissible if f~!(p) is

a bounded subset of E. [ is said to be (p, k)-epi if f is (p, k)-epi on the closure of every
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bounded open set ) O f~1(p), that is, fg, the restriction of f to Q, is (p, k)-epi for each
bounded open subset Q containing f~!(p).

It was proved in [65] that the (p, k)-epi mappings, similarly to the p-epl mappings,
have ‘existence’, ‘boundary dependence’, ‘normalization’, ‘localization’ and ‘homotopy’

properties similar to those of topological degree theory.

Property 1.4.4. (Fwistence property)
If f:Q — F is a (p, k)-epi mapping, then the equation f(2) = p has a solution in Q.

Property 1.4.5. (Normalization property)
The inclusion mapping 1 : Q@ — E is (p,k)-epi for k € [0,1) if and only if p € Q.

Property 1.4.6. (Localization property)
| If f:Q — F is (0,k)-epi and f71(0) is contained in an open set Oy C §, then f

restricted to §1; is also (0, k)-epi.

Property 1.4.7. (Homotopy property)
Let f : Q = F be (0,k)-epi and h : [0,1] x @ — F be an a-sel contraction with
0 < a<k<l such that h(0,2) =0 for all z € Q. Further let

F(@) + h(t,2) 0
for all x € OQ and for all ¢ € [0,1). Then f(z)+ h(1,2) : Q — F is (0,k — a)-epi.
Property 1.4.8. (Boundary dependence property)

Let f: Q0 — F be (0,k)-epi and g : @ — F be an a-set contraction with0 < a <k < 1

and g =0 on 8Q. Then (f +g): Q — F is (0,k — a)-epi.

The following theorem will be used in the sequel.




Theorem 1.4.9. [65] Let f: Q0 — F be continuous, injective and ky-proper. Then f()
is open if and only if f is (p,k)-epi for each p € f(}) and each nonnegative k satisfying
the condition kik < 1.

The theory of (p, k)-epi mappings is based on elementary tools such as the Schauder
fixed point theorem, Urysohn’s Lemma, etc. (p, k)-epi mappings may act between dif-
ferent spaces. Degree theories are often used to establish the existence of sclutions of
nonlinear problems. However in applications, such as to differential and functional differ-
ential equations, to apply degree theory it is often necessary to reformulate the problems
as nonlinear self mappings acting on some space, whereas the theory of (p, k)-epi maps
may applied directly.

In chapter 2, we shall use (0, k)-epi mapping theory to establish some spectral theory
for nonlinear operators. In chapter 3, to study the spectral theory for semilinear opera-
tors, we shall generalize the (0, k)-epi mappings to (0, L, k)-epl mappings for semilinear

operators, where L is Fredholm of index zero.

1.5 Coincidence degree theory

Let L :dom(L) C E — F be a linear operator. Recall that L is called Fredholm of index

zero 1f the following conditions hold:

1. im(L) is closed in F'.

2. ker(L) and the cokernel of L, F/im(L), are finite dimensional and with equal di-

mension.

Now suppose that L : dom(L) C £ — F is a closed Fredholm operator of index
zero, assume that ker(L) # {0} and dom(L) is dense in E. Let E = ker(L)@ F,,
F = F@im(L) and P : E — ker(L), @ : F — Fy be the respective projections.
Also let Lp denote the invertible operator L restricted to dom(L) N Ey into im(L), write
Kp=1Lpt, Kpg = Kp(I —Q),and let I1: F — F/im(L) be the quotient map, and let
A F/im(L) — ker(L) be the linear isomorphism (see [31]).
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Let Q be an open bounded subset of £ such that dom(L)NQ # @ and N : @ — F be

a nonlinear mapping.

Definition 1.5.1. N will be said to be L-compact if
1. TIN : Q — coker(L) is continuous and IIN(Q) bounded.
2. KpgN : Q — E is compact.

N is said to be a L-k-set contraction if

1. IIN : Q — coker(L) is continuous and IIN(Q) bounded.

i 2. KpgN : Q0 — E is a k-set contraction.

Let L and N be as above and assume that & < 1 and that
0 ¢ (L — N)(dom(L)NoN).
Then My = P+ (Al + Kpg)N is a k-set contraction and hence the degree
d[I — Ma,Q,0]

is defined. The following definition can be found in [31].

Definition 1.5.2. The coincidence degree d[(L, N), (2] of L and N in § is the integer
d[(L, N), Q] = d[I - My, ,0],

where the right hand number is the degree for k-set contractive perturbations of the

identity [52].

The coincidence degree for (L, N) when N is L-compact was introduced by J. Mawhin
in 1972 [44] and systematic expositions were given in [31] and [45].

The results for the existence of a solution for the second order ordinary differential
equations in chapter 5 will be obtained by applying the following useful continuation

theorem of coincidence degree theory, which was first proved in [44].
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Theorem 1.5.3. (see [46], p.84)
Let L be Fredholm of index zero and let N be L-compact on Q. Assume that the

following conditions are satisfied.
1. Le+ ANz #0  for each (z,)) € [(D(L)\ ker L) N 9] x (0,1).
2. Nz ¢ im(L) for each = € ker(L) N oSL.

3. deg(Q@N|kerr, Q Nker(L),0) # 0, where @ : F — Fy is a continuous projection as

above.

Then the equation Lz + Nz = 0 has at least one solution in D(L) N QL.

We shall also, by applying the spectral theory for semilinear operators in chapter 3,

obtain a generalization of the following existence theorem of Leray-Schauder type [46].

Theorem 1.5.4. Let F'= L+ N with N : Q@ = F L-compact, let A: E = F be a linear
L-compact mapping and z € (L + A)(dom(L) N Q) satisfy the following conditions:

1. ker(L + A) = {0}.
2. La+ (1 = N)(Az — z) + ANz # 0 for each « € dom(L) N 9Q and each A € (0,1).

Then equation Lz + Na = 0 has at least one solution in dom(L) N (1.

1.6 A-proper maps

The notion of an A-proper mapping was introduced by W.V. Petryshyn in 1967. The
basic theory of A-proper maps has been given in [58] and in [59]. One of the main purposes
of the book [59] is to use the topological degree for densely defined A-proper operators
in the systematic study of the solvability or approximation solvability of the semilinear
equation

Lz —Ng =y, z€Q,y¢cF,
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where L : dom(L) C £ — F is a Fredholm mapping of index 7(L) > 0, N is a nonlinear
mapping such that L — N or T\ = L — AN : Q C E — F is A-proper for each A € (0, 1]
with respect to a suitable approximation scheme.

In chapter 5, we shall use the following abstract continuation type theorem [56],
[57] for semilinear equations involving A-proper mappings, to obtain the approximation
solvability results for the second order ODEs subject to Dirichlet, Neumann, periodic and
antiperiodic boundary conditions.

Firstly we recall the definition of the A-proper mappings [57].

Definition 1.6.1. If {E,} C E and {F,} C F are sequences of finite dimensional
oriented spaces and @, : F' — F, is a linear projection for each n € R, then the
scheme [' = {FE,, F,,, @,} is said to be admissible for maps from E to F' provided that
dim E, = dim F,, for each n, dist(z, £,) = inf{|jz —v||g : v € E,} — 0 as n = oo for

each z in F, and Q,y — y for each y in F'. For a given map T': D C E — F' the equation
Te =y (1.1)

is said to be feebly approximation-solvable (a-solvable) relative to I if there exists N, € Rt

such that the finite dimensional equation

To(z) = Quy, (x € D, = DN E,,Quy € Fo, Tr = @nT'\D,)s (1.2)
has a solution z, € D, for each n > N, such that z,, +2€ Din E and Tz = y.
Definition 1.6.2. T' is said to be A-proper relative to I' if T, : D, C E, — F, is
continuous for each n € R* and if {z,,|¢,, € Dy, } is any bounded sequence in E such

that Ty, (zs,) = g for some g in F*, then there is a subsequence {n,} of {¢n,} and € D

such that z,, = ¢ in £ and Tz = g.

It is known that for (1.1) to be a-solvable relative to a given I' the operator 7' has

essentially to be A-proper relative to T' [54).
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Now let L : £ — F be a Fredholm operator of index zero. It was shown [55] that
an admissible scheme [';, (depending on L) can be constructed such that L is A-proper
relative to I';. Indeed, suppose that £ = ker(L)@ By, F = Fo@im(L). Let @ be the
projection of I onto fy. There is a compact map €' : F — Fypsuchthat K =L —Cisa
homeomorphism of E onto F and choosing {E,} C E such that F, = K(E,) for n € Z*,
then, it can be shown that [';, = {En, F.,Qn} is admissible and L is A-proper relative to
['r. In the following, we shall assume that there exists a continuous bilinear form [+, ] on
F x E mapping (y,2) into [y, 2] such that y € im(L) if and only if [y,z] = 0 for every
@ € ker(L).

Theorem 1.6.3. [56][57] Let L be a Fredholm operator of index zero and N : E — F be

a nonlinear map. Suppose there exists a bounded open set G C E with 0 € GG such that
1. L— AN :G — F is A-proper relative to I'y, for each A € [0,1] with N(G) bounded;
2. Lz # ANz — Ay for ¢ € G and X € (0,1].
3. QNz — Qy # 0 for @ € G N ker(L).
4. Either [QNz — Qy,z] >0 or [QNz — Qy,z] <0 for v € G Nker(L).

Then the equation

Lz — Nz =y

is feebly a-solvable relative to U'y and in particular it has a solution & € G.
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Chapter 2

A new spectral theory for nonlinear

operators and its applications

The spectral theory for nonlinear operators has been extensively studied, see for example
[1], [12], [16]. Different attempts have been made to define the spectra for nonlinear
operators. In particular, the spectrum introduced by Furi, Martelli and Vignoli has found
many interesting applications, see [16]. However, it was indicated in [9] that this spectrum
may be disjoint from the eigenvalues in some cases. The main aim of this chapter is to
give a new definition for the spectrum of nonlinear operators, which is closed and contains
all the eigenvalues as in the case of linear operators. A counterexample proves that the
spectrum may be empty, which answers one of the open questions in [48].

As the last part of this chapter, the applications of the new theory will be discussed.
This theory enables us to generalize three well known theorems: the Birkoff-Kellogg
theorem, the Hopf theorem on spheres and the Borsuk-Ulam theorem. Existence of
non-trivial solutions for a global Cauchy problem, Hammerstein integral equations and
a Urysohn operator are obtained by using this theory. Also, we shall apply this theory
to obtain a generalization of a theorem in [16] and then discuss bifurcation points and

asymptotic bifurcation points for a Urysohn operator.
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2.1 A new definition of the spectrum for continuous
operators

Throughout the following, I is a Banach space, f : £ — F is a continuous nonlinear

operator. a(f),w(f) and d(f) are as in section 1.2. Let
m(f) = sup{k > 0: |f(@)]| = kljal|for all v € B},
If for every z # 0, f(2) # 0, let
v, (f,0) = inf{k >0, there exists a k-set contraction g : B, — [, with
g =0on JB, s.t. f(2) = g(x) has no solutions in B, },

where B, = {z € E : ||z]| < r} and 9B, denotes the boundary of B,.. Let v(f) =
inf{v,.(f,0),r > 0}. We will call v(f) the measure of solvability of f at 0 [65]. Notice
that, v(f) > 0 if and only if there exists € > 0, such that f(z) is (0,€)-epi on every B,

with 7 > 0. We begin with the following definition.

Definition 2.1.1. Suppose that f: £ — FE is a continuous map, then f is said to be

reqular if
w(f) >0, m(f)>0, v(f)>0.

For each A € C, if AT — [ is regular, A is said to be in the resolvent set of f. Let p(f)

denote the resolvent set of f, then the spectrum of f is defined as follows:

o(f)={A e C: Al — f is not regular } = C\p(f).
We will see that all regular maps are onto.

Proposition 2.1.2. If f is a regular map, then f is surjective.

Proof: Since [ is regular, m(f) > 0 and ||f(z)|| = m(f)||z]]. Thus ||f(z)|| = oo as
|z]] = co. Also we have v(f) > 0, so there exists ¢ > 0 such that f(z) is (0,¢)-epi on

every B, with r > 0. By Corollary 3.2 [65], f is a surjective map. O
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The following theorem characterizes regular maps among continuous linear operators.

Theorem 2.1.3. Suppose that E is a normed linear space, f : B — E is a continuous

linear operator. Then [ is regular if and only if f is a linear homeomorphism.

Proof: Assume that f is regular. By Proposition 2.1.2, [ is surjective. Also, we have
that || f(2)|| = m(f)||z|| with m(f) > 0, so f is one to one and || f~(z)|| < (1/m()|z]|.
Thus f~! is a continuous operator, f is a linear homeomorphism.

Conversely, suppose that f is a linear homeomorphism. Then f~! is a bounded linear

operator and for every 2 € E |

1
1)l = mllmli-

This ensures that
1

L
1= i
Let 0 < e < 1/||f7!||, then f is (0,¢)-epi on every B, with r > 0 [65]. Hence v(f) > ¢ >0

m(f) 2

w(f) =z

and f is regular. 0

Remark 2.1.4. By Theorem 2.1.3, we know that for a linear operator f, the spectrum

of f in Definition 2.1.1 is the same as the usual spectrum of f.

It is well known in linear spectral theory that o(f) is a closed set and p(f) is an
open set. The following theorem shows that this property holds true for the spectrum of

nonlinear maps given by Definition 2.1.1.

Theorem 2.1.5. For every continuous map f, p(f) is an open set and o(f) is closed.

Proof: Suppose that A € p(f), then

w(AL = f) >0, m(Al = f) > 0.
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Al — [ is (0,€)-epi on every B, with » > 0 for some € > 0. Now let
i =w(Al — f)/2, da=m(N = [)/2, 65 =¢/2

and 6 = min{dy, d2, d3}. Assume that p € C, | — A| < §. We shall prove that u & p(f).

By Proposition 1.2.5, we have

w(ul = f) — wM — )] < ol — ) = ju— A} < COL=T)

2
so that
: AT —
wlpl — f) > w(_Q_f_)_ > 0.

Yor every x € E,
|
/ m(Al — f

Iz = £ 2 e = J()l Al = ™A=y,
80
m(Al — f)

mpl — f) > —

L

Furthermore, let 2 : [0,1] x £ — E be defined by A(t,z) = t(u — A)I. Then h is a

(¢t — A)-set contraction. Let
S={z e E: Al — f(z)+t(p— Nz =0for somet € (0,1]}.
Then for every z € S,
[Ae — f2)]| = llt(e — A)zf] Z m(A = f)llel].

Hence

= Allell 2 m(AL = F)ll=]].

Thus 2 = 0 and S = {0}. By Property 1.4.7, uI — f is (0, — |t — A|)-epi on B,. Then
v(pl — f)>e—|p— Al >§> 0.

Therefore, 1 € p(f). 0
We recall that for a bounded linear operator, its spectrum is always bounded. The

following theorem generalizes this result to the nonlinear case.

18




Theorem 2.1.6. Let f : E — E be a continuous map. Assume that o f) < oo and
there exists a constant M > 0 such that ||f(z)| < M|jz| for every x € E. Then o(f) is
bounded.

Proof: Let A € C with |A| > max{M, a(f)}, we shall prove that A € p(f).

Firstly, by Proposition 1.2.5 we have
WO = f) 2 I\ = a(f) > 0.
Also, for every @ € F, the inequality
1AL = £) (@)1l = (1AL = M)l

implies that m(A — f) > 0. Now let ¢ > 0 be such that a(f) + & < |A|, we shall show
that Al — f is (0,¢)-epi on every B, with r > 0.

Suppose h is an a-lipschitz map with constant £, and A(z) = 0 for € 0B,. Let
h(z) forllz| <1,
ORI
0 for ||z|| > r.
hi is continuous on £. For any bounded subset A C F,

a(hi(4)) = oa(hi(ANB,))
= a(h(AN B,))

IA

ea( AN B,) < ea(A).

Hence h; is also an o-Lipschitz map with constant . Let

S = {"a popd @) M@)o [0,1]}.

A A

For every z with ||z|| > r we have hy(z) = 0 and
i (= = L) 1> Blal - 1l 2 (31— el > 0
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This implies that S C B,. Since h1/A is an €/|A|-set contraction, ¢/|A| < 1, and hy(z)/A =

0 on 0B,, the fact that I is (0,&)-epi ensures that the equation

hi(z)

T =

A
has a solution in B,. Thus S # 0, SNJB, = (. Next we have

S C [0,1]]E(I\—S)+@.

Therefore,

a(8) < Gl () + ralin($)) < “HZa(s),

Hence S is compact because a(f) +¢ < |A] and S is closed. Let ¢(x) be the Urysohn’s
' function such that
/
1 foraz e S,
() =
0 forljz|| =
and let

NPVt hy(z)
o) = o)LL) 4 1a0)

Then g is an (a(f) + €)/|A]-set contraction, g(z) = 0 on the boundary of B,. Hence
@ = g(z) has a solution zg € B,. Then o € S so ¢(wg) = 1 and hy(zo) = h(ze). Thus zg
is a solution of the equation

_fe) _ h(=)

A A
This ensures that Al — f is (0,¢)-epi on B,, so we have v(f) > & > 0, A\l — f is regular,

and A is in the resolvent set of f. d

Remark 2.1.7. For nonlinear map f with f(0) = 0, we define the norm of f by
171l = inf{k > 0: |7 (=)|l < Eli=|[}.
Then the radius of the spectrum of f

ro(f) = sup{|A[: A € o(f)} < max{a(f), || f]]}-

If £(0) 5 0, then for any A € C, either AT— f is not surjective, or there exists ¢ € E, z # 0,

such that Az — f(2) =0, and A is an eigenvalue of f. By the following theorem, in both
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cases, A € o(f). Thus ¢(f) = C. Hence in what follows, unless otherwise stated, we shall

assume that f(0) = 0.

Theorem 2.1.8. All eigenvalues of [ are in the spectrum of f.

Proof: If there exists 2 € F © # 0 such that f(z) = Az, then m(Al — f) =0, s0 X € o(f).

O

Notice that, the above simple theorem represents the big difference between o s, ( f)

and Definition 2.1.1. According fo their definition, the spectrum may be disjoint with its

eigenvalues [9], but it is well known that for a linear operator, one of the important parts
of its spectrum is the point spectrum, the eigenvalues.

The following Lemma enables us to prove the upper semicontinuity of the spectrum.

Lemma 2.1.9. Let A C K (K = C or R) be compact with ANo(f) = 0. Then
there exists € > 0 such that for p € A and g : £ — E, a continvous mapping with

I —all <e, a(f —g) <e, it follows that i ¢ o(g), where

If = gll = nf{k 2 0: |/ (z) = g(2)|| < kllz]l, = € £}

Proof: For every A € A, we have
wAM — f)>0, m(A —f)>0, and wv(A —f)>0.

Thus AI — f is (0,0)-epi for some &g > 0 on every B,. By the proof of Theorem 2.1.5,

there exists d > 0 such that for every A" with |X — Al < 4§y,

A= f)

o= > 01D, m(AL = f)

m(AN'T — f) > 5 ,

and N1 — f is (0,20/2)-epi on B,. Let
0 < ey < min{w(Al — f)/2, m(N — f)/2, €o/2},
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and assume that ||g — f|| < ex, a(g — f) <ex. Then
wN T —g) 2 w\NT = f) —a(f —g) >0,
and

IOVT = )@ = N2 — F(@)] ~ | £(z) — glz)] > (%‘f) - ) Jell.

Hence m(XNI — g) > 0. Furthermore, for every ¢ € (0,1], = # 0,

Ve = f(@) + t(f(2) = gl 2 [INe — F@)] - [ £(=) - g(a)l| > 0.

By the Continuation Principle for (0, %&)-epi mappings {43], N1 — g is (0,7¢)-epi for any
ro > 0 with
e S0 )
This implies that v(NI —g) > 0, s0 X € p(g).
The above discussion implies that Uye4O(A,0,) D A, where O(A,8,) = {N e K: [N~
Al < é,}. Since A is a compact set, there exist a finite collection such that U™ O(A;, 8,,) D

A. Let € = min{e,,,ex,, - *y€x, }, and suppose that
lg — fll <&, alg—[) <e.
Then for € A, if p € O(A;,4y,), @ € {1,---,n}, we have
lg — fll <ex, alg—f) < e

s0 it ¢ o(g). O

The following theorem whose proof follows that of Theorem 8.3.2 [16] concerns the
upper semicontinuity of the spectrum. For the convenience of the reader, we give its proof

here.

Theorem 2.1.10. Let p(E) = {f : a(f) < +oo, there exists M > 0, such that
I/ (@)|| € M||zl| for all 2 € E}. The multivalued map o : p(E) — K which assigns

each f to its spectrum o(f), is upper semicontinuous (with compact values).




Proof: Let U D o(f) be an open set. Take r > max{a(f), |[flI}+1, B- ={n € K, |u| < r}
and let M = B,\U, then M is compact and M No(f) = (. By Lemma 2.1.9, there exists

0 < e <1, such that for g : &£ — E with || f—g|| <¢, a{f—g) < &, one has M No(g) = 0.

Moreover,
a(g) Sa(f) telg—f) <alf)+e<alf)+1 <,
lgll 1A+ llg = Al <UL +e <A+ <0
By Remark 2.1.7, o(g) C B,, hence o(g) € B.\M C U. O

Proposition 2.1.11. All bifurcation points and asymptotic bifurcation points of f are

in the spectrum of f.

Proof: Assume that A is a bifurcation point of f, then m(AI — f) = 0. For otherwise
there would be sequences A, € K and z,, € E such that A, = A, 2, # 0, ||2,]| = 0 and

f(zn) = Apzn. Then we would have
[Azn — Anzall = [[Awn — f2a)l| = m(AL = f)|eal|-

This gives |A — Ay| =2 m(AI — f) > 0, a contradiction. Hence A € o(f).
Similarly, if A is an asymptotic bifurcation point of f, we obtain A € o(f). O

The following properties of the spectrum are easily checked.

Proposition 2.1.12. Let f : E — E be a continuous operator. Then for A € K,
(1) o) = do(f) o(0)=0, o(l)=1, o(\)=A
(2) oM+ fy =X+ o(f).

We close this section with the following proposition devoted to the the study of the

nonlinear resolvent.

Proposition 2.1.13. Assume that A: E — E is a continuous mapping and A, i € p(A).
Let

Ra(N) = (A= AD)Y,  Ra(w) = (A— pul)™




be the multivalued maps. Then
Ra(N)e C Ra(p)(I + (A —p)Ra(X))z, =z € E.
If ul — A s injective, then

Ra(A)z = Ra(p)(I + (A — p)Ra(A))z, =€ E.

Proof: Let y € Ry(N)x, so that (A—AI)y = . Then we can write Ay —uy = 2+ (A —u)y,

so that
y € (A—pu) o+ (A= p)y) C(A—pl)™ (z+ (A —p)Ra(M)2).
This implies that
Ra(Nz € Ra(p)(I + (A — p)Ra(N))z.
Now, suppose that uf — A is injective. For y € Ra(A)z, we have

e+ A—py = (A=Ay+(A—p)y

= (A—-uly

m

(A—pl)Ra(N)z.
Hence
e+ (A —p)Ra(Ne C(A—pl)Ra(N)z.
This ensures that
(A—puD) "I + (A= W) Ra(N)z C Ra(N)z.
Then

Ra(p)(I + (X — p)Ra(N))z C Ra(N)z.

We have completed the proof. (]
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2.2 Positively homogeneous operators

Firstly, in this section, we shall prove a result on the spectrum of a positively homogeneous
operator according to the definition of oy (f). Then, according to our new definition,
some special properties of the spectrum of a positively homogeneous operator will be
obtained.

To prove Theorem 2.2.3, we need the following lemma.

Lemma 2.2.1. Let F, F be Banach spaces and T : £ — F be a (0,ky)-epi, S: E — F

be a ky-set contraction. Suppose that A # 0, |k > ky. Lel
V={aeck: ANl (z)=1tS(x), for somet € (0,1]}.

Then the following alternative holds:
Either XT' — S is (0, |Alk1 — ko)-epi or V' is unbounded.

Proof: Let h(t,z) : [0,1] x E — F be defined by h(t,z) = —t5(x). For every subset [y of
[0,1] and bounded subset  of £, we have

alh(ly x Q) < a(co(S(Q) U {0})) = a(5(82))
< kga(ﬂ) < kga(fl X Q)

Thus a(h) < kg. Also, A(0,2) =0 for all 2 € E. So, if V is bounded, by Property 1.4.7,
AT + h(1,2) = AT — S is (0, |Alk1 — k2)-epi. O

Corollary 2.2.2. If f is a k-set contraction and |A| > k. Then for any 1 > ky 2 k/|}|,
either V = {a : Aa = tf(a) for somet € (0,1]} is un bounded or I— f/X is (0, ks —k/|\])-

epl.
Proof: By Lemma 2.2.1 and the fact that for any k/|A| < ky <1,1: E — E is (0, k1 )-epi.

O
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In [16], the authors gave a decomposition for the spectrum o my(f). They defined the

sets

ai( f) = {)\EK (I-)‘)~1|1iﬁ_1}1015*|—”—9—:”—uﬂ—0},

ou(f) = {deK:w(A - [) =0}
os(f) = {A€K:AI — fis not stably-solvable }.

The following theorem enables us to determine the relation between the eigenvalues and
0 fmu( f) for positively homogeneous operators. This result can be used to discuss the

existence of a solution for some nonlinear operator equations (see section 2.5).

Theorem 2.2.3. Let [ : E — E be a positively homogeneous operator.

1. If X is an eigenvalue of f, then A € o4(f) C 05mu(f);

2. If f is a-Lipschitz with constant k, |A| > k and also A € o4(f), then X is an

eigenvalue of f;

3. If f is a-Lipschitz with constant k, |A| > k and A\ € ofmy(f), then there ewists

to € (0,1] such that M|ty s an eigenvalue of f.

Proof: (1) Since f is positively homogeneous, for every eigenvalue A of f there exists
v € E, ||2]] =1 such that f(z) = Az. Let y, = nz, then
oo 1O =

n—yco “ynH

= 0.

Hence A € aq4(f).
(2) The condition A € oy4(f) ensures that there exists a sequence {z,}52, C £ with

llzn|| = o0, such that

[(A = F)(@a)ll
(M

| Alee (g llz—nll) < (g ( |zn|| (||2:ll))) te (‘f (gl IIi:ll))
<t o(0 ).
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Since |A| > &, we obtain that « (U;’:’:l ﬁﬂ) = 0. This implies there exists a subsequence
xr

Ta — %o (k= 00) and Azg = f(wo). Since @g # 0, A is an eigenvalue of f.

ng

(3) The assumption that f is a-Lipschitz implies a(f) < &. If |A| > &k, then
w(A = f) 2 w(A ) —a(f) > 0.

So, A ¢ o,(f). In the case that A € o4(f) , by (2) X is an eigenvalue of f, so to = 1. Now
assume that A ¢ o4(f), thus d(Al — f) > 0. Let

V={z: Az =tf(z) for some t € (0,1]}.
If V is unbounded let {2,} € V with ||a,|| — oo, and ¢, € (0, 1] be such that

A =ty ().

Then
(U 52p) < (o (U 225)) s e (0 52)
Ao <a < ka .
n=1 |I$ﬂH ’ n=1 ||$n|| ) n=1 ”ch”
Hence a( e Wf%“) = 0. So there exists a subsequence ”—i'—’b—” — 2g as k — oo and
k3 np

llzo]| = 1. It follows that Azg = tof (o) for some 2o € (0, 1], so A/to is an eigenvalue of f.

In the case V is bounded, by Corollary 2.2.2, AI — f is (0,|Alk; — k)-epi for every
1 > ki > kJ|A. d(M — f) > 0 ensures that ||(A — f)(z)]| = oo as ||z|| = oo. By
Corollary 3.2 of [65], for a compact operator h : E — E with bounded support, the
equation Al — f = h has a solution. Then by Proposition 5.1.1 of [16], Al — f is stably-
solvable. Thus A ¢ 0, (f). This contradiction completes the proof. ]

In the following, we shall prove some properties of positively homogeneous (0, k)-epi

mappings from a Banach space E to a Banach space F', which will be used later.

Proposition 2.2.4. Suppose that f : E — F is a positively homogeneous mapping and
f is (0,e)-epi on B, for somee > 0,r > 0. Then f is (0,¢)-epi on every Br with R > 0.

Proof: Since f is positively homogeneous and [ is (0,¢)-epi on B,, f(z) # 0 for all = # 0.

Thus f is O0-admissible on Bg. Assume that h : £ — F is an ¢-set contraction with
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h(z) =0 for @ € 9Bg. Let

Then for every bounded set A C E

o(hi(4) = Lo (h (?A))

Hence h; is an e-set contraction too. Furthermore, hi(z) = 0 for @ € 9B,. Thus the
equation
. r, (R
z)=—=h|—z
1) i <r %>
has at least one solution zo € £ and ||zo|| < r. Then (R/r)zo € Br is a solution of the

equation f(z) = h(z). O

Remark 2.2.5. Proposition 2.2.4 and Property 1.4.6 show that a positively homoge-
neous mapping f is (0,&)-epi on ©; , where Q; D f~1(0) and €, is a bounded set of £, if
and only if f is (0,¢)-epi on the closure of all bounded open sets > f~1(0). This is not
true if f is not positively homogeneous as the following example shows. Let f: R — R
be the function f(z) = 2?—1, and let Q; = (—2,—-1/2)U(1/2,2). Then f is (0, k)-epi for

every k > 0 on ;. But f is not 0-epi on (—n,n) for n > 2.
Proposition 2.2.6. Suppose f : E — F is positively homogeneous, w(f) > 0 and [ is

(0,€)-epi on B, with r > 0. Then for every p € F, there exists R > 0 such that f is

(p,e1)-epi on Bgr for some g; > 0.

Proof: For p € F, let g(z) = f(z) — p. Then a{g — f) = 0. Let

$={v: f(2)+Hg(a) — f(x)) = f(x) = tp = 0 for some ¢ € (0, 1]}.
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We shall show that S is bounded. Assume there exists a sequence {z,}52, C S with

n=

|2n]l = oo as n — co. Let ¢, € (0,1] such that f(z,) = tnp. Then

. o oA
f(”cn)z "Enb — 0asn — oo.
l|al] |||

So we have the following:

o (0725) 2= (0 (0 29) = (0 (22) -

Since w(f) > 0, we have « ( ) “’f“"> = 0. This implies that that there exists a subse-

| quence & “ “ — 2o and ||zo|| = 7. Thus

| T T,
kli}ngof( ) = f(zg) = 0.

[[@nl

| This contradicts the fact f is 0-admissible on B,.
Now, let R > 0 be such that S C Br. Then dBrN S = 0. By Proposition 2.2.4, f is
(0,€)-epi on Br. So, the Continuation Principle of (0, k)-epi maps [43] ensures that g(x)
is at least (0,;)-epi for 0 < ¢; < w(f) and &; < e. Thus f is (p,&1)-epi on Brg. O
The following proposition characterizes regular maps among positively homogeneous

operators.

Proposition 2.2.7. Suppose that [ is positively homogeneous. Then f is regular if and
only if

1. w(f)>0.

2. There exists € > 0 such that f is (0,¢)-epi on By.

Proof: Clearly, we only need to prove that if f satisfies 1 and 2, then f is regular.
Suppose w(f) > 0 and there exists € > 0 such that f is (0,¢)-epi on B;. By Proposition

2.2.4, f is (0,€)-epi on every B, with » > 0. So v(f) > 0. Now assume that m(f) = 0.

Then there exists a sequence {z,}22, € E, x, # 0 such that || f(z.)|| < L||z.||. This

implies that f (” ) — 0 as n — co. Moreover,

e (0 eg) ==(00 (p)) o
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Hence o (Uf’:l nill—n) = 0. This implies {ﬁﬂ} has a subsequence “iﬁ — @9, |lzo|l =1,
and f(zg) = 0. This is a contradiction with f is (0,£)-epi on B;. So m(f) > 0, hence f
is regular. 0

It is known that for a linear operator f, if A € o(f) and [A] > «(f), then A is an
eigenvalue of f [70]. We shall give an example later to show that for nonlinear operators,
this property is not true. But if f is positively homogeneous, we have the following result

on eigenvalues in the spectrum. This theorem can be used to obtain existence results for

some nonlinear operator equations as in examples which will be given later.

Theorem 2.2.8. Let f : E -+ E be a positively homogeneous operator and A € o(f)

; with [A| > a(f). Then there exists to € (0, 1] such that Aty is an eigenvelue of f.

Proof: By the assumption |A| > a(f), we have w(Al — f) > |A] — a(f) > 0. Let
S={z€E: |z|| =1 —tf(z) =0 for some ¢t € (0,1]}.

If S =, then by Property 1.4.7, I — f/X is (0,7 — «(f)/|A|)-epi on By for every 1 > r >
af|A|, since f/X is a a(f)/|A|-set contraction. It follows that Al — f is (0,r|A| — a(f))-
epi on B;. By Proposition 2.2.7, we know that Al — f is regular, so A € p(f). This
contradiction ensures that S # (. Thus there exists ¢y € (0,1] and zo € E with ||zo]| = 1,
such that Azg — {of(20) = 0, so A/tp is an eigenvalue of f. O

The following result, which generalizes theorems of [48], [70], shows that for an odd and

positively homogeneous mapping, the result on eigenvalues of a linear operator remains

valid.

Theorem 2.2.9. Suppose f: E — E is odd and positively homogeneous, A € o(f) with

A > a(f). Then X is an eigenvalue of f.

Proof: Assume that m(AI — f) > 0. Then there exists m > 0 such that

(AL — fla]| = m||z| for all z € E.
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Since f is odd, by Theorem 9.4 of [7],

deg(I — §,

01, 0) # 0.

This ensures that for every k; satisfying 0 < a(f)/|A] < ki < 1, (I — f/A) is (0,k —
a(f)/|A])-epl ([65] Theorem 2.8). So, Al — f is (0, [Ak1 — a(f))-epi on By. Also we
know that w(Al — f) = |A]| — a(f) > 0. Thus, A € p(f). This contradiction shows that

m(A — f) = 0. Therefore there exists a sequence {z,}%2., € E such that

1
1Azn = Flea)ll < —llzall

Hence,
Tn

Tn 1
||/\m - f (“mn”) Il < ~= 0, asn — oco.

Moreover, we have

o= e U ) = (o =gy ) =0

n=1 n=1

o] Tn

This implies o ( o ||a:ntl) = 0. So {”—:‘ﬁ} has a convergent subsequence. Suppose that

ﬁ%ﬁﬂ — @9. Then f(zg) = Azp and ||| = 1, so A is an eigenvalue of f. O
The following result follows directly from Theorem 2.2.9, which generalizes the result

in the spectral theory for linear compact operators.

Corollary 2.2.10. Suppose that [ is a compact, odd and homogeneous operator. Then
JorXeo(f), if A#0, X is an eigenvalue of f.

In the following , r,(f) denotes the radius of its spectrum. It is known that for a
continuous linear operator f, ro(f) = lim, e ||f*]|*. The following theorem gives an

estimate for the radius of the spectrum of positively homogeneous maps.

Theorem 2.2.11. Let E be a Banach space over R and [ : E — E be a positively

homogeneous operator with

o f) < oo, liminf || {7 < co.
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If
A > max {a(f),lir{gglf||fn”%} )

then A € p(f). If also [ov = llasl] implies | f(@0)ll = [IF(ea), then

ral7) < max {a(/), i int 5} (2.1)

Proof: Suppose
‘ A > max {a(f),li&iogf”f””"lﬂ} .
\ Let
V ={z: e —tf(z) =0 for somet € (0,1}}.

We claim that V' = {0}. Indeed, otherwise assume @y € V and zo # 0. Let to € (0,1] be

such that
Az — tof(wo) = 0.
Then
Al
171 = o 1> 17 (25 ) 1= 2
Also

1 (2 =1 (22 12 e (2:2)

17> 2 ‘ > AP,

So we have

By induction, we obtain || f“||% > |Al. This contradicts the assumption that A >
liminfuoe || /7|7, Now, A — f = M — f/X) and f/X is an af)/|\|-set contrac-
tion. So, by Property 1.4.7, [ — f/A is (0,7 — a(f)/|A|)-epi on By for every r satisfying
a(f)/|1\ < r < 1. Thus A — [ is (0,7|A| — «(f))-epi on B;. Farthermore, w(Al — f) > 0.
Proposition 2.2.7 implies that A € p(f).

In the case that ||z1|| = ||z2|| implies || f(z1)|| = || f(z2)|], (2.2) is also true for A < 0.

So by the same proof as above, we obtain that if
IA] > max {a(f),liﬂ%gf ||f“||%} ,
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then A € p(f). Therefore we have (2.1). O

The following example shows that the estimate in Theorem 2.2.11 is best possible.

Example 2.2.12. Let f: F — F be defined by f(z) = = + a||z||e, where e € £ and
lle]l = 1, a is a positive number. Then 1 + a is an eigenvalue of f, hence, 1 + a € o(f).
Also, ||f*]| = (L + )", so we have liminf,, . |[f”||% =1+ a. If let f(z) = a||z||e, then
f is positively homogeneous and even. a is an eigenvalue of f and ||f"*|| = a". Hence

lim inf|[f*]|* = @ and r,(f) = a.

It was proved in [9] that if f,¢g : E — F are continuous map and f — g = h, with A
compact and quasinorm |h| = 0, then oy (f) = 0fmu(g). With the new definition of the
spectrum, we have the following properties. Firstly, we prove a lemma, which is essential

for the proof of Theorem 2.2.14.

Lemma 2.2.13. Suppose f,g : E — E are positively homogeneous. Suppose also that
w(f) >0, f—g=~rh, and h is compact, k(L) is bounded. Then v(f) > 0 if and only if
v(g) > 0.

Proof: Assume that v(f) > 0. For 0 < e < v(f), f is (0,e)-epi on By. Let hy(t,z) =
—th(z). Then hy : [0,1] X E — E is a compact map and h;(0,z) = 0. Let

S={x ek, f(z)—th(z)=0, for somet € (0,1}}.

Assume that there exists @, € S with ||a,]] = o0 as n — co. Then

f(l—mL)—t M%O as n —» 00,

zall) 7 [l

letting u, = ”2:“, then
w(f)a(Upliua) € aURLy f(un).
Since w(f) > 0, we have & U2 (u,) = 0. Hence, there exists u,,, — 2o, f(zo) = 0. This

contradicts f is (0,&)-epi on By. So, S is bounded. By Property 1.4.7, g is (0,£1)-epi on
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By for every 0 < &; < ¢. Hence, v(g) > 0. Since

w(g) = w(f) - alk) = w(f) > 0,

by the same argument it can be proved that if #(g) > 0, then v(f) > 0 0

The following Theorem follows easily from Proposition 2.2.7 and Lemma 2.2.13.

Theorem 2.2.14. Suppose f and g are positively homogeneous operators and [ —g = h,
h is @ compact map with h(E) s bounded. Then o(f) = o(g).

We close this section with the following proposition.

Proposition 2.2.15. Let f : E — E be positively homogeneous and g : E — E be a

continuous map. Assume that f — g = h and h is compact with |h| = 0. Then A is an

eigenvalue of f if X € o(f)\o(g).

Proof: Firstly, we have that w(Al — g) > 0 since A € p(g). Therefore
wAM = f=wA = f)+ah) > wA = f+h) =w(A] —g) > 0.
Now, assume that m(A] — f) > 0. Then there exists m > 0, such that
(AT — fiz|| = m]z|| for all € E.
Let

S={zeE: dx— f(z)+h(z)—th(z) =0, t € (0,1]}.

Then S is bounded. Otherwise there would exist @, € 5, with ||z,|| = oo. Let ¢, € (0,1]
be such that

Aty — flzn) + (L —ta)h(zn) = 0.
Then

A2y — f(@n)

—0 as n — oo.
l|zal|
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This contradicts the assumption m(Al — f) > 0. By Property 1.4.7, Al — f is (0, €)-epi on
every B, with r > 0 since A\l — f +h = A — g is (0,)-epi on it. So we obtain A € p(f).

This contradiction implies that m(A] — f) = 0. Therefore, there exists x, € E such that

1
An = F(@a)ll < —lall, @ #0.

Also we have

w@f—ﬁa(ﬁ-ﬂﬁ)Sa(G@f~niij.

a1 l|2a n=1 faall

So (U;“;l H%:I_I) = 0. Let ﬂ%:ll — &g, then ||zo]| =1 and Azg — f(zo) = 0. O

2.3 Comparison of spectra

In this section, we shall compare definitions for the spectrum. Some examples will show

differences.

We begin with an example concerning eigenvalues and the spectrum o spmy(f).

Example 2.3.1. Let f: R — R be the function f(z) = 2. Then o m.(f) = 0 (see [16])
and we will show that o(f) = {0} U {eigenvalues of f}. In fact, for every A € (0, c0), we
have f(A%) = A\z. Thus A is an eigenvalue of f, so (0,00) C o(f). Next, 0 € o) since
m(f) = 0. Furthermore, let A € (—o0,0) , then

e — f(z)] = | Az — 2®| > =Alz| for € R.

Hence m(A — f) > —A > 0. Also, w(AI = f) > 0 and (Al — f)z = Az — 2® is (0,¢)-epi
for ¢ > 0. This implies that v(Al — f) > 0. Therefore, (—00,0) = p(f) and o(f) =
{0} U {eigenvalues of f}.

Theorem 2.3.2. Suppose f : E — E is continuous and f(0) # 0. Let E(f) be the set
of all eigenvalues of f. Then ppuye(f) C E(f) and pip(f) C E(f).

Proof: Assume that A € pmu(f) or A € pip(f), then Al — f is surjective. Suppose
(Al — f)z =0, then  # 0, A is an eigenvalue of f. O
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Remark 2.3.3. Let E{f) denote the set of all eigenvalues of f . Theorem 2.3.2 implies

that for a continuous map f with f(0) # 0 , we have the following

o(fNormu(f) C E(F),  o(fNow(f) C E(f).

Example 2.3.4. Let v be the «-Lipschitz retraction of the closed unit ball By of a
Banach space F onto its boundary [13]. Define f : E — E by

T forz € B
fa) = { 7(z) € B
x for @ ¢ By

Then |f| = 1. S0 ¢fmo(f) is bounded [16]. But o(f) = C since f(0) # 0.

The following simple example shows the difference between the spectrum for linear

operators and that for nonlinear maps.

Example 2.3.5. Let f: E — E be defined by f(z) = ||z||%¢, where e € £ and ||e}| = 1.
Then f is obviously a compact map and o(f) = C. In fact, for any A € C with A # 0, A

is an eigenvalue of f, since

F(Xe) = || Ae|®e = Ade.
The following is an interesting result of the theory.

Theorem 2.3.6. Suppose that f : E — E is a continuous operator and f(0) = 0. Then

O'lip(f) D) O'(f) 2 Ufmv(f)'

Proof: We shall prove that pi,(f) C p(f) C prmo(f)-
(a) Assume that A € p(f). Then w(A — f) > 0 and m(A — f) > 0. Hence there

exists m > 0 such that

(AT — £)(=)]| = m]|z]| for all ¢ € E.
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This ensures that

d(M — f) = tim inf 1AL = D@ >m > 0.

lell=voe [l
Moreover, v(A — f) > 0 implies that there exists ¢ > 0 such that A/ — f is (0,¢)-epi
on B, with r > 0. So M — [ is stably-solvable [16]. Hence A € psmy(f) and therefore

p(f) C pgmu(f)-
(b) Suppose that A € pi,(f), then AI — f is one to one, onto, and (A — f)7!is a

Lipschitz map. Let L > 0 be the Lipschitz constant, thus for y,,y2 € E,

A = )y — (M = ) el < Llyy — wel|-
This implies that
M = Per — M — flaa]] > %Hml — g for w1, € E. (2.3)
Let x5 = 0, we have
(M = P = %umln for all 21 € E.

Hence m(AI — f) > 0. Also, by (2.3), w(Al — f) > 1/L > 0.

Let r > 0 and O, = {z: ||z|| <r}. Al—f: O, = E Is continuous, injective and
1/L-proper [65]. Furthermore (A — f)O, is open because (A — f)~! is continuous. By
our assumption (A — f)(0) = 0. By theorem 2.3 of [65], Al — f is (0, k)-epi on B, for
each nonnegative k satisfying the condition & < L. Hence v(AI — f) > 0, A € p(f) and

pin(f) C p(f)- [
The following shows that oy, (f) = o(f) = Tfmu(f)-

Example 2.3.7. Let ¢ : R — R be defined by

z for =<1,
() =1 1 for 1<a<?2,

z—1 for 2> 2.
Let f =1 —1. Then for z € R we have
(1/2) )l < b ()]l < 2j=]].
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Thus | f(@)|| < 3|jz||. Also, w({ — f} > 0 for f is a compact map. [ — f is (0,¢)-epi for
e > 0 on every [—n,n]. Hence A =1 € p(f).
Obviously, I — f = 1 is not one to one, so 1 € oy;,(f). Thus o(f) ; oup( f).

Example 2.3.1 shows that o(f) = o fmu(f).

The following two results characterize the spectrum for positively homogeneous maps

and maps that are derivable at 0 respectively.

Theorem 2.3.8. Suppose that f is positively homogeneous and A € o(f)\o fmu(f). Then

one of the following cases occur:
1. M — f is not injective.

2. (M — f)~! is not continuous.

Proof: Suppose that A € o(f) \ opms(f) and A — f is injective. We shall show that
(A — f)7! is not continuous. Firstly A ¢ o pmy(f) ensures that w(Al — f) > 0 and Al — f
is surjective. Also Al — [ is injective implies that Az — f(2) # 0 for © # 0 since f(0) = 0.
Hence A — f is w(Al — f)-proper [65]. Assume (Al — f)! is continuous, then A — f
maps every open ball O, to an open set. It follows that Al — f is (0,%)-epi for each
nonnegative k satisfying & < 1/w(Al — f). By Proposition 2.2.7, we have A € o(f). This
contradiction shows that (Al — f)~' is not continuous. O

As the last result in this section, we have the following:

Theorem 2.3.9. Let f : E — E be derivable at 0 with derivative T and A € o(f) \

ormu([). Then one of the following cases occur:
1. X is an eigenvalue of f.

2. M — f is not injective.

8. (M — f)7! is not continuous.




4. Aea(T).

Proof: Let A € o(f) \ 0fmu([f) , then AI — f is onto and w{Al — f) > 0. Now suppose

that m(Al — f) = 0. It follows that for each n € N, there exists 2, € £ satisfying
A2n = flea)|| < (1/n)|za].

Assume that there exists a subsequence {@n, }32, of {z,}52, with ||z,,]| — oo as & — co.

Then
d(AI — f) = lim g 12— F@I_
el 2|
This contradicts A € p(f). So, {||z.]i}2, is bounded and

w(A = fla(Uilen) < a (Upl (M = f)za) = 0.

o0
n=

This implies {z,}52, has a convergent subsequence. Suppose 2, — g as (n — oco). If

g # 0, A is an eigenvalue of f. In the case xq =0, we have

Az, — Tw, — Ray 1
Az @n = R < — = 0.
[EA| n

Thus A € ¢(T) since “ﬁ%’hﬂ — 0.
In the case m(Al — f) > 0, assume that Al — f is injective , by the same argument as

that in the proof of Theorem 2.3.8, (A — f)~! is not continuous. O

2.4 Nonemptiness of Spectra

A well known result in the spectral theory for linear operators is that the spectrum of a
continuous linear operator, which is defined on a complex Banach space, is not empty.
In the nonlinear case, for the spectrum ofm,(f), this property does not hold (see the
counterexample in [16]). An open question in [48] is the following: does this nonemptiness
property hold for the spectrum oy;,(f)? In this section, we shall give an example which
answers this question in the negative.

Firstly, we have the following simple theorem.
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Theorem 2.4.1. Let f : E — E be a continuous map. o(f) # 0 provided that f satisfies

one of the following conditions:

1. F(0) 0.

2. f is compact and FE is an infinite dimensional Banach space.

3. a(f) < d(f).

Proof: It is easily seen that 1 follows from Remark 2.1.7 and the other two cases are
direct corollaries of Theorem 2.3.6 and Theorem 8.2.1, Proposition 8.2.2 of [16]. O

Question 4.1 [48]: Suppose that E is a Banach space over the complex field C and
that A € Lip(E). Is the spectrum of A, oy;,(A), nonempty?

In the following, an operator f is given which satisfies

o(f) = oip(f) = opm(f) = 0.

Example 2.4.2. Let f: C* — C? be defined by
fla,y) = (@17), (z,y) €C
Then f is a continuous map and f € Lip(C?) since
£ (2, y) = Flw, o)l = (2, 9) = (wo)ll,  (2,9), (w,v) € C.

For every A € C with A # 0 , we consider the map A — f: C* — C%.
(1) Al — f is one to one.

Suppose that ()\I - f)(mhyl) = ()‘I - .f)($2)y2)a then
M (21 = 22) = AT — T2)- (2.4)

Also Ay — 1Ty = Ays — T2, SO

i(zy — 1) = M7 — T2)- (2.5)

e



From (2.4) and (2.5) we get that [A]*(z; — 23) = —i(x; — 22), thus z; = 2, y1 = vs.
(2) Al — f is surjective.
For every (z,y) € C?, let

U_Xm%—y U_'i")\my—f
AR+ T A4
Then by calculation, we see that (A — f)(u,v) = (x,y). Hence AI — f is onto.
()AL = f)~ € Lip(C?).

Let g = (AT — f)7!, then

Az +7 dy—7F
glz,y) = :

|AIZ 447 |A22 + 1

Suppose (z1,y1) € C*, (z2,y2) € C*, let © = ) — 29, y = y; — ¥a, then
1

P

Pl X +7° + |

lg(z1,y1) — 922, y2)]* = | [Pliz + Ayl

|
FEYP

Let r = ||—«\I—;—-I:| > 0. Since
[Aey + XY + Mizy — idzy| < 2|(J=* + |y[*),

we have
lg(21,y1) = g2, y2)[* < 2([Al+ 12 (Ja]® + y*).
So,
l9(x1,y1) — g(@2,92)| < r(IA] + Df(21,31) — (22, 32)|-
g= (Al — f)~! is a Lipschitz map with constant r(|A| + 1).
In the case A = 0, |f(z)| = |x|. Also, f is one to one, onto with |f~(z)| = |z|. By the

argument above, for every A € C, A is in pip(f). Thus, 04;,(f) = 0. By Theorem 2.3.6,
J(f) = Ulip(f) = O'fmv(f) = Q)

Remark 2.4.3. In [49], the authors showed that o1;,(f) is always nonempty in the one-
dimensional case and asked whether this is also true in higher dimensions. In [1] (which
was seen after this part of the work had been completed), the authors gave a negative

answer to this question by using Example 2.4.2. We found example 2.4.2 in [33] where it

was used to show another fact.




We close this section with the following result regarding operators which are asymp-

totically linear or derivable at 0.

Proposition 2.4.4. Let f: B — E be continuous and [ =T + R, where T is a linear

operator and R satisfies one of the following condilions:

1. U%S%“%O as ||z]| — 0.

2. “%?Iilm_)(] as {|z|| — oo.

Then A € o(f) provided X is an eigenvalue of T

Proof: Let ¢ € E and 29 # 0 be such that T'(zp) = Azg. For r € R with r > 0 we have
l[Arzo — f(reo)ll = || B(rzo)|l.

So, in case (1), letting » — 0 and in case (2) letting r — oo, we have

| Arao — f(T-"UD)H

el

This implies that m(AI — f) = 0. Hence A € o(f). O

2.5 Applications

In this section, firstly by applying the spectral theory, we shall study the solvability of

some nonlinear operator equations. Some existence results will be obtained. Then three

well known theorems will be generalized by using the theory. At the end of this section, we

shall study bifurcation points and asymptotic bifurcation points of a Urysohn Operator.
We shall use the classical space C[0, 1] with the norm ||z|| = maxep,1y |z(t)]. We recall

that a cone K in a Banach space E is a closed subset of E such that

(1) z,y € K, a,b > 0 imply az + by € K;

(2) z € K and —z € K imply z = 0.
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A cone K is said to be normal if there exists a constant v > 0 such that

Iz +yll = 7]l

for every x,y € I{. A cone defines a relation < by meansof ¢ <y ifandonly ify—2 € K
and an order preserving operator 7' : F — F is then defined by the condition 0 < z

implies 0 < T'z.

Example 2.5.1. We look for a non-trivial solution of the following global Cauchy prob-

lem depending on a parameter

&'(t) = \a2(t) + (1 —t), «(0) =0,¢ € [0,1]. (2.6)

Changing the problem into an integral equation we study the existence of an eigenvalue

and eigenvector of the operator

Tz(t) = fot \/3)2(8) + 221 — s) ds. (2.7)

It is easily verified that 7' : C[0, L] — C[0, 1] is positively homogeneous, order preserving,
and |72 < vz

Now we shall prove that ul — T is not surjective for every 0 < u < 1/4/2 and
so [0,1/v/2] C o(T). Assume it is surjective, then there exists zo € C[0,1] such that

uzg — Txg = u. For every t € [0,1],
p(a(t) - 1) = Tao(t) > 0 = zo(t) > 1.
So for each natural number n, T"2q > T™1. On the other hand,
Tao < uco, so T"xe < u"wo.

Hence

prag > T > T7(1).

This implies that

(V2)"u e > (V2)"T™(1) > 0.
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Also we know that K = {z(¢t) € C[0,1] : () = 0} is a normal cone in C[0,1] and
(vV2)"u™ — 0 as n —» oo. Thus we obtain that (v2)"T"(1) — 0 (n — oo0). This
contradicts 7"(1) > (1/+/2)™. So, uI — T is not onto.

Assume that for some —1/v/2 < p < 0, uI — T is onto. Then for each y € C[0, 1],
there exists € C[0, 1], such that yz —T'z = y. Hence (—u)(—2)—T(-z) =y. So, —pu—T
is onto. This is a contradiction since 1/v/2 > —u > 0.

By the above argument, [~1/v/2,1/v/2] C o(T) since the spectrum of T is closed.
Also, we know that 7" is a compact map [43], so a(T") = 0. By Theorem 2.2.8, there exist
gy > 1/v/2 and pe < —1/4/2 such that gy and u, are eigenvalues of T'. Moreover, by
Theorem 2.2.11, we obtain that 1/v/2 < |g] < liminf,e ||77|'/". Therefore, problem

(2.6) has at least two non-trivial solutions.

Remark 2.5.2. It was known that for the above operator T, (1/v/2)In(1 + v/2) is the
only positive eigenvalue of 7' (see [43]). So, for each A € [—1/v/2,1/v/2], A is not an
eigenvalue of 7'. This shows that Theorem 2.2.9 is not true for positively homogeneous

maps. It is well known that it is true for linear operators.

Example 2.5.3. The following Hammerstein integral equation

1
Ku(s) = / k(s 4) F (¢, u(t)) dt, (2.8)

0
where k(s,t) is continuous in the closed square {0 < s < 1,0 < t < 1} and f is a
continuous map of [0,1] x R — R which satisfies the condition |f(¢,u)| < a + blu| with

a > 0,b >0, has been studied in [48]. Some existence results on the the equation

Au(s) = Ku(s) = /; k(s,t)f(t,u(t))dt (2.9)

were obtained there. Let M = maxy |k(s,t)|. We shall show (2.9) has at least one
solution u(t) € C[0, 1] provided that |A| > Mb.

Proof: 1t is easy to see that K : C[0,1] — C[0,1] is a compact map, since for every

bounded set A C C[0,1], KA is equicontinuous and for every & € [0,1], (KA)(¢) is
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relatively compact. Now, let A € K with |A] > Mb. We know that w(A — K) > 0.

Assume that m(A] — K) > 0, then there exists m > 0 such that
|[Aw — Kul| > m]|u|| for v € C[0,1].
Let
S={ueC0,1]: Au—tKu=0, te[0,1]}.

Then for v € S we have ||u|| £ Ma/(|]\| — Mb), so, S is bounded. This implies that
A — K is (0,€)-epi on every B, with » > 0 and 0 < & < |A], so (A — K) > 0. Hence,
A € p(K). It follows that Aw = Ku has a solution.

In the case that m(Af — K) = 0, there exist u, € C[0,1] such that
Ay, — Kup|| < (1/n)]|uwnl|-
So
Allfunll = Ma = Mbljun]] < (1/7)]|unll.

This ensures that {||u,]|2Z,} is bounded since |A] > Mb. Thus
| Aun — Kug|| — 0, (n — oc0).

Furthermore

w(A — K)o(UpZ ) < o (A — K) US| uy).

So, {un}22, has a convergent subsequence. Let w,, — up (K — 00), then Aug = Kuy,
thus up is a solution of (2.9).

In the case a = 0, |f(t,u)] < blu|, we have || Kul|| < Mb||u|| for each u € C[0,1]. For
A € C with |A] > Mb, by Remark 2.1.7, A € p(f), so, Al — K is surjective. Thus, for each
v € C[0,1], there exists u € C[0, 1] satisfying

Au(s) — (Ku)(s) = v(s).




Example 2.5.4. Suppose the Urysohn operator A is defined by
(Ap)(t) = _/Qg(t,s,(,o(s)) ds forallte Qand g€ L? (2.10)
where 0 C R is bounded. The following conditions on the kernel g was assumed in [48]:

L |g(t,s,2)] < B,(¢,s) for (¢,5,2) € O* x K with [¢| < r and there is M, > 0 such
that
]ﬂ Bult,s)ds < M, forallte O

2. lg(t,s,z) — g(r,8,2)| < 7:(t,7,8) for (r,8,2) in Q* x K with |z| <r and
%ggLv,.(t,T, s)ds = 0 uniformly for 7 & ()
3. There exists a measurable function ¥ : Q* — [0, c0) such that
lg(t, s, 2)| < (t,s)(1+ |z|) for all (¢,s,2) € Q* x K

and

M= /Q/Q(-zp(t,s))zds dt < 0.

We shall prove that (A@)(t) = ¢(t) has a solution if 2M/2 < 1.

Proof: 1t was proved in [48] that, under the above assumptions, A is a compact operator
from L? into L? and ||Ap|l, < 2MY2(1 + ||p}|2)H/2.

(a) Suppose that for every n € N¥, there exist ¢, € L* such that o, — Apa|| <
(1/n)]|@nll- Then |[¢n]|c2; is a bounded set. Otherwise

(1/m)lleall > llnll = IA@all > loull = 2MM2(1 + [lioa]*)!/?

implies that

[lnll®
Letting n — oo, we would have 2M*/2 > 1, a contradiction. Thus |¢n — Agy|| — 0.

1/2
1—2Ml/2(1 +1) <5.
n

So {pn}22, has a convergent subsequence since A is a compact map. Let ¢n, — o €

L? (k — 00), then @ = Ay and o is a solution of the equation.
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(b) Suppose there exists m > 0 such that ||(7 — A)e|| > m]|¢||. Let
S={pel®: o—tAp=0,te[0,1]}.
Ior each ¢ € 5, we have
lell < 1wl < 2M72(1 + [|]*)2,

S0,
4M
1—4M"

Thus S is bounded. It follows that / — A is (0,e)-epi for 0 < ¢ < 1. Hence [ — A is

lell* <

regular. 1 € p(A) and I — A is surjective. Hence, the equation Ay = ¢ has a solution in
L2 O
The following theorem gives a condition for a compact, positive operator to have a

positive eigenvalue and eigenvector.

Theorem 2.5.5. Suppose FE is a Banach space and K is a cone of E. Forr > 0, let
K.=KnB, K, ={zec K : ||| =r}.

1. Assume that f : K — K is a positively homogeneous, compact operator and
inf {e=1,cex) | f(2)]] > 0. Then there exist 7 > 0 and 2o € K, ||2o]| = 1 such

that f(wo) = rag.

2. Assume that F : K. — K is compact and inf{||F(z)|| : ||z|| =7} > 0. Then F has

a positive eigenvalue with the eigenvector zg € 0K,

Proof: (1) Since K is a cone of E, K is a closed, convex subset of . By the Dugund;j
extension theorem, there exists an extension f; with fi(E) € K and with f; compact

map [7]. Let F': E — K be defined by

lellfi (&) ia#0,
0 if 2 =0.

(2) =
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Then F': £ — K is a positively homogeneous and compact operator. Also, F|g = f.
Suppose o(F)N R =0 and v € K, u # 0. Since (1/n) € p(F), (1/n)I — F is onto, and

there exist {,}52, € K salislying the following:
(I/m)an, — F(a,) = u.
Then, F(x,) € K implies that z,, € K. So F(2,) = f(2,). Thus
(1) — f(za) = v (2.11)

Assume that {{lz,||52,} is unbounded and ||z, || = co (K — co). Then,

Ly, f( L ) = — 0 (k — o0).

nllzndl 7 \llendl/  lloa|

Thus f (ﬁz_:fﬂ) — 0. This contradicts infisexyzy=1) | f(2)]] > 0. So we obtain that
{||#nll5%, } is bounded. Next, (2.11) implies that

0<u<(1/n)z, = 0 (n — o0).

Thus v = 0. This contradiction shows that ¢(F) Rt # 0. Let ry > 0 and r; € o(F).
By Theorem 2.2.8, there exists » > r; such that r is an eigenvalue of F'. Let z¢ € E with
|zl = 1 be such that ['(z¢) = rag. Then zg € K since r > 0 and F(z¢) € K. Thus
flzo) = Fao) = rag.

(2) Let F': K — K be defined as follows:

el F7 (ﬁ) for x # 0,

0 forx = 0.

F(z) =

[ is a compact and positively homogeneous map since F is a compact map [43]. Fur-

thermore,

inf [(F)(2)l = inf ||F(2)]l > 0.

ll=(l=1 [lell=r

So, by (1), there exists @’ € I with ||2']| = 1 and A > 0 such that F(z') = Az’. Thus

.
F(mf ) = Az’
Il
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Let xg = ra’ then @9 € K and ||zo|| = r. Also F(aq) = (A/r)zo. O
The following well known Birkoft-Kellogg theorem was proved in [16] by applying their

spectral theory.

Theorem 2.5.6. (Birkoff-Kellogg Theorem) Let £ be an infinite dimensional Banach
space and S = {2 € E: ||z|| =1}. Let f: 5 — E be continuous and compact such that

f(S) is bounded away from zero (infyes || f(z)]| > 0). Then f has a positive eigenvalue.
The following theorem is a generalization of Theorem 2.5.6.

Theorem 2.5.7. Let £ be an infinite dimensional Banach space and let f : 5 — F be
continuous and bounded. Assume that inf.cs | f(2)|| > a(f). Then for every complex
number A with A # 0 there exists r > 0 such that r) is an eigenvalue of f. In particular,

f has a positive and a negative eigenvalue.

Proof: Let f : E — E be the positively homogeneous operator which is defined as follows:

; Il f(z/l=ll) ifz+#0

o) =
0 ifz=0.
Then we have
o @I s IF@)] ,
d(f) —lulagﬁlilfw = inf lF(@), 7] —llllfﬁilif T 17 (=),

and af) = a(f) (see [43]). Let B(f) be the set of all asymptotic bifurcation points of
/. By Theorem 11.1.1 of [16], there exists u > 0 such that u € B(f). Let {u}2, and
{2,}52, € E be sequences such that g, —+ g, |[2,]] = 0o as n = co and f(2,) = pa@n.

Then we have )
el = Dl Wison — paal
[EH| llzal|
This implies that d(ul — f) = 0. So, by Theorem 2.3.6, i € 0 fmu(f) C o(f). Assume

— 0, asn — oo.

that ¢ < a(f), then u < d(f), since by our assumption, o) = of) < d(f). So,

Al = > d(f) = > 0.
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This contradicts d(uf — f) = 0. Thus we have x > a(f). By Theorem 2.2.8, there exists
to € (0,1] such that pu/to is an eigenvalue of f. Let @o € E with ||zg| = 1 be such that

flzo) = (p/to)zo. Then f(wo) = reo, where r = u/fto.

For every complex number A with |A| = 1, writing X = €%, we have

il [KF (@)l > alf) = a(X)).
By the above argument, there exists » > a(f) and 2o € F with ¢ # 0 such that
Af(zg) = rzo. Thus f(zo) = (rA)zo. In the case |A| # 1, let Ay = A/[A]. By the same
argument, there exists r > 0 such that r) is an eigenvalue of f. O

The following example shows that therve exist mappings f to which Theorem 2.5.6

does not apply but Theorem 2.5.7 can be used.

Example 2.5.8. Let By ={z € E: ||¢|| <1} and g : E — B, be the radial retraction

of E onto the unit ball, that is

el it 2] > 1,
g(x) =
a if0 < |lzf] < 1.
Since g(Q2) C co(QUO), g is a 1-set contraction [7]. Let y € E with ||y]l > 2and f: S — E
be defined by
f@) =y +g(z), z € L.

Then,

‘ I = i I >yl = ) = llyll — ,

inf ||f(2)]l = inf lly + g(=)]l 2 llv] i‘-elgﬂg('v)ﬂ Iyl =1 >1
Next,

of) = aly+g) =alg) = 1.

So, infees || f(2)]| > «(f). Furthermore, we have
sup, 5@}l = sup fly -+ g(@)ll =yl +1.

Hence, [ satisfies the conditions of Theorem 2.5.7. So, for every z € C , there exists

A > 1 such that Az is an eigenvalue of f.




Theorem 2.5.7 enables us to give the following generalization of theorem 10.1.2 of [16].

Theorem 2.5.9. Let S be the unit sphere in an infinite dimensional Banach space E
and let f: S — S be a continuous strict set contraction. Then every A € K, |A| =1, s

an etgenvalue of f. In particular, [ has a fived point and an antipodal point.

Proof: Since a(f) < 1, we have

inf |f(@)l =1>a(f),  sup[lf(S)| < oo
x zES

By Theorem 2.5.7, for every complex number |A| = 1, there exists « > 0, such that al is
an eigenvalue of f. Thus there exists ), € S such that f(z,) = aAz,. Since || f(z))]] =1,
|| = o =1, so A is an eigenvalue of f.
In particular, for A = 1, there exists @ € S, such that f(2) = z. For A = —1, there
exists @ € 5, such that f(z) = —a. g
In the following, let R™ be the n-dimensional space and S™ = {z € R™": ||z|j =1}

The Hopf theorem on spheres is as follows [16]:

Theorem 2.5.10. Let f : S** — R?*™! be continuous. Assume (f(z),z) = 0 for all
z € 5%, where (-,-) is the Euclidean inner product on R**!. Then, f vanishes at some

point & € S,

The new theory enables us to give a generalization of Theorem 2.5.10. Firstly, we
need the following lemma. We shall let E* denote the dual space of F and J : B — £~

the duality mapping, that is, for z € E,
J(z) = {z" € E*: a*(a) = ||2f|* = [|="]1"}.

We recall that for a linear operator A in a Hilbert space, the numerical range of A is the
set of values of (Az, ) for all @ with ||z|| = 1 [67]. Tt is known that the numerical range
of A is a convex set. If we let V(A) be the numerical range of A, then o(A) C V(A).

For a nonlinear operator f, we have the following.
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Lemma 2.5.11. Suppose f: E — E is a continuous operator. Let

V(f) = {(f(‘"':)’m*)} U{0}, z € E,a" € J(2).

212
Then X € oV (f) provided that A € o(f) and |A| > a(f).

(Where To denote the closed convex hull.)

Proof: We shall prove that |A| > a(f) and dist(\,coV/(f)) > 0 implies that A € p(f)-
If |A| > a(f) and dist(A, €6V (f)) > 0, then

0<d = dist()\@V(f))

< |A_(f(llsi)l,|§:*)|
M) - ()2
B T
_10e— f(@),a)
Bk
. e sl
< el

So, ||Az — f(2)|| = d||z||. This implies that m(Al — f) > 0. Also, w(Al — f) > 0 since
|Al > a(f). Let
M={zeE: Az —1tf(z)=0, t €[0,1}}.

For every o € M, suppose there exists ¢ € [0, 1] with ¢ # 0, such that Az = ¢f(z). Then
(f(=),=) _ ((A/t)z,z™) A

ez el
Hence,

A= 8 gy,

l]l?

This contradicts our assumption d = dist(A, eV (f)) > 0. Thus, M = {0}. By Corollary
2.2.2, M — f is (0,¢)-epi for some ¢ > 0, thus v(AI — f) > 0, hence AI — f is regular.
This shows that

{2 1Al > o)} ne(f) V().

The following theorem is a generalization of Theorem 2.5.10.
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Theorem 2.5.12. 1. Let f : 5™ = R™ be conlinuous. Assume (f(z),z) =0 for all
x € S™, where (-,-) is the Euclidean inner product on R™*'. Then, f vanishes at
some point x € S™ provided either n is an even number or f(S™) is conleined in a

proper subspace of R™1,

2. Let E be an infinite dimensional Banach space and f . S — E be a continuous
compact mapping. Assume that (f(z),z*) = 0 for all 2* € Jz, « € S. Then
infzes [[ /()] = 0.

Proof: (1) Let

i " llzllf(z/llz]]) ifz+0,
f(z) =
0 ifz=0.

Then for every @ € R™*! with = # 0,

(J(2),2) = J2ll{f (/). 2/ll=]]) = 0.
So, V(f) = {0}. Also, a(f) = 0 since R™! is finite dimensional. By Lemma 2.5.11, we
have o(f) C {0}.
(a) Assume that 7 is even. Let B(f) denote the set of all asymptotic bifurcation points
of f, then by theorem 11.1.3 of [16], B(f) # 0. By Proposition 2.1.11, B(f) C o(f).
Hence, 0 € B(f). Suppose that {2,152, € R™ and A, € K satisfy ||zl = 00, Ax = 0

as n — 0o and AT, = f(mn) Then

f T Ty

f (m) = )\nm — 0.
Moreover, {il_js?x—ﬂ};o—_q has a convergent subsequence nz’TI:II — z9 (k — 00). Thus ||zo|| =1
and Jz(ﬂ"o) = f(=o) = 0.

(b) In the case that f(S™) is contained in a proper subspace of R*+1, [R5 R
cannot be surjective. So, 0 € o(f). Also, we know that w(f) = oo since R™*! is finite
dimensional. Firstly, if d(f) = 0, it follows that there exists {z,}%, € R™' with
llz,]| = 1 such that

f(za) = f(za) = 0 (n = o0).
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So, f(w0) = 0 for some zo € R™" and ||lzo|| = 1. Secondly, if d(f) > 0, then 0 € K\oy (f)
and 1 ¢ o(f). By Theorem 11.1.2 of [16], we have B(f)Uo,(f) separates 1 from 0. So,
B(f)Uou(f) # 0. This implies that B(f) # 0 since o,(f) = 0. By the same argument
with that in (a), there exists o € S™ such that f(zo) = 0.

(2) Suppose F is an infinite dimensional Banach space. Let f be as in (1), then
V(f) = {0}. By Theorem &.2.1 of [16], B(f) # 0 (see section 1.3 for the definition of

X( f )). Again applying Lemma 2.5.11, we have
2(f) Co(f) V().

So, 0 € ©(f). Thus there exist , € E with ||z,| = 1 such that f(z,) = f(z,) — 0.
Hence infzeg || f(2)|] = 0. O
In the following example, we shall use the spectral theory to study bifurcation points

and asymptotic bifurcation points for a Urysohn Operator.

Example 2.5.13. Let Q denote a closed bounded set in a finite-dimensional space and
for simplicity, we shall assume that measQ = 1. Let £k : @ — R be continuous. We

consider the compact operator A : R x C(2) — C(R2) defined by

Alp,2)(t) = [ k(s,0)f(2(s)) ds, (2.12)

where f : R —+ R is continuous.

We make the following hypotheses:

1. k(s,t) > 0for (s,t) e x Q and M = maxtegfﬂk(s,t) ds > 0;
2. f(z) >0 and f(0) > 1/M;

3. f(z) =0 and inf,>o f(2) = d > 0;

4. f(z) 20, infzo f(2) = d > 0 and sup,5, |f(z)| = D < .

Suppose (1) and (2) are satisfied or (1) and (3) are satisfied, then, 0 is a bifurcation
point for the equation A{u,z) ==. If (1) and (4) are satisfied, then, oo is an asymptotic

bifurcation point of A(y,z) = .
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(Recall that co is called an asymptotic bifurcation point of A(p, ) = z if there exist

Hr and 2, € E, 2, # 0 such that A(pn,xn) = @, e — 00 and ||z,|| = o0 as n — 00).

Proof: (a) Suppose that k(s,t) and f satisfy (1) and (2). For every r > 0, define
A C(Q) = C(Q) by

ol f ktevt)7 (r50) as e 0,

0 ifz=0.

(Ayz)(t) = (2.13)

A, is a positively homogeneous, compact operator. Suppose 1 € p(A,). Then, I — A, is
surjective, so there exists z € C(Q) such that * — A,z = 1. Obviously, ||| # 0. Also,
since f(z) > @, z(¢) > 1 and

< o) | k(5,001 ( e ”)) ds < a(t).

Hence

/ k(s t)f( “( “)) ds < TT%? (2.14)

Since f(0) > 1/M , there exists § > 0 such that |z| < § implies f(z) > 1/M. Let r, > 0,

rn -+ 0, and assume 7, < §. Then [ (rn %%Il) > ﬁ, so that

zn(s) 1
A . > = 1.
1¥1€axf E(s,t)f (7n H"Ln“) ds i max/ k(s,t)ds =1

This contradicts (2.14). Hence 1 € o(A,,). By Theorem 2.2.2, there exists A, > 1 such

that A, an eigenvalue of A,,. Suppose that A, @, = A 2, and 2, # 0. We have

rp

T k0 (7"’”—(3)) ds = r, 220,

[l [l

Let y, = Tnﬂ:ﬁﬂ’ then

A (;_7:» yn) = Un,

also, ||yn]| = 0 and r /A, — 0 as n — oco. Thus 0 is a bifurcation point for the equation

Alp,z) = .
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(b) Suppose k(s,t) and [ satisfy conditions (1) and (3). Let K = C(Q) be the cone
of non-negative functions. For r > 0, let A, : C4(Q) — CL(Q) be defined as in (a).
Assume z € C(Q), and ||z]j = 1. Then
|Arz|| = maxf k(s,t)f(rz(s))ds > dr&egc/ k(s,t)ds = dM > 0.
Q

So, inf ek |of|=1} || Ar|| > 0. By Theorem 2.5.5, there exist A, > 0 and z, € C4(Q) with
l|lz+|| = 1 such that (A,z)(t) = Arz,(t). Therefore,

Xl: [ ksl ds = ),
Moveover

Ar = max/ k(s,t)f(re,(s))ds > dM.

Let y, = ra,, then ||y,|| = r and

XT_ fg k(s ) f(ra.(s)) ds = g, (t). (2.15)
Let r — 0, we obtain 0 is a bifurcation point of A(y,z) = a.

(c) Assume conditions (1) and (4) are satisfied. Let A, and y,(¢) be as in the proof of
(b). Then from (2.15),

A = max /Q k(s,)f (re.(s)) ds < MD.

teQ
Let r — oo, it follows r/X, — oco. Hence, |ly.|| = r — oco. Thus oo is an asymptotic
bifurcation point of A(u,z) = =. O

The following theorem was given in [16] (see Theorem 10.1.4). Here, we shall give a

different proof by using our theory.

Theorem 2.5.14. Let E be an infinite dimensional Banach space and let f: S — S be

continuous and compact. Then [ ecannot be odd.

Proof: Assume f is odd. Let

Fl2) = Ha:Hf(ﬂ-”;Tl) for z 0

0 for = 0.




Then f is an odd and positively homogeneous compact operator [43]. So, by Theorem
2.2.9, A € o(f)\{0} implies that X is an eigenvalue of f. On the other hand, 0 is an
interior point of o(f) [16]. So, for § > 0, there exists 0 < A < §, such that A is an

eigenvalue of f. Thus there exists z # 0 such that

()2
[[]] =]
This contradicts f: S — S. Hence, f cannot be odd. O

The following Borsuk-Ulam Theorem was proved in [16] by applying their theory.

Theorem 2.5.15. Let ¢ : S — E be a compact vector field such that ¢(S) is contained

in a proper closed subspace I of E. Then there exists © € S such that ¢(z) = ¢(—z).

We conclude this chapter with a generalization of the above theorem, which also was

studied by Edmunds and Webb [8] and others, see [€] for references.

Theorem 2.5.16. Let g: S — E be condensing and suppose (I —g)(S) is contained in a

proper subspace F' of E. Then there exists a point ¢ € S such that (1—g)(z) = (I—g)(—=z).

Proof: (1) First suppose ¢ is an odd k-set contraction, so that a(g) < 1.
Let ¥ : 2 — E be defined by $(z) = @ — g(z), where

ﬂ@:{nﬂwﬁm,w#o

0, z=0.

We claim that 1 is not surjective. For suppose yo € E \ F and there exists zp € F such

that
o
o = llzollg( o) = wo
that is
o

leoll(Z — 0)(22p) = 3o
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Since (I — g)(zo/||zo|]) € F, we get yo € F, a contradiction. Thus 1 € o(g). Also
a(g) = a(g) < 1 and 7 is a positively homogeneous odd operator. By Theorem 2.2.9, 1

is an eigenvalue of g, so there exists xg € £, x¢ # 0, such that

Lo
To — ||$0||9(m) = 0.

Since ¢ is odd,
T Zo

(I-g)(—7=)=—g)(7=—)=0.

llzoll [1zoll

(2) Next suppose ¢ is an odd condensing map. Let 0 < k, < 1, k, — 1 (n = o0)
i and define h,, : S — E by h,(z) = kng(z), so that a(h,) < 1. We show that for all large
enough n, (I — hy)(S) is contained in F. Let yo € E\ F. For any k, there exist n(k) > &
and z, € 5 such that
(I — hp)(zn) = AnYo-

Since {|A,|} is bounded, it has a convergent subsequence. For simplicity we write a(z,)

in place of & (IS, @n). Then, a(Anyo) = 0. From
2 = 9(n) = —(1 = hn)g(&n) + Auti
we obtain a(z, — g(z,)) = 0. If a(z,) # 0, then
(@) < oz — glzn) + alg(za) < ),

a contradiction. Hence a(z,) = 0, so {z,} has a convergent subsequence, say z,, —

Tp, To € 5. By the above we have
20 — g(zo) = AoYo-
If \o =0, m0 — g(xo) =0, (—z0) — g(—2a) = —o + g(wo) = 0, so that
(I = g)(zo) = (I — g)(—z0)

If Ao # 0, yo = (z0 — g(z0))/ Ao € F, a contradiction with yo € E\ F.
So for all large enough n, (I — h,)(S) is contained in a proper subspace of E. By (1),

there exists z, € S such that

(I — hy)(zn) = (I — hyn)(—2,), where n > N.
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Therefore,
22y = kng(an) — kng(—zn).
If &, # 0,
2e(2) < (ke — D)glan) + (1 — En)g(—2n) + 29(2n))

< 2a(g(zn))

< 2a(x,),
a contradiction. Hence a(z,) = 0 and so 2, has a convergent subsequence, say z,, — xg
with ||zo|| = 1. Thus 2z¢ = g(zo) — g(—=0), that is (I — g)(z0) = (I — g)(—z0).

(3) Finally, if g is not odd, let gy = (g(z) — g(—2))/2, ¢1 is odd and condensing. Also

(I — ¢1)(5) is contained in F. By (2), there exist xg € S such that

xo — g1{2o) = —2o — g1(—zo).

Hence

(I = g)(wo) = (I = g)(—20).




Chapter 3

Spectral theory for semilinear

operators and its applications

Let £ and F be two Banach spaces. In this chapter, L : dom(L) C £ — F will denote
a closed Fredholm operator of index zero with ker(L) # {0} and dom(L) dense in E.
N : Q — F will be a continnous nonlinear map, where {2 C F is an open bounded set and
dom(L) N # (. We shall introduce the spectrum for the semilinear operator L — N, and
prove that it has the similar properties with that of the spectrum of nonlinear operators.

Also, we shall give some applications of the theory.

3.1 L-stably solvable mappings

In the following, subspaces FEq, Fy and maps P,Q, Lp, Kp, Kpg,II, A will be as defined
in section 1.5. We will generalize the stably-solvable mapping for nonlinear operators to
the L-stably solvable mapping for semilinear operators. Firstly, we give a definition and
then we will prove two lemmas which we will make use of in the sequel. We also suppose

that N: £ = F.

Definition 3.1.1. For A € C, let fi(L,N): E — E be defined by

(L, N)(z) = MIT — P)z — (ATl + Kpg) Nz,




and let (L, N) denote the set

{,\ & C: it AL N@I o} .

llali—o [Feal

In the following, we will use f) for fi(L, N) when there is no confusion.

Lemma 3.1.2. Let h: F/im(L) — Fy be the natural linear isomorphism and let J =
RA™'. Then AIl4+ Kpg : F — dom(L) is a linear isomorphism and L+ JP : dom(L) — F
is invertible with (L + JP)™' = All + Kpq.

Proof: Obviouély, J 1 ker(L) — Fp is an isomorphism.

For @ € dom(L), suppose that (L + JP)z = 0. Then Lz = —J Pz € Fy, so JPz =
Lz =0, ¢ € ker(L) and then JPz = Jo = 0. This implies that # = 0. Hence L 4 J£P is
invertible on dom(L).

Now, let y € I and suppose (Al + Kpg)y = 0. Then
Ally = ~Kp(I — Q)y € dom(L) N Ej.

This implies that Ally = 0 and (/ — @)y = 0. Thus y € im(L) N Fo, so that y = 0.

Therefore, AIl 4+ Kpg is one to one. For every y € F', we have
(L4 JP)(AI+ Kpg)y = JPATly + (I — Q)y = hlly — Qy +y = y.
Hence L + JP is onto. Also, for every @ € dom(L), we have
(ALl + Kpo)(L + JP)x = Kp(I — Q)La + AllJ Pz = (I — P)z + J~*AIlJ P = a.

Hence, AIl + Kpg is the (bounded) inverse of L + JP. O

Lemma 3.1.3. Lety € I' and A € C. Then
1. ALz — Nz =y if and only if f(z) = (Al + Kpg)y.
2. AL — N :dom(L) — F is onto if and only if fr: E — dom(L) is ento.

61




Proof: Let y € F', then

Mz — Nz =y < Aa = Q(Ne +y) + (I - Q)(Ne +y)
== Az =([-Q)(Nz+y), QNz+y)=0
= MKpLe = Kp(I — Q)(Nz +v), (N +y) =0
= M1 — P)a = Kpo(Ne +y), AII(Ne +y) =0
= AI — P)z = (ALl + Kpo)(Nz +)
= fa(z) = (AIl + Kpq)y.

Suppose AL — N is onto. For every ¢ € dom(L), by Lemma 3.1.2, z = (AIl + Kpg)y for
some y € F. Let zo € dom(L) be such that ALag — Nzg = y. Then by 1,

Falzo) = (AIl + Kpg)y = .

Hence, fy: £ — dom(L) is onto.

On the other hand, suppose f\ : F — dom(L) is onto. Then for every y € F,
(ALl + Kpg)y € dom(L). There exists zg € E such that fy(zo) = (AIl + Kpg)y. Thus
xo € dom(L) and ALzg — Nzg = y. Hence AL — N is onto. O

The following concept is a generalization of stably-solvable operators which were in-

troduced in [16].

Definition 3.1.4. AL — N is said to be L-stably solvable if the equation
ALz — Nz = h{z) (3.1)

has a solution z € dom(L) for every continuous bounded L-compact map (see Definition
1.5.1) h: E — F with quasinorm |h| = 0.
AL — N is called a L-strong surjection if equation (3.1) has a solution @ € dom(L) for

every continuous map h : E — F with h(E) bounded and Kpgh(E) compact.

v

It is clear that when L is the identity, L-stably solvable operators coincides with
the usual stably solvable operators of [16] and L-strong surjection is the same as strong

surjection.
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In the following, we will let H = L 4+ JP. Then AIl + Kpg = H™'. The following

theorem is a generalization of Proposition 5.1.1 of [16].

Theorem 3.1.5. Suppose that A ¢ X(L, N). The following conditions are equivalent.

1. ALz — Na = h(z) has a solution @ € dom(L) for every bounded continuous L-

compact map h : B — F with bounded support.
2. AL — N is an L-strong surjection.

3. AL — N is L-stably solvable.

Proof: (3)= (2) = (1) is obvious.
(1) = (2) Suppose h : £/ =+ I'is a continuous map with A{E) bounded and Kpgh(F)

compact. Then h is L-compact. Let 0 < ¢, <1 be continuous with

i) <,
on(z) =
0 if ||zl > 2n.

There exist =, € E such that
AL(zyn) — N(xy) = on(zn)h(zn).

If {z,} is unbounded, A ¢ L(L, N) implies that lim,—eo || fr(2r)]| = c0. By Lemma 3.1.3,
Tim [ow(@n)lI[H Az - oo.

This contradicts h(E) is bounded. So, there exists M > 0 such that |jz,|| < M for all n.
Forn > M, op(2,) = 1, AL(z,) — N(2,,) = h(z,). Thus AL — N is an L-strong surjection.

(1) = (3) Suppose h: E — F is a continuous, bounded L-compact map with |A| = 0.
Let on(z) be defined as above. Then o,.(x)h(z) is a bounded L-compact map, also with

bounded support. The equation

Az — Nz = o,(x)h(2)
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has a solution @, € dom(L). Assume that {z,} is unbounded. Again by Lemma 3.1.3,

1/ () 1 h(en) h(@n) |l
[ [l [zl

This contradicts A ¢ %(L,N). As in the proof of (1) = (2), for n sufficiently large,
on(2s) = 1. Thus (AL — N)(z,) = h(w,). Hence, AL — N is L-stably solvable. 0O

— low(en)H 2y ey Il

We need the following Lemma to prove the Continuation Principle for L-stably solv-

able maps.

Lemma 3.1.6. Let B, = {z € F : ||z|| £ r}, m be the radial retraction, m : ' — B,.

Let h: E — F be a continuous L-compact map. Then, wh: E — I is L-compact.

Proof: Clearly, Ilrh is bounded and continuous. Assume that {2 is a bounded subset of
E. Then
wh(2) C co(0U A(Q)).

So Kpgmh(Q) C co Kpg(0 U h()) since Kpg is linear. Then

a'(f{pQ’lrh(\Q)) < O:(I(PQh(Q)) = 0.
Thus, Kpgmh is a compact map. So, wh is L-compact. Cl
Theorem 3.1.7. (Continuation Principle for L-stably solvable maps).

Let \L—-N : E — F be a L-stably solvable map and h : E x[0,1] — F be a continuous
L-compact map such that h(x,0) =0 for every x € E. Let

S ={z € E:ALz — Nz = h(z,t) for somet € [0,1]}.

If (\L — N)(S) is bounded, then the equation ALz — Nz = h(z,1) has a solution.

Proof: Suppose r > 0 is such that (AL — N)(S) is contained in the interior of B,. Let
@ : F — [0,1] be continuous and such that ¢(y) =1if y € (AL — N)(5), ¢(y) = 0 for all
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lly|| = r. Let w : FF — B, be the radial retraction. Then we have

wh(z, (AL — N)(z))

llefl—>eo ]l

=0.

Also, by Lemma 3.1.6, wh is a L-compact map. So, the equation
ALz — Nz = 7h(z, (AL — N)(z)) (3.2)

has a solution zq. If ||AL(zo) — N(zo)|| = 7, then by (3.2), we obtain AL(zg) — N(zg) = 0.
So ||[AL(ze) — N(wo)|| < 7. This implies that ||7h(zo, p(AL — N)(wo))l| < r. Hence,
b0, 6L — N)(20)) = h(0, (AL — N)(zo)),
so that
ALzg — Naog = h(zo, (AL — N)(z0)).

Thus 2o € S and (AL — N)(z¢) = 1, and then A\Lag — Nzo = h(zo, 1). O

3.2 (0,L,k)-epi mappings

In this section, we will generalize (0, k)-epi mappings for nonlinear operators to (0, L, k)-
epi mapping for semilinear operators. We will show that properties of (0, k)-epi mappings
hold true for (0, L, k)-epi mappings. Later, the results will be used in the study of the

spectrum for semilinear operators.

Definition 3.2.1. Let L : £ D dom(L) — F be a closed Fredholm operator of index
zero. Let © C FE be a bounded open set and N : @ = I be a continuous map. Suppose
0 ¢ (L — N)(dom(L) N Q). We say that I, — N is a (0, L, k)-epi mapping in dom(L) N O

if for every continuous bounded map A : Q — F such that
1. his a L-k-set contraction;
2. h(z) =0 for z € 09,

the equation Lz — Na = h(z) has at least one solution in dom(L) N Q.
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The following property is clear.

Property 3.2.2. (Existence result)

Suppose L — N 1s (0, L, k)-epi for some k > 0. Then the equation Lz — Nz = 0 has
a solution in dom(L) N €.

Property 3.2.3. (Normalization property)

Suppose that L is invertible and N is o continuous L-k-set contraction with k < 1,
(L — N)(dom(L)NoQ) # 0. If0 € Q, then L — N s (0,L, ki)-epi for every ky with
k+k <1,

Proof: Let h : Q@ — F be a L-ky-set contraction with %, + & < 1. Suppose that A is
continuous and bounded with A(z) = 0 on 9. ker(L) = {0} implies that AIl =0, Q =0
and P = 0. Hence L™! : F — dom(L) is a bounded linear operator and L™Y(N + h) :
Q0 — Eis a (k; + k)-set contraction. Define by : E — E by

LY (Nz 4 h(z)) =z € dom(L)NQ,

hi(z) = B
0 @ ¢ dom(L) N Q.

Then Ay is a (k; + k)-set contraction and A;(dom(L) N Q) is bounded. Now, let
M = sup{||h1(z)||: 2 € dom(L)NQ}and B={z € E: ||z|| < M}.

Then Ay : B — B is a (ki + k)-set contraction and k; + k& < 1. So hy has a fixed point
xo € B. Assume that 29 ¢ dom(L) N Q. Then hy(xo) = 0, thus xo = 0. This contradicts
0€ . So

zo € dom(L)} N Q and hy(z¢) = L™H(Nag + h(zg)) = 0.
Hence

Lzg — Nzo = h(zo)-

If @p € dom(L) N 01, then A(zg) = 0 and Lzg — Nag # 0, this is a contradiction. Hence
zo € dom(L) NN and L — N is (0, L, k1 )-epi on dom(L) N Q. a
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Property 3.2.4. (Localization property)
If L — N :dom(L)NQ — F is (0, L, k)-epi and (L — N)~(0) C dom(L) Ny, where
Qy CQ is an open set. Then L — N restricted to dom(L)NQ is a (0, L, k)-epi map.

Proof: Let h : 1y — F be a L-k-set contraction with i(z) = 0 on 0€,. Define by : B — F'

to be the following L-k-set contraction

h(z) =€,
hn(z) = (=) '

0 z ¢ Q.

Let hy = hi|g. Then A is a L-k-set contraction with ke(2) = 0 on 9Q. So
Lz — Nz = hy(z)

has a solution ¢ € dom(L) N Q. Since (L — N)™*(0) C dom(L) Ny, xo € dom(L) N ;.
Hence L — N is a (0, L, k)-epi map on dom(L) N Q;. O

Property 3.2.5. (Homotopy property)

Let L — N :dom(L) N — F be (0, L, k)-epi and h: [0,1] x @ — F be a continuous
L-ki-set contraction, 0 < k; < k < 1 and h(0,2) = 0 for all z € ). Furthermore, lel
Lo—Na+h(t,c) £ 0 for allz € dom(L)NOQ and allt € [0,1]. Then Le — N +h(1, 2):
dom(L) N — F is (0, L,k — ki1)-epi.

Proof: Let g :  — F be a continuous L-(k — k;)-set contraction with g(z) = 0 on 99,
Let
S ={z e€dom(L)NQ, Lz — Na = g(z) — h(t,z), for some t € [0,1]}.

Then S is bounded. We will prove that S is closed. Suppose that z,, € S, @, = 2o (n —
o). Let ¢, € [0,1] satisfy

Lzy — Nay = g(n) — h(tn, ©,).
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{t.} has a convergent subsequence t,, — to. Since N, g,h are continuous operators, we

have
L(zy,) = N(zn,) + g(an,) = htn,, Tn,) = N(zo) + g(x0) — h(to, z0), (1 = 00).
L is a closed operator implies that zq € dom(L) and
N(zo) + g(zo) — h(to,z0) = L(zo).

Hence o € S and S is closed. Since g is a L-k-set contraction, there exists 2’ € dom(L)NQ

such that

Lz' — N2' = g(a'),

so z' € § and S is not empty. Moreover S N dom(L) N O = @ implies that SN N = 0.

By Urysohn’s Lemmea, there exists continuous function 0 < ¢ < 1, such that

1 z€8,
P(z) =
0 2 e 0.

Let

h(z) = g(z) — h(¢(z),z), = € O,

then % is a L-k-set contraction, also 2{x) = 0 on 9. Thus the equation
Lz — Nz = h(z)
has a solution &” € dom(L) N Q. However, 2" € 5, #(2") =1, so
L(z") — N(2") + h(1,2") = g(z"), 2" € dom(L) N Q.

Hence La — Na + h(l,x) is (0, L, k — kq)-epi. O

3.3 Regular maps and the spectrum of semilinear op-
erators

In this section, we will introduce the spectrum for semilinear operators L — N by first

defining regular maps. In the following, w, m and v are as defined in Chapters 1 and 2.
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Definition 3.3.1. For A € C, the operator AL — N is said to be regular if w(f\) > 0,
m(fy) > 0 and v(fy) > 0. The resolvent set of (L, N) is defined by

p(L,N)={A € C: AL - N is regular}.
The spectrum is the set o(L, N) = C\ p(L, N).

Relative to the measure of solvability of f at 0, v(f), which was defined in Chapter 2,

we have the following definition.

Definition 3.3.2. Let v > 0 and
v (AL — N,0) = inf{k > 0 : there exists a L-k-set contraction ¢ : B, — F, with

g =0on 0B, s.t. f(z) = g(x) has no solutions in B, N dom(L)}.

Let
vi(AL — N) = inf{vp.(AL — N,0),r > 0}.

We will call vg,(AL — N) the measure of solvability of AL — N at 0.

It is clear that v,(AL — N) > 0 if and only if there exists € > 0, such that AL — N is
(0, L,€)-epi on dom(L)N B, for every r > 0. Now, we establish some properties of regular

mappings.
Proposition 3.3.3. If AL — N 1is regular, then w(AL — N) > 0, m(AL — N) > 0 and

vr(AL — N) > 0. Suppose that L is a bounded linear operator, then AL — N is regular if

and only if the above conditions are satisfied.

Proof: Firstly, we have

w(f) = w(Kp(AL) — Kp(I — Q)N).
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By Proposition 1.2.5,
Ww(Kp)w(AL — N) < w(fy) < a(Kp)w(AL — N).

Since a(p) < ||Kp|| < +oo, if w(fy) > 0, then w(AL — N) > 0. If L is bounded, then
dom(L) = E, w(Kp) > 0. Hence w(AL — N) > 0 implies w(fy) > 0.
Next, fx = H Y (AH(I — P)— N) and H(I — P) = L, (recall H = L + JP). So,

[H7Y (AL = N)z|| = [[f(@)]] =2 m(f)]]]-
Since H~! is bounded,
[HHAL = N)a|| < [|HIII(AL = N)e]|.

Hence

m(fy)
AL — Nzl > z|l.
¢ )] TH1] ]
Thus m(fy) > 0 implies m(AL — N) > 0. When L is bounded, we have
HHIIAE 2 AL = N)al = m(AL = N)|jz]|

So, m(AL — N) > 0 implies that m(fy) > 0.
Now suppose #(fy) > 0. Thus there exists € > 0 such that f is (0,¢)-epi on every B,
with 7 > 0. Let h: B, — F be a bounded continuous L-e-set contraction with A(z) =0

on 8B,. Then (AIl + Kpg)h : B, = E is a continuous operator.
a((AIl + Kpg)h) = a(Kpgh) <&,
(AIl+ Kpg)h(z) = 0 on OB,. By the definition of e-epi map, the equation
fr(@) = (AT + Kpo)h()
has a solution zg € B,, ||®o|] < r. So
MI — P)zg = (AL + Kpg)(h(zo) + N(z0)) = H™' (h(z0) + N(=0)).
Thus ALz — Nag = h(xo). Since H~!: F — dom(L), we have

MI — P)zo € H'F C dom(L),

70




so zg € dom(L) N{z : ||z|| < r}. We obtain that AL — N is (0, L, €)-epi on dom(Z) N B,,
thus v, (AL— N) > 0. Suppose that L is bounded and there exists £ > 0 such that AL— N
is (0, L,&)-epi on dom(Z) N B,. Let h: B, — F be a continuous map with a(h) < ¢ and
h(z) =0 on @B,. Then aH ' Hh <e. So Hh is a L-c-set contraction. By the definition,
the equation

ALz — Nz = Hh(z)
has a solution zo € dom(L) N O, = O,. By Lemma 3.1.3, fi(zo) = h(zo). Hence f\ is

(0,€)-epi on B,. We have completed the proof of the Proposition. (]

Proposition 3.3.4. Let A € C, A ¢ X(L,N) and vr,(AL — N) > 0. Then AL — N s

onto,

Proof: Let y € F, h(z,t) = —ty and
S ={z € dom(L)N E,\Lz — Nz = ty, for somet € [0,1]}.
Then S is bounded. Otherwise there exist 2, € 3, |la,|| = co. Let ¢, € [0,1] be such
that
ALz, — Nz, = t,y.
By Lemma 3.1.3, we have
}\(I — P)'Ln - (AH + [(pQ)N("Bn) = tn(AH -+ IXPPQ)y.

Then
JAU = P)oa = (AIL+ Kpg)N(@n)ll _ [Ita(ATL + Krg)yl
e [zl
This contradicts A ¢ 2(L, N). Let R > 0 be such that S C Bgr. Then

= 0 (n — o0).

ALz — Nz — ty # 0 for 2 € dom(L) N 0Bkg.

By Property 3.2.5, AL — N — y is (0, L, ¢)-epi for some ¢ > 0 on dom(L) N Br. By the
existence result, there exist zo € dom(L) N Br such that ALzg — Nzg =y. Thus AL - N
is onto. o

By Proposition 3.3.4 and Proposition 3.3.3, we obtain the following result.
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Theorem 3.3.5. Assume that X\ € p(L, N), then AL — N is onto.

Theorem 3.3.6. All eigenvalues of (L, N) are in the spectrum of (L, N).

Proof: Suppose there exists 0 # zg € dom(L) such that ALzg — Nag = 0. Then by
Lemma 3.1.3, fi(zo) = 0. Hence m(fy) =0 and A € o(L, N). =i

Now, we will prove that the spectrum of semilinear operators is closed.

Theorem 3.3.7. p(L, N) is an open set and o(L, N) is closed.

Proof: Suppose A1 € p(L, N). Let ), be such that

A2 = M| < min{w(fi,), v(£3,), m(£0)/IT = Pl
Then f, = fi, + (A2 — M) = P). So,

w(fis) 2 w(fi) — a2 = M) = P)) = w(fa) — |2 — M| > 0.
Also, we have
12 @) = A @) = 122 = Ml[(Z = Pzl = (m(fx,) — A2 = ML = P)Dlle]l.
Thus m(fy,) > 0 . Let h(t, ) = t(Ay — \)(I = P)z, t € [0,1]. Then
a(h) < A = M| < v(fy)
and h(0,z) =0 for all @ € E. If fy, () + (A — M)(I — P)z = 0, then
m(A)llll < 1@< e = Ml = Pl

Hence = = 0. Since f, is (0,&)-epi on every ball for some £ > 0, by Property 1.4.7, f,,
is (0,& — a(h))-epi on it. Thus v(fy,) > 0, AeL — N is regular, so, Aa € p(L, N). O

In the following, we shall study some properties of regular mappings.
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|
:

Proposition 3.3.8. Let AL—N : dom(L) — F be a regular map, g : £ — I be a L-k-set

contraction with k < min{w(f\),»(f))}. Assume that there exists constant 0 < I < m(f))

such that

[(ATL + Kpg)g()|| < ||z for all ¢ € B,

Then AL — N + g ts reqular,

Proof: It is easy to see that f\(L, N —g) = f -+ H'g. So,

w(fr(L, N = g)) 2 w(fy) = a(H™g) Z w(fy) =k > 0.

Next, we have
IF5(Ly N = g)(z)lf = (m(fx) = D=,

thus m(fy(L, N — g)) > 0. Let h(t,z) = t(AIl + Kpg)g(z). Then
a(h) < o Kpgg) < v(fy).
If fa(x) + A(t,z) = 0, we have

m(fy)

|zl < [[/x(@)ll = 1AL+ Kpq)g(2)l| < U]l

By our assumption, 2 = 0. Thus
S={ze€ E: filz) +t(AIl + Kpg)g(z) = 0 for some t € [0,1]}

is bounded. Let k& < e < v(f)), by Property 1.4.7, fA(L, N — g) is (0, (¢ — & Kpgg)))-epi
on every ball. Thus, v(f\(L, N — g)) > 0. We have proved that AL — N 4+ g is regular.
O

In [31], the concept of regular map for L — N, when N is also linear, was defined. The
following theorem shows that regular maps according to Definition 3.3.1 for L — N when

N is linear is exactly same as the definition given in [31].

Theorem 3.3.9. Suppose N is a linear operator. Then A\, — N is regular if and only if

AL — N has a continuous tnverse.




Proof: If AL — N 1is regular, it is one to one, onto and there exists m > 0 such that
AL — N)(2)|| = m||z||. So (AL — N)~! is a continuous operator.

On the other hand, assume that AL — N has a continuous inverse. If there exists
2o € I such that fi(wg) = 0, then by Lemma 3.1.3, ALag — Nag = 0. Thus 2o = 0, so
that f) is one to one.

Let 2’ € E and yp = Hz'. Since AL — N is onto, there exists @9 € dom(L) such that
Aag — Nzo = yo. This implies that f\(zo) = H 'yo = a’. Hence, f\ : E — E is onto.
Since fy is continuous, f;' is also continuous. By Proposition 3.2.1 of [16}, w(fy) > 0.
Let m’ > 0 be such that || f;*()]| < m/||z|| for every @ € E. Then || fi(z)|| > (1/m")||z||.
Thus m(f,) > 0.

Furthermore, for every bounded subset § C F, let A = f;'(5), then A is a bounded
subset of E.

w(fr)a(A) < a(fr(A)) = a(f71(9)) < (1/w(fr))al(S).

Hence f) : O, — F'is continuous, injective and 1/w(f))-proper (where O, = {2 € F :
llz|| < r}). Since fi' is continuous, f1(O,) is an open set. By Theorem 2.3 of [65], fx
is (0,k)-epi for 0 < k < w(f). Hence v(f\) > 0. By the above arguments, AL — N is
vegular. O

Corollary 3.3.10. If N is a linear operator and L+ N is regular, then L+ N is (0, L, ¢)-
epi for all e < w(f).

Remark 3.3.11. From the above theorem, we obtain that if N is a linear operator,

X € p(L,N) if and only if A is a regular value for (L, N), as defined in [31].

Proposition 8.3.12. Let ul.— N : E — F be reqular and h : £ — I be a mapping such
that there exists r > 0, h is a L-k-set contraction on B, and ||h(z)|| < I]|z|| (! > 0) for

all x € B,. Then there exists € > 0 such that the equation

pLe — Nz = Ah(z)
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has a solution xo € I for all A € C with |A\| < ¢.

Proof: Let m : E — B, be the radial retraction of E onto B,. Let g(z) = hm(z). Then

for A € C, we have
a((AIl + Kpg)Ag) = |Na((AIl + Kpg)hn) < |Aka(r) < |Alk.
Forz € F,

I(ATL+ Kpg)Ag(2)f = [H ™ Mr()|
< MIE Tl ()]
OAEE ==l el < v

UANE e Il > 7
< HAIE -

Let € > 0 be such that
ek < min{w(f,), "(f)}, el H | <m(f,), el <m(ul — N).
Then for A € C with |A] <,

Q(Hnl')\g) < min{w(fy), ()}

and
I Ag(@)ll < ell[ H el < mfu)ll]l-
By proposition 3.3.8, pL — N — Ag is regular. So, there exists x¢g € £ such that

pLzo — Nzg = Ag(wo) = Ahm (o).

Moreover we have

m(uL — N)llzo|| < |luLazo — Naof| < |Alir.

Thus,
Ir elr
|| € ———=A| < ———— < 1.
lzol) = m(ul — N)I < m{uLl — N) <
This implies 7(zg) = o, so that pLag — Nzo = Ah(zo). (W




3.4 The decomposition of the spectrum

In this section, we shall discuss the decomposition of the spectrum. As in the earlier case

(see section 1.3), we shall use following symbols:

os(LyN) = {3 w(fy) = 0, (3.3)
om(L,N) = {X:m(f) = 0}, (3.4)
oulLy N) = (A w(fy) = 0}, (3.5)
o(L, N) = 0n(L, N)U au(L, N). (3.6)

Theorem 3.4.1. Suppose that N is a continuous L-k-set contraction, N is an odd map-

ping, A € o(L,N) with |\| > k. Then X € 0,(L, N).

Proof: Firstly we have that
W(fr) 2 N —a(HIN) = |\ =k > 0.

Assume that m(f\) > 0. Then for every @ € E, ||[fa(z)|| = m(fy)||z]. Let r > 0 and
B, = {z : ||z|| € r}. Suppose g : B, = E is an e-set contraction with ¢ < |A| — & and
g(x) =0 on dB,. We shall prove that fy(z) = g(z) has a solution zq € B, \ dB,. Let

h(z) = Pz + (1/A)(AIL + Kpg)Nz + g(x)/ ).

Then
a(h) < (L/]A)(E + a(g)) < (L/|AD(E +¢) < L.

Hence h is a k;-set contraction with &y < 1. For ¢ € 0B,, (I — h)(z) = (1/A)fa(z) # 0.
Also k|sp, is odd. So, d(I — h,0,,0) # 0. Then there exists xp € B, \ 9B, such that

xo = Pzo+ (1/A)(AIl + Kpg)Nazo + g(zo)/ A

Therefore fy is (0,¢)-epi on B,. By the definition, A € p(L, N). This contradicts A €
a(L,N). So, we must have m(fy) = 0. m
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Proposition 3.4.2. Bifurcation points and asymptotic bifurcation points of (L, N) are
in o (L, N).

Proof: Suppose A is a bifurcation point or an asymptotic bifurcation point of (L, N).
Then there exists (A, ¢,) € R x E such that A, — A, |[&,]] = 0 or ||z,|| = oo and

ALz, — Nz, = 0. ’Iw‘hen
An(l — P2, — (Al 4+ Kpg)Nz, = 0.

Hence
AMI — Pz, — (Al + Kpg)Nw, B (A=) = Pz,
|2l a llzll

thus A € o (L, N). O

— 0,

In [31], it was proved that if NV is linear and L-compact, u € C, p is not a regular
value of (L, N), then y is an eigenvalue of (L, N). The following result generalizes this

result.

Theorem 3.4.3. Assume that N is a L-k-set contraction, N is odd and positively ho-
mogeneous. If X € o(L, N) and |A| > k, then X is an eigenvalue of (L, N).

Proof: By Theorem 3.4.1, we know that A € o, (L, N). So, for n € N, there exists x,, € I/
such that

A = P)zn = HT'N(za)|| < (1/n)|2].

Since N is positively homogeneous, we have

INI = P)-  HN (

[l Rl

= )H%O, (n — o0).
Let A = U {z./|lzn||}. Then A is bounded and

w(fn)a(A) < a(fr(A4)) = 0.
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Since N is a L-k-set contraction and |A| > k, w(f,) > 0. This implies that «(4) = 0.

Thus A has a convergent subsequence. Assume that z,/| 2, || = zo, then ||zo]| = 1 and
MI — P)ag — H'N(zo) = 0.

By Lemma 3.1.3, we obtain ALzy — Nz = 0. Thus X is an eigenvalue of (L, N). a

It is known that the boundary of the spectrum of a linear operator is contained in its
approximate point spectrum. In the nonlinear case, the boundary of ., (f) is contained
in o(f) (see section 1.3). Thus if A € 00 m.(f), then d(A — f) =0 or w(A — f) =0. To
prove a similar result in the semilinear case for the boundary of the spectrum, we first

prove the following result.

Proposition 3.4.4. 0,(L,N) and o,(L, N) are closed sets. Let
U={A: A€ (os(L,N)\ 0x(L,N)) and (AL — N is not onto )},

then U 1is an open set.

Proof: (1) Suppose that A\, € (L, N) and A, — A. We shall show that A € ¢,,,(L, N).

Otherwise, there exists m > 0 such that || f\(z)|| = m||z|| for every = € E. Since

_f,\,, = f)\ + ()\n - )\)(I - P)7
we have
(@2 (m = A = Al = PlD[]-
If |An = A <m/||I — Pll, then A, ¢ o,,(L, N). We reach a contradiction.
(2) Suppose A\, € 0,(L,N) and X, = A. If w(f) > 0, then by the following

W(frn) = w(H+ (A =N = P)z) 2 w(f3) = A = Aal,

we obtain that A, ¢ o,(L, N) if |]A — As| < w(f)). Thus w(f)\) =0 and A € o (L, N).
(3) Suppose that A € U, then A € (0.(L,N))°. By (1) and (2), o.(L, N) is closed.
So there exists § > 0 such that for p € C with |p — A < §, u ¢ 0-(L, N). Now assume
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that theve exist w, ¢ U, f,, = A Suppose that |p, — A < §, then w, ¢ o.(L,N). So
tn & os(L,N)\ ox(L, N) implies that p,, ¢ os(L, N). Then p,L — N is regular, hence
is onto. By Lemma 3.1.3, f,, is onto. If u,, € os(L, N)\ o.(L, N), then f,, is also onto
because p, ¢ U.

Therefore, for y € E, there exist ¢, € E such that f,,(z,) = y. Then

loll = ln(L = P)an — (AT + Kpg) Na|
> (@)l = I = AT = Pllifeal
> mlleall = an = M = Pllleall.

Suppose that |, — A < m/2(||1 — P||), then ||z,]| < 2||y]l/m. Thus {z,}$2, is bounded.
Since |[({ — P)azn|| <||I — P||||zx]|, we have

(@) =y + (A= p){I — P)(zn) = y (n — 00).

Then
w(fi)e(Urli{za}) < a(fa (Upli{zn})) < a (UL {/x(za)}) = 0.

Since w(f)) > 0, we obtain « (U2, z,) = 0. Thus {z,}52, has a convergent subsequence.
Let @, — 2o, then fi(z,,) — fi(zo) = y. We have shown that f, is onto, so AL — NV
is onto. This contradicts A € U. By the above argument, there exists é; > 0 such that
| — Al < 8y implies p € U, thus U is an open set. O

The result for the boundary of the spectrum in the semilinear case is the following

one.

Theorem 3.4.5. do(L,N) C {ox(L,N)}U{A: AL — N is onto }.

Proof: Suppose that A € do(L, N). Since o(L, N) is closed, we have A € o(L, N). Assume
that A ¢ o.(L,N) and AL — N is not onto. Then A € U. By Proposition 3.4.4, there
exists § > 0 such that for every g € C with | — A| < §, ¢ € U. On the other hand, there
exist u, ¢ o(L, N) with g, — A. When |p, —A| < &, we have p,, € U. This contradiction
proves that A € (L, N) or AL — N is onto. O

79




Comparing with Proposition 1.3.3, we can prove the following theorem which gives

information about the structure of ¢(L, N) when N is a L-compact map.

Theorem 3.4.6. Let N : E — F be a continuous L-compact map defined on an infinite

dimensional Banach space . Then
1. 0,(L,N) = {0} therefore or(L, N) = {0} U om(L, N).
2.0€o05(L,N)UX(L,N).

3. If0 & on(L,N), then 0 is an interior point of os(L, N).

Proof: (1) For A € C, we have
w(fy) =w(MI = P) = (AIl 4+ Kpg)N) = | Al

So, if A # 0, we have A ¢ o,(L,N).
(2) Since N is L-compact, (AIl + Kpg)N is compact. Let B, = {z € E, |jzl| < n}.
Then

fo(E) = U, (ATL 4 Kpg)N(B).

Since dim(E) == oo, (Al + Kpg)N(B,) is compact, so (AIl + Kpg)N(B,) are nowhere
dense subsets of E. F is of second category, hence fo(E) # E. If 0 ¢ X(L,N) and
0 ¢ os(L,N), by Proposition 3.3.4, fo would be onto. This proves (2).

(3) Suppose 0 ¢ o, (L, N), then 0 is an isolated point of o(L,N). Hence to prove
(3), it is sufficient to show that for A sufficiently small, fy is not onto. Assume to the
contrary that )\n € C, A, — 0, and f,, is onto. Then for each y € F, there exist z, € £
such that

)\n(I - P)’Bn — (AH + I(pQ)NﬁL‘n = —Y.

Hence,

lyll = 1AL+ Kpg)Nanll — [Anlll] = Pllllzall Z m(fo)llzall — [AnlllL = Plilizall-
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For |Ma|||1 — P|| < m(fo)/2, we have ||z,| < 2||yll/m(fo), so {z,}2, is bounded. It
follows that

(AIl + Kpg)N{(zn) = Au(I — Pz, +y — y, (n — 00).

This shows that y € UL, (AIl 4+ Kpg)N(B,). So E = U2, (NI + Kpg)N(B,). By

Baire’s theorem, £, = (Al + Kpg)N(B,) has an interior point for some n. But E,
is compact, this contradicts dim(Z) = oco. Thus for A sufficiently small, A € o(L, N),
A o (L,N). So, we have A € o5(L, N). O

Remark 3.4.7. If N is an odd L-compact mapping, we claim that 0 € o,,,(L, N). Oth-
erwise by Theorem 3.4.6, 0 would be in interior point of os(L, N). By Theorem 3.4.1,
each 0 # X € o(L,N) is in on(L, N). Since o,(L,N) is a closed set, we would have
0 € o, (L, N). This contradicts 0 ¢ o, (L, N).

Proposition 3.4.8. Suppose N is positively homogeneous. Then

om(L, N)\ 0o(L, N) C{X: X is an eigenvalue of (L,N)} C om(L, N).

Proof: Let A € 0,,(L, N)\ 0,(L,N). Then there exist {z,} C E, ||@,|| = 1 such that
AT = PYen — (AIL+ Kpg)N(en)| < % S0 (n — o0).

So, w(fr)a(Usz z,) < a (U2, fiu(zn)) = 0. Now A ¢ o,(L, N) implies that w(fy) > 0.
Hence o (U2, z,) = 0 and {2, } has a convergent subsequence. Suppose that ,, — o,
then ||zo]| = 1 and fa(zo) = 0. By Lemma 3.1.3, AL(zo) — N(zo) = 0. Hence A is an
eigenvalue of (L, N). The other part of the proposition is clear. O

Proposition 3.4.9. C\ (ox(L,N)U{X : AL — N is onto}) C os(L,N) \ 9o(L,N).
Therefore, o(L,N)\ 0c(L,N) C o5(L, N).
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Proof: Let A € C\(ox(L, N)U{A: AL— N is onto}), then A ¢ o.(L, N) and AL — N is not
onto. So A € o5(L, N). By Theorem 3.4.5, A ¢ 0o (L, N). Thus X € o5(L, N)\ do(L, N).
0

3.5 The spectrum of (L, N) when N is asymptotically
linear or positively homogeneous

In this section, we will study the spectrum of (L, N) where N is an asymptotically linear
operator or a positively homogeneous operator. We will use the following symbols. Let
H(L,N) ={A € C: ||ALz — Nz| > m||z|| for some m > 0 and all 2 € dom L}.

O, (L,N)={A & C: there exists a linear operator T : E — F such that
M ~N=T+R, (3.7)

where ker(7T') = {0} and im(7") is closed, ||E(z)||/||z|| = 0 as ||z]] = co}.
Oo(L,N) = {X € C : there exists a linear operator 7' : £ — F such that equation
(3.7) is satisfied, where ker(7") = {0} and im(7") is closed, ||R(z)||/||z|| — 0 as ||z|| — 0}.

Remark 3.5.1. When T : D(T) C H — H is a linear operator, in a Hilbert space H,
the field of regularity II(7") of 1" is defined (see [10]) to be the set of values A € C, for

which there exists a positive constant k such that
[(AL = TY(w)|| = &||u|| for all w € dom(T).
According to this definition, II(L, V) can be called the field of regularity of (L, N).
Lemma 3.5.2. 1. If N is an asymptotically linear operator, then
(L,N) C &4(L,N).

2. If N is differentiable at 0, then II(L, N) C ®o(L, N).
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In the proof of the above lemma, we will use the concept of reduced minimum modulus
of a linear operator. Let T : D(T) C E — F be a bounded linear operator. v(T') is the

greatest number v such that
||| = ~dist(u, ker(T)) for all w € D(T).

v(T) is called the reduced minimum modulus of T' (see [41] p.231). If ker(7") = 0, v(T') is
equal to the minimum modulus of T', which is defined as inf | T'ul| /||| for 0 # w € D(T).
The reduced minimum modulus is useful in proving that 7" has a closed range by the

following theorem.

Theorem 3.5.3. ([41] p.231) T has closed range if and only if v(T') > Q.

Proof of lemma 3.5.2:
(1) Suppose A € TI(L, N) and m > 0 with ||[(AL — N)z|| > m||z|| for all 2 € E. Since

N is asymptotically linear, we can write
AL —-N =T+ R,

where T is linear and ||R(z)||/||z|| = 0 as ||z|| = co. Assume that xq € E and T'zo = 0.

If z¢ # 0, then
|| B(nao) |l

> m.
[[noll

This contradicts | R(z)||/||z]| = 0 as ||z|]] = co. Hence ker(T') = 0. For every yo € E

with ||yo|| = 1, we have
| Tryo + R(nyo)|| = mn, so | Tyo + R(nyo)/n|| = m.

Let n — oo, we obtain ||T(yo)l| = m. Thus the reduced minimum modulus of 7' is
positive, so by Theorem 3.5.3, im(7") is closed. Hence A € (L, N).
(2)Follows by exactly similar arguments to case (1). 0

By using the above lemma, we can prove the following result.
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Proposition 3.5.4. Let L : E — F be a Fredholm operator of index 0. Suppose N is

an asymptotically linear operator and is a L-k-set contraction. Assume that
N =1[1- R,

where [ is linear, R is compact and ||R(z)||/||z]] = 0 as ||¢|| = oo. If A € o(L,N) and
|A| > &, then A € o (L, N).

Proof: Since |A| > k, w(AL — N) > 0, so A ¢ o,(L,N). Assume that A ¢ o,,(L, N), then
A€ 1I(L, N). By the proof of (1) of Lemma 3.5.2, A € &, (L, N) and

M - N=T+E,

where T'= AL — [ : E — [ is a linear operator, ker(T) = {0} and im(T") is closed. By
Lemma 3.1.3,

AI~-P)—H'N=H"'T+H"'R

H™T : E — E is a linear isomorphism, so H™1T is (0,¢)-epi for some 0 < & < II_H‘LI’TMI_I
(see [65]). Let
U= {a: H'Ta+tH 'Rz =0,t €[0,1]}.

Then U is bounded. Otherwise there would exist z, € E with ||z,]| — oo, such that
H7'T (zn/|lwnll) = —ta H ™ (R(zn)/[|2nll) = 0 as (n — o0).

Thus T'(z,/||zx]]}) — 0 as n = co. This contradicts the fact that im(7") is closed. Hence

for r; sufficiently large, if z € £ with {|z|| = r1, we have
H™'Tx +tH™'Re # 0.
This ensures that H='T + H~'R is (0,¢)-epi on B,,. Since
(H™'T + H7'R)7{0} = f;{0} = {0},

we have H™!T + H7'R is (0,£)-epi on every ball B. with r > 0. By the definition,
A € p(L,N). This contradiction shows that A € on(L, N). O
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Corollary 3.5.5. Suppose that N is linear and is a L-k-set contraction. If A € o(L, N)
and |A| > k, then A is an eigenvalue of (L, N).

Remark 3.5.6. The above corollary extends Theorem 5.3.3 of [70], where L is the iden-

tity map.

Proposition 3.5.7. Suppose that T is a positively homogeneous L-k-set contraction.
X € o(L,T) with |\| > k. Then there exists t € (0,1], such that A/t is an eigenvalue of
(L, (I -Q)T).

Proof: Assume that m(fy) = 0. Then there exist {z,} € E, such that

LTn

llznll

Since |A| > k, w(fy) > 0. So {zn/||zx||} has a convergent subsequence. Assume that

C(ATT+ Kpo)T [ <22 V1< L 550, (n — o).
@ n

[l

-7 (

{zn/llzn||} = 2o, then fi(zo) = 0. Hence
ALao = Two = QTzo + (I — Q)T'zo.

This implies that ALzg = (I — @)T'2z¢. Thus A is an eigenvalue of (L, (] — Q)T). In this
case t = 1.

Now suppose that m(fy) > 0. Let
S={z€ E:Ax—tA\Pzx—1(All+Kpg)Tax =0, t € [0,1]}.Wehavethefollowingtwocases.
(1)There exist @, € S with ||z,|| = co. Let y, = z,/||@,}|, then
AYn) = taAP(yn) — ta(AIL+ Kpg)T (ya) = 0,
where ¢, € [0,1]. Suppose that ¢, — to € [0, 1], then

A(Yn) — toAP(yn) — to(AIl + Kpo)T (yn)

= (ta — t0)AP(yn) + (ta — to) (ALl + KpQ)T (yn).
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So

a({yn e )w(AL — toAP — to(AIl + Kpg)T")

< ayn — toAPY, — to(All + Kpg) Ty, = 0.

Since [A| > &, w(AM — AP — to(AIl + Kpg)T) > 0. Thus o({ya}2,) = 0. So {y.}e,

has a convergent subsequence. Suppose that y,, — zo. Then we have
Azg — toAPrg — to(AIl + Kpg)Tzo = 0.
Since ||zo|| = 1, to # 0. Then
MI — P)zg — tolpgTaq = toAPxg — APz -+ toAllT %o € ker(L).
But A/ — P)zo — tolpgTao € £, Ndom(L), so we have
AMI — P)ap = toLp (I — @Q)To.
Thus
(AMto)Lag — (I — Q)T =0,

and A/tg is an eigenvalue of (L, ([ — @)T).
Now assume that there exists R > 0 such that S C Br\0Bg. Then for every z € 0Bg

we have

Az — tAP(z) — (Al 4+ Kpg)T(z) # 0, ¢t € [0,1].
By Property 1.4.7, Al — AP — (AIl + Kpg)T' is (0,¢)-epi for some ¢ > 0 on Br. By our
assumption, m(fy) > 0. Thus f is (0,¢)-epi on every B, with » > 0 . Hence v(f\) > 0.
This shows that fy is regular and A € p(L,T), which contradicts A € o(L,T). The above

arguments complete the proof. O

The following corollary is obvious.

Corollary 3.5.8. Suppose T is a posttively homogeneous L-k-set contraction. If the
eigenvalues of (L, (I — Q)T") are bounded, then o(L,T) is bounded.
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Proposition 3.5.9. Suppose T' = B+ R, where B is a linear operator, either JJ%%M —0

as ||z]| = 0o or as ||z|| = 0. If A is an eigenvalue of (L, B), then XA € o(L,T).

Proof: Let xp € E, zg # 0 be such that ALag— Bae = 0. If ||R(2)||/||z|| — 0 as ||z]| — oo,

then
AL(nzo) — T'(nzo)
n

Thus m(AL,T) =0, and A € o(L,T). If | R(z)]|/||z}l = 0 as ||z|| — 0, then

AL(zo/n) — T'(xo/n)
1/n

— 0.

— 0, (n — oo0).

Hence A € o(L,T). Ol

3.6 Applications of the spectral theory

By applying the spectral theory for semilinear operators, we can extend some existence
results for semilinear operator equations. The first theorem in this section generalizes
Corollary 1 in [45], which has been widely applied to the study of differential equations.

In [45], the mapping A was assumed to be linear and L-compact, and N was L-compact.

Theorem 3.6.1. Let A: E — F be an odd and positively homogeneous operator, which
is a L-ky-set contraction on the unit closed ball of E and such that ker(L — A) = {0}. If
0 and N :Q — F is a L-ke-set contraction with

Lz # (1 —t)Az +tNa for all t € [0,1], 2 € dom(L) N 0,

then the equation

Lz = Nz

has at least one solution in dom(L) N provided that 2k; + kq < 1.

Proof: Since ker(L — A) = {0}, 1 is not an eigenvalue of (L, A). By Theorem 3.4.3,
1 € p(L,A). Theorem 3.4.1 and Remark 2.2.5 imply that f; = (I — P) — (AIl + Kpg)A
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is (0,¢) -epi on Q for every 0 < & < 1—k;. So by Proposition 3.3.3, L — A is (0, L, €)-epi
on § for every 0 <e <1 —k;. Let h:[0,1] x @ — F be defined by

h(t,z) = tAx — tNz, t € [0,1].
Then h(0,2) = 0, h is a L-(ky + k2)-set contraction and for all @ € dom(L)NaK, ¢ € [0,1],
Le — Az + h(t,z) = Lo — (1 —t)Az — tNz # 0.

By the Property 3.2.5, L — N is (0, L,e)-epi for 0 < € < 1 — 2k; — ky. So there exists
zo € } such that Lzg = Nazg. O

Suppose that T': £ — F'is a k-set contraction and is asymptotically linear. It was
proved in Lemma XI.3 of [31] that if 0 < k£ < w(L) and B is the asymptotic derivative of
T, and im(T — B) C im(L — B), then Lz — T'z = 0 has a solution. In the following, by
using a different method, we obtain a different condition for the existence of a solution

of equation ALz — Tz = 0.

Theorem 3.6.2. Suppose that T is an asymptotically linear operator and a k-set con-
traction with constant k, B is the asymptotic derivative of T. Let A € C with |A| >
3k/w(L). Then ALz — Ta = 0 has a solulion provided that X\ is not an eigenvalue of
(L, B).

Proof: Suppose that A is not an eigenvalue of (L, B). Since T is a k-set contraction, B is
also a k-set contraction with a(B) = k < |Ajw(L) [66]. So AL — B is a Fredholm operator
of index zero [31]. Let P : E — ker(AL — B) be the projector, J : F; — ker(AL — B) be
the linear isomorphism, where F} is a subspace of F' with Fy} @im(AL — B) = F. Suppose
that 7= B + R and let

S={z:ALz — Ba — J 'Pz+t[J 'Pz— R(2)] = 0,t € [0,1]}.

Case (1). Assume that there exist z, € S with ||z,]] — oco. Let yn = z,/|jzs| and

t, € [0,1] be such that

Ay, — By, — J Py, +t,J ' Py, = 0, (n = o0).
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Since J~'P is compact, we can assume that
J Py, — toJ T Py, — yo € Fu, (n = o0).

Then

ALYy, — Byn — Yo, (n — o0).
Since [A| > a(B)/w(L), we obtain w(AL — B) > 0 and a({y,}:2,) = 0. Suppose that
Yn, — Zo. Then ||zo]] =1 and

ALyn, —+ Yo + B(o).

Since L is a closed operator, ALzg — Bzg = yo € Fj. This ensures that ALzy — Bz = 0.
Hence A is an eigenvalue of (L, B). This contradicts our assumption.

Case (2). Suppose that there exists 7 > 0 such that for all z € 9B, we have
Mz — Bz — J 'Pz+t[J 'Pz— Re] #0, t €[0,1].

Since AL — B — J7'P is one to one and J~!P is a linear compact operator, by Theorem

3.4.3,1€ p(AL — B,J'P). Thus AL — B— J7'P is regular. Let L, = AL — B, and
fi(z) = (I — Pz — (Al + Kpg)J ™' Pz.

By Theorem 3.3.9, fi is (0,e)-epi for any ¢ < w(f1) = 1. Also by Proposition 3.3.3,
L1 —J7 1P is (0, Ly,e)-epi for every € < 1. Let

H(z,t) = t[J Pz — R(z)],
and note that a(H) < a(R). Since |A| > 3k/w(L), we have
a(R) = a(T — B) < 2k < |Mw(L) —k < |Mw(L) — a(B) L w(AL — B) = w(Ly).

Hence H is a L;-k-set contraction with & = a(R)/w(L1) < 1 [31]. Now suppose that
a(R)/w(Ly) < &1 < 1, then Ly — J7'P is (0, Ly,e1)-epi . Again by Property 3.2.5, we
obtain that

Lix —J 'Px+ H(z,1) =ML - T

is (0, Ly, e)-epi for some € > 0 on B,. Hence there exists 29 € £ such that ALzg—T2 = 0.

We are done. ]
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Corollary 3.6.3. In Theorem 3.6.2, if T(0) # 0, then either X is an eigenvalue of (L, B)

or A is an eigenvalue of (L, T).

Theorem 3.6.4. Let N : E — F be L-compact and A : E — F be an odd, positively

homogeneous operator which is L-compact. Suppose that
1. ker(L + A) = {0}.
2. S ={Ax — Na,z € F} is bounded.

Then L+ N maps dom(L) onto F.

Proof: Since ker(L 4+ A) = {0}, 1 is not an eigenvalue of (L, A). By Theorem 3.4.3,
1 € p(L,A). Thus there exists € > 0 such that L + A'is (0, L, &)-epi on every ball B, and
m(fi(L,A)) > 0. Let h: E — F be a bounded, continuous L-compact map, and assume
that the support of & is bounded. Then there exists a ball B, D supp(h). So h(z) =0
for € dB,. By the definition of (0, L, €)-epi mappings, the equation Lz + Az = h(z)
has a solution = € dom(L) N B,. By Theorem 3.1.5, L + A is L-stably solvable. For any
y € F,let
ha(t,z) = tAz — tNe + ty.

Then h; is a L-compact map. Let
So={z € E: Lz + Az = hy(t, z) for some t € [0,1]}.

Since ||h1(t, 2)|| < ||Az — Nz|| + ||ly]|, we obtain that {L + A)(So) is bounded. Theorem

3.1.7 ensures that there exists g € dom(L) such that
Lao+ Az = Axg — Nzo + v,

thus L + N is onto. n
In [46], Mawhin gave some existence theorems of Leray-Schauder type. The following

theorem generalizes Theorem 2.2 of that paper.
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Theorem 3.6.5. Lel ) be an open bounded connected and convex subset of I and 0 € ).
Let N : Q — F be a L-ky-set contraction. Let A: E — F be a linear L-kq-set contraction
and b : Q@ — F be a L-compact map such that

(1) h(0) C (L 4 A)(dom(L) N Q).

(2) ker(L 4+ A) = {0}.

(3) Lv + (1 —t)(Az — ha) +tNz # 0 for z € 00 Ndom(L) and t € (0,1).

(4) k1 + 2ke < 1.

Then the equation Lz + Nz = 0 has at least one solution in dom(L) N .

Proof: The condition ker(L+A) = {0} implies that 1 € p(L, A) since A is a linear L-ky-set
contraction with k; < 1. So by Corollary 3.3.10, L+ A is (0, L, k)-epi for every k < w(f),
where f = (I — P) — (All + Kpg)A and w(f) > 1 — ke. Let hy(¢,2) = th(z). Then
hi(t,z):[0,1] x @ — Fis a L-compact map. Assume that there exists z9 € 92N dom(L)
such that
Lz + Axzg - toh(zo) = 0.
Then
Lzg + Azg = toh(wo) = to(L + A)zy,

where z; € dom(L) N Q. Thus z¢ = tpzy, to € [0,1]. This contradicts the connectedness
and convexity of . Hence for z € 902N dom(L), we have

Lz + Az # th(z).

By Property 3.2.5, we obtain that L + A — h is (0, L, k)-epi for every £ < w(f) on
dom(L) N Q. Let hy : [0,1] x § — F be defined by

hy(t,2) = t{(Az — h(z)) + tNa.

Then hy is a L-(ka + ky)-set contraction and ko + &y < 1 —ky < w(f). The assumption (3)
and Property 3.2.5 imply that L + N : dom(L) N — F is a (0, L, &)-epi for some € > 0.
Hence there exists zp € dom(L) N Q which is a solution of the equation Lz + Nz = 0.

tl
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Remark 3.6.6. In Theorem 3.6.5, let ki = ky = 0, h: @ — F be defined by A(z) = =z
with z € (L 4+ A)(dom(L) N Q). Then this Theorem reduces to Theorem 2.2 of [46].
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Chapter 4

Surjectivity results for nonlinear
mappings without oddness

conditions

The results in this Chapter follow the work of Fuéik, Necas, Soucek and Soucek in [12].
Much of this is joint work with J.R.L. Webb and has been published in [21].

The authors of [12] gave theorems for operators of the form AT — S of Fredholm
alternative type under the assumptions that 7' is an odd (KX, L, a)-homeomorphism and
S: X =Y is an odd compact operator. Furthermore, they showed that the existence of

a solution of the nonlinear operator equation

AT (z) — S(z)=f (4.1)

for each f € Y provided A # 0 if T is an odd a-homogeneous and S is an odd b-strongly
quasihomogeneous with @ > b (the definitions will be given later). In the case @ < b they
proved the same assertion in finite dimensional spaces but said it was unsolved in the
infinite-dimensional case.

In this chapter, we shall obtain some surjectivity results on the mapping AT — S

under weaker conditions. One of the theorems generalizes the result of existence of a
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solution of (4.1) in case a < b to the infinite-dimensional case. These results seem not
to be able to be proven by their methods. We conclude with some examples of ordinary
differential equations to which by applying the theorems some conditions for the existence

of a solution can be obtained.

4.1 Surjectivity theorems

Given any continuous map f from a complex Banach space X into a Banach space Y/,
let  C X be a bounded set and let a(Q), a(f), w(f), d(f) and |f| be defined as in
Chapter 1. We will also make use the spectrum o y,( f), which was introduced in 1.3 of
Chapter 1. The authors of [12] studied operators T' that are (K, L, a)-homeomorphisms,
where a (not necessarily linear) map 7' : X — Y is said to be a (K, L, a)-homeomorphism
if

(a) T'is a homeomorphism of X onto Y, and

(b) there exists real numbers K > 0,a > 0, L > 0 such that

Liz||* < ||T(2)|| £ K||z||* for each z € X.

Theorem 1.2 of [12] and its generalization Theorem 1.2’ of [6] contain an error which

makes part of their results false. The following is a correct version of their results.

Theorem 4.1.1. LetT be an odd (I, L, a)-homeomorphism of X ontoY and S : X — Y

be an odd compact operator. Let

A= limsup —— “SI“ and B :=liminf ~—= 52|

lall-voo [l lefiree [l
(A and B can be +o00). Then for || ¢ [B/K,A/L]U {0} the operator AT — S maps X
onto Y.

Proof: By Theorem 1.1 of [12], to prove the assertion it is sufficient to show that
|ATz — Sz|| = o0 as ||z|]| = o0 if |A| > A/ L or |A]| < B/K.
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Suppose that there exist ||z,|| = co with ||ATz, — Sz,|| bounded. Then

ATzl _ [

[ealle llzall®

Now
T2l

leall®

L < < K, for every n € N,

so when |A| > A/L,

limsupm = limsuplj\min|| > ML > A,

oo [lanflt T Tnoees  laalle T
a contradiction. Similarly when [A| < B/K,

San
lim inf”L|| <MK < B,

oo |zl

another contradiction. When B = oo, ||Saa.|l/||@a]|* — oo and (4.2) is contradicted for

every A. O

Remark 4.1.2. Theorem 1.2 of {12] claims the same result if |A| ¢ [A/K, A/LjU {0}.

The following simple examples show that this is incorrect and that the estimates || <

B/K and |A| > A/L are sharp.

Example 4.1.3. Let T and S : C — C be defined by
T(z) =z, S(z) = z(1/2 4 (1/2)|sinz|), where z = z + zy.

Thenae =1, K =L =1, T and S are both odd. Also A=1, B=1/2, 5,T are compact
maps. Let A =1/2 = B/K < A/K. Then AT — S is not onto since z/2 — S(z) = i has
no solution. Otherwise there would exist z such that z|sin x| = —21, so z must be totally

imaginary. But then sinz = 0 so we have the impossible equation 0 = 2.

Example 4.1.4. Let T be as in example 4.1.3 and let S(z) = 2(1/2 + (1/2)] cos z|).
Then a, K, L, A, B are as in example 4.1.3. Let A =1 = A/L. Then AT — § is not onto

since z(1 — | cos ¢|) = 2 has no solution.
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Remark 4.1.5. Theorem 1.2" of [6] claims that if A = co, then AT — S is surjective
for every A # 0. The next example shows that this is not true and that the estimate

|[A| < B/K is also sharp in the case A = co.

Example 4.1.6. Let T be as in example 4.1.3 and let S(z) = z + |z|2(1 — cos ). Then
A=ocoand B=1. Let A\=1= B/K. Then AT — S is not onto since |z|2(1 —cosz) =1

has no solution.
The next result generalizes Theorem 4.1.1 by allowing more general operators.

Theorem 4.1.7. Let T : D(T) C X — Y be an operator satisfying the following condi-

tions:
1. T is one to one, onto and T~ : Y — D(T) is continuous;

2. There exist real numbers L > 0,a > 0 and b > 0 such that

IT (=)l 2 Lijz[|* =& for every x € D(T);

3. T is bounded, that is, maps bounded sets into bounded sets.
Let S : X — Y be bounded, conlinuous and suppose that

lim sup “S(’L)” = A.
eD(T), lallseo ||

Then AT — S maps D(T') onto Y under any one of the following conditions.

s
1. |Al > max{4, EJ(T%}
2. S is compact, and |\ > £.

3. Y is a finite dimensional space, and |A| > 2.

4. S is compact, A =0, and A # 0.




Proof: Clearly it suflices to prove case 1. Also it is clear that AT — S maps D(T") onto Y
if I — F maps Y onto Y where F': Y — Y is defined by F(y) = ST (y/X).

For every bounded set Q C Y, we have

() = a(ST7HR/A))

< (ST Ha(0/N)
1 a9)
= e

Therefore,

alF) <
)= D)
(If 5 is compact or F' is finite dimensional, then «(F) = 0.]

Also we have,

[F] = limsup|[[F(y) I/ [yl

|yll—+co

= limsup [ ST~ (y/V]I/ Iyl

]| =0

Writing = = T '(y/A), we have Tz = y/), and we obtain

. 1S ()l
|F| = limsup
I Tal—e0 (A T2l
: [5(=)ll
= lim sup
2€D(T), lel| oo [AlIT]|
. 15 (=)l
lim sup
weD(T), llali—oo |A|(L{[]|* — 0)
A

= —— < 1.
L <

IA

Hence, by theorem 1.3.2, 1 € p(F) , in particular [ — F maps Y onto Y. ]

Remark 4.1.8. A result similar to Theorem 4.1.7 was obtained in [69], where a different

method was used.

We recall the following concepts from [12].




Definition 4.1.9. Suppose that a > 0.
(a) A map Fo: X — Y is called a-homogeneous if Fy(tu) = t2Fy(u) for every ¢t > 0
and u € X.
(b) FF: X — Y is said to be a-quasihomogeneous relative to [ if Fop : X — VY is
a-homogeneous and
ta \¢ 0, Uy = ug, thF(un/t,) =g €Y
together imply that ¢ = Fo(uo). [Here u, — uo denotes weak convergence.]

(c) FF: X =Y is said to be a-strongly quasihomogeneous relative to Fy if

tn ¢ 0, u, = ug imply that % F(u,/t,) = Fo(uw) € Y.

It is known [12] that in case (¢) Fp is a-homogeneous and also must be strongly

continuous, that is v, — v implies Fou, — Foug

By applying Theorem 4.1.7 instead of Corollary 1.1 of [12] , we obtain the following
generalization of Theorem 4.1 of [12], where we can dispense with the assumption that

T, S are odd maps.

Theorem 4.1.10. Let X be reflexive and let T' satisfy the conditions of Theorem 4.1.7.
Let S : X — Y be a compact b-strongly quasihomogeneous operator relative to Sy and

suppose that a > b. Then for A # 0, AT — S maps D(T') onto Y.

Proof: By Theorem 4.1.7 part 4, it suffices to show that

lim sup M =0
lizl|~roo,zeD(T)  [|2][®

This was proved in Theorem 4.1 of [12] but we include the proof for completeness. If this is
false, there is a sequence {2, } with ||2.|| — oo and € > 0 such that ||Sz,lj/||z.||* = €, for
all sufficiently large n. Letting u, = 2, /||z.|| and ¢, = 1/||z,|| we have, for a subsequence,
that

S(@n)/|lzall® = So(uo)

Since a > b this gives S(z,)/||z.]|* = 0, a contradiction. a
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Remark 4.1.11. The authors of [12] say that the case a < b seems to be unsolved in

the infinite dimensional case. We shall give an answer below, see Theorem 4.1.16.

We introduce the following extension of the concept of stably solvable maps (see 1.1

of Chapter 1) which is appropriate to our needs.

Definition 4.1.12. A continuous map f : D(f) € X — Y is said to be a-stably-solvable

for some a > 0 if the equation

has a solution @ € D(f) for any continuous compact map o : X — Y with

|he = limsupw =0

llefleo l12ll8

Lemma 4.1.13. Suppose T : D(T) C X — Y is as in Theorem 4.1.7. Then T is

a-stably-solvable.

Proof: Let h: X — Y be a compact map with |h|, = 0. Then o(T"*h) = 0, and

17" A)] (llh(w)ll)%
[l

o (D)F (IR
< limsup (—) ( — 0.
[|lz||+eo L ”m“a

Therefore, [T'~*h| = 0. This implies that 1 € p(T'h), so that I — T'h is onto, that is,

T h(z
lim sup 1T A (@)l = limsup .
leflee ]l llefi>eo [[A(2)]|2

there exists @ € D(T) such that « = T~*A(x), that is, Tz = ha. O

Lemma 4.1.14. (The Continuation Principle for a-stably-solvable maps)
Let f: D(f) € X — Y be a-stably-solvable , h + X x [0,1] = Y be continuous,
compact and such that h(z,0) = 0 for all x € D(f). Let

U={z e D(f), f(z)=h(z,t) forsome te0,1]}.
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Then, if f(U) is bounded, the equation

f(@) = h(z,1)

has a solution.

Proof: Let O, = {y € Y, |ly|| < r}, and let r > 0 be chosen so that f(U) C O,. Let

@ :Y — [0,1] be continuous and such that

() = 1, forye T(_m,
0, for |yl >r,

and let 7 be the radial retraction of Y onto B, = O,. Then the equation

f(z) = mh(z,¢(f()))
has a solution g € D(f) since wh is compact and

|th|, = lim k) )| = (.
llzllvoo [|2f|®

If |jf(zo)ll > 7, then @(f(zo)) = 0, and f(wo) = wh(zo,0) = 0, a contradiction. Thus
If(z0)]] < 7, and f(xo) = h(zo,(f(z0))), which shows that zq € U and therefore
f(zo) = (20, 1). O

Theorem 3.1 of [12] gave theorems of Fredholm alternative type for the couple (7', 5)
when T, S were both odd. Recall that A is said to be an eigenvalue for the couple (T, So)
if there is zg # 0 such that ATpzg — Soxg = 0. Using Lemmas 4.1.13 and 4.1.14 we can

give the following result when neither 7" nor S is odd.

Theorem 4.1.15. Let X be a reflexive Banach space, and let I' be as in Theorem 4.1.7
with D(T') = X and also a-quasihomogeneous relative to Ty. Let S : X — Y be a
compact a-strongly-quasihomogeneous operator relative to So. If A # 0, and for every

t € (0,1], A/t is not an eigenvalue for the couple (1o, So), then AT — S maps X onto Y.
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Proof: For arbitrary y € Y, let
U={zeX, \T(z)=h(z,t) =t[S(z)+y], t€[0,1]},
We show that U is bounded. If not, there exists v, C U, ||@.|| — oo, such that

AT (@n) = ta[S(2n) + 4], t. €]0,1],

so that
AT () (S(asn) y )
= i, +
|2l llzall® ~ llwn|l
1 rvn/llfvnll) y
= 1, S + .
flwnl® ( 1/l@all |2l

Without loss of generality we assume that @,/||z.|| = o, tn — to € [0,1]. Then there

exists a subsequence {z,, } such that

N (a:nk/n:cnkn

et \ L el

lim AT (@)

il (A

) —r t()So(.'l}(]),

= toSo((L‘o).

Since 7' is a-quasihomogeneous relative to T, we obtain
AT()(CUO) = toSo(afo).

However,
[AT (2, )l Al
llzn,[|® [l ]1*

for ny, sufficiently large so that ||2050(wo)|| > 0. Hence to # 0, and So(zo) # 0.

> AL — >0,

From the definition of a-strongly-quasihomogeneous operator it is easy to show that
S0(0) = 0. Thus zg # 0, and A/tg is an eigenvalue of (Tp, So), a contradiction. Thus U is
bounded. By Lemma 4.1.13, \XT': X = Y is a-stably-solvable. So by Lemma 4.1.14, the
equation AT'(z) = S(z) + y has a solution z € X, that is AT — S is onto. O

The next two results extend Theorem 4.2 of [12] to the infinite dimensional case.

Theorem 4.1.16. Let X be a reflexive Banach space. Let T' be a bounded, odd mapping

satisfying the following conditions.
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1. T:D(T)CX Y is one to one, onto and T : Y — D(T) is continuous.
2. There exist real numbers K > 0,a > 0 and ¢ such that

1T(z)|| < K||z||* + ¢ for every =z € D(T).

Suppose that S is odd, continuous and b-strongly quasihomogeneous relative to Sp, and
that inf (jje)=1}||So(z)]| > 0. If a < b, then for every A with |A| > a(S)/w(T), AT — S 1s

a-stably-solvable.

Proof: First we show that there exists R > 0 such that Az — T"'Sz # 0 whenever

||z}l = R. If there exists {z,} C X, ||an|| = oo such that
ATy — T_IS(:L‘R) =0

we may assume that “_:,?ﬂ — @9, Then we have
¢l

[Sa)ll _ [Tl o A2l + ¢
llall® leall® = llaall®

Since S is b-strongly quasihomogeneous relative to Sy, we have

- 0.

IE S S W )
Tl @) = o ( VN ) = Sofao).

As Sy is strongly continuous we also have Sy (“i—iﬂ) —+ So(o). Since infjjg= |{So(z)|| > 0
it follows that So(xg) # 0, this contradicts the above. Let O, = {z € X, ||z|| < r}, where
r > R. Then a(T™!S) < |A] and the topological degree d (I — T'S/A, O,, 0) is odd,
hence nonzero (see, for example, [7]). For a compact operator 4 : X — Y with h = 0 for
lell =7,

d(I=T7'S/X=T7 h/), Oy, 0) £0

because of boundary value dependence of degree.

For each n € N let ¢, be continuous, 0 < ¢, < 1 and such that

I for ||z]| < n,
on(z) =
0 for ||z|| = 2n.
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Then, if A : X — Y is a compact operator with |h|, = 0, for every n > R/2, the equation
AT (z) — S(z) = ou(a)h(z)

has a solution &, € D(T). If for all n, we have ||z,]| > n, then
NT(20) = 8(2a) _ oul(za)h(za)
N P
Assume that @, /||zs| = zo. Then from
AT (2n) — S(zn)

lwall?

— —So(z0) #0 (n — 00),

and

onlenb(e) _ b el
T U T P

we reach a contradiction. Hence there exists n, such that ||z,|| < n, and then
AT (zn) — S(zn) = h(zy),

and we are done. O

Theorem 4.1.17. Let X be a reflexive Banach space, T,Ty : D(T) — Y and S,5; :
X =Y be of the form T =Ty + R, §= 51+ R, where T\ satisfies the same conditions
as T in Theorem 4.1.16, St is odd, continuous and b-strongly quasihomogeneous relative
to Sy, and R,R' : X — Y are compact operators with |R|, = |R/|, = 0. Suppose that
a < b, and that infgey=1}||So(z)|| > 0. Then AT — 5 maps D(T') onto Y for every A wilh
A > a(S)/w(T).

Proof: Fory € Y, let h(z) = —AR(z) + R'(2) + v, so that A is compact and |h|, = 0. By

Theorem 4.1.16, the equation
ATi(z) — Si(z) = h(z)
has a solution xq € D(T'). Hence
AT(wo) — S(z0) = v,
that is AT — S is onto. O
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Remark 4.1.18. The author of {6] claims that if T is an odd (X, L, a)-homeomorphism,
S is an odd, compact and b-strongly quasihomogeneous relative to Sp, Sp Z 0 and a < b,
then AT — S is surjective for all A # 0. His proof contains an error. In our theorem 4.1.16,

we are only able to prove the result under the stronger condition inf e =13||So(2)|| > 0.

4.2 Applications of the theorems

The following applications are examples of situations that can be settled by the theorems

in section 4.1, but apparently cannot be handled by the results in [12].

Example 4.2.1. We consider a nonlinear Sturm-Liouville problem on an unbounded

domain, namely the following nonlinear differential equation:

—(p(2)w'(2)) + g(@)u(z) = Mu(e) + g(z)f (u(z))},
for 2 €(0,00), and u{0) =0.

(4.3)

In [66] it was shown that certain eigenvalues A are asymptotic bifurcation points. Under

the same assumptions we will show that if v is continuous, the equation

—(p(2)u'(2))" + g(z)u(z) = Mu(z) + 9(z)f(w(z))} + v(z)
for 2 €(0,00), and u(0)=0.

(4.4)

has a solution when A is not one of these eigenvalues.

We recall the assumptions made in [66].

1. p: [0,00) = R is continuous and continuously differentiable on (0,00}, with p’

bounded and 0 < P, < p(z) < P, < oo for all @ € [0, 00).

2. q: [0,00) — R is continuous with

0 <@ <qg(z) Q< oo forall @ €0,00).

3. f is a continuously differentiable function from R into itself, and there exist positive

real numbers P and K such that |f(p)| < K|p|” for all p > P, for some r < 1.
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4. g € Hi(0,00).

For w : [0,00) =& R and @ > 0 let H be defined by (Hu)(z) = g(z)f(u(z)). Let
A H} N W22 — L2 be the self-adjoint extension of the operator Ay defined by

Aou = —(pla)u(x)) + a(z)u(z)

with domain the set of twice continuously differentiable functions with compact support
in (0,00). Then A is a positive self-adjoint operator in L? and its positive square root
Az is a linear homeomorphism of H} onto L2, where H} is the closure of C° in W2 and
§° is the linear space of all infinitely differentiable, real-valued functions with compact
support in (0, 00) (see [66]).
We claim (and will show below) that for 0 < |A| < @ = liminf; e, ¢(z), and X not

an eigenvalue of A, the operator
uru— A+ AATPHAT 2y
from L* — L? is onto. Assuming this, it follows that the equation
Au=du+ AHu+v

has a solution u € Hi NW22 for any v € L% ([66], Lemma 4.18). Hence if v is continuous,
using the same arguments as in Lemma 4.20 of [66], it follows that the equation (4.4) has
a solution.

We now establish the claim made above. Let u = 1/), and let 7,5 : L? — L? be
defined by

Tu=pu— A", Su=A"YZHA Yy,
Suppose that || > a(A™Y) = 1/Q ([66], Theorem 4.23), and that y is not an eigenvalue
of A7, Then T is a bounded linear operator, which is one to one, onto, and has a
continuous inverse. So it is a ([, [, 1)-homeomorphism of L? onto L?. Furthermore, T' is
1-quasihomogeneous relative to T' since it has continuous inverse. It has been shown that
S is a compact operator and the quasinorm |S| = 0 in the space L? ([66], Lemma 4.17).

Assume that there exist u, € L? with u, — ug, t, N\ 0 such that
tnlS (un/tn) || > €0 > 0.
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Then {||un/ts]|2} is unbounded. If ||ttn, /tr,]l2 — o0, (ng — o0), then we have

115 ([t ) 2
tnkS ny [ by, = L i 0,
“ (u / ) ”2 ”'u'nk!b/tnk ||’ll. “2 —

a contradiction. Thus we have shown that .S is a 1-strongly quasihomogeneous operator

relative to Sy = 0 in the space L?. For any ¢ € (0, 1],
(/) (I — A (u) =0 = u =0,

so 1/t is not an eigenvalue of the couple (7, 0). By Theorem 4.1.15, T — .S maps L? onto

L?. Thus we have reached the conclusion.

The following second-order m-point nonlinear boundary value problem has been stud-

ied recently by Gupta, Ntouyas and Tsamatos ([25], [29], [30]):

() = f(t,z(t),a'(t)) +e(t) 0<t<l, (45)
2(0) =0, (1) =% aw(&).

It was shown that the problem of existence of a solution for the BVP (4.5) can be

studied via the three-point boundary value problem

a"(t) = f(t,2(t),2'(t)) +e(t) 0<t <1,
2(0)=0, (1) = anly),

(4.6)

where nn € (0,1) and « € R.

Some conditions for the existence of a solution for the BVP (4.6) were obtained in
[29] using the Leray-Schauder continuation theorem. Their results suppose that o < 1/7.
By using Theorem 4.1.7, we obtain the following result which gives a different condition
for the existence of a solution for (4.6) under the more general hypothesis o #£ 1/n .

We shall use the classical spaces C0, 1], C*[0,1}, C?[0,1] and LP[0,1]. We denote the
norm in LP[0,1] by || - ||,- We also use the Sobolev space W#1(0,1) (see [34]) which may
be defined by

W2(0,1) = {z: [0,1] = R: 2,2 are absolutely continuous on [0,1] with 2" € L'[0,1]}

with its usual norm.

We also recall the following definition.
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Definition 4.2.2. A function f:[0,1] x R? — R satisfies Carathéodory’s conditions if
1. For each (z,y) € R? the function ¢ € [0,1] = f(¢,z,y) € R is measurable on [0, 1];

2. for a.e. t € [0,1], the function (z,y) € R?* = f(¢,2,y) € R is continuous on R?, and

for each r > 0, there exists g, € L*[0,1] such that
(2, y)] < lgr(8)]
for a.e. t €[0,1] and for every (x,y) € R? with /2?2 + y? < r.

Theorem 4.2.3. Let f: [0,1] x R? = R be a function which satisfies Carathéodory’s

conditions. Assume that there exist functions p,q,r in L*(0,1) such that
£ (&, 21, 22)] < p(t)]as] + q(t)]wz] + r(F)

for a.e. t €[0,1] and all (z1,v3) € R% Also let n € (0,1),c > 0, # 1/n be given. Then
for any given e € L*(0,1) the boundary value problem (4.6) has at least one solution in
C1[0,1] provided that

1 —an)/2, f  anp <1,
Il + gl < { (= an/ S @)
(an — 1)/2an, if an>1.

Proof: Let X denote the Banach space C'*[0,1] with the norm

2]l = max{[|les, l|2"lleo }-

Let Y denote the Banach space L'(0,1) with its usual norm.

The linear operator L : D(L) C X — Y is defined by setting
D(L) = {z € W»(0,1) : 2(0) =0, z(1) = az(n)},

and for z € D(L),
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For z € X, let
(Nz)(t) = f(t,2(t),2'(t)), te]0,1].
Then N is a bounded map from X into Y. It can be shown that L : D(L) C X — Y is

one to one and onto when o # 1/n. In fact, L7! = K, where K : Y — D(L) C X is the

linear operator defined by

! /1(1 — 8)y(s) ds.

ot g
f) n=stytsyds = [

—an Jo

(Ky)(t) = [ (¢~ s)yls)ds +

For y € Y, we have

an+1
Kyllw < (1 ,
vl (1 L ol

where ||y||1 is the norm of y in the space L!(0,1). Also

+1
Kyloo__(l—i—an )y.
(<)) L

Thus we have

S

Let T'= 1 and S = KN. Then a(S) = 0 by the Arzéla-Ascoli theorem. Also we have

15 ()l

A = limsup ———
llzfl+eo Il
= limsupw
lellsoo 2]
< limsup (1 + on + 1 ) [V ()]l
v [L—anl/ =]

an + 1 )hm Iplillzlloo + llallille oo + il
T —anl) fejos ||l

El + 1(1H—I-txm) lim sup WPI+ lgliollzll + il
1+

[l |0 ||

14 a77+1

Mwm+wn

__{F¢wmﬂmo for am < 1

2am

(el +ligll)  for anp>1

By the assumption (4.7) we see that A < 1. Hence, from Theorem 4.1.7, the operator
T—S8=1— KN maps X onto X.




Hence, given any e € L*(0,1), there exits ¢ € C'!{0, 1] such that
z(t) — (K Nz)(t) = Ke(t).
Thus ¢ = KNz + Ke € D(L) and
Lz — Nz =e.

This proves that the BVP (4.6) has at least one solution in C{0,1]. O

Remark 4.2.4. When an < 1, the condition (4.7) gives a better result than Theorem

4 of [29] in case a(l —n) > 2 since their condition demands {|p{|; + ||¢ll1 < al(ffz), but is

worse in the case (1 —n) < 2. Also our result can be applied when an > 1.




Chapter 5

Solvability of m-point boundary
value problems for second order

ordinary differential equations

Much of this chapter is joint work with J.R.L. Webb and will be published in [18], [22]
and [23].

In this chapter, f : [0,1] x R? — R will be a function satisl{ying Carathéodory’s
conditions (see definition 4.2.2) and e : [0,1] — R be a function in L!(0,1), a; € R with all
of the a;s having the samessign, & € (0,1),1 =1,2,....m—2, 0 < & < & < oo <€ < L.

We consider the following second order ordinary differential equation:
o) = F(La(t),(B) +e(t)  te(0,1), (5.1)

with one of the following boundary value conditions:

m—2

2'(0) = 0, z(l) = Z a;x(&;), (5.2)
'1}(0) = 0, ’L(l) = mz:: ai:z:(&). (53)

It is known that the problem of the existence of a solution for the boundary-value
problem (5.1), (5.2) and (5.1), (5.3) can be studied respectively via the existence of a

solution for equation (5.1) subject to one of the following three-point boundary-value
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conditions (see [29] [30]):

2'(0) = 0, z(1) = az(n), (5.4)

2(0) =0, 2(1) = az(n), (5.5)

where o € R and 1 € (0,1) be given.
In this chapter, we will study the existence and uniqueness results for the above
problems. The work in this chapter is related to the recent work of Gupta, Ntouyas,

Tsamatos and Lakshmikantham [24]-[30].

5.1 Three-point boundary value problems at reso-
nance

In [30] the authors studied the problem (5.1), (5.4) in the case that « # 1 and in [29],
under the assumption that o < }J, they obtained some results for the existence of a
solution of (5.1), (5.5). In both cases above, the linear operator L defined in a suitable
Banach space is invertible. Also, they always assume that f has a linear growth. In this
section, we shall prove the existence results for problem (5.1), (5.4) with the condition
a =1 and (5.1), (5.5) with the condition o = % In these cases, L is non-invertible, so

the Leray-Schauder continuation theory can not be used. Our results makes use of the

following coincidence degree continuation theorem of Mawhin [46].

Theorem 5.1.1. (see [46], p.24)
Let L. E — F be Fredholm of index zero and let N be L-compact on Q). Assume that

F =im(L) & Fy and the following conditions are satisfied.
1. Ly + ANz # 0 for each (z,A) € [(D(L)\ ker L) N Q] x (0,1).
2. Nz ¢ im(L) for each =z € ker(L) NI

3. deg(@N |kerr, 2 Nker(L),0) # 0, where @ : F' — Fy is a continuous projection.
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Then the equation Lz -+ Nz = 0 has at least one solution in D(L) N Q.

We also, in this section, assume that f has a linear growth. Later we will weaker this

considerably, see sections 5.3 and 5.4.
Theorem 5.1.2. Let f:[0,1] xR?* — R be a continuous function satisfying the following
conditions:

1. There exist functions p,q,r in L}0,1] such that
[F(t,u,v)] < p(O)|u| + q(t)|v] +r(t) for ae. t€[0,1] (u,v)€ R%
2. There exists Ng € R, Ng > 0 such that for all u € R with |u| > No, one has
|f(t,u,v)| = lu| —njv]| = M forall t€[0,1] (u,v)é€ R?,
where { > 0, M > 0,n > 0;
3. There exists R > 0 such that for all |u| > R either

uf(t,w,0) >0 forae te€][0,1]

or

wf(t,u,0) <0 forae tel01].
Then the BVP(5.1), (5.4) with o =1 has at least one solution in C[0,1] provided

(2+ %) ol + llall < 1. (5.6)

To prove the theorem above, we need the following lemmas. We shall denote by X
the Banach space C'[0,1] with the norm ||z|| = max{||2]lc, ||2'l|cc}, and Y denotes

the Banach space L![0,1] with its usual norm. Define L to be the linear operator from

D(L) C X to Y with

D(L) = {z € W*(0,1) : 2(0) = 0, 2(1) = =(n)}
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and for ¢ € D(L),

Lax = a".

Also let N : X — Y be the nonlinear operator defined by setting

j\r(m)(t) = -—f(t,:l:(t),.’l,"(t)) - e(t)) te [03 1]1

so that V¥ is a bounded map under our hypotheses.

Lemma 5.1.3. Suppose L is as above, then L : D(L) C X =Y is a Fredholm operator
of index zero. Furthermove, let X = ker(L) ® X1, the linear operator K : im(L) —

D(L) N X, defined by

(Ky)(t) = /Ot(t —8)y(s)ds fory € im(L)

is such that

K =L,

where Ly = Liprynx,- Also we have that ||Ky|| < |ly|i for y € im(L).

Proof: 1t is clear that ker(L) = {z(¢) = ¢, ¢ € R}. Also we have that

im(L) = {y € L'[0,1] : /: Y(r)dr =0, where Y(7) = /OT y(s) ds.}
= {yerp: /771(1 ~spyls)ds + (1) [(y(s)ds =0} (5.7

(5.7) can be shown as follows. For y € im(L), there exists ¢ € D(L) such that 2" = y.
Then

Y(r) = /OT a"(s)ds = 2'(7) — 2'(0) = 2'(7),
fnl Y(r)dr = /1 () dr = a(1) - o(y) = 0.

n

On the other hand, for y € L'[0,1] with fnl Y(7)dr =0, letting

t p7
o(t) = fo /0 y(s)dsdr,
we have z € D(L) and Lz = y. Thus we have shown that (5.7) holds.
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Suppose that y € L'[0,1], let

2 1
Qu=1=r3 | Y

and let y3 = y — Qy. It can be proved that y; € im(L), so ¥ = im(L) + R. Also
R Nim(L) = {0} , hence ¥ = im(L) & R and dim(ker(L)) = dim(R) = 1, and L is
a Fredholm operator of index zero. Now we define the projection P : X — ker(L) by

setting (P2)(t) = 2(0). Let X, = {z € X,2(0) = 0}. Then for € D(L) N Xj,

(KLiz)(t) = Ka"(t) = /(:/OT z"(s)dsdr = /Ot 2'(t)dr = z(t),
and for y € im(L),
(Liy)@) = ([ Y(r)ar) = (o)

thus K = L;~!. We also have

Kyl < ||lyll1 since

1 rl
1Kyl < [ [ lu()idsdr < llylh,

and
t
(Ky) ()= [ y(s)ds, so Ky Dlleo < Ny(D)]h-
This completes the proof of Lemma 5.1.3. O

Lemma 5.1.4. Let
Uy = {x € D(L)\ ker(L),Lx + ANz =0 for some A € [0,1]},

then U, 1s a bounded subset of X.

Proof: Suppose that € U;, and Lz = —ANz. Then A #£ 0 and @ Nz = 0, so that

/"1/07 f(t,z(1),2'(t)) dt dr = —fnlng e(t) dt dr.

Hence there exist £ € (n,1) and ¢ € (0,¢) such that

NSNS S L ;
FGo(0 ) =~ g [ ) e,
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so we obtain

umdow@msﬁ#. (5:)

Also for @ € D(L) \ ker(L), by Lemma 5.1.3 and condition (1)

(1 = P)z|| = [[KL(I = P)z|| < [|L(I — P)a[|y = || Lz,
< IVzfle < lpllulizlles + lalillzllco + 7l + llellz- (5.9)
If for some tg € [0,1], |@(to)] < Np then writing
to
0) = a(tp) — (1) dt
2(0) = 2(to) - [ @'())
we have
|2(0)] < No + [|2']ls < No + [|2”]] o (5.10)
On the other hand, if |2(¢)| > N for all ¢ € [0, 1], then by condition (2},
F(t,2(t),2' ()] 2 L2 (t)] = nl2'(2)] — M. (5.11)

In this case from (5.8) and (5.11), we obtain

e M el n
2(C)] < 7+ 5+ TR

Since z(0) = 2(¢) — ¢ 2'(t) dt, we have

I$®Nf§ﬁ;—%ﬂgk~+(%~+1)uwmm. (5.12)

From (5.10) and (5.12), we see that in every case we have the inequality

—~

HRN=hmHSmw{yijhNﬁ+(E+QHﬂ@- 5.13)

I !

From (5.9) and (5.13), we obtain

el

IA

]l
(= P)(e)|| + (| Pe|

< Aplsliloo + (llalls + 1+ 7 ) 12l + C,

IA
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where C' = ||7||; + ||e|lx + max{% + H%ji, Ng}. Thus

lglh+1+%, , C
2lleo < 2|l + : (5.14
L= T = Tl )
From (5.9) we know that
12"l = [L(=)ll < llpllallelieo + Nallill@llo + lIrlls + llellr.
By (5.14),
+ llalls + el
2 < ||p||1 [ < C
”T" ”1 = 1_”}7”1 ||?I100+ 1y
where C1 = ||r||1 + lle|ls + %}E}%. For each t € [0,1], 2'(t) = f; 2"(s) ds and hence
2o < Nl2"[l1. (5.15)
Therefore
+ +n/l
H:E”” S HPHI anl n/ ”p”1||$”||1 ‘l‘Cla
b= lpllx
Let Cp = llp “1+1||E||||;I4|'12“p||‘, so that Cp, < 1 by our assumption. Then we have that
l="|ls < 1__%,,_,1 and so ||z'lle < Ti%';; Hence using (5.14) we obtain
241
”33”00 < ||Q||1+ ; + Ch C = Ny,
L=llpllh 1=Cp 1 —=lplls
so that ||z]| = max{||z||e, |2}|ec} £ Ni. We have shown that U; is bounded. O

Lemma 5.1.5. The set Uy = {z € ker(L) : Nz € im(L)} is bounded.

Proof: Let @ € U, so that z(t) = C and @ Nz = 0 and therefore

/ﬂlfon(s,C,O)dsdT =—_/nlfDTe(s)dsdT.

Hence there exist & € (n,1) and ; € (0,&;) such that

f(G,C,0) = ""'(E_—lnjg_/nl[: e(s)dsdr.

Therefore

11,00 < L,
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It follows that

4
|C| < max<{ No, i +|~|El|—l~ :
0 n

For otherwise, we have |C'| > Ny, by condition (2),
Ll ”1 2 |£(6, €, 0)] 2 ¢ - M,

hence |C | < ]—\li + H%lili, a contradiction. This gives us

UQC{Q:GD( )i e ||<N2—n1ax{No, : ”Z‘}"}}.

Lemma 5.1.6. If in the condition (3), we assume that there exists B > 0 such that for

all lu| > R, uf(t,u,0) <0, for a.e.t €[0,1], and let
Us ={z € ker(L): H(z,\) =AJo + (1 = N)@QNz =0, A € [0,1]},

where Y = 1m(L) ® Y] and J : ker(L) — Y] is the identity isomorphism, then Us s
bounded.

Proof: Assume that C,, € Us and ||Cy|| — oo as n — co. There exist A, € [0, 1] such that
AnCr + (1= A)(QN)YCr) = 0.

{An} has a convergent subsequence, for simplicity of notation we suppose that A, — Aq.

We also can get that Ag # 1 since otherwise we would have

L(@N)Cy

and from

I@N)Call Q- IN(Calls
Gl — Gl

< IQIRHPIICn] + ltrlls + llel L}
|Ch|

QMY + Qllllells
|Chl ’

<Nl il +
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where ||Q]| denote the norm of the 1-dimensional linear projection ¢}, we obtain

L @MG
=4

this contradicts A, — 1. So for n sufficiently large, 1 — A, 5 0, and therefore

An
1— /\nC”

— 0 (n = o0),

= Q(f(t,Cn, 0) + (1)),

that 1s,

1in/\n_1—77 ]/ Md dt—l_ /_/ e(s)dsdr.

Since |Cp| — oo, we may assume that |Cp| > max{Ng, R}. Then for n sufficiently large

we obtain
£(t,C, 0) Mo
AGLLIRIN N B > -
| Ch |2 |Cnl — 2
We are assuming that C, f(¢,C,,0) < 0 for a.e. t € [0,1], therefore
f(t,Cy,0) [
A Em Y o
C, T 2

Hence, using Fatou’s Lemma we obtain

E;ﬁn_)m{// Mdd +Cl, jl/()Te(S)dS(lT}

< B'E,ﬁm/ / J(6:6m0) 4 4
n JO Cn

1 T f(S:\On:O) _!:_ 2
S/?;/O hmn_J,desdTS—él(l—n ).

n

This contradicts A, /1 — A, > 0. Hence Us is bounded. O
The proof of Theorem 5.1.2 is now an easy consequence of the above lemmas and

Theorem 5.1.1.

Proof: Firstly, by the Arzela-Ascoli Theorem, it can be shown that the linear operator
K :im(L) — D(L)NX; in Lemma 5.1.3 is a compact operator [45], so NV is an L-compact
mapping. Let  be a bounded open set containing m, then by the above lemmas, we
have verified the hypotheses 1 and 2 of Theorem 5.1.1. Let H(z,A) = AJz+(1—-A)@Nz,
with J as in lemma 5.1.6. By the homotopy property of degree,

deg(@N |err, 2 Nker(L),0) = deg(J, 2 Nker(L),0) # 0.
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Thus by Theorem 5.1.1, Lz + No = 0 has at least one solution in D(L) N Q so that
BVP(5.1),(5.4) with o = 1 has a solution. O

Remark 5.1.7. In the condition (3) of Theorem 5.1.2, if we assume that there exists a

R > 0 such that for all |u| > R,
uf(t,u,0) >0 forae. te€[0,1],
then in Lemma 5.1.6, we let
Us ={z € ker(L), H(z,A) = =AJz+ (1 — A\)QNz =0, € [0,1]}.

Exactly as in Lemma 5.1.6, we can prove that Us is bounded, so in the proof of Theorem

5.1.2, we have that
deg(@ N |xer(r), 2 N ker(L), 0) = deg(—J, 2 Nker(L),0) # 0.

The other part of the proof is the same.

The next theorem deals with the BVP (5.1), (5.5).

Theorem 5.1.8. Let f:[0,1] xR* — R be a continuous function satisfying the following

conditions:

1. There exist functions p,q,r in L*[0,1] such that
[F(E o)l < p(lul +a()o] +7(t)  forae tel0,1] (u,v) € R
2. There exists Ng € R, Ny > 0 such that for all v € R with |v| > No, one has
W u,v)) > —lul+nlv| =M forall t€[0,1] (u,v) € R?

where [l > 0, M > 0,n > 0;
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3. There exists R > 0 such that for oll |v| > R either
vf(t,vt,v) >0 forae te]0,1]

or

vf(t,vt,v) <0 fora.e. te€]0,1].

Then the BVP(5.1), (5.5) with o = % and with e continuous on [0,1] has at least one
solution in C1[0,1] provided

2plls + llgh) + - < 1. (5.16)

In the following proof, we denote by L the linear operator from D(L) C X — Y with

D(L) = {1 e W210,1): =z(0)=0, =(1)= %1(77)}

and for @ € D(L),

Lemma 5.1.9. Suppose L is as above, then L : D(L) C X — Y is Fredholm operator of

index zero. Furthermore, the linear operator K : im(L) — D(L)N X, which is as follows:

(Ky)(t) = /Ot/; y(s)dsdr for y € im(L)

s such that
K= Ll_l,

where Ly = L|prynx,. Also we have that || Ky|| < |ly||x for y € im(L).

Proof: 1t is easy to show that ker(L) = {ct : ¢ € R}. We shall show that

im(L) = {y e [ Y di = / 'Y (gt dt, where Y (1) = / ty(s)ds}.

For y € im(L), y = a" with @ € D(L), therefore we have




[} Y= [ () - /) de = Zalo) = (0),

since &(1) = a(n), thus fg Y(¢)di = [§ Y(5¢) dt. On the other hand, suppose y € L'[0, 1]
is such that [j Y(t)dt = [ Y(nt)dt. Let a(t) = 3 Y(s)ds, then ¢ € D(L) and 2" = y,
thus y € im(L).

For y € L[0,1], let

9 1 gt
Qy~1_nf0/my(8)dsdt,

and let y; =y — Qy. Then Y;(¢) = [y y(s) ds ~ (Qy)t, where Qy can be rewritten as

(L froms- L]
//y ds dit — //”t ) ds dt — QJ

/0 Vi()dt = /0 Yat)dt.

This shows that y; € im(L), and therefore Y = im(L) + R. Also RN im(L) = {0} ,

so that

hence YV = im(L) & R and dim(ker(L)) = dim(R) = 1, and L is a Fredholm operator of
index zero. Now we define P : X — ker(L) by setting (P2)(t) = ’(0)t. Let X; = {z €
X,a'(0) =0}. For z € D(L) N Xy,

(K Lia)(6) = Ko"(t) = /Otfo +"(s) ds dr — /(:(:L"(T) — 2(0)) dr — 2(t) — (0) = 2(2).

And for y € im(L),

(Lo Ky)(t) = (// dsd’r) ~ (1),

| Kylleo < fylls,

thus K = Ly, Since

and
Y@ =1 [ y(s)ds] < gl
we obtain ||Ky|| < ||ly|l1-

1
In the following, the mapping N : X — Y is defined as in the proof of Theorem 5.1.2.
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Lemma 5.1.10. Let
U, = {x € D(L)\ ker(L), Lz + ANz = 0 for some A € [0,1]},

then Uy is a bounded subset of X.

Proof: Suppose that @ € Uy, and Lo = —ANz, then A # 0 and Q Nz = 0. Therefore
1 p7
/ / (f(t,2(t),2'(F)) + e(t)) dt dT = 0,
0 Juyr
and hence there exists v € (0,1) such that

£ (s 2(7)s 2" (V)] = le()] < llelloo- (5.17)

Also for z € D(L) \ ker(L), by Lemma 5.1.9 and condition (1) of Theorem 5.1.8,
(L = P)a|| = | KL(I — P)e|| < | LI = Plaily = [[L(2)]x
< IN@) < Hlellallzlleo + llglall@lleo + NIl + el (5.18)

If for some tg € [0,1], |2'(ta)| < Ny then

[4
[2/(0)] = lo/(ta) = [ @"(8) dt] < No+ [la" s (5.19)

0

If for all t € [0,1], |2'(¢)| > No, by (5.17) and condition (2) of Theorem 5.1.8, we get that

oyt < oo+ 31
< 7he 1o 2
[@/()] < =T 4 o],
S0
O o) — [ o lelloo 4,
RO = lw'(7) — [ o) dt] < 2T 4 oo + o (5:20)
By (5.19) and (5.20),
w+ M [
ol = 1) < max {1222 by Syl e )

Since z(t) = Jy 2'(s) ds, we obtain

2lleo < M2l < ll2"llco-
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Thus from (5.18) and (5.21), we have

IN

[l
I(7 = P) @)l + || Pz

l i "
< (I e+ £ ) 1o+ 1570+ C.

1] o

IA

where C' = ||7||1 + |le|| + ma,x{“ﬂi‘fLLM,No}. By our assumption, ||p|l: + [lgfli + £ < 1.
Let

l
Ci=1—1pll - llalh — =
i Ipllx = llgll -
Then

! 1 I O 3%
T |eo L =—||1 + —=. 5.22

We have the following inequalities:

el = [[Lefls < INelln < llplhllzlies + Nglhllzlleo + N7l + Hells

< (il + llgllllelleo + NIl + Nlells

[2ll: -+ llglls
Ch

IA

ll2"[lx + Ce,

where Cy = CIELHIL) 4 17, 4 lefl,. By condition (5.16), [lplly + llall: < C1. So

c, — el tllgll

Cy
Thus {j2"||; < 1—;6%; By (5.22),
C
lelleo < 1l < G5 + G
and so
Ur C{z € D(L), [|lxf] < N}
where N, = T(f_c%) -+ C% O

Lemma 5.1.11. Let Up = {z € kex(L) : Nz € im(L)} , then U, is bounded.
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Proof: Suppose that @ € U; and therefore @(t) = Ct, where C'is a constant, and @ Nz = 0.
Thus

folf [(4,C, C) dt dr — —/Ol/Te(t)dtdr.
nT a7
So there exists £ € (0,1) such that

[F(£, C& C) = [e(E)] < llelleo

It follows that

n—1

1C] < max{Ng, %} .

For otherwise, we have |C'| > Np. By condition (2),
lello > —UCE| + nIC| ~ M > ~{[C| 4+ n|C| - M.
Hence |C] < M—:”f?'l—‘-‘i, a contradiction. This gives us

Uy C {1, € D) : |lz]| € Ny = maX{NO’ M + IIeIIw}}_

n—1

Lemma 5.1.12. If in the condition (8) of Theorem 5.1.8, we assume that there exists

R > 0 such that for all [v] > R, vf(t,vt,v) <0, for a.e. t € [0,1], letting
Us={x €ker(L): H(z,A\) = Az + (1L = NQNz =0,A € [0,1]},

where J : ker(L) — Y, defined by J(Ct) = C for Ct € ker(L), is the linear isomorphism,
then Us is bounded.

Proof: Assume that z,(t) = C,t € Uz and ||Cpt|| = |Cy| = o0 as n — oco. There exist

An € [0,1] such that
ACor + (1 = A)(QN)(Crt) = 0.

{An} has a convergent subsequence, we just suppose that A, — Ag. We also have A\g # 1

since otherwise we have

b= (1320
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From

H@N)Catll QU IIN(Cat)ll o 1QULNPIIC] + Hlgll|Cl + firlle + llell1}
ICul 7 |Cal - |l

< QI lplh + llall) +

QN ll + Qe
|Gl ’

where ||@Q)|| denote the norm of the 1-dimensional linear projection @, we obtain

l@M)Cutl

=27

0 (n — o0).

This contradicts A, — 1. So for n sufficiently large, 1 — A, # 0, and thus

W Cn = Q(f (2, Cut, Cr) + e(t)),

A2 L7 f(s,Crs, Cr) 2 1pr
T = 1_77/0 . . dsdt—l—mcn(l_n)/o[?Te(s)dsdT.

Since |C,,| = oo, we may assume that |C,| > max{No, R}. Then for n sufficiently large

we have that
f(t) Cnta Cn) . ]VI n— l
N s - — > —,
| Cn [zn— |ICal = 2

By our assumption, C, f(t,Cyt,Cr) <0 for a.e. t € [0,1], so that

f@,Cut, Cy) < - {
Ch - 2

Also by our condition (1) we know that

f(t, Cut, Cr)

| ()
Ch

| < p(t)+q(t) + -~ € 1[0, 1],

Hence, by Fatou’s Lemma,

— 1 Tj‘(‘S,OnS,Cn) _1_ 1 pr
hmﬂ_)oo{/o nT—Cn——dsdT—l—Cn/OfnTe(s)dsdT}

— Lo f(s,Crs, Cy)
< limpyeo SN TRTY TR
= e /0 w Ca

1 T_—— f(S,Cn,s) Cn) (1 - T,)(n - l)
< S Sl VA ST
< [) /T?T hmn——}oo —-m——————cn dsdr < 1 .

dsdr

This contradicts 1:\171 > 0. Thus Us is bounded. O

By using the above lemmas and the method in the proof of Theorem 5.1.2, the proof

of Theorem 5.1.8 now follows easily. We therefore omit it.
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5.2 Uniqueness results
In this section, we shall prove uniqueness of solutions to the BVP (5.1), (5.4) and the
BVP (5.1), (5.5) under stronger hypotheses than previously.
Theorem 5.2.1. Suppose that the conditions (1) and (2) in Theorem 5.1.2 are replaced
by the following conditions respectively:
1. There exist functions p,q in L'[0,1] such that
|f(E,ur,01) = f(E uz,ve)l < plt)ur — ua| + q(t) |y — va
fort € 10,1], (ug,v1), (ug,ve) € R%
2. There exist [ > 0,n > 0 such that
Lf(tun,v1) = f(tuz, v2)| 2 Hus — us) — njvr — vy
fort €[0,1] and (u1,v1), (uz,ve) € R2

Then the BVP (5.1), (5.4) with « = | has exactly one solution in C[0,1] provided

(2+2) ol + el < 1.

Proof: Let X,Y, L,Q, P be as in the proof of Theorem 5.1.2. The existence of a solution
for the boundary-value problem (5.1), (5.4) with & =1 follows from Theorem 5.1.2.
Now suppose that z1,z, € C[0,1] are two solutions of (5.1), (5.4) with a = 1. Then

2l(t) = f(t,wi(t), 24(1) + e(2),

and 2:(0) = 0,24(1) = =i(n),t = 1,2.

Write ¢ = z; — x3, so that z satisfies the equation

(t) = f(t, @1 (2), 21(t)) — S (2, wa(t), 25(2)). (5.23)
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Hence
QUL 01(1), 21(1)) = J(t,(2), 25(1))) =0,
and therefore
/nl/OT(f(t,m(t), z1(t)) — F(t, wa(t), 25(¢))) dt dr = 0.

It follows that there exists £ € (0, 1) such that

F(& =1(£),21(8)) — f(& w2(£), 25(€)) = 0.

By our hypotheses (2), we have

from which we obtain
[2()] < T1o'(©)] < T/l

Hence we have

1Pl = )] < 10O +| [ eyl < {5 +1} ]

Next by Lemma 5.1.3 and (5.23) we have

1L = Ple|l < 1Lzl = l="[lx < llpllllzllo + lgllellzlleo-

This gives

n

ol < lloll < UPll + 107 = Pholl < {7+ 1+ gl } 1e'lo + ol o

so that

lall: +1+7%

T|eo <
e T

2| co- (5.24)
Again from (5.23) we obtain
12"l < llpllslllioo + lgllslllloo;

and using (5.24) this gives

el + llglls + Fllplh
L—=1lpllx
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By our assumption the coefficient on the right is less than 1 so we have ||2"||; = 0. Hence
by (5.24)

[2lleo = ll&"lleo = llz"[ly = 0,

and since z is continuous, «(¢) = 0 for all ¢ € [0, 1], that is 2; = 5. O

We also have a uniqueness result for the second set of boundary conditions.

Theorem 5.2.2. Suppose that the conditions (1) and (2) in Theorem 5.1.8 are replaced

by the following conditions respectively:
1. There exist functions p,q in L*[0,1] such that
(4, v, v1) = [t uz, v2)| < p(8)[ur — ua| + q(t)|vr — ve
for t € [0,1], (u1,v1), (uz, v2) € R%;
2. There exist [ > 0,n > 0 such that
| f(t,u1,v1) — F(t, uz,ve)| 2 —luy — ug| + njvy — vy
fort € 0,1] and (uy,v1), (uz,v2) € R2.
Then the BVP (5.1), (5.5) with o = % has ezactly one solution in C'[0,1] provided

l
2lplls +llgh) + - < 1

Proof: Let X,Y, L, @, P be as in the proof of Theorem 5.1.8. The existence of a solution
for the boundary-value problem (5.1), (5.5) with o = % follows from Theorem 5.1.8.
Now suppose that z;, 2, € C[0,1] are two solutions of (5.1), (5.5) with a = %, and

write £ = x; — @2. Then
2"(t) = f(t,a(t), 21(1) = F(E, z2(2), 25(2)), (5.25)
and 2(0) =0,2(1) = %m(n) Also

QUf(t, =a(t), 21(2)) — f(t, wa(t), 25(¢))) = 0,
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therefore

/C)ILT(f(t,(Ul(t),wrl(t)) £t 2a(t), (1)) di, dr = 0.

T

Hence there exists ¢ € (0,1) such that

F(C (), 21(0)) = f(¢,22(0), 25(¢)) = 0.

By our hypotheses (2), we have
0 2 —la(C)] + nl2"(()],

and so
l
2 ()] < =zl .
() < el
Hence

P2 = 10)] < (O +1 [ 2(0)dt] < Sllalls + 12"l

Next by Lemma 5.1.9 we obtain

(I = Pzl < llpllllzlleo + llglillz"lleo-

This gives

{
e < ol < 1Pl 10— Pl  { &+ Dol + il 1+ 17

so that
e < "1,
where C =1 — £ —|Ipjl; — [|gll1. Since z(0) = 0, we have ||zl < [|2']|co, and therefore
2"l < llpllallzlleo + Nallslie’llee < (llpll + llgllllz’lloo-
This yields

+
”3311”1 < “P”I 5 ||‘IH1 Hmnnl-

[|z"||1 = 0, by our assumption. Hence we also have
[@lleo = He'lleo = [|="]ls = 0

and uniqueness is shown.
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Remark 5.2.3. The uniqueness of solutions to the BVP (5.1), (5.5) with o < 1/n, was
proved in [29] under weaker conditions,. Theorems 5.2.1 and 5.2.2 treat the resonance
cases for BVPs (5.1), (5.4) and (5.1), (5.5), but the assumptions are stronger than that

assumed in [29].

5.3 Three-point boundary value problems with non-
linear growth

In this section, we shall study the BVP (5.1), (5.4) and BVP (5.1), (5.5) under the
assumption that f has a nonlinear growth. We shall treat both the non-resonance case
and the resonance case. We do this by umposing a decomposition condition for f and by
showing that the growth of certain nonlinear terms is not restricted provided they satisfy
a sign condition. Some examples will be given to show that there exist equations which
can be treated by our results but the results of [24], [25], [29], [30], [61] cannot be applied.

This section is joint work with J.R.L. Webb and to appear in [23].

5.3.1 Non-resonance results

In our first result we show that the growth of certain nonlinear terms is not restricted
provided they satisfy a sign condition. This idea is similar to, but different from, one

used in {4].

Theorem 5.3.1. Assume that f:[0,1] x R? = R is continuous and has the decomposi-
tion
f@t, @, p) = g(t,=,p) + A(t, , p)

such that
1. pg(t,z,p) <0 for all (t,z,p) € [0,1] x R

2. |h(t, 2, p)l < a(t)e| + b(t)|p| + u(®)lel” + v(t)[pl* + c(t) for all (t,,p) €[0,1] x R?,

where a,b,u,v,c are in L1[0,1] and 0 < r,k < 1.
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Then, for o 1, there exists a solution x € C*0,1] to BVP(5.1), (5.4) provided that

llalle + ol < 1/2 f a <0,

S ally + ol < 1/2 ifa> L, (5.26)

metg|y + Bl < 1/2 0 <a <,

l—o

Proof: Let X denote the Banach space C''[0,1] and Z denote the Banach space L'[0,1].
We define a linear mapping L: D(L) C X — Z by setting

D(L) = {z € W»(0,1) : 2'(0) =0, (1) = az(n)},

and for ¢ € D(L), L(z)=2"

Let N : X — Z be the nonlinear mapping defined by
(Nz2)(t) = f(t,@,2"), t€]0,1].

Since a # 1, L is a one-to-one linear mapping. Let K := L7! so that KN : X — X is
compact by the Arzéla-Ascoli theorem. By the Leray-Schauder degree theory, to obtain
the existence of a solution for BVP (5.1), (5.4) in C*[0,1] it suffices to prove the set of
all possible solutions of the following family of equations
2(t) = Mf(t,2,0') + de(t), te (0,1), (5.27)
2'(0) =0, (1) = az(n) (5.28)
is bounded in C'[0, 1] by a constant independent of A € [0, 1.
To do this, suppose z is a solution of (5.27), (5.28), so that = € D(L) and

a'a" = X' f(t,z,2") + Aa'e.

An integration shows that:

) ¢ ¢ t
—z"(¢) /\f z'g(s,z,z’) ds—l—)\/ 2'h(s,z,2')ds —|-)\/ 2'e(s) ds
0 0 0
1 1
[ labt el + [ le'(@)lle)] de
0 0

12'llco {Nallullllo + IBllsl12"lloo + Hulldllellis + lolllel& + lel + llell:} -

IA

IA
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Suppose ||@]| # 0, otherwise we are done since o # 1 implies that # = 0. Then we have

the inequality

1 . .
(5 = leli)ll="lles < llallslleflee + [lulllllic + lollall’lls + llelfs + llell:.
(5.29)
Case 1. Assume that a < 0. Since z(1) and z(n) have opposite signs in this case, there

exists £ € (n,1] such that x(€) = 0. Therefore for each ¢ € [0,1], we have
(O = | [ () dsl < ooy
and 5o ||#]jco < ||2'||ce. Since {lalli + ||b]l1 < 1/2, from (5.29), we obtain
(% —llalls = Toll)l2"leo < lullullzlls, + lollill2’llE + llells + llells.

This implies that there exists M; > 0 such that {|2'||e < M7, hence also ||¢]|e < M.
Case 2. Assume that 1 # « > 0. By (5.4) and the mean value theorem there exists
¢ € (n,1) such that
l—9,
olr) = =—1a(6),

([30], Lemma 2.2). Thus for every t € [0, 1],

R L, l—n,
:L(t)—_/n:c(S)ds-l——lm(f)a

a —
and hence
‘a - 1I +1- /AT
ello < oo 5.30
[2]lee < o — 1] [l (5.30)
By our assumption (5.26),
la —1]+1—1n 1
= b -,
 i= =T bl <

From (5.29), we obtain

1 a—1+1=2\" ,.,
(5= Olle'lleo < Ty (' pT ") eIl + lollallli& + llell + lells.

Hence max{||z|jco, ||2'llc } £ Ma. O
We will need the following simple lemma to deal with the second set of boundary

conditions.
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Lemma 5.3.2. Let z € C'[0,1] satisfy 2(0) = 0, 2(1) = ax(n), where n € (0,1), and
a>1, a#1/n. Then there exist ( and Cy € (0,1) such that 2'(() = Coz(1).

Proof: If an > 1, let Cy = 1/(an). There exists ¢ € (0,7) with

2'(¢) = LL—(—U);& = Coz(1).

If an < 1, let Cy = (e — 1)/(a(1l —n)). There exists ¢ € (n,1) with

H(0) = :c(ll) - :(n) _ T:;w(n) = Cyz(1).

Remark 5.3.3. If @ < 1 the lemma holds with Cy = 0 (see [29], Lemma 2). For, if
a < 0, (1) and z(n) have opposite signs so there are at least two zeros of x. The case
a = 0 is simple, the case o = 1 follows from the mean value theorem and for 0 < & < 1,

x has either a positive maximum or a negative minimum in (0, 1).

Theorem 5.3.4. Assume that the mapping [ salisfies the condition:
[ (t,2,p)] < a(t)le| + b(t)lp| + u(®)|z]" +v()|pl* + c(t)

for all (t,z,p) € [0,1] x R?, where a,b,u,v,c are in L*[0,1] and 0 < v,k < 1. Then there
exists a solution x € C*[0,1] to BVP (5.1), (5.5) with o # 1/ provided that

4

llalls + llofly < 1/2 if o <1,
a—1)2 cp
el + ol < & (1 — 52(7_1#) ifl<a<y, (5.31)

lalle + 11Blly < 5(1 = 1/(e™®) i § < .

Proof: By the same argument as in the proof of Theorem 5.3.1, it suffices to show that

all possible solutions of the following family of equations

a"(t) = Af(t e, 2) + Xe(t), te€(0,1), (5.32)

2(0) =0, z(1)=az(y) (5.33)
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are bounded in C*[0,1] by a constant independent of A € [0, 1].

Suppose that = is a solution of (5.32) and let ¢ be as in lemma 5.3.2, or remark 5.3.3 and
write C' = ||c||s + |le]|l:. Multiplying both sides of equation (5.32) by ¢’ and integrating,
we obtain

1 1 . ;
§$ﬂ(ﬂ < §$ﬂ(C)+'Wme(Wﬂhﬂwﬂm'+”bﬂﬂkfﬂm'+H“HHFNKQ-FHUHHFWH&*fCU
1 / . ;
= G321 + 12 leo(llellllzllon + 8ll1l12" oo + Hullsllllz, + lwlillells, + €)-

By (5.31),

1
lall + Bl < 51— C3).

Since ||2||oo < ||2]|cos I J]2||c0 # 0, we have

(50— )= Clalh + 181 1eles < iz, + oo, + el + el

This implies that ||2/||e is bounded since 0 < r,k < 1, that is, there is M > 0 such that

lzllco < ||2'||cc € M. This completes the proof of the Theorem. O

Remark 5.3.5. The assumptions of Theorem 2.3, Theorem 2.4 of [30] and Theorem 3,
Theorem 4 of [29] are special cases of our Theorem 5.3.1 and Theorem 5.3.4 when
g(t,z,p) = 0, u(t) = 0 and v(t) = 0. But their results allow |la||; + ||b]li < 1 and

our results above, in these special cases, need ||all; + ||b]j; < 1/2.
Remark 5.3.6. Equation (5.1) subject to the boundary condition

2(0) = 2/(1) = 0 (5.34)

can be considered as a limiting case of the boundary conditions z(0) = 0,z(n) = (1)

when 1 — 1. Hence we have the following result.

Corollary 5.3.7. Assume that the mapping [ is as in Theorem 5.3.4. Then there evists
a solution x € C'0,1] to BVP (5.1), (5.34) provided that

ol + 18l < 5.
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In order to compare the above results with the results obtained in [24], [25], [29], [30],

we consider the following simple examples.

Example 5.3.8. The equation

:EII — _$12n+1 _ m;2m+1

2% 1n(1 4 2™) + sin(z)

subject to the boundary condition (5.4) (@ # 1)} has a solution by Theorem 5.3.1. Since

we cannot find p,q,r € L'[0,1] such that
[f(t,2,p)| = |=p* " —p" 2 In(1 + p*) + sin(ip)]

< p)lel+ q@)lpl +r(2), for all (£, 2,p) € [0,1] x R,

(take to € [0,1],z = 0, and let p — 4o00) we cannot apply the results of [30].

Example 5.3.9. Counsider the equation

2 2
g T Lw

2 = —a7 4 I:’l}’% + sin(¢)

4

subject to the boundary condition
z(0) =0, (1) = 2(1/2) or z(0)=0, 2'(1) =0.

The existence of solutions followings Theorem 5.3.4 or Corollary 5.3.7. But it is obvious

that the results of [24], [25] and [29] cannot be applied.

5.3.2 Results at resonance

In the following, we shall prove existence results for BVP (5.1), (5.4) with the condition
a =1 and BVP (5.1), (5.5) with @ = 1/n under the assumption that f has a nonlinear

growth. In these cases, BVPs are the following:

2"(t) = f(t,2(t),2'(¢)) +e(t) te(0,1), (5.35)
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subject to one of the following conditions:

z'(0) = 0, a(1) = a(n), (5.36)

2(0)=0,  ya(1) = a(n). (5.37)

Theorem 5.3.10. Let f:[0,1] x R?* = R be a continuous function and suppose f has
the decomposition

f('lf,fl:,p) = g(t,:v,p) + h(t,m,p).

Assume that

1. There exists a constant M > 0 such that

z[f(t,2,0)+ e(t)] > 0, for|z| > M,t € [0,1];

2, pg(t,z,p) <0 for all (t,2,p) € [0,1] x [-M, M] x R;

8. |h(t,z,p)| < a(t)le]+b(t)pl+ult) v () pl*+c(t) for (£, 2,p) € [0, 1] x [-M, M]x

R, where 0 < r,k < 1 and a,b,u,v,c € L0,1].

Then the BVP (5.85), (5.86) has at least one solution in C*[0,1] provided that ||bl}; < 3.

Proof: Let X and Z be the Banach spaces as in the proof of Theorem 5.3.1. Define L to

be the linear operator from D(L) C X to Z with
D(L) = {2 € W*X(0,1) : 2"(0) = 0,2(1) = =(n)}
and Lz = 2", z € D(L). We define N : X — Z by setting
N(z)(t) = —f(t,z(t),z'(t)) —e(t), te]0,1].

Then L : D(L) ¢ X — Z is Fredholm of index zero (see [22]) and the continuous

projections P : X — ker(L) and @) : Z — Z; can be defined by

(Pz)(t) = 2(0)
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and

2 1 pr
Qy = 1“?72/” /0 y(s) ds dr,
where ker(L) and im(L) are described in section 5.1. We shall prove that the conditions

of Theorem 5.1.1 are satisfied. Let
Uy={z€ D(L): Lz + AN(z) =0, A € (0,1)}.
Suppose & € Uy, and let £ € [0,1) be such that |2(to)| = maxyepo,1 [€(%)]. Assume that
|2(¢0)| > M. Then we have the following two cases,
Case 1: tg # 0.
If @(to) > M, then 2'(tg) = 0,2"(te) < 0, so we have
0 > w(to)a"(to) = Az(to)[f(to, 2(t0), 0,) + €(to)] > 0,
a contradiction. If @(¢g) < —M, then 2'(t) = 0,2"(to) > 0, we have
0 2 a(to)a"(to) = Az(to)[/f (Lo, 2(t0), 0) + e(to)] > 0,

a contradiction again.

Case 2: to = 0. If 2(0) > M, then by condition (1),
2"(0) = A[f(0,2(0),0,) + e(0)] > 0.
This implies that z'(¢) is increasing for sufficiently small ¢. Since 2'(0) = 0, 2/(t) > 0 for
t small enough. Thus z(¢) is increasing, contradicting ©(0) = maxseo,1] |2(t)|.
If 2(0) < —M, then a similar argument shows that @ is decreasing and a contradiction

is obtained. Thus we have shown

z]leo < M, x € Us. (5.38)
Next, for 2 € Uy,
g'a" = Aa'g(t,z, ') + Ad'h(t, z,a") + Az'e(t).

This implies that, for every ¢ € [0, 1],
1 2 ¢ / by i b
=2 (1) = A/ 'g(s,x, &) ds +)\/ a'h(s,z, 2"} ds +/\/ 2'e(s) ds
2 0 0 0
1
< fo l2'h(t, z,2")| dt + || [leo ()]s

oo ([ 1100, e+ et )

IA
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Assume that ||2'||c # 0, then (5.32) ensures that

L. / n ok

gl o < B[ oo 4 Jlollaflelles™ + C,
where Cy = |lalj: M + [luliM" + ||c]ls + |le]|l:- By our assumption ||b||; < 3, so

1 / ny ok
(5 = ol ) [0 < llllull2llea” + Ch

As 0 < k < 1, there exists M > 0 such that ||2'||cc < M;. Hence

Joll = max{|2]os, [/l } < max{M, M},

and we have proved that U, is bounded.
Let Uy = {@ € ker L : Nz € im(L)}. Suppose that @ € U; and & = Cj for ¢ € [0,1].
Then Cy > M implies that

/771/0T(f(f”00’0) +e(t))dtdr >0

and Cp < —M implies that

/:71/07”(75’ Co,0) + e(t)) di dr < 0.

In both cases, N(Co) = f(¢,Co,0) + e(t) ¢ im(L). Therefore 2]/ = [Co| < M.
Next let Us = {& € ker(L) : H(a,pu) = puQNz + (1 — p)e = 0, ¢ € [0,1]}. For
z = Cy € Uz, we have

1 3“772 /:[)T(f(s,co,()) +e(s)) ds dr = —(1 — ) Ceo.

If 4 = 0, then Cy = 0. If p > 0, suppose Cy > M, then
f(s,Co,0)+e(s) >0 forall s €0,1],
contradicting —(1 — #)Cy < 0. On the other hand, if Cy < —M, then
f(5,Co,0) + e(s) <0 forall s €[0,1],
contradicting —(1 — u)Co = 0. Thus,
Us C {z € ker(L) : ||z]| < M}.
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Now, writing X = ker(L) ® Xy, Z = im(L) & Z, and L; = L|p@)nx,, the operator
K =L, ' :im(L) — D(L) N X is the linear operator defined by (see section 5.1)

(Ky)(t) = /Ot(t —3s)y(s)ds fory € im(L).

By the Arzéla-Ascoli Theorem, it can be shown that K is compact [45], so V is L-compact.

Let {2 be a bounded open subset of X such that UJ_,U; C ). The above bounds show
that the hypotheses of Theorem 5.1.1 are satisfied. Hence La + Na = 0 has at least one
solution in D(L) N £, and the BVP (5.35), (5.36) has a solution. O

If we let 7 — 1 in Theorem 5.3.10, as in Corollary 5.3.7, we obtain the following result:

Corollary 5.3.11. Let f,g,h be mappings as in Theorem 5.8.10. Then for every e €

L*[0,1], the following Neumann boundary value problem

2 (1) = f(t,2(), /(1)) + e(2), (5.39)
2'(0) = 2/(1) = 0, (5.40)

has at least one solution in C1[0,1] provided ||b]|, < 1/2.

Remark 5.3.12. Comparing Corollary 5.3.11 with Theorem 2.1 of [61], we can see that
these two results concerning Neumann BV problems are very different. Neither contains
the other. The following example shows that there exist equations which can be treated
by our Corollary 5.3.11 but their Theorem 2.1 cannot be used.

Example 5.3.13. Consider the boundary value problem

g =~z e?™ 4 ¢ 4 sin(t) + cos(t), (5.41)

2'(0) = 2'(1) =0, (5.42)

Let g(t,z,p) = —a*"'a?™ h(t,2,p) = & + sin(t) + cos(t), then corollary 5.3.11 ensures

that there exists a solution z € C[0,1] to (5.41), (5.42). But, it is easily seen that
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Theorem 2.1 of [61] does not apply to the above problem. Moreover, by Theorem 5.3.10,

for n € (0,1), equation (5.41) subject to the following boundary conditions:
2'(0) =0, «(1)==z(n),
has at least one solution in C*[0, 1].
We now treat the boundary condition (5.37). In the following, we assume that the
mapping N and the linear operator L are the same as in the proof of Theorem 5.3.10 and

let
D(L) = {o € WH(0,1) : 2(0) =0, na(1) = o(n)}.

Theorem 5.3.14. Let f satisfy the following conditions:
(1) There exists My > 0 such that, for ¢ € D(L), if |2'(t)| > My for all t € [0,1}, then
1 ps
| [ e, 26 + e(t)) deds #0;
ns
(2) There exists My > 0, such that for all v € R with |v| > M, one has either
(2a) v(f(t,vt,v) +e(t)) >0 forae tel0,1],

or

(2b) v(f(t,vt,v)+e(t)) <0 for ae t€][0,1];

(3) 1f(t,2,p)| < at)le] + 0(t)lpl + u(t)le]” + v(®)lp|® + c(t) for (t,2,p) € [0,1] x
[~ My, M) x R, where 0 < v,k <1 and a,b,u,v,c€ L'[0,1].
Then the BVP (5.85), (5.87) has at least one solution in C'[0,1] provided that

lalls + 15 < 5.

Proof: Let
Uy={zeD(L): La + ANz =0, A€ (0,1)}.

140



Then for « € Uy, Nz € im(L). By the characterisation of im(L) (see section 5.1),

/Olfn (F(t, 2(t), 2'(1)) + e(t)) dt ds = 0.

So, by our assumption (1), there exists £ € [0,1] such that [2'(£)}] < M;. By a similar

argument to that in the proof of Theorem 5.3.10 we have

1 1 i
So"@) < 5oO) + el [ £ w00 dt + o lollel

< %Mlz + oo Nlallillzlloo + 0] 11127 leo + llullsllllc + llofisllzlls + llells).
Since z(0) = 0, ||z||co < ||2]|co, We obtain
(5 = Nells = 180 ) 1o'e? < 002 o 5+ ol 527 + 1l el
This implies that there exists My > 0 such that ||z]e < |j2/||ee < Mo.
Now, let
Up={z €ker(L): Nzeim(L)}.

For @ € Uy, it is easy to see that & = Cpt for some Cy € R. Nz € im{L) implies that
/Olfnz(f(t’ Cot, Co) + €(t)) dt ds = 0.
By our assumption (1), ||z||cc = |Co| < M;. Under the assumption (2a), we let
Us={a2=Cut € ker(L): p@NCy+ (1 — p)Co = 0},
and under the assumption (2b), we let
Us = {z = Cot € ker(L) : puQNCy — (1 — p}Co = 0}.

Using (2), it is easily proved that Us is bounded. So, following the same argument as in

the proof of Theorem 5.3.10, the proof of Theorem 5.3.14 is completed. O

5.4 Quadratic growth

In this section, we shall prove an existence result for the BVP (5.1), (5.4), thus the

following problem

o'() = (t,2(),2(6) +e(t)  te(0,1), (5.43)

2'(0) =0, 2(1)=az(n), (5.44)

141




with |a] <1 and f has a different nonlinear growth from that in section 5.3. As a special
case, we allow f to have quadratic growth. Moreover, as a corollary of our theorem, we
obtain a result on the Neumann BVP which generalizes one of the results of [57]. We

also prove a similar result for the BVP (5.1), (5.2) when |37 % a;] < 1.

k3

5.4.1 Boundary value problem (5.43), (5.44)

Theorem 5.4.1. Let f:[0,1] x R* = R be a continuous function and have the decom-
position

f(t; :z:,p) = g(t,m,p) -+ h(t’ ﬂ),p).

Suppose the following conditions hold:

1. There exists a constant M > 0 such that
a[f(t,z,0)+e®)] >0 for |z|>M, te][0,1];
2. pg(t,z,p) <0 for all (i,z,p) € [0,1] x [-M, M] xR;
3. There are continuous functions A, B : [0,1] x [-M, M] — R such that
|h(t,x,p)] £ A(t,2)p" + B(t,x) for peR.

Then the BVP (5.43), (5.44) with |a| < | has at least one solution in C'[0,1].

Proof: Let X denote the Banach space C*[0,1] with the norm

2]l = max{l|z|loo, [|2llec}-

Let L, N, P and @ be the operators defined in section 5.1. Again, we shall prove that

the conditions of Theorem 5.1.1 are satisfied. Let

Uy={ze€ D(L): L+ AN(z) =0,A € (0,1)}.
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Suppose z € Uy, then |a] < 1 implies that there exists tg € [0,1) such that |z(to)| =

maxeeo,i] |2(t)]. As in the proof of theorem 5.3.10, we obtain that
lz(t)]|eo M forall =€l (5.45)

Since 2/(0) = 0, each ¢ € [0,1] for which a/(t) # 0 belongs to [u,~] such that 2'(t)

maintains a fixed sign on [g,v] and 2'(1) = 0. Assume that 2(t) > 0 on [, ¥], let z € Uy,

then
a'z’ = Ad'g(t,z,2’) + Ad'h(t, z, @) + Aa'e(t)
< A2'h(t,z,2') + Az'e(t)
< &'(Az” + B), (5.46)
where
A = max{]A(t,z)|: t € [0,1],|z] < M}
and
B = max{|B(t, )| + lelle : £ € [0, 1], ol < M}.
Therefore,

t 2Az" 2! t
SLEL ds <24 [ o' ds.
uA$,2+Bds_2A/#»cds

12
In (_m_;_g) < 4AM,

Hence we have

and so

|'(t)}] < My for some M; > 0.

If, on the other hand, 2'(x) = 0 and z'(¢) < 0 on [g, 7], similarly we get
'z < —:L"(A:a:'2 + B),

from which, as before, we obtain the bound M; on z’. Hence for each € Uy, ||z| <
max{M, M1 }.

Ifa#1, P=0, @ =0, and also N is a L-compact operator [22]. Condition (2) and
(3) of Theorem 5.1.1 are trivial. Hence the existence of a solution for BVP (5.43), (5.44)
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follows from the boundedness of U;. Now, suppose that e = 1, as in the proof of theorem
5.3.10, let
Up={z €kerL: Nz € im(L)}

and
Us={z €ker(L): H(z,u) = pQNz + (1 — )z =0, u € [0,1]}.

By the same arguments as that in the proof of that theorem, we obtain that U, and Us

are bounded and then again, the existence of a solution follows from Theorem 5.1.1. O

Remark 5.4.2. In Theorem 5.4.1, taking ¢(¢,z,p) = 0, gives a result which allows f to

have quadratic growth.

In Theorem 5.4.1, let o = 1, then there exists £ € (n,1) such that &’(¢) = 0. So,
accordingly, we can consider equation (5.43) subject to the following Neumann boundary

value condition
2'(0) = 2'(1) = 0. (5.47)

The following corollary follows immediately from Theorem 5.4.1 when n — 1.

Corollary 5.4.3. Assume that the mappings f,g,h are as in Theorem 5.4.1. Then the
BVP (5.48), (5.47) has at least one solution in C*{0,1].

Remark 5.4.4. In Corollary 5.4.3, letting g(t,,p) = 0, we obtain Corollary 3.1 of [57]
for the boundary condition z'(0) = &'(1) = 0 (condition I of [57]). By the same method
used in the proof of Theorem 5.4.1, we can prove that the result of Theorem 5.4.1 is also
true for the other boundary conditions studied in [57].

Example 5.4.5. Consider the following equation:

o = —a™te?™ 4o 4o 4 Bsin(t), t€[0,1], (5.48)
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where n,m are natural numbers. The existence of a solution for the BVP (5.48), (5.44)
(respectively BVP (5.48), (5.47)) can be obtained by Theorem 5.4.1 (respectively Corol-
lary 5.4.3). But, it is easy to see that the results of [30] and [57] can not be applied to

the above problems.

5.4.2 M-point boundary value problem

Now, we prove an existence result for the following m-point boundary value problem:

SE) = ft o), @) Felt)  te (0,1) (5.49)
2(0) =0, (1) =mz (5.50)

with nonlinear growth term.

Theorem 5.4.6. Let f, g, h satisfy the assumptions of Theorem 5.4.1 and suppose that
|Sm % a;| < 1. Then for each bounded function e : [0,1] — R, the BVP (5.49), (5.50)

has at least one solution in C1[0,1].

Proof: Let Banach spaces X, Y and the bounded nonlinear map N be as in the proof of
Theorem 5.4.1. Let L, : D(L,,) C X — Y be the linear operator with

m—2

D(Ly) = {z € W»(0,1): 2'(0) = 0,z(1) = > a(&)},

=1
and for € D(Lw), Lma = 2". We note that z € C*[0,1] is a solution of (5.49), (5.50) if
and only if z € D(L,,) and
Loz 4+ Nz =0.
Let Upi = {2 € D(Ln) : Lp(z) + AN(2) = 0,A € (0,1)}. Suppose that © € Upy,
then z € W*(0,1) with 2/(0) = 0, (1) = 2752 a;z(&). This implies that there exists

n € [&, &m-2), depending on @, such that z is a solution of the boundary value problem
2"(t) = Af (L, (1), /() = Ae(t) = 0, (5.51)
z'(0) = 0, z(1) = az(n), (5.52)

145




m—2

where @ = Y"1 % a;, and so |a| < 1. Note that in the proof of the boundedness of U in
the proofl of Theorem 5.4.1, we obtained that U; C {o € X : ||z|| < max{M, M;}} and
M, only depends on M, A and B, so the bound of U; does not depend on 7. Thus by
the proof given there, if = is a solution of (5.51), (5.52) then ||z|| < max{M, M;}. Hence
Ui 1s bounded.

First, suppose that >77%a; # 1, then L,, is an invertible linear operator. The linear

operator Ky, : Y — D(L,,) defined by
t
Kny(t) = /0 (t—s)y(s)ds +C, yeY,

where C (1 -y a,-) = Y% fE(EG — 8)y(s)ds — [3(1 — s)y(s)ds, is such that
KL, =1and L, K,, = 1. Also, by Arzéla-Ascoli theorem, K, N : X — X is compact,
thus N is a L,,-compact map. By Theorem 5.1.1, the existence of the solution follows
from the boundedness of U,,;.

Now suppose that °"7%a; = 1. Then ker(L,,) = R C X and we can prove that
Y =RapY,, where

m—2 1 pr
Vi =im(Ly,) = {y € L'o,1]: ; ai[‘:i /0 y(s)dsdr = 0} )

hence L,, is Fredholm of index zero. Let P : X — ker(L,,) and @ : ¥ — R be the

projections defined by

2 m—2 1 pr
ST, 1 ¢2) 2:1 ai/&‘ ./0 y(s)dsdr.

Let X; = ({ — P)X and let K., : Y] = D(L.,) N X; be the linear operator defined by

Pz =2(0), and Qy=

(Kny)(t) = /Ot fOT y(s)dsdr.
It is easy to check that Kp = (Lm|p(rm)nx,)” " Also, by the Arzéla-Ascoli theorem,
Kn(I—Q)N: X — D(L,) 0 X,
is compact. So, N is L,-compact. Let U,z and Ups denote the following subsets of X:

Uns = {z € ker(L,,) : Nz € im(Ly)}, Ums = {pQNz + (1 —p)z =0, p € [0,1]}.
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Then by Theorem 5.1.1, to prove there exists a solution for BVP (5.49), (5.50), we only
need to prove U, and U3 are bounded. By the assumption that all a; have the same
sign and by similar arguments to those given in the proof of the boundedness of U, and
Us in the proof of Theorem 5.4.1, we can obtain that for all z € U,,; and all ¢ € Uy,q, we

have ||z|| < M. This completes the proof. 0

Remark 5.4.7. For our results it is important that all the a;’s have the same sign and
our result for the m-point BVP makes use of the estimates obtained in the proof for the
three point BVP. Gupta [27] has considered a different m-point boundary value problem

where the a;’s do not have the same sign and the above technique cannot be used.
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Chapter 6

Two-point boundary value problems

Let f :[0,1] x R* — R be a continuous function. The purpose of this chapter is to

establish some new existence results on the solvability of second order ODE’s of the form
2" = J(t,2,2) (6.1)

subject to one of the following boundary conditions:

2(0) = 2(1) =0, (6.2)
2'(0) = 2'(1) = 0, (6.3)
2(0) = z(1), 2'(0) = (1), (6.4)
2(0) = —2(1), 2'(0) = —2'(1). (6.5)

The solvability of (6.1) subject to the above Dirichlet, Neumann, periodic and antiperi-
odic boundary conditions has been extensively studied by many authors (see[3], [4], [32],
[54]-[63]). In a recent paper [4], a decomposition condition for f is imposed to ensure
the solvability of (6.1) with the boundary condition (6.2). In this chapter, under the
assumption that f can be suitably decomposed, we shall apply the abstract continuation
type theorem of W.V.Petryshyn on A-proper mappings to prove approximation solvabil-
ity results for (6.1) with the boundary conditions (6.2)-(6.5). Approximation solvability
includes the classical Galerkin method. One of our theorems includes the result of [4].

When f is independent of z”, our results generalize the results of [60], [61] and show that
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certain restrictions imposed in [60], [61] are not needed in this case. Some examples show
that our theorems permit the treatment of equations to which the results of [4], [32], [57]

do not apply. The work in this chapter has been submitted in [19].

6.1 Dirichlet boundary value problem

The proof of the following theorems make use of the continuation theorem on A-proper
mappings (see theorem 1.6.3 and section 1.6 for definitions and references).
We shall call equation (6.1) subject to the boundary conditions (6.2)-(6.5) (P1)-(P4)

respectively. Our first three theorems deal with the simple case (P1).

Theorem 6.1.1. Let f:[0,1] x R* = R be continuous. Consider the following BVP:
" = f(t,z,2"), =2(0)==z(1)=0. (P1)
Assume that | has the decomposition
f.(t7:c’p) = g(t7$3p) _E“ /z(t’:l;,p)
such that
1
1. / xg(t,z,a")dt >0 for all v € C?[0,1] with z(0) = z(1) =0,
0
2. |h(t,z,p)| < alz| + blp|, where a > 0,b>0 and a + br < =2

Then (P1) is feebly a-solvable in C?[0,1].

Proof: Let X = CZ = {a € C?[0,1], =2(0) = z(1) = 0} endowed with the norm
el = max{allo, [2'llaos 1871}, where fl2lleo = masicgosgl2(2)]. Tet || 12 be the usual

norm of L%(0,1) and let L : X — C[0,1] be the linear operator defined by

"

Ly ==z for z € X.

Define N : C*[0,1] — C[0,1] to be the nonlinear mapping

Na(t) = f(t,2(t), 2'(1))-
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Let J : C§ — C'0,1] denote the compact natural embedding. Since NJ is compact,
L—ANJ:C2— C[0,1] is A-proper for each A € [0,1], [54]. Also, L is invertible, so by
Theorem 1.6.3, the a-solvability of (P1) follows provided there exists an open bounded
set ¢ C C¥ such that

Lx —~ANJz #£0 for (x,)) € (CEZNAG) x (0,1].
This is equivalent to proving the following subset of CZ is bounded:
U={2€C? ILx—ANJaz=0,e(0,1]}.

Let z € U, then

o' = Mgt 2,2) + h(t,z,2)).

Applying Wirtinger’s inequality [35]: ||z||2 < (1/7)||2'||2 we obtain
12 = — [ sa"dt
u 2 /0 o
1 1
= m)\/ zg(t,z, ') dt — /\/ ah(t,z,z’) dt
0 0
1
< —/\/ ah(t,z, ") dt
0

wrars([ o) ([
< af foldiy( [ lafa /0|:L|dt

a -+ br
[12']]3-

T2

IA

By our assumption, a + br < 72, so 2’ = 0. Since @ € CZ, x = 0. This completes the

proof. |

Remark 6.1.2. In the case g(t,2,2') = r(z)2’, where r is continuous and r(z) € C*[0, 1],

the condition 1 of Theorem 6.1.1 is always satisfied, since [y zr(z)z’dt = 0 for all = € CZ.
We will use the following condition A (see [4]) and condition B for a continuous
function g : [0,1] x R? —» R.

Condition A: |g(t,z,p)|] < A(t,z)w(p?) for all (¢,z,p) € [0,1] x R?, where A(t,z) is
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bounded on each compact subset of [0,1] x R, w € C(R,(0,40c0)) is nondecreasing and

+oo (s
/o w(s) -

Condition B: |g(t,z,p)| < 37, Bi(t, @)wi(p) for all (¢,2,p) € [0,1] x R?, where B;(¢,z)

satisfies

is bounded on compact subsets of [0,1] x R and w;(p) are functions such that
1 1
f |2/(t)2dt < M implies / i (2 (£))] dt < Mo,
0 0
where M, My are constants, My may depend on M.

The following theorem is a generalization of Theorem 1 of [4].

Theorem 6.1.3. Let f have the decomposition
fQt @ p) = g(i,=,p) + h(t, 2, p)-
Assume that
1. [ zg(t,z,2')dt >0 for all z € CZ;

2. |h(t,z,p)| < ale| + blp| + Ty aile]™ + T, dilpl®,
where a > 0,620, 0<ey,08; <1;

3. g(t,z,p) satisfies condition A or condition B.

Then (P1) is feebly a-solvable in C?[0,1] provided that a + br < m*.

Proof: By the same argument as in the proof of Theorem 6.1.1, we only need to prove

that the set

U={zeC? Lr—MNJz=0, Ac(0,1)}
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is bounded. As in the proof of Theorem 6.1.1, for = € U,
1
13 < [ leh(t,m, o)) db
0
1 i ™m
< [ el (ﬂiwl + bla’] 4+ 3 eile|™ + Zdjlw'lﬁ’) )
i=1 je=1
n 1 . ,—;— m 1 %
< allel+Blelllela + Y allolla ([ 1ol)" + Y dlialla ([ 127
=1 =1
< i+9mW+iﬁwmww+iﬁmme
— 7r2 T 2 : T 2 ._. T ‘ 2
< (Ge) Wl s Dl S e

=1
Suppose that ||z’||s # 0, since otherwise z = 0. By our assumption (a + br)/7? < 1, we

have

a + b'/r 12 B
(1255 1ol < 25ty + 2 5
J=1
If ||z'||]2 = oo, we will have a contradiction since 0 < «;, §; < 1. So there exists a constant

M > 0 such that ||z’ < M. This implies
1
lolleo < [ Ja'ldt < 'l < M.
0
Suppose that g satisfies condition A, then

o] < Awole”®) + O+ bla'] + Y djl=1,

=1

where A, C are positive constants. Since
ne I 1208, 12
1 < S RP) < 14
we have
@'l < Aw(a”)+C +d(l+|2|)
< Alw("y+2+ 127, (6.6)

where A = max{A,,C,d}. As in the proof of Theorem 1 of [4], (6.6) implies that |2/| is
bounded (for completeness, we give the proof here). Each ¢ € [0,1] for which 2'(¢) # 0

belongs to some interval [sy,s9] C [0,1] with 2'(2) # 0 on (s1,52) and z'(s;) = 0 or
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@'(s2) = 0. Suppose that 2'(s;) = 0 and 2'(t) > 0 on (s;1,s2). Define z(t) = a'(¢),t €
[s1,83]. Then (6.6) implies that

2z(t)2'(t)
w(2(t)) + 22(1) + 2

< 2Az2'(2), 1 € [s1, sa).-
By integrating this inequality we obtain
*(t) ds
—— < 4AM, t € (51, 52).
/o w(s)+s+2 ’ (51, 52)

The assumption w € C(R, (0, +00)) is nondecreasing and satisfies

/-l-oo ds .
o w(s)

implies (see [3]) that
/00 ds —
o w(s)+s+2
This ensures there exists a constant M; > 0 such that |2'(t)] < My, t € [s1, $3]. Consid-
ering all the possible cases, we obtain there exists a constant M; such that ||z'||co < M.
Let

M, = sup |f(t, 2, p)i,
t€[0:1],|I|SA’f»?PlSMl

then ||z|] £ max{M, M;M,}. Hence, U is bounded.

If g satisfies condition B, then there exists A; > 0 such that
o1 < s (S l@)] + P +1).
i=1
Hence
/01 |&"| dt < A, (; /01 lw(z')| di + f 2/ di + 1) < Ag(rMy + M 4+ 1) = Ms.
Suppose that ¢ € [0,1] is such that &’(£) = 0. Then &'(t) = [ 2"(s) ds, and hence
l[2lleo < H2"[l1 < M.

It follows that U is bounded. O

Remark 6.1.4. Theorem 1 of [4] is the special case of our Theorem 6.1.3 when a =

0,b=0and n=m=1.
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Example 6.1.5. Consider the following boundary value problem:
g = g2 tig? ol xs + 1+sin(t), =(0)==z(1)=0,

where n is a natural number. Let

g(t,z,p) = 2>tp* and hA(t,z,p)=p— as 14 sin(t).

Then by Theorem 6.1.3, this BVP is feebly a-solvable in C?[0,1] and in particular it has
a solution in C?[0,1].
Obviously, Theorem 1 of [4] can not be applied to it. Also, we can not find constants

M > 0 and a,b € R such that
> M= f(t,z,0) >a while o< -M = f(t,2,0) <b

since f(t,z,0) = —~oco as ¢ — oo and f(¢,2,0) = co as @ — —oco. Hence Theorem 4.1 of

[32] and Theorem 2.1 of [57] can not be applied.

6.2 Neumann, periodic and antiperiodic boundary
value problems

Now, we consider (P2), (P3) and (P4). These are resonance cases, since the linear part

is noninvertible. In the following, let
X; = {z € C*[0,1] : = satisfies the boundary condition (1.7),i = 2,3 or 4}.
and

U={ze X :a"=\f(t,z,2'), A € (0,1]}.

Theorem 6.2.1. Let f:[0,1] x R — R be continuous. Assume that

f(t72:7p) = g(t7$7p) + ll(t?:!:’p)’
and f, g and h satisfy the following conditions:
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1. There exists a constant My > 0 such that xf(t,2,0) > 0 for |z| > My;

2. (a): g satisfies Condition A or
(b): g satisfies Condition B and Jozg(t,x,a")dt >0 for allz € X; ;

3. |h(t,z,p)| < C(t,2) + D, )pl” + Tj=y di(t, 2)lpl*,
where C(t,z), D(t,z), and d;(t,z) are bounded on compact subsets of [0,1] x R and
0< ,Bj < 2.

Let M = maxiepo,1],jzj<mo | D(t, @)1, then (Pi) is feebly a-solvable relative to T' provided that
MM < 1.

Proof: Let L : X; — C[0,1] be the linear operator defined by Lz = z”. Then it is easily
seen that L is a Fredholm operator of index zero and ker(L) = R. Let Nz = f(¢, 2, ')
be the nonlinear map from C[0,1] to C[0,1] and J; : X; — C1[0,1] be the compact
continuous embedding. Then L — ANJ; is A-proper for each A € [0,1]. Moreover, let

Qy = [ ydt be the projection and

2l = [ y(0a(t)d

be the bilinear form on C[0,1] x X;. For any @ = ¢ € ker(L), if ¢ > My, then by
assumption 1, f(¢,¢,0) > 0 and if ¢ < —Mp, then f(¢,¢,0) < 0. Hence |jz|| = |¢| > Mo
implies QN Jic £ 0. Assumption 1 also ensures that [QNJ;c,c] > 0 for any ¢ € ker(L)
with |¢| > Mp. So, by Theorem 1.6.3, to prove (Pi) is feebly a-solvable, we only need to
prove U; is bounded.

Suppose that z € U;, the lemma 2.2 of [57] implies that l|z]lcc < Mo. Suppose g
satisfies (2a), then by assumption 3, we obtain

") < AL 2)w((@'(1))") + C(t o) + D(t )l ()] + Z dj (t, )] (¢)],
=1

< Awl((@(0)) + C+ Mg B + 32 da(l' ()] + 1)

=t

IA

Ax(w(@'(1))* + 2+ ")),
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where Ay = maxepo,1},jo|<Mo |A(L, ©)], C1,d;1 are defined similarly and A, is a constant.
As above, there exists My > 0, such that ||2/]|e < M;. This implies that U; is bounded.

Suppose that g satisfies (2b), then

1
le'l3 = — [ wa"at

1 1
= —,\/ zg(t,z,2')dt ——)\/ ch(t,z,z') dt
0 0

< /|:L‘||h(t,a;,w’){dt
1 n
< Mo/ ([C’(t,x)|+D(t,m)lm'|2+Zdj(t,$)|$f[ﬁj) dt
0 =
1 n 1
< MoC+ MoM [ [P dt+ Y df [ o) .
0 =1 0

Since MgM < 1, and by Holder’s inequality,

1 1 %ﬁa .
[l ([lera)” < e,

S0

(1= MoM)l2'|3 S MoC” + 3 'l

J=1
This implies that there exists M, > 0 such that ||2'||; < M, for 0 < §; < 2. Since g

satisfles condition B, we obtain
1 1 1 n 1
/ le(4)| dt < Af lw(a')| dt + O + M/ |o/[? dt + }_jczj'f (&' (1)) +1) < M.
0 0 0 =t Jo
x € X; implies that there exists £ € {0,1] such that 2/(£) = 0, hence
i
lolleo = 1| [, 2" (s) dsllex < fla"ls < M.

Thus, we have proved that U; is bounded, which completes the proof. W

Remark 6.2.2. In assumption 3 of Theorem 6.2.1, since |p|® < 1 + |pl?, the third term
is included in the first two terms, but it is convenient to make this split since the bound

on the |p|? term only is important.
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Remark 6.2.8. In [61] the authors obtained the results on the existence of a solution

to the following boundary value problem:
(a(t)a’) + J(t,z,2",2") = y(1), 2'(0) =2'(T) =0, (6.7)
and in [60] they studied the BVP
" + gi{z)a’ + f(t,z, 2" 2") = y(t), =2(0) ==(1), 2'(0) = 2'(1). (6.8)

In (6.7), a € CY0,T], ao = min{a(?) : 0 < ¢ < T} > 0, a; = max{|a’(¢)]: 0 <t < T}

When f is independent of z”, let

h(t,z,2") = f(t,a,2") —y(t).

Taking T' = 1 (for simplicity), (6.7) can be rewritten in the following form:

'l)” — _a,(t) ?:I _ H(tS ‘(Bi ‘(B,)
l a(t) a(t)

To apply Theorem 6.2.1 to BVP(6.9), let

, 2(0)=2"(1) =0. (6.9)

e @) _ _htep)
g(t,z,p) = a(t)p and h(t,z,p) = i)

Then g satisfies Condition A with w(p) = p?. Assume that |f(t,z,p)| < A+ Blz|+ Clp|,
since the condition (H4i) or (H4ii) of [61] implies assumption 1 of Theorem 6.2.1, we
obtain BVP(6.9) is feebly a-solvable provided (H4i) or (H4ii) of [61] holds. Thus when f
does not depend on 2”, in Theorem 2.1 of [61], the conditions BT? + «#T(C + p1) < w’po
of (H1) and (H2), (H3) are not necessary.

Similarly when f is independent of &, (6.8) can be rewritten as
2" = —qi(x)2’ — h(t,z,2"), «(0)=z(1), 2'(0) = 2'(1). (6.10)

Let

g(t,z,p) = —gi(z)p and hk(t,z,p) = —h(t,z,p).
Then ¢ satisfies condition B since fj zgi(z)z'dt = 0 for any = € X3. Assume that
|f(t,z,p)] < A+ Blz|+C|p|, then condition (H4) of [60] ensures assumption 1 of Theorem
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6.2.1. Applying Theorem 6.2.1, we obtain that BVP(6.10) is feebly a-solvable provided
(H4) of [60] holds. Hence in this case, in Theorem 2.1 of [60], the conditions B+nC < 272
of (H1) and (H2),(H3) are not needed.

Theorem 6.2.4. Let f(t,z,p) = g(t,z,p) + h(t,x,p). Assume that
1. There extsts My > 0 such that ¢ f(¢,2,0) > 0 for |z| > My;
2. pg(t,x,p) 2 0 or pg(t,z,p) <0 for (t,z,p) € [0,1] x R,
8. |h(t,z,p)| < Ct,z) + D(t,@)|a’| + X0, di(t, 2)|e'|*9, where C(t,2), D(t, ), and
d;(t,z) are bounded on compact subsets of [0,1] X R and 0 < a; < 1.

Let M = maXeepo,1),|«)<mo | D(t, 2)|, then (P3), (P4) are feebly a-solvable relative to I
provided that M < 1/4. (P2) is feebly a-solvable relative to T' provided that M < 1/2 if
pg(t,z,p) <0 and M < 1/4 if pg(t,2,p) > 0.

Proof: By the same argument as that in the proof of Theorem 6.2.1, we only need to
prove U; is bounded. Let z € U;, then ||z||ee < Mp by Lemma 2.3 of [57]. Let é € [0,1]
be such that z'(£) = 0, and assume that M < 1/4. Then

S0

t t
)\/ a'g(s,z,2") ds + )\f a'h(s,z,2')ds
4 3
1 1
< |/ 2'g(s,z, ") ds| +/ [2'h(s, @, 2")| ds. (6.11)
0 0
Since o € X, so
1 1
/ 'z’ dt = A] (z'g(t,z,z") + 2'h(t,z,2")) dt = 0.
0 0
Hence,
1 1
S () <2 f &' h(s, z,2")| ds.
0

Thus

0P < el [ (Ou,x)w(m)\mw+§;dj(t,m>|m'|af) @

J=1

IA

1 jeo (C' + Mlzlles + Zdé-Hw'llé”é) :

=
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Assume that ||z'||c # 0, then

(i ~ M) 2]l < €+ 3 2|2

i=1
Since a; < 1, we obtain there exists M; > 0 such that ||2]|cc < M. In the (p2) case, if

pg(t,z,p) <0 and M < 1/2, instead of (6.11), we will have

¢ t
() = A [ @gls,a,a)ds + [ a'h(s,z,a)ds
Y 0
1
< / |<'h(s, @, a’)| ds. (6.12)
)
So, by the same proof as above, there exists My > 0 such that ||2'||cc £ M;. Thus in

every case, U; is bounded. n

Example 6.2.5. We study the following equation
o = 42 L Qt,2) + |27 (6.13)

subject to the boundary conditions (6.3)-(6.5), where n is a natural number and Q(¢, z)
is a continuous function. Assume that there exists My > 0, for which 2Q(¢,2) > 0 for
|z| > My. By Theorem 6.2.4, the above BVP is feebly a-solvable since D(¢,z) = 0. Since

we can not find A(t, x) such that
|+ 0" 4+ Q(t,0) + |pl?] < At 2)p” + C (1),
Theorem 2.1 of [57] and Theorem 4.1 of [32] can not be used.

In our last theorem, we impose a condition which is similar to the condition H3 of

[61].

Theorem 6.2.6. Let f(t,2,p) = g(t,@,p) + h(t,z,p). Assume that

1. There exists My > 0 such that either cf(t,c,0) > 0 for all |c| > My or cf(t,¢,0) <0
for all |c| > My;
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2. There exists My > 0 such that [y f(t,z,2)dt # 0 for & € X; with |z(t)] > My for
t € [0,1];

8. pg(t,x,p) 2 0 or pg(t,z,p) <0 for (¢,2,p) € [0,1] x R

4. |h(t,z,p)| < alz| + blp| + c|z|* + d|p|® + e, where 0 < o, 8 < 1, and a,b,c,d, e are

constants.

Then (P3), (P4) are feebly a-solvable relative to I' provided that a + b < 1/4. (P2) is
feebly a-solvable relative to T' provided that a +b < 1/2 tf pg(t,z,p) <0 and a +b < 1/4

if pg(t, 2, p) > 0.

Proof: Let L, N, J;, @ and the bilinear form [y, z] be as in the proof of Theorem 6.2.1. For
¢ € ker(L), by assumption 2, QNc # 0 if |¢| > M;. Moreover, according to assumption 1,
[@Nc,c] > 0 for all |¢| > M, or [@Nc,c] <0 for all |¢] > M;. Hence, by Theorem 1.6.3,
(P1) is feebly a-solvable if U; is bounded.
Let o € U; and £ € [0,1] be such that 2/() = 0. By assumption 3 and 4, using the
same calculation with that in (6.11) and (6.12), we obtain that
1 , N
I < 1o (allwlo + Bllo + cllels, + a1, + €)
and in the case (P2), if pg(¢t,,p) <0,
1 7 «@ ]
Sl2'll% < lla'lleo (allelleo + Bll'lleo + ellzllE + dll2li& +e) -
2
Assume that ||2'l|le # 0. Since 2 € X;, Na € im(L), so @ Nz = 0. Assumption 2 ensures
that there exists ¢ € [0,1] such that [2(¢)] £ M. Writing () = [{ 2'(s) ds + 2(() gives
lelloo < 16/l + My < [)oo -+ M. (6.14)

From the above discussion, we obtain
1
(5= a=0) 19l < M+ clle'lo + Ma)* + )2 + .

In the case (P2) with pg(t,2,p) < 0, a similar inequality is obtained. These imply that
there exists M3 > 0 such that in both cases, ||2'||cc < M5. By (6.14), |||l < M3. Thus,

we have proved that U; is bounded. [
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Remark 6.2.7. It is easy to see that in condition 4 of Theorem 6.2.6, clz|* and dip|?

can respectively be replaced by i, ¢ile|* and 7, d;|p|?, where 0 < a;, 3; < 1.
Remark 6.2.8. The results can also be proved by applying the coincidence degree theory

of Mawhin. The difference is that we only can obtain the existence of a solution but not

the approximation solvability. The latter gives constructive results for the solutions.
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